Radio-Electronlos

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS

INTELLIGENT THERMOSTAT

Guts heating bills
VIDEODISC PLAYER Look af the circuitery

CAR STEREO GOES HI-FI
special romodup repor?

SWITCHING POWER SUPPLIES

How to roll your own
R.E.A.L. SOUND LAB

IVC IR-S501 CRGeiver
Scott 530 fumer

BUILD TELECORDER

For your phome

TIM DISTORTION New audio spec

\# HOBBY CORNER Zener diodes

That's why we ve become the easiest-to-find solderless breadboords in the world-available at more stores than anybody else in the business. Because pecple who know solderless best insist on CSC

Save time and energy. Get a heay start with CSC.

There are 9 Proto-Boards "in all, manufacturer's suggested U.S. resale prices from $\$ 15.95$ to $\$ 124.95$.

CONTINENTAL SPECIALIIES CORPORATION

70 Fulton Terrace, New Haven, CT 06509 (203) 624-3103, TWX 710-465-12: 7 OTHER OFFICES: San Francisco: (415) 421-8872, TWX 910-372-79§2
Europe: CSC UK LTD. Phone Saffron-Walden 0799-21682, TLX 817417

- Euggested U.S. resale. AJalettle a selected local distributors Prices, specificaions 3 utject tochange without notice - Copyright 197.9 Con ir ental Specialties Corporation

1-800-243-6077

Call toll-free for details

The Personal Computer Line by OHIO SCIENTIFIC

C1P: \$349! A dramatic breakthrough in price and performance. Features OSI's ultra-fast BASIC-in-ROM, full graphics display capability, and large library of software on cassette and disk, including entertainment programs, personal finance, small business, and home applications. It's a complete programmable computer system ready to go. Just plug-in a video monitor or TV through an RF converter, and be up and running. 15 K total memory including 8 K BASIC and 4 K RAM expandable to 8 K .
C1P MF: \$995! for under $\$ 1000$! Same great features as the C1P plus more memory and instant program and data retrieval. Can be expanded to 32 K static RAM and a second mini-floppy. It also supports a printer, modem, real time clock, and AC remote interface, as well as OS-65D V3.0 development disk operating system.

C2-4P: \$598!

The professional portable that has over 3 -times the display capability of 1P's. Features 32×64 character display capability, graphics, full computer type keyboard, audio cassette port, and 4 slot BUS (only two used in base machine). It has 8 K BASIC, 4 K RAM, and can be expanded to 32 K RAM, dual minifloppies and a printer.

C2-4P MF: \$1599!

 It's a big personal computing mini-floppy system at a special package price. Contains the famous C2-4P microcomputer with 20 K static RAM, $5^{\prime \prime}$ mini-floppy unit for instant program and data loading, RS-232 circuitry (for optional modem and printer), and four diskettes featuring exciting games, personal, business and education applications.

[^0]
C2-8P: \$799!

 The personal class computer that can be expanded to a full business system. Has all the features of the C2-4P plus an 8 slot BUS (3 -times greater expansion ability than the C2-4P). Can be expanded to 48 K RAM, dual floppies, hard disk, printer and business software.
C2-8P DF: \$2599!

 A full business system available at a personal computer price! The system includes the powerful C 2.8 P microcomputer (32 K RAM expandable to 48 K), dual $8^{\prime \prime}$ floppy unit (stores 8 -times as much information as a mini-floppy), and 3 disks of personal, educational and small business applications software. Has all the capabilities of a personal system including graphics plus the ability to perform Accounting, Information Management, and Word Processing tasks for small business. Contact your local Ohio Scientific dealerAmerica's largest full-line microcomputer manufacturer 1333 S. CHILLICOTHE RD., AURORA, OHIO 44202 (216) 562.3101

For cost effective capacitance measurement

For about one-third the cost of the most popular digital capacitance meter, you can own five times more measurement capability. The new B\&K-PRECISION 820 reads all the way to 1 Farad, in ten ranges. With 0.5% accuracy, the 820 resolves to 0.1 pF for a maximum count of 9999.

The 820 keeps on going in freezing cold to blistering 100 degree heat, making it ideal for field use. The bright LED display is easily readable under all lighting conditions. It has the versatility needed for any application and the durability to stay on the job. The 820 can be powered by disposable batteries or optional rechargeable batteries.

Unlike many specialized instruments, the 820 has almost unlimited applications in engineering, production line work, QC, education and field service. First time users are quickly discovering that the number of time-saving applications exceed their original expectations. For example, you can measure unmarked capacitors ...Verify capacitor tolerance
.. Measure cable capacitance... Select and match capacitors for critical circuit applications... Sample production components for quality assurance... Measure capacitance of complex series-parallel capacitor networks . . Set trimmer capacitors to specific amounts of capacity... Check capacitance in switches and other components.

You can start discovering your own applications today by seeing your local distributor for immediate delivery.

BKT patcision
DYNASCAN CORPORATION
6460 W. Cortland Street • Chicago, IL 60635 • 312/889-9087
In Canada: Atlas Electronics Ontario
Internalional Sales Empire Exporiers, Inc 270 Newtown Road. Plainview. L.I. N Y 1803

Radio-Electronics.

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS
Electronics publishers since 1908

$\begin{aligned} & \text { SPECIAL } \\ & \text { FEATURE } \end{aligned}$	41	What's Now in Car Stereo There's real hi-fi gear available - -right down to graphic equalizers. Here's a complete update on everything new. by Frod Petras
BUILD ONE	35	Programmable Thermostat Minimizes Fuel Bills Controls up to 4 different temperature levels each day. Turns on furnace or air conditioner as needed. Provides optimum comfort and maximum energy savings. by Peter Gise
	59	Time/Voltage Calibrator Part 2: Wind up your unit. Final assembly details. by Doug Farrar
	62	Telecorder for Your Phone Inexpensive way to connect a tape recorder to your telephone line. by Jules Gilder
		Audio Teat Station This story does not appear in this ussue. It will continue next month.
AUDIO	47	All About TIM Distortion How we measure this previously unknown type of IM distortion. by Len Feldman
	54	R.E.A.L. Sound Lab Tests Scott 530-T Tuner AM/FM stereo tuner earns an "Excellent."
	56	R.E.A.L. Sound Lab Tests JVC JR-S501 Receiver AM/FM stereo receiver earns a "Very Good."
VIDEO	50	Videodiec-Look at the Circuitry The laser and its circuits. by Larry Steckler
	76	Jack Darr's Service Clinic How the automatic brightness limiter works and how to troubleshoot it. by Jack Darr
	76	Service Quentiona R-E's Service Editor solves technician problems.
TECHNOLOGY	4	Looking Ahead Tomorrow's news today. by David Lachenbruch
	64	Switching Power Supplies You should know how these supplies work. They offer greater efficiency and lower power loss in series-pass transistors than more conventional supplies. by L. Steven Cheair:
	70	Hobby Corner A look at Zener diodes. by Earl "Doc" Savage, K4SDS
	72	Communications Corner News about UHF, VHF, CB and more. by Herb Friedman
EQUIPMENT	23	Sabtronics 2010A 3 and 1/2 Digit DMM
	24	Ohio Scientific Superboard II Computer
	25	Continental Specialties Max 50 Frequency Counter
	32	Magnesonics Cassette Eraser and Rapid Rewinder
	33	VIZ DC Power Supplies
DEPARTMENTS	120	Advertising Index 99 Market Center
	14	Advertising Oflices 96 New Literature
	14	Editorial 84 New Products
	121	Free Information Card 90 Stereo Producta
	6	Letters

ON THE COVER

Intelligent Thermostat can save you big fuel dollars. It not only adjusts the temperature several times a day, but it also sets it at different levels on different days of the week. Interested? Read all about it starting on page 35 .

INTERFACE DEVICE provides matching and isolation between telephone and Telecorder. Want to build Telecorder? Story starts on page 62.

VIDEODISC PLAYER USES LASER to scan the diec. We tell how the laser circuits work. Turn to page 50.

Radio-Electronics, Published monthly by Gernsback Publications, Inc., 200 Park Avenue South. New York, NY 10003. Phone: 212-777-6400. Controlled Circulation Privileges Pending at Concord, NH. One-year subscription rate: U.S.A. and U.S. possessions, $\$ 9.98$, Canada, $\$ 12.98$. Other countries, $\$ 14.98$. Single coples $\$ 1.25$. (c) 1979 by Gernsback Publicattons, Inc. All rights reserved. Printed in U.S.A. (ISSN 0033-78e2)
Subecription service: Mall all subscription orders changes. correspondence and Postmasior Notices of undelivered copies (Form 2579) to Radio-Electronics Subscription Service, Box 2520, Boulder, CO 80322.
A stamped sell-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs 1 their return is desired should they be rejected. We disclaim any reaponslbility for the loss or damage of manuscripts and/or artwork or photographs while in our
possession or otherwise.

Satellite delivery: Satellite communication continues to expand with breathtaking speed, particularly in broadcasting where cable TV systems and Public Television already have their own satellite interconnection systems. Now RCA American Communications, which owns two Satcom satellites has made the nation's television broadcasters an offer that will be difficult to refuse: It has offered to build, maintain and operate-at its own expense-a receive-only earth station for each one of the nation's 725 television stations. Then it would use its own satellite facilities to distribute syndicated programs that currently are "bicycled" from station to station on film or tape.

RCA has developed a system of encoding, or scrambling, the video signal so that it can be directed to specific earth stations and rejected by all stations for which it's not intended. Each station would have a five-meter dish. Interestingly, RCA owns the NBC television network, which uses AT\&T intercity lines for connection, and it is now providing a satellite means to connect the nation's television stations.

Meanwhile, radio is also discovering satellite transmission. National Public Radio, Mutual Broadcasting System, Associated Press and United Press International are cooperating with radio stations in installing small receiving dishes for both teletype transmissions and audio news broadcasts.

Portable VCR's: Although the home videocassette recorder race seems to have settled down to two basic formats-Beta and VHS-a new battle could be shaping up for portable VCR standards, and this one could have many more entries. While there are portable versions of both formats already on the market, many companies are betting that both of these are too large for true portability. It's not known how many firms are developing lightweight VCR's or even VCR's combined with solid-state color cameras for the "personal photography" market.

Four portable formats already are at the starting gate. BASF's LVR (for longitudinal video recording) is scheduled for unveiling in prototype form this summer. In its latest form, it's believed to have 72 video tracks on a single-reel cartridge of tape eight millimeters wide and reportedly has three hours of recording time per cassette. Toshiba has demonstrated a portable VCR using an endless-loop tape and a fixed head, with 220 tracks on a $1 / 2$-inch cassette. This format makes possible a relatively compact recorder.

Funai Electric of Japan hopes to sell a portable VCR weighing about six pounds that uses a $1 / 4$-inch cassette resembling an audio cassette, for 20 minutes of color recording. Unlike the others, Funai's VCR uses helical-scan principles. Eastman Kodak is assumed to be developing a portable VCR, too, and this one could be very significant indeed because of Kodak's size and importance in the photography market. While today's fairly large VCR's are basically time-shift devices for recording TV programs, the next generation will be designed for electronic photography. With a furious race developing for this new type of VCR, it seems highly unlikely there'll be anything resembling a standard. Thus, we could have four or six-or 12different noncompatible units introduced.
'Piracy' problems: Illegal copying of prerecorded videocassettes is the major new problem of the video age. There's one simple way to foil amateur "pirates," and that is an encoding formula that alters the frequency and amplitude of the vertical sync pulse on legally recorded cassettes. When an amateur attempts to make a duplicate of the cassette, the image goes out of sync on the recorder used for copying. So far, so good. But-along comes the TV set manufacturing industry with new sophisticated color receivers using digital vertical sync and no back-of-set vertical adjustments. Well, a legally recorded cassette, using antipiracy encoding, can throw one of these modern receivers out of sync, just as it does a bootlegging recorder. Upshot: Some prerecorded cassette manufacturers have eliminated the encoding on cassettes sold to people who own certain recent models of TV sets, and the Electronic Industries Association has formed a committee to look into the entire situation.

Videodisc network: In the first major use of videodiscs for industrial communications, MCA DiscoVision and General Motors have tentatively agreed-subject to later equipment tests-to establish a network of videodisc players covering at least $7,000 \mathrm{GM}$ dealers. The videodisc players will be of the optical type-compatible with the ones now being sold by Magnavox in Atlanta and Seattle-but of an industrial version using a microprocessor for automatic indexing. Discs will demonstrate new cars to consumers and will be used in sales training for dealer salesmen. The players will be built in Japan by Universal Pioneer Co., the joint venture of MCA and Pioneer. Similar dealer networks, using Betamax VCRs, have been established by Chrysler and Fiat.

Tl's computer: At press time, everybody seemed to be waiting for Texas Instruments' entry in the personal computer field. And TI seemed to be waiting for the FCC to change its rules. TI has postponed introduction several times, and judging by its correspondence with the FCC, this is because as the Commission's rules now stand it couldn't get official approval. The TI computer presumably uses an external RF adapter or modulator to interface with existing TV sets. The Commission, under its present rules, won't approve such modulators, but instead requires that systems to be used with television sets be tested with all equipment in place. TI contends that this rule makes it difficult or impossible to offer expandable, multifunction consumer computers designed to be attached to existing TV sets.

The Commission had already rejected TI's modulator as not meeting its rules. At press time, TI had petitioned the FCC to establish a new category of approved device so such modulators could be permitted. And in an attempt for early approval, it asked the Commission to waive the existing rule and approve its RF attachment while it's considering the rules change.

DAVID LACHENBRUCH
 CONTRIBUTING EDITOR

Remember the $\$ 400$ Sinclair Micro TV? Here's the
story on the greatest TV value ever.

That Sinclair TV shown above is small-the smallest TV in the world.
And when it was first introduced last year, it made history. So did its high price $-\$ 395$.
Our company never sold the unit for two reasons: 1) It was being promoted as a pocket TV and we felt it would not fit in most pockets and 2) We felt $\$ 395$ was too high a price for the unit regardiess of its quality, size and features.

But we were wrong. Thousands of them were sold and it was selected as one of the most exciting new products of the year.

WE BOUGHT ONE

A few months ago we purchased a Sinclair TV and discovered another feature we didn't like. The unit included a 220 -volt converter for European operation. This meant that every American who bought the set had to pay extra for the converter even though very few Americans would be taking their TV to Europe.
So we came up with an idea. We went to England and purchased thousands of sets directly from the factory without the converter. We were also able to save money by eliminating the normal mark ups by importers, wholesalers and distributors.

We can now offer you the unit for only $\$ 249.95$ and if you want the 220 -volt converter. your cost is only \$19.95 extra.

LESS THAN WHOLESALE

JS\&A would be offering the exact same Sinclair TV at a price less than Sinclar's actual wholesale price in the United States and we would still make enough profit to pay for the cost of this advertisement.

There is one feature we liked very much about the set. Its rechargeable batteries are built into the unit. Larger portable TV's offer $\$ 60$ optional rechargeable battery packs that must be purchased separately. Ours is built in and included in the price.
The Sinclair TV comes complete with an American AC adapter and charger, ear phones, carrying case, rechargeable batteries and a built-in antenna for both VHF and UHF. It
also comes with a cigarette lighter power converter, so you can watch all your favorite TV channels from your boat, plane, motor home or car without even using your batteries.

PHOTOGRAPHIC QUALITY

We were well aware of Sinclair's advanced electronics and quality features. But what we found particularly exciting was its picture tube. Even though the 2" (measured diagonally) tube is small, the TV's resolution resembles that of a clear sharp photograph. You can even read small telephone numbers when they're flashed on the screen.

The Sinclair unit is offered in this advertisement with the same accessories available in the \$395 system with the exception of the 220-volt power converter.

The Sinclair is also convenient. You can take it on trips and entertain your children while you fly or drive. You can keep it on your desk at work and monitor the latest news or stock market reports. And you can view the soap operas as you work around the house. We even took ours to the ball game to watch those instant replays.

BIG POCKETS

But don't expect to carry it in your pocket-it won't fit unless you have big pockets. The unit measures $15 / 8^{\prime \prime} \times 4^{\prime \prime} \times 61 / 4^{\prime \prime}$ and weighs just 28 ounces which includes the built-in batteries.

The TV is serviced in the United States by Sinclair's service-by-mail facility. If service is ever required during its one-year limited warranty, just slip it in its handy mailer and send it to them for repair. Your solid-state unit should operate for years without a problem, but if it ever needs repair, it's good to know that service is an important part of our program.

For $\$ 249.95$, the Sinclair Micro TV is worth your test. Order one from JS\&A. Take it with you on a trip, bring it to your office, or carry it with you around the house. See how clear and sharp the picture is and how closely it resembles a black and white photograph. Then decide if you want to keep it. If not, no problem. Simply return your TV within 30 days for a prompt and courteous refund. We just want you to prove to yourself, the miracle of spaceage electronics before you decide.

AMERICA'S LARGEST

Sinclair Radionics is one of England's largest electronics manufacturers and JS\&A is America's largest single source of space-age products - further assurance that your modest investment is well protected even though the unit is offered at such a bargain price.

To order your Sinclair Micro TV, simply send your check for $\$ 249.95$ plus $\$ 3.00$ postage and handling (illinois residents, please add 5% sales tax) to the address shown below or credit card buyers may call our toll-free number below. But please act quickly.

The Sinclair TV is an outstanding product that was priced too high. If you felt like we did and you waited, your timing is perfect. Order a Sinclair Micro TV at no obligation, today.

Dept. RA One JS\&A Plaza Northbrook, III. 60062 (312) 564-7000 Call TOLL-FREE 800 323-6400 In Illinois Call (312) 564-7000
(C) JS\&A Group. Inc., 1979

Ooo000ps!

TROUBLESHOOTING COMMUNICATION RECEIVERS

On page 67 of the article "FM Detector and Filter Tests" (February 1979 issue) and page 68 of the article "Troubleshooting Communications Receivers" (April 1979 issue), a piece of test equipment was mistakenly shown as a Cushman model 107C-it is a Lampkin model 107C.
Also, the photograph on page 66 of the April article should be captioned: Hallicrafters model FPM-300 SSB/CW transceiver.

BURGLAR ALARM

Mr. Dan Talbot has called our attention to several errors in his article "Build This Burglar Alarm" in the April issue. In Fig. 2 the value of R32 should be 10 ohms, not 10K.
The statement in parentheses on the 12th line on page 41 should read "(lasting
about 60 to 90 seconds, depending on the value of C3)."

In Fig. 8 the markings for the base and emitter of transistor Q10 are transposed.

In the third sentence of the second paragraph on page 43, substitute the word "to" for the typographical error that reads " 19. "

600 MHz FREQUENCY COUNTER

In the article " $600-\mathrm{MHz}$ Portable Frequency Counter' (January 1979 issue) R23 was mistakenly shown on the schematic as 1 megohm. The correct value is 1000 ohms as indicated in the parts list. Transistors Q3 and Q4 were shown as NPN types. They should be shown as PNP's. This is the only type that will work in the circuit. The correct value of C11 is $39 \mu \mathrm{~F}$. This capacitor does not appear on the parts placement diagram in Fig. 6. It is on the reverse side of the board along with S1-S3, IC6 and a few other parts. It connects, on the board as seen in Fig. 6, to two pads in the upper left corner. The "hot" side goes to the pad
connecting C10 and R12. The other lead goes to ground at the pad between the leads of D8 and R8.

We thank reader W. A. Sullivan of Dearborn, MI, for calling the errors to our attention.

STRING SYNTHESIZER SCHEMATIC ERROR

The schematic on page 72 of the March 1979 issue (Volume 50, No. 3) of the String Synthesizer has a line omitted. There should be a connection from the wiper of R116 to the $+V_{L}$ line. The circuit board reflects this connection, but the circuit will not work if wired from the schematic.
ERIC BEAN
South Bend, IN

COUNTDOWN ADD-ON FOR MODEL ROCKET

For the "reader in New York" (Hobby Corner, June, 1978) who wanted a digitalcontinued on page /2

The Perfect Portable ...for YOU!

This modestly priced 12 MHz 'scope has a bright $10 \mathrm{~cm} \times$ 8 cm rectangular CRT - in an attractive enclosure only 51/4" high; about 15 lbs .

Human engineered for fast, precise applications. Has the "Great" versatility you need. 2 mV sensitivity, differential mode, switched $X-Y$, and much more!

Consider Gould Quality with the Exclusive 2-yr. warranty.
Call today for complete data and location of your nearest distributor.

For free brochure call:
TOLL FREE NUMBER
(800) 325-6400

In Missouri (800) 342-6600
Gould Inc., Instruments Division
3631 Perkins Ave., Cleveland, OH 44114

Color. VP-590 add-on Color Board allows program control of 8 brilliant colors for graphics, color games Plus 4 selectable background colors. Includes sockets for 2 auxiliary keypads (VP-580). \$69.

Sound. VP-595 Simple Sound Board provides 256 tone frequencies. Great for supplementing graphics with sound effects or music. Set tone and duration with easy instructions. \$24:

Music. VP-550 Super Sound Board turns your VIP intc a music synthesizer. 2 sound channels. Program control of frequency. time and amplitude envelope (voice) independently if each channel. Program directly from sheet music! Sync provision for controlling multiple VIPs, multitrack recording or other synthesizers. \$49:

Memory. VP-570 RAM Expansion Board adds 4 K bytes of memory. Jumper locates RAM in an'/ 4 K block of up to 32 K of memory. On-board memory protect switch. $\$ 95$:

EPROM Programmer. VP-565 EPROM Programmer 3oard comes complete with software to program, copy and verity 5 -volt 2716 EPROMs-comparable to units costing much more than the VP-565 and VIP put together! Programming voltages generated on board. ZIF PROM socket included. \$99:

EPROM Interface. VP-560 EPROM Interface Board locates two 5-volt 2716 EPROMs (4 K bytes total) anywhere in 32K of memory. VIP RAM can be re-allocated. \$34.*

ASCII Keyboard.* Fully encoded, 128-character ASCII encoded alpha-numeric keyboard. 58 light touch keys including 2 user defined keys! Selectable upper and lower case. Handsomely styled. Under \$50:

Tiny BASIC:**VP-700 Expanded Tiny BASIC Board puts this high-level language on your VIP. BASIC stored in 4 K of ROM. Ready for immediate use-no loading necessary. This expanded BASIC includes the standard Tiny BASIC commands plus 12 additional-including color and sound control! Requires external ASCII encoded alpha-numeric keyboard. \$39:

Auxiliary Keypads. Program your VIP for 2-player interaction games! 16-key keypad VP-580 with cable (\$15*) connects to sockets provided on VP-590 Color Board or VP 585 Keyboard Interface Card (\$10).

COSMAC VIP lets you add computer power a board at a time.

With these new easy-tobuy options, the versatile RCA COSMAC VIP (CDP18S711) means even more excitement. More challenges in graphics, games and control functions. For everyone, from youngster to serious hobbyist. And the basic VIP computer system starts at just \$249* assembled and ready to operate.

Simple but powerful—not just a toy.

Built around an RCA COSMAC microprocessor, the VIP includes 2K of RAM. ROM monitor. Audio tone with a built-in speaker. Plus 8-bit input and 8-bit output port to interface relays, sensors or other peripherals. It's
 easy to program and operate. Powerful CHIP-8 interpretive language gets you into programming the first evening. Complete documentation provided.

Take the first step now.
Check your local computer store or electronics parts house. Or contact RCA VIP Marketing, New Holland Avenue, Lancaster, PA 17604. Phone (717) 291-5848.
'Suggested retail price. CDP18S711 does not include video monitor or cassette recorder. Available 1st Quarter. 1979

The fun way into computers.

New from NR! 25"color TV that tunes by computer, programs an entire evening's entertainment.

Just part of NRI's training in servicing TV, stereo systems, video tape and disc players, car and portable radios.

Only NRI home training prepares you so thoroughly for the next great leap forward in TV' and audio ...digital systems. Already, top-of-the-line TV"s feature digital tuning, computer programming is appearing, and new digital audio recording equipment is about to go on the market.

NRI is the only home study school to give you the actual "hands-on" training you need to handle servicing problenis on tomorrow's electronic equipment. Because only NRI includes this designed-for-learning, 25 " diagonal color TV with electronic tuning, built-in digital clock, and computer programmer as part of your training. With this advanced feature, you can pre-program an entire evening's entertainment... even key lock it in to control children's viewing.

As you assemble it, you learn how digital tuning systems work, how to adjust and service them. You work with the same advanced features used in the new programmable
TV's and video tape record-
ers. It's exclusive NRI training that keeps you up with the leading edge of technolog:

Exclusive

 Designed-forlearning Concept The color TT you build as part of NRI's Master Course looks, operates, and performs like the very finest commercial sets. But behind that pretty picture is a unique designed-forlearning chassis...
the only such unit in the world. Rather than retrofit lessons to a hobby kit or an already-built commercial set, NRI instructor/engineers have designed this television so each step of construction is a learning experience. As you build it, you perform meaningful experiments. You see what makes each circuit work, what it does, how it interacts with other circuits. You even introduce defects, troubleshoot and correct them as you would in actual practice. And you end up with a magnificent, big-picture TV with advanced features. One you can sell or use in your home.

Also Build Stereo, Test Instruments

That's just a start. You demonstrate basic principles and circuits on the unique NRI Discovery Lab, ${ }^{(8)}$ then apply them as you assemble a fine AM/FM stereo receiver, complete with speakers. You also get practical experience as you build your own test instruments, including a $5^{\prime \prime}$ triggered sweep oscilloscope, CMOS digital frequency counter, color bar generator, and transistorized volt-ohm meter. Use them for learning, use them for earning as a full- or part-time TV, audio, and video systems technician.

Complete, Effective Training Includes Video Systems

Using NRI's exclusive methods, you learn far more than TV servicing. You'll be prepared to work with stereo systems, car radios, record and tape players, transistor radios, short-wave receivers, PA systems, musical instrument amplifiers, electronic TV games, even video tape recorders and tape or disc
video players. Your training covers just about every kind of electronic entertainment equipment available now or in the near future.

And because NRI has unmatched experience gained in over 60 years and a million students worth of training, your course is designed for ease of learning and practical utility. You need no previous experience of any kind. Starting with the basics, exclusive "bite-size" lessons cover subjects thoroughly, clearly, and concisely. "Hands-on" experiments reinforce theory for better comprehension and retention. And your personal NRI instructor is always available for consultation, ready with explanations, answers, and advice.

Send for Free Detailed Catalog...

 No Salesman Will Call Get all the facts on this exciting course and its potential for you by mailing the postage-paid card today. Our free 100-page catalog includes color photos of all kits and equipment, complete lesson plans, convenient time payment plans, and information on other electronics courses. You'll also find out about NRI's new Computer Technology
microcomputer. Or Complete Communications with 2-meter transceiver that gets you ready for opportunities in broadcasting, 2 -way radio, microwave, and other growing fields. If card has been removed, write to:

NRI Schools
McGraw-Hill Continuing Education Center
3939 Wisconsin Ave.
Washington, D.C. 20016

LETTERS

continued from page 6
readout, automatic countdown add-on for his model rocket launcher, this should do the job (see diagram).

After the on switch is closed, the display Is set to 10 by the pushbutton SET switch. Then, by closing the count switch, the display counts down to 0 , closes the relay contacts to launch the rocket (make sure the safety switch is closed) and then proceeds to count up. If the 100 K potentiometer is set so that the timer generates $1-\mathrm{Hz}$ pulses, the timer can be used to determine
how long the rocket is in flight. When the SET button is pressed again, it changes the counting direction. The LED lights when the counter is set to count down. The circuit assumes the launcher operates off a 12 volt battery and that the relay needs to be closed for only a second.
To make the counter set to some number other than 10, ground the appropriate inputs of the 74192 . Pins $15,1,10$ and 9 are, respectively, the numbers 1,2,4 and 8 . Ground the inputs that are not necessary for the desired number. For example, to have the counter preset to 5 , ground the numbers 2 and 8 (pins 1 and 9). When pin 11 is grounded, the counter resets.

When both counters have counted down to 0 , the second 7400 activates the relay and sends a clock pulse to the flip-flop. When the flip-flop changes state, it acts through the first 7400 to change the counting direction. The first 7400 also acts as a one-shot multivibrator when the SET button is pressed to again change direction.

The relay is activated only when counting down to 0 . If the counter goes up to 99 , it will not close the relay contacts on the next count. Be sure the relay contacts can handle the necessary current. In order that the display will show $10,9,8$, etc., rather than $10,09,08$, etc., it is necessary to ground pin 5 of the tens 7447. Any suitable com-mon-anode display can be used (some require that pins 9 and 14 as well as pin 3 be connected to positive).
JAMES JOHN HUGHES III
Highlands, TX

RADAR DETECTOR

Scientists were first introduced to the d $=$ Doppler effect over 15 decades ago. About a century ago, Maxwell introduced c $=\lambda \gamma^{*}$ and showed sunlight was made up of electric and magnetic waves which, only by differing in frequency, were the same as radio waves, X-rays, etc. About 8 decades ago, Marconi invented radio from $c=\lambda \gamma$.

Today, many readers of Radio-Electronics can for the very first time measure $\lambda=$ wavelength at the source (s) and $\gamma=$ frequency at the observer (o). ALWAYS in the past we have measured λ_{γ} ONLY at s or ONLY at 0 , but never at both simultaneously. We thus have the erroneous idea continued on page 16

Automotive "brain" astounds the experts, puts both computer and cruise control at your fingertips!

For the first time ever, you can put a true computer in your car, truck or RV which gives you the most effective and functional cruise control ever designed, plus complete trip computing, fuel management system, and a remarkably accurate quartz crystal time system. It is called CompuCruise ${ }_{\text {TM }}$

So simple a child can operate, the new CompuCruise combines latest computer technology with state-of the-at reliability in a package which will not likely be available on new cars for years to come.

CRUISE CONTROL WITH A MEMORY, UNIQUE

SEEK.AND.HOLD CAPABILITY.
CompuCruise remarkable cruise control performs in a totally different manner than any other unit because it is more than a simple speed maintaining device. With CompuCruise, you establish your desired cruising speed even before you reach the highway and activate the system any time by simply pressing a button. CompuCruise then seeks and maintains the desired speed until you override or shut off the system. You resume cruise control again at any time by pressing the same button. CompuCruise, unlike most vacuum-mechanical systems, is fully electronic, more accurate and more reliable than any other unit you can buy.

AIRLINE PILOTS COMPARE COMPUCRUISE ${ }_{\text {TM }}$ TO SOPHISTICATED AVIONICS EQUIPMENT.
Similar to types of computers used on modern airliners, the CompuCruise slim panel-mounted control module contains a digital readout and back-lighted control buttons, both readily visible in the dark. By quickly learned systems of inquiry, the driver can elicit virtually any informa.

tion relating to time, distance, fuel and performance of his vehicle.
There are a number of digital-type instruments on the market which can be purchased for your car, purporting to provide functional data on performance, but all are basically calculators, operating on fixed information provided by the driver.
CompuCruise is a true computer, operating from automatic data sensors which constantly react to changing conditions, automatically recomputing vital data every second. Each function operates independently, with data displayed and updated constantly until you change your request of the computer.
Fuel management takes on new significance because CompuCruise tells you the most effective driving speeds, the type and brand of gasoline most suitable for your vehicle. It will tell you the effects of different types of tires and different tire pressures, road conditions, and engine tune-up condition. You can get instantaneous computations on current gas mileage, fuel required to arrival, and actual fuel remaining.

Battery condition can be checked regularly, saving you from the potential embarassment of being stranded without warning.

TYPICAL DATA:

- Cruise Control
- Time, E.T., Lap Timer, Alarm
- Time, Distance, Fuel to Arrival
- Time, Distance, Fuel to Empty
- Time, Distance and Fuel on Trip
- Current or Average MPG, GPH
- Fuel Used, Distance since Fillup
- Current and Average Vehicle Speed
- Inside, Dulside or Coolant Temperature
- Battery Voltage
- English or Metric Display

Technically competent personnel available to answer your questions.

CIRCLE 21 ON FREE INFORMATION CARD
COMPUCRUISE TM $^{\text {DIGITAL QUARTZ CRYSTAL }}$ TIME SYSTEM IS INCREDIBLE.
CompuCruise digital time system performs four independent time functions encompassing (a) stop watch and lap timer functions, (b) hours, minutes and seconds, (c) alarm or warning function, and (d) trip time indicator. The time system operates full time, whether your vehicle is operating or not. It will even wake you up after a short roadside nap.

YOUR COMPUCRUISE IS SMART! IF YOU PUSH THE WRONG BUTTON IT WILL LET YOU KNOW BY DISPLAYING "ERROR".

COMPUCRUISE TM WORKS ON FOREIGN OR
AMERICAN CARS; IS PRICED FOR THE AVERAGE MAN'S BUDGET
You do-it-yourselfers can readily install the unit, but complete and detailed instructions are also included for the automotive service facility. CompuCruise units are fully operable on most foreign or American cars, trucks or RV's. At $\$ 199.95$ the unit is only a few dollars more than the cost of cruise control alone on most vehicles, yet offers a whole new world of computerized management functions.

This is an exclusive system, fully warranted for 90 days from installation, delivered to you complete with all required hardware. You need only basic tools for the total job.
When you receive your unit, inspect it completely. If you are not 100% satisfied, return the complete unit before installation and your money will be refunded without question.

TO ORDER YOUR UNIT, complete the coupon below, enclosing $\$ 199.95$ (ADD $\$ 5.50$ if frontwheel drive). This covers all shipping, insurance and handling costs. Your unit will be shipped within three weeks.

NOTE: Mountable on foreign or domestic vehicles including standard trans. EXCEPT FOR DIESEL OR FUEL INJECTED ENGINES.

[^1]
militurial

Who was April Fooled?

During the initial planning of our April 1979 issue, one of our editors suggested that we publish an April Fools' article. It has been several years since our last April Fools" article and all agreed that it was time for another one. So we contacted two of our most imaginative authors and told them that we wanted a construction article on an absolutely absurd project. The only requirements were that it must work and could be built inexpensively. When the manuscript arrived, we discovered not one but three absurd projects that worked. We liked them and published the article " 3 Unique Projects."

Our story was well received. We are still getting numerous letters congratulating us and the authors for a job well done. Several readers even made some clever and interesting suggestions. One suggested that we should have included an on/off switch in the Solar Powered Night Light circuit. After all, why waste energy when you are not using the light. Another admonished us for not mentioning the One Station Intercom's greatest advantage-its portability. And another pointed out that the intercom was perfect for a hermit.

However, something happened that we didn't plan on. During the final stages of assembling the April issue, we were alerted to the existence of a revolutionary audio amplifying technique. We were assured that the new Magnetic Amplifier indeed existed, that it worked, and was being marketed by the Carver Corporation. After checking, we immediately alloted room for it and subsequently published "New Breakthrough in Audio Amplifiers." You would not believe the number of letters and phone calls we have been receiving stating just how great a job we did on that April Fools' article on the Magnetic Amplifier. "You had me believing the thing really worked, right up until the end. What a great April Fools" gag."

What disturbed me more than anything else was just how readily so many of our readers dismissed the possibility that the amplifier actually worked. Could it be that we're walking the road of technological progress wearing blinders? The Carver Magnetic Amplifier does exist, but what would have happened if it were still in the theory stage, merely a concept? How many of you would have believed that the amplifier could work?

Progress is the act of advancing from one technological level to the next. We consider today's problems, apply today's technology and advance to the next technological level by following the most logical path. But what would happen if we applied today's technology to yesterday's problems? Would the path be different? Would it lead us to an entirely different conclusion? Perhaps we should take a giant step backwards and rethink the solutions using today's technology. Most important and above all, we should never dismiss a radical new solution as an April Fools’ gag just because it happened to have been published in an April issue.

And in looking back at older April Fools’ articles we discovered it takes as much as seven years to turn an "absurd idea" into a working product.

Radio-Electronics.

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief and publisher

Larry Steckler, KTX-3644, CET, editor
Arthur Kleiman, KTZ-3288, managing editor
Robert F. Scott, CET, W2PWG, KXK-8533, technical editor
Sonia Greenbaum, copy editor
Jack Darr, CET service editor
Leonard Feldman contributing high-fidelity editor

Karl Savon, semiconductor editor
David Lachenbruch, contributing editor
Earl "Doc" Savage, K4SDS, hobby editor
Ruby Yee, production manager
Robert A. W. Lowndes, production associate

Marie J. Stolfi, production assistant
Harriet I. Matysko, circulation director
Arline R. Bailey, advertising coordinator
Cover design by Louis G. Rubsamen
Cover photo by Walter Herstatt
Radio Electronics is a member of the Institute of High Fidelity and is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.

Gernsback Publications, Inc.
200 Park Ave. S., New York, NY 10003
(212) 777-6400

President: M. Harvey Gernsback
Vice President: Larry Steckier
Treasurer: Carol A. Gernsback
Secretary: Bertina Baer

ADVERTISING SALES

Paul McGinnis
Director of Marketing

EAST

Stanley Levitan
Radio-Electronics
200 Park Ave. South
New York, NY 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla

Ralph Bergen
The Ralph Bergen Co.
540 Frontage Road-Suite 361 -A
Northfield, Illinois 60093
(3 12) 446-1444

PACIFIC COAST
Mountain States
Jay Eisenberg
J.E. Publishers Representative Co. 8732 Sunset Bivd., 4th Floor,
Los Angeles, CA 90069
(213) 659-3810

Sales Mart Building
1485 Bayshore Bivd., Box 140
San Francisco, CA 94124
(415) 467-0125

WHEN THE GOING GETS TOUGH, BECKMAN'S NEW DIGITAL MULTIMETERS KEEP GOING.

Featuring new continuity function.

If you've ever been troubled by a faulty multimeteror had to use one that wasn't quite up to the tougher jobsyour troubles are over. Now there's the Bechman line of digital multimeters. A new generation of $31 / 2$-digit models that combine superior reliability with highly versatile features.

Features like a unique continuity test function. With Beckman's new Insta-Ohms ${ }^{\text {TM }}$ quick continuity indicator, you no longer need an analog VOM for fast, convenient continuity checks.

There's also (1)-amp current ranges, in-circuit resistance measurement capability in all six-ohm ranges. a dedicated diode test function. and up to two years normal operation from a common 9 V battery.

The Model TECH 310 with all these features.

7 functions. 29 ranges. and 0.25% Vdc accuracy is only $\$ 130$.
The Model TECH 300 with 0.5% Vdc accuracy, but without the continuity function or the $10-\mathrm{amp}$ current ranges, is just S 100 .

Whichever model you choose, you get a multimeter that won't let you down. There's exceptional overload and 6 kV transient protection, plus ruggedness to take a $6-$ foot fall and to come up working.

So get the Beckman digital multimeter that performs and keeps on performing. No matter how tough the going gets. For information on the complete line and accessories. write or call your local distributor or the Advanced-Electro Products Division, Beckman Instruments, Inc., 2500 Harbor Boulevard. Fullerton. CA 926.34. (714) 871-4848, ext. 3651.

LETTERS

continued from page 12
that not even light can travel "at a speed greater than $186,000 \mathrm{mps}$, or c .

We know if $c=\lambda \gamma$, then $\lambda \gamma-c=0$. Also, $d=\lambda \gamma-c$, so when s and o close $\lambda \gamma>c$, or a superluminal speed, we get up Doppler.

Modify the antenna of a $24-\mathrm{GHz}$ mobile radar (used in a cruising police car) so the antenna radiates fore and aft. Have a police car close at 50 mph on two detectors dead ahead and a mile apart alongside a straight flat road. Both detectors receive 24 GHz plus 1800 Hz or 36 Hz per mph. As soon as the car passes the first detector, it receives $24 \mathrm{GHz}-1800 \mathrm{~Hz}$.

We now have three entirely different frequencies from one. How, unless electromagnetic radiation comes to the detector ahead at $186,000 \mathrm{mps}+50 \mathrm{mph}$, and the one behind at $186,000 \mathrm{mps}-50 \mathrm{mph}$? Is value c a universal constant or does it also pick up the radial speed of the source or the antenna on the police car?
${ }^{*}(\lambda=w ; \gamma=f ; d=w f-c ;>=$ is greater than)
JOHN W. ECKLIN
Alexandria, VA

PINK-NOISE TESTING

I have a few questions regarding the article, "'Audio Testing With Pink Noise," in the September issue of Radio-Electronics. To begin with, the noise heard between sta-

Reach for SPRAGUE components instead of running for them.

Choose from 24 packaged assortments to get a balanced inventory of capacitors, resistors, or solderless terminals.

You don't have to buy a huge quantity of electronic components to build and maintain a practical-sized inventory. Nor do you have to put a big strain on your budget. Each Sprague Assortment contains a practical selection of ratings and types most frequently used in your service work or hobby needs.

Larger capacitor and resistor assortments are supplied in 15-drawer blue metal cabinets, fitted with a retractable carrying strap. Smaller assortments come in stackable 9 -drawer blue plastic cabinets. Clear plastic drawers have adjustable dividers. Pre-labeled drawer fronts identify contents.

Solderless terminal assortments are supplied in compartmented hingedlid clear plastic storage cases.

YOU PAY FOR
COMPOMENTS OMLY...
CABIMETSARE YOURS AT MOEXTRA COST.

SPRAGUE PRODUCTS COMPAMY (Distritutors' Division of Sorague Electric Ce.) 81 Mershall Streen, North Adems, Mass. 01247

YES ... send me a FREE copy of your new M-636 Brochure including complete descriptions and prices on all 24 assortments.

Name

Company (if applicabie)

tions on the FM band is white noise, if I remember correctly. Rather than use the white-noise source described in the article, would it be possible to substitute FM interstation noise?

The way I was going to go about setting up my equalizer was to insert the pinknoise filter in the tape monitor 1 position of my receiver and set the receiver up to put out white noise. I don't know the characteristics of FM noise, so would like to know if I will get valid results when I use this method. I am curious to know whether or not the results would be the same.
BRIAN J. DONOVAN
FPO San Francisco, CA
Since you probably have already tried it, I assume you found that FM noise is not a very good white-noise source. Although its exact characteristics will depend on the quality of the tuner (will your tuner pass 20 Hz and/or 20 kHz ?) and the frequency tuned to (in relation to all RF sources nearby), you probably also found the noise to be somewhat inconsistent, i.e., varying with time. In any case, spectrum analysis shows most FM noise to be quite unsuitable as a flat signal. However, since it is a broadband noise signal composed of many frequencies, it can be (and has) been used by audio buffs for comparing equipment BY EAR. For the kind of measurements the PNG was designed (i.e., using a level meter), a much more accurate source is needed. The MM5837 digital noise source is ideal for this application.
JEFF MAZUR

COMPUTER MUSIC PUBLICATION

Readers of Radio-Electronics may be interested to learn of a quarterly magazine, Computer Music Journal, published by People's Computer Co., Menlo Park, CA. The Journal features current news, products, interviews, and conference reports, and offers beginning and advanced articles on such diverse topics as composition algorithms and languages; computer-aided analysis of musical sound; digital signal processing; as well as many more.

A 1-year subscription costs $\$ 20$ in the U.S.; $\$ 25$ to Canada and Mexico; and $\$ 28$ to other countries. For more information, write Computer Music Journal, Box E, Menlo Park, CA 94025.
G. ROADS

Editor
Menlo Park, CA

GRAPHIC EQUALIZER KITS

We are currently working on the packing of our fifth run of Graphic Equalizer kits and expect to ship them by January 31. Persons who ordered prior to Christmas have been informed of the delay; those who ordered after have not.
We will (finally!) have complete kits in stock and expect to maintain stock for the indefinite future.
We no longer sell individual printedcircuit boards.
JOE GORIN
Synergistic Sound Systems
Loveland, CO
R-E

electronics of the future.

 systems and more...from in home study.
and every piece of equipment included.
Send for it today, and see for yourself what's really happening in electronics training technology at NTS. Find out how much has changed, and what new directions the field is taking. You'll probably want to be a part of it.
It's free. Just mail the card or coupon. Today.

NO OBLIGATION. NO SALESMAN WILL CALL. A PPROVED FOR VETERAN TRAINING.

TECHNICAL-TRADE TRAINING SINCE 1905 Resident and Home-Study Schools 4000 South Figueroa St.. Los Angeles, Calif. 90037

Train with NTS for the MicroComputers, digital the first name

The world of electronics is daily becoming more challenging. Technology is growing more specialized, and the importance of digital systems increases every day. Test instruments, home entertainment units and industrial control systems are all going digital. And now, NTS training programs include a wider choice of solid-state and digital equipment than ever before offered in any home study course: Advanced NTS/Heath digital color TV ($25^{\prime \prime}$ diagonal with optional programming capability), NTS/Heath microcomputer, digital test equipment, digital stereo receiver (70 watts per channel), NTS compu-trainer, plus much more state-of-the-art equipment to make your training exciting and relevant.
The equipment you receive with NTS training programs is selected to provide you with a solid
background in electronic systems. Kits and lessons are designed to work together to demonstrate electronic principles and applications. The kit-building not only shows you how electronic hardware functions, but how various circuit designs accomplish different purposes. Your lessons guide you through any number of experiments associated with many projects. This is the Project-Method, and it works. Step-by-step, you learn how and why digital electronics has become a part of our world, and the even bigger role it is sure to play in the future.
Whether you are looking for training in Consumer, Commercial, or Industrial electronics, NTS offers fourteen courses, some basic, many advanced, in several areas of electronics. An all-new full-color NTS catalog shows you what each course covers,

Introducing the Troubleshooter.

Six functions and 24 ranges for $\$ 129^{*}$ make the jump from Analog to Digital more affordable than ever.

We call our new hand-held 8022A DMM the Troubleshooter. It combines the basic performance features you want with all the advantages that give digital DMM's the edge over analog 0.25% basic dc accuracy, a rugged, reliable design, a razor sharp $3^{1 / 2}$-digit LCD readout, small size and light weight.

Measure for measure you won't find a better value. Six functionshigh and low ohms, ac and dc voltage and current (24 ranges in all) make the Troubleshooter a 13 ounce (0.37 kg) package of excellent measurement value. This kind of value wasn't possible until our custom CMOS LSI single chip design made hand-held DMM's an affordable reality and Fluke the industry leader.

Here's something new that won't shock you. Fluke's exclusive probe design features finger guards on the probe and shrouded connections to discourage accidental contact with circuit voltages.

You won't find a more rugged or reliable hand-held DMM. There's a lot more to building a high-quality hand-held DMM than you might suspect. The case has to survive bumps, scrapes, and scuffs. The LCD readout must withstand the extremes of humid-
ity, temperature, and vibration. Function switches need to perform reliably through thousands of cycles. And electrical circuitry must survive both physical shock and electrical overloads.
We built the 8022A to withstand all these tortures-with a rugged impact resistant plastic case, a custom LCD display, reliable push-buttons instead of rotary switches and over 20% of the components devoted to overload protection.

Take the next step. Contact the Fluke office, representative or authorized distributor in your area. In the U.S., CALL TOLL FREE (800) 426-0361. (For resi-
dents in Alaska, Hawaii, and Washington, the number is (206) 774-2481.)

In Europe, contact: Fluke (Nederland) B.V., P.O. Box 5053, Tilburg, The Netherlands. Telephone (013) 673973 . Telex 52237. Ask about the new 8022A. And while you're at it, check into the 8020A Analyst, the improved version of our $\$ 169^{*}$ DMM. It boasts Fluke's exclusive conductance capability for high resistance measurements and 0.1% measurement accuracy. Both instruments are available at your distributor from stock. For immediate response, fill out the attached coupon.

John Fluke Mfg. Co., Inc.
P. Box 43210
Mountlake Terrace, WA 98043
\square Please send 8022A Troubleshooter data.
\square Please send the 8020A Analyst specs.
\square Please have a salesman call.
Name
Title
Company
Address Mail Stop City State Telephone (Zip

RE 6/79

cquipmant raparte

Sabtronics Model 2010A Digital Multimeter

CIRCLE 101 ON FREE INFORMATION CARD
THIS LOW-COST INSTRUMENT (SABTRONICS, 13426 Floyd Circle, Dallas, TX 75343) turns out to have some interesting surprises packed into its pretty blue plastic case; a $31 / 2$-digit LED display, a single-chip LSI, a lasartrimmed resistor network, and an extremely stable bandgap reference element for better long-term accuracy.

The pushbutton control of functions and ranges provides a total of 31 measurement ranges and 6 functions. The functions include

AC / DC voltage, AC/DC current, resistance, plus a high-current measurement range that goes up to 10 amperes.
A) added feature of this instrument is an optional touch-and-hold capability. It permits the instrument user to hold a reading on the display. It is provided only when the optional THP-20 probe is used. What this means to the user is that you can make a measurement, take the probe away, and look at the reading on the meter. Like all fully equipped digital multimeters, there is a low-power ohms range for testing semiconductor junctions without damaging the device being tested.

The DC voltage function provides five ranges; $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}$ and 1.000 V . Accuracy, depending on the range in use, varies from 0.1% to 0.2%. The input impedance is 10 megohms. The AC voltage function also provides five ranges; $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}$, 200 V and $1,000 \mathrm{~V}$. The accuracy varies from 0.5% on the $200-\mathrm{mV}, 2-\mathrm{V}$ and $20-\mathrm{V}$ ranges, to 0.7% on the $200-\mathrm{V}$ range and 1% on the $1.000-$ V range. The input impedance is 10 megohms
and parallel with 100 picofarads.
There are six DC current ranges; $200 \mu \mathrm{~A}, 2$ $\mathrm{mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{~A}$ and 10 A . The $200-\mu \mathrm{A}$ and $2-\mathrm{mA}$ ranges are accurate to 0.1%. The $20-\mathrm{mA}$ and $200-\mathrm{mA}$ ranges are accurate to 0.3%, and both the $2-\mathrm{amp}$ and $10-\mathrm{amp}$ ranges are accurate to 1%. As for AC current, there are six $A C$ current ranges. The first five, $200 \mu \mathrm{~A}, 2 \mathrm{~mA}, 20 \mathrm{~mA}$, and 200 mA , are accurate to 0.5%. The two higher ranges, 2 amps and 10 amps , are accurate to 1.5%.

There are six resistance ranges; 200 ohms low, 2-K high, $20-\mathrm{K}$ low, 200-K high, 2 megohms low, and 20 megohms high. The first four ranges are accurate to 0.1%. The two high ranges are accurate to 0.2%.

The unit operates on either alkaline " C " cells, rechargeable batteries or a direct AC connection. When nickel-cadmium cells are used, a recharger AC supply is used with them. Batteries are not shipped with the unit unless you order the optional nickel-cadmium cells. A set of alkaline cells will provide about 25 hours of continuous on time. Fully charged

Come to Tucson, Arizona and to the 1979
 National Electronics Service
 Convention of NESDA \& ISCET AUGUST 13-18, 1979
 and to the all-day
 ELECTRONICS ROUNDUP
 the ONLY national trade show devoted to the electronics service industry
 PLUS
 - Technical seminars: "Coping With the New Technology"
 - Business Management School:"Meeting the Challenge of Change"
 - Forums: "Manufacturing and Service Where Do We Go From Here?"
 - Industry problem-solving at the expanded "National Service Conference"

 and • Golf Tourney • Association Business • Elections - Technician, dealer and association awards - Speakers from Gov't. and Industry • Hospitality/Social affairs

- Trips to Mexico and Old Tucson * 11 scheduled meals

ALL EVENTS INCLUDED IN ONE LOW REGISTRATION FEE

$\$ 90$ per initial registration; $\$ 60$ per each add'I family adult REGISTER PRIOR TO JUNE 30 AND SAVE 10\%
Special children's registration (ior children's functions only) $\$ 25$ MAIL TO
1979 National Electronics Service Convention 1715 Expo Lane, Indianapolis, IN 46224 (Ph. 317-271-8160)

Name	Amt. \$
Address	
City	State __ Z

nickel cadmium cells will provide about 10 hours of continuous operation. With the optional battery eliminator, you now have an ACpowered bench instrument. Sabtronics recommends that if you use the AC supply, alkaline cells should be removed from the meter.

We used the 2010A on our bench for a period of two weeks and found that it is really a first-rate instrument. All measurements were easily handled and were accurate as verified by other instruments in our lab.

As a general-purpose, $31 / 2$-digit digital multimeter, the model 2010A qualifies as a firstrate unit. The only recommendation we would make after using it is that the THP-20 probe is really a must. It adds to the price, of course, but once you have used it, you won't want to do without it. The 2010 A costs $\$ 99.50$.
Accessories for the model 2010 A include the touch and hold probe, THP-20-\$18.00; a high, voltage probe, HVP-30-\$29.95; battery eliminator charger for a $110-120$ volt operation, $A C-115-\$ 7.50$; battery eliminator charger for a 220 -volt operation, $A C-230-\$ 9.50$; and a set of nickel-cadmium rechargeable batteries rated at 1200 milliampere hours $\$ 17.00$. If you are looking to buy a new digital multimeter, the model 20IOA should certainly be one of those considered before making that purchase.

Ohio Scientific
 Superboard /I

the manufacturer describes this unit as "a major breakthrough in small computer technology that dramatically reduces the cost of personal computers." That quote is accurate. How else, for $\$ 279$, could anyone own a

CIRCLE 102 ON FREE INFORMATION CARD

computer with all the features found in Superboard II?

Superboard $/ /$ is a single-board computer without a case. It is built around a 6502 microprocessor and comes with 8 K Microsoft BASIC in ROM. It also includes 4 K of static RAM that can be easily expanded to 8 K . There is a 53 -key keyboard with upper- and lower-case letters and user programmability.

There is a Kansas City standard audio tape cassette interface, a full machine code monitor and I/O utilities in ROM. The direct access video display has 1 K of dedicated memory, upper case, lower case, graphics and gaming characters. Screen resolution is up to $256 \times$ 256 points. A TV with overscan, used as a
monitor, can display about 24 rows of 24 characters. A TV that does not have overscan when used as a monitor will display 30×30 characters.

The video output of the Superboard // can be directly connected to the video circuitry of a TV monitor, or through an "illegal" RF modulator, to the antenna input of any TV set.

Extras available optionally for Superboard // include an expansion board with 24 K static RAM, a dual minifloppy interface, a port adapter for printer and modem and an OSI (Ohio Scientific, Incorporated) 48 -line expansion interface. There is also an assembler/ editor and extended machine code monitor.

For those not-so-hardy experimenters who would like to get a Superboard I/ in a case with a power supply, Ohio Scientific also has available the Challenger I-P. It consists of the Superboard // plus a power supply and a case. It costs $\$ 349.00$.

To get our Superboard // into operation all we had to do was hook up a +5 -volt-DC, 3amp power supply and connect the video output to our handy video monitor. With the power on "READY" immediately appeared on the monitor screen. We put Superboard /I through its paces using preprogrammed material provided by OSI, and entertained everyone with some fascinating video games, balanced our checkbook and set up a household budget.

The cassette interface worked well and loading a program was no problem at all. The advanced BASIC provided all the scientific math functions we needed, and we discovered that you can even use Superboard II for complex problem-solving without doing any programming; simply operating it like a complex calculator.

Now more than ever.

New RCA SK Solid State Replacement Guide

- Largest RCA SK Replacement Guide to date.
- Over 950 SK types replace over 153,000 domestic and foreign types.
- Everything you need under one cover for quick, easy, profitable servicing.
- The industry's only Guide to include SK numbers and the other leading numbering system.
The new 1979 RCA $\overrightarrow{S K}$ Solid State Replacement Guide has easy-to-find, easy-to-read information on RCA's full line of replacement transistors, rectifiers, thyristors, integrated circuits and high voltage triplers. Thousands of hours of engineering went into the preparation of this guide which covers consumer, commercial and industrial applications.

The built-in BASIC is just as good as you would expect from Microsoft. For the user who does not want to do any programming, there is a lot of software already available that takes care of the applications for you.

When you compare Superboard // to other systems, you soon find that a less expensive way of getting started in the personal computer area with equivalent features is hard to come by. The graphics available permit some really dramatic effects.

The fact that the system can be easily expanded to include a floppy means that while you are starting out with a low-cost minimal system, you don't have to throw it away when you are ready to go on to more complex computer functions. Everything is there that you need; you simply build onto what you already have. You don't have to worry about trading off existing equipment to get the system that will really do what you want it to do. At \$279, Superboard // (Ohio Scientific, 1333 S. Chillicote Dr., Aurora, OH 44202) is a tough act to follow.

R-E

Continental Specialties Corp. Model Max 50 Frequency Counter

CONTINENTAL SPECIALTIES CORPORATION $(70$ Fulton Terrace, P.O. Box 1942, New Haven, CT 06509) is well-known for its bread-boards and other goodies.

The company also manufacturers a line of test equipment. One of the latest is the model Max $5050-\mathrm{MHz}$. frequency counter. This instrument has a $50-\mathrm{Hz}$ to $50-\mathrm{MH}$ Iz frequency range. It's amazingly compact - no larger than

1

CIRCLE 103 ON FREE INFORMATION CARD

a hand calculator.

There is only one switch, and it handles power on-off. Everything else is automatic. Powered by a 9 -volt battery for portable use, the counter can also be used with a plug-in AC adapter on the bench. There are three jacks on top of the case. A short whip antenna screws into the middle one. This makes it very handy for checking CB transmitters and other kinds of two-way radios. The manual states it will show stable readings within four feet of a CB antenna. In actual tests, we found that it locked in at distances up to eight feet on a standard CB radio.

The right-hand jack is for use with a
shielded test cable that comes with the unit. This can be used for audio testing, since it has a 1.0 -megohm input impedance. This input is protected by diodes. It can also be used for frequency checking at test points in PLL"s, etc. The manufacturer claims a $30-\mathrm{mV}$ sensitivity. and again it seems to exceed specifications. Because of its wide frequency range, the model Max 50 can also be used for checking such ulirasonic units as depth sounders, fish finders and different kinds of digital circuitry. The input can handle 100 volts peak from 100 Hz . to 1 kHz , and 50 volis peak to 50 MHz .

The readout is a full six digits and uses magnified LED's. These LED's are pulsed to allow a great apparent brightness. The display is multiplexed to keep battery drain at a minimum. When the unit is turned on, the two decimal points light up-the right one is for kHz and the left one is for MHz . Lead-zero blanking is provided, which means that all zeros to the left of the first non-zero digit are blanked. This feature makes the display much casier to read.

The manual contains a full description of the circuitry. Most of this circuitry is contained on a 40 -pin LSI IC. The timebase is a crystalcontrolled oscillator with a $3.58-\mathrm{MHz}$ crystal. An accuracy of $\pm 3 \mathrm{PPM}$ is claimed. We measured it against a much larger and more expensive frequency counter and it checked out fine. Λ trimmer adjustment is provided if the unit ever needs calibration. The stability is excellent, and is given as better than 0.2 PPM ${ }^{\circ} \mathrm{C}$.

The model Max 50 comes in a leatherette carrying case, with a space provided for the test cable and whip antennan, plus a belt loop. comtinued on page 32

RCA SKs make it easy for you to offer reliable service at a profit.

New Numbering System

All SKs now feature, where applicable, the product numbers of the other leading system used by ECG,* REN and TM. For example, whenever an SK device replaces an ECG device, the ECG number is now part of the SK number. (SK 3444, a direct replacement for ECG 123A, is now listed as SK 3444/123A.) The new 1979 RCA SK Solid State Replacement Guide is the only guide you need. You can buy and install RCA SK devices with confidence that the replacement is right and the quality is right too.

Best of all, RCA Top of the Line quality means fewer costly call-backs and more profitable customer servicing for you. See your RCA SK disiributor for all your solid state replacement needs and ask for your copy of the new authoritative RCA SK Replacement Guide, SPG 202X; or send your request with check or money order for $\$ 1.50$ to RCA Distributor and Special Products, P.O. Box 597, Woodbury, N.J. 08096.

How can Sabtronics possibly
sell a ${ }^{\$ 179}$
lab standard digital multimeter
for under $\$ 70$?

LED display with automatic decimal placement and large, 9 mm numerals.
Of course, that's what you'd expect from a qualiry DMM. Bur we've even added more features for extra convenience, flexibility and reduction of human error.

- Unique X10 Multiplier Switch - gives you convenient push-butron selection to the next higher decade range. Hi-Lo Power Ohms capability gives you three high-ohms ranges that supply enough voltage to turn on a silicon junction for diode and transistor resting. For in-circuit resistance measurement without turning on a semiconductor junction, you use the three low-ohms ranges.
- Wide Frenquency Response - 40 Hz to 40 kHz handwidth lers you measure audio through ultra-sonic AC signals.
- Touch and Hold Capability - with optional probe, retains readings for as long as you wish. You can make measurements in hard-

to-reach places without taking your eyes off the probe tip or stopping to record data.
- Plus More - Auto Polarity. Auto Zero, Overrange indication and fully overload protected on all ranges.
And, although designed for benchtop use, the sleek, compacr 2010 A is powered by 4 " C " cells (not included), bringing wide-range lab performance to the field when you need it.

You save either way.

Your 2010A DMM kit comes complete with easy-to-follow assembly instructions, all parts (including high-impact case), and test leads. You can complete assembly in a single evening. However, for a slight additional fee, Sabtronics will ship your 2010A factory-assembled and calibrated: at $\$ 99.50$ it's still an incomparable value!
Whether you're a professional or hobbyist, if quality and accuracy are important - and padded prices aren't - you should inspect the 2010A DMM for yourself. If you're not completely satisfied, return it in its original condition within 10 days for a prompt and courteous refund of purchase price. Call us with your MasterCharge or Visa order today, or simply fill out the convenient order form.
Making Performance Affordade sabtronics

13426 Floyd Circle M/S 35. Dallas. Texas 75243 Telephone 214/783-0994

Briel Specifications

DC Volts: $100 \mu \mathrm{~V}$ to 1000 V in 5 ranges AC Volts: $100 \mu \mathrm{~V}$ to 1000 V in 5 ranges DC Current: $0.1 \mu \mathrm{~A}$ to 10 A in 6 ranges AC Current: $0.1 \mu \mathrm{~A}$ to 10 A in 6 ranges Resletence: 0.1Ω to $20 \mathrm{M} \Omega$ in 6 ranges Dlode Test Current: $0.1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 1 \mathrm{~mA}$ ACV Frequency Response: 40 Hz to 40 kHz Input Impedance: $10 \mathrm{M} \Omega$ on ACV and OCV

Overlosed Protection: 1200 VDC or RMS on all voltage ranges except 250 VDC or RMS on 200 mV and 2 V AC ranges. Fuse protected on ohms and $m A$ ranges.
Power Requirement: 4.5 to 6.5 VDC (4 " C " cells) optional NiCd batteries or AC adapter/charger Display: $0.36^{\prime \prime}(9.2 \mathrm{~mm})$ Digits reading to ± 1999 Slze: $8^{\prime \prime} \mathrm{W} \times 6.5^{\prime \prime} \mathrm{D} \times 3^{\prime \prime} \mathrm{H}(203 \times 165 \times 76 \mathrm{~mm})$ Wetght: 1.5 lbs (0.68 kg .) excl. battery

To: Sabtronics International, Inc. 13426 Floyd Circle M/S 35, Dallas, TX 75243
Please send me
___ Model 2010A Digital Multimeter kit(s) @ $\$ 69.95$ pius $\$ 4.00 \dagger$ shipping and handing each
___ Model 2010A Digital Multimeter Assembled © $\$ 99.50$ plus $\$ 4.00 \dagger$ shipping and nandling each
—— AC-115 AC adapter/charger(s) (1) $\$ 7.50$ each
—— \# NB-120 NiCd Battery set(s) © $\$ 17.00 /$ set
—— THP-20 Touch and Hold Probers) \$ $\$ 18.00$ each For delivery in Texas. add 5\% Sales Tax
I enclose \square check a money order for
TOTAL

or, please charge 10 my \square Visa \square MasterCharge: Code *
Account No
Expration Date:

If you're interested in learming how to fix aire conditioners, service cars or install heating systems - talk to some other school. Wint if you're serions abont electronics, come to CIE-The Electronics Specialists.

My father always told me that there were certain advantages to putting all your eggs in one basket. "John," he said, "learn to do one important thing better than anvone else, and yon'll always be in demand."

I believe he was right. Today is the age of specialization. And I think that's a very good thing. Consider doetors. You woukdn't expect your family doctor to perform open heart surgery or your dentist to set a broken bone, either. Would you?

For these things, you'd want a specialist. And you'd trust him. Isecause you'd know if he weren't any good, he'd be out of business.

Why trust your education and earcer future to anything less than a specialist?

You shouldn't. And you certainly don't have to.

FACT: CII: is the largest independent home study school in the world that specializes exclusively in electronies.

We have to be good at it because we put all our eggs in one basket: electronies. If we hadn't done a good job, we'd have closed our doors long ago.

Specialists aren't for

 everyone.I'll tell it to you straight. If you think electronics would make a nice hobby, cheek with other schools.

But if you think you have the cool-and want the training it takes - to make sure that a sound blackout during a prime time TV show will be corrected in seconds - then answer this ad. You'll probably find CIE has a course that's just right for you!

At CIE, we combine

theonvy and meratice You

I'lus there's a professional quality oscilloscope you build and use to "sec" and "read" the characteristic waveform patterns of clectronic equipment.

You work with experienced specialists.

When you send us a completed lesson, you can be sure it will he reviewed and graded by a trained electronies instructor, backed by a team of technical spectalists. If you need specialized help, you get it fast . in writing from the faculty specialists best qualified to handle your question.

People who have known us a long time, think of us as the "FCC License School."

We don't mind. We have a fine record of preparing people to take . and pass . . . the government administered FCC License exams. In fact, in continuting surveys nearly 4 out of 5 of our graduates who take
the exams get their Licenses. You may already know that an FCC License is needed for some careers in electronics-and it can be a valuable credential anytime.

Find out more: Mail this card for your FREE CATALOG today:

If the card is gone, cut ont and mail the coupon.

I'll send you a copy of CIE's FREEE school catalog, along with a complete package of independent home study information.

For your convenience, I'll try to arrange for a CIE representative to contact you to answer any questions you may have.

Remember, if you are serious about learning electronics... or building upon your present skills, your beest bet is to go with the electronics specialists-CIE. Mail the card or coupon today or write CIE: (and mention the name and date of this magazine). 1776 East 17 th Strect, Cleveland, (Ohio 44114.

cs, Inc.
0.44114

1
tronics-CIE.
roubleshooting
RE-65

By return mail we will send you a FZEE CIE school catalog including authoritative information about the value of the FCC License and how to get one . . . plus a complete package of home-study information.

Print Name

EQUIPMENT REPORTS
 continued from page 25

The instrument itself will fit easily into a shirt pocket, which makes it very handy for working in all kinds of vehicles. With its fully automatic operation, you can check all the CB channels in a very short time. The price is very reasonable ($\$ 89.95$) for an instrument of this kind and quality.

R-E

Magnesonics Cassette Eraser and Rapid Rewinder

CIRCLE 104 ON FREE INFORMATION CARO
IF YOU OWN A CASSETTE RECORDER. YOU SPEND a lot of time either crasing or rewinding tapes. Every time you record, your machine first erases the tape before it records. However, unless you have an expensive recorder, this can result in a higher level of tape noise on the tape than when using new tape. Also, every time you rewind or "fast-forward" the tape, this uses up more time than is necessarv: and if vou
use batteries, this consumes precious battery power! There's a better way to go: Use Magnesonics Erase-Sure cassette bulk eraser and the Rapid-Rewinder. Both these devices are simple, straightforward and efficient, and each is designed for a specific purpose.

The Erase-Sure uses a patented principle that consists of erasing a prerecorded magnetic tape by passing it through a rotating magnetic field. And the tape erased on this unit has a residual noise level that is equal to or better than new tape.

The Erase-Sure is housed in a plastic box. measuring about 4 inches wide, $31 / 2$ inches deep and $2 \frac{1}{4}$ inches high. It weighs just under 1 pounds, including four A A penlight batteries that power a small motor when you press the switch on top. The motor shaft is held against a turntable by a flexed steel wire that presses against the motor shoulder gently but firmly. This design eliminates fancy clutches or gearboxes. Anchored to the platform are two very powerful magnets mounted so that they have opposite polarities. Each magnet is $1 / 1 /$ inches long, $1 / 8$ inch wide and $1 / n$ inch thick. As the platform is spun by the motor, a strong rotating magnetic field is created. The case acts as a guide track for the tape.

You simply turn on the Erase-Sure by pressing the red button on top and holding it down. You'll feel some vibration as the rotating magnets come up to speed. Slide the cassette you want erased slowly along the guide track on the top of the case and off the end; remove the cassette from the immediate vicinity of the Erase-Sure before releasing the red button. That's all there is to it! One pass will do it, but flipping the cassette over and doing it again won't hurt. To keep the tape
inside the cassette from loosening up (due to vibration) a molded plastic handle (neatly stored in the top of the case) is inserted into the cassette hubs to lock them into position as you slide the cassette along the guide track.

The erase action is swift and sure, and the penlight batteries should be able to completely erase several thousand tapes before they have to be replaced. Top-quality components and molding make this device al long-life item.

The Rapid-Winder is also a simple but very well-made device. Much thought has gone into making it uncomplicated and efficient. Two self-aligning white spindles allow you to casily place a cassette tape on top of the unit with no hub interference. Press the red button and the left-hand spindle turns clockwise at high speed. A small but powerful motor (powered by four $\mathbf{A} \mathbf{A}$ penlight batteries) drives the inside of this spindle rim with firm torque, but automatically slips when the tape reaches the end without tearing or stretching the tape. A flexed, straight steel wire that presses against the motor-case shoulder provides just the right amount of side pressure. The right-hand spindie does not freewheel, since this would allow tape spillage. To prevent such spillage, a slight drag is applied to the right-hand spindle by another flexed steel wire that presses against its side.

Every cassette should be run through a fastwinding procedure before it is first used or after long storage, in order to insure that the winding is uniform within the tape roll. This helps eliminate tape wow-and-flutter, and jamming.

The Erase-Sure abd Rapid-Rewinder are available in many audio and electronic retail outlets for $\$ 19.95$ each; or you can order them

by mail directly from Magnesonics Sales, P.O. Box 758, Ventura, CA 9300। for $\$ 19.95$, plus $\$ 1.55$ for handling and postage each in the U.S. (California residents add state and local taxes where applicable.)

VIZ DC Power Supplies

CIRCLE 105 ON FREE INFORMATION CARD

THE VIZ MFg. CO (335 E PRICI STREET. PHIIAdelphia. PA 19144) manufacturer of test instruments, has recently developed a group of three DC power supplies. These power supplies can be used for any kind of electrical or electronics testing, as well as for research and design. They're called D(' Power Supplysts. The model WP-705 goes up to 50 volts at a 2 A rating: the model WP-706 is $0-25$-volt supply at a 4.0 A rating; and the model WP-707 (shown) is a dual 0-25-volt supply at a 2.0 A rating each. Maximum current rating can be used at any voltage setting.

These power supplies are regulated to within an inch of their life. The load regulation is 0.075% maximum at full output voltage and current, and over an input-voltage range from $108-130 \mathrm{VAC}$. The ripple is only $10-\mathrm{mV}$ maximum. The overload protection used is a foldback current-limiting circuit, plus an automatic shutdown in case of severe overload. If
overload happens, there is a RESET pushbutton on the front panel

Each unit has two digital panel meters with 3 -digit readouts. These meters can be fully isolated from the internal circuitry and used to read external DC voltages; or they can be switched to read either voltage or current, as in the dual-supply model WP-707. In the two single-voltage power supplies, one digital meter reads the current and the other reads the voltage. Grounds are fully floating on all supplies.

In the model WP-707, the two 25-volt supplies are completely isolated. If necessary. they can be connected in series for output voltages up to 50 at the 2 A rating. In such cases, one meter is available for possible use to read current while the other reads voltage across the output terminals.

The maximum-current setup is very simple: Just switch the pancl meter to current; short the output leads; then hold down the RESET pushbutton and turn up the current control until you see the maximum current you want. The manufacturer recommends not holding the RESET pushbution down for more than 10 minutes, but since the maximum-current adjustment takes only about 10 or 15 seconds, this shouldn't worry you.
These units would be handy for poweing TV modules, circuits in TV sets and so on. Set up for the correct voltage, and then you can use the meter to read DC voltages at any point in the module circuitry. The maximum voltage is 99.9. With the dual-supply model WP-707, you could monitor the load current with one meter, while taking voltage readings in-circuit with the other meter.
The output-voltage adjustment is a dual-
concentric control. The outer knob sets the output voltage over any range from $0-5$ up in 5 -volt steps. The inner knob is a fine control for the precise setting of output voltage. I he current control is calibrated from Low to HI , and you read the current meter to determine the current that is needed or being used by the load.

This is quite a versatile group of instruments, and should be handy for any kind of electronics work. And they're not "little bitty" instruments either. I had quite a time picking my test unit up off the bench! They weigh a hefty 15 lbs . All the necessary test leads and cables come with each instrument. One end of the cable has a dual banana plug and the other end has an insulated alligator clip. The cables look large enough and tough enough to stand hard use. The power supplies cost from $\$ 240$ $\$ 299$.

R-E

"You said this computer would pay for itself-so collect from it!'

Now! Earn free gifts with your purchases of RCA Receiving tubes and SK Devices.

You will receive one RCA Redi-Chec Awards ' 79 certificate each time you purchase 10 RCA Receiving Tubes or $\$ 40.00$ worth of RCA SK Devices (at optional distributor resale cost) from your participating RCA Distributor.
Save your certificates. They are redeemable in required quantities for your choice of more than 700 exciting awards in the RCA Redi-Chec Awards ' 79 Prize Book. See your participating RCA Distributor for a copy of the Redi-Chec Awards '79 Prize book and

select the award you wish 10 earn. When you have the required number of certificates for the award you have selected, fill out the awards order form and mail it with your Redi-Chec Awards '79 certificates to: RCA Redi-Chec Awards '79 Headquarters
P.O. Box 154. Dayton. Ohio 45401

Buy quality RCA receiving tubes and SK Devices and start earning these great awards.

RCAIDistributor and Special Products Deptford, N.J. 08096

Yesterday you could admire all-band digital tuning in a short wave receiver** Today you can afford it.

$R F-4900$

Tune in the Panasonic Command Series* top-of-the-line RF-4900. Everything you want in short wave at a surprisingly affordable price. Like fluorescent all-band readout with a five-digt frequency display. It's so accurate (within $1 \mathbf{k H z}$, to be exact), you can tune in a station even before it's broadcasting. And with the RF-4900's eight short wave bands, you can choose any broadcast between 1.6 and 31 MHz . That's all short wave bands. That's Panasonic.

And what you see on the outside is just a small pant of what Panasonic gives you inside. There's a double superheterodyne system for sharp reception stability and selectivily as well as image rejection. An inputstuned RF amplifier with a-s-ganged variable tuning capacitor for excellent sensitivity and frequency linearity Laddertype ceramic filters to reduce frequency interference. And even an antenna trimmer that changes the front-end capacitance for reception of weak broadcast signals.

To halp you control al that sophisticated circultry Panasonic's R=-4900 gives you all these sophisticated controls. Like an all-geai-drive
tuning control to prevent "backlash." Separate wide/narrow bandwidth selectors for crisp reception even in crowded conditions. Adjustable calibration for easy tuning to exact frequencies. A BFO pitch control. RF-gain control for improved reception in strong signal areas. An ANL switch. Even separate bass and treble controls.

And if all that short wave isn't enough. There's more. Like SSB (single sideband) amateur radio. All 40 CB channels. Ship to shore. Even Morse communications. ACIDC operation. And with Panasonic's $4^{\prime \prime}$ full-range speaker, the big sound of AM and FM will really sound big. There's also the Panasonic RF-2900. It has most of the features of the RF-4900, but it costs a lot less.
The Command Serles from Panasonic. If you had short wave receivers as good. You wouldn't still be reading. You'd be listening.
Shor wave recoption will vary with antenna, weathor conditions. operator's geographic location and other factors An outside antenna may be required formaximum shon wave reception.

PETER GISE

THE RISING COSTS OF ENERGY TODAY necessitate the continual search for new applications of electronics as just one means to reduce the costs of heating and cooling for the average homeowner. Studies. for example, have shown that it is possible to save up to 16% on heating and up to 20% on cooling costs through the use of set-back thermostats.
The microprocessor-based Intelligent Thermostat described in this article does everything a conventional thermostat can do and more. The Intelligent Thermostat remembers four different temperature settings for each day of the week. In the winter, for example, homeowners can set the thermostat to automatically lower the temperature after going to bed, raise the house temperature before waking, automatically lower it again after the members of the family have gone to work or school, and once again, bring it back 10 a comfortable level before the family returns home. And each day can be set to a different schedule. This is especially important on weekends, when home and office schedules typically vary. In the summer, the same principle reduces air conditioning costs as well. When schedules change, the manual temperature override feature allows a specific temperature level to be set for a specific period or indefinitely. Normal operation will resume automatically or under user control.

The Intelligent Thermostat is based upon the F8 microprocessor IC manufactured by Fairchild Semiconductor, 465 Ellis St., Mountain View. CA 94042. The contiguration chosen for the project includes the 3850 central processing unit (CPU) which is an 8-bit processor featuring 64 bytes of on-board random-access memory ($\mathrm{R} A \mathrm{M}$), more than 70 instructions in its instruction set and two latched, bi-directional 8 -bit $1 / \mathrm{O}$ ports. For programs smaller in size than 1024 bytes, it is possible to construct a two- 1 C system using the 3850 CPU and the 3851 program storage unit (PSU). This project requires nearly 1500 bytes of code. so the system was expanded using the 3853 static memory interface (SMI) and three 512-byte 93448 bipolar PROM's. A socket and the appropriate address decoding for a fourth PROM are provided on the board to allow programs up to 2048 bytes to be accessed by the CPU if needed for future expansion. A 3861 (PSU less ROM) also provides the two additional latched. bi-directional 8-bit I/ O ports required for the keyboard and A/D converter.
The circuit requires 5 -volt at $600-\mathrm{mA}$ and 12 -volt at $30-\mathrm{mA}$ be connected along with a ground to the appropriate points of the printed circuit board. There is also provision for a momentary closed resel pushbution to be connected. but since the 3851) CPU features power-on-reset, the
switch is normally not required. There are three output DIP relays with two connections each for a fan, cooling and heating. The 16 -button keyboard allows selection of the various functions (both programming and command) while also allowing data entry. A number of the command functions are listed in Table 1.

\left.| TABLE I | |
| :--- | :---: |
| Function | |
| Command | |
| Number | |$\right\}$

Theory of operation

The schematic for the F8-based Intelligent Thermostat is shown in Figs. 1, 2 and 3. The basic three-IC system includes
a 3850 central processing unit, a 3861 program storage unit (less ROM) and a 3853 static memory interface. Port 0 of the 3850 CPU (IC6, Fig. 3) is connected to the two 9368 seven-segment decoder driver latches. In order to minimize the parts count, one 9368 actually drives the segments of the digit pairs; IC4 drives the segments of digits DISI and DIS3 while

IC3 drives the segments of digits DIS2 and DIS4. The inputs to the 9368's are $B C D$, thus requiring decoding within the stored program. Current is limited internally in each 9368 , eliminating the need for current limiting resistors.

Normally, the brightness would suffer by attempting to drive the segments of two digits simultaneously. However, by
enabling adjacent digits under program control (i.e., 1 and 2 or 3 and 4) only one digit is really on at any one time. Bits $0-3$ of Port 0 are bits $0-3$ of the BCD word used to encode the segments of digits 2 and 4 while bits $4-7$ represent bits $0-3$ of the BCD word used to encode the segments of digits I and 3. The segments are enabled by writing high levels or ones at

FIG. 1-INTERFACE CIRCUITRY contains the displays and thermostat.

FIG. 2-THREE ROM's contain program. Fourth ROM is for expansion.

FIG. 3-CPU and memory interface circuitry.

Port 0. Each digit pair is enabled by applying a high level or a logic one level to pin 12 of the 75492 digit driver IC1 for digits 1 and 2 and to pin 10 for digits 3 and 4. These pins are connected to bits 3 and 2 , respectively, of Port 1 , which serves as the control port. This port also provides two control signals to the 2240 (IC5) which is discussed below, and four outputs, i.e., bits 4-7, which are used to control external devices (although the AM/PM indicator LED 1 is driven by one of these lines).

The heart of the temperature detection circuitry is the unique connection of IC5, the 2240 programmable timer/counter. This integrated circuit is normally used to generate programmable time delays of from a few microseconds up to five days. Electrically, the circuit consists of an eight-stage, open-collector binary counter preceded by a timebase oscillator whose frequency is controlled by an external R-C network. The counter can be reset to zero by applying a positive-going pulse to pin 10. This pin is controlled by bit 1 of Port 1 from the 3850 CPU. Once reset, the 8 output bits of the 2240 that are connected to the 8 bits of Port 4 drop to the low state until a trigger signal is sent to pin 11 via bit 0 of Port 1 . This signal starts the internal oscillator running. If the timebase output (pin 14) is connected to the trigger signal through a 10 K resistor, the count is stopped and held in the counter simply by bringing the trigger line low. A 5K thermistor and a $.01-\mu \mathrm{F}$ capacitor form the $\mathrm{R}-\mathrm{C}$ network that controls the frequency of the 2240's timebase.

By starting, stopping and resetting the counter under program control during each interrupt and then reading the 8 -bit word from the counter at Port 4 of the 3861 PSU, a count is obtained that is proportional to the ambient temperature. This count is then compared with a table stored in PROM to determine the corresponding temperature. The 2240, when used in this manner, becomes a very inexpensive A/D converter!

The remaining circuitry is quite straightforward, with the four rows and four columns of the keyboard connected in matrix fashion to Port 5 of the 3861 PSU. The four 93448 bipolar PROM's are decoded as program locations $0-1 \mathrm{FF}_{16,} 200_{16}-3 \mathrm{FF}_{16}, 400_{16}-5 \mathrm{FF}_{16}$ and $600_{16}-7 \mathrm{FF}_{16}$, although only the first three PROM locations are used for this project. You can purchase preprogrammed PROM's or you can program them yourself, following the program in Table 2.

The software stored in PROM consists of an interrupt-service routine, a display routine, a keyboard-read routine, and a series of temperature and control routines. The interrupt-service routine uses the programmable local timer within the 3850 CPU to generate an interrupt every 3.953 ms for a $2 \cdot \mathrm{mHz}$ clock. A loop counter within the software counts 253

TABLE 2-PROGRAM for the firat 93448 PROM

IC9-1

T0000	1A	73	B7	B6	7F	B1	70	BE	54	53	71	OB	71	5C	OA	1 F
T0010	25	40	94	F8	1 B	29	00	9F	00	00	00	00	00	00	00	00
T0020	1E	58	OA	57	62	6A	3C	6 D	4 C	25	FC	84	24	25	FB	94
T0030	26	A1	22	OF	B1	70	B4	2A	05	42	6B	20	45	5 C	A4	8D
T0040	92	07	20	67	DC	5 C	90	F7	A1	21	F0	22	OD	B1	90	07
T0050	A1	21	F0	22	OE	B1	6D	3C	94	3F	20	FD	5D	46	21	20
T0060	84	02	3A	20	67	DC	25	59	5 C	82	2E	70	5D	8 F	03	90
T0070	F3	20	67	DC	5 C	25	12	94	1 A	43	21	02	43	84	06	21
T0080	FD	53	90	15	22	02	53	69	4C	1F	25	08	94	02	71	5 C
T0090	90	07	25	12	82	03	71	5C	2B	1D	47	OB	48	18	1 C	62
tooan	6 C	4D	21	07	50	6E	84	1 E	25	06	84	43	30	84	29	43
тоово	22	01	53	30	84	1B	30	84	36	4C	21	01	84	31	1A	A1
TOOCO	22	OC	B1	90	6C	4D	21	OF	25	03	92	OD	43	22	01	53
TOODO	6 B	4D	52	70	50	90	2E	4D	43	21	02	1 A	84	06	A1	22
TOOEO	80	90	04	A1	21	7F	B1	1B	51	4D	52	4D	90	E7	61	43
T00F0	21	10	1A	84	06	A1	22	80	90	04	A1	21	7F	B1	18	40
T0100	52	4D	90	D1	1 A	A1	6D	62	22	OC	B1	43	21	01	84	10
T0110	33	4E	25	FB	84	1B	42	18	B0	A1	21	FB	B1	90	12	43
T0 120	1 F	53	4E	25	FB	84	OA	1A	40	18	B0	A1	21	F7	90	ED
T0130	2 B	18	20	F0	B5	A5	21	OF	84	2D	44	21	80	44	62	6A
T0140	94	08	22	80	54	7F	5 C	90	6 C	4C	21	FF	94	67	44	21
T0150	7 F	54	1A	2A	03	D1	20	10	50	B5	A5	21	OF	94	OD	72
T0160	8 E	40	13	94	F4	1B	20	10	55	90	4A	18	12	84	OF	12
T0170	84	OD	12	84	03	12	16	16	15	14	50	90	05	16	16	90
T0180	F9	45	18	$1 F$	CO	84	2 E	40	55	61	6E	46	12	84	15	12
T0190	84	75	12	84	31	12	84	34	12	84	28	12	84	31	12	84
t01a0	28	90	1A	40	25	OF	94	18	72	56	62	6C	4 C	15	22	03
T01B0	5 C	29	02	DE	46	21	20	94	04	29	04	21	29	03	25	29
T01C0	03	2 E	29	03	2E	29	03	31	29	03	E0	29	02	F2	40	25
T01D0	OE	84	4 A	90	E0	21	F0	22	04	90	29	21	F0	22	08	90
T01E0	23	22	10	90	$1 F$	22	02	21	F3	90	19	22	01	90	F9	21
T01F0	F9	90	11	21	F6	90	OD	21	EF	90	09	21	F0	22	03	90

interrupts, which yields a nominal timebase of 1 second. The routine then starts the 2240 using the trigger control line and updates both the time and the day if required. During the next interrupt, the 2240 is stopped, the temperature is updated, and the 2240 's counter is reset, using the reset control line.

The keyboard routine first reads the keys by writing logic one levels to the four rows of the matrix keyboard and then scanning the four columns to detect a key pressed. Once a key closure is detected, the routine debounces the key and decodes the key for the appropriate action. The functions available to the programmer are indicated in Table 1.

The temperature routines determine whether or not heating or cooling is required by a simple subtract and compare to zero algorithm while the control routines simply turn on and off the appropriate relays.

Construction

All components mount directly on the PC board so assembly is quite straightforward. Figures 4 and 5 are foil patterns for the double-sided PC board, and Fig. 6 shows the parts placement. If you wish to mount the board within an enclosure, the 16 -pad keyboard can be mounted on the outside of the enclosure with a short length of 8 -conductor ribbon cable, and an opening may be cut over the display for viewing the time, temperature and programming functions.
First, mount the three 40 -pin DIP
sockets and the three 24-pin DIP sockets, being careful to avoid any solder bridges due to the density of the traces for these IC's. Note that pin number one of each

IC location is indicated by the square pad of each pattern. Next, mount all of the capacitors, crystal, resistors and the LED. Be careful to note the polarity of the two dipped tantalum electrolytics (C4 and C5) in the lower left corner of the board. The square pad indicates the positive connection to the capacitor. Next, mount the 14- and 16-pin IC's and the four LED displays. If you wish to socket the displays, take a 24 -pin socket and remove two end pins and two center pins to accommodate the 10 -pin displays. Solder the thermistor in place between points K and L and add relays RYI-RY3 if you wish to have relay control.

The keyboard may be soldered directly to the board at this point and the plastic mounting posts melted slightly to hold it in place, or a short length of ribbon cable can be soldered to the board with a socket to allow mounting the board in an enclosure. If this is to be done, the thermistor should also be mounted on a cable to prevent erroneous measurements within the enclosure. Very carefully insert each of the three 40 -pin MOS devices in their sockets, taking the necessary precautions in protecting them against static discharges. Install the three bipolar PROM's, IC9-1, IC9-2 and IC9-3. The PROM's are numbered 1, 2 and 3 , and are installed from left to right, respectively. Location IC10 on the far right is not used.

Installation and operation

Connect the circuit board to +5 volts

TABLE 2 (continued)-PROGRAM for the second PROM

IC9-2																
T0200	03	21	E0	5C	90	66	40	25	09	92	10	61	6 F	4 E	15	51
T0210	4D	14	C1	5E	4 C	15	Co	5C	90	A6	25	OE	84	5 B	61	6E
T0220	25	OD	84	58	25	OC	84	3E	25	OB	94	94	4 C	52	32	70
T0230	84	3C	32	84	3 A	32	84	38	32	63	68	4 C	84	2 B	32	84
T0240	95	32	84	98	32	84	9B	32	84	9C	32	84	9 F	20	FA	32
T0250	1F	94	FD	32	4 C	84	99	32	84	9A	32	84	98	32	84	9 C
T0260	32	84	9 F	90	11	29	02	CB	21	3F	5C	90	79	$1 F$	$1 F$	15
T0270	62	6C	5C	90	71	29	03	16	29	02	E5	4 C	50	21	FF	84
T0280	F5	25	84	92	F1	62	6C	4C	21	F0	22	06	5 C	61	6E	74
T0290	56	4C	25	83	84	2 F	25	81	84	24	25	82	94	09	43	21
t02AO	1F	22	60	53	90	39	14	84	CD	25	07	92	C9	4 C	15	14
T0280	84	C4	25	04	92	CO	4C	5A	43	21	1F	90	E7	43	21	1F
T02C0	22	50	90	E0	43	21	1F	22	60	90	D9	4C	50	20	90	51
T02D0	28	04	D5	18	42	25	06	92	3E	5A	78	56	90	01	61	6E
T02E0	70	5D	5C	90	4 A	62	6C	4 C	14	5C	71	56	29	00	9F	29
T02F0	02	OB	28	05	20	18	25	OB	94	35	4 C	51	4A	25	05	84
T0300	OA	3A	4A	24	20	OB	41	5C	90	DC	63	68	4C	21	3 F	22
T0310	40	5C	41	5B	90	D0	7A	5A	20	20	56	62	6C	4 C	21	F0
T0320	22	05	5C	90	OA	7F	FA	94	03	90	BB	29	00	9 F	29	00
T0330	9 F	61	6E	28	05	20	18	43	21	EO	84	1 C	25	20	84	EF
T0340	25	40	84	49	40	25	OB	94	E6	4C	25	07	92	C9	25	00
T0350	84	C5	62	69	5C	90	8F	28	05	20	1B	25	OC	94	D0	4D
T0360	50	4C	51	43	21	10	52	28	04	ED	18	4A	52	14	1A	2A
T0370	03	D8	8 E	16	50	18	32	42	21	OF	C0	OB	41	5C	20	40
T0380	56	62	6C	4 C	21	F0	22	03	5C	29	02	DE	40	25	OA	94
T0390	10	43	21	10	43	84	06	21	EF	53	90	93	22	10	90	FA
t03a0	25	OB	94	8 B	43	21	10	43	84	05	22	02	90	03	21	FD
тозво	53	61	6E	4D	50	25	59	92	13	4D	25	00	84	OE	25	12
t03C0	92	OA	62	5E	40	5E	70	5C	29	02	E5	29	03	16	29	03
T03D0	2 E	14	B7	25	A8	36	09	DC	FE	24	28	2 C	30	34	38	3 C
T03E0	61	28	05	20	1 B	25	OB	94	E6	4 C	50	30	25	04	92	DC
T03F0	4A	21	OF	51	4A	14	24	18	OB	4 C	31	84	12	31	84	15

FIG. 4-FOIL PATTERN for the board's front surface. Keyboard plugs into 8 pads in top-right corner.

FIG. 5-THE REAR SURFACE of the board has this foil pattern. These patterns are shown alightly smaller than half-size.

TABLE 2 (concluded)-PROGRAM for the third 93448.																
1C9-3																
T0400	31	84	18	21	3F	51	40	15	13	13	C1	5 C	90	BB	21	FC
T0410	51	40	90	F7	21	F3	51	40	90	EF	21	CF	51	40	15	90
T0420	EA	63	68	4E	21	C0	84	05	4 B	50	90	5C	62	6F	4D	50
T0430	40	51	43	21	02	52	28	04	ED	1B	74	52	4C	50	1A	2A
T0440	03	D8	8E	16	0B	1B	4D	18	1 F	1C	92	12	32	94	F8	28
T0450	05	39	18	12	12	14	22	20	OB	4C	50	90	2B	32	84	20
T0460	32	84	0B	32	84	12	30	94	E7	77	50	90	E3	28	05	39
T0470	18	21	OC	12	12	90	EO	28	05	39	1 B	21	03	90	D8	28
T0480	05	39	18	21	30	90	CF	2 B	63	68	4C	21	1F	84	38	4C
T0490	21	04	84	06	20	10	50	90	30	4C	21	08	84	05	20	60
T04A0	90	F5	62	6B	4 C	51	28	04	D5	1F	63	68	84	OF	4C	21
T04B0	02	94	E2	4C	21	10	84	12	20	40	90	DB	4 C	21	01	84
T04C0	F3	42	25	10	82	EE	90	D7	18	70	50	1A	A1	21	0F	C0
T04D0	B1	1B	29	00	9F	08	40	1F	52	41	18	D2	52	92	04	70
T04E0	90	5E	41	1F	52	40	18	D2	52	20	FF	90	53	08	42	21
T04F0	FF	94	05	20	78	D1	51	41	25	00	84	22	25	24	92	1E
T0500	70	84	OF	24	06	52	20	FE	D1	51	20	67	D1	51	42	94
T0510	F3	51	40	14	C1	51	40	25	59	92	03	90	23	29	03	16
T0520	08	40	25	09	82	OB	25	OA	84	OD	25	OE	84	06	90	10
T0530	29	02	OB	29	02	E5	29	03	91	08	40	24	18	0B	4C	1A
T0540	09	1C	FF	FA	F8	F4	F0	EF	E9	E6	E4	E3	EO	E0	E0	E0
T0550	E0	E0	DF	DA	D9	D7	D5	D1	D0	CF	CD	C9	C8	C7	C5	C4
T0560	C3	C1	CO	BE	BA	B9	B6	B5	B3	B1	B0	AD	AA	A8	00	00
T0570	00	00	OA	07	1C	02	8C	OD	06	1E	06	09	OA	08	OE	OF
T0580	E8	D0	CO	D2	B0	E3	D2	FO	EO	F3	D1	E5	F1	C0	CA	E6
T0590	E0	C8	E2	C4	F1	D0	D1	D0	E8	E0	C3	F3	D2	D7	E4	FD
T05A0	EA	7A	FO	7A	7A	7A	5A	EA	8 A	CE	69	EB	2 A	7A	72	6A
T05B0	76	5A	FA	EF	4 E	6E	7A	FA	FA	EB	6A	3A	BA	5A	78	78
T05C0	84	AC	80	84	00	85	85	85	84	85	8C	8C	84	C5	80	85
T05D0	9 D	81	15	85	B1	81	89	80	85	85	85	83	89	86	85	D3
T05E0	OA	03	15	OE	OA	OE	OE	08	06	OE	OB	OE	2E	2 A	OB	2A
T05F0	07	06	8F	OC	OA	06	89	OC	8B	OB	OE	$1 E$	OF	8E	08	3B

at 600 mA and +12 volts at 30 mA along with ground to the labeled points in the lower left-hand corner of the printed circuit board. Figure 7 shows a simple power-supply circuit that may be used. Several manufacturers offer plug-in power supplies that will also power the board. A momentary closed RESET pushbutton may be connected at points A and B although. typically, the system will reset upon power-up.

Programming the thermostat

Upon power-up the display will show 0101 and will begin to increment-starting in the rightmost digit at the rate of one count per minute. The command keys are A (reset), B (temperature), C (time/ day), D(function), \#(AM), and *(start) as labeled on the printed circuit board.

To begin programming, press and hold the D (function) key until the first two digits are blanked and 00 is displayed in the second two digits. At this point, any numbered function can be entered from Table 1 by pressing the corresponding number key or keys. If you press a key out of sequence, the display will flash on and off several times and either reset automatically after a few seconds or you may press A (reset) and start over. All functions are initiated after the appropriate data has been entered by pressing the

FIG. 6-HOW PARTS ARE PLACED on the thermostal board.

FIG. 7-THE POWER SUPPLY SCHEMATIC. The power transformer has two 12-volt secondaries.
*(start) key.
Let's take a few examples to see how it works. In the following examples, $\mathrm{b}=$ blank and $\mathrm{X}=$ don't care.

1. Display Temperature ($72^{\circ} \mathrm{F}$ is assumed)
2. Set Time (12:01 AM is assumed)

Keystrokes	Display
D(function)	bb 00
1	bb 01
"(start)	bb 72
D(function)	bb 00
8	bb 08
1	bb 81
C(time/day)	0000
1	0001
2	0012
0	0120
1	1201
\#(am)	LED
"(start)	bb 72

(Note that the display returns to
temperature display function)
3. Display D (function) bb 00 $\begin{array}{lcc}\text { Time/Temper- } & 3 & \text { bb } 03 \\ \text { ature } & \text { (start) } & \text { bb } 72\end{array}$ (3 sec.) 12 OX
(Note that time may be 12:02 or later depending on how long it took you to get from step 2 to 3)

Now, let's sec how 10 program a typical day with four set-points. First, let's piek four temperatures we may wish to recall
and use later. We will call these temperature functions 91, 92, 93 and 94. Next, associate (make a list) a temperature with each function number. For example, we may want to have the following temperature set-points available to us later:

Function Temperature * Temperature

91	1	$55^{\circ} \mathrm{F}$
92	2	$65^{\circ} \mathrm{F}$
93	3	$75^{\circ} \mathrm{F}$
94	4	$85^{\circ} \mathrm{F}$

Now, using the keyboard we can store the four temperatures away in memory for later use as follows:

	Keystrokes	Display
1. Store	D(function)	bb 00
Temperature	9	bb 09
$\# 1$	1	bb 91
	B(tempera-	bb 00
	ture)	bb 05
	5	bb 55
	5	XX XX
	"(start)	

(Note that the display returns to the previously selected display mode)

Next, input the remaining three temperatures and store into functions 92,93 and 94 , respectively, as 65,75 and $85^{\circ} \mathrm{F}$. The next step is to decide which day of the week we want to call day number 1.

PARTS LIST

R1-10,000 ohms, $1 / 4$ watt, 5%
R2-180 ohms, $1 / 4$ watt, 5%
R3-1000 ohms, trimmer $1 / 2$ potentiometer
C1-0.01 $\mu \mathrm{F}$, Mylar
C2, C3- 20 pF , silvered mica
C4, C5- $15 \mu \mathrm{~F}, 25$ volts, dipped tantalum
$\mathrm{C} 6-\mathrm{C} 17-0.01 \mu \mathrm{~F}$, ceramic disc
IC 1-75492 (Fairchild, TI, Motorola)
IC2-7400
IC3, IC4-9368 BCD to 7 -segment LED decoder/driver, constant-current with
latch (Fairchild)
IC5-XR-2240 (Exar)
IC6-3850 CPU (Fairchild)
IC7-3861 PIO (Fairchild)
IC8-3853 SMI (Fairchild)
IC9-1, IC9-2, IC9-3-93558
preprogrammed PROM (Fairchild)
IC10-Not used, see text
LED 1 - $20-\mathrm{mA}$ red LED
DIS 1-DIS 4-FND560 common-cathode 7-segment LED display (Fairchild)
XTAL1-2 MHz, series-resonant crystal, F-700 holder
RY1-RY3—reed relay, Clare 1A005 or equal
TH 1- 5000 ohms, thermistor, Fenwal UUA35J1
KB1-16-pad keyboard, Digitran KL0075 or equal
Miscellaneous:
3-40-pin DIP sockets
3-24-pin DIP sockets
1-printed circuit board
Note: The following parts may be
ordered from Intelligent Controls, PO
Box 772, Santa Clara, CA 95052: IC9-1, IC9-2, IC9-3 preprogrammed PROM's. \$17.00 each.
Thermistor TH1 \$4.50; PC board, drilled and etched $\$ 30.00$
California residents add state and local taxes as applicable.

PARTS LIST FOR POWER SUPPLY

T1-Transformer, 115 VAC primary, two secondary windings, each 12 VAC center-tapped (Signal Transformer type 24-1 or 24-1A or equal)
D1-D4-1N4001
D5-Zener diode, 12 volts, 5 watts
R1-47 ohms, $1 / 2$ watt
C1 $-5000 \mu \mathrm{~F}, 16$ volts, electrolytic
$\mathrm{C} 2-1000 \mu \mathrm{~F}, 16$ volts, electrolytic
IC1-7805 voltage regulator
To simplify matters, let's call today's day, number 1. This is programmed using function 83; that is,

The next step is to program the sequence of time-temperature combinations for day number 1 . This is done by using the functions $11,12,13$ and 14 , representing day 1 set-point 1 , day 1 setpoint 2 , day 1 set-point 3 and day 1 setcontinued on page 94

What's New In CAR STEREO

Abstract

Within a relatively short period, audio accessories for the car have increased from a few tape players and FM radios to a myriad of devices rivalling those available on the home hi-fi market. Here's what's new.

FRED PETRAS

ANYONE SURVEYING THE WORLD OF CAR stereo in depth must ultimately arrive at the conclusion that it is becoming more and more like the world of home stereo. On several levels: power output, sound quality, technological sophistication, operating features, convenience and flexibility, car stereo is running head-to-head with home stereo.

However, a lot of "traditional" lowpriced car stereo equipment is still around. And it will be available for at least the next few years, although to a somewhat lesser degree.

While much state-of-the-art car stereo equipment still looks a lot like carlier units, close examination shows that there are substantial differences. Many combinatian tape player/car radios boast power outputs of more than 10 watts-per-channel, and some range beyond 22 watts-perchannel. (Traditional models generally put out 3 to 6 watts-per-channel.) Many new models offer digital readouts of station frequencies (along with the time of day), and some of these units also allow the electronic presetting of 10 to 14 stations (half AM, half FM) for handy tuning when you must keep your eyes on the road ahead. More and more models include electronic scanning for an extra measure of convenience. A few units come with built-in equalizers for shaping the sound to a particular car or to individual tastes in sound. And the first car stereo cassette/radio combination offering TV audio just made its debut.

A close examination of the car stereo world will show you that 8 -track cartridges are steadily losing ground to cassettes, with the latter expected to be the dominant format by the end of this year. There are a number of reasons for this
change. First of all, the industry has faced up to the fact that the cartridge has some basic inherent faults, is not a true hi-fi medium and really can't be improved very much. Second, the cassette's potential is substantial, and improvements in it and equipment on which to play it are continually being made. The cassette is now acknowledged to be a true hi-fi medium, and is expected to become even better as technology continues to advance.
(Figuring prominently in the cassette's future is metal-particle tape, generally called metal tape. This new tape (see "New Breakthrough In Audio Tape," Radio-Electronics, November 1978) offers several advantages over regular fer-ric-oxide or chromium-dioxide tape, including far better dynamic range, less background hiss and flatter frequency response, for balanced, superbly realistic sound. Metal tape's attributes will eventually filter from the home to the car. In fact, one manufacturer already has car stereo equipment that can handle playback of metal-tape recordings.)
Car cassette equipment is also becoming as convenient as cartridges in terms of complete tape playthrough. This is cone via automatic reversing, a feature offered in many cassette models. Another angle is that many buffs find cartridge recordings hard to make. Cassettes, by comparison, are easy to record.

Dolby noise-reduction circuitry is being introduced into more and more tape players in the car sound field. This is a natural consequence of what has happened in home audio, where Dolby circuitry is used in perhaps 95% of all those cassette decks regarded as "hi-fi" equipment.
Studying the spec sheets of the higherpriced car stereo equipment, you'll note the frequent use of the design and circuit
concepts common to home hi-fi-reflecting the spillover from home to car sound and manifest as "home-type" car sound equipment.

Truly "up-to-the-minute" car audio dealers are also displaying a whole new line of car stereo equipment, displayed alongside traditional car stereo merchandise. This new equipment bears such proprietary and generic names as Car-Fi, Carponents, Mo-Fi, Auto-Fi, Ulira-Fi, Super Separates, Hi-Way Fidelity, Auto Audio, Audio Spec, and Audio Compo, among others.

Essentially, these are separate audio components designed for car use-in effect, miniaturized components. They include tuners; amplifiers; equalizers; equalizer/amplifiers; and "head" units such as tape player/tuner/preamplifier or tape player/tuner combinations, or even player/radio combinations with built-in low-power amplifiers that come with a separate power amplifier that is brought into play for higher sound levels when the occasion demands.

The spec sheets and brochures on car stereo "separates" show operating specifications on some that approach those for home audio components. For example, Fosgate claims less than 0.05% distortion for its 100 -watt-per-channel (RMS) amplifier (model PR-2100), and a frequency response of $\pm 0.25 \mathrm{~dB}$, from 20 Hz to 20 kHz into 4 ohms.

Component-type equipment

Let's take a look at some examples of what you'll find in the way of 1979 component-style car stereo at your local store(s):
Equalizers: These run the gamut from tiny models with two rotary or slide-pot tone controls, on up to 10 -band graphic equalizers that offer music buffs the same tone-adjustment capability as home
equalizers, in their cars.
Typical of this group is the Sanyo model EQZ6200, that provides $\pm 12-\mathrm{dB}$ attenuation of seven frequency bands$50 \mathrm{~Hz}, 150 \mathrm{~Hz}, 400 \mathrm{~Hz}, 1 \mathrm{kHz}, 2.5 \mathrm{kHz}$, 6 kHz , and 15 kHz . It also incorporates a tone-defeat switch, $-20-\mathrm{dB}$ audio muting, and left and right LED bar-graph signal-level indicators.

Booster-equalizers: These also range from models with two rotary or slide-tone controls to multiposition graphic units. They also incorporate medium-output amplifiers.

Metro Sound's model MS-67 has 25 watts-per-channel RMS continuous output and features separate rotary bass and treble controls, plus front-to-rear fader

TABLE 1-CAR STEREO EQUIPMENT and manufacturers

Manufacturer

Adcom
11 A Jules Lane
New Brunswick, NJ 08901

ADS

1 Progress Way
Wlimington, MA 01887
Advent Corp.
195 Albany St.
Cambridge, MA 02139
Afco Electronics, Inc.
471 Roiand Way AF-1500

Oakland, CA 94621
Altus Corp.
6 Main St.
Melrose, MA 02176
Audiomobile

Audiomobile
3221 W. MacArthur Blvd.
Santa Ana, CA 92704

Audiovox Corp.
AMP-60
150 Marcus Blvd
Hauppauge, NY 11787

Blaupunkt Corp.	Berlin 2800 S. 25th Ave. Broadvlew, IL. 60153	
Boman Industries	EQR60	
9300 Hall Rd.	Mach 90	$\$ 600$
Downey, CA 90241	Mach 80	$\$ 550$
Car Tapes, Inc.		
1000 E. Del Amo Blvd.		
Carson, CA 90746		$\$ 250$
		$\$ 35.50$

Model

-

Price Equipment/Features Minispeakers

Preamplifiers: Only a few manufacturers provide straight preamps, preferring instead to combine them with other links of the hi-fi chain. One of those available is Audiomobile's model SP300, priced at $\$ 150$. Besides offering preamplification, the unit has double-acting (boost/cut) bass, mid-range and treble controls, plus balance and master volume controls.

Tuners: So far, less than a dozen manufacturers have developed component-type tuners for car use. Among these is Mitsubishi's model CJ-20EM, an FM stereo tuner featuring a large signal meter, dimmer connection for night driving and other amenities. It sells for $\$ 115$ and is part of a series that comprises a 20 -watts-per-channel power amplifier and two cassette decks, one an automatic-reversing type. Panasonic sells the model CA-9500 for about $\$ 85$. It is an AM/FM stereo unit with such basic features as a distance/local switch, AFC on FM, etc., and is part of a series that includes a 10 -watts-per-channel power amplifier, two cassette players and one cartridge player. Roadstar's MOFI series includes an FM stereo tuner with a signal-strength meter incorporated in the tuning dial; loudness, bass, treble and balance controls; and switchable FM muting. Other MOFI models are two power amplifiers, a switching unit, and two cassette decks, one featuring Dolby circuitry and auto-reverse capability.

PANASONIC model COB-5919

Fujitsu Ten provides two tuners as part of its Audio Comp series that also includes a basic stereo power amplifier, a 4-channel power amplifier, a control amplifier, a stereo graphic time-delay unit, and two auto-reversing cassette decks, plus a choice of three hermetically sealed two-way and three-way speaker systems. One of the tuners (the model AT-7831) is an AM/FM stereo unit, the other (the model AT-732) is an FM-only model; both tuners feature a motor-driven search system and a built-in noise blanker. They sell for $\$ 280$ and $\$ 230$, respectively.

Tenna is another company that manufactures component-type tuners. Tenna's Pro series also includes a graphic equalizer; two cassette players; a cartridge player, plus an enclosed two-way speaker system; and a rear-deck, semienclosed three-way speaker system. The tuner, the model R-3025MPX, is an FM stereoonly unit that incorporates electronically preset pushbutton tuning and digital station readouts.

Also marketing a component-type tun-
er is Altus Corporation (formerly Automatic Radio). The model A8CS-112 is an under-dash AM/FM stereo model meant for use with the model A8CS 5 -band graphic equalizer/preamplifier/40-watt amplifier. Among the latest tuner offerings is the Clarion model GT-501E (priced at $\$ 250$) which features electronic scanning to automatically select the strongest FM signals. A built-in Clean Z circuit helps eliminate noise produced by ignitions, high-voltage lines and neon signs. (The Clean Z circuit is also sold as an accessory for other car stereo models, and is priced at $\$ 35.50$.)

Semicomponents: This category covers head units designed to operate with matched separate amplifiers. The head units can be an in-dash cassette player/ tuner/preamplifier such as Pioneer Electronics' model KPX-9000 ($\$ 350$) or the model KPX-600, a component-styled FM stereo Supertuner/cassette player/preamplifier tape deck (\$170), for use with either a 6 - or a 20 -watts-per-channel separate amplifier. The head unit can also be a straight cassette deck for under-

PYRAMID INDUSTRIES model X-Spec-5
dash mounting, such as Pioneer's model $K P-88 G$ or KP-66G, for use with the amplifiers just described.

Other firms offering similar equipment include Marantz with its model CAR420 and Royal Sound with the model RS2550; both units are cassette/tuner/preamplifier combinations with matching amplifiers (30 wpc in both cases). Boman also has two models: a cassette player/ radio, the model Mach 90 , at $\$ 600$; and a cartridge player/radio, the Mach 80 at $\$ 550$, bath packaged with a 25 -watts-perchannel equalizer/amplifier.

Altus Corporation manufactures two head units, the model $A 8 C S-032$, an indash cartridge player/AM/FM stereo tuner; and the model A8CS-052, an indash automatic reversing cassette/player/AM/FM stereo tuner; both meant for use with the model A8CS-101 5-band graphic equalizer/preamp/40-watt amplifier. Audiomobile (a division of Advent), one of the major pioneering "mo$\mathrm{fi}^{\prime \prime}$ manufacturers, still offers its model ST770A cassette player/AM/FM tuner, featuring Dolby noise reduction and a SenAlloy head for $\$ 400$; the amplifier choices for this model should be 20 - or 100 -watts-per-channel units.
Included in this group are player/radio combinations with built-in low-power amplifiers with provision for hookup to a matching high-powered amplifier, for two levels of playback loudness. One such unit is Jensen's model R430, a cassette unit selling for $\$ 529.95$; and another is the model R330 (\$529.95), the cartridge
equivalent; both units have 30 -watts-perchannel amplifier power, and both models have bi-amping capability, with 25 watts-per-channel for bass speakers, and 5 watts-per-channel for treble speakers. The power amplifier (included in the price) for the Jensen units is designed to be mounted in a car trunk.
Panasonic manufactures three semicomponent combinations for use with a choice of $15-, 20$-, or 50 -watts-per-channel amplifiers. The model CQ-8700 features an auto-reverse control, elec-

SOUND CONCEPTS model 1060
tronic digital tuning, automatic seek control and manual frequency scan, 10 station preset capability, Dolby, and quartz-lock tuning. This model retails for about $\$ 700$. The model CQ-7600 features a cassette repeat function, a built-in 5 band equalizer, biamp switch, Dolby, and quartz-lock tuning; its price is about $\$ 400$. The model CQ-7400, priced at about $\$ 300$, is essentially the same unit as the CQ-7600, minus Dolby. Amplifier prices were not available at this writing.

Add-on enhancers

Just as the home hi-fi world has accessory equipment, so does the car stereo world. An example of a unit designed to enhance a system's sound quality is Draco Labs, Inc.'s dynamic range expander, the model D-45E, which sells for $\$ 200$. This expander provides over 30 dB of added dynamic range and simultaneously eliminates FM and tape hiss. It features twin power meters and six LED's for expansion rate display.

SPARKOMATIC model GE-500

Another example of a unit that borrows from home stereo technology is Sound Concepts' model 1060 Concert Hachine. It is described as an ambience restoration system that augments auto stereo to provide spatial realism and the illusion of a live performance. In use, the machine extracts ambience information from the music played through the car's front speakers, processes it through a complex delay system, and distributes it around the car's interior to duplicate the sound heard at a live performance. The delayed sound is played back over the Concert

Machine's two integral 10 -watt amplifiers, through the car's rear speakers. It sells for $\$ 300$.

Fujitsu Ten also has a time-delay system, the model RV-130, that features a graphic window to display the amount of delay; price, $\$ 180$.

An off-beat accessory from Pioneer Electronics is aimed at those who want car sound with a different "feel." This is the Bodysonic System, advertised as "the
first car stereo product that allows the listener to feel the music as well as hear it. You can experience the intense physical presence that comes from a live perfor-mance-not only what you hear, but what you feel." The Bodysonic System consists of two parts. One is a cushion containing special transducers that transmit vibrations directly to the person sitting against it. The second part is an amplifier, designed to operate the Body-

	TABLE 1-CAR STEREO EQUIPMENT- Continued		

 CB/tape/radlo

Digital readout, minispeakers, all-in-one system

Amplifier
Preamp
Cassette/tuner/preamp
Diglal readou, autoreverse mode

Booster equalizer

FM stereo tuner
Minispeakers, auto-reverse mode

Cassette/radio/metal-tape playback
Cassette/radio/metal-tape cB/tape/rad

CB/tape/radio
chart continues on page 46
sonic cushion, featuring an intensity control and on/off switch. It hooks up to a car stereo system just like an ordinary amplifier and can be installed under-dash or in the glove compartment. One Bodysonic amplifier can regulate two cushions. The Bodysonic cushion sells for $\$ 70$; the amplifier for $\$ 80$.

All-in-one equipment

While many of the advances taking place are in component-type equipment, there is also a lot of activity on the "all-in-one" player/radio combination front. The key buzzwords in this realm are "more power," "more cassette," and "more in-dash."
So far, at least 15 manufacturers have in-dash cassette player/radios with 10 or more watts-per-output channel. These all-in-one units have been created in response to sophisticated consumers wanting to "trade up" to better equipment with better sound and higher power, but not wanting to go the components route. A factor in this choice is that all-in-ones require a simpler installation and less equipment, thereby taking up less precious car space. Manufacturers of such equipment include Audiovox, Altus, Boman, Clarion, Cobra, Concord, Craig, Fultron, J.I.L., Jensen, Kraco, Metro, Panasonic, Pioneer, Sanyo and Sparkomatic.

The all-in-one equipment-be it regular power (3 to 6 watts-per-channel) or high power-ranges from basic to elaborate, depending on how much you want to spend, and offers some of the amenities and technology of home stereo equipment. For instance, Sharp's model $R G$ 3550 in-dash cassette/radio ($\$ 220$) features its proprietary Automatic Program Search System (APSS) that permits the user, in one move, to skip to the next selection on a cassette or back to the start of the current song selection. The APSS feature is also included in Sharp's model $R G-5252$, a cassette/radio designed for use in foreign-made cars. This model sells for $\$ 170$. (This feature first appeared in the Sharp home cassette deck line, then in its subsidiary Optonica home audio line.)

Electronic scanning, an esoteric feature in home hi-fi equipment, is beginning to show up in deluxe high-powered car tape/radios. It is featured in J.I.L.'s model 634E, Kraco's models LED-508 and LED-509, Panasonic's model CQ-8520, Blaupunkt's Berlin, Fujitsu Ten's EP750, Marantz' model CAR-420, Midland's model 67-440, Royal Sound's model RS-3110 and Sanyo's model FT1670, among others.
Popular in home hi-fi, digital station readouts (often combined with time readouts) are also becoming popular in the car stereo world. At least 10 manufacturers now provide this feature, which is no longer considered a gimmick. Check Altus, Afco, Audiovox, J.I.L., Kraco, Ma-
rantz, Midland, Panasonic, Roadstar, Sanyo and Sparkomatic.

Dolby noise-reduction circuitry, now incorporated in virtually all home cassette decks, is also being used in many highpowered combination players as well as some lower-powered sets. Companies featuring Dolby are Audiovox, Clarion, Concord, Jensen, Panasonic, Motorola, Roadstar and Sanyo.
Another home audio feature that is appearing in car stereo units is automaticreversing capability. Some high-powered sets offer this feature, and it is also available in lower-powered units. Auto-reverse (as it is also called) is among the attributes of the cassette that is leading up to the eventual demise of the cartridge

FOSGATE model PR2100
tape format in cars. At least 20 manufacturers use it; namely, Afco, Altus, Audiovox, Blaupunkt, Car Tapes, Clarion, Craig, Fultron, Fujitsu Ten, J.I.L., Marantz, Metro, Midland, Motorola, Mitsubishi, Muntz, Roadstar, Panasonic, Royal Sound, Sankyo, Sanyo, Sparkomatic and Tenna.

One cassette player/radio combination that sort of summarizes the current state-of-the-art and also hints at its future, is the Fultron in-dash model 16-6800. This unit has touch-sensitive electronic controls for volume, tone, balance and tuning; digital station readouts; LED power readout; 14 -station/preselect capability; and automatic reverse. Its power output is 12 watts-per-channel RMS, and its price is $\$ 500$.

Another model hinting of the future and what may one day be a major feature in car stereo systems is the Roadstar model 2141. This is an in-dash cassette player/radio featuring dual-band VHF TV audio reception. It sells for $\$ 270$. (Last year U.S. Pioneer introduced a home audio component tuner featuring TV sound.)

Roadstar also has five other in-dash models that may also be trendsetters in one or more ways. They are the model 3800 and model 3810 U cassette deck/ tuners designed for use with separate power amplifiers, and the models 3200 . 3210 U , and 2300 U , that are self-contained cassette player/radio combinations, priced in a range from $\$ 300$ to $\$ 540$. All five units feature LED tuning displays instead of moving pointers.

When you examine spec sheets and
brochures, you'll note other features common to home stereo cropping up in regular and deluxe all-in-one tape player/ radio combos, as well as straight players. For instance: loudness controls, FET and MOSFET front ends, phase-locked-loop tuning, quartz-lock tuning, electronic switching, automatic tape-end alarm, dual capstan drive, biamplified power stages, and solid-state varactor tuning and preset tuning.

As noted earlier, the latest advance in the cassette field is fine metal-particle tape that was introduced in the home audio market last summer. At press time, Sanyo announced four cassette/radio combinations with metal-tape playback capability: the models FT646, FT2400. FT1498, and FT1490-2, priced from $\$ 220$ to $\$ 390$. These new sets also have equalization switches to accommodate normal, chrome and ferrichrome tapes.

Motorola also offers equalization switches for ferrite and chrome tapes in its auto-reversing models TC894AX at $\$ 350$ and the model TC890AX at $\$ 300$.

Seldom mentioned is the recording capability of car stereo units. The simple reason is that few manufacturers offer it. But that situation will begin to change as technology advances and suppliers are forced to seek new ways to attract customers. Recording "on the go" is not a new idea; a few manufacturers tried

MITSUBISHI CAR AUDIO model CJ-20
incorporating this capability a decade ago, but got nowhere. One reason was that the technology was still some what primitive. Another was that recording capability was monophonic only. Now, Blaupunkt has come on the scene with its model CR-4095, an AM/FM stereo radio/cassette recorder for both regular as well as small car installation. It offers the user a chance to record his own cassette tapes in stereo from the tuner section while the car is on the go. Furthermore, it offers monophonic voice recording via microphone (supplied).

Suppose you want CB capabilities in your car in addition to tape/radio facilities, do you settle for separate installations for a crowded dashboard? Not necessarily. Several manufacturers are now providing CB along with tape/radio facilities in one-unit combinations for in-dash or under-dash mounting. Among brands in which you'll find these are: Fultron ($16-8600$, cartridge); J.1.L. (860 CB, cartridge, $615 C B$, cassette); Kraco (KCB4090, cartridge, $K C B-4095$, cassette); Motorola (CT950AX, cartridge,

CC975AX, cassette); Panasonic (CQB5919, cassette, CQB-5959, cartridge); Roberts ($R C B-4150$, cartridge); Sankyo (SCS-555, cassette).

Speakers

When booster amplifiers first appeared in car stereo systems several years ago, they were accompanied by a surge of new speakers-heavy-duty models, with greater power-handling capability. Since then, manufacturers have steadily been

PIONEER model KPX-600

putting out speakers with better reproduction capabilities, plus higher powerhandling capacity, to accommodate the higher fidelity, higher power electronics coming on the car stereo scene. Today there are four basic categories of speakers:

1. The traditional type of driver meant for traditional low-powered tape players and player/radios.
2. The heavy-duty, high-quality driver designed for cutout installation with com-ponent-type electronics/players, or highpowered tape players and radio/players.
3. Semi-enclosed two- or three-way speaker systems for loud-level reproduction in cutout installations.
4. The self-contained two-way (even three-way) minispeaker system, meant for high-powered, high-fidelity car stereo outfits.

The latest example in the second category is Advent's model EQ-1, priced at $\$ 180$ the pair. This speaker consists of a dual-cone, 6- by 9 -inch driver with an equalized power amplifier built onto the back of the speaker frame. The model $E Q-1$ has been designed and frequency-

SANYO model EOZ-6200
equalized specifically for rear-deck mounting, and comes with a remote power on/off switch.

A recent example of the semi-enclosed speaker described in the third category is the EPI model LSTO, priced at $\$ 150$ the pair. This unit consists of a 6 -inch woofer mounted adjacent to a 1 -inch tweeter in an open-backed housing meant for reardeck installation in a standard 6 - by 9 inch cutout. The model $L S-70$ can also be mounted on some door panels.
Typical of the two-way minispeaker

SANYO model EQZ-6400
system is Afco Electronics' models AF1500 and $A F-2000$. The former uses a $31 / 4$-inch woofer and a 2 -inch tweeter. The latter uses a 4 -inch long-throw woofer and a 2 -inch super tweeter. Both use aluminum housings and perforated metal grilles, and can handle 40 watts and 50 watts maximum, respectively.

TABLE 1-CAR STEREO EQUIPMENT-continued

Muntz Hi Z, Inc.
871 Folsom St.
San Francisco, CA 94107
Panasonic Co. Car
Audio Dlv.
1 Panasonic Way
Secaucus, NJ 07094

Ploneer Electronics
1925 E. Dominguez St.
Long Beach, CA 90810

Roadstar Corp. of America
5312 Production Dr.

Pioneer Electronics
1925 E . Dominguez St.
Long Beach, CA 90810

Roadstar Corp. of America

CA-9500	$\$ 85$
CQ-8700	$\$ 700$
CQ-7600	$\$ 400$
CQ-7400	$\$ 300$
CQ-8520	
CQB-5919	
CQB-5959	

FM stereo tuner Semicomponent unit (deluxe) Semicomponent unit Semicomponent unit (less Dolby) Stereo tape/radio/electronic scan Cassette/CB
Cartridge/CB
Digital readout, all-in-one system, Dolby, auto-reverse mode

Huntlington Beach, CA 92649

KPX-9000 KPX-600 KP-88G, KP-66G Bodysonic System	$\$ 350$	Cassette player/tuner/preamp Tuner/cassette player/preamp
2141 $\$ 70-80$ Cassette decks Sound enhancer All-in-one system $3800,3810 U, 3200$, $\$ 270$ Cassette player/radio Cassette deck/tuner MOFI series $\$ 300-540$ Cassette player/radios Tuners Digital readout, Dolby, auto-reverse mode		

RCB-4 150
Roberts Electronics
3095 NW 77th Ave.
Miami, FL 33122
Royal Sound Co., Inc.
RS-2550 248 Buffalo Ave. RS-3110
Freeport, NY 11520
Sankyo Selki, Inc.
149 Fifth Ave.
New York, NY 10010
Sanyo Electronic
1200 W. Artesia Bivd.
Compton, CA 90220
EQZ-6200
PA6120
PA6060
FT-1670
FT646; FT2400,
FT1498, FT 1490-2
$\$ 250$
$\$ 200$

Graphic equalizer
Amplifier
Amplifier
Tape/radio/electronic scan
FT 1498, FT 1490-2 $\$ 200-390$ Cassette/radio/metal-tape playback
Auto-reverse, digital readout, Dolby, minispeakers, all-in-one system

Setton International
60 Remington BIvd.
Ronkonkoma, NY 11779
Sharp Electronics Corp.
FG-3550
$\$ 220$
PG-5252

1060 (Concert
Concept
P.O. Box 135

27 Newell Rd.
Brookline, MA 02146
Sparkomatic Corp.
Milford, PA 18337

Tenna Corp.
19201 Cranwood Pkwy
Cleveland, OH 44128
Ultralinear Loudspeakers
3228 E. 50th St.
Los Angeles, CA 90058

Other two-way minispeakers are manufactured by ADS, Adcom (Braun, Canton), Comm, Fultron, Fujitsu Ten, Hitachi, Grundig, JVC, Kraco, Metro, Mitsubishi, Royal Sound, Sanyo, Tenna and Ultralinear.

A few manufacturers are marketing three-way minispeaker systems for cars or vans; for example, Afco, Comm, Fujitsu Ten, Royal Sound, Setton and Sparkomatic.

Confused specs

One of the biggest problems facing the industry as it moves into the hi-fif field is in specifications. At the moment, all is confusion. One manufacturer's product brochure describes the output of a given model as. for example, " 30 watts." That's a high figure to the prospective purchaser whose current car player/radio is a 5 -watt-per-channel model. Thirty watts-per-channel is a lot of output, he thinks, but is that 30 watts a per-channel figure? No, it is actually 15 watts-per-channel, says the fine print at the bottom of the page. But is the output into eight ohms or into four ohms? This information is not given, nor is a distortion reference listed.

Another brochure shows an amplifier emblazoned with "90 watts power." Reading the descriptive copy, you learn that the instrument offers " 30 watts continuous sine-wave power per channel (90 watts, peak total music power)." This same brochure also describes a player with " 3 watts-per-channel (I.P.P.) max." And another player is rated at " 6 watts-per-channel (RMS)." A fourth unit shown in the brochure offers " 6 watts of power." Finally, a booster is shown as having " 40 watts (25 watts peak power per channel)."

Another specification sheet shows a tape player/radio with " 6 watts R MS per channel- 36 watts music power" for " 72 watts per total power."

What is happening, insiders admit, is that many car stereo manufacturers are playing "specmanship," a game whose goal is to come up with the largest (or smallest) figures for various specs, using whatever measurement standard will give the most advantageous reading.

Fortunately for all concerned-especially the consumer-something is being done to correct the situation. A few conscientious industry voices are calling for an end to such practices-which have already given the industry a black eye. The essential message is that the industry should have strict guidelines on the order of those promulgated by the Federal Trade Commission in 1974 for the home audio component industry. Until such regulations come along, the consumer must evaluate car stereo equipment largely on a "trust-your-own-ears" basis, plus the hope that what he hears in the store will translate into the equivalent in his car.
continued on page 93

ALL ABOUT TIM DISTORTION

Abstract

Audible differences apparent in the performance of two otherwise identical amplifiers has been traced to a previously undetected type of IM distortion. Here are details of two suggested methods of measurement.

LEN FELDMAN

CONTRIBUTING HI-FI EDITOR

MANY AUDIO EXPERTS ARE NOW CON vinced that audible differences between similarly rated amplifiers having identical power outputs and even identical static distortion ratings (harmonic, intermodulation, etc.) are due in part to a form of distortion known as Transient Intermodulation Distortion (TIM). This type of distortion occurs in an amplifier having a large amount of negative feedback in its main feedback loop and a certain amount of time or phase delay between the input and output signals. In effect, if a very fast transient musical signal or pulse is fed to such amplifiers, the feedback needed to reduce the amplitude of that signal at the input (and later) stages arrives too late, and overload or momentary clipping occurs. At the instant of such clipping, other program-signal elements are also distorted or even obliterated.

Transient intermodulation distortion cannot be measured using the steadystate sinewave input signals normally used for making THD and IM measurements because with such signals, the composite output signal will simply contain some moderate amount of phase shift rather than a momentary overload or overshoot. Many methods have been suggested for measuring and quantifying TlM, but, to date, none has been universally accepted by all segments of the audio high-fidelity industry.

This article takes a look at two such methods-one having been officially proposed to the IEC (International Electrotechnical Commission) as of September, 1978; the other having been more recent-
ly proposed by Sansui Corporation.

IEC measurement proposal

In attempting to measure the distortion caused by rapidly changing signals, any proposed test signal must simulate the time properties of a transient signal. A squarewave is ideal for this purpose, since it exhibits fast transient signals at twice

FIG. 1-IEC TEST SICNAL consists of a 15 kHz squerewave with - superimpoeed 3.15 kHz sinowave.

FIG. 2-TIM DISTORTION measurement setup using a narrowband apectrum analyzer.
the fundamental frequency of the squarewave. In order to limit the risetime of the squarewave to a reasonable value, the signal must be passed through a low-pass filter corresponding to the signal-source bandwidth. The IEC proposal suggests that the low-pass filter have a $50-\mathrm{kHz}$ cut-off frequency for average hi-fi equipment and, perhaps, a $100-\mathrm{kHz}$ cut-off frequency for high-quality amplifiers.

If the squarewave test signal drives the amplifier under test into nonlinearity during its steep rise or fall, distortion of other simultaneously amplified signals will result. Therefore, a sinewave of smaller amplitude than the squarewave is added to the squarewave signal. The current IEC proposal suggests that the fundamental frequency of the squarewave should be 3.15 kHz and that the superimposed sinewave should be $15-\mathrm{kHz}$. The peak-to-peak amplitude ratio of the two signal components should be $4: 1$, respectively. Thus, the test signal would appear as is shown in Fig. 1.

A block diagram of the proposed test setup is shown in Fig. 2. To measure the
intermodulation products, a selective voltmeter or a narrowband spectrum analyzer must be used. Studies have shown that TIM can be detected even when its percentages are as low as 0.2%. Therefore, the spectrum analyzer used to display intermodulation must have a dynamic range of at least 80 dB ; and, in order to be able to separate the various intermodulation components that arise, the analyzer should have a selectivity of 750 Hz or better. Frequency-selective voltmeters could also be used.

If the fundamental squarewave frequency is designated as f_{q} (in this case, 3.15 kHz), and the sinewave signal is designated as $\mathrm{f}_{\mathrm{g}}(15 \mathrm{kHz}$ in the IEC proposal), then various additional frequencies will be present in the test signal as indicated in the left-hand column of Table 1. The intermodulation components that occur in an amplifier having TIM (and which must be taken into account in calculating the percentage of TIM present) are shown as various differences between f, and multiples of f_{q} in the second column of Table 1 ; and the associated voltage amplitudes of these intermodulation components are designated as μ_{1}, μ_{2}, etc., through μ_{9}. The actual frequencies of both the test signal and the intermodulation resulting from TIM are shown in the right-hand column.

To calculate the dynamic or transient intermodulation distortion in an amplifier, it is necessary to measure the amplitude of each of the voltage components, μ_{1} through μ_{9}, and apply the following formula:

$$
\mathrm{d}_{\mathrm{TMM}}=100 \times \frac{\sqrt{\mu_{1}{ }^{2}+\mu_{2}{ }^{2}+\ldots . . \mu_{0}{ }^{2}}}{\mu_{3}}
$$

where μ_{s} is the amplitude of the sinewave component at a frequency of 15 kHz , and μ_{a} is the amplitude of the intermodulation components at frequencies $\mathrm{f}_{\mathrm{n}}-\mathrm{nf}$, in which n is a positive integer from 1 through 9. Figure 3 shows the components that are observed if the test signal itself is analyzed by a spectrum analyzer. While an ideal squarewave normally does not contain even-order harmonics, actual squarewave generators generally do produce a small amount of such even-order components; hence the small amounts of $2 \mathrm{f}_{\mathrm{q}}$ and $4 \mathrm{f}_{\mathrm{q}}$ shown in Fig. 3.

The text of the IEC proposal shows the

FREQUENCY (k Hz)
FIG. 3-SPECTRUM ANALYSIS of the IEC test signal.

TABLE 1

Input Signal	Intermodulation Frequency	Component Voltage	Frequency, kHz
f.	$\begin{aligned} & f_{m}-5 f_{q} \\ & f_{a}-4 f_{q} \end{aligned}$	μ_{5}	0.75
		μ_{4}	2.40
f_{0}			3.15
	$\mathrm{f}_{\mathrm{s}}-6 \mathrm{f}_{\mathrm{q}}$	μ_{8}	3.90
	$\mathrm{f}_{\mathrm{a}}-3 \mathrm{f}_{\mathrm{q}}$	μ_{3}	5.55
27^{4}			6.30
	$f_{0}-7 f_{0}$	μ_{7}	7.05
	$f_{B}-2 f_{9}$	μ_{2}	8.70
$3 i_{\text {a }}$			9.45
	$\mathrm{f}_{\mathrm{a}}-8 \mathrm{f}_{\text {a }}$	μ_{8}	10.20
	$f_{0}-f_{0}$	μ_{1}	11.85
$4 i_{\text {a }}$			12.60
	$f_{0}-9 f_{9}$	μ_{0}	$\begin{aligned} & 13.35 \\ & 15.00 \end{aligned}$

FREQUENCY (kHz)
FIG. 4-AMPLIFIER adde distortion to test signal which shows up as additional components in the frequency spectrum.
frequency spectrum of the output signal of a type $\mu \mathrm{A} 741$ operational amplifier under the following conditions: noninverting circuit, $20-\mathrm{dB}$ gain, 5 K -ohm load resistance and an output of 5 volts peak-to-peak, with a supply voltage of ± 15. Figure 4 is a diagram of the spectrum display. The nine new intermodulation amplitudes would have to be entered into the distortion formula shown above to arrive at a percentage value for TIM-or DIM (Dynamic InterModulation) distortion as it is called in the proposal.

The DIM distortion can be presented as a function of amplifier power or volt-

FIG. 5-TEST SIGNAL propoeed by Saneui consists of a 30 kHz sawfooth woveform with a phase reversal every $\mathbf{3 0} \mathbf{k H z} \div \mathbf{2 5 6}$.
age output. To permit comparison on the basis of equal peak-to-peak results of measurements made with different test signals upon different amplifier products, the output voltage is expressed in terms of a reference output voltage. This could be the RMS value of a sinusoidal signal having the same peak-to-peak value as the test signal appearing at the output terminals of the amplifier under test.

In addition to requiring a fairly expensive spectrum analyzer, this measurement method requires a good deal of calculation by the tester, and it cannot be done quickly, although the results, according to proponents of the scheme, seem to give very good correlation between listenerperceived TIM and measured results.

Sansui proposal

Sansui Corporation has developed a proposal that seems much simpler: The proposed signal for TIM measurements is derived from inverting the phase of a $30-$ kHz sawtooth waveform with a 30 $\mathrm{kHz} \div 256$ period, as shown in Fig. 5. The signal therefore consists of two alternating series of signals, one series of instantaneously rising waveforms, the other of instantaneously falling signals. The measurement setup is shown in the block diagram of Fig. 6.

The switch shown in Fig. 6 reverses the polarity of the sawtooth signal at a frequency rate that is within the audible range. Since the sawtooth signal is modulated by polarity-reversing, it contains frequencies that are lower than the fundamental frequency as well as its own fundamental frequency. The high-pass filter eliminates these lower frequencies. The filtered signal is then fed to the

FIG. 6-TIM MEASUREMENT setup proposed by Sansul using the test signal shown in Fig. 5.
amplifier, and the amplifier's output signal is fed through a low-pass filter to eliminate the frequency components of the sawtooth signal itself. The output of the low-pass filter is then displayed on an oscilloscope for measurement.

The test signal consists of a series of sawtooth waveforms that are reversed in polarity at intervals falling within the audio range. If the amplifier under test is prone to TIM, then at the output of the low-pass filter a signal appears whose shape is rectangular. Each time the input signal reverses polarity, a rectangular output waveform appears that is due to the shift in average voltage or DC level. This output signal represents the amount of TIM generated in the amplifier under test.

Sansui Corporation has devised some experimental test equipment, which we were fortunate enough to be able to borrow to prepare this article. The equipment contains a sawtooth signal generator with a $30-\mathrm{kHz}$ fundamental frequency. whose polarity reversal is $30 \mathrm{kHz} \div 256$. Rise- and falltimes of the sawtooth waveform are both 30 ns . The test apparatus

HIGH-PASS FILTER

FREQUENCY IN CYCLES PER SECONO
FIG. 7-TIM DISTORTION ANALYZER from Sanaui includes low-pass and high-pases filtera with the above response characteristics.
also includes low- and high-pass filters, whose component values and response characteristics are shown in Fig. 7.

To make the TIM measurement using this equipment, only an oscilloscope is required in addition to the amplifier being tested. Figure 8 shows how each unit is connected. The output level of the amplifier is adjusted by varying the oscillator level control. The output power is determined by using a voltage-calibrated scope and adjusting the peak-to-peak amplitude of the sawtooth waveform so that it equals the peak-to-peak amplitude of a sinewave whose RMS value can be calculated from the output power at which the measurement is to be made. During this phase of the test, the low-pass filter is switched out of the circuit, and the output waveform that appears is shown in the scope photo of Fig. 9. The peak-topeak value (in volts) is recorded. Next, the low-pass filter is switched in, and the scope's vertical gain is increased until the waveform shown in Fig. 10 appears (this indicates evidence of TIM); TIM is calculated as

FIG. 9-OUTPUT WAVEFORM from amplifier being tested with the low-pass filter bypassed.

FIG. 10-OUTPUT WAVEFORM from amplifier with low-pass filter connected. TIM diatortion is proportional to squarewave amplitude.

FIG. 8-MEASUREMENT SETUP using Sansui's TIM Distortion Analyzer.

If the TIM value is too small to be measured accurately by a calibrated oscilloscope, you can use a voltmeter. In this case, however, you must convert the voltmeter reading to peak-to-peak values relative to the output sawtooth waveform. For "unity" indications on the voltmeter, the sinewave peak-to-peak value would be 2.8 , the sawtooth waveform's peak-topeak value would be between 3.2 and 3.8, while the peak-to-peak value of the TIM squarewave would be 1.8.

Unfortunately, the actual percentages that will be calculated for TIM using the proposed Sansui method will not agree with those determined using the proposed IEC method. The measured TIM percentages using either method will vary with the high-frequency component of the signal (a $30-\mathrm{kHz}$ sawtooth waveform for the Sansui method, and a $15-\mathrm{kHz}$ sinewave for the IEC method), as well as with any variation in the low-frequency portion of the test signal $\mathbf{(3 . 1 5 ~ k H z}$ for the IEC method, $30 \mathrm{kHz} \div 256$ for the Sansui method). Nevertheless, each method, will provide correct relative TIM indications.

FIG. 11-TIM DISTORTION rating obtained using the Sanaui test method for four different amplifiers.

For example, using the Sansui method, four typical amplifiers were measured. All the amplifiers had approximately the same rated continuous power output (between 50 and 100 watts-per-channel) and approximately the same rated total harmonic distortion. Amplifier A was a relatively old unit that had a great deal of overall negative feedback and no provision made for a high slew rate. Amplifier B used faster transistors and somewhat less total negative feedback. Amplifiers C and D both had so-called DC configuration, in which amplifier D had the highest observed slew rate, and all the time constants (capacitors) were eliminated from the signal path as well as from the feedback network. The vastly differing results (see Fig. 11) correspond closely with theory and with the audible performance of each amplifier.

R-E

TECHMOLOGY TODAY Videodisc - Look at

LARRY STECKLER EDITOR

IN OUR APRIL ISSUE WE PRESENTED AN INTRODUCTORY ARTICLE about the two basic kinds of videodiscs. This month we're going to take a closer look at the Philips system as sold by Magnavox under the name Magnavision. Let's start by taking a look at playing time. Then we'll go on to take a close look at the laser. As a bonus, we are including the complete schematic of the unit.
The illustrations on this page and the facing right-hand page show the two types of Philips videodiscs that will be availableshow the two types of Philips videodiscs that will be av
Standard Play and Extended Play. Standard play provides 30 minutes of video and stereo sound on a single side of the disc. Extended play makes that playing time twice as long-one hour per side.

If you placed a standard-play and an extended-play disc side-by-side, there would be no visible differences as the outward appearance of the two dises is similar. The real difference can be seen by comparing the illustrations on these two pages. The difference lies in the physical arrangement of each successive video field on the disc.
Each time a stan-dard-play disc makes one complete revolution, one complete TV frame is played. This frame consists of the customary two interlacing fields. So each time the disc completes one revolution, the TV screen has been scanned twice. The two fields are separated by the vertical sync and blanking sections. Note that the vertical field track length varies in physical length, depending on whether you are close to the center of the disc or the outer edge. This arrangement holds true during the entire time the dise plays. Remember, the disc rotates at a consistent 1800 rpm -this is 30 Hz , the TV frame rate-and tracks from the center of the disc to the outside (a reverse spiral as compared with a conventional audio record). It is this feature of the standard-play disc that makes Still Motion, Slow Motion and Random Access modes of operation possible.

Extended-play video discs do not have the constant arrangement of the vertical fields (see the illustration on the right-hand page). Instead the track length of the vertical field is held
constant throughout the diameter of the disc. This allows the information on the disc to be crammed in more tightly, providing the double-length playing time. To do this, we do lose the special operating modes because of the varying position of the vertical fields on the disc. Also, to keep a constant velocity as the video information on the disc is scanned, motor speed must be varied as the disc is played.

In addition to the picture-information tracks, there are special tracks labeled Lead-In and Lead-Out. These are located at the tracks labeled Lead-In and Lead-Out. These are located at the
inner and outer diameters of the disc. They are specialVEATICAL blanking blankina thanking -
 not move beyond them. When the lead- out tracks are reached, the light beam automatically moves back to the lead-in tracks and repeats the program

The vertical blanking time of the TV raster is longer than the vertical sync time. In fact, several horizontal lines at the top of each field occur before the downward scan reaches the top of the screen. Some of these unseen horizontal lines at the top of each field are reserved for special purposes.
In the first field, for example, line 17 contains a code that represents the picture number or elapsed time. depending upon the type of disc. Line 18 duplicates line 17 so if line 17 is damaged or distorted, line 18 provides the information that might otherwise have been lost.
SMOTOR SPEED
VARIABLE: VERTICAL FIELD TRACK LENGTH

the circuitry

are used by the videodisc manufacturers to test for noise and intermodulation distortion.
One side of a videodisc can store up to 54,000 separate frames or pictures $[30-\mathrm{Hz}$ frame rate times 1800 seconds (30 min ute:)]. When the program material is less than 30 minutes in length, fewer frames are used since fewer are needed.
The most common reason for using fewer frames is the use of movie film as the program source instead of video tape. Movie cameras run at a frame rate of only 24 Hz . To overcome this problem, the movie film is converted to TV fields. The film fiames are alternately scanned for three

e

 video fields and two video fields. So five video frames are used while scanning four film frames. Picture numbers are added only to the first video field per film frame. Since only four picture numbers are used for each five video frames, the picture numbers will only reach about 43,200.
NeIt, the laser

The laser used in the Magnavision videodisc player is a gas-filled vacuum tube that has both an anode and a cathode. It is a iong glass tube that has a mirror on the inside at each end. The laser operates in a manner similar to that of a thyratron. A specific firing voltage must be applied between the ancde and cathode to make the gas ionize and cause current flow. Once the tube has fired (in laser language "ignited") less voltage is required to maintain the current flow (sounds just like a neon lamp, doesn't it).

A mixture of helium-neon gases is used in this laser. When it ionizes, it emits a red light. The light reflects back and forth between the mirrored ends inside the glass tube, continually gaining power. One of the mirrored ends is only partially reflective. When the light beam gets strong enough, it penetrates that mirror and exits the tube as a laser beam.

The optical power of the laser is 1.2 mW . This strength is not dangerous if the beam should happen to touch your skin. It would not even damage a piece of tissue paper. However; THE BEAM MUST NOT BE ALLOWED TO TRAVEL DIRECTLY INTO THE EYE. To prevent this, the player is designed so
that the laser is turned off whenever the lid is raised. Double protection is provided by mechanically blocking the light path as the lid is opened.

The DC power supply for the laser is shown in Fig. 4. It is driven by a secondary winding of transformer T1. Diodes D7 and D8 act as a voltage doubler. During positive half-cycles, D8 conducts and charges $\mathrm{C} 9, \mathrm{Cl} 0$ and C 11 to about 900 VDC. During negative half-cycles, D7 conducts charging C6, C7, and C 8 . The polarities are additive so that the voltage across the six capacitors is 1800 VDC.

The resistors in parallel with the capacitors are all 1 megohm. They equalize the voltage across each capacitor and discharge the capacitors when the power is turned off. Capacitor C2I acts as a surge suppressor. Capacitor C3 and RI7 form a high-pass filter to eliminate high-frequency noise that might otherwise get into the supply.

The laser and laser igniter are shown in Fig. 5. The igniter is completely encapsulated and looks very much like the high-voltage tripler in a color TV. The series circuit has the 1800-VDC source supplying current through the regulator, laser and laser igniter to ground. You'll note that neither side of the 1800 VDC supply is connected to ground. The cathode lead from the laser passes through the laser

EXTENDED PLAY DISC CONSTANT: VERTICAL FIELO TRACK LENGTH VARIABLE: MOTOR SPEED

FIG. 2

2

\square The $1800-\mathrm{VDC}$ will not turn the laser on. A multivibrator circuit is used to drive step-up transformer T 1 inside the igniter. Transformer TI's output is about 10 kV . When this high voltage is fed across the laser, the laser ignites and Cl dumps its energy through the laser and RI to provide the initial turn-on current.
As soon as $5-\mathrm{mA}$ is flowing through the laser, the regulator turns the multivibrator off and the 10 kV disappears Now the laser requires only about 1200 -VDC to maintain 5 -mA conduction, and the 1800 -VDC source can now keep the laser operating. The extra 600 volts is dropped across the regulator. In
RADIO-ELECTRONICS

FIG. 4-LASER POWER SUPPLY CIRCUIT delivers 1800VDC to the laser for igniting the helium-neon device.
actual operation the 600 volts varies from below 100 V to more than 800 V depending upon line voltage, laser current, etc. Once the laser is conducting, Tl 's secondary, inside the igniter, has too much resistance to permit enough DC current flow. Diode D2 now shunts this winding and the $5-\mathrm{mA}$ current flows through D2 instead of D1 and T1.

The actual laser-regulator supply circuit is shown in Fig. 6. It consists of a constant-current source, Q1, plus Darlington pairs Q8 and Q9, Q6 and Q7, and Q13 and Q14. These Darlington pairs are used because of their high gain and the resulting sensitive regulation they provide. Four transistors (Q9, Q7, Q14 and Q1) are arranged in series to distribute the voltage. A single transistor could not withstand the 600 volts or more that is dropped across the regulator.

The +12 V switched source generates a regulated fixed voltage at the junction of R1 and R25. Zener diode Z 1 drops 6.8 V and D5 and D6 add about 1.2 V so that the fixed voltage reference is about 8 V at the base of Q 1 . With fixed bias, Q 1 acts as a constant-current source. Resistor R2 is adjusted to deliver a

FIG. 5-SIMPLIFIED DIAGRAM OF THE laser and igniter. The igniter is a completely sealed unit.
fixed current of 5 mA . Since the laser is in series, laser current is also set to 5 mA . Resistor R 3 is a lK sensing resistor so when the current is 5 mA , the voltage at TP5 is 5 V .

When the laser is on, the 5 V appears at TP5. This voltage is coupled through D4 to the Video/Servo board and tells the circuit that the laser is on. Now when the laser ignites, this 5 V also goes to the miltivibrator and turns it off. The multivibrator is powered from the $12-\mathrm{V}$ switched source so the circuit can never operate if the player lid is open. Capacitor C2 charges to the emitter voltage of Q1. When the 12 V switched is not there (if the lid is open) the voltage on C2 reverse-biases Q1 and

FIG. 6-LASER SUPPLY REGULATOR CIRCUIT uaing Darlington paira of transistors to handle the high operating voltage.
instantly shuts down the laser.
NOTE: THE LASER MUST NEVER BE SHORTED OR BRIDGED IN ANY MANNER, NOT EVEN WITH A HIGHIMPEDANCE VOLTMETER. This protects the series transistors against cascade failure.

The last element in the laser circuit is the laser multivibrator shown in Fig. 7. It drives the laser igniter. It is a free-running type and consists of Q3 and Q4. When the player lid is closed the switched 12-V source appears and turns Q4 on through R13, and the multivibrator starts operating. The result is a $250-\mathrm{Hz}$ squarewave that drives the base of Q5, a high-current amplifier used to drive the laser igniter. The driving waveform can be monitored at TP6, BUT IS ONLY PRESENT FOR A BRIEF INSTANT DURING TURN-ON OF THE PLAYER. As soon as the laser fires, 5 V appears at TP5 and turns on Q2. This shorts Q4's base to ground through D1, disables Q4 and turns off the multivibrator.

A Darlington is used for Q4 because we need high gain to drive Q5. Diode D2 in series with the base of Q3 increases the turn-on requirement for Q 3 , to balance it with the similar turnon requirements of Q4. Diodes D3 and D20 protect against positive voltage spikes that might otherwise appear at TP6 and

FIG. 7-LASER MULTIVIBRATOR that drives the laser igniter is a freerunning type.
damage components or upset circuit operation.
That handles the operation of the laser and its associated components. Next time we will take a close look at the other circuits that are needed to make a videodisc player work. These include the video dropout detector, video FM signal processor, composite video signal processor, RF signal modulator, turntable motor control, color separator, sample detector circuits and several others that are probably new to most of us. In addition several photographs will illustrate the interior layout showing where the various circuits are physically located and how you can get at them.

Rallo-Electronics Aululo Lab Testis

 1

don't be deceived by the plain-looking front panel of this low-cost tuner from H.H. Scott, Inc. (20 Commerce Way, Woburn, MA 01801). Nor should the light weight discourage you from putting it through its paces if you are in the market for a budget-priced AM/FM stereo tuner. This tuner proves to be a superb performer for its price or even if it were priced much higher.

The front panel, shown in Fig. 1, is dominated by a relatively narrow, long dial area containing a precisely calibrated linear FM frequency scale (with markings at every 200 kHz), plus a less precisely calibrated AM frequency scale. To the left of these scales is the usual stereo indicator light. A window situated above the frequency scales and to the left of center discloses the single meter provided with the tuner. The meter acts as a zero-center indicator when tuning to FM stations and as a signal-strength indicator when the model 530 T is used in the AM mode. At the lower left of the panel is a power on/off lever, while farther to the right is located a massive tuning knob that is coupled to a reasonably effective flywheel. Next to this control are two more lever switches; one selects the stereo or mono mode, the other turns the interstation muting circuitry on or off. (It is really amazing that Scott has separated these two functions while manufacturers of much more expensive tuners and receivers have seen fit to combine them so that defeating the mute circuitry becomes impossible in the stereo mode!) Finally, a small twoposition rotary switch on the bottom right of the panel selects AM or FM reception. Although there are not many controls here to entertain the knob-twirler, just read on.

The rear panel contains one feature not usually found on tuners sold in the U.S. In addition to the terninals for connecting 300 ohm, 75 -ohm FM and external AM antennas, a ball-joint pivotable built-in ferrite-bar AM antenna, a pair of audio output jacks, a single convenience AC receptacle and a line fuseholder, there is also a three-position slide switch. The switch alters the de-emphasis of the tuner from $75 \mu \mathrm{~s}$ to either $50 \mu \mathrm{~s}$ (which is standard for European FM broadcasting), or 25μ s (required when listening to Dolby FM broadcasts with the aid of a separate Dolby decoder). Interestingly enough, the tuner's power cord is supplied separately. A needless expense, you might think? Not really, since this innovation permits Scott to supply different cords for the set if it is sold in different countries. The power-cord receptacle contains three pins for accommodating three-wire (grounded) power cords in those countries now requiring such line cords. A view of the rear panel is shown in Fig. 2.

When you first view the inside of the chassis you could get the impression that several line workers were absent the day the tuner was put together since there are several "unfilled"

MANUFACTURER'S PUBLISHED SPECIFICATIONS:

FM TUNER SECTION:

Usable Sensitivity: $10.8 \mathrm{dBf}(1.9 \mu \mathrm{~V})$. $50-\mathrm{dB}$ Quieting: mono, $16.8 \mathrm{dBf}(3.8 \mu \mathrm{~V})$; stereo, $36 \mathrm{dBf}(35 \mu \mathrm{~V})$. Selectivity: 60 dB . Capture Ratio: 1.5 dB . Distortion, 1 kHz : mono 0.15%; stereo, 0.3%. Separation at $1 \mathrm{kHz}: 45 \mathrm{~dB}$. Frequency Response: 25 Hz to 15 $\mathrm{kHz}, \pm 2.0 \mathrm{~dB}$. S/N Ratio: mono, 72 dB ; stereo, 67 dB . Spurious Rejection: 80 dB . IF Rejection: 85 dB . Image Rejection: 65 dB . Subcarrier Rejection: 58 dB . Output Voltage: 0.75 volt.

AM TUNER SECTION:

Sensitivity (Bar Antenna): $250 \mu \mathrm{~V}$-per-M. Selectivity: 40 dB . Image Rejection: 40 dB . S/N Ratio: 45 dB . Output Voltage: 0.3 volt.

GENERAL SPECIFICATIONS:

Power Requirements: 117 volts, $60 \mathrm{~Hz}, 20$ watts. Dimensions: $17 \mathrm{~W} \times 51 / 4 \mathrm{H} \times 11 / 1 / 4$ Inches D. Net Weight: 11.5 lbs . Suggested Retail Price: $\$ 199.95$.

holes in the single master PC board (see Fig. 3). Actually, we suspect that this master board was cleverly designed to accommodate a variety of tuner circuits, of which the model $530-T$ is the least expensive and the least complex. We also suspect that Scott's model $570-T$ and model $590-T$ tuners (selling for $\$ 50$ and $\$ 100$ more, respectively) use the same basic PC board with many of those holes occupied by

circuit components. We consider this good economical enginecring; it helps to keep the price down on all three models.

Circuit highlights

The FM front end of the model 530-T uses a full 4 -section tuning capacitor for FM as well as a dual-gate MOSFET for the RF amplifier stage. Three dual-element ceramic filters are used in the IF section, and a phase-locked-loop IC circuit is used for stereo multiplex decod-
ing. Figure 3 shows an internal view of the chassis. The power-supply components (including the small power transformer) are well separated from the luner circuitry itself to minimize hum and noise.

FM measurements

Table I summarizes our lab measurements on the model 530-T's FM performance. Note that. except for mono usable sensitivity (which proved to be exactly $1.9 \mu \mathrm{~V}$, or 10.8 dBf , as claimed), virtually every other performance specification exceeded the manufacturer's claims. Although Scott does not provide all the required specifications (for example, separation is given for only one frequency, as is harmonic distortion). the company could have supplied the additional data for low and high frequencies, since in all instances these values were superb. Even harmonic distortion. in the sterco mode. at 6 kHz was a very low 0.15%, and all other THD measurements (in both mono and stereo modes) were well under that maximum figure.

Stereo separation was a high 54 dB at midfrequencies (as against the 45 dB claimed). and remained a high 50 dB at 100 Hz and an even more amazing 40 dB at the 10 kHz test frequency. Muting and stereo switching thresholds were set at ideal values of $7.0 \mu \mathrm{~V}$ (22.1 dBf) and $5.0 \mu \mathrm{~V}(19.2 \mathrm{dBf})$, respectively. and muting is overcome without any transitional noise or fluctuation in amplitude of recovered signals. Dial calibration was so precise as to preclude our indicating in Table 1 any deviation from "absolute accuracy."

Frequency response in the stereo mode, as well as sterco FM separation, are shown in the scope photo of Fig. 4. The 1.8-dB tolerance cited in Table I (with respect to frequency response) is in the negative-only direction and represents the reading obtained at the $15-\mathrm{kHz}$ extreme. At 10 kHz . response was down less than 1.0 dB . The lower trace of Fig. 4 represents crosstalk and corresponds nicely with the separation figures at specific frequencies listed in Table 1.

TABLE 1 RADIO-ELECTRONICS PRODUCT TEST REPORT Manufacturer: Scott

Model: 530-T
FM PERFORMANCE MEASUREMENTS

SENSITIVITY, NOISE AND
FREEDOM FROM INTERFERENCE
IHF sensitivity, mono: ($\mu \mathrm{V}$) (dBf)
Sensitivity, stereo ($\mu \mathrm{V}$) (dBf)
$50-\mathrm{dB}$ quieting signal, mono ($\mu \mathrm{V}$) (dBf)
$50-\mathrm{dB}$ quieting signal, stereo ($\mu \mathrm{V}$) (dBf)
Maximum S / N ratio, mono (dB)
Maximum S/N ratio, stereo (dB)
Capture ratio (dB)
AM suppression (dB)
Image rejection (dB)
IF rejection (dB)
Spurious rejection (dB)
Alternate channel selectivity (dB)

FIDELITY AND DISTORTION

MEASUREMENTS
Frequency response, 50 Hz to 15 kHz ($\pm \mathrm{dB}$)
Harmonic distortion, 1 kHz , mono (\%)
Harmonic distortion, 1 kHz , stereo (\%)
Harmonic distortion, 100 Hz , mono (\%)
Harmonic distortion, 100 Hz , stereo (\%)
Harmonic distortion, 6 kHz , mono (\%)
Harmonic distortion, 6 kHz , stereo (\%)
Distortion at $50-\mathrm{dB}$ quieting, mono (\%)
Distortion at $50-\mathrm{dB}$ quieting, stereo (\%)

STEREO PERFORMANCE

MEASUREMENTS

Stereo threshold ($\mu \mathrm{V}$) (dBf)
Separation, 1 kHz (dB)
Separation, 100 Hz (dB)
Separation, 10 kHz (dB)
MISCELLANEOUS MEASUREMENTS
Muting threshold ($\mu \mathrm{V}$)
Dial calibration accuracy ($\pm \mathrm{kHz}$ at MHz)
EVALUATION OF CONTROLS,
DESIGN, CONSTRUCTION

Control layout

Ease of tuning
Accuracy of meters or other tuning aids
Usefulness of other controls
Construction and internal layout
Ease of servicing
Evaluation of extra teatures, if any
OVERALL FM PERFORMANCE RATING

R-E Evaluation Excellent Very good Excellent
Excellent
Excellent
Very good
Very good
Good
Good
Very good
Very good
Good

Good
Superb
Superb
Superb
Superb
Superb
Excellent
Good
Very good
Excellent
Superb
Superb
Superb

Good
Superb

Good
Excellent
Superb
Good
Very good
Excellent Good
Excellent

TABLE 2
RADIO-ELECTRONICS PRODUCTS TEST REPORT
Manufacturer: Scott
Model: 530-T

OVERALL PRODUCT ANAL YSIS	
Retail price	$\$ 199.95$
Price category	Low
Price/pertormance ratio	Excellent/Superb
Styling and appearance	Good
Sound quality	Excellent
Mechanical performance	Very good

Comments: We were amazed at the quality and true high-fidellty performance that Scott packs into this under $\$ 200$ little tuner. The major specifications measured fully as well as those of tuners selling for more than twice the price. Devoid of frills, this simple-looking tuner provides FM reception that is probably Jimited only by the quality of the broadcast programming itself. Without resorting to alternate-selectivity. Scott's engineers achieved just the right balance between bandwidth of the IF system and selectivity to deliver ultra-low distortion FM reception even at full (and over) modulation levels. This should not surprise old Scott fans who remember that this company first gained fame with its sophisticated tuners and receivers back in the days of vacuum tubes.

The tuner will appeal to those who travel abroad and take their hl-ff gear with them, since it offers European $50-\mu$ s de-emphasis, in addition to the U.S. standard.75- $\mu \mathrm{s}$ and Dolby $25-\mu \mathrm{s}$ de-emphasis. The owner's manual was prepared with care and uses the clever partial-page format that permits you to keep both front- and back-panel illustrations in view as you thumb through the operating instructions.

Most important, the tuner delivers excellent reception, especially when equipped with even an inexpensive directional outdoor FM antenna. Callbration is perfect from one end of the dial to the other, and center-of-channel tuning corresponds exactly with lowest-distortion tuning poịnts at any frequency, indicating careful allgnment. Admittedly, frills such as "frequency synthesis" and "quartz-lock" tuning are wonderful technological advances; but if all you want is clean FM reception and you don't have a fistful of dollars, consider the model 530-T FM-AM tuner.

Summary

An overall product analysis is given in Table 2, together with our summary comments. A tuner such as the model $530-T$ makes us wonder whether it is really worth investing in one of the more sophisticated FM tuners available today, particularly in view of the generally poor quality of program material presently being transmitted by a majority of FM broadcasters these days. Of course, there are a few
instances where additional selectivity, higher image and IF-rejection capability, and better spurious-response rejection may prove useful. but these requirements are rather rare. Such refinements as "frequency synthesis" do insure perfect tuning for least distortion. However. since the Scott model $530-T$ also achieves such perfect tuning when the meter is carefully set for a correct center-indication, if the user just has a little patience, he can save himself a
considerable amount of money while providing close-t0-optimum FM reception.

Figure 5 shows the AM frequency response. and you will note that the response is down only about 6 dB at 5 KHz . This value may not impress hi-fi buffs. but if you compare it with results obtained from the $\wedge \mathrm{M}$ sections of some more expensive tuners and receivers. you may agree that this is a most unusual $\wedge \mathrm{M} / \mathrm{FM}$ tuner at a most attractive price.

R-E

Radio-Electronics Audio Lab Tests

RS : $\mathbf{1 0 7}$
CONTRIBUTING HI-FI EDITOR

JVC AMERICA. INC.S 1979 RECEIVERS INCORporate some of the innovative and differentlooking designs that were first introduced in the company's 1977-1978 receivers. Perhaps the most outstanding fcature of JVC's model $J R-S 501$ is the full five-band graphic equalizer that replaces the usual bass and treble tone controls and offers greater llexibility than any three-control tone system in the most costly receivers.

Another unique feature of the model $J R$ $S 501$ is that, aside from the thumbwheel/ flywheel-tuning arrangement, there is not a single rotary control knob on its sleek, three-
dimensional front panel (see Fig. 1). The internal circuitry has also been significantly improved, with the power-amplifier section now fully DC-coupled. and overall rated distortion levels reduced even more from previous low ratings.

There is a shelf-like protrusion at the bottom of the panel that has a series of pushbuttons on the left-hand side, an effective tuning fly wheel and a slider-type volume control on the righthand side. Other pushbution controls include a POWER on/-off switch, an SEA record switch (that permits the pre-equalization of programs fed to connected tape decks), a tape Dubbing

MANUFACTURER'S PUBLISHED SPECIFICATIONS:

FM TUNER:

Usable Sensitivity: mono, $10.3 \mathrm{dBf}(1.8 \mu \mathrm{~V}) .50-\mathrm{dB}$ Quieting: mono, $14.8 \mathrm{dBf}(3.0 \mu \mathrm{~V})$; stereo, $37.2 \mathrm{dBf}(39.7 \mu \mathrm{~V})$. S/N Ratio: mono, 78 dB ; stereo, 70 dB . Selectivity: 80 dB . Caplure Ratio: 1.0 dB . Image Rejection: 80 dB . IF Rejection: 110 dB . AM Suppression: 65 dB . Frequency Response: 20 Hz to $15 \mathrm{kHz},+0.3,-0.8 \mathrm{~dB}$. THD: mono, 0.08% at 1 kHz and $100 \mathrm{~Hz}, 0.15 \%$ at 6 kHz ; stereo, 0.1% at 100 Hz and $1 \mathrm{kHz}, 0.2 \%$ at 6 kHz . Stereo Separation: 52 dB at $1 \mathrm{kHz}, 45 \mathrm{~dB}$ at 100 Hz and 10 kHz .

AM TUNER:

Sensitivity: $30 \mu V$ (external antenna). Selectivity: 50 dB . S/N Ratio: 55 dB .
AMPLIFIER/PREAMPLIFIER:
Power Output: 120 watts-per-channel into 8 ohms, 20 Hz to 20 kHz . Harmonic Distortion: 0.03\%. IM Distortion: 0.01\%. Damping Factor: 70. Input Sensitivity: phono, 2.5 mV ; high level, 250 mV . Phono Overload: 250 mV . Frequency Response: phono, RIAA $\pm 0.2 \mathrm{~dB}$; high level, 5 Hz to $40 \mathrm{kHz},+0,-1.0 \mathrm{~dB} . \mathrm{S} / \mathrm{N}$ Ratio (IHF A-Weighted): phono, 75 dB ; high level, 95 dB . Graphic Equalizer Center Frequencies: $40 \mathrm{~Hz}, 250$ $\mathrm{Hz}, 1 \mathrm{kHz}, 5 \mathrm{kHz}, 15 \mathrm{kHz}$. Control Range: $\pm 12 \mathrm{~dB}$.
GENERAL SPECIFICATIONS:
Dimensions: $221 / 16 \mathrm{~W} \times 6 \% / 16 \mathrm{H} \times 16^{15} / 16$ inches D. Weight: 46.2 lb . Suggested Retail Price: $\$ 700$.

switch, TAPE- 1 and TAPE- 2 monitor switches, MONO/stereo and LOUDNESS switches, and a PIIONO $1 /$ phono 2 selector switch.

Directly above the volume control is a center-detented slider balance control. Just above this switch (on the vertical section of the panel) are located five slide controls that comprise the graphic-equalizer. Above the flywheel tuning control are five light-touch rectangular pushbuttons-four select program sources and the fifth pushbutton handles FM muting. Red indicator lights adjacent to the program-selector pushbuttons illuminate 10 show the program source being listened to.

The upper left-hand section of the panel contains the AM and the lincarly calibrated FM frequency dial plus an illuminated dial pointer. Above the frequency scales, to the left, are center-of-channel and signal-strength tuning meters. To the right is a pair of symmetrically positioned power-output meters calibrated from 0.25 watts to 120 watts (referenced to an 8 -ohm load), with a stereo indicator light placed between them.

Figure 2 shows the conventional layout of the rear panel. The AM, 75 -ohm and 300 -ohm antenna terminals are on the left, with a short pivotable AM ferrite-bar antenna located directly above. Pairs of phono inputs (for connecting two turntable systems), auxiliary input, tape inputs and tape outputs and a record/play DIN multiple-pin connector are
located near the center of the panel to the right of which are spring-loaded speaker terminals (enough for two pairs of speakers) along with a pair of convenience AC receptacles (one unswitched, the other switched).

The owner's manual supplied with the Model $J R-S 50 /$ does not tell you much about the circuit design other than to highlight the fact that the power amplifier is a full DC-coupled configuration and contains no coupling capacitors either in the signals path or in the overall negative-feedback network. The manual also states (although in rather vague terms) that the receiver's amplifier circuitry is protected by a triple-protection circuit that presumably senses overdrive (current, conditions. output short circuits or excessive thermal buildup. Since no schematic diagram is provided, we treated the receiver as if it were a "black box," and simply measured its performance on the bench and in subsequent listening tests.

FM measurements

Table 1 summarizes the results of our FM measurements of the model $J R-S 501$ receiver. While mono and stereo usable sensitivity were not particularly outstanding, $50-\mathrm{dB}$ quieting was a bit better than claimed in mono and just about as claimed in stereo. Stereo threshold (or switching point) occurs at $10 \mu \mathrm{~V}(25.2 \mathrm{dBf})$, which makes that value apply also to the usable stereo sensitivity and is a bit higher than it had to be. Distortion in mono was generally a bit higher than claimed although still quite good, but. surprisingly, the stereo harmonic distortion readings were actually better than claimed and better than those obtained in mono.

The curves shown in the scope photo of Fig. 3 (one vertical division equals 10 dB of amplitude change) display an almost perfect fre-quency-response characteristic out to beyond 15 kHz , while the lower trace shows channel separation at all stereo frequencies of interest. The sharp dip (or increased separation) at 5 kHz seems unusual and we cannot explain it. except to say that we repeated the sweeps several times and always obtained this unusual result.

TABLE 1
RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: JVC America, Inc.
Model: JR-S501
FM PERFORMANCE MEASUREMENTS

SENSITIVITY, NOISE	R-E	R-E
AND FREEDOM FROM INTERFERENCE	Measurement	Evaluation
IHF sensitivity, mono: ($\mu \mathrm{V}$) (dBf$)$	2.0 (11.2)	Good
Sensitivity, stereo ($\mu \mathrm{V}$) (dBl^{\prime})	10 (25.2)	Fair
$50-\mathrm{dB}$ quieting signal, mono ($\mu \mathrm{V}$) (dBf)	2.9 (14.4)	Very good
$50-\mathrm{dB}$ quieting signal, stereo ($\mu \mathrm{V}$) (dBf)	40.0 (37.2)	Good
Maximum S/N ratio, mono (dB)	78	Excellent
Maximum S/N ratio, stereo (dB)	69	Good
Capture ratio (dB)	1.0	Excellent
AM suppression (dB).	65	Excellent
Image rejection (dB)	82	Good
IF rejection (dB)	$100+$	Excellent
Spurious rejection (dB)	98	Very good
Alternate channel selectivity (dB)	80	Excellent
FIDELITY AND DISTORTION MEASUREMENTS		
Frequency rsponse, 50 Hz to 15 kHz ($\pm \mathrm{dB}$)	0.3	Very good
Harmonic distortion, 1 kHz , mono (\%)	0.12	Excellent
Harmonic distortion, 1 kHz , stereo (\%)	0.07	Superb
Harmonic distortion, 100 Hz , mono (\%)	0.14	Excellent
Harmonic distortion, 100 Hz , stereo (\%)	0.09	Superb
Harmonic distortion, 6 kHz , mono (\%)	0.30	Good
Harmonic distortion, 6 kHz , stereo (\%)	0.13	Excellent
Distortion at 50-dB quieting, mono (\%)	0.9	Fair
Distortion at $50-\mathrm{dB}$ quieting, stereo (\%)	0.25	Very good
STEREO PERFORMANCE MEASUREMENTS		
Stereo threshold ($\mu \mathrm{V}$) (dBf)	10 (25.2)	Fair
Separation, 1 kHz (dB)	52	Excellent
Separation, $100 \mathrm{~Hz}(\mathrm{~dB})$	52	Superb
Separation, 10 kHz (dB)	38	Very good
MISCELLANEOUS MEASUREMENTS		
Muting threshold ($\mu \mathrm{V}$) (dBf)	12 (26.8)	Fair
Dial calibration accuracy ($\pm \mathrm{kHz}$ at MHz)	100	Very good
EVALUATION OF CONTROLS, CONSTRUCTION AND DESIGN		
Control layout		Excellent
Ease of tuning		Excellent
Accuracy of meters or other tuning aids		Excellent
Usefulness of other controls		Excellent
Construction and Internal layout		Very good
Ease of servicing		Good
Evaluation of extra features, If any		Very good
OVERALL FM PERFORMANCE RATING		Very good

The frequency response in AM (see Fig. 4) was no better than that typically observed on most sterco high-fidelity integrated receivers. with sharp rolloff beginning at around 2 kHz . This is no doubt why most audiophiles look down on AM radio. Yet, many AM broadcasters are proud of the fact that they transmit a wide-response signal. It's actually the existing receivers that prevent us from enjoying highquality $A M$ reception.

Amplifier measurements

Table 2 summarizes our measurements on the amplifier section of the model $J R-S 501$. The amplifier had no difficulty exceeding its high power-output rating at mid-frequencies with even some power margin to spare at the low-frequency extremes. It must be remembered there is a published distortion rating of only 0.03%, so that our power-output values are based upon the power levels obtainable before that 0.03% distortion level is reached. Actually. clipping levels are at considerably higher power-output values. Even when measured through the entire signal path (from auxiliary input to speaker outputs) high-level frequency response went all the way down to 4 Hz (and up to 40 kHz) before achieving 1 dB of attenuation.

The curves shown in Fig. 5 demonstrate the usefulness of the five graphic-equalizer slide controls. The maximum range of each slider
control is shown and, of course, it is possible to create a complex overall response curve that falls just about anywhere in the area included

in these individual curves. Center frequencies of each control were almost precisely as designated.

Figure 6 shows the low-cut filter provides steep attenuation below 20 Hz , and effectively reduces the effects of turntable rumble or other subsonic noise. The high-cut filter, with its very gradual slope and mid-frequency turnover or cut-off point, is really no more effective in reducing high-frequency noise than the upper-frequency graphic-equalizer control.

Action of the loudness control is shown in the scope photo of Fig. 7 and is typical of the loudness compensation found in most stereo recciv-

ers. Both bass and treble frequencies are emphasized as volume-control settings are lowered.

Summary

Our overall product analysis and brief summary of the receiver are given in Table 3. We have always been favorably impressed with the design of JVC's receivers, and ever since a fiveband equalizer was included in all-in-one receivers. we are even more enthusiastic. The tuner admittedly falls a bit short of state-of-the-art FM technology, but in view of the general type of FM program material and broadcast practices prevalent in the U.S.. the FM circuitry in the JVC recciver will probably not be a quality-limiting factor. The phono preamplifier, voltage amplifier and power amplifier sections of the model $J R-S 50 /$ are all beyond reproach, and the amplifier is powerful enough to drive even the least-efficient loudspeakers to full, resounding listening levels. Extended listening tests conducted at rather loud sound-pressure levels proved the receiver is extremely reliable and stable, and exhibited no undue heat buildup during either our bench or listening tests.

TABLE 2
RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: JVC America, Inc.
Madel: JR-S501
AMPLIFIER PERFORMANCE MEASUREMENTS

POWER OUTPUT CAPABILITY
RMS power/channel, 8 -ohms, 1 kHz (watts)
RMS power/channel, 8 -ohms, 20 Hz (watts)
RMS power/channel, 8 -ohms, 20 kHz (watts)
RMS power/channel, $4-\mathrm{hmms}, 1 \mathrm{kHz}$ (watts)
RMS power/channel, 4 -ohms, 20 Hz (watts)
RMS power/channel, $4-\mathrm{ohms}, 20 \mathrm{kHz}$ (watts)
Frequency limits for rated output ($\mathrm{Hz} \cdot \mathrm{kHz}$)
DISTORTION MEASUREMENTS
Harmonic distortion at rated output, 1 kHz (\%)
intermodulation distortion, rated output (\%)
Harmonic distortion at 1 -watt output, $1 \mathrm{kHz}(\%)$
Intermodulation distortion at 1 -watt output (\%)
DAMPING FACTOR, AT 8 OHMS
PHONO PREAMPLIFIER MEASUREMENTS
Frequency response (RIAA $\pm d B$)
Maximum input before overload (mV)
Hum/noise referred to full output (dB)
(at rated input sensitivity) (A-weighted)
HIGH LEVEL INPUT MEASUREMENTS
Frequency response ($\mathrm{Hz}-\mathrm{kHz}, \pm \mathrm{dB}$)
Hum/noise referred to full output (dB) (A-weighted)
Residual hum/noise (minimum volume) (dB) (A-weighted)
TONAL COMPENSATION MEASUREMENTS
Action of bass and treble controls
Action of secondary tone controls
Actlon of low-frequency filter(s)
Action of high-frequency fllter(s)
COMPONENT MATCHING MEASUREMENTS
Input sensitivity. phono 1/phono 2 (mV)
Input sensitivity, auxillary input(s) (mV)
Input sensitivity, tape input(s) (mV)
Output level, tape output(s) (mV)
Outpul level, headphone jack(s) (V or mW)

	R-E
Measurement	Evaluation
144	Excellent
121.6	Very good
120.0	Very good
170.0	Excellent
160.0	Excellent
160.0	Excellent
20-20	Good
0.025	Excellent
0.003	Superb
Less than 0.03	Excellent
0.025	Very good
78.5	Excellent
+0, -0.1	Superb
270	Superb
77	Excellent
4-40, 1.0	Excellent
105	Superb
108	Excellent
	Superb (see text)
	Superb (see text)
	Excellent

EVALUATION OF CONTROLS,

CONSTRUCTION AND DESIGN

Adequacy of program source and monltor swltching
Excellent
Adequacy of input facilities
Arrangement of controls (panel layout)
Action of controls and swltches
Design and construction
Ease of servicing
2.5/2.5

225
225
225
$750 \mathrm{mv} / 8$ ohms
R-E
Evaluation
Excellent
Very good
Excellent
Excellent Excellent
Good

Excellent
Superb Very good

Excellent

Superb Superb

Excellent
Superb

Superb (see
text)
text)
Fair

OVERALL AMPLIFIER PERFORMANCE RATING

TABLE 3
RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: JVC America, Inc.
Model: JR-S501
OVERALL PRODUCT ANALYSIS

Retail price
Price category
Price/performance ratio
Styling and appearance Sound quality Mechanical performance
$\$ 700$
Medium/high
Excellent
Superb
Very good
Excellent

Comments: Visually, the model JR-S50 1 is as different from the conventional stereo receiver as can be. Since stereo styling is largely a matter of taste, there are those who are instantly attracted to this clean, uncluttered look and those who prefer a more conventional panel layout. The built-in graphic equalizer offers a degree of tone control flexibility that far surpasses anything possible with ordinary bass and treble controls or even variable-turnover controls plus a mid-range control. FM reception was extremely stable and clear; and, with the muting switch defeated, we had no trouble picking up distant signals as well as local ones.

It has been argued that incorporating a DC amplifier circuit only in the power-amp section does not audibly improve the overall sound quallity of the system, since the signal is capacitively coupled at other points in its path. Based upon our listening tests we disagree. We listened to several direct-to-disc recordings played through the model JR-S501 and were particularly impressed with the way it handles loud musical transients and peaks. These were reproduced effortlessly and without the slightest trace of clipping distortion or listening fatigue. Considering lis high power-output capability, the inclusion of that magnificent graphic equalizer feature and the overali versatility of its controls and other features, we believe that the model JR-S501 is well priced and represents a significant improvement over JVC"s previous, receivers.

Time/Voltage Calibrator

Part 2—Precision digital test equipment requires special test instruments to insure that calibrations are within specified tolerances. This calibrator supplies time and voltage references you'll need.

DOUG FARRAR

IN THE MAY ISSUE WE DISCUSSED THE time-voltage calibrator and analyzed its various sections. Now, we are going to cover construction and calibration; along with debugging, if it should be needed.

Construction

Unless you are familiar with low-noise wiring techniques, it is advisable to use the PC board layout shown in Fig. 8. This layout minimizes ground loops and voltage spikes, resulting in very clean DC and AC signal waveforms.
You should prepare the chassis first before stuffing the PC board with parts. The cabinet specified in the Parts List has what is described as a "built-in chassis" (see Fig. 9-a), which consists of another sheet of aluminum mounted to two U brackets. Because chassis space is limited, you must discard this extra chassis base and the U-brackets as well, which however are required to hold the top of the cabinet in place. The leg of the U-bracket that is exposed is also in the way of the PC board. Use a hacksaw and remove it, as shown in Fig. 9-b, and make an L-bracket. File the edges smooth to avoid cutting yourself later on (NOTE-the chassis supplied with the kit described in the Parts List comes with this procedure already performed).

Remove the L-brackets and set them aside. Place the PC board foil-side down on the bottom of the chassis, so that it rests centered left to right, and about $1 / 4$ inch from the chassis' backwall. Mark the PC board's four mounting hole locations on the chassis, then carefully drill the spots with a $1 / 8$-inch drill bit. Refer to Fig. 10 and machine the unit's front side as
shown. Remove all burrs. I found it was easier to cover the entire chassis front with neatly placed strips of masking tape
and to draw on the tape. Then, when you cut the hole for the thumbwheel switches with a jigsaw, this protects the paint from

FIG. 8-FOIL PATTERN of the PC board reproduced half-aize. This layout was developed to provide low-noise characteristice along with freedom from unwanted ground loops and voltege apikes.

the saw's vibrations. Try hard to keep the thumbwheel-switch hole close to the dimensions shown. An oversize hole defeats the switches' self-locking mechanism.

The thumbwheel switches specified are designed to mount through a $1 / 8$-inch-

CHASSIS MODIFICATIONS
FIG. 9-THE CABINET has a built-in chassis that must be removed and modified before the PC board can be mounted. See text.
chassis' backwall, one for the power cord's strain relief, the other for mounting regulator IC45 to the chassis. Both holes should be centered top to bottom. Drill the strain-relief hole 1 inch from the chassis' left edge, and the regulator hole $31 / 2$ inch from the same edge.

Past experience has shown that the baked enamel finish on the chassis does not take dry transfer letters very well. I recommend painting the (now-machined) chassis cover with three coats of flat white lacquer, followed by two coats of flat clear lacquer. After a day of drying, you can letter this surface and then coat the letters with two or three more coats of the clear flat finish. The letters sink into the finish and are beautifully protected. This procedure was used on the unit shown in the photograph.

While the paint is drying, you can start stuffing the PC board. Solder the fortyseven jumpers and all the resistors, IC's and capacitors (in that order) on the board (see Fig. 12 and the italicized paragraph below). Only two of these components do not mount on the board: bypass capacitor C18 and +5 -voltage regulator

FIG. 10-DRILLING GUIDE for the front panel. We adviee protecting the panel's face with masking tape until all holes have been drilled.

THUMBWHEEL SWITCH MOUNTING STOPS

FIG. 11-CROSS-SECTION of the alot for the thumb switches. Add shims as shown so switches fit and are self-locking.
thick panel. Since this chassis is $1 / 16$-inch thick, you must add a $1 / 16$-inch-thick shim to the back of the chassis hole where the thumbwheel switches lock into place (see Fig. 11). Epoxy two strips of $13 / 4 \times 1 / 2 \times$ 1/16-inch aluminum (or PC-board scrap) as shown. Make sure that the strips' edges and front-panel hole edges are aligned.

Lastly, drill two holes through the

IC45. The capacitor should be mounted right on the front-panel volts binding posts. Regulator IC45 needs heat-sinking, so mount it against the chassis' backwall in the hole provided. Solder three wires to the three leads of IC4S, and run them to the circled PC board connec-tions-A, B and C. Don't bolt the IC to the chassis until you're ready to mount the board in place on its spacers.

If you have access to an accurate 41/2digit (or greater) DVM, solder capacitors C17 and C31, resistors R29-R32 and trimmer $R 35$ in place. If not, remove all these components, as well as the wire jumper marked " J "" (between IC43 and IC44. and next to R29) and insert a jumper wire in the location marked for capacitor C17. Also, if you have access to an accurate frequency meter, mount capacitor C35 and trimmer C36 as shown. If not, then substitute a 91-pF capacitor for C35 and omit the trimmer.
Transformer T1 mounts directly on the
board, but its wire leads must be trimmed down to size first. Hold the transformer near the edge of a table, so that one of its sets of wires hangs over the table edge, then cut each wire to a $1 / 4$-inch length below the table top. Repeat this procedure for the other set of wires on the other side, and then strip back the insulation $1 / 4$ inch. The transformer wires will now drop directly into the holes in the PC board, and no wire-crossing is necessary. Secure the transformer to the PC board with 4-40 $\times 1 / 2$-inch hardware, and then solder the wires in place.

Using an electric drill, twist two 30 inch wires (one black and one red) together and then cut them into 6 -, $6-$, and 14 -inch lengths. Solder these wire pairs into the PC board locations for switches S6, S7 and S9, respectively. Next, twist three color-coded 9 -inch wires together and solder them into the PC board location for toggle switch S8. Twist four 11 -inch color-coded wires together and solder them into the board locations for rotary switch S5. Lastly, twist five color-coded 20 -inch wires together and cut them into four 5 -inch pieces. These wires go to the thumb-wheel-switch terminals on the PC board.

I strongly recommend using coaxial cable to bring the volts outputs and two time outputs from the PC board out to the front panel. Although the characteristic impedance of the coax is not overly important, 50 -ohm-impedance cable, such as RG-174/U, is recommended. Using coax cable will reduce the amount of noise pickup from all the TTL circuitry feeding into the volts output. Twistedpair cable can be used instead, but don't expect the good results from the calibrator that you get using coax cable. Whatever type of cable you choose, cut three 6 -inch lengths each of the cabling. Strip $1 / 2$ inch of braid from each end (in the case of coax) of each 6 -inch length, then solder the cable into the board. Make sure that the braided shield is inserted into grounded solder pads K, R or T (not the signal end).

At this point, attach the loose ends of the wires to their respective switches (except for the thumbwheel switches), but don't actually mount the switches to the front panel yet. Bolt four $3 / 4$-inch spacers, tapped with 4-40 threads on both ends, to the chassis. Bring the power cord in through the strain-relief hole and solder it to its PC board locations, 21 and 22. Now mount the PC board on the spacers and secure in place with four more bolts.

Mount regulator IC45 against the chassis backwall (it has already been wired to the PC board). Snap the thumbwheel switches in place in the chassis panel, and then solder the four 5 -wire bundles to the appropriate switches. Be careful here because the most significant thumbwheel switch is on the left-hand side of the chassis, but it is wired to the right-hand side of the PC board. Simi-

FIG. 12-PARTS PLACEMENT DIAGRAM is superimposed on reverse of PC pattern to show location of parts and to serve as a circuit-tracing aid.
larly, the least-significant counter is located at the left side of the board. So the wires cross, and if you fail to observe this, you will get reversed front-panel digit inputs.

Insert and tighten the four binding posts ($\mathrm{JI}-\mathrm{J} 4$) and BNC connector J5 to the chassis; then solder the appropriate coax (or twisted-pair) cable to each. Attach the toggle switches and rotary switch to the chassis. Solder capacitor C18 directly to the volts binding-post connectors. This now completes construction of the Time-Voltage Calibrator.

Debugging and calibration

This operation is optional. Before applying power, use an ohmmeter to check each voltage-regulator IC output to make sure that there are no obvious dead shorts to ground. I once encountered an interesting problem with a shorted +5 -volt supply line (IC45 pin 2). By progressively removing power wires on the PC board, I traced down the short to one row of IC's. A visual inspection of that row showed nothing wrong, but by desoldering one V_{cc} pin at a time, I found an IC with a dead short between its supply lines.

Also inspect each IC visually to make sure that it is soldered onto the board correctly because if you apply power to a unit that is plugged in backwards, you will ruin the IC.

Apply power and measure all three regulator outputs with a voltmeter to check that you are getting $+5,+15$ and -5 volts. If not, shut down immediately and correct the problem. Look for open holes in the board where a component or jumper might be missing.

Set time multiplier switch $\mathbf{S 5}$ in the TTTT msec position, dial 2000 into the thumbwheel switches, and press the load time pushbutton. Using a voltmeter on the TTL TIME output, you should observe the meter stay high for 1 second and then low for another. Otherwise, you'll have to debug the time-calibrator section.

Place toggle switch S8 in the 10.000 v position and measure the volts output. After about 10 seconds, the voltmeter should measure very close to 10 volts. If not, something is faulty from IC39-b forward, and you must check it. Place switch S8 in the var position, dial in 5000 and press the load volts pushbutton. After 10 seconds, the volts output will read approximately 5 volts. If not, the TTL portion of the volts calibrator section is malfunctioning.

Once the volts and time sections are working, dial and load 5 volts and 4 seconds, then monitor the time output (not the TTL output). If you don't get a voltage swing between 0 and 5 every 2 seconds, the trouble lies somewhere around IC43-a, IC40 and/or IC 37-a.

Of course, an oscilloscope is an invaluable debugging aid, but by dialing in a very long time period (in seconds) you can slow down the time section enough for a voltmeter to be helpful. However, even if the above tests check out OK, there could still be high-frequency problems in the time section. The most difficult timing sequence is with a dialed-in value of 0010 with the time multiplier set in the TTT.T μ SEC position (i.e., a $1.0-\mu \mathrm{s}$ time period). If you can satisfy yourself that this operation works, you're home free. If not, then you may need a scope. As stated earlier, the four time counters, IC21-IC24, must only be those made by the recommended manufacturers. If the time section works from $0.1 \mu \mathrm{~s}$ to $0.9 \mu \mathrm{~s}$ but not $1.0 \mu \mathrm{~s}$, then your problem lies in the time counter.

Once the two sections are debugged you may (or may not) want to fine-tune the calibrator, depending on the equipment you have available. Apply power to the calibrator for at least 15 minutes before trimming. By this time you have selected the PC board design that matches your trimming capabilities. If you want to adjust the time section, hook up a frequency meter to the calibrator's TTL output and load in a period of $0.1 \mu \mathrm{~s}$. Adjust trimmer capacitor C36 until the meter measures exactly 10.0 MHz .
continued on page 92

BUTMCD FTHIS
 Record/Play TELEPHONE ACCESSORY

> Looking for a simple and inexpensive way to connect a tape recorder to your telephone line? If so, give this a try. Recorder isn't energized until receiver is lifted.

JULES GILDER

AT ONE TIME OR ANOTHER, MOST OF YOU have had the need to record a telephone conversation. To do so, you've probably had to hunt around for a telephone pickup coil, attach it to the phone and your recorder, hope that the batteries in your tape recorder would last and then try not to get tangled up in the wires and accidentally pull the coil away from the telephone.

With the Telecorder, you can eliminate recording problems. For less than the cost of a commercial unit that does not contain its own power supply, you can build this device which will automatically record all incoming and outgoing calls from your phone. It works with your cassette recorder and any telephone.

The Telecorder (see Fig. 1) contains a built-in regulated power supply that can be used to power the recorder and save batteries. This is particularly important in continuous monitoring applications.

About the circuit

The heart of the Telecorder is the interface module (Fig. 2). This module is the element that interfaces the phone line with the recorder. When it is connected to the red and green wires of the telephone, it senses the voltage across these two wires and produces a switching signal that energizes a relay connected across terminals 3 and 5. A relay switching signal is produced every time the telephone receiver is lifted off the hook.

The interface module also isolates the recorder from the phone line and protects the input of the tape recorder from damage that might be caused by the 90 -volt ringing signal. A $10-\mu \mathrm{F}$ nonpolarized capacitor is placed across the relay to keep the ring signal from affecting it.

The audio signal from the phone line is fed through the module into the auxiliary audio input jack of the cassette recorder. The operation of the tape recorder is controlled by the relay, whose normally closed contacts are connected to the remote switch jack on the recorder.

FIG. 1-SCHEMATIC of the Telecorder. The regulated supply can be used to power the recorder, thus eliminating the drain on its batteries. The interface device connects Telecorder to phone line.

The design of the power-supply portion of the Telecorder is relatively straightforward. The AC line voltage is steppeddown and rectified, and then applied to a regulating circuit. The supply's output voltage is determined by the voltage across Zener diode DI minus the 0.7 -volt drop across transistor Q1. If your recorder requires a 7.5 -volt supply, substitute an

FIG. 2-INTERFACE DEVICE provides matching and isolation between phone and recorder.
8.2 -volt Zener diode for the 6.8 -volt diode specified.

Construction

The circuit can be easily assembled on a perforated board (see Fig. 3). Except for the two panel lights and the control switch, all components are mounted directly on the circuit board. When installing the semiconductors, make sure to observe the proper polarities and heatsink their leads while soldering.

In the prototype, the circuit board was mounted in a $61 / 4 \times 3^{1 / 4} \times 2$-inch plastic utility box. Drill three holes in the box to accommodate wires going to and from the Telecorder. Make sure to line these holes with rubber grommets to prevent frayed

FIG. 3-INTERIOR VIEW OF THE TELECORDER showe the location of all of the componente. The eimplicity of the circuit makes point-to-point wiring on perforated board easy to use.

	PARTS LIST
Resistors $1 / 4$ watt, 10% unless otherwise noted	
	R1-220 ohms
	R2-1 ohm, 1 watt
	R3-1800 ohms
	C1-100 $\mu \mathrm{F}, 16$ volts, electrolytic
	$\mathrm{C} 2-500 \mu \mathrm{~F}, 16$ volts, electrolytic
	C3-10 $\mathrm{F}, 50$ volts, nonpolarized
	D1-6.8-volt Zener diode
	RECT1-diode bridge, 50 volts PIV
	Q1-2N3055
	LM1, LM2 -6-volt lamp
	S1-DPDT center OFF switch
	PL1-coaxial power plug
	PL2-subminiature phone plug
	PL3-miniature phone plug
	PL4-telephone jack-in-a-plug
	RY1-24-volt DPDT relay, coil resistance, 2000 ohms
	T1-power transformer, 115-volt primary, 6.3 -volt secondary
	Interface module (see Fig. 2)

wires.
While the layout of the circuit is not critical, it is important that the audio input lead to the tape recorder be shielded to prevent $60-\mathrm{Hz}$ hum from being picked up. A two-conductor shielded cable is recommended, with the shield connected to ground at the PC board. Connections to plugs PL2 and PL 3 are not critical in that any wire can be connected to the tip or the body of the plug. The interface module can be built by following the schematic diagram in Fig. 2 and using discrete components.

Installation and operation

The Telecorder can be connected to any telephone or directly to the telephone junction box. But the easiest way to hook it up is to use a telephone jack/plug, available from most electronic parts suppliers. This device fits in between a standard telephone plug and a standard jack. continued on page 98

TЕ cimorocy riopar
 ALL ABOUT Switching Pow

Abstract

The switching-type voltage regulator is a fairly recent development aimed at greater efficiency and a reduction of power lost in series-pass transistors in more conventional power supplies.

L. STEVEN CHEAIRS

FOR YEARS WE HAVE BECOME INCREASING. ly aware of the duality that exists in signal-processing electronics. That is, for each problem there seems to be both a digital and analog solution. When the hobbyist encounters the problem of volt-age-regulator design, the common solution has been to use a linear unit; the three-terminal series-pass voltage regulators are an example. These monolithic integrated circuits have simplified powersupply design. Series-pass, or shunt or linear regulators are easy to use and possess a very low noise and ripple component in their output. For these reasons, they have dominated the market for a long time.

In the linear units, the power-regulating transistor operates in a continuousconduction mode; thus, it dissipates a great deal of power at high current levels. The efficiency of these regulators is determined by the ratio of $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\mathrm{IN}^{-}}$for a fixed output voltage, the efficiency decreases as the input voltage increases. When the output voltage $\left(\mathrm{V}_{\text {out }}\right)$ is significantly different from the input voltage $\left(\mathrm{V}_{1 \mathrm{~N}}\right)$, the series-pass transistor must dissipate the additional power; thus, large transistors and heat sinks are needed. Furthermore, the linear regulator requires that the voltage at the output be between ground potential and the input level. The series-pass transistors require that large transformers and filter capacitors be used.

The other solution?

The digital face of a voltage regulator is the switcher. The switching regulator, a more recent development, is replacing the linear regulator in many applications where high efficiency and size are important. In some cases, the switching regula-
tor is combined with a linear regulatorthus creating an enhanced hybrid unit. The switching regulator has high efficiency for all input and output conditions (up to 90%).

Whereas the linear regulators are simple devices, the switching regulators are more complex and require a few external components (along with some knowledge as to their use). A second problem is that they contribute to the output ripple. The switching regulator's response time to rapid changes in load current is poor compared with the series-pass units; this is because switching regulators can only reach a new equilibrium after the average inductor current has reached a new stea-dy-state condition (this problem can be solved by keeping the difference between the input and output voltages large, or by using only low inductor values, which implies high capacitor values).

Another problem is that the switching regulator generates noise, which is due to its basic design. The power, from the primary source, is applied as pulses-efficiency considerations dictate that these pulses have short rise- and falltimes. In those designs where there is a significant series impedance between the regulator and the supply voltage, any rapid change in current will most likely generate noise. To reduce this problem, filter the input of the regulator, increase the switching time, or reduce the series impedance.
Even with all the disadvantages described above, the switching regulator occupies a front-line position due to the following advantages: a switching regulator can be built small and lightweight and can be made very efficient. These regulators can be driven with very poorly filtered DC (or directly from the threephase rectifiers (without filtering) in
high-power applications). The switching regulator can be designed with excellent load-transient properties-thus, loadcurrent step increases cause only relatively small instantaneous changes in the output voltage (generally less than a few hundred microseconds). These translate into power supplies with small transformers, minimum cooling, low operating cost, low power consumption and high efficiency.

The linear regulator must have the input voltage greater than the output ($\left|\mathrm{V}_{\text {IN }}\right|>\left|\mathrm{V}_{\text {out }}\right|$). The switching regulator can be designed as a step-up regulator ($\mathrm{V}_{\text {out }}>\mathrm{V}_{\text {IN }}$), or as a step-down regulator ($\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\text {IN }}$), or as a voltage inverter ($\mathrm{V}_{\text {out's polarity }}$ is the opposite of $\mathrm{V}_{\text {IN }}$'s polarity). As with the linear regulators, monolithic IC's have made the design of switching regulators relatively easy, and a host of IC's are available to further simplify this design.

The basic configurations

Unlike a linear regulator, switching regulators use transistor switches in a nonlinear fashion to store energy in an inductor and capacitor; this energy is then supplied to the load as needed. Since the power transistor is used as a switch, it is either off or saturated (except during very brief transitions between these two states); the voltage is applied across the inductor rather than across the transistor, as with the linear regulator. The seriespass transistor dissipates power while an inductor does not; this provides the switching regulator with its high efficiency.

The switch is turned on and off at a frequency that is determined by the input voltages, output voltages and load current in order to provide the required power to
the load. Through a feedback circuit, the output-voltage level is sensed by the control circuitry, which then modifies the switching rate as required to keep a constant output voltage. The output capacitor stores energy during the transistor's off period; this provides an average flow of current to the load. Also, when the transistor is off, the energy stored in the inductor maintains current flow to the load; current-flow return is through the diode. The ESR (Equivalent Series Resistance) of the capacitor for frequencies greater than 20 kHz is of prime importance. Even when low ESR capacitors (high-quality components) are used, a larger than normal capacitance value is required to achieve the required ripple level.

Figure 1-a shows the step-up switching regulator; i.e., its output voltage is greater than the input voltage. When the transistor saturates, point X will be near ground potential; thus voltage $\mathrm{V}_{\text {IN }}$, minus the saturation voltage, is applied to the inductor. This causes current i_{L} to increase at a linear rate. The diode is reverse-biased, since the voltage at point X is less than the output voltage and no current flows to the output. When the transistor is switched off, current i_{L} continues to flow since it cannot change instantaneously. The voltage at point X now becomes equal to the sum of the output voltage and the voltage drop across the diode. In this state, current will flow through the diode (since it is now forward-biased) to the output capacitor and into the load-it will decrease at a linear rate. The cycle switching time of the transistor is varied to cause the average current to the output to equal the required load current.

The off-time is a function of the input voltage (V_{IN}), the output voltage ($\mathrm{V}_{\mathrm{out}}$), the voltage drop across the diode (V_{D}) and the inductor. The on-time is dependent upon the transistor saturation voltage, the input voltage and the inductor. Whereas the ratio of the on-time to the off-time is a function of maximum output current (as is the case for circuit voltage). When the saturation voltage and voltage drop across the diode are small compared with the input and output voltages, then the efficiency approaches 100%. Ripple (a function of the output capacitor, offtime, output current and input voltage) is reduced by using a large output capacitor; this does not affect circuit performance. This type of circuit is sometimes also called a flyback converter; it is always identified by the fact that the inductor is parallel to the load, causing its stored energy to flow to the load only when the transistor is off.

Figure 1-b shows the basic step-down voltage regulator circuit, $\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\text {IN }}$. In this configuration, sometimes called "a forward converter," the inductor is in series with the output load; thus, the energy is transferred directly to the load and inductor simultaneously when the transistor is both saturated and off. When the power switch is saturated, the voltage at point X increases to the input voltage minus the transistor saturation voltage. The difference between the voltage at point X and the output voltage is across the inductor. As previously stated, the current flows into the load via the transistor, inductor and output capacitor. When the voltage at the output increases beyond a predetermined level, the transistor is switched off via a feedback circuit. After

a

b

FIG. 1-BASIC SWITCHING REGULATORS. Step-up is shown in a step-down is shown in b, and inverting-type ls shown in C.
the switch is shut off, current continues to flow for a while. Next, the voltage at point X decreases to minus the voltage drop of the diode. The diode acts as one leg of the inductor's energy path; the voltage across the inductor is minus the sum of the ouput voltage and the voltage drop across the diode. The inductor current will fall towards ground until the transistor is turned on again.

The duty-cycle is adjusted so that the average inductor current is equal to the output-load current; the average capacitor current is zero, causing the output voltage to be constant.

Peak current is a function of the input, output and switch voltages plus the amount of inductance and the amount of time the power transistor is saturated. In normal operation, the on-time is the variable. The proper ratio of on-time to offtime is a function of the input voltage, output voltage, the voltage across the diode, and to the voltage drop across the transistor. The off-time is determined by the output voltage, the diode-voltage drop and the inductor's size. Efficiency again approaches 100% when the transistor and diode-voltage drops are small. Output ripple is a function of the duty-cycle and the value of the output capacitor. The larger the value of the capacitor, the lower the ripple.

Figure $1-\mathrm{c}$ is the voltage inverter. This circuit generates a negative output for a positive input. When the power transistor is saturated, the voltage at point X increases to a point that is equal to the input voltage minus the voltage drop across the transistor. This voltage is applied to the inductor, causing its current to increase linearly. Next, the switch opens and the voltage at point X drops to minus the output voltage minus the voltage drop across the diode. This will forward-bias the diode and the inductor current decays as a linear function. As with the step-down circuit, current from the input flows only when the transistor is saturated.

For this configuration, optimum ontime and off-time values are dependent upon the input voltage, output voltage
and saturation voltage of the transistor plus the amount of inductance. The ratio of the on-time and off-time is dependent upon just the voltages. Efficiency again depends upon the input and output voltages. Ripple is minimized by making the value of the output capacitor large.

Another possible design is the pushpull configuration that can also provide a stepped-up and stepped-down or inverted output (see Fig. 2). With this design, multiple outputs are possible-just by adding taps to the secondary winding or by using multiple secondary windings. Each winding needs its own diodes and filter capacitors. The push-pull converter doubles the ripple-current frequency to the output filter, reducing output-voltage ripple. The transformer can be made small since it excites the core alternately in both directions. One problem is that core saturation can occur since push-pull converter transformers are subject to DC imbalance.
components required to form a flybacktype switching regulator; it consists of a power diode, an operational amplifier, a temperature-compensated 1.3 -volt reference, a variable duty-cycle oscillator, a current-limiting circuit, an error amplifier, and a high-current, high-voltage output switch. Using the internal switchingtransistor, operation from 2.5 volts to 40 volts with output currents to 1.5 A is possible. If voltages or current levels exceed these values, then an external NPN or PNP transistor can be used.
The $\mu \mathrm{A} 78 \mathrm{~S} 40$ was designed for use as a step-up, step-down, or inverting flybacktype switching regulator. It can also be used to construct a linear series-pass reg. ulator. It features a wide voltage range, a high efficiency, low drift and low standby power dissipation; and is well suited for battery-operated systems. The oscillator frequency, 100 Hz to 100 kHz , is determined by an external capacitor-the duty-cycle is fixed internally at 8:1.

FIG. 2-PUSH-PULL SWITCHING REGULATOR uses diodes to direct current flow. When 01 is saturafed, diode D1 conducts. When Q1 is off, both diodes conduct. When Q2 is safurated, diode D1 conducts.
thus, for 5 -volt logic systems an efficient regulator circuit is possible. Most switching regulators experience a serious drop in efficiency for low-level applications. But due to its extremely low stand-by current rating, the $\mu \mathrm{A} 78 \mathrm{~S} 40$ regulator retains its high efficiency.
A second type of monolithic switching regulator is Motorola's MC3520/3420. This switch-mode regulator-control circuit is an inverter that provides all the circuitry for a pulse-width-modulation push-pull, bridge, or series-type power supply. This IC is designed so as to provide drive current to the base of two external power transistors that are 180° out of phase.
An internal voltage reference is provided for possible use in setting the deadtime or for reference to an external error amplifier. Triangular waveforms that are symmetrical and ramp between 2.4 volts and 6.0 volts are produced by an internal ramp generator. The frequency of these waveforms is determined by an external resistor and capacitor. A pulse-widthmodulation comparator compares the control voltage to the ramp-generator output. Thus, the amplitude of the con-trol-voltage input determines the output pulse width (duty-cycle). The duty-cycle of each output can be varied from 50% to 0%, minus dead-time. For a 0% dutycycle, the control voltage is about 6.0 and for a 50% duty-cycle, approximately 2.4 .

Another comparator allows the independent adjustment of the dead-time (or

FIG. 3-PUSH-PULL CONFIGURATIONS. Single-ended is shown in a push-pull is ahown in b and lull-bridge is shown in C

The transformer primary can be connected in a number of ways-for example, single-ended, push-pull or full bridge as shown in Fig. 3. This is excellent when used for a high-power, single-output, high-performance voltage regulator with a ripple component less than 1%.

Monolithic building blocks.

Currently, there are a variety of monolithic switching-regulator IC's on the market. In this article, we'll look at two units representing the two basic types.
The first unit is the $\mu \mathrm{A} 78 \mathrm{~S} 40$ universal switching-regulator subsystem from Fairchild. This IC contains all the internal

The current-limiting circuit causes the duty-cycle to vary by varying the on-time. An external resistor, $R_{s c}$, is used as a current-level sensor. The current-limiting circuit senses the amount of current flow through the switching transistor and then changes the oscillator duty-cycle (ontime only) to limit the peak current, thus protecting the switching transistor. The temperature-compensated voltage reference, $0.1 \mathrm{mV} / \mathrm{per}{ }^{\circ} \mathrm{C}$, can provide 10 mA without using an external transistor. An internal high-gain differential error amplifier disables the switching transistor whenever the output voltage is too high. This unit requires only 2.0 mA at 5 volts;
maximum duty-cycle). By using an external voltage divider, the voltage reference is divided and applied to the negative input of the dead-time comparator. Thus, a stable dead-time is obtained to prevent the two output transistors from saturating simultaneously during 50% dutycycles.

The internal phase splitter was included to obtain two 180° out-of-phase outputs to use in push-pull applications. It is formed by a toggle-type flip-flop.

Now that we've been introduced to the switching-type power supply, we'll call a halt until next month when we go into circuit design.

As companies go, we're not exactly youngsters anymore. We've been around since 1951.

But we're grabbing with more gusto now than ever. With a complete line of Grabber ${ }^{\text {TM }}$ test clips of unusual tenacity.

Grabbers provide a secure connection that won't pop off. Yet their gold plated hooks hold delicate wires gently - no sharp teeth to do damage.

FREE 1979 YEARBCOK CATALOG Contains 100 pages of adapters. cable assemblies. jacks. plugs. boxes, sockeis. conneciors. jumpers, clips, probes. patch cords. wire, and much more Yours free upon request. See our pages in EEM.

Grabbers are designed to simplify and expedite testing of everything from conventional conponents to maximum density packaging. And they come in a wide range of sizes.

Other-end connectors include banana plugs, pin plugs, and 6-32 threaded connectors. Or, you can wire directly into the Grabber, using our simplified assembly procedure.

Our new catalog has the whole line of Grabbers. In fact, it's a grab-bag of more than 640 quality products you know and trust. ITT Pomona Electronics, 1500 East Ninth Street, Pomona, CA $91766 \cdot$ Phone: (714) 623-3463 • TWX: 910-581-3822 AVAILABLE THROUGH YOUR FAVORITE ELLECTRONIC PARTS DISTRIBUTOR

Em PHILIPS HICKOK DORIC

DIGITAL MULTIMETERS

FREE CASE with 8020A
LCR-740
Transistorized LCR Bridge

$\$ 269 .{ }^{95}$
Regular price $\$ 320$

- Highly accurate 3 unit digital readout.
- Measures inductance (L), Capacitance (C). and Resistance (R), within $\pm 0.5 \%$ accuracy.
- Operates on one 9 V battery

New Sweep/Function Generator

New Portable Digital Capacitance Meter

Solid-State RF Signal Generator

3-1/2 Digit DMM with .5\% Accuracy
2810

New Low Distortion Function Generator
${ }_{3010} 3010$ Bramessan

- Generaloce sima, revires and tranngio
\qquad

Regular price $\$ 175$

Simpon $B K$ קrecisou LEADER

 TRIPLETT VIZ nenDual-Trace 5" 30MHz Triggered Scope...
QUANTITIES LIMITED

PORTABLE OSCILLOSCOPES

$\sqrt{\square}$ DATA PRECISION

30MHz Dual Trace with Delay Line

LBO-520
$\$ 889 .^{95}$
Regular price $\$ 1050$.

- Single Shol Trigger on CM- 18 CM- 2 helps
guesswork or time wasting double checks
- Buill-u 12 OnanoSec delay line simplilies viewing ol leading edge of Dulse
- or pulse train
- zonsm sensilivity lacilitares accurale signal wewngtram iow ievel sources - 5° PDA CAT assures Dright. sharo luace at all sweep speeds - 2 Axis modulation.
- Numerous apolications - VTR microdrocessors, compuless. prouuchon

20MHz Dual Trace
LBO-508
$\$ 639 .{ }^{95}$
Rergular price s7ill.

2. Including TV synch.

- Add \& subiraci modes. (wilh CH-2 inveri). for quick analysis ol signats. amplifude. elc
- Automatic select in dual mode, of alternates choo
 - 17.5 nanosec Rise Time lor easy viewing of high speed pulses \quad Instrumernto Corp.

LAST
CHANCE

PRICE INCREASE COMING
Prices do not include shipping.

5MHz Solid State 3" Oscilloscope

\$214.95
Regular price $\$ 255$.

Bun pascision

New 15 MHz portable $3^{\prime \prime}$ dual-trace scope BN PaEcision

$\$ 699 .{ }^{95}$

1432
man

- Bump bisa, wi.n. nom
- 2myidem vencol onenumy

- Abobeum iastion na nubustion

THE TEST EQUIPMENT SPECIALISTS

HOBBY CORNER

A look at Zener diodes-what they are and how they work. EARL "DOC" SAVAGE, K4SDS, HOBBY EDITOR

IN THE AUGUST 1978 COLUMN, WE USED A Zener diode in the construction of an expanded-scale voltmeter to monitor the AC line and other voltages. This month we'll take a close look at Zener diodeshow they work, how you can "make" your own and how to determine unknown values.

Zener diode action

You know that a diode rectifier that is connected cathode-to-positive, as shown in Fig. I, will not conduct. Let's see what happens as the applied voltage starts at zero and increases.

FIG. 1
At first, no current flows through the diode and the milliammeter reads zero. (Actually, there are a few microamperes of current, but that is not enough to matter in most cases.) Since no significant current flows then through the resistor, there is no $I \times R$ drop across $i t$, and the voltmeter reads the same as the applied voltage.

This situation continues as you increase the applied voltage until you reach a certain value. Just what that value is varies from one diode to the next. It can range from a volt or two up to several hundred volts. At that value, called the "knee," things being to happen.

Suddenly, the diode begins to conduct and the milliammeter shows rising current. The voltmeter reading, which has been following the applied voltage, stops rising. Even though the applied voltage continues to increase, the voltmeter remains within a few volts of what it was when the diode current started.

Figure 2 shows a graph of the current and the applied voltage. If it were not for the resistor limiting the current, the "avalanche" of current would quickly overheat and burn out the diode.

The above description is of Zener action: from no current to high current at a specific voltage level. The voltage across
the diode rises to that voltage and then stays there. This voltage value is called the Zener voltage.

You may have noted that nothing was said earlier about using a Zener diode. That's because practically all diodes behave this way, and those with the sharpest knee are known as Zener diodes.

Since the voltage across a Zener diode remains constant in spite of higher applied voltages (within certain limits), this diode is often used as a voltage regulator. Figure 3 shows a circuit diagram that uses the usual symbol for a Zener diode. Compare this circuit with the circuit in Fig. 1, and you will note that the output will not exceed the Zener diode voltage even as the input goes up. In practice, a higher voltage is applied so that the output stays at the Zener voltage level.

Making Zener diodes

You can make-actually, find-Zener diodes in strange places. As already indicated, almost any signal or rectifier diode displays Zener diode action. So, first look in your diode storage box. You have only to determine the diode's knee voltage and its power capability (wattage).

A less obvious source of Zener diodes is your stock of transistors. As you know, a transistor consists of two diodes (junctions). Either of these diodes can be used as a Zener diode. You can even use "burned-out" transistors if only one of the internal diodes has been destroyed.

An NPN transistor's diodes behave like those shown in Fig. 4. Obviously, in a PNP transistor, each diode would be pointing in the opposite direction. In using these NPN-transistor diodes, don't forget to connect them, i.e., cathode-topositive.

FIG. 4
Transistor diodes may vary in Zener voltage from a few volts to several hundred in the power transistors. One caution: After you use a transistor for a Zener diode, don't use it later as a transistor because its efficiency will have decreased.

Finding the working values

Finding the working values for the unknown Zener diodes requires the answers to three questions:

1. Which end is the cathode?
2. What is its knee voltage?
3. What is the power capability?

Of course, you can check diode polarity with an ohmmeter, but this can cause two difficulties. First, some ranges of many meters can destroy small signal diodes and transistors. Second, you must know and remember which lead is positive when the meter is on a resistance range. It is not always the red lead. One of mine is like that-very confusing! I prefer to toss together the little diode-identifier circuit shown in Fig. 5 since it is easy and safe.

FIG. 5
In this circuit, the 200 -ohm resistor limits the maximum current to about 7.5 mA . The meter used can be your VOM on a low current range, or a panel meter. To check a diode, just place it across the terminals as shown and then reverse it.

If there is current in both directions (when it is first connected and when it is reversed), the diode is bad. The diode is good if there is current in only one direction. The cathode is the end on the plus

FIG. 6
terminal when no current flows.
This diode tester also checks the diode junctions in transistors-base-to-emitter and base-to-collector. Incidentally, as shown in Fig. 4, if the base is the anode, the transistor is an NPN; if the base is the cathode, it is a PNP transistor.

To determine the Zener voltage, you need a source of variable DC. You can use a variable bench-power supply if you have one, or you can assemble one of those shown in Fig. 6. In each case, the ratings of the rectifier and filter components must be chosen to match the maximum AC source available. When you wire the filament transformers, if one does not add to the preceding one, just reverse either the primary or secondary connections. I'm sure other possible combinations will occur to you.

Actually, any voltage source will doeven batteries. I have an old Heath C-3 capacitor checker that provides currentlimited voltages of 50 to 500 in several steps. Although it is intended for checking leakage in electrolytic capacitors, this unit is ideal for checking higher-voltage Zener diodes.

Whatever voltage source you use, the variable DC is applied to the circuit shown in Fig. 7. The 100 -ohm resistor limits the current on low voltages. The voltmeter must be able to read the maximum applied DC.
continued on page 82

communications coriner

What is the " T " band; where did it come from and how is it used.
 HERB FRIEDMAN, COMMUNICATIONS EDITOR

IT WASN'T TOO LONG AGO THAT THE TERMS "VHF monitor radio" or "VHF radio" meant a receiver that was capable of receiving low-band frequencies of 30-50 MHz , high-band frequencies of $150-170$ MHz (possibly also with the 144- to 148 MHz amateur frequency band) or both low- and high-band frequencies. The virtual explosion in the use of VHF frequencies soon had the Federal Communications Commission opening a UHF band covering the $450-470-\mathrm{MHz}$ range.

As you might well imagine, with all the public and private individuals running around with walkie-talkies in their hands, even the new UHF band became overcrowded. Before we could get used to VHF radios that covered "all" public service bands-low, high and UHF-we found ourselves reading about UHF scanners with both UHF bands, though few users had any idea what the word "both" meant. According to certain VHF radio dealers, some potential VHF/UHF hobbyists believed both UHF bands meant the UHF public service band and the $420-\mathrm{MHz}$ amateur band (which some scanners actually did cover).

In actual fact, however, both UHF bands means the $450-470-\mathrm{MHz}$ UHF band and the " T " band, which are the UHF frequencies of $470-512 \mathrm{MHz}$, representing UHF television Channels 14 through 20. Some of the most modern VHF/UHF scanner promotional material specifically state coverage of the UHF and "T" frequency bands, rather than both UHF bands.

The " T " band was created in this manner: Before anyone could even start to remember the frequencies of the UHF band, they were practically used up in many metropolitan areas, particularly in view of the booming popularity of the UHF walkie-talkie. But right above the UHF band were the lower UHF TV frequencies that were little used throughout the U.S.; these frequencies could be accommodated by the same technology used for the UHF band. There's essentially no difference between a transceiver designed for about 470 MHz and one designed for 472 MHz or even 512 MHz . So the FCC determined that TV Channels 14-20 should be used for UHF
communications whenever they were not assigned to for a local TV station.

The frequency allotment for each TV channel is identical. For example, if 476.5625 MHz is a local government assignment for Channel 15 , the Channel 16 assignment is 482.5625 MHz and the Channel 17 assignment is exactly 6 MHz higher. This makes it easy to assign frequencies on either side of the channels actually used by TV transmitters. Table I lists the various " T " bands.

TABLE 1-THE "T" BAND Frequency Groups*

$470-476 \mathrm{MHz}$, TV Channel 14
476-482 MHz, TV Channel 15
482-488 MHz, TV Channel 16
488-494 MHz, TV Channel 17
494-500 MHz, TV Channel 18
$500-506 \mathrm{MHz}$, TV Channel 19
506-512 MHz, TV Channel 20
*Those frequency groups not assigned to a local TV station might be assigned for UHF communications.

Naturally, the question is asked, "How can one front end handle a factory alignment for a total spectrum of at least 450-512 MHz?' In the good old days (i.e., 1977) the answer was: "not too well." Generally, the user requested a factory alignment for maximum sensitivity to a specific UHF frequency, or to a frequency band about 6 MHz wide. Today, thanks to microprocessors, front-end UHF tuning is usually tracked automatically to the operating frequency, and the user has no problems regardless of which end of the UHF band he is monitoring.

CB-to beep or not to beep

With CB sales in the doldrums, just about everyone concerned is hoping computerized transceivers will rekindle the imaginations of old and new CB'ers and lead to greater replacement sales and more high-end sales among new licensees.

While the terms "computer" or "microprocessor" conjure up visions of a new era in CB communications, so far the onboard microprocessor has been integrated only with the receiver. The processor generally provides some form of memorycontrolled scanning whereby you can program up to 5 or 10 channels to be continuously scanned for busy or clear conditions. Or it allows you to program a primary and alternate channel for operation and monitoring, or for operation and automatic switching to the secondary channel (the exact type of scanning depends on the design developed by the individual manufacturer).

There is a divergence of opinion on a function of importance to the user; it concerns tactile feedback. As calculator manufacturers learned too late, people need to be certain they have properly entered a numeral or a function on a keyboard. Calculators with keypads that did not produce a decided "click" or "snap" didn't do well in the marketplace. Several of the touch-to-operate keypads had to incorporate a beep tone to generate customer interest.

A similar situation is developing with the computerized CB transceivers. Even though all present models incorporate a tactile entry capability, whereby you sense a click or snap upon depressing a key, sometimes you can get a gut feeling that an entry didn't take, and some microprocessor designs make it a bit of a hassle to check a memory entry.

The first manufacturer to solve the tactile sensation problem is SBE, Inc. They provide both tactile and auditory confirmation of a channel entry. On the SBE Sidebander VI, an AM/SSB computerized transceiver, all the keypad switches have tactile feedback that let you feel the entry as the key is depressed. In addition, depressing the CHANNEL (programming) entry key generates a low tone in the speaker. A higher pitched tone is generated when the actual channel number is entered into memory or directly accessed. It's almost identical to the "tone confirmation" used in some state-of-the-art computer terminals. Although admittedly not the most important feature of $C B$ receivers, it is very reassuring to have and may become a standard feature on most of the higher priced computcrized transceivers.
continued on page 74

There's only one way to have the newest and most unique top-value electronic products...choose and build from the nearly 400 fascinating kits

 you'll find in this new
namar men aeorn carseg no an See the world's fire Electronic Weather Computer II indicates, stores and retrieves all emperature, pressure and wind data or

Plus hundreds of top-performing, value-priced electronic kit products for home, hobby or business. See the most powerful personal computer systems you can buy with complete software and peripherals. See the Heathkit Continuing Education Self-Learning Programs in Basic and Advanced Electronics, Automotive Electrical, Test Instruments and Novice and General Amateur Radio Licenses - the most efficient and economical way to stay on top of our electronics world! FILL-IN COUPON AND SEND TODAY.
If coupon Is missing, write Heath Co.,
Dept. 020-540, Benton Harbor MI 49022.
Every Heathkit product is backed by world-famous technical service and counsel - plus sales and service facllities at 54 Heathkit Electronic Centers coast-to-coast (units of of your phone directory for the center nearest you.

SEND FOR YOUR FREE COPY TODAY!

This coupon will bring you the fascinating Schober color catalog which describes the organs and shows you how easy it is to assemble them from Schober's complete kits. Include $\$ 1$ if you want a 12 -inch demo record.

The Schofer Organ Corp., Dept. RE-185 43 West 61st Street, New York, N.Y. 10023
\square Please send me the Schober Organ Kit Catalog
\square Enclosed is my $\$ 1$ for the 12 -inch demo record.

Name
Address

This is easyanyone can solderWITH KESTER SOLDER
 KESTER sader
 Handymen! Hobbyists! DO-IT-YOURSELFERS!

City _ State__Zip__

Let Kester Solder aid you in your home repairs or hobbies. For that household item that needs repairing - a radio, TV, model train, jewelry, appliances, minor electrical repairs, plumbing, etc. - Save money - repair it yourself. Soldering with Kester is a simple, inexpensive way to permanently join two metals
When you Solder go "First Class" - use Kester Solder.
For valuable soldering information send self-addressed stamped envelope to Kester for a FREE Copy of "Soldering Simplified".

4201 WRIGHTWOOD AVENUE/CHICAGO, ILLINOIS 60639

COMMUNICATIONS CORNER
continued from page 72

CB and the fuzz

A lot of newspaper publicity lately has concerned a few individuals who beat a police radar-supported speeding ticket by establishing that a CB transmission caused certain radar speed detectors to give erroneous readings.

As with almost everything else, only the pioneers are winners-the first few to "beat the radar." Be advised that CB jamming has been confirmed in only one particular type of police radar. If your local police department uses a different radar system, you can tape down the press-to-talk switch on your mike and it won't make any difference. Similarly, be careful of the radar pistols that are the same type used to clock the speed of a pitched baseball when it crosses home plate. By the time your radar detector senses the radar signal, you've been clocked and possibly from the sides, rear, or above.

But is it talk power?

Many CB'ers assumed that the FCC's limitation on 100% modulation from the type-approved transceivers would forever put an end to "splash," which is when the modulation on one channel is heard on several other channels. Unfortunately, as many have learned, you can have 100% modulation limiting and still have "splash." This effect is actually caused by distortion products that are generated by a severely clipped and poorly filtered

FIG. 1-THE DIRECT 27-MHZ OUTPUT of iwo CB transceivers modulated by 1000 Hz ted directly into the microphone through a microphone coupler. The signal level represents a "loud voice." The transceiver that produced the top trace maintaina wavelorm purity by adjusting the overall amplifier gain to provide 100% modulation limiting.
modulation waveform. Whether you have a clean signal or not depends on how the modulation-limiting capability is attained in your particular transceiver. If your transceiver uses a μ max-type limiter, this combination of a variable-gain amplifier and a peak-modulation suppressor will produce the waveform shown in the top trace of Fig. 1-about $85 \% 1095 \%$ modulation with very little distortion of 1000 -
continued on page 82

PLUG IT IN AND TAKE COMMAND

X-10 Remote Control For Lights and Appliances

NO WIBES NO HASSLES

System X-10 requires no speciat wiring or complicated installation. Simply plug the Command Console into your wall outlet in any desired lecation in your home. Plug each lamp or appliance intc the appropriate module and then plug that module into any wall outlet. Any number of command consoles may be ised in a single system.

TOTAL CONVENIENCE

With System X -10 at your side, you can operate almost every light and electrical appliance in your home without leaving the comfort of your easy chair. Imagine turning on a TV set or stereo; even dimming a light in the next room without moving from your chair.
It may sound like one of those electronic devices found in a spy thriller, but you can have one today.
And how many times have you left a light or an electrical appliance on overnight simply because you were too tired or too lazy to turn it off? Thirk of the money you can save on electric bills with System X-10. Turn off heaters or appliances from any location in jour home without a lot of running around.

MICROPROCESSOR BASED DESICN

The BSRX-10 System uses the latest digital techniques for trouble-iree operation. Digital pulse codes are sent through the power lines to assure reliable control throughout the system. Amazingly compact the command console is only $4334^{\prime \prime} \times 31 / 2^{\prime \prime} \times 31 / 2^{\prime \prime}$.

LAMP MODULE

Each module will control any incandescent lamp rated up to 300 watts from control sig als received from the Command Console. Functions include on and off, brighten and dim. UL listed.

APPLIANGE MODULE

Each module receives signals from the Command Console to turn appliances on and off; such as TV, stereo, fan, etc. Maximum appliance ratings: Resistive load-15 amps., Motor load - $1 / 3$ HP, Incandescent Lamp - 500 wats. UL listed.

WALL SWITCH MODULE NOW AVAILABLE

Receives signals from the Command Console to control ncandescent lamps normally operated by a wall switch up :o 500 watts. Installs just like any normal wall switch. Eunctions include on and off by remote or local control and כrighten and dim by remote control. UL listed.

GETTING STARTED

Basic starter kit includes: 1-Command Console, 2-Lamp Modules, 1-Appliance Module. Only $\$ 87.95$ plus $\$ 3.00$ shipping and handling. Extra Lamp and Appliance Modules $\$ 16.00$ each. Wall switch modules also $\$ 16.00$ each. Extra Command Consoles $\$ 39.95$ each.

How the automatic brightness limiter circuit works and how to troubleshoot it.
 JACK DARR, SERVICE EDITOR

there's a circuit that has become very common in solid-state color TVthe automatic brightness limiter. This circuit seems to be a mystery to many technicians (it was to me!). The most commonly used circuit looks a little unusual, but once you boil it down to fundamentals, it'll hopefully become clearer.

Basically, this is what these circuits do: Screen brightness is directly related to the amount of beam current drawn by the picture tube. So, the circuits monitor this current. The bottom end of the high-voltage supply is returned to ground through a small resistor. The DC voltage drop across this is directly proportional to the beam current, since the beam current flows through it. Check to see if the bottom end of the high-voltage winding of the flyback does not return to common or boost. If it doesn't, then the automatic brightness limiter circuit is being used.

The small DC voltage developed across the resistor is negative with respect to ground. Why is this so? (This puzzled me until I checked.) Because electrons leave the picture tube cathodes and flow to the screen, then they return to ground through the high-voltage supply. So, the electron flow through this resistor develops a negative voltage. The end of a resistor that electrons flow into will be more negative than the other end-this is ground here. The higher the beam current, the higher this DC voltage. (See Fig. 1)

In color sets, the beam current is directly controlled by the bias on the video amplifier stages, which control the cathode voltages of the picture tube.

Almost all of these are DC-coupled. We can control the beam current by controlling the bias on one of these transistors, even in an early stage.

Many sets use a DC-amplifier stage to sense the beam current, whose output controls the bias on the video stage(s). These sets are designed so that if the beam current exceeds the desired level, the brightness limiter circuit will automatically reduce the beam current. This tends to hold the brightness at the level to which it was set by the brightness control, despite picture content in terms of black to white. (Black is zero beam current or cutoff, and white is maximum beam current. Therefore, an all-white raster draws the most beam current.)
brightness. The variation is deliberately slowed down to avoid rapid fluctuations. This is accomplished by connecting a large capacitor to the base of Q4 to slow down the change.

You can pin down problems in this circuit by measuring the DC voltages on the brightness limiter transistor (Q5), the brightnss control transistor (Q4) and luminance driver transistor. The DC voltage on the emitter of Q5 should go more negative with a white raster or a very light picture. If the emitter voltage is varying but the collector voltage does not vary, then Q5 could be open. If the collector voltage of Q5 varies normally but the collector voltage of Q 4 does not, then you can suspect Q4 is open.

Other problems will display typical symptoms. If the brightness is too high, although the brightness and brightness range controls are properly set and reacting OK, check all the parts, including

FIG. 2

In many sets, the sense voltage is fed into a resistor that is also part of a voltage divider fed from a low DC supply. Figure 2 is a diagram of a circuit used in a Magnavox T815 chassis. This circuit is designed so that the negative voltage developed by the normal beam current through RIO is balanced out by the positive voltage of the divider, leaving the control voltage at zero. The control voltage varies the bias of transistor Q5, which is directly coupled to brightness transistor Q4. This transistor, in turn, controls a luminance-driver transistor (not shown in Fig. 2) that does the actual work.

In normal operation, transistor Q5 is in the cutoff state and has no effect. If the beam current goes up, the control voltage goes more negative, and Q5 starts conducting. When QS conducts, it reduces the conduction of Q4 and holds down the
resistors, capacitors, etc., in the automatic brightness limiter circuitry. R-E

service

questions

HIGH-VOLTAGE PROBLEMS

We had written each other about an odd problem in a Zenith chassis 14A9C50. After 10 to 20 minutes, the high voltage dropped to about 13 kV and the grid of the 6 HV 5 regulator would go more positive. I changed the tube in the customer's home along with other HV tubes, but the problem was still there. You said that grid emission in the 6HV5 could cause this problem. So, I brought it into the shop.
continued on page 78

NOW THERE ARE SIMPSON DMM's choose the one that's best for you!

THE LATEST! Model 463, CORDLESS with LCD readout, 200 -hour battery operation, 26 ranges, 0.2% DC V accuracy pact package.

All Simpson Digital Multimeters Have

reliable overload-protected LSI circuitry, easy-to-read 3-1/2-digit displays, automatic polarity. 200-hour burn-in backed by a 1-year guarantee. A full line of optional accessories.

For ${ }^{\text {s }} 161$

Popular Compact Model 461 with 26 pushbutton ranges, 0.25% DC \vee accuracy.

For $\$ 199$

Autoranging Compact Model 462 with batteries, charger/ adapter. 0.25% DC V accuracy.

For ${ }^{5} 310$
360-2 Digital VOM with 0.25% DC V accuracy, 28 ranges, low-power ohms, AC/battery operation.

CHOOSE THE ONE THAT'S BEST FOR YOU.
SEE THEM AT YOUR LOCAL SIMPSON DISTRIBUTOR.

You don't waste a second on "mechanics" with A P All-Circuit Evaluators.

You figure out the circuit you want, then plug it in for testing. You decide to improve your layout, and you make your moves as quickly as you think them up. There's just no faster or easier way to build and test circuits and circuit ideas.

But just because breadboarding is now such a cinch, don't get the idea that you don't have electronic integrity. Our solderless plug-in tie
points are made of a special noncorroding alloy. Use them as often as you like.
How many tie points do you need? Our smallest ACE has 728, our largest has 3,648 . And all of them accept all DIP sizes.
Everything is quality all the way. You can even see the difference in our harder, shinier plastic matrix. See for yourself. Phone (toll-free) 800-321-9668 for the address of your nearby A P Products dealer. And ask for our complete A P catalog, The Faster and Easier Book.

AP PRODUCTS incorporated
Box 110B• 72 Corwin Drive
Painesville, Dhio 44077
Tel. 216/354-2101
TWX: 810-425-2250
Faster and Easier is what we're all about.

I changed out the two VDR's in the circuit, assuming they were bad-same trouble. I figured it couldn't be my new 6 HV5 tube, or could it? So I changed the tube again and the whole problem cleared up! The only bright spot was that later on I got another set with the same chassis and the same symptoms. I replaced both VDR's and the 6HV5, and ... the set took off like gangbusters!
I just thought you'd like a little feedback. The crystal ball was right again!
(Thanks very much to Jim Hoffmann of Hoffmann Communications, Rochester, NY.)

hORIZONTAL OSCILLATOR COIL

l've been looking for a horizontal oscillator coil for a Dumont-Emerson model 41-P01. The manufacturer says it's no longer available. Is there any substi-rute?-L. B., Washington, DC.
Thordarson's Transformer Guide shows this chassis and a substitute for the coil. The original part number is 716151 , and the Thordarson replacement number is HS-27.

NO VERTICAL SWEEP

This Sylvania model E2l-03 came in with no vertical sweep at all. There's a thin horizontal line across the screen. It looks like the service switch is in the service position. I've run into this situation before so 1 check all the solder joints on the terminal strip at the back of the deflection yoke. And I resolder them if they're bad.

Thanks to Fay Jackson, Fay Jackson TV, Driggs, ID. for this tip.

DAMPER TUBE TROUBLE

Ken Krueger of Milwaukee, WI, sends along some very interesting data about damper tube problems. He says the problems could be caused by the tubes themselves, in an unusual way!

Some damper tubes carry dual markings. Those labeled "6CJ3/6DW4" may have a heater current of only 1.2 amp instead of the normal 6 CJ3 1.8 -imp heater current. Zenith and other sets used a special circuit: the heaters of the damper and high-voltage regulator are wired in series across a 12.6 -volt winding. The reason for this circuit scheme is that if the high-voltage regulator tube burns out, the damper goes dark and the set shuts down. Special pairs of tubes should be used; 6 HV5 and 6CJ3, for example. The 6HV5 heater current is 1.8 amp . So, two tubes in series must have the same heater current.

This causes several problems if the 1.2amp 6CJ3 tubes are used. First, the highvoltage regulator won't heat up fast enough, and the high voltage goes way up. Later on, the regulator pulls the high
One-Stop Component Center

EXCITING NEW KITS!!

Regulated Power Supply

* Provides 3 basic waveforms: sine, triangle \& square wave * Frequency range from 1 Hz to 100 K Hz
* Output amplitude from O -volts to over 6 volts (peak to peak)
* Uses a 12 V supply or a $\pm 6 \mathrm{~V}$ split supply
* Includes chip, P.C. board, components and instructions. JE2206B

NOW!!! OVER 300 AUTHORIZED			HERE'S JUST A SAMPLING:		
Alabama		ILLinois (Contunued)	NEBRASKA (Continued)	TENNESSEE (Continued) Byre Shod	
Mobile ALASKA	Latavettr Radro Eiectronics		Omatha \quad Hrathkit Electionic Crnter Omand Omdha Compuby Store	Knoxville Nashuile	Byre Shop Electra Distribuling Co
Anchorage	TV Mart	Schaumburg Data Domain	NEVADA	TEXAS	
ARIZONA	ruma	INDIANA	Lus Vegas Century 23	Amarillo Com	oniputer Encounters Inc.
Yurid	Yunia Electronics	East Cricago Acro Electronits Corp	NEW JERSEV	Oallas Houston	CompuStiop
CALIFORNIA		IOWA	Brykpown Radro Shack Assochde Store Chery Hill The Coniputer Eilloonurn	Houston Houstor	Computer Center CompuShop
Befflionmr Berketey	Eatis Hobby Shop Al Lasher Electronics	Indidatald KANSAS	Cherry Pompton Lake Computer Corner	Houston	Interactive Compurers
Mission V	wer Electronics Corp	Wichits Anloreur	of New Jerser	San Antomio	Sherman Elecrronics
Monterey		pment Company	Ramsey Typetronic Computer Store		Supply inc
Oceenside	Elecrronic Center	KENTUCKY Radio Electronic	NEWMEXICO Manme's Efectronic Supoly Las Cruces		
Palo Alto	Zack Electronics Dow Rado inc	$\begin{aligned} \text { Lexington } & \left.\begin{array}{r}\text { Radio Electronic } \\ \text { EquiDment }\end{array}\right)\end{aligned}$	Las Cruces Manme's Electrontic Suddy NEW YORK		ne Elecironic Supply Co.
Sacrament	Heathkrt Electronic Centar	LO	Endwell \quad Cornguter Tree ine	VIRGINIA	
Sacramiento	Zact	Baton Rouge Petrian Electromics	Kingston Greytock Efectronics	Alexandria	Oomputer Hardware Store
San Carios	\% H H Ousier Store	Houma Peitican Electiontes	New York Computer Mart of New York	Alexandria Head	athkif Electronic Center
San Diego	Rado Shack A S C Mira Meso	Mersite Pelican Electronics	Trov Troban Efectronics Unice Am Com Electronts	Charlotresville Hamplon	Latavette Radio Lafavette Radio
San Fernando	San Fernando Electronics	Churchudle Churchumfe Electronics	NORTH CAROLINA	Nortolk	vec Electronics Coro.
San Francisco	Zack Electrontcs	Damascus Damascus CB	Boone Alohs Oigital Systems	Richmond	vec Electronics Coro
Son Jose	United Radio \& TV Supply	La Vate $\quad J$ \& M Elactronics	Ourham Fufureworld	Viruma Beach	The Computet piace that Electronic Center
San Luas Obispo	Mod Srute	Rockville \quad Computer Workshop Rockville	Greensboro By Shop of Ratiogh Ratergis	Viruinid Beach	kit Elecrontic Center
Santa Ana	Oualiv Electronics	Towson Baynesvifle Electronirs inc	NORTH DAKOTA	Longvic w	Progress Electronics
Santa Crua	Santa Crue Electronics	Towson Heathkit Electronic Center	Fargo Thr Computer Compaly	Moses Lake	Ron's Electronics
Santa Marra	Caps Electronics	MASSACHUSETTS	OHIO	Pasco	Aiverview Eiecrronics
Sarta Monted	Mission Control	Pirssteld Pitrstreld Rado Co inc	${ }^{\text {Bucyrus M M M }}$ Meatectron	Seartie	Amateur Radia Suppiv
Susum City	- Bure Shod	Walthath Computer Mart inc	Cincinnapt Heathkit Electronic Cent		
Sunnyvale	Sunny vale Efectromis	Worcester RM Electronics	Columbus Heathkit Electronic Center Oavion Atrar Computer Center	Seattle Sookane	Empure Electronics
Vallejo		M	Oavion Reynordsburg Alrair Computer Center		Personal Computers C\& G Electronics
Wamur	of Walnut Creak	Derrois Heathkit Electronic Center	OKLAHOMA	WEST VIRGINIA	
COLORADO		Fint Hobov Electronic Center	Okiahoma City Bris. Bytes \& Micros	Morgantown	ecrio Distriburing Co
Aurord	Com Co Electronits	Lansing Futton Radio Supoly Co	OREGON	Wheeting	
CONNECTICUT		Midtand Computionix Corp	Aibanl Oreqon Ham Sales	WISCONSIN	
Bridqepors	Bridgeport Computer	Mi Clenvens The Computer Store	Coos Bay Herrick Electronics	West Al/s	Oison Electronics
FLORIDA		Niles Nites Radoo Suppiy	Portiand Portland Radio Supply		
Fi. Lauderdare	Computers for You	minnesota	Salem Computer Pathways		
georgia		Ouluth Northwest Radio of Duluth	PENNSYLAVANIA		
Atlan	Aldarta Computer Mars	Hopkins Meathkir Elec rronc Cent Sr Paut Meathkt Electronic Center	Hershey Microcomputer Systerms in Prisburgn Meathkn Elecronic Cen	Albrrta (Caigary) Ontario (Willowdale	The Computer Shop Home Computer
	integrated Cir	Sr Paut Heathmit Electronic Cent	Prtisburgh Hearnktl Electronic Cenmer GYC Conipany		Centre
idaho	Inegrate	El Oorado Springs Brckman Elretronics	RHODE ISLAND	Ouebec (Montreal)	ano's Merocente
Idutho Falts	Audiotronics	MONTANA	Cranston Jabbour Electromes City	ENGLAND	
ILLINOIS		Bullings	Pawluckef Jabour Electromics City	Berkshire	Wbedr Compuring Store
Eva		boremidn Electionic Service \& Dist	TENNESSEE	GUAM	fiunds Electronics
Evanston	Sare Elecrromic Corp	NEBRASKA	Chartanoogy Willdm's Oald Comp Div	PANAMA	
Grovelarnd	Moyer Electronics	Lincoin Alfar Conidurer Center Lincoln \quad Scort Electronic Supoly inc	Clarksville \quad Wagnon's Surrea Center Cookeville	Pantma City SINGAPORE	Sonttet, S A Inter tidae (pTE)Lid

Five models available. Universal tinned buses, pads or plain. 0.042 inch diameter holes on 0.1 inch grid for mounting anything anywhere. For interface, memory, breadboarding.

R681-2 RECEPTACLE FITS 8803 MOTHERBOARD Model R681-1 has 0.062 inch long 0.025 inch square tails.

TEFZEL* Insulation Wire Wrapping Tools:
 P184 with 100 feet of wire, $\$ 30.00$.
BEAUTIFUL VP2 ENCLOSURE-supplied completely assembled for packaging.
S-100 based systems. Clear aluminum with blue vinyl finished slide-off sides, top, and perforated bottom cover : heavy chassis plate, removable front and rear panels, adjustable
connector/Motherboard mountirg struts, card guides (plastic guides supplied uninstalled). VP2, \$159.00. VP1,
 cards mount perpendicular to front. $\$ 163.00$. BP17-9 accessory back panel, $\$ 10.95$.

Low-noise model 8803 S-100 Motherboard not shown. Eleven positions ready for connectors. Glass epoxy, solder rrasked etched circuitry for passive and active termination, twelve tantalum capacitors and instructions. \$29.50.
*DuPont
trademark Prices subject to change without notice.
Send for complete data. Packaging systems for other card sizes and systems, rack mounting are available
VECTOR ELECTRONIC COMPANY, INC. 12460 Gladstone Avenue, SyImar, CA 91342 telephone (213) 365-9661; TWX (910) 496-1539
voltage down, and the sweep decreases, causing a narrow raster.

The other pair of tubes, the 6 JH 5 regulator and the 6DN3 damper, both have a $2.4-\mathrm{amp}$ heater current. Plus the 6.JK5 regulator $/ 6 \mathrm{CJ} 3$ damper tube combination is rated at 1.8 amp .

Many thanks, Ken, for this information. We appreciate it.

ALWAYS CHECK THE FIGURES

Thanks very much for your letter on the horizontal instability in the Philco model 21L23. I was at the end of my rope and was shotgunning the whole circuit! When I checked back, I found I'd replaced the $390-p F$ coupling capacitor with the wrong value! Putting in a new one with exactly the right value fixed the prob-leml-D. McK., Fall River, MA.

Quite a long time ago 1 kept getting funny results when replacing bypass capacitors. After much head-scratching, I discovered that I had several (new) capacitors in my drawer. marked $0.001 \mu \mathrm{~F}$. My capacitor tester showed plainly that they werc $0.0001 \mu \mathrm{~F}$. quite a difference! Moral: when in doubt, check!

WHAT'S A "BARKLEIGH" TV?

Do you have any information on a TV set called a "Barkleigh"? Neither Sarns, Sanyo nor anyone else has any information. The problem lies in the horizontal sync, but we don't want to work on a sef without a schematic.-J. C., Slidell, LA.

The reader then wrote again to let us know that the Barkleigh was a set manufactured in Korea, and sold by a New Orleans discount house.

The problem was found and fixed! Someone in the TV plant had apparently used a pair of cutters to clip off the longer leads on the PC board. However, he forgot to resolder the leads with bad joints. After about 25 of these leads were resoldered, the set works!

R-E

WHERE ELSE BUT DAVIS ?

600 MHz Mini Counter at ${ }^{s} 14 g^{95}$

All Davis Frequency Counters deliver highest quality at low cost. But Series 7200 plug-in or battery-powered Mini Counters are truly minimal cost, general purpose instruments that sacrifice no basic performance characteristics. No other counter offers such superior features at Mini Counters' prices. One year warranty on assembled units, 90 -day on kit components.
2 MOOELS: Kit $\$ 149.95$ Assembled $\$ 199.95$

- All Metal Cabinel 8 Digit $4^{\prime \prime}$ LED Display 115 V or 12 V operation
- 8 Digit. 4" LED Display : Selectable Gate Times. $1 \& 1 \mathrm{sec}$ - Crystal Time Base (I ppm after cal.)

OPTIONS: Portable w/Ni-Cad Battery (Built-in Charger) $\$ 39.95$ Crystal Oven (1 ppm 10 to $50^{\circ} \mathrm{C}$) $\$ 39.95$ Handie $\$ 5.00$
Order direct from factory. Add $\$ 3.00$ for shipping. $\$ 1.00$ extra for C.O.D., and 7% sales tax in N.Y. State. Payment by certified check, money order. Master Charge, VISA. Credit-rated company PO. accepted. Money back guarantee if returned in good con
dition in 10 days. Kits returnable only unassembled dition in 10 days. Kits returnable only unassembled
For more information, request FREE DESCRIPTIVE LITERATURE, or for in-depth preview, send $\$ 3.00$ for 32 -page INSTRUCTION MANUAL. Detailed, illustrated. Credited against purchase of elther unit

DISTRIBUTOR INQUIRIES INVITED
Affordable quality is the Davis difference.
DAVIS ELECTRONICS
636 Sheridan Drive, Tonawanda. N.Y. 14150 • 716/874-5848

JUST WRAP TOOL WITH ONE 50 FT. ROLL OF WIRE		
COLOR	PART NO.	U.S. LIST PRICE
BLUE WHITE YELLOW AED	$\begin{aligned} & \text { JW.1-B } \\ & \text { JW-1-W } \\ & \text { JW-1-Y } \\ & \text { JW-1-R } \end{aligned}$	$\begin{array}{r} 514.95 \\ 14.95 \\ 14.95 \\ 14.95 \end{array}$
\square	REPLACEMENT ROLL OF WIRE SO FT.	
BLUE WHITE YELLOW RED	R.JW.B R.JW.W R.JW. $\mathbf{~ R}$ R.JW•R	$\begin{aligned} & 2.98 \\ & 2.98 \\ & 2.98 \\ & 2.98 \end{aligned}$

MHT GUT? MTT STRIP? MHY SLT?
 WHY NOT...

- .025" Square Posts
- Daisy Chain or Point To Point
- No Stripping or Slitting Required ...JUST WRAP tm....
- Built In Cut Off
- Easy Loading of Wire
- Available Wire Colors: Blue, White, Red \& Yellow

\$14 ${ }^{95}$

DAISY CHAIN

COMMUNICATIONS CORNER

 continued from page 74Hz fed directly into the microphone.
If your rig has a wide-open mikepreamplifier and straight peak clipping, you will see the waveform that is shown in the lower trace of Fig. I (with the same signal fed into the mike). Note how the peak clipping produces sharp squarewaves whose harmonics spread out over adjacent channels. Both rigs meet the 100%-modulation-limiting requirement, but the signal waveform that created the top trace obviously has a "cleaner" sound and greater "talk power."

R-E

HOBBY CORNER

continued from page 71
The diode is connected as shown, cath-ode-to-positive. The voltage is increased slowly, and the reading on the voltmeter rises with it while the milliammeter remains at zero. When the Zener knee is reached, the milliammeter begins to show current and the voltmeter stops rising (or nearly so). Do not allow more than a few milliamperes to flow through the Zener diode for more than a short time.
When the voltmeter reading levels off, even with briefly applied higher input voltage, the meter reading is the Zener

THE BENCH-TYPE DMM'S FROM SOAR . . THEY FIT YOUR BUDGET AND ALL OF YOUR NEEDS.
 High accuracy, dependability, five function modes, $3^{11 / 2}$ and $41 / 2$ digit displays, auto ranging, automatic zero adjustment, automatic polarity indication, battery operation or optional AC to DC adapters-these are just some of the features that make SOAR's bench-type DMM'S different and better.
 Take our MC-545. It's priced below \$290, and it measures DC voltages to $1000 \mathrm{~V}, \mathrm{AC}$ voltages to 750 V , DC and AC current to 1000 mA , and resistance to 20 meg . Maximum indication is 19999 or - 19999. It also comes with an optional BCD output $(8,4,2,1)$ for connecting the multimeter between a CPU and a digital recorder.

To get the full story, call or write for a free catalog on SOAR's entire line of dependable and economical test instruments.
voltage of that diode.
The third and final question posed earlier about the unknown Zener diode is its wattage rating. About the best you can do is to apply overvoltage (and high current) until the Zener diode burns out and then compute $P=I \times E$.

FIG. 7
Fortunately, however, you can guess at the power rating from the size and form of the diode. To obtain a basis for comparison, take a close look at some Zener diodes at your local distributor. Obviously, it is better to underrate the diode than to overrate it. Also, in applying your self-rated Zener diodes, keep in mind that heat is the enemy, so use regular heat sinks on metal Zeners (both the diode and the transistor variety)
There you have the Zener diode sto-ry-or most of it. You should be able to devise any kind you need without breaking the bank - even big models to replace voltage-regular tubes in older tube-type equipment

R-E

String Synthesizers

 Can Be: Just strings...But when designed by Marvin Jones they have:
violins/cello/piano, variable chorusing, keyboard split, synthesizer interface, variable sustain controls, jacks for foot controls, dual violin/cello mixers, separate mixable piano output, stereo string \mathcal{E} computer interface options.

just $\$ 295$ kit $\$ 600$ assembled from litis You're gonna love it ! TELL ME MORE
(') Send Assembly \& Using Manual \$5 refundable upon purchase Stringz ' n ' Thingz
() SFND FREE CATALOG
name:
Address
City:
State:
: $\quad \mathrm{i}$
ip:
 ELECTRONICS Dept. 6-R 1020 W. Wilshire Blvd., Oklahoma City, OK 73116 (405) 843.9626

 Allthe most wantep fatures

 Allthe most wantep fatures ata Mos Waniti pric...

 ata Mos Waniti pric...}

BIG $1 / 2^{\prime \prime}$ HIGH LCD DISPLAY USE INDOORS OR OUT 200 HOUR $9 V$ BATTERY LIFE AUTO ZERO, POLARITY, OVERRANGE INDICATION 100 mV DC F.S. SENSITIVITY 19 RANGES AND FUNCTIONS

X 10 DCV probe'adapter, availatile for protecting insut up to 10KX

TME HICKOK ELECTRICAL NSTAUMENY CO

Here is the handfull of accuracy you've been waiting for. Handsomely encased. Compact. Efficient. Only 12 ounces. Hickok's exciting. new LX 303, $31 / 2$ digit Mini-Multimeter with high quality components. one year guarantee and rugged Cycotac* case offers features previously found only in expensive units.. at a price under $\$ 75.00$! So why wait any longer? The amazing LX 303 is here, NOW! Another American made test equipment breakthrough from H ckok, The Value Innova:or. Order today!

CIRCLE is ON FREE MFORMATIOW CNB
ayour theal Hickok distributor or order below

SPECIFICATIONS:

DC VOLTS (5 RANOES): 0.1 mV to 1000V: Aocuracy $\pm 0.5 \%$ rdg $\pm 0.5 \%$ \%.s. I Input imped: $10 \mathrm{M} \Omega$. Max. input 1 kV except 500 V on 200 mV range.
AC VOLTS (40 Hz to 5 kHz): 0.1 V to 600 V ; Accuracy: $\pm 1.0 \% \mathrm{rdg} \pm 0.5 \%$ f.s. $(-2 \mathrm{~dB}$ max at 5 kHz); Mex input: 600 V .
RESISTANCE (6 LOW POWER RANGES 0.12 to $20 \mathrm{M} \Omega$; Accuracy: $\pm 0.5 \% \mathrm{rdg}=0.5 \% \mathrm{f.s}.(=15 \% \mathrm{rdg}$ on $20 \mathrm{M} \Omega$ range); input. protecied 10.1 gover th ranges.
DC CURRENT (6 RANGES): 0 i 0 h 100 mA : Accuracy: $\pm 1.0 \%$ rog $\pm 0.5 \%$ f
DIMENSIONS AND WEIGHT: $5-7 / 8^{\prime \prime} \times 3-3 / 8^{\prime \prime} \times$
$1.3 / 4^{n}, 12$ oz.; POWER: 9 V batt. (not incl.) or Hickok AC adapter; READ RATE: 3/sec. OPERATING TEMPERATURE: $0^{\circ}-50^{\circ} \mathrm{C}$.

newpradurats

250-MHZ FREQUENCY COUNTER, model LDC823, features an 8 -digit fluorescent display, a variable sensitivity to 20 mV , pushbutton attenuation, and a selectable 50 -ohm or 1-megohm input impedance. The counter measures frequency from 10 Hz to 250 MHz , with 0.1 -, 1-, or 10 -

CIRCLE 151 ON FREE INFORMATION CARD
second gate times. Three timebases are available: standard timebase offering 5-ppm temperature stability, crystal oscillator with 1-ppm stability, and a crystal-oven oscillator with $0.02-\mathrm{ppm}$
stability. Suggested retail price: \$449.95 -Leader Instruments Corp., 151 Dupont St., Plainview. NY 11803.

SIGNAL GENERATOR, model R-1201A, covers a frequency range of $100 \mathrm{~Hz}-1000 \mathrm{MHz}$ in $100-\mathrm{Hz}$ steps in continuous-wave, FM or AM modes. The

CIRCLE 152 ON FREE INFORMATION CARD
instrument's $100-\mathrm{Hz}$ resolution and shielded output support any high-frequency system to 100 MHz , as well as CB or $800-\mathrm{MHz}$ bands. Specifications: spurious signal rejection, -40 dB (below 110 MHz), -50 dB (above 110 MHz); harmonics are 25 dB below the fundamental. The signal
generator is overload-protected. Suggested retail price: \$4325.-Motorola Inc., Communications Div., 1301 Algonquin Rd., Schaumburg. IL 60196.

DIGITAL MULTIMETER, model MC-545, is a $41 / 2-$ digit bench instrument that has five functions and provides automatic zeroing and polarity indications. A BCD output $(8,4,2,1)$ can be used to connect the DMM between a CPU and a digital recorder. The unit measures voltages from 2-1000 AC and DC; current from 2-1000 mA; and

CIRCLE 153 ON FREE INFORMATION CARD
resistance to 200 megohms. Suggested retai price: \$289.95.-SOAR Corp., 200 13th Ave., Ronkonkoma, NY 11779.

AUTOMATIC WIRE STRIPPER, model $70334 C$, strips 22-gauge to 8 -gauge solid or standard wire very fast and can remove insulation up to $1 /$-inch thick. The jaws hold wire lirmly until cushion-grip

CIRCLE 154 ON FREE INFORMATION CARD
handles are released. The model 70334C is available at local distributors.-Vaco Products Co., 1510 Skokie Blvd., Northbrook, IL 60062.

PORTABLE DIGITAL MULTIMETERS, modeIS Tech 300 and Tech 310, are $31 / 2$-digit LCD portable DMM's leaturing CMOS LSI circuitry. The Tech 300 offers 0.5% accuracy over 5 DC ranges ($200 \mathrm{mV}-1500$ volis), with a 22 -megohm input impedance; measures up to 1000 volts RMS over a $10-\mathrm{kHz}$ bandwidth; and measures current (AC or DC) from $200 \mu \mathrm{~A}-2 \mathrm{~A}$.

The Tech 310 has 0.25% accuracy over 5
ranges to 1500 volts with a 22 -megohm input impedance; includes insta-Ohms IC test function for making continuity checks; and provides a 10amp AC/DC measurement range.

Both instruments are fully overload-pro-tected-voltage ranges to above 1500 VDC or 1000 VAC RMS; and resistance ranges to 300

CIRCLE 155 ON FREE INFORMATION CARD

VDC or RMS. A 9 -volt battery, spare fuse, salety test leads and user's manual come with each meter; optional accessories include carrying cases, probes and tips, and a test lead kit. Suggested retail prices: the model Tech 300, $\$ 100$; the model Tech 310, \$130. -Beckman Instruments, Inc., 2500 Harbor Blvd., Fullerton, CA 92634.

29-RANGE HAND-HELD DMM, model 935, has a basic sensitivity of $100 \mu \mathrm{~V}$, both in DC and AC measuring functions. The meter provides 5 ranges of DC voltage measurements with 100% overrange capability; it measures from 100 V to 1000 V in either polarity, with both plus and minus sign displayed. The DC function is protected to

A fine selection of small tools, measuring instruments, hard-to-find items for shop, home and lab. Convenient one-stop shopping for technicians, engineers, craftsmen, hobbyists. Major credit cards accepted, satisfaction assured. Get your NATCAM catalog today.

National Camera, Inc. 2000 West Union Ave., Dupt. GBF Englewoed co sotio USA

CIRCLE 34 ON FREE INFORMATION CARD

And still your best source for replacement use.

Since RCA's flameproof resistor line was first announced in 1974, the line has included the values and ratings most needed in modern electronics circuitry. Available in $1 / 4,1 / 2,1$ watt and 2 watt ratings from 0.1 ohm to 1.5 megohms , these high-quality metal-film resistors can be used in nearly all applications calling for 2,5 , or 10 percent tolerances.
RCA flameproof resistors are attractively packaged in easy-to-spot blister packages, color coded by wattage ratings.

RCA now offers more values where you need them most.

RCA has added a total of 120 new flameproof resistors - all in the low values: from 0.1 to 9.1 ohms in $1 / 2,1$ and 2 watt ratings.

RCA's line is still first in its field and is still your best choice for the flameproof resistors you need most. For full information, contact your RCA distributor. Or write to RCA Distributor and Special Products Division, 2000 Clements Bridge Road, Deptford, N.J. 08096.

BEST IN NEW ELECTRONICS B00KS

\square Making and Using Electricity From the Sun 144 p., 85 HI.

\square Lasers, the Light Fantastic $294 \mathrm{p} ., 158 \mathrm{il}$
The Power Supply Handbook 420 p., 292 in \square The Complete Handbook of Robotics 364 p., 137 il \square Atificial intellience 252 p .., 118 iL ,
 \square Habh of Remote Controf \& Automation Tech. 294 p., 250 il. $\$ 7.95$ \square Build Your Own Warking 16-Bit Microcomputer 80 p., 73 il $\$ 3.95$ \square The Giant Book of Amater Radio Antennas 462 p., 255 il. 38.95 \square Install Your Own Home or Mobile Electric Power Plant 252 p. $\$ 5.95$ \square Design 2 Build Your Own Custom TY 6 ames $\$ 46$ D.. 244 il. $\$ 9.95$ Computerist's Mandy manual $64 \mathrm{p} ., 39$ il.
\square Digital Interfacing with an Analog World 406 p .. 211 il. \square How to Select $\&$ Install Your 0 wn Speakers 238 p .. 131 iL - Un about Ielephones 192 p., 140 il.
\square Understanding Electronics 182 p.. 265 iL
$\square 24$ Tested, Ready-To-Run Game Programs in BaSIC 266 p Amateur Radio License Study 6 de For Movice. Tech, 1 Gen Class 85.95 \square Oirect Current Motors - Characteris \& App 252 p. 170 it $\$ 14.95$
 - Color TVroubie factbook - Prob 2 Sol 434 p., 617 il. \square first Class Commercial fíC License Study Guide 392 p . How to Build $\&$ Use Low-Cost Hydrophones 140 in Programs in Basic for Electronic Eng Iech Eiperim \square Ilus Dictionary of Microcomputer Terminolog 322 ? \square Computerist's Handy Databook/Dictionary $96 \mathrm{p} ., 42$ il. 303 Oynamic Electronic Cireuts 308 a 303 il
Install Ethine Electronic in Cars. Boats, Planes. Tructs $\begin{array}{r}\text { Br } \\ \hline\end{array}$ \square Antanna Construction Hdbe for Ham, CB \& 5 WL $238 \mathrm{p} ., 132$ il 8.95 \square Radar Detector Mandy Manual 80 p., 63 il \square Radar Detector Mandy Manual 80 p... 63 il
\square How to Cast Small Metal and Rubber Parts 144 p., 132 it \square TV Fiud \& Bench Servicer's Mandtook 208 p ., 165 IL . C Cut Your Elect Bill \& Install Your Oen Emerg Power Syst Instrument 1 Control Sys Engineering Hobk 43 wer System 52.95 \square Beginner's Guide to Desigming/Building Transistor Radios $\$ 19.95$ \square Automotive Mir Conditioning Hathla - Install. Maint/Repair \square The Master Mandhook of Electrical Wirlng 406 p ., 289 ii. \square Understand Sound. Video, \& Film Recording 140 p., 14 il - Towers' International fET Selector 140 p ., 97 il. Beginner's 6 de 10 Computer $\$ /$ /microprocessors - $\$ 1.95$ Design \& Buid Electranc Instrumentation 420 -wth projects $\$ 6.95$ How to Repair Movie \& Slide Projectors $304 \mathrm{p} ., 270$ it. Towers' International Iransistor Selector -2nd Ed. 200 p. Closed-Circuit TV Installation, Maint, \& Repair 2940 220 it $\$ 6.95$ Built-It Book of Solar Heating Projects 196 p.c 111 il . 57 Practical Progams and games in OASIC 210 p., 64 ii. $\quad \$ 7.95$ - Beginnar's Gude to microprocessors $182 \mathrm{a} . .106 \mathrm{il}$. \square Modern Electronics Math 686 a., 424 it.
\square Ham Radio Incemtive Licensing gde-2nd Ed 154 p ., 70 il $\$ 11.95$ \square Hearing Ad Handbook 336 p., 224 it. 54.35 \square Programming Microprocessors 280 p.. 105 ii. $\$ 8.95$ SEMO MO MONEYI We it invorce you on 10-DAY FREE TRIAL Cho entirt ad to order 100% guaranteed or your money refunded TAR 3001 MS OKPT RE-65

31/r-DIGIT DMM'S, model DM 502A and model DM 505. The model DM 502A measures DC/AC voltage and current, resistance, dBV and dBm, and temperature; it provides autoranging capa-

bility for voltage, resistance and dB measurements. It also provides a true RMS reading and plug-in capability for all Tektronix TM-500 instruments. The model DM 505 measures DC/AC voltage and current, and resistance. The model DM 502A also offers pushbutton-selectable functions and ranges, LED display, a choice of front-panel or rear-connection inputs (also pushbut-ton-selectable); the unit is available with or without probe. Suggested retail prices: the model OM
502 A with probe, $\$ 520$; without probe, $\$ 395$; the out probe. Suggested retail prices: the model DM
502 A with probe, $\$ 520$; without probe, $\$ 395$; the model DM 505, \$250. -Tektronix, Inc., P.O. Box 500, Beaverton, OR 97077

CIRCLE 157 ON FREE INFORMATION CARD

 ments. It also provides a true RMS reading and$\pm 1000 \mathrm{~V}$ on all ranges; and the basic instrument accuracy is $\pm 0.1 \% \pm 1$ diglt

The unit measures resistance in 6 ranges from 100 ohms to 10 megohms with a basic accuracy of $\pm 0.2 \%$ on the low range, and $\pm 0.3 \%$ on the highest range. The $A C$ range is the same as the

CIRCLE 156 ON FREE INFORMATION CARD
DC range and provides a $100-\mu \mathrm{V}$ sensitivity. Full overvoltage, overcurrent and high-transient protection is provided, and current ranges are fuseprotected against inputs greater than 2A. All ranges, functions and excitation level are push-bution-selectable, and measurements are shown on a $31 / 2$-digit, $1 / 2$-inch-high liquid crystal display.
Power is provided by a 9 -volt alkaline battery; optional AC adapter is available. The instrument is housed in rugged plastic, measures $31 / 2 \times 63 / 4$ $\times 11 / 2$ inches, and weighs 9 oz . Test leads, battery, spare fuse, warranty and operator's manual are included. Price: \$149.-Data Precision Corp., Electronics Ave., Danvers, MA 01923. .
 01

TOTAL RMTIABITHIY!

- Measure or generate 10 kHz to 1000 MHz
- Fully synthesized
- Monitor FM deviation 0-6 kHz or 0-1.5 kHz
- AM/FM modulation $50-6000 \mathrm{~Hz}$
- Audio signal-generator output
- Decade trequency-standard output
- FM deviation-meter scope output
- Accuracy $\pm 00005 \%$
- Private tone filter
- Calibrated output in dB and uV
- Antenna included
- Weight only 22 pounds
- Operates on 115/220 VAC, 50-400 Hz; 12 VDC. or optional battery pack. Only 6W
- Leasing available
 CONDUNICAMON SIFRVICT MONHMOR DHWNHRS HVHRYMFITNG WF CLAMM.

 HONFSYMY! FOR THSS MITAN YOUD IEXPFOT.

LAMPXIN LABORATORIES ING.

With your own tutor, electronics naturally seems easler, more understandable. Now these unique training aids bring you friendly, over-the-shoulder, hands-on guidance, as if you had an expert right beside you. All planned and prepared in our effective Easi-Way ${ }^{\top M}$ teaching style. Only face-to-face instruction could be more personal. Nothing else like these...anywhere!

Two Forest Belt's Service Training MONOGRAPHS:

"TRIGGERED OSCILLOSCOPES-Four Hours to Familiarlty"
Sit down in front of your triggered scope 30 minutes a day, and go through carefully organized exercises. In less than two weeks, you can truly UNDERSTAND how your scope displays signal waveforms; where to set the knobs and switches; what waveshapes mean; what to do when you can't seem to get a display on your scope. End up feeling comfortable and self-assured with any triggered oscilloscope.

Order 48A - \$12.50 postpaid
P.S. - The above title is available also as a

Forest Belt's SELF-TRAINER RIT: two audio cassettes plus a dozen sets of Worksheets (for a group). Order 48 K - $\$ 79.50$ postpaid
Additional Worksheets Order 48W - Ten for \$25.50
"Easi-Way ${ }^{\text {TM }}$ Solutions for Electronics Math and Formulas"
Spend a half-hour each day with your inexpensive scientific calculator (many models under \$40). Learn quickly to solve electronic formulas without knowing algebra. Thorough Easi-ReadTM explanations, plus dozens of planned examples and exercises for you to work yourself. Shows you how to deal with Ohm's Law, Kirchhoff's Laws, serles and parallel circuits, reactance, impedance, resonance, decibels, and plenty more. Handle complex math easier than you ever thought possible.

Order 28A - $\$ 12.50$ postpald
Scientific Calculator

Enclosed in my s \qquad check or money order (outside U.S., add 208 to all prices). Please ship:
\qquad MONOGRAPH 28A "Easi-WayTM Solutions for Electronics Math and Formulas" \$ 12.50 each
Scientiflc Calculator 285C (sults use with 28A) @ $\$ 35.50$ each
\qquad MONOGRAPH 48A "TRIGGERED OSCILLOSCOPES—Four Hours to Familiarity" @ $\$ 12.50$ each
\qquad SELF-TRAINER KIT 48K "TRIGGERED OSCILLOSCOPES—Four Hours to Famillarlty @ $\$ 79.50$ each kit AddItlonal Worksheets 48 W (for larger groups to use with KIT) \& $\$ 25.50$ for ten

[^2]Age
\qquad
Address
Phone

City
State
Zlp Code

[^3]
NEW VERSATILITY ADDED

all the electronic service tools you need 99\% of the time

Model 99SMW adds new dimensions to the serviceability of Xcelite's famous and still available 24 -piece $99 S M$ Service Master Set
Housed handily in the same type of roll-up, plastic coated, canvas case, the 27-piece 99SMW adds a Weller WP25 protessional, pencil-style soldering iron with an extra, wider tip, and a No 100 wire stripper/cutter These plus the traditional 99SM tools that thousands of servicemen and technicians have liked so much so long: 20 Xcelite Series 99 quick-change, interchangeable blade tools-popular size nutdrivers, slotted and Phillips type screwdrivers, extension, reamer, regular and slubby handles. diagonal and long nose pliers; thin. pattern, adjusiable wrench. The handiest handful of service tools you've ever laid your hands on!
in stock at leading electronic distributors . . . nationwide

TheCooperGroup

Electronics Division
WEHER". WISS" - XCELTE"

TIME/VOLTAGE CALIBRATOR continued from page 61

If you find that you cannot trim the frequency properly, you may have to experiment with different values for C35. Increasing this capacitance decreases the frequency of operation. For instance, on a prototype unit, substituting a value of 150 pF for (C35 + C36) dropped the frequency about 700 Hz below center, while a value of 47 pF increased it 1700 Hz above center. Your own results may vary from these values but will follow a similar trend. A couple of trial and error runs will pin down the correct value.

Adjusting the voltage section is a twostep process. Any DVM can be zeroed by shorting its test leads, and this zero accuracy is needed to zero the calibrator. With the DVM connected to the volts output, set toggle switch S8 to the 0.000 volt position, and after one minute, adjust trimmer R34 for a 0.000 -volt output. Now, if your DVM is $41 / 2$ digits or better and recently calibrated, flip switch S8 to the 10.000 -volt setting and after another minute adjust trimmer R 35 for a 10.000 volt output; that's all the fine tuning you can do. Attach the chassis top and you're ready to go.

Using the calibrator

Now that you have become used to operating the unit, let's look at how you use the calibrator. Loading a value is as simple as dialing the desired value into the thumbwheel switches and pressing the appropriate load pushbutton. Once a load is performed, the thumbwheel switches can be set to any other value without upsetting the previously latched value.

The volts output takes about 10 to 15 seconds to stabilize when changing from one value to another. Remember that the overall accuracy is specified as a percentage of the setting and not a percent of full scale.

The non-TTL time output has an upper frequency limit that is dependent upon the volts section setting. A frequency of 5 MHz is about the highest frequency you can attain, but requires a 10 -volt setting. Operation below about 4.5 volts peak-topeak is uncertain at any frequency. However, the TTL output can operate at any setting.

When you want only a DC output and the time output is a "don't care," then load 0000 into the time section and set the time multiplier to "TTTT msEC." This minimizes noise in the calibrator and provides the cleanest possible volts output.

Even though you may use the calibrator only a few times per year, you won't ever have to worry about your test gears' accuracy, and the other uses you'll probably find for it may surprise you. You should check your test equipment on a regular basis.

COLLEGE DEGREE
in your Electronics Career through

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic.

The Grantham electronics degree program begins with basics, leads first to the A.S.E.T degree, and then to the B.S.E.T. degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. (We are located at 2500 S. LaCienega BI., Los Angeles, Calif.) Write to our mailing address shown below for Bulletin R-79.

Grantham College of Engineering

P. O. Box 35499

Los Angeles, California 90035
Worldwide Career Training thru Home Sfudy CIRCLE 54 ON FREE INFORMATION CARD

Try this exciting new hobby! Build

 your own electronic concert organ. It's easy. No technical knowledge required. Just follow the clearly pictured instructions of the famous Wersi do-it-yourself system. Choose from seven different models. Send $\$ 2.00$ (refundable) with coupon for colorful 104 page catalog.

Wersi Electronics. Inc

Dept. 42.
1720 Hempstead Road
Lancaster, PA 17601
| Enclosed is $\$ 2.00$ for my copy of your 104 page catalog.

Name
Address
City
CIRCLE 35 ON FREE INFORMATION CARD

CaR STEREO

(continued from page 46)
(Regarding the above, a rule-of-thumb applies: Usually if a given player or ensemble sounds good in a store (and loud enough), it is likely to sound better, as well as louder, in a car.)

Installations

The use of component-type equipment in cars poses a few problems. One is installation; this requires a certain amount of ingenuity to fit the units into tight in-dash and under-dash space. A bigger problem is the matter of selecting and installing the right speakers in the right place to capitalize on the inherent "component quality" sound and to avoid problems such as moisture. Many a hi-fi buff who bought a component-type car stereo rig with high hopes for home-quality sound has been disappointed by a bad installation either of the electronics or the speakers, or both.

The growing interest in componenttype car stereo equipment has persuaded many audio specialty distributors to carry a car stereo line. These stores also provide an installation business, with generally happier results for the consumer in terms not only of a more expert installation, but a better matching of the elements that

For faster service

USE

 ZIP CODE
on all

 mail

LOADED with Quality Features!

- Stereo . . Eleven Bands Per Channel - Extremely Low Noise \& Distortion - LED Peak Indicators - Center Detent ("flat") sliders • Built-in "record" Switching •Line and Microphone Level Inputs/Outputs - Regulated Power Supply Fully Guaranteed - Horizontal or Vertical Cabinets - Kit or Fully Assembled • Plus Much, Much More!
Absolutely equals or exceeds overall performance
and features of any graphic equalizer made today!

AARON-GAVIN INSTRUMENTS. INC.	
17231 Corla Avenue Tustin, California 92680	
Yes! l've enclosed \$__ RUSH me: assembled equalizers at $\$ 189.95$, p.p. unassembled equalizer kits at $\$ 99.95$. p.p.d	cabinet \squarebend hrochure \square Horizontal (flat) \square
Calilornua residents include 6\%\% sales tax	Visa \& Master Charge orders accepted
Name	
Address	Exp
City _ State _ Zip	Date —_ No.

INTERNATIONAL FM-2400CH

- Portable • Solid State - Rechargeable Batteries

The $\mathbf{F M} \mathbf{- 2 4 0 0} \mathbf{C H}$ provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at oredetermined frequencies.
The FM-2400CH with its extended range covers 25 to 1000 MHz .
The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz
Frequency stability: $\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$
Frequency stability with built-in thermometer and temperature corrected charts: $\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}$ (.000125\% special 450 MHz crystals available)

- Tests Predetermined Frequencies 25 to 1000 MHz
- Extended Range Covers 950 MHz B and
- Pin Diode Attenuator for Full Range Coverage as Signal Generator
- Measures FM Deviation

FM-2400CH (meter only) Cat. No. 035320	\$627.72
RF crystals (with temperature correction)	26.26 ea.
RF crystals (less temperature correction)	19.93 ea.
IF crystals	talog price

INTERNATIONAL CRYSTAL MFG. CO., INC. 10 North Lee / Oklahoma City, Okla. 73102

Super Guide Semiconductors

Nearly 180,000 listings! 1,120 pages! Coverage includes bipolar transistors, field effect transistors, diodes, rectifers, and integrated circuits.
Use whatever information is available to select the replacement you need. U.S., European, and Far Eastern type numbers and manufacturers part numbers-any number you find stamped on the part or listed in a parts list-all are included. Cross reference is made to General Electric, Mallory, Motorola, Raytheon, RCA, Sprague, Sylvania, Thordarson, Workman, and Zenith replacement parts.
Save time and trouble. Get accurate information. Order your copy of Sams Semiconductor General-Purpose Replacement Guide today!

Howard W. Sams \& Co., Inc.

4300 West 62nd Strbet
Indianapolis, IN 46268

Clip Out-Mail Today

YES-Please send me Sams Semiconductor General-Purpose Replacement Guide. If I'm not completely satisfied, I may return it within 15 days of receipt for full credit or refund. Add sales tax where applicable.

Sams Semiconductor General-
Purpose Replacement Guide. No. 21576
Price: $\$ 14.95$
Name
Address
City
State Zip Total S
\square Check \square Money Order \square Master Charge
\square Visa/BankAmericard
Exp. Date
Account No.
Interbank No. \square

Mail to

Howard W. Sams \& Co., Inc.
4300 West 62 nd Street
Indianapolis. IN 46268
make up a component-type car system.
The astute prospect for mo-fi should shop as carefully for a proper installation as he does for the proper equipment. His best bet is the car stereo sales specialist/ installer or audio shop/installer, rather than the local TV/radio/appliance dealer who sells car stereo units but does not install them.

The chances of getting a decent mo-fi installation are substantially better than, say, a year ago. Manufacturers, getting feedback from their dealers relative to installation and matching problems, have been following up on that feedback and developing information bulletins and other forms of communication to help those dealers. One company, Craig, offers installation schools to help its dealers and installers do a better job. The results of all these efforts are steadily becoming more apparent in terms of quality installations.

R-E

INTELLIGENT THERMOSTAT

continued from page 40
point 4. These function numbers are followed by the $\mathrm{C}($ time/day) key for the time and the B (temperature) key for the temperature and initiated by the *(start) key. The following example should clarify the procedure:

	Keystrokes 1. Set 11 to 75° D (function)	Display bb 00
	1	bb 01
	1	bb 11
	C(time/day)	0000
	8	0008
	0	0080
	0	0800
	\#(am)	LED
	B(tempera-	
	ture)	bb 00
	3	bb 03
	(start)	XXXX

(Note that LED may or may not be on depending on the last time-set operation)

At this point, the board will turn on the heater relay at 8:00 am and leave it on until the ambient temperature reaches $75^{\circ} \mathrm{F}$. (You may test this at 8:00 am by using your fingers to warm the thermistor located in the middle of the board at K and L and observing the operation of the relay.)

In a similar manner, points 2,3 and 4 may be set 10 any time and any of the four stored temperatures so that you can raise and lower the temperature 10 preset points. By repeating the procedure for functions $21,22,23$ and 24 , day number 2 can be set. The procedure is then repeated for the remaining days of the week (days 2-7). Note that once you have programmed all of the set-points for all of the days, it is necessary to initiate auto-

ELECTRONICS SUPPLIERS, SHOPS, IMPORTERS, MANUFACTURERS. Hong комG is

CHEAPER

Owing to the rising value of the Japanese Yen, products from Japan are becoming very expensive.
We have equivalent quality products at far better prices from Hong Kong, Taiwan and Korea.
We can supply in both large and small quantities with proven quality.

Even if you have never imported goods before, we can show you

86 page, comprehensive, fully priced catalogue available - specialising in products for the electronic hobbyist. Caralogue \$US 4.00 to

matic operation by selecting and starting function 13.
It is also possible to override the heating, cooling and fan operations by using functions $5,6,7,10,11$ and 12 . The temperature set-points may be overridden by simply setting the desired temperature, using function 95 (similar in programming to functions 91-94).

R-E

FET RF AMP PROBLEM

There's a problem in my Heathkit model GR169, which has been working very well since 1973. The MOSFET-RF amplifier blows out. The DC supply to this is +30 volts. All the possible substitutes I can find are rated at only 25 volts. I've contacted several sources without receiving much help. Can you help me? E.S., Mt. Dora, FL.
I'll try. This problem has shown up in some other sets.

For one thing, l'd get that DC voltage to the tuner down to less than the FET rating! Let's make it +22 volts or so. To do this, connect a suitable 22 -volt Zener diode across the +30 -volt supply to it, using a resistor large enough so that the Zener diode holds. This should keep it in the ball park as far as excess power dissipation is concerned. This has worked in some other cases, so it's worth a try. Good luck!

Clever Kleps

Test probes designed by your needs - Push to seize, push to release (all KIeps spring loaded)
Klaps 10. Boathook clamp grips wires, lugs, terminals. Accepts banana plug or bare wire lead. $43 / 4^{\prime \prime}$ long. $\$ 1.59$ Kleps 20. Same, but $7^{\prime \prime}$ long.
Kleps 30. Completely flexible. Forked-tongue gripper. Ac cepts banana plug or bare lead. $6^{\prime \prime}$ long. cepts banana plug or bare lead. $6^{\prime \prime}$ long.
Kleps 40 . Completely flexible. 3 -segment automatic collet firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. $61 / 4^{\prime \prime}$ long. $\$ 2.89$ Kleps 1. Economy Kleps for light line work (not lab quality). Meshing claws. $41 / 2^{\prime \prime}$ long.
Pruf 10. Versatile test prod Solder connectionPruf 10. Versatie lest prod. Solder connection. Molded phenolic. Doubles as scribing tool. "Bunch" pin fits banana jack. Phone tip. $51 / 2^{\prime \prime}$ long.

THEGONERNMENT CANDOEVERYIHING ONIYTHIY
WRAPITUTHV YOU WRAPITUPEVYOU
INNKCREDRIBBCN. MILESANDMILESOFIT.

Kieps 30

Kleps 1
 All in red or black - specify. (Add 50ç postage and handiing). Write for complete catalog of - test probes, plugs, sockets, connectors, earphones, headsets, miniature components.
\qquad A vailable through your local distributor, or write to.

RYE INDUSTRIES INC.

 128 Spencer Place, Mamaroneck, N.Y. 10543 In Canada: Rye Industries (Canada) Ltd.CIRCLE 5 ON FREE INFORMATION CARD

Nobody does it better than VZ

NEW SIGNALYST ${ }^{\text {T }}$ Color Bar Generator

EVERY COLOR TV TEST SIGNAL YOU NEED. A PRICE NOBODY ELSE CAN MATCH.

There's absolutely nothing else on the market like this new VIZ Color Bar Signalyst. Use it to service TV sets, video recorders, CATV, MATV, CCTV, etc. Compact enough to carry with you on house calls. Complete enough for every shop test-at a price you can afford. Look what it does for you:
Patterns supplied. Superpulse; regular color bars; color bars with luminance; color bars less burst; red, green or blue primary color rasters; color trio; gray quad; hatchdots; dots-all with progressive or interlaced scanning and 4.5 megahertz sound carrier.
Outputs. Video (pos. or neg. polarity) 0-1.7 volts into 75 ohm line. RF and IF continuously adjustable from snow-low 20 microvolts to 200,000 microvolts (enough to drive a whole hotel full of TV sets). All outputs crystal controlled.
Scope triggers. Two separate 3.7 V peak-to-peak pulses for $\mathrm{H} \& \mathrm{~V}$ trigger.
Comes complete with 75 ohm output cable and 300 ohm snap-on head and excellent text on application.
See your local VIZ distributor.

The VoltOhmyst company

More information on new lit is available from the manufacturers of items identified by a Free Information number. Use the Free Information Card inside the back cover of this issue.

ELECTRONICS CATALOG, 164-page illustrated catalog for radio/TV service technicians, electronic technicians, hobbyists, CB'ers. Over 3000 items are listed, including test equipment, CB equipment and tools, intercoms, microphones, scanners, telephones and accessories, tool cases, antennas, etc. The catalog also contains a handy order form. - Fordham Radio Supply Co., 855 Conklin St., Farmingdale, NY 11735.
CIRCLE 141 ON FREE INFORMATION CARD

TEST INSTRUMENT CATALOG describes portabie, battery-operated digital multimeters, oscilloscopes and frequency meters. Meters measure $1.9 \times 2.7 \times 4.0 \mathrm{in}$., and have either LED or LCD readouts; oscilloscopes are singie or dual-trace instruments and weigh under 3 lb ; frequency meters count to 512 MHz . Catalog also features leather carrying cases. - Non-Linear Systems, Inc., P.O. Box N, Del Mar, CA 92014

CIRCLE 142 ON FREE INFORMATION CARD

SEMICONDUCTOR CROSS-REFERENCE GUIDE, Tech-Mate, is expanded catalog containing 161,016 listIngs of universal and replcement IC's, IC modules, voltage multipliers, semiconductors and accessories. Designed for electronic components distributors and service technicians, the component numbering system provides easy cross-reference identification. -Thordarson Meissner, Inc., Electronic Center, Mt. CarmeI, IL 62863

CIRCLE 143 ON FREE INFORMATION CARD

INDOOR TV ANTENNAS. Promotional wall chart contains illustrations and specifications for RCA's full line of indoor TV antennas. Chart can be used as a mailing piece or a wall poster. Available from RCA antenna distributors.-RCA Distributor and Speclal Products Division, Sales Promotion Services, Deptford, NJ 08096

CIRCLE 144 ON FREE INFORMATION CARD

HEATHKIT CATALOG provides 96 pages of electronic kits plus many Heath-recommended assembled units. New products in this edition include a rack-mounted FM/AM stereo tuner, a DC to $35-\mathrm{MHz}$ dual-trace oscilloscope, an FM deviation meter, a preciston RF generator, and many more. The catalog also describes two personal computer systems, digital clocks, color TV systems, continuing education programs etc.-Heath Company, Dept. 570-170, Benton Harbor, MI 49022.

CIRCLE 50 ON FREE INFORMATION CARD
COILS AND CHOKES, General Catalog 79, contains 96 pages of hundreds of essential components, including interference filters, RF colls, auto radio replacement parts, antenna relays, tuning tools and hardware, TV replacement coils, coil forms, etc. Index lists items by type and frequency, there is an extensive price list, and schematic diagrams for shielded and unshielded units are shown in the back of the catalog.-Bell Indus-
tries, J.W. Miller Div., 19070 Reyes Ave., Compton, CA 90224.
CIRCLE 146 ON FREE INFORMATION CARD
MULTIMETER BROCHURE is a 4-page, 4-color brochure listing specifications for a complete line of portable digltal and analog multimeters. All meters shown are fully described-they feature LED/LCD readouts, long battery life and 5 function modes.-Soar Electronics (U.S.A.) Corp., 813 2nd St., Ronkonkoma, NY 11779.

CIRCLE 147 ON FREE INFORMATION CARD
COMPUTER IC BROCHURE contains 24 pages and shows a complete line of IC devices for personal computers. More than 100 components are described, including microprocessors, memories, CRT controllers, floppy-disc interfaces, anaiog and printer Interfaces and LED displays. National Semiconductor Corp., 2900 Semiconductor Dr., Santa Clara, CA 95051.

CIRCLE 148 ON FREE INFORMATION CARD
SEMICONDUCTOR REPLACEMENT GUIDE, No. ECG212H-3, third supplement to 1978 Master Replacement Guide, contains 32 pages that include data on 47 additional new devices. The cross-reference section contains over 3000 additional component numbers, and separate listings give recommended changes in ECG replacements and deletions from the line.-GTE, 1 Stamford Forum, Stamiord, CT 06904.

CIRCLE 149 ON FREE INFORMATION CARD
VCR PROGRAM SOURCE, VIdeo Programs/ Index, 20 pages, lists over 175 sources of available prerecorded video programs for use by librarles, schools, hospitals, etc. includes the following: a format index ($3 / 4 \mathrm{U}$, Beta- 1 and Beta2, VHS-2, Quasar, etc.); a movie index; 461-category program index; and more. The catalog costs \$3, prepald.-Video Programs/index, 923 6th St. SW, Washington, DC 20024.

CIACLE 150 ON FREE INFORMATION CARD

FREE GTHI CATALOG

Audio-Computers

Instruments

 Kits \& Assembled

Southwest Technical Products Corporation 219 W. RHAPSODY
SAN ANTONIO, TEXAS 78216

PolyGlass your car!

New miracle Polymer "Glass"Sealant completely protects

 your car's exterior finish - it even restores original luster to used models!Available only as a service by new car dealers for $\$ 100-\$ 200$. Now do it yourself in less than an hour for only \$29.95. (16 oz . bottle, enough for 3 cars.) The elements vs. your once beautiful car... You've probably experienced it. Your treasured, shiny new automobile gradually fades and dulls. The once brilliant finish turns chalky and washed out. Even hours of waxing and buffing can't recapture that new car look...Until this new chemical science discovery
Never wax your car again... Poly GloSeal* is not anything like a simple wax or polish. It is actually a miracle polymer glass formulation serving as a powerful sealant and a beautiful exterior finish When applied lightly to your car's finish and chrome its exclusive Electromolecular Action literally fuses it to the surface, locking in luster and a brilliant shine, almost laminating itself to your car for years...shutting out harmful sun, rain, pollution, salt, detergents and other elements that normally ruin the appearance and value of your car
Prevents oxidation from starting on new cars... and actually removes it from used models! Poly-GloSeal* is literally a Glass Shield that becomes part of your car's finish. Your new car's paint is simply not allowed to oxidize...for 3 Years! Then PolyGlass* it again for years more of protection. if your car is not new, Poly GloSeal* will actually remove the oxidation, add gloss, and stop further oxidation for 1 year before you need to apply again. It is similar to covering your car with a nonpenetrable coat of polyurethane.
Enamel spray paint can't even get through the clear glass shield... When this new professional automotive product is demonstrated to car dealers the "spray paint test" is used. Poly-GloSeal* is applied to a car's hood. After it dries it is wiped off and a can of enamel spray paint is sprayed directly on it, along with magic marker and other solvents. Then the observers are astonished as all of these are wiped off the hood with a mere cloth. Nothing, not even dirt and dust can

TRADEMARK

Poly-GloSeal* makes standard waxes and polishes obsolete!
adhere to the surtace!
No rubbing, labor or buffing equipment needed... Poly-GloSeal* goes on easily and quickly. You wipe it on with a cloth, let it dry, and then wipe it off. It takes only a few minutes - less than an hour. The main ingredients are Polyglass*, another substance similar to Teflon ${ }^{3}$, and a minimal amount of silicone to ease in wiping it on. (Also highly recommended for boats and airplanes). Between washes you need only wipe your car with a damp cloth to re-activate its brilliant dirt and dust-repelling shine
The incredible Poly-GloSeal* "Brilliance Guarantee"... If after using it, you are not pleased for any reason, return the unused portion within 2 weeks of receipt for a prompt refund of the entire purchase price. Further, if PolyGloSeal* does not protect your new car for 3 years or your used car (90 days old or more) for 1 year, write and tell us. We'll take your word for it, and return your small investment on a pro-rated basis. However, due to the extraordinary quality of this fully-tested product, we are confident that this would not be likely. (Note: PolyGloSeal* is 100% sate to use - it can also be removed with mineral spirits).
CALL TOLL-FREE FOR INSTANT PROCESSING 1-800-235-6945. Calit. res. call 805-966-7187. Or send coupon:
-
Please promptly ship the following order for Poly GloSeal* If not 100% pleased after using it on my car. I can return the unused portion within 2 weeks toran unquestioned. quick refund of purchase price. Check One:

Ship 116 oz Boitle $\$ 29.95$ (plus $\$ 2$ shipping and handling) ea. Or:
\square SAVE $\$ 10$ MORE! Ship 2 Botlles $\$ 24.95$ (plus $\$ 2$ shipping and handinglea.
Check or Money Order enclosed (CA res. add 6\% sales tax).
\square Charge my credit card number below
\square BankAmericard/Visa \square Master Charge
\square American Express (interbank No.
\square Diners Club Carte Blanche
Credit Card No —Exp. Date
Name
Address

Storshine Group.

924 Anacapa St., Dept. 859. Santa Barbara, CA 93101 Starshine. Inc. 1979

PTS...the NEW name you need to know for semiconductors!

 zeners...the same components we use for our module and tuner rebuilding. A high quality line of profit-builders for the servicing technician/dealer! Ask for a complete price list at any PTS tuner/module servicenter. See page 1 for locations.

PTS ELECTRONICS, INC.
The Only Name You Need To Know

CIRCLE 67 ON FREE INFORMATION CARD

Catch PanaVise. It tilts, turns and rotates your work exactly where you want. Add our new Tray! It catches small parts you drop, separates tools, and keeps parts sorted. The Tray's wide 81/4" diameter of cast metal gives 'no-tip' stability, and has 6 slip resistant neoprene feet. Catch all the PanaVise combinations at your distributors now. Write for FREE brochure and distrlbutor list.

Panal/ise
Dept. CE 11 2850 29th St. Long Beach, CA 90806

-
 \title{
THIS VISE IS
 \title{
THIS VISE IS CATCHING.
} CATCHING.
} Beach, CA 90806 Base, B3ay Base

Two of the four terminals on the jack/ plug are marked R and G for (red and green). Wire L2 from the Telecorder is connected to terminal R and wire L1 is connected to terminal G. The jack/plug is then inserted into the telephone jack, and the plug on the telephone is inserted into the Telecorder's jack/plug.

When the jack/plug is inserted into the telephone jack, you should hear the relay click. If you do not, check to make sure the wires are properly connected to the jack/plug. Now with the switch in the center (off) position, plug in the AC line cord. None of the panel lights should go on. If the record light is on, the relay isn't working and the unit is probably incorrectly connected to the phone line. If the play light is on, the wiring to the switch is at fault.
Now, set the switch to the play position. The play light should illuminate and the recorder should be operational. If it is, place the switch in the record position. The play light should go out and the recorder should stop. At this point, the record light should not be on. Lift the telephone receiver off the hook. The RECORD light should now go on and the recorder should now be taping anything that is heard in the telephone receiver. When you replace the receiver in its cradle, the light should extinguish and the recorder should stop.
For a continuous monitoring operation, the Telecorder is connected to both the recorder and the phone line, and both units are placed in the RECORD mode.
Note that, although it is not illegal to connect privately owned equipment to the telephone line (due to the 1968 Carterfone Decision), in some areas of the country it is against internal phone company regulations. In those areas, for the device to be strictly legal, it is necessary to place a recorder coupler between the phone line and the equipment to be connected to it. If you want to make sure if a recorder is required in your area, it is best to check with your local phone company.
(Material for this story was taken from the author's book. Telephone Accessories You Can Build. Published by Hayden Book Co., Rochelle Park. NJ 07662. -Editor)

R-E

PREVENT CHILD ABUSE. WRITE:

National Committee for
Prevention of Child Abuse,
Box 2866, Chicago, III. 60690
A Public Service of This Magazine Ad \& The Advertising Council Council

merktit renter

CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services). \$1.50 per word (no charge for zip code) . . . minimum 15 words.
NONCOMMERCIAL RATE (for individuals who want to buy or sell personal items) ${ }^{85}$ ¢ per word . no minimum
ONL Y FIRST WORD AND NAME set in bold caps. Additional bold face (not available as all caps) at $10 \pm$ per word. Payment must accompany all ads except those placed by accredited advertising agencies. 5% discount for 6 issues, 10% for 12 issues within one year, if paid in advance. All copy subject to publisher's approval. Advertisements using P.O. Box address will not be accepted until advertiser supplies publisher with permanent address and phone number. Copy to be in our hands on the 26th of the third month preceding the date of the issue (i.e., August issue closes May 26). When normal closing date falls on Saturday, Sunday, or a holiday, issue closes on preceding working day.

EDUCATION \& INSTRUCTION

TELEPHONE bugged? Don't be Watergated! Countermeasures brochure $\$ 1.00$. NEGEYE LAboratories, Box 547-RE, Pennsboro, WV 26415
UNIVERSITY degrees by mail! Bachelors, Masters, Ph'D's . . . Free revealing details. COUNSELING, Box 317-RE6, Tustin, CA 92680
FCC EXAM-QUESTIONS. First/second license $\$ 8.95$. Third/broadcast endorsement $\$ 4.50$. Revised guide guaranteed. Postpaid. PANAXIS, Box 130-F6X, Paradise, CA 95969
UNDERSTAND digital electronics. Programmed learning courses. Design of Digital Systems, 6 volumes, only $\$ 19.95$. Digital Computer Logic, 4 volumes, $\$ 14.95$. Both $\$ 29.95$. Free details. GFN INDUSTRIES, BIdg. 7-20, 203 Loudon Road, Concord, NH 03301

WANTED

WANTED HP- 67 calculator. BARNETT, 238 Garland Avenue, Decatur, GA 30030

FOR SALE

FREE catalog (anglais). IC's, semi's. CORONET FREE catalog (anglais). IC's, semi's. CORONET
ELECTRONICS, 649A Notre Dame W., Montreal, ELECTRONICS, 649A Notre Dame W.,
Que., Canada, H3C 1H8. US Inquiries.
RADIO \& TV tubes $36 \mathbb{C}$ each. One year guaranteed. Plus many unusual electronic bargains. Free catalog. CORNELL, 4217-E University, San Diego, Calif. 92105
TEST equipment catalog listing used Tektronix, HP and GR equipment at bargain prices. Price $\$ 1.00$ refundable with first order. PTI, Box 8699, White Bear Lake, MN 55110
NAME brand test equipment. Guaranteed discounts up to 50%. Free catalog. SALEN ELECTRONICS, Box 82-M, Skokie, IL 60077
FREE catalog of new merchandise, at great prices. IC's semi's and more. KEY ELECTRONics, Box 3506-RE, Schenectady, NY 12303
DOLBY add-on encodes/decodes recordings, FM Quality components, complete kit. Calibration tapes available. Comprehensive test report. REJ INTEGREX, Box 747. Havertown, PA 19083

To run your own classified ad, put one word on each of the lines betow and send thie form along with your check for $\$ 1.50$ per word (minimum 15 worde) to:
Radio-Electronics, 200 Park Avenue South, N.Y., N.Y. 10003
ORDER FORM
PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $\mathbf{\$ 1 0}$.
() Plans/Kits () Business Opportunities () For Sale
() Education/Instruction () Wanted ()
Special Category: $\mathbf{\$ 1 0}$
(PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.)

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30
31	32	33	34	35

PRINTED-circuit boarde, reasonable. Also, artwork, prototypes, designs, fabrication and testing. MICRON INC., Box 43, Glenview, IL 60025
FOR sale, Electronics repair business, $\$ 12,000$. Call TOM GARCIA, RED CARPET (Realtors), Tucson, $A Z, 602-886-5217$
CONVERT your rotary dial telephone to lone dial inslantly $\$ 29.95$. ELECTROKIT, Box 568, Milford, MA 01757
SELLING Rider's manuals: older Sams' Photofacts. Supreme; early radio textbooks. BEITMAN, Box 46, Highland Park, IL 60035

> Govt. SURPLUS ELECTRONIC EQUIPMENT Canto
> New ITEMS . . . New BARGAINS! FREE UPON REQUEST!

> Send today for FREE copy of NEW CATALOG WS-79. Address Dept. RE
FAIR RARBA SALES

VIDEO TAPE RECORDERS

VTR-OWNERS, For a free copy of classified newsletter containing new and used equipment, supplies and directory, write: VIDEO TRADER Post Office Box-935B, Derry. NH 03038

HIGHL

PROFITABLE

ELECTRONIC
ONE-MAN FACTORY
nvestment unnecessary, knowledge not re quired, sales handled by professionals. Idea home business Write today for facts! Postcard will do. Barta-RE-R, Box 248 Walnut Creek, CA 94597.

AMAZING ELECTRONIC PROJECTS and PROOUCTS Lesers Super Powered, Burning, Cutting, Rifte, PIsto Pocket. See in Dark-Shotgun Directional Mike-Unscramblers-Giant Tesla-Stunwand-TV Disrupt er-Energy Producing, Surveiliance. Detection, Elec tritying, Ulitrasonic, CB, Auto and Mech. Devices, Hun dreds More-All New Plus INFO UNLTD PARTS SER VICE. Catalog $\$ 1$. Information Unlimited, Dept. R8 Box
716 Amherit, N.H. 03031 .

Delta Burglar ATnARM

Featured in April Radio Electronics and Popular Mechanics Magazines! Motion

 DETECTOR is denigned to provide either an audible or willent
mlarmu The sflent nlarm in controlled by a timer. Which delay
the alarm up to 30 seconds. The ailent alarm artivates a relay

 Detecto Detector! 75c MOS FET N Channel Transistors!
 emoke detector
No. $4606 R$

INVENTORS

FREE information on offering your invention for sale. KESSLER SALES CORPORATION, C-316 Fremont, OH 43420

PLANS \& KITS

SCANNER users-build many useful accessories. Free kit catalog. CAPRI ELECTRONICS Route 1R, Canon, GA 30520
SAVE 50%. Build your own speaker system. Write for catalog: McGEE RADIO, 1901 McGee Kansas City, MO 64108
CONSTRUCTION plans for profitable business Ideas. Catalog \$1.00. GARLING, 438 N. Garfield Street, Lombard, IL 60148
PRINTED circuit boards from your sketch or artwork. Aftordable prices. Also fun kit projects Free details. DANOCINTHS INC., Box 261, Westland, MI 48185
FIVE laser plans- $\$ 10.00$; welding burning la-ser- $\$ 9.00$; catalog $-\$ 2.00$. SOLASER, Box 1015, (RE 79), Claremont, CA 91711
TACHOMETER digital readout, accurately monitors auto or marine engines" performance. Fits engines 4, 6, 8 cylinders, 12 volt. Small $23 / s^{\prime \prime}$ round, $11 / /^{\prime \prime}$ depth. Kit $\$ 19.95$. Assembied $\$ 24.95$ Plus postage. D.A.K. ELECTRONICS, Dept. 779 RE, 49 Holiday Bivd., Center Moriches, NY 11934

SUPER audio filter (Popular Electronics Sept. 1978). Completely removes alternator whine in car stereo, AM-FM or CB. Kit \$19.95. Assembled $\$ 29.95$. ROBERT FAULKNER, Box 26 , Redondo Beach, CA 90277
LINEAR AMPLIFIER, Ham only $2-30 \mathrm{MHz}, 100$ watt. $300-\mathrm{MHz}$ counter. Modulation booster, omnipolarized antenna. Plans $\$ 3.00$ each, $\$ 10.00 /$ all. Catalog $\$ 1.00$, tree with order. PANAXIS, Box 130-F6, Paradise, CA 95969

ALUMINUM panels $19 \times 6 \times 1 /$. Perfect for rack mounting and custom installations. Easily cut lo other sizes. $\$ 6.50$ each ppd. RJP SALES, 2360 Rockymont, St. Louis, MO 63136

MECHANICALLY INCLINED INDIVIDUALS
Assemble electronic devices in your home. Be your
own boss. Get started in spare time. Experience. Little
Knowledge or Investment Necessary. Expect big prof
its: $\$ 300 . \$ 600 /$ Wk. Possible. Write for free literature
telling how.
ELECTAONIC DEVELOPMENT LAB
Box 1560R, PInellas Park, FL 33565

PiJNTE1 SLBGTIT
 Positive Acting Photo Resist; Carbide
 bits; Bubble etchers; Artwork; Epoxy Glass Boards.
 Send stamp \& address label for flyer TRUMBULL 833 Balra Dr., El Cerrito, CA 94530

Radio Shack：No． 1 Parts Place Low Prices and New Items Everyday！

Top－quality devices，fully functional，carefully inspected．Guaranteed to meet all specifications，both electrically and mechanically．All are made by well－known American manufacturers，and all have to pass manulacturer＇s quality control procedures．These are not rejects，not fallouts，not seconds．In fact，there are none better on the market！Always count on Radio Shack for the finest quality electronic parts！

TTL and CMOS Logic ICs
 Full－Spec Device Direct from
 Motorola and National Semiconducto
 | Type | Cat No ． | ONLY |
| :---: | :---: | :---: |
| 7400 | 276－1801 | 354 |
| 7402 7404 | 276－1811 | 3964 |
| 7406 | 276－1821 | 496 |
| 7410 | 276－1807 | 396 |
| 7413 | 276－1815 | 796 396 |
| ${ }_{7427}^{7420}$ | － | 494 |
| 7432 | 276－1824 | 496 |
| 77441 | 276－1804 | 996 |
| 77448 | －276－1816 | 996 |
| 7451 | 276－1825 | 396 |
| 7473 7474 | 边 $\begin{aligned} & 276-1803 \\ & 2761818\end{aligned}$ | 498 |
| 7475 | 276．1806 | 796 |
| 7476 | 276．1813 | 596 |
| 7485 | 276．1826 | 1.19 |
| 7486 | 276－1827 | 496 |
| 7490 | 276．1808 | 796 |
| 74422 74123 | 276－1817 | 996 |
| 74145 | ${ }^{276}$－1828 | 1.19 |
| 74150 | 276－1829 | 1.39 |
| ${ }_{7} 7154$ | 276－1834 | 1.29 1.19 |
| 74192 74193 | $276-1831$ $276-1820$ | 1.19 1.19 |
| 74194 | 276－1832 | 1.19 |
| 74196 | 276．1833 | 1.29 |
| ${ }_{4011}$ | 276．2401 $276-2411$ | 4 |
| 4012 | 276－2412 | 696 |
| | 276．2413 | 896 |
| 4017 | 276－2417 $276-2420$ | 1.49 |
| 4021 | ${ }^{276-2421}$ | 1.49 |
| 4023 | ${ }^{276 \cdot 2423}$ | ${ }^{696}$ |
| 4027 | ${ }^{276-2427}$ | ${ }^{89} 9$ |
| 4028 4046 | $276-2428$ $276-2446$ | 1.29 1.69 |
| 4049 | 276.2449 | 696 |
| ${ }_{4051}^{4050}$ | $\xrightarrow{276 \cdot 2450}$ | 1．499 |
| 4066 | 276－2466 | 996 |
| 4070 | 276－2470 | 696 |
| 4511 | 276．2447 | 1.69 |
| 4518 4543 | $276-2490$ $276-2491$ | 1.49 1.89 |
 MC14553 3－Digit BCD Counter IC

For Low－Cost Digital Readout
CMOS chip replaces over 8 separate IC s in a digital dlsplay circuit．Input pulse shaping．Master reset pin．

RAM Memory ICs
Under 450 nS Access Time
21021024×1 Array．Low－cost static memory chip．i6－pin DIP．Buy 8 and 276－250 $2114 \mathrm{~L} 1024 \times 4$ Array NMOS 14.95 RAM 18－pin DIP 276－2504 $\quad 12.95$

SN－76477 Sound／Music Synthesizer IC

299Featured in Oct． Popular Electronics

Creates almost any type of sound－ music to＂gunshots！＂Bullt－in audio amp Includes 2 VCOs，LF OSC．noise gen． filter， 2 mixers，envelope modulator．logic circuit．28－pin OIP．With datalappli cations circuits．276－1765 ．．．．．．．． 2.9

NEW Mercury Tilt Switch

－Hermetically Sealed
－Perfect for Alarm
Circuits
$\mathbf{8 9 q}$ Subminiature position－detecting switch for use in projects or special applications．Swlich is normally closed when upright．opens when tited 275－025

（1）PC Board．Mounts iwo 14 or 16 －pin ICs or sockets for bread boarding．Copper clad
四 PC Board．Mounts single 14 or 16 －pin IC or socke
276－024
［16）16－Pin IC Test Cllp．276－1951
（1）8－Position DIP Switch．275－1301
4－Position DIP Switch．（Not shown） 2751304
Vertical 16－pin Socket．For LED displays．276－1986 （26－Pin DIP Jumper Cable． $18^{\prime \prime}$ Iong．276－1976

－Lead Zero Blanking
－ 100 Hz Up to 45 MHz
－ kHz and MHz Decimals
Accuracy is 3 ppm at $25^{\circ} \mathrm{C}$ or less than 30 Hz at 10 MHz ．Overload－protected 1 －meg input Sensitivity， 30 mV up to $30 \mathrm{MHz} .3 \times 41 / 2$ ．With Requires 9 V battery．22－351 ．．．Sale 69．95 AC Adapter．U．L．fisted．65－731 ．．．．．4．95

Multi－Logic Family Compatibility from 5－15VDC
Detects one－shot low repetition rate，narrow pulses scopes miss． Combines level detector pulse de－ ector and pulse stretcher Hi－LED ndicates logic＂1＂Lo－LED is logic ＇0．＂Pulse LED displays pulse tran－ sitions to 300 nanoseconds．blinks at 3 Hz for high－frequency signals up 101.5 MHz ．With cables． 22－300

－Computer Data Manuals \＆

 Semiconductor Handbook（T）Intel 8080／8085 Programming Manual．Handy elerence for programming with Intel＇s assembly anguage．62－1377
Intel Memory Design Handbook．Explains use Intel＇s memory components and suppopt cir－ cuits in systems．62－1378
Catel Data Catalog． 928 pages of specifications on most of Intels standard microcomputep－ elated products 62－1379
（a）Semicanductor Reference and Application Handbook．Complete specs and applications for popular IC transistors，diodes．276－4002 ．．． 1.95

（Ta Displays red．green，yellow．Uniform ligh outpul of 0.6 mcd ．Forward voltage： 2.2 VDC Max．
$276-03$
T Operates directly from 5VDC powe source．Pulserate： 3 Hz ，Mak，current： 20 mA

Molded Connectors

（B）
Digital Project Accessories tens opening 270301
Deluxa Molded Display 3.95 eight 03 LEO dignts Way Case．Red lens．Mount up to four 0.6° or 270.285
c．MA toos Clocir case．For car clom modules．Acceots 3 pushout－ c．MA to03 Clocir Case．For car clowim modules．Acceots 3 pushbut－
ton switches（not inc．）．With brachets．blue lens． $31 / 4 \times 2 \% \times 2$ ？ ton swiches（not inc．）．With brachets．blue iens． $34 \times 2 \% \times 2{ }^{2}$ ．
270.303

FAIRCHILD RED LED LAMPS

- F LV5057 Medium Size Clear Case. RED EMIT TING These are not factory prime. first quality. new units

10 FOR ${ }^{5119}$ 50 FOR ${ }^{5} 4^{95}$
WE BOUGHT 250,000 PCS.

THE COLOSSUS

FAIRCHILD SUPER JUMBO LED READOUT A full 80 inch character. The biggest readout we have ever soldl Super efficient. Compare at up to $\$ 2.95$ each from others!

OUR CHOICE \$149 FND 847 Common Anode
(6 for $\$ 6.95$)

NATIONAL SEMICONDUCTOR

JUMBO CLOCK MODULE

ZULU
50\% OFF SALE!

COMPARE AT UP TO TWICE OUR PRICE!
MANUFACTURER'S CLOSEOUT:

16K DYNAMIC RAM CHIP
 WORKS IN TRS-80 OR APPLE II

$16 \mathrm{~K} \times 1$ Bits 16 Pin Package Same as Mostek 4116-4.250 NS access 410 NS cycle time Our best price yet for this state of the art RAM 32 K and 64 K RAM boards using this chip are readily available. These are new. Iully guaranteed devices by a major mig VERY LIMITED STOCK!
"MAGAZINE SPECIAL" - 8 For $\$ 79.50$

MOTOROLA POWER TRIAC TO-220 CASE 15 AMP 400 PRV 894 each 5 FOR $\$ 3.95$

FET SALE!
2N4304. Brand New N Channel, Junction Fet BVGDO-30VIDSS-15 MA TYD 500 UMHOS TO. 18 PIastic Case Mig by Teledyne 6 FOR \$1
G.I. FULL WAVE BRIDGE 4 AMP 600 PIV 3/4 In. Square With Lugs, \#LM-1 756 ea. 3 For $\$ 2$

EXPERIMENTER'S CRYSTAL 262. 144 KHZ This trequency is 2 10 the 18in power Easily divided down 10 any Dower 12 anded 10 1HZ New oyCTS K has ass
alue.
$\$ 1.25$ each
4.00 MHZ - \$1.75

MINI PROJECT CASE

 Black Moided Plastic 2/xx 13/x2 in. Has open front. with mounting ears so unit can be easily attached to auto dash etc Case has molded card guides for mounting PC Board inside. Pertect for digital clocks. car burglar alarms. or almost any electronic project CanFAIRCHILD PNP SUPER TRANSISTOR 2N4002 「O-92 Plashc Sticon PNP
Drwel High Current VCEO HFE.50
 8 FOR $\$ 1$

EXPERIMENTER:S HEATING PLATE Large Manufacturers Surplus. $51 / 6 \times 10 \%$ in Made of $3 / 8$ in tempered glass with heating element laminated on back. Works off 120 VAC. Protected by thermostat and two thermal fuses Rated 120 Watts Use for any heating applications. Perfect for heating ferric chlorlde to increase PC board etching efficlency Units are brand new, non-submersible.

Digital Research Corporation

P.O. BOX 401247A GARLAND. TEXAS 75040 •(214) $271-2461$

COMPUCRUISE
$\$ 165$

THIS MONTH'S SPECIALS!

RCA Cosmac Super Elf Computer $\$ 106.95$
other computer. There is no other computer on the market today that has all the desirable benefits of the Super Elf for so little money. The Super Elf is a small single Doard computer that does many big things. It is an excellent computer for machine language and yet it is easily expanded with addllional memory. Tiny Basic. ASCII Keyboards, video character generation, etc. The Super Elf includes a ROM monitor for program loading, editing and execution with SINGLE STEP for program debugging which is not included in others at the same price. With SINGLE STEP you can see the microprocessor chip operaling with the unlque Quest address and data bus displays before. during and ather executing instructions. Also. CPU mode and instruction cycle are decoded and displayed on eloht LED indicator lamps.
An RCA 1861 video graphics chip allows you to connecl to your own TV with an inexpensive video modulator to do graphics and games. There is a speaker system included for writing your own
music or using many music programs already writen. The speaker amplifier may also be used to drive relays for control purposes.
A 24 key HEX keyboard includes 16 HEX keys olus load, reset, run, wait, input, memory pro

Super Expansion Board with Tis aly all astounding value? mis board has been designed to allow you to decide how you comes with 4 K of low power RAM fully address able anywhere in 64 K with built-in memory prorect and a cassetle interface. Provisions have board and it fits neatly into the hardwood cabinet alongside the Super Elt. The board includes slots for UP to 6 K of EPROM $(2708,2758,2716$ or TI 27 t 6) and is fully socketed. EPROM can be used for the monitor and Tiny Basic or other purposes. A IK Super ROM Monitor $\$ 19.95$ is available as an on board option in 2708 EPROM which has been preprogrammed with a program loader editor and error checking multi file cassette read/write software, (relocatible cassette file) another exclusive from Ouest. It includes register save and reasout. block move capability and video graphics driver with blinking cursor. Break points can be used with the register save feature single step. The Super Monitor is written with
sithen then follow subroutines allowing users to take advantage of monitor functions simply by calling theme
$\$ 15.95$
Auto Clock Kit DC clock wh 4.50 displays. Uses Nationa MA-1012 module with alarm option. Includes light dimmer, cystar timebase poards. Fully tiful dark oray case. Best value anywhere.

RCA Cosmac VIP Kit $\$ \mathbf{2 2 9 . 0 0}$ Video computer with games and
Fully assem. and test $\$ 249.00$

Not a Cheap Clock Kit \$14.95 Includes everything except case. 2-PC boards 6. 50 LED Displays. 5314 clock chip. trans former, all components and full instructions displays. Red only $\$ 21.95$ Case $\$ 11.75$

60 Hz Crystal Time Base Kit \$4.40 Converts digital clocks from AC line frequency includes: PC board. IC. crystal. resistors. Ca pacitors and trimme

Digital Temperature Meter Kit ndour and outdoor. Swriches back and forth. Beautifule. Needs no additional parts for come plete. full operation. Will measure -100° to $+200^{\circ} \mathrm{F}$. tenths of a degree, air or liquid. very accurate. $\$ 39.95$

NiCad Battery Fixer/Charger Kit Opens shorted cells that wont hold a charge
and then charges them up, all in one kit wifull parts and instructions.

PROM Eraser will erase 25 PROMs

Rockwell AIM 65 Compute

an based single board with fuil ASCIF keyboard and 20 column thermal printer. 20 char. a ble. $\$ 375.00$. 4 K version $\$ 450.00$. 4 K Assemi bler \$85.00. 8K Basic Interpreter \$ 100.00

Multi-volt Computer Power Supply
$5 \mathrm{amp} .12 \mathrm{v} .5 \mathrm{amp} .-12$ option. $\pm 5 \mathrm{v} .=12 \mathrm{v}$ are regulated. Kit $\$ 29.95$. Kit with punched trame Woodgrain case $\$ 10.00$

Video Modulator Kit
 $\$ 8.95$

ithou ar teltiog nomal usaa. Co without atecting normal usage. Complete kit
2.5 MHz Frequency Counter Kit 30 MHz Frequency Counter Kit Complete kit less case \qquad
79 IC Update Master Manual $\$ 3500$ Complete IC data selector, 2500 pg . master reterence guide. Over 50.000 cross relerences. Free update service through 1979. Domestic postage $\$ 3.50$. Foreign $\$ 5.00$. 1978 ic Master closeour

Stopwatch Kit
\$26.95
ant six digit battery operated. $2-5$ volts. min. $59 \mathrm{sec} .991 / 100 \mathrm{sec}$. Times std.. split and Taylor 7205 chip, all components minus

Hickok $31 / 2$ Digit LCD Multimeter Batt/AC oper. $0.1 \mathrm{mv}-1000 \mathrm{v} .5$ ranges. 0.5\% ccur. Resistance 6 low power ranges ohm-20M ohm. DC Curf. . 01 to 100ma. Hand range. $\$ 74.95$.
S-100 Computer Boards 8K Slatic RAM Kit Godbout $\$ 135.00$ $\begin{array}{ll}\text { 16K Static RAM Kit } & 265.00 \\ \text { 24K Static RAM Kit } & 423.00\end{array}$ 32 K Dynamic RAM Kir $\quad 310.00$ 64k Dynamic RAM kit 8K16K Eprom Kit (less PROMS) $\quad \$ 89.00$ Video Interiace Kit Motherboard $\$ 39$. Extender Board $\$ 8.99$

SUPER 15 WATT AUDIO AMP KIT

ONLY $\mathbf{2 3 . 5 0}$ each

MINI ELECTRONIC ORGAN KIT

The kit contains att electronic and mechanical parts, key boards, speaker, switches and PC Board as well as children interested in electronics. Uses 6V C size x 4 battery (not included).
$\$ 38.50$
many sound decisions

$\$ 3.60 \mathrm{EACH}$

Solid state sound indicator
operating voltage $6 \mathrm{~V} D C$
30μ A. Small size approxi.

Model EB2116 (ContInuous) Model EB2 136 (Fast Pulse)

Kit includes: STK-015 Hybrid IC. Dower supply with power transformer, front Amp with tone control. all electronic parts as well as PC Board. Less than 0.5% harmonic distortion at full power $1 / 2 d B$ response from $20-100,000 \mathrm{~Hz}$. This amplifier has QUASI-Complimentary class B output. Output max is watt (10 watt RMS) at 4 ?

\qquad
MA
53.60 EACH
\square
m

LIQUID CRYSTAL DISPLAY
Overall size $2^{\prime \prime} \times 1.2^{\prime \prime} 0-5^{\prime \prime}$ characters
reflective type

"

PROFESSIONAL CASE
for our 0-30V Power Supply. It is a nice looking metal cast case with giant $4^{\prime \prime}$ valt/amp meter: output blinding past and fuse holder, on/off switch and line
cord! \quad ONLY $\$ 21.50$ EA.

1.8:8.8

M.M.M

Model 737.01 - for clock 4 digits with PM, alarm, snooze, colen indicators.
lays include zeber connectors and front bezel. With data sheets. Your choice-any model $\$ 7.50$ EACH
FLUORESCENT LIGHT DRIVER KIT 12 V OC POWERED
Lights vD $8 \sim 15$ Wat Ideal for carpet Tubes

Kit includes high voltage coil, power, transistor, heat sink, al other electronic parts and PC Board. light tube not included! 5YOC ATHENS CLIP LEADS

3 Terminals Positive Voltage Regulator Hard 5 To find! Fairchild 85 - 20 V - 0 package, Input DC 5AMP Load Reguldlion 1%.

Only $\$ 8.75$ ea

\section*{SOUND} 1.C. Creates almost any type of sound-gun shot, explo organ ext. A builtIn audio amplifier provides high level output. Operates from one 9 V battery, 28 pin dip; we | supply the datas. $\quad \$ 2.90 \mathrm{EACH}$ |
| :--- |

 ducers, 2 PC Boards for transmitter and receiver. All electronic paris
and instructions. Easy to build and a lot of uses such as remote control for TV. garage door, alarm system or courter Unit operated by $9-12$
$D C$.COS LIGHT CONTROL
SWITCH KIT
High Sensiluity Darlington Circuit, operated
with a 9V D.C. supply to control lights or use with a 9V D.C. supply to control lights or use
if for burglar alarm, shooting game, visitor huffier, product) counting, Hash -light slave
unit or automatic door opener

FLASHER LI SD NV IF FORMULA INTERNATIONAL INC.$6 / 79$Inside California l

 PO BOX 401244 A (214) 278.3553 GARLAND TEXAS 75040

SOUND FFFICTS

TRS-80 ${ }^{\text {E.S }}$ SERIALI/O

- Can input into basic - Can use LLIST and LPRINT to output. or output continuously • RS-232 compatible Can be used with or without the expansion bus - On board switch selectable baud rates of 110,150,300,600 1200, 2400, parity or no parity odd or even. 5 to 8 data bits, and 1 or 2 stop bits. D.T.R line Requires +5 -12 VDC - Board only $\$ 19.95$ Part No. 8010 with parts \$59.95 Part No. 8010A, assembled $\$ 79.95$ Part No. 8010 C. No connectors provided, see below
 Ela/hs-232 con
necler Part No 082555600 men
$\mathrm{g}: \quad \mathrm{e}$ conouttor 8. E conouch cisble S1095
No De25pg

3 niblon cabie
withettacheocon-
nectors tofit Ths. Bo and our striad booro 51995 Po
No. $3 C A B 40$

RS-232/TTL: INTERFACE

- Converts TTL to RS 232, and converts RS. 232 to TTL•Two sep arate circuits - Re quires -12 and +12 volts - All connections go to a 10 pin gold plated edge connector - Board only \$4.50 Part No. 232. with parts \$7.00 Part No 232 A 10 Pin edge connector \$3.00 Part No. 10 P

RS-232/TTY INTERFACE

- Converts RS-232 to 20 mA current loop. and 20 mA current loop to RS-232 - Two separate circuits - Requires +12 and -12 olts Board only with parts \$7.00 Part with parts
No. 600A

S-100 BUS
 ACTIVE TERMINATOR

Board only $\$ 14.95$ Part No. 900 , with parts \$24.95 Part No. 900A

APPLE II:
SERIALI/O INTERFACE

Baud rate is continuously adjustable from 0 to 30,000 - Plugs into any peripheral connector - Low current drain. RS-232 input and output - On board switch selectable 5 to B data bits. 1 or 2 stop bits, and parity or no parity either odd or even - Jumper selectable address - SOFTWARE Input and Output routine from monitor or BASIC to teletype or other serial printer. Program for using an Apple II for a video or an intelligent terminal. Also can output in correspondence code to interface with some selectrics. Also watches DTR - Board only \$15.00 Part No. 2. with parts $\$ 42.00$ Part No. 2A. assembled $\$ 62.00$ Part No. 2C

8K EPROM piceon

Saves programs on PROM permanently (until erased via UV light) up to BK bytes. Programs may be directly run from the program saver such as fixed routines or assemblers. - S100 bus compatible - Room for 8K bytes of EPROM non-volatile memory (2708's) • Onboard PROM programming - Address relocation of each 4 K of memory to any 4 K boundary within 64 K - Power on jump and reset jump option for "turnkey" systems and computers without a front panel - Program saver software available - Solder mask both sides - Full silkscreen for easy assembly. Program saver software in 12708 EPRDM $\$ 25$. Bare board $\$ 35$ including custom coil, board with parts but no EPROMS $\$ 139$, with 4 EPROMS $\$ 179$, with B EPROMS $\$ 219$.

WAMECO INC.

FDC-1 FLOPPY CONTROLLER BOARD will drive shugart. pertek. remic $5^{\prime \prime}$ \& B" $^{\prime \prime}$ drives up to B drives. on board PROM with power boot up. will operate with CPM Inot FPB-1 Front Panel (finally AMSÀl size hex displays. Byte or instruction single step. MEM-1 A BK XB fully buffered. S-100, uses 2102 type RAMS.
PCBD CBD
\$24.95, \$168 Kit nated. S-100 board only, 13 slot termi- $\$ 34.95$ CPU-1 8080A Processor board $5-1005$ Kit 8 level vector interrupt PCBD $\$ 25.95$ RTC-1 Realtime clock board. Two independent interrupts. Software programmable. PCBD EPM-1 1702 A $4 K$ EPROM

> card PCBD $\$ 49.95$ with parts less EpROM
$\$ 25.95$ EPM-2 $2708 / 271616 K / 32 \mathrm{~K}$
$\$ 24.95$
EPROM card PCBD
ersion of OMB-9 MOTHER BOARD. Short Version of
QMB-12. 9 SIots PCBD.... $\$ 30.95$
QMB-12. 9 Slots PC8D $\$ 6795.95$
MEM-2 $16 K \times$ F Fully Buffered 2114 Board
PCBD
T.V.

TYPEWRITER

- Stand alone TVT lines, modifications for 54 char/line included - Parallel ASCII (TTL) input - Video output - 1K an board memory - Output for computer controlled curser Auto scroll - Nondestructive curser Curser inputs: up, down, left, right. home. EOL, EOS - Scroll up. down - Requires +5 volts at 1.5 amps , and -12 volts at 30 mA - All 7400. TTL chips Char. gen. 2513 . Upper case only Board only \$39.00 Part No. 106 , with parts \$145.00 Part No. 106A

UARTE

BAUD RATE GENERATOR \because

- Converts serial to parallel and parallel to serial Low cost on board baud rate generator - Baud rates: 110. 150. 300. 600. 1200, and 2400 . Low power drain +5 volts and -12 volts required - TTL compatible All characters contain a start bit. 5 to B data bits, 1 or 2 stop bits, and either odd or even parity. All connections go to a 44 pin gold plated edge connector - Board only \$12.00 Part No. 101. with parts $\$ 35.00$ Part No. 101 A, 44 pin edge connector $\$ 4.00$ Part No. 44P

HEX ENCODED KEYBOARD
This HEX keyboard has 19 keys, 16 encoded with 3 user definable. The encoded TTL outputs, B-4-2-1 and STROBE are debounced and available in true and complement form Four onboard LEDs indicate the HEX code generated for each key depression. The board requires a single +5 voit supply. Board only $\$ 15.00$ Part No. HEX-3, with parts $\$ 49.95$ Part No. HEX 3A. 44 pin edge connector \$4.00 Part No 44 P .

DC POWER SUPPLY ※̈

- Board supplies a regulated +5 volts at 3 amps., $+12,-12$, and -5 valts at 1 amp . Power required is 8 volts $A C$ at 3 amps., and 24 volts AC C.T. at 1.5 amps . Board only $\$ 12.50$ Part No. 6085 , with parts excluding transformers \$42.50 Part No. 6085A

10 Order: Mention part number, description, and price. In USA, shipping paid for orders accompanied by check. money order, or Master Charge, BankAmericard. or VISA Parts." Deater inquiries invited. 24 Hour Drder Line: (408) 226-4064
 moronoLa EXORCISE R C
960 MPU Module w/ 8802 C
9601 MP Slot Mother Board.

 9962 Seria// 9 Parallillo Comb 9627 16K Stathc 45
9630 Card Externct
 CB00 BARE BOARDS

$9626-0$
$9650-0$
\qquad
P. O. BOX $17329 \quad$ Irvine, California 92713

 - 204 K Byne Capacity

- One Double Density

Controller w/Case \&

VISTA V-250 FLOPPY DISK SYSTEM
(2) Shugan BOO-R 8"Floppy Disks * Controlier Card. Cable. Case 8 PS.

$$
\begin{aligned}
& \text { EXPANDORAM MEMOAY KITS }
\end{aligned}
$$

$\frac{\text { Expendo } 32 \mathrm{Kil}(4115)}{8 \mathrm{~K} \$ 179.00} \frac{\text { Expando } 64 \mathrm{Kit}(411 \mathrm{C}}{16 \mathrm{~K} \$ 248.95}$
$\begin{array}{r}8 K \$ 179.00 \\ 16 K \$ 229.00\end{array}$
$\begin{array}{ll}16 \mathrm{~K} & \$ 248.95 \\ 32 \mathrm{~K} & \$ 369.00 \\ 48 \mathrm{~K} & 546.00 \\ 64 \mathrm{~K} & 559.00\end{array}$

ANADEX PRINTER

VERBATIM ${ }^{\text {TM }}$ DISKETTES

BYTE USER BK EPROM BOARD
 Bare PC Board Special OHer: Buy 4 k
$\mathrm{MP-8} 8 \mathrm{~K} \mathrm{~W} 1 \mathrm{~K}$ Ram
$M \mathrm{P} .1616 \mathrm{~K}$

z-80/Z-B0A/8080 CPU BOARD * On board 2708 * 2708 included (450 ns , Assembled and tested
Kit........... $\$ 185.00$
Bare PC Board Bare PC Board
*OBOA Kit
S-100 MOTHERBOARD SPECIAL
\$69.95.................. NOW $\$ 52.95$
PGC PROGRAMMABLE CHARACTER GENERATOR

DATA BOOKS - COMPUTER BOOKS

Phone (714) 558-8813
TWX: 910.595.1565

Retail Store Open Mon. - Sat Located at 1310 " 8 " E. Edinger Santa Ana, CA 92705

CIRCLE 4 ON FREE INFORMATION CARD

θgram. See your computer store or our llyer for more intormation.

8K Econoram II 16K Econoram IV 12K Econoram VI 24K Econoram VII 32 K Econoram IX 32K Econoram X 32K Econoram XI 16K Econoram XII-16 24K Econoram XII-24 32K Econoram XIII Bank select XIII Bank select memorles -
(sockets, bypass caps pre-soldered in place); assembled and tested; or quallied under the Cer
tifled System Component (CSC) high-reliability pro

Buss Speed Unkit Assm CSC | S. 100 | 2 MHz | $\$ 149$ | $\$ 164 \mathrm{~N} / \mathrm{A}$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{S}-100$ | 4 MHz | $\$ 295$ | $\$ 329$ | $\begin{array}{llll}\mathrm{S}-100 & 4 \mathrm{MHz} & \$ 295 & \$ 329 \\ \mathrm{H} 8 & 2 \mathrm{MHz} & \$ 200 & \$ 270\end{array}$

 Dlg Grp 4 MHz 5649 N/A N/A $\begin{array}{llllll}\text { S. } 100 & 4 \mathrm{MHZ} & \text { S599 } & \text { S649 } & \$ 789 \\ \text { S-100 } & 4 \mathrm{MHZ} & \text { N/A } & \text { N/A } & \text { \$1050 }\end{array}$ S. $100 \quad 4 \mathrm{MHZ} \mathrm{N/A}$ N/A $\$ 1050$ $4 \mathrm{MHz} \quad \$ 369 \quad \$ 419 \$ 519$ $4 \mathrm{MHZ} \quad \$ 479 \quad \$ 539 \$ 649$ $100^{-4} \mathrm{MHz} \$ 629 \quad \$ 699 \mathrm{S849}$ Marinchip, Alpha Micro s.

Econoram" is a trademark of Buth Godbout Electronics.

MA1003 CLOCK 'N

 CASE SPECIAL: $\$ 19.95$!
Easy to build, iust add 12 VDC and three time- setting switches. Ideal for moDile use; has built-in timebase. No LEDs, won't wash oul Module only:

 16.50, Case only: $\$ 5.95$YOU'RE UNDER SURVEILLANCE!!
A HOST OF PEOPLE, AGENCIES, AND COMPUTERS ARE BUSY SPYING ON YOU AND YOUR BUSINESS EVERY DAY, OFTEN ILLEGALLY.
HOW TO STOP IT OR DO IT BACK!

A Large Format ($81 / 2^{\prime \prime} \times 11^{\prime \prime}$) Quality Paperback, 240 Pages

BUGGING
WIRE TAPPING
TARLING
$\$ 1195$
optical and
ELECTRONIC SURVEILLANCE
SURREPTITIOUS ENTRY
DETECTIVE TECHNIQUES
WEAPONS
COUNTERMEASURES
"A VIRTUAL ENCYCLOPEDIA ON SURVEILLANCE
EVERYTHING YOU'VE ALWAYS WANTED TO know About Sprline."-

PLAYBOY MAGAZINE

With this order

FREE SHOPLIFTING BOOKLET FOR DETECTIYES-pius other Investigative materials.

Now, more than ever . Men who KNOW say...

IS THE ANSWER

HELP NATESA HELP YOU
BY DOING YOUR PART

Are YOU the operator of an ethical, professional caliber tv radio-home electronics service business?

Write for details on how you can gain great benefits and participate in the destinies of this great industry.

NATESA
5908 South Troy Street
Chicago. Illinois 60629

Postpaid-P.O. Box 548-RE
Seattle, Washington 98111
CIRCLE 12 ON FREE INFORMATION CARD

HICKOK TEST INSTRUMENTS

HICKOK New Digital
 Oscilloscopes 30 MHz Dual Trace
 Reg. $\$ 995.00$

 Mini-Multimeter${ }^{0}$ Our Price $\$ 845.75$ $\$ 845.75$ incl. probes

Reg
$\$ 74.95$

- Big $1 / 2^{\prime \prime}$ high LCD display
- Use indoors or out
- 200 hour $9 V$ battery life
- Auto zero, Polarity. Overrangé Indicatión
- 100 mV DC F.S. sensitivity
- 19 ranges and functions

Call toll free (800) 645-9518

15 MHz Dual Trace MODEL 517

Reg $\$ 695.00$
our prie $\$ 590.00$
incl.poloes cl.probes

15 MHz

 Triggered Sweep Reg $\$ 495.00$ S425.75 MODEL 515 5 incl. probes

Before you buy, check our prices...
RADIO SUPPLY
855R COnklin St.
farmingdale, N.Y 11735
YOUR ONE STOP DISCOUNT CENTER
Master Charge, Bank Americard, Visa, C.O.D.'s accepted.
E E Send for new 1979 catalog of over 3,000 items... 164 pages of test equipment

Burglar-Fire.Smeke Alarm Catalog

- Billions of dollars lost annually due to lack of protective warning alarms.
FREE CATALOG Shows you how to protect your home, business FIAE and person. Wholesale ? engineering service.

Box 82802 RE-069 Lincoln, Ne. 68501

CIRCLE 58 ON FREE INFORMATION CARD

ALL ELECTRONICS CORP.

905 S. Vermont Ave. Los Angeles. CA 90006 (213) 380.8000 STore \& worenouse Hours 9 AM - 5 PM Mondoy thru Fritloy

Quontities Limited

- Min. Order 55.00
- Add 1150 Stripaing USA - Colit Res Add 6\% Some Doy Stippang wall
Cen Check or mio

save on gas!

Enjoy the benefits of 20% better gas mileage, quicker starting, elimination of tune-ups, reduced pollution, and 50,000 miles on plugs and points.

Update your car with a TIGER solid state electronic ignition system. Easily installed in 30 minutes
even on new cars.
Tiger 500 CD
Assembled
$\$ 49.95$
Simplikit
\$29.95

Postpaid USA

Master Charge \& Bank Americard accepted.

Tristar Corporation

Phone (303) 243-5200
P.O. Box 1727

Grand Junction, Colorado 81501
CIRCLE 27 ON FREE INFORMATION CARD

MOTION DETECTING OPTOLINEAR I.C.

(6)

Fantastic new development in 1^{2} L 1.C. tech nology! This is a 14 pin device mounted on a P.C. board with all the necessary capacitors and Requires a 30 VDC witches. The device is cepable of detecting wovement for a minimum dist of 8 ft and sounds whooper alarm und or fash lite if you add a bulb po circuit The detector works on a change of ambient light -5% or more trig gers the detector Works within s renge of 0 cp to 100 cb NO external light source is needed Complete with data sheets. See Radio electronics April 1979 page 44

Cat. No. K1137 Wt. 2 oz.
2 for $\$ 18$
CUDS MAY BF: PHONFD
TERMS: Add Postur
$\$ 9.95$
PHONE: (617) 631.7434

MINIMUM ORDER: $\$ 10$
When ordering, alwayt ute catalog number. type no., the nome of the magezine you are

I/I TEK-EL Corp.

P.O. Box 761 R

Marblehead, Mass.
01945

JAPANESE TRANSISTOR SUDSTTIUTION MANUAL

subyitution gurde for approximotely. 3000 rionsisy 20 series
inmoduction includes a guide
10 understonding roponese

PARTS PROCUREMENT PROBLEMS

FUJI-SVEA Has the Largest Inventory of Original Japanese Parts Anywhere

Seeking Original Japanese Replacement Parts for CB, TV and Stereo Repair Use?

The CT- 50 is a versatile and precision frequency counter which will measure frequencies to 60 mHz and up to 600 mHz with the GT-600 option. Large Scale integration, CMOS circuitry and solid state display technology have enabled this counter to match performance found in units selling for over three times as much. Low power consumption (typically 300-400 ma) makes the CT-50 ideal for portable battery operation. Features of the CT-50 include: large 8 digit LED display. RF shielded all metai case, easy pushbutton operation, automatic decimal point, fully socketed IC chips and input protection to 50 volts to insure against accidental burnout or overload. And the best feature of all is the easy assembly. Clear, step by step instructions guide you to a finished unit you can rely on. Order your today?
CT. 50.60 mHz counter kit
$\$ 89.95$
159.95
29.95

CB-1. Color TV callbrato :stabilizer
DP-1. DC probe general purpose prob?
CT-SQWT, 60 mHz counter, wired and tested
CT-600. 600 mHz 'scaler option, add
HP. 1. Migh impedance puobe non-loacir

CAR
CLOC
CLOCK
The UN-KiT. onily 5 sotder connections
Heres a super looking rugged and accurate auto clock. which is a snap to buld and install Clock 3 moverent is completely assembled-you only solder Display is bright green with automatic brightness control photocell -assures you of a highly readable display day or night Comes in a satin pinisn anodized aluminum case which can be attached 5 difterent ways using 2 sided tape Choice of silver. black or gold case (specity)
OC. 3 kit, 12 hour format
C- 3 wired and tested
loV AC adapter
522.95
55.95

Under dash car clock

ful plastic clock in a beau.
jumbo RED LEDS, high accuracy (1 min mo), easy 3 wire hookup. display blanks with ignition. and super insiructions Optional dimmer automatically adusts display to ambient light level DC- 11 clock with mig bracket OM-1 dimmer adapler 2.50

PRESCALER

Extend the range of your with any counter. Includes
ransistor pre-amp to give super sens typically 20 $m y$ at 150 mHz Specily +10 or +100 ratio PS-1B .600 mHz prescater PS-18K 600 mHz drescaler kır

OP-AMP SPECIAL

741 mini dip

12/52.00 10/\$2.00

VIDEO TERMINAL

A completely self-contained, stand alone video terminal card. Pequires only an ASCII keyboard and TV set to become a complete terminal unit. Two units avallable, common teatures are single 5 V supply. XTAL controlled sync and baud rates (to 9600). complete computer and keyboard control of cursor. Parity error control and display. Accepis and generates serial ASCII plus parallel keyboard input. The 3216 Is 32 char. by 16 Ines, 2 pages with memory
dump. feature. The 6416 is 64 char by 16 lines with dump feature. The 6416 is 64 char. by 16 lines, with Scrolling. upper and lower case (optional) and has AS-232 and 20ma loop interiaces on board Kis RE 3216 , terminal card RE 3216, terminal card
$\$ 149.95$ RE 6416, terminal card 189.95 Lower Case option. 6416 only
189.95
13.95 Power Supply Kit
14.95

Video/RF Modulator, VD-1
6.95 Assembled, tested units, add 60.00

CALENDAR ALARM CLOCK

The clock that s got if all. 6-5" LEDs. 12/24 hour backup and lois more The super 7001 chip is used Size $5 \times 4 \times 2$ inches
Complete kit. less case (not avalable) DC-9
$\$ 34.95$

30 Watt 2 mtr PWR AMP

Simple Class C power amp teatures 8 times power gain. 1 W in for 8 out. 2 in for 15 out. 4 W in 1 or 30 out Max. output of 35 W incredible value, complete with all parts. less case and T-R relay
PA. 1,30 W. pwr amp kit
TR-1. AF sensed T-R relay kit
22.95

Ramsey's famous MINI-KITS

FM WIRELESS MIKE KIT Transmits up to 300^{\prime}
to any FM broadcası adio, uses any type of Type fMuns on 3 has added sen titive mike preamp stage FM. 1 kil $\$ 2.95$ FM

COLOA ORGAN/MIISIC LIGHTS See music come alive' 3 ditherent lights hicker with music one light or lows, one for the mid range and individually adjustable. and dives music. nite clubs and more
Complete kIt. ML-1 $\quad \mathbf{\$ 7 . 9 5}$
LED BLINKY KIT
A great attention getter which aller hately llashes 2 jumbo LEDs Use or name badges. butions, warning panel lights. anything' Runs on 310 15 volts Complete hil BL- 5295

VIDEO MODULATOR KIT Converts any TV to video monitor
Super slable. funawe over ch 4.6 Runs on 5.15 V accepts std video signal Best unit on the market!
Complete kil. VD. t
$\mathbf{\$ 6 . 9 5}$

TONE DECODER

 Complete tone decoder ona single PC board
Features 400.5000 Hz adjustable range via zz adjustable range via 20 lurn pot. vollage regutation. 567 one burst detection FSK. etc Can also be used as a stable lone en coder Runs on 5 to 12 volts

WHISPER LIGHT KIT

 An inleresting kit. small mike picks Up sounds and converts them to light The louder the sound thebrigmer the light Completely sell brighier the light Completely sell-
contanned includes mike. puns on contained includes mike, runs on 110 VAC controls up to 300 watts

SUPER SLEUTH A super sensitive amplifter which will pick up a pin orop at is teet Great for monitoring babys room or as general purpose amplitier. Full 2 Wrms output, runs on 6 to 15 volls, uses $8-45 \mathrm{ohm}$ speaker Complete kit. BN. 9 $\$ 5.95$
POWER SUPPLY KIT Complete triple regulaled power supply pro- vides vapiable 6 to 18 volls at 200 ma and +5 V at ! Amp Exceltent load regulation good filtering and small size Less transtormers, requires 6.3 V (i) 1 A and 24 VCT Complete kit. PS-3LT $\$ 6.95$

PHONE ORDERS CALL (716) 271-6487

FM MINI MIKE KIT
A super high performance FM wreess mike klt' Transmits a stable singal up 10300 yards with exceptonal audin quality by means of its \&ase. mike on-ofl swich. antenna. battery and super instucrions This 15 the finest unit avalleble

FM-3 wired and lested
$\$ 12.95$
16.95

CLOCK KITS

our Eest Seller your Best Deal

Try your hand at building the finest looking clock on the market its satin finish anodized aluminum case looks great anywhere. while six 4 LEO digits urovide a highly readable display This is a complete kut, nc extras nemded. and it Only takes 1.2 hours to assemble Your choice of cas
silver, gold bronze black blue (spelifly) Clock kit. 12/2d hour DC-5
Clock with 10 min ID lime , 12:24 hour.
\qquad For wired and tesfeyclocks add $\$ 1000$ to kit orice

Hard to find PARTS

40 CHANNEL

MOTOROLA STYL ANDY DISC＇

 RECTIFIERS
－axial Leods

E8ちとうといました。

Heavy Sand Type Harmat Conatruction －Space Age Environmentol Cheroctoriatice Cen wo szeusely ispoctit patioce）
＇ONE PENNY MQRE GETS YOU TWO MINI LECTROS

 IEITS：

： －30－RADIO AND TVKNOBS，ass1 sivies，sizes（ -217 ）
 SO－POWER RESISTORS，3，5，7 w anial，pop slizes（a 228）
 －60．TERMINAL STRIPS，up to 4 solder lugs（ ${ }^{2} 334$ ） － 60 PRECISION RESISTORS，＇i，W， 1% ，atial（ $=363)$
 10－SFTS RCA PIUGS AND IACK5，phono（n 402）
60 ISC CAPACITORS，ast values long leads（wa37）
20－TRAN5ISTOR HIECT RO＇S， 20－TRANSISTOR ELECTRO＇S，Asst Up and an（a453） －35－FALVER MICAS，red bach，anial，assilitiss） －100－GERMANHMM DIODES，a nial leads，u terila 642 ）
 －50－3 AMP SILICON REC 1 ffifes，anial，dsst $V(x$ bes） －50－POLYSTYRENE CAPS，plastic coated，prec．（1）1052）
－30－4＂CABLE TIES，non－silp while plastic（a 52177 ） 308 ） 2－5．TV，5－，10W，STUD IENER，DO－4 Casela 5287 ） －TO－RCA PHONO IACKS，Chasis mount，teflon base（ 51 －I5－1HERMISTORS．Assi IVpes，styles a values（ 2048 ） －4－＇＂BIOCK IRIM POTS，5k（ $=2536$ ）

FOTO－FET＂N（HANAEL，Cystalonics，I－5ealed EIfeci Ir 2．3 DIGITS ON A OIP，LED，red．DI－331a1887） －3．MM5262 2K DYNAMIC RAM，sperliy Iype（a 3459） －2．15W HI POWIR TRANSISTORS．220V，npn，TO66（82797） 15．NI． 2 bulbs lor 110 vac projecis，hobby，etc．less resistor（m1435） －2－MMS725 4 FUNCTION CAI CUIATOR CHIP，100\％（a2036） 1．MMS202 ERASABLEPROM， $100 \%(43459)$.
3．10 AMP 25V BRIDGERECI

 －OPEN－FACI READOUTS，IFD，red，some segs missing mostly duals（a 3932） －10－2 N2222 lor equiv．）， 10.18 melal case（ (4992) ． －10－DATA ENTRY SWITCHIS，SPST， 1 dmp，norm open $12 S V$ V
－B．TRANSISTOR RADIO EARPHONES， 8 ohms impedt 2946 ） －8．TRANSISSCEN OVERHIOW READOUT TURES S W／leads（\＃32 －2．AL UMINUM HEAT SINKS，for 1O．220（as338）

```
（\＃3288）
``` 1． 2 N5001 GOV TRANSISTORS STUD（＂2m00）
＊Buy any item on this page and choose 2nd item for only one penny？

FREE！FREE！ Buy \({ }^{20} \mathbf{0}^{00}\) Worth Choose Any Two \({ }^{1} 1^{19}\) Items Free

\section*{GIANT}

INCHER
READOUT
\(\$ 2.99\)

 Coknine Red

\section*{25 AMP BRIDGE RECTIFIERS}

\(\qquad\)

\section*{Spectrol}
＇SKINNY－TRIMS＇ POTENTIOMETERS

onotr ey cat．nd．amo value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{S－TUAN UPRIGMT Type 64 Cot．Me． 22 CU 3863} & \multicolumn{2}{|l|}{\begin{tabular}{l}
\＄1wGL \\
TU縣 PbAT \\
Type－6 \\
Cal．Mo．
2cu3a6 \\
－
\end{tabular}} \\
\hline 10 & 10 K & 20 & \({ }^{100}\) & & \\
\hline 200 & \({ }_{\substack{\text { sok }}}^{201}\) & 30
100 & Sok & 20 & \\
\hline 500 & 100\％ & 200 & 1000 & 100 & 25M \\
\hline \({ }^{1 k}\) & 200\％ & \＄00 & 200k & 200 & sok \\
\hline \({ }^{2 \mu}\) & sook & & 3 som & 500 & \({ }^{\text {200k }}\) \\
\hline 5＊ & Mas & \(\underset{\substack{\text { Sk }}}{\text { 2K }}\) & Sook & \({ }_{2 k}^{1 / 2}\) & \(\underset{\substack{300 \mathrm{k} \\ \text { sook }}}{ }\) \\
\hline & & & & \({ }_{2.5 n}\) & 1 mak \\
\hline
\end{tabular}

2 FOR \(\$ 1.29 / 4\) FOR \(\$ 1.30\)

1N4000 Epoxy Rectifiers
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline t， & T， & Voit． & & & & \\
\hline & & & 10 toe & & & \\
\hline & & & & & 20 \％\％ & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Electricity from the sun GIANT \(31 / 2\) inch cell, delivers \(1 \mathrm{amp} \$ 8.50\) Giant cell w/special motor \& propellor \(\$ 10.25\)

SOLID STATE power supply 12 VDC \(15 \mathrm{amp} \$ 40.00\) SOLID STATE power supply 5 VDC \(35 \mathrm{amp} \$ 50.00\) Above supplies unused in original cartons. Operate from 115 volts AC 60 cycle. Made for computer work. Solid state, filtered, regulated, over voltage protected

ULTRASONIC room alarm, intrusion detection with full data for hookup.
\$40.00

SEE IN THE DARK IR viewer complete ready to operate. Guaranteed by the manufacturer. Portable, runs on lantern battery. New, see in total darkness No shipments to Calif, Comes complete with built in IR source and adjustable focus lens. SPL-21 \$199.00

All items FOB Lynn, Mass. Send for free 72 page catalog jam packed with goodies. Micro Processor Power Supplies Brand New 60\% Discount. Send for List. Meshna Inc., PO Box 62, E. Lynn, Mass. 01904

CIRCLE 52 ON FREE INFORMATION CARD

CIRCLE 51 ON FREE INFORMATION CARD

P.O. BOX 1035 FRAMINGHAM, MASSACHUSETTS 01701
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Over - the -counter shios. \\
12 Morcer Ad., Natict, Mass 01760 \\
Behind Zuyres on AIE. 9 \\
Tolephone Orders \& Enquiries (617) 879-007
\end{tabular}}} & \multicolumn{2}{|l|}{MINIMUM ORDER 510.00 - ADD 52.00 TO COVEA POSTLGE E MANDLING} \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Forsigni customers plesse remit paymont on an intemational bant dratt or intemational postal moncy order in Americen dollars.}} \\
\hline \multicolumn{2}{|l|}{} & & \\
\hline & 4800 DUFFEAIN ST. & & \\
\hline MONTAEAL, QUEBEC & DOWNSVIEW, ONTARIO & 1050 BAXTER ROAD & OPENING \\
\hline H4P 2K5 & & OTAWA, Ontanio & SUMMER 1979 \\
\hline Tol:(514)735-6425 & & K2C: 3 (613 \% 820.9471 & \\
\hline
\end{tabular}

ADVERTISING INDEX
RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

\section*{Free Information Number Page}

AMC Sales... 99
\(\qquad\)Aaron-Gavin Instruments...................... 93Active Electronics 107Advanced Computer Products 108
All Electronics 114
Amelect. Inc. 90
American Antenna Cov. 4
Austin Electronics 102
B \& K Precision I)ynascan Co.3
Babylon Electronics
100
Karel Barta15
Bullet Electronics. 106
Burdex Security Co 114
118
C I E-Cleveland Institute of -
Electronics 28-31
Command Productions 114
Computer Components 106
Consumer's Co. 118
Continental Specialties Cov. 2
Cooper Group-Electronics D 92
Dage Scientific Instruments 1.18
46 \& 47 IData Precision 12
15 Dasis Electronics 80
3 Ielia Electronics 100
58 Diamondback Electronics 114
57 Digi-Key 109
Digital Research Corporation
100
51. Electronic Supermarket 118
Electronic Systems 119
59
Enterprise Development 23
Fair Radio Sales 99
42 \& 64 Fluke 17Forest Belt's Training Workshop........ 8
19 \& 20 Formula International \(.104 \& 105\)
Fuji-Svea 115
43 Godbout Electronics 110
Golden Enterprises 118
Gould 6
100 Heath 73
48 Hickok Electrical Instrument 8344
Hobby W orld 102
Information Unlimited 100
International Crystat MIg. Co 93
IS \& A Group. Inc 529 \& 30,9 James Electronics 112 \& 113, 792

Kester Solder 74
l.akeside Industries. 99
Lampkinlabs. 86
Mallory Cov. 3
118

National Camera Supply 85
National Radio Inst. (NRI) Div, of McGraw-Hill .8-1!
National Technical Schools. 18-21
Nesda 23
Netronics. 96
O.K. Machine \& Tool 81
Ohio Scientific
91
OnComputing22
PAIA 82
P T S Electronics 98
Panasonic 34
Panavise 98
Poly Paks 117
Pomona 67
Ouest 103
Quimtronix 110
RCA-Solid State7
RCA.
101
Ramsey Electronics 116
Rye Industries 95
Sabtronics 26.27
Howard W. Sams \& Co 94
Schober Organ 74
Sheldahl Electrical 6
Simpson Electric Co. 77
Dick Smith Electronics 94
Soar.. 82
Solid State Sales 110
Southwest Technical Products 97
Spacecoast Research 18
Speakerlab, Inc. 100
Sprague Products 16
tarshine 97
Tab Books. 86
Tek-El Corp. 114
Tri-Star 114
Tri-Tek 114
Trumbull 100
V.1.Z. Mfg. 95
Vector Electronics Co. 80
Wersi Electronics 92
Zemco 13

\begin{tabular}{ll}
name & (ple ase print) \\
address \\
city & state
\end{tabular}

Mall to: Radio-Electronics
SUBSCRIPTION DEPT., P.O. BOX 2520, BOULDER, COĹO. 80322

One Call.

\section*{YourMallory distributor's got them all.}

Take the search and wait out of your electronic parts finding.

Go straight to your Mallory distributor, by phone or in person.

Get to know the convenience and economy of simplified single-source buying. To
deliver exactly what you want in parts, quality, and quantity. Immediately from stock on hand, or in most cases within 24 hours from the factory.

Your Mallory distributor goes all out for his Number 1 VIP . . you. Get in touch with him soon. Mallory Distributor Products Company, a division of P. R. Mallory \& Co. Inc., Box 1284, Indianapolis, Indiana 46206. (317) 856-3731.

MALIORY

\section*{New, K40 Magnamount: Grips like a grapple, actually improves transmission.}
```


[^0]:    - Monitors and cassette recorders not included Ohio Scientific offers a com. bination TV/Monitor (AC-3P) for \$115.

[^1]:    $\Gamma$
    TO:
    TO: ZEMCO, Inc.
    (415) 935-4960

    12907 Alcosta Blvd.
    San Ramon, Ca. 94583
    Ship

    - CompuCruise ${ }_{\text {TM }}$ units \$199.95 Model 44 (WITH CRUISE CONTROL) Add $\$ 5.50$ for front-drive
    Ship CompuCruise ${ }_{\text {TM }}$ Units (1i) \$159.95 Model 41 (WITHOUT CRUISE CONTROL) And $\$ 5.50$ for front-drive
    Total enclosed: \$
    (CA residents add Sales Tax)
    Charge to my Master Charge Visa
    Card Number
    Date Expires
    Signature
    Make vehicle
    Name:
    Address:
    City: $\quad$ State \& Zip

[^2]:    My name Is

[^3]:    Forest Belt's Service Tralning mONOGRAPHS
    Box 68120 Indianapolis IN 46268

