PROJEC S- II-FI-COMPUTERS
 Rai o-Electronios
 TH $=N$ CAZZNE EOR NEM IDEAS IN ELECTRONICS

600-MHz COUNTER

A battery-powered $600-\mathrm{MHz}$ frequency counter thot's small enough to fit in the palm of your hand.
Build it for less than 17 cents per MHz.
Turn to page 39.

VIDEO MOTORCYCLE GAME

Rev your engine, hang a wheelie, accelerate up the ramp and see how many obstacles jou can jump.
Construction starts on page 44.

DIGITAL CIRCUIT DESIGN

Part 2. How to design digital circuits from scratch. The walk through sequential and comb national circuits and circuit reduction techniques starts on page 47.

4-CHANNEL RM

A look at the different broadcast system; under consideration ty the FCC
and what it will mean to you.
For the complete story, turn to page 51.

PLUS:

* Build a

NOM card for an 1802-based computer

* Hobby Corner
* Computer Corner
* Jack Darr's Service Clinic
* 2 Hi-Fi Lab Test Reparts

COVER STORY AUDIO TEST STAIION

Professional-quality test instrument you can build combines several important test instruments into a single cabinet.
2, 1,0

> ร391
> 0EIE\& in syanyu 5atn

조옹

 All THE MOST WANIED FEATURES

 All THE MOST WANIED FEATURES ATA MOST WANTED PRIC....

 ATA MOST WANTED PRIC....}

BIG $1 / 2^{\prime \prime}$ HIGH LCD DISPLAY USE INDOOFS OR OUT 200 HOUR 9V BATTERY LIFE AUTO ZERO, POLARITY, OVERRANGE INDICATION

Available accessaries include AC adapter, padded sinyl carrying case. 40KV DC probe. O Amo DC shunt.

X10 DCV probe adapter available for protecting in st up to 10 KV .

100 mV DC F.S. SENSITIVITY 19 RANGES AND FUNCTIONS

Here is the handfull of accu-acy you've been waiting for. Handsomely encased. Compact. Efficient Only 8 ounces. tickok's exciting. new Ľ̌ 303, 3½ digit Mini-Multimeter with high quality components, one year guarantee and rugged Cycolac case offers features previously found only in expensive units. . at a price under $\$ 75.00$! So why wait any longer? The amazing LX 303 is here, NOW! Another American made test equipment breakthrough from Hickok, The Value Innovator. Order today!

SPECIF CATIONS:

DC VOLTS (5 RANGES): D. 1 mV to 1000V; Accuracy $\pm 0.5 \% \mathrm{r} \mathrm{J}_{\mathrm{y}} \pm 0.5 \%$ f.s.; Input imped: $10 \mathrm{M} \Omega$; Max. input 1 kV Except 500 V or 203 mV range. AC VOLTS (40 Hz to 5 kHz): 0.1 V to 600 V ; Accuracy: $\pm 1.0 \% \mathrm{roj} \pm \pm 0.5 \%$ f.s. (-2 dB max. at 5 kHz); Max input: 600V:
RESISTANCE (6 LOW POWER RANGES): 0.1Ω to $20 \mathrm{M} \Omega$; Accuracy: $\pm 0.5 \%$ rdg $\pm 0.5 \%$ f.s. $(\pm 1.5 \%$ rdg on $20 \mathrm{M} \Omega$ range); input protécted to 120 VAC all ranges.
DC CURRENT (6 RANGES): 01 AA to 100 mA ; Accuracy: $\pm 1.0 \%$ rdg $\pm 0.5 \%$ f.s.
DIMENSIONS AND WEIGHT: 5-7/8" $\times 3-3 / 8^{\prime \prime} \times$ 1-3/4", $80 \geq$; POWER: 9 V battery (not included) or Hickok AC adapter; READ RATE: $3 / \mathrm{sec}$.

See your nearby Hickok distributor. Call toll free 800-321-4664 (cutside of Ohio) for your local distributor's name.

HICKOK

the value innovator
INSTRUMENTATION \& CONTROLS DIVISION THE HICKOK ELECTRICAL INSTRUMENT CO 10514 Dupont Avenue . Cleveland, Ohio 44108 (21E) 541-8060 - TWX: 810-421-8286

The Age of Affordable Personal Computing Has Finally Arrived.

Ohio Scientific has made a major breakthrough in small computer technology which dramatically reduces the cost of personal computers. By use of custom LSI micro circuits, we have managed to put a complete ultra high performance computer and all necessary interfaces, including the keyboard and power supply, on a single printed circuit board. This new computer actually has more features and higher performance than some home or personal computers that are selling today for up to $\$ 2000$. It is more powerful than computer systems which cost over \$20,000 in the early 1970's.

This new machine can entertain your whole family with spectacular video games and cartoons, made possible by its ultra high resolution graphics and super fast BASIC. It can help you with your personal finances and budget planning, made possible by its decimal arithmetic ability and cassette data storage capabilities. It can assist you in school or industry as an ultra powerful scientific calculator, made possible by its advanced scientific
math functions and built-in "immediate" mode which allows complex problem solving without programming! This computer can actually entertain your children while it educates them in topics ranging from naming the Presidents of the United States to lutoring trigonometry all possible by its last extended BASIC, graphics and data storage ability.

The machine can be economically expanded to assist in your business, remotely control your home, communicate with other computers and perform many other tasks via the broadest line of expansion accessories in the microcomputer industry.

This machine is super easy to use because it communicates naturally in BASIC, an English-like programming language. So you can easily instruct it or program it to do whatever you want. but you don't have to. You don't because it comes with a complete software library on cassette including programs for each application stated above. Ohio Scientific also offers you hundreds of inexpensive programs on ready-to-run cassettes. Program it yourself or just enjoy it; the choice is yours.

Ohio Scientific offers you this remarkable new computer two ways.

Challenger 1P \$349 Fully packaged with power supply. Just plug in a video monitor or TV through an RF con verter to be up and running.

Superboard II \$279

For electronic bulfs. Fully assembled and tested. Requires +5 V . at 3 Amps and a video monitor or TV with RF converter to be up and running.

Standard Features

- Uses the ultra poweríul 6502 microprocessor
- BK Microsoft BASIC-in-ROM

Full feature BASIC runs faster than currently avallable personal computers and all 8080 -based business computers.

- 4K static RAM on board expandable to 8 K
- Full 53 -key keyboard with upper/lower case and user programmability
- Kansas City standard audıo cassette interface for high reliability
- Full machine code monitor and I/O utillties in ROM
- Direct access video display has 1 K of dedicated memory (besides 4 K user memory). features upper case, lower case. graphics and gaming characters for an effective screen resolution of up to 256 by 256 points. Normal TV's with overscan display about 24 rows of 24 characters: without overscan up to 30×30 characters.

Extras

- Available expander board features 24 K static RAM (additional), dual mini-floppy interface. port adapter for printer and modem and an OSI 48 line expansion interface.
- Assembler/editor and extended machine code monitor available.

Interested in a bigger system? Ohio Scientific offers 15 other models of microcomputer systems ranging from single board units to 74 million byte hard disk systems.
_ORDER FORM
1 Order direct or from your local ŌTio S̄cientific dealer. I
I I'm interested Send me information on your
I \square Personal Computers Business Systems
I \square Send me a Superboard II $\$ 279$ enclosed
I I Send me a Challenger $1 P \$ 349$ enclosed
| \square Include 4 more K of RAM (8 K Total) $\$ 69$ more enclosed
I Name
I
| Address ___ |
I City State____Z_Z__ in_
I Payment by BAC(VISA) __ Master Charge __ Money Order ___ I
I
Credit CardAccount\# __
Expires \qquad Interbank \#(Master Charge) \qquad
TOTALCHARGED ORENCLOSED __ ।
All orders shipped insured UPS unless otherwise requested. FOB Aurora. OH

America's Largest Full Line Microcomputer Company 1333 S. Chillicothe Road • Aurora, Ohio 44202 (216) 562-3101

It won't be hard.
Just tell yourself about the Adams-_President's finest SSB mobile-and about how rou'd enjoy the extra range and performance of $S S E$.

Take yourself into a President dealer and show yourself how beautiful ih s machine would look in your machine.

Remind yourself of the total command you'll have with the Adams' 19 controls, push buttons and switches...more controls than you d expect to find on a top-of-the-line base stati=n.

And 'Jon't forget to point out how the Adams keeps an ear ou: for you on three channels at once-Channel 9 for emergencies, Channel 19 for the road, and the channel of your choice.

Now clinch the deal by mentioning President's superior quality in design, electronics and craftsmanship.

You'll have talked yourself into the best.

And, after all, don't you deserve it?
presigent
Engineered to be the wery best. President Elert'onc cu, Inc. 16691 Hale Avernue. Ir vine, CA 92714 - (714) $550-7355$

Radio-Electronics.

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS Electronics publishers since 1908

BUILD ONE OF THESE

35 Audio Test Station
5 in 1 instrument is a must for any audio bench.
$39 \quad 600-\mathrm{MHz}$ Frequency Counter
At less than 17-cents a megahertz, this instrument is worth its weight in gold.

44 TV Motorcycle Game
General Instruments chip makes this game work
58 NOM Card For the $\mathbf{1 8 0 2}$
Part 2: Add-on math board. Final instructions for construction and use.

GENERAL ELECTRONICS

4 Looking Ahead
Tomorrow's news - Today!

14 Editorial
1978-A Great Year Ahead
62 Hobby Corner
Learn solid-state circuitry as you build a monophonic music maker.

STEREO
HI-FI
PRO SOUND
1 Update-4-channel FM
Report on 4-channel FM broadcasting
54 R-E Lab Tests Tandberg TDA-20A Open-Reel Tape Deck A great deck gets a "Superb" trom our lab.

56 R-E Lab Tesis Pioneer TVX-9500 TV Audio Tuner A new way to listen to TV sound.

DIGITAL ELECTRONICS

47 How To Design Digital Circuits
Part 2: Sequential circuits and multiple output functions.
64 Computer Corner
A look at Intel's 8085 and the MCS-48 microprocessor family.

Service Questions
R-E's Service Editor solves technician problems.
F. W. Bell CG-10 Current Gun

26
Data Cash CompuChess

Advertising Index	79	Market Center
Advertising Sales Offices	6	New \& Timely
Computer Products	77	New Products
Free Information Card	74	Stereo Products
Letters		

ON THE COVER

Harvey Sound's midtown Manhattan store provides the backdrop for a complete audio test bench in a single instrument. It combines a digital AC multimeter, digital frequency counter, two sine/square/triangle wave generators and a pulse generator. It's "the" instrument for audio testing. Turn to page 35 for all the details.

SIMPLIFIED LOGIC CIRCUIT is just one type of circuit design covered in this article. Turn to page 47.

RACE MOTORCYCLES across your TV screen. New TV game built around General Instruments chip makes it work. Story starts on page 44.

Radio-Electronics, Published monthly by Gernsback Publications, Inc., 200 Park Avenue South, New York, NY 10003. Phone: 212-777-6400. Second-class postage paid at New York, NY and additional mailing oftices. One-year subscription rate: U.S.A. and U.S. possessions, $\$ 9.98$. Canada, $\$ 12.98$. Other countries, $\$ 14.98$. Single copies $\$ 1.25$. $\$ 1978$ by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A.

Subseription Service: Mail all subscription orders, changes, correspondence and Postmaster Notices of undelivered copies (Form 3579) to Radio-Electronics Subscription Service, Box 2520. Boulder, CO 80322.

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if heir return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

Indintaliad

Digital audio standards: Fearing a profusion of different types of digital audio disc systems, 29 Japanese, American and European firms have formed an informal organization to establish voluntary standards for a single system. Philips, Matsushita, JVC, RCA and others already have demonstrated or developed pulse code modulation (PCM) systems based on their videodisc developments. The advantage of digital recording is reduction in noise, expansion of dynamic range, decreased distortion and complete elimination of wow and flutter. Unfortunately, none of the PCM systems developed so far is compatible with any other.

Mindful of the lack of standardization in videocassette recorders, the 29 companies have agreed to work to develop a single standard within two years, presumably tacitly agreeing not to introduce any commercial systems until a standard is developed. The group was organized in Japan, but its members include RCA and MCA Disco-Vision of the U.S., Philips of Holland, Thomson-CSF of France, A.E.G. Telefunken of Germany, in addition to Japanese hi-fi equipment and record manufacturers. The group will attempt to reconcile differences in record size, recording methods and rotation speed of the various proposed systems, and to develop standard sampling rates, technology, encoding, decoding and error correction systems. The group agreed to explore the possibility of interchangeability between laser-beam and needle-in-groove types of disc, compatibility with videodisc systems and measures to help prevent piracy.

The group was established in Tokyo not only because the majority of its members are Japanese firms, but also presumably because Japanese law is more tolerant of stan-dard-setting meetings of competing firms than that of some other countries, including the U.S. The audio disc standardization group, known as "Digital Audio Disc Standardization Conference," is expected to set a pattern for a similar effort to standardized videodisc systems.

One for one: The United States has lost one TV manufacturer and gained one. Lost is Admiral, one of the first U.S. manufacturers to produce black-and-white, and later color, television. In 1974, Admiral was sold to Rockwell International, which announced last fall that it was leaving the TV business because of continued losses. The phaseout will come gradually during the first quarter of 1979. Admiral will continue to produce appliances. It's possible the brandname may be sold for a private-label TV line. Admiral offered its Chicago and Taiwan TV plants for sale. The new U.S. manufacturer is Sharp, the last of the Japanese TV majors to establish a plant here. Sharp's TV plant will be in the Memphis area and will produce microwave ovens as well as color TV sets.

Other Japanese TV makers with U.S. plants are Sony, Toshiba, Mitsubishi (MGA), Sanyo, Matsushita (Panasonic and Quasar). American TV brands which have ended production in recent years include Emerson, Philco (name purchased by Sylvania) and Motorola (whose TV set operation was sold to Matsushita and re-named Quasar). Warwick, controlled by Whirlpool, was sold to Sanyo. Magna-
vox was purchased by Philips of Holland. General Electric has agreed to sell its TV and picture-tube manufacturing facilities to a new firm, General Television of America, to be jointly owned by GE and Hitachi, pending approval by the U.S. and Japanese governments.

More color cameras: Just a year ago, the home color camera was a curiosity, the cheapest one was $\$ 1,500$ stripped down and well over $\$ 2,000$ for a version with electronic viewfinder and zoom lens. Black-and-white cameras chalked up impressive sales and have been in short supply all year, and the public snapped up whatever color cameras it could find. Starting this fall, color cameras are being produced by mass-production techniques for the first time and there's a good selection starting under $\$ 1,000$ despite the drop in the value of the dollar in comparison to the yen (the cameras are all Japan-made).

JVC and Magnavox are offering similar JVC-made cameras. Panasonic, Quasar and RCA feature a different model made by Matsushita. Zenith has one made by Hitachi, and GBC has cut the price of a Toshiba-made camera to slightly below $\$ 1,000$. New color cameras which start slightly above $\$ 1,000$ are offered by Hitachi and Sony, the latter with such deluxe features as through-the-lens viewfinder and 3-1 zoom lens. Meanwhile, an RCA official said the company hoped to offer an all-solid-state CCD color camera in about a year at around $\$ 500$.

Flat-screen progress: Working with a team of former Zenith research engineers, GTE is confident that it is only a few years away from a giant flat-screen non-CRT color TV display using the principle of cathodoluminescence. The joint program is being conducted with Lucitron Inc., headed by Joseph Markin, formerly head of Zenith's display systems R\&D operation. GTE owns TV set producers Sylvania and Philco in the United States and Saba in Europe and is a major manufacturer of picture tubes.

Lucitron has already developed monochrome gas-discharge displays and sees no major problems in developing color. A top GTE engineer predicted that large color TV displays would be ready for commercialization in three to five years. Lucitron officials are more conservative and talk in terms of five to ten. GTE envisions its first color TV panels to be larger in viewing area than the biggest picture tube, somewhere between 35 and 50 inches measured diagonally by about three inches thick. The Lucitron panels are claimed to provide good grey scale, have high efficiency, good brightness and potential economy and long life. Among their major advantages are the fact that they're "self-scanning," eliminating the need for complex drive circuitry; they use conventional color phosphors and in other respects employ technology similar to that required in the manufacture of picture tubes. Initial Lucitron developments will be alphanumeric displays for airports, stock brokerages and computer terminals, expected by 1981 at the latest.

Everything that's New and Exciting in Electronics... All in the NEW, Hot-Off-The Press

HEATHKIT

Read about nearly 400 exciting do-ityourself kits including Amateur Radio Equipment, Personal Computers, Home Improvement Products, Stereo $\mathrm{Hi}-\mathrm{Fi}$, Programmable Color TV, Automotive, Aircraft and Marine Accessories, Test Instruments, R/C Modeling, SelfLearning Programs and lots more! Something for everyone, and everything is easy to build and fun to use - it's the Heathkit way!

new A timely

Blaupunkt car radios checked out by traveling van

The Blaupunkt Car Radio Division of Robert Bosch Corporation has devised a traveling tech shop on wheels called the Tech Van. In use since early 1978, the van has been traveling throughout the U.S. testing Blaupunkt car radios in major marketing areas.

A sophisticated control panel uses a quick connect/quick release feature that allows up to four radios to be tested simultaneously; it also incorporates facilities for checking speakers, power amps and CB's. Company engineers use the van to test out new car radio concepts in the field, make car radio installation tests and gather technical data.

Breach of computer security is a serious threat

An elevator-sized computer that is now commercially available can store three trillion bits. This is equivalent to a 500 page dossier on every man, woman and child in the U.S., a fact that is becoming a cause of concern to many. A report released by IBM Corporation officials to a panel investigating computers' potential abuse of privacy indicates their concern that such an invasion of privacy is a very real threat. More and more government and private agencies depend on computers for data storage and quick retrieval. The number of computers used by government agencies alone has increased considerably over a 13-year period, which raises the question of how to maintain security on the data in the computers' memory banks.

Although it would rarely be practicable to achieve absolute security with complete effectiveness, the report states: "reasonable protection can be provided ... by increasing the cost of subverting the system to an unacceptable level." Other federal studies of the problem indicate that sensitive information should be isolated from routine data stored in memory. However, to curtail abuses effectively would seriously affect the efficiency of the dataretrieval system. For example, to reduce the possibility of some unscrupulous programmer penetrating and using the data, a
computer system must be designed that can only process transactions and have no programming capability; airline reservation systems are examples of such limited operations.

Another report to Congress by the U.S. Comptroller General urges that "the President's top staff should move to have all federal agencies assess their roles in computer use and security," and indicated that a cost-effective approach to computer security should be sufficient to combine the necessity for data and the equally pressing need for privacy.

CO_{2}-based cycle aids in electricity storage

A research team from RCA Laboratories has determined that solar- or wind-generated electricity could be stored by applying the same chemical reactions inherent in a new CO_{2}-based energy-storage cycle.

In this cycle, surplus electricity (generated during maximum sun and wind conditions) is directed to electrodes that are immersed in water through which carbon dioxide $\left(\mathrm{CO}_{2}\right)$ gas is bubbled. The water is then broken down into its hydrogen and oxygen components; the hydrogen combines with the CO_{2} to produce formic acid, a fuel that can be stored in tanks and used in electricity-producing cells. Additionally, palladium can be introduced as a catalyst into the formic acid to convert it into hydrogen gas; this can take place at room temperature. The RCA team point out that formic acid is safer to store and easier to transport than pure hydrogen gas because it is in non-explosive liquid form.

Using the CO_{2} /formic acid/hydrogen cycle has a long-range advantage in that it can supply hydrocarbons to be used as fuel instead of petroleum and as raw material for products that are presently based on petroleum. The fuel cycle could also serve to mitigate against the "greenhouse effect" that many scientists fear will result in the earth's atmosphere from continuous CO_{2} emissions using present combustion methods.

Electrolert's Fuzzbuster "goes to court"

Electrolert, Inc., manufacturers of the Fuzzbuster radar detector have instituted legal proceedings against what the company terms "libelous and defamatory" statements made by several groups concerning the device.

One of the defendants is the Pennsylvania Turnpike Commission, which operates the state's toll roads. Evidently, the Commission has been distributing leaflets to motorists stating that the Pennsylvania State Police radar is immune to "the Fuzzbuster and other radar detectors." Another target for litigation is the Better Business

Bureau of Miami, which was accused of distributing a letter to all South Florida newspapers, radio and TV stations requesting they not accept advertising for "Fuzzbusters."

Additionally, an unnamed radar manufacturer has been distributing brochures claiming its radar is "detector proof." (There are actually several radar companies that make this claim.)

Legal action has started against the turnpike commission and the Better Business Bureau. The Commission has been asked to stop handing out the flyers and issue new ones retracting the erroneous information contained in the first ones. Electrolert has also written the Miami Better Business Bureau asking that they retract their previous press statement alleging that anyone who purchases a radar detector is being encouraged to evade the law.

Crystal-layering technique improves semiconductor efficiency

Scientists at Bell Telephone Labs have developed a technique that is expected to double the speed with which electrons pass through semiconductor crystals at room temperature, thereby increasing the efficiency of such semiconductors used as IC's.

BELL LABS SCIENTIST prepares to test experimental two-layer gallium arsenide/aluminum gallium arsenide semiconductor crystal (shown to the right of the light). New cryatal technique increases the speed at which electrons move through the crystal. Such a breakthrough in solid-state technology could lead to faster, more efficient semiconductor devices.

The electrons in semiconductor materials tend to be slowed down by the positively and negatively charged "'impurities" that are added to create new electrons. In gallium arsenide, for example, the impurity is silicön, which releases electrons to travel through the semiconductor as current. This silicon, when it loses electrons, becomes positively charged. Other electrons encontinued on page 12

Miniaturizatior breakthrougb! Realistic's fabulous new System Seven combines beauty, elegant small size and a level of acoustical quality you've never heard. until now, in low-priced bookshelf stereo.
System Seven includes our new STA-7 AM/FM receiver (10 watts per channel, minimum RMS into 8 ohms, 20-20,000 Hz , with no more than 0.5%

At last - true hi-fi perfectly sized for a book case. The 4-1/-1b. speakers can even be used for bookends!
total harmonic distortion) and a pair of our amazing Minimus ${ }^{(8)}-7$ speaker systems - featuring large-excursion woofers and soft-dome tweeters in diecast enclosures only $7^{1 / 16 " ~ h i g h . ~}$
Bass without bulk. Despite its small size, System Seven delivers rich, satisfying bass to 50 Hz and sound levels up to 90 dB for accurate reproduction of anything from classical to rock music.
What's the secret? The receiver has a unique equalization network engineered especially for the speakers. And it's switchable so you can use full-size speakers, if you wish.
Compact, but no compromises. You get "full-size" high-fidelity features with System Seven magnetic and aux inputs, tape monitor, A/B speaker switching,
even 75 and 300-orm FM inputs. U.L. listed, of course, and housed in a stunning jet-black metal cabinet with blackout dial.

Receiver is briefcase-sized, a little taller than a credit card - jast 3-1/2" high. Each speaker is about the size of two anerage books.
The price for all this may be the surprise of your audio life-only 219.95^{*}, a savings of $\$ 39.90$ off the "each" price!
Audition System Seven. Small has never been so beautiful! - Price may vary ar individual stures and dealers.

Now NRImakes it TV/Audiohome

Side-by-side equipment comparison of NRI and two other leading schools shows what you get for what you pay. When you have to pay as much as $\$ 985$ more for another school's course, you should carefully consider your tuition investment.

When you sit down and try to pick out the school that's best for you, it gets
to be a problem. Catalogs are radically different and some are not too clear as to what you actually get for your money. So NRI has done a lot of the work for you. And put the prices right up front so you can make your own judgment.

Of course, we can't compare everything. Lesson clarity and content vary. What one covers here, another covers there...or not at all. The material one school breaks down into eight lessons may be four at another. And the qualifications and abilities of instructors are another question.

	NRI	SCHOOL A	SCHOOL B	
COURES TITLE	Master Course in TV, Audio, and Video System Servicing	Master Course in Color TV Servicing	Electronics Technology and Advanced Troubleshooting 1 \& \\| 1	
CASH PRICE (terms available)	\$1295	\$1539	\$280	
TV SET	NRI designed-for-learning kit. Dual speaker $25^{\prime \prime}$ (diagonal) color TV with cabinet	Heathkit GR-2001 $25^{\prime \prime}$ (diagonal) color TV (cabinet extra)	Zenith model G4020W 19" (diagonal) color TV (fully assembled)	
OSCILLOSCOPE	NRI designed-for-learning kit. $5^{\prime \prime}(8 \times 10 \mathrm{~cm})$ triggered sweep	Heathkit $10-45415^{\prime \prime}$ $(8 \times 10 \mathrm{~cm})$ triggered sweep (not given unti) after graduation)	Heathkit 10-4541 $5^{\prime \prime}$ ($8 \times 10 \mathrm{~cm}$) triggered sweep	
color bar GENERATOR	NRI designed-for-learning kit. 10 patterns	Elenco SG-200 (kit) 10 patterns	Elenco SG-200 (fully assembled) 10 patterns	
FREQUENCY COUNTER	NRI designed-for-learning kit. Complimentary metal oxide semiconductor digital type			
METER	NRJ designed-for-leaming kit. Transistorized AC/DC volt-ohm meter	Heathkit (part of TV kit) DC only; IK Ohm/volt	Private label multimeter	
AUDIO	NRI designed-for-leaming kit. Four-channel highfidelity AM/FM tuner with speakers	Private label pocket transistor AM radio kit and AM-FM-SW solid-state portable radio kit		
TRAINRR	NRI Discovery Lab	Breadboard	Experimental Electronics Lab	
MISCRLIANEOUS EQUIPMRNT		EICO Digital Logic Probe		

All data as shown in each school's catalog as of September 1, 1978.

One Million Students, Over 60 Years' Experience

So we can only tell you what NRI has to offer. We've been in education since 1914, starting as a radio school six years before commercial broadcasting was even on the scene. Since then, we've kept right up with the times, improving techniques, adding material, creating new courses to help people improve their skills and income.

Early on, we learned to keep our lessons compact...thoroughly covering a subject, but not so much that students would be overwhelmed. We call them "bite-size" lessons because they're easy to digest.

Learn by Doing with "Hands-on" Training

And, we pioneered the concept of "hands-on" training. NRI goes far beyond theory and textbooks to give our students actual bench experience and prepare them for the realities of electronic servicing. Every piece of equipment in our Master Course in TV and Audio Servicing is designed for learning. As you assemble the kits we supply, you build a highest-quality, up-to-date $25^{\prime \prime}$ (diagonal) color TV, a 4-channel amplifier and tuner with speakers, your own oscilloscope,

Learn as you build with "hands-on" training.

easy to compare studycourses.

digital frequency counter, and other instruments you'll use in your course, use later to earn good money as a TV/ Audio technician.

The point is, none of this equipment is hobby-kit or commercial assembly line units with lessons "retro-fitted" to what was at hand. NRI has designed each so you get invaluable training and experience you just can't get any other way. As you build, you study operation of circuitry, see how sections interact, perform "power-on" experiments only possible with NRI. This total training is exclusive with NRI...no other school, home study or resident, offers it.

Instructors

Who Know Their Business

NRI instructors are thoroughly qualified, with both technical and educational experience. Most of them helped develop NRI courses, lessons, and equipment, so they really know what they're talking about. They're interested in their students, always ready to help with a question, a problem...give good advice to help you reach your goals.

It's instructors and training like this that have made NRI the choice of professional T' servicemen who have taken home study courses. As a national survey shows (summary on request), they recommend NRI by a majority of three to one over any other school.

So how does NRI give you all this and still cost so little? We keep costs down by designing our own training kits, eliminating the middleman's profit on hobby kits or commercial units. And by offering our training by mail only. We have no sales force, no commissions to pay. You make up your mind in your own time, without pressure, let the facts speak for themselves. We pass these savings on to you in the form of lower tuitions, more equipment, carefully designed courses and effective lessons.

Send for Free Catalog, No Salesman Will Cail

Send for our free catalog today and get all the details. See every piece of equipment and kit you get... a complete listing of fully described lessons... explanations of each and every experiment you perform. Read about NRI's background and qualifications...career opportunities ... what NRI graduates say about their training...costs and monthly payment plans for the courses that interest you. Then compare NRI value and results and make your decision. Like the million that have gone before you, we think you'll choose NRI. Send the card today.

Build and keep 2-meter transceiver, test equipment for a communications career.

Orcheck ouł NRI value-training in Computer or Communications/CB Equipment Servicing.

If you're interested in learning how to service and maintain digital computers, check out our NRI course. You learn at home, in your spare time, and actually build a programmable, integrated circuit, digital computer with expanded memory. Or maybe your interest is CB or the expanding world of communications... mobile radio, microwave,

TV broadcasting, and much more. NRI can help you there, too, as you build and experiment with your own digitally synthesized 2-meter transceiver. For these and other NRI home study courses, just check the postage-paid card and mail today. If card is missing, write to:

NRI Schools
McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Washington, D.C. 20016

new ${ }^{\text {thimaly }}$

continued from page 6
countering the silicon are attracted to its positive charge, sometimes combine with it and stop moving along completely.
The Bell Lab technique isolates the electrons from the impurities by layering two semiconductor materials to form a single crystal, using a crystai-growing process molecular beam epitaxy (MBE) that allows layers of crystal atoms to be constructed one at a time. The scientists created a twolayer crystal using 50 layers of gallium arsenide and 50 layers of aluminum gallium arsenide, and silicon was added to the aluminum gallium arsenide layer only. Once in different layers, the silicon impurities have little chance to prevent electrons from moving freely. The technique can be used for any combination of semiconductor material having the same properties as gallium arsenide.

Using this technique, it is possible to greatly increase the capacity of communications systems as well as hastening the appearance of ultra-high-speed computers and the creation of new devices.

Bozak, Kloss and Marantz receive audio industry awards

Three pioneers of the audio industry were honored recently at the annual Audio Hall of Fame Awards dinner at the Hilton Hotel in New York. The awards are presented to those who have made significant contributions to the reproduction of music.

This year's recipients were Rudolph Bozak, Henry Kloss and Saul Marantz.

Mr. Bozak was honored for his work in loudspeaker design. Mr. Kloss both developed and was instrumental in the popularization of the acoustic suspension speaker. Mr. Marantz (founder of the Marantz Company) won his award for his part in transforming hi-fi from a post World War II nobby into today's multibillion dollar industry.

Proceeds from the Awards Dinner this year will go to the Metropolitan Opera.

RCA transmission service extended to Hawaii, Cuba and Hong Kong

The RCA Corporation (and its subsidiaries) has expanded its data transmission service to Cuba and Hong Kong, as well as an additional link-up to Hawaii.

NASA will use the data transmission facilities at RCA Americom's Kokee Park station on the island of Kauai in Hawail, in addition to the RCA services already being used at Barking Sands Naval Air Station on Kauai. The link-up is to the Goddard Space Flight Center in Maryland, and will be used in connection with several on-going NASA programs, such as Mars photography, the space shuttle and the Voyager mission to the outer planets.
The recent agreement reached between mainland U.S. and Cuba will use cable circuits to provide Telex, telegram and

1979 HI-FI CONVENTION

NEW CONVENTION CENTER in St. Louis will be the site of the second annual Internatlonal High Fidelity Convention to be held April 20-22. The $\$ 96$ million convention center complex covers four square blocks in downtown St. Louis.
leased-channel services between the two countries.

RCA has also established the first commercial international digital facsimile service between this country and Hong Kong. The service, called Q-Fax, permits you to send and receive messages, legal briefs, graphics, contracts, etc., in Japanese (or Chinese) characters without translation. In the U.S., messages are sent by messenger or by local facsimile transmission to RCA operating centers in New York, Washington or San Francisco. In Hong Kong, the messages are delivered by messenger service to local post offices. Return messages are transmitted from Hong Kong to the U.S. via the mails, a domestic facsimile service or by messenger to the RCA centers.

New York City anti-radiation proposal causes concern

An amendment to the New York City Health Code that would set even strlcter limits to the "field strength" of radio transmissions has been causing concern among the metropolitan area's amateur radio operators and CB'ers, not to mention commercial TV and radio broadcasters. Until recently, the high-level radiation was considered relatively harmless.
Dr. Leonard Solon of the New York City Department of Health drafted the proposal, and a public hearing has taken place, although no definite action has yet been taken by the Board of Health. At the public meeting, area broadcasters stated that if the amendment were adopted, they would be forced to move their transmitters elsewhere, since radio and TV reception would be reduced to mere "gibberish." However, amateur radio buffs would be even more seriously hit by the proposal since their maximum legal 2000-watt output would violate the Solon proposal's standards.

On the other hand, while objections were raised by the commercial broadcasters, they were muted. This has led to some speculation that the broadcasters privately believe the new standards, if adopted, would pave the way to increased cable service-thus cutting the considerable costs of operating regular transmitters.

FCC inquiry on fee refunds does not cover CB licensees

The Federal Communications Commission's inquiry on fee refunds and future fee schedules does not apply to CB owners. The present action deals only with fees greater than $\$ 20$ collected between August 1, 1970 and January 1, 1977.

The FCC urged that CB owners not make inquiries now about either refunds of fee schedules, since any action on fees of $\$ 20$ or less would be taken only in the near future.

R-E

Model 8100
 Frequency Counter Kit - Range: $\mathbf{2 0 H z}$ to 100 MHz - High Sensitivity - Resolution to $\mathbf{0 . 1} \mathbf{H z}$

Now you can forget about price/performance trade-offs when you select a frequency counter. In Sabtronics' Model 8100 kit you get all the characteristics of superior performance at a low, affordable price.
This frequency counter, employing LSI technology, has the performance and input characteristics you demand: guaranteed frequency range of 20 Hz to 100 MHz (10 Hz to 120 MHz typical); selectable hi/lo impedance; superior sensitivity; selectable resolution and selectable attenuation. Plus an accurate time base with excellent stability.
An 8-digit LED display features gate activity indicator, leading zero suppression and overflow indicator. You would expect to find all these features only on high-priced instruments - or from Sabtronics' advanced digital technology.

BRIEF SPECIFICATONS:

- Frequency Range: 20 Hz to 100 MHz guaranteed. $(10 \mathrm{~Hz}$ to 120 MHz typical). Sensitivity: 15 mV RMS, 20 Hz to $50 \mathrm{MHz}(10 \mathrm{mV}$ typical): 25 mV RMS, 50 MHz to 100 MHz (20 mV typical)
- Selectable Impedance: $1 \mathrm{M} \Omega / 25 \mathrm{pF}$ or 50Ω - Attenuation: X1.

X10 or X100. Accuracy: $\pm 1 \mathrm{~Hz}$ plus time base accuracy - Aging Rate: $\pm 5 \mathrm{ppm} / \mathrm{yr} . \cdot$ Temperature Stability: $\pm 10 \mathrm{ppm}, 0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ - Resolution: $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ selectable - Display: 8 -digit LED, overflow indicator, gate activity indicator • Overload Protection - Power Requirement: 9-15 VDC @ 330mA

Model 2000, 3½ Digit DMM Kit

- 5 Functions, 28 Ranges
- Basic DCV Accuracy: $0.1 \% \pm 1$ Digit

The amazing Sabtronics 2000 is the choice of both professionals and hobbyists. It's the only portable/bench DMM that offers so much performance for such an astonishing low price.
You get basic DCV accuracy of $0.1 \% \pm 1$ digit; 5 functions giving 28 ranges; readings to ± 1999 with 100% overrange; overrange indication; input overload protection; automatic polarity; and automatic zeroing.
The all-solid-state Model 2000 incorporates a single LSI circuit and high-quality components. Our clear, step-by-step manual simplifies assembly. Complete kit includes a rugged high-impact case ideal for both test-bench and field use.

BRIEF SPECIFICATIONS:

- DC volts in 5 ranges: $100 \mu \mathrm{~V}$ to 1 kV - AC volts in 5 ranges: 100 $\mu \mathrm{V}$ to $1 \mathrm{kV} \cdot \mathrm{DC}$ current in 6 ranges: 100 nA to $2 \mathrm{~A} \cdot \mathrm{AC}$ current in 6 ranges: 100 nA to 2 A . Resistance: 0.1Ω to $20 \mathrm{M} \Omega$ in 6 ranges - AC frequency response: 40 Hz to 50 kHz • Display: $0.36^{\prime \prime}$
(9.1 mm) 7 -segment LED. Input Impedance: $10 \mathrm{M} \Omega$ • Size: $8^{\prime \prime} \mathrm{W} \times$ $6.5^{\prime \prime} \mathrm{D} \times 3^{\prime \prime} \mathrm{H}(203 \times 165 \times 76 \mathrm{~mm})$. Power requirement: 4.5-6.5 VDC. 4 " C " cells (not included).

Special Offer! Save \$25.00*
If you order both the frequency counter and DMM kits now, you pay only $\$ 144.90$ including shipping and handling. You save $\$ 25.00$ off the combined regular low price of $\$ 169.90$. Order both kits now. This special offer good for a limited time only.
*Special offer good in USA only.
Making performance affordable.

13426 Floyd Circle Dallas, Texes 75243 Telephone 214/783-0994

Electronics Tomorrow

With this issue another new year begins. At the outset of all new years, there is always that temptation to start making predictions. The only trouble with predictions is that you can either predict things you know will happen, or you can predict things so far out that they won't happen. . . . this year!!

So l'll spare you the predictions. Instead, let's deal with facts. Video tape recording in the form of VCR's and projection TV will show great growth this year. If the video disc ever escapes the laboratory, it will become an instant success-assuming the price can be held to the $\$ 600$ level.

Hi-fi sound for the car has already arrived. The only hazard is that it is so good that the driver won't be able to concentrate on driving. Digital wristwatches, calculators and electronic games are already drugstore-rack items. The yen/dollar relationship may cause the price of many consumer electronics items to go up, but it may also spur a resurgence of Made In U.S.A. labels on consumer electronics gear.

No matter how you look at electronics, it's going to be another great year. There will be dozens of exciting new devices that are built around new circuitry and IC's. Believe it or not, we are now seeing just the beginning of the electronics revolution.

Radio-Electronics.

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief and publisher
Larry Steckler, KTX-3644, CET, editor
Arthur Kleiman, KTZ-3288, managing editor
Robert F. Scott, CET, W2PWG, KXK-8533, technical editor

Sonia Greenbaum, copy editor
Jack Darr, CET service editor

Leonard Feldman

contributing high-fidelity editor
Karl Savon, semiconductor editor
David Lachenbruch, contributing editor
Earl "Doc" Savage, K4SDS, hobby editor
Vincent P. Cicenia, production manager
Harriet I. Matysko, circulation director
Arline R. Bailey, advertising coordinator
Cover design by Louis G. Rubsamen

Radio Electronics is a member of the Institute of High Fidelity and is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.

Gernsback Publications, Inc.
200 Park Ave. S., New York, NY 10003
(212) 777-6400

President: M. Harvey Gernsback
Vice President: Larry Steckler
Treasurer: Carol A. Gernsback
Secretary: Bertina Baer

ADVERTISING SALES

Paul McGinnis
Director of Marketing

EAST

Stanley Levitan
Radio-Electronics
200 Park Ave. South
New York, NY 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.
Ralph Bergen
The Ralph Bergen Co.
540 Frontage Road-Suite 361-A
Northfield, Illinois 60093
(312) 446-1444

PACIFIC COAST

Mountain States
Jay Eisenberg
J.E. Publishers Representative Co., 8732 Sunset Blva., 4th Floor.
Los Angeles, CA 90069
(213) 659-38 10

Sales Mart Building
1485 Bayshore Blvd., Box 140
San Francisco, CA 94124
(415) 467-0 125

Ientrivs

HYDROGEN—NEW ENERGY SOURCE?

With reference to your editorial, "The Real Energy Crisis, '" in the April 1978 issue, I am enclosing a diagram of an energy system that is similar to one presently being tested by a company in a new home in Provo, UT.

Pure hydrogen is produced on-site by the electrolysis of water using commercial power, solar cells or a wind turbine. The hydrogen is then stored in a large hydride storage tank. Hot water from solar collectors is also stored, and this heat is used to force the hydrogen out of the tank.

Gas appliances and the home's central heating and cooling system are hydrogenpowered.
Since we have an inexhaustible supply of water, wind and sunlight, hydrogen could just be our future source of fuel. And this colorless, odorless gas is pollution-free!
DARRELL E. TOMLINSON
Odessa, TX
continued on page 22

OK MACHINE \& TOOL CORPORATION
3455 Conner St., Bronx, N.Y. 10475 (212) 994-6600/Telex 125091
 DIGITAL INSTRUMENTATION FROM OP

TWO NEW AC-DC- BATTERY PORTABLE COUNTERS CM-1000 Digital Capacitance Meter OPTO -8000 -1 A 10 Hz to 600 MHz Frequency Counter

- Precision TCXO time base 0.1 PPM Stability $17-40^{\circ} \mathrm{C}$ - Super Sensitivity with preamps
- Auto Decimal Point - Aluminum Case - Socketed ICs - Three position attenuator: \#OPTO-8000.1A Factory Assembled - 2 Year Guarantee \#OPTO-8000. 1 AK Kit Form - 1 Year Parts Guarantee
\#NI-CAD-80
NI-CAD Batten Pack (installs in case)

Opro- 700010 Hz to 600 MHz Miniature Counter

- XTAL (TCXO) 1 Tme Base $\pm .08$ PPM $/ \mathrm{C}$ C Standard Counter

95
95
95
329.95
279.9
19.9

- XTAL (TCXO) Mme Base $\pm .08 P P M \rho C$ Standard - Aluminum Case • $\mathrm{HI}-\mathrm{Z} 850$ Ohm inputs
- 1 Sec. $\& 1 / 10$ Sec. Gate times - Auto Dec. Pt. Buit-in Prescaler and Preamps Standard \#OPTO-7000 Factory Assembled -1 Year Guarantee . \#OPTO-7000K Kit Form …...... \$99.95 \#AC-70 AC Power Pak …........ \$ 4.95 $\begin{array}{ll}\text { \#N1-CAD-70 } & \text { NI-CAD Battery Pack and Chargen Circtuitry } \\ \text { \#TCXO-70 } & \text { Ootional Precision TCXO Time Base } 0.1 \text { PPM }\end{array}$
\#TCXO-70 Optional Precision TCXO Time Base 0.1PPM, 17-40 ${ }^{\circ} \mathrm{C}$

 before merchandise is shipped.

"If you're going tolearn electronics, you might as well learn it right!"

electronies schools. Maybe you think they're all the same.
They're mot:
CIE is the largest independent home study school in the world that specializes exclusively in electronics.

Meet the Electronics Specialists.

When you pick an electronics school, you're getting ready to invest some time and moncy. And your whole future depends on the education you get in return.

That's why it makes so much sense to go with number one . . . with the specialists. . . with CIE!

There's no such thing as bargain education.

If you talked with some of our graduates, chances are you'd find a lot of them shopped around for their training. Not for the lowest priced but for the best. They pretty much knew what was available when they picked CIE as number one.

We don't promise you the moon. We do promise you a proven way to build valuable career skills. The CIE faculty and staff are dedicated to that. When you graduate, your diploma shows employers you know what you're about. Today, it's pretty hard to put a price on that.

Because we're specialists, we have to stay ahead.

At CIE, we've got a position of leadership to maintain. Here are some of the ways we hang onto it . . .

Our step-by-step learming includes "hands-on" training.

At CIE, we believe theory is important. And our famous Auto-Programmed ${ }^{\text {© }}$ Lessons teach you the principles in logical steps. But professionals need more than theory. That's why some of our courses train you to use tools of the trade like a 5 MHz triggered-sweep, solid-state oscilloscope you build yourself-and use to practice troubleshooting. Or a beauty of a $19-$ inch diagonal Zenith solid-state color TV you use to perform actual service operations.

Dur specialists offer you personal attention.

Sometimes, you may even have a question about a specific lesson. Fine. Write it down and mail it in. Our experts will answer you promptly in writing. You may even get the specialized knowledge of all the CIE specialists. And the answer you get becomes a part of your permanent reference file. You may find this even better than having a classroom teacher.

CIE understands people need to learn at their own pace. There's no pressure to keep up... no slow learners hold you back. If you're a beginner, you start with the basics. If you already know some elcetronics, you move ahead to your own level.

Enjoy the promptness of CIE's "same day" grading cycle.

When we receive your lesson before noon Monday through Saturday, we grade it and mail it back the same day, You find out quickly how well you're doing!

CIE can prepare you for your FCC License.

For some electronics jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's government-certified proof of your specific knowledge and skills!
administered exam. In continuing surveys, nearly 4 out of 5 CIE graduates who take the exam get their Licenses!

For professionals only.

CIE training is not for the hobbyist. It's for people who are willing to roll up their sleeves and go to work
to build a career. The work can be hard, sure. But the benefits are worth it.

Send for more details and a FREE school catalog.

Mail the card today. If it's gone, cut out and mail the coupon. You'll get a FREE school catalog plus complete information on independent home study. For your convenience, we'll try to have a CIE representative contact you to answer any ques. tions you may have.

Mail the card or the coupon or write CIE (mentioning name and date of this magazine) at: 1776 East 17th Street, Cleveland, Ohio 44114.

Patterns shown on TV and osellloseope screens are simulated.

ENERGY CRISIS

I read your editorial in the April 1978 with great interest. Ever since the energy crisis began, a lot has been said about it. I am in strong agreement with you as far as the cost of energy is concerned. It does not appear that this cost will go down unless there is a major change in the status of the national economy.

I do not think it would be wise to encourage the use of nuclear power. In fact, you should discourage the use of this particular source of energy because it represents a
action in trying to cope with the energy crisis, it will be necessary to continually remind its members that "time is running out."
As far as I'm concerned, the lack of motivation, not the lack of imagination, is the only reason the nation has not been able to come to grips with this problem. I believe that the basic attitude among Americans is universal-they all feel that a lot more needs to be done in order to reduce or eliminate the adverse social, as well as economic, effects of the energy crisis on the nation. This is where Congress and the political leadership does not meet the ex-

NEW FROM LEADER The 20MHz Dual Trace Scope.

Faster. Brighter. More Versatile. Economical.

Model LBO-508. . . \$769.95 with accessories
For the name of your nearest distributor call toll free: 800-645-7120
it comes to solving the energy crisis, "we have failed."

So, no single editorial dealing with this subject will have a great impact. What I can suggest is: publish in the Congressional Record the letter your magazine considers to be the most interesting response to your editorial.
DOUGLAS JAN MILLER
San Francisco, CA

WHERE ARE THE ELECTRONIC DESIGNERS?

I think that the most important property of the IC is that it has freed us from the drudgery of solving hundreds of little interacting network equations, and has allowed us to get down to the real business of designing useful working systems.

My field for the past six years has been medical instrumentation, and because of the IC we are building instruments today that no sane person would have undertaken to build 20 , or even 10 years ago.

The good instrument designer constantly scans the new IC release announcements, carefully reads about the properties of a new device and then thinks about ways to use it that the manufacturer never thought to suggest.

For example, a problem has been perplexing our design group for a long time. Just recently, however, one of the members of the group obtained some IC samples of a new device. We are testing it for at entirely different application from any the manufacturer has suggested, and it appears that the device will inexpensively and efficiently solve a problem that could have been solved by use of a combination of IC's and discrete components but at a prohibitive cost in terms of energy, space, weight and money.

I do not believe that the last remaining designers are the IC designers. They have relieved the rest of us of the dog work of figuring biases, temperature coefficients, stage gains . . . and a host of other annoying details so that we can get down to the real business of designing working systems to improve the quality and length of life.

The IC designers provide us with neat packages of gain, fast switches, comparators, voltage references and a multitude of other functions. It is up to the rest of us to apply our ingenuity to find the broadest spectrum of uses for these excellent reliable, low-cost devices.

Part of the usefulness of the IC is derived from its small size, not because it makes equipment smaller but because its smallness places all its components in the same physical environment, reducing temperature drift problems almost to the vanishing point in some cases.

I think the IC is the greatest invention since sliced bread!
W. Q. COCHRAN

Chalfont. PA
R-E

CIRCLE 36 ON FREE INFORMATION CARD

IHE EETVIVAUE IN oscilloscopes COMES IN MANY MODELS.

When you choose a Gould oscilloscope - regardless of the model - you get reliability, versatile performance and a modest price tag. All of which adds up to true value. Over the years, Gould has earned a well-deserved

Gould OS 245A

- DC to 10 MHz
- Dual trace
- 4 inch CRT
- $5 \mathrm{mV} /$ div sensitivity
- Only 11 pounds

Gould OS 260

- DC to 15 MHz
- True dual beam
- High brightness CRT
- $2 \mathrm{mV} /$ div sensitivity
- Single Sweep
- Switched X-YY
reputation for building reliable instruments. Prompt, efficient service is available through a worldwide network of service centers. And all Gould oscilloscopes carry a full two-year warranty covering all parts and labor exclusive of fuses, calibration and minor maintenance. Look to Gould for your best value in oscilloscopes.

For more information contact Gould, Instruments Division, 3631 Perkins Ave.,

Gould OS 1100

- DC to 30 MHz
- Dual trace
- $1 \mathrm{mV} /$ div sensitivity
- Delayed timebase
- Channel Sum and Difference

Cleveland, OH 44114. In Europe contact Gould Instruments, Roebuck Rd., Hainault, Essex, CB10 1EJ England.

For brochure call toll-free (800) 325-6400, Ext. 71. In Missouri: (800) 342-6600.

GOULD

Gould OS 3300 B

- DC to 50 MHz
- Dual trace
- Two independent timebases
- Mixed sweep
- $1 \mathrm{mV} /$ div sensitivity
- Channel Sum and Difference

Gould OS 4000

- DC to 10 MHz - dual tracedigital storage (RAM) - no deterioration of stored trace - pre-trigger viewingoutput to analog and digital recorders-simultaneous stored and real time viewing.

F. W. Bell Model CG-100A Current Gun

CIRCLE 110 ON FREE INFORMATION CARD

THERE ARE CERTAIN EFFECTS IN ELECTRONICS that we've known about for some time. One is the "Hall Effect," which was discovered by E. H. Hall in 1879! He discovered that "if a conductor is placed in a magnetic field perpendicular to the direction of current flow, a voltage will develop across it."

Semiconductor materials can be made to do tricks. It was found that a small bar made of semiconductor material (indium arsenide, gal-
lium arsenide, etc.) could be placed in a magnetic field, and would develop a voltage on its opposite sides. This is the "Hall voltage," which is used in scientific instruments, for a while confined mainly to gaussmeters used primarily in labs.
F. W. Bell, Inc., (4949 Freeway Drive East, Columbus, OH 43229) has developed a versatile Hall-effect instrument. This little jewel uses a semiconductor Hall-effect sensor and is called the model CG-100A Current Gun. It's a clamp-on instrument-the jaws can be opened and clamped around a conductor and the conductor current read out.

Clamp-on instruments have been used to read alternating currents for a while. The model $C G-100 A$ not only reads $A C$, it reads $D C$ and composite alternating and direct currents (you can read the direct current in a wire and the AC ripple too, separately). This compact device can be operated with one hand, and is powered by four AA cells located in the handle. The readout can be made on any accurate digital AC or DC voltmeter.

Using the model CG-100A is very simple.

The gun is connected to a standard multimeter by a four-foot dual cable with a dual banana plug on each end. The meter is set for $0-1$ volt, or 0-2 volts. Selecting $A C$ or $D C$ operation is easy. To read DC set the meter to DC volts; for $A C$, set it to $A C$ volts. Press the thumbwheel ON switch on top of the handle of the model $C G-100 A$ and the gun is adjusted for a zero reading. Release the switch, open the jaws, hook the conductor in them and close the jaws. Now, pressing the oN switch reads out the current on the meter. If one-handed operation is needed, you can lock the switch on by sliding the lock button under the handle.

The current gun has two ranges- $0-10 \mathrm{~A}$, and $0-100 \mathrm{~A}$. Both of these ranges has a 1.0 volt output, with a 100% overrange capability. This instrument is ideal for use with DVM's, most of which are calibrated in this way. You select the desired range by using a slide switch on top of the handle. All you do is mentally move the decimal point on the readout one place to the right; for example, a reading of 1.0 volt is 10.0 A , and so on.
continued on page 26

Double your capability.

 The VIZ Supplysts" ${ }^{\text {m }}$Power supplies with built-in circuit testing capability.
Only the VIZ Supplysts let you power equipment and circuits and test dc voltage points, all with the same instrument.

The Supplysts speed your work, help cut down bench clutter, and free VOMs for other jobs. And even with their extra testing capability, they cost less than most quality fully-regulated power supplies.

Single 0-25Vdc, 0-4A supply with two 0-99.9V DC voltmeters WP-706
$\mathbf{\$ 2 4 0 . 0 0}$

Single 0-50vdc, 0-2A supply with two 0-99.9V DC voltmeters WP-705

The Circuit Tester line Accuracy and stability assured

Dual Supplyst
Two 0-25Vac, 0-2A supplies
with iwo 0-99.9V DC volt meters WP-707
 $\mathbf{\$ 2 9 9 . 0 0}$

Triple Supplyst

Two 0-20Vdc, 0-2A supplies One 5Vdc (to 4A) fixed-output supply with two 0-99.9V DC volt meters WP-708

"carbonless"

SALES SLIP
 and Portable Register

Speeds sales handling - provides clean, clear copies without carbons to insert, position or throw away
Simplifies your paperwork - this one form serves as: Sales Slip, Charge Slip, Cash Receipt, Invoice, Service Order, etc.
Saves steps - have Portable Registers in several locations, on counter, by phone, in truck, etc. Cuts down customer waiting time.
Helps you collect your money - Promissory Note printed on back of all copies. Have doubtful accounts sign.

PORTABLE REGISTER

Compact, lightweight, easy-to-operate. Holds up to 75 "carbonless" Register Forms in duplicate or triplicate. Durable, virtually unbreakable . .. made of silver-gray, high-impact Cycolac ${ }^{\text {² }}$ plastic. Used copies can be stored in back of register.
\#925 - For $51 / 2^{\prime \prime} \times 81 / 2 "$ "carbonless" Register Forms. Each.
$\$ 7.95$
SERIES 610 SALES SLIP REGISTER FORM - SIze $51 / 2^{\prime \prime} \times 812^{\prime \prime}$. Designed for use in NEBS Registers \# 925 and \#927 or other Portable Registers for 51/2" $\times 81 / 2{ }^{\prime \prime}$ forms with two, $3 / 32^{1 "}$ dla. round holes. $23 / 6^{\prime \prime}$ center-tocenter. Duplicate sets have white original canary copy. Triplicate sets are white, canary and pink. Prices include your heading printed in blue ink and consecutive numbering (please specity).

DUPLICATE 610-2		TRIPLICATE 610-3	
20.000	$\$ 230.00$	20.000	$\$ 365.00$
10.000	139.00	10.000	225.00
6.000	98.00	6.000	149.00
4.000	77.50	4.000	108.00
2.000	42.50	2.000	59.50
1.000	24.95	1.000	34.95
500	15.95	500	21.50
250	10.95	250	14.50

Prices for forms do not include Portable Register.

Save time and money with this 4 in 1 INVOICE-REPAIR TAG

PERMANENT OFFICE

 RECORD - A carbon copy of all entries on customer invoice... saves recopying.CLAIM CHECK - Printed with your heading and numbered consecutively.

COMPLETE JOB

RECORD - Tag remains tied to article - space to list parts and labor.

CUSTOMER INVOICE -

Printed with your heading and numbered consecutively.

Provides quick, easy identification of work left for service - all parts consecutively numbered
Tags are pre-strung with extra long looped string - permits fast, secure attachment to merchandise

Saves money - this one form serves as: Service Order, Claim Check, Identlification Tag. Invoice, Job Record, Office Record.

MONEY-BACK GUARANTEE
If for any reason you are not satisfied, your money wlll be promptly refunded

SINGLE TAG (并301-1) Heavy manila tag (no copies). DUPLICATE TAG (\#300-2) White bond, heavy yellow tag. Carbons pasted in. TRIPLICATE TAG (\#\#303-3) White \& canary bond, heavy salmon tag. Carbons pasted in. All sizes $3^{\prime \prime} / 夕^{\prime \prime} \times 9^{\prime \prime}$ White \& canary bond, heavy salmon tag. Carbons pasted in. All sizes 3 include: Firm name and address printed in red ink in two locations: overall. Prices include: Firm name and address printed in red ink in two locations:
consecutlve numbering on all parts. (Note: Tags are pre-numbered, no specific starting numbers possible.)

QUANTITY	\#301-1 SINGLE	\#300-2 DUPLICATE	\#303-3 TRIPLICATE
4.000	$\$ 95.00$	$\$ 142.00$	$\$ 183.00$
2.000	54.95	76.50	102.95
1.000	32.95	43.95	58.50
500	21.95	27.50	36.50

FAST SERVICE BY MAIL

CODE 66229

QTY.	ITEM NUMBER \& DESCRIPTION	PRICE	START CONSECUTIVE NUMBERING AT:NO. 1001
			NO
			\square DO NOT NUMBER

NAME AND ADDRESS TO BE PRINTED ON ITEMS (Please print or type)

[^0]The model CG-I00A has a rated accuracy of $\pm 2 \%$ of rated output. (A full set of performance characteristics, curves and calibration data can be obtained from Bell.) If ever needed, calibration requires only four adjustments, which are sealed under the metal decals on the gun handle. The model CG-IOOA has an AC frequency response to 1.0 kHz , which makes it useful for audio measurements such as in telephone systems, etc.

Battery life should be good, since the battery isn't on until you press the trigger, which draws only a small amount of current. The instruction book cites only one precaution: "Don't let the jaws snap shut. This may
on the tip; a positive DC voltage reading means that the current in the conductor is flowing in the direction of the arrow.
This unit should be very handy for electrical measurement applications. Alternating current readings have been used for a good while. The DC readings would be useful in automotive electronics and electrical work, as well as in other fields. The gun's jaws can fit around any conductor up to $1 / 4$-inch $(19-\mathrm{mm}$) diameter; but must be fully closed for best results. For maximum accuracy in reading currents in small conductors, the gun should be centered in the hole; however, the maximum error introduced by off-centering is very small.

The model CG-IO0A is $\$ 169$.
R-E

CHAN NEL LOCK
Meet The Rest Ot The Family. Send For Free Catalog.

CIRCLE 17 ON FREE INFORMATION CARD

CIRCLE 111 ON FREE INFORMATION CARD
digital techniques are showing up in con. sumer products more frequently than ever before, especially in entertainment devices. Electronic games that only a few years ago were considered fiction today are a reality. An example of this is CompuChess (Data Cash Systems. Inc., Box 65, Largo, FL 33540) an electronic digital chess game packed with features and versatility.
The unit is housed in a wood-grain enclosure that measures $41 / 2 \mathrm{~W} \times 71 / 2 \mathrm{D} \times 11 / 2$-inches H with power supplied via a calculator-type lineplug/transformer combination. The metallic front panel contains a 4 -digit 7 -segment LED display, two slide switches (a power ON/OFF switch and a RESET/RUN switch) and a 16 -key touchpad.
CompuChess does not display nor is it supplied with a chessboard. The location of the pieces are displayed via a coordinate system, which is obtained by labeling the columns of a standard board A through H and labeling the rows 1 through 8 . For easy coordinate reference, CompuChess is supplied with a set of self-sticking decals with the coordinates of each square of the chessboard. Simply cut out each coordinate with a razor blade and attach it to the appropriate square of your chessboard.
CompuChess can play at any one of six levels. Level 1 is classified as an elementary level with an instant response to a move. Level 2 is for the practiced beginner, with CompuChess responding to a move within $15-20$ seconds after entering it. Level 3 is for an average player and has a 20 -second to 15 -minute response time. Level 4 also has a 20 -second to 15 -minute response time and is intended for an above-average player. Level 5 has an 18 -hour response time, and level 6 has up to a 2 -day response time. According to the owner's manual, levels 5 and 6 are intended to solve mate-in-two problems. The think times are long because the algorithm is a brute-force allpossible combination calculation of black's move, white's response, black's response, white's response, black's response on level 5 and an additional white's response on level 6 . The response times for levels 5 and 6, however, apparently only apply to solving mate-in-two problems. For a populated board, as is the case for standard mid-game play, the response times are much, much longer.
To play a game, first turn CompuChess on and then reset it by placing the reset switch first in the reset position and then in the rUN position. The unit responds by displaying an \mathbf{L}. continued on page 32

TRIPLETT* VIZ

MAST ERCHARGE
THE TEST EQUIPMENT SPECIALISTS
visn

TOLL FREE HOT LINE 800-223-0474

54 West 45 Street, New York, N.Y. 10036 212-687-2224 FluGlicncs

The microprocessor has ushered in the age of microtechnology and electronics will never again be the same. The microprocessor has made possible the placing of an entire computer on a silicon chip one quarter inch square. The microprocessor "miracle chip" is in the process of changing the world. Soon all technical personnel in electronics will have to understand and work with the microprocessor. It is invading virtually every area of electronics. And it is profoundly affecting your electronics career.

Brand New Program

CREI has a brand new program to help you learn how to work effectively with this revolutionary electronics development. CREI's new program in Minicomputer and Microprocessor Technology is designed to prepare you for this field by giving you the education and practical experience you need.
The program provides solid preparation in electronics engineering technology with a specialization in minicomputers and microprocessors. In addition. it includes a microprocessor laboratory which features a fully programmable microcomputer which utilizes the Motorola 6802 microprocessor chip. This is an extremely important element of your program.

Programming Essential

As you may well know. you must learn how to program the microprocessor in order to design. service or troubleshoot microprocessor electronic systems. There is only one effective way to learn this all-important shill of programming. and that is by actually doing it. CREI's new program gives you this opportunity as you work with the exciting microprocessor laboratory.

Programming Is Easy

With CREI's new program, learning the skill of programming is simple. Within a few hours you'll be programming the microprocessor and in a short time you'll learn how to program it in three languages: BASIC, assembly and machine languages. In addition, you will learn how to interface the microprocessor with other systems and to test and debug specialized programs.

Preparation at Home

Wide Choice
 of Programs

Please note, however, that CREI's new program is only one of 16 state-of-theart programs in advanced electronic technology offered by CREI. So even if you choose not to specialize in microprocessor technology. CRFI has an advanced electronics program to neet your needs.

With CREI, you may choose from any of the following areas of spectalization in advanced electronics:

Microprocessor Technology
Computer Engineering
Communications Engineering
Digital Communications
Electronic Systems
Automatic Controls
Industrial Electronics
Television Engineering
Microwave Engineering
Cable Television
Radar and Sonar
Nuclear Instrumentation
Satellite Communications
Aeronautical and Navigational
Solid State Theory
Nuclear Engineering

Unique Lab
 Program

An exclusive option available with CRF.I programs in electronic engineering technology is (RRFI's unique Flectronic Design Laboratory program. It gives you actual experience in designing practical electronic circuits. It also helps you to understand the theories of advanced electronics and gives you extensive experience in stach areas as tests and meat surentents, breadboarding. prototype construction. circuit operation and behavior. characteristics of electronics components and how to apply integrated circuits. Only CREI offers this unique Lab Program.

Practical
 Engineering

CRFI programs give you a practical engineering knowledge of electronics. That is. each part of your training is planned for your "use on the job." By using your training. you reinforce the learning process. And by demonstrating your increased knowledge to your employer. you may qualify for faster career advancement.

Free Book

There isn't room here to give you all of the facts about career opportunities in advanced electronics and how CREI prepares you for them. So we invite you to send for our free catalog. This fully illustrated. 56 page book describes in detail the programs. equipment and services of CREI.

Qualifications

You may be eligible to take a CRF: college-level program in electronies if you are a high school graduate for the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Mail card or write describing qualifications to

-1 1 CAPITOL RADIO ENGINEERING INSTITUTE

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Northwest
 Washington, D.C. 20016

GI Bill
CRI: programa
(are alp)ronced
for trainins of
referall.s allel
service'me'n lunder l/w (i.l. Bill.

EQUIPMENT REPORTS

continued from page 26
Now you must select a level of play by depressing one of the keys numbered 1 through 6. CompuChess now responds by displaying BP. Depress the key labeled A for a beginning game with CompuChess playing black. The display will now show a series of flashing dots. Enter your opening move by entering the letter-number coordinates of the piece to be moved and the letter-number coordinates of its destination. So, a move is made by entering a letter-number-letter-number combination The move is confirmed on the display as it is entered. Now depress the key labeled Play 10 instruct CompuChess to make a move. The time it takes CompuChess to respond 10 a move depends on the level of play. While a move is being calculated, the level of play is flashed in the display.

Every key on the 16-key touchpad is a twofunction key. Eight keys are labeled A through 11 , and eight keys are labeled 1 through 8 to correspond to the coordinate system. Each key is also labeled with its secondary function. The secondary functions for eight of the keys are a two-letter abbreviation corresponding to the eight chess pieces. For example, wK stands for white king and BN stands for the black knight. The secondary function of the four remaining keys are PLay, which commands CompuChess to make a move; MD. which instrucis CompuChess to wait for more data or command inputs from the keyboard; $E P$, which enables you 10 place any piece anywhere on the keyboard; and FP, which enables you to display the location of all the pieces on the board.

Put Professional Knowledge and a COLLEGE DEGREE
in your Electronics Career through

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of directed but self-paced home study.

The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then to the B.S.E.T degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. Write for Bulletin R-79.
Grantham College of Engineering 2000 Stoner Avenue

$$
\text { P. O. Box } 25992
$$

Los Angeles, CA 90025
Worldwide Career Training thru Home Studv
CIRCLE 8 ON FREE INFORMATION CARD

For example, to confirm that the location of the pieces on your chessboard corresponds to the location of the pieces within CompuChess's memory, depress FP. Then, to locate the position of, let's say, the white king. depress the key labeled w_{k}. The position of the white king will then be displayed. You can do this for every piece on the keyboard.

You can also start with any board position you'd like. After resetting and entering the level of play, CompuChess responds by displaying BP. Entering A starts a new game with CompuChess playing black. You can also enter B, which blanks the entire board.
By using the EP key, you can locate pieces wherever you'd like on the board and then confirm the location of all the pieces using the fr key. You can force CompuChess to make the first move by depressing PLAY, or you can enter a move by depressing the MD key, enter a move and then depress play.

You can also change the level of play in the middle of a game. First reset CompuChess (never reset while it's calculating a move) and then enter the new level of play. When CompuChess responds by displaying BP, enter C . This instructs CompuChess to continue the game presently in progress (resetting the CompuChess does not change the position of the pieces within its memory). You can now make a move by depressing MD or force CompuChess to calculate a move by depressing play.

In the standard game, CompuChess plays black. You can make Compuchess play white. After selecting the level of play and entering an A in response to the BP display, interchange continued on page 68

A fine selection of small tools, measuring instruments, hard-to-find items for shop, home and lab. Convenient one-stop shopping for technicians, engineers, craftsmen, hobbyists. Major credit cards accepted, satisfaction assured. Get your NATCAM catalog today.

You have your own calculator. Why not a DMM?

Finally, a digital multimeter that's yours, just like your pocket calculator, and more useful. Only $\$ 169$ **

You pack only 13 ozs in your pocket or service kit, but size is deceptive. The 8020A has nore useful features than any other multimeter available-at any price! Features like 26 ranges and seven functions, including conductance. 2000 -count resolution. $\mathrm{Hi} / \mathrm{lo}$ power ohms.

And it's rugged. The high-impact case protects a minimum number of component parts (47 in all), and they're all readily available from any of the world wide Fluke service centers. Your 8020A is factory calibrated by NBS traceable equipment. And we guaran-
tee it'll live up to published specs for a full year.

The 8020A is a true field instrument, designed with a highly readable LCD display, and inexpensive 9 V transistor battery power for continuous use up to 200 hours. Reliability, quality and value: that's Fluke tradition.

To get your hands on one, call (800) 426-0361, toll free. Give us your chargecard number and we'll ship an 8020A the same day. Or, we'll tell you the location of the closest Fluke office or distributor (where you can save by buying a ten-pack of 8020 As for only $\$ 1521^{*}$)
*U.S. price only.

 Audio Test Station

A host of precision instruments are required by anyone wanting to put high-quality audio equipment through its paces. This test station has everything you'll need. You can build it from a kit.

RAY DAVISON

THIS IS THE FIRST IN A SERIES OF ARTIcles describing the operation, design and construction of Fidelity Sound's model 101 Audio Test System. This first article presents the functions that are available and gives detailed information on the power supplies. Subsequent articles will cover the other major circuit blocks. A kit of all components is being offered.

The unit consists of a power supply, two sine/square/triangle function generators, pulse generator, frequency counter and AC voltmeter. In its simplest form it can be thought of as several pieces of independent test equipment in a common cabinct. They are all basically familiar test equipment and can be used in the normal manner. In addition, when the various sections are properly connected to each other and to an $\mathrm{X}-\mathrm{Y}$ plotter or scope, the system will generate a frequen-cy-response plot.

The controls and the Audio Test System are grouped within solid black lines on the front panel as can be seen in Fig. 1. Each of the areas should be thought of as a separate piece of equipment with the capability of being internally connected. Each section has its own power switch. Figure 2 is a block diagram that shows
the various circuits and their interrelationships.

Basic to audio testing is a three-decade, three-function generator. This is contained in the area labeled Audio Sweep Generator. This basic generator has three controls besides the power switch: Slide pots for frequency and amplitude and a toggle switch to select one of the three available waveforms. The amplifier output impedance is less than one ohm and it will supply 15 volts peak-to-peak into 500 ohms or 10 volts peak-to-peak into 8 ohms. By having the output impedance very low the user can add resistance either internally or externally where necessary to match a particular application. The other three toggle switches in the sweep generator section are used to interface to the timebase section that will be discussed next.
The next step of sophistication beyond a basic function generator is generally a sweep generator. This requires some type of second oscillator to generate a sweep signal for the primary generator. Often the secondary oscillator is a simple fixed or possibly selectable frequency ramp generator.

In the case of the model 101 we decid-
ed to give you wide latitude in the choice of both sweep and return times. The basic waveform of the timebase is a triangle. The two slide pots (RI and R2) on the left side of the timebase section control the leading and trailing sides of that triangle independently. A switch (S4) deactivates one of the pots and allows the remaining one to control the frequency of a symmetrical triangular waveform. Use of the two frequency control pots allows the leading or trailing side to be up to 100 times as long as the other side. Rotary switch S3 steps the frequency range. In the slowest setting, with the slide pots at their minimum, the timebase will produce a triangular waveform of three minutes on each ramp. This would be used for maximum resolution for such things as plotting standing waves in an auditorium on an $\mathrm{X}-\mathrm{Y}$ recorder.

Slide pot R3 is the amplitude adjustment and R4 is a ± 5-volt DC offset. Below the DC offset pot there are two toggle switches. The one to the left (S5) selects one of the three waveforms. The timebase is capable of providing the three basic waveforms and hence, rather than merely a secondary oscillator to sweep the audio generator, it is a complete second
function generator. The separate leading and trailing edge frequency controls allow it to produce nonsymmetrical waveforms. Combining the frequency, amplitude and DC offset controls will provide wide latitude in generating a pulse train.

Toggle switch S8 inverts the output, while S9 provides for manual setup of the timebase/sweep generator system.

The triangle output from the timebase generator (independent of the setting of the output waveform switch) sweeps the audio generator through the LOG/LINEAR sweep select switch (S12) of the sweep generator section when SWEEP/MANUAL switch S 9 in the timebase section is set on sweep. When this switch is set to manuAL the DC offset pot replaces the triangle timebase generator. This allows the timebase signal, which would drive the X-axis of a plotter and simultaneously sweep the audio generator, to be manually moved to any point and stopped. While the timebase signal is stopped, the audio generator frequency can be read off the counter. This mode provides for setting of the sweep end points and calibrating the chart paper.
The sweep frequency end points are set by multiturn trimmers with a screw driver through the four small holes to the left of R6, the sweep generator manual frequency slide pot.

The timebase also triggers the blank-

FIG. 1 THE MODEL 101 AUDIO-PLUS SYSTEM consolidates several audio test instruments.
ing mode of the audio sweep generator. In the blanking mode when the timebase is on the negative-going side of the ramp, the audio oscillator is turned off. Also, the holding capacitors in the AC to DC converters of the voltmeter are discharged. This results in a zero reference line during retrace. The purpose of this
will be more apparent when the unit is discussed as a system.

With the sweep generator sweep /manual switch S9 set to manual and blanking mode activated, the sweep generator functions as a tone-burst generator. The left-hand timebase frequency select pot controls the on-time of the

WITH MORE AND MORE AUDIO SERVICE centers, dealers and design laboratories making repetitive and comprehensive measurements of audio equipment (including everything from preamplifiers to loudspeakers and tape decks), their goal is to make such measurements as quickly as possible, with as few pieces of test equipment as practical. For this reason, The Fidelity Sound model 101. shown in Fig. 1, combines various signals and test

FIG. 1
functions into a single, compact instrument. It won't tell you everything you ever wanted to know about a piece of audio equipment but, when combined with a decent oscilloscope and/or an $\mathrm{X}-\mathrm{Y}$ plotter, it produces some very excellent response measurements of virtually any
kind of audio gear where frequency response is important. Its many signal outputs, built-in frequency counter and built-in audio voltmeter can prove useful in making a variety of other tests besides frequency response.
The model 101 consists of two sine/ square/triangle-wave function generators, a pulse generator, a frequency counter and an AC voltmeter. In its simplest form, the unit can be thought of as several pieces of independent equipment in a compact cabinet. In addition, when these various sections are properly interconnected (many of these interconnections are internal, thanks to the frontpanel switching arrangements) and if an $\mathrm{X}-\mathrm{Y}$ plotter or scope is used, the system generates a frequency-response plot. When the unit is combined with an efficient speaker, a quality microphone and a hard-copy plotter, it will produce a written record of room acoustic analysis including standing waves, which, because of their low spectral energy, are often missed by other types of sweep analysis.

There are several applications for which the unit is not suitable. For example, its sinewave output is too high in distortion to be used to check preamplifier or power amplifier distortion, al-
though the amplitude response of the sweep generator, used in either its manual or sweep mode, is certainly flat enough for meaningful frequency-response measurements.

The frequency-counter section, shown in Fig. 2, is a useful addition. The counter

FIG. 2
reads the repetition rate of whatever signal is selected from the sweep-signal generator section. It would have been more useful if the counter could also read externally connected signal frequencies.
The functions and controls of the different sections are described in the article dealing with the construction of the model 101 . Our purpose here was to check out

FIG. 2-BLOCK DIAGRAM shows inter-relationship of the different instrument sections. Use it along with Fig. 1 to follow text description of the system's operation.

Tests It

LEN FELDMAN

CONTRIBUTING HI-FI EDITOR
the various specifications of the instrument and to examine some of the output waveforms it is able to deliver. Table 1 summarizes the manufacturer's specification claims as well as our own measurements and results. In general, most of the published specifications were either met or exceeded. One notable exception was the total harmonic distortion of the

FIG. 3
sweep-generator sinewave output. This THD measured 1.8% for a $1-\mathrm{kHz}$ output signal, as opposed to the 1.0% claimed by the manufacturer.

Output signal waveforms

We photographed several types of
waveforms that can be taken from the various output terminals of the model 101. Figure 3 shows a sweep-frequency signal output, logarithmically swept from 20 Hz to 20 kHz . The center line seen from left to right is the retrace signal between successive sweeps and is, of course, adjustable as to duration. The total sweep time can be adjusted from its slowest speed of around $31 / 2$ minutes for a full sweep to about 4 seconds-the minimum time required to "get all the frequencies in" for at least one cycle of cach.

FIG. 4
Figure 4 shows how a wide variety of tone bursts can be generated with the
combined use of the timebase generator and the audio sweep generator operated in its manual mode (under which conditions any frequency within the audio range can be selected and remains fixed).

Figure 5 shows positive- and negativegoing sharp pulses. Besides being useful in and of themselves, these pulses are also timed to occur at the start of a timebase

FIG. 5
ramp generated by the timebase section. Since the ramp voltage generated by the timebase section also sweeps the frequencies generated by the sweep-generator section, these dual-polarity pulses provide a ready means for triggering a scope
burst and the right-hand pot controls the off-time. The blanking circuit is coordinated with the zero crossing of the sweep generator waveform; therefore, the tone burst produces only integral cycle waveforms, beginning and ending at zero.

To the left of the timebase section is a pulse output and pulse-width control. Each time the timebase begins its posi-tive-going ramp the pulse section provides a single pulse. The width is controlled independent of timebase frequency by range switch S7 and slide pot R5. The outputs are complementary TTL.

An AC voltmeter is in the lower right-
hand corner of the unit. Rotary switch S 17 under the meter is the range switch. The high-sensitivity ranges (-36 to -72 dB) apply only to the mike connector. Toggle switch S 16 selects either the sweep or timebase function generators or the external BNC connector (J5) below $i t$. The other three toggle switches provide fast or slow tracking rate (large or small damping), peak or true RMS, and linear or \log scales.

A six-digit frequency counter is above the voltmeter. Toggle switch S21 is the power switch and also selects the signal to be counted. It will count either whatever
signal is selected by the voltmeter select switch, or it will count the audio generator internally. This latter selection allows stable counting of the audio generator when the signal coming from the system under test may be very distorted or of very low amplitude. The second toggle switch (S22) selects either a one-second or a one-half-second counter update. The counter is line-triggered and may be programmed for either 50 or 60 Hz .

Next month, we will present an indepth discussion of the power supply and timebase circuits as well as the construction details for these two circuits. R-E

TABLE I			
PERFORMANCE SPECIFICATIONS			
	Manutacturer's Claim	R-E Measurement	Comments
TIMEBASE SECTION			
Timebase frequency range	$0.002 \mathrm{~Hz}-800 \mathrm{kHz}$	Confirmed	
Vernier control of \pm ramp side	100 X	Confirmed	
Sinewave THD	Less than 1.5% at 1 kHz	0.9\%	
Squarewave rise \& fallime	$0.5 \mu \mathrm{~S}, 8$ volts P-P	0.7 us	
Timebase amplitude	16 volts P-P	Confirmed	includes DC offset
DC offset	± 5.0 volts	Confirmed	
PULSE SECTION			
Pulse-width total range	$40 \mathrm{~ns}-4$ seconds	Confirmed	In 10x steps
Pulse-width vernier	14 X per range	Confirmed	
SWEEP-GENERATOR SECTION			
Manual frequency range	$20 \mathrm{~Hz}-20 \mathrm{kHz}$	$18 \mathrm{Hz-20.2} \mathrm{kHz}$	
Sinewave THD	Less than 1.0\%, 8 volts P-P	1.8\%	At 1 kHz
Squarewave rise \& fallime	$0.5 \mu \mathrm{~s}$	$0.7 \mu \mathrm{~s}$	$\begin{gathered} 0-90 \% \text { at } 8 \text { volts } \\ \text { P-P } \end{gathered}$
Output level	16 volts P-P/500 ohms; 10 volts P-P/8 ohms	17.0 volts P-P, 500 ohms; 12 volts P-P/8 ohms	
AC VOLTMETER SECTION			
0-dB reference	8.0 volts P-P $=0 \mathrm{~dB}$	Confirmed	
Internal or line-in range	+36 dB to -24 dB	Confirmed	In 12-dB steps
Microphone input range	-36 dB to -72 dB	Confirmed	In 12-dB steps
External input impedance	1 megohm	Confirmed	
Microphone input impedance	600 ohms	Confirmed	
Voltmeter output impedance	100 ohms	Confirmed	
Meter system response	$20 \mathrm{~Hz}-100 \mathrm{kHz},+0,-1 / 4 \mathrm{~dB}$	$18 \mathrm{~Hz}-110 \mathrm{kHz}, \pm 0.25 \mathrm{~dB}$	
FREQUENCY-COUNTER SECTION			
Sensitivity	10\% of selected meter scale	Confirmed	
Reading update	0.5 or 1.0 seconds	Confirmed	Switch-selectable
GENERAL SPECIFICATIONS			
Dimensions	$14 \mathrm{~W} \times 8 \mathrm{H} \times 3$-inches D	Confirmed	
Shipping weight, assembled	9 lbs .	Confirmed	
Price	\$650		

sweep or initiating the action of an $\mathrm{X}-\mathrm{Y}$ plotter in sync with the frequency sweep to be plotted.

Figure 6 shows a $20-\mathrm{kHz}$ squarewave output. This particular squarewave was observed at the output terminal of the
timebase generator section, but equally steep squarewaves can be obtained at the sweep-generator output terminals.

Figures 7 and 8 are scope photos taken of the triangular and ramp-shaped waveforms at the output jack of the timebase generator section. A sinusoidal timebase

FIG. 7
is also available from this output terminal.

FIG. 8
Based on our tests and measurements, we conclude that the model 101 AudioPlus Test System would be a useful addition to anyone's audio test bench. R-E

600-MHz Portable

Frequency Counter

> Here's a frequency counter that's compact, battery powered, counts to 600 MHz and costs less than 17 cents per MHz

JIM COLBURN AND BILL OWEN*

CONTINUING advances in large-scale integrated-circuit (LSI) technology have made possible the development of lowcost, high-performance digital test equipment. The OPTO-7000 Frequency Counter requires only five integrated circuits to achieve its rather remarkable performance specifications that would have been impossible just a few years ago. An additional benefit of LSI IC's is apparent when you consider that this 7 digit, $600-\mathrm{MHz}$ frequency counter requires only 200 mA of current (at 5 V) making battery operation practical. In general the counter's low cost (about 15 c per MHz), high performance, small size and minimal power consumption is a direct result of LSI integrated circuits incorporated into the design.

Figure 1 shows the counter's excellent sensitivity from 10 Hz to over 600 MII , covering low-end audio through the UHF amateur and commercial communications bands. These bandwidth/sensitivity specifications compare with those found in state-of-the-art commercial test-bench instruments. A complete listing of the specifications appears in Table 1. The OPTO-7000 will provide you with what amounts to a sophisticated test-bench instrument that is rugged enough and small enough to be carried in a tool box and ready to go anywhere anytime.

How it works

The unit of frequency measurement is the hert \dot{z}, which is equivalent to cycles-per-second. The basic digital frequency counter uses a pulse with a precisely generated width called a gate interval in conjunction with an electronic counter

[^1]that counts cycles of the input signal during the time period in which the gate is open. If the gate period is 1 second then the number displayed by the counter is cycles-per-second. If the gate period is 0.1 second then the displayed count is

FIG. 1-PLOT OF COUNTER'S SENSITIVITY in the range of 10 Hz to 600 MHz demonstrates that this compact portable instrument compares favorably with some of the best benchtype instruments.

INTERIOR VIEW shows the component side of the frequency counter's main PC board.
corrected by multiplying by 10 (moving the decimal point one position to the right).

The counter-The OPTO-7000 block diagram is shown in Fig. 2. The gate and the decade counter are contained in the 7208 IC. The gate signal is generated by the 7207-A IC that divides the crystal oscillator frequency to obtain a squarewave with either a 2 -second or 0.2 -second period. Therefore, gate signal is low for either 1 second or 0.1 second. This opens the gate for the passage of the input signal to the counter. As the gate signal goes from low to high to close the gate, a store pulse-generated by the 7207-A causes the contents of the counter to be transferred to the latch and then displayed. A reset pulse follows the store pulse to reset the counters to zero to be ready for the next negative gate interval.

Prescaler-The maximum signal frequency that the 7208 can handle is between 6 and 7 MHz . The input signal must be prescaled or divided to count higher frequencies. The 74196 IC generates a BCD output and we use the 2^{2} bit to drive transistor inverter Q5 (see the Fig. 3 schematic) to obtain a $60-40$ dutycycle squarewave suitable for driving the 7208 counter.

In order to count frequencies as high as 600 MHz , the 11 C 90 UHF divide-by-10 prescaler is used so that input signals above 60 MHz are divided by 100 before reaching the 7208 counter. The decimal point is switched to the correct location by the gate-select switch.

Input amplifiers-Dual inputs and amplifiers are used for the $10-\mathrm{Hz}$ and $60-$ MHz_{z} and $10-600-\mathrm{MHz}$ ranges. Both inputs have back-to-back signal diode clamps for overvoltage protection.

The $1-m e g o h m(~ 60-M H z) ~ i n p u t ~ u s e s ~$ an FET/bipolar pair to provide a high input impedance and low output impedance along with a small amount of voltage gain. Resistor $R x$ is matched with the FET to set the voltage at 1 C 2 pin 9 to $1 / 2$ the supply (2.3 to 2.7 volts). The MC10116 is an ECL (Emitter-Coupled Logic) triple line receiver. The first two stages are connected as differential input/output amplifiers while the third stage has positive feedback to act as a Schmitt trigger to square up the waveform. Transistor Q4 (MPS6516) converts the ECL logic levels to TTL

Several low-cost frequency counters on the market economize by having a lower than 1 -megohm input impedance on their low-frequency (less than 60 MHz) range. The advantages of having a 1 -megohm input impedance are well worth the additional parts cost. The counter's input impedance is seen as a load by the circuit being measured. An oscillator may shift frequency or stop when loaded by only a few thousand ohms. Oscilloscope accessories such as $10: 1$ probes and terminators can be used because most scopes have 1 megohm inputs. This counter's input impedance can always be lowered to match a different source impedance by using a terminator or adding a shunt impedance: but it is not as easily increased.

The 11 C 90 prescaler has good sensitivity (typically less than 200 mV) without preamplification. However, we decided that the OPTO-7000 should have at least one stage of preamplification in order to meet a wider range of applications. A 2N 2857 NPN RF amplifier is used in a common-base configuration to provide voltage gain all the way to 600 MHz . The PC layout is critical at high frequencies and good soldering techniques are impor-

TABLE I FREQUENCY COUNTER SPECIFICATIONS	
Frequency Range: (Switch Selectable)	10 Hz to 60 MHz (65 MHz Typical) 10 MHz to 600 MHz (700 MHz Typical) Guaranteed
Input Impedance:	1 meg shunted by 20 pf (60 MHz input) 50 ohm (600 MHz input)
Input Protection:	$1 \mathrm{meg} / 60 \mathrm{MHz}$ input - 100 V up to 10 MHz 50 V up to 60 MHz $50 \mathrm{ohm} / 600 \mathrm{MHz}$ input-2V max.
Gate Times: (Switch Selectable)	100 millisecond 1 second
Resolution:	$1 \mathrm{~Hz}(10 \mathrm{~Hz}$ to 6 MHz$)$ with direct-counting option $10 \mathrm{~Hz}(10 \mathrm{~Hz}$ to 60 MHz) $100 \mathrm{~Hz}(10 \mathrm{MHz}$ to 600 MHz)
Sensitivity:	10 MV to 60 MHz 25 MV to 150 MHz 50 MV @ 450 MHz typ. <75 MV Guaranteed
Timebase:	Quartz Crystal, 5.24288 MHz , TCXO, first order linear compensation
Counter Accuracy:	± 1 count, temperature stability and aging
Temp, Stability:	.08PPM $/ \mathrm{C}^{\circ}$ ($< \pm 1 \mathrm{PPM} 20^{\circ}$ to $40^{\circ} \mathrm{C}$, Typ.)
Aging:	< PPM/year
Display:	7. $4^{\prime \prime}$ Red LED Digits
Decimal Point:	Auto Placement
Power Requirement:	1.5 Watts $7.5-15 \mathrm{~V}$ AC/DC @ $<250 \mathrm{MA}$
Batteries:	4-AA NICad, Constant Current Charger
Size:	$13 / 4 \mathrm{H} \times 41 / 4 \mathrm{~W} \times 51 / \mathrm{m}$-Inches D
Weight:	14 oz . (17 oz. with batteries \& charger)

tant. The ceramic disc capacitors used should have low self-inductance such as the Sprague 5GA series. Component leads must be kept as short as possible to prevent attenuation due to lead inductance.

If you don't expect to be counting frequencies above say 450 MHz , then additional sensitivity and significant power savings can be made possible by lowering the supply voltage to the 11 C 90 .

Resistor R6 can be increased until the counter will count 450 MHz but no higher. The 11C90 will operate with as little as 3.5 volts and the only sacrifice is bandwidth.

At very high frequencies, a high input impedance cannot be maintained. The internal shunt capacitance in coax input cables at high frequencies reduces the input impedance. A nominal 50 -ohm input impedance is therefore used on the

Resistors $1 / 4$ watt, 5% unless otherwise noted
R1, R20-47 ohms
R2-100 ohms
R3-470 ohms
R4 - 680 ohms
R5, R11, R19-150 ohms
R6-15 ohms
R7-100,000 ohms
R8-1 megohm
Rx-Especially selected value between
100 and 500 ohms. See text.
R10-270 ohms
R12, R14-R17, R25-5 10 ohms
R13, R18, R23, R26-1000 ohms
R21- 10 megohms, $1 / 2$ watt
R22-2200 ohms
R24-330 ohms
R27-R36-10 ohms

Capacitors

C1-2200 $\mu \mathrm{F}, 16$ volts, electrolytic
C2-C4, C7, C10, C15, C18-. $001 \mu \mathrm{~F}$ disc
C5-47 to 150 pF
C6-470 pF disc
C8- 100 pF silver mica
C9, C 16, C $17-47 \mu \mathrm{~F}, 10$ volts, electrolytic
C11-29 $\mu \mathrm{F}, 10$ volts, tantalum

PARTS LIST

C12-33 pF disc
C13-20 or 22 pF
C14-2-30 pF, ceramic trimmer
Semiconductors
D1-D4-1N4002
D5-D14-1N914
IC 1-11C90 UHF prescaler (Fairchild)
IC2-MC 10116 ECL triple line receiver
IC3-74196 decade counter
1C4-7207 crystal oscillator controller
IC5-7208 7-decade counter-display

driver

IC6-7805 voltage regulator
Q1-2N2857
Q2-E304 N-channel JFET
Q3, Q4-MPS6516
Q5-2N7369
Miscellaneous
L1-3.9 $\mu \mathrm{H}$ RF choke
L2-82 $\mu \mathrm{H}$ RF choke
XTAL1-5.24288-MHz quartz crystal
DIS 1-DIS7-FND 357/356 7-segment LED displays
J1, J2-panel-mount BNC connectors
J3-3-circuit miniature phone jack
S1-S3-DPDT miniature slide switches
PC boards, IC sockets, cabinet
components, assorted hardware.

Note: The OPTO-7000 frequency counter is available as a kit for $\$ 99.95$ or assembled for $\$ 139.95$ from Optoelectronics, Inc., 5821 NE 14 Ave., Ft. Lauderdale, FL 33334. A kit, No. $7000-\mathrm{PCB}$, containing the two circuit boards is available for $\$ 14.95$.

Accessories available for the OPTO-7000 in both the kit and assembled versions: Power pack for 117 VAC line operation, model AC70, \$4.95. Rechargeable battery pack for internal installation; includes Ni Cad cells, holder, constant-current charger and mounting hardware, model NiCad-70, \$19.95. Optional switch for $1-\mathrm{Hz}$ resolution to 6 MHz , model S-4, \$4.95. Optional precision crystal oscillator, model TCXO-70 $\pm 0.1 \mathrm{PPM}$ from 17 to $40^{\circ} \mathrm{C}$, precalibrated, $\$ 79.95$.

Add 5\% to all orders to cover shipping, handling and insurance. Florida residents add state and local taxes as applicable.

FIG. 2-BLOCK DIAGRAM of the OPTO-7000 counter. Note the signal conditioning circuits ahead of the prescaler.
$600-\mathrm{MHz}$ input.
Timebase-A frequency counter's accuracy is a function of its timebase stability. The quality of the quartz crystal used is of paramount importance. The inexpensive and readily available color-burst TV crystal (3.59545 MHz) was found unsuitable as a counter timebase. Colorburst crystals are manufactured to loose specifications (in a TV set they are phaselocked to the net work signal). While suitable color-burst crystals can be handpicked from batches they still have what crystal manufacturers refer to as "glitches." When temperature-cycled they behave erratically and depart from a smooth temperature/frequency curve.

The 7207A timebase generator is designed to use a $5.24288-\mathrm{MHz}$ crystal. This frequency falls within the inherently stable $4-10-\mathrm{MHz}$ range for quartz crystals. The crystal used in the OPTO-7000 counter is guaranteed to meet or exceed 5-

FIG. 3-SCHEMATIC DIAGRAM OF THE OPTO-7000 indicates its simplicity. The sensitivity and bandwidth are due partly to the careful design of the PC board.
ppm stability from 20° to $60^{\circ} \mathrm{C}$. Industry specs for the color-burst crystal is 30 ppm from 20° to $60^{\circ} \mathrm{C}$. Over the more realistic range of 20° to $40^{\circ} \mathrm{C}$. the typical stability of the OPTO-7000's crystal is on the order of 1 ppm and 0.5 ppm close to room temperature. The oscillator uses first-order linear temperature compensation to improve temperature stability oyer the crystal specs. Each crystal's temperature frequency curve is plotted and a pair of temperature compensating capacitors are selected to provide compensation. Good long-term stability is achieved by pre-aging the crystal. The 7207A in conjunction with the crystal generates all clock signals as well as the display multiplex frequency.

Assembly details

As in any valuable project, each design phase must enhance the other. Especially in sensitive electronic equipment where a good, solid circuit design could either be complemented or destroyed by its physical layout. The mechanical design of this frequency counter has many features that are the result of user considerations.

As a note, the specifications shown in Table 1 are typical for the frequency counter shown in this article, using the PC boards designed with the proper inpedance and should not be compared with results obtained from one built by other means.

THE DISPLAY BOARD with its components is shown in this head-on view of the counter.

As for assembling the unit, you couldn't ask for anything simpler. Of course, your best soldering techniques will pay off here. Positions of most components are silk-screened on the boards (if you etch your own boards you'll have to follow Figs. 4, 5, 6.7 and 8). The two BNC connectors and the power input jack. J1, J2 and J3, are mounted on the rear panel. By referring to Figs. 6 and 8 and the parts list, install all components in the boards, except the three DPDT slide switches. Make sure to orient all diodes and polarized capacitors as indicated by the component layouts. Solder all component leads (top, bottom, or both sides) wherever a pad is provided and trim the excess leads.

There are four pads on the main board, marked with boxes (\square), which require a piece of excess resistor lead inserted through each of them and soldered on both sides of the board. Trim the excess leads after soldering. Sockets

FIG. 4-FOIL PATTERN of the component side of the main board.

FIG. 5-MAIN BOARD ground-plane pattern. UHF signal attenuation is minimized by using short component leads and micro-strip printed-circuit transmission lines where needed.
are provided for all IC's with the exception of IC2, the MC10116, which is exceptionally reliable and performs a little better when not socketed. The voltage regulator is bolted to the top side of the PC board with a mica insulator. The crys-
tal is also mounted on top of the PC board using a double-stick foam pad as an insulator and shock mount over IC4.

Align the display board at right angles to the main board with two pieces of excess resistor lead passing through pads

FIG. 6-PARTS PLACEMENT DIAGRAM for the main board. When board is installed most parts are toward the inside or boltom side of the case. Ground plane with switches faces upward.

FIG. 7-DISPLAY BOARD foil pattern. You may want to make several and adapt them for use in other digital instruments using the FND357 or similar 7-segment LED displays.

FIG. 8-COMPONENT SIDE of the display board. Leads through pads E9-E10 and E11-E12 form right-angle bracing when display board and main board are mated.

E9-E10 and Ell-E12. Make sure the triangle marks on the sides of the display board foil line up with the ground-plane surface of the main board before soldering these two wires. This insures the correct mechanical positioning of the display board for interconnection soldering. Solder the 18 interconnections, being careful'not to short any adjacent pads.

Next, install the three DPDT slide switches in the top cover, using six 4-40 $\times 1 / 8$-inch flat-head machine screws. Place the main board flush over the switches, with the display board facing forward and the switch terminals extending up through the component side of the main board. Solder all switch terminals to the main board. This insures the correct mechanical relationship between the main and display boards, switches and top cover, so there will be no stress on any solder connections during final assembly. Remove this assembly from the top cover by removing the six switch screws.

In preparation for hooking up the rear panel, solder two $11 / 2$-inch pieces of hookup wire in E17 and E18 on the main board. Next, solder a l-inch piece of excess resistor lead in E2 and one end of C2 in EI. Install the two BNC connectors and the power input jack on the rear panel. Solder a $1 / 2$-inch piece of excess resistor lead to the solder lugs on JI and J2. Place the rear panel assembly against the rear edge of the main board. Solder the loose end of the wire, in E2, to the center conductor of J2 above it. Now solder the loose end of C2 to the center conductor of connector JI. Solder the two $1 / 2$-inch pieces of wire on the ground lugs to the ground plane of the main board. Solder the stranded hook-up wire from pad E17 to the center terminal of the power input jack and the wire from pad E18 to the outside terminal of the power input jack.

Install this assembly in the top cover as before, using the six $4-40 \times 1 / 8$-inch flathead machine screws. Carefully place the bottom cover over this assembly so that the press nuts are in the forward position and the rear panel fits outside the corner brackets. Secure the top and bottom covers together with two $4-40 \times 1 / 8$-inch machine screws in the rear holes. Altach the rear panel with two $4-40 \times 1 / \mathrm{e}$-inch machine screws and the display window with two $4-40 \times 1 / 4$-inch machine screws. Install the bracket/stand using two 6-32 $\times 5 / 16$-inch machine screws and two rubber washers. Place the washers next to the case. Finally, apply the self-stick rubber feet and you're ready for check-out and calibration.

Direct counting

If you are going to be doing a lot of audio and low-frequency counting in the $10-\mathrm{Hz}$ to $6-\mathrm{MHz}$ range then there is a *imple modification you can make to the OPTO-7000. The 74196 IC can be recontimued on page 90

Video Motorcycle Game

Keep up with the advance in video game sophistication by building this singleplayer game for lots of fun and excitement.
L. STEVEN CHEAIRS
this arcade-quality video game is a follow-up to the "Tank Battle" described in the November and December issues. The heart of this game is one I.SI IC that contains a complex audio sound generator, a complete timing circuit (thus allowing for unique point identification anywhere on the television screen), the motion logic, a number of ROM image arrays, chip buffering and color video circuits. The video circuit includes the horizontal and vertical blanking, the horizontal and vertical sync circuits, the color circuits, the field intensity circuit, and logic for both the American NTSC and the European PAI. screen format.

It doesn't require much imagination for the operator to find himself or herself upon the back of an iron stallion, with a faint taste of dust and a distant roar of the elated crowd; that sound is only surpassed by the mechanical snorting of the throbbing steed. With but a wrist's twitch the ultimate of freedom and adventure is realized.

This is made possible by another new dedicated IC introduced by General Instruments Corporation. There is as much difference between this game and the common pong-type units as there is between an earthworm and man. This is the second IC in a new generation of video games; the first is GI's AY-3-8710-1 battle game.

This single-player game begins when a mode of play is selected; reset is automatic when power is first turned on. Four games are provided; each with two levels of complexity. The four games are Drag Race, Enduro, Stunt Cycle and Motorcross. A single motorcycle and rider is displayed on a tri-segmented road that, in most of the games, contains obstacles that the rider must jump. As with the tank
game, realistic engine and crashing sounds are provided. As the motorcycle changes its speed or when it shifts gears,
the engine sounds change to reflect these conditions. Realistic wheel rotation is displayed.

FIG. 1-TYPICAL VIDEO IMAGES as they appear on the TV screen. The Drag Race at a, Stunt Cycle at b. Motorcross, the easy way at c and the hard way at d. Enduro the easy way (e) has single obslacle on first and second rows; the hard way (f) has two obstacles in the first and second rows.

FIG. 2-SCHEMATIC OF THE MOTORCYCLE GAME. Object of the games is to traverse the three roads without accident in the shortest possible time.

All resistors $1 / 4$ watt, 5%.
R1-510 ohms
R2-100 ohms
R3-100,000 ohms
R4, R5-15,000 ohms
R6-R8, R 10-330 ohms
R9-270 ohms
R11-680,000 ohms
R12-5000 ohms trimmer pot
R13-10,000 ohms
R14-1 megohm
R15-1000 ohms
R16-12 megohms
R17-270 ohms
R18-100,000 ohms
R 19-3000 ohms
R20-6800 ohms
C- $100 \mu \mathrm{~F}, 25$ volts, electrolytic
C2, C11, C14, C16, C23- 100μ F, 15

PARTS LIST

volts, electrolytic
C3-C8, C $12-0.1 \mu \mathrm{~F}$ ceramic disc
C9, C $10-20 \mathrm{pF}$
C23-15 pF
C15-2 $\mu \mathrm{F}$, tantalum
C17-0.05 μ F ceramic disc
C18-0.01 $\mu \mathrm{F}$ ceramic disc
C19-200 pF
C20, C21-30 pF
C22-470 pF
L1-30 $\mu \mathrm{H}$ RF choke
XTAL1-3.58 MHz quartz crystal
D1-1N914
D2-D5-1N4004
IC 1-AY-3-8760 video game IC
IC2-4001 or 4011 CMOS quad 2-input gate
IC3-555 timer
IC4-MC1306 1/4-watt audio amplifier

IC5-7805 5-volt regulator (TO-220 case)
T1-power transformer, 12 VAC, 1A secondary
F1-1 amp fuse
S1-SPST toggle or rotary switch
S2-S5-SPST normally open pushbutton switch
S6-SPST toggle switch
SPKR1-8-16-0hm speaker, 0.25 watt or higher

The following are available from Questar Engineering Co., 50 S .
McDonald St., Mesa, AZ 85202: PC board \$9.75; AY-3-8760 \$25.50; and kit of all parts listed above $\$ 61.75$. Add $\$ 1.75$ to all orders for shipping, handling and insurance.

The games begin with the rider at the top left-hand side of the screen. The cycle begins to move when the throttle pot is turned. The cycle and rider move across the first track from left to right, it exits the screen and reappears on the left side of track number two; it likewise transverses this track in the same direction and exits the screen; only to reappear on the left-hand side of track number three, which again it transverses from left to right. When it exits the screen on track number three, it is replaced at the starting position and remains stationary. The throttle must be reset to the minimum speed position and again increased. See

Fig. I for typical video images as seen using this game.

About the circuit

The AY-3-8760 was designed for both color and black-and-white operation using a standard domestic 525 -line NTSC receiver or foreign 625 -line PAL. units.

The complete game unit is shown schematically in Fig. 2. In addition to automatic reset at turn-on, reset also occurs when any game is selected by pressing one of the four momentary contact SPST pushbutton switches (S2-S4). Also, an SPST switch (S 1) is used to select either the pro or amateur skill level; 1 use a rota-
ry switch that protrudes from the left side of the case-acting as one handle bar. The throttle pot protrudes from the right side of the case, thus, forming another handle bar.

Upon pressing the drag race select pushbutton the screen takes on the form as seen in Fig. 1-a. The score is automatically reset to zero upon pressing a gameselect switch. The object of the Drag Race game is to reach the right side of the third (bottom) track segment in the shortest possible time, the minimum score. At the end of each game return the pot to the slow position; when it is increased again the score will be reset and

FIG. 3-FOIL PATTERN for the single-sided printed-circuit board.
a new game will begin. The score-a three-digit number centered at the top of the screen-is advanced at a fixed rate throughout the game. At the end of each game the score remains static until the beginning of the next game.
This game requires the development of speed-shifting skills in order to minimize one's score. When the game begins, the motorcycle is in low gear and will move down the track at a fixed rate. The only way the cycle may be accelerated is to shift into the next gear. by returning the throtte to a "slow" position and then turning it back to a "fast" position. The cycle now moves across the screen at a higher rate of speed. If the above process is repeated the motorcycle will shift into third gear; this results in the maximum possible velocity. Thus, a minimum score is obtained when the highest gear is obtained in the shortest period of time.
When the amateur mode is selected by the PRO/AM switch, the game proceeds just as described above. But when the professional mode is chosen, then when the user twists the throttle too rapidly. the motorcycle's front end raises off the ground avd the cycle ffips upside down. When a crash occurs a high-pitched screeching sound is generated. At the end of the screech the game is reset with the bike reappearing at the beginning of track I. No crashes occur in the easy mode. If the game is being displayed on a black-and-white television set then the cycle and score are white; the track is black; and the background is gray. On a color set the cycle and score are also white. Also, the road is black; only the background is changed-it is red. For all

FIG. 4-HOW PARTS ARE LOCATED on the PC board. Don't overlook the five jumpers.
games included on the motorcycle-game IC only the background is in color.

Upon pressing the stunt cycle select swith, the screen will be as seen in Fig. 1-b. The score is preset, the left digit is set to zero and the right digit will be an eight. The right digit (or digits as the game proceeds) equals the number of buses between the ramps. The left digit represents the number of crashes; the maximum amount possible depends on the setting of the PRO/AM switch. In the amateur mode a total of seven crashes may occur. But in the professional mode three crashes only are permitted.

Crashes can occur due to a number of factors. As in the Drag Race game, if the motorcycle is accelerated too rapidly it will flip upside down and a screeching sound is generated. Another method of crashing is to have an insufficient speed upon jumping the buses. This causes the cycle to land on either the second ramp or on one of the buses. A collision is also recorded if the cycle lands too far past the end of the last ramp and an appropriate crash sound is generated. Every time an accident occurs the left digit is advanced and the cycle and rider are placed back at continued on page 69

How To
 Design Digital Circuits

Abstract

Part 2-With digital circuitry becoming an increasingly important factor in our everyday lives, it's time that we learn how to design logic circuits.

Here the author discusses digital logic designincluding sequential circuits and multiple output functions.

JERRY WOOLSEY

LaSt month we went through the basics of digital circuit design, using Karnaugh maps and Quine-McCluskey tables. Now, we'll look at multiple-output functions and those where the output depends on sequential input events.

Multiple-output functions

It is often the case that we wish to design a circuit with not only multiple inputs, but also multiple outputs, all of which are dependent on the same inputs. In the truth table of Fig. 17-a, we show such an example, with three inputs, a, b and c, and three outputs, f_{1}, f_{2} and f_{3}. Each of these functions could be treated separately, and designed using Karnaugh maps, as shown in Figs. 17-b and 17-c. However, this type of design does not lead to optimum gate use. Some gates are repeated, and combinations of gates to perform several functions cannot be taken into account. To resolve this, we resort to a modified Quine-McCluskey method.
The workings are similar to the method described for a single-output function, but all three functions are combined into one table, and each entry is subscripted with the functions (f_{1}, f_{2} or f_{3}) that it covers. Refer to Figs. 17 -a and 18 -a. Since an input of all zeroes produces no 1 -outputs, we have no 0 -bit group in the input column of the $\mathrm{Q}-\mathrm{M}$ table. An input of $1(a b c=001)$ causes a 1 -output for functions f_{1} and f_{2}, so we enter a 1 subscripted with these functions in the 1 -bit group. We continue in this manner, filling the input column as we did for a single-output function, subscripting each

			$\begin{aligned} & \text { OUTPUTS } \\ & f_{1} f_{2} f_{3} \end{aligned}$		
0	0	0	0	0	0
0	0	1	1	1	0
0	1	0	1	0	1
0	1	1	1	1	0
1	0	0	1	1	1
1	0	1	0	1	1
1	1	0	0	0	0
	1	1			

FIG. 17-MULTIPLE INPUTS AND OUTPUTS can also be handled. Truth table with three inputs and three outputs is shown in a Resulting Karnaugh maps are shown in b; logic circuit is shown in c.

$$
\begin{gathered}
1-f_{1} f_{2} \\
2-f_{1} f_{3} \\
4-f_{1} f_{2} f_{3} \\
\hline 3-f_{1} f_{2} \\
5-f_{2} f_{3} \\
8
\end{gathered}
$$

$1-f_{1} f_{2}$	$1,3(2)-f_{1} f_{2}$
$2-f_{1} f_{3}$	$1,5(4)-f_{2}$
$\frac{4-f_{1} f_{2} f_{3}}{3-f_{1} f_{2}}$	$2,3(1)-f_{1}$
$5-f_{2} f_{3}$	$4,5(1)-f_{2} f_{3}$

FIG. 18-MODIFIED OUINE-MCCLUSKEY method is used to simplity circuit shown in Fig. 17.
with the functions that produce a 1 output for the given input.

We now proceed to form 1-cubes as before, except now we must make sure that at least one subscript is common to each of the lower cubes being combined. (See Fig. 18-b.) Inputs 1 and 3 are adjacent, and also have the same subscripts, so we enter this in the next column as a 1cube, also entering the subscripts. The 1 and 3 entries in the input column can be checked off, since the 1 -cube just formed covers both of these inputs for all outputs. Inputs 1 and 5 are adjacent and have a common subscript, f_{2}, so we enter this as a 1 -cube, but the subscript is only entered for f_{2}, since this is the only common subscript and hence the only function which contains this 1 -cube.

We do not yet check the 1 or 5 in the input column, since the higher cube does not cover either input for all functions. The input 5 is checked off when we combine it with input 4, since the cube formed has the same subscripts as 5 . We continue as in the case of single-output functions, until there are no more cubes that can be formed. The completed table appears in Fig. 18-b.
it is checked in f_{2}, because this is covered by the 1 -cube (4,5). Similarly, f_{3} requires rows 2 and (4,5). The completed circuit now appears as in Fig. 21, and is a substantial savings over the circuit shown in Fig. 17-c.

Sequential circuits

Up to this point, we have concerned ourselves only with circuits whose output

	F_{1}				F_{2}				F_{3}		
	1	V	$\begin{aligned} & 6 \\ & 3 \end{aligned}$	$\sqrt{2}$	v	V	4	\checkmark	2	\checkmark	\checkmark
- $2-f_{1} f_{3}$		\checkmark							\checkmark		
* 4-f $\mathrm{f}_{1} \mathrm{f}_{3}$				\checkmark			\checkmark			\sim	
*1,3- $i_{1} \mathrm{f}_{2}$	\checkmark		\checkmark		\checkmark	\checkmark					
1,5-f ${ }_{2}$					\checkmark			\checkmark			
2,3-1,		\checkmark	\sim								
* 4,5-f f_{3}							\checkmark	\checkmark		\checkmark	\checkmark

FIG. 19-COVER MAP is generated from table shown in Fig. 18-b.

A cover map is now made as in Fig. 19, which includes the inputs that will produce a 1 -output for each separate function as column headers and the unchecked entries of Fig. 18-b as row headers. Since the row labeled 2 is subscripted with f_{1} and f_{3}, we check the columns labeled 2 under f_{1} and f_{3}, and so on for all the rows. Following the covering procedure outlined previously, we find that the rows marked with an asterisk are essential to cover all columns. The circuit can now be drawn.

A gate is drawn for each row with an asterisk, again with the inputs to the gates corresponding to the nonchanging coordinates of the cube formed by the row header. We then draw three output gates with no input connections, and the result is as in Fig. 20.

FIG. 20-PARTIAL CIRCUIT is drawn showing the outpute and inputs.

Returning to Fig. 19, we now take a minimum cover for each separate function. For f_{1}, we see we need the rows labeled 2,4 and $(1,3)$ to cover the columns under that function. The gates corresponding to these rows are thus fed to gate f_{1}. For f_{2}, we need only $(1,3)$ and $(4,5)$ to cover all 1 -outputs, so we feed these gates to gate f_{2}. Note that the row labeled 4 is not needed for f_{2} even though

FIG. 21-SIMPLIFIED LOGIC CIRCUIT for three inputs and three outputs requires less gates than circuit shown in Fig. 17-c.
one clock pulse to the next. But suppose we need to know not only what happened on the previous clock pulse, but a string of several before that. We could store the entire string in a series of flip-flops, i.e., a shift register, but this could be costly for long strings and wasteful of gates, since we do not really need to look at every bit in the string as it comes in.

Instead, we can assign to each unique string of bits that may appear at the input a state number that corresponds to that string. We know what the string was if we know what the state number is. Thus, the input string 0000 could be assigned a state number of 0 , the string 0001 a state number of 1 , etc. At first glance, this does not seem to help matters much, since a 4-bit input string can have 16 possible states, which requires 4 bits for saving the state number, which is the same number required to hold the input string. But this is not necessarily so, depending on the function, and if it is so, methods have been devised for reducing the number of states. What we need to do, then, is store the state number, and update it as each bit enters.

In implementing sequential functions, we make use of two tools known as the state diagram and state table. These merely show us the possible states that our function may assume. We start first with the state diagram.

As an example, let us assume that we have a string of bits entering our circuit, and we want to know when the pattern 1101 enters. It may come at any bit time,

FIG. 22-STATE DIAGRAM is used in designing sequential logic circuita.
depends solely on its input at a given time. However, it is often the case that a circuit must produce an output that depends not only on the present inputs to the circuit, but also on previous inputs (or outputs). To perform this, we must make use of a "memory" circuit to hold the previous information. For the experimenter, the simplest type of memory circuit is the flip-flop. When fed a clock pulse, it will store information according to its input, and hold it until the next clock pulse. This implies we must have a clock running the circuit, which we will consider later.

We can thus hold information from
i.e., it may start at the first bit entered, or the third, etc. We start the state diagram by assuming an initial state which we call state A , and write this down in a circle. See Fig. 22-a. There are two possible occurrences at state A; we may receive either a 0 or a 1 . If we receive a 0 , we have not detected the start of the string 1101 , so we draw an arrow from A back to itself and label it $0 / 0$ (applied input/generated output). This means we follow this arrow if we are at state A and receive a 0 -input, and the output of the circuit is to be 0 . The arrow, of course, brings us back to state A to look for the first bit of the string.

This loop will continue until a 1-bit is received. At this point, we must "remember" that we have found the first bit of the string, so we draw an arrow to a new state which we name B. The arrow is labeled $1 / 0$, and indicates that if we are at state A and a 1 is received, we are to go to state B and output a 0 . Since we have covered both input conditions for state A, we move to state B. If we are at state B, we have received the first 1 of the string. If we now receive a 0 , we must go back to state A, and start searching for the beginning of the string again.
If a 1 is received, we have received the first two bits of the desired string, so we

Present State	Next State (NS)		Output	
	$\mathbf{x}=\mathbf{0}$	$\mathbf{x}=\mathbf{1}$	$\mathbf{x}=\mathbf{0}$	$\mathbf{x}=\mathbf{1}$
A	A	B	0	0
B	A	C	0	0
C	D	A	0	0
D	A	A	0	1

FIG. 23-STATE TABLE listing present state, next state and output is generated from state diagram.

$\mathbf{2}$	NS		Output	
	$\mathbf{x}=\mathbf{0}$	$\mathbf{x}=\mathbf{1}$	$\mathbf{x}=\mathbf{0}$	$\mathbf{x}=\mathbf{1}$
00	00	01	0	0
01	00	10	0	0
10	11	00	0	0
11	00	00	0	1

FIG. 24-BINARY NUMBERS are assigned to present states and next states in state table.

FIG. 25-STATE DIAGRAM of circuit with multiple inputs.
go to a new state, called C, which tells us that we have received a 11 so far, and a 0 is to be output. See Fig. 22-b. We follow the same procedure with state C. At state D, if we receive a 0 , we have received the string of 1100 instead of 1101 , so we return to state A and output a 0 . If we receive a 1 , however, we have received the desired 1101 string. We now have two alternatives. If we wish to continue checking for the string, we can output a 1 and return to state A, as in Fig. 22-d, or
we could go to a new state, E, which simply ignores the remainder of the incoming data and outputs a constant 1 (or it could output a constant 0 or follow the incoming data). See Fig. 22-e.

Now, using Fig. 22-d, we put the diagram down in a state table, as shown in Fig. 23. The "Present State" (PS) column lists all the states that appear on the state diagram. The "Next State" (NS) column lists the next state to go to when the input is $0(x=0)$ or $1(x=1)$. For example, if we are at state A and receive an input of $x=0$, the next state is A. If we receive an input of $x=1$, the next state is B. The output column specifies the output to be produced when at the present state and an input of $x=0$ or x $=1$ is received. For example, the only time a 1 is output is when we are at state D and the input $\mathrm{x}=1$ is received.
We can now assign numbers to the state, letting A $=0, \mathrm{~B}=1, \mathrm{C}=2$ and D $=3$, and obtain the Transition Table shown in Fig. 24. Note that with only four possible states, we need only two flip-flops to "remember" the 4 -bit sequence. This table will be used later to construct the actual circuit.
Multiple input circuits can also be designed using this method. For example, Fig. 25 shows the state diagram for a circuit which is to produce a 1 -output only when two input lines simultaneously input the string 1101. The NS and OUTPUT columns of the state table would then have four sub-columns, for inputs x $=00, x=01, x=10$ and $x=11$.

As another example, suppose we wished to design a circuit that would compute odd parity for a 3-bit data word, and set a flag when the parity bit was ready, after which it would compute parity on the next three bits, etc. Figure 26 shows the state diagram for the circuit. The first bit of the output is the parity bit, and the second is a flag indicating when the parity bit is ready to sample. The state table is shown in Fig. 27. Looking at the state table, we see that both states D and G advance to the same state (A) when $x=0$ is input, and advance to the same state (A) when $x=1$ is input. Also, the outputs of the two states are the same when $\mathrm{x}=0$ is input and when $\mathrm{x}=$ 1 is input.
Since the entire row D (except, of course, the PS column) is identical to G, the two states are equivalent, and we can strike out state D and replace all references to it with state G. States E and F are also equivalent, so we can eliminate state E and replace references to it with state F. Our reduced state table now appears as in Fig. 28, and we number the states to obtain the transition table shown in Fig. 29.

We are now ready to design the actual circuitry, using the table of Fig. 29. We will use D-type flip-flops as memory elements, since these have only one input, as opposed to two for the J-K flip-flop.

When a clock pulse occurs on a D-type flip-flop, it merely stores the value present at its input at the time of the pulse, and makes this available at the Q-output, while the inverse is available at the $\overline{\mathrm{Q}}$ output. Three flip-flops are needed to hold the current state numbers.

FIG. 26-STATE DIAGRAM for a circuit that derives odd parity for a 3-bit data word.

	NS		Output	
PS	$\mathbf{x}=\mathbf{0}$	$\mathbf{x}=\mathbf{1}$	$\mathbf{x}=\mathbf{0}$	$\mathbf{x}=\mathbf{1}$
A	B	C	00	00
B	D	E	00	00
C	F	G	00	00
D	A	A	11	01
E	A	A	01	11
F	A	A	01	11
G	A	A	11	01

FIG. 27-STATE TABLE derived from state diagram shown in Fig. 26.

	NS		Output	
PS	$\mathbf{x}=\mathbf{0}$	$\mathbf{x}=\mathbf{1}$	$\mathbf{x}=\mathbf{0}$	$\mathbf{x}=\mathbf{1}$
A	B	C	00	00
B	G	F	00	00
C	F	G	00	00
F	A	A	01	11
G	A	A	11	01

FIG. 28-REDUCED STATE TABLE is obtained by eliminating redundant states.

	NS		Output	
PS	$\mathbf{x}=\mathbf{0}$	$\mathbf{x}=\mathbf{1}$	$\mathbf{x}=\mathbf{0}$	$\mathbf{x}=\mathbf{1}$
000	001	010	00	00
001	100	011	00	00
010	011	100	00	00
011	000	000	01	11
100	000	000	11	01

FIG. 29-BINARY NUMBERS are assigned to the present states and next states.

Suppose we have the $\mathrm{PS}=000$ stored in the Q-outputs of flip-flop 1 (FF1), FF2 and FF3, and at the next bit time the input is $\mathrm{x}=0$. We then wish to set the flip-flops so that the Q-output of FF1 is $0, \mathrm{FF} 2$ is 0 , and FF3 is 1 , so we know we are now at state 001 . From state 001, if x $=1$ is applied, we want to set FF1 to 0 , FF2 to 1 and FF3 to 1 to indicate the new state, 011, etc.
We need three combinational circuits for this, one for each flip-flop, to place a 0 or a 1 at the input of each flip-flop. The input to the combinational circuits will be

b

FIG. 30-A KARNAUGH MAP is drawn for each flip-flop.

PS $=100$ and $\mathrm{x}=0$ or $\mathrm{x}=1$, we must change the first NS bit from 1 to 0 , so J $=\mathrm{d}$. Due to the increased number of don't-cares, the circuits feeding the J and K -inputs are often simpler than those feeding D-inputs, though there are twice as many. (For example, the map for the K-input of FF1 from Fig. 29 will show K is merely equal to 1 , or always high.)

One item essentially ignored here has been the clock pulse. In actual circuits, the clock pulse is very important.

The frequency of the clock depends on the data transmission (baud) rate of the

FIG. 31-OUTPUT FUNCTIONS are derived from the Karnaugh maps.
the outputs of the flip-flops, i.e., the PS, and the input x. We can label the PS-bits as p_{1}, p_{2} and p_{3}, so a PS of 011 indicates p_{1} $=0, p_{2}=1$ and $p_{3}=1$, where p_{i} is the Q-output of FF_{i}. Now we can see that our combinational circuits have four inputs, $\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}$, and x , and one output, which we can label n_{i} to correspond to the bits of the number of the next state.
It is thus an easy matter to draw a Karnaugh map for each flip-flop input. Figure 30 -a shows the map for FF1. If the PS is 000 and $\mathrm{x}=0$ is applied, then n_{1}, the first bit of the NS, is to be a 0 , so in the box with coordinates $p_{1} p_{2} p_{3} x=$ 0000 , we place a 0 . Similarly, for a PS of 000 and $\mathrm{x}=1\left(\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3} \mathrm{x}=0001\right)$, we must have $n_{1}=0$, so a 0 is placed in box 0001. When the PS is 001 and $x=0$ is applied, n_{1}, the first bit of the NS, is to be a 1 , so a 1 is placed in box 0010 . This procedure is repeated up to $\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3} \mathrm{x}=$ 1001. Since there is no state 101 , we can enter a "d" (don't-care) in boxes 1010 through 1111. Using the d-labeled boxes, we get the resultant equation for n_{1}, which is also shown in Fig. 30-a. The same procedure is repeated for bits n_{2} and n_{3} of NS, as shown in Figs. $30-\mathrm{b}$ and $30-\mathrm{c}$. With these outputs applied to the inputs

FIG. 32-COMPLETE LOGIC CIRCUIT for deriving odd parity using D-type flip-flops.
of the flip-flops, they will assume the correct next state after the next clock pulse.
The output functions are also designed in this way, since they depend on only the $P S=p_{1} p_{2} p_{3}$ and the input x. Labeling the first output bit o_{1} and the second o_{2}, the equations are written from the Karnaugh maps as shown in Figs. 31-a and 31-b.
Each of the five functions may now be easily implemented, as shown in Fig. 32. The outputs p_{i} of the flip-flops are fed back to the NAND gates as shown. In actual operation, the circuit would be set to the initial state before use by toggling the CLEAR inputs on the flip-flops by a computer command or a manual switch.
This circuit could also have been realized using J-K flip-flops, using two input circuits to each flip-flop instead of one. Thus, we would need eight Karnaugh maps, one for each J-input, one for each K-input, and one for each output. These would be derived from the truth table of a J-K flip-flop, shown in Fig. 33.

As an example, referring to Fig. 29, if we wish to find the J-input of FF1 to obtain the next state (call this $\mathrm{J}_{\mathrm{n} 1}$), we draw the Karnaugh map as in Fig. 34. For $p_{1} p_{2} p_{3} x=0000$, we change the first state bit from 0 to 0 , which requires a J-input of 0 , so we enter a 0 in box 0000 . With the PS $=001$ and an input of $x=0$, we must change the first bit of the state from a 1 to a 0 , which requires a J-input of 1 . If

To Change		Input	
From	To	J	K
0	0	0	d
0	1	1	d
1	0	d	1
1	1	d	0

FIG. 33-TRUTH TABLE for parity circuit using J-K flip-flops.

$P_{3} x$	00	01	11	10
00	0	0	0	1
11	d	d	d	d
10	d	d	d	d

FIG. 34-KARNAUGH MAP for J-input of flipflop FF1.
data line, and must be synchronized so that the clock pulse occurs as close to the middle of the bit time as possible. The clock pulse must not begin until all gates have had time to settle after the new input bit has arrived and must end before the next data bit arrives.

We have now gone through the basics of logic design, and you should be able to design most common types of circuits using methods that will produce a more efficient circuit.

R-E

FIG. 1-DISCRETE 4-CHANNEL BROADCAST syetem uees four transmiseion channols. To maintain compatibility with exieting atereo and mono receivers, the four channele are encoded at the tranemitter end decoded at the receiver.

4-Channel FM

With discrete and matrixed 4-channel tape and phono formats dormant, the fight for 4-channel programmming continues on the broadcasting front.

LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

IT HAS bEEN SOME TIME SINCE WE DIS. cussed quadriphonic sound; indeed, superficially at least, it would seem that the audio industry and consumers alike have all but turned their backs on 4-channel sound. Very few, if any, 4-channel records are presently being released (although the number of available releases in all formats-matrix or discreteexceeds 1000), and hi-fi component manufacturers have all but abandoned production of any quadriphonic reproducing equipment.

There is one aspect of the 4 -channel scene that is very much alive-4-channel FM broadcasting. Back in March, 1972, when interest in quadriphonics was at its height, the Consumer Electronics Group of the Electronics Industry Association (EIA) voted to sponsor the organization of a National Quadriphonic Radio Committee (NQRC) whose objective was to report to the Federal Communications Commission its final technical conclusions regarding 4-channel FM sound broadcast standards. The FCC endorsed the study project and the NQRC plunged into its complex task of analyzing, evaluating and, finally, field-testing five proposed systems for discrete 4-channel FM broadcasting.

The work continued until late 1975 and, in November of that year, the final NQRC report was submitted to the FCC. Nearly two years later, on July 6, 1977, the FCC released its formal Notice of Inquiry (Docket 21310) on quadriphonic FM radio broadcasting, in which all interested parties were asked to comment
on whether the FCC should adopt standards for 4 -channel broadcasting. The Commission said that the purpose of the inquiry was to determine whether there was sufficient public and industry interest to warrant the adoption of standards and, if so, to assist the FCC in formulating such standards. The comment period, originally scheduled to end on September 15, 1977, was extended to December 15, 1977; and, from all accounts, more than a thousand letters were received by the time the comment period ended.

Several other events occurred almost simultaneously, two of which tended to complicate the issue. First, coincident with issuing the 4-Channel FM Notice of Inquiry, the FCC also issued a second Notice of. Inquiry (Docket 21313) regarding AM stereophonic broadcasting. A growing interest has been shown on the part of AM broadcast stations for this type of service, largely because of the competitive advantage gained by FM stations over the last decade. This advantage has been attributed by many to the fact that $\mathbf{F M}$ stations can transmit stereo program material while AM stations must transmit monophonic programs. Many industry experts feel that the FCC is more likely to pay attention to AM stereo broadcasting before it ever considers the problem of 4-channel FM transmission.

The second event that occurred was sponsored by the FCC itself. The Commission was concerned that the NQRC had only included one matrix system in
its report, and had not involved subjective listening evaluations of either the QS matrix system (developed by Sansui Corporation of Japan) or the SQ matrix system (originated by CBS in the U.S.). As they pointed out, since the work of the NQRC was completed, much-improved logic and phase cancellation decoders were designed and developed for the QSand SQ-systems. As a result, the FCC felt that available test data comparing localization and musical preference for 4 -4-4 (discrete), 4-3-4 (semidiscrete, using three channels of transmission to broadcast four channels of information) and 4-2-4 (matrix-encoded using two channels for transmission) quadriphonic systems is not complete with respect to presently available technology.

The FCC Lab decided to conduct its own listening tests, including the best implementation (based upon the listener's choice) of the QS format, SQ format and the British-sponsored BBC Matrix H systems, as well as the discrete 4 -channel tapes. The results of these tests were issued by the FCC in August, 1977. In addition to judging quadriphonic performance, listeners were asked to evaluate the compatibility of the different for-mats-that is, how well the music was reproduced stereophonically and even monophonically-an important criterion in any decision affecting quadriphonic broadcasting standards.

The results of these tests have been interpreted by different listeners in different ways. Since, on an overall basis, listeners agreed that the direct 4-channel
tape reproduction was the best, supporters of discrete 4 -channel broadcasting are claiming a victory. Since, of all matrix systems tested, the CBS-developed SQ system (with its sophisticated logic decoder) was favored, CBS has also claimed a victory and has, in fact, suggested that the FCC not only refrain from enacting discrete 4 -channel broadcast standards but actually set quadriphonic standards specifically endorsing the SQ format as the only matrix suitable for broadcast over FM channels.
Before we examine the logic (excuse the pun) of this argument, let's briefly review how the five proposed discrete 4 channel FM systems operate. All five systems are very similar. In fact, insofar as monophonic and stereophonic performance on existing FM tuners is concerned, the systems are identical. This similarity is a basic requirement of any quadriphonic system, since they must present uncompromised FM stereophonic and FM monophonic performance. Where the systems differ slightly is in their treatment of SCA (Subsidiary Communications Authorization) services, such as background music channels now broadcast as piggy-back subcarriers on FM stations on a private, point-to-point subscription basis, which, according to the FCC, should be provided for in any new standards to be proposed.

Monophonic compatibility

Assume that there are four inputs: Left-front (L_{f}), Right-front (R_{f}), Leftback (L_{b}) and Right-back (R_{b}). To preserve monophonic compatibility, the monophonic channel or baseband of the FM transmission (the region from 30 Hz to 15 kHz) must contain an equal summation of these four input signals designated as $M=L_{r}+R_{r}+L_{b}+R_{b}$. For stereo compatibility, the four signals are grouped as follows: $L_{1}=L_{r}+L_{b}$ and R_{t} $=R_{f}+R_{b}$. The values of L_{1} and R_{t} correspond to the left-total and righttotal signals that should be heard in stereo. Just as in stereophonic broadcasting, they are also assigned to a difference subcarrier channel, as follows: $Y=\left(L_{f}\right.$ $\left.+L_{b}\right)-\left(R_{f}+R_{b}\right)$. When these two signals are received by a standard stereophonic tuner or receiver, they are decoded as follows:

$$
\begin{aligned}
L_{t} & =\frac{M+Y}{2}=L_{f}+L_{b} \\
R_{t} & =\frac{M-Y}{2}=R_{f}+R_{b}
\end{aligned}
$$

Because of quadriphonic playback requirements, it is clear that two more transmission channels are needed, since, to solve for four unknowns, you must have four equations. The two additional transmission channels are defined as X and U, in which:
$X=\left(L_{f}+R_{f}\right)-\left(L_{b}+R_{b}\right)$ and

FIG. 2-FREQUENCY SPECTRUM shows how the two additional channels are added to an FM broadcast. This technique is used in the RCA and Quadracast discrete sybtems.

FIG. 3-FREQUENCY SPECTRUM of the GE broadcast aytem. The X transmiasion channel is added at at vestigial aideband.
$\mathrm{U}=\left(\mathrm{L}_{\mathrm{f}}+\mathrm{R}_{\mathrm{b}}\right)-\left(\mathrm{R}_{\mathrm{f}}+\mathrm{L}_{\mathrm{b}}\right)$.
We will show how all four signals can be accommodated in a single FM transmission. But, first, let's examine what the 4 channel decoder must do after it has recovered signals $\mathrm{M}, \mathrm{Y}, \mathrm{X}$ and U to solve for the four original, discrete signals:

$$
\begin{aligned}
& L_{\mathrm{f}}=\frac{M+Y+X+U}{4} \\
& R_{\mathrm{f}}=\frac{M-Y+X-U}{4} \\
& L_{\mathrm{b}}=\frac{M+Y-X-U}{4} \\
& R_{b}=\frac{M-Y-X+U}{4}
\end{aligned}
$$

Figure 1 shows the principle of discrete 4 -channel FM broadcasting. The question is where to assign the extra transmission channels X and U , and how to allow for continued SCA transmission. Figure 2 shows the scheme used by two of the five proponents, Quadracast System, Inc., and RCA. The newly required X channel is centered at a frequency of 38 kHz (similar to the older Y channel required for stereo), but it is in quadrature with the Y channel. This means that the X channel will not be detected by a stereophonic receiver but by a properly designed 4 -channel receiver having a synchronous detector designed for that quadrature signal. The U channel is transmitted via a new subcarrier signal centered at 76 kHz (four times the 19 kHz pilot-carrier frequency). The QSI
format further proposes that the SCA channel be moved from its present frequency of 67 kHz to 95 kHz and that it be band-limited in order not to interfere with adjacent broadcast channels.
RCA proposes an additional scheme that allows the SCA to remain where it presently is. This is the so-called 4-3-4 or semidiscrete system mentioned earlier in this article. This system uses only three transmission channels (the U channel is dropped from its $76-\mathrm{kHz}$ position in the spectrum), leaving room for the SCA channel at a frequency of 67 kHz . In this system, the recovered four channels include the following original signal components:

$$
\begin{aligned}
& L_{\mathrm{r}}=\mathrm{L}_{\mathrm{r}}+1 / 3 \mathrm{~L}_{\mathrm{b}}+1 / 3 \mathrm{R}_{\mathrm{r}}-1 / 3 \mathrm{R}_{\mathrm{b}} \\
& \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{r}}+1 / 3 \mathrm{~L}_{\mathrm{r}}+1 / 3 R_{\mathrm{b}}-1 / 3 \mathrm{~L}_{\mathrm{b}} \\
& \mathrm{~L}_{\mathrm{b}}=\mathrm{L}_{\mathrm{b}}+1 / 3 \mathrm{~L}_{\mathrm{r}}+1 / 3 R_{\mathrm{b}}-1 / 3 R_{\mathrm{r}} \\
& R_{\mathrm{b}}=\mathrm{R}_{\mathrm{b}}+1 / 3 \mathrm{~L}_{\mathrm{b}}+1 / 3 \mathrm{R}_{\mathrm{f}}-1 / 3 \mathrm{~L}_{\mathrm{r}}
\end{aligned}
$$

The last three components in each equation are crosstalk terms, but overall separation from one channel to any other channel is still just a bit less than 10 dB . This RCA option would be strictly up to the station owner (who wants to have an SCA subcarrier signal at 67 kHz), and receivers designed for regular 4-4-4 operation would require no modifications for the 4-3-4 system.

A nother system, using the same baseband signals as those shown in Fig. 2, is the Cooper-UMX system. This scheme differs from the foregoing explanation in that it uses phasor encoding of the four input signals to create three different playback modes: A 4-2-4 matrix (similar to the QS- or SQ-matrix encoding), a 4 -

3-4 playback scheme similar to the RCA optional system, and, finally, a full 4-4-4 discrete mode.

Frequency assignments for the General Electric system are shown in Fig. 3. The fourth X channel is transmitted as a set of vestigial lower sideband signals at a frequency of 76 kHz . This allows an SCA channel at a $95-\mathrm{kHz}$ frequency with a greater guard band between it and the adjacent X channel subcarrier as compared with the RCA option.

Finally, Fig. 4 shows the Zenith pro-
ers believe that this format should be approved as a standard at this time and that no discrete systems should be approved. What would this mean to the listening public? Admittedly, if a listener equipped his or her system with a sophisticated (and expensive) logic decoder such as that used in the FCC tests, results would approximate (but still not equal) those obtained with discrete 4-channel program material. However, if a simple matrix decoder were used, results would be far poorer than those obtainable from

FIG. 4-ZENITH PROPOSAL places the SCA subcarrier at 67 kHz . This system also incorporates a noise reduction scheme.
posal. The fourth transmission channel, the X channel, is placed at a $95-\mathrm{kHz}$ frequency and uses lower sideband signals only, allowing for SCA transmission to take place at its currently assigned 67 kHz frequency. The Zenith system also uses an encode/decode noise-reduction system, similar to the Dolby system, in order to maintain a lower overall noise level; this helps to counter in part the signal-to-noise degradation that occurs whenever the spectrum width of a transmission system is increased.

Argument against a matrix standard

Proponents of the matrix system that was favored by the FCC's panel of listen-
discrete program sources. In fact, some stations have been broadcasting matrixencoded program material (in both QSand SQ-formats) for some time and public reaction has been anything but enthusiastic. Locking into a matrix system as an FM standard at this time would halt further attempts to improve the matrix idea or to develop other (and perhaps better) matrix formats.

However, suppose the FCC selects one of the five discrete systems as a standard and suppose, further, that matrix programming improves substantially. In that event, there would be nothing to prevent a station from purchasing one (and only one) super-matrix-decoder-even a very
expensive one-and first decoding the matrix-encoded source material into four discrete channels before it is transmitted. The home listener would not have reproduction quality determined by his or her financial limitations, since optimum decoding would take place at the station before transmission. This approach would keep the doors open for further improvements in matrix technology and would have many other advantages as well. FM stations could then transmit any and all formats of quadriphonic program material (instead of being limited to one specific matrix approach). Four-channel taped productions could be freely interchanged from one station to another, since no encoders or decoders would be required. Discrete broadcasts have proved to be fully compatible with all existing monophonic or stereophonic receivers. Furthermore, the matrix system still imposes certain artistic limitations upon record producers. A vocalist, for example, cannot be positioned at center-rear in the SQ system if full stereophonic and monophonic compatibility is to be maintained. Such limitations, although of relatively minor significance, are not imposed with any discrete system.

By the time you read this, the dates for filing comments and reply comments with the FCC will have passed. Nevertheless, we suspect that the FCC is not going to make any hasty decisions regarding 4channel broadcasting. It does seem that by choosing a discrete broadcast standard, the FCC would let the final decision as to which kinds of quadriphonic records sound better remain where it belongs-with the public. A decision in favor of any matrix system as a standard would, we believe, be tantamount to taking away that freedom of choice from the music listeners of this country. R-E

Mobile radio market to double during 1980-1986

The Mobile Radio Market, a study conducted by the market research firm of Frost \& Sullivan. Inc., predicts that the mobile radio equipment market will continue to expand and even double over the next 10 years, with a projected annual compounded growth rate during the period 1980-1986.

Among the factors involved in this projected growth rate are such innovations as 1) the use of digital instead of voice-generated messages in police mobile radios; 2) the increased use of voice scramblers; 3) a new consumer market in FM scanners monitoring police, fire and other public service departments; 4) the cellular approach to using the $800-900-\mathrm{MHz}$ frequency band on mobile radios; and 5) the use of microprocessors and other LSI circuits in CB radios.

Despite the fact that land mobile radio equipment will be affected by declining unit prices, CB radio is expected to make a strong comeback in the vehicle market. Detroit car manufacturers plan to incorporate many more CB/AM-FM/tape deck
combinations into a single passenger car unit.

The cellular concept to using the $800-900-\mathrm{MHz}$ frequency band on mobile radios is "likely to be incorporated in leading U.S. cities," according to the study. Companies presently developing the cellular approach are the Bell System, American Radio-Telephone Service, and NTT in Japan.

More information can be obtained from Frost \& Sullivan, Inc., Customer Service, 106 Fulton Street, New York, NY 10038.

Motorola's microwave system is an alternative to land lines

Motorola, Inc., has developed a microwave communications system called the Point-to-Point Wireless Visual Communications System that is used with CCTV cameras, lenses and other equipment to transmit a closed-circuit video image wherever installation of land lines is difficult or impossible.

Motorola indicates that the VCS would enable video transmissions to be made up to 10 miles in line of sight just using a single transmitter and receiver. Another advan-
tage cited for the VCS is that users can change the location of transmission or reception sites. Further information can be obtained from Motorola Literature Distribution Center, 2122 North Palmer Dr., Schaumburg, IL 60195.

IHF to set technical standards for turntable/cassette/speaker criteria

In answer to a growing need among highfidelity manufacturers for acceptable industry measurement standards in differentiating between high- and low-fidelity products, the Institute of High Fidelity (IHF) Board of Directors has organized standards committees to evaluate and discuss criteria for turntables, cassette recorders and speakers.

The first meeting of the IHF Turntable Standards Committee, chaired by Martin Fine of B.I.C./Avnet, set its goals for achieving its industry standard: It would attempt to 1) develop a glossary of technical terms; 2) separate these terms into primary and secondary groups; 3) develop measurement standards for both groups; and 4) devise a set of standard test conditions.

R-E

Radio-Electronics Tests Tandberg TDA-20A Open-Reel Tape Deck

CIRCLE 112 ON FREE INFORMATION CARD

LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

TANDBERG OF AMERICA, INC. (LABRIOLA COURT. Armonk, NY 10505) has developed an openreel tape deck, the model TD-20.A, that incorporates several electronic and mechanical innovations. The tape deck incorporates a new actilinear recording system that offers up to $20-\mathrm{dB}$ improvement in headroom over most conventional systems. In addition, the tapetransport system uses four separate motors, including a motor for the pinch roller and tape guides.

Figure 1 shows that the model TD-20A can handle $101 / 2$-inch tape reels. On the front panel, three rectangular pushbuttons to the left below the feed reel handle power, select low or high speed and select the correct tape tension for large or small reels. Below these pushbuttons are rotary left-and right-channel outputlevel controls, while below them are four toggle switches. The left pair of toggle switches selects playback mode (left channel only stereo or right channel only), and source or tape monitoring. The right-hand pair of toggle switches activates the select-synchronization feature (in multitrack recordings the record head acts as a monitoring playback head when a second track is added in sync with the first recorded track). These same switches also handle the edit-cue function that enables you to hear recorded results as you fast-wind the tape for cueing and editing.

A pair of brightly illuminated VU meters, centered below the tape head assembly, are calibrated from -24 dB to +3 dB . However, it must be emphasized that the $0-\mathrm{dB}$ level on these meters corresponds to a $+9-\mathrm{dB}$ level referenced to the standard NAB level of 185 nanowebers. These meters read peak signals, and are positioned in the signal path beyond the record-equalization circuits so that readings (regardless of the signal frequency being recorded) are directly related to the levels of
magnetization applied to the tape.
Below the meters are a headphone output jack and two microphone input jacks. Below the takeup reel is a four-digit counter, while lower down, in the light-colored section of the panel, are five rectangular tape-transport pushbuttons: RECORD. REWIND, STOP. WIND (fastforward) and PLAY. For the tape deck to be in the record mode, you must turn on separate left- and right-channel selector switches located on the bottom right of the panel. When either of these switches is engaged, a standby light above the RECORD switch illuminates, and touching the RECORD pushbutton starts the tape and places the tape deck in the record mode. This arrangement permits so-called "flying start" recording-inserting newly recorded signals on cue, as the machine plays back previously recorded program material.

When the STOP/WIND (fast-forward) pushbuttons are pressed simultaneously, the logiccontrol transport system completely frees both reets, permitting you to hand-cue the reels to a precise syllable or note in a recording. All transport modes are indicated by LED's above each transport pushbutton.

Below the transport-control pushbuttons are two pairs of input-level controls; the first pair of controls handles Line 2 or microphone input signals, and the second pair adjusts the level of Line I inputs. This provides full mixing capability for up to four line inputs, or two line inputs plus two microphone inputs. Once these four controls are properly adjusted, a master level control to the right of the Line 1 controls takes care of the overall level. A socket for connecting an optional remote-control attachment is located above this master level control. A two-position toggle switch at the lower right of the front panel provides selectable $25-\mathrm{dB}$ attenuation for the microphone inputs, in case high-output microphones are used that might necessitate inconvenient and inaccurate settings of the separate microphone record level controls.

MANUFACTURER'S PUBLISHED SPECIFICATIONS:

Tape Speeds: $7^{1 / 2} \mathrm{ips}$ and $3^{3} / 4 \mathrm{ips}$. Wow and Flutter: 0.06% at $7^{1 / 2} \mathrm{ips} ; 0.10 \%$ at $3^{3} / 4 \mathrm{ips}$, WRMS. Frequency Response (Maxell UD-XL Tape or Equivalent): 20 Hz to 22.000 $\mathrm{Hz}, \pm 2.0 \mathrm{~dB}$ at $7 \frac{1}{2} \mathrm{ips} ; 20 \mathrm{~Hz}$ to $18,000 \mathrm{~Hz}, \pm 2.0 \mathrm{~dB}$ at $3 \sqrt{3} / \mathrm{ips}$. S/N Ratio (AWeighted): 66 dB at $71 / 2 \mathrm{ips}$. Crosstalk: 60 dB , mono; 50 dB , stereo. Harmonic Distortion: for 0 dB at $71 / 2 \mathrm{ips}, 2.0 \%$. Input Sensitivity: mike, 0.2 mV ; line, 50 mV . Output Level: line, 1.5 volts; headphone, 5 mW into 8 -ohm loads. Erase Coefficient: better than 70 dB . Suggested Retail Price: $\$ 1300$; optional wireless PCM infrared remotecontrol unit, approximately $\$ 200$.
exceeded 1.0 dB above or below the $1-\mathrm{kHz}$ reference level.

Perhaps even more amazing was the frequency response measured for the slower 3% ips speed, also using the same grade of tape. (See Fig. 3.) In this case, the $-2-\mathrm{dB}$ points were observed at 10 Hz and a superaudible 24 kHz . In separate tests, we determined just how "hard" we could record a high-frequency signal onto this tape sample. Increasing the midfrequency record level for maximum output (the point where further increases in input level do not produce additional linear increases in recorded playback level), we noted that at the higher $71 / 2$-ips speed we could record a 10 kHz signal to a level only around $6.5-\mathrm{dB}$ lower than that recorded at mid-frequencies before obtaining maximum output level.

For the slower $31 / 4 \mathrm{ips}$ speed, the maximum recording-output level obtainable at 10 kHz was approximately 14.0 dB below the midfrequency maximum output level. These values are considerably better than those usually obtained when this tape is used on other decks, and underline the advantages of Tandberg's new recording electronics.

The Fig. 4 chart (supplied by the manufacturer) shows the practical reel-to-reel record-

ing benefits provided by Tandberg's actilinear recording system, and also indicates the added dynamic range available at the slow $31 / 4-\mathrm{ips}$ speed at all frequencies from 333 Hz up. In Fig. 4, the $0-\mathrm{dB}$ reference level is taken as 250 nanowebers per millimaxwell. or approximately 2.6 dB above the standard NAB reference record level. Results of our lab measurements are shown in Table 1.

Summary

Table 2 summarizes our overall product evaluation together with comments.

We spent a great deal of time with the model TD-20A on the lab test bench and used it to record a variety of program material. Playback reproduction is excellent. and it is hard to imagine that any features have been left out.

With so many companies concentrating solely on improved stereo cassette decks these days, it is refreshing to find a manufacturer paying attention to the needs of those who still prefer and need a top quality open-reel tape deck.

R-E

TABLE 1

RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: Tandberg of America, Inc.
Model: TO-20A
OPEN-REEL TAPE DECK MEASUREMENTS

FREQUENCY RESPONSE MEASUREMENTS

STANDARD TAPE

Frequency response at $15 \mathrm{ips}(\mathrm{Hz}-\mathrm{kHz} \pm \mathrm{dB})$
Frequency response at $71 / 2 \mathrm{ips}(\mathrm{Hz}-\mathrm{kHz} \pm \mathrm{dB})$
Frequency response at $3 \% \mathrm{ips}(\mathrm{Hz}-\mathrm{kHz} \pm \mathrm{dB})$

CRO TAPE

Frequency response at $15 \mathrm{ips}(\mathrm{Hz}-\mathrm{kHz} \pm \mathrm{dB})$
Frequency response at $71 / 2 \mathrm{ips}(\mathrm{Hz}-\mathrm{kHz}, \pm \mathrm{dB})$
Frequency response at $3 \% \mathrm{ips}(\mathrm{Hz}-\mathrm{kHz} \pm \mathrm{dB})$
DISTORTION MEASUREMENTS (RECORD/PLAY)
Harmonic distortion at - 10 VU (highest speed) (\%)
Harmonic distortion at -3 VU (highest speed) (\%)
Harmonic distortion at 0 VU (highest speed) (\%)
Harmonic distortion at +3 VU (highest speed) (\%)
SIGNAL-TO-NOISE RATIO MEASUREMENTS
Best S/N ratio, standard tape (dB)
Best S/N ratio, CRO_{2} tape (dB)
MECHANICAL PERFORMANCE MEASUREMENTS
Wow and flutter at $15 \mathrm{ips}(\%$ WRMS)
Wow and flutter at $71 / 2 \mathrm{ips}(\%$ WRMS)
Wow and flutter at $3 \% \mathrm{ips}$ (\% WRMS)
Rewind time, 2500-foot tape (seconds)
COMPONENT MATCHING CHARACTERISTICS
Microphone input sensitivity (mV)
Line input sensitivity (mV)
Line output level (mV)
Phone output level (mV or mW)
Bias frequency ($\mathbf{k H z}$)
TRANSPORT MECHANISM EVALUATION
Action of transport controls
Tape guidance system
Absence of mechanical nolse
Tape head accessibility
Construction and internal layout
Evaluation of extra features, if any
overall tape deck performance rating

Superb
R-E Evaluation
Measurements

N/A
$15-32,-2.0$
$10-24,-2.0$
Superb
Superb

N/A
N/A
N/A
(See Figs. 2, 3)

N/A	
N/A	
1.5	Good (See text)
3.0	Good (See text)
66	Excellent
N/A	
N/A	
0.012	Superb
0.04	Superb
70	Excellent
0.2	
42	
1400	
$5.0 \mathrm{~mW} / 8$ ohms 125 kHz	

125 kHz

Excellent
Superb
Good
Excellent
Superb
Superb

OVERALL PRODUCT ANALYSIS

Retail price

Price category
Price/performance ratio
Styling and appear ance Sound quality Mechanical performance
$\$ 1300$
High
Excellent
Superb
Superb
Excéllent
Comments: There are so many new features in this Tandberg open-reel machine that a brief summary can hardly cover all points. Perhaps the most important feature is its capability of accepting new tapes (such as metal-particle tape) that may soon be available for open-reel decks. The bias adjustments on the front panel have sufficlent range to handle the higher bias requirements of such future high-coercivity tapes. Additionally, the system's record electronics (called actilinear recording) provides more than enough recording headroom to handie those future tapes.

One of the most welcome new features is the freewheeling tape mode which, with the aid of the EDIT-cue switch, permits about the easiest and quickest tape editing we have ever had the pleasure of using. When the stop and fast-forward pushbuttons are touched simultaneously, both feed and takeup reels become completely freewheeling.

Tape is handled about as gently as on any machine (home or professional) we have ever tested. The four-motor drive system produces precise and unwavering tape transport, as evidenced by the excellent wow-and-flutter values shown in Table 1 for both its higher and lower tape speeds.

We have always appreciated Tandberg's post-equalization metering system that informs the user what signal intensities are actually reaching the tape. High frequencles, which are subjected to more boost by the equalization constants, show up as higher meter indications on this well-calibrated metering system, which is readable with pinpoint accuracy to better than one-half of 1 dB .
Sound reproduction via tape, even at the lower speed, is virtually indistinguishable from the original program source and that is the ultimate test for any cassette or open-reel tape deck. Although the Tandberg model TD-20A is fairly expensive, it is worth every penny of lis price.

Pioneer Model TVX-9500

TV Audio Tuner

LEN FELDMAN CONTRIBUTING HI-FI EDITOR

CONSUMER ELECTRONICS EXPERTS HAVE LONG been predicting the imminent marriage between audio and video. The introduction of the model TVX-9500 TV Audio Tuner by U.S. Pioneer Electronics (750 Oxford Drive, Moonachie, NJ 07074) may well signal the beginning of that union. This tuner's appearance on the market is particularly timely, in view of some behind-the-scenes technology that has been taking place recently in TV broadcasting.

After many years of relaying the audio portions of a TV program from studio to transmitter via standard telephone lines (rented from A.T.\& T. or other phone companies), a method of diplexing audio signals along with the video signals on the wideband coaxial cables is now being used. This new method permits TV broadcasters to transmit a fullfidelity audio signal whose response is identical to that of FM radio broadcasts. Thus, the audio portion of TV programs (long considered an industry "stepchild") is beginning to take a turn for the better.

For some time, Public Broadcasting Service (which is noncommercial educational television) has been using satellite communications so that in this area, too, high-quality audio transmission has been possible. Still, as we all know too well, the 3 -inch-diameter speakers in most TV sets, driven by minimal-quality onestage mini-wattage amplifiers, severely limit audio quality. Attempting to bypass the poorquality TV audio is loaded with problems (and dangerous, since most sets have no transformer isolation between power line and chassis).

Figure I shows the model TVX-9500, which is really just a good-quality FM tuner, whose range covers TV audio Channels 2 through 13 and UHF Channels 14 through 83.

The slim gold-anodized front panel contains a power on/off switch on the left. The remainder of the panel contains 12 slim pushbuttons labeled with channel numbers 2 to 13, above
which are tiny indicator lights. To receive the audio frequencies from UHF TV channels, the UHF pushbutton is depressed, and a continuously variable tuning knob indicates approximate channel numbers in an adjacent window. A green LED indicator lights up when optimum tuning has been achieved.

Although automatic frequency control (AFC) locks desired sound-carrier frequencies for each channel, there are individual screwdriver VHF channel controls on the underside of the unit, along with an AFC defeat switch, for additional tuning adjustment, if necessary. Defeating the AFC also defeats the built-in muting circuit that normally delays sound activation for about two seconds after a given channel button is depressed.

Figure 2 shows the rear-panel layout, as well as how to connect the model TVX-9500 to a typical high-fidelity component system. Although two output jacks are provided, the TV

CIRCLE 113 ON FREE INFORMATION CARD
audio signals recovered are, of course, not stereophonic. But connecting the unit to both the left-and right-channel auxiliary or tuner input jacks on your amplifier or receiver enables sound to be heard from both stereo speakers. If a single output connection is made, the same results are obtained by switching the amplifier or receiver mode selector to monophonic. Separate antenna screw-terminals are provided for connecting an outdoor VHF antenna and an outdoor UHF antenna, and are

MANUFACTURER'S PUBLISHED SPECIFICATIONS:

50-dB Quieting: $22 \mu \mathrm{~V}$ (32 dBf). S/N Ratio at $85 \mathrm{dBf}: 65 \mathrm{~dB}$. THD at $65 \mathrm{dBf}: 0.07 \%$ at 100 Hz and $1 \mathrm{kHz} ; 0.2 \%$ at 6 kHz . Capture Ratio: 1.0 dB . Alternate Channel Selectivity: 25 dB . Frequency Response: 50 Hz to $10 \mathrm{kHz},+0.5,-1.0 \mathrm{~dB}$. Spurious Response: VHF, 50 dB ; UHF, 40 dB . Image Rejection: VHF, 50 dB ; UHF, 40 dB . IF Rejection: VHF, 50 dB ; UHF, 55 dB . AM Suppression: 50 dB . Muting Threshold: $28 \mu \mathrm{~V}(34,1 \mathrm{dBf})$, Output Level: 400 mV (for a $25-\mathrm{kHz}$ deviation). Power Requirements: 120 volts, 60 Hz , 12 watts. Dimensions: $16 \% / 16 \mathrm{~W} \times 37 / 4 \mathrm{H} \times 13^{1 / 4}$ inches D. Weight: $13 \mathrm{lbs}, 7 \mathrm{oz}$. Suggested Retail Value: $\$ 250$.
intended for a 300 -ohm twin-lead transmission line. A 75 -ohm unbalanced line terminal is provided for the VHF antenna only, if you wish to use a coaxial line input from that antenna.

Test procedures and results

As noted, in the model TVX-9500. TV audio is broadcast in FM. While standard 75$\mu \mathrm{s}$ pre-emphasis and de-emphasis are used, the maximum allowable modulation is only onethird as great as that used in FM radio broadcasting, or $\pm 25 \mathrm{kHz}$. Compared with an FM
tuner, therefore, there is a built-in penalty of $10-\mathrm{dB}$ insofar as signal-to-noise ratio is concerned. On the other hand, the bandwidth requirements of the IF stages and FM detector stages are not as strict, and you could expect very low audio distortion

In all other respects, the measurements shown in Table 1 were similar to those of any high-quality FM tuner, although, of course, stereophonic performance measurements were not applicable. We did however measure sig-nal-to-noise ratio at 85 dBf instead of the usual 65 dBf . An $85-\mathrm{dBf}$ value corresponds to approximately $10,000 \mu \mathrm{~V}$ of signal strength, while 65 dBf (generally used when measuring ultimate FM tuner and receiver sensitivity) is more nearly $1000 \mu \mathrm{~V}$ across a 300 -ohm input. In addition to correlating our results with those in the manufacturer's specifications, we justified the higher signal strength because TV transmitter power is ordinarily much greater than the power which FM station broadcasters are permitted to use; therefore, we can assume that if a good outdoor TV antenna is hooked up to the model TVX-9500, signal reception will also be stronger than that for FM tuners and receivers
The Pioneer "alternate channel selectivity" specification was puzzling since this could not refer to an "alternate channel" 12 MHz away from the desired signal (or the spread between the audio carrier of Channel 7 and Channel 9. for example)! We concluded that selectivity was cited as it would be for an FM luner, and our measurements confirmed this.

Considering the stronger TV audio transmission signals, the Pioneer model TVX-9500 performed remarkably well in sensitivity. 50 dB quieting and, most particularly, in S / N ratio and distortion values. To obtain these low distortion figures, it was necessary to trim the channel tuning slightly. Our measurements were conducted with the tuner set for Channel 6. The audio carrier for this channel is at 87.75 MHz -close enough to the edge of the standard FM band for us to be able to tune our FM signal generator "on frequency." Listening tests, however, were conducted for all available TV channels in our viewing area and we could not audibly detect any audio distortion for any channel (aside from the obvious deficiencies in the fidelity of the program sources broadcast at that time).

Summary

Our overall product analysis of the model TVX-9500 TV Audio Tuner is given in Table 2, along with our summary comments.

Frequency response was fairly flat out to 10 kHz , but was down about 5 dB at 15 kHz , the theoretical limit of TV audio broadcast capability. Still, it is amazing what TV sound can be like when it is flat even out to $10,000 \mathrm{~Hz}$ and is free of the distortion normally heard when such sound is reproduced by standard TV circuitry. If all TV broadcasters would pay some attention to the quality of audio they transmit, products such as the model TVX9500 should do very well. And, who knows, perhaps the FCC may now reconsider the possibility of sterco-audio transmission on TV as well.

TABLE 1

RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: U.S. Pioneer Electronics
Model: TVX-9500
FM PERFORMANCE MEASUREMENTS
SENSITIVITY, NOISE AND FREEDOM FROM INTERFERENCE
IHF sensitivity, mono: ($\mu \mathrm{V}$) (dBf)
Sensitlvity, stereo ($\mu \mathrm{V}$)
$50-\mathrm{dB}$ quieting signal, mono ($\mu \mathrm{V}$)
$50-\mathrm{dB}$ quieting signal, stereo ($\mu \mathrm{V}$)
Maximum S / N ratio, mono (dB)
Maximum S / N ratio, stereo (dB)
Capture ratio (dB)
AM suppression (dB)
Image rejection (dB)
IF rejection (dB)
Spurious rejection (dB)
Alternate channel selectivity (dB)
FIDELITY AND DISTORTION
MEASUREMENTS
Frequency response, 50 Hz to 15 kHz ($\pm \mathrm{dB}$)
Harmonic distortion, 1 kHz , mono (\%)
Harmonic distortion, 1 kHz , stereo (\%)
Harmonic distortion, 100 Hz , mono (\%)
Harmonic distortion, 100 Hz , stereo (\%)
Harmonic distortion, 6 kHz , mono (\%)
Harmonic disiortion, 6 kHz , stereo (\%)
Distortion at $50-\mathrm{dB}$ quieting, mono (\%)
Distortion at $50-\mathrm{dB}$ quieting, stereo (\%)
STEREO PERFORMANCE
MEASUREMENTS
Stereo threshold ($\mu \mathrm{V}$)
Separation, 1 kHz (dB)
Separation, 100 Hz (dB)
Separation, 10 kHz (dB)
MISCELLANEOUS MEASUREMENTS
Muting threshold ($\mu \mathrm{V}$) (dBf)
Dial calibration accuracy ($\pm \mathrm{kHz}$ at MHz)
EVALUATION OF CONTROLS,
DESIGN, CONSTRUCTION
Control layout

R-E Measurement 2.5 (13.2)	R-E Evaluation Good
N/A	
8.0 (23.3)	Fair
N/A	
75	Excelient
N/A	
1.2	Excellent
50	Fair
52 (VHF)	Good
50 (VHF)	Fair
55 (VHF)	Fair
25	See text
$50-10, \pm 2.0$	Fair
0.065	Superb
N/A	
0.17	Good
N/A	
0.21	Excellent
N/A	
0.25	Excellent
N/A	

30 (34.7)
See text
Good Excellent

Ease of tuning
Excellent
Accuracy of meters or other tuning aids
Usefulness of other controls
Construction and internal layout
Ease of servicing
Excellent

Evaluation of extra features, if any
OVERALL FM PERFORMANCE RATING Excellent N/A Excellent Excellent Good Good

TABLE 2
RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: U.S. Pioneer Electronics
Model: TVX-9500
OVERALL PRODUCT ANALYSIS

Retail price	$\$ 250$
Price category	Medium
Price/performance ratio	Good
Styling and appearance	Excellent
Sound quality	Excellent
Mechanical performance	Very good

Comments: For the audiophile who has almost given up trying to find a TV receiver that contains a "high-fidelity" audio section, U.S. Pioneer's Innovative model TVX-9500 TV audio tuner will be weicome. However, two points must be kept in mind: First, when you hook up this unit to your hi-fl system, don't expect every TV channel to deliver the highquality audio delivered by your other hi-fi program sources. Much audio programming we listened to with the model TVX-9500 is stll of poor "telephone line" quality, even though the potential for full $15-\mathrm{kHz}$ frequency response exists. We particularly noted that the audio quality of many TV commercials is poor and voices are reproduced no better than from a low-cost AM table radio. Obviously, even the model TVX-9500 cannot add to fidelity that was never there originally.
Second, a good outdoor antenna should be used with this tuner. Although lower TV audio modulation levels are partly offset by the higher TV signal strengths (compared with those of FM radio stations), multpath distortion is a problem unless a correctly oriented antenna is used with the tuner. A totally separate antenna is preferable, but if you must use a "splitter" on your regular TV antenna even that will be better than using the indoor dipole supplied with the model TVX-9500. This is especially important since the unit's AM rejection ratio is not nearly as high as on hi-fi FM tuners. The best results were obtained from our commerclal-free Public Broadcasting Service station whose audio quality was exceptional.

E(MnTD TENㅔ
 NOM Card For The 1802

> Part 2-Add-on math board for an 1802-based microcomputer. Based on a number-crunching IC, this board speeds execution time, reduces software overhead and saves memory

L. STEVEN CHEAIRS

LAST MONTH WE LOOKED AT HOW THE NOM card reduces computer memory requirements and increases processing speed by eliminating number-crunching software routines. This month, we present final construction details.

Construction

The components used in this project are all readily available; assembly is straightforward; and the circuit can be wire-wrapped or built on a PC card.

Use a double-sided glass epoxy circuit board with 2-ounce copper foil (available from Questar). A heavy plate layer covers all runs, and the holes are plated-through. The card has gold-plated fingers and a solder mask. For those who wish to etch the circuit board themselves, the foil patterns are shown in Figs. 8 and 9.

In assembling the board, pay special attention to component orientation. Figure 10 shows the correct placement and orientation of all the components and Fig. 11 shows the PC board pinout and switch placement. First, install and solder all resistors, capacitors and diodes. Connect the +5 -volt and -15 -volt leads, (the -4 volts is derived from the -15 -volt source) and methodically test all powersupply pads for the proper voltages. If the power levels are OK, disconnect the power and install the IC's; if not, check for possible shorts or faulty components. No calibration is required.

Check-out and operation

Check-out and operation is theoretically very simple. First, enter the first number into the X-register. Follow this with the next number; all numbers enter the X -register. Execute a math operation,
such as an ADD. Enter and execute an OUT instruction. If the correct answer is obtained, then 90% of the test is complete.
and the only remaining functions to test are error and branch. If you did not receive the correct answer, check to see if

FIG. 8-PRINTED CIRCUIT PATTERN for the component-side of the NOM card.

FIG. 9-PRINTED CIRCUIT PATTERN for the foil-side of the NOM card.

all the DIP switches were closed; if so, then recheck component placement and orientation. If no mistake was made (and you have programmed the 1802 correctly), then a component failure has occurred. Use normal digital troubleshooting techniques to isolate and solve the problem.

Now, enter a branch instruction to see if the branch outline interrupts the 1802. If this works, proceed to the final test. Enter a zero into the X -register, then execute the $1 / X$ instruction. If an error occurs, you have completed the NOM interface; if not, check the error flipflop.

FIG. 10-COMPONENT PLACEMENT DIAGRAM shows where the parts go on the circuit board.

FIG. 11-PINOUT DIAGRAM shows where connections on the circuit board go.

The basic operation is outlined in the flowchart shown in Fig. 12. The user program first places the numbers in a FIFO table along with the required mathematical operations. Enter the first number into the X -register, then exchange the X - and Y -registers. Now, enter the next number into the X -register, then perform the desired operations. Enter the next number (if any) and perform the desired operations. Continue until all numbers and operations are completed. Execute an OUT instruction, store the digits into the user's FIFO table and return to the user program. The above description implies that the 1802 is tied up 100% of the time with the NOM, but actually a very small percentage of the 1802's time is spent with the NOM during these operations. The 1802 only moves data/instruction into (and out) of the NOM; most of the time it is used to perform mathematical calculations or to manipulate data inside the NOM. During this time the 1802 is free to perform other tasks.

Programming the NOM

The NOM has 70 instructions that can be classified into seven groups: Digit entry, move, math, clear, branch, input/ output, and mode control. Table 3 lists the mnemonics for these instructions and the associated binary code. (A detailed description of what each instruction does; including the mnemonic, octal op-code and execution time; can be obtained by sending a SASE with 28 postage to NOM Instructions, Radio-Electronics, 200 Park Ave. South, New York, NY 10003.-Editor)

The first class of instruction-digit entry-has 17 members. The stack is
pushed and the X -register is cleared when a digit, a decimal point, or a π is entered with an AIN, 0-9, DP, or PI instructions. After "initiation of number entry," the digit and future digits are entered into the X -mantissa. Any digits following the eighth mantissa digit are ignored, and any subsequent entry of digits or DP. EE. or CS

FIG. 12-TYPICAL OPERATION PROCEDURE for the 1802's interface program.
instructions do not cause initiation of number entry. Termination of the num-ber-entry mode occurs when any instruction is executed (except 0-9, DP, EE, CS, PI. aln, or halt). When termination occurs, two things happen. First, the number is normalized by adjusting the exponent and decimal point position. The decimal point is placed to the right of the first digit. Second, the next digit, π, or decimal point entered causes initiation of number entry. As you might expect, there is an

TABLE 3-Instruction Summary Table

14.1	$\mathrm{I}_{6} \mathrm{I}_{5} \rightarrow$	00	01	10	11
0000		0	TJC	INV	XEY
0001		1	TX $=0$	EN	EX
0010		2	TXLTO	TOGM	10X
0011		3	TXF	ROLL	SQ
0100		4	TERR	SIN(SIN ${ }^{-1}$)	SQRT
0101		5	JMP	$\operatorname{COS}\left(\mathrm{COS}^{-1}\right)$	LN
0110		6	OUT	TAN(TAN ${ }^{-1}$)	LOG
0111		7	IN	SF1	1/X
1000		8	SMDC	PF1	YX
1001		9	IBNZ	SF2	+ (M+)
1010		DP	DBNZ	PF2	$-(M-)$
1011		EE	XEM	ECLR	$\mathrm{x}(\mathrm{Mx})$
1100		CS	MS	RTD	/(M/)
1101		PI	MR	DTR	PRW1
1110		AIN	LSH	POP	PRW2
1111		HALT	RSH	MCLR	NOP

(Note: All 00 instructions do not terminate number entry)
exception to the number-entry initiation rule. The stack will not be pushed if the ENTER instruction occurred prior to the entered digit; the X-register, however, is still cleared and the new digit is entered into the X -register.

The in instruction is used to enter all digits of a number; it does not cause number-entry initiation. However, it does terminate this mode if the NOM is in that mode prior to the in instruction being executed. Thus, $0-9$, als and IN instructions can be mixed without performing an ENTER instruction before the in instruction. The in instruction always pushes the stack except if the previous instruction was an ENTER, thus allowing multiple in instructions to be executed without performing an ENTER between them.
Second, the move instruction group has eight parts: ROLL, POP, XEY. XEM, MS, MR. LSH, and RSH. The roll instruction simply rolls the stack $(\mathrm{X} \rightarrow \mathrm{T}, \mathrm{T} \rightarrow \mathrm{Z}, \mathrm{Z} \rightarrow \mathrm{Y}$, $\mathrm{Y} \rightarrow \mathrm{X}$). The POP instruction causes the following sequence: $\mathrm{Y} \rightarrow \mathrm{X}, \mathrm{Z} \rightarrow \mathrm{Y}, \mathrm{T} \rightarrow \mathrm{Z}$, $\mathrm{O} \rightarrow \mathrm{T}$. The XeY instruction exchanges the X - and Y -registers; while Xem exchanges the X - and M -registers; the ms instruction is memory-store ($\mathrm{X} \square \mathrm{M}$); MR is memory-recall ($\mathrm{M} \bullet \mathrm{X}$); and LSH and RSH are shift mantissa instructions.

Third, the math group is composed of 24 instructions. As mentioned earlier, this instruction set is available from Ra-dio-Electronics Editorial Offices upon receipt of a SASE with 28 postage.

Fourth, the clear group has only two instructions: MCLR and ECLR. Instruction MCLR is the master clear instruction for all internal registers and memory. It also initializes the $1 / O$ control signals-MDC $=8$ and MODE $=$ floating point. Instruction ECLR is the error flag clear; it loads the error flip-flop with a zero.

Fifth, the branch instruction has eight instructions divided into two sub-groups-test and count. The test group is formed by the JMP, TJC, TERR, TX $=0$, TXF, and TXLTO. The count subgroup

FIG. 13-INSTRUCTION fetch and execution flowchart defining the initialization routine.
contains instructions IBNZ and DBNZ.
Sixth, the input/output group is composed of nine instructions that can be divided into three subgroups: multidigit instructions (IN, OUT), single-digit instructions (AIN), and flags (SF1, PF1, SF2,

PRW1, PRW2). In the design described here the event flags were not used: therefore, the SF1, PF1, SF2 and PF2 instructions are of no use with this interface.

The last group of instructions is mode control: It contains TOGM. SMDC and inv.
On power-up the mantissa digit count is set at 8, and the mode is set to floating point. Figure 13 shows the initialization routine. After initialization (POR) or the completion of an instruction, the inputready signal goes to a logic high, which tells the external hardware to supply a new instruction.
Sixteen of the 70 instructions are two

3 N 10 (ONE TO EIGHT MANTISSA DIGITS)
a

b
FIG. 14-FIRST WORD of 2-word instruction (a), sacond word (b). Float-ing-point notation formats and scientific-notation formats are illustrated at c and α, respectively.

FIG. 15-SOFTWARE FLOWCHARTS. a) TRANSFER of data to NOM; b) TRANSFER of data from NOM; c) USE OF branch-type instructions.
words long (See Fig. 14.) These instructions are: $\operatorname{INV}+$, INV - , INVX, INV/, INV SIN, INV COS. INV TAN. JMP. TJC, TERR. TX $=0$, TXF. TXLTO. IN, OUT. and SMDC. The first word of a two-word instruction is the same format as the one-word instruction. The second word contains the branch address that is to be loaded into the PC (Program Counter) during the branch; or it contains the MDC (Mantissa Digit Count) for SMDC instructions; or it may have the high-order address bits for external RAM on the in/out instructions. The low-order address is placed on the DA lines. This interface does not use an external RAM. Generally, the second word is ignored except for the SMDC instruction. The I_{1-4} lines must contain digit data during the aln and in instructions. Each
two-word instruction generates an input ready twice-one for each word. The first type are the inverse instructions. These require the inv instruction to be executed first (followed by the desired instruction). The second type is the SMDC instruction. The second word of this instruction is the mantissa digit count-a BCD number from 1 to 8 . The other types of two-word instructions have adequately been discussed previously.

Since there are software differences between the many 1802 systems involved (primarily in the I/O and memory addresses), the software I used in my system is not included here. As an alternative, the flowcharts in Figs. 12 and 13 can serve as a guide in developing your own software.

R-E

"While I was waiting, I adjusted your roof antenna, aligned your set and cleaned the tuner."

HOBBY CORNER

Learn solid-state circuitry as you build a monophonic music maker. EARL "DOC" SAVAGE, K4SDS, HOBBY EDITOR

THIS MONTH WE'RE GOING TO LEARN HOW to build a music maker or song player. You can set this device up for almost any simple tune and then program it to play automatically. In the process, you'll learn more about solid-state circuits, and end up with a unit that can be used as your doorbell, clock alarm and so on. This versatile circuit has endless possibilities.

Audio oscillator

First, you'll need a tone generator or audio oscillator. Figure 1 shows a very simple instrument. Although it has a minimum of parts, it is difficult to keep it from oscillating. (On the other hand, while the tone probably sounds all right to an untrained ear, it may insult a musician!)

FIG. 1-BASIC TONE GENERATOR
Although in Fig. 1 the transistor is listed as a 2 N3904, almost any NPN audio transistor works in this circuit. Any voltage from 1.5 up to the limit imposed by the transistor you select can be used. Figure 1 shows 5 volts because this value represents the power needed to run the IC's. No values are given for R1 and C1, but you can wire in a 100 K potentiometer and any $0.01-\mu \mathrm{F}$ component for testing purposes. As resistor R1 varies, the frequency (tone) changes.
This tone generator is used because it's simple. You can, however, use your own favorite circuit if you can separate out the frequency-determining components, as shown in Fig. 1. You can even add fuzz, attack, or delay if you like.
All you have to do is switch the $\mathrm{R}-\mathrm{C}$ network or just R1 in and out of the circuit. Other components could be added for additional tones. Of course, you could add a manual switch at point A or point B. For our example, let's choose
point A and build an electronic organ, as shown in Fig. 2.
Although manual switches are OK, the tone should really be controlled with electrical pulses. You could use relay switches, but they are expensive, bulky and usually noisy. So, why not use transistor switches?

Figure 3 shows two transistor switches that turn the tone either $O N$ or OFF. Switches Q2 and Q3 can be 2 N 3904 , RS2009, 2N2222 or almost any NPN transistors you have on hand. When the

FIG. 2-MANUAL TWO-TONE ORGAN

FIG. 3-TUNE MAKER CIRCUIT showing transistor on-off switches.

FIG. 4-TONE SELECTOR
base of the switching transistor is connected to the positive voltage, the switch is on. When the base is grounded, the switch is off.

Now a strange thing happens to the circuit when Q2 and Q3 are added. First, the potentiometer values decrease. With most types of transistors at Q1, the circuit oscillates even when Cl is removed. Therefore, we draw Cl with dashed lines. (You may not need it.) Try your oscillator without using Cl . You may have to put it back in (or add one across each pot). This little oscillator is both versatile and fun to experiment with.

You can add as many pots and transistor switches as you want. You need one for each note in the tune to be played. Just add these components out from points X and Y and adjust the pots for the proper tones. Choose a tune with no more than 15 notes (for reasons that are explained later).

Now you need some way to put a positive voltage on the transistor bases, one at a time. Manual switches work, but, again, adding transistor switches activates them automatically. For this task we'll use the 74154 1-of-16 data distributor described in the Hobby Corner article on an IC game roller circuit (Radio-Electronics, March, 1978). And if you use less than 10 notes, a 7442 can be used.

The only problem in using the 74154 is that the outputs are of opposite polarity from what you need. The selected output goes low instead of high as required by the switching transistors. This is why the inverters are used (six with each 7404 IC) shown in Fig. 4. Note that outputs 4, 6 and 8 all play the same tone through a

gate of a 7410 triple 3 -input NAND gate. One gate in a 7400 repeats the same tone on two outputs, while one 7420 gate combines four outputs. Any extra gates you may have can be used for other things, as shown in Fig. 5.

ANO SO ON
FIG. 5-BASIC GATE EOUIVALENCES
There are several things that you should note about the circuit in Fig. 4. First, four switches were added to the 74154 input (this, however, is only a temporary arrangement). These four switches control the 16 output lines; by using momentary switches, you can "play any of the 15 notes with only four fingers. If you build two such setups, you can play

30 notes with eight fingers! Of course, these switches count in the binary system.

Second, you only need 7404 gates at the output if you are going to play the device this way. However, automatic play may require a combination of repeat notes depending upon the tune you select.

Third, output line 1 is not used. This means only 15 notes are available, but the output line will be necessary if you add on automatic-play control. If you are not going to add the automatic-play feature, you can put in a 16 th note and raise pin 19 from ground to the positive voltage to get an off or no-sound condition.

Here are some programming suggestions: how about using the whole tune for the front door, and just part of the tune for the back door? Or perhaps you could play three notes for the quarter-hour, eight notes for the half-hour. the whole tune for three-quarters of an hour, and the tune twice for the hour?

In a future article, we'll discuss making additions to this circuit that will cause it to play automatically at the touch of a button.

Old radios, TV's, etc.

Sometimes a reader writes for help in finding a schematic and other information about an old radio or TV. Here are a
few suggestions that may help when you want to recondition or restore an old piece of gear.

First, you must completely identify the equipment. That means finding the model and serial numbers if they are still on the chassis or cabinet. If there are no identifying numbers, make a complete description of the set including the numbers and locations of the tubes. Armed with this information, you are ready to begin your search.

A local service shop may have the information you want in Sam's Photofacts, in Supreme Publications manuals, or even in a Rider manual. If you live in a large city, you can probably find these publications in the public library. You can also write the manufacturer, but this may not help if the set is very old. Many have gone out of business.

Whether the set is very old or nearly new, Supreme Publications has data on almost any equipment, and a typical charge for such information is only about $\$ 3$. Just send the complete details on your set to Supreme Publications, Att: M. N. Beitman, Box 46, Highland Park, IL 60035. If all else fails write ISCET Technical Library, there is a $\$ 10$ fee for this service or you might even become a member for an annual $\$ 25$ fee. The address is 8015 Paseo, Kansas City, Missouri.

R-E

You Can Count On DAVIS!

NEW CTR-2A 500 MHz \& 1 GHz COUNTERS

NOW WITH PERIOD MEASUREMENT (Optional) AND BUILT-IN PREAMP

- 8 Digit .3" LED Display
- High Stability TCXO Time Base
- Built-in VHF-UHF Prescaler \& Preamp
- Period lus to 1 sec. (optional)
- TCXO Std. ± 2 ppm
- Input Diode Protected
- 12V-DC Operation (optional)
- Oven Crystal $\pm .5$ ppm (optional)
- Selectible Gate Times. 1 sec . \& 1 sec.

500 MHz kit CTR-2A-500K
500 MHz assembled CTR-2A-500A
1 GHz kit CTR-2A-1000K
1 GHz assembled CTR-2A-1000A
OPTIONS:
(02) Oven Crystal
(03). $43^{\prime \prime}$ LED
$\$ 49.95$
(04) 12 V -DC
(05) 10 sec. Time Base
(06) Period Option
10.00
10.00
10.00
15.00
\$249.95
249.95
349.95
349.95
399.95
549.95

DAVIS ELECTRONICS
636 Sheridan Drive
Tonawanda, NY 14150 716/874-5848

YOU DON'T NEED A BENCH FULL OF EQUIPMENT TO TEST TRANSISTOR RADIOS! All the facilities you need to check the transistors themselves - and the radios or other clr. cuits in which they are used - have been Ingeniously engineered into the compact, 6 - Inch high case of the Model 212. It's the transistor radio troubleshooter with all the features found only in more expensive units. Find defective transistors and circuit troubles speedily with a single, streamlined instrument instead of an elaborate troubles
hook-up.
Features:
Checks all transistor types - high or low power. Checks DC current galn (beta) to 200 in 3 ranges. Checks leakage. Unl. versal test socket accepts different base configurations. Identifies unknown tran. sistors as NPN or PNP.
Dynamic test for all transistors as signal amplifiers (oscillatnr check), in or out of circuit. Develops test signal for AF, $1 F$, or RF circuits. Signal traces all circuits. Checks condition of diodes. Measures
battery or other transistor-circuit power. battery or other transistor-circuit powersupply voltages on 12 -volt scale. No external power source needed. Measures circuit drain or other DC currents to 80 milliamperes. Supplied with three exter. nal leads for in-circuit testing and pair of test leads for measuring voltage and current. Comes completo with instruction manual and transistor listing.

EMc, 625 Broadway, New York 12, N.Y.
Send me FREE catalos of the complete value-packed EMC IIne, and name of local distributor.
NAME_——_RE-1
ADORESS

8085
 A look at Intel's $8085 \mu P$ and the MCS-48 μP family.

INTEL CORPORATION, DESIGNERS OF THE 8008 and 8080 microprocessors, have developed two new devices. One is the Intel 8085, a microprocessor that is designed to replace the 8080 A . It is a larger-scale microprocessor because it is designed to be used in applications that in some cases were only in the realm of minicomputers. The MCS-48 family of microprocessor components, on the other hand, is a mini-mum-configuration type of microprocessor that will be used to implement lowcost consumer and business computer products.

The 8085

The 8085 is a redesigned 8080 A microprocessor. One of the weaknesses of the 8080 microprocessor was that for a basic system it required a dozen or so TTL IC's in addition to the basic CPU. The 8085 requires only a few external components to produce a viable microcomputer. AIthough the 8085 is not pin-compatible with the 8080, it is software-compatible downwards; that is, all software written for the 8080 will run on the 8085 , except that which is specifically geared for an existing 8080 microcomputer system, which may differ in I/O addresses, memory cycle times, and the like in a new 8085 system.

Figure 1 shows the pinout of the 8085 microprocessor, which uses only one supply voltage, +5 volts, with the input at $\mathrm{V}_{\mathrm{cc}} ; \mathrm{V}_{\mathrm{ss}}$ is the ground reference. The -5 VDC and +12 VDC of the 8080 are eliminated. The 8085 uses an on-chip clock generator, with only an external crystal or R-C network, whereas the 8080 uses a two-phase external clock. The basic clock speed is 3 MHz , and the basic instruction cycle is $1.3 \mu \mathrm{~s}$, which is an improvement over the 8080 's $2-\mu \mathrm{s}$ instruction cycle.

The 8085 multiplexes the address and data outputs during the instruction cycle. Lines Als through A8 are the address lines, as in the 8080, but lines AD7 through AD0 are used both as the lower half of the address lines and the data bus. These lines are used as the address bus during the first clock cycle of a machine cycle and as the data bus during the second and third clock cycles. Signal

ALE (Address Latch Enable) occurs during the first clock cycle to allow components to latch the address.

In the 8080 , status signals needed further decoding to produce read and write signals to memory and I/O. In the 8085 , these signals are provided directly by $\overline{\mathrm{RD}}$,
$\overline{W R}$; and $10 / \bar{M}$; the latter indicates whether the read or write is to memory or I/O. Outputs S0 and S1 provide encoded status of the bus cycle (HALT, WRITE, READ, or FETCH). The READY instruction is used similarly as with the 8080-to interface slow-speed memory or I/O devices by deferring CPU operation. Instructions HOLD and HLDA are also similar to the 8080, allowing external devices to control the CPU buses for direct-memory-access action.

Interrupt action in the 8085 is more sophisticated than in the 8080 . Signals INTR (INTerrupt Request) and INTA (INTerrupt Acknowledge) are used as before, but three additional interrupt inputs, RST 5.5, RST 6.5 and RST 7.5 cause predefined internal RESTARTS (rather than an external RESTART response). In addition, a nonmaskable interrupt that cannot be disabled under program control is provided by signal TRAP. A RESET IN input is similar to the 8080's RESET input; the output RESET OUT indicates that the CPU is currently being reset.

One serial-input line and one serialoutput line are provided in the 8085; the 8080 had neither. Data on the SID (Serial Input Data) line is loaded into accumulator bit 7 whenever a RIM instruction is executed. The serial-output data line can be set or reset by an SIM instruction. These two lines allow serial I/O devices such as Teletypes or audio tape cassettes to be directly interfaced to the CPU. Instructions RIM and SIM are the only two new instructions in the 8085. Internal registers within the 8085 central processor unit remain the same as in the 8080 .

A dedicated function microcomputer using the 8085 , a 2 K -byte EPROM chip (8755), a 256 -byte RAM (8155) and six discrete components can be assembled on a 4 -inch by 3 -inch PC board. This is quite a change from the 8080 ! Such a single board microcomputer can easily handle many control applications and its small size makes it easier to design into household appliances.

MCS-48 family

Speaking of computers on a chip, the microprocessors in the MCS-48 family certainly fit the description. The 8048 microprocessor IC of this family is the most elaborate of them all. The 8048 provides an 8 -bit CPU, 1 K -byte ROM, 64-byte RAM, 27 I/O lines (which may be programmed for input and output as required) and an 8 -bit timer/event counter, all on one IC! The 8748 microprocessor is identical to the 8048 except that it contains a IK-byte EPROM (Erasable Programmable Read-Only Memory). Other versions of these two microprocessors contain additional ROM and data (RAM) memory, or no internal memory. A low-cost version, the 8021, contains an instruction subset of the 8048 and fewer hardware features.

Let's take a brief look at the 8748 (EPROM) version. Figure 2 shows a standard 40 -pin 8748 package. In this version, only a single +5 -volt power supply is required. A crystal clock input is provided, although this may be an L-C network or an external clock rather than a crystal controlled clock.

Input/output port I (P10-P17) and I/ O port 2 ($\mathrm{P} 20-\mathrm{P} 27$) are two 8 -bit ports than can be used either as input or output
ports. Input and output on the same pin and a mixture of input and output lines on the same port is permitted. Lines DB7 through DB0 are also an 8 -bit port that serves either as a latched output port or a nonlatching input port. Two additional input pins, T0 and T1, are test inputs that can be tested under program control by specific instructions. One interrupt input, INT, is implemented so that an interrupt occurs if an internal interrupt-enable flipflop is set. Various other control signals are provided.

Figure 3 shows the architecture of the 8748. One 8 -bit accumulator serves as the

8748 CPU

Fig. 3
main data register for arithmetic and other operations; both binary and decimal arithmetic are implemented in the CPU. Program memory of 1 K bytes is provided on the resident EPROM. Locations 0, 3 and 7 of program memory are dedicated to reset, external interrupt and timer/ counter interrupt processing routines, respectively. Data memory consists of 64 bytes of RAM, in which two sets of eight locations are designated bank 0 and bank 1 working registers. Either bank 0 or bank I can be selected under program control. When one or the other bank is selected, all registers in the bank are directly addressable by several instructions. An eight-level stack and additional user RAM comprise the remainder of the data memory.

The 8748 's instructions include both 1and 2-byte instructions plus the usual complement of arithmetic, logical, data movement, and conditional and unconditional jumps. Since 70% of the instructions are only 1 byte long, the MCS-48 microprocessors provide efficient programming within the limitations of the relatively small RAM storage and program area.

R-E

This new clamp-on probe lets you read from 0 to 1 kHz and from 0 to 200 A , accurately, safely, quickly. No disturbing the circuit or insulation. Clamps over conductors up to $3 / 4$ dia.

Write for full specs today.

sarvine alinit

Don't jump to conclusions before obtaining the necessary facts.
 JACK DARR, SERVICE EDITOR

A SERVICE CLINIC COLUMN APPEARED A while back containing some fairly elementary material. A reader wrote: "Why? We know all this stuff!" I wrote him back to tell him that it's a good idea to jog your memory once in a while.

This article is another memory jogger. It tells you about the easy way to diagnose troubles in TV sets, and about one of the most "common faults" technicians make in this area. A large amount of Service Clinic mail comes from technicians who know how to do the job, but are simply not using their knowledge in the right way. The common fault in too many cases is jumping to conclusions before you make any tests and obtain the facts.

Here's a typical example: The symptoms are a blank screen, plenty of width and height, the brightness is good, and no sound or picture. The calibrated eyeball tells us that quite a few things are OK: there's plenty of B+ voltage, a good picture tube, etc. Correct reasoning tells us that there is a fault somewhere in the signal path. This invoives a lot of stages, starting at the tuner, the IF, detector, and video amplifier. Anything wrong in these stages can cause problems.

The first thing to do is to break these stages up into smaller sections. A good and fast way to do this is to scope the video detector output. If you see a normal signal here, the tuner, video IF and AGC are not at fault. Proceed through the video amp stages until you find where the signal stops.

If there's no signal at this point, the video stages can be climinated as a source of problems (for now, anyway). Now, check the IF and/or tuner stages. Hook up a tuner subber to the IF input; if you get a picture, you've just eliminated the IF stage as a cause of your problem. If there's no response, you do have an IF problem. As usual, there are multiple causes for the same symptom. It could be caused by a fault in the IF stage, or it could be in the IF control voltage; the AGC (Automatic Gain Control). Here's another simple test. Override the AGC with a bias box. You can read the AGC voltage, but overriding it just is one step less to perform and gives you the same result. If you get a picture with the AGC
set to approximately normal (check the unit's schematic for the normal voltage, remembering that the AGC shown is a no-signal voltage or the point of maximum IF gain), then you've eliminated the IF amplifier stages, and you can now check the AGC stage.

At this point, you can take some DC voltage readings; all voltages on this AGC stage are critical. Also don't forget to scope the input for the proper video signal; it won't work without it. Watch out for bias problems in the AGC stages. If one stage is incorrect, it will not chop off the sync pulses to develop an AGC voltage.

If the problem is in the IF stages, here's a good quick check. Don't bother reading the IF signal with a demodulator probe; just read the emitter voltages of all IF transistors. Practically all these transistors use a small resistor (bypassed) in the emitter circuit. The DC will run about 1 to 2 volts. Find an IF transistor with zero voltage, and it is probably open. If there's far too much emitter voltage. the transistor is probably shorted. Don't overlook the emitter resistor; check it to make sure. This also works for tube-type IF stages; read the IF tube's cathode voltages.

Another area where reasoning can help is in the sync-separator stage. If you see no vertical sync and the picture slides sideways, go right to the stage that handles both syncs. Do not start checking the vertical oscillator! Scope the compositesync waveform at the separator output. (Far 100 many schematics leave out this necessary stage. The typical P-P voltage runs about 50 to 60 for tube stages, and about 20 to 25 for transistor stages; these are just ballpark figures.)

A severe loss of sync amplitude at this point can cause weak vertical sync. The vertical sync depends on amplitude; the horizontal sync works mainly on phase, and quite a lot of sync amplitude can be lost before any horizontal instability shows up. Use your scope to check both syncs.

Checking the horizontal sync can be very tricky; you can lock the picture in, but with even the slightest movement of the horizontal hold control, away it goes.

The fact that you can stop it momentarily indicates that the horizontal oscillator stage is quite stable. This is of ten due to a loss of the horizontal sync to the AFC. For a definite test, pull the AFC diodes and scope the point where the sync goes in-usually at the center terminal of the diode unit. The horizontal sync is picked off the composite sync and fed through a small ($50-\mathrm{pF}$) coupling capacitor (which explains why the vertical sync does not go into the horizontal sync). If this coupling capacitor is open, or if the PC board conductors between the capacitor and sync separator/AGC circuit are broken, this'll cause problems. Check the conductors with an ohmmeter.

If there's plenty of horizontal sync here, then the AFC diode unit is bad and should be replaced. Look out for unbalance in AFC diode units because this can cause some odd problems. You can check this out with an ohmmeter.

The main point is that you must always remember that there's no such thing as a symptom with only one possible cause. Make a mental list of all the things that could cause a problem and then patiently check 'em out one by one. You'll pin down the trouble a lot faster. Use timesaving quick-check tests such as the ones mentioned earlicr; these tests can clear up or confirm trouble in a great many stages simultancously, as for example in the IF stage.

The most important thing to remember is-don't jump to conclusions without any hard facts. Good luck.

R-E

service

questions

FLYBACK SUBSTITUTE WANTED

This National model TR-317U TV set manufactured by Matsushita has a burned flyback circuit. Since my sources just turn blue when I mention National, where can I get this part?-W. S., Denville, NJ.

Tracking this down calls for some partnumber crossing. Matsushita manufactures Panasonic, so I checked out Sams on a TR-315, which is as close as they could get. I found a flyback circuit with a "TLF-xxxx" part number which is very close to the flyback part number you gave
me (TLF-3605-1DS) Try ordering a flyback with this number from the nearest Panasonic parts depot. The closest depot to you is: Panasonic, 50 Meadowland Parkway, Secaucus, NJ, 08094. Good luck!

COILS WITH LOOSE CORES

Louis Supek of Brunswick, OH , writes:
"If you have a coil with a loose core that won't stay tuned or falls out, try taking the core out and inserting a thin strip of masking tape inside the coil lengthwise. See if the core fits OK. If it's still too loose, place another thin strip of tape on the other side of the coil. The core will turn frecly without binding.
(Thanks, Louis! This helpful hint is much appreciated.)

HIGH VOLTAGE DROPS

Everything else seems to be OK in this model CTC-31A RCA set, but the high voltage drops to where the raster goes out. l've checked the whole output circuit and found zilch.-K. P., Fitchburg, MA.

Here are a couple of hints: Pull the picture tube socket and see if the high voltage comes back. If so, check the cathode and grid voltages on the picture tube. If there is very low voltage on the picture tube cathodes, for example, this will make the grids positive, and the picture tube will pull the high voltage way down. The common cause for this: an open winding in the video peaking transformer between the video output and picture tube cathodes causes this voltage to go to 0.
(Feedback: "Thanks! Your crystal ball is working fine; the video peaking transformer was open.")

RASTER BRIGHTENS

I've got a funny problem with a Sony model KV-1910. The sound and picture are good, but the raster becomes gradually brighter from left to right; at the far right-hand edge of the screen the video wipes out completely to a brilliant white. The brightness control works, but as you turn it down, the raster is gradually wiped out from left to right. What is this?-D. L., Baftle Creek, MI.

I suspect that you've got a blanking problem (along with a lot of other people!).

The schematic shows the horizontal blanking is fed to the three grids of the picture tube, tied together, through a pair of neon lights plus another light over by the flyback. These lights are not shown on the parts list, but they're probably ordinary NE-2's. Check if any of these bulbs are blackened; if so, they're probably bad. In this application, if one of these lights is aired it acts as a short and upsets the horizontal blanking. I suggest you replace them all just for luck. R-E

HOBBYISTS! ENGINEERS! TECHNICIANS! STUDENTS! Write and run machine language programs at home, display video graphics on your TV set and design microprocessor circults-the very first night-even if you've never used a computer before!

RCA COSMAC COMPUTER ${ }^{\text {s9995 }}$

as FORTRAN and BASIC must be translated into machine

 language before a computer can understand them. With EI FII you build a solid foundation in computers so you'll really know what you're doing, no matter how complicated thing get
Video output also makes EL.F II unique among computers selling for such a lou price. Attached to your TV set. EL.F II hecomes a fabulous home entertainment center. It's capable of providing endless hours of fun for both adults and children of all ages' EI.F II can create graphics. alphanumeric display and fantastic video games.
No additional hardware is required to connect ELIF II to your TV's video input. If you prefer to connect El. F II to your antenna terminals instead, simply uve a low cost R F modulator How order one, see coupon below)
EI.F 11; 5 -card expansion hus (connectors not included) allous you to expand FI.F II as your needs for power grows. If you're an engineer or hobhiest, you can also use ELF II as a for countless ot her applications.

ELF 11 Explodes Into A Giant!

Thanks to ongoing work by RCA and Netronics, El.F Il add-ons are among the most advanced anywhere. Plug in the GIANT BOARD" and you can record and play back programs edit and dehug programs, communicate with remote devices and make things happen in the outside world. Add Kluge Board lo get EL.F II to solve special prohlems such as operating a more complex alarm system or controiling a printing press Add 4土 RAM board and you can write longer programs, store more information and wolve more wophisticated problems. Expanded, ELIF II is perfect for engineering, business industrial, scientific and personal finance applications. No other small computer anywhere near FIIF II's low price is hacked by such an extensive research and development program.
The ELIF-BL'G Monitor is an extremely recent breakthrough that lets you debug programs with lightening speed because the key to debugging is to know what's inside the registers of the microprocessor and, instead of single stepping through your program, the EL.F-BUKi4 Monitor, utilizing break points, lets you display the entire contents of the registers on your TV screen at any point in your program. You find out immediately what's going on and can make any necessary changes. Programming is further simplified by displaying 24 bytes of RAM with full address. binking cursor and auto crolling. A must for serious programmers
Netronics will soon be introducing the ELF II Color owners will he the first to enjoy!
owners will be the first to enjoy!
Now BASIC Makes Programming ELF II Even Easler! I.ike all computers. ELF II understands only "machine language - the language computers use to talk to each other. But, to make life easier for you, we ve developed an El.F 11 Tiny BASIC. It talks to ELF 11 in machine language for you so that you can program FI.F II with simple words that can be typed out on a keyboard such as PRINT, RUN and I.OAD.

"Ask Now What Your Computer Can Do

But What Cen it Do For You!"
Don't be trapped into buying a dinosaur simply hecause you than "hig name" computers that covt a lot more money.
With EII.FII, you learn to write and run your own programs. You're never reduced to being a mere keypunch operator. You re never reduced to being a mere keypunch operator,
working blindly with someone else 's predeveloped software. No matter what your specialty is, owning a computer which you really know how to use is sure to make you a leader. EI.F il is the fastest way there is to get into computers. Order from the coupon below! With EI.F II, you learn to use machine language - the funda-

「Now Available for ELfII-
\square Tom Pitlman's Short Course On Mi croprocessor ing leaches you ahout EI If II or ang RCA 1802 computer Written in nontechnical language, it's a learning hreak through for engineers and laymen alike. $\mathbf{\$ 5 . 0 0}$ postpaid! \square Deluxe metal cabinet with plexiglas dust cover for ELIF II. $\$ 29.95$ plus \$2.50 pdeh.
D FLF 11
FLF II connects to the video input of your TV set. If you prefer to use Modulator, 58.95 postpaid.
D GIANT BOARD' kit with cassette 1/O, RS 232-C/TTY I/O, 8-bit P I/O. decoders for 14 separate l/O instruc lions and a system.
$\$ 39.95$ plus $\$ 2$ p\&h.

- Kluge (Prototype)
to 3 KlC . $\$ 17.00$ plus $\$ 1$ patcepts up
a is Static RAM kit p\&h
any 4 k page to 04 k . $\$ 89.95$ plus $\$ 3$ p 10 any ak page to 64 k . $\$ 89.95$ plus 53 p\&h \square Gold plated $\mathbf{8 6}$-pin connectors tone
required for each plug-in board). $\$ 5.70$ required ${ }^{\text {posipaid. }}$
posipaid,
\square Professional ASCII Keyboard ki with 128 ASCll upper/lower case wet. \% printable characters, onhoard regulator, parity, logic selection and choice of 4 handshaking signals to mate with almost any computer. $\$ 64.95$ plus $\$ 2$
p\& p\&h.

Deluxe metal cabinet for ASCII Keyboard, $\$ 19.95$ plus $\$ 2.50$ p\&h. D FI.F II Tiny BASIC on cassette tape. Commands include SAVE. I ET, IF,THEN, INPUT, PRINT. GOTO, GOSUB. RETURN. END. GEM, CIIEAR, IIST, RUN, PI.OT, PEFK. POKE. Comes fully docu: mented and includes alphanumeric generator required to display alphanumeric charactervdirectly on your TV screen without additional hardware. Also plays tick-tack-tue plus a drawing game that uses EL.I Il, hex heyboard as a joystick. 4k memory re. quired. $\$ 14.95$ postpaid.
\square Tom Pittman's Short Course on Tin BASIC for ELF $11, \$ 5$ postpaid.

- Expansion Power Supply (required when adding 4k RAM). $\$ 34.95$ plus $\$ 2$ when
\square EL,F-BUC ${ }^{\text {* }}$ Deluxe System Momit or on cassette tape. Allows displaying the contents of atl registers on your TV at any point in your program. Also disdrevses, blinking cursor and auto terolling. A must for the serious program. mer' $\$ 14.95$ posipaid.
Coming Soom: A-D. D-A Converter Light Pen Controler A Converter. Graphics. \& Music System. ...und more!
more.

Now you can safely plug away without the problems of overload or coming up short.

SCL WABER ${ }^{\odot}$ MULTIPLE OUTLET STRIPS

You can do it thanks to SCL WABER ${ }^{\circ}$ the finest quality multiple outlet strip available! There are 240 versatile models-each unit exceeds National Electrical Code standards and is safety tested. Ideal for organizing your work area and having extra outlets when and wher you need them. Over 2000 electronic distributors carry the SCL WABER line Send for your free 24 page catalog today!

SGL WABER Electric

A division of SGL INDUSTRIES, INC.
Dept. H-300 Harvard Avenue
Westville, New Jersev 08093
(609) 456-5400

SGL Waber...THE POWER SOURCE IN ELECTRICAL OUTLET STRIPS
CIRCLE 37 ON FREE INFORMATION CARD

P184-4T with batteries and recharger, $\$ 105.00$ (includes P184).
P184-4T1 110V AC, $\$ 105.00$ (includes P184). Tefzel wire, 28 gage, various
colors, $\$ 4.39 / 100 \mathrm{ft}$. If not available locally, factory order-add $\$ 2$ handling charge.
Prices subject to change without notice.
ELECTRONIC COMPANY, INC., 12460 Gladstone Av., SVimar, CA 91342

EQUIPMENT REPORTS

continued from page 33

the location of the white king and queen and black king and queen using the ep key. Then, force CompuChess to make the first move by depressing Play.

The well-thought-out keyboard provides a tremendous amount of versatility. You can play handicap chess by initially deleting a piece; in fact, you can delete or add any piece you want at any point during the game. You can perform a castle move by using the MD key and CompuChess will also handle en-passant moves.

During play, you can cancel a move after entering it, provided the PLAY key has not been depressed, by simply re-entering the move. Also during normal play, on levels 3 or 4 , when CompuChess sees a threat to any of its more valuable pieces, it will display a flashing hyphen to indicate that it needs more time to calculate its reponse. If you should lose the game, CompuChess will notify you by displaying its final move and then flashing the display. CompuChess indicates a stalemate by a king move to its own position. If CompuChess should lose the game, it displays lose.

CompuChess also has a randomizing feature. If after evaluating its move, CompuChess determines that there are several moves of equal strategic value, it will randomly choose its move from one of these several moves. Because of this. it is almost impossible to duplicate an attack or repeat a game.

Playing a game

The best way to evaluate a device such as this is to actually play a game with it. I started a game on level 6 to see jusi how long the response time for this level would be.
l opened with the traditional opening of P K4. CompuChess responded within 18 hours. This turned out to be the shortest response time. From here the response times varied between 2 and 4 days. The response time to the 6th move was an absolute surprise-it took bet ween 11 and 13 days $t 0$ respond.

I don't feel, however, that the long response time is a big disadvantage. As the owner's manual states, it's perhaps better to start play at level 4 and then switch to level 6 between 6 and 12 moves into the game. This should reduce the response time. And then again. not everyone would be comfortable playing a level 6 game.

I have also received a call from Data Cash Systems that they have just introduced an improved version of CompuChess. the newer unit is called CompuChess. The Second Edition. In addition to much quicker response times (level 6 now responds within 2 hours), three new game variations have been introduced along with the standard chess game. The game of Knights is similar to a standard chess game except all the pieces on the first rank are converted to knights. The pawns on the second rank remain pawns. The second new game is called the Amazon Queen. Here all the pieces remain identical as in standard chess, except the two queen pieces are given the additional capability to move like knights. The third and final new game is called Survival. This game sets up a randomized mid-game board position. The object is to play a standard chess ganse from this random board position and mate CompuChess.

CompuChess retails for $\$ 169.95$, and The Second Edition retails for $\$ 209.95$. R-E

VIDEO MOTORCYCLE GAME continued from page 46
the start. Every time a successful jump is made the two right-hand digits are increased by ! and another bus is added to the area between the two ramps; also, a good-jump sound is generated. The motorcycle reappears at the starting position after each jump. The cycle, score and buses are white; the ramps and track are black. For black-and-white operation, the background is gray, and in color the background is blue.

If the PRO/AM switch is in the easy mode and the MOTORCROSS select switch depressed, then the picture will be like that shown in Fig. 1-c. The cycle moves across the screen, at a rate proportional to the setting of the throttle, as the throute is advanced from its low-speed setting. No speed shifting exists in this game. As in the Drag Race game, the object of the game is to transverse the three track segments in the minimum amount of time. On each track segment though, there is a blockade. The operator must do a "wheelie" in order to cross over this obstacle.

In the PRO mode, two obstacles per track are displayed; see Fig. 1-d for a typical screen image. The game otherwise functions as the amateur mode did. Again, the cycle, rider, score and block-

Don Lancasters "Cheap Video"concept allows almost unlimited options, including:

* Scrolling Full performance cursor.
* Line/Character formats of 16/32, 24/80. 32/64.... or almost anything.
* Graphics-up to 256 X 256 B \& W 96×128 COLOR (requires low-cost option modules)
* Works with 6502, 6800 and other micros

SPECIAL OFFER: Buy the Kit (upper case alpha- numeric option included) \& get the Book at 1/2 price.

I'm Sold. PLEASE RUSH.... () SEND FREE CATALOG
() TVT. 658 Kit \& CheupVideo Cookbook $\$ 42.95$
() TVT $\mathbf{6}^{5} 8$ Kit only (book required for assembly)- $\$ 39.95$
name:
address
city
tate: \qquad zip

CIRCLE 68 ON FREE INFORMATION CARD

HOLD IT! Anywhere you wantit.

PanaVise tilts, turns, rotates One quick turn of the control knob and you securely position your work exactly where you want it. Holds firmly but gently the most delicate electronic parts and P. C. boards.

Whether you're into building home electronics, trouble shooting, or professional serv. icing . . you'll wonder how you got along without this mod estly priced 'extra hand.
Model 396 Wide Opening PanaVise shown. An ingenious variety of other interchangeable bases, holders and accessories also available. See your electronics distributor, or write for FREE brochure.

DAN/AVSE

2850 29th St., Long Beach. CA 90806

CIRCLE 46 ON FREE INFORMATION CARD

"My father built this Schober Organ for me!"
 You'd be proud to buy her an organ this
 "ready-made" organs...easily comparable to

good...but how would you feel if you'd also built it? It's a special kind of satisfaction. The gift of a lifetime of magnificent music, crafted with your own hands!

And you can do it! You need no prior electronic or mechanical abilities. Just the capacity to follow instructions. Every step is clearly detailed, every component is supplied You'll find the assembly process as enjoyable as the music which follows!

And what music! For this is a truly fine instrument you will build. Far superior to most
 others at twice the price. Kit costs range from $\$ 650$ to $\$ 2850$ for all basic components, and you can purchase it in sections to spread costs out... or have two-year time payments.

When you've completed the basic organ, Schober offers a full complement of accessories... plus complete organ playing courses! People have been building Schober Electronic Organs for their daughters, sons, wives, husbands... for themselves...for 20 years now. Join the thousands of delighted Schober people.

You can have all the details, without cost or obligation. Just send the coupon for the fascinating Schober color catalog (or enclose $\$ 1$ for a record that lets you hear as well as see the quality of Schober). Why not clip it right now, before you forget?

The Schokei Organ Corp., Dept. RE-182 43 West 61st Street. New York. N.Y. 10023 \square Please send me Schober Organ Catalog.
Enclosed please find $\$ 1.00$ for 12-inch L.P.
record of Schober Organ music.
NAME
ADDRESS
CITY CIRCLE 26 ON FREE INFORMATION CARD

Train with NTS for the MicroComputers, digital the first name

The world of electronics is daily becoming more challenging. Technology is growing more specialized, and the importance of digital systems increases every day. Test instruments, home entertainment units and industrial control systems are all going digital. And now, NTS training programs include a wider choice of solid-state and digital equipment than ever before offered in any home study course: Advanced NTS/Heath digital color TV ($25^{\prime \prime}$ diagonal with optional programming capability), NTS/Heath microcomputer, digital test equipment, digital stereo receiver (70 watts per channel), NTS compu-trainer, plus much more state-of-the-art equipment to make your training exciting and relevant
The equipment you receive with NTS training programs is selected to provide you with a solid
background in electronic systems. Kits and lessons are designed to work together to demonstrate electronic principles and applications. The kit-building not only shows you how electronic hardware functions, but how various circuit designs accomplish different purposes. Your lessons guide you through any number of experiments associated with many projects. This is the Project-Method, and it works. Step-by-step, you learn how and why digital electronics has become a part of our world, and the even bigger role it is sure to play in the future.
Whether you are looking for training in Consumer, Commercial, or Industrial electronics, NTS offers fourteen courses, some basic, many advanced, in several areas of electronics. An all-new full-color NTS catalog shows you what each course covers,

electronics of the future.

systems and more...from in home study.

and every piece of equipment included.
Send for it today, and see for yourself what's really happening in electronics training technology at NTS.
Find out how much has changed, and what new directions the field is taking. You'll probably want to be a part of it.
It's free. Just mail the card or coupon. Today.

NO OBLIGATION. NO SALESMAN WILL CALL. APPROVED FOR VETERAN TRAINING.

TECHNICAL-TRADE TRAINING SINCE 1905
Resident and Home-Study Schools 4000 South Figueroa St., Los Angeles, Calif. 90037
NATIONAL TECHNICAL SCHOOLS Dept. 206-0194000 South Figueroa Street, Los Angeles, Calitornia 90037

Please send FREE Color Catalog and Sample Lesson.
\square Color TV Servicing
$\square B \& W$ TV and Radio Servicing
\square FCC License Course
\square Electronic Communications
\square Electronics Technology
\square Audio Electronics Servicing
\square Digital Electronics
\square MicroComputers/MicroProcessors

Name

Address
Apartment Number Age

City -
State Z Zip
\square Check If interested in G.I. Bill information.
\square Check if interested ONLY in classroom training in Los Angeles.

Yes! Rush me your FREE Catalog so that I can explore Edmund's World of Science.

Name

Address

City
State \qquad $21 p$
Clip and Mail Coupon Today to: Edmund Sclentific Co., EHO2 Edscorp Bidg., Barrington, N.J. 08007

Use Quick Wedge to repair a control panel, hook up a power monitor, connect a power supply, install a motor starter

They do all that ordinary screwdrivers do, PLUS they hold and start the screw

Screw-holding screwdrivers
Unconditionally guaranteed.
BUY A SET TODAY
See your dealer or write to
Kedman Company, P.O. Box 25667.
Salt Lake Citv, Utah 84125

Digital Auto Clock

Or Elapsed Time Indicator！Highly Accurate－Attractive Aqua Blue Digital Display

ONLY
 $\$ 19.95$

Cyrstal oscillator control gives this digital clock an accuracy of $\pm 1 \mathrm{~min}$ ．per month！Solid state design makes the clock immune to vibration and engine＇s electrical noise．Operates from 12 VDC power source； ideal for boats，cars，or RV＇s．Reset feature includes fast or slow modes or return to＂Zero＂（12：00）for convenient measure of elapsed time．Displays hours and minutes，or seconds，with automatic brightness control．Attractive functional design with aqua blue display，sturdy case， chrome－finish bezel．Easily mounted on or under dash， mounting hardware included．
Order yours nowl Use your Master Charge or Visa or send $\$ 19.95$（For delivery in Texas add sales tax）．
Canada：Add $\$ 1.00$ shipping．Foreign：Add $\$ 5.00$ air mail．

Clever Kleps

Test probes designed by your needs－Push to seize，push to release（all Kleps spring loaded）．
klaps 10 ．Boathook clamp ygrips wires，lugs，terminals． Accepts banana plug or bare wire lead． $43 / 4^{\prime \prime}$ long．$\$ 1.59$ Kleps 20．Same，but 7＂long． Kleps 30 ．Completely flexible．Forked－tongue gripper．Ac－ cepts banana plug or bare lead． $6^{\prime \prime}$ long．
Kleps 40 ．Completely flexible． 3 －segment automatic collet Kleps 40．Completely flexible． 3 －segment automatic collet
firmly grips wire ends，PC－board terminals，connector pins． Accepts banana plug or plain wire． $61 / 4^{\prime \prime}$ long．$\$ \mathbf{\$. 8 9}$ Kleps 1．Economy Kleps for light line work（not lab quality）． Meshing claws． $41 / 2^{\prime \prime}$ long．$\$ 1.09$ Pruf 10．Versatile test prod．Solder connection．Molded phenolic．Doubles as scribing tool．＂Bunch＂pin fits banana jack．Phone tip． $51 / 2^{\prime \prime}$ long．
All in red or black－specify．（Add 50¢ postage and handling）． Write for complete catalog of－test probes，plugs，sockets， connectors，earphones，headsets，miniature components．

RYE INDUSTRIES INC．

 126 Spencer Place，Mamaroneck，N．Y． 10543 In Canada：Rye Industries（Canada）Ltd．
INTERNATIONAL FM－2400CH

FREQUENCY METER FOR IESTING MOBILE TRANSMITTERS AND RECEVERS
 －Portable • Solid State • Rechargeable Batteries

The $\mathbf{F M}-2400 \mathrm{CH}$ provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predeter－ mined frequencies．
The $\mathrm{FM}-2400 \mathrm{CH}$ with its extended range covers 25 to 1000 MHz ．
The frequencies can be those of the radio frequency channels of operation and／or the intermediate frequencies of the receiver be－ iween 5 MHz and 40 MHz ．

Frequency stability：$\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$ ．
Frequency stability with built－in thermometer and temperature cor－ rected charts：$\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}$（． 000125% special 450 MHz crystals available）．
－Tests Predetermined Frequencies 25 to 1000 MHz
－Extended Range Covers 950 MHz Band
－Pin Diode Attenuator for Full Range Coverage as Signal Generator
－Measures FM Deviation
FM－2400CH（meter only）Cat．No． 035320
RF crystals（with temperature correction）
$\$ 595.00$
RF crystals（less temperature correction） 24.90 ea．

IF crystals 18.90 ea．

INTERNATIONAL CRYSTAL MFG．CO．，INC． 10 North Lee／Oklahoma City，Okla． 73102

VIDEO MOTORCYCLE GAME continued from page 69

ades are white; the track is black. The background is gray for black-and-white operation and green on a color set.

The fourth game, Enduro, in the amateur mode appears like the image seen in Fig. I-e. As with Motorcross the first two segments contain obstacles; the third segment resembles the Stunt Cycle game in that it contains buses and ramps. For the first two tracks "wheelies" are required to pass the blockades. Before entering the third track the throttle must be adjusted to perform the required jump across the buses. In the professional mode, two additional obstacles are added (see Fig. 1-f).

How it works

The main section is the AY-3-8760 LSI integrated circuit. Section two is a $3.58-\mathrm{MHz}$ crystal clock source. The next section is a set of controls; four game select pushbuttons, one SPST mode select switch, and a $50-$ to $250-\mathrm{kHz}$ oscillator used as the throttle control. Section four is the power supply- 12 volts AC is converted to about 6 volts DC. The next section is the video output summing network. The last block is the audio amplifier.

The throttle oscillator is formed by using an LM555 timer. The frequency is set by the control potentiometer; the
output is applied to pin 18 of the AY-3-8760 via a CMOS inverter.

The $1 / 4$-watt audio amplifier is formed from a MCI306P monolithic complementary power preamplifier/amplifier. An $8-16$ ohm speaker is driven at the output of this section. A volume control trimmer pot can be adjusted for the desired volume level.

The black video (ramps, track and composite blanking) is summed to the white video (motorcycle, rider, buses, score and obstacles) along with the sync pulses. The color A and B outputs (pins 24 and 25, respectively) are pulled-up to $\mathrm{V}_{\mathrm{cc}}+5$ volts, then summed together using $20-\mathrm{pF}$ capacitors and fed into the resistor network. The intensity of the white video is reduced when no motion exists on the screen (the game has not been initiated). This will reduce the possibility of the TV screen being burned if the game is left on for extended periods of time. This feature is provided by RII , C11. DI and CMOS inverter IC2-a. The output of the summing network should be fed directly to a video monitor or to a TV set through an RF modulator.

The power supply takes 12 volts AC from the power transformer secondary and develops the 6-volt DC V_{cc} supply. Four 1 -ampere rectifiers are used in a full-wave bridge. A raised-ground 5 -volt linear three-terminal IC voltage regulator is used. One volt is developed across
ground resistor R2. Capacitor filtering is used at the input and output of the regulator.

Construction

Before beginning construction you must decide on a method of assembly and wiring-either wire-wrap or a printed circuit. If you select the latter, you can use the foil pattern in Fig. 3.

After etching and drilling your board (or purchasing the board listed in the parts list) begin wiring by installing the five jumpers shown on Fig. 4.

The next step is to install the resistors and capacitors. Also the IC sockets if you elect to use them. Install and solder in the five diodes and the regulator IC . Be sure diode polarity is correct before soldering.

You are now ready to wire the PC board to the switches, control pot and power transformers. After making these connections, apply power to the board and check the voltage at the supply pins of ICI-IC4. If it is lower than 6 or higher than 7 volts, readjust the values of R1 and R2 to obtain the desired voltage.

Now install the IC's and the circuit should be ready for use. If problems arise, use regular troubleshooting techniques to find and correct them. I'm sure you'll have a great deal of fun and excitement with this advanced single-player video game.

> Our new test equipment catalog. Free!

With this catalog you can browse through one of the nation's largest electronics warehouses, packed floor to ceiling with the finest test instruments. Everything from probes to dual trace scopes; and everything at sensational savings made possible only by mail order selling. Volume pricing on orders over $\$ 500$ gives you even greater
 savings. Every item is backed by a big brand name. Shipment is prompt from stock, always freight prepaid and there never is a handling charge on orders over $\$ 200$. Write today for the big free catalog of the big brands that offers you the big savings.

LOADED with Quality Features!

- Stereo . . . Eleven Bands Per Channel • Extremely Low Noise \& Distortion •LED Peak Indicators • Center Detent ("flat") sliders • Built-in "record" Switching • Line and Microphone Level Inputs/Outputs • Regulated Power Supply • Fully Guaranteed • Horizontal or Vertical Cabinets • Kit or Fully Assembled • Plus Much, Much More!

Absolutely equals or exceeds overall performance

 and features of any graphic equalizer made today!

More information on new products is available from manufacturers of items identified by a Free Information number．Free Information Card is inside back cover．

DUAL－TRACE OSCILLOSCOPE，model PM3262， is a $100-\mathrm{MHz}, 5-\mathrm{mV}(2 \mathrm{mV}$ at 35 MHz$)$ general－ purpose instrument designed for many sophisti－ cated lab，computer，telecommunications，and bench and field applications．The unit features an alternate timebase capability that shows both main and delayed timebase displays together across entire screen width；a third channel allows simultaneous viewing of trigger signais．Other features include composite triggering to permit stable display of asynchronous signals； $250-\mathrm{MHz}$ triggering capability；extended X－Y display；cold switching that allows electrical（not mechanical） connections between front－panel controls and internal circuitry．Triggering mode and input con－ trols are pushbutton－selectable．Power consump－ tion is 45 watts．The model PM3262 measures

CIRCLE 114 ON FREE INFORMATION CARD
$12.5 \times 6.1 \times 16.2$ inches and weighs 21.1 lb ． Price：\＄2345．－Philips Test \＆Measuring Instru－ ments，Inc．， 85 McKee Dr．，Mahwah，NJ 07430.

COMPUTER PHONE DIALER，Keymemco，fully assembled or in kit form，is a solid－state plug－in device that can be connected to any type phone without couplers．The unit holds 15 preset phone numbers（each up to 15 digits）and can hold the last manually dialed number in memory for recall． Touch－tone pad allows manual dialing of unpro－

CIRCLE 115 ON FREE INFORMATION CARD
grammed numbers．Unit can be installed via direct－wire coupling：piggyback jack permits plugging both dialer and phone in one outlet． Power is supplied either by 4 NiCad batteries or 11 －volt AC／DC adapter from 110 volts， 60 Hz ．

Optional speaker and volume control are avail－ able．Prices：Kit，\＄129；assembled，\＄220．－ Chung Long Electronics Corp．，P．O．Box 18732, Seattle，WA 98118.

EXTENSION CABLE KITS，Sylvania Check－A－ Board model KZ－2 and model KRX－5，are de－ signed to troubleshoot Zenith and RCA solid－ state TV sets without removing chassis from set． Kits consist of cables made of stranded multi－ colored wire（color－differentiated for proper

CIRCLE 116 ON FREE INFORMATION CARD
orientation）with female connectors（for TV mod－ ules）and mating chassis connectors，plus plated－ alloy conductors on glass－fiber PC boards．Sug－ gested retail prices：model $K Z-2$（Zenith）\＄49．50； model KRX－5（RCA）\＄54．50．－General Tele－ phone \＆Electronics Corp．， 1 Stamford Forum， Stamford，CT 06904.

3－HOLE LIGHTER OUTLET BOX，model 1140 mounts under－dash and plugs into vehicle＇s light－ er outlet．Unit accepts three 12－volt devices，such as a CB transceiver，scanner，radar detector． tape deck，etc．；all three devices can be used

CIRCLE 117 ON FREE INFORMATION CARD simultaneously（maximum current draw， 10 amp ）． Comes with mounting bracket，and sells for a suggested retail price of \＄13．95．－Gold Line， 992 Danbury Rd．，Georgetown，CT 06829.

PHONE PLUGS AND JACKS．A broad line of phone jacks，enclosed phone jacks and matching plugs is available．The line ranges from micromin－ iature to thick－panel size，either two－or three－ conductor and open－or closed－circuit format．－ National Tel－Tronics，State Road Hill，Meadville， PA 16335.

R－E
CIRCLE 118 ON FREE INFORMATION CARD

FREE STMP CATALOG

Audio－Computers

 Instruments Kits \＆Assembled

Southwest Technical Products Corporation 219 W．RHAPSODY
SAN ANTONIO．TEXAS 78216
CIRCLE 71 ON FREE INFORMATION CARD

Try this exciting new hobby！Build

 your own electronic concert organ．It＇s easy．No technical knowledge required．Just follow the clearly．pictured instructions of the famous Wersi do－it－yourself system． Choose from seven different models．Send \＄2．00 （refundable）with coupon for colorful 104 page catalog．

The world of electronics gee-wizardry

32-pages of test instruments - from the latest digital multimeters to the famous EICO scopes. Security systems. Automotive and hobbyist products. Kits and assembled. EICO quality. EICO value. For FREE catalog, check reader service card or send 754 for first class mail.

108 New South Road Hicksville, N,Y, 11801

CIRCLE 55 ON FREE INFORMATION CARD

Radio-Electronics ${ }^{\circ}$

is available in MICROFILM

UNIVERSITY MICROFILMS

 300 N. Zeeb RoadAnn Arbor, Michigan 48106 300 N. Zeeb Road
Ann Arbor, Michigan 48106

MICROFICHE MICROFICHE

MICROCARD EDITIONS

P.O. Box 1154

Englewood, Colorado 80110
BELL \& HOWELL CO. Micro Photo Dlvision
Old Mansfield Road
Wooster, Ohio 44691
Attn.: Mr. Splers
Please wrlte for complete Information

A Division of Information Handling Services

compubar produchs

More information on new products is available from manufacturers of items identified by a Free Information number. Free Information Card is inside back cover.

HIGH-SPEED LOGIC TROUBLESHOOTER, model 5700B Scanmaster, is designed for in-circuit testing of digital IC's; front-panel pushbuttons let you probe pins, and a switch selects five logic families. Other features include a built-in dualthreshold logic state analyzer; $31 / 2$-digit display; a DVM (useful also for measuring DC voltages in analog circuits); and a universal logic pulser. The

CIRCLE 119 ON FREE INFORMATION CARD
unit can be interfaced with an oscilloscope, frequency counter, or other test instruments. Price: \$1295.-Information Scan Technology, 1725 Rogers Ave., San Jose, CA 95112.

COMPUTER PRINTER INTERFACES, Sol Hytype I and Hytype II, are designed to increase cardcopy capability of the Sol computer. Hytype 1 mounts inside Sol Diablo Series 1200 printer;

Hytype I/ interface works with Diablo Series 1300 printer. Both include fully assembled, tested and etched PC board, software, cables and mounting hardware. Driver software on CUTS cassette is included together with a source listing. Suggested retail price for Hytype I and Hytype II,
\$150.-Processor Technology Corp., 7100 Johnson Industrial Drive, Pleasanton, CA 94566.

GENERAL-PURPOSE BREADBOARD, model 4607 Plugbord, permits convenient assembly of custom circuits for Heath H-11 and DEC LSI-11, PDP- 8 and PDP- 11 computers. The model 4607 (measuring $8.430 \times 5.187 \times 0.062$ inches) has etched contacts spaced to fit dual 36 pin connectors and contact terminations labeled to fit DEC nomenclature. The 0.042-inch-diameter holes on

CIRCLE 121 ON FREE INFORMATION CARD
0.1 -inch centers allows unrestricted placement of discrete components or DIP sockets.

The boards are made of copper-clad blue epoxy glass with solder-plated pads and gold/ nickel-plated edge connectors. The model 4607 Plugbord sells for $\$ 15.95$ each in quantities of 1 to 4 ; from 5 to 9 quantities, $\$ 14.36$; quantities over 10, \$12.76.-Vector Electronic Co., Inc., 12460 Gladstone Ave., SyImar, CA 91342.

FLOPPY DISC SYSTEM, Disk 11 , is designed for the Apple II personal computer. System provides rapid access to programs and data, and the DOS software uses standard BASIC. The Disk $1 /$ con-

CIRCLE 122 ON FREE INFORMATION CARD
sists of an interface card and one or two minifloppy drives and offers full 116 K -bytes-perdiskette in soft-sectored format. Complete bootstrap in ROM and operating system in RAM provide full disc capability for systems with as little as 16 K bytes; can load and store files, and allow random and sequential data access. System can be driven solely from Apple Il power supply. Price: $\$ 495$ (includes card and Disc 11 drive).-Apple Computer, Inc., 10260 Bandley Drive, Cupertino. CA 95014.

merketrember

CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services). $\mathbf{\$ 1 . 5 0}$ per word (no charge for zip code) . . . minimum 15 words.
NONCOMMERCIAL RATE (for individuals who want to buy or sell personal items) 85e per word no minimum.
ONLY FIRST WORD AND NAME set in bold caps. Additionat bold face (not available as all caps) at $10 \$$ per word. Payment must accompany all ads except those placed by accredited advertising agencies. 5% discount for 6 issues, 10% for 12 issues within one year, if paid in advance. All copy subject to publisher's approval. Advertisements using P.O. Box address will not be accepted until advertiser supplies publisher with permanent address and phone number. Copy to be in our hands on the 26th of the third month preceding the date of the issue (i.e., August issue cioses May 26). When normal closing date falls on Saturday. Sunday or a holiday, issue closes on preceding working day.

FOR SALE

FREE catalog (anglais). IC's, semi's. CORONET ELECTRONICS, 649A Notre Dame W., Montreal, Que. Canada, H3C 1H8. US inquiries.

BLITZ ZOINK ZATT: UNSCRAMBLE these fascinating police communications with our CODE-BREAKER and keep informed. Tunes all scramble frequencies, works with all scanners, and is factory built and guaranteed. \$34.95PP. UNSCRAMBLER KIT: Latest Technology, $2 \% \times 21 / . X^{1 / r i n c h}$, complete instructions, only $\$ 19.95 \mathrm{PP}$. Thousands of satisfied customers. Catalog 504 . Order from KRYSTAL KITS, BOX 445, BENTONVILLE, ARK. 72712. COD orders. 501-273-5340.	

RADIO \& TV tubes $36 \$$ each. One year guaranteed. Plus many unusual electronic bargains. Free catalog. CORNELL, 42 17-E University, San Diego, Calif. 92105

PRINTED CIRCUIT
 Positive Acting Photo Resist; Carbide
 bits; Bubble etchers; Artwork; Epoxy Glass Boards.
 Send stamp \& address label for flyer TRUMBULL
 833 Balra Dr., El Cerrito, CA 94530

A CARD player's dream. 254 to LANGEN, Box 191-CB, Downsview, Ont M3M 3A3

NAME brand test equipment. Up to 50% discount. Free catalog and price list. SALEN ELECTRONICS, P.O. Box 82, Skokie, IL 60076

SPEAKYR INFORMATION KIT

Get 70 pages of speaker facts. specs. construction tips plus info on our raw speakers. crossovers and a line of 9 quality hi-fi speaker system kits. We'll send you our full color catalog: plus How to Hook Up Your Systom, an exhaustive step-by-step treatise on hi-li system installation: and our \$peaker Operating Manual chock full of facts on how to get the most from any speaker system, ior Free. Even if you don't buy from us we want you to have the lacts. That's how we got to be the world's largest manufacfurer of speaker kits.

Send to:
Speakerlab. Dept. RE.K
735 N. Northlake
Seattle, WA 98103

ELECTRONIC test equipment, components. Free catalog. E. FRENCH, Box 249, Aurora, IL 60507

NO-ETCH

Duplicate or make additions to, modifications of Any Etched Board. ideal for point-to-point or wire wrap breadboards. Complete set of (3) tools IP6003 \$25.00 ppd. Write for free brochure, as covered in the July Radio-Electronics. A.F. Stahier Co., P.O. Box 354R, Cupertino, CA 95014-(408) 252-4219.

NEW, adjustable, three-output, regulated power supply, plus 900 parts worth over $\$ 400.00$ in complete cartrivision television recorder electronics assembly. Documentation included. Perfect for microprocessor and all eiectronic applications. $\$ 16.95$ plus $\$ 4.50 \mathrm{~S} \& \mathrm{H}$. Master Charge. VISA. Free brochure. MADISON ELECTRONICS, 369, Madison. AL 35758. Satisfaction guaranteed. 205-837-6658, Res.

Burglar - Fire. Smoke Alarm Catalog

- Billions of dollors lost annually due to lack of protective worning olarms.
FREE CATALOG Shows you how to protect your home, business
FiRE

and person. Wholesale
prices. Do-it-yourself. Free
engineering service.

Box 82802 RE-019 \quad Lincoln, Ne. 68501

RECORDS-TAPES! Discounts to 73%; all labels; no purchase obligations; newsletter; discount dividend certificates; 100\% guarantees. Free details. DISCOUNT MUSIC CLUB, 650 Main St. Dept. 3-0179, New Rochelle, NY 10801

STAMP collectors. Fine sets of no-gum unused Canadian postage stamps. More than $\$ 2$ face value only $\$ 1$ US funds plus SASE. Quantities limited. G. STECKLER, 24 Straw La., Hicksville, NY 11801

DX CB SWL: Computerized list: geographic, compass bearings, distances from your location to US, world cities, SW stations. \$2.00. BENCHMARK, Box 385-R1, Providence, UT 84332

Rocord incoming and outgoing calls sutomatically with this all solid state unit connected to your telephone jack and tape recorder. Starts record. ing when phone is lifted. Stops when you hang up, making a permanent record. Casily installed No extra monthly phone charges FCC APPROVEO
$\$ 24.50$ *
 Self contaned solid state Encellent adjustable Sensilivity Recorder setivated by woices or other sounds Uses recorder mike or
 remote mike. Great for home business etc

Amone world's smallest, solid state, self contained WIRELESS MIME Mercury Bat furn. Picks up most sounds and transmits without wires up to 300 ft . thru FM Radio iuneable. Use as mike. ampl., alafm \& alert system, baby sitter, hot line, etc. ('Plus $\$ 1.00$ Pstg. \& Halg) Money bach guarantee. California residents add tax. Free data Man order Yiss. M/C. Cod's o.k. Ouantity discount avalable AMC Sales. Dept. 19, 9335 Lubec
St. Bon 928 . Downey, Calif 90241 Phone 12137859.8519

CIRCUIT boards from camera-ready artwork. Quantity discounts. Free details. CM CIRCUITS 22 Maple Avenue, Lackawanna, NY 14218

TEST equipment catalog listing used Tektronix, HP and GR equipment at bargain prices. Price $\$ 1.00$ refundable with first order. PTI, Box 8699 , White Bear Lake, MN 55110

TASCO offers reliable TV antenna system components below wholesale prices. Write for our FREE 32 page catalog full of great surplus bargains. Such bargains as:
(C) Fi) F-59-.176

[^2]

CIRCLE 34 ON FREE INFORMATION CARD

ELECTRONIC EQUIPMENT HOTLINE is a classified advertising newsietter for professional, industrial, and surplus electronic equipment. Subscriptions $\$ 6 /$ year, ads $50 \mathrm{c} /$ word. PO Box 4768, Dept RE, Panorama City, CA 91412

PLANS \& KITS

LINEAR AMPLIFIER: Ham only $2-30 \mathrm{MHz}, 100$ watt, solid-state. FREQUENCY COUNTER: 300 MHz , miniportable/mobile, memory! vOXCOMPRESSOR: Splatter-free modulation booster. Construction plans $\$ 3.00$ each. All $\$ 7.50$! Many others, catalog with order. PANAXIS PRODUCTIONS, Box 130-F1, Paradise, CA 95969
SCANNER users-Build many useful accessories. Free kit catalog. CAPRI ELECTRONICS, Route 19, Canon, GA 30520
AMPLIFIER kits: Low TIM, Class A。BI-FET circuitry. Free 60 -page manual. MOONLIGHTER ELECTRONICS, 117 Inverness, San Francisco. CA 94132
amazing electronic projects and products: Lasers Super Powered. Burning, Cutting, Rifle, Pistol. Pocket. See in Dark-Shotgun Directional Mike-Unscramblers-Giant Tesla-Stunwand-TV Disrupi-er-Energy Producing, Survellance, Detection, Electrifying. Ultrasonic. CB, Auto and Mech. Devices. Hundreds More-All New Plus inf onlimited, Dept. Ra Box 716 Amherst, N.H. 03031 .

Have regular medical check-ups.
 American Heapt Association We're Fighting For Your Life

ELECTRONIC KEYBOARDS FOR HOME ORGANS AND SYNTHESIZERS, FROM $\$ 75.00$. SEND FOR FREE BROCHURE.

CIRCLE 15 ON FREE INFORMATION CARD

	$\$ 69.95$ 32.2102 .1 (ully butfere 96 adderess lines, on board decoding fixt anv 4 of 64 pages, slandard 44 pm buss, may be used with F-8 \& KIM

PAINTED CIRCUT EOAAD	TRANSISTOR SPECIALS 2N6233.NPN SWITCHING POWER						
412.617 SINGLE SIDEDEMIKY 							
7 WATTLD G5LASER DKODE IR \$895	2N1546 PNP GE TO.3 . . ${ }^{\text {a }}$ - 75						
2N 545/ NEET	\%N6056 MPN 5.103						
	2N3137 NPN S: PF						
$2 \sim 2646$ UHT	2N1420 NPN SITO 5						
			\$1.00				
MINIATURE MULTI.TURN TRIM POTS $100,1 \mathrm{~K}, 3 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}$ 200K. 500k. 1 Meq. 2Meg. 5.75 each $3 / \$ 2.00$	2 N 376 / NPN S. TO 66 2N2222 NPN S. TO 18						
CHARGED COUPLE DEVICES	2N3906 PNP Si 1037 2NS29G NPN S. TO 220 N6TOT PNPS. 1023		6/85				
	2N6109 PNP S TO 230 MPSA ISNPNS.						
	TTL IC SERIES ${ }_{\text {7AA5- }}$. 65		251-. 51				
			$74153-\quad .61$ 74154 94				
	$\xrightarrow{7001-}$, 74.487					
for 100 phoio tranes RED. YELLOW, GREEN OH AMBEA			74155 74161 74151				
	${ }_{7}^{70304}$	7472-	74162				
	${ }_{74065}^{7705}$	7472 7474 7474					
TIL-118 OPTO.ISOLATOR... ${ }^{\text {MOLEX }}$ SINS		7375-45	$74165-195$$747170-168$$7473-100$				
$1000 / 88$							
	($7488-31$ $7483-.65$	78173-1.20				
ATT 2ENERS: 3.3. 4.7.5.6.9 1.10 . 12.15 .18 .0122 V $6 / \mathrm{si}$		(7485-.87	$74175-85$$7476-75$7470				
6860 MODEM CHIP 59.95	7411-.18						
CM 6571A 7×9 Characleer gen ... S10.75	6 60	$\begin{aligned} & 7486-28 \\ & 74099 \\ & 74.25 \\ & \hline \end{aligned}$	$74117-175$ 74180 85				
			74190				
Stlicon Pown Rectlicis	\% $74255-.22$		- 74.192				
RVV iA 3 3A 12A $50 \mathrm{~m} \quad 125 \mathrm{~A} \quad 240$							
$\begin{array}{llllllllll} & 00 & 07 & 20 & 35 & 115 & 4.55 & 6.50\end{array}$	7432-.22	$74129-$$74122-$74	A1				
400 09 25 50 14.0 6.50 9.50	77438-21						
$\begin{array}{lllllll}500 & 11 & 30 & 70 & 180 & 850 & 1250\end{array}$							
$\begin{array}{lllll}35 & 90 & 230 & 1050\end{array}$	${ }_{7442}$						
		DATA CASSE TTES 112 HR 5.95					
48.1×914	44P-50ctuc 7ail 156"Comm \$1.95						
 DB 25 P male S 2.25 De 25S femate $\mathrm{S2.95}$ Hoods 51.00	MM 5387 AA new elock chip which will dirrecti) dirve LEG: 1224 hes, 1 supply \& alatm $\$ 5.95$						
	NO. 30 WIRE WRAP WIRE SINGLE STRAND $100^{\circ} \$ 1,40$						

SOLID STATE SALES
WE SHIP OVER 95\%
P.0. B0× 740

WE SHR ORDERS TH
Tenticos cention Mens
ineren 25.00 .600 six
145 Transistors pad Aectifiers
d
SOMERVILLE, MASS, 02143 TEL. (617) 547-7053
DAY WE RECEIVE THEM

AMERICA＇S LARGEST SUPPLIER

of ORIGINAL Japanese Semi－Conductors

for CB，TV and Stereo Repair

We carry only genuine replacement parts

TYPE	25．UP	10．24	1－9	type	25－UP	10－24	$1-9$	TYPE	25－UP	10－24	1.9	TYPE	25－UP	10．24	1－9
2SA 102	． 20	27	30	2SC 696	1.00	1.20	1.30	2SD 234	60	70	80	TA 7205P	1.60	1.80	2.00
2SA 234	45	． 53	． 59	2SC 710	20	． 27	． 30	2SD 235	60	． 70	． 80	TA 7310P	1.30	1.45	1.60
2SA 473	45	53	59	2SC 711	20	． 27	30	2SD 261	35	40	45	TBA 810SH	1.90	2.10	2.40
2SA 484	1.50	1.75	1.95	2SC 730	3.00	3.20	3.40	2SD 287	2.50	2.70	2.90	TC 5080P	5.00	5.20	5.80
2SA 495	30	35	40	2SC 732	． 20	． 27	． 30	2SD 313	60	． 70	80	TC 5081P	3.00	3.20	3.40
2SA 497	1.00	1.20	1.30	2SC 735	． 20	27	30	2SD 315	60	． 70	80	TC 5082P	3.40	3.55	3.90
2SA 509	30	35	． 40	2SC 756	1.50	1.80	2.00	2SD 325	60	70	80	UHIC 002	4.20	4.40	4.90
2SA 561	． 30	35	40	2SC 756A	1.50	1.80	2.00	2SD 427	1.80	2.00	2.25	UHIC 004	4.20	4.40	4.90
2SA 562	30	35	40	2SC 781	1.90	2.10	2.40	2SD 525	90	1.10	1.20	UHIC 005	4.20	4.40	4.90
2SA 564A	20	27	． 30	2SC 784	． 30	35	40	2SD 526	60	． 70	． 80	UPC 20C	2.10	2.50	2.80
2SA 634	40	45	50	2SC 799	2.00	2.20	2.50					UPC 563	1.90	2.10	2.40
2SA 643	． 30	40	45	2SC 828	． 20	27	30		FET			UPC 575C2	1.30	1.45	1.60
2SA 673	35	4 C	45	2SC 839	30	35	40					UPC 576	1.90	2.10	2.40
2SA 678	35	40	45	2SC 867	3.20	3.40	3.70	2SK 19BL	45	． 55	． 60	UPC 592Hz	70	． 80	． 90
2SA 682	80	90	1.00	2SC 867A	3.20	3.40	3.70	2SK 23	70	． 80	． 90	UPC 1001	1.90	2.10	2.40
2SA 683	． 30	35	40	2SC 897	2.00	2.20	2.50	2SK 30	40	45	． 50	UPC 1008C	4.20	4.40	4.90
2SA 684	35	40	． 45	2SC 930	20	27	30	2Sk 33	60	70	80	UPC 1020H	1.90	2.10	2.40
2SA 695	40	53	． 59	2SC 945	20	27	． 30	2SK 55	60	70	． 80	UPC 1025H	1.90	2.10	2.40
2SA 699A	50	64	． 70	2SC 983	． 50	64	70	3SK 22 Y	1.40	1.60	1.80	UPC 1154	2.00	2.20	2.50
2SA 706	85	1.06	1.10	2SC 959	1.10	1.20	1.30	3Sk 39	90	1.10	1.20	UPC 1155	2.00	2.20	2.50
2SA 719	30	． 35	． 40	2SC 1000BL	35	40	45	3SK 40	90	1.10	1.20	UPC 1156	1.90	2.10	2.40
2SA 720	30	35	40	2SC 1014	50	64	． 70	3SK 41	1.30	1.45	1.60	UPC 14305	3.00	3.20	3.40
2SA 733	20	$2 ;$	30	2SC 1018	． 60	70	． 80	3Sk 45	1.30	1.45	1.60	UPD 861	8.00	8.40	9.50
2SA 747	4.20	4.41	4.90	2SC 1030C	1.80	2.10	2.40	3 SK 48	3.40	3.55	3.90	UPD 857	8.00	8.40	9.50
2SA 818	70	． 81	． 90	2SC 1061	70	80	90	3SK 49	1.30	1.45	1.60	UPD 858	6.00	6.30	7.00
2SA 841	20	2\％	30	2SC 1079	3.40	3.55	3.90					PLL 01A	3.00	4.20	4.60
				2SC 1096	45	55	60	IC				PLL 02A	5.00	5.30	5.90
	258			2SC 1098	50	64	． 70					PLL 03A	7.60	8.00	8.80
				2SC 1111	2.10	2.50	2.80	AN 2140	1.30	1.70	1.90	DIODES			
2SB 22	30	． 35	40	2SC 1124	． 80	90	1.00	AN 239	4.20	4.40	4.90				
2SB 54	20	． 27	30	2SC 11728	3.20	3.60	3.95	AN 247	2.50	2.70	3.00				
2SB 75	35	40	45	2SC 1173	． 50	55	． 60	AN 274	1.50	1.75	1.95	1S 84	45	55	60
2SB 175	20	$2 \cdot$	． 30	2SC 1226	50	55	． 60	AN 313	3.00	3.20	3.40	1S 332	35	40	45
2SB 186	20	． 27	30	2SC 1226A	． 50	55	． 60	AN 315	1.80	2.00	2.25	15953	16	18	20
2SB 324	30	． 35	40	2SC 1239	2.20	2.70	2.90	BA 511A	1.80	2.00	2.25	IS 1007	． 35	． 40	． 45
2SB 337	70	． 80	90	2SC 1306	1.30	1.45	1.60	BA 521	1.90	2.10	2.40	IS 1209	． 35	． 40	． 45
2SB 405	30	.35	40	2SC 1307	1.90	2.10	2.40	HA 1151	1.50	1.75	1.95	1S 1211	35	40	45
2SB 407	80	90	1.00	2SC 1318	35	40	45	HA 1156	1.60	1.80	2.00	1S 1555	20	22	25
2SB 434	80	． 90	1.00	2SC 1383	30	35	40	HA 1306W	2.00	2.20	2.50	15 1588	20	． 22	． 25
2SB 435	90	1.10	1.20	2SC 1384	35	40	45	HA 1322	2.50	2.70	3.00	IS 1885	． 16	． 18	20
2SB 463	． 90	1.10	1.20	2SC 1419	60	70	80	HA 1339	2.50	2.70	3.00	1S 2076	20	． 22	． 25
2SB 473	80	． 90	1.00	2SC 1675	20	27	30	HA 1339A	2.50	2.70	3.00	1S 2093	.35	． 40	． 45
2SB 474	70	80	90	2SC 1678	1.10	1.25	1.40	HA 1366	2.50	2.70	2.90	1S 2473	16	18	． 20
2SB 492	60	． 70	80	2SC 1728	70	80	90	HA 1366W	2.50	2.70	2.90	1 N 34	12	13	15
2SB 507	80	． 90	1.00	2SC 1730	45	． 53	． 59	HA 1366WR	2.50	2.70	2.90	1 N 60	12	13	15
2SB 5280	70	． 80	90	2SC 1760	70	． 80	90	LA 4031P	1.80	2.00	2.25	1001	30	35	． 40
2SB 595	1.10	1.40	1.50	2SC 1816	1.50	1.75	1.95	LA 4032P	1.80	2.00	2.25	10010	45	55	． 60
2SB 596	1.10	1.40	1.50	2SC 1856	50	64	． 70	LA 4400	1.90	2.10	2.40	V06B	30	35	40
				2SC 1908	30	35	40	LA 4400Y	2.00	2.20	2.50				
	$25 C$			2SC 1909	1.80	2.00	2.25	LA 4420	2.00	2.20	$2.50{ }^{\circ}$		ENE		
				2SC 1945	4.50	5.00	5.60	M51513L	2.00	2.20	2.50				
2SC 281	． 30	． 35	40	2SC 1957	60	70	80	STK 011	3.80	4.00	4.40		30	㻿	踟
2SC 372	20	． 27	30	2SC 1970	2.10	2.50	2.80	STK 013	7.60	8.00	8.80		30	\％	琙
2SC 373	20	27	30	2SC 1978	5.40	6.00	6.60	STK 015	4.20	4.40	4.90	We me	\％${ }^{3}$	䈞	號
2SC 380	20	． 27	30	2SC 2028	． 50	64	． 70	STK 435	4.50	5.00	5.60	期 130	30	景	部
2SC 394	． 20	． 27	30	2SC 2029	1.50	1.80	2.00	TA 7045M	2.00	2.20	2.50	W	30	政	素
2SC 458	． 20	27	30	2SC 2076	50	64	70	TA 7060P	． 70	80	． 90				
2SC 495	45	55	60	2SC 2091	90	1.10	1.20	TA 7061P	90	1.10	1.20	MISC．			
2SC 509	35	40	45	2SC 2092	1.80	2.00	2.25	TA 7062P	1.10	1.25	1.40				
2SC 515A	80	90	1.00	2SC 2166	1.40	1.60	1.80	TA 7089P	2.00	2.20	2.50				
2SC 517	2.50	2.70	3.00	250				TA 7202P	2.50	2.70	2.90		\％	\％	$5{ }^{3}$
2SC 535	． 30	35	40					TA 7203P	2.50	2.70	2.90	\％06	\％	100	1．${ }^{\text {a }}$
2SC 634A	35	40	45	2SD 72	50	64	70	TA 7204P	2.00	2.20	2.50	（eas uns	5	176	

Minimum order $\mathbf{\$ 5 . 0 0}$ ．Add $\$ 1.00$ postage and handling．Ask for our complete price list when ordering．Overseas buyers．Manulacturers．Distribulors or Dealer orders welcome．All parts are guaranteed against factory delects for one year．C．O．D．orders are welcome．48－hour delivery．

ORDER TOLL FREE

WEST

HOBBYIST give your project the professional look. Printed circuit boards from your sketch or artwork. Affordable prices. Also fun kit projects. Free details. DANOCINTHS, INC., Box 261, Free details. DAN
Westland, MI 48185
BUILD 10.525 GHZ Doppler radar detector. Uses include intrusion alarm, level sensing, event counting, automatic door opener, etc. Plans include schematic, wiring diagram, and parts list. Etched and drilled PC board available. Send $\$ 12.00$ plus $\$ 1.00$ for postage and handling. G/W ASSOCIATES, P.O. Box 536, Exton, PA 19341
CIA TOOL KIT. Complete schematics for 30 electronic survellance devices. \$15.00. MICRON RESEARCH, PO Box 118, Woodstown, NJ 08098

EDUCATION \& INSTRUCTION

GRANTHAM's FCC License Study Guide-377 pages, 1465 questions with answers/discus-sions-covering third, second, first radiotelephone examinations. $\$ 13.45$ postpaid. GSE PUBLICATIONS, 2000 Stoner, Los Angeles, CA 90025
TELEPHONE bugged? Don't be Watergated! Countermeasures brochure $\$ 1.00$. NEGEYE LABORATORIES, BOX 547-RE, Pennsboro, WV 26415
UNIVERSITY degrees by mail! Bachelors, Masters, Ph'D's Free revealing details. COUNSELING, Box 317-RE 1, Tustin, CA 92680
ASTONISH your friends with magic, E.S.P., card tricks you can do. Detalls: LANGEN, Box 191-CA, Downsview, Ont, M3M 3A3

FROM KIT TO CAR IN 80 MINUTES!
Electronic ignition is "in." Update your car with the TOPS in power, efficiency and reliability - the TIGER SST capacitive dis charge ignition (CD).
The TIGER delivers everything other CD's promise - and more: quicker starting, more power, more gas mileage, tune-ups eliminated, lifetime plugs and points, reduced repairs and pollution.
The TIGER can be built and installed in your car in 80 minutes. The TIGER is unique!
The TIGER comes with a switch for TIGER or standard ignition for 12 V negative ground only.

Simpli-Kit \$21.95
POST PAID U.S.A.
WE ACCEPT:
Mastercharge or Bank Americard
Send check or money order with order to:

TritStar Corporation

DEPT. FF, P.O. Box 1727
Grand Junction, Colorado 81501 CIRCLE 41 ON FREE INFORMATION CARD

FAIRCHILD RED LED LAMPS
$\approx F L$ V5057 Medium Size Clear Case RED EMITTING. These are not
retested off-spec units as sold by some of our competition. These are factory prime. first quality. new units

10 FOR $^{s} 1^{19}$ 50 FOR ${ }^{\text {s }}{ }^{95}$ "WE BOUGHT 250.000 PCS
 COMPUTER KITS

We stock our own line of top quality computer kits 8K STATIC RAM (S-100) - $\$ 129$
16K STATIC RAM (S-100) - $\mathbf{S 2 9 5}$
16K EPROM (2708) BOARD (S-100) - $\$ 59.95$ 16 K STATIC RAM (SWTPC 6800 SS-50) BOARD - S295 ADDITIONAL DATA ON ANY KIT AVAILABLE ON REOUEST

16K DYNAMIC RAM CHIP

$16 \mathrm{~K} \times 1$ Bits 16 Pin Package Same as Mostek 4116-4.250 NS access. 410 NS cycle time Our best price yet for this state of the ant RAM. 32 K and 64 K RAM boards using this chip are readily available. These are new. fully guaranteed devices by a major mig. VERY LIMITED STOCK!

$$
{ }^{\mathrm{s}} 14^{95} \mathrm{each}
$$

8 FOR ${ }^{\text {s } 89.95 ~}$
 to the 18th power Easily oivivided
down to any power of 2 andeven down to any power of 2, and even
to 1 HZ New by CTS.Knight. A 55 to IHZ New by CTS-Knight. A 55 value:

FAIRCHILD PNP SUPER TRANSISTOR" 10150 an 150 MA FT. 150 MHZ A supe

 8 FOR $\$ 1$FET SALE!
2N4304 Brand New N Channel. Junction Fet
BVGDO-30V IDSS-15 MA Typ 1500 uMHOS. TO-18 Plastic Case. Mig by Teledyne. 6 FOR \$1

DISC CAPACITORS 1 MFD 16 V . P.C leads. Most popular value! By Sprague
20 for $\$ 1.00$
TIP-30 POWER TRANSISTOR Prime new Units. TO-220 Case
PNP silicon. VCEO-40 IC-1AMP PNP silicon VCEO-40
FT- 3 MHZ .30 WATTS

3 FOR ${ }^{\text {s }} 1$
SURPLUS SPECIAL!
$\$ 1.25$ each

FEATURES

- FOUR JUMBO \% INCM LED DISPLAY - 12 HR REAL TIME FORMAT 24 HR AL ARM SIGNAL OUTPUT
50 OR 60 H2 OPERATION LEO BRIGHTNESS CONTRO POWER FAILUAE INDICATO SLEEP \& SNOOZE TIMERS - DIAECT LED DRIVE (LOW RFI)
COMES WITH FULL DAIA

COMPARE AT UP TO TWICE OUR PRICE! MANUFACTURER'S CLOSEOUT!

ZULU VERSION
We have a lumiled number of the 24 HR Real *MA 1008D - $\$ 9.95$

PERFECT FDR USE WITH A TIMEBASE.

SALE!

 1N4148 DIODESHigh speed switching diodes. Silicon. Same as 1N914. Brand New. Full Leads. Prime! 100 FOR $\$ 21000$ FOR $\$ 17.50$

Full Wave Bridge
4 Amp 200 PIV 69¢ea. 10/5.75

By Midwest $\mathbf{m 6 7 0 5 0 1 0}$ Silicon Carbide Varistors. These units grab voltage transients. spikes. surges. etc. For use on AC or DC in the range of 121028 volts. Small Size .5 lnch Disc with radial leads. For use across transtormer secondaries. relays. etc. More rugged and reltable than silicon devices. Rated at 30 WATT-SEC. 25 WATT CONT Perfect for use on AC operated clocks and Instruments
SPECIAL PURCHASE: 3 FOR $\$ 1$

COMPUTER CAPACITOR

By GE. 36,000 MFD 15W VDC. Small size: $4 \% \times 1 \%$ Inches. SUPER DEAL! $\$ 2.95$ EaCh 3 FOR $\$ 8$

RCA MICRO-POWER OP AMP.

 High Gain 92 DB iypical Open Loop Gain Requires only one capacitor for compensation
See ACA Linear Data Book tor more delails Similat to National LM112 Originally cosi

Digital Research Corporation
 P. O. BOX $401247 B$ GARLAND, TEXAS $75040 \bullet(214) 271-2461$

TERMS: Add 304 postage, we pay balance. Orders under $\$ 15$ add 754 handling. No C.O.D. We accept Visa, Mastercharge, and American Express cards. Tex. Res. add 5\% Tax. Foreign orders (except Canada) add 20% P \& H. 90 Day Foreign orders (except Canada) ad
Money Back Guarantee on all items

COMPUTER INTERFACES \& PERIPHERALS

For tree catalog including paris lists and schematics, send a self-addressed stamped envelope.

APPLE II SERIAL I/O INTERFACE *

Part no 2
Baud rate is continuously adjustable from 01030,000 - Plugs into any peripheral connector •Low current drain. RS. 232 input and output © On board switch selectable 5 to 8 data bits. 1 or 2 stop bits, and parity or no parity either odd or even - Jumper selectable address. SOFTWARE - Input and Output routine
from monitor or BASIC to teletype or other serial printer - Program for using an Apple II for a video or an intelligent terminal. Also can output in correspondence code to interface with some selectrics Board only $-\$ 15.00$: with parts - $\$ 42.00$: assembled and tested - $\$ 62.00$

MODEM *

Patt no. 109

- Type 103 - Full or half duplex - Works up to 300 baud - Originate or Answer - No coils, only fow cost comporents - TTL input and outpul-serial Connect 8 ohm speaker
 and crystal mic. directly to board Uses XR FSK demodulator - Requires +5 volts - Board $\$ 7.60$; with parts $\$ 27.50$

DC POWER SUPPLY*

Part no. 6085

- Board supplies a regulated +5 volts at 3 amps., $+12,-12$, and -5 volts at 1 amp. - Power required is 8 volts AC at 3 amps., and 24 volts AC C T. at 1.5 amps. - Board only \$12.50; with parts excluding transtormers $\$ 42.50$

TAPE INTERFACE *

Part no. 111

- Play and record Kansas City Standard tapes Converts a low cost tape recorder to a digital recorder - Works up to 1200 baud - Digital in and out are TTL-serial - Output of board connects to mic. in of recorder - Earphone of
 recorder connects to input on board - No coils Requires +5 volts, low power drain - Board $\$ 7.60$; with parts $\$ 27.50$

T.V. TYPEWRITER

Part no. 106

- Stand alone TVT - 32 char/line. 16 lines. modifications for 64 char/line in. cluded - Parallel ASCII (TTL) input * Video output - 1 K on board memory Output for computer controlled cur
 ser - Auto scroll -
Non-destructive curser - Curser inputs: up, down, left, right, home, EOL, EOS • Scroll up, down - Requires +5 volts at 1.5 amps . and -12 volts at 30 mA - All 7400 , TTL chips - Char gen 2513 - Upper case only • Board only $\$ 39.00$ with parts $\$ 145.00$

TIDMA*

Part no. 112

- Tape Interface Direct Memory Access - Record and play programs withoul bootstrap loader (no prom) has FSK encoder/decoder for direct connections to low cost recorder at 1200 baud rate, and direct connections for inputs and outputs to a digital recorder at any baud rate. © S-100 bus compatible - Board only $\$ 35.00$; with parts $\$ 110.00$

UART \& BAUD RATE GENERATOR*

Part no. 101

- Converts serial to parallel and parallel to serial Low cost on board baud rate generator Baud rates 110 . 150. 300. 600. 1200, and 2400 - Low power drain +5 volts and -12 volts required
 - TTL compatible - All characters contain a start bit, 510 8 data bits. 1 or 2 stop bits. and either odd or even parity - All connections go to a 44 pin gold plated edge connector - Board only $\$ 12.00$ with parts $\$ 35.00$ with connector add $\$ 3.00$

8K STATIC

Part no. 300

- 8K Altair bus memory Uses 2102 Static memqry chips • Memory protect - Gold contacts • Wait states • On board regulator - S-100 bus compatible - Vector input option - TRI state buffered - Board only $\$ 2250$; with parts $\$ 160.00$

RF MODULATOR*

Part no. 107

- Convers video to AM modulated RF, Channels 2 or 3. So powerful almost no tuning is required. On board regulated power supply makes this ex-
 tremely stable. Rated very highly in Doctor Dobbs' Journal Recommended by Apple. - Power required is 12 volts AC C.T., or +5 volts DC • Board $\$ 7.60$, with parts $\$ 13.50$

RS 232/TTY* INTERFACE

Part no. 600

- Converts RS-232 1020 mA current loop, and 20 mA current loop to RS-232 - Two separate circuits Requires +12 and -12 volts - Board only $\$ 4.50$, with parts $\$ 7.00$

RS 232/TTL* INTERFACE

Part no. 232

- Converts TTL 10 RS-232, and converts RS-232 to TTL - Two separate circuits
 - Requires -12 and +12 volts
- All connections go to a 10 pin gold plated edge connector - Board only $\$ 4.50$; with parts $\$ 7.00$ with connector add $\$ 2.00$

ELECTRONIC SYSTEMS

Dept. RE-9 P.O. Box 21638, San Jose, CA. USA 95151
To Order:
Mention part number and description. For parts kits add "A" to part number. In USA. sripping paid for orders accompanied by check, money order, op Master Charge. BankAmericard, or VISA number, expiration date and signature. Shipping charges added to C.O.D. Orders. California residents add 6.5% for tax. Outside USA add 10\% for air mail postage, no C.O.D s. Checks and money orders must be payable in US dollars. Parts kits include sockets for ali
 is. components. and circuit board. Documentation is included with all producis. All iterns are in slock. and will be shipped the day order is received via first class mail. Prices are in US dollars. No open accounts, To eliminate tarift in Canada boxes are marked "Computer Parts" Dealer inquiries invited. 24 Hour Order Line (408) 226-4064
\qquad SECTION 2 SECTION 3 EA. $600 / 360 \mathrm{v}$
$2000 / 24 \mathrm{v}$ $2000 / 24 \mathrm{v}$
$2500 / 30 \mathrm{v}$ $2500 / 30 \mathrm{v}$
$6000 / 50 \mathrm{v}$ $6000 / 50 \mathrm{v}$
$20 / 200 \mathrm{v}$ $20 / 200$
$1500 / 75$ $1500 / 75$
$2500 / 30$ $2500 / 30 \mathrm{v}$
$8 / 250 \mathrm{v}$ $8 / 250$
$1000 / 35$ 2000/75
$-C 0 M P L$
$20 / 20$ $1500 / 70 \mathrm{v}$
$2000 / 25 \mathrm{v}$
$1500 / 25$
$3000 / 25$
$2000 / 25$
\$AVE!
AxAL Lrics

6
TRIACS \& SCR 6 amp 200V $59^{c} .0^{10 / s} 5$ CASE, HIGI GATL SENSI IVITY
FAMOUS UFRS. LOSS IS YOUR - 2006 6A zoov triac. 2006 6A zoov SCR

5 or 10 MHz , TTL, MOS or CMOS compatible!

PRELISIDN RSCILARTGA
$\pm 0.002 \%-1010 \cdot 60^{\circ} \mathrm{C}$ KLT LNCLUDES ALL PARIS, $\begin{array}{ll}\text { Precision hermutic xtal PC BOARD, INSTRUCIIONS. } \\ \mathbf{5} \text { to } 12 \mathrm{~V} \text { Operation } & \text { ONLY } 3 \text { CONNECTIONS-- - } V \text { VCC }\end{array}$ Chate of 5 or 10 mHz CROUND, OUTPUT. $51 Z E 1.2$ Use with TTL.cmos LOADS. ASSEMBLED UNITS ARE

IAMONDBACK ELECTRONICS CON SPRING VALLEY, IL 61362

AL Wenchamoise 100 ounanntit
 phone orders

MATHEMATICS EEECTRONICS ENGINEERING NATHEMATICS ADVANGED MATHEMATICS DIEITAL TECHNOLOGY

These unusual courses are the result of years of study by the President of IHSI. He has lectured to thousands of men on mathematics, and electronic engineering. Order your lessons on a money-back guarantee. If not satisfied you don't pay! Write for

The INDIANA

 HOME STUDY INSTITUTEEASTERN DIVISION P.O. BOX 1189

PANAMA CITY, FLA 32401

BUSINESS OPPORTUNITIES

MECHANICALLY incllined individuals desiring wnership of Small Electronics Manufacturing Business-without investment. Write: BUSINESSES, $92-\mathrm{R}$, Brighton 11th, Brooklyn, NY 11235

highly ELECTRONIC ONE-MAN FACTORY

 Investment unnecessary, knowledge not re-quired, sales handled by professionals. Ideal home business. Write today for facts! Walnut Creek, CA 94597

Original Japanese Replacement Parts for TV, Stereo and CB

S100 PRODUCTS

2-80/2-80A CPU BOARD * On board 2708 * 2708 included (450ns.)

* Power on lump *ompletely socketed Assembled and tested
Bare PC Board

* Individual Prom Address
* Uses Low cost 16 K TI EPROMS
- Optional 1 KRAM . Phaniom comirol

Hi PLOT LOW COST
DIGITAL PLOTTER

MODEL 100 A (analyzes any type of digital Trigger Expander Model 10 Baseplate
 Model 10 Manual

DC HAYES DATA COMMUNI-

 CATIONS ADAPTER* Telephone TWX S. S. 100 compatiole

BYTE USER BK EPROM BOARD

Special Otfer: Buy 4 kits only $\$ 59.95$ each

TARBELL FLOPPY INTERFACE

* S100 Compatible * Uses CPM
* Jumper Selectrable * Persci. Shugari,eic
Assembled and rested Assembled and tested
Kit
R
Bare PC Board 39.95
NOTE: For CPM Add $\$ 70.00$
* Cassette I/O Kir only
$\$ 115.00$
TRS 80 16K-UPGRADE KIT
*or either Levell or Level II.....s119.95
* 16K tor Apple II Upgrades 117.95

interfa popula Bus.

$\begin{array}{lr}\text { Kit } & \$ 189.95 \\ \text { Assembled } & \$ 269.95\end{array}$

EK 6800 D2 Kit	\$235.00
96006800 MPU Module	495.00
960116 slot Mother Bd.	175.00
960216 slot Card Cage	75.00
96038 slot Mother Bd.	99.00
9604 System Power Supply	250.00
9610 Prototype Board	36.00
9615 4KEprom Module	250.00
962016 pon parallel I/O	375.00
96268 K Static RAM	295.00
9626K 8K SIatic RAM K	225.00
9630 Extender Card	60.00
9640 Multiple Tuner Prog	395.00
9650 \& port Duplek Asyn.	$1 / 0345.00$
Mot 13/86 Connectors w/w or 5/1	595
AMI EVK 99. 6800 Sut Kit	99.00
AMI EVK 200 Kit	249.95
AMI EVK 300 Alsembled	275

Evk Kluge Board EVK 16K Byte Ram Board EVK 6 Slot Motherboard EVK Extender Board EVK Solid Frame Chassis EVK Connectors AMI 6800 Proto Rom AMI 6800 Micro Assembler Rom 6800 Tiny Basic Paper Tape 6800 Tiny Basic Eprom	$\begin{array}{r} 95.00 \\ 75.00 \\ 35.00 \\ 45.00 \\ 129.00 \\ 6.50 \\ 30.00 \\ 30.00 \\ 20.00 \\ 125.00 \end{array}$
PCG PROGRAMMABLE CHARACTER GENERATOR The holtes version of STARwaRS maviathe trom Obactive Destign code on trivell or culs $\$ 16995$	
UV "Eprom" Eraser Modol UVV 111 E...... 204.09 Macheo by is rears ivy experence $\begin{array}{ll}\text { Moder } \$ 587 & 3219.05\end{array}$ Protessmonal Indurstiar Modet	

DISPLAYS/OPTO

WAVEFORM GENERATORS

LIVERMORE BASIC

MOMTHLY SPECIALS

TV CHIPS
WVOL

ATTENTIOM DET UBERE ATPMON PETUERB

OISCOUNT COMPUTER CORNER

Key-To-Tape Recorder垠动
$\$ 199.88$
Singeripertec systems w/display station, keyboard, 7 track magnetic data record.
or, controiler, etc. Read back circuits
ilion
 duplicationg. ett. Units weyre working,
when taken out of service $\&$ are com.
phore a ready-to-go. but may reguire m:
nor sajustments Sold on an
bass
nor adjustments. Sold on an "As is"
Dosis only. Dati not supplied whunit,
basis oniy. Data not suppilied w/unit,
avaliable separately. Mo. 301.7 .

CALL. DIRECTORS
conventional 24" TV, "t is very easily set
up. Use large screen viewing in your nome, bar, club or store. Can be set Up
in the same space you now devote to TV
viewing. COMPLETE viewing. COMPLETE KIT-Stand, lens

 STERE AMP.
stite components. Contains i. DAR.
stite components. Contains i. DAR.
WINGTON drive, push-pull output all
WINGTON drive, push-pull output all
sistors $\&$ mounted to ig. heat sinks. Acc-
epts Input from tape decks, magnetic or
ceramic phono
sistors $\&$ mounted to ig. heat sinks. Acc-
epts Input from tape decks, magnetic or
ceramic phono
epts input from tape decks, magnetic or
ceramic phono cartidgges, mikes,
epts input from tape decks, magnetic or
ceramic phono cartidgges, mikes,
quiras a 48 V rransformar of 1 mag vol-
quiras a 48 V rransformar of 1 mag vol-
reconditioned, 11 Lint. with rotary dial.
rec.w 10 Lbs 3 Linsicte choicel
Sn . Wi 10271
ALSO TOUCH TONE-PAY STATION
TELEPHONESI
P.O. BOX 619 - DEPT. R-1 LYNNFIELD MASS. 01940
Terms: Add postage: No C.O.D's. Phone Orders BA.MA.AE
CIRCLE 52 ON FREE INFORMATION CARD

CABLE FM station. No experience required, excellent spare-time income, others operate for you. Detalis free. BROADCASTING, Box 130-F1. Paradise. CA 95969

For

 faster service

Radio Shack: No. 1 Parts Place Low Prices and New Items Everyday!

Top-quality devices, fully functional, carefulty inspected. Guaranteed to meot all specifications, both electrlcally and mechanically. All are made by well-known American manufacturers, and all have to pass manufacturer's quality control procedures. These are not rejects, not fallouts, not seconds. In fact, there are none better on the market! Always count on Radio Shack for the finest quality electronic parts!

Linear ICs

8080A Microprocessor

The heart of a low-cosi microcompu ter. $2 \mu \mathrm{sec}$ cycle time. Includes 276̂-2510 Reg. \$12.95 Sale 9.95

RAM Memory ICs

Under 450 nS Access Time

21021024×1 Array. Low-cosi stati save!
276-25012.49 Ea. or 8/14.95
$2114 \mathrm{~L} 1024 \times 4$ Array. High-density statlc RAM. 18-pin DIP. NMOS de sign. 276-2504

SN-76477 Sound/Music Synthesizer IC

NEW

2^{99}
Featured in Oct.

Creates almost any type of sound music 10 "gunshots!" Built-in audio amp. Includes 2 VCO's, LF osc.. noise gen. filter, 2 mixers, envelope modulator. logic cations circuits 276.1765 2.99

Analog Audio Delay IC MN 3002
10 95 8
For Phase-Shifter,
Reverb \& Delay Circuits
"Bucket Brigade" device uses 512 shift registers 10 provide a continuously variable electronic delay for complex audio signals. Includes data sheet and applications clrcuits 275.1760 10.9

NEW

-

Heat Sinks

(TO-220. For PC board-mounted power semiconductors in TO-220 cases Anodized aluminum
276-1363 796 (0) TO-3 Sink. For PC or chassis mtg. 276-1364 1.39 (6niversal. Mounts 2 devices. ac cepts 9 case styles. 276-1361 ... 2.69

Top-Quality IC and PCB Accessories

Wire Wrapping Accessories

Switches

© Miniature Toggle. 6A @ 125VAC SPDT. 275-662 OPOT. 275-663 Center-Ot1. $275-664$ … $\quad 2.89$ Momentary SPST. 275-609
(4) Momentary SPOT. 275-1549 (4) Momentary SPOT. 275-15

The CT-50 is a versatile and precision frequency counter which will measure frequencies to 60 mHz and up to 600 mHz with the CT-600 option. Large Scale Integration, CMOS circuitry and solid state display technology have enabled this counter to match performance found in units selling for over three times as much. Low power consumption (typically $300-400 \mathrm{ma}$) makes the CT-50 ideal for portable battery operation. Features of the CT-50 include: large 8 digit LED display, RF shielded all metal case, easy pushbutton operation, automatic decimal point, fully socketed IC chips and input protection to 50 volts to insure against accidental burnout or overload. And, the best feature of all is the easy assembly. Clear, step by step instructions gulde you to a finished unit you can rely on. Order your today!

CT-50WT. 60 mHz counter, wired and tested $159.95 \quad$ DP-1. DC probe. general purpose probe 12.95 CT-600. 600 mHz scaler option. add $29.95 \quad \mathrm{HP}-1$. High impedance probe, non-lcadir

Under dash

 car clock1224 hour clock in a beau

tllul plastic case features. 6
jumbo RED LEDS. high accuracy (1 min mo) easy 3 Wire hookup display blanks with ignition. and super display to ambient light level
DC-11 clock with mtg bracket
OM-1 dimmer adapter
$\$ 27.95$

PRESCALER

Extend the range of your counter to 600 mHz Works
with any counter. Includes?
transistor pre-amp to give super sens tholy mv at 150 mHz Specity +10 or +100 ratio PS-1B. 600 mHz prescaler $\quad \mathbf{\$ 5 9 . 9 5}$ PS-18K, 600 mHz Drescaler kit

OP-AMP SPECIAL

741 mini dip
B1-FET mini dip. 741 type
12/52.00

VIDEO TERMINAL

A completely selt-contained. stand alone video terminal card. Requires only an ASCll keyboard and TV set to become a complete terminal unit. Two units XTAL conte common teatures are single 5 V supply complete computer and keyboard control ol cursor Parity error control and display. Accepts and generates serial ASCII plus parallel keyboard input. The
3216 Is 32 char by 16 IInes. 2 pages with memory 3216 is 32 char. by 16 in $n e s .2$ pages with memory dump teature The 6416 is 64 char. by 16 lines. with scrolling. upper and lower case (optional) and has
RS-232 and 20 ma loop Intertaces on board. Kits RS- 232 and 20 ma loop interfaces on board. Kits include sockets and complete documentation RE 3216, terminal card
$\$ 5149.95$ RE 6416, terminal card
189.95 $\begin{array}{ll}\text { Lower Case option. } 6416 \text { only } & 13.95\end{array}$ Power Supply Kit
14.95

Video /RF Modulator. VD-I
6.95
60.00

CALENDAR ALARM CLOCK

The clock that's got it all 6-5"LEDs. 1224 hour snooze 24 hour alarm, 4 year calendar battery backup. and lots more The super 7001 chip is used Complete kit less
less case (not available)
$\$ 34.95$

30 Watt 2 mtr PWR AMP

Simple Class C power amp features 8 times powe gain 1 W in for 8 out. 2 in for 15 out. 4 W in for 30 out Max output of 35 W incredible value complete with all pafts. less case and T-R relay
PA-1. 30 W pwr amp kit
TR-1. RF sensed T-R relay kıl
$\$ 22.95$
6.95

Ramsey's famous MINI-KITS

FM WIRELESS MIKE KIT Transmits up to 300
to any FM Droadcast radio uses any yype of moke. Runs on 3109 V
Type FM. 2 has added se sitve mike preamp slage
FM-1 kit \$2.95 FM-2 kil $\$ 4.95$

COLOR ORGAN/MUSIC LIGHTS

See music come alive' 3 dillerent
lights flicker with music tor lows. one for the mid-range and one for the highs Each channel individually adiustable and drives
up to 300 W Great tor pattles band up to 300 W . Great tor patthes. band music, nite clubs and more

LED BLINKY KIT

A great attention getter which alter nately llashes 2 fumbo LEDS Use panel IIghts, anything' Runs on 3 to 15 volis

VIDEO MODULATOR KIT Conver ts any TV to video monitor Suns on 5.15 V . accepts std video Signal Best unit on the marke!!

TONE DECODER
TONE DEC
tone decoder on
a single PC board
Features.
400.500
hz adjustable range via 20 turn pot vollage regulation. 567 ic Usetul tor touch-lone decoding
tone burst detection. FSK. etc Can tone burst detection. FSK. etc Can also be used as a stable tone en
coder Runs on 5 to 12 volts Complete kit. TD. 1 510 12 volt

WHISPER LIGHT KIT An interesting kit. small mike picks up sounds and converts them to brighter the light Completely selp: confaned includes mike runs on
110 VAC controls up to 300 watis

SUPER SLEUTH A super sensitive am. plitiet which will pick Gieat tor montoring baby s room or as general purpose ampliter! Full 2 Wims output runs on 6 to 15 volts. uses $8-45 \mathrm{ohm}$ speaker Complete kit. BN-9
POWER SUPPLY KIT Complete triple regulated power supply pro vides varlable 6 to 18 Amp Excellent load regulation. good filterting and small size Less transformers, requires 6.3 V (u) A and 24 VCT Complete kit. PS-3LT

FM MINI MIKE KIT
A super high performance FM A super high periormance wike kit' Iransmits a stable signal up to 300 yards with excep. tional audio quality by means of its built in electret mike Kit includes case mike on-olt switch antenna battery and super instructions This is the finest unit avallable
FM-3 kit
S12.95
FM-3 wired and tested

CLOCK KITS

our Best Seller your Best Deal

Try your hand at building the finest looking clock on the market its satin finish anodized aluminum case looks great anywhere while six $4^{\text {. }}$ LED digits provide a highly readable display This is hours to assemble your choice of case colors silver gold bronze black blue (specify). Clock kit. 224 hour. DC. 5 Clock with 10 min 10 timer. 1224 hour Alarm clock 12 hour only DC-8 27.95
24.95 Alarm clock. 12 hour only: DC-8 24.95 $12 \mathrm{~V} D \mathrm{C}$ car clock DC-7 $\mathbf{2 7 . 9 5}$ For wred and tested clocks add $\$ 10.00$ to kit Drice

Hard to find PARTS

LINEAR ICo		AECULATORS	
301	\$. 35	78MG	\$1.25
324	1.50	723	50
380	125	309K	85
380-8	75	7805	85
555	45	78105	25
556	85	7905	1.25
566	1.15	7812	85
567	1.25	7912	1.25
1458	50	7815	85
3900	50	TTLICs	
cmos ICs		74500	. 35
4011	20	7447	65
4013	35	7475	. 50
4046	1.85	7490	50
4049	40	7419671	1.35
4518	125	Special ics	
5369	1.75	11 C 90	13.50
TRANSISTORS		10116	1.25
2N3904 lype	10/1.00	4511	2.00
2N3906 type.	10/1.00	5314	2.95
NPN 30w Pwr	3/1.00	5375AB	2.95
PNP 30w Pwr	3/1.00	7001	6.50
2N3055	60	$4059+\mathrm{N}$	9.00
UJT 2N2646 type	3/2.00	7208	17.95
FET MPF 102 type	3/2.00	LEOs	
UMF 2NS179 type	3/2.00	Jumbo red	8/100
MAF-238 RF	11.95	Jumbo green	6/1.00
SOCKETS		Jumbo yellow	6/100
8 pin	10/2.00	Minı red	$8 / 1.00$
14 pin	10/2.00	Microred	81.00
16 pin	10/200	EiPolar	75
24 pin	4/200	FEARITE GEAOS	
28 pin	4/200	Whit info. specs	15/1.00
40 pin	3/2.00	6 hole balun	5/1.00

Tembeny alatinnits BOX 4072, ROCHESTER, N.Y. 14610 $\$ 600$ Orders under $\$ 10.00$. add $\$.75$ Add 5% for postage. insurance, handling. Over-
seas, add 15%. NY residents, add 7% tax

Rockwell AIM 65 The Head-Start in Computers

MONEY BACK GUARANTEE
If you are not convinced that the AIM 65 is the best of its kind on the market, we will refund your money immediately.

TRONOCD International

2795-L West Lincoln Ave.

Anaheim, CA 92801
(714) 821-0234

VISA
Store Hours 10-7, Mon. - Sat.
MASTERCHARGE

Rockwell's AIM 65 Advanced Interactive Microcomputer can get you into the exciting world of microcomputers a lot easter and at a lower cost than you may have thought possible And you'll be working with the 6500 tamily the advanced state-ot-the-art NMOS system that's an everincreasing favorite for new commercial and hobbyist applications

As a learning aid AIM 65 gives you an assembled versatile microcomputer system with a Interactive Montor pogracter display and uniquely a hermal pinier An on-board Advanced our AIM 65 User's Manual will help you along each step of the way

You ll master fundamentals rapidiy Then you ll appreciate the fact that unlike the computer toys on the market AIM 65 offers flexibility and expandability you would expect to find in a sophisticated microcomputer development system
THERMAL PRINTER GIVES YOU MARD COPY - FAST AND OUIET
AIM 65 s 20 column Thermal Printer prints on low-cost thermal roll paper at a last 120 lines per minute 14 produces all of the standard 64 ASCli characters with a crisp-printing five-by-seven do

EXTENDED ALPMANUMERIC DISPLAY IS BUILT FOR UNDERSTANDING. NOT DECIPMERING.
AIM 55 comes with a 20 -character true Alphanumetic Display Intormation is displayed with bright magnitied 16 -segment font monolithic characters 11 s both unambiguous and easily readable

FULL-SIZE KEYBOARD IS DESIGNED FOR HUMANS, NOT ELVES.
calculator-type 6 隹 special functions
ON-BOARD ADVANCED INTERACTIVE MONITOR GETS YOUR PROGRAMS
UP AND RUNNING.
The ROM-resident AIM 65 Advanced Interactive Monitor Program provides a comprehensive sel of easy-10-use single-keystroke commands for debugging your programs and offers feafures
normally availabie only in larger expensive microcomputer development systems And with the AlM 65 Monilor theres no quessworkinvolved the Monitor gives a self-explanatory prompt when it needs information and it will generate a meaningful error message if an error has occurred The AIM 65 Monitor includes commands to

- Enter and edit programs directly no opcode" memorization
- List proqrams on Printer or ITY
- Display alter registers and memory
- Set breakpoints trace and debug program execution
- Control the Thermal Printer
- Transter information to from attacned Cassette Recorders or TTY
- Execu'e programs in on-board or external RAM ROM or PROM memor
- Interlace the optional AIM 65 Assembter and BASIC Interpreter

AIM 65'S ADVANCED R6500 NMOS ARCHITECTURE.
and 65 II provides demonstrated speed and simplicity plus 65 K addressability and the power of a 56 -command minicomputer-like instruction set
The R6532 RAM-Input Output-Timer (RIOT) Combination device is used by the AIM 65俍
65 I Tho R6522 Versatile Intertace Adapter (VIA) devices are provided One device supports AlM 655 Thermal Printer and the TTY and Cassette Interfaces the other supports two user-dedicated 8-Itne I Oports plus an 8 -bit seriall O po
on the moduies Application Connector

AIM 65 comes witt iwo R2332 4K Read Only Memory (ROM) devices installed These hold the Advanced Intertace Monitor program Spare sockets allow the user to expand on-board ROM UP to 20 K byles These sockets will accept user programs on R2332 ioms or comparible PROMs.

A

M 65 HAS EXPANSION BUILT IN
And to allow AIM 65 to grow the way you want to to we ve provided an Application Connector and an Expansion Connector The Application Connector permits you to plug on a TTY (20 ma current (oop) and one op two standard audio cassette recorders It also has ine pinouts for the VIAs General-Purpose I/O ports The Expansion Connector extends AIM 65's system bus address data and control - out to additional memory, or anything else you might attach

And BASIC high-level language programming is a built-in option

600 MHZ FREQUENCY COUNTER continued from page 43
moved from its socket and a jumper wire used to connect socket pins 8 and 2. The input will now be applied directly to the 7208 counter without being prescaled. You can also go a step farther and use a DPDT miniature toggle switch (S4) to open the supply going to the 74196 and short together pins 8 and 2 (see schematic). You will of course have to make allowances for the decimal point being one place to the right in this mode.

Calibration

Before calibration. check the regulated
supply voltage at pin 2 of the voltage regulator IC6. The voltage should be between 5.1 and 5.35 referenced to ground. Resistor R1 can be replaced with a higher value to increase or a lower value to decrease the regulator's output voltage. Allow the counter to warm up for 30 minutes before calibration.

Calibration is performed by allowing the counter to count an accurately known and stable signal (preferably between 3 MHz and 50 MHz) and adjusting trimmer CI4 until the known frequency is displayed. A nonmetallic screwdriver or TV alignment tool should be used when adjusting C14. The $1-\mathrm{megohm} / 60-\mathrm{MHz}$ input and the 1 -second gate position

should be used for maximum resolution.
If an accurately calibrated frequency counter is available then allow it and the OPTO-7000 to measure a stable oscillator or signal generator output. Adjust the OPTO-7000 until identical readings are obtained. The reference frequency counter should have at least the same number of digits of resolution as the OPTO7000.

A signal generator or oscillator (15MHz if available) can be adjusted for a zero beat against the WWV signal received on a general-purpose communications receiver. When a zero beat or meter null is obtained. read the frequency on the OPTO-7000 and adjust C14 for the correct display. A color TV set that is tuned to a network (CBS. NBC. ABC) color signal is phase-locked to a secondary frequency standard of 3.579545 MHz . The color-burst frequency standard should be used only by those who have experience working with poweredup TV set chassis.

It nay be possible to locate a local twoway radio service shop that has suitable frequency calibration equipment and would be willing to calibrate a counter for a reasonable charge.

The Optoelectronics TCXO-70 can be used as a precision .1-ppm timebase for the OPTO-7000 and comes from the factory precalibrated.

R-E

SN6477 Complex Sound Generator
\$3.50
This is a programmable sound effect generator capable of producing a wide variety of sounds from high to low frequency. Using this chip \& a small number of inexpensive parts, a variety of projects may be built. Spec shs \& application notes \$1.00

TL500 Analog Processor

$\$ 8.50$
The TL500 contains all the active analog elements for an automatic zeroing and automatic polarity. It is a 13 -bit dual-slope A/D converter that has true differential inputs. It requires 3 caps. \& 2 resistors' with no special matching or tolerances. It is designed for use with the TL.502. Spec sheet
TL502 Digital Panel Meter L.D.
$\$ 5.50$
This is a $4 \frac{1}{2}$-digit Digital Panel Meter L.D. that is designed to interface with the TL500 analog processor. It provides base drive for external PNP digit \& segment drivers providing direct interface with 7 -segment display. Spec sheet
LD130 A/D Converter
$\$.25$

Single-reference voltage, auto zero and auto polarity. signed for Digital Voltmeters, Panel Meters, Digital Thermometers, Microprocessor Interfaces to Analog Signals, \& General Instrumentation. 34-pg. Spec \& Application notes $\$ 2.50$
MM5865 Programmable Stopwatch $\$ 7.50$ 7 -function Universal Timer and Stopwatch. Start/stop with elapse time, start/stop accumulative event time, split, sequential total elapse time, rally total elapse time, program up and down count. It uses 32.8 KHz crystal or external clock Spec sheet \& 10-page Application notes

32.8 KHz Crystal

The next time you need a tuner repaired or module rebuilt:
Remember
FAST SERVICE
Remember
PROFESSIONAL QUAUTY
Remember
ONE-YEAR UMITED WARRANTY Remember

PTS ELECTRONICS

PTS ELECTRONICS, INC
SEE THE YELLOW PAGES FOR THE PTS SERVICENTER LOCATION NEAREST YOU

$B X^{\text {Ppreckson }}$ OSCILLOSCOPES

New 15 MHz portable $3^{\prime \prime}$ dual-trace scope
 $117 \mathrm{VAC}, 234 \mathrm{VAC}, 12$ VOC Or optionat
internal battery pack. Fully cegured

Dual-Trace $5^{\prime \prime}-15 \mathrm{MHz}$ Triggered Sweep

Dual-Trace 5" -10MHz Triggered Sweep

1403A-P
$3^{\prime \prime} \cdot 5 \mathrm{MHz}$ Solid State Oscilloscope

Dual-Trace 5' -30MHz Triggered Scope

- Locate dead if stages. Check operation of mixer. AF and local oscillators a Check stages sequentially F or video stages. Plus all standard color generator uses

Before you buy, FORDMAM check our prices.? Call TOLL FREE Master Charge. Bank Americard, Visa, C.0.0.'s accepted

ADD $\$ 300$ TO COVEA

Res ado aporop
sales tax.

Solid-State RF Signal Generators mielded step attenuators plus variable fine output leve control with caliurated meter provide widest range of outputs wh known signall levels - Double shielding elluminates purious radiation even at oulputs of $\mathrm{T} \mu \mathrm{V} \cdot$ Internal crystal Model E 2000

Telephone Answering Devices

LINEAR I.C.'S

LM324N

LM324N	.49
LM339N	49
LM555N.	29
LM556N 14	.59
LM723CN	.34
LM723CH	.39
LM741CH	.37
LM741CN 8	24
LM1458N 8	.39

Quad Op Amp Quad Comparator Timer
Dual Timer
Vottage Regulator
Voltage Regulator
Op Amp
Op Amp
Dual Op Amp

Part No Price Part No Price

S00	15	74LS47	89
74 LSO	15	74LS48	89
$74 \mathrm{LS02}$	15	74LS49	89
74 LS 03	15	74LS59	19
74LS04	19	74LS54	19
74LSO5	19	74LS55	19
74LS08	19	74LS63	150
74LS09	19	74LS73	29
74 LS 10	15	74LS74	35
74LS 11	19	74LS75	
74LS 12	19	74.576	39
74LS 13	35	74LS78	
74LS14	59	74LS83	
74 LS 15	19	74LS	
74LS20	15	74LS86	
74LS21	19	74LS90	
74LS22	19	$74 \mathrm{LS91}$	
74 LS 26	25	$74 \mathrm{LS92}$	
74LS27	21	74 LS93	49
74LS28	21	74LS95	10
14LS30	15	74LS96	99
74LS32	25	74LS 107	39
74LS33	21	74LS 109	32
74 LS3 7	23	7aLSII 2	32
74LS38	23	74LS113	39
74LS40	19	74LS114	39
4LS42	54	74LS 12	

Part No price

Part No. Price

MOS Static RAM'S
Stock level

23600	2114	7.50
88000	2102LFFPC	1.19

MOS Dynamic RAM'S
Stocklevel PartNo. Price

2000	4 K 4060	3.95
23000	4K 4027	2.9
00	16K 416-3	9.95
	16 K 416	

UART'S

Stock level PartNo. Price
38000 AY5-1013A 4.95 6000 AY3•1015 5.95 1KCMOS RAM

Stock level Part No. Price 18800

5101
4.95
Dual In-line

Stoch level	Contacis	Price
44000	8 PIN	.11
620000	14 PIN	.13
410000	16 PIN	.15
38000	18 PIN	.19
21000	22 PIN	.27
59000	24 PIN	.28
140000	28 PIN	.36
197000	40 PIN	.48

MICROPROCESSOR CHIPS
Stock level Part No Price 9300 8080A 3.955 .50 $18800 \quad 6800 \quad 8.957 .95$

INTERFACE SUPPORT CIRCUITS

Stocklevel	Pari No	Price
13000	8212	1.98
700	8214	$\$ 953.95$
800	8216	1.98
1100	8224	2.75
600	8226	1.98
1600	8228	4.75
1050	8238	4.75
2800	8251	5.954 .95
400	8253	14.95
16000	8255	5.95
600	8257	9.95
250	8259	14.95
4800	6810	3.953 .50
1100	6820	4.953 .95
1900	6821	5953.95
5900	6850	5954.95
1800	6852	5954.95
100	6843	29.95
100	6844	35.00
100	6845	29.95
100	6501	6.95
100	6502	39.95

Z80.CPU $14.95 \quad$ Z80.S10/0 59.00 Z80A.CPU 24.95 Z80A.SIOIO 68.00 780-PIO Z80A.PIO $\begin{array}{llll}\text { Z80.CTC } & 7.95 & \text { Z80.SIO/1 } & 59.00\end{array}$ Z80A.CTC 11.95 Z80A.SIO/1 68.00 Z80-DMA $46.00 \begin{aligned} & \text { (separate TX } \\ & \text { without OTRB) }\end{aligned}$
P.O. BOX 1035 FRAMINGHAM. MASSACHUSETTS 01701

AIT ATHE

Over the countor sales.
AINIMUM ORDER $\$ 10.00$ - AOO $\$ 2.0070$
12 Mercer Rd. Natick. Mass. 01760
Behind Zayres on Rte, 9
Telophono Orders \& Enquires (617) 879 - 0077 in canada 3 locations

Perforated Boards NOT INCL UDED w/100 Series

103 MINI-WINK NEON FLASHER. Random flash pattern. Interesting displays. 6 neon lamps. AC operated
103
$\$ 2.95$
103A (103 w/PCB)
4.60

1038(103 w/PCB,CASE)
6.85

110 ELECTRONIC WHOOPER SIREN. POWer ful wailing sound. Dual oscillator circuit. Use with any alarm circuit. Battery not included. 110
110A (110 w/PCB) $\$ 4.95$
$110 \mathrm{~B}(110 \mathrm{w} / \mathrm{PCB}, \mathrm{CASE})$
6.50
9.60

117 TUNABLE ELECTRONIC ORGAN. Tunable 7 -note scale. Play sing-a-long favorites Battery not included.
117
$\$ 6.95$
$117 \mathrm{~A}(117 \mathrm{w} / \mathrm{PCB})$
117B(117 W/PCB,CASE)
12.00

120 SIREN/CODE OSCILL	pierc-
ing alarm. Practice Mors included	ery not
120	\$4.20
120A (120 w/PCB)	5.55
120B (120 w/PCB, CASE)	8.65
104 VARIABLE STROBE	for par-
ties and photography. Va operated	ate. AC
104	$\$ 9.95$
1044 (104 w/PCB)	14.20
1048 (104 w/PCB.CASE)	19.70

126 PROGRAMMABLE DOORBELL. Adjustable rate and pitch for 15 musical notes. Play favorite funes 6 IC's. Uses existing transformer and switch.

$126 \ldots$
$126 A(126 \mathrm{w} /$ PCB $)$
$126 \mathrm{~B}(126 \mathrm{w} /$ PCB, CASE $)$
16.95

16.70
23 29.20
,

Pertorated Boards NOT INCLUDED w/100 Series	
- 109 AUTO/HOME BURGLAR	
	ALARM. Use with car horn or
	models 110 or 124 sirens Latch-
	ing circuit. Battery not included.
c	109 $\$ 2.25$
	109A (109 w/PCB) ... 3.40
	109B (109 w/PCB. CASE) . 5.00

114 AUDIO AMPLIFIER. High sensitivity, high gain, use as intercom. PA amp, phone pick-up and others push-pull output. Battery not included.

114	$\$ 6.35$
$114 A(114 \mathrm{w} / \mathrm{PCB})$	8.90
$114 B(114 \mathrm{w} / P C B$.	$\mathrm{CASE})$

102 6/9 VOLT SUPPLY. 100 mA . Battery eliminator, dual range output switch, neon pilot lamp. AC operated
102

102A (102 w/PCB)
102B (102 w/PCB. CASE) $\quad .3 .25$

119 MOTOR SPEED CONTROL
Adjust motor speed to suit application. SCR controlled, use as light dimmer. AC operated
119
$119 A(119$ w/PCB)
$\$ 3.95$
119B (119 w/PCB. CASE) . 7.75

123 ELECTRONIC TIMER. Turns appliances on and off, adjustable control, 2 minutes to 1 hour. 1 IC AC operated. 123
$\$ 8.95$
123A (123 w/PCB) CB CASE)
11.40

123B (123 w/PCB, CASE) - 13.65

540 BINARY CLOCK. Handcraft tomorrow's timepiece today. Watch constantly changing patterns of LED's as they display Binary Time. This unique clock project enhances the learning of Digital Logic and the Binary Coding System, as well as offering a beautifully styled conversation piece
10 TTL INTEGRATED CIRCUITS - VOLTAGE REGULATOR - MANUAL TEACHES BINARY SYSTEM - FAST. SLOW AND HOLD CONTROLS • 115 VAC 50 or 60 Hz

\$39.95 Complete

536 8-TRANSISTOR AM RAD10. Experience jewel-like clarity in sound. The best superheterodyne kit circuit available. SEPARATE LOCAL OSCILLATOR for high sensitivity and excellent selectivity. Unique IF Transformer mounting system. Manual. 9V battery required (not included).
\square
\$16.45 Complete

Perforated Boards NOT INCLUDED W/100 Series

124 WARBLING SIREN. Two-tone oscillating siren. Loud and penetrating, 2 IC's. For automobile or other 12 volt systems.
124
$\$ 5.65$
124A (124 w/PCB)
7.10

124B (124 w/PCB,CASE)
10.20

105 FISH CALLER. Clicking sound imitates distressed fish. Adjustable speed. Battery not included
105
$\$ 2.95$
105A (105 w/PCB)
4.10

105B (105 W/PCB.CASE)
5.70

107 COLOR ORGAN CONTROL - 3 CHANNEL. Over 200W per channel. Separate sensitivity control. Hi-mid-lo frequency response. AC operated.
107
$\$ 9.20$
107A (107 W/PCB)
11.85

1078 (107 w/PCB,CASE)
14.95

118 TV SCRAMBLER. Tunable to all VHF stations. 30 foot range Battery not included
118
$\$ 1.95$
118A (118w/PCB)
2.90

1188 (118w/PCB.CASE)
4.50

122 COMPUTER SOUND EFFECTS GENERATOR. Produces weird, spacey sounds. 4 IC's Control tone, rate and blip or glide. Battery not included
122
$\$ 14.95$
122A (122 w/PCB)
19.40

122B (122 w/PCB,CASE)
24.90

We accept:
 VISA,

 MASTER CHARGE BANKA MERICARD, CALL TOLL FREE 800-824-5136

THE NEW HOBBY WORLD CATALOG

Your source for factory prime, professional quality equipment. Computers, add-on boards, IC's, sockets, resistors, supplies, tools, test equipment, books, and more. Shop your buy list at Hobby World. You'll find what you want, and at a solid savings. For example, look at this month's specials

THE NEW ELENCO $3 ½$ DIGIT SOLID STATE MULTIMETER

The ultimate in performance: measures resistance to .01 ahms, voltage to 100 mic - volts, current to one micro-amp. Assembled and tested, with 2-Year warranty. Lists at \$99.95, HOBBY WORLD PRICE ONLY \$74.95!

16K MEMORY ADD.ON FOR APPLE OR TRS-80

HOBBY WORLD PRICE IS ONLY $\$ 98.00$ (specity when ordering)
WAHL ISO.TIP CORDLESS SOLDERING IRON
Includes ni-cad batteries and wall plug transformer
Lists at \$19.95, BUT HOBBY WORLD HAS IT FOR \$14.95!

SEND ME A FREE CATALOG!

ATTENTION SERVICE DEALERS

- Buy Directly •

Top Line Solid State Replacements, Original Japanese Transistors and Integrated Circults

PARTIAL 'JST • MONTHLY SPECIALS
Your | Pan Your | Pan

Your Number Cost Number Cost Number Cost | AN 214 | 225 | $2 S C$ | 799 | 295 | 2SD 292 |
| :--- | :--- | :--- | :--- | :--- | :--- | AN 214 AN 247 2SA 495 2SA 643

$2 S C 710$

$$
\begin{array}{l|l}
3.25 & \text { 2SC } 86
\end{array}
$$ 2SC 710

Hobby World 19355 Business Center Dr *6 Northridge CA 91324

TELEPHONE ORDERS
Inside Cal 2138869200 Outside Cal 8004235387

$$
\begin{array}{cc|cc}
43 & .50 & 2 S C & 1358 \\
10 & .30 & 2 S C & 1383 \\
& \text { Hurry while our su }
\end{array}
$$

-_ Hurny while our supply lasts! -

Send for our complete list of Japanese parts and prices

- Our Protessional Replacement pars are top quality and replace over 130.000 indus. try types at a substantial savings to you over most other replacement lines
- To order, fust send us the ECG. SK, GE, or other part number and we will promplly ship you the premium PR direct replacement, plus a tree PR replacement guide Remember-these are lirst quality pars-no culls, no seconds! 2 year warranyy on all parts.
- Orders over \$25.00 shipped tree, under \$25 add \$1 UPS C.O.D. orders are welcome To approximate the cost of a replacement part order. deduct 40% from dealer cost of ECG or other types All orders shipped within 24 hours

Write or Call- Toll Free 800-526-4463

DEVCO P.O. Box 270. Garwood, NJ 07027 • (201) 688-0300

YOU'RE UNDER SURVEILLANCE!!
A HOST OF PEOPLE, AGENCIES, AND COMPUTERS ARE BUSY SPYING ON YOU AND YOUR BUSINESS EVERY DAY, OFTEN ILLEGALLY. . . .
HOW TO STOP IT OR DO IT BACK!

A Large Format ($81 / h^{\prime \prime} \times 11^{\prime \prime}$) Quality Paperback, 240 Pages

BUGGING

WIRETAPPING
TAILING

OPTICAL AND
ELECTRONIC SURVEILLANCE
SURREPTITIOUS ENTRY
DETECTIVE TECHNIQUES
WEAPONS
COUNTERMEASURES
"A VIRTUAL ENCYCLOPEOIA ON SURVEILLANCE EVERYTHING YOU'VE ALWAYS WANTED TO KNOW ABOUT SPYING."
playboy magazine
With Each Order You Receive Free Other Material And Literature For Investigative Procedure
Depending on luck for success
Is like lishing without bait

QUIMTRONIX
 Postpaid-P.O. Box 548-RE
 Seattle, Washington 98111

CIRCLE 47 ON FREE INFORMATION CARD

Solar cell panels, used, OK condition 20 cell panel, $2^{\prime \prime}$ cells 6 volt $1 / 2 \mathrm{amp}$ \$ 75.00
36 cell panel, 12 volt $1 / 3$ amp................................ 100.00
24 cell panel, 8 volt . 45 amp.................................. 85.00
10 half cell panel, 5 volt $1 / 4$ amp............................ 50.00
5 cell panel, 2.5 volt $1 / 2$ amp.................................. 40.00
Single 3.5 inch cell, $1 \mathrm{amp}, 45$ volt 8.50
Solar power kit, 3.5 inch cell, motor, propellor.. \$ 10.25 ULTRASONIC room alarm, intrusion detection with full data for hookup.
40.00

SEE IN THE DARK IR viewer complete ready to operate. Guaranteed by the manufacturer. Portable, runs on lantern battery. New, see in total darkness. No shipments to Calif. Comes complete with built in IR source and adjustable focus lens. SPL-21 \$199.00

All items FOB Lynn, Mass. Send for free 64 page catalog jam packed with goodies. Meshna Inc., PO Box 62, E. Lynn, Mass. 01904

LCD Guartz Alarm Chronograph with calen. dar and dual time zone!! Watch is the same as Seiko but you pay a lot more for the name! Features

* hour alam
- Chronograph counis up 12 hrs.. 59 mins. 59.9 sec Precision of chrono up to $1 / 10 \mathrm{sec}$ indicated by 10 moving arrowsil
Lap time lwith chrono run ning uninterrupted)
- Time displays by LCD for hour, min, sec, day, date of the week and $A M / P M$ Calendar gives out date day - Dual time zone for any two cities of the world at your own choice.
With light switch to allow you to see the time in the dark!
$\$ 65.50$

JUMBO

1" LED ALARM CLOCK MODULE Assembled - not a kir
Features: " 1 " 4 digits red LED display 12 hours leal time format - 24 hours alarm audio output (just add speaker)
Power fallure indicato

- Count down timer 59 mins. 12.16 V AC $50 / 60 \mathrm{~Hz}$ input - 10 min snooze con $\$ 8.50 \mathrm{EACH}$ - FEM 701

Transformer $\$ 1.75$
 $\left\{\begin{array}{l}\text { NEW MARK III } \\ 9 \text { Steps } 4 \text { Colors }\end{array}\right\}$ Ledvu Stereo level indicato kit with arc-shape dis play panel!! This Mark IIt LED level indicator is a new design PC board with an arc-shape 4 colors LED display (change color from red, yellow, green and the peak output indicated by rose red). The power range is very large, from 30 dB io +5 dB The Mark 111 indicator is applicable to 1 watt 200 watts amplifier operating voltage is $3 \mathrm{~V}-9 \mathrm{~V}$ DC at max 400 MA . The circult uses 10 LED per channet. It is very easy to connect to the am plifier. Just hook up with the speaker output IN KIT FORM \$17.50

ELECTRONIC

DUAL SPEAKER PROTECTOR
Cut off when circuit is shorted or over load to protect your amplifier as well as your speak. ers. A must for OCL circuits. KIT FORM S8.75 EA.

It is not a pack of cigarettes. It is a new FM wireless mic kit! New design PC board fits into a plastic cigarette box. \longrightarrow (case included) Uses a condensor microphone to allow you to have a better response in sound pick-up. Trans.
14.15 $\$ 11$ mits up to 350 ftl With an LED indicator to signal the unit is on

KIT FORM
mmz
\$7.95

ETALA-LLNE
it is a multi-plugextension cord for 110 V AC
Maximum 12 plugs $\$ 3.50 \mathrm{EA}$.

Mount This Side Up. Insert

3.579 MHz Color TV Crystal
 for moped, backup light system, alarm system, CB or other purpose. All brand new, never charged! SPECIAL PRICE $\$ 4.25 \mathrm{EA}$
\$1.25 EA
10 for $\$ 11.00$

WHAT A SAFE WAY TO SHOOT!
Electronic shooting game for all ages. Target uses photo electric cell and pistol shoots light beams. Range approx 10 ft . and tar get makes sound. Not a kit! Battery not included.
$\$ 13.50$ per set

SANYO HYBRID

Audio power amplifiers I.C. Max. hi-fi output power, minimum ext. components needed.

15 Warts	STK.028	$\$ 8.50$
23 Watts	STK.054	$\$ 13.50$
30 Watts	STK.056	$\$ 17.50$
50 Watts	STK.050	$\$ 26.50$
$10 W+10 W$ (stereo)	STK.040	$\$ 14.50$
$15 W+15 W$ (stereo)	STK.041	$\$ 25.50$
$20 W+20 W$ (stereo)	STK.043	$\$ 31.50$

COMPUTER GRADE

 6000MFD 50 V \$2.60 EA 9000MFD 50V \$3.25 EA 11000 MFD 35 V S3.20 EA 14500 MFD 40 V \$3.40 EA. 23000MFD 20 V \$3.00 EA 58000MFD 20V 53.20 EA. $100,000 \mathrm{MFD} 6 \mathrm{~V}$ \$2.50 EA. meter to indicate the output level af your amplifier from -20 dB to +3 dB . Kit includes all LED, transistors, electronic components. P.C. Board and instructions.Easy to build and fun to see.
ONLY $\$ 12.50$ EA.
Features

- 12/24 Hours Display
- $50 / 60 \mathrm{~Hz}$ Input
- 6 Digits Bright Orange Readouts

Kit includes plastic case, MM
5314 I.C. One set transistor
drivers, P.C. Board, gas discharge displays, all other elec tronic parts and transformer. Catalog no. DC.8SP SPECIAL PRICE \$17.95 PER KIT

9 STEPS LED LEVEL INDICATOR KIT

for most stereo amplifiers
This new polect works as a pair of $V U$
-

COMPLETED UNIT-NOT A KIT!
OCL pre amp. \& power stereo amp with bass, middle, treble 3 -way tone control. Fully assembied and tested, ready to work. Total harmonic distortion, less than 0.5% at full power. Output maximum is 60 watts per channel at 8Ω. Power supply is 24 . 36 V AC or DC. Complete unit
-Kit form $\$ 37.50$ Assembled $\$ 49.50$ ea. Power transformer

Good for anything needing sound. This is not electronic, but we bought them with some other deals. They are all brand new in boxes. $\$ 2.50 \mathrm{EA}$.

POP-AMPS AT "CENT-CIBLE" PRICES

Case code: $T=$ TO. 220 Power Tab: $V=M$ ini dip: $K=T 0 \cdot 3: H=T O \cdot 5: N=D I P$

Troa No	Each	2 lor	Troe Mo.	Each	2 fors	Trpe	
Lm300H	. 79	\$.80	LM3407.18	1.49	1.50	Lm709\%	
Lm30iV	45	50 46		1.49	1.50	Lm709M	
Im301\%	45	46	Lm376y	29	30	Lm>33N	
Lm 308 y	29	30	Lm377M	2.25	2.26	Lm74iH	
Lm 30809 gr	. 6.4	70	Lm38ON	1.39	${ }^{140}$	Lm7474	
-m3iv	. 29	. 30	LMs3iH	1.49	1.50	M13	
- Lm320\% 6	1.49	1.50	LM532N	25	26	LM1312	
-Lm322N	1.19	1.20	LME532H	$\begin{array}{r}\text { S } \\ \hline\end{array}$	- 26	M1a14V	
LM339M	1.79	1.80	NM555V	${ }^{5.75}$	5.96	(m1458V	
	1.49	1.50	LMs56\%	1.79	. 80	(m3028	
	1.49	1.50 1.50	Lms5sk	39	${ }_{40}$	Lm3900N	
- Lm $340 \mathrm{N-15}$	1.49	1.50	Lms61\%	${ }_{1}^{1.00}$	1.01	(m4250	
	1.49 1.49	1.50 1.50	Lms655	1.00	${ }_{1}^{1.01}$	LMm75451	
	1.49	1.50	OLM567	2.39	2.40	LM75491	
	1.49	1.5	Lm703N	$\stackrel{59}{19}$	${ }^{6} \mathbf{6 0}$	Lmssi92	
- Lm 340 T - 15	1.49	1.50	(m7an				

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Free	e Information Number Page
31	Active Electronics...................................... 93
A	Advance Electronics 27
9	Advanced Computer Products..................... 85
A	A M C Sales .. 79
12	American AntennaCov. 4
39 A	A P Products Inc...................................... 32
59 B	B \& K Precision Dynascan Co................... 34
2 F	F.W. Bell, Inc. .. 65
K	Karel Barta ... 84
B	Bullett Electronics 91
B	Burdex Security Co. 79
33 C	C F R Associates 82
C	Chaney Filectronics................................... 104
17	Channellock ... 26
C	CIF.-Cleveland Institute of Flectronics... 18-21
C	Command Productions 82
34 C	Consumer's Co.. 80
51	Continental SpecialtiesCov. 3
C	CRFI-Dis. of MeGraw Hill Continuing Fiducation .28.31
- D	Dage Scientific Instruments 79
53	Davis Electronics...................................... 63
25	Delta Flectronics 90
14	Devco .. 98
38	Diamondback Flectronics........................... 84
54	Digi-Key .. 99
- I	IRRC ... 82
F	E.dmund Scientific...................................... 74
55	E ICO.. 78
24	Electronic Book Club (Tab)......................... 15
E	Electronic Levelopment Lab 86
52	Electronic Supermarket 86
58	Electronic Systems 83
E	E M C-Electronics Measurements 63
66	Fluke .. 33
23	Fordham Radio Supply 92
7,30 F	Formula International 100.101
-	Fowler Alarms ... 79
60	Fuji-Svea ... 81

- Gavin Instruments.

Godbout Electronics
Gould
Grantham College of Engineering
Graymark
Heath
Hickok Electrical Instruments..................... Cov. 2
Hobby World.
Intergrated Flectronics.
Indiana Home Study
Information I inlimited.
International Crystal Mfg. Co.
James Electronics
Kedman
Krystal Kits
Lakeside Industries
Ieader.
Meshna
Millco Ind.
National Camera Supply
National Radio Institute-NRI
National Technical Schools........................ 70-73
New England Business Service, Inc.
New-Tone Electronics International
Netronics
North American Electronics
Ohio Scientific
O.K. Machine \& Tool.

Olson.
Optoelectronics
PAIA
Panavise.
Poly Paks
, 103
5 Pratt, Read ... 80

A breadboard as big as your ideas.
 EXPERIMENTOR 325 \$2.75*

22 five-point terminals plus two 10 -point bus strips $0.3^{\prime \prime}$ centers; $1.9 \times 2.1 \times .4^{\prime \prime}(43$ $\times 53 \times 10 \mathrm{~mm}$)

EXPERIMENTOR 600

\$10.95* 94 five-point terminals plus two 40 -point bus strips. $0.6^{\prime \prime}$ centers; $6.0 \times 2.4 \times 4^{\prime \prime}(152 \times 61 \times 10 \mathrm{~mm})$

Instant hookup for all types of components, with push-in/pull-out ease

Adaptable for all types of components... DIP-compatible ... conform to $0.1^{\prime \prime}$ gridi jumpers are \#22-30 solid hookup wire

Mix and match large and small chips in the same circuit. Use 300 -series sockets for smaller DIPs; 600-series with $0.6^{\prime \prime}$ center channel for full fan-out with larger chips.

Infinite flexibility lets you expand and modify circuits vertically and horizontally, simply by snapping sockets together.

Easy mounting using 4-40 screws from front or 6-32F self-tapping screws from rear. Vinyl-insulated backing lets you fasten to any surface.

46 five-point terminals plus two 20 -point bus strips. $0.6^{\prime \prime}$ centers; $3.6 \times 2.4 \times .4^{\prime \prime}$ (91 $\times 61 \times 10 \mathrm{~mm}$).

EXPERIMENTOR QUAD BUS
STRIP \$4.00* Four 40 -point bus strips. $6.0 \times 1.0 \times 4^{\prime \prime}(152 \times 25 \times 10 \mathrm{~mm})$.

Exclusive
 Octopole Construction.

That's eight magnets set in eight different directions to give you a magnetic seal so complete and powerful, your antenna would stay up there if you could squeeze between two semis passing each other at 180 miles an hour. That's magnetic octopower.

* GUARANTEE I

Placed on the roof of a vehicle; properly tuned, the K40 Magnamount is guaranteed to transmit a further distance than a standard K40 without the Magnamount or you will receive a prompt and full refund from your K40 dealer who installed and tuned the Magnamount K40 for you.

* GUARANTEE II

Materials and workmanship are guaranteed for a full 12 months. Any part that fails to perform satisfactorily will be replaced absolutely free.

Exclusive K40 Flux Harmonics for Greater Transmission.

The magnetic radiation pattern was designed to match the K40 antenna radiation for greater distance than the standard K40. See our guarantee.

The facts: Physics and Physical.

1. Magnamount is a bigger, stronger magnet - in fact it's 8 bigger, stronger, magnets.
2. It doesn't just hold the K40 antenna, it helps it transmit further.
3. Remember the law of reciprocity. The antenna that transmits better, receives better.
4. It provides a flatter, lower SWR because the Magnamount is capacitance grounded.
5. It puts your $5 / 8$ wave K40 antenna securely in place in the most advantageous place to work against a ground plane-high and free from obstruction. That's square in the middle, right up on top.

[^0]: NEBS
 New England Business Service. Inc. Townsend. Massachusetts 01470

[^1]: - Product Engineers, Optoelectronics, Inc.. Ft. Lauderdale, FL

[^2]: $\Gamma \rightarrow$ CAR STOLEN CAR CAN BE LOCATED \longrightarrow PROTECT AUTOMOBILE, BOAT. TRAILER, AIRPLANE, HOME \& PROTECT AUTOMOBILE, BOAT, TRAILER, AIRPLANE, HOME 8 OFFICE. Make a FOOL PROOF silemt radio alarm by using your
 Battery. Transmitter. Swiches o Racelver (not included). Altach Baltery, Transmiler. Swithes \& Racelver (not included). Altach
 to NEW INVENTION! "LOCK IN CONTROL" Easy, simple InstalaIo NEW INVENTION! "LOCK IN CONTROL"' Easy, simple Installation. INTRODUCTORY OFFER $\$ 2995$ with MONEY BACK GUARANTEE when returned in 15 days Print NAME 8 ADDRESS. Send
 check or MONEY ORDER, 6% tax CA. We will send you a LOCK \mathbf{N} Check or MONEY ORDER, 6\% lax CA.. We will send you a LOCK \mathbb{N}
 CONTROL with PLANS

 FREE INFORMATION FOWLER ALARMS, P O. Box 64466 RE-1, LOS Angeles, CA.، 90064 | FOWLER ALARMS, P O. Box 64466 RE-1, LOS Angeles, CA.، 90064 |
 | :--- |

