
 tuhe" to communications, science, industry, entertainment, and transportation.

This "magic lamp" makes Aladdin's look /azy

You will remember the fabulous lamp-and how it served its master, Aladdin. Serving you, today, is a real "magic lamp". . . the electron tube.
You are familiar with these tubes in your radio, Victrola radio-phonograph or television set ... but that is only a small part of the work they do. Using radio tubes, RCA Laboratories have helped to develop many new servants for man.
A partial list includes: all-electronic television, FM radio, portable radios,
the electron microseope, radio-heat, radar, Shoram, Teleran, and comutess special "tools" for science, communieations and commerce.

The electron microscope, helping in the fight against disease, magnifies bacteria more than 100,000 diameters, radar sees through fog and darkness, all-electronic television shows events taking place at a distance, radio-heat "glues" wood or plastics, Shoran locates points on the earth's surface with unbelievable accuracy, Teleran adds to the safety of air travel.

Constant advances in radio-electronies are a major objective at RCA Laboratories. Fully developed, these progressive developments are part of the instruments bearing the name RCA , or RCA Victor.

When in Radio City, New York, be sure to see the radio, television and electronic wonders on display at RCA Exhibition Hall, 36 West 49 h Street. Admission is aluays frec. Radio Corporation of America, RCA Building, Radio City, New York City 20, N. Y.

I BROKE INTO RADIO

 BY PRACTICING IN SPARE TIME WITH THE BIG KITS FROM N.R.I.

Early in the course you build this Tester with parts N.R.I, sends. It soon helps you fix nelghborhood Radios and earn EXTRA money in

N.R.I. sends you Soldering Equipment and Radio parts; shows you how to do Radio soldering, how to mount and conpect Radio parts; ar experience.

You get party to build this Vacuum Tube Power Pack; nake changes which give you experience with parts of many
spare time

Building this A.M. Signal Generator gives you more valuable experience. It provides amplitudemodulated signals for many tests and experiments

Our 34th Year of Training Men for Success in Radio

LEARN RADIO by Practicing
 Future for Trained Men Is Brit In Radio, Television, Electronics in Radio, Television, Electably easier to get started in Rado nonics erer botore beauso tho Rado Hetepir Bust ness is boomIng. Tral ned Radio Technlclans aso find protitabio copor- Radio Manufacturling, Public Address work. Think send tor treo books norit
 \section*{My training includes TELEVISION - ELECTRONICS •FM}
 Good for Both-FREF MONEY manuals. You LEARN Radio principles from my easy-to-grasp, illustrated lessons-
 Do you want a good-pay job in Radio -or your own money-making Radio Shop? Mail Coupon for a FREE Sample Lesson and my FREE 64-page book, "How to Be a Success in RADIO-Television, Electronics." Sce how N.R.I. gives you practical Radio experience at home-building, testing, repairing Radios with BIG KITS OF PARTS I send!
 Many Beginners Soon Make Good Extra Money In Spare TImo While Learning The day you enroll I start sending EXTRA ,

 USE your knowledge to make EXTRA money fixing neighbors' Radios in spare time while still learning! From here it's a short step to your own full-time Radio Shop or a good Radio job!
VETERANS

You can get this training right in your own home under G. I. Bill. Mail coupon for full details.
 - Matoral Radio Instltute, Washington 9. D.

Mall me Frree, without obligation, Sample Lesson and
64-page book about how to wis success in Radlo-Telerislon. Electronicg.
(No salesman will call. Pleaso writo Dlajnly.)
Name
Addres
${ }^{-}$clty
5

You get parts to build Radio Circuits: then test them: see how they work, hearn how to puild special circults, how to locate and repair

You build this Superheterodyne Rdceiver circuit. You conduct FM (Frequency Modulation) exwin success in Radio.

in Spare Time

Find Out What N.R.I. Can Do For You
Madl Counon for samule Losson and tny 64-page book Rend the detalls about my Course. Read letters from men 1 trained, telling what they are dotus, coarning. See hems quickly, easily you can get started. No obillaztion! Jum MAIL COUPON NOW in an envelote or paste it an penny postal. J, E. SMITH. President. Deot. 8EX National Radlo Institute, Pioneer Home Study Radio

War Surplus Bargains Sold As Used Unless Otherwise Specified!

(HRU) DC POWER SUPPLY

24.28 V . at
70
2000 m
p

which can be used to operate 24-28 V. equipment, start airplane en charge batteries, as a welding machine, lighting system, or for
amateur radio station. $2 \mathrm{i} / 2^{\prime \prime}, 17 / 2^{\prime \prime}$ amateur radio station.
$\times 24 /^{\circ}$. Wgt., 115 lbs . 57250 Includes 20 ft , plug-in cable.

INTERPHONE AMPLIFIER

special price $\$ 195$

NEW WILLARD RECHARGEABLE STORAGE BATTERY

New 6 Volt bat-
tery in spillproof clear plastic case, housed in metal case for easy mounting. Applicable for a wide range battery power is battery power is needed. Shipped dry. Uses stand electrolyte available everywhere.
\qquad $\$ 4.00$
th lots of ten, each
Without metal case, each.
$\$ 3.35$
$\$ 3.00$
In lots of ten, each.
$\$ 2.85$

OXYGEN TANKS
These oxygen tanks, removed from
surplus aireraft. have a capacity
of 500 ibs. pressure rype op
with complete requlator assembly. Sle of tank $22^{\text {equ }} \times 5^{\prime \prime}$. Wt. 7 lbs.

TERMS: CASH WITH OROER

AMERICAN SURPLUS PRODUCTS CO.

537 N. CAPITOL AVE. INDIANAPOLIS, IND.

BRAND NEW SCR-625 MINE DETECTORS
ATTENTION, PROSPFCTORS, MINEISS, OIL COMIANIES, PLUMJSERS, ETC.
Used by the Army to detect buried metallic mines. Its private use suggests the location of underground or underwater pipes, cables and ore-bearing, rock, the location of metallic fragments in scrap materials, in plants for carrying of metdllic objects. New, complete in original overseas packing container. Originally sold by War Assets for $\$ 166.00$. The U.S. Forestry Service has recommended procedure for using the SCR-625 Mine Detector to find concealed metal in tree logs and other timber
products.

$$
{ }^{5} 799^{50}
$$

SCR-274N COMMAND SET
SCR-27aN Transmitter and Recetver Assembly consists of 13 pieces which are: 4 dynamotors, + modulator, \mid remote control box. 2 trans. mitters. 3 receivers and one antenna relay unit and it has its own individuat dynamotor. Each recelver employs 12 V . tubes. Each trans. mitter contains four 12 V . tubes and has a variable frequency and erystal callbrated mas. ter oselllator, driving two 1625 final amulifier tubes. 55-watt output. with built-in silver plated variable inductance antenna matching plated variable inductance antenna matching
device. Oscillator and final staqe have simul. device. Oscillator and final staqe have simmas brated in MC. Transmitters have slugged and brated in MC. ransmitters have slugged and capacity tuning, built-in high voltage and an-
tenna switches. Modulator furnishes plate tenna switches. Modulator furnishes plate supply for transmitters and is equiplued with a dynamotor for hiah voltage. Also supblied is one antenna relay with bullt-in antenna meter. Transmitters make ideal VFO driver unit.
Easily converted to $1+0 \quad$ V. 60 eycte operation. Wt..approximately 100 bbs. $\$ 24.75$ PRICE
\$24.75

R-5/ARN-7 RECEIVER

Three bands 200 to 1750 KC . Complete with 17 tubes required. This set is ideal for conversion to home broadcast Re ceiver addition to ham shack, etc. Reported sold for many times the price when brand new. A Receiver that would be hard to pick up at $\$ 1095$
this price. ONLY
Control Head available $\$ \mathbf{2 . 5 0}$ ea.
PRIGES F.O.B, INDIANAPOLIS

RADIO ALTIMETER APN/1 A complete 460 me. radio receiver and transmitter Which can converterl for ham or commertial use. T-VRISO, 2.955, 2-9004. Other components such as relays,
iormers.
make this ats. buy on which you canden $\$ \bigcirc 05$ make this a buy on which you can
not go wrong. Complete as shown in alumbume case $18^{\circ} \times 7^{\circ} \times 7^{\circ} \%$.

NAVY CRV-46151 AIRCRAFT RADIO RECEIVER
 six-tube super.
heterodyne with mechanieal band change or remote operated electrical band thange. Remote band change Ily adaptable to mobile ham use. Powered from seff-contained 24 . and remote controls. No tables or olugs

Special Bargains•

BRAND NEW NAVY SURPLUS HOSPITAL TENTS
New fire resistant, heavy canvas, $16^{\prime \prime}$ wide, 50^{\prime} long, 12^{\prime} apex, 4^{\prime} side walls. Complete except poles.

$\$ 15000$

ANTENNA RELAY UNITS
Switching Relay-Current Indicator BC-$442-\mathrm{A}$. Consists of 50 mmfd racuum condenser, 19.5 millivolt movement, current transformer and thermo couple (use with any rig).
\$195

MODULATOR UNITS OUT OF SCR-274-N COMMAND SETS Complete with 4 tubes and dynamotor. Good condition.

$\$ 295$

TERMS: CASH WITH OROER
american surplus products co.

537 N. CAPITOL AVE. INDIANAPOLIS, IND.

Get these 2 blG b00ks

If you are already employed in the great Railio industry. you know how great the demand is for trained. experlenced servicemen, oberators and fechnicians. Yis and how important it is to keep up with new develipments in F.M., Television and Electronics. The Kadlo Industry is alive with opportunity for the the-minute. You can be an FM and Telerision bpectalist, get into the lucrative Radlo Service Fleld .. own a business of your own. if you prefer. Nathonal Schools of las Angeles, for oret 40 years a practical resident fect its New 1948 Training Program. This program. adapted to National's Master Shop Method Ilome Study Course. can quallfy you In your share time as a Radio and Telerision out and mall the coupon below.

NOW! New Professional Multitester Included!
This versatlle testing instrument is portable and complete with test heads and batierles. Simple to able to tulcckryte locate trouble and a, yust the mot delicate circuits. Youl can lise the Mullitester at home or on service calls. It is designed to meas.
uro AC and DC volts. current. resistance and decibles. You whll be proud to own and use thls

SHOP METHOD HOME TRAINING fromaa Technical Trade Resident School

Mational Schools hrings its exclusive Shop Method of training right into your own home. You car learn the most up-to-date approved practical tralnting projects, systems and modern circuits frum the very beining in sour spare time. Here is sound and pracicail home training-the develupment of experienced nstructors working with students right in the shows; NEW Telerision and Bioadcast Studios and
Experimental Laboratories of NATIONAL SCiloois -one of the most adranced technical trade xperimental centoration centers in the world.
educal
Take Advantage Now of these Outstanding Features of National Schools' 1948 Training Program

1. National schools 1948 Course is mianned to prepare you for real succoss in Radio

 2. Experimental eerullinient supplled with the Course has been compliletely revised to 3. Night In your own home. heleriblon Iessonss have been expanded to give sou training in the latest 3. dereioumentz in this important field4. The 1948 Courso includers a lrofesstonal Multitester (shown above) for your 5. Katlonal sehoolter kives yous advanced tralning-the the the better poollions in Radio. Telerision. BOTH HOME STUDY
Electronta

EXPERIENCE IS THE BEST TEACHER. You learn by experience with the exclusive National Shop-Method of Home Training. With the apparatus sent you, you actually build various types of standard equipment-a powerful buperheterodyne re ceiver, a signal generator, an audio obcillator, low power Radio transmitter and other units. You make tests and conduct experiments that show you the why and how of Radio. You understand what makes the various elements of Electronics operate because you actually see them work for you. Not only do you gain rolendid experience by this method of learning, but you rece practice of your profession as a Rndio Technicinn Mail the coupon and learn what this means to you

FREE LESSON INCLUDED

Examine the exclustre National shop Mothod of Howne Training. shat you can learn Radlo. Eleetrmics. Televislon-quickly and oasily in your spire tme. Thls trlai is ABSOLUTELY FREF, Mall the couphon here for the books that tell you the camplete story of National schools Master Shop Method of Home Training in Radio, Thectronity is MODEERN SYSTFM OF TRAINING: it matethes the rapld progrees constanty being made In Hado. Telerision and Electronics. It is ThME TESTXED, too. National Setiools has been training men for more than andsird orno contury. It is the very same training that has helped your future to read the book "Your Future in Radio, Electronice and
Television"-FRER to you when you send in the coupon.

What Does it Take to Wake YOU Up?

T
The tremendous growth of radio-electronics is so rapid and spreading in so many directions that the demand for TECHNICALLY QUALIFIED radiomen has created a condition wherein there are many MORE GOOD JOBS than there are capable men to fill them.
B_{y} y the end of 1948 the total number of broadcasting stations (AM, FM and Television) will triple those since short'ly before the war. Airlines and airports are rapidly installing new radio communications and radar equipment. Major railroals have adopted radio communications, as have large trucking and taxical companies. Manufacturing is at an all-time high as millions of home receivers, broadcasting equipment, etc., are being produced. Television receivers are in mass proluction.

All of this means that OPPORTUNITY IS HERE . . . Now:

Every page in this magazine could be filled with similar astounding facts concerning career opportunities available to trained radiomen. The point is, what are you going to do about it? Just figure out for yourself how many good jobs are waiting to be filled. You can't say, "I don't need more training." EVERY radioman needs to increase his technical knowledge if he wants to keep ahead of the competition that is bound to come ... if he wants to go after-and GET-the better jobs that offer good money and personal security.

If you have a commonplace job. If you have the ambition to hold a position of greater responsibility with higher pay . . then a CREI spare time program for self-improvement will help you accomplish your ambition at this opportune time. It costs you nothing to read the interesting lacts. Write today for the outline of CREI conrses and the free booklet, "CREI Training for Your Better Job in Radio-Electronics."

If you have had professional or amateur radio experience and want to make more money, let us prove to you we have the training you need to qualify for a better radio job. To help us intelligently answer your inquiry - PLEASE STATE BRIEFLY YOUR BACKGROUND OF EXPERIENCE, EDUCATION AND PRESENT POSITION.

VETERANS: CREI TRAINING AVAILABLE UNDER THE "G. I." BILL.

CAPITOL.RADIO ENGINEERING INSTITUTE

 An Accredited Technical InstituteDept. RC-5, 16th and Park Road, N. W., Washington 10, D. C. Branch Offices: New York (7): 170 Broadwoy - San Francisco (2): 760 Market 5 .

MAIL COUPON FOR FREE BOOKLET

[^0]

THESE HOWARD W.SAMS BOOKS EARN MONEY FOR YOU EVERY SINGLE DAY

RADIO RECEIVER TUBE PLACEMENT GUIDE
The book that shows you exactly where to replace each tube in 5500 radio models. Covers receivers from 1938 to 1947. Each tube layout is illustrated by a clear. accurate diagram. Saves time-eliminates risky hit-and-miss methods. A handy pocket-sized 192 -page book, indexed for quick reference. You'll use it profitably every single day! Order
TODAY 1 ONLY. \qquad

1947 AUTOMATIC

RECORD CHANGER MANUAL

Nothing like it! Complete, accurate data on over 40 post-war models. Exclusive exploded views, photos from every angle. Gives full change cycle data, information on adjustments, service hints and kinks. complete parts lists. PLUS complete, accurate data on leading Wire. Ribbon, Tape and Paper Disc Recorders 400 pages; hard cover; opens flat. Don't be without this manual.
ONLY.
ual.

PHOTOFACT VOLUMES
hOTOFACT Folders are available In handy Deluxe volumes. Volume 1 covers all post-war models up to Jan. 1, 1947. Volume 2 covers models from Jan. 1 , 1947 to July 1, 1947. Volume 3 covers models from July 1, 1947 to Jan. 1, 1948. Order from your parts jobber today. Your price, each Volume in Deluxe Binder. .
$\$ 18.39$
howaro w. SAMS a co., inc.
INDIANAPOLIS 7, INDIANA
Export-Ad. Auriemo-89 B,ood St., New Yort 4, N. Y.-U.S. of Americe Conoda-A. C. Simmonds \& Sons, 301 King St: Esst-Yoronto, Ontario
Photofact Service
The Service thot poys for itseif over ond over again

DIAL CORD STRINGING GUIDE

The book that shows you the one right way to string a dial cord. Here for the first time, in one handy pocket-sized book, are all available dial cord diagrams covering over 2300 recelvers, 1938 through 1946. Makes dial cord restringing quick and simple. Pays for itself in time saved on a single dial cord repair job. A "must" for every service bench and tool kit. Order your coples now. ONLY.. \qquad $\$ 1.00$
SEND FOR the FREE Cumulative
Index to PHOTOFACT Folders covIndex to PHOTOFACT Folders covering all post-war receivers up to the present. You'll want this valuable reference guide.

1 Mail This Order Form

to HOWARD W. SAMS \& CO.. INC.
2924 E. Washington St., Indianapolis 7, Indiana. My (check) (money order) for $\$$. enclosed. \square Send FREE PHOTOFACT Cumulative Index. \square Send PHOTOFACT Sets Nos............................
\square Send PHOTOFACT Volume 3 (including Sets Nos. 21 through 30) in DeLuxe Binder. \square Send Volume 2 (Sets Nos. 11 through 20). \square Send Volume 1 (Sets Nos. 1 through 10), $\$ 18.39$ each.
[Send...................SAMS' TUBE PLACEMENT GUIDE (S) AT $\$ 1.25$ per copy.
D Send.............SAM'S 1947 AUTOMATIC REC. ORD CHANGER MANUAL (S) at \$4.95 each.
\square Send..............SAMS' DIAL, CORD STRINGING GUIDE(S) at \$1.00 per copy.
Name...
Address..

City.

7 NEW trared-Size LABORATORY
 10 5

MODEL $666-\mathrm{HH}$ VOLT-OHM-MILLIAMMETER
This new "hand-size" Triplett tester packs a labora tory of versatile service into a size that Model $1 / 2 \mathrm{lbs}$. molded case, Model hond and weighs only heamlined, molded case, wability. new baIn a handsome, stater scale reade low contact re $666-\mathrm{HH}$ has great an assatrance of through special nona-type jacks, stability evolved features. Delivers beto sistance, greater -plus other features. costlier testors. It's new type resistan many larger, congineers and tech. ter results than many amateurs, engineers and ideal for nicians.

RANGES

C. YOLTS: $0.10 \cdot 50-250-1000-5000$ at $1000 \mathrm{ohms} / \mathrm{Nolts}$.C. VOLTS: 0.10.50-250-1000-500 at-50 at 250 millivolts o.C. MILLIAMPER0000.

$$
\begin{aligned}
& \text { OHMS: 0-2000 Not } \\
& \text { U.5.A. Deader }
\end{aligned}
$$

- Material write Dept. L^{5}

Solve Your Service Problems Better-With TRIPLETT

Model 3432-Illuminated dial Test Oscillator.
U.S.A. Dealer Net. $\$ 63.25$

Model 3480-Combination Tube Tester Volt-Ohm-Mil-Ammeter.
U.S.A. Dealer Net. $\$ 89.75$

Model 625-NA - Wide Range Volt-Ohm.Mil-Ammeter.
U.S.A. Dealer Net. $\$ 45.00$

Model 3413-Tube Tester, with Speed Roll chart.
U.S.A. Dealer Net......... $\$ 60.75$
 RADIO EQUIPMENT INCLUDING A POWERFUL 6 TUBE SUPERHET RECEIVER AND 16 RANGE TEST METER!

Find out NOW how Sprayberry Training prepares you for a Radio Service Business of your own - or a good pay Radio job. Just mail the coupon for a FREE Sample Lesson and my big FREE book. "How To Make Money In Radio, Electronics, Television." It tells how I train you at home during spare hours by putting you to work building, testing. repairing Radio equipment. The Sprayberry Course teaches you Radio by working with 8 big kits of Kadio parts I'supply. You build a powerful 6 tube superhet Radio, a 16 -range test meter, perform over 175 interesting, PRACTICAL experiments. My lessons are easy and interesting - you need no previous experience in Radio. Istart you at the beginning... and give you valuable "bench" experience that sticks with you.

LEARN HOW TO BUILD-TEST-REPAIR RADIOS

You really learn Radio the PRAC. TICAL way ... when you build thls big. powerful 6-tube Superhet Radio fromparts il send you.

give you a fine, moving coil typemeter-with parts for a complete analyzer and Circult Continuity Tester. "Trouble-shoot" with pro. fessional eccuracy.

You don't have to buy expensive ready-made equipment. You get valuable experience building this Signal Generator and Multi-purpose Tester.

Soon after you start I send you my famous BUSINESS BUILDERS that help you earn EXTRA CASH getting and doing neighborhood Radio Service jobs while learning. You couldn't pick a better time to get into Radio. The Radio Repair Business is booming l Good Radio Service and Repair Shops are needed everywhere as millions of new sets are in use. 'Trained men are wanted for opportunities in Police. Aviation and Marine Radio. F.M. and Standard Broadcasting and Television. Manufacturers are looking for men who know Radio as production reaches new peaks. GET THE FACTS ABOUT YOUR FUTURE IN RADIO MAIL the COUPON TODAY for my FREE BOOKS

LOW COST

Sprayberry Training costs suprisingly little! Easy monthly payments, if desired. Everything you need is furnished - nothing else to buy. With Sprayberry Training to back you up. you will be able to step into your own profitable Radio Service Business or go on to a big opportunity in Radio, Electronies or Television. The equipment I send you is yours "for keeps" - to use in your business or job. I have trained thousands of successful Radio men- and I Training-it's your firgt step to guccess, security and a bigger income in a field where you'll really enjoy your work. Fill out and mail coupon TODAY. I'li rush my two FREE books to you by return mail. YETERANS: Approved for G. I. Training

Sprayberry Academy of Radio

F L SPRAYBERRY, President
Room 2058, Sprayberry Bidg., Pueblo, Colorado

RUSH COUPON Taday!

SPRAYBERRY ACADEMY OF RADIO
F. L. SPRAYBERRY, President

Room 2058, Sprayberry Bldg., Pueblo, Colorado
Please rush my FREE copies of "How To Make Money In Radio, Electronles and Television" and "How To Read Radio Diagrams and Symbols." No salesman will call.

Name
Age
Address
City and Zone
State (Maill In \#n Envelopeor Pasto on Penny Poatcard)

A EIGHT Big Kits of Actual "Learn-by-Doing" Radio
Parts and Assemblies with which you make 133 fascinating SHOP METHOD EXPERIMENTS in your own home! Imagine building 7 different Radio Receivers that operate!

B A 16 mm Home Movie Projector and Twelve Reels of "Learn-by-Seeing" Home Movie Films . . . for picture'

NO PREVIOUS RADIO OR ELECTRICAL

 EXPERIENCE NECESSARYDeForest's Training, Inc. provides erery major home study aid to help you learn Radio-Electronics rapidly and thoroughly... to give you the experience and confidence needed for a responsible, GoodPay Job, or to Start a Business of Your Own! Here is a REAL opportunity feld for YOU ... when you are a trained Radio-Electronics man! Just think of the tremendously exciting future aliead of FM Radio, Aviation and Broadcast Radio, Sound Motion Picture Equipment, Servicing and Sales of Radio Equipment, etc. Put yourself in this picture ... See how you can benefit from a PRACTICAL training in this fascinating work! Think, too, of the coming possibilities athead of Radar, Facsimile and Television. Send TODAY for the interesting, opportunityrevealing book, "Victory for You!" See how others probably no more talented or ambitious than you, have advanced in earning power after this training . . . how YOU can do it tool Mail the coupon NOW!

MAY • 1948

Editorial: Appliqued Radio Circuits. by Hugo Gernsback 18, 19
Radio-Electronics Monthly Review. 80
Radio Thirty-Five Years Ago
Radio and Electronics
Eloctret Construction. by Victor H. Laughter 20
Electronic Visibility Meter by S. R. Winters 22
12,000-Tube Electron Brain (Cover Feature) by A. Pasoale 28
Amateur Radio
Efficient loo-Wattor. by E. F. Harris, W8SJB 24
WWV Schedule Changes. 71
Servicing
Radio Set \& Service Reviow (Midget Tolevision Preamplifier)31
Servicing Wind Generators by Max Alth 3by Eric Loslic 66
Serviceshop Tests Serviceshops.78
by Richard Laurence 7 Radioman on Wheols.
Test Instruments
Miniature 3-Use Fixed Oscihator by William Lyon McLaughlin 26
Laboratory-Type Oscillators.by William B. Millor 27Wobbulated Signal Generator.by George W. Schulize34
Push-Button Signal Generator by Alfred Hass 37
Sound
Noise Reduction in A.F. Circuits. by I. Queen, W2OUX 23
Phase Inversion Circuits by J. W. Straode 32
High-Fidelity Amplifiers by R. F. Scott 36
Volume Expander 75
Construction
Light with a Memory. by M. Gordon Moses 30
Cheap and Effective Noise Limiter by OHo Wooloy, WøSGG 80
Departments:
Transatlantic Nows. by Major Ralph W. Hallows 38
Now Radio-Electronic Devices 40
The Question Box 42
Radio-Electronic Circuits 44
Technotes 47
Try This One 50
Now Radio-Electronic Patents by I. Queen 54
World-Wide Station List Edited by Elmer R. Fuller 63
Communications83
Book Reviews. 87

BADIO cilsher

HUGO GERNSBACK

Editor-in-Chief

FRED SHUNAMAN, Managing Bdisor M. HARVEY GERNSEACK. Conswlting Editor ROBERT F. SCOTT, W2PWG

Techuical Edifor ANGIE PASCALE.

Production Manager I. QUEEN, W2OUX, Editorial Associate ELMER FULLER, Shortwave Edilor ©. ALIQUO, Circulation Manager JOHN J. LAMSON, Advertising Director ALFRED STERN, Promotion Manager

In Our Next Issue

SPECIAL ARTICLES ON ALL PHASES OF FM-THEORETICAL AND PRACTICAL CONSTRUCTION AND SERVICING, FEATURE THE JUNE ISSUE.
On the Cover:

International Business Machines' 12,000-tube computer which does the work of more than 1,000 mathematicians.

Chromatome by Alex Schombwrg from Harris \& Evring photo.

[^1] Middle East Agency, Jaffa Road, Jerusalem. Indla: Susil Gupta (Distributors) Co., Amrita Bazar Patrika Lt., I4 Ananda Chatterjee Lane, Calcutta.

NOW! fanous 5 SOO TEEEVSSON COURSE Youns with phoorfact foloers

Get Ready to Make Big Money in Television Servicing with This Practical, Successfully Proved Instruction!

NOWI AT NO EXTRA COST TO YOU-you can have the nationally-famous $\$ 500$ Saunders' Television Course! It's the world's finest training-practical down-to-earth training that actually prepares you for Television and keeps you 'way out ahead of the game. Here's the first real help in Television for Servicemen-brought to you exclusively by Рнотоғact and Photofact alone! If you want to stay in Radio Servicing, you can't afford to miss a single installment of this amazing Television Course! Read every word of this announcement and then ACT!

Not Just a Book - A Complete Training Course in Television!
 First Installment Appears in PHOTOFACT Set No. 38!

You get the actual $\$ 500$ Television Course, exactly as taught in the nationally-famous Saunders Radio \& Electronics School at Newton, Mass. We literally bring this course to you in print-transcribed word for word from the original lectures, supplemented by graphic training aids, exclusive Photofact "exploded" views and hundreds of visual illustrations, prepared under Mr. Saunders' personal supervision. This is the same course attended by hundreds of established service technicians and by service personnel of leading set manu-facturers-the same $\$ 500$ course!

PRACTICAL, CLEAR, EASY-TO-FOLLOW TELEVISION TRAINING

Experts in the field of Television and Radio training acclaim the famous Saunders Course. It is remarkable in its ability to simplify and explain the most complicated theory and practice. It describes the action of an electronic circuit so originally and simply that it can be visualized in an unforgettable manner. The Saunders Course avoids higher mathematics and engineering terminology beyond the experience of the practical man You know where you are every step of the
way, and you bridge the gap between Radio and Television with quick, simple understanding that makes unfamiliar subjects easy to master. As you progress in the course, Tolevision circuifs will unfold and become as dear and understondable to you as the Supertheterodyne circuit. You will be able to foliow and use effectively the practical servicing data on specific Television receivers prepared for you by PHOTOFACT. Get sfarted in the Course today with PHOTOFACT Set No. 38.

The Television Course will appear in regular installments in each PHorofact Folder Set, beginning with Set No. 38. Each installment will include the right amount of material so that you will be able to digest it easily and completely between issues. Instruction will be kept up-to-date and will include the latest information promptly as it is available on the subject. There's no need to wait now for books that will never cover the ground adequately, or to buy books that are obsolete already. Be sure to order Photoract Set No. 38 nowand begin to qualify yourself for Television!

Get Television Training Worth $\$ 500$ - Plus Incomparable Photofact Service Data at the Cost of PHOTOFACT Alone!

Here's the chance of a lifetime that really fits you for a profitable, succeasful career in Television servicing. Just think of it-you get the world's finest radio service data in Photofact-at only $\$ 1.50$ per set-and at the same time you train practically and successfully for Television with the finest course available in the country-a course worth $\$ 500.00$ that costs you nothing extral

DON'T MISS A SINGLE INSTALLMENT OF THIS TELEVISION COURSE! MAKE SURE YOU OWH IT ALL! GET STARTED WITH PHOTOFACT SET Mo. 38 TODAY . . .:

\$500 TELEYISIOM COURSE BEGIMS IM SET Mo. 38. ORDER TODAY!
mowano w. SAMS a co. ne.
mounnrous o. womand
 Conede-A. C. Simmende \& Spn3. 301 Kins S1.. Eent-Terente, Onterio.
Photofact Service
"The Service that pays for itself over and over again"

Mail This Order Form

to your local Parts Distributor, or to Howard W. Sams \& Co.. Ino. 2924 E. Washington St., Indianapolis 7, Ind. My (check) (money order) for $\$ 1.50$ encloeed.

[^2]

This unit was originally used to control a guided Bomb; it contains a 24 -volt Willard rechargable battery pack, which operates a gyroscope, and ow geared reversable motor. The unit also con ains a precision buile 5 -tube RF Receiver complete with dynamotor.

Shipped express, charges collect

RCA ANTENNA REEL

MODEL
 49 M Li96ll

Ahandoperated antenna Reel, for nnenna in and out reeling in and out Mraiting antenaas. Merral Radio R. Tele. sion Corp. under RCA License. Add 20 c to cover postage \& handing.

PHANTOM ANTENNA

85

 A tronsmittinganfenno, for use on approximotely 450 MC. Complete with tandard coaz con. stondard coox conproof unit. (Add $25 c$ corer hand ling and pastagel.

Mine Detector type AN.PRS.I Brand new complete lexeept batterics) in original case. Eactiunit contains an insfruction Manual. Good for detecting objects under the earth's surface. Requires one 6 volt and three 4.5 volt batteries. (Shipped express charges collect)

1300' Rubber Covered Wire ONLY $\$ 18.00$

New 4 conductor 16 gauge ubber covered coble. Color ubber covered cable. Color Government os Ficld Telephone Government os ficld relephone Coble. 1300 reet on steel reel. .O.B. Our warchouse Shipped motor freight or
${ }_{50}^{12}$ valur

These generators are excellent for truck or bus use. They also will make a fine power supply for your radio in original boxes as piccured with pulley, $\$ 9.45$ each or with keyed shaft less pulley- $\$ 7.95$ each.

Shipped Express Collect

Your choice of either af these two famous Commond Set Receivers. BC454 freq. range 3 to 6 MC or the BC455 6 to 9.1 MC. These sets are used, but in good condition. They ore complete with tubes. Price- 3.95 each.
(Shipped Express, charges collect)
mis38 Antenn $\begin{array}{ll}\text { unli } \\ \text { 0nLy } & \$ 95\end{array}$

This unit contains a single pole double.throw vacuum switch, which is copoble of handling RF potentiols os high os 20 KV . When used in DC circuits, the switch will hondle over I ampere of 5 KV . These are Manufacturers Specs. 1

The case is ideal for a portoble mobile receiver or a smoll transmitter, os your cantrol panel can be mounted behind the hinged doar for protection. The cose olso has a built-in the hinged door for protection. The Cose olso has a builr-in 7". Warth many times the price. Add 40 c to cover pos. toge and handling).

3 conductor braided insulated copper and steel telephone wire. It is of copper for conductivity and stecl for strenath. Worth ot leost 3 e per foot, yet due to on exceptional buy we can now offer if of less thon le per foot.
(Shipped express charqas collect)

N. SILYERSTINE CO.

6532 EAST MCNICHOLS ROAD DETROIT 12, MICHIGAN Seven Acres of Surplus"

Where's FM headed, Mr. Radio Dealer? YOU decide.
WANT TO MAKE A FIASCO OF FM? . . . Then-go ahead . . . SELL second-rate, "almost-good-enough" FM equipment. But-be prepared for customer squawks, dissatisfaction . . . a bad name for FM . . . migraine headaches for yourself!

WANT TO "GO TO TOWN" WITH FM? Then-use the sensational FM PILOTUNER, as your standard of comparison, in testing all FM equipment. The Pilofuner has the last-detail quality . . . the thorough integrity . . . that do credit to FMI

37.0636 th ST., LONG ISLAND CITY, N. Y.

Makers of pilotone records - pioneers in fm \& television

The PILOTUNER was a fremendous hit in '47 . . . With new FM stations opening at the rate of fifty a month, it's headed for an even greater '48! Stock it-feature it-get YOUR share of the big new business, new traffic! Send coupon for details.

```
PILOT RADIO CORP,, 37-06 36th St., Long Island City, N. Y.
    Send me full information concerning the FM PILOTUNER.
    name
```

\qquad

```
ADDRESS
``` \(\qquad\)
cirr ZONE NO..... STATE.......

Do not fail to closely examine this list of bargains. We believe that every item listed below is a sensatignal value that soon can never be repeated. All equipment advertised herein is unconditionally guaranteed to the customer's satisfaction to this extent: Return any item advertised within five days after delivery for full refund except transportation charges (both ways).

(A) Filter condenser, \(G\) E Pyranol, oil filled 8 MFD @ 1000 volts DC working voltage, size about \(11 / 2^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}\) high. shlpping weight about 3 lbs. Brown porcelain stand-off insulator
\(\$ 2.00\)
(B) Filter condenser, Sprague, oil filled, 8 MFD @ 1000 volts DC working voltage, size about \(l^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}\) high, ship- \(\$ 2.00\)
ping weight about 2 lbs....NEW \(\$ 2.010\). (C) Filter condenser, 8MFD @ 700 volts sulated terminals. Size about \(2^{\prime \prime} \times 4^{\prime \prime} 4^{\prime \prime} \times\) \(5^{\prime \prime}\) high, with mounting flanges, gray metal case, shipping weight \(\$ 1.25\)
about 4 lbs. (D) Filter condenser Cornel-Dubilier 1 MFD @ 4000 volts DC working voltage, oil filled. Size about \(2 / 4 \times 4 \times 7\) high over stand-off insulator type terminals. \(\$ 3.75\)

(A) Filter condenser, oil filled, 4 MFD @ 300 volts DC working voltage size about
 (B) Fitter condenser, GE Pyranol, oil filled, 4 MFD @ 2000 volts DC working voltage.
 (C) Filter condenser, Industrial Condenser Corp., oil filled, I MFD @ 3000 volts DC working voltage, size about \(21 / 4^{\prime \prime} x\) \(31 / 3^{\prime \prime} \times 5^{\prime \prime}\) high, well insulated terminals. Shipping weight about 3 lbs. NEW \(\$ 2.00\)
(D) Filter Condenser, Industrial Condenser Corp., oil filled, 4 MFD @ 2000 volts DC working voltage, porcelain insulated terminals, size about \(21 / 4^{\prime \prime} \times 31 / 2^{\prime \prime} \times 5^{\prime \prime}\) high, shipping weight about 3 lbs. NEW \$2.50

METERS - Brand new and all checked for accuracy
0-500 MA DC 31/2" round NX35 Westinghouse .. . \$ 3.00 0-5 Amps RF \(31 / 2^{\prime \prime}\) round NT35 Westinghouse Internal TC
0-3 Amps RF \(\mathbf{2 1}^{1 / 2 \boldsymbol{2}}\) round NT33 Westinghouse, less TC
\(0-10\) \& \(0-250\) MA DC combination round NX33 Westinghouse
\(0-10 \& 0-250 \mathrm{MA}\) DC combination round DW4। G.E.

A) Condenser, electrolytic, 100 MFD @ 300 volts, \(21 / 2^{\prime \prime}\) diamefor. \(4 / 2^{\prime \prime} \mathrm{high}\). metal can. shipping weight \(\$ 2.00\) (B) Filter condenser, Tobe oil filled, MFD @ 600 volts \(D C\) working voltage, size about \(\mathrm{l}^{\prime \prime} \times\) ! \({ }^{\prime \prime} \times 21 / 2^{\prime \prime}\) 20c (C) Condenser, bath tub type 20c (D) Condenser, Tobe, oil filled, 25 C (F) Filter condenser. Aerovox oil (F) Filter condenser. Aerovox oll
filled, \(2 \mathrm{MFD} @ 600 \mathrm{DC}\) working volts
 shipping weight about NEW 35c (G) Condenser, Cornol-Dubllier, oll (Gilled, 4 MFD @ 1000 volts DC DC , work-
 high, shipping weight \({ }^{2} \$ 1.75\)

(A) Vibrator. Radiart VS-3, for 6 volt battery operation, used in vibrator supply PElo4-which is used with BC654A trans.
mitter-recelver. Typo \(1.4 \ldots \ldots\) NEW \(\$ 1.95\) (B) Vibrator. Radiart VS.3. for 6 volt (B) VIbrator. Radiart VS.3, for 6 volt PEl04-which is used with BC654A trans. mitter-receiver. Typo 16 (probably oxact(C) Relay, 110 volt 60 eyclo AC plunger (D) Lord Shock Mount. heavy duty type, base size \(3^{\prime \prime}\) square \(x 11 / 2^{\prime \prime}\) high-3. \({ }^{\prime \prime}\) di. (E) Dit each section 2500 ohmsNEW 35c (F) Togale switch. bat handle. NEW 300

\section*{CONDENSERS}

30 MFD-300 V AC G.E. Рутало1 \({ }^{3.00}\) \(45 \mathrm{~mm} \mathrm{q}^{\text {ang }}\) trimner condenser assembly, each odjustable \({ }^{5}\) to Neutrallaing for 6 L 6 or 807 tube applications Varlable tuning condenser, \(7-17 \mathrm{mmfd} 1 / 2^{*}\) shaft. \(\cdots\) ceramic \(\mathrm{in}^{(1)}\) Sulation. single hole mounting..................... .20 c slot in shaft for adjustment mmidsNEW 200 Padder type varlable. 140 mmfds. maximum, serew drlver slot in shaft for adjustment …................................NEW 20 e Mica condenser kit. kit of many values and assorted capacitios and voltages. abo HFD condenser per \({ }^{\prime \prime}\)........NEW \(\$ 1.98\) Electroytie 1000 MFD @ 15 V DC \(1 / 4\) diameter \(\times{ }^{4} /{ }^{2}\) z high Electrolytic. mounts in octal tube sockot 10.5 and 15 MFD @ 100 working volts DC. Aluminum ean \(\ldots \ldots \ldots \ldots\). \(\because \ldots\). NEW 50 c Efectrolytic. 50 MFD © 350 v DC Maliory F P aluminum

(A) Condenser, mica, .25MFD @ 250 voltsNEW 15c
(B) Jack Box BC-631-B, size about \(2^{\prime \prime}\) \(\times 2^{\prime \prime} \times 4^{\prime \prime}\), aluminum case, contains 10,000 ohm volume control, knob, Jones Barrier strip... Brand NEW 40c
(C) Switch, push-button type DPST on/off type, to fit standard switch box, 10 amperes @ 250 volts....NEW 25c
(D) Micro-switch completely standard, metal grate well cast rated 15 amperes @ 115 volts normally open type, plunger has override feature.

\section*{RADIO MODULATOR}

BC-424, made by Westinghouse, 110 volt 60 cycle AC operated. Size \(9^{\prime \prime}\) \(\times 14^{\prime \prime} \times 9^{\prime \prime}\) high, weight about 30 lbs . packed. Has National Velvet Vernier Dial. Thordarson power transformer and chokes, tubes used and includad are 6F6, 6J7, 6J7, 5W4 and 955. frequency about 190 meg . acyeles. Comes with heavy steel case
\$2250

8C-654-A-Receiver and Transmitter for frequencies \(3800-5800 \mathrm{KC}\). Used but in good operating and mechanical condition. Worth many times the price for parts. Complete with all necessary tubes. Shipping weight 40 lbs. each \(\$ 29.75\)

Microswitch, completely weather-proofed metal-clad or cased, rated 15 amps at 115 volts, normally open type, plunger has override feature

NEW
Battery type BA-38, 103.5 volts, used in Handie-Talkie, Mine detectors, or for any purpose where low current drain is required Size \(I^{\prime \prime} \times 1^{\prime \prime} \times 111 / 2^{\prime \prime}\) long. Outdated, but tests O.K.

NEW 3.00
Tube socket, RCA, for 866 or similar type tube basesNEW

Tube socket, wafer octal type, excellent mica insulation

NEW
Tube socket for 813 type tube, Johnson type 237

NEW
Tube socket, for Acorn type tubes, made by Millen Co. NEW
Tube socket, porcelain octal type, less mounting ringNEW
First IF transformer for BC348 type receiver, 915 kilocyclesNEW

Ohmite tap switch, model III, 9 taps, nonshorting, will handle 10 amps at 115 volts

NEW
Kit of potentiometers, twenty-five assorted sizes carbon and wire-wound

NEW
Resistor, voltmeter multiplier type, rated at 2 megohms 2 kilovolts insulation, I MA maximum current, about \(1^{\prime \prime}\) diameter \(\times 51 / 2^{\prime \prime}\) long, mounts in clips

NEW
Resistor, 100 watt type, 5 sections having 7500, 3000, 23, 23 and 750 ohms (total of 11,269 ohms) resistance. \(11 / 4^{\prime \prime}\) diameter by \(81 / 2^{\prime \prime}\) long NEW
Cord CD-132, has PL-55 type plug and \(9^{\prime \prime}\) cord, with spade type lug tips
.35c
Sylvania type IN26 crystal.................NEW 35c
Resistor 20 watt, one-half ohm............NEW 10c
Fuse holder for type 3AG fuses..........NEW 10c
Amphenol co-axial chassis connector, new, type 83 IR

Amphenol co-axial junction connector, new type 83-1J .. 40c
Amphenol co-axial angle plug adapter, used, type 83-1AP

40c
Connector, bakelite insulation, male and female section, 6 pin polarized. Price 50c

Canvas bag, moisture \& fungus proofed, with carrying strap, leather re-enforced corners, weight 3 lbs, size \(9^{\prime \prime} \times 14^{\prime \prime} \times 12^{\prime \prime}\) high. Ideal for tool case, for sportsmen, etc.

NEW \(\$ 1.00\)
HAND SET T-S-10-G-Sound powered telephone. No batteries required for operation: connect to any two wires, wire fence and ground, etc., by convenient clips included. Price...... NEW \(\$ 9.50\) each
ARGON BULBS-2 watt ideal for transmitter tuning, night light, etc. Price 35c each. \(\$ 3.00\) per carton of ten.

BC-406-A Receiver-Brand new. Manufactured by Western Electric. 165 to 205 mc operation. IF frequency 19.5 mc . IF band width .7 mc . Easily converted for operation on other ultrahigh frequencies. Operate from 110 V., 60 cycle, A.C. Worth many times this amount for tubes and parts. Tubes-one 5T4, two 68J7, four 6SK7 one 6N7, five 954's, one 955, one 6F7, one 6N7. Also contains small 110 V. operated \(\$ 3450\)

Interphone Amplifier, size \(7^{\prime \prime} \times 9^{\prime \prime} \times 6^{\prime \prime}\) high, weight about 12 lbs. packed. Contains 6SJ7 and 6V6 tubes, 24 volt dynamotor. Use for phono or intercom ampli-

5375
fier. or intorcom ampli-

Antenna Tuning Unit BC-729-C, size about \(9^{\prime \prime} \times 9^{\prime \prime} \times 19^{\prime \prime}\) overall, weight 24 lbs. packed. Contains \(0-15\) ampere RF ammeter \(31 / 2^{\prime \prime}\) square case, Tuning Inductance, having 60 turns heavy wire on \(31 / 2^{\prime \prime}\) dia. coil form, completely variable, also split stator coil with swinging link, vernier dial and revolution counter, will easily handle 500 watts of RF power. Will match up any length antenna to any common frequency for amateur transmitters.

\section*{Traffic is heavy under the street, too}

Surcly the busiest thoroughfare in the world is a telephone cable. But it is more than "telephone"; for these thousand or more wires, carrying sound and pictures at lightning speed, are highways for many different services.

Each one of these presents its own problems to Bell Laboratories scientists and engineers: for the telephone differs from television, and television differs from a radio program. And yet they have an essential unity: they
involve transmission of alternating currents, with frequencies from zero up to several million cycles. Each calls for new thinking, new ideas, new goals of accomplishment.
The diversity of the cable's many services speaks for the unity of Bell Laboratories' purpose. That is, to know the theory of communication so thoroughly, to practice the art so skilfully, that any transmission of sight or sound can reach its destination clearly, quickly, economically.

Eploring and inventing, devising and perfecting for continued improvements and economies in telephone service

\title{
APPLIQUÉD RADIO CIRCUITS
}

\section*{The next great radio advance is now in the making . . .}

\author{
By HUGO GERNSBACK
}

THERE remains little doubt that the next few years will see a complete revolution in the building of our radio receivers, be they AM, FM or television.
It is certain that the wired radio receiver with its hundreds of wires and soldered connections will soon be completely outmoded.

The reason for this is elementary-from an economic standpoint wired and soldered radios are already dated, due to the tremendous labor costs. Then, too, receivers tend to become more complex as time goes on and the vast multiplicity of soldered connections no longer are workable. Servicing such sets is becoming more and more of a nightmare for that reason. Tracing circuits during trouble shooting is often a hopeless procedure and as the art progresses it becomes more hopeless both physically and economically.

At the present time top radio receiver manufacturers are racing toward the day when the wired component receiver will be replaced by something much simpler, which is cheap to assemble, and which will make servicing in the future a picnic-compared to our present receivers.

As reported in these pages repeatedly, the future receiver will either use a printed circuit in which the connecting wires are printed on a solid sheet of insulating material, or applied by some similar means. There are-and we mention only a few-the following:

Instead of printing the circuit it can be electroplated; it can be applied by the so-called silk screen process; or it can be done by spraying molten metal onto the surface.

Such new circuits also include the various resistors which are no longer solid blocks, but instead lines printed, sprayed, or applied to the surface by other means. An entire new art is springing up along these lines.

So far no "printed" radio sets have been produced for public consumption in the United States, but during the war there was great activity in this new art.

Dr. Cledo Brunetti, of the Bureau of Standards, outstanding exponent of printed circuits, produced many war radio sets where small size and guarantee of absolute performance were the prime considerations. These, however, were mostly along the miniature radio receiver lines. Standard receivers for home use, however, have so far not been produced.
In England one or two manufacturers have produced such radios, particularly those of the sprayed-circuit variety.*

Up to now there has not been an all-embracing term in the English language which would do justice to this new and very important art. Not all circuits are printed, nor are they plated, nor sprayed. Yet they all come under the same general classification.

We therefore advance the term "applique" (from the French)-rhymes with bouquet. The English dictionary defines the term as follows: "Applique-decora-
tive detail superimposed on a solid ground, as in 'appliqué work.'"

Similar terms are "appliquéd" and "appliquéing." This term is now being used.in various industries, such as textiles for instance.

The nearest all-English term would be application"the act of applying or laying on," but obviously this term cannot be used. We can use the new term in various ways as: appliqué radio receiver; appliquéd radio circuits; appliquéing a circuit.

The great advantage of these new applique receivers is the fact that most handwork is done away with. There are no soldered connections-everything either being screwed on, riveted, or fastened by other mechanical means. This means that-as is now done in England -an entire radio set can be made by a robot; i.e., a machine that does all the work from beginning to finish, delivering the complete chassis at the other end of the production line. No human hand touches the chassis while being processed. This cuts manufacturing costs tremendously.
The enthusiastic proponents of the new art foresee the day when the average superheterodyne chassis, minus tubes and loudspeaker, can be sold for \(\$ 1.00\)-certainly less than \(\$ 2.00\). The serviceman simply will take out the old chassis and discard it, replacing it with a new one. He will no longer hunt for hours to find a loose or intermittent connection-it will be far cheaper to install a new complete chassis with all its wiring, resistors, condensers, etc.
Some servicemen seem to think that this will ruin their business: Quite to the contrary, they will make more money because it will give them more time for installation and other radio work rather than wasting precious hours in hunting for open connections, blown condensers, burned-out resistors, and what not.

The future chassis will be light and small. It will weigh very little and will be completely foolproof. There will be few outside connections to be made to it, such as tubes, loudspeakers, etc.

Moreover, the new appliqué radios will be equipped with miniature tubes, for which they are ideally suited. To show how the wind blows, we quote the remarks recently made by L. W. Teegarden, vice-president of RCA Tube Department:
"Today a large portion of RCA Tube Department production is assigned to miniature tubes. About \(90 \%\) of all receiving tube developments is on miniatures."

Appliqué radios will bring down the price of ALL radio sets and particularly television receivers. At the present time only about 30,000 video sets can be manufactured a month. With appliqued circuits, they can be manufactured by the hundred thousands per month, once the manufacturers have tooled up for the new art.

COORDINATION of the efforts of radio technicians' associations is being undertaken under the leadership of the Federation of Radio Servicemen's Associations of Pennsylvania, the country's largest organization of radio technicians. Originating at a meeting held at Harrisburg in the early spring, the plan proposes to coordinate the objectives of member associations, to solicit the cooperation of all servicemen's associations with whom the Federation is in correspondence, and finally to invite participation in the organization's efforts to improve radio receiver servicing by servicemen and servicemen's associations wherever situated. The secretary of the Federation, Mr. John Rader of 704 Walnut St., Pittsburgh, Penna., was appointed secretary of the coordinating committee. Any interested individuals or organizations are requested to contact him.

The move toward coordination by the FRSAP was prompted by a review of the opinions the radio technicians representing more than 16 states at the Philadelphia convention last January.

\section*{MICROWAVE GENERATION with} conventional tubes was demonstrated by DeMornay Budd Inc. at the recent Institate of Radio Engineers Convention. Development is expected to expand vastly the use of microwave equipment, which has been hampered by the necessity of designing it around the scarce and expensive Klystrons and magnetrons.

Previously, ordinary tubes, available for other purposes, have been considered unsuitable for microwave generation because of excessive transit time and grid conductance. This development overcomes these two problems by making the transit time between cathode and plate correspond to some multiple of 360 degrees phase shift. An alternate development achieves similar results by making the transit time correspond to any odd number of half periods of oscillation.

\section*{RADIO-ELECTRONICS}

The potentialities for this development are considered to be an "open sesame" to the very roomy microwave region for amateur, citizens and mobile bands, relay and communication and navigation functions.

METALLIC TECHNETIUM, chemical element number 43, has been isolated by Dr. Sherman Fried of the chemistry division of the Argonne National Laboratory, it was announced last month.
One of the last four of the 96 elements to be named, technetium is revealed to be a silvery substance similar to the other rare metals, rhenium, osmium and ruthenium, which are located near it in the periodic table of elements.
Two tiny quantities of the metal were prepared from compounds manufactured in the atomic furnaces at Oak Ridge and made available by Dr. G. W. Parker of the Clinton Laboratories. Dr. Fried reported the isolation of the new metal in a report to the Journal of the American Chemical Society.

PUBLIC REACTION indicates that radio is doing a good job, according to a survey made by the University of Chicago's National Opinion Research Center. The report released last month reveals that \(70 \%\) of the people interviewed approved of the job being done by radio in their communities. Only \(59 \%\) were as satisfied with their schools, \(63 \%\) approved of their newspapers, and \(42 \%\) were as pleased with their local governments.

A further study of the figures showed that \(67 \%\) of the people were against government control of radio news, \(76 \%\) opposed regulation of radio advertising, and \(65 \%\) were opposed to government control of the programming of controversial issues.

Equipment for generating power on microwaves with tubes now used at broadcast frequencies.

TELEVISION COMPETITION is cutting into the movies and regular radio programs, Ed James stated in the American Magazine last month.

A survey of television set owners in New York by CBS disclosed that nearly half had attended movies less frequently since obtaining the set, and more than half reported there was no radio program they preferred to television. "Television," said one set owner, "is more entertaining than radio and more convenient than movies."

SIGNAL CORPS SCIENTISTS are preparing to explore the surface of the moon with radar in an attempt to map its mountains, valleys, and craters. They will use electronic improvements developed since January, 1946, when the Signal Corps first made contact with the moon from the Evans Signal Laboratory, Belmar, N. J.

The scientists said that the difficult part of the first experiment was in building a receiver sensitive enough to pick up the radar echo. Since then they have greatly increased the sensitivity of the receiver which will be used in the new experiments at Evans laboratory.

PRIVATE OPERATION of radio broadcasting in Canada is receiving strong public support, it was reported at the fifth annual meeting of the Canadian Association of Broadcasters last month.
A Dominion-wide poll completed last December showed that \(60 \%\) of Canadians polled favored private operation of radio against \(22 \%\) in favor of a government-operated system. Canada has at present both a government broadcasting company and privately-owned stations.
RADIO FURNISHED TIME to people in California during the power shortage last March. The lack of power forced the Pacific Gas and Electric Company to reduce its frequency, causing all electric clocks to run six or more minutes slow per day. As soon as the situation became known, the principal radio stations began giving time signals on each station break, enabling listeners to keep their clocks adjusted.
ACCURATE RADAR SPOTTING of planes is prevented by this wartime development in which the plane itself in effect, becomes a non-reflector of radar signals. U. S. patent No. 2,436,578, issued last month to Arthur Korn of Hoboken and Joseph Hess and Simon L. Ruskin of New York, covers this invention.

The plane is coated with a substance that is a poor or "scattery" reflector of radar waves. Three such substances are cuprous oxide and the elements selenium and tellerium. Various methods of applying the coatings, all involving rolling or pressure at fairly high temperatures have been devised.

\section*{MONTHLY REVIEW}

ATOMIC ENERGY will be used to power radio and television receivers in the future, David Sarnoff, President of the Radio Corporation of America predicted at Boston University Founders' Day ceremonies.
"A miniature power supply in capsule form may make possible radio receivers no larger than a wrist watch, and television sets that may be carried in the pocket like a camera," declared General Sarnoff. "When that day comes people may carry pocket-size radiophones that will enable them to communicate with home or office, no matter where they are."

These fascinating possibilities are not "just around the corner" General Sarnoff pointed out, but we shall see these promises fulfilled if the wocld is at peace and science is unfettered. Beyond today's horizon, he said, automobiles, tractors, airplanes, locomotives and ships may be powered also by small capsules of nuclear energy.

More optimistic on the subject of atomic energy is Dr. Edward U. Condon, who at the recent meeting of the Institute of Electrical Engineers in New York City predicted atomic power plants "within a year or two" and ships running on electric energy "within a decade." Atomic power plants are now under way at Oak Ridge, Tennessee, Chicago, Illinois, and Schenectady, New York, Dr. Condon told the assembled engineers, and it should be possible to realize experimental production of power within the next year or two. However, he believed that atomic power plants are likely to be too heavy for cars, planes or even railroad locomotives, though it is reasonable to believe that within a decade ships may derive their power from atomic piles.

A MICROWAVE RADIO relay system instead of the usual telephone lines is planned for the Rural Radio Network whose headquarters is in Ithaca, N. Y. The network expects to go on the air with three of its six FM stations early in May.
The new FM network, to be cooperatively supported by farmer organizations, will concentrate on the farm audiences in the agricultural areas of upstate New York.

THREE-YEAR LICENSES for FM stations will be issued beginning May 1, the FCC announced last month. This announcement complies with requests made by the Frequency Modulation Association. The Commission pointed out that it "recognized the rapid development of FM as meriting the statutory maximum license period."

First renewals will be for one, two, and three years to work into a staggered schedule of renewals by frequencies. Thereafter, all renewals will to be for the three-year period, according to the FCC.

THE INSTITUTE of Radio Engineers held its 1948 convention March 22-25 at the Hotel Commodore and the Grand Central Palace, New York City. The meeting was the largest on record, with an attendance of 15,000 , as compared to the 8,000 engineers who appeared at last year's convention.

Dr. B. E. Shackleford, 1948 IRE president.
It was necessary to subdivide the subjects discussed and hold meetings simultaneously in five auditoriums to accommodate the more than 130 papers read. A symposium on nuclear science which consisted of five talks and occupied a full morning session indicated the Institute's interest in this very important new branch of science.

Dr. R. L. Smith-Rose, IRE'S vice-president.
The exhibits of new radio equipment also reached record figures, with 188 manufacturers displaying their equipment at the Grand Central Palace.
A special luncheon March 23 honored
the new President, Dr. B. E. Shackleford, who with Dr. R. L. Smith-Rose as his vice-president, will lead the Institute in 1948.

THE RADIO PARTS SHOW will be held again at Chicago May 11, 12, 13, and 14. At this show, which is sponsored by the Association of Electronic Parts and Equipment Manufacturers, the National Electronics Distributors Association, the RMA, and the Sales Managers Club, all the leading manufacturers of radio and electronic components will exhibit their new products for the coming season.

It is believed that this year will see the industry's largest parts exhibition, and dealers, distributors and manufacturers expect to see a number of new developments, inventions and features which have been kept "under wraps" for release at the show.
TAPE RECORDINGS instead of discs will be used beginning April 25 for rebroadcasting of network programs by affiliates of the American Broadcasting Company during daylight saving time. This method will permit playbacks as needed with improved quality at lower costs.

Only regularly scheduled programs will be rebroadcast; outstanding special events will be aired live and when they occur.
"SNOWSTORM," a type of television interference that produces streaking on the television screen and is commonly produced by ignition interference has been found to be caused by the sun, it was reported last month.

Engineers of the British Broadcasting Corporation suspected the sun while they were tracing the cause of a brief but particularly violent snowstorm. A check with records of solar noises confirmed their suspicions.
TELEVISION RECEIVER production in February reached a new high level, the Radio Manufacturers' Association disclosed last month.
The manufacture of 35,889 sets in February brought the total number produced since the war to 250,937 . The February television set output, 5,888 more than the January production, represented a \(141 \%\) increase over the average 1947 monthly output.
TELEVISION WEATHER broadcasts are now being made on a daily basis. The ten-minute program, beginning at 6:05 pm, is carried over the Dumont stations in New York City and Washington, D. C.
EUROPEAN LISTENERS total between \(150,000,000\) and \(175,000,000\), according to a last month's State Department estimate. Over 100,000 of these are believed to have shortwave listening facilities.

THE MOTION PICTURE industry is planning to enter the television field actively, Frank Mullen, executive vicepresident of the National Broadcasting Company, revealed at a press conference last month.

\section*{ELECTRET CONSTRUCTION}

\section*{The author describes} in detail the material, method and equipment for making electrets.

AN electret is a comparatively anknown scientific novelty which is the electrical counterpart of a permanent magnet. It consists of a slab of wax material that has been subjected to a strong electrostatic field while in the molten state. When the material is allowed to cool under electrical stress, a positive charge appears on one side and a negative charge on the other. These charges are retained for several years with little decrease in strength.
In 1925 Eguchi described a very interesting kind of electret made of equal parts carnauba wax and resin. These were melted and a high direct voltage appied while they were in the liquid state, the voltage remaining on until the mixture solidified. One theory of what occurs is that an orientation of the molecules takes place under voltage stress, this alignment being locked in by the cooling of the wax. The electret thus made shows a final positive charge on one side and a negative charge on the other. An electrostatic charge similar to the magnetic field of a permanent magnet, surrounds the electret. The writer has electrets three years old, apparently as active as when first made.

A unique feature is the action of the
positive charge. When first removed from the cooker, the electret usually shows a positive charge on the side that was next to the negative polarizing plate and a minus charge next to the plus plate. This relationship is expected and is according to the law "unlike poles attract and like poles repel." Later a reversal of poles occurs; the positive side becoming negative, and the negative side positive. Once made, this reversal is permanent. The result is that the polarity on the electret is the same as that of the charging voltage. The positive charge thus formed holds. This is contrary to usual action. Normally a positively charged surface attracts free negative electrons, building up a negative

Fig. 2-A suitable high-voltage power supply.
space charge and thus shielding the positive effect. A crystal shows the negative shield. Just why the electret acts as it does is not known.

The electret offers a wide field for the experimenter. Possible applications in-
clude a condenser mike with no polarizing voltage and no danger of breakdown, phono pickup, plate-repulsion-type oscillator, an interior element of vacuum tube in which the electret provides the necessary electrostatic voltage. Gemant has used electrets as plates of an electrometer, also as a microphone.

\section*{Equipment}

The equipment shown in Figs. 1 and 2 was used by the writer in making electrets. High voltage is supplied by a neon-sign-type transformer delivering 5,000 to 10,000 volts at not more than 10 ma . The rectifier tube is a WL-579-B. Equivalents such as the 72, 73, RK-705A, and 8013 may be used. The filament transformer must have good high-voltage insulation between its windings and should handle the rectifier tube used.
The current through the mixture decreases as the mixture cools, and the supply voltage rises to its peak value

Fig. 3-The materials are melted in the cup.
causing breakdown between the plate \(P\) and the cup. The dropping resistor R1 is included to prevent this breakdown. It consists of a number of small resistors connected in series and has a total value of about 50 megohms. One or more resistors may be shorted to adjust the yoltage. The filter condensers C1 and C2 have a total capacitance of about 500 \(\mu \mu \mathrm{f}\) and may be either air or mica types. The amount of capacitance is not critical.

Details of one type of cooker unit are shown in Fig. 3. Its base is made from \(1 / 4\) - or \(1 / 2\)-inch sheet aluminum. An elec-tric-iron heater element is mounted on the underside of the base and held in place with another sheet of aluminum.

Bushings support a mycalex strip which holds the plate. The strip is drilled and tapped at center for 8-32 threads. One end of a brass rod is threaded for an 8-32 nut. The other end is turned down and threaded for a 2-56 nut. The plate \(P\) is an aluminum disc about \(11 / 4\) inches in diameter and \(1 / 16\) inch thick, drilled and tapped at center for \(2-56\) screw. The cup is an aluminum drinking cup 2 inches in diameter and

Fig. I-Experimental set-up of one type of equipment used in the construction of electrets.
cut down to \(1 / 2\)-inch height. Spring clips hold the cup firmly to the base. The cooker unit is simply a method for providing heat to a container holding the wax and a variable means for contacting the mixture, so you can change its construction any way you desire. The various electrical units should have separate switches so any desired operation can be selected. The writer has made several hundred electrets using sand pack, oil bath, gas heat and infrared, but prefers the type of heater shown here.

\section*{Materials for electret-making}

The minimum naterial for making electrets consists of 1 pound of carnauba wax, 1 pound of resin, 1 pound of aluminum foil about .001 -inch thick, a small can of silica gel or other dehydrant, and a quart can in which to keep completed electrets. Cut off a piece of foil and force down into and around the inside of the cup. Work smooth to remove wrinkles. Also wrap foil around the plate that is to contact the wax. The foil keeps the mixture from adhering to cup and plate, allowing easy removal. It can be stripped off later. Shave off about 2 teaspoonfuls of carnauba wax and resin. Place cup in position, run plate up out of way, and turn on only the heater.

Fig. 4-Cross-section of melt ready to form.
Drop small quantities of the wax into the cup and stir the mixture with a rod as it melts. The depth of the wax should be about \(3 / 16\)-inch for trial. Run the plate down until it contacts the melted wax. Connect the plate to the positive side of the high-voltage supply and the base to the negative side. The wax will wet the foil on the plate and allow backing up so that our final contact is about as shown in Fig. 4. Turn off the heater when the wax is thoroughly melted. Let the filament heat 15 to 30 seconds before applying plate voltage. The mixture should jump perceptibly when the high voltage goes on. If sparks break across from cup to plate, more resistance should be added to R1. Allow wax to cool to room temperature with voltage on. This should take 45 minutes to 1 hour. If for any reason you are dissatisfied with the product, remelt and remake. If the edges of cup are bent slightly, the cooled electret will break free and can be removed. Unscrew plate from rod and pry the electret off the plate with a knife blade. Strip off adhering foil and wrap in new foil. Place in the can-in which \(1 / 2\)-inch of silica has been poured-until ready to test.

\section*{Testing electrets}

The electrometer, a laboratory instrument, is the proper meter for testing electrets. Such meters are not generally available so other methods must be considered. The discharge test, as described here, can be made without cost and will

Fig. 6-A collection of typical electrets. Charge is preserved by foil "keeper" (No. 1).
reveal whether an electret is good or bad. To make this test, cut a dise of brass about .010 -inch thick and slightly larger in diameter than the electret. See Fig. 5. Place the electret on a metal sheet (shown in Fig. 5 as collector) resting on a block of insulating material. Hold the collector about 2 inches above the electret so that, when dropped, it will hit flat with the triangular part overhanging the electret coming in contact with the metal plate. What happens is that the collector, when dropped, travels through the electrostatic field, collects a charge which builds up, and is discharged when the triangle point contacts the metal plate.

\section*{HOW TO MAKE AN ELECTRET}

A standard formula for electrets is Carnauba wax \(45 \%\), white resin \(45 \%\) and white beeswax \(10 \%\).

Note that the collector has been cut with the triangular piece slightly longer than the thickness of the electret and bent down at an angle. The triangle section should be bent in or out for best spark action. This test must be made in the dark. Test both sides of the electret; one side will no doubt give a much heavier spark than the other. This is normal. Generally the heavier spark occurs on the negative side. The spark method is perfectly satisfactory as it indicates good or bad and, by the strength of spark, the comparative difference between electrets. A vacuumtube voltmeter with an impedance of at least 1,000 megohms can be used and is of value for indicating positive and negative sides of an electret. This is a special type of instrument, however, and cannot be described in this article.

The wax mixture used by the writer
is composed of equal parts of carnauba wax and Halowax. Halowax can be secured from the Halowax Products Division, Union Carbide and Carbon Corp. The addition of the Halowax gives an ivory-white finish, with good shrinking properties, allowing easy removal from cup. The electret should have a high melting point to be of more general use. It is advisable to experiment with various kinds of plastics and waxes that have a high melting range. Glass has been suggested as a medium and preliminary tests show some conductivity. The actual arrangement of the furnace, electrodes, and leads is a serious problem for the experimenter.

It may be that actual conductivity is not important as the electrical stress will no doubt give the proper orientation. So far tests indicate that the electret must have a fairly hard and brittle finish. Likewise some carnauba wax, even though in minute quantity, must be included in the mixture. Some component of carnauba wax forms under the electrical stress the permanent characteristic of an electret, but just what this, element is is not known. Electrets

Fig. 5-Simple electret-festing equipment. made without carnauba wax show only a temporary charge. It has been suggested that the carnauba shrinks when cooled, developing high internal stress resulting in a piezoelectric effect. This theory (if correct) indicates that certain kinds of glass should become electrets under proper treatment.
(Continued on page 82)

\title{
Electronic Visibililty Meter
}

\section*{This device measures the air's clearness}

\author{
By S. R. WINTERS
}

NDICATING the approach of fog six hours before the human eye sees it, this device designed by the National Bureau of Standards is a promising safety device for airports. It also can give reliable indication of the lifting of fog long before the naked eye can detect such clearance. The device can likewise control glaring approach lights and fogdispersal apparatus at airfields and may have many other uses.

The Bureau of Standards calls this equipment a transmissometer. It is a four-in-one piece of apparatus-a light transmitter, a phototube receiver, an amplifier, and an indicator. This electronic gadget operates on the principle that the amount of light reaching the receiver from the transmitter is determined by the thickness of the fog or other obscuring atmospheric condition. The distance between the transmitter and receiver may be varied, but in practical tests good results have been achieved at ranges varying from 400 to 4,000 feet.

The transmitting unit has a 6 -volt, sealed-reflector lamp, with a candlepower of 350,000 , which differs from a sealed-beam headlight only in its cover and filament. The brilliancy of the light is controlled precisely by a voltage-regulating transformer. Adjustments are made by a series rheostat.

The receiver includes a lens, a diaphragm, a photo-pulse unit, and an amplifier. Light from the transmitter, focused by the lens on a pinhole in the diaphragm, falls on the phototube. The receiver develops voltage pulses at a frequency directly proportional to the intensity of the light falling on it. These pulses are amplified and sent over a signal line to the indicating unit. Frequency of these pulses ranges from 60 per second in fair weather to one every 20 minutes in thick fog.

The indicator consists of a two-stage amplifier, a frequency-measuring unit, and a calibrator. Since the latter operates from a standard power line, the calibration frequency is 60 cycles per

The receiver. Phototube and lens is at left. Telescope is for sighting.

Transmitter consists of an auto-type lamp and means of regulating it.
second. The two-stage amplifier boosts and sharpens the incoming pulses, as well as cutting down noise picked up by the transmission line. The frequency meter levels and averages these pulses, thereby giving a reading directly proportional to the pulse frequency which is proportional to the transmission of the atmosphere between the light source and the receiving unit.
The indicator unit affords both dial readings and a record on a revolving drum, and can operate as far as 10 miles from the receiver. This flexibility

How the transmissometer equipment is set up. permits installing the indicator in the airport control tower and also the use of more than one transmissometer to "finger" across various sectors of the airport, while having the various indications converge at a single point for central observation.
Experimental units of the transmissometer are in operation in studies on fogdispersal measures, glaring approach lights, visibility, and airport lighting equipment. Five are functioning at the Joint Landing Aids Experiment Station at Arcata, California. Others are in use at the Civil Aeronautics Administration's Experimental Station, at Indianapolis, Indiana, and at the Naval Air Test Center of the Bureau of Aeronautics, for visibility and airport lighting equipment tests; and at the Tiffany Foundation, at Long Island, N. Y., under guidance of the National Defense Research Council.
The Bureau of Standards lists six main uses for its electronic brain-child in aviation: (1) for controlling highintensity apparatus; (2) as a supplement to routine visual observations by a continuous record of atmospheric conditions; (3) as replacement for visual observations where trained observers or satisfactory lights are not present; (4) as a means of giving accurate indication of visual ranges over a limited area remote from the observer, especially in an approach zone; (5) as a method of registering variations and rate of change conditions of visual range; and (6) to afford precise indications of the visual ranges when visibility is poor.

\title{
Noise Reduction In A. F. Circuits
}

\author{
By I. Queen, w2OUX
}

MODERN phono pickups, amplifiers and reproducers have excellent fidelity throughout the audio range. Unfortunately, hiss, scratch, hum and other background noises usually accompany the desired sounds to spoil what is otherwise life-like reproduction.
No circuits have been designed that can eliminate noise completely without affecting speech and music. It is possible to attenuate certain types of noise greatly with negligible effect on the signal. Two types of noise reducers are now used in ligh-fidelity phonograph reproduction and broadcasting. Each is capable of causing as much as 20 db drop in background noise.

Possibly the better-known type of noise control is the Dynamic Noise Suppressor. It is a development of Hermon Hosmer Scott, and is already in commercial use on a number of high-class audio amplifiers and radio-phono combinations. It is an electronic control that automatically adjusts the band width of an amplifier in accordance with the frequency of the incoming signal.
With no signal, two electronic gates limit the amplifier pass-band to about \(250-1500\) cycles. One of these limits highs, the other lows. Since hiss and scratch are high-frequency components and rumble and hum are very low-frequency noise, the amplifier will be quiet in this condition.
The high-frequency gate operates only on high frequency signals. This extends the upper limit of the amplifier passband. Low frequency signals operate the other gate to extend the low-frequency range. Between musical notes or words the band-width narrows again.

Dynamic suppressors are available in several models. They range from complicated 15-tube circuits for broadcasting to simple 3 -tube affairs which give excellent noise reduction with good response for home phonograph reproduction. Fig. 1 is the schematic of the latter model.

The first tube is a 6SQ7 voltage amplifier whose diode plates are used to provide control voltages for the two 6SJ7 electronic gates. For convenience the diode plates are shown as independent rectifiers, D1 and D2. The triangular component of each rectifier is in each case the 6SQ7 cathode.

The first GSJ7 is a capacitive-reactance tube. Condensers connected between its plate and control grid, and the high resistance between grid and cath-
ode, cause the plate voltage to lag the plate current by 90 degrees.

\section*{Operation of the gates}

The a.c. component of the 6SQ7 plate current flows through the control filter and high-frequency control circuit and is rectified by one of the diode plates (shown as the rectifying element D1). Fundamentals of desired high frequency components are filtered out and applied as varying bias to the control grid of the first 6SJ7. The filter allows only a narrow band of frequencies near 3000 cycles to control the high-frequency gate. This band was selected because it was found to contain the fundamentals of most of the high-frequency harmonics whose inclusion is desirable for good reproduction. If higher frequencies were permitted to operate the gate, the highfrequency noise itself would be able to open the gate. This of course would nullify the action of the circuit.
The parallel-tuned circuit L1-C6, the inductance L 2 and the capacitive reactance of the first 6SJ7 comprise a lowpass filter. The varying grid bias causes a change in the tube reactance which changes the upper cut-off frequency. When this frequency is high enough, fundamentals and harmonics of highfrequency speech and music are transmitted through the amplifier.

The other 6SJ7 is connected as an

Courtesy Hermon Hosmer Scott. Inc. A multi-tube commercial noise suppressor.
inductive-reactance tube. This reactance -together with condenser C8 and the circuit capacitance-forms a high-pass filter with variable cutoff frequency, depending upon the instantaneous grid bias. The bias voltage is derived from D 2 , the second diode plate of the 6SQ7. After filtering, it contains only harmonics of low-frequency speech or music. Low-frequency noise such as rumble and hum do not operate the gate because these have negligible harmonics.

Several refinements are included in this suppressor. When \(S 1\) is opened, suppressor action is removed, S2 limits the amplifier frequency range for reproduction of very noisy records. S3 is a ganged push-button switch, added to demonstrate the effectiveness of the suppressor. When switched to B the circuit becomes a low-pass filter. High-frequency noise along with high-frequency sound components are attenuated.

\section*{Octave band transmission}

Another noise reducer, associated with Harry F. Olson, of the RCA Laboratories, is simpler than the dynamic suppressor in principle and operation, and requires no tubes. Howeyer, special band-filters are needed.

Output from a pickup, microphone or other source passes through two rectify(Continued on page 62)

Fig. 1-Highe and low-frequency gating circuits control the response of this suppressor.

\title{
Efficient 100-Watter
}

\title{
A transmitter which uses fev tubes and components to achieve good results
}

HERE is a 100 -watt transmitter that has much to offer, It is simple and straightforward in circuit design and the almost miniature mechanical layout and the care taken to insure good looks has resulted in a unit which rivals professional models. The input power runs between 100 and 120 watts. If higher power is desired, this little unit is capable of pushing any final amplifier up to the allowable power limit on any band, from 80 to 10 meters. Because of this last feature, no modulator was included as an integral part of the transmitter.
To be compact, the transmitter had to be built around a physically small tube which could handle the required power input safely. An HK-24 was chosen for the job because it meets the requirements of size and power and is also very efficient at high frequencies. The other tubes are: 6L6 crystal oscillator, \(5 \mathrm{Z3}\) low-voltage rectifier, and two 816 rectifiers for the high-voltage power supply. A block diagram of the transmitter appears in Fig. 1.
The 6L6 in a harmonic oscillator circuit (Fig. 2) gives adequate output to drive the final amplifier on the fundamental, second, and fourth harmonics of the crystal. Feedback is obtained from the divider circuit formed by C1 and C2. Initially, C1 should be adjusted to give maximum output when the oscillator is used as a harmonic generator, and all that is necessary afterward is to choose the appropriate crystals and coils for the desired band and tune the plate tank to either the fundamental or desired harmonic of the crystal. The \(60-\mathrm{ma}\) pilot lamp in series with the crystal serves as a fuse to prevent crystal burnout. It should glow dimly when the oscillator is operating straight-through and should barely light or not light at all during harmonic operation.

Keying is in the oscillator cathode return to ground. The note is clean and free from clicks and chirps, even on harmonics. The .01 cathode condenser bypasses the r.f. to ground when the key
is plugged into the jack. Omitting it will cause an appreciable loss of output, but, if c.w. operation is not desired, it may be omitted.

The oscillator is capacitance-coupled to the HK-24 final and provides sufficient drive on all bands. This type of coupling eliminates one tuned circuit, and is convenient to use.

The tank circuit of the final amplifier uses a 2,500 -volt blocking condenser, which removes much of the danger of arcing in the split-stator tuning condenser. The neutralizing condenser is very small. It is actually one of the early disc-type neutralizing condensers de-

Fig. 1-A block diagram of the transmitter.
signed for use with 6L6's. The disc plates are the size of a quarter, and proper neutralization takes place with the plates set from \(1 / 2\) to \(3 / 2\) inch apart.

To avoid using fixed bias, a resistor is inserted in the filament return of the final amplifier. It provides sufficient cathode bias to limit the plate current to a safe value. This method is more convenient than battery bias, and the actual loss in plate voltage to the tube is less than 50 .

A multitap modulation transformer is mounted on the chassis between the oscillator and final amplifier power supplies. The transformer taps were selected to match the final amplifier's impedance (between 9,000 and \(10,000 \mathrm{ohms}\)) to a \(500-\mathrm{ohm}\) line. The \(500-\mathrm{ohm}\) line terminals are brought out to a 5 -prong female connector at the rear of the chassis. With this arrangement any audio amplifier which can deliver about 30 watts and has a 500 -ohm output connection may be employed.

In case a separate modulator is de. sired, the transformer may be used to match the impedance of the modulator tubes to the final amplifier. The transformer may be left mounted on the transmitter chassis and the modulator plate leads run to it through the 5 -prong connector at the rear of the transmitter chassis.

The oscillator power supply delivers 350 volts to the oscillator under a load of about 60 ma . The bleeder resistor across the output also acts as a voltage divider to supply 250 volts to the screen of the 6L6.

The final power supply uses a pair of 816's in a full-wave rectifier circuit. The plate transformer's rating is 1,800 v.c.t. at 250 ma and the filter choke is also rated at 250 ma . Since the current drain is 100 ma under full load, the voltage at the plate of the final amplifier is slightly over \(1,000 \vee\) (measured). The filter condensers are \(8 \mu \mathrm{f}, 600\) working-volts each, and as the pairs are series-parallel connected they can easily handle the output of the rectifiers. A bleeder resistor is included to insure condenser discharge.
The metering and control circuits provide flexibility of operation, and the maximum utilization of the one panel meter. S1 is the a.c. line and filament switch. A 2- to 3 -ampere fuse will, in the main line, give adequate protection. Switch S2 closes the center tap return of the high-voltage winding to ground

Compactness of the equipment is shown here.
in the oscillator power supply. It allows operation of the oscillator only when initially tuning up and also allows checking the frequency of the transmitter when listening to the receiver. Switch S3 is used in the initial tuning of the final amplifier. When it is on, a resistor is inserted in the primary lead of the high-voltage plate transformer to \(r e\) duce the voltage on the HK-24 for tuning. It also energizes the relays Ry 1 and Ry 2. Throwing S3 to the off position after tuning has been completed shorts out the resistor and permits normal operation.

Switch S4 is the master send-receive switch. In the on position, high voltage is applied to the oscillator and power amplifier. It also connects the antenna to the transmitter (through Ry 2) and silences the receiver (through Ry 1). This system can readily be adapted to break-in operation.

S5 is a 2 -pole, 3 -position switch which connects a 150 -ma meter across \(50-\mathrm{ohm}\) resistors inserted in the oscillator plate and final grid and plate circuits. The different currents may be read by merely rotating the switch to the desired position. The resistors do not affect the operation of the circuits in any way.

To neutralize the transmitter, turn it on and tune the oscillator to resonance. With the final plate voltage off, rotate the final plate tank condenser. If the HK-24 is not neutralized, the grid current will vary. Adjust the neutralizing condenser, and again rotate the tank condenser while watching the grid meter. The amplifier is neutralized when turning the tank condenser causes no change in grid current.
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{4}{*}{Band
(m. \({ }^{3}\))
7.5
14
28} & Table 1 Oscillator Coils & \multirow[b]{4}{*}{Induct(mh) \(\begin{array}{r}1.6 \\ 5.7 \\ 1.5 \\ \hline .7\end{array}\)} \\
\hline & & \\
\hline & 16, No. 166 & \\
\hline & \(4 . \mathrm{No}\) & \\
\hline
\end{tabular}

The HK-24 tank coil is designed to work properly into a low-impedance line. A doublet antenna fed with co-axial cable or a folded dipole fed by 300 -ohm twin lead will give good results. In any case, the output of the transmitter may be link-coupled to a universal antenna tuner and used with any antenna. Coil data for the transmitter is given in tables I and II.

Load the transmitter till the final's plate current reads 100 ma . The input is about 100 watts with this amount of current. The oscillator plate current should be about 50 ma and the HK-24 grid current between 20 and 30 ma.

Fig. 2-The circuit is simple for a 100 -watter. Provision is made for external modulation.

\section*{Amplifier Uses 6AD7 Inverter}

THIS is the circuit of a good-quality phonograph amplifier with a total of 4 tubes. The amplifier uses a 6SJ7, a 6AD7, and a 6F6. The pentode section of the 6AD7 is driven directly by the 6SJ7 preamplifier. The triode section acts as a phase inverter and amplifier for a small portion of the signal from the 6SJ7 which it applies to the grid of the 6F6. Push-pull operation is thus obtained with a minimum of parts.

A low plate load resistor in the 6SJ7 stage insures good high-frequency response, and the \(8-\mu\) decoupling condenser provides a slight low-frequency boost as its increasing reactance increases the effective load resistance for these frequencies. Separate attenuators are included for adjusting the lowand high-frequency response. The .005 \(\mu f\) condensers from the output plates to cathode are for absorbing sharp peaks A small amount of inverse feedback is provided by the 3 -megohm resistors from the plates of the output tubes to the driving plates to correct any distortion in the output

The output transformer has a plate-toplate impedance of \(10,000 \mathrm{ohms}\) to match the impedance of the output tubes.
The tuner used with this amplifier is a conventional superheterodyne.

A d.p.d.t. switch is mounted on the amplifier chassis to switch the amplifier from the tuner to the phonograph pickup as well as cut off the B-plus supply to the tunner.

Careful layout is important. The transformers are placed for minimum hum pickup, and filament leads are twisted and run in the angles of the chassis. All the ground leads from each stage are returned to a single point. To prevent feed-back the grid and plate leads are short and well separated. and to improve speaker damping.
A 6 -inch and a 12 -inch PM speaker are used for full-range reproduction. The small speaker operates on the higher frequencies where the reactance of the \(4-\mu f\) coupling condenser in series with its voice coil becomes negligible.

Component
placement can be seen through the plastic case.

WITH so many monitors and signal generators on the market, this three-purpose oscillator makes its bid for fame only through its ultra-midget size.

As a simple signal generator, or as a monitor with phones in the circuit, it radiates a signal with terrific sock on any plate supply above seven and onehalf volts. Its possibilities for \(c\).w. with a key in the circuit are very interesting with B supply as high as 180 volts. The midget can also be used to calibrate crystals. The job has been tested on

The crystal oscillator as it appears in use.

\title{
Miniature 3-Use Fixed Oscillator
}

By WILLIAM LYON McLAUGHLIN
fundamentals and harmonics to 30 mc , so will obviously go much higher.

The circuit is the well proven Pierce oecillator, similar to the "CGQ" used by the U. S. Navy during the war.

The Raytheon CK-507-AX was chosen because of its small size as well as its output possibilities. The Burgess K20 Bbattery was used because of space requirements. The little ceramic condensers were used for the same reason.

Requirement number one is a transparent, plastic, standard-brand cigarette case. Upon completion of the unit the case is not completely closed. The cover is permitted to overlap the body by a little over one-eighth of an inch. The two parts are held firmly together by drilling three small holes in the case and cover and fastening them with the smallest possible brass wood screws. No screw is used on the end where the Bbattery is placed.

At one end of the cover, immediately above the B-battery, a plastic-bodied crystal holder adapter has been placed. Its contact pins have been cut down to about \(5 / 16\)-inch in length. Three holes are drilled in the cover: two for the pins and one in the center for engagement. This last requires a matching hole to be drilled and threaded in the crystal hold. er. The author used a 6-32 screw which is screwed up from inside the cover.

The smallest possible r.f. choke is then mounted inside the opposite end of the cigarette case cover, as close to the top as possible. It is well to solder the \(10-\mu\) af condenser and the leads to the choke before mounting it in the cover.

On one side of the cover, free from either the choke or the B-battery, a binding post is located. This supports the antenna, which is made from a piece of heavy wire shaped like an \(L\), so that when not in use it can be dropped down alongside the case.

A Wirt sliding contact double-pole double-throw switch is mounted at one

Schematic follows that of the Navy's "CGQ."
end, bottom, of the case, opposite the \(B\) battery. The ears of the switch are bent. ninety degrees to the body and drawn through slots cut through the end of the case as close to the side walls as possible. The ears are then bent around to hold the switch firmly against the case. Even though only one side of this switch is used it was chosen because it was the smallest available. It is well to remove the lugs on the unused side and then cut the remaining lugs down to a size that will permit soldering on the leads. To allow for the movement of the switch button an oblong hole one-half inch long and onequarter inch wide must be cut.

Two \(3 / 32\)-inch holes are drilled \(3 / 16\) inch above the switch for the Fahnestock clips. The boss running up the end of the case will allow ample soparation. As the width of the boss is about .08 inch the actual linear distance against current creepage is better than \(1 / 8\) inch.

The jumper can be made from a piece of hookup wire, twisted and soldered at one end to provide easy manipulation. This also permits attaching it to some point on the case to avoid mislaying it.

The tube pins are cut down to less than one-quarter of an inch. Pins \(P\) and G2 are soldered together. When assembly is completed the tube will be upside down next to the penlight cell and midway between the switch and B-battery. Care must be taken when closing the case to see that tube pins are kept about \(1 / 32\)-inch from the lug of the choke.

All parts are referred to in the two views.

\title{
Laboratory-Type Oscillators
}

\author{
By, WILLIAM B. MILLER
}

SOME oscillators for use in the laboratory are very elaborate, using 10 or more tubes, crystal control and regulated power supplies. A few are extremely simple, like the Hummer used to supply tone for an a.c. bridge. This is a tuning fork kept in operation by an electromagnet. The magnet current passes through the primary of a transformer, while contacts on the fork make and break the circuit.
A laboratory oscillator is required to have better than ordinary stability, freedom from unwanted harmonics, and as pure a sine-wave output as possible (unless special types of wave forms are needed for specific purposes).

An often overlooked cause of frequency shift is the relative phase of the grid-cathode and plate-cathode voltages. This relative phase shift-brought about by changes in tube electrode voltagesshifts the oscillator slightly off resonance so that the tank circuit may produce a compensating phase shift. Voltage regulation prevents this trouble. Other ways are equally effective and less expensive, although regulation is much used.

The tank circuit should have a low L-C ratio, and the grid and plate tunedcircuit inductances should have maximum coupling in feedback and Hartley circuits. Sometimes phase shift between the fube and tuned circuit occurs if grid or blocking condensers have insufficient capacitance or if shunt-feed chokes have too low an impedance.

Frequency also varies with temperature. For this reason tank circuits should not be close to large resistors or other heat-producing components.

\section*{The dynatron circuit}

The dynatron oscillator (Fig. 1), if provided with automatic amplitude control, is an excellent circuit for laboratory use unless frequencies higher than 50 or 60 megacycles are wanted. It is a

Fig. 1-Dynatron-early laboratory oscillator.
negative-resistance oscillator and depends on secondary emission from the plate for its operation. The screen grid is at a higher potential than the plate. In operation, an increase in plate voltage causes a decrease in plate current. This is a condition of negative resistance. Secondary emission from the plate creates this effect. The potentials on the grids (control and screen) control the number of electrons reaching the plate, while the plate voltage determines the velocity with which they strike it. The
higher this velocity (within the practical limits of operation) the more secondary electrons are liberated by the primary electrons striking the plate. These secondary electrons are drawn to the more positive screen. The effective plate current is the difference between the electrons from the cathode and the secondary ones lost to the screen. When the secondary emission is greater than the cathode emission an increase in plate voltage may cause a decrease in plate current, a condition of negative resistance.

If a tank circuit whose parallel resonant impedance is greater than the actual value of the negative resistance is connected to the plate, oscillation will occur. The amplitude may be varied by changing the control-grid potential. By keeping the amplitude low, the harmonic content of the output wave can be kept small.

\section*{Transitron oscillator}

Another type of negative-resistance oscillator, the transitron (Fig. 2), is an improved dynatron. The main difference is the use of the suppressor-grid.

Fig. 2-An improvement over the dynatron.
It is negatively biased with respect to the cathode, and connected to the screen through a blocking condenser, so that its a.c. potential is the same as the screen's. A sudden increase in screen voltage raises the suppressor voltage, thereby permitting more electrons to go through it to the plate, usually maintained at a much lower voltage than the screen. These electrons are robbed from the screen current, with the result that the increase in screen voltage causes a decrease in screen current. If the screen (and suppressor) go negative, fewer electrons get through to the plate and more go to the screen. Again we have a condition of negative resistance, in which an increase in voltage causes a decrease in current, and vice versa.
Both the dynatron and transitron have frequency stability comparable to crystal-controlled oscillators that are not temperature-controlled.

Fig. 3-Crystal oscillators are stable.
The best frequency stability is obtained with a crystal-controlled oscillator (Fig. 3).

\section*{Crystal oscillators}

When a crystal is placed between two metal plates with a difference of potential applied to them, mechanical strains are set up in the crystal which cause it to produce an alternating voltage, of a frequency determined by the physical dimensions of the crystal itself. The bias resistor R in Fig. 3 controls the amplitude of the voltage through the crystal and prevents it from vibrating too violently. The \(Q\) of a crystal circuit is at

Fig. 4-The old familiar shunt-fed Hartley.
least 100 times that obtainable with commonplace capacitors and inductors. It therefore has a very sharp resonance curve, and it oscillates over only an extremely narrow range of frequencies. When its temperature is controlled with an oven, frequency variation can be kept within about two parts in ten million. Of course crystal-controlled oscillators can only be used for fixed frequencies.

A feedback oscillator is one that supplies its own input voltage of correct amplitude and phase. The Hartley (Fig. 4) is much used in the laboratory as it is easily adjusted, has excellent wave form, and oscillates over a wide range of frequencies. It is used particularly for audio and low radio frequencies. The tube, usually a triode, is operated as a class-A amplifier with self-bias.

Fig. 5-Wien bridge: ideal for audio work.
R in this circuit is the resistance stabilization adjustment; it improves the frequency stability and wave form considerably at the cost of some reduction in efficiency. Since a change in the plate resistance of the tube causes a change in frequency, resistor \(R\) (usually from two to five, times the value of the plate resistance) is high enough so that variations of plate resistance are of comparatively little consequence. Varying R controls the amplitude of oscillation.
(Continued on page 72)

\title{
12,OOO-TUBE \\ EIECTROCBPAln
}

\title{
A skilled mathematician with a desk calculator requires four years to do what the International Business Machines Calculator does in eight hours.
}

\author{
By A. PASCALE
}

WOULD you like to compute the position of the moon involving the equations shown below in seven minutes?
comitions used for comfuting tic position of me moon om tie ing selective seovence elctiome chleviator

```

        t = +07512127397 0+0.03660 1,02024460
            +0000000000000004 12905,
            400000000000000000000001077,
            +0.00001 10100 vin (0.53734 104-00000101044 17.
            40.0000006481 in (0.14222 +0000000000000025 272+000000 15252 M
    ```

```

            [ &o rems smmue to more meon mos l]
            [$0 rams smmak to mock ncovi fon t]
            [so mams sumae to moom hoovi for it]
            [# rums smean ro mose above ros i]
    h- [: nems umeae ro mose acove roe if
    LOmarver 1 - + 1290000 \&
12369.002+0.000000294 1-010] h +0.00131 的000
+32050.500(1.00000 2200) -n (f1)
+709.016 11.00000 2200+ 'm- (21)
-6511111-0.000000050320 \#1 vin tn
\$11.000/1.00000 2700 +130.97) hmP' in (2)
-0.010|100000 2200% (1-000000 00402 20 11, (12+3(+20)
\&{115 ressmacer to momenaeov}
0.022 \operatorname{min}10.0423601544+0.0001900331 8451 \#
+[ se2 navis 14211-0.00990 17070 2165 \&
\$00.00 (n.00000 2200) in nil
+[104 reves 2200] in (n/]
0.070 in 10.1354s 20204-0.0253s)
0.070 in 10.13545 20204-0.02525 54077 570] )
+(% nems smank to me ove Aove)
[14, trams smacal to nosi nocvi coe 1s)
[ 13 rams smmar to mosa abovicot 48,
c- - [ lm rems umeal ro mosi Abovi roe 1s )

```


```

                    +000005 3990 N)
    ```


```

            +0.0012 sin 107304204391+0 02405 pe5790131 #
    ```

 sommait of opemitons neodiald fol
 comptime and cerctimg owi position of tiz moon
ODOTS WN EASLC InPUT DATA ANO INSTMUCTONS .
aODTHONS AND SUBTHACTIONS.
muintucanows
Tans toon-UP ortantions
UNES OF SHOUENCE INSTRUCTONS RLOUREED

Yet it took only seven minutes, with the help of 12,000 electronic tubes, \(21,-\) 400 relays and 40,000 pluggable connections, all at the disposal of the scientist,
to work this problem on the IBM Selective Sequence Electronic Calculator. Without this machine it would have taken 3 weeks.

The entire machine is made up of card reading tubes, sequence tubes, sequence relays, table look-up (for consulting reference tables), relay memory, meters, control relays, power distribution, tape memory, arithmetical unit, sequence interlocks, electronic memory, printers, card punches, and card readers, in addition to the control desk and pulse generator shown on our front cover. These are all housed in a spe-cially-designed room, 40.6 feet wide \(x\) 86.6 feet long \(\times 14\) feet high, the walls of which are completely lined with panels of vacuum tubes and relays. These walls-with a number of pieces of floor apparatus, such as printers and control consoles-actually are the machine.

The calculating element of the machine adds, subtracts, multiplies and divides the numbers it receives. The machine can make 3,500 additions or subtractions of 19 -digit numbers in a second; 50 multiplications of 14 -digit numbers in a second, and 30 divisions of 14 digit numbers in a second. It has a storage capacity of 400,000 digits in tubes, relays and punched tapes. When punched cards are used for storage the capacity of operation becomes virtually unlimited.

\section*{Operation of the machine}

Instructions are given to the machine by the scientist on punched cards or continuous card-stock tapes. The tapes are prepared in one of two ways-either by the machine itself or with an auxiliary tape punch which transcribes data from punched cards. When the instructions are given on punched cards the numeri-
cal data is converted electronically from the original decimal form to the binarydecimal form in which each digit is represented by a combination of the binary numbers, \(8,4,2,1\), used by all the new giant electronic calculating machines.
As soon as the numbers are converted to the binary system, masses of neon lights carry on a fire-fly flickering at stupendous speed, while very intricate calculations are being made within the machine. The innocent onlooker is virtually overwhelmed by this display.
The machine follows the instructions on the cards or tapes and stores each intermediate result in a memory unit for later use in the course of the calculation. There are three means of storing numbers: electronic tubes (trigger circuits using 12SN7 tubes), relays and tapes. The relay and tape memory units are provided for general storage when large capacity is the dominant requirement. Electronic memory units are used in connection with the arithmetical unit where the need for speed predominates. But though the electronic system is more rapid, it cannot be used to the exclusion of tape and relay systems. If the present storage capacity of the machine, which is over 400,000 digits, were to be stored in electronic circuits it would be impracticable to house the machine in one building.
Not only does this machine add, subtract, divide and multiply, but it will also look up logarithm, trigonometric and other tables. If a table has to be referred to in the course of the calculation, the machine starts the tape of the desired table spinning. When the reference is reached, an electronic impulse stops it. The number then is stored in the memory section for future use.
The data for all computations and results obtained must flow to and from the arithmetical unit through any one of hundreds of channels throughout the machine, such as the reading and recording units and the great reservoir of stored results, Eight separate channels, each capable of transmitting simaltaneously 19 decimal digits and an algebraic
sign, lead to and from the arithmetical unit. Traffic is directed along these channels to and from the other units by IBM electromagnetic relays. One of these relays, which is slightly larger than a conventional vacuum tube, can change twelve independent circuits in a few thousandths of a second. For some special problems it may even be desirable to change the whole mode of operation of the machine. This can be done in a few minutes by means of automatic control panels. About 40,000 pluggable connections on these control panels can be changed in units in a remarkably short time.
Problem results may be recorded either in punched card or in printed

Punched-hole memory units use long tape rolls.
record form, or if desired, in both forms. Since the machine is being utilized primarily for research purposes and because calculation proceeds at such a high speed, it is necessary that the scientists know at all times what results are being obtained, so that modifying instructions may be injected whenever necessary. Provision was made, therefore, for the continuous printing of results throughout the calculation.

The console, or operation indicator and control desk (shown on the front cover) is used for keeping a check on the operation of the machine. Have you stopped to consider what an immense servicing problem it must be to locate a burned-out filament in this maze of vacuum tubes? The control desk is useful for trouble shooting. If a tube burns out, or anything else goes wrong mechanically, neon lights in the panel on the control desk assist the operator in finding and diagnosing the trouble. A check is then made in the faulty section, the trouble repaired, and the machine goes on with its work. Of course, the trouble will be discovered only when the machine has to make use of that particular panel in the course of the calculation.

The machine requires 180 kilowatts of electrical energy. All the alternating
current it uses is recitified by a large battery of rectifier tubes housed in cabinets in a room beneath the calculator. A large air-conditioning system is provided. It has a cooling capacity approximately equal to that required to air-condition completely a building containing 250,000 cubic feet of space. The system is capable of dissipating 200 kilowatts of heat.

The calculator is divided into three fire zones, each equipped with automatic temperature-detecting devices. Control of fire after detection can be either manual or automatic. Full release of the fire-extinguishing apparatus would discharge 32 tanks of \(\mathrm{CO}_{2}\) into the calculator units. The air conditioning and power supply would shut off automatically if gas were discharged. The instrument was built at a cost of \(\$ 750,000\).

Many branches of industry will be greatly aided by this machine. In certain commercial statistical fields calculations have to be made where complicated sequences of operations must be handled one at a time. The operations can be so speeded up as to perform calculations which now are considered impractical due to the amount of time that would be involved.

The scientist will be the one most aided by it. What once took scientists years upon years to work out, now can be done in a few hours, freeing him for further research.

Greatest of all may be the effect of this new computer on the progress of atomic research. By performing the complex and laborious calculations required in the study of the atom, it will be a dominant factor both in keeping this country well ahead of all competitors in the military development of the atom and in speeding the day when atomic power will be available to peace-

ful arts and industry.
But, it cannot, and never will, replace the human scientist as its purpose is only to follow his commands. If the incorrect instructions are given to it, it will follow them. The scientist is supreme over the great electronic calculator, which is his child to assist him in exploring the ever-profound depths of science.

As President Thomas J. Watson of IBM said: "This machine will assist the scientist in institutions of learning, in government, and in industry, to explore the consequences of man's thought to the outermost reaches of time, space and physical conditions."

The card reader through which problems and instructions are introduced into the machine.

Leff, Fig. 1-"The light with memory" and the secret transmitter. Above, Fig. 2-Miniature components are used in the construction.

\title{
This remote radio control has several practical applications
}

T has always been everyone's secret desire to press a button at one point and cause something to happen at another point. With the advent of radio control, this old dream became a reality. For example, model airplane construction has been combined with radio to produce remote-controlled planes which glide and turn in the sky -all at the whim of the operator on the ground.
An unusual application of radio control is the "light with a memory." The effect is startling even to those wellversed in radio. Briefly, the stage setting is this: A small wooden panel, with push-button, flashlight lamp, and batteries mounted on top, is shown. The batteries, push-button, and lamp are wired in series so that when the pushbutton is pressed the lamp lights. Pushing the button several times, say five, the "magician" waves his hand over the panel. Lo and behold! The light mysteriously blinks the same number of times as the miracle-worker pressed the button. Spectators are then allowed to press the button any number of times they desire, and the light-virtually a light with a memory-repeats the flashes!

The base of the panel is hollow and contains a complete radio control receiver. A compact transmitter in the operator's pocket is pulsed by means of a leaf switch concealed in a vest pocket. The lamp in the receiver flashes each time a pulse is picked up from the transmitter.
A photograph of the panel and base as the spectators see them is shown at the left in Fig. 1. The mechanical design was influenced by the special use to which the device was put. It was necessary that the unit be as flat and compact as possible, so that spectators would not suspect its existence. However, it is
fundamentally a standard radio remotecontrolled relay, and can be used in a variety of ways. The mechanical design can be modified to fit any particular application.
The push-button and miniature porcelain socket can be purchased in any electrical parts house, and the holder for the two penlight cells can be bought at a hobby supply store. The receiver with base removed is shown in Fig. 2, also at the left. Follow the placing of parts closely. The tuning coil consists of 14 turns of No. 14 tinned copper wire, wound to an inside diameter of \(1 / 2\) inch and spaced for an over-all coil length of approximately \(11 / 2\) inches. Fig. 3 is the

Fig. 3-Schematic of the miniature receiver. receiver schematic. The \(.05-\mu \mathrm{f}\) condenser is of a flat paper midget type and was obtained from a hearing-aid dealer. The \(100-\mu \mu \mathrm{f}\) condenser is a silver nica. An r.f. choke was made by winding a single layer of No. 32 enamel wire over a \(1 / 4\) watt, 1-megohm resistor and soldering the winding in parallel with the resistor. A Sigma 8,000 -ohm plate relay with s.p.d.t. contacts was used in a conventional self-quenching superregenerative detector circuit. Two Eveready Minimax No. 412-E \(221 / 2\)-volt hearing-aid batteries furnished the B-supply, and a penlight cell provided the A-supply for

\section*{By M. GORDON MOSES}
the miniature Raytheon RK-61 gas control triode.

Special attention is called to the unique rotary switch used to turn the receiver on and off. Shown in the upper right-hand corner of the panel, the switch consists of a \(5 / 8\)-inch diameter disc of thin hardwood with two silvered brass segments glued on at spaced intervals. Four silvered brass wipers act as contact arms. A sketch of this switch is shown in Fig. 4. One of the wood screws used to hold the miniature porcelain socket on the panel is a dummy, and is actually used as a shaft to rotate the special two-circuit switch. One set of contacts goes to the filament circuit of the RK-61 tube, and the other set is in series with the contacts on the relay. Closing the rotary switch turns on the receiver and puts the relay contacts in parallel with the push-button switch mounted on top of the panel. More conventional switches are obtainable as band-change switches for short-wave receivers.

The antenna lead of the receiver is a 2 -foot length of No. 22 d.c.c. magnet wire. Care must be taken not to bring any part of this lead too close to the tank coil and not to coil the antenna lead too much. The best arrangement is to run the lead around the inside of the hollow panel and bring the free end to

DIRECTION OF ROTATION

Fig. 4-This switch operates the receiver.
rest between the B-batteries. If concealment is not necessary, it can be led
(Continued on page 81)

\title{
Radio Set amal Semoice Rewiew
}

\section*{Midget television prequmplifier}

THE great popularity of postwar television has caused many sets to be installed in areas where signal levels are not high enough for clear, stable pictures. In some instances set owners are further handicapped by not being able to put up adequate antennas. Very often weak signals can be boosted to satisfactory levels by inserting a preamplifier between the antenna and the antenna terminals of the set.
Several television preamplifiers are being made by various manufacturers and a number of independent servicemen -all of whon treat their circuits as trade secrets. All these preamplifiers use one or more stages; some require tuning and others do not. Many of these boosters, like the one we are about to describe, were designed from material appearing in the article, "Cathode-Coupled Wide-

Under-chassis view, showing part placement.
Band Amplifiers," in the October 1945 issue of the Proceedings of the I.R.E.

Our booster, a 6J6 grounded-grid amplifier designed to operate on channels 1 through 6, amplifies the antenna signal two to four times while providing a substantial improvement in signal-tonoise ratio. It has several advantages. It does not require manual tuning; it is small enough to fit on the chassis or inside the cabinet of almost all television receívers and it does not require a special power supply.

\section*{The grounded-grid omplifier}

The grounded-grid amplifier used in this circuit was developed to avoid neutralization when using high-frequency triode amplifiers. (See Radio-Craft, Nov., 1947, P. 32). The input signal is applied between cathode and grid, and the output voltage is developed across a load between plate and grid. The grid, either grounded directly or through a suitable bypass condenser, acts as a shield between the input and output circuits, thus forestalling oscillations until
the input frequency is so high that the grid lead has appreciable impedance.

The grounded-grid amplifier has several advantages, which make it useful as an untuned r.f. amplifier between the antenna and televiser. These are: Lower tube noise, output capacitance less than one-half of that of a conventional neutralized amplifier, and low input capaci-tance-a necessity for high transconductance. The low input and output capacitances result in greater band-width without manual tuning.

\section*{Construction}

The circuit of the grounded-grid preamplifier is shown in Fig. 1. It is constructed on a chassis \(21 / 2\) inches square and 1 inch deep. The three terminal strips are for input, output and power connections. Filament and plate voltages are taken from the low-voltage supply of the set.

The tube is a 6J6 with its triodes connected in parallel. The cathode and plate coils are wound so that combinations of distributed and circuit capacitances tune them to cover the first six television channels. The antenna transformer is mounted on a bracket near the input terminals. The output transformer is fastened to the chassis with a machine screw threaded into one end of its form.
The primary of the antenna transformer is designed to match a 300 -ohm balanced transmission line, It is an 8turr winding tapped at the center. The cathode coil has five turns interwound with the primary. The output transformer has a 10 -turn plate winding with a 2 -turn output link interwound at its lower end. Both transformers are wound with No. 34 enamel wire on \(5 / 16\)-inch polystyrene tubing. All coils are closewound. Use \(300-\mathrm{hm}\) twin-lead between the preamplifier and the antenna terminals of the set.
The unit is so simple as to make it unnecessary-and almost impossible-

Fig. 1-The grounded-grid circuit is used.
to give any further construction details. An almost slavish adherence to original RCA developr:ent illustrated in the I.R.E. Procccdings, in regard to placement of parts, size of chassis and manner of making connections has been observed in more than one successful model. The constructor would therefore

The preamp's dimensions are cigarette-size.
probably be well advised to follow the photograph closely-at least in his first model.

\section*{V.T.V.M. CALCULATIONS}

THIS method of calculating the resistance values in a voltage divider may be useful to the serviceman who wishes to build his own vacuum-tube voltmeter. As an example, assume that the desired ranges are: \(3,15,150,300,600\),

and 1,200 volts; the total input resistance is 10 megohms; and 3 volts are required on the grid of the tube for fullscale deflection. For the 1,200 -volt scale, divide 1,200 volts by 10 megohms to find the current through the resistor A:
\(1,200 / 10 \mathrm{meg}=.00012 \mathrm{amp}\).
Dividing the 3 volts (required for full deflection) by .00012 amp gives the resistance as 25,000 ohms. This is the value of resistor A.

For the 600 -volt scale, the procedure is the same:
\(600 / 10 \mathrm{meg}=.00006 \mathrm{amp}\) (through resistor B).
Three volts divided by .00006 amp shows the resistance to be 50,000 ohms, which is the value of B plus A. Subtracting the value of A from 50,000 gives \(B\) as 25,000 ohms. By repeating the same procedure the remaining resistors are:
\begin{tabular}{ccr}
Scale (volts) & Resistor & Value \\
300 & C & 50,000 ohms \\
150 & D & 100,000 ohms \\
15 & E & 1.8 megohms \\
3 & F & 8 megohms
\end{tabular}

The total resistance is 10 megohms.

\title{
Phase Inversion Circuits
}

\title{
Part I-The transformer type of inverter, with some variations on standard circuits
}

\author{
By J. W. STRAEDE*
}

PHASE inverters are devices commonly used in amplifiers and large radios. Their purpose is to provide two equal but antiphase alternating voltages which are usually applied to the grids of push-pull output tubes. They are also used in electronic test equipment, including watt-meters, distortion meters and special types of oscilloscopes.

The signal voltage required by the following stage and the suitability of the system for use with negative feedback, are among the several factors that must be considered in the choice of a phase-inverter circuit. Power may also be required by the output tubes, as in class-AB2 operation, and, finally, the cost may override all other factors, no matter how desirable they might be.

Phase inverters are classified according to the way the signal voltages are fed from one stage to another. Classifications are: (1) Inductively coupled, (2) Resistance-capacitance coupled, and (3) Direct coupled.

The oldest form of inductively coupled phase inverter is the transformer with a center-tapped secondary, or with two secondary windings-one for each grid. Other inductive systems use a centertapped choke coil, and a transformer with no center tap but with the secondary voltage divided by a pair of equal resistors. These three circuits are shown in Figs. 1, 2, and 3,

\section*{Transformer coupling}

Biggest drawbacks to the use of transformers are their cost, liability to hum pickup, and imperfect frequency response. Hum can be reduced by mounting them away from power transformers and chokes and by rotating them until a position of minimum hum is found. High-frequency peaks can be reduced by shunting the secondary with resistors (about \(1 / 2\) megohm), while things can be improved generally by using negative feedback in the driver stage.

\[
\begin{aligned}
& \varepsilon_{1} \div \frac{2}{\Gamma} \cdot \frac{\varepsilon_{0}}{\mu} \\
& \mu \doteq n \cdot \frac{\pi}{\mu}
\end{aligned}
\]

Fig. 1-Standard transformer-coupled circuit.
Advantages of transformer coupling are the large signal voltages obtainable, the low d.c. resistance in the grid circuits of the output tubes and its adapta-

\footnotetext{
Lecturer in electronics and electro-acoustice,
} Melbourne Technical Colleze, Australia.
bility for class-AB2 operation. In this case, the transformer usually has a step-down ratio to match the minimum grid input resistance of the next stage to the plate resistance of the driver. (Grid input resistance varies from values too large to bother about when the grid is negative to values as low as a few hundred ohms when the grid is very positive.)

Fig. 2-Inversion with single tapped coil
The gain \(M\) of the driver and the transformer is nearly equal to the product of the amplification factor and transformer ratio. The optimum grid bias Eg is \(\frac{2}{\pi}\) times the plate voltage divided by the amplification factor.
The center-tapped choke is a comparatively inexpensive device, but is full of faults, such as unbalance at very high frequencies, low response at very low frequencies, and low voltage output. It is still useful for compact car radios and small mobile amplifiers where only a limited frequency range is required. A good quality center-tapped output transformer can be used with fair results if it has enough inductance.

The low output voltage is due to the voltage drop across RL (Fig. 2), together with the drop in effective load impedance also caused by RL. If RL is decreased to avoid the first defect, the second defect becomes more pronounced. At medium to high frequencies, the gain M approaches
\[
\mu\left(\frac{R L}{R L+R p}\right)
\]
where \(\mu\) is the amplification factor of the tube, RL is the load resistance, and \(\mathbf{R p}\) is the plate resistance. The bass resonant frequency is given by
\[
f=\frac{1}{\pi V \overline{L C}}
\]

The gain then is
\[
\frac{\pi \mathrm{fL} \mathrm{~L}}{2 \mathrm{Rp}},
\]
where \(L\) is the inductance of the choke in henries, and \(\mathbf{C}\) is the capacitance of the condenser in farads.

\section*{Transformer with resistors}

A transformer with resistors (Fig. 3) is often used as a makeshift, but is quite capable of good gain and frequency response if the output tubes require no driving power and if high gridcircuit resistance is permissible. The two resistors must be as nearly equal as possible and must be large to prevent high-frequency loss in the transformer and to present a reasonably large load impedance to the driver tube. This im2 Rg
pedance is given by \(-n^{2}\), where \(n\) is the step-up ratio of the transformer. The gain to each grid is then \(\frac{n \mu \mathrm{Rg}}{2 \mathrm{Rg}+\mathrm{n}^{2} \mathrm{Rp}}\).

If the driver is a low-impedance tube such as a 6 C 5 and the grid resistors are each 0.5 megohm, the gain is very nearly equal to \(n \mu\) at mid-frequencies. At low frequencies the gain is 3 db down when the reactance of the transformer primary is equal to the plate resistance of the driver.

Fig. 3-How an untapped condenser is used.
A second article by Mr. Straede, in an early issue, will cover resistance-capacitance types of phase inverters.

\section*{PHONO PREAMPLIFIER}

I have a small superheterodyne using a 6A8, 6B7, 6K6, and rectifier. I tried unsuccessfully to add a phono attachment by connecting it to the grid of the 6K6. The output of the pickup was too low for use without a preamplifier. I removed the 6 K 6 and wired in a 6 AD 7

as shown. The triode section is used as a preamplifier for the pickup without altering the performance of the set Josemp Pritchard,
Hamilton, Ont., Canada

\title{
Servicing Wind Generators
}

Above-The Wincharger; left-Jacobs Wind Electric, two common battery-charging units.
of-balance prop will vibrate the plant and shorten its life considerably.

Check the track by measuring carefully from inner edges of each blade, from equidistant points from prop end back to a fixed point on the tower. Correct by again wriggling prop, or by slipping a shim between prop and haft. Out-of-track blades make whistling noises and reduce prop efficiency.
Be sure the unit is lubricated before placing in operation; some of these units are packed and shipped dry.

Now let her go and watch the voltmeter. If it reads backward, or if the relay chatters, disconnect before relay is injured. Your wires may be reversed. If the wiring checks O.K., the polarity of the unit may have been reversed at the factory. Run the generator as a motor for a few minutes by connecting the storage battery to it. In some cases closing the relay by hand will make this connection; in others it will have to be done with a jumper. Check the diagram furnished with each generator first. A typical 32-volt hookup is shown in Fig. 1 -the 6 -volt jobs are even simpler.

Motoring the generator will not only correct the polarity of the generator but will also give you a general idea of the condition of the unit, whether or not the circuit is complete, etc.

\section*{Servicing established units}

Complaints fall into 2 general catagories: lack of immediate power, or insufficient power over a period of time.

If there is no power, first check the controls for proper adjustment, then run an ordinary continuity check up the
leads through the slip rings and slipring brushes to the generator proper. Check the position of the third brush, if the model has one. The brush may have slipped back. Check the other brushes for seating and tension. The commutator should have a dull-brown oxide sheen. If it is lightly scored, it may be repaired by holding sandpaper against the commutator and turning it. If the commutator is deeply scored, it will have to be turned down on a lathe. Light or deep scoring indicates hard spots on the brushes. They should be
(Continued on page 76)

Fig. 1-Circuit of the Wincharger Model 3227.

\title{
Wobbulated Signal
}

\section*{A signal generator of this type is necessary for visual alignment of AM receivers}

THE versatility and true worth of an oscilloscope cannot be fully realized until you have actually had such a device on your bench for some time and used it for servicing or development. Perhaps the most important of these applications is visual alignment of receivers, requiring a fre-quency-modulated sweep generator or "frequency wobbler." The frequencymodulated signal generator described

\section*{Theory of operation}

Three operations are carried out in the frequency-modulated oscillator. An r.f. signal is generated; second, the frequency of the signal is varied by a change in the effective inductance in the oscillator tuned circuit; and third, the change in frequency is automatically controlled between fixed limits.
The triode section of V4 (Fig. 1) with the tank circuit L-C18 forms a

Fig. 1-Generator schematic. Radio-frequency chokes are of the large 60 -millihenry type.
(Fig. 1) for use in alignment of AM receivers was developed and constructed by the author.

The following specifications were set up:
1. A center frequency variable from approximately 450 to 540 kc , giving an easily adjusted carrier frequency covering the i.f.'s of practically all modern AM receivers.
2. Frequency deviation adjustable from 0 to 30 kc . Such a maximum deviation will project the response curves of the i.f. and r.f. transformers in all AM receivers (including the high-fidelity ones) to zero response both sides of maximum.
3. Unit must be compact. Such a characteristic becomes a virtue on the average service bench.
4. Cost must be kept to a minimum.
5. Unit must be adequately shielded (as all good r.f. signal generators should be) to avoid radiation of unwanted signals to other equipment.

A separate power supply, connected to the wave generator by a multiconduc. tor cable, was considered desirable. First, magnetic shielding is simplified. Second, by making the unit a universal power supply, it becomes an extremely useful tool for other activities as well.
simple Hartley r.f. oscillator. For a detailed account of the theory of operation of the reactance tube V 3 , the reader is referred to any of the standard texts. We can simply say that varying the control grid voltage of the reactance tube controls its effective inductance and, consequently, the oscillator frequency. If a low-frequency alternating voltage, say at 60 cycles, is applied to the control grid of the inductance tube, the output frequency from the oscillator will swing from a maximum to a minimum value, and back again, 60 times a second. It is desirable that the frequency change be linear to time. Such a triangular or "pyramid" wave (Fig. 2) is obtained across the integrating circuit R8-C4 (bottom tap on switch S1). The output from V1, a sine wave clipped to an approximate square wave (Fig. 3), appears at top tap of S1. The pulse formed across the differentiating circuit R7-C2 is available at point 2 of S1, and at the Pulse binding post (see Fig. 4).
V2 is merely a cathode follower buffer stage, and the hexode section of V4 is a mixer for injection of a fixed frequency signal when desired.

\section*{How generator is used}

In visual alignment, the same series

\author{
By GeOrge w. SCHULTZE
}
of steps are followed as are used in the output meter method. The output of our wobbler is injected into the receiver at the usual points instead of the fixed frequency signal, and the oscilloscope takes the place of the output meter. The oscilloscope should be connected across the detector load rather than across the output transformer. The pulse output is connected to the external synchroniza tion post on the oscillostope. The oscilloscope horizontal sweep is set for 120 cycles per second, which results in the trace from maximum to minimum frequency being superimposed upon the trace from minimum back to maximum.
The center frequency control C18a is adjusted to the required center frequency. R2 is set at about two-thirds maximum. R10 is set at or near maximum. If the i.f. stage being checked is considerably out of line, the doubletrace response curve will appear as in Fig. 5. As the trimmers are adjusted to bring the transformer into alignment, the two traces will coincide, or approximately so, as shown in the oscillogram (Fig. 6). The shape of the response curve in the usual properly aligned transformer is of this general outline with a single smooth peak. High-fidelity receivers will have curves with a flat top or double peaks. During the above operations the frequency deviation control R10 should be adjusted to give a reasonably wide response curve without cutting off the ends.

The FM test signal is injected at the conventional points for checking the oscillator and r.f. circuits of the receiver. To obtain the necessary broadcast frequencies, a fixed-frequency signal from a conventional test oscillator is mixed in V4 with the FM signal to give the desired difference frequency. The response curves will be similar to those obtained from the properly tuned i.f. stages. The oscillator and r.f. adjustments are made for maximum height of response curve.
Whether the response curves will appear on the oscilloscope screen right side

Fig. 2-Normal pyramid (time-linear) wave

Fig. 3-Square waveform from the plate of VI.
Fig. 4-Differentiated pulse output from VI.
up as shown in the oscillograms and drawings in this article, or upside down, depends upon the number of stages in the oscilloscope vertical amplifier, the orientation of the cathode-ray tube, and at what point in the receiver the test signal is taken off.

\section*{Construction}

The FM signal generator was designed to go into a \(7 \times 7 \times 7\)-inch enclosure. The low-frequency portion (6SJ7 clipper and the 6J5 buffer) is mounted in a \(11 / 2\)-inch deep horizontal steel chassis. The r.f. section, including the sockets for the 6AC7 reactance tube and the 6 K 8 mixer, is contained in a \(21 / 2\)-inch deep sheet-copper chassis, mounted vertically on the back edge of the steel chassis. This is clearly shown in the photographs (Figs. 7 and 8). The copper box is bent from 22 -gage sheet, and the joints soldered. A copper back cover is secured with self-tapping screws. The same type of fastening is used to join the copper shield box to the bottom chassis. The panel can be either bakelite or (as shown) crackle-finish Masonite, \(7 \times 7 \times 3 / 16\) inches.

The power input socket, the binding posts, the potentiometers R2 and R10, and switch S1 are all mounted on the panel, as pictured below. The center frequency adjustment C 18 a and potentiometers R17 and R18 are located in the copper shield box with extension shafts extending to knobs on the panel. C18a must be insulated from the chassis by fiber washers, and the shaft couplings should be insulated. The five binding posts provide connections on the panel
for the FM output, r.f. input (constant frequency generator), ground, 60 -cycle wave, and pulse. The 60 -cycle wave post provides a convenient connection for checking the output of the clipper circuit, as well as affording access to the three types of wave form, as selected by S1, for other fields of use. As mentioned before, the pulse output is used to synchronize the time base sweep of the oscilloscope.

V3 and V4 are either metal tubes or externally shielded glass types. If metal tubes are used, be sure to ground the No. 1 pins (internal shield). This is especially important for the 6 K 8 mixer. The phase-splitting condenser C 7 is fastened inside the top edge of the copper box with a hole provided for external screw-driver adjustment. The center frequency range adjustment C 18 b is mounted to allow trimming through a hole in the back cover.

Bare, tinned wire is best for most of the r.f. wiring. All leads should be as short and direct as possible. All ground leads from V3 and V4 are brought to common single chassis connections. The tank coil \(L\) was wound on a \(7 / 8\)-inch outside diameter plastic cylinder \(21 / 2\) inches long. The base end of the form was plugged with a wood disc cemented in place. A hole for a 6-32 screw was drilled through the center of the plug and a hex nut cemented on the inside. The coil was then mounted on the side of the copper shield box with a counter-sunk head machine screw. The lead from R18 to the panel binding post was shielded in order to avoid low-frequency pickup. The 60mh choke RFC5 filters out any 60-cycle

Fig. 5-Trace from a misaligned i.f. circuit.

Fig. 6-The above circuit, properly aligned.
amplitude modulation present in the output from V4.

The panel is backed by an iron shield which provides an anchorage for the sheet-iron cover as well as magnetic (Continued on page 74)

Fig. 7-Top view shows placement of parts.

Instrument and power pack present a pleasing uniform appearance.
Fig. 8-Front view. Tubes mounted on subchassis are 6AC7 and 6K8.

\title{
High-Fidelity Amplifiers
}

Above is the Langevin 610-C, a typical example of high-fidelity audio amplifier design.

DESIGN of a wide-band amplifier calls for special compensating circuits to offset the drop in responsc at the high and low ends of the audio spectrum. As pointed out in a previous article (March, 1948), response begins to drop off noticeably at the high end of the band when the shunting capacitances present a reactance about five times as great as that of the plate resistance and the coupling and load resistors in parallel. Additional losses due tc degeneration in cathode and screen circuits can also occur.
These factors can be compensated for by careful design. Assume that an audio amplifier is to be designed to deliver 3.5 watts of power with response flat within 1 decibel from 20 to 20,000 cycles. Input is to be .015 volt r.m.s., and distortion negligible. Circuit may be that of Fig. 1.
The power amplifier selected is a 2A3, because it can deliver 3.5 watts without distortion. Specifications call for 250 volts on the plate, 45 volts cathode bias, and a 2,500 -ohm load. Transconductance is 5,250 micromhos.

Manufacturers recommend that the peak a.f. signal on the grid of a class-A power amplifier equal the d.c. grid bias. Therefore we must supply a 45 -volt signal to the 2 A 3 grid. A 45 -volt signal on the grid of this tube develops 132 volts peak across a 2,500 -ohm plate load resistor with a stage gain of 2.93 . The peak voltage across the load is found

\section*{from \(E_{\text {peak }}=1.414 \sqrt{\mathrm{~W} \times \mathrm{Z}}\), where W}
is output power and Z is load impedance. (The stage gain is equal to output voltage divided by input voltage.)
Our restriction to \(1-\mathrm{db}\) loss corre-
sponds to a voltage ratio of \(0.8913 / 1\) or \(89.13 \%\) and indicates that the signal at any point in the amplifier must be always within \(89.13 \%\) of its value at midband.

\section*{Circuit constants}

A 750 -ohm cathode resistor will provide 45 volts of bias under recommended operating conditions. This resistor must be bypassed with a condenser with sufficiently low reactance to limit cathode degeneration so output voltage will not drop below \(89.13 \%\) of 132 , or 117.7 volts. At this level, the stage gain \(G\) is 2.6. Since gain with degeneration \(G\) is

\section*{G1}

\section*{\(1+\mathrm{gmZk}\)}
generation, gm is transconductance in mhos and Zk is cathode impedance, we may transpose the equation to solve for Zk:
\[
\begin{aligned}
& \mathrm{Zk}=\frac{\mathrm{G} 1-\mathrm{G}}{\mathrm{G} \times \mathrm{gm}} ; \\
& \text { substituting, } \\
& \mathrm{Zk}=\frac{2.93-2.6}{2.6 \times .00525} \\
& \mathrm{Zk}=23.03 \mathrm{ohms}
\end{aligned}
\]

\section*{Second of a series on wide- \\ band amplifier construction}

\section*{By ROBERT F. SCOTT}

Since the impedance of the parallel combination is to be about 23 ohms, and the value of the resistor is 750 ohms, it is obvious that the parallel impedance will be roughly equal to the reactance of the condenser. We can therefore simply find the capacitance that has a reactance of 23 ohms at the low-frequency limit (20 cycles). The condenser should have a minimum capacitance of \(257 \mu\).
This value may seem unreasonably large for a cathode condenser since it is seldom found in practice-even in video circuits-because other methods of lowfrequency compensation are more commonly used.
A \(500,000-\) ohm resistor is used in the grid circuit of the 2A3. This is the maximum permissible value according to tube manufacturers' specifications.
A voltage amplifier is needed to bring the input signal up to 45 volts peak. The 6SJ7 was selected from several tubes that will deliver this voltage because its high plate resistance and transconductance permit the use of a low plate coupling resistor and therefore its output is substantially level up to 20,000 cycles.
The high frequencies drop to \(90 \%\) of mid-band level when shunting reactance (Xcs) is twice the equivalent resistance (Req) formed by plate, plate coupling, and grid resistors in parallel. Specifications permit the signal to drop to \(89.13 \%\). The \(90 \%\) condition is within this limit, so we use its values to compute the value of the coupling resistor for the 6SJ7.
The shunting eapacitance is the sum of the output capacitance of the 6SJ7, the input capacitance of the 2 A 3 , and stray wiring capacitance. The output capacitance of the 6SJ7 is \(7 \mu \mu \mathrm{f}\); the input capacitance of the 2A3 is \(\mathrm{Cgc}+\) \((\mathrm{G}+1) \mathrm{Cgp}\), where Cgc is grid-tocathode capacitance (\(7.5 \mu \mu \mathrm{f}\)), Cgp is grid-to-plate capacitance (\(16.5 \mu \mu \mathrm{f}\)), and \(G\) is stage gain of the 2A3 (2.93 in this circuit). Assuming \(10-\mu \mu \mathrm{f}\) stray capacitance, the total shunting capacitance is 89.34 or \(90 \mu \mu \mathrm{f}\). At 20,000 cycles, the reactance of \(90 \mu \mu \mathrm{f}\) is \(88,495 \mathrm{ohms}\).
(Continued on page 56)

Fig. 1-A 20 to 20,000-cycle amplifier whose circuit constants are worked out in the text.

\title{
Push-Button Signal Generator
}

\author{
This European test oscillator circuit contains some ideas which have not been seen in American equipment
}

\author{
By ALFRED HAAS*
}

DESIGNED especially for outside servicing, this small 2 -tube test oscillator is push-button operated, and the output is continuously variable in three steps. The frequency range is in four bands: 100 to \(300 \mathrm{kc}, 400\) to \(550 \mathrm{kc}, 500\) to 1600 kc , and from 6 to 18 mc .
The tubes are a 6 K 8 triode-hexode and a 12 A 7 diode-pentode. The diode section of the 12 A 7 serves as a half-wave rectifier for the B-plus voltage. The power transformer should be able to supply approximately 125 volts at 25 ma and 12.6 volts at 0.6 amp for the filaments. The heater of the 6K8 is connected across half the filament winding, or a 12K8 may be used and both tubes connected in parallel. Fig. 1 shows the circuit of the oscillator.
A 6-button d.p.d.t. push-button switch assembly is used for the band selector and control unit. The type of output is selected by pressing various button combinations as shown in Table I. Pressing No. 1 cuts off the audio, and pressing Nos. 1 and 6 together turns off the entire generator.
\begin{tabular}{|cc|}
\hline \multicolumn{3}{|c|}{ TABLE 1} \\
Output & Press \\
Modulated r.f. & \(2,3,4\), or 5 \\
Unmodulated r.f. & 1 and \(2,3,4\), or 5 \\
a.f. & 6 \\
off & 1 and 6 \\
\hline
\end{tabular}

The attenuator is a 500 ohm potentio meter and an L-network, providing three \(40-\mathrm{db}\) attenuation steps. The three taps are soldered to the output jacks which are insulated from the panel by ceramic washers. Since about 100 millivolts of r.f. is available, the outputs from the

\footnotetext{
Consulting Engineer, Annecy, Haute Savoie, France.
}
jacks are \(10 \mu \mathrm{v}, 1 \mathrm{mv}\), and 100 mv . The a.f. output is about 5 volts, so the outputs from the jacks are \(500 \mu \mathrm{v}, 50 \mathrm{mv}\), and 5 v . The potentiometer permits continuous variation of output voltage in each range.
A neon bulb is connected across the filtered high-voltage supply to show the condition of the rectifier. It will start to glow about a half-minute after the generator is turned on. It is placed in a hole in the panel, so that no pilot lamp is necessary. A 50,000 -ohm resistor in series with the neon bulb limits the current to a safe value. The \(50-\mathrm{ma}\) pilot bulb in the high-voltage lead acts as a

other one adjusted till the voltage across the 50,000 ohms is about 3 , checked with a vacuum-tube voltmeter. This gives \(50-60 \%\) modulation. An ordinary a.c. rectifier-type voltmeter may be used to read the total voltage, and the resistors proportioned to give the proper voltage drop.

The audio wave form may be checked on an oscilloscope if one is available, or by a vacuum-tube voltmeter across the a.f. transformer secondary. As the value

\section*{TABLE II, COIL DATA}
\begin{tabular}{cll}
Push & \multicolumn{4}{l}{ LI } & \\
5 & \(100-300 \mathrm{kc}, 480\) turns, No. 36 d.s.c. & 26 turns, No. 36 d.s.c. \\
4 & \(400-550 \mathrm{kc}, 78\) turns, No. 36 d.s.c. & 6 turns, No. 36 d.s.c. \\
3 & \(550-1600 \mathrm{kc}, 62\) turns, No. 36 d.s.c. & 5 turns, No. 36 d.s.c. \\
2 & \(6-18 \mathrm{mc}, 8\) turns, No. 22 enamel & 3 turns, No. 32 d.s.c.
\end{tabular}
fuse if the 12 A 7 rectifier current rises to much more than the maximum safe value of 30 ma .
The 6 K 8 is used as a plate-tuned oscillator, electron-coupled buffer amplifier, and mixer. The frequency is not affected by loading, and drift is negligible.
The pentode section of the 12A7 is connected as a Hartley-type audio oscillator with the screen grid tied to the plate. Inverse feedback provided by the unbypassed cathode resistor improves the wave form. The condenser across the primary of the audio transformer should be between .02 and \(.05 \mu\) for a 400 -cycle note.

The a.f. voltage applied to the grid of the 6 K 8 is adjusted by the voltage divider across the secondary of the audio transformer. Two resistors are used, one of \(50,000-\mathrm{ohm}\) resistance, and the
of the cathode resistor is increased, the a.f. output voltage will also increase until a further increase of resistance causes a decrease in output voltage. Beyond this point, the output has a good wave form. The value of the cathode resistor should be slightly greater than the one corresponding to the peak reading.
No chassis is used for the oscillator; and all parts are mounted on the panel

Fig. 2-Rear view, showing panel mounting.
(Fig. 2). The tubes are mounted on brackets made of \(1 / 16\)-inch aluminum. The push-button assembly below the tuning condenser serves as a mounting base for the r.f. coils. This method insures extremely short leads between connections. The panel is made of \(1 / 8\)-inch aluminum to give plenty of stiffness to the assembly, and the whole unit is enclosed in a metal cabinet for shielding.

The coils are wound on \(1 / 2\)-inch forms with adjustable powdered-iron cores (Continued on page 60)

CURIOUSLY television is making little appeal so far to Jacques Dubois, the French equivalent of John Smith. There has been a regular television service in the Paris area for some little time, and not too bad a service either. Program times are: 1150-1205 (daily, except Saturdays and Sundays); 1600-1730 (daily, except Saturdays and every other Sunday) ; 2000-2130 (Tuesdays and Fridays). Times are GMT. Vision goes out on 46 mc with a peak carrier power of 30 kw , and sound on 42 me with 5 kw behind it. Have any of you v.h.f. dx-ers picked up the audio part? I'd be rather surprised if you haven't, for v.h.f. is spanning enormous distances just now-a point to which I'll return later. The vision system is 455 lines per frame and 25 frames per second, so it will not suit American standard televisers. Either 25 frames per second or 50 frames interlaced are likely to be the standards of European countries for the frequency of their a.c. main supply is 50 cycles per second.
I don't know of any ready-for-service French televiser on the market. Certainly I have not seen one advertised in any French radio magazine. One sees a few kits of parts advertised, and there's an occasional article on how to build a televiser. But that's just about all. I believe that a few cathode-ray tubes with bigger screens than 2 to 4 inches are produced in France. The cost of the larger ones is prohibitively high. That may well be the reason why there are so few viewers of the programs of Télévision Française, the concern responsible for the present service.

\section*{Two novel circuits}

Some of the new developments in broadcast receivers are a bit hard to evaluate. The technical value of some of them may be secondary to their advertising value. However, some of these "talking points" have real interest to the radioman.
The Bush Bifocal Listening is a variation of our old friend the local-distant switch. An arrangement for changing the i.f. bandwidth from 8-9 ke (distant stations) to about 12 kc (local) is linked to the volume control. On a loud local transmission the volume control is turned down and the greater bandwidth comes in. The phrase "bifocal listening"

\title{
Transatlantic News
}

\author{
By Major Ralph W. Hallows
}

\author{
Radio-Craft European Correspondent
}
was coined by Christopher Stone: "Just as my bifocal glasses enable me to see clearly at long or short distances, so my Bifocal radio gives me good listening on near or distant stations."
The Kolster-Brandes "bridge positivenegative feedback" links the feedback control and the volume control-rather, makes them one and the same thing. The output transformer is said to have a third winding, tapped and grounded at its center and connected across the volume control, as shown in the sketch.

Bridge-positive feedback, approximate circuit.
Audio voltages from the transformer aid or buck those from the diode, according to the position of the control. When it is on dead center, there is no feedback. By moving it in either direction, positive or negative feedback may be applied. I can't, I'm afraid, give constants, as none have as yet been published and firms are, as a rule, rather sticky about releasing them. But the circuit doesn't look as if any values would be very critical. Experimenters may find it interesting.

The drawback is, of course, that as the sensitivity is increased on distant stations, distortion is automatically made worse. However, where great volume is required, as for dancing, extreme quality is not demanded, and where plenty of negative feedback is applied for high fidelity, the volume needed is as a rule not great.

\section*{And in Russia}

The Russians are taking television very seriously. The technical development and the program services are, of course, both official matters there; so there can't be much doubt that television will be popular. If the authorities decide that television is good for the soul of Ivan Ivanovitch, he'll have to be keen on it, whether he likes it or not! An article in the Soviet magazine Radio gives an account of the expansion contemplated between now and 1950. In addition to the stations which have been working for some time in Leningrad and Moscow, new transmitters of moderately high power are to come into action at Kiev and Sverdbovsk. But that is a long way from being all. Assuming that a field-
strength of 1 millivolt per meter is required for good reception, it's calculated that the following service areas are obtainable from small transmitters with antenna systems 50-60 meters in height.

> Transmitter output (watts) 80 200 500 800 2,000
Radius of service area (miles)
6.25
7.8
7.8
8.4
10.3

It must be remembered that in most parts of the U.S.S.R. there is comparatively little man-made static to cause interference with v.h.f. transmissions.

Now, here comes a very interesting idea. It is suggested, not only that transmitters rated up to 1,000 watts can be made from standard components by amateurs, but that they should be made all over the country. These stations (which can use air-cooled transmitting tubes) won't be owned or used privately. They'll be built and brought into action, in small towns, by the cooperative effort of local fans and will then be handed over to the municipal authorities to supply the television entertainment of the townsfolk.

That strikes me as a magnificent idea for getting a nation-wide television service going in the quickest possible time in a vast country which contains innumerable small towns and villages. The big snag seems to be not the technical, but the entertainment side. There's no provision for long-distance hookups; hence the programs must, presumably, be of local origin. My own feeling is that I'd pay quite a bit to be spared nightly entertainments by \(m y\) local citizenry!

\section*{Long-range V.H.F.}

I often think that the writers of radio textbooks published twenty or more years ago must feel like taking running jumps into the nearest and deepest lake when they re-read some of the statements that they once made in cold, hard print. You'll find it was stated in the 1920's that frequencies above 3 megacycles were unlikely ever to be of any great value for long-distance communications. More recent writers state categorically that the range of transmissions on frequencies above 30 mc cannot be much beyond the visual horizon. It has, in fact, often been declared that with v.h.f. transmissions there is no usable ground wave and no usable sky wave, the only serviceable kind of propagation being the direct wave.

Things move so rapidly in radio today that you hardly know where you are sometimes. If ever I write another radio
(Continued on page 70)

\section*{A GREAT \\ NEW LARGE-IMAGE DIRECT-VIEW TELEVISION at low cost!}

BIGGEST VALUE in TELEVISION! Model IOBL TELEVISION KIT with FM Radio - Features Beautiful CABINET with BUILT-IN LeNS . . . Gives LARGE 120 Sq. In. Picture.
Roto-picture effect: Picture "rotates", giving the appearance of being in focns and clearly visible from every angle! Uses \(10^{\prime \prime}\) Electromagnetic Direct-view Pisture Tube.
Features new-type cabinet with built-in lens which magnifies, clarifies and beightens contrast of the picture. The lens also creates the effect of apparent rotation of the picture, so that when the observer moves, the picture still seems to be in focns and clearly visible from any angle.
ECONOMICAL KIT, EASY TO ASSEMBLE. In point of valne, this Television Kit provides the opportunity of acquiring a LARGE-IMAGE direct-view television set at a VERY LOW PRICE; also very economical from a tube replacement angle. This model is available in KIT FORM, for easy assembly; no tech. nical knowledge required. Simple step-by-step instructions are included. Saves as much as \(50 \%\) over the cost of receivers with similar picture magnitude.
TECHNICAL DATA: Model 10BL uses a \(10^{\prime \prime}\) Elec-tro-magnetic Direct-view Picture Tube; has complete F.M. Radio which comes completely factory-wired; re-
 ceives all channels in any area; supplied complete with antenna and lead-in wire. The LENS is \(15^{\prime \prime} x 11^{\prime \prime}\), giving a picture size of approx. \(10^{\prime \prime} \times 12^{\prime \prime}\) or 120 sq . in.; the highly-styled cabinet measures \(26^{\prime \prime}\) wide \(\times 17^{\prime \prime}\) high \(\times 19^{\prime \prime}\) deep, available in Mahogany, Walnut or Blonde finishes.
PRICES: Transvision MODEL 10BL Television Kit, with FM, \(10^{\prime \prime}\) tube, cabinet with built-in lens, antenna, 60 ft. lead-in wire

List \$359.00
MODEL \(12 B L\), same as \(10 B L\) except that it uses 12 " tube, giving picture area of 130 sq . in.
List \$389.00

All prices \(5 \%\) higher west of Mississippiy all prices fair traded.
For further information see your distributor, or write to: TRANSVISION INC., Dept.rc, NEW ROCHELLE, N.Y.
See TRANSVISION at the PARTS SHOW: There will be a SPECIAL TRANSVISION EXHIBIT from May 10th NOR'S SUITE! Be sure to see the interesting new Transvision Developments in Television and F.M.

\section*{NEW RADIO•ELECTRONIC DEVICES}

\section*{TV BEAM-BENDER \\ Clarostat Manufacturing \(C_{0}\) Brooklyn, N. Y.}

The Beam-Bender is used with tele vision cothode-roy tubes that require on external means of controlling lose entrely self-contoined and can be atenirely self-conteined and can be atelimination of the breakage hazard.
 The unit consists
of two ring magnets held in o nonmao. netic mounting collar. The magnets provide magnetic flux proportional to the required beambending function in ward magnet, indicated by the arrow ward magnet indicated by the arrow
stamped on the mounting collar, is adstamped
justable.
The assembly is slipped over the bose of the tube and onto the right position on the neck. Three spring fingers provide on adjustable frictional fit.
Since there is no rubber or organic material in this assembly there is no danger of the mounting adhering to the
glass neck of the tube.-RADIO-CRAFT

\section*{MODERNIZATION UNIT Radio City Products Now York, N. Y.}

The models 120 and 125 are complete modernization units designed to bring up-to-date many tube testers that have become obsolete.

Each of these units has a flexible cable with o plug that is inserted into the loctal socket of the old tube tester. The new tubes ore then tested in the are included for the new miniature and subminiature tubes. Extro blank sockets subminiature tubes. Extro blank sockets new sockets, should new types of tube boses be brought out in the future. Tube-testing charts and dato are sup plied with the unit.-RADIO-CRAFT

\section*{V.T. VOLT-OHMMETER Electronic Manufacturing Co.} Harrisburg, Pa.
The Model 110 vacuum-tube voltohmmeter is designed for servicing

\(0-3,30,150,300,600,3,000\), and 15.000 volts. On a.c. the ranges are 0.3, 30 150, and 300 volts. The o.c. range is accurate up to 300 mc .
maintain stability is fungus-proofed to of time-RADIO.CRAFT

\section*{A.C. POWER PLANT}
D. W. Onan \& Sons, Inc. Minneapolis, Minn.
A 3,500-watt, \(50-60\) cycle a.c. electric plant weighing approximately pounds per kilowatt as Model 3CK-1R "CK". sir-cooled, 4-cycle, 2 -cylinder gasoline engine as a prime mover. The 3CK-IR has electric push-button starting, in the form of a special winding on the plant's gonerator which serves as the cranking motor during the starting cycle. A 12 -volt automo-tivo-type bottery furnishes the starting power.

The sir-cooled engine has o removable cast-aluminum engine hood to protect it from dust and water. one-kiloway hour of electricity per quart of gasoline.-RADIO-CRAFT

\section*{AUDIO AMPLIFIER}

Nowcomb Audio Products Co. Hollywood, California The Modol E-10 omplifier uses push pull 6V6 tubes in omultistage inverse feedback circuit. Power output is 10 watts at less then \(5 \%\) distortion. The frequency response
cycles within 2 db
Two inputs are provided: 2 megohms for a microphone and \(1 / 2\) megohm for - phono pickup. the tone control is of the treble-attenuation type.
The unit consumes 60 watts and weighs \(101 / 2\) pounds. Its over-al! dimensions are \(53 / 4 \times 10 \% \times 63 / 4\) inches.-RADIO-CRAFT

\section*{WELDED CHASSIS}
E. F. Johnson Mfg. Co. Waseca, Minn. The new line of E. F. Johnson chassis new feature permits the locating of ume controls, toggle switches, etc. con be mounted flush inside the chassis becouse of the single thickness feature. Rigidity and durability are assured by welded tie bars on the inside of the turned under bottom edge where they do not interfere with the mounting of compo nents. Bottom plates may be fastened to the reinforced edges.-RADIO. to the

\section*{STEP-DOWN}

\section*{TRANSFORMERS}

Standard Electrical Products Co.
Dayton, Ohio
Staco step-down transformers per \(50-60\) operale padios and other equip ment from a \(200-240\)-volt supply ment from a \(200-240\)-volt supply. quality silicon steel for cool operation. Coils are layer-wound and varnish-
impregnated. Each is tested at fen times its rated voltage and at three
times the operating frequoncy.

The units are supplied with a 6-foot ine cord and plug and a receptacle. Various sizes are available from 75 to
2000 watts.—RADIO-CRAFT

\section*{FM ADAPTER}

Schuh's Radio Parts Chicago, Illinois
This new FM adapter can be installed on ony AM receiver to adapt it to narrow-band FM reception.

The unit is ovailable in two roodels 455 to 465 kc and 915 kc for use with -C-348 surplus recoivers. The two tubes are o \(6 A K 5\) limiter ond 6AL5 discrimi-

\section*{TAPE RECORDER}

Amplifier Corporation of America Now York, N. Y.
Model TP-800-C is one of o now series of portable tape recorders. It will re. cord and play back frequencies up to 12,500 cycles, with ress than \(3 \%\) distortion. in adaition, it contal
stantaneous start-stop clutch.
This model, ond others in this series, can be odapted to outomobile operation by means of a \(b\)-volt d.c. inverter. They can operate in ony position-even upside down.
The recorders are packed in two carrying coses.-RADIO-CRAFT

\section*{END-LINK COIL}

\section*{Pittsburgh Coil Co.} Carnegie, Pa.
This adjustoble end link coil is de signed to operate efficiently in a variety of circuits and with beam-powe tubes. Moving the end link by hand vories the coupling to the rest of the
coil. It can be substituted for standord fixed end.link coils if desired
This coil is available in 75-. 150. 250. and 500 -watt sizes.-RADIO-CRAFT

\section*{CONTACT MICROPHONE Electro-Voice, Inc.} Buchanan, Mich. Contact microphone Model 805 is desiqned for stringed instruments. 40 to 8.000 eycles. The of the pickup is from oi to lyclt depending evel is rom of instrument crystal sealed against moisture and acoustic feed-back is the generating element of the unit
The microphorie is \(21 / 4 \times 1 \times 73 / 4\) inches and weighs 2 ounces. It comes com plate with a clip for attaching it to the instrument, and a 15 .foot shielded cloth-covered cable.-RADIR-CRAFT

\section*{H.V. POWER SUPPLIES}

Condenser Products Co.
Chicago, Illinois
The HiVolt PS-1 ond PS- 2 are hermetically sealod low-current power supplios for transforming 117 volts a.c. to charge capocitors for use in electronic charge capocitors ment. The PS-2 is Intendod for use in oscilloscopes ase ind television receivers. measure \(33 / 4 \times 33 / 16\) \(x 51 / 2\) inches and weigh \(21 / 4\) pounds.
Humidity hos no offect on the compo-nents.- RADIO-

\section*{V. T. VOLTMETER}

Electronic Instrument Co. Brooklyn, N. Y.
The Eico Model 221 is a wide-range completely electronic vacuum-tube voltmetar and ohmmeter.
d.c. o.c. and d.c.c. ranges are
0.5 F
0.10 .00
0.100, 0.500 and 0 .1.: 000 volts. The ohmmater meas. ohm to 1,000 mogohms in five ranges. A widerange decibel scale is includ. Ac Accuracy is \(2 \%\) on all ranges, and stability is such that zero cally eliminated

after a shor

\section*{MIDGET TRACER}

\section*{Radex Corporation}

Chicago, Illinois
The Pocketracer is a pocket-size sig. nal generator that produces r.f. and a.f. signals simulteneously. The instru-

ment is batterv-operated and consumes only 150 mo from o \(11 / 2\)-volt battery. The unit is \(51 / 4\) inches long and s/ inch in diameter. The signal range
several inches.-RADIO-CRAFT

\section*{PHOTOELECTRIC CELL}

\section*{American Scientific Company}

Now York, N. Y.
The Iris is a self-generating barrierlayer photoelectric cell capable of put, depending upon the intensity of the light.
it is a compact unit, firmly mounted on a piece of transparent plastic and is approximately \(11 / 2\) inches square. Two holes are provided for mounting.-RADIO-CRAFT

\section*{ \\ Gontinuous research, study of thousands of cases of actual field experience now enable us to offer you the} new 900A "VOMAX". Revolutionary as was the original, the new 900A forges far ahead in simplicity, dependability all-around usability.
Just 34 months ago McMurdo Silver Co. announced "VOMAX"-the first truly stable, ultra-high input resistance v.t.v.m. Lifting the v.t.v.m. out of the limited labora-tory-application class, Silver engineering and use-experience made "VOMAX" the first universal v.t.v.m. Its acceptance was instant and overwhelming - for "VOMAX" will measure, at input resistance so astronomically high as not to "load down" any circuit to which it may be connected d.c. volts, a.c., a.f., i.f. and r.f. volts, d.c. milliamperes and amperes, resistance and db . - all over tremendous range and with laboratory accuracy. Used in scores and hundreds by such competent organizations as the National Bureau of Standards, the Navy, Army, F.C.C., C.A.A., Veterans Administration, G. E., Western Electric Co. Recommended by Bendix, "VOMAX" is consistently copied, never equalled - stands today as "standard of comparison" for the entire industry.
In announcing the new "VOMAX" we think you'll agree that we can feel just a bit proud of having again done the impossible to give you the world's finest universal Laboratory Caliber Electronic Test meter at only Net \(\$ 68.50\).

\section*{OVER 3.7 YEARS OF RADIO ENGINEERING ACHIEVEMENT}

\section*{FEATURES}
- Non-breakable glass \(7^{\prime \prime}\) meter completely protecied behind panel.
- Single hand-convenient probe gets into tight places, banishes usual snarl of easily lost and broken test leads.
- Newer - and fewer - minature u.h.f. tubes.
- 51 ranges af highest available a.c. and d.c. input resistance.
- Absolutely stable-one adjustment sets meter zero for all ranges.
- No grid current error. Exclusive to "VOMAX", this vital feature is carried to new heights in new 900 A .
- 24 d.c. ranges of 51 and 126 megohms, constont 24 d.c. ronges of 51 and 126 megohms, constont \(300,750,1200\) and 3000 volis. Palarity reversing switch.
- 6 a.c./r.f. ranges, 20 N thru \(300 \mathrm{mc} ., 20\) megohms input resistance shunted by 7 mmfd . 0 thru 3,12 \(30,120,300\) and 1200 volis.
3 db . ranges. \(10 /+10,+10 /+20\) and \(+20 /+50 \mathrm{db}\).
- 6 resistance ranges. 0 thru 2000, 20,000 and 200,000 ohms. 0 thru 2, 20 and 2000 megohms.
- 6 direct current ranges. 0 thru \(1.2,30,120,300\), 1200 ma . and 12 amperes.
- Irve vacuum tube meter in all but current functions. Irve vacuum tube meter in all but curremt functions.
No low-resistance, frequency-erroneous copper
oxide rectifiers. No low-resistance, frequency-erroneous copper
oxide rectifiers. -

\section*{?}

\section*{WIND INDICATOR}

Please print a diagram of an electronic wind velocity and direction indica-tor.-W.R.H., Newport, R. I.
A. Fig. 1 is the diagram requested. The contact interrupter wheel, in the velocity indicating circuit, is a small gear or commutator mounted on the shaft of an anemometer. Its purpose is to break the connections between the 6 V 6 grid and ground from 10 to 20 times per revolution of the shaft. One break per revolution will suffice if larger condensers and resistors are used in the range switch circuit.

Two velocity ranges are provided. One is for winds of low velocity ard the other for strong winds. The sensitivity control and the 100,000 -ohm range resistors should be adjusted for best results.

The wind direction indicator is designed around the Ohmite RB-2 direc-tion-indicating potentiometer. Its shaft may be directly coupled to the shaft to the vane or a \(1: 1\) link may be used.

The 1,250 -ohm resistor in the highvoltage lead should be adjusted so the voltage regulator tubes draw 40 ma with the 6 V 6 out of its socket.

\section*{SMALL PA AMPLIFIER}

I would like to have a diagram of a small s-tube PA amplifier with input channel for a radio tuner or phono pickup and a separate channel for a crystal mike.-L.T., New York, N. Y.
A. This small amplifier (Fig. 3) delivers about 0.8 watt and gives good results when used with an 8 - or 10 -inch PM speaker. The low-gain channel will work with a radio tuner or a high-output phono pickup. The high-gain channel can be used with most crystal mikes,

\section*{? \\ FENCE CHARGER}

I would like a diagram of an electronic fence charger to operate from 117-volt a.c. lines. Please include pulse rate and voltage controls.-J.Y.R., Bethlehem, Penna.
A. This fence controller (Fig. 2) has variable output and variable pulse rate. C1 and R2 control the output voltage. If C 1 is made up of a number of small condensers which may be connected in parallel through a switch, a wider voltage variation is possible. R1 sets the pulse rate. This should be adjusted to produce about 1 pulse per minute.

T1 is a special fence controller transformer with a 200 -volt primary and a
secondary delivering an instantaneous voltage peak of 3,000 volts into an open circuit. This unit may be a Stancor type P-6126 or equivalent.

\section*{? TUBELESS CONVERTER}

I have an all-wave receiver tuning down to 30 mc and would like to increase its range to about 48 mc by using a tubeless converter like the one described on page 19 of the February 1947 issue of Radio-Craft. Can you supply the necessary coil data? -A.T.S., Cleveland, Ohio.
A. L2 consists of 11 turns of No. 10 enameled wire air-wound with an inside diameter of \(7 / 16\) inch. The coil should

be about \(11 / 2\) inches long. L1 consists of 2 turns No. 18 d.c.c. wire interwound with L2. L3 has 24 turns of No. 18 d.c.c. wire air-wound on a \(7 / 16\)-inch form and spaced to about \(11 / 2\) inches. L4 is 3 turns of No. 18 d.c.c. interwound with or closely coupled to the low end of L3. L1 and L4 may be adjusted for best performance with a particular antenna and receiver. The length of L2 and L3 may be varied to alter the tuning range.

Fig. 1-The wind indicator is accurate for low and strong winds.

Fig. 2-This electronic fence charger delivers about 3,000 volts.

Fig. 3-Schematic of the small three-tube a.c.-d.c. amplifier.

\section*{YOU'LL WANT THIS ON YOUR DOOR!}

This five-color decal identifies you as the man Sylvania is talking about - in the big new national campaign now under full steam in Life, The Saturday Evening Post, Collier's, Radio Best.

Display this decal on your door, your windows, your truck - to hook your store up with Sylvania's nationwide advertising.

The decal is yours for the asking . . . in 8-inch or 12-inch size . . . in any quantity you want!

See for yourself how quickly this cartoon ad catches the cy. See how strongly it features the Radio Servingnan's decal - your decal!

In every Sylvania ad throughout 1948 . . . in four great, nationally-read magazines ... your customers -and the people you want for customers-will see this decal over and over again. They'll look for it when their sets need servicing-be sure they see it on your store.

SEND THIS COUPON

SYLVANIA SERVICEMAN‘S DECAL

Radio Tube Division, Emporium, Pa.
maxens of radio tubes: cathode ray tubes; electronic oevicts: fluonescent lamps, fixtures, wiring devices; electric ligut bulbs

LOOK FOR THE JOBBER WHO DISPLAYS THIS COMPANION DECAL

He's the authorized Sylvania Distributor in your locality. He's ready to supply you with top-quality Sylvania Radio Tubes and Test Equipment, for the kind of servicing jobs that will keep your customers coming back to you.

Sylvania Electric Products Inc.
Radio Tube DivisionAdvertising Dept., Room R-1305(arm,Please send, free, the following quantities of the SylvaniaServiceman's decals:.12-inch decals
NameAddress
Zone \#State.
\(\qquad\)State.

\section*{Another Good Deal-From Mallory}

\section*{The Fastest Selling Vibrators in the Finest Line MadeThe Mallory "2448 Vibrator Deal"}

Mallory, first producer of the vibrator, builder of the sturdiest, most reliable vibrators made, offers you an attractive deal on this important replacement part. A fast moving selection of 6 vibrators, that will cover \(75 \%\) of your requirements, together with an assortment of 12 buffer capacitors (2 each of 6 ratings), in an attractive metal cabinet at a net price of \(\$ 24.48\) to the serviceman.

This is the serviceman's regular price for these parts; no charge is made for the cabinet. You sell the parts for \(\$ 40.80\) -make your full \(\$ 16.32\) profit.

Your Mallory Distributor has them in stock for immediate delivery. Place your order now, and get this handsome, convenient cabinet for your shop.

More Mallory Vibrators are in Use Than All Other Makes Combined

\section*{Technotes}

\section*{PHILCO AUTO RADIOS}

If the new models suddenly go dead, take a look at the i.f. transformers. Midget i.f. transformers are used in the models CR-4 and CR-6. There is very little clearance between the lugs and the can. If great care is not used when soldering leads to the lugs, solder will run down the lug and short to the can. On several sets I have found the plate or B-plus lugs shorted to the chassis.

Harold L. Bliss,
Francesville, Ind
OSCILLATOR FAILURE
Some sets play perfectly in the shop yet suffer oscillator failure when the set is returned to the owner's home. To prevent this, I have a Variac and a.c. voltmeter in the line and lower the operating voltage on the set until the oscillator fails. If the set is a 3 -way portable or a.c.-d.c. model, the oscillator will probably cut out between 80 and 90 volts input. If it cuts out above 90 volts, with normal \(B\)-voltages, try replacing the oscillator tube. If this does not cure the trouble, check the components in the oscillator circuit.

John B. Moore, Lebanon, Tenn.

GROUNDING A.C.-D.C. EQUIPMENT
A.c.-d.c. apparatus may be operated safely when attached to ground if only one wire is plugged into the line. A good
ground is attached to the equipment and only one terminal of the line cord attached to the plug. (If the line cord is of the resistor type, the terminal with the resistor must be the one attached.) The plug is then inserted in the socket. If it is plugged in correctly, the equipment will operate. If the connection is wrong, no damage will be done, and the tubes will simply fail to light.

It is sometimes convenient to attach equipment to earth, and at other times there is danger of accidental grounding. This kink is useful in either case.

Eric Leslie,
New York, N. Y.
(This circuit will not work if the equipment has a negative return isolated from the chassis.-Editor)

\section*{ECHOPHONE EC-I AND EC-IA}

If the pilot lamp burns brightly and then burns out, look for a shorted bypass condenser at the plate of the 35L. 6. Replacement with a 600 -volt unit prevents future breakdowns of this sort.

Richard Lytwyn,
Detroit, Mich.

\section*{INTERMITTENT COILS}

Automobile sets and others sometimes develop intermittent noise from corrosion in the i.f., oscillator and r.f. coils caused by dampness. If the coils are in a plate circuit, shorting the plate to
ground through a 2,500 -ohm resistor will draw enough current through the coil to open it permanently.
B. Buehrle, Jr.

Ferguson, Mo.

\section*{BATTERY RADIOS}

When the complaint is distortion in the audio section of farm or portable radios with 1.4 -volt tubes, replace the output tube.

This should be tried even when the tube and all components check good. This trouble is very common in sets with 3Q5's.

> John Mednansky,
> Belle Fourche, S. D.

\section*{FIRESTONE 4-A-30}

If the complaint is very poor volume, look for an open screen resistor to the 6 SJ 7 first audio tube. Poor volume with serious distortion is often caused by the 6 K 6 cathode resistor changing in value. Replace with a 450 -ohm, 10 -watt, wirewound unit. Reception with push-button tuning only may be due to a shorted \(.01-\mu f\) condenser from the screen of the 6SA7 to ground. Replace with a 600 -volt condenser to prevent future trouble.

If the dial turns hard, look for misalignment in the guide pulley on the side of the chassis. Bending it back into alignment will remove the stiffness.

John R. Simpson,
Gainesville, Fla.

\section*{A MUST FOR FM \& TELEVISON SERNIGE SHOPS!}

\section*{NoW... at a SENSATIONALLY \\ Here's great news for FM and TV Service Shops! A new, top quality sweep signal generator-product of a manufacturer with vast resources, advanced engineering "know-how", and wartime experience in producing test equipment-now available, DIRECT FROM THE FACTORY-at a phenomenally low price! \\ front panel controls \\ A - Sweep width 500 KC to opprox. 10 MC B - Phasing control \\ C - Iuning vernier control 10 10 1 rotio D - Selecto switch FM - RF - CAL E - RF Output control \\ F - 60 cycle horizontal sweep output \\ C - Amphenol RF outpul shielded connector \\ tube lineup \\ A - 6 C4 - Fixed frequency modulated oscillotor \\ B - 6C4 - Continuously vorioble beot frequency oscillotor \\ C - bC4 - Mixer - Cothode follower output fube \\ D - 5 Y3 - Rectifier tube \\ general information \\ A - High fequency insulation \\ throughout \\ B - Moximum output \(500,000 \mathrm{U} / \mathrm{V}\) \\ C - Power required 105.125 Volt 50.60 AC 35 Wotts \\ D - Power line filter built in \\ E - Speciol Midline copacity funing condenser \\ f- Pilot light line indicator \\ c - Genetotor ouput con be used eithet frequency moduloted or pure RF}
\[
\begin{aligned}
& \text { FREQUENCY RANGE } 3 \text { bANDS } \\
& \text { (No bond switching necessary) } \\
& 12 \text { to } 227 \text { Megacycles) } \\
& \text { A }-2-77 \mathrm{MC} \\
& \text { B }-40-154 \mathrm{MC} \\
& \text { C }-151-227 \mathrm{MC} \\
& \text { D - Colibration and reference scates } \\
& \text { E - Diol scole length }
\end{aligned}
\] 12 to 227 Megacycles) 12 to 227 Megacycles) A \(-2-71 \mathrm{MC}\) A \(-2-71 \mathrm{MC}\) \\ \(\mathrm{B}-40-154 \mathrm{MC}\) \\ \(\mathrm{B}-40-154 \mathrm{MC}\) \\ C - \(151-227 \mathrm{MC}\) \\ C - \(151-227 \mathrm{MC}\) \\ D - Colibration and reference scates \\ D - Colibration and reference scates \\ E - Diol scole length \\ E - Diol scole length

stable two terminal RF oscillat Pitenuator control. Ultra Cathode follower output tube. Modulator percentage continuously variable from front panel, internal or external, 0 to \(100 \%\). Heavy \(16-\) gauge steel cabinet. Complete with
4 (standard brand) tubes. Amphenol co-axial connecting cable,
and guarantee.
radiation LOOPAND ALIGNMENT WAND

Provides loose coupling. Checks loop-oscillator tracking. Increases efficiency of receiv er's alignment or mistracking. En
ables the service engineer to make gain measurements. Professional appearance and results. May be used on any signal generator. Complete with operating instructions.

FM FRONTEND
Complete with 3 rubes, including Magic Eye, 88.108 MC. For use with 10.7 MC 1.F.S. high \(Q\) resonant tuned lines. Heavy sllver overlay on lines and contacters. High frequency insulation throughout l-RF stage, detector and os. cillator. Large 7" sliderule dial. Chassis floated non-microphonic.

RUSH YOUR ORDER TODAY... TO INSURE PROMPT DELIVERY
ORDERS FILLED IN SEQUENCE AS RECEIVED. PRICES F.O.B., N. Y. C.

\section*{TEST LEAD POLARITY}

A bayonet plug attached to the ends of a pair of test leads makes it possible to switch them to different instruments without the need for observing polarity.

The negative lead is soldered to the shell of the plug and the positive lead attacked to the center terminal. A bayonet socket is attached to each instrument. Inserting the plug into the socket makes the proper connection automatically.

John J. MacGowan, Minneapolis, Minn.

\section*{NOVEL BAND SWITCH}

While constructing a two-band receiver, I used an idea for making the manual tuning control also serve as a band-switch control. The band switch was mounted at the rear of the chassis, its shaft directly in line with the tuning control shaft. The original tuning shaft was replaced with the blade of a Phil-lips-type screw driver, and the only other additions were a compression spring, a short Phillips-head screw, and two metal inserts salvaged from old knobs.

The screw was set in one end of insert A and soldered into place. The assambly was then attached to the band-switch shaft. The other insert B was then attacked to the tuning shaft and placed to keep the driver point about \(1 / 8\) inch out-of-mesh with the screw.
To operate the switch it is necessary only to push the tuning knob in a bit and turn to the right or left. Upon release of pressure, the compression spring between knob and shaft bracket pulls the
screw-driver end out of mesh, and statons are tuned in normal way.

Oliver Hornung, Chicago, Ill.

\section*{WIRE STRIPPER}

A metal photo clip makes a good wire stripper for hookup wire. Merely put the wire between the jaws of the clip, squeeze them together, and pull the wire out fully stripped.

This clip is also very handy for holding ends of wire together for soldering. George Wechsler, Brooklyn N. Y.

\section*{NONSLIP LINE CORD}

To anchor a thermoplastic-covered line cord simply and neatly inside the chassis, wind two or three layers of thin vinylite-covered wire onto the end of the line cord inside the set. With the flat side of a clean chisel-shaped soldering iron, heat the insulation of both the

cord and wire till their surfaces merge. When the wires cool, a smooth resilient skin will cover the anchor knot.

> LuDWIG FURTH,
> London, England

\section*{ODD SIZE RESISTORS}

When I cannot obtain an odd-size value of resistor, I make one as follows: Roughen the surface of a small strip of \(1 / 32\)-inch sheet mica and paint a line with India ink down the length of each side. Wrap two turns of No. 24 wire around each end of the strip and hold them in place with a conducting cement to assure a good connection. (This cement is made of powdered graphite mixed with coil dope to form a medium paste.) After the cement dries, coat the entire unit with thinned coil dope.

One resistor made in this way measured 47 megohms. Other values can be obtained by varying the amount of ink used or the size of the mica strip.

Charles J. Applbgate,
Champaign, Ill.

\section*{HEADPHONE REPAIR}

When headphones become defective, almost always one of the coils is found to be open. This coil can be shorted out, allowing the current to pass through the other coil. The phones are less sensitive, but still usable till replacements can be obtained.

Joseph Fiederer,
Worcester, N. Y.

\section*{ANTENNA SWITCHING}

A simple doublet antenna is very effective for reducing noise on shortwave bands. However, an antenna of this type gives poor results on the broadcast band. To rectify this shortcoming, I used the arrangement shown, with good results. The switch is a 4-pole, 3-

contact, 2 -position type. Throwing it from the first position to the second conversts the doublet to a T antenna and makes all the necessary changes in connections to the receiver.

Otto Foley,
Colorado Springs, Colo.
COIL WINDING TIP
It is usually hard to thread the end of a thin wire through the pin of a coil form. But if the wire is first threaded through the eye of an ordinary sewing needle, the needle then can be used to pass the wire through the hole in the pin.

\section*{Ralph Walter,} Jersey City, N. J.
(The fine wire also might be soldered to the end of a heavier wire. -Editor)

\section*{DIAL CORD REPLACEMENT}

When a dial cord is difficult to replace because of the position of the pulleys, a spoke from a bi-

spoke to push or lift the cord over the pulleys that cannot ordinarily be reached.

George A. Felix,
Valley Stream, N. Y.

\section*{FREQUENCY HALVING}

It's easy to get on 80 meters even if you have only \(40-\) meter crystals. Use a regenerative tetrode crystal oscillator, but plug an 80 -meter coil into the socket of the plate tank circuit. The buffer and following stages should also use 80 meter coils. All the circuits are tuned to 80 -meters, half the frequency of the 40-meter crystal.

Although tuning is somewhat critical, the stability is good and there are no chirps in the keying.

John A. Glass, W9SSW/ \(\varnothing\),
Bismarck, N. Dakota

MONE Y BACK GUARANTEE - We believe units offered for sole by mail order should be sold only on a "Money-Back-If-Not-Satisfied" basis. We carefully check the design, calibration and value of all items advertised by us and unhesitatingly offer all merchandise subject to a return for credit or refund. You, the customer, are the sole judge as to value of the item or items you hove purchased.

\title{
The Model 88-A cOMBINATION SIGNAL GENERATOR AND \\ SIGNAL TRACER
}

The ultimate in signal tracing procedure is achieved by the Model 88, for the use of this model, enables you to use either the broadcast signal itself or the signal injected by the Signal Generator. This is especially useful of course when servicing "dead" or "intermittent" receivers. The Model 88 you will find is the greatest time-saver ever provided for by combining a full range Signal Generator and Signal Tracer into one unit the set up time for interconnecting, etc., is entirely climinated.

\section*{Signal Generator Specifications:}
\(\star\) Frequency Range: 150 Kilocycles to 50 Megacycles.
\(\star\) The R.F. Signal Frequency is kept completely constant at all output levels. This is accomplished by use of a special grid loaded circuit which provides a constant load on the oscillatory circait. A grounded plate oscillator is used for additional frequency stability.
\(\star\) Modulation is accomplished by Grid.blocking action which has proven to be equally effective for alignment of amplitude and frequency modulation as well as for television receivers.
\(\star\) Positive action attenuator provides effective output control at all times.
\(\star\) R.F. is obtainable separately or modulated by the Audio Frequency.
Signal Tracer Specifications:
\(\star\) Uses the new Sylvania \(1 N 34\) Germanium crystal Diode which combined with a resistance-capacity network provides a frequency range of 300 cycles to 50 Megacycles.
\(\star\) Simple to Operate-Clips directly on to receiver chassis, no tuning controls.
\(\star\) Provision is made for insertion of phones of any impedance, a standard Volt.Ohm Milliammeter or Oscilloscope.

\section*{The Model S-35}

REFLEX PROJECTOR

COMPLETE with built-in driver unit conservatively rated at 35 watts-will handle up to 55 watts without blasting.
For the sound technician who demands the best in reflex speakers. Heavy gauge non-corrosive aluminum in the main trumpet section completely eliminates blasting and blaring. The Driver is conservatively rated at 35 watts and can safely handle 55 watts without blasting. It incorporates a number of new improvements. The standard metal diapliragm heretofore used has been replaced with a new plastic diaphragm. This overcomes the resonant peaks of the old type; also, because the new plastic diaphragm is absolutely impervious to atmospheric changes whereas the old type. was subject to atmospheric corrosion we are enabled to guarantee the unit for one year. Model S-35 provides a maximum of coverage with a minimum of power thus reducing installation costs. SPECIFICATIONS:
POWER (CONSERVATIVE) \(\mathbf{3 5}\) WATTS: AIR COL. Tho Model S-35 UMN - \(31 / 2\) FT.: DISPERSION \(-80^{\circ}\) : POWER (PEAK)-55 WATTS: BELL DIAMETER-15"; IM-PEDANCE-8 OHMS: FREQUENCY RANGE-130 TO
5000 C.P.S.: PROJECTION- \(1 / 2\) MILE: FINISEATTRACTIVE TWO-TONE CRYSTALLINE.
\(\mathbf{2 0 \%}\) DEPOSIT REQUIRED ON ALL C.O.D. ORDERS

\section*{ NEW YORK 7, \\ N. Y.}

\section*{RADIOMEN'S HEADQUARTERS IF: WORLD WIDE MAIL ORDER SERVICE!!! BUFRAD CAR RADIO ANTENNAS \\ All of our car radio antennas are made of triple plated Admiralty Brass Tabing, complete with low loss shielded antenna leads and high quality fittings. \\ SIDE COWL-BR-1, 3 sections extend to \(66^{\prime \prime}\). Your price-single anits- \(\$ 1.50\); in lots of \(12-\$ 1.35\) ea. SKYSCRAPER-BR-2 has 4 heavy duty sections that extend to \(98^{\prime \prime}\). Your price-single units- \(\$ 2.45\); in lots \\ TILT ANGLE-BR-8, may be adjusted to all body contours. 8 sections extend to \(66^{\prime \prime}\). Single unit price\$1.50; 12 lot price- \(\$ 1.25 \mathrm{ca}\). \\ VERSATILE-BR-4, single hole fender or top cowl mounting may be adjusted to conform with all body contours. 4 sections extend to \(56^{\prime \prime}\). Single unit price \(\$ 2.90 ; 12\) lot price- \(\$ 2.75\) ea. \\ THE MONARCH-BR-5, single hole top cowl mounting, 3 sections extend to \(56^{\prime \prime}\). Single unit price- \(\$ 1.90\); 12 lot price \(\$ 1.75 \mathrm{ea}\). \\ BENDIX SCR 522-Very high Frequency Voice Transmitter-Receiver- 100 to 156 MC . This job was good enough for the Joint Command to make it standard equipment in everything that flew, even though each set cost the Gov't \(\$ 2500.00\). Crystal Controlled and Amplitude Modulated-HIGR TRANSMITTER OUT-
PUT and 3 Microvolt Receiver Sensitivity gave good communication up to 180 miles at high altitudes. RePUT and 3 Microvolt Receiver Sensitivity gave good communication up to 180 miles at high altitudes. Re-
ceiver has ten tubs and transmitter has seven tubes, including two 832 .s. Furnished complete with 17 tubee, remote control unit, 4 crystals, and the special wide band VHF antenna that was designed for this inciude free parts and diagrams for the conversion to "continuously variable frequency coverage" in the \\ The SCR 522 complete with 24 volt dynamotor bells for only \(\$ 37.95\). The SCR 522 is also avallable with a The SCR 522 complete with 24 volt dynamotor
brand new 12 voit dynamotor for only \(\$ 42.95\). \\ BR1 BR2 BR3 BR4 BR5 \\ }

\section*{TAKES ALL THREE BIGBARGAINS}
 innuts broughe to jacks at rear panel. Various outhyt tim-
 Included. New in orikinal carton. shipplng woikht 20 " 1 be

3. HOME. WORKSHOP AT BARGAIN PRICE

Accuratio End precele e \({ }^{2}\) speed guaratteed hobby lathos the

 \%"drill chuck with specially hardened tool Iteel Jawb in ing ciectric furnace hish apeed grinding whoel. a cotton buming steel wire scratch brush You
Distributor inquiries
NO C O Dion

\section*{AUTO RADIO DEALERS! ATTENTION!} Nationally advertised brand of 1948 car radlo which will At
practically any car and overy pocketbook. Siz tube superheterodyne practically any car "nd overy pocketbook. Siz tube superhotorodyne
with three gang condenser and 61/" speaker. \(\$ 32.20\) for cample, or Dealer price \(\$ 29.97\) each, In lots of two or more-
Here is an slem that no servicornan who repairs auto rados should be without. Nationally sdvertited ATR BATTERY ELIMINATOR
that gupplies perfectly siltered 12 VDC or \& VDC at 14 amp from RADIO SERVICEMEN II Buffalo Radio Supply's lower prices mean increased profits for you. Order all of your first class merchandise at tho lowest prices in the country
TUBE8-All types in stock, \(60 \%\) of all whee it ordered
in lows of 10 or niore.
TRANSFORMER8-An types in stock AUTO.TRANSFORM-
ERS; Steps up 110t, or steps down \(220 \%\) to

 Contertapped

 \(\qquad\)

 49 c ; 2mid \(600 \mathrm{r}-29 \mathrm{c}\); 3X. \(1 \mathrm{mfd} 600 \mathrm{v}-29 \mathrm{c}\). SPEAKERS-These PM speakers are the finest that aro avallable

The famous Measuremonts Corp. Model 78B, 5 Tubo
Kaboratory Standard Signal Geoerator (that sold new, FOB Roconten, N. J., 8 or \(\$ 310.00 \mathrm{net}\) is avathable
in verfect condition for 25 to 60 cycle. 115 V AC on-
 many umes on these 78 Model 78 -B Standerd Slg-
generatory for use in nal Gonorator. Two generstors for use in nal Gonerator. Two Fro-
their labs and produc- quency Bands between 15 tion line teating.
"REMEMBER THAT A STANDARD IS

CLOSING OUT

TERRIFIC VALUE - PORTABLE ELECTRIC DRILL
Only \(\$ 19.95\) (Sold at less than astablished factory mrlce wo wo cannot mention brand name) Jacobs Geared Chuck and Koy. Not an internittent duty drin, but a full blio rusged tool. Most convenient type switch. natural grid handie. and
Precision cut gears-turbine type cooling blower-extra lang brusheg.
No stalling under heaviest pressure because of powerful 110 volt \(\mathbf{A C}\)-DO motor and multiple ball thrust No stallín.
bearing.
Oearing.
Made for tousheest year-tn and year-oub sorvice in plant or on construction jobs.
Amazing perpetual factory guarantee assures you of a lifotimo of troublo-7ree use,
\(\mathbf{2 5 \%}\) dopouit on C.0.D.'s. Full refund (you pay transportation) if not pleat
Minimom order \(\mathbf{\$ 3 . 0 0}\)-All prices sabject to change- \(25 \%\) deposit with \(\mathbf{C . O}\).D, orde

\section*{DUE TO POPULAR DEMAND WE REPEAT THESE TERRIFIC BARGAINS}

Three assorted new MICROPHONES, including push-to-talk type
\$1.49
Ten assorted R. F. Chokes including high frequency types .. . 35
Five assorted AUDIO or FILTER CHOKES \$. 99
One Hundred assorted RESISTORS
Ten assorted JAN CABLE CONNECTORS, including SCR274,522 and BC375 types
Six assorted OIL FILLED CAN TYPE CONDENSERS, all with mounting brackets.
Ten assorted METAL \& BAKELITE KNOBS-(no wooden knobs)
Six assorted VARIABLE CONDENSERS, including butterfly types
Six assorted POWER and AUDIO TRANSFORMERS, all new
Six assorted isolantite and bakelite R. F. COILS, shielded and unshielded
prices listed can be purchased

1.7Y4, 3-7N7, 4 potentiometers, numerous restators, fiter and
nudio tranaformers, and alx mensilive plate reays. A miltary
control proportlonai to corfection required for ailerons, rudder s ontron proportionai and atx nensitive plate relays. A military A control armplifier of the ordinary type would deflect the rudder
was blown on the course to port or startioard. The reault would was blown on the eourse to port or startoard. The result would
nt and the plane continued off course, or the corretion would be

\section*{SCR-274N COMMAND SET}

The greatest radio equipment value in history
A mountain of valuable equipment that includes 8 receivers covering 190 to 550 KC ; \(\vartheta\) to 6 MC ; and 6 to 9.1 MC . These receivers use plug-in coils, and consequently can be changed to any frequencies deing Control Boxes: 1 Antenna Coupling Box; four \({ }_{28} \mathrm{~V}\). Dynamotors ((easily converted ting Box: four tion): two \(40-\mathrm{Watt}\) Transmitters including crystal and Preamplifier and Modulator, 29 tubes supplied in all. Only a limited quantity available so get your order in fast. Removed from unused aircraft and in guaranteed electrical condition. A super value at \(\$ 29.95\), including crank type tuning knobs for receivers. Without these knobs the receivers can't be tuned, and are only useful for parts. Don't buy without knobs I We also include one 60 cycle, 110 to 24 V filament transformer for receiver-FREE.
RECORDING AMPLIFIER. 3 stage, \(110 \mathrm{~V}, 25\) or 60 cycle high gain amplifler built by recently bankrupt manufacturer specifically for recording use. Transformer for low impedance wire recorder head or magnctic cutter included on chassis. Tone and volume controls and switches on
vith tubes

SCR-284 TRANSMITTER-RECEIVER
Thi medtum power transmitter and the accoonpanying 7 -tube verry sensitive recelver are naturals for 80 or 40 meter operation
(nhone or cy on olther fixed atallona or (phone or CW), on elther fixed atatlons or
moblle applications. These unit are brand molle applications. These unith are brand
new and come complete with 17 tubes, key, microphone, 200 KC calibrating cryetal and
intructions and diaction Instructions and diacrams for use with up
to 100 watt input to the final stage on 40 to 100 Fatts input to the final staze on 40
her phone or CW , using vehicle or 110 Volt or 80 moters for elther phone or CW, using vehicle or 110 Folis

\section*{PE-109 32-Volt DIRECT CURRENT POWER PLANT}

This power plant consists of a gasoline engine that is direct coupled to a 2000 watt 32 volt DC generator. This unit is ideal for use in locations that are not serviced by commercial power or to run many of the surplus items that require 24-32V DC for operation. The price of this power plant is oniy \(\$ 58.95\). We can also supply a converter that will supply 110v AC from the above unit or from any \(16-82 \mathrm{~V}\) DC source for \(\$ 12.95\).

 has its own oselllstor and Dower ampliffor coils and
to operate at cos efficiency withln its parttcular ? oo operato at tos efficiency withln its particular ro the spocincat lons: FREOUENCT RANGE: 20 10 and 20 meter band with silght modification). hand rallbrated. POWBR ABTPLIFTER: Neutraliz
antenna couplink circult which matches practically ntonns coupling circult which matches practlcally
wo 211 (ubee. POWER SUPPLY: Supplied comple Completo instructionis are furnimied to operate set from welght 200 lbs , complete with all tubes, dynamoror and the essentis pl

\section*{GENERAL ELECTRIC 150 WATT TRANSMITTER}

\section*{Cost the Government \(\$ 1800.00\)} Cost to you \$44.50!!!!
This is the famous traramitter used in U.B. Army bombers and ground itations, during the war, Its design and construction have been oproved in sertico,
under all kinds of conditions. all over the world. Tho entire frequency rance is covered by means of plug. In tuning units which aro included. Fach tuning unit condensers, and antenna tuning elrcuils-all designed
auency range. Transmitter and accossortes are finished quency range. Transmitter and accossortes are finished
nf ammeter are mounted on the front Danel. Hero nd RF ammeter are mounted on the Pront panel. Hero
to 500 KC and 1500 to 12.500 KC . Will operate on OSCILLATOH: Self-erchiod thermo compensuted. and class "C" stage, using 211 tube. and equipped with with dynamotor. Which furnishes 1000 V at 350 MA .
110 V AC SIZF: \(21 \% \times 23 \times 94\) inctieg. Tot \(1 / 2 \mathrm{shipping}\) 110V AC. 8IZF: \(211 / 1283 \times 91 /\) inchee. Tot si shipping

\section*{14-TUBE UHF SUPERHET RECEIVER- \(\$ 39.95\)}

This beautifully constructed receiver was designed especially for Signal Corps communication service, and factur of the finest and most sensitive sets ever manu factured. Operating from 110 V 60 cycles, this set has five I.F. stages, using iron-core IF F tuning eye, and tion a speaker , and a two stage amplifier that will drive Mcs. It is or phones. The frequency range is 158-210 making a simple matter co operate on other bands by making a slight alteration in the tuning coils. A com with a circuit dispram and parts list. The hish. along power supply delivers 150 millizmperes, and is wh power supply delivers 150 miliamperes, and is well filled condensers. This buy of a lifetime cost the oil ernment about \(\$ 700\). Amateurs and experimenters will never again be able to purchase fine equipment at such a tremendous saving! See January Radio-Craft. Page 57, for complete conversion to television receiver.

\section*{BUFFALO RADIO SUPPLY, 219-221 Genesee St., Dept. 5 C. BUFFALO 3, N. Y.}

Provide uitimate stability. Temperature coefficient is determined by the ingredients of the ceramic di-electric; controllable to within very fine limiting values. Color coded. Flexible pigtail leads. Shpg. wt. 1 lb .

\section*{APS5II-Your Cost.}

69

\section*{Crystal FM Converter}

Change old FM (40-50 MC) to new FM in a few moments and at lowest cost. Efficient operation; this is a superior device. No loss of signal. Easy to

The third term of each equation simply emphe. sires the fact that any two numbers (or quantities like 1 and 2) may be ragarded as the suma and difference of two other numbers. Por example. 9 and 5 are the sum and diferonco of and 2 .

The equations show that if the magnetio fteld of one magnetron is made proportional to the sum of two voltages \((a+b)\) and, if the seld of the other magnetron is proportional to the diferm ence \((a-b)\), then the diflerence between anode potentials is proportional to the prodoct \((a \times b)\).
Referring to the circuit diagram, 2 triodes are used as class-A amplifiers. The input voitages are a and \(b\), respectively. Both plate currents flow through R1 in the same direction, therefore the voltage acrose it must be proportional to \((a+b)\). Currents fow in opposite directions through the halves of resistor R2-R8, therefore the voltage havross it is proportional to \((a-b)\). Theee voltages are amplified and then connected across the ages are amplifed and
magnetron field colls.
It is clear that H1 is proportional to \((a+b)\) and that H 2 is proportional to \((a-b)\). The anode current of each magnetron is held constant by a current regulator. Then, by the previous equations, the difference between anode potentials must be proportional to the product (\(a \times b\)).
To operate the calculator, input potentiometers are adjusted to apply desired potentials to the amplifying tubes. The product is read of at once on the calibrited meter \(M\).

\section*{COIL TESTER}

Joseph K. Thompson, Pittsburgh, Pa. (assigned to Westinghouse Elec. Corp.) Patent No. 2,432,948
This in improvement in the method of testing coils by comparison. In the nsual method the coils are placed on opposite legs of a transformer core in which an alternating field is produced. The coils are connected in series so that the current induced in one bucks that in the other. \(A\) rent induced in one bucks that in the other. A meter connected in th
the coils are identical.

Usual practice is to place the standard and upknown coll on the opposite lege of a U-shnped core. The a.e winding ing the bottom of the U. A fourth ind reonovable side completen the marnetic circuit. This method, while convenient, leaves air
gaps which are eftectively in parallel with the usual leakage gap. Since the air gape cannot be made exactly alike, the magnetic flux through the core legy is not the same.

In this method the primary is wound on the removable side (\(A\)) of the core. The air gaps are now in series with the core, and cannot canse anequal flux through the core legs.

\section*{RADAR TELEVISION}

James W. Gibson, Avenol, N. J.
(assigned to Westorn Electric Co.) Patent No. 2,429,933
Radar and tolevision mas be combined to form imagen and scenee otherwine invisible to the maked eje. Short radio waves are directed acatnat the destred target. Reflected energy is picked up and converted into electric currents. These are video currents which may be used to control a talevision receiver.
The reflected radio waves are socosed by an electromagnetic lens made of material having electromagnetic lens made of material having be designed to have a radius of curvature of 18 feet and a focal length of 8.74 feet. Such a lens forms an image 2 feet scuare from a scene 5 milen square at a distance of 50,000 feet.
The focused image is made to fall upon a monaic within a vacuum pickup tube. This mosaic in made of tiny rectifying elements at. tached to a plate. Each element is spherical in shape. The exposed portions of each element are made of copper and the parts which contact the plate are of copper oxide. When electromagnetism travels through these elements, they induce currents which are rectified. Positive charges appear on the expooed parts, and the plate becomes negative.
An electron beam is cansed to scan the mosaic as in a conventional television tube. As this beam atrikes an element it carmes the latter to discharge through resistor to ground and back to the tuhe enthode. These video currente are amplified and reproduced.

\section*{Get your FCC ticket in a FEW SHORT WEEKS} IT'S EASY IF YOU USE CIRE SIMPLIFIED TRAINING AND COACHING METHODS AT HOME IN YOUR SPARE TIME

Get your license easily and quickly and be ready for the \(\$ 3000\) to \(\$ 7500\) jobs that are open to ticket holders. CIRE training is the only planned course of coaching and training that leads directly to anr FCC license. Your FCC ticket is recognized in all radio fields as proof of your technical ability. Employers often give preference to license holders, even though a license is not required for the job. Hold an FCC "ticket" and the job is yours!

\section*{Look what these students say:}
"Thanks. to this course, I now have a very good job in a local power plant's test departonent. I couldn't have obtained this job without the math and basic electrical theories in the first part of Section 1 of this course.

Stud. \#2893N1z
'I have been working for Pollce Radio Station WPFS in Asheville for five months since getting my second-class ticket.'

Stud. \#2858N12
"You mas be interested to know that I am employed at the local broadcast station, where I am a transmitter operator. I took and passed the FCC examinations last February."

Stad. \#2754N12

\section*{Don't Waste Valuable Time MAIL COUPON TODAY!}

Don't put off getting this valuable information. Good jobs in radio need men like you. You can earn higher income have a bank account, enjoy vacations, and have easier and better living. But you must have your FCC License. Hurryl' Fill out the coupon right now and mail it. There is no obligation. You owe it to yourself to get the full story NOW

\section*{Cleveland Institute of Radio Electronics}

RC-5 Terminal Tower
Cleveland 13 , Ohio
Approved for Training under "G.I. Bill of Rights"

Look af the job opporfunitles you will have when you get your FCC tickef

\section*{CLEVELAND INSTITUTE OF RADIO ELECTRONICS}

RC-S Terminal Tower
I want to know how I can get my FCC ticket in a few short weeks. Send me your FREE booklet "How to Pass FCC License Examinations" (does not cover exams for Amateur License) as well as a sample FCC-type exam and Catalog A, describing opportunities in Radio-Electronics.

ADDRESS
CFIY ZONE.STATE.
NO Veterans check for enrollment information under G.I. Bill.
NO OBLIGATION-NO SALESMEN.

can whisper, too!
And that's important because the primary purpose of any loudspeaker is to convey intelligence and not just make a loud noise. UNIVERSITY loudspeakers - with the highest conversion efficiency of any speaker of comparable size
not only give maximum sound
output with minmum power input, but reproduce every detail and inflection of the voice at all levels from a whisper to a shout.
A JOB-RATED SPEAKER
FOR EVERY APPLICATION!

REFLEX TRUMPETS

\section*{DRIVER UNITS}

PAGING, CALL-BACK SPEAKERS Avaliable in many types and Compaet dosign \(h i g h\) converslon
 hioh sensitivity.
Standard volet coll impedances permit easy in. stalsation. SUPER POWER SOUND PROJECTORS

\section*{EXPLOSION PROOF SPEAKERS}

\(=t=t=t=t=t=\) sERvice witha STAR

New LOW price... same HIGH quality THE STAR TESTER

VOLT-ORMMILLIAMMETER

with bigh quality features at an amazingly low price. Built for verestility and handiness. Gives you (easy, accurate reading, with a \(41 / 2^{\prime \prime}, 400\) microampere meter. Case is metal, crackle finished. Comea complete with batteries, teat leads, and ingtructions for use.

\section*{Il - b-dC voltage ranges-o to 1000 voito} - 5-ac vDLTAGE RANGES-0 to 1000 volts - 5 -OUTPUT METER RANGES-0 to 1000 volte II - 4-DC CURRENT RANGES 0 to 1000 ma - 3-RESISTANCE RANGES-0 to 5 megotme - Decibel ranges \(-\mathbf{- 1 0}\) to +54
\[
\begin{aligned}
& \text { You are using the best when you "Serviee } \\
& \text { with a STAR." Contatt your dealer to- } \\
& \text { day or write us direct. } \\
& \text { Literature avaisable on alt STAR prod. } \\
& \text { uets. Write for your conles todayl }
\end{aligned}
\] STAR MEASUREMENTS CO.
|| 442 East 166 ch St., Dept. C-S. New York B9, N.Y. || \(t=t=t=t=t=t=t\)

\section*{BARGAIN SPECIALS}

Push button selection for 1 to 5 remoto stotion Push button selettion for 1 to 5 remote stopions
from this quolity buitt 4 fube, 2 wott Master stofion. Severol remates con be "poged" ot one time. Remote stations can originate call to Moster Very simple to
instals with ony 3 canductor cable. Sturdy, good instals with any \({ }^{3}\) canductor cable. Sturdy, 9000
looking wood cobinets, wolnut finished Moster \(12 \times 71 / 4 \times 61 / 4{ }^{\prime \prime}\), Remote \(61 / 4 \times 7 \times 4^{\prime \prime}\) No. 32A234X, Master Stotion ond One Remote-ONLY
No. \(32 A 235 X\)
Ad Aditional \(\$ 29.95\) No. 324235 X , Additional \(\$ 7.88\)
No. 2A113, 3 Conductor \(\$ 2.60\)
THE "DOUBLE TWENTY" FLUORESCENT UNIT

\section*{- Plugs in Any Outlet}
- Hangs in Any Position - Underwriter's Approved
Improved heavy steel, high reflection baked white enomel inside, gray outside. Hongs anywhere, with wire or chain, in a "jiffy." With 6 foot ottoched
cord ready to plug in ony outlet. ideal for your cord ready to plug in ony outet. plete with twa 20 watt lomps. Size \(251 / 4 \times 91 / 4 \times 53 / 4^{\prime \prime}\) w. 10 lbs.
No. 30A60
\(\$ 8.28\) foc
\(\$ 7.73\)
WRITE FOR YOUR COPY OF CATALOG No.
481 IF YOU DID NOT RECEIVE IT.

BUTSTEIT-APpLFTYE O12-R mCGEE STAEET,
namwa cITY 6. NISSOIRI

\section*{SPEAKER RECONING}
ALL WORK GUARANTEED
\begin{tabular}{ccc}
\(3^{\prime \prime}-\$ 1.40\) & \(7^{\prime \prime \prime}-\$ 1.95\) & \(15 "-\$ 4.00\) \\
\(4^{\prime \prime}-1.40\) & \(8^{\prime \prime}-2.20\) & \(4 \times 6-1.90\) \\
\(5^{\prime \prime}-1.50\) & \(10^{\prime \prime}-2.70\) & \(5 \times 7-2.20\) \\
\(6^{\prime \prime}-1.65\) & \(12^{\prime \prime}-3.00\) & \(6 \times 9-2.50\) \\
OXFORD & RECONING & SERVICE \\
1039 Selby Ave. & & St. Paul. Minn.
\end{tabular}

\section*{HIGH FIDELITY AMPLIFIERS \\ (Continued from page 36)}

Since Xcs/Req \(=2\) at \(90 \%\) level, Req equals 44,247 ohms. Plate resistance and grid leak are \(1,000,000\) ohms and 500,000 ohms, therefore we solve for the plate load or coupling resistor RL in the equation
\(\operatorname{Req}=\frac{\mathrm{RL} \times \mathrm{Rp} \times \mathrm{Rg}}{\mathrm{RL} \times \mathrm{Rg}+\mathrm{RL} \times \mathrm{Rp}+\mathrm{Rg} \times \mathrm{Rp}}\),
where Rp is the plate resistance and Rg is the grid leak of the 2A3. The equation calls for a \(51,019-o h m\) resistor. In practice we use a 50,000 -ohm resistor.

\section*{Voltage amplifier stage}

The 6SJ7 has a gain of \(61.9, G=\mathrm{gm}\) \(\times\) Req, and the signal on its grid voltage must equal its output voltage divided by its gain or \(45 / 61.9=0.72\) volt peak.

When the low-frequency response is down 1 db from mid-band level, the reactance of the coupling condenser Xcc is one-half the resistance \(R\) formed by considering the grid leak of the 2A3 in series with the coupling and plate resistances in parallel. \(R\) equals
\[
\mathrm{Rg}+\frac{(\mathrm{Rp} \times \mathrm{RL})}{\mathrm{Rp}+\mathrm{RL}}
\]

We find \(R\) is 504,761 ohms, so Xec is \(1 / 2 \mathbf{R}\) or 252,380 ohms. A. \(031-\mu f\) condenser has this reactance at 20 cyoles. A larger condenser-a . \(05 \mu \mathrm{f}\) for example -may be used.

The cathode bias (3 volts) for the 6SJ7 is developed across an 800 -ohm cathode resistor. The value of the cathode bypass condenser is computed by following the methods applied to the 2 A3.

The screen resistor drops the voltage on the screen grid to 100 . Its value may be calculated from Ohm's law. Screengrid degeneration is held to a negligible value by making Rsg \(\times C\) equal or greater than \(3 / f\), when Rsg is the screen-grid resistor in ohms, \(C\) is the screen bypass in farads, and \(f\) is the lowest desirable frequency (20 cycles). A 250,000 -ohm resistor was used in the circuit shown. Since \(250,000 \times C\) equals \(3 / 20, C\) is .0000006 farad or \(0.6 \mu f\). Degeneration decreases as \(C\) is made larger, so a \(1-\mu\) f condenser may be used.

A 1 -megohm resistor is permissible in the grid circuit of the 6SJ7. Therefore one is used to decrease the shunting effect of capacitance across its input circuit.

\section*{Another stage}

Our signal source develops .015 volt r.m.s. (. 021 volt peak), so added gain is needed to raise this to the 0.72 -volt level at the grid of V2. Another 6SJ7 was selected for the job, and circuit constants were designed in the same manner as those of V1 and V2. Note that the load resistor of V3 is much larger than that of V2. This is because Miller (Continued on page 58)

> A CMI A A Order a model 247 . Disregard the unbelievably low price and compare it on the basis PRICE). If you are not completely satisfied with the model 247 after a 15 day trial, return it to us for full refund-no explanation necessary.
> The model 247 is not surplus nor is it a hashed-over pre-war model. It is newly designed and incorporates new advances in Tube Tester design. Read the description below and order one today

\section*{The New Model 247 \\ TUBE TESTER}

Incorporates a newly designed element selector awitch which reduces the possibility of obsolescence to an absolute minimum. Any pin may be used as a filament pin and the voltage applied between that pin and any other pin, or even the "top-cap."
The new free-point system described above permits the Model 247 to overcome the difficnlties encountered with other emission type tube testers when checking Diode, Triode and Pentode sections of multipnrpose tubes, because sections can be tested individnally when nsing the new Model 247. The special isolating circuit allows each section to be tested as if it were in a separate envelope. The Model 247 provides a super sensitive method of checking for shorts and leakages up to 5 Megohms between any and all of the terminals. Continnity between varions sections is individually indicated. One of the most important improvements, we believe, is the fact that the 4 position fast-action snap switches are all numbered in exact accordance with the standard R. M. A. numbering system. Thns, if the element terminating in pin No. 7 of a tube is under test, button No. 7 is used for that test.

THE MODEL 650-AN A.C. OPERATED SIGNAL GENERATOR

\section*{}
*RF obtainable separately or modulated by the Audio Frequency.
*Audio Modulating Frequency-400 cycles pure sine wave-less than \(2 \%\) distortion.
* Attenuation-3-step ladder type of attenuator (\(\mathbf{T}\) pad).
*Uses a Hartley Excited Oscillator with a Buffer Amplifier.
*Tubes: 6J5 as R.F. Oscillator: 6SA7 as modulated buffer and Míxer; 6SL7 as audio oscillator and rectifier.
Model 650 comes complete with coaxial cable, test leads and instructions. Housed in heavy gauge grey crystalline cabinet with beautiful two tone etched front panel. Size \(912^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime}\).

NET PRICE:

\section*{The New Model 670 SUPER METER}
A Combination VOLT-OHM-MILLIAMMETER plus CAPACITY REACTANCE, INDUCT. ANCE and DECIBEL MEASUREMENTS.
D. C. VOLTS: 0 to \(7.5 / 15 / 75 / 150 / 750 / 1500 / 7500\).-A. C. VOLTS 0 to 15/30/150/300/1500/3000 Volts.-OUTPUT VOLTS: 0 to \(15 / 30 / 150 / 300 / 1500 / 3000\).-D. C. CURRENT. 0 to \(1.5 / 15 / 150\) Ma.; 0 to 1.5 Amps.-RESISTANCE: 0 to \(500 / 100,000\) ohms, 0 to 10 Megohms.-CAPACITY: .001 to \(.2 \mathrm{Mfd} ., 1\) to 4 Mfd . (Quality test for electrolytics).-REACTANCE: 700 to 27,000 Ohms; 13,000 Ohms to 3 Megohms.-INDUCTANCE: 1.75 to 70 Henries; 35 to 8,000 Henries. DECIBELS: -10 to +18 , +10 to \(+38,+30\) to +58 .
THE MODEL 670 COMES HOUSED IN A RUGGED, CRACKLEFINISHED STEEL CABINET COMPLETE WITH TEST LEADS AND OPERATING INSTRUCTIONS. SIZE \(51 / 2^{\prime \prime} \times 71 / 2^{\prime \prime} \times 3^{\prime \prime}\).

Available for Immediate Shipment From Stock- \(20 \%\) Deposit Required on All C.O.D. Orders
 Concord Catalog-a vast, complete selection of everything in Radio, Television, and iest Equipment. Thousands of items. . latest 1948 prices. LOWER prices on nnest-quality RADIO SETEE, PHO-NO-RADIOS RECORD CHANGERS RECORD ABLES, AMPUFIERS, COMPLETE SOUND EYSTEMS, TESTERS. Latest listligs of all well-known. standard, dependable linea of radio parts and equipment.
4.212 .014 SATISFLED CUSTOMERS CANNOT BE WRONGI Concord's quarter-century reputation for Customer satisfaction to the reason Radla Men the Exnerts who Know keep coming bet to CONCORD. BATIBFIED or your money will be refunded.

RADIO CORPORATION

ILLINOIS CONDEMSER CO. now has UMP!

TYPE UMP

A popular replacement twist prong line of COMPACT. HERMETICALLY SEALED, efficient, dry electrolytic condenser, is now a member of the ILLINI line of highest quality copacitors.

The "íllini" UMP capacitors are now available at your local jobber. Our latest catalog, listing complete Illinois line, will be mailed to you upon request.

ILLINOIS GONPENSER GO. 1016 NONTM TMNOOR STREt' . CHICACO 22. IL.

23 pgs. Radio and Television Sets. 62 pgs. Radio Parts 18 pgs. Sound Amplifiers and Accessories - 23 pgs. Ham Gear 9 pgs. Electronic Test Equipment

\section*{Mail COUPON TODAY:}

\section*{CONCORD RADIO CORPORATION, Dept. 145}

901 W. Jackson Bivd., Chicogo, 7, III.
Yes, rush FREE COPY of the compr

\section*{Name....₹:?..}

Address.:..
City \& Zone....................State................. 」

\section*{SPECIAL AT ALMO}

RCA DRIVER UNITS Special RCA driver unit for trumpet or horn speakers. Rated at 25 watts continuous program level. Handles overload peaks with safety. High conversion efficiency and good low frequency response. Limited quantity: order now.

\section*{Your Cost}

\$9.45

\section*{TRANSMITTER-RECEIVER BC-645}

BC. 645 ultra-high frequency iransmitter receiver can be converted to operato on the 420 Mc band with few changes. It's surplus, brand new, packed in original carton-complete transmittar, modulator system and recelver. Comes complete with fifteen tubes. Well worth the price for parts.

509 ARCH STREET
PHILADELPHIA, PENN.

\section*{HIGH FIDELITY AMPLIFIERS} (Continued from page 56)
effect is negligible in pentodes. The shunting reactance between V3 and V2 is the sum of the output capacitance of V3, the input capacitance of V2, and stray capacitance. The gain of V2 is ignored in this case. Using constants from the tube manual and assuming 10 \(\mu \mu \mathrm{f}\) stray capacitance, we find a \(265,000-\) ohm coupling resistor may be used. This permits V3 to develop a gain of 242about seven times more than is required in the specifications. The additional gain available from V3 is useful in overcoming circuit losses which may be caused by reduced operating voltages and component ageing.

\section*{Feedback and motorboating}

Degeneration and motorboating are likely to occur when three or more amplifier stages are operated in cascade from a common power supply. This is caused by the plate circuits being coupled through the impedance of the power supply and is eliminated by using a decoupling filter Rf and Cf in the plate circuit of V3.
In a.f. circuits, decoupling constants are selected by making Rf equal to onetenth the value of the coupling resistor -greater where power supply voltage permits. The decoupling condenser is selected to have a reactance of \(\mathrm{Rf} / 20\) or less.

This method of designing decoupling filters is restricted to a.f. circuits, Reasons for this will be given in the next article which will cover amplifiers having a range of 6 mc .

\section*{UNIVERSAL D.C. SUPPLY}

Most surplus radio equipment is designed to operate from either 12-, 24-, or 28 -volt d.c. power supplies. Much of this can be used in mobile amateur and emergency stations with few changes in the circuit or control systems. Such equipment can be operated from its original dynamotors or vibrapack supplies without troublesome alterations or conversions.

If 12 -volt equipment is used, install a 6-volt storage battery in series with the vehicular 6-volt battery. Use a s.p.d.t. switch in place of the d.p.d.t. unit between batteries A and B. For 24- to 28 -volt equipment, use 3 auxiliary storage batteries and switches as shown. The batteries are in series for 24 -volt operation and in parallel for 6 -volt service, charging from the automobile generator. The wire sizes shown on the diagram are the smallest that should be used under normal conditions.
C. A. Lanphear,
Waterloo, N. Y.

\section*{SAVE \$ ON RADIO SURPLUS}

SELENIUM RECTIFIERS
Lots of 1
GENUNE SIGNAL COTPS FEATHER WEIGHT HEADPHONES WITH CORD
AND PLUG 2000 OHMS 8000 OHMS 1 M PEDANCE
SPRAGUE-CORNELL-DUBILIER
OIL FILLED FILTER CONDENSERS
WEBSTER RECORD CUTTING HEAD These units ane all Brand new and were minde por

3 BAND ALL-WAVE DIAL \(6^{\prime \prime}\) DIAMETER.
 STROMBERG.CARLSON. \({ }^{3}\) BAND AFIL WAVE TUNING

8 or 9 OANG PUSH BUTTON TUNTNG UNIT (PLLEAS
SPECIFY). COMPLETE WTTH BUTTONS.

U.8. AIR FORCE MICA COND. ASST. 100 PGS. \(\$ 2\)

BAND RADIO to broadeast. Theso CHASSIS short wave contivuous facturer staried them, went bankrupt. Chassis has rarinble condenser. filters. \({ }^{6}\) tubo super-het. all illa-
ment wiring complete. By-pass condensers, resistor, ment wirling conphete. By-pass, condensers, resistor,
 be conrerted for AC-DC.
Limated quanditios onily. \(\$ 2.50\) each
6 TUBE 3 BAND AC-DC CHASSIS complote with

 SIGNAL CORPS FLEX. HOOK-UP WIRE ASST. contains approx. 150 fi. nsst. colors. Elats insulaGENERAL ELECTRIC 60 CYCLE WATT HOUR AIETERS, slishtly used, perfect condition, same as

 PHILCO MAGNETIC RELAY DC-15 V AC. When contact is mado relay operates rotary contact gwitch to 20 different contacts. \({ }^{\text {Brand }}\) new Philieo rotary tap tone control. 3
position, freluding condensers. position, including condensers.
Only 1 wire to conneet to grld of
sudio tube, \(/ 4=\) shaft........25c nudio tube. \(\% /{ }^{*}\) " shaft........25c
O.S. AIR FORCE RESISTOR ASST. \(1 / 4-1 / 2 \cdot 1\) WATTOIL FILLED BY.PASS CONDENSER asst. removed

\(\qquad\) \(.25 c\)
TELEVISION OR OSCILLOSCOPE POWER TRANS

GRIND YOUR OWN CRYSTALS-PUR Brazilla Quartz, all sizes and thleknesses- \(1 / 2 \mathrm{lb}\). package \(\$ 1.00\)

NATIONAL Velvet Fernier Dlal Attachment- \(1 /{ }^{\prime \prime}\) shaft-converts any dial to slow motion vernler. 750

340 DEGREE DIAL with 10 push button attachment-
\(1 / 4^{\prime \prime}\) shaft-ldewl for Xmittors-Sig Gen. or Osc. 49 c
YAXLEY BAND SWITCHES-
3 gang 3 poslt. 3 band.
5 gang 5 posit. \(4-5\) band.
TRIMMER-PADDER ASST.-all Isolantito-singles
dual, triples-100 asst. pleces.................... \(\$ 2.25\)
Signal Corps V. T I roceiving tubes \(\$ 1.00\) por doz
Walkte-Talkio Tolescoping Aerials-extends \(36^{\prime \prime} 750\)
MAGNAVOX DYNAMIC SPEAKERS - 12"- 1000
Mh3 \(\$ 3.95-8\) - 10.000 OUM.................................

PR BOX STEM WALL SPEAK. Siamoter covering sereen grille for hospital. factory or school installation. Will take
up to \(8^{\circ}\) speakors. Each......35c up to \(6^{\prime \prime}\) spenkars. kach...... 35
Lots of 25, each............ 25
Rad lo Hardware, nuts, bolts \(632-832\) solld brass cadmium
piated \(-\$ 7.00\) value.
4 lbe 4 lbs. for
Spaohettl Assortmont \(\qquad\)
SIONAL CORP. TRANS. KEYS ISOLANTITE UNDDER PANEL CLAMP SOCKETS PHILCO \(\$\) MF MF : 300 each V I \(\% \mathrm{~s}^{\circ}\) CAN CONDENSER-W—L- 10 WATT 1.000 OHM POWER RHEOSTAT 5-- CPRONG WAFERBAKELITESOCKETS. \(\$ 2.50\) perC
 30 HY-FILTER CHOKE SHIELD-49C UN.-39e 100 ALLEN BRADLEY-I W- \(1 / 2\) MEG RESIS. \(\$ 1.25\)
100 ERIE-I WATT- 2.000 OHW RESIS..... \(\$ 1.15\) 100 ERIE-I WATT- 2.000 OHM RESIS.. ASSTT. 49 c 2 METERRF CHOKES. RUBBER- HOLEMTG. 6 YAXLEY 2,000 OHM WIRE WOUND RHEOSTATS 19C each BOTTOM WIRE WOUND C.T. VARIABLE \(200^{\circ} \mathrm{OHM}\) G.E. TAPPED VOLTAGE DIVIDER-200 WATTG.E. TAPPED VOLTAGE DIVIDER-200 WATT-
230 OHM-MOUNTED ON ASBESTOS BASE-
TAPPED AT I80-205 OHMS. RCA 6 OHM POWERRHEOSTATS. PCALCO AUTO SUPPRESSORS- \(\$ 5.00\) per C: 70 ea. 30 WATT-6L6 BEAM POWER AMPLIFIER KIT,
COMPLETE KIT OF PARTS WITH ALL NECES. SARY PARTS TUBESGREADY TO ASSEMBLE
 83" WIDE-5 \({ }^{\circ}\) HIGH CADMIUM PLATED STEEL
EXTRA HEAVY. PLATE SUPPLY-IS PROVIDED
BY AN OVERSIXE EXTRA HEAVY TRANSFORM.
ER \(6^{\prime \prime} \times 4^{1 / 2 "} \times 4^{\prime \prime}\) (1) FILAMENT SUPPLIED BY
 PASS ANDOUNTED ON CHASSIS. VOLUME AND ARE PROVIDEO. CIRCUIT IS THE LATEST TYPE
OF PHASE INVRTJER SYSTEM USING I-5UU4.
2-6L6. \(1-6 C 5\). \(1-68 J 7.1-6 N 7\). CHASSIS HAS AMPLE ROOM TO WORK ON OR ADD MORE
TUBES-TERMINAL STRIPS FOR MOUNTING
RESISTORS ETC.. ARE ALSO PROVSDED. AND ALL PARTS. ARE SIGNAL CORPS SPEC. BRAND TORIAL DIAGRAM IS PROVIOED SO THAT A
NOVICE MAY BE ABLE TO ASSEMBLE THIS KIT WITH EASE. MERELY BY FOLLOWING THE
POINT TO POINT CONNECTIONS THAT ARE OUTLINED ON THE PRINT. CDMPLETE GLE KIT.
LESS SPEAKER..................................... 18.95

RADIO EXPERIMENTER'S SURPRISE PACKAGE
-CONTAINS BY PASS \& FILTER CONDENSERS. SHORT WAVE TUNING UNITS. POWER AND AUDIO TRANSFORMERS, SOCKETS, RESISTORS, CHASSIS HARDWARE, OVER I5 LBS. OF VALU. TUBES-6SN7-45e; \(\quad\) 53-39c; 2A7-390; 55-39e;
117L7-59e; 27-25c; No. 15. same as No. 224-20e DRY ELEC. FILTER COND. ASST. CONTAINS 10

MINIMUM ORDER \(\$ 2.00\) - NO C.O.D. SHIPMENTS - PLEASE INCLUDE POSTAGE
NEWARK SURPLUS MATERIALS CO. \(\$ 24\) Plane Street Dept. C Newark 1, N. J.

SIGNAL GENERATOR
(Continued from page 37)
(See Table II). The coil which covers the range from 400 to 550 kc has a 500 uuf fixed condenser across it to extend the low-frequency range.

There are four coils, covering a range from 100 kc to 18 mc . Only the \(400-550-\) kc coil is shown. As shown, a lead from the grid of the 6K8 is run to the open terminal of one of the switches in each push-button unit, and one from the plate to that of the other switch. The hot ends of the two coils in each unit are connected to the moying arms of the switches, and the other ends of the coils to ground. The other open terminals of the switches are connected directly to grounds.

In the normal, or open, switch position, all coils are shorted to ground. Pushing any button from 2 to 5 puts the corresponding coil in the circuit and disconnects any coil that is already in the circuit. (Caution: do not push more than one coil button at a time. More than one coil in the circuit causes incorrect calibration.)

To save the work of winding, standard \(175-\mathrm{kc}, 455-\mathrm{kc}\), broadcast and shortwave coils of the commercial type may be used, with some change in the ranges. By removing turns or increasing their

Fig. 3-Circuit of the calibration monitor.
number the proper frequencies may be covered and good oscillation characteristics obtained.

To permit changing tubes without having to recalibrate the oscillator, a \(5-15-\mu \mu \mathrm{f}\) trimmer condenser is connected in parallel with the main tuning condenser.

A 1-ma meter connected between the grid leak and the cathode of the 6K8 will read the oscillator grid current, which should be about 100 to \(150 \mu \mathrm{a}\). This current should vary as little as possible over the entire frequency range.

The oscillator may be calibrated by tuning the signal in on a properly aligned communications receiver and marking the frequency on the dial. Or the simple calibration monitor shown in Fig. 3 may be used in conjunction with an already calibrated signal generator. This monitor uses a 6K8 as a mixer and a 6 J 5 or 6 C 5 as an audio amplifier. The unmodulated signals from the oscillator and signal generator are injected into the two grids, and the signals listened to on the phones. When the signals zero beat, the frequency of the oscillator is the same as the signal generator's. By using this method, the oscillator can be calibrated point by point.

\section*{F.M. and Television}

Use this new giant manual of factory instructions for troubleshooting, repairing, and alignment of any 1847-1948 F.M. and Television set. Covers every poplar make, including F.M. tuners. AM-F tail circuit diagrams, theory of operation, test hints, theory of data. includiag both meter and datal including both meter and material you need to fix any modern F.M. or Television set. Don't turn this profitable work away for lack of knowledge and information. Use this newest Suprems manual to gave time and money on your very next F.M. job. Data presented on 192 large pages, \(81 / 2 \times 11 \mathrm{in}\). \(\$ 00\)
Sturdy, manual-atyle
binding. Just pub. bished. Special price..

\section*{New 1948 Manual}

Be prepared to repair quickly all new 1948 receivers. In this big sincle volume you have clearlyprinted, large schematics, needed alisnment data, replacement part lists, voltage values, and informa trimmers and dial stringing for almost all recently releaed sota Makes tourhest jobs amazincly Makes toughest jobs amazingly easy. Find faults in a jifiry. saved on your next job will pay the \(\$ 2\) bargain price for the complete manual-after that you use it FREE. A worthy companion to the 7 previous volumes used by over 120,000 shrewd radio servicemen. New manual covers models of 42 different manufacturers. Giant size: \(81 / 2\)
x 11 in. 192 pazes \(\times 11\) in. 192 pages + binding. Price, only.

Use coupon to order manuals for examination Include all popalar sets from 1926 to 1948.

\section*{Record Changers Manuals}

Post-War Models
Serrico expertly all modern (1945-1948) fecord changers. Just follow slmplined factory instructions to mako needed ad justments and repaire. Hundreds of phot-
 Price only \(\$ 1.50\). Dostpald

Pre-War Models
Just what you noed to repalr qulckly
thousands of prewar (before 1942) matic record changers, manual units, plek
mato-
 dectrit

\section*{See Your Radio Jobber or Send Coupon \(\rightarrow\)}

\section*{Supreme Publications \\ PUBLISHERS OF' RADIO BOOKS, MANUALS, AND DIAGRAMS}

9 South Kedzie Ave.
-
Chicago 12. Illinois

Select Suprame Diagram Manuals and Record Chenger Books you want to axamine Send the convenlent no-risk trial coupon. Dise the manuals in your own home of greatest 10 days at our risk. Decide for sourself that Sudreme Publieations are the and recelvo your money back.

\section*{Our 26th Year}

\section*{RELAYS}

CS-DIFFERENTIAL RELAY
Dual coll with armature piroted
betwoen calls. All cantictis nor.

feet altit tude
Spectal low \(95 c\)
G.E. 2500 olum \&a MPDT 5 prong plug in type CLARE TYPE RY 2 Sens suive Relay 6500 Ohm SPIDT
ing crystals (or properly biased diode tubes) connected oppositely and in parallel (Fig. 2). The a.f. currents are not rectified because they can flow in either direction. Each crystal has a fairly constant resistance when more than 0.5 volt is applied across it, but below this value its resistance rises sharply. When the voltage is very low, as it is when only background noise is present, there is practically no transmission. Medium and loud speech or music will pass freely, however, along with whatever noise may be present at the time. Such noise is then masked effectively by the desired signal.

Fig. 2-Parallel diodes control input levels.
This system reduces noise and requires only a simple circuit. Unfortunately, the output cannot sound exactly like the input since the transmission is non-linear. Harmonics and beats are introduced along with the original frequencies. However, spurious responses are at least one octave removed from

Wire Wound Potentiometer 100,000 ohm. prectsion made. G.R.

6-0-5 AMPS. DETERS cha
 square Gray nnibh with 100 AMP.
ghunt
hin 2.95

If not rated \(25 \%\) with order, balance C.O.D. All prlees
F.0.B. our warchouse Now York. No order under \(\$ 200\). We this to eny part of the otobe

\section*{LEEDS RADIO CO. \\ 75 Vosey Street}

COrtlandt 7-2612
New York City 7

\section*{NOISE REDUCTION \\ (Continued from page 23)}
its original frequency. Filters can therefore be used to eliminate the undesired harmonics.

Two filters are used for maximum effect, one at the input and the other at the output of the channel. Each is designed to attenuate response outside of a given octave. To cover the whole audio range, many separate octave-filtered channels in parallel must be used. However, the higher frequencies carry most of the noise, so the lower sound register (up to several kc) may be transmitted through a separate parallel channel with no need for noise reduction.

For home reproduction of phonograph selections two channels are sufficient. One can pass up to 3 kc with no noise reduction. The other can be an octavefiltered channel transmitting 3-6 ke. For still higher fidelity, more channels are required. One circuit has been designed with four channels. Three of them are filtered to transmit the following octaves

fig. 3-Olson noise reducing system. Only two channels are required on hame phonographs.

Quality - Price -Dependability

\section*{BC-645A 450MC X-Mitter-Receiver}

BRAND NEW Complete with Tube including 27E6, 2-6F6, 2-955, 4-7F7, 4-7H7, and 1-WE 316A door knob. Can be easily converted fol \(420-450 \mathrm{Mc}\) CW on
\(\$ 7.95\)
Each

\section*{DYNAMOTOR 5047}
D.C. tuput 27.0 volts at 1.75 mps. 95 C
D.C. output 285 volts at .075 amps.
Continuous Dhaty Rating. Brand New. each
 input \(215 / 260\) millimpss; filtered. output \(515 / \$ 2.95\) Spectal …
\(\$ 2.95\)

\section*{ITEMS YOU MAY BE LOOXING FOR}
 ARC-5 Blwer Plated Banana Plugs. Per doz.
De Jur Wire Wound Pot 20.000 ohms. 12 watt. RS-8 Octal Sockets, Low Loas lov Pllot Assembiles Bull's Ese Med \(1 / 4\) watt Bayonet Base Neons,
\(1 / 25\) wath Bayoort Base Neons .10
.09
.08
.39
.08
.08

\section*{MICA CONDENSERS}
MSCA CONDENSERS
\begin{tabular}{l}
.01-800V Postago Stamp \\
\(.003-2000 \mathrm{~V}\) Postage Stamp \\
\(.006-800 \mathrm{~V}\) \\
Postago Stamp
\end{tabular}\(\quad 100\) for \(\$ 4.7\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & \multicolumn{6}{|c|}{\begin{tabular}{l}
OUNCER TRANSFORMER \\
as per Schematle
\end{tabular}} \\
\hline & \multicolumn{6}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
1-2 I ohm D.C. Res; 25 ohm \\
3-4 220 olim D.C. Res. 3-5 500 ohm. imp. \\
4-5 235 chm D.C. Res. \\
8-7 850 ohm D.C. Hes. 6-8 2000 ohm. Imp. \\
9-8 400 ohm D.C. Res. \\
Spectal at 35 e oa. 10 for \(\$ 2.95\)
\end{tabular}}} \\
\hline & & & & & & \\
\hline
\end{tabular}
respectively: \(1.6-3 \mathrm{kc}\); 3-6 kc; 6-12 kc. The other channel is a low-pass network which transmits frequencies below 1.5 kc. Block diagram appears in Fig. 3.

Advantages claimed for the octavetransmission system are: There is no audible "swish" due to time constants because the circuit operates instantaneously. Furthermore, the output level is identical with the input for volume greater than the threshold value. Finally, the circuit requires practically no maintenance and is easy to operate.

The author will be pleased to answer any questions in connection with the above article. Simply address I. Queen, care of this magaaine.

\section*{POLARITY TESTER}

On a.c. operated instruments, it is often necessary to determine the line polarity to avoid shocks and possible damage to meters and components. Determine which prong of the line plug must be grounded and solder one terminal of a small neon lamp to it. To the other terminal of the neon lamp attach a short piece of wire with an insulated phone tip at the end. Insert the plug into the outlet and touch the phone tip to the grounded plate or screws of the outlet box. If the lamp lights, reverse the plug.
The lamp is very small and fits neatly into a recess cut in the body of the plug. The plug is wrapped with transparent tape to hold the lamp firmiy.
J. Simpin,

New York, N. Y.

\title{
WORLD-WIDE STATION LIST
}

\section*{Edited by ELMER R. FULLER}

REPORTS were received this month from Gil Harris of Massachusetts; Charles Edwards of Massachusetts; Charles H. Fuller of New York; the Department of State; and the Canadian Broadcasting Corporation. Several new frequencies are now in use by the U. S. shortwave stations. The log this time went to press before the information was received and therefore the necessary changes were not made. The following information supplements that given in the list:

WRUW, Boston, on 11.720 to Central America from 1730 to 1900 and 2000 to 2400 hours, EST. WRUX, Boston, 17.750 to Europe from 1435 to 1715 hours. WLWR2, Cincinnati, 15.330 from 1800 to 2400 to South America. KCBF, Delano, 9.700 to Japan and China from 0400 to 0930 hours. KCBR, Delano, 9.750 to the Philippines and the East Indies from 0400 to 1005 hours. KCBF, Delano, 11.810 to Alaska from 2000 to 2200 and 2215 to 2400 . KNBA, Dixon, 6.060 , to

Hawaii from 0400 to 1005. KNBI, 6.120, to China and Japan from 0400 to 1005. KNBX, Dixon, 11.790, to China and Southeastern Asia from 0400 to 1005.

KNBX, Dixon, 15.250, to South Pacific islands from 0030 to 1700 and to South America from 1900 to 2400. WCDA, New York City, 11.830 to Mexico from 2000 to 2200. WCBN, New York City, 15.270 from 1115 to 1630 to Europe and to South America from 1645 to 1700. WCBX, New York City, 17.830 to Europe from 1115 to 1630; to South America from 1645 to 1700 and 1800 to 1900, and to Brazil from 2000 to 2200. WNRI, New York City, 18.160, to Europe from 1000 to 1800. WCRC, New York City, to Europe from 1100 to 1630 ; to South America from 1645 to 1700 . KGEX, San Francisco, 11.730 to the Philippines from 0030 to 0345 and to the East Indies from 0400 to 1005. KWIX, San Francisco, 11.860, to Japan and Korea from 0400 to 0930. WGEO, Schenectady, 15.330, to Europe from 1115 to 1730.

Leestion 8tation From. schedule
\begin{tabular}{|c|c|c|}
\hline ston. Mama & WRUL15.290 & \begin{tabular}{l}
Europeen bearn. 1115 tn \\
1715: Bouth American \\
boumg 1730 to 1800
\end{tabular} \\
\hline ostem. Mass. & WRUX17.750 & European beam, 1435 in \\
\hline Becten. Masa. & WRUW17.750 & Eurcpean beam. \\
\hline Boston, Masa. & WRUX25.600 & 1430 \\
\hline Cimelmati, 0. & WLW81 6.080 & West sou \\
\hline Cimelmati, 0. & WLWO 9.590 & Exam, 1900 to 2400 \\
\hline Cincinati, 0. & WLW82 9.700 & \\
\hline ceimatl. 0. & WLW8111.700 & zuropena \\
\hline Cincimatt, 0 . & WLW8211.700 & 17 \\
\hline & & 1515 to 170 \\
\hline Cineinnati, 0. & WLWRII1.710 & south American boam 1800 to 2400; Rundayi \\
\hline inmetl, 0. & LW011.790 & \\
\hline melmati, 0. & WLWK15.250 & 2010 to 2200 \\
\hline & & 17 1010 ban beam. \\
\hline & tinued on & page 64) \\
\hline
\end{tabular} (Continued on page 64)

How many times have you wished you could replace that worn out AM set now housed in a beautiful, highly thought-of cabinet? At last it's possibleand at a price within the reach of everyone! The ESPEY line of custom-built chassis is designed for just such installations, as well as for custom-built and other special applications. Take the ESPEY MODEL 7-B, for instance. It's a top-quality AMFM receiver, featuring high fidelity reception, illuminated slide rule dial, full tone control, and is wired for phonograph operation.
Its superheterodyne circuit contains 10 tubes plus a rectifier tube, and operates on 105/125 volts AC, 50/60 cycle. Furthermore, it's supplied ready to operate, with \(10^{\prime \prime}\) speaker containing an Alnico No. 5 magnet, both AM and FM antennas, and all hardware needed to make the installation easy and complete.

For full details write to Dept. C

\section*{A LISTENING SHELL}

An artillery shell that listens and records what it hears is the invention of three inventors in the New York area, Harvey Fletcher, John F. Muller and Karl D. Swartzel, Jr. The projectile was originally intended as a means for testing the possibility of producing audio-proximity fuzes for anti-aircraft shells, instead of the radio-proximity ones finally adopted. Compact, rugged microphones, hooked to recording apparatus, were installed in the noses of the shells to trace wavy lines representing the shells' own sounds, plus the noise of airplane motors which they might be approaching. The patent, No. \(2,436,384\), has been assigned to the Bell Telephone Laboratories.

Nonffior the firot time you ore cflored a weif hit
 heceiver. These parts are the bert the lecustry has manle disary and a comploto parts list of the miner components necescary to make un a comapioto TV roelver. Doseribod and mietured molew the the variese conpoments ime. KIT consists ors
- Denection Yoke Type Triovision vidF Typh
- width contrel type
- Morlzonten Limanity

200rra
Horlx. locking-oec!lia-
- Yoke smounting moed
- Morla. quipuztrane
- Nocus cell Type soges
- Yortical Output Trang-
- Fibmane chovo Type
s 9 .is. The parts in this kit, Hi morchased sogeratoly, would a big \(\$ 70.20\) GET YOURs TODAY.

\section*{RADIO MAN'S SPECJAL} \(5^{\prime \prime}\) or \(7^{\prime \prime}\) TELEVISION FOUNDATION KIT
 KITB.
Thls TELEYBBION FOUMDATION KIT qualite of evistructing a tolvision ropolverp startiog with the emstruatian a to somply for the souph right through

 transiormer fotp the 5 U4, the twe hi. Weit RF'A sound end video IF's petime tublls and diseriminetor trasforimer. The rectiver
\#iture tuthe 58.
antenne are also ineluded.
A 22 peose Mustruetion boek. Ineluding a turg 12 by 18 schomatio diamen. mons, axpienation lay-aut and, niol adjustment of the tolovisicm reoolver which fallitates easy allanmont without the veo of olaborato teat equipment comes
it you are
If you are a radfo man you will mobebly have all of By fellewing the dinplo sedioum this foradation kit. struetlome you the build a malevition rowivi. at many dollars cewings.
The sove Kit with parts mentioned \(\$ 34.75\)
The above Kit with 7EP4 for \(m\) additionel
12.95

Rominaise of of momerary tulos 14.95
Completdy mumotred ehascik for above Klt
5.50

\section*{BRAND NEW 7EP4's INDIVIDUALLY BOXED-BTANDARD BRANO} .\(\$ 17.95\)

WORLD-WIDE STATION LIST
(Continued from page 63)

L
Cinction
Cimelametl, O. WLWRI15.850 cincimet!, O. WLWR215.850 ciminamt, 0 . WLW017.800 Clmelmatl, O. WLWK17. 800 Cinofmatt, 0. WLW8181.650 Clecimant, O. W1.weeg1.e50 Clmeinaet, O. WLWLI21.690 Detaae, Cal. KCBA 6.170 Dolano, Cel. KCBF 9.700 Dolmen, Cal. KCBR 2.750 Delama Cel. KCBR18.18e Dolane, Cel. KCBA15. 150 Domme, Cel. KCBF11.810 Dolame, Col. KCBA21.460 Diseen, K-I. KNBA 6.006 Dtxem. Cal. KNBI 8.120 Oixem, Cel. KNBA 9.650 Orew, Gel. KNBI 9.700 Dlswan, Cell KNBX11.790 Dixem, Cel. KNBX15,200 Dlum, Cal. KNBII7.770 Now York city WCBN 9.650 Now Yerk city WNRX 9.670 Mow Yerk city woow 9.700 Now York clity WCDA11.730 Now York city WNRX11.830 Now York city WMaAll.870 Now Yerk clty wooci5. 180 Wey Yerk city Wracals.150

Hew Yerk city WCBN15. 870
Nev York city WGRcl5.270 Ney York city WNRE 15.280 Mow Yerk city WNaliv. 780

New York City wCBX

New Yerk city WNRis18.160 Now York city WOOWS1.500 Now York city WCRC81.570 Now York city WNRA21. 810 Now York City WNRX2.Ise San Framise KGEI osee

8 Fon Frawalse0 KWID 0.570 8an Framolse KWIX 9.670 8 ma Frameke KeEl s.6PO 8an Franoleo KEEX11.T80

8en Framise KWIX11.800 8an Francieco Kwioll.e90 8en Framelseo KWID17.760 8an Fravelses somenectady Schanoctiny Sebremectedy 8chemeetindy Sehenectivly
Schenectedy UNITED 8TATES

Sehenoetady WEEA91.500 Washington WWV 2.500 Wachingtion WWV 5.000

\section*{QUALITY ITEMS AT LOWER PRICES}

 .5 mida- 300 one of the big
Made by \(2 / 2\). four. \(3 / 4^{\prime \prime} \times 2 \frac{1 / 2^{\prime \prime} \text {, with tinned }}{}\) leads. New fresh stock-all 10,000 guoranteed. available at 10 for 49 c
6 c each 100 for \(\$ 3.95\)

ORDER INSTRUCTIONS
Minimum order- \(\$ 2.00,25 \%\) doposil with order required for all sufficient postog. Be surese to include will be rofunded. Orders received withoul postoge will be shipped -xpross collict. All priges f.O.s. Dotroil.

\section*{Serviceshop \\ Tests Serviceshops}

\author{
By ERIC LESLIE
}

"KNOWLEDGE Precedes Intelligent Action." This old proverb is truer in radio than in almost any other branch of modern industry. The progressive radio technician is an avid reader of radio magazines, books and manuals and a steady patron of radio-electronic schools. These are available in quantity, so he has little difficulty in keeping abreast of the technical advances in radio.
But when it comes to setting up a business of his own-to actually establishing a service shop-the radio technician has no knowledge to guide him. Starting with a given capital, he wants to know the answers to such simple questions as "How much rent can I afford to pay?" or "What part of my investment should I devote to test equipment?"
One of the leaders in bringing technical knowledge to the radioman, Howard W. Sams of the PhotoFact Service, de-
cided to prepare a study on this important serviceman's problem. He found that nobody had any facts on which such a study could be based. And there seemed no way to get them. Various surveys had turned up bits of information on the business side of radio servicing, but these scattered and unrelated items were of little use to the radio technician starting up in business.

There was but one way to get the information-actually establish an experimental radio service shop, and learn the hard way-the only way a would-be serviceman can now learn anything about the business angles of his trade. Sams decided to start his own shop and learn by experience the opportunities and pitfalls of radio servicing.

The first step was into one of the pitfalls. A likely location was chosen. It was selected to combine low rent with a large volume of traffic past the store. An apparently ideal spot was found at

Work on the new Sams' test bench. Left portion is part of a second identical bench used to double length. The large stock of meters represents part of Sams' equipment-testing program.
the crossing of two main traffic arteries and a store was rented.

Only after starting work in the new shop was it noted that other considerations than rent and prospective trade are important in selecting a location. The new place was noisy. The trackless trolley past the shop daily took hundreds of prospective customers past the door, but it also sent out high-power broadcasts with each shower of sparks from the overhead conductors. Flashing neon signs on the two filling stations across the intersection also made plenty of noise, as did those of the supermarket next door. "Signal tracing" showed that three doctors and one dentist-with Xray machines-were located in the block. Sams wrote his heading for Lesson One: "Check your proposed location for noise as well as its business possibilities."

Lesson Two was a design project. Problem: To find or design an efficient and suitable workbench. Sams had learned from many servicemen that what the majority wanted was something relatively inexpensive. For those who could afford a higher-priced bench, there were excellent commercial models.

The designers abandoned tradition and struck out along revolutionary lines. The bench they produced consists of two parts-a flat top and a pair of shelves behind it. These shelves are the novel feature.

The back of the average bench is used as a panel for instruments. But most instruments used today are the portable type. In servicing FM or television sets -where two or three instruments may be connected to the same receiver-the mobility and flexibility of the portable instrument are especially important. This bench is designed for use with portable instruments. They can be stacked on the lower shelf at bench level and directly behind it, and used either in place or pulled out to best position. Those used less can be kept on the upper shelves.

Another point in favor of the shelves is that customers dislike to see their sets scattered over the floor, where someone may step through the loudspeaker. The shelves provide space for such radios. Receivers whose repair is temporarily interrupted-while waiting for parts, for example-can also be lifted to a shelf. This frees bench space and thus adds to virtual bench area.

Another feature the technician will appreciate is the overhang at the front. See drawing, Fig. 1. Much repair work is done sitting down, and the overhang provides kneeroom. There is an accompanying disadvantage - the drawers must be spaced a few inches below the bench top for accessibility. Shelf space in the compartments beside the drawers permit storage of parts, radios, or larger tools, depending on the serviceman's need and the other fittings of the shop.
The bench may be expanded by placing its end to the wall and putting a second bench on the other side of the shelf rack. Two repairmen can then work writhout getting in each other's way, but both within reach of instruments.
(Continued on following page)

Fig. 1-The "kitchen rabinet" workbench, front and side views. 'Smaller aroas on front view are drawers. Lerger onos may be open sholves or be fittod with doors and back as closets.

\section*{abSOLUTELY NO KNOWLEDGE OF RADIO NECESSARY} YOU NEED NO ADDITIONAL PARTS!
the progresilve radio kit is the only complete kit

 transmitter and ampliner design. It is used in many radio schools and
colleges. All of the conmonly-used deteciors are used, including diode, grid leak, plate and infinite-impedance. The transmbtlert are designed with Hartley and Armstrong oscillitors using sereen-grid and control-grid modulation. Both racuum tube and selenium rectiffeation are employed in theso gether. Afteen circuits aro consiructed. Including 11 receivers. 1 audio amplifier, and 3 transmituers. The sets start wlith simple circuits of 1 sube plus rectifier, gradually grow more comptex. and Anish with several examples of radio sets using three tubes plus rectifer.
.ONLY \(\$ 14.75\)

\section*{SPECIAL FREE OFFER}

Electrical and Radlo Tester sent absolutoly FREE with oach Progressive Radio KIt. PLUS FREE mombership in Progressivo Radio Club. Entities you to free expert advice and consultation service with lleconsed radto
tectnicians. Write for further Information or ORDER your KIT NOW rechniclans. Writs for further information or ORDER your KIT NOW

\section*{Rodedsisile AMPLIFIER KIT S157s}

\section*{HIGH FIDELITY, HUMLES8. AMPLIFIER}

EVEN TUBE PEFORMANCE
This newest Progressive Kit will enable you
to build a newly-designed, hish fidelity humless amplifer.
Beautiful alumlnum custon-punched chassis,
elched tone and volume control plates
Ideal amplitier for tolovision kiteciric set, FM tunor. AME tuner, microphone phonozraph, wire and inutantaneous recorders. Electrify your musical instruments by connecting them to the Progressiv
Amplifer by means of a contuct mile. Amplifler can be readiy modifed to match the GE reluctance plek-up. Separate mike and phono input. Fexulated nower supply maintains con atant rottare supply. DC heater supply. whether amplifter is used on AC
or DC, provides humless operation by eliminatinz cathode-heater leakake or \(\operatorname{mim}\). Contains dexenerative feedback for improved frequency response, balancen phase inversion and push-pull beam power output. Every stage thornuphly decoupled to improve low-frequency reyponse and to preren motor-boating. Tone and rolume controts completely rarlible. Qeven-tube performance Uses 2 selenfum rectifiers. \({ }^{2}\) beam power am-
plifors, 1 hikh-mu pentode mike amplifer, 1 twin-triode phase inverter and I voltake reaulator fube.
Progressive AMPLEFIER KIT (less Tubes and Speaker)..... only \(\$ 15.75\) TUBES for Progressive Amplifer Kit 1-12SL7. 1-128J7, 1-VR75. 2-12A6's.
Complete Sot .. \(\$ 3.00\)
BUILD A 5 TUBE AMPLIFIER - only \(\$ 975\)
Ideal for phonograph. FM tuner or miterophono. Ifas 5 tubes including recradlo parts, hook up wire, solder and instructions. We can provide a 4 -inch PM, speaker with motnted output transformer to fit on chassis. priced at \(\$ 1.95\). Or use this kit with your own speaker. It has 5 watts \(\$ \mathbf{9 . 7 5}\)
output, more than enoskh to drive a 12 -Inch speaker....... Only \(\$ \mathbf{8}\)

soldering 5 Watt \(110 / 120\) Volt soldering Iron, long nose pliers \& cutters, screwdriver, insulat
100 Carbon Resistors, \(1 / 2\) Watt. RMA color-coded. Values from 10-10 MFD. 450 W.V. DC Electrolytic Condensers 65 c 20-20 MFD. 150 W.V. DC Electrolytic Condensers . . 40-40 MFD. 180 W.V. DC Electrolytic Condensers 45c Antenna and RF Coil Set
(Broadcast Band) \(\ldots . .\). 59c \(\frac{\text { (Broadcast Band) } 59 \mathrm{c}}{6^{\prime \prime} \text { Alnico Slug Speaker.. } \$ 1.69}\) Selenium Rectifiers 79c Midget Soldering Iron 35 Watts \(110 / 120\) volts UL spproved 69 c 55 Watt Soldering Iron UL approved \(\$ 1.90\) 75 Watt Soldering Iron UL approved \(\$ 2.40\) ters PROCRFSSIVE RADIO TOOL KIT

High.Fidellity AM,FM, reception. Migh.Fidelity AM, FM reseption.
Fulliranoe commbination bis.
trebio tone control. 13 wett (maximum) Push.Pull 10 finch PM speaker with Alnico 10 theh PM spoaker with Alnico \(V\) magnet.
Indirectly . Huminated "silideLoop antenna for AM and Foldrd supplied.
13. Provisions for extornal antenna 13. Provisions for external anterinas.
15. Wired for phonograph operation. Licensed under RCA and Hazel-
tine patents. G. RMA patents.
-16. RMA listed.
with C.O.D. orders
\(\$ 25.00\) deposit required

\section*{AN ITALIAN POCKET RADIO CIRCUIT}

This little receiver is of Italian design, but uses standard American tubes. Built to fit in a pocket, it uses a t.r.f. circuit. American constructors will find the volume control connection ond the use of a C-battery to supply bias to the output tube novel and interesting design features. The liftle set uses a 2 -inch magnetic loudspeaker.

\section*{SERVICESHOP TESTS SERVICESHOPS \\ (Continued from page 67)}

Lesson Three is on test instruments themselves. What instruments does the technician use most, and which can the small shop most easily do without? Are the test instruments offered to the radio repairman exactly adapted to his needs? To get the answer to these questions Sams enlisted the test instrument manufacturers. Cooperating to the fullest, they have supplied specimens of practically all pieces of test equipment currently on the market. All these will be used in checking radios on the bench. Not only will general conclusions be drawn, but weak and strong points of individual pieces of equipment will be noted and the manufacturer advised. Thus both manufacturer and his eventual customer, the radio technician, will benefit.

The new clinic expects to reverse the history of the small neighborhood radio shop. Many a serviceman has started in a small way and built up a reputation for skillful and reliable servicing, then moved on to the steadier dealer servicing, with its better income and reduction in the number of individual problems. Sams - reputation already assured plans to start with the simpler dealer or manufacturer servicing. When some experience in general servicing has been obtained, the doors will be opened to radio owners of the neighborhood and the shop will proceed to the more advanced subject of individual customer servicing.
The lessons to be learned in this pioneer effort should be very valuable to the American radio technician. Indeed, there are so many things to be learned and this is so obviously the com-mon-sense way to learn them, that the onlooker can only echo Sams himself and ask, "Why hasn't someone done it before?"

Baffling indeed are the problems which face the man trying to start his own radio service business. Sams intends to find some of the answers, and expects to have some of his solutions in the hands of the radio technicians of the country within the next year.

A good reputation, like good-will, is built by many deeds, but may be deby buying inferior or keep repeating gains." That's why we your customers "Your Reputation and the best means deserve the best!" And the best means stroyed by a single dissatisfied cusSprague. tomer. Your reputation is too "saved" ble to risk for the few pennies "saved

SPRAGUE TM TUBULARS - The firal truly practical MOLDED Poper Tubular Copacitoral

SPRAGUE LM-Universal Maunling Roplocements!
for a SPRAGUE You're Right!

SPRAGUE ATOMS - Univeral Midget Dry Electralytical

SPRAGUE EL-Solf-Mounting Midgor Con Typal
THESE SPRAGUE PRODUCTS ARE UNCONDITIONALLY GUARANTEED!
When used at their capacitance and voltage ratings, these Sprague Products are unconditionally guaranteed to render satisfactory performance.
*KOOLOHM
CAPACITORS

SPRAGUE PRODUCTS COMPANY, North Adams, Mass.
(JOBEING AND DISTRIBUTING ORGANIZATION FOR THE PRODUCTS OF THE SPRAGUE ELECTRIC COMPANY)

\section*{THE PRICES SPEAK FOR THEMSELVES}

\section*{THIIISION}

COAXIAL CABLE, 72 ohms, 100 foot roll... . \(\$ 6.95\) COAXIAL CABLE, 72 ohms, 500 foot roll. . . 32.10 TWIN LEAD-IN WIRE, 300 ohms, 100 foot roll 1.95 TWIN LEAD-IN WIRE, 300 ohms, 1000 footroll 17.50 FOLDED DIPOLE ANTENNA, reflector type 7.25
FM CONDENSER \& COIL KIT, with instructions and schematic diagram. INTERCOMMUNICATION SYSTEM, master \(\&\) station complete with 8 tubes.
VOLUME CONTROLS, 50 M ohms, \(1 / 2,1\) or 2 Megs, all with switches...........

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{CONDENSERS} \\
\hline .001-600V....Per & Hundr & & \$3.95 \\
\hline . \(01-600 \mathrm{~V}\). & -• & & 4.40 \\
\hline . \(05-600 \mathrm{~V}\) & . & & 4.95 \\
\hline .1-600V. & " & & 7.20 \\
\hline 16-150V & & Eac & h 24 \\
\hline 20-150V & & & . 25 \\
\hline 20/20-150V & & & . 29 \\
\hline 30-150V & & & . 28 \\
\hline \(50-150 \mathrm{~V}\) & & " & . 35 \\
\hline 40/40/20-150V \& & 25 V & & . 44 \\
\hline \({ }_{8}^{50 / 30-450 \mathrm{~V}}{ }^{50 \mathrm{~V}}\) & & ." & . 47 \\
\hline \(10-450 \mathrm{~V}\) & & " & . 32 \\
\hline 16-450V & & \(\because\) & . 36 \\
\hline 16/16-450 V & & " & 59 \\
\hline 20-450V & & * & . 39 \\
\hline 30-450V & & & . 47 \\
\hline \(40-450 \mathrm{~V}\) & & " & . 54 \\
\hline
\end{tabular}

\section*{RADIO TUBES-KNOWN BRANDS—BULK}

80, 5Y3GT, 5Y4GT, 6C4, 9002............ Dach \$. 4 35W4, 25Z5, 25Z6GT, 35Z5

Dach \$. 42 6F5GT, 6J5, 6SA7, 6SK7, 6SQ7 36, 37, 77, 78, 6H6, 6D6. .45 12AT6, 12BA6, 12BE6, 12SQ7 12SA7, 12SK7, 6F6GT, 75.
6J7, 6K7, 6Q7, 6SF5, 6SN7
\(35 \mathrm{~A} 5,35 \mathrm{~L} 6,50 \mathrm{B5}, 50 \mathrm{~L} 6,50 \mathrm{Y} 6\) 43, 6A7, 6A8, 7B7, 25L6 OZ4, 6X5GT, 7F7, 7N7, 7Y4 1A5GT, 1A7GT, 1H5GT, 1T5GT, 1N5GT 1S4, 1R5, 1S5, 1T4, 3Q4, 3Q5, 3S4. 1S4, 1R5, 1S5, 1T4, 3Q4, 3Q5,
14A7, 14B6, \(14 \mathrm{Q} 7,35 \mathrm{Y4}, 50 \mathrm{A5}\) 1LN5, 6AC7, 6L6G, 70L7 1LC6, 1LH4, 1LA6, \(117 Z 3,117 Z\) Z̈ 25A6G, 117LGT, 117N7GT, 117P7GT.

\author{
GT
}
\(\qquad\) BROOKS RADIO DIST. CORP.-80 Vesey St., (Dept. A) New York 7, N.Y.

\footnotetext{
RADIONIC EQUIPMENT CO Dept 105 170 Nassau Street. New York 7. N. Y. Send at once your froe catalogs, supplementa and bar gain lists as published-lisiting products of leadin and equipmens.

\section*{NAME}
P.O. BOX or STREET

TOWN
STATE.
}

\section*{- yo y fecó \\ BINDING POSTS?}

The XL PUSH POSST with its Spring Action assures Constant Contact and
quick connection. All Aluminum Type m
manufactured in Al \(12 c\)
at each
al At 1 Aminum B
TEDE CP or NP ALL BRASS STAIN LESS STEEL 8PAING 240 ER. PAN, PROVEN
 and oe

\section*{X. L. RADIO LABORATORIES}

420 West Chleago Avo., Chicago 10, IIf.

\section*{RISCO HAS IT}
V. M. MIXER CHANGER PLAYS \(10^{\circ}{ }^{\circ}\) and \(12^{\prime \prime}\) records at the
same time \(\$ 15.50\) DETROLA, \(\$ 13.75\) G. 1 RECORDERS Single Speed. . 822 Dual Speed. . . . \(\$ 26\) \(40 \%\) off on Recordisc Recording
Recordisc Reco
Blanks.
\(\$ 15.50\) Above Easily Attached to Any Radio
Above Easily Attached to Any Radio
CAN BE USED WITH AMPLIFIER BELOW SERVICEMEN'S SPECIALS
100-INSUL RPS. KIT
\(25-\mathrm{MLCA}\)
COND.
OODD
25-MICA COND. OODWD
15-ASST. KNOBS
\(15-A S S T\). BY.PABS COND
15-ASST. KNOBS
15-ASST BY.PABS COND.
15-ASST. SOKMFS CONTROIS
TO-ASST VOLUME CONTROI AILLANCE PHONO MOTORS ASTATIC 工-70 or sHURE GLIDEE FICKYOPS 1.79
 PHONO AMPLIFIER
 Control \& Tone \(\$ 2.75\)

 PHONO OSC-2-TUBE
 NE 2 Tuhen-\$1.50. \(\$ 2.75\)
Orders Filled
an
EMOW ROCeived visit oun New SMow hoom Free Catalog "C" Just Out 25 WEST BROADWAY N. Y. 7 RISCO ELEGTRONIGS wholesale oistributobs
```

RADIOMEM SERYICEMEN REGINNERS
MAKE MORE MONEY
EASILY - QUICKLY
\$250. WEEKLY POSSIBLE
Wo show Yoo How Intormation Proo MERIT PRODUCTS

```


\section*{TRANSATLANTIC NEWS}
(Continued from page 38)
book, I think I'll play for safety. In the final revision of the proofs, besides changing every "is" into "may be" and every "know" into "believe," I'll insert "probably" into most of the statements

Recent investigations in Britain have shown that v.h.f. transmissions can, and regularly do, travel in no less than three other ways than by the direct wavel One of these, the atmospheric duct, has been known for some time; but it was regarded rather as a freak condition. It has nothing to do with ionization. What happens is that, under certain condi tions, a kind of wave guide is formed between a layer of air (which may be at a height of only a few meters) and the surface of the earth. The new discovery is that this is no freak; it is a common state of affairs in fine settled weather such as we had over here last summer. This accounts for the regular reception in Europe at ranges of \(130-150\) miles of frequencies up to 58 mc .

But it doesn't account for transmis sions of similar frequencies which span distances up to 1,400 miles as they did for many months in 1947 when European v.h.f. transmissions interfered badly with one \(43-45 \mathrm{mc}\) television service. That has been shown convincingly to be caused by sporadic E-layer ionization, which is found to be pretty frequent in summer time in these latitudes. Sporadic \(E\) is a superionization of the lower reflecting layer, which occurs more often and more widely than was formerly suspected and is influenced by sunspot activity. Appleton has shown that it can be caused by meteoric dust. Strong sunlight can also bring it about

And now for a quiz question for which no prize is offered. Two places, \(\mathbf{A}\) and \(\mathbf{B}\), are 1,000 miles apart. One set of radio waves from \(A\) reaches \(B\) by reflection from the E-layer at a height of 65 miles; a second gets there by reflection from the F-layer at a height of 200 miles Which set meets the reflecting layer at the larger angle?

Those that travel via the E-layer? Right! The bigger the angle the smaller is the chance that the waves have of going smack through the layer and the greater the chance that they will be reflected, supposing that each layer is ionized to an equal degree. It follows that v.h.f. waves which would escape into space and never come back to earth under ordinary conditions may be returned to earth by a superionized Elayer. The observed critical frequencies of sporadic \(E\) are such that the maximum range obtained in this way by v.h.f. is about 1,400 miles.

Well, there you are. Those who said that there would be no mutual interference between v.h.f: stations working on the same frequency, so long as they were 40-50 miles apart, were somewhat off the mark. Atmospheric ducts can cause such interference up to about 150 miles, sporadic \(E\) up to 1,400 , and \(F\)-layer superionization up to 5,000 miles or more.

And those are the waves of quasioptical range!

\section*{WWV SCHEDULE CHANGES}

Latest WWV schedules and services are contained in the Bureau of Standards letter circular LC 886, available without charge. WWV now transmits on the following carrier frequencies with power and modulation as stated:
\begin{tabular}{ccc}
\begin{tabular}{ccc}
carrier \\
\((m c)\)
\end{tabular} & \begin{tabular}{c}
power \\
\((k w)\)
\end{tabular} & \begin{tabular}{c}
modulation \\
\((c p s)\)
\end{tabular} \\
2.5 & 0.7 & 440 \\
5 & 8.0 & 440 \\
10 & 9.0 & 440 and 4000 \\
15 & 9.0 & 440 and 4000 \\
20 & \(8.5^{*}\) & 440 and 4000 \\
25 & 0.1 & 440 and 4000 \\
30 & 0.1 & 440 \\
35 & 0.1 & none
\end{tabular}
0.1 kw for first 4 work days after 1st Sunday of each month

Time signals are transmitted continuously on all above frequencies. Each second, except the 59th of any minute, is marked by a 5 -cycle pulse of a \(1000-\) cycle signal. It is heard as a faint tick each second, correct to within a microsecond. All of the r.f. and a.f. frequencies are correct to within one part in \(50,000,000\).

Tone modulation is applied for the first 4 minutes of each 5 -minute period. Then c.w. code signals announce the next minute, using 24 -hour notation. Midnight is 0000 and noon is 1200 . For example, nodulation starts at exactly 1 p.m. and stops at precisely 4 minutes past. Then code announces 1305 which is the next minute. At exactly 5 minutes past the modulation is resumed for exactly 4 minutes more. Then, at 9 min utes past, the announcement 1310 is made, etc.

The tone modulation is useful to servicemen for standardizing oscillators. The 440 -cycle note can be used to standardize musical instruments since it represents the standard pitch \(A\) above middle C.

In addition to time signals and standard frequencies, ionosphere storm, warnings are also transmitted. If such a disturbance is in effect or is expected within 12 hours in the North Atlantic area, a series of W's are sent following the time announcement at 19 and at 49 minutes past the hour. If normal conditions prevail a series of N's are sent instead. This service is useful for communication stations which may change to lower and more reliable frequencies to avoid fading and signal blackouts which usually accompany the storms.

\section*{ALARM CLOCK USES LIGHT}

An electric alarm clock that will even awaken deaf persons is now on the market. In use, the bed lamp is plugged into the clock, and at the time set for the alarm, the lamp starts flashing on and off. A penetrating buzzer warning sounds seven minutes after the flashing starts. If the deaf person is not awakened, installation of a small photoflood bulb in the bed lamp is guaranteed to produce results in the most stubborn cases.

\section*{ESUR HARD-
LEDTNE PARTS}

WIRE \& TAPE RECORDING, COMPONENTS. Essential "hard-to-get" parts for units described in Kadio News, Feb., '48. WIRE RECORDING-PLAYBACK HEAD. PTecision

 WIRE SPOOL SPINOLE. Polished aluminum. Take

RM-4 RECORDING MDTOR. Heary duty, 110V. 60 cycios. Adaptable to WIRE. TAPE or Dise
RECORDING \& PLAYBACK. \(5 / 16^{\circ}\) o.D. shaft
 PERMALLOY DUNCER LAMINATIONS. HydroTen annealed specincaly for use In conaruchng uncer containing laminatlons
ALNICO ERASE MAGNET. "U"" haDe \(;\) pollathed
 supplement.

\section*{PERMEABILITY TUNER}

Bulld really HOT \(\$\) or 6 tube AC-DC superhet reand antenna colls: refular \(\mathbf{4 5 5} \mathrm{KC}\) intermediate fre. quency. Complete with permeablitytuned oscillator coll. \(121 /{ }^{\prime} \times 2 夕^{\prime}\) diameter dial \(\$ ~\)
drum. Order MA- 2169 Loop Antenna \(15 \mathrm{c}: ~\) drum. Order Min-bicd, punched Chassis 39 c MA-2167.
\({ }^{124}\)

\section*{CONTROL BOXES-19c Each!}

MA- \(2135-5\) position and jacka for PL. 55 and PL-68. \(3^{\prime} \times 41 / 1^{\circ} 32\) Y Aluminum finlsh.
MA-2093-3-position for PL:55 pluss, Inter. nal jack stifp, elfcult diagram. \(3 \mathrm{~s} 3 \mathrm{~s} / \mathrm{h}\)
Aluminum filah

MA-2095-6-postelon 5-prong female recep: tsh. \(2 y^{\prime \prime 2} x 4 / 5^{\circ} \times 13 / 5^{\circ}\)

 Aluminuminnish. switch. Aluminum fin.

\section*{RG/8-U COAXIAL CABLE}

Get your share of this fine-quallty coanial cable. shielded. 52 ohms nominal impedance. Not sold in less than \(100-\) foot lengths.
MA. \(5018-100\) feet.
Coaxial Cable Connectors

nd RG-11/U, or use adapter for other
coaxial cmbles. Silver-plated, manchined coaxial cmbles. Siver-piared. Ins. Excep orass. Inserts are low-loss mica. Excep.
thonal quality at low price. Min-2828.

\section*{Use a PUNCHED CHASSIS!}

Save time and eflort with a punched chassls. Take the hard work out of bullding recelvere, amplifiert, MA-2913-16" \(\times 5^{\prime \prime} \times 2^{\prime \prime}\)
 MA.2910-14 \(\times 6 X^{\prime} \times 2 y^{\circ}\)
8 tube.............49c

\section*{ORDER FROM THIS AD:}

Quanitiles are limited, to ret your order in nom Minimum order shipped, \(\mathbf{\$ 2 5 0 \text { . Send } 2 5 \% \text { deposit. }}\) Barancein Bulletins ehnt ist latert, ireatest buys in radio parts, electronic eauipment. Scad orders to store address, Desk RC- 58
or

\(\rightarrow\) "17" is YOUR LUCKY NUMBER!!! Yes, Leotone's new JUMBO RADIO PARTS ASSORTMENT is the YEAR'S BEST BUY! 17 FULL POUNDS of new and dismantled radio and electronic partsCOILS, TRANSFORMERS, WIRE, HARDWARE, SPEAKER REPAIR PARTS, RESISTORS, CONDENSERS, etc.
these AND MORE for
2.95

PRECISION RESISTORS. \(+1 \%\) Wiro-wound. Pamous makes. Ohmdges 2.35, 11, \(24.5,100,130,405\).
840.1740.
\(2500,3300, ~ 5290, ~ 7800, ~ 30 K\)
or \(50 \mathrm{~K}-\) 840. \(1740.2500,3300,5290,7800,30 \mathrm{~K}\) or \(50 \mathrm{~K}-\) MEGOHMS: .1. .125, .2,........................... \({ }^{35}\) SPECIAL-1 megohm (1 watl) \(\ldots\)......ea. ea. .79

\section*{LABORATORY TYPE OSCILLATORS}
(Contirated from page 27)

\section*{Resistance-capitance oscillators}

The resistancecapacitance tuned oscillator in Fig. 5 is used for the generation of audio frequencies. Frequency is controlled by an R-C network that provides regenerative coupling to a feedback amplifer. Main design points in this circuit are to use as few bypass.condensers as possible and to make the ones used of high capacitance to minimize phase shift at very low frequencies. The amplifier must be designed for wideband response to prevent phase shift at the higher frequencies and must also use a large amount of negative feedback. A 3 -watt, 117-volt lamp is usually used in the cathode of the oscillator to provide the negative feedback. The lamp also automatically controls the amplitude.

Audio frequeacies may be produced by a beat-frequency oscillator (Fig. 6),

Fig. 6-A typical beat-froquoncy oseillator.
which is a combination of two r.f. oscilators, one fixed at about 100 kc and the other variable. The two outputs are fed into a mixer, then amplified. The difference between the 2 frequencies represents the audio output. A very wide range of frequencies exteading well into the r.f. region can be covered with this type of circuit.
The b.f.o. has several drawbacks. The chief one is the tendency of the oscillators to "Lock in" with each other at low frequencies. Unless filters are used together with careful design, cross-modulation of the higher harmonics occurs. For this reason the R-C feedback circuit is rapidly displacing the b.f.0.

\section*{Electron-coupled oscillator}

Buffer stages are neoded between most oscillators and their loads. A load connected to an oscillator changes the current in the tank circuit which in turn affects the frequency and might even stop ascillation entirely. If the load varies the oscillator will be adversely offected. The buffer stage can be eliminated by using an electron-coupled oscillator (Fig. 7). This is the Hartley circuit

Fig. 7-Electron-couplod Hartloy oscillator.
with a few changes. The screen grid is used as the anode and output is taken from the plate. The cathode is at an alternating potential above ground, but the screen is grounded.

The electron stream which reaches the plate is "modulated" at the frequency of
oscillation, and by inserting a tuned circuit in the plate lead as shown in the figure, it can transform the r.f. energy by either capacitive or inductive coupling to an external load. The plate circuit is at all times well shielded from the oscillating circuit, because the screen is grounded at radio frequency.

In all the above types of oscillators good wave form has been one of the most important features to be considered, but one oscillator with very bad wave form is much used-the multivibrator (Fig. 8). It is useful because it

Fig. 8-A simple twin-triode multivibrator.
can "count down" a higher frequency to a lower one in predetermined steps. One important use is to divide the frequency of a crystal oscillator into a frequency suitable for running a synchronous clock. In this case, the crystal oscillator asually has a frequency of 100 or 1,000 kc. The output triggers the multivibrator, which generates subharmonics of the original frequency. By using two multivibrators, an output of \(1 \mathrm{ke}-0 \mathrm{r}\) oven down to 10 cycies-is entirely possible. The output will be just as accurate

\section*{THE COLLINS FM-AM TUNER}

The lest werd in hish fidelity, laboratory porformance

\section*{AM}
- EMPLOYS OUR 25-C BAND PASS TUNER
- 20 KC BANDWIDTH
- 530 to 1700 KC
- DELAYED, AMPLIFIED AVC

FM
- armstrone circuit
- II TUBE CIRCUIT
- 3 IIF. STAGES
- 2 LIMITERS
- 88-108 MC
- NEW 6AL7-GT tUNING EYE

\section*{CHECK THESE ADDITIONAL FEATURES}
 power supply Indeded. Twe eomplote Toners, waly Audio Tube oommon. Vothage regulated powor aupily. 17 Tubes in standard model. Avalahle with e wide selection of extra acoeseories.
Not a production line radio, but cerofility bullt by expert tochmiclans who know thotr businces. is an indeYeu will sot be completcly satisted until you heve the Colllas Tuner in yeur home.

\section*{WRITE FOR TECHNICAL FOLDER "RC" AND PRICEB}

\section*{COLLINS AUDIO PRODUCTS COMPANY, INC. \\ WESTFLLD, WEW JEBSEY}
and stable as the crystal oscillator itself.
The wave form of the multivibrator is rich in harmonics that are usable up to the two- or three-hundredth. The output harmonies of a 10 kc multivibrator may be used to spot points on a receiver dial 10 kc apart up to at least 2 megacycles.

\section*{AMPLIFIER WITH FOUR INPUTS}

Amplifier has four input channels and separate treble and bass controls. Pushpull 6L6's are used in the output stage.

The two microphone stages are unique in that d.e. from the cathode bias of the 6L6's is used on the filaments to reduce the hum level. A pair of 12SJ7's may be
used in place of the 7C7 tubes if the 6 L 6 cathode bias resistor is changed to 280 ohms, 10 watts. The 7F7 is an eleotronic mixer and can be replaced with a 6 SC 7 or a 6SL7.

Eugene K. Goodwin, Los Angeles, Calif.

Come to the Great SHOPS OF COYNE
where youleam by doing

B:1p10
ELECTRONICS-TELEVISION

\section*{To Succeed in Telovision, You Need} All-Around Radio Training!
Truined Radio men needed now. Get Redio tratining and be ready for a real future. Learn on actuel equipment at Coyne. 49 years of traintang experience Not "Home Study". Free employment eervice to graduates. Many earn whlle learning. If you are ebort of money, ask whout Student Finance Plan. Now added Training in Electric Refriseration. G.I. Approved.
SEND COUPON FOR FREE BOOK B. W, COOKE Preaident

COYNE ELECHRICAL R RADIO 8CHOOL Fend Bis Free Book; Dept. 58-aH. Chicato 12. It. Time Bignoyment and Studemt Fimence Pian Part-
NAME. AGE. . ADDRESS.

CITY. .STATE.

\section*{EASY TOLEARHCODE}

\section*{PROJECTION TELEVISION!}

Convert your RCA 630 or Crosley 307 to this
 Temple in Los Angeles, during the Rose Bowl game. It was viewed by 4800 people at one sitting!
A \(12 \times 16\)-foot rear projection plastic screen of our type was used.

\section*{F 1.9 TELEVISION PROJECTION LENS}

Dimension - Length \(\mathrm{I}^{\prime \prime}\),
Diameter \(41 / 4^{\prime \prime}\).
F 1.9 EF . E in. (127.0 \(\mathrm{mm})\). This lens incorporates in barrel a corrective lens for use with a 5 TP4 projection tube. It is easily removable for
 use with flat type tubes.
Lens can be utilized to several inches to \(2 \times 9\) project picture Bizes from Loemb
feet. Made by Bausch \& Lomb Optical Co.Dealers' Price \(\$ 125.00\) Mounting ring available for above lens. Price \(\$ 2.50\)

\section*{30 KV RF POWER SUPPLY}

Dimensions-Length Height \(111 / 4^{\prime \prime}\).
This unit has a low voltage supply sepa. rate from high volt. age pack. Low voit. control which enables you to vary yoltage from approximately 12 KV to 40 KV . Unit has focus control built in for use with 5TP4 projection tube.
Dealers' Price, complet
\(\$ 99.50\)
STAND FOR PROJECTION TELEVISION SETS Dimensions-23" High, 25" Wide, \(181 / \mathrm{r}^{\prime \prime}\) Depth. For use with RCA 630 chassis or Crosley table model sets. Unit mounted on ball bearing soft tired wheels. Depth is designed to accommodate RF Power Supply. Open grill allows free circulation of air. This stand a natural for mounting scopes and other lab. equipment for easy mobility. Specify whether for Television use or shop. Stand as shown in top photo. \(\qquad\) \(\$ 31.50\)

\section*{bear projection TElEVISION SCREENS}

The screen surface consists of a conglomerate "arrangement of microscopic plastic crystals that excelled ant the prowectedith a minimum loss of excelled anfular viewing wima minamum lose is a poss of approximately \(10 \%\) of light viewing the image nt 45 degrees off center.
Light transmission percentages are controlled to obtain the maximum efficiency of the television optical projection system.
The percentage of \(80 \%\) of transmission has been determined as that providing maximum efficiency.
Stock sheets are available from \(3 \times 4\) feet down. Specity inside dimensions of screen desired. If larger sizes are required, they can be made to \(\$ 5.00\) large sizes \(\$ 10.00\).
Dealers' Price of screen, per sq. foot \(\ldots . \$ 4.50\)
Include \(25 \%\) Deposit With Order, Balance C.O.D.

\footnotetext{
Pionecrs in Projection Telovision SPELlman television company 2898, JEROME AVENUE, NEW YORK 58, N. Y.
}

\section*{WOBBULATED SIGNAL GENERATOR}
(Continued from page 35)
shielding. The binding posts, of course, must be insulated from the chassis. No pilot light was installed in the wobbler, as this feature was incorporated in the power supply. All power is carried from the power supply to the signal generator through a rubber-covered multiconductor cable.

\section*{The power supply}

The power supply (Fig. 8) was designed for universal use. The case is identical in size to the FM signal generator. The transformer for the universal supply can be the type frequently used in tube checkers, providing a high voltage for B-supply and various voltages for filaments. The author removed the filament windings from a large receiver power transformer (noting the turns/volt ratio) which had excess space in the winding window. A new filament winding was then wound, providing taps at the proper points for filaments up to and including 35 volts.

Precise voltage regulation of the \(B\) supply is usually desirable for applications such as our FM generator. The original model did not include this feature, although voltage regulators were tried in some of the tests. The two VR tubes and the 2,500 -ohm dropping resistor R25 shown in broken lines may be added within the same cabinet. When the regulator tubes are installed, S3 should be a d.p.s.t. switch.

\section*{Adjustment and calibration}

After the usual checks have been made on filament, plate, and screen voltages, the unit is ready for adjustment. First check both the input and output of the buffer tube V2 for proper form of all three wave shapes (Figs. 2, 3, and 4). The voltage gain of V2 will be slightly less than one, and the input and output wave forms should appear practically identical. While the wave shapes are being checked, the oscilloscope vertical input should be connected at the grid of V2 or V3 (binding post W). The square wave will show considerably greater amplitude than either of the other two, and great enough to allow production of a sizable trace without using the oscilloscope vertical amplifier. This method should be used to see the true shape of the square wave because the usual single-tube amplifier found in most oscilloscopes will distort such a wave shape. The triangular or pyramid wave is the one in which we are particularly interested.

Assuming everything has gone well so far, we now have linear triangular excitation for the frequency modulator. Start adjustment of this section of the unit with C7 at maximum (closed), R10 at maximum, and C18b partly open. The setting of \(\mathrm{C18b}\) is unimportant for the moment. Connect the FM output to the oscilloscope vertical amplifier and, adjust the oscilloscope sweep to 60 cps . Connect the output of a constant-frequency test oscillator (signal generator) to the r.f. terminal of the wobbler.

Fig. 9-The power supply and connecting cable. Note error in polarity of C2O and C21.

Fig. 10-How zero beat looks on 'scope screen.

Fig. II-Positioning node to center of trace.
Slowly tune the test oscillator 100-200 kc both sides of 450 kc . When the frequency of the constant signal falls within the deviation range of our frequency modulation, zero beat will be evident as indicated in Fig. 10. As the constantfrequency signal is changed, the zerobeat point will move back and forth across the 'scope trace. By adjusting (and reading) the constant-frequency oscillator dial so that the zero-beat nodes occur at the ends of the trace, and again so that they coincide in the middle (Fig. 11), the amount of frequency

\section*{LEARN RADIO}
learn fast
LEARN RIGHT
at a price you CAN AFFORD

\section*{15 A.A. Ghirordi,}

\section*{Esay-to-understand BASIC TRAINING FOR BEGIMHERS}
(Used by U.S. Army \& Navy)
The best training costs the least! The best training costs the least ! Actually, Ghirardi's famous
page RADIO PHYSICS COURSE page RADIO PHYSICS COURSE
sweep can be determined. The desired maximum sweep is 60 kc or a deviation of 30 kc each side of the center frequency. The exact amount of maximum deviation is not critical as long as it is adequate.

The value of R13-C7 determines the relationship between the out-of-phase voltage on the reactance tube grid and its plate current. Adjust C7 to give the desired 60 -ke sweep. When R13-C7 becomes too small, oscillation over part of the sweep cycle may be blanked, as evidenced by a 'scope trace such as Fig. 12, obtained on the oscillator plate. Parasitic oscillations and complete instability can also result. Extending the sweep too far will also give a non-linear grid potential vs. frequency characteristic for the reactance modulator.

The final adjustment consists of setting the range of center frequency, after which the dial on C18a can be calibrated. The center frequency of the FM signal output at any particular setting of C18a is determined as follows. The FM output is connected to the oscilloscope vertical amplifier. The constant-frequency generator signal is injected at the r.f. terminal of the wobbler. The oscilloscope horizontal sweep is adjusted to 120

Fig. 12-Effect of making R13-C7 too small. cycles per second. When the constantfrequency signal lies within the deviation of the FM signal, a double trace will appear on the 'scope, each trace being one-half of Fig. 10. When the zero beat points on the two superimposed traces coincide at the center, the constant signal is at the same frequency as the center of the FM signal. C18b is adjusted to give the desired center or carrier frequency range as determined by readings taken at the maximum and minimum settings of C18a. Varying C18b, of course, moves the range up or down the scale of frequencies as well as widening or contracting the range somewhat. It may be necessary, therefore, to alter the inductance of \(L\) slightly.

With the end points at the desired values, it is now necessary only to set the constant frequency at, say, 5 -ke intervals over the selected range, bring the zero beats together on the superimposed 'scope traces, and mark the dial on C18a. The spaces between the \(5-\mathrm{kc}\) marks can then be divided into five divisions to give \(1-\mathrm{kc}\) calibration. The calibration will be essentially finear. Final calibration should be done with all shields and covers in place. Needless to say, the calibration will be no better than that of the fixed-irequency test oscillator used.

\section*{VOLUME EXPANDER}

You may want to try a simple volume expander which will increase the dynamic range of phonograph records or radio programs. The only materials required are two flashlight bulbs (\(31 / 2-\) volt, green-bead lamp for 3 -eell flashlight seemed to be the most satisfactory in the model constructed), two \(1-\mathrm{ohm}\) resistors (a 4 -inch dength of No. 26 nichrome wire makes a yery satisfactory 1-ohm resistor), and enough wire to connect these components together (as shown in the diagram).

At low levels, the lamp filaments pass little current and are quite cold. The resistance is low (in the order of several ohms) thereby almost balancing the volume expander bridge circuit to pro-

duce a small output to the loudspeaker voice coil leads. When the magnitude of the sound is increased, the lamp filaments heat up, and their resistance increases considerably, unbalancing the bridge circuit to produce a much greater output to the loudspeaker. In this way, changes in the dynamic level are accentuated.
To connect the volume expander to your radio or phonograph, disconnect the leads of the tondspeaker voice coil and insert the expander between the secondary of the output transformer and the voice-coil leads.

With the components used there may be too little or too much expansion to suit your taste. Substitute higher-voltage radio pilot lamps (such as 6 -volt, brown-bead) to reduce the amount of expansion, or lower-voltage lamps to increase it. If you wish to use the expander for music only, a simple doublepole, single-throw toggle switch may be inserted in the circuit to break the legs of the bridge in which the lamps are inserted.

Milton Snitzer,
Brooklyn, N. Y.
(This circuit is an adaptation of one developed by L. A. de Rosa and described on page 748 of the April, 1937, issue of Short Wave \& Television and page 21 of the July, 1937, issue of Radio-Craff, in which issues the system was described in some detail.)

\section*{USING OLD SPEAKERS}

I have found a use for the old dynamic speakers that are often given away to servicemen. I use them as auxiliary speakers for a public address system and energize the fields from a dry-rectifier power pack inside the speaker housing。

Bernard Levine, Newburgh, N. Y.
(The resistance of the speaker field must be high enough to prevent excess current from passing through it and the rectifier:-Editor) Electronic beginners their start Electronic beginners their start
than any other book or course ever published. Contains complete basic training to fit you for a career in any phase of RadioElectronics work. Over 800 pages make Basic Electricity easy to learn. Other subjects include Radio Transmission Broadcast Stations; Receiving Units: Vacumm Tubes; Detection; Amblificatuon: hort Waves-a total of 36 basle subjects. If etric Cells lessons and sold as a "course," you'd regard this bif book as a bargain a\$ \(\$ 50\) or morel Over \(\$ 00\) Illustrations. Use cuupon. Read it for 5 days at our risk

Only \(\$ 5\) MODERM RADIO SERVICING

\section*{Learn to bo a Service} Expert - at fome --

A Complete Course in RADIO-ELECTRONIC SERVICING

\section*{Learn professional service} Study now lsof a good job as Bedio-Electronic servico repalr ox pertl Itig easy to earn from Ghir
ardils \(1800-\) dage profusely 11 lus ardil's 1300 -page profusely thus-
trated MODERN RADIO SERY Hated MODERN RADIO SERV \$5 completa. covers all phases of
the work. Fixplains the work. Explains rervice test instruments and when, where and
why to use each type. Even tella how why to use each type. Evon telta how
to build your own. Tells how to to alyze their circuits, test components make all types of repairs, adjustplains how to start a successful radio

\section*{CUTS SERVICE TIME}

Whether you ropalr radios professionalif or ouly work with them ecceBionally Ghirar di's RADIO
TBOUBLEBHOOTEH'S BOOK can save you time BOOK can save you time and useleess
testing on almost any jobl Just look up the make and model of the radio you want to fis. Book covers cmmmon troubles in over 4800 recelvers by
' 202 manufacturers. Tella what to do 202 manufacturers. Tells what to do
-axactly how to do it . Over 800 sdditional pages contain charls, datr tube informailon. codes. elc. that
will help you save time, do better Win help you save time, do better
work in repairlug any radio evor
made. 74.4 big manual-size pages. Weighs almost 4 mans Use coupon. See Money-Saving Offerl

Only \(\$ 5\) Ra0to
TROUBLESHOOTER'S HANDBOOK pains how to start a successiul

5-DAY MONEY-BACK GUARANTEZ Dept. RC-58. Murray HIII Books. Ine.
232 Madlison Ave., New York 16 . N. Y. 232 Madlison Ave., New York 16. N. Y. - E.Encloged find S. ©ily for books checked; or a send - amount plus a fow cents ponlage. In either event, it satisfactory and my remittance will be refunded. I RADIO PHYSICS COURSE \(\$ 5\) (55.50 forelgn) - RADIO TROUBLESHOOTER'S HANDBOOK \(\$ 5\) (\(\$ 5.50\) I foreign)
- MONEYISAVING COMBINATION

Both Modern Radio Servicing and Troublemhooter's
Handbook for only \(\$ 9.50\) for the two (\(\$ 10.30\) wor-
- ign)

N
E City \& Zone

\section*{SAVF Lot RANDBOOK I O TROUBLESHÓOTER'S Lot RA D I O TROUBLESHOOTER'S
HANDBOOK save You time on common HANIC Jobs! Let MODERN RADIO SERV.
ICING train you for truly Drofessival ICING train you for truly professionai radio-electronis service work. Get both ble
books for speclal price wof only \(\$ 9.50\) for the twooks for special
two. U se coupon. \\ SaVE \\ MONEY!}

Only \(\$ 5\) RADIO PHYSICS COURSE

\section*{36 Courses in}

\section*{Better Products for the Radio Industry}

\section*{WIND GENERATORS}
(Continued from page 33)

\section*{NEW G-C STATIC CHASER INJECTOR and POWDER}

Tire static powder kits-improve auto radio reception. Eliminates wheel static interference. New powder is blown into all inner tubes-easy to use. For every car ownerl

No. 5604-Injector for G-C Static Power

List \(\$ 1.50\)
No. 5605-G-C Static Powder Packet for 5 tires..... . List \(\$ 1.00\)

No. 5606-Kit - One Powder Packet and Injector. ... List \(\$ 2.50\)

Have you seen the now G-C "Speedex" Wire Strippers . . . write for illustrated literature.

RADIO DIVISION DEPT. D

\section*{GENERALCEMENT MFg. Co., Rockford, III, U.S. A}

\section*{NEW G-C TUBE PULLER}

Vakes it easy to remove or in. to operate. Inserts or extracts tubes where fingers will not reach-into hard-to-reach places. Saves time and money. Ends tube brealk. age, prevents burnt fingers.
No. 5093-Minlature Puller \(\qquad\) No. 5093-D Display of 12

List \(\$ 1.50\)

\section*{NEW G-C FIELD CHASS EZ}

Holds almost any radio chassis in position! Has special reversible hooks or flanged fype chassi or, to filf chassis back if necessary. Made with tide adiustment-Nakes only 5 soconds to inreal convenience for the never wear out A the radio servicemanl

G-C Producis are available at leading distributors. Write for your'copy of our new
illustrated catalog.

\section*{TIRECITRECIT\|BECI THOUSANDS OF TUBES LOWEST PRICES! \\ [NEW, STANDARD BRANDS-QUANTITY PRICES ON REQUEST-MINIMUM ORDER \$5.00] \\ \(113 E 113 E 113 E 1\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TYPE & Price & TYPE & Price \\
\hline IA3 & . 96 & 6AC7 & . 99 & 605 & . 96 & 1622 & 1.75 & 723A/B & 5.50 & 1625 & . 49 \\
\hline IA5 & .49 & 6AG5 & . 89 & 6V6GT & . 99 & 3523 & . 99 & 725A & 12.50 & 1626 & . 49 \\
\hline IA7GT & 1.10 & 6AG7 & . 99 & 6Y6G & . 89 & 3525 & . 69 & 800 & 2.25 & 1629 & . 59 \\
\hline 1824 1838 & 2.49
4.50 & \(6 A K 5\)
\(6 A L 5\) & .69 & \(6 \times 4\)
\(6 \times 5\) & . 98 & 36 & 1.10 & 801A & 1.10 & 1631 & 1.49 \\
\hline 1838 & 4.50 & 6AL5 & . 99 & 7AE7 & . 89 & 37 & . 69 & \(802 / \mathrm{RK} 25\) & 1.49 & 1851 & 1.25 \\
\hline 165 & .44 & GATB & .75 & \({ }_{7 B 7}\) & . 79 & 38 & . 89 & 803 & 8.95 & 2050 & . 90 \\
\hline \(1{ }^{6} 6\) & . 98 & GAUG & . 89 & \({ }^{7} \mathrm{C} 4\) & 1.50 & 39/44 & . 59 & 804 & 6.75 & 2051 & 49 \\
\hline \(1 \mathrm{H}_{4} \mathrm{C}\) & . 98 & 684 & 1.29 & 7 C 5 & . 89 & 41 & . 69 & 805 & 3.75 & 5514 & . 4.75 \\
\hline 124 & . 89 & 686G & . 89 & 7F7 & 1.25 & 45 & . 64 & 807 & 1.25 & 7193 & . 39 \\
\hline \(1 \mathrm{R4} / 1294\) & 1.29 & \({ }^{6866}\) & 3.49 & 7L7GT & 1.39 & 47 & . 90 & 808 & 2.95 & 8001 & 4.95 \\
\hline \(1 \mathrm{~T}^{4}\) & . 58 & \({ }^{688}\) & . 99 & & . 69 & \({ }_{5085}\) & . 89 & 809 & 1.50 & 8005 & 3.25 \\
\hline \(1 \mathrm{H5}\) & . 99 & \({ }_{6} 64\) & . 64 & 12 A & . 89 & \({ }_{5016 \mathrm{CT}}\) & . 75 & 811 & 1.95 & 8011 & 2.95 \\
\hline INSGT & 1.10 & \({ }_{6}^{6} 5\) & . 51 & 12AH7 & 1.10 & 70L7 & . 89 & 812 & 3.00 & 8012 & 4.95 \\
\hline ILN5 & 1.92 & \({ }_{6}^{6 C 6}\) & 12.95 & \({ }^{12 A T 6}\) & 1.10 & \({ }_{75} 714\) & .69 & \({ }_{813}^{812 \mathrm{H}}\) & 6.90
5 & 8016
8020 & 1.95
5.95
\(\mathbf{5}\) \\
\hline 185 & 1.10 & \({ }_{6} 6{ }^{60} 4\) & 12.95 & 12BE6 & . 89 & 75 r & 2.39 & 813
814 & 5.95
4.39 & 8025 & 2.95
2.95 \\
\hline 2 A 3 & 1.39 & 606 & . 75 & 12 CB & . 89 & 77 & 2.75 & 815 & 2.25 & \({ }_{9} 9001\) & . 89 \\
\hline 2 C 22 & . 63 & 6F6 & . 79 & \(12 \mathrm{H6}\) & . 4 & 78 & . 75 & 826 & 1.75 & \({ }_{9003}^{9002}\) & . 49 \\
\hline 2 C 26 A & . 78 & GF6G & . 80 & 1235 & . 69 & 79 & 1.10 & 829A/B & 2.95 & 8004 & . 49 \\
\hline 2 C 34 & . 96 & \(6{ }_{6} 6\) & . 96 & 12 ks & 1.25 & 80 & . 53 & 830 B & 5.25 & 9005
9006 & . 98 \\
\hline \({ }_{2} \mathrm{C} 40\) & 2.60 & 678 & 1.10 & 12 SAFGT & . 99 & 82 & . 96 & 832 A & 2.25 & CESO & . 79 \\
\hline \({ }_{2}^{2 \mathrm{C} 44}\) & 1.75
.75 & \({ }_{\text {GG6 }}^{6}\) & 1.10
.49 & \(12 \mathrm{SG7}\)
\(12 \mathrm{SH7}\) & . 89 & \({ }_{84}^{83} \mathrm{~V}\) & . 89 & 833 A
836 & \(\begin{array}{r}39.50 \\ \hline .15\end{array}\) & HFY \({ }^{100}\) & .79
3.95
1.25 \\
\hline 2 E 22 & 1.50 & \({ }_{6} 14\) & 1.50 & \(12 \mathrm{SJ7}\) & .79 & 85 & . 89 & 836
837 & 2.50 & MY75 & \begin{tabular}{l}
1.25 \\
1.25 \\
\hline
\end{tabular} \\
\hline 2 E25 & 3.95 & 635 & . 49 & \(12 \mathrm{SK7}\) & . 69 & 100 TH & 12.85 & 838 & 3.75 & O24 & 1.25 \\
\hline 2 E 30 & 2.25 & 616 & .49 & 12517 & 1.10 & 10075 & 3.00 & 841 & . 69 & RK60 & .79
3.50 \\
\hline 2132 & 20.00 & 6.17 & . 89 & 12SN7GT & . 79 & 11717 & 1.89 & 843 & 1.50 & & 3.90
1.95 \\
\hline \({ }_{2}{ }^{1} 33\) & 20.00 & \({ }^{6} \mathrm{~K} 6\) & . 49 & \(12 \mathrm{Sa7GT}\) & . 99 & 11723 & . 89 & 845 & 3.75 & T240 & 2.95 \\
\hline 21851 & 4.95 & \({ }_{6}^{6 K 7}\) & & \({ }_{12 \mathrm{SR7}}\) & . 79 & 11726 GT & 1.10 & 860 & 3.00 & V700 & 6.90 \\
\hline 2 \({ }^{2 \times 2}\) & . 69 & \({ }_{6}^{6 K 8}\) & \begin{tabular}{l}
1.25 \\
\\
\hline
\end{tabular} & \(12 \times 3\)
\(14 A 7\) & .98
1.10 & 121 A
205 B & 2.65 & 861 & 50.00 & VR7S & .95 \\
\hline 387 & . 98 & \({ }_{6 L 6 G}\) & 1.20 & 14B7 & 1.10 & 211 & . 4.98 & 866A & 1.95 & VR90 & .75 \\
\hline 3822 & 4.85 & 6L7 & . 98 & 14H7 & 1.25 & 215 A & 3.00 & 872A & 1.95 & VR10s & . 75 \\
\hline 3824 & . 98 & 6N7 & . 89 & 14.17 & 1.25 & 217 C & 7.50 & 874 & 1.95 & 2225 & 2.95 \\
\hline 306/1299 & . 89 & 605 & . 98 & \(14 \mathrm{R7}\) & 1.10 & 250 TH & 17.50 & 884 & . 75 & 902 & 2.95 \\
\hline 3 C 29 & 2.95 & \({ }_{605}{ }^{60}\) & . 98 & 15 E & 1.50 & 304TL & 2.49 & 923 & . 49 & \({ }_{3 A P 1}\) & 1.95 \\
\hline 304
305 GT & 1.10
.58 & 607 & . 89 & \({ }_{23}^{23 D 64}\) & . 49 & \({ }_{316}{ }^{307}\) & 6.25 & \({ }_{955}^{954}\) & .49 & 3日P1 & 1.95 \\
\hline 3S4 & . 43 & 6SA7 & .90 & \({ }_{24}{ }^{23}\) & . 69 & \({ }_{371}{ }^{31}\) & 8.89
8 & \({ }_{956}^{955}\) & . 79 & \({ }_{5 A P 1}\) & 1.89
2.49 \\
\hline \(4 \mathrm{E27/257B}\) & 4.95 & 6SC7 & . 85 & \(25 A 6 G T\) & . 75 & 3718 & 3.00 & \({ }_{957}\) & .49 & SAP1 & 1.49 \\
\hline \({ }_{5}\) R4GY & 1.15 & 6SF5 & . 79 & 25L6GT & . 75 & 394 A & 4.50 & 958 A & . 49 & \({ }_{58 \mathrm{CP4}}\) & 4.95 \\
\hline 514
\(64 B 7\) & \begin{tabular}{l}
1.25 \\
\hline
\end{tabular} & 6567
6547 & . 79 & 2575 & . 75 & 417A & 19.95 & 959 & . 49 & \({ }_{5 F P}{ }^{\text {ScP }}\) & 3.95
4.50 \\
\hline 6 6B7 & 1.25 & \begin{tabular}{l}
6 SH7 \\
6S17GT
\end{tabular} & & 2526 & .98 & \({ }_{450}^{46 A}\) & 1.25 & 991 & . 50 & \({ }^{78 p}{ }^{\text {P }}\) & 2.85 \\
\hline 504 & . 44 & 6SJ7GT
65 K 7 & . 69 & \({ }_{30}{ }^{28} 7\) & . 75 & 703A \({ }^{\text {70 }}\) & 17.50 & 1005 & . 39 & 70p4 & 14.95
17.95 \\
\hline \(5{ }^{5146}\) & . 98 & 6517 & . 89 & 32 L 7 & 1.50 & 705A & 1.85 & 1613 & . 95 & \(7 \mathrm{7CP4}\) & 19.40 \\
\hline 5 W 4 & . 98 & 6SN7GT & . 69 & 34 & . 98 & 713A & 1.65 & 1614 & 1.75 & \({ }_{108 P 4}^{10 C P 4}\) & 42.20
37.50 \\
\hline \(5 \mathrm{Y}^{3}\) & . 60 & \(6 \mathrm{S07}\) & 89 & 35L6GT & . 75 & 7158 & 4.95 & 1616 & 1.39 & \({ }_{\text {108P4 }}^{1084}\) & \begin{tabular}{l}
37.50 \\
\hline 120
\end{tabular} \\
\hline 5 5 46 & . 59 & 6SR7 & . 89 & \(35{ }^{3} 4\) & 1.10 & 717A & . 69 & 1619 & . 98 & 10WP4. & - \\
\hline 523
524 & . 89 & 6S57 & . 75 & 35W4 & . 69 & 721A & 3.95 & 1624 & . 98 & tetatic & \\
\hline GA6 & . 75 & & & & & & & & & \({ }^{121} 248\) & 80.00 \\
\hline \(6 \mathrm{AB7}\) & 1.25 & & 20\% & deposit & ITH AL & L oroers & UN & RATED & & \(15 A P 4\)
\(20 A P 4\) & 110.00
270.00 \\
\hline
\end{tabular}

\section*{Manufocturers of over 3,000 products . Sole sotfices in prinetipal cities}
and supplies it with a portion of the current generated. Moving the brush against the direction of rotation increases the field strength and output.
The reverse current relay (left relay in Fig. 1) is a simple cutout relay with a dual coil arrangement. One coil of fine wire is shunted across the generator output, and another of heavy wire is in series with the load and the contacts. Both are on the same core. When the generator starts to deliver current, the shunt coil is energized and closes the re lay, connecting the generator to the load. When the wind stops, the battery voltage tends to drive the generator as a motor. The current, reversing through the heavy coil, opens the relay and breaks the circuit.
A typical adjustment for a Winohargr er 6 -volt relay would be: closing voltage, or cut-in: 6.9 to 7.8 volts, reverse or opening current: 1.5 amperes.
These measurements can be made with voltmeter and a \(20-0-20\) ammeter. To simulate a no-wind condition, the brake can be applied slowly and the generator slowed down until the reverse current opens the relay.
The larger plants have slightly more complicated controls. They dispense with the third brush and control the voltage with compound-wound field or a rheostat in series with the field (or both). To cope with fully charged batteries some of the control panels have a relay with contacts in series with the field and shorting a trickle-charge control rheostat. This appears on the right side of Fig. 1. When the battery voltage comes up the relay opens, putting the rheostat in series with the field and so lowering the generator output to a predetermined level.
Incidentally, operation of these relays is affected by room temperature, which should be checked before corrections are made.

Lack of sufficient storage capacity usually leads to continually run-down cells. Run-down cells, operated continuously around 1.150 instead of up around 1.250, will sulphate-develop a hard film on the surface of the plates that prevents the plates from taking a charge. The cure (when it works) is a long, slow charge. Prevention technique is to watch the hydrometer reading and charge the cells once a month until they emit gas for a few hours. This will also equalize them and bring their specific gravity up umtil their charge is equal.
Lack of capacity leads to a high charge and high discharge rate which shortens the life of the battery. Further, a discharged battery will freeze at a much higher temperature than will a fully charged one.

A word of warning. Take care when you climb the tower! Make certain the guys are in place and secured. Make certain no one is going to fool with the controls and relays. The generator, run as a motor, can easily throw you off the tower. Disconnect the batteries before going up. And stay off in a strong wind! The brake which lockes the prop may loosen, and let go. One whack from the revolving prop can cut you in two.

This vibrator replacement guide will bring you up to date on vibrator interchangeability. It is cross indexed in three ways to save your time and re; move guess work. The first printing is limited so be sure to get your copy now.

Remember James vibrators work better and last longer because they feature exclusive (1) Patented Push-Pull Action (2) Frame-Mounted Cooler-Operation (3) Adjustable Contacts. Prompt shipment on all types.

Ask your Radio Parts jobber or write

\section*{James Vibrapowr Co.}

\section*{3224 W. Armitage Ave.}

Chicago 47, Illinois

\section*{Radio - Television - Electronic Parts \& Equipment Specials}

\section*{TELEVISION.CATHODE RAY HIGH voltage \\ 2000 volt D.C. Power Supply}

Why bother with bulky and dangerous 60 cycle supplies or expensive R.F. power supplies when yor can purchase a completo 2000 volt D.C. unit (not a kit), ready to power line. The ridiculously low price has been made possible by a fortunate purchase of high quality components. These anits are brand new, completely tested and guaranteed.

Price \(\$ 7.95\)
4000.6000 VOLT TELEVISION SUPPLY

Sirullar to the unit above, but has a much higher D.C. ontput voltage suitable for ase with the new \(7^{\prime \prime}\) and \(10^{\prime \prime}\) television tobes. With th
PRICE

\section*{TELEVISION BOOSTER!}

Increases signal gtrength to the television receiver \(16-18 \mathrm{Db}\). Rajects unwanted ofi-channei interference. Simply installed by connecting self-contmined power suppiy.
Three models available
Model TVI-Channels 1 thra 6
Model TVB-Channels \({ }^{7}\) thru 13
Available in Walnut or Mahogany finish
Size \(3^{\prime \prime} \times 5^{\prime \prime} \times 6^{\prime \prime}\)
Price \(\$ 26.95\)

\section*{SPECIAL!}

Magnetic Recording Wire-11/2 hour spool of GE steel recording and playback wire \(\$ 1.95\)
priced for quick sale \(\$ 1.95\)

\section*{PHOTO-ELECTRIC TUBE}

GE type PJ23 sensitive gas phototube-sultable for socket and Calsium lloht sensitive olement.

Price \(\$ 2.95\)
Cathode. ray tube Mask and Mounting bracket for \(5^{\prime \prime}\) Cathode. ray tube Mask and Mounting bracket for or
tubes. Excellont for uso with \(5^{* \prime}\) televislon sets or oscilloscopo. Price \(\$ 0.25\) Chrome panel escutcheon for above- \(1 / 2^{\prime \prime}\) dlameter opening-sultable for use with cathode-ray tubes or
round dials.
Price \(\$ 0.25\)

TELEVISION PICTURE TUBE- \(\rightarrow\) Inch electroman. hetic type. This lis the MW22-2 tube used by GE in their tolevislon sets. Can be used In other cots do. ioned for electromagnetic defoctlon. Has standard 3 prong base.
Complete with
Instruction booklet....... \$13.95

\section*{A SCIENTIFICALLY DESIGNED PHONO SCRATCH FILTER}

Resonated at approximately 4500 cycles effectively reducing objectlonable noedle scratch without alterInd the brllianey of reproduction. Contalns H H Q Q SERIES rosonated elircult. Tosted by means of an audio oscifrator and an oscinoscops 22 db. attenuation with very iow signal loss. Attenuation may be regulated by means of a SPECIAL MINIATURE gain control
Just two wires to ello on Col
THREE TUBE PHONO AMPLIFIER An assembled unlt ready for installation using tone and volume control and six feet of rubber \$2.95
With Complete (Not Including Tubes) \(\$ 3.95\)

\section*{PHONO OSCILLATOR}

Wireless phono osclliator transmits recording for
erystal plek.ups or volce from carbon miko through erystal pleck-ups or volce from carbon miko through radio without.wires. Can also bo used as an intercomm
by using P.M. speaker as mike. Price \(\$ 2.95\) (excluding tubes)
With Complete
Sei of Tubes

\section*{SPECIAL! SPECIAL!}

Mammoth assortment of radio and electronic parts, not less than TEN POUNDS of new transformers, chokes, condensers, resistors, witches, coils, Wire, hardware, etc. A super men, and amateurs fors only service- \$1.25

Satisfaction guaranteed on alt merchandise.
All prices F.O.B. New York Clty
WRITE FOR CATALOGUE
RADIO DEALERS SUPPLY CO.
135 Liberty St.
Now York, N. Y.

\section*{-SPECIALS!}

BC-454 COMMAND RECEIVER (274N Series) 3 to 6 MC -.............................. \(\$ 5.95\)
New

COMMAND TRANSMITTERS
(274N Series)-Complete with tubes \& crystal BC-457: 4 to 5.3 MC \begin{tabular}{c}
New \\
. \\
\hline 5.95 \\
\hline
\end{tabular}
BC-458: 5.3 to 7 MC 5.95

BC-456 MODULATOR (Brand New) ... 2.95 RADIO PARTS
Assorted- 100 mica condensers
.\(\$ 1.19\)
100 Resistors \(1 / 3\) to 1, watt.
100 Tubular bypass condensers, assorted Electrolytic con 4.69
1/\& Meg. Volume Controls \(1^{\prime \prime}\) shaft with \({ }^{10}\) 10 for 2.89
 out switch 10 for 1.95 Crystal Pick-up, new light wi.........en. 1.79 Brand TC B E Brand NEW! © D \(\triangle\) NEW! \(\left.\begin{array}{|c|c|}\text { CATHODE RAY TUBES } \\ \text { 5CP1-5BP1-5FP7-7BP7-3FP7 }\end{array}\right\} \mathbf{1 . 1 9}\) 。ach 5BP4 RECEIVING TUBES
\(\begin{array}{llll}954 & 9006 & \text { 12SR7 RK34 } \\ 957 & 35 \mathrm{~W} 4 & 12 \mathrm{~K} 8 & 6 \mathrm{SF} 7\end{array}\) 1.95 each 39c each
 \(\left.\begin{array}{l}1625 \\ 7193\end{array}\right\}\) 19c each
304TL Transmitting tube \(\$ 1.95\) each
Brand New \(\$ 1.9\) \(20 \%\) Al shipmonte Fi.o.s. Chicago
ARROW SALES INC. Depl o
so west huzand st., chicaco 10. illinois

\section*{TELEVISION CONDENSERS} THAT CAN REALLY TAKE IT!
 Many other sizes avallable. Writo for descriptive folder. If not availablo at your dealer, order direet from factory.

UNITED CONDENSER CORP
422-L E. 138th stroet
New York 54, N.

RADIO-CRAFT needs more photos of service shops and service benches. We will pay \(\$ 6.00\) for each \(6 \times 8\) - or \(8 \times 10\)-inch glossy photo accepted. Do not "dress up" your bench, but take a bona-fide photo, preferably with men working.

\section*{RADIOMAN ON WHEELS}

\section*{By RICHARD LAURENCE}

PAUL SKELTON, Vienna, Illinois, is a hard-working radioman. Like the great majority of the profession, he will give you a competent job on your set, and a square deal on the price. With parts and tubes now generally available, 2 -day service is the rule. So what? There are thousands of guys like that over the country! Well, there is a difference. Paul is one of the small but growing number of "servicemen on wheels"-his only means of getting about being a wheelchair.
An automobile accident seven years ago crushed his spine and left his legs permanently paralyzed. His health was gradually restored, and his physical needs were well cared for, but he was oppressed by the growing futility of a life that did nothing but exist from one day to the next.
The radio was his greatest source of enjoyment. One day about 3 years ago he switched on for fifteen minutes of news analysis. The old Motorola warmed up smoothly, gave with the commercial then squeaked, grunted, and died. That was the last straw. The only radioman in town had gone to the army a month ago, and there was no other set in the house. New radios, of course, were only a memory.
There was a screw driver and pliers handy, and Paul figured a pile of junk was just as good as a radio that didn't work. At least that's what he thought until a lunatic's dream of parts, wires, and connections confronted him. Grab bing the chassis firmly with his left hand, he probed every accessible spot with his right index finger. A large metal tube was intriguing, and he took a good grip on the heavy wire leading to it. The shock wore off in about half a minute.
"It was pure luck," Paul told me, "but that Motorola played after I put it back in the cabinet. Sleep came hard that night, but it was because I felt so good; I had accomplished something useful! Pretty commonplace to the man who gets out and hits the ball every day, but a million bucks wouldn't have pleased

Paul Skolton on his way to pick up a radio.
me more. The next day I thumbed through the magazine ads of the various correspondence schools, and picked out one by the heads-or-tails method."

With the aid of the State Rehabilitation Commission, Paul enrolled with National Radio Institute, Washington, D. C. As far as he knew, ohm was something that rhymed with home, so the first lessons pushed him around a lot. Furthermore, the habit of work and concentration had dulled. It was easy to let attention drift away from pages packed solid with technical material. But the course kept hammering away at the chain idea-the radio is fundamentally a chain of stages that boost the strength from antenna to loudspeaker. At last light began to seep through the murk. The first kit of experimental parts came. That helped by giving him something solid to work with. There is nothing theoretical about a hot soldering iron.

Finally the vacuum-tube multitester supplied by the school was assembled, and Paul borrowed a tube tester, since test equipment was not yet available. That was good-he was practically a serviceman now. The lady next door dropped her little set and brought it over. She wanted it in a hurry. Six hours later he was covered with cold sweat and cursing himself, the radio, and that multimeter. The lady came back and looked the set over critically. "Is that little wire over there supposed to be loose?" she asked.

He turned the set on and touched the loose end of the resistor to the various terminals around it. On the third trymusic! He knew then they hadn't been kidding when they said to take a minute to look the set over thoroughly before starting trouble shooting procedures.

Trouble shooting broke down on the next set too, and it was guess and test until a shorted coupling condenser showed up. With the realization that there was plenty more to learn, Paul turned back to the course. Experience and study gradually made servicing more simple, but now the tube shortage came into the picture. Fifty percent of the jobs had to be turned back unfixed because there is no substitute for a burned-out tube. The school sent a list of wholesale radio supply houses in the area, but a score of letters produced not a single tube. He thumbed through the Sears, Roebuck catalog until he came across their list of available numbers. A good many 6 -volt and several series rectifiers and loctals that could be substituted were there. Maybe it was technically dishonest to certify that those tubes were needed for equipment that was personally owned, but Sears, Roebuck kept him alive for the next year, and every tube they sent helped to put a radio back in working order.

Paul is over the hump now as far as technical knowledge is concerned. He now has a special wheelchair powered with a small gasoline motor, and which has gears, throttle, and brake completely hand-controlled. The tires are small 4 ply pneumatic, just like an automobile, and with this he is able to get out on the streets and go anywhere in town.

Thus he is able to pick up and deliver some small sets. Due to the fact that his sitting-up time is limited by the spinal condition, he has to do part of his work while lying on his side in bed. Try it sometime! However, he hopes to be able to stay up the whole day eventually, and do all his work sitting at the bench.

There is new, adequate test equipment in the shop now, and the money he has earned has enabled him to build up a stock of tubes, parts, and diagrams. Of course, there are plenty of aggravations. He can't follow a radio into the home and see that it is hooked up properly, nor can he go after the chassis from a console model. Similarly, a lot of profit is missed on installing and servicing auto sets. To realize their full potential, a person handicapped in this way should have an active partner or employee so that he can devote his time to bench work. But radio servicing has put Paul back on the road to being a useful, self-sufficient citizen, and he believes it offers perhaps the best opportunity of any available field. He knows that nothing else could be as satisfying.

\section*{OPPORTUNITY AD-LETS}

Advertisements in this section cont 250 a word for
each insertion. \(N\) Name. address and initials must bo each insertion. Name. addrees and Initials must be
included et tho abore rate. Cash should accompany all classifled advertisements unless placed by an secredited sdvertisins asency. No sdvertisement for less than ten worde accepted. Ten percent dizcount
ain issues, twenty porcant for twelve \(185 u\). Objecciz issues, twenty percent for twelre issues. Objec-
tionable or misleading adrertiserneats not accepted. Advertisements for June. 1949, 1ssue must reach us not later than April
Radlo-Craft 25 , \({ }^{24}\), 1949. . Now York 7, N. Y.

RADIOS RECORD PLAYERS, TUBES. PARTS. SEND Ror free bargaln list.
City 4, New Jorsey.
AMATEUR RADIO LICENSE8, COMPLEETE CODE and theory preparation for passing amatour radio ex-
minations. Home study and resident courses. American Radio Institute. 101 West 63rd Streer. New York Clty. \(\frac{\text { Beo our ad on page } 86 .}{26}\) Ypans.
26 TRARS EXPERIENCE RADIO REPAIILING AT your fingertips. I'vo perfectert dmple bystem you can follow step by slep. No Cormulas or celculations. Cuts
repaif time to minimum. Toal price \(\$ 2.00\) postpald or
CoD Monethek guarantice Ross Redio. \(14815-\mathrm{J}\) GrandCoD. Monesback guarantica Ross Radio. 14615-J GrandFiver, Detrolt 27, Michigan.
PHONOGRAPH RECORDS 20c. CATALOGUE. PARAmount, KQ-813 East Market. Wibkes-Barre. Penna NEW CARTONED TUBES 390 each, 100 ASSORTED

 \begin{tabular}{l}
ohaw f \\
Kannas. \\
\hline
\end{tabular}
RUBBER STAMPS ETC. FOR BALE. COOKSON,
BOX O-RC. Puxico, Missouri. RADIOMEN, SERVICEMMEN, BEGINNERS - MAKE more money, easily, guickly, \$250 weekly ponsible. We 132nd Avenue. Bpringfleld Gardens 13, New York. YOU CAN ACCURATERY ALIGN BUPERHETERODYNB reoolvers wlthout 81 gnal generator. Complete instructlons
\(\$ 1\). Moneyback guaranteo. Chas. Gatos, Pecos 2. Texas. WRITE DEAPT RC 20 FOK OUR LATEST FREE BARkain tlst of Radio and EElectronic partr. R.C. Radio Parts
and Distg. Co., 733 Central Ave. Kansas City 6 . Kansag. and Distig. Co., 733 Central Ave. Kansas City 6, Kansas. MAGAZINES (BACK DATED)-FORFIGN, DOMESTIC,
 York 17, N. Y.
LANCABTETR, ALLWINE ROMABEL. 436 BOWEN Practice, betore United. States Patent Office. Valldity and Infr!ngement Investigations and Opintons. Bootriet and form "Evidence of Conception" forwarded upon request. WD REPAIR ALL TYPES OF EILECTRICAL INBTRZUments, tube checkers and analyzers. Hazelton Instrument
O. (Electric Meter Laboratory). 140 Liberty Street, New
York, N. Telephono-BA York, N, Y. Telephono-BArclay 7-4239.
LEARN ETEMENTS OF RADIO AT HOME IDEAL conrse for beginners, \(\$ 15.00\). Write Waca Radio Echood,
1421-J Sixth Bireef, S.E. Minneapolis 14, Minn. AVIATION NETDS EXPERIENCED RADIO MEN Propare at home in a few weoks for MCC-CAA radio
Wcenses. StoD into a big pay job. Many opportunttles for Heenses. Stod into 8 big- pay job, Many opportuntties for
World travel. Write for detalis. Air Institute, RCM
Adams Massachusetts Adaras, Massachusetts.
Treat EQUIPMENT TREMENDOUS GAVINGS. LIST Prea Creat Corporation,
Blvd. St Louls 8, Ma.
Blvd. SL Louls 8, Ma. "NON-ADJUSTABLAF" SPEAKers quickly and easily repaired. Completo instructions 250 Coin, Blake Radio. 2215 192h. Labboct. Texas. Popular Mectricity. Q. 8. T. MDan, 1570 Laverett St, Pontar 14. Mass.

\section*{RADIO TUBES}

For immediate shipment
R.M.A. Guarnateed Below Distributor Costs Individually Sealed Cartons
\begin{tabular}{lr}
Type & Price \\
6K6GT & .40 \\
6K5GT & .46 \\
6V6GT & .46 \\
6SA7GT & .46 \\
6SJ7GT & .46 \\
6SK7GT & .46 \\
6SQ7GT & .46 \\
6X5GT & .40 \\
I2SA7GT & .46 \\
12SQ7GT & .46 \\
12SK7GT & .46 \\
12SJ7GT & .46 \\
35L6GT & .40 \\
35Z5GT & .32 \\
50L6GT & .46
\end{tabular}

RATED ACCOUNTS-2\% 10 DAYS ALL OTHERS 2\% C.O.D.
\(10 \%\) DISCOUNT ON LOTS OF 50 OR MORE
RAVAC ELECTRONICS CORP.
432-4th Avenwe
Now York 16, N. Y.

\section*{TECHNICAL KOs \\ \begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
011-PILLED \\
CONDENSERS
\end{tabular}} & \multicolumn{3}{|l|}{TRANSMITTINE MICAS} \\
\hline . 05 MPD & 1000 V & . 28 & . 000025 & 2500 V & 5 . 11 \\
\hline . 05 & 500V & . 14 & . 00008 & 2500 V & . 14 \\
\hline . 1 & 2500 V & . 60 & . 00005 & 8000 V & 30 \\
\hline - 1 & 7500 V & 1.85 & . 00005 & 0000 V & 85 \\
\hline 2x.1 & 7000 V & 4.75 & . 000007 & 2500 V & . 20 \\
\hline 18 & 15000 V & 0.35 & . 00007 & 2500 V & . 20 \\
\hline . 25 & 1000V & . 35 & .00285 & 2500 V & . 25 \\
\hline . 25 & 4000 V & 2.75 & .00025 & 5000 V & . 5 \\
\hline . 25 & 6000 V & 4.00 & . 0004 & 2500 V & 22 \\
\hline 10x. 25 & 600 V & 1.08 & . 0005 & 2500 V & . 22 \\
\hline . 5 & 600 V & 28 & . 00072 & 5000 V & . 89 \\
\hline . 5 & 1000 V & . 28 & 2008 & 5000 V & .89 \\
\hline . 5 & 2000V & 10 & . 0001 & 2500 V & .25 \\
\hline . 75 & 2000 V & 55 & . 0011 & 5000 V & . 8 \\
\hline . 72 & 880 VAC & .35 & . 002 & 1200 V & . 17 \\
\hline 1.0 & 1000 V & . 45 & . 02 & 8000 V & . 66 \\
\hline 2.0 & 1000V & 60 & . 0025 & 12007 & . 15 \\
\hline 4, 0 & coov & . 6 & A0c75 & 8900 V & . 28 \\
\hline 4.0 & 1000V & 1.0 & . 008 & 2500 V & . 30 \\
\hline 5.0 & 220 VAC & . 65 & .003 & 5000 V & -66 \\
\hline 6,0 & 600 V & . 70 & . 004 & 2500 V & 36 \\
\hline 8.0 & 800 V & . 80 & . 005 & 600 V & 13 \\
\hline 8.0 & 1000V & 1.75 & . 005 & 80008 & . 66 \\
\hline 10.0 & 600 V & 1.0 & . 006 & 2000 V & . 35 \\
\hline 80,0 & 90\%AC & 1.40 & , 00s & 12007 & .15 \\
\hline ¢0.0 & 830 VAC & 3.75 & . 01 & 600 V & . 18 \\
\hline
\end{tabular}

Choke: \(80 \mathrm{~mm}-12 \mathrm{~F}\) : \(100 \mathrm{mm-10K} .250\) ohm \(\$ 1.59\) Pets: ETK-50K. 100 K .
Pota: Daal 1 Mes. Dual 250K-50K 20 Shielded Fire No. \(22 \ldots . . .\). Resistor KIt Assorted \(\psi / 2\) \& 1 W... 109 for 1.49 Bathtub Kit 8x.1. 5, .05 Etc. .. 10 for . 59 Cendenser Kit \(01-.00001 . \ldots100\) for 3.00
 0.1600 V Paper 8 for 1.00 6V8 Metal 30.89 12K8 Metal .. 80.25

\footnotetext{
2.00 min. order F.0. B.. N. Y.C. Add mentage

Priees are whjeek to change witheut motleo.
TECHNCCL RADIO PARTS CO.
2:\% Gremwieh se. Bept, RC-5 M.Y. 7. N.Y.
}

NOISE limiters have been much in the news of late. Limiting is effective against the many types of sharp impulses that constitute mout of the random racket heard in urban areas as well as a good portion of plain old static.
For maximum utility a limiter should be applicable to any existing recaiver without alterations to the latter, inex-

This limiter is a simple and compact device. pensive, simple, and as usable for c.w. as for phone reception.
This simple noise limiter can be constructed for as little as two dollars at current prices. However, the average experimenter already has most of the parts in his junk-box, with the possible exception of the crystal diode. A 1 N21 crystal was used becsuse it was available, but any equivalent type may be readily substituted.
The principle of this type limiter is as follows: the diode is biased at \(11 / 2\) volts by the dry cell and does not conduct until the audio voltage exceeds the bias voltage. When the signal exceeds the bias, the diode conducts, short-circuiting the headphones for the duration of the noise impulse. This amount of bias allows a 3 -volt audio signal which is a comfortable signal in the headphones.
The switch enables the operator to cut the limiter out of the circuit at will. It is wired so that it opens with the threshold control at the minimum-registance setting. The variable resistance permits the best setting to be made for any set of conditions.
The unit does a splendid job on c.w. operation. There is a small amount of audio selectivity, but the mont impressive realt is the a.v.c. action. Taning across strong local c.w. signals is no longer an ear-aplitting experience. Furthermore, it is possible to copy signala through static or man-made noise that

A crystel and nashlight cell form a Imiter. would ordinarily make reception impossible.
The finiter is built into a discarded i.f. can, although it can be made in several other ways as well. The parts are wired together, and the cables attached. The unit is then pushed into the can
with the control shaft brought out through a bole in the closed end. Line the can with stiff paper to avoid ehort circuits between can and wiring.
The size of condenser C is determined by experiment and will vary with some receivers depending upon the output circuit. In this model it is \(0.1 \mu\). There is no drain on the dry cell, and it should last a year or two.
The limiter works best with a strong signal. In use the receiver audio gain is advanced to the point where headphone volume fails to increase in proportion to the gain setting. This is the point where limiting begins.
The dx hunter will find this limiter a fine protection against tin ears caused by tuning in powerful stations while scanning the shortwave bands. It has no effect on the weak signals but holds the strong ones down.-Otto Wooley WøSGG

\section*{NOVEL CODE OSCILLATOR}

A dual-triode, high-frequency miniature tube is used in this code oscillator. The circuit is simple and can be constructed compactly because it does not use a transformer. A 45 - or \(671 / 2\)-volt battery is more than enough to operate this oscillator with good output into a

pair of headphones. If a speaker is desired, increase the voltage to 90.
The pitch is varied by using different values for C1. The pitch is lowered by using a smaller capacitance.

> Ralpy Day,

Moncton, N. B., Canada.

\section*{「Kadio Thirty- Tibe \#eats Ago}

From the Elbctrical Experimentez, May 1914.

How to Calibrate E. I. Co. Slide Plate Condensers by C. Laager
Design and Construction Details of Radio Antennae, Part II, by H. W. Secor
The Wireless Society of London
Hertzian Wave Collisions
Boston Talls With Nagasaki by Wireless

Signals Via Wirefess 6,000 Miles Wireless Currents on Metallic Condactors

\section*{LIGHT WITH A MEMORY \\ (Continued from page 30)}
straight out. Frequency can be changed by adjusting the trimmer condenser in parallel with the tank coil; the relay plate current is controlled in part by the antenna trimmer.

A base of \(1 / 4\)-inch plywood, hollowed to receive part of the relay, is affixed to the bottom of the panel by small brass screws. The receiver base is felt-lined, and both receiver and transmitter housings were painted with black crinkle-

Fig. 5-Schematic of the secret transmitter.
finish lacquer. The hollow panel was built up of white pine.

Any small h.f. oscillator can be used. The one employed here was a type 3A5 twin triode in a push-pull circuit. Fig. 5 is the schematic, and a photograph of the transmitter with covers removed is shown at the right in Fig. 2. Two No. 412-E batteries were used to save space. A length of flexible 2-conductor wire is lead out of the transmitter to a leaftype switch. The tank coil is 8 turns of No. 12 bare copper wire, \(5 / 8\)-inch inside diameter, and a one-turn coil covered with insulation acts as an antenna and coupling coil. The r.f. choke is similar to the one in the receiver. Two C-cells in series with a slide switch furnish the filament supply. To conserve space the condensers and resistors are soldered directly onto the base of the tube.

The receiver unit is turned on just previous to the demonstration by rotating the dummy screwhead with a screw driver. The operator then explains the wonders of the light-emphasizing the waving of the hand over the lamp. After the spectator has pushed the pushbutton the desired number of times, the operator secretly pulses the transmitter with the concealed leaf switch, and the fun begins. The ultra-compact size of both units precludes the possibility of any radio device, especially in the minds of those steeped in radio theory. As a further convincing demonstration, the spectators may be allowed to hold the panel in their own hands.

\section*{CORRECTION}

The grid coil L 1 , in the phono oscillator diagram on page 77 of the January, 1948, issue, is shown with a direct short circuit across its terminals. The diagram should show a \(365-\mu \mu f\) condenser inserted in the lead which shorts L1. A standard-size condenser or a small mica compression type may be used.

Our thanks to Mr. Thomas A. Stoner of Wauwatosoa, Wisconsin, for this correction.

MULTI-FREQUENCY GENERATOR
Generstes R.F., 1.F. and \(A U D 10\) Frequencles 2500 cycles to over 20 megacyeles, using new elec-
tronio multivibrator radar principle. Completely self-contuined-fits coat pocket of tood chest. Just plug
into A.C. or D.C. LINB AND CHECK RECESVER BENEITIVITY, AUDIO GAIN, R.E. and I.F. touchup, suto radio serial peaking or shlolding, breaks in wires. stake by stage signal tracting, tube testing by direct comparisoon. etc. etc. Sturdy colistruction, handsome appearancel see at sour
write for detalls. Shipping wt. 13
ozs .
Recognized Jobbers --wire, ;wite for detalls.

IF YOU CAN'T GET TO GOVT. SALES, THE BEST THING TO DO IS, SEND FOR OUR

\section*{SPECIAL GOVT. RADIO SURPLUS ASSORTMENT}
wo buy large quantitios of these items. divide them
into choico assortments which wo know you would be giad to have for thls \(\square\) E

\section*{MOHEY BACK GUARANTEE!}

On a deposit of \(\$ 5.00\), we will ship you C.O.D. (Balance \(\$ 20.00\) Freight Collect) an amazing quantity of surplus radio items, subject to your inspection and approval. Unless you are more than pleased, return to us, freight collect. Your money refunded immediately. All it will have cost you will be the freight charges one way! This is the cheapest way to buy War Surplus Radio material. In fact, you can probably sell just a few of the items you don't need, to more than cover cost of the en tire lot. Our warehouses are filled with thousands of choice Govt. Surplus Radio items. The cost of inventorying, itemizing grouping, etc. would only multiply their cost to you. Therefore, we make this offer However, if you mention a few items you desire, we will try to include them in the assortment. Send for our special Value Bulletins on Radio and Photographic Supplies. Tell us your wants.

\section*{THE ABELL DISTRIBUTING CO.}

BEST BUYS AND BEST SERVICE AT
SENCO'S New Headquarters!

IF TRANSFORMERS

Midget Type 456 KC InputOutput I F Medinm Size 456 KC ONLY 49 EACH
\(25 \%\) doposit on all orders, palance C.O.D.,
f.O.B. New York SENCO RADIO, Inc. 73 West Breadway, N. Y. 7, N.
TELEPHONE BEEKMAN 3.6498

Brother, you really get SERVICE from Olson! Our whirlwind electric Letter Opener opens 2,000 letters per hour. Our mailing system is geared for ACTION, so that every order we receive is shipped out the SAME DAY. And every order is handled ACCURATELY, too, so you get exactly what you want when you want it. Send the coupon bolow for our FREE Bargain Bulletin, and try OLSON next time you order Radio Ports and Equipment.
MAIL THIS COUPON TODAY!

\section*{OLSON RADIO WAREHOUSE, IMC.}
73 E. M/LL ST., DEPT. 121, AKRON .. OHIO
I enclose 34. Send me one "Powerful Pete" Screw Driver
with Key Chain, and the FREE OIson Bargain Bulletin.
NAME
ADDRESS
CITY

\section*{COMMUNICATIONS}

\section*{NO LICENSING IN BRITAIN}

Dear Editor:
I have to thank you for your letter dated November 20, with the advance clipping Should Servicemen be Licensed?

The problems which may make necessary the licensing or control of the radio service trade in the U.S.A. are apparent over here, but we do not admit that state or official control will be necessary, and it is certainly not desirable.
We are able to handle the matter in another way, since the trade is well organized at all levels in the Radio Manufacturers Association, the Radio and Television Retailers Association (with its affiliated organizations, the Scottish Radio Retailers Association and the Northern Ireland Radio Retallers Association) and the Guild of Radio Service Engineers. My organization is the accepted representative body for the employed radio service engineer throughout the British Isles, and we have comprehensive agreements with the abovementioned organizations as to wages and working conditions. Various standing joint committees deal with other aspects, such as juvenile technical training (apprentices), trade practices, etc.

It has been recently agreed to set up a Radio Service Trade Register, with representatives from all the organizations concerned forming the Register Council. Minimum technical requirements have been laid down, and all engineers are invited to apply for registration.

The trade has agreed to recognize as qualified radio service engineers only those whose names appear on the Register, and a Certificate of Registration will be issued. Suitable propaganda will be undertaken to bring the meaning of the Register home to the general public. There seems to be no doubt that this scheme will eventually give us the control necessary to eliminate the undesirable elements.
It should not be necessary to add that, although the Register is sponsored by the various trade organizations, it is open to all who can prove their competence, whether members of their appropriate associations or not.
J. H. Corbett, Seoretary

Guild of Radio Service Engineers,
Holland-on-Sea, Essex, England.

\section*{I LIKE R-C BECAUSE . . .}

\section*{Dear Editor:}

I have been reading and enjoying your magazine for several years. There are several reasons why I like Radio-Crafr.
1. The R-E Monthly Review and New Patents present an excellent coverage of the current trends in radio.
2. Your articles, such as December's Radio-Piloted Flight gives food for thought about new possibilities for electronic developments.
3. Radio-Craft is not primarily a service journal. Your policy of printing

BONAFIDE VALUES

3 Tube PHONO AMPLIFIER Volume and tone control ALL WIRED with Tubes.

2 TUBE PHONO OSCILLATOR

 All wired \(\$ 4.95\)

DETROLA aUtOMATIC RECORD CHANGER
 toraztically. Crys.
tal pickud SPE.
ClAL

WEBSTER RECORD CHANGERS \(\$ 25.95\) Model \#156-Plays 12 Ten or 10 Twelve Inch ree ords. AUTO.
Reg. 342.70 .

\section*{Model \(=156\)}
tance pickup and pre as above with G.E. Reluc GENERAL \(\operatorname{N}\) HOME RECORDING UMIT
 erystal plekup on a base plate \(15^{\circ}\) wide and
\(10^{\circ}\) from front to back. VALUE \(\$ 39.95\)
\(\$ 19.95\) \(1 / \mathrm{y}\) MEG. Vol. Control Switch. 4 . sc ea.
100 asst. resistors 1.49

\section*{BONAFIDE RADIO CO.}
\(891 / 2\) Cortlandt St., Dept. J, N.Y.7,N.Y.

- Positire Intermix
Eliminated
- Minimizes Record
Minimizes Record
Wear
Single Knob Contro
\(\qquad\) Eliminated : Completely Jecords - Minimizes Record ered on Spindlo-no - single Knob Control Autonatic Shut-ont on - Plek-ud arm tray bo grasped at any tim
 s2873 WEBSTER CHANGER Model \(56 \ldots .\). . \(\$ 26.66\) NET WEBSTER CHANGER Model \(50 \ldots .\). S21.17 NET DEALERS ANREE SERVICEMEN: Write for our NEW 16 -pages 1948 Illustrated eatalog
on radlo parts. tubes, accessorles. cablinets, sets. elec on radlo parts. tubes, accessorles, eablnets, sets. elec-
trical appliances, otc. Get on our mailling ilst today

LAKE RADIO SALES CO.
615 W. Randolph Street, Chicago 6, III.

\title{
30,000 RADIO SERVICEtechililians read
}

\section*{EVERY MONTH}

RADIO MAINTENANCE today fills o breach that has existed in the radio field for a long time. AlNANCE every month because it is devoted en tiraly to the Radio Service Technician. The RADIO MAINTENANCE staff specializes in the preparation of articies on every phase of Radio Maintenance in series form which may be filed and used for reference. The leading articles cover everything for the radio serviceman on tronic Appliances; Tools; Antennas; Alignment Troubleshooting; Repair; Construction; Pick-ups and Sound Amplification and Reproduction Equipment. Also, in RADIO MAINTENANCE each month there are departments on hints and kJnks, the latest news of the trade, review of
trade literature, radiomen's opinions, new products and news from the organizations. All articles are presented in a step-by-step precision style, clearly illustrated, with schematics, accurate photographs, specially prepared drawings, white on black charts, color diagrams, isometric proectlons and exploded views.
RADIO MAINTENANCE is not sold on newsstands
Binders in beautiful green simulated leather stamped in gold are now available for your current lissue of RADIO MAINTENANCE for information.

MAGAZINE - RC5
RADIO MAINTENANCE MAGAZINE
- 460 Bloomfield Avenue,

Montciair S. N. J.
Please send me RADIO MAINTENANCE \(\square\) I year at \(\$ 3.00 \quad \square\) Bill me later \(\square 2\) years at \(\$ 5.00\) \(\square\) Payment enclosed

\section*{Address}

City-State
- Occupation
- Tifle

Employed by
-Independent Serviceman - Dealer Serviceman
Service Manager-Dealer-Distributor-Jobber.

\section*{BOLAND \& BOYCF INC., PUBLISHERS}

\section*{Ra010 Scuool \\ \\ DIRECTORY}

\section*{PRACTICAL TECHNICAL TRAINING}

\section*{SPECIALIZE in 6 months to \(\mathbf{3}\) years}

\author{
COURSES \\ SERVICE \\ 6 10 12 Months
- Eloctricity \\ - Welding \\ - Refrigoration \\ - Heating \\ TECHNICIAN \\ 1to 2 Yoars \\ - Electric \\ - Electronics \\ - Refrigeration, Heating and Air Conditioning \\ PROFESSIONAL \\ 3 Years \\ Electrical Engineoring Bachelor of Science Degree
Major in Electronics Machinery or Electronics
}

Train in Electronics, Radio, Electricity for a substantial career in industry-or a business of your own. Prepare in one year to be a Technician-or in two additional years secure a Bachelor of Science Degree in Electrical Engineering with major in Electronics. More than 35,000 former students in industries the world over. 1,538 students now enrolled from 48 states and 13 overseas countries. Faculty of 72 specialists. Write for catalog and Personal Guidance Questionnaire-also mention course in which you are interested.

Terms start JULY, September, January
MILWAUKEE
\(5^{\circ}\)
Dept. RC 548
a TECHNICAL INSTITUTE

\section*{RADIO}

\section*{OPPORTUNITIES}

WrCi specialized training - the "trat ing-with-a-purpose"-DOES Increase one's carn Ing power. For example, woll-paying positions of clude:
BROADCAST ENGINEER-OPERATORS (AM \& FM broadeast stations)
FLIGHT RADIO OFFICERS (transoceanic airlines) RADIO.TELEVISION SERVICING TECHNICIANS
RADIO SERVICE SHOP OWNERS
COMMERCIAL RADIO OPERATORS (police, CAA, airlines) MERCHANT MARINE RADIO OFFICERS
wlth this proved record of successtul training and

\section*{WESTERN RADIO}

COMMUNICATIONS INSTITUTE 341 West 18 St.. Los Angeles 15, California

\section*{AAU1O ENGINEFRIWG \\ Complete Radio Engineering \\ Course. Bachelor of Science De- \\ rree. Courses also in Civil, Electrical. Mechanical. Chemical, Aeronautical Engineering: Business Administration, Accounting. Secretarial Science. Graduates successful. 6 dth year. Enter June, Sept, Jan., March. Write for
}

THIS COUPON MAY PROVE TO BE THE KEY TO YOUR SUCCESS IN ELECTRONICS

MELVILLE RADIO INSTITUTE
The Progressive Radio School Managed by Radio Men
licensed by the N. Y. Stafe Bocird of Education RECOGNIZED.BY INDUSTRY APPROVED FOR VETERANS

\section*{CUT IT. OUTI. FILL If OUTI MAIL IT OUTI - NOW!}

MELVILLE RADIO inSIItUTE RC
Melville Bldg., 13 W .46 Sth St., N. Y. 19 , N. Y.
Send me without obligation information obout your intensive courses.
\(\square\) Radio Technicion
R Radio \& Television Sorvicing
D. Rodio Communications
\(\square\) fundamental Rodio Mathematics
My Nome.
Address.

1 In

\section*{WANTED}

\section*{Men and Women to Fill Top} Radio Jobs!
Worried about your future? Longing for a career that means more money id success ?
It's yours if you hurry to fill the great deIt's yours if you hurry to fill the great demand for qualifled radio personnel needed
everywhere. Train now to be an announcer. disk jockey or radio technician. Complete day and night time classes. Hundreds of thrilling jobs await you-key positions in radio stations, airlines, and maritime service. Free placement service offered. Write for our catalog outlining the courses offered

Approved for Veterans
Don Martin School of Radio Arts
1635 North Cherokee 8t. Hollywood 28. Callf.

TEIEVIIION 1948!
Train of on institute that pioneered In TELEVISION TRAINING since 1938. Moraing, Afternoon or Evening Ses sions in laboratory and theoretical in struction, under guidance of experts, covering all phases of Radio. Fre quency Modulation, Television lead to opportunities in Industry. Broadcasting or own Business. Lor Velerays ENROLL NOW FOR NEW CLASSES

Visit, Write or Phone
radio-television INSTITUTE
480 Lexington Ave., N. Y. 17 (46th St.) PLaza \(3-45852\) blocks from Grand Central

\section*{Tamman BLEVISION}
 - H. M. ar TBERSISID
-TRANSMETTER COUFSES
- RADEDTECHNOROGT

DETETIANTV SCHOOL OF RADIO - ELECTRONICS - TELEVISION 105 EAST I3ih STREET, NEW YORK 3, M. Y. - DEPT.

\section*{LEARN RADIO!}

IN ONLY 10 MONTHS
PREPARE FOR A GOOD JOB!
COMMERCIAL OPERATOR (CODE)
RADIO SERVICEMAN
Television Servicing- 15 Months
Veterans get \(\$ 130.00\) Equipment
SEND FOR FREE LITERATURE
BALTIMORE TECHNICAL INSTITUTE
1425 Eutaw Place, Dept. C. Baltimore 17, Md
[2] CORRESPONDENCE COURSES IM
RADIO ond ELECTRICAL ENGINEERINO ELECTRICAL ENGINEERING Ges, Evod Erasy
 RADIO ENGINEERING Extrie fine course in pradio,

 Lincoln Engineering School, Eiox 938-C-212. Lincoln 2. Nebr.
 COURSES
Preparatory, Service, Broad cast, Television, Marine Operating, Aeronautical, Fre quency Modulation, Radar. Classes now forming for the summer term June 1. Entrance exam. May 17.

Veterans. Literature.
COMMERCIAL RADIO INSTITUTE
Wost Blddo Stroot; Baltimoro I, Md.

\section*{Hollywood}

Make Good in
at Experts
hele rou
RADIO-TELEVISION Home

\section*{COMMUNICATIONS}

\section*{NO LICENSING IN BRITAIN}

\section*{Dear Editor:}

I have to thank you for your letter dated November 20, with the advance clipping Should Servicemen be Licensed?

The problems which may make necessary the lieensing or control of the radio service trade in the U.S.A. are apparent over here, but we do not admit that state or official control will be necessary, and it is certainly not desirable.

We are able to handle the matter in another way, since the trade is well organized at all levels in the Radio Manufacturers Association, the Radio and Television Retailers Association (with its affiliated organizations, the Scottish Radio Retailers Association and the Northern Ireland Radio Retallers Association) and the Guild of Radio Service Engineers. My organization is the accepted representative body for the employed radio service engineer throughout the British Isles, and we have comprehensive agreements with the abovementioned organizations as to wages and working conditions. Various standing joint committees deal with other aspects, such as juvenile technical training (apprentices), trade practices, etc.
It has been recently agreed to set up a Radio Service Trade Register, with representatives from all the organizations concerned forming the Register Council. Minimum technical requirements have been laid down, and all engineers are invited to apply for registration.
The trade has agreed to recognize as qualified radio service engineers only those whose names appear on the Register, and a Certificate of Registration will be issued. Suitable propaganda will be undertaken to bring the meaning of the Register home to the general public. There seems to be no doubt that this scheme will eventually give us the control necessary to eliminate the undesirable eloments.

It should not be necessary to add that, although the Register is sponsored by the various trade organizations, it is open to all who can prove their competence, whether members of their appropriate associations or not.
J. H. Corbett, Secretary

Guild of Radio Service Engineers,
Holland-on-Sea, Essex, England.

\section*{I LIKE R-C BECAUSE . . .}

\section*{Dear Editor:}

I have been reading and enjoying your magazine for several years. There are several reasons why I like Radio-Craft.
1. The R-E Montely Review and New Patents present an excellent coverage of the current trends in radio.
2. Your articles, such as Deaember's Radio-Piloted Flight gives food for thought about new possibilities for electronic developments.
3. Radio-Craft is not primarily a service journal. Your policy of printing

TUBE PHONO OSCLLLATOR DETROLA automatic RECORD Changer
Plonen
inch
locords
R Inch reeords su:
tematically. Cras:
tal olelua SPE.
CIL CIAL … 114.49
WEBSTER RECORD CHANGERS \$25.95 Model \#156-Plays 12 Ten or 10 Twelve inch rec-
ords. AUTOMATIC \(8 T O P-C R Y S T A L ~ P I C K U P . ~\) orda. AUTO

Model \({ }^{\text {F }} 156-27\)-Same as above with G.R. Reluc.
tance pickep and pre-empllifier, tance pickup and pre-emplifier, \(\$ 7\) extra

GENERAL INDUSTRIES HOME RECORDING UNIT
 A how oriced rocordine and playbedk mitt to eut \begin{tabular}{lll}
resords \\
inches. \\
Plays & to & 10 \\
\hline
\end{tabular} liches. Plays 10
 10 iurntable
cutting head and
 1/2 Mom froat to bask VALUE \(\$ 39.95\) \(1 / 2\) MEG. Vol. Control Switch.4sc sk .49. - asme. resiators

\section*{Wite for c.o. D. puut}

BONAFIDE RADIO CO.
\(891 / 2\) Cortlandt St., Dept. J, N.Y.7,N.Y.

\section*{LaKE DELUXE CHANGER}

Revolutionizes the Industry! A SENSATIONAL SELLER!

\section*{I OUTSTANDING FEATURES:}
```

- Positive Intermix
Serviee Adjusumenl
- Minimizes Record

```
- Ningle Knob Control
- Plays ALL necords
- Completely Jam- Hecords Gentiy loof Records Gentig law-
ercd on Splndlo-not
dropoed dropped Automatte gr
last record
- Pick-up arm may bo grasped at any timo.
 \(528^{73}\) WEBSTER CHANGER Model 56 \$26.66 NET WEBSTER CHANGER Model 50 S2I. 17 NET DEALERS FREE
Write for our NEW IG-page IP4s ICMEN: on radlo parts. tubes, accessorles. cabinets, sets. elec. trital appllances, ote. Get on our mailing list todey! Dept. \(G\)

\section*{LaKE RADIO SALES CO.}

615 W. Randolph Street. Chicago 6. 111.

\section*{EYERY MONTH}

RADIO MAINTENANCE today fills a breach that has existed in the radio field for a long time. AL ready 30,000 servicemen read RADIO MAINTE NANCE every month because it is devotod on tiroly to the Radio Service Techniclian.
The RADIO MAINTENANCE staff specializes in the preparation of articles on every phase of Radio Maintenance in series form which may be filed and used for reterence. The leading articles cover overvthing ior the radio sarviceman on tronic Appliances. Tools: Antennas: Allinment tronic Appliances; Yools; Antennas; Allgnment; and Sound Amplification and Reproduction Equipment. Also, in RADIO MAINTENANCE each month there are departments on hints and kinks, the latest news of the trade, review of trade literature, radiomen's opinions, new prod. ucts and news from the organizations. All articles are presented in a step-by-step precision style, clearly illustrated, with schematics, accurato photographs, speclally prepared drawings, whito on black charts, color diagrams, isometric pro-
iections and exploded views.

RADIO MAINTENANCE is not sold on newsstands
Binders in beautiful green simulated leather stamped in gold dre now available for your RADIO MAINTENANCE magazines - see the current issue of RADIO MAINTENANCE for information.
radio maintenance magazine
460 Bloomfield Avenue.
Montclair 5 , N.
Please send me RADIO MAINTENANCE
\(\square 2\) years at \(\$ 5.00\)
\(\square\) Bill me later

Name
Address
City-State
- Occupation

Tifle
Employed by
-Independent Serviceman - Dealer ServicemanService Manager-Dealer-Distributor-Jobber.

\section*{BOLAND \& BOYCF INC., PUELISHERS}

\section*{GREEN} SAVES YOU MONEY

DRAKE NO. 55 SOLDERING IRON 60 Watt with \(5 / 8\) " Tip
Higheat quality Nichrome used in porcelain element. Excellent for home use, complete \(\Longrightarrow \quad\) with 6 ft. heater cord. stand. Gun metal finish.
SPECIAL
97e

TUBE SPECIALS

\section*{Brand New Standard Brands}
\begin{tabular}{|c|c|c|c|}
\hline & & \begin{tabular}{l}
so8s
1U42
117 Fat \\
12ABAT \\
75
354 \\
7C5B7/1853
\end{tabular} & \\
\hline
\end{tabular}

ALL MERCHANDISE BRAND NEW and BRANDS.
No Seconds ! No Rejects ! No off-brands! \(20 \%\) Deposit required with C.O.D. Orders. All orders FOB New York. Minimum orders \(\$ 2.00\).

\section*{Green Radio Distributors}

THE HOUSE OF BARGAINS Electronic Supplies \& Equipment 482 SUTTER AVE. Dickens 2-444 BROOKLYN 7, N.Y.

\section*{SPECIALS}

Bundle of \(24-8^{\prime \prime}\) length Spaghetti.... 5.18 Famous make Crystal Microphone with table stand
100 Ma Selenium Rectifier 20 Mfd 150 V Tubular Condensers
Kit of Antenna \& RF Coils (bras olcast band)
3 Tube Phono Amplifiers, uses 50̈L6 3525, 12 SQ 7 Tubes, less tubes. Mica Condenser Kit. 25 popular sizes. SP/ST Toggle Switch, bat handle \(50 / 80 \mathrm{Mfd} 150 \mathrm{~V}\) Tubular Condenser AO-DC Chokes, small size, 250 ohms.
Open Circuit Phono Jack
Mazda Pllot Bulbs \#40, \(41,44,46,47\) 51. 65 (Box of 10) 8 Mfd 450 V Tubular Condeneer \(\ldots \ldots . . .34\) Kit of 100 assorted Resistors, \(1 / 2 \mathrm{~W}\), 1 W 2W. \(\$ 12.50\) list
Single Pentode output
Single b0L6 Output
20,20 Mfd 150 V Tubular Condenser flex leads
Dial Cord, medium sauge, Nylon, 100 ft .保 or needle points (specify)

\section*{\(\mathbf{1 0 0 \%}\) GUARANTEED. STANDAR.D}
MIRACLE KIT VALUES!

2.TUBE KIT
Hi-gain with microphon
 10 WAT AMPLIFIER KIT
SLE
Sepratily controlled Mike and Phony inputh All Mare
dware, solder, circulf dia
\(\qquad\) รНооте кіт ocates every fervice trouble. All parte including case PHONO.AMPLAFIEX KiT'S Tubeo \(\rightarrow 11\) parts includtnE Tubes ianio kit \begin{tabular}{l}
4.25 \\
\hline .05
\end{tabular}
s10.2s

30 canar st, hew

\section*{RADIO TESTING EQUIPMENT REPAIRS REPAIRS}

All types and models expertly repaired and calibrated FREE ESTIMATES
metropoltan electronic \& Instaument co. 42 WARREN ST.
Write for
FREE catalogue of NEW YORK 7. N. N.
libermi priced testing equidment

\section*{WHY: PAY MORE?}

\section*{ \\ 456 KC-465 KC-600 KC-1400 KC \\ SIGNAL gEMERATOR "' \(12^{4}\)}
new. compact, recurste, inexpenalve, well-bullt Sig
 standariz Thithin so acaibraracy, for the fobove rrequen cios. Two open switech positions are prowded for the
addition of specis frequencies for Indirldual needs of the
 AC \(D C\) sets. Alignment of hort wave band possible due
to mong even harmonles of \(1400 \mathrm{KC}-2800 \mathrm{KC}-5.6 \mathrm{MC}\) - COMPLETE NITH TUEES - INDIVIDUAL TRIMMER COMPACT ERACKKLE. SHIELDED OUTPUTLEAD
 WRITE FOR DESCRIPTIVE LITERATURE

\section*{CONSTANT ELECTRIC}
one or two new commercial circuits a month gives the technical information necessary on current manufacturing practices without cluttering up the pages with circuits that the non-serviceman reader will ever use.
4. Your coverage of test equipment is good. But how about more frequency meters, oscilloscopes, and signal generators? And why not a discussion of new circuits used in commercial equipment?

In brief, you have a well-balanced magazine.

> K. E. Forsserg, Sauk Center, Minn.

\section*{A CHANGER USER REPLIES}

\section*{Dear Editor:}

Jack King, in his article, Solling A Radio, in the December, 1947, issue, expressed amazement at the popularity of record changers. Surely the reason for this popularity is obvious.
I don't believe that anyone who plays a single record at a time ever hears more than the middle of the record. The beginning and end are obscured by his dashing to the phonograph, changing the record, and finally dashing back to the cozy armchair for another few minutes, and so on and on.
I have used a changer for the past 12 years or more and wouldn't think of using a manual record player, no sir!

Is a changer unreliable? Only if it is misused! And the maintenance costs? A drop of oil once in a while, that's all.

The only thing that amazes me are the weird arguments against changers by people who don't seem to have a clear idea what they are talking about.
R. G. Young,

London, England

\section*{DON'T WASTE GOOD SPACE!}

\section*{Dear Editor:}

Please, please stop wasting spacevaluable space-in Radio-Craft telling servicemen how to run their business. And this stuff about licensing servicemen! They license doctors and lawyers -but they don't guarantee their continued excellence. Let the good servicemen go about their business unperturbed. The service field will never be crowded for the GOOD serviceman.
Don't print so many how-to-build articles that ordinary people can never hope to build-like the 17 -tube FM re ceiver. I'll bet that not 25 of your readers built it. Why not concentrate on more simple educational articles?

> H. W. SMITH, Radio KNAF,

Fredericksburg, Texas.
(What say, servicemen and construc-tors?-Editor)

\section*{IMPROVED SIGNAL TRACER}

\section*{Dear Editor:}

In the February, 1947, issue you published details of the probe tracer, with which diagram I've been experimenting ever since. You would probably be interested in the final (or at least, the latest) result.

For its size and efficiency, the original is possibly the best tracer diagram
you have published, to say nothing of its low cost. All parts except the tube and batteries came from the junk-box.
The latest result, built into an overnight case, is used rwith a separate probe and ground clamp, the tube and all parts being in the case, which also holds the headphones and probe. Of several probes tried, the most satisfactory one was made with an old cerystal detector with the Intermittent Tip described in the August, 1946, issue. This combination will pick op easily a signal anywhere in the radio (or from an antenna coil on the bench, for that matter) with a strong local station, and from the audio end of the radio will drive a small p.m. speaker.

I find a 20 -megohm grid leak works much better than the 2 -megohm in the original. I also changed the \(500,000-\mathrm{ohm}\) volume control to one of 250,000 ohms. Otherwise the hookup remains the same except for the necessary changes in using it with a separate probe.

Finally I hooked a milliammeter in the plate circuit with a double-throw switch, providing both visual and aural checks. All of which adds up to a mighty efficient and easily portable tracer. More power to Radio-Craft!
\[
\begin{aligned}
& \text { R. C. Sandison, } \\
& \text { Denver, Colorado. }
\end{aligned}
\]

\section*{LIKES CRYSTAL 'SET}

\section*{Dear.Editor:}

I built the Modern Midget Crystal Set described in the January issue. It is the best-performing crystal set I have ever
made, and I have been experimenting with these sets for more than 25 years.
This receiver separates stations like a superhet and the volume it delivers for its size is amazing. I can operate a small speaker on a signal from a 5,000 -watt station 5 miles away.
The sensitivity is so grod that hooking the antenna to a metal bridge lamp gives reception almost as loud as with an outdoor antenna.
Mr. Grace's idea of using two secondaries appears to be the secret of the performance of this set. Funny we nevar thought of trying that!

Josepre Amorose, Richmond, Va.

\section*{PORTABLE ANTENNA}

\section*{Dear Editor:}

The one drawback to my 2-tube regenerative portable receiver was that it needed a rather long antenna. After tacking a small plate of galvanized iron on the heel of each shoe and connecting them in place of the antenna I found that the set polled in the locals satisfactorily when I walked on the damp ground.

Ben Green, Jr. Tuscaloosa, Alabama
(Here at last is the true portable, rotatable antenna. But what happens on a boardwalk or clean dry sand? On second thought, the equipment could be used as a soil analyzer, the strength of signals showing the conductivity characteristics of the ground immediately below.-Editor)

The June RADIO-CRAFT will be a special FM number, full of articles on FM theory, FM construction and FM servicing. The most popular FM receivers and tuners will be reviewed and there will be a new and up-to-date list of FM stations.

RESERVE THIS \(15 S U E\) AT YOUR NEWSDEALER'S TODAY

"I belong to the radio of the month club."

\section*{STOGK REDUCTION CLOSE-OUTS FAMOUS BRAND NAMES}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Tubes} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\text { TLots of } \\
\text { Each } \\
\text { Each }
\end{gathered}
\]}} & \multirow[b]{2}{*}{Tübes} & \multirow[b]{2}{*}{Each} & \multirow[t]{2}{*}{Lots of Eash} \\
\hline & & & & & \\
\hline OZ-4 & . 0.85 & 0.79 & 6N7 & 0.82 & 0.72 \\
\hline 1A7GT & 0.54 & 0.45 & 6SA7GT & 0.44 & 0.37 \\
\hline 1H5GT & 0.59 & 0.45 & 6SC7GT & 0.50 & 0.40 \\
\hline 1 J 6 GT & 1.10 & 1.00 & 68K7GT & 0.44 & 0.37 \\
\hline 1N5GT & 0.50 & 0.40 & 6SN7GT & 0.55 & 0.47 \\
\hline 185GT & 0.79 & 0.70 & -6SQ7GT & 0.47 & 0.42 \\
\hline 194 & 0.79 & 0.70 & 6V6GT & 0.50 & 0.40 \\
\hline 185 & 0.79 & 0.70 & 10-Y & 1.00 & 0.90 \\
\hline 174 & 0.50 & 0.40 & 12SK7GT & 0.45 & 0.37 \\
\hline 2A4G & 0.75 & 0.68 & 12SQ7GT & 0.40 & 0.32 \\
\hline 3Q5GT & 0.79 & 0.70 & 35L6GT & 0.55 & 0.45 \\
\hline 5Y3GT & 0.40 & 0.37 & 50L6GT & 0.55 & 0.45 \\
\hline 6B4A & 1.10 & 1.00 & 70L6GT & 1.49 & 1.40 \\
\hline 6D6 & 0.45 & 0.37 & 75 & 0.50 & 0.40 \\
\hline 6G6 & 0.79 & 0.70 & 77 & 0.35 & 0.27 \\
\hline \({ }^{6} \mathrm{HE} 6\) & 0.45 & 0.40 & 80 & 0.38 & 0.32 \\
\hline 6K6GT & 0.40 & 0.37 & 2050 & 0.80 & P0.50 \\
\hline 6J5GT & 0.55 & 0.50 & 9003 & 0.40 & -0.31 \\
\hline Prior ments C.O.D & orders \(25 \%\)
\(\qquad\) & \begin{tabular}{l}
will get deposit \\
B. \(3 t\)
\end{tabular} & \begin{tabular}{l}
preference. \\
whth order. \\
outs. Misso
\end{tabular} & & \\
\hline
\end{tabular}

Prior orders will get preference. All shtp-
ments \(25 \%\) deposit whth order. balanco
C.O.D. F.0.B. St. Louts. Missourt.
CREST CORP., Dept. C-1
3948 FOREST PARK BLVD., ST. LOUIS 8, MO. WRITE FOR OUR COMPLETE CATALOG
ON RADIO PARTS ANO EQUIPMENT.

SUPER-SPECIALS
FROM OUR FREE CATALOG
 ACORN TUBE8 954, 955, 956. 957, \(9958 \mathrm{~A} . . . \mathrm{C}\) 2.73
2.75
-49

WRITE FOR FREE CATALOG
\(20 \%\) DED., Eal. C. O. D.
-COMMERCIAL RADIO
36 Erattio Street, Bositon 8. Mass.

\section*{\$3.00 FOR CARTOON IDEAS}

RADIO-CRAFT prints several radio cartoons every month, Readers are invited to contribute humorous radio ideas which can be used in cartoon form. It is not neoessary that you draw a/sketch.
No electrical or radio definitions wanted. Some of these were 'published in the past, but the subject is about exhausted.
All checks are payable on publication.
address radio cartoons. radio.craft. 25 West Broadway, Now York 7, N. Y.

\section*{RADOO SCHOOL \\ \\ DIRECTORY}

\section*{PRACTICAL TECHNICAL TRAINING}

\section*{SPECIALIZE in 6 months to \(\mathbf{3}\) years}

\author{
COURSES \\ SERVICE \\ 6 to 12 Months \\ - Electricity \\ - Welding \\ - Refrigeration \\ - Heatling \\ TECHNICIAN \\ Eloctricity \\ - Radio \\ Electronics \\ - Refrigeration. Heating and Air Conditioning PROFESSIONAL \\ 3 Years \\ Electrical Engineering Bochelor of Science Degree Electronics
}

Train in Electronics, Radio, Electricity for a substantial career in industry-or a business of your own. Prepare in one year to be a Technician-or in two additional years secure a Bachelor of Science Degree in Electrical Engineering with major in Electronics. More than 35,000 former students in industries the world over. 1,538 students now enrolled from 48 states and 13 overseas countries. Facuity of 72 specialists. Write for catalog and Personal Guidance Questionnaire-also mention course in which you are interested.

Terms start JULY, September, January

\section*{— MILWAUKEE 5CHMI of ENAIEERING}

Dept. RC 548

\section*{RADIO \\ OPPORTUNITIES}

\section*{WRCI SPECIALIZED TRAINING- the "train} Ing-with-a-purpose"-DOES Increase one's earn. Ing power. For example, woll-paying positions of responsiblilty now held by WRCI graduates in. elude:
BROADCAST ENGINEER-OPERATORS (AM \& FM broadeast stations)
FLIGHT RADIO OFFICERS (transoceanic airlines) RADIO-TELEVISION
SERVICING TECHNICIANS
RADIO SERVICE SHOP OWNERS
COMMERCIAL RADIO OPERATORS (police, CAA, airlines) MERCHANT MARINE RADIO OFFICERS
Whth this proved record of suecessful training and placement. WRCI offers you. too the best type of
PRACTICAL tralning-under the supervision of radio and telovision speciallsts. Approved
veteran tralning. Non-veterans accepted. Send free lliustrated Booklet "F"一no obligation.

\section*{WESTERN RADIO}

COMMUNICATIONS INSTITUTE 341 West 18 St., Los Angeles 15 , Catififornis

\section*{PADIO ENGINEFRING}

Complete Radio Engineering Course. Bachelor of Science De gree. Courses also in Civil, Electrical, Mechanical, Chemical, Aeronautical Engi neering: Business Administration Accounting neering: Business Administration, Accounting Secretarial Enter June, Sept, Jan., March. Write for year. En

RCA INSTITUTES,Inc. Offer thoroush tralning and Radio and Television days-evinianas VETERANS: RCA Instituter Is appreved CA
RCA INSTETTUTES, ETe. A Service of Radio Corporation of America
350 WEST 4TH STREET NEW YORK 14, N. Y.

\section*{WANTED}

Men and Women to Fill Top Radio Jobs!
Worried about your future? Longing for a career that means more money ... success ? It's yours if you hurry to flll the Freat de mand for qualified radio personnel needed everywhere. Train now to be an announcer. disk jockey or rado night time classes. Hundreds of day and night time classes. Hundreds of thrilling jobs await you key positions in radio stations, airlines, and maritime service. catalog outlining the courses offered.

Approved for Veterans
Don Martin School of Radio Arts

Train at an Institute that ploneered In TELEVISION TRAINING since 1938. Morning. Afternoon or Evening Sessions in laboratory and theoretical instruction, under guidance of experts, covering all phases of Radio, Frequency Modulation. Television, lead to opportunities in Industry, Broadcasting or own Business, Licensed by N. Y. State. Approved for Veterans. ENROLL NOW FOR NEW CLASSES Visil, Write or Phone
RADIO-TELEVISION INSTITUTE
480 Lexington Avo., N. Y. 17 (46th St)
PLaza 3-4585 2 blocks from Grand Central

\section*{}

 - M. M. A TRERVISION

TRANSMITTRECHURSES
- MADIOTECHNOLOGV

DELEHANTY School of
RADIO - ELECTRONICS TELEVISIOM IOS EAST I3th STREET, NEW YORX 3, N. Y. - DEPT. R

\section*{LEARN RADIO!}

IN ONLY 10 MONTHS
PREPARE FOR A GOOD JOB!
COMMERCIAL OPERATOR (CODE) BROADCAST ENGINEER

Television Servicing-15 Months
Veterans get \(\$ 130.00\) Equipment SEND FOR FREE LITERATURE
BALTIMORE TECHNICAL. INSTITUTE
1425 Eutaw Place, Dept. C, Baltimore 17, Md
```

(TEX) CORRESPONDENCE COURSES iN
RADIO ond ELECTRICAL ENOINEERING ELECTRICAL ENGINEERING Gec sood gram of Prepsre yourself it Low Cost. for secure ruturti, Moder Course So almplined anyone can understand qutickly.

```

``` completion. Many Eradures twhing but pay
```



``` LIncoln Engineering school, Bor g31-C-111. Lincoin 2, Nebr
```

 COURSES cast, Television, Marine Operating, Aeronautical, Frequency Modulation. Radar
Classes now forming for the summer term June 1. Entrance exam. May 17.

Veterans. Literature. COMMERCIAL RADIO INSTITUTE 38 West Biddle Street, ${ }^{1920)}$ Baltimore 1. Md

Hollywood

Make Good in

 Experts RADIO-TELEVISION Home at prover and tested homo trinining. Freme at last eany to

 ERANS.
5620 HIO TRAININE ASS'N OF AMEFICA, DEPL, RCD RADIO-CRAFT for MAY, I948

THE RADIO AMATEUR'S HAND. BOOK (Twenty-fifth Edition-1948), by Headquarters Staff of the American Radio Relay League. Published by the American Radio Relay League. Flexible fiber covers, $61 / 2 \times 91 / 2$ inches, 608 pages plus an 8 -page index and a 144 -page manufacturers' catalog. Price $\$ 2.00$ in U. S. A., its Possessions and Canada; $\$ 2.50$ elsewhere.
It is indeed difficult to review "The Handbook" for we feel that it is too well known to need an introduction. We cannot imagine anyone with an interest in radio without at least one edition in his possession.
The latest edition of the handbook has 25 chapters-four more than last year. We cannot compare these editions by counting chapters. This year, the editors have found several opportunities to combine theoretical and construction material. For example: the material that was in the chapters on radio-frequency power generation and transmitter construction in previous editions has been combined in a chapter on high-frequency transmitters. When theoretical and practical material is correlated in this way, the reader is often able to grasp difficult ideas that he is unable to understand from orthodox texts.

In addition to the usual transmitter and receiver circuits, there are five new chapters devoted exclusively to v.h.f., u.h.f. and microwave techniques and equipment. The vacuum-tube data tables have been brought up to date to include the latest tubes. - R:F.S.

ELEMENTS OF RADIO SERVICING,

 by William Marcus and Alex Levy. Published by McGraw-Hill Book Co. Stiff cloth covers, $61 / 2 \times 91 / 2$ inches, 475 pages. Price $\$ 4.50$.Written to provide needed information on radio servicing especially for the beginner, the authors assume that the reader already has a knowledge of radio theory, but theory is reviewed wherever they feel it would clarify a procedure.

The book is clearly and comprehensively written and profusely illustrated with pictures and schematics of typical circuits and modern receivers. Complete summaries and study helps, together with questions dealing with actual service problems, are found at the end of almost every chapter.

Outstanding features are the stage-by-stage analyses of the different receiver circuits and components, discussion of the faults most likely to develop, and explanations of the testing procedures used to locate them. $-H$. W.

RADIO

technician and radio service courses
FM and TELEVISION
AMERICAN RADIO INSTITUTE
101 West 63rd St. Now Yort 23. Now York
Approved Under GI Bul of Righto
pproved Under GI Bul of Righ
Licensed by New York State

PREPARING FOR FEDERAL RADIO OPERATOR EXAMINATIONS, by Arnold Shostak. Published by PrenticeHall, Inc. Stiff cloth covers, $53 / 8 \times 7.5 / 8$ inches, 404 pages. Price $\$ 3.75$.

This book was written expressly for the student who is preparing to take the examinations for commercial radio operator's licenses.

The questions which appear in the book are taken from the FCC's pamphlet, "Study Guide and Reference Material for Commercial Radio Operator's Examinations." Selections of questions from this pamphlet make up each examination. Following each question is its answer, given in the most simple and idirect form, yet desigrred to give the student the background on the theory or practice involved.-H.W.

HOWARD W. SAMS RADIO RECEIVER TUBE PLACEMENT GUIDE -Covering Most 1938 to 1947 Receivers, compiled and published by Howard w. Sams \& Co., Inc. Stiff paper covers, $51 / 4 \times 81 / 4$ inches, pages not numbered. Price $\$ 1.25$.

The problem of replacing tubes in unmarked sockets of radio receivers is simplified by this new book. It contains 1,880 diagrams showing the socket locations of almost 5,400 different sets produced under 107 trade names. The book is also useful in identifying a tube whose type number has been worn off before being removed from the set.UR.F.S.

PRACTICAL AMPLIFIER DIAGRAMS, by Jack Robin and Chester E. Lipman. Published by Os-tronic Publications. Spiral binding with flexible paper covers, $81 / 2 \times 111 / 2$ inches, 41 pages of diagrams and 59 pages of parts lists and instructions. Price $\$ 2.00$.

Schematic diagrams, parts lists, and instructions for building 45 tifferent types of audio amplifiers are included in this book. The diagrams include a hearing aid, recorder and playback amplifiers, public address systems, phonoramplifiers, intercommunicators, and transmitter modulators. The intercommunicator diagrams are for battery, a.c.-d.c., and quick-heating a.c. models. The amplifiers range from a 1 -tube, 1 -wat job to a 75 -watt multi-channel amplifier.

Most of the circuits described are de signed to pass frequencies between 50 and 12,000 cycles. There are some highfidelity circuits designed to pass frequencies up to 20,000 cycles.-R.F.S.

(- R RADIO ENGIMEERING

FM-Television-Broadcast Police Radio. Marine Radio. Hadio Sorvieing. Avia
tion Radio and Vitra High moblle applications Thorouath training in all branches of Rado and Elec tronics. Modern laboratories and equipment. Old established school. Ample housing meilities. 7 acse
campus. 8mall classes, enrollments hmited. Our graduates are in domend. Write for catalog Approved for Veterans
VALPARAISO TECHNICAL INSTITUTE Dept. C VALPARAISO. INDIANA

Here's one of the finest business opportunities in years. You can cash in on the fact that people like radio with their meals. What's why Tradio-ette-a small, compact coinoperated radio designed for res. taurant and tavern booths-has become so nationally popular. Plays 15 minutes for 10 c .

$$
\begin{array}{cl}
\text { Small } & \begin{array}{l}
\text { Thousands of high- } \\
\text { yield locations are } \\
\text { available if you get }
\end{array} \\
\text { Investment on the grount floor. } \\
\text { in }
\end{array}
$$

For Complete Details . . Contact Us Today WRITE Dept. U-5

TRIDIO, Inc. Nuw fasi

MORE FEATURES

for your money iln this minlature
AM SUPERHET TUNER
With self-contained Power Supply

Adaptol ofrers the outstanding buy in compact. efflclent Are a arighist a fentable for use in conjunction with wire and tape fecorders. Installed in record player, makes phono-radto combination . Has many ex-
pertmental uses. perimental uses tems. or For conversion of milltary. foreign and ghort wave recelvers to broadcast band at the filct of a switch.
CIRCUIT FEATURES:-Self-contained porrer sup-
DIF
for
FO-60 DIV for 110 V . AC-DC $50-60$ cycles tion Thre tube curcuit ond conventional design, using the latest minia-
 List price $\$ 20.00$ complete with tubes. Add 5% west of Rockies FOB Brooklyn, N. F. Fil for Further 'in-
Seo your iocal distributor. or write for formation to:

ADAPTOL CO., 120 New Lots Ave. Brooklyn, N. Y.
 |398-10 Broadway -:- New York 13, N.Y.

Latest RCA

Television Schematics

- RCA 7" Model 621TS

RCA $\mathbf{1 0}^{\prime \prime}$ Model 630TS, 630TCS

- RCA 10" Model 641 TV

RCA Projection Model 648PTK
RCA 10" Model 721 TS
Large Clear Prints with all Component Vaines Marked
50 cos . Postpald
Send Check or Money Order
BRITE-RAY TELEVISION CO.

```
7Clinton Street Brooklyn 2, N. Y.
```

```
7Clinton Street Brooklyn 2, N. Y.
```


GREYLOCK
 A Dependable Name In RADIO TUBES

 PM SPEAKERS
si: Aininco No. Nos \qquad :each $31: 19$ TERMS: Not Coo. No order acceopeos for toen than $\$ 5.00$

\author{

Fresh stock Fully guaranteed

 20 mfd .150 V
 8 mfd .450 V .
 8 mid. 450 . \ldots........................ 10 for 10 for 2.4 .85
 Write for our free bargain Ifsts foaturin
 POTTER RADIO CO.}
Abell Distributing Co.
Adaptol Co.
Allied Radio Corp.
Almo Radio Co.
American Sales Co.
American Surplus Co
Amplifier Corporation of America........70, 84, 88
Arrow Sales, Inc.
Arrow Sales, Inc
Audel Publishers
Bell Telephone Labs.
Boland and Boyce, Inc.
Bonafide Radio Co.
Brite-Ray Televislon Co.
Brooks Radio Distributing Co
Buffalo Radio Supply
Burstein-Applebee Co.
Capitol Radio Engineering Institute
Cleveland instifute of Radlo.
Clippard Instrument Laboratory
Collins Audio Products Co., Inc.
Commorclal Radio
Concord Radio Corp.
Communications Equipment Co.
Constant Electric
Coyne Eloctrical School \qquad
Crest Corporations.
Douglas Radio Supply Co.
Electronic Corporation of America
Espay Manufacturing Co., Inc.
Esse Radio Co.
General Cement Manufacturing Co
General Electronic Distributing Co.
General Test Equipment Co.
Grean Radio Distrlbutor
Graylock Electronic Supply Co
The Heath Company
Hotel Strand
Illinois Condenser Co
Industrial Devieas, Inc.
Instructograph Company
International Resistance Co. 7

- Joyce Radio Distributing Co.
Lofayette Radio
Back Cover
Lake Radio Sales Co
Leéds Radio Co.
Leotone Radio Corp.
McMurdo Silver ${ }^{\text {Co }}$.
Corp. ..
Niagara Radio Supply Co: Olson Radio Warehouse
Opportunity Adlets
Oxford Reconing Corp.
Pilot Radio Corp.
Potter Radio Co.
Progressive Electronics Co
...inside Front Cover
信 Radio Kits Co.
Radio Supply and Engineering Co
RADIO SCHOOL DIRECTORY
(Pages 86-87)
American Radio Institute
Baltimore Technical Institute
Candier System Co.
Commercial Radio Institute
Deiehantr Institute
Lincoln Engineering School
Don Martin School of Radio Arts Melville Radio Institute
Milwaukee School of Eng.
RCA Institutes
Radio-Television Institute
Radio Training Assoclation of America
Tri-State Coliege
Valparalso Technical Institute
Western Radio Communications Institute

Radionic Equipment Co.

Radolek Company

72
Ravac Corporation 80
Risco Sales Company
The Rose Company
Howard W. Sams Co., Ine 72
Senco Radio, Inc. 81
N. Silverstine
Spellman Television Co.
Sprague Products Co.
Sprayberry Academy of Radio
Star Measurements Co.
Sterling Electronic Co.
Supreme Publications
Sylvania Electric Products, -Inc.
Technical Radio Parts Co.
Merit Products
Insida Back Cover
Metropolitan Elec. Instrument Co.
Tradio, Inc.
Transvision, Inc.
Triplatt Manufacturing Co.
United Condenser Corp.
Universal General Córp:
University Loudspeakers, Inc.
James Vibrapowr
World Radio Laboratories, Inc.
Wright, Inc.
X.L. Radio Laboratocies
................ 70

PEN-OSCIL-LITE

 60 megacyc
intormation.

GENERAL TEST EQUIPMENT

38 Argyle Ave.
Buffalo 9, N. Y.
500 FORMULAS TO SUCCESS
MANY million dollar arma started
 rormulan reetper and processes for
making things all at the ridic.
uloualy low price of ulously low price of 25 c .
Here
lo
your orportunity
 raplatal and with undreamed of proft In prospert. You can also use these
formulab din your own home to cut
household expenses to the one, or bousehold expenses to the bone, oo
you con put them to use in your you crin put them to use in your
workshop to cut costs as much as 1000\% piying out many dollara in
Quit
pronts to manufacturera, whotesiters, pront dealern, when you can make the same thing yourself for rew eents.
It
follow our

66 PAGES. 3200 WORDS IN.TEXT,
dayt Encrose asc, thets ill You wont be acked
for nother cent now or later. Sold on enoney.
NATIGNAL PIANS COMPANY

Somewhat More Silent Than a TOMB!

Even super-sensitive meters, built for the U. S. Navy to inspect delicate electronic communication equipment, do not show an audible sound level when Mallory carbon controls are tested.
Mallory carhon controls give you totally silent operation-the tapers are smooth and accurate to assure maximum adjustment in the

Meter used in the moise level pest. lieatings were talien on tohtume comen/s of all heading mainh. r.xisiererl $2: \%$ beluw all whers in inaudible sound vibrativiss. proper ranges-the overall resistance values are uniform and the life of the control is the longest ever provided. This kind of quality keeps customers satisfied.
Mallory has given you so many "firsts" in the
field of radio-electronic replacement parts that you know Mallory products are the finest that can be produced! Sell them with confidence, install them with ease. The Mallory line of Volume Controls, Capacitors and Vibrators has been standardized; they are a profitable line to stock.

Here's one selection of 9 "hor-number" controls, switches and shafts you'll use every day! The new IRC Junior Control Cabiner contains 9 of the most-used $1 / 2,1$ and 2 meg. type D controls with the added adaptability of the rap-in shaft feature-plus 4 switches and 4 special shafts.
This inexpensive assorment of popular controls will save you time and money, and reduce your need for exact replacements. Factorypacked in a handsome four drawer cabinet of sturdy cardboard. Cabinet actractively finished in blue, yellow and silver with twelve individually identified compartments. Order the new inexpensive JUNIOR Control Cabinet from your IRC Distributor today. International Resistance Compsay, 401 N. Broad Street, Philadelphia 8, Pennsylvanis. In Canada: International Resistance Company, Ltd., Toronto, Licensee.

here's what you get

IRC Conirol Type No.	Resistonce	Purpose
D13-133	500,000 ofms	A
D13.133X	500,000 ohms	B
D13-137	1.0 meg.	A
D13-173X	1.0 meg.	B
D13.139	2.0 meg.	A

Purpose: A-Tone or Audio Circult controls B-Tapped for tone compensation.
S.P.S.T.
D.P.S.T.

SHAFTS

1 Type " \mathbf{A} " double-flatted top-in shatf ts Included with each control-plus:
3 Type " E " with universal knurl for specidl type push on knobs.
1 Type " \mathbf{H} " with universal groove for many Delco, RCA, Sears-Roebuck and Westing. house models.

[^0]: CAPITOL RADIO ENGINEERING INSTITUTE
 16/h and Patk Road, N. W., Depl.RC-5, Washington 10, D. C. Gentlemen: Please send me your free booklet. "CREI training for your better job in RADIO-ELECTRONICS** together with full details of your Home Study training. I am attaching a brief resume of my experience, education and present position.
 check one practical radid-electronics
 course practical television
 NAME
 STREET
 CITY...
 ZONE
 STATE
 I am entitied to training under the G. I. Bill.
 Check field of greatess interest:

 - radio.electronics brodocasting and television aeronautical radio engineering
 beceiver servicing \square industrial electronics

[^1]: RADCRAFt PUBLICATIONS, INC. Hugo Gernsbach, President; M. Harvey Gernsback, Vice President; G. Aliquo, Secretary
 Contents Copyright, 1948, by Radcraft Publications, Inc. Text and iliustrations must not be reproduced without permission of Copyright owners.
 RADCRAFT PUBLICATIONS INC. - PUBLICATION OFFICE 29 Worthington Street, Springfield 3. Mass. Address all correspondence to N. Y. office. EDITORIAL AND ADVERTISING OFFICES 25 West Broadway, New York 7, N. Y. Telephone REctor 2-9690, BRANCH ADVERTISING OFFICES: Chicago: 308 W. Washington Street, Chicago 6, III. Tel. Randolph 7363. Detroit: Frank Holstein, Manager, Room 402 Lexington 81dg, 2970 West Grand Blvd., Detroit 2, Marker, Manager, 382 Market St., San Francisco 4, Calif. Tel. Garfield I-2481.

 RADIO-CRAFT, May, 1946, Volume XIX, No. 8. Published monthly on 25th of month preceding date of issue. Allow one month for change of addrass. When ordering a chonge, please furnish an address stencll impression from a recent wrapper. Alt communications about subscriptions should be addressed to the Circulation Manager, Radio-Craft, 29 Worthington St., Springfield 3, Mass., or 25 West Broadway, New York 7, N. Y.
 SUBSCRIPTION RATES: United States and possessions, Mexico, Central and South American countries, $\$ 3.50$ a year; $\$ 6.00$ for two years; $\$ 8.00$ for three Years. Sanada, $\$ 4.00$ a year; $\$ 7.05$ for two years; $\$ 9.50$ for three years. All other forelgn countries, $\$ 4.25$ a year, $\$ 7.50$ for two years; $\$ 10.25$ for three years.
 FOREIGN AGENTS: Great Britain: Atlas Publishing and Distributing Co. Lid., IB Bride Lane, Fleet St., London E.C.4. Ausfralla: McGill's Agency, I79 Elizabeth Street, Melbourne. France: Brentano's, 37 Avenue de l'Opera, Paris 2e. Holland: Technisch Bureau Van Baerle, Bemelmans \& Co., Heemsteedsche, Dreef 124, Heemstede. Greece: International Book \& News Aqency, 17 Amerikis Street, Athens. So. Africa: Centrai News Agency, Ltd., Cor. Rissik \& Commissioner Sts.

[^2]: \square Send Photofact Folder Set No. 38, including the first installment of the famous $\$ 500$ Saunders Televition Courve.

 Name
 Address.
 City \qquad

