ROOECTS-HI-FI-COMPUTERS

Radio-Electrontos

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS
part 2: phoneaccessory
BUILD DICHOLL
keep track of call costs
which type is best DISPOSABLE BATTERIES
barbon, alkaline, mercury
digital comes to hi-fi
DICTAL HIFF RECORDNG
leam how it's done
days, weeks, months
LONG DELAY TIMER IGS
for precision delays
PLUS: * Picture Tithe Brighteners $*$ Build Programmable Beeper * All About Audio Oscillators * CET Exam * Computer Cormer \star Hi-Fi Lab Test Reports \star Hobby Corner \star Service Clinic

The function of this

 function generatior is to make your job easier.BEK-PRECISION
Model $3010 \$ 175$

If you stop and think about it, the function of any generator should be to make your job easier. When we at Dynascan designed our new Model 3010 function generator, that's exactly what we had in mind.

How did we achieve this? The 3010 was designed inside and out to be convenient and fast to use, and to provide years of trouble-free operation.

The 3010 generates all of the popular waveforms you're most likely to need, at only $\$ 175$. In addition to generating square, sine and triangle wave outputs, the unit offers a fixed TTL square-wave output. Sine-wave distortion is less than 1% and triangle-wave linearity and square-wave symmetry are a near perfect 99%. A convenient row of reliable pushbuttons provides fast, error-free selection of the appropriate range and output waveform.

The stable voltage-contrclled oscillator (VCO) of the 3010 is varied on each range by the front-panel frequency control, or the VCO external input. A 0 to 5.5 volt ramp applied to the VCO external input will provide a 100:1 output frequency change. In this way, the 3010 can be used as a sweep generator for response tests. Other features that will help your job run smoothly include: . 05% stability, a variable DC offset control for engineering and quality control applications a convenient tilt-stand handle, and a detailed 38 -page operations manual.

Because the B\&K-PRECISION Mcdel 3010 covers from 0.1 Hz to 1 MHz in six ranges, you'll probably be able to use it in more applications than you first guessed. These include IF response tests, test-instrument linearity measurements, transducer tests and digital clock-pulse substitution.

For a chance to have your day run a little smoother, contact your local B\&K-PRECISION distributor for immediate delivery or a demonstration.

NTS trains you on tomorrow's equipment. Today.

 Microcomputers, digital systems and more... from the first name in home study.

Now NTS training programs include an even wider choice of solid-state digital equipment than ever before offered in any electronic home study course. Advanced NTS/Heath digital color TV (25" diagonal with optional programming capability), NTS/Heath digital computer, digital test equipment, digital stereo receiver (70 watts per channel) plus much more state-of-the-art equipment to make your training exciting and relevant. Learn servicing and maintenance easily with step-by-step Project Method lessons and kits.
An all-new full color catalog shows you exactly what each of the fourteen courses cover, and every piece of equipment you receive.
Send for it today and see for yourself what's really happening in electronics training technology at NTS. It's free. Just send the coupon.

NO OBLIGATION. NO SALESMAN WILL CALL. APPROVED FOR VETERAN TRAINING.

TECHNICAL-TRADE TRAINING SINCE 1905 Resident and Home-Study Schools 4000 South Figueroa St., Los Angeles, Calif. 90037

The SwTPC multi-user system converts our standard 6800 single user computer into a multi-user time share system that may be operated with up to four terminals. The four terminals operate independently and may be running four different programs.

No modifications to the computer are necessary, you simply plug in the multi-user board and add an interface for each additional terminal.

The multi-user system is ideal for program training, multistation business applications and for computer aided instruction (CAI). Speed reduction from a single user system is negligible because all switching is done in hardware.

Multi-user BASIC, suitable for program instruction and simple business applications, is included with the multi-user
board. An 8 K disc BASIC is also available for systems in which disc drives are used. This software has a complete nine digit floating point math package, full string features and data files.

For computer aided instruction applications, a full feature version of PILOT is available. It includes math operators, misspelling match features and all other proposed for the ANSII standard version. The 6800 multi-user system is just as economical, but far more flexible and powerful than multiple small machines for CAI applications.

MUB-68 Multi-User Board and BASIC Software
Assembled and tested. \$150.00
Kit . \$129.95

Radio-Electronics.

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS
Electronics publishers since 1908

GENERAL ELECTRONICS	4	Looking Ahead Preview of tomorrow's news today		
	44	Disposable Batteries		
	61	Long Duration Timers Accurate circuits for time intervals of 60 -seconds or longer		
	66	Hobby Corner		
	72	State-Of-Solid-State Interesting applications of pressure transistors including solid-state barometer and blood-pressure meter		
BUILD ONE OF THESE	33	Digital Darkroom Timer Highly accurate timer has a range of from 0.1 second to 99 minutes and 99 seconds		
	37	Digi-Tall Telephone Call Timer Part 2: Special purpose timer helps you save dollars on longdistance toll charges		
	41	Burglar Alarm Switches How you can make your own		
	60	Little Pro Peep Programmable beeper can be used as heart of a call system		
COMPUTERS	56	Hobby Computer Program Telephone Toll Totalizer written for Radio-Shack TRS-80 in Level I BASIC		
	74	Computer Corner Microcomputer Interfacing-Data Acquisition		
STEREO HI-FI	50	R-E Lab Tests JVC RC-828 Radio Cassette "Superb" price/performance ratio for this \$250 unit		
PRO SOUND	57	Digital Hi-Fi Recording A new way to increase signal-to-noise ratio and dynamic range in audio recordings		
TELEVISION \& TEST EQUIPMENT	42	Audio Oscillators Part 2: Metering, attenuators, harmonic distortion and applications are all covered		
	47	How Pix Tube Brighteners Can Save You Dollars A look at what they are all about		
	54	CET Test Regular monthly study guide for the Certified Electronics Technician exam		
	76	Service Clinic Troubleshooting faulty high-voltage shutdown		
	77	Service Questions R-E's Service Editor solves technician problems		
EQUIPMENTREPORTS	26	Chemtronics Electro-Wash Degreaser		
	26	Advanced Video Model FS11 Video Camera		
	30	A.F. Stahler PC Tools		
DEPARTMENTS	118	Advertising Index	6	New \& Timely
	14	Advertising Sales Office	85	Now Literature
	14	Editorial	80	New Products
	16	Letters	87	Next Month
	90	Market Center	119	Readers Service Card

ON THE COVER

Unique darkroom timer counts down in either seconds or minutes and seconds. Precise digital readout and audible pulses too. See page 33.

TYPICAL ZINC-CARBON CELL is one of the three basic disposable cells described in this story.

Turn to page 44.

SPECTRAL PURITY of analog recorder ve digital recorder. For complete details on recording sound as a digital signal, turn to page 57.

Radio-Electronics, Published monthly by Gernsback Publications, Inc., 200 Park Avenue South, New York, NY 10003. Phone: 212-777-6400. Second-class postage paid at New York, NY and additional mailing offices. One-year subscription rate: U.S.A. and U.S. possessions, $\$ 9.98$, Canada, $\$ 12.98$. Other countries, $\$ 14.98$. Single copies $\$ 1.00$. © 1978 by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A.

Subscription Service: Mall all subscription orders, changes, correspondence and Postmaster Notices of undellvered coples (Form 3579) to Radio-Electronics Subscription Service, Box 2520, Boulder, CO 80322 .

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographe while in our possession or otherwise.

looking ahead

TV-audio wedding: For years, audiophiles have been irked by the quality of television sound, and for years the TV networks have been blaming the television set manufacturers, while the manufacturers have been blaming the public for being too stingy to pay extra for good sound systems in their sets. And for years, almost everybody has been blaming AT\&T, whose TV audio lines have been limited to the same frequency bandwidth as AM - so that while TV sound channels may theoretically be capable of passing frequencies as high as 15 kHz , most network broadcasts have had an upper limit of 5 kHz .

The logjam may finally be breaking. The limited substitution of satellites for land lines in long-distance TV transmission as well as some special musical simulcasts, mainly by the Public Broadcast System, have led to an increased awareness that good TV sound is both possible and desirable. But the biggest boost probably came from the AT\&T's recent switchover of its intercity television relay system to a new diplexing system that boosts the sound bandwidth to a full 15 kHz (see Radio-Electronics, April, 1978). This widely publicized move, perhaps triggered by the new competition from satellites, began to spur public demand for receiving systems that can take advantage of this better sound. And, as the FCC's current inquiry into the desirability of stereophonic sound for TV progresses, it's expected to stir up more interest in TV sound.

Short of waiting for TV makers to improve their sound systems, there hasn't been much the public could do. Until now. For years, stereo component manufacturers have been experimenting with TV tuner components for audio systems, but haven't moved them to market because of the general inadequacy of the transmitted sound. Now they're beginning to dust them off, geared to the networks' new sound capability. The first to appear probably will be a component from Pioneer, to list at around $\$ 250$, which permits the substitution of the home stereo system for the sound circuits in the TV set. Complete details weren't available at presstime.
More than a year ago, Sony introduced in Japan its Audioscope TV Tuner, a similar component which also included a tiny black-and-white monitor that could be switched to display either the incoming picture or the audio waveform. It was shown in the U.S., but never actively marketed here, presumably because of the generally poor quality of transmitted audio. Panasonic has a TV sound component waiting for introduction. Now other audio manufacturers can be expected to go forward with longdelayed plans to make TV sound easily available to home audio systems.
GE's home projector: The concept of home projection television got a huge boost when General Electric introduced its highly engineered rear-screen unit. The one-piece furniture-styled console, called "Widescreen 1000," has a picture area of 1,003 square inches, with a diagonal of 45.7 inches-or three times the size of a 25 -inch set. The relatively compact cabinet is 50 inches high, 70 inches long and 24 inches deep.

What make's GE's projector different from many others is that it was designed from the ground up as a projection set, that it is backed by one of the major domestic manu-
facturers and that it is the first rear-screen unit with a truly bright picture. The heart of the new set is a specially designed extremely bright 13 -inch picture tube with the electron gun and shadow mask made especially for projection. Although GE didn't give any figures, one knowledgeable observer said its brightness was five times that of a conventional direct-view 13 -inch tube. It uses a threeelement coated plastic lens and two float-glass mirrors to focus and direct the picture to the one-piece acrylic viewing screen with a fresnel lens pattern molded into the rear surface. The optical components, including the screen cabinet, are sealed against dust.

How well does it work? The picture is surprisingly bright-brighter than any other single-tube projection set on the market. The picture is clear and undistorted from corner to corner. The viewing angle is restricted, to perhaps 30 degrees. The set is tuned by digital wireless remote control and contains VIR color-adjusting circuitry. The suggested retail price, which hadn't been determined at presstime, was expected to be around $\$ 2,800$. GE estimated industrywide sales of about 125,000 projection TV sets in 1978, 220,000 in 1979 and 500,000 by 1983.

New TV highlights: Microprocessor tuning will be coming to American TV in a big way starting this year. Although the first programmed TV set in this country has been available for some time from Heathkit, the floodgates may now be opening in mass-market television. Toshiba has introduced a 21 -inch model with a programmable 12-channel tuner (list price about \$950). The set can be preprogrammed to tune in 16 different shows during the course of a day-turning on and off and changing channels. Up to eight selections can be stored permanently and repeated daily, so you don't have to miss your favorite soap opera just because you forgot to turn on the set. A similar set is on its way from Hitachi. Other microprocessor-based tuners are expected this year. Not all of them are programmable-some merely use the microprocessor circuitry for extremely accurate tuning.

Radio's future: British Broadcasting Corporation is looking into several new radio broadcast services, which were recently outlined to American broadcasters by its engineering director, James Redmond. Among them: (1) BBC has proposed to the government an information network of low-power stations, all operating on the same frequency and using time-division multiplexing to prevent mutual interference. These stations would give motorists detailed information about traffic in the area in which they are driving. A special low-cost fixed-tuned receiver in the car is arranged so it interrupts the regular car radio when there is a message for the specific area. (2) The addition of inaudible signaling to radio broadcasts to provide a station identification or other information on a liquid-crystal display built into radio receivers. (3) Quadriphonic sound on FM, stereo on AM. (4) Data and facsimile transmission multiplexed into audio broadcasting.

MODULE REPAIRS

TSC has been repairing private brand TV modules for over 3 years.
Expanded facilities now include modules for

- RCA
- GE

- ZENITH
- W.T.GRANT
-J.C.PENNEY
- WESTERN AUTO
- GAMBLES

as well as Zenith

IF subchassis.
For free Price List and complete information write or phone; TSC HEADQUARTERS, BLOOMINGTON, IND. or any of the TSC locations listed below.

PROVIDES YOU WITH A COMPLETE SERVICE FOR ALL YOUR TELEVISION TUNER REQUIREMENTS.

TUNER REPAIRS

VHF OR UHF ANY TYPE.. (U.S.A.) \$11.95 UHF/VHF COMBINATION N ... (U.S.A.) \$17.95

MAJOR PARTS AND SHIPPING CHARGED AT COST

- FAST, EFFICIENT SERVICE AT ANY OF THE CONVENIENTLY LOCATED SERVICE CENTERS LISTED BELOW.
- only original factory parts USED
- All tuners ultrasonically cleaned, repaired and realigned.

EXACT REPLACEMENT

- Exact Replacement Tuners are avallable at a cost of $\$ 14.95$ and
\qquad
- Send in your original tuner for comparison purposes to any of the Centers listed below.

- UNIVERSAL REPLACEMENT TUNER $\$ 13.95$. (U.SA. Only)
- This price buys you a complete new tuner bullt specifically for this purpose.
- All shafts have a maximum length of $10^{\frac{1}{2}} 2^{\prime \prime}$ which can be cut to $1^{1} / 2^{\prime \prime}$.
- Specity heater type parallel and series 450 mA or 600 mA .
${ }^{\mathrm{F}_{\mathrm{L}_{\mathbf{A}}}}$

NOW AVAILABLE-TUNER SERVICE PARTS CATALOG
OF ALL SARKES TARZIAN VHF AND UHF TUNERS. INCLUDING EXPLODED
VIEW DRAWINGS. OVER 200 PAGES. ORDER YOUR COPY TODAY SEND $\$ 2.50$ WITH ORDER TO BLOOMINGTON HEAD OFFICE.

SAME DAY SERVICE - ONLY ORIGINAL FACTORY PARTS USED

WATCH US GROW

new etimely

CB'ers are heroes in storms of '78

The first two months of 1978 provided blizzards, ice storms and severe weather conditions to much of the U.S.; it was also a time when CB operators performed many acts of heroism and neighborliness by helping those stranded by snow, providing emergency fuel deliveries and aiding local authorities in coordinating rescue and relief operations.
"For many of those stranded in the recent blizzard," said John Sodolski, vice president of EIA and head of its communications division, "CB radio was the only communications device available for emergency rescue."

It is certain that without the volunteer efforts of CB'ers, snowmobile owners and four-wheel-drive organizations, rescue efforts would have taken longer and many lives would have been lost. CB radio provided the essential communications link during rescue efforts, since in many cases police vehicles were out of commission due to the storms.

Among the thousands of reports of CB'ers' heroism, some stand out:
-In Massacusetts, CB'ers directed oil deliveries into stricken areas, facilitated emergency transportation to and from hospitals, delivered food and rescued stranded motorists and people whose homes had lost heat.

- In Ohio, when the power failed, CB operators helped bring over 2000 people through freezing temperatures to shelter in churches and other homes.
-In West Virginia, React Club members routinely delivered groceries and performed other neighborly acts for elderly people trapped by the snow in remote areas.
-On the West Coast, during recent rainstorms and floods, CB'ers took an active part in aiding the local Red Cross with emergency communications at two flood shelters housing 25 homeless families. Manned vehicles with CB radios shuttled flood victims and volunteers to Red Cross headquarters and the shelters. And once the immediate emergency was over, several members of the CB emergency team volunteered to stay on to help the victims and assess flood damage.

Planet Jupiter emits surf-like radio signals

It has been discovered that radio signal bursts emitted from the planet Jupiter and one of its moons, 10 , resemble the rushing sound of waves on the shore-a phenomenon well-known for its soothing qualities. Shield Products, Inc., of Cleveland has used highly sophisticated receiving equipment to record these signals (originating from a distance of over 390 million miles)
on magnetic tape, and have dubbed the project Jupiter Tranquil. These recordings are available to the general public.

PLANET JUPITER'S MOON 10 is source of massive radio signal bursts recorded for Jupiter Tranquil. Diagram shows signal path.

The signals are produced when satellite moon IO passes through Jupiter's intensely charged magnetic field, at which point the moon's ionosphere becomes both positively and negatively charged. When $1 O$ is in the optimum orbital position, an electrical current of more than 100 megawatts flows along Jupiter's magnetic field down to the planet's own ionosphere and back to 10 . This tremendous flow of energy is responsible for the signal bursts that so resemble the sounds of the sea. For further information, write to Shield Products, Inc., Space Technology Div., 1104 Prospect Ave., Cleveland, OH 44155.

Telesat Canada Anik C spacecraft to help link south Canada cities

Telesat Canada has awarded a contract to Hughes Aircraft, El Segundo, CA, to build three new communications satellites, the Anik C series (anik is Eskimo for brother). The satellites will open up interurban telecommunications in the vast, 3000-mile area stretching from coast to coast in the southern half of Canada. This area also lies within 1000 miles of the United States border.

The spacecraft, scheduled to be sent into orbit in 1981 via NASA's Space Shuttle, will operate over the Equator between 105 and 120 degrees west longitude, south of Alberta, Canada. It will operate in the super-high-frequency range of 12 to 14 gHz -persecond. The use of such high frequencies allows the antenna to produce the narrow beam necessary for such concentrated radiated power. This narrow-beam capability will allow earth stations receiving the frequencies to be located in high-density areas without interfering with terrestrial or lower-frequency space signals.

Other Anik C features include 16 communications channels to supply audio, video and data telecommunications services;

ANIK C SPACECRAFT, being built by Hughes Aircraft for Telesat Canada, will link southern Canada's cities from coast to coast (shown in artist's conceptual above). The satellite will provide telecommunications services in super-high-frequency range of $\mathbf{1 2}$ to $\mathbf{1 4} \mathbf{g H z}$.
and polarization diversity that permits using the same frequency twice. Its solar array consists of two concentric cylindrical panels; when the satellite is in orbit, the outer solar panel extends downward exposing both panels to the sun and boosting power generation to more than 900 watts.

U.S. investigative agency reports dangers of microwave radiation

The General Accounting Office, which is the investigative arm of the U.S. Congress, has released a report that warns the public may be exposed to dangerous microwaveradiation levels. This represents the first time any Government agency has recognized such hazards. The report further states that microwave transmission facilities are being built at a rate of 15% a year, and there is as yet no Government agency to monitor them or set safety standards.

Prior Environmental Agency Protection lab tests are described in the report as having concluded that microwave radiation may "affect the immune system" in laboratory animals as well as produce a "trend toward lowered behavioral performance."

Studies conducted in the Soviet Union and Eastern European countries reported that individuals exposed to radiation levels much greater than the U.S. Government's standard of $10 / 1000$ ths of a watt complained of a host of symptoms, including
continued on page 12

Uncompromising performance. Incredible price.
 A professional $3^{1 ⁄ 2}$ digit DMM Kit for less than $\$ 70$.

Incredible? True! Professionals and hobbyists alike are believers in this Sabtronics 2000, the only portable / bench DMM which offers such uncompromising performance at the astonishingly low price of $\$ 69.95$.
Uncompromising performance you'd expect only from a specialist in digital technology such as Sabtronics: Basic DCV accuracy of $0.1 \% \pm 1$ digit; 5 functions giving 28 ranges; readings to ± 1999 with 100% overrange; overrange indication; input overload protection; automatic polarity; and automatic zeroing. The low price of $\$ 69.95$? Simple: The Model 2000 is all solid-state, incorporating a single LSI circuit and highquality components. You assemble it yourself, using our clear, easy-to-follow, step-by-step assembly manual. Kit is complete, including a high-impact case.
Now you too can have it! A professional-quality, $31 / 2$ digit Sabtronics Model 2000 DMM kit for only \$69.95. If you don't have one in your lab, use the coupon below to order NOW.

BRIEF SPECIFICATIONS:
DC volts in 5 ranges: $100 \mu V$ to $1 \mathrm{kV} \cdot \mathrm{AC}$ volts in 5 ranges: $100 \mu \mathrm{~V}$ to 1 kV - DC current in 6 ranges: 100 nA to 2 A - AC current in 6 ranges: 100 nA to 2 A . Resistance: 0.1Ω to $20 \mathrm{M} \Omega$ in 6 ranges. $A C$ frequency response: 40 Hz to $50 \mathrm{kHz} \cdot$ Display: $0.36^{\prime \prime}(9,1 \mathrm{~mm}) 7$-segment LED - Input impedance: $10 \mathrm{M} \Omega \cdot$ Size: $8^{\prime \prime} \mathrm{W} \times 6.5^{\prime \prime} \mathrm{D} \times 3^{\prime \prime} \mathrm{H}$ $(203 \times 165 \times 76 \mathrm{~mm}) \cdot$ Power requirement: 4 " C " cells (not included).

GUARANTEE:

Examine the 2000 DMM kit for 10 days. If not completely satisfied, return unassembled for full refund of purchase price. (Less shipping and handling)
Use your Master Charge or Visa
To order by phone call: (214) 783-0994 13426 Floyd Circle - Dallas, Texas 75243

Made in U.S.A.

Learn to service Communications/CB with NRI's Complete

Learn design, installation and maintenance of commercial, amateur or CB communications equipment.
 There are more than 25

 million CB sets out there, millions more two-way radios, walkie-talkies, and other communications apparatus in use by business, industry, government, police and fire departments, and individuals. That means a lot of service and maintenance jobs ... and NRI can train you at home to fill one of these openings. NRI's Complete Communications Course covers all types of two-way radio equipment... AM and FM transmission and reception, television broadcasting, microwave systems, radar principles, marine electronics, mobile communications, andaircraft electronics. And NRI guarantees you will pass the exam for the commercial FCC Radiotelephone License you need to perform most servicing work, or your tuition will be refunded in full. This money-back

Some designed-for-learning equipment you get.

agreement is good for six months after completion of your course.

Learn on your own 2-meter, digitally synthesized VHF transceiver.

You'll learn to service all types of communications equipment as you assemble your own VHF transceiver. NRI engineers have designed it, not only as a commercial-quality, highperformance unit, but as a unique "power-on" training tool to give you actual bench experience with the principles needed to service CB , commercial, and amateur equipment.

Then we help you

get your FCC Amateur License

 so you can go on the air.The complete course includes 48 lessons, 9 special reference texts, and 10 training kits. Included are your own electronics Discovery Lab, ${ }^{\text {TM }}$
antenna applications lab, CMOS digital frequency counter, and an optical transmission system. You'll learn at home, at your own convenience, earning your FCC license and the preparation you need for the communications field of your choice. Mail the postage-paid card today. TMTrademark McGraw Hill

CB specialist course also offered.

If you prefer, you can concentrate on the booming field of CB radio with NRI's special course in CB servicing. You get 37 lessons, 8 reference texts and plenty of hands-on training with your own 40 -channel $C B, A C$ power supply, and multi-meter. Also included are 14 coaching units to make it easy to get your commercial Radiotelephone FCC License... required for you to test and service communications equipment.

equipmentathome... Communications Course.

Or get into TV and audio servicing

NRI can train you at home to service TV equipment and audio systems. Choose from five courses that go up to our 48-lesson Master Color TV/Audio Course. With it you get 14 kits for practical bench training and demonstrations, including NRI's exclusive, designed-for-learning, $25^{\prime \prime}$ diagonal solid state color TV, 4-channel audio system complete with speakers, and professional instruments you build and use for learning and earning. It's proven, effective training that's helped thousands of pros already. And it's the best value offered in the field. NRI's bite-size lessons speed learning, exclusive

"Power-On" training makes it real. Send card for free catalog.

Learn computer electronics

NRI trains you at home on a real digital computer.

As part of your training, you actually assemble a working digital computer with expanded memory, define and flow chart programs, code your program, store it along with data in the memory bank. It's just one of the 10 hands-on training kits you receive. You also build and use your own TVOM; experiment with NRI's exclusive electronics lab. It's the quickest and best way to learn and start a new career in trouble-shooting digital computers. Send the card today.

NRI SCHOOLS
McGraw Hill Center
for Continuing Education
3939 Wisconsin Avenue
Washington, D.C. 20016

new etimely

headache, eyestrain, irregular heartbeat, etc.

William Mumford, a retired Bell Labs scientist who helped devise the U.S. standard for microwave radiation, asserted that this standard was safe under normal environmental conditions, and that of the 4000 medical cases of alleged microwave radiation reported since the 1950's not one fatality had been reported.

World's most powerful vacuum tube switch used in nuclear-fusion tests

A 20-man engineering team from RCA's Department of Electro-Optics and Devices (Lancaster, PA) has designed and developed what they term "the world's most powerful vacuum switch tube." The RCA tube switches 25 megawatts (MW) or enough energy to turn on 300,000 TV sets simultaneously. It will be one of 12 similar tubes that are to be installed in Princeton University's Plasma Physics Lab for use in a fusion-test reactor. This reactor will be used to determine the feasibility of generating electrical power via nuclear fusion.

320-POUND VACUUM TUBE designed by RCA switches 25 MW-enough power to turn on 300,000 TV sets- and will be used in Princeton University nuclear fusion testa. Computers were used in designing the tube, constructed by engineers of RCA's department of ElectroOptics and Devices in Lancaster, PA.

The reactor, which is destined to become operational in 1981, will use the vacuum switch tubes to regulate power systems that will provide the major heating of the plasma used in the fusion reaction. Dr. Ralph E. Simon, division vice president,
explained that the tube's function "is to switch and control ion beams as they are injected into the fusion test reactor
The tube will supply 25 million watts of energy to the ion beams in pulses varying in duration from several millionths of a second to several seconds."

Made of copper, stainless steel, tungsten and ceramic, the RCA tube weighs 320 pounds and measures 42 inches long and 22 inches in diameter. Tube design was facilitated by the use of computers that were able to analyze the tube's electrical characteristics and help determine the shape of the tube's anode. The power dissipated by the anode is 2 MW. Sixteen kilowatts is required just to heat the cathode. The tube is completely water cooled with a flow rate of $\mathbf{2 5 0}$ gallons-per-minute through the tube's anode section.

New FCC legislation cracks down on unlicensed CB operators

In March, 1978, President Carter signed legislation that at long last empowers the Federal Communications Commission to enforce its rules against unlicensed as well as licensed CB violators.

Until recently, a Federal court order was necessary to act against unlicensed violators of the Commission's CB regulations; these regulations were really effective only against licensed violators. James C. McKinney, the FCC deputy chief of field operations, stated, "We can now make it economically unfeasible to be unlicensed. I suspect fines . . . will be greater than for licensed violators."

The new law increases the maximum fine for violations from $\$ 500$ to $\$ 5000$, and extends the time period from 90 days to a year during which the FCC can issue a citation for a violation.

Present-day color TV set prices lower despite inflation

According to Roy Pollack, vice president of RCA's Consumer Electronics Division, the cost of a color TV set has declined during the past 25 years. In 1954, the average price for such a set was $\$ 1000$; today, it is $\$ 575$, representing a 43% drop. This price drop occurred despite an inflationary period that saw skyrocketing prices on other household items such as washing machines, refrigerators and the like.

Pollack attributed this counter-inflationary price trend to be a reflection of "improved production techniques, new materials, new technologies, bigger markets and severe competition." He added that during the past 25 years, the average price of a new car rose 134% and the median cost of a new one-family home mounted a whopping 290\%.

Earth satellite uses infrared band for 24-hour monitoring

The Landsat 3 earth satelite developed

MULTISPECTRAL SCANNER (MSS) can take thermal photos of the earth at night. Here, Hughes Aircraft technician examines instrument's aperture, housing reflective mirror and telescope to record earth-surface images.
by General Electric has had an infrared (IR) channel added to its multispectral scanner (MSS). This IR channel, designed by Hughes Aircraft, will enable round-theclock photography of terrestrial resources such as water, snow, glaciers, etc. The satellite (scheduled for a West Coast NASA launch) is planned to act in tandem with its sister satellite, Landsat 2, already in orbit.

NASA spokesman asserted that the earth resolution of the IR band of the MSS will allow a 24-hour monitoring of water temperature variations, water pollution, ocean currents and geothermal sources and enable scientists to determine more precisely the ecological impact on earth resources of such large heat-producing facilities as nuclear power plants and industries as well as expanding urban areas.

The vehicle's MSS system traps the earth's radiation with a flip-flop mirror that moves from side to side during the orbit. A precision telescope inside the scanner channels the radiation to detectors in five spectral bands, including the IR band. The detectors then convert the light into voltages, which are, in turn, translated into numerical values. This data is stored on tape recorders for later transmission to a ground station, or in real time at a 15 million bits-per-second rate.
The satellite will circle the globe 14 times daily as the scanner photographs strips of land below. Each time the satellite passes over the Equator it will do so at a distance about 1800 miles west of the last trip.
continued on page 15

Choose from a variety of exciting new kits for summer kitbuilding fun. Nearly 400 kits in all to help you get the most from your electronic dollar!

Low-Cost Straight Line/ White Line Chart Recording Depth Sounder

Budget-Priced Digital Alarm Clock

Learn about the fascinating and rewarding hobby of electronic kitbuilding. Experience the satisfaction of owning a top-performing, high-quality electronic product that you built with your own hands.
Our easy-to-understand assembly manuals are your kitbuilding "partner" from start to finish. Large, clear illustrations and step-by-step instructions lead you to successful completion and the thrill of "turn-on". It's easy, it's fun, and it's personally satisfying.
Send for your FREE catalog today! \sim

editorial

Contest Of Contests

Our readers deserve a really great contest-one that will test their skills to the limit-one that will let them show the world just how great they are. So, we here in the editorial offices of RadioElectronics have given much thought to running a really terrific contest for our readers.

We first thought of a design contest-like build the best circuit. The problem here is how can anyone pick a winner. Is a mini flat-screen color TV better than a wristwatch computer or a portable telephone?

So, we need your help. We need some reader to dream up the very best contest that has ever been held. We need a contest that will put before the electronics community a real challenge and yet permit us to select a definitive clear-cut winner. Like who built the frequency counter that could read to the highest frequency; or who built a CB radio with the least number of parts; or who built the fastest electronic car.

In addition, we need a handicap factor since the cost of the item built must also be considered. And this handicap must increase as the cost goes up. As we all know, if we spend enough dollars we can reach the moon. But how do you get to England for $\$ 2.98$?

Send us your ideas. We'll reward the contributor of the one that we do use with two items-first, a 10 -year subscription to RadioElectronics; second, a check for $\$ 250$. The editors are the judges and our decision is final. If two similar winning ideas come along, the one with the earliest postmark wins. No prizes for second place, and all entries become the property of Gernsback Publications Inc. Now, start filling our mailbox.

Radio-Electronics.

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief and publisher

Larry Steckler, KTX-3644, CET, editor
Arthur Kleiman, KTZ-3288, managing editor
Robert F. Scott, CET, W2PWG, KXK-8533, technical editor
Sonia Greenbaum, copy editor
Jack Darr, CET service editor

Leonard Feldman

contributing high-fidelity editor
Karl Savon, semiconductor editor
David Lachenbruch, contributing editor
Earl "Doc" Savage, K4SDS, hobby editor
Vincent P. Cicenia, production manager
Harriet I. Matysko, circulation director
Sheila Wertling, circulation assistant
Arline R. Bailey, advertising coordinator
Cover design by Louis G. Rubsamen
Cover photo by Mel Small
Radio Electronics is a member of the Institute of High Fidelity and is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.

Gernsback Publications, Inc.
200 Park Ave. S., New York, NY 10003
(212) 777-6400

President: M. Harvey Gernsback
Vice President: Larry Steckler
Treasurer: Carol A. Gernsback
Secretary: Bertina Baer

ADVERTISING SALES

Paul McGinnis
Director of Marketing

EAST

Stanley Levitan
Radio-Electronics
200 Park Ave. South
New York, NY 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.
Ralph Bergen
The Ralph Bergen Co.
540 Frontage Road-Suite 361-A
Northfield, Illinois 60093
(312) 446-1444

PACIFIC COAST
Mountain States
Jay Eisenberg
J.E. Publishers Representative Co., 8732 Sunset Blvd.,
4th Floor,
Los Angeles, CA 90069
(213) 659-3810

Sales Mart Building
1485 Bayshore Blvd., Box 140
San Francisco, CA 94124
(415) 467-0125

SOUTHEAST
J.E. Publishers Representative Co., 214-387-2424

ELA

new etimely

Geostationary satellites aid federal antismuggling efforts

Recently, General Electric communications experts ran a six-week-long series of communications and position-fixing tests involving the use of two NASA experimental geostationary satellites. The purpose: to demonstrate that the satellites could help the federal government reduce significantly the present rate of contraband drug and illegal alien smuggling occurring across the U.S.-Mexico border. These tests, conducted together with the U.S. Drug Enforcement Administration (DEA) and the Immigration and Naturalization Service (INS), showed that a geostationary satellite, orbiting about 23,000 miles above a fixed area of the earth, can help keep government field agents in contact not only with their colleagues but with their base station, even in very remote locations.

A geostationary satellite stays in a permanent location, its line of sight coinciding with about 43% of the earth's surface. It receives the signal from the agent's mobile radio transmitter, amplifies it, then sends it
back to earth, either to another agent's two-way radio or to a base station. The base station uses a system called tonecode ranging to pinpoint the location of the agent's car to within 600 feet -a distinct advantage when much of the tracking must be done through mountainous and often roadless territory.

The two NASA space vehicles, the ATS-3 (positioned above the Amazon River) and the ATS-1 (over the Equator south of Hawaii) plus a station wagon were used in the tests. The station wagon contained a special antenna and radio equipment consisting of a GE two-way mobile radio, with a special tone-code data responder that reacts automatically when addressed by a coded signal, plus a low-noise preamplifier to increase sensitivity and a power amplifier to boost signal output to 250 watts. General Electric's network of transponders located around the globe were used to determine precisely the location of the two NASA satellites, at which point range measurements were transmitted via satellite to the station wagon, whose automatic re-
sponder returned the signal to the satellite A computer was then able to use the travel time of the signal to calculate the location of the station wagon in real time.

RCA American satellites beam pay TV programming

A pay TV program supplier, Showtime Entertainment Inc. has started using RCA's American Communications satellites to transmit quality programming to cable TV subscribers throughout the U.S. on a daily basis. The service provides an average of nine hours of programming, with most of the shows planned for the popular evening hour and weekend time slots.

The Showtime programs are transmitted via two RCA American satellites (in orbit 22,300 miles above the Equator), and are beamed on two separate feeds-one for the Eastern and Central time zones, the other for the Mountain and Pacific time zones. It is also planned to eventually extend this programming service to Hawaii.
 ... and the deck is stacked in your favor. VERO, known throughout the industry for quality, is now offering a wide selection of electronic components for the serious hobbyist or home builder. These fine products have all passed the demanding requirements of one of the most demanding industries in the country - the electronics industry.

From basic breadboards to exciting enclosures, VERO products offer you proven capability and reliability and an affordable price. So, next time you are in the mood to build something

great, insist on the finest component parts - insist on VERO.

If your dealer does not stock VERO, drop us a line and we will send him all the necessary information required to get him started. You'll be doing him a favor if you do!

171 Bridge Road, Hauppauge, N.Y. 11787 (516) 234-0400

TWX: 510-227.8890

letters

MONEYMAKING IDEAS

Here are two moneymaking ideas that might interest your readers:

Games and money: Doesn't almost every TV sales and service organization have old TV sets (trade-ins, etc.) that just "sorta work''? These sets may be almost unsaleable as receivers but, with minimum repair, they might be ideal as second sets for video games only.

We had an old set in the garage with a torn speaker that would receive only one channel. With no work, the set became just fine for use with a TV game . . . and the set was 14 years old! Some advantages of this old TV "retirement job" are:

1. No conflict between kids wanting to play the video game vs. adult viewing time.
2. No worry about "burning in" the game image on your good set through accidentally leaving it on overnight, etc.
3. The set can have many faults-poor contrast, poor AGC, nonworking channels, poor audio tone-and yet be just fine for video game use.
4. A customer can try his game on the used set in just minutes to determine whether it's usable . . . and there will be no questions or variable performance due to location, type of antenna, etc.

Program stores: in the near future, tape programs for video games and home computers will become a rapidly growing business, especially if standardization is such that tape readers, video displays and keyboards are used in both systems. This market may also include plug-in PROM's and, of course, video entertainment tapes.

They could even become combined. A tape of a well-known novel could (for students) even have a question-and-answer section at the end to emphasize comprehension and interpretation.

The point is-those stores that are now just hi-fi and record stores should be learning just as much as they can about the new technology. It's all interrelated . . . tapes, records and the machine to play them. Five years from now I predict such businesses will be known as "Program Stores," featuring game programs, video programs, music
programs (both live and computer-produced), computer programs, etc., etc. PETER LEFFERTS
San Martin, CA

NO AM DATA

The logic shown by Len Feldman in the Letters column of the December 1977 issue escapes me completely. Apparently he is saying that since most AM sections of AMFM tuners are poor, they shouldn't be mentioned.

Good FM performance is easy to find; one hardly needs a product report to locate a tuner with FM that is as good as the transmitting station's characteristics. The difference in tuner performance will show up in the AM section, which varies from terrible to fairly good. Isn't that where the emphasis should be?

Mr. Feldman states that most AM stations use "standard" $5000-\mathrm{Hz}$ lines. I don't know the source of his data, but there isn't one single audible AM station in the Washington, DC, area that isn't audibly better continued on page 22

Another reason to join RCA's QT Parts Program! You get four free information packages every year.
 RCA's QT-150 Parts Program is better than ever!

 Registered dealers receive four free information mailings per year through RCA's Direct Information Service program. Quarterly mailings include: - Complete Dealer Price Book - RCA Consumer Parts - Latest Price Supplement - RCA Drawing Number to Stock Number Cross Reference - Color TV Module Cross Reference - B\&W TV Module Cross Reference- Dealer QT Inventory Control Form; and many other useful publications.
To join, contact your RCA Distributor and register as a QT Dealer. You will receive your package of 150 of the most-needed, fastest-moving parts to repair older TV sets. You will also receive your first quarterly information package. Every information mailing will include the latest price
publication, plus additional infor-
mation about RCA Parts required in
your servicing business.
Don't forget, your QT Parts inventory program has automated annual drop-ship updating for your convenience. A special

QT Parts Rack is also available to save time and space.
Call your RCA Distributor or write to RCA Distributor and Special Products Division,

Deptford, N.J. 08096.

Radio-Electronicc ${ }^{\circ}$

 us available in MICROFILM
UNIVERSITY MICROFILMS

300 N. Zeeb Road
Ann Arbor, Michigan 48106

and
 MICROFICHE

MICROCARD EDITIONS

A Division of Information Handling Services
P.O. Box 1154

Englewood, Colorado 80110
BELL \& HOWELL CO. Micro Photo Division Old Mansfield Road Wooster, Ohio 44891 Attn.: Mr. Splers

Please witte for complete information

You know that's a great price. Especially when you consider the outstanding performance you get with this Gould OS245A oscilloscope.

And you get clear, bright displays. 5 mV /div. sensitivity and exceptionally versatile trigger performance. It's ideal for TV or general electronic service work; perfect for hobbyists and educational institutions. You can rely on Gould to live up to these specs:

- DC to 10 MHz ; dual trace
- Trigger performance in excess of 15 MHz
- TV trigger facilitates solid synchronization with TV signals
- Portable; weighs just 11 lbs.
- Carries full two year warranty on all parts and labor excluding normal calibration, fuses and minor maintenance. Jusi one phone call gels you action.
Don't miss out on this bargain. Pick up the phone now and call us toll-free at 800-325-6400. (In Missouri call 800-342-6600). We'll rush you free literature and ordering information on the OS245A as well as other Gould oscilloscopes applicable to your needs. Gould Inc., Instrument Systems Division, 3631 Perkins Avenue, Cleveland, Ohio 44114.

"If youre going tolearn electronics, you might as well learn it right!"

You've probably seen advertisements from other electronies schools. Maybe you think they're all the same. They're not:

CIE is the largest independent home study sehool in the world that specializes exclusively in electronies.

Meet the Electronics Specialists.

When you pick an electronics school, you're getting ready to invest some time and money. And your whole future depends on the education you get in return.

That's why it makes so much sense to go with number one... with the specialists... with CIE!

There's no such thing as bargaim education.

If you talked with some of our graduates, chances are you'd find a lot of them shopped around for their training. Not for the lowest priced but for the best. They pretty much knew what was available when they picked CIE as number one.

We don't promise you the moon. We do promise you a proven way to build valuable career skills. The CIE faculty and staff are dedicated to that. When you graduate, your diploma shows eniployers you know what you're about. Today, it's pretty hard to put a price on that.

Becanse we're specialists, we have to stay ahead.

At CIE, we've got a position of leadership to maintain. Here are some of the ways we hang onto it ...

Our step-by-step learning includes "hands-on" training.

At CIE, we believe theory is important. And our famous Auto-Programmed ${ }^{\otimes}$ Lessons teach you the principles in logical steps. But professionals need more than theory. That's why some of our courses train you to use tools of the trade like a 5 MHz triggered-sweep, solid-state oscilloscope you build yourself-and use to practice troubleshooting. Or a beauty of a 19 -inch diagonal Zenith solid-state color TV you use to perform actual service operations.

Our specialists offer you personal attention.

Sometimes, you may even have a question about a specific lesson. Fine. Write it down and mail it in. Our experts will answer you promptly in writing. You may even get the specialized knowledge of all the CIE specialists. And the answer you get becomes a part of your permanent reference file. You may find this even better than having a classroom teacher.

Pick the pace that's right for youl.

CIE understands people need to learn at their own pace. There's no pressure to keep up. . no slow learners hold you back. If you're a beginner, you start with the basics. If you already know some electronics, you move ahead to your own level.

Enjoy the promptness of CIE's "same day" grading cycle.

When we receive your lesson before noon Monday through Saturday, we grade it and mail it back the same day. You find out quickly how well you're doing!

CIE can prepare you for your FCC License.

For some electronics jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's government-certified proof of your specific knowledge and skills!

More than half of CIE's courses prepare you to pass the governmentadministered exam. In continuing surveys, nearly 4 out of 5 CIE graduates who take the exam get their Licenses!

For professionals only.

CIE training is not for the hobbyist. It's for people who are willing to roll up their sleeves and go to work
. to build a career. The work can be hard, sure. But the benefits are worth it.

Send for more details and a FREE school catalog.

Mail the card today. If it's gone, cut out and mall the coupon. You'll get a FREE school catalog plus complete information on independent home study. For your convenience, we'll try to have a CIE representative contact you to answer any questions you may have.

Mail the card or the coupon or write CIE (mentioning name and date of this magazine) at: 1776 East 17 th Street, Cleveland, Ohio 44114.

Patterns shown on TV and oscilloscope screens are simulated.

LETTERS
continued from page 16

than that on a wideband receiver. Broadcast lines are nearly always "unloaded" and stations do equalize them to much better performance than 5 kHz .
CDR. HAROLD W. CORNELIUS

Arlington, VA

On the contrary, Commander Cornelius, it is precisely because I do know how good $A M$ can be made to sound that I seldom bother to discuss the AM sections of the tuners and receivers that I measure. There is one station in the New York area that, in fact, boasts a "proof of performance"' from the FCC showing that it is essentially flat to
$15,000 \mathrm{~Hz}$ (just like FM stations). The only time I was ever able to take advantage of that excellent capability was when I was testing a little-known AM-only tuner known as McKay-Dymek. That tuner had virtually flat frequency response to beyond 9 kHz and an excellent $10-\mathrm{kHz}$ whistle filter as well (a necessity if the response of an AM tuner is to be extended to that degree).

I see little point in discussing the fact that one $A M$ tuner rolls off at around 3 kHz (typical of the breed, by the way), while another goes "all the way" to 4 kHz . If and when I run into a tuner that does measurably better than that, I will certainly devote more space to that fact in my product test reports.

I would also like to take issue with your

The DR22-C

Fully Synthesized General Coverage Receiver from McKAY DYMEK

FEATURES

- Shortwave, CB, ham radio, ships at sea, overseas phone calls, etc.
- Hi Fi, SWL, commercial, industrial and government uses.
- High level RF front end for excellent intermodulation rejection and sensitivity.
- Crystal filters in first and second IF amplifiers, ceramic filter in third IF.
- Quartz crystal tuning accuracy at all frequencies, no crystals to buy.
- Built in power supply for 110-120 or $220-240$ VAC switchable, $50-60 \mathrm{~Hz}$.

SPECIFICATIONS

- Low Phase Noise Synthesizer
- Solid state, phase locked, digital synthesis tuning.
- Extreme ease of tuning at all frequencies.
- No mechanical tuning dial error or backlash.
- Switch selectable 4 or 8 kHz RF bandwidth.
- Built in monitor speaker with external speaker connectors.
- Switchable impuise noise limiters for AM and SSB.

\square	Frequency coverage:	50 kHz to 29.7 MHz , continuous. Digital synthesis in 5 kHz steps, fine tune for $\pm 5 \mathrm{kHz}$.			
\square	Reception modes:	AM, upper sideband, lower sideband, CW.			
-	Sensitivity for for $10 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}$:	$\begin{gathered} \text { CW, SSB } \\ \text { AM } \end{gathered}$	$\begin{gathered} 100 \mathrm{kHz} \\ 5 \mu \mathrm{~V} \\ 10 \mu \mathrm{~V} \end{gathered}$	$\begin{array}{cc} \hline 200 \mathrm{kHz} & 400 \mathrm{kH} \\ 1.5 \mu \mathrm{~V} & 0 . \\ 3.0 \mu \mathrm{~V} & 1.0 \end{array}$	-20 MHz $20 \mathrm{MHz}-29.7 \mathrm{MHz}$ $\mu \mathrm{V}$ $0.75 \mu \mathrm{~V}$ $\mu \mathrm{~V}$ $1.5 \mu \mathrm{~V}$
■	Selectivity:	$-6 \mathrm{~dB} @ \pm 2 \mathrm{kHz}$ or $\pm 4 \mathrm{kHz}$ and $-60 \mathrm{~dB} @ \pm 5 \mathrm{kHz}$ or $\pm 14 \mathrm{kHz}$			
■	AM Harmonic distortion:	50% modulation $=0.6 \%$ T.H.D., 90% modulation $=1.5 \%$ T.H.D. $(1 \mathrm{kHz}$ modulation)			
-	Frequency stability:	Within $\pm 40 \mathrm{~Hz}$ in any 8 hour period at a constant ambient of 25 C , after 30 minute warm up.			
\square	Circuitry:	43 integrated circuits, 18 transistors, 16 FETs and 54 diodes.			
■	Dimensions \& Wt.:	$(\mathrm{W} \times \mathrm{D} \times \mathrm{H}) 17.5 \times 14.5 \times 5.1$ inches. Shpg. Wt. $19 \mathrm{lbs}(8.7 \mathrm{Kg})$			
Order factory direct. In Canada Exclusive rent/own plan wsI Sales Company available in U.S. Ontario					
McKay Dymek Co. 111 South College Ave Claremont, CA 91711				Nationwide 800/854-7769 California 800/472-1783	Great Metropolitan Sound Co. Ltd. Ontario

statement that "one hardly needs a product report to locate a tuner with FM that is as good as the transmitting station's characteristics." There are still several FM stations that do an exemplary job of transmitting a clean signal, and such tuner parameters as selectivity, distortion, separation, $50-d B$ quieting and signal-to-noise ratio (not to mention capture ratio and AM suppression in multipath-laden reception areas) are very important if one wants to hear the best that these stations have to offer.
I would hope that if and when the FCC provides us with standards for stereo AM, stations (and receiver manufacturers) may find an additional incentive for creating, broadcasting (and receiving) higher-fidelity AM programming than has been the case up to now. If and when that happens, I shall be happy to demonstrate that I do know a little bit about AM too. -Len Feldman

FREQUENCY/TIME DISPLAY CORRECTIONS

With reference to my article, "Build AM/ FM Frequency Display," in the January 1978 issue, there are a few corrections that should be made in it.

First, in the Parts List, R7 was left off-it should be 15 K , as per the Fig. 2 schematic. In Fig. 9, there is a jumper shown going to Q3; this is really R21, or 3.9 K . Also in Fig. 9, the "C11" shown just above the crystal, XTAL1, is really R11, or 15 megohms. Finally, the photograph entitled "View of a Partially Constructed Board" shows Q3 through Q6 turned the wrong way. Turn 'em around and everything will be fine.
GARY McCLELLAN

PET COMPUTER NEWSLETTER

Some of your readers may be interested to know of a new coast-to-coast newsletter we are publishing called The PET Paper, which is intended to provide "something for everyone' who owns a Commodore PET computer.

Both beginners and experts should find articles in The PET Paper of interest, as well as the news it contains of User Groups in their communities, reviews of known and available software, plus hardware how-to's, sources and costs of peripherals as they become available. We even plan to print sections from local User Group newsletters. The cost of a year's subscription to the newsletter is $\$ 15$.

For further information, contact Terry L. Laudereau and/or Rick S. Simpson, The PET Paper, P.O. Box 43, Audubon, PA 19407.

TERRY L. LAUDEREAU
RICK S. SIMPSON
Audubon, PA

PINK-NOISE GENERATOR

I encountered one difficulty with the pinknoise generator described in the January 1978 issue.

As mentioned in the article, pink or white noise is used to produce the sounds of wind, rain, or surf, and one of the uses of this sound is to provide a steady background for masking out unwanted noises. The pink-noise generator as described in the article is unsuitable for these purposes for one major reason:
continued on page 24

Everything you ever want to know about Personal Computers

Postage Paid in U.S. and Canada

Here it is-everything you need to know about the state of the art, just as it appeared in the big, colorful special section of the June, 1978 RADIO-ELECTRONICS-'Your Own Computer.'

This complete, colorful, 32-page reprint of that first-in-the-field special feature tells you everything you want to know, including: An Introduction to Personal Computers-what they can do and how to select your own; What Makes a Computer System - peripheral devices and accessories; The Different Ways You Can Talk To Your Computer-programming languages and how to use them; a special edition of Computer Corner; and, A Roundup of the Equipment, the most complete Who-Makes-It Computer Manufacturer Listing you can find!

We've reprinted this giant special section of RADIO-ELECTRONICS for your convenience. Every serious experimenter and technician will want this vital information at home and in the office, lab or workshop, where you can refer to it when you need it. At this very special low, low price of just $\$ 1.00$, you can afford to have your own copy of "Your Own Computer" everywhere you go-and give some to friends, too.
Don't delay. We're ordering a big reprint of this very popular feature section, but we're expecting a big demand, too. For your convenience, use the coupon below to order your own reprints of the single most authoritative, most colorful, most comprehensive report on today's Personal Computers, the 32-page reprint of RADIO-ELECTRONICS' "Your Own Computer," for just \$1.00. Do it today.

LETTERS

continued from page 22
A pseudorandom noise generator such as the MM5837 has a periodicity of about $11 / 2$ seconds. This is because the noise is produced by an internal shift register and at the internal clock frequency, the register is reset when the random sequence is exhausted-at the periodicity frequency.

The sound the noise source makes is a combination of noise and sounds associated with this cycling. Without the pinknoise filter, the sound resembles metallic machinery with a rotating gear that has a "tinking" sound. With the filter, the sound is much like that of a slow heartbeat.

When I contacted National Semiconductor, manufacturers of the MM5837, the company confirmed this condition. For the purpose for which the IC was intended, namely, for short-duration white noise, the cycling effect is unnoticeable. For those interested in avoiding this, a much longer shift register can be constructed, say 28 bits, and the periodicity now becomes over 12 hours, virtually unnoticeable.
W. CURTISS FRIEST

Lexington, MA
Your pink-noise generator is a simple, no frills gem. It is the greatest, cheapest piece of audio gear that I ever bought, and has done more to balance my system to the room than anything.
I have an SL meter, and the results of using the $1 / 3$-octave pink-noise record never seemed right. I know my Dynaco 10-
band equalizer does its job so the results were puzzling. A five-minute adjustment using your generator and it sounded better than ever.

However, nowhere do you specify the reasonable lower and upper frequency limits of the unit. I am also sure that the 3-dB octave filter must be a trade-off, and I wish you could specify $\pm d B$ limits for the slope-or supply a frequency plot showing the notches.

If as one of your projects you could offer a reasonably priced sweeper or 10 -octave filter set, it would be great to have a variable source of pink noise. Of course, then you get into the question of whether it should be $1 / 3$ octave.

I fear most equalizers are of the op-amp cut-and-boost type and there is somewhat of a problem at the frequency extremes. Since one can only cut all frequencies about -12 dB , the noise floor approaches the normal output at very low and high frequencies, and an accurate plot is questionable. The noise floor through my system seems to be only about 6 to 8 dB down from a $0-70 \mathrm{~dB}$ or 80 dB middle (I mean residual pink noise from the equalizer, not system noise) and trying to find the plot in a system that is only -5 dB at 26 cycles gets sticky.

It seems one can test and experiment cheaply at mid-audio band but playing with the top and bottom costs plenty of money! Thanks for an excellent economical product.
FRANK B. HORNER
Allenhurst. NJ

In response to Mr. Horner, let me assure you that the PNG covers the entire audio spectrum ($20 \mathrm{~Hz}-20 \mathrm{kHz}$). In fact, an actual spectrum analysis shows the noise to extend from below 10 Hz to beyond 40 kHz . As for the -3 dB/octave filter, it is accurate to $\pm 1 / 2 d B$. There is a low frequency beat that may cause the meter to swing back and forth. The correct setting is when the needle bounces equally on either side of the reference. As Mr. Priest points out, this beat may make the PNG unsuitable for psychological testing and sound effects generation. For these uses, a more conventional semiconductor junction noise source may be required.
JEFFREY G. MAZUR

ENGLISH VS. AMERICAN TV'S

I agree with E. M. Kubilus' letter in the January 1978 issue of Radio-Electronics. I have been repairing English TV's for $5 \frac{1}{2}$ years in my spare time. The English sets are a dream to repair compared with American models. I think the American manufacturers could benefit from the English design. Also the English picture quality is better than the American quality.
ALFRED R. WATERS
APO, NY

IN THIS ISSUE

Everything you wanted to know about long duration IC timers. A feature you won't want to miss.

Built to last

Our new $31 / 2$-digit LED autopolarity digital VoltOhmyst ${ }^{\oplus}$ is qualityconstructed for long, hard service.

- Fast and accurate measurement of ac and
 dc volts, current, and resistance.
- Built-in analog panel meter for peaking and nulling.
- Hi- or Lo-power ohms selector.
- $120 \mathrm{~V} / 240 \mathrm{~V}$ ac or battery operation with built-in charger.
- RF shielded, with rugged vinyl-clad case.

VIZ Test
 Instruments Group

of VIZ Mfg. Co.
335 E. Price St. Phila. PA 19144

DIGITAL CLOCK VARIATIONS

I thought you might be interested in my version of the No-Digit Digital Wall Clock featured in the June 1977 issue of RadioElectronics. I added a couple of features that I think make the clock more interesting:

1. I added a ring of LED's that indicate the seconds and give a sense of motion.
2. I made the minutes and seconds rings into ovals to add interest.

3. I used 60 LED's for the hours instead of 12 to more closely approximate the motion of a mechanical clock.

I wired the clock to a surplus wire-wrap board and modified the author's circuit to allow for the ring of seconds. Also I allowed for the extra hours LED's, plus the minutes

circuits had to be modified to allow moving the hours every 12 minutes. In order to synchronize the minutes and hours I added a power-up reset circuit. The time-setting circuits are more complex to permit setting the seconds and to keep the minutes and hours in sync.

In the fast-set mode, the clock is fascinating to watch, with the minutes and seconds whizzing around and the hours ticking along. I'm thinking of building a similar project that doesn't keep time at all (or can be read as a clock only with great difficulty) but is just visually interesting.

Thanks a lot for the informative article MICHAEL MORSE
Garrett Park, MD
R-E

International Microcomputer Exposition Dallas-Sept. 29-30-Dct.1,1978

Everybody who's anybody in microcomputing will be in Dallas.

EXHIBITORS
Advanced Gomputer Products Altair
Apple
Byte Shop of Dallas
Centronics
Compucolor Corporation Computer Dealer Magazine Computer Headware Computer Shop Creative Computing Magazine Digital Research Corporation dilithium Press ED S
Foundation for Quality Education
General Electric Hobby World Electronics Interface Age
Jade Computer Products
K A Electronics
Kilobaud Magazine
Malibu Printers Micro Diversion, Inc. Micropolis Corporation O K Machine \& Tool Osborne and Associates Page Digital Electronics
(As of April 15)
Percom Data Corp.
Phoenix Group Popular Electronics Prime Supply Incorporated Problem Solver Systems Processor Technology Q M Data Service Quest Electronics Radio Electronics Magazine Radio Hut
S D Systems
Seals Electronics, Inc.
Small Business Computer Magazine Smoke Signal Broadcasting Southwest Technical Products Space Byte
Sybex Incorporated
Tandy Computers
Techno Associates
Telpar Incorporated
Texas Instruments
3M Company
VRI
Vanguard Systems Corp.
Xerox Corporation

PROGRAMS \& SEMINARS

Small Business System Operation Seminars
Hardware Design Symposium
Panel of Experts
Personal Computing Seminars Small Business Software Criteria
And many other programs for Engineers, Small Business System
Users and Persona! Computing Enthusiasts

SPECIAL GUEST SPEAKERS

Carol A. Ogdin
Adam Osborne
Portia Issacson
Jim Warren
Wayne Green
Robert S. Jones
Chris P. Morgan
A NASA Representative

Sponsored By:
Pepular Electronics
Computer
Dealer

Call Today for Advance Registration Information.

equipment reports

Chemtronics Electro-Wash Degreaser

CIRCLE 101 ON FREE INFORMATION CARD
Chemtronics inc. (45 hoffman avenue, Hauppauge, NY 11787) has developed a new handy spray-can product called Electro-Wash. This compound is a freon degreaser/cleaner that is very effective for loosening and flushing away grease and dirt that can cause problems in sensitive electronic circuits. It's nonflammable, has a fast wetting action, and will not affect plastics or any electronic component.
The manufacturers claim Electro-Wash can dissolve oxidation. I had an excellent test subject in my own antique TV set, which is a jewel but has some problems with dirty tubesocket contacts. So I pulled a few strategically located tubes and sprayed Electro-Wash on the sockets and tube bases. This seems to have cleaned up a cute little intermittent that had been bugging me for some time. It also helped the tuner on Channel 13 as well as a couple of controls!
My test sample was a 24 -ounce can, a good size for bench use. The can comes with a long plastic needle for getting into tuners and similar places while the TV set is on. Along with the can came a Vibra-Jet (model VJ-I) which has a 26 -inch-long plastic hose with a fitting that plugs right into the top of the spray can. The nozzle is a 7 -inch-long plastic tube, and the handle is a slightly bent piece of larger tubing. This design makes it exceedingly handy for getting into those tight places the big can has problems reaching.

The Vibra-Jet delivers the spray in a fast
series of pulses (similar to a "flutter" action) for better cleaning. I cleaned up a couple of filthy PC boards with this and they look like new. This device is also very handy for getting at color codes on resistors that are covered with a $1 / 8$-inch layer of gook, and for identifying resistors that have been overheated and discolored.

The Vibra-Jet tubing is made of polyurethane, which is safe for use with any other Chemtronics products: coolant spray, moisture displacers, lubricants, etc. (If you worry about the environment, Electro-Wash uses CO_{2} propellant, which is harmless.)
Electro-Wash can be used on any kind of electronic equipment from computers to little transistor radios. I also used it to clean up a sticking "U" key on my nonelectronic typewriter with the greatest of ease! Electro-Wash sells for $\$ 4$; the Vibra-Jet costs $\$ 1.98$. R-E

Advanced Video Model

 FSII Video Camera

CIRCLE 102 ON FREE INFORMATION CARD
if you are one of the many thousands of people who recently bought a videocassette recorder, or if you plan on purchasing one, then a video camera is something you'll want before long. Color cameras still cost $\$ 1500$ and up, but good black-and-white video cameras are available for less. An outstanding buy is a black-and-white zoom-lens video camera, the fully assembled model FSII, which sells for $\$ 149$ from Advanced Video Products, 5835 Herma, San Jose, CA 95123. If you lack an 18 -volt DC supply at about 350 mA , you can purchase the model PSVI Power Supply for $\$ 29$ more.

The monochrome model FSII can be used indoors or outdoors, and extra lighting is not continued on page 28

WESTON FREE Case Offer

Contact Your Nearest Distributor

alabama

Forbes
$\begin{array}{lll}\text { Decatur } 35601 & \text { (205) 353-4762 }\end{array}$

CALIFORNIA
Metermaster, Inc
8797 Balboa Ave.
San Diego 92123 (714) 278-211
Metermaster, Inc.
3995 East Bayshore Rd
Palo Alto 94303 (415) 968-0313
Acro
4081 University Ave
San Diego 92105 (714) 282-8115
Dunlap Electronic
Sacramento 95814 (916) 444-8070
Wemco
300 Broadway
Oakland 94607 (415) 452-1936
Western Electronics Supply Glendal 91201 (213) 849

CONNECTICUT

The Mancib Company
Middletown 06457 (203) 346-6646

FLORIOA

Brownell Electro, Inc
307 27th St.
Drlando 32806 (305) 843-6775

EORGIA

Brownell Electro, Inc
3020 Commerce Way
Atlanta (Hapeville) 30354
(404) $762-5181$

illimols

Newark Electronics Corp.
500 North Pulaski Rd.
Chicago 60624 (312) 638-4411
McNamara Supply
32 South Michigan Ava.
Chicago 60604 (312) 922-5032
Pacific Indicator
603 West North Ave
Oak Park 60302 (312) 261-1330

LOUISIANA

Butler \& Land, Inc.
2669 Lexington St.
Industrial Electronic Supply
$\begin{array}{ll}2424 \text { Greenwood } \mathrm{Ad} \text {. } \\ \text { Shreveport } 71103 & \text { (318) } 222-9459\end{array}$
Industrial Instruments Works
ndustrial Instruments Work
134 Laitram Lane
Harahan 70123
Harahan 70123 (504) 733-8355
Malph Electronics
Lafayette 70501 (318) 234-4507

MARYLAND

ioneer Instrumentation
91 Gaither Rd.
Gaithersburg 20760 (301) 948-1012

MASSACHUSETTS

Brownell Electro. Inc.
271 Vassar St.
Cambridge 02139 (617) 864-7500
Metermaster
$\begin{array}{lll}13 \text { Fortune Drive } \\ \text { Billerica } 01865 & \text { (617) 667-8346 }\end{array}$

wichigan

lam Meter. Inc.
100 Hilton Rd.

MINNESOTA
Instrumentation Services, Inc.
957 Winnetka Ave. N
$\begin{array}{lll}M i n n e a p o l i s ~ & 55427 & \text { (612) } 544-8916\end{array}$

missount

Industrial Service Labs
4354 Olive St
St. Louis 63108 (314) 535-5760

montana

Flamand Electronics Supply
9 North Broadway
Belgrade 59714 (406) 388-6606

NEW JERSEY

Brownell Electro, Inc.
500 Hadley Rd. \& Durham Ave.
South Plainfield 07080 (201) 753-4600

NEW YORK

Baldwin Hall Co. Inc.
Syracuse 13201 (315) 463-9251
E. E. Taylor Company, Inc.

465 Central Ave.
Albany 12206 (518) 489-5600
Summit Distributors
916 Main St.
Buftalo 14240 (716) 884-345n
Trott Electronics
9020 Wehrle Dr.
Clarence 14031 (716) 634-8500
Electronic Devices Co.
Electronic Devices Co.
3301 Juan Tabo N.E. Bldg. 201
Albuquerque 87t11 (505) 293-1935

OHIO
Hughes-Peters, Inc.
481 E. 11 th Ave
Columbus 43211 (614) 294-5351
Pioneer
Cleveland 44105 (216) 587-3600
Pioneer/Dayton
Dayton 45404 (513) 236-9900

oklahoma

Hunzicker Bros., Inc.
501 Virginia St.
Oklahoma City 73125 (405) 239-7771
Tri-State Instrument Lab, Inc.
6801 E. 15th St.
Tulsa 74112 (918) 838-8883

PENNSYLVANIA

Pioneer/Pittsburgh
Pittsburgh 15328 (412) 782-2300
Process Engineering
Process Engine
P.0. Box 10464
Pittsburgh 15234 (412) 516-5050

TEXAS

Butler \& Land
1249F Blalock Dr.
Houston 77055 (713) 464-4662
Meters \& Instruments
6502 Gulf Freeway
Houston 77023 (713) 644-1631
Straughn Electronics, Inc.
3235 Highland Ave.
Beaumont 77705 (713) 838-4563
WASHINGTON
Almac/Stroum Electronics
5811 Sixth Ave. So.
$\begin{array}{lll}\text { Seattle } 98108 & \text { (206) 763-2300 }\end{array}$
Branom Instrument Corp.
5500 Fourth Ave. So
Seattle 98108 (206) 762-6050
Eicher/ Richards Co.
Seattle 98105 (206) 523-7888

WISCONSIM

Electro-Mechano Co
241 E. Erie St.
Milwaukee 53202 (414) 272-4050

VIRGINIA

Instrument Technical Reps
1425 Blue Jay Lane
Richmond 23229 (804) 285-393!

For a limited time only WESTON offers this handsome carrying case...FREE...with any Model 6000 DMM you buy.

That's right! With any Weston Model 6000 DMM you buy between May 1 and August 31, you will get . . . absolutely FREE . . . this handsome, sturdy carrying case. Leather grained for a look of elegance, the expanded vinyl is rugged and easy to keep clean. The pouch style makes it simple to remove or replace the meter. The case, worth more than $\$ 15$, comes with a handle for easy carrying, and a snap-loop for hanging from a belt.

The Model 6000 is the renowned "Drop-Proofed" digital multimeter with standard built-in autoranging for its five measurement functions over 26 broad ranges. All ranges, including resistance, are provided with complete overload protection and automatic zero calibration.

The Model 6000 comes with a "Hold" feature to retain the LCD reading after the probe is removed. This allows measurements to be made in crowded circuitry or high voltage areas with greater safety. The meter is housed in a high impact molded plastic case to isolate inputs and to provide greater ruggedness and durability. The inside of the 6000 is coated with a conductive paint to shield the circuits
from industrial radio frequency interference noise and insure more accurate readings. A sturdy, patented plastic handle makes the meter easy to carry, acts as a tilt stand during bench operation, and folds down to protect the display face during storage.

The Model 6000 also has two new optional features . . . a manual range hold button to override autoranging, and a d splay backlight button for reading the meter in very low illumination areas.

You get all of these features in the Weston Model 6000 DMM . . and you also get, absolutely FREE, a handsome, sturdy carrying case for extra protection. Be sure to get in on this FREE, limited-time offer. Call your nearest Westori sales office now!

SANGAMO WESTON

Schlumberger

WESTON INSTRUMENTS
a DIVISIO V of SANGAMO WESTON, INC
614 Frelinghuysen Avenue Newark, New Jersey 07144 Te . (201) $242-2600$
Canada 1480 Dundas Highway Mississauga, Ontario (416) 277-3191 Europe: Ingolstadter Str. ETa 8München 46, W. Gerraniy (49-89) 31-70-31

You can be sure

more times in more circuits in more places than with any other multimeters on the market today

cuit loading on every measurement. That means 50% higher accuracy than other DVMs.

DVM38
 \$395

31/2 DIGIT .1\% DCV ACCURACY AUTO-RANGING DVM
A "prime" standard at your fingertips for measurements you can trust. Auto ranging for extended low-level range and ease of operation. 15 Megohm input impedance assures $.1 \%$ reading accuracy is maintained in solid state circuits. Highly sensitive, yet fully protected to 2000 VDC overloads. HiLo Power Ohms circuit simplifies in-circuit resistance measurements.

DVM37 ${ }^{\mathrm{N}}{ }^{W}$
\$268
31/2 DIGIT . 1% DCV ACCURACY PORTABLE DVM
Prime standard . 1% accuracy on the bench or in the field for less than $\$ 250$. The DVM37 is the most accurate portable DVM you can buy, with 15 Megohm input impedance for 50% more accuracy. Includes automatic features-Auto Zero, Polarity, Decimal, Overrange. Fully protected inside to over 2000 V on all functions, including Ohms, and protected outside with superrugged case. Full ranges for every test. Fingertip "Push-On" switch in probe saves batteries as power is applied only when needed.

New DVM37

DVM32
In stock at your favorite local Sencore Full Line Distributor.

DVM32

\$225
3 $1 / 2$ DIGIT .5\% DCV ACCURACY PORTABLE DIGITAL MULTIMETER
Bench and field master for digital accuracy measurements anywhere. 0.5\% DCV accuracy, backed with 15 Megohm input impedance. Exclusive battery-saving Auto-Display turns the display on automatically when you make a measurement. 2000 V input protection on all functions and ranges-including Ohms.

DVM36

\$158
3 $1 / 2$ DIGIT .5\% DCV ACCURACY POCKET PORTABLE DVM
Pocket portable lab accurate performance that fits every budget with highest perform-ance-to-price benefits of any meter. . 5% DCV accuracy, backed with 15 Megohm input impedance for lowest circuit loading. Full protection to 1000 V on all functions and ranges-including ohms. Drop-proof case. Battery-saving "Push On" button in probe.

DVM35

\$134
3 DIGIT 1\% DCV ACCURACY
POCKET PORTABLE DVM
Fast, direct reading digital accuracy for the man on the go. Same features as DVM36 except 3-digit, 1\% DCV accuracy, backed by 15 Megohm input impedance that is ten times more accurate than analog meters.

DIGITAL MULTIMETER SPECIALISTS 3200 SF NCIURF DRIVE SIM1× fALLム SD 5710760513390100

EQUIPMENT REPORTS
continued from page 26
usually required since the camera "sees" well in normal room lighting. This camera has an f/ 1.9 zoom lens with a focal range of 9 to 30 mm (over a 3:1 zoom ratio) and an optical through-the-lens viewfinder with a built-in sliding lens protector and adjustable-focus eyepiece. The dual-range automatic light control gives usable pictures from 3.72 candlepower to 9293 candlepower, with only one bright-dim controlthere is no iris to adjust!

The camera weighs only 2.7 pounds and comes with a quick-release pistol-grip handle. Dimensions (without the pistol-grip handle) are 9 inches long by $4 \frac{1}{4}$ inches high by $2 / 4$ inches wide. Snap off the pistol grip, remove a large screw and you have a standard $3 / 8$-inch tripod socket. A Pause-CONTROL pushbutton on the top of the camera lets you remotely start or stop a video recorder at the camera, if the videocassette recorder has a compatible pause circuit. (With the RCA SelectaVision videocassette recorder, remove the camera PAUSE pushbutton cap, unscrew and remove the miniature "on" bulb and replace the cap. This remote control works perfectly when connected to the SelectaVision pause-control jack.)

All connections are made through a 15 -foot five-conductor cable that screws onto the side of the camera. A female connector is provided to mate with the plug at the other end. The five conductors carry the camera video signal, the sync pulses from the power supply (60 Hz), the positive supply voltage, ground return and pause control. The model FSII output has standard composite video specifications: 1 volt, 75 ohm, negative sync, with 525 -line scan and full $1: 2$ interlace. The model FSII is all solidstate construction, except for the 8844 vidicon tube and the incandescent "on" bulb.

A wide-angle lens is available for $\$ 55$, and a close-up lens set, which gives up to $\times 6$ magnification, costs $\$ 10$.

The camera can be used with a video record-er-for amateur TV film production, for home or business security purposes, or for any other closed-circuit use. Since the camera does not have an RF output, a Video Modulator Kit ($\$ 12$) is available from the manufacturer. This kit converts the camera video output to RF on Channels 2 to 6 (slug-tunable) so that the camera can be "played" into any regular TV set. This modulator can also be operated from the same 18 -volt power supply as the camera.

Using the model FSII is simple. Plug one end of the conductor cable into the camera and the other end into the power supply. The model PSVI power supply has a BNC connector for the camera video output that connects to the video monitor or recorder (or to a video modulator to use with a TV set). After about a 15 -second warmup, a picture appears on the TV screen (unless you've forgotten to lift the sliding lens protector or turn on the power supply!). Depending on the lighting, set the switch on the side to OVERCAST or BRIGHT. As you watch the TV set, zoom in on some subject, using the lever on either side of the lens mount. Adjust the focus for the clearest picture. Now you can zoom in or out, and the picture will not need refocusing. Incidentally, the focus ring has two convenient detents for average and distant subjects.

Full technical information, including a schematic and alignment data, plus a full guarantee come with the camera.
continued on page 30

O BATTERY OPERATED
(2) Standard "C" Ni Cad Batteries (nol included)

O INTERCHANGEABLE BITS \& SLEEVES (not included)
O REVERSIBLE ROTATION
For unwrapping, reverse batteries

BACKFORCE OPTIONAL Model BW928-BF $\$ 52.95$

POSITIVE INDEXING
LEIGHT WEICHT
*LEXAN ${ }^{\text {TM }}$ Housing
-LEXAN ${ }^{\text {M/ }}$ gENETAL ELECTRIE

EQUIPMENT REPORTS
continued from page 28

A. F. Stahler Tools

CIRCLE 103 ON FREE INFORMATION CARD
SEVERAL BREADBOARDING SYSTEMS USE PC boarcis with etched or stamped conductors that you cut and jumper according to your schematic. Other systems use socket buses into which you plug components and wires. While these are very convenient, timesaving alternatives to conventional PC board layout and etching, sometimes less-disciplined methods
are preferable. Improved layouts often result when IC's and other components can be positioned at nonparallel angles. Radio-frequency circuit optimization requires painstaking attention to lead length, positioning and shielding. A. F. Stahler Company (P.O. Box 354, Cupertino, CA 95014) manufactures tools and accessories that can be used to create a flexible breadboarding technique that overcomes these shortcomings for small-quantity development work.

The basic concept is to create terminal islands within a larger sea of a single- or double-sided PC ground plane. Two tool types in three sizes each are used either to insulate or isolate terminal areas on the PC layout: The first, a series $1 S 6000$ isolated-pad-drill tool (shown), drills a pilot hole and a larger-diameter coaxial ring, leaving a component hole surrounded by an isolated terminal. Surface tension tends to prevent the melted solder from bridging the gap between the isolated terminal and the surrounding foil. A replaceable No. 60 or No. 69 bit is used to drill the component hole; and, depending on tool size, the outer concentric milling edges form a metal circle with a diameter of $0.01,0.15$ or 0.20 inch. The smallest-diameter tool is just right for drilling IC patterns with $100-\mathrm{mil}$ pin spacing. The recommended drilling speed is 600 RPM.
The second type, the series IS6900 tool, is an insulated-spot-drill that removes all the conductive material within the outer diameter of the tool. If, for example, you want to mount an IC or feedthrough terminal on a doublesided PC board, this tool removes the metal on the component side to prevent the terminals
from shorting against the metal. A model IS6010 tool could be used for additional mechanical support on the component side, but soldering IC pins on the top of the board makes removal of the IC more difficult and increases capacitance between terminals. The series $I S 6900$ is also convenient for wire-wrapping terminals and sockets. In this case, the tool is used to insulate the terminals from the surrounding metal so that wire-wrapped leads can be used to complete the circuit.

After initial layout, the hole center pattern is transferred to the PC board directly. For single-quantity designs, the layout can be done right on the PC board itself. Isolated and insulated holes are drilled and the metal is polished with emery cloth to remove burrs and prepare the surface for soldering. Components are inserted, with their leads extending a fraction of an inch from the board to act as wire terminations. The final steps are wiring, soldering and cleaning the board with a flux remover.

These drilling tools are also very handy if you want to modify existing PC boards; you can easily add pads to unetched areas

The isolated and insulated drills are available in both high-speed steel at $\$ 10.50$ each, or carbide-treated, costing $\$ 12.50$ each. Sets of the three sizes are priced at $\$ 25$ and $\$ 30$ for steel and carbide, respectively.
A. F. Stahler also markets the model RSDT-DIPI 6 template set that prints the drill pattern for 16 -pin (or fewer) DIP IC's. This $\$ 12.50$ set includes a rubber stamp, a 1 -ounce bottle of fast-drying ink and a stamp pad.
For additional information, write A. F Stahler Company, P.O. Box 354, Cupertino, CA 95014.

R-E

We've made replacement parts an open book.

 Cur MRO replacement guide is required reading for people involved in maintenance, repair and operation of industrial electronic equipment.
 It can solve your replacement parts problem at a single glance because it cross-references over 35,000 type numbers of OEM parts. Linear and digital ICs, triacs, SCRs and Zeners, plus a lot more.

Get your copy from the man who stocks the parts for off-the-shelf delivery-your local Sylvania distributor, or write to GTE Sylvania, Distributor and Special Markets Div., 1025 Westminster Dr., Williamsport, Pa. 17701.

SYLVANIA
Gis

NEN for Professional Technicians

Forest Belt's

thainING wOBKSHops 1978

- THREE-DAY
- INTENSIVE
- UP-TO-DATE
- PERSONAL
- UNIQUE
- Includes lodging
- Breakfasts, lunches, and coffee breaks during WORKSHOPS
- Grand AWARDS BANQUET
- FREE Extra SEMINAR

ADVANCED
 VIDEO SERVICING

Featuring VCRs, Digital Controls, VIR . . . and much more
Intensive Forest Belt teaching techniques and exclusive, proven training aids bring you right up-to-date in the troubleshooting and repair of today's video equipment for home or industry.
Special emphasis on solid-state and integrated circuits. See new IF and color alignment methods you probably never thought of. Learn about Vertical Interval Reference (VIR) automatic color control in newly introduced TV receivers. Understand digital and solid-state tuning systems. Participate in live equipment demonstrations. Sit in on the industry's first look at practical, Easi-WayTM repair of video cassette recorders.
DON'T BE LEFT BEHIND in your own industry! Be the one technician in your region who not only keeps up but stays AHEAD of new technology and servicing methods. ENROLL NOW to be sure you do not miss this vital and unique Advanced Video Servicing WORKSHOP.

FREE Price and Profit SEMINAR Tuesday evening.

\section*{September
 11.13 (Communications) or $\mathbf{1 8 - 2 0}$ (Video)

Centrally placed for convenient travel from anywhere in the mainland U.S. Also timed earlier in the year, in case you should not be away from your shop during the pre-Christmas season. You can attend in time to prepare you for the year-end service rush and the new sets being sold.
Comfortable, pleasant accommodations: two people to a room (two beds). Indoor pool. Shopping downtown by freeway. Bring your spouse if you wish, at the nominal No-WORKSHOP fee (she joins the WORKSHOP group for breakfasts and lunches). If you prefer to room with a specific other WORKSHOP attendee, tell us.

Enroliments close August 4, 1978, or when capacity is reached. Per Workehop \$495

\section*{Hospitality Inn East

Hospitality Inn East Interstate 70 af Post Road Interstate 70 af Post Road Indianapolis, INDIANA Indianapolis, INDIANA
 November
 6-10 (Communications) or 13-17 (Video)

For technicians who could use a bit of get-away time as part of this unique training package. Two days of consulting or on-your-own follow each WORKSHOP. Make your own airline reservations, well in advance; but we take care of placing you in our luxury cottage lodging.
Exceptional resort accommodations: four people (two bedrooms, four beds, two baths) or six people (three bedrooms, six beds, three baths) in fancy beach cottages. Bring your spouse, if you wish, at the nominal No-WORKSHOP fee (she joins the WORKSHOP group for breakfasts and lunches). If you prefer to share a room with a specific other WORKSHOP attendee, tell us. Cottages have kitchen facilities. An unusual winterseason bargain.
Enrollments close Sept. 15, 1978, or when capacity is reached.
Per Workshop \$595

Yes, enroll me promptly for TRAINING WORKSHOP at right.
Advanced Communications Servicing Advanced Video Servicing

I enclose check or money order for \$
$\$ 495$ per WORKSHOP in Indianapolis
$\square \$ 595$ per WORKSHOP in Florida
U.S. dollars. $\$ 175$ for spouse$\$ 250$ for spouse (includes lodging. same meals as for WORKSHOP enrollee)
$\$ 475$ for CB Service WORKSHOP (same as 1977, and includes lodging) at Indianapolis August 21-23, 1978.

Name ___ Age
Company

NOTE: You need 2 years electronics training or experience to gain proper benefit from these Advanced TRAINING WORKSHOPS. NOT FOR BEGINNERS.
Mail to: Forest Belt's TRAINING WORKSHOPS, Box 68120, Indianapolis IN 46268

Yesterday you could admire LED digitat tuning in short wave: Today you can afiordit.

Introducing Panasonic's Command Series top-ôf-the-line RF-4800. Everything you want in short wave. Except the prise. Like a five-digit LED frequency display. It's so accurate (within 1 kHz , to be exact), you can tune in a station, even before it's broadcasting. And with the FF-4800's eight short wave bainds, you can choose any broadcast between 1.6 and 31 MHz . That's the full frequency range. That's Panasonic.

And what you see on the outside is just a small part of what Panasonic gives you inside. There's a double superhetergdyne system for enhanced reception stability and selectivity as well as image rejection. An input tuned 9 f amplifier with a 3 -ganged variable tuning capacitor for exceptional sensitivity and frequency liearíly. Laddertype ceramic filters to reduce frequancy interference. And even an antenna timmit that changes the froni-end capacitance for mainuin reception fromiminimal broadcast synals.

To help you control all that sophislicated
circuitry, Panasonic's RF-4800 gives you all these sophisticated contrals. Like an all-gear-drive tuning control to prevent "backlash.' Separate wibe / narrow bandwidth selectors for optimum reception even in crowded coriditions. Adjustable calibration for easy turing to exact frequencies. A BFO pitch control. RF-çain control for increased selectivity in busy signal areas. An ANL switch. Even separate bass and treble controls:

And if all that short wave isn't enough. There's more. Like SSB (single sidebzind) amateur radio. All 40 CB channels. Ship to shore. Even Morse cammunications. AC YOC operation. And with Panasonic's 4" full-range speaker, the big sound of AM and $F M$ will really sound big.

The RF-4800. If yo: had a short wave receiver as good. You weuldn't still be reading. You'd be listening The collity to receive short wave broadcasts will vary whin antenna size time of day. opentor's geographiclacation and other tactors. yp may need an optional outside anten na to receive distent short weve broadcasts.

The clear button sets the display to zero and allows you to correct mistaken time entries. Since it does not clear the memory or reset the audio latch, it should not be pressed during a timing interval.

The timing cycle can be halted by either pressing the START/STOP button, which will shut off the audio and the enlarger, reset the display to the last selected time, and clear the memory, or by pressing the pause button, an alter-nate-action switch, which will halt the timing cycle and shut off the enlarger and audio. A second tap on the pause button allows the interval to continue from where it was interrupted.

The focus button, also an alternateaction switch, turns the enlarger on for focusing the first time it is pressed. Its next operation turns the enlarger off and restores control to the timer.

How it works

Figure 2 shows the block diagram of the timer, and Fig. 3 its schematic. The calculator portion consists of IC7, the four displays, four of IC2's buffers, and the mechanical keyboard. The display segment outputs a-g of IC7 contain the numerical information to be displayed in seven-segment format. Each segment output is connected to its corresponding anode of all four displays. The digit outputs, D1-D9, go high, one at a time, starting from D1 and going through D9 (and two additional internal states), and complete the cathode circuits of each display sequentially, thus determining which readout will display the information on the segment lines. The segment outputs are open-drain current sources to

FIG. 1-OPERATIONAL DIAGRAM of the digital darkroom timer. An electronic calculator IC and its memory are vital to the timer operation.

MAIN BOARD PARTS LIST

IC6, IC10-4017 decade-counter/divider, 10-line output
IC7-C-685 calculator (General Instruments)
IC8, IC11-4016 quad bilateral switch
IC9, IC12-4081 quad 2-input AND gate
IC13-4019 quad and-OR select gate
IC14-4027 dual J-K master-slave flipflop
PB0-PB10-SPST momentary pushbutton switches. Part No. DC-61-05 (Datanetics, 18065 Euclid St., Fountain Valley, CA 92708)
Key caps for PB0 to PB10. Datanetics part numbers:
40-3091-03
40-3097-03
40-3098-03
40-3093-03 40-3099-03
40-3094-03 40-3100-03
40-3095-03 40-7170-03
40-3096-03
S1-S3-SPDT rocker switch, UID type RSW-06-12-SD-BB-S-B1-BK or RSW-06-12-SD-B1-S-B1-BK (UID Electronics Div., 4105 Pembroke Rd., Hollywood, FL 33021)
S4-S5-SPST alternate (push-to-pock, push-to-release) action switch,

Switchcraft UP-501L with PB-11-02

 capsS6-SPST momentary switch, Switchcraft UP-101M with PB-11-02 cap.
J1-RCA-type phono jack
Miscellaneous-Four rubber or plastic feet, $11 / 4 \times 21 / 2$-inch red filter for display cutout, duplex receptacle, IC sockets, nuts, bolts, wire and solder.
Note that the following parts are available:
IC7 (C-685) \$6.50; case \$11.00; main PC board, glass-epoxy etched and drilled with plated-through holes $\$ 15.00$. The power supply PC board, etched and drilled $\$ 6.00$. Switches S1-S3 $\$ 2.25$; S4-6 $\$ 2.50$; PB0-10 $\mathbf{\$ 7 . 0 0}$. Relay $\mathbf{\$ 2 . 3 0}$.
Complete kit of all parts except solder
$\$ 90.00$. Assembled, tested, ready-to-use timer $\$ 120.00$. All prices include postage California residents add sales tax as applicable.

Order from R. Kostanty, PO Box 1042, Gardena, CA 90249. Allow 3-4 weeks for delivery; add 2 weeks for non-California checks to clear. Foreign orders same as above, U.S. funds. Power transformer not shipped to foreign countries.

FIG. 2-FUNCTIONAL BLOCK DIAGRAM of the timer. Timing input is via a mechanical keyboard. The electronic keyboard operates from internal commands.

B + which can directly drive one segment of a LED readout. The digit outputs, also open-drain current sources to $\mathrm{B}+$, do not have the capability of handling up to seven times the current of each segment, so they are inverted through the highpower buffers in IC2 before being connected to the common cathodes of the displays. Each digit output from IC7 is high $1 / 11$ of the time, at a frequency of about 130 Hz .
The calculator IC (IC7) also uses the digit outputs to determine which functions or numbers are being entered. In Fig. 3, PBO to PBI0 (the solid squares) are the mechanical keyswitches which, when pressed, short one of the 9 digit lines to one of the " K " inputs. (Functions electronically activated are shown in dotted squares.) The calculator decides what to do based on a combination of the voltage present at KP, KN or KO , and the timing of this voltage with respect to the digit outputs. If, for example, KN is high simultaneously with D5 (as it will be if PB5 is pressed), the number 5 is entered as input data. Similarly, if pins 3 and 4 of IC11 are shorted by the electronic switch inside IC11, a high will appear on KP during interval D6 and the memory recall function will be activated.
(Yes, a complete calculator could have been included as a function of the timer.

But in view of the $\$ 8.00$ cost of ready-touse commercial units, the additional cost of 5 extra mechanical keyswitches and the 4 extra displays required to display the answer to noneven division could not be justified.)
Each time the start/Stop button is pressed, differentiator C2-R6 produces a negative pulse which lasts about 250 microseconds at IC3 pin 12. This pulse is latched by half of IC14. When pin 14 of IC14 goes low, sequencer IC10 is enabled.
Device IC10 is a decade divider whose 10 outputs sequentially go high, nonoverlapping, in the direction from 0 to 9 , each time its clock input on pin 14 goes high if pins 13 and 15 are both low. Just prior to the pressing of the START button, the divider is inhibited because pin 13 of IC10 is high, and is resting with only its 0 output high. When IC14's pin 14 is latched low, divider IC10 outputs 1, 2, 3 and 4 sequentially go high at a rate of 0.1 second per step, and in conjunction with IC8, $9,11,12$ and 13 perform the Memory Add, Minus and, if in the seconds range, I functions as shown in the flow chart. When the 5 output of IC10 goes high, the latch which feeds pin 13 of IC10 is reset, causing pin 1 IC10 to remain high for the duration of the timing cycle, IC6 to be enabled, and pin 6 IC12 to be
high. Succeeding clock pulses advance decade divider IC6 (which is identical to $\mathrm{IC10}$) and activate the Equals function, which decrements the display once each time it is activated.

The outputs from IC6 reset the zerozero detector, provide a signal to turn on the audio oscillator and set the latch formed by 2 of IC3's gates 0.2 second after the Equals function is first performed. (The zero-zero detector, IC4-a and b , IC15 and IC14-a, produces a high when zeroes are in the rightmost position on whole-minute intervals.) This delay compensates for a one-time delay in the calculator IC the first time the Equal function is performed. (The fact that latch IC3 is set once a second by IC6-7 is incidental.) IC3's output, after being buffered by Q1, drives a relay on the power supply board which turns on the triac that energizes the enlarger. The relay simplifies gating the triac from low-level logic.
Countdown continues until a minus is detected in the D8 position or until the stop button is pressed. Either event causes a positive pulse at IC14-9. Integrated circuit IC14 changes state and resets IC3 to turn off the enlarger and allows IC 10 to continue sequencing. Output 7 from IC10, which is only required when in the minutes/seconds range, ter-
(continued on page 86)

FRED BLECHMAN, K6UGT
before starting to build any of the Digi:Toll versions, take care in component selection and substitution. Certain electrical parts are critical for maximum performance. For example, components T1, D5 and R6 are carefully balanced to provide maximum within-specification segment current to the displays. Since the 3817 IC can only drive 8 mA -per-segment, specially graded displays (brightness code 08 or 09) are a must. Also, D3 and D4 are special low-voltage-drop germanium diodes needed to equalize DISI segment brightness.

The Digi:Toll circuitry can be handwired on perforated board, if desired, using "junk-box" components, but the results will reflect this approach. You can make your own PC boards, as shown in Figs. 3, 4 and 5; however, note that the back board, shown in the foil patterns of Figs. 3 and 4, is two-sided with platedthrough holes; this is not exactly a beginner's PC board project. In addition, both boards must be precision-cut when using the Digi:Toll enclosure.

Also, several special mechanical components, such as the header strips used to join the PC boards, the specified switches, the extruded aluminum case, the display lens and the screened data plate, are necessary to reproduce a high-quality unit. Since some components may be hard to obtain in single quantities, a complete kit is available.

Assembly of the standard Digi:Toll from the complete kit is very simple, and shouldn't take more than an hour. The instructions provided are detailed and complete. However, since you may want to purchase partial kits, or use some of your own components, the construction described in this article will assume you've decided to "roll your own," using the PC boards and critical components specified.

The standard Digi:Toll 12 -hour dis-play/24-minute elapsed timer does not require any foil breaks or special jumpers. If you plan to construct any of the optional versions, you should first make the specified foil breaks shown on the schematic table of Fig. 2 and in Figs. 6 and 7. You can make the breaks easily using an X-Acto knife or a razor blade, being careful not to cut other foil traces. All foil breaks, except for F and D, are on the back board, and all breaks on the back board, except for C , are on the component side of the board. Do not add any jumper wires yet.

The back board

Start by assembling the back two-sided PC board, oriented as shown in Fig. 6. Install a few components at a time into the board in the locations shown. Solder on the bottom side, using a 25 - to 50 -watt soldering iron and $60 / 40$ resin-core solder, then clip off the excess leads. Save
the cutoff leads for jumper wires if you make a modified unit. Install resistors R1, R2 and R3 first, then diodes D1 and D2, observing diode polarity. Next, install the bridge rectifier, making sure the marked pins (+ and -) face capacitor C 1 . Remove the excess coating from the leads of the small capacitors before installation so that the coating doesn't interfere with proper soldering; twist the coating off with pliers, even with the bottom of the capacitor body. Install capacitors C2, $\mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5$ and C6 in the positions shown. Insert resistor R6 into the board and then raise it about $1 / 8$ inch above the board; this resistor runs hot in normal operation and should be given some "breathing" space. Next, install large capacitor Cl (be careful of the polarity!), then the switches. When soldering the switches to the board, make sure that all the terminals are seated in the board holes, that the switch bodies are parallel with the board and that the plungers face upward. After soldering the switches to the board, snap the switch pushbuttons onto the plungers-it takes firm pressure. Next, insert the AC-cord leads from the transformer into the bottom of the PC board and solder them on the component side. Set this subassembly aside while you work on the front PC board.

The front board

Assembling the front PC board is even

Fig. 3-FOIL PATTERN for rear (solder side) of back bcard is shown full-size. Switches are on this board.
easier. Figure 7 shows the components layout. Insert all components into the blank side of the board, and solder on the foil side of the board. Resistors R4 and R5 are installed first, followed by diodes D3 and D4, and then by diode D5. The colored ends of D3 and D4 are the cathodes (the bars in diode symbols). The cathode of D5 is clearly marked with a black band. Next, solder the wire jumpers into all the 19 holes at the top of the board except for the center hole. These jumpers will mate with the back board, so their length and type will depend on whether you intend to place the display a remote distance from the switches that are installed on the back board. You might, for example, want to use some ribbon cable between the boards. You should be aware, however, that this could cause some spurious signals to be generated, and the boards should be as close as your application will allow. The best arrangement is to close-couple the boards using header strips. If you cannot locate header strips, then you must use the more tedious (and structurally inferior) approach of installing individual bare-wire jumpers. The header strips (supplied with the kit) are bent at a right angle at one end, to be used for right-angle panelmounting (see Fig. 8). If you are using
the Digi:Toll cabinet, use a bending tool to form the free ends of the jumpers or header strips to a 45 -degree angle. Fig. 9 shows how this is done with the bending tool provided in the complete kit. (The header-strip wires are very tough, and while they can be bent with pliers, multiple flexing to achieve just the right angle can cause them to break-hence, we recommend using the bending tool.)

Next, install the displays, being careful to orient them properly; the scalloped edge is the top of the digit, but DIS1 must be installed inverted so that its decimal point can be used as an indicator dot.

Install the clock 1 C last. Be careful when you handle this device, since it can be damaged by static discharges when not in its conductive carrier. Before installing the IC in the PC board, it will first be necessary to make the pins perpendicular to the body (they are manufactured bowed-out). Figure 10 shows how to preform the pins on a flat (and noncharged) surface. When you install this IC into the board, be very sure the index notch faces the left side, as shown in Fig. 7 , unless you enjoy unsoldering 40 pins simultaneously to remove the IC! A socket was not used in the Digi:Toll since it would not allow the unit to clear the
extruded custom case; if you use a different enclosure, you could install a lowprofile 40-pin socket here.

Joining boards and modifications

The front and back boards are mated by inserting the 18 projecting headerstrip pins (or jumper wires) from the front board into the holes at the top of the back board. Do not solder these pins or wires until you align the boards. If you intend to mount the unit behind a panel, as shown in Fig. 8, make sure to provide enough space between the boards so that the display and switches can be properly located behind the panel openings. If you mount the Digi:Toll in its custom enclosure, the boards must be properly spaced and aligned at a 45 -degree angle, as shown in Fig. 11. The easiest way to insure proper alignment is to use the enclosure itself as an assembly "jig." Insert about $1 / 2$ inch to 1 inch of the boards into one end of the extrusion, which has slots for the boards, and space the boards $1 / 32$ inch apart at the top, using the two plastic strips supplied with the cabinet.

If no modifications are being incorporated in the version you build, solder all the header-strip pins, or jumper wires, on the component side of the back board. If

Fig. 6-COMPONENT PLACEMENT for the back board. Check locations of jumpers and foil breaks used in the various Digi-Toll options.
modifications are being made, do not solder those pins that connect to modification jumpers.
The Modification Table of Fig. 2 defines which jumper wires are required for each version. The longer jumpers are made from an appropriate length of insulated wire, with $1 / 18$ inch of insulation stripped from each end. The shorter switch jumpers can be bare wire, or salvaged cutoff component lead wires. Figure 6 shows all 11 jumpers; but use only those that are required for the chosen modification! Diode D6 (used only with modification "L") and the jumpers going to the switches should be connected to the solder lugs on the switches. Jumpers going to pins 6 and 9 on the header strips should be wrapped once around the header pin and soldered. The top end of jumper Jll can be soldered in the empty hole (position 10). Keep jumper Jl clear of the top of the board by at least $1 / 8$ inch so that it does not interfere later on with installation into the custom cabinet.

Testing \& final assembly

The unit should be tested before being installed in a cabinet or behind a panel. For the unmodified units, follow this procedure:

Fig. 7-THE CLOCK IC, four displays and five other components are on the front PC board.

1. Place switch S1 in the up (timemode) position and plug in the transformer. The display should light up, with the dot indicator blinking to indicate a power interruption. Pressing either switch S3 or switch S4 (SLOw-SET or FAST-SET) will stop the blinking.
2. Set the proper time using switches S3 and S4, checking the segments as the time advances to see that they all light up when they should.

Fig. 8-THE DIGI-TOLL can be panel-mounted if desired. This is a suggested installation scheme.
3. Press switch S1 once so that it stays down (elapsed-time mode). The indicator dot should disappear and the display should count seconds.
4. Press switch $S 2$ to reset the elapsed-time display to 0000 .
5. After several minutes, return switch S1 to the up position by pressing it again. The time-of-day and indicator dot should reappear, and should have advanced to the current time. Pressing S1 down again should display the elapsed time at the point where it was stopped, and secondscounting should continue from that reading.
For version "T," the test procedure is similar to that for the standard unit, except that there is no dot indicator, and power interruption is signaled by the blinking of one or more segments of DISI.

Version " L " is the same as modification "T," except that depressing switch S2 (Elapsed-time reset) while in the time mode (switch SI is up) will reset the time display to 0000 .

For modification " W," the testing procedure is somewhat different:

1. Place switch S 1 in the up (time) position and plug in the transformer. The display should light up, and power interruption is indicated by one or more missing segments in DIS1 (the segments do not blink, since counting is inhibited). The display should not change until the elapsed timer is used.
2. Place switch $S 1$ in the down (ELAPSED-TIME) position and the display should start counting seconds.
3. Reset the elapsed-time display by pressing switch S 2 . The display should go to 0000 and resume seconds-counting when switch S 2 is released. Allow the unit to run for 20 minutes to verify that all segments light up when they should.
4. Return switch $\mathbf{S 1}$ to the up position. The display should read the total time that the elapsed timer was on. This display should not change (you must watch it for more than a minute to verify this). When the elapsed timer is used again (switch S1 is down) it will "add" to the total-time display (S 1 is up), thus accumulating (or totalizing) the individual elapsed times to 23 hours and 59 minutes, and then repeat
5. When switch S1 is up, pressing switches S3 and S4 simultaneously should reset the totaltime display to 0000 .
Modification " P " does not change any of the operating modes, therefore testing is the same as that for any of the above versions. When operated on a $50-\mathrm{Hz}$ line with the recommended transformer, the display may dim a little, and the transformer will become warmer than when
the unit is operated on a $60-\mathrm{Hz}$ line. Finally, it should be noted that a power failure in the elapsed-time mode (switch S 1 is down) is indicated by flashing DISI segments on all versions.

If problems develop in testing, the display indicates the symptoms, and Fig. 2 can be used for examination and diagnosis. Be particularly wary of incorrect polarity of RECT1, capacitor CI and all the diodes. Also, make sure the ICl index

COMPONENT SIDE

Fig. 9-A SPECIAL BENDING TOOL-supplied in the complete kit-is recommended for forming the header strip lugs.

Fig. 10-HOW IC PINS ARE PREFORMED so they are perpendicular to the body before the device is mounted on the PC board.

Fig. 11.-HOW THE PC BOARDS ARE ALIGNED prior to mounting in the custom Digi-Toll cabinet.
notch and all the display digit notches are properly located. Remember that DIS 1 is inverted! If all the components are properly installed, check for bad solder joints-continuity checks should find those. Of course, there is always the possibility of a defective component, but this is less likely than the troubles just described.

When your checkout is complete, you must provide a suitable enclosure or mounting. If you mount the unit behind a panel (Fig. 8) be careful not to short-out or drill through any circuit paths when making mounting holes in the PC boards.

If you use the Digi:Toll custom case, slide the completed and tested assembly into the right end of the extrusion with the line cord extending to the right. The display should face you. It is necessary to
slightly depress switches S3 and S4 when they reach the end of the right-hand switch notch so that the assembly can continue to slide into the case. You can use the long plastic strip provided with the case to protect the switches from scratches. Insert the strip from the left end of the extrusion and fit it between the pushbuttons of switches S3 and S4 and the underside of the extrusion as you move the pushbuttons into the case and slide the strip along with the buttons until they pop up into the left-hand case notch.

Using screws, attach the left-end cap loosely. Slide the plastic data plate into the upper slots. Remove the protective covering from the display lens and insert it into the lower front slots, making sure the antireflective dull side of the lens faces out. Now, screw on the right-hand end cap with the two remaining screws, dressing the power cord through the notch in the rear of the right-hand end cap. Before tightening each end cap,
it is only 2:30 PM in California). Conversely, Californians dial New York early (before 8:00 AM) and reach New Yorkers at work at the lowest possible rates!

Figure 12 summarizes the three least known facts about company billing:

1. The initial period rate for unassisted calls (no operator), such as direct-distance-dialed calts, is for only one minute, not three minutes, as generally thought. Although this first minute costs more, you are not charged this rate for additional minutes.
2. On operator-assisted calls, the initial period rate is for three minutes, so any amount of time up to three minutes cost the same.
3. Additional minutes are timed in full-minute increments.
In other words, you pay for a full minute even if you are on the phone for only one second of that minute! For example, a five-minute, one-second call is billed as six minutes. Hang up a few seconds soon-

Fig. 12-DATA PLATE helps you save 15% or more when you use it while making long-distance calls.
make sure the display lens is properly seated in the end-cap pockets. Finally, attach the four adhesive foam feet to the bottom of the cabinet near the corners.

Put it to work

With or without a Digi:Toll, the real key to significant telephone savings is for you to understand the phone company timing and discount schedules and use them to the best advantage. Just timing calls for logging purposes, or using a timer to become aware of the seconds and minutes, is not enough! It is how you use this timing data that will really add up to dollars saved.

The timing and discount schedules are summarized in the data plate in Fig. 12. It is not only how long you talk that's important, but when you place the call. For example, if you originate a longdistance call between 8:00 AM and 5:00 PM, local time in your area, on Monday through Friday, you pay the full rate. On Saturday and Sunday, however, during the same hours, you are only charged 40% of the full rate-a 60% discount. The same applies to calls made from 11:00 PM to 8:00 AM any day, and from 5:00 PM to 11:00 PM on Saturdays. On all other days (Sunday through Friday), the 5:00 PM to 11:00 PM calling period costs only 65% of the full rate (35% discount); so, obviously, there is a considerable savings in placing calls at the best time of day, and in taking advantage of East-West time differences (i.e., when it is 5:30 PM in New York (35% discount)
er, and you save the charge for one whole minute. At $15 ¢$ to $40 ¢$ per minute, this can add up!

Now, with this information, you can use your Digi:Toll to save yourself a lot of money. When using the standard Digi:Toll on a long-distance or timed local call, first select the time-of-day display and check the discount data on the data plate (Fig. 12) to see if you should reschedule your call to a discount period, or to a higher-discount period. Then, immediately after dialing, push switch SI down (into the elapsed-time mode) and hold down the RESET pushbutton, switch S 2 , until the other party answers (or when conversation starts on person-to-person calls). When you release switch S2, the count starts and you have synchronized the Digi:Toll's elapsed timer with phone company timers.

Since the Digi:Toll now tells you exactly how long you've been on the phone, you can use several methods to save money: (1) You can limit your call to some pre-established average maximum length. (2) You can eliminate unnecessary additional minute charges by trying to complete calls before a new minute begins. (Telephone company timing ends when either party hangs up.) (3) You can use time that you have paid for but, without a seconds timer, would normally lose to the telephone company. If you must begin a new minute or do so accidentally, take advantage of the unused portion of the minute by making sure you've covered everything you want to and avoid
making another call.
When the call is completed, record the elapsed time in a long-distance log if you use one and return switch S1 to the up (time-of-day) position. If you can't log the call immediately, the "memory" feature allows you to recall the elapsed time by just pressing switch S1 down when you want it displayed. It will, of course, continue counting from that point as long as switch $S 1$ is down.

If the elapsed timer of a standard unit is used when the real time goes from 12:59 to 1:00, it is possible for the nondisplayed time-of-day to be altered because the internal clock logic doesn't know whether to go to 1:00 or 13:00. To minimize this possibility, return the unit to the time-of-day mode when the elapsed timer is not actually in use. (On any modified unit, such a condition will not occur since all display modes are in the 24-hour format.)

When you use the 24 -hour modifica-
tion " T ," cost-cutting techniques are similar. However, ham radio operators can set the time-of-day display to Greenwich Mean Time (GMT) for international contacts, and can use the elapsed-time display to remind them to identify their station every 10 minutes, or to time "phone-patch" calls out of the local area. For international phone calls, a time chart can help you determine the best times for the best discount, yet not call someone in the middle of the night at their end!

The modification "L" Digi:Toll can be used for long-distance calls just as a standard unit, but you can also use it for timing conferences and consultations, or for time periods longer than 24 minutes. These timed periods can be used for billing or other record-keeping purposes. This modification also makes an excellent research or test-lab 24 -hour elapsed timer. At the beginning of the timing period, just press Reset pushbutton S2 while in the time mode, and the display
will go to 0000 and start counting and displaying hours and minutes. Of course, the time-of-day function is temporarily lost, but can be reset whenever desired by using switches S3 and S4.

Modification "W" provides you with a 24 -hour totalizing timer that is valuable on "limited WATS" calls where telephone time is purchased in blocks (soon all WATS time will be limited this way) When the 24 -minute timer is used in the usual fashion, the 24 -hour totalizing timer will keep a continuous record of how much block time has been used or how much remains. At the end of your specified accounting period, just zero the totalizer with switches S3 and S4 and start totalling a new accounting period,

With this minicourse in telephone charges and a Digi:Toll to put you in "sync" with Ma Bell's billing equipment, you can now pick up your phone, sit back, put your feet up on the desk and start saving your money!

R-E

Burglar Alarm Switches Made Easy

HAROLD PALLATZ

WITH JUST A SMALL SAW, SANDPAPER AND a few parts, a good, inexpensive type of burglar alarm switch can be made. If purchased on the open market, the Magnetic Proximity Switch costs from $\$ 3$ to $\$ 5$ per unit. You can build it yourself for under 50\$. Each unit takes 10 minutes to make and the materials are readily available. If you have, say, 20 windows and doors in your home or shop, the switches would cost only $\$ 8$ instead of $\$ 80$.

These magnet-activated switches are good for many reliable operations; they are used by the armed forces in many critical electronic applications. They are most dependable; they have a magnetic reed that flexes to open or close the switch contact when a small magnet is brought near it. Since there is no mechanical linkage or plungers and there is no physical contact with the magnet, there is very little that can go wrong. The switch itself is cemented to the window frame, and the sliding member of the window has a small bar magnet cemented to it. The body of the switch is stationary at all times.

Construction

Take the plastic casing of an old ball point pen-the type with a clear plastic hexagonal or octagonal body. Saw the pen into sections, removing the center ink supply after the first saw cut. It is important to use a fine-tooth saw and to work very slowly to prevent the plastic from cracking or overheating and then melting back together during sawing. File or sandpaper smooth the plastic end sections. Insert the magnetic switches into place and epoxy the ends of the plastic

INEXPENSIVE MAGNETIC INTRUDER SWITCH is made from a tiny magnetic reed switch encased in sturdy plastic housing made from a ball point pen. Mounting in window or door frame is simple.
tube with a fast-setting epoxy cement. (Do not get any cement on your fingers. as some types may react with the skin.)

The wire ends of the switch should protrude from the plastic sections. When the cement is hard, the body of the switch can be glued (or fastened with a small metal or plastic clamp) to the stationary side of the window. A small 1 -inch-long bar magnet is cemented, stapled or taped to the door or moving side of the window so that it comes within $1 / 8$ inch or so from the switch. For connection to the switch
ends, the intruder alarm wire is simply soldered to the switch leads. However, solder quickly so as not to overheat the glass or the epoxy.

The uncased magnetic proximity switches can be bought new from most of the larger electronic supply stores. They are also available from electronic surplus outlets for 15ϕ to 25ϕ each. The small $1-$ $\times{ }^{3 / 16}$-inch bar magnets can usually be obtained from the same sources at about the same prices, as well as from local hobby supply stores,

TEST EQUIPMENT

All About Audio Oscillators

Part 2—The audio oscillator most-often-used today is a sophisticated instrument that is a far cry from the simple AF signal source. This is a continuation of the story on the latest types.

this is one of a continuing series of articles on test instruments, their theory of operation and applications. This story on audio oscillators began in the April issue.

Synchronization output signal

Frequently audio oscillators not offering a squarewave output provide a squarewave of very limited capability. The purpose is to obtain a high-level waveform that can be used for triggering oscilloscopes or synchronizing other equipment. The difference between a synchronizing output and a true squarewave output may be subtle. However, a synchronizing output cannot be expected to have an output attenuator, a constant or controlled output impedance, controlled output amplitude or control symmetry.

Output metering circuits

A metering circuit connected at the power amplifier output permits precise output-level settings with the variable attenuator. This feature eliminates connecting an AC vacuum-tube voltmeter to the audio oscillator for level setting, as is often necessary with oscillators without internal metering circuits where the absolute value of the output signal amplitude is not known. These metering circuits are generally peak-reading and RMS-calibrated. However, such a meter is completely adequate on low-distortion sinewave oscillators. It may begin to jitter as the output frequency is reduced from 20 Hz . In the $1-\mathrm{Hz}$ or $2-\mathrm{Hz}$ range, the meter may actually follow the output waveform, swinging from zero to a peak value. When this occurs, the output amplitude of the generator should be established at a frequency greater than the jitter point.
Some audio oscillators offer a switchselected internal load. With the internal

[^0]load connected, the output amplitude is reduced by a factor of two, compared to the no-load voltage. This internal load is necessary because metering circuit calibration depends on a proper load at the attenuator's output terminals. Often the load connected to an audio oscillator is essentially an infinite impedance. Such a load can be metered correctly by simply switching the internal load in parallel with the output terminals.

Frequency synchronization

A number of higher-priced audio oscillators offer a feature that permits synchronization of the audio oscillator frequency to an external standard. This is useful when a high degree of frequency or phase relationship control is necessary, but when the reference signal is not pure enough to use in the particular experiment. Frequency synchronization specifications indicate the synchronization lock range-that is, how closely the oscillator must be tuned to the reference frequency to establish synchronization. The amplitude and waveshape required of the synchronizing signal is also specified.
Such locking schemes frequently result in a phase shift between the reference signal and the phase of the audio oscillator output. If the two frequencies are identical-that is, if the audio oscillator has been tuned to the reference frequen-cy-the phase shift is a constant. However, it is common for the phase shift to vary when tuning the audio oscillator frequency away from the signal. Of course, the instrument must remain within its lock range to achieve any synchronization at all.

Low-distortion modes

Some audio oscillators have a special low-distortion feature, in which an increased time constant for amplitude feedback control is used to reduce distortion. The effect is primarily intended to improve the distortion specification at low

CHARLES M. GILMORE*

frequencies. The increased time constant increases the settling time of the oscillator. This means that amplitude variations, caused by changes in frequency, last longer than under normal conditions.

Battery operation

Battery operation, which is offered by a number of oscillator manufacturers, should be used in two cases: When oscillator portability is important, such as in an area where power is difficult to obtain; or where power connections limit operational flexibility.

Battery operation can serve another purpose in the laboratory. Battery power means that the oscillator can be operated with no true connections to earth ground. In other words, the oscillator can be floated at any desired potential. Certain basic precautions must be taken to insure that no contact with an audio oscillator case floating at a high potential is made by either the operator or some object at earth ground; such a contact could cause circuit damage or personal injury.

High output levels

A less commonly advertised feature of the oscillator is its ability to create much higher output levels than a generator. For special applications, audio oscillators can be obtained with levels approaching 100 volts. Such instruments are not considered conventional, but only serve a specialized purpose.

Attenuator range

As noted earlier, the attenuator can vary from a very simple, limited-range device to a complex circuit with a great number of step ranges. Depending upon the intended use of the oscillator, one feature may be more desirable than another. The Hewlett-Packard model 204C and model 204D audio oscillators are examples of the alternatives available. The model 204 C offers a single continu-

ously adjustable control with a $40-\mathrm{dB}$ range; the model 204 D offers a single continuously adjustable control with a $10-\mathrm{dB}$ range, combined with an $80-\mathrm{dB}$ step attenuator (in $10-\mathrm{dB}$ steps).

Where precise amplitude control is necessary, attenuator accuracy must be considered. Even on metered audio oscillators, the output setting accuracy is influenced by the attenuator, since the metering circuits do not read attenuated signals but simply the power amplifier output before attenuation

As indicated previously, audio oscillators are available in special models with extra high output levels. They can also have extended or specialized frequency ranges for certain kinds of work. Oscillators of this type may vary to an upper frequency of 10 MHz , achieved at the sacrifice of some lower frequencies. Some oscillators also offer a few selected discrete frequencies for production, testing and other limited applications.

Transformer output

Transformer-coupled output, available in a few oscillators, offers complete DC isolation from the rest of the generator. This is particularly useful in driving a bridge. If supplied with multiple secondary taps, the oscillator with a transform-er-coupled output can drive extremely low impedance or provide high-voltage output. Usually such oscillators have a limited output frequency range, due to the transformer's limitations.

Applications

It is difficult to enumerate all the applications for an audio oscillator. Briefly, the instrument can be used in any situation requiring a source of relatively pure sinewaves within the frequency range covered. A large majority of applications are found in audio measurements because of the high degree of concentration on reproduction fidelity. However, there are enough applications for a good audio
oscillator that a general laboratory or service shop should place it on the priority list for low-frequency sources (right after a function generator). Of course, if the shop specializes in audio measurements and repairs, the audio oscillator is a must.

Total harmonic distortion

The THD measurement determines the amount of harmonic energy added to the output signal of a device by the device itself. With the audio amplifier-or any other amplifier for that matter-the test is performed by supplying a distortionless signal to the input and then measuring the harmonic content at the output. Most THD analyzers reject the fundamental signal with a notch filter and measure all other energy within the audio spectrum. The THD then becomes:
\% THD =
Harmonics $\times 100$
$\sqrt{ }(\text { Fundamental })^{2}+(\text { Harmonics })^{2}$
The THD measurements for audio equipment are usually made at a number of input and output levels, since the harmonic distortion introduced by the amplifier depends on the gain and the power output at which it is operated. Harmonic distortion is a direct result of nonlinearities within the amplifier.

Note that the described technique for measuring THD includes noise, hum or other nonharmonically related signals not rejected by the notch filter tuned to the fundamental frequency. Two points therefore must be considered. First, the amplifier itself must be thoroughly analyzed for its own hum and noise prior to using it for THD measurements. Any such components should be eliminated before the measurement. Second, the oscillator supplying the distortion-free signal must also be free of hum and noise.
A method of measuring THD that eliminates this problem uses a wave analyzer. This consists of an extremely sharply tuned filter followed by an AC
voltmeter. Although measuring THD with a wave analyzer is more tedious, the result is more accurate. The ultra-low distortion characteristics of the generator are still required, and, of course, there must be no hum and noise. However, levels of hum are permitted with this system of measurement.

The wave analyzer is first tuned to the fundamental frequency and an amplitude measurement is taken. It is then tuned to the second, third, fourth, fifth, etc., harmonics, and amplitude measurements are taken. THD is then calculated using the following formula:
$\%$ THD $=\frac{\sqrt{ }(2 \mathrm{nd})^{2}+(3 \mathrm{rd})^{2}}{\text { Fundamental }} \times 100 \%$.
Although truly broadband noise contributes throughout to this measurement, hum and other nonharmonically related spurious signals are eliminated.

When making THD measurements with an analyzer that uses the notch filter, a few basic testing precautions are necessary. Since hum contributes significantly to the harmonic distortion measurement, ground loops must be carefully avoided. A ground loop consists of a second path through which the ground or return signals for the test may pass. Frequently, this second path also contains significant line-frequency currents, which could enter into the measurement and contribute an undesired signal to the output. This signal is generated by neither the amplifier nor the oscillator, but affects the measurement.

Two forms of THD analyzers use the notch technique: With the first and simplest form, the notch filter is manually tuned. The second technique uses manual tuning to within a few percent of the desired center frequency, when an automatic nulling circuit takes over to center the analyzer on the fundamental frequency. Errors can occur in the analysis if the generator drifts from the fundamental frequency to which the analyzer was tuned. An analysis with automatic null compensates for minor drifts. However, drifting introduces errors to measurements made with the manually tuned analyzer.
A note of caution regarding THD measurements: It seems logical that one could measure both the THD of the generator and the THD at the output of the unit under test, and subtract, thus arriving at the THD contributed by the device under test. Unfortunately, because of the complex qualities of the signals, this technique does not lead to a proper measurement. The THD of the audio oscillator must be substantially less than that expected from the amplifier being tested.

In a later issue, we will continue this story on audio oscillators and will show how they are used in measuring audio amplifier paramaters such as response, distortion and impedances.

R-E

Which Battery type Is Best How to choose belween Carbon-Zinc, Alkaline
 FIG. 2-CROSS-SECTION VIEW shows the construction of a typical cylinand Mercury

 There are several types of batteries and dry cells available for use in radios, calculators, electric and electronic toys, and numerous other appliances and gadgets in the home. This is a rundown on how they differ and which to use for different applications.THIS ARTICLE GIVES YOU ALL THE INFORMATION NECESSARY TO intelligently select one of the common small nonrechargeable batteries for any routine application. This is not an exhaustive study, but just an article giving the highlights of pertinent characteristics. Some information on the most popular sizes (AA, C, D and rectangular 9 -volt) and the most popular types (carbonzinc, alkaline and mercury) are given.

Battery sizes

The smallest of the popular sizes is the AA penlight cell. It is a cylindrical cell nominally ${ }^{17 / 32}$ of an inch in diameter and $17 / 8$ inches long. It is a very popular size for equipment that must be kept small.

The C-cell is also cylindrical. It is ${ }^{15} / 10$ of an inch in diameter and $1^{13 / 16}$ inches long. It is used where considerble current is required yet size is also important.

The standard flashlight cell is the D-cell. It is a cylinder $11 / 4$ inches in diameter and $2 \frac{1}{4}$ inches long, and is used where current capacity is more important than size.

For those applications that require a relatively high voltage at a small current, the rectangular 9 -volt transistor radio battery is ideal. It is ${ }^{21 / 32}$ of an inch thick, $1^{1 / 32}$ inches wide and $1^{29 / 32}$ inches high, including the two snap terminals on top. Figure 1 shows these four most popular sizes drawn to scale.

There are several other sizes that.are not as popular but are easily available. These include the AAA-size, slightly smaller than the AA-cell and often used in pocket calculators, small photoflash guns and electric novelties, and the N -cell, which is a little larger than one-half of an AA-cell and used in certain calculators. Some equipment will use a $1 / 2 \mathrm{C}$ - or $1 / 2 \mathrm{D}$-size, but these sizes are rare in a disposable cell. Then, there are the cells designed for electric watches. They come in a bewildering variety of sizes, all small. If the current demands are small and if the size must be small, they can be considered although their cost is great.

Zinc carbon

The most popular type of disposable battery is based on the zinc-carbon cell (see Fig. 2). Despite its name, the positive carbon electrode does not play any part in the chemical reaction that supplies the energy of the battery. The negative zinc case does, however, The positive electrode in the electrochemical sense is the manganese dioxide that is packed around the central porous carbon electrode. This electrode serves as a conductor for the current and for some of the gases generated during the current producing chemical reaction.

The third essential part (after the positive and negative electrodes) of any battery is the electrolyte, a solution serving as an ion-transfer medium between the positive and negative electrodes. In dry cells this solution is in the form of a paste, and in the zinc-carbon cells this paste is a gelatinous mixture of corn starch and flour containing ammonium chloride, zinc chloride and water.

In the modern zinc-carbon cell the positive electrode (manga-

FIG. 1-THE DIMENSIONS of the popular sizes of disposable (not rechargeable) dry cells and batteries.

FIG. 3-THE ALKALINE CELL has the familiar zinc and manganese-dioxide electrodes, but the electrolyte is a potassium-hydroxide solution.
nese dioxide) also serves as a depolarizer or absorber of gases created during the generation of electricity. The whole cell is encased in a steel jacket to retard the escape of the corrosive materials contained in the cell. During the chemical reaction, the zinc inner case is eaten up as the electricity is produced.

All zinc-carbon cells of a given size are basically the same. There are relatively minor variations in such quantities as the electrolyte and depolarizer-to-electrode ratio that change some characteristics. For example, some batteries are constructed to deliver a large current for a short time, while others deliver a smaller current for a longer time. Some are optimized for continuous operation; others for intermittent operation.

There is quite a difference in quality of construction and the purity of materials used. In general, the higher the price paid, the better the cell or battery and the longer it will last in any application. However, a battery twice as expensive as a similar one in many cases will not quite give twice the life

Alkaline

A popular premium type of disposable battery is the alkaline cell. Its use is often called for when a high current must be supplied. Alkaline cells have the same zinc-manganese dioxide electrodes as the zinc-carbon cells; but the electrode structure is different (see Fig. 3) and the electrolyte is a solution of potassium hydroxide. The result is a cell with the same 1.5 -volt opencircuit voltage with a relatively constant energy capacity over a wide range of current drains. Thus, alkaline cells do not have any particular advantage over regular zinc-carbon cells at lower current drains but do have a higher efficiency at high current drains.

Mercury

Another widely used primary battery is the mercury cell. The construction of a mercury cell is shown in Fig. 4. This cell, more correctly called the zinc-mercuric oxide battery, uses red mercuric oxide as the positive electrode and depolarizer and a zinc-mercury amalgam as the negative electrode. The electrolyte is a solution of potassium hydroxide and zinc oxide. The different electrodes give these batteries an open-circuit voltage of 1.4 volts. Mercury cells have a greater energy capacity per unit volume and weight and a better shelf life than zinc-carbon cells. A very important feature is their flat voltage-time discharge curve. That is, the voltage produced by the cell does not decrease until the battery is completely discharged. In fact, these cells are sometimes used as precise voltage-reference sources. The various advantages and disadvantages of these

FIG. 4-SECTION THROUGH a typical mercury ceil. The construction of this tablet-type cell differs from that of the cylindrical cell or battery. this

TABLE I-ADVANTAGES AND DISADVANTAGES of different types of primary cells

Type	Advantages	Disadvantages
Zinc-carbon	Inexpensive	Limited energy capacity
Alkaline	High current efficiency	More expensive
Mercury	Constant output voltage High energy density Good shelf life	Expensive Not for cold weather use

different types of cells are summarized in Table 1.
There are other types of primary cells such as small zincsilver cells often used in watches and the newly developed lithium cell, which has a very high energy density. However, the price of these cells permit them to be used only in special applications.

Current drain

The single characteristic that most are interested in is the amount of current a given battery will supply. Unfortunately, there is no simple answer to that often-asked question. However, some general indications can be given. The larger the individual cell, the lower the internal resistance and the larger the maximum current that can be supplied. Table 11 gives some

TABLE II-TYPICAL VALUES of short-circuit current and internal resistance found in zinc-carbon cells

Cell Size	Maximum Current (amps)	Internal Resistance (ohms)
AA	4.6	0.31
C	5.4	0.28
D	6.6	0.23
9 volts	0.5	19

typical values of the internal resistance and the short-circuit current of various sizes of zinc-carbon cells.

Of course, don't expect the battery to supply the short-circuit current for very long. What you really need is some idea of the amount of current a given cell will supply for a reasonable time. Unfortunately, what is reasonable in one situation may not be reasonable in another. However, it is possible to give a rough idea of the current that a given type of cell can supply. This data

TABLE III-CURRENT SUPPLIED by different types of batteries

Battery Size	AA			C		D		9 Volts		
Battery type	zinc-carbon	alkaline	mercury	zinc-carbon	alkaline	zinc-carbon	alkaline	zinc-carbon	alkaline	mercury
$10-\mathrm{hr}$ current (mA)	60	150	240	110	230	250	500	15	30	30
100 -hr current (mA)	10	20	25	20	40	50	100	4	8	4

is given in Table III. The first line of the table lists the current that a typical cell of the type named can supply intermittently to a load for 10 hours before the terminal voltage is reduced to twothirds of the initial value. (This end-point voltage is 1.0 volt for the zinc-carbon cells.) The second line in Table III lists the maximum current a typical cell will supply for 100 hours under the same conditions. These figures should be used only as a rough estimate of the current to be expected because all sorts of factors will enter to decrease or increase the current that the battery can supply. Some of the factors are temperature, the lowest voltage the specific circuit will operate on, the length and frequency of any rest periods, the quality of construction and the age of the battery.

We must emphasize that the current listed in Table III is only a rough estimate - the best that can be made without exactly specifying a great many conditions in addition to the discharge time. We can easily see, especially by considering the data on the C-cell, that the amount of current drawn has a great effect on the total energy that can be extracted from a cell. The table implies that a zinc-carbon C-cell can supply 1100 mA -hours of energy (current drain multiplied by time) in 10 hours, but that 2200 mA -hours of energy can be obtained if the cell is discharged over a 100 -hour period.

Table IV gives the mA-hours available from a typical C-cell at
TABLE IV-ENERGY AVAILABLE from a C-cell vs. current drain

Continuous current drain (mA)	5	10	20	50	100
Hours to 1 volt	540	220	90	23	8
Energy supplied (mA-hours)	2700	2200	1800	1200	800

a variety of continuous current drains. It is clear that the higher the current drain, the less energy is obtainable from the cell. A similar reduction in energy is found with the AA- and D-cells. The energy from an alkaline cell also decreases with increased current but not by as large a factor.

Other factors enter, too. For example, if a C-cell subjected to a $50-\mathrm{mA}$ drain will be discarded after its voltage drops to 1 volt, it will last for about 23 hours. If the end point is lowered to 0.8 volts, then it will last for about 40 hours. At moderate current drains, intermittent use instead of continuous use will increase the number of useful hours by 25% to 50%. Temperature also greatly affects the amount of energy supplied. Table V shows the effect of temperature on zinc-carbon and mercury cells.

TABLE V-EFFECT OF TEMPERATURE on the capacity of zinc-carbon and mercury cells

Tempera- ture (${ }^{\circ} \mathrm{F}$)	Zinc-Carbon Capacity (\%)	Mercury Capacity $(\%)$
-20	6	-
0	27	4
20	48	10
40	69	58
60	90	93
70	100	100
80	115	103
100	140	106

We can go into all these factors that affect the lifetime of a battery in great detail but most of you will not use the information developed. For most purposes, the simplified current capacities given in Table III will allow you to balance the three main factors of size, current capability and cost to fit the particular application you have in mind.

CONVERGENCE PROBLEM

This Heathkit model GR-269 has been working quite well. Now there is a convergence problem at both the top and bottom of the screen. The convergence panel was returned to Heath and checked out. The potentiometers that should affect this area don't seem to have any effect at all.-J. W., Nova Scotia.
Since the convergence board was already checked, there's another likely cause: Check the convergence plug, socket, and all the wiring going to the controls that don't operate. Two things can cause these controls not to work: first, bad components on the board, and second, the loss of the pulses that do the work! Check for an open circuit, a bad solder joint, or poor socket contact. Every control on that board should do something.

VERTICAL PROBLEM

Without a signal, I get a full vertical scan in this Philco model 16M91; however, with a signal it drops to about 80% full. I tried new GGF7 tubes, changed the

50- μ F electrolytic capacitor in the 6GF7 cathode, etc., but got nowhere. The stability and sync are good. Can you help? I've been in poor health and reading your column always makes me feel better!-C. G., Derry, NH.

That's nice, and much appreciated!
Looking at the model 16 M 91 schematic, I see it resembles my own RCA model 15. Check those 150 K resistors in the height-control circuit, as well as all the resistors, particularly those in the input grid, etc. Also, quick-check that VDR (Voltage-Dependent Resistor) in the feed back loop: just disconnect it; it's used as a clamp to keep the vertical scan from being too high. Finally, try unhooking the lead from the pin 2 (output) grid of the 6GF7 tube to the service switch; there might be some leakage.

FUSE IN CATHODE

I found a burned-out fuse in the cathode of the $6 L B 6$ tube in this Zenith model 14A9C50. And there's no high volfage. The Sams schematic does not show this
fuse. What's it for?-O. K., Oceanside, NY.

Zenith's service data for late runs of the model 14A9C50 chassis does show this fuse: it's a 0.4 -amp Bel-Fuse and is used to protect the flyback, etc., against damage. Since normal current is about 220 mA , a $400-\mathrm{mA}$ fuse should be fine. Be sure to use a fast-blow type of fuse. You can obtain an easy cathode-current reading in TV sets like this. Just pull the fuse and connect your DC milliammeter right across the terminals.

FLOATING BARS, BAD COLOR

l've two floating bars on the screen, bad color, but a fair picture on an Admiral model 3G11. The DC power supply has been checked. Where do I look now?S. C., Lansing, MI.

You're close to it. Look at that thermal switch in the autodegaussing circuit. These have caused some funny problems.
(Feedback: "That did it! It took me only two minutes. I'm amazed.") R-E

houn mulury

Television picture tube brighteners have been around for quite a few years. Here is a fresh look at what they are all about.

NORMAN A. ACKERMAN*

THE USEFUL LIFE OF A TV PICTURE TUBE IS usually determined by the weakening of the electron beam. Yet the phenomenon of electron emission in the beam from the oxide-coated cathode is largely unexplained. However, exhausted cathode emitters do have remarkable recuperative power. When certain restoring devices are used, picture tube life can be extended. This article will attempt to explain the process that makes this regeneration possible.

The picture tube

The TV picture tube is a special kind of vacuum tube in which a narrow beam of electrons behaves like an electronic pencil and draws a visible trace or pattern on a specially prepared screen. In many respects, its operation parallels that of an ordinary recciving or transmitting vacuum tube. In an ordinary vacuum tube as well as in a CRT or picture lube, electrons are created by a heated cathode located at the base of the lube inside the glass envelope. Thermionic emission in a

[^1]vacuum tube occurs when the electrons in the cathode material contain enough thermal energy to overcome the forces at the emitter surface and escape.

In an ordinary vacuum tube, the emission occurs over the entire outside surface of the cathode (emitter). (See Fig. 1.) In

FIG. 1-THE CATHODE STRUCTURE in a TV picture tube. The black dot in the center shows the cathode area that is actually used.
the picture tube, the emission comes from only the top surface of the cathode. More precisely, emission occurs only under the area projected by the aperture in the control grid. To fully comprehend why this happens requires some information about the effect of the control grid and the first anode on emission.

Thermal agitation of the cathode coating material causes the cathode to emit electrons. Since this cathode coating is located in one particular place-on the cathode face opposite the control-grid aperture-principal emission moves in a forward direction from this surface. Because of the shape of the cathode, the emission does not come from a point source. So, while the emission is generally in a forward direction, it takes place randomly. Some electrons leave the cathode in a direction that is parallel to the axis but off to one side, and some leave at various angles to the axis.

Moreover, the velocity of the electrons varies. Some electrons leave the cathode at high speed, but the majority are lowvelocity charges. For simplicity, assume that the initial velocity of the emitted electrons is substantially zero and any forward motion they exhibit after leaving the cathode is attributable to acceleration by the voltages applied to the first anode, in opposition to the negative voltage at the control grid.

An electrostatic field (called the first lens) exists between these elements and varies with the control-grid voltage, thus controlling the emission from the cathode. For any fixed voltage applied to the first anode, the control-grid voltage controls the number of electrons that can pass through the aperture.

Figure 2 shows the field distribution for two assumed grid-bias values, 0 (Fig. 2-a) and -30 volts (Fig. 2-b), and a fixed voltage value on the first anode. With a bias of 0 volt, the area adjacent to the cathode (between the cathode and con-trol-grid aperture) has a comparatively high positive potential as a result of the field.
"Under such conditions of 0 grid volt-

FIG. 2-FIELD DISTRIBUTION FOR two gridbias values; (a) 0 bias. (b) 30 volts bias.
age, it has been found that the area of the cathode which is emitting corresponds approximately to a projection of the area of the grid aperture; the maximum number of electrons are passing through the grid opening and the beam current density is high.
"When the control grid is made negative by an increase in the bias (-30 volts, in the figure), the field distribution in the vicinity of the cathode is altered so that only the center of the emitter surface is behaving as an emitter. The other areas are influenced by the space charge and effectively are not emitting. The result is a reduction in beam density and several other related effects." ${ }^{\text {. } 2}$

It should be emphasized that showing the electric field and lines of force schematically is strictly a device to help you visualize certain phenomena. The lines of force having certain physical propertics are convenient working tools to explain what happens.

The thermionic emission that comes from under the aperture opening of the picture tube emitter continues until there

CATHOOE, TOP SURFACE
FIG. 3-WHEN BRIGHTENER IS USED, diameter of emitting area is increased slightly as shown.
is a depletion of electrons. Even after emission from the electron gun appears too low to provide enough density for a good picture, the cathode emitter material is almost 90% unused. At this point the useful end-life of the tube has apparently been reached, because the picture is not bright enough for proper viewing.
This apparent contradiction can be better understood by examining the cathode. It is typically a metallic cylinder that is about. $080(5 / 64)$ inch in diameter and .340 ($11 / 32$) inch long, and is closed at one end (see Fig. 3). The heater is inside this
cylinder with its leads through the open end, and it is coated to provide electrical insulation. The outside closed end of the cylinder is coated with an emitter matcrial (i.e., magnesium oxide) that looks pure white when it is new. When the tube is depleted, there is a metallic dot near the middle of the white surface of about .030 inch in diameter. This diameter corresponds to the aperture opening of the control grid.
The cathode is held permanently in place by a metallic ring molded into the ceramic supports of the electron gun. The control grid is an inverted dish or cup that almost completely covers the cathode. and also is held in place by the ceramic supports. There is a space between the grid cup and top of the cathode on the order of .055 inch. Because of this spacing and type of construction, the cathode cylinder is barely visible through the glass neck of the tube, and the top of the cathode is virtually impossible to inspect once the electron gun has been manufactured.

Picture tube manufacturers rarely run a control sample picture tube to normal emission depletion and then inspect the cathode surface. Quality control samples are generally tested only for about 4000 hours, equivalent to two years of normal use, and then they are inspected. (Normal viewing is considered to be six hours a day.) When a picture tube is operated beyond that 4000 -hour period to electron beam depletion and apparent end-life, it seems unlikely that the tube engineer would break the tube apart to check the gun parts let alone saw or cut open the metal control grid to inspect the used-up cathode surface. Yet, if he did he would find new emitter material surrounding the tiny metallic dot of depleted surface.

The size of the dot and the new material surrounding it suggests that the picture tube life could be prolonged if the new electrons could be noved to the area under the control-grid aperture. Again, take a look at the dimensions involved. The aperture opening produces a narrow beam and an electrostatic lens that can project an image on the picture tube screen. This opening is about .030 inch in diameter (.015 -inch radius). The unused emitter area is about .0043 square inch compared with a 0007 -square-inch depleted emitter area, yet the picture tube can no longer produce a picture that is bright enough for normal viewing. Contrast is lacking because there is not enough electron beam density to fully activate the picture-tube-screen phosphor dots. Warm-up time is unusually long since the cathode temperature slowly increases to give the last electrons sulficient energy to escape.

TV tube brighteners

In the late 1940's, a transformer device was designed by the Perma-Power Company to increase the power applied to the
heater and raise the temperature of the cathode in the emission-depleted picture tube. (A patent was filed in 1952 and granted in 1956.) This device (called a TV tube brightener) is permanently installed in the TV set, and the increased power it feeds to the older heater is applied whenever the set is on. Thus, the kinetic energy of the electrons in the cathode emitter surface is increased. As a result, the electrons in the ring surrounding the depleted area can migrate to the area under the control-grid aperture opening, and this area of new material is thus used

It is interesting to observe how small a ring of cathode material of equal area to the depleted area is. This ring has an outside diameter of .042 inch and a radius of a .021 inch. You can easily understand that if only three-thousands of an inch of material surrounding the depleted emitter area emits electrons that migrate under the aperture opening, then this emission includes almost 50% new material.

Early studies of black-and-white picture tubes were made in which cathodes from tubes that had reached end-life were compared with some that had reached a second end-life after using a brightener. The depleted areas in the tubes using brighteners were on the order of $1 / / 4$ to $11 / 2$ times larger. The increase in viewing time was often more than 50 percent (see Fig. 4).

FIG. 4-INCREASED LIFE EXPECTANCY of picture tube with brightener attached is shown here.

While these early studies involved black-and-white tubes, the same observations are true of color picture tubes. In the latter, however, one of the three guns, usually the red gun, loses its electron beam density before the others. Although a separate heater is used for each gun in a color picture tube, the three filaments are tied together and only two leads are available at the picture tube socket. To raise the (heater) power on one gun, the power on all three guns must be raised.

Fortunately, no ill effects result from this procedure. Since the electron gun is a controlled emission device, you use the CRT bias controls on the set to readjust the electrostatic fields in order to keep beam-current densitics balanced. This is a function of the electrostatic field distribution. The fact that more electrons are available than are needed does not affect how many are drawn off and used.

In the manufacturing process, picture tubes are processed through exhaust-and-
aging cycles. This process includes procedures that decontaminate the tube elements and remove gases. The aging process also initiates emission from the cathode surface, to assure consistent emission from tube to tube. Procedures vary, but elevated temperatures and heater power are always used. The control grid and first anode areas can be heated to $800^{\circ} \mathrm{C}$ for 10 to 20 minutes, and twice the normal heater voltage can be applied for these intervals. One and one-half times the normal heater voltage is generally applied for an extended period of time with normal voltage on the first anode.

Since the cathode heaters and other tube elements are designed to withstand this exhaust-and-aging process, it is easy to understand why a TV tube brightener can be used without damaging the picture tube.

FIG. 5-ADDING RESISTANCE between G1 and G2 reduces the field and tends to open the beam.

FIG. 6-THE EQUIPOTENTIAL SURFACES between two discs, each having an aperture at its center.

In addition to applying more heater power to regain emission, the electrostatic field can be readjusted as follows: The leads for control grid G1 and lirst anode G2 are accessible outside the picture tube so that a potentiometer can be installed between them. Since the voltages on the control grid and first anode are essentially fixed with reference to cathode K, applying resistance between the G1 and G2 leads reduces the field and tends to open the beam. The accelerating voltage is constant, resulting in an increase in beam current (see Fig. 5).

However, any condition that alters the
distribution of the field also affects the focus. Figure 6 shows the equipotential surfaces between two discs, each having an aperture at its center. The equipotential surfaces bulge through the holes, causing some electrostatic field to leak outside the normal region. If electrons a, b and c are placed to the left of plate A. electrons a and c will converge as they cross the convex equipotential lines that protrude through the opening in plate A . Electrons a and c will tend to cross each other within the field between the two apertures, and then continue along a diverging path as they cross the concave equipotential lines that protrude through the opening in plate B. This procedure is

SIMPLE OPTICAL LENS
FIG. 7-SIMPLE OPTICAL LENS is similar to electron lens described in the text.
similar to what occurs in an optical lens having three incident rays (see Fig. 7).

Although it is true that any set of curved equipotential lines resemble a simple electron lens because they refract the electron path, the complete electron gun field is more complex (see Fig. 8).

However, it should not be difficult to visualize how the charged cylinders in an electron gun form an electrostatic field that controls the electron beam and focuses it. The dimensions of the crossover point, as determined by the control-grid and first-anode voltages, are also the dimensions of the beam when it is properly focused by the second electron gun lens and strikes the screen.

However, any device that changes the designed field distribution can produce some undesirable effects. It can affect the dimensions of the first crossover point and the angle of divergence at which the electron beam leaves the crossover point and, to a limited extent, it can affect the position of the first crossover point

Emission slump

One of the least understood and most prevalent picture tube problem is known as emission slump. It is generally accepted that the cathode slowly becomes con-
continued on page 88

FIG. 8-ELECTROSTATIC FOCUSING SYSTEM as it is used in a TV picture tube.

Radio-Electronics Tests JVC Model RC-828 Radio-Cassette

LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

WHEN YOU LOOK AT THE FRONT PANEL OF the JVC model $R C-828 J W$ radio cassette (Fig. 1), you may wonder why we decided to test and discuss what looks like a "low-fi" portable radio cassette unit. Reading on, however, you will discover that this is not an ordinary entertainment portable. Its tuner sections and cassette record/play sections equal the quality of those found in low- to medium-cost separate receivers and stereo cassette decks. Additionally, although its amplifier has minimum power, this fact is offset by the model RC-828's ability to drive an external amplifier of any wattage rating by its unique biphonic and stereo-expansion circuitry.

The lower section of the front panel shows a central cassette compartment, below which are the usual transport pushbuttons (fast rewind (REVIEW), RECord, PLAY, fast forward (CUE), STOP/EJECT and PaUSE). You can use the fast rewind and fast forward buttons to review (i.e., rewind in measured sections by holding down both pushbuttons while also pressing the PLAY pushbutton) and to cue forward. Above the cassette compartment are a three-digit tape counter and its associated reset button. To either side of the cassette mechanism are 61/2-inch-diameter woofer drivers. The decorative areas above the woofers, near the outer edges of the unit, are actually built-in microphones that enable you to make stereo live recordings without having to connect separate mikes.
The upper section of the front panel contains a tuning knob for any of the six available RF bands (AM, FM, medium wave and three shortwave) whose frequencies are calibrated in the dial area. A stereo indicator light is located to the left of the frequency scales, while two meters are on the right. These meters are used to indicate reproduced level, recording input
level, signal strength during tuning and even battery condition. A pair of 2 -inch tweeters flank the dial-scale area, and just below the left-channel tweeter is a momentary switch that provides dial-scale lighting. The dial light is normally off (unless this switch is depressed) to conserve battery life when the unit is being powered from D-cells.

When the carrying handle is swung out of the way, a second panel on the top surface of the unit becomes accessible (see Fig. 2). This panel contains a power ON/OFF switch, six
line-out jacks located on the side of the unit.
The side panel, shown in Fig. 3, also contains line input jacks, twin external micro phone input jacks, external speaker jacks and a switch labeled BEAT CUT to help eliminate beat tones that might occur when recording shortwave broadcasts. The alternate side panel (not shown) has an AC receptacle as well as a connector for a car-battery adapter that can also be used to power the model $R C-828$.

Binaural and biphonic

Binaural recording involves recording sound

pushbuttons that determine the desired frequency band, a three-position function switch (for selecting LINE-IN, RADIO or TAPE), a Binaural Equalizer/Meter switch (that determines the meter function and applies special equalization when you listen to binaurally recorded tapes), two mode switches (with settings for biphonic processing, expanded stereo listening, or ordinary stereo listening), individual channel recording-level slide controls, tape-selection switches (for standard ferric or CrO_{2} tape) a record-selection switch (for activating an automatic level control or ALC circuit, if desired), separate bass and treble boost and cut controls, and separate master volume controls for each channel. The volume controls do not affect levels available at the

MANUFACTURER'S PUBLISHED SPECIFICATIONS:

RADIO FREQUENCY BANDS:

FM: $88-108 \mathrm{MHz}$; AM: $540-1600 \mathrm{kHz} ; \mathbf{M B}: 1.6-4.3 \mathrm{MHz} ; \mathbf{S W}-1: 4.3-11.0 \mathrm{MHz} ; \mathbf{S W}-2$: $11-18.5 \mathrm{MHz}$; SW-3: $18.5-26.0 \mathrm{MHz}$.

TAPE RECORDER SECTION:

Frequency Response: (Standard tape), $50 \mathrm{~Hz}-11 \mathrm{kHz} ; \mathrm{CrO}_{2}$ tape, $40 \mathrm{~Hz}-12 \mathrm{kHz}$. Wow and Flutter: 0.09\% WRMS. Signal-to-Noise Ratio: 50 dB . Fast Wind Time: 110 seçonds.

AMPLIFIER SECTION:

Power Output: 2.3 watts-per-channel (FTC). Line Input Level: 13 mV . Line Output Level: 300 mV .

GENERAL SPECIFICATIONS:

Power Requirements: 12 VDC (8 D Celis) or 120 VAC, 60 Hz . Power Consumption: 19 watts. Dimensions: $181 / 2 \mathrm{~W} \times 10^{3 / 4} \mathrm{H} \times 5$ inches D. Weight (Including Batteries): 14.1 lbs. Suggested Retail Price: $\$ 250$ (approx.).
using two microphones that are spaced as far apart as two human ears, and often a dummy head is used for making such recordings. This dummy head is equipped with tiny microphones where ears are normally located. Until the advent of JVC's biphonic processor, such recordings needed to be heard via headphones.

When headphones are used, the left ear of the listener hears only what was received by the left "ear" of the dummy head, and the same
holds true for the right ear-microphone. If binaural recordings are played back on a stereo speaker system, borh the listener's ears hear sounds that were intended for only one ear, and the subtle timing and amplitude differences resulting from such closely spaced microphone recordings are all but lost.

Figure 4-a shows that the biphonic processor circuit contained in the model $R C-828$ can reproduce binaural recordings via speakers

successfully. Crosstalk signals that reach the right ear of the listener from the left speaker (shown as line b in Fig. 4-a) is cancelled by introducing a time-delayed, out-of-phase quantity of signal b (shown as line -b). Fig. 4-b is the block diagram of the action of the biphonic

TABLE I
RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: JVC
Model: RC-828JW
FM PERFORMANCE MEASUREMENTS

SENSITIVITY, NOISE AND FREEDOM
FROM INTERFERENCE
IHF sensitivity, mono: ($\mu \mathrm{V}$) (dBf)
Sensitivity, stereo ($\mu \mathrm{V}$) (dBf)
$50-\mathrm{dB}$ quieting signal, mono ($\mu \mathrm{V}$) (dBf)
$50-\mathrm{dB}$ quieting signal, stereo ($\mu \mathrm{V}$) (dBf)
Maximum S/N ratio, mono (dB)
Maximum S / N ratio, stereo (dB)
Capture ratio (dB)
AM suppression (dB)
Image rejection (dB)
IF rejection (dB)
Spurious rejection (dB)
Alternate channel selectivity (dB)
FIDELITY AND DISTORTION MEASUREMENTS
Frequency response, 50 Hz to 15 kHz ($\pm \mathrm{dB}$)
Harmonic distortion, 1 kHz , mono (\%)
Harmonic distortion, 1 kHz, stereo (\%)
Harmonic distortion, 100 Hz , mono (\%)
Harmonic distortion, 100 Hz , stereo (\%)
Harmonic distortion, 6 kHz , mono (\%)
Harmonic distortion, 6 kHz, stereo (\%)
Distortion at $50-\mathrm{dB}$ quieting, mono (\%)
Distortion at $50-\mathrm{dB}$ quieting, stereo (\%)
STEREO PERFORMANCE MEASUREMENTS
Stereo threshold ($\mu \mathrm{V}$) (dBf)
Separation, 1 kHz (dB)
Separation, 100 Hz (dB)
Separation, 10 kHz (dB)
MISCELLANEOUS MEASUREMENTS
Muting threshold ($\mu \mathrm{V}$)
Dial calibration accuracy ($\pm \mathrm{kHz}$ at MHz)
200

R-E Evaluation Good Very good Very good

Fair Very good Very good Good Good Good Very good Very good Very good

Very good Excellent Excellent Excellent Very good Very good Excellent Fair Good

Very good Excellent Good
Very good

N/A
Good
table II

AMPLIFIER PERFORMANCE MEASUREMENTS

POWER OUTPUT CAPABILITY
RMS power/channel, 8 -ohms, 1 kHz (watts)
RMS power/channel, 8 -ohms, 20 Hz (watts)
RMS power/channel, $8-0 \mathrm{hms}, 20 \mathrm{kHz}$ (watts)
RMS power/channel, $4-0 h m s, 1 \mathrm{kHz}$ (watts)
RMS power/channel, 4-ohms, 20 Hz (watts)
RMS power/channel, $4-\mathrm{ohms}, 20 \mathrm{kHz}$ (watts)
Frequency limits for rated output ($\mathrm{Hz}-\mathrm{kHz}$)
DISTORTION MEASUREMENTS
Harmonic distortion at rated output, $1 \mathrm{kHz}(\%)$
Intermodulation distortion, rated output (\%)
Harmonic distortion at 1 -watt output, 1 kHz (\%)
Intermodulation distortion at 1 -watt output (\%)
DAMPING FACTOR, AT 8 OHMS
PHONO PREAMPLIFIER MEASUREMENTS
Frequency response (RIAA $\pm d B$)
Maximum input before overioad (mV)
Hum/noise referred to full output (dB)
(at rated input sensitivity)
HIGH LEVEL INPUT MEASUREMENTS
Frequency response ($\mathrm{Hz}-\mathrm{kHz}, \pm \mathrm{dB}$)
Hum/noise referred to full output (dB)
Residual hum/noise (minimum volume) (dB)
TONAL COMPENSATION MEASUREMENTS
Action of bass and treble controls
Action of secondary tone controls
Action of low-frequency filter(s)
Action of high-frequency filter(s)
COMPONENT MATCHING MEASUREMENTS
input sensitivity, phono 1/phono 2 (mV)
Input sensitivity, auxiliary input(s) (mV)
input sensitivity, tape input(s) (mV)
Output level, tape output(s) (mV)
Output level, headphone jack(s) (V or mW)

R-E Measurement	R-E Evaluation See text
1.3	See text
0.4	See text
0.32	See text
2.0	See text
0.25	See text
0.35	See text
$100-10$	Good
	Fair
0.3	Good
1.5	Fair
0.3	
1.5	
25	N/A
	N/A
N/A	N/A
N/A	
N/A	Good
See text-16 kHz	Very good
70	Very good
75	
See Fig. 6	Excellent
N/A	N/A
N/A	N/A
N/A	N/A
N/A	
120	
120	
200	V/8 ohms

OVERALL AMPLIFIER PERFORMANCE RATING
processor. Because the equalization, crossfeed and delay constants are specifically calculated, it is necessary to sit at a distance of between 60 cm and 80 cm (24-32 inches) from the front surface of the model $\mathrm{RC}-828$, but once you are positioned properly, the effect is uncanny. Sounds seem to emanate from points well beyond the extent of the receiver itself and you would swear that there are additional speakers located several feet apart. Similarly, ordinary stereo program material played back via the two speakers in the model $R C-828$ can be "expanded" via the biphonic processor, as shown in Fig. 4-c. JVC has developed a single 1C that performs all these functions for each channel.

FM measurements

Table 1 summarizes our measurements of the FM tuner section. Obviously, these measurements fall short of what one could expect from a state-of-the-art stereo FM tuner, but not by a significant margin. The $50-\mathrm{dB}$ quieting exhibited in mono at a signal input of only $5.5 \mu \mathrm{~V}(20 \mathrm{dBf})$ is quite satisfactory (even in terms of high-fidelity components) as are the mono and stereo FM distortion figures, each well below 1.0%. Stereo separation (shown by the two sweep traces in Fig. 5) is also quite impressive, approaching 40 dB at midfrequen-

cies and remaining above 30 dB at the more difficult $10-\mathrm{kHz}$ test frequency. The automatic switchover from mono to stereo FM occurs at a signal input strength of $10 \mu \mathrm{~V}(25.2 \mathrm{dBf})$, and the maximum signal-to-noise ratio in both the mono modes is well above 60 dB . Tuning is relatively noncritical as a result of a moderately applied amount of nondefeatable AFC.

We did not measure the performance of the various medium-wave and shortwave bands of this receiver, but experienced excellent nighttime signal reception from such diverse locations as Great Britain, Japan, Israel, the Scandinavian countries and Germany using nothing more than the dipole antenna components on the receiver.

Amplifier measurements

The less said about the amplifier section of the model RC-828 the better. The rating of 2.3 watts-per-channel applies to a 6 -ohm load for which the output circuitry was optimized. Since our lab is equipped only with precision 8 -ohm and 4 -ohm loads, we could not obtain the rated power output level, but read 2.0 watts (with 4 -ohm speaker loads) at a 1.0% distortion level. The efficient built-in two-way speaker system makes this nominal amount of audio power produce surprisingly loud sound levels before audible clipping or distortion is perceived. The saving grace is the fact that line output terminals are provided, and the signals available at these terminals are taken ahead of the power amplifier section and are, therefore,

TABLE III
RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: JVC
Model: RC-828JW

CASSETTE TAPE DECK MEASUREMENTS

FREQUENCY RESPONSE MEASUREMENTS

Frequency response, standard tape ($\mathrm{Hz}-\mathrm{kHz} \pm \mathrm{dB}$)
Frequency response, CrO_{2} tape $(\mathrm{Hz}-\mathrm{kHz} \pm \mathrm{dB})$
Frequency response, other (see text) $(\mathrm{Hz}-\mathrm{kHz} \pm \mathrm{dB})$
DISTORTION MEASUREMENTS (RECORD/PLAY)
Harmonic distortion at $-10 \mathrm{VU}(1 \mathrm{kHz})(\%)$
Harmonic distortion at $-3 \mathrm{VU}(1 \mathrm{kHz})(\%)$
Harmonic distortion at $0 \mathrm{VU}(1 \mathrm{kHz})(\%)$
Harmonic distortion at $+3 \mathrm{VU}(1 \mathrm{kHz})(\%)$
SIGNAL-TO-NOISE RATIO MEASUREMENTS
Standard tape, "Dolby" off (dB)
Standard tape, "Dolby"' on (dB (dB)
CrO_{2} tape, Dolby off (dB)
CrO_{2} tape, Dolby on (dB)
MECHANICAL PERFORMANCE MEASUREMENTS
Wow and ilutter (\%, WRMS)
Fast wind and rewind time, C-60 tape (seconds)
COMPONENT MATCHING CHARACTERISTICS
Microphone input sensitivity (mV)
Line input sensitivity (mV)
Line output level (mV)
Phone output level (mV) (V)
Bias frequency (kHz)

		R-E
		Evaluation
Measurements$40-12.0$		Very good
40-13.0		Very good
N/A		
See Fig. 7		N/A
Std	CrO_{2}	
N/A	N/A	N/A
1.5	6.5	Very good/ poor
2.3	6.5	Good/poor
3.0	N/A	Good

53	Excellent
N/A	N/A
51	Fair
N/A	N/A
0.06	Superb
100	Fair

TRANSPORT MECHANISM EVALUATION
Action of transport controls
Excellent
Absence of mechanical noise
Tape head accessibility
Construction and internal layout
Evaluation of extra features, if any
CONTROL EVALUATION
Level indicator(s)
Level control action
Adequacy of controls
Evaluation of extra controls
Superb
Excellent
Very good
Superb

OVERALL TAPE DECK PERFORMANCE RATING
Good
Excellent
Excellent
Excellent

TABLE IV
RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: JVC
Model: RC-828JW

OVERALL PRODUCT ANALYSIS

Retail price
Price category
Price/performance ratio
Styling and appearance
Sound quality
Mechanical performance
$\$ 250$ (approximately)
Low
Superb
Very good
Good
Excellent

Comments: The model JVC RC-828JW radio-cassette unit is one of the most unusual products ever tested in our labs. Far from being a typical low-fi portable, this all-in-one entertainment center lets you enjoy good FM and AM reception (not to mention shortwave reception) as well as cassette tapes wherever you are. Its amplifier section is not qualified to drive good external speakers, but thanks to the available line outputs, you can connect the system's program sources to your home-based hi-fi system when you are not traveling. With that sort of hookup, you can avail yourself of both the biphonic processing features and the expanded stereo features. The expanded stereo feature will be especially useful (even if you own a regular components system) if your speakers are too closely spaced in a small listening room. In addition, when you are away from your main hi-fi system, this feature lets you enjoy wide-separation stereo reception from FM sources and from cassettes even when you must monitor such results from the model RC-828 itself.
The relatively high quality of the FM section was a surprise and, if your present hi-fi system lacks a tuner, connecting the line outputs to the auxiliary inputs of your main amplifier will provide you with adequate FM and stereo FM reception when you are not using this portable away from home.

Despite the low power output of the self-contained amplifier, listening to the unit via its own speakers offers surprisingly faithful reproduction-thanks in part to the built-in twin two-way speaker systems. The twin-element built-in antenna was satisfactory for FM reception (the elements are expandable in length and can be oriented for any directional pattern) and even better for shortwave reception. By offering four separate shortwave bands, it is possible to adequately separate closely spaced shortwave signals.
distortion-free and suitable for a high-fidelity amplifier of your choice, or even to the auxiliary inputs of a home-based stereo high-fidelity receiver.

Line input jacks also enable you to copy program sources (such as records) from your hi-fi component system to the unit's built-in cassette deck. It is our experience with the model $R C-828$ that the available external speaker jacks are not really necessary since few speakers could produce enough sound when fed with the low power levels provided by the power amplifier. Since the stereo-enhance feature is so effective, the use of external speakers fed directly from the built-in amplifier is not justified even on the basis of increased stereo separation.

Tone control range for bass and treble (as shown in the scope photo of Fig. 6) has been kept to a relatively low amount of boost capa-

bility so that you will not tend to overdrive the limited power capability of the built-in amplifier. A moderate amount of bass boost is permanently in the circuit (even with the bass
control set to its flat or mid-position) to add a bit of depth to music reproduced over the relatively small built-in low-frequency speakers.

Cassette deck measurements

Table III summarizes results of tests made on the cassette recorder section. Record/play frequency response, using TDK-type AD ferric tape, extended from 40 Hz to 12.0 kHz , somewhat better than that claimed. Figure 7 shows a point-by-point plot of the response using this tape at a $-20-\mathrm{dB}$ recording level.

While CrO_{2} tape yielded somewhat better results (with response out to 13 kHz), we do not recommend using this type of tape with the model RC-828 (at least not with our sample). For some reason, when CrO_{2} tape was used, distortion at a $0-\mathrm{dB}$ record level was excessive (we checked the switch setting several times to make sure that it was the correct one) and since the signal-to-noise ratio obtained using this tape (even referred to the higher distortion point) was not as good as that obtained using the high-quality ferric tape from TDK, there is no reason to use the CrO_{2} variety.

Because of the extremely low price tag of the model RC-828, JVC undoubtedly could
not incorporate either Dolby noise-reduction circuitry or their own ANRS hiss-reducing scheme. We almost wish that they had added $\$ 50$ or so to the cost of the instrument and used either the Dolby or ANRS circuitry. For many listening applications, however, the sig-nal-to-noise values greater than 50 dB are satisfactory, and the reasonably good frequency response and the superbly low wow-andflutter characteristics of this cassette tape deck mechanism make it a true high-fidelity tape deck in every sense of the word. We have tested many $\$ 200$ cassette deck components that performed no better than the cassette section of the model $R C-828$, which, after all, contains six radio bands, a complete stereo amplifier/speaker system and that amazing biphonic circuitry.

Summary

An overall evaluation, together with our summary comments, is contained in Table IV. We do not suggest that the model $R C-828$ is a suitable substitute for a true high-fidelity component system in your home. But there may be occasions when you want reasonably good reproduction such as when traveling, residing in a dormitory or in a hotel, or at other times when you are away from your primary hi-fi system. To ears accustomed to good clean sound, the model RC-828 offers sound that comes amazingly close to the real thing and permits you to record cassette tapes to be played back later on your primary system or cassette stereo system in your car. JVC also offers an unusual headphone/microphone combination (model HM-200E) that allows you to make your own binaural recordings. That product, plus the model $R C-828$, makes an unbeatable combination.

CONVERGENCE PROBLEM

After changing the picture tube in this Quasar TS-934, I have a convergence problem. I don't understand this.-A. R., East Haven, CT.
Sometimes, a new picture tube will have slightly different tolerances than the original tube. However, this doesn't seem to be too common. The most frequent cause appears to be something that was disturbed during the changing operation, such as loose contacts, broken wires, etc. Check out all the convergence pulses on the plug and make sure they're all normal.
(Feedback: "Right! I had a couple of problems in the vertical circuitry that were upsetting the pulses going to the convergence board.")

NO HORIZONTAL SWEEP

> All I can get on this RCA CTC-71J is a thin, bright vertical line. The high voltage seems to be OK. The horizontal-deflection yoke winding checks out. What is this?-J. R., Detroit, MI.

You have several things that are normal (high voltage, etc). So, the horizontal-output stage is working. Your yoke is OK, but you're not getting through it! Check the horizontal yoke return circuit, which goes through the pincushion transformers, a $0.55-\mu \mathrm{F}$ capacitor and the plug-socket contacts. Something in this circuit is probably open.
(Feedback: "Bingo! The PC-board conductor between the yoke return contact and the first pin transformer was open.")

VOLTAGE PROBLEMS

This Admiral T12H4-1A has no high voltage, no boost or plate voltage on the horizontal oscillator. I can get the B+ voltage as far as the height control. I tried changing tubes, etc.-no luck. No shorts that I can find. Where am I losing it?-B. T., Delta, IA.
Follow the DC path from the horizontal oscillator plate back
to the B+ voltage (see diagram). Note that there's no starter resistor connected directly to the $\mathbf{B}+130$-volt line: this goes back to the damper cathode of the 33GY7. So, your damper tube must be conducting before you can get anything out of the horizontal-output stage at all. (Found a set once with a broken cathode ribbon on the damper tube! That was weird.)

Your path leads from the oscillator plate through R60 (150K) and R69 (100K) to terminal 6 of the flyback, then through two small windings back to the damper cathode. You do have $\mathrm{B}+$ voltage as far as terminal 6 , which is connected directly to one end of the height control. So, that much is OK. Resistor R69 may be breaking down under load.
Start checking at terminal 6 on the flyback to see just where you lose the voltage. If the resistor checks good cold, try bridging another resistor across it to see what happens. There is one fairly unlikely possibility that should be checked if nothing else works. Read the control-grid voltage on the horizontal oscillator. If this measures too far positive, the tube will draw so much current that the plate voltage will drop to zero. There is no coupling capacitor to a high voltage that could short in this chassis, but you may have a leakage across the socket or something equally weird!

R-E

Computer Program

Know what your long-distance calls cost as you make them

ACTUAL SCREEN PHOTOS of program as it is running during a real phone call. Display tells you actual cost of call moment by moment.

FRED BLECHMAN, K6UGT

would you like to know exactly what your toll and long-distance calls are costing you, as you are making them? With a simple computer program, you can synchronize yourself with the phone company billing machine, and have your computer screen print out your accumulated charge, and the time (in seconds) to the next added charge!

I used a Radio Shack TRS-80 computer, so the program is written in Radio-Shack Level 1 BASIC. If you have a different computer, you should be able to adapt it with no trouble. The program is written so that it allows the operator to request information on rates and discount periods, or bypass these instructions and go right into entering the three variables that determine the cost of the call: the initial time period, the initial time charge and the additional charge per minute. Once this data is entered, the operator places the phone call in the regular manner, and presses the ENTER key on the computer keyboard
when the party at the other end picks up their phone. That synchronizes your computer with the phone company timerwith absolutely no connection to the phone lines! From that point on, the computer display shows the initial cost and time period, counts down the seconds to the next added charge and (after the initial time period) displays the total time and cost continuously. To make the total cost more readable, it is enclosed in a graphic rectangle.

You must account for the operating speed of the computer. This is done in lines 130 and 140 by delaying the start of the countdown a few seconds, since it takes time for the computer to get to this point in the program on the first pass (mostly graphic delay). Also, I found my TRS-80 ran a for-NEXT loop at a rate of 490 loops-per-second, as shown in line 225. You might have to change this number slightly if your computer runs a bit faster or slower. This program uses 2495 bytes of memory of the 3583 available in the TRS-80 4 K memory unit.

Telephone Toll Totalizer Program

${ }^{\text {© }} 1978$ Fred Blechman

5 REM \star PROGRAMMED FOR TRS-80 LEVEL I BASIC $\star \quad 200$ P.AT 526,"THE TOTAL CHARCE IS NOW. $\$$ "; C
10 REM \star COPYRIGHT 1978 FRED BLECHMAN \star
$210 \operatorname{SET}(93,24) \cdot \operatorname{SET}(93,25): \operatorname{SET}(93,26)$
15 REM * THREE LINES AFFECT THE TIMING OF THIS PROGRAM *
215 P.AT 651,"TOTAL TIME CHARGED IS NOW:";P+D;"MINUTES"
16 REM * LINES 130 AND 140 DETERMINE THE STARTING COUNT *
17 REM * (THIS LETS YOU CORRECT FOR THE GRAPHIC DELAY) \star
18 REM \star LINE 225 CONTROLS THE SECONDS COUNTING ACCURACY \star 20 CIS.P.P.P.
21 P." TELEPHONE TOLL TOTALIZER":P.P.
25 IN. "DO YOU WANT SPECIFIC INSTRUCTIONS? YES $=1, \mathrm{NO}=2 " ; \mathrm{A}$
26 IF A=1 GOTO 300
28 CLS.P.P.P.
29 P."
TELEPHONE TOLL TOTALIZER":P.P.
$30 \mathbb{N}$. "WHAT IS THE INITIAL TIME PERIOD (MINUTES)";P
$220 \mathrm{~T}=59: \mathrm{D}=\mathrm{D}+1$
$221 \mathrm{C}=\mathrm{C}+(\mathrm{M} / 100)$
225 FOR X=1 TO 490: NEXT X
230 P.AT 330,"SECONDS TO THE NEXT ADDITIONAL CHARGE:";T
$240 \mathrm{~T}=\mathrm{T}-1$
$250 \mathrm{IF} \mathrm{T}=-1$ COTO 200
255 GOTO 225
300 CLS:P"YOUR CHARGES ARE BASED UPON THREE THINCS:"
310 P." (1) INITIAL TIME PERIOD (1 or 3 MINUTES)"
35 P.:P.
40 IN. "WHAT IS THE INITIAL CHARCE (CENTS)";
45 P.P.
320 P." (2) INITIAL CHARCE (FOR THE INITIAL PERIOD)"
330 P." (3) ADDITIONAL CHARGE PER MINUTE AFTER INITIAL PERIOD"

50 IN. "WHAT IS THE ADDITIONAL CHARGE PER MINUTE (CENTS)"; M
51 CLS:P.P.P.P.
55 P. "WHEN THE PARTY AT THE OTHER END PICKS UP THE RECEIVER"
57 IN."PRESS ENTER TO START TIMING. . . .";A\$
60 CLS:P.P.
70 P."THE INITIAL COST OF THE FIRST";P;"MINUTE(S) IS: $\$$ ": $1 / 100$
80 P." THE ADDITIONAL COST PER MINUTE IS: $\$^{\prime \prime} ; \mathrm{M} / 100$
90 P.AT 847,"PRESS BREAK TO STOP COUNTING."
$100 \mathrm{C}=1 / 100: \mathrm{D}=1$
340 P.P. "IF YOU USE AN OPERATOR TO ASSIST YOU, THE INITIAL"
350 P. "TIME PERIOD IS 3 MINUTES. DIRECT DIAL IS 1 MINUTE."
360 P.:P"THE CHARGES ARE BASED ON THE DESTINATION CALLED.
370 P.". . . THESE ARE USUALLY LISTED IN THE FRONT OF THE PHONE BOOK"
380 P." . . . OR. . . . CALL OPERATOR FOR THE RATES."
390 P. "DO YOU WANT INFORMATION ON DISCOUNT PERIODS?"
400 P.:IN."YES=1,NO=2";B
410 IF B = 2 COTO 28
420 CLS:P. "THERE ARE TWO DISCOUNT RATES IN THE CONT. U.S.A.:"
430 P." 35% DISCOUNT: $5 P M-11$ PM SUNDAY-FRIDAY"
440 P." 8AM-11PM HOLIDAYS": P.
110 FOR X=22 TO 93
115 SET (X,22):SET(X,28):NEXT X
120 FOR $Y=22$ TO 28
$125 \operatorname{SET}(22, Y): \operatorname{SET}(93, Y):$ NEXT Y
450 P." 65% DISCOUNT: 11PM-8AM EVERY NIGHT"
460 P." 8AM-11PM SATURDAY"
470 P." 8AM-5PM SUNDAY"
$130 \mathrm{~T}=56$
475 P.P. "CHARGES ARE BASED ON TIME AT CALLING POINT!"
476 P.:P.:P.
140 IF $P=3$ THEN $T=176$
480 IN."PRESS ENTER TO INPUT TIME AND CHARGE DATA. . . .";A\$
150 GOTO 221
490 COTO 28

DIGITALHI-FI RECORDING

Its Time Is Now!

For years, audio engineers have sought practical ways to increase the signal-to-noise ratio and dynamic range in audio recordings. Here's a look at what's coming from the giants in the recording industry.

LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

three separate events held in the last several months have convinced me that we are on the brink of a major revolution in recording technology: the High Fidelity Show held in Tokyo, Japan, in late September, 1977; a press conference held by the 3M Company in New York just prior to the Audio Engineering Society (AES) convention in early November, 1977; and the AES convention itself. The revolution, of course, has 10 do with the coming transition from analog audio recording to digital audio recording.

It is fitting that this transition should be taking place exactly 100 years after Thomas A. Edison inscribed those first recorded words onto a tinfoil cylinder. As crude as that first recording was, its basic concept has remained the same for a century. All presently available recordings are analog representations of sound waves. In the case of discs, the analog is represented by continuous wiggles or undulations in the disc's groove walls. In the case of tape, the analog consists of continuously varying magnetization patterns on a ribbon of tape coated with particles that can store such continuous magnetization patterns.

Analog-to-digital conversion

Any amplitude or number can be rep-

SAMPLE NO.	DECIMAL AMPLITUDE	6-BIT BINARY AMPLITUDE
1	20	010100
2	23	010111
3	24	011000
4	21	010101
5	16	010000
6	13	001101
7	9	001001
8	8	001000
9	11	001011
10	16	011000

FIG. 1-SINEWAVES can be converted to digital form by sampling at specific points and then converting the amplitude into a binary representation, as shown in the accompanying table.
resented by a binary numbering system in which only " 0 " and " 1 " are used. The way to represent a continuous sinewave (see Fig. 1) in binary language would be to sample the amplitude at several points and express the results in binary form. If a 6-bit system is used, for example, you could express any amplitude level from 0 (000000) to 63 (111111). The table in Fig. I shows how a waveform is expressed in binary language, using a 6-bit system.

Assume, also, that you are sampling at a rate of 50.000 times-per-second. If the single sinewave shown in Fig. 1 were part of a $5000-\mathrm{Hz}$ tone, you would have ten chances to sample one complete wave, as summarized in the table in Fig. 1. Note, however, that some of the bit values expressed are not totally accurate. In any bit or binary-number expression, only whole numbers can be used (as shown in the accompanying decimal system equivalents of the 6 -bit code). Thus, to make the digital equivalent of any waveform more accurate, more bits must be used. Furthermore, in the example, a $5000-\mathrm{Hz}$ signal has been used. If the same sampling rate (50,000 -per-sccond) were used to dissect a $20,000-\mathrm{Hz}$ waveform, you would only have $21 / 2$ chances per cycle to sample the waveform amplitude. Even though it would seem that such a low
sampling would not be enough to represent a pure $20,000-\mathrm{Hz}$ sinewave, it is possible to reconstruct the $20-\mathrm{kHz}$ sinewave as long as it has been sampled at least twice (once for its positive-going peak amplitude, and again for its most negative value).

Advantages of digital recording

Once an analog or continuous waveform signal has been converted to a series of pulses (for example, a positive pulse for "I" and an absence of a pulse for " 0 "), these pulses can be recorded on tape. For tape recording, the advantages are obvious since the pulses can all be recorded at a constant amplitude. That means that every puise can be recorded at a level well above the residual noise level of the tape and well below the saturation level. Thus, the system's dynamic range is no longer limited by the parameters of the magnetic tape itself. It can be shown that in a digital recording system, each bit of storage capability offers 6 dB of dynamic range. So, for 96 dB of dynamic range (that's about 30 dB better than the best analog tape recorders can deliver), all you have to do is create a 16 -bit digital recording system.

The 3M/BBC system

The 3 M Company and the British Broadcasting Company have jointly developed such a recording system. Figure 2 shows their new Digital Audio Mastering System that is designed to replace analog systems in professional recording studios.

FIG. 2-NEW DIGITAL AUDIO MASTERING SYSTEM is manufactured by the 3M Company and contains 32 audio tracks.
It records 32 audio channels on special 1-inch-wide tape. A matching stereo recorder (not shown) is included in the complete digital recording system, comparable in size and style to present analog professional mix-down recorders. Figure 3 shows the operator's pancl for the system. This panel can be removed from the cabinet for use at nearby remote locations.

FIG. 3-FRONT PANEL of the new Digital Audio Recorder.

The frequency response is flat within 0.3 dB from 30 Hz to 15 kHz , and within 3 dB out to $20,000 \mathrm{~Hz}$. Signal-to-noise ratio is an incredible 90 dB or better, and harmonic distortion is less than 0.03% at any frequency from 20 Hz to 20 kHz at $+15-\mathrm{dBm}$ input levels. Intermodulation distortion is equally low for any two frequencies mixed. By way of comparison, Fig. 4 shows the harmonic distortion in a recorded $5-\mathrm{kHz}$ pure tone for a topquality analog recording system com-

FIG. 4-HARMONIC DISTORTION curves of an analog recorder vs. a digital recorder.
pared with that for the digital mastering system. Second- and third-harmonic components for the analog system are around 55 dB below the $5-\mathrm{kHz}$ fundamental signal, whereas in the case of the digital system, these distortion components are some 80 dB or so below reference record level.

There are other advantages to the system. Because equal-amplitude digital pulses are used to represent all audio signal waveforms, the problem of tape saturation at high frequencies becomes meaningless. The full dynamic range of all types of music (even electronic music, which often has disproportionately high levels of high frequency signals) can be recorded without using compressors, limiters or manual gain riding. In professional recording, it is a common practice
to make several dubbings from the original multitrack master recording before arriving at the final two- or four-channel mix-down recording. In an analog system, each such dubbing adds approximately 3 dB of noise. In a digital system, any number of dubbings can be made with absolutely no degradation of signal-tonoise ratio. Furthermore, using a digital system eliminates such problems as tape print-through, in which high magnetization levels on one layer of tape can become imprinted on adjacent layers to produce pre- or post-echoes.

FIG. 5-SPECTRAL PURITY of an analog recorder vs. a digital recorder.

Because of slight motion irregularities in a conventional a nalog system, recorded tones are often accompanied by modulation noise - that is, the noise tends to rise at frequencies just above and below the frequency of the recorded tone, as shown in the upper trace of Fig. 5. By comparison, the lower trace, representing the results obtained using the 3 M digital mastering system, shows no measurable modulation noise surrounding the same $10-\mathrm{kHz}$ recorded test frequency. This spectral purity is a distinctly audible improvement when listening to playback of digitally recorded audio programs.

Wow-and-flutter for the new system is not measurable. Obviously, even the best tape transport is not totally free of such speed variations, but in a digital system it is possible to store the millions of bits corresponding to the audio signal in short-term memory, and then to release them in perfect, uniform sequence determined by a reference quartz-crystal oscillator clock.

Tape dropouts can, of course, pose a serious problem in a digital system if the missing information is not compensated for. In an analog system, a short dropout is often undetectable, since our ears tend to fill in the gaps if they are sufficiently short. In a digital system, dropouts mean an absence of pulses, which the system would interpret not as missing music but as a different bit-code altogether. Accordingly, in the 3 M system, each track contains a degree of track redundancy and, with the aid of computer memory, such dropout errors are automatically corrected. This requires $11 / 2$ times the normal tape length needed if such a correction scheme were not included, but it is well worth the extra tape. The tape in
the 3 M system operates at a speed of 45 -inches-per-second; 7200 feet of recommended tape wound on a $12^{1 / 2 \text {-inch reel }}$ provides 30 minutes of recording time. Of course, the 3 M Company has developed a high-storage density tape to go with the machines. At the AES Convention we were also shown Ampex's new Series 460 digital audio recording tape specifically designed for digital-recording applications. Digital dropout for this new tape is less than an average of 1μ s per100 -feet of tape per track, measured across the entire tape width and length.

Consumer digital systems

The new 3 M professional mastering system is expected to cost a recording studio around $\$ 150,000$. If this seems extremely high to home recordists. it should be pointed out that a comparable first-quality analog system costs around $\$ 80,000$, and provides 24 -track capability (as opposed to 32 tracks), using 2-inchwide tape (as opposed to l-inch tape). Therefore, in terms of per-track cost and tape usage, the prices are not that disparate. Still, this new system would probably never be bought by a home recordist.

On the consumer front, things seem to be moving along just as quickly. Sony, for example, has developed a PCM add-on tape accessory that can be attached to its Betamax home videotape recorder. For some reason, the Japanese digital audio recording systems are called PCM (Pulse Code Modulation), but these systems are. in fact, true digital tape recording systems and operate on the same digital code principle as the more claborate multitrack 3 M system.

At the AES show, we also saw a PCM recorder from Mitsubishi, as well as a new PCM cassette tape deck that features an oversized cassette of specially formulated 2 -hour tape, a frequency response from DC to $20 \mathrm{kHz}, \pm 0.5 \mathrm{~dB}, 80 \mathrm{~dB}$ of dynamic range, distortion of under 0.3% and undetectable wow-and-flutter. This cassette deck uses 13 -bit digitization, a $47.52-\mathrm{kHz}$ sampling frequency as well as a sophisticated system of dropout compensation.

Soundstream, Inc. displayed a 4-channel digital mastering system with a digital editing feature that produces inaudible splices with resolution to less than $30 \mu \mathrm{~s}$. The editing system can even be used to produce splices at different places on each track and, since the tape is never physically cut, a selection can be repeatedly spliced and auditioned while the all-electronic digital editing system keeps track of acceptable final results.

Direct-to-disc

It can be argued that digital tape recording will mean little if, in the end, these superior master tapes are used to cut only conventional lacquer discs from which vinyl pressings are made. However,
this is not really the case. Readers may be familiar with some of the new limitededition direct-to-disc records that are now available. In this process, a master lacquer disc is cut during an actual musical performance expressly to eliminate the intermediate analog-tape recorder process. Anyone who has heard these discs can attest to their better sound quality. Making a direct-to-dise record, however, means bypassing all the sophisticated multitrack capabilities that have been developed over the years and are responsible for present-day high-quality recordings, since later editing or mixing is not possible. By introducing digital

Home disc system

The final development in this conversion from analog-to-digital audio technology has already appeared. Several Japanese companies have already perfected a PCM disc and its required player. At the AES convention, two seemingly identical machines were shown - one by Teac, the other by Mitsubishi. These discs contain tiny pits or photoetched depressions beneath a PVC coating. A monochromatic laser beam reads the presence or absence of these tiny pits on the disc; these readouts are then converted into pulses or digital code that is then amplified and converted back to audio waveforms.

FIG. 6-PCM RECORD PLAYER uses a laser to reproduce music from a transparent vinyl chloride disc.
master tape recording as the initial studio recording technique, the advantages of multitrack recording can be combined with the sound quality of direct-to-disc techniques since the digital master tape system introduces no intermediate degradation of the music signals.

The end of signal processing?

Because of the limitations of analog tape recorders, recording studios have used many kinds of signal processors to try to get around the noise and dynamicrange limitations of the analog tape system, using such schemes as Dolby noise reduction and $d b x$ companders and the like. The widespread use of digital master recording systems could well make such devices obsolete-at least insofar as studio use is concerned. Of course, as long as vinyl long-playing discs are used as the final playback software, some compression of dynamic range will still be necessary before the master disc is cut, since even the best LP's are not capable of much more than 65 dB of dynamic range. However, digital master taping techniques may insure that more discs will reflect that full range along with lower distortion.

Figure 6 shows a simplified diagram of the laser PCM disc system. The turntable platter rotates at a speed of 1800 RPM , controlled by a precise quartz-crystal oscillator locked servo system. For some idea of the system's potential performance, consider the following projected specifications: a dynamic range of 98 dB ; a frequency range from 10 Hz to 20 kHz within 0.5 dB ; distortion less than 0.1%; and wow-and-flutter (typically) less than 0.001%. Thirty minutes of playing time can be had from a single disc.

While it may be several years before digital PCM discs are as common as LP records, the possibilities exemplified by these outstanding specifications are 100 good to be ignored. The lack of contact between the dise and the pickup arm means that there should be no performance deterioration no matter how many times the disc is played. There will be no tracking distortion, pinch effect, or tracking error as with mechanical systems. Nor will there be any acoustic feedback (howling) and surface noise in a disc that requires no more delicate handling than present-day LP's. This is a very attractive prospect for the program source of the future.

Easy to build programmable beeper
can be used as the heart of a call system
ISAAC QUEEN

FIG. 1-CALECTRO J4-1214, simplified diagram. (Courtesy Calectro Handbook No. 98-102.)

CALL SYSTEMS ARE COMMONLY USED IN supermarkets and in department stores to summon personnel to the office or the phone. A bell repeats an identification number until the desired person answers. This very simple system may prove ample for many call purposes.

It is a programmable beeper. It can be switched to beep once, twice or four times, repeating the signal automatically. If desired, it may be set for a continuous sound. In addition, there is a choice of two audio frequencies-a buzz (about 105 Hz) and a tone (about 210 Hz). A total of eight distinct signals is available.

The beeper uses a programmable counter, Calectro type J4-1214 (an equivalent to the XR-2240), the simplified diagram of the programmable counter is shown in Fig. 1. The timebase section functions somewhat like that of the popular 555 timer. Capacitor C and resistor R are external timing components. The capaci-

PARTS LIST

All resistors $1 / 4$ watt, all capacitors 50 volts.
R1-47,000 ohms
R2-20,000 ohms
R3, R4-10,000 ohms
C1, C2, C3-. $05 \mu \mathrm{~F}$
C4-0.1 $\mu \mathrm{F}$
J1-earpiece jack
J2-phono jack
S1, S3-SPST toggle switches
S2-SPDT toggle switch with "off' center position.
IC-J4-1214 (Calectro)
16-pin DIP socket for above
IC socket adapter (Radio Shack 276-
024)XChassis box, metal, $31 / 4 \times 2 \times 11 / 2$ inches
Miscellaneous hardware
tor charges through the resistor. When terminal 13 reaches the critical value, comparator-2 triggers the flip-flop. C is quickly discharged, a negative pulse appears at pin 14 , and the sequence repeats. The formula for the time period is $T=$

FIG. 2-TIMING DIAGRAM. The counter outputs are shown in a, and the output at pin 1 is shown in \mathbf{b}.

RC (seconds $=$ megohms \times microfarads).

The timebase pulses feed a string of eight divider stages (only stages $1,2,8$ are shown in the diagram). Their outputs are available at pins 1 through 8 , respectively. Each pin has half the frequency of the previous one. All eight pins are normally at a logic-1 level. At the trigger instant, all the pins go to a logic-0 level (to ground). Refer to Figs. 2-a and 2-b. For example, pin 1 remains at a logic- 0 level for an interval T, then snaps back to a logic-1 level for a time T, and so on. At pin 2 , the interval is 2 T , at pin 3 it is 4 T , etc.

The squarewave outputs from J4-1214 are available from pins 1 through 8 , individually or in any desired combination. Figure 3 shows how to tie pins 1 and 8 to

FIG. 4.-GENERATING DOUBLE BEEPS.
the output. The AC output appears across load R_{L} and the output terminals. The battery is assumed to have negligible impedance.

Figure 3 is a wired-OR connection. If either pin 1 or pin 8 goes to a logic- 0 level, there can be no output at the output terminals. As an example, take R continued on page 98

Long Duration
 IC Timers
 That Really Work!

> Programmed delays and intervals of many hours can be precisely timed by combining the short-term accuracy of the one-shot multivibrator with the precision of the binary counter. Here is how the setup operates.

JOSEPH J. CARR

ELECTRONIC TIMER CIRCUITS USUALLY CONSIST OF MONOSTABLE multivibrators (i.e., one-shots), and their periods are controlled by an $\mathrm{R}-\mathrm{C}$ time constant. The 555 IC timer, for example, has an output duration of 1.1 RC. Most literature dealing with 555 applications claim that 10 megohms and $100 \mu \mathrm{~F}$ are the maximum values for R and C , respectively. However, at these maximum limits, precision components are difficult to obtain and, when available, tend to be expensive. Precision resistors in the 10 -megohm range are relatively available, but capacitors with better than 5% tolerance in the above $1-\mu \mathrm{F}$ range become increasingly difficult to obtain as the capacitance value goes up. In addition, many capacitors, even tantalum types, tend to be leaky; this deteriorates the precision of the R-C circuit. Also, most electrolytic capacitors are rated to be within -20% to $+100 \%$ in the over $10-\mu \mathrm{F}$ region.

Using the maximum values specified by 555 manufacturers produces an output period of (1.1) $\left(10^{7}\right)\left(10^{-4}\right)=1100$ seconds, or about 18 minutes. If you cascade several 555 devices so that the first device triggers the second and so forth, you can obtain long time delays between the occurrence of the trigger and the trailing edge of the last output pulse; these signals could be gated together to produce a long-duration timer using lowervalue components of higher precision. However, even if six 555 IC's were connected in that manner, they would only produce a duration of not quite two hours.

A better alternative is to use a countdown technique in which a precision timebase oscillator drives a binary or BCD counter. If we build this circuit using TTL or CMOS IC's, the timer will accomplish our purpose, but still have a relatively high IC count.

The Exar Integrated Systems XR-2240, XR-2250 and XR2260 timers (with counterparts being Intersil's 8240,8250 and 8260 , respectively) contain a timebase that is similar to the 555 timer, as well as a built-in binary or BCD counter.

Figure 1 is the block diagram of these IC's, and Fig. 2 shows the simplified internal circuitry for the XR-2240. The internal circuitry for the XR-2250 and XR-2260 is similar, except that the binary counter is BCD-coded, and the regulator output (pin 15) becomes an overflow output for the counter.

There are three basic sections in the timer IC: the timebase, the binary counter and the control logic (see Fig. 1). The timebase is an $\mathrm{R}-\mathrm{C}$ multivibrator that produces output pulses with a duration equal to $\mathrm{R} \times \mathrm{C}$. The counter in the XR-2240 is a straight 8 -bit binary counter with outputs weighted in the standard $2^{0}, 2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}$ and 2^{7} format to produce time
weights of $1,2,4,8,16,32,64$ and 128 times the timebase period.

The XR-2250 uses a BCD-weighting in which pins 1 to 4 form the least-significant digit (weighted 1,2,4 and 8), and pins 5 to 8 form the most-significant digit (weighted 10, 20, 40 and 80). The XR-2250 produces output times that are weighted 1 to

FIG. 1-TIMER IC PINOUT diagram for the XR-2240, XR-2250 and XR-2260. Numbers in parentheses are the binary weighted time durations.

99 times the timebase period.
The XR-2260 timer is similar to the XR-2250, except that the most-significant digit is limited to a maximum count of 5 (with a weighting of 50); output pin 8 on the XR- 2260 is not used. This IC is designed for use in hours, seconds and minutes timers.

In all three IC timers, the timebase oscillator produces the pulses that are fed to the counter input, and the control flip-flop triggers the timebase and sets all counter outputs initially to 0 .

The XR-2260 timebase, like the popular 555, consists of two voltage comparators, a flip-flop and two NPN transistors (see Fig. 2). This design allows an $\mathrm{R}-\mathrm{C}$ timer to achieve better stability because there is less dependence upon temperature fluctuations and, especially, on changes in the power-supply voltage.

Transistor Q1 in the timebase is the discharge switch, which keeps capacitor C discharged whenever Q 1 is turned on. Transistor Q2 is an open-collector output switch that drives the input
of the binary counter. In normal operation, where the counter is driven by the internal timebase, the collector of Q2 (pin 14) is connected to the regulator output through a 20,000 -ohm resistor.

The two voltage comparators are biased by voltage-divider network R1-R3. The noninverting (+) input of comparator 2 is biased to approximately $0.27+$ (pin 16 is $\mathrm{V}+$).

When a trigger pulse is applied to the control-logic section, the timebase flip-flop is placed in the SET condition, thereby turning off transistors Q1 and Q2. In this condition the timebase output terminal is forced high, and capacitor C starts charging through resistor R from the $\mathrm{V}+$ voltage source. When the capacitor voltage reaches $0.27+$, comparator 2 toggles, reset-

FIG. 2-XR-2240 IC contains a timebase circuit and a binary counter.
ting the flip-flop and turning on Q1 and Q2. When Q1 is turned on, the capacitor is discharged rapidly. When Q2 is turned on, the timebase output terminal drops low. The length of time that the timebase output terminal remains high is the $\mathrm{R}-\mathrm{C}$ time constant, or $\mathrm{R} \times \mathrm{C}(\mathrm{R}$ is in ohms, C in farads for time in seconds).

Each counter output is an open-collector NPN transistor capable of sinking a maximum of 5 mA , and must be connected to the V+ voltage through a pull-up resistor. Since the IC will operate with $V+$ supplies between 4.5 volts and 18 volts DC, the minimum value of the pull-up resistor is 900 ohms at the minimum supply voltage and 3600 ohms at the maximum supply voltage. A resistance of 10,000 ohms is typically specified.

The basic timing circuit is shown in Fig. 3-a. When a trigger pulse is received, the timebase begins producing pulses and the counter starts incrementing. It continues to increment until a positive-going reset pulse is applied to pin 10. Figure 4 shows the XR-2240 timing diagram for the first eight timebase pulses (only pins 1 to 4 are involved, pins 5 to 8 remain low until after the eighth timebase pulse).

If two or more outputs are wired together through a single pull-up resistor (a wired-or configuration), then the output remains low for as long as any single output is low. This feature allows you to program the output period by connecting together the appropriate pins and selecting the timebase frequency. If only pin 1 is used, then the output duration is $1 \times \mathrm{RC}$, and if all eight pins are wire-or'ed together, then the output duration is $255 \times \mathrm{RC}$.
If, for example, you wanted a 67 -second timer, you could set the $\mathrm{R}-\mathrm{C}$ time constant to 1 second (i.e., $\mathrm{R}=1$ megohm, $\mathrm{C}=1$ $\mu \mathrm{F}$, or $\mathrm{R}=10$ megohms and $\mathrm{C}=0.1 \mu \mathrm{~F}$), and then wire- OR

b
FIG. 3-EXTERNAL CIRCUITRY required for timer IC is shown in a. Timer starts counting after receiving trigger pulse. Modification shown in b is for free-running mode.

FIG. 4-TIMING DIAGRAM FOR XR-2240 for the first eight clock pulses after triggering.
pins 1,2 and 7 together to obtain weightings of 1,2 and 64 , respectively. The output duration will then be $(1+2+64) \mathrm{RC}$, or 67 RC . Since the $\mathrm{R}-\mathrm{C}$ time constant is 1 second, the total output duration is 67 seconds. Any time duration between IRC and 255 RC can be programmed using the XR-2240, or between 1 RC and 99RC using the XR-2250, or between 1 RC and 59RC using the XR-2260.
The circuit shown in Fig. 3-a is self-resetting because reset
terminal pin 10 is connected to the output through a $51,000-$ ohm resistor. At the end of the output period, the output terminal snaps high, forming the positive-going reset pulse that shuts off the timebase oscillator.
The modification of the basic circuit shown in Fig. 3-b allows for continuous operation of the timebase. The trigger is tied permanently high, and the reset is grounded and therefore inhibited. You could also use this circuit in other applications besides simple timing procedures.
Precision in an $\mathrm{R}-\mathrm{C}$ oscillator is often difficult to achieve because of changes in the power-supply voltage and thermal changes in the component values. The comparator timebase used in the Exar IC's and the 555 reduces the effects of powersupply changes because they operate on a fixed percentage of the $V+$ voltage, rather than being dependent upon the absolute voltage. The timebase can be partially freed of thermal effects by using precision (or at least metal-film) resistors and either silver mica, polycarbonate or polyethylene capacitors in the R-C network.

Figure 5 shows two alternate approaches to achieving greater precision. In Fig. 5-a, the internal timebase is disabled and an external clock is used instead. The external clock can be derived from the $60-\mathrm{Hz}$ power line for moderate precision, or from a crystal oscillator/divider chain similar to the timebase used in a frequency counter for high-precision applications.

Figure 5-b shows an external reference being used to synchro-

FIG. 5-EXTERNAL TIMEBASE can be connected to timer IC as shown in a. Internal timebase can also be synchronized to an external source as shown in b.
nize the internal $\mathrm{R}-\mathrm{C}$ timebase oscillator. A series network consisting of a 5100 -ohm resistor and a $0.1-\mu \mathrm{F}$ capacitor is connected between the reference frequency source and the timer IC's modulation terminal, pin 12. The frequency source must have a pulse amplitude of at least 3 volts $\mathrm{P}-\mathrm{P}$ and a duration between 0.3 RC and 0.8 RC . The repetition rate of the sync pulses can have a $12: 1$ ratio with the output pulses.

Cascading timers

The output-pulse duration can be extended by cascading two or more timers. Because it is possible to wire-OR the outputs, this procedure is easier than in 555 circuits and results in longer durations-per-IC because of the countdown construction of each timer IC. Figure 6 shows two cascaded XR-2240 timers. In this scheme timer IC1 is the input section, therefore, its timebase oscillator is operating. The time period is set by $\mathrm{R} 1 \times \mathrm{C} 1$. The $128(\mathrm{R} 1 \times \mathrm{C} 1)$ terminal (pin 8) forms the external timebase for IC2.

Both timer IC's have their respective trigger and reset terminals connected in-parallel. The 1C2 outputs are or'ed together through resistor R4, forming the timer output terminal. Feedback resistor R 5 resets both IC1 and IC2 at the conclusion of the time period.

The total period generated by Fig. 6 is $\left(2^{16}\right)(\mathrm{R} 1 \times \mathrm{C} 1)$, or $65,536(\mathrm{RI} \times \mathrm{Cl})$! If the R 1 C 1 time constant is set to 1 second, then the total period is 65,536 seconds, or more than 18 hours! Cascading allows you to use very short timebase periods to produce extremely long output durations. Of course, using short timebase periods means that the values used for Rl and Cl are small, which results in the use of more readily available preci-

FIG. 6-EXTENDED DELAYS can be obtained by cascading two (or more) timer IC's together.
sion stable components.
For example, let's design a simple 1 -hour (3600 -second) timer using the circuit shown in Fig. 6. The timebase period (i.e., $\mathrm{R} 1 \times \mathrm{Cl}$) must be $3600 / 65,536$, or 0.055 seconds. We must select a combination of R1 and Cl that will produce a 0.055 -second time constant. The proper combination can be found by some pencil-and-paper trial and error calculation (thinking with a pencil saves hours of breadboarding and doesn't risk burning out IC's).

First, select a convenient value for Cl . You could just as easily select a standard resistance, but it is easier to use a potentiometer to trim a fixed resistor to an oddball value than it is to use a variable capacitor to trim a standard-value capacitor to an oddball value. So, let's select $0.1 \mu \mathrm{~F}$ for Cl .

Next, calculate the value of the resistance required from the equation $\mathrm{RICl}=0.055$. Since Cl is $0.1 \mu \mathrm{~F}\left(10^{-7}\right.$ Farads), the formula becomes $\mathrm{R} 1=0.055 / 10^{-7}$, or 5.5×10^{5} ohms (550,000 ohms). If R1 is made from a standard 510 K resistor and a 100 K trimmer (a ten-turn type is preferred), then the timebase period can be adjusted to a precise 0.055 second. Make sure not to use carbon composition resistors (metal film is better) for R 1 or unstable capacitors for Cl .

Programmable timers

Figure 7 shows a timer that can be programmed using an external digital word. The basic circuit is the one shown in Fig. 3-a, except that the output terminals are connected to a pair of 7485 four-bit magnitude comparators.
The 7485 is composed of a set of TTL exclusive-or gates connected to compare two 4 -bit words and issue outputs indicating whether word A is greater than word B , word A equals word B, or word A is less than word B. Each IC has both magnitude inputs and outputs that allow several 7485 IC's to be cascaded. In this case, you must compare the 8 -bit output of the counter with an 8 -bit command from an outside source such as a microcomputer output port or a set of thumbwheel switches.
The timing diagram for Fig. 7 is shown in Fig. 8. Since word A programs the timer, the output durations are given in terms of the value of word A and the $R C$ timebase period.

When the trigger pulse is received, word A has previously

FIG. 7-PROGRAMMABLE DELAY TIMER can be obtained with the addition of two magnitude comparators.

FIG. 8-TIMING DIAGRAM for the programmable delay timer.

FIG. 9—PROGRAMMABLE DELAY TIMER using BCD thumbwheel switch.

HOURS

MINUTES
SECONDS

FIG. 10-100-HOUR PROGRAMMABLE TIMER uses BCD thumbwheel switches.
been set to some value between $00000000_{2}\left(0_{10}\right)$ and 11111111_{2} (255_{10}). All the timer outputs drop low, so word B is initially 00000000_{2}. At this time, word A is either greater than word B, or equal to it if word A is also 00000000_{2}. In the former case, the $\mathrm{A}>\mathrm{B}$ output from IC3 is high and the other two outputs are low. When the counter has incremented so that word A and word B are equal, then the $\mathrm{A}=\mathrm{B}$ output goes high for one clock period, after which word B is greater than word A, so the $A<B$ output goes high. The timing durations are $(A+1) R 1 C 1$ for A less than B, and $A R 1 C 1$ for A greater than B. The $A=B$ output produces a single pulse at time AR1C1.

Assume that the Fig. 7 circuit is programmed so that word A is $178_{10}\left(10110010_{2}\right)$, and that the $R-C$ time constant is 5 seconds. What is the duration of the $A>B$ pulse? The duration is $\mathrm{A} \times \mathrm{R} 1 \times \mathrm{Cl}$, or (178) (5 seconds), or 890 seconds (about 14.8 minutes).

Thumbwheel switches with binary, BCD, or octal-output codes can be used to program these IC timers. Figure 9 shows a BCD thumbwheel switch that programs an XR-2250 timer. The BCD switches are connected to the output lines on the timer IC, and the switches are in turn connected to puil-up resistor R 1 . The switches provide a simple way to build circuits (such as that of Fig. 3-a) using convenient front-panel switches to change the output duration when desired.

Figure 10 shows the circuit of a precision 100 -hour timer using the Exar XR-2250 and XR-2260 timer IC's. Four timers are in cascade and are programmed by thumbwheel switches.

Timer IC 1 is used as a timebase to generate a $1-\mathrm{Hz}$ clock from the $60-\mathrm{Hz} \mathrm{AC}$ power line. The values of $\mathrm{C} 1, \mathrm{C} 2, \mathrm{R} 1$ and R 2 depend on the amplitude of the $60-\mathrm{Hz}$ line used for the timebase.

The XR-2260 counts to 59 , and on the 60 th count generates a
carry pulse on pin 15. This output pulse represents a frequency division of 60 for the XR-2260 and a division of 100 for the XR2250.

As shown in Fig. 10, the seconds and minutes sections of the circuit are thumbwhecl-programmed, cascaded XR-2260 IC's, while the hours section is a thumbwheel-programmed XR-2250 IC allowing a maximum of 99 hours. Both XR-2260 IC's use the carry-output pulse to drive the timebase input of the following stage.

The thumbwheel switches program the total duration of the output pulse, but some applications might require a continuous monitoring of the time that has elapsed since the trigger pulse started the counters. To do this, you can use an events counter or a clock IC that uses a $1-\mathrm{Hz}$ input. Another alternative is to use an hours-minutes-seconds counter circuit with its reset terminal connected to the timer output. The timer output is active-low and so will allow counting during its time duration, but it will reset the counter when it goes high at the end of the time duration.

Precision is a word not ordinarily used in conjunction with the AC power-line frequency. Digital frequency counters and shortduration timers that use $60-\mathrm{Hz} \mathrm{AC}$ power lines as the timebase are often described as being only of moderate precision. The accuracy specification is usually given in terms of 1% or a little less as a result of small variations in the line frequency. The actual frequency varies above and below 60 Hz as the generator speed changes, but the average frequency is quite close to 60 Hz over a period of time. This timer, then, possesses good accuracy for long durations but only moderate accuracy for short time spans. Using a precision crystal-controlled $\mathrm{I}-\mathrm{Hz}$ or $60-\mathrm{Hz}$ clock will insure that the accuracy remains the same over the entire range.

SWITCHING TRANSISTOR SHORTS

This Quasar TS-938 came in with no picture or sound. Found Q8 (power supply switching transistor) shorted. I replaced it and two days later it was back with Q8 shorted again. I need some help before I blow another one of those expensive transistors! With the replacement in, it worked fine. I could use some

 help.-H. Y., Baltimore, MD.You sure could! This can be highly nonhabit forming. I ran across the same thing not very long ago. A friend used the same replacement transistor you did. We checked and found that this was a good transistor but had only a 700 -volt peak-surge rating. The original transistor apparently had an 800 -volt peak rating, We used a Sylvania ECG-165, which has a 1400 -volt peak rating, and it is still working several months later. Always check the peak-voltage rating of this kind of transistor, and use a substitute with the highest rating you can find, of which there are several.

LOSS OF RASTER

This Zenith 19EC45 chassis loses the raster intermittently. I've checked everything I can think of, with no luck. Doesn't seem to damage anything! Where do I go from here?-D. L., Ridgefield, ct.
There is one problem we've run into in this and other Zeniths using the 9-90 horizontal module. Check resistor R808, 330 ohms. If this resistor is bad, it upsets the horizontal sweep. Replace it with a 1 -watt resistor
(Feedback: "That did it! Resistor R808 was almost open. The set is working fine now.")

TURN-ON SQUEAL

This Admiral M10 chassis "popped" at turn-on and finally quit. Resistor R818, in the horizontal driver collector, was open. Replacing this resistor brought the set back on. However, the horizontal oscillator/output would squeal at turn-on, now and then, and also at turn-off. All waveforms became normal after the unit stabilized, but fuse F1000 would blow after 5 to 8 hours
of operation. After quite a bit of checking, I found electrolytic capacitor C 811 ($10 \mu \mathrm{~F}, 25 \mathrm{~V}$) was intermittently opening up and allowing some kind of screwball feedback at turn-on and turnoff, and somehow making it blow that fuse.

Thanks to Leon Caldwell, Caldwell's TV, Mena, AR.

NO TINT CONTROL

Several things such as the IC, etc., were replaced in this Zenith 23DC 14 chassis after a lightning hit. Now, I do have color and good tints, but no tint control at all. I don't get it.-L. C., Mena, $A R$.

This chassis uses a DC-voltage tint control, with presets in the color circuitry. Your tint-control DC voltage-supply circuit goes through the chromatic switch. Check for normal DC voltages and follow them through the switch.
(Feedback: "Right, the DC voltage on the tint control wouldn't vary at all. I found a burned-up 470 -ohm resistor in the DC voltage-supply circuit. I also finally traced the DC supply voltage through the chromatic switch and found that both conductors going to the tint controls were completely blown. Two short pieces of wire fixed that!")

SCOPE PROBLEM

l've got all kinds of odd distortion in a Heath OM-2 scope. I've tried new tubes, with no luck. Do you have any bright ideas?J. H., Chicago, IL.

Maybe not any really bright ideas, but, from my experience in working over old scopes, I recommend checking all the coupling capacitors in the vertical amplifier stages. While you're at it, check all the plate, grid and cathode resistors, too, and replace any that are off-value. Doing this fixes most of them.

I had a strange horizontal nonlinearity in an old scope. Replacing the coupling capacitors in the vertical amplifier stages cured it. I haven't explained that one yet, but it worked!
(Feedback: "That did it. Changed two $0.1-\mu \mathrm{F}$ coupling capacitors and now the scope works fine!")

R-E

hobby corner

An easy-to-build crystal oscillator that is a must for your workbench.

THIS MONTH WE'LL DISCUSS HOW TO BUILD a device that should be on every workbench. It is a wide-range, multipurpose crystal oscillator that you can use to perform dozens of tasks.

Crystal oscillator

In order for a crystal oscillator to be most useful, it should:

1. Operate over a wide frequency range.
2. Operate with different types of crystals.
3. Have an output containing the fundamental and adequate harmonic frequencies.
4. Require no tuning.
5. Be easy to construct.

The crystal oscillator described here meets these requirements and more. It functions with fundamental crystals from 100 kHz to 17 MHz or more-a very wide range. Overtone crystals will oscillate on their fundamental frequencies-in fact, every crystal I put in causes the unit to take right off. (Incidentally, overtone crystals do not oscillate at an exact submultiple of the marked frequency. This is the nature of such crystals-the oscillation will be close but not exact.)

This little oscillator has quite a rich harmonic output for a one-transistor circuit. The harmonics of a $100-\mathrm{kHz}$ crystal can be heard well above 20 MHz .

How you can use it

Before we describe the circuit in detail, let's take a look at some of the ways you can use this oscillator. First, of course, you can use it as a crystal calibrator for a receiver. Most receiver dials are not very accurate, and a $100-\mathrm{kHz}$ crystal in the oscillator will show "marker signals" every 100 kHz across the dial so that you know where you are. Other crystals can also be used for this purpose. For example, a $500-\mathrm{kHz}$ crystal produces a marker every 500 kHz ; a $1-\mathrm{MHz}$ crystal, one every 1 MHz ; and so forth.

The oscillator can be used for aligning receivers. It is worthwhile even if you have a signal generator because most hobbyist generators are not very accurate themselves. A crystal at the intermediate frequency (IF)-usually 455 kHz -permits you to tune up (align) the IF strip of
the receiver. The fundamental and harmonic frequencies of one or two other crystals will generate the signals you need to align the radio frequency (RF) circuits.
Do you use a transistorized portable radio with shortwave bands or an SWL receiver without a beat-frequency oscillator? If you have ever attempted to tune in ham or commercial transmissions that are CW (code) or SSB (single sideband), you know they sound like gibberish. This little oscillator can clear up the confusion nicely. Simply use a crystal at or very near the intermediate frequency and run its antenna near the IF section of the receiver. Then careful tuning produces readable CW and SSB signals.
Another interesting oscillator application is for frequency spotting. Suppose you want to hear a favorite broadcast or shortwave station that is sometimes hard to locate. Just pop a crystal of the station frequency into the oscillator, and you know just where to look. For example, hams and those studying to be hams sometimes have difficulty locating station W1AW for their code practice sessions on 3580 kHz . An inexpensive $3579.54-$ kHz crystal of the type used in digital clocks or a $3.58-\mathrm{MHz}$ "rock" as used in TV color oscillators will put you almost right on it.

Often it is desirable to change the frequency coverage on a receiver; for instance, you want to receive a shortwave signal on a broadcast set or the WWV time signals ($5,10,15 \mathrm{MHz}$, etc.) on a receiver that does not tune to one of those frequencies. The usual solution is to build a small converter, the main part of which is (you guessed it) a crystal oscillator.

Circuit description

Now that you know some of the ways you can use the crystal oscillator, let's look at the circuit.

Figure 1 shows that only a few standard components are used. In fact, two, Cl and S 1 , can be omitted entirely and the oscillator will still perk right along. None of the components are highly critical so you can use those with 10% or 20% tolerance, and, in most cases, you can use the next closest standard value.

If you use a socket for the transistor,
the oscillator can be used for a transistor tester provided you put in DPDT switch S1. Then, with the switch in the proper position, pop either an NPN or PNP transistor into the socket for testing. If oscillation occurs, the transistor is good. This test does not tell you how good, just

FIG. 1

FIG. 2
that it is good. However, a transistor that oscillates also amplifies, switches, and does most other tasks it may be called upon to perform.

You can omit switch S1 and the socket if you don't plan to test transistors. In this case, just wire the circuit for an NPN transistor and solder in either a Radio Shack No. RS-2009, a 2N2222, a 2 N 4124 , or any comparable NPN transistor from your junk box.

The current drain on the 9 -volt battery is less than 1.5 mA , so it should last for a long time under normal intermittent use.

Variable capacitor Cl , if it is used, should be a compression-type padder, and the maximum value can be anything from 40 pF to 200 pF . Space permitting, you can use a physically larger capacitor type. The purpose of Cl is to permit fine adjustments to be made in the oscillation frequency so that it exactly matches a standard; for example, WWV. If this feature is not needed, you can omit Cl
and connect the crystal directly to the transistor collector.

Capacitor C3 (shown as two dotted lines in Fig. 1) is needed only if the output is to be connected directly to another circuit. Normally, the short length of wire functioning as the antenna can be placed near a receiver antenna.

Switch S2 is the on-off switch. Depending upon the major use of the oscillator, you may prefer a toggle or a momentary pushbutton switch.
One final note: You may find it advantageous to replace the $30-\mathrm{pF}$ fixed capacitor C 2 with a $100-\mathrm{pF}$ compression padder. If you run into a sluggish crystal that is hard to start, adjusting variable capacitor C 2 will usually cure it.

Construction

After collecting the components, you should put the circuit together on a breadboard before hard-wiring it. Breadboarding is always a good idea because you can find bad components and other problems while they are still easy to correct.

When the circuit is functioning properly, wire it up using your favorite meth-od-wiring pencil, point-to-point, wirewrap, or circuit board. It should fit easily into a box measuring $11 / 2 \times 4 \times 2^{1 / 4}$ inches unless you have some outsized components

At least two sizes of crystal sockets should be used. Wire them in parallel. If one will accommodate the $\mathrm{HC}-6 \mathrm{U}$ holder and the other, the FT-243 holder, you can then handle the common crystal sizes.

Capacitors C1 and C2 (if you use a variable capacitor there) should be mounted so that they can be reached for adjustment through holes in either the main panel or a side panel. Don't forget to use an externally mounted socket for the transistor if you also plan to use the oscillator as a tester.

Oscillates without crystal

This circuit will oscillate without a crystal. Wire up a coil and a capacitor (as shown in Fig. 2) and you have a variable oscillator; that is, one in which you can change the frequency. For example, a loopstick coil and a $365-\mathrm{pF}$ variable capacitor taken from an old broadcast-band radio enables you to swing the signal frequency across the broadcast band.

You can experiment with other coil and capacitor values to obtain higher and lower frequency ranges. Just plug the coil and capacitor into the crystal socket. You may find it necessary to short-out C1 for some combinations to oscillate, but do not expect every combination of values to create oscillation.

The frequency of the crystal-less or L-C (for inductance-capacitance) oscillator is not very stable. It wobbles and shifts with mechanical vibrations and body capacitance (as when you place your hand nearby). However, for less exacting
requirements, it may serve just as well.
This L-C oscillator has one additional use that may be helpful. Many hobbyists have no means of determining the inductance value of a coil. (A grid-dip meter is the best way to do this at reasonable cost.) However, if you can find a combination of a known capacitance that will oscillate with the unknown inductance, you are in business.

Simply find the oscillating frequency on your receiver and plug the values in the formula below. Make sure that you have the fundamental frequency and not one of the higher harmonics. Also, you must use the correct units of measure-
ment as shown in parentheses below:

$$
\mathrm{L}_{(\text {microhenrys })}=\frac{25,330}{\left.\mathrm{f}^{2}{ }_{(\mathrm{MHz})} \times \mathrm{C}_{(\text {picofrarad })}\right)}
$$

The same procedure can also be used to determine the value of an unknown capacitance if it will oscillate with a known inductance. Just use this formula with the same units as before:

$$
\mathrm{C}=\frac{25,330}{\mathrm{f}^{2} \times \mathrm{L}}
$$

It would be hard to find a more versatile device than this crystal and L-C oscillator. You will surely discover many more uses for it around your workbench, and it is so useful that you may find yourself building more than one.

R-E

NOW FROM LEADER . . .

The Basic LCR Bridge, Updated.

${ }^{\text {s } 29995 . ~ . ~ . ~ i n c l u d e s ~}$ 2 year warranty.
 *Two years parts; 180 days labor; 60 days over-the-counter exchange.

Model LCR-740 . . . with accessories.
See your Distributor or Write for Details

(516) 822.9300

Advanced Electronic Career

ANNOUNCING ...A New CREI Program: Minicomputer \& Microprocessor Technology Including A Microprocessor Laboratory

> Now you can learn at home the new technology that is revolutionizing electronics

The microprocessor has ushered in the age of microtechnology and electronics will never again be the same. The microprocessor has made possible the placing of an entire computer on a silicon chip one quarter inch square. The microprocessor "miracle chip" is in the process of changing the world. Soon all technical personnel in electronics will have to understand and work with the microprocessor. It is invading virtually every area of electronics. And it is profoundly affecting your electronics career.

Brand New Program

CREI has a brand new program to help you learn how to work effectively with this revolutionary electronics development. CREI's new program in Minicomputer and Microprocessor Technology is designed to prepare you for this field by giving you the education and practical experience you need.
The program provides solid preparation in electronics engineering technology with a specialization in minicomputers and microprocessors. In addition. it includes a microprocessor laboratory which features a fully programmable microcomputer which utilizes the Motorola 6802 microprocessor chip. This is an extremely important element of your program.

Programming Essential

As you may well know, you must learn how to program the microprocessor in order to design, service or troubleshoot microprocessor electronic systems. There is only one effective way to learn this all-important skill of programming, and that is by actually doing it. CREI's new program gives you this opportunity as you work with the exciting microprocessor laboratory.

Programming Is Easy

With CREI's new program, learning the skill of programming is simple. Within a few hours you'll be programming the microprocessor and in a short time you'll learn how to program it in three languages: BASIC, assembly and machine languages. In addition. you will learn how to interface the microprocessor with other systems and to test and debug specialized programs.

Preparation at Home

Wide Choice
 of Programs

Please note, however, that CREI's new program is only one of 16 state-of-theart programs in advanced electronic technology offered by CREI. So even if you choose not to specialize in microprocessor technology. CREI has an advanced electronics program to meet your needs.

With CREI, you may choose from any of the following areas of specialization in advanced electronics:

Microprocessor Technology
Computer Engineering
Communications Engineering
Digital Communications
Electronic Systems
Automatic Controls
Industrial Electronics
Television Engineering
Microwave Engineering
Cable Television
Radar and Sonar
Nuclear Instrumentation
Satellite Communications
Aeronautical and Navigational Solid State Theory
Nuclear Engineering

Unique Lab
 Program

An exclusive option available with CREI programs in electronic engineering technology is CREI's unique Electronic Design Laboratory program. It gives you actual experience in designing practical electronic circuits. It also helps you to understand the theories of advanced electronics and gives you extensive experience in such areas as tests and measurements, breadboarding, prototype construction, circuit operation and behavior, characteristics of electronics components and how to apply integrated circuits. Only CREI offers this unique Lab Program.

Practical

Engineering

CREI programs give you a practical engineering knowledge of electronics. That is. each part of your training is planned for your "use on the job." By using your training. you reinforce the learning process. And by demonstrating your increased knowledge to your employer. you may qualify for faster career advancement.

Free Book

There isn'l room here to give you all of the facts about career opportunities in advanced electronics and how CREI prepares you for them. So we invite you to send for cur free catalog. This fully illustrated. 5 p page book describes in detail the programs, equipment and services of CREI

Qualifications

You may be eligible to take a CREI college-level program in electronics if you are a high school graduate for the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

> Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Mail card or write describing qualifications to

BRE
 CAPITOL RADIO ENGINEERING INSTITUTE

GI B II
CRE programs are arproved for tretining of reterons and servicemen under the C.I. Bill.

state of solid state

A look at several interesting applications for National's IC pressure transducers, including a solid-state barometer and blood-pressure meter. KARL SAVON, SEMICONDUCTOR EDITOR

THE HYBRID PIEZORESISTIVE IC PRESSURE transducer is the modern replacement for the mechanical sensor. It is a compact deyice that functions reliably in harsh industrial, consumer, medical, military and automotive environments. The same IC that contains the pressure transducer itself also contains the power-supply regulator, temperature compensation circuits and a low-output-impedance operational amplifier. The transducers are manufactured with standard integrated technology and are laser-trimmed for accuracy. Their frequency response enables them to perform through the audio frequencies. They are insensitive to vibration and operate over wide pressure ranges, from 0 to 5000 psi (pounds-per-square-inch). National Semiconductor manufactures IC pressure transducers for
absolute, gauge and dual-port differential pressure applications. The transducers are available in a hybrid IC package for PC mounting or a zinc alloy housing for mechanical isolation.

Solid-state barometer

The electronic barometer circuit in Fig. 1 uses the LX1701A absolute-pressure transducer. Absolute pressure is referenced to zero pressure (a vacuum). The LX1701A is designed for pressure ranges of 10 to 20 psia (pounds-per-square-inchabsolute), including the 15 -psi normal atmospheric pressure. This barometer has a temperature coefficient of $\pm 0.0054 \mathrm{psi}$ -per- ${ }^{\circ} \mathrm{C}$ and a stability of $\pm 0.05 \mathrm{psi}$. The integrated transducer operates from a nominal supply of 15 volts and can source 20 mA and sink 1 output current of 10

FIG. 1-SOLID-STATE BAROMETER uses two operational amplifiers and pressure transducer. Circuit can be calibrated for any particular pressure scale.

FIG. 2-BLOOD-PRESSURE METER uses an air pump for automatic readings. Circuit operation is controlled by a microprocessor.
mA. Its output impedance is less than 50 ohms. The output of the LX1701A varies from 2.5 volts to 12.5 volts over its rated input-pressure range.

Figure 1 shows two operational amplifiers connected to the pressure transducer that allow independent adjustment of gain and DC offset. Adjusting the gain and offset calibrates the system to any particular pressure scale, whether it be psi , millibars (1 millibar $=1000$ dynes-per- cm^{2}), or millimeters of mercury

For negative feedback amplifiers, the gain is the ratio of the feedback resistor to the input resistor. Output amplifier A2 in Fig. 1 has a gain of R4/R3. Grounding the noninverting input (the + terminal) results in a zero output voltage for a corresponding zero voltage applied to the input through the input resistor.

Using two inverting amplifiers provides an output-voltage change in the same positive direction as the input voltage. The output-level contribution from the pressure transducer is its own output, V_{p}, multiplied by the gain through amplifier 1 ($\mathrm{R} 2 / \mathrm{R} 1$) multiplied by amplifier 2's gain (R4/R3). The DC offset at the output is the 6.9 volts from the LM129 reference multiplied by R2/R5 and R4/ $R 3$. Once R2, R3 and R4 are selected, the output can be calibrated by choosing R1 for the scale factor and R5 for the DC offset.

Blood-pressure meter

Before proceeding with the medically related circuit discussed in this section, it must be emphasized that National Semiconductor does not recommend that its circuits be used in life-support equipment.
Figure 2 is the block diagram of a sphygmomanometer or simply a bloodpressure meter. Here, an LX1601G (-5 to +5 psig) is used for the transducer. The " G " suffix stands for gauge pressure, which is a differential pressure measured between ambient pressure and another source-in this case, the arm cuff. The blood-pressure meter displays diastolic and systolic blood pressure as well as the heart rate. Substituting the electrical out-put-pressure transducer for the usual mechanical sensor permits its control by a microprocessor, so the blood-pressure machine can be made completely automatic. Blood pressure is taken with respect to air pressure. In other words, when no blood pressure is being taken, the meter output should read zero.

First, the microprocessor must develop
an autocorrection signal that gives a zero output reading before the cuff is inflated. A latch circuit stores a multidigit binary number from the microprocessor. The number in the latch is changed into its equivalent $D C$ voltage by the D / A converter.

The circuit is designed so that when the summing amplifier (A 1) output is 7.5 volts, the pressure display reads zero. This autocorrection scheme corrects for temperature and offset drifts anywhere in the system. Autocorrection performs the function of the manual zero-adjust screw on an analog meter. Summing amplifier A1 adds the latch correction voltage to the output of the pressure transducer. The amplifier output is connected to the microprocessor through the A / D converter. The output of the summing amplifier and the A / D converter has an $A C$ component due to the pulsing blood pressure.

To take a reading, the cuff is gradually inflated on command of the microprocessor, and a digital display shows the point at which the AC component is at a minimum. This corresponds to the systolic pressure. The cuff is then deflated at a constant rate, and again the minimum AC component corresponding to the diastolic pressure is recorded. There is a direct AC signal path from the transducer to the microprocessor through the filter. This signal is used to measure the frequency of the blood pulses or the heart rate. No DC correction component is necessary since the frequency is not changed by temperature or time drifts in the sphygmomanometer system.

Precision weight scale

Figure 3 shows how you can build a precision weight scale. An open-loop system could be used, in which a hybrid

FIG. 3-PRECISION WEIGHT SCALE uses a pump to reduce the transducer's input signal to within range. Circuit is controlled by a microprocessor.
pressure transducer drives a voltmeter through the necessary calibration amplifier. But if you want a true precision scale, the linearity and accuracy of the transducer may not be good enough. The feedback system in the diagram balances the
force produced by a pump against the force produced by the unknown weight. The pump in the feedback circuit, under microprocessor control, produces a force that is equal to the weight, so the output of the differential pressure transducer approaches zero.

The resolution of the system is excellent because the transducer can be much more sensitive than the total weight range of the system. In operation, the weight only has to move the tiny amount necessary to generate the small output from the transducer that is amplified and drives the meter. Initially, there will be a larger movement until the feedback loop
has time to build up the pump pressure. Mechanical limiting mechanisms protect the transducer from exceeding its maximum pressure rating until the pump restores the initial location of the scale platform. Once again, a microprocessor is used, this time as an integrator of the pump control current that keeps track of the accumulated weight.

R-E

The Malional High Blood Pressure Educaten Program, U.S. Doparment ol Healith, Education, and Wellare.

I5MHz PORTABLE OSCILLOSCOPE

- 15 megahertz bandwidth.
- External and Internal trigger.
- Time Base- 0.1 microseconds to $0.5 \mathrm{Sec} /$ div-21 settings.
- Battery or line operation.
- Automatic and line sync modes
- Power consumption less than 15 W .
- Vertical Gain- $\mathbf{0 . 0 1}$ to 50 volts/div -12 settings.
- Weight is only 3 pounds.

RECHARGEABLE

DUAL TRACE

PORTABLE
$2 . \mathbf{7}^{\prime \prime} \mathrm{H} \times 6.4$ " $\mathrm{W} \times 7.5$ "D

AVAILABLE NOW
\$395
With Rechargeable

computer corner

Data acquisition for microcomputers. PETER R. RONY, JONATHAN A. TITUS, DAVID G. LARSEN, CHRIS A. TITUS*

THE SOFTWARE IN A PREvIOUS COLUMN provided an example of a program used to acquire a single analog point in digital form. (See October 1977 issue.) We are generally interested in applications in which a series of points are to be acquired, stored, displayed and perhaps manipulated. This month we will explore the use of microcomputers for data acquisition.

It will be assumed that the analog-todigital converter (A/D) is interfaced as shown in the previous column. The software routine to run the A/D converter is shown in Table 1. The digital value of the analog voltage is returned in the B and C register (register pair B).

In most data acquisition programs, a fixed number of points must be acquired over a fixed period of time. In our example, 100 points will be taken, one every second. The 100 data points will be stored in read/write memory so that they can be used later. In writing data acquisition software we are now faced with three tasks that must be performed in addition to the actual A/D task:

1. Provide a software counter to count 100 points.
2. Provide a one-second timer.
3. Provide software to store the data values.

Software counter

The software necessary to count the 100 acquired points will actually count 100 passes through the data acquisition software. A general-purpose register within the 8080 IC is well suited for this; conditional jump instructions can be used to detect when the count is decremented to zero. The counter can be either incremented or decremented, but decrementing is probably easiest if you are just starting to program microcomputers.
Storing the data in memory is not difficult. Once the converter value is stored in a register pair, the H and L registers (register pair H) can be used as memory pointers to point to a read/write memory location. Note that a complete 16 -bit address must be specified for the MOV M, r instructions. Since the data is ac-
*This article is reprinted courtesy American Laboratories. Dr. Rony, Department of Chemical Engineering, and Mr. Larsen, Department of Chemistry, are with the Virginia Polytechnic Institute \& State University. Mr. Titus is president of Tychon, Inc.

1	TABLE 1 TYPICAL ADC INPUT ROUTINE FOR A 10 BIT ANALOG-TO-DIGITAL CQNVERTER	
,		
* 100000		
ADC,	PUSHPSW	/ SAVE REGI STER A \& Flags
	OUT	/STROBE THE ADC TO Start a covversion
	037	
TEST,	IN	/INPUT STATUS BIT AVD $2 \mathrm{MSB} \cdot \mathrm{S}$
	066	
	ADI	/ADD 1 TO THE FLAG HIT
	200	/TO CAUSE A CARRY IF IT IS SET
	JNC	/iNo OVERFLOW, CHECK IT AGAIN
	TEST	
	0	
	MO VBA	/OVERFLOW, FLAG=1, SO SAVE MSB*S
	IV	/INPUT THE $8 \mathrm{LSB} \cdot \mathrm{S}$
	065	
	MOVCA	/STORE THEM IN REGI STER C
	POPPSW	/RESTORE REGISTER A FLAGS
	RET	RETURV TO MAIN PROGRAM
	1	TABLE 2100 POIVT data açulsition
	1	goutive for one point per second
	DW ADC 100000	
	*070 000	
START,	LXISP	/load the stack pointer
	377	
	070	
	LXIH	/load the data storage startivg
	000 /ADDRESS IN REGISTERS H \& L	
	072	
CONVRT,	CALL	/CALL THE ADC SOftware
	ADC	/ SHO WN IN TAELE 1
	0	
	MOVMC /STORE THE 8 LSb'S TO MEMORY	
	INXH /INCREMENT THE MEMORY POINTER	
	MOUME /STORE THE 2 MSB'S TO MEMORY	
	INXH /INCREMENT THE POINTER AGAIN	
	MOVAL /GET THE LOW address value	
	CPI COMPARE IT TO THE $2015 T$ ADDRESS	
	$310 \quad 310=200$ DECIMAL	
	JZ /DONE YET?	
	$\mathrm{D}_{0}^{\text {DONE }}$ /YES, JUMP TO "DONE"	
	Call /NO, do the l SECOND delay	
	DELAY	
	0	
	JMP CONURT	/after the delay, get the next
		/ADC DATA POIVT
	0	
	/THIS IS THE ONE SECOND TIME DELAY	
	/ SUbRO	UTINE
DELAY.	PUSHPSW	/ Save reg a a flags
	PUSHD	$/$ SAUE REGIStERS D \& E
	LXID	/load counter registers
	000	
	110	
DEC,	dCXD / DECREMENT The reg palr	
	MOUAD	
	ORAE	
	JNZ /IF NOT ZERO, DO IT AGAIN	
	DEC	
	0	
	POPDPOPPSW	
	RET	

100	000	365
100	001	323
100	002	037
100	003	333
100	004	066
100	005	306
100	006	200
100	007	322
100	010	003
100	011	100
100	012	107
100	013	333
100	014	065
100	015	117
100	016	361
100	017	311

070000061 070001377 070002070 070003041 070004000 070005072 070006315 070007000 070010100 070011161 070012043 $070 \quad 013160$ $070 \quad 014043$ $070 \quad 015175$ $070 \quad 016376$ 070017310 070020312 070021047 070022070 070023315 $070 \quad 024031$
070025070
$070 \quad 026303$ 070027006 070030070
$070 \quad 031 \quad 365$
$70 \quad 032325$

070033021
070034000
$070 \quad 035110$ $070 \quad 036 \quad 033$ $070 \quad 037 \quad 172$ $070 \quad 040263$ 070 041 302 070042036 $070 \quad 043070$ $070 \quad 044321$ 070045361 070046311

```
PUSHDSW /SAVE REGISTER A & FLAGS
OUT /STROBE THE ADC TO START A CONVERSION
IN /INPUT STATUS BIT AVD 2 MSB*S
ADI /ADD I TO THE FLAG HIT
200 TO CAUSE A CARRY IFIT IS SET
TEST
MO VBA
IV
065
MOVCA /STORE THEM IN REGISTER C
POPPSW /RESTORE REGISTER A FLAGS
RET RETURN TO MALN PROGRAM
                                    TABLE 2 }100\mathrm{ POINT DATA ACQUISITION
                                    ROUTIVE fOR ONE POINT PER SECOND
```

 DW ADC \(100 \quad 000\)
 - 070000
 LXISP LOAD THE STACK POINTER
070
LXIH LOAD ThE DATA StORAGE Startivg
000 /ADDRESS IN REGISTERSH L L
/CALL THE ADC SOfTWARE
SHOWN IN TABLE 1
movmc
INXH /INCREMENT THE MEMORY POINTER
INXH INCREMENT THE MEMORY POINTER
MOUME ISTORE THE 2 MSB'S TO MEMORY
INXH INCREMENT THE POINTER AGAIN
MOVAL /GET THE LOW ADDRESS VALUE
CPI /COMPARE IT TO THE $20 I S T$ ADDRESS
$\begin{array}{ll}310 & / 310=200 \text { DECIMAL } \\ J Z & \text { DONE YET? }\end{array}$
JZ /DONE YETT
0
DELAY
0
JMP /after the delay. get the next
CONURT /ADC DATA POIVT
/THIS IS THE ONE SECOND TIME DELay
/ SUBROUTINE
pushpid /Save reg a a flags
PUSHD SAUE REGISTERS D \& E
lload counter registers
110
DCXD
oraE
JNZ
0
POPPSW
RET

THE PROGRAM WILL CAUSE THE COMPUTER TO /JUMP HERE WHEN IT HAS ACQUIRES ALL THE /DATA POINTS. A DISPLAY OR OTHER ROUTINE /MIGHT GE PLACED HERE IVSTEAD OF THE HALT
quired from a 10 -bit A/D converter, two successive memory locations must be used to store each point. The INXH instruction (increment register pair H) provides an easy means of pointing to the next successive memory location. We will store the data by placing the eight least significant bits in location n, and the two most significant bits in location $n+1$.

Real-time clock

The one-second timer may present some problems, depending upon the type of system used. It is relatively easy to write a one-second software delay program using a series of register decrementing loops, nested one within the other. However, to accurately time a one-second period, the computer must be doing nothing else. In a system dedicated to data acquisition for the 100 -second period, such a procedure is valid.

If interrupts occur or if the computer cannot be allowed to "do nothing" most of the time, an alternate solution is needed. One possibility is to use an external clock, often called a real-time clock.

Real-time clocks are unaffected by computer execution times, interrupts, slow I/O devices, etc. Once started, they will continue to run at an accurate rate until they have timed the particular period of interest and sent an interrupt to the microcomputer.

Some clocks are free running, always keeping time; others are programmable or preset for a particular period. The freerunning clock interrupts the computer at repetitive intervals while the programmable clock interrupts the computer only once, at the end of its pre-programmed period. Integrated circuits such as the Intel 8253 and Texas Instruments TMS 5501 contain time-keeping circuitry that is easily interfaced to most 8080's.

Data storage

For simplicity, we will use the software clock in our example rather than an inter-rupt-based real-time clock. The software for the 100 -point data acquisition program is shown in Table 2. After completing the program, the computer might be programmed to jump to the type of data display software discussed in the previous column.

If you look at the program carefully, you will not find a separate register to count the 100 passes through the data acquisition software. Since the memory address stored in registers H and L is already a counter, we have chosen to detect the 200th address rather than the 100th loop. This saves an internal register. Instead of decrementing a counter and detecting the zero condition, the contents of register L are compared with the final address and the equality is used to signal the end of the loop.

Analog-to-digital converters are not "instantaneous" devices that take only a few microseconds to perform a conver-
sion. In many real situations, the analog input to the converter will vary while the A/D converter is trying to perform a conversion. This presents the converter with a problem. How does it know what the real value of the voltage is? In most systems the A/D converter module has a sample-and-hold device on the analog input. The sample-and-hold circuitry samples the analog voltage when pulsed to provide a steady analog output to the A/ D converter for conversion; the A / D converter is then pulsed to start the conversion. The Intersil IH 5110 is a typical sample-and-hold device. R-E

At least we know while junior is tinkering with his electronic equipment his mind is off girls!

Exac* matched teeth anj aws. Dentists would call it "perfect occlusion." You'll call it the niftiest long ncse flier you've ever used. Jrecisior made of hish polished, drop forgec steel. Smooth working moving parts. Long zompact handles for extra reach in tight spots. Elue dipped plastic cashion grips. CHANNELLOCK. Exper: craftsmar. ship in every detail.
channellock. inc.. • Me=dvile, Pa. $\mathbf{1 G 3 3 5}$
CHAN NEL LOCK
No. 738 G Long.Reach Neadte Vose Plier

How to troubleshoot faulty high-voltage shutdown circuits in solid-state color sets.

THERE'S ONE COMMON TROUBLE AREA IN solid-state TV sets (mainly in color sets but in a few black-and-white models) that is all-too-often overlooked. This is the high-voltage regulation circuitry, which includes the high-voltage shutdown circuitry. Note: these are two separate circuits, but they interact.

The high voltage in solid-state sets is seldom regulated directly, as in tube sets with 6 BK 4 tubes, etc. In practically all the solid-state sets, the high voltage is directly proportional to the DC voltage fed to the horizontal-output stage, or B+ supply. So, they do it the easy way and regulate the $B+$ supply. There are several circuits that can hold the $\mathrm{B}+$ voltage very steady. Here is the simple test that is often overlooked. When there is any problem in or associated with high-voltage regulation (it reads either too high or too low) always check the $B+$ voltage first!!

The B + value shown in Fig. 1 is critical. If +127 volts is indicated, +127 volts is exactly what is meant and not +124 volts or +130 volts. This value must be right on the nose and stay there over a fairly wide range of input-line voltages. If this $\mathrm{B}+$ value is high or low, check out the regulator circuitry. A fault in the $\mathrm{B}+$ line that makes it go too high will make the high voltage rise with it, trip the over-voltage protection circuitry, and shut the whole circuit down. It usually does this by killing the drive to the horizontal-output stage.

The Quasar model TS-961 and model TS-963 sets use some typical over-voltage protection circuitry (see Fig. 1). Using the same simple test, read the DC output voltage with an accurate $D C$ voltmeter (digital meters are handy). If the voltage does not read exactly right, go through the voltage regulator and check for a leaky pass transistor or error amplifier transistor, a bad Zener diode, etc. A leaky pass transistor allows the $B+$ voltage to become too high. If it shorts, you'll see the same $B+$ output voltage as the DC input voltage.

Here's a helpful hint: The B+ adjustment potentiometer and over-voltage adjustment potentiometers on several Quasar sets are factory-sealed. Several readers have asked, "How do you get these unsealed for adjustment?" You don't,
you take the originals out and put in new ones. A new control, sealant and full instructions can be had in a kit from a Quasar distributor. You cannot break the seal without tearing up the control. (If you take it out, don't throw it away yet! You might have some other problems and, if so, you can put the control back.)

The Quasar part number for the kit used in the model TS-961 is No. 18M25000A09; for the model TS-963, it's No. 18-25000A11. The potentiometer number is R811 for the model TS961, and R812 for the model TS-963.

The test for over-voltage protection circuitry in both these models is shown in Fig. 1. If the $\mathrm{B}+$ voltage is normal, then the shutdown circuit should be checked

causing a shutdown.

If this happens, you can readjust the control. Use the same method described above: take out the old control (remember to save it!) and put in the new one from the kit (the same part numbers apply as before for each chassis). If the shutdown circuit cannot be set up to trip correctly, see if the adjustment will help. If not, check out the components used in the circuit. In the model TS-961, a sili-con-controlled rectifier (SCR) is used; a pair of transistors are used in the model TS-963; however, the circuit action is the same. Several Zenerdiodes are also used, so check them for leakage, shorts, opens, etc. A flyback pulse is fed into the shutdown circuitry through a diode, so you

FIG. 1
to see if it's operating. Connect a variable potentiometer across the $\mathrm{B}+$ voltage er-ror-amplifier base circuit, as shown. The value of this control is not critical-from about 100 K to 500 K . Monitor the B+ supply with an accurate DC voltmeter. Adjust the brightness so that you can barely see a raster because doing this reduces the beam current to a minimum.

For the test, slowly reduce the resistance of the shunt potentiometer. Watch the $B+$ voltmeter. It will rise slowly and when it reaches the point where the $B+$ voltage reads from +144 volts to +146 volts, the shutdown circuit should trip and the raster go out. This will happen at about 29.5 kV in the model TS-961, and in the model $T S-963$. If the shutdown circuit is not working, the high voltage can be raised above the limit without
should check also for this pulse.
You may run into premature shutdown problems. If the $\mathrm{B}+$ voltage is normal and the high voltage is shut down (for a quick check, look for the drive pulse to the horizontal-output transistor), turn the set off and wait for one minute to be sure the SCR has unlatched and the capacitors have discharged. Then try again. If the circuit shuts down even though the high voltage is within limits, then make the suggested tests described above.

As I said, and continue to stress, check the $\mathrm{B}+$ voltage first. Since this voltage can cause so many different problems if it's out of the ballpark, it's advisable to investigate it before you go tearing around through the rest of the circuitry! Just making this one test can save you lots of time.

service questions

DOUBLE TROUBLE

The symptoms on this Zenith model 12B14C52 are: a very pale picture, plenty of brightness, no snow, color present, and good sound. The contrast and brightness controls react properly. The AGC level control has no effect at all. I check the 6 KT 8 (AGC) voltages. The cathode voltage varies, the AGC doesn't. After some confusion due to reading on the wrong socket, I finally replace the 6 KT 8 tube. Now the AGC reacts properly. But the symptoms are still there!

There's a very low signal on the output of the sound-sync detector. This should be 9 volts P-P. I pulled the IF strip and checked it-nothing. There are no normal signals anywhere through the AGC/ sync stages. There's a video signal on the 6BA11 pin 6 plate, which should be composite sync.

Finally, I get to the IF strip. The first and third IF transistors show zero emitter volts. This is bad! (The IF strip is now out of the chassis and on the bench, hooked up with jumper leads.) I pull the third IF transistor: the curve tracer says no. I replace it. Is it the first IF transistor? Whoa! I separate the IF strip test shown in manual as being OK for some versions. But if the AGC lead is in the wrong place, the first IF base circuit is open. Therefore, no emitter voltage, no output, just a small amount of signal leaking through the third IF transistor. I add one new jumper. (I use push-on, insulated connectors for these to avoid shorts to the shield.)

The problem here is aggravated by a bad tube in the AGC. This and the IF problem caused similar symptoms for double-trouble.

POWER-LINE FREQUENCY ACCURACY?

When I made a clock, I fook the powerline frequency, divided it by 60 for the seconds, then by 60 again for the minutes, then again for the hours. Then Ifed this to a binary-number display using lamps. After about a month or six weeks, the clock is always off by two to four minutes. My regular electric clock keeps better time. Isn't it also dependent on line Irequency? I don't understand.-F. A., GuIf Breeze, FL.

That's a good question. I have heard of a few cases in which line frequencies were not really accurate. (In the NY area for one.) Now, let's look into that crystal ball.

Your electric clock does depend on the line frequency for its accuracy since it uses a synchronous motor. However, it is possible for a momentary (i.e., a glitch of only a few milliseconds" duration) inter-

You have your own calculator. Why not a DMM?

Finally, a digital multimeter that's yours, just like your pocket calculator, and more useful. Only $\$ 169$.

Ycu pack only 13 ozs. in your pocket or service kit, but size is deceptive. The 8020A has more useful features than any other multimeter available-at any price! Features like 26 ranges and seven functions, including conductance. 2000 -count resolution. Hillo power ohms.
And it's rugged. The high-impact case protects a minimum number of componeni parts (47 in all), and they're all readily available from any of the worldwide Fluke service centers. Your 8020 A is factory calibrated by NBS traceable equipment. And we guaran-
tee it'll live up to published specs for a full year.

The 8020A is a true field instrument, designed with a highly readable LCD display, and inexpensive 9 V transistor battery power for continuous use up to 200 hours. Reliability, quality and value: that's Fluke tradition.

To get your hands on one, call (800) 426-0361, toll free. Give us your chargecard number and we'll ship an 8020A the same day. Or, we ${ }^{\text {s }}$ ll tell you the location of the closest Fluke office or distributor (where you can save by buying a ten-pack of 8020 As for only $\$ 1521^{*}$).

* U.S. price only.

MATHEMATICS ELECTRONISS ENGINEERING MATHEMATICS ADVANGED MATHEMATIGS

These unusual courses are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classroom to thousands of men, from all walks of life, on mathematics, and electrical and electronic engineering.

You will have to see the lessons to appreciate them!

NOW you can master mathematics and electronics and actually enjoy doing it!

WE ARE THIS SURE:-you order your lessons on a money-back guarantee.

In plain language, if you aren't satisfied you don't pay, and there are no strings attached.

Write today for more information and your outline of courses.

You have nothing to lose, and everything to gain!

The INDIANA HOME STUDY INSTITUTE

P.O. BOX 1189

PANAMA CITY, FLA 32401

CIRCLE 28 ON FREE INFORMATION CARD

You Can Count On DAVIS!

NEW CTR-2A

$500 \mathrm{MHz} \& 1 \mathrm{GHz}$ COUNTERS
NOW WITH
PERIOD MEASUREMENT (Optional) AND BUILT-IN PREAMP

- 8 Digit .3" LED Display
- High Stability TCXO Time Base
- Built-in VHF-UHF Prescaler \& Preamp
- Period lus to 1 sec . (optional)
- TCXO Std. ± 2 ppm
- Input Diode Protected
- 12v-DC Operation (optional)
- Oven Crystal $\pm .5$ ppm (optional)
- Selectible Gate Times .1 sec. $\& 1$ sec.

500 MHz kit CTR-2A-500K $\$ 249.95$
500 MHz assembled CTR-2A-500A 349.95
1 GHz kit CTR-2A-1000K 399.95
1 GHz assembled CTR-2A-1000A 549.95
OPTIONS
(02) Oven Crystal $\$ 49.95$
(03) $43^{\prime \prime}$ LED 10.00
(04) 12 V -DC
(05) 10 sec. Time Base
10.00
(06) Period Option
15.00

DRDI日

DAVIS ELECTRONICS
636 Sheridan Drive
Tonawanda, NY 14150
716/874-5848

V/IS

CIRCLE 66 ON FREE INFORMATION CARD
ruption to have no effect on the standard clock because its flywheel effect wouldn't let it slow down too much.

However, digital counter circuits are quite fast. A glitch of a few milliseconds would make them lose a couple of counts, and the cumulative effect over a period of time would result in considerable inaccuracy.

This is pure crystal-ball conjecture, but it could be right. I've heard other cases of complaint about digital clocks that do use a $60-\mathrm{Hz}$ line frequency as half-wave rectified pulses

VOLTAGE REGULATOR PROBLEM

I had an oddball problem in a GE transistor TV some time ago. The $\mathrm{B}+$ voltage was quite low, the AC current drain was high and the power transformer heated up-all the classic symptoms of too much current drain! However, the $\mathrm{B}+$ current, at 1.2 amp , wasn't so bad.

Checking the circuits showed they didn't seem to be taking too much current. The set worked fine on an external car battery. So I went back to the power supply and checked the voltage regulator; everything was OK. Then I unhooked the load from the regulator and used external load resistors. When I raised the load current to about 1.2 amp (what it drew in normal operation) the ripple on the output went way up. A closer examination showed the classic half-wave ripples in-

stead of full-wave ripples.
Additional checks showed no AC on one of the full-wave rectifier diodes. The AC was read at the secondary of the transformer. I discovered a foil break between the transformer and one diode! When this was fixed, there were no more problems. (Thanks to Rodney Schrock, Somerset, PA.)

BAD CAPACITOR

A customer brought in a Zenith model 19FC45 with a bad capacitor in the horizontal output. He had tried to change it himself. The old capacitor is gone and I am not sure just how it should be connected. I don't find this on the Sams service data.-G. H., Panama City, FL.

On the 22-7504-01 replacement for the four-legged capacitor, terminal A goes directly to the collector of the horizontaloutput transistor, terminal B goes to the lead from the flyback/damper anode/ etc., terminal C goes to the emitter of the output transistor (which is ground), and terminal D goes directly to the ground lug nearby. There should be continuity from terminal A to terminal B, and from terminal C to terminal D, but never from one pair to the other!

Check the output transistor, the triple, the damper, etc., for possible shorts. Ordinarily, if this capacitor shorts, it trips the breaker; if it opens the high voltage can do lots of damage!

R-E

Here's a TOP DEAL for you! Buy RCA Entertainment Receiving Tubes, save the carton tops and earn valuable awards*

RCA's got the TOP DEAL of 1978 for service dealers ... a completely new collection of great merchandise awards, in exchange for RCA entertainment receiving tube carton tops. You choose from a wide selection of gifts for yourself, your family, and your home.
When you buy RCA receiving tubes, save the carton tops that bear the letters RCA and the tube type number. They are redeemable in required quantities for gifts of your

choice. Just a few are shown here
Pick up your copy of the RCA TOP DEAL Prize book, saver envelope and award order form at your participating RCA Distributor. Save the proper number of carton tops for the prize you want, and mail with your award order form to: RCA Top Deal Headquarters, Box 154, Dayton, Ohio 45401. The award you select will be mailed to you promptly. Your order must be postmarked no later than
 November 30, 1978 to take advantage of this great gift offer. Quality RCA Tubes mean a Top Deal for you. RCA Distributor and Special Products Division, Deptford, N.J. 08096.
*Save the carton top that bears the letters RCA and the tube type number.

DUAL TRACE MODEL $532-30 \mathrm{MHz}$

DUAL TRACE MODEL 517 - 15 MHz USABLE TO 27 MHz

SINGLE TRACE MODEL 515 - 15 MHz
Put Hickok Scope reliability on your side and get things done easier, faster, better and with complete assurance that you're doing them right.

Economically priced Hickok push-button-triggered Scopes are quick and easy to set up and use. A color-coded front panel speeds up and simplifies operation. Triggering is practically fool-proof, well in excess of the MHz rating. And excellent pulse responses virtually eliminate overshoot and ringing.

Call your nearby Hickok distributor and set up a demonstration today. See for yourself how a modestly priced Hickok single or dual trace 15 MHz , or dual trace 30 MHz , Scope will save you time and exasperation.

If you're outside of Ohio, call us toll free at 800-321-4664 for the name of your nearest Hickok distributor.

HICKOK

 the value innovator INSTRUMENTATION \& CONTROLS DIVISION THE HICKOK ELECTRICAL INSTRUMENT CO. 10514 Dupont Avenue - Cleveland, Ohio 44108 (216) 541-8060 - TWX: 810-421-8286 CIRCLE 67 ON FREE INFORMATION CARD
new products

More information on new products is available from manufacturers of items identified by a Free Information number. Free Information Card is inside back cover.

600-MHz FREQUENCY COUNTER, model OPTO8000.1 (prewired) and model OPTO-8000. 1 K (kit), provides 8 -digit LED display and guaranteed ± 0.1 PPM TCXO timebase stability, plus selectable input attenuator, selectable timebases (1 sec . and 0.1 sec .) and $9-15$ VDC, 115 VAC or 220 VAC, $50-\mathrm{Hz}-60-\mathrm{Hz}$ operation. Available options include 220 -volt AC operation and a NiCad battery pack. Unit comes in heavy-duty aluminum case with tilt-up bail, and measures $3 \mathrm{H} \times 71 / 4 \mathrm{~W}$

$\times 61 / 2$ inches D. Prices: Model OPTO-8000. 1 (prewired) \$299.95; model OPTO-8000.1K (kit) \$249.95; model 220 VAC option, \$10; model NCAA 8000 NiCad battery pack with charging circuit, \$19.95; model P-100 DC Probe, \$13.95; model P-101 Lo-Pass Probe, $\$ 16.95$; model P$102 \mathrm{Hi}-\mathrm{Z}$ Probe, $\$ 16.95$. Add 5% shipping, handling, insurance to a maximum of $\$ 10$. Outside U.S and Canada, add 10%.-Optoelectronics, Inc., 5821 N. E. 14th Ave., Ft. Lauderdale, FL 33334.

CIRCLE' 105 ON FREE INFORMATION CARD

SOLID-STATE OSCILLOSCOPE, model PDC200, is available as a kit or assembled. The unit measures $4 \% \times 73 / 4 \times 3$ inches and weighs 2 lbs , making it ideal for field servicing. The instrument features LED-type display; sweep ranges from 0.1 second to $0.5 \mu \mathrm{~s}$-per-division with voltage range

from $100-\mathrm{mV}$ to 100 V -per-division; and internal/ external triggering. The circuitry is contained on a single PC board and powered by two 9 -volt batteries. Probes are also available. Prices: the model PDC-200 kit, $\$ 99.95$; assembled, $\$ 155$; probes, $\$ 9.95$. Prices do not include shipping.Pyramid Data Corp., Box 532, Barrington, IL 60010.

CIRCLE 106 ON FREE INFORMATION CARD

OPEN REEL TAPE DECK, model A-6600, provides two speeds ($33 / 4 \mathrm{ips}$ and $71 / 2 \mathrm{ips}$) and four heads (erase, record, playback and reverse playback). The system also incorporates full IC logic control, two-capstan servo tension system, 20dB mike attenuator, cue control, automatic space

and individual mike and line controls. The front panel contains bias and equalization switches, two VU meters, input- and output-level controls and left- and right-channel selector switches. Also available are optional remote control, mikes, demagnetizer and recorder maintenance kit. Suggested retail prices: model A-6600, \$1299; model RC-80 remote control, $\$ 65$; model MM100 mike, $\$ 100$; model MM-120 mike, $\$ 120$; model E-1 demagnetizer, $\$ 25$; and model RMK recorder maintenance kit, \$9.-TEAC Corp. of America, 7733 Telegraph Rd., Montebello, CA 90640.

CIRCLE 107 ON FREE INFORMATION CARD
OEM MICROPROCESSOR DEVELOPMENT SYSTEM, 8700 Computer/Controller, comprising CPU board and optional model PS-87 power

supply, is based on $650 x$ processor family. Socketed, plated-through board has space for 1 K bytes of RAM and 1 K bytes of PROM, both in 256 -byte increments, five 8 -bit parallel input
ports, one 8-bit parallel output port, plus connectors for system expansion. Monitor program (Piebug, interactive editor debugger) controls code entry and debugging. Other features include relative address, back-space key, pointer high and low keys, and audio beeper (used with optional model CS-87 cassette interface). A variety of video display options is also available, including upper and lower case ASCII, color and black-and-white graphics. System comes as a kit or assembled, with prices starting around $\$ 90$. Other prices: model PS-87 power supply. \$24.95; model CS-87 cassette interface, \$22.50.-PAIA Electronics, Inc., OEM Sales, 1020 Wilshire Blvd., Oklahoma City, OK 73116.

CIRCLE 108 ON FREE INFORMATION CARD
AMATEUR TV CONVERTER, model ATVC-10, provides reception of tast-scan ATV in $450-\mathrm{MHz}$ band with any TV set. Device connects to VHF

burglar-fire alarm catalog

Huge selection of high quality professional alarm products. 64 fact-filled pages with detailed specs, diagrams, technical notes Products range from basic switches, controls, bells, sirens to most sophisticated detectors - radar, modulated or passive infrared, microwave, ultrasonics, ion, data links using puise code multiplex, FSK radio, automatic phone dialers, leased line connections and display panels. Full selection of tools, relays, wire, foil, terminals,
books.
WRITE FOR FREE CATALOG TODAY!
(Outside U.S., send $\$ 1.00$.)

Technicians-
 RCA Flameproof Film Resistors simplify your replacement problems.

More and more technicians are switching to RCA Flameproof Film Resistors. Here are 5 important reasons why

- Many of today's circuits require flameproof resistors.
- Simplified inventory: RCA's 2\% tolerance flameproof resistors replace many conventional types having 5\% and 10% ratings.
- High quality service demands high quality replacement parts.
- They're available in the popular wattage ratings - 1/4, 1/2, 1 and 2 watts.
- Values run from 1.0 Ohm to 1.5 Megohms. Altogether there are 523 film resistors to choose from.
And, RCA's convenient, preloaded and prelabeled Flameproof Resistor Kit makes it easy to store and locate your resistors. See your RCA Distributor for details or write to RCA Distributor and Special Products Division, 2000 Clements Bridge Road, Deptford, NJ 08096.

REת Eampaot Film Resistors

"Our whole family helped assemble this wonderful Schober Organ... now we all play if! ${ }^{\text {w. }}$

Talk about real family fun! We all worked together, for a few hours almost every day. Almost too soon, our Schober Organ was finished. Our keen-eyed daughter sorted resistors. Mom soldered transistor sockets, although she'd never soldered anything before. And it did our hearts good to see the care with which our son-he's only 12 -installed the transistors. Me? I was the quality control inspector-they let me do the final wiring. And when it came time to finish the beautiful walnut cabinet the easy Schober way, we all worked at it!

Now, we gather around our Schober Organ every evening to play and sing together. Some of us play better than the others, but we're all learning - with the help of the easy Schober Organ playing courses. I might add that I'm especially pleased with all the money we saved. Our completed Schober Organ compares favorably with a "ready-made" one costing twice as much! (The five models range from $\$ 650$ to $\$ 2850$.) And we didn't even need to pay the whole amount all at once, because we were able
o buy Schober Kits a component at a time to spread costs out. Or we could have had two-year time payments!

Families like ours have been building Schober Organs for 20 years. How about your family? You can have all the details. without cost or obligation Just send the coupon for the fascinating Schober color catalog (or enclose $\$ 1$ for a 12 -inch LP record that lets you hear as well as see Schober quality) Clip the coupon right now-and mail it TODAY।

for an experience in electronics,

get into

cameras
Improve your income by acquiring additional skills as a camera repair technician. Increasing use of electronics in cameras is creating still more opportunities for camera repair specialists. Take advantage
Performance Training
National Camera developed the first comprehensive technical training for camera repair technicians in the '50's. More practicing technicians have received training from us than from any other single source. Now this better-than-ever professional program is as close to you as your mailbox. Learn ar home!

Complete Package

You get texts, tools, practice equipment - a complete program including the latest additions in photographic electronics - not available anywhere else.

Free catalog

Find out about great training programs in camera repair technology. You can learn at home, keeping your present job, or at our one-year resident school in Coloful Colorado. For free information, use the card in this publication or write us today

\bigcirc Nafional Camera

Technical Training Division, Dept. GBD 2000 West Union Ave Englewood, Colorado 80110

Accredited member: NHSC, NATTS
CIRCLE 15 ON FREE INFORMATION CARD
antenna terminals on TV set. Features high-gain RF amplifier, mixer and oscillator (all varactortuned), plus adjustable RF gain. The converter tunes from 420 to 450 MHz and the output can be tuned to VHF Channels 2 through 6. Unit has built-in regulated AC power supply. The converter is housed in a wood-tone aluminum cabinet measuring $1 / 2 \times 41 / 4 \times 41 / 8$ inches, and is available in both prewired and semi-kit form (critical circuits are prewired and aligned). Prices: model ATVC-10, \$49.95; kit, \$39.95.-Science Workshop, Box 393, Bethpage, NY 11714.

CIRCLE 109 ON FREE INFORMATION CARD
NI-CAD BATTERIES, Dynachargeline, come with a five-year warranty for 1000 discharges. Line includes AA penlight cell, C-cell, D-cell, 9 -volt transistor cell, plus the Dynacharger to be used for all size cells. The Dynacharger lets you recharge penlight cells to 100% capacity in five

hours; unit can recharge four cells simultaneously, two different pairs at a time. Point-ofsale battery display contains blister-packed cards of cells plus boxed Dynachargers, and can be either pegboard-mounted or used as counter display.-Dynamic Instrument Corp., 933 Motor Parkway, Hauppage, NY 11787.
CIRCLE 110 ON FREE INFORMATION CARD
EPROM PROGRAMMER, model $P O P$ - 1 , low-cost unit interfaces to manufacturer's P-38-1 and P-38-FF EPROM boards which are SS-50 bus compatible. The device is designed to program 2708 EPROM's. Comes with software on audio cas-

sette; special programming technique allows most 2708's to be programmed in 15 seconds. Power is supplied from separate self-contained source. Price: \$149.-Smoke Signal Broadcasting, Box 2017, Hollywood, CA 90028.
CIRCLE 111 ON FREE INFORMATION CARD
POWER BREADBOARDS, Powerace model 101 (center), model 102 (right), and model 103 (left), accept all DIP IC packages, plus TO-5's and discrete components with leads up to .032 -inch in diameter. All three models offer 256-5 tiepoint terminals and 16-25 tiepoint buses, fused power supply and ground plane.
The model 101 has a variable 5-15 VDC, 600 mA, power supply with line- and load-regulation, a $0-15$ VDC meter (5% full-scale accuracy). The model 102 has a flxed 5 VDC 1 -amp power supply, 4 slide switches with logic outputs, 2 momentary slide switches with debounce circuit-
in your Electronics Career through

Earn Your
DEGREE
by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of directed but self-paced home study.

The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then to the B.S.E.E. degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. Write for Bulletin $R-78$,

Grantham College of Engineering 2000 Stoner Avenue P. O. Box 25992

 Los Angeles, CA 90025Worldwide Career Training thru Home Study CIRCLE 9 ON FREE INFORMATION CARD

40MHz MIN-COUNIER

Economical and highly accurate frequency counter for Radio Shops, Amateurs, CB...mobile or base station.
Frequency Range: 1.0 KHz to 40 MHz . (50 MHz Typical). 0.1 KHz resolution.

Sensitiviry: 50 millivolts BMS or rest jack or 0.5 warts when connecred in-line
Input Impedance: 1 Megohm 20 pF , test jack input Insertion Loss: Negligible through in-line connecrors Accuracy: ± 1 digit \pm time-bose stobility
Display: Six 030" LED digits
Time Bose Frequency: 4 MHz quart crystal (foctory
rrimmed to within $\pm 2 \mathrm{ppm}$)
Time Bose Stabllity: Less thon $\pm 5 \mathrm{ppm}$ berween +10 C and $+40 C$ ofter 15 -minute wormup
Power Requirements: $117 \mathrm{VAC} .60 \mathrm{~Hz} @ 85 \mathrm{MA}$ or 12 VDC @ 325 MA

Mini-Price $\$ 99.95$

90 Doy Warranty, Money Back Guaronree MasrerChorge - BankAmericard
Send card name, number and expiration dare
Check - Maney Order COD
Add $\$ 2.00$ per unir shipping and handling
Butler National Corporation
Dept 27788246 Niemon Rood
(913) 888.8585 - Coble: DUNACOR • TELEX: 42.6300
ry, 4 LED's, a debounce pushbutton and a clock generator ($1,10,100,1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{kHz}$). The model 103 has fixed 5 VDC $750-\mathrm{mA}$, fixed +15 VDC $250-\mathrm{mA}$ and -15 VDC $250-\mathrm{mA}$ power supplies, with tracking. It also includes a 15-0-15

VDC meter, 2 LED's, 2 slide switches with logic outputs, and 2 momentary slide switches with debounce circuitry. Prices: model 101, \$84.95; model 102, \$114.95; model 103, \$124.95.-A P Products, Box 110, 72 Corwin Dr., Painesville. OH 44077.
CIRCLE 112 ON FREE INFORMATION CARD
CASSETTE INTERFACE SYSTEM, model CIS$30+$, which comes in kit form or preassembled, interfaces two cassette recorders and a data terminal to 6800 based computers. Long popular with SWTP 6800 users, newly released technical memos describe interfacing to the MITS 680b. The model CIS-30 + features include selectable data rates of 30,60 or $120 \mathrm{bytes} / \mathrm{sec}$., and terminal rates of 300,600 and 1200 baud; self-clocking cassette data recording; resident firmware; front-

panel "off-line" switch for sending recorded data to terminal; and an instruction manual. Optional program control of recorders is available. Other options include an IC socket kit, remote control kit, and a test cassette with software. Recording format is KC Standard/Bi-Phase-M. Prices: model CIS-30+ kit, \$79.95; assembled, \$99.95; socket kit, $\$ 4.95$; remote control kit, $\$ 14.95$; test cassette, $\$ 4.95$. Prices include shipping charges; Texas residents add state and local taxes as applicable.-PERCOM Data Co., 318 Barnes, Garland, TX 75042
CIRCLE 113 ON FREE INFORMATION CARD
SOLDER EXTRACTING SYSTEM, model $S X$ 300, Universal Power Desoldering System, has

three operational modes-pressure, vacuum and hot-air jet-for many kinds of solder-removal applications. System has built-in vacuum and pressure-generating capabilities, and includes a tip-temperature control, flow controls, pressure
and vacuum regulation, cleaning unit, soldering iron and remote-control pedal switch. Optional power switch prevents transients or spikes from reaching workpiece, making system usable with CMOS and MOS/FET devices. Prices: model SX300, \$460; optional power switch, \$150.-PACE, Inc., 9329 Fraser St., Silver Spring, MD 20910.
CIRCLE 114 ON FREE INFORMATION CARD

TAPE DECK ACCESSORIES, Head Demagnetizor (shown) and Head Cleaner kit. The Head Demagnetizer comes in cassette form with built-

in circuitry, powered by 1.5 -volt dry cell battery Just slip the unit into your tape deck, press play, and red LED display shows when tape heads are completely demagnetized.

The Head Cleanerkit includes mirror, brushes, pads and liquid tape head cleaner, also in cassette box. Prices: Head Demagnetizer, \$19.95; Head Cleaner kit, \$5.95.-TDK Electronics Corp., 755 Eastgate Blvd., Garden City, NY 11530.

CIRCLE 115 ON FREE INFORMATION CARD
BREADBOARDS, model 45P80-1, model 106P 106-1, model 8801, permit convenient assembly of custom circuits or S-100 bus-compatible boards. All units feature an isolated array of square solder pads around 0.1-inch-spaced holes, and accept 8- to 64-lead DIP packages plus special modules with leads spaced on irregular multiples of 0.1 inch.

The model $45 \mathrm{P} 80-1$ (measuring 4.5×8.08

We give you i Multimeters, Frequency Counters, Logic Probes, Tube \& Transistor Testers, Wow \& Flutter Meters, Distortion Analyzers, Bridges, and Accessories. For more information call us Toll Free: 800-223-0474
${ }^{212-687-2224}$ THE TEST EQUIPMENT SPECIALISTS

It's a fact, the GTS-10 is "A SERVICE SIMPLIFIER"

FACT I The GTS-10 does most of the work you're now doing using a color bar pattern generator, a substitute tuner, and an analyzer... and it does some special things these other instruments can't do. It comes in a small package so it's easy to carry into the home and when you're working on those tough dogs it takes only a small space on your bench. One instrument to carry and work with instead of $3 \ldots$ that's not only simpler, but it's also less expensive
FACT II. These special GTS-10 features (patents pending on many) are all designed to streamline and simplify your servicing

- 4.5 MHz SOUND CARRIER to assist in tuning and sound trap adjustments.
- 3.58 MONITOR PATTERN to check the color oscillator frequency without even taking the back off the set
- 6th BAR MARKER so you always know which is the 6th bar, even on severely over scanned sets
- CALIBRATED FUll RANGE RF/IF at. TENUATOR for instant check of tuner pertormance and AGC. (Faster and more accurate than a substitute tuner.)
- RED blue and green raster pat TERNS for purity check with no need to short gun grids or disturb screen controls.
- COLOR TRIO PATTERN for checking color balance saturation of the demodulators. matrix and electron guns
- HATCHDOTS PATTERN for faster convergence, centering, and pincushion checks and adjustments.
- GRAY QUAD PATTERN for gray scale tracking check \& adjustments, yoke polarity tests, and checking 60 Hz video response.
- VECTOR PATTERN uniquely free of double leafing to eliminate confusion and provide an in home check of 3.56 MHz receiver response.
- VIDEO OUTPUT; multi-purpose with selec. table polarity and variable output to simplify your work.
- QUICKIE REMINDER CARD on top panel to quickly guide you in using the GTS-10 to simplify all TV servicing.
- 2 VOLUME SERVICE MANUAL: comprehensive information on hook-up procedures. signal injection procedures convergence and set up. etc.

FACT III - It all boils down to one thing servicing with a GTS-10 is simpler. And, when you stop to analyze it, that means more profit ... and more profit means a happier you, a wife who quits nagging, and a banker that treats you like a real friend. Where else can you buy all that for only $\$ 350.00$.

Write for comprehensive 6-page full color brochure that describes these and many more features
Telephone orders on VISA and MASTERCHARGE accepted for same day shipment. (303) 275-8991. 2 year tactory warranty against all failures in normal use
30 day money back guarantee
AMERICAN TECHNOLOGY CORP 225 Main Street. Dept. 7C
Canon City. Colorado 81212
CIRCLE 43 ON FREE INFORMATION CARD
inches) and the model 106P106-1 (10.6 $\times 10.6$ inches) comes without card connectors and can be cut to any desired shape. The model 8801 is S100 bus compatible and can accomodate DIP devices, modules and necessary discrete components. This unit has card-edge connectors on 0.125 -inch centers, with a copper-free area for attachment of flat cable connectors. One corner

of the model 8801 has an area for two TO-220packaged regulators mounted in a low-profile heat sink. The leads of one regulator are prewired to power, ground and primary power buses. The leads of the other regulator are uncommitted.

The boards are made of copper-clad blue epoxy glass with solder-tinned pads and buses and gold/nickel-plate edge connectors. The model 8801 sells for $\$ 19.95$; the model $45 \mathrm{P} 80-1$, \$9.96; and the model 106P 106-1, \$18.99.-Vector Electronic Co., Inc., 12460 Gladstone Ave., SyImar, CA 91342.
CIRCLE 116 ON FREE INFORMATION CARD
FOUR-IN-ONE ELECTRICAL TOOL, model 25502, The Plike, functions as a pliers with serrated tips for bending, gripping and pulling; a crimper for solderless terminals; a stripper with 6 -wire stripping holes for AWG Nos. 12-22 solid-

wire and Nos. 14-24 stranded wire; and a $3 / 8$-inch cutter. Unit is made of high carbon steel, with heavy plastic handles. Suggested retail price: $\$ 4.74$ per unit.-Hunter Tools, 9674 Telstar Ave., El Monte, CA 91731.

R-E
CIRCLE 117 ON FREE INFORMATION CARD

A fine selection of small tools, measuring instruments, hard-to-find items for shop, home and lab. Convenient one-stop shopping for technicians, engineers, craftsmen, hobbyists. Major credit cards ac cepted, satisfaction assured. Get your NATCAM catalog today.

Mational Camerc, Inc. 2000 West Union Ave., Dept. GBF
Gnglewood Co soir USA

CIRCLE 35 ON FREE INFORMATION CARD

Don Lancaster's ingenius design provides software controllable options including:

- Scrolling • Full performance cursor
- Over 2K on-screen characters with only 3 MHz bandwidth
- Variety of line/character formats including 16/32, 16/64
......even 32/64
- User selectable line lengths

TELL ME MORE!

(] Send instruction manual for the TVT-6 Kit
with full operational details. $\$ 1$ enclosed.
Name:
Address:
City: \qquad State \qquad Zip:
; $\overbrace{4}$
(] SEND FREE CATALOG
ELECTRONICS, IMC
DEPT. 7R 1020 W. WILSHIRE BLYD., OKLAMOMA CITY, OK 73116 CIRCLE 19 ON FREE INFORMATION CARD

new lit

More information on new lit is available from the manufacturers of items identified by a Free Information number. Use the Free Information Card inside the back cover of this issue.

COMPONENT ASSORTMENT CATALOG, M$946 A$, is a 12 -page tabloid brochure that features the most frequently used electronic components. Assortments come in plastic 6- and 9-drawer cabinets with drawer fronts prelabeled as to contents, and include aluminum electrolytic, dipped mica, ceramic and tantalum capacitors; carbon-film resistors and Zener diodes; smallsignal and power transistors; and switches. Sprague Products Co., Technical Literature Service, 81 Marshall St., North Adams, MA 01247.
CIRCLE 121 ON FREE INFORMATION CARD

SHORT FORM TEST INSTRUMENT CATALOG is a 12-page brochure describing manufacturer's new line of instruments, including single- and dual-trace oscilloscopes; DMM's, both pushbutton and conventional models; system analyzers, including a 7 -instruments-in-one unit; color bar generator; counters, bridges and testers; CB, audio and RF signal generators; audio test instruments; and communications testers, including antenna couplers and impedance/dip meters. Numerous service aids and accessories are also listed.-Leader Instruments Corp., 151 Dupont St., Plainview, NY 11803.
CIRCLE 118 ON FREE INFORMATION CARD
COMPOSITE TEST EQUIPMENT CATALOG, 13 full-color booklets and brochures in one handy looseleaf binder. Contains latest specs and information on products by B\&K-Precision, Continental Specialties, Data Precision, ECD Corp., Fluke, Hickok, Leader, Nonlinear Systems, Philips, Sanwa, Simpson, Triplett and Tif Instruments. Available for $\$ 5.00$; separate mail order form.Advance Electronics, 54 West 45th St., New York, NY 10036.

ELECTRONIC SWITCH CATALOG, No. C-77, contains 47 pages of information on a wide spectrum of switches, ranging from keyboard types to thumbwheel and lever wheel models. Featured is the Rotocode switch that combines thumbwheel and rotary characteristics. Complete thumbwheel product listing and truth tables are in the back. Comes with a separate price list.-Cherry Electrical Products Corp., 3600 Sunset Ave., Waukegan, IL 60085.
CIRCLE 120 ON FREE INFORMATION CARD

COMPONENT CATALOG, No. C-651, provides 28 pages of information on manufacturers Q-Line components most used in TV/radio servicing, hobbyist and experimental electronics, lab breadboarding and home audio and marine installation and repair. Catalog lists all types of capacitors (including trimmers), carbon-film and vitreous-enamel resistors, silicon and germanium transistors, rectifiers, diodes, IC's, quartz crystals, LED's, switches, wiring components, pulse transformers and CB noise filters.-Sprague Products Co., Technical Information Service, 81 Marshall St., North Adams, MA 01247 . R-E CIRCLE 122 ON FREE INFORMATION CARD

AVANTI SOLVES
TV INTERFERENCE WITH
TVI FILTERS THAT REALLY WORK!

Interference between television and CB radio is an annoying and not uncommon problem. Avanti solves these problems with 3 line filters...

AV 800 TV interference filter (low pass) installs in CB antenna line and is especially useful for interference on CH 2 and 5 of poorly filtered TV receivers. impedance $=50$ OHMS line loss $\quad=$ negligible VWSR $=1.1: 1$ attenuation on $\mathrm{CH} 2(54 \mathrm{MHz}$) $=80 \mathrm{db} 1000$ watt capacity 3 db cutoff frequency $=43 \mathrm{MHz}$

AV 811 TV interference filter (hi-pass) installs in TV antenna line and supplements inadequate TV filtering to prevent interference between TV or FM and CB or other high frequency radio services.
Impedance: 300 OHMS Balanced
Filter Type: High Pass
Attenuation At $27 \mathrm{MHz}: 64 \mathrm{~dB}$
Line Loss: Negligible
Cutoff Frequency: 52 MHz

AV 820 A.C. line filter prevents transmission of CB signal through $A C$ power lines. Suitable to contain signal at CB transceiver or to prevent outside signal from entering TV through AC line. 1200 watt capacity.

Avanti makes a complete line of high periormance mobile and base CB antennas from $\$ 11.95$ to $\$ 404.00$. Free 24 page color catalog.

Creators of the famous
AVANTI RESEARCH AND DEVELOPMENT, INC.
340 Stewart Avenue, Addison, IL 60101
moomake:
CIRCLE 81 ON FREE INFORMATION CARD

Our new Bearcat ${ }^{\circledR} 2501$

| has all the fantastic space age features of our sup popular Bearcat ${ }^{*} 210$, but now we've added:

- 50 synthesized crystalless channels
- User selectable scanning speeds

1 - Priority channel

- Digital time clock-accurate to seconds - Automatic or user controlled squelch
- Search Direction-Search "up" or "down"
for quicker return to desired frequencies - Transmission activity counter-teils you how busy each frequency has been
- Search \& Store-Will find and "remember" up to 64 active frequencies for later recall
- Direct channel select-Advance directly to a channel without stepping through interim channels
- Non volatile memory-No batteries required to retain memory, even when scanner is unplugged - Auxiliary-On/Off control of equipment (tape deck, alarms, lights, etc.) when transmissions occur on programmed channels
|To reserve your space-age Bearcat ${ }^{\oplus} 250$ and receive your order priority number for springsummer delivery, send $\$ 389.00$ plus $\$ 5.00$ for U.S. U.P.S. shipping. Foreign orders invited at slightly higher cost. Visa and Master Charge card holders may call toll free 800-521-4414 to order. Outside the U.S. and Michigan dial 313-994-4441. To order by mail or for a free catalog completely describing the fantastic crystalless Bearcat ${ }^{*} 250$ write: COMMUNICATIONS ELECTRONICS, Box 1002-Dept 8, Ann Arbor, Michigan 48106 U.S.A. L - 1978 Communications Electronics CIRCLE 69 ON FREE INFORMATION CARD

DIGITAL DARKROOM TIMER
continued from page 36
minates internal calculator modes by activating the Equals function. The 9 output from IC10 recalls the memory's contents and the 0 output clears the memory and resets latch IC14, which, in turn, halts IC10 with its 0 output high.

The 1 and 8 logic outputs of ICIO are not used. By skipping them, more time is allowed for the calculator IC to prepare for its following operation. This gives even a slow calculator IC enough time to complete its preceding operation before the next one is initiated.

Operation in the minutes/seconds range is similar to the operation in the seconds range. The outputs from 1C6 and IC10 are combined by IC13 so the algorithm in Fig. 1 is executed.

AnD gates IC9 and 12, combined with the $10-\mathrm{Hz}$ signal from $1 \mathrm{Cl}-5$, are required to satisfy the calculator IC's requirement that to recognize successive inputs, there must be a period (about 6 ms) after each input during which no inputs are allowed. The $10-\mathrm{Hz}$ signal disconnects IC9 and IC12's inputs from IC8 and IC11 for 50 ms each cycle.

The electronic keyboard is formed by IC8 and IC11. Each contains four singlepole single-throw switches, which are
closed when "pressed" by a high at the gate inputs (pins 5, 6, 12 and 13).

The circuit which detects a minus (this means that only segment " g " is on) in position D8 works as follows. If you make a table that shows which segments are on for each of the numerals from 0 to 9 , you will see that segment " b " is on for all numbers except 5 and 6 . If we connect segment " b " to one input of a two-input OR gate and connect the gate's second input to any of the segments which are on (high) for both numerals 5 and 6 (segment " f " is used here), the output will be high if any numeral is being displayed. This also means that the output is low only if no numerals are being displayed. Thus by looking at only two of the seven segment signals, we can determine if the display is blank. (Eight other pairs of segments could also have been used-ab, $\mathrm{ac}, \mathrm{bc}, \mathrm{bd}, \mathrm{cd}, \mathrm{ce}, \mathrm{cg}$ or bg .) By combining IC 16-4 with D8 and segment "g," IC16-3 will be low only when a minus is in the D8 position.

Transistors Q2-Q4 and their base and collector resistors amplify the small 1.7volt signal change across the on segments to the higher levels required by CMOS gates for reliable switching.

Next month we conclude the circuit description and will go into details of assembling, testing and operating this versatile timer.

R-E

Transistor Analyzer model 212
Factory Wired \& Tested- $\$ \mathbf{3 0 . 5 7}$
Easy-to-Assemble Kit- $\mathbf{\$ 2 0 . 3 6}$
YOU DON'T NEED A BENCH FULL OF EQUIPMENT TO TEST TRANSISTOR RADIOS! AIt the facilities you need to check the transistors themselves - and the radios or other circuits in which they are used - have been ingeniously engineered into the compact, 6 -inch high case of the Model 212. It's the transistor radio troubleshooter with all the features found only in more expensive units. Find defective transistors and circuit troubles speedily with a single, streamlined instrument instead of an elaborate
hook-up.

Features:

Checks all transistor types - high or low power. Checks DC current gain (beta) to 200 in 3 ranges. Checks leakage. Universal test socket accepts different base configurations. Identifies unknown transistors as NPN or PNP.
Dynamic test for all transistors as signal amplifiers (oscillatnr check), in or out of circuit. Develops test signal for AF, IF, or RF circuits. Signal traces all circuits. Checks condition of diodes. Measures battery or other transistor-circuit powersupply voltages on 12 -volt scale. No external power source needed. Measures circuit drain or other DC currents to 80 milliamperes. Supplied with three exter. nal leads for inccircuit testing and a pair of test leads for measuring voltage instruction manuenes compler wing

EMC, 625 Broadway, New York 12, N. Y.
Send me FREE catalog of the complete value-packed EMC IIne, and name of rocal distributor

NAME \qquad RE-7

ADDRESS
\qquad

KAGER KL 3000 SINGLE HANDED SOLDERING PISTOL.

Simply squeeze the trigger and get perfect soldering results every time. Solder is fed automatically to the tip. Handy-Lightweight—Reliable U.S. Patents \#385 2565 and \#310 7252

KAGER
 INTERNATIONAL

1180 South Beverly Drive, Suite 710 Los Angeles, California 90035
Telephone: (213) 879-1575
TWX: 910-490-2121

U.S. Headquarters for the Kager Group of Companies

next month

AUGUST 1978

■ Build A Digital Thermometer

Inexpensive add-on turns any digital voltmeter or multimeter into an accurate digital thermometer.

Video Modulator Roundup

Want to use your TV set as a computer terminal, or as a monitor for a TV camera, or as the playing field for a TV game? Then you need a video modulator. Here's a rundown on every video modulator we could locate.

All About RF Generators

A special Forest Belt "What You Need To Know' section.

PLUS

Darkroom Timer Construction Details

Lab Tested Hi-Fi Reports

Computer Corner

Computer Investment Program CET Study Guide

And that's only the beginning . . .

INTERNATIONAL FM-2400CH

FREQUENCY METER FOR TESTING MOBILE TRANSMITTERS AND RECEIVERS
 - Portable • Solid State - Rechargeable Batteries

The $\mathbf{F M}-2400 \mathrm{CH}$ provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies.

The FM-2400CH with its exterded range covers 25 to 1000 MHz
The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz

Frequency stability: $\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$
Frequency stability with built-in thermometer and temperature corrected charts: $\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}$ (000125% special 450 MHz crystals available).

- Tests Predetermined Frequencies 25 to 1000 MHz
- Extended Range Covers 950 MHz Band
- Pin Diode Attenuator for Full Range Coverage as Signal Generator
- Measures FM Deviation

FM-2400CH (meter only) Cat No. 035320 RF crystals (with temperature correction) RF crystals (less temperature correction) $\$ 595.00$ 24.90 ea IF crystals catalog price

Write for catalog

international crystal mfg. co., inc. 10 North Lee / Oklahoma City, Okia. 73102 CIRCLE 34 ON FREE INFORMATION CARD

PICTURE TUBE BRIGHTENERS continued from page 49
taminated, limiting emission. This contamination is caused by out gassing of tube elements or from slow air leaks. Examining the cathodes of such tubes reveals heavy crystalization in the center of the cathode. When a contaminated tube is turned on, the electron cloud under the grid aperture opening is rapidly depleted and the tube becomes emissionlimited. In some cases, after the tube is on for some time, heat builds up around the cathode and raises the temperature of the cathode sufficiently to increase emission.

The effect of low emission is to limit the beam current and diminish picture brightness. If the brightness level is too low for normal viewing, the tube has apparently reached end-life.

Using a brightener on a contaminated tube causes a rapid decontamination of the cathode surface and raises the emission level. A satisfactory beam current is obtained almost instantly.

Restorers

Devices known as restorers or rejuvenators are also designed to improve picture tube emission by removing contamination and restoring the emitter surface under the grid aperture. This technique involves elevating the heater voltage and simulta-
neously applying a high positive voltage between the grid and cathode, thereby causing an abnormally high cathode current. Unless this technique is carefully controlled, the cathode can be easily damaged. Several early restorers were hazardous and caused a fair number of picture tubes to be destroyed. In the capacitative discharge method, an arc is actually produced that provides intense localized cathode heating. However, the field, can be strong enough to actually remove material from the cathode.
Improved rejuvenators have automatic controls and can apply the required high voltage levels in increasing steps to limit the energy level. However, they generally do so at some sacrifice in the duration of the improvement.
The most recently developed rejuvenators use more effective control circuits so that the duration of the high cathode current is long enough to assure good restoration, but short enough to reduce damage to a minimum. Automatic controls are used to prevent user error.

One of the problems of the rejuvenator is that the cathode current flows from the entire cathode surface during rejuvenation. However, to be successful, the emission restoration must occur in the cathode area directly beneath the grid aperture. Fortunately, this is usually the area of greatest heat because the heater is in the center of the cathode cylinder.
 to release (all kleps spring loaded).
Kleps 10. Boathook clamp grips wires, lugs, terminals. Accepts banana plug or bare wire lead. $43 / 4$ " long. $\$ 1.39$ Kleps 20 . Same, but $7^{\prime \prime}$ long.
Kleps 30 . Completely flexible. Forked-tongue gripper Accepts banana plug or bare lead. $6^{\prime \prime}$ long.
$\$ 1.79$ Kleps 40 . Completely flexible. 3 -segment automatic collet firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. $61 / 4^{\prime \prime}$ long. $\$ 2.59$ Kleps 1. Economy Kleps for light line work (not lab quality). Meshing claws. $41 / 2$ " long.
$\$.99$
Pruf 10. Versatile test prod Solder connection Molded phenolic. Doubles as scribing tool. "Bunch" pin fits banana phenolic. Doubles as scribing tool. "Bunch" pin fits banana
jack. Phone tip. $51 / 2^{\prime \prime}$ long. All in red or black - specify. (Add $50 ¢$ postage and handling). Write for complete catalog of - test probes, plugs, sockets, connectors, earphones, headsets, miniature components.
 A vailable through your local distributor, or write to:
RYEINDUSTRIESINC

"POOR BOY" TUNER SUB onur $\$ 19.95$

Since all tuner subs that we know of are modified TV Tuners, we decided to market an excellent performing yet very low cost sub for the technician who has to get all he can for his money ... a "Poor Boy's Sub" for only $\$ 19.95$.
This was not an easy task since cabinets, knobs and controls would push the price far above $\$ 19.95 \ldots$. We searched for a funer that needed no cabinet and no controls. . . one that the tech could scounge the knobs from most any old TV It took over two years but we finally found it. The gain is excellent ... Battery drain is very low (only 18 mils). It's self biasing so there is no R.F. gain control to fiddle with . . It works equally well on tube or transistor sets. . . b/w or color and is as easy to use as starting a fight with your wife (well, almost). All you need do is hook the set's IF cable to the "Poor Boy" and view the picture .. That's it
. no set up controls to confuse you.
We compared the "Poor Boy" with other subs costing over twice the price and found it to work just as well on allthe comparison tests we made . . . and often a lot easier to use ... Even though instructions aren't needed ... you get those too. The "Poor Boy" is small enough to easily hold in one hand ... no wires or controls dangling around. It comes completely wired and tested including batteries and ready to use. Send a check for only $\$ 19.95$, and we even pay the shipping (how about that?) or we will ship COD. ($\$ 1.85$ C.O.D. Fee)

Try it for 10 days . . If not completely satisfied... return for full refund. Call us toll free 1-800-433-7124.

\section*{ALL ORDERS SHIPPED THE SAME DAY RECEIVED!}
 TEXAS TUNER SERVICE

4210 N.E. 28TH STREET, FORT WORTH, TEXAS 76117 TEXAS CUSTOMERS PHONE (817) 834-8201

- Please rush mé the "-Poor Boy" Substitute Tuner.

I I understand that I can return it within 10 days for a full refund if , I'm not completely satisfied . . . with no questions asked.
, \square I am enclosing full amount of $\$ 19.95$ and will not be charged shipping.
' \square Ship C.O.D. and I will pay an extra $\$ 1.85$ shipping and C.O.D. '

$$
{ }^{1} \text { Name } \quad \text { RE-7/78 । }
$$

, Name
, Street Address:
, City:
State
Zip:

CIRCLE 57 ON FREE INFORMATION CARD

To know if rejuvenation has been successful it is necessary to measure the quality of the beam current after rejuvenation. Unfortunately, the grid current cannot indicate emission quality from the cathode area directly under the grid aperture; only a true beam-current-emission test can do this. This is why you may obtain disappointing results, even with tests indicating success.

In color sets, restoring one gun may mean one or both of the other guns must be rejuvenated. Rejuvenating the lowemission gun of a color picture tube can increase the emission to the original beam-current level, so that it may not track with the other aged guns whose beam currents may have declined from the original level, even though their brightness level is satisfactory.
Unsatisfactory picture tube performance can often be diagnosed visually by a repair technician, and modern test equipment and performance data help substantiate the visual judgment. A tube brightener can always be tried without risk (unlike many restorers), and it can be used in all applications in which a restorer is effective and in many in which it might not be. A brightener will work longer than a restorer; therefore, it can be implemented in all low-brightness-level situations.

R-E

BEST IN NEW ELECTRONICS BOOXS!

\square The Handbook of Telephones $\&$ Accessories. 432 p.. 215 il. $\$ 9.95$ \square Install Electronic in Cars, Boats, Planes. Trucks $\&$ RV's. 364 p. $\$ 7.95$ \square The BASIC Cookbook. 140 p .
How to Repair Video Games. 270 p., 182 il. Beginner's Gide.-Designing/Building Irans. Radios. 140 p. $\$ 4.95$ — 101 Practical Uses for Propane Torches. 140 p., 98 il. $\$ 3.95$ \square Towers' International FET Selector. 140 p .
How to Design/Build Electr. Instrumentation. 420 p., 210 il. $\$ 9.95$ \square Automotive Air Conditioning Handbook. 280., 157 il .
\square How to Repair Movie \& Slide Projectors. 304 p., 270 il. $\quad \$ 7.95$ \square Closeo-Circuit W Instll, Mainten., \& Repair. 304 p.. 220 it. $\$ 8.95$ \square Understanding Sound, Video \& Film Recording. 140 p., 74 il. $\$ 5.95$ \square Buildd-It Book of Solar Heating Projects. 196 p .. 111 il. $\quad \$ 4.95$ \square Hddk. of Solar Flare Monitoring/Propag. Forecasting. 196 p. $\$ 6.95$ 57 Practical Programs \& Games in BASIC. 210 p., 611 il .
$\$ 7.95$
$\$ 8.95$ \square Beginner's Guide to Microprocessors. $182 \mathrm{p} . \mathrm{l} 106 \mathrm{il}$. Hearing Aid Handbook. 432 p. 224 il
Master OP AMP Apolications
$\$ 5.95$
$\$ 8.95$
$\$ 6.95$
\square Master OP-AMP Applications Handbook. 476 p., 320 il. $\quad \$ 6.95$ \square Miniprocessors: From Calculators to Computers. 196 \$7il $\$ 5.95$ Complete Hothk of Puhlic Address Sound Systems. 272 a. $\$ 7.95$ Modern Transistor Radios. 64 p., 112 il Microwave Dven Service \& Repair. 420 p. 210 il IC Function Locator. 224 p.
Heth of Marine Electronic/Electrical Systems. 546 p 338 il $\$ 9.95$
Solid-State Motor Controls. 322 p 162 it
Solid-State Motor Controls. 322 D., 162 il.
How to Completely Secure Your Home 224 p. 162 il
Towers' International Transistor Selector. 200 o., 179 il
\square Ham Radio Incentive Licensing Guide. 154 p., 70 il.
\square Programming Microprocessors. 280 p., 102 i|
$\$ 4.95$
$\$ 6.95$
The "Compulator" Book - Build Super Calculators/minicomputer
Hardware with Calculator Chips. 322 p., 227 il.
master Transistor/IC Substitution Handbook. 518 0., 165 il. $\$ 7.95$ Modern Crystal Radios (Make and Use Series). 64 p., 101 il. $\$ 2.50$ \square Home-Brew HF NHF Antenna Handhook. 210 p.. 143 il. $\$ 5.95$ CBer's Handy Manual of $\$ 5 B .80$ p., 42 il.
Beginner's Gde.-Making Electronic Gadgets. 140 p.. 113 il. $\$ 4.95$ Modern Oigital Communications. 308 p.. 122 il. Microprocessor Progr.-Computer Hobbyists. 378 p., 219 il. $\$ 8.95$ Illus. Oict.-Broadcast - CATV - Telecommunications. 420 p. $\$ 8.95$ Linear IC Applications Handhook. 280 p., 183 it.
\square Build-It Book of Optoelectronic Projects. 238 p. 175 il \square Photo Guide to AM/FM Stereo Repair 288 p.. 281 il. I. $\quad \$ 6.95$ Servicing Medical \& Bioelectronic Equipment. 350 p., 165 il. $\$ 8.95$ How to Use AF \& RF Signal Generators. 238 p .162 il. Model Railroad Electronics. 308 a., 218 il.
The ABC Book of Hi-Fi/Audio Projects. 182 p ., 131 il Complete Hdbk. of Electrical/House Wiring. 476 p . 197 is $\$ 4.95$ 88 Practical Op Amp Circuits You Can Build. 140 p., 120 il. $\$ 6.95$ \square How to Build Metal/Treasure Locators. $140 \mathrm{p} ., 60$ il. Home Audio Systems Schematic/Servicing manuals each \$3.95 $\$ 5.95 \square$ Vol. 1 Capehart, Zenith. $\square Y o l .2$ Channel Master, 200 o. Hitachi. \square Vol. 3 Automatic Radio, Admiral, Midtland, Sharp. SEND MD M DNEY! We'll invoice you on 10-DAY FREE TAIAL CIID entire ad to order 100% guaranteed or your money retunded
TAB BOOKS
CIRCLE 25 ON FREE INFORMATION CARD

1

 out of 2 who have it cont know it..

1 million Americans have high blood pressure But 50 pertent hose who rave it. don't know it When blood pressure goes higher
than it should and stays high it sets han it should and stays for heart attack of sloke ust cases oi high blood pressure Most cases ol hight blood pressure on be coniriled wind drugs and why you should see your doctor reg. nelp

A pubille nervic:
miachage from your maseage from yo
Haerl Ausoclatlo t

For faster service

 USEZIP
CODE

VECTOR PACKAGING MATERIALS SAVE TIME \& MONEY

S100 CARDS-100 PLUG CONTACTS-Convenient universal tinned pads and bus lines. For interface, memory expansion, breadboarding. Mount almost anything anywhere on card.

 S100 CONNECTORS for WIRE WRAPPING or SOLDERING

CASES for micro-computen
circuitry, assemtoled. Constructed
of aluminum, finished in vinyl. Slide out covers for easy access. Includes card guides, heavy chassis plate, perforated bottom cover for cooler operation.
Card guides perpendicular to front panel, Model VP1, \$128.30. Card guides parallel to front panel, Model VP2, $\$ 134.30$.

S 100 MOTHERBOARD, \$29.50. 11 positions ready for connectors. Glass epoxv, etched circuitry for passive or active termination, 12 tantalum capacitors and instructions.

PLUS revolutionary Slit-N-Wrap wiring tools, Micro-Vectorbord, ${ }^{(0)}$ printed circuit kits, I.C. sockets, extenders.

Send for new catalog.

VECTOR ELECTRONIC COMPANY, Inc.
12460 Gladstone Avenue, Sylmar, CA 91342
phone (213) 365-9661, twx 910-496-1539
540777

CIRCLE 1 ON FREE INFORMATION CARD

Electronic Warning Flasher Kit
This batrery operated device continuousty
empits buists op intense IIght Great safety device for bicycie isioers, skiers. hikers boaters 8 campers Comes complete w/all
electronic pats, quality glass epoxy p.C
 Uses nigh ourpur xenon flash tube which
Hashes Heshes 2 Inmes pet escond when batieries
are liesh Operates continuously for hours on 2 alkaline c batteries you need only to supply the batienies and, if C23207 \$ 6.95 desiten. a battery holder of case

PLANS \& KITS

CONSTRUCTION plans; over 100. From TV to telephone, from broadcasting to computers. Catalog air mailed \$1.00; includes year's subscription to Electronic Newsletter. DON BRITTON ENTERPRISES, PO Box G, Waikiki, HI 96815

DIGITAL inatrumentation for your car/van/ truck/boat. 120-page book of explanations and schematics on how to build DIGITAL tachometers, clocks, temperature, voltage, gas, oil and other projects. \$5.95 pp. M.O. only. DIGITAL WORLD, P.O. Box 5508, Augusta, GA 30906

CAR stereo boosters, 100 -watt amplifiers, more. Kit or assembled. D.J. ELECTRONICS, 474 White Birch Drive, River Vale, NJ 07675
MINI-laser plans $\$ 1.00$. Science project catalog 254. MOTEN, 323 S. Franklin, \#804, Chicago, II 60606

AMPLIFIER kits: Low TIM, Class A, BI-FET circuitry. Froe 60-page manual. MOONLIGHTER ELECTRONICS, 117 Inverness, San Francisco, CA 94132
LIGHT show for car, under dash, colored blinking lights refracted through translucent panel (2" \times $8^{\prime \prime}$) into diamond shapes, dazzling. Kit $\$ 6.50$. PRISMABOX, P.O. Box 261, Rheem Valley, CA 94570
RCA COSMAC VIP Game Computer Kits. See RE May 78. Additional Blackjack, Craps, Pinball, Star Wars. Fast 4K RAM option. Also Giant Wall Projection kits. Fantastic. SPECTRAVISION, Box 407, North Hollywood, CA 91601
HOBBYIST give your project the professional look. Printed circuit boards from your sketch or artwork. Affordable prices. Also fun kit projects. Rush free details. DANOCINTHS, Box 261, Westland, MI 48185

				15.00
16.50	18.00	19.50	21.00	22.50
24.00	25.50	27.00	28.50	30.00
31.50	33.00	34.50	36.00	37.50
39.00	40.50	42.00	43.50	45.00

CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services). \$1.50 per word (no charge for zip code). . . minimum 15 words.
NONCOMMERCIAL RATE (for individuals who want to buy or sell personal items) 85t per word . . . no minimum.
ONLY FIRST WORD AND NAME set in bold caps. Additional bold face (not available as all caps) at 104 per word. Payment must accompany all ads except those placed by accredited advertising agencies. 5% discount for 6 issues, 10% for 12 issues within one year, if paid in advance. All copy subject to publisher's approval. Advertisements using P.O. Box address will not be accepted until advertiser supplies publisher with permanent address and phone number. Copy to be in our hands On the 26th of the third month preceding the date of the issue (i.e., August issue closes May 26). When normal closing date falls on Saturday, Sunday or a holiday, issue closes on preceding working day.

Seeking Original Japanese Replacement Parts for CB, TV and Stereo Repair Use?

2SA		2SA 744 2SA 745 R	$\begin{aligned} & 4.90 \\ & 4.90 \end{aligned}$	2SB 537 2SB 539	490	$\text { 2SC } 696$ $2 \mathrm{SC} 708$	$\begin{aligned} & 1.95 \\ & 1.90 \end{aligned}$	$\begin{aligned} & \text { 2SC } 1115 \\ & \text { 2SC } 1116 \end{aligned}$	$\begin{aligned} & 4.40 \\ & 4.90 \end{aligned}$	$\begin{aligned} & \text { 2SC } 1675 \\ & \text { 2SC } 1678 \end{aligned}$	$\begin{array}{r} .59 \\ 2.25 \end{array}$	$\begin{aligned} & \text { 2SD } 313 \\ & \text { 2SD } 314 \end{aligned}$	$\begin{array}{r} 1.10 \\ 1.20 \end{array}$	$\begin{array}{llll} \hline \text { HA } & 1156 \\ \text { HA } & 158 \end{array}$	$\begin{aligned} & 3.00 \\ & 5.30 \end{aligned}$	$\begin{aligned} & \text { TA } 78012 \mathrm{M} \\ & \text { TA } 78012 \mathrm{P} \end{aligned}$	$\begin{aligned} & 6.60 \\ & 5.80 \end{aligned}$
		2SA 747	5.80	2SB 541	4.40	2SC 710	45	2SC 1116A	6.60	2SC 1679	4.25	2SD 315	1.20	HA 1159	5.80	TA 78015 M	6.50
2SA 49	59	2SA 748	1.00	2SB 554	10.00	2SC 711	45	2SC 1124	1.30	2SC 1681	70	2SD 325	1.10	HA 1196	4.90	TA 78015P	5.80
2SA 52	59	2SA 750	59	2SB 556	4.90	2SC 712	59	2SC 1127	1.40	2SC 1682	45	2SD 330	1.00	HA 1197	0	TBA 810 SH	3.70
2SA 53	59	2SA 755	1.60	2SB 557	3.40	2SC 717	59	2SC 1161	1.90	2SC 1684	59	2SD 341	5.60	HA 1201	1.50	TC 5080P	5.80
2SA 70	1.10	2SA 756	3.70	2SB 561 B	70	2SC 727	1.90	2SC 1162	1.00	2SC 1687	70	2SD 350	5.90	HA 1202	2.25	TC 5081P	3.40
2SA 101	45	2SA 758	5.80	2SB 564	70	2SC 130	4.40	2SC 1166	59	2SC 1688	70	2SD 352	90	HA 1211	1.50	TC 5082	3.90
2SA 102	59	2SA 764	4.40	2SB 595	1.90	2SC 731	5.80	2SC 1167	6.60	2SC 1708	59	2SD 356D	1.10	HA 1306W	3.70	TD 3505A	8.50 5
2SA 234	59	2SA 765	4.90	2SB 596	1.60	2SC 732	. 59	2SC 1170B	6.60	2SC 1728	1.90	2SD 3570	1.00	HA 1322	4.40	UHIC 002	5.80
2SA 235	1.00	2SA 774	59	2SB 600	7.00	2SC 733	. 59	2SC 1172B	8.50	2SC 1730	59	2SD 358	1.30	HA 1339	4.40	UHIC 003	5.80
2SA 240	90	2SA 777	1.00			2SC 734	59	2SC 1173	90	2SC 1756	1.40	2SD 359	1.00	HA 1339A	4.40	UHIC 004	5.80
2SA 329	70	2SA 794A	1.00	2SC		2SC 735	59	2SC 1175	90	2SC 1760	1.90	2SD 360	1.20	HA 1342A	4.40	UHIC 005	
2SA 342	90	2SA 798	70			2SC 738	59	2SC 1177	14.00	2SC 1765	8.80	2SD 361	1.00	LA 1111 P	2.50 2	UPC 20C	4.40
2SA 353	70	2SA 814	1.90	2SC 183	59	2SC 756	2.80	2SC 1189	1.20	2SC 1775	45	2SD 370	3.00	la 1201	2.50	UPC 41C	3.70 280
2SA 377	2.00	2SA 815	1.00	2SC 184	59	2SC 756A	3.00	2SC 1209	70	2SC 1816	3.90	2SD 371S	2.80	LA 1364	4.40	UPC 554C	2.80
2SA 436	2.50	2SA 816	70	2SC 281	59	2SC 763	. 59	2SC 1211D	59	2SC 1846	70	2SD 380	7.60	la 3300	3.00 300	UPC 555H	25
2SA 440	90	2SA 818	1.30	2SC 283	59	2SC 772	45	2SC 1212A	1.40	2SC 1885	70		1.44	LA 43030	3.00		3.70 1.60
2SA 473	70	2SA 837	2.80	2SC 284	1.20	2SC 773	70	2SC 1213	70	2SC 1908	59	2SD 382	1.46	La 4030P	3.40	UPC 566	1.60 370
2SA 483	3.00	2SA 839	2.15	2SC 317	1.20	2SC 774	2.00	2SC 1215	70	2SC 1909	3.90	2SD 388	3.40	La 4032 p	3.00	UPC 576	3.70
2SA 484	2.50	2SA 841	59	2SC 352A	2.50	2SC 775	1.95	2SC 1222	45	2SC 1913	1.20	2SD 388A	4.40	LA 4032P	3.40 3 3	UPC 577 H	2.25
2SA 485	2.00	2SA 847	59	2SC 353A	2.50	2SC 776	2.65	2SC 1226A	90	2SC 1945	5.60	2SD 389	90	LA 4051P	3.70 3 3	UPC 592HZ	1.60
2SA 489	1.60	2SA 850	59	2SC 367	90	2SC 777	3.50	2SC 1237	2.25	2SC 1951	1.10	2SD 390	0	LA 4400	3.70	UPC 1001H	90
2SA 490	90	2SA 872A	59	2SC 369	59	2SC 778	3.60	2SC 1239	3.90	2SC 1957	1.20	2SD 421	8.50	LD 312	2.50	UPC 1008C	0
2SA 493	59	2SA 885	70	2SC 371	59	2SC 781	2.65	2SC 1279	70	2SC 1969	4.90	2SD 424	8.50	M51513L	4.90	UPC 1016C	3.00
2SA 495	45	2SA 908	11.00	2SC 372	45	2SC 783R	3.60	2SC 1306	2.90	2SC 1973	1.10	2SD 425	6.50	M5152L	2.50	UPC 1020H	70
2SA 496	1.10	2SA 913	1.20	2SC 373	45	2SC 784	59	2SC 1307	3.90	2SC 1974	1.90	2SD 426	4.6	518	2.80	UPC 1025	00
2SA 497	1.60			2SC 374	59	2SC 785	59	2SC 1310	59	2SC 1975	4.40	2SD 427	3.00		20	UPC 1026C	3.70
2SA 505	120	$2 S$		2SC 377	70	2SC 789	1.00	2SC 1312	59	2SC 2028	90	2SD 525	1.60	M53273P	2.80	UPC 1032	2.25
2SA 509	70			2SC 380	59	2SC 790	1.40	2SC 1313G	59	2SC 2029	3.90	2SD 526	1.10	M53274P	2.50	UPC 1152H	3.40
2SA 525	70	2SB 22	59	2SC 381	59	2SC 793	2.80	2SC 1316	8.50	2SC 2074	1.90	2SD 555A	6.60	M53393	7.60	UPC 1156	3.00
2SA 530	1.30	2SB 54	59	2SC 382	59	2SC 799	3.60	2SC 1317	45	2SC 2076	59	2SD 610	1.90	M54730 ${ }^{\text {MPS }}$	8.80		
2SA 537A	2.25	2SB 55	59	2SC 383	90	2SC 802	3.60	2SC 1318	45	2SC 2091	2.80			MPS 011	1.90		
2SA 539	59	2SE 75	45	2SC 387 A	59	2SC 815	59	2SC 1325A	7.60	2SC 2092	3.90	SG 613(tv)	5.95	STK 011 STK 014	7.60 9.50		
2SA 545	59	2SB 77	45	2SC 388A	1.00	2SC 828	45	2SC 1327	59	2SC 2098	4.90	FET		STK 014	9.60	PLL 01A	8.80 880
2SA 561	59	2SB 173	45	2SC 394	59	2SC 829	45	2SC 1330	70			FET			6.60	PLL 02A	8.80
2SA 562	59	2SB 175	45	2SC 403	59	2SC 830 H	5.90	2SC 1335	70	$2 S$				STK 016	8.50	SN 7400	19
2SA 564A	59	2SB 176	45	2SC 430	90	2SC 838	59	2SC 1342	59			2SK 19BL	90	STK 022	11.00	SN 7490	60
2SA 565	1.10	2SB 178	70	2SC 454	59	2SC 839	59	2SC 1344	59	2SD 16	5.90	2SK 23	10	STK 032	14.00		
2SA 566	3.40	2SB 186	45	2SC 458	59	2SC 853	90	2SC 1345D	59	2SD 28	2.50	2SK 30	70	STK 435	8.50	D100	
2SA 606	1.60	2SB 187	45	2SC 460	59	2SC 867	4.25	2SC 1346	70	2SD 72	1.10	2SK 33	1.10	STK 439	11.00		
2SA 607	1.60	2SB 202	1.60	2SC 461	59	2SC 870	59	2SC 1347	70	2SD 75	90	2SK 34	1.10	STK 502	8.80	78105	. 10
2SA 624	1.10	2SB 220	70	2SC 478	1.10	2SC 871	59	2SC 1358	5.90	2SD 77	59	2SK 40	70	STK 503	9.60	IS 84	60
2SA 627	3.60	2SB 303	59	2SC 481	1.60	2SC 895	4.90	2SC 1359	59	2SD 81	3.00	2SK 41	1.10	TA 7027M	3.70	IS 188	25
2SA 628	59	2SB 324	70	2SC 482	1.50	2SC 897	3.40	2SC 1360	1.00	2SD 90	1.60	2SK 49	1.30	TA 7045M	3.00	IS 332	45
2SA 634	70	2SB 337	1.60	2SC 484	1.60	2SC 898	4.40	2SC 1362	59	2SD 91	160		1.40	TA 7054 P	3.50	is 953	25
2SA 640	59	2SB 346	70	2SC 485	1.60	2SC 900	45	2SC 1364	$\begin{array}{r}.70 \\ 4 \\ \hline\end{array}$	2SD 92	1.90 280	2SK 61	1.40 1.30	TA 7055P	3.00 1.60	IS 1007	45 45
2SA 642	70	2SB 367	1.50 2	2SC 486	1.60 3.90	2SC 923 2SC 929		2SC 1377 2SC 1383	4.90 .59	2SD 93	2.80 4.40	3SK 22 Y	2.55	TA 7060 P	1.60	IS 1211	45
2SA 643 2SA 653	.70 280	2SB 3688 2SB 379	2.15 1.10	2SC 2SC 493	3.90 .90	2SC 929	4	2SC 1383 2SC 1384	. 59	2SD 118 $2 S 0130$	4.40 1.20	3SK 35	2.25	TA 7062 P	1.90 1.90	is 1555	25
2SA 659	59	2SB 381	59	2SC 496	. 90	2SC 941	59	2SC 1396	70	2SD 141	1.40	3SK 37	3.00	TA 7063P	1.60	IS 1588	25
2SA 661	70	2SB 400	59	2SC 497	1.60	2SC 943	70	2SC 1398	1.10	2SD 142	2.00	3SK 39	2.25	TA 7064P	1.90	IS 1885	25
2SA 663	4.90	2SB 405	59	2SC 509	70	2SC 945	45	2SC 1400	59	2SD 143	2.80	3SK 40	2.25	TA 7066P	2.00	IS 2076	25
2SA 666	70	2SB 407	1.40	2SC 515A	1.40	2SC 959	1.50	2SC 1402	4.90	2SD 178	1.10	3SK 41	2.50	TA 7074P	4.90	IS 2093	45
2SA 671	1.40	2SB 415	59	2SC 517	3.95	2SC 971	1.00	2SC 1403	4.90	2S0 180	2.50	3SK 45	2.50	TA 7075P	4.90	IS 2473	25 25
2SA 672	70	2SB 434	1.20	2SC 535	59	2SC 982	90	2SC 1407	90	2SD 187	59	3SK 48	2.90	TA 7076P	4.90 300	IN 34	25 25
2SA 673	70	2SB 435	1.40	2SC 536	. 59	2SC 983	1.00	2SC 1419	1.10	2SD 188	3.00	3SK 49	2.50	TA 7089p	3.00	IN 60	25 40
2SA 678	70	2SB 440	59	2SC 537	59	2SC 984	90	2SC 1444	2.80	2SD 201	3.40			TA 7102	5.80	1001	60
2SA 679	4.90	2SB 449	1.60	2SC 538A	. 70	2SC 994	3.90	2SC 1445	3.00	2SD 202	3.90	MK 10	2.00	TA 7106P		10010 $V D 68$	60 40
2SA 680	4.90 150	2SE 461	1.20	2SC 562	1.70	2SC 996	$\begin{array}{r}3.40 \\ \hline 5\end{array}$	2SC 1447 2SC 1448	1.60	2SD 204	1.40 1.40	IC		TA 7108P TA 7109 P	1.90 3.40	VD 6B	40
2SA 684	70	2SB 473	1.20	2SC 619	59	2SC 1013	1.10	2SC 1451	2.25	2SD 217	4.40	AN 203	2.50	TA 7122AP	1.90	zEN	
2SA 695	70	2SB 474	1.00	2SC 620	59	2SC 1014	110	2SC 1454	5.60	2SD 218	4.40	AN 2140	3.00	TA 7124P	1.60		
2SA 697	70	2SB 481	1.20	2SC 627	2.25	2SC 1017	1.40	2SC 1475	1.40	2SD 220	2.50	AN 217	1.90	TA 7129P	1.90	WZ 050	45
2SA 699A	90	2SB 492	1.00	2SC 631	90	2SC 1018	1.20	2SC 1478S	70	2SD 223	1.90	AN 239	7.00	TA 7130P	2.80	WZ 052	45
2SA 705	70	2SB 507	1.60	2SC 632A	45	2SC 1030C	2.80	2SC 1509	110	2SD 224	1.90	AN 247	4.40	TA 7136P	1.30	WZ 061	45
2SA 706	1.60	2SB 509	1.60	2SC 634A	59	2SC 1047	70	2SC 1567	1.10	2SD 226A	1.60	AN 274	3.50	TA 7146P	4.20	WZ 071	45
2SA 715	1.40	2SB 511	1.10	2SC 642A	5.90	2SC 1051	4.40	2SC 1567A	1.10	2SD 227	45	AN 277 B	2.40	TA 7150P	4.40	WZ 075	45
2SA 719	59	2SB 514	1.90	2SC 644	45	2SC 1060	1.40	2SC 1584	8.50	2SD 234	1.00	AN 315	3.00	TA 7159P	2.50	WZ 081	45
2SA 720	. 59	2SB 523	1.00	2SC 645	70	2SC 1061	1.40	2SC 1586	7.60	2SD 235	1.00	AN 328	3.90	TA 7200P	4.60	WZ 192	45
2SA 721	59	2SB 526C	1.30	2SC 650	1.30	2SC 1076	39.00	2SC 1624	1.30	2SD 236	1.60	AN 362	3.00	TA 7201P	4.60	WZ 260	45
2SA 725	59	2SB 527	1.60	2SC 665H	8.50	2SC 1079	5.90	2SC 1626	1.10	2SD 255	1.60	BA 511	2.90	TA 7203P	3.0	W 280	45
2SA 726	59	2SB 528D	1.60	2SC 668	45	2SC 1080	4.40	2SC 1628	1.30	2SD 261	60	BA 521	2.90		3.40		
2SA 733	59	2SB 529	90	2SC 680	2.80	2SC 1096	1.00	2SC 1647	1.00	2SD 287	3.70	HA 1137	4.90	TA 7205P	2.90 3		
2SA 738	70	2SB 530	4.40	2SC 681A	5.80	2SC 1098	1.10	2SC 1667	3.40	2SD 288	1.40	HA 1138	4.40	TA 7310P	3.95		
2SA 740	2.65	2S8 531	3.40	2SC 684	1.10	2SC 1111	3.40	2SC 1669	1.60	2SD 291	2.80	HA 1149	5.60	TA 78005M	5.80		
2SA 28433	1.60	$2 S 8536$	1.60	2SC 693B	59	2SC 1114	3.70	1674	. 59	2SD 300	5.	HA 1151	4.4	A 78005P	5.80		

PRICES MAY CHANGE WITHOUT NOTICE COD ORDERS WELCOMED

TOLL FREE TELEPHONE

LINEAR Amplifier: Ham only $2-30 \mathrm{MHz}, 100$ watt, solid-state. Frequency Counter: 300 MHz miniportable/mobile, memory! VOX-Compressor: Splatter-free modulation booster. Construction plans $\$ 3.00$ each. All $\$ 7.50$! Kits, others, catalog available. PANAXIS PRODUCTIONS, Box 5516-F7, Walnut Creek, CA 94596

TESLA coil lightning machines. Five powerful coils. Construction manual $\$ 9.95$. Free information. HIGH TENSION ELECTRONICS, Box 1371 HV, Garden Grove, CA 92642

EDUCATION \& INSTRUCTION

UNIVERSITY degrees by mail! Bachelors, Mas-

 ters, Ph.D's . . . Free revealing details. COUNSELING, Box 317 -RE7, Tustin. CA 92680TELEPHONE bugged? Don't be Watergated! Countermeasures brochure $\$ 1.00$. NEGEYE LABORATORIES, Box 547-RE, Pennsboro, WV 26415

GRANTHAM's FCC License Study Guide-377 pages, 1465 questions with answers/discus sions-covering third, second, first radiotelephone examinations. \$13.45 postpaid. GSE PUBLICATIONS, 2000 Stoner, Los Angeles, CA 90025
UNLOCK your future. Become professional lock smith by spare time homestudy. \$13 in an hour possible. All tools, equipment included. Facts FREE. Send name. LOCKSMITHING INSTITUTE (homestudy), Dept. 1339-078, Little Falls, NJ 07424

Sinclair $31 / 2$ Digit Multimeter Resistance to 20 meg 1% accuracy Small, portable. completely assem. in case i yr

Not a Cheap Clock Kit \$14.95 Includes everything except case. 2-PC
boards 6.50 "LED Displays. 5314 clock chip, transtormer, all components and full instrucs Green and orange displays also Digital Temperature Meter Kit Indoor and outdooor. Switches back and ing like it avaiable Needs no additiona ing ike it avainable. Needs no additional
parts for complete. full operation Will parts for complete. tull operation. Wil
measure -100 to $+200^{\circ}$, tenths of a degree.air or liquid. Very accurate. $\$ 39.95$

NiCad Batt. Fixer/Charger Kit Opens shorted cells that won't hold a
charge and then charges them up. all in RCA Cosmac VIP Kit 275.00 Heo computer with games and graphics
'78 IC Update Master Manual 1978 IC Update Master Manual $\$ 30.00$ terenctata secior 42000 cross references Free update service through 1978. Domestic postage $\$ 3.50$. Forergn nal 1977 Master closeout $\$ 15.00$

BankAmericard and Master Charie accepted. hipping charges will be added on charge cards.

60 Hz Crystal Time Base Kit $\$ 4.40$ Converts digital clocks from AC line frequency to crystal time PC board. MM5369. crystal, resistors.
capacitors and trimmer
Clock Calendar Kit $\quad \$ 23.95$ CT7015 direct drive chip displays date and time on $.6^{\prime \prime}$ LEDS with AM-PM indicator. Alarm/doze feature includes buzzer. Complete with all parts. power supply有

Kit Complete kit less case $\$ 37.5$ 30 MHz Frequency Counter $\begin{array}{ll}\text { Kit Complete kit less case } & \$ 47.75 \\ \text { Prescaler Kit to } 350 \mathrm{MHz} & \$ 19.9\end{array}$

Stopwatch Kit $\$ 26.95$ Full six digit battery operated. 2-5 volts. 3.2768 MHz crystal accuracy Times
59 min
59 sec $59 \mathrm{~min} .59 \mathrm{sec} .991 / 100 \mathrm{sec}$ Times std split and Tayior. 7205 chip. all compo-
nents minus case Full instruc. Molded plastic case with bezel. $\quad \$ 5.00$

Auto Clock Kit

$\$ 15.95$ OC clock with 4-50" displays. Uses National MA-1012 module with alarn option. Includes light dimmer, crystal
timebase PC boards. Fully regulated tome. instructs. Add $\$ 3.95$ for beautitu comp. instructs. Add $\$ 3.95$ for beaut
dark gray case. Best value anywhere

BUSINESS OPPORTUNITIES

MECHANICALLY inclined individuals desiring ownership of Small Electronics Manufacturing Business-without investment. Write: BUSINESSES, $92-\mathrm{R}$, Brighton 11th, Brooklyn, NY 11235

CABLE FM STATION. No experience required, excellent spare-time income, others operate for you. Details free. BROADCASTING, Box $5516-$ F7, Walnut Creek, CA 94596

HIGHLY
PROFITABLE
ELECTRONIC quired. sales handled by professioge not rehome business. Write today for facts! Postcard will do. Barta-RE-G, Box 248, Walnut Creek, CA 94597.

FOR SALE

FREE catalog. IC's, Semi's. CORONET ELEC. TRONICS, 649A Notre Dame W., Montreal, Que., Canada, $\mathrm{H} 3 \mathrm{C}-1 \mathrm{H} 8$. US inquiries.

BLITZ ZOINK ZATT: UNSCRAMBLE these fascinating police communications with our CODE-BREAKER and kee informed. Tunes all scramble frequencies. works with all scan ners, and is factory built and guaranteed \$34.95PP. UNSCRAMBLER KIT: La test Technology, $2^{3} / 4 \times 2^{1 / / X} X^{1 / 2}$-inch, com plete instructions, only $\$ 19.95 \mathrm{PP}$. Thou sands of satisfied customers. Catalog 50 Order from KRYSTAL KITS, BOX 445 BENTONVILLE. ARK. 727 12. COD or ders. 501-273-5340.

NAME brand test equipment. Up to 50% dis count. Free catalog and price list. SALEN ELEC TRONICS, P.O. Box 82, Skokie, IL 60076

ELECTRONIC parts! Refundable $\$ 1$ gets you 1978 catalog. Send to: B.C. ELECTRONICS, P O. Box 226, West Lynn, MA 01905

B\&K test equipment. Free catalog. Free shipping Dinosaur discounts. SPACETRON-DG, 948 Prospect, Elmhurst, IL 60126

TELEPHONE recording equipment and other "unusual" electronic devices. Free info: GARRI SON, Box 128-B, Kew Gardens, NY 11415

Radio Shack: No. 1 Parts Place Buy Off-the-Shelf! Low Prices! Huge Selection!

Top-quality devices, fully functional, carefully inspected. Guaranteed to turer's quality control procedures. These are not rejects, not fallouts, not meet all specifications, both electrically and mechanically. All are made seconds. In fact, there are none better on the market! Always count on by well-known American manufacturers, and all have to pass manufac- Radio Shack for the finest quality electronic parts.

Linear ICs By National Semiconductor and Motorola - first quality		
	Com THT s, sus ocessor 7.95	uter Chip TiT 0% prime Sale 12.95

Trim Multi-Purpose Cabinets

© Compact. Makes even your small projects look professiona 57/6 $9 \times 47 / \mathbf{g}^{\prime \prime}$. 270-281
0.95
(団 Low-Protile. Slim-design - only $57 / \mathrm{a} \times 113 / \mathrm{m} \times 31 / 2^{\prime \prime}$
270-282. Reg. 14.95

Sale 12.95

TTL and
CMOS Logic ICs

Full-Spec Devices Direct from
Motorola and
National Semiconductor

Type	Cat. No.	ONLY
7400	276-1801	355
7402	276-1811	398
7404	276-1802	35¢
7406	276-1821	498
7410	276-1807	398
7413	276-1815	798
7420	276-1809	394
7427	276-1823	498
7432	276-1824	498
7441	276-1804	998
7447	276-1805	994
7448	276-1816	998
7451	276-1825	395
7473	276.1803	496
7474	276-1818	498
7475	276-1806	794
7476	276-1813	594
7485	276-1826	1.19
7486	276-1827	49 c
7490	276-1808	794
7492	276-1819	694
74123	276-1817	994
74145	276-1828	1.19
74150	276.1829	1.39
74154	276-1834	1.29
74192	276-1831	1.19
74193	276-1820	1.19
74194	276-1832	1.19
74196	276-1833	1.29
4001	276-240	496
4011	276-2411	496
4013	276-2413	896
4017	276-2417	1.49
4020	276-2420	1.49
4027	276-2427	894
4049	276-2449	$69 ¢$
4050	276-2450	696
4511	276-2447	1.69
4518	276-2490	1.49

2102 1K Static RAM. Low power version. 16-pin DIP. Buy 8 and save! 276-2501
2.49 Ea or $8 / 14.95$

Just add switches and install! 12-hour readout. $0.3^{\prime \prime}$ digits, ± 0.5 sec./day accuracy. 12 VDC . 277-1003. Reg. 24.95 Sale 19.95

REGULARLY \$1.95. Archer Semiconductor Reference and Application Handbook. Complete specs and application data on every Archer semiconductor - display devices, too 46,000 cross-reference/substitution listings plus glossary of words, symbols, abbreviations 276-4002 . . With Any \$5 Parts Purchase, Only 99 ¢

Offer good at participating Radio Shack stores and dealers

LED Digital Displays

[
Digits Size Drive Cat. No Reg. SALE

Archer ${ }^{\text {® }}$ Project-Boards - Predrilled PCB's

SALE

Time Base Generator. Built-in to MHz xtal or ext input. Decade selector, switch. TL out-
ALE
Time Base Generator. Built-in to M
ext input. Decade selector, Switch
put. Requires 5VDC. Reg. \$5.99.
277-115. (PCB Iess parts)
Shown Built with 277-115. (PCB less parts) Sale 3.99

NEW

5V, 3-Amp Power Supply. Metered Output current. foldback limiting. Remote sensing 277.119 (PCB less pats)

$\begin{aligned} & \text { SALE 2-Foot } \\ & \text { Mini Test Clips } \end{aligned}$	$\begin{aligned} & \text { 35VDC } \\ & \text { Electrolytic Pak } \end{aligned}$
Red. Reg. 1.99 278-1158 Sale 1.49	Package of 10 with two of each
Black. Reg 1.99 278-1159 Sale 1.49	value $4.7,10,25,50$ and $100 \mu \mathrm{~F}$. PC mounting 272-1035 2.99

WHY WAIT FOR MAIL ORDER DELIVERY?
IN STOCK NOW AT OUR STORE NEAR YOU!

RodO

TAPE head cleaner. 8 oz. - $\$ 2.30$. Includes postage and handling. Write: "CLEANER," Box 176, Whitewater, WI 53190

A Fabulous First: Motion Detector ICs. converts

 motion to a voltage which triggers internal a larm circuitry. May be programmed for certaın ical sequaght motion). Includes on chip mus Premium OP AMP! BB. 3500 from BURR-BROWN features: LOW NOISE. DRIFT. LOW INPUT BIAS 15 kHz . 20 V P.P outpul (Iv/us slew rate), and more. Regularly sells tor up to $\$ 3600$ each Exclusive.only 99c ea., 6/\$5.00
Audio Synthesis Literature: "Tech Notes" teaturing circuits. ideas. new products. parts sources.
more. Our own R\&D news/etter. 12 issues/ $/ \$ 17.50$ Hybrid Active Filter: identical to the AF-100-ICJ DIP Package. D.C to kHz .4 on-board op amps.

FREE bargain catalog, IC's, LED's, semiconductors, crystals, electron tubes. Send stamp. ASTRAL, P.O.B. 707 RE, Linden, NJ 07036

MAKE PC boards. Step-by step "how-to" manual with build-it-yourself equipment plans, charts and illustrations. For polyez and film-chemical processes. $\$ 4.98$ plus 50 C p\&h. CENTURY AMERICAN INSTRUMENTS, Dept. 616, Box 1014, Placentia, CA 92670

OPTO-ISOLATORS GE H11A2, 25/\$10, 100/\$35. RCA zero voltage switch CA 3079 25/\$12.50, $100 / \$ 45$. All prime \& 100\% guarantee. AMAN KHAN, 2355 Burch Cir., Atlanta, GA 30319

Why is this the

LARGEST SELLING

 low cost COUNTER KIT?This counter is such a great selier because people like you have found that, feature for feature, the CT-50 gives you more for your money. Advanced LSI and CMOS circuitry has; lowered power consumption, increased performance, and reduced cost. Complete push button operation makes using the CT-50 a snap, and automatic decimal point positioning gives you quick, reliable readings. Battery operation is also possible becuase the CT 50 runs equally as well on 12 VOC as it does on 110 VAC . For ultra-accuracy we offer the CB-1 color burst adapter, it locks the CT-50's internal crystal to the television networks color standard for . 001 ppm accuracy! Why sacrifice performance by using another counter when you can get professional quality at the unheard of price of $\$ 89.95$? Order yours today!

SPECIFICATIONS
Sensitivity: less than 10 mv
Frequency range 5 Hz to 60 MHz , typically 65 MH Gatetime 1 second, $1 / 10$ second, with automatic decimal point positioning on both direct and
presacle
Display 8 digit red LED 4 height
Accuracy. 2 ppm, internal TCXO standard
prescale, option
Power 110 V ac 5 Watts or $12 \mathrm{Vdc} @ 300.400 \mathrm{ma}$
Size Approx $6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$
CT $50,60 \mathrm{MHz}$ Counter Kit
$\$ 89.95$
$\$ 159.95$
T-600, 600 MHz Counter Wired \& Tested \$159.95

MINI-KITS

FM WIRELESS MIKE KIT
Transmit Ye to 300^{\prime} to any
FM broadcast radio, uses Fry broadcast radio, uses
any type of inike. Runs on
3 to 9 V . Type FM. sensitive mike preamp.
FM-1 $\mathbf{\$ 2 . 9 5}$ FM-2- $\$ 4.95$ SUPER-SLEUTH AMPLIFIER A super-sensitive amplifier which
pick up a pin drop at 15 feet for monitoring baby's room or a gen for monitoring baby's room or a gen watts of output, runs on 6 to 12 volts,
uses any type of mike. Requires $8-45$ uses any type of mike. Requires $8-45$

ohm speaker. | ohm speaker. |
| :--- |
| Complete Kit. BN-9. $\$ 4.95$ | COLOR ORGAN/MUSIC LIGHTS

See music come alive! 3 different

See music come blive! 3 different lightsflicker with music or woice. One light

 to 300 watts. Great for paries, band music, nite clubs and more.Complete Kis
TONP DECODER KI
A complete tone decoder
on a single PC Board. Feaon a single PC Board. Fea-
tures: $400-5000 \mathrm{~Hz}$ adjustable frequency range, voltage regulation, 567 IC. Use-
ful for touch-tone decoding Pot for touch-tone decoding,
burst detection. FSK demod, s
ing, and many other uses. Use
12 buton touchtone decoding.
on 5 to 12 volts.
Complete Kit. TD. Complete Kit, TD-1. LED BLINKY KIT A great attention getter which alter-
nately flashes 2 name tashes 2 Jumbo LEDs. Use for type panel lights. Runs on warning
volts.
Compl
POWER SUPPLY KIT
Complete triple regulated power supply provides varisble +15 volts at sup- 200 mA and ± 5 volts at 1 Amp 50 mV toad regulation good filtering and small size. Kit less transformers.
quires 68 V at 1 Amp quires 68 V at 1 Amp end 18 to 30
VCT.
Complete Kit, PS-3LT. 56.95 Complete K
SIREN KIT
Produces upward and downward woil Produces upward and downward wail
characteristic of police siren. 5 watts audio output, runs $8-45$ ohm speaker.
Complete Kit , SM-3
VIDEO MODULATOR KIT Converts any TV to video Monitor,
Super stable tunabie Super stable tunable over Ch. 4.6 . Runs on $5-15 \mathrm{~V}$, accepts sto. video signal. Best unit on the market.
Complere Kit. VD-1. Clock Kit, DC-5 . Clock Kit, DC-5
Mobile Clock

SIX DIGIT
 12/24 HOUR CLOCK KIT

Here's a clock you can be proud of. The best looking, most complete kit on the market Features include time set pushed aluminum case available in 5 colors, All parts included. Colors gold silver bronze black blue (specify) gold. silver,
$\$ 22.95$
25.95
22.95 Alarm Clock, 12 Hr ., DC-8
24.95 Mobile Clock, DC-7 25.95 Clock with HAM 10 tımer DC-10 2595 Assembled and tested clocks available, add $\$ 10.00$ to Kit price.

Extend the range with all count 600 MHz . Work with all counters. Less than - 10 or - 100 . Wired, tested,

CALENDAR ALARM CLOCK
 FEATURES:

Complete Kit, less case
DC-9
$\$ 34.95$

ICs		LINEAR	
5314 Clock	\$2.95	555	
7001 Clock	6.95	556	75
5369 Cnos	1.95	566	1.49
7447	79	567	1.49
7473	35	1458	50
7475	50	LED D	VEA
7490A	55	75491	50
74143	3.50	75492	50

REGULATOR

CAR
 CLOCK

KIT
${ }^{122 / 24}$ Hour 12 -Volt AC or DC

Easy, no-polarity hookup
Display blanks with ignition
Case mounting bracket included
Super instructons
Super instructions
omplete Kit, DC-1
Auto dimmer for DC-11
$\$ 2.50$
741 OP AMP SPECIAL
Prime, Mini-dip 10/\$2.00

YES, YOU CAN BUILD ELECTRONIC ORGAN
That has a PIPE ORGAN SOUND With DEVTRONIX easy to build assemblies Own the ultimate in organ design a sound at $1 / 2$ the cost of commercial organs.
Several models to choose from. BROCHURE AND DEMO RECORD $\$ 1.00$ ORGANS INC Dept. B orams, me 5872 Amanola Dr. SanJose, CA 95129

SUMMER special! New, adjustable, three output, regulated power supply, plus 900 parts worth over $\$ 400.00$ in complete cartrivision television electronics assembly. Documentation included. Perfect for microprocessor and all electronic applications. $\$ 11.50$ plus $\$ 3.50$ S\&H. Mastronic applications. $\$ 11.50$ plus $\$ 3.50$ S\&H. Mas-
ter Charge, BankAmericard. MADISON ELECter Charge, BankAmericard MAD
TRONICS, 369 , Madison. AL 35758. Money back guaranteed.

PRINTED CILCUIT
 Positive Acting Photo Resist; Carbide bits; Bubble etchers; Artwork; Epoxy Glass Boards.
 Send stamp \& address label for flyer TRUMBULL
 833 Balra Dr., El Cerrito, CA 94530

TUBES, receiving and Industrial, semiconductors, factory boxed, low prices, free price list. TRANSLETERONIC INC., $1365-39$ th Street, Brooklyn, NY 11218 212-633-2800

RECORDS-TAPES! Discounts to 73\%; all labels; no purchase obligations; newsletter; discount dividend certificates; 100\% guarantees. Free details. DISCOUNT MUSIC CLUB, 650 Main St. tails.
Dept. 3-0778, New Rochelle, NY, 10801
COMPUTER, peripheral, technical reports; project supplies; kits. Send $\$ 1$ for THE CPU HOBBYIST, Box $738-R E$, College Park, MD 20740

NO-ETCH
Duplicate or make additions to
modifications of Any Etched Board Ideal for point-to point or wire wrap bresdboards.
Complete set of (3) tools |P6003 $\$ 25.00$ ppd. A.F. Stahler Co.. P.O.Box 354R, Cupertino
$95014-(408) 252-4219$.

OSCILLOSCOPES dual-trace $22-\mathrm{MHz}$ triggered scopes, calibrated and guaranteed. $\$ 350.00$. Free catalog. A-OK ELECTRONICS, 1445 N.W 9th St., Homestead, FI 33030 (305) 247-6349

CB equipment, discounts on best national brands, free list. CRS, 1552 Central Park Ave., Yonkers, NY 10710

600 MHZ. FREQUENCY COUNTER
 ± 0.1 PPM TCXO

OPTO-8000.1

This new instrument has taken a giant step in front of the multitude of counters now available. The Opto- 8000.1 boasts a combination of features and specifications not found in units costing several times its price. Accuracy of ± 0.1 PPM or better - Guaranteed - with a factory-adjusted, sealed TCXO (Temperature Compensated Xtal Oscillator). Even kits require no adjustment for guaranteed accuracy! Built-in, selectable-step attenuator, rugged and attractive, black anodized aluminum case (.090" thick aluminum) with tilt bail. 50 Ohm and 1 Megohm inputs, both with amplifier circuits for super sensitivity and both diode/overload protected. Front panel includes "Lead Zero Blanking Control" and a gate period indicator LED. AC and DC power cords with plugs included.

SPECIFICATIONS:
Time Base-TCXO ± 0.1 PPM GUARANTEED!
Frequency Range- 10 Hz to 600 MHz
Resolution- 1 Hz to $60 \mathrm{MHz} ; 10 \mathrm{~Hz}$ to 600 MHz
Decimal Point-Automatic
All IC's socketed (kits and factory-wired)
Display-8 digit LED
Gate Times- -1 second and $1 / 10$ second
Selectable Input Attenuation-X1, X10, X100
Input Connectors Type - BNC
Approximate Size- 3 " $h \times 71 / 2^{\prime \prime} w \times 61 / 2^{\prime \prime} d$
Approximate Weight-2 $1 / 2$ pounds
Cabinet-black anodized aluminum (.090" thickness)
Input Power-9-15 VDC, 115 VAC $50 / 60 \mathrm{~Hz}$
or internal batteries
OPTO-8000.1 Factory Wired
$\$ 299.95$
OPTO-8000.1K Kit
\$249.95
ACCESSORIES:
Battery-Pack Option-Internal Ni-Cad Batteries and charging unit
Probes: P-100-DC Probe, may also be used with scope $\$ 13.95$ P-101-LO-Pass Probe, very useful at audio frequencies
$\$ 16.95$
P-102-High Impedence Probe, ideal general purpose usage
$\$ 16.95$
VHF RF Pick-Up Antenna-Rubber Duck w/BNC \#Duck-4H $\mathbf{\$ 1 2 . 5 0}$ Right Angle BNC adapter \#RA-BNC \$ 2.95

FC-50 - Opto-8000 Conversion Kits:
Owners of FC-50 counters with \#PSL-650 Prescaler can use this kit to convert their units to the Opto-8000 style case, including most of the features.

FC-50 - Opto-8000 Kit \$59.95
*FC-50 - Opto-8000F Factory Update $\$ 99.95$
FC-50 - Opto-8000.1 (w/TCXO) Kit \$109.95
*FC-50 - Opto-8000.1F Factory Update $\$ 149.95$
*Units returned for factory update must be completely assembled and operational

TERMS: Orders to U.S. and Canada, add 5% to maximum of $\$ 10.00$ per order for shipping, handling and insurance. To all other countries, add 10% of total order. Florida, residents add 4% state tax. C.O.D. fee: $\$ 1.00$. Personal checks must clear betore merchandise is shipped.

WINDSOR picture tube rebuilding equipment for large and small tubes, price reasonable. JIM CLEETON, 2 Skyline Dr., Louisiana, MO 63353

FREE KIT Catalog STOP: Take a minute \& Let us send contains Our latest kit catalog. If you like, send us the name \& address of a EXPERIfricnd who may also be interested MENTER'S
 DAGE SCIENIIFIC INSTRUMENTS

AMAZING ELECTRONIC PROJECTS and PRODUCTS: Lasers Super Powered, Burning, Cutting, Rifle, Pistol Pocket. See in Dark-Shotgun Directional Mike-Unscramblers-Giant Tesla-StunwandTV Disrupter-Energy Producing, Surveillance, Detection. Electrifying, Ultrasonic, CB, Auto and Mech, Devices, Hundreds More-All New Plus
INFO UNITD PARTS SERVICE Cate INFO UNLTD PARTS SERVICE. Catalog $\$ 1$. Information Unlimited, Box 626, Lord Jeffery Court. Amherst, N.H. 03031.

WANT the best, plus power? Rush to your nearest CB dealer and ask for the famous "Bronco Bullwhip," heavy-duty, highest-gain professional fiberglass CB whip antenna by SCIENTIFIC ANTENNAS CORPORATION.

RADIO \& TV tubes 36¢ each. One year guaranteed. Plus many unusual electronic bargains. Free catalog. CORNELL, 4217-E University, San Diego, Calif. 92105

LOWEST prices. CPUs: 1802 \$19.95, 2650 $\$ 26.50$, 6502 \$24.50, $6800 \quad \$ 24.95,8035-8$ $\$ 17.75$, 8080A $\$ 7.95,8080 \mathrm{~A}-11.3 \mu \mathrm{~s}$ \$11, $8080 \mathrm{~A}-2$ $1.5 \mu \mathrm{~S} \$ 9,8085 \$ 22,8748-8 \$ 49$, PACE 16 bit $\$ 39$, Z80 $\$ 29.95 ;$ 8080/8085 support: $8155 \$ 20,8156$ $\$ 22,8205 \$ 4.35,8212 \$ 3.50,8214 \$ 7.40,8216$ $\$ 3.90,8224 \$ 5.40,8226 \$ 3.90,8228 \$ 7.10,8238$ $\$ 8.20,8251 \mathrm{~A} \$ 11.50,8253 \quad \$ 22.15, \quad 8255 \mathrm{~A}$ $\$ 10.30,8257$ \$28.75, $8259 \$ 24.65,8275$ \$99.99, 8279 \$21, 8741-8 \$75, 8755A \$85; RAMs: 2114 \$14, 2115-2 \$5, 2116 \$52, 2125A \$6; Terms: Money Order or Certified Check. Calif. residents add 6% tax. BYTE ELECTRONICS, BOX 8603R, San Jose, CA 95155

MORE NEW ITEMS!

JUMBO LED READOUT ARRAY

By Bowmar. 5 in character common cathode. Designed for use with multiplexed clock chips
4 digits in 1 pack! 3W. AUDIO AMP

Assembled \& test-
 $\$ 3.95$ ed. Not a kit. Has tapped output for either 4, 8 or 16 OHMS. With schematic.

JUMBO LED CLOCK MODULE

\#MA1008. Four digits. $1 / 2$ inch size. Completely self-contained module, NOT A KIT! Features: Snooze, sleep timer, alarm signal modue,
output, brightness control 50 or 60 Hz operation, 12 HR readout with 24 HR alarm, and power fail indicator. Direct LED drive, nonmultiplexed for low RFI.

SUPER SPECIAL - \$6.95 EA. WITH DATA
BRAND NEW! (For transformer, add $\$ 1.95$) JUST ARRIVED!

NATIONAL SEMICONDUCTOR SIX DIGIT ALARM CLOCK CHIP

SPECIAL OFFER!

With purchase of clock Chip at lett. COMMON ANODE LED READOUTS igh Efficiency
59 ${ }_{\text {ea }}$ A PERFECT MATE.
builo your own clock!
\longrightarrow WE SUPPLY DATA!
MOTOROLA 7805R
Voltage Regulator
Same as standard 7805 except 750 MA output. TO-220. 5VDC output. 44c each 10/\$3.95

44c each $10 / \$ 3$

| EXPERIMENTER'S CRYSTAL | LED IC Counter Kit |
| :---: | :---: | :---: |
| 262 144kHz This trequency is 2 | You Get: $1-7490$; | 7475; 1-7447; 1-Led Readout. All this for $\$ 1.99$ (Led Readout is famous

\$1.25 each

SLA-1. 33 in. By Opcoa.)
2N3904-House No
TO-92. NPN. TO-92. NPN VCEO-45.
HFE 100 to 300 10 for $\$ 1.00$

Motorola Quad OpAmp MC3401. Pin for Pin Sub for popular LM3900. 3/\$1.00

FAIRCHILD
JUMBO READOUTS
5 Inch Char High Efticiency
FND-503-Common Cathode FND-510-Common Anode YOUR CHOICE 69C 10 FOR $\$ 5.75$

Jumbo Red Leds New by G.E. Like MV5024. Number SSL-22.
6/\$1. 25/\$3.75

DISC CAPACITORS 1 MFD 16 V . P.C. leads. Most
value!
By
popular
Sprague. 20 for $\$ 1.00$

Motorola PNP Power! 2N4905 TO-3 case 90W VCEO-60 HFE-100 max at 25 A . Good mate for the 2N3055 PRIME
75c ea. $4 / \$ 2.50$

Full Wave Bridge
4 Amp 200 PIV
69cea. 10/5.75
GE POWER TRIAC
SC 146D. House \#
10 AMPS 400 PIV
TO-220 CASE 75Cea.
4 FOR 2.50

Digital Research Corporation
P. O. BOX 401247 A GARLAND, TEXAS $75040 \bullet(214)$ 271-2461 accept VISA, MasterCharge and American Express Cards. Money Back Guarantee on all items! Texas Residents add 5\% Sales Tax. WE PAY POSTAGE!

FLDCTRONIC SYSTDNS

P.O. Box 964I San Jose, CA 95157 (403) 374-5984

FOR CATALOG INCLUDING PARTS LISTS AND SCHEMATICS, SEND A SELF ADDRESSED ENVELOPE WITH 24e POSTAGE.

Part no. 101

- Converts serial to parallel and parallel to serial
- Low cost on board baud rate generator
- Baud rates: 110,150 ,
$300,600,1200$, and 2400
- Low power drain +5 volts and - 12 volts required
- TTL compatible
- All characters contain a start
bit, 5 to 8 data bits, 1 or 2 stop bits, and either odd or even parity.
- All connections go to a 44 pin gold plated edge connector
- Board only $\$ 12.00$; with parts $\$ 35.00$

SI SAAME क BA BA

Part no. 300

- 8K Altair bus memory
- Uses 2102 Static memory chips
- Memory protect
- Gold contacts
- Wait states
- On board regulator
- S. 100 bus compatible
- Vector input option
- TRI state buffered
- Board only $\$ 22.50$; with parts $\$ 160.00$

RS-232 / TTL INTERFACE *

Part no. 232

- Converts TTL to RS-232, and converts RS-232 to TTL
- Two separate circuits
- Requires -12 and +12 volts
- All connections go to a 10 pin gold plated edge connector - Board only \$4.50; with parts $\$ 7.00$

Part no. 6085

- Board supplies a regulated
+5 volts at 3 amps., +12 . 12 , and -5 volts at I amp.
- Power required is 8 wolts

AC at 3 amps., and 24 volts $A C$ C.T. at 1.5 amps.

- Board only \$12.50: with parts 842.50 cxcluding transformers

TIDMA*

Part no. 112

- Tape Interface Direct Memory Access
- Record and play programs without trootsitrap loader (no prom) has FSK encoder/decoder for direct connertions to low cost recorder at 1200 baud rate, and direct connections for inputs and outputs to a digital recorder at any baud ratc.
- S. 100 bus compatible
- Board only $\$ 35.00$;
with parts $\$ 10.00$

Part no. 111

TAPE INTERFACE*

- Play and record Kansas City

Standard tapes

- Converts a low cost tape recorder to a digital recorder
- Works up to 1200 baud
- Digital in and out are TTL-serial
- Output of board connects to mic. in of recorder
- Earphone of recorder connecls to input on board
- Requires +5 volts, low power drain
- Board $\$ 7.60$; with parts $\$ 27.50$
- No coils

Part
no. 107
RF
MODULATOR *

- Converts video to $A M$ modulated RF, Channels 2 or 3
- Power required is 12 volts AC
C.T., or +5 volts DC
- Board \$7.60; with parts $\$ 13.50$

Apple II Serial I/O

Interface *

Part No. 2

- Baud rates up to $\mathbf{3 0 , 0 0 0}$
- Plugs into Apple Peripheral connector
- Low-current drain
- RS 232 Input and Output SOFTWARE
- Input and Output routine from monitor or BASIC to teletype or other serial printer.
- Program for using an Apple II for a video or an intelligent terminal. Board only - $\$ 15.00$;
with parts - $\$ 42.00$; assenubled and tested - $\$ 6200$.

RS-232/TTY* INTERFACE

Part no. 600

- Converts RS-232 to 20 mA current loop, and 20 mA current loop to RS-232
- Two separate circuits
- Requires +12 and -12 volts
- Board only \$4.50, with parls $\$ 7.00$

TELEVISION TYPEWRITER

Pari no. 106

- Stand alone TVT
- 32 char/line, 16 lines modifí-
cations for 64 char/line included
- Parallel ASC11 (TTL) input
- Video outpat
- 1 K on board memory
- Output for computer con-
trolled curser
- Autoscroll
- Non-destruclive curser
- Curser inputs: up. down, left, right, home, EOL. EOS
- Scroll up, down
- Requires +5 volts al 1.5 amps , and -12 volts at 30 mA
- All 7400, Th $^{\prime}$ C chips
- Char. дen. 2513
- Cpper case only
- Board only \$39.00; with parts \$145.00

MODEM *

Part no. 109

- Type 103

- Full or half duplex
- Works up to 300 baud
- Originate or Answer
- No coils, only low cost components
- TTL input and output-serial
- Connect 8 ohm speaker and crystal mic. directly to board
- Uses XR FSK demodulator
- Requires +5 volts
- Board $\$ 7.60$; with parts $\$ 27.50$

To Order:

VEA

Mention part number and description. For parts kits add " A " to part number. Shipping paid for orders accompanied by check, money order, or Master Charge, BankAmericard, or VISA number, expiration date and signature. Shipping charges added to C.O.D. orders. California residents add 6.5% for tax. Parts kits include sockets for all IC , components, and circuit board. Documentation is included with all products. Dealer inquiries invited. 24 Hour Order Line : (408) 374-5984.* Designed by John Bell.

BRAND new $1 / 2^{\prime \prime}$ Norelco color videocassette recorders/players - only $\$ 395$ each. Quantity discounts available. Will play back into standard TV or monitor. Will record from TV camera, external tuner, or receiver-monitor. Performs as well as a Betamax, but lighter \& more compact. Service \& duplication facilities available. For more info: Call or write: IMPACT, 1180 E . Meadow Drive. Palo Alto, CA 94303 (415) 494-3701.

MANUALS for Govt. surplus radios, test sets, scopes. List $50 ¢$ (coin). BOOKS, 7218 Roanne Drive, Washington, DC 20021

LITTLE PRO BEEP
continued from page 60
$=47,000$ ohms and $\mathrm{C}=.05 \mu \mathrm{~F}$ as the timing components (Fig. 1). Then $\mathrm{T}=$ 2.35 ms . A complete cycle at pin 1 would last 4.7 ms , which converts to a frequency of about 210 Hz . After 7 stages of divide-by-2, the frequency would be $210 / 128$ or nearly 2 Hz , at pin 8 . We mentioned previously that when any of the counter outputs goes to a logic-0 level, there can be no signal output regardless of what happens at any other counter output. Therefore, during the long " 0 " state of pin 8 , we cannot hear the audio from pin

Dual-Trace 5"-10MHz Triggered Sweep

- Usabie defiection to 15 MHZ = 35 nSEC rise time permits accurate display of high.speed square wave pulses \mathbf{L} Large $8 \times 10 \mathrm{~cm}$ rectangular viewing are
- Front-pane: Vectorscope operatoon with matched-sensilivity inpuls - TTL compatible intensity modulation (Z -axis) input for time or frequency markers and character dispiays
- internal calibration source
- Compact light-weige st CRT) - Compact. light-weight and rugged - Protective carrying case and Model 1471B-p

Dual-Trace 5"-30 MHz Triggered Scope 11.7 nS rise time - 30 MHz dual trace operation - Internal signal delay ine : 21 position sweep swich - Intensity modulation $0.5 \mathrm{~V} p-\mathrm{p}=1 \%$ calibration source - 100% solid state 〈except CRT X-Y Vectorscope capabilify - High pertormance/cost ratio - Protective carrying case and accessory probes

Model 1474.p

For Pricing and To Place Your Order CALL TOLL FREE (800) 645-9518

For N.Y. State call (516) 752-0050

1. The 210 Hz becomes available only while pin 8 is at a logic-1 level. We hear beeps, intermittent sound.

Now suppose we strap pins 1,6 and 8 to the output terminal. (See Fig. 4.) We know that the logic-1 state of pin 8 will block all output. During the logic-1 state, there are four alternations at pin 6: two of them logic-1 and two logic-0. As we know, there can be no output during the logic-0 intervals. However, the tone or buzz from pin 1 will be audible during the 2 logic- 1 intervals, shown shaded. This provides the double beep.

To obtain a 4 -beep sequence, we can strap pins, $1,5,8$ to the output, and so on. If you strap pins $1,4,6,8$, you will obtain a sequence of 2 double-beeps.
Figure 5 is the schematic of the beeper. Use a 16 -pin DIP socket for the IC, and a socket adapter for the capacitors and resistors. Most of the wiring can be done at or near the socket. The switches, earpiece jack (for output) and power plug can be mounted on a small metal box, $3^{1 / 4}$ $\times 2 \times 11 / 2^{\prime \prime}$. A source of 5 volts at 6 mA will operate the beeper.
The volume is loud in a high-impedance earpiece, but you will probably need an amplifier. Any radio or record-player amplifier will do.

R-E

DON'T MISS ANY

Get every single issue of Radio-Electronics delivered right to your door, and before it appears on the newsstand. Use this coupon and subscribe now.

MODULES PROTO BOARDS

* Moturola Compatible Module MEK 6800 D2 Kit 96006800 MPU Module 960116 slot Mother Bd. 960216 slot Card Cage 96038 slot Mother Bd. 9604 System Power Supply 9610 Prototype Board 9615 4KEprom Module 962016 port parallel I/O 9626 8K Static RAM 9626K 8 K Static RAM Kit 9630 Extender Card 9640 Multiple Tuner Prog. 96508 port Duplex Asyn. Mot 43/86 Connectors w/wors/t AMI EVK 99. 6800 sub Kit AMI EVK 100 Kit	

$\$ 235.00$
495.00
175.00
175.00
75.00
$\begin{array}{r}75.00 \\ 99.00 \\ \hline\end{array}$
250.00
36.00
250.00
37500
375.00
295.00
225.00
60.00
60.00
395.00
395.00
$1 / 0 \quad 395.00$
95.00
5.95
469.95

AMI EVK 200 Kit	449.95
AMI EVK 300 Assembled	649.00
EVK Kluge Board	95.00
EVK 16K Byte Ram Board	75.00
EVK 6 Siot Motherboard	35.00
EVK Extender Board	45.00
EVK Solid Frame Chassis	129.00
EVK Connectors	6.50
AMI 6800 Proto Rom	30.00
AMI6800 Micro Assembler Rom	30.00
6800 Tiny Basıc Paper Tape	20.00
6800 tiny Basic Eprom	125.00
ZILOG COMPATIELE BOARDS	
2.80 CPU	395.00
20C Disc Controller	395.00
MEM 16/65K Memory	595.00

2-80/2-80A CPU BOARD

* On board 2708
* Power on jump
* 2708 included (450 ns)
* Completely socketed
- Completely socketed
Assembled and tested

Kare PC Board

* For 4 MHz Speed Add $\$ 15.00$

TDL COMPATIBLE Z-80 CPU * Compathble to TDL Can be upgraded software 8 hardware for 4 MHz operation Assembled and tested …...... $\$ 199.95$
 ${ }_{\text {Kit }}$ Bare PC Board

BYTE USER BK EPROM BOARD * Power on Jump
Assembled $\&$ Tested Reset Jump
94.95 Kit pecial Offer: Buy 4 kits only $\$ 59.95$ each

BOBOA CPU BOARD
Sill compatible with 8 level Vector Interrupt tully socketed.

TARBELL FLOPPY INTERFACE * S100 Compatible * Uses CPM

* Jumper Selectable * Persct.Shugart.etc Assembled and tested $\$ 269.95$ Bare PC Board \$ 39.95
NOTE: For CPM Add $\$ 70.00$
Documentation Add $\$ 20.00$

WMC REAL TIME CLOCK

* S100 Compatib
* Software programmable

Assembled and testa
Bare PC Board w/data

MICRODESIGN MR-16 2716 EPROM BOARD

- Individual Prom Address
* Uses Low cost 16 K TI EPROMS
* Opironal IK RAM . Phantom control

Assembled and Tested

6800
DESIGNER BOARDS

THE FIRST TO OFFER PRIME PRODUCTS TO THE HOBBYIST
AT FAIR PRICES NOW LOWERS PRICES EVEN FURTHER

1. Proven Quality factorn tested products only, no re.test
2. Same Day Shipment All prepaid orders with cashiers SUPPORT DEVICES

WAVEFORM GENERATORS

SOCKET SALE

WIRE WRAP SOCKETS

14 Pin Wire Wrap
16 Pin Wire Wrap
.30
27/400

EDGE CARD CONNECTORS

44 Pin ST Edge Card Connector
1.75
1.50/10

100 Pin ST Edge Card Connector
$3.50 \quad 3.00 / 10$
100 Pin WW Edge Card Connector $\quad 3.50 \quad 3.00 / 10$ All Sockets \& Connectors Include Gold

SOLDERLESS BREADBOARDS SK $10 \quad \$ 16.50$

INCLUDING:
Over 100 pieces of precut wire in assorted lengths - free! Choose 1 color: Red, Black, Blue, Yellow, Green, White, Orange Or Assortment

PAGE DIGITAL ELECTRONICS

135 E. Chestnut Street 4 A
Monrovia, California 91016 Phone (213) 357-5005

ORDERING INFORMATION

- Orders under $\$ 25$ and COD's, add $\$ 2$ - All others. shipped Ppd in US via UPS - For Blue Label (Air) or 1st Class, add \$ - We accept Visa \& Master Charge - Most orders shipped same day Dealer Inquiries Invited

IV HOCKEY SOCCER GAME PLUS VIDEOCUBE-TV INTERFACE

The game we have been selling for $\$ 27.50$ in kit form. NOW com plete, ready to go including VIDEOCUBE, the TV interface, used for iterfacing minicomputers and cameras, as described in August RADIO-ELECTRONICS. Games have 2 levels of skill, LED readouts for scoring, 2 joysticks which move players in all planes, not ust vertical \& horizontal. Game sold for $\$ 79.50$ in Boston stores STOCK NO.5495R Complete TV game \& VIDEOCUBE $\$ 18.95$

NEW TRANSFORMERS

115 Vprimary. Sec.1-12.6V@1.0 A. ct. Sec.2-33.5V, tapped @ 13.1 V @1.0A. Sec.3-140V@100 ma. 2Lbs. $4^{\prime \prime} \times 2^{\prime \prime} \times 2^{3 / 4}$ ". STOCK NO.6772R
$\$ 2.95$ ea. $2 / 5.00$
Two 115 volt primaries, (can be used on 230 V). 4 secondaries. 11.5 V @4.8 A, 23V @9.0 A., 14 V. @ 20 A. and 125 V 1.5 A. 13 Ibs. $41 / 2^{\prime \prime} \times 4^{3 / 4^{\prime \prime}} \times 3^{3 / 4^{\prime \prime}}$
STOCK NO.6554R $\$ 16.95$ ea. $2 / 30.00$
TRIAD -N67A ISOLATION transformer. 115 or 230 VAC to 115 AC. 150 VA. Limited quantity. 7 Ibs. $4^{\prime \prime} \times 4^{\prime \prime} \times 3^{1 / 2} 2^{\prime \prime}$
STOCK NO. 67 是完
$\$ 7.95$ ea.
$2 / 15.00$

DELTA ELECTRONICS

P.O. Box 2, 7 Oakland St.

Amesbury, Mass. 01913
617-388-4705

RETAIL OUTLET
ATLANTA, GA. DELTA ELECTRONIC HOBBIES
5151 Buford Hwy. Doaraville, (Atlanta) Ga. 30340
CIRCLE 65 ON FREE INFORMATION CARD

Dept. R, 138 N. 81st Street, Mesa, Arizona 85207
$\star \star$ S-100 bus compatible

* \star Optional wait states: none, one or two (selectable with plug-in jumpers)
\star * Epoxy board with plated thru holes (double sided)
$\star \star$ Address any one of 8 different $\mathbf{8 K}$ blocks or any one of 16 different $\mathbf{4 K}$ blocks
\star * All sockets provided
* \star Gold plated connectors
* \star On board regulation (heat sinked)
* \star Convertible for use with 2716 EPROMS
* \star Complete instructions

TVT-III (with $\mathbf{2 K}$ memory capability) This system provides 16 lines of 32 characters each. It is composed of all TTL except for the 2513 and 2102's. Basic kit includes: Main board, 2K Memory board, six 2102 's (1 K of memory), plus other components. (Keyboard, case and power supply not included.)
All boards are double sided and plated thru. Small boards plug into main board at right angles.

	KITS	ASSEmbled	BOARD ONL
Basic TVT-III	$\$ 99.95$	$\$ 135.45$	$\$ 32.50$
Screen Read	12.65	17.30	8.10
Manual Cursor	9.95	13.95	6.50
UA.R.T.	29.95	39.95	15.50

4th OF JULY SPECIAL (July \& August)
ASSEMBLED \& TESTED (without EPROMS) \$55.50
COMPLETE KIT (without EPROMS) \$42.50
BARE BOARD ONLY $\$ 25.50$
2708 SPECIAL $8 / \$ 68$. (with purchase of board)

Construction packet sold separately: $\$ 2.95$
AVAILABLE NOW! 64 CHARACTER CONVERSION AND/OR SCROLLING OPTION FOR THE TVT-III. Complete documentation. Kit: \$6.95. Data only: \$1.00

MEMORY BARGAIN: 16K STATIC RAM ON ONE BOARD: (32 ea μ PD410); S-100 BUS; Low Pwr., 200NS 4K Chips. Kit includes all IC's, discrete parts \& sockets: $\$ 295.00$
PROGRAMMING SERVICE
1702A: \$5. original program, copies \$2
2708: $\quad \$ 10$. original program, copies $\$ 4$.
2716: $\$ 20$. original program, copies $\$ 8$.
(same order)
WE REQUIRE A WRITTEN PROGRAM IN
EITHER HEX OR SPLIT OCTAL or a CHIP
ALREADY PROGRAMMED.

CPU's	EPROMS			
Z-80A	$\$ 19.50$	2716,	16 K	$\$ 29.50$
8080A	9.50	2708,	8 K	9.50
6800	19.95	1702 A,	2 K	3.95

RANS

$21 \mathrm{L02}$ (250ns)
21 L 02 (450ns)
$2107 \mathrm{~B}, 4 \mathrm{~K}$ DYNAMIC μ PO $410,4 \mathrm{~K}$ STATIC 2114, 4K static (low pwr) MK4 116 (200ns), 16 K DYN. MISCELLANEOUS CHIPS 2813. 32 word $\times 9$ BIT FIFO AY5-2376, keyboard MM5320 TV SYNC. GEN AY5-1013A UART 2513 upper case MM5330 $4^{1 / 2}$ DIGIT DVM CHIP CT7001 clock/cal chip

DUAL,GOLDPLATE EDGE CONN.(.156' $\left.{ }^{\prime}\right)$	
10 POS	
18 POS. 36 CONTACT	20
22 POS. 44 CONTACT	75
MODULAR (make your own	S
SECTIONS, EACH SECTION	ON \$.15
100 PIN, S-100	\$4.50
RG 179 (75s)coax)	10¢/ft
110 V fan motor	\$2.50
$570 \mathrm{mfd}, 350 \mathrm{v}$, elect. cap	. 99
10 mfd , 250 v , elect. cap	50
$26 \mathrm{mfd}, 250 \mathrm{v}$, non-polarized elect. cap	50
MINIMUM ORDER $\$ 15$. FREE SHIPPING (in U.S.) FREE CATALOG	
ALL PARTS PRIME \& SATISFACT GUARANTEED	sfaction

DUAL,GOLDPLATE EDGE CONN (156' 6 POS. 12 CONTACT
10 POS. 20 CONTACT
18 POS. 36 CONTACT
22 POS. 44 CONTACT

110 V fan motor
$570 \mathrm{mfd}, 350 \mathrm{v}$, elect. cap
$\$ 4.50$
$10 \$ / \mathrm{ft}$

10 mfd , 250 v , elect. cap
.50
.50
MINIMUM ORDER $\$ 15$ ALL PARTS PRIME \& SATISFACTION

With any order valued at \$30.00 or more

Post marked prior to July 31, 1978

You receive

 AT NO EXTRA CHARGE- A 1978 ACTIVE ELECTRONICS Catalogue
- Your choice of any of the following packages

PACKAGE NO. 1

UNB0400 Unitrode Semiconductor Data Book. 500 pages on rectifiers, fullwave bridges, transient voltage suppressors zeners, programmable unijunction trans istors, etc.
LCC4162 TTL Supplement. The most recent TL functions are included in this supple ment to the 2nd edition of the TTL Data Book

RAB0606 Raytheon Selection Guide. A full ine condensed quick reference source on ll Raytheon Components
LCC4151 T.I. Linear and Intertace Circuits Data Book. 688 pages. Complete speciftcations on the 75 series of MOS interface eripheral driver, memory sense amplifiers, display interface circuits etc.

Value $\$ 16.90$

PACKAGE NO. 2

FSB0104 Falrchild Blpolar Memory Data memories, TTL static memories, TTL dynamic memories and macrologic.
FSB0105 Macrologic Bipolar Microprocessor FSB0105 Macrogic Bipolar Microprocesso Data Book. Microprogramming for impossible in one centralized logic block.
FSB0112 Fairchild Hybrid. Custom and standard product as well as reliability and design considerations.

GSB0100 Zener, Transistor and Transzorb Catalogue. Discrete devices and pertinent data and complete device characterization. FSB0103 Fairchild Power Data Book. Basic parameter and data information as well as information on technology, safe operating area, reliability etc.

Value $\$ 14.35$

PACKAGE NO. 3

ADVANCED MICRO DEVICES
AMB0203 8080A/9080A MOS Microprocossor Hand Book. Detailed descriptions of the 8080A and associated CPU components.
AMB0205 MOSILSI Data Book. Static RAM's dynamic 4K RAM's, 2K EROM, shift registers. FIFO memories and complete micropro. cessor and support circuits

AMB0206 Linear and Interface Data Book. Comparators, data conversion products, Line drivers/receivers, MOS memory and microprocessor interface, Op Amps, Voltage Regulators etc.

Value $\$ 17.85$

PACKAGE NO. 4

LCC4041 T.I. Power Semiconductor Data Book. 816 pages germanium and silicon power transistors SCR's, Triacs darlingtons silicon power high voltage and low voltage silicon power high voltage and low voltage

Sib0303 Siliconix High Speed Analog Switches. Complete specifications, characteristics and applications of the DG300 series.
SIB0304 Siliconix FET Data Book. Complete data on selecting the right FET or your application, characteristics and PC board layout
SIB0305 VMOS Power FET's. Technica information, application and design aids characteristics and device, application selection for this latest in technology

Value \$16.30

PACKAGENO 5

SIB0300 Analog Switches and their Applications. Introduction to FET Analog Switches and the way the switch control or driver circuit affect performance.
LCC4280 T.I. Peripheral Driver Data Book. Total information and typical application of complete peripheral drivers and interface. LCC4290 T.l. Line Driver and Line Receiver Data Book. Complete data on line circuits and application information.
GIM0100 General Instrument Microelectronics. Complete specifications and data on calculator, clock and T.V. game chips, microprocessors, industrial devices, static RAM's, EAROM's and ROM's

Value $\$ 19.30$

We reserve the right to ship a package of our choice. if one or more items of a requested package is
out of stock. This offer available in the United States only.
P.O. BOX 1035 FRAMINGHAM, MASSACHUSETTS 01701

Over the counter sales,
12 Mercer Rd., Natick, Mass. 01760
Behind Zayres on Rte. 9
Telephone Orders \& Enquires (617) 879 -0077 In CANADA 2 LOCATIONS OUEBEC \& ONTARIO

MINIMUM ORDER $\$ 10.00$ - ADD $\$ 2.00$ TO COVER POSTAGE \& HANDLING - Canadian customers add 30% for exchange and handling. All federal and provincial taxes extra.
Foreign customers please remit payment on an international bank draft or international postal money order in American dollars

8K STATIC RAM MEMORY BOARD (BARE) \$24.50 PER BOARD

Memory Chips: 21 LO2 $\times 64$ pcs
Fully buffered; all support chips are LS type; total of 26 bypass capacitors on the board; four 340T-S voltage regulators give more than enough power to the board.

16K STATIC RAM MEMORY BOARD (BARE) \$24.50 PER BOARD

 MEM-2 uses 2114 any speed any powerStart address and stop address selected on board so board can be used portionally populated; capable of block address, can be used in SOL TM and systems without front panel

The MQ-1 QUIET MOTMER BOARD 13 SLOT

\$29.50 BARE
This Quiet Mother is standard $2-100$ BUS with 13 slots; Kluge area; extensive ground plane; passive terminal for all lines; double solder mask; silk screen parts layout.

8080A CPU BOARD

\$29.50 BARE
With 8 level vector interrupt. CPU chip 8080A; clock chip: 8224; X'tal freq.: 18 MHz ; vector interrupt chip: 8214 .

RTC-I REAL TIME CLOCK BOARD for $5-100$ bus

\$24.50 BARE On Board Oscillator: 1 MHz Crystal Number of Interrupt: 2, one is decade; it steps from $100 \mu \mathrm{Sec}$ to 100 Sec . Second is 16 bit counter, it is selectable from $10 \mu \mathrm{Sec}$ to $655,360 \mu \mathrm{Sec}$ in $10 \mu \mathrm{Sec}$ step.

MESHNA SPECIALS

PHOTO FLASH complete on PC board w/flash tube in reflector, 2 ni-cads \& camera connecting cable. Cycles in 3 seconds $\$ 6.00$ 8 SWITCHES in MINI DIP $\$ 6.00$
1.80 10 SWITCHES in MINI DIP 2.00
AA NI-CADS fast charge 1.25
5 WAY BINDING POST US made . 35
U-FIX-EM TV games, w/power pack \& video Cube in original boxes (sold for $\$ 50$) 11.00 JUMBO LED .187 diam. long leads $6 / 1.00$ TV CHEATER CORDS 6 ft
.75
LIQUID CRYSTAL thermometer, reads 86 to 108 degrees F
4/1.00
MULTI USE xfmr puts out 140 volts, 12.6, 6, 33.5 volts Many home projects
1.50
SEISMIC DETECTOR radio transmitter, used in Viet Nam for troop detection. 4.00
COPY LENS FROM ZEROX in mount. $8 \frac{1}{4}$ focal length iris $\mathbf{~} 4.5$ to $\$ 8$
10.50
U-FIX-EM hand calculator 4 function $\quad 3.00$
LAMBDA solid state regulated slim line power supply 12 volts DC 8 amps 50.00
ULTRA SONIC transducer $\mathbf{3 7}$ or $\mathbf{4 0} \mathbf{K h z} \quad \$ 2.00$
The above includes data on alarm system
PL 259 coax connector
.75
.60
TOUCH TONE ENCODER KIT, pad, chip \& instructions
12.95
IR NIGHT VIEWER, new ready to use, see in the dark
199.00
All above FOB LYNN MASS (you pay shipping) Amazing 64 page catalog free
JOHN MESHNA JR, INC. PO Box 62, E. Lynn Mass. 91904
CIRCLE 60 ON FREE INFORMATION CARD

SUPER 15 WATT AUDIO AMP KIT

Uses STK-015 Hybrid Power Amp Kit includes: STK-015 Hybrid IC, power supply with power transformer, front Amp with tone control all electronic parts as well as PC Board. Less than 0.5% harmonic distortion at full power $1 / 2 \mathrm{~dB}$ response from $20-100,000 \mathrm{~Hz}$. This amplifier has QUASI-Complimentary class B output. Output max is watt (10 watt RMS) at 4Ω

30MH2 FREQUENCY COUNTER KIT
Take advantage of this new state of the art councer featuring the many benefits of custom
LSI circuitry. This new technology approach to instrumentation vields enh nnced perfor LSI circuitry. This new technology approach to instrumentation vields enhenced perfor mance, smaller physical size, drastically reduced power consumption (portable battery
operation is now practicall, dependability, easy assembly and revolutionary fower pricing. Only $\$ 59,50$ $0.5^{\prime \prime}$ red LED 6 digits display Resolution: 1 Hz at 1 sec .10 Hz at $1 / 10 \mathrm{sec}$ Sensitivity: 10 Mv RMS to 30 Hz

Model 250-30A

CALCULATOR with STOPWATCH 6 Functions with \% and mem - 8 uilt in $\mathrm{x} \times$ tal controlled sto watch count to $1 / 10$ ot a second Special Price Oniy soecial
$\$ 16.50$ Ea

1Wett AUDIO AMP

All parts are pre assembled on a mini PC Board Supply Voltage $6 \sim 9 \vee$ D.C SPECIAL PRICE $\$ 1.95$ ea.
"FISHER" 30 WATT STEREO AMP

 only $\$ 5.00$ ea. TIMER KIT Time controlled from $1-100 \mathrm{sec}$.
Ideal to be used as time delay unit for burglar alarm. photo
service, and other purposes Max loading $110 \mathrm{~V}, 2$ AMP
Supply voltage 12.18 V D.C TIMER \$11.50 each
ELECTRONIC ALARM SIREN

deal for use as an Alarm or hook up to your car back.
to make a reverse ind icatop
hight Output up to 130 dB tage Supply 6 $\sim 12 \mathrm{~V} \quad \$ 7.50$

19 KEY HEXADECIMAL KEY PAD

- $1-0$

ABCDEF $\quad \leftarrow$ Kekey SPECIAL $\$ 10.50$ ea.

Can be used for Computer Data Entry Pad of Digital Lock
All key tops Dlank with super
good touch toeling \$0.95ea

ECTRONIC LOCK KIT
 DIGITAL ELECTRONIC LOCK KIT

$\$ 6.50$ ea.

POWER SUPPRY KIT
O.30V D.C. REGULATED

TR ourput can be adjusted from
$0.30 \mathrm{~V}, 2$ AMP. Complete with PC
board board and all electronic Transformer for Power Supply, 2 AMP $24 \mathrm{~V} \times 2 \$ 5.50$
30 V DC Panel Meter $\$ 4.20$

MA1003, 12 V DC CLOCK MODULE

Built in X'TAL controlled
time base. Protected against
automotive volt transients. automotive volt transients.
Automatic brightness con trol with 0.3". green color displav. Display "urnof

$\$ 19.50$

Input connector. BNC type at 1 amp regulated - Input power required: $117 \mathrm{~V}, ~ A C 50 / 60 \mathrm{H}$

FLUORESCENT LISHT DRIVER KIT

12 V DC POWERED Lights up $8 \sim 15$ Watt
Fluorescent Light Tubes
Ideal for camper, outdoo
Auto or Boat

Kit includes high voltage coil, power transistor heat sink, all other electronic parts and PC Board, light tube not inctuded!

ONLY \$5.50 PER KIT

These static memory kits (one for the H8 buss, all others $\$.100$ compatible) deliver outstanding performance at prices even the dynamics can't match. What others consider "extras" we consider necessitles, such as full buffering on all lines, reliable DMA, sockets for all ICs, gold-plated card fingers, prime ICs... and all the other signs of quality that make up an Econoram. No matter what machine and we know the best way to do that is to offer a superior product at the lowest posslble price.

NEW! $16 \mathrm{~K} \times 8$ ECONORAM IVTM KIT (\$329)
Guaranteed current consumption 2000 mA . Manual write protect swltches for 4 K blocks; use with or without phantom line. Fully static.

NEW! $24 \mathrm{~K} \times 8$ ECONORAM VIITM KIT (\$490)
Our densest board is your best value in 24 K memory. Current consumptlon under 2500 mA ; configured as two 4 K blocks and two 8 K blocks with independent manual write protect phantom lines. Add $\$ 35$ for assembled/tested.

8K $\times 8$ ECONORAM IHTM KIT (\$135) A truly cost-effective package that has drawn
raves from both owners and reviewers (see the 1/78 Kilobaud for an example). If you have the space in your motherboard, there's no better way to get 24 K of memory than taking advan$\$ 20$ to single kit price for assembled/tested.

NOTE: The above 3 boards are guaranteed compatible with S .100 systems running at 2 MHz . report excellent results in 4 MHz systems also.

H8 COMPATIBLE

ECONORAM VITM KIT (\$235)

$12 \mathrm{~K} \times 8$ for the H 8 , with the same features that have made our \$. 100 boards so popular. Additionally, all sockets and bypass capacitors are already soldered in place so you can get right into the best part of kit building.
\qquad JUSTIN TIME - 12 V CLOCK! The MA1003 clock module is a complete unit $\$ 16.50$ or $3 / \$ 46$

TRS-80 16K CONVERSION KIT UUST IN - WO TIME TO SET TRPE. CONTAINS 8 IIONS ON CONVERTING YOUR 4K TRS-80 TO $16 K$ MACUINE. SAVE $\$ 100 \cdots$ ONSY $\$ 190^{4}$

RELAY SPECIAL: Beautiful little Electrol reed relays. DPST, N.O., 12 V coll; 1 " mounting center with $1 / 10^{\circ}$ spaced leads. Now on spectal at $2 / \$ 1.50$

ELECTRIC MOTOR SPECIAL: From ilme to time we luck out and pick up a True Gizmo. This time, we're offering some of those small DC motors (run on about 1 to 5 VDC) you flnd toys, games, win-
dow displays, electric toothbrushes, etc. Now dow displays, electric 100 thbrushes, etc. Now
they're on special at $10 / \$ 2.95$...how can you go they're
wrong?
TRANSISTOR SPECIAL: NPN house -numbered TO.92 package replaces 2N3904 and similar. Min Beta 250, goes up to 500; reasonable

 Add $\$ 1$ handling for orders under $\$ 10$. Cal res add tax. COO OK | with streat addrass for UPS. For VISA /Mastercharge" Orders |
| :--- |
| Call our order desk |
| 124 hrs) at (415) 582.0836 . Prices good through | GODBOOR:

CIRCLE 48 ON FREE INFORMATION CARD

FREE PROBES FREE PROBES FREE PROBES

	$\$ 1.35 \quad 10 \cdot \$ 12$	
B/T 40374	1/8 WATT RESISTORS	
250V-2A NPN T066	10 ea.-390, $1.8 \mathrm{k}, 3.9 \mathrm{k}, 6.8 \mathrm{k}, 11 \mathrm{k}$ $43 k, 68 k, 240 k-5$ percent tol.	
. 10 for $\$ 6$	80 FOR 84	
BISTABLE RELAY	2A,50V bridge 39	
	ultra sensitive relay	
	-SUPER SPECIALS- DIAC 27 TRIGGER DIOOE PULSE XFMR. $1 / 1$ TOROID-ENCASED $\quad .20$ 600MFD. 360VDC PHOTO FLASH CAP. .90 1702A 2K, 1us, EPROM SP425 SPERRY 9 digit 子" HV	
POTTER BRUMFIELD		
4 PDI 3 A Contacts 24 VDC COIL	${ }_{7451} 7451$ peripheral driver $\ldots . .40$	
650 ohms		
120 VAC		
10.5MA 1.60 ea.		
DIP TRIMMER	$\begin{array}{lllll}78 \mathrm{LO5} & 5.0 \mathrm{~V} & \prime \prime & \text { IA }\end{array}$	
	78 L 12 12 V $"$ $"$ $"$.29 78 L 15 15 V " $"$.$"$.29	
	$\begin{array}{lllll}78 L 15 & 15 \mathrm{~V} & " 1 & " \quad " & .29 \\ 78 \mathrm{MO} & 5 \mathrm{~V} & \text { tab } & .5 \mathrm{~A}+\text { regul. } & .59\end{array}$	
\square SPERRY 9 DIGIT PLASMA DISPLAY, COMMON CATHODES, $1 / 4^{\prime \prime}$ HIGH DIGITS- DP18880 IC DRIVER FOR "NIXIE" ABOVE DISPLAYS O123456789AbCdEF WITH 0-15 DISPLAY or IC $\$ 1.50$ вотн $\$ 2.75$		
GIPER VARO SEMICONDUCTOR		
SAVER EPOXY BRIDGE RECTIFIERS 10 AMP 50V VJ048		
PO BOX 41778 Sacramento, Ca. 95841 \qquad 9163342161 Money back guarantee - $\$ 5$ minimum order we pay post on orders for $\$ 10$ or more. All payment must be in U.S. Yunds foreign not prepoid orders and shipping is added 4811 MYRTLE AVE		
	BankAmeric	

Specioll Functions 3050 VALMONT ROAD BOULDER,COLORADO 803OI

Terms

- Prices. specitications and availa) ility sul-
 Flease edd $\$ \$ 1.00$ oriestioge and hammiling
 Coloraior esesidents. atter $3 / \%$ shes sates tax.

No C.O.D. Splease.
Foreign orders send

OF OUR ORDERS THE
DAY WE RECEIVE THEM

Toms Fos cembrose was sinuoperiven mimm
 as Hompenine st. Cambursee M

TELEPHONE YOUR ORDERS - Phone in your ctrarge CALL: 1-518-561-8700.

SURPLUS WANTED. Contact our buying office at $1-514.695-0400$ or send tist and samples to Platts.

CANADIANS - Ordering from this ad is simple. Please remit in U.S. funds (or add 10% to overall total and remit in Canadian funds) - (Chargex and Mastercharge wel. come). We do the paperwork and ship to you direct from the U.S.A. at low American prices. You pay duty and tax to Canadian Customs (Canadian schoots are exempt We have stores in Canada, too! Write for Canadian catalogs. We invite you to visit our Plattsburgh store just 50 minutes from Montreal on U.S. 87

30 MHz LOW COST FREQUENCY COUNTER KIT

Features:
Frequency Fange -100 Hz to 30 MHz min., resolution 100 Hz
All T T L Circuitry-No tears in the eyes when replacing ICs
FET input Stage-Otfers high input impedance
High Sensitivity- 15 mV typical
On Board Base- $0.001 \% 10 \mathrm{MHz}$ for better accuracy
On Board Regulator-No external power supply needed
Allics Socketed-E asy to service

- Easy po perate-No switches to flip

Now Low Cost
Instrument Case
H. 2 7/16" W. $81 / 2^{\prime \prime}$ D. 9% and in 6 varying heights also compatible as other instrument housing
Mod. \# CH2OO PRICE

COMPARE and SAVE! $\$ 54^{05}$

KIT INCLUDES: Detailed Instructions $(22$ pages) All parts including transformer

T-8K/ Static Ram Memory Kits Memory Chips
2102 low power chips. Boards operate with the fastest 2102 on the market (250ns). Buffering Support Chips
Input and output data lines fully buffered. All possible support chips are low power schottky. Support chips at bottom of board for strong drive signals to bus.
Bypass
26 bypass capacitors on the board.
Voltage Regulation
Four 340T-5 five volt regulators give power even if all chips on board are regular power devices
Protect
Protect/Unprotect is selected on board so board can be used in systems without a front panel.
Address Select Oelay
Can be set in 8 K increments. Delays can be selected on board that any speed 2102 memory chip can be used

T-8KKit 450n 350 ns 250 ns
Assembled 8 Teried \$150.00 Bareboard (without parts): $\$ 25.00$

CRYSTALS ± 0.002 \% LOWEST PRICE EVER \| HIGHEST ACCURACY!

Frequency	Price	Frequency	Price	Frequency	Price
M ${ }^{2}$		M $\mathrm{H}^{\mathbf{Z}}$	© 3.65	$\mathrm{MH}^{\mathbf{Z}}$	
1.0000		4.0000		10.000	(3)2.85
1.8432	@ 4.90	4.1943		14.318	
		4.9152		14.391	
2.000	@4.50	5.000		18.000	
${ }^{2} 2.0100$		5.0688 5.1850		18.4320 20.0000	
2.097152		5.7143		22.1184	
2.4576		6.000		27.000	
2.667 3000		6.144		32.0000	
3.000 3.200		6.400		36.0000	
3.2768		6.5536		48.0000	
3.5795		8.0000			

SPECIAL OF THE MONTH

On board 2708 EPROM addressable to any 4 K boundary above 32 K . Power-on-Jump to any 4 K boundary above 32 K or the on-board 2708. A wait state may be added to any

1) M1 cycle 2) Memory request cycie
2) On-board ROM cycle (for use at 4 MHz)
3) Inpul cycle 5) Out-pur cycle

On-board run-stop flip-flop and optional generation of MEMORY WRITE allow front panel-less operation. Selectabie 10 addressing mode: 1) 8080 Mode where peripheral address byte is cuplicated on high and low order address bytes. 2) $\mathbf{Z - 8 0}$ mode where the peripheral byte appears on the low order address, and the contents of the accumulator appears on the high order byte. allowing simultaneous I/O. DMA Grant tri-states all signals from the processor board. 8224 clock generator provides 8080 took-alike $\$ 1$ and 02 for the $\mathrm{S} \cdot 100$ bus. Status signals SINP, SOUT. SMEMR, \& SWO are latched per $\mathrm{S} \cdot 100$ bus specs

\$135.00 EA. \$149.95 EA.

BARE BOARD $\mathbf{\$ 3 5 . 0 0}$
ASSEM8LED \& TESTED: ADD $\$ 50$ to each KIT PRICE KITS INCLUDE ALL PARTS ANO 2708 UNPROGRAMMED

7400 Series

문운운 	
준믄즘 	

take advantage of this new state-of-the-art counter featuring the MANY BENEFITS OF CUSTOM LSI CIRCUITRY. THIS NEW TECHNOLOGY APPROACH TO INSTRUMENTATION YIELDS ENHANCED PERFORMANCE, SMALLER PHYSICAL SIZE, DRASTICALLY REDUCED POWER CONSUMPTION [PORTABLE BATTERY OPERATION IS NOW PRACTICAL], DEPENDABILITY, EASY ASSEMBLY AND REVOLUTIONARY LOWER PRICING!

60 MHZ COUNTER WITH CABINET \& P.S.
650 MHZ PRESCALER [NOT SHOWN
60 MHZ COUNTER WIRED. TESTED \& CAL.
600 MHZ COUNTER WIRED. TESTED \& GAI

SIZE:
3" High
6" Wide
512" Deep

FEATURES AND SPECIFICATIONS: DISPLAY: 8 RED LED DIGITS . " $^{\text {" CHARACTER HEIGHT }}$ GATE TIMES: 1 SECOND AND $1 / 10$ SECOND prescaler will fit inside counter cabinet RESOLUTION: 1 HZ AT 1 SECOND. 10 HZ AT $1 / 10$ SECOND. FREQUENCY RANGE: 10 HZ TO 60 MHZ . [65 MHZ TYPICAL]. SENSITIVITY: 10 MV RMS TO 50 MHZ . 20 MV RMS TO 60 MHZ TYP. INPUT IMPEDANCE: 1 MEGOHM AND 20 PF.
[DIODE PROTECTED INPUT FOR OVER VOLTAGE PROTECTION.] ACCURACY: ± 1 PPMI $\pm .0001 \%$];AFTER CALIBRATION TYPICAL ACCBILITY: WITHIN 1 PPM PER HOUR AFTER WARM UP $[.001 \%$ XTAL] IC PACKAGE COUNT: 8 (ALL SOCKETED]
INTERNAL POWER SUPPLY: 5 V DC REGULATED.
INPUT POWER REQUIRED: $8-12$ VDC OR 115 VAC AT $50 / 60 \mathrm{~Hz}$. POWER CONSUMPTION: 4 WATTS
KIT \#FC-50C IS COMPLETE WITH PREDRILLED CHASSIS ALL HARDWARE AND STEP-BY-STEP INSTRUCTIONS WIRED \& TESTED UNITS ARE CALIBRATED AND GUARANTEED.

PLEXIGLAS CABINETS

CABINET I
3"H,6\%"W,5y/2D Black, White or CABINET II Clear Cover 2 y "H,5"W,4"D $\$ 6.50$ ea
red or ghey plexiglas for digital bezels
Great for Clocks or any LED Digital uroject Clear-Red Chassis serves as Bezel to ncrease contrast of digital displays

E-DIFIT LED LLILK LTETITR KIT

FOR THE BUILDER THAT WANTS THE BEST FEATURING 12 OR 24 HOUR TIME 29.30.31 DAY CALENDAR. ALARM. SNOOZE AND AUX. TIMER CIRCUITS Will alternate time (8 seconds) and date (2 seconds) or may be wired for time or date display only. with other functions on demand. Has built-in oscillator for battery back-up. A loud 24 hour alarm with a repeatable 10 minute snooze alarm, alarm set $\&$ timer set indicators. Includes 110 $V A C / 60 \mathrm{~Hz}$ power pack with cord and top quality components through-out.

KIT - 70018 WITH $6 \cdot 5^{\prime \prime}$ DIGITS -7001C WITH 4 - 6° DIGITS 8 $7001 \times$ WITH FOR SECONDS KIT $7001 \times$ WITH 6 - $6^{\prime \prime}$ DIGITS

-2350 $2 / 445{ }^{\text {Assem }}{ }^{59} 9^{95}$

60 HZ

XTAL TIME BASE:
Wilt enable
Digital Clock Kits
or Clock-Calendar Kits to operate from 12VDC. 1"x2"PC Board Power Reg : $5-15 \mathrm{~V}$ (2.5 MA. TYP.) Easy 3 wire hookup Accuracy: ± 2 PPM \#TB-1 (Adiustable) "TB-1
Comple Kit 495
wir \& Cal 59.95

SPECIAL PRICING! PRIME - HIGH SPEED RAM 21L02-3 mans

LOW POWER - FACTORY FRESH 1-24 \$1.75 ea. 100-199 \$1.45 ea. 25-99 1.60 ea. 200-999 1.39 ea, 1000 and over ${ }^{\text {s }} 1.29$ ea.

JUMBO DIGIT CLOCK

A complete Kit (less Cabinet) featuring six $5^{\prime \prime}$ digits, MM5314 IC $12 / 24 \mathrm{Hr}$. time, PC Boards. Transformer, Line Cord, Switches and all Parts. Ideal Fit in Cabinet 11

> | Kit $\# 5314-5$ | ${ }^{*} 19^{95}$ | $2 /{ }^{*} 38$ |
| :--- | :--- | :--- |

JUMBO DIGIT
CONVERSTION KIT $\$ \mathbf{9 5}$ ea.
Convert small digit LED clock to large .5" displays. Kit includes 6 . LED's, Multiplex PC Board \& Hook up info. Kit \#JD-1CC For Common Cathode Kit \#JD-1CA For Common Anode

PRINTED CIRCUIT BOARDS for CT-7001 Kits

 sold separately with assembly into. PC Boards aredrilled Fiberglass. solder plated and screened
Specily tor 7001
B. Cor X- $\mathbf{\$ 7 . 9 5}$
win comonenen byout

AUTO BURGLAR

 ALARM KITVARIABLE REGULATED 1 AMP
POWER SUPPLY KIT VARIABLE FROM 4 to 14 V
ShORT CIRCUIT PROOF 723 ic regulatoa 2N3055 PASS TRANSISTOR - curbent limiting at 1 amp KIT IS COMPLETE INCLUDING ORILLED 8 SOLDER PLATED FIBERGLASS PC BOARD AND ALPARTS (Less TRANS
 TRANSFORMER24VCT will
provide 300 MA at 12 V and
$\$ 19.95$

MDBLE LEX RLDLK

MODEL 12 VOLT AC or
 U 2001 DC POWERED

6 JUMBO . $4^{"}$ RED LED'S BEHIND RED FILTER LENS WITH CHROME RIM SET TIME FROM FRONT VIA HIDDEN SWITCHES - 12/24-Hr. TIME FORMAT STYLISH CHAHCOAL GRAY CASE OF MOLDED HIGH TEMP. PLASTIC BRIDGE POWER INPUT CIRCUITRY - TWO WIRE NO POLARITY HOOK-UP OPIDGE POWER CONNECTION TO BLANK DISPLAY (Use When Key Off in Car, EIC - TOP QUALITY PC BOARDS \& COMPONENTS - INSTRUCTIONS. MOUNTING BRACKET INCLUDED

 $\$ 15.00$ - COD FEE $\$ 1.00$. FLA. RES. ADD 4% STATE

FROM KIT TO CAR

IN 80 MINUTES!

Electronic ignition is "in." Update your car with the TOPS in power, efficiency and reliability - the TIGER SST capacitive discharge ignition (CD).
The TIGER delivers everything other CD's promise - and more: quicker starting, more power, more gas mileage, tune-ups eliminated, lifetime plugs and points, reduced repairs and pollution.
The TIGER can be built and installed in your car in 80 minutes. The TIGER is uniquel
The TIGER comes with a switch for TIGER or standard ignition for 12 V negative ground only.

Simpli-Kit \$21.95

POST PAID U.S.A.

WE ACCEPT

Mastercharge or Bank Americard
Send check or money order with order to:

Tri:Star Corporation

DEPT. FF, P.O. Box 1727 Grand Junction, Colorado 8150 CIRCLE 29 ON FREE INFORMATION CARD

DIGITAL AUTO INSTRUMENTS \therefore TаснOMETER SEVEN MODELS!

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.
Free Information Number Page
36 Active Electronics.. 101
Advance Electronics 73,83
2 Advanced Computer Products 99
1 Aldelco 90
A M C Sales. 94
79 American Antenna Cov. 4
43 American Technology 84
81 Avanti Research \& Developmeni 85
42 A V R Electronics 104
44 Babylon Electronics 106
Karel Barta 92
11 Forest Belt's Training Workshop.... 31
58 B \& K Precision Dynascan Co Cov. 2
Bullett Electronics 106
80 Butler National Corp. 82
C F R Associates. 94
45 Chaney Electronics 90
4 Channellock 75
CIE-Cleveland Institute of Electronics. 18-2
Command Productions 92
69 Communications Electronics 86
3 Continental Specialties Cov. 3
Cornell Electronics 94
CREI-I iv. of McGraw Hill Continuing Education 68-71
Dage Scientific Instruments 96
66 Davis Electronics 78
65 Delta Electronics 100
Devtronix Organ Products 94
70 Digi-Key 113
71 Digital Research Corporation 96
8 EICO 25
46 Electronic Discount Sales 100
Electronic Systems 97
EMC-Electronics Measurements 86
37 Etco Electroniss 111
47 Fluke 77
59 Fordham Radio Supply 98
41.7 Formula International 102,103
6 Fuji-Siea 91
48 Godbout Electronics 104
72 Gould 17
9 Grantham College of Engineering 82
10 GTE Sylvania-Consumer Renewal. 30
100 Heath 13
67 Hickok Electrical Instruments 80
Illinois Interconnect Telephone 92
28 Indiana Home Study 78
Information Unlimited 96
68 Integrated Electronics 106
34 International Crystal Mfg. Co. 87
12 International Electronics 115
International Microcomputer Exposition... 25
49,51 James Electronics 108,109
30 Kager International 86
Krystal Kits 92
Lab Science. 92
Lakeside Industries. 92
40 Leader 67
14 McKay Dymek 22
60 Meshna 102
13 Mountain West Alarm Supply 81
15,35 National Camera Supply 82,84
National Radio Institute (NRI)-Dis. ofMcGraw Hill Continuing
National Technical Schools. I
NCE Compumart 98
78 Netronics 96
New-Tone Electronics 104
16 O.K. Machine \& Tool 29
73 Olson. 102
17,18 Optoelectronics , 117
54 Page Digital 100
PaIA. 84
Panasonic. 32
53 Panavise 85
5 Poly Paks 114
20 Priority 1 Electronics 105
PTS Electronics 79
55 Quest 92
74 Radio Hut 107
Radio Shack 93
64 Ramsey Electronics 94
RCA $16,78,79,81$
62 Rye Industries 88
Sabtronics. 7
32 Schober Organ 81
22 Sencore 28
63 Solid State Sales. 110
24 Solid State Time. 118
23 Southwest Technical Products 2
Special Functions 110
Spyderco 17
A.F. Stahler Co. 94
25 Tab Books. 89
57 Texas Tuner Service 88
29 Tri-Star 118
26 Trinico International 112
Trumbull 94
76 Tuner Service 5
77 Vector 89
Vero 15
33 ViZ Mfg 24
31 Wersi Electronics 88
38 Weston Instrument 26,27
52 Wizard of Parts 116
MOVING?
Don t miss a
single copy of
Radio-Elec
tronics. Give
us:
Six weeks no-
lice
Your old ad-
dress and zip
code
Your new ad-
dress and zip
code
namel
nameress
city

Mall to: Radio-Electronics

 SUBSCRIPTION DEPT., P.O. BOX 2520 , BOULDER, COL'O. 80322
FREQ OUT. FOR LESS.

Introducing CSC's new
Mini-Max. It brings down the
cost of counting ip the frequency
for CB-ers. hams, computer enthu
siasts audiophiles ...just about any engineer technician or hobbyist will find it indispensable
It's mini"-sized, too-a pocketable $3 \times 6 \times 1 / 1 / 2$ inches But when it comes to performance, Mini-Max means maximum value. Measuring signals as low as 30 mV from 100 Hz to a guaranteed 50 MHz , with $\pm 3 \mathrm{ppm}$ timebase accuracy and better than 0.2 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ stability from 0 to $50^{\circ} \mathrm{C}$. Completely automatically. Advanced LSI circuitry with a crysta| controlled timebase provides precise frequericy readings on a bright, six-digit LED display, with automatic $\mathrm{KHz} / \mathrm{MHz}$ indications. Mini-Max is versatile. too. You can connect it directly to the circuit under
test. or use its matching mini antenna for easy RF checking. Either way the input is protected against overload to 50 V (100 V below 1 KHz)

Mini-Max is as inexpensive to use as it is to own An ordinary 9 volt alkaline battery gives up to 8 hours of intermittent operation, and you have the flexibility of a battery eliminator for AC operation. For increased versatility, there's a complete line of accessories. including standard clip-lead cable and mini antenna eliminator and carrying case are optional

CSC's new, all-American made Nini-Max is everything you need for highly-accuraie checking of frequencies up to 50 MHz . At a price that will Freq you out. Order today Call 203-624-3103, 9 a m. - 5p.m Eastern Standard Time. Major credit cards accepted Or see your CSC dealer. Prices slightly higher outside U.S.A.

CONTINENTAL SPECIALTIES CORPORATION

WE'LL SELLYOU ONE FOR ${ }^{\text {s } 38.50 ~ T O ~ P R O V E ~ I T!~}$

The K40 is more than just a premium antenna. It's specifically guaranteed, in writing, to outperform any antenna it replaces.

TRANSMITS FURTHER. RECEIVES CLEARER.

We mean just that! We'll back your customers 100% if the K40 doesn't transmit further or receive clearer than the antenna it replaces. We know it will. We've tested. it with 771 CB'ers for one year.

2
 WHEN YOU PAY MORE, YOU EXPECT MORE.

For a full year we'll let you replace any part your customer is not happy with. You make that decision, not us. Our guarantee includes rust. It includes broken whips. It includes everything.

IT'S AMERICAN MADE.

No need to be concerned about replacement parts. There is not one component that is made anywhere else but in America.

MOUNTS ANYWHERE, EVERYWHERE. With the spectacular Unimount, you can fit your customer's K40 to any mounting surface - anywhere. And that's guaranteed too. 100%. That means this single K40 antenna can easily reduce your inventory by 50% by having one model that mounts anywhere. And still make more money because you get much, much more for each antenna sale.

SOLD BY PROFESSIONAL DEALERS THAT TAKE PRIDE IN SERVICING CBER'S.

Like pro-golf clubs, the K40 antenna is sold through pro-CB/ELECTRONIC stores only. It's not being sold to mass merchandisers. It's not being sold to Sears or Penney's or any retail outlets that cannot offer full time professional services to support the service full time CB'ers need. We control that because we personally qualify each and every retailer before we sign him on.

HERE'S OUR DEAL.

If you qualify (not every dealer does) we'll send you a complete Dealer Profit Package that includes 12 K40's, 3 Unimounts, and an award winning floor display. Take one and keep it for yourself. Sell the other eleven. If we can't prove the $\$ 38.50$ K40 will sell faster than any antenna you're selling now, we'll refund all your money. And you still keep your K40. Fair?
 AMERICAN ANTENNA, Elgin, Illinois. An All-American Product by an All-American Company.

[^0]: Manager, Design Engineering, Heath Co., Benton Harbor, MI.

[^1]: *Vice President, Perma Power Division of Chamberlain Mfg. Corp.

