SPEGIL CONSTRUCTION ISSUE-6 GREAT PROUEGTS

the magazine for y inmeas in electronics

3 octave
 MUSLG GENERATOR uses pink noise

multif feature

TELEPHDNE D has a memory no digit

DICITAL GLOG. for your wall

Honuid tester and identifier

* Quad Scope Adapter
* GB Noise Limiters * Solving The dB Mystery * Hi-Fi Lab Test Reports Sony Elcaset Deck Sherwood IP-2000 Amp
* Jack Darr's Service Clinic * Build This 2650 Computer

Micromind is an incredibly flexible, complete and expandable, hardware/ software, general purpose computer system. You won't outgrow it.

Hardware includes an 80 key, softwaredefinable heyboard, 1/O interface board, 6500A-series microprocessor (powerful enough for advanced computing), a highdetail graphics and character display processor, power supply, rf modulator, and connections for up to 4 tape recorders plus TV or monitor. An interconnect bus

permits 15 additional microprocessors, parallel processing and vastly increased computing power.

System software -including ECD's own notsoBASKC high level language, on advanced error-correcting tape cassettes -provides a word processing editor, a

powerful assembler, a debugger, a file system, graphic routines, and peripheral handlers. We also include dynamic graphic games: Animated Spacewar and Life.

ECD's standard Micromind $\mu \mathrm{M}-65$ supplies 8 K bytes of memory. Additional

32 K byte expansion boards and a mapping option give Micromind expandable access to 64 Megabytes. Utilizing softwarecontrolled I/O channels, Micromind's advanced encoding techniques load data from ordinary tape recorders at 3200 bits per second.

Micromind comes to you re ady-to-use, factory assembled and fully tested. Among microcomputers, it has the largest memory capacity and the fastest storage. You're looking at the work of the finest display processor on the market. You won't find a microcomputer with a more powerful CPU. You won't find a computer with a

So, quit the kluge scene and key into Micromind. You'll be a main frame performer, with all the comforts of home. We're not fooling ... this is the cat's μ !

ECD CORP.
196 Broadway, Cambridge, Mass. 02139 (617) 561-4400

HOW NOT TO RUN YOUR RECORDS

PART I

Don't "play"over micro-dust

THE PROBLEM:

The graatest cause of record degeneration is micro-dust. All records possess a statiz charge which attracts a very fine, virtually invisible micro-dust from room air. A record may "look clean" bui contain a fine coating of micro-dust When you play over this coating, even at one gram of stylus pressure, \%ou grind the micro-dust into the record walls. often forever. Your record then gets "noisy."

COMMON ERRORS:

Most record cleaners are "pushers" and simply line up dirt without removing it from the disc. Skating a pusher off the eecord only spreals micro-dust into a tangent line of danger. Extra arm dev.ces and all cloths are too coarse to do anything but pass over micro-dust-or genily spread it out.

AN ANSWER FROM RESEARCH:

The exclusive Discwasher System removes micro-dust tetter than any other method.

1. The slanted pile lifts up rather than linss up debris. The pile fibers are fixed in the fabric better tha:- any other record cleaner, anc "tracs" record grooves rather than serape them (see figure 1).
2. Alternating "open rows" of highly absorbent bazking hold micro-dust taken off the record, and demonstrate Discwas eer's effeztiveness over long term use (see figure 2).
3. The inherently safe D3 fluid celivery s, stem and capillary fluid removal allows the most researche $\dot{\sim}$ record cleaner to the world's test.

Fig. 1 Line of miso-dust removed from a "clean" record.

UNRETOUCFED PHOTOS OF DISCWASHER ERUSt

Flg. 2 Accumulated miaoJust from lonç, effect ve wse of the Discwasher Syster.
 up with Shakespeare's Big Stick. The omnidirectional fiberglass base station antenna hat outperforms anything on the 40 channel band. Illuminating 12 times more capture area. And sending the signal energy out tc the herizon in a unique, low angle radiation pattem.

This ralf-wave coaxial sleeve antenna incorporates exciusive Shakespeare engineering in fiberglass to outrange taller, heavier metal antennas under alt conditions. Withstanding ice and wircis up to 123 MPH with no damace :o reception. And pretuner to a low SWR over the 40 chanrel jand (ค) Move up for the big gain witt Shakeradials. Works anywhere with any length of cable. Aso available in a low cosst, 2 piece model, Big Stick II.

Shabespeare

The best antenna going. And coming.

Big Stick, Style 176 Usei as part of this country's DEW tire defense system. Less than $\$ 45$.

Shakespeare Zor pany/Anterna Grouv, P.O. Eox 245 Coumbia, S. (-EMO2
In Canada Len Finkler, Lid Ontario.

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS

6IX GREAT

 PROJECTS
31 Electronic Music Synthesizer

Infinitune uses pink-noise sources to produce pink-noise music. by Raymond A. Chamberlin

35 No-Diglt Clock
It works like a conventional clock but doesn't have hands and does have digital circuitry. by Terry A. Waltere

38 Push-Button Phone Dlaler
Works with dial phone. Automatically redials numbers and stores frequently-used numbers. by Dick Finwell

42 Ouad Scope Adapter
Display 4-channel signals on your single-trace scope. by Stephen Dunifer

44 IC Identifler
Tests and identifies the unknown digital ones. by Eari R. Savage
47 Bulld A 2650 Computer System
Part 3: The supervisor program and how to use it. by Jeff Roloff

GENERAL ELECTRONICS

4 Looking Ahead
Tomorrow's news today
by David Lachenbruch
16 Computer Corner
Microcomputer interrups.
by David G. Larson, Jon Tltus and Peter R. Rony

CB RADIO
25 R-E Tries: Wawanee Catalyzer
Oscilloscope, RF Wattmeter and SWR Bridge for CB Service.
54 CB Noise Limiters
A look at how these automatic circuits work. by Robert F. Scott

HI-FI

STEREO
57 R-E Lab Teats Elcaset Deck
"Excellent" is the rating the Sony EL-5 earned.
59 R-E Lab Teste Integrated Stereo
Amplifier. Sherwood HP-2000 checks out "Very Good".
65 Solving the d8 Mystery
Don't misunderstand dB notations used in hi-fi specifications. by Len Feldman

TELEVISION

68 Jack Darr's Service Cunic
Quick response voltage regulator. by Jack Darr

DEPARTMENTS

88	Advertising Index	83	New Books
12	Advertising Offices	78	New Products
14	Letters	6	New \& Timely
85	Market Center		

ON THE COVER

Four of the six projects in this issue are shown on this month's cover. In addition to those illustrated, you will want to see the Quad Scope Adapter and Build A Computer stories. See the listing at the left for page numbers.

AUTOMATIC NOISE LIMITERS are used extensively in CB transcelvers. This story tells how they work. turn to page 54

VOLTMETER WITH OB SCALE referenced to 0.775 volt. See Solving The dB Mystery for more data. . . . turn to page 65

Radio-Electronics, Published monthly by Gernsback Publications Inc 200 Park Avenue South, New York NY 10003. Phone: 212-777-6400. Second-class postage paid at New York, NY and additional mailing offices. One-year subscription rate: U.S.A., U.S. possessions and Canada, $\$ 8.75$. Pan-American countries, $\$ 10.25$. Other countres, $\$ 10.75$. Single copies $\$ 1.00$. © 1977 by Gernsoeck Pubications, inc. All rights reserved. Printed in U.S A.

Subecription Service: Mail all subscription orders changes, correspondence and Postmastef Notices of undelivered copies (Form 3579) to Radio-Eloctronics Subecription Service, Box 2520, Boulder, CO 80322.

A stamped self-addressed envelope must accompany all submitted manuscripts and/or agtwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and /or artwork or photographs while in our possession or otherwise.

As a service to readers, Radio-Electronics publishes avallable plans or intormation relating to newaworthy products, techniques and aclentific and technological developments Because of poeslble verlances In the quality and condition of materlals and workmanship used by readers, Aadlo-Electrontce discialms any responsilbilty for the safe and proper sunctioning of resder-bulli profects based upon or from plans or Intormation pubilshed in thls magezine.

looking ahead

Metafine IV: Remember the name-it just could become a household word. It's the working name 3M has given to its new super magnetic tape formulation, previewed in this column in September 1974. 3M now says it's ready to go into production of the new tape whenever equipment manufacturers can handle it. The only problem is that the tape is so advanced it will require a whole new generation of equipment to take advanatage of its capabilities.

Metafine has a coating of fine metal particles instead of the conventional oxide, and is claimed to have four times the efficiency of current tapes. 3 M says it has 6dB more signal-to-noise than today's best high-energy tapes, and the increased energy is used across the entire spectrum. The new tape probably will be aimed first at home videocassette use where it could operate at one-half the speed of existing tapes, producing the same results, according to 3 M . This would mean, for example, recording for four hours on a single Betamax cassette (with suitably modified hardware). Along with parallel development work on CCD color cameras and other hardware, 3 M sees the new tape as eventually making possible a combination portable camera-VTR or practical magnetic videodisc recorders.

Metatine also has potential in audio. The tiny microcassette could become a hi-fi instrument, and today's standard compact cassette could rival the open-reel deck in both frequency response and signal-to-noise ratio.

New RCA chassis: RCA has developed a completely new chassis which it will gradually adapt to most or all of its 19-inch-and-above color sets. Called "Xtended Life," it is compact and U-shaped and weighs 8.5 pounds less than the XL-100 chassis it has replaced in the 19 -inch line. RCA claims it is the most easily serviced chassis it has ever developed. The eightmodule chassis draws only 86 watts in the 19 -inch size. RCA also says it operates an average of 24% cooler than its predecessor, with higher performance.

Introduced first in RCA's low-end (non-ColorTrack) 19 -inch sets, it will soon be extended to 25 -inch nonColorTrak models and this summer to 19 -inch ColorTrak. It features prominently in RCA's major effort to keep production down and is said to be considerably more "cost-effective" than previous models. A major feature is a new chroma IC that performs all color processing functions. It is RCA's third new chassis in as many years, following its new black-and-white unit and ColorTrak. A fourth is expected next year when RCA's Taiwan plant starts turning out a new chassis for sets with screens smaller than 19 inches.

One interesting development in RCA's color line isits acknowledgement that it made a mistake in proceeding to the self-converging slot-mask tube in its 19 -inch sets. With the introduction of the new chassis, RCA announced it was returning to the "proven and more costly" delta-gun type for greater resolution. Zenith, faced with a similar problem, held
off from using the slot-mask for 19 -inch sets until it had developed a new type with a tripotential gun to provide a smaller spot size and resolution claimed ta be better than that of a delta-gun tube.

CB at 900 MHz : Although the FCC has been keeping quiet about it for fear of triggering another market debacle of the type that accompanied the announced change to 40 channels, it is continuing a quiet study to find a home for a new CB service. The search has narrowed down to three bands $-900 \mathrm{MHz}, 220 \mathrm{MHz}$ and further expansion of the current $27-\mathrm{MHz}$ band. The odds strongly favor 900 MHz .

Expansion to more than 40 channels in the $27-\mathrm{MHz}$ band is remote because it would merely aggravate the problems of interference and wouldn't do anything about susceptibility to sunspots. A total of 2 MHz is available at around 220 MHz , but this has serious drawbacks-a potentially serious TV interference problem and proximity to an amateur band. The Commission wants to keep CB as far as possible from ham radio frequencies in the future.
This leaves 900 MHz . The major questions at that altitude are whether $900-\mathrm{MHz}$ is practical from the equipment standpoint and whether transceivers operating at that frequency can be manufactured economically. A demonstration by Motorola to FCC officials of a prototype $900-\mathrm{MHz}$ transceiver was quite impressive. And initial estimates are that equipment to operate at those frequencies could be built to sell at about a 30\% higher price than $27-\mathrm{MHz}$ gear at first, with the differential eventually vanishing.

The FCC wants to get moving as soon as possible on the machinery to establish a new FM Citizens band, in view of the impending increase of sunspot activity. Thus the Commission would like to see the new service inaugurated by the end of 1979, when solar storms are expected to be on the increase and the "skip" phenomenon building up. But current and potential CBers are assured they needn't worry about the future of the $27-\mathrm{MHz}$ band. Says FCC Chief Engineer Ray Spence: 'It couldn't be eliminated even if we wanted to do it. That service is here to stay, as far as I'm concerned."

That giant screen: Projection television using current techniques, but with some improvements, offers the only near-future hope of providing wall-size TV for the home, two experts agree. Dr. Alex Jacobson, who heads Hughes Aircraft's liquid-crystal program, forecasts that a postage-stamp-sized light valve employing LCD will produce high-brightness giantscreen TV in the home. He said the liquid-crystal lightvalve theory has now been proven (Radio-Electronics, March 1977), but home projectors using the principle are 5 to 10 years off.

The alternative to projection TV is the long-sought electro-luminescent display. Ben Kazan, Xerox Research Center, agrees with Dr. Jacobson that

Mreplacement parts nothing is foremitous.

We know the problems in finding the right semiconductor replacements for imported TV, CB and other electronic equipment.

That's why we have a line of thick-film modules and ICs that will replace over 3,000 devices in 139 brands of foreign-made equipment.

And we've made them easy to find in two ways. One is through our new Module and IC Replacement Guide that cross references the original part number with

our ECG semiconductor part number.
The other way we've made it easy is by making sure your local Sylvania distributor has access to a full stock of semiconductor replacements.

Pick up a copy of the replacement guide at your distributor today, so you'll be able to pick up all the parts you need in just one stop tomorrow.
GIT sylvania

new etimely

IC, movie technologies marrychips now come on Super-8 film

Siemens is now producing integrated circuits on super-8 movie film. Nearly a dozen such circuits, which save vast amounts of space, are now being supplied by Siemens on film rolls.

AN INTEGRATED CIRCUIT ON FILM. The indlvidual chips measure about 1.6 by 2 mm (about .06 by .08 inch).

Before the chips are mounted, the surface of the polyimide film is coated with copper, tinned and etched to produce conductors and terminal points for the chips. The inner ends of the conductors protrude into the "windows" of the film to support the chips physically as well as to connect them electrically.

About 1,000 IC's can be rolled up into a film. Since the film is perforated, manufaclurers and users can use the transport technologies of the film industry in their production facilities.

Electronically controlled cameras and flat desk-top computers have so far been the main fields of application. Small measuring instruments in which space must be conserved to the utmost are also using the new caseless miniature circuits.

Magnetic bubble memories reach practical application

Magnetic "bubble" memories, invented at Bell Labs ten years ago, have found their first application in a recordedmessage device that stores and repeats such messages as "You have reached a non-working number," to the telephone customer. The experimental application is being tested in a switching office of the Michigan Bell Telephone Co. in Detroit.

Magnetic bubbles, so called, are actually tiny magnetic domains in a thin film of crystalline magnetic garnet. They are
highly mobile and can be moved about by magnetic forces. They can be made to follow precisely defined tracks in the garnet and be precisely placed and located, making it possible to write the binary language (magnetized $=1$; unmagnetized $=0$) with them.
The bubble memory for the new message device, about half the size of a cigarette pack, contains four garnet chips, each with a storage capacity of more than 68,000 bits for a total storage of 272,000 bits. Besides the bubble chips, the package contains a magnet to provide a uniform field over the chip, and two conducting coils to produce the rotating field that moves the bubbles.
Each 272,000-bit package can supply 12 seconds of digitized speech. The speech is encoded electronically into digital information before being stored in the bubbles. A special decoder reconstructs the voice signals when needed.

Bubble memories are faster than the drum technique used in the present recorded-message devices, but slower than semiconductor memories. They have one advantage over semiconductor mem-ories-they do not lose their contents if the power is shut off or fails.

MESSAGE BOARD FROM THE BELL message system. This board forms part of a system that can record and announce up to eight messages.

The present tests will evaluate bubble memories not only on their technical but also their economic qualities, as their ultimate application will depend on their cost and performance as compared to competing technologies.

"Mike" celebrates centennial. Invention dates back to 1877

On April 14, 1877. a 25-year-old immigrant from Germany filed a caveat on a variable-pressure "transmitter" of voice sounds, just 14 days before Thomas Edison applied for a patent on a "telephone transmitter." Thus, Emile Berliner
established a "first" in the competition for the honor of being the inventor of the contact microphone. (The term "microphone" was first used a year later, by David Hughes, who was apparently using a carbon-metal contact microphone at the same time Edison and Berliner were inventing theirs.)

THE FIRST CONTACT MICROPHONE. The upper photo is the original microphone of 1877; the lower one is the form in which it was used as a telephone transmitter. Emile Berliner's microphone used a metal-to-metal contact; Edison's used carbon contacts.

1877 can be set as the year of the invention of the contact microphone. (Alexander Graham Bell had already patented the electromagnetic-now usually called "sound-powered"-microphone a couple of years earlier.)
The Berliner microphone, incidentally. saved the Bell system from destruction at the hands of Western Union, owner of the Edison patent. Bell hired the young Berliner and filed interferences against the Edison patents on the basis of his invention. This kept the matter in the courts until 1892, and prevented Western Union from forbidding Bell the use of a contact microphone.

Meanwhile the two companies came to an agreement (in 1879) in which Western Union admitted the validity of the Bell patents, agreed to keep out of the telephone business, and assigned all its telecontinued on page 1?

We've just made the impossible... a professional 3122 digit DMM Kit for less than $\$ 60$.

The Sabtronics Model 2000 is an impossible $\$ 59.95$! And that price still includes phenomenal accuracy, range and professional features.

This all-new bench/portable multimeter, reading to ± 1999, has a basic accuracy of $.1 \% \pm 1$ digit, and has five functions giving 28 ranges, 100% overrange and overload protection. So you know it's no toy!

Besides, what toys are as automatic as the 2000 ? With automatic over range load indication, automatic polarity, even automatic zeroing!

Yet the 2000 is easy to assemble. We send you all the parts you need, even the high-impact case. We also send you clear, step-by-step assembly instructions.

So you end up with a professional quality $31 / 2$ digit DMM for the unheard-of price of less than $\$ 60$. From Sabtronics, specialists in digital technology. And manufacturers of the impossible.

Order yours today!

P.O. Eox 645日3 Dalles. Texas 7520e (214)369-7310

GUARANTEE:

Our guarantee to you; examine the 2000 DMM kit for 10 days. If you're not satisfied, return it unassembled for a full refund of purchase price.

SPECIFICATIONS:

Condensed Specifications
DC volts in 5 ranges: $100 \mu \mathrm{~V}$ to 1000 V
AC volts in 5 ranges: $100 \mu \mathrm{~V}$ to 1000 V
DC current in 6 ranges: 100 nA to 2A
AC current in 6 ranges: 100 nA to 2A
Resistance: 1Ω to $20 \mathrm{M} \Omega$ in 6 ranges
9 mm (.36") LED display
Input Impedance: $10 \mathrm{M} \Omega$
Power Requirements: 4 " C " cells (not included)

Learn digital computer

> NRI is the only school to train you at home on a real digital computer.

Learn computer design, construction, maintenance and programming techniques on your own programmable digital computer

Qualified technicians are urgently needed for careers in the exciting new field of digital and computer electronics and the best way to learn digital logic and operations is now available to you in NRI's Complete Computer Electronics Course

This exclusive course trains you at home on your own digital computer! This is no begioner's "logic trainer", but é complete programmable diçital computer that contains a memory and is fully automatic You build it yourself and use it to define and flow-chart a program, code your program, store your program and datć in the memory bank. Press the start button and the corrputer solves your problem and
displays the result instantly
The NRI digital computer is one of 10 kits you receive in the NRI Complete Computer Electronics Course. You build and use your own TVOM, and experiment with NRI's exclusive Electronics Lab. You perform hundreds of experiments, building hundreds of circuits, learning organization, operation, trouble-shooting and programming

New NRI Memory Expansion Kit

The Model 832 NRI Digital Computer now comes with a new Memory Expansion Kit. Installed and checked out in 45 minutes, it doubles the size of the computer's memory, significantly increasing the scope and depth of your knowledge of digital computers and programming. With the large-scale IC's you get the only home training in machine language programming experience essential to troubleshooting digital computers.

electronics at home.

NRI offers you five TV/Audio Servicing Courses

NRI can train you at home to service Color TV equipment and audio systems. You can choose from 5 courses, starting with a 48 -lesson basic course, up to a Master Color TV/Audio Course, complete with designed-for-learning 25" diagonal solid state color TV and a 4speaker SQ" Quadraphonic Audio System. NRI gives you both TV and Audio servicing for hundreds of dollars less than the two courses as offered by another home study school.

All courses are available with low down payment and convenient monthly payments. All courses
provide professional tools and "Power-On' equipment along with NRI kits engineered for
 training With the Master Course, for instance, you build your own 5" wide-band triggered sweep solid state oscilloscope, digital color TV pattern generator, CMOS digital frequency counter, and NRI electronics Discov-
 ery Lab.

NRI's Complete Communications Course includes your own 400-channel VHF transceiver

NRI's Complete Communications Course will train you at home for
 one of the thousands of service and maintenance jobs opening in CB: AM and FM transmission and reception; TV broadcasting; microwave, teletype, radar, mobile, aircraft, and marine electronics. The complete program includes 48 lessons, 9 special reference texts, and 10 training kits. Included are: your own "designed-for-learning" 400channel VHF transceiver; electronics Discovery Lab"'; CMOS digital frequency counter; and more. You also get your all
important FCC Radio-telephone License, or you get your money back.

CB Specialist Course

also available

You pay less for NRI training and you get more for your money. NRI employs no salesmen, pays no com missions We pass the savings on to you in reduced tuitions and extras in the way of professional equipment, testing instruments, etc You can pay more, but you can't get better training
More than one million students have enrolled with NRI in 62 years. Mail the insert card and discover for yourself why NRI is the recognized leader in home :raining Do it today and get started on tha: new career No salesman will call

If card is missing write
(1) NRI SCHOOLS

1. McGraw-Hill Continuing

D15
Education Center

- 3939 Wisconsin Avenue Washington, D.C. 20016
phone patents to the Bell company. Bell, on its part, agreed to keep out of the telegraph field and assigned Western Union 20 percent of all royalties from telephone rentals for the next 17 years.

Computer hobbyists recognized

 by National Computer ConferenceReflecting the dynamic growth of the personal computing field, the $1977 \mathrm{Na}-$ tional Computer Conference, held in Dallas this June, features a Personal Computing Fair and Exposition, as well as special interest sessions for computer nobbyists.
The Fair, running through the four days of the Conference, features operational displays of individual and group-owned non-commercial projects. The display includes more than 100 small computing systems, featuring hardware and software implementations, games, music, att, amateur radio and scientific applications.
Nine hours of panel sessions cover hardware, software and the future of personal computing.

CB radio helps fire fighting in long-and-narrow towns

Municipalities like Big Sur, CA, which stretches 30 miles along a two-lane highway, call themselves "linear communities." Because dense brush and forest surround the homes and businesses, some of the advantages of this linear community are offset by the ever-present threat of fire. A combination of citizen cooperation and $C B$ radio have helped solve the problem for Big Sur. A volunteer fire brigade organized for mutual fire protection, using fire-fighting equipment distributed along the length of the community, and instant communication by CB radio, have reduced the average time of response to an alarm from 60 minutes to a few, and has saved thousands of doliars and a few lives.

BIG SUR FIRE-FIGHTING VEHICLE, with slipon in place and CB mast visible above the cab. Besides having their own tanks, the unlts can pump from an external water supply, such as a pond or stream.

Unique feature of the system is the eight fast-attack "slip-on" pumper units built by the brigade members. Each consists of a gas-powered pump, a tank of 140 gallons of water and 200 feet of hose. Members' pickup trucks back under the slip-ons, which are lowered and secured in seconds, reminiscent of the way harnesses were dropped onto the horses in the days of the horse-drawn "fire engines." The eight units are distributed along the length of the community, rather than being concentrated at a central station.

The whole system is kept together and organized through CB radio. Twelve model 4102 mobile CB units and a model 4201 base station were made available by Craig Corp, of Compton, CA, and an M400 Starduster base antenna was donated by Antenna Specialists. The members monitor the CB's continuously during the day, and a dispatch service is "manned" by the volunteers' wives at night. Not only does the communications system coordinate what would otherwise be an extremely awkward and difficult set-up, but provides an extra bonus. Passing motorists sometimes report a fire on their CB's, further reducing the time of response to the emergency.

Missouri bears find CB radio "most revolutionary idea."

"i am firmly convinced that cooperation between citizens and law-enforcement agencies through CB radio results in far better protection to the public, as well as providing a positive means whereby citizens can become directly involved in highway safety, crime prevention and crime control."

Thus spoke Colonei S.S. Smith, recently retired superintendent of the Missouri State Highway Patrol, speaking to a seminar of more than 800 CB manufacturers, distributors and dealers, sponsored by the Electronic Industries Association ($E \mid A$) in Las Vegas.
"During the first six months of our CB project, from August 1, 1975 to December 1, 1976," Colonel Smith said, "our officers and base stations received 122.533 CB reports. Approximately 18 percent or 22,200 of these were reporting violations of the law. They resulted in 5,811 arrests2,014 of these were made for driving while under the influence of alcohol."

The Colonel continued: "We found the lapse time between the occurrence and notification of accidents that we investigated by conventional means was approximately 14 minutes, compared to about 8 minutes when notified by CB radio. In many cases the time saved proved to be the difference between life and death."

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, KOD-6694
editor-in-chief and publisher
Larry Steckler, KTX-3644, CET, editor
Robert F. Scott, CET, W2PWG,
KXK-8533, technical editor
Arthur Klelman, KTZ-3288, managing editor
Jack Darr, CET service editor
Leonard Feldman
contributing high-fidelity editor
Karl Savon, semiconductor editor
David Lachenbruch, contributing editor
Rudolph F. Graf, contributing editor
George Whalen, contributing editor
Vincent P. Cicenia, production manager
Dale Allinson, production assistant
Harriet I. Matysko, circulation director
Shella Wertling, circulation assistant
Arline R. Balley, advertising coordinator
Cover design by Louis G. Rubsamen
Cover photo by Walter Herstatt
Radio Electronics is a member of the Institute of High Fidelity and is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.

Radio-Electronics magazine is published by Gernsback Publications, Inc.
200 Park Ave. S., New York, NY 10003 (212) 77t-6400

President: M. Harvey Gernsback
Vice President: Larry Steckler
Treasurer: Carol A. Gernsback
Secretary: Bertina Baer

ADVERTISING SALES

EAST

Stanley Levitan, KZA-5580
Radio-Electronics
200 Park Ave. South
New York, NY 10003
(212) 777-6400

MIDWEST / Texas/Arkansas/Okla.
Ralph Bergen, KXD-8396
Jim Reilly
The Ralph Bergen Co.
6319 N. Central Ave.
Chicago, IL 60646
(312) 792-3646

PACIFIC COAST

Mountain States

Jay Eisenberg, KYF-3277
J.E. Publishers Representative Co.. 8732 Sunset Blvd.,
4th Floor,
Los Angeles, CA 90069
(213) 659-3810

Saies Mart Building
1485 Bayshore Bivd., Box 140
San Francisco, CA 94124
(415) 467-0125

SOUTHEAST

J.E. Publishers Representative Co., 214-387-2424

Read about the nearly 400 electronic kits you can build and service yourself. The famous Heath assembly manuals guide you every step of the way, and our quality design assures top performance from every kit you build.

Send Ior your copy loday!

Heath	
Schlumberger	Heath Company, Dept. 20-30 Benton Harbor, Michigan 49022
Please send me my FREE Heathkit Catalog. I am not on your mailing list.	
Name	
Address	
City	State__Zip__CL-602B

NEW VERSATILITY ADDED

 Xcelite service master kils
all the electronic service tools you need 99% of the time

Model 99SMW adds new diniensions to the serviceability of X celite s famous and still available 24 -piece 99 SM Service Master Set

Housed handily in the same type of roll-up, plaslic-coated, canvas case, the 27-piece 99SMW adds a Weller WP25 professional, pencil-style soldering iron with an extra. wider tip, and a No. 100 wire stripper/curter These plus the traditional 99SM tools that thousands of servicemen and technicians have liked so much so long: 20 Xcelite Series 99 quick-change, interchangeable blade tools - popular size nutdrivers, slotted and Phillips type screwdrivers, extension, reamer, regular and stubby handles, diagonal and long nose pliers; thinpattern, adjustable wrench The handiest handful of service tools you've ever laid your hands on!
in stock at leading electronic
distributors . . . nationwide
Weller-Xcelite
Electronics Division

The Cooper Group

P. O. BOX 728.

APEX, NORTHCAROLINA 27502
CIRCLE 22 ON FREE INFORMATION CARD
letters

PROJECTS FOR SHUTTER BUGS

Mr. Maruk's comments in the 'Letters Column' in the December 1976 issue are certainly appreciated. There is a growing need for more projects concerning photography.
The timer outlined by George R. Baumgras in the August and September 1976 issues is a prime example that meets Mr. Maruk's and my needs. As pointed out. the artist made some errors, but these apparently were more in depth than IC pins too far apart. It appears he failed to label some connections for the control board in the September issue. Being a neophyte in electronics, determination of the proper connections may be incorrect; however, my findings are from left to right: 6.3 VDC, START, CL, G, E, D4, D3, D2, D1. Also, the speaker relay and transformer were excluded from your September details. It is assumed these parts should be on the bottom of the power-supply board. Mr. Baumgras noted the prototype was installed in a custom cabinet $5 \times 81 / 2$ $\times 6$-inch case. However, the control boards in the article show a 9.8×6-inch board. Of course, the scale on the boards

FROM KIT TO CAR IN 80 MINUTES!
Electronic ignition is "in." Update vour car with the TOPS in power, efficiency and reliability - the TIGER SST capacitive discharge ignition (CD).
The TIGER delivers everything other CD's promise - and more: quicker starting, more power, more gas mileage, tune-ups eliminated, lifetime plugs and points, reduced repairs and pollution.
The TIGER can be built and installed in your car in 80 minutes. The TIGER is unique!
The TIGER comes with a switch for TIGER or standard ignition for 12 V negative ground only.

Simpli-Kit \$21.95
 POST PAID U.S.A.

WE ACCEPT
Mastercharge or Bank Americard.
Send check or money order with order to:

Tri-Star Corporation

DEPT. FF, P.O. Box 1727
Grand Junction, Colorado 81501

The most important piece of audio equipment you'l ever own.

Yours to examine FREE for 15 days.

25 FACT-FILLED CHAPTERS ARRANGED IN "EASY-TO-FIND" QUESTION AND ANSWER FORM

- Basic Principles of Sound
- Acoustics, Studio techniques, and Equipment
- Constant-Speed Devices, Motors, and Generators
- Microphones
- Attenuators
- Equalizers
- Wave Filters
- Transformers and Coils
- Sound Nixixers
- VU and Volume Indicator Meters
- Vacuum Tubes, Transistors, and Diodes
- Audio Amplifiers
- Disc Recording
- Cutting Heads
- Recording and Reproducing Styli
- Pickups
- Magnetic Recording
- Optical Film Recording
- Motion Picture Projection Equipment
- Loudspeakers, Enclosures, Headphones, and Hearing Aids
- Power Supplies
- Test Equipment
- Audio-Frequency Measurements
- Installation Techniques
- General Information, Charts and Tables

Be our guest. Examine the AUDIO CYCLOPEDIA free for 15 days. You'!l find out why it is considered the most comprehensive and authoritative book ever written on the subject. And you'll get a FREE $\$ 3.50$ bonus book to keep no matter what!
The AUDIO CYCLOPEDIA is literally a onebook audio library. It has long been considered "the bible" by amateur stereo buffs as well as professional technicians. That's why you'll find it in constant use not only in home workshops and at stereo centers, but also in recording studios, broadcast booths and concert halls.
This giant reference book is over $3^{\prime \prime}$ thick,
and packed with 1.757 illustrated pages. It features 3,645 questions and answers and a 50 page "instant-find" index for subject identification. It is truly the big one in audio electronics and it puts all the information you'll ever need right at your fingertips, chapter by chapter.
Send for the AUDIO CYCIOPEDIA today. If you don't agree that it's the most important piece of audio equipment you own, just return it with in 15 days. You won't owe a cent. And no matter what you decide, you'll get a free $\$ 3.50$ copy of The ABC's of Tape Recording to keep just for mailing the coupon.

FREE-BOOK FREE-TRIAL COUPON

Save postage \& handling costs. Full payment enclosed (plus tax where applicable). 15 -day return privilege still applies

Yes, please rush me the AUDIO CYCLOPEDIA (\#21455) for my free trial. I understand if not completely satisfied, I may return it within 15 days, and owe nothing. Otherwise, it's mine to keep for only $\$ 34.00$ plus postage and handling and local taxes (where applicable).
And, whatever I decide, a copy of "The ABC's of Tape Recording" (valued at $\$ 3.50$) is mine freel
Name
Address
City
State
$21 p$

＊SAVE GAS！SAVE on TUNE－UPS！ MODERNIZE and Bring Your Car＂UP－TO－DATE＂ with the MOST EFFICIENT Ignition ever invented！

兴 The＂XR． 700 ＂is a COMPLETELY NEW Ignition System that replaces the inefficient Breaker．Points and Condensor with a highly RE LIABLE，Invisible＂Intrared＂Light－Beam which CONT ROLS the Latest design Solid－State POWER MOOULE．This new
＂Patented＂Invention produces the HIG HEST ENE RG Y，Longert Duration Spark of ANY Ignition System manufactured TOOAY！
＊CUSTOMERS REPORT：＇THE XR． 700 MORE THAN PAYS FDR ITSELF ．．．and KEEPS ON SAVING MONEY with．． ＊INCREASED＂GAS－MILEAGE＂up to 30\％！
＊ELIMINATING COSTLY＂TUNE．UPS！＂
＊IMPROVED ENGINE PERFORMANCE！
＊QUICKER STARTING IN ANY WEATHER！
＊FASTER ACCELERATION．．．SMOOTHER RUNNING！ ＊PLUGS LAST UP TO 4．TIMES and LONGER！＂
重 THE XR． 700 has NO moving parts to wear out．．．mever noeds adjustmen！！Engineered to OUTLAST Your Car．．．So RELIABLE．
So PERFECTE D．．．that we give you a LIFETIME WARRANTY．
＂FREE Repair or Replacement＂for as long as you OWN the Unit．
even if you change Cars，we will supply the necessary Parts FREE．
㭗 FITS ALL ENGINES．Oomestic or Foreign．．．4． 6 or 8．Cylinder
© EASY INSTALLATION．．．Completely Factory ASSEMBLE O！

T．．．．．． 888 ， THAT＇S EVERYTHING．．INCLUDING POSTAGE \＆INSURANCE
 寅 SAVE！OROERFACTORY OIRECT！
 Send Check or M／O．State Car Make，Year and No．of Cylunders．
 －MASTERCHARGE or BANKAMERICARD Cardholders
 Order by TOLL FREE PHONE（800） 423.6525 ExR． 3
 CAll or WRITE or FREE BROCHURE
 America＇s Oldest and Largest Manufacturer of Opto－Electronic Ignition Syatoms．（C）
 GLLISON automotive co
 1267 －RL，East EDNA PL．，COVINA，CAL． 91722

CIRCLE 7 ON FREE INFORMATION CARD

computer corner

DAVID G．LARSEN，JONATHON A． TITUS and PETER R．RONY＊

THIS MONTH＇S COLUMN WILL FOCUS UPON THE concept of an interrupt．When used in the context of a computer，an interrupt can be defined as the suspension of normal program execution in order to handle a sudden request for service，i．e．，assistance by the computer．At the completion of interrupt service，the computer resumes the interrupted program from the point where it was inter－ rupted．＇This specific interrupt use is consis－ tent with the general meaning of the term：to stop a process in such a way that it can be resumed．

A given computer will typically communi－ cate with a variety of external I／O devices．If it is a minicomputer，it may communicate with a teletype or alpha－numeric keyboard，a CRT display，a printer，a floppy disk．and
> ＊Mr．Titus is president of Tychon，Inc．，a micro－ computer consulting firm in Blacksburg，Virgin－ ia．Dr．Rony，Department of Chemical Engineer－ ing，and Mr．Larsen，Department of Chemistry， are with the Virginia Polytechnic Institute \＆ State University
perhaps one or more laboratory instruments． If it is a microcomputer，it may communicate with smaller devices－motors，solid－state re－ lays，pushbutton switches，display lights， etc．－－within a larger machine or instrument． When used as a replacement for discrete logic devices in a complex digital circuit．a microcomputer may communicate with other TTL integrated circuits such as latches，flip－ flops，and three－state buffers．
When communicating with external $1 / 0$ devices ${ }^{2}$ ．microcomputers can operate in two general modes，polled and interrupt．Polling is the periodic interrogation of each I／O device that shares a communications link to the microcomputer to determine whether it requires servicing．A microcomputer sends a poll that has the effect of asking the selected device，＂Do you have anything to transmit？＂． ＂Are you ready to receive data？＂，and similar questions．When a microcomputer services a polled device，it simply exchanges digital information with the device in a manner that is prescribed by software in a subroutine called a software driver．

In polled operation，the microcomputer sequences through the devices tied to the
cominued on page 18

Three ways you can put test bench performance in your pocket with Hickok．

Now you can take the equipment you need wherever you need it with these versa－ tile pocket performers from Hickok．

Our Model 215 Pocket semiconductor analyzer checks transistors，FETs，diodes and SCRs for conductance and gross leak－ age and identifies base or gate leads both in and out of circuit．And it does it all with a self－sequencing good／bad test and LED display．

Hickok－developed MOS LSI ICs give our Model 239 Pocket Color Bar Generator ex－ ceptional reliability，extremely low battery drain，rugged industrial performance and crystal stability．Simple matrix switches se－ lect any of its nine patterns，including a gated rainbow．And you can put its output on channels 2， 3 or 4 ．

The Model 350 Pocket FET multimeter features foolproof overload protection，true auto polarity，a polarity indicator and 10 megohm input impedance．It measures 9 dc voltage ranges， 9 ac voltage ranges， $7 \mathrm{hi} /$ low resistance ranges and decibels．And it displays its findings on a long $2.4^{\prime \prime}$ mirrored arc．

But don＇t just take our word for the way these midget marvels perform．Ask your Hickok distributor for a demonstration．He may even offer a 10 day trial．Then we＇ve got you for sure．

the value innovetor INSTRUMENTATION \＆CONTROLS OIVISION THE HICKOK ELECTRICAL INSTRUMENT CO． 10514 Oupont Avenue • Cleveland，Ohio 44108 （216）541－8060

TWX：810－421－8286

Logic Probe 1 is a compact, enormously versatile design, test and troubleshooting tool for all types of digital applications. By simply connecting the clip leads to the circuit's power supply, setting a switch to the proper logic family and touching the probe tip to the node under test, you get an instant picture of circuit conditions.

LP-1's unique circuitry-which combines the functions of level detector, pulse detector, pulse stretcher and memory-makes one-shot, low-rep-rate, narrow pulses-nearly impossible to see, even with a fast scope-easily detectable and visible. HI LED indicates logic "1", LO LED, logic " 0 ", and all pulse transi-tions-positive and negative as narrow as 50 nanoseconds-are stretched to $1 / 3$ second and displayed on the PULSE LED.

By setting the PULSE/MEMORY switch to MEMORY, single-shot events as well as low-rep-rate events can be stored indefinitely.

While high-frequency $(5-10 \mathrm{MHz})$ signals cause the "pulse" LED to blink at a 3 Hz rate, there is an additional indication with unsymmetrical pulses: with duty cycles of less than 30\%, the LO LED will light, while duty cycles over 70% will light the HI LED.

In all modes, high input impedance (100K) virtually eliminates loading problems, and impedance is constant for all states. LP-1 also features over-voltage and reverse-polarity protection. Housed in a rugged, high-impact plastic case with strain-relieved power cables, it's built to provide reliable day-in, day-out service for years to come.

CSC'S MULTI-FAMILY LOGIC PROBE 1. AT $\$ 44.95$, IT DIGS UP A LOT OF INFORMATION WITHOUT BURYING YOUR BUDGET.

Theirs:

Julian S. Martin

HI-FI STEREO BUYERS' GUIDE, March-April, 1976
$" S u p e r b ~ f r o m ~ e v e r y ~ v i e w p o i n t . ~ A n ~ o u t s t a n d i n g ~ a c h i e v e m e n t ~ i n ~ h e a d p h o n e ~$
design. One of the most comfortable."
The Len Feldman Lab Report
TAPE DECK QUARTERLY, Winter, 1975
"Response of these phones extends uniformly from 20 Hz to over $22,000 \mathrm{~Hz}$ with no more than $\pm 2 d B$ variation over this entire range...this is nothing short of incredible."

New Equipment Reports
 HIGH FIDELITY, January, 1976

"The sound quality the AT-706 presents [to you] is exceptional: very wide range and smooth...Within this excellent operating range the sound is exceedingly clean and open... an extremely fine stereo headset."

If you asked the critics they'd tell you to listen critically to a variety of products before you buy. We agree. Because the more carefully you listen, the more you'll be impressed by the sound of Audio-Technica.

AT-706
Electret Condenser
Stereo Headset \$129.95
Our finest Personal Transducer

AUDIO-TECHNICA U.S., INC., Dept. 67E, 33 Shiawassee Avenue, Fairlawn, Ohlo 44313 Avallable in Canada from Superior Electronics, Inc.
microcomputer looking for individual devices that need servicing. When it tinds a device that requires service, it stops sequeneng. calls a software driver, and services the device. Once it is finished. the microcomputer continues checking the devices. Polled operation is most useful with relatively slow devices that do not require frequent service. do not require attention from the microcomputer for excessive periods of time, and can wait to be serviced. Advantage is taken of the difference in speed of operations in the microcomputer and operations in the $1 / 0$ device. Most common I/() devices are much slower than microcomputers. For example, in 100 ms (teletypewriter response time) an 8080A-based microcomputer can execute approximately 20,000 instructions when operated at a clock rate of 2 MHz . Although a microcomputer may give one the impression that it is doing several things simultaneously. this is only an illusion since it can manipulate data much faster than most $1 / O$ devices can respond to changes in data. A single computer can perform only one task at a time.

In interrupt operation, the microcomputer juggles the demands of the external $1 / 0$ devices. There is a distinction between slow devices that require infrequent servicing and high-speed devices that demand the attention of the microcomputer for most of the time. The nost appropriate description for interrupt operated systems is that they are asynchronous. i.e., they lack a conmon synchronizing signal and therefore give rise to generally unexpected or unpredictable program execution within the microcomputer. An aswnchronous device is a device in which the speed of operation is not related to any frequency in the system to which it is connected. ${ }^{3}$ The use of asynchronous devices is the rule rather than the exception.

There can exist priority in interrupt operation: all $1 / O$ devices can have an order of importance so that some devices take precedence over others. In contrast, there is usually no priority in polled operation: once a device is serviced. it wats its turn until all other devices are sequenced and. if necessary. also serviced. The time between the interrupt request by a device and the tirst instruction byte of the software that services it is known as the interrupt response time. For a highspeed device that has high priority. the response time can be very short-less than a millisecond. For a low-speed device that has low priority. the response time is variable since it depends upon the demands placed upon the microcomputer by all higher priority devices.

Interrupt Techniques

Three commonly used microcomputer interrupt techniques are the single-line inter. rupt, the multilevel imerrupt. and the vectored imerrupt (Fig. 1). In the single-line interrupt technique. multiple devices must be connected via an OR gate to a single interrupt line. Once an interrupt signal is received. all of the interrupt devices are polled to determine which one caused the interrupt. It is possible (1) assign sotiware priorities to the various inerrupting devices, so that the first device polled that needs service is the one that receives the attention of the microcomcontinued on page 20

If you've been thinking Realistic is great only in the middleweight division, the STA-2000 is going to take you by surprise. We designed and manufactured it in our own factory to deliver quality beyond reproach, and judging from critical acclaim, we succeeded. The fine styling and precision controls are obvious. But the heart of this recelver is in its circuitry ... the extra-low-
noise phono stage ... the sensitive dual-gate MOSFET funer with PLL. Come by your nearby Radio Shack for a free copy of the reviews. And hear for yourself what all the excitement's about. You'll be amazed at just how far $\$ 499.95^{*}$ can go. The Realistic 2000. 75 watts per channel, min. RMS at 8 ohms from $20-20,000 \mathrm{~Hz}$, with no more than 0.25% total harmonic distortion.
"noise figures rivaling those of many a separate (preamp) ... If any part approaches over-achiever status, it is the power amplifier . . . The controls are unusually flexible"
High Fidelity Magazine, March 1977
"separation at mid-frequencies was an incredibly high 54 dB ... usable (FM stereo) sensitivity point was reached with a signal of only $5.0 \mu \mathrm{~V}$...excellent basic circuit design"

Audio Magazine, March 1977

...then let us send you our card.

HAL Communications Corp. has been a leader in digital communications for over half a decade. The MCEM-8080 microcomputer shows just how far this leadership has taken us...and how far it can take you in your applications. That's why we'd like to send you our card-one PC board that we feel is the best-valued, most complete

microcomputer you can buy. For details on the MCEM-8080, write today. We'll also include comprehensive information on the HAL DS-3000 KSR microprocessorbased terminal, the terminal that gives you multi-code compatibility, flexibility for future changes, editing, and a convenient, large video display format.

HAL Communications Corp. Box 365, 807 E. Green Street, Urbana, Illinois 61801 Telephone (217) 367.7373

COMPUTER CORNER
continued from page 18
puter. A common term used for that part of a program that polls interrupt devices is flag checking routine. We shall discuss the concept of a flag in a subsequent column. At the moment, consider a flag to be a single-bit memory that indicates when an operation has been completed or when a condition has been attained.

Fig. 1
In the multilevel interrupt technique, there exists several interrupt lines to the microcomputer, each line being tied to a separate $1 / 0$ device flag. The microcomputer does not need to poll the devices to determine which one caused the interrupt. This is done internally within the microprocessor. Depending upon the nature of the microprocessor, this can be a very fast interrupt technique, but it is somewhat difficult to expand.

A vectored interrupt causes a direct branch continued on page 22

Treat yourself to a new direct reading DVM today.

DVM35
POCKET PORTABLE ANALOG REPLACEMENT
3-digit, 1\% DCV,
Battery or AC
Only \$134

DVM36
LAB ACCURATE POCKET PORTABLE
$31 / 2$ digit, .5\% DCV, Battery or AC Only \$158

DVM32
BENCH \& FIELD MASTER
$31 / 2$ digit, 5% DCV, Battery or AC

Only \$198

DVM38
"PRIME" STANDARD AT YOUR FINGERTIPS
$31 / 2$ digit, 1% DCV, Auto-Ranging
Only $\$ 348$

A COMPLETE LINE OF DVMs TO FILL YOUR EVERY NEED OR WANT.

You can be sure more times in more circuits, under more adverse conditions, with greater versatility, accuracy, and meter protection than any other digital multimeters on the market today; and for less money too. 10 Day Free Trial: Try any of these famous DVMs for 10 days. If the DVMs in use don't prove exactly what we say, return them to your Sencore FLPD Distributor.

Want more information? We would like to tell you all about the Sencore DVMs by sending you a 24 -page Sencore News, a six-page brochure, and the name of your nearest Sencore Distributor today . simply write or circle reader's service number.

CT-64 TERMINAL SYSTEM

* 64 OR 32 CHARACTERS PER LINE
- UPPER AND lower case LETTERS
* FULL 8 BIT MEMORY
* 128 CHARACTER ASCII SET
* 110/220 Volt 50.60 Hz POWER SUPPLY
* SCrolling or page mode operation
- CONTROL CHARACTER DECODING-32 COMBINATION
* PRINTS CONTROL CHARACTERS
* USABLE WITH ANY 8 BIT ASCII COMPUTER
* REVERSED BACKGROUND -HIGHLIGHTING

COMPLETE WITH - Chassis and cover, cursor control, 110-1200 Baud serial interface and keyboard. Optional monitor show in photo available.

Now you can buy it. The terminal that has all the features that people have been asking us to include. The CT-64 has all the functions that you could want in a terminal and they may be operated by either switches, or through a software program.

All cursor movements, home-up and erase, erase to end of line, erase to end of frame, read on, read off, cursor on, cursor off, screen reversal, scroll, no scroll, solid cursor, blinking cursor, page selection and a beeper to warn you of end of page; all are provided for your use in the CT. 64 .

You may also switch from upper case only teletype style operation to upper-lower case typewriter style operation. You can reverse the field on individual words to highlight them, or you can reverse the whole screen.

CT-64 is complete with keyboard, power supply serial interface and case. A matching 9 inch monitor with coordinated covers is also available to make a complete system.
$\begin{array}{ll}\text { CT-64 Terminal Kit } & \mathbf{\$ 3 2 5 . 0 0} \\ \text { MM-1 Monitor (assembled) } & \$ 175.00\end{array}$

219 W. Rhapsody
San Antonio, Texas 78216

by the microcomputer to that part of the program that services the interrupt. This interrupt technique requires external IC's to supply the memory address of the interrupt service routine as well as to set the priority. With the 8080A microprocessor eight different service routine addresses can be readily specified, although one of these addresses coincides with the reset address for the microprocessor, location zero. If you are interested in vectored interrupts, we encourage you consider the Intel 8259 programmable interrupt controller, which became available commercially in July, 1976.

The use of interrupts should be considered
very carefully. More complicated software is invariably required. For example, you will generally have to save the status of the microprocessor IC at the time that the interrupt occurred. This means placing the contents of the accumulator. the flags, and the registers into a specified region of memory where they can be retrieved at a later time, after the interrupting device has been serviced. Pay attention to priorities. Make certain that devices that require high priority and need immediate servicing are given the highest priority. Other devices, such as teletypes, should be low priority. Also, if you attempt to do too much with an interrupt system, you might find that your microcomputer becomes "interrupt bound," which means that the microcomputer is only working on interrupt tasks and is not working

Notice what happens to the high frequencies? You lose them mounting the average CB under the dash. The speaker points down into the floor insulation. Sound is lost. With the addition of an acoustically designed "KRIKET"" external speaker, also mounted under the dash but pointing at the driver, the high frequencies come through.

Saris/Kriket. smanem

 frequencies. And they spell the difference between voice intelligibility and just plain noise. That's why you hear remarkably better with a "KRIKETs" external speaker. It's the single best accessory you can add to any CB transceiver-23 or 40 channel-to improve enjoyment of it.Available at CB Dealers everywhere.

World Wide Headquarters
Acoustic Fiber Sound Systems, Inc.
7999 Knue Road Suite 116
Indianapolis. IN 46250
(317) 842-0620

Exclusive Canadian Distributor
Persona Communications L.T.D.
1149 Pioneer Road
Burlington Ontario. Canada
(416) 629-5373

All AFS ${ }^{\text {/ } / K R I K E T ~ s p e a k e r s ~ a r e ~ m a n u f a c t u r e d ~ i n ~ t h e ~ U . S . A . ~}$ using American materials and craftsmen.
Copyright 1976 Acoustic Fiber Sound Systems, Inc
on the main task, which it should be doing while only infrequently servicing interrupt requests.

To end this column, we would like to provide one example of an interrupt system. Assume that your microcomputer is performing mathematical computations on 7-bit ASCII numbers that are entered via a UART $I C^{4}$ that is connected to a Teletype operated at 110 Baud, or ten ASCII numbers per second. The exchange of data between the microcomputer and the UART can be performed in 20 to 30 microseconds, which leaves 99.97 ms left for the microcomputer to do other things. With the Intel floating-point package, for example, each floating-point multiplication or division can be performed in 2 to 5 ms with an 8080A-based microcomputer operating at 2 MHz . Sixteen-bit binary multiplications and divisions can be performed even faster. Therefore, it is appropriate for you to consider that the main task of the microcomputer is to perform such computations, and that 0.05% to 0.10% of the time the microcomputer can service the interrupting teletype.

R-E

References:

1. Microprocessor Buzz Words (Westbury, NY: Schweber Electronics Marketing Services).
2. Larsen, D. G., Rony, P. R., and Titus, J. A., "Microcomputer interfacing: Microcomputer 1/O devices," Amer. Lab. 7 (11), 100 (1975).
3. Graf, Rudolf F., Modern Dictionary of Electronics, Howard W. Sams \& Co., Inc., Indianapolis, IN, 1972.
4. Larsen, D. G. and Rony, P. R., 'Computer interfacing: The universal asynchronous receiver/transmitter (UART), Amer. Lab. 7 (2), 113 (1975).

Use Quick-Wedge to

 install a bus, connect a motor, mount a p.c. board, cinch up a connector

They do all that ordinary screwdrivers do, PLUS they hold and start the screw

Screw-holding screwdrivers
Unconditionally guaranteed.
BUY A SET TODAY
See your dealer or write to:
Kedman Company, P.O. Box 25667,
Salt Lake City, Utah 84125
CIRCLE 12 ON FREE INFORMATION CARD

SATISFY YOUR APPETITE FOR COMPUTER KNOWLEDGE samisitokoooks

Send for the cookbooks and manuals described. Increase your knowledge of minicomputers, microprocessors, computer technology, related computer circuits and peripheral equipment. Be satisfied or your money back.

How To Buy 8 Use Minicomputers \& Microcomputers By William Barden, Jr. This manual gives you the basics of minicamputers and microcomputers. Explains their hardware and software. the peripheral devices available and various programming languages and techniques. Allows you :o decide which system is best for your needs. 240 pages. softbound. No. $21351 \$ 9.95$

Microcomputer Primer By Mitchell Waite and Michael Pardee Written for the beginner in the computer field. All the basic concepts and characteristics of microcomputers are explored. The easy to understand language prepares you for further study. 224 pages; soltbound. No. 21404 \$7.95

CMOS Cookbook

By Don Lancaster
Your complete guide to the understanding and use of Complementary Metal-OxideSilicon integrated circuits. Gives usage rules; power supply design examples; applications; information on breadboards, testing, tools, and interface. Detailed coverage of logic and more. 416 pages; softbound. No. 21398 \$9.95 The Big CMOS Wall Chart $35^{\prime \prime} \times 23^{\prime \prime}$ Big, readable wall chart provides essential information on CMOS devices. No. 21399 \$2.95

Computer Dictionary and and Handbook
By Charles J. Sippi \& Charles P. Sippi
At your finger tips you have more than 22,000 definitions, acronyms, and abbreviations dealing with the field of data processing. Also 13 appendices cover a myriad of computer related subjects. 784 pages; hardbound. No. 20850 \$19.50

TTL Cookbook
By Donald E. Lancaster You'll discover what Transistor-Transistor Logic is, how it works and how to use it. Discusses practical digital applications. You'll learn to build TTL systems that entertain, test and train. 336 pages; softbound No. 21035 $\$ 8.95$
User's Guide to TTL (Wall Chart) $35^{\prime \prime} \times 23^{\prime \prime}$ Shows you needed information on TTL devices at a glance. No. $20180 \quad \$ 2.50$

TV Typawriter Cookbook By Don Lancaster Your comprehensive guide to low cost television display of alpha-numeric and graphics data for microprocessor systems, word processing, TV titling and video games. Covers contigurations, memories, keyboards, techniques and much more. 256 pages; soltbound. No. 21313 \$9.95

Active-Filter Cookbook

 By Don Lancaster Dynamic coverage of active filters. What they are and how to use them. Learn to build and apply them to audio equalizers, speech therapy. psychedelic lighting and more. 240 pages; softbound. No. 21168 \$14.95

IC Op-Amp Cookbook
By Walter G. Jung Now one book gives you in-depth exposure to IC op amps. Covers theory and over 250 practical circuit applications. 592 pages; softbound. No. 20969 \$12.95

RTL Cookbook
By Donald E. Lancaster You will learn the how and why of Resistor-Transistor Logic. Obtain useful design information and many digital applications. 240 pages; soltbound. No. $20715 \$ 5.75$

Howard W. Sams \& Co.,Inc.
4300 West 62nd Street
Indianapolis, Indiana 46206

Clever Kleps

Test probes designed by your needs - Push to seize, push to release (all Kleps spring loaded).
lups 10. Boathook clamp grips wires, lugs, terminals. Accepts banana plug or bare wire lead. $43 / 4^{\text {" }}$ long. \$1.39 Kleps 20. Same, but 7" long.
kleps 20. Same, but $7^{\prime \prime}$ long.
xible. Forked-tongue gripp cepts banana plug or bare lead. $6^{\prime \prime}$ long.
per. Ac-
$\$ 1.79$
Kleps 40. Completely flexible. 3 -segment automatic collet firmly grips wire ends, PC-board terminals, connector pins Accepts banana plug or plain wire. 61/4" long. $\$ 2.59$ Kleps 1. Economy Kleps for light line work (not lab quality). Meshing claws. $41 / 2^{\prime \prime}$ long.
Pruf 10. Versatile test prod. Solder connection. Molded phenolic. Doubles as scribing tool. "Bunch" pin fits banana jack. Phone tip. $51 / 2^{\prime \prime}$ long.
$\$.89$
All in red or black - specify. (Add 50¢ postage and handling). Write for complete catalog of - test probes, plugs, sockets, connectors, earphones, headsets, miniature components.
 A vailable through your local distributor, or write to:
RYEINDUETRIEEINC. 132 Spencer Place, Mamaroneck, N.Y. 10543 In Canada: Rye Industries (Canada) Ltd. CIRCLE 57 ON FREE INFORMATION CARD

LOOKING AHEAD
continued from page 4
nobody should hold his breath awaiting such major picture-display methods. As to electron-luminescent displays, Kazan said: "We know how to do it." However, brightness and resolution remain major problems.
AM stereo tests: If things proceed on schedule, three AM stereo systems should be in the field-testing process by the time you read this, using the facilities of WBZ, Boston, and WTOP and WGMS in Washington. The tests are being conducted by the industry-wide National AM Stereo Radio Committee. The committee's task has been simplified by the withdrawal of systems developed by RCA, Sansui, Communication Associates and Hobart Wilson, leaving only three under consideration-those proposed by Magnavox, Motorola and Belar (Devon, PA). A fourth system, developed by Kahn Communication, has not been offered to the committee for testing but has been submitted directly to the FCC.

According to the latest timetable, the committee hopes to turn its field-test data over to the FCC by Labor Day. Any hopes for Commission approval of a system this year have now vanished, since the FCC's processes are expected to require about a year. AM stereo's path to approval is expected to be fairly smooth, since it is favored by all radio and audio manufacturers and automobile makers as well as AM broadcasters.

DAVID LACHENBRUCH
CONTRIBUTING EDITOR

RCA's SK line-Top of the Line in quality- is getting bigger, and bigger, and bigger!

The quality line keeps growing RCA's comprehensive line of replacement transistors, rectifiers, thyristors and integrated circuits is now growing at the rate of 20 new SKs every month. That means there will be around 580 RCA types available by the end of the year - bringing the total of domestic or foreign semiconductors that can be replaced by a high quality RCA SK to over 130,000.

Get your 1977 Replacement Guide Supplements - As the new SKs become available, we'll issue monthly supplements to your Replacement Guide. New applications will cover consumer, TV, $\mathrm{Hi}-\mathrm{Fi}, \mathrm{CB}$ and industrial (power control). RCA Distributors will be able to offer you more selective performance and price choice. Call-backs are all but eliminated because every RCA SK is manufactured to the original OEM quality.

Stay up-to-date. See your RCA Distributor about the new SKs and Supplements. If you don't have the 1977 SK Replacement Guide, ask him for a copy, or write, enclosing \$1.50 (check or money order) to: RCA Distributor and Special Products Division, PO Box 85, Runnemede, NJ 08078.

SK Replacement Semiconductors

equipment reports

Wawasee Electronics JBC-1000-SM Catalyzer Oscilloscope/RF Wattmeter and SWR Bridge

CIRCLE 89 ON FREE INFORMATION CARD
according to the catalog description, The Catalyzer model JBC-1000-SM is a generalpurpose device for continuously monitoring the transmitted signals from transmitters or transceivers having output ranges from 3
watts to 2000 watts in the 27 to 30 MHz frequency area. The $J B C$ - $1000-S M$ permits the operator to read the actual RF output being delivered to the antenna and visually view the RF and voice modulation on each transmission thereby giving positive assurance to the operator of positive operation of his transmitting equipment. For convenience, an SWR function has been incorporated for measurement of the standing-wave ratio.
What the catalog listing doesn't tell you is that the direct-connected scope is probably the only accurate method of measuring modulation. Unlike those $\$ 1000$-plus 30 MHz oscilloscopes, there is no electronic circuitry in the $J B C-1000-S M$ between the transceiver-under-test and the CRT deflection plates-just the connecting wires and a capacitive attenuator that reduces the RF level applied to the deflection plates. Without electronics in the circuit path, you see exactly
turn page

MATHEMATILSS Eletrionics
 EnGNEERNG MATHIEMATICS advaige mathematics

These unusual courses are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classroom to thousands of men, from all walks of life, on mathematics, and electrical and electronic engineering

You will have to see the lessons to appreciate them!

NOW you can master mathematics and electronics and actually enjoy doing it!

WE ARE THIS SURE:-you order your lessons on a money-back guarantee.

In plain language, if you aren't satisfied you don't pay, and there are no strings attached.

Write today for more information and your outline of courses.

You have nothing to lose, and everything to gain!

The INDIANA home study institute

P.O. BOX 1189

PANAMA CITY, FLA 32401
CIF CLE 35 ON FREE INFORMATION CARD

The New Programmable Clock Kit from Digital Concepts. \$29.95

SYSTEM S000 has a thworncent rediout peevet with tout 05 numatas inal Lurponien and dim wlomalically accordong io thr olvidey al oll lumee from dmosi any wiowing angir
Srsrew 3000 con be mull As s best clock datm elock calemdx

 Radio Siaion ux A cuacit ime lase is sual elite for highit peetion SYSTEM 5000 con artomatcilly coni it AC ox DC

RELAV OPTION - 54.00

QUARTZ TIME BASE OPTION NE

-UARTZ TIME BASE OPTION - $\$ 695$

Contans 4 INeck SPSTITH OPTION - $\$ 375$
 CASE SWithes Proquats al mator 'eoll CASE OPTION - $\$ 1100$

 5100 ea Cathmet dimensions $5 . .5 .13$.

 order this exciting kit today and put electhonic timekeeping to work for you
digital concepts
Dipital Concepts Corporation - 247 Route 46 Saddle Brook. New Jersey 07662 - (201) 845-7101

CIRCLE 46 ON FREE INFORMATION CARD

FCC LICENSE STUDY GUIDE

If you have experience or training in electronics, but need help in preparing for FCC license exams, get Grantham's FCC License Study Guide - not a Q \& A book, not a correspondence course, but simply an authoritative, down-to-earth presentation of what you should know to pass FCC exams for 3 rd , 2nd, and Ist class radiotelephone licenses. Included are four information sections, 1465 FCC-type multiple-choice questions, with more than 65,000 words "explaining" the correct answers. Self-study presentation. Order by letter, or check box below.
\square Grantham’s FCC License Study Guide.
Size, $7 \times 101 / 2,377$ pages
$\$ 12.75$

OTHER BOOKS written in home-study style by Donald J. Grantham:

\square Fundamental Properties of AC Circuits. Size, $7 \times 101 / 2,267$ pages
$\$ 12.75$
\square Mathematics for Basic Circuit Analysis. Size, $7 \times 101 / 2,352$ pages
$\$ 12.75$
\square Basic Electronic Devices and Circuits. Size, $7 \times 101 / 2,378$ pages $\$ 12.75$
TO ORDER any of the books listed above, check off the ones you want, compute the total price, add only. 75e (regardless of the number of books ordered) for postage and handling, and mail this ad (or order by letter). Be sure to include your name and and address and payment. Mail your order to:

GSE Publishing Company

(2000 Stoner Avenue)
P. O. Box 25992, Los Angeles, CA 90025
circle 72 on free information card

"

21 million Ameticans have high
blood pressure Eut 50 percent of ose who have it don I know is When blood prossure goes highes han it should, and stays nigh in seis Most cases of high blood pressure
can be coniroller. with drugs and other advances ir leearment That's Why you should see your doetor reg. blatly Only he can lell it you need help

what the modulation looks like without any chance of limiting, clipping or distortion being introduced.
Most, if not all, modulation meters cannot follow rapid peaks of modulation-they need a sustained signal for the meter to indicate the maximum level. Mostly modulation meters indicate only the negative sustained modulation. You can't tell if a transmitter is overmodulating on speech peaks when using a meter. But you can't fool that electron beam in the CRT. If your eyes are fast enough, you can see the 100 -plus percent negative modulation that causes a transmission to splatter or bleed over too many channels. But you'd have to be nearly blind to miss the excessive negative modulation that bleeds across the whole CB spectrum.
The JBC- $1000-S M$ is easy to connect into the output system of any transmitter or receiver . . . even single-sideband ham transmitters with 1000 -watts output. It hooks into the circuit like any SWR meter-a short coax connects the transceiver to the coax connector on the rear of the JBC-1000-SM. The antenna coax connects to the other rear-panel connector.
The RF wattmeter and scope attenuators are not set with one control knob. To keep RF wiring short, the capacitive attenuator is mounted on the rear panel. Other controls and switches are in DC circuits where lead length is not a problem. To observe a CB carrier, set the rear-panel attenuator to minimum attenuation (the $J B C-1000-S M$ has a top range of 2000 watts for "ham" transmitters).
To determine the modulation percentage,
 screwdriver?

In a tool box, tools and parts are everywhere, They"re hard to find. They get lost. (And they gel dirty. 1
With a Platl tool case, that wouldn't happen. It's designed so you'll hnow where everything is. Smaller tools are in individual pockets in our patented one-piece rallet. Larger tools and parts are in compartments. And papers and order book are in lid pockets. Everything is neat and clean. 1
And Platts tool case helps you look more professional. It comes in handsome, lightweight. durable ABS Thermoplastic. Or rich looking vinyl reinforced by ABS Thermoplastic What's more, it also has a 5 year guarantee. Contact us for complete information on Plat's full line of tool cases and your nearest distributor.
platt
Pal. No. 3.8xo. 2 ms
Cases for business and industry
2301 S. Prairie Ave., Chicago, III. 60616 (312) 225-6670

just "key" the transmitter and feed a tone or whistle into the microphone-either method is perfectly legal when operating the transmitter on a dummy load instead of an antenna, just as all transmitter tests should be done. There are no controls to adjust! There are no scales to read! All you have to do is observe that the carrier waveform just about doubles in height during voice peaks. sustained whistles or tones (see Fig. I-a) without breaking down into a short, straight bright green line between those peaks (see Fig. 1-b).

A blanker circuit is incorporated that deflects the beam from the screen when there is no RF signal present. Unfortunately this turn page

(The New VOM For Today's Needs.)

- 0.25\% Accuracy
- Full Overload Protection
- Really Drop-Proof
- Full One Year Battery Life

ロАПА

Dana Laboratories, Inc.
2401 Campus Dr, Irvine, Ca 92715, (714) 833-1234 for literature only circle 11 on free information cabo for demonstration circle go on free information card

IW WIRE-WRAPPIWG (2) HAS THE LINE... HOBBY-WRAP-30 wirewrappng, stapping, uwwrappme tool for awg 30 (o25 suuare post)

STRIP

WRAP

UIWRAP

FANTASTIC PERFORMANCE!

FM-7 \& SC-5 Frequency Meters measure up to 60 MHz for $\$ 195$; up to 512 MHz for $\$ 89$ more. Examine the other great features!

Features Include:

- By using the new NLS SC-5 Prescaler, the range of the FM-7 Frequency Meter, which is 10 Hz to 60 MHz , may be extended to 512 MHz (the upper VHF and UHF frequency bands). - The FM-7utilizes an LED readout, providing 7-digit resolution. - The FM-7 can be calibrated to an accuracy of 0.00001%. The SC-5 is accurate to one part per million. - Each unit has 30 millivolts sensitivity, is battery powered and has a charger unit included. - Dimensions of each are $1.9^{\prime \prime} \mathrm{H} \times 2.7^{\prime \prime} \mathrm{W} \times 3.9^{\prime \prime} \mathrm{D}$. - The units may be obtained separately or as a "Frequency Duo."

Non-Linear Systems, Inc.
See your local distributorl
Distributor inquiries invited.

Originator of the digital voltmeter

Box N, Del Mar, California 92014 Telephone (714) 755.1134 CIRCLE 45 ON FREE INFORMATION CARD
does not occur tor very weak RF signals and will not necessarily work with a 3 -watt transceiver but will work properly with a full 4 watt output signal. Blanking the trace has no other purpose than to prevent the constant sinusoidal horizontal sweep from burning the phosphor of the CRT face. Turning down the brightness will do the same job of protection.

Put a handle on the JBC-1000-SM and you can easily carry it to any base station to checkout the modulation, RF power output and antenna $S W R$-it only weighs $10^{\frac{1}{2}}$ pounds (quite a bit heavier than those pocket-sized CB testers). But what the trans ceiver puts out is what you see-positive and negative-and is a lot more impressive than a slow-moving meter pointer. For more information contact: Wawasee Electronics Co., Inc., P.O. Box 36, Syracuse, IN 46567. R-E

Ohio friend of Citizens band now Director of Highway Safety
Robert M. Chiaramonte, member of the Board of Directors of the CB organization REACT (Radio Emergency Associated Citizens Teams) has been appointed Director of the Ohio Department of Highway Safety by Governor James A. Rhodes

Chiaramonte joined the Ohio State Highway Patrol in 1942, serving in every patrol rank up to that of Superintendent, to which he was appointed in 1965. He retired in 1975 with the title of Colonel More recently he served as project director of Operation Crime Alert, building

Versa Topel

up a strong state-wide crime prevention program.
He recognized the potential value of CB as an aid to highway safety very early, and Ohio was one of the first states to put police-CB cooperation into effect. Under Chiaramonte's direction, a series of po-lice-CB tests were organized as early as 1970. Results were so encouraging that before 1975, all 57 Ohio State Patrol posts were equipped with CB and monitored channel 9 (see Radio-Electronics, January 1976, page 62).

USER PROGRAMMABLE MESSAGE WATCH

PROGRAMMABLE MESSAGE WATCH, in addition to being a full-function digltal timeplece giving time, month and date, displays a message of up to five words of not more than flve letters each. Message can be programmed Into the watch with the special computer at top right, or the owner can "print" his own by depressing a button and adjusting the watch for the desired message.

BETTER THAN A THIRD HAND!

PANAVISE TILTS, TURNS, AND ROTATES TO ANY POSITION. IT HOLDS YOUR WORK EXACTLY WHERE YOU WANT IT.
PanaVise has great strength yet Is gentle enough to tirmly hold delicate objects.

Quite possibly the finest new tool you will buy this year, PanaVIse is bullt to exacting professional standards. We guarantee it!
Illustrated is the Electronics Vise Model 396. Three other bases and a wide variety of heads are available. All interchange! Buy a basic unit, then add on to create your system.

Available through your dealer. Write for a free catalog.

prana/ise

 Dept. 5E10107 Adella Ave., South Gate, CA 90280 In Canada: 25 Toro Rd., Downsview. Ont. M3J 2A6

Modules for this type of watch, with a fiveword message pre-programmed during manufacture, were first announced by Hughes early In 1976. The present watch (also a Hughes module) differs In that the user can set up and change his own message at will without having to send it back to the factory.

ON-SCREEN TV CLOCK

The July issue of RadioElectronics will feature a construction project that puts the time on your TV screen. Built around a National Semiconductor character generator IC, the clock can be installed in any TV set. The clock IC is also from National Semiconductor and it derives its timebase from the $60-\mathrm{Hz} \mathrm{AC}$ power line.

Vector announces revolutionary wiring tools

Vectar Klip-Blak Breadboards Are

 (1) Moreatile because.
TIVI 31/2 Digit Muhimeter from BeFE-PRECISION

.. you'll want it for its features but it's the price that will sell you!

- High intensity LED display is easily read from at least 6 feet in the brightest room.
- Measures AC and DC voltage, AC and DC current and resistance.
- 0.5% DC accuracy.
- 100% overrange (1000 scale reads to 1999).
- Automatic polarity.
- Automatic decimal point.
- Flashing overrange indication on display
- Four voltage ranges to 1000 V
- Four current ranges to 1000 mA .
- Six resistance ranges to 10 meg
- In-circuit resistance measurements at voltage levels below conduction threshold of semiconductors.
- Overload protection on all ranges.

Complete new circuitry makes the Model 283 the most dependable and versatile $31 / 2$ digit
multimeter you can buy. The extra-bright display allows you to use it where other units would cause reading problems. The selectable "low ohms" function permits accurate measurement of semiconductor shunted resistors.

An optional, internal battery pack (BP-83. $\$ 50.00$) provides 8 hours of continuous use on one overnight charging and charges when the Model 283 is in use on 115/230VAC.
Thoughtful, convenience features like a side carrying handle, tilt stand and detachable line cord add to its usefulness.
Your B\&K-PRECISION distributor has them in stock and will be glad to demonstrate its features to you. Call him, or write for additional information.

BN PRECISION
 PRODUCTS OF DYNASCAN

6460 W. Cortland Avenue
Chicago, IL 60635 312/889-8870
In Canada: Atlas Electronics. Toronto

Build inis

Electronic Music Box

Here's an electronic music box that uses pink-noise sources to select the pitch and duration of each musical note. Called the Infinitune, it selects the notes from three octaves of a pentatonic scale.

RAYMOND A. CHAMBERLIN

HH NHINILN IS A WI SIC (if NrRAGOK HAAI usco pink-noise sources to select the pitch and duration of each musical note. The pitches are selected from three octates of a pentatonic sale. Most Eastern music is based on the pentatonic sale which has live notes per oxtave with vimple frequency ratios. Eastern musu lacks much of the formal structure of Western music and is most successfully imitated by simple pink-noise sources.

The infinitunes, when connected to any audo system. continually produces a pleasant form of pink-noise music. Jt also provides the opportunity to experiment with randomcomposition music. Provision is made for adding an additional channel or for changing the scale in which the music is plated. The Intinitune can also be used as a controller for more advanced synthesizers. External nome sources can be used (such as the electrical activity of the brain or the flickering light of a candle) to drae the ssnthesiar to produce musce based on external activity.

How it works

figure I shows the block diagram of the Intinitune. Each noise source generates a randomly varying analog voltage with a pinknoise energy spectrum. The noise source used for pitch selection has a frequency spectrum that covers approximately 05 (1) 100 Hz : the source for duration selection cover, 0.2 to 200 HL.

Lach noise source is connected to a scaling circuit that quantizes the analog voltage into discrete voltage levels. A dock axillator drases both scalers. The two scalers are quite different. The Pitch Sialler disides the output voltage range of the Path Nouse Source into

I5 equal-amplitude voltage ranges. Its output is a random varying succession of discrete values that can change at cach system chock time. The 15 ranges correspond to three octaves of five musical tones each. The Pitch Scaler output appears on three lines. one for each extave. A line representing the five tones of a given octave carries a voltage that can change among tive levels at each chock time. I'wo additional lines that can change binary value at the same time as the five-level line, code the selected owtave.

The tive-level line determines the frequenE) of a voltage-controlled oscillator (Pitch V(O)). The squarewabe output of the ascillator proceeds through two binary frequency dividers. Whether division occers in both. one or neither divider is determined by the binary lines. resulting in the appropriate octave.

The Duration Scaler, on the other hand. quantizen its analog input voltage into only
three output values four under special adjustment). These outputs are in the form of pulse widths lasting 1. 2 or 4 clock periods (7 if se adjusted) that determine the length of each note sounded, and hency the rhythm.

The duration pulse is fed through an R-C network (Envelope Shaper) where it is shaped by various manual controls to provide the desired envelope shape to the tone signal.

The Envelope Modulator circuit amplitude modulates the tone signal with the output of the Envelope Shaper and a tremolo $(6-\mathrm{Hz}$ sinewave) signal from Vibrato Tremolo Oscillator. The Vibrato/Tremolo Oscillator also modulates the Pitch VCO to add vibrato to the tone.

Circuit operation

The circuit, shown in Figure 2, uses yuad operational amplifiers and transistors for a nalog circuits and the same op-amps. to-

FIG. 1-PINK NOISE SOURCES are used to select the p.tch and duration of the musical notes.

PARTS LIST

All resistors are $1 / 4$-watt, 10%, unless otherwise noted.
R1, R5, R54-selected value between 3.3 and 15 megohms (Select for average voltage on IC1-b pin-4, IC6b pin-4 and IC1-c pin-9 to be +7.5 volts ± 2 volts.)
R2, R55-8.2 megohms
R3, R88-22,000 ohms
R6-2.2 megohms
R7-2 megohm trimmer, PC mount
R8, R10, R11, R15, R17, R26, R31,
R32, R34, R40, R57, R61, R62, R631 megohm
R12, R16, R49-47,000 ohms
R13, R14-10 megohms
R18-180,000 ohms, 5\%
R19-4700 ohms, 5\%
R20-150,000 ohms, 5\%
R21-18,000 ohms
R22-150,000 ohms
R23, R35, R48, R78, R79, R84, R85,
R90-220,000 ohms
R24-56,000 ohms
R25, R28, R45, R46, R60, R64, R65.
R66, R75, R80, R89-100.000 ohms
R27, R39, R50, R59, R83-33,000 ohms
R29-100 ohm
R30, R33, R82-1000 ohm
R36, R94, R95-1 megohm trimmer, PC mount
R37, R52, R53, R58-470,000 ohms

R38-1.2 megohms
R41, R42-1.5 megohms
R43, R44, R47, R74, R91, R92, R93,
R96, R98-10,000 ohms
R51, R68, R71, R73, R76, R81- 100,000
ohm trimmer, PC mount
R56-4700 ohms
R67, R70, R72-820,000 ohms
R86-2200 ohms
R87-1500 ohms
R97-250,000 ohm trimmer, PC mount
C1, C12, C18-220 pF ceramic
C2, C4, C10, C11, C20, C21-. $001 \mu \mathrm{~F}$ polyester
C3, C19-220 $\mu \mathrm{F}, 10$ volt, tantalum
C6-180 pF mica
C7-470 pF ceramic
C8-. $0033 \mu \mathrm{~F}$ polyester
C9, C14, C15, C17, C30-100 pF ceramic
C13-. $0047 \mu \mathrm{~F}$ polyester
C16-10 $\mu \mathrm{F}$ tantalum
C22, C29, C31, C33-. $047 \mu \mathrm{~F}$ polyester
C23-. $022 \mu \mathrm{~F}$ polyester
C25, C27-0.1 $\mu \mathrm{F}$ polyester
C26, C34-0.22 $\mu \mathrm{F}$ polyester
C28, C36, C37-10 $\mu \mathrm{F}, 15$ volt, electrolytic
C32-4.7 $\mu \mathrm{F}$ tantalum
C35-1000 $\mu \mathrm{F}, 35$ volt, electrolytic
D1-D23-1N914 or any silicon signal diode
D24-D27-1N4001

C1-IC6-LM3900, CA3401 or MC3401
IC7, IC8, IC11, IC12-CD4013

IC9-CD4015

IC10-CD4001
IC13- + 15 volt, 200 mA , regulator (SGS-Ates L131 or equal.)

Q1-2N3904

Q2-Q5-2N3906
J1-miniature phone jack, closed circuit J2-miniature phone jack
J3-phono jack
S1, S2-SPST subminiature slide switch
S3-4PDT slide switch
T1-117-volt primary; 16 -volt, 150 mA , secondary
Misc.-PC board, $8^{1 / 2} \times 6 \times 2^{1 / 2}$-inch enclosure (Ten-Tec JW8 or similar), $41 / 2 \times 6$-inch plastic insulator sheet for under PC board, hardware, etc.
Note: The following parts have been deleted and do not appear on the parts list, schematic or component placement diagram: R4, R9, R69, R77, C5 and C24.

The following parts are available from Innet Space Electronics, Box 308, Berkeley, CA 94701: A complete kit of parts (single channel), including case, for \$75.00. Etched and drilled PC board for $\$ 12.00$. Postpaid. California residents add 6% sales tax ($61 / 2$ in transit districts).
gether woth 4000 -series (MOS logic. for the digital circuits.

The (w) novise sourees $-\left(I C^{\circ} \mid\right.$ and $1(6)$ are identical except for time constants and controls. The pircil INANI control (R7) barles the resistae feedback of the pitch sutput stages. I he Pitch Nonse Sourec has (wo , tide switches (SI and S2) to control the upper frequenes spectrum. When both swithes are on the open position. the ponknoise charaterestic extends ower the useful range of frequencies. [he other positions rolloff the frequeney charactertistic suceessively closer to a red-noise vpectrum. Both switches and leads must maintain minomal capacitance to ground for a pinh-noise response.

Iloc Pitch Sualer is formed by a ramp generator (Q) and $1(4-c)$ a whage comparator (IC 3-a), a gated uscillator (J) 3-b), a I)type flip-liop (lCll-b), a dual shift register (I(9). a tapped resistor string ($\mathrm{K} \mid 8$ through R24) and two D-type flip-flops (IC7-a and 1(7-h) for octave coding. The negative-going
trailing edge of the system clock pulse initiates a negative-going ramp that is determined by R31 and ('11. This ramp is concinuously compared by [(3-a to the analoge signal from the Pitch Noise Source. A nega-tive-going fulse appears at the output of IC 3 -a during the fast rise of the ramp. The pulse terminates when the ramp becomes more negative that the noise signal

Fle continuous random voltage variation is converted to a continuous random pulsewidth variation hy the Pitch Scaler. Only during the lime the gate is low Joes 1 ($3-\mathrm{h}$ operated as an astable mulavitorator. The output of the gated clock is a measure of the original continuous signal expressed as the number of pulses in at tran start:ng at each trailing edge of the clock-pulse.
lhe clock pulse out of Q 1 precets [)-type thip-flop 1CII-b, clears the dual shift register K9 and clears the octave-control flip-flops, 1C7-a and 1C7-h. 1(`11-h produces a high level that is shifted through the register by

FIG. 3-FOIL PATTERN of single-sided PC board shown hali-size.
the pulse train from the gated clock. Since the first stage of the register in fed hack 0 clear 1($11-\mathrm{b}$ as mon as this tage goes high. eath shati-register stage is high for only one eloch period at a time. Since the fifto stage is fed hack to the first as well as to the suxth. hits in the register will rectele every sixth pulse from the gated ctock.
The sixth stage of the shift register provides a slock input to the extate-tontrol flip-llops (IC7-a and 1(7-b). Since the D) input of I(7 -a is held high and the I) input of l("7-b is tied to the Q output of $1(7-a$. the Q output of 1×7-at witl go hegh on the sisth gated-cloch pulse while the Q output of l(7-b will go high on the elevent pulse. The octates are selected as follous: The hghest octave when both Q outputs are low: the middle extave when the \mathbf{Q} output of I($7-\mathrm{a}$ is high and the Q output of $1(7-h$ is low: the lowest octacc when both Q output are high.

The output of llip-flop |Cll-h is aloo applicd, through R15 and (8. to the comparator wis to cause a minimum of one pulse (t) result at each clock. regardless of the noise-source signal lesel at the time. the output of l($7-h$ is ANI)ed by I)2 and RlG with the fifth stage of the regisier and applied to the gatcd elock wo as to inhibit the latter from producing more than fifteen pulses. Each of the first fise stages of the shit register is connected through a dode to a tap in the resistor atring died to the biteh $\mathrm{V}^{\prime}{ }^{\circ}()$ inpu: The output of each of these stage prodaces a different voltage at the input of the to (hus producing diflerent frequencies. The values of the resistors are chosen withon $\pm 5^{\prime}$, to produce the specilic tone ratios.
The Pitch V'(0) has a current-summing amplifier at the input that combenes a 6-11,

FIG. 4-COMPONENT PLACEMENT diagram.
vibrato sinewave with the current level produced by the shift register and resistor string to produce a tone-control voltage. The VCO consists of the usual integrating amplifier (IC3-c) that produces a triangular wave. a limiting amplifier (IC2-c) that converts the triangular wave to a squarewave and a transistor clamp (Q2) that is connected to the plus input of the integrating amplifier. The PITCH RANGE control changes the gain of the summing amplifier. This tunes the Infinitune to any absolute pitch over a wide range.
Transistor Q3 forms an inverting buffer to drive the Octave Dividers. The Octave Dividers consist of two cascaded flip-flop stages (IC8-a and 1C8-b.) Each flip-tlop is controlled by a NOR gate ($1 \mathrm{C} 10-\mathrm{a}$ and IC $10-b$) connected to the octave control flipflops. If the output of an octave control flipflop is high, frequency division by the associated Octave Divider occurs. However, if the output of the octave control flip-flop is low, the low cycle of the applied squarewave is NAND'ed and produces, after differentiation, a positive-going pulse at the clear input to the Octave Divider. This clears the Octave Divider between each clocking transition and. therefore, no division takes place.

The Duration Scaler contains three voltage comparators (IC4-b. IC5-a and IC5-d) that are referenced to three fixed voltages. Normally, the lowest voltage is applied to IC4-b, the next highest to IC5-c, and the highest to IC5-d. by means of R67, R70 and R73. For the duration ratios $1: 2: 4$ only, R73 is set to +15 volts and the two comparators (IC4-b and IC5-c) convert the noise-voltage into three threshold codes on two lines. (The shortest duration range is selected when both outputs of IC4-b and IC5-c are high; the intermediate range when the output of IC4-b is low and IC5-c is high; and the longest

FIG. 5-WIRING DIAGRAM for the chassis and front panel.
range when both outputs are low.) At the end of a note. the three ripple-counter stages of IC12 are high, causing the NOR-gate output to go low and Q4 to cut off.

The reset pulse from the pitch scaler is AND'ed by D9 through D14 with the comparator outputs and clears only corresponding ripple-counter stages. The cleared stages cause the output of NOR gate IC10-d to go high. Transistor Q4 then clamps any further clock pulses, preventing them from clearing counter stages.

The leading edges of the clock signal from ICIO-c decrement the ripple counter through

000 to 111, at which time the output of NOR gate IC10-d. which determines the noteduration. goes low again. With the settings mentioned, the note duration will either last 1. 2 or 4 clock periods. Using R73 for the highest setting brings in a questionably useful duration of 7 periods. Other relative settings of the potentiometers can produce any four integral durations up to 7 periods in length.

The Envelope Shaper allows for separate control of rise (attack). sustain (decay) and fall (damping) of the duration pulse (output of $1 \mathrm{C} 10-\mathrm{d}$). Transistor Q5 is an emitterfollower buffer. continued on page 76

TERRY A. WALTERS

have you ever stopped to think rhar in twenty years or so. not many people will remember how to "tell-the-time" when they come face to face with one of those antique mechanical clocks? With so many digital clocks and watches appearing on the markel. our children will learn to "read" the time from the familiar digital display. The clock described here however, combines the
traditional round face with the accuracy of the all-electronic clock

The face of the clock consists of a circle of 12 green LED's that are located al the hour positions. A circle of 60 red LED's displays the minutes. The $60-\mathrm{Hz}$ line frequency is divided down and decoded to drive the proper LED's corresponding to the conventional hour and minute hands. Thus the electronic clock is read in the same manner as the mechanical clocks with the hour and
minute hands.

How it works

The schematic is shown in Fig. 1. Transistor Q l converts the signal from the power supply transformer to a TTL compatable $60-\mathrm{Hz}$ squarewave. ICI divides the frequency by 10 and IC2 divides it by 6 , so that a $1-\mathrm{Hz}$ signal appears at pin 8 of IC2. IC3 and IC4 divides the $1-\mathrm{Hz}$ signal by 60 to produce a pulse every minute.

Build this No-Digit

 Digital Clock
 Using discrete LED's and a round face, this wall clock displays time much like a standard mechanical clock and has the accuracy of the all-electronic timepiece
 now

REAR VIEW of clock The clock shown here is a prototype. The clock described in the article is a later version that includes separate switches for setting the hours and minutes

To minimize the parts count. a multiplex technique is used to individually light each of the minute LED's. IC5 divides the one-minute signal by ten and IC6 decodes the BCD output of IC5 to one-of-ten outputs. IC7 divides IC5's once-every-ten-minutes output by 6 . This signal is decoded by IC8 to one of six outputs. When pin 1 of IC8 is low. Q2 conducts. This provides power to LEDI through LEDIO. IC6 counts through its ten numbers and turns on LEDI through LEDIO in consecutive order to display each of the first ten minutes. During the second ten minutes, pin I of IC8 goes high and pin 2 goes low. This supplies power through Q3 to LEDII through LED20. and IC6 turns these LED's on in consecutive order just as the first ten. This method is used to turn on each of the 60 LED's in order. Then the count begins again at the top of the dial.

The output of IC7 provides a pulse

All resistors $1 / 4$-watt 10%, unless noted

R1-R8-4700 ohms

R9-R 14-10,000 ohms
R15-R32-180 ohms
R33, R34-150 ohms
C1-1000 $\mu \mathrm{F}, 16$-volt electrolytic
C2- $-100 \mu \mathrm{~F}, 16$-volt electrolytic
C4-C8-0.1 $\mu \mathrm{F}, 50$-volt ceramic disc LED1-LED60-discrete red LED; 0.1 -inch lead spacing, 20 mA . (Xciton XC555R, Monsanto MV5053, or equal.)
LED61-LED72-discrete green LED; 0.1inch lead spacing, $20-\mathrm{mA}$. (Xciton XC555G, Monsanto MV5253, or equal.)

PARTS LIST

D1-D4-1N4003
D5-1N4148
Q1-2N3903
Q2-Q7-2N3905 or 2N3638
IC1, IC3, IC5-7490 Decade Counter
IC2, IC4, IC7-7492 Divide-By-Twelve Counter
IC6, IC8, IC10-7445 BCD-To-Decimal Decoder/Driver
IC9-7493 4-Bit Binary Counter
IC11-7420 Dual 4-Input NAND Gate IC12-7400 Quad 2-Input NAND Gate IC13-LM34OT-5 or MC7805PC; 5 -volt 3 terminal positive voltage regulator

T1-power transformer: 117-volt primary, 6.3 volt 0.6 -amp secondary (Triad F13X or equal.)
S1, S2-SPDT toggle switch, PC board mount
Misc.-PC board, case, hardware, wire, solder, etc.
The following parts are available from Cheops Electronics, 3780 Coronado Way, San Bruno, CA 94066: A complete kit of parts, excluding case, $\$ 47.50$. An etched and drilled PC board, $\$ 12.00$. California residents add state and local taxes as applicable.

FIG. 5-COMPONENT PLACEMENT for rear of PC board.

FIG. 4-COMPONENT PLACEMENT for front of PC board.
each hour. This signal is sent to the input of IC9, pin 14. IC9 is wired through IC 12-a and IC12-b to function as a divide-by-twelve counter. The BCD output of IC9 is decoded by IC10 to one-of-ten outputs to display each of the first ten hour-positions. Since IC 10 has only ten outputs, it is necessary to use

FIG. 3-REAR FOIL PATTERN of double-sided PC board shown half size.

To accomplish this, a faster signal is used to trigger IC5. The signal at pin 8 of IC 2 is a $1-\mathrm{Hz}$ squarewave that runs the minute "hand" around the face of the clock as if it were a second hand when S 1 is in the SET position. When the correct minute is displayed, Sl is returned to the run position. Switch S2 is used to sweep the hours LED's at a 1Hz rate. As you look at the rear of the continued on page 84

TELEPHONE ACCESSORY

DICK FEINWELL

three mos integrated circuits from General Instrument and a demonstrator PC board layout, make the construction of a deluxe telephone dialer a fairly routine procedure. The circuit is a pulse dialer that interfaces with a telephone type 2-of-7 keyboard. Or, with the addition of a diode encoder, a 1-of-12 calculator keyboard.

The dialer has three basic modes of operation. First it converts any conventional dial phone into a pushbutton phone. A series of up to 20 digits are stored and sent out sequentially at a fixed puise rate.
Second is the very convenient redial mode. If the number you dial is busy, you hit the redial key twice to automatically redial the number without reentering the digits. The first push of the redial key holds the last number dialed in a series of memory registers while the hook switch is depressed to get another dial tone. The second redial key closure starts the actual dialing.

Third, the system has storage for ten 20 -digit numbers including access pauses. Access pauses are required when dialing code prefixes are used to connect through automatic telephone routing systems. Often you must wait for dial tones after these codes are entered. The dialer stops the dialing sequence when it reads an access pause code from memory. Upon receipt of the next dial tone, the continue button is pushed to finish dialing the number, or to dial out up to the next access pause code.

Before getting too deep into this project, I offer a word of caution. If you add this gadget to a privately owned

Pushbutton Dialer With Memory

Abstract

Add-on device connects to any telephone and permits dialing via a separate keyboard. It has a redial mode and a 20 -digit 10-number expandable memory

home or company internal phone system, you're on firm ground. The telephone company on the other hand tends to be a little fussy about hooking things to their lines. This device is not intended to be connected directly to a subscriber's telephone set without compliance to local phone company regulations.

How it works

Figure 1 shows the schematic diagram of the telephone dialer. Pushbutton to Dial-Pulse Converter IC4 is the focal point of the system. A logic zero on the reset-input (pin 3) clears all internal shift register stages and resets the counters. Transistor Q6 is turned on for a short interval when V_{E} is switched on by the hook switch. Base current to Q6 flows through R33 and C4 for the time it takes capacitor C4 to charge. The
collector of Q6 remains low for the short interval and then switches high to trigger the monostable multivibrator formed by IC2-c and IC2-d.

The Pushbutton to Dial-Pulse Convertor IC4 accepts a keyboard parallel input on lines C0 through C4 coded as listed in Table 1. Figure 2 shows the connections for a telephone-type 2 -of-7 keyboard. The C1, C2. C3 and C4 inputs to IC4 are all negative or logic I levels except when pulled down by the keyboard outputs. Hitting any key pulls the COM line to ground, which through the COM input terminal of IC5. operates the Keyboard Strobe Input (KBS) of IC4. Ten milliseconds later, IC4 reads the state of the parallel inputs C0 through C4. This debouncing interval gives the keyboard contacts time to settle.

Pressing the "I" key grounds only KE

PARTS LIST

All resistors $1 / 4$-watt, $\mathbf{1 0} \%$, unless noted
R1, R2* R3 $^{*}, R 4$, R $^{*}, R 6^{*}, R 7-R 12$,
R15-R19, R22, R33, R35, R39, R42-
100,000 ohms
R14, R20, R21, R44** -1 megohm
R23, R25, R27, R29, R31- 100 ohms
R24, R26, R28, R30, R32-10,000 ohms
R34, R38-470,000 ohms
R41-1000 ohms
R42**, R43**, R45** - R $51^{* *}-560,000$ ohms
C1-C4, C7-C11-0.1 $\mu \mathrm{F}$ disk, 50 volt
C12-56 pF disk, 50 volt
C14-. $005 \mu \mathrm{~F}$ disk, 50 volt
D1-D4, D5*-D8*, D9-D24, D25**-D36**,
D37-D39-1N914
Q1-Q5, Q8-2N3704
Q6, Q7*-2N3703
IC1 *-CD4081, quad 2-input AND gate

IC2, IC3-CD4011, quad 2-input NAND gate
IC4-AY-5-9100 (General Instrument)
IC5-A Y-5-9200 (General Instrument) IC6-AY-5-9500 (General Instrument) RY1, RY2-SPST normally-open relay, 100-ohm coil (Magnecraft 103MX-10 or equal.)
RY3-SPST normally-closed relay, 100ohm coil (Magnecraft 103MX-10 or equal.)
S1-S3-SPST, normally open
LED1-LED5-MV5053 (Monsanto)
Note: The following component designations are not used and do not appear in the parts list, layout and schematic: R13, R36, R37, R40, C5, C6 and C13.
Asterisks: See Fig. 1.
FIG. 1-TELEPHONE DIALER can store ten telephone numbers, has memory-expansion capability and can interface to elther a calculator- or telephone-type keyboard.
which is one of the two inputs to AND gate IC1-a. The output of IC1-a goes to logic 0 only when both its inputs are at a logic 0 . Since pin 2 of $\mathrm{ICl}-\mathrm{a}$ is high, the output of this gate remains high. Therefore, Cl through C 4 are all at a logic 1 level corresponding to digit 1 in Table 1.

Key "2" brings KF and C4 to ground. Depressing key " 3 " grounds C3 through IC1-c. Keys " 4 " through " 9 " work by

TABLE 1				
Digit	C1	C2	C3	C4
1	1	1	1	1
2	1	1	1	0
3	1	1	0	1
4	1	0	1	1
5	1	0	1	0
6	1	0	0	1
7	0	1	1	1
8	0	1	1	0
9	0	1	0	1
0	1	1	0	0
Access Pause	0	0	1	1

their direct connection to $\mathrm{C}, \mathrm{C} 2$, and C4 and the indirect connection to C3 through ICl-c.

Depressing " 0 " switches C3 through IC1-b and IC1-c. IC1-b senses the coincidence of KD and KF corresponding to the " 0 ." Access pauses are sensed by IC1-a.

The Redial mode is initiated when KE and KF go low. When this occurs, C 0 is grounded by ICI-d without affecting Cl through C 4 .

The 1-of-12 keyboard encoder shown in Fig. 3 produces the C 0 through C 4 outputs directly. ICI and the components associated with the K inputs are not used.

A series of pins control the dialing rate, mark/space ratio and the interdigital pause. In the circuit shown in Fig. 1, these pins are grounded for standard timing. This is a dialing rate of 10 pulses-per-second, a mark/space ratio of $66^{2} / 3 \% / 331 / 3 \%$, and an 800 ms
inter-digital pause. A pre-digital pause equal to the inter-digital pause precedes the first digit of a number. For special systems, these pins can be wired to either of the two clock phases or logic 1 to change the parameters.

Don't all integrated circuits have a power supply pin? Not this one! Energy is supplied to IC4 from the two clock inputs, q 1 and q 2 . The clocks must swing at least 13.5 volts negative and are produced by a special clock generator IC.

The inhibit input has the dual purpose of inhibiting the dial pulses when access pauses are required and initiating a redialing output. The remaining pins are the outputs that drive the LED indicators and output relays.

The Repertory Dialer, IC5, is the ten number memory. Although it has the capability for 22 digit storage when used in touch-tone systems (using other GI

FIG. 2-TELEPHONE-TYPE KEYBOARD connects directly to telephone dialer.

FIG. 3-CALCULATOR-TYPE KEYBOARD requires diode encoder to connect to telephone dialer circult.

FIG. 4-OUTPUT PULSE TRAIN from telephone dialer circull. Upper trace shows wavelorm at collector of Q1 and lower trace ls collector of 03.

FIG. 5-SINGLE-DIGIT PULSE TRAIN Is obtained by expanding the trace shown In Fig. 4.

IC's), the phone number length is limited to 20 digits in this circuit by IC4. Although the circuit in Fig. I uses only one AY-5-9200 IC for a total storage capacity of 10 telephone numbers, this IC was designed to be "stacked" for additional storage capacity by paralleling the inputs and outputs and using the Chip-select input (pin 8) to select the memory block.

Figure 4 is an oscilloscope photo of a dialing sequence of the digits $1,2,3,4$, $5,6,1$. The upper trace is the line output (collector of Q1), and the lower trace the

FIG. 6-FOIL PATTERN of componeni-side of PC board. Actual board measures $5 \times 41 / 4$ inches.

FIG. 7-FOIL PATTERN of bottom-side of PC board shown hall size.

- 1.OF. 12 KEYBOARD ONLY SEE TEXT NOTE: LED 1-LED 5 CATHODES GO TO 01-05 COLLECTORS
** AFTER CHECKOUT
REPLACE WITH RELAY

FIG. 8-COMPONENT PLACEMENT diagram.

FIG. 9-RELAY CONNECTIONS to telephone.
collector of Strobe transistor Q3. Figure 5 is an expanded photo showing a single digit output.
The COM output of the keyboard feeds the COM input (pin 6) of IC5. The COM input is transmitted to the AY-59100 through its K BS input only when a dial or redial operation is in progress.
During a Store operation, the keyboard signals are entered into the AY-59200 and the CKO line (IC5, pin 12) is inhibited so the signals on $\mathrm{C} 0-\mathrm{C} 4$ do not cause any dial pulses to be transmitted. The CLE line (pin 5) is activated at the same time as the Store line (pin 7). The first digit then depressed is latched as the memory address, and that location is cleared. The number to be stored is entered into the location and the store button is released. The CLE line is simultaneously released.

The Retrieve mode is selected by applying a logic I level to the CLE input and pulsing the Retrieve input for at least 10 ms through capacitor C 2 by the flip-flop formed by IC3-c and IC3-d. The following digit entered on the keyboard is latched as the memory address. The dial pulses are transmitted at least $60-\mathrm{ms}$ later.
Address Keyboard Disable (AKD) output line (pin 10) is held at a logic 0 level during the Store and Retrieve operations. The positive going transition at the end of a Retrieve operation resets flip-flop IC3-c/IC3-d. IC5 is also powered from the two-phase clock signals. IC5 is cleared on initial turn on when $-V_{E}$ is applied to pin 11.

The CMOS Clock Generator (IC6) is wired as a voltage multiplier to convert the 3.9 -volt supply to nominal 15 -volt clock outputs using a Cockroft-Walton voltage multiplier. An internal D-type flip-flop is connected as a divide-by-two by tying the Q output to the D input using the jumper between pins 8 and 10 . The Q output drives capacitors C8 and C10, and the Q output drives capacitors C9 and C11. Diodes D17 through D21 and capacitors C8 through C11 boosts the -3.9 -volt supply to -15 volts on continued on page 80

Add-on device to your oscilloscope permits you to display quadriphonic signals from your hi-fi system

STEPHEN DÚNIFER

IF YOU SERVICE QUADRIPHONIC AUDIO equipment or have a quad set-up of your own, you will surely realize the value of a display that shows the relative levels, balance and phase of the four audio channels. Such a display will provide, at a glance, an indication of whether the quadriphonic decoder is
operating properly. This four-channel display adapter and your generalpurpose oscilloscope are all you need to produce a display that shows phase, separation, informational quality, level and balance of the four channels.
The circuit design is based on a rotational matrix composed of resistors RI
through R12 and four diodes as in Fig. 1. The signals from the four channels are rectified by series diodes and then processed by the matrix and differential amplifiers IC1 and IC2. The outputs of ICl and IC2 are fed to the vertical and horizontal inputs, respectively, of the scope.

FIG. 1-QUADRIPHONIC DISPLAY ADAPTER uses a resistor matrix to derive the scope's horizontal
and vertical signals.

FIG. 5-TYPICAL DISPLAY PATTERNS. A left-only signal is shown in a and a right-only signal is shown in b. A stereo signal is shown in c and a quadriphonic signal is shown in d.

Setting up

Connect the adapter and scope to the quadriphonic amplifier as shown in Fig. 4. The adapter inputs are connected in parallel with the speakers across the amplifier's output terminals. Be sure that the ground side of each speaker output is connected to the adapter ground. Apply a signal to the left-front channel. Set the scope's horizontal and vertical input attenuators to either the 1or 10 -volt range-depending on the scope sensitivity. While watching the display, adjust the horizontal and vertical gain controls until the trace in the top left quadrant of the screen is at a 45° angle as in Fig. 5. Touch-up the controls so the 45° trace starts at the center of the screen and extends onehalf to two-thirds the way to the edge. Now, apply the audio signals to the other three inputs. The resulting display

Construction

Construction is straightforward and you shouldn't have any difficulty if you watch diode and voltage polarities and make sure the IC's are properly inserted into the PC board or sockets. A PC board, shown in Fig. 2, was used but you can use perforated circuit board and solder clips or wirewrap. Diodes D1-D4 are 1N34's. The germanium 1N34 was selected rather than a silicon type because of its more desirable knee characteristic.

Use an ohmmeter to match, as closely as possible, the 4700 -ohm matrix resistors. If you can get metal-film resistors from the same lot number, matching may not be required. Badly mismatched resistors will tend to skew the display. An angular displacement of 17 degrees can result from one central resistor being 10% high and an adjacent one 10\% low. One-percent resistors can be used but, considering cost and availability, matching 5 -percent'ers should suf-

PARTS LIST

All resistors $1 / 4-w a t t, 5 \%$ metal-film
R1-R13, R15, R18, R19-4700 ohms R14, R16, R17, R20-R22-33,000 ohms
C1, C2-0.1 $\mu \mathrm{F}, 25 \mathrm{~V}$ disc ceramic
D1-D4-1N34 germanium diode
IC1, IC2-741 op-amp
J1-J4-RCA-type phono jack, single-hole mount
J5-J7-banana jack
B1, B2-9-volt transistor battery
Miscellaneous: hookup wire, shielded cable, solder, enclosure, etc.
A drilled PC board is available for $\$ 3.00$ plus 25 for postage and handiling from O.H.M.S Research, PO Box 604,
Georgetown, KY 40324. Kentucky
residents add state and local taxes
as applicable.

FIG. 2-FOIL PATTERN is shown hall-size.

FG. 3-COMPONENT PLACEMENT diagram.

FIG. 4-HOOK-UP of the scope adepter.
fice.
Resistors R17 and R22 are included in the design as they might be needed when using a basic CRT monitor scope with a very high input impedance. Omit them if yours is an ordinary service scope with vertical amplifiers.

Insert the components in the printedcircuit board following the layout in Fig. 3. I suggest mounting the integrated circuits in sockets or Molex pins. Wire the channel inputs to phono jacks and the differential amplifier outputs to
will depend on the program source. It can be used to determine the quality of various decoders and four-channel source materials. Figure 5 shows some typical display patterns. A monophonic signal will show a straight vertical trace on the oscilloscope. A left-only signal is shown in Fig. 5-a and a right-only signal is shown in Fig. 5-b. A stereo signal is displayed as a combination of the leftonly and right-only displays, as shown in Fig. S-c. A quad display is shown in Fig. 5-d.

R-E

Build A Digizal IC Ddenaffier /Tesfer

YOU HAVE JUST FINISHED A PROJECT using digital IC's and after applying power, the darned thing just sits there or goes up in smoke! Several hours of troubleshooting leads to the discovery that one (or more) of the IC's is defective. Out comes the old soldering iron and a lot more time is wasted

Sound familiar? Well, it happens all the time unless you pay premium prices for your IC's. This kind of trouble surely takes much of the pleasure out of building projects. But take heart-help is here. A small investment of time and money to build this Identifier/Tester will pay handsome dividends. With this instrument on your workbench, you can save your blood pressure and your money.

This easily built device will enable you to quickly and easily test any 8-14or 16 -pin digital IC whether it is RTL, DTL, TTL, CMOS or several other types if you exercise some care. Of course, it works like a charm with the old standby TTL's. Now, instead of paying for first-quality IC's, you can buy the "cheapies" knowing that you can assort out the rejects and never again wire in a bad IC. If that is not enough for you, there is a hidden bonus in this little device.

You don't even have to buy the "cheapies"-you can buy the "super cheapies." These are the bulk packs of mixed, untested IC's of which some are marked, some are unmarked, and some are marked with factory numbers that may as well be Greek. Best of all, these IC's cost only about two cents each!

The Identifier/Tester (if you haven't already guessed) will identify IC's as well as test them. Actually, it will enable you to identify many IC's-some are simply too complex to decipher. So, you pay a couple of cents per IC and, even if you throw out two-thirds as bad or unidentifiable, that is still just six cents per IC. While that is not bad at all, the "throw-outs" run only one-third to onehalf of the big economy packs.

How it works

The Identifier/Tester is really quite simple. It is nothing more than three IC sockets (labeled WIRE, TEST and POINT) connected in parallel and 16 LED indicators (Fig. I), one indicator per socket pin. The LED indicators are transistordriven to reduce loading on the IC being tested. This is necessary to prevent false indications and erratic operation of some IC's, which would occur if the LED's were connected directly to the pins.

Four of the LED's are smaller than the others. They correspond to pins 4,8 , 9 , and 13. The purpose of having these LED's smaller (or a different color) is to make it easier to count the pin numbers.

A fourth socket is labeled source. It

> Simple device tests digital K's and identifies many of the unknown ones

EARL R. SAVAGE

COMPUTER PROJECT

Build 2650-Based microcomputer

 system
Part III. Built on a single printed-circuit

 board, this 2650 microcomputer contains a video and cassette tape interface and resident supervisor program. Add a keyboard, video monitor, cassette tape recorder and power supply for a complete working systemyou to type in two hex characters to fill the memory location. The following is an example of this routine:
.A A100A
100A 05
100B 10 $\overline{\text { Cu }} 3 \mathrm{~B}$
data is 05 , space indicates go on

100 C 38 ES 3B you wish to change it. Another command permits verification of what is on tape against any block of memory.

The specific instructions for the operation of the supervisor are provided. In the examples, all underlined characters are ones entered by the operator. Everything else is printed on the screen by the supervisor program. A period (.) indicates that the supervisor program is ready for a command. An A indicates that it is waiting for you to type in an address. At any time the supervisor is looking for a keyboard input, you can press es (escape) which will terminate the present command and wait for a new one.

To alter or display memory, depress the A on the keyboard. It will then ask for an address, which should be entered in hexadecimal form. The address and the data then appear on the next line of the video monitor. You can now do one of three things: depress the es key to quit the alter/display routine, enter C to change the data at that location, or depress the space-bar to display the next memory location. If you decide to alter the memory, the supervisor will wait for
processing will be interrupted) can be set. When this address is reached, a message is written on the screen and the CPU registers or any memory location can be inspected to see what they were immediately before the breakpoint address. You can also clear this address if data is 38 , press escape to terminate routine

To execute a program, type an E for the command. The supervisor will then ask for the address that it should start executing at. It will then jump to the address and start executing instructions:

$$
\begin{aligned}
& \text { E A163B execute at } 163 \mathrm{~B} \text {, press } \\
& \text { space to start }
\end{aligned}
$$

If the program returns to the supervisor (by a branch instruction), all of the CPU registers are saved, and then it asks for a new command.

If you did return from your program by a branch instruction, or because of a breakpoint, you can inspect the memory using the alter routine, or you can inspect the CPU registers entering 1. It will then ask you to type in a register number corresponding to the register that you want, as follows:

Enter For

0 Register 0
1 Register 1, Bank 0

FIG. 1-IDENTIFIER/TESTER circuit. The corresponding pins on each socket are connected in parallel and connected to an LED indicator circuin.

PARTS LIST

R1-R16-270-470 ohm, 1/4 watt, 10% (see text)
R17-R32-33,000 ohm, 1/4 watt, 10%
R33-1000 ohm, $1 / 2$ watt, 10%
R34-330 ohm, $1 / 2$ watt, 10\%
Q1-Q16-2N2222 or similar switching transistor
LED1-LED16-LED's of size and color to suit (MV5054 or equal.)
Misc.-perforated board, binding posts, four 16 -pin IC sockets, $4 \frac{1}{2} \times 21 / 2$ $\times 1$-inch chassis.
serves as a source of four different voltages. When working with TTL's, these voltages are: $\mathrm{HI}(+5 \mathrm{VDC})$, LO (0 VDC), LO5 (+5 VDC through a IK resistor), and HIO (0 VDC through a 330 -ohm resistor). The HIO voltage is not used in testing but is necessary in the IC identification procedure. These voltages are wired to the pins as shown in the detail drawing of the source socket (Fig. 2).

FIG. 2-LOGIC LEVELS are obtained from the front-panel source socket.

The three sockets on the right side of the panel (WIre. source. and POINT) are not used as sockets at all. They are used as compact connectors for temporary application of voltages to the pins of the IC in the TEST socket. Though the point socket may be omitted, it is very convenient for making touch-and-go voltageapplications without getting mixed up with the connections already made to the wire socket.

Construction

Parts used in the construction of the Identifier/Tester are not critical. Your junk box will probably provide most of them. If not, the parts are readily available.

The LED dropping resistors should be adjusted for the general IC families that are most often encountered. The 270 -ohm value shown on the schematic is best for TTL's and their 5 -volt powersupply. Resistors of 390 ohms were used in the prototype in anticipation of testing higher voltage IC's. They also work fine with 5V TTL's; the LED's are just a litule dimmer.

As to transistors, almost any smallsignal NPN transistor will be suitable. Low cost switching transistors are ideal. The type certainly is not critical-apparently anything that will wiggle the needle on a simple transistor checker will work fine.

Point-to-point wiring was used in the prototype. It looks like a rat's nest but operates fine since there is no interaction between various parts of the circuit. A printed-circuit board could be used but that seems such a waste of effort when building only one or two.
Perforated board is used for the front panel and for mounting the resistors and transistors internally. The internal board is attached to the panel by a "wire hinge" so that it can be folded parallel to the panel. The boards were cut to fit a small chassis. A plastic box could be used as well.

The prototype was built on a chasis measuring $11.5 \times 6.5 \times 2.5 \mathrm{~cm}(41 / 2 \times$ $21 / 2 \times 1$ inch). That is about as small as one can use with point-to-point wiring. Even with a printed-circuit board, the box should not be smaller or the instrument will be too difficult to handle conveniently.

Note that a power supply is not included in the prototype. For TTL's, a regulated positive 5 volts DC is brought in through the binding posts at the top. This arrangement permits easy use with other voltages when testing other IC

POWER SUPPLY

R1-50 ohm, 10 watt, 10\%
R2-270 ohm, $1 / 4$ watt, 10%
$\mathrm{C} 1-1000 \mu \mathrm{~F}, 35$ volt DC
D1-1N4002
IC1-7805 5-volt regulator
S1-SPST switch
LED1-red LED (MV5054 or equal.)
T1-117-volt primary; 12.6 -volt. 1.2 -amp secondary
F1-1/2-amp fuse

FIG. 3-REGULATED POWER SUPPLY is suitable for TTL and CMOS IC's.
families. The supply may be built-in if a larger box is used. A suitable internal or external 5 -volt supply is shown in Fig. 3. It is strongly recommended that the power be regulated with one of the IC regulators that provides for both thermal and over-current shutdown. This will offer protection in cases involving shorted IC's and mistakes in wiring between the source and wire sockets.

When construction is completed, test the instrument as follows:

Check for continuity (ohmmeter) between corresponding pins of the test. WIRE, and POINT sockets.

Check for shorts between any pins on one of these three sockets.

Apply power to the device through the binding posts-NO LED's should turn on.

Check for proper voltage on each pin of the source socket.

Apply +5 volts from the source socket to each pin in turn on the point socket. The corresponding LED (only) should turn on as each pin is touched.

If any of these checks fail, remove power and correct the wiring error(s) in the instrument.

Testing digital IC's

When first using the tester, the listed steps should be followed exactly. It will be possible to take some shortcuts without too much risk after you have gained some experience.

Step 1. Remove all power from the tester.

Step 2. Insert IC into the TEST socket. IC's with less than 16 pins should always be mounted on the left end of the socket to avoid confusion in pin numbering while testing. (This is where the smaller LED's are very helpful.)
Step 3. Wire +5 volts and 0 volts to the appropriate power pins of the IC by placing jumper wires (No. 22 or 24 wire) between the source and wire sockets.

Step 4. Apply power to the tester.
Step 5. Quickly observe the LED's; if all are on, remove power and check Step 3. If Step 3 is correct, IC is shorted; discard it. If wiring change is made, return to Step 4. If V+ and some LED's (but not all) are on, proceed.
Step 6. Apply "finger test" to IC. If it is hot or warm to the touch, remove power. Check wiring and return to Step

2	Register 2, Bank 0
3	Register 3, Bank 0
4	Register 1, Bank 1
5	Register 2, Bank 1
6	Register 3, Bank 1 Program Status Word, 7Lower Program Status Word, Upper
Upper	

The microcomputer will then display the data that was in this register right before the program returned to the supervisor. Similar to the alter/display routine, you now have three options: to stop by depressing the es key, to change the register value by entering c. or to inspect another register by depressing the space-bar:

$\frac{1}{\bar{R}} \underline{2}$ 2C $\underline{C} \underline{02}$	register 3 , bank 0 has $2 C$, change to a
	02

To transfer your program to tape. enter a D. The supervisor will then ask for the beginning address and the length (in bytes-up to 256) of the data to be transferred. Remember that everything must be entered in hexadecimal for the supervisor to interpret it correctly. The supervisor actually dumps one-byte more than the length that is entered, so that a length of FF (255 in decimal) will cause a dump of 256 bytes. Also, a length of zero indicates that this is the last block that the load routine should read in, and will cause any load of this data to be completed. This allows the load routine to load multiple blocks without having to re-enter the L (load command) and allows it to stop itself automatically when all the data has been loaded. Therefore, a block with length of zero should be inserted after all of your data blocks have been transferred to the cassette tape:
.D A10DB LFF dump 256 bytes
start at 10 DB
.D A11DB LID dump the next 17
.D A0000 Lo0 dump an end of file block

After all of the data has been transferred, the supervisor will automatically ask for a new command.
If you wish to check the data that has been transferred to the cassette tape, use the verify (v) command. After entering v, the supervisor will then ask for an address. After this has been entered, the supervisor will start the tape recorder and will look for a block starting with this address. When the block is found, the data in the block is compared with the actual data in memory at the time of the verify. If the data is not the same as what is on the tape, an error occurs. Also, if the first block on the tape has an address different than the one that you
typed in you will get an error message.
It should be noted that the dump routine transfers the data along with the address and the length of the block:
.V A1000 be sure that the first block on tape is for address 1000, and that the data is correct

The verify routine returns to ask for a new command if the verify was all right.

When using the cassette tape routines. the supervisor takes care of turning the recorder off and on. To implement this feature, you must hook the auxiliary control wires of the tape recorder to a relay. and drive this relay with the ID) ON line from the board. You must be sure to have the recorder in the correct mode (i.e., record or play).

To load data from a tape. simply enter L for the command and be sure the recorder is in play mode. All of the data is recorded on the tape along with the address to load it at and the length of the load. The supervisor will ask for a new command when it is done loading the tape:

. 1 load from tape

Recorded on tape are sumcheck characters also. Their purpose is to check against errors while recording or playing back data. The first sumcheck is sent after the address and length. while the second is sent after the block of data. Therefore, you can receive an error indication while loading or verifying ir. either of two places.

To set a breakpoint address in your program, enter а в as the command. It will then ask you for the address of the breakpoint:

> B A1703 set breakpoint address to be 1703

When this address is reached in the program, the supervisor will save all of the registers and wait for a new: command. It signifies that the breakpoint address has been reached by writing the message:

BP 1703 indicates breakpoint address was reached
The registers and memory can now be examined as you see fit. Alter the breakpoint has been executed. it is cleared and the program will be allowed to run past the point next time through.

If you decide that a breakpoint that you set was at the wrong address, you must clear the breakpoint address by entering c. If you do not do this, the program will still have a supervisor inserted instruction and will not operate correctly:

$$
\text { C } 1703
$$

The supervisor responds by typing the address that the breakpoint was set at. Note that you must set breakpoints in an address position where an instruction would begin. In other words, you cannot set a breakpoint to be executed at an address which is the second or third byte of an instruction.

To run the tape recorder (to rewind the tape, etc.) enter r. Pressing escape will return you to the supervisor.

Subroutines

The supervisor program includes many useful subroutines that can be used by branching to them. The more useful ones are shown in Table I.

All registers used are in the bank currently selected.
More information about the 2650 microprocessor and its language can be found in the 2650 Microprocessor Mam$a l$, which is available from Signetics.

TV typewriter

Now that your system is finished and you know how to use the supervisor program, what can you do with it? One obvious use is for a TV typewriter display. which is also quite simple to do. Table 2 has the listing for the TVtypewriter program that accepts any printable character along with the backspace code and carriage return. The first thing that the program does is branch to

TABLE I		
Address	Mnemonic	Description
0396	WCHR	writes the character that is in R3 on the screen and updates the cursor position.
0024	LFCR	moves the cursor to the leftmost position of the next line.
030F	KBIN	inputs one ASCII character from the keyboard and puts in R3.
006A	HXOT	takes the binary data in R2 and displays it as two hex characters.
01B6	INHX	inputs two hex characters and converts them to binary in R3.
0083	RETU	branch to this address to return to the supervisor and save the register values.

the keyboard input routine (K BIN) with a branch-to-subroutine instruction (BSTA). This subroutine receives one character from the keyboard and prints it on the display, if it is not a control character. After the character has been printed (if it is printable), the subroutine returns to the program to check if it was a backspace or a carriage return. If it was either of these two, the result of the respective compare instruction will be to clear the condition code. Then the branch instructions immediately following the compare instructions check the condition code to see if the compare was equal. If it was equal, the program branches to the correct subroutine. The carriage-return subroutine is simply a branch to the line feed-carriage return (LFCR) subroutine in the monitor, while the backspace routine is contained in the TV typewriter program.

The backspace routine simply takes the cursor pointer and decrements it. It also writes a space at the present cursor position and writes a new cursor at the new position.

The RAM positions 17FE and 17FF are used to store the present address of the cursor. To store a character in the cursor position, indirect addressing is used. This causes the processor to read what is in 17FE and 17FF and use this data as the actual address where it should do the operation.

Tape format

The cassette tape routines take care of all data encoding and decoding needed to interface with your tape unit, but if data is to be transferred between two different types of machines, you must have the format of the tape. That format is as follows:

Character	Description
1	colon indicating the start of a block
2	high order address byte for load
3	low order address byte for load
4	length of data block
5	sumcheck character for bytes 1-4
6 to n-1	data

Character 4 is the length of the data block. If it is zero, it represents the fact that this is the last block and that the load routine can stop. If it is from 1 to 255 (HOI to HFF), it is one less than the length of the data field. This allows transferring data blocks of exactly 256 bytes.

All characters are 8 bits wide, with one start and two stop bits. The teast significant bit is recorded first, with the other bits following in order.

The sumcheck is generated by feeding each data byte into an EXCLUSIVEOR gate with the sumcheck character and then rotating the resulting byte to the left one bit. The sumcheck is cleared

Line	Address	TABLE II Instruction	-TV T Label	YPEWRITE Operation	R PROG Operand	RAM Comments
1	0000		LFCR	EQU	0024	ADDRESS OF LINEFEED ROUTINE
2	0000		KBIN	EQU	0309	ADDRESS OF KEY. BOARD INPUT
3	0000			ORG	1600	ROUTINE START AT ADDRESS 1600 IN HEX
4	1600	7508	TVT	CPSL	08	SET OPERATIONS WITHOUT CARRY BORROW
5	1602	3F 0309		BSTA, 3	KBIN	GET KEYBOARD IN PUT NOTE THAT KBIN ALSO WRITES THE CHAR
6	1605	E7 08		COM1,R3	08	COMPARE THE CHARACTER TO A BACKSPACE
7	1607	1807		BCTR, 0	BACK	IF A BACKSPACE, DO bS ROUTINE
8	1609	E7 OD		COMI,R3	OD	COMPARE THE CHARACTER TO A RETURN
9	160B	$3 C 0024$		BSTA, 0	LFCR	if A RETURN, DO CARRIAGE RETURN ROUTINE
10	160E	1B 70		BCTR, 3	TVT	JUMP BACK TO BE-GINNING-GET NEW CHAR
11	1610	0720	BACK	LODI,R3	20	ASCII FOR A SPACE
12	1612	CF 97 FE		StRA,R3	117FE	Store the space at THE CURSOR LOCATION
13	1615	OF 17 FF		LODA,R3	17FF	LOAD THE LOW ORDER CURSOR ADDR INTO R3
14	1618	A7 10		SUB1,R3	10	SUBTRACT ONE CHAR POSITION FROM IT
15	161A	CF 17 FF		STRA,R3	17FF	STORE THE NEW CHARACTER
16	161D	7708		PPSL	08	OPERATIONS NOW WITH CARRY/BORROW
17	161F	OF 17 FE		LODA,R3	17FE	HIGH ORDER CURSOR ADDRESS
18	1622	A7 00		SUBI,R3	00	SUBTRACT BORROW FROM PREVIOUS SUBRACT
19	1624	CF 17 FE		STRA,R3	17FE	STORE THE NEW HIGH ORDER ADDR
20	1627	07 5C		LODI,R3	5C	CODE FOR THE CURSOR
21	1629	CF 97 FE		STRA,R3	117FE	STORE THIS IN THE NEW CURSOR POSITION
22	162C	1 B 52		BCTR, 3	TVT	JUMP BACK-DO NEXT CHARACTER
23	162E			END		

before data is started. When read back, each byte (including the sumcheck) goes through this routine. If no errors have occurred, the ending sumcheck character should be zero. Each block has two sumchecks and they are totally independent of one another.

Loading a program

After you have written a program, how do you load it? To many people who have been around microcomputers, the answer is obvious: use the alter
routine that the supervisor provides. To people who are having their first computer experience, this solution may not be so clear.

Recall that the alter routine allows you to change the data contained in any RAM1 memory location. Thus, by using this routine to change all of the memory locations that your program needs, you can enter your program into the system.

A question comes up immediately: At continued on page 84

Yo11 gotta shop aironind.

When you do, you'11 probably pick CIE. You can't afiord to settle for less when it comes to something like electronics training that conld affect your whole life.

Uhen you shop around for tires, you look for a bargain. After all, if it's the same brand, better price - why not save money?

Education's different. There's no such thing as "same brand." No two schools are alike. And, once you've made your choice, the training you get stays with you for the rest of your life.

So, shop around for your training. Not for the bargain. For the best. Thorough, professional training to help give you pride and confidence.

* * *

If you talked to some of our graduates, chances are you'd find a lot of them shopped around for the ir training. They pretty much knew what was available. And they picked CIE as number one.

Why you should shop around yourself.

We hope you'll shop around. Because, frankly, CIE isn't for everyone.

There are other options for the hobbyist. If you're the ambitious type - with serious career goals in electronicstake a close look at what we've planned for you at CIE.

What you should look for firest.

Part of what makes electronics so interesting is it's based on scientific discoveries -on ideas! So the first thing to look for is a program that starts with ideas and builds on them!

That's what happens with CIE's Auto-Programmed ${ }^{\text {® }}$ Lessons. Each lesson takes one or two principles and helps you master them - before you start using them!

How practical is the training?

This is the next big important question. After all, your career will be built on what you can do - and on how well you do it.

Here are ways some of CIE's troubleshooting programs help you get your "hands-on" training. . .

With CIE's

Experimental Electmonics Laboratory...
you learn and review the basics perform dozens of experiments. Plus, you use a 3 -in-1 precision Multimeter to learn testing, checking, analyzing!

When you build your own 5 MHz TriggeredSweep, Solid-State Oscilloscope you take your first real professional step. You use it as a doctor uses an X-ray machine - to "read" wave form patterns... lock them in.. study, understand and interpret them!

Whem you get your
Zemith 19-inch Diagonal Solid-State Color TV you
simply this:
All this training takes effort. But you'll enjoy it. And it's a real plus for a troubleshooting career!

Do you prepare for your FCC License?

Avoid regrets later. Check this out before you enroll in any program.

For some troubleshooting jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's govern-ment-certified proof of specific knowledge and skills!

More than half of CIE's courses prepare you for the government-administered FCC Licensc exam. In continuing surveys, nearly 4 out of 5 CIE graduates who take the exam get their Licenses!
Shop aroundbut send fer CIE's free school catalog firest:

Mail the card. If it's gone, cut out and mail the coupon. If
you prefer to write, mention the name and date of this magazine. We'll send you a copy of CIE's FREE school catalog plus a complete package of independent home study information! For your convenience, we'll try to have a representative contact you to answer your questions. Mail the card or coupon or write: CIE, 1776 East
17th St., Cleveland,
OH 44114.
apply your new skills to some real on-the-job-type troubleshooting! You learn to trace signal flow. . . locate malfunctions . . . restore perfect operating standards - just as with any sophisticated electronics equipment!

you work with a completely Solid-State Color Bar Generatoractually a TV signal transmitter-you study up to ten different patterns on your TV screen . . . explore digi-
tal logic circuits. . . observe the action of a crystal-controlled oscillator!

Of course, CIE offers a more advanced training program, too. But the main point is

Check box for G. I. Bill information: \square Veteran \square Active Inty
Mail today:

Automatic Noise Limiters-
 How they work

Many circuits have been developed and incorporated into CB transceivers to automatically reduce noise. Here's an in-depth look at several of these circuits and how they work

ROBERT F. SCOTT
TECHNICAL EDITOR

INTERFERENCE EXPERIENCED IN THE RECEPTION OF CB SIGNALS IS OF three basic types. One is the annoying hiss and atmospheric noises that can be heard when no station is transmitting on a monitored channel. The second type varies from a continuous hiss to a loud roar and is caused by overlapping electrical pulses generated by leaky power lines, neon signs, furnace ignition systems, small electric motors and many similar electrical devices.

The third type of electrical noise consists of "rapid-fire" high-amplitude pulses generated by automobile ignition systems. This is the type of interference that is most common and most troublesome to the CB operator. It generally consists of short-duration pulses that are many times stronger than the incoming radio signal. When a strong pulse of this type reaches the receiver, it can overload the RF or IF circuits or increase the AVC voltage enough to desensitize the RF and IF circuits to the point where incoming signals cannot be heard. Also, a strong noise pulse can shock-excite high-Q IF circuits and cause ringing which, in effect, lengthens the duration of the individual pulses until they practically overlap and completely obliterate the desired signal.
Interference suppressors are of three basic types. A squelch circuit-originally called CODAN, for Carrier-Operated Device, A nti-Noise-that mutes or silences the radio in the absence of a carrier on the channel to which the set is tuned. A peak noise limiter consists of a biased diode or diodes connected at the detector output to clip off the part of the noise pulses that exceed a preset audio level. The clipping threshold usually is set high enough so that modulation peaks are not clipped enough to cause distortion. A noise silencer or noise blanker is a circuit connected at the front-end of the receiver to eliminate or reduce noise pulses before they can be amplified and broadened by the action of the highly selective IF circuits. This month we will examine peak noise limiters and see how they are applied to CB receiver circuits. Later, we'll take a look at noise blankers and squelch circuits.

Basic noise limiters

First, let's clearly understand that a noise limiter does just that-limit. It is not a noise eliminator. It simply holds the
amplitude of the noise pulse to a preset level-usually set to the amplitude of a 70% modulated signal.
Figure I shows a basic half-wave series-gate noise limiterthe type most often used in CB radios. In this circuit, the ANL (A utomatic Noise Limiter) diode D2 is biased so it is normally conducting. It takes the signal that detector D1 develops across the detector load (R1) and passes it on to the audio amplifier circuits. The limiter diode conducts as long as its anode is positive with respect to the cathode. However, if a noise pulse momentarily drives the anode negative with respect to the cathode, conduction is interrupted and that high-amplitude portion of the noise pulse is clipped so it cannot reach the audio amplifier. The level at which the limiter clips is determined by the setting of the threshold control.
The series-gate noise limiter acts only on noise pulses exceeding the positive-going or upward-modulation peaks. The diode detector-by the nature of its action, automatically limits negative-going RF or noise peaks to the 100% modulation level where detector output drops to zero. However, when receiving a signal with a low average modulation percentage, negative noise pulses can be annoying. The solution is to use a full-wave series-gate limiter as in Fig. 2. Positive pulses are clipped by D1 and negative pulses by D2. The threshold control sets the clipping level.
Figure 3 shows two basic shunt-type peak noise limiters. The shunt noise limiter is not as effective on ignition noise as the series type and so is seldom used alone in CB radios. It is quite often used alone and in combination with the series type in many amateur-band and communications radios. In the circuit in Fig. 3-a, limiter diode D2 is connected with reverse polarity across detector D1 and its load R1. It is normally reverse-biased by a voltage from the threshold control. It cannot conduct until a noise pulse on the modulated RF carrier applied to its anode exceeds the cutoff bias applied to its cathode. At this time, D2 conducts and virtually shortcircuits the detector so there is no output from the detector.
In Fig. 3-b, the limiter diode is shunted between the detector's AF output line and ground. A noise peak drives the cathode more negative than the anode so D2 conducts and

FIG. 1-HALF-WAVE SERIES-GATE NOISE LIMITER. The threshold control determines the cllpping level of the noise peaks.

FIG. 2-FULL-WAVE SERIES-GATE NOISE LIMITER clips both the posilive and negative noise peaks.
 ceiver.
short-circuits the audio line for the duration of the time that the pulse amplitude is above the threshold level set by the THRESHOLD control.

In both the series and shunt noise-limiters, the threshold level must be set low enough to minimize the effect of the noise pulses but not so low that modulation peaks are clipped to the point where distortion is so excessive that it affects intelligibility.

The peak amplitude of the modulation envelope depends on signal strength and the instantaneous percentage of modulation, so optimum operation would require continuous operation of the manual threshold control. For this reason, nearly all noise limiter circuits in CB radios are designed to automatically adjust the clipping level in response to the level of the inconting signal. Instead of using manually adjusted bias to set the threshold or clipping level. ANL (Automatic Noise Limiter) circuits use the AVC voltage or a similarly derived DC control voltage as a reference. A few of the CB rigs we have run across use a combination of automatic and manual bias. By being able to control the clipping level, the operator is able to adjust the circuit for best performance under varying operating conditions.

ANL circuits are incorporated in all of the many $C B$ radio circuits that we have examined. The simpler and the more compact models used full-time ANL circuits. The others have a switch to permit the operator to disable the ANL circuit when it is not needed or when trying to receive a weak signal and every bit of the available audio gain is needed. All ANL circuits attenuate the AF signal to some degree. Generally when full-time ANL is used, the clipping level is set at about 75\%; with switchable ANL, the clipping level tends to be lower.

FIG. 3-TWO SHUNT-TYPE PEAK NOISE LIMITERS. These are not as effective on Ignition noise as the series type.

FIG. 5-SERIES-GATE ANL circuit. This version is used on the Johnson Messenger model 123A.

Practical ANL circuits

A typical series-gate ANL circuit, used in the Pace model 133 transceiver, is shown in Fig. 4. The circuit is a full-wave detector (D) and D2) with R1 and R2 as the detector load. The detector develops a negative voltage proportional to signal strength at the junction of R1 and R3. The audio signal voltage and a bias of approximately 70% of the DC level is applied to the cathode of the ANL diode from the junction of $R 1$ and $R 2$. At the same time, the full DC voltage is applied to the anode through R3 and R4. The audio signal is filtered out by Cl .

An ANL diode is forward-biased for signal amplitudes up to the designed clipping level so the AF signal passes through D3 and the volume control to the audio circuits. Positive noise peaks greater than the bias on D3's cathode will turn D3 off so signal voltages above the clipping level do not reach the audio amplifiers. The clipping level-determined by the values of R 1 and R2-is fixed at about 70\%. Modulation changes and noise peaks do not affect the anode voltage because of the relatively long time constant of R3-C1. However, the anode voltage
response of standard cassette machines or tapes. If one were to check a standard cassette's frequency response at this relatively high record level, one would invariably experience tape saturation at the high frequency end of the test and response would drop off beginning at around 10 kHz or even lower. Thus, the excellent results obtained with both Elcaset tapes (shown in Fig. 3 for the Type 1 tape and in Fig. 4 for the Type 11 tape) are even more remarkable than might at first be apparent. No standard cassette tape we know of, regardless of which machine it might be used with, is capable of such wide frequency response at this recording level.

Distortion, at 0-VU record level, was about half that which we normally encounter even with the best cassette tapes used on topquality decks. Signal-to-noise ratios, with or without Dolby, were roughly 6 dB better than the best numbers we usually obtain.

The extremely low wow-and-flutter measurements obtained attest to the superior method of tape transport that has been developed for the Elcasel. For those who are not already familiar with this method, it should be noted that all tape guidance structures, pinch roller, capstan and tape heads are completely external to the Elcaset package when the tape is in motion. Accordingly, the

Elcaset package itself has little to do with determining smoothness of tape run. Resultant wow-and-flutter is therefore almost exclusively determined by the quality of the tape transport mechanism within the deck which, in the case of the EL-5, was found to be very good indeed.

Use and listening tests

The logic solenoid operated transport controls of the EL-S Elcaset deck operated flawlessly during all of our many tests and listening sessions. We deliberately recorded some musical passages with the record level meters exceeding their $0-\mathrm{dB}$ readings very frequently and were delighted to note that the system could handle such large signal peaks without introducing audible distortion during playback.
Our overall product analysis, together with summary comments concerning the EL-5 Elcaset Deck will be found in Table II. Our chief reservation concerning this first Elcaset deck has to do with the fact the the full potential of the new format has not really been realized in this first model. We realize,

TABLE I
RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: Sony
Model: EL-5

ElCASET TAPE DECK MEASUREMENTS

FREQUENCY RESPONSE MEASUREMENTS
Frequency Response, Standard Tape ($\mathrm{Hz}-\mathrm{kHz} \pm \mathrm{dB}$)
Frequency Response, Other (See text) $(\mathrm{Hz}-\mathrm{kHz} \pm \mathrm{dB}$)
DISTORTION MEASUREMENTS (RECORD/PLAY)
Harmonic Distortion at $-10 \mathrm{VU}(1 \mathrm{kHz})$ (\%)
Harmonic Distortion at $-3 \mathrm{VU}(1 \mathrm{kHz})(\%)$
Harmonic Distortion at $0 \mathrm{VU}(1 \mathrm{kHz})(\%)$
Harmonic Distortion at $+3 \mathrm{VU}(1 \mathrm{kHz})(\%)$
Level for 3\% THD (dB above 0)
SIGNAL-TO-NOISE RATIO MEASUREMENTS
Standard Tape, "Dolby" off (dB)
Standard Tape, "Dolby" on (dB)
FeCr tape, Dolby off (dB)
FeCr tape, Dolby on (dB)
MECHANICAL PERFORMANCE MEASUREMENTS
Wow and flutter (\%, WRMS)
Fast wind and rewind time, C-60 (seconds)
COMPONENT MATCHING CHARACTERISTICS
Microphone input sensitivity (mV)
Line input sensitivity (mV)
Line output level (mV)
Phone output level (mV)

Measurements
25-19.5
25-21.0 See Figs. 3, 4

TYPE I	TYPE II	
0.5	0.85	Mostly nolse
0.6	0.6	Very good
0.6	0.65	Excellent
1.0	0.9	Superb
+8	+9	Excellent

Bias frequency (kHz)

Excellent
Very good Excellent Excellent Falr

Very good
Good
Very good
Very good
Excellent

TABLE II
RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: Sony
Model: El-5
OVERALL PRODUCT ANALYSIS
Retail price
Price category
Price/performance ratio
Styling and appearance
Sound quality
Mechanical performance
$\$ 629.95$
High
Excelient
Very good
Excellent
Excellent
Comments: There is, quite naturally, a tendency on our part to evaluate the first Elcaset deck we have ever tested in terms of how it compares in performance and features with similarly priced standard cassette decks. Clearly, the higher speed and wider tape give the EL-5 a distinct edge over even costlier standard cassette units, though the success of this new tape format will depend entirely upon public acceptance, which at this early date is highly questionable. We would have t.oped that all Elcaset decks, even this "lower priced" model, would offer three-head capability, since that configuration no longer poses the physical problems that it does with standard cassette units (some of which have managed to incorporate three heads nonetheless). Sony's higher priced ($\$ 900$ or so) Elcaset, model EL-7, does offer that capability, and with it the important tape monitoring facility which is almost universally avallable on open-reel machines which Elcaset's proponents hope to displace. Neither the presently reviewed EL-5 nor the more expensive EL-7 decks offer any means of taking advantage of those extra control-tracks that are a part of the Elcaset format and which permit such added professional touches as synchronizing signals (which might be used to trigger photo slides) and other cueing facilities. Thus, the EL-5 realizes only a small percentage of the total potential of the Elcaset format, as described by its three sponsors (of which Sony is one). On the other hand, viewed simply as an alternative to a high quality two-headed cassette deck, the EL-5 Elcaset deck wins hands down. Its frequency response capability is actually better than that of most open-real units operated at the same $3^{3} / 4 \mathrm{IPS}$ speed, and headroom, compared to even the best cassette decks around, is way ahead. Remember, our frequency response checks were made at a -10 dB level, fully 10 dB higher than is normal practice for checking the frequency response of standard cassette decks and even at that we achieved response to $20,000 \mathrm{~Hz}$ (and beyond, using the FeCr Type II Elcaset samples supplied).
of course, that more expensive models in the future will very likely take advantage of the various sensing features built into the Elcaset tape package and may even avail themselves of the control-track facilities envisioned for this new tape format.
As far as the EL-S is concerned, one must think of it as superior to any standard
cassette deck in performance, but not really quite up to the performance of better openreel decks that, even at this price, can be found with three-head configurations and $71 / 2$-IPS speeds. While it is certainly possible to edit Elcaset tapes more easily than would be the case with standard cassettes, the ease of editing with precision is not quite up to
that possible with any open-reel tape machne, since it is a bit difficult to locate or mark points on the tape to be cut with any degree of precision. Along with you, our readers, we will be watching for further developments of this tape format and will report to you concerning them as they occur.

Sherwood HP-2000 Amplifier

SHER WOOD ELECTRONIC LABORATORIES, INC. IS one of the more venerable names in highfidelity components, having introduced its first high-fidelity products in the 1950's. Their new model HP-2000 integrated amplifier, from all outward and inward indications, displays the skill Sherwood has gained during those years.

As shown in the photo of Fig. 1, the front panel of the model HP-2000 is flanked by two end panels and the amplifier is encased in a black vinyl-laminated cover. Two power meters are framed by a bezel at the left and these are calibrated in watts (from 0 to 240) and dB (relative to the rated 120 -watts-perchannel output across 8 ohms). Centered below the meters is the meter range pushbutton that increases meter sensitivity by 10 dB so that meaningful readings are obtained even at low listening levels. Also located below the meter area are left- and rightchannel PEAK LIMIT LED indicators that flash when the amplifier is driven into clipping levels, a microphone-input level control and a phono preamplifier level control. At the lower left of the panel are a pair of microphone input jacks and eight unusually constructed pushbuttons for program selection. When any pushbutton is depressed, it pops back out again, flush with its neighboring buttons, but a colored disc appears on the front surface of the button to indicate that it is operational. The eight pushbuttons in this area are labelled MIC, PHONO-1, PHONO2, aux-1, aux-2, tape-1 and tape-2. These pushbuttons are interlocked with the exception of the MIC pushbutton that is used to mix

CIRCLE 101 ON FREE INFORMATION CARD
microphone signals with any of the aforementioned other program sources. A pair of dubbing jacks (output and input) come next and permit attachment of tape deck via the front panel for dubbing purposes. Along the right lower section of the panel are eight more of these unusual pushbuttons that take care of such functions as TAPE-1 or TAPE- 2 monitoring, 4-CHANNEL ADAPTER insertion, HIGH- and LOW-cut FILTERS, LOUDNESS, CONtour. tone defeat and -20 dB muting (useful for listening interruptions such as phone or doorbell answering). Two independent phone jacks and the power on/off pushbutton switch are located to the right of these pushbuttons.

The upper right section of the front panel contains rotary controls including a SPEAKER selector switch (with OFF, A. B. A-B settings and, what Sherwood calls its Ambience Retrieval System for simulated four-speaker/ four-channel listening), a MODE switch (with positions for stereo. reverse mono. leftonly and right-only listening), a balance control, click-stop bass, midrange and treble controls and a huge pair of concentrically mounted controls that take care of master volume (db Level) and loudnfss Contour.

MANUFACTURER'S PUBLISHED SPECIFICATIONS:

POWER AMPLIFIER SECTION
Power Output: 120 watts-per-channel minimum continuous into 8 ohms, 20 Hz to 20 kHz . Rated Harmonic Distortion: 0.08%. Rated IM Distortion: 0.08\%. Input Sensitivity: 830 mV . Signal-to-Noise Ratio: 100 dB . Damping Factor: 70 (8 ohms).

PREAMPLIFIER SECTION

Input Sensitivities: Phono 1 and $2,2.2 \mathrm{mV}$ (adjustable); High Level and Tape, 110 mV ; Mike, 2.2 mV (adjustable). Maximum Photo Input: 160 mV . Maximum Mike Input: 200 mV . Maximum High-Level Input: 6.0 V. Frequency Response: Phono (RIAA), $\pm 0.5 \mathrm{~dB}$; High Level, 20 Hz to $20 \mathrm{kHz}, \pm 0.5 \mathrm{~dB}$; Mike, 50 Hz to $15 \mathrm{kHz}, \pm 1.5 \mathrm{~dB}$. Bass Control Range: $\pm 14 \mathrm{~dB}$ at 50 Hz . Treble Control Range: $\pm 14 \mathrm{~dB}$ at 15 kHz . Midrange Control: $\pm 6 \mathrm{~dB}$ at 1 kHz . Low Filter Cutoff: -3 dB at 40 Hz . High Filter Cutoff: -3 dB at 8 kHz .

GENERAL SPECIFICATIONS

Power Requirements: $115-125 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, 30$ to 420 watts maximum. Dimensions: $20 \mathrm{~W} \times 6^{13} / 16 \mathrm{H} \times 15^{1} / 4$-inches D. Net Weight: 42 lbs . Suggested Retail Price: $\$ 700.00$.

The rear-mounted loudness-CONTOUR control (see Fig. 2) of this pair requires a bit of explanation.

Most loudness controls on amplifiers and receivers are really of minimal usefulness. That is because their designers assume (incorrectly) that maximum clockwise settings of the volume control will always correspond to live, loud listening levels, at which point loudness compensation is not required. As most readers surely realize, maximum-volume control settings may or may not correspond to "live" levels depending upon such diverse factors as output level of all program sources (which may vary greaty), loudspeaker type and efficiency, room size, etc. Thus, with the simple volume-control/loudness-switch arrangement, activa-

2
tion of the loudness feature seldom if ever introduces the correct amount of bass and treble compensation dictated by the nowfamiliar Fletcher-Munson loudness-contour studies of the 1930's. Too often, compensation is exaggerated and the loudness feature is no more useful than an arbitrary additional bass boost control.

Not so with the Sherwood arrangement. The rear knob of the pair of LOUDNESS controls (dB Level) permits the user to set up the degree of compensation that will be afforded when the LOUDNESS switch is depressed for low-level listening. Both the dB LEVEL knob and the contour knob have separate dB calibrations so that once you become familiar with the settings required by your different program sources, the loudness contour feature of the Sherwood model HP. 2000 can be used effectively and correctly. The effectiveness of this desirable feature was confirmed in our subsequent listening.

Laboratory measurements

Results of our lab measurements are listed in Table 1 and can be compared with the published specifications listed in this test continued on page 64

Advanced Electronics

 design
electronic circuits -So can you!

Only CREI offers you a choice of 18 home study programs in electronics with circuit design, plus special arrangements for engineering degrees

Circuit design is perhaps the one qualification that distinguishes advanced technical personnel and engineers from the average electronics technician.

If you can design electronic circuits, you can more readily understand the circuitry of all types of electronic equipment. Thus you can more easily handle the repair and maintenance of such equipment, as well as assist in the development of new electronic systems.

The ability to design electronic circuits to solve practical engineering problems is one of the most valuable skills you can possess. Those with this ability are sought after and command positions of far greater responsibility, prestige and pay than the average technician.

If you are going to have a worthwhile career in the field of electronics, the ability to design circuits is a skill you will want to acquire.

Circuit design in all CREI programs

CREI covers circuit design in its home study programs in electronics. This is one of the factors that makes CREI training different from most other home study schools. CREI programs, of course, are college level-the same level of training you will find in any college or university offering programs in electronic engineering technology.

CREI training, however, is designed for home study. The programs give you effective, step-by-step training to help you move up in your career in electronics by using your spare time for technical self improvement.

Unique Design Lab

CREI gives you both theory and practical experience in circuit design with its Electronic Design Laboratory Program. The professional equipment included in this program allows you to construct, test out and correct the circuits you design until you have an effective circuit.

This Lab Program helps you understand advanced electronics. It also gives you practical experience in many other important areas of electronics, as in prototype construction, breadboarding, test and measurement procedures, circuit operation and behavior, characteristics of electronic components and how to apply integrated circuits.

Career Training at Home

Only CREI offers this unique Lab Program. It is a complete college lab and, we believe, better than you will find in most colleges. The "Lab" is one of the factors that makes CREI training interesting and effective. And the professional equipment in this program becomes yours to keep and use throughout your professional career after you complete the training.

Engineering Degree

CREI offers you special arrangements for earning engincering degrees at certain colleges and universities as part of your home study training program. An important advantage in these arrangements is that you can continue your full time job while "going to college" with CREI. This also means you can apply your CREI training in your work and get practical experience to qualify for carcer advancement.

Wide Program Choice

CREI gives you a choice of specializiltion in 14 areas of electronics. Yout can select exactly the area of electronics best for your career field. You can specialize in such areas as computer electronics, communications engineering, microwave, CATV, television (broadcast) engineering and many other areas of modern electronics.

FREE Book

In the brief space here, there isn't room to give you all of the facts about CREI college-level, home study programs in electronics. So we invite you to send for our free catalog (if you are qualified to take a CREI program). The catalog has over 80, fully illustrated pages describing your opportunities in advanced electronics and the details of CREI home study programs.

Qualifications

You may be eligible to take a CREI college-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Mail card or write describing qualifications to

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Northwest
Washington, D.C. 20016
Accredited Member National Home Study Council

Gl Bill

CREI programs are approved for training of veterans and servicemen under the G.I. Bill.
seem to be only twice as loud as the first sound. Increase the sound intensity by a factor of ten once more, and the apparent sound level will only double once more (even though by now, the actual power behind the sound has increased by 100 times -10 times 10). So, we see that working in powers of ten gives good correspondence between the way we actually perceive loudness and the way we should note loudness levels.

Logarithms, as you may remember from high school algebra, are based upon powers of ten. The $\log _{10}$ of the number 10 , is 1 , the $\log _{11}$ of 100 is 2 while the $\log _{10}$ of 1000 is 3 and so forth. The formula for finding the difference in two sound or power levels therefore works out to be $10 \log _{10}(P 1 / P 2)$, where Pl is one power level and P 2 is the second power level.

Let's see how this works out for two sound levels, in which one is twice as powerful as the other. Substituting in the formula, we get $10 \log _{10} \times 2 / 1$ or, $10 \log _{10} \times 2$. We can look up the logarithm of 2.0 in a table and find out that it is 0.30103 or very close to 0.3 . So, the difference between the two power levels is 10×0.3 or 3.0 . In other words, a change in power or sound level of two to one results in a 3 dB increase (or decrease) of sound level.

A change of sound level of 3 dB will be audible to most people, though it will

TABLE I-SOUND PRESSURE LEVELS

Jet Engine, Close Up
150
140
Threshold of Pain
Pneumatic Hammer
120 Airport Runway
Thunder
110 Power Tools
100
Subway
Heavy Truck Traffic
80
Average Factory
Busy Street
70
Small Orchestra
60 Average Conversation
50 Average Office
40 Subdued Conversation
30 Quiet Office
20 Quiet Living Room
10 Quiet Recording Studio
0 Threshold of Hearing $=$.0002 dynes/cm²

FIG. 1-dB SCALE on voltmeter is referenced to 0.775 volts.
not sound "twice as loud". For one sound to seem twice as loud as another, the sound must be ten times as powerful as the first sound. Let's see what that means in dB. $10 \log _{10} 10 / 1=10 \log _{10} x$ 10. But the \log of $10=1$, so the change in dB would be 10 . In other words, a change in level of 10 dB seems like an apparent doubling (or halving) of sound level to most listeners. A sound power change of 100 to 1 would turn out to be a dB change of 20 dB and would sound four times as loud (twice as loud times twice as loud again).

If we refer back to the threshold of human hearing and call that sound level $0-\mathrm{dB}$ SPL (Sound Pressure Level), we can relate all other sound levels to that $0-\mathrm{dB}$ starting point as shown for some typical sound pressure levels in Table I.

dB meters

If you own a tape recorder or even a voltmeter that is calibrated in dB , you may be wondering how the dB notations on the recording meters or your voltmeter relate to everything we"ve said about sound pressure levels and loudness. Well, they don't. As stated earlier, dB's are applied when measuring any two amplitudes, and where we set the 0 dB reference point is strictly up to us. So. the $0-\mathrm{dB}$ mark on your recorder's level meters has absolutely nothing to do with the $0-\mathrm{dB}$ threshold of human hearing.

Before discussing the zero reference levels used on such meters and others, let's first consider the fact that dB's can be used to compare voltages and currents as well as power levels. But, to keep things straight, the formula for calculating dB changes must be altered somewhat. Here's why. Suppose we had a battery connected to a 4 -ohm load.
and that the battery's voltage was 4 volts. The power dissipated in the load would be E^{2} / R (E-voltage, R-load resistance in ohms), or $4^{2} / 4=16 / 4=4$ watts. Now, suppose we replaced the battery with one that had an 8 volt rating. The new value of power delivered to the load would be $8^{2} / 4$ or $64 / 4$ or 16 watts. The new power level is four times that of the first power level.

If we want to use dB's in describing changes of voltage (or current) and want the results to be consistent with dB representations of power change, we must arrange the formula so that a doubling of voltage (or current) will show up as a $6-\mathrm{dB}$ change (equal to a quadrupling of power) and not a change of 3 dB . To make this all work, the formula for calculating dB changes when we are talking about voltage or current works out to be $\mathrm{dB}=20 \log _{10}$ E_{1} / E_{2} (or I_{1} / I_{2}), where E_{1} and E_{2} or I_{1} and I_{2} are the first and second values of voltage or current to be compared.

Meters referenced to $\mathbf{d B}_{\mathrm{m}}$

In professional sound work, most input and output impedances are matched to 600 -ohms. Long ago, it was decided that a good $0-\mathrm{dB}$ reference point when dealing with audio signals would be one which corresponded to a 1 milliwatt power level across 600 ohms. We can easily calculate the voltage level required for this power level. Since $P=$ $E^{2} / R, E$ equals, in this case, 0.775 volts.

The meter face shown in Fig. I carries both a voltage scale and a dB scale. A notation at the bottom of the meter face indicates that 0 dB is referenced to 1 mW into 600 ohms and, indeed, we can see that 0 dB on the scale lines up with 0.775 volts. While the voltage read by means of such a meter will be accurate regardless of the load across which that

FIG. 2-AUDIO METER has dB scale referenced to 1 volt.
voltage is being measured, it should be emphasized that the dB_{m} readings will only be meaningful and accurate as dB_{M} readings if a 600 ohm load is used.

Meters referenced to dB_{v}

Sometimes, we want to read $d B$'s and are not particularly interested in the load (as, for example, when comparing two voltages fed into a high impedance or even into an open circuit). Often, under such circumstances, a meter is calibrated in dB_{v}, or dB with respect to 1.0 volt. The meter face shown in Fig. 2 is on a piece of test equipment used to measure audio amplifier performance and, as you can see, its scale reads 0 dB at a point corresponding to 1.0 volt on its voltage scale. This particular piece of equipment has an additional control that switches the sensitivity of the meter movement in 10 dB steps, as can be seen in the closeup view of Fig. 3. If the control were moved to the $-20-\mathrm{dB}$ range, full scale reading with respect to $0 \mathrm{~dB}_{v}$ would be -20 dB or 0.1 volt. since a change of 20 dB in voltage represents a change of 10 to 1 .

VU meters

If you own a good tape recorder, you may have noticed that its record level meters are calibrated using yet another term-the VU, which stands for volume units. Basically, the meter that is labelled VU would read exactly the same as one calibrated in dB_{M} if a steady-state tone or electrical signal were fed to it. However, under musical conditions, most meter movements are not sufficiently fast-acting to correspond

FIG. 3-RANGE SWITCH on audlo meler changes sensitivity in $10-\mathrm{dB}$ steps.
to actual voltage levels caused by shortterm peaks in the musical signal level. Before the meter pointer has a chance to read up-scale to a peak value, that peak has already come and gone. So, an ordinary VTVM, even if calibrated in dB_{m}, might read much lower than peak values when responding to electrical signals equivalent to music waveforms. Such a meter might read average values or, if the music contains frequent peaks, it might read a bit higher than average voltage levels.

The recording industry long ago came up with a meter equipped with specific ballistic characteristics that are designed so that the meter scale movement approximates the response of the human ear. When using such a VU meter for making recordings, it is important to remember that even though the meter may be reading below $0 \cdot \mathrm{VU}$, peaks in the music may be ten or even twenty $d B$ higher and may cause distortion in resulting recordings.

Some tape recorders are equipped with peak-reading meters that are more responsive to actual peaks in program material. Csually such meters have a fast risetime (so that the pointer can move up quickly to register loud peaks in program content) and a slower decay time, to make the pointer's movements easier to track by eye.

Hi-Fi specifications

On the basis of what we have said so far, it should be fairly simple to understand those high fidelity equipment specifications that are quoted in $d B$. When frequency response is quoted as extending, say, from 20 Hz to $20,000 \mathrm{~Hz}$ within $\pm 3 \mathrm{~dB}$, that simply means that if a steady signal were fed into the equipment at all of those frequencies, at no time would the output of the equipment vary by more than 3 dB in either direction, positive or negative. Remember, that while a 3 dB deviation from flat response does represent a two-to-one power change (and a 1.414 to 1 voltage change), subjectively such a change in loudness will seem very small as perceived by human ears. A change of 1.0 dB , in fact, is considered to be the
least change that most people can perceive at all-yet it does represent a power change of nearly 26 percent!

Signal-to-noise ratios, expressed in dB , should be simple to understand, too. If a phono preamplifier is said to have a signal-to-noise ratio of $60-\mathrm{dB}$ below full output. and we know that full or rated output of the particular amplifier associated with that preamp circuit is 100 watts, we can easily calculate that the noise level produced by the system in the phono operating mode will amount to 0.0001 watts, or one tenth of a milliwatt.

A tone control that can boost the output at 10 kHz by 10 dB is capable of delivering 10 times as much power from an amplifier at that frequency (for a steady level of input signals at all frequencies) than it can when the tone control is set to its mid- or flat-response position (providing, of course, that such "boosting" does not raise power output levels beyond the capability of the amplifier's maximum power rating).

Microphone sensitivity

The negative $d B$ numbers associated with specifying the output of microphones tend to confuse many users. There are two popular methods used to arrive at mike output specifications. The first is called the open-circuit voltage rating, in which the reference $0-\mathrm{dB}$ point is taken as 1 dyne-per-cm ${ }^{2}$ of sound pressure referred to 1 volt. Thus, if a microphone had I dyne-per-cm² sound pressure applied to its diaphragm and delivered a I volt output, its sensitivity would be 0 dB . Actually, microphones deliver far smaller signal voltages and, based upon this reference, may be expected to have ratings from about -85 dB to -40 dB or so.

Some microphone ratings are specified in terms of power, rather than voltage, and in this system, the mike is connected to a matching load (equal to its own internal impedance) and the 0 dB reference is considered to be an output of 1 milliwatt when the sound pressure level applied to the microphone is 10 dynes-per-cm².

Decibels provide a convenient way of expressing sound levels, voltage levels, power levels and more, simply because they compress the scale of numbers that we would otherwise have to use to express the same comparative quantities. The fact that the dB scale is logarithmic rather than linear, and that it corresponds more closely to the manner in which we perceive loudness changes, might be considered a happy coincidence or perhaps it is because we hear in this logarithmic manner that dB's were invented in the first place. In any case, once you understand their usefulness they will become less intimidating every time you are confronted with them on the printed page.

R-E's Service Clinic

The PUT

Quick-response voltageregulator

JACK DARR SERVICE EDITOR

This column is for the service technician's problems-TV, radio, audio or industrial electronics. We answer all questions submitted by service technicians on their letterheads individually, by mail, and the more interesting ones will be printed here.

If you're really stuck, write us. We'll do our best to help you. Don't forget to enclose a stamped, selfaddressed envelope. If return postage is not included we cannot process your question. Write: Service Editor, Radio-Electronics, 200 Park Avenue South, New York, NY 10003

We are seeing some novel circuits lately in the new TV sets. Some of them are really novel in that they make use of solid-state devices that we haven't run across before. So, we have to keep up with them. Here's one that has been around for a couple of years. I first ran into it in a Sears set and then again in a Magnavox T985.
What is it? It's a PUT (Programmable Unijunction Transistor). Unijunction transistors (UJT's) have been around for some time. Figure 1 shows a typical application of a UJT in a time-delay circuit. The UJT has two bases and one emitter.

The PUT is a four-layer device similar to an SCR-and is often considered as being an SCR with N-type gate. Figure 2 shows the equivalent timedelay circuit as in Fig. I using a PUT. Don't confuse the PUT with an SCR. Note that the gate of a PUT is drawn connected to the anode. The gate of an SCR is connected to the cathode.
The PUT is turned on by a gating pulse just like an SCR. They also turn on if the anode voltage exceeds the gate voltage. and turn off when the anode voltage drops below the gate voltage. Remember this. It's one of the things
applied to the circuit. The PUT is used to replace the UJT in the same application. It has a much faster response time.

The PUT can also be used in voltage regulator circuits. Regulator circuits

used in the circuits to be discussed.
One of the first applications of UJT's was to control the firing point of SCR's. The circuits shown in Figs. 1 and 2 are ten-second time-delay circuits from the G-E Transistor Manual, and Application Note No. 761.13. The delay time is controlled by the time constant of the 470 K resistor and the $20 \mu \mathrm{~F}$ capacitor. Delay time is initiated when power is
have become very common in solidstate TV and other circuits. So, let's look at a typical DC regulator as used in the Magnavox T985 and T986 chassis.

Figure 3 shows the complete circuit of the 120 -volt regulator. The AC line voltage comes straight into a full-wave bridge rectifier. The output of this is not filtered, so it consists of positive-going continued on page 74

ing of sureness inspires customer confidence. Cuts callbacks before you even touch the radio. Half the battle toward SUCCESS lies here.

TRAIN YOUR TECHNICIANS in efficient Easi-Way ${ }^{\text {TM }}$ Servicing procedures that speed bench work and boost productivity.
EXPAND YOUR OWN SKILLS to include high-pay communications servicing, for job security and sure profits.
BE FIRST in this high-demand, fascinating business, which month by month outgrows its own bounds and expectations.
\star COMPETENCE
Know that you can find and fix WHATEVER is wrong with ANY BRAND of CB radio. Forest Belt's Easi-Way ${ }^{\text {TM }}$ Servicing assures it-that and the real understanding you gain of AM and SSB transceivers.

* FCC LICENSE

Be legal when you're making transmitter repairs and adjustments. Enjoy the peace of mind and PRESTIGE of your own FCC Second Class Radiotelephone Operator License. It's easier to get than you may think!

Forest Belt's
JBAINING

WORKSHOPS

February 28-March 4 April 11-15 Oakland, California
March 7-11
San Diego, California
April 4-8
Phoenix, Arizona

Denver, Colorado April 25-29 San Antonio, Texas June 13-17 Indianapolis, Indiana

Junte 27-July 1 Atlanta, Georgia July 11-15 Boston, Massachusetts July 18-22 Albany, New York

July 25-29 Baltimore Maryland August 8-12 St. Paul, Minnesota
August 22-26
Chicago, Illinois

FIVE FULL DAYS

of intensive training with exclusive, tested methods and materials. Learn CB transceiver theory and testing, advanced Easi-Way"u Servicing. Prep for 2nd Class License. Plus. . . how to be sure of a profit.

To: Forest Belt's TRAINING WORKSHOPS Box 68120 Indianapolis IN 46268
Yes! Enroll me today in Forest Belt's TRAINING WORKSHOP in CB Radio Servicing. I will attend the WORKSHOP at (city)
(date)

- | enclose $\$ 100$ ($\$ 50$ registration and $\$ 50$ deposit). I will send $\$ 170$ more one month before my WORKSHOP begins.
\square I choose to save \$20.
I enclose $\$ 250$ prepayment in full.

Name \qquad Phone \qquad Age \qquad
Company \qquad 1. my own shop myemployer

Address \qquad 2. \square service only
\square service/sales
City \qquad State \qquad Zip \qquad
3. \square service CB now
\square don't service CB
\square I want to send \qquad technicians, at your five-or-- Rush your Brochure WC7-24 that describes these WORKSHOPS in more detail.

ELECTRO-LAB

(Simulated TV Reception)

As an NTS student you'll acquire the know-how that comes with first-hand training on NTS professional equipment. Equipment you'll build and keep. Our courses include equipment like the NTS/Heath GR-2001 computerized color TV ($25^{\prime \prime}$ diagonal) with varactor diode tuning and digital read-out channel selection; (optional programming capability and digital clock avail.).

Also pictured above are other units $-5^{\prime \prime}$ solid state oscilloscope, vector monitor scope, solid-state stereo AM-FM receiver with twin speakers, digital multimeter, and more. It's the kind of better equipment that gets you better equipped for the electronics industry.

This electronic gear is not only designed for training; it's field-type - like you'll meet on the job, or when you're making service calls. And with NTS easy-to-read, profusely illustrated lessons you learn the theory behind these tools of the trade.
Choose from 12 NTS courses covering a wide range of fields in electronics, each complete with equipment, lessons, and manuals to make your training more practical and interesting.
Compare our training; compare our lower tuition. We employ no salesmen, pay no commissions. You receive all home-study information by mail only. All Kits, lessons, and experiments are described in full color. Most liberal refund policy and cancella-

tion privileges spelled out. Make your own comparisons, your own decision. Mail card today, or clip coupon if card is missing.

NO OBLIGATION. NO SALESMAN WILL CALL APPROVED FOR VETERAN TRAINING Get facts on new 2-year extension

NATIONAL SCHOOLS

TECHNICAL-TRADE TRAINING SINCE 1905
Resident and Home-Study Schools
4000 So. Figueroa St., Los Angeles, Calif. 90037

This tungsten carbide marking tool writes on anything-metal, glass, plastic, or ceramic-to instantly provide engraved identification of valuables-yours and your customers'. It's free with Perma Power Color-Brite, and with Color-Brite, you'll be proud to sign your work! The fast and simple installation immediately restores sharpness, contrast and faded color to worn color picture tubes. It restores your customer's smile, too, because you've put off replacement of the
expensive color picture tube. And when replacement time does come around, that smiling customer will remember that you saved her money...so you'll get the profit on the sale of a new CRT!
So don't forget Model C-511 Color Brites, the ones you use most. Buy now, and get the free marking tool, while you save more than a dollar a britener, too!
Hurry to your distributor today! Offer valid while marking tool supply lasts.

Perma Power Color-Brite

Chambertain Manufacturing Corporation

Perme Power Division
Telephone (312) 539-7171 Chicago. Ilinors 60646
A paoouct of H. $_{6}$ Chamberlan
Telephone (312) 539-7171
CIRCLE 42 ON FREE INFORMATION CARD

2 Great New Books on Microprocessors!

 PROGRAMMING MICROPROCESSORS - A practical and comprehensive new guide to microprocessor architecture and programming, including fixed-point and floatingpoint arithmetic, data exchange with peripherals, flow-charting, assemblers, compilers, and other programming aids. Microprocessor programming is covered in great depth: flow-charting, loops, iteration techniques, memory addressing and paging, machine coding, assemblers, symbolic and relative addressing schemes, nonintegral scaling, stacks, data pooling, interrupt handling, counters, loaders, assemblers, compilers, simulators, emulators, assemulators, texteditors, time-sharing, and interpreters. Covers FORTRAN, MPL, and PL 1, the Rockwell PPS-4, Motorola M6800, and Intel 8080 microprocessors. 280 pps., 105 illus.
Paper \$6.95; Hardbound \$9.95 Ordar No. 985 MICROPROCESSOR/MICROPROGRAMMING HANOBOOK

An authoritative, practical guide to
 the construction, operation, programming and applications of microprocessors. Tells what microprocessors are, how they work, where they're used, and how YOU can use them in your ions! Shows you how to write the own applications! Shows you how to whe to your microprocessor to process and manipulate information, simulate control processes, and emulate other machines. Covers every aspect of microprocessors-inside and out, and illustrates basic microprogramming techniques to build up program loops, subroutines, and handle interrupts from other peripheral devices. 294 pps., 176 illus.
Paper S6.95; Hardbo und $\$ 9.95$ Order No. 785
 entire ad to orcer. 100x plaranlect or your money rounded.

CIRCLE 17 ON FREE INFORMATION CARD

PROGRAM ANY TIME SIGNATURE PROGRAM ANY RHYTHM PATTERN SAVE 2 SCORES SIMULTANEOUSLY SEPARATE BRIDGE PATTERN FOR EACH SCORE • • ELECTRONIC 'TOUCH BUTTON' CONTROLS - - 256 BYTE MEMORY - • MORETHAN JUST ANOTHER ELECTRONIC RHYTHM UNIT A WHOLE NEW INSTRUMENT

PROGRAMMABLE DRUM SET KIT
\#3750 $\$ 79.95$ (plus $\$ 3.00$ postage \& insurance)

FREE
Catalog
ELECTRONICS, DEPT 6 - R 1020 W. WILSHIRE BLVD. OKLAHOMA CITY, OK 73116 CIRCLE 15 ON FREE INFORMATION CARD

SERVICE CLINIC
continued from page 68
pulses at a 120 pulse-per-second rate. The pulses are fed through a $2-\mathrm{mH}$ choke for transient suppression and then to the anode of SCRI. The 120 -volt DC output comes from the cathode of SCRI and is filtered. The longer SCRI is turned on, the more current flows to the filter capacitor and the +120 -volt supply.
Programmable unijunction transistor Q2 controls the firing of the SCR. Its gate is connected to the pulsating DC output through a voltage divider formed by R1 and R2. As the voltage on the anode of SCRI rises, the gate voltage of Q2 increases proportionally. The PUT's anode is also connected to the pulsating DC, but this is delayed by resistor R3 and capacitor C7.

The anode of Q 2 is also connected directly to the collector of Q1, the loadsensor transistor. The base of Q1 is connected to the +120 -volt line through a Zener diode.

When the gate voltage of Q2 equals its anode voltage, the PUT conducts. This sends a pulse of current through R4 in its cathode circuit. This pulse is coupled to the gate of the SCR through C6, causing it to conduct. Now we get to the regulation part of the circuit. The gate voltage is strictly a function of the peak amplitude of the full-wave bridge rectifier's pulsating DC output. The anode voltage is a combination of the bridge-rectifier output and the +120 volt supply.

Figure 4 shows the anode waveforms of the SCR under different conditions. Figure 4-a shows the trigger point for an average load. Figure 4-b shows what happens if the load increases, tending to make the output voltage decrease. The drop is fed back through the load-sensor transistor Q1 and the Zener diode to the anode of the PUT. The rising voltage at the gate of Q2 catches up with the rising voltage on the anode much sooner. The SCR fires earlier, causing more current to flow through it to the load to take care of the increased loading. (Remember that all of this happens during one half-cycle of the AC line. It happens for each half-cycle.)
If the load on the +120 -volt line drops, the output voltage tries to increase. This rise is coupled to the anode of the PUT and its bias voltage also rises. In this case, the PUT fires later causing the SCR to be turned on for a shorter period and thus bringing the voltage back down to normal (see Fig. 4-c).

The same thing happens if the pulsating DC output from the bridge rectifier increases due to a rise in the AC line voltage. The PUT turns on sooner, reducing the output to +120 volts.

This looks very complex but it isn't. The key test points, as in any solid-state power supply, are the bridge rectifiers, the PUT, the SCR and the transistor/ Zener combination. Look for DC voltages that are way out of the ballpark. In one case, the complaint was: "Plenty of voltage on the SCR anode but only 2 volts on the +120 -volt line." Diagnosis: the SCR was not being turned on and it was replaced. The problem was due to a bad PUT. It could also have been due to an open gate-pulse coupling capacitor C6, or an open PUT anode resistor R4, etc.

A key voltage is the DC voltage on the SCR anode, which reads +108 on a DC voltmeter, but shows a half-wave rectified series of pulses at 165 -volts P-P on a scope. Sams Photofact schematic shows this, and also shows the gating notch on the SCR-anode waveform. If you don't see a notch, check out the PUT circuitry and the load-sensor QI.

Basically the same circuit is used in
the Sears sets with a few differences. The PUT gates the SCR through a small pulse-transformer. The PUT pulse goes through one winding which develops the SCR gating pulse in the other winding. In some, you may even find the PUT anode directly connected to the SCR gate. I have not seen this one used in commercial TV yet, but it is shown in G-E's Application Notes on the PUT

One other thing that should be mentioned before we leave. If a TV set has a full-wave bridge rectifier connected directly to the AC line, the chassis will be hot at all times. There will be at least 60 -volts RMS AC to ground, for there will always be a couple of diodes conducting in the bridge. You must use an isolation transformer, not only for your safety but for the safety of your test instruments.
(For data used in preparing this, many thanks to Ray Guichard of Magnavox and to G-E for the Application Notes on the PUT's)

R-E

Great Jumpers are here! State of the art flat cable connector assemblies . . . at affordable prices.

Great Jumpers come to you fully pre-assembled and fully pre-tested. Cable strain reliefs are integral to the molded-on connectors. And we've designed in complete line-by-line probeability with probe access ports behind each contact.

Our connectors are industry standard; two parallel rows of contacts, spaced every $.1^{\prime \prime}$.

Great Jumpers come in five popular cable widths: 20, 26, 34, 40 and 50 lines wide, and in lengths ranging from 6" to $36^{\prime \prime}$.

Available now at the distributor near you who carries the A P Products Faster and Easier Line.

Our distributor list is growing daily. For the name of the distributor nearest you call Toll-Free 800-321-9668.

Send for our complete AP catalog, the Faster and Easier Book.

Faster and easier is what we're all about

AP PRODUCTS INCORPORATED
Box 110 - 72 Corwin Drive Painesville, OH 44077 (216) 354-2101 TWX: 810-425-2250

SUBBER ${ }^{\circledR}$

MARK IV-CUVB

 A TIMESAVING INSTRUMENT BY CASTLEUHF-VHF TV tuner and i-f signal analyst Incomporates these important features:

- Tunes all UHF \& VHF Channels
- Electronic Fine Tuning
- Dual 40 MHZ IF Output Jacks
- Battery Condition Indicator

MARK IV-CUVB

Net $\$ 64.95$

CASTLE ELECTRONICS

5233 Old South Highway 37
Bloomington, Indiana 47401
For Mare Details and Specificotions Contoct Your Nearest Distributor
In Conodo: Len Finhler Lid; Ontoria
CIRCLE 66 ON FREE INFORMATION CARD

358 Ways To Save On

 Instruments, CB, Burglar Alarms, Automotive \& Hobby Electronics!The more you know about electronics, the more you'll appreciate EICO. Every EICO product is designed to provide you with the most pleasure and quality performance for your money. The fact that more than 3 million EICO products are in use attests to their quality and performance
"BUILD-IT-YOURSELF" and save up to 50% with our famous electronic kits.
For the latest EICO Catalog and name of nearest EICO Distributor, check reader service card or send 50 c for fast first class mail service. EICO-283 Malta Street, Brooklyn, N.Y. 11207 Leadership in creative electronics since 1945.
CIRCLE 63 ON FREE INFORMATION CARD

MUSIC BOX
cominued from page 34

The Vibrato/Tremolo Oscillator produces a low-voltage $6 \cdot \mathrm{~Hz}$ sinewave using a twin-T filter. Separate potentiometers allow control ling the amplitudes of the tremolo (R81) and virbrato (R76) signals applied to the Envelope Modulator and Pitch VCO. respectively.

The Envelope Modulator uses diodes D 18 and D19 and a voltage follower (IC5-a) to amplitude modulate the tone frequency with the output of the Envelope Shaper and the Tremolo/Vibrato Oscillator. Diode D20 is added to allow amplitude control by an external voltage. The external voltage is applied to the DYNamics in jack
The CONTROL in and CONTROL OUT jack and associated switches are added to allow synchronization between two or more units Other inpuls are marked for further control capability, while other outputs are marked for use in controlling music synthesizers or similar equipment.

Construction

All circuitry for the music generator contained on one single-sided PC board except for the power transformer, switch S3 output jacks and audio-ourput roll-off capa are required Although a fair number of jumpers board was made choice of a single-sided The foil pattern is keep cost at a minimum. component placem shown in Fig. 3 and the Fig. 4 . placement diagram is shown in
Resistor R I is selected so that the voltag on pin 4 of ICI-b is between +3 and +12 volts. Resistor RS4 is similarly selected so that the voltage on pin 4 of IC6-b is between +3 and +12 volts. Note that only about 80% of all LM3900. CA340! or MC3401 op-amps will have suitable noise characteristics. Some will have excessive "popcorn" noise and The assembled a pink noise
component-side circuit board is mounted enclosure. A sheet of the boltom of the placed between of insulating material is sure. The circuit board is board and enclo-$6-32$ hardware through is mounted with No. board and insulator the holes in the circuit mounted to the left of The transformer is the bridge rectifier. of the circuit board near panel wiring diagram is chassis and front-
The PC board allows shown in Fig. 5
be added 10 provide aditional resistors to desired. 10 provide a 7 -tone scale if

Operation

The variable resistors should be set as follows for initial trial: R7. R5I, R73 and R81-full counter clockwise; R94 R95 and R97-center of rotation: R36-full clockwise R71-slighily counter clockwise from center R68-slightly clockwise of center. The slide switches on the I'C board should be set to the rear, while the slide switch on the rear panel may be set in either position. (Nole: The uni shown in the photographs is a prototype with switches S1 and S2 omitted.-Editor) The audio outpur may be connected to the input (preferably high-level) of any audio amplifier. Turn the volume control of the amplifier down and turn it on. Plug in the music
generator and allow one minute for the
circuit to settle before turning up the amplitier volume, unless you want to hear quite unmusical sounds.

If sound consisting of various pitches and durations is not heard when the volume is turned up. there are circuit errors or defective components. If many notes of the same lowextreme pitch or same high-extreme pitch are heard, the pirch exient control (R7) should be appropriately adjusted.

The vibra to (R76). tremolo (R81). PifCH (R36) and tempo (R51) controls may be independently adjusted. There is some interaction between the envelope controlsAlTACK (R94), DECAY (R97) and DAMPING (R95). The three duration controls can be tried in any positions, but generally something near the initial settings is most listenable. If these are not kept in the same position sequence as the initial settings, the duration ratios will be other than 1:2:4:7.

System connections

With the full back-panel switch-and-jack complement. the music generator can be connected to other identical units or other different devices to allow more than one sound channel with either completely synchronized note durations or else durations on a common time reference. When the rear switch of an Infinitune is in the CLK in dira ot position. a clock from another Intinitune or other source connected to the control in jack can set the time that note changes occur. Also, with the switch in this position, the given unit can supply the duration pulse to another Intinitune or other equipment that will then follow the durations of the notes in this unit.

With the rear panel switch in the cla our, DURA IN position the unit provides note durations equal to the duration of a pulse signal applied to cowiron in jack, while supplying a clock signal out of the cONTROL OUT jack that may be used to synchronize another Infinitune or other equipment.

If the five-tone-per-octave configuration is used, two Intinitunes with their pitch noisesources uncorrelated will sound very good together with either a common clock or a common duration pulse signal. If the seventone contiguration is used, however, considerable discord will be noted from the more complex harmonic relationships possible. Additional pink-noise sources with the proper time constants can be applied to the rEMPO MOD IN. DYNAMICS MOI) IN and V/I SYNC points on the circuit board to vary the tempo. loudness and vibrato/tremolo of the music. An antenna can be placed on the output of any noise source to permit varying the musical character by changing the capacitance from the signal to ground with a move of a hand. Care should be taken to minimize increased correlation by such coupling.

The PITCH OUT and ENVELOPb OUT or CONIROL OLI (with switch S3 in DURA OUI position) signals may be applied to musicsynthesizer circuits. The INIRA-OCIAVE PIICH. 2ND OCTAVE and 3 RD OCTAVE signals may be combined by means of a weighted summingamplifier to produce a signal that is an analog equivalent of the pitch. This may then be applied to a higher-quality VCO that is connected to other synthesizer circuits.

Finally, voice or other musical sources may be used as control or modily inputs, and an external sound may be modulated in duration and shape by applying it to the EXI IONE in jack.

CIRCLE 43 ON FREE INFORMATION CARD

PLAGUED!!

BY TOUGH DOGS?
Come on down to the Service Industry Convention and find how successful technicians solve problems.

August 16-20, 1977
Workshops for Technicians
Thursday, August 18
Sheraton Twin Towers Hotel

* Video game servicing
* CB
* TV
* Tuner Repair
* Meet Manufacturer Service Managers
* Take the family to Disney World.

For Convention Information write: ISCET

1715 Expo Lane
Indianapolis, IN 46224
317-241-8172
"Wy father built this Schober Organ (5) forme!"

You'd be proud to buy her an organ this good but how would you feel if you'd also buift it? I's a special kind of satisfaction The gift of a lifetime of magnilicent music. crafted with your own hands'

And you can do it' You need no prior electronic or mechanical abilities Just the capacity to follow instructions. Every step is clearly detailed every component is supplied Youll find the es sembly process as enjoyable as the music which follows!

And what music' For this is a truly fine instrument you will build Far superior to most "readymade organs easily comparable to others at twice the price Kit costs range from $\$ 650$ to $\$ 2850$ for all basic components, and you can purchase it in sections to spread costs out... or have two-year time payments

Just send the coupon for the fascinating Schober color catalog (or enclose $\$ 1$ for a record that lets you hear as well as see the quality of Schober)

new producte

Abstract

More information on new products is available from the manufacturers of items identified by a Free Information number. Free Information Card follows page 88.

COMPUTER JOYSTICK CONSOLE includes a speaker, speaker amplifier and joystick. Facilitates uses such as sound effects for computer and other games, plus provides an easy way to obtain such features as acoustic warnings in other applications. Interfaces easily with micro-

computers and can be used with color graphics interface such as the TV Dazzler ${ }^{\text {TM }}$. Price of the new console is $\$ 65.00$ in kit form or $\$ 95.00$ assembled.-Cromemco, Inc., 2432 Charleston Rd., Mountain View, CA 94043
CIRCLE 78 ON FREE INFORMATION CARD
DATA HANDLER; a complete system on a single circuit board that combines the 6502 microprocessor with the latest state-of-the-art technology. The Data Handler combines multi-functions with the ease of operation that makes it ideal for the beginning computer enthusiast. The unit

can be programmed to control any eight devices simultaneously. It is available in kit form for \$179.95.-Western Data Systems, 3650 Charles St., Suite G, Santa Clara, CA 95050

CIRCLE 79 ON FREE INFORMATION CARD
ALUMINUM SOLDER, Alu-Sol 450 is a new cored solder with much improved flux, makes it possible to solder pure or lightly-alloyed aluminum almost as easily as copper, with a joint strength at least equal to tin-zinc.-Multicore Solders, Westbury, NY 11590
CIRCLE 80 ON FREE INFORMATION CARD

TOOL CATALOG, tool kit-JTK-17 Aero-Lyte, designed for the field engineer or electronic technician who frequently travels by air. Features a jet-smooth molded aluminum case with two removable pallets. The case measures $17 \times 12^{1 / 2} \times 5$ inches and comes complete with more than 100 tools required for field adjustment and service work. Among the tools included are, pliers, wrenches, screwdrivers, nutdrivers, alignment tools, soldering equip-

ment, tweezers, measuring devices, and optical aids. A VOM is offered as an optional accessory. $\$ 380.00$ with VOM; $\$ 328.00$ without VOM.Jensen Tools and Alloys, 4117 N. 44th St., Phoenix, AZ 85018
CIRCLE 81 ON FREE INFORMATION CARD

COLOR CONVERGENCE GENERATOR, for servicing color TV sets, amateur TV, computer terminals, closed-circuit TV, video tape equipment, TV broadcast subsystems and cable TV. This very special dot/bar generator provides 16 different patterns needed for servicing color TV receivers. The unit, model BB-12 is a pocket size $1^{3 / 4} \times 2^{3} / 4 \times 4$ inches and is available in kit or wired form. The kit is \$49.95; wired \$64.95. A simpler version, the $D B-11$, provides 13 pat-

terns. $\$ 39.95$ in kit form and $\$ 49.95$ assem-bled.-Science Workshop, Box 393, Bethpage, NY 11714
CIRCLE 82 ON FREE INFORMATION CARD

TWO-METER ANTENNA is a $5 / 8$-wave magnetic mobile antenna described as approaching the theoretically maximum power gain of the ideal antenna. Average gain measured with the

antenna mounted on the center area of the roof of a truck cab is 3 dB above isotropic. The average VSWR is less than 1.3 without making any attempt to optimize this figure. Model A-280 is base-loaded, mobile, magnetic-mount with a 47 -inch heat-treated, stainless steel whip. Antennas are factory matched to resonate at 146 MHz . A chart is provided allowing adjustments ranging from 144 MHz to 156 MHz .-Antler Antennas, 6200 South Freeway, Fort Worth, TX 76134
CIRCLE 83 ON FREE INFORMATION CARD

TV REMOTE CONTROL, Model TRC-82 provides instant push-button selection of VHF and UHF channels (2 through 83). Electronically.

without motors, this solid-state unit provides direct-access channel changes, fine tuning and remote on-off of a TV set from anywhere in the room. The device consists of two units; an allchannel converter and a control unit interconnected by a 25 -foot, plug-in, control cord. The converter is connected behind and beneath
the TV set. The only wiring necessary is to connect the downlead from the TV antenna into the converter, and then connect the converter output to the antenna terminals of the TV set. All necessary jumper cables and accessories are supplied. Extension lengths of control cord are available if desired. Suggested list price is $\$ 124.50$. The extension control cord, Model TRC-82-25CD is $\$ 8.95$.-Jerrold Electronics Corp., 200 Witmer Rd., Horsham, PA 19044
CIRCLE 84 ON FREE INFORMATION CARD
LOUDSPEAKERS, Models VL300, VL400, VL500 and VL700. The series is priced from $\$ 69.00$ to $\$ 167.00$ each. Model VL300 and VL400 are 2way systems; the VL500 and VL700 are 3-way

systems. Specifications of the new units have not yet been released.-VIsonik of America Inc., 1177 65th St., Oakland, CA 94608
CIRCLE 85 ON FREE INFORMATION CARD
WIRE-STRIPPING TOOLS; an assortment of 10 tools that will handle most types of wire and cable in the range of 38 to 10 AWG. New items include manual strippers for electrical applications, Romex-style cable, electronic applications, 75 - and 300 -ohm TV antenna cable, and a versatile cutter/snips. Other new entries include the Micro-Cutter for electrical and electronic applications, a Deluxe Micro-Cutter with

satety retaining clip and an automatic stripper for electrical applications. - Vaco Products Co., 510 North Dearborn St., Chicago, IL 60610
CIRCLE 86 ON FREE INFORMATION CARD

SWR BRIDGE, the base version, housed in a 3 $\times 7 \times 4$-inch aluminum extruded case, uses two $200-\mu \mathrm{A}$ meters for very sensitive readings.

The mobile version, illustrated, is in a $3 \times 4 \times$ 5 -inch high-impact plastic case with a single $200-\mu \mathrm{A}$ meter with a two-color scale.-Kris, Inc., Pioneer Rd., Cedarburg, WI 53012
CIRCLE 87 ON FREE INFORMATION CARD

FIBREGLASS CB ANTENNA, Model 225C "Broadcaster", is a convertible trunk-lip or roof mount deluxe antenna with base loaded coil, black coil jacket and black fibreglass whip. The

antenna comes with 17 -feet of RG-58/U coaxial cable with PL-259 connector. Has SWR adjustment 2 HEX key wrenches.-Electronics Industries, Inc., 333 Taft Dr., South Holland, IL 60473

R-E
CIRCLE 88 ON FREE INFORMATION CARD

of a career as a two-way radio technician...

MTI offers the only training for professional FM two-way radio available. Qualified technicıans are employed in government, industry, and public service. But training is your key.

You could cut out a career as a two-way radio technician by cutting out this coupon. We'll send you information on how you can learn more about this specialized field, at home.
\qquad I
AddressI
City/State/Zıp I
\square I am a veteran or servicemanon active duty.
ff3

formerly
MOTOROLA TRAINING INSTITUTE
College Hill. Summerdale. Pennsyivania 17093

CIRCLE 24 ON FREE INFORMATION CARD

Get off your rocker. Don't take old age sitting down.

Red Cross. The Good Neighbor.

Accuracy like a VTVM... Convenience like a VOM...
 NEW BATTERY-OPERATED FET SOLID-STATE VOLT-OHMMETER*116

Easy-to-build KIT
$\$ 39.48 \quad=116 \mathrm{~K}$
Factory-Wired \& Tested
$\$ 5295 \quad=116 \mathrm{~W}$

Now you can get all the benefits of a VTVM (labopatory accuracy, stability and wide range) but with its drawbacks gene: wide range) but with its orawbacks gene: for warm.up, no bulkiness. New Fleld Effect Transistor (FET) design makes possible low loading, Instant-on battery. possible low loading, instant-on battery. both bench and field work.
Compare these valuable features:

- High impedance low loading: 11 meg. ohms input on $D C$, 1 megohm on $A C$. 200000 ohms-per-volt vom © Wide-range 20,000 ohms-per-volt Vom - Wide-range 33 ersatity: 4 P. P ac voltage ranges: $0-3.3$. 33, 330 , 1200 V ; 4 RMS AC Volitage ranges: J.1.2, 12, $120,1200 \mathrm{~V} ; 4 \mathrm{DC}$ voltage ranges: 9.1k $0.100 \mathrm{~K}, 0.10$ mes 1000 mes. J.1K, $0-100 \mathrm{~K}, 0-10$ meg. $0-1000$ meg.;
$40 B$ ranges. -24 to +560 B

Sensitive easy-to-read $41 / 2^{\prime \prime} 200$ micro. amp meter. Zero center position avail. able. Comprises FET transistor, 4 silicon transistors, 2 diodes. Meter and Iran. sistors protected against burnout. Etched panel for durability. High-impact bakeite case with handle useable as instrument stand. Kit has simplified step-bystep assembly instructions. Both kit and factory-wired versions shipped complete with batteries and test leads. $51 / 4^{\prime \prime} \mathrm{H} x$ $61 / 4^{\prime \prime} \mathrm{W} \times 27 \mathrm{~s}^{\prime \prime} \mathrm{D} .3 \mathrm{lbs}$.
burglar fire alarm catalog

TO PROTECT HOMES, BUSINESSES, INDUSTRY

Huge selection of hard-to-find security equipment from stock. 64 fact-filled pages loaded with 100 s of highest quality professional alarm products, technical notes. diagrams.

ONE-STOP SUPERMARKET SELECTION INCLUDES:

ultrasonics, radar, infrared, undercarpet mats, magnetic contacts, smoke \& heat detectors: Controls: Alarms: bells, sirens, phone dialers, lights, guard panels. Large selection of tools, relays, wire, holdup alarms, books. Fills need for industry, alarm cos., businesses, homes, institutions. Order your copy today. (Outside U.S.. send \$1.00.)
mountain west alarm 4215 n .16 th st. phoenix, az. 85016 (602) 263-8831

TELEPHONE DIALER
continued from page 4I
capacitor C7 and powers the clock generator on pins I and 11 .

Construction

Figures 6 and 7 are the component and bottom-side PC board foil patterns. Figure 8 is the components placement diagram. You have the option of using either one of two types of keyboards. The 1-of-12 keyboards (Fig. 3) are listed in the ads in the back of this magazine as calculator keyboards. The dialer uses the standard 0 through 9 keys plus two more for redial and access pause. The actual number of switches on the keyboard you use will exceed twelve if the calculator is designed for extra functions.
Keyboards listed as telephone keyboards are usually the 2-of-7 type (Fig. 2). Conventional telephone keyboard layouts have digits 0 through 9 plus * and \# keys for a total of twelve. Each key has DPST contacts that are switched along a matrix of three vertical buses (KG, KF and KE) and four horizontal buses ($\mathrm{KB}, \mathrm{KC}, \mathrm{KD}$ and the one marked "no connection"). Pressing any key makes contact with one horizontal and one vertical bus. The total of seven
buses and two contacts per key accounts for the 2 -of- 7 nomenclature.

All six IC's are used if the telephonetype 2 -of- 7 keyboard is used. If the calculator-type keyboard is used, a separate encoder is needed. In this case, ICl is eliminated since its purpose is to encode the $2-$ of -7 keyboard signals. The parts list and the diagrams reflect the component variations for either keyboard.

Transistors Q1 through Q5 are the output drivers that control the five LED's and the relays. Connections to a typical telephone are shown in Fig. 9.

Relays RY1, RY2, and RY3 are best mounted right in the phone. 1 used Magnecraft relays with a 100 -ohm coil because they were handy. But they are relatively expensive and you can probably do better by looking around. The supply feeding the emitters of the output transistors can be isolated and increased in voltage if you need more than 3.9 volts for your relay selection. Resistors R25, R27, R29 and R31 will have to be changed accordingly.

Two normally-open relay contacts, the Strobe and Redial contacts, and a third normally-closed Line relay are needed. The relays are connected to the collectors of Q2, Q3 and Q4. After checkout of the system, you may elect to remove the LED's.

Built to last

Our new $31 / 2$-digit LED autopolarity digital VoltOhmyst ${ }^{\circ}$ is quality-constructed for long, hard service.

- Fast and accurate measurement of ac and dc volts, current, and resistance.
- Built-in analog panel meter for peaking and nulling.
- Hi- or Lo-power ohms selector
-120V/240V ac ar battery operation with builtin charger. - RF shielded

WD-750A
\$267.00 with rugged vinyl-clad case
> "Business must ensure the well-being of educational institutions upon which its own vitality depends."

> Clition C Garvin. Ir

Chairman and Chief Executive Olficer Exxon Corporation

> Make America smarter. Give to the college of your choice.

Either IC sockets or Molex pins should be used to mount the IC's. If you have to replace a defective IC or remove one for troubleshooting, you'll be glad they come out easily.

Unless you go to the trouble of making your PC board with plated-through holes, you have to solder the components to the foil on both sides of the board. Jumpers must be inserted and soldered to both sides in all empty holes that connect to foil runs.

Since IC2 is a CMOS device, when it is not used, the input of IC2-b becomes unterminated and must be grounded for proper operation of the other gates in the IC2 package. A short jumper is added on the rear of the board. The output of the gate must also be disconnected so it does not interfere with the C0 keyboard output. The best way to do this is to simply leave out the jumper between the front and rear of the boards indicated with an asterisk on the component placement diagram.
The telephone dialer described here uses a 1-of-12 type keyboard and the encoder was mounted on a Veroboard. The parallel conductor runs of the Veroboard are perfect for matrix circuits like the encoder shown in Fig. 3. A specific layout for the encoder board has not been included since it depends on the particular keyboard pin arrangement. Again, Molex pins are recommended so the keyboard can be mounted right over the encoder components yet can be easily removed for troubleshooting.

Momentary pushbutton switches are used for the Store, Retrieve and Continue functions. An additional hook switch contact is needed to apply power to the Clock Generator, IC6. If a spare normally-closed contact is not available on the cradle switch, a microswitch can be rigged to the bracket switch assembly. Although somewhat less convenient, a separate toggle switch can be used. Relay RYI is not required if a toggle switch replaces the secondary hook switch.

The system is powered from a 3.9 volt ($\pm 5 \%$) negative voltage supply. A zener regulated supply will do the job. Remember that the number memory is volatile and power must be kept on continuously. The supply should not be designed to supply more than the 200 mA peak current drain of the LED's and relays. Standby power drain is very low, essentially only the $2.25-\mathrm{mW}$ typical drain of IC5

Checkout

Once everything is together, you will be anxious to put the circuit through its paces. Initial testing is done by watching the response of the LED's to pushbutton sequences.
Connect the -3.9 -volt supply to the $-\mathrm{V}_{\mathrm{E}}$ pad on the PC board, and the power-supply ground to the GND pad. Turn on the power and flip the hook switch. Operating the switch simulates lifting the receiver and resets the registers in IC4.

Now try keying in a number. Each key closure stores the corresponding digit in internal registers and dials them out with precise timing. Because of the memory, the keys can be pressed at a faster rate than they are dialed out

The mask, strobe and line LED's should operate in the following way: The mask LED should be lit during the entire dialing sequence. The strobe LED is illuminated during the time it takes to dial out the series of pulses that make up one digit. The LINE LED will flash once for each output pulse, so each key pressed will flash this LED a number of times corresponding to the numeral printed on the key (0 flashes the LED 10 times). Of course they flash at a 10 Hz rate so you will not be able to count the individual pulses by eye, but you can roughly discern between the shorter and longer sequences.
After verifying the individual digit operation, check the redial facility. On the calculator-type keyboard used here, the c (constant) button was wired and used as the redial key. Dial a sequence of digits representing a phone number and then press the redial key. The redial lamp should light in preparation for sending the number. Hit the redial key again to start the redial pulsing. Redialing can be repeated as many

UNIVERSAL

- 33KV Leaded Glass CRT - 40KV Meter
- Build-In Speaker
- Obsolete-Proof

The PJS-298 Universal Test Rig for tube and Solid State TVs designed for servicing high voltage chassis. Built-in speaker for convenient audio checking, 40KV-50Ua sensitivity meter constant monitoring of the anode voltage. Up-dating is accomplished by means of plug-in modules. (Extension cables included).

\author{

- VHF/UHF Subber
 - I.F. Video Trouble Shooter
 - Convergence Generator - Dots and Cross-Hatch Patterns
}

The "FERRET" is a multi-functional instrument for fast, efficient trouble,shooting and adjustment of all Culor and B\&W tvs. It is ideal for both shop and field work. (Cables included.)
Tekellatic 2899 Fulton st. Brooklyn. N. N. 11207

INTERNATIONAL FM 2400CH

FREQUENCY METER for testing mobile

 transmitters and receivers

\author{

- Tests Predetermined Frequencies 25 to 1000 MHz
 - Extended Range Covers 950 MHz Band
 - Pin Diode Attenuator for Full Range Coverage as Signal Generator
 - Measures FM Deviation
}

The. FM-2400CH provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies.

The FM-2400CH with its extended range covers 25 to 1000 MHz . The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz .
Frequency Stability: $\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$.
Frequency stability with built-in thermometer and temperature corrected charts: $\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}$ (. 000125% special 450 MHz crystals available).

Self-contained in small portable case. Complete solid state circuitry. Rechargeable batteries.

```
FM-2400CH (meter only) . . . . . . . . . . . . . . . . . . . $595.00
RF crystals (with temperature correction) ... 24.00 ea.
RF crystals (less temperature correction).... 18.00 ea.
IF crystals ...................................catalog price
```

TELEPHONE DIALER
continued from page 81
times as desired. The reason for the flip-flop action is that in normal use, the hook switch must be cycled before redialing to get a new dial tone. The hook switch is in series with the power supply to IC4 so it interrupts the power and resets the IC4 registers. The first operation of the redial key will close a relay contact that parallels the hook switch. At that point the receiver can be hung up and picked up again without interrupting power to and resetting IC4. Now when the redial button is depressed the second time, the power-bypass relay contact across the hook switch is disconnected and the transmission of the stored digits starts.

Proceed to the checkout of the ten number memory. Numbers are stored by pressing the store button and continuing to hold it for the entire Store operation. The first digit entered is the storage address. It can be a digit from 0 to 9 for each of the 10 storage locations in memory. The digits that follow the address are the numbers to be stored. The keyboard used here was wired so the decimal point is the access pause key. Be sure to enter one or two of these intermixed with some of the test numbers.

After the first number is entered, the hook switch is flipped back and forth. Do this fairly slowly to give the reset capacitor time to charge. Then press the store button, the next storage location, and your next phone number. Repeat this sequence up to a total of ten times for the numbers you want to store. Switch the temporary-hook switch to the off-hook position and get ready for recalling your first number by pressing the retrieve button. In contrast to the store bution, the retrieve switch is closed momentarily and does not have to be held. The next 0-9 digit entered addresses the memory originally tagged by the same digit during a Store operation, and begins the dialing of the stored number.

When an access pause is reached, the system stops with the access pause LED lit. Momentary closure of the continue switch should resume the dialing sequence.

If everything checks out at this point you are ready to complete the relay connections to your phone as shown in Fig. 9. Retain the redial and access pause LED's in your system as visual aids in using these functions.

R-E

PART NUMBER OF ON-OFF RELAY

I need a part number for the big on-off relay in an Admiral K181 chassis, and I can't find it on the service datal I don't undersland this.-S.S., Delray Beach, FL.

I thought it would be simple too but it wasn't. After a protracted search through all of the factory data I finally found it. It's listed in the Tuner Cluster parts list! This is OnOff Relay K261, part no. 83A53-1, and it's used only in the 2 K 18 -1A chassis with remote control.

BURNT RESISTORS

This Sears model 528. 42000400 came in with no piclure, no sound, and no raster. Four resistors were badly charred; R361, R368, R367 and R360; diode D361 was bad. I replaced them all, and two of them burned up again-R367 and R360. Something is drawing a lot of current through these, but what?-J.G., Birmingham, AL.

After some chasing around in the schematic. I found a common source; these parts all go to the H-Puise source. and it is shown as zero DC voltage. They come from small windings on the flyback that must be working. There is a $0.0068-\mu \mathrm{F}$ capacitor C 710 -b from this point to the collector of the horizontal-output transistor. If it is shorted. the +115 -volt DC supply goes directly through the pulse windings and these resistors. Replace it and see what happens.

Another possibility might be shunt capacitor C710-a on the collector of the horizontal-output transistor. If it opens. the pulses could go very high and cause this damage.

new books

TRANSISTOR IGNITION SYSTEMS, by Carroll A. Brant. TAB Books, Blue Ridge Summit, PA 17214. 252 pp. Hardcover \$8.95; Paperback \$5.95.
Conventional and electronic ignitions are covered in this new book. Starting with a section on basic, modern electronics for mechanics and laymen, the author branches out to transistor circuits and ignitions All the theory needed to understand the modern ignition is presented along with illustrated and carefully explained ignition data. There are detailed instructions for tuning up new cars that follow the procedures recommended by the makers themseives.
The book includes a complete catalog and buyer's guide to the attermarket systems that are available, making it easy to find the parts needed. Also, for the do-it-yourself'er, there are complete construction plans for a dwell extender and high-power CD ignition. All the popular makes and models are here, with complete instructions on installing, troublesnooting and tuning them.

SCANNER-MONITOR SERVICING GUIDE, by Robert G. Middleton. Howard W. Sams \& Co., Inc., 4300 W. 62 SI., Indianapolis, IN 46206. 96 pp. $11 \times 8 \frac{1}{4} \mathrm{in}$. Softcover $\$ 4.95$.

Scanner-monitor receivers (for monitoring police, fire and other agencies who use the public service bands) have become very popular and the need for this kind of servicing has increased. Although much of the circuitry in a scanner monitor is the same as in a conventional FM receiver, there are also some highly specialized networks associated with the automatic tuning (scanner) section.

The purpose of this servicing guide is to give the technician a working knowledge of the circuits unique to scanner-monitor receivers and the troubleshooting procedures necessary to service them. The scannermonitor technician must be familiar with noise amplifiers, squelch gates, multivibrators, diode switching, counter and decoder/driver devices, and display devices such as LED's. The guide proceeds step-by-step through the complete scanner-monitor system, with particular emphasis in specialized circuit action and troubleshooting

HOW TO HEAR \& SPEAK CB IN A SHORT-SHORT, by Whacky World Productions. TAB Books, Blue Ridge Summit, PA 17214. 172 pp. Hardcover $\boldsymbol{\$ 6 . 9 5}$; Paperback $\$ 3.50$.
This book on CB radio is written like a novel-not in technicalese-and helps to turn meaningless CB slang into familiar language that the reader can hear loose and speak loose with the best of them.
Marvin and Bunny, the heroes, visit Whiskerman's CB mecca-The Catpatch. Whiskerman explains to them what CB radio is, who uses it, and how it is used at home and on the highway; and shows them how to use the mike, what the other controls do, the channel setup and what the strange language means-in short, all that is needed to become an active, fluent participant.

The reader accompanies Marvin (now 'Mystery Man' in CB) and Captain Beaver (Bunny's CB handle) as they cruise the interstate with Whiskerman into the unfolding CB world.

ELECTRONIC ORGANS, Volume 3, by Norman H. Crowhurst. Howard W. Sams \& Co., Inc., 4300 W. 62 St., Indianapolis, IN 46206. 143 pp. $11 \times$ $8^{1} / 4 \mathrm{in}$. Softcover $\$ 7.95$ (in Canada $\$ 9.50$).
First generation electronic organs used vacuum tubes that were later replaced by discrete transistors. This volume presents organs incorporating third generation technology (IC's and LSI's) produced by ten wellknown organ manufacturers. Being more of a state-of-the-art report than a definitive discussion of each model, the reader becomes acquainted with the latest electronic developments of various models covered in Chapters 2 through 11. Chapter 1 covers some general considerations and a review of basic transistor theory. Chapter 12 covers tuning methods and commercial tuning aids. A comprehensive glossary of organ and electronic terms is also included.

SERVICING ELECTROCARDIOGRAPHS, by Elliott S. Kanter. Howard W. Sams \& Co., Inc., 4300 W. 62 St., Indianapolis, IN 46206. 224 pp. $11 \times$ $8 \frac{1}{2} \mathrm{in}$. Softcover $\$ 12.95$ (in Canada $\$ 15.50$).
The electrocardiograph (ECG or EKG) has come a long way from a machine that used four buckets of ice water as electrodes and had a bulky electronics section to the current portable solid-state device. The majority of service problems are caused by improper use, poor electrode contact techniques, broken lead wires, and burned out or dirty styli, leaving a small percentage of nitty-gritty troubleshooting to carry out. Written for the electronics technician, this book presents a collection of data, parts information, schematics, and troubleshooting hints on representative sampling of the equipment found in a general hospital.

COLLEGE DEGREE

in your Electronics Career through

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of independent study.

The Grantham correspondence degree program in electronics is comprehensive. It begins with basics, written in very simple language, and continues through the B.S.E.E. degree level. Throughout the entire program, heavy emphasis is placed on clear explanations written in great detail, progressing from the simple to the complex. in easy steps.

Our free bulletın gives complete details on the curriculum, the degrees awarded, the requirements for each degree, and how to enroll.

GRANTHAM COLLEGE OF ENGINEERING 2000 Stoner Ave., Los Angeles CA 90025 Telephone (213) 477-1901 Worldwide Career Training thru Home Study Mail the coupon below for free bulletin.

MODEL 100A AUDIO RESPONSE PLOTTING SYSTEM and general purpose sweep/tone burst/pulse generator consists of two sine/square/triangle function generators, pulse generator, frequency counter and peak amplitude measurement sactions. It is primarily intended to generate a frequency response plot on an X - Y recorder or scope.

Time base generator offers symmetrical or independent control of the positive and negative sides of the ramp providing a duty cycle of $.7 \%$ to 99.3%. Frequency range is .0035 Hz to 100 kHz . Amplitude is $15 \mathrm{~V} p$ into 500 !! with -5VDC offset. The time base output drives the X axis of an X . Y recorder. Manual mode provided for setup.

Audio sweep generator provides manual frequency adjustment or log/linear sweep of $20 \mathrm{H}_{2}$ to 20 kHz . Blanking mode produces zero reference line onn X - Y recorder or tone burst. Amplitude is 15 Vpp into 500 !? or 10 Vpp into $8!2$.

Pulse generator frequency range is .0035 Hz to 525 kHz . Pulse wideth is adjusted independent of frequency from 4 seconds to 40 nanoseconds. Outputs are complimentary TTL.

Peak amplitude measurement section measures internal or external signals from mike to power amp level. Amplitude output drives Y axis of $\mathrm{X}-\mathrm{Y}$ recorder.

Frequency counter is 6 digit, line triggered, and reads either internal or external. Sensitivity is 50 mv peak at 20 kHz .

Dimensions: $8 \times 14 \times 3$. Shipping Weight 9 lbs .
$\$ 550$, stock to 30 days. Warranty: 1 year.

EIDELITY OUND San Beramerdino Co 92408

 CIRCLE 4 ON FREE INFORMATION CARD

Amazing MEGASPARK, the advanced-design Opto-Electronic Breakerless Ignition System, FITS ANY CAR! Replaces points and condenser - gives longer spark plug life. Increases performance, mileage and driving satisfaction while cutting fuel and maintenance costs dramatically. Learn the facts and don't settle for less than the best. Models from \$29.50 to \$64 50

The only unit that gives you all these features:

- LIFETIME WARRANTY
- DIFFERENTIAL AMPLIFIER CIRCUITRY
- FULL INTERNAL VOLTAGE REGULATION
- AUTOMATIC OVERCURRENT PROTECTION

BUILD A COMPUTER cominued from page 49

which memory location should I start the program? The answer is that your program can be put in any RAM area so you can start your program anywhere from address HI510 to HI7E9. This is the usuable RAM space that the board provides you. If you expand the RAM you could, of course, put your programs in that space also.

For an example, suppose you have the following program and want to load it into the system:

0700	LODI,R3	00
0610	LODI,R2	10
1F 00 00	BCTA,UN	0000

If you choose to load this program al the start of RAM, then you would alter location 1510 first. The supervisor displays the contents of 1510 , and permits you to change it. Once it is changed, the next byte is displayed (1511) and you are again allowed to change it. This process continues until the entire program is loaded.

TABLE III
A A1510
$151000 \mathrm{C07}$
151100 COO
$151200 \mathrm{CO6}$
1513 00C10
$151400 \overline{\mathrm{C} 1 E}$
***note that
this line has a mistake on it
151500 e
A A1514
1514 1EC1F
151500 COO
151600 COO
1517 00e ***done!
(e) represents the pressing of the escape key.

If you should make a mistake, simply press escape, and alter the location with the mistake and continue on. The way the screen would look for program would appear on the video monitor is shown in Table 3.

R-E

NO DIGIT DIGITAL CLOCK continued from page 37

clock, both switches are in the run position with the switch bats down. If you should overshoot the correct time when setting, let the hand sweep around again.

Construction

Although the actual circuit is simple. the wiring can get complex. Multiplexing to the 72 LED's necessitates the use of a double-sided printed circuit
board. The foil patterns for the PC board are shown in Figs. 2 and 3. If the board is square, the clock can be mounted by the corners in a square enclosure or if cut round, it can be mounted by a single screw in the center of the round case.

The LED's and driver transistors are mounted on the face side as shown in Fig. 4 and the balance of circuitry mounts on the rear as shown in Fig. 5. Care should be taken when mounting the LED's to insure that they are of equal height and are aligned to give an even display.

The clock can be mounted in a number of different cases. The one shown here is a clear plastic tube with a clear front. The hour positions are indicated by white plastic squares glued to the front. The old fashioned octagonal wall clock cases can also be used. This makes for an interesting combination of old craftsmanship and modern technology.

HI-FI LAB TESTS

continued from page 64
moderate compensation at progressively lower db level control settings and again, examining the $-40-\mathrm{dB}$ line, we now see a bass boost of only around 6 dB at 50 Hz for this setting. It should be noted that this variable

loudness compensation applies only to the bass end, while the moderate amount of treble boost incorporated in the loudness circuitry remains constant regardless of the confour control position.

Figure 6 illustrates the steep and effective action of the low-cut and high-cut filters, both of which have 12 dB -per-octave slopes with the $-3-\mathrm{dB}$ cutoff points falling exactly as specified by Sherwood.

Our overall product analysis, together with our summary comments concerning features and listenability of the model HP-2(X)O will be found in Table 11. Even on the basis of superficial price/performance ratios, the Sherwood model $/ / P-2000$ is a winner in every sense. But. aside from good clean power, the model HP-2000 offers a degree of fexibility and control that rivals that of many preamplifier/basic-amplifier two-component systems costing considerably more. R-E

market center

CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services). \$1.40 per word (no charge for zlp code) . . . minimum 15 words
NONCOMMERCIAL RATE (for individuals who want to buy or sell personal items) 85 c per word no mınımum.
ONLY FIRST WORD AND NAME set in bold caps. Additional bold face (not available as all caps) at $10 ¢$ per word. Payment must accompany all ads except those placed by accredited advertising agencies. 5% discount for 6 issues. 10% for 12 issues within one year, if paid in advance. All copy subject to publisher's approval. Advertisements using P.O. Box address will not be accepted until advertiser supplies publisher with permanent address and phone number. Copy to be in our hands on the 26th of the third month preceding the date of the issue (i.e., August issue closes May 26). When normal closing date falls on Saturday, Sunday or a holiday, issue closes on preceding workıng day.

BUSINESS OPPORTUNITIES

TV picture tube rebuilding operation, includes 4 position automatıc oven, only one going in area $\$ 12,000$. Building avaılable. Details: 2333 Compton, St. Louis. MO 63104

HIGHLY

PROFITABLE
ELECTRONIC

ONE-MAN

FACTORY
Investment unnecessary. knowledge not re. quired, sales handled by protessionals. Ideal home business. Write today for facts! Postcard will do. Barta-BR, Box 248, Walnut Creek, CA 94597.

CASH with your camera! Earn \$5000-\$15,000 yearly selling to 4,000 customers. Sell photos fifteen or more times. Guaranteed. Details-134 stamp. PICTUREPROFITS, 26 Josephine Blvd., Suite RE677. Shoreham, NY 11786

WANTED

QuIck cash
for electronic equipment. components. unused tubes. Send list now! BARRY, 512 Broadway. New York. NY 10012. 212 WAlker 5-7000

EDUCATION \& INSTRUCTION

TELEPHONE bugged? Don't be Watergated! Countermeasures brochure $\$ 1.00$. NEGEYE LABORATORIES, Box 547-RE, Pennsboro, WV 26415

GRANTHAM's FCC License Study Guide-377 pages, 1465 questions with answers/discus-sions-covering third, second, first radiotelephone examinations. $\$ 13.45$ postpaid. GSE PUBLICATIONS, 2000 Stoner, Los Angeles, CA 90025

[^0]CB antenna construction manual. Assemble beams, quads, groundplanes, roll-up-tennas from common hardware. Save 80%. Non-technical instructions with pictorials, easy assembly, excellent performance, complete $\$ 3.00-$ TENNA-FARM, 1117 Dewitt Terrace, Linden, NJ 07036

BURGLAR fire alarm experts needed for cars. homes, industry. Learn high-profit systems installation at home spare time. Simple, quick, complete. Free information by mail No salesmen. SECURITY SYSTEMS MANAGEMENT SCHOOL (homestudy). Dept. 7339-067, Little Falls, NJ 07424

PLANS \& KITS

BI-LINEAR amplifier, $3-30 \mathrm{MHz}$, 100 watt mobile Construction plans, $\$ 3.00$. IGOR, Box 5516-FF Walnut Creek, CA 94596

U-BUILD IT COMPUTER SYSTEM
 $\$ 599$
A MPU, CRT TERMINAL AND AUD:O CASSETTE AT A ROCK BOTTOM PRICE

- SC/MP MICROCOMPUTER: 256×8 RAM, 512×8 ROM -GREEN PHOSPHOR VIDEO MONITOR: 12" RASTER SCAN 24 LINES $\times 80$ CHAR.
- SOUTHWEST PECH 1024-32 CH $\times 16$ LNS, ASCII KEYBO. - SOUTHWEST TECH AC- 30 AUDIO CASSETTE INTERFACE

SEND \$1 FOR OUR CATALOG
DESCRIBES COMPLEJE LINE OF KITS $\&$ UNITS
BOOK REVIEWS, LIST OF NEW \& SURPLLS PARTS
COMPUTER DEPT R,
WAREHOUSE po box 68, kenmore station STORE BOSTON, MA 02215 671/261-270

KITS, semiconductors, components. Free flyer CHIPS ELECTRONICS, Box 1030. Oakville. Ont., Canada L6J5E9. U.S. inquiries.
BREATHE better air with negative Ion generator Kit $\$ 165.00 /$ Details, $\$ 1.00$. GOLDEN ENTERPRISES, Box 1282RE, Glendale, AZ 85311

ORGAN KITS KEYBOARDS
the ultimate in design AND SOUND DEMO RECORD AND BROCHLRE $\$ 1.00$ Wurliteer reproductiona OEVTRONIX ORGAN PRODUCTS. Dept. 4 B ,int 5872 Amapola Dr. © San Jose, CA 95129

SAVE 50\%. Build your own speaker systems Write: MCGEE RADIO ELECTRONICS, 1901 McGee Sireet, Kansas City, MO 64108

CIRELE 31 ON FREE INFORMATION CARD

Active Electronic Sales Corp.

Telephone Orders \& Enquirles (617) 879-0077 New Cataloge available on request MINIMUM ORDER $\$ 10.00$
NOW IN CANADA
2 Locations

BUILD YOUR OWN SPEAKERS

TACHOMETER builders: 0-2-microammeter, 0 6000 RPM scale, $2^{1 / 2^{\prime \prime}}$ diameter, marine quality brass construction. $\$ 6.00$ postpaid, USA HOFFER, 24 Cherry Road, Framingham, MA 01701

ARTISAN organ kits feature all new modular construction with logic-controlled stops and RAM Preset Memory System. Write for brochure to A O K MANUFACTURING INC., P.O. Box 445B, Kenmore, WA 98028

FOR SALE

CANADIAN discount and factory clearouts catalog. Top brand stereo equipment, caiculators test gear, CB \& communications, telephones Factory dumps-government surplus. Amazing bargains. Unusual items. Rush \$1. ETCO-RE, 521 5th Ave., NYC, 10017

FREE catalog. IC's, Semis. CORONET ELEC.
TRONICS, 649A Notre Dame W., Montreal TRONICS, 649A Notre Dame W.,
Que., Canada, H3C-1H8. US Inquiries

RADIO \& TV tubes $36 \$$ each. One year guaranteed. Plus many unusual electronic bargains Free catalog. CORNELL, 4217-E University, San Diego, CA 92105

NAME brand digital/anaiog test equipment Discount prices. Free catalog. SALEN ELEC TRONICS, P.O. Box 82, Skokie, IL 60076

Introducing Equinox 100 computer kit

THE FRONTRUNNER

Equinox $100^{\text {M }}$ is the $8080 \mathrm{CPU} / \mathrm{S}-100$ Bus computer kit that's years in front of Altair* and IMSAI in design, function and front panel programming capability. At $\$ 699$ it's clearly The Frontrunner. Write for free specs to Parasitic Engineering, P.O. Box 6314, Albany, CA 94706

CB41

Portable CB Performance Tester

Tests SWR, RF power and \% modulation. Tells if a CB rig is getting out as far as possible . . . if it needs servicing.

CB42
Total CB Automatic Analyzer
The complete CB service bench, simplified for quick troubleshooting and performance testing. Performs 12 receiver tests; 12 transmitter tests. Single digital readout for all tests. Combines five units in one: 1) Frequency Counter; 2) RF-IF Generator; 3) Audio Generator; 4) Digital RF Wattmeter; and 5) special CB Tester.

PS43
Port-A-Pak Power Supply/Battery Eliminator

Combines advantages of rechargeable batteries with an AC operated supply for any 12 volt service need

FOR PRICING AND TO PLACE YOUR ORDER:

Call collect for Mr. Louis (516) 752-0050
Master Charge, BankAmericard and C.O.D.'s accepted

RADIO SUPPLY CO., INC
855R Conklin St
Farmingdale, N. Y. 11735

AM/FM RADIO $\$ 10$
Plugs into wall, add your 2 speakers and you're ready to go. Calibrated slo motion am/fm tuning dial. Has stereo amps for use with phono or tape inputs to give stereo output. Solid state new.

UNIVERSAL POWER SUPPLY
Operates on 115 or 230V. Output by switches $4.5 \mathrm{VDC}, 6 \mathrm{VDC}, 7.5 \mathrm{VDC}$ or 9 VDC . Also has universal 4 way output plug to fit most any device. Good for 300 MA . $\$ 6.00$ each 3 for \$15.00.

IC Sockets, while they last
8 Pin
$10 / \$ 1.00$
14 Pin
10/\$1.25
16 Pin
10/\$1.50
18 Pin
10/\$1.75
14 Pin IC connector
$10 / \$ 1.25$
40 Pin wire wrap $\$ 1.006 / \$ 5.00$ customor paye all poatage MESHNA, PO BOX 62, E. Lynn Ma 01904

CIRCLE 37 ON FREE INFORMATION CARD
Audio \& +1
music Synthesis Experimenters
amer um weve oremano IDEAS.KITS. PLANS \& PARTS

- AnD MORE Write us for fREE inio....

CIRCLE 28 ON FREE INFORMATION CARD

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Free Information Number Page	
73	American Audio
25	AP P
	Audio-Techn
71	B\&K-Div, of
	CIE-Cleveland Institut
	Cobra-Div. of Dynascan Cover IV
4	Continental Specialties 17
	CREI-Div. of McGraw-Hill Continuing Education \qquad
11.	Dana
46	Digital Concept
32	ECD
23	Edmund Scientific
63	EICO
	EMC-Electronic Measurements 79
14	Enterprise Development
	Fidelity Sound
	Forest Bett's Truining Workshops 69
51,72	Grantham College of Engineering....... 83, 26
	GTE Sylvania-Consumer Renewal 5
	HAL Communications 20
100	Heath ... 13
21	Hickok Electrical Instruments.................. 16
21	Ignition Systems 84
351	Indiana Home Study Institute................... 25
47 I	International Crystal 82
12	Kedman .. 22
43	Leader ... 77
24	MT1... 79
19 M	Mountain West Alarm Supply 80
20	National Camera Supply 76

National Radio Institute (NRI)-Div. of
MeGraw-Hill Continuing Education
Center ...-11

National Technical Schools...70-73 75 NESDA .. .77
45 Non-Linear Systems 28
10 OK Machine \& Tool 27
15 PAIA ... 74
62 Panavise ... 29
42 Permu-Power ... 74
58 Platt Luggage.. 26
66 PIS ... 76
Radio Shack .. 19
RCA Distributor \& Special Products ... 24-25
57 Rye Industries .. 24
76 Sabtronics International, Div. of Euray
Trading .. 7
H. W. Sams ... 15

40

39 Active Electronics ... 86
AMC Sales ... 86
Amateur Radio Supply 98
American Used Computer 85

Sansui
Cover 111
Sencore 20 .77
Shakespeare
Southwest Technical Products 21
TAB Books.74
Telematic-1)iv. of UXL. 81
Tri-Star14
Ungar Tools 28
V1Z Mig.80
64 Vector Electronics. 29
Weller-Xcelite-Div. of Cooper Industries.... 14
MARKET CENTER

Free Information Number

Page
52 Babylon Electronics 100
Karel Burta.
CBS Enterprise 94
28 CFR Associates 88
Command Productions 85
Dage Scientific Instruments. 98
38 Delta Electronics 100
Devtronix Organ Products.. 85
67 Digi-Key 95
56 Electronic Warehouse.. 94
Fair Radio Sales 94
34 Fordham Radio Supply.87
30 Formula International 103
31 Godbout Electronics. 85
Information Unlimited98
53 International Electronics 105
5,6 James Electronics 92. 93
29 Jeff Rose 102
Lab Science 98
Lakeside Industries 86
37 Meshna 88
48 New-Tone94
65 Oison 85
55 Optoelectronics 104
Parasitic Engineering 86
27 Poly Paks 101
54 Quest 98
68 Radio Hut. 96
Radio Shack 91
70 SID Sales.. 99
26 JB Saunders. 97
59 Solid State Sales. 102
Speakerlab 86
74 Texas Tuner Service. 102
Trico Electronics 100
33 Wersi Electronics 102
X-Ray Services. 98
name \quad (please print)
$\overline{\text { address }}$
$\overline{\text { city }}-\frac{}{\text { state }} \quad$

Mall to: Radlo-Electronics
SUBSCRIPTION DEPT., P.O. BOX 2520, BOULDER, COLO. 80322

ATTACH
LABEL
HERE

SHIP YOUR NFARBY RADIO SHACK FOR QUALITY PARTS AT LOU PRICES!

Top quality devices, fully functional and carefully inspected. Guaranteed to meet all specifications, both electricaliy and mechanically. All are made by well known American manulacturers, and all have to
pass manufacturer's quality control procedures. These are not rejects, not fallouts, not seconds In fact, there are none better on the market! Count on Radio Shach for the finest quality parts.

Mrath
 TTL Digital ICs

First Qually Devices Made by National Semiconductor and Motorola
\square
74 C and 4000 Series CMOS IC

Linear ICs
First Quallity Devices by
National Semiconductor
and Motorola

Type	Cal No	Reg	SALE
301AH	276-017	¢ 69	290
324 N	276.1711	\$199	149
339 N	276-1712	\$199	149
386 CN	276-1731	\$199	996
555 CN	276.1723	\$1 49	896
$556 C N$	276-1728	\$299	1.29
566 CN	276.1724	\$2.99	1.29
567 CN	276-1721	\$299	1.99
723 CN	276-1740	\$ 99	596
723 H	276.009	\$ 99	59%
741 CN	276.007	\$ 69	$35 ¢$
741 M	276.010	\$ 69	356
3900 N	276.1713	\$199	596
3909 N	276-1705	\$1 29	99 c
3911 N	276.1706	\$2.19	1.99
4250 CN	276-1732	\$199	119
4558 CN	276.038	¢. 99	69\%
13741 H	276.1733	\$2 59	${ }^{1} 49$
75491	276.1701	5149	69 c
75492	276-1702	\$149	69 c

8080A Microcomputer Chip
Direct Plug-In Replacement for Intel 8080A

A CPU with a 16 -bit address bus capable of addressing $\mu \mathrm{p}$ to 65 k bytes of

 memory and up to 256 I/O ports. "TRI-State" data bus gives it DMA and multiprocessing capability, and all buses are TTL compatible. Handles up to 244 instruc tions of variable length, with 6 general purpose registers plus an accumulator 40-pin DIP. 100\% Prime. 276-2510| LEDs/Optoelectronics | | | | Digital Displays | | | | | | 276.055 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| $\begin{aligned} & \text { Aed LED } \\ & \text { Ch LED } \\ & \text { Ren } \end{aligned}$ | | $\begin{aligned} & 2 / 990 \\ & 2,90 c \end{aligned}$ | | | | | | | | | | | | | |
| $\begin{aligned} & \text { M CII LED } \\ & 5 \text { ReO LED } \end{aligned}$ | $\begin{aligned} & 276.090 \\ & 276.092 \\ & 272 \end{aligned}$ | $\begin{aligned} & \text { 2/990 } \\ & 2 / 996 \end{aligned}$ | 269 | Digns | Slze | - | Car | Reg | Pale | Digis | Size | Drive | Car No. | Reg | SALE |
| Intrated Dei inftrated Em | $\begin{array}{r} 276.140 \\ 276 \cdot 951 \end{array}$ | S1. 19 S: 19 | | | | | $\begin{aligned} & 276.053 \\ & 276.062 \\ & 076 \end{aligned}$ | | $\begin{aligned} & 199 \\ & 199 \end{aligned}$ | | | $\begin{aligned} & \text { Cath } \\ & \text { Coint } \end{aligned}$ | $\begin{aligned} & 276.055 \\ & 276.059 \end{aligned}$ | | 996 1.49 1.99 |
| 5 olar Cell FPT FPT 100 | $\begin{aligned} & 276 \cdot 115 \\ & 276-116 \\ & 276 \cdot 130 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { S7.49 } \\ & \text { s } 99 \\ & \text { s } 99 \\ & \hline \end{aligned}$ | | | | | | $\begin{array}{r} 48897 \\ 4 / 89 \\ 3999 \\ 5399 \end{array}$ | | | | | 276-1201 276-1202 | $\begin{array}{r}\text { S } \\ \hline 995 \\ \mathbf{5 9 5} \\ \hline\end{array}$ | 7.95
 7.95 |

ASCII Encoded Computer Keyboard

67ry $49_{\text {Pkg }}^{9}$

Operates on the scan principle utilizing TTL

 logic. With repeat key, negative/positive going data valid strobe, latch outputs, shift and shift lock capability. True/false ASCII outputs, 6 extra control keys. With all necessary parts, including TTL components. Does not include test jigs, optional features or case and hardware. See store sales persons for parts list 277-117. Complete Pkg.

Transformers Heavy-duly tilament transformers with
onmanes designedto operate Irom 120 VAC
al 60 Hz Long, coloracodec leads All $U . S$ made
 273-1513 273 volis (C 18 Volis (Center Termell

WHY WAIT FOR MAIL DELIVERY?
Sale 49.95

Low-Profile DIP Sockets

Sale $2 / 59 \mathrm{C}$ 16-Pin. 276-1998. Reg. 2 lor $\$ 1.19 \quad$ Sale $2 / 994$ 40-Pin. 276-1995. Reg $\$ 139$ Each Sale 99

OVER 5000 LOCATIONS IN NINE COUNTRIES
IN STOCK NOW AT OUR STORE NEAR YOU!

AUTO RANGING

- AUTO POLARITY
- AUTO ZERO
- 3 Large Digits (1/2")
- Rechargable

MEASUREMENT RANGES: Voltage (AC \& DC) 1 MV - 1000 V Current (AC \& DC) $10 \mu A-1 A$ RESISTANCE $1 \Omega-10 \mathrm{M} \Omega$ Basic D C Accuracy, better than $01 \% \pm 1$ Digit Power 4 AA batteries $/$ Recharg. able batteries optional)

NI-CAD BATTERIES: $\$ 6.00$ - AC CHARGER: $\$ 4.95$ • ENCLOSURE: $\$ 12.95$ - TEST LEADS: $\$ 1.95$ - SHUNT KIT FOR 3 CURRENT RANGES: $\$ 4.75$ • SOCKETS $\$ 2.50$

ORDERING INFORMATION

SHIPPING AND HANDLING - $\$ 3.00+504$ Insurance
California residents add 6% sales tax

ELECTRONICS WAREHOUSE Inc.

1603 AVIATION BLVD. Dept. R
REDONDO BEACH, CA. 90278
TEL. (213) 376-8005
WRITE FOR FREE CATALOG
You are invited to visit our store at the above address

FLUORESCENT READOUT
 ASSEMBLY Consists of Twelve 5/16 DG1001 Displays. 27 Switch ing Transistors and associated Diodes. Resistors. Capacitors on a 9×5 " Circuit Board Shipping Wt: 2
Ibs Order \$6.95 PRICES FOB - LIMA OHIO Allow for Shipping Charges On Credit Card Orders include your
interbank number and expiration date

SUPERSCREEN lenses $\$ 99$ to $\$ 199$. Send $\$ 1$ for plans and details. PROJECTAPIX, 300 West 53 Street, New York City, 10019
NEW 6060OMHZ PORTABLE COUNTER

WIRE-Hookup, wire-wrap, ribbon cable, connectors, etc. Stamp brings catalog. RAM ELECTRONICS, Box 336-R, Brookhaven, NY 11719

CIRCLE 56 ON FREE INFORMATION CARD

JAPANESE TRANSISTORS

POWER-TRANSISTORS HIGH-VOLT. TV. TYPE
BU204
BU205 BU206
$\begin{array}{lll}1300 V & 3.90 & \text { BU207 } \\ 1500 Y & 4.70 & \end{array}$ $\begin{array}{lll}1500 V & 4.70 & \text { BU208 } \\ \text { 1700V } & 5.90 & 2 \text { SC1170 }\end{array}$
$\begin{array}{lllll}1300 V & 5.40 & 2 S C 1172 B & 1100 V & 4.25 \\ 1500 \mathrm{~V} & 6.25 & 2 S C 1308 & 1100 \mathrm{~V} & 4.95\end{array}$ $\begin{array}{lllll}1500 V & 6.25 & 2 S C 1308 & 1100 V & 4.95 \\ 1100 \mathrm{~V} & 4.00 & 2 S C 1325 & 1100 \mathrm{~V} & 4.95\end{array}$ CIRCLE 480

ALL PARTS GUARANTEED

748-6172

Looking for \square af Products?

 AMATEUR RADIO SUPPLY SEATTLE
 6213 13th Ave. So., 98108
 (206) 767-3222

MAKE professional-quality PC boards with silk screen techniques. Complete step by step infor motion, $\$ 4.95$ Postpaid. TERRATRONIC RESEARCH, BOX 513J, Quincy, IL 62301

FREE catalog. Solar cells, NiCad's, kits, calculators, digital watch modules, ultrasonics, strobes, LED's, transistors, IC's, unique components. CHANEYS, Box 27038 , Denver, CO 80227

SAMS Photofacts 3-1546 80\% complete \& TSM series. Individual sets or whole lot or trade for AR, MHF series, test equipment. RICH ROMAN, 1180 Los Altos Ave., Los Altos, CA 94022

FREE KIT Catalog contains TEST 8 EXPERT MENTER'S
 EQUIP.

PRINTED circuits. Our chemistry and instruccons won't let you fail! Pint negative type photoresist with separate aerosol sprayer coats o 2400 square inches $\$ 15.25$. Board cleaning kit $\$ 1.80$. Quart developer $\$ 5.60$. Four 4 ounce packets dry etchant make pint each $\$ 5.56$ Ultraviolet exposure lamp $\$ 16.00$. Shipping prepaid. CIRCOLEX, Box 198, Marcy, NY 13403

CARBON film resistors- $1 / 4 \mathrm{~W}, 5 \%$ ($1-4 \mathrm{M} 7$ ohms) 3.5 e each. $50 /$ value $-\$ 0.85$. Postage, handling $\$ 1.00$. Send 25 c for catalog, sample, specificlions. COMPONENTS CENTER, Box 134R, New York, NY 10038

Not a Cheap Clock Kit \$17.45 Includes everything except case. 2.PC chip, transformer. all components and full instructions. Same clock kit with $.80^{\circ}$ displays.

Digital Temperature Meter Kit Indoor and outdoor. Automatically LED readouts Nothing like it available. Needs no additional parts for complete Null operation Will measure +2000 F air or liquid Very accurate. $+200^{\circ} \mathrm{F}$, air or liquid. very accurate.

8080A Microcomputer Kit 80804 CPU , Crystal Clock, $1 / 0$ Buffers RAM and PROM. DA-AD converter PROM Programmer. Memory expandable. Complete documentation incl. assembly instruct. programming etc. $\$ 195.00$

1977 IC Update Master
Manual Brand new Complete int grated circuit data selector from all manafacturers. 1264 page master ref. guide to The latest IC s including microprocessors and consumer circuits. 17.000 cross references for easier sourcing of hard to get parts. $\$ 30.00$ with free update service thru 1977. Domestic postage add $\$ 2.00$. Foreign $\$ 6.00$.

60 Hz Crystal Time Base
Kit $\$ 4.75$ Converts digital clocks from AC line frequency to crystal time base. Outstanding accuracy. Kif includes: PC board. MM 5369, crystal, resistors.

VOLUME SPECIALS

SOA1.3 iso NS IX RAM
Portable Clock Timer Kit $\$ 19.95$

Stopwatch/Timer Kit $\$ 55.00$ 4 Digit. 7 function programmable stop. watch timer. Two PC boards. components and case. Crystal controlled. this kit is excellent for rally and events as well as navigational. photography and for applinance control.

COSMAC 'ELF'

RCA CMOS Microcomputer
RCA CMOS microco
Users Manual 57.50 Complete kit of parts to build the ELF* including CDP1802 and users manual as listed in August 76 Pod. Elect. minus power supply and board. $\quad \$ 92.00$

Frequency Counter Kit

Covers audio. ultrasonic and low amateur band 10 Hz to 2.5 MHz typ. Dual channe controlled clock. Can be prescaled for higher frequency. 6-50 digits. Full in structions. Less power supply. $\$ 40.00$

30 MHz Frequency Counter Kit Crystal time base. Covers audio. amateur and CB band. $6.5^{\prime \prime}$ digits. prescalable with PC board and full instructions. $\$ 55.00$ fully wired and tested $\quad 575.00$ Add $\$ 10.00$ for beautiful plexiglass case

Stopwatch Kit \$26.95
Full six digit battery operated. $2-5$ volts. 3.2768 MHz crystal accuracy. Times 10 Times stand 59 seconds, 99 1/100 hrs ali components minus case. Full instruct.

Auto Clock Kit \$15.95

DC clock with 4-.50" displays. Uses Na tonal MA 1012 module with alarm option Crystal time base PC boards and full in structions. Add $\$ 3.95$ for a beautiful dark gray case ready to install. This the best value available anywhere!

TERMS: $\mathbf{\$ 5 . 0 0}$ min. order U.S. Funds. Call residents add 6% tax. Bankmerleard and Master Charge accepted. shipping charges will be added

SCOPE Tektronix's 315D \& guaranteed: DC to 10 MHz @ 10 mV VS. PETE CAMPIONE, 32 Jones Street, New York City, NY 10014

SUPER summer savings: All new free catalog chocked full of linear, digital IC's, transistors, kits, LED's, transformers, etc-ICL8038- $\$ 4.50$ $555-39 \mathrm{C}$ DIAMONDBACK, Box 194R, Spring Valley, IL 61362

AMAZING ELECTRONIC PROJECTS and PRODUCTS: Lasers Super Powered, Burning, Cutting, Rifle, Pis til. Pocket. See in Dark-Shotgun Direction Mike - Unscramblers-Giant Tesla - StunwandTV Disrupter-Energy Producing, Surveillance, De taction, Electrifying, Ultrasonic, CB, Auto and Mech. Devices, Hundreds More-All New Plus INFO UNLTD PARTS SERVICE, Catalog \$1. Informa ion Unlimited, Box 626, Lord Jeffery Court. Amherst, N.H. 03031.

C2708, BK EPROM $\$ 35.00$; C1702A, 2K EPROM \$7.50; 2102, $1 \mathrm{~K}, 500 \mathrm{~ns} 8 / \$ 10.00 ; 21 \mathrm{LO2} .1 \mathrm{~K}$, lOW power $8 / \$ 14.95$; MM5330, $4^{1} / 2$ digit DVM chip \$9.75; MDA-952-1, 6A bridge \$1.95; NSL4944. AC/DC universal LED $\$.95$; DIP switches: 6 position $\$ 1.95,4$ position $\$ 1.75$; 5 th anniversary special: complete TVT-III system. See May ad, catalog. ELECTRONIC DISCOUNT SALES, 138 N. 81 st Street, Mesa, AZ 85207

TELEPHONE recording equipment and other "unusual" electronic devices. Free information GARRISON, Box 128, Kew Gardens, NY 11415

B\&K test equipment. Free catalog. Free shipping. Dinosaur discounts. SPACETRON-C, 948 Prospect, Eimhurst, IL 60126

Mini Sw. DPDT 6A Silver cont. \qquad
1N4001 Diodes.
1.25

12 V 1 Walt Zeners
15/1.00
21/4 inch 8 ohm Speakers \qquad .1 .25
$\$ 5.00$ Min. order. Add .50 shipping ELECTRONIC SALES, 29233 51st Ave. So. Auburn, Wash. 98002

MICROCOMPUTER printout. Attachment convents any electric typewriter. Free brochure STOUT MICROCOMPUTER, Box 1573, FIemont. CA 94538

RESIN soldering flux, excellent solderability for oxidized, tarnished PC boards and components Non-conductive, non-corrosive. 2 oz . $\$ 3.00 \mathrm{ppd}$ TUCKER, 1550 Echidna Place, Ventura, CA 93003

RECONDITIONED test equipment. $\$ 0.50$ for catalog. WALTER'S TEST EQUIPMENT, 2697 Nickel, San Pablo, CA 94806

HP-25/SR-56 calculator report: Programming functions compared. $\$ 2.75$ (Ohio \$2.87) WASHINGTON PARK BOOKS, 1207 Elm Street Cincinnati, OH 45210

S.D. SALES CO.

JUMBO LED CAR CLOCK

Alarm Option - \$1.50 AC XFMR - $\$ 1.50$

THE HOTTEST SELLING KIT WE EVER PRODUCED! You requested it! Our first D.C. operated clock kit. Professionally engineered from scratch. Not a makeshift kluge as sold by others. Features:
A. Bowmar Jumbo -.5 inch LED array.
B. MOSTEK - 50250 - Super Clock Chip.
C. On board precision crystal time base.
D. 12 or 24 Hr. Real Time Format.
E. Perfect for cars, boats, vans, etc.
F. P.C. Board and all parts (less case) included.

THIS MONTH'S SPECIALS	
AMD - 8080A	\$14.95
Z.80 CPU	49.95
82S129 1K PROM	2.50
60 HZ CRYSTAL TIME BASE	
S.D. SALES EXCLUSIVE!	
\$5.95 ea.	0
KIT FEATURES	

KIT FEATURES

A. 60 HZ output with accuracy comparable to a digital watch.
B. Directly interfaces with all MOS clock chips.
C. Super low power consumption (1.5 MA typ.) D. Uses latest MOS 17 stage divider IC.
E. Eliminates forever the problem of AC line glitches.
F. Perfect for cars, boats, campers, or even for portable clocks at ham field days.
G. Small size; can be used in existing enclosures. Kit includes Crystal, Driver IC, PC board, plus all necessary parts and specs.

At last count - over $\mathbf{2 0 , 0 0 0}$ sold!

1000 MFD Filier Caps Rated 35 WVDC Upright style with PC leads. Most popular value for hobby ists. Compare at up to \$1.19 ea. from franchise type electronic parts stores. S.D. Special $4 / \$ 1$.

P.C. Board - 3.00

AC XFMR -1.50
Do not confuse with Non-Alarm kits sold by our competition!

Eliminate the hassle -
avoid the 5314!

Slide Switch Assortment	
Our best seller.	
Includes mini-	
ature and stan.	RESISTOR
dard sizes; sin-	ASSORTMENT
gie and multi-	$1 / 4 W$ 5\% \& 10\%
position units.	PC leads. A good
All new, first	mix of values.
name brand. Try	200/\$2.
one package and	
you'll morel reorder special	
$\begin{array}{rr}\text { more! } \\ & \begin{array}{r}\text { Special } \\ 12 / \$ 1.00\end{array}\end{array}$	citios

1702A 2K EPROM

We tell it like it is. We could have said these were factory new, but here is the straight scoop. We bought a load of new computer gear that contained a quantity of 1702 A's in sockets. We carefully removed the parts, verified their quality, and are offering them on one heck of a deal. First come first served. Satisfaction guaranteed! U.V. Eraseable. NEW PRICE! \$2.95 ea. (2.3 US access time)

UP YOUR COMPUTER!
 21L02-1 1K LOW POWER 500 NS STATIC RAM Time is of the essence!

 And so is power. Not only are our RAM's faster than a speeding bullet but they are now very low power We are pleased to offer prime new 21L02-1 low power and super fast RAM's. Allows you to STRETCH your power supply farther and at the same time keep the wait light off. 8 for \$12.95

5 WATT AUDIO AMPLIFIER kit including a drilled circult board. 706 Fairchild IC with heat sink, and all par to make a complete high gain (46db) power source of $6-16 \mathrm{VDC}$ and drives a 4 ohm spkr. $\$ 8.95$ each. ---- 2 (stereo) for $\$ 16.50$ does not include a case or power supply.
eneral purpose operational amplifier National LH002l. Ideal for servo drive or ower supply etc. use. Data included

Build your own electronic organ!

Enjoy the fascinating hobby of custom building your own electronic concert organ Superior components with clearly pictured step-by-step instructions make assembly easy. World-famous Wersi integrated circuit boards control timbre, pitch and brilliance. Choose from five different models. Send \$2.00 for 104 page colorful descriptive catalog. Wersi Electronics, Inc., Dept. R, Box 5318, Lancaster, Pa. 17601

IRCLE 33 ON FREE INFORMATION CARD

CAR CLOCK

4-Digit $1 / 2$ " digital clock kit for 12 VDC operation. Complete ki includes all components. P.C. Board and instructions. IN DASH MODEL $\$ 1699 \quad$ OUT OF DASH WITH BEZEL \qquad $\$ 19.99$

60HZ. TIMEBASE KIT \$4.99

JUMBO RED LED

$10 / \$ 1.00,200 / \$ 17.50$
14 or 16 PIN I.C. SOCKETS 10/\$1.59

4-DIGIT ALARM CLOCK

Kit includes xformer. P.C. BOARDS \& ALL COMPONENTS. I has huge $1 / z^{\prime \prime}$ red LE.D. displays. It also has a 24 hour alarm format with a 9-min. snooze

$$
\text { Only } 10.99 \quad \text { Case } 3.99
$$

6-DIGIT 12-24 Hr. CLOCK
Available in $1 / h^{\prime \prime}$ or $1 / z^{\prime \prime}$ red L.E.D. Displays. Kit includes all components, xiormer, and P.C. Boards

c DIGITS	$\$ 15.99$	$3 / n^{\prime \prime}$ DIGITS	$\$ 12.99$
CASE	4.99	CASE	3.99

ALARM CALENDAR CLOCK
It lights up the time for 8 seconds then gives the date in month and day of month. Has a 12 or 24 hour format. 24 hour alarm with 10 minute snooze, and is available in $1 / /^{\prime \prime}$ or $1 / 2$ " redL.E.D. displays. Kit includes all components. xtormer, and P.C. Boards

$$
\begin{array}{cccc}
\text { DIGITS } & \$ 25.99 & 1 / 0^{\prime \prime} \text { DIGITS } & \$ 21.99 \\
\text { CASE } & 4.99 & & \text { CASE }
\end{array}
$$

TERMS: Ohlo residents add $51 / 2 \%$ sales tax. Add 5% of total amount for P\&H but a minimum of $\$ 1.00$.

Send SASE for catalogue now!
JEFF 3015 Eaton Road, Cleveland, OH. 44122 (216) 991-9020

CIRCLE 29 ON FREE INFORMATION CARD

NEW TUNERS!

The entle stock of NEW tuners are too numerous to list.- Here are some of the popular ones. ALL are NEW and EXACT replacements. None are rebullt or rejects. They are from the TV manufacturers and are the EXACT same as you get from your distributor. If you don't see whar you need-send us your tuner or tuner number ONLY $\$ 24.95$ for any new tuner

VHF TUNERS

ADMIRAL : AIRLINE	$\begin{gathered} \text { GE } \\ \text { EP } 86 X_{4} \end{gathered}$
94 C 386	EP 86X 15
94C39 \%	EP 86×245
94.392	EP 86×249
94C393-1	
94C423-1	MOTOROLA
$94 \mathrm{C441}$	OPTT 390
94C463-2	OPT T 399YA
94C476-1	LOPTT 399YA
94C492-1	
94C492-4	PHILCO
94C493-3	TT 162
94C503-1	TT 191
94C507-2	TT 192
	TT 193
MAGNAVOX	
340176-2	SYLVANIA
340184-3	54-17236-4
340 185-1	54-23858
340187-1	54-27582-3
340188-3	54-27887-3
340189 - 1	54-29331-3
$340196 \cdot 1$	54-29331-8
340200-2	54-35055-2
340207 - 1	
$340208 \cdot 1$	SANYO
340277-1	VAK8-51

We have Tuner Substitution Unlts that are wired, tested and ready to use INCLUDING BATTERIES but without knobs or case ONLY $\$ 13.95$... You supply the knobs (from old TV) and mount in card file box OR use it exactly as it is . . . It works great
THIS IS NOT A GIMMIC . . . Try it for 10 days and if not COMPLETELY satisfied, return for full refund. Enclose check with order and we pay postage. We shlp the same day order is received.
TEXAS TUNER SERVICE 4210 N.E. 28 TH STREET FORT WORTH, TEXAS 76117 PHONE (817) 834-8201

CIRCLE 74 ON FREE INFORMATION CARD

COMPLETE ALARM CLOCK - A Digits $05^{\prime \prime}$ LED with brightiess control

- 12 Hour display with $A M / P M$ indication - 12 Hour display with AM/PM indication - Power fallure indication for power interrupt $\xrightarrow{1 e: 36}$ MODEL EC 400 (Not A Kit) Only $\$ 22.50^{\circ}$ \$17.50.a.
 ELECTRONIC SWITCH KIT CONDENSER TYPE Touch on Touch Off use 7473 I.C. and 12 V relay $\$ 5.50$ each $\$ 3850$ HATVAEs: \qquad
 TMMER RIT Controlled from 1.100 sec. tdeal to be used as time delay unit for burgłar
alarm, photo service, and other purposes. Max. loading 110 V , 2 AMP. Supply voltage 12.18V D.C.
 Clock Kit - Auto counter display on the scteen rimen \$11.50 each . Ideal for use as an alarm unit High ourput up to 5 watt at 12 V DC supply. iype speaker. With horn $\$ 14.00$ EACH
cOLOR ORGAN KIT
 Operates in low volt. control up to 100 low volrage light bulbs. Light bulbs change colors to the tones of musspeaker output of the amplifier.
\$10.50 PER KIT

LIGMT CONTROL SWITCH KIT Can control TV, radio, lights or can be used Kit to form a burg. lar alarm system.
$\$ 4.50$ EACH
POWER SUPPLY KIT 0.35 V D.C. REGULATED
 Uses UA723 and
ZN3055 Power TR out. put can be adiusted from $0.35 \mathrm{~V}, 2$ AMP. board and all electron. ic parts. $\$ 9.50$ each
SOUND CONTROL SWITCH KIT
 Now you can turn
your lights, radio, or
even $T V$ on with sound. Sensitivity can be adjusted. Operating It is a lot of fun to $\$ 5.50$ each
$0.7^{\prime \prime}$ Led Clock 4 Dlgtes Alapm Gleck
module

LT701E, 60 Hz
12 hr . display.
$\mathrm{L} T>01 \mathrm{G}, 60 \mathrm{~Hz}$
24 hr . display.
Power Supply 12V AC Ideal for panel clock, desk
Kit Includes TI Alarm clock chis, LD8132 $0.5^{\prime \prime}$ Green readouts, PC board with all electronic parts. speake
specially designed case.
MODEL OC
ALARM SLOCK enly 319.30

5 W AUDIO AMP KIT
USE 2 LM380 with Volume Control
POWER SUPPLY 6 VDC enly $\$ 5.00$ ea.

 Unmi
 Standard Teletvpe Keyboards with gold
plated contact switches. All switches are in-
dependent and allow you to connect into any
form of output.

0

COMPUTER GRADE
CAPACITOR CAPACITOR
$5600 \mathrm{MFD}, 60 \mathrm{~V}, \$ 2.20$ EA. $15500 \mathrm{MFD}, 75 \mathrm{~V}, \$ 4.95 \mathrm{EA}$.
$39000 \mathrm{MFD}, 12 \mathrm{~V}, \$ 2.00 \mathrm{EA}$.

\section*{SPECIAL PRICING！
 PRIME－HIGH SPEED RAM

\title{

E－DEIT LED CICK HFIETIM界 KIT

E－DEIT LED CICK HFIETIM界 KIT DATE TIME－GIMEE FL PKME MMRE．．KII 7001 DATE TIME－GIMEE FL PKME MMRE．．KII 7001

}

21LO2－3 noo 5 LOW POWER－FACTORY FRESH 1.24 \＄1．95 ea $100-199$ \＄1．60ea 25－99 $\quad 1.75$ ea $200.499 \quad 1.45$ ea OVER 500 PCS． 1.39 ea

PRINTED CIRCUIT BOARDS for CT－7001 Kits sold separately with assembly info．PC Boards are drilled Fiberglass．solder plated and screened
with comoonent layout

FOR THE BUILDER 29－30－31 DAY CALENDAR．ALARM，SNOOZE AND AUX．TIMER CIRCUITS Will alternate time（ 8 seconds）and date（ 2 seconds）or may be wired for time or date dispiay only． with other functions on demand．Has built－in oscillator for battery back－ub．A loud 24 hour alarm with a repeatable 10 minute snooze alarm，alarm set \＆timer set indicators，includes 110 $V A C / 60 \mathrm{~Hz}$ power pack with cord and top quality components through

KIT－ 70018 WITH 6 － $5^{\prime \prime}$ DIGITS
7001C WITH 4． 6 DIGITS 8 ．3＂DIGITS FOR SECONDS $7001 \times$ WITH 6 －．＂DIGITS

12／24 HR．OPERATION BIG．4＂DIGITS ． $50 / 60 \mathrm{HZ}$ OPERATION．

KITINCLUDES

 －INSTRUCTIONS－OUALITY COMPONENTS
－ 50 or 60 Hz OPERATION
－ 12 or 24 HROPERATION 6．LED ReadounsIFND． 359 Red，co
13．Transistors
13．Trensisisers
3．Swriteses
 $\$ 1105$ OTY 1095 ary 995 OTY 12
sa OA MOAE

MODEL 12 VOLT AC or
W2001 DC POWERED
－JUMBO A＂RED LED＇s EENINO RED FILTEA LENS WTTM CHROME MIM SET TINE FFOM FMONT VIA MIDOEN SWITCHES－12／24－HI，TIME FCAMAT －Strlish chamcoal onar case of molded mioh temp．Mastic －BRIDGE PCWER INPUT CIACUITRY－TWO WIAE NO MOLARITY HODK－UP －OPTIONAL CONNECTION TO BLANK DIBPLAY IUee Whon Kor ON in CE ETC，

5．Resistors The only additional liems required are a 7.12 VAC transtormer，a circull
Sill 2．Molerplos board and a cabinel it desired
PRINTED CIRCUIT BOARD FOR KIT \＃850－4，SCREEN PRINTED
DRILLED AND SOLDER PLATED FIBERGLASS
MINI－BRITE RED
MOLDER（FOR COLONNCLOCK DISPLAY）．．．Pkg．of 5－\＄1．00
MOLDED PLUG TRANSFORMER 115／10 VAC（WITH CORD）．．．．．．．．．．．$\$ 2.50$

PLEXIGLAS

CABINET I

CABINETS

Great for Clocks or any LED Digital prolect Clear－Red Chassis serves as Bezelto ncrease contrast of digita

3＂H，6y＂W， $5 /{ }^{\prime \prime}$＂D Black，White or CABINET 11 Clear Cover

$2 Y_{2}^{\prime \prime} \mathrm{H}, 5^{\prime \prime} \mathrm{W}, 4^{\prime \prime} \mathrm{D} \quad \$ 6.50$ ез

aED O G GREV PLEXIGLAS FOR DIGITAL EEZELS

＇23 $3_{\text {ea }}^{50} 2 / 45$ ．

95^{c} еа． $4 / 33$

SEE THE WORKS Clock KIt Clear Plosiglas Siand	JUMBD DIGIT CLOCK
－6Big 4＂digits － 12 or 24 hr tlme － 3 set switches －Plug transtormer －all parts included	A complete Kit（less Cabinet featuring：＂six $5^{\prime \prime}$ digits．MM5314 IC 12／24 Hr time， $50 / 60 \mathrm{HZ}$ ．Plug Transformer，Line Cord，Swirches and all Paus．（Ideal Fit in Cabinet I $\begin{array}{llll}\text { Kit } & 53145 & 1 g^{95} & 2 / 133 .\end{array}$
Plexiglas is	
Pre－cut 8 drilled Kit 850－4 CP	JUMBO DIGIT \＄9．95ea CONVERSION KIT
Size ： $6^{\prime \prime} \mathrm{H}, 41 / 3$＂W，3＂D	Mul
$23_{\text {ea }}^{50} \text { 2/4G. clocx! }$	Kit JD WCC For common Cathode Kit JJ－1CA lor common Anode

FREQUENCY COUNTER KIT 8 LARGE ．4＂RED LED DIGITS

Kit \＃FC－50－ 8 IC＇s－XTAL TIME BASE truly＂State of the Ar＂counter using quality components throughout．
KIT INCLUDES：DETAILED INSTRUCTIONS，XTAL TOP QUALITY FIBERGLASS DOUBLE SIOED PC BOARD，IC＇S WITH SOCKETS AND ALL PARTS LESS POWER SUPPLY ANO CABINET

Fairchild Super Digit FND－359
焉 95 \＆2， $10 / \$ 8.50$ 100／\＄79．00

$$
\text { SET OF } 6 \text { FND-359 }
$$ WITH MULTIPLEX PC BOARD $\$ 6.95$

50 MHZ COUNTERKIT
5 VOLT REGULATED 1 AMP POWER SUPPLY KIT 350 MHZ PRESCALERKIT 650 MHZ PRESCALERKI CABINET（\＆MTG HARDWARE） ［CABINET WILL
\＄6995
MPS－02 $\quad \$ 9.95$ ＂PSL－350 23.95 MPSL－650 $\$ 29.95$ ＂CAB III $\$ 19.95$ MPS．02，AND A

AUTO BURGLAR ALARM KIT

INCHUCHG
STESTED
TEN

$x \rightarrow$

ESCALE	TRANSISTOAS	OP AMPS 3／11．00
$\begin{array}{ll}11 \mathrm{CSOOC} & 515.95 \\ 95 \mathrm{H} 90 & 9.95\end{array}$		
		30110.5
	$\begin{array}{lll}\text { 2N3704 } & 10.92 & 5 \$ 100\end{array}$	
vOLTAGE AEGULATOAS	2N4400 TO 92 $5 \$ 100$ 2 N 425 TO 92 $5 \$ 100$	709 D1P 709 TO
	2N4：25 IO 92 5 51 2N 2449 1092 5,51	741 DIP
AEGULATORS LM 309 H TO． 5 § 95		
LM309K 10．3 1.25	$\left\|\begin{array}{lll} 2 \text { N } 6077 \\ 2 N 5457 & \text { PUT } J \text { Fet } & 2 / 5100 \\ 2 / 5100 \end{array}\right\|$	747 T0 5
7805 TAB ，95		DISCRETE
7812 TAB 1.25	IN 4002 DIODES 1A 100 PIV 12／5100	
$\begin{array}{lll}7812 & 10.3 & 1.50 \\ 7815 & \text { T0．3 } & 125\end{array}$	$\begin{array}{ll}\text { IN } 40022 \\ \text { IN } 4005 & \text { 1A．} 100 \text { PIV } \\ \text { 1A．600 PIV } \\ \text { IV }\end{array}$	DISCRETE LED＇s
7815 10.3 1.50 0.3	IN 4007 IA． 1000 PIV $10 / 51$	JuMbored
78L 15 T0．5	RECTIFIER 2．5A， $1000 \mathrm{PIV} 4 / 5100$	
$7824 \begin{array}{lll}70.3 & 1.25\end{array}$	IN914 SLL．SIGNAL 20／5100	\bigcirc
723 DIP	IN4148 SIL SIGNAL 20／5100	$\begin{aligned} & 10 \text { FOR } 5100 \\ & 00 \mathrm{FOR} 5950 \end{aligned}$
723 то．5	DYAC 28V．4／51．00	
PROM	555 TIMER LINEAA 2／5100	
	556 DUALTIMER565 PLL	PC TAIM
1702 EProm 88.95 5203 EProm 88.95		POTS
SPECIAL IC＇S	566 FUNCTIONGEN 567 TONE DECODER 175	
7207A INTEASLL		KK
	567 TONE DECODER TRANSISTOR SOCKET TO．5／18 GOLD PINS	
MC14553 MOT $\quad 995$		SPECTAOL LOK 10TJAM
MC14410 MOT $\quad \$ 12.50$	TO．5／18 GOLD PINS $5 \$ 100$	
		4／8300 ${ }^{956}$
	$E 7=S 5$	
		CMOS
	COMMON CATHODE	4001 \＄ 20
		4002 4010 .20
	COLORMT OECPYPREA	
		4011 ． 20
		4013.40
		4016 ． 40
	COMMON ANODE	4023 ． 20
		4027.40
MOLEX PINS		4028.85
		403
\＄${ }^{95}$		$4042 \quad 75$
		4044.60
Reel at 1000		$4046 \quad 1.75$
		4049
100 lor \＄1．25		4050

VARIABLE REGULATEO 1 AMP
POWER SUPPLY KIT VARIABLE FROM 40 IN
Short CIRCuIt PRoof 723 IC REGULATOR 2N305S PASS TRANSISTOR －CUARENT LIMITING AT I Am KIT H ALR－1 $\$ 9.95$ \＃ALR－1WT WIRED \＆ TESTED

ORILLED A SOLDER PLATED FIBERGLASS PC BOARD AND FORMER）（Less TRANS | FORMER）KIT \＃PS－0 $\$ 8.95$ |
| :--- |
| TRANSFORMER 2SVCT w 111 | provide 200 MA 24VCT wII

AMAZING \& HARD-TO-FIND. SCIENCE BUYS ALTERNATE ENERGY SPACE ACE HOBBIES

SUPER POWER FOR ANY AM RADIO
 Antenna assist has pulted in
stations up to 1000 miles oft! No wires, clips, grounding. Solld state - no elec. batts., fubes. No. 72.095EH \$19.95 Ppd ULTRA SELECT-A-TENNA (OVER 1000. MILES) No. 72,147EH $\$ 24.95$ SUBJ. TO LOCAL COND.

SAVE 50% ! 8×20 MONOCULAR

Top quality Spy Scope, a $\$ 30$ value, now $\$ 14.95$! Special purchase saves you $50 \% \quad 100 \%$ coated optics; 393 ft . lield of vew. hyse, glove box
pocket, purse, No.1568EH .. $\$ 14.95$ Ppd.
SEE MUSIC IN PULSATING COLOR

modula modulate 3 independ. strings of youred music. Audio light show flashes. responds to thythm

No. 42,309EH (ASSEMBLED). \qquad . 18.50 Ppd No. 42.336EH (UNASSEMBLED)........ $\$ 15.95$ Ppd. NASA-CHOSEN FOR APOLLO/SOYUZ

The Astronauts used this super 20×60 binocular (modifted) to view Earth! Big 60 mm objective lenses; $173-4 t$ field of view at 9.0. Fully coated optics, more No. 1556EH $91 / 4 \times 81 / 2 ;$; 47.5 oz) $\$ 99.95$ Ppd 110 V FUEL MISER RECLAIMS HEAT

Save your 40% wasted heat to warm a basement. garage, rec
rm.
at no extra cosil Direct it im. at no extra cos!! Direct it your way instead of up the
chimney. Fan-forced clean hot chimney. Fan-forced clean hot No. 19, 194EH (5 DIA.) Shpg. 17 lb ... $\$ 121.50$ FOB No. 19,195EH (6" DIA.)

BUILD ALPHA MONITOR: $\$ 37.50$!

All you need w/ your basic elec tronics knowledge (excl. 9y tr batt.) for Port. bioleedbaci centration. 5 microvalt sensitiy ity: self-cont.
No. $61,069 \mathrm{EH}$ (KIT) $\$ 37.50 \mathrm{Ppd}$ No. 71,809EH (FULLY ASSEMBLED). $\$ 59.95 \mathrm{Ppd}$.

PRO ELECTRONIC SOUND CATCHER

No. 1649 EH (REQ. 2 9V BATT.).......... $\$ 299.00$ Ppd

15% EFFICIENT SOLAR CELL!

Largest, most powerful ever for panels where, to build sola unit area is req. Output up to 12w per sq. 1t. produces.8A@ 45 v: 38 w output. $2^{\prime \prime} \times 2^{\prime \prime}$ so 202.

No. 42,514Eh. $\$ 39.95$ Ppd

CAN'T SLEEP, RELAX? TRY THIS!

Electronic sound conditioner simulates 4 kinds of soothing
sounds of ocean surt $\&$ rain sounds of ocean surf 8 rain: white sound helps mask unproved analgesic effects! No. 71,997E $\$ 89.95$ Pp

QUALITY DETECTOR UNDER \$40

Our fulty transistorized BFO unit
can locate a quarter at 18 Powerful 6 trans -oscillator. amplifier circuit. Comp. to others priced 50% more! Aluminum, just 2 lo
o. 80,222EH $\$ 39.95$ Ppd

EDMUND SCIENTIFIC CO.
300 Edscorp Bldg.. Barrington, N.J. 08007 • (609) 547-3488 America's Greatest Science - Optics

THERE IS NO OTHER TELESCOPE LIKE IT!

THE NEW EDMUND 41⁄", $1 / 4$ NEWTONIAN WIDE FIELD REFLECTOR TELESCOPE

Clear, bright, spectacular wide angle views of stars, moon, comets . . easy to use . . portable!

IN SECONDS YOU RE SCANNING THE ASTOUNDING UNIVERSE, able to see and study the breath-taking cosmos as perhaps you never have belore awesome vasiness, unbelievable orderiness. stark silent beauly All the lascinating heavenly mysieries are yours to enier and explore. his new space-age enjoyment of the neavens and outdoors No complicated set up' Just nsert the eyepiece. locus. and lits big 3 h/z hield of view gives you more stars in caple vitw than any ot her type of telescope Bright. crisp. finely resolved images ver over your shoulder, in your lap. On a thipod. Or fust rotate the sphetical be on its own mount for use on a table, car hood Take it anywhere (oply itical base op quality optical system $41 / \mathrm{m}^{-}$. $1 / 4$ parabolic primary mirror (1/9 wave. IT F.L.) prealigned ha wave diagonal on a coated optical wind ow seals oplics frommoisture Barlow) Fast focusing (25 to infinity). Bright Scharlanian red (doesnit impairnight anideal second scing must There is no other tele scope like in

NO. 2001EH
s149995
FOR GREATER RELAXATION, CONCENTRATION, listen to your Alpha and Theta brainwaves!

Do it with an amazing biofeedback monitor This ultra-sensitive sensor detects brain sig nals, lets you monitor (hear and see!) your Alpha and Theta brainwaves. Great aid to re laxation, concentration. This portable $(8 \times 3$ $\times 4^{\prime \prime}$) lightweight (24 02.) metal unit has a unique electrode headband to slip on or off in seconds without messy creams or solutions Hooked to amplifier, it filters brainwaves, and signals an audible beep for each Alpha or Theta wave passed. You get both audio and visual (L.E.D.) feedback with this reliable, com pletely safe unit. It operates on two $9 v$ tran sistor batteries, offers features comparable to many costlier models. A comprehensive in

Do-11-Yourself KIt \#61069EH Low Cost 'Starter' UnIt \#71809EH
$\$ 37.50$ ppd $\$ 59.95$ ppd struction booklet is inclujed. $\$ 9995$
No. 1689 EH JUSt

LOW COST, HIGH QUALITY INFRA-RED EYE s329.95

A must for Infra-red crime detection surveil lance, security system alignment, I.R. detection, laser checking, night-time wild life sludy-any work requiring I.R detection and conversion to the visible spectrum. Self-
 contained scope ($11 \times 141 / 4 \times 3^{\prime \prime}$) includes I.R light source (for up to 90 ' sight at night!), 6032 I.R. converter tube, $\uparrow / 3.5$ telephoto lens, adjustable triplet eyepiece, an adapter for use with your car's cigarette lighter-more! Bright 1.6X image (Binocular style gives superbright 2.5X). Focuses from 10' to infinity, runs on 6 or 12 v DC Not for sale to Cal . residents other than authorized by U.S. Armed Forces, law enforcement agencies or solely for scientific research and education purposes.

STANDARD STYLE, STOCK NO. 1683EK BINOCULAR STYLE, STOCK NO. 1685EH

ONLY S299.95 Ppd JUST \$329.95 Ppd

COMPLETE AND MAIL COUPON NOW

EDMUND SCIENTIFIC CO. 300 Edscorp BIdg., Barrington, N. I. 08007

164 PG. CATALOG "Eh
Charge my \square American Exp
BanhAmericard Master Chg
Interbank No. \qquad
Card No.
Expiration Date
30-DAY MONEY-BACK CUAR-
ANTEE. You must be satis fied or relurn any purchase in 30 days for full refund
 Enclosed is __check _M.O. in amount of

Signature

City, State, Zip

"...The Sansu" TU-9¢00 qualifies as a

 a'Super' FM tuners are usually priced from$\$ 1000$ up. Sansui's new model TU-9900 tuner, at (under) 5450,'matches their performance..., at least in the most important respects"

Popular Electronics, Jonuary 1977

"... The TU-9000 is highlv selective In the wide-band mace, the IFF sensitivith was... $1.7 \mu \mathrm{~V}$ in mono incisative of very high penornanceS/N at 65dEf $(1000 \mu \mathrm{~V})$ input vas one of the best we have measured The dis ortion at 6533° was clso lower than we have ever measured on an FM tuner.... Mic-range separation was not only the greatest we nave ever m三asured, but for exceaced the gu aranteed rating of our Sound Tecr nology 1000A FN1 ge-erator Overall, we would consider the TU- 3900 to e rark with the other 'state of the art' RM tuners ..." Stereo Review
"The Model TU-QS00 ... s an Ideal mate for the hichest quality cmplifiers cnd specker systems Image rejection was Lrmeasurctle exceading the 100dE renge of sur "est equipmert..... Steres charnel separation was almost
as unbelievable as the distorticn figures, exceeding 60 dB from 60 to 600 Hz Clearly, the Sansul Model TU-9900 tuner is a ver; superior performer . . [and] any untoward sounds heare via this tuner orig nate from the FM stailisn It's a top value unit." Popular Eleztrozics

Sansui offers a complete line of hizest quality amplifiers and matched tuners the AU:TU setes. Visit your nearest franchised Sansul dealer today for a fop value - in the price salegory right for you.

- Aprozimate national y actve tised value. The actual retail price will be set by the individual dyaler at hs option.
A whole new world of beautifulmusic.

Sanzii

SANSUU ELECTRONICS CORP.

Woonside New "crk 11377 . Gardenc, Calfornia 90247
SANSUI ELECTRICEO LTD., Tokyo Jaoan
SANSIII AUDIO EUROPE S.A., frtw =ip. Be -jum - In Canaca: Electronic Distributors

The 40-channel Cobra 29XLR. From the sleek brushed chrome face to the matte ${ }_{2}$. black housing, it's a beauty. But its beauty is more than skin deep. Because inside, this CB has the guts to pack a powerful punch.

The illuminated 3 -in-1 meter tells you exactly how much power you're pushing out. And pulling in. It also measures the system's efficiency with an SWR check. In short, this Cobra's meter lets you keep an eye on your ears.

The Digital Channel Selector shows you the channel you're on in large LED numerals that can be read clearly in any light. There's also switchable noise blanking to reject short-pulse noise other systems can't block. The built-in power of DynaMike Plus. Automatic noise limiting
and Delta Tuning for clearer reception.
And the added protection of Cobra's nationwide network of Authorized Service Centers with factory-trained technicians to help you with installation, service and advice.

The Cobra 29XLR. It has 40 channels. And it has what it takes to improve communications by punching through loud and clear on every one of them. That's the beauty of it Ob a
Punches through loud and clear.
Cobra Communications Products DYNASCAN CORPORATON
6460 W. Cortland St., Chicago, Ilinois 60635 Write tor coior brochure
EXPORTERS: Empire - Plainvew. N. Y • CANADA: Atlas Electronícs - Toronto

PUNCH AND BEAUTY

[^0]: CB'ers-Be a "Ham"-We'll teach you! Life membership: \$4.00-AMERICAN RADIO COUNCIL; Box =1171-F; Garland, TX 75041

 HIGHLY effective degree program in electronics engineering. Advance rapidly! Our 31st year Free literature. COOK'S INSTITUTE, Box 20345. Jackson, MS 39209

