RADO.TV

 \section*{75c}

 \section*{75c} No. 562

More Projects for Your Money Than Any Other Electronics Publication

Extra Bonus -

HOW TO GET A GOOD PAYING JOB IN RADIO-TELEVISION

Build this equipment while learning... it's yours to keep!

EARN WHILE YOU LEARN AT HOME IN SPARE TIME

I'll prove to you that I can prepare you to become a trained Radio and Television Serviceman in a few months' time . . . ready to step into a good paying job with a real future! Mail coupon-postcard NOW!

Only ${ }^{5} 6$ sturts you on speremer. Only 56 starts you "ham ivomen Training Plan

Men by the thousands. . . trained Radio-Television Service Technicians . . are needed at once! Perhaps you've thought about entering this interesting, top paying field, but lack of ready money held you back. Now-just $\$ 6$ enrolls you for America's finest, most up-todate home study training in Radio-Television! This offer is made because Radio-Television must have the additional men it needs as quickly as possible. We are willing to do our part by making Sprayberry Training available for less money down and on easier terms than ever before. This is your big opportunity to get the training you need . . . to step into a fine job or your own Radio-Television Service Business-

Get Practical Experience with 25 Kits of Radio-TV Parts
In addition to modern lessons, you train with actual parts and equipment. Build the famous Sprayberry Training Televi. sion Sct, Multi-Range Tester, 2-Band Radio, other Test Equipment-all yours to keep. Get latest training on Color TV, Transistors, Hi-Fi and UHF Conversions to make your training more valuable.

Radio-TV Needs You Now!
 Get all the facts... FREE!

Radio-Television needs you! Sce how and why Sprayberry Radio-Television home training offers you more. Three training plans to suit your exact needs. Low payment... only $\$ 6$ starts you. Backed by over 27 years of distinguished training experience. Rush special postcard-reply coupon for catalog and free sample lesson.

The Radio-Television industry is begging for trained men for interesting, profitable service work... get set now!

CWRITE NAME AND ADDRESS - Cut out card and mail. 2
 NAME

ADDRESS

TOWN
STATE \qquad

BUSINESS REPLY MAIL First Class Permit No. 3431 6, Chicago, Ill.

SPRAYBERRY ACADEMY OF RADIO-TELEVISION

Dept. 212 -B
1512 Jarvis, Chicago 26, III.

This coupon needs no stamp or envelope. Just write name. in upper left corner, cutout along dotted line and drop in any mail box. Pay no attention to printing on back of the card. By return mail you'll receive our big 60 page catalog and free sample lesson.

SPRAYBERRY

ACADEMY OF RADIO-TELEVISION Dept. 212-B
1512 Jarvis, Chicago 26, MII

Mail Postage-Free Card for

 SAMPLE LESSON FREE Shows you how easy, practical it is to Train at Home for Good3. E. SMITH Founder, Wetional Rodio Wostington D.C. Institute, Woshington
Over 40 years experience
home. Radio-Television Jobs

Oldest and Largest Home Study RadioTelevision Training School. N.R.I. has Trained Thousands for Good Pay Jobs
Since $1914 \ldots$ for more than 40 years-N.R.I. has been training ambitious men at home in spare time for Radic.TV. Let us send you a sample lesson to help prove you can keep your jot and TRAIN AT HOME in your spare time for better pay and a brighter future. We will also send N.R.I.'s 64-page catalog to show you that RadioTelevision is today's field of OPPORTUNITY for properly trained men.

The ABC's of SERVICING

Television Making Good Jobs, Prosperity The technieal man is looked up to. He should be. He does important work, is respected for what he knows, gets good pay for it. There are splendid opportunities for the man well trained in Radio-Television Servicing or Broadcasting. Government, Aviation, Police, Ship, Micro-Wave, Relay, Two.Way Communication: for buses, taxis, trucks are growing Radio-TV fields, making more good jobs.
N.R.I. is the Tested Way to Better Pay N.R.I. Training is practical, thorough, You get the benefit of N.R.1.'s 40 years' experience. Many successtul N.R.I. men stert without any knowledge of Radio, many without a migh school education. Find out what Radio-Television training can mean to you. Make the first move today toward becoming one of that select group-a Radio-TV Technician. Send postage-free card for Actual Lesson and 64 -page Catalog, both FREE. NATIONAL RADIO INSTITUTE, DEpt. 9JB3, Washington 16, D. C.

N.R.I. Sends Equipment for Practical Experience

Nothing takes the place of practi. cal experience. That's why N.R.I. training is based on LEARNING-BY. DO NG. N.R.I.training includes k'ts of parts which you use to build equipment and get practical expeRadio and Television. Shown at 1 left is low. power Broad. casting Trans- 1 mitter you
build as part of N.R.I. Communica- 1 tions Course. FREE Catalog shows other you gep. things yoú
learn. learn.

See Other Side

- 영

FIRST CIASS Permit No. 20 R (Sec. 34.9. P.L. \& R.I Woshington, D.C.

BUSINESS REPLY CARD

No Postage Stomp Necessary If Mailed In the United Stotes
POSTAGE WILL BE PAID BY
NATIONAL RADIO INSTITUTE.
Washington 16, D. C.

Learn Radio-Television Servicing or Communications

 by Practicing at Home in Spare Time ${ }^{2}$ bOOKS FREEN.R.I. SENTDS KITS with which you proctice building circuits, common to Rodio ond Television. You LEARN. BY-DOING. As por $\$$ of N.R.I. Servicing Course, you Build Vocuum Tube Volimeter and AC-EC Receiver shown here.

Mail Postage-Free Card for Sample Lesson and 64 Page Caialog

Fast Growing Field Offers You Good Pay, Success, Bright Future

Biggen than ever and still growing. Thafs why Radio-Television has special appeal to ambit ous men not satisfed with their future prospects. More than 4,000 Radio and TV Stations use trained technicians. 150 million home and auto Radios and 40 million TV sets must be kept in service. Color TV promises added opportunifies. There are good jobs, bright futures in Radio-TV Servicing or Communications. Training bus Opportenity is the ideal combination for success. Plan now to qet into Radio.TV. The technical man is looked up to, does importan work, gets good pay. Keep your iob whilc training. With N.R.I. you learn at home in spare J.E. SMITH, founder, N.R.I. school. Its methods have proved successful for more than 40 yeaps.

See Other Side

CUUTOUUT AND MAILTHIS CARD NOW

Sample Lesson \& 64-Page Catalog Both FREE

NO STAMP NEEDED - WE PAY POSTAGE

national radio institute

Dept. 9JB3, Washingion 16, D. C.
Mail me Sample Lesson and 64-page Catalog. (No salesman wiil call. Please write plainly.)

NAME \qquad $A G E$

ADDRESS
CITY \qquad ZONE \qquad STATE

AcCredited member, national home study council

istart Soon to Make \$10-\$15 a IWeek Entra in Your Spare Time Scon after'enrolling, many N.R.I. students start to earn $\$ 10, \$ 15$ a week in spare time fixina sets for friends and neighbors. Some males enough to start their own full t me Radio-TH shops. Easy-to-understand lessons teach yo basic principles. You LEARN-BY-DOING on N.R.I equipment which "brings to life" things you study.
Find out what N.R.I. offers. Study fast or slow -as you like, Diploma when you graduats Mal Dostage-free postcard now. ACTUAL LE; SON FREE. Also 64-page catalog that show opportunities, equipment you get. Cost of N.R.I courses low. Easy terms. NATIONAL RADIO INSTITUTE, Dept. iJB3. Washington 16, D. C.

COYNE offers

The future is YOURS in TELEVISION:
A fabulous field-good pay-fascinating work-a prosperous future in a good job, or independence in your own business!

Coyne brinos you MODERN-QUALITY Television Home Training; training designed to meet Coyne standards at truly lowest cost -you pay for training only - no costly "puf fogether kifs." Not an old Radio Course with Television "tacked on." Here is MODERN TELEVISION TRAINING including Radio, UHF and Color TV. No Radio background or previous experience needed. Personal guidance by Coyne Staff. Practical Job Guides to show you how to do actual servicing jobs-make money eorly in course. Free Lifetime Employment Service to Graduates.

ELECrBICAL SCHOOL

Chartered as an educational institution NOT FOR PROFIT

B. W. COOKE, II., Prasident

Conwe-the Imatitution behind this Irath ing. . The largont, mhlient. Mext couripped

Send Coupon or write to address below for Free Book
and full details, including easy Payment Plan.
No obligation, no
salesman will call.

COYNE Television

Home Training Division

Dept. 69-H23, New Cayne Building
| 1501 W. Cangress Pkwy., Chicaga 7, III.
Send Free Book and details on how I can get Coyne Quality Television Home Training at low cost and easy terms.
Name
Address
City

Because Radio Shack is ane of the world's largest dealers in hi-fi components, indus. trial electronic equipment, ham radio, test equipment. tools, optical goods, records and hobby supplies, everything new, every bargain, comes to Radio Shack first and through these Bargain Bulletins to Radio Shack customers. They're free and frequent. To be "in the know," fill in and mail the coupon below.

Completely new . . . completely different . . . and a complete directory of everything in electronics for industry, for the audiophile, for the hobbyist . . . plus everything in hiffi, ham radio, tools, test and laboratory equipment . . all presented in 250 big $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ pages, big readable type with clear pictures... and including latest technical articles written by recognized authoritios.

NOW! 2.WAY RADIO STATION WITHOUT FCC EXAMS!

Build It Yourself!

 CITIZENS' BAND TRANCEIVERKIT
AT LAST! Thanks to new FCC rulings, anyone can own and operate a shortwave radio station on the 11 -meter band without FCC exams! And this comp kit Radio Shack - STANCOR kit provides everything you need to build a combination traned! receiver exactly as pictured!
order No. 450X136, sh. Wt. 11 lbs.

RADIO SHACK CORP. Dept. 8 PR
730 Commonwealth Avenue, Boston 17, Mass
Please send me:
fREE Bargain Bulletins for full yearTransceiver Kit Order No. 450×136 @ $\$ 39.95$
\square Check
C. Money

- C.0.D.

Name

Address

City
Zone State

something M $7 N^{*}$ devRY tech training program

 has been added to The Prepare in Spare Time At Home for a
JOB THAT PAYS REAL MONEY in TELEVISION-RADIO-ELECTRONICS

Many DeVry.trained men who now hold good jobs paying real money were once looking for opporfunify, yet wondering if they needed advanced schooling, special experience, or higher math. They clipped a DeVry Tech coupon, mailed it in-and were pleasantly SURPRISED! Now they work in one of today's fastest-growing fields-TELEVISION. RADIO. ELECTRONICS. Many have their own profitable service shops. DeVry Tech's "Learn•by-Seeing," "Learn-by-Reading," "Learn-by-Doing" training made the difference! You, too, may train at home the DeVry Tech way with wonderful, helpful movies, clear texts and valuable home laboratory equipment-or in our well-equipped Chicago or Toronto Training Centers.
Now something NEW* has been added to help you learn more by "doing." You can choose to build and keep your own top quality 6 -speaker STEREOPHONIC SOUND SYSTEM that will provide thrilling enjoyment for years to come. Plans are furnished so that you can also build your own speaker cabinets-or we can tell you where to buy them. DeVry Tech's specially designed Stereo System includes:

- Turntable with Stereo cartridge - Stereo Amplifier
- Stereo Pre-Amplifier - 2 Cross.Over Nefworks
- Six Speakers: two 12 .in., two 8 .in., two 3 -in.

Build Your Own

 6-Speaker HICH FIDELITY STEREOPHONIC SOUND SYSTEM another wonderful DeVry advantageSpocial SHORT COURSE in High Fidelity Sound Reproduction inctuding steroophonic Systems also avaiteble. Ideal for hebbyists, music lovers and those wanting to ADD to their incomes.

MANY OPTIONS!

NOW ... DeVry tech men can take their shoice of any or all of the quality equipment shown above: The Stereo System . . . the Scope and Meter . . a 21 -inch TV Sep (nat pictured) . . . or All THREE. But no motter which way you do it, you get practical home training of its best .. . the kind you need to get started in the fast-moving Electronics field. Send coupon for details.

When you build your own equipment, you learn about the working parts. You can repair, adiust, maintain. You learn by doing-the DeVry Tech way, You put basic principles into "on-the-job" practice.

\qquad

DeVry Tech offers real, down-to-sorth omployment service to help you toward a good job after graduation - even provides help in starting your own servicing busi-
ness.

Accredited Member of
Accredited Member of
National Home Study Council IRSTITUTE

I MAIL TODAY FOR FREE FACTS
1 DeVry Technical Instifute
I 4141 Belmont Ave., Chicago 41, III, Dept. RTE-P 1 Please give me your two FREE booklets, "Pocket Guido to to prarnings and "Eecronics and You, and tell me how to prepare to entar one of more branches of Electronics.

NAME

\qquad AGE STREET \qquad APT.

CITY \qquad
[] Chesk here if subjoct to military training.
DuVry Tech's Canadion Training Center is losated at 2053626 Rontown Avenue, Toronto 12, Ontorio

New Complete rame Takes Headaches Out Of All Servicing Problems!

Transistor Troubles in 12 Minutes!

 Trouble-shoot every type of circuit in ALL transistorized equipment! 52.5 pages ; hundreds of illustrations; 120 check charts: \$5.95
PwiPout

Record Changer Troubles in 5 Minutes! Locate mechanical and electronics troubles fast. Covers all makes. 320 pages; 450 photos; 58 check charts $\$ 3.95$

TV Troubles in 10 Minutes! Find the exalct sound or picture trou ble in any TV set from $\boldsymbol{r} 00$ possibilifies! 300 pates; 300 diagrans, check charts! \$3.95

PiwiPoint

Color TV Troubles in 15 Minutes! Covers every type of color TV and picture tube! 550 pages; 362 check charts, diagrams, picture patterns! $\$ 5.95$
Simple Check Chart System Saves Time These amazing practical handbooks with an ENTIRELY NEW METHOD, show you how to find the trouble in ANY iv, recorl changer or transistor circuit FAST! Index tells you where to look; famous Check-Charts help you pin-point Whe exacl trumble in minutes: These on-the- joh books quickly pay for themselies in protitable new business fand raluable time saved!

SEND NO MONEY!

Just mail compon for free trial. After © days, semed only low price or return books mind pay nothing! If you keep all $\{$ bnoks, send only $\$ 3.00$ after 7 davs, and \$3.00 a montlo until \$19.80 phes postage is paid.

VALUABLE FREEGIET! Send for FREE TRIAL OFFER of all 4 PinPoint books and get FREE book, "Bigger Profits in TV' whetheryou keopseries or not!

FREE TRIAL OFFER...Mail Coupon Now!

[^0]
NOW READY! McGraw-Hill's New Train-Yourself Course

televison aso radio rifpatreng

REPAIRNG record changers

PROFITABLE RADIO Trousteshojting
practical rapio SERVIGING

AIX TV Rano amid RECORD CHANGERS RIGHT AWAY

-even if you've never looked inside a set before!

AT LAST - at Amazing LOW COST - The Most Complete TV-Radio Repair Course Ever Published. TELLS and SHOWS How to Do Every Job Quickly and Easily Make GOOD MONEY, full or Spare Time in the BOOMING Repair Business
piftures and directicrs cover ANY job on EVERS' et - tubes, circuits, speakers, new a-c/d-c partables. Color IV. coen what to rharge jor epery job!

BIG MONEY - Spare or Full Time
Forget lack of experience. Forget your age. Over to MlLLIION TV sets, $1: 31$ MILLLION radios - and the shortaye of repairmen - mean big mones for you. Course make it easy to "cash in." spare time or full. start your own business, enjoy your work and a big bank account!

SEND NO MONEY

Try Course 10 days FREE. (We pay shipping!) If you don't agree it can get you started in a money-making repair business - return it. nay nothing. Otherwise keep it. Earn while youlearn; and pay the low cost on casy terms. Mail couporn NOW. MeGraw-Hill Book Co., Dept. SMA.9. 327 West 41 st St.. New York 36, N. Y.

$$
\operatorname{lel}_{1}
$$ earning monev - from very first chaptea. AISC pietures and directions make tuugher jobs a "xnip." Before you finisn you "an earn mans times it const.

NO previous traiuing needed. N(complicated lormulas. I'LAIN bNG:IISH

$$
\ldots
$$

Free A!L THREE Valuable Repair Aids: TV, RADIO, and CIRCUIT Detect-0-Scopes (Total Retail Value $\$ 3.00$)

FRKE - whether youk keep the Course or not - PHREE amazing DE'TECT-O-SC'OPE Charts. TV and RaDlC Scopes enable you to spot all tuhe
troubles in :s jiffy. CIRCUIT troubles in a jilfy. CIRCUIT
Scome bles. Mitie fix-it jolns easier, faster, 16 x 21 inches. AIL, THRNF: (worth sisho) vouts FREF while they last on this introductory offer.

> PARTIAL CONTENTS
> (1) Television and Radio Repoiting placing parts., 566 pages. 700 "rhis-is-How'" pictures, diagrams. By John Markus, Feature Ed., Electronics Magazine
> (2) Proctical Radio Servicing Easy-to-follow directions. $\begin{aligned} & \text { diagrams, drawings }-7 \text { with job } \\ & \text { sheet for every repair job. jog }\end{aligned}$ sheet for every repair job. 473 illus. By William Marcus. Alex Levy, Electronic Train- ing Experts.
(3) Profitable Radio Troubleshooting -WHERE to look and WHAT to do for every trouble. How to avoid costly mistakes, handle customers profitably. 330 pares.
153 "how-to" illus. By william Marcus, Alex Levy.

4Profitable TV Troubleshooting-Short-cuts to SPOT and FIX every trouble-fast, for big profits. By Eugene A. Anthony, Service Consultant, General Elec. Co.
(5) Repoiring Record Changers -Step-by-step pictures and directions - how to set up service bench, etc. 278 pares. 202 A-B-C pictures. By Eugene Ecklund, Eng. DuMont Lab., Inc. Complete Home Course Outline - Getting started in television and radto servicing. How to get the most out of your course. How to get ahead FAST. B John Markus.

T- THIS COUPON SAVES YOU $\$ 11.85$
MCGRAW.HILL Book Co.. Dept. SMA-9 327 West 41 st St. New York 36, N. Y. Send me - posthaid - for 10 daris free trial the 6Course. It okay. I 11 remit only $\$ 4.95$ in 10 days; then $\$ 5.00$ monthly for 5 months. (A total savings of $\$ 11.85$ on the regular price of the Course and Detect-O-Scopes.) also send free to keep whether or not I keep the Course) the 3 TV RADIO, and Circuit detect-o-scope charts, - total value $\$ 3.00$.

Name
Address
(Please Print Clearly)
City Zone No.
CCHECK HERE if you prefer to enclose first payment of $\$ 4.95$ wath coupon. Same easy pay plan; same 10 -das return provilege for full refund.

see them all in ALLIED'S 1960 ELECTRONIC SUPPLY CATALOG

build your own... it's easy...it's fun! SAVE UP TO 50\%

HI-FI
KITS
 HOBBY KITS

 68⿷匚 HAM KITS

BUY ON ALLIED'S
EASY TERMS

ALLIED RADIO

FREE

 catalog100 N. Western Ave., Dept. 64-J9, Chicago 80, III. \square Rush FREE 1960 ALLIED Catalog

Name

Address

Cīty \qquad Zone \qquad State

ORdER DIRECT OR FROM YOUR NEAREST DISTRIBUTOR A. ELECTRONICS MFG. CO. INVENTIONS WANTED!

140 Wealthy Manufacturers Ready to Pay Top Prices

Do you have an idea for a new product or a way to improve a product already in use-patented or unpatented - you would like to sell for cash or lease on royalty? If so, send your name and address on a post card-NOW - for FREE details explaining how you can turn your "Big Ideas" into big money.

SCIENCE AND MECHANICS MAGAZINE

 450 East Ohlo Street - Depi. 409 - Chicago 11, IIIInois 40 SCIENCE PROJECTS

Wonders of science now explained with 40 fascinating projects you can build-Varr de Graaft Genera-

7 B machine, solar furnace, chemical balance, cloud chambers, satellite 'scope, traveling arc and 32 other easy-to-nake projects demonstrating scientific theory, All included in our big 192 -page Price 75 , Order your copy nosw! SCIENCE AND MECHANICS,
4 So E. Ohlo St., Dept. 315, Chicago 11.

TIPS FOR CAR OWNERS

That Will Save You Money

Want to cut your repair bills? Operating costs? Service your own car? Get better mileage? These are but a few of the many subjects discussed in our 192-page "Car Repair Handbook'" No. 560, just out. It's a Price 75 c , postpaid. Order from:

SCIENCE \& MECHANICS, 450 E. Ohio St., Dept. 322, Chicago II, III.

Only CTS offers you COMPLETE training in all phases of Electronics. Why be satisfed with less? The new Christy Shop-Method Home Training makes learning interesting and easy. You learn Radar, Sonar, Electronics, Radio, Television. No previous experience needed. You learn by working with actual equipment. Makes learning fun. Speeds your progress. Helps you understand quicker and remember longer.
You get comprehensive training starting with your first CTS lesson! The complete knowledge CTS provides you with gives you a broader knowledge, a greater understanding which will mean more jobs and a higher income for you for the rest of your life.

HOME LABORATORY SENT!
 19 TRAINING INSTRUMENTS INCLUDED

With CTS COMPLETE Home Training Course, you receive a Home Laboratory to assemble, use and keep for years of peak performance. You receive a Multi-Tester, Oscillator, Signal Tracer, Oscilloscope, Signal Generator, Electronic Timer, Regenerative Radio, Giant-size Television Receiver (optional) as well as many other valuable electronic devices. With these you will be able to make hundreds upon hundreds of exciting experiments.

EARN WHILE YOU LEARN! EARN $\$ 5.00$ - $\$ 6.00$ PER HOUR

Or MORE while still studying! Almost from the very first you receive training that enables you to repair radios and television sets for friends and neighbors. To install and servtce electronic computers, communication equipment, protective equipment for police and fire departments, etc., etc.

FREE BOOK__SAMPLE LESSONS SENT

Get all there is to know about the Christy COMPLETE Electronic Course in Radio-Television-Radar-Sonar, etc. A complete, colorful, illustrated book on Electronics sent without obligation.

Also, we will send you Two sample lessons showing how the new CTS Shop-Method Home Training Course will train you for making big money in your spare time and for building a bright future for yourself.

CHRISTY TRADES SCHOOL, Depi. T-111, 3214- W. Lawrence Ave., Chicago 25 SIGN, MAIL FOR THREE BOOKS

[^1]
EXPLAINS ELECTRICAL TERMS IN A JIFFY!

New Guide Gives Terms, Definitions, Formulas, Charts and Diagrams . . .
 A quick easy way to put needed information t your fingertips. Examine this New Practical Dictlonary of Electricity and Electronics FREE for 10 days at our risk.

THE WORKING VOCABULARY YOU MUST HAVE. Jam-packed With both standurd elecrical terins and the latest developinents in he theld, written cleurly and slmply for beginner and veteran alike. Terms essentian in Th, Industrial applications are covered.
PACKED WITH DESCRIPTIVE PICTURES. Scores of photos, drawings, sketches so clear you can't go wrong. Help make terma like "arnulldyne, "kinescope," "dynamotor" easy tograsin. Many tables, charts, graphs, most-used symbols.
SEND NO MONEY. JUST SEND NAME, FIII In coupon below and get The Practical Dictionary of Flectricity and Flectronles for FRF: trial exainination. Pay nothing now. Pay nothing to nostman on dellvery.
american technical society, Dept. 406 848 E. 58th Street-Chicago 37, Illinois

If You Keep It
Only $\$ 595$ Others Cost up to $\$ 20.00$ IMCLUDES MANBBO日K Partial Contents:

- Formulas Electrical Electronics Inductance
- Tables

Measurement Letter Symbols Color Coding Diagrams - Graphical Symbols

MAIL COUPON • FREE 10 DAY TRIAL

AMERICAN TECHNICAL SOCIETY, Dept. U06
AM8 E. 5th Street, Chicago 37, Illinois
Send me THE PRACTICAL DICTIONARY OF ELECTRICITY AND ELECTRONICS Ior 10-day FREE EXAMINATION, If I keep the book 1 will send you $\$ 5.95$ plus shipping within 10 days, Otherwise, I will return it and owe you nothnn MY NAME
ADDRESS
$\frac{\text { CITY }}{\text { We pay shipping costs if you enclose } \$ 5.95 \text { with this coupen. Same refund guarantee. }}$
We pay shipping costs if you enclose $\$ 5.95$ with this coupon. Same retund guarantee.

OLSON RADIO

CORPORATION
Akron 8, Ohio

OPTICAL BARGAINS

WAR SURPLUS! -INFRARED SNOOPERSCOPE
 Govt. Cost \$900-Bargain at $\$ 39.50$ Converts infrared to visible light. See in total darkness without being seen. Use in lab, factory, classroom, etc. Completely portable. Operates on two flashlight bat teries (not included). Image is quite good may be made even better hy rareful focus ing case 12 ibs. No infrared light source ing curne ford. (See below.
Stock No. 85,098-HP
INFRARED LIGHT SOURCE AVAILABILITY!
INFRARED LIGHT SOURCE AVAILABILITYI
You will need a 6-volt fransformer or 6 V atlo battery to operate.
Stock No. 80,035-HP
$\$ 10.00$ postpaid
Order by Stock No.-Check, M.O.-Money-back Guarsntee

FREE CATALOG! ${ }^{100}$ PAGES! OPTICAL BUYS

OPTICS FOR INDUSTRY!

Optlcs for the space era . . Satellit
MANY ON-THE-JOB HELPS... QEALITY CONTROL AIDS: Write for this amazing Catalog! Vou won't be sorry. 100 phges-hundreds of illustrations, charts, diagrams. A treasurehouse of optical information . . . bargains galore. Optics for industry! Scopes for observing Satellites, Moon, Planets, Rockets. Optics for research labs, experimenters, hobhyists Instruments for cherking, measuring- Lo speed your work, improve your quality, cut your rosts. Many math learning and waching aids.
We glve you FACTS, no fluff. Tell you what it
is-how it works-where lt's used!
COMPARATORS. MAGNIFIERS, MICROSCOPES Countless war surplus bargains-ingenious optical tools from foreign lands. Thousands of optical components: Infrured telescopes, snooperscopes, mieroscopes, magnitiers, lenses, prisms,
wedges, mirrors, mounts,accessories of ali descriptions. Shop the Catalog of America's greatest optical mart.

REQUEST FREE CATALOG "HP"

AMAZING TRANSISTOR RING RADIO

Here is the smallest
and most novel tran and most novel tran-
ily assembled circuit employs PNP ity assembled circuit employs PNP
transistor amplifier and micro-diade transistor amplifier and micro-diode detector. Ferrite inductor tunes standard broadcast band. Power supcharge galvanic cell for which matecharge oalvanic cell for which mate: available only from us. Ideal for school projects, experimenters, and all interested in novel devices. EVERYTHING needed to assemble the Ring Radio iplastic case, diode, transistor, etc., etc.) sent postpaid for ONLY \$3.49. Use your own earphone or order below our specially priced precision midget phone.

Hundreds of radio experimenters have assembled this combination Wrist, Pendant \& Pocket CIIp TRANSISTOR RAOIO with ereat suecess. Complete set of parts includes PNP Transistor, miero. glass diode, plastic case. bakelite chassis plate, ferrite inductor tuner, knob, ceramic capacitor, pocket citp. hardware, hookup wire, ete.-ALL for $\mathbf{\$ 3 . 9 5}$ postpaid. Set works on a $11 / 2$ v., $12 e$ battery sold by hearing aid dealers in your town. Uses any stand ard magnetic earphone or we'll furnish precision 8000 ohm hearing aid phone (retail price: $\$ 8$; not a cheap Import) for only \$3.49. Iflustrated instruetions. All orders shipped Ist Class Mail U.S. \& Canada. Sorry, no COO's.
ELECTRO-MITE ${ }^{(1)}$-springoale $636-z$,

The equipment illustrated and text material you get with each course is yours to keep. Practical work with very first lesson. Courses for the beginner and the advanced student. Pay-as-you-learn. You need pay for only one study group at a time.

SEND FOR THIS FREE BOOK NOW

Resident School courses in New York City offer comprehensive training in Television and Electronics. Day and evening classes start four times each year, Detailed information on request.

RCA INSTITUTES, Inc. Home Study School ryve:99
A Service of Radio Corporation of America
350 West Fourth Street, New York 14, N, Y. Without obligation, send me FREE 64-page CATALOG on Home Study Courses. No salesman will call.

Name.

Pledse print

Address.
City.
.Zone. . . .State
Korean Vets! Enter discharge date
CANADIANS - Take advantage of these same RCA courses at no additional cost. No postage, no customs, no delay. Send coupon to:

RCA VICTOR COMPANY, LTD.
5001 Cote de Liesse Rd., Montreal 9, Que.
To save time, paste coupon on pestcard

Cmplet Training FOR BETTER RADIO-TV SERVICE JOBS

Lett these two great Ghirardi trainime hoohs teach sous to hatudhe all fyes of AM, FM and TV service johs hy approved car
 bins compleie dalla on modern methods and equipment-not a re-hash of old, sut-of-date material. Each is coorathored hy
A. A. Chirardi whose famous RADIO PHYSiCs COLRSE and
 used for military, school and homst study trainimg limun aby other books of their type!

THE NEW Ghirardi RADIO-TV SERVICE LIBRARY

Almost 1600 pages and over $k 00$ ctear illustrations show step-hy-step how to handle every phase of troubleshooting and

1-Radio and Television Receiver TROUBLESHOOTING AND REPAIR

2-Radio and Television Receiver CIRCUITRY AND OPERATION

ze it, pays to know what really makes modern ration TV reweivers
 erjce separately $\$ 8.75$

Special low price . . . you save \$1.25

The Battery That's Used in Guided Missiles Now Released as Government Surplus

ESSE RADIO COMPANY, Dept. XI
42 W . South Street
Indianapolis 25, Indiana

40 Easy-To-Build Radio Projects

 Sundl Ime athazad at the talualike information in this hamaty

SCIENCE AND MECHANICS

450 East Ohio Street Dept. 321 Chicago 11, III.

The COLUMBIA (4) RECORD CLUB now offers

ANY6 STEREO RECORDS
 $\$ 5$98 up to $\$ 35.88$

1. Night and Day, plus 11 more hits

2. Three brilliant hi-fi showpieces

3. Solitude, Autumn Leaves, etc.

4. Lovely "musica portrait of nature"

5. Two very pop. uar piano works

6. Broadway's newest sniash hit

7. 16 favorites -

Sweet Violets, etc.

11. Berlioz' most popular work

19. No Other Love, Our Love, 10 more

29. High-spirited, gay symphonies

33. I1 beautiful, immortal melodies

2. A beloved American classic

50. Where or When,

10. Be My Love, Where or When, etc

30. A "must" for any record library

22. Organist Cole plays 11 hit tunes

16. Two colorful, exciting scores

ROV HAMILTON

9. Always, Please, Speak Low, 9 more
6. Complete score 6. Complete score
of this hit reusical
8. What'll i Do, Warm, 10 more

IN STEREO

24. 16 classical and pop selections

40. "Hallelujah", "Finlandia", etc."
if you join the Club now - and agree to purchase as few as 5 selections from the more than 100 to be made available during the coming 12 months * If you now own a new stereo phonograph, or plan to purchase one in the future - here's an opportunity to receive SIX new stereo records - retail value up to $\$ 35.88$ - ALL SIX for $\$ 5.98$

* You enroll in either one of the Club's two stereo Divisions: Classical or Popular - whichever one best suits your musical taste
* Each month the Club's staff of music experts selects outstanding recordings that deserve a place in your new stereo record library. These selections are described in the Club's entertaining Music Magazine, which you receive free each month
* You may accept the selection for your Division, take any of the other records in both Divisions, of take NO record in any particular month
t Your only obligation as a member is to purchase five selections from the more than 100 Columbia and Epic records to be offered in the coming 12 months... and you may discontinue membership any time thereafter
* After purchasing only five records you receive a Columbia or Epic stereo Bonus record of your choice free for every two additional selections you buy from the club
\star The records you want are mailed and billed at the regular list price of $\$ 4.98$ (Classical Selections, $\$ 5.98$), plus a small mailing charge
* Mail coupon below to receive your 6 records

27. Granada, La

The
Columbia
(4)

Record
Club
Terre Haute Paloma, 11 more
49. That's All Over, Indiana

NOTE: Stereo records must be played only on a stereo record player

COLUMBIA (1) RECORD CLUB, Dept. 246-1 Stereo Section, Terre Haute, Ind.	CIRCIE 6	
I accept your offer and have circled at the right the		
numbers of the six records I wish to receive for $\$ 5.98$,	1	21
plus small mailing charge. Enroll me in the following		
Division of the Club:	2	22
\square Stereo Classical ${ }^{\text {a }}$ Stereo Popular	3	24
I agree to purchase five selections from the more than		
100 to be offered during the coming 12 months, at	5	25
regular list price plus small mailing charge. For	6	27
every two "dditional selections 1 accept, 1 am to re-		
my cholce FREE.	7	9
	8	30
Name.		31
ss.	9	31
Address.	10	33
LONE.... State	11	37
ALASKA and HAWAMI: write for special	11	
membership plan	12	40
CANADA: address 11-13 Soho Street, Toronto 2B		
If you wish to have this membershlp credited to an established Columbia or Eplc record dealer, au-	15	9
thorized to accept subscriptions, fil in below!	16	50
Dealer's Name	19	
Dealer's Address................................. 302		85

To guide you to a successful future in
ELECTRONICS
RADIO-TV COMPUTERS ELECTRICAL ENGINEERING
This interesting pictorial booklet tells you how you can prepare for a dynamic career as an Electrical Engineer or Engineering Technician in many exciting, growing fields:
MISSILES AYIONICS AUTOMATION SALES - DEVELOPMENT

ELECTRICAL POWER - ROCKETRY

 RADAR - RESEARCHGet all the facts about job opportunities, length of study, courses offered, degrees you can earn, scholarships, part-time work - as well as pictures of the Milwaukee School of Engincering's educational and recreational facilities. No obligation - it's yours free.

MILWAUKEE SCHOOL OF ENGINEERING

MAIL COUPON TODAY!

Milwaukee School of Engineering

Dept. RTX-160 1025 N. Milwaukee St., Milwaukee, Wis.
Please send FREE "'Your Career" booklet I'm interested in
Electronics
\square Radio-TV
\square Computers
Electrical Engineering \square Mechanical Engineering
Name.

- -

PLEASE PRINT
Age
Address
PLEASE PRINT

City

\qquad
Zone State
\square I'm eligible for veterans education benefits. Discharge date

MS-117

Here's a bargain you don't want to miss: 5 Big 192 -page books jam-packed with wans and instructions for building hundreds of projects-75c each. or less if you buy two or more. Orver copies Now for your library.

547 boat bulloer's hanobook

 Gines plans amd imstructians fore cluding a 3 -point ratile lisura wame. sabling catamarab, oceankoing buthoard, cabin cruiser, allpurpose' bram, inboard sikiff, rachim rimalout, canoe. motor sailer dingly, sailboat. plus pans for making a tiber-glase hull withwut a suold, boat trallers, basic hasi gation for beginners. outbuary strikeing amd mueh, much mure:
550 income opportunities

 pemolene: llert are in atotal rave He have started hand uwir heo heves with sulall iusestatell Trills how to sell your sersions

552 car owner's hahobook

An encyedopedia of information for doing maintrianme and servibing Jote that will wive sour sar tul fertormance increase sas miteage remed road stals: sate ont un! Starmy yout sour dar: relair millhers: silence hody moliste, service ice leaters: overhant brakes: serson ga whlitire uns infurualion athal will wh you humdreds of thaliars will sat 55300 IT YOURSELF
lixplains 88 ways to sate on home inlorosements and rephir slleh as installing lent fanc. whluing kitoh ent space, upholstirink furniture langing doors. repairing drive has's. plantimg wergerems, tixing hatks thas lanks, buibitige culs ithels far howk aml rerural shelew 557 sclence experimenter
Womders of scitrnef now explained with ill faseinating projwta son
 (iraby Grameator. "'esla coil. Wimashor-t siatio Nahhine. sular furbater, لight ray tracer. chathd
 - ollage iraviling are, wealber in strustoms, lalking ruils, athd wo mber easy revolmke propects

SAVE MONEY!

Price of first handbook, 75 c : each additional handbook ordered at same time only $50 c$ each. Rush coupon!

RUSH THIS ORDER FORM
Scipnce and Mechanics Magazine, Dept. 318 450 East Ohio Street, Chlcago 11, Hlinois
Entlosed is $\$ \ldots$. Please sund the buoks whose number:s 1 have envireled below: 547550552

553
557
I

sddr:3s I

City, Zune \& stare

SATHFATTUX URARANTEED OR BOLR JONEX BACK
SATIERA, TIUN UKARANTEED OH YOUR HONEY BACK

Superior's New Model 70 UTILITY TESTER ${ }^{\oplus}$

 FOR REPAIRING ALL ELECTRICAL APPLIANCESand AUTOMOBILE CIRCUITS

As an electrical trouble shooter the Model 70:

- Will test Toasters, Irons, Broilers, Heating Pads, Clocks, Fans, Vacuum Cleaners, Refrigerators, Lamps, Fluorescents, Switches, Thermostats, etc.
- Measures A.C. and D.C. Voltages, A.C. and D.C. Current, Resistances, Leakages, etc.
- Will measure current consumption while the appliance under test is in operation

Incorporates a sensitive direct-reading resistance range which will measure all resistances commonly used in electrical appliances, motors, etc.
leakage detecting circuit will indicate continuity from zero ohms 105 megohms (5,000,000 ohms).
As an Automotive Tester the Model 70 will test:

- Both 6 Volt and 12 Volt Storage Batteries - Generators - Starters * Distributors
- Ignition Coils - Regulators - Relays - Circuit Breakers - Cigarette Lighters - Stop Lights - Condensers - Directional Signal Systems - All Lamps and Bulbs • Fuses - Heating Systems - Horns - Also will locate poor grounds, breaks in wiring, poor connections, etc.

INCLUDED FREE This 64-page book-practically a condensed course in electricity. Learn by doing.

Just read the following partial list of contents: What is electricity? Simplified version of Ohms Law. What is wattage? - Simplified wattage charts - How to measure voltage, current, resistance and leakage - How to test alt electrical
appliances and motors using a simplified trouble-shooting technique.

- How to trace trouble in the electrical circuits and parts in automobiles and trucks.

Only
 Model 70 comes complefe with 64 page book and test leads.
 $\$ 15^{85}$

Superior's New Model 82A A truly do-it-yourself type

FEATURES:

- Trests over 600 tube types. - Tests OZ4 and other gasflled tubes. flled tubes
- Employs new $4^{\prime \prime}$ meter with sealed air-damping chamber resulting in accurate vibrationless readings.
- Use of 22 sockets permits testing all popular tube types and prevents possible obsolescence.
 TEST ANY TUBE IN 10 SECONDS FLAT! Turn the fllament
selector swlteh to posi-
tion specified.

Insert it into a num: bered socket as designated on onr chart (over 600 types incladed).

Press down the quality bation -

THAT'S ALL! Read emission quality direst on bad-good meter scale.

- Dual Scale meter permits testing of low current tubes. - 7 and 9 pin stralghteners mounted on panel.
- All sections of multi-element tubes tested simultaneously.
- Ultra-sensitive leakage test ctrcuit will indicate leakage up to 5 megohms.

Production of thls Model was delayed a full year pending careful study by Superior's engineering staff of this new method of testing tubes. Don't let the low price malslead youl We clalm Model 82A will outperform similar looking units on our examine before you buy pollcy.
'Model 82A comes housed in handsome, portable Saddle-Stitched Texon case. \$ (Picfure Tube Adapter available for $\$ 5.50 \quad$ additional)
ad

SHIPPED ON NO MONEY WITH ORDER - NO C.O.D.

fry any of the above Instruments for 10 days before you buy. If completely solisfied then send down pay. ment and pay balance es Indicated on coupon. No Interast or Fingnce Charges Added! If nos compleroly satisfied return unis to us, no explopption necessary.
r moss electronic, inc.
Dept. D-650 3849 Tenth Ave., New York 34, N. Y.
Please send me the units checked on approval. If completely satisfied I will pay on the terms specified with no interest or fnance charges added. Otherwise, I will return after a 10 day trial positively cancelling all further obligation.

Name ...

Address
City All prices net. F.O.B., N.Y.C.

- Model 82A.........Total Price $\$ 36.50$ $\$ 6.50$ within io days. Balance $\$ 6.00$
monthly for 5 months.
Dronthly for 5 months.
\square Include Model 82 A Picture Tube Adapter at $\$ 5.50$
- Model 70Total Price $\$ 3.85$ within 10 days. Balance $\$ 4.00$ $\$ 3.85$ within 10 days.
monthly for 3 months.

now Service Any TV Set Like a"PRO"

Brand-New Edition of famous Shop Manual Will Lick "Tough Dogs," Save You Time, Increase Your Income 25% to 65% !

MAN. ir you've aser cussed neer a tough repair . . . if you've ever wanted more money . . if you've ever wanted your business and reputation to grow here's a powerful shove in those directioms the new Televisian Rectiver Scrabing!
Everything
 that neans every new idea. every technique, every profitable practice collected from little repair shops, part-time servicemen, big research centers
"red meat", of TV maintenance, repair and service has been collected into this big 300 page guide and manual

Huge . . . Yet So Easy to Use!

Jou want quick facts on how to deal with tough antenna installations and ghost problems? Turn io Chapter 1 and pet many field tested sugkestions. What frequency an anternal should be cut to? Turn to page 6 and 4 columns of clrar explanation, with examples. What does an ideal viden amplitier response curve kook like? lage 127 illustrates it ior you. What should you know about servicing color telewision recpizers! Read the simple text from page 281 to page 300 . Antennas (30 pages) . . . installing TV receivers (12 pages) . . . tesit erfuipment (27 pages) ... RF. IF and viden detector stages (45 pages) . . vider amplifiers (12 pages) ..A AGC systems (10 pages) . . . picture tubes. test patterns, dellections systems (83 nages) . . . receiver alignment (20 pages) .. ITH: Color (32 pages) . . . there's even an easy-reference troubirshoxter's chart and end-of-chapter questions. plus a complete. subject-by-subject index to put everything at your fingertips fast! With all this material: 422 piclures, 15 chapters. x platined in A-B-C fashion, it's no wonder that It Receiver servicing is the "Bible" of the industry:

10-Day FREE Examination for Readers of This Magazine

L'se this for ten full days at our expense. P'ut its good sense to work on your toughest problems. If you're $10,100^{\prime}$ h sure it's the biggest protit-making and time-siaving friend sou ever had, return it. fou owe noihing. But mail sonpon now. Unce this printing is gene, it will take months to rush sut another.
D. VAN NOSTRAND COMPANY, INC.

Dept. 899, 120 Alexander St., Princeton, N. J.

D. VAN NOSTRAND COMPANY, INC.

I Dept. 899, 120 Alexander St., Princeton, N. J.
Plowe send me-fur 10 dave pref vep-a copiv or the new
 $\$ 2.00$ down. plus smail delivery charke, ithen $\$ 2.40$ a monit for two months as full payment.
street
\square \qquad
SAVE POSTAGE by enclosing $\$ 6.50$ with th is coupon. Same (In Canada: 25 Hollinger Rd., Toronto 16 Price slightly nigher.)

SAVE MONEY

on your next Car!

Be one step ahead

 Use CAR BUYER'S CHECKLISTWhen you're shopping for a car, you can't afford not to know everything about the deal offered you by one dealer as compared to that offered by others.
Nine times out of 10, uncertainty, a poor memory-or a dealer's intentional vagueness of language-is going to cost you money.
Get it in writing, make certain you know exactly what kind of deal each dealer you've seen is prepared to make. Check off every item, term, condition and cost.
Then, in the quiet and privacy of your home, compare deals, do your own pencil workand save money.
Use the Car Buyer's Checklist, a 4-page, simple but comprehensive form designed by the editors of Science and Mechanics to help you make the best and most economical new or used car buy. Every item covered, every cost itemized, every condition cost-assessed.

Three Checklists for 50 or a
 packet of eight for $\$ 1.00$

SCIENCE AND MECHANICS
450 East Ohio St., Dept. 217, Chicago II, III,

GOOD JOBS . . . MORE MONEY SECURITY . . . ALL CAN BE YOURS

Clear, profuscly illustrated lessons, shop. tested manuals, modern circuit diagrans, practical job projects-all the valuable equipment shoun above - many other ma-

YOU are needed in the great modern Tele. vision Electronics industry. Trained techaiciants are in growing demand, at excellent pay, in sales and service, manufacturing, broàdcasting, telecasting, communications, research, and many other important branches of the field. National Schools Master ShopMethod Training, with newly added lessons and equipnent prepares you in your spare time reght in your own home for these fascinating opportunities. OUR OUTSTAND. ING, METHOD IS PROVFD BY THE SUCCESS OF GRadUates all over THE WORLD!

your training is all inclusive

We prepare you for a long list of jpb opporrunities. Thousands of TV and Radio receivers are being sold every day-more than ever hefore. And, now, Color TV is here. Applications of Flectronics in industry -AJTOMATION-are growing in trenendous strides. The whole field is alive opening up new, important jobs rapidly. National Schools complete training program qualifes you in all phases of the industry.

YOU EARN WHILE YOU LEARM

Nanay students pay for their entire tra n-ng-and more-with spare time earning. We'll show you how you can, too! Early in your course you receive material that shows you how to earn extra money servicing TV and Radio receivers, appliances, etc., for friends and acquaintances.
terials and services-consultation privilege with our qualified scaff, and Graduate En3. ployment Service. FVERYTHING YOU NEED for utatanding success in Electronics.

INDUSTRY NEEDS YOU. NATIONAL SCMOOLS

 WILL TRAIN YGU. SENO FOR FACTS TODAY mo obligation.YOU LEARN BY' SHOP MFTHOD you do servicing, circuit analysis, and do over 100 down-to earth experiments. You huild a Superher Receiver and a modern TV Receiver, from the ground up, including a new, big screen picture tube. You also receive a professional, factory-made MULTITESTER. All of this standard equipment is yours to keep . . . at just one low tuition.

NATIONAL SCHOOLS

lOS ANGELES 37. CALIF.

MIIITV RWOUE FAST

With H. G. Cisin's Copyrighted RAPID "TV TROUBLE SHOOTING METHOD"
Without experlence or knowledge, this ouaranteed new methot of serifing TV sets enables sou to DIAGNONE TV troubles as raplely as an expert. NO THEORY-NO MATH-you can locate all faults in record-breaking time regardless of make or model. "TV TROUBLE SHOOTING METHOD" is the most raluable ald to TV servicing ever written. Be a TV T'rouble Diagnostician. Increase yout present earnings. Open your own Profitable Business or get a high-paying skilled job.

> It's all in this book.

Nothing more to Pay-Nothing else to Buy Alphabetieally tisted are 85 picture troubles, over 58 raster and 17 sound troubles. By this unique copyrighted method you know tions, ineluding 69 RAPID CHECKS, help to find faulty part. I3'IMPORTANT PRELIMINARY CHECKS NEED NO PAR. STRUMENTS! Of the 69 Rapld Checs OVER 45 NO IN. REQUIRE NO INSTRUMENTS! Rapld ciliceks include ALSO gency checks for distorted pictures. defective tubes including PIN tube, plus 5it others. ALL EXPLAINED IN SIMPLE LANGUAGE, PERFORMED WITHOUT INSTRUMENTE MANY CHECKS USE THE PICTURE TUBE AS A GENIDE, II. G. Cisin, the author, is the inrentor of the AC A GUIDE. radio. He licenses IRCA. ATST. ete. Jle has also trained thotsands of techniclans how owning their own prosperous TY service organizations or holding highly pald TV positions. Ilis sears of experience are embodied in this remarkable new book sears of Guaranteed Money Back in 5 Days if Not Satisfled

```
ABSOLUTELY FREE with Each ordmr: Your choice
Of Cisin's newest hooks: BASIC ELECTRICITY 
GUIDE. These sell for 50% ea. ACT NOW-ge,
2 books postpalul at cost of only one!
7
RUSH COUPON NOWI
H. G. CISIN, Consulting Engineer-Dept. SM-22
Enclused find is
Enclused find 81 . Rush Tronble Shooting Method and free book \(\square\) Send all 3 Looks. Enclosed find \(\$ 1.50\). Whl we sent).
Name
Address
Clty
Zone. . . . . State.
```


Want a Trailer?

 BUILD IT YOURSELFIdeat fur week-enls. tishme or vacation frips Cuns-
pact, roomy. comfortahle: slecs two people Desmert for all mudern convenicnces-sink, water tank awt sums, stove. kitchen table, curboati, cluthos choset. drawer chest, sturate subice, ulectix ligats, ventila: lencth. 12 ft .6 simple construction. Ovirall body plan 历ives bill of materials, explains every construc. $\$ 100$ teed. Order Craft Print No. So now! SCIENCE AND

44 SHOP PROJECTS 75 C

Just imagine-44 useful things you can buidd-with plans and instructions-all for 75 c . Is n't that a bargain? Here are a few:
grandfather elock. foldaway workbench, metal melting furnace. grandfather elock, foldaway workbench. metal melting furnace.
arc welder, portable spray painter, Hi-Fi Speaker Cabinet garare welder, portable spray painter. Hi-Fi Speaker Cabinet gar-
den cultivator, and many more; plus "how,to'" techniaues for
using power tools. Hunteds of photos and trawings Es shop using power tools, Hundreds of photos and drawings; 55 shop kinks; 192 action-packed pages. Send 75 c today for a copy of
Home Workshop Handbook. No. 558 . It's a goldmine of workshop ideas! SCIENCE AND MECHANICS, 450 East Ohio
St., DEDt. 314, Chicago II.

$100^{\text {Do It Yourself Plans }}$
 9 understand plans for building boats,

electrical equipment, models of gas and steam engines, famous firearms, antique automobiles, toys, games, cabin trailers, many other projects. In all, 196 useful things you can build. It's easy! It's fun! And you can save money! Doit Yourself! Send 10 c now. Science and Mechanics Magazine, 213 Dunham Bldg.,Chicago 11,III.

\section*{
 \star SIGNAL TRACER
 \star SIGNAL INJECTOR * CODE OSCILLATOR
 \star EXCELLENT BACKGROUNO FOR TV
 * School Inquirles Invited
 * Sold in 19 Countries
 YOU DON'T HAVE TO SPEND HUNDREDS OF DOLLARS FOR A RADIO COURSE

Abstract

Amateur Licenses, You will build 16 Receiver. Transmitter. Code Oscillator, Signal Tracer and Signal lijector circuits'HiNGi and Electronics. backrountly no previous knowledge of radio ors. science is required. The "Edu-Kit" is the Absolutely product of many years of teaghing and engineering experience. The "Edu-Kit" will provide you with a basic education in Electronics and Radio, worth many times the complete

 The "Edu-Kit" offers you an outstanding PRACTICAL HOME RADIO COURSE at a use of the most modern methods of home training. You will learn radio theory, construc-tion practice and servicing. THIS IS A COMPLETE RADIO COURSE IN EVERY DETAIL. You will learn how to buidd radios, using regular schematics; how to wire and soldpr in a protessional manner; how aservicetest developnent of printed circuit chassis.
punched metal chassis as well as the lates
You will learn the basic principle of radio. You will construct, study and work with You will learn the basic principle of radio. You will construct, study and work with
RF and AF amplitiers and oscillators, detectors. rectifiers, test equipment. You will learn and practice code, using the Progressive Code Oscillator, You will learn and practice

 FREE EXTRAS
 SET OF TOOLS
 - SOLDERING IRON
 - ELECTRONICS TESTER
 ALIGNMENTTERS
 WRENCH SET CERTIFICATE OF MERIT MANU HIGH FIDELITY GUIDE QUUALZES
TELEVISION BOOK RADIO TELEVISION BOOK RADIO MEMRERSHIP IN WADIO.TV CLUB: AMATEUR LICENSE TRAINING}

\qquad ages and backgrounds have euccessiufy
used the Edu-Kit" in more than 79 coun-
trles of the world. The "Edu-Kitt has been carefully dessuyned. step by step. so that you cannot make a mistake. The "Edu-kit
CHING METHOD

PROGRESSIVE TEACHING METHOD

The Progressive Radio "Edu-Kit"' is the foremost educational radio kit in the world,
and is universally accepted as the standard in the tield of elcetronics training. The "Edu: hit uses the modern educationat principle of "Learn by Doing. learn schcmatics, study theory, practice trouble-shooting-all in a closely integrated program designed to provide an the various radio parts of the "Edukit.". You then learn the lunction, theory and wiring of these parts. Then you build a simple radio. With this first
set you witl enjoy listening to regular broadcast stations, learn theory. practice testing set you will enjoy listening to regular broadcast stations, learn theory. practice testing
and trouble-shooting. Then you build a more advanced radio, learn more advanced theory and trouble-shooting, Gradually, in a progressive manner, and at your own rate, you will
and technigues.
find yourself constructing more advanced multi-tube radio circuits, and doing work like a find yourself constructing more advanced multi-tube radio circuits, and doing work like
professional Radio Technician. professional Rado 1 Included in the "Edu-Kit" course are sixteen Receiver. Transmitter. Code Oscillato
Signal Tracer, and Signal injector circuits. These are not unprofessional breadboard" Signal Tracer, and signal injector circuits. constructed by means of professional wiring experiments, but genvine chassis, plus the new method of radio construction known as

THE "EDU-KIT" IS COMPLETE

You will receive all parts and instructions necessary to build 16 different radio and elec-
tronics circuits, each guarantecd to operate. Our Kits contain twbes, tube sockets, variable, electrolytic, mica, ceramic and paper dielectric condensers, resistors, tie strips, coils. hardware, tubing, punched metal chassis, instruction Manuals, hook-up wire, soider, etc. special tube sockets. hardware And instructions. You also receitc a uscful set of tools, a professional electric soldering iron, and a sclf-powered Dynanic Radio and Electronics
Tester. The "Edu-Kit" also includes code Instructions and the Progressive Code Oscillator, Tester. The '"Edu-Kit'' also includes Code Anstruct fors Radio Anmateur License training. You in addition toif.c, costype qur servicing with the Progressive signal Tester and the Progres-
will also receive lessons
sive Signal injector, A High Fidelity Guide and a Quiz Book. You receive Membership in

SERVICING LESSONS

You wilt learn troubleshooting and
servicing in a progressive manner. You will practice repairs on the sets that you construct. You will learn symptomg and causes of troubles in home, portable and car radios. You witl learn how to unique signal injector and the dynamic Radio a Electronics Tester. White you are learning in this practical way, you
will be able to do manya repair job for will be able to do mally a repair yob for
your friends and neighbors, and charge
fees which will far exceed the price of the "Edu-Kit." Our Consultation Service will help you with any technical problems you may have. bury, conn.. writes: ? $\because 1$ have repaired several sets" for my friends. and made
money. The "Edu-Kit" paid for itself. I money. The "Edu-kit" paid for itself. I but found your ad and sent for your

FROM OUR MAIL BAG

 Ben. Vaterio, Pi, O, Box 21. Magna,Utah: "The Edu-Kits are wonderful. Mere Iam sending you the questions and also Radio for the har them., have been in to work with Radio Kits, and like to build Radio Testinty Equipment. I enjoyed every manute signal Tracer workg fine. Also like to let you know that 1 Radio-TV Club. Shuff, 1534 Monroe Ave
 drop you a fow lines to say that 1 received my Edu-Kit, and was really amazed
that such a bargain can be had at such that such a bargain can be had at such pairing radios and phonographs. My friends were really surprised to see me get into the swing of it so quickly. The the kit is really swell, and finds the

Unconditional Money-Back Guarantee
The Progressive Radio 'adu.Kit'' has been
sold to many thousands of individuass, schools and organizations, pubiic and private, throughout the world. It is recognized internationally
as the ideal radio course. Progressive Radio well as English. it is understood and agreed that should Whe is understood and agreed that should turned to Progressive 'Edu-Kits'" inc. for any
reason whatever, the purchase price will be reason whatever, the purchase price wh ques-
tion, and without delay, which Progressive "Edu.kits" Inc. has earned through its many unconditional insistence upon the mainte nance of perfect engineering. the highest in-
structional standards. and ioo\% adherence structional standards. and 100% adherence
to its Ueiconditional money-Back Guarantee. As in result, we do not have a single dissatigfied customer throughout the entire world.

AVAILABLE IN TWO TYPES

MODEL A-311, Three Element Beam for best point-to-point communication.

MODELV-27-GP, Ground Plane Vertical is ideal as base station antenna. Net Price $\$ 34.95$

Catalog Sheet on request.

St. Louis 14, Missouri

Enjoy Thrilling High-Fidelity Super HI-FI FM Record Player

Build this high-fidelity, frequency modulated phono oscillator and bring your wax-
works to life, enjoy all the sound you pay for from your recordings. Full-
size pictorial and sche-
matic wiring diagrams, com-
plete materials list. illustrated,
step-by-step assembling instruc-
Price $\$ 1.00$
tions. Or'der Craft Print No. 264 now. SCIENCE AND MECHANICS
450 East Ohio St.
Dept. 218
Chicago 11. 111

PEE WEE Runterizess :LIFETIUE" RADIO

GUARANTEED-FOR YOUR LIFE! FOR AS LONG AS YOU OWN IT! NO TUBES. BATTERIES. TRANSISTORS ORELECTRICAL PLUG-INS NEEDED! Will never run down or burn out! SMALLER THAN A PACK OF CIGA. RETTES! RECEIVES LOCAL RADIO STATIONS MOST ANY-TIME-ANYWHERE YOU GO! EARPHONES. HAS BUILT.IN SPEAKER PHONE! Black gold plastic catinet. semi-conductor wave detector. NOT IMPORTED. MADE AND GUARANTEED BY AMERICANSYou can always get serviee.
SEND ONLY \$2.00 (bill. ck, mo) and pay nostman \$4.99 for postpaid detivery COD postage on arrival or send $\$ 6.99$ TEN WITH LIFE GUARANTEE-NOTHING EXTRA TO BUY EVER! FREE LONG DISTANCE ANTENNA if you order now. Availabte only from:
MIDWAY COMPANY Dept. WRE. 9 KEARNEY, NEBR.

GET ON THE AIR for Business or Fun
 TRANSMIT AND RECEIVE e- 8377^{50}

NO EXAMINATION No Tests Required

With this New CITIZENS BAND Transceiver Kit!

 AS DESCRIBED IN THE MARCH, 1959 ISSUE OF RADIO \& TELEVISION NEWS\checkmark COMPLETE WITH ALL PARTS. CRYSTALS, TUBES, PUNCHED CHASSIS, ETC.
\checkmark SOCKEIS AND SMAIL PARTS RIVEIEO TO CHASSIS FOR QUICK-E-Z CONSTRUCTION

ONLY FINEST PARTS - NO SURPLUS.
\checkmark COMPLETE REPRINT IN. STRUCTIONS FROM RADIO \& IV NEWS
\checkmark All you need is soldering iron, screwdriver AND PLIERS.
\checkmark INSTRUCIIONS FOR MAKING YOUR OWN ANTENNA.
You must be U.S. Cifizen over 18 yeors of oge Simply fill out FCC form 505. (Form included.)

Only $\mathbf{\$ 3 9 9 5}$

2 OR MORE - $\$ 37.50$ each If YOU WISH, PAY JUST
$\$ 5^{00}$ down. $\$ 5^{00}$ per mo.
radio \& iv news says: "Even with 5 wolts, it is perfectly copable of transmitting ond reseiving over distonces of 3000 miles or more when Old Mother Noture has the ionosphere in good working order." \checkmark SIMPLE TO OPERATE: VOLUME, TUNING AND transmitier / RECEIVER SWITCHES.

Soown.

Please rush your \square FREE Catalog . . . Enclosed is my check or money order for \square one, \square two Transceiver Kit(s).

NAME: \qquad
ADDRESS \qquad
gity \& state

By C. F. ROCKEY

Low in cost for what it delivers,
this transceiver is specifically designed for use on the Citizens Band, but does double duty in the 10 -meter amateur band.

ALTHOUGH specifically designed for the Class D Citizens Band radio service (see box copy on page 25), this simple transceiver is also suitable for low-power telephony in the 28 megacycle band. Inexpensive, readily available tubes and parts are used throughout, and the total cost to build will be about $\$ 40$. The writer believes that it is hardly possible to build an effective, truly legal radiotelephone unit for much less money.

The transmitter employs a stable, straightforward circuit that can be made to operate well with a minimum of trouble. The power input
ilar units) with the maximum legal antenna (see box copy) may be expected in the Citizens Band. Although a $117-v$ commercial ac power source is required for this unit, it may be readily modified to operate from an automobile storage battery if a different power supply system is installed.

Before beginning construction of this project, make sure that you have a grid-dip meter available (see p. 130 of this handbook). Proper adjustment will be very difficult without one of these, but almost every experimentally minded amateur owns one, and may lend it to you.

Construction. If you bend up your own chassis normally runs slightly less than the 5 -watt maximum allowet to Class D Citizen's Band stations. The receiver employs the super-regenerative principle, providing maximum gain and sensitivity per tube. It also will be found easy to "get going." An RF stage reduces radiation and increases stability.

The frequency range of both transmitter and receiver is approximately 25 to 30 megacycles, which includes both the 27 megacycle Citizens Radio and the " 10 -meter" amateur bands. One cannot accurately predict the communication range, but about 4 or 5 miles (between two sim-

Under-chassis view of transceiver.

When installing the electrolytic capacitors, be sure to observe the polarity of their connections. Otherwise, if reversed, they will generate internal gas and may explode, taking rectifier tube and possibly the power transformer to destruction with them. Recheck your wiring for correctness, being careful also to look for and remove any inadvertent solder shorts to chassis or between tube socket lugs. Each soldered joint (rosin-core solder only) should be clean, smooth and shiny. Make all ground connections to
fron: sheet aluminum, complete this meta.'work first. A developed view is shown in Fig. 2. If you do not have metalworking equipment (shear and small bending brake) you can use a commercially available $2 \times 7 \times 10-\mathrm{in}$. aluninum chassis and a 1/iti $\times 7 \times 10$ - in. aluminum sheet for the panel.

With panel and chassis at hand, begin by drilling and punching the major holes in the chassis. Mount all sockets and terminal strips before fastening the power transformer in place, using 6-32 rh machine screws for fastening everything except the miniature tube sockets, which require 4-36 screws. If you anticipate portable operation, put lock washers under each screw head for additional security.
The insulated tie-point strips may now be fastened under the chassis also, using the underchassis photo, Fig. 3, as a guide. Mount the SerdReceive switch and the potentiometer and switch temporarily onto chassis, but temporarily omit the filter choke and do not install panel as yet.
Wire the power supply first, making sure to connect the power switch (on the potentiometer) in series with the transformer primary (see Fig. 4). And don't forget the 4000 mmfd line bypass capacitor to ground (ground indicates chassis in every case). Ccmplete all power transformer and rectifier tube socket wiring before installing the filter choke, which mounts on back of chassis under pover transformer. The greenyellow wire on the power transformer is the $6.3-v$ winding center tap. Cut this wire short and tape the enc, so that it will not cause trouble with other circuits. Mount and connect. filter choke after power transformer has been wired.
soldering lugs, since soldering to aluminum is generally unsatisfactory.
When the power supply has been wired and carefully checked, connect the line cord to the terminal strip, and insert the 5 Y 3 rectifier tube in its socket. When the line switch is on, the rectifier tube filament should glow, and a dc voltmeter should indicate about $275 v$ when connected from B+ to ground. (This voltage will drop to $250 v$ when a load is applied.) Since the power supply is straight-forward, a no-voltage condition indicates incorrect wiring, a bad tube, or a defective part. Remember that good electrolytic capacitors store a charge, so short 'em (with power off!) before continuing work; otherwise, you might get bit by a "dead" circuit.
Wire all of the $6.3-v$ heater circuits next, as per Fig. 4. Dor't forget the ground-return for heater current at each socket. When heater wiring is completed, plug in other tubes, plug in set and turn it on. All tube heaters should light and warm-up directly. Again, watch out for shorts between those pesky little miniature socket lugs. If all's well, pull out line plug and tubes, and continue work.

Install the speaker output transformer and wire the audio amplifier section, beginning with the 6AQ5 (see Fig. 5). Bring a pair of leads for the loudspeaker topside through a $1 / 8$-in. deburred hole, twisting the leads to keep them together. Be especially careful when wiring the SendReceive switch to Receive position. When tubes warm, cautiously touch screwdriver to control grid, pin No. seven. A buzzy click from loudspeaker means all's okay. If not,
recheck wiring, particularly looking for solder shorts. A bad tube could also cause trouble.
When 6AQ5 is working, unhook and continue with 12AT7 audio amplifier. Plan your wiring as you progress (using Fig. 3 as a rough guide) so that you can hang the carbon resistors and ceramic capacitors in the wiring in the shortest and most direct manner. Where a bare lead might wiggle around and short to something, cover it with a piece of spaghetti tubing. You can check the 12 AT 7 amplifier as you did the 6AQ5: when wired, plug in 12AT7, 6AQ5 and 5Y3; turn on power and switch S-R switch to Receive position. A cautious touch of screwdriver to each grid should produce that clicky buzz, louder at the 12AT7 grids, of course.

TRANSMITTER-RECEIVER
NOTE: ALL CAPACITORS CERAMIC DISK IN MMF UNLESS OTHERWISE SPECIFFED.

Begin the receiver section by winding the coil carefully (see Fig. 6). If you can't get double cotton-covered wire, use single cotton-coveredbut if you use enamelled or Formvar insulated wire, use one less turn (on each of the three coils) to compensate for increased capacitance. Be careful to place the tap properly, since proper feedback relationships depend upon it. Keep the high-frequency leads short and direct in this circuit. Note that the grid of the RF amplifier is grounded; the signal enters the cathode of this tube. Observe also that the cathode of the detector is connected to the tap on the coil; it must not be grounded otherwise. The feedback-control potentiometer controls the plate voltage upon the super-regenerative detector; the voltage upon the plate should increase as the shaft is rotated to the right, looking from the front.
It will improve the appearance of the wiring if the plate supply, heater supply, and other non-critical leads are run along the corners of the chassis. Grid, plate, and other important connections, however, should be made as short and direct as possible. Use tie-lugs to support small parts.
Now, drill and install the panel (upon which the receiver tuning capacitor is mounted, see Fig. 7). When drilled, install the panel along with the tuning capacitor and the loud speaker, drilling a hole in the chassis to pass the tuning capacitor stator leads. Then, make and install aluminum baffle shield (Fig. 7). This shield serves to reduce interaction

COIL WINDING DETAILS - WIND ON NATIONAL TYPE XR-5O COIL FDRMS
(with variable iron slug)

between receiver and transmitter. Fasten it to the chassis with two $6-32$ machine screws whose nuts (underneath chassis) may also hold a fourlug tie point strip.

The receiver tuning capacitor should be modified by carefully removing one of its rotary plates. Grasp the rearmost plate firmly with a pair of long nose pliers and pull out the plate. This operation reduces the maximum capacitance and insures the correct tuning range. Be sure to put the calibrated dial plate under the fastening nut of this capacitor on the front of the panel.
age from the plate of the 12AT7 detector section to ground. As the feedback control is turned, this voltage should vary from zero to over $50 v$, indicating correct dc plate conditions. With correct voltage available, coil wound as specified, and a good tube, this receiver cannot fail.

When proper super-regenerative action has been assured, adjust the tuning range of the receiver, using a grid dip meter. Screw the iron slug carefully into or out of the coil until the grid dip meter indicates a tuning range from about 25 to about 30 megacycles. A slightly wider tuning range does no harm. A reasonably good antenna connected to the antenna terminal should now provide a number of amateur signals in the 10 -meter band, particularly during the daytime. Adjust the feedback control to provide the best response from each signal. The Citizens Radio Band should fall near the middle of the tuning range, the amateur 10 -meter band further toward the low capacity end of the dial.

With the receiver operating properly, begin wiring the transmitter section (Fig. 5). Commence with the crystal oscillator (see Table A for crystal). Only half of the 12AT7 tube is used, the elements of the second triode remaining unconnected. This apparent waste of a good triode section may seem unthrifty until one remembers that the 12AT7 tube costs no more, and is often more available than a single-triode equivalent type.

The standard quartz crystal holder will plug into any two alternate (not adjacent) holes in the standard octal socket, so pick any alternate pair of pins and use these for the crystal. The remainder of the pins may be used as tie-points, if desired.

Now you can insert tubes in all completed sections, plug in, and put Send-Receive switch in Receive position. As the feedback control is advanced toward the right, a smooth hiss should issue from the loudspeaker, indicating that super-regenerative action is occurring properly. If no hiss is forthcoming, check the wiring again. Be sure the coil has been wound and connected exactly as directed. Measure the volt-

Top-chassis view of transceiver.

The crystal oscillator circuit is simple and direct, and is recommended by most crystal manufacturers for use with their overtone crystals. Just follow the schematic diagram Fig. 5, keep the leads short and direct, and you will have no trouble. To test for oscillation, insert the rectifier and the crystal oscillator tubes, throw switch to Send position, and apply power. Make sure crystal is plugged securely into the correct holes. Tune your grid-dip meter to the crystal frequency and adjust the slug in the oscillator coil to obtain maximum RF output. No oscillation indicates wiring difficulties, poor tube, or defective crystal.

Wiring the transmitter RF power amplifier completes the project. This amplifier is simple and, if built as specified, may be expected to work well. Note especially however that the

transmitter RF amplifier obtains its B+ supply through the Send-Receive Switch from the plate of the 6AQ5 audio power amplifier, rather than directly through the switch from the power supply. This is because, in Send condition, the power audio amplifier acts as a modulator, causing the RF amplifier's supply voltage to vary in accordance with the voice variations. This is how the

What the Class D License Is-and Is Not

0September 11, 1958, the Federal Communications Commission vastly expanded the scope of the Citizens Radio Service. Of particular interest to the radio-TV experimenter is the inatguration of the Class D Citizens radiotelephone service in the 27 -megacycle band. The opening of this class of service provides the opportunity of private radiotelephony to every U. S. citizen over 18 years of age. He may use this radiotelephone privilege for any legitimate, not-for-hire communication purpose.

Of course, a liccuse is required, as it is for any radio transmission of any sort within the jurisdiction of the United States Government. But since it involves merely an operating privilege, no technical examination is required; neither is one required to master the radiotelegraph code. On the other hand, an individual so licensed is restricted as to the type of equipment he may operate and the frequencies he may use.

The new Class D Citizens Radio Service may be employed by any duly licensed individual or organization for personal communication, or for intra-organizational communication such as: communication between a man's home and his car (a boon to physicians, for instance); communication between various buildings or vehicles on a ranch or farm; communication between delivery trucks or service technicians on the jol and their home office; exchange of information between college students and their professors upon legitimate, personal, educational matters; consultation between construction foremen and the architect or engineer of a large construction job; coordination of the activities of a school athletic contest, and other situations.

The sort of thing that the Commission frowns upon, or directly forbids, however, would be: the broadcasting of any type of music or entertainment; long-winded gab sessions, or clowning-around which might interfere with sincere users; foreign contacts, or contacts with stations of any radio service, including amateurs, except in a demonstrated emergency; deliberate interference with another station, or monopolizing of a frequency for nonconstructive purposes; tinkering with the equipment by persons not authorized to make circuit changes or adjustments.

It is thus very clear that the Citizens Radio Service is not intended to be an amendment to or substitute for amateur radio. Fisthermore, it is not an electronic playground for those too lazy to acquire an annateur license. In fact, the Citizens Radio license does not permit the use of any of the amatcur bands, nor conversely, does the amateur license permit operation upon the Citizens Service band. One must have a Citizens Radio license to operate upon the Citizens Band, no other kind of license will do!

Several classes of Citizens Radio licenses are available, and are described in Part Nineteen of the Regulations of
the Federal Communications Commission. These, for instance, provide legitimately for the privilege of controlling model planes, boats, etc., by radio. Another class provides for the use of the 465 megacycle UHF citizens band. But the class of most direct interest to the experimenter is the Class D Citizens Radiotelephone Servicc. It is the class D license which permits those communication privileges already described.
To obtain a Class D Citizens Radio Service you must: 1) Be a citizen of the United States; 2) be at least 18 years of age; 3) have a legitimate purpose for such communication; 4) obtain, read, and be prepared to take an oath to the effect that you have read, Part Nineteen of the Regulations of the Federal Communications Commission (available for 106 from the Superintendent of Documents. Government Printing Office, Washington 25. D. C.) ; 5) fill out, notarize, and send to the Federal Communications Commission, Washington, D. C. FCC Form Number 505 (available from the FCC Field Engineer's Office nearest you. These offices are located in each of the country's major cities).

The equipment for use under provisions of the class D license must meet the following requirements:

1) The dc plate power input to the stage feeding power to the antenna must not exceed 5 watts.
2) The transmitter must be crystal-controlled, and the frequency of operation must be held to within $.005 \%$ of the assigned frequency. (Purchase of an approved crystal from a reputable manufacturer, and use of it in an approved circuit, will insure compliance with this regulation. Tell the manufacturer the circuit in which the crystal is to be used and specify a frequency tolerance of $.005 \%$.)
3) Statement of how compliance with these above regulations will be maintained must be filed along with your license application.
4) The antenna system to be used with a permanent (home) installation shall not be higher than 20 ft . above the building or other structure upon which it is crected.
5) The distance between the center of the antenna and the transmitter control point shall not exceed 25 ft .

Although the provisions of this class of license are indeed liberal, the prospective user should have no delusions as to the limitations involved. You are not going to set the world afire with 5 watts and a $20-\mathrm{ft}$. antenna. Under normal conditions, consistent communication over distances of three or four miles is about all one has a right to expect, though occasional thousand-mile contacts may be made.

Lastly, although building your own equipment is per missible, it must be tuned and adjusted finally by a licensed commercial operator, holding at least a secondclass radiotelephone operator's license.

But if you're looking for low-cost radio communication over a restricted range with relatively inexpensive gear, the Class D Citizens radio service is definitely for you.
intelligence is impressed upon the radiated signal. Also observe that both the plate and screen supply are thus modulated.

To test the completed amplifier, insert tubes and apply power. With the switch in Send position, recheck the crystal oscillator for oscillation with the grid-dip meter. You may find it necessary to readjust the slug in the oscillator coil; this is normal. With the crystal oscillator operating, connect a No. 46 pilot lamp bulb across the antenna terminals. Now adjust the RF amplifier tuning slug until the bulb burns at its brightest. When the transmitter is operating correctly, the bulb should light brightly. Carefully adjust both transmitter coil slugs for best output, then unscrew the oscillator coil slug about three turns (outward) to provide best reliability of oscillation.

Using the grid-dip meter, carefully explore the output of the transmitter at the amplifier coil for spurious signals at frequencies other than that of the crystal. If you have built the unit as described, you should find absolutely none. This will keep you out of trouble with the FCC.
Finally, connect the microphone to its terminals upon the terminal strip. In transmit position, speaking into the mike should cause the bulb to flicker appreciably. If so, modulation is satisfactory, and you can consider your transceiver ready for use.
You may use any single-button carbon micro-
phone but do not try to use a crystal or dynamic mike; the latter types will not work. One of the older telephone transmitters will work well, this may be obtained from Army Surplus or, from the Telephonc Engineering Company, Simpson, Pa. Use the transmitter only, you do not need or want the receiver. Of course, with this type of mike the voice quality will be rather thin, but this is preferable for communications work, since it cuts through interference much better than the round, full response of the broadcast station. (You're not allowed to transmit music or entertainment anyway.)

Although you now have your station completed, do not go on the air until you have received your Citizens Radio permit. To do so exposes you to a two year penitentiary sentence and/ or a $\$ 10,000$ fine. Remember, also, that an amateur license of any grade does not permit you to use the Citizens radio frequencies, per se.
However, if you hold a general, or higher, class of amateur license, you may operate this unit within the 10 -meter amateur 'phone band, if you have an overtone crystal for operation therein. Usual amateur regulations will then apply.

If you wish, you may install this transceiver in either a metal or wooden cabinet. The only precaution is to provide ample ventilation for the tubes and parts and, if a metal cabinet is chosen, to avoid short-circuiting under-chassis components.

One form of antenna suitable for Class D Citizens Band operation is shown in Fig. 9. If you contemplate operation with portable or mobile units, suspend the antenna vertically; if with other fixed stations, either vertical or horizontal antennas may be used. One thing to remember, though-all units working together must use similar-oriented antennas for best results. That is, all must use either vertical or horizontal arrangement. For operation within the amateur 10 -meter band, make the antenna one ft . shorter overall.

When a dipole or similar antenna is used, connect one side of the feedline to the antenna, the other to the ground terminal. If a coaxial feedline is used, connect the inner conductor to the antenna terminal, the sheath to the ground.

After arrival of your license, peak the final power amplifier tuning with the antenna connected.

With the transmitter on, hold a neon lamp bulb with its glass against the 6AQ5 RF power ampli-
fier tube and adjust the amplifier slug for brightest glow of the neon lamp.

The law states that final tuning adjustment of a Citizens Band transmitter must be made by a person holding a second class radio-telephone (commercial) operator's license, or higher. (The operator of your local broadcast station or of your town's police radio system, when off-duty, may be willing to help you with this. When testing or adjusting the transmitter with the No. 46 dummy load lamp, no such license is required since useful radiation will not occur.) Once this adjustment is made, however, your Citizens Radio permit is all you need for further operation.

One last thought: The U. S. government is showing unusual generosity in allowing the use of the Citizens Band frequencies as liberally as it is. As of this writing, no other government permits such liberties. Ours is thus a rare privilege; let us remember this and never conduct ourselves on the air in such a way as to make our government regret its generosity.

Coat-Pocket code Practice Unit

Side (1A) and top (1B) views of coat-pocket code unit.

HERE'S a code practice unit--sight or sound-msmall enough to carry around in your coat pocket, and all you need to buy to build it is a buzzer (Johnson Speed-X Model 114-400, $\$ 1.85$), two size D flashlight cells (15¢ each), and a two-cell bulb, focusing type (10¢). The rest of the materials can be taken from your scrap box.

Mounting board for the unit is a $5 / 11 ; \times 17 / 4 \times$ G1/8-in. piece of Masonite, doubled on either side of the buzzer (see Fig. 1). A brass tube holder for the batteries is made from $11 / 2$-in. O.D. plumb; ing drain stock, battery contacts are spring brats, key and switch (see Fig. 2) are taken from an old telegraph key, socket for bulb can be salvaged from a discarded flashlight.-Victor A. Ulrich.

Here's the transistor portable you've been waiting for. It operates on ordinary pen-lite cells, drives a loudspeaker with plenty of volume, has phone jack output for private listening, automatic volume control for smooth volume, and plenty of sensitivity. No outside antenna is required-and it can also be used as a tuner for a larger amplifier.

Small, but powerful, that's the transistor. ized superhet for which step-by-step building instructions are given in this article.

THE circuit diagram of this threc-transistor superhet is shown in Fig. 2. The transistor TR1, RCA 2N412, does triple duty. The RF signal (550 to 1500 kc) which it receives from the antenna loop L1 and antenna tuning capacitor C1A is amplified and mixed with the oscillator signal. The oscillator signal, also generated by TR1, is always 455 kc above the received RF signal.

The oscillator tuning capacitor C1B is ganged to the antenna tuning capacitor so that oscillator and antenna tuning track. The signal through L3 is amplified by the IF amplifier transistor TR2. This transistor is a high-gain, high-frequency GE 2N168A. Diode D detects the signal after it passes through L4. Capacitor C6 filters out the RF signal components so that the signal across volume control R7 is audio frequency (AF). The signal is then passed through R6 and the audio is filtered out so that a de bias proportional to the strength of the received signal is provided to control the gain of the IF amplifier TR2. The stronger the signal, the lower the gain of TR2. Thus, fading is minimized for reasonably strong signals. This is the automatic volume control (AVC).

The slider on volume control R7 picks off the audio signal for audio amplification. Transistor TR1 performs its third joh as the first audio amplifier. It's possible to use the same transistor for the mixing oscillator and audio amplifier functions, since the frequencies are widely separated. The amplified audio output of TR1 appears across transformer L5 and is transferred to the audio output

unusually high Q builds up the signal and allows the tuning capacitor to select the desired station with considerable discrimination against interfering signals before the transistors even begin to go to work.

The audio output stage TR3 is transformer coupled to TR1-and two transformer-coupled audio stages have almost as much gain as three! Actually, a considerable amount of the available audio gain of TR1 is not exploited sirce the emitter bias resistor R3 of TR1 is not bypassed by a large capacitor. A large capacitor would increase the gain but would degrade the fidelity and create a tendency for the receiver to go into regeneration.

Preparing Parts for Assembly. First, cut out and prepare the front panel and the circuit board (Fig. 3). Cut the tuning capacitor (C1) shaft to a length of $1 / 2 \mathrm{in}$., the volume control (R7) shaft to a length of $1 / 4 \mathrm{in}$. Remove the antenna loop from its mounting by cutting off the ends of the fiber retainer with tin snips; fasten the output transformer (L6) on the loudspeaker (see Fig. 5) by bending the transformer mounting lugs to fit around the magnet frame. A few drops of Pliobond or a similar cement placed under the transformer prior to mounting will steady it against the magnet frame.

Next, solder the connection lugs of the battery holder for series connection as shown in Fig. 4. Use rosin core solder only! Mark the battery end polarities to avoid making mistakes in connections or inserting batteries. Rotate the battery lugs with a pair of pliers and simply solder them together to make connections, and then fill with solder the surfaces of the eyelets which will contact the batteries.

Figure 5 shows the parts and wiring on the back of the front panel. Mount the loudspeaker (SPKR), volume control (R7) and the phone jack (J), and complete wiring as shown. Be cautious in soldering; too much heat can damage the volume control. The same precaution applies to the other components, especially transistors, in subsequent soldering.
The Wiring Board. Top and bottom views of the assembled wiring board are shown in Fig. 6. Fasten L3 and L4 by inserting them in the holes and bending the mounting lugs against the back of the board.

Next, you will mount C1, L1 and L2. (Be careful not to let the screws which hold C1 pass
through far enough to touch the plates of the capacitor; use washers or spacers if necessary.) Fasten L1 and L2 with Duco cement, give the cement time to set, then fasten L5 and T 1 to the board.
The next step is to solder B of TR1 to terminal 1 on L2, C to terminal 5 of L3, pass E through the circuit board, and fasten TR1 against the case of L3 with a rubber band.
The remaining components are fastened to the circuit board as the wiring progresses. Be sure to connect the frame of C1 and the cases of L3 and L4 to the common plus battery return (designated by the "ground" symbol in Fig. 2). When circuit board wiring is completed, connect a lead 6 in . long to the common return for later connection to the plus terminal of the $9-v$ battery. The other lead from the circuit board is a 6 to 8 in . length of wire connected to C1A. The other end of this lead hangs free inside of the case after final assembly. This lead is essentially a short antenna which gives the set additional pick-up.

Final Assembly. There are five lead ends extending from the front panel (Fig. 5). The lead from the switch will connect to the minus terminal of the battery. The other four leads connect to the circuit board. The circuit board is joined to

Battery-holder mounting in case, and connections.
the front panel by the tuning capacitor's (C1) three mounting screws. Place fiber washers or cardboard spacers $1 / 16$-in. thick between C 1 and the front panel when you join panel and circuit board.

Check for clearance between the circuit board components and the panel components. Particular items to watch are interference of TR2 with J, C9 with S on R7 and L6 with SPKR. Place the assembly in the cabinet to check fit and make any necessary adjustments in parts placement.
The leads from the front pancl connect as follows: 1) The lead from the junction of R7, S and J connects to the circuit board mipus line. 2) The lead from J connects to C of $T 3$. 3) The lead from the "hi" terminal of R7 connects to the junction of D, C6, and R6. 4) The center
terminal lead of R7 connects to the minus terminal of C 7 .

With these connections completed, adjust the slug of L2 flush with or just slightly below the coil form viewed from the back of the assembly. There are two trimmers on C1 which were intentionally eliminated from Fig. 2 to avoid confusion. These trimmers in parallel with C1A and C1B are provided to align the antenna and oscillator circuits respectively for proper high-frequency tracking. Open the antenna trimmer till the trimmer tension is nearly released (minimum trimmer capacity). Turn the oscillator trimmer full closed (maximum trimmer capacity), and then back the screw off $1 / 2$ turn. Place the knobs on C1 and R7. (You can provide a calibrated dial made of paper and covered with plastic for C1 later if you wish). With S off, connect the leads from the assembly to the battery to complete wiring and assembly. These leads should be about 6 in. long to allow easy removal of the assembly from the case. To prevent the screws which hold the battery holders in place from scratching furniture, fasten rubber grommets to the back of the case with Pliobond cement.
Tune-Up. If you have a milliammeter. connect it across the terminals of switch S . The meter should read between 6 and $15 m$ if all is well. Don't worry if the set motorboats when you make this measurement. If the current exceeds 15 mm . look for a short or an incorrect connection. If the current is less than 6 ma , the trouble is probably low battery voltage or an incorrect connection.
Assuming all is well at this point-or that you don't have a meter to make this measurement-

turn the set on and turn the volume control about $7 / 8$ ths up (clockwise). Maximum volume does not occur at the full clockwise position of the volume control. This is a normal characteristic of the reflex circuit. (The term reflex is applied to a receiver which uses one transistor or tube to amplify both RF or IF and AF signals). With the volume control turned approximately $7 / x^{2}$ ths full clockwise, rotate the tuning dial slowly. If you're in a metropolitan area or within about 10 or 15 miles of a large station, you'll probably pick up a signal even though the set is not accurately aligned. But if you don't pick a station up, there's no cause for alarm because the IF transformers (L3 and L4) may be way out of adjustment. If you pick up a station you can feel reasonably sure the wiring is correct. If you can't pick up a station, the presence of noise of any kind from the speaker indicates that at least part of the audio is working properly. In either case; you're ready to try alignment.

The steps in the alignment procedure are: 1) Adjust the IF transformers. 2) Adjust the tuning capacitor trimmers at the high frequency end
 of the broadcast band.
3) Adjust the oscillator coil slug at the low frequency end of the band. 4) Repeat step 2. A signal source is required to carry out the alignment procedure. This source may be an RF signal generator or it may be an ordinary broadcast receiver if you don't have, or can't borrow a signal generator. The use of a broadcast superhet for aligning other superhets is discussed on pages 66, 67 and 68 of the Radio-TV Experimenter, No. 559, Volume 7, available from Science and Mechanics, 450 East Ohio Street, Chicago 11, Illinois.

To adjust the IF transformers, connect the high side of the signal source through a .01 mfd capacitor to the stator of C1A (the antenna terminal), and the low side to set ground. With the signal source tuned to 455 kc ., adjust the slugs of L3 and L4 for maximum output. Keep the signal from the source so weak that you can barely hear it (to minimize AVC action). Adjust the volume control to the point where the signal is loudest. The slugs of L3 and L4 are accessible through the holes in their bottoms. Use a small screwdriver, preferably one with very little metal in it such as a radio-TV serviceman's alignment tool.

After IF alignment is completed, disconnect the signal source.

You should easily be able to complete the remainder of the alignment procedure with broadcast station signals. Tune in a weak station between 1300 and 1450 kc . Increase the antenna trimmer capacity. If this increases the speaker output, adjust this trimmer for maximum speaker output. If the volume decreases, repeat the procedure.

Next, tune the receiver to a station between 550 and 650 kc . Detune C1 slightly to one side and adjust the slug of L2 for maximum output. If this output is greater than the previous output, repeat the process till the most sensitive point is found.

If the output is less than the previous output, detune C 1 in the other direction and adjust L2 till the point of maximum output is found.

Finally, repeat the alignment procedure at the high-frequency end of the band. This is necessary since the adjustment of L2 has some influence on the high frequency end of the band, too. Capacitor Cl may be tracked across the broadcast band by bending the outer plates of C 1 A , but the process is tedious and not always worth the effort.

You may experience oscillation at high volume control settings, but this oscillation will occur beyond the actual maximum volume point and is therefore harmless. But if you wish to eliminate it, add a resistor and .01 mfd capacitor in the volume control circuit as shown in Fig. 7. The

MATERIALS LIST-THREE.TRANSISTOR PORTABLE SUPERHETDesig.Description	
R3, R5, R8	1 K
${ }_{\text {R12, }}^{\text {R9 }}$	$2{ }^{4.7 \mathrm{~K}}$
R2, R4	100 K
(all resistors, $1 / 2$ watt, $\pm 20 \%$)	
(Lafayette VC-27)	
C2, C3, C5, C6, C8	. 01 L mfd subminiature square capacitor
C7 4 mfd , 6v ultraminiature electrolytic capaci-	
C4, $\mathbf{C 1 0} \quad 30 \mathrm{mfd}$, 6V ultraminiature tor (Lafayette (F-104) ectrolytic capaci-	
C9 $\quad 100 \mathrm{mfd}$, 15v ultraminiature electrolytic ca-	
L1L2	
L3 lst IF transformer, 455 kc (Lafayette	
tput IF transformer, 455	
L5 transistor driver transformer 10K:500 (Lafayette TR-96)	
L6 transistor output transformer 500:3.2 oh	
TR1 transistor (RCA 2N412)	
TR2 transistor (GE 2N168A)	
$\begin{array}{ll}\text { TR3 } & \text { transistor (GE 2N241A) } \\ \text { diode (Raytheon 1N66) }\end{array}$	
D	diode (Raytheon 1N66)
9v battery-6 penlite ce (RCA VS074)	
SPKR $\quad 21 / 2^{\prime \prime}$ PM speaker, 3.2 olmm (Lafayette SK.65)	
$1 \quad 2$-cell battery holder (Lafayette MS-138)	
1 miniature perforated board for front panel (Lafayette MS.305)	
miniature perforated board for chassis (Lafayette MS-304)	
miniature knob (Lafayette MS-185)pointer knob (Lafayette KN-40)	
1	$2 \times 33 / 4 \times 61 / 4^{\prime \prime}$ Bakelite case (Lafayette
	For earphone listening. use a 2 K earphone
Jamaica 33. New Y	rk. Lacayete Ravio, 165-08 Liberly Ave.,

resistance value should be determined experimentally. It will be between 500 ohms and 1 K in most cases.
This three-transistor portable may be used as an amplifier tuner by connecting a 10 K resistor from C of TR3 to the negative voltage line. This resistor provides dc return for the collector of TR1 when a plug is inserted in the jack. If the amplifier to be used with the tuner does not have a capacitor in series with the input, provide one of about 0.1 mfd capacity. The connection of the 10 K resistance will have negligible effect on the loudspeaker or headphone performance of the set. The Lafayette MS-281 plug fits the jack and should be used in making the amplifier connection cable.
The receiver may be equipped with a calibrated dial to simplify station finding. The calibrations may be painted on the panel face or many be placed on paper with India ink. A sheet of celluloid or clear plastic placed over the dial scale will protect it.
Both the scale and its plastic protector can be held in place by the three screws which fasten the variable capacitor.
The tone and volume of the set can be improved by placing a thin sheet of cardboard between the back of the panel and the components.

build yourself a...
 Sterea Music Center

Stereo-Hi-Fi cabinet ensemble is modern (and modular) in design, artique in finish; units are flexible in arrangement, can be used separately also. Sliding doors by pass each other.

By R. J. DeCRISTOFORO

|F stereo (or hi-fi) hasn't gotten to you yet, it will, and here is a music center unit that will not only house your present components of any make, but also any future additions to your equipment (Fig. 1). This music center houses stereo tape deck or turntable, two-channel (stereo) preamplifier and two-channel or separate amplifiers and also has room for an AM-FM tumer placed in the stereo (two-channel) preamp compartment. In addition to arrangement adaptability, the music center provides building flexibility (Fig. 2B). You must have the main cabinet which houses stereo components plus records and the changer unit, but you can add the other units later. However, we'll begin construction with the bench so you'll have an understanding for the other units.
Building the bench. Square the slab top, part 1 in Fig. 2 and the Materials List, to size. Next cut the frames, parts 2 and 3, slightly longer than called for. Rabbet these pieces, then miter one
piece at a time and fit to the slab top. Use plenty of glue to attach the frame pieces and drive nails up through the flange into the underside of the top. Wipe off excess glue before it dries. Now, shape the legs, parts 4 , then slot the top of each to receive parts 5 . Glue and nail these in place and then add the cross pieces, part 6. Locate the assembly on the underside of the top and glue and nail it in place as in Figs. 2 and 3 with 2 -in. finishing nails.

Drawer and Compartment. The drawer (Figs. 2 and 4) holds extra needles, pick-ups and record cleaning equipment. Make the compartment first, using the rabbet joint construction shown in Fig. 2. Glue and nail parts 7 and 8 , then cut part 9 to a tight fit. Apply glue to its edges, press in place and fasten with $2-i n$. finishing nails in all edges.

Make the drawer front and sides first. Then rabbet each end of the front to receive the sides. Cut the grooves in the sides and the front for the drawer bottom. Attach the sides to the front

Lower half of main cab. inet has plenty of record storage space.

using glue and driving the nails through the side pieces. Slip the bottom into place, then make and add the back. Secure this by driving nails into it through the drawer sides and up through the drawer bottom.
Be sure the drawer slides easily in its compartment. If it's a tight fit, dress the top with sandpaper.

The cabinet for the changer is made like a bot1omless box even though the construction details (Fig. 2) show the parts as they appear after they have been cut apart. Best bet is to cut the sides (parts 15) first, then the front and back (parts 16). The front piece is rabbeted along its two outer edges, the back piece is rabbeted the same way but also along the top edges. Glue and nail these parts in place, then add the top, but be sure $t o$ space nails so they will clear the cut line

($31 / 2$-in. down from the top). When the glue has dried, slice off the top section on the table saw, then cut off the back end of this so you end up with the three parts shown in Figs. 2 and 5.

Next step is to mortise for and attach the hinges. The cut-out in the changer mounting board will have to be tailored to your unit. If you are installing new equipment (Fig. 6), you'll have a template to work with. If you are going to take the changer from an existing cabinet, remove the mounting board, too, and use this as a template to make the new one.

Use plenty of glue when assembling the top to the base and keep it tightly under clamps until the glue is thoroughly dry. To compensate for the saw cut, you'll have to move the top in from the back, but since this is the back of the cabinet, it won't be seen. After the clamps are removed,

MATERIALS LIST-HIFI MUSIC CENTER					
Part No.	No. Req'd	Description	Part No. No.	Req'd	Description
bench			WINGS		
1	$\frac{1}{2}$	$3 / 4 \times 171 / 2 \times 70^{\prime \prime}$ D.F. plywood	20		$3 \frac{18}{} \times 18 \times 301 / 4$ " etched plywood
2	2	$11 / 2 \times 2 \times 72^{\prime \prime}$ clear pine	21	(1L-1R)	$1 / 2 \times 5 / 8 \times 18^{\prime \prime}$ pine
3	2	$11 / 2 \times 2 \times 191 / 2$ clear pine	22	(1L-1R)	$1 / 2 \times 5 \times 30^{\prime \prime}$ pine
4	4	$\frac{21 / 2}{3} \times 21 / 2 \times 51 / 4^{\prime \prime}$ clear pine	COMPONENTS	RECORD	storage cabinet
5	2 2	$3 / 4 \times 11 / 2 \times 48^{\prime \prime}$ D.F. plywood	23	hecond	$3 / 4 \times 171 / 8 \times 291 / 4^{\prime \prime}$ D.F. plywood
6	${ }^{2}$	$3 / 4 \times 11 / 2 \times 121 / 4$ " D.F. plywood	24		$3 / 1 \times 171 / 8 \times 36^{\prime \prime} \mathrm{D}$. F. plywood
DRAWER \& COMPARTME.VT ${ }^{\text {a }}$					
7		$3 / 4 \times 161^{\prime} 2 \times 18^{\prime \prime}$ D.F. plywood	26		$3 / 4 \times 171 / 8 \times 351 / 4^{\prime \prime}$ D.F. plywood
8	2	$3 / 4 \times 51 / 4 \times 18^{\prime \prime}$ D.F. plywood	27		$3 / 4 \times 12 \times 341 / 2^{\prime \prime}$ D.F. plywood
9	1 -	$3 / 4 \times 41 / 2 \times 15^{\prime \prime}$ D.F. nlywood	28		$3 / 4 \times 12 \times 153 /{ }^{\prime \prime \prime}$ D.F. nlywood
10	1 -	$3 / 4 \times 41 / 2 \times 15^{\prime \prime}$ D.F. plywood	29		$1 / 4 \times 161 / 4 \times 171 / 8^{\prime \prime}$ Masonite
11	2	$3 / 4 \times 41 / 2 \times 167 / 8^{\prime \prime}$ D.F. plywood	30		$1 \times 13 / 4 \times 36^{\prime \prime}$ pine ${ }^{\prime \prime}$
12	1	$1 / 4 \times 141 / 4 \times 167 / 8^{\prime \prime}$ D.F. plywood	31		$1 \times 13 / 4 \times 30^{\prime \prime}$ nine
13	1	$3 / 4 \times 4 \times 131 / 2^{\prime \prime}$ D.F. plywood	32		$7 / 8 \times 11 / 2 \times 341 / 2^{\prime \prime}$ pine
14	1	$1^{\prime \prime}$ diameter brass drawer pull	33		$38 \times 18 \times 271 / 2^{\prime \prime}$ etched plywood
CHANGER COMPARTMENT ${ }^{\text {a }}$					
$\begin{aligned} & 15 \\ & 16 \end{aligned}$		$3 / 4 \times 1158 \times 171 / 4^{\prime \prime}$ D.F. plywood $3 / 4 \times 115.5 \times 161 / 2^{\prime \prime}$ D.F. plywood	35	1	$1 / 4 \times 301 / 8 \times 351 / 4^{\prime \prime}$ perforated Masonite tinishing nails, olue
17	$\frac{2}{1}$	$3 / 4 \times 161^{3} \times 18^{\prime \prime}$ D. F . plywood			
18	1	$3 / 4 \times 15^{\prime} \times 161 / 2^{\prime \prime}$ D.F. plywoad			
19	1 pair	$2^{\prime \prime}$ butt brass hinges			

check to see that the top closes correctly. It may be a little tight on the hinge side, and if so, will require sanding.

The wings are merely pieces of etched plywood dimensioned as shown in Fig. 2 and trimmed along two edges with the molding strips shown, Both top (part 21) and bottom (part 22) trim pieces are shorter than the corresponding dimension on part 20 so that the wing can fit in the slot cut in the top of the bench and a small amount of the other free edge cat be behind the main cabinet.

Component Cabinet. The main cabinct (Fig. 7) is fairly simple to build but you must use care when laying out for the edge joints and when cutting the dadoes for the shelf and the record storage area partitions.

Cut the sides first and run the dadoes that will receive part 26. Next, cut the bottom (part 24). Before going further, cut the dadoes for the record partitions and be sure you place them on the top surface of the bottom and the underside of the center shelf. With this done, you can assemble the two sides, the bottom and the center shelf.

Next, cut out part 27. Here, the cutout for the components (tuner, pre-amp) will have to be cut out to fit your own equipment. Work carefully -be sure you're right before doing any cutting.

Put this part in place, spacing it $5 / 8 \mathrm{in}$. from the front edge of the parts so far assembled. Check this with a square before nailing to be sure the part is perfectly vertical. Now make and add the conter divider (part 28) and the top (part 25). Part 32 is a decorative detail but also serves to hide the plywood edge on part 26 .
Next step is to make the front frame of the cabinet. Size these as shown in Materials List and bevel the front edge of each strip. The grooves for the sliding doors are the same in each piece except the top. Here, although spacing is the same, the grooves should be $1 / 4 \mathrm{in}$. greater in depth to provide room so the sliding doors can be put into place (Fig. 8) or removed.

When attaching the frame pieces to the cabinet front, drill holes for $2 \frac{1}{2}$-in. finishing nails. Make the holes smaller than the nail shank diameter but not so deep that you can't drive the nails in solidly.

Put plenty of glue on mating edges before you begin nailing.
Cut the partition pieces to size, then make the layout for the slight curve in the front edge on one piece. Tape, or otherwise hold all the pieces together and make the cut.
You will note, incidentally, that the 3 -in. spacing between partitions will leave a narrower

Top is sliced off changer compartment box, then glued back on again.

Skeleton structures are safficient to support components, in this case, tuner and preamp.

Masonite panels make good record storage dividers. Note narrower compartment in center.
space in the center of the cabinet, but the slidingdoor overlap compensates for this. (You can use this narrower section for records you're sorry you bought.) When the partitions are shaped and edges have been sanded, slip them into place in the dadoes previously cut (Fig. 9).

The back of the cabinet is a piece of perforated Masonite. Somewhere in the back, near the bottom edge, drill a 1-ir. hose for speaker and record changer wiring pass-through.

Finishing. The antique finish we used is applied as follows: First, set all nail heads below the surface of the wood and fill with wood putty. Brush a full coat of clear resin scaler on all surfaces

Glue blocks (not shown in Fig. 2) can be added to in. crease rigidity. Note cut-out for record changer.

Deeper groove in top front-frame member allows slid. ing doors to be inserted.
(inside and out) and let dry. On all outside surfaces brush a full coat of flat-finish, white undercoat.

After the undercoat dries, make an antique glaze by mixing equal parts of turpentine and glazing liquid and tinting it to the tone desired. Colors-in-oil can be used or you can do a good job with walnut or maple stain. Best bet is to experiment with slight amounts of scrap wood until you get the effect that pleases you most.

Wipe the glaze on with a rough cloth being sure that it piles up in corners. Technique of application with the glaze has much to do with final apcearance. Practice to establish the best wiping stroke.

Note that some leeway is possible by letting the glaze dry a while and then wiping again with a cloth dipped in turpentine. This way you can lighten the finish overall or achieve a high-lighted effect with areas of light and dark.

Let the glaze dry thoroughly, then finish up with two coats of satin-finish varnish. The last varnish coat can be rubbed with steel wool and lustered with paste wax rubbed to a high, gleaming polish.

TheMini-Player

Employing a transistorized wireless broadcaster and flash-battery-powered turntable, this self-contained record player plays all microgroove records from 33 to 16 rpm through any radio set

The Mini-player operates equally well in conjunction with a battery portable set as shown here, or with transistor, auto or line powered sets. Trim, three-speed motor is completely self-contained. 9 in. "Con-Tact."

Since components are standard, the most important item is to get a 25 's cigar box $11 / 2 \times 51 / 2 \times$

Remcve the box lid and then, with a medium grit sandpaper, remove loose paper from both lid and box. Drill holes in the motor board as shown in Fig. 2A. The trim final finish is obtained by covering the box with self-stick plastic fabric sold in most variety stores under the trade name

The phonograph turntable is just 6 in . in dia. Power is provided by a tiny 6-v PM motor operated with four flashlight cells wired in series. A spring tension clip fashioned from a strip of metal secures the cells in the cabinet. A single pole toggle switch turns the motor on and off.

Note that the two rows of flashlight cells (see Fig. 3) are separated by a strip of wood cemented to the bottom of the box. This strip measures $3 / 8 \mathrm{x}$ $5 / 8 \times 4 \frac{1}{4}$ in. The bronze turntable spincle bearing extends below the motorboard, and this spacer strip allows bearing clearance which would otherwise be blocked if the batteries were in two close rows.

Two brass upholstery tacks to which motor leads are soldered provide the $6 v$ plus and minus power takeoff. These are mounted inside the box opposite the

By THOMAS A. BLANCHARD

HOW would you like a record player that would work anywhere there was a radiowithout any electrical plug-in's? Here is probably the smallest non-toy, three-speed, wireless record player that could be designed.
spring brass battery retainer clip. Insert batteries so first cell has the small plus button in contact with one tack head with the fourth cell's zinc case contacting the remaining tack head. When power is turued on, turntable should rotate away from the crystal pickup arm. If not, simply reverse the sequence of the flashlight cells and motor will

Underside of Mini-player motorboard and arrangement of penlite and standard size cells.
turn in the correct clockwise direction. For future reference, the inside of box can be marked with an outline of batteries in correct polarity position.

The pickup can be any popular standard-size crystal unit with a turnover cartridge if you expect to use old records. Otherwise a pickup with a single 1 mil needle will be sufficient. The turntable features a built in adaptor for playing 45 rpm records and drops down for playing 33 rpm and 16 rpm discs-any size up to 12 in .

Closenp view of chassis. Small block of wood holds penlite cells in position. Four-lug tie-strip simplifies mounting small components. Chassis is secured in box with α pair of $3-48 \mathrm{fh}$ machine screws.

MATERIALS LIST-MINI-PLAYER

No. Req. Size and Description
1 ferrite slug-tuned ratio antenna "Loop"' coil
1 Argonne miniature transformer \#AR 145 (100K Primary: 2 K secondary)
1 Sylvania type 2N233 N.P-N radio frequency transistor
molded plastic transistor socket and retainer ring
100 or 150 mmf . ceramic tubular or disc capacitors
.01 nifd. disc ceramic capacitor
.001 mfd disc ceramic capacitor
$10 \mathrm{~K}(10,000)$ ohm $1 / 2$ or $1 / 4$-watt resistor
11K ohm $1 / 2$ or $1 / 4$-watt resistor
5 K ohm $1 / 2$ or $1 / 4$-watt resistor
$21 / 2 \times 43 / 8 \mathrm{pc}$. of thin steel, copper or aluminum for chassis
cigar box-minimum dimensions: $11 / 2 \times 51 / 2 \times 9^{\prime \prime}$
4 yd "Con-Tact" plastic fabric
1 crystal phonograph pickup with 1 mil needle
1 miniature, battery-operated phono motor with $6^{\prime \prime}$ turntable (Alliance, General Industries, German/British import)
$2 \quad 11 / 2 v$. pernite cells
$4 \quad 11 / 2^{v}$. size D flashlight cells

To secure the motorboard to the cabinet, cement two blocks of wood $3 / 4 \times 1 \times 13 / 8$ in. in the center of box. Fashion a spring clip to form a contact for one of the penlite cells used to power the transistorized phono oscillator and secure it with a small wood screw before the block in foreground (see Fig. 4) is cemented in place. A flat stripgot ractal is cemented to the corner of the box the ${ }^{2}$ Sontact to the second penlite cell.

Some expengnenters might at this point get the urge to obtain the $3 v$ needed to operate the oscillator by tapping the larger batteries at the spring retainer clip. Boys, it won't work! The PM motor is a brush type unit, not induction, and the hash noise will be broadcast along with the recorded music. Separate power supplies eliminate any chance of electrical interference.

Transistor Oscillator. The most interesting part of the project is the tiny transistor-operated oscillator by virtue of which it is only necessary to place the record player near any radio, tune the set to 1600 kc or any nearby point where a regular station doesn't tune in, and you are able to listen to the recorded music through the set's speaker loud and clear with no physical connections of any kind.

The oscillator is a transistorized version of the Colpitts circuit. The tank coil is nothing more than the popular ferrite type radio antenna coil. The ferrite slug is turned in or out to tune the oscillator to any frequency from 1620 kc to about 1000 $k c$ so that a "clear channel" can be found on the radio dial.

The chassis is fashioned from a small piece of aluminum, copper or tin-plate as shown in Fig. 2B. Note that one corner is slotted, then bent up to provide a convenient mounting arrangement for the transistor socket. Note, also, in Fig. 4 that the original
design included a 4-lug tie strip for convenience in making circuit connections.

So long as the wiring of components agrees with Fig. 5, you can vary the design to suit your whims. A piece of flexible insulated hookup wire attached to the coil lug is all the antenna necessary. A longer wire will, of course, increase the range of the oscillator.

While the circuit is almost foolproof, it must be pointed out that just any transistor will not work as an oscillator. The transistor must be of the $R F$ N-P-N type such as the popular-priced Sylvania 2N233; AF P-N-P type will not work.

Since a switch was required to turn off or on penlite power to the oscillator, we employed a miniature 1 megohm potentiometer with switch and included a separate volume control. You can, for all practical purposes, leave out the volume control sc long as you provide an on-off switch. The phonograph pickup leads may be

5

connected directly to the 100 K primary of the miniature Argonne \#AR 145 input transformer and volume controlled from the radio set.

If hum appears when the pickup is handled so long as you hold it, ground the pickup arm's swivel to the chassis. Of course, the hum isn't present while records are playing, so this grounding can be optional.

This truly novel record player can even be used with car radios, simply by wrapping the oscillator lead loosely around the car's whip antenna.

Miniature
 Variable Voltage Power Supply

By BRICE L. WARD

THOUGH miniature in cost, labor and physical size, this power supply is big in all other respects. It will supply a full $25 v$ adjustable from zero, and up to 35 ma of current depending on the load. It will save hair-pulling and gnashing of teeth by supplying the voltage you need for your transistor circuits with the twist of a knob and it can handle any five- or six-transistor circuit with ease.

It has no fuse or switch because it needs none. If the leads are accidentally shorted, the current will jump to its maximum of 40 or 50 ma , the voltage will drop to a low value and it could be left this way all day with no harm.

Printed Circuit. Begin construction by laying out the printed circuit (Fig. 2) on a piece of single side laminate board (see Materials List) using $1 / 16$-in. tape resist or, if preferred, a ball-
point resist tube. You can use tape resist circles at the numbered points, if you wish. These should be pressed down firmly and care should be taken to eliminate air pockets where the circles and lines join, otherwise undercutting will result during the etching process. One excellent way to eliminate this air space is with thinned liquid resist (resist can be thinned with lighter fluid). Using a small brush, carefully touch up the air spaces, allowing the liquid resist to flow under the tape.
Remove the small cutouts from the center of the tape resist circles. The etched centers will serve as drill guides later. The large circles can be painted in with liquid resist, put on with a ballpoint tube or laid out with tape resist and trimmed or left square.
After etching the board, remove the resist and clean the board thoroughly with scouring prowder. Tape resist can be pulled off. Liquid or ballpoint resist is removed with lighter fluid.

As indicated in Fig. 2, drill points 1, 2 and 4-19 with a \#50 drill (about $1,16-\mathrm{in}$.) and 20 and 21 with a $\# 26$ drill. Match the distance between points 20 and 21 with your meter lugs to get a good fit.

Now, using a hot soldering iron and working quickly to prevent blistering of the copper laminate, mount the following components in the order given, following schematic-pictorial of Fig. 3. Mount all components on the etched side of the board. Bend the leads of C1 down and push them through the holes at points 1 and 2. Push the capacitor down against the board and solder points 1 and 2. Clip off the leads behind the board. In the same way, mount R1, R2, R3, R5, CR1 and CR2 but solder only points 5-9 and 14-17 inclusive. Be sure CR1 and CR2 are mounted with polarity shown in Fig. 3B. Mount C2 and C3 with their positive ends at 11 and 13 respectively.

MATERIALS LIST-MINIATURE POWER SUPPLY	
Desid,	Size and Description
CI	2-IIfol, 200-v metalized maper capacitor (Aerovox P82Z)
C2, C3	$500 \cdot \mathrm{mfd}$. $25-v$ dry electrolytic canacitors (C-D Type 5002)
CRI, CR2	GE IN91 germanium rectifiers
LI	GE $\# 51$ pilot lamp
MI	$0-5 \mathrm{dc}$ milliammeter (Lafayette miniature panel meter TM-401)
R1	1000-ohm. $1 / 2$-watt carbon resistor
R2	200-ohin, 1/2-watt carbon resistor
R3	3700-ohill. $1 / 2$-watt carbon resistor
R4	1500 -ohm, 2 -watt wire wound potentiometer (Mallory R1500L)
R5	10 K -ohm, $1 / 2$-watt $\pm 1 \%$ precision resistor (Aerovox Carthotilm)
Case	Lafayette Bakelite case \#MS. 216 and panel \#MS-217
P. C. Material $\begin{aligned} & \text { XXXP copper laminate-one side- } \\ & \\ & \\ & \text { (MS.512) } \\ & \\ & \text { oz. of etchant (PE.3) } \\ & \text { Tape resist } 1 / 16^{\prime \prime} \text { (PRT-2) } \\ & \\ & \text { Tape resist circles (PRTD-6) }\end{aligned}$	

Solder a piece of bare wire to the shell of L1 and tin the button on the bottom, then tin point 3 at the same time, pressing the lamp firmly into place. Solder point 4. Strip ends of three 5 -in. pieces of insulated wire (about $1 / 4$-in.) and push them into the holes at points 18,19 and 22. Solder these three points and clip off all the leads on the

3 B

opposite side of the board, leaving that side as smooth as possible.

Assembly. Lay out and drill the front panel as shown in Fig. 4. The meter cutout is best made with a fine tooth coping saw or jigsaw. Drill a $1 / 4$-in. hole for the line cord (centered and about $3 / 4 \mathrm{in}$. down) on one end of the case. Mount the meter using four 4-40 machine screws and nuts, and mount the potentiometer and banana jacks. Sandwich the components between the printed circuit board and the front panel and using the screws supplied with the meter, attach the printed circuit board to the meter lugs through holes 20 and 21. Complete the wiring according to Fig. 3A. Tin the ends of the line cord and run it through the hole in the case. Tie a single knot about two inches back from the tinned ends and solder one lead to 23 , the other to 24 . Now carefully recheck the wiring and attach the panel to the case with 6-32 screws.

P.C. board-mounted components.

Testing. Turn the potentiometer completely counter-clockwise and plug the unit into the receptacle. Turn the pot clockwise (up) and you should get a reading on the meter. The maximum reading will be between 20 and $30 v$. Turn the pot down again and put a multimeter, set to read at least 100 ma , across the output leads. Again turn the pot up slowly. The reading will go to about 50 ma and drop back to between 30 and 40 ma. The voltmeter will indicate a very low voltage. This latter test is not necessary, but serves to show the inherent safety in the power supply.

There are one or two precautions to observe. Always turn the pot up slowly to the desired voltage to prevent sudden current surges, and before disconnecting or connecting the load, always turn the pot all the way down (zero voltage). That's all! Enjoy your experiments.

Tape Splicing Technique

- Clear fingernail polish serves as an excellent cement when splicing recording tape. Taper cut the two ends of tape at a 45° angle, then daub some of the polish on the leading edge of one

piece and overlap the other piece $1 / 8 \mathrm{in}$. Let dry for about ten minutes, then daub polish on the overlapping edges to insure a perfect splice. You'll have a firm, long-lasting splice that can withstand considerable tension and flexing as the tape passes through the recording machine, and is just as good as one made with cellulose splicing tape.-John A Comstock.

Fuse Holder Eases Testing

- Ever wish there were some way you could hang on to both of your test prods with one hand while the other works the meter knob? Take one of those fuse holders used when you replace a pigtail fuse with an ordinary fuse ard snap the barrels of your test prods into it. You can often touch the red prod to a hot terminal and the other to a chassis ground point nearby. If the two test points are located farther apart, take the barrel of each prod out of the clips at the lower end of the holder and this will put the prod tips farther apart. You can even use the fuse holder to keep pairs of test leads from becoming separated when many are stored together.

With four coils, this onetube receiver covers the range from 27 to 200 megacycles.
the same package, one operating as a super-regenerative detector and the other as an audio amplifier. The detector (so sensitive that it makes electron noise sound like a frying egg) detects FM or AM signals which the second section of the tube amplifies. The receiver is battery powered and can be operated anywhere.

The base of the chassis is a piece of $3 / 4 \times 5 \times$ 5 -in. pine, the panel is $1 / 16$-in. aluminum sheet, $5 \times 51 / 2-\mathrm{in}$. Round the panel corners with a file and wash it in vinegar to give it a dull satin finish. The sub-panel is a piece of $1 / 8$-in. Masonite, $31 / 4 \times$ $41 / 4$-in. Two $3 / 4 \times 3 / 4$-in. brackets of $1 / 16$;-in. aluminum hold the subpanel to the base with machine and wood screws. The sub-panel is placed $11 / 2$ in. from the rear edge of the pine block.

|F you're a short-wave listener, signais from Europe, South America, and Asia are probably old friends. Many interesting signals, however, originate within a few miles of your home that your receiver does not hea:. Here is a simple receiver that will pick up those signals-those above 30 Mc -and bring the police, fire department, and a dozen other local stations risht into your shack.

Since the 10 -meter Amateur band is covered, there's also plenty of DX. Besides most of the VHF stations within 50 miles, this recever (in Jonesboro, Ark.) has logged hams in Mexico, Cuba, Alaska, and Japan; paging services from California to Puerto Rico; anc Solth Arnerican Police nets-all with only a 4 -ft. antenna! The surprise came when it was hooked to a beam antenna and received signals from the BBC Television Service in London. . . . DX in anybody's book!

The receiver covers 27 to 200 Mc with four coils. The type of stations you'll hear a:e listed with the coil winding chart. In many localities signals from ships, highway departments, motion picture studios, pipelines, ambalances, and industrial plants can also be heard.

The set uses only one tube, but is actually a two-tube receiver. The $12 A T 7$ has two tubes in

A small aluminum bracket supports the tube socket which is on the left edge of the sub-panel,

about $3 / 4$-in. from the top. The tuning capacitor (C 1 in Fig. 2) is in the center of the sub-panel, $11 / 2$ in. from the top. Antenna jacks (F1 and F2) are on the right side, $3 / 4 \mathrm{in}$. apart, and the coil jacks (J1 and J2) are mounted 2 in . apart and $1 / 4 \mathrm{in}$. from the top edge of the panel. Screwfasten the front panel to the pine block.

Center the hole for the tuning capacitor shaft in the panel $2 \frac{1}{4} \mathrm{in}$. from the top edge. The regeneration control (R4) and headphone jack (J3) are mounted directly to this panel; J3 is insulated from the panel by drilling the mounting hole a little larger than required and using two fiber washers for insulation.

It is necessary to modify the tuning capacitor (C 1) before mounting it. With pliers, carefully remove all but the middle, stationary plate of the capacitor. Do not remove any of the plates that rotate. The capacitor C1 must also be insulated from front panel to avoid changing the receiver's frequency when the panel is touched. If the regeneration control is purchased new, the shaft will be longer than necessary and most of it will have to be cut off with a hacksaw. Slip a 1-in. piece of small rubber tubing ($1 / 4-\mathrm{in}$. ID) over the shaft of C1 and slip the shaft from the regeneration control into the other end of the tube. The fit should be tight, but the two metal shafts should not touch. Use a panel bearing or rubber grommet to support the shaft at the front panel.

The battery clips (F3, F4, F5) are mounted with small wood screws on the right rear of the chassis (see Fig. 3). Identify each clip to avoid mistakes in connecting batteries. Solder the antenna coupling coil (L1) to terminal lugs on the machine screws holding the antenna terminals. The leads on this coil are twisted together and long enough to permit the coil to be brought next to L2.

Choke Ch-1 is mounted next to the regeneration control (R4). This part can be a small audio choke or the primary winding of a miniature output transformer (found in most scrap boxes or obtained from an old radio at a radio service shop. This part can also be purchased new and is less expensive than a coupling transformer.)

It is important, in wiring the receiver, that the leads connected to J1, J2, and C1 be kept as short as possible. Solder one lead of RFC1 to
the terminal of Cl and the other to a terminal lug mounted on the chassis. Connect one lead of C4, C5, and Ch-1 to the lug on the chassis also. The other lead of C 4 can be connected to another lug with a piece of hookup wire leading from the lug to the tube socket. Connect C5 to F4.

Wind the coils on $1 / 2-\mathrm{in}$. forms (see Table A) and then slip them off and spread to the right length. Bend the ends of the coils so they plug easily into J1 and J2. The single strand \#12 copper wire used in house-wiring is easiest to obtain for these coils. Strip off the insulation and clean the wire with fine sandpaper.

When the wiring is completed, connect the batteries, plug in headphones and Coil A. After the set has been turned on and has warmed up, a loud hissing noise should be heard in the headset as the regeneration control is rotated clockwise. If this frying sound is not heard, check to see that the tube filaments are lit. If not, there is a wiring mistake or the tube is bad. If filaments are lit, check the wiring again and try a . 002 or .003 mf capacitor in place of C 5 . The capacitor C5 is critical and the correct value may vary with different receivers.

Once the hissing sound is heard,
Base of receiver is $3 / 4$-in. pine stock, sub-panel (behind front panel) is $1 / 8-\mathrm{in}$. Masonite.

Coils are all $1 / 2$ in. in diain., of $\# 12$ copper wire. Close-wind coils and spread turns evenly to yiven length with a knife or screwdriver blade. To raise frequency coverage of coils, increase spacing between turns; to lower frequency, squeeze coil so spacing is decreased.

MATERIALS LIST-VHF RECEIVER			
B1	671/2-v. battery, Burgess K45 with snap-on	R2	500 ohin, $1 / 2$-watt resistor
	connector	R3	1 medohm. 1/2-watt resistor
B2	6.v. lantern battery, Burgess, Eveready, or Ray-0.Vac	R4	50,000 -ohm volume control, Centralab B. 31 with KB.1 switch (Sw 1)
C1	3.15 mmf , variable capacitor, Bud MC 1870, madified according to text	RFCl	1 mh RF choke, National 5.50 , or 6 ' to $8^{\prime \prime}$ of $\$ 28$ dec solid
C2	47 mmf . mica capacitor		copper wire wound on $1 / 4^{\prime \prime}$ forin
C3	. 25 mf , 100.v. tubular, Sprague 68P19	V1	12AT7 radio tuhe
C4	.01 mf . 400 v tubular, Sprague 68P8	1	9-pin miniature tube socket
C5	.0011 kv . disc ceramic	1 pr	magnetic headphones
Chl	midget audio choke or primary of midget output transformer	10	\#8 terininal lugs
$\begin{gathered} F 1, F 2, F 3, \\ \text { F4, F5 } \end{gathered}$	medium Fahnstock clips	6 10	$6.32 \times 1 / 4^{\prime \prime}$ machine screws with nuts small wood screws
J1, J2	metal or molded tip jacks	1	coil of solid strand hook up wire
J3	standard phone jack		$1 / 16^{\prime \prime}$ aluminum sheet, $3 / 4^{\prime \prime}$ pine, and Mason-
L1	5 turns copper hookup wire, closewound $1 / 2^{\prime \prime}$ dia.		ite for chassis, brackets and panel tuning dial and knob
L2	\# 12 copper wire wound according to Table A	$\begin{aligned} & 1 p c \\ & 2 \end{aligned}$	rubber tubing $1^{\prime \prime}$ long with $1 / 4^{\prime \prime}$ inside dia. fiber washers $1 / 4^{\prime \prime}$ I.D. and $5 / \mathbf{B}^{\prime \prime}$ O.D.
R1	4.7 megohm, 1/2-watt resistor		

connect an antenna and move L 1 close to L 2 . Tune across the band until a station is heard, then adjust the regeneration control for the best reception. If the hissing sound is not present all across the band, move L1 away from L2 until the receiver regenerates at any setting of C 1 .
Naturally, any radio works best with a good antenna, but this receiver will do surprisingly well with only a short piece of wire as an antenna. For best performance, the antenna should be cut exactly to your favorite frequency and it
should be as high as possible. A simple folded dipole or vertical antenna will work well and, in some cases, it is best to ground one of the antenna terminals.

If you happen to live in an area where TV signals are weak, this receiver may interfere with nearby TV sets when tuned to a TV station. This is because the detector generates a weak signal which the TV set receives. If such interference is noted, do not listen to TV stations when it may disturb a nearby set.

Light for Tube Replacement

- When replacing miniature tubes in a TV set, a penlight flashlight with an 8- to $10-\mathrm{in}$. flexible extension (available at tool and surplus stores) will provide light at sockets which can not be otherwise lighted.-H. Leeper.

Drill's Chuck Vises Work

- A drill's chuck can double as that extra hand that's needed to hold small lugs, jacks, plugs, and other parts while you solder wires to them. Soldering is a lot easier and there's no chance of painfully burning your fingers on hot parts by trying to hand-hold them. You can use an ordinary hand drill for the purpose or an electric drill-either does the job nicely.-J.A.C.

Hum in Iron-Core Transformer

In the case of hum due to vibration of the laminations in an iron-core transformer, loosen the mounting screws so the laminations will spread apart slightly, paint the edges of the laminations with shellac or varnish, allow to dry for several hours, then tighten the mounting screws.

Capacitance Relay

By W. F. GEPHART

Abstract

Vacuum-tube capacitance relay circuits have several disadvantages in certain applications such as burglar alarm and other continuous-duty circuits. This transistorized unit overcomes those disadvantages

VACUUM-TUBE capacitance relay circuits consume appreciable power. requiring line voltage or excessive battery replacement, and are prone to trouble due to the tubes and high voltage required. Transistorizing these circuits, though it sacrifices sensitivity to some extent, provides a means of continuous trouble-free, economical operation. The unit shown in Fig 1, for instance, will operate continuously on ac for less than half-a-cent a day and operation cost is very little more on battery operation And, since transistors are used, shock hazard is eliminated and the chance for circuit breakdown is greatly reduced.
The circuit (see Fig. 2) consists of a transistor oscillator feeding a transistor-controlled relay.
 point of conducting enough current to close the relay, and when an outside capacitance stops oscillation, current flow in the seconal transistor is reduced and the relay opens. Even though the relay is energized under "normal" conditions, the current flowing through its coil (1.8 ma) is far below the coil's continuous-duty ratirg.

Several types of coils may be used for the oscillator coil (L1). The one shown is a broadcast band antenna coil, but a BC band oscillator coil or IF transformer may also be used. The connections for the coils that can be used are:

Terminal on			
Schematic,	Antenna	BC Ose.	IF
Fig. 2	Coil	Coil	Transformer
1	Grid	Grid	Plate
2	AVC	Ground	B+
3	Antenna	Plate	Grid (or dioce)
4	Ground	B+	Grid (or diode)
			retuin

tive trimmer capacitor should then be disconnected. If the capacity of the lead is still too great, the unit must be moved closer to the antenna to enable a shorter lead to be used.
Figure 3 shows the panel and chassis layout. Any layout could be used, but the unit should be enclosed in a steel cabinet in all cases. The unit is shown with a built-in ac power supply, although batteries could be used by connecting a $15-v$ battery supply to points "A" and "B" (Fig. 2), observing proper polarity. The ac power supply shown delivers in excess of $15 v$ under full load, and this voltage must be reduced to the $15-v$ limit of the transistors by selecting a proper value for R6. Normally, $800-900$ ohms

In all cases, the coil should be shielded. If you use an IF coil, use a 270 kc version to avoid the possibility of interfering with nearby radios. Except when an IF coil is used, no capacitor is used across coil; the distributed capacity of the coil and wiring is utilized for oscillation. In the unit shown in Fig. 1, with a BC antenna coil, the oscillation frequency of the components will be approximately 100 kc .

The "antenna" is connected to the collector of TR1, and touching it provides a capacitative ground between the collector and emitter, and stops oscillation. In burglar alarm applications, this lead can be connected to the metallic frame of the item to be protected (cash register, safe, door knob, etc.), so that touching it will stop oscillations. In other cases, a metal plate may be fastened to a window sill or other place to achieve the same result (see Radio-TV Experimenter, No. 555, 75¢, "Experimenting with a Capacity Control," p. 143), or the lead may be attached to a door or window screen. If the "ground" lead $(+15 v)$ is connected to another metal plate in the vicinity of the antenna plate or screen, often the circuit will trip without the person actually touching the antenna plate. The voltage is so low that touching both leads is harmless and cannot be felt.

A trimmer capacitor (C4) is connected between the collector of TR1 and ground to minimize the additional capacity required to stop oscillations. With the antenna connected, this should be adjusted so that oscillations are just maintained at a level that will hold the relay closed, and any additional capacity in the circuit will cause the relay to open. Sometimes, in the case of long antenna leads, the distributed capacity of the lead itself will stop oscillations, and

MATERIALS LIST-CAPACITANCE RELAY (All resistors are $1 / 2$ watt)	
Desig.	Description
R1	. 1 megohm
R2	47 K
R3	10K
R4	2.2 megohm
R5	5 meg potentiometer
R6	820 ahms (see text)
Cl	. 01 mfd , 200 v
C2, C3	22 mmf , ceramic
C4	70.480 mmf. trimmer capacitor
C5, C6	25 mfd . 50-v electrolytic
11	oscillator coil (see text)
T1	12.6-v filament transformer (Merit P.2959)
TR1, TR2	2N 107 PNP transistor
D1	1N48 diode
D2	1N38 diode
Ry	SPDT relay, 8000 -ahm coil (Sigma 4F-8000-S/SIL)
Rect. 1	four 1 N48 diodes, bridge-connected Steel cabinet $4 \times 5 \times 6^{\prime \prime}$ (Bud CU.
	729) ; two transistor sockets;
	three insulated binding posts;

Back-of panel, top view of unit showing transtormer, coil, relay, sensitivity control and two transistors.

If the unit is to be placed in a service where the relay w.ll operate frequertly, such as in a counting circuit or, say, a customer-activated window display, place a diode (D2) across the relay coil (shown in dotted lines in Fig. 2). The inductive pulse from the relay coil when it releases is hard on the transistor, and frequent usage would ultimately damage TR2 unless the diode D2 is used.
The relay specified in the Materials List is adjusted to close on 1.5 ma at the factory. This adjusiment should not have to be changed since TR2 will normally draw about 1.8 ma when biased by the oscillator output. Potentiometer R5 is used to adjust the "no-signal" bias on TR2 so that the relay barely closes when the circuit is oscillating normally. A reduction in the ampli-
tude of, or the cessation of oscillations then causes the relay to open, closing the circuit to the external terminals.
The circuit can be used for burglar alarms as mentioned, or for any other "touch" or proximity operated circuit switching. By placing two metal plates close together, where a raindrop will bridge the gap between them, the circuit can be used as a "rain alarm." The high resistance direct connection between the plates (one connected to "antenna" and one to "ground") will not damage the power supply, but will stop oscillations. However, in the case of a direct, low-resistance connection between the "antenna" and "ground," the circuit should be disconnected promptly after the alarm to minimize drain on the power supply, particularly if batteries are used.

Cloth Removes Stubborn Knobs

- When you wish to remove a stubborn press-on type of radio or TV knob, just loop a twisted scrap of strong solt cleth behind the knob, gripping the loose ends firmly in your fingers. Press

against the cabinet front with your thumb tips, at the same time pulling firmly at the cloth. The knob should work free without damage to cabinet or knob.-Frank A. Javor.

It's an infinite baffle-

Six-Meter Station for the VHF Amateur

By C. F. ROCKEY, W9SCH/W9EDC

For hams only, the new improved six-meter rig that reaches out.

SPECIFIC features provided in this six-meter station are:

1) A stable, sensitive superheterodyne receiver, free from overloading effects under reasonable operating conditions.
2) A variable-frequency oscillator, controlling the transmitter output frequency. This makes it possible to move out from under powerful interfering stations, and to select a clear operating frequency.
3) Transmitter power input of 15 to 17 watts. This is sufficient for consistent six-meter work.
4) Provision for CW radiotelegraph operation on the six-meter band. This feature is not usually provided on many commercially-built units.
5) Clean, crisp signal quality, even when an inexpensive carbon microphone is used.
6) All parts are readily available from any well-stocked amateur parts distributor. No expensive, "special" tubes are required. (Furthermore, many of the more-expensive parts used in the first unit-see copy beneath dosted line below-can be appropriated for this one. But even if all new parts are purchased, the total cost should not exceed $\$ 100$.)

As with all VHF equipment, construction of this unit requires a degree of experience and judgment, but the unit itself is neither difficult nor tricky to set up. Before you start this, or
any other serious VHF project. make sure you have a good grid-dip meter at hand (see pp. 130131).

Power Supply, AF Circuits, Receiver. Begin construction by drilling and punching the major holes in the chassis, as shown in Fig. 2. Make the power transformer cut-out with a $1-\mathrm{in}$. square Greenlee punch (taking successive bites from the corners) or with a nibbling tool. All socket holes, except the rectifier and voltage regulator sockets, should be punched with a $3 / 4$-in. dia. Greenlee punch; the rectifier and voltage regulator socket holes are punched with a $11 / 6-\mathrm{in}$. dia. Greenlee socket punch. The clearance hole for the pivot of the Send-Receive switch, and the lug-holes for the receiver IF transformers may likewise be punched with the $3 / 4-\mathrm{in}$. punch, elongating the latter with a $1 / 4$-in. rat-tail file until each provides ample clearance for the transformer connecting lugs. Although the mounting holes for them should be drilled and checked, do not mount the power transformer, IF transformers, modulation transformer, or filter choke until they are actually wired into the circuit.

The small mountirg holes are best located by using the particular cemponert to be mounted as a template, or measuring directly from it. Tube socket key or pin pasitions are best decided by direct reference with the under-chassis photo

In Volume 6 of the Rudio-TV Experimenter (No. 555) we described a six-meter amateur radiophore station, suitable for the beginning or "technician-class" operator. Reader response to this project was so enthusiastic we felt an improved model of such a station in order. While the first station is still a useful and interesting project, it does possess a few disadvantages, particularly when used in regions of intense amateur VHF activity such as the Chicago, New York, and New England areas where occasionally transmitter, output power becones insufficient for consistent cummunication. Likewise, while sensitive,
the simple receiver is occasionally overridden by powerful nearby stations in metropacitan areas.

This improved six-miter station, on the other hand, has proven itself practial in both big cities and in the less active UHF regions. Here in the Chicago area, for instance, it has seldom failed to provide enjoyable contact whenever turned-an. even though only a simple dipole antenna is used with it. A good directional. "heam" antenna will enalile it to compete anywhere, and against commercially built equipment costing several times as much.

Now, connect a line cord to the line terminals on the terminal strip and plug in the 5 U 4 and the VR 150/OD3 regulator tube.
Turn on the switch on the regeneration control potentiometer and plug the cord into the power line. The rectifier (5U4) filaments should glow a dull red, and the VR tube should be filled with a pale purple glow. Measure the dc B+ voltage to the chassis. Any value between 400 and $500 v$ is normal. Between pin No. 5 and ground the voltage should be very close to 150 v . Under load, the full voltage will be about $350 v$.

With the power supply completed and checked out, complete the audio frequency sections in both the receiver (Fig. 6) and the transmitter, (speech amplifier and modulator, Fig. 7). Each 12AT7 triode section comprises a separate and distinct AF amplifier stage. (Refer to Table A to insure correct connections to the pins of these and all other tubes.) To check the operation of
(Fig. 4) and by reference to circuit diagrams (Figs. 5, 6 and 7). Provide the shortest, most direct grid and plate leads in each case. Mount each socket to the chassis, using 4-36 rh screws and hex nuts for the miniatures and 6-32 rh screws with nuts for the octals. Place a soldering lug under one of the screws of each socket to provide a common ground point for that stage. Mount the insulated tie-lug strips using the under-chassis photo (Fig. 4) as a guide. A liberal use of insulated tie-lug strips makes possible a neat and mechanically rigid wiring job. If you plan portable operation, put lock washers under all nuts for increased mechanical security. Mount all tube sockets and the terminal strip, as well as most insulated tie-lug strips before beginning the wiring, as well as the four-pole Send-Receive switch.

Wire all of the power supply (Fig. 5), except the power transformer, then mount and wire the power transformer, running ac power line connections, B+ supply leads, and $6.3-v$ heater supply leads along the edges of the chassis. Fasten electrolytic filter capacitors, by their leads, between suitable lugs, to hold them firmly in place.

When you have finished wiring the power supply, including a B+ lead to the Send-Receive switch, measure the de resistance from $B+$ to ground with a serviceman's ohmmeter. There is no limit as to how high this resistance should be, but it should not be less than 50,000 ohms.
each stage as it is wired, plug in the tube and apply power. Connect a ceramic or mica capacitor of at least 1000 mmf in series with a good pair of magnetic headphones, ground the other wire of the phones and connect the free end of the capacitor to the plate of each AF stage as it is completed. Now touch a screwdriver to the grid of that same tube. If the circuit is operating correctly, a characteristic clicky buzz will be heard in the phones.

For an overall check of the receiver audio amplifier when this section is completed, plug the phones into the energized circuit (Send-Receive switch in Receive position) and listen for the clicky buzz when each grid is touched in turn. The transmitter AF system can be given an overall check by connecting a $100-\mathrm{K}$ ohm resistor in series with phones and connecting this series combination between the green and black (across the secondary) of the modulation transformer. With all tubes in place, power applied, and the S-R switch in Send position, loud, clear speech should be heard when the mike (connected to appropriate terminals) is spoken into.

With audio-frequency and power-supply circuitry completed and checked, begin on the receiver second detector by winding the coil for this stage, L_{4} (see Fig. 8). Be sure that this, and other coils are wound exactly as described. More trouble probably can arise over an improperlywound and connected coil than from almost any

(Note: Grids numbered starting from cathode)
other error. Be sure that the specified iron slug forms (National XR-50) are used in all instances.
The regenera-tion-control potentiometer controls the screen grid (grid No. 2) voltage on the 6AG5 second detector tube.

Wire this, and the rest of the second detector by reference to Fig. 6. Keep the grid, plate and cathode leads short and direct, although the heater, $\mathrm{B}+$, and screen supply leads may be run in the corners of the chassis for convenience.

You will note that the second detector receives its $\mathrm{B}+$ supply directly from pin No. 5 on regulator tube. Be careful to avoid shorts between the pins of the tube socket, (use no more solder than necessary upon any connection) and don't forget the 50 mmf ceramic capacitor across the coil. When the sec-ond-detector wiring is completed and checked for errors, plug in the 6AG5, the receiver 12AT7 and the phones. With power applied and the S-R switch in Receive position, slowly advance the regeneration control toward the right. A smooth, quiet "thud" indicates that this circuit is operating correctly. If there is no "thud," recheck wiring; if tube is

Under-chassis view of sixmeter rig, showing typical placement of circuit components.

[^2]
good, little else can cause difficulty except an improperly wound or connected coil. When the detector is thus apparently operating, bring the lead-in from a fairly large antenna near (but not touching) the coil. By rotation of the slug of this coil, it should be possible to hear a number of shortwave code and phone stations in the 10 -

RESONANT FREQUENGY DABLE B B FOR COIL ADJUSTMENT:		
Coil No.	Resonant* Frequency	Remarks
L_{1}	51 Mc	Peak with 50 mmf
L_{2}	51 Mc	
L,	Should tune from about 30 to 43 Mc as receiver tuning capacitor is rotated	Adjust both coil slug and 35 mmf oscillator tank capacitor
L_{4}	Peak at 10.7 Mc	
L_{s}	Should tune from about 6.24 to about 6.75 Mc as trans. VFO tuning dial is rotated	Adjust both slug and 100 mmf VFO tank
L.	Peak at 12.5 Mc	
L_{7}	Peak at 25 Mc	
\mathbf{L}_{5}	Peak at 51 Mc	
L.	Peak for maximum output on operating freq. (50 to 54 Mc)	

When the IF amplifier has been completely wired, check it over carefully for mistakes and for solder shorts. Insert the receiver audio tube, second detector, and both IF amplifier tubes, make sure all shields are in place upon those tubes requiring them, plug in phones and apply power. Then, using a grid dip meter, carefully adjust the second detector coil to resonance at 10.7 megacycles. Throw the S-R switch to Receive and turn down the IF gain control. Turn up the second detector regeneration control just past the "thud" point, on the oscillating side, and readjust the second detector coil tuning slug until the whistle of the grid dip meter is clearly heard in the phones. Now, turn up the IF gain control and adjust each tuning slug (top and bottom) on each IF transformer carefully for the loudest response from the grid dipper. Adjust the gain and the location of the dip meter with respect to the set to provide a clear whistle but to avoid overloading. The IF amplifier is now roughly aligned. Final alignment will be completed later.

Proceed with the 12AT7 oscillator-mixer. Wind the mixer coil (L2, Fig. 8) and the oscillator coil (L3, Fig. 8) carefully and install these under the chassis. Also mount the 35 mmf . oscillator tank capacitor and the 15 mmf . tuning capacitor. Since these circuits operate at high frequency, it is necessary to keep all grid, plate and cathode leads short and direct and return all grounds for one stage to the same lug on the chassis, insofar as possible. Heater and B+ supply leads again should be run around the corners of the chassis. (The os-

MATERIALS LIST-SIX-METER RIG

No. Req'd	Description	No. Req'd	Description
1	Jenes barrier terminal strip, 8-terminal (Model No. $8-140)$	$\frac{1}{3}$	$.01 \mathrm{mfd}, 600$ working volt. paper capacitor (Aerovox) 1.watt carbon resistors, 220 ohin
1	aluminum chassis $4 \times 13 \times 17^{\prime \prime}$	6	1 -watt carbon resistors. 22 K ohin
2	8 -prong, actal tube sockets. Amphenol	3	1 -watt carbon resistors, 47 ohm
6	7 -prong miniature tube sockets, Amphenol unshielded	6	1 -watt carbon resistors. 47 K ohm
4	7-prong miniature tube sockets, Amphenol unshielded, with fitting for shield	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	l-watt carbon resistor. 1000 ohn 1-watt carben resistors. 100 K ohm
4	shields for above, Amphenol, to fit 6AG5 tubes	4	1 -watt resistors, 220 K ohm
3	9 -prong ininiature tube sockets, Amphenol, unshielded	2	1 -watt carben resistors, 1 megohm
1	common push button (from any hardware store)	1	1-watt carbon resistor, 10 megohn
1	miniature porcelain cleat socket (from any hardware store)	2	1 -watt carbon resistors, 2.2 K oh II 2-witt carbon resistor, 220 ohm
2	FM I.F. transformers 10.7 megacycle (type: Meissner 16-6665)	1	2-watt carbon resistor, 47 K ohm 10 K ohm, 20 watt, wire-wound resistor, l.R.C.
1	line cord and plug	1	6000 ohm, 20 watt, wire-wound resistor, I.R.C.
1	4-pole double-throw Federal anti-capacity switch (type 1424)	1	100 K linear taper potentiometer with switch (Mallory) 10K linear taper potentiometer (no switch. Mallory)
2	vernier tuning dials (National type BM)	2	50 mmf variable capacitors (Bud type No. 1873)
4	plastic knobs, for 1/4" shaft	2	Bud 15 mmf variable capacitors (Bud type No. 1870)
1	single-circuit phone jack (Mallory)	1	35 ininf variable capacitor (Hammarlund type No.
1 pr	good maynetic head phones (Trimen)	1	MAPC.35)
1	single-button carbon inicrophone (carbon type F-1 from Telephone Engineering Co., Simpson, Pa.)	7	National type XR50 ir on slug coil forms power transformer (Thordarson 22R07)
1	driver transformer (Thordarson type 20A22)	1	power transformer (Thordarson 22R07)
$10{ }^{\prime}$	plastic insulated solid hook-up wire (one roll)	1	filter choke (Thordarson 20C55)
1/4-1b.	No. 22 double cotton covered magnet wire	1	modulation transformer (Thordarson 21M54)
$1 / 4 \cdot 1 \mathrm{lb}$.	No. 26 double cotton covered magnet wire	1	$5 \cup 46 \mathrm{~B}$ tube
Assor	tment of tie points, insulated. 2. 3, and 4 terminal	1	VR150/0D-3 tube
1 pkg	rubber grommets $1 / 4$-in. wire hole	6	6AQ5 tube
1 length	No. 14 tinned-copper wire	3	12AT7 tubes
	rosin core solder	4	6AG5 tubes
	4-36 th machine screws $1 / 4$ " long with nuts	1	No. 40 dial light 6 -volt, screw base
	6-32 th machine screws $1 / 4^{\prime \prime}$ long with nuts	1	beam antenna (Newark Electric Co., Catalou No.
25 8	5000 mmf ceramic disc capacitors 50 mmf ceramic disc capacitors	For tuning and adjustment:	
1	1000 mmf ceramic disc capacitor		
1	. 5 infd, 200 working volt, paper capacitor	1	technician's volt-ohmmeter
1	8 mfd . 450 working volt, electrolytic capacitor (tubu.	1	grid-dip meter (B and W, Heathkit or Millen)
	lar type. Mallory)	1	$0-150$ dc milliainmeter
2	$20 \mathrm{mfd}, 600$ working volt, electrolytic capacitors (tubular type, Mallory)	1	7.5 -watt, 120 -v lamp bulb and sacket 2-watt nean lamp bulb

cillator section receives its $B+$ supply from the voltage regulator tube, pin No. 5, point A in power supply, Fig. 5. The "gimmick" in Fig. 6 is a small capacitor which couples the oscillator signal into the mixer. Make it by twisting five turns of plastic-insulated hookup wire, (insulation still in place, tightly together. No trouble will be experienced if you carefully arrange that the two wires can not come into metallic contact. This gimmick must be connected in place before the following oscillator frequency adjustments are made.)

When the oscillatormixer section has been wired, carefully check it out and then insert the 12AT7 tube in the socketc. Close the plates of the tuning capacitor (15 $m m f$. , with vernier dial) completely, and set the oscillator tank capacitor (35 mmf., on chassis) plates exactly halfmeshed. Now, adjust the slug in the oscillator until the oscillator coil res-
onates at 39 megacycles, as determined by grid dipper. Apply power and use the grid dipper to check for oscillation by coupling it to the coil L3. Lack of oscillation indicates an incorrect coil, wrong wiring, or a bad tube.

Receiver wiring is completed by wiring the RF amplifier stage, 6AG5. The only precaution which must be taken here is to keep the grid

and plate leads short and direct. The receiver antenna coil, L1, is made by close-winding seven turns of No. 22 DCC wire around a one-watt, one-megohm carbon resistor. The end leads of this coil are soldered to the resistor leads. The primary coil consists of four turns of the same wire wound directly over the ground end of the seven-turn coil. The seven-turn coil is then connected directly across the terminals of the 50 $m m f$. capacitor; it is held firmly in place by the stiff leads of the resistor.
When this coil is soldered in place across the capacitor, mount the latter in position upon the chassis and complete the wiring of the RF stage. Twist and connect the antenna coil primary leads to the receiver (X and Y) antenna connections on the S-R switch. This tightly twisted pair of leads may be run around the corner of the chassis with the power leads for appearance's sake, if desired. Treat the tightly-twisted pair of leads from the antenna switch blades to the antenna terminals (on terminal strip) the same way.

Plug all tubes into the receiver and power supply, and place shields firmly upon all tubes requiring them. Before applying power, "grid dip" both L1 (with 50 mmf capacitor) and L2 (with slug) to resonance at 50 megacycles.
Now, apply power, and switch the S-R switch to Receive position. Turn up the IF gain control until a slight hiss is audible in the phones and turn up the regeneration control just beyond the thud-point. With the tuning capacitor fully meshed and the grid dip meter oscillating, rotate the grid-dip meter dial slowly about the 50 megacycle point until you hear its whistle in the phones. If overloading occurs, turn down the IF gain. (If you have performed your previous alignment work carefully, this signal should be close to 50 Mc .) Now, readjust the tuning controls of L1 and L2 for maximum signal strength, turning down the IF gain to avoid overloading if necessary. When these have been peaked-up, carefully readjust all of the IF transformer slugs
A.L MIFE 22 for the strongest possible signal. You have now aligned the receiver. Connect a sixmeter antenna (or, if that is not available yet, a TV receiving antenna) to the antenna terminals on the terminal strip. If there is an amateur six-meter station on the air in your locality, you should have no trouble hearing it. When you do tune in an on-the-air signal, use it to make a final touch-up of all slugs and adjustments. Finish off by installing the vernier dial and knobs.
You will receive radiotelephone signals best with the regeneration control just below the thud point. Radiotelegraph CW signals will be received best just above it. Also the regeneration control may be used as an additional volume control on strong voice signals, in addition to the IF gain control. You will also observe that this receiver, while being very sensitive to sixmeter signals, is remarkably free of the spurious TV and FM broadcast responses.

The Transmitter. With the receiver completed, and the audio and power circuits checked-out, you are ready to start on the transmitter-if you have a suitable station and operator license. The United States radio law provides penalties of up to $\$ 10,000$ fine and/or a two-year federal prison term for those who use a radio transmitter without proper government authorization. You must hold either a general class or a technician class anateur license to use this transmitter. A novice class amateur, or a Citizens Radio license will not do. You may obtain exact information as to the requirements and examinations for such licenses by writing to the field office of the Federal Communications Commission nearest you. (The Canadian, Mexican, and the governments of most other countries have, and enforce similar regulations within their own jurisdiction.)

Assuming you are properly licensed, begin by winding the transmitter VFO oscillator coil, L5, Fig. 8. Wind this coil exactly as shown, since the frequency-stability of the entire transmitter depends upon it. When completed, fasten this coil into place and mount the 100 mmf VFO tank capacitor and the 15 mmf VFO tuning capacitors. (The vernier dial for the latter should not be installed until later.) Next, wire in the heater, cathode, and grid circuits of the VFO, carefully following the transmitter schematic, Fig. 7. Note that the VFO receives its B+ supply from the regulator tube (pin No. 5) through the SendReceive switch contacts (see the Send-Receive switch diagram, Fig. 9). Also mount and connect the VFO push button, stuffing several layers of friction tape under the push button, between the terminals and the chassis, to forestall shorts. (Gulch's Fourth Law: "Anything that has the slightest chance of shorting is certain to do so," operates here as it does everywhere else in amateur equipment.)
Now, wind the transmitter oscillator plate coil (L6, Fig. 8), mount it, and finish wiring the VFO
oscillator circuit. After this is checked, and any possible shorts between tube pins or elsewhere have been cleared, insert the rectifier tube, voltage regulator tube, and 6AQ5 VFO tube, and apply power. After tubes have warmed-up (with the $S-R$ switch in center or neutral position), press the push-button. The voltage regulator tube should dim noticeably but not go out. If it does go out, or if it does not dim, check your wiring, and examine the pushbutton carefully. When it dims, release the push button and throw the S-R switch to Send position. With the tuning (15 mmf) capacitor fully meshed and the VFO grid coil slug screwed all the way in, adjust the 100 mmf tank capacitor until a definite indication of oscillation is observed on 6.25 megacycles with the grid dip meter. You should find this condition occurring with the 100 $m m f$ tank capacitor about 90% meshed.

With the circuit oscillating at 6.25 Mc ., move your gricldip meter over to the plate coil and adjust the slug for maximum output at 12.5 Mc . With good, strong indication of output here, remove tubes and de-energize before continuing work and move on to the frequency multiplier (doubler) stage, the only critical part of which is the coil. Make sure that the cen-ter-tap is in the electrical center. This will insure equal drive to both tubes of the final stage, and will minimize spurious responses. Wind the coil exactly as shown in Fig. 8. (If for any reason it should be necessary to alter the number of turns on this coil, a remote possibility, be sure that you add or remove two turns at a time, one on each side of the center-tap, to preserve electrical balance.) Install this coil and complete the wiring.

You will not be able to test the frequencymultiplier until you have also completed the wiring of the grid and cathode circuits of the final amplifier. This is because the grid to ground capacitance of these latter contribute significantly to the tuning capacitance of the frequency multiplier output circuit. So, wire-in the grid and cathode circuits of the final amplifier immediately.

Observe that each of the final amplifier tubes has its own cathode bypass capacitor and 47 -ohm isolating resistor. This is to insure stability and reliability of this circuit. The de cathode current flows through the $M-A$ terminals on the 8 -terminal strip on the back of the chassis (see Fig. 10 B) ; this makes possible a convenient check of the final amplifier cathode current later.

When the grid and cathode circuits of the final

INSULATING STRIP FOR MOUNTING ANTENNA TUNING CAPACITOR

amplifier have been completed, as well as all of the circuitry of the frequency multiplier, the latter is ready for a checkout. After re-examining the wiring, plug in the VFO, frequency multiplier, and final amplifier tubes (as well as rectifier and voltage regulator, of course) and apply power. With the S-R switch in Send position, tune the frequency multiplier coil to maximum output on 25 megacycles, using the grid-dip meter. You should also now go back and touch-up the oscillator plate coil for maximum indication at the frequency multiplier output. A 6-v dial bulb, connected to a single loop of wire and draped around the frequency multiplier output coil should glow at nearly full brilliance, if everything is working-and tuned correctly.

With this accomplished, de-energize, remove tubes for safety's sake, and complete the wiring of the final amplifier. This is a pushpush, frequency doubler, a self-neutralizing circuit noted for its effectiveness, stability, and rejection of spurious, harmonic frequencies. Note in Fig. 7 that the grid circuit is connected in push-pull, the plates of the tubes in parallel. Observe, also, that for stability both screen grids are individually bypassed, even though fed from the same dc source. Keep all high-frequency leads as short and direct as possible, the heater, B+ supply, and other supply wires may be run around the corners of the chassis for improved appearance.
Wind coil L 8 as shown in Fig. 8 and install, and complete and check the wiring of the final stage according to the transmitter schematic, Fig. 7. When wiring is complete, insert all transmitter RF tubes, rectifier tube, and voltage regulator. Before applying power, adjust the final amplifier coil with the grid-dip meter, by tuning the coil slug. If you have trouble making it resonate on 50 Mc ., try squeezing together, or spreading apart the turns of coil L8. When resonance is found, secure the turns in place with celluloid cement.

Now, jumper the "MA" terminals on strip together and apply power. You should get a strong indication of RF output on 50 Mc ., but absolutely none on any other frequency within the range of the grid-dip meter. A $6-v$ pilot lamp, connected to a loop of wire and draped over the final output coil should burn extremely brightly (possibly even burn out, so be careful) when this stage is operating correctly. Touch up the tuning of the oscillator plate, the frequency multiplier, and the output of the final amplifier for maximum output on 50 Mc .

Complete construction by winding the transmitter antenna coil L9 (Fig. 8) with No. 14 copper or tinned-copper antenna wire. Tap this coil one turn from each end to make connection to the transmitting antenna through a tightlytwisted pair of leads, which may run around the corner of the chassis to the Send-Receive switch, points M and N, as shown in Figs. 7 and 10B.
The 50 mmf antenna tuning capacitor is insulated from the chassis by means of a laminated phenolic plastic strip (see Fig. 10A), upon which it is mounted. A $11116-\mathrm{in}$. "socket" hole assures sufficient clearance from the chassis. Both sides of this capacitor must be insulated. Fasten the plastic strip to the chassis with 6-32 rh machine screws and nuts.
The antenna coil is coupled to the final amplifier output coil by means of a single-turn loop, coupled closely to each coil-the B+ end of the output coil, and the center of the antenna coil. A twisted pair link of plastic hookup wire connects the loops together. Each loop should be closely coupled to its coil, but this coupling should be adjusted for best results later.
The antenna tuning lamp socket is mounted atop the chassis (see Fig. 3). It is connected between point N on the S-R switch and a tap on the antenna coil. Keep the leads to the lamp socket as short as possible and bring them up through the chassis via a rubber $1 / 4-\mathrm{in}$. hole grommet adjacent to the socket. The lamp is shunted by a small $1 / 8-\mathrm{in}$. dia., 4 -turn coil of close-spaced No. 22 DCC wire. Adjust the size of this shunt coil so that, with the antenna you are using, the lamp lights to only about one-quarter brilliance, enough to tune clearly by, but not enough to waste hard-earned RF power.
Final check on the transmitter consists of inserting all tubes and applying power. Connect a 7.5 -watt, $120 v$ lamp bulb across the antenna terminals (terminal strip) as a dummy load. Make all RF tuning adjustments for maximum brightness of the bulb. Do not expect a full 7.5 watts of output from this transmitter, but when all tuning and coupling adjustments are optimized, a sizeable amount of output should be shown by the 7.5 -watt bulb.

To check modulation, connect a single-button carbon microphone to the mike terminals, apply power, and speak into the mike. The antenna tuning lamp should flicker markedly if modulation is taking place. No modulation indicates possible error in the connections between the secondary of the modulation transformer and the final RF amplifier circuit.

Before putting this transmitter on the air using a live antenna, make sure that the transmitter frequency is definitely within the assigned $50-\mathrm{Mc}$. amateur band, from 50 to 54 Mc . Do not rely upon the calibration of your grid-dip meter for such a vital matter, but check against the known crystal frequencies of other amateurs you hear on the air, or with an accurate heterodyne frequency meter (often available on a loan basis from radio clubs).
You may compare the frequency of your own VFO with that of other amateurs by simply setting your receiver's second detector regeneration control past the thud point and, with the S-R switch in Receive position, pressing the VFO test push button. Tune the VFO vernier dial until you hear its whistle in the receiver. (You may have to turn down the IF gain to avoid overloading.) Now the transmitter will operate upon the same frequency as that to which the receiver is tuned. Use this technique to set your own frequency to that of the station you're working; this conserves spectrum-space, and makes for better operations. However, unless you wish to be considered a "lid," do not change your operating frequency while the S-R switch is in the Send position. Rather, use the push button to set the frequency, with the switch in Receive position.
A 0-100 ma dc milliammeter connected to the $M-A$ terminals on the terminal strip should read between 45 and $60 m a$ when the transmitter is tuned-up and operating properly. Once preliminary adjustments have been made, remove the meter and place a jumper across the M-A terminals.

For radiotelegraph CW operation, connect a telegraph key to the M-A terminals instead of meter or jumper, and operate as any other CW amateur station. (When one can find a six-meter operator who will listen for CW signals, much greater distance ranges are possible under poorer conditions than could be obtained by voice operation.)
For best results with this or any other amateur station, thoroughly familiarize yourself with the correct adjustment and operation of all circuits and keep them in trim at all times. Install and use the highest, most-effective antenna you can, for the antenna used is by far the biggest technical factor in successful operation. If possible, use a directional, beam antenna, but a high dipole will work if the former is not feasible.
(A word on TVI-Because of its frequency proximity to television channel 2 , this transmitter may cause some interference on that channel. If it does, have the TV receiver owner install a Drake HF-50 or other good high-pass filter with 54 Mc . cut-off design.)

- The wonder of radio is not, as some would have it, that it works at all; but rather that a device that works principally because of evacuated tubes can be responsible for so much hot air.-R. R. Doister

Transistorized Telephone Amplifier

The caller, shown at left, uses phone in normal fashion while amplifier unit at other end of line, shown at right abcve, enables group of people to listen and talk.

ALTHOUGH this telephone attachment will enable you to speak and hear someone calling you on your phone as though you were using an intercom, you do not have to make any wiring connections to the telephone circuit.
Since the conversation is picked up inductively, you merely place the pickup unit under the phone cradle set, put the phone on the cabinet as in Fig. 2 and you're ready to start talking or listening. It may be used for incoming or outgoing calls and the whole family, as in Fig. 1, ean talk to and hear the caller simultaneously as though he were in the same room. It's very useful for business too,

This loudspeaker phone attachment frees both your hands while you or a group of people carry on a phone conversation

By HAROLD P. STRAND

Placing the phone hand set in position on the amplifier cabinet when receiving or making a call automatically turns on amplifier switch.
for group phone discussions or taking notes, typing, etc., which requires the use of both hands while carrying on a phone conversation.
The unit is built around a telephone amplifier kit which is modified for two-way conversation. Complete parts list and source of supply are given in the Materials List. Start by assembling the transformers, battery clip and transistor sockets to the prepunched chassis as in Fig. 3A carefully following the step-by-step instructions included with the kit. The sockets are locked in place by a rectangular spring ring that is forced down over the lower end of the socket with a

Use a small Ungar soldering pencil as in Fig. 4 and the resin-core solder furnished with the kit. You will have to splice on additional wires in two instances so the leads can reach their terminals. Slip a small piece of spaghetti tubing over the splices for insulation. It will also be found that spreading the transistor socket terminals a bit will aid in keeping the connections from shorting each other. Where a heavy lead from a resistor or capacitor must be soldered to a socket terminal which already has wire attached, do not attempt to wrap this around the terminal too, as it will make a rather bulky joint. Simply place the end of the lead against the termi-
screwdriver. Be sure to place sockets in their holes so the terminal with the widest spacing is positioned as in Fig. 3.

When mounting the transformers, check with Fig. 3C to make certain you have them positioned so that wires of the correct color can be inserted through the holes intended for them. For example, transformer T2 in Fig. 3A must have a blue and red wire going through hole 7 and a green, yellow and black wire through hole 8 as shown in Fig. 3C.

Before installing the volume control and switch (Fig. 3B), cut off the shaft so it will be $\overline{1} / 16$ in. long instead of $3 / 8 \mathrm{in}$. as called for in the kit instructions. The additional length is needed because a wooden cabinet will be used in place of the metal one supplied with the kit. Now mount the terminal strips and jack as in the bottom view, Fig. 3B, and prepare to wire the unit.

Flow the solder into the joints but avoid excessive use of solder which builds up a bulky joint.
nal and depend on a good soldering job to secure it.
Take particular note of the plus sign on capacitors C1, C2, C3 and C 4 and connect them to points shown in Fig. 3D. Two 10-in. speaker leads are specified and after connecting them to points F and G in Fig. 3C, carry them through hole 17 for connection to the speaker. Insert a small sewing needle into the transistor sockets to spread them slightly so you will not have difficulty getting the transistor leads, which have been cut off to $3 / 8-\mathrm{in}$. long, started in their sockets without bending.

To test the unit, put the battery in its clip and connect it, and insert the phono pick-up coil plug into jack J1 in Fig. 3. Place the pick-up coil under the phone base about two-thirds of the way back, and turn on the amplifier switch by rotating the knob shaft about half way to the right. Then lift the

phone hand set and see if you get a dial tone from the speaker. Turning the volume control shaft to the left should lower the volume and to the right increase it. When you turn it to the right too much, however, you will probably get an annoying howl resulting from feed-back oscillations that can be avoided by keeping the tone level below this point at all times.

If you get no sound from the speaker or the volume level is unsatisfactory with the control all the way to the right, you have probably made some error in the wiring or it could be due to a defective transistor. Go over the wiring first,

Slide a piece of spaghetti tubing over the soldered

 splice after connecting leads for cradle switch.

With the chassis completed, make the wooden cabinet from $1 / 4-\mathrm{in}$. birch plywood as detailed in Fig. 7. Cut the holes in the right side, top and front pieces before assembling. Use glue and brads on all joints and fill countersunk brads with wood putty. The back of the cabinet is left open for inserting chassis, speaker etc., and later covered with a piece of $1 / 16$-in. Bakelite.

A metal disc from a \#1435 Lazy Boy ash tray is used to gather and reflect the sound of your voice into the transmitter of the phone hand set as in Fig. 8. This tray is parabolic in shape and serves the purpose very well. Cut off the fabric base and remove the cigaret holder bar with a pliers as in Fig. 9.

To support the ash-tray, turn a wooden ring to the dimensions given in Fig. 8A. Turn the inside cliameter of the ring for a snug fit with the ash tray. Set the rim of the tray about $5 / 16$ in. from the outer edge of the ring and fasten with three $1 / 2$-in. long wire brads. Two of the brads can be driven through the original holes in the tray and one additional hole drilled. Fill the space between the tray and wooden ring at the back with wood putty. Assemble the ring into the hole cut in the cabinet front with glue.

To support the receiver end of the phone hand set, make up the shallow box-like housing detailed in Fig. 7B. Cement a $21 / 2 \times 21 / 2$-in. piece of $1 / 8$-in. thick rubber inside the housing to protect the receiver, and fasten the housing to the undersicle of the cabinet top with the $3 / 4 \mathrm{in}$. side facing front.
and if you find it to be okay, have the transistors tested at your local radio repair shop. Also try placing the pick-up unit at various places against the side of the phone base. With the new-type phones it may be found that the loudest signals can be obtained with the pick-up taped to the right side of the phone base.

When everything is working satisfactorily cut the red battery lead from the volume-control switch and solder on two leads as in Figs. 5A and 6 that will later go to the phone cradle switch.

To anchor the chassis to the new wooden cabinct, make up two aluminum brackets as in Fig. 5D and fasten them to the chassis as in Fig. 3D with $4-40 \times 1 / 4$-in. rh screws.

Pinch the bends in the cigaret bar together to remove it from the ash tray.

Make the hand-set rest from solid maple stock as in Fig. 7A. A Handee motorized hand tool was used to cut the curved rabbet, however, hand chisels could be used instead. The rabbet should be large enough to clear the rim of the ring holding the ash tray. Then drill a $3 / 16$ in. hole for the sleeve Figs. 7A and C. Place the hand-set rest in position on the front of the cabinet to locate and drill the $3 / 16$-in. hole through the cabinet top. Also drill four small holes through top for \#2 $\times 1 / 2$-in. $r h$ screws.

Before fastening the hand-set rest permanently in place finish the cabinet and rest piece with stain, white shellac and varnish for a natural finish, or enamel undercoater followed by a coat of semi-gloss enamel of the color you desire. Sand lightly between all coats except the last one.

When the unit is in use, the phone hand set is placed in position on the cabinet as in Fig. 1. The weight of the hand set automatically turns the unit on because the plunger in the rest is forced down and depresses the switch contact springs and closes the switch as in Fig. 8. Make the two contact springs as in Fig. 5E and cut two contacts

Solder leads connected to red battery lead and volume-control switch to cradle switch springs.
from an old relay to solder to the spring ends. Then mount the springs to the underside of the receiver housing as in Fig. 10 so the contacts meet when the plunger is pressed down, and solder on the two leads from the volume-control switch and battery (Fig. 5A). Cement a piece of speaker grille cloth to the inside of the cabinet side over the speaker opening and bolt the speaker in place with four $4-40 \times 1 / 2$-in. screws. Set the chassis inside the cabinet and bolt it down with two $4-40 \times 1 / 2$-in. screws through the chassis brackets.

To cover the open back of the cabinet, use a piece of $1 / 16$-in. Bakelite or $1 / 8$-in. plywood and fasten with \#2 x $1 / 2$-in. fh screws. A slot can be cut in the cabinet side or back to clear the wire from the phone pickup unit.

To operate the telephone amplifier, place the pickup unit under the phone cradle-set base or tape it to the side, whichever works best, and adjust the volume control about half way to the right. Then pick up the phone hand set and dial the number you're calling in the usual manner. The phone can either be held in your hand while dialing or placed on the cabinet rest. If placed on the cabinet you should be able to hear the dial tone through the loudspeaker. When your party answers, adjust the volume control to bring in the speaker's voice as loud as possible but below the point which causesan annoying howl due to feed-back oscillations.
When you speak, project your voice into the ash tray surrounding the phone transmitter. You need not be closer than 18 in. as long as you are in front of the cabinet and talking in a clear voice. Speaking a little louder than normal, you can carry

on a conversation standing back as $\mathrm{f}_{3} \mathrm{rr}$ as 6 ft .
An additional and larger speaker can be added if you wish to have the caller's voice heard louder or in another room. Use a 6 -in., 3 to 4 ohm speak-
er connected with a plug and jack as in Fig. 5C. Plugging in the jack will automatically cut out the small speaker. Removing the plug will again put the small speaker back in the circuit.

Easier Dial Restringing

- If you have ever attempted to restring a radio's dial cord, you know how easy and frustrating it is to have the cord slip from a pulley just as you have the job almost finished. There's no need to make several attempts before finishing the job-do it the first time by using strips of masking tape to temporarily hold the cord in place.-J.A.C.

No-Clog File for Solder

- Ever try filing excess solder from a part with an ordinary file? Didn't the file teeth soon lose their bite because they filled up with the soft solder? A headless woodscrew chucked in an interchangeable screwdriver handle makes a "file" that will not ever clog. You can also use it on aluminum, Bakelite, and other soft materials with no danger of its teeth clogging.-J.A.C.

New VOCE for Steree ari-Fi

We've had stereo tapes, discs and two-station broadcasts. Now new compatible systems-including multiplexingmake one radio station twins

By CLIFF HALL

Abstract

New Sherwood multiplex adapter, retailing for about $\$ 55.50$, is designed to adapt conventional FM tuners to receive multiplexed stereo broadcasts. Function it performs is indicated in drawing below.

|N the broadeasting of stereophonic sound, the big word at the moment, and we thint for some time to come, is "multiplexing."
And multiplexing, at the time of writing, has more aspects than a tomeat urder attack by six dogs, maves about as fast and is the center of about as heated a controversy. We will get back to multiplexing in a moment, but first let's view the stereo broadcast picture. Stereo can be gotten into your home by radio waves as well as on recordings. And how best to do so has recently set the entire broadcasting industry on its ear.

It's a matter of "you take the A channel and I'll take the B channel"-and we have to get them both to your home at the same time. At a glance, it would appea: that two complete radio kroadcasting units would be required to radiate the two stereo channels, just as two amplifiers and two speaker systems are required to present them in the home. And in fact, most of the actual stereo broadcasting that has been done until recently has used just this method.

Hands Across the Channels. In many areas, friendly or affiliated AM and FM stations have
combined facilities for stereo broadcasts, with each station putting out one channel. In many cases this will continue, at least for a time.
This practice has led to the birth of the socalled stereo tuner which is, actually, an AM and an FM tuner, with separate controls and dials, are mounted on a single chassis. They can feed the two sides of your stereo amplifier simultaneously from any combination of AM and FM stations in your area, and they offer the economy advantages of a power supply and some other parts used in common.
Or you can simply use an AM and an FM radio, appropriately placed, and have a stereo effect of sorts, although without a high level of fidelity nor the advantages of balance and phasing.
Again, in some cases, the two stereo channels have been put on the air by cooperating TV and broadeast stations, as in recent experiments by WTTW, Chicago's non-profit educational television station, and WFMT (FM). This latter method, incidentally, can yield reasonably high fidelity, since the TV sound signal is actually a very high frequency FM signal.

B

Conventional Concept: 2 cardioid mikes at "normal" listening angle.

Binaural Approach: 2 cardioid mikes separated by solid obstruc-tion-like ears.

Stereosonic Recording: 2 cosine mikes together separating channels by direction.

Major disadvantage of this broadcast method should be obvious: There's no profit in it. Not only are two broadcasting facilities being tied up to put out a single program, but neither station is putting out a "full" program. In other words, when you tune to only one of the cooperating stations during a stereo broadcast, you hear the full orchestra all right, but you hear it as though you were sitting way at the side of the auditorium. Actually, what you are hearing is the same thing you would hear by playing only one channel from a stereo recording.
Thus, for the millions of listeners who do not have stereo tuning facilities, this program is something less than adequate. What's more important, it's mighty close to impossible for this

Storecast multiplex broadcasts public show on primary carrier cutting oft at 15 kc , commercial program on subcarrier centered at 50 kc (approx.). Gap is used for switching pulses.

> "Ideal" multiplex for stereo might use $1 \mathrm{st} 15-20 \mathrm{kc}$ $\mathrm{A}+\mathrm{B}$ signal, rest of modulation spectrum to insure fidelity of $\mathrm{A}-\mathrm{B}$ signal.

KMLA-FM system compresses stereo "difference" sig. nal into 5 -kc-wide band at a 6 kc , broadcasts commercial monophonic program at 65 kc separately.
reason to sell to a sponsor, and especially is this true in TV with its vastly higher costs.

Compromises Tried. One of the efforts to lick the problem attempted by some broadcasters has been to increase the "dilution" of the stereo effect, some of which-deliberately-is always present in any case.

While we are accustomed to thinking of stereo as coming from two microphones placed at an appropriate listening angle, this in fact is not usually the case. Depending upon the studio, the program material and the recording method, sound engineers might use a variety of setups.

These might vary from the older "binaural," involving two omni-directional mikes about six inches apart with a solid object between themlike the ears on your head- ("B" in Fig. 3); through such others as the "stereosonic," using two cosine (two-directional) mikes close together ("C" in Fig. 3) ; the "longitudinal," using several omni-directional mikes spaced front to back and recording differences by time delay ("D" in Fig. 3) ; the "mid-side," employing a cosine and a carclioid (one-directional) together, from which A, B and C channels can be derived ("E" in Fig. 3); combinations of any of these methods, or a much larger bank of individually placed mikes. In recent practice, the last method is the most frequent, with as many as six tapes sometimes recording at once, later to be mixed selectively (some with echo chamber effects, etc.) in making the final master record. In any case, each of your two stereo channels always contains a certain amount of the total or "sum" information, except in some of the stereo demonstration records to which deliberate hokum has been applied.

Thus, some broadcasters have tried diluting the stereo effect enough that each channel held enough sum information to be satisfactory heard alone.
Finally, FM multiplexing has come over the horizon as a "new" stereo broadcasting method, which many think holds the essential answers.

It permits the broadcasting of a "full" program for listeners who have only monophonic equipment, and the simultaneous broadcast of fully separated stereo over the same station-and more as well.

Poor Broadcaster's Friend. With the burgeoning of TV after World War II, radio time sales became so competitive many FM stations were threatened with extinction. To save themselves, hordes of them went into the background music and storecasting business, leasing receivers to factories, offices and stores and patterning their programs to these commercial clients.

None too happy that this constituted "public" broadcasting in the accepted sense, the FCC none-the-less didn't know what to do about ituntil someone thought of multiplexing.

Really, the principle is not new at all. It can be compared with the method by which the phone companies send a number of messages over the same wire or radio relay. The basic message travels, of course, at normal sonic frequencies (referred to as the primary carrier). Then, the next message is translated electronically into a supersonic frequency band (first subcarrier) and travels right along with the first. A second subcarrier at still higher frequency can be placed above the first, and so on. At the receiving end, matching electronic equipment simply translates the subcarriers back to the sonic range.

Adapted to FM, this means the station can broadcast one program, for the general public, on its primary carrier, using the spectrum up to 15 or 20 kc . Then, by multiplexing a subcarrier band above that, say centered about 50 kc , it can simultaneously transmit an entirely separate program, inaudible to the "public," for its commercial clients. Lo, one FM station is now two, but requiring only a single assigned wavelength, a single transmitter, single antenna tower, etc.

Stereo Weds Multiplex. But, to satisfy his

Next, to modify this primary signal ($\mathrm{A}+\mathrm{B}$) so that it can be unscrambled by the receiver into a separate A channel and B channel for stereo listening, he must broadcast over his subcarrier (by multiplex) a signal capable of modulating the primary signal into its components.
A great many engineers are still at work perfecting methods, the FCC has not yet established standards and there are some differences of opinion on how best to do the job. Yet, in general, the "sum and difference" method is being used. Stated as an algebra problem, this means that while the primary carrier is broadcasting $A+B$, the multiplex carrier is broadcasting $A-B$, or the difference between the two channels. Then:
$(A+B)+(A-B)=2 A ;(A+B)-(A-B)=2 B$ -which looks simple on paper. Actually, such problems as evolving the $\mathrm{A}-\mathrm{B}$ signal and eliminating cross-talk are still bothersome.

In practice, the $A+B$ signal is ordinarily passed through a de-emphasis network and straight on to both stereo amplifiers (Fig. 2). Meanwhile, the A-B signal is picked off by a bandpass filter ahead of the de-emphasis network, is demodulated and is translated by a phase splitter which passes the in-phase portion of the signal to the A amp and the out-of-phase portion to the B amp, thus restoring the stereo effect.

All of this is accomplished within a small multiplex adapter (Fig. 1) which is fed by your conventional FM tuner and which in turn feeds your stereo amplifiers.
Current multiplex adapters are all of the wideband type, translating into an audible signal whatever material is being broadcast by the station's subcarrier. Thus, if two separate signals are being broadcast at once (as is being done, for instance, by KMLA-FM, Los Angeles, experimentally), both signals would be heard at once, garbled together. To separate them will require adapters specifically designed for the job.

Seconds Timer for Photo Printing

This photo lab timer is easily seen even when the safe light is ased. The single hand revolves once a minute, with each mcior division represenfing five seconds.

MATERIALS LIST-PHOTO TIMER

LARGE enough to see in the dim light of your darkroom, this photo timer, which can be made in one evening for a fow dollars, will aid you in controlling exposure and clevelopment tuming to produce uniform prints (Fig. 1).

Make the case (Fig. 2) of $1 / 4$-in. birch plywood, cutting the pieces to size and clressing the edges square on a sarding dise. When cutting and sanding front and back panels, brad them together so that they will be exactly the same size. Drill a 1_{4}-in. dia. hole in one of the $12-\mathrm{in}$. sides, centering it each way for the line corcl Using glue and brads, assemble the case sides, then before the glue sets, attach the bacx pancl with glue and brads. Drill holes in front panel as in Fig. 2, and apply walnut penetrating oil stain to both case sections. Allow to dry for about 5 min., then wipe off surplus stain with a cloth. Set aside to dry for aboust 2 hours, then apply 2 coats of thinned white shellac, smoothing when dry with fine steel wool. Finish with a coat of paste wax.

Our clock dial came from an old commercial clock found in a repair shop. Use a similar one or letter a piece of white cardbward. Glue or

screw-fasten at $12,3,6$ and 9 to the front panel.

The motor is of the synchronous timer type that can usually be picked up for right around about $\$ 1.50$ (see Matcrials List). With motor shaft projecting through the dial, attach motor to back of front panel with 4-40 serews and nuts (Fig. 3). Attach a terminal strip to make the connections between the motor leads and the line cord which runs through hole in frame bottom. Knot cord just inside the frame to prevent strain on terminal strip. Now turn front panel over and altach to case with \#2 or $3 \times 1 / 2$-in. rh brass screws.

Lay out clock hand on sheet brass as in Fig. 4. Drill $1 / 4$-in. holes and cut out roughly to size with tin snips, then file to final shape. Drill the hole for a tight fit with the motor shaft. If the shaft has a square encl, file the hole square. Solder the hand in place with a drop of acid core solder and apply a coat of flat black paint. Lastly, make a hanger strip (Fig. 4) and fasten to back of case with an $r h$ screw. Mount the timer, plug in, and you're ready to go. The hand makes a round trip each minute so read as you would the clock second hand.-H. P. Strand.

\uparrowRANSISTOR experimenters who have built a radio for earphone reception soon find that they would like an amplifier to which the radio can be connected for loudspeaker operation. The amplifier shown here (Fig. 1) was designed especially for this purpose and will provide excellent volume with a 6 in. or larger speaker having a $3-4$ ohm voice coil. The total cost of building the amplifier will be around $\$ 18.00$, including $\$ 8.85$ for the coupling transformers.
Four transistors are used in a transformer coupled circuit for maximum gain. If you wish you
must be poltery pority must be reversed from that shown in the diagrams or they will be ruined. Transistors require very close matching between stages and also between the output and the speaker if distortion is to be avoided. Transformers provide the best method of matching impedances.
Shape the chassis from sheet aluminum (Fig. 2). Note that the volume control and switch are placed on the front of the chassis and the two jacks at the back. While this is suitable when amplifier is used on the bench for experimental purposes, switch and jacks can all be located on one side for more con-
 venience if you prefer to mount chassis in speaker cabinet or baffle.

Lay out top chassis holes and drill, starting the socket holes as a marked rectangular area and finishing with a small file (Fig, 3). Sockets offer a decided advantage over soldering leads directly to terminals by avoiding damage from the heat of soldering, and permitting you to change transistors around in the circuit when testing a new unit in order to obtain minimum distortion and best gain. Each socket has a locking ring which is pushed down over the lower end of the socket to hold it firmly in place. The other holes are made with a \#33 drill to take 4-40 screws which, with

Drilling the top holes in the sheet aluminum chassis. Lay out socket openings to size with a pencil, then drill and file to shape them to fit socket snugly.
nuts on the bottom side, are used to secure the transformers and the battery clip. If you prefer to use 2-56 or $3-56$ binder head screws about $3 / 16$ in. long, for neater mounting of these miniature parts, use a smaller drill.

Assemble the parts, soldering all connections (Fig. 4). Use a small soldering pencil such as the Ungar type for most soldering at terminals. Where the heat is not sufficient to thoroughly flow the solder, as at larger terminals or where several wires connect, use a soldering gun or small iron. Avoid using too much solder, especially at
and place them in the circuit with relation to this polarity as given in the diagrams. When soldering to transistor socket terminals, which are closely

MATERIALS LIST- TRANSISTOR AUDIO AMPLIFIER
All parts except sheet aluminum available from Lafayette Radio, Dept. SM, 165 -08 Liberty Avenue, Jamaica 33, N. Y.
No. Description
I pc. sheet aluminum $.025 .030 \times 11 / 8 \times 27 /{ }^{\prime \prime}$ (hattery holder)
1 pc. sheet aluminum $.040-.045 \times 53 / 16 \times 63 / 8^{\prime \prime}$ (chassis)
transistors, G.E. 2 N107 or Raythean CK722 (996 each)
transistor sockets MS-275 (19¢ each)
RCA VS-300, 9 volt battery
battery terminal clips for VS-300 baftery (1 plus, 1 minus) miniature volume control with switch 10,000 ohms VC- 28 miniature knob for $1 / 8^{\prime \prime}$ shaft MS-185
RCA-type phono jack MS-168 and plug MS-167 (13¢ per pair or Kl-49, 10 pairs for 79¢)
miniature phone jack MS-282 and MS-281 plug
AR 104 input transformer
AR 109 driver transformer
AR 119 output transformer
20 mfd 15 volt Argoture capacitor
2 mfd 6 volt Argonne capacitor
2 mfd 15 volt Arjonme capacitor
8 mfd 15 volt Argonne capacitor
.05 mfd 200 volt paper capacitor
.005 mfd disc capacitor
.01 mfd disc capacitor
$470 \mathrm{~K} 1 / 2$ watt resistor
$150 \mathrm{~K} 1 / 2$ watt resistor
$270 \mathrm{~K} 1 / 2$ watt resistor
1200 ohm $1 / 2$ watt resistor
12 ohm $1 / 2$ watt resistor
$4700 \mathrm{ohm} 1 / 2$ watt resistor
$68 \mathrm{ohm} 1 / 2$ watt resistor
$22 \mathrm{~K} 1 / 2$ watt resistor
two-terminal Bakelite mounting strips MS-232
one-terminal Bakelite mounting strips MS. 231 (mounting foot should extend up for ground connections or otherwise use a solder lug under foot).
small solder lugs

SPEAKER

$6^{\prime \prime}$ speaker Utah or similar make
1 speaker enclosure or baffie SB. 10 or similar type for 6^{n} speaker
4 ft . light plastic-covered 2 -conductor cord
miniature phone plup MS-281
4.40 screws and nuts for mounting parts, hook-up wire, solder, efc.
transistor socket terminals, since it takes only a bit of rosincore solder to make a perfect joint on clean metal and excess solder may run down and short-circuit to some other terminal or connection.

Be sure to select the correct values of resistors and capacitors as detailed in Figs. 4 and 6. Capacitors are marked for their values, and resistors use a color code which can easily be determined by checking a color code chart of RETMA standard color code values. When installing capacitors, make sure you observe the plus and minus ends of each electrolytic capacitor

4
PICTORIAL DIAGRAM
spaced, first bend the terminals apart slightly so that there will be no danger of a short between them from soldered wires or leads. Leads should be only long enough to reach terminals.

Final assembly steps are to place the transistors in their sockets and fit the battery in its clip, which is bent from sheet aluminum and screwed to top of chassis (Fig. 5). Solder the snap-on clips to insulated leads that have been brought up from under the chassis through a drilled hole. Be sure to solder the clip that fits on the positive (plus) side of the battery to the lead that connects to the chassis as ground through the grounded terminal of the terminal strip. The other clip (negative or minus) connects to the other lead which goes to one side of the switch on the volume control. An error in battery polarity can result in ruined transistors.

Before using, test the transistors in a transistor tester (see p. 128 of Vol. 4, No. 545, Radio-TV Experimenter, available for $50 \dagger$) to save time you may consume looking for trouble in a circuit which lies directly in a defective transistor. A transistor should test with low leakage and a gain of at least 25 for the G.E. 2N107 or 22 for the Raytheon CK722, with a preference for transistors placed in some parts of a circuit that show a gain above these values.
Connect the radio to the amplifier (Figs. 5 and 7) with a piece of shielded cable with plug connections to fit the radio and amplifier jacks. This eliminates or reduces possible hum or stray pickup. Connect the amplifier to the speaker with ordinary rubber- or plastic-covered wire and a miniature phone plug.
To turn on the amplifier, rotate the volume control shaft clockwise until a click is heard, con-

Connections between the radio and the amplifier and the amplifier and the speaker are made with plug-in cables. Shielded cable is used between radio and amplifier to avoid hum and other disturbances.
tinue to turn to increase volume. With a speaker with a $3-4$ ohm voice coil plugged into the output jack and the volume control fully advanced, you should hear a good hum when you touch a finger to the center terminal of the input jack. The hissing sound in the background is typical of transistors and cannot be helped. However, it will be reduced at lower volume levels or when a radio receiver is plugged into the input jack.
 TERMINAL WHICH
 FIT JACK ON RADIO RECEIVER CONNECTION BETWEEN RADIO RECEIVER AND AMPLIFIER

Combination Interom-Radio Set

For party line service and music, you need only two or more crank-type telephones, an ac-dc receiver and hookup wire

By THOMAS A. BLANCHARD

THE quaint rural crank-type telephone is rapidly vanishing from the American scene. Interior decorators have been buying up these bits of Americana and converting them into costly antique conversation pieces such as Spice Cabinets, Pin-Up Lamps, Liqueur Chests, etc. Here, we have used one of these antique telephones as a novel radio cabinet while preserving its original function as an intercommunicating device. Two or more of these wall phones may be rewired as in Fig. 5 and used to provide party line service (Fig. 1) between the several floors of the home; or home to garage or barn.

Since most every home has a small table-model radio set of the ac-dc type that has been set aside because of a broken cabinet, missing knob, or a minor circuit defect, we

Rural erank-type telephone houses radio. Youngster is listening to other member of family through iniercom hook-up of old telephone.

will make use of such a set. If you do not have one of these radios you can pick up a traded-in set at your local appliance store for a couple of dollars. Readers who desire to put an old set into good working order will find complete data in Vol. 3 of Radio-TV Experimenter, No. 538, which is available for 50 .
The wall telephone used was obtained from Telephone Repair \& Supply Co., 1760 W. Lunt Ave., Chicago 26, Ill. The unit's supplier calls it their \#4 magneto wall telephone with separate transmitter and receiver. Price is $\$ 7.00$, plus postage (20 pounds). Since many of these phones have seen 50 years service, both cabinet and exposed metal parts (Fig. 2) require refinishing in most instances.
To refinish the cabinet remove the exterior metal parts, hinge screws from the door and wood screws hold-

[^3]ing the back of the cabinet. Strip off the old finish with paint and varnish remover of the 15% phenol type. Do not use a powder-type caustic paint remover mixed with water because it may warp the solid oak cabinet. Using an old brush, flow the remover on the wood and wait about a minute for the old finish to wrinkle. Then lift off the varnish or paint with a putty knife. Repeat the treatment again, this time wiping off any of the old finish remaining with steel wool. Then rub the wood with a rag soaked with turpentine to neutralize any phenol remaining in the wood grain.

Radio Installation. Because of the thousand and one shapes of radio chassis in existence we can not cover the installation of each. However, the following suggestions will take care of any and all sets. The total interior space available is $43 / 8 \times 61 / 2 \times$ 16 in . A removable shelf (Fig. 2) divides the cabinet into two compartments. With the set shown, it was not necessary to remove this shelf. However, if the radio chassis will not fit into the lower compartment, remove all of the shelf except the small strip required to support the phone hook switch. In fact, all

Radio chassis is fastened to rear of telephone cabinet door. of the shelf may be removed by mounting the switch on a small metal bracket. Small table sets have the speaker mounted to the chassis. To fit within the phone box it is usually possible to leave the speaker intact. However, if you are posed with a mounting problem, remove the speaker from the chassis and extend the wires connecting speaker to set. In this way, the speaker can be mounted in the front, top or side of cabinet where it fits most conveniently.
If, as in our case, the set is small enough to mount directly on the cabinet door (Fig. 3), the old radio cabinet may be used as a template for drilling the tuning and volume control shafts holes and location of the large speaker opening. Place a sheet of paper over the front of the old radio cabinet, and trace position of openings. Then transfer the hole locations to the door of the phone cabinet. In our conversion, the speaker opening was made with a "fly cutter" set for a $31 / 4 \mathrm{in}$. dia. hole (Fig. 6). The round opening is optional since a square sawcut opening or series of $1 / 2 \mathrm{in}$. holes will serve just as well. The control shaft openings are drilled with a $1 / 2 \mathrm{in}$. wood bit. Because we have concealed the tuning and volume control knobs under the writing shelf (Fig. 4), it was also necessary to drill two $1 / 2 \mathrm{in}$. holes through the steel bracket supporting the shelf.
Now, check the chassis for fit. Do not be alarmed if you find that the control shafts are too short for attaching the original knobs. Any
radio parts supplier can furnish "push on" knobs with an extended shank or ferrule. If the radio employed "push on" knobs merely replace with the extended type. On the other hand, if your set employed set-screw knobs a little extra work is required.
The round control shafts are $1 / 4 \mathrm{in}$. dia. whereas the "push on" knobs are designed to fit a splined and slotted $7 / 32$ dia. shaft. Since the new knobs are made of soft polystyrene plastic, simply ream out the knob ferrule with a $1 / 4$ inch drill. Insert the drill in a pin vise, or wrap a piece of cloth around the shank and twist by hand only. Heat generated by a power-driven drill will melt and distort the plastic. Because polystyrene has an elastic quality, these knobs will grip a smooth round shaft without the use of set-screws.
To allow for the displacement of heat generated by the radio tubes, a row of $1 / 4$ inch holes may be drilled in the top and bottom of the phone cabinet. The last remaining detail is the installation of the loop antenna if the radio was so equipped. If this unit will not fit into the cabinet even though the excess cardboard backing is trimmed off, replace it with a non-directional ferrite rod-type loop. This tiny antenna is available from most radio supply houses for about $\$ 1$ complete with simple instructions for installing it.

We installed the radio chassis to the doar of

Original factory diagram of wall type magneto telephone. This was model 697 made by American Electric Co., Chicago. Rewire as shown in Fig. 5.

or gold if you wish. Radio supply shops stock General Cement's Telephone Black and Chrome Paint.

If you do not wish to use the telcphone as an intercommunicating device, the various unwired parts may be reassembled on the cabinet. Should you wish to use two or more phones as an intercommunicating system, the following applies:

Wiring a Home Telephone System. The original rural telephone employed two electrical circuits (Fig. 5). For handling speech, two No. 6 dry cell batteries wired in series provided talking current to each phone. The 3 volts supplied by the batteries was not sufficient however, to ring the operator. Therefore, each phone was equipped with a hand-cranked magneto generator to provide the ringing current.

Many rural modernization jobs still required the magneto, and these units are removed from the old wall phones before they are offered to the public for sale. While the phone supplier includes the magneto crank for decorative use, he does not include a generator. For operating a phone system over short distances, the magneto is not necessary since the line resistance is low and the batteries can handle the ringing job quite well.

To put two or more telephones into operating condition, remove the old wiring and rewire with radio hookup wire, or plastic covered bell wire (Fig. 5). Each phone will require a
the phone cabinet with two $\# 6 \times 1 / 2 \mathrm{in}$. roundhead ($r h$) screws and washers. One screw in the anused speaker mounting hole, the other diagonally in the corner of the set chassis. Having checked alignment of radio chassis, remove it and set aside until cabinet is finished. There are several types of finishes that can be used, however each requires first filling the open-grained oak with paste wood filler. The cabinet may be given several coats of white shellac, and rubbed down with linseed oil and fine sandpaper. A limed-oak finish can be achieved by filling the oak with white paste-type wood filler. Follow with shellac as mentioned above. The cabinet may also be enameled in any desired color and decorated with decals.

While the cabinet finish is drying, clean the grease and rust from all metal parts with the phenol paint remover and steel wool. Follow by sanding or wire brush buffing before applying a new finish. Although the phenol solution will not remove the baked-on black enamel, it will remove all varnish and gum so that the parts can be painted with aluminum paint, black enamel,

3-terminal, Jones-type barrier strip available from radio parts houses, and a door-bell push button. The push button may be installed over the hole formerly occupied by the generator hand crank.

Note in Fig. 5 that the central station unit includes an induction coil and dry cells. When three or more telephones are purchased, an induction coil will be furnished free if you ask for it. Other phones on your line require no coil or battery power. The central station can be located anywhere on the line ... garage, basement, barn, etc. However, a central location on the line will prove most efficient. Phones may be inter-connected indoors by using two or threeconductor bell wire known as thermostat wire. While the phone system shown requires three lines, line 2 may be a ground return so that only two wires are used. In this instance, a water or steam pipe must be handy at each phone location. Scrape off any paint from the pipe and attach a radio ground strap with a wire long enough to connect to phone terminal 2.

The two wire hook-up greatly simplifies outdoor installations since two-wire twisted phone line is in plentiful supply in the surplus market.

Refinished cabinet showing radio control knobs be. neath writing shelf. Knobs of different colors were used to distinguish between volume and tuning. Speaker grille is $4 \times 4 \mathrm{in}$. piece of aluminum fly screening taped to cabinet.

Squeeze Bottle Dispenses Radio Chemicals

- Plastic squeeze bottles used for medicinal nose sprays make handy injectors of radio and TV control cleaning chemicals. Just remove the plug from the neck of the bottle, and pull off the spray tube attached to the inside of the plug. Wash out

bottle, tinen enlarge the hole in the plug to accept the spray tube from the outside. Pour the cleaning fluid into the bottle and push the plug and spray tube back in place. Seal any leak: around the plug with service cement or any other cement that can be used to mend plastics.

The dispenser holds enough cleaner to clean several noisy controls without refilling- and the tiny hole in the center of the spray tube will let you squirt cleaner into tiny control openings easily.-John A. Comstock.

Moreover, for outdoor runs, TV lead-in wire is excellent and very inexpensive. When installing an outdoor line, it is important to provide lightning protection. Connect a TV arrestor across the line, and ground the center terminal to a water pipe. If a 3 -wire line is used, connect the arrestor terminals to lines 1 and 3 and attach remaining ground terminal on arrestor to line 2. Then ground line 2 to earth via water pipe.

When several phones are installed on your home phone system, simple code ringing signals may be employed. Give each phone a number: $1,2,3$, etc. To reach a certain phone, merely pulse the push switch the desired number of rings. Any phone on the line may be used to originate or receive a call.

If the telephone line involves a long run of wire, additional battery power may be required. Add additional dry cells in series if ringing current isn't adequate with two cells. After the line is installed, check each phone receiver for correct polarity. With receiver off hook, unscrew cap. The metal diaphragm should be securely held by the magnet both when phone hook is up and pulled down. If disc slides off receiver with hook up, the battery polarity is reversed at the receiver. Disconnect the cable at receiver terminal screws and reverse the connections. When each diaphragm is "sucked in" by the receiver magnet, when hook is up, polarity is correct.

Toggle Switch Safety Guard

- An exposed toggle switch is not only open to damage to itself, but it can alsobe a source of injury if it is flicked on unexpectedly. To cut down on this hazard, fit an ordinary cabinet or drawer pullover the switch. This will
 take the brunt of accidental blows, and you will have to reach under the arch to turn on the equipment.-Frank A. Javor.

Flashlight Battery Cores Sub for Brushes

- If worn-out brushes cause your electric food mixer or other small electric motors to lose power and
 quit running, here's how you can avoid loss of usefulness while new brushes are being ordered. Remove the carbon core from a used flashlight battery (A), grind two pieces down to the desired size on an emery wheel (B) and insert in place of the worn-out brushes (C and D).-Glen A. Norberg.

Simplified

All-Purpose Decades

Resistor and capacitor decades are quite useful

 in both servicing and experimental work, but often the units lack flexibility and are expensive. Here's a unit that's both flexible and inexpensive By W. F. GEPHART

Front-panel view of a six-section, all-purpose resistance decade for experimental wark.

UNLESS special features are incorporated in most resistor and capacitor decade units, they can only be used for one function at a time. Also, their accuracy and power capacity are sometimes insufficient for the use desired. One solution to these problems is to have several wide-range units, such as a 1% unit. a 1 -watt (5% or 10%) unit, and a 2 -watt (5% or 10%) unit.

There are three general uses for decades: 1) In servicing work, to determine (by trial-and-error substitution) the value of parts to ke replaced, where the original value cannot be determined. 2) In experimental work, to act as variable resistors or capacitors in circuits to determine optimum valucs by operating tests. 3) In measurements, to act as external bridge components or as comparison resistances or capacitances.

In the first usage, reasonable power capacity is most important; in the second usage. power cupacity and accuracy are both important; and in the third usage, accuracy is of greatest importance. The overall solution would be to have a decade of both high-power capacity and high accuracy, such as a 2 -watt 1% unit.

Another problem, particularly in the first two usages, is the need for multiple units. For example, in an experimental circuit, it might be desir-
able to vary both the cathode resistance and plate resistance simultaneously to determine best operating point. Since these circuits must be isolated, the usual single-decade unit cannot be used for both functions simultaneously, and two conventional-type units would be required.

Using conventional designs, such usage would require a $0-10$ megohm, 1%, 2-watt decade (for measurements, grid and cathode resistor substitution), and a 10,000 -ohm to 1 -megohm, 10%, 2-watt unit for plate resistances. If 1 -ohm steps were used on the 1% unit, and $10,000-\mathrm{ohm}$ steps on the 10% unit, these two units would require nine switches, 701% resistors and 2010% resistors. All of this would represent a substantial cost.

This decade unit system (Fig. 1) can meet requirements at substantially less cost than conventional units, and can be altered (from a tolerance or current capacity standpoint) economically, since it only uses four resistors per decade section instead of the conventional ten. The switches are more expensive, but in the 1% and 5% tolerance ranges, this is offset by the savings in resistor costs. For example, a conventional single-decade section of 1-watt, 1% resistors would cost approximately $\$ 6.70$ (resistors and switch), while the cost of a similar unit under this plan would be $\$ 4.50$. In the 5% type, relative costs are about equal, and the conventional type would be somewhat cheaper in the 10% type. However, if a conventional unit is made on a 10% tolerance basis, and it is decided

B

Table A-Maximum Current Capacity of Various Resistors

Ohms	Resistor	Maximum $1 / 2$-watt	Milliampere 1 -wat	$\begin{aligned} & \text { Capacity } \\ & \text { 2-watt } \end{aligned}$
10	(1X)	225	318	550
20	(2X)	160	225	318
30	(3x)	130	183	258
40	(4X)	112	160	225
100	(1x)	72	100	142
200	(2X)	50	72	100
300	(3X)	41	58	82
400	(4X)	35	50	72
1000	(1X)	22	32	45
2000	(2X)	16	22	32
3000	(3X)	13	18	26
4000	(4X)	11	16	22
10,000	(1x)	7	10	14
20,000	(2X)	5		10
30,000	(3X)	4	5.8	8.2
40,000	(4X)	3.6	5	7
. 1 meg	(1x)	2.2	3.2	4.5
. 2 meg	(2x)	1.6	2.2	3.2
. 3 meg	(3X)	1.3	1.8	2.6
. 4 meg	(4X)	1.1	1.6	2.2
1 meg	(1x)	7	1.0	1.4
2 meg	(2X)	. 5	. 7	1.0
3 meg	(3X)	. 4	. 6	${ }_{7}^{8}$
4 meg	(4X)	. 35	. 5	. 7

to convert it to 1% tolerance, the total cost (original plus conversion) would be $\$ 8.20$, while the total cost of converting this type section from 10% to 1% would be $\$ 5.65$. A comparison of Fig. 2 A and 3A shows the savings in resistors.

Further savings can be effected with this type unit in connection with wattage capacity. The current that can be carried by a decade section is limited to the current capacity of the resistors and, for a given wattage, the higher the resistance, the less the current capacity. In the conventional decade where all resistors are of the same value, each resistor must be of sufficient wattage to carry the peak current desired. In this unit, where resistors are of different size (and therefore different current capacity), and where they are not all in the circuit except on one range, varying wattage sizes can be used to get high current capacity.
Table A shows the current capacity of $1 / 2-$, 1and 2-watt resistors used in this decade system.
 Notice that by using a $1 \mathrm{X} \quad 1 / 2-$ watt, a 2X 1-watt, a 3X 2-watt and a 4X 2-watt, the entire section would have the equivalent of a 2-watt capacity even though some of the resistors in it were less than $2-$

Abbreviations: (S)-Solder; (NS)-Do Not Solder; A3-Confact \#3

Step	Connection
1	R2X to A-arm (S) and to B-arm (NS)
2	one end of R1X to A-arm (S)
3	R4X to B-arm (S) and to A4 (NS)
4	one end of R3X to A4 (NS)
5	jumper from A4 (S) to B5 (5) and B6 (S)
6	jumper from A1 (NS) to B2 (NS) and B3 (S)
7	wire long enough to go to Terminal "B" to Al (S)
8	iumper from B2 (S) to C -arm (S)
9	iumper from $A 9$ (S) to B7 (S) to A5 (S) to A2 (NS)
10	jumper from CO (S) to A2 (NS)
11	wire long enough to reach terminal "A" to A2 (S)
12	jumper from A8 ($\mathrm{S}^{\text {) }}$ to 88 (S)

watt. In the 5% tolerance type, a conventional decade system would require ten 2 -watt resistors costing $\$ 4$; in this system, equal results can be secured with one $1 / 2$-watt, one 1 -watt and two 2-watt resistors at a cost of $\$ 1.30$.

In planning a decade, it is best to analyze minimum requirements and build accordingly, since conversion to higher accuracy or current capacity can be done economically later. If the primary usage is for measurement purposes, 1% resistors should be used, but initial cost might be reduced by limiting the number of decade sections originally included. For example, the original unit might be for $100-100,000 \mathrm{ohms}$ (three sections), and later expanded to greater and lesser resistances. Of course, the original housing should be large enough for ultimate requirements, and the layout should permit orderly expansion. If the primary usage is for servicing work, 10% tolerance sections would be sufficient, but current capacity should be fairly high.

Switch wired (see Fig. 4) and ready for installation.
This decade design also permits the use of any section or sections of the unit independent of the other sections. Figure 2B shows how the sections are coupled together with switches (or "jumper" bars) with separate binding posts for each section. In this way, a 10 -ohm to 10 -megohm unit, for example, could be divided into a $10-$ to $10,000-$ ohm unit (with 10 -ohm steps) for cathode resistances, a 10,000 - to 100,000 -ohm unit (in 1 t), $000-\mathrm{ohm}$ steps) for plate resistances, and a 1 - to $10-\mathrm{meg}$ ohm unit (in 1 -megohn steps) for grid resistances. This arrangement is shown in Fig. 2B, and its application is shown in Fig. 7E. With the conventional decade, three separate units would be required, since sections cannot be isolated (see Fig. 3B).

Jumper bars can be used instead of switches for dividing the sections if desired. These are small strips of aluminum cut as shown in Fig. 4, and are used to connect the adjacent binding posts of each section. The distance "D" must be the same as the center-to-center distance between the binding posts, and should be the same between all sections. All kars should be in place when the entire unit is used, and appropriate bars removed to isolate sections.
Figure 1 shows the panel view of a 10 -ohm to 10 -megohm unit. Layout is not too important, except that the binding posts should be in one line and spaced evenly il jumper bars are to be used. It is desirable to have both binding posts and resistance switches in a line for ease of operation.
Most of the wiring of the decade sections should be done on the switch before it is fastened to the panel. Figure 6 shows a decade switch completely wired. Wile the diagram for it (Fig. 2A) seems complicated, each switch can be wired in the 12 steps outlined in Table B. After this pre-wiring, attach the switches to the panel and

```
        MATERIALS LIST-_ALL-PURPOSE DECADE
            (For each decade section)
No. Req.
    Description
1 rotary switch; 2 poles with 11 positions & 1 pole with 1
    position (Mallory 1331L, Centralab 1009, etc--see text)
    1X resistor) " }X\mathrm{ " = ohm step of decade section, i.e. 10-ohm,
    2X resistor) 1000-ohm, efc. Tolerance and wattage optional.
    3X resistor) For wattage, also see Table A.
    4X resistor)
    binding posts
    SPST togole switch (optional)
    pointer knob
    0.10 dial plate (Optional-Mallory Type 380)
```


make connections to the binding posts (and toggle switches, if used).

If a low-range (less than 1 -ohm) section is used, special low-resistance switches should be used, and all wiring done with No. 14 or No. 16 wire. In wiring high ranges (over 1-megohm) no wires, even though insulated, should touch, to prevent leakage resistance from affecting results. Other than this, no particular care is required in wiring.

You can reduce costs by using surplus parts wherever possible. In my unit, spring-type binding posts and toggle switches were cheaper than screw-type binding posts alone, since the items were surplus stock, so they were used. The decade switches were made by buying surplus switches (with three wafers, each suitable only for the "C" section) and buying two, new, large switches to get sufficient 11 -contact wafers. Surplus 1% resistors can often be purchased for less than standard 5\% units. Technical Apparatus Builders ("TAB"), 111 Liberty Street, New York 6, N. Y., has an excellent supply of 1% resistors at a reasonable price.

Decade Uses. Figure 7 shows a number of uses
for decades other than for servicing work. In Fig. 7 A , the decade is used to determine the current range of an unknown meter. The decade is adjusted to give full-scale reading on the unknown meter, the voltage across the decade measured, and the current determined by Ohm's Law. The same set-up can be used to determine the series dropping resistor required to convert a milliammeter to a voltmeter of desired range by applying the desired voltage, adjusting the decade for fullscale meter reading, and noting the resistance.

The internal resistance of a meter can be found as shown in Fig. 7B. The switch is opened and the voltage adjusted to give full-scale meter reading; the switch is then closed and the decade adjusted to give exactly half-scale reading, at which time the decade resistance will equal the meter resistance.

In Fig. 7C, the decade is used, with two external 1% resistors, to form a Wheatstone Bridge. The two other resistors should be of equal value (approximately 1000 ohms), and a zero-center meter used.

Often when the exact current being drawn by a tube is unknown, and a plate voltage dropping resistor is required, the decade can be used as shown in Fig. 7D,

Figure 7E (and Fig, 2B) show how this type
of decade can be used as three variable resistances in determining resistance values for experimental circuits, and Fig. 7F shows how the unit (or part of it, depending on how many jumper bars or switches are closed) can be used as a voltage divider.

Figure 7G shows how the decade can be used to calibrate a inultimeter or VTVM, using an external milliammeter of any value. In this case, the decade and/or voltage is adjusted to various current values, the voltage drop across the decade calculated by Ohm's Law, and the voltmeter calibrated accordingly.

In the above uses, 1% tolerance should be available in cases A, B, C and G. Care should be exercised in connection with peak current in all cases, but particularly in cases D, E, and F .

Specific dimensions have not been mentioned, since they will depend on the number of sections included in the unit, the type and size switches used, etc. If 30° indexing switches are used, Mallory Type 390 Dial Plates ("Off" and "1-10") may be used instead of making dials with decals as shown.

Generally speaking, the principles covered above (except usages) also apply to capacitor decades, except that voltage rating must be considered instead of wattage.

Desk lamp mike stand

> Record that tall story using the desk lamp reflector to increase the range of your hand mike

AMICROPHONE stand for hand mikes (such as those that come with less expensive tape recorders) can be improvised from a flexible neck desk lamp with its cord removed (or at least disconnected), a plug to
fit the lamp's socket, and a $1 / 8 \times 3 / 8$ in. metal strip. Bend the metal strip to the size necessary for the mike in question, and use as shown. To pick up faint sounds attach the lamp's bowl-type reflector to the lamp's socket to "funnel" or focus the sound into the mike. Face the mike toward the inside of the reflector.-Andy Vena.

Keeping Tube Numbers Readable

- After tubes used in experimental circuits have been handled for some time, the type numbers on the glass envelope wear away
 and are almost impossible to read. To prevent this and keep numbers readable indefinitely, apply clear fingernail polish to the numerals when tubes are new. If the numbers on older tubes are illegible, apply ammonia with a piece of cotton and let it dry to bring numbers out clearly.-John A. Comstock.

Grommet Is Pilot-Light Bumper

- In some electronics gear, pilot bulbs are placed in locations that make them especially vulnerable to breakage. To prevent such breakage, slip a snug-fitting rubber grommet over the bulb's glass envelope as shown. The grommet will serve as a bumper to ward off damaging blows.-J.A.C.

Stiong TV signais may cause rapid and slow rolling of picture by triggering the vertical sytichro on your TV set.

H-Pads Stabilize Rolling TV Pictures

THE combination of the modern ultra-sensitive cascode tuner in TV sets made during the past few years, plus the greatly increased operating power of TV stations, may make the housetop antenna deliver too strong a signal

The result is that the TV picture may roll (Fig. 1), blacken and pull to the right of the screen between "station breaks" or when the picture contrast control is advanced. These conditions can, of course, also be caused by defective components in the vertical synchro section of your receiver. But, where the trouble is due to
your antenna delivering too strong a signal, what happens is that the vertical circuitry loses its stability and cannot lock the picture in frame.

Tc eliminate this triggering action of strong TV signals, you can insert a simple resistance network between your set and the TV antenna. Because of the arrangement of the resistors (Figs. 2 and 3), this picture stabilizer is known as an "H-Pad."

In simple language the $\mathrm{H}-\mathrm{Pad}$ is a picture volume control which reduces the R.F. signal delivered to the set's tuner input by the antenna.

4
SCHEMATIC

The strength of the signal reaching your TV receiver is expressed in decibels, which are convenient units for measuring intensity logarithmically (you hear, by the way, in proportion to the logarithm of the intensity rather than in direct linear response to it). The H-pad resistor combinations, which you will use to reduce the signal strength, are proportional to the degree of reduction (attenuation) of signal strength required. Thus, where the vertical circuit is only triggered infrequently by a slow roll, a 5 -db (decibel) H-Pad may be all that you need. This unit has low series resistance and high shorting resistance. On the other hand, if your pictures are double or triple-triggered as evidenced by rapid rolling, up to $30-\mathrm{db}$ attenuation may be required. Here the series resistors are high and the shunt or shorting resistor low. Table A indicates various resistor values needed to provide various degrees of attenuation.
For most vertical sync problems a $20-\mathrm{db}$ stabilizer should prove about right. The unit shown in Fig. 2 was assembled on a $5 / 8 \times 2 \times 31 / 4-\mathrm{in}$. block of wood. Holes were drilled and countersunk in one end for two $11 / 8-\mathrm{in}$. fh 6-32 machine screw binding posts.

Drive four $5 / 8-\mathrm{in}$. long brass brads into the block, leaving $3 / 18 \mathrm{in}$. of the nail exposed. Then cut off excess portions of the resistor pigtail leads

1

TWO TV receivers will operate efficiently off the same rooftop antenna by using this simple resistance bridge coupler. To assemble it, all you need are three 820 or 910 ohm composition resistors, three $6-32 \times 5 / 8 \mathrm{in}$. machine screws and six matching nuts.

Arrange the resistors in a triangle on a small round or square piece of fiber or plastic (Fig. 1). For a neater appearance you can enclose them in a small plastic cosmetics box.
Connect the antenna lead-in to any adjacent pair of binding posts, running another piece of

By THOMAS A. BLANCHARD

The 3 -in-1 Transistorlab with switch in A-position functions is a solar-powered radio, here beirg activated by the beam of a flathlight.

TUCK this 3-in-1 Transistorlab in your pocket, and you have ready for instant use a solarpowered pocket radio, a radiated energy control or a solar-electronic switch. An inexpensive rotary switch enables you to change from one application to another immediately for lise in your own experiments or as a demonstration unit for school or elub.

All components fit nicely into a plastic trinket box measuring $1^{1 / 4} \times 31 / 4 \times 41 / 4 \mathrm{in}$. which was picked up at the notions counter in a dime store (Figs. 1 and 4), A $316 \times 11 / 2-\mathrm{in}$. slot was cut in
the plastic box and the solar cell mounted in place with a strip of self-stick masking tape (Figs. 3 and 4). So long as wiring is correct (Figs. 2 and 3), and relay armature tension adjustment set so it can pick up on 1 milliampere, you can make any physical layout changes that may be necessary to suit housing you select. Note that none of the D-contacts on the switch are used, and only those indicated in the A, B, and C positions are wired, the others being idle. The control has been wired for an RCA 2N109 transistor. Other PNP transistors, such as the CK722 and 2N107 will also work but the high beta 2 N 109 is less critical and gives more consistent results.

When the rotary switch is in the A-position, the Transistorlab switch sets up the circuit so that RF signals from the air are tuned by the ferrite antenna coil, rectified by the diode detector, then amplified by a direct-coupled PNP transistor amplifier, powered by the inexpensive International Rectifier 3.2v., 2 ma . silicon solar battery.

A subminiature jack provides plug-in connection for a miniature magnetic, high-resistance earphone. Many experimenters run afoul by trying to use less expensive crystal phones in transistor circuits. These can be used in conjunction with a shunt resistor, but results are too poor to bother with them in this case.

When the switch is moved to B-position, the circuit disengages the solar battery and substitutes the sensitive Sigma Model 4 F relay for the earphone. It also connects the miniature 411 E

hearing-aid battery into the amplifier circuit. With a suitable antenna and ground attached to terminals the Transistorlab will now demonstrate how energy radiated by more powerful or nearby local stations can be made to operate other electrical circuits.

Having the antenna coil knob tuned to a loud radio station beforehand, you will discover that when the antenna is attached to its post, the relay contacts close. Tuning away from the station will cause the contacts to release.

As a mere idea of applying radiated energy to a more practical purpose, consider the chicken farmer who could rely on his strong local radio station going on the air in the early morning to automatically turn on the lights in the hen houses. Or, this same radiated energy could be used to turn off street lights or billboards. This is especially interesting since many radio stations are allowed to broadcast only from sunrise to sunset, since they are on channels assigned to
 larger stations with "clear channel" night-time rights.

When daytime stations sign off, the circuit of the radiated energy control draws very little current. Only when a signal reaches the diode cietector circuit does any appreciable current flow from the transistor's emitter to collector. Another use for this radio carrier operated relay is as a Conelrad air raid warning service.

Finally, with the selector switch in C-position we have a form of electronic switch that is "triggered" by light striking the solar battery which

Transistorlab fits easily in a $11 / 4 \times 31 / 4 \times 41 / 4 \cdot \mathrm{in}$. plastic box.

MATERIALS LIST-TRANSISTORLAB

No. Rep Descrintion

	Description
1	$11 / 4 \times 31 / 4 \times 41 / 4^{\prime \prime}$ or larger plastic box
1	ferrite antenna coil (loopstick, Miller No. 2002)
1	general purpose germanium diode, 1N34 or equiv.
1	RCA 2N109 transistor
1	trallsistor socket
1	subminiature phone jack
1	Sigma \#4F sensitive plate circuit relay with 2,000 ohm coil
1	2 mfd 25 v . electrolytic capacitor
1	300 mmfd mica capacitor@ 300v.
1	100 mmfd mica capacitor @ 300v.
1	solar cell strip No. MS-420 (Lafayette Radio, 165-SM Liberty Ave., Jamaica 33, N. Y.)
1	Mallory \#3234J (non-shorting) rotary switch; 3-poles, 4 positions
1	15-volt \#411E midget battery
5	4.40 machine screws $3 / 8{ }^{\prime \prime}$ long for terminals
10	4.40 nuts
5	soldering lugs

has now been cut into the circuit to replace the RF tuner. Here a stronger current than the previous radiated voltage is applied to the base of the transistor. A small current flowing in the base circuit causes a much larger current to flow in the emitter-collector circuit of transistor.

When sun or artificial light (except neon or fluorescent) strikes the solar cell, it becomes active and the relay circuit closes. The effect of a beam of light is like that of the well known photoelectric controls with the outstanding feature of the transistor being in evidence-its ability to work on as little as 9 v . as compared to vacuum tubes requiring from 90 to 150 for satisfactory results.

[^4]|F you decided you wanted the best stereo sound available-and were not worried about the cosi-you might wind up with a dream system that looks like the one shown here.

The control console in the center of the array shown above was constructed over a period of a year in spare time. The rest of the equipment consists of standard professional components, except that the tape machines are housed in a specially constructed cabinet (top right in photo) to allow easy working from a standing position. Actually, the control console is two consoles in one, for the left and right channels are separate and symmetrical each side of center. Two meters in the center of the instrument panel measure the power level of right and left sound while the two outside meters measure limiting, or compression action for recording or dubbing operations. The limiting amplifiers achieve highest levels of sound without overload and system hiss.

Three microphones, inputs for right and left respectively, can be mixed by the control knobs on the first row of the console, along with stereo AM-FM radio, disc or sound from two stereo tape machines. The monaural central tape deck is used for single track sound effects available from an extensive tape library. Key switches located over each mixer pot allow flexibility in operation by actually doubling the number of inputs, 20 in all, although only 10 can be mixed or recorded at one time, five on the right and five on the left.

Directly over the mixer knobs on the first row are remote push-button controls for two of the tape machines. These allow one-man operation of even the most complex mixing or recording set-ups.

Located each side of the remote control cluster are "program equalizers," which act like
tone controls on a high-quality amplifier, but allow more accurate settings.

The system of loudspeakers consists of two Electro-Voice Cardial Klipsch systems on the extreme sides, and three diminutive E-V Stereons, the odd one of which is placed on top of the control consale center. The two outside Stereons, playing only stereo-significant sounds above 300 cps, are simply in parallel across the two Cardinal loudspeaker systems. The other Stereon receives "mixed" sounds which actually constitute a reformed third channel in the center. To insure proper reconstitution of this third, or "phantom" channel, a small square control box at the extreme right side of the meter panel allows reversal of phasing through a special transformer. This is necessary because many records and tapes are non-uniform in this respect. When properly phased, this third channel gives much better stereo effect, and permits the listener to move about the room without rebalancing channels. This third channel also prevents violent shifting of the playing instruments from one place in the orchestra to another, and "locks-in" the soloist when he sings or plays centrally.
A transcription turntable for playing stereo phonograph records completes this reproduced music paradise, but as tapes for purest sound are generally employed, it is kept rolled away in a closet. Not shown in the photograph is a long lounge directly opposite the control console where Howard Souther, General Merchandise Manager for Electro-Voice, luxuriates in 3-D Sound at its finest.
What would it take to duplicate Souther's custom-made set-up? "A real love for well reproduced music, a year's spare-time," says Souther, "and more money than I care to admit!"

The Jim-Jam Box

By ROBERT GANNON

FROM old components lying idle in your scrap box, or for a total of a little over $\$ 6$ for new parts, you can easily construct a "Jim-Jam Box." Essentially nothing more than three elementary blinker circuits, a Jim-Jam Box, with three (or more) neon lights flashing intermittently, easily simulates anything from a Geiger counter to a miniature, electronic brain.
Circuit consists of a trio of resistors, capacitors and neon lights, wired in parallel and powered by a $90-v$ battery (see Fig. 2). By varying the values of the components, the lamps can be set to flash at a variety of speeds, in sequence or at random.

Container for the Jim-Jam is a 4 -in meter case. A small piece of sheet metal is fitted from the inside to the front of the case with two machine screws, and the lights-held in place by close-fitting grommets-protrude through three holes in the plate.
The back, metal or opaque plastic, is attached with sheet metal screws or machine bolts screwed into threaded holes. (A small threading tap costs about 85% at most hardware stores.)
To construct, solder three $1 / 4$ - or $1 / 2$-watt resistors of about 22 megohms to three capacitors of from .1 to .5 microfarads, and of whatever voltage rating you have on hand ($600 v$. is fine).
Tape the three resistor/capacitor pairs together (see Fig. 3) and solder the lamps in place. Use spaghetti for insulation. Then carefully push the three lights through the holes in the face-plate. Cushion the components by wedging them lightly against the bottom front of the box with some crumpled newspaper. The battery slides into place easily with just a bit of jiggling.
With the back screwed in place, your Jim-Jam Box is ready for a half-year of thaumaturgic blinking-on a single battery. Yes, that's all it does-sits there and blinks. But it's surprising how this mystifies, moves and even amazes your guests.

3

	MATERIALS LIST-JIM.JAM BOX
No.	
Req'd	Size and Descriptior,
1	$4 \times 4 \times 41 / 4^{\prime \prime}$ meter case
3	NE-2 neon glow lamps
3	1/2-watt, 22-Meg resistors
3	. 1 to $5 \mathrm{mfd} ., 600 \cdot \mathrm{v}$ tubular capacitors
3	$1 / 2^{\prime \prime}$ grommets (center hole to fit NE-2)
1	$90-y$ battery (R.C.A. VS090, Eveready 490 or Burgess N60)
	Misc. screws, bolts, wire, spaghetti, splder, etc.

[^5]
Antenna-Copler and Low-Pass Filter

Novice hams, if you want to combine some of the odd ""outboard" pieces of apparatus around your station into a single unit this device will do it! It combines a flexible antenna coupler with an efficient low-pass filter, both designed for the low-powered transmitter operating at
plate inputs of less than 150 watts the low-powered transmitter operating at
plate inputs of less than 150 watts

By RALPH SCHACHAT (WIGIF) and MARTIN GLICKSMAN

THIS antenna-coupler and low-pass filter can be constructed in an evening or two from readily obtainable parts. The two variable capacitors needed can be of almost any value and can be easily salvaged from a couple of discarded receivers. The chassis used is an inexpensive "store-bought" model with a small piece of Masonite attached as a front panel. Most of the coils for the anten-na-coupler come prewound; the proper lengths are simply cut off to form the correct

Ham at rig, couplerfilter upper right size coils.
The low-pass filter portion consists of a series of five coils and four high-voltage capacitors built into three isolated chambers (see Fig. 3). The filter circuit serves to attenuate interfering harmonics by by-passing them off to ground. In Fig. 3 , coils of insulated \#12 wire are shown, but bare wire is satisfactory and easier to handle. Hence, all directions are given for bare wire. If insulated wire is preferred, then all measurements must be accordingly adjusted to allow for the thickness of the insulation.

Construction. Obtain a stock chassis measuring $3 \times 7 \times 11 \mathrm{in}$. and fasten a piece of Masonite $81 / 2 \mathrm{in}$. high by 11 in . to its front with screws and nuts. Fasten a strip of aluminum, $21 / 2 \mathrm{in}$. wide by $71 / 2 \mathrm{in}$. high to the rear of the chassis (Figure

21
chassis
4). One SO-239 coaxial socket (S2) is fastened to the top of this strip of aluminum by drilling a hole slightly larger than the socket (about $5 / 8 \mathrm{in}$.) and fastening the socket in place with small screws and nuts.

A second coaxial socket (S 1) is similarly installed in the center of the rear side of the chassis. Note that if twin-lead cable is to be used instead of coaxial cable, the S 2 socket and the aluminum strip are not needed, since the twin-lead cable terminates in small clips (A2, A3) which are hooked directly to coil L7.

Three $1 / 2-\mathrm{in}$. holes are drilled in the chassis (see Fig. 2A) and fitted with rubber grommets. Two porcelain stand-off insulators are then mounted in these holes.

Now make two aluminum dividers from

flat pieces of aluminum stock (see Fig. 2B). Scribe the flat pieces of aluminum along the sides to be bent, bend the aluminum and drill and fit with rubber grommets two $1 / 2-\mathrm{in}$. holes as shown. These dividers are then fastened in place under the chassis with machine screws and nuts as shown in Figs. 2A (dotted lines) and 3.

The two variable capacitors (C5, C6) are mounted as shown in Fig. 4. One of these is a two-gang capacitor (C6) and must have both gangs of the same value. The other (C5) can be a one-gang capacitor. (A two-gang unit was used because it was available, but one gang was not used in the circuit.) The small mica trimmer capacitors often found on such variable capacitors should be removed if present. They will be found on either side of both stator sections. Remove by unscrewing the adjustment screw and discarding it, along with the mica spacer. The remaining adjustable plate may then be wrung-off with a pair of long-nose pliers.

Coils L1 to L5 are made by winding \#12 bare around a $1 / 2 \mathrm{in}$. form at a spacing of 8 turns per in. Coils L1 and L5 have 5 turns; L2 and L4 have 7 turns; and L 3 has $81 / 2$ turns. The large coil (L7) can be made by winding 24 turns of $\# 14$ bare wire around a $2 \frac{1}{2}-\mathrm{in}$. form, using a spacing of 8 turns per in. It is far easier and morc convenient, however, to cut a 24 -turn section from a commercial coil such as Barker and Williamson Type 3906 "Air Inductor." In either case, an extra 1 or 2 in . of wire should be left on each end of the coil to serve as leads.
The small coil (L6) can be made similarly by winding 9 turns of \#14 bare wire around a $2-\mathrm{in}$.
form at a spacing of 8 turns per in. Likewise, cutting a 9 -turn section from a commercial coil is preferable. Long leads of about 6 in . should be left at each end of this coil.
Carefully center the small coil (L6) within the large coil (L7) so that the long $6-\mathrm{in}$. leads of the small coil come out conveniently between the turns of the outer coil. The leads are covered with spaghetti to avoid shorting of the coils, and the inner coil is fastened in position by gluing small spacer strips of Bakelite (or other rigid, non-conductive plastic material) between the inner and outer coils. The small Bakelite strips can be cut from a large piece of Bakelite with a bandsaw or hacksaw. Duco cement, or preferably a commercial coil cement is used to glue the plastic in place.

The two leads of the large coil (L7) are fastened to the porcelain stand-off insulators and the excess wire is clipped off (see Fig. 4).

One lead of the small coil (L6) is run through the $1 / 2-\mathrm{in}$. hole in the chassis to the low-pass filter section. The other lead is soldered to the hot terminal of variable capacitor C5. The wiring is then completed as shown in the wiring diagram,

Bottom view of unit.

Top view of unit.

MATERIALS LIST-COUPLER-FILTER	
No. Req'd.	d. Description
chassis, $3 \times 7 \times 11^{\prime \prime}$	
Masonite panel $81 / 2 \times 11^{\prime \prime}$	
1 aluminum strip, $4 \times 103 / 4^{\prime \prime}$	
aluminum strip, $4 \times 4^{\prime \prime}$	
capacitors, 46 minfd ($\mathrm{Cl}, \mathrm{C4}$) - Mica—Allied Catalog \#74-L. 335	
capacitors, 154 mmfd (C2, C3)-Ceramic—Allied Catalog \#11.L.052	
Barker \&\#21.520)	
Barker \& Williamson Coil-(L7—Radio Shack Catalco$=21.097)$	
Alliyator clips-(A1, A4-Radio Shack Catalog $=32-774$)	
$=61-H \cdot 009)$	
variable capacitor-(C6-2-yang-Allied Catalog \#61-H-059)	
\#12 bare wire (LI to L5)	
" "Air Induction" (L6, L7)	
3 coaxial cable, RG59U-Allied Calalog \#47.W. 552	
6 strips Bakelite, about $1 / 4 \times 3 / 16 \times 11 / 2^{\prime \prime}$	
2 porcelain stand-off insulators, about $1^{\prime \prime}$ hiyh	
2 knobs, to fit variable capacitor shafts	
1 porcelain electric light socket	
1 electric light bulb, 15 watts	
Miscellaneous nuts, screws, grommets, solder, etc.	
1	aluminum strip, $21 / 2 \times 71 / 2^{\prime \prime}$
2 c	coaxial sockets, SO-239 (S1, S2)—Allied Catalog \#40.H-352 conxial cable, RG59U
If Twin	win-Lead Cable is used:
1 c	coaxial socket, S0-239 (S1)
5 P	Polarized connectors, Masley, Type 321-Mosley Electronic Cataloy $=321$
$2 \quad \mathrm{~N}$	No. 40 pilot bulbs and miniature screw-bare sackets Twin-lead cable, 300 ohms, to dipole antenna-Allied Catalou $=49$. T- 385

Fig. 5. An aluminum cover plate can be fastened over the bottom if desired. Both the transmitter and the coupler chassis should be individually grounded before operation. The coupler and transmitter are connected to each other with a short piece of coaxial cable having a PL-259 piug on each end. The antenna can be connected by coaxial cable or by a form of balanced line, such as twin-lead cable. The general operation of this particular antenna coupler is particularly suited to balanced line installation. However, coaxial cable can be used, and directions will be given for the use of both types of transmission lines.

Ordinary TV 300 -ohm twin-lead cable serves as an excellent transmission line between a lowpower transmitter and antenna and has been found to work very well with this coupler.

The setting of the clips depends greatly upon the impedance of the antenna feed system at the point of connection. It is suggested that clips 2 and 3 be set closely together near the center to begin, and capacitor C6 adjusted to resonance. Then clips 2 and 3 should be moved outward, meanwhile adjusting C6, until best antenna current is obtained. Naturally the transmitter is

6
DUMMY ANTENNA
placed by the transmitting antenna. C5 and C6 are readjusted somewhat for "dip" and good loading. If poor loading or no "dip" is obtained, A2 and A3 are readjusted by changing their positions, and the transmitter is retuned as above. However, in order to indicate actual flow of RF current in the antenna circuit itself (imperative to proper transmitter adjustment) insert at point X in the schematic Fig. 5 a shunted pilot-lamp, No. 40, 6-8 v in series with the antenna feed line itself as shown in Fig. 5B.

Sometimes the beginner can think he has his antenna system tuned properly by meter when actually all of the RF output is being dissipated in the residual resistance of the tuner. However the glowing lamp in the feeder leaves little doubt that the "soup is going up the stack," as intended. This adds miniscule cost but great convenience to the coupler unit. Also, the power used in the lamp may be considered negligible (the lamp can be unscrewed after tuning if desired).

Transmission with Twin-Lead Cable. 1) The transmitter is tuned in the same way with the dummy antenna.

"The next sound you hear will be that of a startled mountain goat."
2) The dummy antenna is then removed, and replaced by a simple twin-bulb unit (Fig. 7) shunted as in Fig. 5B.
3) Clips A2 and A3 are adjusted to a proper position on coil L7. Capacitors C5 and C6 are adjusted until both bulbs light up with maximum and almost equal brilliance. This indicates that both sides of the antenna are loading equally. Although this may sound tricky or complicated,

it will be found to be a neat and relatively easy procedure.
4) The twin-bulb unit is removed and the transmitting antenna is plugged in. Usually, no further adjustments need be made as long as the transmitter "dips" and loads properly and the shunted pilot lamp glows.

Here, then, is a simple, easily built unit that will deliver the full power of the transmitter to the antenna in such a way that good balance between the "legs" of the dipole will be obtained. In addition you need have no qualms about operating during "TV hours" no matter how close your antenna is to your neighbor's TV antenna.

Charged Plastic Dusts Platter

- If the grooves of your hi-fi phonograph records are filled with dust, here's how to remove it the harmless electrostatic way: Take a piece of Saran plastic wrap and crumple it in your fingers while holding it about an inch above the surface of the revolving platter. The static electricity produced by crumpling the plastic will attract the dust particles and hold them. If you watch very closely, you'll actually be able to see them jump from the platter to the charged wad of plastic.-J.A.C.

Tape Recorder Ukkeep
 By JAMES A. McROBERTS

Many thousand hours of nearly flawless service are engineered into even the least expensive tape recorder. Here's your part in getting every one of these hours from your machine

Top-chassis view of typical tape recorder showing use of brush, magnifier and mirror to clean heads.
instructions. With them, you'll also need a general schedule of inspection and lubrication. Lubrication should be performed every 500 hours of service, additional operations every 1000 hours. (Some work is on an as-nceded basis and is so mentioned below.)

Mechanical Maintenance Schedule: 1) Clean the recording, reproduce (playback), and erase heads. Use a magnifying glass and mirror to reflect light on the

|N every tape recorder, a tape transport mechanism transports (pulls) a tape from a supply reel past a magnetic recording-reproduce head (or heads) and winds it on a takeup reel. An electronic amplifier (or amplifiers), with associated record-reproduce heads and accessories are also essential in tape recording, the electronic accessories to include a volume control, recording level indicator, and an erase oscillator driving an erase-head winding.

A combined group of mechanicalelectronic equipment accessories (controlled by the function switch) switch the amplifier, the heads, the erase oscillator, and also change tape direction and speed. Your owner's manual covers the placement of the heads, controls and other parts with specific lubrication instructions and other data applicable to your particular recorder. Those are specific

[^6]
heads (See Fig. 1). A nylon brush on a typewriter eraser stick is an excellent tool for removing loose residue from the head structures. Loosen caked material with a lint-free rag mc:stened with rubbing alcohol or carbon tetrachloride wrapped around a wooden or plastic toothpick. Remove excess liquid with another clean rag.

Do not use metallic tools on the head laminations, or bring magnetized objects near them. Metallic objects scratch or dent the laminations, and can magnetically short-circuit them; magnetized bodies could magnetize the head, requiring

Lubrication of capstan roller with petroleum jelly.
an unnecessary demagnetization. Do not use a pipe cleaner on the laminations. Use a nylon brush, a stiff bristle brush or a narrow toothbrush. Wipe the brush clean on a clean rag before the final brushing.
2) Inspect heads for uneven wear during cleaning. The cause of the uneven wear in Fig. 4 was uneven pressure of the tape against the head, the greater pressure being exerted at the top of the laminations (tape guides are employed in some recorders, pressure pads are used in other equipment).

To correct the cause of such uneven wear, the entire head structure can be rocked in some instruments to provide paralleled alignment of tape and the head structure. Most manufacturers of tape recorders which have pressure pads supply pads already mounted on arms for easy replacement. Try to detect excessive wear so that you may place an order well in advance for rencwal pads. A reserve set is a good investment in continuous performance. If you can't purchase the pad-arm assemblies, then you must remove the old pads and cement on new ones.
3) Inspect pressure pads; replace if worn badly (see Fig. 3). Rocking the head to make the tape parallel must be done cautiously, however, since in some instruments the head can be moved sidewise (at an angle to the vertical in direction of
tape travel). This is the azimuth adjustment which should not be touched if the high frequencies (the ss's and the $z z$'s) reproduce satisfactorily. If such an adjustment is provided, and the high frequencies reproduce unsatisfactorily, make the azimuth adjustment by rocking the head sidewise so that the laminations gap is at right angles to the tape. Work carefully, preferably with the set-up shown in Fig. 1 (magnifying glass and mirror).
Remove old pads with a razor blade, scrape old adhesive from the pad arms. Replace with a new pad using adhesive (such as Duco cement) sparingly. Check parallelism of new pad with the head structure. Check spring tension of all pads against a piece of tape in the recording position. The pull on the tape-with tape taut from supply reel through the heads-should be about 2 oz . (half the weight of a $1 / 4 \mathrm{lb}$. stick of butter). Loosen or tighten springs on the pressure pads, or adjust the brake on the supply drum as indicated by your inspection and "feel."
4) Inspect the capstan and roller. Test with a length of tape between these units. The pull for slippage of the tape should be about 2 lbs ., approximately the weight of one qt. of water or milk. Rotate the capstan and roller manually through one revolution while making this check to see if the pull is uniform. Non-uniform pull

Underside rear view of typical tape recorder chassis.
vide proper tension so that spillage does not occur.

Rubber friction drive may be accomplished by a belt in contact with a flywheel held by a spring (see Fig. 7), or by rub-ber-tired wheels driving the take-up reel. The cause of insufficient friction can be found by manual operation (power plug disconnected, function switch on Forward). The rewind is almost always another friction device operating at a higher speed. Inspect by manual movement of the motor drive pulley or belt (power plug disconnected, function switch in the Rewind position). Flats and reduced diameter are the principal troubles.
usually means a fiat on either the capstan or the roller. Replacement is the only remedy. The cause of this defect is failure to push the movable member free when the recortler is left idle. Always separate these parts when your recorder is not in use.
5) Lubricate capstan and roller sparingly with clear petroleum jelly every 1000 hours of use. Figure 5 shows a roller being lubricated with a pipe cleaner. The sliding part may require similar lubrication. Use all lubricants sparingly-none musi get on the rubber or on the surface that contacts the tape.
6) Inspect the take-up reel drive. Tape spillage will occur if friction here is inadequate (see Fig. 6). A spring drive may be employed; spillage of the spring compensates for the different speeds required. You can compress the spring with a pair of pliers, or open it, to pro-

Tape spillage due to insufficient drive of takeup spindle. Too rach tension would break the tape.

Belt type friction drive assembly. Other type drive is accomplished by contact between rubber wheels and taike-up reel.
7) Lubricate on schedule all bearings (such as the pulley bearing of Fig. 7) every 1000 hours of use with clear petroleum jelly from the top of a broom straw. Petroleum jelly is also a satisfactory lubricant for sliding parts with the exception of the high-speed bearing on the motor and some rewind pulleys. Here, several drops of \#30 or \#40 S.A.E. automobile engine oil should be applied with a straw or a narrow loop of thin wire.

It is extremely important that you do not over-lubricate; particular care should be taken to keep lubricants away from rubber parts. Clean rubier belts with a cloth moistened in rubbing alcohal every 1000 hours (use alcohol sparingly, it also attacks rubber).

You will find that some tape-recorder motors kave built-in lubrication of their bearings and do not require lubrication.
Figure 8 is a back, or upside-down view of a
typical recorder chassis. The take-up reel and capstan reel bearings should be lubricated every 1000 hours with heavy motor oil or petroleum jelly. The supply reel bearing, behind the motor, will need lubricant at the same time.
8) Check the chassis-support bolts and shockmounting rubbers of the electronic chassis (background of Fig. 8) by moving the parts they hold or shock-mount. Shock-mounted parts should give slightly, other parts should hold rigid. Replace rubbers or tighten bolts as required.

Electronic Maintenance Schedule. For the most part, electronic or clectrical maintenance is far easier than mechanical. Some of this maintenance has been discussed under the care of the heads and their laminations already.

Every 1000 hours of use, test the tubes of your recorder at some reliable radio-TV store. Tubes should be checked every 1000 hours of operation (or at least once a year), because weak tubes that still play reasonably well may not draw the proper amount of current. Failure to draw rated current can cause a voltage rise which can damage other components. Also tubes with incipient short circuits can be detected before they damage or destroy other components.

1) If possible, test tubes for "quality" on a mutual-conductance type checker. Ask the salesman or serviceman to check for partial shortcircuits also. This latter test is doubly advisable if the hum level of the instrument has increased since you bought it. Replace all tubes found to be unsatisfactory.

The time when heads must be demagnetized is hastened if tape is left in contact with the recording, erase, or playback heads when the machine is not in use.
2) A high background hiss level or noise level can be due to residual head magnetism (in the process of making a tape recording, we magnetize the tape, and magnetized tape will magnetize anything also capable of being magnetized with which it comes in contact). The amount of such secondary magnetization is a function of the intensity of the original magnetization of the tape and the time it is in contact with the heads.

When heads have accumulated enough residual magnetism to cause a high hiss, they must be demagnetized by subjecting them to a very strong alternating magnetic field for a few seconds, then slowly reducing this field to zero. Plans for a demagnetizer coil you can use for this purpose will be found on page 77 of Science Experimenter (No. 557), Vol. 1, a handbook available from Science and Mechanics for 50 ¢ .

DXing "LVE"

By C. M. STANBURY II

WHETHER you listen to standard, short-
wave or TV broadcast stations, the news HETHER you listen to standard, short-
wave or TV broadcast stations, the news you get, the drama you hear comes to you seconclhand. It has been cut, rearranged and sometimes distorted beyond recognition by the scriptwriter. Are you tired of it? Are you tired of the clichés and tired stereotypes that pass for reality? I was-and I did something about it.

Three-fourths of the radio spectrum is allocated to utility radio services such as aeronautical, marine and public safety, and it is here that the listener has his only chance to hear real people living real lives. The words transmitted by these stations come from no script. They come from life itself!

The most interesting, exciting listening is heard on emergency services such as the police and coast guard. Here, by knowing how and where to listen, you may hear men under pressure voicing the spine-tingling words of emergency.

But suppose you are a crime or mystery fan,

then the frequencies assigned to law enforcement agencies may become your favorite bands. Here you will find realism that no magazine or book could ever bring you. Public safety radio services operate on both medium-wave and VHF (see Table B). Medium-wave is best for distant reception. See "One-Tube VHF Receiver," p. 45, on VHF reception. The first police band lies just above the standard broadcast band, starting at 1610 and going up to 1760 kc . In addition, a few such stations operate between 2300 and 2500 kc .

Major stumbling block to police listening is the use of coded number signals. All use a few of these, for example "ten-four," which means

TABLE PHONETIC	C A-THE	TABLE B-THE POLICE BANDS Range in Megacycles		
A Alpha	N November	1.61	to	1.75
B Bravo	O Oscar	2.3	to	2.5
C Charley	P Papa	31.14	to	32
D Delta	Q Quebec	33	to	33.12
E Echo F Foxtrot	R Romeo 5 Sierra	37	to	37.44
G Golf	T Tango	37.88	to	38
H Hotel	U Uniform	39	to	40
1 India	\checkmark Victor	42	to	42.96
J Juliet	W Whiskey	44.60	to	47.68
K Kilo	$X X$-ray	153.74	to	154.47
M Mike	Y Yankee	154.62	to	156.24
	2 Zulu	158.7	to	159.48
that the	contact is	166	to	173
concluded	. However	454	to	456

There is one disadvantage which cannot be overcome in police monitoring. The DXer can

TABLE C- THE COAST GUARD CHANNELS	
Frequency in kilocycles	Service
2182	Distress. Calling, particularly on Great Lakes
2662	General trafflc
2670	Calling and distress
2678	General traffic
2686	General traffic
2694	General traffic
2702	General traffic
COAST GUARD DISTRICT HEADQUARTERS	
NMA	Miami, Florida
NMB	Charleston, S. C.
NMC	San Francisco, Cal.
NMD	Cleveland, Ohio
NMF	Boston, Mass.
NMG	New Orleans, La.
NMH	Washington, D. C.
NMJ	Ketchikan, Alaska
NMK	Cape May, N. Y.
NML	St. Louis, Mo.
NMN	Norfolk, Va.
NMO	Honolulu, Hawail
NMP	Chicago, III.
NMQ	Long Beach, Cal.
NMR	San Juan, P. R.
NMV	Jacksonville, Fla.
NMW	Seattle, Wash.
NMX	Baltimore, Md.
NMY	New York, N. Y.
NOY	Galveston, Tex.

POLICE STATIONS USING LITTLE CODING
KCA692 Newton, Mass. 1714 ke
New Hampshire State Police
K5A536 Milwaukee, Wis.
KCA281 Revere, Mass.

Ohio State Patrol

 KQA387 Cincinnati, Ohio1682 kc 2450 kc 1714 kc 1730 kc 1706 kc
only hear one side of the picture: the viewpoint of the police dispatcher. Because of this, the Coast Guard distress frequencies 2760 and 2182 kc will sometimes prove more interesting and revealing. Balanced against this is the increase of both interference and dull traffic on these fre-quencies- 2760 kc doubles as a general calling channel for Coast Guard stations. All contacts are made here (except on the Great Lakes) and then transferred to another frequency. The frequency 2182 kc is even worse for this since it is the international calling frequency for all ships. Table C lists the frequencies as well as the manner in which they are utilized by Coast Guard and distress traffic.

It comes down to a matter of pa-tience-wherever you listen on the public safety and emergency channels, there will be the routine and matter-of-fact. Reality would not be reality without it-but only reality provides the compensating moments of spine-tingling actuality. Those with the least patience, will probably want to monitor the police frequencies. If you have a good deal of patience, the distress channels are for you.

Now, a few hints on identifying stations. On the Coast Guard channels, this is simple. These stations use their call letters or location on each transmission. Further, the letters are given phonetically, so there can be no error (see Table A). The headquarters station in each area is assigned a three-letter call sign-NMD, for example, at Cleveland. Other stations in the district add one or two digits to the HQ call, as NMD47, Buffalo. However, non-coast guard vessels in distress will merely call by location, for example, "Coast Guard Norfolk." Table C gives call and location of all CG district headquarters stations. Coast Guard vessels use four-letter calls.
Identifying police transmitters is touch-and-go. Some frequently identify; others, every hour; and, a few seldom announce their call or location. Police calls generally consist of three letters followed by three digits. They are not given phonetically. A complete registry of public safety systems in the U. S. can be obtained from Communications Engincering Book Co., Monterrey, Mass., for \$4.

One can monitor a local broadcast station and when a disaster or search is reported tune to the appropriate CG or police frequency, but by then the action is already completed.

A note of caution: It is a federal offense to reveal the transmission of any utility station. So don't phene a scoop to your local paper. The wire services monitor the utilities so they'll have the story already anyway-but you are absolutely free to listen for your own entertainment.

Homemade Television Antenna

By HAROLD P. STRAND

Abstract

Save your money and improve your TV set's reception with this inexpensive, effective antenna

AN INSIDE antenna usually works well for television reception from stations up to 25 miles or so away. After experimenting with the familiar "rabbit ears" form of interior antenna, I found that this homemade design definitely improved reception under certain local conditions. The aluminum rods coiled at the top ends (Fig. 1) are so attached to the base that they can be rotated, and this helps to clear up ghost images and improve the picture. These coils can be moved to be at right angles to each other, formed as a V or used in a flat plane, and the entire unit can also be rotated on the cabinet for further adjustment.

Each rod represents a 6 -foot antenna arm, but when coiled, the total height is only about 2 feet 4 inches. A short piece of 300 -ohm leadin wire connects the terminals at the base of the antenna to the antenna posts of the television set.

Each arm of this indoor television antenna can be rotated to bring the coiled sections in the best position for station reception.

For the $3 / 4$-inch birch plywood base, select some smooth grain stock and cut the piece to size (Fig. 2). Smooth the edges and slightly round the corners on a sanding disc. Then apply walnut or mahogany oil stain, allow it to dry for about 10 minutes, and then wipe off all surplus stain. After three or four hours apply two or more coats of shellac, lightly rubbing down each well-dried coat with fine steel wool. Finally, apply wax and rub briskly with a dry cloth for a pleasing soft finish.

As an insulated support for the lower ends of the rods, cut a piece of $1 / 2$-inch thick Bakelite to size and drill the required holes (Fig. 2). Bore the two holes for the rods on about a 5° slant (Fig. 3).

Figure 4 shows the terminal strip made from a second piece of Bakelite. The lead-in wire attaches to the nut terminals

By tipping the drill press table the two holes drilled for the ends of the arms are given a 5° slant or you can hand drill by shimming up one end of the piece to get the right slant.

MATERIALS LIST-TV ANTENNA

$1 \mathrm{pc} 3 / 4^{\prime \prime}$ birch or pine plywcod $61 / 4 \times 71 / 2^{\prime \prime}$
1 pc paper base Bakelite $1 / 2 \times 11 / 4 \times 55 / \mathbf{s}^{\prime \prime}$
1 pc paper base Bakelite $3 / 8 \times 3 / 9 \times 31 / 4^{\prime \prime}$
2 Fahnestock clins
2 pcs hard aluminum rod $5 / 32^{\prime \prime}$ diameter $\times 72^{\prime \prime}$ Towe rubber drive-in base knobs (rubber tack bumpers)
\#7 rh wood screws $1^{\prime \prime}$ long 6.32 th machine screws (brass) 7/8" long brass 6.32 nuts
brass washers
6.32 rh brass machine screws $3 / 4$ " long

About 3 feet twin lead-in wire, stain and shella: SOURCES DF SUPPLY: For Bakelite, try Forest Products Co., 196 Broadway, Cambridge, Mass: Fahnestock Clips, lead-in wire and rubber vase knohs may be obtained from Allied Radio, Dept. 10, 100 N. Western Ave., Chicago, lii. For

Roundhead wood screws fasten the Bakelite base piece to the wood base, through holes bored in the ends of the Backelite,

Completed terminal strip equipped with two Fahnestock clips and terminals for lead-in wire connections (Fig. 2).

Drilling holes for 6.32 screws which attach terminal strip to base piece. Note that ends of antenna arms are put in position to line up the parts.
and the ends of the rods go down in the spring loops of the clips (Fig. 2) to make good contact and also serve to hold the rods in position. You may need to bend the loops out slightly in order to fit the $5 / 32$-inch dia. rods. To make sure clips are placed right on Bakelite so the rods will pass through the loops and enter the holes in the bottom Bakelite piece, use a short piece of rod stock as a guide at each end to insure proper alignment before drilling the holes for the 6-32 screws that secure the clips. The terminal strip attaches to the lower piece with two 6-32 screws (Fig. 5 shows how the holes are spotted for the screws). With the ends of the rods through the loops of the clips and also pressed down in the lower Bakelite piece, use two small C clamps to hold the top piece in position for drilling (Fig. 5). Drill and then tap the holes for $6-32$, and then screw terminal strip to base piece. Next screw the assembly to the plywood base with two 1 -inch \#7 rh wood screws (Fig. 2) to accomplish this.

Making Antenna Arms

The $5 / 32$-in. dia. aluminum rod stock is of the hard 17ST4 type. You'll need to get two 6 -foot pieces from a local dealer in metal and metal products (look under these classifications in the yellow pages of your classified phone directory). Bend the coiled ends around a 6 -inch dia. V pulley as shown in Fig. 2. A small hole was bored in the pulley to receive a steel pin, under which the end of the rod is placed to hold it. The pulley is then turned by hand and the rod carefully

Connecting a short piece of twin lead-in wire to the terminals. The other end connects to the television sot terminals.
wrapped around to form the coil. The stock springs out when released to some extent and you can then apply some hand forming to get the neat coils shown.

Before fitting the finished coiled rods into the base section, slightly round the ends of the rods so that they enter the Fahnestock clips easily when the lever is pressed, and press them down firmly in the slanting holes in the base piece. This construction allows the rods to be turned while the spring clips still hod them firmly in place.

Figure 7 shows how the short length of lead-in wire is attached to the terminals. After connecting the other end of the wire to the set terminals, you are then ready to try out the new antenna. If you wish, you can attach four rubber base knobs or felt to the antenna base to protect the surface of your TV set.

Transistor Set for Code Practice

OR those interested in mastering the International or Morse codes, an audio-tone oscillator is essential.
Prior to transistors, two types of code practice circuits were popular. One was the vacuum tube feedback oscillator; the other was the neon-glow relaxation oscillator. The relaxation circuit was the simplest, but required a minimum of 60 -volt dc to fire the neon lamp. The feedback circuit required a minimum of $221 / 2$-volt de plate voltage, plus a $11 / 2$ to 6 -volt filament or heater supply, depending upon the tube employed.
The circuit of this transistorized feedback oscillator has the simplicity of the neon-glow, the signal strength of the vacuum tube, and requires only one or two penlite cells for weeks of service. It may be used for solo practice, or two may send and receive with the same unit.
Following a simple breadboard design, the components are arranged on a 5 x $31 / 2 \times 5 / 8-\mathrm{in}$. baseboard (Fig. 2). The four Fahnestock clips attached to the base with $1 / 2-\mathrm{in}$. wood screws serve as terminals for attaching key and phones. The 4 -lug tie strip secured near the baseboard center serves as a solder tiepoint for capacitors, resistor and hookup leads; it also provides a simple mounting for the P-N-P junction tran-

The feedback inductance is the primary side of most audio output transformers. This is the transformer between the output tube of a radio set and its PM speaker, and you can salvage one from a junked radio, or buy a new one, purchased usually for less than $\$ 1$. Those advertised as 50 L 6 types are ideal, but any single plate-type output trans-

[^7]
MATERIALS LIST-

CODE PRACTICE SET

$5 \times 31 / 2 \times 5 / 8^{\prime \prime}$ wood baseboard
P-N-P junction transistor, CK-722 (Ray-
theoll) or RR-38
audio outjut transformer, 2500 to $10,000$.
olm tube load
220K (220.000) ulm, $1 / 2$-watt composi-
tion resistor
1.002 mifd. paper capacitor (working volt-
afe unimportant)
1.02 mfd. paper capacitor (working volt
age unimportant)
Fahmestock clips
transmitting key
pair. magnetic headphones, about 2000
olms (do not use crystal type)
4-lug tie strip
Miscellaneous, $1 / 2$ in. rh wood screws, hook-up wire, penlite batteries

3
PICTORIAL DIAGRAM
former with a 2500 to $10,000-\mathrm{ohm}$ rating will do.
Disregarding the two plain enameled voice coil secondary leads, connect the insulated primary leads (usually red and blue colored) at the tiepoints as shown in Figs. 3 and 4.

Note that two small angle brackets (fashioned from spring brass, copper or tin) are screwed down to the base to secure a single penlite cell.

TABLE A-INTERNATIONAL MORSE CODE

Then, with key and magnetic phones connected, the transistor audio oscillator is ready for use. The headphones you use should be rated at about 2000 ohrns or so (crystal headphones will not work in this circuit). For a stronger signal, use two penlite cells in series, which will then deliver 3 instead of $1 \frac{1}{2}$ volts to the circuit.

If you want to learn the code (Table A) with someone else, connect another key and phone in series, break the lead marked "X." in Fig. 3, and you have a two-way system. Remember, however, that when one person is sending, the other must hold down his key to provide circuit con-

4
SCHEMATIC DIAGRAM
tinuity. Some keys have a built-in knife switch for this purpose.

If this transistor oscillator is built expressly for two-way transmission, the audio output transformer can be eliminated by installing clips for the second pair of phones where the primary leads are terminated. Thus the second pair of phones serves both as reproducers and oscillator coil. You then insert the additional key at " X " in Fig. 4.-Thomas A. Blanchard.

Transistorized Intercom

For less than $\$ 15$ you can build this small but rugged two-station intercom and get surprising clarity and volume from room to room

A few parts-most of them from your scrap box-and a few hours of time and you have your intercom. Here the author is calling to the Master Station.

By DONALD S. PEARSON

THIS project is based on the Transistor Amplifier project given on p. 34 of the Radio-TV Experinizerter, Vol. 6 (75¢). By changing a few of the original parts, and using the same circuit and adding a few extra parts and switehes, this unit can be made to serve not only as the amplifier, but as an intercom as well.
The schernatic for the complete unit is given in Fig. 4, pictorial wiring diagrams in Figs. 2 and
 3. Use a cigar box as the master station, mounting the trans-
former and speaker as near the top center as space will allow. The DPDT switch \#1 on this station can be mounted to the right of the transformer and there will then be room enough to mount the three penlite batteries to the transformer's left.
You can mount the Cinch-Jones barrier-type terminal strip on the bottom of the box. Note the long leads on the transistor sockets. Leads are soldered to the sockets first; the transistors are inserted when all the wiring is completed to eliminate the chance of overheating and ruining them.

To operate, SW1 must be on L. SW2 must be on T. SW3 and SW4 must be on the closed position. This is the necessary procedure for the Number Two station to call the Number One or Master Station. To call No, 2 station from the Master Station SWl must be on T, SW2 must be on L. SW3 must be on the open position. SW4 must also ba on the open position. Four-conductor cable is used between stations. A buzzer may be cadded if desired,

	MATERIALS LIST-TRANSISTORIZED INTERCOM
No.	Reg. Description
1	binding post (see Fig. 2)
2	$2^{\prime \prime}$ or $4^{\prime \prime}$ PM speakers
2	output transformers, 2000-ohm Pri. 3.2-ohm Sec.
2	CK722 or CK718 transistors
2	electrolytic capacitors-100 mfd, 50 V dc
2	220K, 1/2-watt resistors
1	20K, 1/2-watt resistors
4	DPDT togyle switches
1	lok potentiometer
2	pointer knob for pot
2	Cinch Jones barrier type terminal, 3 or 6 term
2	transistor sockets (optional)
2	cigar boxes (or equiv. in size)
3.4	Penlite batteries

Long leads permit moving them to a more convenient position, depending upon the space in the box.

I used a $2-\mathrm{in}$. PM speaker in the Master Station. This was done because it was handy at the time of construction. It also left more room in the box in which to work. A 4-in. speaker will fit, and will probably give better results. Since they both cost about the same, the size speaker to use is optional.

It is possible that a more simple switching arrangement could be devised, but the switches I used were handy at the time. If switches \#3 and \#4 are not used, an intermittent "bleep" will develop when the intercom is in use. The " T " position on switches \#1 and \#2, both enter the input side of the amplifier. When the master station is on the "T" position and the \#2 station is on the "L" position, part of the signal would go through the amplifier, while the remaining portion of the signal would go out the " T " wires of the \#2 station. With switches \#3 and \#4 at these points, however, the circuit is broken, thus allowing the entire signal to be amplified.

Because of the distance between the two stations (in my case, about 100 ft .), $41 / 2 v$ are used, instead of the $11 / 2 v$ used in the original transistor amplifier. (The batteries will become weak with use and cause a crackle or a mushy sound in the speaker. When this happens, replace the batteries.)

The box for the \#2 station is also a cigar box. This can be made smaller if space is your problem. Both stations are mounted on the wall by means of four wood screws through the cover or lid of the box. Contact paper can be used to cover both boxes to give them a neater appearance.

Vestpocket Transistor Amplifier

By THOMAS A. BLANCHARD

WHILE primarily intended to serve as an electronic navelty, this tiny transistor amplifier certainly is not to be classified as a toylike gadget. It may be used to amplify crystal radios, provide private listening with a record player, function as a detectophone, or even as an electronic stethoscope for tracking down vibrations in machinery, motors or engines.

The direct-coupled circuit requires the very minimum of components-all of which are quite inexpensive (see Materials List). A single penlite AA size $11 / 2$-volt cell powers the amplifier and the entire unit is housed in a $1 \times 2 \times 3$-in. plastic box.
Make a battery clamp from a strip of $1 / 32 \times 3 / 8$ in. aluminum to fasten the battery to one of the 3 -in. box sides as in Fig. 3. Then arrange the amplifier components to fit the remaining space. Because ordinary phone jacks require too much space, the "Input" and "Output" connections terminate at miniature jack strips which match miniature 2-pin plugs designed for hearing-aid size earphones. Drill four $3 / 32$-in. holes spaced $3 / 16 \mathrm{in}$. apart at each end of the box for the jack
strips. The two outer holes are for mounting the connectors with $2-56$ by $3 / 8-\mathrm{in}$. rh machine screws. Remaining two center holes allow passage of plug pins through the box to the phosphor bronze contacts.
The volume control is the conventional subminiature type and measures just $5 / 8$ in. diameter. A $1 / 4$-in. hole drilled in the front of the box provides for its mounting. The control has a resistance of 5000 ohms and incorporates a power switch for turning battery power on and off as well as controlling the input signal. It has a $1 / 8$-in. dia. shaft, $7 / 32$ in. long and is slot.ted for either a decorative push-on knob or $5 / 8-\mathrm{in}$. dia. knurled set-screw knob for $1 / 8-\mathrm{in}$. shafts.

The entire amplifier hook-up will require only a few inches of wire since the pigtail leads on the $1 / 2$-watt resistors and 2 mfd .6 v . electrolytic capacitor provide their own connecting leads. Because of limited space in practically any transistor circuit, \#22 solid tinned hook-up wire is best. Leads that require insulating may be covered with plastic radio "spaghetti." Two short lengths of conventional stranded, plastic insulated wire are used for the leads from amplifier to bat-

tery. Solder these leads directly to the penlite cell (Fig. 3). The battery brass cap is positive and zinc case negative. Battery life in this circuit is remarkable so that in normal use, replacement will be infrequent.

A word about mounting the transistor sockets: These tiny Bakelite units require a rectangular hole opening of $5 / 32 x$ $11, \frac{2}{2} \mathrm{in}$. To avoid making them too large, first drill two $\% 4$-in. holes side by side. Then use a $1 / 8-\mathrm{in}$. sq. modelmakers file to shape the rectangular openings in the plastic. Because plastic files down quite rapidly, check the hole size with a transistor socket after each few file strokes.

Using the Amplifier. Since all transistors are low impedance devices, this fact must be kept in mind when using the amplifier. A high impedance crystal microphone or phono pickup cannot be connected directly to the input. Nor can a crystal-type earphone be attached directly to the output of a transistor amplifier.
However, any 1- or 2000 -ohm, magnetic earphone can be used either as a receiver or mike. While the amplifier was designed for use with a miniature 2000 -ohm phone, large phones may be used with the simple adaptor cord shown in Fig. 1. Attach a miniature phone plug to one end of a short cord and to the other end attach two clips salvaged from an old octal wafer tube socket. Cover these clips with plastic spaghetti. Conventional phone tips can then be attached to the clips and the cord plugged into the amplifier. This method may be used for all other applications you may have in mind, such as using a PM

MATERIALS LIST-VESTPOEKET TRANSISTOR AMPLIFIER

No. Req, Size and Description

[^8]speaker as a dynamic microphone.
Any PM speaker may be used. The matching transformer would have its 3 or 4 -ohm winding attached to the speaker voice coil lugs. The transformer's 250 to 500 -ohm winding would be connected into the input of the amplifier. Now to use the speaker as a speaker, just shift the pin plug to the output jacks and attach the output of a crystal radio, magnetic phono pickup, earphone mike, etc., to the input jacks.
A crystal phono pickup may be used with the amplifier in some instances without a matching transformer, but usually such will be required. An old fashioned magnetic pickup or modern magnetic types require no transformer coupling. Incidentally, a needle soldered to the diaphragm of an old magnetic earphone makes a good phono pickup.
Using the amplifier as a stethoscope, a standard size 1000 or 2000 -ohm earphone is connected to the amplifier input, and a hearing-aid phone connected to output jack. Unscrew the large earphone cap and place the receiver on your chest. The exposed diaphragm provides a more effective pickup than with the cap on the receiver. Try placing the rubber eraser end of a lead pencil against the diaphragm, and pointed end in contact with any motor driven device. The result will be similar to that of an industrial stethoscope.
If you own a pair of magnetic phones, the existing tinsel cord may be removed from them and set aside. Each phone may be fitted with new cords and miniature pin plugs. Thus one phone will serve as a mike; the other as a receiver. When finished experimenting with the phones, the original cord may be replaced and phone set will again be as good as new.

THIS tool quickly strips insulation from all kinds of in-
sulated wire in one twist of the tool and a light pull.
End piece is then pulled off with the tool (Fig, 1). First
adjustment screw must be set, using a test piece of wire,
llow cutters to sever insulation without cutting strands of HIS tool quickly strips insulation from all kinds of in-
sulated wire in one twist of the tool and a light pull.
End piece is then pulled off with the tool (Fig. 1). First
adjustment screw must be set, using a test piece of wire,
allow cutters to sever insulation without cutting strands of HIS tool quickly strips insulation from all kinds of in-
sulated wire in one twist of the tool and a light pull.
End piece is then pulled off with the tool (Fig. 1). First
adjustment screw must be set, using a test piece of wire,
allow cutters to sever insulation without cutting strands of HIS tool quickly strips insulation from all kinds of in-
sulated wire in one twist of the tool and a light pull.
End piece is then pulled off with the tool (Fig. 1). First
an adjustment screw must be set, using a test piece of wire,
to allow cutters to sever insulation without cutting strands of HIS tool quickly strips insulation from all kinds of in-
sulated wire in one twist of the tool and a light pull.
End piece is then pulled off with the tool (Fig. 1). First
an adjustment screw must be set, using a test piece of wire,
to allow cutters to sever insulation without cutting strands of copper. The screw acts as a stop.

Tool accommodates all sizes of wire from about \#10 down Tool accommodates all sizes of wire from about hardened tool steel blades has a V cut and the other a straight edge (Fig. 2), both being ground to a sharp cutting edge. When sides of tool are pressed together, straight edge goes under V edge, with a snug but free fit, thus trimming around the wire insulation with one complete turn of the tool. Piano wire spring returns the side pieces to an open position when pressure is released. While the hinge joint shown was made in a small bench milling machine (Fig. 4), it can also be made with hand tools.
Fig. 3 gives a good idea of design and placement of parts. Fig. 2 shows the tool in its normal open position; spring, made from .055 in . piano wire opens side frames about $1 \% \mathrm{in}$, at the top, as shown in drawing. Bend 2 pieces of $5 / 8 \times 1 / 4 \mathrm{in}$. brass to shape and dimensions given. Start with pieces about 6 in . long to facilitate bending operation. Use a heavy vise with bras jaw protectors and a fairly heavy hammer. Tu :., oid marking stock use a small piece of brass under the hammer blow. After shaping, cut pieces to length; leave hinge ends a little long, until tongue and slot have been cut, after which ends can be dressed down to a good fit.
Finish pieces to a smooth surface, with fine abrasive cloth or a power sanding wheel, rounding all edges slightly. Drill and tap two 6-32 holes in the pieces, one for a spring retaining screw, the other for the adjusting screw. At the top ends, drill and tap 2 holes in each piece for $4-40$ screws to hold cutting blades in place.

MATERIALS LIST-WIRE-STRIPPING TOOL

2 pes.	brass bar stock $1 / 4^{\prime \prime} \times 5 / 8^{\prime \prime} \times 6^{\prime \prime}$ (cut to length after bending)
1 pc.	tool steel . $0625^{\prime \prime} \times 3 / 8^{\prime \prime} \times 5 / 8^{\prime \prime}$
1 pc.	tool steel $.0625^{\prime \prime} \times 15 / 32^{\prime \prime} \times 5 / 8^{\prime \prime}$
1	brass low-head rivet or pin $3 / 4^{\prime \prime} \times .125^{\prime \prime}$
1	6-32 rh machine screw $l^{\prime \prime}$ long
1	6-32 hex. nut
1	$6-32 \mathrm{rh}$ machine screw $1 / 4^{\prime \prime}$ long and washer to fit same
1 pc.	.055" dia piano wire about $3^{\prime \prime}$ long
4	4.40 fh machine screws $3 / 16^{\prime \prime}$ long

After fitting hinge joint with a fine file so it works smoothly without side play, drill hole for hinge pin, using a .125 in . dia. drill. This pin is a low-head brass pin or rivet which fits snugly in the drilled hole without causing joint to bind; use a little oil to get a free-working hinge. In riveting over the pin, don't drive joint together too tightly.
Shape an eye in one end of the .055 piano wire, using a pair of round-nose pliers, then bend to shape. Make blades of tool steel .0625 in. thick. Cut them out on a metal-cutting band saw or by hand with a hacksaw, and file to final shape and size. Make V cut on a power grinding wheel of fine grit. Grind underside of straight edge piece off to a sharp bevel and likewise grind top side of the other blade. Before final grinding of cutting edges, however, drill holes for the screws. Use flathead 4-40 machine screws, coun-

tersunk. With blades in a final finish condition. grind edges to a krife sharpness on a fine grit wheel. Harden blades with a Bunsen burner (Fig. 5) by heating to a cherry red, ther plunging in cold water. Clean up one flat surface with

Fig. 4. Making hinge joint in a milling machine.

Fig. 5. Hardening ctiting blades in a Bunsen burner (see text).

Fig. 6. Adjusting stop position of completed tool.
fine abrasive cloth and then place piece back in flame. When you note a straw color, quickly remove it and again place it in water. This draws the temper a little, so the sieel will not be too brittie to work with.
Fig. 6 shows the completell tool with adjusting screw being tested. Yon may need to file down the end of one of the side frames so straight edge will just fit under the V edge after all blade screws have been tightened. Or a piece of .001 or .002 in. shim stock under one blade may give you the perfect alignment. Here is where accuracy ir making hinge joint and in bending side sections counts. If poorly made, the blades will not make confact with each other properly, over their entire length.

You can a.so use this tool in radio chassis wiring for wire cutting ordinary \#24 to \#18 hook-up wire. If made properly, it will double for a pair of diagonal wire cutters or pliers. Place wire to be cut out of V groove, but between the cutting edges; wire will snip off just as nicely as with the diagonals; in this way one tool is used in place of two. This tool also trims short wires already atiached at opposite ends, such as in re-connecting work or wiring changes. You will find the tool handy for using in very small spaces, where it will do a perfect job.

RADIO-TV CROSS NUMERAL PUZZLE

By JOHN A. COMSTOCK ClUES
 ACROSS

1) The year in which Lee deForest invented the "audion," a triode tube.
2) Mid-frequency of television channel 13.
3) Power consumed by a 175-watt television set oper ated for 12 hours.
4) Full-wave rectifier tube with electrical characteristics identical to those of the $5 Y 3$.
5) Separation in megacycles between TV picture and sound carrier frequencies.
6) Fast tape recorder speed.
7) Output ripple frequency of full-wave, three-phase rectifier.
8) A current value of 1752 milliamperes converted to amperes.
9) The third harmonic of an 80 -kilocycle signal.
10) A 20 -cycle signal converted to kilocycles.
11) A capacitance of 2×10^{-2} microfarads expressed in conventional notation.
12) Upper frequency limit of TV channel 6 in megacycles (mid-irequency $85-\mathrm{mc}$.).
13) Five milliwatts expressed in watts.
14) The power that can be dissipated by two 200 -ohm, 25 -watt resistors, series connected.
15) Factor by which microhenries must be multiplied to convert to millihenries.
16) Voltage dropped when 2 amperes flows through a 26 -ohm impedance.
17) Common AM superheterodyne IF frequency.
18) Oscillator frequency of a superhet having an 1F of 456 kc tuned to a signal at 1144 kilocycles.
19) Output frequency of a generator having 10 poles and an armature speed of 1200 rpm .
20) Resistance of 15 chms in parallel with 35 ohms.
21) Signal frequency received by a superhet with an IF of 456 kc and the local oscillator tuned to 1066 kilocycles.
22) The coeflicient of coupling between two coils having values of .2 and .8 henries when mutual inductance is .1 henry.
23) The frequency 5,500 kilocycles converted to megacycles.
24) Total resistance of a 4 -ohm, a 7 -ohm and a 14 -ohm resistance parallel connected.
25) The ripple frequency of a $1 / 2$-wave single-phase rectifier.
26) Applied voltage across a series circuit of two resislors when voltage dropped across each component is 100 volts.
27) Upper frequency limit in megacycles of the shi band (lower limit $3,000 \mathrm{mc}$).
28) The wattage dissipated by a circuit drawing 3 amperes at 200 volts.
29) Number of degrees voltage lags current in a purely capacitive ac circuit.

DOWN

1) Velocity in miles per second of a 500 kc signal.
2) Total resistance of two resistors of 35 and 55 ohms, series connected.
3) The wattage equivalent of one horsepower.
4) The peak value of a sine wave is found by multiplying the effective value by this factor.
5) Wavelength in meters of the lower limit of the vlf band (upper limit 30,000 meters).
6) Voltage dropped across a series de circuit when the applied potential is 50 volts.
7) The frequency swing in FM transmission that corresponds to 100% AM modulation.
8) The frequency 520,000 cycles per second expressed in kilocycles.
9) Television frame rate.
10) The frequency 7×10^{-2} kilocycles expressed in conventional notation.
11) The unknown of the following voltage ratio: 1 is to 25 as 10 is to -.
12) Lower frequency limit of television channel 12 in megacycles.
13) Highest approximate amplifier efficiency obtainable with class "C" operation.
14) International distress frequency.
15) Amount of voltage that will send a current of 5 amperes through a 10 -ohm resistance.
16) The inductance . 015 -millihenries converted to microhenries.
17) Difference frequency in kilocycles produced by mixing a $1,000-k c$ signal with a $790-k c$ signal.
18) Impedance of an ac circuit when the current drawn is 1 ampere, applied voltage 511 volts.
19) Capacitance in microfarads of a capacitor having a reactance of 531.000 ohms at a frequency of 60 cps .
20) Amount of resistance in which a voltage of 35 volts will maintain a current flow of 1 ampere.
21) Total impedance of an ac circuit when reactance is 220 ohms, resistance 250 ohms.
22) Number of zeros represented by green in the resistor color code.
23) Wavelength in meters of a radio wave having a period of .005 second.
24) Current flow in an ac circuit when applied voltage is 20 volts, total impedance 400 ohms .
25) Power dissipated by a resistor of 200 ohms in series with a 5 -microfarad capacitor across an ac voltage of 60 volts, 120 cycles per second.
26) Conductance of a circuit when current flow is 6 amperes, applied voltage 24 volts.
27) Percentage AM modulation that gives the greatest service-area coverage.
28) Amount of power expended when a current of 100 amperes is driven by a potential of 100 volts.
29) Secondary voltage of a transiormer which has a primary voltage of 100 volts, primary turns 200, and secondary turns 40.

For answers, see Page 127.

Strobe-Flash Battery Charger

Plucraing the lead wire from the compact battery charger, shown at the right, into a built-in receptacle on the photo-flash unit. The three tiny balls floating in the electrolyte of each cell (identificd by arrows above) are near the bottom, indicating the need for recharging. When balls float up to surface of electro-
lyte, battery is fully charged.

battery in a Dormitzer Synctron flash unit, it could he redesigned for charging batteries of a different size. You can tell at a glance what the voltage of the storage battery in your unit is by counting the number of cells. Each cell is rated at 2 volts and since they are connceted in scries, merely multiply the cell voltage by the number of cells.

The recharging rate of the battery can be obtained from the manufacturer if it is not noted in the instruections you received with the unit. The value of .8 amperes is the same as 800 milliamperes, which is a more common term in

THE air turns blue when some photographer discovers weak batterics in his strohe flash unit have ruined a fine series of shots.
For strobe light flash units will operate even when the batteries are too weak to insure complete synchronization of the flash exposurc.

One good way to avoid such wasted shots is 10 keep your strobe-flash batterics up to snuff with this charger. You can huild it for about $\$ 10$. Iess than the cost of a comparable commercially-built charger.

Although this charger was designed and built for a .8 amp . charging rate for use with a 4 -volt

electronics.
To find the correct a-c voltage that the charger transformer must deliver from its secondary in order to provide a 8 amp . d-e charging rate, make the test set-up shown in Fig. 2. A variable voltage transformer or Variac, which may be borrowed from a friend in the radio or electrical field, is connected with an ammeter in the test charger circuit. Start with 0 volts and gradually bring the voltage up until the ammeter reads .8 am-

MATERIALS L.IST-STROBE.CHARGER
 No. Req.
 Size and Description

$13 \times 4 \times 5^{\prime \prime}$ aluminum cabinet, hammertone finish, Type 29811 ICA
$1 \quad 6.3$ volts. 2 amp. filament transformer Merit P 2945
1 sclentum rectifier, 1800 ma. D.C. Federal type 1018
(If the ahove rectifier is not available, purchase 4 Internaational CIH rectifier plates of 250 ma each, Allied catalog =4A825, and assemble as in Fig. 8.)
1 fusp holder, panel tyne, Littelfuse type 342001 with $11 / 2$ amp. fuse
pilot lipht assembly Dialco type 432 , Series 510 with 6.3 volt lamp
6 ft flat rubber lamp cord
$\frac{1}{2} \quad$ attachment nifu can
rubher or bakelite grommets for $3 \mathrm{~B}^{\prime \prime}$ hole
instlated thumb muts (from old ${ }^{B}$ battery)
$1 / 8 \times 3 / 4 \times 21 / 4^{\prime \prime}$ clear plastic or bakelite
8-32 R.H. screws $3 / 4^{\prime \prime}$ long
8-32 nuts and 4 washers
soldel" lutg for $\# 8$ screw (Allied Cat. 444 N 607)
4-40 R.H. screws $1 / 4^{\prime \prime}$ |लाप
$8 \mathrm{ft} \# 18$ flexible insulated wire
1 special male pian to fit charginn receptacle on battery unit (Order from manufacturer of flash equipment.)
2 Mueller test clips type Pee-Wee 45 with rubher insulators
1 2-terminal, Bakelite tie-point terminal strip
1 piece perforated steel $47 / 8 \times 37 / 8^{\prime \prime}$ (cut from old television back or other cabinet enclosure)
Miscellaneous screws, nuts. etc., for mounting parts
Above materials available from any well-stocked electronic supply house, such as Allied Radio Corp., 100 N. Western Ave., Chicago 80 , II.

peres. Next, measure the voltage on the load side of the transformer with an a-c voltmeter having a range of to $0-10$ volts to find the value required for a permanent transformer. In our case this was found to be 6.2 volts. If your flash outfit has a battery of the type described you will not have to make the above test. However, the method described is useful for determining the necessary voltage for other battery and rectifier combinations. See the Materials List for the components needed to make a 4 volt, 8 amp . charger. If the Federal rectifier is not available, use 4 International rectifiers as in Fig. 6.
Fig. 1 shows the new charger being connected to the battery in the carrying case, through a special plug that is attached to the wires coming from the charger, and which fits in a receptacle provided by the manufacturer for the purpose. Note that in this type battery, three small balls
are used in each cell to indicate the condition of the battery. When all three are at the top, the battery is fully charged. As it goes down, the balls start to fall and when they are all at the bottom, the battery is discharged. It is well to start a recharge when the first ball has fallen and continue $2-3$ hours after it has risen to the top.
Fig. 2 illustrates a set-up of a battery removed from the case and with an ammeter in the circuit to check the charging rate. Connections for this job are made to the two terminal posts and leads with alligator clips are employed. The meter reads about .9 amperes which is close enough to specifications of 8 amperes, since it would not be possible to always maintain exactly the same line voltage and fluctuations in line voltage would cause some variation in charging rate, as an expected fact. The use of these clip leads is conven-

ient for charging a spare battery, but of course the meter would not be ordinarily used.
Start construction by drilling the required holes in the cabinet sides and bottom as detailed in Fig. 3A. Make the terminal strip as in Fig. 3B and assemble to the cabinet sides as in Fig. 3C sec . A-A with two $4-40 \mathrm{rh}$ screws. Remove the bottom from the cabinet sides when fastening the transformer, rectifier and Jones terminal strip in their positions on the bottom of the cabinet with $8-32$ screws as in Fig. 4. Scrape off the paint on the transformer and rectifier bases and cabinet and make up the screws tight so these parts will make a good ground connection. Use \#18 insulated wire for all hookup connections and be sure to solder at all points of attachment. Assemble the fuse holder and pilot lamp socket to the cabinet sides and continue with the hookup wiring. Two grommets are used where wires leave the cabinet and these can be of rubber or Bakelite with screw-on rings.

To provide ventilation and an escape for the heat generated in the cabinet, the original cover was substituted with a piece of perforated steel cut from what was formerly the back screen of an old television set. Any other perforated metal could be used instead. If desired, you can use the original cover by drilling six $1 / 2$-in. holes in it.

If the battery is removed from the flash outfit and the special charging plug cannot be used as in Fig. 1, two leads with battery clips attached can be connected to the binding posts on the terminal strip as in Fig. 7. To replace a fuse, unscrew the front knob of the fuse holder and remove it so the glass fuse holder can be replaced.

As a rule when the battery has lost its charge, an overnight charging will fully restore the charge. However, when the battery has reached a certain age or had considerable use, it may not be possible to recharge it to the proper full condition. One or two of the charge indicating balls (Fig. 1) may rise but no amount of charging will effect the rise of all of them, or in some cases all the balls will rise, but in use the battery will be quickly depleted or fails to hold the charge. In either case it indicates that the battery is reaching the end of its life and may not be dependable.
In some areas where the line
voltage is somewhat high (about 120 volts) the charging rate from the rectifier may also be on the high side.
This condition can be quickly determined with an ammeter connected in series with one of the charging leads as in Fig. 2. While a charging current of 1 to 1.5 amperes may not do any harm, and will certainly recharge the battery quicker, it is well to try and keep within the specified charging rate of .8 to .9 amperes if possible. Where the high condition is found, a series resistance can be connected in series between one of the terminal posts inside the cabinet and the wires that connect thereto, as in Fig. 5. A piece of coiled Nichrome 660 -watt heater element about a half inch long, mounted in chassis terminal strip as shown, can be used for a convenient dropping resistance. With the ammeter in the line, cut this coiled wire to a length that will produce the desired current into the battery. You could also use a $25 \mathrm{w}, 3$ ohm adjustable resistor, mounted inside the case for a variable resistance.--Harold P. Strand

When charging a spare photo-flash battery or one removed from the case, leads with battery clips attached are connected to terminal posts on side of charger case. The ammeter shown is connected in series with one lead to check the charging rate which in this test is indicated as .9 amps. The meter is not ordinarily used.

A flick of the switch (on wood block above key) and yau go from transmitting to recerving-or vice versa. If switch is located on a microphone, "push-totalk" operation is possible with any trinsmitte: from $1 / 2$ watt to 1 kilowatt.

How to Use An Antenna-Changeover Relay

> A boon to any amateur, a multipurpose, interchangeable "antenna-changeover relay" can be easily and cheaply constructed

By RALPH E. SCHACHAT (WIGIF) and MARTIN GLICKSMAN

with a tin snips or a hack-saw and bend sheet along the scribed lines to form a box, with each flap forming a tight corner (Fig. 2B). Drill a "(3,-in. hole in each corner, about $1 / 4-\mathrm{in}$. on-center from the top and side of the box and fasten sides and flaps with 6-32 machine screws and nuts.

The cover of the boxcase (Fig. 3) is made simply by cutting corners out square, and bending sides over at right angles to form a lip of about $1 / 4 \mathrm{in}$. Use the box itself to work out the inside circumference of the cover. Fasten cover on two sides with ordinary sheet metal screws.

Select position for coaxial sockets (S1, S2, S3) so that each socket can be connected to the appropriate relay terminal (R1-A, R1-B, R1-C) with the shortest length of wire (see Fig. 5). Place the relay in the center of the case and mark positions of the sockets on the front panel of the box. Since the relay posts are not equidistant from each other, neither will the coaxial sockets be equally

THIS unit automatically switches antenna to receiver or transmitter at the proper time; absorbs excessive received signal while transmitting, so that excess power will not be picked u_{n} (and possibly burn out components in the front end of recciver) ; allows just enough signal to be picked up from the transmitter so that transmission can be easily monitcred; works equally well with high-power or low-power transmitters and scrves both phone and CW operations. Relay is extremely flexible and interchangeable and can be transferred from one transmitter to another in less than a minute by simply changing two plugs; it minimizes the possibility of TV interforence since it is totally enclosed in a grounded case.

Construction. Case for unit is a $2 \times 4 \times 5$-in., \#20 gage aluminum box. Take a flat 8×9-in. sheet of aluminum and scribe or score it as shown in Fig. 2A. Cut out shaded corner areas

spaced from each other. When positions of the sockets have been selected. place a block of wood behind box wall and drill holes with an ordinary brace-and-bit. Select a bit slightly larger than the sockets, about $5 / 8$ in., so as to allow clearance for their insertion. After sockets are inscrted. mark mounting holes and drill and fasten sockets in place with small machine screws, lock washers and nuts. Drill a $3 / 8-\mathrm{in}$. hole on the right side of case for a rubber grommet through which power cord is passed.

Assembly of Relay Unit. Next, bolt the relay (R1) to the bottom center of the case with 6-32 machine screws and nuts. The relay is capable of handling up to 1 kilowatt of RF power, and has "wiping action" contacts.

Connect the inner conductor of each socket to the appropriate post on the relay (see Fig. 5). Each socket. the relay (R1-D) and the case are individually grounded hy means of a ground "bus" of 12 or $=14$ wire. A 1 -in. screw extending out of the case at one corner is used to connect these components to a good outside ground. The 75 -ohm. 1 -watt carbon resistor between relay position R1-D and ground matches the characteristic impedance (75 ohms) of the RG-59-U coaxial cable used and gives more uniform quenching of signal pick-up over a wider range of operating frequencies. If a transmission line of another impedance value is used. substitute a corresponding 1 -watt carbon resistor of the correct value.

Connect the receiver socket connection (S1) to the relay post (R1-E) with a length of hook-up wire about 6 in . long. This will permit a weak, but adequate, signal to be picked up when transmitting, allowing you to monitor your transmit ted signal. If too much pick-up is obtained with this wire as short as possible, use shielded wire, grounding the shield to the case.

If you must conserve cash. eliminate the antenna (S3) or receiver (S1) socket and connect

the coaxial cable directly to the relay posts (R1-C or R1-A). This will reduce the flexibility of the set-up, however, and should only be considered if absolutely necessary.

An octal plug connects the relay to the transmitter which contains the switch and supplies the power. An octal plug is recommended because some transmitters, such as the Heath DX-100, have an octal socket built into the set so that no alteration is necessary. Any convenient prongs can be used of course, but if the transmitter is a $\mathrm{DX}-100$, then prongs 2 and 4 must be used in order to conform with the existing internal wiring.

MATERIALS LIST--CHANGEOVER RELAY

Descriftion
$8 \times 14^{\prime \prime}$. $=10$ gave aluminum
amphemol sockets type 50.239 (S1. S2. S3)
relay. type 400 . Advance Electric and Relay Co. (R1)
DPST switch (to match SPST plate switch in transmitter)
bare $\# 14$ wire
standard hook-up wire
standard octal socket (Cinct-Jones No. 8E.B or No. 8EC)
standard octal plug (Cinch-Jones 8-contact plug No. 8PB, with $\# 16 \mathrm{~F}$ cap)
$75 \cdot$ ohm, 1-watt carbon resistor (see text)

Modification of Transmitter. Many transmitters, such as the Heath AT-1, must be altered slightly to use this unit by replacing their SPST plate switch with a DPST switch. Reconnect the wires from the SPST switch within the transmitter to one side of the DPST switch and connect the other side of the DPST switch in series with the 110 ac drawn from the power supply plug and two prongs of the octal socket.

A remote switch can be added to suit the convenienee of the operator. This can be attached to the microphone, to a hand-rest with the sending key on the edge of the operating table, or at any other convenient location. Wire such a remote switch in parallel with the regular plate switch so that the transmitter will be turned on by either switch.
To adapt the relay for use with other transmitters, mount an octal socket in any convenient place in the rear of transmitter's chassis and install a DPST switch in place of the SPST switch, reconnecting the original wire to one side of the DPST switch (Fig. 6). The two contacts on the other side of the DPST switch are then connected, with one contact going to terminal 2 of

the octal plug, the other going to one side of the $110-v$ line. Connect the other side of the $110-v$ line to terminal 4 of the octal plug. Terminals 2 and 4 were chosen for the sake of convenience. Any others can be used as long as the corresponding plug-socket terminals are used.

Testing and Operation. With all plugs connected as in Fig. 7, furn on the receiver and the filament supply of the transmitter. The receiver should work normally. For the initial test, tune it exactly to the transmitter's operating frequency. Flip the transmitter's plate switch and tune up the transmitter in the usual way. When the plate switch is thrown on, the relay should click over to the antenna position and the receiver should cut out. Now, as the transmitter is operated, the receiver should give out a pleasant, medium-level monitor signal so that you can hear if your CW signal is clear and crisp or whether it has clicks or chirps. Similarly, by allowing someone else to talk into the microphone of a phone rig, you can casily monitor voice.

Stippling Machine from Bell

IF THE clapper of a bell is removed and replaced with a nib which may be soldered into position, a very efficient electric stippling machine may be had. After being used 10 or 15 minutes, this machine will be found capable of covering a large area at high speed. It must be held just the right distance from the surface to be inked and just the right amount of ink must be used. A little experience will determine these points.--R. F. Y.

Buzzer Makes Secref Lock

HERE the small bolt of an especially made lock for a drawer is soldered directly to the armature of an electric bell or to a buzzer. In this

case, the current is led directly into the coil and the vibrating system is cut out. When current flows through the coil, the armature will be pulled down and thus release the bolt.-R.F. Y.

The Easiest and the Hardest

Have you picked up Spanish language radio broadcasts and wondered where they originated? Here's how you can find out

By C. M. STANBURY II

|T is fairly easy to tune Latin American stations on the broadcast band. An experienced listencr who knows how to identify these stations will tell you that this is the casiest of foreign DX (distant reception). They are not too distant, and it is easy to learn the small amount of Spanish needed for this type of reception. Most stations have frequent commercials which provide casily obtainable program data for your report.
There is no time, during the hours of darkness, when south of the border stations are absent from your dial. During the evening, CMHQ, Santa Clara, Cuba, consistently holds down the 640 kc spot in eastern North America, while in the west such stations as TGJ (880) Guatemala, HJKC (840) Bogota, Colombia, and YSS (655) San Salvador are nightly visitors. Even more powerful are the Mexican border stations. These broadcast in English on relatively clear channels. At least two of them, XEG (1050) and XERF (1570), operate all night.

For best reception the DXer should tune the $21 / 2$ hours following sunset. This is especially true during an ionospheric disturbance. (Such disturbances, believed to be associated with sunspots, cause a drop in signal strength. The severity of such blackouts depends upon how near a station is to the pole. Reception from northern stations will be almost impossible, middle latitude stations will be weak, but semi-tropical stations will not be hampered.)

With all this good llunting you will want to
know how best to spot your quarry. There is, of course, the obvious and easy matter of language. If while tuning you hear Spanish, chances are pretty good your DX search has paid off. Once your station is zeroed in, you are ready to identify it and obtain enough program data for your report. This is casy. Many well-known American products are advertised south of the border. (Table C will give you help among these lines.) Table B shows the Spanish pronunciation of every letter in the alphabet. With it and a little practice, you should have little trouble interpret-

TABLE A-STATIONS TO START WITH

FREQ.	CALL	LOCATION	SLOGAN AND ADDRESS (*denotes good verifier)
585	TIJC	San Jose. Costa Rica	Radiopolis
590	CMW	Habana. Cuha	Circuito CNC. 0 No. 216, Vedado ${ }^{*}$
625	TIDCR	San Jose, Costa Rica	La Voz de la Victor, Apto. 225*
640	CMHQ	Santa Clara, Cuba	Circuito CMQ. Radiocentro, Ve. dado, Habana ${ }^{\text {Pa }}$
650	YVQO	Puerto La Cruz Venezuela	Ondas Portenas, Apto. 482*
655	YSS	San Salvador, El Salvador	Radio Nacional, Teatro Nacional
660	CMCU	Habana, Cuba	R. Garcia Serra, Paseo de Marti 260
670	CMHG	Santa Clara, Cuba	Relay of CMBC 690 kc
675	YNDS	Manlayua, Nicarasua	Union Radio
690	CMBC	Habana, Cuta	Radio Progreso or R. Nacional, Av. Menocal 10S
700	YVMH	Maracaibo, Venezuela	R. Popular, Apto. 247*
730	CMCA	Habana, Cula	Radio Mambi, Paseo de Marti 107
760	CMCD	Habala, Cuba	Radio Voz de la Hora, Calle 2S, No. 113
770	CMDC	Holguin, Cuba	R. Oriente, Aguilera 511, Santiago ${ }^{\text {F }}$
770	HJDK	Medellin, Colombia	La Voz de Antioquia, Maracaibo 46-70\%
790	CMCH	Havana, Cuha	R. Cadena Habana, San Jose 104
820	HJED	Cali, Colombia	La Voz de Rio Cauca or Ca Ra Col (fair verifier)
830	CMBZ	Hatuana, Cuba	R. Salas, San Rafael 108, 2° piso (fair veritier)
840	HJKC	Bogota, Colombia	Ca Ra Col, Calle 53, No. 46.80°
880	TGJ	Guatemala, Guatemala	Radio Neuvo Mundo, 6a Av., $10-45,21$. Strong on Pacific Coast
910	CMCF	Halama, Cula	Union Radio, La Ranpla, 23 e Emganta
935	YNW	Minagua, Nicara@ua	Radio Mundial, Sa Calle N.O.
998	YVOB	San Cristolal, Venezuela	La Voz del Tachira, Apto. 37\%
1015	HOU44	Panama, Panalima	Radio Reloj. Best early AMs*
1020	HJAQ	Cartagena, Colombia	Radio Miramar ${ }^{\text {Ta }}$
1060	CMCX	Haluana, Cuba	La Emisora Amija, Edif. Odon tologico, L y 23, Vedado
1075	YSEB	Sanl Salvador, E. S.	La Voz de Latino-America, Calle Los Planes Km. 4
1120	YVMF	Maracaibo, Venezuela	Ondas del Lago, Apto. 261 (fair verifier)
1160	CMJK	Camaguey, Cuba	La Voz del Camagueyana, Finlay No. 4^{*}
1175	118	Puerto Limon, C. R.	Radio Casino, Apto. 287*
1198	CMDD	Bayamo, Cuba	Relay of CMDC, 770 kc .
1200	CMK	Habana, Cuba	Radio Deportes, manzena de Gomez 508

ing calls. But there is also another way of identifying your catch. Foreign broadcasters tend to use their slogans as often as their call letters. Such slogans are not hard to interpret. Most of the Spanish words used resemble English words, for example, Radio Nacional and Radio Central. Others make use of place or well known names such as La Voz de Cali, and Radio Bolivar.
Table A lists 32 stations to start with and includes slogans. White's Radio Log (see page 161 of this handbook) contains all Puerto Rican and the most widely heard Mexican and Cuban stations. These stations announce their call letters as frequently as American stations. Finally, a government publication, Broadcasting Stations of The World: Part 111 (Catalog No.: Pr. 34.659:957/Pt. 3) lists all foreign stations alphabetically both by call and slogan. It can be purchased from the Superintendent of Documents, Government Printing Office, Washington 25, D. C. for $\$ 1.25$.

Now that you know how to hear it, you will want to verify all this DX. And this is where things get tough because of the language barrier. While many stations have someone on their staff who can read English, many out-of-the-way stations do not. Reporting in Spanish tends to convince the Latin that you are genuinely interested in his station. For those who don't write in Spanish, one solution is a Spanish report form. The National Radio Club, 325 Shirley Ave., Buffalo 15, N. Y., provides its membership with such forms at cost. Dues are $\$ 4$ a year and include a subscription to DX News.
In writing to Latin stations, try to tell what you heard in Spanish. This is not too difficult. List the time and the item heard. Translations for most of the program data will be found in Table C.

An ordinary radio receiver will not bring in nearly as many stations as a specialized receiver -one with crystal selectivity. The latter is desirable, especially for receiving stations that broadcast between the ordinary frequencies (for example, 725 kc instead of 720 or 730).
Different makes of crystals vary slightly in their operation. However, the following procedure generally applies. Set the crystal selectivity control at the first stop and the phasing control in the center position. Carefully tune the dial until you are on the carrier frequency. There are three

TABLE C-SPANISH WORDS AND EXPRESSIONS FOR REPORTING

station identification: anuncio de la estación program: nrograma
announcement of the correct time: anumcio de la hora correcta to: a
advertised............. : propaganda de.
a march: marcha
classical music: musica clasica
popular music: musica popular
guitar music: musica guitarr
dance music: musica de baile
duet: duo
trio: trio
chimes: ritmo de las campanas
solo vocal by man (woman): solo vocal por hombra (dama)
singing commercials: anuncios comerciales cantados
beer: cerveza
slow: despacio
fast: ligero
cigar: ciparro
mass: misa
nolitical speech: habla polifica
and: y
SAMPLE LISTING OF PROGRAM DATA
10.00 a 10.15 pm -progrania de musica popular
10.00 y 10.15 -anuncio de la estación y ritmo de las companas 10.05-propaganda de Pepsi Cola
10.10-propaganda de Cerveza Crystal.
ways of accomplishing the latter: 1) Watch the S-meter; it will peak at the desired frequency; 2) Listen until only a soft swishing sound is audible; or 3) You can turn on the BFO (beat frequency oscillator); after it produces a whistling sound, set the beat frequency control in the center (at 0), and tune back and forth until the BFO's pitch drops to zero. Turn off the BFO. Now adjust the phasing until the heterodyne is least annoying. It is often necessary, when using the crystal, to switch from AVC to manual. A strong station on a nearby frequency tends to block the AVC. Finally some crystals, even in first position, tend to cut the sidebands off too sharply. The effect will be similar to an unmodulated carrier. On occasion it will be necessary to tune slightly away from the carrier frequency in the direction having the least interference. Following this, you will probably have to reset the phasing control.

Solder Improves TV Reception

- When a TV ribbon lead-in appears to be unbalanced, don't wrap aluminum foil around the line-after a while it will become torn and crumpled and have to be renewed. Instead, closewrap wire solder around the line as shown. It will last indefinitely and be easy to slide up and down the line to improve TV reception.-J.A.C.

Alligator Clipette for Experimenters

Short wires soldered to clips and to socket terminals complete the project.

TOP VIEW LAYOUT OF HOLES FOR OCTAL SOCKET

ELIMINATE the slow and tedious job of soldering and unsoldering connections at socket terminals in "breadboard" sel-ups by using an alligator clip socket unit for each tube in the circuit (Figs. 1 and 4). Wires and various components can be directly connected to the sockets without the use of solder, and they can be just as quickly disconnected for changes in the circuit. The unit illustrated here is for an 8-pin or octal socket, but similar units can be made up for $7-$ pin and 9 -pin sockets.

First step in making unit is to attach the two bottom strips to the clear plastic base with an acrylic plastic cement (Fig. 2). Apply sufficient cement to the surfaces to be joined to soften the plastic, press the pieces in place and lightly clamp for a few hours. Drill the holes as in Fig. 2. Then remove the original terminal screws in the clips and tap the holes for 6-32 threads. Use screws $3 / 8-\mathrm{in}$. long to hold clips in position on base (Fig. 3). Pieces of Bakelite or fiber tubing cut to size can be substituted for the porcelain spacers (Fig. 2).

Number clips in counterclockwise fashion so that, when viewed from underneath, numbering corresponds to socket-terminal numbering running clockwise from the first terminal to the left of the center slot (Fig. 3). This is the standard arrangement in all schematic diagrams. Short pieces of $\# 20$ insulated wire can be used to connect terminals in consecutive order to the clips.-Harold P. Strand.

MATERIALS LIST-ALLIGATOR CLIPETTE (For octal socket)

No. Description \quad clear Lucite or Plexiglas $1 / 8 \times 4 \times 4^{\prime \prime}$, hase
clear Lucite or Plexiglas $1 / 8 \times 3 / 8 \times 4^{\prime \prime}$, feet octal socket attached to steel mounting plate porcelain spacers $3 / 8$ O.D. $\times 7 / 8$ with 6.32 threaded holes Mueller alligator clips with screw terminals
6 in. \#20 insulated wire
\#20 insulated wire $3 / 8^{\text {" }}$ long
$8 \quad 6.32$ rh screws $3 / 8^{\prime \prime}$ long
$4 \quad 6-32$ th screws (for porcelain spacers) or
26.32 rh screws $11 / 8^{\prime \prime}$ long with nuts (if tubing is used as spacers)

Trying out the alligator clip socket unit in an experimental circuit. Radio beginners will find the unit very handy when making various receivers.

The

PIGGY-BACK

The term piggy-back may recall for you the days when you hitched an occasional ride on your Dad's back, or it may remind you of a practice in the transportation industry. As used here, however, it refers to the units used with a basic piece of miniature, transistorized electronic equipment built so that it may become any one of a number of different electronic devices simply by attaching a different piggy-back
circuit for a regenerative transistor detector is presented for the hobbyist who wants a hotter radio and enjoys doing his own package designing.

Another piggy-back unit does not attach to the hack of the basic amplifier. It is a loudspeaker unit that is the same size as the basic amplifier with a piggyback ($1 \times 1^{15 / 8} \times 2^{1 / 8} \mathrm{in}$.). It may be used attached side-by-side to a basic unit piggy-back combination, or it may be used with a piggy-back combination unattached for remote placement. This speaker unit may be used as a generalpurpose speaker for other equipment, too. A second larger speaker unit is also described, and either of these speakers may be used for the variety of applications to be discussed. Additionally, a
 circuit for an extra amplifier stage that may be built into the basic amplifier to beef up the output will be described.
Finally, a number of circuit ideas for additional piggy-backs and accessories that will extend the application of your piggy-back equipment even further will be presented.
Cost. Is all of this equipment expensive? The answer is no. The piggy-back approach allows you to build circuits in basic easy-tohandle and easy-to-use sections. Components for all of the sections together do not cost as much as the parts for some single-application construction projects, yet you have a multi-

THE basic unit used in this project is a twotransistor, high-gain, audio amplifier constructed on one-half of a $1 \times 15 \times 22^{1 / 8}$-in. plastic box. For general-purpose amplifier applications, this basic unit can he used with a blank piggy-back as the other half of the case. Any of the other piggy-backs described in this article may be used in place of the blank half case.
One of the piggy-backs is a microphone which-with the basic amplifier-may be used as a hearing aid device, as an "eavesdropper," as a very novel but simple vestpocket musical instrument, as a power amplifier driver and in numerous other practical and novel applications.
Another is a simple radio tuner-detector, A crystal unit is described in detail and a

costs less than $\$ 3$, and the small loudspeaker unit costs a little over $\$ 2$.

THE BASIC PIGGY-BACK AMPLIFIER UNIT
The basic piggy-back amplifier unit uses two PNP transistors-the inexpensive Raytheon CK722's. Texas Instrument 2N367/300 or General Electric 2N107 transistors may be used in place of the CK722's without any circuit or parts value changes. These transistor types are inexpensive, experi-

menter-grade transistors. The amplifier has its own volume control and will operate from a self-contained battery supply. You may use any voltage from 3 to $6 v$ for the battery supply. You can obtain $3 v$ from two small penlite cells (type N). This voltage is adequate for headphone operation, but you'll want $41 / 2$ to $6 v$ to operate a loudspeaker. The RCA VS310 battery is recommended for use with the amplifier because it provides $51 / 2 v$ (enough for loudspeaker operation), and it's small enough to allow any of the piggy-backs to be attached withoutcrowding. The battery operating cost is higher when this small battery is used, but for some applications, the compactness is worth it.

For the technically inclined, it is interesting to note that operating current is about 2 $m a$ when a $51 / 2-v$ battery is used with a 2000 -ohm earphone in the output jack. The amplifier gain of the original model

The microphone piggy-back and amplifier becomes a musical instrument with the addition of a pencil and rubber bands. with a 2000 -ohm earphone connected was 51 signal into terms of voltage gain, that's 320 ; the

To construct the amplifier (Fig. 1), cut and drill a piece of the miniature perforated Bakelite circuit board (see Materials List) as shown in Fig. 2. Make a matching set of holes for the phone jack and volume control in one half of the plastic case by making pilot holes with a heated ice pick and then reaming holes out to size with a taper reamer.

Saw the volume control shaft to a length of $3 / 8$ in. with a hacksaw (clamp the end of the shaft to be discarded in a vise). Fasten the volume control and the phone jack on the perforated circuit board temporarily and wire the circuit (see Figs. 1 and 3 and also Fig 15). Go over each connection on the circuit diagram with a red pencil to avoid wiring mistakes. Connections are made by pushing leads that connect through a common perforation on the wiring board. They're soldered on the side of the board that you see in Fig. 1A, and excess lead lengths are clipped off. The lead from the extreme left center of the board passing close to the volume control hex nut connects to the emitter of transistor T1. The other prominent lead is made up of a number of leads that return to the negative side of the battery. (When you're using PNP transistors, the minus battery terminal is similar to the B-plus terminal in tube circuits.)

I used two type N penlite cells (Ray-O-Vac No. 716) in series in my amplifier for initial testing, since they're so inexpensive. And I brought a pair of input leads terminated with Mueller Mini-Gator clips out through a hole in the side of the plastic case for quick experimental connections and general purpose amplifier use. You'll find these leads particularly handy in trying some of the experiments and applications discussed later. But solder them in the circuit so they can be disconnected easily for the installation of piggy-

The deluxe microphone piggy-back unit uses a Shure MC11 microphone. This microphone is only 1 in in dia. Drill a ${ }^{3} 16-\mathrm{in}$. hole in the plastic case half on which you're going to mount it, and fasten the microphone to the plastic case with a small amount of metal-to-plastic cement. Don't allow any of the cement to get into the small sound hole opening on the front of the microphone. In the original unit the hole in the plastic case half is $1 / 2 \mathrm{in}$. from the side and top of the rectangular border formed by the recessed front of the case, but the position isn't critical as long as you mount the microphone so it will not interfere with other components when the case is closed.
Use insulated magnet wire (\#28) to connect the microphone to the input circuit of the amplifier. The microphone terminal common to the microphone case connects to the low end terminal of the volume control. Leave the leads long enough to permit the case to be opened without placing a stress on them. Twist them

Physically, the Crystal Tuner Piggy-Back shown schematically above in Fig, 6 looks as below in Fig. 8, case open (A), closed (B).
backs. When you've completed the wiring and obtained a satisfactory test of the amplifier, you're ready to remove the volume control and phone jack hex nuts and refasten them with the wiring board in the case. You may have to "dent" the inside of the case with a heated ice pick to accommodate protruding connections before you can fasten the wiring board in place. Fasten the volume control knob to complete the job.

MICROPHONE PIGGY.
 BACKS

By adding a microphone piggy-back to the basic amplifier unit, you obtain a very compact instrument with many application possibilities. It can be used as a remote communication unit, a microphone and preamplifier for a public address system, a musical instrument pick-up and preamplifier, a gas leak detector, a vibration and rattle locator, and even as a small public address system and complete musical instrument (with the loudspeaker units to be described later). As a toy for children, it may be used as an eavesdropper with a long earphone cord that can be used to listen to birds, animals, and insects as well as human beings. Children will enjoy using the unit as a hearing aid for Blind Man's Bluff and other games. Hams will find the unit extremely useful as a speech amplifier for miniature and mobile transmitters.
together to minimize the chance of signal feedback from the output circuit (see Fig. 4, in which is also shown the compact $51 / 2-v$ VS310 battery wired into the circuit as the power supply).

PLUGS INTO OUTPUT JACK FOR USE
AS A SPEAKER; TO USE AS A MICRO-
PLUGS INTO OUTPUT JACK FOR USE
AS A SPEAKER; TO USE AS A MICROPHONE, CONNECT TO INPUT CIRCUIT

LOUDSPEAKER PIGGY-8ACK

A simple vest-pocket musical instrument can be made from this combination by placing several rubber bands around the assembled amplifier-microphone case. Put different amounts of tension on each of the rubber bands by placing a wedge between the case and the rubber bands. The rubber bands should pass over and near the microphone opening (see Fig. 5). My wedge was a sharpened pencil. In addition to varying the tension on the rubber bands, the wedge spaces them far enough from
the case so they can be pluekerl readily. This vest pocket musical instrument will drive the larger lourlspeaker unit (to be described later) directly and with reasonabie volume. If the smaller speaker unit is used, equip it with the 3-transistor amplifier described in a later section.

The Shure MC-11 microphone costs about 57. It's a versatile, rugged unit, and in my estimation constitutes a good investment for the experimenter. However. some experimenters do not wish to invest this amount of money in a single component. There are less expensive alternatives, one of which is to use the small loudspeaker unit described later and shown in Fig. 10. This unit is not as compact as the deluxe microphone unit and cannot be mounted as a piggy-back. but you can attach it side-by-side to the amplifier unit equipped with a blank back. Use small machine screws and nuts. Circuit arrangement is shown in Fig. 7.

Another alternative is to use a magnetic earphone as a microphone. The Lafayette MS-367 which costs just a little more than $\$ 1$ can be used for this purpose. It is small enough to be fitted on a piggy-back just as the MC-11 was, and the leads are connected in the same way.

If you resort to either of these alternatives, you'll get reasonable performance, but not equal to that of the deluxe unit.

TUNER-DETECTOR PIGGY-BACKS

It's quite simple to add a radio piggy-back to your amplifier unit. For those who are undertaking their first project, I'll deseribe a simple crystal radio piggy-back in some delail. I'll also present a regenerative transistor detector unit which you can build later with a small amount of modification to the original crystal unit. Or, if you wish, you may build the transistor unit immediately. I didn't build the transistor detector as a piggy-back unit, but I've used and tested the circuit in other transistor equipment. The crystal detector, while extremely simple and straightforward, lacks the sensitivity and selectivity of the transistor regenerative type detector. You'll need a moderately good antenna and ground with the crystal detector and amplifier combination, but the requirements will be relaxed considerably if you use the regenerative detector-amplifier combination.

The crystal detector unit circuit is shown in Fig. 6. Two alternatives are shown. Try both of them and use the one you prefer. Figure 8 shows the construction and wiring of the amplifier unit according to the circuit of Fig. 6A. The tunings capacitor shaft hole is a $3 / 8$-in. dia. hole located $1 / 2 \mathrm{in}$. from the top and side of the rectangular border formed by the recessed front. Note that the location of this hole is the same as that for the deluxe microphone unit. Place the capacitor in the plastic case. If it doesn't fit tightly into the corner of
the casc, enlarge the hole with a reamer till it does. Then locate the two mounting screw hole positions for the capacitor by placing the capacitor in the position it will occupy in the plastic case half and mark-

INSULATION PRECAUTIONS FOR CRYSTAL TUNER- DETEGTOR PIGGY-BACK ing them off directly.

Cut off the antenna loop coil connecting lugs as close to the coil as possible without damaging the coil lead connections. The center for the hole on the side of the plastic case half through which the antenna coil adjusting screw protrudes is located midway between the front and the hinge side of the case along the line formed by the indentation in the plastic between the corner and the hinge. The hole should be between $1 / 8 \mathrm{in}$. and $\bar{T},:=$ in dia., as required. to secure a good fit. Wire the circuit with the components out of the case.

Front view of basic amplifier, with crystal radio piggy-back, attached to small loudspeaker unit.
checking as you proceed to be sure that youre allowing for proper lead length and fit. Bend the tuning capacitor terminals forward so they ll fit against the front of the plastic case when the capacitor is installed. Insulate these terminals by fastening a piece of cellophane tape to the

Front view of basic amplifier connected to large loudspeaker unit.

transistor in the circuit. The tickler winding L2 is made by winding 10 to 20 turns of \#28 insulated magnet wire at the top of L2. The feedback due to L2 may make the received signal stronger or weaker. Try interchanging the L2 coil connections. Use the set of connections which gives the strongest signal or makes the set squeal. If the set squeals, remove turns from the L2 winding till the squealing stops.

Although the detector can be made more sensitive by providing it with a variable regeneration control so that the set can always be operated just below the oscillation point, the space allowances and the added complexity make it difficult to realize in this set. However; it can be done and the adventuresome experimenter may wish to try it.

With the regenerative detectoramplifier combination you won't
capacitor as shown in Fig. 9. As an added insulating precaution, run a piece of cellophane tape around the coil terminal ring. The assembly may then be mounted in the plastic case half and attached and connected to the amplifier unit. You won't be able to open the case all the way because of the protruding antenna coil adjusting screw. When you close the case, jockey the crystal diode to a position where it can't shortcircuit to other components and connections. Use spaghetti insulation on the crystal diode leads.

Tune the antenna slug so you can cover the broadcast frequency range with your antenna and ground connected. On strong local stations you can drive the large loudspeaker unit shown in Fig. 11 directly. Or you can drive the small loudspeaker unit (Fig. 10) with the modified basic amplifier described later. The modified basic amplifier has an extra transistor stage. More distant weak stations can be received if an earphone is used.

The circuit for conversion to the transistorized regenerative detector is shown in Fig. 12. Simply disconnect the diode from the coil tap terminal and connect the
The basic two-transistor amplifier with electronic feedback, code practice and microphone piggy-back.

cut-off frequency. This unit may be substituted directly for the CK768 transistor, but this substitution may require a decreasc in the number of turns on the regeneration coil.

LOUDSPEAKER UNITS FOR THE PIGGY-BACK AMPLIFIER

The loudspeaker units for the piggy-back amplifier have been referred to frequently in preceding sections because they have a wide variety of uses and because they enhance the value of your piggy-back equipment considerably. One of these units is the extremely small speaker and output transformer combination mounted in a piggy-back size case which is shown with the amplifier unit in Fig. 10. The dia. of this speaker is $11 / 2 \mathrm{in}$. Because of the small size of this speaker, the change from electrical to sound energy is not accomplished as efficiently as it would be with a larger loudspeaker. The second loudspeaker consists of a larger ($21 / 2$-in. dia.) loudspeaker-and output transformermounted in a readymade bafflc case. This unit (Fig. 11) has a much higher electrical to sound transformation efficiency and can be used connected directly to the basic amplifier unit with good results.

To make the small loudspeaker unit, place the speaker in the case centered relative to the top and bottom of the case (see Fig. 10). Mark the mounting hole locations on the case with an ice pick or scriber, remove the speaker from the case and with a heated ice pick make the mounting and sound opening holes. I didn't measure off the sound opening holes. If you desire a neater appearance, you can measure them off. Otherwise you can guess them in quickly as I did and then use a small cloth grille.

The output transformer fits partially under the loudspeaker magnet frame. It is held in place by pressure between the speaker magnet frame and the transformer on one side and a rubber grommet between the transformer and the plastic case on the other sidc. Pass a piece of cellophane tape from the magnet over the top of the transformer frame and grommet for additional support. You can increase the tonc quality and the volume available from the speaker by cutting out a soft cardboard washer to fit around the front of the speaker rim. This washer will fill the space between the plastic case and the speaker rim which would otherwise exist because the rounded edges of the case prevent the speaker rim from fitting
against the front of the case. The secondary (green) leads from the output transformer connect to the loudspeaker voice coil terminals; the primary (red) leads connect to the plug (sec Fig. 7).
The loudspeaker unit shown in Fig. 11 utilizes a larger loudspeaker and a ready-made case and can be built with less effort than the small loudspeaker unit. To assemble, remove the four screws that hold the baffle-case back in place and remove the back. Place the speaker in the baffle box and place the output transformer between the speaker magnet frame and the edge of the baffle box. Place a paper or cardboard shim sufficiently thick to hold the transformer in place between the transformer and the speaker.

Next, solder the secondary transformer leads (green) to the speaker voice coil terminals and the primary (red) leads to the terminals at the top of the baffle box.

Finally, place the back on the baffle box and fasten the four screws. The speaker fits tight between baffle box and back and the pressure holds it in place.

ADDING A THIRD TRANSISTOR TO THE BASIC AMPLIFIER

The amplification of the basic amplifier unit may be increased considerably by adding a third transistor amplifier stage. The extra stage increased the amplification of the original model from 320 to about 10,000 . The large increase in amplification makes it possible to drive a loudspeaker with considerably smaller signals at the amplifier input terminals. With the crystal radio piggy-back, for example, the extra transistor amplifier stage will substantially increase the number of radio stations you can receive at reasonable speaker volume. And, with the deluxe microphone piggy-back, the earphone volume is equivalent to that of hearing aids costing from $\$ 40$ to $\$ 100$.

The new three-transistor amplifier circuit is shown in Fig. 13. Figure 14 shows parts placement. Compare these Figs. with Figs. 1, 3 and 15. Note that transistors T1 and T2 are still in the output and input stages, and that the new transistor T3 becomes the middle amplifier stage. The only parts required for the modification are transistor T3, resistors R6, R7, and capacitor C3 (see Materials List). They cost less than \$2. The physical position of transistor T 2 and resistor R 4 has been changed in the amplifier. Transistor T3

ARRANGEMENT FOR AUDIO SIGNAL TRACING
occupies approximately the same physical position as T2 occupied before modification. The change can be made in a few minutes if these steps are followed:

1) Remove the volume control knob and the volume control and output jack hex nuts. Remove the amplifier from the case.
2) Remove the 220 K resistor R 4 from the circuit board and replace it with 270 K resistor R 6 .
3) Disconnect the base of transistor T2 from the junction of C2 and R4. Don't disconnect the emitter and collector leads. Bend these leads as required to change T2's position to that shown in Fig. 14.
4) Wire transistor T3 into the circuit. Note that the connection end of T3 is toward the upper edge of the circuit board. Run the emitter and base leads through perforations to the front of the board. Connect the emitter to the common (battery plus) bus and the base to the junction of C2 and R6.
5) Mount and connect C3 and R7. The collector of T3 connects to the junction of C3 and R7.
6) Mount and connect R4. Connect the base of T2 to the junction of C3 and R4.
7) Bend component leads is required to minimize the possibility of short circuits. Fasten the amplifier in the case.

The added transistor stage increases the current requirenents of the amplifier slightly. If the amplifier is used for prolonged periods, (as a hearing aid, say) you'll find it economical to use two size N penlite batteries in series. The gain will be reduced slightly due to the lower voltage.

MODIFICATION, ACCESSORY, AND APPLICATION IDEAS

Your piggy-back equipment has many more uses than those described in conjunction with the construction. In some instances, small modifications are required, and in some instances simple accessories are required for these additional applications. All of the applications and
circuits that have or will be described have been tried and tested. (You'll probably discover many more.) You can rest assured that they will work provided your wiring is correct, your connections are electrically reliable and your battery and parts are good.

Code Practice Oscillator. The basic twotransistor amplifier can be made to oscillate at audio frequency by connecting the collector of transistor T2 to the high side of the volume control through a capacitor and resistor (as shown in Fig. 17) with an output load connected. This arrangement provides the feedback required to produce oscillation. The output load may be headphones, the small loudspeaker unit, the large loudspeaker unit, or a 3 K to 10 K resistor.

Figure 15 shows an arrangement for an earphone or loudspeaker code-practice oscillator incorporated piggy-back (schematic is shown in Fig. 16). The resistor is 33 K and the capacitor is .01 mfd . Adjust the amplifier volume control for the tone you find most pleasing. The code practice oscillator may be built as a piggy-back with a key made from a small piece of metal, machine screws, and nuts. The microphone is connected through the upper contact as the amplifier input element when the key is up. When the key is depressed, the microphone is disconnected, and contact for the oscillator circuit is established.

A loudspeaker code-practice oscillator can utilize an even simpler schome, with acoustic feedback from the loudspeaker to the mierophone producing oscillation in this case. Circuit is shown in Figs. 14 and 18. A small piece of cellophane tape placed on the key under the upper contact prevents microphone circuit closure when the key is up. This arrangement will work with the two- or the three-transistor basic amplifier and either loudspeaker unit. The only requirement for oscillation is that the nicrophone be placed close to the loudspuaker.

Model RR Train Whistle and Paging System. The code oscillator-microphone piggyback combination may be used as a model railroad or toy train whistle and paging system. Either of the code practice oscillator arrangements described above will work acceptably. The twotransistor amplifier with re-sistor-capacitor feedback is most convenient, although the paging volume of the threetransistor acoustic feedback arrangement is greater, The disadvantage of the acoustic feedback arrangement is that the speaker and microphone must be close together to produce a whistle but then must be separated to be used for paging.

Audio Oscillator. Figure 19 shows the circuit arrangement for a sinple audio oscillator that can be used for amplifier testing. It can be built piggy-back. The frequency range is limited to a
range of several hundred to several thousand cycles as a sine-wave audio oscillator, but it will operate at lower frequencies as a blocking oscillator. The volume control of the amplifier serves as the frequency control; the added potentiometer is the output level control.

Hum Locator and Telephone Pick-Up. The threctransistor amplifier may be used to pick up telephone conversations and reproduce them at loudspeaker volume with a telephone pick-up coil such as the Lafayette MS-16. Or you can use an unshielded headphone with the diaphragm removed for a telephone pick-up. This arrangement will also enable you to locate ac wiring by using the pickup as a 60 -cycle hum locator. When the coil gets close to a 60-cycle house wiring circuit, it has a $60-$ cycle voltage induced in it. You'll get best results using a headphone for listening in the output circuit of the amplifier for the hum location function. The pick-up is connected to the amplifier in the same manner as the microphone.

Audio Signal Tracer. The basic amplifier may be used as a signal tracer for trouble-shooting audio amplifiers and the audio section of radios. The only additional component required is a 0.1 mfd .

capacitor to isolate de voltages from the amplifier volume control. The circuit arrangement is shown in Fig. 20.
To use the signal tracer for radio trouble-shooting, connect the input lead from the low side of the volume control to the common ground of the radio receiver. Tune the receiver to a strong local station's frequency and with the volume control all the way up, touch the tube grids and plates with the signal tracer "hi" lead in succession while listening for a signal in the earphone. If you don't hear a signal in the earphone when you contact the grid of the first audio stage, the trouble is in the RF, IF or detector por'tion of the radio ahead of the audio amplifier. If you do get a signal, the trouble's somewhere in the audio amplifier. It's between the last point in the circuit where you do hear a signal and the first point where you don't hear a signal.

To trace a signal in a phono amplifier or any other amplifier, provide an input signal to the amplifier and proceed with the signal tracer just as you would to signal trace a radio. The input signal can be derived from a phonograph turntable pickup and a record, a radio tuner or an audio oscillator.

Tape Insulates Radio-TV Screws

- The chassis of a transformerless ac-dc radio or TV can be a very deadly shock hazard, should the set be plugged into the outlet with the incorrect polarity. Often, the mounting screws found on the bottom of the cabinet are in direct contact with the "hot" chassis. Touching one of these screws and ground simultaneously can kill

you.
A simple safety precaution is to insulate the
heads of the screws by covering them with plastic tape. If your set has a metal plate as a bottom cover, tape clear plastic material (available at hardware stores for a few cents a foot) over entire plate.-John A. Comstock.

Eraser Shock-Mounts Transistor

- A slip-on pencil eraser makes a good mount for some types of round case transistors that are not to be socket-mounted. Drill a small hole
 through the tip of the eraser, and mount it on the chassis with a small screw and nut. Eraser shock-mounting is especially desirable in portable gear subject to mechanical shocks.-Jorn A. Comstock.

Electronics Picture Quiz

By JOHN A. COMSTOCK

Are you a whiz at picture quizzes? Here's one on electronics. All of the photos are of items commonly found on the electronic hobbyist's bench or in his box of spare parts. See if you can correctly identify and label them in the spaces provided. Study each picture carefully before filling in your answer. You'll find the solution on page 157.
4. \qquad
2. \qquad
5.
6.

3

\%

5

Line Voltage Corrector for Your TV Receiver

By HAROLD P. STRAND

LOW line voltage from your electric company can cause all sorts of difficulty in your TV set. Since electric companies can't supply everybody with exactly the same voltage, outlying suburbs are most likely to be troubled with below-normal voltage, particularly during the evening hours when demand for electricity is high. If you're not satisfied with your TV picture, it doesn't fill out the screen or lacks brilliance, try connecting an $a-c$ voltmeter to the wall receptacle to determine the line voltage. If I had done that myself, I would have saved considerable time and money.

The picture on my set was not filling the screen, especially at the sides and was not up to its usual brilliance despite any adjustments of the brightness control. The picture kept slip-

Picture wouldn't fill out screen when set was operating on 106 volts (A). Increased brilliance and full screen (B) improve picture after boosting line voltage to 112.115 volts.
ping out of horizontal sync too. Something had to be done!

First, I replaced all the tubes in the video section, with very little improvement. Next, I removed the chassis and spent two evenings going over the complex circuit using instruments to check the connections and the components against the schematic. Still no luck! Some of the original condensers were bulging with sealing compound at the ends, so all of them were replaced with the latest type. You can imagine my

[^9]3I

disappointment, when after assembling the set, the improvement was hard to find.
On an impulse, I got my voltmeter from the shop and plugged it into the outlet. I was getting exactly 106 volts! When I connected a Variac between the line outlet and the TV set and raised the voltage to 115 volts, the results were amazing. The picture assumed a brilliance it had never had before and it covered the screen with some to spare! You may find the same solution to your television difficulties.
Instead of using the Variac, this line voltage booster which you can build yourself will step up line voltage and give you all the reception which your TV set can deliver. Basically it is an autotransformer with a number of taps controlled by a tap switch. The built-in voltmeter tells you at all times the exact voltage being delivered to your TV. I recommend setting the voltage at about 112 volts to allow for any upward line

Core laminations (A) 1-piece shell lamination salvaged from used radio power transformer. (B) E-type laminations (C) Core-type lamination made by alternating straight strips of silicon transformer steel. Transformers built on this core will require larger mounting box. (D) Coil winding form.

Start winding through slot in narrow side of form. Turn counter records number of wind. ings.

Bringing out loop tap at 247th turn. Slip sleeving over loap and separate lead from rest of windings with electrical tape, top and bottom. Continue winding over tap loops.

fluctuations. Most electric lines deliver voltage that varies only two to four volts although the general level may be low. No. 1 tap shows direct line voltage on the meter and allows you to check incoming voltage before making any corrections. Each additional tap boosts voltage about two or three volts. Most console TV sets draw about two amperes, well within transformer capacity.
To start building the transformer, you'll need the core taken from an old radio power transformer like an early Silver Marshall or any type close to specified core size (Fig. 4). The stacked E-type laminations measured $41 / 2$ x 4 in . outside with coil window openings of $3 / 4 \times 21 / 2-\mathrm{in}$. with $1 \frac{1}{2}-\mathrm{in}$. wide center leg and stacked $111 / 11^{-}$ in. high. If salvage cores are not available, you can cut $1 / 2-\mathrm{in}$. wide strips out of regular 26-29gage silicon transformer steel (Fig. 3C). Alternate stacks of four laminations were used in building the core; this same system for covering the joints should be used in rebuilding the core around the new coil.
The new coil consists of 292 turns of either one \#17 Formex wire or two \#20 wires in parallel. Build a winding form first (Fig. 3D). Leads are brought out on the narrow sides of the form (Fig. 5) to avoid interference when coil is slipped onto the

1 core from an old radio power transformer
power tap switch, Ohmite model $\# 111,6$ taps, 10 amps .
togile switch, S.P.S.T. 6 amps at 115 volts
power receptacle, Amprenol type 61.F1 two pole with plate
1 fuse holder, panel mounting. Buss HKP
1 fuse. Littelfuse 3 AG 5 antps, ∓ 312005
1 dial with knob. National HRS. 3
1 piece cabinet back screen stock, $9 \times 6^{\prime \prime}$
7 ft . $2 \cdot$ wire 518 done cord
1 attacirment plug cap
1 rubluer grommet for $3 / 8{ }^{\prime \prime \prime}$ hole
4 ruliber base knobs with 8.32 studs, nuts
About $3 / 4$ pound ± 17 Heavy Formex magnet wire. or double ± 20 wires. Coil tape, cotton sleeving in several colors. screws, nuts

Assembling laminations. Reverse positions of lami nations every fourth piece to cover butt joints.
the ends of the wires around the chuck jaws to keep them out of the way. The turn counter fixed to the lathe bed and driven by a rubber vacuum cleaner belt keeps track of the windings. You can, of course, wind the coil onto the form by hand evenly spacing the loops in tight layers.

Wind 247 turns before bringing out an 8 in . loop, also covered with sleeving. To identify the different loop leads, cover each with sleeving of

a different color noting the turns each represents as the winding progresses. At the loops, which will become taps, place a small piece of Scotch \#33 insulating tape under the point where the wire is looped off and another piece on top of the spot, to properly insulate the crossing of wires. Also be sure to use a piece of sleeving over the ends brought out. Continue to wind over the previous work to the 257th turn, and bring out another loop. This 257th tap is brought out at the opposite narrow side of the form from the beginning and 247th tap. Continue to wind in the same way, bringing out taps at the $263,272,278$, 285 and the end or 292 turns, all on the same form side as the 257 th tap.
With the last winding on, you're ready to tie the coil with strings through the slots and remove it from the form (Fig. 7). The starting wire and 247 th turn are at one of the narrow coil sides and the 257 to 292nd taps are at the other. Tape the entire coil with cotton coil tape as shown in Fig. 8. Sew the end of the tape before dipping the whole coil in air-drying insulation varnish, allowing it to soak for about five minutes. Hang it up to drain and allow it to dry overnight, or bake in an oven at about $150^{\circ} \mathrm{F}$

Back side of booster assembly. Voltmeter is set oft center to clear transformer. Back screen allows air to circulate around transformer. Note fuse holder at right lower corner.
for several hours to fully dry the varnish.
Assemble the core to the new coil (Fig. 9). Drive strips of fiber or Bakelite between the coil and center leg at both sides to wedge it tightly in place. Otherwise, an annoying hum may result. Attach the side frames and the transformer is finished. It will be necessary to square up the cure with a light hammer, driving butt joints together.
The grey enamelled aluminum cabinet has removable side panels and is laid out for the holes to mount parts according to Fig. 10. Cut the large holes with a Greenlee chassis punch, a hole saw or fly cutter. Instead of one of the panels, cut a piece of mesh screen stock to fit at the back. Mount the voltmeter, the toggle switch, flush receptacle, transformer and tap selector switch in the cabinet.
When all components are installed, you're ready to wire up connections according to the schematic diagram (Fig. 11). Insulation on the Formex wire is hard to scrape off, so be sure you get down to the bare copper before hooking it up. Use \# 18 flexible insulated wire for all hook-up connections aside from the transformer tap connections.
Step \#1 on the tap switch shows the line voltage on the booster's meter and tells you if it is high enough ($112-115$ volts) to use without boosting. Other steps increase voltuge and meter records just what these voltages are for top TV reception.

Bottle Plugs as Wire Grommets

- The plugs used in nasal spray plastic squeeze bottles make handy feed-through grommets. Pry out the plug from the bottle's neck with the blade of a sharp knife, then enlarge the opening in the plug with the sharp point of a heat soldering iron or an ice-pick. The inside spray tube makes a good piece of wire insulating spaghetti, too.

> Answers to Cross Numeral Puzzle, Page 105.

Component layout A. Pen cap and barrel. B. Diode detector, C. Ceramic fixed capacitor. D. Coil. E. Juning slug and screw. F. Small alligator clip. G. Antenna lead. H. Earphone, I. Tuner knob. J. Earphone Cord.

Fountain Pen Radio

This "air-powered" set built in a pen-

 case will receive stations up to as far as 50 miles away

ADISCARDED ball point pen barrel holds this radio that not only makes a conversation piece, but really works-and works well! A tuning knob in the cap selects various local stations.
A crystal set. it uses a germanium diode cletector and requires no operating power. A flexible clip lead attached to a phone dial finger stop, or other handy metallic object becomes an antenna for picking up local stations. X-type antennas may increase the set's range to 50 miles.
The pointed plastic tip of a dime store pen carrying the ball point and capillary ink tube is discarded, leaving an open barrel. Drill $1 / 8-\mathrm{in}$. hole in the bottom of the barrel for the phone cord and flexible antenna lead.

Drill a : $: 3-\mathrm{in}$. hole in the top of the pen cap to complete preparation of the pen barrel. The tuning coil is the next job. The coil shown in Fig. 2 consists of 12 ft Litz coil wire latticewound on a paper-base Bakelite tube $1 / 4 \mathrm{in}$. I.D. x 1 in. long. Leave coil leads long enough to be connected to the other components.
Duco or similar cement is applied to the out. side of the coil before inserting it into the $p \in n$

4 schematic plan

cap. The tuning slug is fitted with a \#4-40 brass screw. Because the plastic is soft, the screw will cut its own threads when turned into the ${ }^{3}$, -in. hole in the cap. The screw moves the iron or ferrite core with the coil to tune in the stations.
Many inexpensive and surplus radio or TV I.F, transformers will yield a suitable slug and coil form to wind the Litz wire on. Or you can purchase a ferrite-tuned radio antenna coil and strip off its outer cardboard cover and trim the lugs to get it into the pen barrel.
The $180-\mathrm{mm}$ f fixed ceramic capacitor and diode detector will fit nicely into the pen barrel when arranged as shown in Fig. 3. Be sure "pigtail" leads are covered with radio spaghetti or plastic Scotch tape so that leads do not short when inserted in pen.

The total cost of this novel radio is about $\$ 3$, less the button type hearing aid receiver. A high resistance magnetic unit of this type costs about

MATERIALS LIST-FOUNTAIN PEN RADIO

1 cheapest prade ball point pen, or discarded fountain pen
1 tuning coil (available from Electro•Mite. Box 636. Springdale, Conn. for \$1, or a complete kit except earphones for \$3, post paid)
1 small spool Litz wire (for homemade coil only)
1 short length insulated antenna lead wire (plastic stranded)
1 alligator clip (small)
1 germanium diode detector (CK705, 1N48 or 1N34)
1 high resistance hearing aid receiver, or standard size Alnico radio headphone (1000, 1500 or 2000 ohms)
1180 minf fixed ceramic capacitor for lacal stations between 1400 and 660 kc . Beyond 660 use 250 mmf , below 1400 kc use 75 mmf .
\$8. However, a standard radio type Alnico headphone costs a fraction of this figure. Except for its size, it far outperforms a hearing aid receiver
in volume. In either case, headphone leads and flexible antenna wire are fished through the $1 / 8-\mathrm{in}$. hole and soldered in place, along with the two flexible coil leads. The pen barrel is now slid up the cord to enclose the components and engage the cap.

The cap makes a tight friction fit over the barrel. While there is little danger of the radio pulling apart, a drop of cement may be applied inside the cap to permanently secure it to barrel.

Turning the \#4-40 screw on the tuning core proved a little rough on the fingertips, so I squirted a generous amount of Duco cement into the plastic cap salvaged from a discarded lighter fluid can and attached it to the screw, allowing screw and knob to dry overnight.

Camera Flashgun From Toy Teakettle

BATTERY powered and hand held, this economical little flashgun can be used anywhere with any camera having a time, bulb or slow shutter speed. Exposure is made by the open lens-flash-shut lens method.
Obtain the parts given in the list of materials first. Then, cut out the bottom of the toy teakettle with a pocket knife and, with a pair of pliers, pull the remaining bottom metal out of the seam. Bend the teakettle handle to the shape shown in Fig. 2 and carefully remove the kettle spout. Force the automobile lamp socket into the spout hole and, with a midget flashbulb in the socket, adjust the socket in the hole so that the bulb is centered in the reflector. If the spout hole must be enlarged to do this, use a tapered wooden dowel to expand the hole just large enough for a snug fit with the lamp socket. Coat the inside and outside edges around the socket where it joins the kettle with household cement.
Now, remove the paper cover from an AA-size flashlight dry cell battery and tape to the teakettle handle as in Fig. 2. For the on-off switch, drill one end of a strip of flexible insulating material (see materials list) to take a radio binding post and the other end for a 5-40 machine screw. Because different makes of toy kettles will vary somewhat in size, determine the dis-

MATERIALS LIST-		
	CAMERA FLASHGUN FROM TOY TEAKETTLE	
No.	Description	Use
1	$4^{\prime \prime}$ toy whistling teakettle (aluminum)	reflector
1	$1 / 16 \times 3 / 8 \times 11 / 2^{\prime \prime}$ flexible insulating material (Plexiglas. Bakelite, Micarta or Fiber)	switch
1	8.32 Bakelite knob radio binding post	switch
1	size AA flashlight dry cell	battery
1	$3 / 8 \times 5.40$ machine screw	switch
1 box	Midget flashbulbs (General Electric \#5)	
1	single-point, bayonet-type automobile lamp socket to fit above bulbs	bulb socket
1 tube	household cement	bulb socket

tance between the drilled holes by holding the insulating strip on the kettle handle so that the $r d$ binding-post screw will make contact with the battery center terminal when the binding post is pressed. Then cement and bolt the insulating strip to the kettle handle. Connect the wire from the lamp socket to the radio binding post and you're all set to take indoor, flashbulb-lighted pictures.-Arthur Trauffer.

- When a rat-tail file breaks, don't throw it away -break it up into a number of $2-\mathrm{in}$. lengths and use them in your power drill to enlarge radio chassis holes. They cut very rapidly and are ideal for enlarging tube socket holes and for similar radio work.--J.A.C.

How to Use a Grid Dip Meter

A highly versatile piece of test equipment, the Heath kit model GD-1B, is shown here checking the tuning of a receiver.

By FORREST H. FRANTZ, SR.

BASICALLY, a grid dip meter is an RF oscil-lator-but it has several unique features. For one, the oscillator coil is physically located on the instrument so that it can be placed near other coils in circuits under measurement or test. Plug-in type coils are most practical for this instrument.
For another, a grid dip meter has a meter which indicates relative oscillator output. When the oscillator is in an unloaded condition (when it isn't coupled to a circuit tuned to the frequency of oscillation), oscillation level is high and meter reading is high. But when the oscillator is loaded (when its coil is near a circuit tuned to the oscillation frequency), the oscillation level drops and the meter reading is low. Thus, in use, the grid dip meter coil is placed near the coil of a tuned circuit and the tuning dial of the grid dip meter is rotated through the frequency range. A noticeable "dip" of the meter needle will occur when the grid dip meter is tuned to the resonant frequency of the circuit under test and since the frequency dial of the grid dip meter is calibrated, the resonant frequency may be read from it.

The grid dip meter shown in Fig. 1 (Heathkit Grid Dip Meter GD-1B), has two additional features which all grid dip meters do not have. These are: a phone jack and a diode switch. The switch (on the underside of the instrument) permits the tuned circuit and tube to be used as an absorption wave meter by turning off B-plus and permitting the tube to function as a diode. The headphone jack permits the use of the grid dip meter as an oscillating detector with the diode switch in the

$L=\frac{1}{39.48 f " C}$
where L is expressed in microhenries, C in microfarads, and f in megacycles.

Capacitance can be measured - with the Model GD-1B-by connecting the unknown capacitor in parallel with the C band coil (14-37 mc), and finding the dip frequency of the combination with coil A (2-5 mc) or coil B (5-14 $m c$) in the grid dip meter. This arrangement is suitable for finding unknown capacitance between 70 and $2,000 \mathrm{mmf}$ directly from a graph furnished with the GD-1B. With other grid dip meters, assuming you know the inductance of the coil,

$$
C=\frac{1}{39.48 \mathrm{f}^{=} \mathrm{L}}
$$

where C is in microfarads, L is in microhenries, and f is in megacycles.

If you want to measure a capacitance smaller than $70 m m f$, connect it in parallel with a capacitor of approximately 100 mmf . Since capacitance in parallel is like resistance in series and adds, the capacitance of the unknown capacitor will be the capacitance of the combination minus the capacitance of the known capacitor.

If you want to measure the capacitance of a capacitor greater than 2,000 but, less than 10,000 $m m f$ (01 mfd), connect a known capacitor of about 1500 mmf in series with the unknown capacitor and find the dip frequency. The unknown capacitance is given by

$$
C_{x}=\frac{1}{1 / C_{t}-1 / C_{k}}
$$

where the subscripts x, t, and k represent the unknown, the total of series, and the known

capacitance, respectively.
To measure the Q (quality factor) of a coil, connect the coil as shown in Fig. 4A. The meter can be a general purpose VTVM set on the lowest ac range, or it can be made up with a O-1 ma meter as shown in Fig. 4B. Find the dip frequency f_{s}; note the external meter reading; multiply it by .707. Now adjust the grid dip meter frequency till the external meter reading falls to this computed value. There'll be points at a lower frequency (f_{1}) and a higher frequency (f_{2}) at which this will occur. The Q of the coil is given by:

$$
\mathrm{Q}=\frac{\mathrm{f}_{0}}{\mathrm{f}_{2}-\mathrm{f}_{1}}
$$

The functions which a grid dip meter can perform enable you to use it to calibrate variable capacitor dial scales, prealign tuned circuits without applying power, neutralize transmitters, wind your own coils to specified frequencies, locate parasitic oscillations, and numerous other specific jobs you'll discover as you use it.

Nailpolish is "Liquid" Insulation

- Nailpolish makes a high-quality liquid insulation for coating bare electric wire connections and is especially easy to apply to radio-TV connections that are difficult to reach with tape. After the connection has been soldered and allowed to cool, apply the polish with the handy applicator brush provided in the bottle. If the connection has to be unsoldered later, just the touch of a hot soldering iron will burn away such insulation with a puff of smoke.-John A. Comstock.

Four-way Table Radio Conversion

Convert Your Radio to a

1) Telephone-pickup speaker
 2) Public address unit
 3) Record-player speaker
 4) Electronic Anplifier for musical instruments

By THOMAS A. BLANCHARD

yOU can, without having previous radio circuitry knowledge, convert your small inexpensive radio into a multi-purpose unit that will (1) amplify telephone conversations so the whole family ean listen to calls from distant friends or relatives; (2) perform as a small public address unit, or "home broadcaster" for party stunts or act as a one-way intercom between house and garage, or basement; (3) accept any manual or automatic record player with reserve amplification, thus allowing teenagers to play their favorite clises without disturbing others; (4) amplify stringed musical instruments so they can be heard when played with other louder

This youngster is going to listen to his favorite record without disturbing other members of the household because he is using a small radio with earphone attach. ment to amplify record player.
instruments. Radio may be operated with speaker silent, or speaker and earphone both on at the same time.

Converting your radio set for the above features involves an outlay of less than $\$ 1$ for the necessary components which consist of 1 ft . of single conductor shielded phono or mike cable, a phono jack, a rotary lamp switch, a .005 mfd . capacitor, and a miniature earphone plug, and jack. Record player, phone pickup coil, crystal mike, etc., will also be needed depending upon the use you intend to put your converted radio to.

First remove the chassis from the radio cabinet, and drill three holes in the pressedwood back for mounting the two jacks and switch as in Figs. 2 and 3. Since the radio cabinet back is most likely perforated, it will only be necessary to enlarge the holes in order to install the components. Earphone jack and switch require a plain hole for mounting, while the phono jack will require two additional mounting holes to clear a pair of \#3-48 x 3/8-in. machine screws which secure the component to the panel.

Note in Fig. 4 that there are two methods for installing the earphone attachment. The first method is the most versatile because it allows either an inexpensive crystal earphone or the superior high resistance magnetic-type phone to be used. In this hookup, a lead is attached to the primary side of the set's audio output transformer, then terminated to one of the earphone jack lugs. A second lead is connected to the remaining transformer primary lead through a .0047 or .005 mfd . paper capacitor. This lead is now terminated on the remaining jack lug. Now, in order to silence the speaker, we open one side of the output transformer's secondary and install the rotary switch to the voice coil lug on the speaker, and

Easphone, fhons jacks and switch are mounted on baek cover of radib. Alterations do not affect set's normal use.
the disconnected transformer wire.
In most small radios, the output transformer is mounted on the speaker frame as in Fig. 2. However, in some sets, this transformer may be cr the chassis and gaining access to the primary side may be difficult unless you're familiar with radio circuitry. In such instances, the earphone attachment can be connected through a miniature radio output transformer directly to the speaker voice coil lugs. The 3.2 ohm secondary is connected to the speaker while the 2000 ohm primary is connected to the earphone jack.
It should be noted that witt. this arrangement, only magnetic earphones will work. The speaker

[^10]
(A) Miniature output transformer as uged in alternate earphone hookup. (B) High impedance magnetic earphone. (C) Inexpensive crys. tal earphone will also work as a "mike."
silencer switch connections are the same for either hookup. The miniature earphone jacks are 2 -circuit types. Therefore, connections are made only to the two outside lugs, the center lug not being connected. While this jack can be wired so that the speaker (in the Fig. 3, \#1 hookup only) is automatically silenced when a magnetic (only) earphone is plugged in, this arrangement will not allow both speaker and phone to function together. It is for this reason that a separate switch has been employed. Moreover, the \#1 hookup allows use of a crystal earphone or magnetic type.

Record player-mike attachment. Whether the set you are working with contains 4,5 or 6 tubes, you will in nearly every instance, get just as much amplification from the 4 -tube set as you will from the 5 or 6 . Nearly all table sets made within the last 5 years employ a miniature 12AV6 detector-AVC-voltage amplifier and a 50 C 5 miniature power pentode output tube. All other tubes in the set are for R.F., I.F. and voltage rectification. This applies equally well to sets using large tubes.
Start by carefully removing about $3 / 4 \mathrm{in}$. of the outer plastic insulation from the shielded cord. This will expose a loose-woven wire braid. With a needle, carefully unravel the braid. This will expose a second layer of insulation under which is the "grid" lead. Twist the braid wires together and use them as any other wire. But be careful

that the inner wire and braid lead do not contact each other.
Note that the receiver volume control contains three soldering lugs. It may have two additional lugs on the back, but disregard these as they are line switch connections. Without disturbing any wires now on the volume control, solder the inner wire of the shielded cable to the center lug of the volume control. Now solder the outer braid to the set chassis if a conventional radio, or to the volume control bracket if set employs a printed circuit board.
There is no further work to do on the set. Simply connect the remaining end of the shielded cable to the outer shield lug of the phono jack and the inner wire to the center pin lug of the jack. Any radio built according to Retma standards employs a "floating" ground system. There is no chance of dangerous shock when connections are made as described above.

On the other hand, if your set is wired with the chassis "hot," you can eliminate shock hazard by adding an .05 mfd . capacitor in series with the ground return. Fig. 4 indicates the alternate connections along with the conventional hookup for RETMA sets which automatically provides capacitor isolation on both the grid and ground sides of the phono jack input. You can now reassemble the radio and replace the back.

For public address system or one-way intercom use any good crystal mike can be plugged into the phonograph jack. The cord on the mike must be sufficiently long, however, so that radio and mike are not in the same room, otherwise feedback (howl) will result. This hookup, incidentally, has sufficient output for store window demonstrators (pitchmen) to reach large sidewalk gatherings.
To pick up and amplify telephone conversations you need only an inexpensive induction coil. Plug the cable into the phono jack, and place the coil under the phone near the rear of the base. If phone has a wall ringer box, place the coil on top of the box. These induction coils are plastic encased and measure only $11 / 2 \times 41 / 2 \times 1 / 4$. A strip of scotch masking tape will secure them to the telephone apparatus.

If feedback results with the telephone hookup it can be corrected by cupping your hand over the phone transmitter, or merely being sure that you are a modest distance behind the radio and not in front of it. This also applies when using a mike. By careful positioning of yourself behind the radio, it is possible to use a mike without creating a feedback effect.

Phono players and contact mikes for stringed instruments usually come with $6-\mathrm{ft}$. cords; an extension cord of single conductor shielded wire up to 25 ft . may be employed. Contact mikes are available for amplifying harmonicas and accordions, too. These units are all inexpensive and work very well. We have used a contact mike attached to the baffle of our electronic organ to feed music to the basement.

When using the radio in any of the amplifier applications, always turn the radio dial to the 550 KC end. This simple circuit employs no system to defeat the R.F., I.F. sections, thus the radio should be tuned to the less sensitive end of the band. Our youngsters have used this condition to advantage by knowing the top tunes and the order in which they are played by dise jockeys.

With the record player plugged in, and the set tuned to the record show, they'll "kick" the player mechanism at the moment the disc jockey starts the same tune. There is always a small lag as record player and radio feed the same signals through the amplifier. The effect is often novel with the lag creating anything from a true echo effect to something that sounds like a hound dog trapped in a barrel.

Bowl Cover Protects Speaker

- To eliminate the possibility of puncturing a loudspeaker's cone while working on the speaker or carrying it from one place to another, slip an inexpensive plastic bowl cover over the face of the speaker.-Joнn
 A. Сомstock.

Experimental Foil TV Antenna

- Need an all-channel TV antenna for experiments to see how many stations you can pull in? Here's one that is easy to make, inexpensive and

very efficient. Cut a 25×38-in. piece of cardboard from a large cardboard box and outline two equilateral triangles measuring $23 \times 23 \times 23$ in. each on the cardboard in a fan shape. Cut two pieces of household aluminum foil to the outline of the triangles and secure them to the cardboard with masking tape. Connect a piece of twin-lead to the apex of each fan with small screws and nuts through a hole punched through both foil and cardboard. Fasten the lead-in to your set and try the antenna in various positions for best reception. If the antenna is to be used permanently, mount it to the rafters in the attic, with $25-\mathrm{in}$. dimension in vertical position.-John A. Comstock.

Useful Tables and Formulas

Compiled by Thomas A. Blanchard

STANDARD RESISTOR VALUES

- Table A, below, lists all carbon type resistors manufactured in the United States according to RETMA (Radio-Electronics-Television Manufacturers Assoc.) and JAN (Joint Army-Navy) Standards. The bold figures show the 10% accuracy values that are becoming the preferred electronic standard. For example, a circuit may call for a resistor of 50,000 ohms. However, noting chart, the nearest standard 10% value today is 47,000 ohms.
Except in cases where a very low ohms value is called for, any resistance under 500 ohms , it is usually safe to use the nearest value shown in bold face type in Table A.

	TABLE A-STANDARD All values in OHMS				RESISTANCE			
1.0	10	100	1,000	10,000	100,000	0.1	1.0	10.0
1.1	11	110	1,100	11,000	110,000	0.11	1.1	11.0
1.2	12	120	1,200	12,000	120,000	0.12	1.2	12.0
1.3	13	130	1,300	13,000	130,000	0.13	1.3	13.0
1.5	15	160	1,500	15,000	150,000	0.15	1.5	15.0
1.6	16	160	1,600	16,000	160,000	0.16	1.6	16.0
1.8	18	180	1,800	18,000	180,000	0.18	1.8	18.0
2.0	20	200	2,000	20,000	200,000	0.2	2.0	20.0
2.2	22	220	2,200	22,000	220,000	0.22	2.2	22.0
2.4	24	240	2,400	24,000	240,000	0.24	2.4	
2.7	27	270	2,700	27,000	270,000	0.27	2.7	
3.0	30	300	3,000	30,000	300,000	0.3	3.0	
3.3	33	330	3,300	33,000	330,000	0.33	3.3	
3.6	36	360	3,600	36,000	360,000	0.36	3.6	
3.9	39	390	3,900	39,000	390,000	0.39	3.9	
4.3	43	430	4,300	43,000	430,000	0.43	4.3	
4.7	47	470	4,700	47,000	470,000	0.47	4.7	
5.1	51	510	5,100	51,000	510,000	0.51	5.1	
5.6	56	560	5,600	56,000	560,000	0.56	5.6	
6.2	62	620	6,200	62,000	620,000	0.62	6.2	
6.8	68	680	6,800	68,000	680,000	0.68	6.8	
7.5	75	750	7,500	75,000	750,000	0.75	7.5	
8.2	82	820	8,200	82,000	820,000	0.82	8.2	
9.1	91	910	9,100	91,000	910,000	0.91	9.1	

Note: Values below one ohm are available for precise instrument or laboratory work. They are not ordinarily needed by the radio or TV experimenter.
10% accuracy resistors are less costly and can be used for most applications. All values may not be available from all manufacturers or radio supply houses.

It will be noted that resistors are standardized in units, tens, hundreds, thousands . . . reading across table. This simplifies reading of color codes. While standard values stop at 22 megohms, IRC and certain other resistor makers supply values up to 200 megohms for laboratory use. Special resistors may cost 100 times a standard value due to technically skilled labor required in calibration as against production-line labor.

RESISTORS IN MULTIPLE

- Series. Any number of resistors of identical wattage may be connected in series to obtain a desired resistance value. If wattage ratings are mixed, the total resistance will handle as much
FORMULA1 $R_{1}+R_{2}+R_{3}=$ RESISTANCE TOTAL
EXAMPLE: $15000+47000+22000=84000$ OHMS

as the lowest wattage resistor in the "string."
Parallel. Identical resistors in parallel increase the wattage rating of the total resistance. At the same time the total number of resistors becomes the divisor for the unit combination.
(Using three 4700 -ohm, 1 -watt units.)

FORMULA, PXNO. OF RESISTANCES = TOTAL WATTAGE (POWER) EXAMPLEI |× $3=3$ WATTS
$R_{1} P_{1} \sum_{\{ }^{\infty} R_{2} P_{2}\left\{\begin{array}{r}R_{3} P_{3}\left\{\begin{array}{l}\text { TOTAL RESISTANCE } \\ \text { TOTAL WATTAGE }\end{array}\right)\end{array}\right.$

Mixed value resistors connected in parallel employ this formula for multiples of two resistors only: (Using a 4700 and 3300 ohm 1 -watt resistor.)

$$
\begin{aligned}
& \text { FORMULA: } \frac{R_{1} \times R_{2}}{R_{1}+R_{2}}=\text { TOTAL RESISTANCE } \\
& \text { EXAMPLE: } \frac{4700 \times 3300}{4700+3300}=\frac{155100}{8000}=1940 \text { OHMS } \\
& \text { (APPROX) }
\end{aligned}
$$

Mixed resistances in parallel do not (theoretically) double in current carrying capacity (wattage). However, if above 4700 and 3300 -ohm resistors were each rated 1 -watt, the combination would handle almost two watts. If a large difference exists between two values, total wattage through circuit should not greatly exceed rating of lowest wattage single unit.

For multiple mixed parallel combinations, reduce resistors in pairs with above formula until arriving at final resistance. There are formulas
Standard rtma transformers code

for multiple mixed resistor combinations, but they are much more complicated than simple reduction.

COLOR CODE CHART-FOR RESISTORS AND CAPACITORS

Colur Dot A (mumf.) Cotor Band A (uhms)	Color Dot B (mmf.) Color Band 8 (ohms)	Color Dut C (mmf.) Color Band C (ohms)
bilack...... 0	Black 0	
Bruwn 1	Brown 1	Brown.... Add 1 zero
Red. 2	Red. 2	Red. Add 2 zeros
Orange 3	Orange 3	Orange..... Add 3 zeros
Yellow..... . 4	Yellow...... 4	Yellow.... Add 4 zeros
Green...... 5	Green....... 5	Green...... Add 5 zeros
Blue........ 6	Blue........ 6	Blue...... Add 6 zeros
Violet....... 7	Violet 7	Violet...... Add 7 zeros
Cray 8	Gray 8	Gray....... Add 8 zeros
White...... 9	White...... 9	White..... Add 9 zeros

Example:
Band A is Yellow
Band B is Violet Band C is Oranue Kesistor will be 47.000 olims.

Example:
Dot A is Red
Dot B is Green
Dot C is Brown Capacitor is 250 mmf .

4 TH BAND-GOLD - 5% ACCURACY \pm 4 TH BAND-SILVER-10\%ACCURACY \pm NO 4 TH BAND 20% ACCURACY \pm
$\begin{array}{ll}\text { RTMA 3-DOT } & \text { A-N 6 DOT } \\ \text { MICA CAPACITOR } & \text { CAPACITOR } \\ \text { CODE } & \text { CODE }\end{array}$

CERAMIC CAPACITOR

TABLE B-DECIMAL EQUIVALENTS

$1 / 64$.0156	$1 / 4$.2500	$1 / 2$.5000	$3 / 4$.7500
$1 / 32$.0312	$17 / 64$.2656	$33 / 64$.5156	$49 / 64$.7656
$3 / 64$.0469	$99 / 32$.2812	$17 / 32$.5312	$25 / 32$.7812
		$19 / 64$.2969	$35 / 64$.5469	$51 / 64$.7969
$1 / 16$.0625	$5 / 16$.3125	$9 / 16$.5625	$13 / 16$.8125
$5 / 64$.0781	$21 / 64$.3281	$37 / 64$.5781	$53 / 64$.8281
$3 / 32$.0938	$11 / 32$.3438	$19 / 32$.5938	$27 / 32$.8437
$7 / 64$.1094	$23 / 64$.3594	$39 / 64$.6094	$55 / 64$.8594
$1 / 8$.1250	$3 / 8$.3750	$5 / 8$.6250	$7 / 8$.8750
$5 / 64$.1406	$25 / 64$.3906	$41 / 64$.6406	$57 / 64$.8906
$5 / 32$.1562	$13 / 32$.4062	$21 / 32$.6562	$29 / 32$.9062
$11 / 64$.1719	$27 / 64$.4219	$43 / 64$.6719	$59 / 64$.9219
$2 / 16$.1875	$7 / 16$.4375	$11 / 16$.6875	$15 / 16$.9375
$13 / 64$.2031	$29 / 64$.4531	$45 / 64$.7031	$61 / 64$.9531
$7 / 32$.2188	$15 / 32$.4688	$23 / 32$.7183	$31 / 32$.9688
$15 / 64$.2344	$31 / 64$.4844	$47 / 64$.7344	$63 / 64$.9844

TABLE C-METRIC LENGTHS TO INCHES

COMPUTING VOLTAGE-DROPPING RESISTOR FOR SERIES WIRED TUBES

- Small ac-dc radios are operated without use
of a step-down filament transformer by wiring all tube filaments (heaters) in series. Tubes in a modern 5 -tube set have individual filaments which total 121 volts, requiring no voltage-drop.

Sets with 4 or less tubes may require a resistor to make up the difference between their total and line voltage. Most miniature tubes and GT types draw 3 amp . if 6 -volt filament type; or .150 amp . if 12 -volt filament type.
To calculate voltage drop, add up total voltage of tubes in string (all must have same current rating as determined by checking in a tube man-
ual). Subtract the resulting figure from your power line voltage. Now divide the tube current into the voltage difference. The answer will be the value of the voltage dropping resistor in ohms. For example:

$$
\begin{array}{cl}
\begin{array}{c}
\text { Line voltaye } 120 \text { volts }
\end{array} & \begin{array}{l}
R=\text { Resistance in ohms } \\
\text { Three } 12 \text { v., } 150 \mathrm{amp} \text {. tubes total } \\
\text { Voltage drop }
\end{array} \frac{36}{84} \text { volts }
\end{array} \quad \begin{aligned}
& E=\text { voltage in volts } \\
& I=\text { current in amperes }
\end{aligned}
$$

To determine wattage rating use formula $W=I^{2} R$ or $.150 \times .150 \times 560=$ 12.60 watts.

Since a 560 -ohm, 12.60 -watt resistor is not available, select next size; in this case 600 ohms rated at 20 watts.

FINDING THE UNKNOWN			
Volts	Milliamperes (Ma.) \qquad	Ohms $-\mathrm{R}-$	Watts -W-
Known	Known	$1000 \times$ volts	Volts \times milliamps
		milliamperes	1000
Known	$1000 \times$ volts	Known	Volts \times volts
	Ohms		Ohms
Known	$\frac{1000 \times \text { watts }}{\text { volts }}$	$\frac{\text { volts } x \text { volts }}{\text { watts }}$	Known
MA, x Ohms	Known	Known	MA. \times MA. \times Ohms
1000			1,000,000
$1000 \times$ watts	Known	1,000,000 \times watts	Known
MA.		MA. \times MA.	
$\sqrt{\text { ohms } x}$ watts	$1000 \sqrt{\frac{\text { watts }}{\text { Ohms }}}$	Known	Known

Circuit component requirements are quickly established with this table so long as any two items in columns are known. Then simply read across the proper row for formulas that will provide the unknown information.

OHM'S LAW AND DIRECT CURRENT RELATIONS ($E=I R$ or Volts $=$ Amperes \times Ohms)
(E) VOLTS $=1 R$ or $\frac{W}{1}$ or $\sqrt{\text { RW }}$ (I) AMPS. $=\frac{E}{R}$ or $\frac{W}{E}$ or $\sqrt{\frac{W}{R}}$
(R) OHMS $=\frac{E}{1}$ or $\frac{W}{I^{2}}$ or $\frac{E}{W}$ (W) WATTS $=E$ or IR or $\frac{E}{R}$
table d-converting electronic units of measure

Amperes	$\times 1,000,000$	$=$ Microamperes
Amperes	$\times 1,000$	$=$ Milliamperes
Cycles	\times. 0000001	$=$ Megacycles
Cycles	$\times .001$	$=$ Kilocycles
Farads	$\times 1,000,000,000,000$	= Micro-microfarads
Farads	$\times 1,000,000$	$=$ Microfarads
Henries	$\times 1,000,000$	$=$ Microhenries
Henries	$\times 1,000$	- Millihenries
Kilocycles	$\times 1,000$	= Cycles
Kilovotts	$\times 1,000$	$=$ Volts
Kilowatts	$\times 1,000$	Watts
Megacycles	$\times 1,000,000$	= Cycles
Microfarads	\times. 000,001	- Farads
Microfarads	$\times 1,000,000$	Micro-microfarads
Microhenries	\times.000,001	Henries
Microvolts	$\times .000,001$	Volts
Micra-microfarads	\times.000,000,000,001	Farads
Miliamperes	$\times .001$	- Amper es
Millihenries	$\times .001$	= Henries
Millivolts	$\times .001$	$=$ Voits
Ohms	$\times .000,001$	$=$ Megohms
Ohms	$\times 1,000$	= Milliohms
Votts	$\times 1,000,000$	- Microvolts
Volts	$\times 1,000$	Millivolts
Watts	$\times 1,000$	Milliwatts
Watts	$\times .001$	Kilowatts

This table is extremely versatile in that it may be used forward and backward. For Example: amperes $x 1,000,000=$ microamperes. Or 0.25

amp. $\times 1,000,000=250,000$ microamperes. Reading the table from right to left, note that a microampere is a millionth part of an ampere; a milliampere is a thousandth part of an ampere.

The center "multiplier" column is expressed both in whole numbers and decimals. This is done for mathematical simplicity.

Plastic Hose Protects Underground Cable

- If you need some UF (underground feeder) cable and there's none to be had, or the price is too high, ordinary wire (providing a small enough size wire is permissible) can be housed

inside lengths of plastic garden hose. Bury the wire and hose, then caulk the open ends shut to prevent moisture from entering.-Jонn A. Сомsтоск.

When reading a decimal "multiplier" from right to left, it is read as a whole number. For example: Watts $\times .001=$ Kilowatts. Or 10 watts x $.001=.01$ ($1 / 100$ th part of a kilowatt.) Now reading right to left, Kilowatt equals 1000 watts. The decimal $.001(1 / 1000$ th $)$ is read as a whole number, or one thousand.

RADIO HOOKUP PUZZLE

|F you like to work puzzles, herc's one that's rather unusual. Using the appropriate circuits in the block diagram above, hook up a tuned-radio-frequency radio receiver by drawing in a connecting wire between the various stages. Also, indicate (with arrows) the path the signal takes through the circuit. There's no power supply so just assume that one already exists and that all stages are receiving power. It doesn't matter what route you take in making connections, just so you find and couple together all six stages in their correct order.

Silicorr:CEI Suni Batter Powess Motor

By HAROLD P. STRAND

can be observed. The battery case, mounted on top of the motor case (Fig. 2) can be tilted to catch the direct rays of the sun. The motor will operate at a speed of about $800-1000 \mathrm{rpm}$ in bright sunlight during winter months when the light intensity is probably less than 5000 footcandles. During the summer, when sunlight approaches 10,000 footcandles, the motor will speed up to 2000 rpm or more.

The motor armature shaft is equipped with phonograph needles running in sapphire jewel bearings to minimize friction. Brushes are of fine phosphor bronze wire to further reduce friction. A permanent magnet field having a single magnet and two pole pieces is used. The motor will operate on a minimum of about .5 volts and draws about 40-50 milliamperes at that voltage. With higher intensity sunlight, the voltage at the motor terminals will be about .6 to .9 volts.

Making the Motor. After purchasing the parts called for in the Materials List, cut off both ends of the armature shafts $9 / 32 \mathrm{in}$. from the commutator on one end and the same distance from the bushing on the other end. Roundoff the cut ends of the shaft with a file. The phonograph needles, used for armature shaft extentions (Fig. 3A), must also be cut off to a total length of $7 / 1 ;$ in. from the pointed end. Grip the blunt end with pliers and, holding the needle against the corner of an abrasive wheel, grind a notch around the needle and break off the end. Dress the cut end square and round-off the corner. Take care not to injure the pointed end.

To mount the needles to the armature shaft ends, make two shaft couplings (Fig. 3A). These should be accurately bored with a modelmaker's lathe so the holes are concentric and press fit with the needles and armature shaft. If you do not have a metal-turning lathe to do this work, have these and other turned parts made at a local model or machine shop. Assemble the couplings by pressing them on the armature shaft and then press the needles into the coupling holes as in Fig. 3A.

Make the fan and fan hub (Fig. 3B) next. Fasten fan to hub by peening end of hub after assembly. Mount the fan on the armature by pressing it on the coupling as in Fig. 3.

Set the assembled armature aside for the moment and work on the jeweled bearing supports. For

brass as in Fig. 3D. Then drill and tap the holes. To hold motor frame upright during assembly, make a plastic base for it as shown in Fig. 3E.

Before assembling the parts you have made thus far, polish the brass parts by rubbing with very fine steel wool. First assemble the motor frame to the plastic base with two 4-40 fh screws. Clean the jeweled bearings with carbontetrachloride and fasten the bearing support bracket to the motor frame with one 2-56 rd screw. Then, insert the commutator end of the armature in the bracket bearing and other end of shaft into the bearing in the fil-ister-head screw. Adjust the screw as in Fig. 5 so there is just a

MATERIALS LIST-SILICON CELL BATTERY AND MOTOR

 commutator. Wilson's of Cleveland, 425 Lakeside Avenue, N.Wsapphire clock jewels measuring 2.0 mm O.D. and with .50 .51 mm hole 2.jewels as above with fitted phono needles and piece of phosphor brouze wire for the brushes call he supplied by Howard R. Hawkins, 88 E. Foster St., Melrose, Mass. for $\$ 2.00$ P.P. in U.S. Send M.O.
1 filister-head 8.32 brass serew $5 / 16^{\prime \prime}$ long for adjustable jewel bearing support
8.32 brass nut. file to $1 / 16^{\prime \prime}$ thickness
piece brass rod stock about $1 / 4^{\prime \prime}$ dia., $3 / 4^{\prime \prime}$ long for jewel support and fan hub
piece brass stock about, $032^{\prime \prime} \times 1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}$. Jewel support bracket
piece brass stock $1 / 8^{\prime \prime} \times 3 / 8^{\prime \prime} \times 63 / 4^{\prime \prime}$. Main motor frame
piece brass rod stock about $3 / 10^{\prime \prime}$ dia. $\times 1 / 4^{\prime \prime}$ for armature-shaft sleeves
1 piece sheet aluminum, $010^{\prime \prime} \times 1^{\prime \prime} \times 3^{\prime \prime}$ for fan. Can also use brass stock about .008" thick
2 pieces soft iron or steel $1 / 16^{\prime \prime} \times 5 / 16^{\prime \prime} \times 25 / 8^{\prime \prime}$ for motor-pole pieces
1 Alnico permanent magnet from a "Hide-A-Key" container for car keys (auto parts stores)
1 piece clear plastic $1 / 4^{\prime \prime} \times 3,8^{\prime \prime} \times 9 / 16^{\prime \prime}$ for brush block
1 piece clear plastic $1 / 4^{\prime \prime} \times 21 / 8^{\prime \prime} \times 378^{\prime \prime}$ for motor base
1 piece clear plastic $3 / 10^{\prime \prime} \times 33 / 4^{\prime \prime} \times 43,8^{\prime \prime}$ for piece under base
2 pieces clear plastic $1 / 8^{\prime \prime} \times 35 / 8^{\prime \prime} \times 41 / 8^{\prime \prime}$ for sides of motor case
2 pieces clear plastic $1 / 8^{\prime \prime} \times 31 / 4^{\prime \prime} \times 35 / 8^{\prime \prime}$ for sides of motor case
1 piece clear plastic $1 / 8^{\prime \prime} \times 31 / 2^{\prime \prime} \times 41 / 8^{\prime \prime}$ for top of motor case
1 piece clear plastic $1 / 8^{\prime \prime} \times 3^{\prime \prime} \times 33 / 4$ " for top of solar battery case
1 piece clear plastic $1 / 8^{\prime \prime} \times 3^{\prime \prime} \times 33 / 4^{\prime \prime}$ for back of solar battery case
2 pieces clear plastic $3 / 10^{\prime \prime} \times 1 / 2^{\prime \prime} \times 33 / 4^{\prime \prime}$ for sides of battery case
2 pieces clear plastic $3 / 10^{\prime \prime} \times 1 / 2^{\prime \prime} \times 25 / 8^{\prime \prime}$ for sides of battery case
1 piece aluminum about $.035^{\prime \prime} \times 4 / 16^{\prime \prime} \times 4^{\prime \prime}$ for adjustable battery brackets
2 pieces plosphor bronze wire $.011^{\prime \prime} .012^{\prime \prime}$ dia., $2^{\prime \prime}$ long for motor brushes
4 solar cells, International Rectifier SAS-M (standard) at $\$ 7.00$ each or SA5A.M (selected cells) at $\$ 8.00$ each. Order from electronic parts dealers
2 pieces plastic covered stranded wire about \#28 gage and about $8^{\prime \prime}$ long for motor leads
Misc. screws, nuts, bare hook-up wire for battery, etc.
The plastic parts can be supplied cut to measure from Forest Products Co., inc., 131 Portland Street, Cambridge, Mass. They can also supply a small bottle of plastic cement. Total cost \$4. P.P. in U.S. Send M.D. No C.D.D.'s.
slight amount of end play and fasten screw in place with a locknut. Apply a drop of clock oil to the bearings and spin the armature with your fingers-it should continue rotating for about 15 seconds. If the bearings bind, loosen the bearing at the commutator end and raise or lower, or move to one sicle.
Continuing with the construction of the motor, make the brush and terminal block (Fig. 3F). Use .011.012 in. dia. phosphor bronze wire bent as in Fig. 3F for the brushes. Fasten the brushes to the terminal block with short 2-56 screws and connect two 8 in . length of \#28 plastic insulated wire under the screws. Be sure these screws do not touch the 4-40 center mounting screw. Twist the two \#28 gage wires together to form a neat cable. These are the leads that will go to the solar battery. Now fasten the terminal block to the motor frame with one 4-40 rh screw.

Field pole pieces are next. Bend these from strips of soft steel to the shape shown in Fig. 3G. The $1 / 16$ in. air gap is not too critical except that if the poles are too close to the armature core, there will be too much magnetic attraction for the armature which may prevent the armature from starting on the very low power available from the solar cells. In general, about a $1 / 16$ in. gap or a bit less will be best. Drill $\# 33$ holes through the bottoms of the pole pieces and mount them with 4-40 rd screws on each side of the armature as in Fig. 3.

The permanent magnets for the field poles are made from a Hide-aKey unit sold in auto parts stores for holding the spare car keys in a hidden place in the car. Remove the Alnico magnet from the unit and grind notches $\overline{1} / 16$ in. apart as in Fig. 3G. Then grip the magnet in a vise with the jaws at the edge of the notches and break the magnet with a sharp blow from a hammer. Break off two pieces and grind the broken edges smooth. Since heat may remove some of the magnetism, dip the pieces in water frequently during grinding. Also grind the ends of the magnets so they will fit snugly between the pole pieces.

Place the two magnets together so that they repel one another as in Fig. 3G (like poles repel) resulting in a combined north and south pole. To keep the two repelling sections together, apply Pliobond cement to each piece and, after a few minutes,
press them together. After magnets are placed between poles apply a little shellac at the top edges where magnets join pole pieces to keep them in place.

Your motor is now ready for a test run. Connect a $1 \frac{1}{2}$ volt penlight cell to the leads. The motor should run smoothly and at high speed. However, since the solar battery will supply only . $5-.9$ volts instead of the $11 / 2$ volts from the dry cell. a more accurate test can be made by connecting a small rheostat in series with one lead from the dry cell and, with a vacuum tube volt-meter across the motor terminals, the voltage adjusted to about .6 volts, this will then be about the average voltage the motor will be operating on from the solar battery. If the motor does not run on this reduced voltage, adjust the pressure of the brushes on the commutator by bending them as required and also check for friction in the bearings.
Plastic Case. If you purchase the plastic for the case (Fig. 4) from the supplier listed at the bottom of the Materials List, you will receive all of the pieces for the motor and battery case cut to size, so all you need do is assemble them. Pour a small quantity of plastic cement on a piece of glass and draw the edge of one plastic side piece in the cement, allowing it to remain for a few seconds. Then, placing it against the piece to which it is to be joined, slide it back and forth a few times lengthwise and press tightly together.

Keep an even pressure on the joint several minutes, with the parts held square, until the softener plastic sets up. Continue cementing other side joints, cementing top in place last.

Use a weighted cigar box to maintain pressure on the top until cement sets up.

A properly cemented joint will come out as clear as the plastic after drying. Cloudy joints indicate either lack of enough cement to seften the plastic or inadequate pressure. Drill and tap the $\%$ is in. plastic base piece (Fig. 4), and fasten motor-frame base to it with four 4-40 rh screws. Then place the plastic case over the motor and drill a hole at bottom of each $31 / 2 \mathrm{in}$. side to line up with the 4-40 tapped holes in motor frame base. Fasten with 4-40 rh screws.

Assembling the Solar Batteries. The four solar cells are arranged on top of the case so they can be tilted as in Fig. 1 to the direct rays of the sun. Make the battery case of clear plastic as detailed in Fig. 5, following the same cementing procedure you used for the motor case. Note that the bottom of the hattery case is removable and held in place with two 4-40 rh screws. Mount the solar cells in the top of the case with their terminal studs. Avoid tightening the terminal nuts too much hecause this may cause the studs to turn in their plastic cases and thus break off internal connections.
Use \#22 gage tinned copper solid wire to hook up the cells to the two terminal serews in the case side as in Fig. 5. Two groups of two cells each are connected in series (plus to minus). Polarity markings are on the backs of the cells. The two groups of series-connected cells are then connected in parallel (plus to plus and minus to minus).

To support the battery case, make up two sets of the adjustable brackets as detailed in Fig. 5. Mount the lower brackets to the top of the notor case with $4-40$ rh screws and the upper brackets to the bottom of the battery case with the screws that hold the bottom in place. Bring the leads from the motor up through a hole drilled in the top of the motor case and connect them to the battery terminals.

Place the unit in the sunlight and tilt the solar batteries to catch the direct rays of the sun. The little motor should immediately start running. If, for demonstration purposes, you care to operate the motor in a room where there is no sunlight or at night, you can use a 150 -watt clear electric light bulb in a reflector or a 150-watt reflectortype flood lamp. Hold the bulb about 10 in . from the batteries. Prolonged use of the batteries under the heat of a light bulb will reduce the voltage output, but will have relatively little effect on the current.
If you are interested in building a silicon-solar-cell, transistorized radio, get a copy of the Radio-TV Experimenter (75¢), No. 559, from Science and Mechanics.

Light up the Target

 IDS (and Dads too) like to see things happen when they shoot at a target. When a hit is made with this marble game (Fig. 1) a light flashes-red, green or white, and when the ammunition is gone, a pull on the handles lets the marbles return to the next shooter. First cut lumber to sizes shown in Fig. 2. Cut parts 2 and 3, then front panel (1) and back panel (4). Lay out front panel accurately and cut the holes, using a fly cutter or jigsaw on the larger ones and a counterbore on the $1 / 2$ in. holes. Before assembling, cut dadoes for parts 10 and 11 (Fig. 2A) and then fit (but do not fasten)

Assemble sides, top and front panel and fasten together with glue and finishing nails; set these beneath the wood surface and putty them over. Next cut to size and assemble parts 6,7 , and 8 with plenty of place. Now make the number 5 assembly and fit it in position on top of box. Then place and fit the back (4). Make and fit parts 12 and 13 (Fig. 2B), making sure metal marble return has just enough slant to roll marble down and out through exit hole in front panel.
For the Cannon (Figs. 4 and 5), first make slide (19). After making sure it works smoothly with the slide rail (9), put it in place and fasten slide rail down.

Make tube holder (20) and bore a hole through it that will be a good tight fit for the tube (21). Seal back end of tube with the plug (23) and then drill a $3 / 15 \mathrm{in}$. hole through it for the plunger (22). The pusher (24), should be a nice fit in the tube but loose enough so that it will slide easily. Drill a $3 / 1 ; \mathrm{in}^{\mathrm{in} \text {. center hole through it and }}$ then counterbore so that the bolt head will sit tight and flush with the surface. Use a spring

that's strong enough to throw marble against front panel but not so strong that marble will bounce off with considerable force when a miss is made. Next make the 2 metal angles (27) and assemble the unit together and to the slide.

To make the 5 assemblies (14) shown in Fig. 6, first make one complete unit and then check it on the project. If it's satisfactory use it as a pattern to make the remaining four. Make and assemble wood parts first and attach them in place on back of front panel, so they swing freely on the angles; if necessary, dress the top edge for clearance. Then attach top angle in place and, using it as a guide, drill a pilot hole through front panel. Enlarge this hole for bushing (Part G). Make bushing and angle holes a very loose fit for the $8-32$ screws and use a spring here strong enough to hold assembly tight against front panel. When this is working correctly, remove the
hardware, etc.

MATERIALS LIST-TARGET GAME

No.

$6-32 \mathrm{rh}, 3 / 4^{\prime \prime}$ brass........ .10 screws- 40 nuts
$8-32 \mathrm{rh}, 3^{\prime \prime}$. 5 screws- 5 nuts

about 12 \#2 rh, $5 / \mathbf{B}^{\prime \prime}$ long for attaching back panel; small roll of bell wire, 5 flashlight bulbs, 2 flashlight dry cells, about ten glass marbles ($\left.5 / 2^{\prime \prime} \mathrm{D}.\right)^{\prime}$, glue, brads, $1^{\prime \prime}$ finishing nails. Also 5 pilot light jewels -1 green, 2 red, 2 white (Allied Radio Co., 100 N. Western Ave., Chicago 80 , Ill.) to fit $1 / 2 \prime 2$ hole.

RADIO.TV EXPERIMENTER

For the bulb shelf (Part 10 and Fig. 6A), drill bulb holes to center in each enclosure and mount contacts so the bulb will complete the circuit when it is put in place. Tape the 2 batteries together and place in position on the box. Using them as a guide, locate the 2 contacts and screw them in place. Then form a clamp from sheet metal (18) to fit snugly around batteries and screw them down. Wire is fed from each con-
tact down through a $\# 30$ hole into the center compartment and down and out through the bulb shelf (Fig. 6B). Be sure to keep the wires long enough so that they won't interfere with the movement of the boxes (Fig. 6C). Press fit the jewels in place and record the scoring in colors or paint numbers above each jewel. Before attaching back panel permanently, coat insides of bulb enclosures with silver paint.

THIS sensitive FM Tuner regularly receives stations 90 airline miles distant, and can easily be connected to the audio system of nearly all AM radios. Miniature tubes, a selenium rectifier, slide-rule tuning dial, and a handsome cabinet are outstanding features of this tuner. Brand names and model numbers used on original unit are shown in materials list where certain parts must meet space requirements.

Start construction by laying out on paper a full-size chassis drawing. Fasten this template to the metal chassis with Scotch tape and use it as a guide when drilling all holes. Mark hole centers lightly with a center punch and then drill holes according to sizes shown on the chassis drawing. No holes are shown for mounting screws on tube sockets and IF transformers because these vary slightly with different shipments of the same brand. Drill mounting holes to fit the components you

FM TUNER

By ROBERT H. HAWKINS

Chassis is removed from cabinet to show means of mounting froni panel and hole in back of cabinet through which power cord and antenna connections pass.
on the chassis (with a scroll saw and metal-cutting blades), remove any burrs around holes with a file. Next lay out 8×10 in. front panel (see drawing), marking hole centers as before. File off any rough edges.
To mount parts on chassis, first make two dial plate brackets to support slide-rule dial and two condenser mountings for the 3 -gang tuning condenser. Then mount filament transformer, filter choke, electrolytic capacitor, tuning condenser, selenium rectifier, tube sockets, IF transformers, dis-
purchase. These holes are usually drilled with a \#28 drill, which takes a $6-32$ machine screw. After drilling all holes and making two cut-outs
criminator transformer, anten-
na binding post, volume control and switch, and finally, slide-rule dial, in that order. With parts mounted, check photos again for correct place-

10.7 mc . IF trans., Meissner type 16.6665
10.7 mc . Discriminator trans., Meissner type 17-3484
21/2 millihenry RF choke
ICA steel cabinet, Type $39258^{\prime \prime} \times 12^{\prime \prime} \times 8^{\prime \prime}$, with $8^{\prime \prime} \times 10^{\prime \prime}$ panel, Allied Radio \#86-310
Round plastic knobs
3 foot length shielded wire
$6^{\prime \prime}$ length Twin Lead antenna wire
10^{\prime} length $\# 20$ solid hook up wire
Belden replacement lamp cord
Standard phone plug
6AG5 miniature tubes
6BA6 miniature tubes
6 C 4 miniature tube
6A46 miniature tube
6AL5 miniature tube
$6-8 \mathrm{v}$ dial bulbs ($\# 40 \mathrm{Min}$. screw base)
Top view shows placement of component parts. Tubes and shields have been removed to permit view of mounting details of sockets and tuning condenser.
ment and study proposed system of wiring. Proper placing of tube socket pins can make wiring more convenient and the leads short. Note that a tube socket pin arrangement has a front and back; try to duplicate positions shown in drawing of bottom view of chassis. Approximate location of either pin 6 or pin 1 can be determined from this drawing. Mount IF and discriminator transformers with terminals marked PLATE-B plus, toward front of chassis.

When starting to wire tuner, first make a B plus cable (see drawing). Then with short, neat connections wire the power supply (excluding

line cord), filament leads, B plus cable, ground connection bus (tinned \#14 copper wire), RF coils (as shown in photo), and then the various resistors and capacitors, in that order. Make RF coils as shown in coil winding drawing; you may find that a very slight stretching or squeezing of the coils is necessary to obtain good alignment and tracking.
After wiring is complete and carefully checked, mount line cord. If line cord is wired last, it will not dangle in front of some connection to be soldered. Note that one side of line is grounded to chassis as is common on the $a c-d c$ sets of today. This unit will not operate on dic. Remember, don't put a ground connection of any kind on the tuner. A two-terminal antenna binding post is used and both of them are connected to the 300 ohm twin-lead coming from the antenna. This unit can, however, be connected by the audio plug to any set having a ground connection because the shielded lead is connected to the chassis through a 0.003 mfd . capacitor. Using this type of circuit involves a danger of shock,

Bottom view showing wiring of power supply, position of RF coils and Twin-Lead connection from antenna binding post.

which can be avoided if you do not set tuner on a metal table or against water pipes, and use a crackle finish on cabinet, which acts as a good insulator. A metal cabinet shields tuner from any hum that might be picked up.
The original unit was aligned using a frequen-cy-modulated signal generator and a cathode ray oscilloscope. You probably will not have these available, but almost all reputable radio service shops are equipped to complete the alignment for you. Of course, a nominal charge is made

Rear view showing relative positions of power cord, antenna binding post and audio output line. Note wires connecting dial lamp on right edge of panel.
for this service with prices varying in different localities. A good job of alignment and tracking will make this tuner a unit of which the constructor can well be proud.
The type antenna suggested for the tuner is highly directional and capable of receiving weak signals (see drawings). Any commercial FM antenna will produce good results with this tuner when properly oriented and connected with twin-lead lead-in wire. When entirely finished, connect this unit to a good audio amplifier or the phono connection on most console radios and you can enjoy fine FM reception.

New Cabinets for Old

Drop a plastic-case radio from any height and usually the radio will survive. But you'll need a new cabinet. Here's how to make it

By HAROLD P. STRAND

A new cabinet gives an old clock-ratio a modern look. Finished in blonde, it has the modern appearance of a new radio.

WHILE principally for table model radios that have had their plastic cases damaged beyond repair, these plans can be modified to suit other makes and types of radios which-while not having been dropped-could well be modernized in appearance. Figure 1 shows a completed new cabinet of modern design,
equipped with the original cabinet's receiver and clock. The cabinet is made of $1 / 4-\mathrm{in}$. birch plywood finished in modern blonde. Total cost of materials is about $\$ 2$.

The first step in replacing any damaged or outmoded cabinet is to remove from it the receiver chassis and clock. Figure 3 shows how the clock is

removed. The two wires connecting the radio to the clock line and the control switch are cut close to the terminals with diagonal pliers. To remove the receiver chassis, first pull off the knobs at the front and then remove the bottom screws.

Dimensions in Fig. 2 are given for use with a typical clock-radio unit. They can be modified as required to fit other makes and types of radios or radio-clock combinations. Begin cabinet construction by cutting the birch plywood to size for the ends and the top and bottom pieces, using a sharp, fine-tooth circular saw to avoid splintering. Make cuts outside the marked line, leaving something for dressing on a sanding dise, to provide smooth, straight edges.

The cabinet's top is fitted with hall-lap joints to the end pieces; the bottom is simply let in between the ends. The step or rabbet can best be made on a circular saw, but if hand methods are employed, use a small back saw with a guide block. The cut should be made ":roi-in. deep; use a chisel to remove the stock at the rahbet.

The frame is assembled with glue and a fow small brads. Jf suitable clamps are available, use them and eliminate the brads for better appearance. The frame shoulcl be checked with a square while being assembled and, if necessary, pulled square with a temporary diagonal brace until glue has set. Cut corner blocks from any dry stock and glue them in corners for additional support as detailed in Fig. 2. Their length should be such that their ends will provide a stop to which the front and back panels can be secured, with the front pancl being let in its thickness, or $1 / 4 \mathrm{in}$. A brad at each corner secures the front panel; small wood screws into the ends of the corner blocks are used at the back pancl or cover.

If brads were used, set them and apply plastic wood to fill the depressions. After this is dry, use fine sandpaper (about 0000) to smooth all surfaces and slightly round the corners.

Cut the front cover from a piece of the $1 / 4-\mathrm{in}$. birch plywood to fit in the front opening about $1 / 22$ in. undersize all around to allow space for the grille cloth which will be carried over the

To remove the clock from its old case, remove two screws at the back cover.

Try the chassis in the cabinet to find its best locations. Note strip of wood used to raise the front edqe so that the speaker lines up with slanting front panel.

Cement plain coarse-woven monk's eloth to the face of the panel and thim the excess off at the back.
edges. Grille cloth will also be carried over the edges of the clock opening, so allow $1, \ldots$-in. for its thickness also. The round opening for the speaker and the spacing between it and the clock opening is obtained from the original cabinet (on our set this was about 4 in . on centers).

Cut these openings on a jig saw and after completion of this work, true up and smooth the edges of the square opening to proper size, using a rasp or a piece of coarse sandpaper on a stick. The exact size or uniformity of the round opening is not important since it will be back of the grille cloth and will not show.

Now drill two $3 / 8$-in. dia. holes in the panel below the speaker opening to clear the shafts of the two receiver controls. Find their location by measuring on the old cabinet with respect to the position of the speaker opening.

Since the front pancl is designed on a slant, block up the front edge of the radio chassis about $1 / 4$ in. and recess the back edge about $: 11$ in. on the cabinet bottom to make the speaker fit properly in line with the panel (see Figs. 2 and 4). With the chassis position determined by check, locate and drill base screw holes.

Now apply an adhesive such as Pliobond or Duco cement to the surface of the front panel of the cabinet in two even coats. When the cement

Installing back cover. Time-setting knob has been brought through the cover, which required an extension on the original shaft.

Fit birch frame molding to front to cover joints, set the brads and fill the holes. The pieces should be completely finished before fastening.
has dried to a tacky state, tightly stretch the grille cloth over it. Apply cement to the edges and carry the material over them, cutting off the excess at the back side as shown in Fig. 5. Use a tapered punch to smooth the material into the round shaft holes.

Base feet run the full width of the cabinet ends and are cut from some solid birch stock to the dimensions given in Fig. 2. They are attached with glue and brads through the bottom.

For a blonde finish on the cabinet, first apply a coat of light gray flat paint, brushing it on generously. This color can be mixed by adding a little flat black to some flat white, using just enough of the black to provide a light pearl gray color. Dry 20 minutes, then wipe off with a cloth to bring the grain back to the wood. Traces of gray will be left in the pores as a filler and as coloring. Dry thoroughly and wipe again.

After a thin coat of white shellac has been brushed on, apply a coat of flat varnish. Thin the shellac with denatured alcohol or shellac solvent about 20% and be sure that it is perfectly hard before applying the varnish. An alternate method is to continue with the shellac, applying about 4 thin coats, rubbing each down when dry with very fine steel wool. Finally, apply paste wax

MATERIALS LIST-NEW CABINET
No. Rea'd Description
2 pcs birch plywood $1 / 4 \times 6 \times 61 / 2^{\prime \prime}$ (cabinet ends)
1 pc birch plywood $1 / 4 \times 5 \times 10^{3}, 8^{\prime \prime}$ (cahinet top)
1 DC birch plywood $1 / 4 \times 6 \times 101 / 8^{\prime \prime}$ (cabinet bottom)
1 pC birch plywood $1 / 4 \times 61 / 8 \times 97 / 8^{\prime \prime}$ (front panel)
2 pcs solid birch $11 / 8 \times 3 / 4 \times 6^{\prime \prime}$ (base feet)
4 pcs pine or other stock $1 / 2 \times 1 / 2^{\prime \prime}$ length as required for making four corner blocks. (See Fig. 3)
1 pc birch or other stock $1 / 4 \times 1 / 2 \times 4^{\prime \prime}$ (block for front end of chassis)
2 pcs birch plywood $1 / 4 \times 1 / 2 \times 4^{\prime \prime}$ (attach at inside edges of clock opening)
2 pcs solid birch $3 / 16 \times 1 / 16 \times 10^{1 / 2 \prime \prime}$ (front frame molding)
2 pcs solid birch $3 / 16 \times 1 / 18 \times 7^{\prime \prime}$ (front frame molding)
1 pc brass rod $1 / 8^{\prime \prime}$. dia, $15 / 8^{\prime \prime}$ long (extersion for clock shaft)
1 nc plain monk's cloth, gray or light buff about $7 \times 11^{\prime \prime}$ (grille cloth)
1 pc Masonite hardboard $1 / 8 \times 6 \times 97 / \mathrm{s}^{\prime \prime}$ (hack cover) brads, screws, flat grey enamel, shellac, glue
and polish briskly with a soft cloth.
Install clock and receiver chassis in the finished cabinet (see Fig. 8) and attach the back cover (see Fig. 6) with four small wood screws. The shaft coming from the back of the clock on our remodeled set was too short to reach through the new cover and make the knob accessible so we made an extension for it (Fig. 8A) and attached it to the end of the original shaft. It can be made to screw on the shaft or it can be quite easily soldered to it. The knob was drilled out to take 6-32 threads and then a nut was tightly screwed on the extension on the outside by holding the shaft with long-nosed pliers.

A neat frame for the front of the cabinet is made from strips of birch cut $3 / 1 \%$ in. thick and $\bar{T} / 4 ;$ in. wide. This is used as a molding with mitered corners as shown in Fig. 7. These pieces are finished with the gray paint and shellac before installation. Use three $1 / 2$-in. wire brads to a side for fastening and set them below the surface. Fill the holes and touch up with paint as required to render them invisible.

Tapped Coil Crystal Set

THIS easily constructed crystal receiver which uses few parts, needs no power supply, has a minimum of adjustments, and will give clear reception over a limited area. It is designed to give maximum selectivity in metropolitan areas where several highpowered radio stations may be found. Where selectivity is not necessary, you can adjust this set to provide maximum sensitivity by placing extra taps on the secondary winding while constructing the coil, as we will explain later.

The receivermay be mounted on a board $41 / 2$ by 6 in. or it may be placed with the earphones in a cigar box for easy carrying. Before beginning construction, carefully examine both schematic and pictorial diagrams. It's wise for beginners to work with the pictorial diagram while doing the actual construction, as it shows positions and identities of each part, wire and connection. Then, as construction progresses, they should check

Want to try a receiver with fixed crystal detectors? Here is a selective circuit with few components

By MILO ADLER

The crystal set is shown above mounted in the cigar box with headphones in place beside it.
with the schematic in order to become familiar with the symbols used and to better understand the actual workings of the circuit and its operating principles. When you can follow more complex circuits, and the symbols, part functions, and wiring procedure are completely familiar, you only need the schematic as a guide.
First drill two holes for mounting the coil $3 / 8$ in. from each end of the coil form and just large enough to pass the $5 / 16$ in. machine screws used for mounting the coil. Next drill two holes shown at A ir the pictorial diagram in the coil form, locating the first hole $3 / 8$ in. from end of coil form as mentioned above and the second hole $1 / s$ in. from the first one. Then carefully unwind 5 to 10 ft . of No. 22 enameled wire, being sure not to kink it as a kink may cause it to break while coil is being wound.
Pass about 5 in . of wire through the second of the two small holes in the coil form from the outside of the coil form towards the inside. Next pass the same wire through the first of the holes from the inside of the coil form. and pull small loop on inside of form taut. Fasten coil of wire
to a stationary object or have someone hold it, being careful not to cause any sharp bend in the wire. Pull the wire taut and slowly rotate the coil form, thus winding the wire on the form. Wind 20 turns on the form for the primary winding. Stop every few turns and press the turns of wire together so that coil form cannot be seen between $t u r n s$ of wire. After 20 turns are wound on the coil, leave approximately 5 in . of excess wire and cut off the remaining portion.

Drill three small holes at point B (see pictorial diagram) and fasten end of primary winding through two of these holes in the same manner as the beginning of the coil winding, using two of the holes. Use the center and remaining hole at B to fasten beginning of secondary winding. Start the secondary winding as you did the primary, with a 5 in . lead coming from the coil, and place 30 turns on the coil form. Place the tap (T in diagram), at 30 turns from point B on the coil; this tap or loop is made by scraping the black enamel coating from the wire, twisting to form a small loop, and soldering the wire together.
Now place the remaining 80 turns of the 110 turn secondary on the coil form and fasten end of winding through two small holes (at C in diagram). If you want to be able to adjust the sensitivity and selectivity of this crystal

Completed "breadboard" version of crystal get with headphonen connected.

set, place taps every 10 to 15 turns while winding the secondary winding. But don't place any taps on the secondary before the first 30 turns.

Receiver construction will vary depending upon whether a "breadboard" or cigar-box model is to be constructed. The wiring of the receiver will be the same regarcless of which model is constructed, so instructions for constructing the "breadboard" model will be given first, followed by instructions for mounting parts in a cigar box.

For the "breadboard" model, first mount the coil mounting feet on the coil form, taking care not to damage the coil. Then mount coil as shown on the pictorial diagram. Next mount the variable (tuning) condenser with angle brackets; be sure to place a solder lug under condenser mounting screw, as shown in the pictorial diagram. Fasten clips to baseboard with wood or self-tapping metal screws.

If receiver is being constructed in a cigar box, after coil is completed cement coil in location shown in photo, using a quick drying radio or model builders' cement. Let cement dry thoroughly before doing any further work on the set. Then mount the variable condenser in the box with cement and two No. 6 by $1 \frac{1}{4}$ in. wood or self-tapping sheet metal screws. Mount the
four clips for headphone, antenna and ground connections in the box with the same size screws that were used to mount the tuning condenser. Be sure to mount a soldering lug on the frame of the tuning condenser with a No. 6 by $1 / 8$ in. machine screw.

Solder all connections, using rosin core solder only (acid-core solder and acid flux may cause corrosion). Pre-heat parts for easier, better work by holding soldering iron tip against wire and terminal to be joined for a few seconds. Then apply just enough solder to cover connection and fill crevices between wires. Remove iron, but do not move wires until solder has set-this takes only a few seconds. When more than one wire is to be connected at a particular point, don't solder and resolder. Install all wires

MATERIALS LIST-CRYSTAL SET

Receiver Parts:

$111 / 2^{\prime \prime} \times 5^{\prime \prime}$ coil form
55 feet No. 22 enamel wire
1381.4 mmfd . midget single gang condenser (Allied 61-009)
1 Germanium erystal diode (Sylvania type 1N34; (Rllied 7-219) or General Electric type 1N48 (Allied 7-250)
1 11/4" pointer knob
4 Fahnestock clips
$141 / 2^{\prime \prime} \times 6^{\prime \prime} \times 3 / 8^{\prime \prime}$ plywood base or wood cigar box, de. pending upon model being made
8 No. $6 \times 1 / 4^{\prime \prime}$ woodscrews
2 6-32 x "in" or longer machine screws
2 coil mounting brackets
2 condenser mounting brackets
1 solder lug
Accessories:
12000 ohm headset
1 outdoor antenna
to that point before soldering. Work slowly, checking each connection as it is made. Mark the diagram with a colored pencil as each connection is completed. Be sure enamel coating on wire is scraped off before connecting ends of coil into set.

Cure for Weak Stations

To get the best results, use a good antenna, good ground, and a pair of high-resistance headphones (1000 ohms or higher). In most cases a long antenna is unnecessary. However, if stations are weak, or if nearest one is a great distance from you, you may need to secure an antenna at least 50 ft . long and as high as possible, and adjust set for maximum sensitivity by moving connection at point T over to point C (see diagram). Use glass or porcelain insulators at the antenna ends and rubber-covered wire for a lead-in to prevent contact with grounded objects.

If taps are made on secondary winding when coil is constructed, move connection to crystal diode up and down coil until a tap is found which gives the best performance for the station being received. For a ground, drive a few feet of metal rod or pipe into moist earth or make a connection to a cold water pipe or radiator.

The broadcasting station microphone converts sound to an audio frequency (AF) current which fluctuates as the sound changes in pitch and volume. This AF current is an electrical pattern of sounds picked up by the microphone. Since it cannot be transmitted alone it is combined with a strong, steady radio frequency (RF) current. The combination is sent out through an antenna, becoming radio waves. The RF signal is called the "carrier" because it "carries" the AF signal. Some of these waves will strike your receiver antenna, setting up a current which travels to the set. The crystal detector "demodulates" the signal-that is, it takes out the RF signal, but allows the AF to continue to the headphones where it is converted to sound. The coil and tuning condenser select a particular signal from the many constantly striking your antenna. Hence you adjust the condenser to "pick up" the station you want.

The cigar box was sanded to remove the printing and then given two coats of shellac. The handle shown may be purchased from your local hardware store.

Solution to the Radio Hookup Puzzle on Page 137.

George, there's something I think I should tell you about your invention.

After securing all neces. sary components, lay out large parts on paper on flat surface and plan chassis layout. Photo below shows back of panel of completed unit.

By
W. F. GEPHART

Electronic Equipment Design and Layout

> The how and why of it, incorporating plans for a custom-built tape recording amplifier with recording level meter and bias-erase oscillator circuit

WITH complete details-schematics, chassis and panel layouts, pictorial diagrams -furnished, building a neat, efficient piece of electronic equipment is fairly easy. But when only a schematic is available, considerable thought and planning is required for best results in the finished unit.
Parts placement on a chassis is important not only from the standpoint of performance, but also from the standpoint of efficient, neat and simple wiring. Panel layouts can be neat and wellorganized, or they can be sloppy looking and inefficient. And without advance planning, it sometimes becomes necessary to drill additional chassis holes after wiring has started, which is not only difficult, but also endangers mounted components and completed wiring.
If you are going to build a unit of electronic equipment, and only a schematic is available, take the following steps:

1) Secure all necessary parts so that they will be available for measurements.
2) Plan chassis layout.
3) Plan panel layout.
4) Mark tie-point requirements on schematic and include mounting holes for them on chassis layout.
5) Drill chassis and panel.
6) Place labels or decals on panel and chassis.
7) Wire sub-assemblies where possible.
8) Mount components and attach panel.
9) Complete wiring.

The chassis and panel layouts must be coordinated. Holes for grommets to carry wires from panel-mounted components to points under. the chassis must be marked, and the placement of parts on the panel and chassis should be related

to each other as closely as possible. The panel layout must be considered from the standpoint of operating efficiency, relation to chassis-mounted parts, and symmetry. Chassis layouts must consider shielding problems, circuit paths, and relation to panel-mounted items.

Unless the unit is to fit in a specified space, chassis size will depend solely on the number and size of the components to be used. When a specific space is involved, however, it is often necessary to double-deck a chassis, or use extremely small components in order to get everything in the desired space.

Usually, chassis size can be determined by laying out the chassis-mounted components (transformers, tube sockets, etc.) on a flat surface in various arrangements until you have the most practical layout. Power supply sections are usually put at the back or to one side of the chassis; other tubes should be in path-of-signal order. The input end of the tube line-up should be near the input jack and, where possible, the output near the output jack. (Sometimes this may mean a U-shaped layout if both jacks are on the same surface.)

Input or other sensitive stages should be mounted as far away as possible from the power transformer and other ac lines such as power switch, etc. Also, sufficient under-chassis space must be allowed between stages to provide room
for small components and associated wiring.
Figure 1 shows how components might be placed on a flat surface to determine chassis size and layout; the final layout is shown in Fig. 3. For this tape recording amplifier, one input jack was on the back of the chassis with the output, and another (microphone) was on the front panel. Since the amplifier input was more important, the input tube was located at the back of the chassis. To prevent looping grid leads of this tube to the front panel and back again for the panel-controlled volume control, this control was mounted on a bracket near the input tube and controlled from the front with an extension shaft.
After the preliminary chassis layout has been made (as in Fig. 1), check to see that the chassis size required is standard and will fit into a standard size cabinet, if one is to be used. Preliminary panel layouts are made in the same way as preliminary chassis layouts, by placing the components on a flat surface. If a cabinet is to be used, the size and shape of the panel is often governed by the cabinet and sometimes a cabinet larger than necessary to hold all parts has to be used, simply to get sufficient panel space.
Mount panel items in logical order (input controls, jacks, etc., to the left, output to the right), with the controls to be used most frequently the most accessible. Allow space around each control for manipulation without disturbing the other

3 TYPICAL CHASSIS LAYOUT
controls, and for the dial markings required. Finally, a symmetrical arrangement of panelmounted items will add to the appearance of the completed unit.

When the panel is tentatively laid out, compare it with the tentative chassis layout to see that panel-mounted items are near related chassismounted items, and that there is enough room behind the panel for chassis-mounted items. After comparison, make any minor changes that have to be made.
When the rough chassis and panel layouts have been made, draw up both layouts full-size on heavy paper. Mark centers carefully and show the size of the hole beside each centerpoint. Then these papers can be taped to the chassis and panel and holes center-punched accurately. Figures 3 and 4 show finished chassis and panel layouts. Dotted lines showing components and the explanatory notes are not needed for actual layouts, of course.
Now review the schematic carefully to determine where tie-points will be required. Whenever two minor components (such as a resistor and capacitor) join at other than a component terminal (such as a tube socket pin), a firm connection point is required. This is usually provided by tie points or vector-type tube sockets. It is best to plan on definite points for all such connections, leaving any vacant tube socket pins for unfureseen needs. If tie points are used, mark
the schematic with the location of the point planned, so that the chassis layout can be marked for drilling mounting holes. In some cases, tie points can be mounted on transformer or other mounting screws.

Vector sockets are mure expensive than conventional sockets, but they do save the space and mounting hole required for tie points, and minimize wiring. Figure 2 shows a schematic where one vector socket is used (on V_{2}). The connection points on the vector socket and the tie points required are marked on the schematic to aid in wiring and to permit mounting holes to be drilled for the tie points.

After marking tie-point mounting holes on the chassis layout, tape it to the chassis, center-punch the holes, and drill holes, using a block under the surface being drilled. Do the same with the panel, taking care to remove the burrs on the inner sides of the holes. Lay the panel face down on a soft cloth when clipping the burrs off the back side, shaking the cloth carefully each time the panel is raised to prevent scratching the front surface.

It is easier to label a panel, either with hand lettering or decals, when it is lying flat on a bench. When labeling controls, lay a knob over the mounting hole to determine the clearance for lettering. To keep a series of letters or words in line, tape a piece of paper (or thread) to the edge of the panel, with one edge running along the desired line. If you are using decals, cut the letters for this line at the bottom of the letters and rest them against the paper or thread when applying them.

Often, a set of decals does not contain the exact desired word, and though words can be made up of individual letters, it is easier to cut them out of words where groups of lettering fall in proper sequence.

After the panel has been labeled, protect the letters with a coat of varnish. If you are using decals or lacquer paint, do not use lacquer or various spray-type coatings that have an acetone

or acetate base, since they will dissolve decals if a good, heavy coat is applied. Clear varnish is available in spraytype cans and provides safe, long-lasting protection.

Wherever possible, simplify wiring by wiring subassemblies, such as rotary switches, vector sockets, etc., before mounting. Use colorcoded wire on leads coming from pre-wired sub-assemblies to assist in wiring them in after they have been mounted, noting the color code on the schernatic.
Prior to actual wiring, mount all components and attach the panel to the chassis. Sometimes the panel can be attached to the chassis by the components themselves, instead of mounting screws. After all components are mounted, you may want to protect the panel by covering it with pliofilm or cellophane during wiring.

Wiring must be done from the bottom up. All ac lines, twisted where possible, should lie close to the chassis, so they are wired first. Usually the power supply is wired next, so it can be tested before further wiring. The remaining wiring can be done in path-of-signal order or in any convenient manner. Sometimes the situation must be studied as wiring progresses, to be sure that the more inaccessible places are wired first.

Small components, such as resistors and capacitors, which may later have to be replaced, should be mounted so that they are readily accessible, and "spaghetti" tubing should be used to cover bare leads. Sometimes several connections have to be made to a single tube socket pin or terminal. Study the schematic when wiring to anticipate this so that you will not solder until all wires to the point are in place. This provides better connections and saves having to try to "squeeze" another wire into a soldered joint.

In many circuits a bus wire ground is required to prevent stray ac currents and fields between ground points. It doesn't hurt in any circuit and it makes wiring simpler and easier, so include such a

BIAS-ERASE OSCILLATOR COIL FORM (T3)
bus wherever possible. Plan it to run near, but out of the way of, all tube sockets and major components, and fasten it to the chassis at a single point. Such a bus should be of stiff wire and well-supported, usually on tie points.
Even if you have only a schematic to work from, with care and planning you can have a piece of equipment not only designed to suit your needs, but one that will appear and operate like a professionally built unit.

Taps Recording Amp. The unit used as an example in this article is a custom-built tape recording amplifier with a recording level meter and a bias-erase oscillator circuit. It mounts in a custom-made mahogany cabinet, with mahogany front panel and with gold decal letters.

Values for the components used in this piece of equipment are given in the Materials List. As can be seen from the schematic (Fig. 2), the microphone portion of the circuit involves only matching a special dynamic microphone, and provides microphone jacks at the front of the panel for connection to rear amplifier connections.

The tape bias-oscillator section has excellent waveform, and oscillates at around 70 kc . The coil is wound on a form as shown in Fig. 5. It consists of 800 turns on the primary, centertapped, with 275 turns on the secondary. Both windings are scramble-wound with No. 28 enameled wire. The output to the play-record and erase heads are adjusted to the head specifications by the size of R28 and C16.

Switch S2 switches the play-record head to a preamplifier input for playing, and to the amplifier and bias circuits for recording. The

Iron Sends Smoke Signals

- Want to know when your soldering iron has reached solder-melting temperature? Clip off a small piece of acid or resin-coresolder and rest it on the tip of the iron just before you plug it in. When the solder melts, a puff of smoke will rise from the tip and the sight or smell of the smoke will tip you off that the iron's ready to go to work. -JoHN A. Comstock.

Building Breadboard Circuits

- When building breadboard circuits, loose dangling wires may touch together, cause a short circuit, and ruin a transistor or other valuable component. To prevent this from happening, tape the wire leads to the chassis with masking or plastic tape. This will also improve the appearance of the layout and permit easier tracing of the wires.-John A. Comstock.

Build Yourself a Multimeter Stand

- Do you have to stretch your neck to read the sca'e of your VTVM or VOM when it is lying flat on its back on the bench? You won't have to if you build the simple stand shown in the photo.

Cut the front and back pieces from $1 / 4-\mathrm{in}$. plywood and the two side pieces from pre-finished Marlite peg-board. Nail all pieces together and pound four rubber headed tacks into the front piece as shown to keep your meter positioned. Then add two hook-type tuol hangers to one pegboard side to hold your test leads. If your leads are exceptionally long, you can nail a small spool to the back piece and keep the leads wrapped neatly around it when they aren't in use.-J.A.C.

Grommet Arrests Drill's Travel

- When drilling a hole through a radio or TV chassis, keep the drill from extending down through far enough to damage valuable components mounted underneath by arresting the drill's travel with a rubber grommet slipped over the bit (see photo). There are different sized rubber grommets available that will tight-fit most twist drill sizes.--John A. Comstock.

Shaky Soldering Hand?

- A small notch filed
 into the bottom of a soldering gun's tip near the end makes it easier to hold the gun steady when soldering wires. The notch hooks over the wire connection and is especially handy for electronic builders and hobbyists with shaky soldering hands. The notch won't harm the tip in any way (if you don't file it too deep) but it will make soldering a lot easier.-J.A.C.

Solder Spool Carries Flux Can

- Attach a cork to the lid of your can of soldering paste and set your spool of solder down over the plug as a means for keeping the can of flux handy. It will always go wherever the spool of solder goes and will also serve as a base to keep the spool from tipping over and rolling off the bench.-J. A. C.

Answers to Electronies Picture Quiz, Page 123

1) Eight-pin octal tube socket (bottom view).
2) Two-gang variable tuniny capacitor.
3) Miniature tube (a socket's eye view, pins pointing out of the paqe).
4) Pencil-type soldering iron (wire connection's eye view with iron's tip pointing out of the page).
5) Close-up of coil winding.
6) Standard phone plug.

*(Intercontinental Radio Antenna)

By C. F. ROCKEY, W9SCH

EVERYONE in amateur radio today agrees that a multi-element "rotary beam" is the best DX antenna for effective communication of 5000 miles and beyond. But rotary beams are expensive, costing well over $\$ 100$ for a suitably durable one. This puts them beyond the reach of many amateurs, particularly the younger fellows.

While we do not claim that our "closet-tank float special" will equal a good beam antenna, we do know that it has produced effective long-range contacts for us, and for a very modest cash investment, too. Actual tests made on the air tend to indicate that the ball in creases the signal reports in Europe by at least one "s" unit. Also the percentage of calls answered by DX seems to increase noticeably when the ball is used.

Good results with this antenna require that it be erected in a reasonably clear location, about 30 ft . or more from large conducting objects. Aside from this, it is remarkably noncritical. In the author's case it was erected along the end wall of a redwood frame cottage (Fig. 1), the presence of the dry wood having little apparent effect upon its radiation. Brick or stone, particularly when wet, might not be too good, however.
This antenna performs most spectacularly in the

fifteen meter (21 MC) and twenty meter (14 MC) bands, but it continues to radiate reasonably well at forty meters (7 MC) and on ten meters (28 MC) too.
What has this antenna got that the ordinary vertical doesn't? simply this: a ball-shaped copper closettank float at the upper end that contributes "top capacity," causing significantly more RF current to flow in the uppermost end of the wire, where it increases the power radiated along the horizontal (Fig. 2). This is

vertical radiation pattern similar to that OF TYPICAL HORIZONTAL DIPOLE. NOTE THAT MOST OF ENERGY IS RADIATED UPWARDS WHERE IT IS USEless for long-range communication. radial DISTANCE IS PROPORTIONAL TO RADIATED FIELD STRENGTH.
vertical radiation pattern similar to that of properly installed "Closet-tank float speClal" antenna. notice that considerably MORE ENERGY IS RADIATED AT ANGLES BELOW 45° Which are those most significant for long range communication.

but the figures given will serve as a start. Adjust the tuner capacitor (along with proper adjustment of the transmitter tank circuit) until maximum brilliance of the lamp is obtained for each transmitting frequency. (The transmitter power input should be correct, too.) This will also prove best for receiving within the same frequency band. Mount the tuner parts on a $3 / 4$-in. thick buard.

	MATERIALS LIST-INTERCONTINENTAL RADIO ANTENNA
Size and Descriptiont	

the radiation that skips out to the long distances. (This is an old principle, known to Marconi. However, few of the present-day gang seem aware of it.)

The antenna itself is vertical, about 20 ft . long. It is supported upon a "gallows" made as in Fig. 3. Prepare a standard copper flushtank valve float by drilling a $1 / 8$-in. hole through the ferrule where the ball normally screws to the float rod. Drill another similar hole through the ball diametrically opposite to the ferrule.

Use a $20-\mathrm{ft}$. length of stranded or solid, insulated or bare \#12 or \#14 copper wire for the antenna. Pass the wire completely thru the float, so the float ferrule is at the bottom and fasten the wire to an insulator in the usual manner (Fig. 3). Scrape the insulation, if any, from the wire just below the ferrule and wind several turns of copper wire around the antenna to keep the float in place. With a torch, solder the wire, float and antenna firmly together. Make sure the solder flows into and all around the joint and makes good contact with the ball.

Now erect the antenna "gallows," vertically and firmly in a clear location as in Fig. 1. Fasten the lower-end of the antenna to a porcelain screw standoff insulator. The nearly vertical portion of the wire, with ball at top, should be about 16 ft . long. Allow about four feet of wire for lead-in to the tuner.
In addition to the antenna, you will also need a counterpoise. This is a $16-\mathrm{ft}$. length of antenna wire, which should project as near horizontally as possible from the base (Fig. 1) and be insulated at each end. Connect near end to tuner as in Fig. 4.
A suitable tuner, as used by the writer, is diagrammed in Fig. 4. It is possible that your antenna may require a slightly different sized coil,

Erasers Help Carry Recorder

- If you ever need to carry your tape recorder in a vertical position with the tape spools still on the spindles, place a slipSTORE IN SPOOL HOLES on pencil eraser over each spindle. This will keep the spools from falling off the spindles and spilling the tape. Store the erasers in the holes of an empty spool when not in use.-John A. Сомятоск.

Old Earphone Makes High-Frequency

 "Tweeter" Speaker

 "Tweeter" Speaker
 hole with a burring reamer so the funnel spout

TO reproduce the higher frequencies, expensive record players and combination sets have a miniature "tweeter" speaker in addition to the regular speaker. If you have a regular-size magnetic or crystal headset on hand, one of the phones of the set can be used for making such a tweeter speaker.
Any 1000 or 2000 -ohm magnetic phone may be used. If a crystal phone is used, its hookup requires only connection across the primary side of the audio output transformer (A to B in Fig. 2). For best results, wire a magnetic earphone in series with one of the transformer primary leads. In this case the solid lead is cut and connections are made to B and C in Fig. 2.
Make the speaker horn from a plastic funnel $23 / 4 \mathrm{in}$. o.d. or larger by cutting off all but about $1 / 8 \mathrm{in}$. of the spout end of the funnel. Unscrew the Bckelite phone cap and enlarge the center stub fits the hole snugly. Be sure the funnel stub is flush inside the cap so that it will not interfere with the free movement of the diaphragm. Fasten the funnel to the cap with household cement. Attach the miniature horn speaker to a mounting plate made from a piece of hardboard. Use three soldering lugs clipped short and bent as in Fig. 1 to hold the flange of the funnel to the hardboard.

Since the original earphone cord is a series tinsel type and therefore would not be suitable, use a length of ordinary plastic fixture cord for connecting the tweeter speaker to your set or amplifier.-T.A.B.

Foil Shield for Tube

- A piece of household aluminum foil will serve as a temporary shield for a tube, or for wires causing hum pickup due to stray coupling. Tape wire ground to shield and chassis. Leave an opening in top of shield to allow heat from bulb to escape.-John A. Comstock.

Wire Dip in Iron's Tip

IRON'S TIP

- Drill a small hole (about $1 / 8 \mathrm{in}$. dia. and $1 / 4 \mathrm{in}$. deep) in your iron's tip, to use for tinning the tips of wires. Simply heat the iron and fill the hole with solder into which to dip tips.

Awl Opens "Eye"

- An awl or ice-pick with the tip bent at a 45° angle makes a handy tool for poking open the solder-clogged eye of a soldering lug or terminal. Heat the terminal with an iron and poke the awl's tip through the eye. When the solder cools, pull out the awl and thread the wire through the open eye.-John A. Comstocx.

Abstract

Every effort has been made to ensure accuracy of the information listed in this publication, but absolute accuracy is not guaranteed and, of course, only information available up to press-time could be included. Copyright 1959 by Science and Mechanics Publishing Co., 450 East Ohio St., Chicago II, III.

QUICK REFERENCE INDEX

U.S. and Canadian AM Stations by Frequency 161
U.S. and Canadian AM Stations by Location 170
U.S. and Canadian AM Stations by Call Letters 177
Mexican and Cuban AM Stations. 185
World-Wide Short-Wave Stations 186
Canadian Short-Wave Stations 188
United States FM Stations 188
Canadian FM Stations 190
United States Television Stations 190
Canadian Television Stations 191

U. S. and Canadian AM Stations by Frequency

U.S. stations listed alphabetically by states within groups, Canadian stations precede U.S. Abbreviations: Kc., frequency in kilocycles; W.P., watt power; d-operates daytime only. Wave length is given in meters

Kc．Wove Length WRRZ Clinton，N．C． 890－336．9
WLS Chicago，IIJ． WHNC Henderson，N．C．

900－333．1
CKTS Sherbrooke，Que． CHML Hamilton，On CHNO Sudbury，Ont． CKJL St．Jerome，Que CJVI Victoria，B．C． CkBl Prince Albert，Sask C GX Yorkton．Sask． WATV Birmingham，A WOZK Mobile，Ala． WOZK Ozark，Ala． KPRB Fairbanks，Alaska KBIF Gentervilis Ak KBF Gentervile，Calif． WSWN Belle Glade，Fla WMOP Deala，Fia． WCGA Calhoun，Ga， WCRY Macon，Ga． WSIR Savannah．Ga， WKYW Louisville，Ky． LSI Pikeville，Ky． WCME Brunswiek，Maine WATC Gaylord，Mich． WODT Greenvilis，Minn． KFAL Fulton．Mó KJSK Columbus，Nebr． WBRV Nashaulif．N．M．Y WBPN Boonville，N．Y WAYN Saratoga Sprgs．．N．Y WIAM Williamston．N．C． KFNW Fargo，N．Dak． WAND Canton，Ohio WFRO Fremont，Ohio WCPA Clearfield，Pa． WKXV Khiladelphia，Pa． WGOR Lebanon，Tenn． KALT Atlanta，Tex． CLD Gorrae， KFLD Floydada，Tex． KCLW Hamilton，Tex．
WAFG Staunton．Va． KUEN Wenatchee，Wash． WATK Antigo，Wis，

910－329．5

CJDV Drumheller，Alta． CBLY Lindsay ont CFJC Kamloops，B．C． CHRL Roberval．Que． KPHO Phoenix．Ariz． KLGN Blytheville，Ark． KAMD Camden．Ark． KDEO EI Cajon，Calif． KOXB Oakland，Calif KPOF nr．Denver colo WHAY New Britain，Conn． WPLA Plant City．Fla， WGAF Valdosta，Ga． WSUI lowa City，lowa WABI Bangor，Maine WFDF Flint．Mich． WCOC Meridian，Miss． KOYN Billings，Mont． WLAS Jacksonville．N．C． KCJB Minot，N．Dak． WPFB Middiletown，Ohi KGLC Miami，Okla． KURY Brookings，Oreg． WAVL Apollo，Pa． WSBA York．Pa WPRP Ponce，P．R． WORD Spartanburg．S．C． WJHL Johnson City．Tenn． KR10 MCAllen Tex．Tenn． 500 d KRRV Sherman．Tex KALL Salt Lake City，Utah WRNL Richmond．Va． WHYE Roanoke．Va KQDE Renton．Wash KISN Vancouver，Wash． WDOR Sturgeon Bay，Wis 500

920－325．9
CJCNX Walifax，N．S．
WWWR Russellville，Ala， 1000 d
KARK Little Rock，Ark 5000
OES Palm Springs．Calif． 1000 d
KIUP Durango，Colo．

W．P． 1000d

50000
 50000 $1000 d$

10001000

1000 d
1000 d
1000 d

Ke．	Yave Length
KREX	Grd．Junction，Colo．
KLMR	Lamar．Colo
WMEG	Eau Gallie，Fla．
WGST	Atlanta，Ga，
KAHU	Waiphau，Hawaii
WMOK	Metropolis，III．
WBAA	W．Lafayette，Ind．
KFNF	Shenandoah，lowa
WTCW	Whitesburg．Ky．
WB0X	Bogalusa，La．
KTOC	Joneshoro，La
WPIX	Lexington Pk．，Md．
WMPL	Hancock．
KDHL	Faribault，Minn．
KWAD	Wadena，Minn．
IKRAM	Las Vegas，Nev．
KOLO	Reno，Nev．
KQEO	Albuqueraue，N．Mex．
WTTM	Trenton，N．J．
WKRT	Cortland，N．Y．
WGHa	Saugerties，N．Y．
WBBB	Buringaton，N．C．
WMNI	Columbus，Ohio
KGAL	Lebanon，Oreg．
WKVA	Lewistown．Pa．
WJAR	Providence，R．I．
WTND	Orangeburg，S．C．
WLIV	Livingston，Tenn．
KELP	El Paso，Tex．
KECK	Odessa，Tex．
KTLW	Texas City．Tex．
KITN	Olympia，Wash．
KX	Spokane，Wash．
WMMN	N Fairmont，W，Va．
WOKY	Milwaukee，Wis．

930－322．4

CFBC Saint John．N．B．

 CJCA Edmonton，Alta． CJON St．John＇s．N．F．WETO Gadsden．Ala． KTKN Ketchikan，Alaska
KAPR Doulas，Ariz． KAPR Douglas，Ariz． KHJ Los Angeles．Cali
KIUP Durango，Colo． KIUP Durango，Colo．
WKSB Milford，Del． WKSB Mifford，Del．
WIAX Jacksonville，Fla． WKXY Sarasota，Fla．
WMGR Bainbridge，Ga． WMGR Bainbridge，G
KSE，Pocatello，Idaho
WTAD Quincy， WTAD Quincy，III． WKCT Bowling Green，Ky． WFMD Frederick，Md．
WREB Holyoke，Mass． WBCK Battle Creek．Mich．
WSLI Jackson，Miss． WSLI jackson，Miss．
KWOC Poplar Bluff，Mo． KOFI Kalispell，Mont． K WWNH Rochester，N．H． WPAT Paterson，N．J． WRRF Washington，N．C． WEOL Elyria，Ohio w WCNR Bloomsturg．Pa，
KSDN Aberdeen，S．D．
WSEV Sevierville，
KDET Center，Tex，

$$
\begin{aligned}
& \text { KDET Center, Tex. } \\
& \text { KITE San Antonio, Tex. } \\
& \text { KENY Bellingham. Ferndale }
\end{aligned}
$$

W．P．

$$
\begin{gathered}
\text { WSAZ Huntington, W.Va. } \quad 5000
\end{gathered}
$$

$$
\begin{aligned}
& \text { WSAZ Huntington, W.Va, } \begin{array}{r}
5000 \\
\text { WLBL Auburndale, } \\
\text { Wis. }
\end{array} \text { 5000d.}
\end{aligned}
$$

$$
940-319.0
$$

$$
\begin{aligned}
& \text { CBM Montreal, Que, } \\
& \text { CiGX Yoktan }
\end{aligned}
$$

$$
\begin{aligned}
& \text { CJGX Yorkton. Sask. } \\
& \text { CJIB Vernon. B.C. } \\
& \text { KFRE Fresno, Galif. }
\end{aligned}
$$

50000
10000

$$
\begin{aligned}
& \text { KFRE Fresno, Galif } \\
& \text { WINZ Miami, Fla. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WINZ Miami, Fla. } \\
& \text { WMAZ Macon, Ga. }
\end{aligned}
$$

4

$$
\begin{aligned}
& \text { WMAZ Macon, Ga. } \\
& \text { WMIX Mt. Vernon, III. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KIOA Des Moines, Iowa } \\
& \text { WYLD New Orleans, La. } \\
& \text { WFSA Charleroi }
\end{aligned}
$$

00 W

$$
\begin{aligned}
& \text { WESA Charleroi, Pa. } \\
& \text { WIPR San Juan, P. } \\
& \text { KIXZ Amarillo, Tex. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KIXZ Amarillo } \\
& 950-315.6
\end{aligned}
$$

CKNB Campbelliton,
CKBB Barrie. Ont.号合
WRMA Montgomery. Ala.

$$
\begin{array}{ll}
\text { WRMA Montgomery, Ala. } & 100 \\
\text { KXJK Forrest City, Ark. } & 500 \\
\text { KFSA Ft. Smith. Ark. } & 10
\end{array}
$$

1000 d
5000 d

$$
\begin{aligned}
& \text { KFSA Ft. Smith, Ark. } \\
& \text { KAH Auburn, Calif. }
\end{aligned}
$$

KAMN Denver: Colo:

$$
\begin{aligned}
& \text { KIMN Denver, Colo. } \\
& \text { WFBS Ft. Walton Bch.. Fla. I } \\
& \text { WLOF Orlando. Fla. }
\end{aligned}
$$

a． 1000 d

WGTA Orlando．Fla， WGON Summerville，Ga KBOI Boise KLER Orofino，Idaho WAAF Chicago，Ill． KOEL Oelwein，lowa

플 KJRG Newton，Kans． WBVL Barbourvilie，Ky WWd Detroit，Mass WBKH Hattiesburg．Miss． 5000 d KLIK Jefferson City，Mo． 5000 d WBBF Rochester，N．
WIBX Utica，N．5000
1000 d
5000
5000
5000
500 d
1000 d5000 d
1000
$500 d$1000
500 d
000 d000d500d1000

Wave Length
 $W .8$
500 d
500 d
5000
5000
1000
1000 d
500
5000
1000
10000
5000
500

500 | K |
| :--- |
| \mathbf{W} |
| K |
| \mathbf{W} |
| K |
| \mathbf{W} |
| \mathbf{W} |
| \mathbf{W} |
| \mathbf{W} |
| \mathbf{K} |
| \mathbf{K} |
| \mathbf{K} | WRI

$K U P$
$W I$
$K O$
$W C$
$W P$
$W A$
$K M$
$K M$
K
K
K
KM
W
W
CFAC Calgary，Alta．
CHNS Malifax，N．S． CKWS Kingston．Ont． WBRC Birmingham，Ala
WMOZ Mobile． KOOL Phoenix．Ariz．
KAVR Apple Valley．

100
100
50
000
500
500
100
500
KNEZ Lompoc，Calif．
KABL Oakland，Calif．
WGRO Lake City，Fla．
WJCM Sebring，Fla．
WRFC Athens，Ga．
W

WSB
KMA
WPR
KRO
WMA Shenandoah．lowa
WRRT Prestonsburg，Ky．
KROF Abrevilley WROF Abbeville，La．
 WHAK Rogers City，Mich．
KLTF Little Falls，Minn． WABG Greenwalis，Minn．
KABG Greenwood．Miss．Mo Girardeau，Mo．
KNEB Scottsbluff．Nebr
KNEB Scottsbiuft，Nebr．
KWYK Farmington，N．Mex
WEAV Plattsburg，N．Y． WEAV Plattsburg，N．Y．
WFTC Kinston，N．C．
WWST Wooster，Ohio WWST Wooster，Ohio
KGWA Enid．Okla．

KGWA Enid，Okla． KLAD Klamath Falls，Ore WHYL Carlisle，Pa．

 WHYL Carlisle，Pa．WADP Kane，Pa． WATS Sayre，Pa．

W
 \section*{w}

WBMC McMinnville，Tenn．
KGKL San Angelo，Tex．
KOVO Provo，Utah
KALE Richland，wash
WTCE Richland，Wash．
Shawano，Wis．
$970-309.1$
CIKCH Hull．Que．

$$
\begin{aligned}
& \text { WERH Hamilton, A } \\
& \text { WTBF Troy, Ala. } \\
& \text { W KNEA Jonesboro. A }
\end{aligned}
$$

Wave Length
w．p．
$1 P$ Rossville，G
Ga．1da 500 d
1000 d
1000 1000
5000 d KA Danville，III．
Shreveport，La．
Lowell，Mass．

BC Minneapolis，Minn． McC
Kansa
Ste
Ste．Genevieve，Mo．
$000 d$
5000
500
1000
1000
1000 d

N．C．

5000
5000 d

KDSJ Deadwood, S.Dak.	$\mathbf{1 0 0 0}$
WSIX Nashville, Tenn.	5000
Wilkes-Bare,	

$\begin{array}{lr}\text { WSIX Nashville, Tenn. } & 5000 \\ \text { KFRD Rosenberg, Tex. } & 1000 \mathrm{~d} \\ \text { KSVC Richfteld, Utah. } & 5000\end{array}$
$\begin{array}{lr}\text { KSVC Richfteld, Utah } & 5000 \\ \text { WFHG Bristol. Va. } & 5000\end{array}$

00	WFHG Bristol. Va.	5000
WMEK Chase City, Va.	$500 d$	
KUT Yakima, Wash.	$1000 d$	

KUTI Yakima, Wash. $\quad l 000 \mathrm{~d}$
WCUB Manitowoc, Wis. $\quad 1000 \mathrm{~d}$
WPRE Prairieduchien, Wis, $500 d$

$$
\begin{array}{l|l}
0 & \text { KNB jroy, Ala, } \\
0 & \text { KNEA Jonesboro. Ark. } \\
0 & \text { KBIS Bakersfteld, Calif. }
\end{array}
$$

$$
\begin{array}{l|l}
0 & \text { KBIS Bakersfteld, Calif, } \\
\text { O } & \text { KCH Coachella, Calif. } \\
\text { OBEE Modesto, Calif. } & \text { KBE }
\end{array}
$$

$$
\begin{aligned}
& \text { KBEE Modesto, Calif. } \\
& \text { KFEL Pueblo. Colo. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { FEL Pueblo. Colo. } \\
& \text { VFLA Tampa, Fla. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WFLA Tampa, Fla. } \\
& \text { WIIN Atlanta, Ga. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WVOP Vidalia. Ga. } \\
& \text { KHBC Hilo. Hawai }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KHBC Hilo. Hawail } \\
& \text { KAYT Rupert, Idaho } \\
& \text { WMAY Snrinofielr }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WMAY Springfield, III. } \\
& \text { WAVE Louisville, Ky. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WAVE Louisville, Ky. } \\
& \text { KSYL Alexandria, La. } \\
& \text { WCSH Portland Maine }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KSYL Alexandria, La. } \\
& \text { WCSH Portland, Maine } \\
& \text { WAMD Aberdeen. Md. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WCSH Portland, Maine } \\
& \text { WAMD Aberdeen, Md. } \\
& \text { WESO Southbridge. Ma }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WESO Southbridge. Mass, } \\
& \text { WKHM Jackson, Mich. } \\
& \text { KOOK Billings. Mont. }
\end{aligned}
$$ss．

1000
50000 N． $\mathbf{N}_{.}$
$\begin{array}{ll}\text { NTA } & \text { N } \\ \text { EBR }\end{array}$
00

$$
\begin{aligned}
& \text { RCS Aho } \\
& \text { WIT Can } \\
& \text { DAY Fa } \\
& \text { ICA Ash }
\end{aligned}
$$

WAWOIN Portland，Oreg，
WWSW Pittsburgh
Ahorwic

$$
\begin{aligned}
& \text { ich, N.Y } \\
& \text { kie, N.C }
\end{aligned}
$$

WW
WD
WIC
\qquad

$$
\begin{aligned}
& \text { ICA As } \\
& \text { ATH A } \\
& \text { AKC T } \\
& \text { OIN P }
\end{aligned}
$$

ィ| d | W |
| :--- | :--- |

KREM St．Worth．Tex．
WYO Pineville，Wash．
980－305．9
KNW New Westminster，
Brit．Columbia
V Quebec，Que．
KRM Regina，Sask．
WKLF Clanton，Ala．
EAP Eureka，Galif
KFWB Los Angeles，Calif．
GLN GlenwoodSprus．，Colo，
RUB Groton，Comn
TOT Gainesville．Fia
TOT Marianna．Fla．
KLY Hartwell，Fla． Perry，Ga．

990—302．8

CBW Winnipeg，Man．	50000
CBT Grand Falls，N．F．	1000
WWWF Fayette，Ala．	1000d
WTCB Flomaton，Ala．	500d
КТКТ Tucson，Ariz．	10000 d
KKIS Pittsburg，Calif．	5000
KLIR Denver，Colo．	1000d
WBZY Torrington，Conn．	1000 d
WHOO Orlando，Fla．	10000
WDWD Dawson，Ga．	1000d
WCAZ Carthage．III．	1000d
WITZ Jasper，ind．	1000 d
KAYL Storm Lake，lowa	250d
KRSL Russell，Kans．	250d
WJMR New Orleans，La．	250d
KCLP Rayville，La．	250d
WABO Waynesboro，Miss．	$250 d$
KRMO Monett，Mo．	250 d
KSVP Artesia，N．Mex．	1000
WEEB Southern Pines，N	1000 d
WJEH Gallipolis，Ohio	1000 d
WTIG Massillon，Ohio	250d
KABY Albany，Oreg．	250d
WIBG Philadelphia，Pa．	10000
WVSC Somerset，Pa，	250d
WPRA Mayaguez，P．R．	10000
WAKN Aiken，S．C．	1000 d
WNOX K noxville，Tenn．	10000
KWAM Memphis，Tenn．	$1000 d$
KTRM Beaumont，Tex，	1000
KAML Kenedy，Tex．	250
KSYD Wichita Falls，Tex，	10000
KTUT Tooele，Utah	1000d
WNRV Narrows，Va．	1000d
WANT Richmond．Va．	1000 d
KLJ Sparta，Wis．	50

1000—299．8

$\begin{array}{llr}\text { CKBW Bridgewater，N．S．} \quad 1000 \\ \text { WCFL Chicago，III．} & 50000\end{array}$ $\begin{array}{lr}\text { KTOK Okla．City，Okla．} & 5000 \\ \text { KSTA Coleman，Tex．} & 250 d\end{array}$ $\begin{array}{lr}\text { KGRI Henderson，Tex．} & \text { 250d } \\ \text { WHWB Rutland，Vt．} & 1000 \mathrm{~d} \\ \text { KOMO Seattle，Wash．} & 50000\end{array}$ KOMO Seattle，Wash． 50000 1010—296．9
$\begin{array}{lrr}\text { CBX Edmonton，Alta，} & 50000 \\ \text { CFRB Toronto，Ont，} & 50000 \\ \text { KVNC Winslow，Ariz．} & 1000 \\ \text { KLRA Little Rock，Ark．} & 10000 \\ \text { KCHJ Delano，Calif．} & 5000 \\ \text { KCMJ Palm Sprgs．Calif．} & 1000 \\ \text { KSAY San Fran．，Calif．} & 10000 d \\ \text { WCNU Crestriew，Fla，} & 1000 d\end{array}$
WZRO Jacksonvilla Beach．

1020－293．9
KPOP Los Angeles；Calif．$\quad 5000$
WCIL Carbondala $\begin{array}{ll}\text { WPE CO Peoria，III．} & 1000 \\ \text { WP }\end{array}$ KDKA Pittsburgh，Pa， 50000

1030-291.1

W8z Boston, Mass. 50000 WILD Boston, Mass. KATR Springfield, Mass. 1000 WMUS Muskegon, Mich 1040—288.3
KHVH Honolulu. Hawaii WHO Des Moines, Jowa
KIXL Christiant

1050—285.5

CFGP Grand Prairic, Alta. 10000 CKSB St. Boniface, Man. 10000 CJIC Sault Ste. Marie, Ont. 250 CHUM Toronto, Ont WCRS Alexander City. Ala. $1000 d$ WCRI Scottshoro, Ala KVWM Show Low, Ariz KVLC LittJe Rock, Ark. 1000 d KOFY San Mateo, Calif.
KLMO Lasco, Cair.
KlMO Longmont, Colo. Wivy Jacksonville, Fia. WHBO Tampa, Fla
WRMF Titusville, Fla. WAUG Alhany, Ga.
WAUG Augusta, Ga
KZIN Coeur D'Alen
WDZ Doeur Alene, Idaho
WDZ Decatur, II
KNCO Garden City, Kans.
WZIP Covington, Ky. KLPL Lake Providence, La KCIJ Shreveport, La. WGAY Silver Sprg., Mu,
WPAG Ann Arbor, Mich. WPAG Ann Arbor, Mich
KLOH Pipestone, Minn. WACR Columbus, Miss. KSIS Sedalia, Mo. KRBO Las Vegas, Nov. WBNC Conway, N.H. WSEN Baldwinsville, N.Y. WSTS Massena, N.Y. WMGM New York. N.
WFSC Franklin. N.C. WLON Lincolnton, N.C. WWGP Sanford. N.C. KCCO Lawton, Okla
KFMJ Tulsa, Okla,
KUBE Pendieton, Oreg, KEED Springfield, Oreg WBUT Butler, Pa WLYC Williamsport, Pa. WSMT Sparta, Tenn KLEN Killeen, Tex.

$$
\begin{aligned}
& \text { CKTR Three Rivers, Que. } \\
& \text { WBCA Bay Minette. Ala. }
\end{aligned}
$$ WBRG Lynchburg, Va

WBCA Bay Minette, Ala, WCMS Norfolk. Va. KNBX Kirkland, Wash. WCEF Parkershurg, W. Va WECL Eat Claire, Wis

1060—282.8 KPAY Chico, Calif.

WMAP Monroe, N.C.
WCMW Canton. Ohio

1070-280.2 KHMO Hannibal, Mo WOAP Owosso, mich WEEP Pittshurgh, Pa
KRLD Dallas, Tex.

1100—272.6

5000
50000
50000
1000 d
250

1110-270.

CFTJ Galt, Ont
KXLA Pasadena, Calif. WALT Tampa, FIa.
WABI Chicago, Ilf.
WBT Charlotte, N.C.
KBND Bend, Oreg.
WNAR Norristown, Pa.
WVJP Caguas, P.R.
WHIM Providence, R.I
KIPA Hilo, T. Hawaii
1120-267.7
WUST Bethesda, Md,
WWOL Buffalo, N.Y.
KCLE Cleburne, Tex.

$1130-265.3$

CKWX Vancouver, B.C. 50000
KOd KSD San Diego, Calif. 5000
$1000 d$ KWKH Shreveport, La,
250 d $50 d$ 1000 d 1000 d 000d
1000 d

$1140-263.0$

CKXL Calgary, Alta.
1000
5000
\qquad WSIV Pekin, Ill.
\qquad KSOO San Jualt, P.R.
$k 00$
KOR Falls. S.Dak, 10000 $\begin{array}{ll}\text { KORC Mineral Wells. Tex. } & 250\end{array}$ $1150-260.7$
CKSA Lloydminster. Alta.
KSJ Saint John. N. B. 5000

$$
\begin{array}{ll}
\text { WJRD Tuscaloosa. Ala. } & 5000 \\
\text { KCKY Cooliuge, Ariz. } & 1000 \\
\text { KXLR No. Little Rock, Ark. } & 5000
\end{array}
$$

$$
\begin{aligned}
& \text { WJRD Tuscaloosa. Ala. } \\
& \text { KCKY Cooliuge, Ariz. } \\
& \text { KXIR No litile Rock. }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { KXLY No. Little Rock, Ark. } & 5000 \\
\text { KFSG Los Angeles, Calif. } & 2500
\end{array}
$$ WLIP Kenosha, Wis.

KWIV Douglas, wyo.

$$
\begin{array}{lll}
\text { KFSG Los Angeles, Calif. } & 2500 \\
\text { KRKD Los Angeles, Calis. } & 5000
\end{array}
$$

$$
\begin{array}{lr}
\text { KJAX Santa Rosa, Calif. } & 5000 \\
\text { KGMC Enalewood. Colo. } & 1000 \mathrm{~d}
\end{array}
$$

$$
\begin{aligned}
& \text { KGMC Englewood, Colo. } \\
& \text { WCNX Middletown. Conn. }
\end{aligned}
$$

CFCN Calgary. Alia.
KPAY Chico, Calif.

$$
\begin{array}{|lll}
\text { WCNX Middictown, Conn. } & 500 \mathrm{~d} \\
\text { WDEL Wilmington, Del, } & 5000 \\
\text { WNDB } & \text { Daytona Bch. Fla. } & 1000
\end{array}
$$ WNOE New Orleans, La.

WRCV Philadelphia, Pa.
CKX Brandon, Man,

$$
\begin{aligned}
& \text { WGEA Geneva, Ala. } \\
& \text { WJRD Tuscaloosa. }
\end{aligned}
$$

$$
\begin{aligned}
& 10000 \\
& 10000
\end{aligned}
$$

$$
\begin{aligned}
& 10000 \\
& 50000
\end{aligned}
$$1000 d

250 d
1000d50000

$$
\begin{array}{lr}
\text { WGGH Marion. III. } & 5000 \mathrm{~d} \\
\text { KWDM Des Moines, lowa } & 1000 \\
\text { KWAI Salina Kane }
\end{array}
$$

KSAL Salina, Kans.

$$
\begin{array}{lr}
\text { KSAL Salina, Kans. } & 5000 \\
\text { WMST Mi. Sterling. Ky. } & 500 d \\
\text { WIMr Mumfardvill. }
\end{array}
$$

CBA Sackville, N.B. 50000

$$
\begin{array}{lr}
\text { WLOC Humfordville, Ky. } & 1000 \mathrm{~d} \\
\text { WIRO Raton Rnuae. }
\end{array}
$$

CHOK Sarnia, Ont.

$$
\begin{aligned}
& \text { WJBO Baton Rouge, La. } 5000 \\
& \text { WGHM Skowhegan, Maine } \quad 1000 \mathrm{~d}
\end{aligned}
$$

WAPI Birmingham, Ala,

$$
\begin{aligned}
& \text { WGim Skownegan, malne } 5000 \\
& \text { WCOP Boston, Mass. }
\end{aligned}
$$ KNX Los Angeles, Calif.

WVGG Coral Gables. Fla.
WFPM Fort Valley,

$$
\begin{aligned}
& \text { WCOP Boston, Mass. } 5000 \\
& \text { WCEN Mt. Pleasant, Mich. } 1000
\end{aligned}
$$

$$
\begin{aligned}
& \text { WEN Mt. Pleasant, Mich. } 1000 \\
& \text { KASM Albany. Minn. } \\
& \text { KRMS Osane Reach. Mo }
\end{aligned}
$$ WIBC Indianapolis. Ind. KFBI Wichita, Kans. WHPE High Point, N.C.

WRUN Utica. N. Y. WDIA Memphis. Tenn. KOPY Alice. Tex

$$
\begin{aligned}
& \text { WGBR Goldsboro, N.C. } \\
& \text { WCUE Akron, Ohin }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WCUE Akron, ohin } \\
& \text { WIMA Lima, Ohin }
\end{aligned}
$$

1080-277.6 KSCO Santa Cruz, Calif.

$$
0000
$$

$$
\begin{aligned}
& 1000 \\
& \text { n0000 }
\end{aligned}
$$ WKLO Louisvilic, Ky.

$$
\begin{array}{r}
50000 \\
5000
\end{array}
$$

1090-275.1

CHRS St, Jean Que 250 WMIE Miami. Fla. KGEM Boise, idaho KLPR Oklahoma City, Okla, 1000 dWJEM Valdosta, Ga.KGGI Oahu, Hawa

$$
\begin{aligned}
& \text { KSEN Shelby, Mant. } 1000 \\
& \text { KDEF Albuguerque. N. Mex. } 1000 \mathrm{~d}
\end{aligned}
$$

$$
\begin{aligned}
& \text { WRUN Utica, N. Y. } \\
& \text { WFNS Burlington. N.C. } \\
& \text { WGRR Goldshoro }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WIMA Lima, Ohio } \\
& \text { KNED McAloster, okla. } \\
& \text { KFJ Klamath Falls. Oren }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { KNED McAlostor, Okla. } & 1000 \\
\text { KFJI Klamath Falls, Oreg. } & 5000
\end{array}
$$

CHED Edmonton. Alta.
WHUN Huntingdon, Pa, Inond WEWO Lamrinburg, N. KWJJ Portland, Oreg.

CFJB Brampton, Ont.
KTHS Little Rock, Ark. 50000
5000
250 d
250 d
1000 d
1000 d
10000
10000
$1000 d$
5000 n

164 WHITE'S RADIO LOG WAXX Chippewa Fails, Wis. 5000 d
164 WHITE'S RADIO LOG WISN Milwauke, Wis. 5000

We. Wave Length

1160-258.5

wJJo Chicago, IIf, KSL Salt Lake City, Uia 50000

1170—256.3
CFNS Saskatoon, Sask.
1000
10000
5000
5000 KGFC Ft. Bragg, Calif,
0000 KHRL Paso Robles, Calif.
250d KRDG Redding, Calif.
1000 KWG Stockton, Calif.
KEXO Grand Junc., Colo.
KLVC Leadville, Colo.
KDZA Pueblo, Colo,
KGEK Sterling, Colo,
WINF Manchester, Conn.
WGGG Gainesville, Fla, WGGG Gainesville, Fla,
WONN Lakeland, Fla. WMAF Madison, FJa, $\quad 250$ WSBB New Smyrna Bch., Fla. 250 WNVY Pensacola, Fla. WJNO W. Palm Beach, Fla. WBNA W. Palm Beach, Fla. 250 WBIA Augusta, Ga. WBLJ Dalton, Ga,
WFOM Marietta, Ga. WFOM Marietta, Ga. WAYX Wayeross, Ga. KBAR Burley, Idaho KRXK Rexburg, Idaho WJBC Bloomington, IIJ. WQUA Moline, Ili.
WJOB Hammond. Ind. WSAL Logansport, Ind WTCJ Tell City, Ind. WBOW Terre Haute. Ind. KFAB Marshalltown,
WHIR Danvilie, Ky. WHOP Hopkinsville, Ky. WMLF Pineville. Ky KLIC Monroe, La.
WIBW New Orleans. KSLO Opelousas, La, WGUY Bangor, Maine
WITH Baltimore. Md. WITH Baltimore. Md.
wCUM Cumberland, Md. WMNB No. Adams, Mass. WESX Salem. Mass. WNEB Worcester, Mass.
WJEF Grand Rapids. Mich. WIKB Jron River. Mich WMPC Lapeer. Mich.
WSOO Slt. Ste. Marí, Mich. WSTR Sturgis, Mich,
WKLK Cloquet, Minn WKLK Cloquet, Minn. KYSM Mankato. Minn. KWNO Winona, Minn,
WCMA Corinth, Miss WCMA Corinth, Miss,
WHSY Hattiesburg, M WSSO Starkville. Miss. WAZF Yazkvile City, Miss. KODE Joplin. Mo.
KLWT Lebanon. Mo. KANA Anaconda, Mont. KBMN Bozeman, Mont. KXLo Lewiston, Mont. KOLL Libby, Mont. KTNC Falls City, Nebr. KHAS Hastings.
KELY Ely. Nev. KLAS Las Vegas,
KDOT Reno. Nev. WKCB Berlin, N.H WTSV Claremont, N.H.
WCMC Wildwood, N.J. KALG Alamogordo, N.Mex, KOTS Deming, N.Mex. KFUN Las Vegas, N.Mex. KSWS Roswell, N.Mex. WNIA Cheektowaga, N
WENY EImira, N. Y. WHUC Hudson, N. \mathcal{Y}
WLFH Litle Falls, WLFH Little Falls, N.Y. WSKY Asheville. N.C.
WFAI Fayettevilie, N.C WFAI Fayettevilie, N.C.
WMFR High Point. N.C. WISP Kinston. N, C. WNNC Newton, N.C.
WCBT Roanoke Rap., N.C. KDIX Dickinson, N.Dak
WCPO Cincinnati, Ohio WCPO Cincinnati, Ohi
WCOL Columbus, Ohio WIRO Ironton, Ohio WTOL Toledo. Ohio WADA N. of Ada, Okia. KVAS Astoria, Oreg. KRNS Burns, Oreg.
KOOS Coos Bay, Oreg KOOS Coos Bay, Oreg.
KGRO Gresham, Oreg. KYJC Medford. Oreg. Kalk Lakeview, Orea. WBVP Beaver Falls,
WEEX Easton,
Wa WKBO Harrisburg, Pa WCRO Johnstown. Pa. WBPZ Lock Haven, Pa
WNIK Arecibo, P, WERI Westerly, R, WAIM Anderson,
50 WNOK Columbia, S.C.

Kc. Wave Length W.P.|Kc. Wave Length KISD Sioux Falls, S.Dak. KSIX Corpus Christi, Tex. KDLK Del Rio. Tex. KNUZ Houston, Tex.
KERV Kerrville, Tex. KLVT Levelland, Tex. KOSA Odessa, Tex. KHHH Pampa, Tex. KSEY Seymour, Tex. KSST Sulphur Sprgs., Tex. KWTX Waco, Tex.
KMUR Murray, Utah KOAL Price, Utah WJOY Burlington, V t. WBBI Abingdon, Va. WCFV Clifton Forge, Va.
WFVA Frederickshurg, Va. WNOR Norfolk. Va, KQTY Everett, Wash. KLYK Spokane, Wash. KREW Sunnyside, Was
WLOG Logan, W.Va. WCOG Logan, W.Va. \quad Parkershurg, W, WHBY Appleton, Wis. WCLO Janesville, Wis,
WHVF Wausau. Wis. KVOC Casper. wyo.

1240-241.8

CFNW Norman Wells, CFPR Prince Rupert. B.C. CFWH Whitehorse, Y.T. CJAS Stratford, Ont. CJRW Summerside, P.E.I CKLS LaSarre, Que, WEBJ Brewton, Ala. WOWL Florence. Ala. WARF Jasper, Ata. KWJB So, of Globe, Ariz KOFA Yuma, Ariz,
KVRC Arkadelphia, Ark. KAGH Crossett. Ark KHOZ Marrison, Ark, KCRE Crescent City, Calit. KRDU Dinuba. Calif.
K MBY Monterey, Calif K MBY Monterey, Calif.
KPPC Pasadena, Calif. KPPC Pasadena, Calif.
KRKS Ridgecrest, Calif KROY Sacramento, Calif. KRNO San Bernardino, Calif KSON San Diego, Calif. KSUE Susanville. Calif. KRDO Colo. Sprgs.. Colo. KDGO Durango. Colo KSLV Monte Vista. Colo. KCRT Trinidad, Colo. WWCO Waterbury, Conn WBGC Chipley, Fla. WLCO Eustis Fla, WMMB Melbourne. Fla. WFOY St. Augustine, Fla
WBH Fitzgerald. WBHB Fitzqerald, Ga, WDUN Gainesville. Ga.
WLAG LaGrange, Ga. WLAG LaGrange,
WBML Macon, Ga. WWNS Statesboro. Ga. WPAX Thomasville, KANI Kailua. Hawai KVNI Cocur dAlenc, Idaho WCRW Chicago, Ill. WEDC Chicago, III. WSBC Chicago, 111. WEBQ Harrishurg. Ill.
WTAX Springfield. WSDR Sterling. IU. WHBU Anderson. Ind KDEC Decorah. Iowa KWLC Decorah, lowa KBICD Spencer, lowa KIUL Garden City, Kans. KAKE Wichita. Kans. WFTM Maysville, Ky. WFKM Maysville, Ky. WSFC Somerset. K AASE Minden. La KANE New lberia, La, WCEM Cambridge, Md. WJEJ Hagerstown. Md. WHAI Greenfield. Mass. WATT Cadillac. Mich. WCBY Cheboygan, Mich. WJPD Ishpeming, Mich. WJIM Lansing. Mich. WMFG Hibbing. Minn. WJON St. Cloud, Minn. WGRM Greenwood Miss WGCM Gulfport Miss. WMOX Meridian. Miss. WMIS Natehez. Miss.
KFMO Flat River. Mo
KWOS Jeffersnn City, Mo.

 KKRB Redmond, Oreg. KRXB Roseburg, Ores.
\qquad 250125
-

Idaho
I. LEM Emporium, Pa,
HUM Reading, Pa, WKOK Sunbury, Pa.
WBAX Wilkes. Barre WALO Humacao, P.R. WWON Woonsocket, R.I.
WKDK Newberry, S.C. WBEJ Elizabethton, Tenn. WERR Fayetteville, Ten
WBIR Koxvilie. Tenn. WKDA Nashville, Tenn. WENK Union City. Tenn. KEAN Brownwood. Tex KORA Bryan. Tex. KSOX Raymondville, Tex. $K X O X$
Sweetwater, Tex.
WSKI Montpalier, Vt. WSSV Petersburg, Va, WROV Roanoke. Va WTON Staunton. Va. KXLE Ellensburgh. Wash, KGY olympia. Wash WKOY Bluefield. W.Va, WDNE Charieston. W. WOMT Manitowoc. Wis, WIBU Poynette. Wis WOBT Rhinelander. Wis.
WIMC Rice Lake. Wis. KTHE Thermopolis, wyo. 250

CHWO Oakville. Ont. CKRL Vatane. Que. CKSB St. Boniface, Man.$\begin{array}{ll}\text { CKSB } \\ \text { WZOB } & \text { St. Boniface, Man. } \quad 1000 \\ \text { Mayne, Ala }\end{array}$

N.P.	Ke. Wove Length
250	WYSR Franklin. Va.
250	WNRG Grundy, Va,
250	KWSC Pullman, Wash.
250	KTW Seattle, Wash.
250	WEMP Milwaukee, Wis.

1260-238.0

CFRN Edmonton. Alta. DYBU Cebu, P.I.
WCRT Birmingham m, Ala 1000
5000 d KPIN Casa Grande, Ariz.
KGIL San Fernando, Calif. KGIL San Fernando, Calif,
KYA San Francisco. Calif.
WWDC Washington, D.C.
WFTW Fort Walton Beach. WFTW Fort Walton Beach,
000$\begin{array}{lr}\text { CFAM Altona, Man. } & 5000 \\ \text { CKSL London, Ont, } & 5000 \\ \text { WTHG Jokon, Ala } & 1000 d\end{array}$0dWNOG Naples, Fla.WHIY Orlando, Fla.
WTAL Tallahassee, Fla
WGBA Columbus, Ga.
WJJC Commerce, Ga.
KTFI Twin Falis, Idaho
WEIC Charleston. ItI.
WCMR EIkhart, Ind.
WWCA Gary, ind.
WORX Madison Ind
KSCB Liberal. Kans.
WAIN Columbia, Ky.
WFUL Fulton. Ky.
KVCL Winnfield. La.
WSPR Springfield. Mass.
WXYR Springfield. Mass.
KWEB Rochester, Minn.
WLSM Louisville, Hiss.
KUSN St. Joseph, Mo
WTSN Dover, N.H
KRAC Alamogordo, N.Mex.
WHLD Niagara Falls, N,Y 5000 d
WDLA Waiton. N.Y.
WCGC Belmont, N.C.
K80M Mandan. N.Dak.
WILE Cambridge, Ohio
WILE Cambridge, Ohio
KWPR Claremore, Okla.
KAJO Grants Pass, Oree.
WLBR Lebanon. Pa.
WLBR Lebanon. Pa.
$\begin{array}{lr}\text { WBHC Hampton. S.C. } & 1000 \mathrm{~d} \\ \text { K1HO Sioux Falls. S. Dak. } & 1000\end{array}$
W.P. Ke. Wave Length W.P.

1000d WLIK Newport, Telln. suUUd louvd KIDX Bay City, Tex. 1000 5000 KHEM Big Spring. Tex, lou0d $\begin{array}{ll}\text { KEPS Eagle Pass, Tex, } \quad 1000 \mathrm{~d} \\ \text { KFJZ Fort Worth, Tex. } & 5000\end{array}$ KFJZ Fort Worth, Tex. $\quad 5000$
WYUO Newport News, Va. 1000 d WYUO Newport News, Va. lo00d
KCVL Colville, Wash.
$l 000 \mathrm{~d}$ KCVL Colville, Wash. \quad I000d
ISBAM Longview, Wash. I000d WKYR Keyser, W.Va. \quad 5000d

1280—234.2

CJmS Montreal, Que.	5000
CKCV Quebec, Que.	5000
WPID Piedmont, Ala.	$1000{ }^{\text {d }}$
WNPT Tuscaloosa, Ala.	500
KHEP Phoenix, Ariz.	$1000{ }^{\text {d }}$
KFOX Long Beach. Calif.	1000
KJOY Stockton, Calif.	00
KTLN Denver, Colo.	500
WSUX Seaford, Del.	1000

$\begin{array}{ll}\text { KWE Weiser, Ida. } & \text { l000d } \\ \text { WIBV Belleville, III. } & 1000 d \\ \text { WEBM }\end{array}$
WFBM Indianapolis, Ind.
KFGQ Boone, lowa
$\begin{array}{ll}\text { WQIK Jacksonville, Fla. } & \text { 5000d } \\ \text { W JPC Lake Wales, Fla. } & \text { l000d }\end{array}$
WIBE Macon, Ga, la. lo00d
$\begin{array}{ll}\text { WIBB Macorr, Ga. } & \text { I000d } \\ \text { WMRO Aurora, III. }\end{array}$
WMRO Aurora, Ill. Ind, $\quad 5000$
WGBF Evansville. Ind.
WGBF Evansville, Ind, 5000
KCOB Newton, lowa
KCOB Newton, K Arkansas City, Kans. 1000
KSOK Arkansas City, Kans. 1000
WCPM Cumberiand, Ky. 1000 d
WDSU New Orleans, La. 5000
KWCL Oak Grove, La. 500 d
WEIM Fitchburg, Mass. 5000
WFYC Alma, Mich.
WTCN Minneapolis, Minn. 5000
KVOX Moorhead, Minn. 1000
KDKD Clinton. Wo, 1000 d
KD.
$\begin{array}{ll}\text { KDKD Clinton. Wo. } & 1000 \mathrm{~d} \\ \text { KYRO Potosi, Mo. } & 500 \mathrm{~d}\end{array}$
KCNJ Broken Bow, Nebr. 1000 d
KTOO Henderson. Nev. 5000 d
$\begin{array}{ll}\text { KTOO Henderson. Nev. } & 5000 \mathrm{~d} \\ \text { WHBI Newark. N.J. } & 2500\end{array}$
WHBI Newark. N.J. N.Mex. 5000d
$\begin{array}{ll}\text { KHOB Hobbs, N.Mex. } \\ \text { WOV New York, N.Y. } & 5000 \mathrm{~d} \\ \text { W. }\end{array}$
$\begin{array}{ll}\text { WDV New York, N.Y. } & 5000 \\ \text { WVET Rochester, N.Y. } & \text { 5000d } \\ \text { WRSA Saratoga Sprgs., N.Y. } 1000\end{array}$
$\begin{array}{ll}\text { WRSA Saratoga Sprgs.. N.Y. } 1000 \\ \text { WSAT Salisbury, N.C. } & 1000 \\ \text { WONW Detianee, Ohio } & 500\end{array}$
$\begin{array}{lr}\text { WONW Defiance, Ohio } & 500 \\ \text { WLMJ Jackson, Ohio } & 1000 \mathrm{~d}\end{array}$
$\begin{array}{ll}\text { KLM Jackson, Ohio } & 1000 \mathrm{~d} \\ \text { KLCO Poteau, Okla. } & 1000 \mathrm{~d}\end{array}$
$\begin{array}{ll}\text { KERG Eugene, Oreg. } & 5000 \\ \text { WBRX Berwick, Pa. } & 500 \mathrm{~d} \\ \text { WHVR Hanover, Pa. } & 5000\end{array}$
WHVR Hanover, Pa. $\quad 5000$
$\begin{array}{ll}\text { WKST New Castle. Pa. } & 5000 \\ \text { WCMN Arecibo.P.R. } & 1000 \\ \text { WANS And }\end{array}$
WCMN Arecibo. P.R. $\quad 1000$
WANS Anderson, S.C. $\quad 1000$
WAY Mulins.
$\begin{array}{ll}\text { WANS Anderson, S.C. } & 1000 \\ \text { WJAY Mullins, S.C. } & 1000 \mathrm{~d} \\ \text { WJGD Columbia. Tenn. } & 1000 \mathrm{~d}\end{array}$
WJGD Columbia, Tenn. $\quad 1000 d$
WDNT Dayton, Tenn.
WDNT Dayton, Tenn. $\begin{aligned} & \text { KNIT Abilene. Tex. } \\ & \text { KW00d }\end{aligned}$
KNIT Abilene. Tex. \quad 500d
KWHI Brenham, Tex.
KLTI Longview. Tex. $1000 d$
KNAK Salt Lake City, Utah 5000
$\begin{array}{lr}\text { WYVE Wytheville. Va. } & 1000 \mathrm{~d} \\ \text { KIT Yakima, Wash. } & 5000 \\ \text { WMNF Richwood. W.Va. } & 1000 \mathrm{~d}\end{array}$
$\begin{array}{lr}\text { WMNF Richwood. W.Va. } & 1000 \mathrm{~d} \\ \text { WNAM Neenah. Wis. } & 1000\end{array}$
1290-232.4
WMLS Sylacauga. Ala. $\quad 1000 \mathrm{~d}$
$\begin{array}{lr}\text { WMLS Sylacauga, Ata, } & 1000 d \\ \text { KEOS Flagstaff, Ariz. } & 1000 \\ \text { KCUB Tucson, Ariz. } & 1000\end{array}$
$\begin{array}{lr}\text { KEOS Flagstaft, Ariz. } & 1000 \\ \text { KCUB Tucson, Ariz. } & 1000 \\ \text { KBMS } & \text { EI Dorado, Ark }\end{array}$
$\begin{array}{lr}\text { KDMS EI Dorado, Ark, } & 5000 \mathrm{~d} \\ \text { KUOA Siloam Sprgs., Ark. } & 5000 \mathrm{~d}\end{array}$
$\begin{array}{ll}\text { KUOA Siloam Sargs., Ark. } & \text { 5000d } \\ \text { KHSL Chico, Calif. } & 5000\end{array}$
$\begin{array}{ll}\text { KHSL Chico, Calif. } & 5000 \\ \text { KPER Gilroy, Calif. } & 500 d\end{array}$
KITO San Bernardino, Calif. 500 C
WCCC Hartford, Conn. 500d
WTUX Wilmington, Def, I000d
WTMC Ocala, Fla,
WSCM Panama City Beach,
Florida 500d
WIRK W. Paim Bch., Fla. 5000
WDEC Americus. Ga, 1000 d
$\begin{array}{ll}\text { WDEC Americus, Ga, } & 1000 \mathrm{~d} \\ \text { WCHK Canton, Ga. } & 1000 \mathrm{~d}\end{array}$
$\begin{array}{ll}\text { WCHK Ganton, Ga. } & 1000 \mathrm{~d} \\ \text { WTOC Savannah, Ga. } & 5000\end{array}$
$\begin{array}{lr}\text { KYTE Pocatello, IIdaho } & 1000 \mathrm{~d} \\ \text { WIRL Peoria. Il. } & 5000\end{array}$
$\begin{array}{lr}\text { WIRL Peoria. III. } & 5000 \\ \text { WCBL Benton, Ky. } & 1000 \mathrm{~d}\end{array}$
WCBL Benton. Ky. $\quad 1000 \mathrm{~d}$
KJEF Jennings. La.
WHGR Mouphton Lake.
Michigan 5000 d

Michigan			5000d
WNIL Niles, Mich.	500d		
WOIA Saline. Mich.	500d		
KBMO Benson. Minn.	500d		

KBMO Benson. Minn.
WBLE Batesville. Miss. $\quad 1000 \mathrm{~d}$
$\begin{array}{lr}\text { KALE Batesville. Miss. } \quad 1000 \mathrm{~d} \\ \text { KGVO Missoula, Mont. } & \quad 1000 \mathrm{~d} \\ \text { KGVO M }\end{array}$
$\begin{array}{lr}\text { KGVO Missoula, Mont. } & 5000 \\ \text { KOIL Omaha, Nebr. } & 5000 \\ \text { WKNE Keene, N.M. } & 5000\end{array}$
$\begin{array}{lr}\text { WKNE Keene, N.M. } & 5000 \\ \text { KSRC Socorro. N.M. } & 1000 \mathrm{~d} \\ \text { WGLI Babylon, N.Y. } & 1000\end{array}$
$\begin{array}{lr}\text { WGLE Babylon, N.Y. } & 1000 \\ \text { WNBF Binghamton, N.Y. } & 5000 \\ \text { WHKY Hickory, N.C. } & 5000 \\ \text { WEYE Sanford, N.C. } & 1000 \mathrm{~d}\end{array}$
$\begin{array}{lr}\text { WEYE Sanford, N.C. } & 5000 \\ \text { WOMP Bellaire, Ohio } & 1000 \mathrm{~d} \\ \text { WO }\end{array}$
$\begin{array}{lr}\text { WOMP Bellaire, Ohio } & 1000 \mathrm{~d} \\ \text { WHIO Dayton. Ohio } & 5000\end{array}$
$\begin{array}{ll}\text { WHIO Dayton. Ohio } & 5000 \\ \text { KUMA Pendleton, Oreg. } & 5000\end{array}$
165

Kc. Wave Length W.P.|Kc. Wave Length W.P.|Kc. Wave Length W.P.|Kc. Wave Length W.P

KLIQ Portland, Oreg. WICE Providence. WFIG Sumter. S.C. WATO Oak Ridge, Tenn. KIVY Crockett, Tox KRGV Weslaco, Tex. KTRN Wichita, Falls, Tex. WPVA Colonial Hats, Tex. WAGE Leesburg, Va. WMIL Milwaukeo, Wis. WCOW Sparta, Wis.

1300-230.6

CBAF Moncton, N.B. KWCB Searcy, Ark. KROP Brawley, Calif. KYNO Fresno, Calif. KVOR Colo. Sprgs., Colif. WAVZ New Haven, Conn. WSOL Tampa, Fla, WIMO Winder, Ga. WTAQ LaGrange, III. WHLT Huntington ind WMFT Terre Haute, Ind. KGLO Mason City Jow wIBR Baton Rouge, KLUE Shreveport. La, WJDA Quincy. Mass. WOOD Grand Rapids. Mich. WRBC Jackson, Miss. KBRL McCook, Nebr. WTNJ Trenton. N.J. WOSC Fulton, N.Y. WSYD Mt. Airy, N.C. WERE Cleveland, Ohio KOME Tulsa, okla. KACI The Dalles, Oreg. WTIL Mayaguez, P
KOLY Mobridge, S. Dak. WMTN Morristown, Tenn, KVET Austin, Tox.
KTFY Brownfield, Tex KOL Seattle, Wash. WCLG Morgantown, W.Va, $\quad 5000$ WKLC St. Albans, w.Va. 1000 d

1310-228.9

CKOY Ottawa,		WRRR Rockford, III.	$\begin{aligned} & 1000 \mathrm{~d} \\ & 1000 \mathrm{~d} \end{aligned}$
CKOY Ottawa, Ont.	5000	WJPS Evansvillo, Ind.	5000
CJRHR		KWWL Waterloo, Iow	5000
WHEP foley, Ala.	1000 d	ans.	
WJAM Marion, Ala.	5000 d	WMOR Morehead,	000d
KBUZ Mesa, Ariz	5000	KVOL La	0
KBOK Malvern. Ar	1000 d	WASA Havre deGrace, Md.	Od
KWBR Oakland, Cali	1000	WGRB Waltham. Mass.	5000
KTKR Taft, Calif.	500d	WBBC Flint. Mi	1000
KFKA Greeley, Colo,	1000	WLOL Minneapolis, Min	5000
WICH Norwich, Conn.	1000	WCRR Corinth, Miss.	500d
W000 Deland, F	5000 d	WJPR Greenville, M	1000
WAUC Wauchula. Fla,	500 d	WDAL Meridian, Miss.	1000 d
WBRO Waynesboro, Ga.	1000 d	KUKU Willow Springs, Mo.	500 d
WBMK West Point. Ga.	1000	KGAK Gallup, N. Mex	5000
KLIX Twin Falls, Idaho	1000	WEVD N	000
WISH Indianapolis, Ind.	500	WPOW New Yor	00
KOKX Keokuk, lowa	1000	WEB0 Oswego,	1000d
WTTL Madisonville, Ky	00		1000
WDOC Prestonsburg, Ky.	5000 d	WFIN Findlay, ohio	1000 d
K1KS Sulphur, La.	500	WKOV Wellston, Ohio	500 d
KUZN W. Monroe, La,	1000d	KPOJ Portland, Oreg.	5000
WLOB Portland, Maine	1000 d	WBLF Beliefonte, Pa.	500
WORC Worcester, Mass.	5000	WICU Erie, Pa.	5000
WKMH Dearborn, Mich	500	WLAT Conway, S .	1000d
KRBI St. Peter, Minn.	1000 d	WFBC Greenville, S.G	5000
WXXX Hattiesburg, Miss	1000d	WAEW Crossville, Tenn	1000d
KFSB Joplin, Mo.	5000	WTRO Dyersburg, Tenn	
KFBB Great Falls, mo	5000	KMIL Cameron, Tex.	500d
W JLK Asbury Park. N.	25	KSWA Graham, Tex.	500d
WCAM Camden,	250	KINE Kingsvilie,	1000d
WVIP Mt. Kisco,	1000d	KDOK Tyler. Tex.	1000 d
WTLB Utica, N.Y	1000	WBTM Danvillo. Va	5000
WISE Ashevilio. N.C.	5000	WESR Tasley, Va.	1000 d
WKTC Charlotte, N.C.	1000	KFKF Bellevue, Wash.	1000d
WTIK Durham, N.C.	1000	WETZ Now Martinsvill	
KNOX Grand Forks. WFAH Alliance, Ohio	5000 1000 d	West Virginia	1000d
WFAH Alliance, Ohio KNPT Newport, Oreg.	1000	WHBL Sheboygan, Wis.	1000
WBFD Eedford. Pa.	1000 d	KOVE Lander	00
WGSA Ephrata, Pa.	1000d	1340-223.7	
WNAE Warren,	5000 d		
WDKD Kingstree, S.C.	5000 d	CFGB Goose Bay, Nid.	250
WDOD Chattanooga, Tenn.	5000	CFES Weyburn. S	250
WDXI Jackson, Tenn.	5000	CFYK Yellow Knife, N.W	150
KZIP Amarillo. Tex.	1000 d	CHAD Amos, Qu	250
WRR Dallas, Tex.	5000	CJLS Yarmouth, N.S.	250
KOYL Odessa, Tex.	500 d	CHRD Drummondville, Que,	250
Va.	500d	CJQC quebec, Qu	250
WGH Newport Nows, Va.	5000	CKOX Woodstock. Ont.	250
KARY Prosser, Wash.	1000d	WKUL Cullman, Ala.	250
WIBA Madison, Wis.	00	WJOL Florence, Ala.	250
		GGWC Selma, Al	250
66	G	WFEB Sylacauga, Ala. KIBH Seward, Alaska	$\begin{aligned} & 250 \\ & 250 \end{aligned}$

WHEP Foley, Ala.
KBUZ Mesa, Ariz
KBOK Malvern. Ark.
KTKR Taft, Calif.
KFKA Greeley, Colo, WICH Norwich, Conn. WOOO Deland, Fla. WBRO Waynesboro, Ga WBMK West Point. Ga W COKX Kanapolis, Jnd. WTTL Madisonvillo (1) Prestonsburg, Ky。 KUZN W. Monroe. NLOB Portland, Maino WORC Worcester. Mass. KRBI St. Peter, Minn WXXX Hattiesburg, Miss KFSB Joplin, Mo.
WJLK Asbury Park. N.J. WCAM Camden, N.J. WTLB Utica, N.Y. WKTC Charlotte, N.C KNOX Grand Forks. WFAH Alliance, Ohio WBFD Bedford. Pa. WGSA Ephrata, Pa. WDOD Chattree, S.C. KZIP Jackson, Tenn. WRR Dallas, Tex
KOYL Odessa, Tex.
WGH Newport Nows, Va.
WIBA Madison, Wis.

1000 d
1000 d
500 d
1000
1000
1000 d
500 d
5000
5000
5000 d
1000 d
5000
1000 d
1000 d 1320-227. CJSG Sorel, P, Q.
WAGF Dothan, Al W
K
K
K
K
K
K
KA
W
W
W
W
W RLW
UDE
CA
A
WC
WH
WA
W
KMAN Kankakee, IJI.
5000
10000
1000 d
1000
1000
1000
1000
1000
100
50000
1000 d
5000 100 WWH Scottsbluff, Nebr.
500 H .
WAGY Fornelt, N, Y.
W.C. 500d
500d
WGGG Forest City, N.C.
KReensboro, N.C.
5000 WQUY Minot, N.Dak, 5000 5000 WHOK Lancaster, Ohio 1000 d 1000 KWOE Clinton, Okla, lo00d
l000d WKAP Allentown, Pa.
5000
$1000 d$
5000
 100
100
1000 d WKIN Kingsport, Tenn. 5000 d
250 d WMSR Manchester, Tenn. $\quad 1000 \mathrm{~d}$
1000d KXYZ Houston Tex

5000
1000 d
1000
1000
1000 d 1000 d
1000 d 5000 d 5000
1000 1000 d
5000

5000 1000

 \begin{tabular}{l} WLLY Richmond, Va, Utah 5000

WXR 1000 d

\hline
\end{tabular} KHIT Walla Walla, Wash, loo0d $1330-225.4$

CBH Halifax, N.S. KMOP Tucson, Ariz WARN Ft. Pieres, Fla,
WYSE Lakeland, Fla, WYSE Lakeland, Fla. WMEN Tallahassee, Fla. WEAT Dublin, Ga. WRAM Monmouth, II WJRR Evansville, Ind. KFH Wichita, Kans.
WMOR Morehead, Ky. WASA Havre deGrace, Md.
WCRB Waltham Mass. WBBC Flint, Mich.KGAK Galluw Springs,$\mathbf{m} \leq$
KPOI Woliston, OhioWICU Erio. PaWLAT Conway, S.CWAEW Crossville, Tenn,
WTRO Dyersburg, Tenn
KSWA Graham, Tex,
KINE Kingsvilie,
KDOK Tyler. Tex.
WBTM Danvilie,
KFKF Bellevue, Wash.
West Virginia 1000 d
WHBL Sheboygan, Wis. $\quad 1000$
1340—223.7
CFGB Goose Bay, Nnd.
CFYK Yollow Knife,
CHAD Amos, Que
CJLS Yarmouth.
CHRD Drummondville, Que.
CKOX Woodstock. Ont
WKUL Cullman, Ala.
WGWC Serence, Ala.
WFEB Sylacauga, Ala,
KIBH Seward, Alaska 0005000 d
5000 d000 d5000
500 d
500 d500 d5000000d000
100100a.
5000
1000 d
WHITE'S RADIO LOG $\left\lvert\, \begin{array}{ll}\text { KIBH Sy }\end{array}\right.$
K KBTA Prescott', Ariz. KBTA Batesville, Ark, KENL Arcata, Calif. KSFE Needles KATY San Luis Obispo, Calit KIST Santa Barbara, Calif.
KOMY Watsonville, Calif. KDEN Denver, Colo.
WNHC Salida, Colo.
W00k washington, C.C.
WTAN Clearwater, Dia,
K
$\mathbf{W}$$W A$
W
W
WW NBH Gardner, mass.Fla.WLAV Grand Rap.. Mich.
WCSR HillFla,
Fla
WAKE Athens, GaWGAA AUgusta, Cedartown,
WBBT Columbus,WTIF Tifton, Ga
Ga.
KPST Preston, Ida daho
WJPF Herrin, 111 .
WJOL Joliet. III.
WBIW Bedford, Ind.
WTRC Elkhart, ind.
WLBC Muncie. Ind.
KROS Glinton, lowa
KLIL Estherville. Iowa
KSEK Pittsburg, Kans,
WCMI Ashland, Ky.
WNBS Murray, Ky
WEKY Richmond. Ky.
KGAN Bastrop, La
KRMD Shreveport, La.
WFAU Augusta, Maine
WABM Houlton. Maine
WGAW Gardiner Mass
WNBH New Bedford. Mass.WMTE Millsdale, Mich,WAGN Menomines, MichWAGN Menominee, MichWMBN Potoskey, Mich.
WEXL Royal Oak, Mich.
KDLM Detroit Lakes, Minn.
Helena, Mont,
KPRK Livingston, Mont.
KATL Miles City, Mont.
KATL Miles City, Mont
KBTK Missoula, Mont.
KFGT Fremont, Nobr.
KGFW Kearney, Nobr.
KGFW Kearney, Nebr.
KSID Sidney.
KSID Sidney Nebr.
KBET Reno, Nev
WDCR Hanover, N.H
WMID Atlantic City. N.J.
WMBO Auburn, N,Y
WMBO Auburn, N.Y.
WENT Gloversville,
WENT Gloversville, N
WJOC Jamestown.
W,
WUSJ Lockport,
WUSJ Lockport, N.Y.
WMSA Massena, N.Y
WALL Midletown,
WIRY Plattsburg.
WALL Middletown,
WIRY Plattsburg.
WJRI Lenoir, N. \dot{C}.
WTSB Lumberton.
WOXF Oxford, N.c.
Woow Washington, N.C.
WGNI Wilmington. N.C.
WA1R Winston.Salem, N.C.
KGPC Grafton. N.D.
WNCO Ashland. Ohto
WOUB Athens, Ohio
WIZE Springfield. Ohio
WSTV Steubenvilie, Ohio
KIHN Hugo, Okla.
KOCY Okla. City. Okla,
KLOO Corvallis. Ore.
KLOO Corvallis. Ore.
KAGI Grants Pass, Oreg
KAGI Grants Pass, Oreg.
KIHR Hood River, Oreg.
KFiR North Bend, Oreg.
KFIR North Bend, Oreg
WFBG Altoona,
WCVI Connellsvilie. Pa.
WCVI Connellsville. P
WSAJ Grove City, Pa.
WKRZ Oil Gity. Pa.
WKRZ Oil city. Pa.
WHAT Philadelphia.
WRAW Reading. Pa.
WRAW Reading. Pa,
WBRE Wilkes-Barre, Pa.
WWPA Williamsport, Pa.
WGRA Williamsport, Pa
WOKE Charleston, S.C.
WRHE Rock Hill, S.C
WRSC Sumter, S.C.
KIJV Huron, S.D.
KRSD Huron, S.D,
KRSD
WBAC Cleveland, Tenn.
WKRM Columbia, Tenn.
WKRM Columbia, Tenn.
WGRV Greenville, Tenn.250
250
250
250
25
25
25
25

c. Wave Length W				
${ }_{\text {KSET }}{ }_{\text {KNAF }}^{\text {EI Paso, Tex. }}$ Fredericksburg, Tex. ${ }_{250}^{250}$				
KDUB Lubbock, Tex.				
VIC N. of Victoria. Tex.				
STA Charlotte Amaile, V.I.				
HAP Hopewell.				
	Pasco			
Pasco				
Enate				
WMON Montoomery. W.V				
	Ladysmith.			
T Milwake.				
	KWOR Worland, wyo.			
2.1				
Hov Pembroke, ont. DC Dawson Creek. B.C.				
Anne de la Pocatiere, Que.				
w				
\% Bakersfeld, 'Calit. 100				
	Santa			
WNLK Norwaik, Conn.WPCT Putnam. Conn.				
WRPB Warner Robins, Ga. 10				
WEEK Peoria, Illi.				
WRNT Kokomo				
KMAN Manhattan, Kans. 50				
WOE				
rownilie				
osci				
WHIP Mooresville, N.C. 100				
KTLQ Tahlequah, Okla				
WORK York Pa.WOAR Darington, s.c. 500W00				
			250	

250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
1350-222.1
CHOV Pembroke, Ont.
CJDC Dawson Creek. B.C. 1000CKLB Oshawa, Ont,
CKEN KentrillCKEN Kentville.
WELB EIba, Ala.WGAD Gadsden. Ala. $\quad 1000 \mathrm{D}$KAAB Hot Springs, Ark. 1000KCKC San Bernardino, Calif. 500KSRO Santa Rosa, Calif. 1000KGHF Pueblo. Colo. 5000WNLK Norwaik, Conn. 1000

1360-220.4

WWWB Jasper. Ala. WMFC Monroeville, Ala.	$\begin{aligned} & 1000 \mathrm{~d} \\ & 1000 \mathrm{~d} \end{aligned}$
WELR Roanoke, Ala.	1000 d
KRUX Giendale, Ariz.	5000
KLYR Clarksvilie, Ark.	500 d
KFFA Helena, Ark	1000
KFIV Modesto, Calif.	1000
KRCK Ridgecrest, Calif.	1000 d
KGB San Diego, Calif.	1000
WDRC Hartford, Conn.	5000
WOBS Jacksonville, Fla,	5000 d
WKAT Miami Beach, Fla.	5000
WIOD Sanford. Fla.	500d
WINT Winter Haven. Fla.	1000 d
WAZA Bainbridge. Ga.	1000 d
WLAW Lawrenceville, Ga,	1000 d
WLBK Dekalb, III.	500 d
WVMC Mt. Carmel, III.	500d
KXGt Ft, Madison, lowa	1000 d
KSCJ Sioux City, lowa	5000
KBTO EI Dorado. Kans.	500d
WFLW Monticello, KY.	1000d
KDBC Mansfleld, La.	1000 d
KVIM New lberia, La,	1000 d
KTLD Tallulah, La.	500d
WEBB Dundalk, Md.	5000d
WLYN Lymn, Mass.	1000 d
WK MI Kalamazoo, Mich.	5000
KLRS Mountain Grove, Mo.	1000 d
WNNJ Newton, N.J.	500d

Kc. Wave Length W.P.|Kc, Wave Length WWBZ Vineland, N.J WKOP Binghamton, N.Y. WMNS olean. N.Y. WCHL Chapel Hill. N.C. WSAI Cincinnati, Ohio KUIK Hillsbora, Oreg. WMCK MoKeesport. Pa. WPPA Pottsville, P. WLCM Lancaster, S.C. kRAY Amarillo, Tex. KACY Andrews. Tex. KREL Baytown, Tox KRYS Cornus Christi, Tex. WBOB Galax. Va WHBG Harrisonburg. Va.
KFDR Grand Coulee, Wash. KMOTTacoma, Wash. WHJC Matawan. W.V. WMOV Ravenswood. W.Va. WBAY Green Bay, Wis. WISV Virouqua, Wis. WMNE Menomonie. Wis.
KVRS Rock Springs, Wyo.

1370—218.8

WBYE Calera, Ala,

 KBUC Corona, Calif. KGEN Tulare, Calif. WHYS Ocala. Fla. WCOA Pensacola, Fla, WBGR Jesup. Ga. WFOR Manchester, Ga. WKLE Washington. WTTS Bloomingtoin. Ind. WGRY Gary, Ind.KOTH Dubuque, lowa
KGNO Dodge City, Kans. KAPB Marksville. La. WGHN Grand Haven. Mis WGHN Grand Haven. Mic
KSUM Fairmont, Minn. WDOB Canton, Miss.
KWRT Boonville, Mo. KWRY Boonville, Mo.
KCRV Caruthersville, Mo. KCRV Caruthersvilt KAWL York. Nebr. WFEA Manchester, N.H. WALK Patchogue, N.Y. WSAY Rochester. N.Y WTAB Gabor City. N.c. KFJM Grand Forks, N.D. WSPD Toledo. Ohio
KAST Astoria Oreg. WOTR Corry. Pa. WPAZ Pottstown. Pa. WKMC Roaring Sprgs., Pa. WIVV Vieques. P.R. WDEE Chattanooga. Tenn. WOXE Lawrenceburg, Tenn. KOKE Austin. Tex, KFRO Longview, Tex. KUKD Post, Tex
KSOP Salt Lake City. Utah WBE Bennington, Ma. WJWS South Hill. Va. KPOR Quincy, wash. WMOD Moundsville. W.Va. WCCN Neillsville, Wis.
KVwo Cheyenna, wyo.

1380-217.3

CFDA Victoriaville, Que

 CKPC Brantford. Ont. CKLC Kinaston, Dnt. KNLR N. Little Rock, Ark. KBVM Lancaster. Calif. KGMS Sacramento. calif. KFLJ Walinas. Califo WAMS Wilminyton, Dci. WUQ Ormond Bch., Fla. WTSP St. Petersburg, Fla. WAOK Atlanta. Ga,WRWH Cleveland, Ga, KPOI Honolulu. Hawail WKJG Ft. Wayne. Ind WMTA Central City. Ky. WWKY Winchester. KY.
WEND Baton Rouge. La WITH Port Huron, Mich. KLIZ Brainerd. Minn. KAGE Winona. Minn. WOLY Indianola, Miss. WTUP Tupelo. Miss. KWK St. Louis, Mo. KUVR Holdredge. Nebr. WAWZ Zarephath, N.J. WLOS Asheville. N.C.C. WTOB Winston-Saiem, N.C
WPKO Wavarly, Ohio

1000
5000
1000 d
1000 d
5000
5000
1000 d
1000
1000
1000 d
1000 d
1000 d
500 d
1000 d
1000
1000
5000
1000 d
5000 d
1000 d
5000
1000 d
1000 d
5000
500 d
1000 d
1000 000

$$
\begin{aligned}
& C \\
& W \\
& K \\
& K \\
& K \\
& K \\
& \mathbf{K}
\end{aligned}
$$

KSWO Lawton, Okla.

 5000 KMUS Muskogec, Okla 1000 K KRV Ontario, Oré Oreg KSRV Ontario, Oreg.WACB Kittanning, Pa. WACB Kittanning, Pa.
WAYZ Wayneshoro. Pa. WNRI Woonsocket, R.I.
WAGS Bishopville, S.C. KOTA Rapid City, S.Dak. KJET Beaumont, Tex.
KBW Brownwood, Tex KTSM El Paso, Tex. KMUL Muleshoe, Tex. KBOP Pleasanton, T
WSYB Rutland, Vt. WMBG Richmond, Va WBEL Beloit, Wis
1390-215.7

$$
\begin{aligned}
& \text { CKLN Nelson, B.C. } \\
& \text { WHMA Anniston. Ala. } \\
& \text { KDON De@uren Ark }
\end{aligned}
$$ KDQN Dequeen. Ark.

KAMO ROgers. KAMO Rogers, Ark. KGER Long Beach, Cali
KTUR TurJock, Calif. KFML Denver, Colo. WAVP Avon Park. Fla. WGES Chicago, Ill
lo00d WFIW Fairfield, III.
1000

5000 KCLN Clinton, Iowa | 5000 | |
| :--- | :--- |
| 1000 d | KCBC Des Moines, Jowa |
| KNCK Concordia, Kans | |

1000 d
5000 $\begin{aligned} & 5000 \\ & 1000 \mathrm{~d} \text { WKIC Hazard. Ky. }\end{aligned}$ loo0d KNOE Monroe, La. 000d WPAF Orange, Mass. WCER Charlotte, Mich. WROA Gulfport, Miss. WQIC Meridian. Miss. KENN Farmington. N. Mex.
WEOK Poughkeensie. N.Y. WRIV Riverhead. N. Y.
WFRL Syracuse N, Y. W
$W F$
$W F$ W$1000 d$
1000 d

N.C.5000 KLPM Minot N.C.500d WOHP Bellefontaine, OhioWFMJ Youngstown,
KCRC Enid, Okla.KSLM Salem, Oreq.WLAN Lancaster, Pa,WHPB Belton, S.C.WCSC Charleston, S.C.WTJS Jackson, Tenn.KBEC Waxahachie, Jex.
KLGN Logan, Utah
1000d WEAM Arling tah
1000 d WEAM Arlington, Va.
1000 KLOQ Yakima, Wash.000 d$1000 d$
$1000 d$
1000 d
500d
500d
1000d
500d
l000d
1000 d
000 d1000
응
10000
5000
1000 d1000d
1000d
1000
1000
1000 d
1000
1000
1000 d
000 d

CIKBC Bathurst, N. B. CKBC Bathurst, N, B.
CKCY Sault Ste. Mari
CKRN Rouyn, Que. KSW Swift Current, Sask, WMSL Decatur, Ala. WXAL Demopolis, Ala, WFPA Ft. Payne. Ala. WJLD Homewood. Ala
WJHO Opelika, Ala. KSEW Sitka, Alaska KCLF Clifton, Arlz, KONI Phoenix, Ariz.
KTUC Tucson, Ariz. KELD EI Dorado, Ark KWYN Wynne, Ark. KWY W Wyne, Ark.
KRE Berkeley, Calif. KREO Indio. Calif KSDA Redding, Calif. SSPA Santa Paula, Calif. KONG Visalia Calif. KRLN Canon City. Colo KFYA Delta. Colo. KBNZ La Junta. Colo. WSTC Stamford. Conn WILI willimantie. Conn. WFTL Ft. Lauderdale, FI WFRA Ft. Lauderdale, WRHC Jacksonvilie, Fla. WPRY Pcrry, Fla,

WTRR Sanford. Fla. WCOS Alma, Ga. 1000d WSGC Elberton, Ga. I000d WNEX Macon, Ga. 500d WMGA Moultrie, Ga.	l000d
I000d	
WGSA Newnan, Ga.	
Wavannah, Ga.	5000 KART Jerome, Idalio. 500 d KRPL Moscow, Idaho 5000 KSPI Sandpoint, Idaho 5000 WDWS Champaign, III. 5000

5000
W GIL Galesburg. Ill. 5000
500 d

Ohio

WBA
KCO
1000 d KCO
W.P. Ke
P. Ke. Wave Length W.P.|k

\section*{1000 KVFD Fort Dodge, Iowa} 1000 d KAYS Hays. Kans. | 1000 | WCYN Cynthiana, Ky, |
| ---: | :--- |
| I000d | WIEL Elizabethtown, Ky. | 1000 d WFTG London, Ky. l000d WFPR Hammond, La. 1000 K KAOK Lake Charles, La. 5000 WRDO Auqusta, Maine 1000 d WIDE Biddeford, Maine 1000 WWIN Baltimore, Md. 1000

$500 d$
WLLE F Lill River, Mass
Whwell, Mass. 1000 d
5000 등ㅇㅇㅇ W

1000

$$
\begin{array}{r}
1000 \mathrm{~d} \\
1000 \mathrm{~d} \\
5000 \\
500 \mathrm{~d} \\
1000 \mathrm{~d} \\
1000 \mathrm{~d} \\
1000 \\
500 \mathrm{~d} \\
1000 \mathrm{~d} \\
5000 \mathrm{~d} \\
5000 \\
1000 \mathrm{~d} \\
1000 \mathrm{~d} \\
1000 \mathrm{~d} \\
500 \mathrm{~d} \\
1000 \mathrm{~d} \\
5000 \mathrm{~d} \\
\mathrm{en}
\end{array}
$$

$$
\begin{array}{r}
1000 \mathrm{~d} \\
5000
\end{array}
$$

 W
W
W
K
K
K
K
K W
W
W
s,
5000 K
W

$\underset{W}{W}$

50
5000
1000
5000
000 K
1000
500 K
5000
5000
500 d
500 d
500 d
1000 d
500 d
000 d
5000
5000
5000
1000
5000
1000

250
250
Ke. Wave Lengt
WALA Mobile, Ala. KTCS Fort Smith, Ark. KTEE Carmel, Calif, KMYC Marysville, Calif. KCAL Redlands, Calif.
KCOL Ft, Collins, Colo, WPOP Hartford, Conn. WDOV Dover, Del. WMYR Fort Myers, Fla.
WBIL Leesburg, Fla. WBIL Leesburg, Fla.
WDAX McRae, Ga. WDAX McRae, Ga, WRMN EIgin, III. WTIM Taylorville. Ill. KLEM LeMars, Lowa
KCLO Leavenworth, Kans KWBB Wichita, Kans. WLBJ Bowling Green, Ky. WHLN Harlan, Ky. WGRD Grand Rap., Mich. KLFD Litchffeld. Minn. WDSK Cleveland, Mis
WBKN Newton Miss

W W w
 \mathbf{w} \mathbf{w} \mathbf{w}

WRAK Williamsport. Pa,
WHOA San Juan. P.R. WHOA San Juan, P.
WPCC Clinton, S.C. WCOS Clinton, S.C.

$$
\begin{aligned}
& \text { WGTN Georgetown. S.C. } \\
& \text { WTHE Spartanburg, S.C. }
\end{aligned}
$$

CJMT Chicoutimi, Que.
WBRD Bradenton, Fla.
WDBF Delray Beach, Fla. 500 d
1000 d
WAVO Avondale Estates, Ga, 500 d
5000
WRBL Columbus, Ga,WINI Murphysboro, Ill.
WIMS Michigan City, Ind.WIMS Michigan City, Ind.
WOC Davenport, JowaKJCK Junction City, Kans. 1000 dWTCR Ashland. Ky. Ky 5000 d$\begin{array}{ll}\text { WHBN Harrodsburg. Ky. } 1000 \mathrm{~d} \\ \text { WVJS Owensboro, Ky. } & 1000 \\ \text { KPE }\end{array}$$\begin{array}{ll}\text { WVJ Owensboro, Ky. } & 1000 \\ \text { KPEL Lafayette, La. } & 1000 \\ \text { WBSM New Bediford. Mass. } & 1000\end{array}$WBSM New Bedford. Mass.WBEC Pittsfield, Mass.
WAMM Flint. Mich.

$$
\begin{aligned}
& \text { WTHE Spartanburg, S.C. } \\
& \text { wJZM Clarksville, Ienn. }
\end{aligned}
$$KTOE Mankato. Minn

WHUB Cookeville, Tenn,

$$
\begin{aligned}
& \text { WLSB Gopper Hill, Tenn, } \\
& \text { WKPT Kinosnort. Tenn. }
\end{aligned}
$$WSUH Oxiord, Miss.

WQBC Vicksburg, Miss
KBTN Neosho. Mo.

$$
\begin{aligned}
& \text { WKPT Kingsport, Tenn. } \\
& \text { WGAP Maryville, Tenn. }
\end{aligned}
$$KOOO Omaha, NobrKOOO Omaha, Nebr.

$$
\begin{aligned}
& \text { WHAL Shelbyville, Tenn. } \\
& \text { KRUN Ballinger. Tex. }
\end{aligned}
$$WALY Herkimer, N.Y

$$
\begin{aligned}
& \text { KRUN Balliger, Iex. } \\
& \text { KBYG Big Spring, Tex. } \\
& \text { KING Cornus Christi. }
\end{aligned}
$$WACK Newark, N. Y,

WLNA Peekskill, N. Y

$$
\begin{aligned}
& \text { KUNO Corpus Christi, Tex. } \\
& \text { KILE nr, Galveston. Tex. }
\end{aligned}
$$WLNA Peekskill, N.Y.

WMYN Mayodan. N.WVOT Wilson, N.C.
WHK Cleveland. Ohio

$$
\begin{aligned}
& \text { KILE nr. Galveston, fex. } \\
& \text { KGVL Greenville, Tex. } \\
& \text { KEBE Jacksonville. Tex. }
\end{aligned}
$$

KGVE Greenvilie, Tex,

$$
\begin{aligned}
& \text { KIUN Pecos. Tex. } \\
& \text { KEYE Perryton, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KVOP Plainview, Tex, } \\
& \text { KOWT Stamford, Tex. }
\end{aligned}
$$

KTEM Temple, Tex.

$$
\begin{aligned}
& \text { WLOW Portsmouth. Va, } \\
& \text { WHLF So. Boston. Va. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WHLF So. Boston, V: } \\
& \text { WINC Winchester. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WATW Ashland. Wis. } \\
& \text { wBiz Eau claire. Wis. }
\end{aligned}
$$

wBiz Eau claire, Wis.

1410-21KTJS Hobart Okla
KVOP Plainview, Tex

$$
\begin{aligned}
& \text { KYS Texarkana, Tex } \\
& \text { KVOU Uvalde. Jex. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KIXX Provo, Utah. } \\
& \text { KIDT Burlington. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WDO Burlington. } \\
& \text { WINA Charlotitesville, Va. } \\
& \text { winw. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KWLC Winchester. Wa. } \\
& \text { KTNT Longview. Wash } \\
& \text { Kacoma. W ash. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WBOY Clarkesburg, W.Va, } \\
& \text { WRON Ronceverte. W.Va. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WKWK Wheeling, w.Va. } \\
& \text { wBTH Williamson, w.Va. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WDUZ Green Bay, Wis. } \\
& \text { WRJN Raeine. Wis. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WRJN Raeite. WIS, } \\
& \text { WRDB Reedsburg. Wis. }
\end{aligned}
$$

WRIG Wausau, Wis.

$$
\begin{aligned}
& \text { KATI Caspar, wyo. } \\
& \text { KDDI Cody, Wyo. }
\end{aligned}
$$

m 5000
500 d
500
500 d
5000
1000 d
1000
5000 d
1000 d
5000
1000 d
1000 d
1000
500 d
1000 d
500 d
1000 d
500 d
1000
5000
5000 d
1000 d
1000 d
500 d
1000 d
500 d
500 d
5000
1000 d
1000 d
5000
5000 d
1000 d
5000
1000 d
1000 d
250 d
500
500 d
500
1000
500 d
500
5000 d
5000
10001000
10001000
1000
1000

Kc. Wave Length WPCF Panama City, Fla, WGFS Covington, Ga WRCD Dalton, Ga. WWGS Tifton, Ga,
WIRE Indianapolis, Ind. KASI Ames, lowa
KMRC Morgan City, La, WHAL Annapolis. Ma wion Ionia, Mich. WBRB Mt. Clemens, Mich. KRGI Grand Island, Nebr. WNR Newark, NJ. WMNE Endicott. N.Y WRXO Roxboro N. \mathbf{C}. WFOB Eostoria, Ohio WCLT Newark, ${ }^{\circ}$ ohio KALV Alva, Okla. KGAY Salem, Oke WVAM Altoona Pa WFRA Franklin, Pa. WBLR Batesburg. S.c. WARK Marion, s.c. WENO Madison. Tenn. WHER Memphis, Ten. KSTB Breckenridge, Tex. KSIJ Giadewater. Tex. KLO KBRC Mt. Vernon, Wash. WEEV Beaver' Dam, Wis.

1440—208.2

WHHY Montgomery, AIa, KOKY Little Rock, Ark. KVON Napa. Calif. KPROR RIverside, Calif. WBIS Bristol, Conn. WABR Winter Park, Fla. WWCC Bremen, Ga, WGIG Brunswiek, Ga. WRAJ Dublin, Ga: WRAJ Anna, III. WGEM Quincy, ill. WROK Rocklord, ill. WPGW Portland, ind. KCHE Cherokee, Iowa KJAY Topeka, Kans. KKLX Paris, Ky. KMLB Monroe, La, WBCM Bay City, Mich. WCHB inkster, Mich. KEVE Minneapolis, Minn WMVB Millville. N.J. WBAB Babylon, N. X . WJJL Niagara Falls, N.Y. WBUY Lexington, N.C. KILO Grand Forks. N.D. WHHH Warren. Ohio KMED Mad ford, Orea.
KODL The Dalles, Ores. KODL The Dalles, Ores.
WCDL Carbondale, WGCD Carbondale, Pa. w olok Greenville, s.c. WHDM MoKenzie, Tonn. KFDA Amarillo. Tex. KEYS Corpus Christi, Tex. KNNT Denton, Tex KETX Livingston, Tex. WKLV Blackstone. Va, WAJR Morgantown. W.Va. WJPG Green Bay, wis.

1450-206.8

CBG.Gander, Nfld. CFAB Wrockvilie N.S. CHEF Granby, P.Q CJOY Guelph, Ont WDNG Anniston, Ala WENN Bessemer, Ala, WDIG Dothan, Ala. WLAY Muscle Shoals City. Ala KLAM Cordova, Alaska KAWT Douglas. Ariz. KNOT Prescott, Ariz KHOG Fayetteville, Ark. KENA Mena, Ark.
KYOR Blythe, Cail
KOWN Escondido, Calif KPAL Palm Springs, Calif. KTIP Porterville. Calif. KSAN San Francisco, Callf. KROG Sonora, Calif. KAGR Yutura, Calif. KGIW Alamosa, Colo.
W.P.

Kc. Wave Length KYOU Greoley, Colo,
WNAB Bridgeport, Conn.
WJLM Wilmington, Del. WJLM Wilmington, Del.
woL Washington, D.C. WWJB Brooksville, Fla. WMFJ Daytona Beach, Fla. WSKP Mlami, Fla, WSPR Sarasota, Fla. WSTU Stuart, Fla. WTNT Tallahassee.
WGPC Albany, Ga. WBHF Cartersville, Ga. WCON Cornelia, Ga WKEU Griffin, Ga. 5000 WMVG Millodgevillo, Ga. 5000
5000 d 5000 d
4000 d 1000 5000

5000 d
1000
500d
J000d
500 WWCO Camphinson, Kans.
500d
5000 d WXX Manchester, Ky.
5000 d
1000 KPAD Paducah, KY.
1000 KSIG Crowloy, La.
1000d KNOC Natchitoches, La,
1000d
1000 d
1000 d WAPS New Orleans, La,
5000 WAGM Prasque Isle, Maine
5000 WRKD Rockland, Maine
1000 WTBO Cumberland, Maine
1000 d WATZ Alpena Township, Mieh.
WHTC Holland, Mich. WHic rona Mtn Mich.

5000
5000 d
5000 d 500 KATE Albert Lea, Minn. KBUN Bemidji, Minn. WELY Ely. MInn. Minn. KFAM St. Cloud, Minn. WCJU Columbia, Miss. WOKK Meridian. Miss. WNAT Natchez, Miss,
WROB West Point, Mis WROB West Point, M
WMBH Joplin, Mo. KIRX Kirksvilio, Mo.
KOKO Warrensburg, KWPM West Plains, Mo.
KXXL Bozeman, Mont. KXDi Great Fails, Mont. KXLL Missoula, Mont.
KVCK Wolf Point, Mont. 5000d 1000 d KCSR Beatrice, Nebr. 500d KONE Reno. Nev 1000 d

1000 d 5000d 1000 WCTC New Brunswick, N.J, 5000 | 5000 |
| :--- |
| | 1000d 5000 1000d

$500 d$
5000 5000
1000 1000
1000 d
5000 d $5000 d$
5000
5000
\qquad

KWRO Codward, Okla.
50
KORE Euqene, Ores. KFLW Klamath Falls. Oreg, KLBM La Grande, Oreg. KBPS Portland. Oreg. WLEU Erie. Pa. WGET Gettysburg. Pa.
WDAD Indiana. WPAM Pottsvilie. Pa. WMPT So. Williamsport, Pa. WMAJ State College. Pa. WJPA Washington. $P a$
WNEL Caguas WWEL Caguas, P.R. WQSN Charleston, S.C. WCRS Greenwood, S.C. WMYB Myrtle Beach. S.C. WHSC Hartsville. S.C. WLAR Athens, Tenn WAGC Chattanooga, Tenr. WDSG Dyersburg, Tenn. WGNS Murfreesboro, Tent. 25 KBEN Carrizo Spros., Tex. KCTI Gonzales. Tex.
W.P.

1460—205.4

CJNB N. Battleford, Sask.

 WFMH Cullman, Ala. WPNX Phenix City, Ala. KTYM Inglewood, Calif.KDON Salinas, Calif. KDON Salinas, Calif.
KYSN Coio. Sprgs., Colo WBAR Bartow, Fia.
WMBR Jacksonville, Fla. WDMF Buford, Ga. WROY Carmi, III.
WKAM Goshen, Ind WOCH North Vernon, Ind. KCRB Chanute, Kans. WRVK Mt. Vernon, Ky. WAIL Baton Roure, La. Springhili, La. WBEN BickRapids, Mich. WPON Pontiac. Mich. KADY St, Gharies, Mo. KRNY Kearney, Nebr.
KENO Las Vegas, Nev. WOKO Albany. N.Y.
WVOX New Rochelle. w WVOX New Rochelle, N.Y.
WHEC Roehoster, N.Y.
WFVG Fuquay Sprgs., N.C.
WMMH Marshall, N.C. KPLK Dallas, Oreg. WMBA Ambridge. Pa,
WCMB Harrisburg, Pa, WBCU Union, S.C. WJAK Jackson. Tonn. WEEN Lafayette, Tenn. KBRZ Freeport, Tex.
KLLL Lubbock, Tex WACO Wbock, Tex WPRW Maco, Tex. WRAD Radford V, KIMA Yakima, Wash
WRAC Racine, Wis,

1470-204.0
CHOW Welland, ontario WBLO Evergreen. Ala KBLO Hot Springs, Ark. KBMX Coalinga, Calif.
KUTY Palmdale, Calif. KUTY Palmdale, Calif.
KXOA Sacramento. Callf WMMW Meriden, Conn WDCL Tarpon Sprgs., F̈la. WAAG Adel. Ga. WCLA Athens, Ga. WRGA Rome, Ga,
WMBD Peoria, Iİ. WCBC Anderson, Ind, KTRI Sioux City, Jowa KWVY Waverly, lowa
KARE Atchison, Kans, WSAC Radcliff, Ky. KPLC Lake Charles, La.
WLAM Lewiston, Maine WJDY Salisbury, Md. WTTR Westminster, Md.
WSRO Marlborough, Mass. WNBP Newburyport, Mass. WKMF Flint, Mich. WKLZ Kalamazoo, Mic KANO Anoka, Minn. WCAU Brookhaven, Miss. KGHM Brookfield, Mo. KTCB Malden, Mo, WTKO Ithata, N.Y. WBIG Greensboro, N.C. N. N,
$\mathrm{N.C}.$.

10000
5000 d
5000
1000 d
5000
1000
1000 d .P.
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
100
250
250
250
250
250
250
250
250
250
250 Kc. Wave Length WFAR Farrell, Pa. WEAG Alcoa, Tenn WHER Memphis, Tenn WVOL Nashville, Tenn KRBC Abilene, Tex. KCNY San Marcos, Tex. KELA Centralia, Wash. WPEM Moses Lake, W ash. 5000 WBKV West Bend, Wis. 500 d
KSP KSPR Casper, Wyo.
1480—202.6

1000 d
000d
500 d

5000
000 d

000d
500 d
5000
5000
1000
500
5000
1000
5000 5000
5000
500 500 d
5000
$500 d$
50
50
5
100
10
10
5 $1000 d$
$1000 d$
$500 d$ $500 d$
$000 d$
1000
W.P. $1000 d$
$5000 d$
$1000 d$
$1000 d$
$1000 d$
5000
$500 d$
$250 d$
5000
5000
$5000 d$
$500 d$
5000 5000 000
500 1000
1000 1000
5000
5000 5000
5000
1000 1000 1000d 500d 000 00d
00 WMAX Grand Rapids,
KAUS Austin. Minn $000 d$
1000
5000 $\begin{array}{ll}\text { KGCX Sidney, Mont. } & 5000 \\ \text { KLMS Lincoln. Nebr. } & 1000 \\ \text { KWEW Hobs. NMex. } & 1000\end{array}$ $\begin{array}{ll}\text { WLEA Horneli, N.Y. } & 1000 \mathrm{~d} \\ \text { WHOM New York. N.Y. } & 5000\end{array}$ $\begin{array}{ll}\text { WREM Remsen, N.Y. } & 1000 \mathrm{~d} \\ \text { WWOK Charlotte, N.C. } \\ \text { WYR }\end{array}$ $\begin{array}{lr}\text { WYRN Louisburg, N.C. } & \text { lo00d } \\ \text { WAGR Lumberton, N.C. } & 100 \mathrm{~d} \\ \text { W }\end{array}$ WMSJ Sylva, N.C. N.C. 1000
5000 d
5000 WCIN Cincinnati, Ohio 1000 WDAS Philadelphia, Pa, 1000
WISL Shamokin, Pa.
WLOK Memphis, Tenn. $\quad 5000$ KBOX Dallas, Tex. 5000 d
5000 $\begin{array}{r}5000 \\ 1000 \\ \hline\end{array}$ WCFR Springfield, Vt. WBBL Richmond, Va. WBLU Richmond,
KPVA Calem, Va KPVA Camas, Wash.
WISC Madison, Wis. 5000
5000
5000 d $5000 d$
$1000 d$
1000

1490-201.2

CFRC Kingston, Ont.
CKCR Kitchener Ont CK
CK
\mathbf{W}
\mathbf{w}

500
1000
1000
500d
000 d
000 d
500 d
500 d
1000
$1000 d$
1000
1000 d
1000 d
000 d
1000 KICO Bulexico, Calif. $\quad 25$
KOWL Lake Tahoe, Calif, 2
5000 KB R Sed Blun, Calif.
5000 KSYC Yreka, Calif,
000d KBOL Boulder, Colo. cold 25
1000 KOLO Sterling Colo. Colo.
000 W WNLC New London, Conn
WTOR Towrington, Conn.
WTRR Borrington, Conn.
WTRL Bradenton, Fla.
WJBS DeLand, Fla.
WMBS DeLand, Fla.
WMET Miami Beach, Fla, WSRA Milton, Fla,
WRGR Starke, Fla.
WITB Vero Beach, Fla,
WSIR Winter Haven, Fla.
WSMR Winter Haven,
WMOG Brunswick. Ga. WMJM Cordele, Ga. WMRE Monroe, Ga
WSNT Sandersville. Ga. WSYL Sylvanla, Ga KTOL Syivania, Ga.
KCID Caldwell, Idaho WKRO Cairo, III.
WDAN
WAMV East St. Louis, III.
WOPA Oak Park, III.
WKBV Richmond, Ind
WNBV Richmond, Ind.

Kc．Wave Length KBUP Burlinuton，Jowa WDBQ Dubuque，lowa KRIB Mason City，Lowa KTOP Topeka，Kans． WFKY Frankfort，Ky． WKAY Glasgow，Ky． WOMI Owensboro，Ky． WSIP Paintsville．Ky． WIKC Bogalusa，La KEUN Eunice．La． KCIL Houma，La． KRUS Ruston，La． WPOR Portland，Maine WTVL Watervilie，Maine WARK Hagerstown．Md． WHAV Haverhill，Mass． WMRC Milford，Mass． WTXL W．Springfield，Mass． WABJ Adrian，Mich． WBFC Fremont，Mich WMDN Midland，Mich． KXRA Alexandria，Minn． KOZY Grand Rapids，Minn． KLGR Redwd．Falls．Minn WLOX Biloxi，Miss． WCLD Cleveland，Miss WHOC Philadelphia，Miss． WELO Tupelo，Miss． WVIM Vicksburg，Miss． KDMO Carthage，Mo． KTTR Rolla，Mo．
KDRO Sedalia，Mo．
KBOW Butte，Mont．
KBON Omaha，Nebr
WLDB Atlantic City，N．J．
KRSN Los Alamos，N．Mex
KRTN Raton，N．Mex WCSS Amsterdam，N．Y wBTA Batavia，N，Y． WKNY Kingston，N．Y． WICY Maione．N．Y．
WDLC Port Jervis，N．Y． WOLF Syracuse，N．Y WSSB Durham，N．C． WFLB Fayetteville，N．C． LOE Leaksville，N．C． WRMT Rocky Mount，N．C WSTP Salisbury．N．C． KNDC Hettinger，N．Dak． KOVC Valley City，N．Dak． WBEX Chillicothe．Ohio WJMO Cieveland Hights．，Ohio 250 WOHI E．Liverpool，Ohio WMOA Marietta，Ohio WMRN Marion，Ohio KWRW Guthrie，Okla KBIX Muskogee，okla KBKR Baker，Oreg． KRNR Roseburg．Oreg． KBZY Salem，Oreg．
WESB Bradford．Pa
WAZL Hazieton，Pa． WARD Johnstown，Pa WGAL Lancaster．Pa． WBCB Levittown，Pa． WMRF Lewiston．Pa． WMGW Meadvilie，Pa WNBT Wellsboro，Pa WMDD Fajardo，P．R． WGCD Chester，S．C． WMRB Greenville，S．C． KORN Mitchell，S．Dak． WOPI Bristol，Tenn． WDXB Chattanooga．Tenn． WJJM Lewisburg，Tenn． WDXL Lexington，Tenn KNOW Austin，Tex． KIBL Beeville，Tex． KBST Big Spring，Tex．
KHUZ Borger．Tex．
KNEL Brady．Tex．
KSAM Huntsville．Tex． KVoZ Laredo，Tex． KVOW Littlefleld，Tex． KPLT Paris，Tex． KGKB Tyler，Tex． KVWC Vernon．Tex． KVOG Ogden，Utah WIKE Newport．Vt． WCVA Culpeper，Va． WVEC Hampton，Va． WAYB Waynesboro．V a． KBRO Bremerton，Wash． KLOG Kelso，Wash． KENE Toppenish．Wash． KTEL Walla Walla．Wash． WHMS Charleston，W．Va． WLOH Friment．W．Va． WGEZ Beloit，Wis． WLCX LaCrosse．Wis． WIGM Medford．Wis． WIMR Oshkosh，Wis． KIML Gillette，Wyo． KRTR Thermopolis，Wyo
KGOS Torrington，Wyo．
n． 2 ． 2

$\begin{array}{r}250 \\ 250 \\ \hline\end{array}$ ค号운 －
 250
250
250
250
25
25
25 250
250
250
250
250
250

诰管

$W . F$.
1000d
250 d

$$
\begin{array}{r}
5000 \\
10000 \\
1000 \mathrm{~d} \\
250 \mathrm{~d} \\
250 \mathrm{~d} \\
50000 \\
250 \mathrm{~d} \\
250 \mathrm{~d} \\
250 \mathrm{~d} \\
50000 \\
250 \mathrm{~d} \\
1000 \\
1000 \\
250 \mathrm{~d} \\
500 \mathrm{~d}
\end{array}
$$

250 1000 d
1000 d 1000 d
50000 50000
250 d
50000 R． $\begin{array}{r}10000 \\ \hline\end{array}$
$1530-196.1$
KFBK Sacramento，Calis． WCKY Cineinnati，Ohio
KGBT Harlingen，TeX．

1540－195．0 ZNS Nassau，B．W．I． WSM Litehfeld，III． WLOL LaPorte，Ind． KXEL Waterloo，lowa
KNEX MePherson，Kan KLKC Parsons，Kans．
WDON Wheaton，Md． WPTR Albany，N．Y． WIFM Elkin．N．C． WABQ Cleveland，ohio WPTS Pittston，Pa， WPME Punxsutawney，Pa． WADK Newport，R．I． KGUC Ft．Worth，Tex．
KGBC Galveston，Tex． KUBO San Antonio．Tex． WTKM Hartford，Wis．

1550－193．5
CBE Windsor，Ont． WAAY Huntsville，Ala，
KOBY San Fran．，Calif KOBY San Fran．；Calif．
KENT Shreveport，La． KENT Shreveport，La
KRES St．Joseph，Mo
WLOA Braddock，＇Pa． WLOA Braddock，Pa，
WBSC Bennetsville，s．c．

$1560-192.3$

CFRS Simeoe，Ont，
KPMC Bakersfield， WBYS Canton，III， KSWI Council Bluffs，Iowa WQXR New York，N． WTNS Coshocton，ohio WTOD Toledo，Ohio KWCO Chickasha，Okla．
WENA Bayamon，P．R． KHBR Hillsboro，tex．

1570－191．1 0
003

250	\mathbf{W}
250	\mathbf{W}
250	

250	K
250	K

250	K
250	K
250	

U. S. and Canadian AM Stations by Location

Abbreviations: C.L., call letters; Kc., frequency in kilocycles; N.A., network affiliation-A: American Brocidcasting Co., C: Columbia Broadcasting System, Inc.; M: Mutual Broadcasting System; N: National Broadcasting Co., Inc.

ation	C.L. Ke. N.A.	C.L.Ke. N.A.	Location C.L.Ke. N.A.	otion C.L.Ke.N
Abbeville. La,	KROF 960	Ann Arbor, Mich. WHRV 1600 A WPAG 1050	WWIN 1400 A.M	Bishop, Calif. KIBS 1230 Bishopville. S.C. WAGS 1380
Abbeville. S.C.	$\begin{aligned} & \text { WABV } \\ & \text { WAMD } \\ & \hline 970 \end{aligned}$	Anna. Ill. WPAG 1050	Bamberg, S.C. WWIN 1400 A.M	Bishopville. S.C. WAGS Bismarck, N. D ak. KFYR 550 N
Aberdeen, Miss.	WMPA 1240	Anniston, Ala. WANA 1490	Bangor, Maine WABI $910 \mathrm{~A} . \mathrm{M}$	1350
Aberdeen, S.Dak.	KABR 1220 KSDN 930 A	WDNG 1450 A	WGUY WLBZ 12300 620	
Aberdeen, Wash.	KBKW 1450	Anoka, Minn. KANO 1470	Banning, Calif. KPAS 1490	Elack River Falis,
	KXRO 3320 M	Ansonia, Conn. WADS Antigo, Wis. WATK gou	Barboursville. Ky. WBVL 950 Bardstown. Ky. WBRT K20	Blatkfoot. Idaho WWIS 1260
Abilene, Tex.	KREC 1470 A	Antigo, Wis. WATK Artesia. N.M. SSVP	$\begin{array}{llll}\text { Bardstown. Ky. } & \text { WBRT } \\ \text { Barnesboro. Pa, } & \text { WNCC } \\ 950\end{array}$	
	KWKC 1340 M	Antigonish., N.S. CJFX 580	Barnweli. S.c. WBAW 740	Blackwell. Okla, KLTR 1580
Abinodon, Va.	WBEI 1230	Apollo. Pa. WAVL 910	Barrie, Ont. CKBB 950	Blind River, ont. CJNR 730
Ada, Okla.	KADA 1230 A	Apple Valley, Cal. KAVH 960	Barstow, Calif KWTC 1230 A	Bloamington, 11t, WJBC 1230
Adel, Ga.	WAAG 1470	Appleton. Wis. WAPL 1570	Bartlesville. Okla. KWON 1400 M	Bloornington, Ind. WTTS 1370
Adrian, Mich.	WAB 1490 A	WHBY 2300	Bartow, Fla. WBAR	Bloomsburg. Pa. WCNR 930
Agana, Guam	KUAM 610 N	Arcadia. Fla. WAPG 1480	Bastrop. La. KTRY 7300	efeld. W.Va. WHIS 1440 N
Aguadilla, P.R.	WABA 850		Batavia. \qquad N. Y WBTA 1490 M	WKOY W.Va. WHi 240 M
Ahoskie, N.C.	WRCS 970	Arecibo, P.R. WCMN 1280	Batesburg, S.C. WBLR 1430	Blythe, Galif. KYOR 1450 A
Aken,	WAKN 990	WMIA 1070	Batesville, Ark. KiSTA 1340	Blytheville. Ark. KLCN 910
Akron, Ohio	WAKR 1590 A	30	Batesville, Miss. WBLE 1290	Bogalusa, La. W
	WADC 1350 C	Arkadelphia, Ark. K VRC 1240	Bath. Maine W, WMMS ${ }^{\text {Bathurst. N.B. }}$ CKBC 400	Boise, Idaho \quad KBOI 950 C
	WCUE 1150			Boise, Idaho KGBEM 1140 M
Alamogordo, N.M.	KALG 1230	Arlington, Va, WARL 780	WEND 1380	K1DO 630 N
	KRAC 1270	WEAM1 1390	WIBR 1300	KYME 740
Alamosa, Colo.	KGIW 1450 M	Artesia, N.M. KSVP 990 M	WJBO 1150 N	Bonham. Tex. KFYN 1420
Albany, Ga.	WALB 1590 A	Asbury Hark, N.J. WsLK 1310	WLCS 910	Boone, lowa KFGQ 260
	WGPC 1450 C	Asheboro. N.C. WGWR 1260	Batte Creek Mich WBCK ${ }^{\text {W }}$ W0	Boane, N.C.
	WJAZ 1050	Asheville, N.C. wLoS 1380 N.M.A	Battle Creek, Mich.W WECK 930 A	Boone, N.C. WATA 1450 Boonville. Ind. WBNL 1540
Alban	$\begin{aligned} & \text { WANY } 1390 \\ & \text { KASM } 1150 \end{aligned}$	$\text { WSKY } 1230$	Baxley. Ga. WHAB $1260{ }^{\text {a }}$	Boonville, Mo. KWRT 1370
Albany, N	WABY 1400	WWNC 570 C	Bay City, Mich. WBCM 1440 A	Booneville, Miss. WBIP 1400 A
	WOKO 1460 M	Ashland, Ky. WCMI 340 C	WWBC 1250	Boonville, N.Y. WBRV 900
	WPTR 1540 A	WTCR 1420	Bay City. Tex. K10X 1270 M	Borger, Tex. KHUZ 1490
	WROW 590 C	Ashland. Ohio WNCO 1340 Ashland. Oreg. KWiN 1400 m	Bayamon, P.R. WENA 1560	Bossier City. La, KBCL 1220
Albany, Oreg.		Astuland, Wis. WATW 1400	Baytown, Tex. KRCT 650	Boston, Mass. WBZ 1030
Albemarle, N.C.	WABZ 1010	Ashtabula, ohio WICA 970	KREL 1360	150
	W2KY 1580	Astoria, Oreg. KAST 1370 M		WILD 1090
Albert Lea, Minn.	KATE 1450 A	Atchison, Kans. KARE 1470	$\begin{aligned} & \text { WBMA } 1400 \\ & \text { WBEU } 960 \end{aligned}$	WEZE 260 N
Abertville Ala.	WAVU 6330	Athens, Ala. WJMw 730	Beaumont, Tex. KFDM 560 A	WEEI 590 C
	KABQ 1350	Athens, Ga. WGAU 1340 C	KJET 1380	WHDH 850
	KDEF 1150	WDOL 1470	RIC 1450	WMEX 1510
	KGGM 610 C	Whec 960		
	081030 N	Athens, Ohio WATH 970	Beaver Dam, Wis. WBEV 1430 Beaver Falls, Pa. WBYP 1230	Bouider. Colo. Bowling Green, Ky. WBOL 930 A
	KQEO 920 M	Athens, Wenn WOUB 1840 M		
	KLOS 1450	Athens, Tenn. WLAR 1450 M		Bowl. Green, Ohio WH
	KHAM 1580 A	Atlanta, Ga. WAGA 590 C	Bedford, Ind. WBiw 1340	Bozeman, Mont. KXXL 1450 N
der City,		WAKE 1340	Bedford, Pa. WBFD 1310	
	WRFS 1050	WAOK 1380	Bedford, Va. WBLT	
Alexandria, La.	KALB 580 A	WERD 860		
	KDES 1410	WGKA 1600	Bellaire. ${ }^{\text {Bellefontaine. Ohio WOHP } 1390}$	Bradenton, Fla. WRRD 1420
	970 N	WGST 920 A		Bradford, Pa. WESB 1490 M
Alexandria, Minn.	KXRA WPIK 390 	WQXI 790	Belle Glade, Fla. WSWN 900	Brady, Tex. KNEL 1490
Alexandria,	WPIK 730 M	WSE 750 N	Belleville, Ont. CJBQ 800	Brainerd, Minn. KL/Z 1380
Algona Lowa	KLGA 1600		Belleville, III. WiBV 260	Brampton, Ont. CFJB 1090
Alice, Tex	KOPY 1070	Atlanta, Tex. KALT 900	Bellevuc, Wash. KFIKF 1330	Brandon, Man. CKX 1150
Allegan, ${ }^{\text {Ald }}$	WHOL 1600	Atlantic, lowa KJAN 1220	Bellingham, Wash. KPUG 1170 M	Branson, Mo. KBHM 1220
	WAEB 790	Atlantic Beach. Fla. WKTX 1600	KVOS 790 A	Brantiord, Ont. CKPC 1380
	WKAP 1320	Atiantic City, N.J. WFPG 1450 C	dale, Wash.	-
	WSAN 1470 C	WLDB 1490 M		, calif Mr KRP 1300 A
Alliance, Nebr.	KCOW 1400	Atmore Ala WMID 1340 A		Breckenridge, Tex. KSTB 1430
Alliance, Ohio	WFAH 1310	Atmore, Ala. WATM 1590		Breckenridge, Tex. WWCC 1440 Bremen, Ga.
Alma, Ga.	WCOS 1400	Attiebora. Mass. WARA 1320 A	Belton, S.c. WHPE 390	Bremerton, Wash. KBRO 1490
Alma, M	WFYC 1280	Auburn, Calif. WAHI 950	Bemidi. Minn. KBUN 1450 M	Brenham, Tex. KWHI 1280
	WATZ 1450	Auburn, N.Y. WMEO 1340 M	Bend, Oreg. KBND 1110 A	Brevard, N.C. WPNF $1240 \mathrm{M}-\mathrm{N}$
Alpine,	KVLF 1240 M	Auburn, Wash. KASY 1220	Bennetsville, S.C. WBSC 1550 M	
Alton, II	WOKZ 1570	Auburndale, Fla. WTWB 1570	Bennington, Vt. WBTN 1370	
Altona. Man.	CFAM 1290	Augusta, Ga. WAUG 1350 m	Benton, Ark. KBBA 690	Bridgeton, N.J. WSNJ 1240
Altoona, Pa.	WFBG 1340 N		Benton, Ark. KBEA Benton, Ky. WCBL	Bridgewater, N.S. CKBW 1000
	WRTA 1240 A	A 230 N		Brigham City, Utah KBUH
	WVAM 1430 C	WRDW 1480 C	Berkeley, Calif. KRE 1400	Brighton, Colo. KHIL 800
Alturas, Ca	KWHW 1450	Augusta, Maine WRDO 1400 N	Berkeley Springs, W, Va.	Bristol, Conn. WBIS 1440
	KALV 1430	WFAU 1340 M	WGST 1010	Bristol, Tenn. WOPI 1490 N
Amar	KAMQ 1010 M	urora, Colo. KOSI 1430	Berlin. N.H. WKCB 1230	Bristol, Va. WCYE 690 A
	KFDA 1440	Aurora, Ill. WMRO 2880	Berr	
	KGNC 710 N	Austin, Minn. KAUS 1480 M	WBRX 1280	Brockton, mass. WBET 1460
	KIXZ 940 C	Austin, Tex. KNOW 1490 A	Bessemer. Ala, WENN 1450	Brockville,
	KRAY 1360	KTBC 590 C	Bethesda, Md. WUST 1120	Broken Bow, Nebr. KCN: 1280
	KZ1P 1310	KOKE 1370	Bethlehem. Pa. WGPA 1100	Brookfteld, Mo. KGHM 1470
Ambridee,	WMBA 1460	KVET 1300 M	Biddeford, Maine WIDE 1400 M	Brookhaven, Miss. WCMB 4340 M
Americus, Ga.	WDEC 1290	Avalon, Calif. KBIG 740	Bio Lake, Tex KBET 1290	
Ames, lowa	KSAI 1430	Avon Park, Fla, WAVP 1390	Big Rapids, Mich. WBRN 1460 A	Brookings, S Dak, KRRK 1430
	WOI 640	Arondale Estates, Ga, WAVO 1420 Babylon, N.Y. WAB 1440	Bis Sprg., Tox. KHEM ${ }^{\text {KHEM }}$ (270 ${ }^{\text {A }}$	Brookline, Mass. WBOS 1600
Amherst, N.S.	$\begin{aligned} & \text { KDH } 1400 \\ & \text { ABL } 1570 \end{aligned}$	Bawylon, N.Y. WBAE 1440	KBYG 1400 M	Brooklyn. N.Y. WPOW 1330
mory,	WAMY 1580	Bad Axe, Mich. WLEW 1340	Bid Stone Gap. Va. WLSD 1220	Brooksville, Fla. WWJE 1450
Amos, Que.	CHAD 1340	Bainbridge, Ga. WMGR 930	Bijou, Calif. KOWL 490	Brownfield, Tex. KTFY 1300
Amsterdam, N.Y.	WCSS 1490	WAZA 1360	Biloxi, Miss. WLOX 1490 M	Brownsville, Tex. KBOR 600 A
Anaconda, Mont.	KANA 1230	Baker, Oreg. KBKR 1490	WVM! 570	Brownwood, Tex. KBWD 1380 M
Anacortes, Wash.	KAGT 1340	Bakersfleld, Calif. KAFY 550 M	Billings, Mont. KBMY 1240 M	Brunswick, Ga. WEAN 1240
Anchorage, Alaska	KBYR 1270	KBIS 970		WMOG 1490
	KFaD 730 C . ${ }^{\text {a }}$		KOYN 910	Brunswick, Maine WCME 900
	WCTA A.M.N	K 800	Binghamton, N,Y. WINR 680 N	Bryan, Tex. KORA 1240 M
Anderso	WCBC 1470 M	LYO 1350	OP 1360 M	Buffal NY WREN 980 C
	WHBU 1240 C	AP 1490	$18 F 129$	Buffalo, N.Y. WBEN 1400 C
Anderson, S.C.	WAIM 1230 C	Baldwinsville, N.Y. WSEN 1050	m, Ala. WARC 960	WEBR 970 M
	WANS 1280 M		WCRT 1260 A	GR 550
Andrews, Tex. Annapolis, Md.	KACT 1360	Baltimore, Md. WBAL 1090 N	WEDR 1220	WKEW 1520 N
	WABW 810	MO 750	ATV 900	WOL 120 A
	WNAV 1430	WCAO 600	WSGN 610	yo. KBES 1450
		CBM 680 C	YDE 850	Buford, Ga. WDMF 1460
170 WHITE'S	ADIO LOG	WITH 1230	Blsbee, Arlz, KSUN 1230	$\text { Burloy, Idaho KBAR } 1230 \text { A.M }$

Localion

Ou Bois，Pa， Dubuque，lowa

Duluth，Minl．

Dumas．Tex． Ouncan，Okla．

Oundee，N．Y． Uuin．N．C． Duraneo．Colu．

Ourant，Okla． Durhani．N．C．

Dyersburg．Tenn．
Eagle Pass，Tex． Easley，S．C． E．Lansilig，Mich， East Longmeadow．

E．Point，Gn．Louis．Ill． Easton，Pa．

Eatontown．N．J．

Eat Gallie，Fla， Edenton，N．C． Edmonds，Wash． Edmonton．Alta． $\begin{array}{cc}\text { CBXA } & 740 \\ \text { CFRN } & 1260 \\ \text { CHED } & 1080 \\ \text { CHFA } & 680 \\ \text { CJCA } & 930 \\ & \text { CKUA } \\ & 580\end{array}$ Edmundston．N．C． Effingham， Elba，Ala．
El Cajon．Galif． Ei Campo，Tex．
El Centro，Calif．

El Dorado，Ark．
Eldorado．K
Ejgin．III．
Ilizabeth
Elizabeth City，N．C

Elizabethton．Tenn Elizabethtown， Ky ．
 Ek City．Okla，
Elkhart，Ind．
Elkin，N．C．
Itenshurg，Wash．
Ellsworth．Me．w Elmira Heights． Horseheads，N．Y．

El Paso．Tex．

Ely，Minn．
Iy，Nev．
Elyria，Ohio Eminence，lcy． Emporia，Kans． Emporia，$V a$ ． mporium，Pa． Endicott，N, Y ． Englewood．Col
Enid，Okla．

Enterprise．Ala．
Ephrata，Pa．
Ephrata，Wash．
Erie，Pa．

Erwin．Tenn．
Escanaba，Mich．
Escondidn，Calif．
Estherville．lowa
Etowah．Tenn．
Eufaula，Ala，
Eugene，Oreg．

WCNC 1240
WGAI 560
WGAI 560
WBEJ 1240 WIEL 1400 WBLA 1450 KASA 1240 A WTRC 1340 N WCMR 1270
WIFM 1540 WDNE 1240 KELK 1240 ELM 1400 A．C WENY $1230^{\circ} \mathrm{N}$ ． WEHH 1590 M KROO 600 C KELP 920 KHEY 690 KOYE 1150 KSET 1340 M
KTSM
WELY
W
W WELY 1450 M

KELY 1250 M KELY 1230 WEST 1930 | KVOE 1600 |
| :--- | :--- | WEVA 1400 WEVA $\begin{gathered}860 \\ \text { WLEM } 1250\end{gathered}$ WLEM 1250 WENE 1430 KGMC 1150 $\begin{array}{rrr}\text { KCRC } & 1390 & \text { A } \\ \text { KGWA } & 960 & \text { M }\end{array}$

 WERC 1260
WICU
W WJ $\begin{array}{ll}\text { WEMB } & 1420 \\ \text { WDBC } & 680\end{array}$ KOWN 1450 A WCPH 1220 WULA 1240 KORE 1450

C．L．Kc．N．A． WCED
KOTH
WO
WO
O WDGK 1499 M
KUAL
fil KUAL IIIn O WEBG，ifin WREX IORO KDDD 800

KRHD $\begin{array}{ccc}\text { KRHD } & 1350 & \text { M } \\ \text { WAYE } & 860 & \end{array}$ $\begin{array}{rr}\text { WAYE } & 860 \\ \text { WEBB } & 1360\end{array}$ $\begin{array}{ll}\text { WEBB } & 1360 \\ \text { WFLR } & 1570\end{array}$ WDOE 1410 $\begin{array}{ll}\text { WOOE } & 410 \\ \text { WCKB } & 780\end{array}$ WDON 1580 KIUP 930	KDGO 1240
KSEO	$\begin{array}{lll}\text { WDEO } & 750 & \\ \text { W20 }\end{array}$ WSRC 1410

WSSB 1490 WTIK 1310

WDSG WDSG 1450 WTRO 1330 | WELP 1360 |
| :---: | :---: | WKRC 1590 WOHI 1490 A WTYM 1600 WTJH 1260 WAMV 1490 A WEEX 1230 N WHTG 1410 WEAU 790 N

WBIZ 1400 M WECL 1050

KFAR 660 A．M．N
KFR 900 C．A
Fairfax．Va．
KFEL 1310Fairfied，Ill．Fairmont，Minn．Fairmunt．N．C．

KMCD 1570
C.

W
W
W
W Fajardn．P．R．
Falfurias．Tex．
Fallon．Nev． F
F
F
F Falls Church．Va． Fardo．N．Oak．

$$
\begin{array}{ll}
\text { WMEG } & 920 \\
\text { WCDJ } & 260
\end{array}
$$

$$
\begin{aligned}
& \text { Faribnult. Minn. } \\
& \text { Farmington. Mo. }
\end{aligned}
$$

$$
\begin{array}{lr}
\text { WCDJ } & 1260 \\
\text { KURV } & 710
\end{array}
$$

$$
\begin{aligned}
& \mathrm{Fa} \\
& \mathrm{Fa} \\
& \mathrm{Fa}
\end{aligned}
$$

$$
\begin{aligned}
& \text { KURV } \\
& \text { KGDN } \\
& \text { G30 }
\end{aligned}
$$

$$
\begin{array}{lr}
\text { CBXA } 740 \\
\text { CFRN } 1260
\end{array}
$$ WCRA 1090 WELB 1350

WSGC 1400 KDEO 910 A $\begin{array}{ll}\text { KULP } & 1390 \\ K \times 0 & 1230 \mathrm{M}\end{array}$ KAMP 1430 KDMS 1290 KELD 1400 KBTO 1960 ． C ．

Farmille，Va．

Fayette．Ala．
Fayetteville．Ark．
Fayetteville．N．C．

Fayetteville，Tenn．
Fergus Falls，Minn．

Ferriday，La Fesius．Mo． Findlay，Ohio

Fisher，W．Va， | KASH | 1600 | A |
| :--- | :--- | :--- |
| KERG | 1280 | C |

WHITE＇S RADIO LOG ft ．William，ont．$\underset{\text { WKJGR }}{ }{ }_{580}$
Fitzgerald．Ga．

Flat River．Mo

Fin Flon，Man

Flo
Flo
Flo Florence，S．C．
Floydada．Tex，
Foley，Ala．
Fond du Lac．Wis．
Forest，Miss．
Forcst City．N．C．W
Forcst Grove，Oreg．W
Forrest City．Ark．
Ft．Brag Ft．Bragg，Calif．
Ft．Collins，Colo．
Ft．Dodge．lowa Ft．Fr

$$
\begin{array}{l|l}
\mathbf{A} & \\
\mathbf{A} & \\
\mathbf{M} & \\
\mathbf{A}
\end{array}
$$

$$
\begin{array}{c|c}
\mathbf{A} & \mathbf{F} \\
& \mathbf{F} \\
\mathbf{N} & \mathbf{F}
\end{array}
$$Ft． Ft．Madison．Lowa

Ft．Morgan．Colo． Ft．M
Ft．P
Ft．Pie
t．Sco
erte，
Fla．
daho

$$
M \left\lvert\, \begin{array}{c|c}
\mathrm{Ft} \\
\mathrm{Ft} \\
\hline
\end{array}\right.
$$

$$
\begin{aligned}
& \text { t. Sto } \\
& \text { t. Val } \\
& \text { t. Wal }
\end{aligned}
$$alton Beach，Fla

$$
\begin{array}{l|l}
A & F t . \\
A & \\
C &
\end{array}
$$

C．L．Kc．N．A． KJIM 870 KCUL 1540
KFJZ 1270 $\begin{array}{rr}\text { KFJZ } & 1270 \\ \text { KNOK } & 970\end{array}$ WRAP 570
WBAF
W20 WBAF ${ }^{820}$
KXOL 1360
Fostoria，Ohio Fountain Inn，S．C．
Framingham，Mass． くた WFOS 1430
WFIS 1600
WKOX 1190 WFIS 1600
WKOX 1190
WILD 15700 Frankfort，Ind． Franklin，Ky． Frankiin，N．C． Franklif，Tenn． Fraderick．Mid． Fr
U<

$$
\begin{aligned}
& \text { Fredonia, N.Y. } \\
& \text { Frecport, III. }
\end{aligned}
$$

M
C
M
A

Flat River．Mo． Flin Flon，Man． Flint，Mich．	KFMO 1240 M
	CFAR 590
	WFOF 910 N
	WBBC 1330 A
	WAMM 1420
	WMRP 1570
	WKMF 1470
	WTAC 600 A
Flomaton，Ala．	WTCB 990
Florence，Ala，	WJOI 1540 M
	WOWL 1240 A
Florence，S．C．	WJMX 970 A
	WOLS 1230
Floylada．Tex．	KFLD 900
Foley，Ala．	WHEP 1310
Fond du Lac．Wis．	KFIZ 1450 M
Forest，Miss．	WMAG 860
Forcst City．N．C．	WBBO 780
	WAGY 1320
Forcst Grove，Oreg．	KRWC 1570
Forrest City，Ark．	KXJK 950
Ft．Bragg，Calif．	KDAC 1230
Ft．Collins，Colo，	KCOL 1410
Ft．Dodge，lowa	KVFD 1400 M
	KWMT 540 A
t，Frances．Ont．	CFO8 800

540
800

Grand Junction，Colo．
KRREX 920 M
KEXD 1231
Grante Frairie．Atta．CFGR 1050
Grand Prairie，Tex．KKSN 730 Grand Rapids，Mich．

WJEF	1230
WFUR	1570

WGRD 1410
WGAV 1340 A
WMAX 1480 M
WOOD 1300 N
Ciand Rapids，hinn
Ctaneeville，Idato KOZY 1490
Grants．N，Nex，KMIN 980 Grants Pass，Oreg．KAGI 1340 M

$$
\begin{aligned}
& \text { Fredericksburg, Tex. } \\
& \text { F N N AF } 1340 \text { M } \\
& \text { Fredericksburg, Va. WFVA } 1230 \text { A }
\end{aligned}
$$

Gravelbourg．Sask．CFGR 1230

$$
\begin{aligned}
& \text { Fredericksburg, Va. WFVA } 1230 \text { A } \\
& \text { Fredericton. N.B. CFNB } 550
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fredericton. N.B. CFNB } 550 \\
& \text { Fredenia, N.Y. }
\end{aligned}
$$

Gt．Barrington，Ma
WSBS 860 Gt．Bend，Kans．KVGB 1590 N

$$
\begin{array}{|ll}
\text { Freeport. N.Y. } & \text { WGBB } 1240 \\
\text { Freeport. Tex. } & \text { KBRZ } 1460 \\
\text { Frcmont, Mich. } & \text { WRFC } 1490
\end{array}
$$

	KFQR	1310
	KUD	1450
	KMDN	560

$$
\begin{array}{ll}
\text { Ficmont. Mich. } & \text { WBFC } 1490 \\
\text { Fremont. Nrtir. } & \text { KHUF } 13410
\end{array}
$$

$$
\begin{array}{ll}
\text { Fremoni, Nelir. KHUR } \\
\text { Fremont, Ohio } & \text { WFRO !!00 }
\end{array}
$$

KLK 560 M

$$
<2
$$

\qquad N

$$
{ }_{A}
$$

$$
4
$$

$$
C
$$

$$
\mathrm{N}
$$

Front Royal，V a．
Frostburg，Md．WFR8 74
Fulton，Ky．WFUL 127

Fulton．N．Y．
Fuquay Sprgs．，N． 0 A

Gainesville．Fla． $\begin{array}{lll}\text { Gainesville，Ga．} & \text { WGGA } 550 \mathrm{M} \\ & & \text { WDUN } 1240 \\ \text { Gainesville，Tex．} & \text { KGBA } 1580 \\ \text { GGA } 1580\end{array}$

A
ーロロロー
$3>$
4
Gardner，Mass．

Gaylord，Mich．

$$
\begin{array}{c|c}
\mathbf{M} & \mathbf{G I} \\
\mathbf{A} & \mathbf{G I} \\
& \mathbf{G I} \\
& \mathbf{G I}
\end{array}
$$

Qan
かゝ

OE

$$
00
$$

？
WIRA 1400KFPW 1230KFSA 950 AKWHN 1820 MGolde
Golde
GoldsGoose Bay，Nfld．Grafton．N．D．Grafton，N．D．Graham．Tex．
Granby．Que．KFST 860
WFPM

WFBS 950
WFTW
1260

WDWO 1190
WANE 1450
WKJG 1380
CKPR$20>$

Grand Island，NebrGrand Falls，Nfld，Grand Forks，Nfld，

Grand Coulze，Wash．KFDR 1360 KFJR 1360 $\begin{array}{cc}\text { KFJM } & 1370 \\ \text { KILO } & 1440 \\ \text { KNDX } & 1310\end{array}$
${ }^{W}$
$\begin{array}{lrr}\text { KMMJ } & 750 & \text { A } \\ \text { KRGI } & 1430\end{array}$
Location
C．L．Ke．N．A．
Grand Junction，COKREX 920 M
 Green Bay．Wis．WBAY 1350 C

WJPG 1440
WDUZ 1400 A Greeneville．Tenn．WGRZ 1400 Gretensburo．N．C．WBIG 1470 C Greenshurg．Pa．WPET 950 $\begin{array}{lll}\text { Greenville，Ala．} & \text { WGYV } 1380 \\ \text { Greenville，Miss．} & \text { WJPR } 1330\end{array}$ $\begin{array}{rr}\text { WDDT } & 900 \\ \text { WGVM } & 1260\end{array}$ $\begin{array}{ll}\text { Greenville．N．C．WGTC } & 1590 \mathrm{M} \\ \text { Greenville，S．C．WESC } 660\end{array}$

WFBC 1330 N
WMRS $1490 \mathrm{~A}-\mathrm{M}$
MRB 1490 A－
WMUU 1260
WQOK 1440
$\begin{array}{ll}\text { Greenville，Tex．} & \text { KGVL l40U } \\ \text { Gruenwood，Miss．WABG } 960\end{array}$ Greenwood．S．C．WCRS 1450 N Groer，S．C．WEAB 800 $\begin{array}{lll}\text { Grenada，Miss．WNAG } 1400 \\ \text { Greshant，Ored．} & \text { WGRO } & 1230\end{array}$ Gretna．Va．WMNA 730 G

WHIE 1450 M Grinnell，lowa

WSUN 1410
WSUB 980

$$
\mathbf{M}
$$

Locafion

Haverhill．Mass，WHAY 1310 Havre，Mont． Havre de Grace．Md

Hawkinsville，fa． Hays，Kans
Hays，Kans．
Hazard， Ky ．
Hazard，Ky．
Hazlehurst，Miss．
Hazleton，Pa．W
Helena，Ark．
empstead．N ienderson，KY．

Henderson，N．C．
 Hendersonville．N．C Henryetta，OKIa．WHKP 1450 A Heretord，Tex．KPAN 890 Herkimer，N．Y．WALY 1420 Herrin．III． Hettinger． Hibbing Mimak Hickory，N．C

High Point，N．C． Hillsthoro，Ohio
Hillsboro，Oreg． Hilisboro．Oreg． Hillsdale，Mich Hilo，Hawaii

Hobart，Okla． Hobbs，N．Mex．

Holbrook，Ariz． Holland．Mich． Hollywood Fla Homer，La，
Homestead， Homestead，Pa． Honoluilu．Hawaif Hood River．Oreg． Hope，Ark． Hopewell，Va．
Hopkinsville，
Hornell，N．Y．
Hot Springs，Ark．

Houghton，Mich． Houghton Lake．WH

Houlton．Maine Houma La． Houston．Miss
Houston，Tex

$3 \quad$

KJMO
KTJS
1420 KWEW 1480 M KHOB 1280
KDJI 1270 KUVR 1380 WIR 1450 WGMA 1320 KVEB 930
WYHL 1320
WSBE WAMO 1430
 ス
 $\begin{array}{ll}\text { KPOA } & 630 \mathrm{M}\end{array}$ $\begin{array}{ll}\text { KULA } & 690 \\ \text { KIHR } & 1340 \\ \text { KXAR }\end{array}$ KXAR 1490 WHAP 1340
WHOP 1230 WKOA 1480 WLEG 1320 $\begin{array}{lrr}\text { KAAB } & 1350 & \text { A } \\ \text { KBHS } & 590 & \end{array}$ M
A
M

N N
untsville，Ala．
WPLH 1470 M
WHTN $800 \mathrm{M}-A$
WSAZ 930 N
WRHP WBHP 1230 WFUN 145
Huntsville，Ont z＞ 3 亿かき KWHK 1260 240
590

C．L．Ke．N．A． WBKH 950 WHSR 1400 N WXXX 1310 KOJ
WASA 133 WCEH 610 LUV I580 WHSM 910 WKIC 1390 M AZL 1490 N． KFFA 1360 N
KCAP 1340 M WXLJ 1240 N SON 860 KBMI 1400 Independence，Kans．KINO 1010 M
Independence，Mo．KANS I5IO Indiana，Pa，Ind．

ndianola，M nglewood Calip． inkster，Mich． lonia，Mich． lowa City．Jowa ron Min．，Mich． ronton，Ohio ronwood，Mich．
Ishpeming．Mich． thaca，N．Y．

WFBM $1260 \mathrm{~A} \cdot \mathrm{M}$ WGEE 1530
WIBC 1070 WIRE 1430 WISH 1310 $\begin{array}{cr}\text { WXLW } & 950 \\ \text { WOLT } & 1380\end{array}$ KREO 1400 KTYM 1460 WCHB 1440 $\begin{array}{llr}\text { KXIC } & 800\end{array}$ $\begin{array}{ll}\text { WMSU } & 910 \\ \text { WHIS }\end{array}$ $\begin{array}{cccc}\text { WMKB } & 1450 & A \\ \text { WIK } & & \text { M } \\ \text { WIRO } & 1230 & \mathrm{M}\end{array}$ ミミミロ

$$
\begin{aligned}
& \mathbf{M} \\
& \mathbf{M}
\end{aligned}
$$

Location
Kentville．N．S Keokuk，lowa Kerrville．Tex Kerrvike．Tex， Kewanee．Ill． Keyscr，W．V． Key West，Fia． Kijgore，Tex． Kilgore，Tex．
Killeen，Tex， King City．Calif． Kingman，Ariz． K Jackson．Ala． Jackso

$$
\begin{array}{cc}
0 & \mathbf{C} \\
0 & A \\
0 & \mathrm{M} \\
0 & A
\end{array}
$$

Jackson，Ohio
Jackson，Tenn．

Jacksonville，Fla．

$$
\begin{aligned}
& \text { Jacksonvilte. III. } \\
& \text { Jacksonville. N.C. }
\end{aligned}
$$

$$
\mathbf{M}
$$

$$
\begin{aligned}
& \text { Jacksonville, Tex. Kl } \\
& \text { Jacksonville Bch., Fla. }
\end{aligned}
$$ $\begin{array}{lllll} & \text { KFSB } & 1310 & \\ & \text { KODE } & 1230 & C \\ & \\ \text { Junction，Tex．} & \text { KMBL } & 1450 & \end{array}$ N C

Jamestown，N．Dak． Jamestown，N．Y．

Jamestown．Tenn， Ja

Jasper，Ind．

Jefper，Tex．
Jefity，Mo
Jerome，Idaho
Jesup，Ga．
Johnson City，Tenn．
Johnstown，Pa．

Joliet，III．
Jonesboro．Ark．
Jones boro．La．
Jonesboro．Tenn．
Jonesville．La．

$$
\begin{array}{ll}
400 & \mathrm{M} \\
600 & \mathrm{C} \\
240 & \mathrm{~A} \\
340 & \mathrm{M} \\
260 & \\
230 & \mathrm{M} \\
360 & \\
240 & \\
990 & \\
350 & \\
950 & \\
240 & \mathrm{M} \\
290 & \\
400 & \\
370 &
\end{array}
$$M

L ミ シロスミロ L
3

L

N

 C Kaimuki，Hawaij KANI I240 Kalamazoo．Mich．
Kalispelf，Mont．

Kamloops，B．C． Kane，Pa， Kankakee，III．
Kannapolis， Kans．City．Kans．

C
，

LaSarre．III． Lascruces．Que． Las Vegas．Nev．

Lapeer．Mich．

Laramie．Ind． 0

$$
\mathrm{N}
$$

IK earney. Nebr.

$$
\begin{aligned}
& \text { Kee } \\
& \text { Kel }
\end{aligned}
$$ Kelsowna B．C．CKOV 630 Kendallville，Ind．WAWK 1590 Kenedy．Tex．KAML 990 Kenmore，N．Y．WINE 1080 Kennewick－Pasco．Richland． Wash． Kenora．Ont．

$$
\begin{aligned}
& \mathrm{N} \\
& \mathrm{H}
\end{aligned}
$$

$$
\geq
$$

$$
1
$$

Laurens，S．C．
Laurinburg．N．C．
Lawrence，Kans．
Lawrence，Mass． Lawrencehurg，Tonn． Lawrenceville，G
Lawton．Okla．

KEPR 610 C $\begin{array}{lll}\text { Kcnosha．Wis } & \text { CJRL } 1220 \\ & \text { WLIP } 1050\end{array}$

Leadville．Culo．
Leaksville，N．C． KUPI 930 Knoxville，Tenn． Kokomo．Ind．
Kosciusko，Miss． LaCrosse．Wis．

Lafayette．Tenn．
LaFollette．Tenn．
LaGrande，Orea． Lagrande，Oreø． LaJunta，Colo． Lake City，Fla． Lames．Colo． Lampasas．Tox．
Lancaster，Ohio

C．L．Kc．N．A．
CKEN 1350 $\begin{array}{lll}\text { KOKX } & 1310\end{array}$ $\begin{array}{lr}\text { KERB } 600 \\ \text { KERV } & 230\end{array}$

Leamington，Ont．
C．L．Kc．N．A．
CJSP 710 Leavenworth．Kans．KCLO 1410 Lebanon，Ky．WLBN 1590 $\begin{array}{ll}\text { Lebanon，Mo．} & \text { KLWT } 1230 \\ \text { Lebanon，Oreg．} & \text { KGAL } 920\end{array}$ Lebanon，Pa．WLRR 1270 Lebanon．Tenn．WCOR 900 Leesburg．Fla．WLBE 790 WLBE 790
WBIL 1410 Leesburg，Va． Leitchfield．Ky．WMTL 1580 Leland，Miss．WESY 1580 Lenoir．N．C．WJRI 1340 M Leonardtown．Md．WKIK 1370 Leonardtown，Md．WKIK 1370 Levolland．Tex．KLVT 1230 Levittown，Pa．WBCB 1490 Lowisburg，Tena．
Lewistun，Idahu WJJM 1490
KRLC 1350 KRLC
KOZE
KO

KOO WCOU 1240 WLAM 1470 | KXLO 1230 |
| :--- | :--- | WKVA 920 $\begin{array}{ll}\text { WHRF } & 490 \\ \text { WLAP } 630\end{array}$ WBLG 1300

WVLK 590 KLEX 1570 KRVN 1010 KFJI 1150 M
KFLW $1450 \mathrm{~A}-\mathrm{C}$
KLAD 960 Lexington，Mo． Lexington．N．C． Lexington，Tenn．
Lexington，Va．
Lexington Pk．，Md． WOXL 1490 WREL 1450
WPTX 920 Lake Providence，La．KLPL 1050
Lake Tahoe．Calif．KOWL 1490
Lakeview．Oreg．KQIK 1230
Lake Wales．Fla．WIPC 1280

Louisburg，N．C．
Louisville，Ky．

W WMLS 1320 N
WJM 1240 A．N
WMPC 1230
WMPC 1230
KLOI 1540
KOWB
KOWB $1340 \mathrm{M}^{+}$
KVOZ 1490 M
KVOZ 1490 M
WLPO 1220
$\begin{array}{cc}\text { WLPO } & 1220 \\ \text { CKLS } & 1240\end{array}$
CKLS 1240
Los Ais．C．
Los Alamos，N．Mex．KRSN 1570
$\begin{array}{rrr}\text { KABN } & 790 & \text { A } \\ \text { KFI } & 640 & \mathrm{~N} \\ \text { KHJ } & 930 & \mathrm{M}\end{array}$
KFSG 1150
KFWB 980
KGFJ 1230
$\begin{array}{lr}\text { KFAC } & 1330 \\ \text { KLAC } & 570\end{array}$
KMPC 710
KNX：1070
KPOL 540
KPOP 1020
KRKO If50
WYRN 1480
WAVE 970 N
WAKY 790 M
WKLO 1080 A
WINN 1240
$\begin{array}{lr}\text { WKYW } & 900 \\ \text { WLOU } & 1350\end{array}$
WTMT 620
Louisville，Miss．
WLSM 1270
KLOV 1570
\qquad

| KOLL | 230 |
| :--- | :--- | :--- |
| KSCB | 270 |

WVOS 1240
KTOH 1490
WIMA 1150
WPRC 1370
KLIN 1400
KLMS 1480
CKLN 1050
WBTO 1600
WSMI 1540
KLFO 1410
$\begin{array}{rr}\text { KLTF } & 960 \\ \text { WLFH } & 230\end{array}$
KVOW
KARK
920

KGHI	1250	N
KLRA		

KOKY 1440
KTHS 1090
KUDY 1510
KPRK 1340 M
WLIV 920
KETX 1440
Lloydminster．Alta．CKSA 1150
Lock Haven．Pa．WBPZ 1230
Lockport．N．Y．WUSJ 1340
Lodi．Calif．KCVR 1570
KVNU 610 M
KLGN 1390
WVOW 1230
KSAL 1230
KNEZ 960
CFPL 980
CKSL 1290
Long Beach，Calif．KFOX 1280

| KGER | |
| :--- | :--- | :--- |
| KLMO | 1050 |

K FRO 1370

Location

Tifton, Ga.
Tillamook, Oreg. Tillsonburg, On Timmins, Ont,

Titusville, Fla
Toledo, Ohio

Tooele, U tah
Tupeka, kans:

Toppenish, Wash.
Turuntu, Ont.
C.L. Kc. N.A WWGS 1430 KTIL 1590 CKOT 1510 CFCL 580 $\begin{array}{cc}\text { CFCL } & 580 \\ \text { CKGB } 680\end{array}$ $\begin{array}{ll}\text { CKGB } & 680 \\ \text { WRMF } & 1050\end{array}$ WNET 1420 M WOHO 1470 M WSPD 1370 N WTOD 1560 C WTOL 1230 KTUT 990 KIBW 580 WREN 1250 KTOP $1+50$ A KENE 14!
CBL
744 CFRE 1010 C CHUM 1050 CJBC 860 CKEY 580 M
Torrington, Conn.

\[
$$
\begin{aligned}
& 0 \mathrm{M} \\
& 0 \mathrm{M}
\end{aligned}
$$

\] | 30 M |
| :--- |
| 300 |
| 00 M |

Torrington. Wyo

 Towson, Md.Troy. Ala.
Troy. N.Y.

Truro, N.S. KEVT 690 | KTKI |
| :--- |
| KOLD |
| 1450 | Tulare, Calif.

Tularosa, N.M
Tulia, Tex. Tullahoma, Tenn. Tulsa, Dkla. KGEN 1370 KMAM 1590 KTUE 1260 KAKG 740

$$
\begin{aligned}
& \text { WTOR } 1490 \\
& \text { KGOS } 1490 \\
& \text { WAOS }
\end{aligned}
$$ Trail. B.C.

Traverse City, Mich. Trenton, Mo.

Trinidad, Colo.

Truro, N.S. C Tryon. New Mexico KCHS 1400 $\begin{array}{ll}\text { Tryon, N.C. } & \text { WTYN } 1580 \\ \text { Tueson, Ariz. } & \text { KTUC } 1400\end{array}$ KTUC 1400
KAIR 1490 KCEE 790 $\begin{array}{lll}\text { KTAN } & 580 & \text { A } \\ \text { KCUB } & 1240 & \text { N }\end{array}$ $\begin{array}{lll}\text { KMOP } & 1330\end{array}$

Tucumeari, N. Mex. KTNM 1400 M KCOK 1270 M $\begin{array}{lrr}\text { KAKC } & 970 \\ \text { KOME } & 1900\end{array}$ WAQE 1570 CJAT 610
WTCM 1400 KTTN 1600 WTNJ 1300 WTTM 920 N KCRT 1240 M WTBF 970 M WHAZ 1330 $\begin{array}{ll}\text { TRY } & 980 \\ 6 C L & \end{array}$

KOME 740
KRMG KTUL 1430 C
KVOO 1170 N $\begin{array}{lll}\text { KVOO } & 1170 \\ \text { KFMJ } 1050\end{array}$ C
N M Walnut Ridge, Ark. A Walterboro, S.C. Waltham. Mas
M
3

Tuscumbia, Ala Tuskegee, Ala. Two Rivers, Wis. Two Rivers,
Tyler, Tex.

Tyrone. Pa, Ukiah, Calif Union, Mo. Union City, Tenn

Uniontown, Pa. Urbana, III.

Utica. N.Y.
Wadena, Minn.
Wadesboro, N.C. Wailuku, Hawai Waipahu, Hawaii

Wallace, N.C.

 Walla Walla. Wash.Tupelo, Miss. Turlock, Calif. Tuscaloosa, Ala. WTUP 1380 KTUR 1390
WJRD 1150 waft WNPT 1280 WTBC 1230 KTFI 1270 N KEEP 1450 WTRW 1590 KDOK 1330 $\begin{array}{cc}\text { KGJB } & 1490 \\ \text { KTBB } & 600\end{array}$ $\begin{array}{ll}\text { KTEB } & 600 \\ \text { KZEY } & 690 \\ \text { KYR }\end{array}$ WTRN 1290 WTRN 1290
KUKL 1400
KLPW 1220 KLPW 1220 WBCU 1460
WENK 1240 WTUC 1580 WMBS 590 $\begin{array}{lr}\text { WILL } & 580 \\ \text { WKID } & 1580 \\ \text { WIBX } & 950\end{array}$ WRUN 1150
3

A	W
\mathbf{W}	

\square
Washington, Ga. W KLE 370
Washington. Ind. WAMW 1580
Washington. N.J. WCRV 1580

Locafion

Uvalde, Tex.
Val D'Or, Que.
Valdosta, Ga.

$$
\begin{aligned}
& \text { Valdosta, Ga, } \\
& \text { Vallejo, Calif. } \\
& \text { Valley City. }
\end{aligned}
$$

C.L. Ke. N.A. WTLB 1310
KVOU 1400
CKVD CKVO 1230 WGAF 910 A WJEM 1150
KNBA 1190 Valley City. N. Dak.

Van Buren, Ark.

 Van Wert, Ohio Vanceburg. KyVancouber, B.C.

```
Vanculuver, Wash.
```

Ventura, Calif.
Verdun, Que.
Vermillion. S.Dak.
Vermon, B.C

V
 V
 N
 $V e r$ $V i$
 $V i$ v v V V v V v

Vi
$\ggg>$
42

V V V W

KHIT 1320 KTEL 1490 A
Warren Ark Ga. WRPB 1350
Warren Ahio WHHH 1440
Warrensburg Mo KOK 1450
KFLW 1380
33>
M
M
\mathbf{W}
A
N

$$
\begin{array}{ll}
0 & \mathrm{M} \\
0 & \mathrm{~A} \\
0 &
\end{array}
$$

 WALD 1220 a

U. S. and Canadian AM Stations by Call Letters

Canadian stations follow U.S. list, on p. 185

 Warrenton. Mo. KWRE 730 White Castle, La. KEVL 1590
 Warsaw, Ind. WRSW 1480
 \(\begin{array}{ll}\text { Wasco, Calif. } & \text { KWNO } 1050 \\ \text { Washington. D.C. WGMS } & 570\end{array}\)
 WOOW 1340
 Location
U. S.

KAAA Kingman. Ariz. KAAB Hot Springs. Ark. KABC Los Angeles, Calif.
KABL Oakland, Calif KABQ Albuquerque. N. M. KABR Aberdeen. S. Dak.
KABY Albany. Orea.
KABY Abbany. Oreg.
KACI The Dalles, Oreg.
KACT Andrews, Tex.
KACY Port Huenem
KADA Ada, Okla.
C.L.

C.L., call letters; Ke., frequency in kilocycles
 CL., call

Kc.	C.L. \quad Location
	KADO Marshall, Tex.
	KADY St. Charles. Mo.
	KAFP Petaluma, Calif.
230	KAFY Bakersfield. Calif.
350	KAGE Winona. Miun.
790	KAGH Crossett, Ark.
960	KAGI Grants Pass, Oreg.
350	KAGT Anacortes, Wash.
220	KAGR Yuba City, Calif.
990	KAHI Auburn, Calif.
570	KAHU Waipahu. Hawaii
300	KAIM Kaimuki. Hawaii
360	KAIR Tucson, Ariz.
520	KAJO Grants Pass, Ores.
290	KAKC Tulsa, Okla.

| Kc. | C.L. \quad Location |
| ---: | :--- | :--- |
| 1410 | KAKE Wichita, Kan. |
| 1460 | KALB Alexandria, La, |
| 1490 | KALE Richland, Wash. |
| 550 | KALG Alamogordo. N. Mex. |
| 1380 | KALI Pasadena, Calif, U |
| 800 | KALL Salt Lake City, Utah |
| 1340 | KALM Thayer, Mo. |
| 1340 | KALT Atlanta, Tex. |
| 1450 | KALV Alva, Okla. |
| 950 | KAMD Camden, Ark. |
| 920 | KAML Kenedy, Tex. |
| 870 | KAMO Rogers, Ark. |
| 1490 | KAMP EiCentro, Calif. |
| 1270 | KAMQ Amarillo, Tex. |
| 970 | KANA Anaconda, Mont. |

Ke.	C.L. Location	Kc.
1240	KANB Shrevepo	
580	KANO Corsica	
${ }_{1230}^{960}$	KANE Now lberia, La,	
1930	KANN Sinton, Tex.	
910	KANO Anoka, Minn.	
1290	KANS Independence. M	
	KANV Jonesville, La.	
1430	KAOK Lake Charles.	
990	KAPA Ray	3
	KAPB Marksvilie,	(370
230		

1490 KALE Richland, Wash.
1350 KALG Alamogordo. N.M
800 KALL Salt Lake City, Utah
1340 KALT Atlanta. Tex.
$\begin{aligned} & 1450 \\ & 950 \text { KALV Alva, Okla. } \\ & \text { KAM Camden, Ark }\end{aligned}$
920 KAML Kenedy, Tex.
1490 KAMP El Centro, Calif.
970 KANA Anaconda, Mont.
1230 WHITE'S RADIO LOG
177

Location C.L.Ke. N.A. Williamson, W.Va. WBTH 1400 M Williamsport. Pa. WLYC 1050 WRAK 1400
WWPA 1340
W Williamston. N.C. WIAM 900 Willimantic, Conn. WILI 1400 Williston, N.O. KEYZ 1360 Willmar, Minn. KWLM 1340 Willow Springs, Mo. KUKU 1330 m
Wilmington, Del. WAMS 1380 m WOM 1150 N
WOEL
WILM 1450 A
WTUX 1290 Wilmington, N.C. WTMFD $\begin{aligned} & \text { W30 A } \\ & \text { WKLM } \\ & 980\end{aligned}$ Wilson, N.C. WGNJ 1340 M Winchester, Ky, WWKY 1380 Winchester, Tenn. WCOT 1340 Winchester. Va. WINC 1400 Windom, Minn. KDOM 1580 Windsor, N.S. CFAB 1450 Whsar. Cht. CKLW 800 Winghanı, Ont. CKNX 920 Winnfield. La. KVCL 1270 Winner, S. Dak. KWYR 1260 $\begin{array}{llll}\text { Winnipeg, Man. } & \text { CBW } & 990 \\ & \text { CKRC } & 630 \\ & \text { CKY } & 580\end{array}$ CJOB 680 Winnsboro. La. KMAB 1570
Winona, Minn. KWNO 1230 A Winona, Miss. WONA 1570 Winston-Salem, N.C.

WAAA 980
WASR 1340
WSJS 600 N Winter Garden, Fla. WOKB 1600
Winter Haven, Fla. WSIR 1490 M Winter Park, Fia. WABR 1440 Wisconsin Rapids, Wis. Wolf Pt. Mont. KVCK 1450 M Woodside, N.Y. WWRL 1600 Woodstock, Ont. CKOX Woodward, Okla, WNRI 1380 Wooster, Ohio WWST 960 Worcester, Mass.

$$
\mathbf{A}
$$ WNEB 1230

WORC 1310
WTAG 580
KWOR 1340 M
KWOA 730 Worland, Wyo,
Worthington, Minn. KWDA 730 Worthing
Worthing, Ohio WRFO 880
KWYN 1400 Wynne. Ark. \quad WYY Yakima, Wash. WYIT 1280 A

KUTI 980 KYAK 1390 M WNAX 570 C Yazoo City. Miss. WAZF 1230 Yellowknife. N,W,T. CFYK 1340 York. Nebr. KAWL 1370 York, Pa. WNOW 1250

WSBA 910 A-M
$\begin{array}{ll}\text { York. S.C. } & \text { WYCL } 1580 \\ \text { Yorkton, Sask. } & \text { CJGX } 940\end{array}$ $\begin{array}{llll}\text { Youngstown, ohio } & \text { WBEW } 1240 & \text { A } \\ & \text { WFMJ } 1390 & \mathrm{~N} \\ & \text { WKBN } 570 & \mathrm{C}\end{array}$ $\begin{array}{ll}\text { Yreka, Calif. } & \text { KSYC } 1490 \\ \text { Yuba City, Calif. } \\ \text { KUBA } & 1600\end{array}$
$\begin{array}{lll}\text { Yuba City, Calif. } & \text { KUBA } & \text { KAGR } 1450 \\ \text { Yuma, Ariz. } & \text { KOFA } 1240\end{array}$
$\begin{array}{lll}\text { Yuma, Ariz. } & \text { KVOY } 1400 \text { A } \\ & \text { KYOM } 560 \text { N }\end{array}$
Zanesville, Ohio WH1Z 1240
Zarephath. N.J. WAWZ 1380

A

M
A
Yakima, Wash.C
\qquad
M
M West Point. Miss. WROB 1450 M
W. Yarmouth, Mass.
$\begin{array}{ll}\text { Westerly, R.I. WERB } 1240 \mathrm{M} \\ \text { Westfield Mass. WDEW } & \text { W70 M }\end{array}$
Westminster, Md. WTTR 1470
Weston. W.Va. WHAW 1450 M
Wewoka-Seminole, Okla 1250
M $\begin{array}{ll}\text { Weyburn, Sask. } & \text { KFSH } 1260 \text { A } \\ \text { WDS } 1340\end{array}$
Wheaton, Md. WOON 1540
WKWK 1400
WWito Castle, La.
WWA 1170
KEVL 1590

340 M
750

A Waynesboro, Ga. WBRO 1310K

1290 KAKC Tulsa, Okla. (Kana Anaco Món

C.L.	Douglas, A			LOcation			C.i.	Location	
KAR	Douglas,	1470	KBZY	Salem, Oreg. 1490	KDTA Delta, Colo.	00		Paris, Tex.	50
$\begin{aligned} & \text { KARE } \\ & \text { KARK } \end{aligned}$	Atchison, ${ }^{\text {L }}$ Litle	70	$\begin{aligned} & \text { KCAL } \\ & \text { KCAP } \end{aligned}$	Redlands, Calif. 1410	KDTH Dubuque, Jowa	70	KFUN	N Las Vegas, N. Mex.	50
ArM	Fresmo, Cal	1430	KCAR	Helena, Mont. Clarksville, Tex, 1350 1350	KDUB Lubbock, Tex	1340		St. Loul	0
KARS	San Antonio, Tex.	1250	KCBC	Des Moines, lowa 1390	KDWT Stamford, Tex.	$\begin{aligned} & 1260 \\ & 1400 \end{aligned}$		C Cape Girardeau, Mo.	960 980
KAR	Jerome, I daho	1	KCBD	Lubbock, Tex. 1590	KDXU St. George, Ut	1450	K	Nampa,	80
ASA	Prosser, Wash.	13	KCBa	San Diego, Calif. 1170	KDYL Sait Lake City, Utah	20	KF	San Bernar	90
KASH	Eugene, 'Ore.	1600	KCCO	Lawton, ökla.	KEAN Pubblo,	1230		Bonham.	20
KASI	Ames,	1430	KCCR	Pierre, S. Dak. $\quad 1590$	KEAP Fres	$\begin{array}{r} 240 \\ 980 \end{array}$		Lubl	790
	Ontario, Calif.	1510	KCCT	Corpus Christi, Tex. 1150	KEBE Jacksonville, 'Tex.	1400	${ }_{K}$	poka	550 1510
KASL	Newcastle, Wyo	1240	KCEE	Tueson, Ariz. 790	KECK Odessa, Tex.	920		pok	1580
$\begin{aligned} & \text { KASM } \\ & \text { KASO } \end{aligned}$	Minden, La.	1150 1240	KCFA	Spokane, Wash. 1330	KEDO Longview, Wash.	1400	KGA	Gallup	1330
AST	Astoria, Ore.	1370	KC	Charios City, lowa ${ }^{\text {che }}$	KEED Springfield. Oreo.	1050		Lelanon, Oreg	920
ASY	Auburn, W	1220	KCHE	cherokee. lowa 1440	KEEL Shrevep	$\begin{array}{r} 1230 \\ 710 \end{array}$	KGAN	Bastron, La.	1340
AT	Albert Lea, M	1450	KCHI	Chillicothe, Mo. 1010	KEEN San Jose, 'calif	1370		Carthage, ${ }^{\text {dex }}$	1590
	Casper	1400	KCHJ	Delano, Calif. 1010	KEEP Twin Falls, lda	1450	KGB	San Diego, Calif.	1360
KATA	corpus Christi,	1030		Charseston, M0. 1350	KELA Centralia, Wash	1470		Galveston, Tex	
KATY	San Luis obispo, Cal.	1340		New Mexico'1400	$\begin{aligned} & \text { KELD } \\ & \text { KELK Doras } \\ & \text { EIko, } \end{aligned}$	1400	KGB	Harlingen, Tex.	30
KATZ	St. Louis,	1600		970	KELO Sioux Falis, S.Dak.	1320	KGC	Siuney, Mont.	1480
KAUS	usti	1480	KCID	Caldwel], Idaho 1490	KELP EI Paso, Tox.	920	KGD	Edmonds,	630
$\begin{aligned} & \text { KAVE } \\ & \text { KAVI } \end{aligned}$	Carisibad. Rocky Ford	$\begin{aligned} & 1240 \\ & 1320 \end{aligned}$	$\begin{aligned} & \text { KCiJ S } \\ & \text { KCIL } \end{aligned}$	Shreveport, La. 1050 Houmat La. 1490	KENA Me	1450	KGEE	Bakersfield, Ca	1230
KAVL	Lancaster, Cal	610	KCIM	Carroli, lowa 1980	KENI Anphoriage, Ala	$\begin{array}{r} 1490 \\ 550 \end{array}$		Sterling, Colo.	1230
AVR	Apple Valley,	960	KCJB	Minot, N.Dak. 910	KENL Arcata, Cal	1340		Boise, Idano	1140
K	York, ${ }^{\text {d }}$	1370	KCKC	San Bernardino, Cal. 1350	KENM Portales, N.M	1450	KGEf	Long Beach, Cal	1390
	Puyallup	1450		1340	KENN Farmington,	1390		Kalispell, Mont.	
	Storm	9		ne Bluft, Ark. 1500	KENS Las	1460	KGF	,	450
KAYO	Seattle, Was	1150	KCLE	Cleburne, 'Tex. 1120	KENT Shre	6850	KGFJ	Los Angeles, Calif.	1230
KAYS	Hays, Kan	1400	KCLF	Clifton, Ariz. $\quad 1400$	KENY Bellingham.Ferndale,	1550	KGFL	Roswell. N.Mex.	0
KAYt	Rupert, Idali	970	KCLN	Clinton, Jowa 1390		O	KGFX	Pierre, S. ${ }^{\text {d }}$	1340 630
	San Saba, Longview,	1410	KCLO	Leavenworth, Kans. 1410	KEOK Payette, Idaho	1450	KGGF	Coff	690
KBAR	Burley, Idaho	1230	KCLS	Flagstaff, Ariz. $\quad 600$	KEPR Kannewick, Wiz	1290 610	KGGM	A	610
KBBA	Benton, Ark.	690	KCLV	Clovis, N.Mex. $\quad 1240$	KEPS Eagle Pass, Tex.	1270		Pueblo. Colo.	50
	Borger, Tex.	1600	KCL	Hamilton, Tex. 900	KERB Ker	600			
KBBC	Centervile,	1600	KVL	Colfax, Wash. 1450	KERC Eastland, Tex.	1590			
KBBS	Buff	1450	KCMC	Texarkana, Tex, 1230	KERG Eugene, Oreg.	1280	K	San Ferna	
KBCH	Oceanlake	1380	KCMJ	Palm Spros., Calif. 1010	KERN Bakersfield, Cal	1410	KG	Ala	1450
	Wossie	1220	KCMO	Kansas City, Mo. 810	KERV Kerrville, Tex.	1230	KGKB	Tyier, Jex	490
KBEE	Modesto, Cal	970		1450	KEUN EUI	14490	KGKL	San Angelo, Tex.	0
KBEL	ldabel, OK	1240	KCNI	Broken Bow. Nebr. ${ }^{280}$	KEVA Shamrock, ${ }^{\text {d }}$	1580		am	
	Carrizo Sprgs., Tex.	1450	KCNO	Alturas, Calif. 570	KEVE Minneapolis, Minn.	1440	KGL		
	Bran	13		San Marcos, Tex. 1470	KEVL White Castle, La.	1590	KGL	Sa	
		59		a 1280	KEV Tueson,		KGM	Honolulu, Haw	90
A	Columbi	1580	${ }_{\mathrm{KCOH}}$	Centervilie, Houston, Texa	KEX Portla	1910	KG	Endewoo	50
F	Fresno, Cal	900	Kcok	Tulare, calif. $\quad 1270$	KEXO Grand Junc.	1230	KGM0	Cape Girardeau, Mo.	20
KBIG	Avalon, Calif.	740	KCOL	Ft. Collins, Colo. 1410	KEYE Perryto	1400	KGMS	Sacramento.	
BIM	Rosweil, N.Mex		KCON	Conway, Ark. $\quad 1230$	KEYJ Jamestow	1400	KGN	New Braunfels. Tox.	
BIS	Bakersfield, Calit	970	KCOR	San Antonio, Tox. 1350	KEYS Corpus Christ	1440	KGNC	Amarillo,	
KB1X	Muskogee, Okla.	1490	kCOW	Allianes, Nébr. 1400	KEYY Provo, Utah	1450	KGNO	San	1370
12	Ottumwa, lowa	1240	KCOY	Santa Marla, Calif. 1400	KEYZ Williston, N.D	1360			
K	Mission, Kans.	148	KCRA	Sacramento, Calif. 1320	KFAB Omaha	1110	KGO	T	
	Baker	1490	KCRB	Chanute, Kans. 1460	KFAC Los Angeles, Calif.	1330	KGPC	Grafton, N. Dak.	1340
KBLA	Burbank, 'Cali	1490	KCRE	Crescent City, Calif. 1240	KFAM St. Cloud	1450	KGRI	Henderson, Tex.	1000
K ${ }^{\text {L }}$	Red Bluff, Cali	1490	KCRG	Cedar Rapids, lowa 1600	KFAR Fairbanks, Alaska		KGRN	Grinnell, lowa	1410
KBLI	Blackfoot, Idaho	69	KCRS	Midland, Tex. 550	KFAY Fayetteville, Ark.	1250		Gresham, Oren.	1230
KBLO	Hot Springs, Ar	1470	KCRT	Trinidad, Colo. 1240	KFBB Great Falls, Mont.	1310	K	x.	
K ${ }^{\text {KLR }}$	Goodland, Kans.	730	KCS	ruthersville, Mo. 1370	KFBC Cheyenne, wyo.	1240			
KBLT	Big Lake, Tex.	1290	KCSJ	ueblo, Colo. 590	KFBI Wichita, Kan	1070		Honolulu, hawant	
KBMI	Henderson,	1400	KCSR	Chadron, Nebr. 1450	KFBK Sacramento, Cal	1530		reenvilie, ${ }^{\text {dex }}$	
KBMN	ozeman, Mont.	1230	KCTI	nzales, Tex. 1450	KFDA Amarillo, Tex.	,			1290
KBMO	Benson, Min	990	KCTX	Childress. Tex. 1510	KFDF Van Buren, Ark	1580			
$\begin{aligned} & \text { KBMW } \\ & \text { KBMX } \end{aligned}$	Breckinrdg., Minn.	1450	KCUB	Tucson, Ariz. 1290	KFDM Beaumont,	560			
KBMY	Boalinga, Calif.	1470	KCUE	Red Wing Minn. 1250	KFDR Grand Coulee, Wash.	360		Guymon, 0kla.	1220
KBND	Bend, O'reg.	1110		villo, Wash. 1270	KFEQ St. Joseph, Mo	680	KHAM	Albuquerque, N	
KBNZ	Lajunta, Colo.	1400	KCVR	Lodi, Calif. 1570	KFFA Helena, Ark.	1360	KHAS	Hastings, Nebr	1230
A	Kennett. Mo	830	KCYL	Lampasas, Jex. 1450	KFGQ Boone, lowa		K	Phoenix, Ariz.	析
KBOE	Oskaloosa, lowa		KDAC	Ft. Bragg, Calif. $\quad 1230$	KFH Wichita, Kans.		KHBC	Hilo, Hawai	
K ${ }^{\text {PO1 }}$	Boise, Idaho		KDAL	Duluth, Minn. 610	KFI Los Angeles, Calif.	640	KHBG		-
KBOK	Malvern, Ark.	1310	KDAN	Eureka, Calif. 790	KFiR North Bend, Ored	1340	KHBM	Monticello,	
KBOL	Boulder, Co	149	KDAV	Lubbock Tex. 580	KFIV Modesto. Cal	1360	KHER	Bi	1270
KBON	Mandan, N.D	12	KDAY	Santa Monica, Calif. 150	KF12 Fond du Lac,	1450	KHEN	Henryotta, 0 'k	1590
KBOP	Pleasanton. Tex.	1380		1490	KFJl Klama		KHEP	Phoenix, Ar	1280
OR	Brownsville, Tex	1600	KDBM	Dillon, Mont. 800	KFJM Grand Forks, $\mathrm{N} . \mathrm{Dak}$	1370	K	${ }_{\text {El }}$ Paso, Tex.	90
KBOW	Butte. Mont.	149	KDBS	Alexandria, La. 1410	KFJZ Ft, Worth, Tox.	1270		Slerra Vista, Ar	20
KB0Y	Medford, Oreg.	730	KDDD	Dumas, Tex.	KFKA Greeley, Colo.	1310		mpa,	
KBox	Dallas, Tex.	1480	KDEC	Decorah, lowa 1240	KFKF Bellevue, Wash.	1330			
KBPS	Portland, Orep	1450	KDEF	Albuquerque, N.Mex. 1150	KFKU Lawrence, Kans.	1250			200
	Mt. Vernon, Wash.	1430	KDEN	Denver, Colo. ${ }^{\text {N }}$, 1340	KFLD Floydada, Tex.	900	K	Wala Wala, Wash.	30
K KRRK	Brookings, S. Dak.	1430	KDEO	El Cajon, Calif. 910	KFLJ Walsenburg, Col	1380	KHMO	Los Angeles.	70
KBRL	McCook, Neb	1300	KDES	Palm Spros., Calif.	KFLW Klamath Falls, Oreg.	120	KHOB	Hobbs, N.Mer	1280
KBrS	Springdale, Ark	1340	KDEX	Dexter, Mo. 1590	KFMA	12	KHOG	Fayetteville, A	1450
KBRV	Soda Spros., Ida.	540	KDGO	Durango, Colo, 1240	KFMB Sa		KHOT	Madera, Calif.	1250
KBRX	O'Neill, Nebr.	1350	KDHL	ibault, Minn. 920	KFMJ Tulsa,	1050	KHOW	Deny	30
KBRZ	Freeport, Texas	1460	KD10 0	Ortanvilie, Minn. 1350	KFML Denver, Colo.	1390	KHOZ	Harrison, Ark.	析
KBSF S	Springhill, La.	1460	KDIX	Dickinson. N.Dak. 1230	KFMO Flat River, Mo	1240	KHS	pokane, Wash	90
KBST	Big Spring, Tex.	1490	KDJ H	Holbrook, Ariz. 1270	KFNF Shenandoah, lowa	920	KHUB	Crico, Calif.	1290
KBTA	Batesville, Ar Missoula, Mon	1340	KOKA	Pittsbursh, Pa. 120	KFNV Ferriday, La.	1600	KHUZ	Brorger, T Tex	1390
KBTM	Missoula, M	1340	K	Mo. 1280	KFNW Fargo, N. Dak	000	KHVH	Honolulu, Hawaii	1040
KBTN	Neosho, M	1420		1230		1240	KIBE P	Palo Alto. Cali	1220
KBTO	EI Dorado, Kans,	1360	K ${ }^{\text {LM }}$	Detroit Lakes. Minn. 134	K	1230	K18H	Seward. Alaska	1340
KBUC	Corona, Calif.	1370	KDLR	Devils Lake. N. Dak. ${ }^{240}$	KFQD Anchorage, Alaska	730	K1BL B	Beevillo, Tex.	1490
KBUD	Athens. Tex.	1410	KDMA	Montevideo, Minn. 1450	KFRB Fa	900	K18S	Bishop. Calit.	230
KBUH	Brioham City, Utah	800	KDMO	Carthage. Mo. 1490	KFRC San Franciseo. Calif.	61		Clovis, N.Mox.	$\stackrel{980}{ }$
KBUN	Bemidj. Minn,	1450 1490	KDMS	El Dorado, Ark. 1290	KFRD Rosenbera. Tex.	98	KICK	Spencer, ${ }^{\text {dowa }}$	1240 1340
KBUS	Burlington, lowa	1490	K	enton, Tex. 1440	KFRE Fresno, Calif.	${ }_{550}^{940}$	KICN	Denver, Colo.	
KBUZ	Mesa, Ariz.	1310	KDOM	Windom, Minn. 1580	KFRM Kansas city Mo.	13	KICO C	Calexico, Cali	1490
KBVM	Lancaster, Calif.	1380	KDON	Salinas, 'Catif. $\quad 1460$	KFRU Columbia. Mo.	1400	K1D 1 d	Morais.	590
KBWD	Brownwood, Tex.	1380	KDOT	Reno. Nev. 1230	KFSA Ft. Smith, Ark.	950	K100	Monterey, Ca	63
KBYE	Okla, City, Okla.	890	KDQN	DeQueen, Ark. 1390	KFSB Joplin. Mo.	1310	KIEM	Boi	0
KBYG		1400	KDRO	Sedalia, Mo. 1490	KFSC Denver, Colo	1220	KEEV	a	80
KBYR	Anchorage, Alaska	1270	KDRS P	Paragould, Ark. 1490	KFSD San Diego. Cali	600		(e.	
			KDSJ D	Deadwood, S. Dak. 980	KFSG Los Angelos. Calit	1150			1260
			KDSN	Denison, lowa 1580	KFST Ft. Stockton, Tex	860	KIFW S	Sitka, Alaska	1230
178	WHITE'S RADIO		KDSX	Denison, Tex. 950	KFTM Ft. Morgan, Colo.	1400	KIHN	Hugo, okla	1340

C.L.	Location Ke.	C.	Kc.	C.L. Location	Ke.	C.L.	Location	Ke.
WEST	Easton,	WGBR Golds bo	1150	WHIL M	0		Murphysboro, III.	
	Salem.	WGBS Miami	710	WHIM E. Providence, R.I.			Fort	
WESY	Leland, Miss. ${ }^{1580}$	WGCB Red	14	WHIN Gallatin,	1010		Louisville, Ky.	-
WETB	Johnsoul City, Tonn. 79	WGCD Chest	1490	WHIO Dayton, On	1290	WiN		-
WETU	Wetumpka, Ala. $\quad 1250$	WGCM Gulfport. M	$\begin{aligned} & 1240 \\ & 1150 \end{aligned}$	WHP Mooresville, N.C	1350 1230	WINR	Bin	-
WETZ	Wetumpka, Ala. 1250	WGEE Indiananolis, Ind.	$\begin{aligned} & 1150 \\ & 1500 \end{aligned}$	WHIS Bluet	$\begin{aligned} & 1230 \\ & 1440 \end{aligned}$			6
	West Virginia 1330	WGEM Qu	14	WHIT Ne				0
WEU	Ponce, P.R. 1420	WGES Chicago, III.	13		1270			10
WEUP	Huntsville, Ala, I600	WGET Gettysburg. Γ		WHIZ Zanesville, ohin	1240	W10D		1360
WEVA	Emporia, ${ }^{\text {V }}$ Va, ${ }^{860}$	WGEZ Boloit	1490	WHJB Greonsburg, Pa.	0		Mount Dora, Fla.	
WEVD	New York, N.Y. 1330	WGFS Cov	1430	WHJC Matawan, W.	1360		!onia.	1430
	Eveleth. Minn. 1330	WGGA Gainesvilio,		WHK Cleveland, O	1420			50
WEWO	Laurinbura. ${ }^{\text {d }}$ N.c. ${ }^{1080}$	WGGH Garion, Ii	230				Pa.	
W	yal Oak. Mich. 1340	WGGO Salama	1590	Hickory.	1290			
WEYE	Sanford, N.C. 1290	WGH Newport News. Va.	1310	WHLB Virginia,	$\begin{aligned} & 1290 \\ & 1400 \end{aligned}$		conderoga, N.Y	
WEZE	Homewood, Ala. 1320	WGHM Skowegan, Maine	11	WHLD Niagara Falls, N.Y.	1270	WiR	Fort Pierce, Fla.	1400
WEZE	Boston, Mass. 1260	WGHN Grd, Haven, Mich	1370	WHLF South Boston, Va.				600
WEZL	Richmond, Va. 1590 Elizabethtown, Pa. 1600	WGHQ Saugerties, WGiG Brunswick.	$\begin{array}{r} 920 \\ 1440 \end{array}$	WHLI Hemm	1100			
WEZY	Cocoa, Fla, ${ }^{\text {a }}$, 1480	WGIL Galesburg,	1400	WHLM				
WFAA	Dallas, Tex $\quad 570,820$	WGIR Manchester, N	610	WHLN Harl	10			
WFAH	Alliance, ohio 1310	WGIV Charlotte	1600	W HLP Centervi	1570			
WFAR	Farreli, Pa ${ }^{\text {a }}$, 1470	WGKA Atl	1600	WHLS Port Huro	1450		Ironton, Ohio	1230
WFAS	White Plains. N.Y. 1230	WGKV charle	1300	WHLT Huntington. Inu.				
AU	Augusta, Me. ${ }^{1340}$	WGL Fort Way	12	WHMA Anniston, Ala.	1390			
WFAX	Falls Church. Va. 1220	WGLC Centre WGLI Babylo	$\begin{aligned} & 1580 \\ & 1290 \end{aligned}$	WHMI Howell, Mich.	1350			
WFBF	Fernandina Bch., Fla. 15	WGMA Hollywood,			1400			
WFBG	Altoona, Pa. 13	WGMS Washingt	570		890			
BL	Syracu	WGN Chicago. 111.	720	WHNY McCo	1250		hamokit. Pa.	48
FBM	Indianapolis. Ind. 1260	WGN1 Wilm	50	WHO Des Moí	1040		Milwaukee.	1150
8R	Baltimore, Md. ${ }^{1300}$	WGNS Murfr	1450	WHOA San Jua	0		Ponce, P.R.	
BS	Ft. Walton Bch., Fla. 950	WGNY Newbur	1220	WHOC Philade	490			123
$\begin{aligned} & \text { WFDF } \\ & \text { WFDR } \end{aligned}$	Flint, Mich. Manchester, ga,	WGOA Winter	1600	WHOK Lancaster. O	1320			
WFEA	Manchester, Ga, 13370	WGOK Mo	1900	WHOL Allento	600		Charlotte. N.C	930
WFEB	Sylacauga, Ala. 1340	WGOR	$\begin{aligned} & 1300 \\ & \mathbf{1 5 8 0} \end{aligned}$	WH00	1480		Virouqua, Wi	360
WFEC	jami, Fia. 1220	WGOV Valdosta,	950	P Hopkinsville.			Sa	
WFGM	Fitchburg, Mass. 960	WGPA Bethlehem, P	100	W	800			
WFGN	Gaffney, S.C. 1570	WGPC Albany,	450	WHOT Campbeli, oh	1570	wity	III.	
WFFG	istol. Va. ${ }^{\text {a }}$	WGR Buffalo, N.Y.	550	WHOW Clinton, III.	1520		jasper, Ind.	
$\begin{aligned} & \text { WFHK } \\ & \text { WFHR } \end{aligned}$	$\begin{array}{ll} & 1430 \\ \text { is. Rapids, }\end{array}$	WGRA C	790		580		Christiansted, V	1040
WFig	sumter, S.C. Wis. 129	WGRF A		WHPE Belto	1390		Knoxville, Ten	
WFIL	Philadelphia, Pa. 560	WGRM Gre	1240	WHRT Harts	866			
FIN	Findlay. Ohio 1330	WGRO Lake City, FI	960	WHRV Ann	1600		jacksonville. ${ }^{\text {Fia. }}$	
WFIS	Fountain Inn, s.c.	WGRV Greenevilie, T	1340	WHRW Bowling Green, Ohio	730	W	streator, III.	
FIW	irfield,	WGRY Gary, ind.	1370		1450			
WFKN	Franklin. Ky. 1220	WGSA Savanna	1400	WHSM Hay	10	WJAG	Norfolk,	
WFKY	Frankfort, Ky. 1490 Tampa. Fla. 970	WGSM Huntington.	740	WHSY Hatt	1230			
WFLB	Fayetteville. N.C. 1490	WGST Atlanta,	1570		1450		Marion, Al	12
WFLN	Philadelphia, Pa. 900	WGSV Gunters	1270		1410		Providence, R.l.	
FLO	Farmville	WGSW Greenwood, s.c.			800			32
R	ndee, N.Y. 1570	WGTA Summerville, Ga.	950	WHUC	1230			
WFLW	Monticello, Ky. $\quad 1360$	WGTC Gre						
WFMC	Goldsboro, N.C. 730	WGTL Kann	870	WHUN Huntington	1150			
	Frederick, Md. 93	W	590	WHVF Wausau, W	1230	WJE	Hale	
WFMJ	$\begin{array}{ll}\text { Cullman, Ala. } & \\ \text { Youngstown. Ohio } & 1390\end{array}$	WG	1400	WHVH Henderson,	1450		Bloomingt	
WFMO	F	w	540	WHVR Hanover, Pa	1280	WJBD	Salem, 111.	1350
MW	adisonville, Ky. 730	WGUY Ban		WHWB Rutland,	1000	W	Detroit, Mich	
WFNC	Fayetteville, N N.C. 1390	WGVA Geneva, $\mathrm{N} . \mathrm{Y}$.	1240	WHYE Roano			Holland, M	
WFNS	Burlington. N.C. 1150	WGVM Greenville.	1260	WHYN Springfield. Mass.				
WFOB	Fostoria, Ohio 1430	WGWC Selma, Ala	1340	WHYS Ocala, Fla. Mas	1370		Or	
WFOM	Marietta, Ga. 1230	WGWR Asheboro,	1260	WIAC San Ju	580		New or	
WFOR	Hattiesturg. Miss. 1400	WGY Schenectady,		WIAM Willia				
WFOX	Milwaukee, Wis. 860	WGYV Greenville, Ala.	1380	WIBA Madiso				
WFOY		WHA Madison, Wis.	970	WIBE Macon, Ga	1280	WJD		
WFPA	Atlantie City, N.J.	WHAB Baxley, Ga.	1260	WIBC Indianapolis, Ind.	1070			
WFPM	Fort Valley. Ga. 1150	WHA Greenfield, Mass.	1240	WIBG Philadelphia, Pa	990	WjD	Salis bury, Md.	
WFPR	Hammond, La, 1400	L Shel		W18M Jackson, Mic	1450	WJEF	Grand Rapids, M	1230
WFRA	Franklin, Pa. 1430	WHAM Roch		W18R Baton Rouge, La	0		, Ohio	
WFRB	Frostburg. Md. 740		1340	Wi8v Poynette, Wis.		W	aperstown, Md	
WFRC	Reidsville. N.C. 1600	WHAR Clar	1340	Wigw bellevilie. 11.	1260		Valdos	
WFRL	Freeport, 11. 1570	WHAS Louisville.	840				Dover, Prahio	
WFRM	$\begin{array}{ll}\text { Coudersport, Pa. } & 600 \\ \text { Fremont, } \\ \text { Ohio }\end{array}$	WHAT Philadelphia	1340	WIGA Ashtabula, Oohio	970		Erie. Pa.	1280
WFRO	Fremont, Ohio		490.	WICC Bridgeport, Conn			Coumbia, renn	
WFRX	West Frankfort. III. 1300		450	WICE Providence W,	${ }_{1290}^{600}$			
WFSC	Franklin, N.C. $\quad 1050$	WHAY New Britain	910	WICE Providence, R,I.	1310		Johnson City, ${ }^{\text {delika, Ala, }}$	
WFFTC	Caribou, Maine	WHAZ Troy, $\mathrm{N} . \mathrm{Y}$.						
WFTC	Kinston, N.C. 960	WHB Kansas city.	710	wico Scranton, Pa	-			
WFTG	London, Ky. 1400	WHBB Selma, Ala.	1490	WICO Salisbury, Md			Lansing. Mich	
WFTL	Ft. Lauderdale, Fta. 14	WHBC Canton, Ohio	1480	W	+1330	W	va	
$\begin{aligned} & \text { WFTM } \\ & \text { WFTR } \end{aligned}$	Maysville, Ky,	WHBF Rock issand,	1270	WIDE Biddeford. M	1400		Chicago.	
	Front Royal, Va, 1450	WHBG Har		WIDU Fayetteville.	1600	WJ	Niagara Fal	
		WHBI N	1280	WIEL Elizabethtown, Ky.	1400	w 1	Lew	
UL	Fulton, Ky. 1270	WHBN	1330	WiFM Elkin	1540	WJKo	Springfeld. Ma	
WFUN	Huntsville, Ala. 1450	WHBN Harrodsburg,	1420	WIGM Medford, Wis.	1490	WJLB	Detroit, Mich.	边
WFUR	Grand Rapids, Mich. ${ }^{1570}$		560	WIIN Atlanta, Ga,	970	WJLD	Homewood, Al	
WFVA	Fredericksburi. Va. 1230	WHBT Marriman. Tentr.	16	WIKB tron River, Mic	1230	WJL	A sbury Park, N.J.	310
WFVG	Fuquay Spros.. N.C. 1460		1240	WIKC Bogalusa, La.	1490	WJLS	Beckley. W.Va.	560
WFYC	Camden, Tenn. 1220	WHBY	12	WIKE Newport, Vt	1490	WJMA	Orange, Va,	1340
WFYC	Alma, Mich. 1280	WHCC Waynesvillo.	1400	WIKY Evansville, Ind	820	WJMB	Brookhaven, Miss	
WFYI	Mineola, N.Y. $\quad 1520$	WHCO Sparta. III.		WIL St. Louis, Mo.	1430	WJMC	Rice Lake. Wis.	1240
WGAA	Cedartown, Ga, 1340	WHCU	880	WILA Danville, Va.	1580	WJMJ	Philadelphia.	1540
WGAC	Augusta, Ga.	WHDF Houghton	1400	WILD Boston, Mass.	1090	WJmo	Cleveland Hots.	
WGAD	Gadsden. Ala, 1350	WHDE Boston.	1400	WILE Cambridge, Ohio	1270	WJMR	New Orleans. La	
WGAF	Valdosta, Ga.	W	1450	WILI Willimantic, Conn.	1400	WJM	ronwood, Mich.	
WGAI	Elizabeth City, N.C.			WiLK Wijkes-Barre, Pa.	980	WJM	Ath	730
WGAL	Lancaster, Pa. 1490	WHEB Portsmour	750	WILL Urbana, III.	580	WJMX	析	
WGAN	Portland. Maine Maryville, Tenn,	WHEC Rochest	1460		1450		Jacksonville. N.C.	0
WGAP	Maryville. Tenn. 1400	WHEE Martinsville.	1370	WILO Frankfort, Ind.	1570	WJNO	W. Palm Beach, F	
WGAR	Cleveland. Ohio 1220	WHEN Syracuse, ${ }^{\text {W }}$.		W LLS Lansing, Mich.	13	W108	Hammond	12
WGAU	Athens, Ga. 1340	WHER Memphis, T'	1430	St. Petersburg Beach.		Wjoc	Jamestown, N	134
WGAW	Gardner. Mass. 1340	WHEY Milling			1590	WJOE	ard Ridge.	157
WGAY	Silver Spring, Md. 105	WHFB Benton Harbor, Mich.	1060	wIMA Lima, Ohio	1150	WJ0	orence, Ala.	1340
WGBA		WHFC Cicero, I					Joliet. 13.	
WGBE	Freeporti NY.	WHGB Harris	1400	WINA Mrhatioan city. Ind.	1420	Wjon	St. Cloud, Minn.	
WGBF	Evansvilie, Ind. ${ }_{\text {Greensboro }}$ N.C. ${ }^{280}$	WHGR Houghton L., Mich.	1290	WINC Winchester. Va.	1400	Wjor		
WGBI	Scranton, Pa. ${ }^{\text {Gre }}$	WHHH Warren, Ohio	1440	WIND Chicago, in.	560	WJPA		
		ontgomery, Ala.	1440	WINE Kenmore, N:Y	1080	WJPD	ishpeming, Mich.	1240
82	White's Radio loc	WHHM Memphis, Tenn. WHIE Griffin, Ga,	132	WINF Manchester, Con WiNG Dayton, Ohio	$\begin{aligned} & 1230 \\ & 1410 \end{aligned}$		rrin, III. еen Bay,	

C．L．Location woxf oxford，N．C． WOZK Ozark，Ala． WPAC Patchogue，N．Y． WPAD Paducah，Ky． WPAG Ann Arbor，Mich． WPAL Charleston，S．C． WPAQ Mount Airy．N．C． WPAR Parkersburg，W．Va WPAT Paterson．N．J． WPAW Pawtucket，R．I． WPAY Portsmouth，Ohio WPAZ Potstown，Pa
WPBC Minneapolis，Minn． WPCC Clinton，S．C．
WPCF Panama City，Fla．
WPCO Mt．Vernon，Ind． WPCO Mt．Vernon，In WPDM Potsdam，N．Y．
WPDQ Jacksonville，Fia WPDQ Jacksonville，Fla
WPDR Portage，Wis． WPDX Clarksburg，W．Va． WPEN Montrose，Pa， WPEP Peoria，I！
WPET Greensboro，N．C． WPFB Middletown，Ohio WPGC Bradbury Hights．，Mo WPHB Philipsburg，Pa WPio Piedmont
WPIK Alexandria，Va． WPIN St．Petersburg，Fla． WPKE Pikeville，Ky． WPKY Princeton，Ky． WPLA Plant City．Fla． WPLM Plymouth，Mass． WPLY Plymouth，wis． WPME Punxsutawney．Pa． WPNC Plymouth，N．C． WPNF Brevard，$N . C$.
WPNX Phenix city．Al WPON Pontiac，Mich， WPOR Portland．Maine WPOW New York．N．Y． WPPA Pottsvilie，Pa．
WPRC Lincoln, III.
WPRE Prairio
WU Chien,
WPRE Prairie Du Chien,
WPRT Prestonsburg. Ky
WPRO Providence, R.I.
WPRO Providence,
WPRS Paris, III,
WPRY Perry. Fla
WPTF Raleion, N.C.
WPTR Albany, N. \mathbf{Y}.
WPTW Piqua, ohio
WPTX Lexington Pk., Md.
WPUV Pulaski, Va.
WPVA Colonial Hghts., Va.
WPYL Painesville Ohio
WQBC Vicksburg, Miss.
WQIK Jacksonville. F́la
WQOK Greenville, S. C .
WQSN Charleston
WQUA Moline. Ill
WQUB Galesburg, 'II.
WQXa Ormand Beh. Fla.
WQXR New York, N.Y.
WQXT Palm Beach.
WRAC Racine, Wis.
WRAD Radford. Va
WRAG Carrollton. Ala
WRAJ Anna, III.
WRAK Williamsport. Pa.
WRAM Monmouth. in
WRAP Norfolk, Va.
WRAW Reading, Pa.
WRAY Princeton, Ind.
WRBC Jackson, Miss.
WRC Washington, D.C.
WRCA New York, N. Y.
WRCD Dalton. Ga
WRCO Richland. Wis.
WRCS Ahoskie. N.C.
WRCV Philadeiphia, pa.
WROB Reedsburg, Wis.
wro Augusta, Maine
WREB Holyoke, Mas
WREC Memphis. Tenn.
WREM Remsen, N.Y.
WREN Topeka, Kans.
WREV Reidsville, N.C
WRFC Athens, Ga.
WRFD Worthington. Ohio 880
Ke． 1340
900 900
550
1580 1580
1450
1050 1450 1050 WRGA Rome，Ga，
WRGR Stark，Fla．
WRGS Rogerswille， WRHC Jacksonville，Tenn．
WRHI
WRIB Rock Hill，S．C．
WRovidence，R．I．
C．L． WSOL Tampa，Fla，
WSON Henderson．Ky．
WSOO SIt．Ste．Marie，mich．
WSOY Decatur，III．
WSPA Spartanburg，S．C．
WSPB Sarasota，Fla．
WSPD Toledo．Ohio

6.
300
660
230

w WTSB Lumberton，N．C． New．H．

	New Hampshire	0
WTSN	Dover，N．H．	1270
WTSP	St．Petersburg，Fla．	1380
	Claremont，N．H．	1230
WTTB	Vero Beach，Fla．	1490
WTTH	Port Huron，Mich．	1380
WTTL	Madisonvilio，Ky．	1310
WTTM	Jrenton，	920
WTTN	Watertown．Wis．	1580
WTTR	Westminster，Md．	1470
WTTS	Bloomington．Ind	1370
WTJT	Arlington，Fla	1220
WTUC	Union City，Tenn．	1580
WTUG	Tuscaloosa．Ala．	790
WTUP	Tupelo，Miss．	1380
wTUX	Wilmington，Del．	1290
WTVB	Coldwater，Mich．	1590
WTVL	Waterville，Maine	1490
WTVN	Columbus，Ohlo	610
WTWA	Thomson，Ga	1240
WTWB	Auburndale，fla	1570
WTWN	St．Johnsbury Vt．	1340
WTXL	W．Spgid．，Mass．	1490
	ock Hill，S．C	1150

$\begin{array}{lll}\text { WTTR Westminster, Md. } & 1470 \\ \text { WTTS Bloomington, Ind. } & 1370 \\ \text { WTJT Arlington, Fla. } & 1220 \\ \text { WTUC Union City, Jenn. } & 1580 \\ \text { WTUG Tuscaloosa. Ala. } & 790 \\ \text { WTUP Tupelo, Miss. } & 1380 \\ \text { WTUX WiImington, Del. } & 1290 \\ \text { WTVB Coldwater. Mich. } & 1590 \\ \text { WTVL Waterville, Maing } & 1490 \\ \text { WTYN Columbus, Ohio } & 610 \\ \text { WTWA Thomson, Ga. } & 1240 \\ \text { WTWB Auburndale, Fla. } & 1570 \\ \text { WTWN St. Johnsbury, Vt. } & 1340 \\ \text { WTXL W. Spgid. Wass. } & 1490 \\ \text { WTYC Rock Hill, S.C. } & 1150 \\ \text { WTYM East Longmeadow, } & \\ \text { WTYN Tryon, N.C. Mass. } & 1600 \\ \text { WTYS Marianna, FIa. } & 1580 \\ \text { WTS } & 1340\end{array}$

WTYS Marianna, Fia. 1344
1450
WRIC Richlands, V a.
WRIG Wausau, W is.
WRIM Pahokee, Fla.
WRIO Rio Piedras, P.
WRIP Rossville, Ga.
WRIP Rossville, Ga.
WRIS Roanoke, Va.
WRIT Milwaukee, Wis.
WRIV Riverhead, N.Y
WRJN Racine, Wis.
WRJW Picayune, Miss.
WRKD Rockland, Maine
WRKH Rockwood, Tonn.
WRKH Rockwood, T
WRLD Lanitt, Ala.

350	WRLD Lanitt, Ala.
470	
600	WRMA Montgomery, Ald.
WR Titusville, Fia.	

WRMF Titusville, Fla
WRMN Elgin, Hil.
WRMT Rocky Mount, N.C.
WRNB New Bern. N.C.
WRNB New Bern, N.C
WRNL Richmond. Va.
WROA Gulfport, Miss
WROB West Point, Miss.
WROD Daytona Beach, Fla.
WROK Rockford. III.
WROK Rockiord. I
WROM Rome, Ga.
WRON Ronceverte. w.va.
WROS Scottsboro. Ala
WROV Roanoke, Va.
WROW Albany, N.
WROX Clarksdale, Mis
Wrox Clarksdale.
WROX Clarksdale, Miss. 1450
WROY Carmi. 111.
WRPB Warner Robvins. Ga. 14350
WRR
WRR Dallas, Tex.
WRRF Washington. N.C.
WRRR Rockford, III.
WRRZ Clinton. N.C. N 880
WRSA Saratoga Spros., N.Y. 1280
WRSW Warsaw, Ind.
WRTA Altoona, pa.
WRUF Gainesville, Fla.
WRUM Gainesville, Fla.
WRUM Rumford.
WRUN Utica, N.Y. Maine
WRUS Russellville, Ky.
WRVA Richmond, Va.
WRVA Richmond, $V{ }^{2}$.
WRVA Michmond, Va.
WRYM M, Ky.
WROM R
WRWB Kissimmee. Fl
WRWH Cleveland, Ga.
WRWJ Selma, Ala.
WRXO Roxboro. N.C.
WSAC Radeliff. Ky.
WSAC Cincinnati, Ohio
WSAJ Grove City. Pa
WSAL Logansport, Ind.
WSAM Saginaw. Mich.
WSAN Allentow
WSAR Fall River, Mass.
WSAT nr, Salisbury, N.C.
WSAU Wausau, Wis.
WSAV Savannah, Ga.
WSAY Rochester, N.Y
WSAZ Huntington, W.Va.
WSB Atlanta, Ga.
WSBA York. Pa.
WSBB New Smyrna Beach,
WSBC Chicago, III.

| WSBC Chicago, Ill. orida 1230 |
| :--- | :--- |
| WSBS Gt Barring |

WSBS Gt. Barrington, Mass, 860
WSBT South Bend, Ind,
WSCM Panama City Beach,
Florida
WSCR Seranton, Pa.
WSCR Scranton, Pa,
WSDB Homestead, Fla.
WSDB Homestead, Fl
Florida 1290
WSEN Baldwinsville, N.Y.
WSEV Sevierville, Tenn.
WSFB Quitman. Ga.
WSFB Quitman. Ga.
WSFC Somerset. Ky.
WSFT Thomaston, Ga.
WSGA Savannah. Ga.
WSGA Savannah, Ga.
WSGC Elberton. Ga.
WSGN Birmingham. Ala.
WSGW Saginaw. Mich.
ich.
WSHE Raleigh. N.C.
WSHE Raleigh, N.C.
WSIC Statesville, N.C.
WSID Baltimore. Md.
la.
1290
1290
1320
1430
1370
is. 980
980
ien, wis. 98
v.va.

7

家
我兑
550
1240
1
inn.
13
98
1400
1430
1370
980
1400
980
1400
1430
1590
는둥
350
Kc．
05

950
450
370
900
270 2C．L．Location
WTSB Lumberton，N．C．
14001270WTSP St，Petersburg，Fla． 138WTSV Claremont，N．H．FlaWTTB Vero Beach，Fla．1230
14901330
1490
1380

540	WSPN Saratoga Sprgs., N.Y.
1400	WSPR Springield, Mas.
1250	WSPT Stevens Pt., Wis.
1320	WSRA Milton, Fla,

WTTN Watertown．Wis

400	WSSC Sumter. S.C.
220	WSS0 Starkville. Miss.
580	WSSV Petersburg, Va.
580	WSTA Charlotte Amalie, V.I.

WSPT Stevens Pt., Wis.
0
WSRA Milton, Fla.
0
WSRC Durham, N.C.
WSO Marlborough, Mass.
10 WSRO Marlborough, Mass.
WSRW Hilisboro, Ohio
WSSB Durham, N.C
300
320
WSSC Sumter, 'S.C.
WSO Starkville. Miss.
WSSV Petersburg, Va.
14
147
159
13
1
1
V.I.
1

580	WSTA Charlotte Amalie,
490	WSTC Stamford, Conn.
950	WSTK Woodstock, Va.
050	WSTL Eminence, Ky.

| 050 | WSTK Woodstock, Va, |
| :--- | :--- | :--- |
| WSTL Eminence, Ky. | |
| WSTN | St. Augustine, Fla |

50	WSTL Eminence, Ky.
10	WSTN St. Augustine, Fla.
90	WSTP Salisbury. N.C.

1490
910
600
1350
750
1250
250
1250
950
1020
1570
जु응
570
950
950
790
910
Md
450
580
440
260
790
280
280
Fla.
730
730
240
240
380
580
a. Va.
1470
1390
390
420
540
4.
-
910
1390
1450
1340
WSTS Massena, N.Y.
ne, Fla
N.C.
Fla. $\quad 14$
WSTS Massena, N.Y.
WSTU Suart, Fin.
WSTU Suart, FIn.
N. Y.
ille, Ohio
WSTV Steubenville, Oh
0 WSUB Groton. Conn.
WSUH Oxford, Miss.
0
0
Ohio
Mis.
lowa
lourg, Fl
WSUN St. Petersburg, Fla. 62
WSUX Seaford, Del.
WSUN St, Petersburg, Fla.
WSUX Seaford. Del.
WSUZ Palatka, Fla.
WSVA Marrisonburg. Va.
WSVA Marrisonburg.
VS Crewe, Va.
Va.
Fla.
50
WSWN Belle Glade, Fla.
WSWW Platteville. Wis.
1280
80
55
800
800
550
800
900
80
550
900
1590
1590
WW Platteville. Wi
B Rutland, Vi.
D Mt. Airy, N.C.
WSYD Mt. Airy, N.C
WSYD Mt. Airy, N.C.
WSYL Sylvania, Ga,
WSYR Syrncuse, N.Y.
WSYR Syracuse, N.Y.©品然苟쿵Nㅇ웅1150
610
1140
14601440
680
1220680
1220
1380
15701220
1380
1570W
W
W
W
W
W
WC Jabor City．N．C．
G Quincy，III．WJAG Worcester，Mass．1a．$\quad 14$
AN Clearwater，Fla．
JAQ Cambridge, Mass
JAQ LaGrange, Ill.
JAR Norfolk, Ya.
JAW Bryan, Jex.
TAQ LaGrange, $I l$
TAR Norfolk,
TAW Bry
TAX Spring Jield.
TAY Robinson. Ill
AX Bryan. Jex.
AY Robingield. Ill.
BC Tuscaloosa, Ala.
1430
1470
1360
1340
1470
1360
1340
1230
360
340
230
960
630
C.L. Locotion WYTH Madison, Ga. WYUO Newport News, WYVE Wytheville Va, Va. WYZE Atlanta. Ga. WZEF DeFuniak Sprgs., Fla. WZIP Covington, Ky. WZKY Albemarle, N.Dak. WZOB Ft. Payne, Alak. WZRO Jacksonville, Beach.
WZYX Cowan, Tenn.

Canada

CBA Sackville, N.B. CBAF Moncton, N.B. CBE Windsor, Ont. CBF Montreal Que. CBG Gander, Nfld. CBH Halifax, N.S. CBI Sydney, N.S. CBJ Chicoutimi, Que. CBK
CBL
Regina, Sask
Oronto, Ont. CBL Toronto, Ont. CBN St. John's. Nild. CBN St. John's,
CBO Ottawa, Ont. CBT Grand Falls; Nind. CBU Vancouver, B.C. CBW Wuebec, Que. CBX Einnipeg, Man. CBX Edmonton, Alta. CBXA Edmonton, Alta. CFAB Windsor CFAB Windsor. N.S. CFAC Calpary, Alta. CFAR Flin Fion, Man CFBC Saint John, Man. CFBR Sudbury. Ont. CFCF Montreal, Que. CFCL Timmins, Ont. CFCN Calgary, Alta. CFCO Chatham, Ont. CFCW Camrose, Alta CFCY Charlottetown, P.E.I. CFDA Victoriaville, Que. CFGB Goose Bay. Nfld. CFGP Grande Prairie, Alta. CFGR Gravelbourg, Sask. CFGT St. Joseph d'Alma, Que CFJB Brampton, Ont. lorida a 10

Kc. C.L

250 CFIR Brokvillation 250 CFJR Brockville, Ont. | 1570 | CFKL Schefferville, Que. |
| :--- | :--- |
| 1270 | CFNB Fredericton | 1280 CFNS Fredericton, N.B. 1280 CFNS Saskatoon, Sask.

 1050 CFOS Owen Sound. Ont.

1580 CFPA Port Arthur Ont 1580 CFPA Port Arthur, Ont. 320 CFPR Prince Rupert. B.C. | 1010 | CFRRC Saskatoon, Sask. |
| :--- | :--- |
| 1440 | CFRRB Ottawa, Ont. |
| | CF Oronto, Ont. | CFRC Kingston, Ont. CFRG Gravelbourg. Sask CFRN Sdmonton, Al

CFRY Simeoe, Ont. 1070
1300 $\begin{array}{r}1300 \\ 1550 \\ \hline\end{array}$
690 CFSL Weyburn, Sask. M
1450 CFWH Wancouver, B.C.
1330 CFYK Yellowknife, N.W.T.
1140 CFYT Dawson. Yukon T.
580 CHAB Moose Jaw, Sask.
540 CHAD Amos, Que.
CHAT Medicine Hat, Alta.
CHED Edmonton, Alta. 910 CHEX Granby, Que.
990 CHFA Peterborough, Ont. 690 CHGB St. Anton, Alta.
nne de la
Pocatiere
CHLN Three Rivers, Que.
1010 CHLO St. Thomas, ont.
740 CHLT Sherbrooke, Que.
790 CHML Hamilton, ont.
1450 CHNC New Carlisle, Que.
1260 CHNO Sudbury, ont.
1290 CHNS Halifax, N.S.
930 CHOV Pembroke, Ont.
550 CHOV Pembroke, Ont. 600 CHRC Quebec, Que.
600 CHRD Drummondville, Que.
580 CHRL Roberval, Que.
630 CHSJ Saint John, N.B.
1230 CHUB Nanaimo, B.C.
${ }_{1380}^{630}$ CHUC Port Hope, Ont
1380 CHUM Toronto, ont.
1340 CHVC Niagara Falls, Ont.
1050 CHWK Chilliwack, B.C.
1230 CHWK Chilliwack, B.C. 1270 CJAD Mantreal, Que. 1090 CJAT Trail, B.C.
910 CJAV Port Alberni, B

$K \mathrm{c}$.	C.L. Location	Kc.	C.L.	Location	e.
1450	CJBC Toront	860	CKGB	Timmins, ont.	80
1230	CJBa Bellevilte, Ont.	800	CKGR	Galt, Ont.	1110
550	CJBR Rimouski, que.	900	CKJL	St. Jerome, Que.	900
1170	CJCA Edmonton, Alta.	930	CKLB	Oshawa. Ont.	1350
800	CJCB Sydney, N.S.	1270	CKLC	Kingston	1380
1570	CJCH Halifax, N.S.	920	CKLD	Thetford'Mines, Que.	1230
560	CJCS Stratford, Ont.	1240	CKLG	N. Vancouver, B.C.	30
1230	CJDC Dawson Creek. B.C.	1350	CKLN	Nelsan, B.C.	1390
980	CJEM Edmundston, N.B.	570	CKLS	LaSarre, Que.	1240
1240	CJET Smiths Falls, ont.	630	CKLW	Windsor, Ont.	800
${ }_{560}^{60}$	CJFP Riviere du Loun, Que.	1400	CKLY	Lindsay, Ont.	910
560	CJFX Antigonish, N.S.	580	CKMR	Newcastle. N	790
1010	CJGX Yorkton. Sask. Clib Vernon B.C	940	CKNB	Campbellton,	950
710	Cjic Sault Ste. Marie, Ont.	1050		New Westminster,	
1260	CJKL Kirkland Lake, Ont.	560	C	wingham	920
1560	CJLS Yarmouth, N.S.	1040	CKOC	Hamilton, Ont	150
	CJMS Montreal, Que.	1280	CKO	Penticton, B.	800
1570	CJMT Chicoutimi, Que.	1420	CKOM	Saskatoon, Sask.	1420
1340 1410	CINB N. Battleford, Sask.	1460	CKOT	Tilisanburg, ont.	1510
1410	CJNR Blind River, Ont.	730	ckov	Kelowna, B.C.	630
1340	CJOC Lethbridge, Alta.	680 1220	ckox	Woodstock, Ont.	1340
1230	CJON St. John's. Nfld.	930	CKPC	Brantford, ont.	1310 1380
800	CJOR Vancouver, B.C.	600	CKPG	Prince George, b.c.	50
1340	cjor Guelph, ont.	1450	CKPR	Fort William. Ont.	580
1270	CJQC quebec, Que.	1340	CKRB	Ville St, Georges, Q	250
1080	CJRH Richmand Hill, ont.	1310	CKRC	Winnipeg, Man.	630
1450	CJRL Kenora, ont.	1220	CKRD	Red Deer, Alta.	850
980	CJRW Summerside, P.E.I.	1240	CKRM	Regina, Sask.	980
680	CJSO Sorel, Que.	1320	CKRN	Rouyn, Que.	1400
1350	CJSP Leamington, 0	710	CKRS	Jonquiere, a	590
550	CKAC Montreal. Qu.	930	CKSA	Lloydminster, Alta.	1150
680	CKAR Huntsvilie, Ont.	590	CKSF	Cornwall, 0	1250
630	CKBB Barrie, Ont.	950	CKSL	London, ónt.	1290
900	CKBC Bathurst. N.B.	1400	CKSM	Shawinigan Falls.	1290
610	CKBI Prince Albert, Sask.	9200		Sharsion Fals.	220
960	CKBL Matane, Que.	1250	CKSO	Sudbury. Ont	790
1070	CKBW Bridgewater	1000		Swift Current, Sask.	1400
1350	CKCH Hull, Que.	970		Sthree Rivers,	${ }^{6150}$
1470	CKCK Regina, Sask.	620	CK	Shree Rivers. Que	900
800	CKCL Truro, N.S.	600	CKUA	Edmonton, Alta.	580
1340	CKCa quesnel, B.C.	570	CKVD	Val d'0r. Que.	1230
910	CKCR Kitchener, Ont.	1490	CKVL	Verdun, Que.	850
1090	CKCV Quebec,	1280	CKVM	Vilie Marie, Que.	710
1570	CKCY Sault	1220	CKWS	Kingston, Ont.	960
1500	CKDA Victoria, B	1220	CKWX	Vancouver. B.C.	130
1050	CKOH Amherst, N.S.	1400	CKX	Brandon. Man.	1150
1600	CKDM Dauphin. M	730	CKXL	Calgary, Alta.	1140
1270	CKEC New Glasgow. N.S.	1230	CKY	Winnipeg, Man.	580
1250	CKEK Cranbrook, B.C.	570	CKYL	Peace River, Alta,	630
800	CKEN Kentvilie. $\mathrm{N} . \mathrm{S}^{\text {S }}$	1350	VOAR	St. John's, Nfld.	1230
6	CKEY Toronto, Ont.	580	VOCM	St. John's, N fl d.	590
1240	CKFH Toronto, Ont.	1430	VOWR	St. John's, Nfld.	800

Mexican and Cuban AM Stations

Mexican stations audible in the Southwest; the more powerful Cuban stafions
Abbreviations: C.L., call letters; Kc., frequency in kilocycles; W.P., watt power

Locafion
C.L. Kc. W.P. Mexico BAJA CALIFORNIA

Ensenada Mexicali	XEPF 1400	250	
	XED 1050	5000	
	XEAA 1340	250	
	XEAO 910	250	
	XECL 990	5000	
	XEGE 1570	1000	
Tijuana	XEC 1310	250	
	XEAC 690	50000	
	XEAU 1470	5000	
	XEAZ 1270	500	
	XEBG 1550	1000	
	XEGM 950	2500	
	XEMO 860	5000	
	XEXX 1420	2000	
CHIHUAHUA			
Chihuahua	XEM 1390	500	
	XEBU 620	1000	
	XEBW 1280	1000	
	XEFI 1440	1000	
	Cuudat Camargo		
Ciudad Delicias			
	XEBN 1240	250	
Ciudad Juarez	XEJK 1340	250	
	XEF 1420	250	
	XEJ 970	5000	
	XEP 1300	500	
	XEFV 1240	250	
	XELO 800	150000	
	XEWG 1490	250	
	XEYC 1460	1000	
Hidalgo ${ }_{\text {N. Casas }}$ Gran	XEJS 1150	500	
	des		
	XETX 1010	250	

World-Wide Short-Wave Stations

Active and Most Commonly Heard in U. S., Listed by Frequency

(For all Canadian Short-Wave Stations, see separate listing, p. 188) Abbreviations: Ke., frequency in kilocycles (to change to megacycles, divide by 1000); C.L. call letters. Due to malfunction of transmitter, interference by other stations, jamming, variance in propagational conditions, or reallocation of frequencies, stations may use other frequencies than those given. The abbreviation (VOA) denotes Voice of America.
The symbol denotes stations beaming regular evening broadcasts to the United States.

Kc. C.L. Location 3275 VP4RD Port-of-Suain, 3300 Belize, Brit. Honduras 3320 YVQG Barcelona, Venez. 3330 YVQL EI Tigre, Venez. 3340 YVMV Carora, Venez, 3350 YVKT Caracas, Venez. 3360 YVOC San Cristobal. Vz 3360 ZQI Kingston, Jamaica 3365 Grenada. Windward Is. 3370 YVMI Maracaibo, Venez. 3380 YVaN Puerto La Cruz, 3390 YVKX Caracas, Venez 3400 YVKP Caracas. Vencz.
3410 YVMK Cabimas. Venez. 3420 YVOE Merida. Venez, 3440 YVLI Maracay, Venez. 3460 YVLC Valencia, Venez. 3480 YVLE Puerto Cabello, Vz. 3490 YVRA Maturin, Venez. 3620 YVLG Maracay, Venez. 3980 Suva, Fiji Islands 4650 HC2AJ Guayaquil, Ecua. 4752 YVMA Maracaibo, Venez. 4768 HJEF Cali. Colombia 4775 HJGB Bucaramanga, Col. 4783 HJAB Barranquilla, Col. 4790 YVQC Ciudad Bolivar, Vz. 4797 HJFU Armenia, Colombia 4800 YVME Maracaibo, Venez. 4805 ZYS8 Manaos, Brazil 4810 YVMG Maracaibo, Venez. 4815 HJBB Cucuta, Col. 4820 XEJG Guadalajara, Mex.
4820 YVNB Coro, Venez 4820 YVNB Coro, Venez. 4830 YVOA San Cristobal, Vez 4835 HJKE Bogota. Colombia 4840 YVOI Valera, Venez, 4848 CSAGF Bonta Delgada, Az 848 YJGF Bucaramanga, Col. 455 HJFN Noiva Colombia 4850 JKL Tokyo, Japan
4860 YVPA San Filipe, Venez. 4865 PRC5 Belem. Para, Brazil 4865 PRC5 Belem. Para, Braz 4871 HJBG Cucuta, Colombia 4880 YVKF Caracas, Venez. 4892 YVKB Caracas, Venez. 4895 HJCH Bopota, Col. 4895 PRF6 Manaos, Brazil 4897 VLX 4 Perth, Aust. 4900 YVQE Ciudad Bolivar, V_{2}. 4903 HJAG Barranquilla. Col. 4907 YVMM Coro, Venez. 4910 JKı Nazaki, Japan. 4910 YDB2 D jakirta, indon. 4915 Accra, Ghana
4915 YVKR Caracas, Venez. 4917 H 19 B Santiago, Dom, Rep. 4917 VLM4 Brisbane, Aus. 4930 HJAP Cartagena, Col. 4940 JKM Kawachi, Japan 4940 YVM Q Barquisimeto, Vz . 4945 HJCW Bogota, Col. 4950 ZQI Kingston, Jamaica 4951 Dakar, Senegal
4960 YVQA Cumana, Venez, 4967 HJAE Cartagena. Col. 4985 YVMO Barauisimeto. Vz. 4993 HIIA Santiago, D. Rep. 5010 Grenada, Windward Is, 5014 PJC3 Willimstad, Curac. 5020 HJFW Manizales, Col. 5023 H 182 Santiago, D. Rep. 5030 YVKM Caracas, Venez. 5050 YVKD Caracas Venez. 5053 H 12L Ciudad Trujillo, D.R 5055 HJDW Medellin, Col. 5075 HJKH Sutatenza, Colom, 5758 PZH5 Paramaribo, Surinam 5880 HRN Tegucigalpa, Hond. 5920 HRA Tegucigalpa, Hond. 5940 K habarovosk. U.S.S.R. 5940 Moscow, U.S.S. R.
5952 TGNA Guatemala, Guat. 5960 HJCF Bogota, Colombia 5965 Shanghai, China
5970 H 14 T Ciudad Trujillo. D.R 5981 ZFY Georgetown, Br.Gui. 5985 Radio Free Europe, Munich, Germany 5900 TGJA Guatemala. Guat. 5095 H 050 Panama. Panama 6005 Berlin, Germany
6005 HP5K Colon, Panama

Kc. C.L. Location
6009 HJFC Armenia, Colombia 6010 GRB London, England 6010 0LR2A Prague, Czecho 6010 XEO Mexico, Mex:
6015 PRAB Recife, Brazil 6018 HJCX Bogota, Col. 6020 kiev, U.S.S.R
6020 Radio Free Europe,
Munich, Germany
6020 KNBH(VOA) Dixon. Calif. 6020 XEUW Vera Cruz, Mex. 6024 Brazzaville. Fr.Eq.Africa 6025 Radio Nederland 6025 HIIJ San Pedro, D.R. 6030 Stuttgart, Germany
6030 OZH6 Manila P. 6030 XEKW Morelia, Mex 6030 HP5B Panama. 'Pan. 6035 GWS London, England 6035 Monte Carlo, Monaco 6035 XYZ Rangoon, Burma 6037 San Jose, Costa Rica 6040 GSY London, England 6040 KCBR Delano. Calif. 6040 Tangier. Tangier 6040 WLWO Cincinnati, U.S.A. 6045 YDF Dlakarta, Indonesia 6050 HIIN Ciudad Trujillo, D.R. 6050 GSA London, England 6054 HJEX Cali. Colombia 6055 HER2 Bern. Switzerland 6060 KNBH (VOA) Dixon, Calif. 6060 Tangier
6060 WDSI New York, U.S.A
6065 SBO Motala, Sweden 6065 SBO Motala, Sweden 1 . 6065 XEXE Mexico
6069 JOB Tnkyo. Japan 6069 JOB Tokyo. Japan 6075 KGEI San Fran., U.S.A. 6080 KGEI San ran.. U.S. 6080 Munich II, Germany 6085 ORU Brussels. Belpium 025 VP4RD Port-of.Suain

085 TYK2 Recife Brazirinidad 030 YWM Recire, Bralind 6090 VLI 6 Sydney Australi 6092 Radio Luxemburg 6095 Horby, Sweden 6095 Radio Free Euroue

Munich. Germany

 6095 ZYB7 Sao Paulo, Brazil 005 HJFK Pereira, Colombia 6100 Belgrade, Yugoslavia 6100 WRCA New York. U.S. A 6110 GSL London. Engiand 6112 HilZ Ciudad Trujillo, D.R. 6115 Berlin, Germany 6120 HC2FB Guayaquil. Ecua 6120 ZJ14 Limassol. Cyprus 6120 Tangier. Tangier6120 WRCA New York, U.S.A.
6122 HP5H Panama, Pan.
6124 HRQ San Pedro Sula. Hond,
6125 GWA London, England
6130 XEUZ Mexico, Mex.
6130 Radio Spain.
6130 COCD Havana, Cuba 6130 Port Moresby. New Guinea 6135 HJED Cali, Colombia 6140 Munich, Germany 6145 HJDE Medellin. Col, 6147 PRL9 Rio de Janeiro, Br. G150 GRW London, England 6150 TGAZ Guatemala, Guat. 6i60 HJKJ Bognta, Colombia 6160 Honolulu, Hawaii
6160 Munich. Germany
6165 GWK London. England 6165 HER3 Bern. Switzerland 6167 4VCM Port-au-Prince. H. 6170 Munich. Germany
6170 GSZ Londnn. England
6170 KCBR Delano, Cal.,U.S.A.
6170 YVKO Caracas, Venez.
6172 ZJM5 Limassol. Cyprus
6175 XEXA Mexico, Mex. 6180 LRA1 Mendoza. Argentina 6180 Ashkabad, U.S.S.R.
6180 GRO London, England
6182 TGWB Guatemala, Guat.
$6185 \mathrm{KCBR}(\mathrm{VOA})$ Delano. Calif
6185 HJCT Bogota, Colombia 6190 Frankfurt, Germany 6190 H19T Puerto Plata, D.R. 6190 WLWO Cincinnati, U.S.A 6190 WRCA New York. U.S.A 6195 GRN London. England 6195 Honolulu, Hawaii 6200 Paris, France
6215 SPI3 Warsaw, Poland

Kc. C.L. Location
6235 HRD2 La Ceiba, Hond, 6235 Karachi, Pakistan 6248 Budapest. Hungary 6285 TGTQ Guatemala, Guat. 6295 OTMI Leopoldville Beigian Congo
6295 TGLA Guatemala, Guat. 6320 Baden-Baden, Germany 6322 COCW Havana, Cuba 6335 TGTA Guatemala, Guat. 6351 HRPI San Pedro Sula, Hond. 6374 CSA21 Lisbon, Port. 6405 TGQA Quezaltenango. Guat. 6450 COCY Santa Clara, Cuba 6632 HC2RL Guayaquil, Ecu. 6660 HROW Tegucigalila, Hond. 6758 YNVP Managua, Nic. 6790 ZJM6 Limassol, Cyprus 6830 4XB2I Tel Aviv, Is rael 6870 HC4EB Manta, Ecuador 7105 Paris, France
7112 CR4AA Praia. Cape V. Isls,
7120 GRM London, England
7135 BED7 Taipei. Formosa
7135 MCM London, England
7145 Radio Free Europe
Lisbon, Portugal
7150 GRT London. England 7165 Moscow. U.S.S.R.
7175 VUD Dethi, India
7185 GRK London. England
7200 GWZ London. England
7200 GWZ London. En
7210 GWL London. England
7210 HE13 Bern, Switzerland
232 Budw Lo
7230 GSW London. Eng
7240 Paris. France
${ }_{7250} \mathbf{~ G W I}$ London, England
7255 Prague.Czechoslovakia. 7257 J K H Tokyo, Japan 7260 GSU London. England 7260 Moscow. U.S.S. R
7280 GWN London. England
7285 JKJ Tokyo. Japan
7285 TAS Ankara. Turkey 7290 Hamburg. Germany 7290 VUD Deihi, India 7295 Moscow, U.S.S.R. Munich.' Germany
7300 SVD2 Athens. Greece 7315 YSO San Salvador. Salv 7320 GRJ London, England 7335 BEC36 Tainei, Formosa 7360 Moscow, U.S.S.R. 7670 Sofia, Bulgaria
7850 ZAA Tirana, Albania 7863 SUX Cairo, Egypt 7933 HLKA Pusan. S. Korea 7951 Alicante, Spain 8036 FXE Beirut. Lebanon 8664 COJK Camaguey, Cub 8825 COCQ Havana, Cuba 8955 C0KG Santiago, Cuba 9007 Voice of Zion, Tel Aviv,
9026 COBZ Havana, Cuba 9236 COBQ Havana, Cuba 9252 Bucharest, Rumania 3290 PRN3 Rio de Janeiro. Brazi
9316 LRS Buenos Aires. Arg. 9340 OAX4J Lima, Peru 9363 COBC Havana. Cuba 9369 Madrid, Spain
9380 K habaravsk, U.S.S.R.
9400 OTM2 Leopoldville.
9410 GRI London. England 9440 Brazzaville. Fr. Eq. Africa 9452 LRY। Buenos Aires. Arg. 3463 TAP Ankara, Turkey 9480 Moscow, U.S.S.R.
9490 KUJ39 Agana, Guam.
9504 OLR3B Prague. Czecho.
9504 OLR3B Prague, Czech
9505 HOLA Colon, Panama
9510 YVHJ Barquisímeto, Ven 95in GSB London, England 9515 KNBH (VOA) Dixon, Calif. 9515 TAT Ankara. Turkey 9515 TAT Ankara, Tu
952 HJKF Bogota. Cofombin 3520 OZF Skamlebak, Denmark ${ }_{9520}$ VLT3 Port Moresby.

British New Guinea
9520 WLW O Cincinnati. U.S.
9525 GWJ London, England

Kc. C.L. Location
9525 ZBW3 Victoria, Hong Kong 9527 Warsaw. Poland
9530 Honolulu, Hawaii
9530 Manila, Philippine
9530 KCBR Delano. Cat., U.S.A.
9530 WABC New York U S.
9530 WABC New York, U.S.A.
9531 COCO Havana, Cuba
9535 HER4 Bern. Switzerland 9535 SBU Stockholm, Sweden
9540 Munich. Germany
9540 VLG9 Melbourne. Aus.
9540 ZL2 Wellington, N. Zeal.
9543 XYZ Rangoon, Burma
9550 HVJ Vatican City
${ }_{9550}^{9550}$ Paris. France
9550 OLR3A Prague, Czecho.
9550 Grenada, Windward Is.
955501×2 Pori, Finland
9555 XETT Mexico, Mex.
9560 London. England
${ }_{9560}^{9560}$ Paris, France
9560 WLWO Cincinnati. U.S.A
9560 WRCA New York. U.S.A.
9565 Konisomolsk, U.S.S. R.
9565 Konlsomolsk, US.S. 956
9565 AYk3 Recife, Bra
9570 GWX London. England
9570 KCBR(VOA). Delano, Calif.
9570 Warsaw, Poland
9570 Bucharest, Rum
${ }_{9580}$ GSC London. England
9580 VLB9 Shepparton, Aus.
9585 Madrid, Spain ${ }^{\circ}$
9590 WABC New York, U.S.A.
9600 GRY London, England
9600 KCBR Delano, Cal., U.S.A
9600 KRCA San Fran., U.S.A
3600 Leningrad, U.S.S.R.
9605 HP5J Panama, Pan.
9605 JKL2 Toyko, Japan
9605 Radio Free Europe,
isbon, Portugal
9607 Athens, Greece
9610 VLX 9 Perth, Australia
9610 ZYC8 Rio de Janeiro, Brazil
9610 LLG Osio, Norway
9610 XERQ Mexico, Mex.
9615 Voice of Amer., Tangier
9615 VLB9 Shepparton, Aus.
9615 WRCA New York, U.S.A
9618 TIDCR San Jose, C. Rica
9618 TIDCR San Jose, C.Rica
9620 Horby, Sweden (Nov,
9620 Paris, France
9620 Z L8 Wellington. N.Z.
9625 X EBT Mexico, Mex.
9625 GWO London. England
9625 VP4RD Port-au-Spain, Trinidad
9630 HJKC Bogota. Colombia
9630 VUD4/10 Delhi, India
9630 Rome, Italy
9635 Munich, Germany
9635 Voice of Amer., Tangler
9635 Voice of Amer
9640 Wera, Germany Radio.
9640 DZH2 Manifa, P.I. Cologne -
${ }_{9640}^{9640} \mathrm{GZH2}$ Manila, P.i.
$\mathbf{9 6 4 5}$ Karachi, Pakistan
9645 LLH Oslo, Norway
9645 TIFC San Jose. C. Rica
${ }_{9645}^{96}$ TIFC San Jose. C. Rica
9650 Honolulu. Hawaii
9650
9650
Moscow, U.S.S.R.
${ }_{9650} 965$ Moscow, U.S.S.R.
9650 WDSI(VOA) Brentwood,
3652 ZJM8 Limassol, Cyprus
9654 OTC2 Leopoldville.

Belgian

9655 JK 22 Nazaki Japan Haiti
${ }_{9660}$ EQC Teheran, Iran
9660 EQC Teheran, Iran
9660 LOP London, England
9660 VLQ9 Brisbane, Aus,
9665 HEU3 Bern, Switzerland
9668 TGNB Guatemala, Guat.
9670 Munich. Germany
9670 Voice of Amer.. Tangier
9670 Moscow, U.S.S.R.
9675 GWT London. England
9675 JOB3 Tokyo, Japan
9680 Paris, France
9680 XEQQ Mexico, Mex.

Kc. C.L. Location 9680 VLR9/VLH9 Melbourne Australia
9685 Paris, France
9685 WLWO Cincinnati, U.S.A. ${ }_{9690}$ GRX Buenos Aires, Arg
9690 Mascow, U.S.S.R.
9690 Singapore, Malaya
9695 JKM2 Kawachi, Japan
9700 GWY London, England
9700 WDSI New York, U.S.
9700 Wofla, Bulgaria
9700 Voice of America, Tangier
9700 WLWO Cincinnati, U.S.A.
9700 FZF6 Delano, Cai., U.S.A.
9710 Moscow, de France, Mart.
3710 Dakar,'Fr. W. Afric
9710 YDF 6 DJakarta, Indonesia 9715 Cairo, Egyt
9716 Moscow, U,S.S.R.
17 Radio Free Europe, Ger.
20 PRL 7 Rio de Janeiro Brazil
30 Nanking, China
9730 DZ H7 Manila, P, 1
9735 H12T Ciudad, Trujillo, D.R
9741 CSA27 Lisbon, Portugal
9745 HCJB (Missionary Station), 9745 ORU Brussels, Belgium
9760 CR7BE Lourence
marques, Moz.
9765 TGWA Guatemala, Guat. 9770 London, England
9770 ORU Brussels, Belgium 9770 PRL4 Riio de Jan., Brazil 9780 Rome, Italy
9785 Monte Carlo, Monaco
9825 GRH London. England 9833 Budapest, Hungary
9865 YDF8 D jakarta, Indonesi 9915 GRU London, England
9966 Brazzaville, Fr. Eq. Africa
10058 SUV Gairo, Egypt
0195 Paris, France
10258 XRRA Peiping Ching Brazil 10258 XRRA Peiping, China 10780 SDB2 Motala, Sweden 11027 CSA29 Lisbon, Portugal
il090 CSA92 PontaDelgada, Azores 11455 Peking, China
11475 ZNX52 Barbadoes, B.W.I,
11515 Peking, Chinaco
11630 Lening, China
I| 640 All India Radio, Deih
I 1640 All India Radio, Delhi
11670 Peking, China
11680 HJCQ Bogota, Colombla
11680 GRG London, England
11685 Peking, China
11695 HP5A Panama, Panama
11700 GVW London, England
11702 Paris, France
11705 JOA4 Tokyo, Japan
II705 SBP Motala, Sweden
11710 Moscow. U.S.S.R.
11710 Voice of America, Tangier 11710 VUD5/7 Delhi, India 1710 WLWO Cincinnati, U.S.A. 11715 HEl5 Bern. Switzerland 11718 Athens, Greeco
11720 PRL8 Rio de Janeiro, Braz
11720 Radio Portugat ${ }^{\circ}$
Belgian Congo
11720 ORY2 Brussels, Belgium 11724 HNG Baghdad, Iraq
11725 COCY Havana, Cuba
11730 GVV London, England 11730 K GEI San Fran., U.S.A 11730 Hilversum, Nether.
11730 CE 1173 Santiago, Chile 11735 BED6 Taipei, Formosa 11735 LKQ Frederikstad. Nor II735 Radio Free Europe. Ger, 11740 Moscow, U.S.S.R.
I1740 Warsaw, Poland -
11740 WRUL Boston, U.S.A.
11742 CEII74 Santiago. Chile
11750 GSD London, England
Il755 Radio Portugal
11740 Moscow, U.S.S.R.
11760 OLR4B Prague, Czecho.
11760 Voice of America, Tangier
11760 VLAII/VLBII
Shepparton, Aus.
11760 VUD7/II Delhi, India
11764 CR7BH Lourenco
Margues. Mozambique
11770 GVU London, England
11770 YDE/YDF7 Djakarta,
11770 YDE/YDF7 Djakarta,
11775 Radio Poland ©
11780 BBC London, England
11780 BBC London.
11780 Moscow, U.S.S.R.
11780 XEQH Mexico, D.F.
11780 ZL3 Wellington, N.Z.
11790 WDSI(VOA) New Yor
11790 WDS1 (VOA) New Yor
11790 GWV London, Engla
11790 VUD Delhi. India
11790 WRUL Boston U
11790 Vojes of America. Tang

Kc. C.L. Location 11795 West Germany Radio, Cologne
11795 YDF3 Djakarta, Indonesi 11795 WRUL Boston, U.S.A.
1795 Radjo Pakistan, Karachi 11795 ELWA Monrovia, Liberia $11800 \mathrm{GW} \mathrm{H}^{2}$ Lokyo, Japan 1800 GWH London, Englan 11800 Brussels, Beigium
11810 Moscow, U.S.S.R.
11810 Radio Sweden © (excent18810 Rome, Italy
11810 VLAll Shepparton, Aus. -
(Morning program)
1815 Warsaw, Poland
11820 GSN London, England 11820 XEBR Hermosillo, Mox 11825 JKi6 Tokyo, Japan
11825 ZYK3 Recife, Brazi
${ }_{11} 1830$ FYS4 Saigon, Fr.Indo.C.
11830 Moscow, U.S.S.R. 11830 Voico of America, Tangier HB30 WBOU(VOA) New York.
11830 WDSI(VOA) New York.
11835 CXA19 Montevideo, Uru.
1835 Prague, Czechoslovakia
11840 OLR4A Prague, Czccho.
II 840 LRT Tucuman, Argentina
11845 Karachi, Pakistan
11847 Paris. France
11850 VLBII Shenparton. Aus.
11850 ORU Brussels, Belgium
11850 TGNC Guatemala, Guat.
11850 VUD 11 Delhi, india
11850 LLK Oslo. Norway
II855 DZH9 Manila, Philippines
II855 Radio Free Europe,
11860 GSE London, England
11860 KWID San Fran., U.S.A
11865 CR6RA Luanda, Angola
11865 HER5 Bern. Switzerland -
11870 Munich. Germany
1870 KNBH San Fran., U.S.A.
1870 Voice of America, Tangier
1870 WRUL Boston. U.S.A.
11875 OLR4C Prague, Czecho.
11875 Radio Portugal -
11880 Moscow, U.S.S.R.
11880 LRS Buenos Aires, Arg.
11880 VLGII/VLHII
Melbourne, Aus.
11880 Horby Sweden
11880 XEHH Mexico. Mex,
11880 GRE London, England
11880 SBP Stockholm. Sweden
11885 APK3 Karachi, Pakistan
11890 Moscow. U.S.S.R.
| 1890 GWW London, England
| 1890 KZFJ Manila. P
11890 KZFJ Manila.' P. 1.
11890 WBOU
11890 WBOU New York. U.S.A.
11895 FHE3 Dakar, Fr. W. Ai.
1895 FHE3 Dakar, Fr.W.AI.
11895 Radio Portugal
$1 / 895$ Manila. Philippine
11895 Manila, Philippines
11900 CELI90 Valparaiso, Chile
11900 CEI 190 Valparaiso, Chile
1900 CXA10 Montevideo, Uru.
11900 HCJB Calvary Radio
Ministry
11900 XEXE Mexico City, Mex.
1900 Rome. Italy
11910 Budapest. Hungary -
11910 Karachi, Pakistan
11915 Radio Netherlands
1915 Damascus. Syria
1915 HCJB Quito. Ecuador -
1915 Radio Portugal
1924 EED4 Taipei. Formosa
11930 GVX London, England
11930 GVX London, En
11935 Warsaw, Poland
11937 Bucharest. Rumania -
11950 YSAX San Salvador, Salv.
11955 G VY London. England 11960 Moscow, U.S.S.R.
11964 Lishow, Portugal.
11970 Brazzaville, Fr.Eq.Africa -
11972 TIHH San Jose, C. Rica
11975 Colombo. Ceylon
11980 Moscow. U.S.S.R.
11995 CSA32 Lisbon. Portugal 11998 CELIBO Santiago. Chile 12040 GRV London. England 12095 GRF London. England 12175 TFJ Reykjavik, lecland 14492 Radfo Moscow
14690 PSF Rio de Janeiro, Brazil 15050 ETAA Addis Ababa. Eth. 15050 V 3 USE Forest Side.

Mauritius

15060 Peking, China

15070 GWC London. England
15095 HVJ Vatican City
15100 CSA39 Lishon, Portugal 15100 Moscow. U.S.S. R.
15100 EPB Teheran, Iran
15105 KGEI San Fran., U.S.A.
15105 OAX4X Lima, Peru
15110 GWG London, England 15110 Moscow. U.S.S.R.
15115 HCJB Quito. Ecuador -

15120 Moscow, U.S.S.R.

Kc. C.L. Location
15120 Rome, Italy
5120 Warsaw, Poland 5525 CSA36 Lisbon, Portugal 15130 Voice of America, Tangier 15130 WABC New York, U.S.A. 15130 WLWO Cincinnati, U.S.A. 15130 KCBR (VOA) Dolano, Calif
15130 WBOU Bound Brook, 5130 WBOU Bound Brook, N. J.A.
5135
15135
Radio Japan, Tokyo 5135 PRB23 Sao Paulo, Brazil 15140 GSF London, England 15145 YY D jakarta, Indones 5145 ZYK2 Recifo, Brazil
15150 CEI5I5 Santiago, Chi
5150 CEI515 Santiago, Chile
15155 SBT Motala, Sweden
15156 ZYB9 Sao Paulo, Brazl
15160 VUD5/7 Delhi, india
15160 VLBI5 Shepparton, Au
15160 TAU Ankara. Turkey
5165 WLWO Cincinnati, U.S.A.
15165 ZYN7 Fortaleza, B
15170 LKV Oslo, Norway
15170 TGWA Guatemala, Guat. 15170 Moscow.U.S.S.R.
15175 LLM Oslo. Norway
15180 GSO London, England 15180 Moscow, U.S.S.R. 15180 OZH2 Shamlebak, Den. 5190 VUD5/II Delhi, India 5190 OIX4 Pori, Finland 5195 TAQ Ankara. Turk I5200 Moscow. U.S.S.R.
I5200 VLAI5/VLCI 5

Shepparton, Aus.
5205 XeSC Mexico, Mexico
5205 Voice of America, Tangier 15205 Voice of America
15210 Munich, Germany
15210 GWU London. England
15210 WBOU(VOA) New York,
U.S.A

5210 VLGi5 Melbourne, Aus
5220 Hilversum. Neth.
5220 ZLIO Wellington, N.Z.
15228 Komsomolsk, U',S.S.R.
5230 GWD London. England
15230 Moscow, U.S.S.R.
15230 QLR5A Prague, Czecho,
15230 VLHis Melbourne. Aus
I5230 WRUL Boston, U.S.A.
5235 JOB5 Tokyo, Japan
I 5240 Radio China (Canton) -
15240 Belgrade, Yıgoslavia
15240 KRCA San Fran., U.S.A 15240 Paris. France
15240 VLH 5 Melbourne, Aus, 5240 WLWO Cincinnati, U.S.A. 5250 Bucharest. Rumania 5250 Voice of Amer., Manila, P.I 5250 WLWO Cincinnati, U.S.A.
5250 Voice of Amer., Tangier 15260 GSI London, England
15260 Karachi, Pakistan
5270 KCBR Delano, Cal., U.S.A
15270 Munich, Germany
$t 5270$ WBOU(VOA) Now
U.S.A

5270 Sverdlovsk, U.S.S.R
5280 Munich. Germany
5280 ZL4 Wellington. N.Z.
15280 Moscow, U.S.S.R
15280 Voice of Amer., Tangier
I5285 CR7BG Lourenco
Marques, Mozambiqu
15285 WBOU(VOA) New York,
15285 WRUL Boston. U.S.A.
15290 LRU Buenos Aires, Arg
15290 VUD5/9 Delhi, India
5295 Voice of Amer., Tangier
15300 DZH8 Manila
15300 DZH8 Manila, P.I.
15300 GWR London. England
5300 Singapore, Malaya
5305 HER6 Bern. Switzerland
5305 RV97 Novosibirsk, U.S.S. R
15310 KCBR Delano, Calif.
15320 VLGI5 Melbourne, Aus.
15320 Moscow, U.S.S.R.
5320 OLR5B Prague, Czech.
15325 Rome, Italy
5330 KGEI San Fran., U.S.A.
15330 Sofia, Bulgaria
15330 WLWO Cincinn
533 WLWO Cincinnati, U.S.A.
5335 Brussels, Belgium
15335 Karachi, Pakistan
15340 KCBR Delano, Cal., U.S.A
15340 Voice of Amer., Tangier
15345 Athens, Greece
5345 Forms, Greece
I5345 Formosa Radio
I5347 LRA Buenos Aires, Arg.
I5350 Paris, France
5350 WRUL Boston, U.S.A
5350 WLWO Cincinnati, U.S.A.
I 5352 Radio Luxemburg
15360 London. England
15360 Moscow, U.S.S.R
15364 ZYC9 Rio de Jan., Brazil
15365 Radio Netherlands
15390 Moscow, U.S.S.R.
5390 Radio China (Canton) -
I 5400 Paris, France
I 5400 Rome, Italy

Ke. C.L. Location
15405 DMQ15 Cologne,
. Germany
15405 PZC Paramaribo, Surinam
15410 Mascow. U.S.S.R.
15420 Paris, france
15420 Brazzaville, Fr. Equat. Africa
15425 Radio Netherlands
5435 GWE London. England
15440 Moscow, U.S.S.R.
15445 Radio Netherlands
| 5450 GRD London, England
I 5595 Brazzaville, Fr. Eq.Alrica
15620 Madrid, Spain
15880 Peking, China
17700 GVP London, England
17710 WRUL Boston, U.S.A.
17715 GRA London, England -
17720 LRA5 Buenos Aires, Arg.
17730 GVQ London, England
17750 WRUL Boston, U.S.A,
17750 Rome. Italy
17760 WGEO Schenectady, U.S.A.
17760 VUD Delhi, India
17770 KCBR Delano, Cal
17770 KCBR Delano. Cal., U.S. A.
17770 Rome, Italy
17770 Rome, Italy
17770 Voice of America, Tangier
17770 Radio Sweden, Stockholr
17775 Hilversum, Netherlands
17775 Hilversum, Netherlands
17780 VUD $10 / 11$
17780 VUD/10/11 Delhi, India
17780 WBo New York, U.S.A.
17780 Voice of Amer.. Manila,
$17784 \mathrm{HER7}$ Bern, Switzerland
17784 HER7 Bern, Switzerland
17785 JOA Tokyo, Japan
17790 GSG London, England
17795 WLWO Cincinnati, U.S.A.
17800 KNBH San Fran. U.S.A
17800 Radio Australia, Molbourno
17800 Radio Poland
17800 KRHO Honolulu. Hawaij
17800 Stockholm. Sweden
17800 Roms Pori, Finland \bullet
17805 OZ16 Manit
17805 DZ 16 Manila, P.l
17810 GSV London, England
17810 Moscow, U.S.S.R.
17815 WRUL Boston. U.S.A.
17820 Colombo, Ceylon
17825 LLN Osio. Norway
17825 TAV Ankara, Turkey
17825 Radio Japan, Tokyo
17830 WDSI (VOA) New York.
17835 Karachi, Pakistan
17840 Radio Sweden -
17840 Brazzaville, Fr. Eq. Africa
17840 Moscow. U.S.S.R
17840 VLCI7 Shepparton, Aus.
17840 HVJ Vatican City
17850 Paris, France
17860 ORU3 Brussels, Belgium
17865 Damascus, Syria
17890 HCJB Lisbon, Portugal
Quito, Ecuador
17910 Grenada, Windward Is.
18250 TFTO Paris, France Geneva. Switzerland
20088 Moscow. U.S.S.R.
21460 KNBH (VOA) Dixon, Calif.
21470 GSH London, England
21480 Hilversum, Netherlands
21490 Paris. France
21500 WRCA New York. U.S.A.
21510 VUD5 Dolhi, India
$2 \mid 520$ WER8 Bern, Switzerland

Canadian Short-Wave Stations

Abbreviations: Kc., frequency in kilocycles (to change to megacycles, divide by 1000); C.L., call letters

Kc. C.L. Location 5970 CBNX St. John's, Nfid. 5970 CKNA Montreal, Que. 5990 CHAY Montreal, Que.* 6005 CFCX Montreal, Que. 6010 CJCX Sydney. N.S. 6030 CFVP Calgary. Alta. 6060 CKRZ Montreal, Que. 6070 CFRX Toronto, Ont. 6080 CKFX Vancouver. B.C 6090 CBFW Montreal, Que. 6090 CкOB Montreal, Que.

Ke. C.L. Locotion
6130 CHNX Hatifax, N.S. 6150 CKRO Winnipeg, Man. 6160 CBUX Vancouver, B.C. 6160 CHAC Montreal, Quc. 9520 CBFR Montreal. Que. 3585 CKLP Montreal. Que. 9610 CBFX Montreal, Que, 9610 CHLS Montreal, Que, 9630 CBFO Montreal, Que. 9630 CKLO Montreal, Que. ${ }^{*}$ 9710 CHLR Montreal, Que. * 9740 CHFO Montreal, Que.

Ke. C.L.
1:705 CBFY Montreal, Que, $1 / 720 \mathrm{CBFL}$ Montreal, Que. 11720 CHOL Montreal. Que. 11720 CKRX Winnipeg. Man. 11760 CBFA Montreat, Que. 11760 CKRA Montreal. Que. 11900 CKEX Montreal, Que, ${ }^{*}$ $\$ 1945$ CKEX Montreal, Que. 15090 CKLX Montreal. Que.: 15105 CKUS Montral, Que. 15190 CBFZ Montreal, Que.

Kc. C.L. Location 15190 CKCX Montreal, Que.* 15255 CRSR Montreal, Que,* 5275 CKBR Montreal. Que. 5320 CKCS Montreal, Que,* 17710 CHSB Montreal. Que.* 7735 CHRX Montreal. Que. 17820 CKNC Montreal, Que.: 17865 CHYS Montreal, Que. 21710 CHLA Montreal, Que.* 21710 CHLA Montreal, Que.*
Transmitter at Sackyille. New Brunswick.

United States FM Stations

Abbreviations: Mc., megacycles, asterisk (*) indicates educational station

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Location \& C.L. \& Mc. \& Locotion \& C.L. \& Mc. \& Location \& C.L. Mc. \& Locafion \& C.L. \& Mc. \\
\hline \multicolumn{3}{|c|}{ALABAMA} \& \& KGO \& \[
103.7
\] \& \& WAll \& lowa City \& \& \[
91.7
\] \\
\hline Albertville \& WAVU.FM \& 105.1 \& \& KNSFR \& 94.9 \& Honolulu \& KAIM-FM \({ }^{\mathbf{9 5}} \mathbf{}\) \& Muscatine K \& KWPC-FM \& 99.7 \\
\hline Alexilnder City \& WRFS.FM \& 106.1 \& San lose \& KSJO.FM \& -92.3 \& \& KUOH \({ }^{\text {KVOK }}\)-88.5 \& Storm Lake K \& KAYLFM \& 101.5 \\
\hline Andatusia \& WCTA-FM \& 98.1 \& San Mateo \& KCSM \& *90.9 \& \& K VOK * 88.1 \& Waverly \& KWAR \& 89.1 \\
\hline Anniston
Birmingha \& WHMA-FM \& 100.5
99.5 \& Santa Ana \& KWIZ.FM \& 96.7
97.5 \& ILL \& INOIS \& KANS \& SAS \& \\
\hline Birmingham \& WSFM \& 93.7 \& Santa Clara \& KSCU \& 90.1 \& Anna \& WRAJ.FM 92.7 \& \& \& \\
\hline Clanton \& WKLF-FM \& 100.9 \& Santa Maria \& KEYM \& 99.1 \& Bloomington \& WJBC.FM 101.5 \& Emporia \& KANU \& *88.7 \\
\hline Cullman \& WFMH-FM \& 101.1 \& Santa Monica \& KCRW \& - 89.9 \& Carmi \& WROY.FM 97.3 \& Mawrence \& KSOB.FM \& \\
\hline Decatur \& WHOS.FM \& 102,1 \& Stockton \& KCVN \& -91.3 \& Champaign \& WOWS-FM 97.5 \& Manhattan \& KSDB.FM \& *88.1 \\
\hline Homewood \& WILN \& 104.7 \& West Covina \& KDWC \& 98.3 \& Chicago \& WBBM-FM 96.3 \& Wichita \& KFH.FM \& 100.3 \\
\hline Lithetl \& \[
\begin{aligned}
\& \text { WRLO.FM } \\
\& \text { WKRG-FM }
\end{aligned}
\] \& \[
\begin{array}{r}
102.9 \\
99.9
\end{array}
\] \& \multicolumn{3}{|c|}{COLORADO} \& \& WBEZ
WCLM
W
W
W \& Wienita \& KMUW \& *89.1 \\
\hline Tuscaloosa \& WTBC.FM \& \[
\begin{array}{r}
95.7 \\
991.7
\end{array}
\] \& Boulder \& KRNW \& 97.3 \& \& WOHF
WEBH
W
W \& KENTU \& UCKY \& \\
\hline \multicolumn{3}{|c|}{\multirow[b]{2}{*}{ARIZONA}} \& Colorado Springs \& KSHS \& 91.3
90.5 \& \& WEFM 99.5 \& Ashland \& WCMI-FM \& 93.7 \\
\hline \& \& \& Oenver \& KFML.FM \& 98.5 \& \& WEHS 97.9 \& Central City \& WNES.FM \& 101.9 \\
\hline Globe \& KWJB.FM \& \begin{tabular}{l}
100.3 \\
104 \\
\hline
\end{tabular} \& \& KDEN.FM \& 99.5
105.1 \& \& \& Fulton
Hazard \& WFUL.FM \& 104.9
96.5 \\
\hline Mesa Phoen \& KTYL.FM \& 104.7
95.5 \& Manitou Springs \& KCMS.FM \& 105.1
102.7 \& \& WFMM 107.5 \& Hazard \& WSON-FM \& 96.5
98.5 \\
\hline \& KFCA \& 88.5 \& \& \& \& \& \begin{tabular}{l}
WFMT \\
WKFM \\
\hline 103.7 \\
\hline 103.5
\end{tabular} \& Honkinsville W \& WHOP.FM \& 38.7

91

\hline Tucson \& KFMM \& 99.5 \& C \& TICNT \& \& \& WMAQ-FM 101.1 \& Lexington \& WLAP.FM \& 94.5

\hline \multicolumn{3}{|c|}{ARKANSAS} \& Brookfteld Danbury \& $$
\begin{aligned}
& \text { WGHF } \\
& \text { WLAD-FM }
\end{aligned}
$$ \& 95.1

98.3 \& \& WNIB 97.1 \& Louisville \& WFPK \& *91.9 ${ }^{\text {* }} 89.3$

\hline Blytheville \& KLCN.FM \& 96.1 \& Hartford \& WRTC.FM \& $\begin{array}{r}105.9 \\ \hline 89.3\end{array}$ \& Decatur \& WSOY-FM 102.1 \& Madisonville W \& WFMW-FM \& 93.9

\hline Fi. Snith \& KFPW-FM \& 94.3 \& \& WRTC.FM \& ${ }^{-89.3}$ \& Dekalb \& WNIC *91.1 \& \& WNGO-FM \& 94.7

\hline Jonesboro \& KBTM.FM \& 101.9 \& \& WMTC.FM \& 96.5
95.7 \& Effingham \& WSEI 95,7 \& Owensboro \& WOMI-FM \& 92.5

\hline Manmoth Suring \& g KASU \& 91.9
103.9 \& New Have \& WNHC.FM \& 93.1 \& Elgin \& WXFPM 105.9 \& W \& WVAS-FM \& 96.1
96.9

\hline Siloam Springs \& KUOA.FM \& 105.7 \& Stamford \& WSTC-FM \& 96.7 \& Evanston \& WEAW 105.1 \& \& WKYB-FM \& 93.3

\hline \multicolumn{3}{|c|}{CALIFORNIA} \& \multicolumn{3}{|c|}{DELAWARE} \& Harrisburg \& WEBQ.FM ${ }^{\text {P9,9 }}$ \& \multicolumn{3}{|l|}{LOUISIANA}

\hline Atherion \& KPEN \& 101.3 \& \& WDOV.FM \& \& Jacksonv \& WWKS ${ }^{\text {W }}$ 1.3 \& Ale \& KALB.FM \& 96.9

\hline Bakersf \& KERN-FM \& 94.1 \& Oover
Wilmington \& WDDV-FM \& 93.7 \& Mattoon \& WLBH-FM 96.9 \& Baton Rouge \& WJBO-FM \& 98.1

\hline \multirow{4}{*}{Berkeley} \& KQXR \& 101.5 \& Wilmington \& OELIBM \& 93.5 \& Mi. Vernon \& WMIX-FM 94.1 \& Monroe \& KMBL-FM \& 104.1

\hline \& KPFA \& 94.1 \& \multicolumn{3}{|r|}{\multirow[t]{2}{*}{D. $C^{\text {WJBR } 99.5}$}} \& Oak Park \& WOPA.FM 102.3 \& New Orleans \& WBEH \& 89.3

\hline \& KPFB \& -89.3 \& \& \& \& Olney \& WVLN-FM 92.9 \& \& WOSU.FM \& 105.3

\hline \& KRE-FM \& 102.9 \& \& \& \& Paris \& WPRS.FM 98.3 \& \& WRCM \& 97.1

\hline \multirow[t]{4}{*}{Claremont Eureka Fresno} \& KSPC \& ${ }^{90} 9.7$ \& \multirow[t]{7}{*}{Washingt} \& ASH.FM \& 97.1 \& Pearia \& WMBD.FM 92.5 \& \& WMMT \& 95.7

\hline \& KRED.FM \& 36.3 \& \& WFAN \& 100.3 \& Quiney \& WGEM-FM 105.1 \& Shreveport K \& KRMO.FM \& 101.1

\hline \& KARM-FM \& 101.9 \& \& WGMS.FM \& 103.5 \& \& WTAD.FM 99.5 \& \& KWKH-FM \& 34.5

\hline \& KMJ.FM \& ${ }^{37.3}$ \& \& WMAL-FM \& 107.3 \& Rockford \& WROK-FM 97.5 \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{MAINE}}

\hline Glendale \& KFMU \& 97.1 \& \& WOL.FM \& 98.7
93.9 \& Rock Island \& $\begin{array}{rlr}\text { WHBF-FM } & 98.9 \\ \text { WTAX.FM } & 103.7\end{array}$ \& \& \&

\hline \& KUTE \& 101.9 \& \& WTOP-FM \& 96.3 \& Urbana \& WILL.FM ${ }^{\text {W }}$ 90,9 \& Brunswick \& WB0R \& 91.1

\hline Long Beach \& KFOX-FM \& 102.3 \& \& WWOC-FM \& 101.1 \& \multicolumn{2}{|r|}{\multirow[b]{2}{*}{INDIANA}} \& Caribou \& WFST.FM \& 97.7

\hline \& KLON \& -88.1 \& \multicolumn{3}{|c|}{\multirow[b]{2}{*}{FLORIDA}} \& \& \& Lewiston \& WCOU- \& 93.9

\hline 5 Angeles \& KNOB \& 97.9 \& \& \& \& Bloomington \& WFIU - 103.7 \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{MARYLAND}}

\hline Angele \& KBCA \& 105.1 \& Coral Gables \& WVCG.FM \& 105.1 \& Columbus \& WCSI-FM 98.3 \& \& \&

\hline \& KBMS \& 105.9 \& Daytona Beach \& WNDB.FM \& 94.5 \& Connersville \& WCNB-FM 100.3 \& Annapolis \& WNAVFM \& 99.1

\hline \& KCBH \& 98.7 \& Gainesville \& WRUF-FM \& 104.1 \& Crawfordsville \& WBES-FM 106.3 \& Baltimoro \& WCAO.FM \& 88.1
102.7

\hline \& KFAC-FM \& 92.3 \& Jacksonville \& \& 95.1 \& Elkhart \& WCMR-FM 95.1 \& \& \& 102.7
97.3

\hline \& KGLA \& * 103.5 \& \& WZFM \& 96.9 \& \& WTRC.FM 100.7 \& \& \& 104.3

\hline \& (H) \& 101.1 \& \& WMBR-FM \& 96.1
97.3 \& Evansvillo \& WIKY-FM 104.1 \& Bethesta \& WUST.FM \& 106.3

\hline \& KMLA
$N X-F M$ \& 100.3 \& Miami \& WCKR-FM \& ${ }_{96.3}^{97.3}$ \& \& WEVC ${ }^{\text {WPSR }}$ 90.7 \& Bradbury Meights \& ts WPGC \& -95,5

\hline \& NK-FM \& 104.3 \& \& WGESTHS \& -91.7 \& Gary \& WGVE *88.1 \& Cumberland \& WCUM-FM \& 102.9

\hline \& KPOL.FM \& 93.9 \& \& WWPB.FM \& 101.5 \& Goshen \& WGCS 91.1 \& Hagerstown \& WIEJ-FM \& 104.7

\hline \& KRHM \& 94.7 \& Miami Beach \& WKAT-FM \& 93,1 \& Greencastle \& WGRE - 91.7 \& \& WARK.FM \& 106.9

\hline \& KRKD.FM \& 96.3 \& \& WMET.FM \& 93.9 \& Hammond \& WJOB-FM 92.3 \& Oakland \& WBUZ \& 95.5

\hline \& KUSC \& -91.5 \& \multirow[t]{3}{*}{Orlando} \& WDBO-FM \& 32.3 \& \multicolumn{2}{|l|}{} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{MASSACHUSETTS}}

\hline \& KXLU \& -88.7 \& \& WH00-FM \& 96.5 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| Huntington | WVSH *91.9 |
| :--- | :--- |
| Indianapolis | WAIC |}} \& \& \&

\hline \& KHOF \& 99.5 \& \& WORZ \& 100.3 \& \& \& \multicolumn{3}{|l|}{Amherst WAMF *88.1}

\hline \multirow[t]{3}{*}{Marysville Modesto} \& KMYC-FM \& 99.9 \& \multirow[t]{2}{*}{Palm Beach Tallahassee} \& WQXT.FM \& 97.9 \& \& WFMS 95.5 \& \& WMUA \& -91.1

\hline \& KBEE.FM \& 103.3 \& \& WFSU-FM \& *91.5 \& \& \& Boston \& WBUR \& -90.9

\hline \& KTRB.FM \& 104.1 \& Tampa \& WDAE-FM \& 100.7 \& Sasper \& WITZ-FM 104.7 \& \& WBCN \& 104.1

\hline Oakland \& KAFE \& 98.1 \& \& WFLA.FM \& 93.3 \& Madison \& WORX.FM 96.7 \& \& WBZ.FM \& 106.7

\hline Ontario \& KASK.FM \& 93.5 \& \& WPKM \& 104.7 \& Marion \& WMRI-FM 106.9 \& \& WGOP.FM \& 100.7

\hline Oxnard \& KOXR-FM \& 104.7 \& \& WTUN \& " 88.9 \& Muncie \& WMUN 104.8 \& \& WEEI-FM \& 103.3

\hline Pasadera \& KPCS \& 89.3 \& Winter Park \& WPRK \& * 91.5 \& \& \& \& WERS \& *88.9

\hline Riverside \& KPL! \& 99.1 \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{GEORGIA}} \& New Albany \& WNAS 88.1 \& \& WHDH-FM \& 94.5

\hline \multirow[t]{3}{*}{Sacramento} \& KCRA.FM \& 96.1 \& \& \& \& New Castle \& WCTW 102.5 \& \& WRKO-FM \& - 98.5

\hline \& KFBK-FM \& $$
96.9
$$ \& \& \& \& \& \& \& WXHR \& - 96.9

\hline \& KGMS.FM KJML \& $$
\begin{array}{r}
100.5 \\
95.3
\end{array}
$$ \& Athens

Atlanta \& WABE \& $$
\text { E } 90.1
$$ \& South Bend \& \& Brockton \& WBET-FM \& 97.7

\hline \& KXOA-FM \& 107.9 \& \& WAGA.FM \& 103.3 \& Wabash \& WSKS -96.3 \& Brooklino \& WBOS.FM \& - 92.9

\hline San Bernardino \& - KVCR \& " 91.9 \& \& WGKA-FM \& 92.9 \& Warsaw \& WRSW-FM 107.3 \& Cambriago \& WHRE.FM \& 89.7
107.1

\hline San Diego \& KFSD-FM \& 34.1 \& \& WSB-FM \& 98.5 \& Washington \& WFML 106.5 \& \& WHAI-FM \& 98.3

\hline \& KOWD \& $\begin{array}{r}98.1 \\ \hline 105.3\end{array}$ \& Augusta \& WBBQ-FM \& 103.7 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{IOWA}} \& Lowel! \& WLLH-FM \& 99.5

\hline \& KSOT \& T 105.3 \& Columbus \& WRBL-FM \& - 33.3 \& \& \& New Bedford \& WBSM.FM \& -97,3

\hline \multirow[t]{5}{*}{San Francisco} \& KALW \& -91.7 \& Gainesville \& WOUN-FM \& 103.9 \& Ames \& | W01.FM *90.1 |
| :--- |
| KFGQ *99.3 | \& \& WNEH-FMC \& C 88.5

\hline \& KCBS.FM \& - 98.9 \& Lagrange \& WLAG-FM \& 104.1 \& Boone
Clinton \& KROS.FM 96.1 \& Sprinutield \& WHYN.FM \& M 93.1

\hline \& KDFC \& C 102.1 \& - Macon \& WCOH.FM \& -99.7 \& Davenport \& WOC.FM 103.7 \& \& WEDK \& K 91.7

\hline \& KEAR \& R 97.3 \& Nuwilan \& WTOC.FM \& - 97.3 \& Des Moines \& KUPS *88.1 \& \& WMAS-FM \& 4 94.7

\hline \& \& \& Swainstuoro \& WJAT.FM \& -101,7 \& \& WHO-FM 100.3 \& Walthan \& WCRE-FM \& 102.5

\hline \multicolumn{3}{|l|}{188 WHITE'S RADIO LOC} \& Toccoa \& WLET.FM \& -106.1 \& Dubuqu \& WOBQ 103.3 \& W. Yarmouth \& WOCB-FM \&

\hline
\end{tabular}

Canadian FM Stations

Locotion	C.L.	Mc.	Location	C.L.	Mc.	Location	C.L.	Mc.	cocotion	C.L.	Mc.
Brantford, Ont.	CKPC-FM	92.1		CKLC-FM	99.5		CFRA-FM	93.9		CFRE-FM	99.9
Cornwall. Ont.	CKSF-FM	104.5		CKWS-FM	96.3	Quebec, Que.	CHRC.FM	98.1		CHFI-FM	98.1
Edmonton, Alta.	CFRN-FM	100.3	Kitchener, Ont,	$C K C R-F M$ CFPL.FM	96.7 95.9	Rimouski, Que. St Catharines.	CJBR.FM	101.5		CJRT-FM CBU-FM	91.1 105.7
	CJCA-FM	99.5	London. Ont.	CFPL-FM CBF-FM	95.9 95.1	St. Catharines, Ont.			Vancouver. B.C.	$\begin{gathered} \text { CBU-FM } \\ \text { CKVL-FM } \end{gathered}$	105.7 96.9
	CKUA-FM	98.1	Montreal, Que.	$\begin{aligned} & C B F-F M \\ & C B M-F M \end{aligned}$	95.1 100.7	Ont. Sydney, N.S.	$\begin{gathered} \text { CITB-FM } \\ \text { CJCB-FM } \end{gathered}$	97.7	Verdun. Que. Victoria, B.C.	CKVL-FM CKDA-F ${ }^{\text {M }}$	96.9 98.5
0 nt .	CISPR-FM	94.3		CFCF-FM	106.5	Timmins, Ont.	CKGB-FM	94.5	W indsor. Ont.	CKLW-FM	93.9
Halifax. N,S.	CHNS-FM	96.1	shawa. Ont.	CKLB-FM	93.5	Toronto, Ont.	CBC-FM	99.1	Winnjpeg, Man.	CJOB-FM	103.1

United States Television Stations

(Territories and possessions follow states). Chan., channel number; asterisk (*) indicates educational station.

Canadian Television Stations

Mail Postage-Free Card for

 SAMPLE LESSON FREE Shows you how easy, practical it is to Trian at Home for Good Radio-Television JobsOldest and Largest Home Study RadioTelevision Training School. N.R.I. has Trained Thousands for Good Pay Jobs Since 1914
for more than 40 years-N.R.I has been training ambitious men of home in spare time for Radic.TV. Let us send you a sample lesson to help prove you can keep your jot and TRAIN AT HOME in your spare time for better pay and a brighter future. We will also send N.R.I.'s 64-page catalog to show you that Radio. Television is today's field of OPPORTUNIT" for propery trained men.
Television Making Good Jobs, Prosperity The technical men is looked up to. He should be. He does important work is respected for what he tnows gets good pay for it There are splendid opportunities for the man well trained in Radio.Television Ser-icing or Broadcasting Governmen, Aviation, Police, Ship, Micro. Wave Relay. Two.Way Communications for buses, taxis, trucks are growing Radio.TV fields, making more good jobs.
N.R.I, is the Tested Way to Better Pay N.R.I. Training is practical, thorough You get the benefit of N.R.I.'s 40 years experience. Many suicess. tul N.R.I. men stcrt without any knowledge of Radio. many without a nizh school education. Find out what Radio-Television training can mean to you. Make the first move today toward becoming one of that select groud-a Radic-TV Technician. Send postagefree card for Actual Lesson and 64-page Catalog. both FREE. NATIONAL RADIO INSTITUTE, DEPt. 9JB3. Washington 16, D. C.

N.R.I. Sends Equipment for Practical Experience

See Other Side \qquad
The ABC's of SERVICING cal experience. That's why NRRI trailing is based on LEARNING-BY- | DO NG. N.R.I.training includes kits of parts which you use to build equipment and get practical expe- $\|$ Rad'c and Television. Shown at \mid
eft is low power Broadcasting Trans. build as part | of N.R.I. tions Course. FREE Catalog | siows other youg e.

BUSINESS REPLY CARD
 No Pestogr Stomp Necessary if Moili.d In The Unitus Stote

POSTAGE WILL BE PAID BY
NATIONAL RADIO INSTITUTE
Washington 16, D. C.

FIRS: CLASS Permir No. 20. R (S:0 34.9.F188) Wostingion, D.C.

Learm Redio-Television

 Servicing or Communications by Practicing of Home in Spare Time H0.1. St S kitS with which 7 Pr piete . b bitding circuits. cimmon 10 Thio and Television. $Y=u$ LEAN:N F-DCINC. As part of $P_{1}, R 1$. \mathcal{R} ricing Course, 30 : of is tacuum the Voltmeter end AELC Aecciv * ovilliere.Fast Growing Field Offers You Good Pay, Succes5, Bright Future
 NE. NMIH the OLDEST LARGEST pome studt ? wic. TV

" See Other Side CuUt oút and mail this card now

Sample Lesson \& 64-Page Catalog Both FREE NO STAMP NEEDED-WE PAY FGSTAGE NATICNAL RADIO :RISTITUTE
Depl 9183 Woshingion 16, D.C.
\qquad

accriditer member, nationa: home study councll

istort Soon to Make $\$ 10-\$ 15$ a IWeek Exira in Your Spare Time S un atei's arolling, mint N to e1.n 30 \$if a week in sf ars tome en. chn 1 , wit the ir onf fu't t me Reid
 NRI quif is whi h luings 1) / fe" theng yonstud:

Fibd an' wh 0 plema when yac erati

orportunities equipmealy get Sind R, D.C II.STITUTE Dept 9JB3. Whashine ion 18, 0. C

Scisyce ind MECHANICS

53 Make-lit-Yourself Projects

75c

No. 562

Extra Bonus -

Latest Directory of AM-FM-TV STATIONS WORLD-WIDE SHORT WAVE

Plans for -
Stereo Music Center 3-Transistor Portable

- All-Purpose Decades Sun-Celled Motor
Transistor Intercom
Piggy-Back Units
Fountain Pen Radio 6-Meter Ham Rig 3-in-1 Transistorlah Telephone Amplifier
7-Tube FM Tuner Mini-Record Player
- Jim-Jam Box

Plus 40 Others

HOW TO GET A GOOD PAYING JOB IN RADIO-TELEVISION

Build this equipment while learning ... it's yours to keep!

EARN WHILE YOU LEARN AT HOME IN SPARE TIME

I'll prove to you that I can prepare you to become a trained Radio and Television Serviceman in a few months' time . . . ready to step into a good paying job with a real future! Mail coupon-postcard NOW!

Only 56 sturts you on semerem Only 6 starts you Learn by Doing" Training Plan

MASON R. WARNER, President

Men by the thousands . . . trained Radio-Television Service Technicians .. are needed at once! Perhaps sou've thought about entering this interesting, top paying field, but lack of ready money held you back. Now-just $\$ 6$ enrolls you for America's finest, most up-to-date home study training in Radio-Television! This offer is made because Radio-Television must have the additional men it needs as quickly as possible. We are willing to do our part by making Sprayberry Training a vailable for less money down and on easier terms than ever before. This is your big opportunity to get the training you need . . . to step into a fine job or your own Radio-Television Service Business-

Get Practical Experience with 25 Kits of Radio-TV Parts
In addition to modern lessons, you train with actual parts and equipment. Build the famous Sprayberry Training Television Set, Multi-Range Tester, 2-Band Radio, other Test Equipment-all yours to keep. Get latest training on Color TV, Transistors, Hi - Fi and UHF Conversions to make your training more valuable.

Radio-TV Needs You Now!
 Get all the facts ... FREE!

Radio-Television needs you! See how and why Sprayberry Radio-Television home training offers you more. Three training plans to suit your exact needs. Low payment...only $\$ 6$ starts you. Backed by over 27 years of distinguished training experience. Rush special postcard-reply coupon for catalog and free sample lesson.

The Radio-Television industry is begging for trained men for

 interesting, profitabie service work... geí seí now!

This coupon needs no stamp or envelope. Just write name. in upper left corner, cut out along dotted line and drop in any mail box. Pay no attention to printing on back of the card. By return mail you'll receive our big 60 page catalog and free sample lesson.

SPRAYBERRY

ACADEMY OF RADIO.TELEVISION Dept, 212-B
1512 Jarvis, Chicara 26, III.

RADoriv

NUMBER 562

Citizens Band Two-Way Radio 23 Homemade Television Antenna 95
Code Practice Unit 29 Transistor Set for Code Practice 97
Portable SuperhetStereo Music Center
Mini-Record Player
30 Transistorized Intercom 99
34 Vestpocket Amplifier 101
39 Wire-Stripping Tool 103
Variable Voltage Power SupplyOne-Tube VHF Receiver
42 Radio-TV Cross Numeral Puzzle 105
45 Strobe Flash Battery Charger 106
Transistorized Capacitance Relay 48 Antenna-Changeover Relay 109
Six-Meter Amateur Station
51 DX-The Easiest and the Hardest 112
Telephone Sound Amplifier59 Alligator Clipette114
. New Voice for Stereo and Hi -Fi65 The Piggy-Back115
Seconds Timer for Photo PrintingTransistorized Audio AmplifierIntercom-Radio SetSimplified All-Purpose DecadesDesk Lamp Mike StandH-Pads Stabilize TV PicturesTV Coupler
Pocket-Size Transistorlab
68 Electronics Picture Quiz 123
69 TV Line Voltage Corrector 124
72 Fountain Pen Radio 128
76 How to Use a Grid-Dip Meter 130
79 Four-Way Table Radio Conversion 132
80 Useful Tables and Formulas 135
81 Silicon-Cell Sun Battery 138
82 Light Up the Target 142
Stereophile Heaven 84 Seven-Tube FM Tuner 144
The Jim-Jam Box85 New Cabinets for Old147
Antenna Coupler and Low-Pass Filier 86 Tapped Coil Crystal Set 150
Tape Recorder Upkeep
90 Electronic Equipment Design 153
DX-ing Live

93 Intercontinental Radio Antenna158

Whites Radio Log
 161

Cover by Bob Jajko

Curt Johnson, Handbook Editor
Herb Siegel, Assistant Editor, Handbooks Bill Wadkins, Assistant Art Director, for Handbooks

Published and Copyrighted 1959 by

SCIENCE AND MECHANICS PUBLISHING COMPANY

450 East Ohio Street
Chisago 11, Illinois

[^11]Editorial Board
V. D. ANGERMAN Eoito ara Publisher
DON DINWIDDIE
Manag nq Eaitor
ARI YOUNGQUIST Home Workshop Editor Wayne wille Feature Editor
P. D. URBAIN

Associate Editor
LILLIAN ANDERSEN
Associate Editor
RAY S. LINDENMEYER
T- Mit al Eyitor
F. M. EISENZOPH

Art Dire-tur
ChUCK bachtell
Assistant Art Director

Do you WISH you were EMPLOYED in ELECTRONICS?

F.C.C. LICENSE - THE KEY TO BETTER JOBS

An F.C.C. commercial (not amateur) license is your tichet to higher pay and more interesting employment. This license is Federal Government evidence of your qualifications in electronics. Employers are eager to hire licensed technicians.

WHICH IICENSE FOR WHICH JOB?

The THIRD CLASS radiotelephone license is of value primarily in that it qualifies you to take the second class examination. The scope of authority covered by a third class license is extremely limited.

The SECOND CLASS radiotelephone license qualifies you to install, maintain and operate most all radiotelephone equipment except commercial broadcast station equipment.

The FIRS! CLASS radio telephone license qualifies you to install, maintain and operate every type of radiotelephone equipment (exeept amateur) including all radio and television stations in the United States, its territories and possessions. This is the highest class of radiotelephone liecnse available.

GRANTHAM TRAINING PREPARES YOU

The Grantham course covers the required subject matter completely. Eien though it is planned primst rily to lead directly 10 a first class $F^{\circ} \mathrm{CC}$ license, it does this by TEACHING you electronics. Some of the subjects covered in detail are: Busic Electricity for Beginners, Basic Mathematics, Ohm's and Kirchhofl's Laws, Alternating Current, Freguency and Winelength, Inductance, Capacitance, Impedance, Resonance, Vacuum Tubes, Transistors, Basic Principles of Amplification, Classes of Anyplifiers, Oscillators. Power Supplies, A.II Transmitters and Reccivers, FN Transmitters and Receivers, Antennas and Transmission Lines, Measuring instruments. FCC Rules and Regulations, and extensise theory and mathematical calculations associated with all the above subjects explatined simply and in detail.

OUR GUARANTEE

If you should fail the fi, C. (.) cxam after linishing our course, we guarantee to give additional training at NO ADDIIIONAL COST. Read details in our free booklet.

Get
 Your First Class Commercial F.C.C. LICENSE QUICKLy!

CORRESPONDENCE OR RESIDENCE CLASSES

(iramhatrn School of Electronics specializes in F.C.C. license preparation. Correspondence training is conducted from Holly. wood, Seattle. Kansas City and Washington; also, resident DAY and EVENING classes are held in all four cities. Either way, by correspondence or in resident classes, we train you quickly and well

This booklet FREE!

This free booklet gives details of our training and explains what an F.C.C. license can do for your future.

HERE'S PROOF..

that Grantham students prepare for F.C.C. examinations in a minimum of time. Here is a list of a few of our recent graduates, the class of license they got, and how long it took them:

License Weeks

Robert I. Conley, 129 W .46 th St., New York 36, N, Y.	1 st	14
W. R. Smith, 1335 E. 8th St., Long Beach, Calit.	1 st	12
Howard E. Martz, 301 S. Penn. St., Fairmount, Ind.	1st	24
John W. Dempsey, Box 55. Rising Sun, Md.	Ist	12
Donald H. Ford, Hyannis RD, Barnstable, Mass.	Ist	12
Richard J. Falk, 2303 Holman St., Bremerton, Wash.	1st	22
Denson D. McNully, 1117 N. Houston St., Amarillo, Texas	ist	9
lames D. Hough, 400 S. Church St., East Troy, Wisc.	ist	12
Ddie B. Perry, Ir., Rt. \#3, Zebulon, N. C.	1st	12
Milton C. Gee, Rt. $=1$, Washington, N. J.	1st	11

Robert I. Conley, 129 W. 46th St., New York 36, N, Y. R. Smith, 1335 E. 8th St., Long Beach, Calit Howard E. Martz 301 S. Penn. St., Fairmount, Ind
 Richard J. Falk, 2303 Holman St., Bremerton, Wash. Denson D. McNully, 1117 N . Houston St., Amarillo, Texas Ddie B, Perry, Ir., Rt. \#3, Zebulon, N. C. Milton C. Gee, Rt. $=1$, Washington, N. J.
lst 11

Grantham Sohool of Electronios

Seattle Division

Kansas City Division

Washington Division

1505 N . Western ave. Hollywood 27, Calif. (Phone Ho 7.7727)

408 Marion Street Seattle 4, Wash.
Phone MA 2.7227

3123 Gillham Road Kansas City 9, Mo. (P) Ficm Jf 10370)

821 19th Street, N. W. Waslington 6,0 C. Pt une 51 ath

Gentlemen:

Pleose send me your free booklet telling how I con get my comI merciol F.C.C. license quickly. I understond there is no obligotion ond no salesmon will coll.

Nome
Age
Address.
Cily
Iom interested in: Home Study, \square Resident Classes
E-9P

COYNE offers

The future is YOURS in TELEVISION:
A fabulous field-good pay-fascinating work-a prosperous future in a good job, or independence in your own business!

Coyne brings you MODERN-QUALITY Television Home Training; training designed to meet Coyne standards at truly lowest cost - you pay for training only - no costly "puf fogether kifs." Not an old Radio Course with Television "tacked on." Here is MODERN TELEVISION TRAINING including Radio, UHF and Color TV. No Radio background or previous experience needed. Personal guidance by Coyne Staff. Practical Job Guides to show you how to do actual servicing jobs-make money early in course. Free Lifetime Employment Service to Graduates.

ELECTRICAL Schoor

CHARTERED AS AN EDUCATIOTAL INSTITUTIOA NOT FOR PROFIT
151 W. Congress Pathway
Chicas: 7, Onpl. 69-H23

B. W. COOKE, II, Praident

C'ONwe-the Imatieutiun behind thin travi

Send Coupon or write to address below for Free Book
and full details, including easy Payment Plan. No obligation, no salesman will call.

COYNE Television

Home Training Division

Dept. 69-H23, New Coyne Building
1501 W. Congress Pkwy., Chicago 7, Ill.
Send Free Book and details on how I can get Coyne Quality Television Home Training at low cost and easy terms.
Name.
Address

- City

FRE
 OF BARGANS LIKE THIS:

Because Radio Shack is one of the world's largest dealers in hi-fi components, industrial electronic equipment, ham radio, test equipment, tools, optical goods, records and hobby supplies, evervthing new, every bargain, comes to Radio Shack first and through these Bargain Bulletins to Radio Shack customers. They're free and frequent. To be "in the know," fill in and mail the coupon below.

Completely new . . . completely different . . . and a complete directory of everything in electronics for industry, for the audiophile, for the hobbyist . . . plus everything in hi-fi, ham radio, tools, test and laboratory equipment all presented in 250 big $81 / 2^{" \prime} \times 11^{\prime \prime}$ pages, big readable type with clear pictures... and including latest technical articles written by recognized authorities.

NOW! 2.WAY RADIO STATION WITHOUT FCC EXAMS!

Build It Yourself!

 CITIZENS' BAND TRANCEIVERKIT
AT LAST! Thanks to new FCC rulings, anyone can own and operate a shortwave radio station on the 11 -meter band without FCC exams! And this complete Radio Shack - STANCOR kit provides everything you need to build a combination transmit receiver exactly as pictured! los.
Order No. 450Xi36, Sh. Wt. 11 lbs

RADIO SHACK CORP. Dept. 8 PR
730 Commonwealth Avenue, Boston 17, Mass.
Please send me:
\square FREE Bargain Bulletins for full year
- 1960 Guide To Electronic Buying @ 35c
Transceiver Kit 0nder No. 450X136@\$39.95
\square Check \square Money \square C.D.D.
Name
Address
CitySone State
167 Wrihingion si., Boston 8, Mess.
r 30 Gomimonwtalth Ave., Bosion 17, miss.
230.240 crown st. New Haven 10 . Conn.

SOMETHING Prepare in Spare Time At Home for a

has benn added to THE

 devry tech training program
JOB THAT PAYS REAL MONEY in TELEVISION-RADIO-ELECTRONICS

Many DeVry.trained men who now hold good jobs paying real money were once looking for opporfunity, yet wondering if they needed advanced schooling, special experience, or higher math. They clipped a DeVry Tech coupon, mailed it in-and were pleasantly SURPRISED! Now they work in one of today's fastest growing fields-TELEVISION-RADIO. ELECTRONICS. Many have their own profitable service shops. DeVry Tech's "Learn•by-Seeing," "Learn-by-Reading," "Learn-by-Doing" training made the difference! You, too, may train at home the DeVry Tech way with wonderful, helpiul movies, clear texts and valuable home laboratory equipment-or in our well-equipped Chicago or Toronto Training Centers.
Now something NEW" has been added to help you learn more by "doing." You can choose to build and keep your own top quality 6 -speaker STEREOPHONIC SOUND SYSTEM that will provide thrilling enjoyment for years to come. Plans are furnished so that you can also build your own speaker cabinets-or we can tell you where to buy them. DeVry Tech's specially designed Stereo System includes:

- Turntable with Stereo cartridge - Stereo Amplifier
- Stereo Pre-Amplifier - 2 Cross-Over Networks
- Six Speakers: two $12 \cdot \mathrm{in} .$, two $8 \cdot \mathrm{in}$., two 3 -in.

When you build yaur own equipment, yau learn about the working parts. Yau can repair, adjust, maintain. You learn by doing-the DeVry Tech way. You put basic principles into "an-the-job" practice. STEREOPHONIC SOUND SYSTEM another wonderful DeVry advantage
\$pocial SHORT COURSE in Higt Fidelity Sound Faproduction including stereophonic Systems also avaifoble. Ideal for hobbyists, music tovers and thase wanting to ADD to thatr incomes.

MANY OPTIONS!

NOW . . DeVry Tech men can toke their chaice of any or all of the quality equipment shown above: The Sterea System ... the Scape and Meter...a 21 -inch TV Set (nat pictured) . . ar AlL THREE. But no matter which woy you da it, you get practical hame training at its best ... the kind you need to get started in the fost-maving Electraniss field. Send caupan far details.

DeVry Tech offers real. down-10-arth employment service to help you toward a good lob offer graduation -- iven provides help in starting your awn servicing business

4141 BELMONT - CHICAGO 41, ItL. - . Fermerly DeFOREST'S TRAINING, Inc.

Clip ithe coupen now for two booklels thot answer many questians abaut your chances far success in this field. "Elactranics and YOU" and the remarkable "Pocket Guide ta Real Earnings" (just off the press) ore yaurs withaut abligatian.

I MAIL TODAY FOR FREE FACTS
1 DeVry Technical Institute
I 4141 Belmant Ave., Chicaga 41, Ill., Dept. RTE-P Please give me your twa FREE baoklets, "Pocket Guide to Real Earnings" and "Electranics and Yau," and tell me haw to prepara ta entar ane ar more branches af Electranics.
1 NAME \qquad AGE

STREET
APT APT.

CITY ZONE STATE

[^12]DeVry Tech's Canadion Training Center is losated at 2053626 Roselawn Avenue, Toranto 12. Ontario

New Complete nave Takes Headaches Out Of All Servicing Problems!
ecord Changer Troubles in 5 Minutes! Locate mechanical and electronics troubles fast. Covers all makes. 320 pages; 450 photos; 58 check charts: $\$ 3.95$

TV Troubles in 10 Minutes! Find the exact sound or picture trou ble in any TV set from 700 possibilifies! 300 pares; 300 diagrams, check charts! \$3.95

Color TV Troubles in 15 Minutes! Covers every type of color TV and picture tube! 550 pages; 362 check charts, diagrams, picture patterns! $\$ 5.95$
Simple Check Chart System Saves Time These amazing practical handbooks with an ExTIRELY SEW MEPHOD, show you how to find the trouble in ANY iv, record changer or transistor circuit FAST! Index tells you where to look; famous Check-Charts help you pin-point

Give exay tronble in minutes! These on-the-joh linoks grickly pay for themseloes in protitable new business and salluable time saved!

SEND NO MONEY!

Just mail coupon for free trial. After © days, send only low price or return books hand pay nothing! If you keep all 1 books, send only $\$ 3.00$ after 7 days, and $\$ 3.00$ a montli until $\$ 19.80$ plus postage is paid.

FREE TRIAL OFFER...Mail Coupon Now!

[^13]

INDISPENSABLE-FOR TV, RADIO, HI.FI
Appliances, Aulos, Electrical Tools. Used in Heme, Shop and Farma
Cheeks Redio and TV Tubes, Components, Voltages and Circuits, etc. INEXPENSIVE TO OWN, EASY TO USE

Anyone can do servicing with this wonderful instrament, pays for itself
the first time you use it. Best value for money. nothing else like it.
COMPLETE TRAINING COURSE AND SERVICE MANUAL INCLUDED FREE WITH EACH INSTRUMENTSend "Dtagnyzer" postpaid. I enclose full payment of $\$ 9.95$
\square Send "Diagnyzer" C.O.D. I will pay $\$ 9.95$ plus postage.
\square Rush me FREE descriptive literature cancerning "Diagnyzer."
Name
Address
APPARATUS DEVELOPMENT Depl.SM, Wetherficiold, Conn.

NOW READY! McGraw-Hill's New Train-Yourself Course

TELEVISON A:30
radio mparreng

REPalRNG record changers

Profitabil sadio rrouel Eshojting

, RECORD CHANGERS RIGHT AWAY

 -even if you've never looked inside a sef before!

TION - McGraw-Fill's new 6 -Volume Cuurse brings you werything you need to know to "cash in" on the TV-RADIO boum. Over 2.350 pares of money-making "know-how" hy top factory engineers and electronic exurts. THRESE giant REPAIR MANUALS tell and show how to FlX every troulble the easy maf. TWO hage TROLALESHOOTERS tell exactly WHERE to begin, W'HAT tools to use, HOW to "pulish off" every job. Complete Home Stady Volume guides you ever: step of the way. tells how to get ahead fas: as = eepairman - build up your own business. full or spare time, for BIG PROFITS

EARN While You Learn

Tested - and now used in top schools, and repair sh-jps - Cousse volumes are simple enough for green beginners, amazed "pros" with new easy nethods. Starts you duing simple repairs - and earning monev - from very first chapter. ABC pictures and directions make tuugher jobs a "snap." Before you finisn you can earn many times its cost.
NO previous tratining needed. NO contplicated formulas. PLAAN biNGLISH

AT LAST - at Amazing LOW COST - The Most Complete TV-Radio Repair Course Ever Published. TELLS and SHOWS How to Do Every Job Quickly and Easily Make GOOD MONEY, Full or Spare Time in the BOOMING Repair Business
pictures and directions cover ANY job on EVERY set-tubes. circuits, speakers, new a-c/d-c purtables, Color IVV, cuen what to charge jor erery job!

BIG MONEY - Spore or Full Time

Forget lack of experience. Forget your age. Over 40 MILIION TV sets, 130 MILLION radios-and the shortaye of repairmen - mean big money for you. Course makes it easy to "cash in." spare time or full, start your own business, enjoy your work and a big bank account!

SEND NO MONEY

Try Course 10 days FREE. (We nay shipping!) If you dor't agree it can get you started in a money-making renair business-return it. pay nothing. Otherwise keep it. Earn while you learn ; and pay the low cost on eas y terms. Mail coupon NOW. McGraw-Hill Book Co., Dept. SMA.9. 327 West 41 st St.. New York 36. N. Y.

Free

 A!L three Veluable Repoir Aids: tV, radio, and CIRCUIT Detect-0-Scopes (Total Retail Value $\$ 3.00$)FREC - whether you keer the Course or not - YHREE amazing IETECT-O-SCOPE Charts. TV and RADIC Scopes enable you to spot all tube trouhles in a jilfy. CIRCUIT Scope spats all circuit troubles. Make fix-it jolls easier. faster. 16×21 inches. Alif, TEREFE (worth se.,00) youts FRESE, while they last on this introductory offer.

PARTJAL CONTENTS
 (1) Television and Radio Repoiring

 placing pests, repairing, replacing parts, 566 pages. 700 grams. By John Markus. Feature Ed.. Electronics Magazine.2 Practical Radio Servising Easy - to-follow directions diagrams. drawings - with lob sheet or every repair job. Mar cus, Alex Levy, Electronic Train ing Experts.
(3) Profitable Radio Troubleshooting -WHERE to look and WEA? to do for every trouble. How to avoid costly mistakes, handle customers profitably. 330 pares. 153 "how-to" illus. By william Marcus, Alex Levy.

4Profitable TV Troubleshooting-Short-cuts to SPOT and FIX every trouble-fast. for big profits. By Eugene A. Ant thony, Service Consultant, General Elec. Co.
(3) Repoiring Record Changers -step-by-step pictures and dircetions - how to set up serv ice bench. etc. 278 pages. 202 A-B-C pictures. By Eugene Ecklund, Eng. DuMont Lab., Inc. (Complete Home Course Outline - Getting started in television and radio servicing. How to get the most out of your course How to get ahead FAST. By John Markus

MCGRAW-HILL Book Co., Dept. SMA-9

 327 West 41 st St. New York 36, N. Y.Send me - postraid - for 10 DAY's' free frial the 6Vol. McGraw-Hill TV. Radio and Changer Sezvicing Course. If okay. I 11 remit only $\$ 4.95$ in 10 days: then $\$ 5.00$ monihly for 5 months. (A total savings of $\$ 11.85$ on the regular price of the Course and Detect-O-Scopes.) Otherwise. I'll retarn Course in 10 days; pay nothing. also send free to keep whether or not I keep the Course) the 3 TV RADIO, and CIRCUIT DETECT-O-SCOPE Charts. - total value $\$ 3.00$.

Name
(Please Print Clearly)
Address
Zone No.
City . (if any)........State
\square CHECK HERE ir you prefer to enclose first paymen of $\$ 4.95$ with coupon. Same easy pay plan; same 10 -day return privileae for full refund,

see them all in ALLIED'S 1960 ELECTRONIC SUPPLY CATALOG

build your own... it's easy... it's fun! SAVE UP TO 50\%

HI-FI
Kits

INSTRUMENT KITS
 HOBBY KITS

HAM KITS

BUY ON ALLIED'S
EASY TERMS

ALLIED RADIO

free catalog cenalog

See the 1960 kNight-kit line -availableonly from ALLIED. KNIGHT-KITS are lowest in cost, convenience-engineered for easiest assembly - the only kits with money-back guaranteed specifications. Send today for the 1960 allied Catalog-select your KNIGHT-KITS-and.

SAVE ON EVERYTHING IN ELECTRONICS

Get more for your money in Stereo hi-fi systems and components; save on recorders and tape; Amateur station equipment; TV tubes, antennas, accessories; test instruments; electronic parts, tubes, transistors, tools, books. Send today for your free 1960 allied Catalog!

$$
\frac{1}{2}
$$

$$
l
$$

100 N. Western Ave., Depl. 64-59, Chicago 80, III. ㅁ Rush FREE 1960 ALLIED Catalog

Name

Address

Cüty ty Zone. \qquad State

Order direct or from your nearest distributor A ELECTRONICS MFG. CO. INVENTIONS WANTED!

140 Wealthy Manufacturers Ready to Pay Top Prices

Do you have an idea for a new product or a way to improve a product already in use-patented or unpatented - you would like to sell for cash or lease on royalty? If so, send your name and address on a post card-NOW - for FREE details explaining how you can turn your "Big Ideas" into big money.

SCIENCE AND MECHANICS MAGAZINE

 450 East Ohlo Street Dept. 409 . Chicago 11, IIIInois 40 SCIENCE PROJECTS

Wonders of science now explained
with 40 fascinating projects you can build-Van de Graaft Genera75 marhine, solar furnace, chemical balance, cloud chambers, satellite 'scope, traveling arc and 32 other easy-to-nake projects demonstrating scientific theory. All included in our big 192-page Price 75ϕ, Order your copy noan! SCIENCE AND MECHANICS;
450 E. Ohlo St., Dept, 315 , Chicago il. 450 E. Ohlo St., Dept. 315 , Chicago 11.

TIPS FOR CAR OWNERS

That Mill Save You Money

Want to cut your repair bills? Operating costs? Service your own car? Get better mileage? These are but a few of the many subjects discussed in our 192-page "Car Repair "Handbook" No. 560 , just out. It's a Price 75 c , postpaid. Order from:
 Price 75 c , postpaid. Order from:
SCIENCE \& MECHANICS, 450 E. Ohio St., Dept. 322, Chicogo 11, III.

Only CTS offers you COMPLETE training in all phases of Electronics. Why be satisfied with less? The new Christy Shop-Method Home Training makes learning interesting and easy. You learn Radar, Sonar, Electronics, Radio, Television. No previous experience needed. You learn by working with actual equipment. Makes learning fun. Speeds your progress. Helps you understand quicker and remember longer.
You get comprehensive training starting with your first CTS lesson! The complete knowledge CTS provides you with gives you a broader knowledge, a greater understanding which will mean more jobs and a higher income for you for the rest of your life.

HOME LABORATORY SENT!

19 TRAINING INSTRUMENTS INCLUDED

With CTS COMPLETE Home Training Course, you receive a Home Laboratory to assemble, use and keep for years of peak performance. You recetve a Multi-Tester, Oscillator, Signal Tracer, Oscilloscope, Signal Generator, Electronic Timer, Regenerative Radio, Giant-size Television Receiver (optional) as well as many other valuable electronic devices. With these you will be able to make hundreds upon hundreds of exciting experiments.

EARN WHILE YOU LEARN! EARN \$5.00-\$6.00 PER HOUR

Or MORE while still studying! Almost from the very first you receive training that enables you to repair radios and television sets for friends and neighbors. To install and servtce electronic computers, communication equipment, protective equipment for police and fire departments, etc., etc.

FREE BOOK__SAMPLE LESSONS SENT

Get all there is to know about the Christy COMPLETE Electronic Course in Radio-Television-Radar-Sonar, etc. A complete, colorful, illustrated book on Electronics sent without obligation.

Also, we will send you Two sample lessons showing how the new CTS Shop-Method Home Training Course will train you for making big money in your spare time and for building a bright future for yourself.

CHRISTY TRADES SCHOOL, Depi. T-111, 3214- W. Lawrence Ave., Chicago 25 SIGN, MAIL FOR THREE BOOKS

[^14]
EXPLAINS ELECTRICAL TERMS IN A JIFFY!

New Guide Gives Terms, Definitions, Formulas, Charts and Diagrams . . .
 A quick easy way to put needed information t your fingertips. Examine this New Practical Dictlonary of Electricity and Electronics FREE for 10 day at our risk.

THE WORKING VOCABULARY YOU MUST HAVE. Jam-packed with both standurd electrical terms and the latest developinents in the theld, written cleurly and sluply for beyinner and veteran alike. Terms essentian in Thil Industrial applications are covercd.
PACKED WITH DESCRIPTIVE PICTURES. Scores of photos, drawings, sketches so clear you can't go wrong. Help make terms like "amphldyne, "kinescope," "dynamotor" easy tograsp. Many tables, charts, graphs, most-used symbols.
SEND NO MONEY, JUST SEND NAME. FIll In coupon below and get The Practical inctionary of Electricity and Electronles for F'RL: W 10-day trlal examinatlon, Pay nothing now. Pay nothing to postman on dellvery.
american technical society, Dept. 406 848 E. 58th Street-Chicago 37, Illinois

If You Keep It
Only $\$ 595$ Others Cost up to $\$ 20.00$ IMCLUDES HANABOOK Partial Contents:

- Formulas Electrical Electronics Capacitance
- Tables

Measurement Letter Symbols Color Coding

- Diagrams
- Graphical Symbols

MAIL COUPON • FREE 10 DAY TRIAL

AMERICAN TECHNICAL SOCIETY, Dept. U06
848 E. 58th Street, Chicago 37, lltinols
Send me THE PRACTICAL DICTIONARY OF ELECTRICITY AND ELECTRONICS IoI 10 -day FREE EXAMINATION. If I keep the book 1 will send you $\$ 5.95$ plus shipping within 10 days. Otherwise, I will return it and owe you nothar. MY NAME

ADDRESS

```
CITY CONE STATE
```


OLSON RADIO

 CORPORATIONAkron 8, Ohio

OPTICAL BARGAINS

WAR SURPLUS! -INFRARED SNOOPERSCOPE

Govt. Cost \$900-Bargain at $\$ 39.50$ Converts infrared to visible light. See in total darkness without being seen. Use in lab, factory, classroom, etc. Completely portable, Operates on two flashlight bateries not included. Image is quite good may be matie even better by rareful focus ing case 12 los. No infrared light source

Stock No. 85,098-HP 1. (See below.)

INFRARED LIGHT SOURCE AVAILABILITY!
INFRARED LIGHT SOURCE AVAILABILITYI
You will need a 6-volt tyanforiner or 6 V atut battery to operate.
Stock No. 80,035 -HP
$\$ 10.00$ postpaid
Order by Stock No.-Check, M.O.-Money-back Guarantee

FREE CATALOG! EEATYRING OVER OPTICAL BUYS

OPTICS FOR INDUSTRY!

Optlcs lor the space era . . Satellit
MANY ON-THE-JOB HELPS . QUALITY CONTROL AIDS! Write for this amazing Catalog! You won't be sorry, 100 pages-hundreds of illustrations, charts, diagrams, A treasurehouse of optical infornation . . bargains galore. Optics for industry! Scopes for observing Satellites, Moon, Planets, Rockets. Optics for research labs, experimenters, hobhyists? Instruments for checking, neasuring-to speed your work, improve your quality, cut your costs. Many math learning and
We glve you FACTS, no fluff. Telf you what it
B-how it works-where It's used!
COMPARATORS. MAGNIFIERS. MICROSCOPES Countless war surplus bargains-ingenious optical tools from foreign lands. Thousands of optical components: Infrared telescopes, snooperscopes, microscopes, magnifiers, lenses, prisms, wedges. mirrors, mounts-accessories of ali descriptions. Shop the Catalug of America's greatest optical mart.

REQUEST FREE CATALOG "HP"

AMAZING TRANSISTOR RING RADIO
 sistor radio ever! Eas. ity assembled circuit employs PNF
transistor amptifier and micro-diade transistor amplifer and micro-diode detector Ferrite inductor rones plied by movel, self-contained dry plied by movel, self-contained dry rials are included. This unique kit rials are included. This unique kit school projects, experimenters, and all interested in novel devices. EVERYTHING needed to assemble the Ring Radio (plastic case, diode, transistor, etc. etc.) sent postpaid for ONLY $\$ 3.49$, Use your awn earphone or order below our specially priced precision midget phone.
WRIST RADIO-53.95

Hundreds of radio experimenters have assembled this combination Wrist, Pendant \& Pocket CIIp TRANSISTOR RAOIO with great success. Complete set of parts includes PNP Transistor, micro. glass diode, plastic case, bakelite chassis plate, ferrite inductor tuner, knob, ceramic capacitor, pocket cipp, hardware, hookup wire, ete.-ALL for $\$ 3.95$ postpaid. Set works on a $11 / 2 \mathrm{~V}, \mathrm{l}, 12$ battery sold by hearing aid dealers in your town. Uses any stand. ard magnetic earphone or we'll furnish precision 8000 ohm hear: ing aid phone (retail price: \$8; not a cheap import) for only $\$ 3.49$. Itlustrated instructions. All orders shipped Ist Class Mail U.S. \& Canada. Sorry. no COO's.
ELECTRO-MITE® ${ }^{(R)}$-springdale 636 zz,
CONN.

The equipment illustrated and text material you get with each course is yours to keep. Practical work with very first lesson. Courses for the beginner and the advanced student. Pay-as-you-learn. You need pay for only one study group at a time.

SEND FOR THIS FREE BOOK NOW

Resident School courses in New York City offer comprehensive training in Television and Electronics. Day and evening classes start four times each year, Detailed information on reques?.

RCA INSTITUTES, Inc. Home Study School rive-99
A Service of Radio Corporation of America
350 West Fourth Street, New York 14, N. Y. Without obligation, send me FREE 64-page CATALOG on Home Study Courses. No salesman will call.

Name

Pledse print

Address.
Cify. Zone. . . .State.
Korean Vets! Enter discharge date.
CANADIANS - Take advanfage of these same RCA courses at no addifional cost. No postage, no cusfoms, no delay. Send coupon to:

RCA VICTOR COMPANY, LTD.
5001 Cote de Liesse Rd., Montreal 9, Que.
To save time, paste coupon on pestcard

Camplete Traning FOR BETTER RADIO-TV SERVICE JOBS

laet these two great Ghirardi training boohs teuch sou to hatille all types of AM. J'M ant TV service jobs by approved soar

Pash hook is a conplete service training puide. Fach come
 re-hash of old, out-of-date material. Fach is watathored by
A. A. Ghirardi whose famous RADIO PHISICS COXRSE and
 used for military, school and home study traming than duy other books of their type!

THE NEW Ghirardi RADIO-TV SERVICE LIBRARY

Almost 1500 pages and over 800 clear illustrations show step-by-step how to handle every phase of troubleshoosing and

1-Radio and Television Receiver TROUBLESHOOTING AND REPAIR

2-Radio and Television Receiver CIRCUITRY AND OPERATION

ze it pays to know what roally miskes mudern radlo-T
 elimiante plasswark ind usaless testing ill vervieing them, 117 illis

Special low price . . . you save \$1.25

The Battery That's Used in Guided Missiles Now Released as Government Surplus

ESSE RADIO COMPANY, Dept. XI
42 W. South Street
Indianapolis 25, Indiana

40 Easy-To-Build Radio Projects

If jun enjus huilting vectronic equipment, here is a big 192-nage
 erery radio fans. It rives phans ahbl insirnmions for buibling over

 Sunell be amazed al the salualhe information in this lamals tuantal dinl just think do srojerts you sall buill for thaly Tose

SCIENCE AND MECHANICS

450 East Ohio Street Dept. 321 Chicago 11, III.

The COLUMBIA (4) RECORD CLUB now offers

ANY6 STEREO RECORDS 5 98 Retail Value up to $\$ 35.88$
 if you join the Club now - and agree to purchase

1. Night and Day, plus 11 more hits

2. Three brilliant hi.fi showpieces

3. Solitude, Autumn Leaves, etc.

4. Lovely "musical portrait of nature"

5. Two very pop. uar piano works

6. Broadway's newest smash hit

7. 16 favorites -

Sweet Violets, etc.

11. Berlioz' most popular work

19. No Other Love, Our Love, 10 more
 fiery rhapsodies

29. High-spirited, gay symphonies

33. 11 beautiful, immortal melodies

2. A beloved

American classic

50. Where or When,
6. Complete score of this hit riusical

10. Be My Love Where or When, etc

30. A "must" for any record library

22. Organist Cole plays 11 hit tunes

16. Two colorful, exciting scores

ROY HAMILTON

9. Always, Please, Speak Low, 9 more

8. What'Il: Do, Warm, 10 more

24. 16 classical and pop selections

as few as 5 selections from the more than 100 to be made available during the coming 12 months * If you now own a new stereo phonograph, or plan to purchase one in the future - here's an opportunity to receive SIX new stereo records - retail value up to $\$ 35.88$ - ALL SIX for $\$ 5.98$

* You enroll in either one of the Club's two stereo Divisions: Classical or Popular - whichever one best suits your musical taste
* Each month the Club's staff of music experts selects outstanding recordings that deserve a place in your new stereo record library. These selections are described in the Club's entertaining Music Magazine, which you receive free each month
* You may accept the selection for your Division, take any of the other records in both Divisions, or take NO record in any particular month
* Your only obligation as a member is to purchase five selections from the more than 100 Columbia and Epic records to be offered in the coming 12 months... and you may discontinue membership any time thereafter
* After purchasing only five records you receive a Columbia or Epic stereo Bonus record of your choice free for every two additional selections you buy from the club
\star The records you want are mailed and billed at the regular list price of $\$ 4.98$ (Classical Selections, $\$ 5.98$), plus a small mailing charge
* Mail coupon below to receive your 6 records

27. Granada, La Paloma, 11 more

The
Columbia
(4)

Record
Club
Terre Haute Indiana

NOTE: Stereo records must be played only on a stereo record player

To guide you to a successful future in
ELECTRONICS
RADIO-TV COMPUTERS ELECTRICAL ENGINEERING
This interesting pictorial booklet tells you how you can prepare for a dynamic career as an Electrical Engineer or Engineering Technician in many exciting, growing fields:

MISSILES • AVIONICS • AUTOMATION

 SALES - DEVELOPMENT
ELECTRICAL POWER - ROCKETRY

RADAR - RESEARCH
Get all the facts about job opportunities, length of study, courses offered, degrees you can earn, scholarships, part-time work - as well as pictures of the Milwauke School of Engincering's educational and recreational facilities. No obligation - it's yours free.

MILWAUKEE SCHOOL OF ENGINEERING

MAIL GOUPON TODAY!

Milwaukee School of Engineering

Dept. RTX-160 1025 N. Milwaukee St., Milwaukee, Wis.
Please send FREE "Your Career" booklet
I'm interested in \square Radio-TV \square Computers
Electrical Engineering Mechanical Engineering
Name. \qquad Age
PLEASE PRINT
Address
Please phint
City
\qquad Zone State
\square I'm eligible for veterans education benefits. Discharge date MS.117

Here's a bargain you don't want to miss! 5 Big j92-page bouks jam-nacked with plans and instructions for building hundreds of projects-75c each. or less if you buy two or more. Order copies Now for your library.

547 boai bulloer's handobook

 cluding a 3 -point raciug bise wast, sailing catamaran, uceankoing outhoarl, cabin cruiser, allpurpose fram, inboard skiff, racing runatsout. canoe, motor saller dingly, saibloat, plus phans for making a fiber-glass hull withuut gation for theginners, oulboary sterbiching and much. murh mure.

550 INCOME OPPORIUNITIES

Sng sua van gain timamrial Imdepemdence! tere are 30 detual mase whe have started thir wow buathrest: with sull Trells how to sell sour services. 552 CAR OWNER'S HANOBOOK
An encyelopedia of information for dong maintmance and servicing joby that will wite your rar tull semedy tue incrase gas mitrake remedy road stans: sale on on stormproot jour car: Pipair mur carburctors ; overhaul brakes : service leaters: tte.. plus the lowdown oft gavadditives and station wath ons - information that will sat 53 00 its of hultar
553 DO IT YOURSELF
Fxplains $8 x$ ways to sate on home imbrowments and repair such as installing rent fans, iddille kitehen space, upholsterimk furniture langing doors. repairing drive

 557 SCIENCE EXPERIMENTER
Wonders of science now explainet with for fascinating projewts son call buidd-an,one-Vit ban de (iraath Generator, Mena, oun furbace, light riay tracer, i-hend
 struntults. talking ruils, and 30 where eany tu-make projects

SAVE MONEY!

Price of first handbook, 75c: each additional handbook ordered at same timie only 50 c each. Rush coupon!

RUSH THIS ORDER FORM
Scipnce and Mechanics Magazine, Dept. 318 450 East Ohio Street, Chlcago 11, Illinois
Enclosed is $\$ \ldots . . .$. number's i have encircled below: $\begin{array}{lllll}547 & 550 & 552 & 553 & 557\end{array}$
Name .
sduresk .
City, Zune \& stare .

SATIEFAGTUN GK'ARANTERED OI YOU'R JONEY BACK

Superior's New Model 70 UTILITY TESTER ${ }^{\text {® }}$

 FOR REPAIRING ALL ELECTRICAL APPLIANCESand AUTOMOBILE CIRCUITS

As an electrical trouble shooter the Model 70:

- Will test Toasters, Irons, Broilers, Heating Pads, Clocks, Fans, Vacuum Cleaners, Refrigerators, Lamps, Fluorescents, Switches, Thermostats, etc.
- Measures A.C. and D.C. Voltages, A.C. and D.C. Current, Resistances, Leakages, etc.
- Will measure current consumption while the appliance under test is in operation.
- Incorporates a sensitive direct-reading resistance range which
resistances commonly used in electrical appliances, motors, etc. 105 megohms
Leakage detecting circuit will indicate continuity from zero ohms 105 megohms ($5,000,000$ ohms).
As an Automotive Tester the Model 70 will test:
- Both 6 Volt and 12 Volt Storage Batteries - Generators - Starters * Distributors
- Ignition Coils - Regulators - Relays - Circuit Breakers - Cigarette Lighters - Stop Lights - Condensers - Directional Signal Systems - All Lamps and Bulbs - Fuses - Heating Systems - Horns - Also will locate poor grounds, breaks in wiring, poor connections, etc.

INCLUDED FREE This 64-poge book-procticolly a condensed course in electricity. Learn by doing.

Just read the following partial list of contents: What is electricity? Simplified version of Ohms Law . What is wattage? - Simplified wattage charts - How to measure voltage, current, resistance and leakage - How to test all electrical
appliances and motors using a sim-
plified troubleshooting technique.

- How to trace trouble in the alectrical circuits and paris in automobiles and trucks.

Only
 Model 70 comes complete with 64 page book and test leads. 85

 Superior's New Model 82A A truly do-it-yourself type

FEATURES:

- Tests over 600 tube types. - Tests OZ4 and other gastilled tubes
- Employs new $4^{s \prime}$ meter with sealed ati-damping chamber sealed ari-campling chamber resulting -in ac
less readings.
less readings, sockets permits - Use of 22 sockets permits testing an popular prevents possible obsoand pres.
 TEST ANY TUBE IN IO SECONDS FLAT! sion specified.

Insert it into a mum: bered socket as desigmated on our chart (over 600 types inclouded).

THAT'S ALL! Read emission quality direst on bad-good meter scale.

- Dual Scale meter permits testing of low current tubes.
- 7 and 9 pin straighteners mounted on panel.
- All sections of multi-element tubes tested simultaneously.
- Ultra-sensitive leakage test circuit will indicate leakage up to 5 megohms.

Production of this Model was delayed a full year pending
careful study by Superior's engineering staff of this new
 which sell for much more-and as proof, we offer to ship it on our examine before you buy policy.
'Model 82A comes housed in handsome, portable Saddle-Stitched Texan case. \$ 0 Only (Picture Tube Adapter available for $\$ 5.50$ additional)

SHIPPED ON NO MONEY WITH ORDER - NO C.O.D.

Try any of the above Instruments for 10 days before you buy. If completely satisfied then send down paymet and pay balance os Indicated on coupon. No Interest or finance Charges Added! II not completely satisfied return unis to us, no explappilion necessary.

MOSS ELECTRONIC, INC.
Dept. D-650 3849 Tenth Ave., New York 34, N. Y.
Please send me the units checked on approval. If completely satisfied I will pay on the terms specified with no interest or finance charges added. Otherwise, I will return after a 10 day trial positively cancelling all further obligation.

Name ...

Address
City Zone State........ All prices net. F.O.B., N.Y.C.

- Model 82ATotal Price $\$ 36.50$ $\$ 6.50$ within io days. Balance $\$ 6.00$ monthly for 5 months.
\square Include Model 82A Picture Tube Adapter at $\$ 5.50$
> - Model 70........... Total Price $\$ 15.85$ $\$ 3.85$ within 10 days. Balance $\$ 4,00$ monthly for 3 months.

now Service Any TV Set Like a"PRO"

Brand-New Edition of famous Shop Manual Will Lick "Tough Dogs," Save You Time, Increase Your Income 25% to 65% !

MAN, if ynu've eser cussed over a tough repair . . . if you've ever wanted more money . . . if you've ever wanted your business and reputation to grow here's a powerful shove in those directions - the new Trlevision Rerciver Serriring!

Everything
 that means every new idea. every technique, every protitable practice collected from little repair shops, part-time servicemen. big research centers service has been collected into this big 300 page guide and manual.

Huge . . . Yet So Easy to Use!

You want quick facts on how to deal with tough antenna installations and ghost problems? Turn to Chapter 1 and get many field tested suggestions. What frequency an anterna should be cut to? Turn to page 6 and 4 columns of clear explanation, with examples. What does an ideal viden amplifier response curve look like? l'age 127 illustrates it for you. What should you know about servicing color television receirers? Read the simple text from page 281 to page 300 . Antennas (30 pages) . . . installing TV receivers (12 pages) . . . test equipment (27 pages) ... RF, IF and viden detector stages (45 pages) . . video amplifiers (12 pages) . A (iC systems (10 pages) .. . picture tubes, test patterns, dellection systems (83 pages) \ldots receiver alignment (20 pages) . . I ${ }^{\top} \mathrm{HF}$ Color (32 pages) . . there's even an easy-reforence troubleshooter's chart, and end-of-chapter questions. plus a complete, subject-by-subject index to put everything at your fingertips fast! With all this material, 422 pictures, 15 chapters. (xplained in A-1K-C fashion, it's no wonder that TV Receiver Servicing is the "Rible" of the industry:

10-Day FREE Examination for Readers of This Magazine

Use this for ten full days at our expense. Put its good sense to work on your toughest problems. If you're nut 100% sure it's the biggest prolit-making and time-saving friend you ever had. return it. Sou owe nothing. But mail coupon now. Once this printing is gone, it will take months for tush but another.
D. VAN NOSTRAND COMPANY, INC.

Dept. 899. 120 Alexander St., Princeton, N. J,

D. VAN NOSTRAND COMPANY, INC.
\Dept. 899, 120 Alexander St., Princeton, N. J.
1
1
1
1
1
1
1
1

Please semp me-for 10 days HREE USE-a copp of the new
 $\$ 2.50$ down, plus small delivers charke, then $\$ 2.00$ a month for two munths as fult payment.

Name

street
1
City .u'. SAVE POSTAGE by enclosing $\$ 6.50$ with this coupon. Same
return privifege, money back if not completely satisfied. (In Canada: 25 Hollinger Rd., Toronto 16 Price slightly higher.)

SAVE MONEY

on your next Car!

Be one step ahead

 Use CAR BUYER'S CHECKLISTWhen you're shopping for a car, you can't afford not to know everything about the deal offered you by one dealer as compared to that offered by others.
Nine times out of 10, uncertainty, a poor memory-or a dealer's intentional vagueness of language-is going to cost you money.
Get it in writing, make certain you know exactly what kind of deal each dealer you've seen is prepared to make. Check off every item, term, condition and cost.
Then, in the quiet and privacy of your home, compare deals, do your own pencil workand save money.
Use the Car Buyer's Checklist, a 4-page, simple but comprehensive form designed by the editors of Science and Mechanics to help you make the best and most economical new or used car buy. Every item covered, every cost itemized, every condition cost-assessed.

Three Checklists for 50¢ or a
 packet of eight for $\$ 1.00$

SCIENCE AND MECHANICS

450 East Ohio St., Dept, 217, Chicago 11, III,

GOOD JOBS . . . MORE MONEY SECURITY . . . ALL CAN BE YOURS

Clear, profusely illustrated lessons, shoptested manuals, modern circuit diagrams, practical job projects-all the valuable equipment shoun above-many other ma-

YOU are needed in the great modern Tele-vision-Electronics industry. Trained techniciants are in growing demand, at excellent pay, in sales and service, manufacturing, broadcasting, telecasting, communications, research, and many other important branches of the field. National Schools Master ShcipMethod Training, with newly added lessons and equipnent prepares you in your spare time right in your own home for these fascinating opportunities. OUR OUTSTAND. ING, METHOD IS PROVED BY THE
SUCCESS OF GRADUATES ALL OVER THE NORLD!

VOUR training is all inclusive

We prepare you for a long list of jpb opporzunities. Thousands of TV and Radio receivers are being sold every day-more than ever before. And, now, Color TV is here. Applications of Electronics in industry -AUTOMATION-are growing in tremendous strides. The whole field is alive opening up new, important jobs rapidly. National Schools complete training program qualifies you in all phases of the industry.

YOU EARN WHILE YOU LEARN

Nany students pay for their entire tran-ng-and more-with spare time earning. We'll show you how you can, too! Early in your course you receive material that shows you how to earn extra money servicing TV and Radio receivers, appliancrs, etc., for friends and acquaintances.
terials and services-consultation privilege with our qualified staff, and Graduate Em. ployment Service. EVERYTHING YOU NEED for outstanding success in Electronics.
industry metis you. national schools WILL TRAIM YOU. SENO FOR FACTS TODAY mO OBLIGATION.
YOU LEARN BY SHOP MFTHOD you do servicing, circuit analysis, and do over 100 down to-earth experiments. You huild a Superber Receiver and a modern TV Receiver, from the ground up, including a new, big screen picture tube. You also receive a professional, factory-made MULTITESTER. All of this standard equipment is yours to keep . . . at just one low tuition.

Approved for

NATIONAL SCHOOLS

tos angeles 37, CALIF.

FIIIITV RIOXIE FAST

With H. G. Cisin's Copyrighted RAPID "TV TROUBLE SHOOTING METHOD"
Without experlence or knowledge, this guaranteed new methot of sersicing TV sets enables you to DIAGNONE TV troubles as rapldly as an expert. NO THEORY-NO MATH-you can locate all fautts in record-breaking time regardless of make or model. "TV TROUBLE SHOOTING METHOD" is the most raluable aid to TV servicing ever written. Be a TV Trouble Diagnostician. Increase your present earnings. Open your own Profitable Business or get a high-paying skilled job.

> It's all in this book

Nothing more to Pay-Nothing else to Buy Alphabetically listed are 85 picture troubles, over 58 raster and 17 sound troubles. By this unlque copsrighted method jou know tions, including 69 RAPID CHFCKS, help to find faulty I3 IMPORTANT PRELIMINARY CHECKS NEED NO IN. STRUMENTS! Of the 69 Rapid Checks, OYER 45 ALSO REQUIRE NO INSTRUMENTS! Rapld cliecks include emer gency checks for distorted pictures. defective tubes including PIX tube. plus 57 others. ALL EXPLAINED IN SIMPLE LANGUAGE. PERFORMED WITHOUT INSTRUMENTS MANY CHECKS USE THE PICTURE TUBE AS A GUIDE, II. G. Cisln. the author, is the inventor of the AC/DC inldget radio. He licenses Iuthor. ATsT, etc. Jle has also trained thousands of techniclans now owning ।heir own prosperous TV serglee organizations or holding highly paid TV positions lis sears of experience are embodied in this remarkable new book sears of Guaranteed Money Back in 5 Days if Not Satisfled

Want a Trailer?

BUILD IT YOURSELF

tdea! for week-ends. fishme or vacation trips Cumpact, roomy. conzortable; sleeps two people. Designed
for all modern convenicuces- sink. water tank ind for all modern convenicuces-sink, water tank ind
pumy, stove, kitchen tathe. culboims, clothes closet.
 tor, ete. Sturdy, simple constructith. Overall bedy plan fives bill of materials. explains every master tion detall. Sallsfaction puats, explains every construc.

44 SHOP PROJECTS $75 C$

Just imagine-44 useful things you can build-with plans and instructions-all for 75 c . Isn't that a bargain? Mere are a few:
grandfather elock. foldaway workbench, metal melting furnace. grandfather elock, foldaway workbench, metal melting furnace.
 using, power tools. Hundreds of photos and drawings; 65 shop
kinks; 192 action-packed pages. Send 75 E today for a copy of kinks; 192 action-packed pages. Send 75 c today for a copy of
'Home Workshop Handook.'. No. 558 . it's a goldmine of Workshop ideas! SCIENCE AND MECHANICS, ASO East Ohio

$10 \sim D_{0}$ It Yourself Plans
 96 understand plans for building boats,

electrical equipment, models of gas and steam engines, famous firearms, antique automobiles, toys, games, cabin trailers, many other projects. In all, 196 useful things you can build. It's easy! It's fun! And you can save money! Do it Yourself! Send 10 c now. Science and Mechanics Magazine, 213 Dunham Bldg.,Chicago 11,III.

AVAILABLE IN TWO TYPES

MODEL A-311, Three Element Beam far best point-to-point communication.

MODEL V-27-GP, Ground Plane Vertical is ideal as base station antenna. Net Price $\$ 34.95$

Catalog Sheet on request.

St. Louis 14, Missouri

Enjoy Thrilling High-Fidelity Super Hi-FIFM Record Player

Build this high-fidelity, frequency modulated phono oscillator and bring your waxworks to life, enjoy all the sound you pay for from your recordings. Full-
size pictorial and sche-
matic wiring diagrams, com-
plete materials list. illustrated,
step-by-step assembling instruc-
Price $\$ 1.00$
tions. Order Craft Print No. 264 now. SCIENCE AND MECHANICS
450 East Ohio St.
Dept. 218
Chicago 11. 111

PEE WEE CNTEALIESS CLIFETME" RADIO

GUARANTEED-FOR YOUR LIFE! FOR AS LONG AS YOU OWN IT! NO TUBES. BATTERIES. TRANSISTORS OR ELECTRICAL PLUG-INS NEEDED! Will never run down or burn out! SMALLER THAN A PACK OF CIGA. RETTES! RECEIVES LOCAL RADIO STATIONS MOST ANY-TIME-ANYWHERE YOU GO! EARPHONES. HAS BUILET.IN SPEAKER PHONE! Black gold plastic cahinet. semi-conductor wave detector. NOT IMPORTED, MADE AND GUARANTEED BY AMERICANSYou can always get service.
SEND ONLY \$2.00 (bill, ck, mo) and pay nostman \$4.99 for postpaid detivery. SENT COMPLETE READY To Lis. TEN WITH LIFE GUARANTEE-NOTHING EXTRA TO BUY EVER! FREE LONG DISTANCE ANTENNA if you order now. Availabie only from:
MIDWAY COMPANY Dept. WRE. 9 KEARNEY, NEBR.

GET ON THE AIR for Business or Fun
 TRANSMIT AND RECEIVE "- 8377^{50}

With this New CITIZENS BAND Transceiver Kit!

 AS DESCRIBED IN THE MARCH, 1959 ISSUE OF RADIO : TELEVISION NEWS\checkmark COmplete with all parts, CRYSTALS, TUBES, PUNCHED CHASSIS, ETC.
\checkmark SOCKETS AND SMALL PARTS RIVETED TO CHASSIS FOR QUICK-E-Z CONSTRUCTION
ONLY FINEST PARTS - NO SURPLUS.
\checkmark COMPLETE REPRINT IN. STRUCTIONS FROM RADIO \& IV NEWS
\checkmark All you need is soldering iron, screwdriver AND PLIERS.
\checkmark INSTRUCIIONS FOR MAKING YOUR OWN ANTENNA.
You must be U.S. Cifizen over 18 yeors of age simply fill out FCC form 505. (Form included.)

\checkmark RADIO \& IV NEWS SAYS: EEven with 5 watis, if is perfectly capable of transmitting and receiving over distonces of 3000 miles or more when Old Mather Na ture has the ionosphere in good working order." \checkmark SIMPLE TO OPERATE: VOLUME, TUNING AND TRANSMITIER / RECEIVER SWITCHES.

Only $\$ 3995$

2 OR MORE - $\$ 37.50$ EACH
If YOU WISH, PAY JUST
$\$ 500$ DOWN. $\$ 500$ PER MO

NO EXAMINATION No Tests Required

By C. F. ROCKEY

Low in cost for what it delivers,
this transceiver is specifically designed for use on the Citizens Band, but does double duty in the 10 -meter amateur band.

ALTHOUGH specifically designed for the Class D Citizens Band radio service (see box copy on page 25), this simple transceiver is also suitable for low-power telephony in the 28 megacycle band. Inexpensive, readily available tubes and parts are used throughout, and the total cost to build will be about $\$ 40$. The writer believes that it is hardly possible to build an effective, truly legal radiotelephone unit for much less money.
The transmitter employs a stable, straightforward circuit that can be made to operate well with a minimum of trouble. The power input
ilar units) with the maximum legal antenna (see box copy) may be expected in the Citizens Band. Although a $117-v$ commercial ac power source is required for this unit, it may be readily modified to operate from an automobile storage battery if a different power supply system is installed.

Before beginning construction of this project, make sure that you have a grid-dip meter available (see p. 130 of this handbook). Proper adjustment will be very difficult without one of these, but almost every experimentally minded amateur owns one, and may lend it to you.

Construction. If you bend up your own chassis normally runs slightly less than the 5 -watt maximum allowet to Class D Citizen's Band stations. The receiver employs the super-regenerative principle, providing maximum gain and sensitivity per tube. It also will be found easy to "get going." An RF stage reduces radiation and increases stability.

The frequency range of both transmitter and receiver is approximately 25 to 30 megacycles, which includes both the 27 megacycle Citizens Radio and the " 10 -meter" amateur bands. One cannot accurately predict the communication range, but about 4 or 5 miles (between two sim-

from sheet aluminum, complete this metaiwork first. A developed view is shown in Fig. 2. If you do not have metalworking equipment (shear and small bending brake) you can use a commercially available $2 \times 7 \times 10-\mathrm{in}$. aluminum chassis and a 1/ti $\times 7 \times 10$ - in. aluminum sheet for the panel.

With panel and chassis at hand, begin by drilling and punching the major holes in the chassis. Mount all sockets and terminal strips before fastening the power transformer in place, using 6-32 rh machine screws for fastening everything except the miniature tube sockets, which require 4-36 screws. If you anticipate portable operation, put lock washers under each screw head for additional security.
The insulated tie-point strips may now be fastened under the chassis also, using the underchassis photo, Fig. 3, as a guide. Mount the SendReceive switch and the potentiometer and switch temporarily onto chassis, but temporarily omit the filter choke and do not install panel as yet.
Wire the power supply first, making sure to connect the power switch (on the potentiometer) in series with the transformer primary (see Fig. 4). And don't forget the 4000 mmfd line bypass capacitor to ground (ground indicates chassis in every case). Ccmplete all power transformer and rectifier tube socket wiring before installing the filter choke, which mounts on back of chassis under power transformer. The greenyellow wire on the power transformer is the $6.3-v$ winding center tap. Cut this wire short and tape the enc, so that it will not cause trouble with other circuits. Mount and connect filter choke after power transformer has been wired.

soldering lugs, since soldering to aluminum is generally unsatisfactory.
When the power supply has been wired and carefully checked, connect the line cord to the terminal strip, and insert the 5Y3 rectifier tube in its socket. When the line switch is on, the rectifier tube filament should glow, and a dc voltmeter should indicate about $275 v$ when connected from B+ to ground. (This voltage will drop to $250 v$ when a load is applied.) Since the power supply is straight-forward, a no-voltage condition indicates incorrect wiring, a bad tube, or a defective part. Remember that good electrolytic capacitors store a charge, so short 'em (with power off!) before continuing work; otherwise, you might get bit by a "dead" circuit.
Wire all of the $6.3-v$ heater circuits next, as per Fig. 4. Don't forget the ground-return for heater current at each socket. When heater wiring is completed, plug in other tubes, plug in set and turn it on. All tube heaters should light and warm-up directly. Again, watch out for shorts between those pesky little miniature socket lugs. If all's well, pull out line plug and tubes, and continue work.

Installthe speaker output transformer and wire the audio amplifier section, beginning with the 6AQ5 (see Fig. 5). Bring a pair of leads for the loudspeaker topside through a $1 / 8$-in. deburred hole, twisting the leads to keep them together. Be especially careful when wiring the SendReceive switch to Receive position. When tubes warm, cautiously touch screwdriver to control grid, pin No. seven. A buzzy click from loudspeaker means all's okay. If not,
recheck wiring, particularly looking for solder shorts. A bad tube could also cause trouble.
When 6AQ5 is working, unhook and continue with 12AT7 audio amplifier. Plan your wiring as you progress (using Fig. 3 as a rough guide) so that you can hang the carbon resistors and ceramic capacitors in the wiring in the shortest and most direct manner. Where a bare lead might wiggle around and short to something, cover it with a piece of spaghetti tubing. You can check the 12AT7 amplifier as you did the 6AQ5: when wired, plug in 12AT7, 6AQ5 and 5Y3; turn on power and switch S-R switch to Receive position. A cautious touch of screwdriver to each grid should produce that clicky buzz, louder at the 12AT7 grids, of course.

5
TRANSMITTER-RECEIVER
NOTE: ALL CAPACITORS CERAMIC DISK INMMF UNLESS OTHERWISE SPECIFIED.

Begin the receiver section by winding the coil carefully (see Fig. 6). If you can't get double cotton-covered wire, use single cotton-coveredbut if you use enamelled or Formvar insulated wire, use one less turn (on each of the three coils) to compensate for increased capacitance. Be careful to place the tap properly, since proper feedback relationships depend upon it. Keep the high-frequency leads short and direct in this circuit. Note that the grid of the RF amplifier is grounded; the signal enters the cathode of this tube. Observe also that the cathode of the detector is connected to the tap on the coil; it must not be grounded otherwise. The feedback-control potentiometer controls the plate voltage upon the super-regenerative detector; the voltage upon the plate should increase as the shaft is rotated to the right, looking from the front.
It will improve the appearance of the wiring if the plate supply, heater supply, and other non-critical leads are run along the corners of the chassis. Grid, plate, and other important connections, however, should be made as short and direct as possible. Use tie-lugs to support small parts.
Now, drill and install the panel (upon which the receiver tuning capacitor is mounted, see Fig. 7). When drilled, install the panel along with the tuning capacitor and the loud speaker, drilling a hole in the chassis to pass the tuning capacitor stator leads. Then, make and install aluminum baffle shield (Fig. 7). This shield serves to reduce interaction

between receiver and transmitter. Fasten it to the chassis with two 6-32 machine screws whose nuts (underneath chassis) may also hold a fourlug tie point strip.

The receiver tuning capacitor should be modified by carefully removing one of its rotary plates. Grasp the rearmost plate firmly with a pair of long nose pliers and pull out the plate. This operation reduces the maximum capacitance and insures the correct tuning range. Be sure to put the calibrated dial plate under the fastening nut of this capacitor on the front of the panel.
age from the plate of the 12 AT7 detector section to ground. As the feedback control is turned, this voltage should vary from zero to over $50 v$, indicating correct dc plate conditions. With correct voltage available, coil wound as specified, and a good tube, this receiver cannot fail.
When proper super-regenerative action has been assured, adjust the tuning range of the receiver, using a grid dip meter. Screw the iron slug carefully into or out of the coil until the grid dip meter indicates a tuning range from about 25 to about 30 megacycles. A slightly wider tuning range does no harm. A reasonably good antenna connected to the antenna terminal should now provide a number of amateur signals in the 10 -meter band, particularly during the daytime. Adjust the feedback control to provide the best response from each signal. The Citizens Radio Band should fall near the middle of the tuning range, the amateur 10 -meter band further toward the low capacity end of the dial.

With the receiver operating properly, begin wiring the transmitter section (Fig. 5). Commence with the crystal oscillator (see Table A for crystal). Only half of the 12AT7 tube is used, the elements of the second triode remaining unconnected. This apparent waste of a good triode section may seem unthrifty until one remembers that the 12AT7 tube costs no more, and is often more available than a single-triode equivalent type.

The standard quartz crystal holder will plug into any two alternate (not adjacent) holes in the standard octal socket, so pick any alternate pair of pins and use these for the crystal. The remainder of the pins may be used as tie-points, if desired.

Now you can insert tubes in all completed sections, plug in, and put Send-Receive switch in Receive position. As the feedback control is advanced toward the right, a smooth hiss should issue from the loudspeaker, indicating that super-regenerative action is occurring properly. If no hiss is forthcoming, check the wiring again. Be sure the coil has been wound and connected exactly as directed. Measure the volt-

Top-chassis view of fransceiver.

The crystal oscillator circuit is simple and direct, and is recommended by most crystal manufacturers for use with their overtone crystals. Just follow the schematic diagram Fig. 5, keep the leads short and direct, and you will have no trouble. To test for oscillation, insert the rectifier and the crystal oscillator tubes, throw switch to Send position, and apply power. Make sure crystal is plugged securely into the correct holes. Tune your grid-dip meter to the crystal frequency and adjust the slug in the oscillator coil to obtain maximum RF output. No oscillation indicates wiring difficulties, poor tube, or defective crystal.

Wiring the transmitter RF power amplifier completes the project. This amplifier is simple and, if built as specified, may be expected to work well. Note especially however that the

transmitter RF amplifier obtains its B+ supply through the Send-Receive Switch from the plate of the 6AQ5 audio power amplifier, rather than directly through the switch from the power supply. This is because, in Send condition, the power audio amplifier acts as a modulator, causing the RF amplifier's supply voltage to vary in accordance with the voice variations. This is how the

What the Class D License Is-and Is Not

O$\sqrt{ }$ Sentember 11, 1958, the Federal Communications Commission vastly expanded the scope of the Citizens Radio Service. Of particular interest to the radio-TV experimenter is the inatguration of the Class D Citizens radiotelephone service in the 27 -megacycle band. The opening of this class of service provides the opportunity of private radiotelephony to every U. S. citizen over 18 years of age. He may use this radiotelephone privilege for any legitimate, not-for-hire communication purpose.

Of course, a license is required, as it is for any radio transmission of any sort within the jurisdiction of the United States Government. But since it involves merely an operating privilege, no technical examination is required; neither is one required to master the radiotelegraph code. On the other hand, an individual so licensed is restricted as to the type of equipment he may operate and the frequencies he may use.

The new Class D Citizens Radio Service may be employed by any duly licensed individual or organization for personal communication, or for intra-organizational communication such as: communication between a man's home and his car (a boon to physicians, for instance); communication between various buildings or vehicles on a ranch or farm; communication between delivery trucks or service technicians on the job and their home office; exchange of information between college students and their professors upon legitimate, personal, educational matters; consultation between construction foremen and the architect or engineer of a large construction job; coordination of the activities of a school athletic contest, and other situations.

The sort of thing that the Commission frowns upon, or directly forbids, however, would be: the broadcasting of any type of music or entertainment; long-winded gab sessions, or clowning-around which might interfere with sincere users; foreign contacts, or contacts with stations of any radio service, including amateurs, except in a demonstrated emergency; deliberate interference with another station, or monopolizing of a frequency for nonconstructive purposes; tinkering with the equipment by persons not authorized to make circuit changes or adjustments.

It is thus very clear that the Citizens Radio Service is not intended to be an amendment to or substitute for amateur radio. Furthermore, it is not an electronic playground for those too lazy to acquire an amateur license. In fact, the Citizens Radio license does not permit the use of any of the amateur bands, nor conversely, does the amateur license permit operation upon the Citizens Service band. One must have a Citizens Radio license to operate upon the Citizens Band, no other kind of license will do!

Several classes of Citizens Radio licenses are available, and are described in Part Nineteen of the Regulations of
the Federal Communications Commission. These, for instance, provide legitimately for the privilege of controlling model planes, boats, etc., by radio. Another class provides for the use of the 465 megacycle UHF citizens band. But the class of most direct interest to the experimenter is the Class D Citizens Radiotelcphonc Servicc. It is the class D license which permits those communication privileges already described.
To obtain a Class D Citizens Radio Service you must: 1) Be a citizen of the United States; 2) be at least 18 years of age; 3) have a legitimate purpose for such communication; 4) obtain, read, and be prepared to take an oath to the effect that you have read, Part Nineteen of the Regulations of the Federal Communications Commission (available for 106 from the Superintendent of Documents. Government Printing Office, Washington 25 , D. C.) ; 5) fill out, notarize, and send to the Federal Communications Commission, Washington, D. C. FCC Form Number 505 (available from the FCC Field Engineer's Office nearest you. These offices are located in each of the country's major cities).

The equipment for use under provisions of the class D license must meet the following requirements:

1) The dc plate power input to the stage feeding power to the antenna must not exceed 5 watts.
2) The transmitter must be crystal-controlled, and the frequency of operation must be held to within $.005 \%$ of the assigned frequency. (Purchase of an approved crystal from a reputable manufacturer, and use of it in an approved circuit, will insure compliance with this regulation. Tell the manufacturer the circuit in which the crystal is to be used and specify a frequency tolerance of $.005 \%$.)
3) Statement of how compliance with these above regulations will be maintained must be filed along with your license application.
4) The antenna system to be used with a permanent (home) installation shall not be higher than 20 ft . above the building or other structure upon which it is erected.
5) The distance between the center of the antenna and the transmitter control point shall not exceed 25 ft .

Although the provisions of this class of license are indeed liberal, the prospective user should have no delusions as to the limitations involved. You are not going to set the world afire with 5 watts and a $20-\mathrm{ft}$. antenna. Under normal conditions, consistent communication over distances of three or four miles is about all one has a right to expect, though occasional thousand-mile contacts may be made.
Lastly, although building your own equipment is permissible, it must be tuned and adjusted finally by a licensed commercial operator, holding at least a secondclass radiotelephone operator's license.

But if you're looking for low-cost radio communication over a restricted range with relatively inexpensive gear, the Class D Citizens radio service is definitely for you.
intelligence is impressed upon the radiated signal. Also observe that both the plate and screen supply are thus modulated.

To test the completed amplifier, insert tubes and apply power. With the switch in Send position, recheck the crystal oscillator for oscillation with the grid-dip meter. You may find it necessary to readjust the slug in the oscillator coil; this is normal. With the crystal oscillator operating, connect a No. 46 pilot lamp bulb across the antenna terminals. Now adjust the RF amplifier tuning slug until the bulb burns at its brightest. When the transmitter is operating correctly, the bulb should light brightly. Carefully adjust both transmitter coil slugs for best output, then unscrew the oscillator coil slug about three turns (outward) to provide best reliability of oscillation.

Using the grid-dip meter, carefully explore the output of the transmitter at the amplifier coil for spurious signals at frequencies other than that of the crystal. If you have built the unit as described, you should find absolutely none. This will keep you out of trouble with the FCC.

Finally, connect the microphone to its terminals upon the terminal strip. In transmit position, speaking into the mike should cause the bulb to flicker appreciably. If so, modulation is satisfactory, and you can consider your transceiver ready for use.
You may use any single-button carbon micro-
phone but do not try to use a crystal or dynamic mike; the latter types will not work. One of the older telephone transmitters will work well, this may be obtained from Army Surplus or, from the Telephone Engineering Company, Simpson, Pa . Use the transmitter only, you do not need or want the receiver. Of course, with this type of mike the voice quality will be rather thin, but this is preferable for communications work, since it cuts through interference much better than the round, full response of the broadcast station. (You're not allowed to transmit music or entertainment anyway.)

Although you now have your station completed, do not go on the air until you have received your Citizens Radio permit. To do so exposes you to a two year penitentiary sentence and/ or a $\$ 10,000$ fine. Remember, also, that an amateur license of any grade does not permit you to use the Citizens radio frequencies, per se.
However, if you hold a general, or higher, class of amateur license, you may operate this unit within the 10 -meter amateur 'phone band, if you have an overtone crystal for operation therein. Usual amateur regulations will then apply.

If you wish, you may install this transceiver in either a metal or wooden cabinet. The only precaution is to provide ample ventilation for the tubes and parts and, if a metal cabinet is chosen, to avoid short-circuiting under-chassis components.

One form of antenna suitable for Class D Citizens Band operation is shown in Fig. 9. If you contemplate operation with portable or mobile units, suspend the antenna vertically; if with other fixed stations, either vertical or horizontal antennas may be used. One thing to remember, though-all units working together must use similar-oriented antennas for best results. That is, all must use either vertical or horizontal arrangement. For operation within the amateur 10 -meter band, make the antenna one ft . shorter overall.

When a dipole or similar antenna is used, connect one side of the feedline to the antenna, the other to the ground terminal. If a coaxial feedline is used, connect the inner conductor to the antenna terminal, the sheath to the ground.

After arrival of your license, peak the final power amplifier tuning with the antenna connected.

With the transmitter on, hold a neon lamp bulb with its glass against the 6AQ5 RF power ampli-
fier tube and adjust the amplifier slug for brightest glow of the neon lamp.

The law states that final tuning adjustment of a Citizens Band transmitter must be made by a person holding a second class radio-telephone (commercial) operator's license, or higher. (The operator of your local broadcast station or of your town's police radio system, when off-duty, may be willing to help you with this. When testing or adjusting the transmitter with the No. 46 dummy load lamp, no such license is required since useful radiation will not occur.) Once this adjustment is made, however, your Citizens Radio permit is all you need for further operation.

One last thought: The U. S. government is showing unusual generosity in allowing the use of the Citizens Band frequencies as liberally as it is. As of this writing, no other government permits such liberties. Ours is thus a rare privilege; let us remember this and never conduct ourselves on the air in such a way as to make our government regret its generosity.

Coat-Pocket code Practice Unit

HERE'S a code practice unit-sight or sound-small enough to carry around in your coat pocket, and all you need to buy to build it is a buzzer (Johnson Speed-X Model 114-400, $\$ 1.85$), two size D flashlight cells (15¢ each), and a two-cell bulb, focusing type (10¢). The rest of the materials can be taken from your scrap box.

Mounting board for the unit is a $81 / 1 ; \times 17 / 4 \times$ $61 / 8$-in. piece of Masonite, doubled on either side of the buzzer (see Fig. 1). A brass tulue holder for the batteries is made from $11 / 2$-in. O.D. plumbing drain stock, battery contacts are spring brass, key and switch (see Fig. 2) are taken from an old telegraph key, socket for bulb can be salvaged from a discarded flashlight.-Victor A. Ulrich.

Here's the transistor portable you've been waiting for. It operates on ordinary pen-lite cells, drives a loudspeaker with plenty of volume, has phone jack output for private listening, automatic volume control for smooth volume, and plenty of sensitivity. No outside antenna is required-and it can also be used as a tuner for a larger amplifier.

Small, but poweriul, that's the transistor ized superhet for which step-by-step build. ing instructions are given in this article.

THE circuit diagram of this three-transistor superhet is shown in Fig. 2. The transistor TR1, RCA 2N412, does triple duty. The RF signal (550 to 1500 kc) which it receives from the antenna loop L1 and antenna tuning capacitor C1A is amplified and mixed with the oscillator signal. The oscillator signal, also generated by TR1, is always 455 kc above the received RF signal.

The oscillator tuning capacitor C 1 B is ganged to the antenna tuning capacitor so that oscillator and antenna tuning track. The signal through L3 is amplified by the IF amplifier transistor TR2. This transistor is a high-gain, high-frequency GE 2N168A. Diode D detects the signal after it passes through L4. Capacitor C6 filters out the RF signal components so that the signal across volume control R7 is audio frequency (AF). The signal is then passed through R6 and the audio is filtered out so that a dc bias proportional to the strength of the received signal is provided to control the gain of the IF amplifier TR2. The stronger the signal, the lower the gain of TR2. Thus, fading is minimized for reasonably strong signals. This is the automatic volume control (AVC).

The slider on volume control R7 picks off the audio signal for audio amplification. Transistor TR1 performs its third job as the first audio amplifier. It's possible to use the same transistor for the mixing oscillator and audio amplifier functions, since the frequencies are widely separated. The amplified audio output of TR1 appears across transtormer L5 and is transferred to the audio output

unusually high Q builds up the signal and allows the tuning capacitor to select the desired station with considerable discrimination against interfering signals before the transistors even begin to go to work.

The audio output stage TR3 is transformer coupled to TR1-and two transformer-coupled audio stages have almost as much gain as three! Actually, a considerable amount of the available audio gain of TR1 is not exploited sirce the emitter bias resistor R3 of TR1 is not bypassed by a large capacitor. A large capacitor would increase the gain but would degrade the fidelity and create a tendency for the receiver to go into regeneration.

Preparing Parts for Assembly. First, cut out and prepare the front panel and the circuit board (Fig. 3). Cut the tuning capacitor (C1) shaft to a length of $1 / 2$ in., the volume control (R7) shaft to a length of $1 / 4 \mathrm{in}$. Remove the antenna loop from its mounting by cutting off the ends of the fiber retainer with tin snips; fasten the output transformer (L6) on the loudspeaker (see Fig. 5) by bending the transformer mounting lugs to fit around the magnet frame. A few drops of Pliobond or a similar cement placed under the transformer prior to mounting will steady it against the magnet frame.

Next, solder the connection lugs of the battery holder for series connection as shown in Fig. 4. Use rosin core solder only! Mark the battery end polarities to avoid making mistakes in connections or inserting batteries. Rotate the battery lugs with a pair of pliers and simply solder them together to make connections, and then fill with solder the surfaces of the eyelets which will contact the batteries.
Figure 5 shows the parts and wiring on the back of the front panel. Mount the loudspeaker (SPKR), volume control (R7) and the phone jack (J), and complete wiring as shown. Be cautious in soldering; too much heat can damage the volume control. The same precaution applies to the other components, especially transistors, in subsequent soldering.
The Wiring Board. Top and bottom views of the assembled wiring board are shown in Fig. 6. Fasten L3 and L4 by inserting them in the holes and bending the mounting lugs against the back of the board.

Next, you will mount C1, L1 and L2. (Be careful not to let the screws which hold C1 pass
through far enough to touch the plates of the capacitor; use washers or spacers if necessary.) Fasten L1 and L2 with Duco cement, give the cement time to set, then fasten L5 and T1 to the board.

The next step is to solder B of TR1 to terminal 1 on L2, C to terminal 5 of L3, pass E through the circuit board, and fasten TR1 against the case of L3 with a rubber band.
The remaining components are fastened to the circuit board as the wiring progresses. Be sure to connect the frame of C1 and the cases of L3 and L4 to the common plus battery return (designated by the "ground" symbol in Fig. 2). When circuit board wiring is completed, connect a lead 6 in . long to the common return for later connection to the plus terminal of the $9-v$ battery. The other lead from the circuit board is a 6 to 8 in . length of wire connected to C1A. The other end of this lead hangs free inside of the case after final assembly. This lead is essentially a short antenna which gives the set additional pick-up.

Final Assembly. There are five lead ends extending from the front panel (Fig. 5). The lead from the switch will connect to the minus terminal of the battery. The other four leads connect to the circuit board. The circuit board is joined to

Battery-holder mounting in case, and connections.
the front panel by the tuning capacitor's (C1) three mounting screws. Place fiber washers or cardboard spacers $1 / 16-\mathrm{in}$. thick between C 1 and the front panel when you join panel and circuit board.

Check for clearance between the circuit board components and the panel components. Particular items to watch are interference of TR2 with J, C9 with S on R7 and L6 with SPKR. Place the assembly in the cabinet to check fit and make any necessary adjustments in parts placement.

The leads from the front panel connect as follows: 1) The lead from the junction of R7, S and J connects to the circuit board mipus line. 2) The lead from J connects to C of $T 3$. 3) The lead from the "hi" terminal of $R 7$ connects to the junction of $D, C 6$, and R6. 4) The center
terminal lead of R7 connects to the minus terminal of C .

With these connections completed, adjust the slug of L2 flush with or just slightly below the coil form viewed from the back of the assembly. There are two trimmers on C1 which were intentionally eliminated from Fig. 2 to avoid confusion. These trimmers in parallel with C1A and C1B are provided to align the antenna and oscillator circuits respectively for proper high-frequency tracking. Open the antenna trimmer till the trimmer tension is nearly released (minimum trimmer capacity). Turn the oscillator trimmer full closed (maximum trimmer capacity), and then back the screw off $1 / 2$ turn. Place the knobs on C1 and R7. (You can provide a calibrated dial made of paper and covered with plastic for C1 later if you wish). With S off, connect the leads from the assembly to the battery to complete wiring and assembly. These leads should be about 6 in . long to allow easy removal of the assembly from the case. To prevent the screws which hold the battery holders in place from scratching furniture, fasten rubber grommets to the back of the case with Pliobond cement.
Tune-Up. If you have a milliammeter. connect it across the terminals of switch S . The meter should read between 6 and 15 ma if all is we:l. Don't worry if the set motorboats when you make this measurement. If the current exceeds 15 mm . look for a short or an incorrect connection. If the current is less than 6 ma , the trouble is probably low battery voltage or an incorrect connection.
Assuming all is well at this point-or that you don't have a meter to make this measurement-

turn the set on and turn the volume control about $7 / 8$ ths up (clockwise). Maxinum volume does not occur at the full clockwise position of the volume control. This is a normal characteristic of the reflex circuit. (The term reflex is applied to a receiver which uses one transistor or tube to amplify both RF or IF and AF signals). With the volume control turned approximately $7 / 8$ ths full clockwise, rotate the tuning dial slowly. If you're in a metropolitan area or within about 10 or 15 miles of a large station, you'll probably pick up a signal even though the set is not accurately aligned. But if you don't pick a station up, there's no cause for alarm because the IF transformers (L3 and L4) may be way out of adjustment. If you pick up a station you can feel reasonably sure the wiring is correct. If you can't pick up a station, the presence of noise of any kind from the speaker indicates that at least part of the audio is working properly. In either case; you're ready to try alignment.

The steps in the alignment procedure are: 1) Adjust the IF transformers. 2) Adjust the tuning capacitor trimmers at the high frequency end
 of the broadcast band.
3) Adjust the oscillator coil slug at the low frequency end of the band. 4) Repeat step 2. A signal source is required to carry out the alignment procedure. This source may be an RF signal generator or it may be an ordinary broadcast receiver if you don't have, or can't borrow a signal generator. The use of a broadcast superhet for aligning other superhets is discussed on pages 66, 67 and 68 of the Radio-TV Experimenter, No. 559, Volume 7, available from Science and Mechanics, 450 East Ohio Street, Chicago 11, Illinois.
To adjust the IF transformers, connect the high side of the signal source through a .01 mfd capacitor to the stator of C1A (the antenna terminal), and the low side to set ground. With the signal source tuned to 455 kc ., adjust the slugs of L3 and L4 for maximum output. Keep the signal from the source so weak that you can barely hear it (to minimize AVC action). Adjust the volume control to the point where the signal is loudest. The slugs of L3 and L4 are accessible through the holes in their bottoms. Use a small screwdriver, preferably one with very little metal in it such as a radio-TV serviceman's alignment tool.

After IF alignment is completed, disconnect the signal source.

You should easily be able to complete the remainder of the alignment procedure with broadcast station signals. Tune in a weak station between 1300 and 1450 kc . Increase the antenna trimmer capacity. If this increases the speaker output, adjust this trimmer for maximum speaker output. If the volume decreases, repeat the procedure.

Next, tune the receiver to a station between 550 and 650 kc . Detune C1 slightly to one side and adjust the slug of L2 for maximum output. If this output is greater than the previous output, repeat the process till the most sensitive point is found.

If the output is less than the previous output, detune C 1 in the other direction and adjust L2 till the point of maximum output is found.

Finally, repeat the alignment procedure at the high-frequency end of the band. This is necessary since the adjustment of L2 has some influence on the high frequency end of the band, too. Capacitor C1 may be tracked across the broadcast band by bending the outer plates of C1A, but the process is tedious and not always worth the effort.

You may experience oscillation at high volume control settings, but this oscillation will occur beyond the actual maximum volume point and is therefore harmless. But if you wish to eliminate it, add a resistor and .01 mfd capacitor in the volume control circuit as shown in Fig. 7. The

MATERIALS LIST-THREE.TRANSISTOR PORTABLE SUPERHETDesig.Description	
R3, R5, R8	1 K
R1'	${ }_{27 \mathrm{~K}}^{4}$
R2, R4	100K
(all resistors, $1 / 2$ watt, $\pm 20 \%$)	
C2, C3, C5, C6, C8	.01 mfd subminiature square capacitor (Lafayette C-612)
C7	4 mfd , Gv_{v} ultraminiature electrolytic capacitor (Lafayette CF-101)
C4, C10	30 mfd , 6 V ultraminiature electrolytic capacitor (Lafayette CF-104)
C9	
C9	100 mifd, $15 v$ ultraminiature clectrolytic capacitor (Lafayette CF-126)
Cl	2 -gang tuning capacitor, A-123 mmfd, B. 78 mmfd (Lafayette MS-261)
L1	miniature antenna loop (Miller 2003) ${ }^{\text {msen }}$ (ransistor oscillator coil (Lafayette MS-265)
12	
L3	1st IF transfornier, 455 kc (Lafayette MS-268)
L4	output IF transformer, 455 kc (Lafayette MS-269)
L5	transistor driver transformer 10K:500 ohms (Lafayette TR-96)
16	transistor output transformer 500:3.2 ohms (Lafayette TR-95)
TR1	transistor (RCA 2N412) transistor (GE 2N168A)
TR2	
TR3	transistor (GE 2N241A)
	diode (Raytheon 1N66)
B	9 v battery-6 penlite cells in series (RCA V5074)
	miniature phone jack (Lafayette MS-282)
SPKR	$21 / 2^{\prime \prime}$ PM speaker, 3.2 olmm (Lafayette SK-65)
	2.cell battery holder (Lafayette MS-138)4-cellbatteryholder ((Lafayette MS.170)
1	
1	miniature perforated board for front panel (Lafayette MS-305)
1	miniature perforated board for chassis (Lafayette MS-304)
1	miniature knob (Lafayette MS-185)
1	pointer knob (Lafayette KN-40)
1	$2 \times 33 / 4 \times 61 / 4^{\prime \prime}$ Bakelite case (Lafayetle MS-216)
	For earphone listening, use a 2 K earphone (Lafayette MS-268)
Parts available Jamaica 33, New Y	from Lafayette Radio, 165-08 Liberty Ave., ork.

resistance value should be determined experimentally. It will be between 500 ohms and 1 K in most cases.

This three-transistor portable may be used as an amplifier tuner by connecting a 10 K resistor from C of TR3 to the negative voltage line. This resistor provides dc return for the collector of TR1 when a plug is inserted in the jack. If the amplifier to be used with the tuner does not have a capacitor in series with the input, provide one of about 0.1 mfd capacity. The connection of the 10 K resistance will have negligible effect on the loudspeaker or headphone performance of the set. The Lafayette MS-281 plug fits the jack and should be used in making the amplifier connection cable.
The receiver may be equipped with a calibrated dial to simplify station finding. The calibrations may be painted on the panel face or many be placed on paper with India ink. A sheet of celluloid or clear plastic placed over the dial scale will protect it.

Both the scale and its plastic protector can be held in place by the three screws which fasten the variable capacitor.
The tone and volume of the set can be improved by placing a thin sheet of cardboard between the back of the panel and the components.

build yourself a...
 Sterea Music Center

Stereo-Hi-Fi cabinet ensemble is modern (and modular) in design, antique in finish; units are flexible in arrangement, can be used separately also. Sliding doors by pass each other.

By R. J. DeCRISTOFORO

|F stereo (or hi-fi) hasn't gotien to you yet, it will, and here is a music center unit that will not only house your present components of any make, but also any future additions to your equipment (Fig. 1). This music center houses stereo tape deck or turntable, two-channel (stereo) preamplifier and two-channel or separate amplifiers and also has room for an AM-FM tuner placed in the stereo (two-channel) preamp compartment. In addition to arrangement adaptability, the music center provides building flexibility (Fig. 2B). You must have the main cabinet which houses stereo components plus records and the changer unit, but you can add the other units later. However, we'll begin construction with the bench so you'll have an understanding for the other units.
Building the bench. Square the slab top, part 1 in Fig. 2 and the Materials List, to size. Next cut the frames, parts 2 and 3 , slightly longer than called for. Rabbet these pieces, then miter one
piece at a time and fit to the slab top. Use plenty of glue to attach the frame pieces and drive nails up through the flange into the underside of the top. Wipe off excess glue before it dries. Now, shape the legs, parts 4, then slot the top of each to receive parts 5 . Glue and nail these in place and then add the cross pieces, part 6. Locale the assembly on the underside of the top and glue and nail it in place as in Figs. 2 and 3 with $2-i n$. finishing nails.

Drawer and Compartment. The drawer (Figs. 2 and 4) holds extra needles, pick-ups and record cleaning equipment. Make the compartment first, using the rabbet joint construction shown in Fig. 2. Glue and nail parts 7 and 8 , then cut part 9 to a tight fit. Apply glue to its edges, press in place and fasten with 2 -in. finishing nails in all edges.

Make the drawer front and sides first. Then rabbet each end of the front to receive the sides. Cut the grooves in the sides and the front for the drawer bottom. Attach the sides to the front

Lower half of main cabinet has plenty of record storage space.

using glue and driving the nails through the side pieces. Slip the bottom into place, then make and add the back. Secure this by driving nails into it through the drawer sides and up through the drawer bottom.
Be sure the drawer slides easily in its compartment. If it's a tight fit, dress the top with sandpaper.

The cabinet for the changer is made like a bott.omless box even though the construction details (Fig. 2) show the parts as they appear after they have been cut apart. Best bet is to cut the sides (parts 15) first, then the front and back (parts 16). The front piece is rabbeted along its two outer edges, the back piece is rabbeted the same way but also along the top edges. Glue and nail these parts in place, then add the top, but be sure $t 0$ space nails so they will clear the cut line

($31 / 2$-in. down from the top). When the glue has dried, slice off the top section on the table saw, then cut off the back end of this so you end up with the three parts shown in Figs. 2 and 5.

Next step is to mortise for and attach the hinges. The cut-out in the changer mounting board will have to be tailored to your unit. If you are installing new equipment (Fig. 6), you'll have a template to work with. If you are going to take the changer from an existing cabinet, remove the mounting board, too, and use this as a template to make the new one.

Use plenty of glue when assembling the top to the base and keep it tightly under clamps until the glue is thoroughly dry. To compensate for the saw cut, you'll have to move the top in from the back, but since this is the back of the cabinet, it won't be seen. After the clamps are removed,

check to see that the top closes correctly. It may be a little tight on the hinge side, and if so, will require sanding.

The wings are merely pieces of etched plywood dimensioned as shown in Fig. 2 and trimmed along two edges with the molding strips shown. Both top (part 21) and bottom (part 22) trim pieces are shorter than the corresponding dimension on part 20 so that the wing can fit in the slot cut in the top of the bench and a small amount of the other free edge can be behind the main cabinet.

Component Cabinet. The main cabinct (Fig. 7) is fairly simple to build but you must use care when laying out for the edge joints and when cutting the dadoes for the shelf and the record storage area partitions.

Cut the sides first and run the dadoes that will receive part 26 . Next, cut the bottom (part 24). Before going further, cut the dadoes for the record partitions and be sure you place them on the top surface of the bottom and the underside of the center shelf. With this done, you can assemble the two sides, the bottom and the center shelf.

Next, cut out part 27. Here, the cutout for the components (tuner, pre-amp) will have to be cut out to fit your own equipment. Work carefully -be sure you're right before doing any cutting.

Put this part in place, spacing it $5 / 8$ in. from the front edge of the parts so far assembled. Check this with a square before nailing to be sure the part is perfectly vertical. Now make and add the center divider (part 28) and the top (part 25). Part 32 is a decorative detail but also serves to hide the plywood edge on part 26.
Next step is to make the front frame of the cabinet. Size these as shown in Materials List and bevel the front edge of each strip. The grooves for the sliding doors are the same in each piece except the top. Here, although spacing is the same, the grooves should be $1 / 4 \mathrm{in}$. greater in depth to provide room so the sliding doors can be put into place (Fig. 8) or removed.

When attaching the frame pieces to the cabinet front, drill holes for $2^{1 / 2}$-in. finishing nails. Make the holes smaller than the nail shank diameter but not so deep that you can't drive the nails in solidly.

Put plenty of glue on mating edges before you begin nailing.

Cut the partition pieces to size, then make the layout for the slight curve in the front edge on one piece. Tape, or otherwise hold all the pieces together and make the cut.
You will note, incidentally, that the 3 -in. spacing between partitions will leave a narrower

Leg assembly is aftached to underside of bench with glue and nails. Siructure is simple but strong.

Drawer is good place to keep accessories-needles, record cleaning cloth, etc.

Top is sliced off changer compartment box, then glued back on again.

Skeleton structures are sufficient to support components, in this case, tuner and pre-amp.

Masonite panels make good record storage dividers. Note narrower compartment in center.
space in the center of the cabinet, but the slidingdoor overlap compensates for this. (You can use this narrower section for records you're sorry you bought.) When the partitions are shaped and edges have been sanded, slip them into place in the dadoes previously cut (Fig 9).

The back of the cabinet is a piece of perforated Masonite. Somewhere in the back, near the bottom edge, drill a 1-in. hole for speaker and record changer wiring pass-through.

Finishing. The antique finish we used is applied as follows: First, set all nail heads below the surface of the wood and fill with wood putty. Brush a full coat of clear resin sealer on all surfaces

Glue blocks (not shown in Fig. 2) can be added to increase rigidity. Note cut-out for record changer.

Deeper groove in top front-frame member allows sliding doors to be inserted.
(inside and out) and let dry. On all outside surfaces brush a full coat of flat-finish, white undercoat.

After the undercoat dries, make an antique glaze by mixing equal parts of turpentine and glazing liquid and tinting it to the tone desired. Colors-in-oil can be used or you can do a good job with walnut or maple stain. Best bet is to experiment with slight amounts of scrap wood until you get the effect that pleases you most.

Wipe the glaze on with a rough cloth being sure that it piles up in corners. Technique of application with the glaze has much to do with final appearance. Practice to establish the best wiping stroke.

Note that some leeway is possible by letting the glaze dry a while and then wiping again with a cloth dipped in turpentine. This way you can lighten the finish overall or achieve a high-lighted effect with areas of light and dark.

Let the glaze clry thoroughly, then finish up with two coats of satin-finish varnish. The last varnish coat can be rubbed with steel wool and lustered with paste wax rubbed to a high, gleaming polish.

TheMini-Player

Employing a transistorized wireless broadcaster and flash-battery-powered turntable, this self-contained record player plays all microgroove records from 33 to 16 rpm through any radio set

The Mini-player operates equally well in conjunction with a battery portable set as shown here, or with transistor, auto or line powered sets. Trim, three-speed motor is completely self-contained. 9 in. "Con-Tact."

Since components are standard, the most important item is to get a 25 's cigar box $11 / 2 \times 51 / 2 \times$

Remcve the box lid and then, with a medium grit sandpaper, remove loose paper from both lid and box. Drill holes in the motor board as shown in Fig. 2A. The trim final finish is obtained by covering the box with self-stick plastic fabric sold in most variety stores under the trade name

The phonograph turntable is just 6 in . in dia. Power is provided by a tiny 6-v PM motor operated with four flashlight cells wired in series. A spring tension clip fashioned from a strip of metal secures the cells in the cabinet. A single pole toggle switch turns the motor on and off.

Note that the two rows of flashlight cells (see Fig. 3) are separated by a strip of wood cemented to the bottom of the box. This strip measures $3 / 8 \mathrm{x}$ $5 / 8 \times 41 / 4$ in. The bronze turntable spindle bearing extends below the motorboard, and this spacer strip allows bearing clearance which would otherwise be blocked if the batteries were in two close rows.

Two brass upholstery tacks to which motor leads are soldered provide the $6 v$ plus and minus power takeoff. These are mounted inside the box opposite the

By THOMAS A. BLANCHARD

HOW would you like a record player that would work anywhere there was a radiowithout any electrical plug-in's? Here is probably the smallest non-toy, three-speed, wireless record player that could be designed.
spring brass battery retainer clip. Insert batteries so first cell has the small plus button in contact with one tack head with the fourth cell's zinc case contacting the remaining tack head. When power is turned on, turntable should rotate away from the crystal pickup arm. If not, simply reverse the sequence of the flashlight cells and motor will

Underside of Mini-player motorboard and arrangement of penlite and standard size cells.
turn in the correct clockwise direction. For future reference, the inside of box can be marked with an outline of batteries in correct polarity position.

The pickup can be any popular standard-size crystal unit with a turnover cartridge if you expect to use old records. Otherwise a pickup with a single 1 mil needle will be sufficient. The turntable features a built in adaptor for playing 45 rpm.records and drops down for playing 33 rpm and 16 rpm discs-any size up to 12 in .

Closexp view of chassis. Small block of wood holds penlite cells in position. Four-lug tie-strip simplifies mounting small components. Chassis is secured in box with α pair of $3-48 \mathrm{fh}$ machine screws.

MATERIALS LIST-MINI.PLAYER

No. Req. Size and Description
1 ferrite slug.tuned radio antenna 'Loop"' coil
1 Artonne miniature transformer \#AR 145 (100 K Primary: 2 K secondary)
1 Sylvania type 2 N233 N-P-N radio frequency transistor
molded plastic transistor socket and retainer ring
100 or 150 mmf . ceramic tubular or disc capacitors
.01 mifd. disc ceramic capacitor
.001 mfd . disc ceramic capacitor
$10 \mathrm{~K}(10,000)$ ohm $1 / 2$ or $1 / 4$-watt resistar
11 K ohm $1 / 2$ or $1 / 4$-watt resistor
5 K ohm $1 / 2$ or $1 / 4$-watt resistor
$21 / 2 \times 43 / 8 \mathrm{pc}$. of thin steel, copper or aluminum for chassis
cigar box-minimum dimensions: $11 / 2 \times 51 / 2 \times 9^{\prime \prime}$
/4 yd "Con-Tact" plastic fabric
1 crystal phonograph pickup with 1 mil needle
1 miniature, battery-operated phono motor with $6^{\prime \prime}$ turntable (Alliance, General Industries, Gerınan/British import)
$2 \quad 11 / 2^{2}$, penlite ceils
$4 \quad 1 / 2^{v}$. size D flashlight cells

To secure the motorboard to the cabinet, cement two blocks of wood $3 / 4 \times 1 \times 13 / 8$ in. in the center of box. Fashion a spring clip to form a contact for one of the penlite cells used to power the transistorized phono oscillator and secure it with a small wood screw before the block in foreground (see Fig. 4) is cemented in place. A flat stripyod metal is cemented to the corner of the box 18 Sontact to the second penlite cell.

Some expeymenters might at this point get the urge to obtain the $3 v$ needed to operate the oscillator by tapping the larger batteries at the spring retainer clip. Boys, it won't work! The PM motor is a brush type unit, not induction, and the hash noise will be broadcast along with the recorded music. Separate power supplies eliminate any chance of electrical interference.

Transistor Oscillator. The most interesting part of the project is the tiny transistor-operated oscillator by virtue of which it is only necessary to place the record player near any radio, tune the set to 1600 kc or any nearby point where a regular station doesn't tune in, and you are able to listen to the recorded music through the set's speaker loud and clear with no physical connections of any kind.

The oscillator is a transistorized version of the Colpitts circuit. The tank coil is nothing more than the popular ferrite type radio antenna coil. The ferrite slug is turned in or out to tune the oscillator to any frequency from 1620 kc to about 1000 $k c$ so that a "clear channel" can be found on the radio dial.

The chassis is fashioned from a small piece of aluminum, copper or tin-plate as shown in Fig. 2B. Note that one corner is slotted, then bent up to provide a convenient mounting arrangement for the transistor socket. Note, also, in Fig. 4 that the original
design included a 4-lug tie strip for convenience in making circuit connections.

So long as the wiring of components agrees with Fig. 5, you can vary the design to suit your whims. A piece of flexible insulated hookup wire attached to the coil lug is all the antenna necessary. A longer wire will, of course, increase the range of the oscillator.

While the circuit is almost foolproof, it must be pointed out that just any transistor will not work as an oscillator. The transistor must be of the RF N-P-N type such as the popular-priced Sylvania 2N233; AF P-N-P type will not work.

Since a switch was required to turn off or on penlite power to the oscillator, we employed a miniature 1 megohm potentiometer with switch and included a separate volume control. You can, for all practical purposes, leave out the volume control so long as you provide an on-off switch. The phonograph pickup leads may be

5

connected directly to the 100 K primary of the miniature Argonne \#AR 145 input transformer and volume controlled from the radio set.

If hum appears when the pickup is handled so long as you hold it, ground the pickup arm's swivel to the chassis. Of course, the hum isn't present while records are playing, so this grounding can be optional.

This truly novel record player can even be used with car radios, simply by wrapping the oscillator lead loosely around the car's whip antenna.

Miniature Variable Voltage Power Supply
 \author{ By BRICE L. WARD

}THOUGH miniature in cost, labor and physical size, this power supply is big in all other respects. It will supply a full $25 v$ adjustable from zero, and up to 35 ma of current depending on the load. It will save hair-pulling and gnashing of teeth by supplying the voltage you need for your transistor circuits with the twist of a knob and it can handle any five- or six-transistor circuit with ease.

It has no fuse or switch because it needs none. If the leads are accidentally shorted, the current will jump to its maximum of 40 or 50 ma , the voltage will drop to a low value and it could be left this way all day with no harm.

Printed Circuit. Begin construction by laying out the printed circuit (Fig. 2) on a piece of single side laminate board (see Materials List) using $1 / 16$-in. tape resist or, if preferred, a ball-
point resist tube. You can use tape resist circles at the numbered points, if you wish. These should be pressed down firmly and care should be taken to eliminate air pockets where the circles and lines join, otherwise undercutting will result during the etching process. One excellent way to eliminate this air space is with thinned liquid resist (resist can be thinned with lighter fluid). Using a small brush, carefully touch up the air spaces, allowing the liquid resist to flow under the tape.
Remove the small cutouts from the center of the tape resist circles. The etched centers will serve as drill guides later. The large circles can be painted in with liquid resist, put on with a ballpoint tube or laid out with tape resist and trimmed or left square.
After etching the board, remove the resist and clean the board thoroughly with scouring prowder. Tape resist can be pulled off. Liquid or ballpoint resist is removed with lighter fluid.

As indicated in Fig. 2, drill points 1, 2 and 4-19 with a \#50 drill (about $1 / 16$-in.) and 20 and 21 with a $\# 26$ drill. Match the distance between points 20 and 21 with your meter lugs to get a good fit.

Now, using a hot soldering iron and working quickly to prevent blistering of the copper laminate, mount the following components in the order given, following schematic-pictorial of Fig. 3. Mount all components on the etched side of the board. Bend the leads of C 1 down and push them through the holes at points 1 and 2. Push the capacitor down against the board and solder points 1 and 2. Clip off the leads behind the board. In the same way, mount R1, R2, R3, R5, CR1 and CR2 but solder only points 5-9 and 14-17 inclusive. Be sure CR1 and CR2 are mounted with polarity shown in Fig. 3B. Mount C2 and C3 with their positive ends at 11 and 13 respectively.

MATERIALS LIST-MINIATURE POWER SUPPLY	
Desig.	Size and Description
Cl	2-I11fd, 200-v metalized maper capacitor (Aerovox P82Z)
C2, C3	$500 \cdot \mathrm{mfd}$. $25 \cdot v$ dry electrolytic capacitors (C-D Type 5002)
CR1, CR2	GE IN91 germanium rectifiers
L1	GE $\# 51$ pilot lamp
M1	$0-5 \mathrm{dc}$ milliammeter (Lafayette miniature panel meter TM-401)
R1	1000-ohm, $1 / 2$-walt carbon resistor
R2	200-ohm. 1/2-watt carben resistor
R3	3700-ohm. $1 / 2$-watt carbon resistor
R4	1500 -chm, 2 -watt wire wound potentiometer (Mallory R1500L)
R5	$10 \mathrm{~K} \cdot$ ohm, $1 / 2$-watt $\pm 1 \%$ precision resistor (Aerovox Car botilm)
Case	Lafayette Bakelite case \#MS-216 and panel \#MS-217
P. C. Material Banama jacks, zip cord and plug	
	XXXP copper laminate-one side- $3 \times 41 / 2^{\prime \prime}$ (MS.512)
	6 oz . of etchant (PE.3)
	Tape resist $1 / 10^{\prime \prime}$ (PRT-2) Tape resist circles (PRTD-6)

Solder a piece of bare wire to the shell of L1 and tin the button on the bottom, then tin point 3 at the same time, pressing the lamp firmly into place. Solder point 4. Strip ends of three 5 -in. pieces of insulated wire (about $1 / 4$-in.) and push them into the holes at points 18,19 and 22. Solder these three points and clip off all the leads on the

3 B

opposite side of the board, leaving that side as smooth as possible.

Assembly. Lay out and drill the front panel as shown in Fig. 4. The meter cutout is best made with a fine tooth coping saw or jigsaw. Drill a $1 / 4$-in. hole for the line cord (centered and about $3 / 4$ in. down) on one end of the case. Mount the meter using four 4-40 machine screws and nuts, and mount the potentiometer and banana jacks. Sandwich the components between the printed circuit board and the front panel and using the screws supplied with the meter, attach the printed circuit board to the meter lugs through holes 20 and 21. Complete the wiring according to Fig. $3 A$. Tin the ends of the line cord and run it through the hole in the case. Tie a single knot about two inches back from the tinned ends and solder one lead to 23 , the other to 24 . Now carefully recheck the wiring and attach the panel to the case with 6-32 screws.

P.C. board-mounted components.

Testing. Turn the potentiometer completely counter-clockwise and plug the unit into the receptacle. Turn the pot clockwise (up) and you should get a reading on the meter. The maximum reading will be between 20 and $30 v$. Turn the pot down again and put a multimeter, set to read at least 100 ma , across the output leads. Again turn the pot up slowly. The reading will go to about 50 ma and drop back to between 30 and 40 ma. The voltmeter will indicate a very low voltage. This latter test is not necessary, but serves to show the inherent safety in the power supply.

There are one or two precautions to observe. Always turn the pot up slowly to the desired voltage to prevent sudden current surges, and before disconnecting or connecting the load, always turn the pot all the way down (zero voltage). That's all! Enjoy your experiments.

Tape Splicing Technique

- Clear fingernail polish serves as an excellent cement when splicing recording tape. Taper cut the two ends of tape at a 45° angle, then daub some of the polish on the leading edge of one

piece and overlap the other piece $1 / 8 \mathrm{in}$. Let dry for about ten minutes, then daub polish on the overlapping edges to insure a perfect splice. You'll have a firm, long-lasting splice that can withstand considerable tension and flexing as the tape passes through the recording machine, and is just as good as one made with cellulose splicing tape.-John A Comstock.

Fuse Holder Eases Testing

- Ever wish there were some way you could hang on to both of your test prods with one hand while the other works the meter knob? Take one of those fuse holders used when you replace a pigtail fuse with an ordinary fuse ard snap the barrels of your test prods into it. You can often touch the red prod to a hot terminal and the other to a chassis ground point nearby. If the two test points are located farther apart, take the barrel of each prod out of the clips at the lower end of the holder and this will put the prod tips farther apart. You can even use the fuse holder to keep pairs of test leads from becoming separated when many are stored together.

the same package, one operating as a super-regenerative detector and the other as an audio amplifier. The detector (so sensitive that it makes electron noise sound like a frying egg) detects FM or AM signals which the second section of the tube amplifies. The receiver is battery powered and can be operated anywhere.

The base of the chassis is a piece of $3 / 4 \times 5 \times$ 5 -in. pine, the panel is $1 / 16$-in. aluminum sheet, $5 \times 5 \frac{1}{2}-\mathrm{in}$. Round the panel corners with a file and wash it in vinegar to give it a dull satin finish. The sub-panel is a piece of $1 / 8$-in. Masonite, $31 / 4 \times$ $41 / 4$-in. Two $3 / 4 \times 3 / 4$-in. brackets of $1 / 16$;-in. aluminum hold the subpanel to the base with machine and wood screws. The sub-panel is placed $11 / 2$ in. from the rear edge of the pine block.

1F you're a short-wave listener, signais from Europe, South America, and Asia are probably old friends. Many interesting signals, however, originate within a few miles of your home that your receiver does not hear. Here is a simple receiver that will pick up those signals-those above 30 Mc -and bring the police, fire department, and a dozen other local stations right into your shack.

Since the 10 -meter Amateur band is covered, there's also plenty of DX. Besides most of the VHF stations within 50 miles, this recever (in Jonesboro, Ark.) has logged hams in Mexico, Cuba, Alaska, and Japan; paging services from California to Puerto Rico; anc Solith Arnerican Police nets-all with only a 4 -ft. antenna! The surprise came when it was hooked to a beam antenna and received signals from the BBC Television Service in London. . . . DX in anybody's book!

The receiver covers 27 to 200 Mc with four coils. The type of stations you'll hear a: with the coil winding chart. In many localities signals from ships, highway departments, motion picture studios, pipelines, ambulances, and industrial plants can also be heard.

The set uses only one tube, but is actually a two-tube receiver. The 12 AT7 has two tubes in

A small aluminum bracket supports the tube socket which is on the left edge of the sub-panel,

about $3 / 4$-in. from the top. The tuning capacitor (C 1 in Fig. 2) is in the center of the sub-panel, $11 / 2 \mathrm{in}$. from the top. Antenna jacks (F1 and F2) are on the right side, $3 / 4 \mathrm{in}$. apart, and the coil jacks (J1 and J2) are mounted 2 in . apart and $1 / 4 \mathrm{in}$. from the top edge of the panel. Screwfasten the front panel to the pine block,

Center the hole for the tuning capacitor shaft in the panel $21 / 4 \mathrm{in}$. from the top edge. The regeneration control (R4) and headphone jack (J3) are mounted directly to this panel; J3 is insulated from the panel by drilling the mounting hole a little larger than required and using two fiber washers for insulation.

It is necessary to modify the tuning capacitor (C 1) before mounting it. With pliers, carefully remove all but the middle, stationary plate of the capacitor. Do not remove any of the plates that rotate. The capacitor Cl must also be insulated from front panel to avoid changing the receiver's frequency when the panel is touched. If the regeneration control is purchased new, the shaft will be longer than necessary and most of it will have to be cut off with a hacksaw. Slip a 1 -in. piece of small rubber tubing ($1 / 4-\mathrm{in}$. ID) over the shaft of Cl and slip the shaft from the regeneration control into the other end of the tube. The fit should be tight, but the two metal shafts should not touch. Use a panel bearing or rubber grommet to support the shaft at the front panel.

The battery clips (F3, F4, F5) are mounted with small wood screws on the right rear of the chassis (see Fig. 3). Identify each clip to avoid mistakes in connecting batteries. Solder the antenna coupling coil (L1) to terminal lugs on the machine screws holding the antenna terminals. The leads on this coil are twisted together and long enough to permit the coil to be brought next to L2.

Choke Ch-1 is mounted next to the regeneration control (R4). This part can be a small audio choke or the primary winding of a miniature output transformer (found in most scrap boxes or obtained from an old radio at a radio service shop. This part can also be purchased new and is less expensive than a coupling transformer.)

It is important, in wiring the receiver, that the leads connected to J1, J2, and C1 be kept as short as possible. Solder one lead of RFC1 to
the terminal of C1 and the other to a terminal lug mounted on the chassis. Connect one lead of C4, C5, and Ch-1 to the lug on the chassis also. The other lead of C 4 can be connected to another lug with a piece of hookup wire leading from the lug to the tube socket. Connect C5 to F4.

Wind the coils on $1 / 2-\mathrm{in}$. forms (see Table A) and then slip them off and spread to the right length. Bend the ends of the coils so they plug easily into J1 and J2. The single strand \#12 copper wire used in house-wiring is easiest to obtain for these coils. Strip off the insulation and clean the wire with fine sandpaper.

When the wiring is completed, connect the batteries, plug in headphones and Coil A. After the set has been turned on and has warmed up, a loud hissing noise should be heard in the headset as the regeneration control is rotated clockwise. If this frying sound is not heard, check to see that the tube filaments are lit. If not, there is a wiring mistake or the tube is bad. If filaments are lit, check the wiring again and try a . 002 or .003 mf capacitor in place of C 5 . The capacitor C5 is critical and the correct value may vary with different receivers.

Once the hissing sound is heard,
Base of receiver is $3 / 4$-in, pine stock, sub-panel (behind front panel) is $1 / 8-\mathrm{in}$. Masonite.

Coils are all $1 / 2 \mathrm{in}$. in diam., of \#12 copper wire. Close-wind coils and spread turns evenly to uiven length with a knife or screwdriver blade. To raise frequency coverage of coils, increase spacing between turns; to lower frequency, squeeze coil so spacing is decreased.

MATERIALS LIST-VHF RECEIVER			
B1	671/2-v. hattery, Burgess K45 with snap-on	R2	$500 \mathrm{hm}, 1 / 2$-watt resistor
	connector	R3	1 megohm, $1 / 2$-watt resistor
B2	6.v. lantern hattery, Burgess, Eveready, or Ray-0-Vac	R4	$50,000 \cdot 0 \mathrm{hm}$ volume control, Centralab B-31 with KB-1 switch (Sw 1)
Cl	3-15 mmf, variable capacitor, Bud MC 1870, modified according to text	RFCl	1 mh RF choke, National $5-50$, or 6^{\prime} to 8^{\prime} of \#28 dec solid
C2	47 mmf . mica capacitor		copper wire wound on $1 / 4^{\prime \prime}$ forin
C3	. 25 mf . 100-v. tubular, Sprague 68P19	V1	12 AT7 radio tuhe
C4	. 01 mf . 400 v tubular, Sprague 68P8	1	9-pin miniature tube socket
C5	. 0011 kv . dise ceramic	1 pr	inagnetic headphones
Chl	midget audio choke or primary of midget output transformer	10	\#8 terminal lugs
$\begin{gathered} F 1, F 2, F 3, \\ \text { F4, F5 } \end{gathered}$	medium Fahnstock clips	6	$6.32 \times 1 / 4^{\prime \prime}$ machine screws with nuts small wood screws
J1. J2	metal or molded tip jacks	1	coil of solid strand hook up wire
J3	standard phone jack		$1 / 16^{\prime \prime}$ aluminum sheet, $3 / 4{ }^{\prime \prime}$ pine, and Mason.
Ll	5 turns copper hookup wire, closewound $1 / 2^{\prime \prime}$ dia.		ite for chassis, brackets and panel tuning dial and knob
12	$\begin{aligned} & \text { \#12 copper wire wound according to } \\ & \text { Table A } \end{aligned}$	$1 \mathrm{pc}$	rubber tubing $1^{\prime \prime}$ long with $1 / 4^{\prime \prime}$ inside dia. tiber washers $1 / 4^{\prime \prime}$ I.D. and $5 / /^{\prime \prime}$ O.D.
R1	4.7 megohm, 1/2-waft resistor		

connect an antenna and move L1 close to L2. Tune across the band until a station is heard, then adjust the regeneration control for the best reception. If the hissing sound is not present all across the band, move L1 away from L2 until the receiver regenerates at any setting of C 1 .
Naturally, any radio works best with a good antenna, but this receiver will do surprisingly well with only a short piece of wire as an antenna. For best performance, the antenna should be cut exactly to your favorite frequency and it
should be as high as possible. A simple folded dipole or vertical antenna will work well and, in some cases, it is best to ground one of the antenna terminals.

If you happen to live in an area where TV signals are weak, this receiver may interfere with nearby TV sets when tuned to a TV station. This is because the detector generates a weak signal which the TV set receives. If such interference is noted, do not listen to TV stations when it may disturb a nearby set.

Light for Tube Replacement

- When replacing miniature tubes in a TV set, a penlight flashlight with an 8- to $10-\mathrm{in}$. flexible extension (available at tool and surplus stores) will provide light at sockets which can not be otherwise lighted.-H. Leeper.

Drill's Chuck Vises Work

- A drill's chuck can double as that extra hand that's needed to hold small lugs, jacks, plugs, and other parts while you solder wires to them. Soldering is a lot easier and there's no chance of painfully burning your fingers on hot parts by trying to hand-hold them. You can use an ordinary hand drill for the purpose or an electric drill-either does the job nicely.-J.A.C.

Hum in Iron-Core Transformer

In the case of hum due to vibration of the laminations in an iron-core transformer, loosen the mounting screws so the laminations will spread apart slightly, paint the edges of the laminations with shellac or varnish, allow to dry for several hours, then tighten the mounting screws.

Capacitance Relay

By W. F. GEPHART

> Vacuum-tube capacitance relay circuits have several disadvantages in certain applications such as burglar alarm and other continuous-duty circuits. This transistorized unit overcomes those disadvantages

VACUUM-TUBE capacitance relay circuits consume appreciable power, requiring line voltage or excessive battery replacement, and are prone to trouble due to the tubes and high voltage required. Transistorizing these circuits, though it sacrifices sensitivity to some extent, provides a means of continuous trouble-free, economical operation. The unit shown in Fig. 1, for instance, will operate continuously on ac for less than half-a-cent a day and operation cost is very little more on battery operation. And, since transistors are used, shock hazard is eliminated and the chance for circuit breakdown is greatly reduced.
The circuit (see Fig. 2) consists of a transistor oscillator feeding a transistor-controlled relay. The oscillator biases the second transistor to the point of conducting enough current to close the relay, and when an outside capacitance stops oscillation, current flow in the seconal transistor is reduced and the relay opens. Even though the relay is energized under "normal" conditions, the current flowing through its coil (1.8 ma) is far below the coil's continuous-duty ratirg.
Several types of coils may be used for the oscillator coil (L1). The one shown is a broadcast band antenna coil, but a BC band oscillator coil or IF transformer may also be used. The connections for the coils that can be used are:

Terminal on Schematic, Fig. 2	Antenna Coil	BC Ose.	IF
1	Coil	Transformer	
2	Avid	Grid	Plate
3	Antenna	Fround	B+
4	Ground	B+	Grid for dioce)
			Grid (or diode) Fetain

the trimmer capacitor should then be disconnected. If the capacity of the lead is still too great, the unit must be moved closer to the antenna to enable a shorter lead to be used.
Figure 3 shows the panel and chassis layout. Any layout could be used, but the unit should be enclosed in a steel cabinet in all cases. The unit is shown with a built-in ac power supply, although batteries could be used by connecting a $15-v$ battery supply to points "A" and "B" (Fig. 2), observing proper polarity. The ac power supply shown delivers in excess of $15 v$ under full load, and this voltage must be reduced to the $15-v$ limit of the transistors by selecting a proper value for R6. Normally, $800-900$ ohms

In all cases, the coil should be shielded. If you use an IF coil, use a 270 kc version to avoid the possibility of interfering with nearby radios. Except when an IF coil is used, no capacitor is used across coil; the distributed capacity of the coil and wiring is utilized for oscillation. In the unit shown in Fig. 1, with a BC antenna coil, the oscillation frequency of the components will be approximately 100 kc .

The "antenna" is connected to the collector of TR1, and touching it provides a capacitative ground between the collector and emitter, and stops oscillation. In burglar alarm applications, this lead can be connected to the metallic frame of the item to be protected (cash register, safe, door knob, etc.), so that touching it will stop oscillations. In other cases, a metal plate may be fastened to a window sill or other place to achieve the same result (see Radio-TV Experimenter, No. 555, 75¢, "Experimenting with a Capacity Control," p. 143), or the lead may be attached to a door or window screen. If the "ground" lead $(+\mathbf{1 5 v})$ is connected to another metal plate in the vicinity of the antenna plate or screen, often the circuit will trip without the person actually touching the antenna plate. The voltage is so low that touching both leads is harmless and cannot be felt.

A trimmer capacitor (C4) is connected between the collector of TR1 and ground to minimize the additional capacity required to stop oscillations. With the antenna connected, this should be adjusted so that oscillations are just maintained at a level that will hold the relay closed, and any additional capacity in the circuit will cause the relay to open. Sometimes, in the case of long antenna leads, the distributed capacity of the lead itself will stop oscillations, and

MATERIALS LIST-CAPACITANCE RELAY (All resistors are $1 / 2$ watt)	
Desig.	Description
R1	. 1 megohm
R2	47K
R3	10K
R4	2.2 megohm
R5	5 meg potentiometer
R6	820 ohms (see text)
C1	. $01 \mathrm{mfd}, 200 \mathrm{v}$
C2, C3	22 mmf . ceramic
C4	70.480 mmf . trimmer capacitor
C5, C6	25 mfd . 50-v electrolytic
L1	oscillator coil (see text)
11	12.6-v filament transformer (Merit P-2959)
TR1, TR2	2N107 PNP transistor
D1	1N48 diode
D2	1N38 diode
Ry	SPDT relay, 8000 -ohm coil (Sigma 4F-8000-S/SIL)
Rect. 1	four 1N48 diodes, bridge-connected
	Steel cabinet $4 \times 5 \times 6^{\prime \prime}$ (Bud CU.
	729); two transistor sockets;
	tiree insulated binding posts;
	miscellaneous hardware

Back-of panel, top view of unit showing transformer, coil, relay, sensitivity control and two transistors.

If the unit is to be placed in a service where the relay w.ll operate frequently, such as in a counting circuit or, say, a customer-activated window display, place a diode (D2) across the relay coil (shown in dotted lines in Fig. 2). The inductive pulse from the relay coil when it releases is hard on the transistor, and frequent usage would ultimately damage TR2 unless the diode D2 is used.
The relay specified in the Materials List is adjusted to close on 1.5 ma at the factory. This adjusiment should not have to be changed since TR2 will normally draw about 1.8 ma when biased by the oscillator output. Potentiometer R5 is used to adjust the "no-signal" bias on TR2 so that the relay barely closes when the circuit is oscillating normally. A reduction in the ampli-
tude of, or the cessation of oscillations then causes the relay to open, closing the circuit to the external terminals.
The circuit can be used for burglar alarms as neentioned, or for any other "touch" or proximity operated circuit switching. By placing two metal plates close together, where a raindrop will bridge the gap between them, the circuit can be used as a "rain alarm." The high resistance direct connection between the plates (one connected to "antenna" and one to "ground") will not damage the power supply, but will stop oscillations. However, in the case of a direct, low-resistance connection between the "antenna" and "ground," the circuit should be disconnected promptly after the alarm to minimize drain on the power supply, particularly if batteries are used.

Cloth Removes Stubborn Knobs

- When you wish to remove a stubborn press-on type of radio or TV knob, just loop a twisted scrap of strong soft clath behind the knob, gripping the loose ends firmly in your fingers. Press

against the cabinet front with your thumb tips, at the same time pulling firmly at the cloth. The knob should work free without damage to cabinet or knob.-Frank A. Javor.

It's an infinite baffle-

Six-Meter Station for the VHF Amateur

By C. F. ROCKEY, W9SCH/W9EDC

For hams only, the new improved six-meter rig that reaches out.

SPECIFIC features provided in this six-meter station are:

1) A stable, sensitive superheterodyne receiver, free from overloading effects under reasonable operating conditions.
2) A variable-frequency oscillator, controlling the transmitter output frequency. This makes it possible to move out from under powerful interfering stations, and to select a clear operating frequency.
3) Transmitter power input of 15 to 17 watts. This is sufficient for consistent six-meter work.
4) Provision for CW radiotelegraph operation on the six-meter band. This feature is not usually provided on many commercially-built units.
5) Clean, crisp signal quality, even when an inexpensive carbon microphone is used.
6) All parts are readily available from any well-stocked amateur parts distributor. No expensive, "special" tubes are required. (Furthermore, many of the more-expensive parts used in the first unit-see copy beneath doited line below-can be appropriated for this one. But even if all new parts are purchased, the total cost should not exceed $\$ 100$.)

As with all VHF equipment, construction of this unit requires a degree of experience and judgment, but the unit itself is neither difficult nor tricky to set up. Before you start this, or
any other serious VHF project make sure you have a good grid-dip meter at hand (see pp. 130131).

Power Supply. AF Circuits, Receiver. Begin construction by drilling and punching the major holes in the chassis, as shown in Fig. 2. Make the power transformer cut-out with a $1-\mathrm{in}$. square Greenlee punch (taking successive bites from the corners) or with a nibbling tool. All socket holes, except the rectifier and voltage regulator sockets, should be punched with a $3 / 4-\mathrm{in}$. dia. Greenlee punch; the rectifier and voltage regulator socket holes are punched with a $11 / 6$ - in . dia. Greenlee socket punch. The clearance hole for the pivot of the Send-Receive switch, and the lug-holes for the receiver IF transformers may likewise be punched with the $3 / 2-\mathrm{in}$. punch, elongating the latter with a $1 / 4-\mathrm{in}$. rat-tail file until each provides ample clearance for the transformer connecting lugs. Although the mounting holes for them should be drilled and checked, do not mount the power transformer, IF transformers, modulation transformer, or filter cnoke until they are actually wired into the circuit.

The small mountirg holes are best located by using the particular componert to be mounted as a template, or measuring directly from it. Tube socket key or pin pasitions are best decided by direct reference with the under-chassis photo

[^15]the simple receiver is occasionally overridden by powerful nearby stations in metropalitan areas.

This improved six-miter stalion, on the other hand, has proven itself practieal in both big cities and in the less active VHF regions. Here in the Chicago area. for instance, it has seldom failed to provide enjoyable contact whenever turned-cm. even though only a simple dipole antenna is used with it. A good directional. "beam" antenna will enable it to compete anywhere, and against commercially built equipment costing several times as much.

Now, connect a line cord to the line terminals on the terminal strip and plug in the 5U4 and the VR 150/OD3 regulator tube.
Turn on the switch on the regeneration control potentiometer and plug the cord into the power line. The rectifier (5U4) filaments should glow a dull red, and the VR tube should be filled with a pale purple glow. Measure the dc B+ voltage to the chassis. Any value between 400 and $500 v$ is normal. Between pin No. 5 and ground the voltage should be very close to $150 v$. Under load, the full voltage will be about 350 v .

With the power supply completed and checked out, complete the audio frequency sections in both the receiver (Fig. 6) and the transmitter, (speech amplifier and modulator, Fig. 7). Each 12AT7 triode section comprises a separate and distinct AF amplifier stage. (Refer to Table A to insure correct connections to the pins of these and all other tubes.) To check the operation of
(Fig. 4) and by reference to circuit diagrams (Figs. 5, 6 and 7). Provide the shortest, most direct grid and plate leads in each case. Mount each socket to the chassis, using 4-36 rh screws and hex nuts for the miniatures and 6-32 rh screws with nuts for the octals. Place a soldering lug under one of the screws of each socket to provide a common ground point for that stage. Mount the insulated tie-lug strips using the under-chassis photo (Fig. 4) as a guide. A liberal use of insulated tie-lug strips makes possible a neat and mechanically rigid wiring job. If you plan portable operation, put lock washers under all nuts for increased mechanical security. Mount all tube sockets and the terminal strip, as well as most insulated tie-lug strips before beginning the wiring, as well as the four-pole Send-Receive switch.

Wire all of the power supply (Fig. 5), except the power transformer, then mount and wire the power transformer, running ac power line connections, B+ supply leads, and $6.3-v$ heater supply leads along the edges of the chassis. Fasten electrolytic filter capacitors, by their leads, between suitable lugs, to hold them firmly in place.

When you have finished wiring the power supply, including a B+ lead to the Send-Receive switch, measure the dc resistance from $B+$ to ground with a serviceman's ohmmeter. There is no limit as to how high this resistance should be, but it should not be less than 50,000 ohms.
each stage as it is wired, plug in the tube and apply power. Connect a ceramic or mica capacitor of at least 1000 mmf in series with a good pair of magnetic headphones, ground the other wire of the phones and connect the free end of the capacitor to the plate of each AF stage as it is completed. Now touch a screwdriver to the grid of that same tube. If the circuit is operating correctly, a characteristic clicky buzz will be heard in the phones.
For an overall check of the receiver audio amplifier when this section is completed, plug the phones into the energized circuit (Send-Receive switch in Receive position) and listen for the clicky buzz when each grid is touched in turn. The transmitter AF system can be given an overall check by connecting a $100-\mathrm{K} \mathrm{ohm}$ resistor in series with phones and connecting this series combination between the green and black (across the secondary) of the modulation transformer. With all tubes in place, power applied, and the S-R switch in Send position, loud, clear speech should be heard when the mike (connected to appropriate terminals) is spoken into.
With audio-frequency and power-supply circuitry completed and checked, begin on the receiver second detector by winding the coil for this stage, L_{4} (see Fig. 8). Be sure that this, and other coils are wound exactly as described. More trouble probably can arise over an improperlywound and connected coil than from almost any

504	table a-tube Pin Connections							
Fil. 2 and 8	Heaters	$3 \text { and } 4$		$\frac{\text { Triode No. } 1 \text { \| Triode No. } 2}{4 \text { and } 5 \text { (Tied together) \& } 9}$		Heaters	3 and 4	
Plates 4 and 6	Grid No. 1 Grid No. 2 (screen) Plate	(10r 7	Grid Plate Cathode	213	7		Grid No. 1	
						Grid No. 2 (screen)	6	Pin 5 to 6000 ohm resistur and 8+
	Cathode	5 2			8	Grid No. 3 Plate	$\stackrel{2}{5}$	
						Cathode		

(Note: Grids numbered starting from cathode)
other error. Be sure that the specified iron slug forms (National XR-50) are used in all instances.

The regenera-tion-control potentiometer controls the screen grid (grid No. 2) voltage on the 6AG5 second detector tube.

Wire this, and the rest of the second detector by reference to Fig. 6. Keep the grid, plate and cathode leads short and direct, although the heater, $B+$, and screen supply leads may be run in the corners of the chassis for convenience.

You will note that the second detector receives its $\mathrm{B}+$ supply directly from pin No. 5 on regulator tube. Be careful to avoid shorts between the pins of the tube socket, (use no more solder than necessary upon any connection) and don't forget the 50 mmf ceramic capacitor across the coil. When the sec-ond-detector wiring is completed and checked for errors, plug in the 6AG5, the receiver 12AT7 and the phones. With power applied and the S-R switch in Receive position, slowly advance the regeneration control toward the right. A smooth, quiet "thud" indicates that this circuit is operating correctly. If there is no "thud," recheck wiring; if tube is

Under-chassis view of sixmeter rig, showing typical placement of circuit components.

[^16]
good, little else can cause difficulty except an improperly wound or connected coil. When the detector is thus apparently operating, bring the lead-in from a fairly large antenna near (but not touching) the coil. By rotation of the slug of this coil, it should be possible to hear a number of shortwave code and phone stations in the 10 -

TABLE B RESONANT FREQUENGY DATA FOR COIL ADJUSTMENT:		
Coil Na.	Resonant Frequency	Remarks
L_{1}	51 Mc	Peak with 50 mmf
L;	51 Mc	
L,	Should tune from about 30 to 43 Mc as receiver tuning capacitor is rotated	Adjust both coil slug and 35 mmf oscillator tank capacitor
L_{4}	Peak at 10.7 Mc	
L_{8}	Should tune from about 6.24 to about 6.75 Mc as trans. VFO tuning dial is rotated	Adjust both slug and 100 mmf VFO tank
L.	Peak at 12.5 Mc	
L_{7}	Peak at 25 Mc	
L_{8}	Peak at 51 Mc	
L.	Peak for maximum output on operating freq. (50 to 54 Mc)	

When the IF amplifier has been completely wired, check it over carefully for mistakes and for solder shorts. Insert the receiver audio tube, second detector, and both IF amplifier tubes, make sure all shields are in place upon those tubes requiring them, plug in phones and apply power. Then, using a grid dip meter, carefully adjust the second detector coil to resonance at 10.7 megacycles. Throw the S-R switch to Receive and turn down the IF gain control. Turn up the second detector regeneration control just past the "thud" point, on the oscillating side, and readjust the second detector coil tuning slug until the whistle of the grid dip meter is clearly heard in the phones. Now, turn up the IF gain control and adjust each tuning slug (top and bottom) on each IF transformer carefully for the loudest response from the grid dipper. Adjust the gain and the location of the dip meter with respect to the set to provide a clear whistle but to avoid overloading. The IF amplifier is now roughly aligned. Final alignment will be completed later.

Proceed with the 12AT7 oscillator-mixer. Wind the mixer coil (L2, Fig. 8) and the oscillator coil (L3, Fig. 8) carefully and install these under the chassis. Also mount the 35 mmf . oscillator tank capacitor and the 15 mmf . tuning capacitor. Since these circuits operate at high frequency, it is necessary to keep all grid, plate and cathode leads short and direct and return all grounds for one stage to the same lug on the chassis, insofar as possible. Heater and B+ supply leads again should be run around the corners of the chassis. (The os-

MATERIALS LIST-SIX-METER RIG

No. Req'd	Description	No. Req'd	Description
1	Jones barrier terininal strip, 8-terminal (Madel No. 8-140)	$\frac{1}{3}$	$.01 \mathrm{mfd}, 600$ working volt, paper capacitor (Aerovox) l-watt carbon resistors, 220 ahtn
1	aluminum chassis $4 \times 13 \times 17^{\prime \prime}$	6	1 -watt carbon resistors, 22 K ohm
2	8-prong, actal tube sackets, Amphenal	3	1 -watt carbon resistors, 47 ohm
6	7-prang miniature tube sockets, Amphenol unshielded	6	1 -watt carbon resistors, 47 K ohm
4	7-prong miniature tube sockets, Amphenol unshielded, with fitting for shield	1	l-watt carbon resistor. 1000 ohm 1 -watt carbon resistors. 100 K ohm
4	shields for above, Amphenol, to fit 6AG5 tubes	4	1 -watt resistors, 220 K ohm
3	9-prang ininiature tube sockets, Amphenal, unshielded	2	1-watt carbon resistors, 1 megohm
1	common push button (from any hardware store)	1	1-watt carbon resistor, 10 megohm
1	miniature porcelain cleat socket (from any hardware store)	2	1-watt carbon resistors, 2.2 K oh m 2-vitt carbon resistor, 220 ohm
2	FM I.F. transformers 10.7 megacycle (type: Meissner	1	2-watt carbon resistor, 47 K ohm 10 K ohm, 20 watt, wire-wound resistor, I.R.C.
1	line cord and plug	1	$6000 \mathrm{hm}, 20$ watt, wire-wound resistor, I.R.C.
1	4-pole double-throw Federal anti-capacity switch (type 1424)	1	100 K linear taper potentiometer with switch (Maliory) 10K linear taper potentiometer (no switch, Mallory)
2	vernier tuning dials (National type BM)	2	50 minf variable capacitors (Bud type No. 1873)
4	plastic knobs, for 1/4" shaft	2	Bud 15 mmf variable capacitors (Bud type No. 1870)
1 pr	single-circuit phone jack (Mallory)	1	35 minf variable capacitor (Hammarlund type No.
1 l pr	good maynetic head phones (Trimm) single-button carbon microphone (carbon type F-1 from Telephone Engineering Co., Simpson, Pa.)	7	MAPC.35) National type XR50 iron slug coil forms
1	driver transformer (Thordarson type 20A22)	1	power transformer (Thordarson 22R07)
100^{\prime}	plastic insulated solid hook-up wire (one roll)	1	filter choke (Thordarson 20C55)
$1 / 4-\mathrm{lb}$.	No. 22 double cotton covered magnet wire	1	modulation transformer (Thordarson 21M54)
$1 / 4-1 \mathrm{lb}$.	No. 26 double cotton covered maynet wire	1	$5 \cup 46 \mathrm{~B}$ tube
Assar	tment of tie points, insulated, 2, 3, and 4 terminal	1	VR150/0D. 3 tube
1 pkg	rubber grammets $1 / 4$-in, wire hole	6	6AQ5 tube
1 length	No. 14 tinned-capper wire	3	12AT7 tubes
	rosin core solder	4	6AG5 tubes
	4-36 ch machine screws $1 / 4^{\prime \prime}$ long with nuts	1	No. 40 dial light 6 -volt, screw base
	6-32 th machine screws $1 / 4^{\prime \prime}$ long with nuts	1	beam antenna (Newark Electric Co., Catalog No.
25 8	5000 mmf ceramic disc capacitors 50 mmf ceramic disc capacitors	For tuning and adjustment:	
8			
1	.5 infd, 200 working volt, paper capacitor	1	technician's volt-ohmmieter
1	$8 \mathrm{mfd}, 450$ working volt, electrolytic capacitor (tubu-	1	grid-dip meter (B and W, Heathkit or Millen) $0-150$ de millianmeter
	lar type, Mallary)		
2	$20 \mathrm{mfd}, 600$ working volt, electrolytic capacitors (tubu-	1	7.5-watt, 120-v lamp bulb and sacket
	lar type, Mallory)		2 -watt neen lamp bulb

cillator section receives its $B+$ supply from the voltage regulator tube, pin No. 5 , point A in power supply, Fig. 5. The "gimmick" in Fig. 6 is a small capacitor which couples the oscillator signal into the mixer. Make it by twisting five turns of plastic-insulated hookup wire, (insulation still in place, tightly together. No trouble will be experienced if you carefully arrange that the two wires can not come into metallic contact. This gimmick must be connected in place before the following oscillator frequency adjustments are made.)

When the oscillatormixer section has been wired, carefully check it out and then insert the 12AT7 tube in the socketc. Close the plates of the tuning capacitor (15 $m m f$., with vernier dial) completely, and set the oscillator tank capacitor (35 mmf., on chassis) plates exactly halfmeshed. Now, adjust the slug in the oscillator until the oscillator coil res-
onates at 39 megacycles, as determined by grid dipper. Apply power and use the grid dipper to check for oscillation by coupling it to the coil L3. Lack of oscillation indicates an incorrect coil, wrong wiring, or a bad tube.

Receiver wiring is completed by wiring the RF amplifier stage, 6AG5. The only precaution which must be taken here is to keep the grid

and plate leads short and direct. The receiver antenna coil, L1, is made by close-winding seven turns of No. 22 DCC wire around a one-watt, one-megohm carbon resistor. The end leads of this coil are soldered to the resistor leads. The primary coil consists of four turns of the same wire wound directly over the ground end of the seven-turn coil. The seven-turn coil is then connected directly across the terminals of the 50 $m m f$. capacitor; it is held firmly in place by the stiff leads of the resistor.
When this coil is soldered in place across the capacitor, mount the latter in position upon the chassis and complete the wiring of the RF stage. Twist and connect the antenna coil primary leads to the receiver (X and Y) antenna connections on the S-R switch. This tightly twisted pair of leads may be run around the corner of the chassis with the power leads for appearance's sake, if desired. Treat the tightly-twisted pair of leads from the antenna switch blades to the antenna terminals (on terminal strip) the same way.

Plug all tubes into the receiver and power supply, and place shields firmly upon all tubes requiring them. Before applying power, "grid dip" both L1 (with 50 mmf capacitor) and L2 (with slug) to resonance at 50 megacycles.
Now, apply power, and switch the S-R switch to Receive position. Turn up the IF gain control until a slight hiss is audible in the phones and turn up the regeneration control just beyond the thud-point. With the tuning capacitor fully meshed and the grid dip meter oscillating, rotate the grid-dip meter dial slowly about the 50 megacycle point until you hear its whistle in the phones. If overloading occurs, turn down the IF gain. (If you have performed your previous alignment work carefully, this signal should be close to 50 Mc .) Now, readjust the tuning controls of L1 and L2 for maximum signal strength, turning down the IF gain to avoid overloading if necessary. When these have been peaked-up, carefully readjust all of the IF transformer slugs

ALL WIRE*22 for the strongest possible signal. You have UCC MAGNE T
 SPL C, IF IF D

WINO UN National XR-5O IRON. SLUG COI
FORM now aligned the receiver. Connect a sixmeter antenna (or, if that is not available yet, a TV receiving antenna) to the antenna terminals on the terminal strip. If there is an amateur six-meter station on the air in your locality, you should have no trouble hearing it. When you do tune in an on-the-air signal, use it to make a final touch-up of all slugs and adjustments. Finish off by installing the vernier dial and knobs.
You will receive radiotelephone signals best with the regeneration control just below the thud point. Radiotelegraph CW signals will be received best just above it. Also the regeneration control may be used as an additional volume control on strong voice signals, in addition to the IF gain control. You will also observe that this receiver, while being very sensitive to sixmeter signals, is remarkably free of the spurious TV and FM broadcast responses.

The Transmitter. With the receiver completed, and the audio and power circuits checked-out, you are ready to start on the transmitter-if you have a suitable station and operator license. The United States radio law provides penalties of up to $\$ 10,000$ fine and/or a two-year federal prison term for those who use a radio transmitter without proper government authorization. You must hold either a general class or a technician class amateur license to use this transmitter. A novice class amateur, or a Citizens Radio license will not do. You may obtain exact information as to the requirements and examinations for such 1 i censes by writing to the field office of the Federal Communications Commission nearest you. (The Canadian, Mexican, and the governments of most other countries have, and enforce similar regulations within their own jurisdiction.)

Assuming you are properly licensed, begin by winding the transmitter VFO oscillator coil, L5, Fig. 8. Wind this coil exactly as shown, since the frequency-stability of the entire transmitter depends upon it. When completed, fasten this coil into place and mount the 100 mmf VFO tank capacitor and the 15 mmf VFO tuning capacitors. (The vernier dial for the latter should not be installed until later.) Next, wire in the heater, cathode, and grid circuits of the VFO, carefully following the transmitter schematic, Fig. 7. Note that the VFO receives its B+ supply from the regulator tube (pin No. 5) through the SendReceive switch contacts (see the Send-Receive switch diagram, Fig. 9). Also mount and connect the VFO push button, stuffing several layers of friction tape under the push button, between the terminals and the chassis, to forestall shorts. (Gulch's Fourth Law: "Anything that has the slightest chance of shorting is certain to do so," operates here as it does everywhere else in amateur equipment.)
Now, wind the transmitter oscillator plate coil (L6, Fig. 8), mount it, and finish wiring the VFO
oscillator circuit. After this is checked, and any possible shorts between tube pins or elsewhere have been cleared, insert the rectifier tube, voltage regulator tube, and 6AQ5 VFO tube, and apply power. After tubes have warmed-up (with the $S-R$ switch in center or neutral position), press the push-button. The voltage regulator tube should dim noticeably but not go out. If it does go out, or if it does not dim, check your wiring, and examine the pushbutton carefully. When it dims, release the push button and throw the S-R switch to Send position. With the tuning (15 mmf) capacitor fully meshed and the VFO grid coil slug screwed all the way in, adjust the 100 mmf tank capacitor until a definite indication of oscillation is observed on 6.25 megacycles with the grid dip meter. You should find this condition occurring with the 100 $m m f$ tank capacitor about 90% meshed.

With the circuit oscillating at 6.25 Mc ., move your gricldip meter over to the plate coil and adjust the slug for maximum output at 12.5 Mc . With good, strong indication of output here, remove tubes and de-energize before continuing work and move on to the frequency multiplier (doubler) stage, the only critical part of which is the coil. Make sure that the cen-ter-tap is in the electrical center. This will insure equal drive to both tubes of the final stage, and will minimize spurious responses. Wind the coil exactly as shown in Fig. 8. (If for any reason it should be necessary to alter the number of turns on this coil, a remote possibility, be sure that you add or remove two turns at a time, one on each side of the center-tap, to preserve electrical balance.) Install this coil and complete the wiring.

You will not be able to test the frequencymultiplier until you have also completed the wiring of the grid and cathode circuits of the final amplifier. This is because the grid to ground capacitance of these latter contribute significantly to the tuning capacitance of the frequency multiplier output circuit. So, wire-in the grid and cathode circuits of the final amplifier immediately.

Observe that each of the final amplifier tubes has its own cathode bypass capacitor and 47-ohm isolating resistor. This is to insure stability and reliability of this circuit. The dc cathode current flows through the $M-A$ terminals on the 8 -terminal strip on the back of the chassis (see Fig. 10B) ; this makes possible a convenient check of the final amplifier cathode current later.

When the grid and cathode circuits of the final

B LINE M.A. MIKE VIEW OF TERM. STRIP
amplifier have been completed, as well as all of the circuitry of the frequency multiplier, the latter is ready for a checkout. After re-examining the wiring, plug in the VFO, frequency multiplier, and final amplifier tubes (as well as rectifier and voltage regulator, of course) and apply power. With the S-R switch in Send position, tune the frequency multiplier coil to maximum output on 25 megacycles, using the grid-dip meter. You should also now go back and touch-up the oscillator plate coil for maximum indication at the frequency multiplier output. A 6-v dial bulb, connected to a single loop of wire and draped around the frequency multiplier output coil should glow at nearly full brilliance, if everything is working-and tuned correctly.

With this accomplished, de-energize, remove tubes for safety's sake, and complete the wiring of the final amplifier. This is a pushpush, frequency doubler, a self-neutralizing circuit noted for its effectiveness, stability, and rejection of spurious, harmonic frequencies. Note in Fig. 7 that the grid circuit is connected in push-pull, the plates of the tubes in parallel. Observe, also, that for stability both screen grids are individually bypassed, even though fed from the same dc source. Keep all high-frequency leads as short and direct as possible, the heater, B+ supply, and other supply wires may be run around the corners of the chassis for improved appearance.

Wind coil L8 as shown in Fig. 8 and install, and complete and check the wiring of the final stage according to the transmitter schematic, Fig. 7. When wiring is complete, insert all transmitter RF tubes, rectifier tube, and voltage regulator. Before applying power, adjust the final amplifier coil with the grid-dip meter, by tuning the coil slug. If you have trouble making it resonate on 50 Mc ., try squeezing together, or spreading apart the turns of coil L8. When resonance is found, secure the turns in place with celluloid cement.

Now, jumper the "MA" terminals on strip together and apply power. You should get a strong indication of RF output on 50 Mc ., but absolutely none on any other frequency within the range of the grid-dip meter. A 6-v pilot lamp, connected to a loop of wire and draped over the final output coil should burn extremely brightly (possibly even burn out, so be careful) when this stage is operating correctly. Touch up the tuning of the oscillator plate, the frequency multiplier, and the output of the final amplifier for maximum output on 50 Mc .

Complete construction by winding the transmitter antenna coil L9 (Fig. 8) with No. 14 copper or tinned-copper antenna wire. Tap this coil one turn from each end to make connection to the transmitting antenna through a tightlytwisted pair of leads, which may run around the corner of the chassis to the Send-Receive switch, points M and N, as shown in Figs. 7 and 10B.
The 50 mmf antenna tuning capacitor is insulated from the chassis by means of a laminated phenolic plastic strip (see Fig. 10A), upon which it is mounted. A $11 / 16-\mathrm{in}$. "socket" hole assures sufficient clearance from the chassis. Both sides of this capacitor must be insulated. Fasten the plastic strip to the chassis with 6-32 rh machine screws and nuts.
The antenna coil is coupled to the final amplifier output coil by means of a single-turn loop, coupled closely to each coil-the B+ end of the output coil, and the center of the antenna coil. A twisted pair link of plastic hookup wire connects the loops together. Each loop should be closely coupled to its coil, but this coupling should be adjusted for best results later.
The antenna tuning lamp socket is mounted atop the chassis (see Fig. 3). It is connected between point N on the $\mathrm{S}-\mathrm{R}$ switch and a tap on the antenna coil. Keep the leads to the lamp socket as short as possible and bring them up through the chassis via a rubber $1 / 4-\mathrm{in}$. hole grommet adjacent to the socket. The lamp is shunted by a small $1 / 8$-in. dia., 4 -turn coil of close-spaced No. 22 DCC wire. Adjust the size of this shunt coil so that, with the antenna you are using, the lamp lights to only about one-quarter brilliance, enough to tune clearly by, but not enough to waste hard-earned RF power.
Final check on the transmitter consists of inserting all tubes and applying power. Connect a 7.5 -watt, $120 v$ lamp bulb across the antenna terminals (terminal strip) as a dummy load. Make all RF tuning adjustments for maximum brightness of the bulb. Do not expect a full 7.5 watts of output from this transmitter, but when all tuning and coupling adjustments are optimized, a sizeable amount of output should be shown by the 7.5 -watt bulb.

To check modulation, connect a single-button carbon microphone to the mike terminals, apply power, and speak into the mike. The antenna tuning lamp should flicker markedly if modulation is taking place. No modulation indicates possible error in the connections between the secondary of the modulation transformer and the final RF amplifier circuit.

Before putting this transmitter on the air using a live antenna, make sure that the transmitter frequency is definitely within the assigned $50-\mathrm{Mc}$. amateur band, from 50 to 54 Mc . Do not rely upon the calibration of your grid-dip meter for such a vital matter, but check against the known crystal frequencies of other amateurs you hear on the air, or with an accurate heterodyne frequency meter (often available on a loan basis from radio clubs).
You may compare the frequency of your own VFO with that of other amateurs by simply setting your receiver's second detector regeneration control past the thud point and, with the S-R switch in Receive position, pressing the VFO test push button. Tune the VFO vernier dial until you hear its whistle in the receiver. (You may have to turn down the IF gain to avoid overloading.) Now the transmitter will operate upon the same frequency as that to which the receiver is tuned. Use this technique to set your own frequency to that of the station you're working; this conserves spectrum-space, and makes for better operations. However, unless you wish to be considered a "lid," do not change your operating frequency while the S-R switch is in the Send position. Rather, use the push button to set the frequency, with the switch in Receive position.
A 0-100 ma dc milliammeter connected to the $M-A$ terminals on the terminal strip should read between 45 and $60 m a$ when the transmitter is tuned-up and operating properly. Once preliminary adjustments have been made, remove the meter and place a jumper across the M-A terminals.

For radiotelegraph CW operation, connect a telegraph key to the M-A terminals instead of meter or jumper, and operate as any other CW amateur station. (When one can find a six-meter operator who will listen for CW signals, much greater distance ranges are possible under poorer conditions than could be obtained by voice operation.)
For best results with this or any other amateur station, thoroughly familiarize yourself with the correct adjustment and operation of all circuits and keep them in trim at all times. Install and use the highest, most-effective antenna you can, for the antenna used is by far the biggest technical factor in successful operation. If possible, use a directional, beam antenna, but a high dipole will work if the former is not feasible.
(A word on TVI-Because of its frequency proximity to television channel 2 , this transmitter may cause some interference on that channel. If it does, have the TV receiver owner install a Drake HF-50 or other good high-pass filter with 54 Mc . cut-off design.)

- The wonder of radio is not, as some would have it, that it works at all; but rather that a device that works principally because of evacuated tubes can be responsible for so much hot air.-R. R. Doister

(15) (1) (P) (B) (B) (B) (B) (B) (B) (H) (B) Transistorized Telephone Amplifier

The caller, shown at left, uses phone in normal fashion while amplifier unit at other end of line, shown at right above, enables group of people to listen and talk.

ALTHOUGH this telephone attachment will enable you to speak and hear someone calling you on your phone as though you were using an intercom, you do not have to make any wiring connections to the telephone circuit.

Since the conversation is picked up inductively, you merely place the pickup unit under the phone cradle set, put the phone on the cabinet as in Fig. 2 and you're ready to start talking or listening. It may be used for incoming or outgoing calls and the whole family, as in Fig. 1, can talk to and hear the caller simultaneously as though he were in the same room. It's very useful for business too,

This loudspeaker phone attachment frees both your hands while you or a group of people carry on a phone conversation

By HAROLD P. STRAND

Placing the phone hand set in position on the amplifier cabinet when receiving or making a call automatically furns on amplifier switch.
for group phone discussions or taking notes, typing, etc., which requires the use of both hands while carrying on a phone conversation.
The unit is built around a telephone amplifier kit which is modified for two-way conversation. Complete parts list and source of supply are given in the Materials List. Start by assembling the transformers, battery clip and transistor sockets to the prepunched chassis as in Fig. 3A carefully following the step-by-step instructions included with the kit. The sockets are locked in place by a rectangular spring ring that is forced down over the lower end of the socket with a

Use a small Ungar soldering pencil as in Fig. 4 and the resin-core solder furnished with the kit. You will have to splice on additional wires in two instances so the leads can reach their terminals. Slip a small piece of spaghetti tubing over the splices for insulation. It will also be found that spreading the transistor socket terminals a bit will aid in keeping the connections from shorting each other. Where a heavy lead from a resistor or capacitor must be soldered to a socket terminal which already has wire attached, do not attempt to wrap this around the terminal too, as it will make a rather bulky joint. Simply place the end of the lead against the termi-
screwdriver. Be sure to place sockets in their holes so the terminal with the widest spacing is positioned as in Fig. 3.

When mounting the transformers, check with Fig. 3C to make certain you have them positioned so that wires of the correct color can be inserted through the holes intended for them. For example, transformer T2 in Fig. 3A must have a blue and red wire going through hole 7 and a green, yellow and black wire through hole 8 as shown in Fig. 3C.

Before installing the volume control and switch (Fig. 3B), cut off the shaft so it will be $7 / 16$ in. long instead of $3 / 8 \mathrm{in}$. as called for in the kit instructions. The additional length is needed because a wooden cabinet will be used in place of the metal one supplied with the kit. Now mount the terminal strips and jack as in the bottom view, Fig. 3B, and prepare to wire the unit.

Flow the solder into the joints but avoid excessive use of solder which builds up a bulky joint.
nal and depend on a good soldering job to secure it.

Take particular note of the plus sign on capacitors C1, C2, C3 and C 4 and connect them to points shown in Fig. 3D. Two $10-i n$. speaker leads are specified and after connecting them to points F and G in Fig. 3C, carry them through hole 17 for connection to the speaker. Insert a small sewing needle into the transistor sockets to spread them slightly so you will not have difficulty getting the transistor leads, which have been cut off to $3 / 8$-in. long, started in their sockets without bending.
To test the unit, put the battery in its clip and connect it, and insert the phono pick-up coil plug into jack J1 in Fig. 3. Place the pick-up coil under the phone base about two-thirds of the way back, and turn on the amplifier switch by rotating the knob shaft about half way to the right. Then lift the

phone hand set and see if you get a dial tone from the speaker. Turning the volume control shaft to the left should lower the volume and to the right increase it. When you turn it to the right too much, however, you will probably get an annoying howl resulting from feed-back oscillations that can be avoided by keeping the tone level below this point at all times.
If you get no sound from the speaker or the volume level is unsatisfactory with the control all the way to the right, you have probably made some error in the wiring or it could be due to a defective transistor. Go over the wiring first,

Slide a piece of spaqhetti tubing over the soldered

 splice after connecting leads for cradle switch.

With the chassis completed, make the wooden cabinet from $1 / 4-\mathrm{in}$. birch plywood as detailed in Fig. 7. Cut the holes in the right side, top and front pieces before assembling. Use glue and brads on all joints and fill countersunk brads with wood putty. The back of the cabinet is left open for inserting chassis, speaker etc., and later covered with a piece of $1 / 16-\mathrm{in}$. Bakelite.
A metal disc from a \#1435 Lazy Boy ash tray is used to gather and reflect the sound of your voice into the transmitter of the phone hand set as in Fig. 8. This tray is parabolic in shape and serves the purpose very well. Cut off the fabric base and remove the cigaret holder bar with a pliers as in Fig. 9.

To support the ash-tray, turn a wooden ring to the dimensions given in Fig. 8A. Turn the inside cliameter of the ring for a snug fit with the ash tray. Set the rim of the tray about 5,16 in. from the outer edge of the ring and fasten with three $1 / 2$-in. long wire brads. Two of the brads can be driven through the original holes in the tray and one additional hole drilled. Fill the space between the tray and wooden ring at the back with wood putty. Assemble the ring into the hole cut in the cabinet front with glue.

To support the receiver end of the phone hand set, make up the shallow box-like housing detailed in Fig. 7B. Cement a $21 / 2 \times 21 / 2$-in. piece of $1 / 8$-in. thick rubber inside the housing to protect the receiver, and fasten the housing to the underside of the cabinet top with the $3 / 4 \mathrm{in}$. side facing front.
and if you find it to be okay, have the transistors tested at your local radio repair shop. Also try placing the pick-up unit at various places against the side of the phone base. With the new-type phones it may be found that the loudest signals can be obtained with the pick-up taped to the right side of the phone base.

When everything is working satisfactorily cut the red battery lead from the volume-control switch and solder on two leads as in Figs. 5A and 6 that will later go to the phone cradle switch.
To anchor the chassis to the new wooden cabinct, make up two aluminum brackets as in Fig. 5D and fasten them to the chassis as in Fig. 3D with $4-40 \times 1 / 4-\mathrm{in}$. rh screws.

Pinch the bends in the cigaret bar together to remove it from the ash tray.

Make the hand-set rest from solid maple stock as in Fig. 7A. A Handee motorized hand tool was used to cut the curved rabbet, however, hand chisels could be used instead. The rabbet should be large enough to clear the rim of the ring holding the ash tray. Then drill a $3 / 16$ in. hole for the sleeve Figs. 7A and C. Place the hand-set rest in position on the front of the cabinet to locate and drill the $3 / 16$-in. hole through the cabinet top. Also drill four small holes through top for \#2 $\times 1 / 2$-in. rh screws.

Before fastening the hand-set rest permanently in place finish the cabinet and rest piece with stain, white shellac and varnish for a natural finish, or enamel undercoater followed by a coat of semi-gloss enamel of the color you desire. Sand lightly between all coats except the last one.

When the unit is in use, the phone hand set is placed in position on the cabinet as in Fig. 1. The weight of the hand set automatically turns the unit on because the plunger in the rest is forced down and depresses the switch contact springs and closes the switch as in Fig. 8. Make the two contact springs as in Fig. 5E and cut two contacts

Solder leads connected to red battery lead and volume-control switch to cradle switch springs.
from an old relay to solder to the spring ends. Then mount the springs to the underside of the receiver housing as in Fig. 10 so the contacts meet when the plunger is pressed down, and solder on the two leads from the volume-control switch and battery (Fig. 5A). Cement a piece of speaker grille cloth to the inside of the cabinet side over the speaker opening and bolt the speaker in place with four $4-40 \times 1 / 2-$ in. screws. Set the chassis inside the cabinet and bolt it down with two $4-40 \times 1 / 2$-in. screws through the chassis brackets.

To cover the open back of the cabinet, use a piece of $1 / 16^{-i n}$. Bakelite or $1 / 8-\mathrm{in}$. plywood and fasten with \#2 x $1 / 2$-in. fh screws. A slot can be cut in the cabinet side or back to clear the wire from the phone pickup unit.

To operate the telephone amplifier, place the pickup unit under the phone cradle-set base or tape it to the side, whichever works best, and adjust the volume control about half way to the right. Then pick up the phone hand set and dial the number you're calling in the usual manner. The phone can either be held in your hand while dialing or placed on the cabinet rest. If placed on the cabinet you should be able to hear the dial tone through the loudspeaker. When your party answers, adjust the volume control to bring in the speaker's voice as loud as possible but below the point whichcausesan annoying howl due to feed-back oscillations.
When you speak, project your voice into the ash tray surrounding the phone transmitter. You need not be closer than 18 in. as long as you are in front of the cabinet and talking in a clear voice. Speaking a little louder than normal, you can carry

on a conversation standing back as fur as 6 ft .
An additional and larger speaker can be added if you wish to have the caller's voice heard louder or in another room. Use a $6-\mathrm{in}$., 3 to 4 ohm speak-
er connected with a plug and jack as in Fig. 5C. Plugging in the jack will automatically cut out the small speaker. Removing the plug will again put the small speaker back in the circuit.

Easier Dial Restringing

- If you have ever attempted to restring a radio's dial cord, you know how easy and frustrating it is to have the cord slip from a pulley just as you have the job almost finished. There's no need to make several attempts before finishing the job-do it the first time by using strips of masking tape to temporarily hold the cord in place.-J.A.C.

No-Clog File for Solder

- Ever try filing excess solder from a part with an ordinary file? Didn't the file teeth soon lose their bite because they filled up with the soft solder? A headless woodscrew chucked in an interchangeable screwdriver handle makes a "file" that will not ever clog. You can also use it on aluminum, Bakelite, and other soft materials with no danger of its teeth clogging.-J.A.C.

We've had stereo tapes, discs and two-station broadcasts. Now new compatible systems-including multiplexingmake one radio station twins

By CLIFF HALL

Abstract

New Sherwood multiplex adapter, retailing for about 555.50 , is designed to adapt conventional FM tuners to receive multiplexed stereo broadcasts. Function it performs is indicated in drawing below.

|N the broadcasting of stereophonic sound, the big word at the moment, and we think for some time to come, is "multiplexing."
And multiplexing, at the time of writing, has more aspects than a tomeat urder attack by six doge, maves about as fast and is the center of about as heated a controversy. We will get back to multiplexing in a moment, but first let's view the stereo broadcast picture. Stereo can be gotten into your home by radio waves as well as on recordings. And how best to do so has recently set the entire broadcasting industry on its ear.

It's a matter of "you take the A channel and I'll take the B channel"-and we have to get them both to your home at the same time. At a glance, it would appea= that two complete radio broadcasting units would be required to radiate the two stereo channels, just as two amplifiers and two speaker systems are required to present them in the home. And in fact, most of the actual stereo broadcasting that has been done until recently has used jüst this method.

Hands Across the Channels. In many areas, friendly or affiliated AM and FM stations have
combined facilities for stereo broadcasts, with each station putting out ope channel. In many cases this will continue, at least for a time.
This practice has led to the birth of the socalled stereo tuner which is, actually, an AM and an FM tuner, with separate controls and dials, are mounted on a single chassis. They can feed the two sides of your stereo amplifier simultaneously from any combination of AM and FM stations in your area, and they offer the economy advantages of a power supply and some other parts used in common.
Or you can simply use an AM and an FM radio, appropriately placed, and have a stereo effect of sorts, although without a high level of fidelity nor the advantages of balance and phasing.

Again, in some cases, the two stereo channels have been put on the air by cooperating TV and broadcast stations, as in recent experiments by WTTW, Chicago's non-profit educational television station, and WFMT (FM). This latter method, incidentally, can yield reasonably high fidelity, since the TV sound signal is actually a very high frequency FM signal.
 tening angle.

Major disadvantage of this broadcast method should be obvious: There's no profit in it. Not only are two broadcasting facilities being tied up to put out a single program, but neither station is putting out a "full" program. In other words, when you tune to only one of the cooperating stations during a stereo broadcast, you hear the full orchestra all right, but you hear it as though you were sitting way at the side of the auditorium. Actually, what you are hearing is the same thing you would hear by playing only one channel from a stereo recording.
Thus, for the millions of listeners who do not have stereo tuning facilities, this program is something less than adequate. What's more important, it's mighty close to impossible for this

Storecast multiplex broadcasts public show on primary carrier cutting oft at 15 kc , commercial program on subcarrier centered at 50 kc (approx.). Gap is used for switching pulses.

> "Ideal" multiplex fov stereo might use $1 \mathrm{st} 15-20 \mathrm{kc}$ $\mathrm{A}+\mathrm{B}$ signal, rest of modulation spectrum to insure fidelity of $\mathrm{A}-\mathrm{B}$ signal.

KMLA-FM system compresses stereo "difference" sig. nal into 5-kc-wide band at a 6 kc , broadcasts commercial monophonic program at 65 kc separately.

Stereosonic Recording: 2 cosine mikes together separating channels by direction.
reason to sell to a sponsor, and especially is this true in TV with its vastly higher costs.

Compromises Tried. One of the efforts to lick the problem attempted by some broadcasters has been to increase the "dilution" of the stereo effect, some of which-deliberately-is always present in any case.

While we are accustomed to thinking of stereo as coming from two microphones placed at an appropriate listening angle, this in fact is not usually the case. Depending upon the studio, the program material and the recording method, sound engineers might use a variety of setups.

These might vary from the older "binaural," involving two omni-directional mikes about six inches apart with a solid object between themlike the ears on your head-(" B " in Fig. 3); through such others as the "stereosonic," using two cosine (two-directional) mikes close together ("C" in Fig. 3) ; the "longitudinal," using several omni-directional mikes spaced front to back and recording differences by time delay ("D" in Fig. 3) ; the "mid-side," employing a cosine and a cardioid (one-directional) together, from which A, B and C channels can be derived ("E" in Fig. 3); combinations of any of these methods, or a much larger bank of individually placed mikes. In recent practice, the last method is the most frequent, with as many as six tapes sometimes recording at once, later to be mixed selectively (some with echo chamber effects, etc.) in making the final master record. In any case, each of your two stereo channels always contains a certain amount of the total or "sum" information, except in some of the stereo demonstration records to which deliberate hokum has been applied.

Thus, some broadcasters have tried diluting the stereo effect enough that each channel held enough sum information to be satisfactory heard alone.
Finally, FM multiplexing has come over the horizon as a "new" stereo broadcasting method, which many think holds the essential answers.

Current Practice: Mikes placed for individual purpose, separately taped, "mixed" in laboratory.
advertiser, the broadcaster must put out the full program-channel A plus channel B-over his primary carrier, so that the thousands who do not yet have stereo can hear a full monophonic program.
Next, to modify this primary signal $(A+B)$ so that it can be unscrambled by the receiver into a separate A channel and B channel for stereo listening, he must broadcast over his subcarrier (by multiplex) a signal capable of modulating the primary signal into its components.

A great many engineers are still at work perfecting methods, the FCC has not yet established standards and there are some differences of opinion on how best to do the job. Yet, in general, the "sum and difference" method is being used. Stated as an algebra problem, this means that while the primary carrier is broadcasting $A+B$, the multiplex carrier is broadcasting $A-B$, or the difference between the two channels. Then: $(A+B)+(A-B)=2 A ;(A+B)-(A-B)=2 B$ -which looks simple on paper. Actually, such problems as evolving the $A-B$ signal and eliminating cross-talk are still bothersome.

In practice, the $A+B$ signal is ordinarily passed through a de-emphasis network and straight on to both stereo amplifiers (Fig. 2). Meanwhile, the A-B signal is picked off by a bandpass filter ahead of the de-emphasis network, is demodulated and is translated by a phase splitter which passes the in-phase portion of the signal to the A amp and the out-of-phase portion to the B amp, thus restoring the stereo effect.

All of this is accomplished within a small multiplex adapter (Fig. 1) which is fed by your conventional FM tuner and which in turn feeds your stereo amplifiers.

Current multiplex adapters are all of the wideband type, translating into an audible signal whatever material is being broadcast by the station's subcarrier. Thus, if two separate signals are being broadcast at once (as is being done, for instance, by KMLA-FM, Los Angeles, experimentally), both signals would be heard at once, garbled together. To separate them will require adapters specifically designed for the job.

Seconds Timer for Photo Printing

This photo lab timer is easily seen even when the safe light is ased. The single hand revolves once a minute, with each mcior division represenfing five seconds.

MATERIALS LIST-PHOTO TIMER

Amt.	Description	For
2	$1 / 4 \times 11 / 2 \times 12^{\prime \prime}$ birch plywood	frame
2	$1 / 4 \times 1 / 2 \times 121 / 2^{\prime \prime}$ birch plywood	frame
2	$1 / 4 \times 121 / 2 \times 121 / 2^{\prime \prime}$ birch plywood	front and back panels
1	$11 / 2^{-12^{\prime \prime}}$ dia. clock dial from old com. mercial clock or letter on white cardh	oard clock face
1	synchronous timer motor such as Hayden, Cramer or Telechron, rated at 115 v ., $60 \mathrm{cy}$..1 rpm (availahle for $\$ 1.49$ from Radio Shack, 167 Washington, Boston. Mass. Cat. \#R-6821)	
1	terminal strip, Jones type $\mathbf{2} \mathbf{- 1 4 0}$	wire connections
7 ft	rubber or plastic parallel lamp cord with male piug	line cord
1 pc	$1 \times 71 / 2^{\prime \prime}$ sheet brass. $0.025^{\prime \prime}$ thick	halid
1 pc	$1 / 32^{\prime \prime}$ thick scrap aiuminum or brass	hanger strip
2	$4.40 \times 3 \mathrm{~s}^{\prime \prime}$ screws and nuts	motor
4	$=4 \times 1 / 4{ }^{\prime \prime} r h$ wood screws	dial
2	工 $4 \times 3 / \mathrm{g}^{\prime \prime}$ rh wood screws	terminal strip
8	\#2 $2 \times 1 / 2^{\prime \prime}$ rh brass screws	front panel
	small irads. illue. walnut penetratimu oil stain. white shellac, paste wax, acid	
	core solder, flat-black paint	
1	\# $4 \times 1 / 4^{\prime \prime}$ rh screw hanger strip	

LARGE enough to see in the dim light of your darkroom, this photo timer, which can be made in one evening for a few dollars, will aid you in controlling exposure and development timing to produce uniform prints (Fig. 1).

Make the case (Fig. 2) of $1 / 4$-in. birch plywood, cutting the pieces to size and dressing the edges square on a sarding disc. When cutting and sanding front and back panels, bred them together so that they will be exactly the same size. Drill a $t_{r 1}$-in. dia. hole in one of the $12-\mathrm{in}$. sides, centering it each way for the line cord. Using glue and brads, assemble the casc sides, then before the glue sets, attach the back panel with glue and brads. Drill holes in front pancl as in Fig. 2, and apply walnut penetrating oil stain to both case sections. Allow to dry for about 5 min., then wipe off surplus stain with a cloth. Set aside to dry for aboust 2 hours, then apply 2 coats of thinned white shellac, smoothing when dry with fine steel wool. Finish with a coat of puste wax.

Our clock dial came from an old commercial clock found in a repair shop. Use a similar one or letter a piece of white cardbuard. Glue or

3
MOTOR AND CONNECTIONS

screw-fasten at $12,3,6$ and 9 to the front panel.

The motor is of the synchronous timer lype that can usually be picked up for right around about $\$ 1.50$ (see Materials List). With motor shaft projecting through the dial, attach motor to back of front panel with 4.40 screws and nuts (Fig. 3). Attach a terminal strip to make the connections between the motor leads and the line cord which runs through hole in frame bottom. Knot cord just inside the frame to prevent strain on terminal strip. Now turn front panel over and atlach to case with \#2 or $3 \times 1 / 2$-in. rh brass screws.

Lay out clock hand on sheet brass as in Fig. 4. Drill $1 / 4$-in. holes and cut out roughly to size with tin snips, then file to final shape. Drill the hole for a tight fit with the motor shaft. If the shaft has a square encl, file the hole square. Solder the hand in place with a drop of acid core solder and apply a coat of flat black paint. Lastly, make a hanger strip (Fig. 4) and fasten to back of case with an rh screw. Mount the timer, plug in, and you're ready to go. The hand makes a round trip each minute so read as you would the clock second hand.-H. P. Strand.

\uparrowRANSISTOR experimenters who have built a radio for earphone reception soon find that they would like an amplifier to which the radio can be connected for loudspeaker operation. The amplifier shown here (Fig. 1) was designed especially for this purpose and will provide excellent volume with a 6 in . or larger speaker having a $3-4$ ohm voice coil. The total cost of building the amplifier will be around $\$ 18.00$, including $\$ 8.85$ for the coupling transformers.
Four transistors are used in a transformer coupled circuit for maximum gain. If you wish you
must be must be reversed from that shown in the diagrams or they will be ruined. Transistors require very close matching between stages and also between the output and the speaker if distortion is to be avoided. Transformers provide the best method of matching impedances.
Shape the chassis from sheet aluminum (Fig. 2). Note that the volume control and switch are placed on the front of the chassis and the two jacks at the back. While this is suitable when amplifier is used on the bench for experimental purposes, switch and jacks can all be located on
 one side for more convenience if you prefer to mount chassis in speaker cabinet or baffle.

Lay out top chassis holes and drill, starting the socket holes as a marked rectangular area and finishing with a small file (Fig. 3). Sockets offer a decided advantage over soldering leads directly to terminals by avoiding damage from the heat of soldering, and permitting you to change transistors around in the circuit when testing a new unit in order to obtain minimum distortion and best gain. Each socket has a locking ring which is pushed down over the lower end of the socket to hold it firmly in place. The other holes are made with a \#33 drill to take 4-40 screws which, with

Drilling the top holes in the sheet aluminum chassis. Lay out socket openings to size with a pencil, then drill and file to shape them to fit socket snugly.
nuts on the bottom side, are used to secure the transformers and the battery clip. If you prefer to use 2-56 or $3-56$ binder head screws about $3 / 16$ in. long, for neater mounting of these miniature parts, use a smaller drill.

Assemble the parts, soldering all connections (Fig. 4). Use a small soldering pencil such as the Ungar type for most soldering at terminals. Where the heat is not sufficient to thoroughly flow the solder, as at larger terminals or where several wires connect, use a soldering gun or small iron. Avoid using too much solder, especially at
and place them in the circuit with relation to this polarity as given in the diagrams. When soldering to transistor socket terminals, which are closely

MATERIALS LIST- TRANSISTOR AUDIO AMPLIFIER
All parts except sheet aluminum available from Lafayette Radio, Dept. SM, 165-08 Liberty Avenue, Jamaica 33, N. Y.
No. Description
1 pc . sheet aluminum $.025 .030 \times 11 / 8 \times 27 / 8^{\prime \prime}$ (hattery holder)
1 pc . sheet aluminum . $040-.045 \times 53 / 16 \times 63 / 8^{\prime \prime}$ (chassis)
transistors, G.E. 2 N107 or Raytheon CK722 (99¢ each)
transistor sockets MS-275 (19¢ each)
RCA VS-300, 9 volt battery
battery terminal clips for VS-300 battery (1 plus, 1 minus) miniature volume control with switch 10,000 ohms VC- 28 miniature knob for $1 / 8^{\prime \prime}$ shaft MS-185
RCA-type phono jack MS-168 and plug MS-167 (13¢ per pair or Kl-49, 10 pairs for 794)
miniature phone jack MS-282 and MS-281 plug
AR 104 input transformer
AR 109 driver transformer
AR 119 output transformer
20 mfd 15 volt Argonise capacitor
2 mfd 6 volt Argonne capacitor
2 mfd 15 volt Argonne capacitor
8 mfd 15 volt Argonne capacitor
.05 mfd 200 volt paper capacitor
.005 mfd disc capacitor
.01 mfd dise capacitor
$470 \mathrm{~K} 1 / 2$ watt resistor
$150 \mathrm{~K} 1 / 2$ watt resistor
$270 \mathrm{~K} / 2$ watt resistor
1200 ohm $1 / 2$ watt resistor
$12 \mathrm{ohm} 1 / 2$ watt resistor
$4700 \mathrm{ohm} 1 / 2$ watt resistor
$68 \mathrm{ohm} 1 / 2$ watt resistor
$22 \mathrm{~K} 1 / 2$ watt resistor
two-terminal Bakelite mounting strips MS-232
one-terminal Bakelite mounting strips MS-231 (mounting foot should extend up far ground comections or otherwise use a solder lug under foot).
small solder lugs

SPEAKER

$6^{\prime \prime}$ speaker Utah or similar make
1 speaker enclosure or baffie SB-10 or similar type for $6^{\prime \prime}$ speaker
4 ft . light plastic-covered 2 -conductor cord
miniature phone plup MS-281
4.40 screws and nuts for mounting parts, hook up wire, solder, etc.
transistor socket terminals, since it takes only a bit of rosincore solder to make a perfect joint on clean metal and excess solder may run down and short-circuit to some other terminal or connection.

Be sure to select the correct values of resistors and capacitors as detailed in Figs. 4 and 6. Capacitors are marked for their values, and resistors use a color code which can easily be determined by checking a color code chart of RETMA standard color code values. When installing capacitors, make sure you observe the plus and minus ends of each electrolytic capacitor

4
PICTORIAL DIAGRAM
spaced, first bend the terminals apart slightly so that there will be no danger of a short between them from soldered wires or leads. Leads should be only long enough to reach terminals.
Final assembly steps are to place the transistors in their sockets and fit the battery in its clip, which is bent from sheet aluminum and screwed to top of chassis (Fig. 5). Solder the snap-on clips to insulated leads that have been brought up from under the chassis through a drilled hole. Be sure to solder the clip that fits on the positive (plus) side of the battery to the lead that connects to the chassis as ground through the grounded terminal of the terminal strip. The other clip (negative or minus) connects to the other lead which goes to one side of the switch on the volume control. An error in battery polarity can result in ruined transistors.
Before using, test the transistors in a transistor tester (see p. 128 of Vol. 4, No. 545, Radio-TV Experimenter, available for $50 \dagger$) to save time you may consume looking for trouble in a circuit which lies directly in a defective transistor. A transistor should test with low leakage and a gain of at least 25 for the G.E. 2N107 or 22 for the Raytheon CK722, with a preference for transistors placed in some parts of a circuit that show a gain above these values.
Connect the radio to the amplifier (Figs. 5 and 7) with a piece of shielded cable with plug connections to fit the radio and amplifier jacks. This eliminates or reduces possible hum or stray pickup. Connect the amplifier to the speaker with ordinary rubber- or plastic-covered wire and a miniature phone plug.
To turn on the amplifier, rotate the volume control shaft clockwise until a click is heard, con-

Connections between the radio and the amplifier and the amplifier and the speaker are made with plug-in cables. Shielded cable is used between radio and amplifier to avoid hum and other disturbances.
tinue to turn to increase volume. With a speaker with a $3-4$ ohm voice coil plugged into the output jack and the volume control fully advanced, you should hear a good hum when you touch a finger to the center terminal of the input jack. The hissing sound in the background is typical of transistors and cannot be helped. However, it will be reduced at lower volume levels or when a radio receiver is plugged into the input jack.
 TERMINAL WHICH

CABLE WITH OUTER CABLE AND SOLDER HERE COPPER BRAIDED SHIELDING CONDUCTGR $\quad 7$ RCA TYPE PHONO
SOLDERED

PLUG FOR AMPLIFIER END OF CONDUCTOR FIT JACK ON RADIO RECEIVER

CONNECTION GETWEEN RADIO RECEIVER AND AMPLIFIER

Combination Intercom-Radio Set

For party line service and music, you need only two or more crank-type telephones, an ac-dc receiver and hookup wire

By THOMAS A. BLANCHARD

THE quaint rural crank-type telephone is rapidly vanishing from the American scene. Interior decorators have been buying up these bits of Americana and converting them into costly antique conversation pieces such as Spice Cabinets, Pin-Up Lamps, Liqueur Chests, etc. Here, we have used one of these antique telephones as a novel radio cabinet while preserving its original function as an intercommunicating device. Two or more of these wall phones may be rewired as in Fig. 5 and used to provide party line service (Fig. 1) between the several floors of the home; or home to garage or barn.

Since most every home has a small table-model radio set of the ac-dc type that has been set aside because of a broken cabinet, missing knob, or a minor circuit defect, we

Rural eranktype telephone houses radio. Youngster is listening to oher member of family through iniercom hook-up of old telephone.

will make use of such a set. If you do not have one of these radios you can pick up a traded-in set at your local appliance store for a couple of dollars. Readers who desire to put an old set into good working order will find complete data in Vol, 3 of Radio-TV Experimenter, No. 538, which is available for $50 ¢$.
The wall telephone used was obtained from Telephone Repair \& Supply Co., 1760 W. Lunt Ave., Chicago 26 , Ill. The unit's supplier calls it their \#4 magneto wall telephone with separate transmitter and receiver. Price is $\$ 7.00$, plus postage (20 pounds). Since many of these phones have seen 50 years service, both cabinet and exposed metal parts (Fig. 2) require refinishing in most instances.
To refinish the cabinet remove the exterior metal parts, hinge screws from the door and wood screws hold-

[^17]ing the back of the cabinet. Strip off the old finish with paint and varnish remover of the 15% phenol type. Do not use a powder-type caustic paint remover mixed with water because it may warp the solid oak cabinet. Using an old brush, flow the remover on the wood and wait about a minute for the old finish to wrinkle. Then lift off the varnish or paint with a putty knife. Repeat the treatment again, this time wiping off any of the old finish remaining with steel wool. Then rub the wood with a rag soaked with turpentine to neutralize any phenol remaining in the wood grain.

Radio Installation. Because of the thousand and one shapes of radio chassis in existence we can not cover the installation of each. However, the following suggestions will take care of any and all sets. The total interior space available is $43 / 8 \times 61 / 2 \times$ 16 in . A removable shelf (Fig. 2) divides the cabinet into two compartments. With the set shown, it was not necessary to remove this shelf. However, if the radio chassis will not fit into the lower compartment, remove all of the shelf except the small strip required to support the phone hook switch. In fact, all

Radio chassis is fastened to rear of telephone cabinet door. of the shelf may be removed by mounting the switch on a small metal bracket. Small table sets have the speaker mounted to the chassis. To fit within the phone box it is usually possible to leave the speaker intact. However, if you are posed with a mounting problem, remove the speaker from the chassis and extend the wires connecting speaker to set. In this way, the speaker can be mounted in the front, top or side of cabinet where it fits most conveniently.
If, as in our case, the set is small enough to mount directly on the cabinet door (Fig. 3), the old radio cabinet may be used as a template for drilling the tuning and volume control shafts holes and location of the large speaker opening. Place a sheet of paper over the front of the old radio cabinet, and trace position of openings. Then transfer the hole locations to the door of the phone cabinet. In our conversion, the speaker opening was made with a "fly cutter" set for a $3 \frac{1}{4}$ in. dia. hole (Fig. 6). The round opening is optional since a square sawcut opening or series of $1 / 2 \mathrm{in}$. holes will serve just as well. The control shaft openings are drilled with a $1 / 2 \mathrm{in}$. wood bit. Because we have concealed the tuning and volume control knobs under the writing shelf (Fig. 4), it was also necessary to drill two $1 / 2 \mathrm{in}$. holes through the steel bracket supporting the shelf.
Now, check the chassis for fit. Do not be alarmed if you find that the control shafts are too short for attaching the original knobs. Any
radio parts supplier can furnish "push on" knobs with an extended shank or ferrule. If the radio employed "push on" knobs merely replace with the extended type. On the other hand, if your set employed set-screw knobs a little extra work is required.

The round control shafts are $1 / 4 \mathrm{in}$. dia. whereas the "push on" knobs are designed to fit a splined and slotted $7 / 32$ dia. shaft. Since the new knobs are made of soft polystyrene plastic, simply ream out the knob ferrule with a $1 / 4$ inch drill. Insert the drill in a pin vise, or wrap a piece of cloth around the shank and twist by hand only. Heat generated by a power-driven drill will melt and distort the plastic. Because polystyrene has an elastic quality, these knobs will grip a smooth round shaft without the use of set-screws.
To allow for the displacement of heat generated by the radio tubes, a row of $1 / 4$ inch holes may be drilled in the top and bottom of the phone cabinet. The last remaining detail is the installation of the loop antenna if the radio was so equipped. If this unit will not fit into the cabinet even though the excess cardboard backing is trimmed off, replace it with a non-directional ferrite rod-type loop. This tiny antenna is available from most radio supply houses for about $\$ 1$ complete with simple instructions for installing it.

We installed the radio chassis to the doar of

Original factory diagram of wall type magneto tele. phone. This was model 697 made by American Electric Co., Chicago. Rewire as shown in Fig. 5.

the phone cabinet with two $\# 6 \times 1 / 2 \mathrm{in}$. roundhead ($r h$) screws and washers. One screw in the unused speaker mounting hole, the other diagonally in the corner of the set chassis. Having checked alignment of radio chassis, remove it and set aside until cabinet is finished. There are several types of finishes that can be used, however each requires first filling the open-grained oak with paste wood filler. The cabinet may be given several coats of white shellac, and rubbed down with linseed oil and fine sandpaper. A limed-oak finish can be achieved by filling the oak with white paste-type wood filler. Follow with shellac as mentioned above. The cabinet may also be enameled in any desired color and decorated with decals.
While the cabinet finish is drying, clean the grease and rust from all metal parts with the phenol paint remover and steel wool. Follow by sanding or wire brush buffing before applying a new finish. Although the phenol solution will not remove the baked-on black enamel, it will remove all varnish and gum so that the parts can be painted with aluminum paint, black enamel,
or gold if you wish. Radio supply shops stock General Cement's Telephone Black and Chrome Paint.

If you do not wish to use the telephone as an intercommunicating device, the various unwired parts may be reassembled on the cabinet. Should you wish to use two or more phones as an intercommunicating system, the following applies:
Wiring a Home Telephone System. The original rural telephone employed two electrical circuits (Fig. 5). For handling speech, two No. 6 dry cell batteries wired in series provided talking current to each phone. The 3 volts supplied by the batteries was not sufficient however, to ring the operator. Therefore, each phone was equipped with a hand-cranked magneto generator to provide the ringing current.

Many rural modernization jobs still required the magneto, and these units are removed from the old wall phones before they are offered to the public for sale. While the phone supplier includes the magneto crank for decorative use, he does not include a generator. For operating a phone system over short distances, the magneto is not necessary since the line resistance is low and the batteries can handle the ringing job quite well.

To put two or more telephones into operating condition, remove the old wiring and rewire with radio hookup wire, or plastic covered bell wire (Fig. 5). Each phone will require a 3-terminal, Jones-type barrier strip available from radio parts houses, and a door-bell push button. The push button may be installed over the hole formerly occupied by the generator hand crank.
Note in Fig. 5 that the central station unit includes an induction coil and dry cells. When three or more telephones are purchased, an induction coil will be furnished free if you ask for it. Other phones on your line require no coil or battery power. The central station can be located anywhere on the line ... garage, basement, barn, etc. However, a central location on the line will prove most efficient. Phones may be inter-connected indoors by using two or threeconductor bell wire known as thermostat wire. While the phone system shown requires three lines, line 2 may be a ground return so that only two wires are used. In this instance, a water or steam pipe must be handy at each phone location. Scrape off any paint from the pipe and attach a radio ground strap with a wire long enough to connect to phone terminal 2.

The two wire hook-up greatly simplifies outdoor installations since two-wire twisted phone line is in plentiful supply in the surplus market.

Refinished cabinet showing radio control knobs be.. neath writing shelf. Knobs of different colors were used to distinguish between volume and tuning. Speaker grille is $4 \times 4 \mathrm{in}$. piece of aluminum fly screening taped to cabinet.

Squeeze Bottle Dispenses Radio Chemicals

- Plastic squeeze bottles used for medicinal nose sprays make handy injectors of radio and TV control cleaning chemicals. Just remove the plug from the neck of the bottle, and pull off the spray tube attached to the inside of the plug. Wash out

bottle, then enlarge the hole in the plug to accep: the spray tube from the outside. Pour the cleaning fluid into the bottle and push the plug and spray tube back in place. Seal any leaks around the plug with service cement or any other cement that can be used to mend plastics.

The dispenser holds enough cleaner to clean several noisy controls without refilling- and the tiny hole in the center of the spray tube will let you squirt cleaner into tiny control openings easily.-John A. Comstock.

Moreover, for outdoor runs, TV lead-in wire is excellent and very inexpensive. When installing an outdoor line, it is important to provide lightning protection. Connect a TV arrestor across the line, and ground the center terminal to a water pipe. If a 3-wire line is used, connect the arrestor terminals to lines 1 and 3 and attach remaining ground terminal on arrestor to line 2 . Then ground line 2 to earth via water pipe.

When several phones are installed on your home phone system, simple code ringing signals may be employed. Give each phone a number: $1,2,3$, etc. To reach a certain phone, merely pulse the push switch the desired number of rings. Any phone on the line may be used to originate or receive a call.

If the telephone line involves a long run of wire, additional battery power may be required. Add additional dry cells in series if ringing current isn't adequate with two cells. After the line is installed, check each phone receiver for correct polarity. With receiver off hook, unscrew cap. The metal diaphragm should be securely held by the magnet both when phone hook is up and pulled down. If disc slides off receiver with hook up, the battery polarity is reversed at the receiver. Disconnect the cable at receiver terminal screws and reverse the connections. When each diaphragm is "sucked in" by the receiver magnet, when hook is up, polarity is correct.

Toggle Switch Safety Guard

- An exposed toggle switch is not only open to damage to itself, but it can also be a source of injury if it is flicked on unexpectedly. To cut down on this hazard, fit an ordinary cabinet or drawer pullover the switch. This will
 take the brunt of accidental blows, and you will have to reach under the arch to turn on the equipment.-Frank A. Javor.

Flashlight Battery Cores Sub for Brushes

- If worn-out brushes cause your electric food mixer or other small electric motors to lose power and
 quit running, here's how you can avoid loss of usefulness while new brushes are being ordered. Remove the carbon core from a used flashlight battery (A), grind two pieces down to the desired size on an emery wheel (B) and insert in place of the worn-out brushes (C and D).-Glen A. Norberg.

Simplified

All-Purpose Decades

Resistor and capacitor decades are quite useful in both servicing and experimental work, but often the units lack flexibility and are expensive. Here's a unit that's both flexible and inexpensive

By W. F. GEPHART

Front-panel view of a six-section, all-purpose resistance decade for experimental work.

UNLESS special features are incorporated in most resistor and capacitor decade units, they can only be used for one function at a time. Also, their accuracy and power capacity are sometimes insufficient for the use desired. One solution to these problems is to have several wide-range units, such as a 1% unit, a 1 -watt (5% or 10%) unit, and a 2 -watt (5% or 10%) unit.
There are three general uses for decades: 1) In servicing work, to determine (by trial-and-error substitution) the value of parts to be replaced, where the original value cannot be determined. 2) In experimental work, to act as variable resistors or capacitors in circuits to determine optimum values by operating tests. 3) In measurements, to act as external bridge components or as comparison resistances or capacitances.
In the first usage, reasonable power capacity is most important; in the second usage. power capacity and accuracy are both important; and in the third usage, accuracy is of greatest importance. The overall solution would be to have a decade of both high-power capacity and high accuracy, such as a 2 -watt 1% unit.
Another problem, particularly in the first two usages, is the need for multiple units. For example, in an experimental circuit, it might be desir-
able to vary both the cathode resistance and plate resistance simultaneously to determine best operating point. Since these circuits must be isolated, the usual single-decade unit cannot be used for both functions simultaneously, and two conventional-type units would be required.
Using conventional designs, such usage would require a $0-10$ megohm, 1%, 2 -watt decade (for measurements, grid and cathode resistor substitution), and a 10,000 -ohm to 1 -megohm, 10%, 2-watt unit for plate resistances. If 1 -ohm steps were used on the 1% unit, and $10,000-$ ohm steps on the 10% unit, these two units would require nine switches, 701% resistors and 2010% resistors. All of this would represent a substantial cost.
This decade unit system (Fig. 1) can meet requirements at substantially less cost than conventional units, and can be altered (from a tolerance or current capacity standpoint) economically, since it only uses four resistors per decade section instead of the conventional ten. The switches are more expensive, but in the 1% and 5% tolerance ranges, this is offset by the savings in resistor costs. For example, a conventional single-decade section of 1-watt, 1% resistors would cost approximately $\$ 6.70$ (resistors and switch), while the cost of a similar unit under this plan would be $\$ 4.50$. In the 5% type, relative costs are about equal, and the conventional type would be somewhat cheaper in the 10% type. However, if a conventional unit is made on a 10% tolerance basis, and it is decided

B

Table A-Maximum Current Capacity of Various Resistors

Ohms	Resisfor	Maximum $1 / 2$-walt	Milliampere 1-wat	Capacity 2-watt
10	(1X)	225	318	550
20	(2X)	160	225	318
30	(3X)	130	183	258
40	(4X)	112	160	225
100	(1X)	72	100	142
200	(2X)	50	72	100
300	(3X)	41	58	82
400	(4X)	35	50	72
1000	(1X)	22	32	45
2000	(2X)	16	22	32
3000	(3X)	13	18	26
4000	(4X)	11	16	22
10,000	(1X)			
20,000	(2X)	5	7	10
30,000	(3x)	4	5.8	8.2
40,000	(4X)	3.6	5	7
. 1 meg	(1X)	2.2	3.2	4.5
. 2 meg	(2X)	1.6	2.2	3.2
.3 meg	(3X)	1.3	1.8	2.6
.4 meg	(4X)	1.1	1.6	2.2
1 meg	(1X)	. 7	1.0	1.4
2 meg	(2X)	. 5	. 7	1.0
3 meg	(3X)	. 4	. 6	. 8
4 meg	(4X)	.35	. 5	. 7

to convert it to 1% tolerance, the total cost (original plus conversion) would be $\$ 8.20$, while the total cost of converting this type section from 10% to 1% would be $\$ 5.65$. A comparison of Fig. 2 A and 3A shows the savings in resistors.

Further savings can be effected with this type unit in connection with wattage capacity. The current that can be carried by a decade section is limited to the current capacity of the resistors and, for a given wattage, the higher the resistance, the less the current capacity. In the conventional decade where all resistors are of the same value, each resistor must be of sufficient wattage to carry the peak current desired. In this unit, where resistors are of different size (and therefore different current capacity), and where they are not all in the circuit except on one range, varying wattage sizes can be used to get high current capacity.

Table A shows the current capacity of $1 / 2-$, 1 and 2-watt resistors used in this decade system.
 Notice that by using a 1X 1/2watt, a 2X 1-watt, a $3 X 2$-watt and a 4X 2-watt, the entire section would have the equivalent of a 2 -watt capacity even though some of the resistors in it were less than 2 -

Abbreviations: (S)-Solder; (NS)-Do Not Solder; A3-Confact
on switch wafer "A", etc.

Step	Connection
1	R2X to A-arm (S) and to B-arm (NS)
2	one end of R1X to A-arm (S)
3	R4X to B-arm (S) and to A4 (NS)
4	one end of R3X to A4 (NS)
5	jumper from A4 (S) to B5 (S) and B6 (S)
6	jumper from A1 (NS) to B2 (NS) and B3 (S)
7	wire long enough to go to Terminal "B" to A1 (S)
8	jumper from B2 (S) to C-arm (S)
9	jumper from $A 9$ (S) to B7 (S) to A5 (S) to A2 (NS)
10	jumper from CO (S) to A2 (NS)
11	wire long enough to reach Terminal "A" to A2 (S)
12	jumper from A8 (S) to B8 (S)

watt. In the 5% tolerance type, a conventional decade system would require ten 2 -watt resistors costing \$4; in this system, equal results can be secured with one $1 / 2$-watt, one 1 -watt and two 2-watt resistors at a cost of $\$ 1.30$.

In planning a decade, it is best to analyze minimum requirements and build accordingly, since conversion to higher accuracy or current capacity can be done economically later. If the primary usage is for measurement purposes, 1% resistors should be used, but initial cost might be reduced by limiting the number of decade sections originally included. For example, the original unit might be for $100-100,000 \mathrm{ohms}$ (three sections), and later expanded to greater and lesser resistances. Of course, the original housing should be large enough for ultimate requirements, and the layout should permit orderly expansion. If the primary usage is for servicing work, 10% tolerance sections would be sufficient, but current capacity should be fairly high.

Switch wired (see Fig. 4) and ready for installation.
This decade design alsv permits the use of any section or sections of the unit independent of the other sections. Figure 2B shows how the sections are coupled together with switches (or "jumper" bars) with separate binding posts for each section. In this way, a 10 -ohm to 10 -megohm unit, for example, could be divided into a 10 - to $10,000-$ ohm unit (with 10 -ohm steps) for cathade resistances, a 10,000 - to 100,000 -ohm unit (in $1 \mathrm{t}, 000-\mathrm{ohm}$ steps) for plate resistances, and a 1 - to $10-\mathrm{meg}$ ohm unit (in 1 -megohm steps) for grid resistances. This arrangement is shown in Fig. 2B, and its application is shown in Fig. 7E. With the conventional decade, three separate units would be required, since sections cannot be isolated (see Fig. 3B).

Jumper bars can be used instead of switches for dividing the sections if desired. These are small strips of aluminum cut as shown in Fig. 4, and are used to connect the adjacent binding posts of each section. The distance " D " must be the same as the center-to-center distance between the binding posts, and should be the same between all sections. All kars should be in place when the entire unit is used, and appropriate bars removed to isolate sections.
Figure 1 shows the panel view of a $\mathbf{1 0}$-ohm to $10-\mathrm{me}$ gohm unit. Layout is not too important, except that the binding posts should be in one line and spaced evenly it jumper bars are to be used. It is desirable to have both binding posts and resistance switches in a line for ease of operation.
Most of the wiring of the decade sections should be done on the switch before it is fastened to the panel. Figure 6 shows a decade switch completely wired. Waile the diagram for it (Fig. 2A) seems complicated, each switch can be wired in the 12 steps outlined in Table B. After this pre-wiring, attach the switches to the panel and

```
        MATERIALS LIST-ALL.PURPOSE DECADE
            (For each decade section)
No. Req.
    Description
1 rotary switch; 2 poles with 11 positions & 1 pole with 1
    position (Mallory 1331L, Centralab 1009, etc.--see text)
    1X resistor) " }X\mathrm{ " = ohm step of decade section, i.e. 10-ohm,
    2X resistor) 1000-ohm, efc. Tolerance and wattage optional.
    3X resistor) For wattage, also see Table A.
    4X resistor)
    binding posts
    SPST togole switch (optional)
    pointer knob
    0-10 dial plate (Optional-Mallory Type 380)
```


make connections to the binding posts (and toggle switches, if used).

If a low-range (less than 1 -ohm) section is used, special low-resistance switches should be used, and all wiring done with No. 14 or No. 16 wire. In wiring high ranges (over 1-megohm) no wires, even though insulated, should touch, to prevent leakage resistance from affecting results. Other than this, no particular care is required in wiring.

You can reduce costs by using surplus parts wherever possible. In my unit, spring-type binding posts and toggle switches were cheaper than screw-type binding posts alone, since the items were surplus stock, so they were used. The decade switches were made by buying surplus switches (with three wafers, each suitable only for the "C" section) and buying two, new, large switches to get sufficient 11 -contact wafers. Surplus 1% resistors can often be purchased for less than standard 5\% units. Technical Apparatus Builders ("TAB"), 111 Liberty Street, New York 6, N. Y., has an excellent supply of 1% resistors at a reasonable price.

Decade Uses. Figure 7 shows a number of uses
for decades other than for servicing work. In Fig. 7 A , the decade is used to determine the current range of an unknown meter. The decade is adjusted to give full-scale reading on the unknown meter, the voltage across the decade measured, and the current determined by Ohm's Law. The same set-up can be used to determine the series dropping resistor required to convert a milliammeter to a voltmeter of desired range by applying the desired voltage, adjusting the decade for fullscale meter reading, and noting the resistance.

The internal resistance of a meter can be found as shown in Fig, 7B. The switch is opened and the voltage adjusted to give full-scale meter reading; the switch is then closed and the decade adjusted to give exactly half-scale reading, at which time the decade resistance will equal the meter resistance.

In Fig. 7 C , the decade is used, with two external 1% resistors, to form a Wheatstone Bridge. The two other resistors should be of equal value (approximately 1000 ohms), and a zero-center meter used.

Often when the exact current being drawn by a tube is unknown, and a plate voltage dropping resistor is required, the decade can be used as shown in Fig. 7D.

Figure 7E (and Fig, 2B) show how this type
of decade can be used as three variable resistances in determining resistance values for experimental circuits, and Fig. 7F shows how the unit (or part of it, depending on how many jumper bars or switches are closed) can be used as a voltage divider.

Figure 7G shows how the decade can be used to calibrate a inultimeter or VTVM, using an external milliammeter of any value. In this case, the decade and/or voltage is adjusted to various current values, the voltage drop across the decade calculated by Ohm's Law, and the voltmeter calibrated accordingly.

In the above uses, 1% tolerance should be available in cases A, B, C and G. Care should be exercised in connection with peak current in all cases, but particularly in cases D, E, and F.

Specific dimensions have not been mentioned, since they will depend on the number of sections included in the unit, the type and size switches used, etc. If 30° indexing switches are used, Mallory Type 390 Dial Plates ("Off" and "1-10") may be used instead of making dials with decals as shown.

Generally speaking, the principles covered above (except usages) also apply to capacitor decades, except that voltage rating must be considered instead of wattage.

Desk lamp mike stand

 Record that tall story us-ing the desk lamp reflec-
tor to increase the range
of your hand mike

AMICROPHONE stand for hand mikes (such as those that come with less expensive tape recorders) can be improvised from a flexible neck desk lamp with its cord removed (or at least disconnected), a plug to
fit the lamp's socket, and a $1 / 8 \times 3 / 8 \mathrm{in}$. metal strip. Bend the metal strip to the size necessary for the mike in question, and use as shown. To pick up faint sounds attach the lamp's bowl-type reflector to the lamp's socket to "funnel" or focus the sound into the mike. Face the mike toward the inside of the reflector,-Andy Vena.

Keeping Tube Numbers Readable

- After tubes used in experimental circuits have been handled for some time, the type numbers on the glass envelope wear away
 and are almost impossible to read. To prevent this and keep numbers readable indefinitely, apply clear fingernail polish to the numerals when tubes are new. If the numbers on older tubes are illegible, apply ammonia with a piece of cotton and let it dry to bring numbers out clearly.-John A. Comstock.

Grommet Is Pilot-Light Bumper

- In some electronics gear, pilot bulbs are placed in locations that make them especially vulnerable to breakage. To prevent such breakage, slip a snug-fitting rubber grommet over the bulb's glass envelope as shown. The grommet will serve as a bumper to ward off damaging blows.-J.A.C.

Strong TV signais may cause rapid and slow rolling of picture by triggering the vertical symchro on your TV set.

H-Pads Stabilize Rolling TV Pictures

THE combination of the modern ultra-sensitive cascode tuner in TV sets made during the past few years, plus the greatly increased operating power of TV stations, may make the housetop antenna deliver too strong a signal.

The result is that the TV picture may roll (Fig. 1), blacisen and pull to the right of the screen between "station breaks" or when the picture contrast control is advanced. These conditions can, of course, also be caused by defective components in the vertical synchro section of your receiver. But, where the trouble is due to
your antenna delivering too strong a signal, what happens is that the vertical circuitry loses its stability and cannot lock the picture in frame.
To eliminate this triggering action of strong TV signals, you can insert a simple resistance network between your set ard the TV antenna. Because of the arrangement of the resistors (Figs. 2 and 3), this picture stabilizer is known as an "H-Pad."

In simple language the H-Pad is a picture volume control which reduces the R.F. signal delivered to the set's tuner input by the antenna.

4. SCHEMATIC

The strength of the signal reaching your TV receiver is expressed in decibels, which are convenient units for measuring intensity logarithmically (you hear, by the way, in proportion to the logarithm of the intensity rather than in direct linear response to it). The H-pad resistor combinations, which you will use to reduce the signal strength, are proportional to the degree of reduction (attenuation) of signal strength required. Thus, where the vertical circuit is only triggered infrequently by a slow roll, a $5-d b$ (decibel) H-Pad may be all that you need. This unit has low series resistance and high shorting resistance. On the other hand, if your pictures are double or triple-triggered as evidenced by rapid rolling, up to $30-d b$ attenuation may be required. Here the series resistors are high and the shunt or shorting resistor low. Table A indicates various resistor values needed to provide various degrees of attenuation.
For most vertical sync problems a $20-\mathrm{db}$ stabilizer should prove about right. The unit shown in Fig. 2 was assembled on a $5 / 8 \times 2 \times 31 / 4-\mathrm{in}$. block of wood. Holes were drilled and countersunk in one end for two $11 / 8-\mathrm{in}$. fh 6-32 machine screw binding posts.

Drive four $5 / 8-\mathrm{in}$. long brass brads into the block, leaving $3 / 18 \mathrm{in}$. of the nail exposed. Then cut off excess portions of the resistor pigtail leads

11

TWO TV receivers will operate efficiently off the same rooftop antenna by using this simple resistance bridge coupler. To assemble it, all you need are three 820 or 910 ohm composition resistors, three $6-32 \times 5 / 8 \mathrm{in}$. machine screws and six matching nuts.
Arrange the resistors in a triangle on a small round or square piece of fiber or plastic (Fig. 1). For a neater appearance you can enclose them in a small plastic cosmetics box.
Connect the antenna lead-in to any adjacent pair of binding posts, running another piece of

The turn of a switch demonstrates any of three unique functions of transistors and solar cells: radio, radiated energy control or solar-electronic switch

By THOMAS A. BLANCHARD

The 3-in-1 Transistorlab with switch in A-position functions as a solar-powered radio, here being activated by the beam of a flathlight.

TUCK this 3-in-1 Transistorlab in your pocket, and you have ready for instant use a solarpowered pocket radio, a radiated energy control or a solar-electronic switch. An inexpensive rotary switch enables you to change from one application to another immediately for lise in your own experiments or as a demonstration unit for school or elub.

All components fit nicely into a plastic trinket btox measuring $1^{1 / 4} \times 31 / 4 \times 4^{1 / 4} \mathrm{in}$. which was picked up at the notions counter in a dime store (Figs. 1 and 4). A $316 \times 11 / 2-i n$. slot was cut in
the plastic box and the solar cell mounted in place with a strip of self-stick masking tape (Figs. 3 and 4). So long as wiring is correct (Figs. 2 and 3), and relay armature tension adjustment set so it can pick up on 1 milliampere, you can make any physical layout changes that may be necessary to suit housing you select. Note that none of the D-contacts on the switch are used, and only those indicated in the A, B, and C positions are wired, the others being idle. The control has been wired for an RCA 2N109 transistor. Other PNP transistors, such as the CK722 and 2N107 will also work but the high beta 2N109 is less critical and gives more consistent results.

When the rotary switch is in the A-position, the Transistorlab switch sets up the circuit so that RF signals from the air are tuned by the ferrite antenna coil, rectified by the diode detector, then amplified by a direct-coupled PNP transistor amplifier, powered by the inexpensive International Rectifier 3.2 v ., 2 ma . silicon solar battery.

A subminiature jack provides plug-in connection for a miniature magnetic, high-resistance earphone. Many experimenters run afoul by trying to use less expensive crystal phones in transistor circuits. These can be used in conjunction with a shunt resistor, but results are too poor to bother with them in this case.

When the switch is moved to B-position, the circuit disengages the solar battery and substitutes the sensitive Sigma Model $4 F$ relay for the earphone. It also connects the miniature 411 E

hearing-aid battery into the amplifier circuit. With a suitable antenna and ground attached to terminals the Transistorlab will now demonstrate how energy radiated by more powerful or nearby local stations can be made to operate other electrical circuits.

Having the antenna coil knob tuned to a loud radio station beforehand, you will discover that when the antenna is attached to its post, the relay contacts close. Tuning away from the station will cause the contacts to release.

As a mere idea of applying radiated energy to a more practical purpose, consider the chicken farmer who could rely on his strong local radio station going on the air in the early morning to automatically turn on the lights in the hen houses. Or, this same radiated energy could be used to turn off street lights or billboards. This is especially interesting since many radio stations are allowed to broadcast only from sunrise to sunset, since they are on channels assigned to larger stations with "clear channel" night-time rights.

When daytime stations sign off, the circuit of the radiated energy control draws very little current. Only when a signal reaches the diode cietector circuit does any appreciable current flow from the transistor's emitter to collector. Another use for this radio carrier operated relay is as a Conelrad air raid warning service.
Finally, with the selector switch in C-position we have a form of electronic switch that is "triggered" by light striking the solar battery which

Transistorlab fits easily in a $11 / 4 \times 31 / 4 \times 41 / 4-\mathrm{in}$. plastic box.

	MATERIALS LIST-TRANSISTORLAB Description
,	$11 / 4 \times 31 / 4 \times 41 / 4^{\prime \prime}$ or larger plastic box
1	ferrite antenna coil (loopstick, Miller No. 2002)
1	general purpose germanium diode, IN34 or equiv.
1	RCA 2N109 transistor
1	transistor socket
1	subminiature phone jack
1	Sigma \#4F sensitive plate circuit relay with $2,000 \mathrm{ohm}$ coil
1	2 mfd 25 v . electrolytic capacitor
1	300 mmfd mica capacitor @ 300v.
1	100 mmfd mica capacitor @ 300v.
1	solar cell strip No. MS-420 (Lafayette Radio, 165-SM Liberty Ave., Jamaica 33, N. Y.)
1	Mallory \#3234J (non-shorting) rotary switch; 3-poles, 4positions
1	15-volt \#411E midgat battery
5	4-40 machine screws $3 / 8$ \% long for terminals
10	4-40 nuts
5	soldering luos hook-up wire and knob

has now been cut into the circuit to replace the RF tuner. Here a stronger current than the previous radiated voltage is applied to the base of the transistor. A small current flowing in the base circuit causes a much larger current to flow in the emitter-collector circuit of transistor.

When sun or artificial light (except neon or fluorescent) strikes the solar cell, it becomes active and the relay circuit closes. The effect of a beam of light is like that of the well known photoelectric controls with the outstanding feature of the transistor being in evidence-its ability to work on as little as 9 v . as compared to vacuum tubes requiring from 90 to 150 for satisfactory results.

[^18]|F you decided you wanted the best stereo sound available-and were not worried about the cosi-you might wind up with a dream system that looks like the one shown here.

The control console in the center of the artay shown above was constructed over a period of a year in spare time. The rest of the equipment consists of standard professional components, except that the tape machines are housed in a specially constructed cabinet (top right in photo) to allow easy working from a standing position. Actually, the control console is two consoles in one, for the left and right channels are separate and symmetrical each side of center. Two meters in the center of the instrument panel measure the power level of right and left sound while the two outside meters measure limiting, or compression action for recording or dubbing operations. The limiting amplifiers achieve highest levels of sound without overload and system hiss.

Three microphones, inputs for right and left respectively, can be mixed by the control knobs on the first row of the console, along with stereo AM-FM radio, disc or sound from two stereo tape machines. The monaural central tape deck is used for single track sound effects available from an extensive tape library. Key switches located over each mixer pot allow flexibility in operation by actually doubling the number of inputs, 20 in all, although only 10 can be mixed or recorded at one time, five on the right and five on the left.

Directly over the mixer knobs on the first row are remote push-button controls for two of the tape machines. These allow one-man operation of even the most complex mixing or recording set-ups.

Located each side of the remote control cluster are "program equalizers," which act like
tone controls on a high-quality amplifier, but allow more accurate settings.

The system of loudspeakers consists of two Electro-Voice Cardial Klipsch systems on the extreme sides, and three diminutive E-V Stereons, the odd one of which is placed on top of the control consale center. The two outside Stereons, playing only stereo-significant sounds above 300 cps, are simply in parallel across the two Cardinal loudspeaker systems. The other Stereon receives "mixed" sounds which actually constitute a reformed third channel in the center. To insure proper reconstitution of this third, or "phantom" channel, a small square control box at the extreme right side of the meter panel allows reversal of phasing through a special transformer. This is necessary because many records and tapes are non-uniform in this respect. When properly phased, this third channel gives much better stereo effect, and permits the listener to move about the room without rebalancing channels. This third channel also prevents violent shifting of the playing instruments from one place in the orchestra to another, and "locks-in" the soloist when he sings or plays centrally.
A transcription turntable for playing stereo phonograph records completes this reproduced music paradise, but as tapes for purest sound are generally employed, it is kept rolled away in a closet. Not shown in the photograph is a long lounge directly oprosite the control console where Howard Souther, General Merchandise Manager for Electro-Voice, luxuriates in 3-D Sound at its finest.
What would it take to duplicate Souther's custom-made set-up? "A real love for well reproduced music, a year's spare-time," says Souther, "and more money than I care to admit!"

The Jim-Jam Box

By ROBERT GANNON

FROM old components lying idle in your scrap box, or for a total of a little over $\$ 6$ for new parts, you can easily construct a "Jim-Jam Box." Essentially nothing more than three elementary blinker circuits, a Jim-Jam Box, with three (or more) neon lights flashing intermittently, easily simulates anything from a Geiger counter to a miniature, electronic brain.
Circuit consists of a trio of resistors, capacitors and neon lights, wired in parallel and powered by a $90-v$ battery (see Fig. 2). By varying the values of the components, the lamps can be set to flash at a variety of speeds, in sequence or at random.

Container for the Jim-Jam is a 4 -in. meter case. A small piece of sheet metal is fitted from the inside to the front of the case with two machine screws, and the lights-held in place by close-fitting grommets-protrude through three holes in the plate.

The back, metal or opaque plastic, is attached with sheet metal screws or machine bolts screwed into threaded holes. (A small threading tap costs about 85% at most hardware stores.)
To construct, solder three $1 / 4$ - or $1 / 2$-watt resistors of about 22 megohms to three capacitors of from .1 to .5 microfarads, and of whatever voltage rating you have on hand ($600 v$. is fine).
Tape the three resistor/capacitor pairs together (see Fig. 3) and solder the lamps in place. Use spaghetti for insulation. Then carefully push the three lights through the holes in the face-plate. Cushion the components by wedging them lightly against the bottom front of the box with some crumpled newspaper. The battery slides into place easily with just a bit of jiggling.
With the back screwed in place, your Jim-Jam Box is ready for a half-year of thaumaturgic blinking-on a single battery. Yes, that's all it does-sits there and blinks. But it's surprising how this mystifies, moves and even amazes your guests.

3

	MATERIALS LIST-JIM-JAM BOX
No.	
Req* ${ }^{\text {d }}$	Size and Descriptior,
1	$4 \times 4 \times 41 / 4^{\prime \prime}$ meter case
3	NE. 2 neon glow lamps
3	1/2-watt, 22-Meg resistors
3	. 1 to .5 mfd ., 600-v tubular capacitors
3	$1 / 2^{\prime \prime}$ grominets (center hole to fit NE-2)
1	$90 \cdot y$ battery (R.C.A. VS090, Eveready 490 or Burgess N60)
	Misc. screws, bolts, wire, spaghetti, splder, et c.

[^19]
Antenna-Copler and Low-Pass Filter

Novice hams, if you want to combine some of the odd "outboard" pieces of apparatus around your station into a single unit this device will do it! It combines a flexible antenna coupler with an efficient low-pass filter, both designed for the low-powered transmitter operating at plate inputs of less than 150 watts

THIS antenna-coupler and low-pass filter can be constructed in an evening or two from readily obtainable parts. The two variable capacitors needed can be of almost any value and can be easily salvaged from a couple of discarded receivers. The chassis used is an inexpensive "store-bought" model with a small piece of Masonite attached as a front panel. Most of the coils for the anten-na-coupler come prewound; the proper lengths are simply cut off to form the correct size coils.
The low-pass filter portion consists of a series of five coils and four high-voltage capacitors built into three isolated chambers (see Fig. 3). The filter circuit serves to attenuate interfering harmonics by by-passing them off to ground. In Fig. 3 , coils of insulated \#12 wire are shown, but bare wire is satisfactory and easier to handle. Hence, all directions are given for bare wire. If insulated wire is preferred, then all measurements must be accordingly adjusted to allow for the thickness of the insulation.

Construction. Obtain a stock chassis measuring $3 \times 7 \times 11 \mathrm{in}$. and fasten a piece of Masonite $81 / 2 \mathrm{in}$. high by 11 in . to its front with screws and nuts. Fasten a strip of aluminum, $21 / 2 \mathrm{in}$. wide by $71 / 2 \mathrm{in}$. high to the rear of the chassis (Figure

Ham at rig, coupler-filter upper right
4). One SO-239 coaxial socket (S2) is fastened to the top of this strip of aluminum by drilling a hole slightly larger than the socket (about $5 / 8 \mathrm{in}$.) and fastening the socket in place with small screws and nuts.

A second coaxial socket (S 1) is similarly installed in the center of the rear side of the chassis. Note that if twin-lead cable is to be used instead of coaxial cable, the S 2 socket and the aluminum strip are not needed, since the twin-lead cable terminates in small clips (A2, A3) which are hooked directly to coil L7.
Three $1 / 2$-in. holes are drilled in the chassis (see Fig. 2A) and fitted with rubber grommets. Two porcelain stand-off insulators are then mounted in these holes. Now make two aluminum dividers from

By RALPH SCHACHAT (WIGIF) and MARTIN GLICKSMAN

flat pieces of aluminum stock (see Fig. 2B). Scribe the flat pieces of aluminum along the sides to be bent, bend the aluminum and drill and fit with rubber grommets two $1 / 2$-in. holes as shown. These dividers are then fastened in place under the chassis with machine screws and nuts as shown in Figs. 2A (dotted lines) and 3.
The two variable capacitors (C5, C6) are mounted as shown in Fig. 4. One of these is a two-gang capacitor (C6) and must have both gangs of the same value. The other (C5) can be a one-gang capacitor. (A two-gang unit was used because it was available, but one gang was not used in the circuit.) The small mica trimmer capacitors often found on such variable capacitors should be removed if present. They will be found on either side of both stator sections. Remove by unscrewing the adjustment screw and discarding it, along with the mica spacer. The remaining adjustable plate may then be wrung-ofl with a pair of long-nose pliers.

Coils L1 to L5 are made by winding \#12 bare around a $1 / 2 \mathrm{in}$. form at a spacing of 8 turns per in. Coils L1 and L5 have 5 turns; L2 and L4 have 7 turns; and L3 has $81 / 2$ turns. The large coil (L7) can be made by winding 24 turns of $\# 14$ bare wire around a $2 \frac{1}{2}-\mathrm{in}$. form, using a spacing of 8 turns per in. It is far easier and more convenient, however, to cut a 24 -turn section from a commercial coil such as Barker and Williamson Type 3906 "Air Inductor." In either case, an extra 1 or 2 in . of wire should be left on each end of the coil to serve as leads.
The small coil (L6) can be made similarly by winding 9 turns of \#14 bare wire around a $2-\mathrm{in}$.
form at a spacing of 8 turns per in. Likewise, cutting a 9 -turn section from a commercial coil is preferable. Long leads of about 6 in . should be left at each end of this coil.
Carefully center the small coil (L6) within the large coil (L7) so that the long $6-\mathrm{in}$. leads of the small coil come out conveniently between the turns of the outer coil. The leads are covered with spaghetti to avoid shorting of the coils, and the inner coil is fastened in position by gluing small spacer strips of Bakelite (or other rigid, non-conductive plastic material) between the inner and outer coils. The small Bakelite strips can be cut from a large piece of Bakelite with a bandsaw or hacksaw. Duco cement, or preferably a commercial coil cement is used to glue the plastic in place.
The two leads of the large coil (L7) are fastened to the porcelain stand-off insulators and the excess wire is clipped off (see Fig. 4).

One lead of the small coil (L6) is run through the $1 / 2-\mathrm{in}$. hole in the chassis to the low-pass filter section. The other lead is soldered to the hot terminal of variable capacitor C5. The wiring is then completed as shown in the wiring diagram,

Bottom view of unit.

Top view of unit.

MATERIALS LIST-COUPLER-FILTER	
No. Req'd.	d. Descript
chassis, $3 \times 7 \times 11^{\prime \prime}$	
Masonite panel $81 / 2 \times 11^{\prime \prime}$	
1 aluminum strip, $4 \times 103 / 4^{\prime \prime}$	
1 a	aluminum strip, $4 \times 4^{\prime \prime}$
2	capacitors, $\# 74 .-36 m m i n d ~(C 1, ~ C 4)-M i c a-A l l i e d ~ C a t a l o g ~$ \#74-L. 335
2 capacitors, 154 mmfd (C2, C3)-Ceramic—Allied Cata.	
$\begin{aligned} & \text { Barker \& Williamson Coil-(L6—Radio Shack Catailon } \\ & \# 21.520 \text {) } \end{aligned}$	
Barker \& Williamson Coil-(L7—Radio Shack Catalcg =21.097)	
Alliyator clips-(Al, A4-Radio Shack Catalog $=32-774$)	
$\begin{aligned} & \text { ariable capaci } \\ & \text { \#61-H-009) } \end{aligned}$	
variable capacitor-(C6-2-yans-Allied Catalog \#61-H-059)	
\#12 bare wire (L1 to L5)	
"Air Induction" (L6, L7)	
3 coaxial cable, RG59U-Allied Cataloy $\# 47$. W. 552	
6 strips Bakelite, about $1 / 4 \times 3 / 16 \times 11 / 2^{\prime \prime}$	
2 porcelain stand-off insulators, about $1^{\prime \prime}$ hiyh	
2 knolss. to fit variable capacitor shafts	
porcelain electric light sacket	
1 electric light bulb, 15 watts	
Miscellaneous nuts, screws, grommets, solder, etc.	
If Coaxial Cable is used:	
1 aluminum strip, $21 / 2 \times 71 / 2^{\prime \prime}$	
\#40.H.352 coaxial cable, RG59U	
If Twin-Lead Cable is used:	
1 c	conxial socket, S0-239 (S1)
5 P	Polarized connectors, Mosley, Type 321-Mosley Electrenic Cataloy $=321$
$2 \quad \mathrm{~N}$	No. 40 pilot buths and miniature screw-bare sackets Twin-lead cable, 300 ohms, to dipole antenna-Allied Cataloy $\overline{47} 49-\mathrm{T}-385$

Fig. 5. An aluminum cover plate can be fastened over the bottom if desired. Both the transmitter and the coupler chassis should be individually grounded before operation. The coupler and transmitter are connected to each other with a short piece of coaxial cable having a PL-259 piug on each end. The antenna can be connected by coaxial cable or by a form of balanced line, slich as twin-lead cable. The general operation of this particular antenna coupler is particularly suited to balanced line installation. However, coaxial cable can be used, and directions will be given for the use of both types of transmission lines.

Ordinary TV 300 -ohm twin-lead cable serves as an excellent transmission line between a lowpower transmitter and antenna and has been found to work very well with this coupler.

The setting of the clips depends greatly upon the impedance of the antenna feed system at the
turned off when clips 2 and 3 are being adjusted; otherwise, the user may get an unpleasant shock. If the clips are set too far out to begin with, the shunt impedance of the feed line may "kill the Q" of the circuit, and no tuning effect will be observed. This would be most disconcerting to one not acquainted with an antenna-system's whims.
(While the use of a lamp bulb as a dummy load is excellent practice for tuning a transmitter and lesting its operation, the impedance of an actual antenna would approach the impedance of a 15watt lamp, or about 1000 ohms , slightly inductive, only by the luckiest happenstance. Actually, it would probably be best for the new ham to practice tuning-up on the lamp, as suggested below, until he knows perfectly what each adjustment is for. Then it would be better if he proceeded as above when tuning the "live" antenna. Most such systems would probably have a much lower impedance than the lamp.)

Coaxial cable is reported to lose less power by radiation from the transmission line, but the difference between coaxial cable and iwin-lead is small, with properly operating equipment.

The antenna used to test the coupler was a 5 -band dipole commercial trap antenna designed for use on 10-, 15-, 20-, 40-, 80 -meter bands.
Transmission with Coaxial Cable. 1) Connect a dummy antenna lamp bulb to the antenna socket (S2). A 15-watt bulb was used for an AT-1 transmitter; for transmitters operating with higher power, use higher wattage bulbs. The dummy antenna is made by connecting a PL-259 plug to a porcelain electric bulb socket by means of two separate insulated wires as in Fig. 6. The proper size bulb is screwed into the porcelain socket and the PL-259 plug is plugged into the antenna socket (S 2) of the coupler unit.
2) Alligator clips A1 and A4 are set at the ends of coil L7. Clips A2 and A3 are then set in about 1 or 2 turns from each end of the coil for 80 -meter operation, and about 4 or 5 turns for 40 -meter operation.
3) The transmitter is tuned up in the usual way and variable capacitors $C 5$ and $C 6$ are adjusted until the bulb lights to its maximum brilliance and the transmitter loads properly. A good "dip" must be obtained when the transmitter amplifier coil is tuned through resonance. The light bulb should glow with a good brilliance.
4) When the proper "dip" and bulb brilliance has been obtained, the dummy antenna is re- point of connection. It is suggested that clips 2 and 3 be set closely together near the center to begin, and capacitor C6 adjusted to resonance. Then clips 2 and 3 should be moved outward, meanwhile adjusting C6, until best antenna current is obtained. Naturally the transmitter is

6
DUMMY ANTENNA
placed by the transmitting antenna. C5 and C6 are readjusted somewhat for "dip" and good loading. If poor loading or no "dip" is obtained, A2 and A3 are readjusted by changing their positions, and the transmitter is retuned as above. However, in order to indicate actual flow of RF current in the antenna circuit itself (imperative to proper transmitter adjustment) insert at point X in the schematic Fig. 5 a shunted pilot-lamp, No. 40, 6-8 v in series with the antenna feed line itself as shown in Fig. 5B.

Sometimes the beginner can think he has his antenna system tuned properly by meter when actually all of the RF output is being dissipated in the residual resistance of the tuner. However the glowing lamp in the feeder leaves little doubt that the "soup is going up the stack," as intended. This adds miniscule cost but great convenience to the coupler unit. Also, the power used in the lamp may be considered negligible (the lamp can be unscrewed after tuning if desired).

Transmission with Twin-Lead Cable. 1) The transmitter is tuned in the same way with the dummy antenna.

"The next sound you hear will be that of a startled mountain goat."
2) The dummy antenna is then removed, and replaced by a simple twin-bulb unit (Fig. 7) shunted as in Fig. 5B.
3) Clips A2 and A3 are adjusted to a proper position on coil L7. Capacitors C5 and C6 are adjusted until both bulbs light up with maximum and almost equal brilliance. This indicates that both sides of the antenna are loading equally. Although this may sound tricky or complicated,

it will be found to be a neat and relatively easy procedure.
4) The twin-bulb unit is removed and the transmitting antenna is plugged in. Usually, no further adjustments need be made as long as the transmitter "dips" and loads properly and the shunted pilot lamp glows.

Here, then, is a simple, easily built unit that will deliver the full power of the transmitter to the antenna in such a way that good balance between the "legs" of the dipole will be obtained. In addition you need have no qualms about operating during "TV hours" no matter how close your antenna is to your neighbor's TV antenna.

Charged Plastic Dusts Platter

- If the grooves of your hi-fi phonograph records are filled with dust, here's how to remove it the harmless electrostatic way: Take a piece of Saran plastic wrap and crumple it in your fingers while holding it about an inch above the surface of the revolving platter. The static electricity produced by crumpling the plastic will attract the dust particles and hold them. If you watch very closely, you'll actually be able to see them jump from the platter to the charged wad of plastic.-J.A.C.

Tape Recorder Ukkeek
 By JAMES A. McROBERTS

Many thousand hours of nearly flawless service are engineered into even the least expensive tape recorder. Here's your part in getting every one of these hours from your machine

Top-chassis view of typical tape recorder showing use of brush, magnifier and mirror to clean heads.
instructions. With them, you'll also need a general schedule of inspection and lubrication. Lubrication should be performed every 500 hours of service, additional operations every 1000 hours. (Some work is on an as-needed basis and is so mentioned below.)

Mechanical Maintenance Schedule: 1) Clean the recording, reproduce (playback), and erase heads. Use a magnifying glass and mirror to reflect light on the

|N every tape recorder, a tape transport mechanism transports (pulls) a tape from a supply reel past a magnetic recording-reproduce head (or heads) and winds it on a takeup reel. An electronic amplifier (or amplifiers), with associated record-reproduce heads and accessories are also essential in tape recording, the electronic accessories to include a volume control, recording level indicator, and an erase oscillator driving an erase-head winding.

A combined group of mechanicalelectronic equipment accessories (controlled by the function switch) switch the amplifier, the heads, the erase oscillator, and also change tape direction and speed. Your owner's manual covers the placement of the heads, controls and other parts with specific lubrication instructions and other data applicable to your particular recorder. Those are specific

[^20]
heads (See Fig. 1). A nylon brush on a typewriter eraser stick is an excellent tool for removing loose residue from the head structures. Loosen caked material with a lint-free rag mestened with rubbing alcohol or carbon tetrachloride wrapped around a wooden or plastic toothpick. Remove excess liquid with another clean rag.

Do not use metallic tools on the head laminations, or bring magnetized objects near them. Metallic objects scratch or dent the laminations, and can magnetically short-circuit them; magnetized bodies could magnetize the head, requiring

Lubrication of capstan roller with petroleum jelly.
an unnecessary demagnetization. Do not use a pipe cleaner on the laminations. Use a nylon brush, a stiff bristle brush or a narrow toothbrush. Wipe the brush clean on a clean rag before the final brushing.
2) Inspect heads for uneven wear during cleaning. The cause of the uneven wear in Fig. 4 was uneven pressure of the tape against the head, the greater pressure being exerted at the top of the laminations (tape guides are employed in some recorders, pressure pads are used in other equipment).

To correct the cause of such uneven wear, the entire head structure can be rocked in some instruments to provide paralleled alignment of tape and the head structure. Most manufacturers of tape recorders which have pressure pads supply pads already mounted on arms for easy replacement. Try to detect excessive wear so that you may place an order well in advance for renewal pads. A reserve set is a good investment in continuous performance. If you can't purchase the pad-arm assemblies, then you must remove the old pads and cement on new ones.
3) Inspect pressure pads; replace if worn badly (see Fig. 3). Rocking the head to make the tape parallel must be done cautiously, however, since in some instruments the head can be moved sidewise (at an angle to the vertical in direction of
tape travel). This is the azimuth adjustment which should not be touched if the high frequencies (the ss's and the $z z$'s) reproduce satisfactorily. If such an adjustment is provided, and the high frequencies reproduce unsatisfactorily, make the azimuth adjustment by rocking the head sidewise so that the laminations gap is at right angles to the tape. Work carcfully, preferably with the set-up shown in Fig. 1 (magnifying glass and mirror).
Remove old pads with a razor blade, scrape old adhesive from the pad arms. Replace with a new pad using adhesive (such as Duco cement) sparingly. Check parallelism of new pad with the head structure. Check spring tension of all pads against a piece of tape in the recording position. The pull on the tape-with tape taut from supply reel through the heads-should be about 2 oz . (half the weight of a $1 / 4 \mathrm{lb}$. stick of butter). Loosen or tighten springs on the pressure pads, or adjust the brake on the supply drum as indicated by your inspection and "feel."
4) Inspect the capstan and roller. Test with a length of tape between these units. The pull for slippage of the tape should be about 2 lbs ., approximately the weight of one qt. of water or milk. Rotate the capstan and roller manually through one revolution while making this check to sce if the pull is uniform. Non-uniform pull

Underside rear view of typical tape recorder chassis.
vide proper tension so that spillage does not occur.

Rubber friction drive may be accomplished by a belt in contact with a flywheel held by a spring (see Fig. 7), or by rub-ber-tired wheels driving the take-up reel. The cause of insufficient friction can be found by manual operation (power plug disconnected, function switch on Forward). The rewind is almost always another friction device operating at a higher speed. Inspect by manual movement of the motor drive pulley or belt (power plug disconnected, function switch in the Rewind position). Flats and reduced diameter are the principal troubles.
usually means a fiat on either the capstan or the roller. Replacement is the only remedy. The cause of this defect is failure to push the movable member free when the recorrler is left idle. Always separate these parts when your recorder is not in use.
5) Lubricate capstan and roller sparingly with clear petroleum jelly every 1000 hours of use. Figure 5 shows a roller being lubricated with a pipe cleaner. The sliding part may require similar lubrication. Use all lubricants sparingly-none musi get on the rubber or on the surface that contacts the tape.
6) Inspect the take-up reel drive. Tape spillage will occur if friction here is inadequate (see Fig. 6). A spring drive may be employed; spillage of the spring compensates for the different speeds required. You can compress the spring with a pair of pliers, or open it, to pro-

Tape spillage due to insufficient drive of take-up spindle. Too much tension would break the tape.

Belt type friction drive assembly. Other type drive is accomplished by contact between rubber wheels and taike-up reel.
7) Lubricate on schedule all bearings (such as the pulley bearing of Fig. 7) every 1000 hours of use with clear petroleum jelly from the top of a broom straw. Petroleum jelly is also a satisfactory lubricant for sliding parts with the exception of the high-speed bearing on the motor and some rewind pulleys. Here, several drops of \#30 or \#40 S.A.E. automobile engine oil should be applied with a straw or a narrow loop of thin wire.

It is extremely important that you do not over-lubricate; particular care should be taken to keep lubricants away from rubber parts. Clean rubber belts with a cloth moistened in rubbing alcohal every 1000 hours (use alcohol sparingly, it also attacks rubber).

You will find that some tape-recorder motors have built-in lubrication of their bearings and do not require lubrication.
Figure 8 is a back, or upside-down view of a
typical recorder chassis. The take-up reel and capstan reel bearings should be lubricated every 1000 hours with heavy motor oil or petroleum jelly. The supply reel bearing, behind the motor, will need lubricant at the same time.
8) Check the chassis-support bolts and shockmounting rubbers of the electronic chassis (background of Fig. 8) by moving the parts they hold or shock-mount. Shock-mounted parts should give slightly, other parts should hold rigid. Replace rubbers or tighten bolts as required.

Electronic Maintenance Schedule. For the most part, electronic or electrical maintenance is far easier than mechanical. Some of this maintenance has been discussed under the care of the heads and their laminations already.

Every 1000 hours of use, test the tubes of your recorder at some reliable radio-TV store. Tubes should be checked every 1000 hours of operation (or at least once a year), because weak tubes that still play reasonably well may not draw the proper amount of current. Failure to draw rated current can cause a voltage rise which can damage other components. Also tubes with incipient short circuits can be detected before they damage or destroy other components.

1) If possible, test tubes for "quality" on a mutual-conductance type checker. Ask the salesman or serviceman to check for partial shortcircuits also. This latter test is doubly advisable if the hum level of the instrument has increased since you bought it. Replace all tubes found to be unsatisfactory.

DXing "LVE"

By C. M. STANBURY II

WHETHER you listen to standard, shortwave or TV broadcast stations, the news you get, the drama you hear comes to you secondhand. It has been cut, rearranged and sometimes distorted beyond recognition by the scriptwriter. Are you tired of it? Are you tired of the clichés and tired stereotypes that pass for reality? I was-and I did something about it.

Three-fourths of the radio spectrum is allocated to utility radio services such as aeronautical, marine and public safety, and it is here that the listener has his only chance to hear real people living real lives. The words transmitted by these stations come from no script. They come from life itself!

The most interesting, exciting listening is heard on emergency services such as the police and coast guard. Here, by knowing how and where to listen, you may hear men under pressure voicing the spine-tingling words of emergency.

But suppose you are a crime or mystery fan,

The time when heads must be demagnetized is hastened if tape is left in contact with the recording, erase, or playback heads when the machine is not in use.
2) A high background hiss level or noise level can be due to residual head magnetism (in the process of making a tape recording, we magnetize the tape, and magnetized tape will magnetize anything also capable of being magnetized with which it comes in contact). The amount of such secondary magnetization is a function of the intensity of the original magnetization of the tape and the time it is in contact with the heads.

When heads have accumulated enough residual magnetism to cause a high hiss, they must be demagnetized by subjecting them to a very strong alternating magnetic field for a few seconds, then slowly reducing this field to zero. Plans for a demagnetizer coil you can use for this purpose will be found on page 77 of Science Experimenter (No. 557), Vol. 1, a handbook available from Science and Mechanics for 50 ¢ .

then the frequencies assigned to law enforcement agencies may become your favorite bands. Here you will find realism that no magazine or book could ever bring you. Public safety radio services operate on both medium-wave and VHF (see Table B). Medium-wave is best for distant reception. See "One-Tube VHF Receiver," p. 45, on VHF reception. The first police band lies just above the standard broadcast band, starting at 1610 and going up to 1760 kc . In addition, a few such stations operate between 2300 and 2500 kc .

Major stumbling block to police listening is the use of coded number signals. All use a few of these, for example "ten-four," which means

TABLE A-THE PHONETIC ALPHABET	TABLE B—THE POLICE BANDS Range in Megacycles		
A Alpha N November	1.61	to	1.75
B Bravo O Oscar	2.3	to	2.5
C Charley P Papa	31.14	to	32
D Delta Q Quebec	33	to	33.12
E Echo R Romeo	37	to	37.44
G Golf T Tango	37.88	to	38
H Hotel U Uniform	39	to	40
IIndia V Victor	42	to	42.96
J Juliet W Whiskey	44.60	to	47.68
K Kilo XX-ray	153.74	to	154.47
L. Lima Y Yankee	154.62	to	156.24
M Mike Z Zulu	158.7	to	159.48
that the contact is	166	to	173
concluded. However	454	to	456

There is one disadvantage which cannot be overcome in police monitoring. The DXer can

table C- THE COAST GUARD CHANNELS	
Frequency in kilocycles	Service
2182	Distress. Calling, particularly on Great Lakes
2662	General traffic
2670	Calling and distress
2678	General traffic
2686	General traffic
2694	General traffic
2702	General traffic
COAST GUARD DISTRICT HEADQUARTERS	
NMA	Miami, Florida
NMB	Charleston, S. C.
NMC	San Francisco, Cal.
NMD	Cleveland, Ohio
NMF	Boston, Mass.
NMG	New Orleans, La.
NMH	Washington, D. C.
NMJ	Ketchikan, Alaska
NMK	Cape May, N. Y.
NML	St. Louls, Mo.
NMN	Norfolk, Va.
NMO	Honolulu, Hawail
NMP	Chicago, III.
NMQ	Long Beach, Cal.
NMR	San Juan, P. R.
NMV	Jacksonville, Fla.
NMW	Seattle, Wash.
NMX	Boltimore, Md.
NMY	New York, N. Y.
NOY	Galveston, Tex.

POLICE STATIONS USING LITTLE CODING
KCA692 Newton, Mass. 1714 ke
New Hampshire State Police
K5A536 Milwaukee, Wis.
KCA281 Revere, Mass.
Ohio State Patrol
KQA387 Cincinnati, Ohio

1682 kc
2450 kc 1714 kc 1730 kc 1706 kc
only hear one side of the picture: the viewpoint of the police dispatcher. Because of this, the Coast Guard distress frequencies 2760 and 2182 kc will sometimes prove more interesting and revealing. Balanced against this is the increase of both interference and dull traffic on these fre-quencies- 2760 kc doubles as a general calling channel for Coast Guard stations. All contacts are made here (except on the Great Lakes) and then transferred to another frequency. The frequency 2182 kc is even worse for this since it is the international calling frequency for all ships. Table C lists the frequencies as well as the manner in which they are utilized by Coast Guard and distress traffic.

It comes down to a matter of pa-tience-wherever you listen on the public safety and emergency channels, there will be the routine and matter-of-fact. Reality would not be reality without it-but only reality provides the compensating moments of spine-tingling actuality. Those with the least patience, will probably want to monitor the police frequencies. If you have a good deal of patience, the distress channels are for you.

Now, a few hints on identifying stations. On the Coast Guard channels, this is simple. These stations use their call letters or location on each transmission. Further, the letters are given phonetically, so there can be no error (see Table A). The headquarters station in each area is assigned a three-letter call sign-NMD, for example, at Cleveland. Other stations in the district add one or two digits to the HQ call, as NMD47, Buffalo. However, non-coast guard vessels in distress will merely call by location, for example, "Coast Guard Norfolk." Table C gives call and location of all CG district headquarters stations. Coast Guard vessels use four-letter calls.

Identifying police transmitters is touch-and-go. Some frequently identify; others, every hour; and, a few seldom announce their call or location. Police calls generally consist of three letters followed by three digits. They are not given phonetically. A complete registry of public safety systems in the U. S. can be obtained from Communications Engineering Book Co., Monterrey, Mass., for \$4.

One can monitor a local broadcast station and when a disaster or search is reported tune to the appropriate CG or police frequency, but by then the action is already completed.
A note of caution: It is a federal offense to reveal the transmission of any utility station. So don't phone a scoop to your local paper. The wire services monitor the utilities so they'll have the story already anyway-but you are absolutely free to listen for your own entertainment.

Homemade Television Antenna

By HAROLD P. STRAND

Abstract

Save your money and improve your TV set's reception with this inexpensive, effective antenna

AN INSIDE antenna usually works well for television reception from stations up to 25 miles or so away. After experimenting with the familiar "rabbit ears" form of interior antenna, I found that this homemade design definitely improved reception under certain local conditions. The aluminum rods coiled at the top ends (Fig. 1) are so attached to the base that they can be rotated, and this helps to clear up ghost images and improve the picture. These coils can be moved to be at right angles to each other, formed as a V or used in a flat plane, and the entire unit can also be rotated on the cabinet for further adjustment.

Each rod represents a 6 -foot antenna arm, but when coiled, the total height is only about 2 feet 4 inches. A short piece of 300 -ohm leadin wire connects the terminals at the base of the antenna to the antenna posts of the television set.

Each arm of this indoor television antenna can be rotated to bring the coiled sections in the best position for station reception.

For the $3 / 4$-inch birch plywood base, select some smooth grain stock and cut the piece to size (Fig. 2). Smooth the edges and slightly round the corners on a sanding disc. Then apply walnut or mahogany oil stain, allow it to dry for about 10 minutes, and then wipe off all surplus stain. After three or four hours apply two or more coats of shellac, lightly rubbing down each well-dried coat with fine steel wool. Finally, apply wax and rub briskly with a dry cloth for a pleasing soft finish.

As an insulated support for the lower ends of the rods, cut a piece of $1 / 2$-inch thick Bakelite to size and drill the required holes (Fig. 2). Bore the two holes for the rods on about a 5° slant (Fig. 3).

Figure 4 shows the terminal strip made from a second piece of Bakelite. The lead-in wire attaches to the nut terminals

By tipping the drill press table the two holes drilled for the ends of the arms are given a 5° slant or you can hand drill by shimming up one end of the piece to get the right slant.

MATERIALS LIST-TV ANTENNA

1 pe $3 / 4^{\prime \prime \prime}$ birch or pine plywtod $61 / 4 \times 71 / 2^{\prime \prime}$
1 pc paper hase Bakelite $1 / 2 \times 11 / 4 \times 5 /^{\prime \prime}$
1 pc paper base Bakelite $3 / 8 \times 3 / 8 \times 31 / 4{ }^{\prime \prime}$
2 Fahnestock clips
2 pcs hard aluminum rod $5 / 32^{\text {" }}$ diameter $\times 72^{\prime \prime}$ lowg rubber drive-in base knobs (rubber tack bumpers)
\# 7 rh wood screws $1^{\prime \prime}$ long 6.32 rit machine screws (brass) 7/8" long trass 6.32 nuts
brass washers
6.32 th brass machine screws $3 / 4^{\prime \prime}$ long

About 3 feet twin lead-in wire. stain and shella:
SOURCES OF SUPPLY: For Bakelite, try Forest Products Co., 196 Broadway, Camlridge, Mes:. Fahnestock Clips, lead-in wire and ruhber tase knohs may be obtained from Allied Radio, Dept. 10, 100 N. Western Ave., Chicago, III. Fer

Roundhead wood screws fasten the Bakelite base piece to the wood base, through holes bored in the ends of the Bakelite,

$\frac{\text { TERMINAL STRIP - } 1 \text { REQ. }}{\text { BAKELITE }}$
Completed terminal strip equipped with two Fahnestock clips and terminals for lead-in wire connections (Fig. 2).

Drilling holes for 6 -32 screws which attach terminal strip to base piece. Note that ends of antenna arms are put in position to line up the parts.
and the ends of the rods go down in the spring loops of the clips (Fig. 2) to make good contact and also serve to hold the rods in position. You may need to bend the loops out slightly in order to fit the $5 / 32$-inch dia. rods. To makesure clips are placed right on Bakelite so the rods will pass through the loops and enter the holes in the bottom Bakelite piece, use a short piece of rod stock as a guide at each end to insure proper alignment before drilling the holes for the 6-32 screws that secure the clips. The terminal strip attaches to the lower piece with two 6-32 screws (Fig. 5 shows how the holes are spotted for the screws). With the ends of the rods through the loops of the clips and also pressed down in the lower Bakelite piece, use two small C clamps to hold the top piece in position for drilling (Fig. 5). Drill and then tap the holes for 6-32, and then screw terminal strip to base piece. Next screw the assembly to the plywood base with two 1 -inch \#7rh wood screws (Fig. 2) to accomplish this.

Making Antenna Arms

The $5 / 32$-in. dia. aluminum rod stock is of the hard 17ST4 type. You'll need to get two 6-foot pieces from a local dealer in metal and metal products (look under these classifications in the yellow pages of your classified phone directory). Bend the coiled ends around a 6 -inch dia. V pulley as shown in Fig. 2. A small hole was bored in the pulley to receive a steel pin, under which the end of the rod is placed to hold it. The pulley is then turned by hand and the rod carefully

Connecting a short piece of twin lead-in wire to the terminals. The other end connects to the television sot terminals.
wrapped around to form the coil. The stock springs out when released to some extent and you can then apply some hand forming to get the neat coils shown.

Before fitting the finished coiled rods into the base section, slightly round the ends of the rods so that they enter the Fahnestock clips easily when the lever is pressed, and press them down firmly in the slanting holes in the base piece. This construction allows the rods to be turned while the spring clips still hod them firmly in place.

Figure 7 shows how the short length of lead-in wire is attached to the terminals. After connecting the other end of the wire to the set terminals, you are then ready to try out the new antenna. If you wish, you can attach four rubber base knobs or felt to the antenna base to protect the surface of your TV set.

Transistor Set for Code Practice

OR those interested in mastering the International or Morse codes, an audio-tone oscillator is essential.
Prior to transistors, two types of code practice circuits were popular. One was the vacuum tube feedback oscillator; the other was the neon-glow relaxation oscillator. The relaxation circuit was the simplest, but required a minimum of 60 -volt $d c$ to fire the neon lamp. The feedback circuit required a minimum of $221 / 2$-volt dc plate voltage, plus a $11 / 2$ to 6 -volt filament or heater supply, depending upon the tube employed.
The circuit of this transistorized feedback oscillator has the simplicity of the neon-glow, the signal strength of the vacuum tube, and requires only one or two penlite cells for weeks of service. It may be used for solo practice, or two may send and receive with the same unit.

Following a simple breadboard design, the components are arranged on a 5 x $31 / 2 \times 5 / 8-\mathrm{in}$. baseboard (Fig. 2). The four Fahnestock clips attached to the base with $1 / 2-\mathrm{in}$. wood screws serve as terminals for attaching key and phones. The 4 -lug tie strip secured near the baseboard center serves as a solder tiepoint for capacitors, resistor and hookup leads; it also provides a simple mounting for the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ junction tran-

The feedback inductance is the primary side of most audio output transformers. This is the transformer between the output tube of a radio set and its PM speaker, and you can salvage one from a junked radio, or buy a new one, purchased usually for less than $\$ 1$. Those advertised as 50 L 6 types are ideal, but any single plate-type output trans-

[^21]
MATERIALS LIST-

CODE PRACTICE SET

$5 \times 31 / 2 \times 5 / 8^{\prime \prime}$ wood baseboard
P-N-P junction transistor, CK-722 (Ray-
theoli) or RR-38
audio output transformer, 2500 to $10,000$.
olm tube load
220K (220.000) ohm, $1 / 2$-watt composi.
tion resistor
1.002 mfd. paper capacitor (working volt.
age unimportant)
1.02 mfd. paper capacitor (working volt-
age unimportant)
4 Falmestock clips
1 transmitting key
1 pair. maynetic headphones, about 2000
olums (do not use crystal type)
4-lug tie strip
Miscellaneous. $1 / 2$.in. rh wood screws, hook.up wire. benlite batteries

Transistor feedback oscillator requires no switch, since penlite cell is simply removed from base clips when unit is idle. Transformer may be eliminated when used for dual practice.

3
PICTORIAL DIAGRAM
former with a 2500 to $10,000-\mathrm{ohm}$ rating will do.
Disregarding the two plain enameled voice coil secondary leads, connect the insulated primary leads (usually red and blue colored) at the tiepoints as shown in Figs. 3 and 4.

Note that two small angle brackets (fashioned from spring brass, copper or tin) are screwed down to the base to secure a single penlite cell.

A	J	S		2.....
B	K	T	-	3...--
C	L	U	..-	4....
D -	M	V	-	$5 . .$.
E	N	W		6
F....	0	X		7 -....
G --.	P	Y		8 -....
H....	Q	Z		9----.
I ..	R	1		0

$$
\begin{aligned}
& \text { PERIOD .-. -. } \\
& \text { COMMA }-\ldots-.
\end{aligned}
$$

Then, with key and magnetic phones connected, the transistor audio oscillator is ready for use. The headphones you use should be rated at about 2000 ohrns or so (crystal headphones will not work in this circuit). For a stronger signal, use two penlite cells in series, which will then deliver 3 instead of $1 / 2$ volts to the circuit.

If you want to learn the code (Table A) with someone else, conrect another key and phone in series, break the lead marked "X" in Fig. 3, and you have a two-way system. Remember, however, that when one person is sending, the other must hold down his key to provide circuit con-

4
SCHEMATIC DIAGRAM
tinuity. Some keys have a built-in knife switch for this purpose.

If this transistor oscillator is built expressly for two-way transmission, the audio output transformer can be eliminated by installing clips for the second pair of phones where the primary leads are terminated. Thus the second pair of phones serves both as reproducers and oscillator coil. You then insert the additional key at " X " in Fig. 4.-Thomas A. Blanchard.

Transistorized Intercom

For less than $\$ 15$ you can build this small but rugged two-station intercom and get surprising clarity and volume from room to room

A few parts-most of them from your scrap box-and a few hours of time and you have your intercom. Here the author is calling to the Master Station.

By DONALD S. PEARSON

THIS project is based on the Transistor Amplifier project given on p. 34 of the Radio-TV Experimenter, Vol. 6 (75c̣). By changing a few of the original parts, and using the same circuit and adding a few extra parts and switehes, this unit can be made to serve not only as the amplifier, but as an intercom as well.

The schematic for the complete unit is given in Fig. 4, pictorial wiring diagrams in Figs. 2 and
 3. Use a cigar box as the master station, mounting the trans-
former and speaker as near the top center as space will allow. The DPDT switch \#1 on this station can be mounted to the right of the transformer and there will then be room enough to mount the three penlite batteries to the transformer's left.

You can mount the Cinch-Jones barrier-type terminal strip on the bottom of the box. Note the long leads on the transistor sockets. Leads are soldered to the sockets first; the transistors are inserted when all the wiring is completed to eliminate the chance of overheating and ruining them.

To operate, SW1 must be on L., SW2 must be on T. SW3 and SW4 must be on the closed position. This is the necessary procedure for the Number Two station to call the Number One or Master Station. To call No. 2 station from the Master Station SWl must be on T, SW2 must be on L., SW3 must be on the open position. SW4 must also be on the open position. Four-conductor cable is used between stations. A buzzer may be caded if desired.

	MATERIALS LIST-TRANSISTORIZED INTERCOM
No. Req.	. Description
1	binding post (see Fig. 2)
2	$2^{\prime \prime}$ or $4^{\prime \prime}$ PM speakers
2	output transformers, 2000-ohm Pri. 3.2-ohm Sec.
2	CK722 or CK718 transistors
2	electrolytic capacitors-100 mfd, 50 vdc
2	220K, 1/2-watt resistors
1	$10 \mathrm{~K}, 1 / 2$-watt resistors
4	DPDT togyle switches
1	10 K potentiometer
1	pointer knob for pot
2	Cinch Jones barrier type terminal, 3 or 6 term
2	transistor sockets (optional)
2	cigar boxes (or equiv, in size)
3.4	Penlite batteries

Long leads permit moving them to a more convenient position, depending upon the space in the box.

I used a 2-in. PM speaker in the Master Station. This was done because it was handy at the time of construction. It also left more room in the box in which to work. A 4-in. speaker will fit, and will probably give better results. Since they both cost about the same, the size speaker to use is optional.

It is possible that a more simple switching arrangement could be devised, but the switches I used were handy at the time. If switches \#3 and \#4 are not used, an intermittent "bleep" will develop when the intercom is in use. The "T" position on switches \#1 and \#2, both enter the input side of the amplifier. When the master station is on the " T " position and the \#2 station is on the "L" position, part of the signal would go through the amplifier, while the remaining portion of the signal would go out the " T " wires of the \#2 station. With switches \#3 and \#4 at these points, however, the circuit is broken, thus allowing the entire signal to be amplified.

Because of the distance between the two stations (in my case, about 100 ft .), $41 / 2 v$ are used, instead of the $11 / 2 v$ used in the original transistor amplifier. (The batteries will become weak with use and cause a crackle or a mushy sound in the speaker. When this happens, replace the batteries.)

The box for the \#2 station is also a cigar box. This can be made smaller if space is your problem. Both stations are mounted on the wall by means of four wood screws through the cover or lid of the box. Contact paper can be used to cover both boxes to give them a neater appearance.

"I said save the short-wave set!"

Vestpocket Transistor Amplifier

By THOMAS A. BLANCHARD

WHILE primarily intended to serve as an electronic navelty, this tiny transistor amplifier certainly is not to be classified as a toylike gadget. It may be used to amplify crystal radios, provide private listening with a record player, function as a detectophone, or even as an electronic stethoscope for tracking down vibrations in machinery, motors or engines.

The direct-coupled circuit requires the very minimum of components-all of which are quite inexpensive (see Materials List). A single penlite AA size $11 / 2$-volt cell powers the amplifier and the entire unit is housed in a $1 \times 2 \times 3$-in. plastic box.
Make a battery clamp from a strip of $1 / 32 \times 3 / 8-$ in. aluminum to fasten the battery to one of the 3 -in. box sides as in Fig. 3. Then arrange the amplifier components to fit the remaining space. Because ordinary phone jacks require too much space, the "Input" and "Output" connections terminate at miniature jack strips which match miniature 2-pin plugs designed for hearing-aid size earphones. Drill four $3 / 32$-in. holes spaced $3 / 16$ in. apart at each end of the box for the jack
strips. The two outer holes are for mounting the connectors with $2-56$ by $3 / 8$-in. rh machine screws. Remaining two center holes allow passage of plug pins through the box to the phosphor bronze contacts.
The volume control is the conventional subminiature type and measures just $5 / 8 \mathrm{in}$. diameter. A $1 / 4$-in. hole drilled in the front of the box provides for its mounting. The control has a resistance of 5000 ohms and incorporates a power switch for turning battery power on and off as well as controlling the input signal. It. has a $1 / 8$-in. dia. shaft, $7 / 32$ in. long and is slot.ted for either a decorative push-on knob or $5 / 8-\mathrm{in}$. dia. knurled set-screw knob for $1 / 8$-in. shafts.

The entire amplifier hook-up will require only a few inches of wire since the pigtail leads on the 1_{2}-watt resistors and 2 mfd .6 v . electrolytic capacitor provide their own connecting leads. Because of limited space in practically any transistor circuit, \#22 solid tinned hook-up wire is best. Leads that require insulating may be covered with plastic radio "spaghetti." Two short lengths of conventional stranded, plastic insulated wire are used for the leads from amplifier to bat-

tery. Solder these leads directly to the penlite cell (Fig. 3). The battery brass cap is positive and zinc case negative. Battery life in this circuit is remarkable so that in normal use, replacement will be infrequent.

A word about mounting the transistor sockets: These tiny Bakelite units require a rectangular hole opening of $5 / 32 x$ 11/62 in. To avoid making them too large, first drill two $\% 4$-in. holes side by side. Then use a $1 / 8$-in. sq. modelmakers file to shape the rectangular openings in the plastic. Because plastic files down quite rapidly, check the hole size with a transistor socket after each few file strokes.

Using the Amplifier. Since all transistors are low impedance devices, this fact must be kept in mind when using the amplifier. A high impedance crystal microphone or phono pickup cannot be connected directly to the input. Nor can a crystal-type earphone be attached directly to the output of a transistor amplifier.
However, any 1- or 2000 -ohm, magnetic earphone can be used either as a receiver or mike. While the amplifier was designed for use with a miniature 2000 -ohm phone, large phones may be used with the simple adaptor cord shown in Fig. 1. Attach a miniature phone plug to one end of a short cord and to the other end attach two clips salvaged from an old octal wafer tube socket. Cover these clips with plastic spaghetti. Conventional phone tips can then be attached to the clips and the cord plugged into the amplifier. This method may be used for all other applications you may have in mind, such as using a PM

MATERIALS LIST-VESTPOEKET TRANSISTOR AMPLIFIER

[^22]speaker as a dynamic microphone.
Any PM speaker may be used. The matching transformer would have its 3 or 4 -ohm winding attached to the speaker voice coil lugs. The transformer's 250 to 500 -ohm winding would be connected into the input of the amplifier. Now to use the speaker as a speaker, just shift the pin plug to the output jacks and attach the output of a crystal radio, magnetic phono pickup, earphone mike, etc., to the input jacks.
A crystal phono pickup may be used with the amplifier in some instances without a matching transformer, but usually such will be required. An old fashioned magnetic pickup or modern magnetic types require no transformer coupling. Incidentally, a needle soldered to the diaphragm of an old magnetic earphone makes a good phono pickup.
Using the amplifier as a stethoscope, a standard size 1000 or $2000-\mathrm{ohm}$ earphone is connected to the amplifier input, and a hearing-aid phone connected to output jack. Unscrew the large earphone cap and place the receiver on your chest. The exposed diaphragm provides a more effective pickup than with the cap on the receiver. Try placing the rubber eraser end of a lead pencil against the diaphragm, and pointed end in contact with any motor driven device. The result will be similar to that of an industrial stethoscope.
If you own a pair of magnetic phones, the existing tinsel cord may be removed from them and set aside. Each phone may be fitted with new cords and miniature pin plugs. Thus one phone will serve as a mike; the other as a receiver. When finished experimenting with the phones, the original cord may be replaced and phone set will again be as good as new.

Wire-Stripping Tool

THIS tool quickly strips insulation from all kinds of insulated wire in one twist of the tool and a light pull. End piece is then pulled off with the tool (Fig. 1). First an adjustment screw must be set, using a test piece of wire, to allow cutters to sever insulation without cutting strands of copper. The screw acts as a stop.

Tool accommodates all sizes of wire from about \#10 down

By HAROLD P. STRAND

 to the smallest common wire size. One of the hardened tool steel blades has a V cut and the other a straight edge (Fig. 2), both being ground to a sharp cutting edge. When sides of tool are pressed together, straight edge goes under V edge, with a snug but free fit, thus trimming around the wire insulation with one complete turn of the tool. Piano wire spring returns the side pieces to an open position when pressure is released. While the hinge joint shown was made in a small bench milling machine (Fig. 4), it can also be made with hand tools.

Fig. 3 gives a good idea of design and placement of parts. Fig. 2 shows the tool in its normal open position; spring, made from .055 in . piano wire opens side frames about $13 / 8 \mathrm{in}$, at the top, as shown in drawing. Bend 2 pieces of $5 / 8 \times 1 / 4 \mathrm{in}$. brass to shape and dimensions given. Start with pieces about 6 in . long to facilitate bending operation. Use a heavy vise with bracs jaw protectors and a fairly heavy hammer. Tu i.. oid marking stock use a small piece of brass under the hammer blow. After shaping, cut pieces to length; leave hinge ends a little long, until tongue and slot have been cut, after which ends can be dressed down to a good fit.

Finish pieces to a smooth surface, with fine abrasive cloth or a power sanding wheel, rounding all edges slightly. Drill and tap two 6-32 holes in the pieces, one for a spring retaining screw, the other for the adjusting screw. At the top ends, drill and tap 2 holes in each piece for $4-40$ screws to hold cutting blades in place.

MATERIALS LIST-WIRE-STBIPPING TOOL

2 pes.	brass bar stock $1 / 4^{\prime \prime} \times 5 / 8^{\prime \prime} \times 6^{\prime \prime}$ (cut to length after bending)
1 pc.	tool steel .0625" $\times 3 / 8^{\prime \prime} \times 5 / 8^{\prime \prime}$
1 pc .	tool steel $.0625^{\prime \prime} \times 15 / 32^{\prime \prime} \times 5 / 8^{\prime \prime}$
1	brass low-head rivet or pin $3 / 4^{\prime \prime} \times .125^{\prime \prime}$
1	$6-32 \mathrm{rh}$ machine screw $1^{\prime \prime}$ long
1	6-32 hex. nut
1	$6-32 \mathrm{rh}$ machine screw $1 / 4^{\prime \prime}$ long and washer to fit same
1 pc.	.055" dia. piano wire about $3^{\prime \prime}$ long
4	$4-40 \mathrm{fh}$ machine screws $3 / 16^{\prime \prime}$ long

After fitting hinge joint with a fine file so it works smoothly without side play, drill hole for hinge pin, using a .125 in. dia. drill. This pin is a low-head brass pin or rivet which fits snugly in the drilled hole without causing joint to bind; use a little oil to get a free-working hinge. In riveting over the pin, don't drive joint together too tightly.

Shape an eye in one end of the .055 piano wire, using a pair of round-nose pliers, then bend to shape. Make blades of tool steel .0625 in. thick. Cut them out on a metal-cutting band saw or by hand with a hacksaw, and file to final shape and size. Make V cut on a power grinding wheel of fine grit. Grind underside of straight edge piece off to a sharp bevel and likewise grind top side of the other blade. Before final grinding of cutting edges, however, drill holes for the screws. Use flathead $4-40$ machine screws, coun-

tersunk. With blades in a final finish condition, grind edges to a krife sharpness on a fine grit wheel. Harden blades with a Bunsen burner (Fig. 5) by heating to a cherry red, ther plunging in cold water. Clean up one flat surface with

Fig. 4. Making hinge joint in a milling machine.

Fig. 5. Hardening ctiting blades in a Bunsen burner (see text).

Fig. 6. Adjusting stop position of completed tool.
fine abrasive cloth and then place piece back in flame. When you note a straw color, quickly remove it and again place it in water. This draws the temper a little, so the sieel will not be too britt-e to work with.

Fig. 6 shows the complete: 1 tool with adjusting screw being tested. You may need to file down the end of one of the side frames so straight edge will just fit under the V edge after all blade screws have been tightened. Or a piece of .001 or .002 in . shim stock under one blade may give you the perfect alignment. Here is where accuracy ir making hinge joint and in bending side sections counts. If poorly made, the blades will not make confact with each other properly, over their entire length.

You can aiso use this tool in radio chassis wiring for wire cutting ordinary \#24 to $\# 18$ hook-up wire. If made properly, it will double for a pair of diagonal wire cutters or pliers. Place wire to be cut out of V groove, but between the cutting edges; wire will snip off just as nicely as with the diagonals; in this way one tool is used in place of two. This tool also trims short wires already atiached at opposite ends, such as in re-connecting work or wiring changes. You will find the tool handy for using in very small spaces, where it will do a perfect job.

RADIO-TV CROSS NUMERAL PUZZLE

By JOHN A. COMSTOCK clues ACROSS

1) The year in which Lee deForest invented the "audion," a triode tube.
2) Mid-frequency of television channel 13.
3) Power consumed by a 175-watt television set oper ated for 12 hours.
4) Full-wave rectifier tube with electrical characteris. tics identical to those of the $5 Y 3$.
5) Separation in megacycles between TV picture and sound carrier frequencies.
6) Fast tape recorder speed.
7) Output ripple frequency of full-wave, three-phase rectifier.
8) A current value of 1752 milliamperes converted to amperes.
9) The third harmonic of an 80 -kilocycle signal.
10) A 20 -cycle signal converted to kilocycles.
11) A capacitance of 2×10.2 microfarads expressed in conventional notation.
12) Upper frequency limit of TV channel 6 in megacycles (mid-frequency $85-\mathrm{mc}$.).
13) Five milliwatts expressed in watts.
14) The power that can be dissipated by two 200 -ohm, 25 -walt resistors, series connected.
15) Factor by which microhenries must be multiplied to convert to millihenries.
16) Voltage dropped when 2 amperes flows through a 26-ohm impedance.
17) Common AM superheterodyne IF frequency.
18) Oscillator frequency of a superhet having an IF of 456 kc tuned to a signal at 1144 kilocycles.
19) Output frequency of a generator having 10 poles and an armature speed of 1200 rpm .
20) Resistance of 15 chms in parallel with 35 ohms.
21) Signal frequency received by a superhet with an IF of 456 kc and the local oscillator tuned to 1066 kilocycles.
22) The coefficient of coupling between two coils having values of .2 and .8 henries when mutual inductance is .1 henry.
23) The irequency 5,500 kilocycles converted to megacycles.
24) Total resistance of a 4 -ohm, a 7 -ohm and a 14 -ohm resistance parallel connected.
25) The ripple frequency of a $1 / 2$-wave single-phase rec. tifier.
26) Applied voltage across a series circuit of two resislors when voltage dropped across each component is 100 volts.
27) Upper frequency limit in megacycles of the shi band (lower limit $3,000 \mathrm{mc}$).
28) The wattage dissipated by a circuit drawing 3 amperes at 200 volts.
29) Number of degrees voltage lags current in a purely capacitive ac circuit.

DOWN

1) Velocity in miles per second of a 500 kc signal.
2) Total resistance of two resistors of 35 and 55 ohms, series connected.
3) The wattage equivalent of one horsepower.
4) The peak value of a sine wave is found by multiply. ing the effective value by this factor.
5) Wavelength in meters of the lower limit of the vlf band (upper limit 30,000 meters).
6) Voltage dropped across a series dc circuit when the applied potential is 50 volts.
7) The frequency swing in FM transmission that corresponds to 100% AM modulation.
8) The frequency 520,000 cycles per second expressed in kilocycles.
9) Television frame rate.
10) The frequency 7×10.2 kilocycles expressed in conventional notation.
11) The unknown of the following voltage ratio: 1 is to 25 as 10 is to
12) Lower frequency limit of television channel 12 in megacycles.
13) Highest approximate amplifier efficiency obtainable with class "C" operation.
14) International distress frequency.
15) Amount of voltage that will send a current of 5 am. peres through a 10 -ohm resistance.
16) The inductance . 015 -millihenries converted to microhenries.
17) Difference frequency in kilocycles produced by mix. ing a $1,000-\mathrm{kc}$ signal with a $790-\mathrm{kc}$ signal.
18) Impedance of an ac circuit when the current drawn is 1 ampere, applied voltage 511 volts.
19) Capacitance in microfarads of a capacitor having a reactance of 531,000 ohms at a frequency of 60 cps .
20) Amount of resistance in which a voltage of 35 volts will maintain a current flow of 1 ampere.
21) Total impedance of an ac circuit when reactance is 220 ohms, resistance 250 ohms.
22) Number of zeros represented by green in the resistor color code.
23) Wavelength in meters of a radio wave having a period of .005 second.
24) Current flow in an ac circuit when applied voltage is 20 volts, total impedance 400 ohms.
25) Power dissipated by a resistor of 200 ohms in series with a 5 -microfarad capacitor across an ac voltage of 60 volts, 120 cycles per second.
26) Conductance of a circuit when current flow is 6 amperes, applied voltage 24 volts.
27) Percentage AM modulation that gives the greatest service-area coverage.
28) Amount of power expended when a current of 100 amperes is driven by a potential of 100 volts.
29) Secondary voltage of a transformer which has a primary voltage of 100 volts, primary turns 200 , and secondary turns 40.

For answers, see Page 127.

Strobe-Flash Battery Charger

Plugging the lead wite from the compact battery charger, shown at the right, into a built-in receptacle on the photo-flash unit. The three tiny balls floating in the electrolyte of each cell (identified by arrows above) are near the bottom, indicating the need for recharging. When balls float up to surface of electro-
lyte, battery is fully charged.

battery in a Dormitzer Synctron flash unit, it could be redesigned for charging batteries of a different size. You can tell at a glance what the voltage of the storage battery in your unit is by counting the number of cells. Each cell is rated at 2 volts and since they are connected in sories, mercly multiply the coll voltage by the number of cells.

The recharging rate of the battery can be obtained from the manufacturer if it is not noted in the instructions you received with the unit. The value of .8 amperes is the same as 800 milliamperes, which is a more conmon term in

THE air turns blue when some photographer discovers weak batterics in his strobe flash unit have ruined a fine series of shots.
For strobe light flash units will operate even when the batterics are too weak to insure complete synchronization of the flash exposure.

One good way to avoid such wasted shots is 10 keep your strobe-flash batteries up to snuff with this charger. You can huild it for about \$10, less than the cost of a comparable commercially-built charger.
Although this charger was designed and built for a .8 amp . charging rate for use with a 4 -volt

electronies.
To find the correct a-c voltage that the charger transformer must deliver from its secondary in order to provide a 8 amp . d-e charging rate, make the test set-up shown in Fig. 2. A variable voltage transformer or Variac, which may be borrowed from a friend in the radio or electrical field, is connected with an ammeter in the test charger circuit. Start with 0 volts and gradually bring the voltage up until the ammeter reads .8 am-

[^23] 80,11 .

peres. Next, measure the voltage on the load side of the transformer with an a-c voltmeter having a range of to $0-10$ volts to find the value required for a permanent transformer. In our case this was found to be 6.2 volts. If your flash outfit has a battery of the type described you will not have to make the above test. However, the method described is useful for determining the necessary voltage for other battery and rectifier combinations. See the Materials List for the components needed to make a 4 volt, 8 amp . charger. If the Federal rectifier is not available, use 4 International rectifiers as in Fig. 6.

Fig. 1 shows the new charger being connected to the battery in the carrying case, through a special plug that is attached to the wires coming from the charger, and which fits in a receptacle provided by the manufacturer for the purpose. Note that in this type battery, three small balls
are used in each cell to indicate the condition of the battery. When all three are at the top, the battery is fully charged. As it goes down, the balls start to fall and when they are all at the bottom, the battery is discharged. It is well to start a recharge when the first ball has fallen and continue 2-3 hours after it has risen to the top.

Fig. 2 illustrates a set-up of a battery removed from the case and with an ammeter in the circuit to check the charging rate. Connections for this job are made to the two terminal posts and leads with alligator clips are employed. The meter reads about .9 amperes which is close enough to specifications of .8 amperes, since it would not be possible to always maintain exactly the same line voltage and fluctuations in line voltage would cause some variation in charging rate, as an expected fact. The use of these clip leads is conven-

ient for charging a spare battery, but of course the meter would not be ordinarily used.
Start construction by drilling the required holes in the cabinet sides and bottom as detailed in Fig. 3A. Make the terminal strip as in Fig. 3B and assemble to the cabinet sides as in Fig. 3C sec . A-A with two $4-40 \mathrm{rh}$ screws. Remove the bottom from the cabinet sides when fastening the transformer, rectifier and Jones terminal strip in their positions on the bottom of the cabinet with $8-32$ screws as in Fig. 4. Scrape off the paint on the transformer and rectifier bases and cabinet and make up the screws tight so these parts will make a good ground connection. Use \#18 insulated wire for all hookup connections and be sure to solder at all points of attachment. Assemble the fuse holder and pilot lamp socket to the cabinet sides and continue with the hookup wiring. Two grommets are used where wires leave the cabinet and these can be of rubber or Bakelite with screw-on rings.

To provide ventilation and an escape for the heat generated in the cabinet, the original cover was substituted with a piece of perforated steel cut from what was formerly the back screen of an old television set. Any other perforated metal could be used instead. If desired, you can use the original cover by drilling six $1 / 2$-in. holes in it.

If the battery is removed from the flash outfit and the special charging plug cannot be used as in Fig. 1, two leads with battery clips attached can be connected to the binding posts on the terminal strip as in Fig. 7. To replace a fuse, unscrew the front knob of the fuse holder and remove it so the glass fuse holder can be replaced.

As a rule when the battery has lost its charge, an overnight charging will fully restore the charge. However, when the battery has reached a certain age or had considerable use, it may not be possible to recharge it to the proper full condition. One or two of the charge indicating balls (Fig. 1) may rise but no amount of charging will effect the rise of all of them, or in some cases all the balls will rise, but in use the battery will be quickly depleted or fails to hold the charge. In either case it indicates that the battery is reaching the end of its life and may not be dependable.

In some areas where the line

When charging a spare photo-flash battery or one removed from the case, leads with battery clips attached are connected to terminal posts on side of charger case. The ammeter shown is connected in series with one lead to check the charging rate which in this test is indicated as .9 amps. The meter is not ordinarily used.

A flick of the switch (on wood block above key) and yau qo from transmitting to receiving-or vice wersa. If switch is located on a microphone, "push-to talk"r operation is possible with any trensmitter from $1 / 2$ watt to 1 kilowatt.

How to Use An Antenna-Changeover Relay

> A boon to any amateur, a multipurpose, interchangeable "antenna-changeover relay" can be easily and cheaply constructed

By RALPH E. SCHACHAT (WIGIF) and MARTIN GLICKSMAN

with a tin snips or a hack-saw and bend sheet along the scribed lines to form a box, with each flap forming a tight corner (Fig. 2B). Drill a $9 / 64$-in. hole in each corner, about $1 / 4$-in. on-center from the top and side of the box and fasten sides and flaps with 6-32 machine screws and nuts.

The cover of the boxcase (Fig. 3) is made simply by cutting corners out square, and bending sides over at right angles to form a lip of about $1 / 4 \mathrm{in}$. Use the box itself to work out the inside circumference of the cover. Fasten cover on two sides with ordinary sheet metal screws.

Select position for coaxial sockets (S1, S2, S3) so that each socket can be connected to the appropriate relay terminal (R1-A, R1-B, R1-C) with the shortest length of wire (see Fig. 5). Place the relay in the center of the case and mark positions of the sockets on the front panel of the box. Since the relay posts are not equidistant from each other, neither will the coaxial sockets be equally

THIS unit automatically switches antenna to receiver or transmitter at the proper time; absorbs excessive received signal while transmitting, so that excess power will not be picked u_{p} (and possibly burn out components in the front end of receiver) ; allows just enough signal to be picked up from the transmitter so that transmission can be easily monitcred; works equally well with high-power or low-power transmitters and serves both phone and CW operations. Relay is extremely flexible and interchangeable and can be transferred from one transmitter to another in less than a minute by simply changing two plugs; it minimizes the possibility of TV interference since it is totally enclosed in a grounded case.

Construction. Case for unit is a $2 \times 4 \times 5$-in., \#20 gage aluminum box. Take a flat 8×9-in. sheet of aluminum and scribe or score it as shown in Fig. 2A. Cut out shaded corner areas

spaced from each other. When positions of the sockets have been selected. place a block of wood behind box wall and drill holes with an ordinary brace-and-bit. Select a bit slightly larger than the sockets, about $5 / 8$ in., so as to allow clearance for their insertion. After sockets are inserted, mark mounting holes and drill and fasten sockets in place with small machine screws, lock washers and nuts. Drill a $3 / 8-\mathrm{in}$. hole on the right side of case for a rubber grommet through which power cord is passed.

Assembly of Relay Unit. Next, holt the relay (R1) to the bottom center of the case with 6-32 machine screws and nuts. The relay is capable of handling up to 1 kilowatt of RF power, and has "wiping action" contacts.

Connect the inner conductor of each socket to the appropriate post on the relay (see Fig, 5). Each socket, the relay (R1-D) and the case are individually grounded by means of a ground "bus" of 42 or $=14$ wire. A 1 -in. screw extending out of the case at one corner is used to connect these components to a good outside ground. The 75 -ohm, 1 -watt carbon resistor between relay position R1-D and ground matches the characteristic impedance (75 ohms) of the RG-59-U coaxial cable used and gives more uniform quenching of signal pick-up over a wider range of operating frequencies. If a transmission line of another impedance value is used. substitute a corresponding 1 -watt carbon resistor of the correct value.

Connect the receiver socket connection (S1) to the relay post ($\mathrm{R} 1-\mathrm{E}$) with a length of hook-up wire about 6 in . long. This will permit a weak, but adequate, signal to be picked up when transmitting, allowing you to monitor your transmitted signal. If too much pick-up is obtained with this wire as short as possible, use shielded wire, grounding the shield to the case.

If you must conserve cash, eliminate the antenna (S3) or receiver (S1) socket and connect

PLASTIC CORE INSULATES INNER CONDUCTOR FROM OUTER SHELL

the coaxial cable directly to the relay posts (R1-C or R1-A). This will reduce the flexibility of the set-up, however, and should only be considered if absolutely necessary.

An octal plug connects the relay to the transmitter which contains the switch and supplies the power. An octal plug is recommended because some transmitters, such as the Heath DX-100, have an octal socket built into the set so that no alteration is necessary. Any convenient prongs can be used of course, but if the transmitter is a DX- 100 , then prongs 2 and 4 must be used in order to conform with the existing internal wiring.

MATERIALS LIST-CHANGEOVER RELAY

Descriftion
$8 \times 14^{\prime \prime}$. $=10$ папן aluminum
amphenol sockets type 50.239 (S1. S2, S3)
relay. type 400. Advance Electric and Relay Co. (R1)
DPST switch (to match SPST plate switch in transmitter)
bare $\# 14$ wire
standard hook-up wire
standard octal socket (Cinch-Jones No. 8EB or No. 8EC)
standard octal plug (Cinch-Jones 8 -contact plug No. 8PB, with $\# 16 \mathrm{~F}$ cap)
$75 \cdot \mathrm{ohm}, 1$-watt carbon resistor (see text)

Modification of Transmitter. Many transmitters, such as the Heath AT-1, must be altered slightly to use this unit by replacing their SPST plate switch with a DPST switch. Reconnect the wires from the SPST switch within the transmitter to one side of the DPST switch and connect the other side of the DPST switch in series with the 110 ac drawn from the power supply plug and two prongs of the octal socket.

A remote switch can be added to suit the convenience of the operator. This can be attached to the microphone, to a hand-rest with the sending key on the edge of the operating table, or at any other convenient location. Wire such a remote switch in parallel with the regular plate switch so that the transmitter will be turned on by either switch.
To adapt the relay for use with other transmitters, mount an octal socket in any convenient place in the rear of transmitter's chassis and install a DPST switch in place of the SPST switch, reconnecting the original wire to one side of the DPST switch (Fig. 6). The two contacts on the other side of the DPST switch are then connected, with one contact going to terminal 2 of

the octal plug, the other going to one side of the $110-v$ line. Connect the other side of the $110-v$ line to terminal 4 of the octal plug. Terminals 2 and 4 were chosen for the sake of convenience. Any others can be used as long as the corresponding plug-socket terminals are used.

Testing and Operation. With all plugs connected as in Fig. 7, turn on the recciver and the filament supply of the transmitter. The receiver should work normally. For the initial test, tune it exactly to the transmitter's operating frequency. Flip the transmitter's plate switch and tune up the transmitter in the usual way. When the plate switch is thrown on, the relay should click over to the antenna position and the receiver should cut out. Now, as the transmitter is operated, the recciver should give out a pleasant, medium-level monitor signal so that you can hear if your CW signal is clear and crisp or whether it has clicks or chirps. Similarly, by allowing someone else to talk into the microphone of a phone rig, you can easily monitor voice.

Stippling Machine from Bell

IFF THE clapper of a bell is removed and replaced with a nib which may be soldered into position, a very efficient electric stippling machine may be had. After being used 10 or 15 minutes, this machine will be found capable of covering a large area at high speed. It must be held just the right distance from the surface to be inked and just the right amount of ink must be used. A little experience will determine these points.--R. F. Y.

Buzzer Makes Secreł Lock

HERE the small bolt of an especially made lock for a drawer is soldered directly to the armature of an electric bell or to a buzzer. In this

case, the current is led directly into the coil and the vibrating system is cut out. When current flows through the coil, the armature will be pulled down and thus release the bolt.-R. F. Y.

The Easiest and the Hardest

Have you picked up Spanish language radio broadcasts and wondered where they originated? Here's how you can find out

By C. M. STANBURY II

IT is fairly easy to tune Latin American stations on the broadcast band. An experienced listencr who knows how to identify these stations will tell you that this is the easiest of foreign DX (distant reception). They are not too distant, and it is easy to learn the small amount of Spanish needed for this type of reception. Most stations have frequent commercials which provide casily obtainable program data for your report.
There is no time, during the hours of darkness, when south of the border stations are absent from your dial. During the evening, CMHQ, Santa Clara, Cuba, consistently holds down the 640 kc spot in eastern North America, while in the west such stations as TGJ (880) Guatemala, HJKC (840) Bogota, Colombia, and YSS (655) San Salvador are nightly visitors. Even more powerful are the Mexican border stations. These broadcast in English on relatively clear channels. At least two of them, XEG (1050) and XERF (1570), operate all night.

For best reception the DXer should tune the $21 / 2$ hours following sunset. This is especially true during an ionospheric disturbance. (Such disturbances, believed to be associated with sunspots, cause a drop in signal strength. The severity of such blackouts depends upon how near a station is to the pole. Reception from northern stations will be almost impossible, middle latitude stations will be weak, but semi-tropical stations will not be hampered.)

With all this good hunting you will want to
know how best to spot your quarry. There is, of course, the obvious and easy matter of language. If while tuning you hear Spanish, chances are pretty good your DX search has paid off. Once your station is zeroed in. you are ready to identify it and obtain enough program data for your report. This is casy. Many well-known American products are advertised south of the border. (Table C will give you help among these lines.) Table B shows the Spanish pronunciation of every letter in the alphabet. With it and a little practice, you should have little trouble interpret-

TABLE A-STATIONS TO START WITH

FREQ.	CALL	LOCATION	SLOGAN AND ADDRESS (*denotes good verifier)
585	TIJC	San Jose, Costa Rica	Radiopolis
590	CMW	Habana, Cuba	Circuito CNC. 0 No. 216, Vedado ${ }^{*}$
625	TIDCR	Sall Jose, Costa Rica	La Voz de la Victor, Apto. 225*
640	CMHQ	Santa Clara, Cuba	Circuito CMQ. Radiocentro, Vedado, Habana:
650	YVQO	Puerto La Cruz Venezuela	Ondas Portenas, Ajpto, 482*
655	YSS	San Salvador, El Salvadior	Radio Nacional, Teatro Nacional
660	CMCU	Habana, Cuba	R. Garcia Serra, Paseo de Marti 260
670	CMHG	Santa Clara, Cuba	Relay of CMBC 690 kc
675	YNDS	Manayua, Nicaragua	Union Radio
690	CMBC	Habana, Culua	Radio Progreso or R, Nacional, Av. Menocal 205
700	YVMH	Maracaiho, Venezuela	R. Popular, Apto. 247*
730	CMCA	Habana, Cuba	Radio Mambi, Paseo de Marti 107
760	CMCD	Habana, Cuba	Radio Voz de la Hora, Calle 25, No. 113
770	CMDC	Holguin, Cuba	R. Oriente, Aguilera 5ll, Santiago ${ }^{\text {* }}$
770	HJDK	Medellin, Colombia	La Voz de Antioquia, Maracaibo 46-70\%
790	CMCH	Habana, Cuba	R. Cadena Habana, San Jose 104
820	HJED	Cali, Colombia	La Voz de Rio Cauca or Ca Ra Col (fair verifier)
830	CMBZ	Habana, Cuba	R. Salas, San Rafael $108,2^{\circ}$ piso (fair verifier)
840	HJKC	Bogota, Colombia	a Ca Ra Col, Calle 53, No. 46-80
880	TGJ	Guatemala, Guatemala	Radio Neuvo Mundo, 6a Av., $10-45$, Zl. Strong on Pacific Coast:
910	CMCF	Habana, Cuba	Union Radio, La Rampa, 23 e Emganta
935	YNW	Managua, Nicaragua	Radso Mundial, 5a Calle N.O.
998	YVOB	San Cristobal, Venezuela	La Voz del Tachira, Apto. 37\%
1015	HOUA4	Panama, Panalina	Radio Reloj. Best early AMs*
1020	HJAQ	Cartagena, Colombia	Radio Miramar ${ }^{\text {b* }}$
1060	CMCX	Habara, Cuba	La Emisora Amiya, Edif. Odontologico, L y 23, Vedado
1075	YSEB	Sall Salvador, E. S.	La Voz de Latino-America, Calic Los Planes Km. 4
1120	YVMF	Maracaibo, Venezuela	Ondas del Lago, Apto. 261 (fair verifier)
1160	CMJK	Camaguey, Cuba	La Voz del Camagueyana, Finlay No. 4^{*}
1175	TIQ	Puerto Limon, C. R.	Radio Casino, Apto. 287*
1198	CMDD	Bayamo, Cuba	Relay of CMDC, 770 kc .
1200	CMK	Habana, Cuba	Radio Deportes, manzena de Gomez 508

ing calls. But there is also another way of identifying your catch. Foreign broadcasters tend to use their slogans as often as their call letters. Such slogans are not hard to interpret. Most of the Spanish words used resemble English words, for example, Radio Nacional and Radio Central. Others make use of place or well known names such as La Voz de Cali, and Radio Bolivar.
Table A lists 32 stations to start with and includes slogans. White's Radio Log (see page 161 of this handbook) contains all Puerto Rican and the most widely heard Mexican and Cuban stations. These stations announce their call letters as frequently as American stations. Finally, a government publication, Broadcasting Stations of The World: Part III (Catalog No.: Pr. 34.659:957/Pt. 3) lists all foreign stations alphabetically both by call and slogan. It can be purchased from the Superintendent of Documents, Government Printing Office, Washington 25, D. C. for $\$ 1.25$.

Now that you know how to hear it, you will want to verify all this DX. And this is where things get tough because of the language barrier. While many stations have someone on their staff who can read English, many out-of-the-way stations do not. Reporting in Spanish tends to convince the Latin that you are genuinely interested in his station. For those who don't write in Spanish, one solution is a Spanish report form. The National Radio Club, 325 Shirley Ave., Buffalo 15, N. Y., provides its membership with such forms at cost. Dues are $\$ 4$ a year and include a subscription to DX News.

In writing to Latin stations, try to tell what you heard in Spanish. This is not too difficult. List the time and the item heard. Translations for most of the program data will be found in Table C.

An ordinary radio receiver will not bring in nearly as many stations as a specialized receiver -one with crystal selectivity. The latter is desirable, especially for receiving stations that broadcast between the ordinary frequencies (for example, 725 kc instead of 720 or 730).
Different makes of crystals vary slightly in their operation. However, the following procedure generally applies. Set the crystal selectivity control at the first stop and the phasing control in the center position. Carefully tune the dial until you are on the carrier frequency. There are three

TABLE C-SPANISH WORDS AND EXPRESSIONS FOR REPORTING

station identification: anuncio de la estación program: programa
announcement of the correct time: anuncio de la hora correcta to: a
advertised. \qquad
a march: marcha
classical music: musica clasica
nopular music: musica popular
guitar music: musica guitarr
dance music: musica de haile
duet: duo
trio: trio
chimes: ritmo de las campanas
solo vocal by man (woman): solo vocal por hombra (dama)
singing commercials: anuncios comerciales cantados
beer: cerveza
slow: despacio
fast: ligero
cigar: cigarro
mass: misa
political speech: habla politica
and: y
SAMPLE LISTING OF program data
10.00 a 10.15 pm -programa de musica popular
10.00 y 10.15 -anuncio de la estación y ritmo de las companas 10.05-propaganda de Pepsi Cola
10.10-propaganda de Cerveza Crystal.
ways of accomplishing the latter: 1) Watch the S-meter; it will peak at the desired frequency; 2) Listen until only a soft swishing sound is audible; or 3) You can turn on the BFO (beat frequency oscillator); after it produces a whistling sound, set the beat frequency control in the center (at 0), and tune back and forth until the BFO's pitch drops to zero. Turn off the BFO. Now adjust the phasing until the heterodyne is least annoying. It is often necessary, when using the crystal, to switch from AVC to manual. A strong station on a nearby frequency tends to block the AVC. Finally some crystals, even in first position, tend to cut the sidebands off too sharply. The effect will be similar to an unmodulated carrier. On occasion it will be necessary to tune slightly away from the carrier frequency in the direction having the least interference. Following this, you will probably have to reset the phasing control.

Solder Improves TV Reception

- When a TV ribbon lead-in appears to be unbalanced, don't wrap aluminum foil around the line-after a while it will become torn and crumpled and have to be renewed. Instead, closewrap wire solder around the line as shown. It will last indefinitely and be easy to slide up and down the line to improve TV reception.-J.A.C.

Alligator Clipette for Experimenters

Short wires soldered to clips and to socket terminals complete the project.

ELIMINATE the slow and tedious job of soldering and unsoldering connections at socket terminals in "breadboard" seti-ups by using an alligator clip socket unit for each tube in the circuit (Figs. 1 and 4). Wires and various components can be directly connected to the sockets without the use of solder, and they can be just as quickly disconnected for changes in the circuit. The unit illustrated here is for an 8 -pin or octal socket, but similar units can be made up for 7 -pin and 9 -pin sockets.

First step in making unit is to attach the two bottom strips to the clear plastic base with an acrylic plastic cement (Fig. 2). Apply sufficient cement to the surfaces to be joined to soften the plastic, press the pieces in place and lightly clamp for a few hours. Drill the holes as in Fig. 2. Then remove the original terminal screws in the clips and tap the holes for 6-32 threads. Use screws $3 / 8-\mathrm{in}$. long to hold clips in position on base (Fig. 3). Pieces of Bakelite or fiber tubing cut to size can be substituted for the porcelain spacers (Fig. 2).

Number clips in counterclockwise fashion so that, when viewed from underneath, numbering corresponds to socket-terminal numbering running clockwise from the first terminal to the left of the center slot (Fig. 3). This is the standard arrangement in all schernatic diagrams. Short pieces of \#20 insulated wire can be used to connect terminals in consecutive order to the clips.-Harold P. Strand.

materials list-alligator clipette (For octal socket)

No. Description $\quad 1$ clear Lucite or Plexiglas $1 / 8 \times 4 \times 4^{\prime \prime \prime}$, hase
clear Lucite or Plexiolas $1 / 8 \times 3 / 8 \times 4^{\prime \prime \prime}$, feet octal socket attached to steel mounting plate porcelain spacers $3 / 80.0 . \times 7 / 8$ with 6.32 threaded holes Mueller alligator clips with screw terminals
6 in. \#20 insulated wire
$8 \quad 6.32$ rh screws $3 / 8^{\prime \prime}$ long
$4 \quad 6.32 \mathrm{rh}$ screws (for parcelain spacers) or
26.32 rln screws $11 / 8^{8}$ long with nuts (if tubing is used as spacers)

Trying out the alligator clip socket unit in an experimental circuit. Radio beginners will find the unit very handy when making various receivers.

The

PIGGY-BACK

The term piggy-back may recall for you the days when you hitched an occasional ride on your Dad's back, or it may remind you of a practice in the transportation industry. As used here, however, it refers to the units used with a basic piece of miniature, transistorized electronic equipment built so that it may become any one of a number of different electronic devices simply by attaching a different piggy-back
circuit for a regenerative transistor detector is presented for the hobbyist who wants a hotter radio and enjoys doing his own package designing.

Another piggy-back unit does not attach to the hack of the basic amplifier. It is a loudspeaker unit that is the same size as the basic amplifier with a piggyback ($1 \times 15 / 8 \times 2^{1 / 8}$ in.). It may be used attached side-by-side to a basic unit piggy-back combination, or it may be used with a piggy-back combination unattached for remote placement. This speaker unit may be used as a generalpurpose speaker for other equipment, too. A second larger speaker unit is also described, and either of these speakers may be used for the variety of applications to be discussed. Additionally, a
 circuit for an extra amplifier stage that may be built into the basic amplifier to beef up the output will be described.

Finally, a number of circuit ideas for additional piggy-backs and accessories that will extend the application of your piggy-back equipmenteven further will be presented.
Cost. Is all of this equipment expensive? The answer is no. The piggy-back approach allows you to build circuits in basic easy-tohandle and easy-to-use sections. Components for all of the sections together do not cost as much as the parts for some single-application construction projects, yet you have a multi-

THE basic unit used in this project is a twotransistor, high-gain, audio amplifier constructed on one-half of a $1 \times 15 / 8 \times 2^{18}$-in. plastic box. For general-purpose amplifier applications, this hasic unit can be used with a blank piggy-back as the other half of the case. Any of the other piggy-backs described in this article may be used in place of the blank half case.
One of the piggy-backs is a microphone which-with the basic amplifier-may be used as a hearing aid device, as an "eavesdropper," as a very novel but simple vestpocket musical instrument, as a power amplifier driver and in numerous other practical and novel applications.
Another is a simple radio tuner-detector. A crystal unit is described in detail and a

costs less than $\$ 3$, and the small loudspeaker unit costs a little over \$2.

THE BASIC PIGGY-BACK AMPLIFIER UNIT
The basic piggy-back amplifier unit uses two PNP transistors-the inexpensive Raytheon CK722's. Texas Instrument 2N367/300 or General Electric 2N107 transistors may be used in place of the CK722's without any circuit or parts value changes. These transistor types are inexpensive, experi-

menter-grade transistors. The amplifier has its own volume control and will operate from a self-contained battery supply. You may use any voltage from 3 to $6 v$ for the battery supply. You can obtain $3 v$ from two small penlite cells (type N). This voltage is adequate for headphone operation, but you'll want $41 / 2$ to $6 v$ to operate a loudspeaker. The RCA VS310 battery is recommended for use with the amplifier because it provides $51 / 2 v$ (enough for loudspeaker operation), and it's small enough to allow any of the piggy-backs to be attached without crowding. The battery operating cost is higher when this small battery is used, but for some applications, the compactness is worth it.

For the technically inclined, it is interesting to note that operating current is about 2 $m a$ when a $51 / 2-v$ battery is used with a 2000 -ohm earphone in the output jack. The amplifier gain of the original model

The microphone piggy-back and amplifier becomes a musical instrument with the addition of a pencil and rubber bands.
with a 2000 -ohm earphone connected was 51 decibels. In terms of voltage gain, that's 320 ; the signal into the amplifier is magnified 320 times!
To construct the amplifier (Fig. 1), cut and drill a piece of the miniature perforated Bakelite circuit board (see Materials List) as shown in Fig. 2. Make a matching set of holes for the phone jack and volume control in one half of the plastic case by making pilot holes with a heated ice pick and then reaming holes out to size with a taper reamer.

Saw the volume control shaft to a length of $3 / 8 \mathrm{in}$. with a hacksaw (clamp the end of the shaft to be discarded in a vise). Fasten the volume control and the phone jack on the perforated circuit board temporarily and wire the circuit (see Figs. 1 and 3 and also Fig 15). Go over each connection on the circuit diagram with a red pencil to avoid wiring mistakes. Connections are made by pushing leads that connect through a common perforation on the wiring board. They're soldered on the side of the board that you see in Fig. 1A, and excess lead lengths are clipped off. The lead from the extreme left center of the board passing close to the volume control hex nut connects to the emitter of transistor T1. The other prominent lead is made up of a number of leads that return to the negative side of the battery. (When you're using PNP transistors, the minus battery terminal is similar to the B-plus terminal in tube circuits.)

I used two type N penlite cells (Ray-O-Vac No. 716) in series in my amplifier for initial testing, since they're so inexpensive. And I brought a pair of input leads terminated with Mueller Mini-Gator clips out through a hole in the side of the plastic case for quick experimental conncetions and general purpose annplifier use. You'll find these learls particularly handy in trying some of the experiments and applications discussed later. But solder them in the circuit so they can be disconnected easily for the installation of piggy-

Physically, the Crystal Tuner Piggy-Back shown schematically above in Fig, 6 looks as below in Fig. 8, case open (A), closed (B).
backs. When you've completed the wiring and obtained a satisfactory test of the amplifier, you're ready to remove the volume control and phone jack hex nuts and refasten them with the wiring board in the case. You may have to "dent" the inside of the case with a heated ice pick to accommodate protruding connections before you can fasten the wiring board in place. Fasten the volume control knob to complete the job.

MICROPHONE PIGGY.

BACKS

By adding a microphone piggy-back to the basic amplifier unit, you obtain a very compact instrument with many application possibilities. It can be used as a remote communication unit, a microphone and preamplifier for a public address system, a musical instrument pick-up and preamplifier, a gas leak detector, a vibration and rattle locator, and even as a small public address system and complete musical instrument (with the loudspeaker units to be described later). As a toy for children, it may be used as an eavesdropperwith a long earphone cord that can be used to listen to birds, animals, and insects as well as human beings. Children will enjoy using the unit as a hearing aid for Blind Man's Bluff and other games. Hams will find the unit extremely useful as a speech amplifier for miniature and mobile transmitters.

SECONDARY CONNEGTS TO SPEAKER VOICE COIL TERMINALS

PLUGS INTO OUTPUT JACK FOR USE AS A SPEAKER; TO USE AS A MICROPHONE, CONNECT TO INPUT CIRCUIT

LOUDSPEAKER PIGGY-BACK

The deluxe microphone piggy-back unit uses a Shure MC11 microphone. This microphone is only 1 in in dia. Drill a ${ }^{3} \%-\mathrm{in}$. hole in the plastic case half on which you're going to mount it, and fasten the microphone to the plastic case with a small amount of metal-to-plastic cement. Don't allow any of the cement to get into the small sound hole opening on the front of the microphone. In the original unit the hole in the plastic case half is $1 / 2 \mathrm{in}$. from the side and top of the rectangular border formed by the recessed front of the case, but the position isn't critical as long as you mount the microphone so it will not interfere with other components when the case is closed.
Use insulated magnet wire (\#28) to connect the microphone to the input circuit of the amplifier. The microphone terminal common to the microphone case connects to the low end terminal of the volume control. Leave the leads long enough to permit the case to be opened without placing a stress on them. Twist them together to minimize the chance of signal feedback from the output circuit (see Fig. 4, in which is also shown the compact $51 / 2-v$ VS310 battery wired into the circuit as the power supply).

A simple vest-pocket musical instrument can be made from this combination by placing several rubber bands around the assembled amplifier-microphone case. Put different amounts of tension on each of the rubber bands by placing a wedge between the case and the rubber bands. The rubber bands should pass over and near the microphone opening (see Fig. 5). My wedge was a sharpened pencil. In addition to varying the tension on the rubber bands, the wedge spaces them far enough from
the case so they can be plucked readily. This vest pocket musical instrument will drive the larger loudspeaker unit (to be described later) directly and with reasonable volume. If the smaller speaker unit is used, equip it with the 3-transistor amplifier described in a later section.

The Shure MC-11 microphone costs about 57. It's a versatilc, rugged unit, and in my estimation constitutes a good investment for the experimenter. However. some experimenters do not wish to invest this amount of money in a single component. There are less expensive alternatives, one of which is to use the small loudspeaker unit described later and shown in Fig. 10. This unit is not as compact as the deluxe microphone unit and cannot be mounted as a piggy-back, but you can attach it side-by-side to the amplifier unit equipped with a blank back. Use small machine screws and nuts. Circuit arrangement is shown in Fig. 7.

Another alternative is to use a magnetic earphone as a microphone. The Lafayette MS-367 which costs just a little more than $\$ 1$ can be used for this purpose. It is small enough to be fitted on a piggy-back just as the MC-11 was, and the leads are connected in the same way.

If you resort to either of these alternatives, you'll get reasonable performance, but not equal to that of the deluxe unit.

TUNER-DETECTOR PIGGY-BACKS

It's quite simple to add a radio piggy-back to your amplifier unit. For those who are undertaking their first project, I'll describe a simple crystal radio piggy-back in some detail. I'll also present a regenerative transistor detector unit which you can build later with a small amount of modification to the original crystal unit. Or, if you wish, you may build the transistor unit immediately. I didn't build the transistor detector as a piggy-back unit, but I've used and tested the circuit in other transistor equipment. The crystal detector, while extremely simple and straightforward, lacks the sensitivity and selectivity of the transistor regenerative type detector. You'll need a moderately good antenna and ground with the crystal detector and amplifier combination, hut the requirements will be relaxed considerably if you use the regenerative detector-amplifier combination.

The crystal detector unit circuit is shown in Fig. 6. Two alternatives are shown. Try both of them and use the one you prefer. Figure 8 shows the construction and wiring of the amplifier unit according to the circuit of Fig. 6A. The tunings capacitor shaft hole is a $3 / 8$-in. dia. hole located $1 / 2 \mathrm{in}$. from the top and side of the rectangular border formed by the recessed front. Note that the location of this hole is the same as that for the deluxe microphone unit. Place the capacitor in the plastic case. If it doesn't fit tightly into the corner of
the case, enlarge the hole with a reamer till it docs. Then locate the two mounting screw hole positions for the capacitor by placing the capacitor in the position it will occupy in the plastic case half and mark-

INSULATION PRECAUTIONS FOR CRYSTAL TUNER - DETECTOR PIGGY-BACK ing them off dircetly.

Cut off the antenna loop coil connceting lugs as close to the coil as possible without damaging the coil lead connections. The center for the hole on the side of the plastic case half through which the antenna coil adjusting screw protrudes is located midway between the front and the hinge side of the case along the line formed by the indentation in the plastic between the corner and the hinge. The hole should be between $1 / 8 \mathrm{in}$. and \bar{T}.:n in. dia., as required, to secure a good fit. Wire the circuit with the components out of the casc,

Front view of basic amplifier, with crystal radio piggy-back, attached to small loudspeaker unit.
checking as you proceed to be sure that you're allowing for proper lead length and fit. Bend the tuning capacitor terminals forward so they'll fit against the front of the plastic case when the capacitor is installed. Insulate these terminals by fastening a piece of cellophanc tape to the

Front view of basic amplifier connected to large loudspeaker unit,

transistor in the circuit. The tickler winding L2 is made by winding 10 to 20 turns of \#28 insulated magnet wire at the top of L2. The feedback due to L 2 may make the received signal stronger or weaker. Try interchanging the L2 coil connections. Use the set of connections which gives the strongest signal or makes the set squeal. If the set squeals, remove turns from the L2 winding till the squealing stops.

Although the detector can be made more sensitive by providing it with a variable regeneration control so that the set can always be operated just below the oscillation point, the space allowances and the added complexity make it difficult to realize in this set. However, it can be done and the adventuresome experimenter may wish to try it.

With the regenerative detectoramplifier combination you won't
capacitor as shown in Fig. 9. As an added insulating precaution, run a piece of cellophane tape around the coil terminal ring. The assembly may then be mounted in the plastic case half and attached and connected to the amplifier unit. You won't be able to open the case all the way because of the protruding antenna coil adjusting screw. When you close the case, jockey the crystal diode to a position where it can't shortcircuit to other components and connections. Use spaghetti insulation on the crystal diode leads.

Tune the antenna slug so you can cover the broadcast frequency range with your antenna and ground connected. On strong local stations you can drive the large loudspeaker unit shown in Fig. 11 directly. Or you can drive the small loudspeaker unit (Fig. 10) with the modified basic amplifier described later. The modified basic amplifier has an extra transistor stage. More distant weak stations can be received if an earphone is used.

The circuit for conversion to the transistorized regenerative detector is shown in Fig. 12. Simply disconnect the diode from the coil tap terminal and connect the
The basic two-transistor amplifier with electronic feedback, code practice and microphone piggy-back.

cut-off frequency. This unit may be substituted directly for the CK768 transistor, but this substitution may require a decrease in the number of turns on the regeneration coil.

LOUDSPEAKER UNITS FOR THE PIGGY-BACK AMPLIFIER

The loudspeaker units for the piggy-back amplifier have been referred to frequently in preceding sections because they have a wide variety of uses and because they enhance the value of your piggy-back equipment considerably. One of these units is the extremely small speaker and output transformer combination mounted in a piggy-back size case which is shown with the amplifier unit in Fig. 10. The dia. of this speaker is $11 / 2$ in. Because of the small size of this speaker, the change from electrical to sound energy is not accomplished as efficiently as it would be with a larger loudspeaker. The second loudspeaker consists of a larger ($21 / 2$-in. dia.) loudspeaker-and output transformermounted in a readymade baflc case. This unit (Fig. 11) has a much higher electrical to sound transformation efficiency and can be used connected directly to the basic amplifier unit with good results.

To make the small loudspeaker unit, place the speaker in the case centered relative to the top and bottom of the case (see Fig. 10). Mark the mounting hole locations on the case with an ice pick or scriber, remove the speaker from the case and with a heated ice pick make the mounting and sound opening holes. I didn't measure off the sound opening holes. If you desire a neater appearance, you can measure them off. Otherwise you can guess them in quickly as I did and then use a small cloth grille.

The output transformer fits partially under the loudspeaker magnet frame. It is held in place by pressure between the speaker magnet frame and the transformer on one side and a rubber grommet between the transformer and the plastic case on the other side. Pass a piece of cellophane tape from the magnet over the top of the transformer frame and grommet for additional support. You can increase the tonc quality and the volune available from the speaker by cutting out a soft cardboard washer to fit around the front of the speaker rim. This washer will fill the space between the plastic case and the speaker rim which would otherwise exist because the rounded edges of the case prevent the speaker rim from fitting
against the front of the case. The secondary (green) leads from the output transformer connect to the loudspeaker voice coil terminals; the primary (red) leads connect to the plug (sec Fig. 7).
The loudspeaker unit shown in Fig. 11 utilizes a larger loudspeaker and a ready-made case and can be built with less effort than the small loudspeaker unit. To assemble, remove the four screws that hold the baffle-case back in place and remove the back. Place the speaker in the baffle box and place the output transformer between

ACOUSTIC FEEDBACK
MIKE - OSCILLATOR
TO USE AS CODE PRACTICE OSCILLATOR. PLACE CELLOPHANE tape insulator BETWEEN UPPER CONTACT AND KEY the speaker magnet frame and the edge of the baffle box. Place a paper or cardboard shim sufficiently thick to hold the transformer in place between the transformer and the speaker.

Next, solder the secondary transformer leads (green) to the speaker voice coil terminals and the primary (red) leads to the terminals at the top of the baffle box.

Finally, place the back on the baffle box and fasten the four screws. The speaker fits tight between baffle box and back and the pressure holds it in place.

ADDING A THIRD TRANSISTOR TO THE BASIC AMPLIFIER

The amplification of the basic amplifier unit may be increased considerably by adding a third transistor amplifier stage. The extra stage increased the amplification of the original model from 320 to about 10,000 . The large increase in amplification makes it possible to drive a loudspeaker with considerably smaller signals at the amplifier input terminals. With the crystal radio piggy-back, for example, the extra transistor amplifier stage will substantially increase the number of radio stations you can receive at reasonable speaker volume. And, with the deluxe microphone piggy-back, the earphone volume is equivalent to that of hearing aids costing from $\$ 40$ to $\$ 100$.

The new three-transistor amplifier circuit is shown in Fig. 13. Figure 14 shows parts placement. Compare these Figs. with Figs. 1, 3 and 15. Note that transistors T 1 and T 2 are still in the output and input stages, and that the new transistor T3 becomes the middle amplifier stage. The only parts required for the modification are transistor T3, resistors R6, R7, and capacitor C3 (see Materials List). They cost less than \$2. The physical position of transistor T 2 and resistor R 4 has been changed in the amplifier. Transistor T3

ARRANGEMENT FOR AUDIO SIGNAL TRACING
occupies approximately the same physical position as T2 occupied before modification. The change can be made in a few minutes if these steps are followed:

1) Remove the volume control knob and the volume control and output jack hex nuts. Remove the amplifier from the case.
2) Remove the 220 K resistor R 4 from the circuit board and replace it with 270 K resistor R 6 .
3) Disconnect the base of transistor $T 2$ from the junction of C2 and R4. Don't disconnect the emitter and collector leads. Bend these leads as required to change T2's position to that shown in Fig. 14.
4) Wire transistor T3 into the circuit. Note that the connection end of T3 is toward the upper edge of the circuit board. Run the emitter and base leads through perforations to the front of the board. Connect the emitter to the common (battery plus) bus and the base to the junction of C2 and R6.
5) Mount and connect C3 and R7. The collector of T3 connects to the junction of C3 and R7.
6) Mount and connect R4. Connect the base of T 2 to the junction of C 3 and R 4 .
7) Bend component leads as required to minimize the possibility of short circuits. Fasten the amplifier in the case.
The added transistor stage increases the current requirements of the amplifier slightly. If the amplifier is used for prolonged periods, (as a hearing aid, say) you'll find it economical to use two size N penlite batteries in series. The gain will be reduced slightly due to the lower voltage.

MODIFICATION, ACCESSORY, AND APPLICATION IDEAS

Your piggy-back equipment has many more uses than those described in conjunction with the construction. In some instances, small modifications are required, and in some instances simple accessories are required for these additional applications. All of the applications and

The three-transistor amplifier with microphone piggy-back and earphone is used here to detect a small gas leak. The hiss of escaping gas is picked up and amplified.
circuits that have or will be described have been tried and tested. (You'll probably discover many more.) You can rest assured that they will work provided your wiring is correct, your connections are electrically reliable and your battery and parts are good.

Code Practice Oscillator. The basic twotransistor amplifier can be made to oscillate at audio frequency by connecting the collector of transistor T2 to the high side of the volume control through a capacitor and resistor (as shown in Fig. 17) with an output load connected. This arrangement provides the feedback required to produce oscillation. The output load may be headphones, the small loudspeaker unit, the large loudspeaker unit, or a 3 K to 10 K resistor.

Figure 15 shows an arrangement for an earphone or loudspeaker code-practice oscillator incorporated piggy-back (schematic is shown in Fig. 16). The resistor is 33 K and the capacitor is .01 mfd . Adjust the ainplifier volume control for the tone you find most pleasing. The code practice oscillator may be built as a piggy-back with a key made from a small piece of metal, machine screws, and nuts. The microphone is connected through the upper contact as the amplifier input element when the key is up. When the key is depressed, the microphone is disconnected, and contact for the oscillator circuit is established.

A loudspeaker code-practice oscillator can utilize an even simpler scheme, with acoustic feedback from the loudspeaker to the microphone producing oscillation in this case. Circuit is shown in Figs. 14 and 18. A small piece of cellophane tape placed on the key under the upper contact prevents microphone circuit closure when the key is up. This arrangement will work with the two- or the three-transistor basic amplifier and either loudspeaker unit. The only requirement for oscillation is that the microphone be placed close to the luudspaker.

Model RR Train Whistle and Paging System. The code oscillator-microphone piggyback combination may be used as a model railroad or toy train whistle and paging system. Either of the code practice oscillator arrangements described above will work acceptably. The twotransistor amplifier with re-sistor-capacitor feedback is most convenient, although the paging volume of the threetransistor acoustic feedback arrangement is greater. The disadvantage of the acoustic feedback arrangement is that the speaker and microphone must be close together to produce a whistle but then must be separated to be used for paging.
Audio Oscillator. Figure 19 shows the circuit arrangement for a simple audio oscillator that can be used for amplifier testing. It can be built piggy-back. The frequency range is limited to a
range of several hundred to several thousand cycles as a sine-wave audio oscillator, but it will operate at lower frequencies as a blocking oscillator. The volume control of the amplifier serves as the frequency control; the added potentiometer is the output level control.

Hum Locator and Telephone Pick-Up. The threetransistor amplifier may be used to pick up telephone conversations and reproduce them at loudspeaker volume with a telephone pick-up coil such as the Lafayette MS-16. Or you can use an unshielded headphone with the diaphragm removed for a telephone pick-up. This arrangement will also enable you to locate ac wiring by using the pickup as a 60-cycle hum locator. When the coil gets close to a 60 -cycle house wiring circuit, it has a $60-$ cycle voltage induced in it. You'll get best results using a headphone for listening in the output circuit of the amplifier for the hum location function. The pick-up is connected to the amplifier in the same manner as the microphone.

Audio Signal Tracer. The basic amplifier may be used as a signal tracer for trouble-shooting audio amplifiers and the audio section of radios. The only additional component required is a 0.1 mfd .

capacitor to isolate de voltages from the amplifier volume control. The circuit arrangement is shown in Fig. 20.
To use the signal tracer for radio trouble-shooting, connect the input lead from the low side of the volume control to the common ground of the radio receiver. Tune the receiver to a strong local station's frequency and with the volume control all the way up, touch the tube grids and plates with the signal tracer "hi" lead in succession while listening for a signal in the earphone. If you don't hear a signal in the earphone when you contact the grid of the first audio stage, the trouble is in the RF. IF or detector portion of the radio ahead of the audio amplifier. If you do get a signal, the trouble's somewhere in the audio amplifier. It's between the last point in the circuit where you do hear a signal and the first point where you don't hear a signal.

To trace a signal in a phono amplifier or any other amplifier, provide an input signal to the amplifier and proceed with the signal tracer just as you would to signal trace a radio. The input signal can be derived from a phonograph turntable pickup and a record, a radio tuner or an audio oscillator.

Tape Insulates Radio-TV Screws

- The chassis of a transformerless ac-dc radio or TV can be a very deadly shock hazard, should the set be plugged into the outlet with the in= correct polarity. Often, the mounting screws found on the bottom of the cabinet are in direct contact with the "hot" chassis. Touching one of these screws and ground simultaneously can kill

you.
A simple safety precaution is to insulate the
heads of the screws by covering them with plastic tape. If your set has a metal plate as a bottom cover, tape clear plastic material (available at hardware stores for a few cents a foot) over entire plate.-John A. Comstock.

Eraser Shock-Mounts Transistor

- A slip-on pencil eraser makes a good mount for some types of round case transistors that are not to be socket-mounted. Drill a small hole
 through the tip of the eraser, and mount it on the chassis with a small screw and nut. Eraser shock-mounting is especially desirable in portable gear subject to mechanical shocks.-John A. Comstock.

Electronics Picture Quiz

By JOHN A. COMSTOCK

Are you a whiz at picture quizzes? Here's one on electronics. All of the photos are of items commonly found on the electronic hobbyist's bench or in his box of spare parts. See if you can correctly identify and label them in the spaces provided. Study each picture carefully before filling in your answer. You'll find the solution on page 157.

4. \qquad
5.
6.

5

Line Voltage Corrector for Your TV Receiver

By HAROLD P. STRAND

LOW line voltage from your electric company can cause all sorts of difficulty in your TV set. Since electric companies can't supply everybody with exactly the same voltage, outlying suburbs are most likely to be troubled with below-normal voltage, particularly during the evening hours when demand for electricity is high. If you're not satisfied with your TV picture, it doesn't fill out the screen or lacks brilliance, try connecting an a-c voltmeter to the wall receptacle to determine the line voltage. If I had done that myself, I would have saved considerable time and money.

The picture on my set was not filling the screen, especially at the sides and was not up to its usual brilliance despite any adjustments of the brightness control. The picture kept slip-

Picture wouldn't fill out sereen when set was operating on 106 volts (A). lincreased brilliance and full screen (B) improve picture after boosting line voltage to 112.115 volts.
ping out of horizontal sync too. Something had to be done!

First, I replaced all the tubes in the video section, with very little improvement. Next, I removed the chassis and spent two evenings going over the complex circuit using instruments to check the connections and the components against the schematic. Still no luck! Some of the original condensers were bulging with sealing compound at the ends, so all of them were replaced with the latest type. You can imagine my

[^24]
disappointment, when after assembling the set, the improvement was hard to find.

On an impulse, I got my voltmeter from the shop and plugged it into the outlet. I was getting exactly 106 volts! When I connected a Variac between the line outlet and the TV set and raised the voltage to 115 volts, the results were amazing. The picture assumed a brilliance it had never had before and it covered the screen with some to spare! You may find the same solution to your television difficulties.

Instead of using the Variac, this line voltage booster which you can build yourself will step up line voltage and give you all the reception which your TV set can deliver. Basically it is an autotransformer with a number of taps controlled by a tap switch. The built-in voltmeter tells you at all times the exact voltage being delivered to your TV, I recommend setting the voltage at about 112 volts to allow for any upward line

Core laminations (A) 1-piece shell lamination salvaged from used radio power transformer. (B) E-type laminations (C) Core-type lamination made by alternating straight strips of silicon transformer steel. Transformers built on this core will require larger mounting box. (D) Coil winding form.

Start winding through slot in narrow side of form. Turn counter records number of wind. ings.

Bringing out loop tap at 247th turn. Slip sleeving over loap and separate lead from rest of windings with electrical tape, top and bottom. Contimue winding over tap loops.

fluctuations. Most electric lines deliver voltage that varies only two to four volts although the general level may be low. No. 1 tap shows direct line voltage on the meter and allows you to check incoming voltage before making any corrections. Each additional tap boosts voltage about two or three volts. Most console TV sets draw about two amperes, well within transformer capacity.
To start building the transformer, you'll need the core taken from an old radio power transformer like an early Silver Marshall or any type close to specified core size (Fig. 4). The stacked E-type laminations measured $41 / 2$ x 4 in. outside with coil window openings of $3 / 4 \times 21 / 2-\mathrm{in}$, with $11 / 2$-in. wide center leg and stacked $111 / 11^{-}$ in. high. If salvage cores are not available, you can cut $1 \frac{1}{2}-$ in. wide strips out of regular 26-29gage silicon transformer steel (Fig. 3C). Alternate stacks of four laminations were used in building the core; this same system for covering the joints should be used in rebuilding the core around the new coil.

The new coil consists of 292 turns of either one \#17 Formex wire or two \#20 wires in parallel. Build a winding form first (Fig. 3D). Leads are brought out on the narrow sides of the form (Fig. 5) to avoid interference when coil is slipped onto the

a different color noting the turns each represents as the winding progresses. At the loops, which will become taps, place a small piece of Scotch \#33 insulating tape under the point where the wire is looped off and another piece on top of the spot, to properly insulate the crossing of wires. Also be sure to use a piece of sleeving over the ends brought out. Continue to wind over the previous work to the 257 th turn, and bring out another loop. This 257th tap is brought out at the opposite narrow side of the form from the beginning and 247th tap. Continue to wind in the same way, bringing out taps at the $263,272,278$, 285 and the end or 292 turns, all on the same form side as the 257 th tap.
With the last winding on, you're ready to tie the coil with strings through the slots and remove it from the form (Fig. 7). The starting wire and 247th turn are at one of the narrow coil sides and the 257 to 292nd taps are at the other. Tape the entire coil with cotton coil tape as shown in Fig. 8. Sew the end of the tape before dipping the whole coil in air-drying insulation varnish, allowing it to soak for about five minutes. Hang it up to drain and allow it to dry overnight, or bake in an oven at about $150^{\circ} \mathrm{F}$

Back side of booster assembly. Voltmeter is set of center to clear transformer. Back screen allows air to circulate around transformer. Note fuse holder at right lower corner.
for several hours to fully dry the varnish.
Assemble the core to the new coil (Fig. 9). Drive strips of fiber or Bakelite between the coil and center leg at both sides to wedge it tightly in place. Otherwise, an annoying hum may result. Attach the side frames and the transformer is finished. It will be necessary to square up the core with a light hammer, driving butt joints together.
The grey enamelled aluminum cabinet has removable side panels and is laid out for the holes to mount parts according to Fig. 10. Cut the large holes with a Greenlee chassis punch, a hole saw or fly cutter. Instead of one of the panels, cut a piece of mesh screen stock to fit at the back. Mount the voltmeter, the toggle switch, flush receptacle, transformer and tap selector switch in the cabinet.
When all components are installed, you're ready to wire up connections according to the schematic diagram (Fig. 11). Insulation on the Formex wire is hard to scrape off, so be sure you get down to the bare copper before hooking it up. Use \#18 flexible insulated wire for all hook-up connections aside from the transformer tap connections.
Step \#1 on the tap switch shows the line voltage on the booster's meter and tells you if it is high enough ($112-115$ volts) to use without boosting. Other steps increase voltage and meter records just what these voltages are for top TV reception.

Bottle Plugs as Wire Grommets

- The plugs used in nasal spray plastic squeeze bottles make handy feed-through grommets. Pry out the plug from the botte's neck with the blade of a sharp knife, then enlarge the opening in the plug with the sharp point of a heat soldering iron or an ice-pick. The inside spray tube makes a good piece of wire insulating spaghetti, too.

> Answers to Cross Numeral Puzzle, Page 105.

Built into a pen case, this little self-powered radio requires no outside antenna. Stations are received by attaching clip lead to telephone dial screen, or other metal.

ADISCARDED ball point pen barrel holds this radio that not only makes a conversation piece, but really works-and works well! A tuning knob in the cap selects various local stations.
A crystal set. it uses a germanium diode detector and requires no operating power. A flexible clip lead attached to a phone dial finger stop, or other handy metallic object becomes an antenna for picking up local stations. X-type antennas may increase the set's range to 50 miles.
The pointed plastic tip of a dime store pen carrying the ball point and capillary ink tube is discarded, leaving an open barrel. Drill $1 / 8-\mathrm{in}$. hole in the bottom of the barrel for the phone cord and flexible antenna lead.
Drill a $: \%-\mathrm{in}$. hole in the top of the pen cap to complete preparation of the pen barrel. The tuning coil is the next job. The coil shown in Fig. 2 consists of 12 ft Litz coil wire latticewound on a paper-base Bakelite tube $1 / 4$ in. I.D. x 1 in . long. Leave coil leads long enough to be connected to the other components.

Duco or similar cement is applied to the outside of the coil before inserting it into the pen

Component layout A. Pen cap and barrel. B. Diode detector. C.
Ceramic fixed capacitor. D. Coil. E. Tuning slug and screw.
F. Small alligator clip. G. Antenna lead. H. Earphone. I. Tuner knob. J. Earphone Cord.

Fountain Pen Radio

This "air-powered" set built in a pencase will receive stations up to as far as 50 miles away

4 SCHEMATIC PLAN
cap. The tuning slug is fitted with a \#4-40 brass screw. Because the plastic is soft, the screw will cut its own threads when turned into the hole in the cap. The screw moves the iron or ferrite core with the coil to tune in the stations.
Many inexpensive and surplus radio or TV I.F. transformers will yield a suitable slug and coil form to wind the Litz wire on. Or you can purchase a ferrite-tuned radio antenna coil and strip off its outer cardboard cover and trim the lugs to get it into the pen barrel.
The $180-\mathrm{mmf}$ fixed ceramic capacitor and diode detector will fit nicely into the pen barrel when arranged as shown in Fig. 3. Be sure "pigtail" leads are covered with radio spaghetti or plastic Scotch tape so that leads do not short when inserted in pen.
The total cost of this novel radio is about $\$ 3$, less the button type hearing aid receiver. A high resistance magnetic unit of this type costs about

MATERIALS LIST-FOUNTAIN PEN RADIO

1 cheapest prade ball point pen, or discarded fountain pen
1 tuning coil (available from Electro.Mite, Box 636. Springdale, Conn. for $\$ 1$, or a complete kit except earphones for $\$ 3$, postpaid)
1 small spool Litz wire (for homemade coil only)
1 short length insulated antenna lead wire (plastic stranded) 1 alligator clip (small)
1 germanium diode detector (CK705, IN48 or IN34)
1 high resistance hearing aid receiver, or standard size Alnico radio headphone (1000,1500 or 2000 ohms)
1180 minf fixed ceramic capacitor for local stations between 1400 and 660 kc . Beyond 660 use 250 mmf , below 1400 kc use 75 mm .
\$8. However, a standard radio type Alnico headphone costs a fraction of this figure. Except for its size, it far outperforms a hearing aid receiver
in volume. In either case, headphone leads and flexible antenna wire are fished through the $1 / 8$-in. hole and soldered in place, along with the two flexible coil leads. The pen barrel is now slid up the cord to enclose the components and engage the cap.

The cap makes a tight friction fit over the barrel. While there is little danger of the radio pulling apart, a drop of cement may be applied inside the cap to permanently secure it to barrel.

Turning the \#4-40 screw on the tuning core proved a little rough on the fingertips, so I squirted a generous amount of Duco cement into the plastic cap salvaged from a discarded lighter fluid can and attached it to the screw, allowing screw and knob to dry overnight.

Camera Flashgun From Toy Teakettle

BATTERY powered and hand held, this economical little flashgun can be used anywhere with any camera having a time, bulb or slow shutter speed. Exposure is made by the open lens-flash-shut lens method.
Obtain the parts given in the list of materials first. Then, cut out the bottom of the toy teakettle with a pocket knife and, with a pair of pliers, pull the remaining bottom metal out of the seam. Bend the teakettle handle to the shape shown in Fig. 2 and carefully remove the kettle spout. Force the automobile lamp socket into the spout hole and, with a midget flashbulb in the socket, adjust the socket in the hole so that the bulb is centered in the reflector. If the spout hole must be enlarged to do this, use a tapered wooden dowel to expand the hole just large enough for a snug fit with the lamp socket. Coat the inside and outside edges around the socket where it joins the kettle with household cement.
Now, remove the paper cover from an AA-size flashlight dry cell battery and tape to the teakettle handle as in Fig. 2. For the on-off switch, drill one end of a strip of flexible insulating material (see materials list) to take a radio binding post and the other end for a 5-40 machine screw. Because different makes of toy kettles will vary somewhat in size, determine the dis-

MATERIALS LIST-		
	CAMERA FLASHGUN FROM TOY TEAKETTLE	
No.	Description	Use
1	$4^{\prime \prime}$ toy whistling teakettle (aluminum)	reflector
1	$1 / 16 \times 3 / 8 \times 1 / 2^{\prime \prime}$ flexible insulating material (Plexiglas, Bakelite, Micarta or Fiber)	switch
1	8.32 Bakelite knob radio binding post	switch
1	size AA flashlight dry cell	battery
1 box	$3 / 8 \times 5.40$ machine screw	switch
1 box	Midget flashbulbs (General Electric \#5)	
1	single-point, bayonet-type automobile lamp socket to fit above bulbs	bulb socket
1 tube	household cement	

tance between the drilled holes by holding the insulating strip on the kettle handle so that the $r d$ binding-post screw will make contact with the battery center terminal when the binding post is pressed. Then cement and bolt the insulating strip to the kettle handle. Connect the wire from the lamp socket to the radio binding post and you're all set to take indoor, flashbulb-lighted pictures.-Arthur Trauffer.

- When a rat-tail file breaks, don't throw it away -break it up into a number of 2 -in. lengths and use them in your power drill to enlarge radio chassis holes. They cut very rapidly and are ideal for enlarging tube socket holes and for similar radio work.-J.A.C.

[^0]: Educational Ēook Publishing Div.
 | COYNE ELECTRICAL SCHOOL, Dept. 99-RE
 | 1501 W. Congress Pkwy., Chicago 7, lill.
 | \square Rush 4 -book PIN-POINT Series for 7 -day FREE TRIAL per offer
 I For individual books, check below.
 | TRANSISTORS (55.95 plus postage)
 IV (s3.95 plus postage)
 I COLOR TV (\$5.95 plus postage)
 I sume
 Address
 I City Check herc if enciosing full price: we pay pustake. 7 -day

 I_ mene - hate cuarant te.

[^1]: Christy Trades School, Depl. T-111, 3214 W. Lawrence Ave., Chicago 25, III.
 Gentlemen:
 Glease send me, without cost or obligation, two $F R E E$ lessons and the new 24-Page 1llustrated book telling all about the CTS Master Shop Method Home Training Course in Radar, Sonar, Television, Radio and Electronics, and the many opportunitles this new field offers.
 Name. Age.
 Address .
 Clty.............................. Zone.... state...............

[^2]: 1) Fower Transformer: 2) Filier Choke; 3) VR150 Voltage Regulator; 4) Line Cord; 5) Terminal Strip; 64 Phone Jack; 7) 5U4 Fectifier; 8, 9), 6AQ5 Modulator Tubes; 10) 12AT7 Receiver A.F. Amplifier: 11) GAQ5 Tramsmitter F'ower Amplitiers; 12) Antenna Tuning (Transmitter): 13) Modulation Transformer; 14) 6AG5 Second Detector: 15) Second Delector Tuning Slug; 16) 6AQ5 Frequency Doubler: 17) Frequency Doubler Coil Slug: 18) Trans mitter Power Amplifier Tuning Slug; 19) Tuning Lamp; 20) 6AG5 Second I.F. Amplifier 21) Oscillator Plate Tuning Slug; 22) 6ACS R.F. Amplifier; 23) I.F. Transformer: 24) Transformer Oscillator Tank Capacitor (100 mm); 25) 6AQ5 Oscillator; 26) R.F. Amplifier Tuning Slug: 27) EAG5 First I.F. Amplitier; 2B) Transmitter Oscillator Slug: 29) V.F.O. Push Button: 30) Receiver OsciHator Tank Capacitor; 31) Receiver Oscillator Tuning Slug: 32) 12AT7 Oscillator and Mixer; 33) I.F. Transformer.
[^3]: Wooden telephone cabinet and metal parts in "as purchased" condition.

[^4]: Howard Souther's Stereophile Heaven showing at far end of room two professional Ampex tape machines and one Magnecorder, used for duplicating and for various sound effects. Control console is at center of photograph.

[^5]: Components are tucked in place, and a wadded pad of newspaper holds them lightly against case front. The two terminals serve no useful function: they come with the meter case. At left in photo are components soldered in place before protective tape is applied.

[^6]: Business part of head showing erase lamination on left with record-playback lamination on right. Above, microphotograph of dirty head.

[^7]: This transistor code practice outfit will operate for days on a single penlite battery. It is easily modified for 2-way use.

[^8]: 1 small plastic (or metal) box, approx. $1^{\prime \prime} \times 2^{\prime \prime} \times 3^{\prime \prime}$ miniature 2-pin phone plugs
 miniature matching jack strips for above
 P-N-P transistors, GE 2 N 107 (or CK-722 types)
 molded Bakelite transistor sockets for above
 2 mfd., 6v. mintature electrolytic capacitor
 subs-miniature 5 K volume control/switch
 knob for contral
 22.chim. $1 / 2$-watt composition resistor
 4.7K, $1 / 2$-watt composition resistor
 $330 \mathrm{~K}, 1 / 2$-watt composition resistor
 type AA penlite battery, $11 / 2 v$.
 2.56 by $3 / 8^{\prime \prime} \mathrm{rh}$ machine screws and nuts
 $4-40$ by $1 / 4^{\prime \prime}$ rh machine screws and nuts
 NOTE: To connect a high impedance crystal mike or pickup to amplifier, Lafayette Radio Transformer \#AR-100 may be used. To use a PM speaker as such, or as a mike, use \#AR.122, or \#AR-119. Parts available from Lafayette Radio, 165-SM Liberty Ave, Jamaica 33, N. Y.

[^9]: Checking line voltage on meter built into booster. Voltage that's too low causes all sorts of trouble on yous TV set.

[^10]: Nc. Req.

 ## MATEPIALS LIST-CONVERT YOUR RADIO

 Size and Description
 i ft. Ieryth shrelded, insulated single conductor pheno cable phanograpt jach
 miniature phene plug
 m riature phone jack
 rotary lamp switch (dime store) cr Radio Togqle Switch,
 S.P.S.T. S.P.S.T.
 1.005 or . 0047 mfd . paper capacitor 400 d.c.w.v.
 miniature putput transformer, 3.2 ohm Pri./2000 ohin sec. Lafayette 工AR.96 (Optional)
 1.05 mfd. paper rapacitor, 400 d.c.w.v. (0 ptional)

 Contact mikes, telephone coil and ininiature earphones men. lioned ir text available from Lafayette Radio, 165 Liberty Ave., Jamaica 33, N. Y. or Allied Radio, 100 N. Western Ave., Chicago 80, III.

[^11]: The Radio.TV Experimenter contains a celection of the most popular electronirs
 and Meihariins Magazine, flus a muntiber of proje is and helfful afticles on lite sarie subjecis appsaring fu tt = first time.
 Science and Mechanics Handbook Annual No. 5, 1959-No. 562

[^12]: \square Chack here if subject to militory iraining.

[^13]: Educational Eook Publishing Div.
 | COYNE ELECTRICAL SCHOOL, Dept. 99-RE
 | 1501 W. Congress Pkwy., Chicago 7, III.
 | 口 Rush 4-book PIN-POINT Series for 7-day FREE TRIAL per offer
 | 口 RECORD CHANGER ($\$ 3.95$ plus postage)
 | D TRANSISTORS (55.95 plus postage)

 - TV ($\$ 3.95$ plus postage)

 I COLOR TV ($\$ 5.95$ plus postage)
 I Name
 Address
 City
 ..
 city
 Zone... . State

 - Check here if enclosing full price: we pay pustage. 7 -day

[^14]: Christy Trades School, Depl. T-111, 3214 W. Lawrence Ave., Chicago 25, ill.
 Gentlemen:
 Gentlemen: Please send without cost or obligation, two $F R E E$ lessons and the new 24-Page 1llustrated book telling all about the CTS Master Shop Method Home Training Course in Radar, Sonar, Television, Radio and Electronics, and the many opportunitles this new field offers.
 Name... . Age.......
 Address ..
 Clty.............................. Zone.... state...............

[^15]: In Volume 6 of the Radio-TV Experimenter (No. 555) we described a six-meter amateur radiophore station, suitable for the beginning or "technician-class" operator. Reader response to this project was so enthusiastic we felt an improved model of such a station in order. While the first station is still a useful and interesting project, it does possess a few disadvantages, particularly when used in regions of intense amateur VHF activity such as the Chicago, New York, and New England areas where occasionally transmitter output power becones insuificient for consistent communication. Likewise, while sensitive,

[^16]: 1) Fower Transformer; 2) Piller Choke; 3) VR150 Voltage Regulator; 4) Line Cord; 5) Terminal Sitip; 허 Pbone Jack; 7) 5U4 Rectifier; 8, 9), 6AQ5 Modulator Tubes; 10) 12AT7 Receiver A.F. Ampligar; 11) GAQ5 Transmitter Fower Amplitiers; 12) Antenna Tuning (Transmitter): 13) Modulation Transformer; 14) 6AG5 Second Detector; 15) Second Detector Tuning Slug: 16) 6AQ5 Frequency Doubler; 17) Frequency Doubler Coil Slug; 18) Transmitter Power Amplifier Tuning Slug; 19) Tuning Lamp; 20) 6AG5 Second I.F. Amplifier; 21) Oscillator Plate Tuning Slug; 22) 6AGS R.F. Amplifier; 23) I.F. Transformer; 24) Transformer Oscillator Tank Capacilor (100 mmi); 25) 6AQ5 Oscillator; 26) R.F. Amplifier Tuning Slug; 27) EAGS First I.F. Amplitier; 28) Transmitter Oscillator Slug; 29) V.F.O. Push Button; 30) Receiver OssiHator Tank Capacitor; 31) Receiver Oscillator Tuning Slug: 32) 12AT7 Oscillator and Mixer; 33) I.F. Transformer.
[^17]: Wooden telephone cabinet and metal parts in "as purchased" condition,

[^18]: Howard Souther's Stereophile Heaven showing at far end of room two professional Ampex tape machines and one Magnecorder, used for duplicating and for various sound effects. Control console is at center of photograph.

[^19]: Components are tucked in place, and a wadded pad of newspaper holds them fightly against case front. The two terminals serve no useful function: they come with the meter case. At left in photo are components soldered in place before protective tape is applied.

[^20]: Business part of head showing erase lamination on left with record-playback lamination on right. Above, microphotograph of dirty head.

[^21]: This transistor code practice outit will operate for days on a single penlite battery. It is easily modified for 2-way use.

[^22]: No. Req. Size and Description
 small plastic (or metal) box, approx. $1^{\prime \prime} \times 2^{\prime \prime} \times 3^{\prime \prime}$ miniature 2-pin phone pluys
 miniature matching jack strips for above
 P-N-P transistors, GE 2 N 107 (or CK- 722 types)
 molded Bakelite transistor sockets for above
 $2 \mathrm{mfd} ., 6 \mathrm{~V}$, miniature electrolytic capacitor
 sub-miniature 5 K valume control/switch
 knob for contral
 22-ohn. $1 / 2$-watt composition resistor
 $4.7 \mathrm{~K}, 1 / 2 \cdot$ watt compasition resistor
 $330 \mathrm{~K}, 1 / 2$-watt conpasition resistor
 type AA penlite battery, $11 / 2^{v}$.
 2.56 by $3 / 8^{\prime \prime}$ rh machine screws and nuts
 $4-40$ by $1 / 4^{\prime \prime}$ rh machine screws and nuts
 NOTE: To connect a high impedance crystal mike or pickup to amplifier, Lafayette Radio Transformer \#AR-100 may be used. To use a PM speaker as such, or as a mike, use \#AR-122, or \#AR-119. Parts available from Lafayette Radio, 165-SM Lih. erty Are., Jamaica 33, N. Y.

[^23]: MATERIALS L.IST-STROBE.CHARGER

 ## No. Req. Size and Description

 $13 \times 4 \times 5^{\prime \prime}$ ahminum cabinet, hammertone finish, Type 29811 ICA
 16.3 volts, 2 amp , filament transformer Merit P 2945

 1 sclenism rectifier, 1800 ma. D.C. Federal type 1018 (If the above rectifier is not available, purchase 4 Internaational CIH rectifier plates of 250 ma each, Allied catalog $\pm 4 A 825$, and assemble as in Fig. 8.)
 1 fusp holder, panel type, Littelfuse type 342001 with $11 / 2$ amp. fuse
 1 pilot linht assembly Dialco type 432, Series 510 with 6.3 volt lamp
 6 ft flat rubber lamp cord
 $\frac{1}{2}$ attachment pluy cap
 rubher or bakalite grommets for $3 / \mathrm{s}^{\prime \prime}$ hole
 insulated thumb nuts (from old ${ }^{-8}$ battery)
 $1 / 8 \times 3 / 4 \times 21 / 4^{\prime \prime}$ clear plastic or bakclite
 8-32 R. H. screws $3 / 4^{\prime \prime}$ long
 $8-32$ nuts and 4 washers
 2 soldel lugs for $\# 8$ screw (Allied Cat. $\# 44$ N607)
 4-40 R.H. screws $1 / 4^{\prime \prime}$ lown
 8 ft \#18 flexible insulated wire
 1 special male play to fit charging receptacle on battery unit (Order from manufacturer of flash equipment.)
 2 Mueller test clips type Pee-Wee 45 with rublber insulators
 1 2-terminal, Bakelite tie-point terminal strip
 1 piece perforated steel $47 / 8 \times 37 / 8^{\prime \prime}$ (cut from old television back or other cabinet enclosure)
 Miscellaneous screws, nuts. etc., for mounting parts
 Above materials available from any well-stocked electronic supply house, such as Allied Radio Corp., 100 N . Western Ave., Chicago

[^24]: Checking line voltage on meter built into booster. Voltage that's too low causes all sorts of trouble on your TV set.

