Popular Electronics

Audio Alarm Backs Up Car Warning Lights Build a Digital Darkroom Timer Personal Computers for Small Businesses

Video Cassette Recorders

A RISING HOME-ENTERTAINMENT STAR

 GLAON OITI OGOWOETE yYO 96 IEOE
ad Cassette Deck helf Speakers ereo FM/AM Receiver e AM/SSB CB Transceiver

FOR THOSE OF YOU WHO ARE HAVING SECOND THOUGHTS ABOUT YOUR FIRST CB.

Move up to the all-new Cobra 29GTL It's the third generation of the trucker-proven Cobra 29. And like the 29 and the 29XLR before it, it advances the state of the art.
Transmitter circuitry has been refined and updated to improve performance.

Receiver circuits have been redesigned to include dual FET mixers, a monolithic crystal filter and a ceramic filter to reduce interference and improve reception.

By improving the transmitter circuitry the 29GTL keeps you punching through loud and clear. By incorporating new features for better reception everything you copy comes back loud and clear.

So if you're having second thoughts about your first CB, make your next CB the Cobra 29GTL.

We back it with a guaranteed warranty and a nationwide network of Authorized Service Centers where factory-trained technicians are available to help you with installation, service and advice.

But more important than that, we sell it at a price you won't have second thoughts about.

Punches through loud and clear.
Cobra Communications Products
DYNASCAN CORPORATION
6460 W Cortland St. Chicago, Illinois 60635

Now from the AVANTI Research Laboratories comes a sleek, $22^{\prime \prime}$ full $1 / 2$ wave antenna, so unique that it mounts on glass, transmits through glass and receives through glass...yet requires no grounding to metal as do conventional $1 / 4$ wave antennas. No holes to drill...no clamps, clips or magnets to ever mar or scratch your car's finish! No pinched cables to run in through doors, windows or trunk. The Astro-Fantom is a handsome, low profile antenna that provides the ultimate in convenience!

EASY INSTALLATION. The Astro-Fantom is so uncomplicated that installation takes only five minutes and requires no tools. It bonds securely to the glass with an all weather tested 3 M press-on adhesive, yet can be quickly transferred when desired. The fiberglass whip removes instantly for storage, car wash or theft protection.

ONE MOUNT SATISFIES EVERY
NEED. Astro-Fantom's unique mount attaches anywhere there's a metal framed window. Front, side, or rear of vehicle, boat and motorcycle windshields, even home installation.

CLEAREST COMMUNICATIONS. Avanti's exclusive space age co-inductive ${ }^{\text {TM }}$ coupling box actually rejects static and interference as it establishes a highly tuned circuit to transmit and receive radio signals through the glass.

FULL 360° SIGNAL. Astro-Fantom's full $1 / 2$ wave design eliminates dead spots and directional problems found in conventional CB antennas.

340 Stewart Avenue, Addison, IL 60101

You're stuck. You're at a phone booth trying to find a phone number, and people are waiting. You feel the pressure.
To the startled eyes of those around you, you pull out your calculator, press a few buttons, and presto-the phone number appears on the display of your calculator. A dream? Absolutely not

Space-age technology has produced the Canon Directory-a calculator that stores 20 of your most frequently called numbers in its memory and let's you recall them simply by entering the person's name or initials.
The keyboard has letters as well as numbers (like the touch-tone pad on a telephone), so it's easy to enter data and use. Want to call Jim? You enter J I M, and your display shows Jim's phone number. Even when you shut your unit off, it retains your complete directory in its large memory.
Ever forget to shut your calculator off when you slipped it in your pocket? No problem with the Canon Directory. The system was built like a liquid crystal digital watch. Its display can remain on constantly without draining the two long-lasting hearing aid batteries which you get with your unit. A low battery indicator also warns you well enough in advance when it's time to change batteries.

STORE IN CONFIDENCE

If you lost your little black book with all those confidential numbers, you might get in trouble. Not so with the Directory. Without knowing the specific initials or name, you can't access the numbers.
And then there's convenience. You carry your calculator with you anyway. Why not add the convenience of a telephone directory to a full-function calculator? When it comes to calculating, the Canon is no slouch either.

There's a fully-addressable memory, square root, and an add-on discount percentage system.

EASY TO OPERATE

Just enter the name and number you want stored and press a few buttons. That's all there is to it. Changing an entry is just as easy. You can also store credit card numbers, important serial numbers, birthdays, and anniversaries. For example, enter the next birthday or important date you should remember under "DATE." This date will appear each time you enter the word "DATE." By getting in the habit of doing that each week, the Canon won't let you forget. Or have you ever been stuck at a phone booth with no pen to write your messages? With the Canon, you can enter them directly into your unit-name and number.
The Canon Directory is a new breakthrough in recent calculator technology. The largescale integrated circuit is programmable by the user-something nearly impossible just a few short months ago.

TEST IT FOR A MONTH

Order the Directory. Quickly program it with your most frequently called numbers. (You'll be amazed at how many 20 numbers seem when you sort out your personal directory.) Then use it every day. Program those important dates, your social security number, the phone numbers of your favorite restaurants, airlines, or movie theaters. Test the batteries by leaving your unit on for a week.
See how easy it makes life. Then within 30 days, decide if you want to keep it. If not, no problem. Just slip it in its handy mailer and send it back. We won't be upset, and in fact, we'll thank you for at least giving our unique product a test.

JS\&A is America's largest single souce of space-age products-a substantial company which has been in business for over a decade. Canon is the famous company that manufactures quality cameras, calculators, and other precision quality instruments.
If service is ever required, just slip your three-ounce unit in an envelope and mail it to Canon's national service-by-mail center. It's just that easy. Service should never be required since practically all components are on a single integrated circuit, but we wanted to assure you that a service program is an established part of Canon's program. The unit is $23 / 4^{\prime \prime} \times 5 \frac{1}{2}$ " and only one centimeter thick.
To order your own Canon Directory, send $\$ 79.95$ plus $\$ 2.50$ for postage and handling to the address below (Illinois residents, please add 5% sales tax), or call our toll-free number below. By return mail you will receive your unit, a handy wallet-style carrying case, and a oneyear limited warranty.
This year, let the sophistication of spaceage technology and your fingers do all the walking. Order your Pocket Yellow Pages at no obligation, today.

Dept.PE One JS\&A Plaza
Northbrook, ill. 60062 (312) 564-7000 Call TOLL-FREE 800 323-6400 In IIlinois Call (312) 498-6900
(C) JS\&A Group, Inc., 1978

VOLUME 14, NUMBER 2

Coming Next
 Month

- THE NEW AMPLIFIE MEASUREMENT STANDARDS
- BUILD A DISCO MIXER
- NOW YOU CAN ENJOY HI-FI TV SOUND
- BUILD A LOW-COST

A/D CONVERTER

- HOW TO DESIGN PC

BOARDS FROM A SCHEMATIC

TEST REPORTS:
Sony Class-D Amplifier
Panasonic RF-2800 5-Band Portable Receiver

Cover Art by George Kelvin mailing ottices. Authorized as second class mail by the Post Otfice Department, OHtawa, Canada, and lor payment of possage in cash.
POPULAR ELECTRONICS including ELECTRONICS WORLD, Trade Mark Registered. Indexed in the Reader's Guide to Periodical Literature
COPYRIGHT - 1978 BY ZIFF-DAVIS PUBLISH ING COMPANY. ALL RIGHTS RESERVED.
ziff-Davis aliso publishes Boating, Car and Driver. Cydee Flying, Popular Photography, skiing. tierex hine. book, Tape Recu bail

Material in this publication may not be repro duced in any form without parmission. Requasts for permission should be directed to Jerry for permission should be directed to Jery Schneider, Rights and Permissions, Zili-Oav Publishing Co.. One Park Ave., New York, N

Editorial correspondence: POPULAR ELECTRONICS. 1 Park Ave., New York. NY 10016. Edi torial contributions must be accompanied by return postage and will be hanated with reasonable bility for return or satety of manuscrlpts, art work,
or models.
Forms 3579 and all subscription corre spondence: POPULAR ELECTRONICS Circulation Dept., P.O. Box 2774, Boulder CO 80302 . Please allow at least eight weeks for change of address, Include your old address, enclosing, it possible, an address label from a recent issue

The publisher has no knowledge of any proprietary rights which will be violated by the making or using of any items disclosed in this issue. of Circulations

Feature Articles

SOLID STATE COMPONENTS CHART
CASSETTE RECORDER TAPE COMPATIBILITY / Julian Hirsch
VIDEO CASSETTE RECORDERS: A RISING HOME ENTERTAINMENT STAR! / Walter H.
Buchsbaum
Types and brands available, how they work, and distinguishing features.
PERSONAL COMPUTERS FOR SMALL-BUSINESS APPLICATIONS / Portia Isaacson More and more "home" computers are being used for commercial purposes.
THE VERSATILE KEYPAD / Clement Pepper Describes a variety of applications using a simple keypad.

Construction Articles

BUILD A DIGITAL DARKROOM TIMER / Michael S. Roabins
Precision interval timer controls an enlarger or other timed-powered device.
AUDIO ALARM BACKS UP CAR WARNING LIGHTS OR METERS / Gene Nelson
Sounds an alarm so you won't miss your car's visual warning.

Columns

STEREO SCENE / Ralph Hodges RFI and Other Matters.
SOLID STATE / Lou Garner On the Light Path.
HOBBY SCENE Q\&A / John McVeigh
EXPERIMENTER'S CORNER / Forrest M. Mims Digital to Analog Converters, Part 2.
DX LISTENING / Glenn Hauser Current News and Future Plans.
COMPUTER BITS / Leslie Solomon Direct-Wire Remote Control.

Julian Hirsch Audio Reports

KENWOOD KX-1030 CASSETTE DECK
 REALISTIC OPTIMUS-10 SPEAKER SYSTEM
 PIONEER GX-5050 CAR STEREO FM/AM RECEIVER

Electronic Product Test Reports

MOTOROLA CM-550 MOBILE AM/SSB CB TRANSCEIVER LEADER LB0-508 DUAL-TRACE OSCILLOSCOPE

Departments

```
EDITORIAL / Art Salsberg
        The Light Traveller.
LETTERS
NEW PRODUCTS
NEW LITERATURE
SOFTWARE SOURCES
OPERATION ASSIST
ELECTRONICS WORLD NEWS HIGHLIGHTS
```


Popular Electronics

THE LIGHT TRAVELLER

A few years ago, futurists were speculating that around the year 1990 we would enjoy a fantastic new communications technique using light travelling through glass fibers. This would provide enormous load capacity, immunity to noise and moisture, and very low cost.

On the way to the 1990's, fiber optics or "light communications" arrived-two decades early! The cost factor is still too high for many applications at this time (owing to high connector cost, I understand), but industry pundits are confident that it will be significantly cheaper than other communication links in the future. They say optical transmission of data and voice will likely bury copper cables one day.

A number of experimental lightwave systems are, in fact, up and running right now. Ma Bell has such a link in Atlanta, GA, for example, with the equivalent of 672 digitized voice channels on a single glass fiber. In another area, it's said that a typical fighter plane's 450 pounds of copper wire could be replaced by only 50 pounds of fiber cable. Fiber optics are being used in automobiles, too. DuPont, for exam-

ple, has developed a photo-cybernetic system to monitor vehicle speed, eliminating less reliable mechanical linkages. Readout is by digital LED's. And just imagine what the potential clock rate of a computer would be with no impedance in interconnecting circuitry! Clearly, it's a technology whose time has come.

Japan seems to be moving appreciably faster than we are toward implementing an optical fiber information transmission system. Test operations for an interactive CATV network in Japanese households began in 1976. The goal is to provide them with two-way services that include cashless shopping, request entertainment, police and fire protection, and remote telemetering. Field trials with 300 subscribers are supposed to be in operation now.

Light communications are not as esoteric as you might suspect from the above. Edmund Scientific Co., Barrington, NJ, for instance, sells fiber-optic kits and assembled units right now. Check Lou Garner's "Solid State" column this issue, too, to see what's happening out there in the light-communication field. It's the beginning of a new, exciting electronics field that will have an enormous impact on our lives in the not-too-distant future.

Part of the electronics action is always in the future. That's why it is so invigorating! And PE will continue to prepare you for what's coming up next.

THE PET has become the standard for the personal computer industry. Consumer and business publications have lauded its discovery. POPULAR SCIENCE and PLAYBOY have given special tmoute to the "mind-boggling" PET.
INALEAGUE WITHIBM, HP
AND WANG MINICOMPUTERS
THE PET is a minicomputer and should not be confused with grame products that hook up to household T.V.'s. What sets it apart from other computers is price. Whie others cos from $\$ 11,000$ to $\$ 20,000$ and more, THE PET, with similar power, costs only $\$ 795.00$.
Features an IEEE-488 Bus - like HP's mini and full size computers. This standard data and control channel permits direct connection to many peripherals. Dver 120 pieces of compatible equipment such as counters, timers, spectrum analyzers, digital voltmeters and printer plotters, from HP Phillips, Fuke, and Textromx, etc., are currentry available. AOM Magazine, January 197B, writes. "THE PET comes out of the box. plugs into the wall, and is ready to use. " It is equipped with a CRT video display with reverse and blink featuras, an alpha-numeric keyboard with complete graphics
and a built-in standard cassette tape deck.
THE PET has BK bytes of RAM [user memory]. Optional equipment permits expansion to 32 K . And, it has 14 K bytes of ROM (program memory).
THE PET COMMUNICATE SIN BASIC.
THE EASIEST COMPUTER LANGUAGE
If THE PET wants you to press a key, it will flash. "Press such and such". on the display. You speak back to it through its full size 73-key keyboard.
EXTENSIVE CHARACTER
ORIENTED GRAPHICS
The unit features a 9 -inch, high resolution. 1000 character CAT. Characters are arranged 40 columns by 25 lines on an $B \times 8$ matrix for superb graphics.
WHAT IS THE PET REALLY FOR?
It is the single most important teaching device for any computer related subject. It will entertain the most sophisticated data application, or the simplest inquiry/response assignment. IN THE LAB it handes instrumentation, process monitoring, and more. A number of Fortune 500 companies have already made it an integral part of their lab and general office systern.

TECHNICAL SPECIFICATIONS

MEMORY

Random Access Memoly (user memory); 8K internal, expandable to 32 K bytes
Read Only Memory (operating system resident in the computer); 14 K byter
8K-BASIC interpreter program, 4K-Operating system.
1 K -Diagnostic routine
1 K -Machine language monitor
VIDEO DISPLAY UNIT
$9^{\prime \prime}$ enclosed, black \& white, high resolution CRT
1000 character display, arranged 40 columns by 25 lines
8×8 dot matrix for characters and continuous graphics
Automatic scrolling from bottom of screen
Winking cursor with full motion control
Reverse field on all characters
64 standard ASCIl characters; 64 graphic characters KEYBOARD
$91 / 2^{\prime \prime}$ wide $\times 3^{\text {" }}$ deep; 73 keys
$91 / "^{\prime \prime}$ wide $\times 3^{\prime \prime}$ deep; 73 keys
All 64 ASCII characters available without shift.
Calculator style numeric key pad
All 64 graphic and reverse field characters accessible
Arom keyboard (with shift)
Screen Control: Clear and erase
Editing: Character insertion and deletion

CASSETTE STORAGE

Fast Commodore designed redundant-recording scheme. assuring reliable data recovery

As a BUSINESS TOOL it will; Mantan ledgers. Keep payro records. Create P \& L's. Control inventory. Store and analyze sales data. Draw bar graphs. issue invonces. Hook up to on-line computer system. AT-HOME it will; Compute state and federal tax returns. Make heat and insulation englyses. Keep Christmas lists. Keep checkbook and finances up to date. A variety of games, from Blackjack to Galaxy, is cur-
rently available.

Bar Graphs

Black Jack

Amortization Chart

Teaching Trigonometry

HIGHSPEEDRET PRINTER

This powerful word processor prints hardcopies, invoices. computer correspondence. Faster than an IBM Selectric. THE PET Printer delivers 60 characters per second at a sustained rate - with upper and lower case capability. Characters are one-eighth inch tall and are printed in a 7×8 dot matrix. The printer uses a standard $81 /{ }^{\prime \prime}$ wide paper roll. And, it is only $\$ 599.95$.
PERIPHERALSECONDCASSETTE
This optional component expands storage and increases flexibility, Onty \$99.95.
MILES OF SOFTWARE
Mary programs are available now, including, "BASIC BASIC" which shows how to write a program. You can develop your own programs th mept personal requirements.

Cassette drive modified by Commodore for much higher reliability of recording and record retention
High noise immunity, error defection, and correction
Uses standard audio cassette tapes
Tape files, named
OPERATING SYSTEM
Supports multiple languages (BASIC resident)
Supports multiple languages (8
Machine language accessibility
Machine language accessibility
File management in operating system
Cursor control, reverse field, and graphics under simple
BASIC control
Cassette file management from BASIC
True random number generation or pseudo random sequence
INPUT/OUTPUT
All other IIO supported through IEEE. 488 instrument Allerface for peripherals
I/O automatically managed by operating system software Single character I/O with GET command
Easy screen line-edit capability
Easy screen line-edit for BASIC expansion with peripherals BASIC INTERPRETER
8 K BASIC: 20% faster than most other 8 K BASICS UK BASIC: 20\% iaster expansion from BASIC language
Strings, integers, multiple dimension arrays
10 significant digits; tloating point
Direct memory access: PEEK and POKE commands DIMENSIONS
$16^{\prime \prime}$ wide; $18^{1 / 2 "}$ deep; $14^{\prime \prime}$ high. Weight: 44 lbs.

GAME PROGRAMS ARE $\$ 9.95$ EACH:
Black Jack Draw Poker \square Galaxy Games 7 Space Flight I Target Bong, Off-The-Wall \exists Lunar Lander. Wumpus, Rotate. Tic-Tac-Toe I Osero, Reverse JSpacetrek] Kingdom PROGRAMS AT \$14.95 EACH:
IT Mortgage Analysis

- Basic Basic-by Lodewyck and James

PROGRAMS AT \$24.95 EACH:
Basic Investment Analysis-loans, annuities, return in regular and irregular sequences of payments calendar calculations
17 Stock Portiolio Recordkeeping and Analysiskeeps track of buys, sells, and dividends. Caiculates rurrent value, rates of return
Theckbook Recordkeeping and Analysis-keeps irack of checks and deposits. Analyzes expenses by date and type
PROGRAMS AT \$29.95EACH:
_) Basic Math Package-matrix addition, multuplication, Jeterminants and inverses to 16×16, solution of simultaneous linear equations, vector and plane geometry calculations, integration by trapezoidal. Simpson's rule or Gaussian quadrature, differentiation

- Basic Statistics Package-mean, median, variance, standard deviation, skewness, kurtosis, frequency distribution, hnear regression. T-tests. correlation analyses

fREE ORIENTATION PACKAGE

Your PET comes complete with two programs and an easy--follow instruction manual. By working through the routines rou will quickly discover how easy it is to gain command of your personal computer.
SERVICE WORLDWIDE
Because your PET is self-contained and compact. profes sonal factory service is never far away. If major service is re quired. the unit can simply be returned by UPS to an asthorized Commodore PET clinic.
To order your PET send check or money order for $\$ 795.00$ phus $\$ 20.00$ for shipping and insurance. To order the PET Printer, add $\$ 599.95$ plus $\$ 12.00$ for shipping and ir surance. The Second Cassette is $\$ 99.95$. No shipping and irisurance charges are required when ordering a second cassette or programs with your PET. Credit card orders are irvited to call our toll free number below. Orders will be accepted on our TELEX. No. 25-526B.
Use THE PET for 30 days with no obligation. If, for any reason, you are not satisfied, return it for a prompt and courteous refund. ORDER DIRECT

 800-323-2272

ILLINOIS RESIDENTS CALL: 312-595-0461 TELEX ORDERS: 25-5268

Order your PET. Printer Accessory. Second Cassette and Programs from Contemporary Marketing at:

790 MAPLE LANE DEPT. PE-8 BENSENVILLE, IIIINOIS 60106
(O)

ABOUT THAT ADAPTIVE SWEEP.

You chaps are a bit backward in your article"The Spectrum Analyzer in Hi-Fi Measurements" (January 1978), in which you cover " an intriguing and unique feature of the Hew-lett-Packard 3580A Spectrum Analyzer"-its "adaptive sweep." I took out a British P.atent in 1952 that covers a similar feature inasmuch as the relatively rapid frequency timebase is slowed down when a signal above a certain minimum level is present as a Y display. There is the obvious choice of simply switching between two preset scan rates or making the scan rate somewhat inversely proportional to the Y level, or perhaps rate of change of the Y level. I have never found it necessary to "back up" in frequency, because if the scan rate in the passband is adequately slow, the peak response is accurate. Although there may be some distortion in the
build-up to this value, this is not usually of interest. In our spectrum analyzers, which were research tools mainly for $r-f$, I also had a bandwidth for the crystal filters that could be varied in steps in a very simple manner using a single quartz crystal. F.G. Clifford, Wynberg, S. Africa.

GOOD ITEMS FOR LIMITED READING TIME

I have just read with interest "Choosing a Mobile CB Antenna," by John J. McVeigh, and "How to Install Mobile CB Transceivers and Mobile CB Antennas," by Ivan Berger, in your April 1978 issue. They are outstanding both in detailed content and comprehensive accuracy. With limited reading time available, I have to select those publications providing the most usable information. Popular ElecTRONICS is such a publication, for which I thank you. -R. R. Knierim, Lima, OH.

MULTIMETER REPLACEMENTIC'S

I'm delighted with my Sabtronics 2000 Digital Multimeter kit, which you reviewed in your December 1977 issue-as I'm sure are other readers. However, here is some useful information if they run into troubles resulting from such things as using the wrong scale and "zapping" the meter. The A/D converter IC (marked 20-786) is the Motorola 14433P; the

IC segment driver (marked 20-788) is Motorola MC14511B; and the Digit Drive is a 75492. The op amp in the ac converter (Z3) can be switched to a 741 if necessary. If the kit doesn't auto-zero in the 10 V ac mode, it is because of the multiplex decimal point noise from the selector switches. Sabtronics sells a small "add-on" Low Noise Decimal Point Drive kit for about $\$ 3.00$, and it definitely works. -R.B. Stillwater, Winnipeg, Manitoba, Canada.

A SIMPLER VERSION

I've found a simpler version of the pseudorandom data generator described in the January 1978 Experimenter's Corner. It eliminates the need for a second decade counter and timer and performs similar operation. Referring to Fig. 4 in the December 1977 Experimenter's Corner, you will find that connecting the DATA \mathbb{N} pins of the 7489 to the output pins of the 7490 decade counter in the same sequence (A to A, B to B, etc.) and switching write enable switch on for 10 clock pulses will result in the memory slots of the RAM's being loaded with the binary address. This provides an automatic form of obtaining a 0 -to- 9 binary at the DATA LED's, which is basically what the pseudo-random data generator does. -Allan P. Saadus, Sunnyvale, CA.

SEMICONDUCTORS

HEP and/or Standard Devices shipped directly from the factory. Here's a sampling of products and prices:
MC6802 - MPU, Clock and RAM Unit $\$ 28.15$
C6800P - Microprocessor
C4811 - 128×8 Static RAM \$ 5.45
D1000T - Liquid Crystal Display with Socket $\$ 18.90$
MRF245-80W-175MHz RF Power Transistor $\$ 47.41$
MRF450A - 50W-30MHz RF Power Transistor $\$ 18.91$
MRF455A - $60 \mathrm{~W}-30 \mathrm{MHz}$ RF Power Transistor $\$ 21.90$
We also have Low-Power Schottky TTL I/C's, Linear I/C's. Zeners, Rectifiers. Power Transistors, Small Signal Transistors. CMOS I/C's, etc.

KITS

Develop and Evaluate M6800 Microprocessor Systems with Motorola's MEK6800D2 Kit
Featuring: - 24-Key Keyboard

- 7 Segment Display
- Cassette Interface

All the parts necessary to complete the system and get you "on the air." except for the power supply. for only $\$ 235.00$ plus state and local taxes and include $\$ 5.00$ for shipping and handling.
Educator II Power Supply Kit
Featuring: - Regulated $5.0 \pm 5 \%$ Vdc Output @1.0 Amps

- 60 Hz Real Time Clock Available (Approximately 5.1 V peak-to-peak)

The Educator II Power Supply Kit for $\$ 29.95$ plus state and local taxes and include $\$ 2.00$ for shipping and handling.

LITERATURE

Data Books. Handbooks. Manuals. Catalogs, Engineering Bulletins, Selector Guides, etc. One of the most complete sources in the industry is available to you through the mail. Here are some samples of the more popular books and prices:
Basic Semiconductor Library (Vols 1. 2 \& 3)
$\$ 9.00$
CMOS Data Book (Vol 5) \$2.50 M6800 Microprocessor Applications Manual
$\$ 25.00$
M6800 Programming Reference
Manual
$\$ 3.00$
MC14500B Industrial Control Handbook.
$\$ 3.00$
Understanding Micro-
processors
$\$ 2.50$
If you have some specific needs just write to us!

Add Local and State Sales Taxes to all orders for semiconductors and literature, plus $\$ 1.00$ for postage and handling (minimum order - $\$ 10.00$). We accept Master Charge and Visa Credit Cards. Please include card number and expiration date.

This new LCD Chronograph is truly extraordinary. It does more, and does it better, than any other watch. With a strong, bold appearance that reflects this uncommon ability. The only little things about it are its thickness and its selling price, which is a real breakthrough at $\$ 200.00$ less than you'd pay for the only other watch even close to its functions and uses.
Quartz Crystal Time...It gives you accuracy to ± 60 seconds a year. A year! Quartz Crystal accuracy that would have been considered sensational per month in early micro•electronic watches. Accuracy which is still not available in many digitals that sell for $\$ 500$ or $\$ 1,000.00$!
Electronic Calendar...so, you always have exactly the right time on display - without pushing a buttonin hours, minutes and running seconds. Then, at the touch of a button you can replace the seconds with the date or the day of the week, with the electronic calendar adjusting automatically for the number of days in any month. And you just light up the face to see perfectly when it's dim or you're in the dark.

24 hour Alarm

You can set this alarm for any minute of any hour of the day or night. In all, 1440 positions are possible.

To wake you, remind you of an appointment, phone call or meeting (or to break one up that's been going on too long). The alarm will sound at the same time each day, unless you deactivate or change it. It will call you with an insistent, modulated beep, for a full minute unless you shut it off with a touch of the button sooner; and you can check to see if the alarm is set.

Is it any wonder that of all the features available in digital watches, a wrist alarm like this is the one that's most wanted? Really it's important enough to warrant your buying a new watch. And remarkable as it may seem, with this offer from Douglas Dunhill, it's like getting the alarm free!

Three Different Chronographs

As to the chronograph, its precision is so fine, it borders on the infinitesimal. Splitting each second into a hundred parts! Actually you have three different chronographs, or stop action modes of measuring. So you can time any event in its entirety, stopping during pauses or breaks in the action. You can time an event, like a race, from beginning to end, getting the finishing time of each participant in the race, or interim times, for the quarter, say, while timing of the event continues.

And you can time portions of a continuing event, like each lap in a relay race or segment of a complex, continuing manufacturing operation.

All this, with a few of the possible uses, is explained in detail below. Even from this brief description, though, the extraordinary sophistication of the microcomputer chip of the LCD Alarm Chronograph is apparent.

An Extraordinary Value

Right now, probably the only watch with all these features, its incredible accuracy, multiple function chronograph and wrist alarm, is the Seiko. And it regularly sells for $\$ 200.00$ morel $\$ 299.95$, even though the Seiko Chronograph is accurate to only a tenth of a second.

This extraordinary value is what convinced us, and we're one of the nation's oldest and largest mail merchandising firms, to secure the exclusive marketing rights. (After exhausting testing by our quality contro experts.) We explained there was no way you would walk into a store and select a new brand from an unknown manufacturer.

How could you possibly be expected to appreciate its quality? Would you be in any position to understand and evaluate its virtually unique 3 -function chronograph? Would you believe a sales clerk who told you it was really a finer, more accurate fully electronic, solid state watch than many that sell for as much as $\$ 1,000,00$?

Wear it for 30 Days -

Without Risk or Obligation

With us, buying by mail, you not only get all the facts, enjoy significant savings made possible by eliminating normal advertising and distribution costs you can also try it for 30 days without risking one penny. We'll not only refund your money, but do so cheerfully.

You can wear the Advance LCD Chronograph Alarm for thirty days! Time to confirm the fact it won't gain or lose five seconds a month. To put the alarm to the test in your daily schedule. To satisfy yourself that the chronograph is as useful as it is easy to operate. More, to compare it with any watch at any price in any store. And to send it back if the value isn't as great as we say, if it doesn't win the admiration and fascination of your friends, earn your own pleasure and deep satisfaction

Imagine, you can have one of the world's finest, most versatile watches for just $\$ 100.00$. That's complete, including shipping, handling, insurance and a handsome gift or presentation case. An exceptional bargain. Choose the chrome plated stainless steel model or gold-plated stainless steel one, each with a matching, extremely comfortable adjustable band.

Remember, your satisfaction is guaranteed. Your watch comes to you with a full ONE YEAR Limited Warranty. And you have our promise to service it to your satisfaction at any time. Remember, too, printed circuitry eliminates all moving parts and normal servicing, and will provide you with year after year after year of trouble-free performance.

With the LCD Alarm Chronograph you'll have the precise time, absolute control over time, plus ample warning when it's time to do anything. And the pride that comes with wearing a watch that's second to none.

Send your check (lllinois residents add 5\% sales tax) to Douglas Dunhill, Dept. 78-2302 4225 Frontage Road, Oak Forest, IL 60452. Be sure to specity stainless steel or gold plate.

CREDIT CARD BUYERS

may call our toll free number
800-621-8318
(illinois residents call 800-972-8308)
Call now for your no-risk, no obligation 30-day trial.
circle no 50 on free information caro

3 Way Chronograph

The micro•electronic revolution has turned the chronograph from a bulky pocket watch or cumbersome wrist watch for specialists into a sleek, super sophisticated instrument that's become the preferred timepiece for doctors, pilots, motion picture photographers, sound and efficiency engineers, skiers and sportsmen, and ever-increasing number of executives and others who enjoy split second accuracy and the ability to command time to stand still.

No other instrument, at any price, gives you greater precision than the $1 / 100$ th of a second accuracy of the LCD Alarm Chronograph or greater flexibility in timing an event from a fraction of a second to one full hour. Add Time... is the stop watch mode you'll use for everything from timing a phone call to the length of a meeting; how long your car's been at a parking meter, the time you've been running, jogging or exercising, even ihe time it takes for a quarterback to set up and throw. Then, because you can stop it when necessary and start counting again when the action begins again, you'll use it to prepare your speeches, time games or other events in which you want the actual accumulated times exclusive of any breaks in the action.
Split Time... is the mode you'll use to get the time for the $1 / 4$ and $1 / 2,3 / 4$ in a race, and the individual times of each contestant across the finish line. Think of it! Stopping for split times does not stop the timing of the event itself from continuing. It's actually stopped and running at the same time, so you can use it to figure out the time of pit stop, for example, and still get the over-all running time of the race
Lap Time... is even more ingenious. It stops to measure an event and simultaneously starts again from zero. In a relay race, for example, you stop the chronograph the instant the runner passes the baton; this gives you his time while the lap timer automatically starts counting the next runner's time. Similarly, in a football game, you can get the exact time it takes a punter to kick the ball, the time the ball's in the air, and hen the time of the run back of the punt. Any event, from a rocket launch to a production process, can be split înto its component parts this way. Separating the time of elements that cannot be separated in any other way!

Within minutes you'll be able to use each of these modes of operation perfectly. Within days, find innumeramle uses in both business and your personal life.

Dept. 78-2302
4225 Frontage Road , Oak Forest, IL 60452

New Products

Additional information on new products cowered in this section is available from the manufacturers. Either circle the them's code number on the Free Information Card or write to the manufacturer at the address given.

Toshiba Frequency Synthesized Receiver

Toshiba's SA-7150 AM/stereo FM receiver features a power-output rating of 150 W rms/channel into 8 ohms over 20-20,000 Hz with 0.05% maximum total harmonic distortion. Its tuner section incorporates

PLL frequency synthesis and also has six memory channels for instant selection of one of six AM or FM stations. The frequency tuned is displayed on green seven-segment LED's. The entire AM or FM broadcast bands can be scanned by using up and Down buttons, with the process automatically reversing at the band ends. FM usable sensitivity is rated as 9.8 dBf . Other features are separate transformers for the class A and class B amplifier sections, five LED signal level indicators, built-in FM Dolby circuit, narrow and wide i-f band selection, peak-reading power meters, high and low filters, $-10-\mathrm{dB}$ and $-20-\mathrm{dB}$ audio muting, dual-direction tape duplication capability, multipath monitor, and phono impedance selector. $\$ 995$.

GIRGLE No 89 on free information caro

Realistic Programmable Scanner

Radio Shack's new Realistic PRO-2001 programmable scanner offers coverage of $30-50,144-174$, and $430-512 \mathrm{MHz}$ without the use of crystals. This microprocessorcontrolled unit can scan 16 programmed channels or an entire band segment by entering its frequency limits. Frequency selection is accomplished with a front-panel keyboard, and each of the 16 channels has selectable lockout. A LED indicator lights

when a channel is being programmed, scanned, or monitored. Out-of-band or improper frequency selection is indicated by an error message. Other PRO-2001 features include switchable scan delay, a built-in 9-V battery that saves memory, and choice of manual or automatic scan with a high-speed scan rate of 15 channels/ second. Variable squelch, built-in speaker, and jacks for headphones, tape recorders, external speakers, and uhf and vhf antennas round out the PRO-2001's provisions. Operation is from $120 . \mathrm{V}$ ac or $12-\mathrm{V} \mathrm{dc}$. Dimensions are $3.4^{\prime \prime} \times 10.2^{\prime \prime} \times 10.9^{\prime \prime}(8.6 \times$ $25.9 \times 27.6 \mathrm{~cm}$). Includes mobile mounting bracket and power cables. \$399.95.

ClACLE NO 91 ON FREE imformation caro

K40 Mobile CB Antenna

American Antenna's K40 is a base-loaded whip antenna with $56^{\prime \prime}$ radiating element of 17-7PH stainless steel. Its coil construction combines metal and plastic, and an isolation chamber is said to dampen static. The whip is adjustable over $2^{\prime \prime}$ with no cutting. A quarter-turn quick-release permits removing the antenna from its 30° rotating base. The K40 is supplied fully assembled with 18 ' of coaxial cable complete with connectors and trunk-lip mount. An optional universal mount permits mobile mounting in any location.

```
circle no 92 on free information caro
```


Vector Graphic Video Display Board

FLASHWRITER is Vector Graphic's latest computer peripheral. This video display board generates 16 lines of 64 characters using a 7×9 dot matrix and is designed to operate with a $4-\mathrm{MHz}$ clock frequency. Other capabilities are character-bycharacter generation, reverse video, reduced intensity, and block and line graph-

ics. It has its own screen-refresh memory and latched eight-bit parallel port, is S-100 compatible, and video output is available as composite video or separate video and sync. \$195 kit, \$235 assembled.
clrcle no 93 on free information caro

Marantz
 Quartz-Lock Turntable

The new MarantzModel6350Q direct-drive turntable uses a PLL servo system with quartz crystal timing reference for automatic speed control. Wow and flutter is rated below $\pm 0.025 \%$ wrms, and speed deviation is said to be less than $\pm 0.003 \%$. In-

dependent speed control for 45 and $331 / 3$ rpm modes allows $\pm 3 \%$ adjustment. The statically balanced tonearm features automatic lift and shut off, antiskating, and viscous damped cue control. The turntable comes with a hinged dust cover and antiskid platter mat.

CIRCLE NO 94 ON FREE INFORMATION CARO

Record Care Work Pad

Ball Corporation's Sound Guard Record Care Work Pad is a lint-free, non-slip, washable surface for use in LP record care. The pad is nonabsorptive and its high coefficient of friction prevents record slippage during inspection, cleaning, or coating of a record with a cleaner or preservative. A receptacle area holds excess fluids. \$7.99.
circie no 95 on free information caro

Remote Coded Alarm Lock

A 12-key pad for remote "combinationlock" alarm operation has been announced by Mountain West Alarm Supply Co. The Model D14 features a fieldreplaceable, preprogrammed code key. The keypad operates on 6 to 24 volts ac or dc, and draws less than 2 mA standby current, including its red and green LED status lights. The beige, high-impact ABS case measures $47 / 8 \times 31 / 2 \times 11 / 8 \mathrm{in}$. ($12.1 \times$

Unlock the power of today's technology. The Understanding Series. ${ }^{\text {TM }}$ From Texas Instruments.

Self-paced. Easy-to-understand. Practical. Texas Instruments introduces the Understanding Series - a family of lively, down-to-earth books written for anyone who wants to learn more about today's electronic technology and its impact on our everyday lives. Ideal for individualized learning, this quick and easy approach can put understanding of these latest technological subjects to work for you!

And Texas Instruments makes it even easier with this special offer. Now you can have your choice of any two or more of these books at a reduced price. Buy all four and save $\$ 1.50$. Mail your order form today! (Available for a limited time only.)

Understanding Calculator Math 224 pages, $\$ 3.95$

All the basic information, formulas, facts and mathematical tools you need to unleash the real power of your calculator. At home. On the job. In school or college. It's packed with practical, everyday applications for fast, efficient calculator problem-solving.
Basic Electricity and DC Circuits 1026 pages, $\$ 19.95$
The knowledge you will gain from this book will enable you to predict and control the behavior of the most basic and complex DC circuits. Written in clear precise language, with numerous supportive illustrations and examples. Easy, rewarding and fun.

Understanding Solid-State Electronics

New third edition, 170 pages, $\$ 3.95$ Explains semiconductor behavior and applications, diodes and transistors, uses and trends in integrated circuits. All in a simple, programmed-learning approach that will quickly familiarize you with this broad subject.
Understanding Digital Electronics 265 pages, $\$ 3.95$
An ordinary calculator is the springboard into the fascinating world of today's electronic devices, circuits and systems. Now you can see and easily understand how digital electronics has changed our everyday lives-and how it will affect your future.

Performance, beauty, quality - three attributes that have always been the hallmarks of SAE products. SAE systems in the past have had them, this system's predecessor had them, and the new In The Black system has them and much more.

The 2900 Parametric Preamplifier offers our new flexible parametric tone control system, full dubbing and tape EQ. New phono and line circuitry results in unparalled clarity and definition with distortion of less than 0.01% THD \& IM.

The 2200 Stereo Power Amplifier with fully complementary circuitry delivers 100 Watts RMS per channel from $20-20 \mathrm{~K}$ at less than 0.05% Total Harmonic Distortion, from 250 mW to full rated power.
The 8000 Digital FM Tuner has linear phase filters, phaselock multiplex, and of course, our famous digital readout tuning indicator system.

Combine these products together and you have a system that ensures superior performance in all areas, excellent control flexibility, and the sonic quality that is typically SAE.

[^0] P.O. Box 60271 Terminal Annex, Los Angeles, CA 90060

$8.9 \times 2.86 \mathrm{~cm}$), and is designed for surface mounting. \$53.00. Address: Mountain West Alarm Supply Co., Box 10780, Phoenix, AZ 85064.

Digital S Meter

Digi-Comm's "Signal Hunter" is an S meter with three-digit numeric display of received signal strength to one-tenth of an S unit, with signals over S9 displayed directly in dB. The Signal Hunter also displays rel-

ative r-f power output when the attached transceiver is operated in the transmit mode and features a calibration control for matching it accurately to a CB transceiver. It requires a $12-\mathrm{V}$ dc power source. Dimensions are $1.8^{\prime \prime} \mathrm{H} \times 4.3^{\prime \prime} \mathrm{W} \times 1.5^{\prime \prime} \mathrm{D}(4.6 \times 10.8$ $\times 3.8 \mathrm{~cm}$). A magnetic mount is included. Address: Digi-Comm, Ste. 110, 720 SteCatherine St. West, Montreal, Canada H3B 189.

Nortronics Cassette Bulk Eraser

The QM-230 is a self-powered, hand-held bulk eraser for standard compact cassettes. Erasure is accomplished by ceram-

ic magnets within the bulk eraser, through whose field the cassette passes. Thus, no battery or ac power sources are required. The eraser is built into a contoured, Cycolac case with a wood-grain finish. $\$ 24.00$. clrcle no 96 on free information card

Anti-Static Desoldering Tool

Edsyn's Silverstat "Soldapult" desoldering tool incorporates a conductive plastic tip and barrel housing which, when used in a static-controlled work station, allow static charges to drain off to ground through the user's hand. This feature is said to protect

sensitive FET and MOSFET semiconducfor devices from damage due to static electricity discharge. The device has a fully enclosed loading shaft, high-low vacuum adjustment, and bayonet-type disassembly. CIRCLE NO 97 on free information caro

Isophon Miniature Speaker System

Walter Odemer Co.'s Isophon DIA-2000 miniature speaker system measures $5^{\prime \prime} \times$ $6^{\prime \prime} \times 7.5^{\prime \prime}(12.7 \times 15.2 \times 19.1 \mathrm{~cm})$. The twoway speaker has a nominal impedance of 4 ohms. Peak power rating is 70 W while

power handling capability is 50 W . Crossover frequency is 2000 Hz at $12 \mathrm{~dB} /$ octave. The DIA-2000 is finished in a black metallic case with a two-section, snap-in foam grille.

```
CIRCLE NO 98 ON FREE INFORMATION CARO
```


Superex Base Station Microphone

The new Superex $\mathrm{M}-611$ omnidirectional base station microphone features an electret element, FET preamplifier, and transistor output amplifier stage. Output gain is controlled with a slide potentiometer, and the extra large PTT paddle is lockable.

- Personal Computer Systems now including Floppy Disk Storage
- Power Supplies - Oscilloscapes - Frequency Counters VTVM's and VOM's
- Ham Radio Gear - Digital Programmable Color TV - Hi-Fi Components
- Electronic Clocks and Weather Instruments - Self-instruction Electronics Programs
- Auto, Fishing, Marine and Aircraft Accessories - nearly 400 kits in all!

Every Heathkit product comes with a fullyillustrated, step-by-step assembly manual that tells you everything you need to know to make kitbuilding fun and easy. Thousands of people have discovered the satis'action-and value - of handcrafting electronic equipment. You can build it better... let us show you how.

Send for your FREE Catalog today!

OR pick it up at the Heathkit Electronic Centen (Units of OR pick it up Products Schlumberger products Corporation) nearest ynu, where Heathkit products ares some products may be slightly higher. See the white pages of your phone book

Heath Company, Dept. 010-440, Benton Harbor, Michigan 49022

Power for the M-611 is provided by a selfcontained " C " cell. The interchangeable microphone stem allows use of lapel microphone and acoustic tube microphone headset plug-in modules. Frequency response of the new Superex microphone is claimed to be $250-8000 \mathrm{~Hz}$; sensitivity is rated at -45 dB . Comes with a $6^{\prime}(1.8 \mathrm{~m})$ unterminated six-conductor cable. $\$ 44.95$. circle no. 99 on free information card

Heath Metal Locator

A new metal locator kit, the GD-1190

AUTO BURGLAR

 ALARM KIT

PLEXIGLAS CABINETS

VARIABLE REGULATED Fairchild Super Dígit 1 AMP
POWER SUPPLY KIT
VARIARLE FROMAIO IaV
SRORT CIRCUIT PRA
723 IC REGULATOR

- zN 3055 PASS TRANSISTOA - current limiting at 1 amp KIT is COMPLETE INCLUOING DRILLED á SOLDER PLATED Fiberglass pc board and all parts thess transFORMER) KITAPS.01 58.95 TRANSFORMER 24V Cr will provide leam

Digital Clock Kits or Clock-Calendar or Clock-Calend
Kits to operate from 12 VDC

Complete Kit \$485 Wir \& Cal $\$ 9.95$
Power Rea: $5-15 \mathrm{~V}$ (2.5MA. TYP.) Easy 3 wire hookup Accuracy: $\pm 2 \mathrm{PPM}$ \#TB-1 (Aojustable)
\#ALR-1WT WIRED \& \$19.95 TESTED
(2.5MA. TYP.)
Easy 3 wlre hookup
Accuracy: $\pm 2 P P M$
\#TB-1 (Adjustable)
Wir \& Cal $\$ 9.95$

60 HZ .

Great for Clocks or any LED
Digital project. Clear-Red Chassis serves as Bezelto increase contrast of digital
CABINET I displays.
3'H1,6\%'W,5\%'D Black, White or CABINET II Clear Cover

REQ ORGREYPLEXIGLASFOR DIGITAL BEZELS

\section*{$3^{\prime \prime} \times 6^{\prime \prime} \times 1 / 8^{\prime} \quad 95^{\circ}$ ea. $4 / 3$
 MOBLLE LEE ELOLEK
 WITH MULTIPLEX PC BOARDSES

OPTOELECTRONICS, INC.

5821 N.E. 14 TH AVE.
FORT LAUDERDALE, FLA. 33334 PHONE (305) 771-2050/771-2051 ORDERS TO USA \& CANADA ADD 5% FOR SHIPPING, HANDLING \& INSURANCE. ALL OTHERS ADD 10%,
ADDITIONAL S1.OO CHARGE FOR ORDERS UNDER
 S15.00-COD FEE $\$ 1.00$. FLA. RES, ADD 4% TAX

BANKAMERICARD bankmeme man

"Cointracker," has been introduced by Heath Company. It features adjustable discrimination, pushbutton tuning, waterproof search coil, and the length of its collapsible shaft is adjustable. Metal detection is signaled to the user via a built-in meter and through an adjustable-volume headphone output. A battery recharging jack is also provided. Weight is $3.5 \mathrm{lb}(1.6 \mathrm{~kg})$ $\$ 149.95$
circle no 90 on free information card

120-Minute Portable Microcassette

The Olympus Pearlcorder SD2 is a twospeed ($15 / 16$ and $15 / 32 \mathrm{ips}$), capstan drive, modular, pocket-size cassette system providing $120-$ minute recording/ playback capability with a Microcassette Side-mounted controls include record, stop, pause, and four-way cue, review, rewind, and fast-forward. Features include automatic off, cassette eject, built-in electronic condenser microphone, and LED

battery-strength indicator. It comes with a Voice Actuator Module allowing VOX control of recording with three sensitivity positions. Optional plug-in modules offer reception of AM and FM broadcasts, as well as direct air-to-tape recording capability. Accessories include tie-clip mike, external speaker with built-in amp, and various adapters. Weight is only 12 oz . $\$ 275.95$. clacle no. 100 on frfe information card

Regency introduces the first low-price, no-crystal scanner

Our new Touch K100 will give you 10 channels to cover 15,757 frequencies: all without crystals. It's the first scanner to offer synthesized versatility at a low, low price.

Regency has really done it this time. A genuine touch entry crystalless scanner at an affordable price. Now that's what we call exciting.
Even more than exciting, it's almost a challenge. Because from now on, there's really no reason for you not to enjoy the ease, convenience and remarkable capability of crystalless scanning.

One word of caution. Don't get the idea that our low price unit is short on features.
Not on your life. Like we said, it has 10 channels to cover 15,757 frequencies on 5 bands. And it can search for active calls through a whole band at a time. We've even included extras like programmable scan delay and direct entry from search to scan.
In fact, this radio has some distinct advantages over other units. For instance, the digital display lights up whenever anything happens. That even includes telling you when a programming error is made.

No cause for embarrassment though, because the programming on the Touch K100 is a whole lot easier to do. Which makes the radio much more fun to use.
Now, the way we see it, we've left you with precious few excuses not to move up to crystalless scanning. So stop in to see your Regency retailer. And find out just how much fun you can have saving money on a lot of crystals . . . and one radio . . . The Touch K100.

SPECIFICATIONS

ELF II features an RCA COSMAC COS/MOS 8-bit microprocessor addressable to 64 k bytes with DMA. interrupt, It registers. ALU. 256 byte RAM, full hex keyboard, two digit hex output di splay. 5 slot plug- in expansion bus (less connectors), stable crystal clock for lining purposes and a double-sided.
plated through PC board plus RCA 1861 video IC to display any segment of memory on a video monitor or display any
TV screen

EXPANSION OPTIONS

- ELLF II GIANT BOARID" with cassselte $1 / 0$. RS 232 -C TTY 1/O. 8-bit P I/O. decoders for 14 separate $1 / 0$ instructions and a system
monitor/editor Tums ELF it monitor/editor Tums ELF II inio the heart of a full-size system with massive computing power! $\$ 39.95 \mathrm{Kit}$.
- Ik Static RAM. Addressable to any $4 k$ page to 64 k . Uses low power 2102 's Chip select circuat allows original 256 bytes to be used. Fulty buffered Onboard 5 volt regulator. $\$ 8995 \mathrm{kit}$
- Prototype (Kluge) Board arcepts up to 36 I.C. s including 40.24.22, 18.16. 14 pin Space avaitable for onboard regulator. \$17.00.
Cold plated 8 -pin connector. $\$ 5.70$
- ELF II Full ASCII Keyboard. Upper and lower casce $\$ 64.95$ kit.
- 5 amp Expansion Power Supply. Powers the entire ELF II (No! required untess adding 4h RAM moards. $1 \$ 34.95 \mathrm{kin}$.
All of the above PC boards plug directh men I.F IIs expanstou bus

ELF |I TINY BASIC

Communcale with ELF II in BASIC! ELF II Tiny BASIC is compatible with either ASCII keyboard and TV screen or standard teletype/video terminal utilizing RS $232 . \mathrm{C}$ or $20 \mathrm{ml\mid}$ TTY interface. Commands include SAVE and LOAD for storing programs on standard cassettes, a plot command to display graphic information and special commands arithmetic, $\pm, x, \div,(1.26$ variables A-Z. Other commands include LET. IF/THEN. INPUT. PRINT. GO TO. GO SUB. RETURN, END, REM, CLEAR, LIST, RUN. PLOT, PEEK, POKE. Comes with maintenance documentation and excellent user's manual that allows even beginners to use ELF II for sophisticated apptications ($4 \mathbf{k}$ memory required.) $\$ 14.95$ on cassette tape
Coming Soon . . . D-A. A-D Converter - Controller Board - Cabinet - Light Pen (Lets you write or draw anylhing on a TV screen Iniagine having a "magic wand" that writes tike a crayon')

Stop reading about computers and get your hands on one. ELFII is an outstanding tramer for anjone who needs lo use a computer to maximize his or her personal eftectiveness But ELF II for anyone who needs lo use a computer to maximize his or her personal eftectiveness
isn't just a tramer Expanded, it becomes the heart of a powerlul computer system

For $\$ 99.95$ You Gel All This-
No other small personal computer offers video output and ELF II's expansion capabilites lor anywhere near $\$ 99.95$. ELF II can create graphics on your TV screen and play electronic games! It pays for itself over and over again in the fun it provides for your whole lamuly. Engineers and hobbiests can use ELF II in microprocessor-based curcuits as a counter, alarm. lock, thermostat, limer, telephone dialer, etc The possibilities are endless!

The EI.F II Explodes Into A Ciant!
Once you've mastered computer fundamentals, ELF II can give you POWER! Plug in the GIANT BDARD' and you can record and play back your programs. edat and debug programs. communicate with remote devices and make things happen in the real world. Adod Kluge Board to solve specific problems such as operating a more complex alarm system or controlling a printing press. 4k memory units let you write longer programs and solve even more sophisticated business, industrial. scientific and personal finance problems

Add FiLF II TIn! BASIC' And Kesboard!
Io make ELF II easier to use. we've developed ELF II Jiny Basic It lets you program ELF II with simple words you can type out on a keyboard such as PRINT, RUN and LOAD ELF II responds by đisplaying answers on your printer, video monitor or TV screen

Write And Run Programs The Ven First Night!
The ELF II kit includes all components and everything you need to write and run your own programs plus the new Pixie Graphics chip that lets you display any 256 byte segment of memory on a video montitor or TV screen No wonder ELF II is now being used as a traner in many high schools and universities.

Ea sy instructions get you started right away. even if you've never used a computer before The newly expanded ELf tI Manual covers assembly testing, programming. video graphics and games

ELf II can be assembled in a single evening and you'll still have time to run programs including games, video graphics. etc. before going to bed!

New Literature

ROYCE CB GUIDE

The "1978 Royce CB Buyer's Guide" covers the company's complete line of $C B$ transceivers, antennas, and accessories. A highlight of the guide is a glossary section describing over 50 CB features such as large-scale integrated circuitry, phase-locked loops, channel 9 scan and TV interference suppression. Address: Royce Electronics, 1746 Levee Rd., North Kansas City, MO 64116.

NATCAM CATALOG

A new, 64-page catalog of tools, technical supplies and test instruments is now available from National Camera. With 13 categories of items, the catalog is useful to engineers, hobbyists, photographic and electronic specialists, do-it-yourselfers, and repair technicians. Address: National Camera, 2000 W. Union Ave., Dept. QRR, Englewood, CO 80110.

GE 2-WAY RADIO FM SERVICE HANDBOOK

The "Test and Troubleshooting Handbook," for 2-way radio FM service technicians is available from General Electric for $\$ 2.50$. Applicable to mobile, base station, and personal/portable equipment, the 30 -page publication stresses systematic approaches on how to run and interpret standard tests, and compare results with characteristics in the published specifications of equipment serviced. Address: General Electric Mobile Radio Dept., Box 4197, Lynchburg. VA 24502.

ARGOS PACKAGED SOUND SYSTEMS BROCHURE

Argos Sound has released a four-page brochure on its line of packaged sound systems. Included are the Sound Pak II, a system for large groups: the Voice Director II, an outdoor cordless system; the Speech Director II, a compact lectern sound system; and the Executive, a sound system said to be as portable as a briefcase. Optional accessories are included in the brochure. Address: Argos Sound, 600 S. Sycamore St., Genoa, IL 60135.

E-Z HOOK ELECTRONIC TEST ACCESSORY CATALOG

Now available from E-Z Hook is a 92-page guide describing its line of test hooks, probes, connectors, jumpers, test lead and coaxial cable assemblies, adaptors, breadboarding and harness board components. Address: E-Z Hook, Box 450, Arcadia, CA 91006.

Fully Automatic Tonearm Operation

You need never touch the tonearm - just select record size and push stan switch. An independent motor does the rest, cueing the arm, gently lowering it onto the record, and removing it at disc's end. With repeat mode, cue/pause, anti-skale and tracking force controls.
 speed controls, \$39.95-value Realistic/Shure cartridge

The LAB-400 makes studio performance both affordable and convenient. Its massive die-cast platter rests directly atop a 16 -pole brushless DC servomotor. The platter and motor rotate at the same speed, either $331 / 3$ or 45 RPM - no idler wheels, reduction gears or belts to alter the music that's stored in your record's grooves. The result: wow and flutter is less than 0.03% WRMS and rumble is better than -63 dB (DIN B). The fully automatic tonearm has an effective length of $8^{11 / 16^{\prime \prime}}$, for flawless tracking down to $1 / 2$ gram. Handsome walnut vinyl veneer base with ultra-modern, slim design. Elliptical-stylus magnetic cartridge and detachable hinged dust cover significant "extras" that aren't extra. All for \$199.95.*

FREE! New '79 Catalog

Come in for your copy and see what's really new in electronics. Bigger than ever! 176 pages, over 100 in full color.
2000 exclusive items.

* Price may vary at individual stores and dealers.

Radio Shaek

A DIVISION OF TANDY CORPORATION • FORT WORTH, TEXAS 76102 OVER 7000 LOCATIONS IN NINE COUNTRIES

Learn digital computer

> NRI trains you on a real digital computer you actually assemble as you learn.

Learn computer design, construction, maintenance and programming techniques on your own programmable digital computer

Qualified technicians are urgently needed for careers in the exciting new field of digital and computer electronics and the best way to learn digital logic and operations is now available to you in NRI's Complete Computer Electronics Course.

This exclusive course trains you at home on your own digital computer! This is no beginner's "logic trainer", but a complete programmable digital computer that contains a memory and is fully automatic. You build it yourself and use it to define and flow-chart a program, code your program, store your program and data in the memory bank. Press the start button and the computer solves your problem and
displays the result instantly.
The NRI digital computer is one of 10 kits you receive in the NRI Complete Computer Electronics Course. You build and use your own TVOM, and experiment with NRI's exclusive Electronics Lab. You perform hundreds of experiments, building hundreds of circuits, learning organization, operation, trouble-shooting and programming.

New NRI Memory Expansion Kit

The Model 832 NRI Digital Computer now comes with a new Memory Expansion Kit. Installed and checked out in 45 minutes, it doubles the size of the computer's memory, significantly increasing the scope and depth of your knowledge of digital computers and programming. With the large-scale IC's you get the only home training in machine language programming experience essential to troubleshooting digital computers.

electronics at home.

NRI offers you five TV/Audio Servicing Courses

NRI can train you at home to service Color TV equipment and audio systems. You can choose from 5 courses, starting with a 48-lesson basic course, up to a Master Color TV/Audio Course, complete with designed-for-learning $25^{\prime \prime}$ diagonal solid state color TV and a 4speaker SQ ${ }^{1 "}$ Quadraphonic Audio System. NRI gives you both TV and Audio servicing for hundreds of dollars less than the two courses as offered by another home study school.

All courses are available with low down payment and convenient monthly payments. All courses
provide professional tools and ''Power-On'' equipment along with NRI kits engineered for
 With the Master Course, for instance, you build your own 5" wide-band triggered sweep solid state oscilloscope, digital color TV pattern generator, CMOS digital frequency counter, and NRI electronics Discov-
 ery Lab.

NRI's Complete Communications Course includes your own 400-channel VHF transceiver

NRI's Complete Communications Course will train you at home for
 one of the thousands of service and maintenance jobs opening in $C B ; A M$ and FM transmission and reception; TV broadcasting; microwave, teletype, radar, mobile, aircraft, and marine electronics. The complete program includes 48 lessons, 9 special reference texts, and 10 training kits. Included are: your own "designed-for-learning' 400channel VHF transceiver; electronics Discovery Lab ${ }^{\text {'" }}$; CMOS digital frequency counter; and more. You also get your all
important FCC Radio-telephone License, or you get your money back.

CB Specialist Course

 also available

Servicing with your own CB Transceiver, AC power supply, and multimeter. Also included are 8 reference texts and 14 coaching units to make it easy to get your Commercial Radiotelephone FCC License.

You pay less for NRI training and you get more for your money.
NRI employs no salesmen, pays no commissions. We pass the savings on to you in reduced tuitions and extras in the way of professional equipment. testing instruments, etc. You can pay more, but you can't get better training.
More than one million students have enrolled with NRI in 62 years.
Mail the insert card and discover for yourself why NRI is the recognized leader in home training. Do it today and get started on that new career. No salesman will call.

If card is missing write:

NRI SCHOOLS
McGraw-Hill Continuing
Education Center
3939 Wisconsin Avenue
Washington, D.C. 20016
to confirm or deny these reports because the equipment necessary to attempt a high-fidelity pick-up of TV audio has not been readily available.

Now Pioneer has stepped in with the TVX-9500 (Fig. 1), an attractive TV tuner that would seem to meet all the requirements for high-fidelity reception. According to Pioneer, the motivation for introducing this product was AT\&T's recent increase of the bandwidth of audio long lines and microwave links from a dismal figure of about 5000 Hz to an FM-radio-quality of $15,000 \mathrm{~Hz}$. And the motivation of AT\&T's generous bandwidth extension was the need for relay facilities that could handle the requirements of the high-speed data transmission that computers thrive on.

The Audiophile's Light Show. It's not exactly an established fact that what the music listener desperately needs is a visual level indicator. But if he does truly need one, the alternatives are constantly getting better and cheaper.

Some years ago peak-reading level indicators, often employing illuminated displays of one sort or another, began appearing on professional recording consoles. Almost at once some of the more astute recordists began hailing them as an important assist to the recording arts. The professional standby, the venerable VU meter, was as useful as ever in communications work. However, it exhibited too many weaknesses for high-dynamic-range music recording, where its leisurely attack time (0.3 second to indicate full value) could not keep up with the abrupt transients of close-miked music; recordings were thus suffering.

Simultaneously the audiophile was getting his fair share of peak-level indicators, usually in the form of one or two LED's on the front panels of tape recorders that winked at the approximate point of tape overload. Very recently we've had entire metering systems made of such LED's on a few audiophile products (not to overlook some of the

Fig. 2. Nakamichi T-100 Audio Analyzer has plasma readout.

Fig. 3. Diagram of cathode-switching scheme for the Nakamichi T-100.

conventional meters driven by peakindicating electronics, or Sony's unique light-beam galvanometer with similar electronic assistance). Such LED displays are complex to wire, however, each having its own separate leads to be contended with; and, of course, the associated circuitry must provide an individual electronic switch for each. Consequently, metering systems involving more than eight to ten LED's per channel are rare.

Now equipment manufacturersseveral of them at this time-think they have some answers: the "fluorescent" and "plasma" indication systems. These innovations have recently turned up on Pioneer, Sony and Technics cassette decks, a JVC level indicator (not quite available as this is being written), and a Nakamichi "Audio Analyzer" (Fig. 2). The last is an interesting little item also containing the facilities for making total-harmonic-distortion and speed/wow-and-flutter measurements.
The plasma indicator renders an inert gas incandescent by means of an electrical discharge through it. Construction evidently involves a gas-filled glass tube with electrodes spaced along its length. In the displays seen so far, the user beholds little vertical bars of light working their way up and down a calibrated horizontal scale, often of considerable length. The JVC indicator (Model DS-7070), for example, can show up to thirty such bars for each channel, which provides good resolution over a fairly extensive dynamic range.

The operation of the Nakamichi device, Model T-100, gives an indication of the attractive economies that can be realized with the "plasma" technique. In this manufacturer's scheme, at least, it seems that adjacent electrodes must be charged in order to achieve any incandescence. Alternately spaced electrodes can remain on all day without producing anything visible. By wiring up appropriately alternating electrodes to
three basic control busses (Fig. 3), it is possible to simplity the switching required of the associated control IC's considerably. This is because the only condition of interest is when two adjacent electrodes receive power. Alternately spaced electrodes can receive power with no consequences.

Other advantages claimed for the plasma system include virtually instantaneous response of the indicators (0.02 millisecond is specified for the JVC unit), no parallax, and a wide variety of indicator shapes possible merely by changing the shape of the electrode. Furthermore, the number of electrodes can be increased without incurring ruinous costs. Naturally, the drive circuitry can incorporate any of the features available with other metering systems. These include a choice of peak, VU, or "average" level indication, "peak hold" (by which the highest level achieved by the monitored signal is stored for later reference), and the choice of various weighting systems. For a recent evaluation of direct-to-disc recordings in which I was a participant, the JVC DS-7070 was used extensively to determine relative dynamic ranges. There were great sighs of relief from all concerned because of the ease and repeatability of the measurements.

As for the fluorescent system, the concept is similar, but in this case the tube is evacuated. Internally there are a cathode, grid, and anode, plus phosphors on the interior wall that glow when bombarded with electrons-a rather familiar concept. I've not yet seen any specific claims made for the speed of this system, but it is probably adequate to its task.

All in all, a clear potential seems to be here for the best metering system to date, and without great agonies imposed on the pocketbook. To my knowledge this innovation is not yet to be found on the consoles and tape machines used by professionals. It may be interesting to see how they react.

Julian Hirsch Audio Report

Cassette Recorder Tape Compatibility

". . . toadjust bias of a recorder

. . . athree-head

 recorderis imperative!"

As regular readers of our produet test reports know, there is a potentially serious compatibility problem between a eassette recorder and the tape used in it (the same problem exists with open-reel recorders. but is very much less critical). This is why it is so important that the recorder manufacturer specify the tapes for which his mashine has been adjusted, and whyin the absence of such information-we have to measure the record/playback frequency reponse with a considerable number of tapes to discover which are most suitable for that machine, and which. if any. should not be used with it.

A few cassette recorders, such as the Kenwood KX-1030 tested this month, have a convenient front-panel adjustment of recording bias. This is intended to match the tape's requirements more precisely than is possible with a simpletwo or three position BIas switch (although that switch is still required). A somewhat similar feature is found on the Aiwa AD-6800 recorder, and no doubt will appear on others.

We have seen a few cassette decks whose bias adjustments. though not on the front panel, were at least accessible for screwdriver adjustment from the outside of the machine. Since such an adjustment requires external test equipment, it is of little value to the average consumer. The most practical way for a user to adjust the bias of a recorder is to monitor the playback from the tape as it is being recorded-in other words, a three-head recorder is imperative! The Kenwood KX-1030 has that feature, while the Aiwa AD-6800 has a third head dedicated solely to that purpose (in normal use, it is a conventional two-head machine).
In both units. the adjustment technique: consists of recording two equal-amplitude audio tones at middle and high frequencies. The Kenwood records each tone on both channels at the same time, alternating them in bursts of about one-second duration. while the Aiwa records them continuously
and simultaneously with one tone on each chammel. The adjustment is based on a small change of bias, about a nominally correct value. having little effect on output at low and middle frequencies (400 Hz is used in both machines), but with considerable effect on playback response at high frequencies. In the Aiwa the upper frequency is $8000 \mathrm{H} \%$, and in the Kenwood it is 10.000 $H z$. When the adjustment is made on the Aiwa recorder, the playback signals are displayed on its level meters, and the bias is varied until both meters read the same. The adjustment is common to both channels. Kenwood provides separateadjustments for each channel. and the two output signals are displayed alternately on the meters so that the hias can be set for minimum pointer movement as the tones are automatically switched.

A different approach to the compatibility problem is taken by JVC. They hold that because of the effect of bias changes on the output level and distortion, this is not a desirable method of optimizing a two-head recorder falthough they concede that it has some merit with a three-head machine). The changes in output level can affect the performance of the machine's noise-reducing circuits (Dolby or ANRS), for example. JVC, maintains that the best way to match a machine to a tape is through an adjustment of the high-frequency recording equalization (E:Q) and that this is the only satisfactory method to use with a two-head machine. This may be a largely academic: considerafion. since the other machines we have seen all use a three-head configuration, if only for purposes of adjustment.

Nevertheless, there can be no doubt that both recording bias and EQ have a profound effect on the wltimate performance of any tape recorder, and most espectally a cassette deck. T'o see why this is so, we will use as an example the manufacturers' published data for two competitive ferric: oxide tapes of good quality. Both have been plotted in

Fig. 1. Tape performance compertison is ploted herefor twodifierent tapes (A and B) fo demonstrate 15 effert of bides.

Fig. 1 on the same coordinates, with the solid lines representing tape " A " and the dashed lines tape " B ". The hori\%ontal axis represents relative bias current. in dec:ibels, with the 0-dB leval corresponding to the recommended bias for the standard DIN tape that is the basis for tape specifications throughout the world. (On the vertical axis. we note the various output eonditions for the tapes.

The uppermost curves are the MOl. or maximum outpul level, which is the output cooresponding to a playback clistortion of 3% at a frequency of 315 H\%. As the curves show, when these lapes are hiased to DIN level or slightly higher. they have achieved their maximum output level at low and middle fre:puencies, with tape " A " having perhaps one or two decibels more output than lape "B". One might think that any bias above, say. +2 dB, would result in optimum performance from either tape: but look at the distortion t:urves at the bottom of the graph! Both lapes achieve a minimum distortion of $-48 \mathrm{~dB}(0.4 \%)$. though at different bias currents. Tape " B " requires about 1.5 $d B$ more bias than tape " A " for its minimum distortion conditions. When so hiased. its $315 \cdot \mathrm{~Hz}$. output is also at maximum and, perhaps. 1 dB less than the output from tape " A ".

Based on this partial information. we might conclude that tape " B " should be operated at a bias 1.5 dB higher than lape "A". This is probably true, but it
is not the whote story. At about the $-20-d B$ level. look at the sensitivity curves at 315 Hz for both tapes. Thex show the playback output at that frequenc: y from a $-20-d B$ recording level: it can be seen that this is nearly independent of bias, with tape " A " having about 2 dB more output than tape " B " al bias levels of 0 dB or less, and slightIy less nutput than tape " B " at high hias levels. Intersecting the $315-\mathrm{Hz}$ sensitivity curves are the downward sloping $12.5-\mathrm{kHz}$ sensitivity curves. These show clearly the large effect of bias on the 12.5 kHz playback level from a $-20-d B$ constant recording level. Leet us assume that the recorder has been sel up with tape "A" at a bias letel of +1 dB . With an ideal recording head. it would still be nevessary to boost the recording signal at 12.5 kHz . by about 1.5 dB to give a "flat" re-
sponse (which we witl define here as ant equal output at 315 Hz and 12.5 kHz). If the machine had been set up for tape " B " at a $+2.5-\mathrm{dB}$ bias, the recording equalization boost at 12.5 kHz . would have to be about 6 dB for the same "flat" response. Due to head losses, the actual boost would be greater in each case. but that need not concersh us here.

Now, if that machine set up for tape " A ". were to be rebiased for "flat" response with tape " B ". without changing the recording EQ, the bias would have to be reduced to about +0.5 dB . At this point, the $1.5-\mathrm{d} 13$ recording FQ would give the desired frequenty response. If, on the other hand, the machine originally adjusted for tape " B " were to be re-biased for tape " A ". the bias would now be +3 dB3 (so that the 6 dB of high-frequency recording BQ wruld give a "flat" response). As a result, the distortion would be increased by 6 dB!

Evidently. one cannot truly optimize a cassetterecorder by a bias adjustment alone. How about JVC':s method of adjusting recording EQ for flattest frequence: response at a fixed bias level? In theory. this would appear to be no better than the bias adjustment terchnique. If it actually works better, this c:muld only be because most tapes within a given performance category are designed to operate with very nearly the same bias. To the extent that this is sor, the R:Q adjustment should be fine. If it is not so. then we still have the possi-bility-menen probability-that a tape will not be operating at its lowest disfortion point even though it is delivering its "flat-test" frequency response.

In the case of the INC method. which has been used on its KD-75 and other cassette derks. one must depend sololy on hearing judgment to establish the correct recording equalization. If built-

Fig. 2. Possible response rariations betwern two tapes. Close matchisobtained in (A), but variation carebeasgreatas shown in (B).

If you're interested in learning how to fix air conditioners, service cars or install heating systems - talk to some other school. But if you're serious about electronics, come to CIE-The Electronies Specialists.

Special Projects Director Cleveland Institute of Electronies

My father always told me that there were certain advantages to putting all your eggs in one basket. "John," he said, "learn to do one important thing better than anyone else, and you'll always be in demand."

I believe he was right. Today is the age of specialization. And I think that's a very good thing.

Consider doctors. You wouldn't expect your family doctor to perform open heart surgery or your dentist to set a broken bone, either. Would you?

For these things, you'd want a specialist. And you'd trust him. Because you'd know if he weren't any good, he'd be out of business.

Why trust your education and carcer future to anything less tham a specialist?

You shouldn't. And you certa inly don't have to.

FACT: CIE is the largest independent home study school in the world that specializes exclus ively in electronics.

We have to be good at it because we put all our eggs in one basket: electronics. If we hadn't done a good job, we'd have closed our doors long ago.

Specialists aren't for

 everyone.I'll tell it to you straight. If you think electronics would make a nice hobby, check with other schools.

But if you think you have the cool - and want the training it takes - to make sure that a sound blackout during a prime time TV show will be corrected in seconds - then answer this ad. You'll probably find CIE has a course that's just right for you!

AtCIE, we combine

 theory and practice. You learin the best of both.Learning electronics is a lot more than memorizing a laundry list of facts about circuits and transistors. Electronics is interesting because it's based on some fairly recent scientific discoveries. It's built on ideas. So, look for a program that starts with ideas-and builds on them.

That's what happens with CIE's Auto-Programmed ${ }^{\circledR}$ Lessons. Each lesson uses world-famous "programmed learning" methods to teach you important principles. You explore them, master them completely... before you start to apply them!

But beyond theory, some of our courses come fully equipped with the electronics gear to actually let you perform hundreds of checking, testing and analyzing projects.

In fact, depending on the course you take, you'll do most of the basic things professionals do every day things like servicing a beauty of a Zenith color TV set... or studying a variety of screen display patterns with the help of a color bar generator.

Plus there's a professional quality oscilloscope you build and use to "see" and "read" the characteristic waveform patterns of electronic equipment.

You work with experienced specialists.

When you send us a completed lesson, you can be sure it will be reviewed and graded by a trained electronics instructor, backed by a team of technical specialists. If you need specialized help, you get it fast . . . in writing from the faculty specialists best qualified to handle your question.

People who have known us a long time, think of us as the "PCC License School."

We don't mind. We have a fine record of preparing people to take. and pass... the governmentadministered FCC License exams. In fact, in continuing surveys nearly 4 out of 5 of our graduates who take
the exams get their Licenses. You may already know that an FCC
License is needed for some careers in electronics - and it can be a valuable credential anytime.

Find out more: Mail this card for your FREE CATALOGG today:

If the card is gone, cut out and mail the coupon.

I'll send you a copy of CIE's FREE school catalog, along with a complete package of independent home study information.

For your convenience, I'll try to arrange for a CIE representative to contact you to answer any questions you may have.

Remember, if you are serious about learning electronics.. or building upon your present skills, your best bet is to go with the electronics specialists-CIE. Mail the card or coupon today or write CIE (and mention the name and date of this magazine), 1776 East 17th Street, Cleveland, Ohio 44114.

Patterns shown on TV and oscilloscope screens are simulated.

\qquad
Address Apt.
City
State___________
Agc
____ IMone (area code)
Check box for (i.I. Bill information: [] Veteran [] Active Duty
Mail today:
in oscillators and metering were provided, with a third head for playback, this adjustment could be made as it is in the Aiwa and Kenwood machines. However, the JVC: deck has two heads. We can say, based on our experience with all three machines, that although the metering systems of the Kenwood and Aiwa machines work very well, it is at least as easy to make the adjustment by listening to the playback of a recording of interstation FM tuner hiss, in an A-13 comparison against the incoming signal, as the bias (or EQ) is varied. In the case of the JVC recorder. this requires that the noise be recorded with several settings of the EQ switch. and comparison made on playback.

There is still another pitfall in any of these tape optimization methods. The Kenwood and Aiwa approach is based on obtaining equal response at only
two frequencies, one low and one high. This does not assure that the response will be the same at all intermediate frequencies, or above the high frequency. Figure 2A shows a response curve from a machine which has a slightly drooping high-end response. Also, its $8000-\mathrm{H} \%$ and $400-\mathrm{Hz}$ levels have been matched. The dashed line shows another condition, with exactly the same matching at 400 and 8000 Hz , but with a slight peak at higher frequencies. (Such a peak might result from using a "hotter" tape.) The two would cortainly sound very different, of course. The higher the frequenc:y used for the upper end of the adjustment, the less likely this is to happen, but it is equally possible to have the conditions shown in Fig. 2B. No matler how it is done, the fact that two tapes give the same output at iwo frequencies
does not mean that they will sound alike. This is an advantage of making the adjustment by ear, for the best subjective frequency response.

Probably the best approach to solving the compatibility problem (which we have not yet seen on the market) would be to use both bias and EQ adjustments, with several high-frequency signals available, and a third head-plus-meter read-out system. The bias could then be set for a maximum (or other specified) value of output at 400 $H \%$, and the EQ could be trimmed for equal output at two or three high-test frequencies. This, after all, is what the factory technician does when he sets up the machine in the first place. If the user could do the same, without recourse to external equipment, he could really enjoy optimum performance from his recorder. with any tape.

Audio Test Reports/ HIRSCH/HOUCK LABORATORIES

Kenwood Model KX-1030 Cassette Deck

Abstract

Deck features a vernier bias adjustment, two test oscillators, and bias and equilization switches which allow a precise match to any tape formula.

Kenwood's Model KX-1030 is a front loading cassette deck, with a single electronically controlled dc motor for its capstan and hub drives. It is a three-head machine, on which the program can be monitored directly from the tape as it is being recorded. A vernier bias adjustment on the front panel operates with two built-in test oscillators to allow the recording bias to be optimized for tape formulation.

A genuine off-the-tape monitoring system requires separate Dolby circuits for recording and playback functions so that both can be used simultaneously; the KX-1030 has this "Double Dolby" feature. It also has a "memory rewind"
that stops the tape automatically in rewind when the index counter returns to a previously set "000" reading, and a full mechanical disengagement and "autostop" at the end of the tape, in any operating mode. Separate front-panel switching is provided for three basic tape formulations: chrome, ferric, and ferrichrome. The bias and equalization are separately switchable (in addition to the vernier bias adjustment).

The Kenwood deck's control panel has a pale gold finish, with matching metal knobs, to match the appearance of other Kenwood components. The recorder's dimensions are about 17"W x $61 / 2^{\prime \prime} \mathrm{H} \times 123 / /^{\prime \mathrm{D}}(43 \times 16.7 \times 32.5 \mathrm{~cm})$, and it weighs $16.5 \mathrm{lb}(7.5 \mathrm{~kg})$. The suggested retail price is $\$ 400$.

General Description. The tape transport is located at the left side of the recorder, and the bottom-hinged cassette door has guide slots into which the cassette is loaded. The door can be removed easily for access to the heads. Most of the cassette is visible through a large window in the door. It has the usual array of mechanical "piano key" operating levers, located in a row below the cassette compartment. Unlike many cassette decks, the KX-1030 cassette door is not opened by pressing the stop key or any other control. Instead, pressing in the upper portion of the cassette door and releasing it allows the door to spring open (the word PUSH appears at its upper left corner). This is similar to the "touch latch" found on some cabinet
doors, which use no external hardware. In the KX-1030, the door cannot be opened unless the tape is at a stop

A lever switch to the left of the door turns on the POWER to the recorder; below it is a stereo PhONE jack. Two large meters occupy the center of the panel with a red PEAK LED between them. Above the meters is the index counter and the MEMORY REWIND button, as well as a red RECORD light and a green DOLBY light. The recording level controls are below the meters. They consist of two concentric pairs of large knobs, one for the microphone inputs and the other for the line inputs. Slip-clutch couplings in each pair allow separate adjustment of recording levels in the two channels. To their right are lever switches for DOLBY and tape MONITOR functions (the latter connects the LINE outputs, in the rear of the recorder, to the SOURCE input signal or to the output of the TAPE playback amplifier). There is also a concentric pair of playback output level controls and a pair of MIC jacks for medium impedance dynamic microphones.

At the upper right of the panel are the two TAPE SELECTOR switches, providing separate bIAS and EQUALIZATION settings marked CHROME, NORMAL, and REserve (for ferrichrome tape). To the left of the BIAs switch are two small concentric knobs that vary recording bias separately for the two channels around the nominal values selected by the BIAS switch. Below them is a pushbutton switch marked osc.

To optimize recording bias for a specific tape, the machine is placed in a recording condition with the output set to maximum. The OSC button is engaged, and the MONITOR switch is set to TAPE. The recorder's internal oscillators record tones of 400 Hz and $10,000 \mathrm{~Hz}$, alternately, in bursts of about one-second duration. The red REC light glows when the $10,000-\mathrm{Hz}$ tone is on, and is off when the $400-\mathrm{Hz}$ tone is being recorded. The meters display, alternately, the playback output from these signals. If bias is set correctly, they will play back at the same amplitude, and the meter readings will not change as the tones are switched. The quality of the tape (presence of dropouts, etc) may cause the higher frequency reading to fluctuate somewhat, but its average level should be the same as the $400-\mathrm{Hz}$ tone. If not, the bIAS vernier knobs are adjusted separately for each channel until the meter reading does not change as the tones are switched. If the $10,000-\mathrm{Hz}$ reading is higher than the $400-\mathrm{Hz}$ reading, the bias

Frequency response at two recording levels using three tape formulations.
control is turned clockwise to increase the bias and reduce the high-frequency response; if it is lower, the knob is turned counter-clockwise to reduce the bias.
The "three head" configuration used in the Kenwood KX-1030 has a com-
bination record/playback head in which two electrically distinct heads, with separate and parallel gaps, are housed in a single case small enough to fit through the access hole in the edge of the cassette housing.

Product Focus

Two interesting features of the Kenwood KX-1030 contribute greatly to its usefulness as well as its performance, although neither is really exclusive to this machine. A combination record/playback head, with separate gaps in a common housing, has been used in a number of cassette recorders, It is a reasonable and economical alternative to a true threehead construction. The latfer requires a miniaturized playback head to fit through an opening in the cassette that was never meant to receive a head, and is further complicated by the need to adjust the record head azimuth to match that of the playback head for every cassette used. This process is simplified by built-in oscil lators and indicators in the few recorders using this system, but it is undeniably a more expensive route.

In the combination head, two separate heads are packaged in the same shielding enclosure. Their gaps are spaced as closely as possible to avoid the alignment errors due to tape skewing (a problem with the true three-head machines). although the need to provide a reasonable degree of signal isolation between them sets a limit to this. More important, the two head gaps must be precisely parallel, since any deviation from parallelism will severely limit the high-frequency response of the machine. The combination head, however, does share the most basic and important advantage of a threehead machine (other than its monitoring function), which is the ability to optimize the two gap widths for recording and playback functions. In theory, at least, this should give any properly designed
three-head recorder a wider frequency response, more headroom, and generally superior performance to a recorder with a single gap combination record and playback head

The second feature of the $K X-1030$ is its bias adjustment system that makes it passible to match the recorder to any tape, using its built-in test and adjustment facilities. Although both bias and equalization should be adjusted for truly optimum performance, this is difficult and undesirable for a product aimed at a broad and mostly nontechnical market. Fortunately, one can achieve a first approximation of correct operation by a bias adjustment alone, given a suitable setting of the recording equalization response. Kenwood has taken the logical step of supplying two different recording signals, at middle and high frequencies, from built-in test oscillators. On the assumption that the recording equalization is correct, it is reasonable to expect that biasing a tape for equal response at both frequencies will tend to give it the flattest overall frequency response. To aid in doing that, what could be more logical than to use the recorder's own meters (since it can play back while recording) to confirm that this equality exists? Athough the merits and limitations of this approach have been argued extensively, the results speak eloquently for themselves in the $K X-1030$. Unlike some of the purists among us, we would agree with Kenwood (for surely they are well aware of the limitations of their technique) that a partial cure for a problem is better than none at all.

Performance Specifications

Specification	Rating	Measured
Tape Speed Error	NA	+1.0\%
Fast Winding Time ($\mathrm{C}-60$)	80 s	72s
Frequency Response (+3 dB)		
Normal	$35-15,000 \mathrm{~Hz}$	$36-16,500 \mathrm{~Hz}$
CrO_{2}	$35-18,000 \mathrm{~Hz}$	$35-17,000 \mathrm{~Hz}$
FeCr	$35-17,000 \mathrm{~Hz}$	$35-16,000 \mathrm{~Hz}$
Signal-to-Noise Ratio (Mfr. figures above 5 kHz)		
Normal	55 dB (Dolby off)	61 dB (A-wtd)
	65 dB (Dolby on)	67 dB (CCIR-wtd)
CrO_{2}	57 dB (Dolby off)	61 dB (A-wtd)
	67 (Dolby on)	67 dB (CCIR-wtd)
FeCr	NA	60.5 dB (A-wtd)
		67 dB (CCIR-wtd)
Harmonic Distortion	Less than 1.3% at 0 VU	0.5\% Normal
	(Normal)	$0.7 \% \mathrm{CrO}_{2}$
	($\mathrm{NA}-\mathrm{CrO}_{2}$ and FeCr)	1.1 \% FeCr
Wow \& Flutter	0.06\% Wrms	0.07\% Wrms
		$\pm 0.10 \%$ Wtd. Peak (DIN)
Input Sensitivity (for 0 VU)	77.5 mV Line	88 mV
	0.19 mV Mic	0.19 mV
Output Level (0 VU)	775 mV	$760-840 \mathrm{mV}$ (depending on tape)

Laboratory Measurements. The specifications of the Kenwood KX-1030 name the specific tape formulations used to establish its ratings. They are TDK SD (NORMAL), TDK SA (ChROME), and Sony Ferrichrome (reserve). We used these tapes to verify the machine's ratings except that, TDK SD having been discontinued, was replaced with a somewhat similar ferric tape, Scotch Dynarange.

Because of the ease of adjusting the KX-1030 for any tape, we actually measured the record/playback frequency response with some 15 different tapes. The differences between them were minor and confirmed that the machine can be adjusted to give perfectly satisfactory results with almost any tape sold today.

The playback frequency response (NORMAL, $120-\mu \mathrm{s}$) was measured with a TDK AC-337 test tape. It was within +1 , -2 dB over the $40-\mathrm{to}-12,500-\mathrm{Hz}$ range of the tape. The $70-\mu \mathrm{s}$ response, measured with the Teac 116SP tape, was within $+1.5,-2 \mathrm{~dB}$ over the 40 to $-10,000-\mathrm{Hz}$ range of the tape. The record/playback frequency response, at a $-20-\mathrm{dB}$ recording level, was virtually identical for TDK SA and Scotch Dynarange tape. The recorder had a rather unusual configuration of low-frequency head contour response ripples, extending up to 400 Hz , but above that fre-
quency, the response was extremely flat, varying by less than 1 dB overall up to $15,000 \mathrm{~Hz}$ and beyond. At a $0-\mathrm{dB}$ recording level, the usual high-frequency tape saturation effect caused the response to drop off, so that it intersected the $-20-\mathrm{dB}$ curve at about $12,500 \mathrm{~Hz}$.

To our surprise, the Sony Ferrichrome tape's response had a slight downward slope with increasing frequency above 4000 Hz , and its $0-\mathrm{dB}$ response curve showed noticeably greater saturation than the other tapes. Its overall numerical tolerances over the audio range were much the same as the others.

The Dolby-circuit tracking was outstanding. It exhibited less than 1 dB of difference between the frequency response curves made with and without the Dolby system at levels from -20 to -40 dB , up to 14,000 or $15,000 \mathrm{~Hz}$. Crosstalk between channels, measured with a TDK AC-352 tape, was -43 dB at 1000 Hz .

For a $0-\mathrm{dB}$ recording input, the required input was 88 mV (LINE) and 0.19 mV (MIC). The microphone input overloaded at a rather low 15 mV . The resulting maximum playback output was in the range of 0.76 to 0.84 volts, depending on the tape used. Distortion (third harmonic) was from 0.5% to 1.1%. (Dynarange gave the lowest distortion and Ferrichrome the highest.) The head-
room above 0 dB for a 3% playback distortion level was between 5 and 7 dB . Noise levels are given in the table of performance data, and were consistent with the performance of today's better cassette decks. The noise increased by 4.5 dB through the microphone input, at maximum gain.

The meters read about 85% of their steady-state readings when driven with 0.3 -second tone bursts (this is somewhat slower than the VU standard, which requires a 99 to 100% reading under these conditions). The PEAK light began to glow at +5 dB , so that it is an effective indicator of the maximum safe recording level with any tape. Headphone volume was quite good, even with 200ohm phones, which cannot be driven to useful listening levels by the headphone outputs of many recorders.

The tape transport operated about 1\% fast (a normal tolerance for a cassette deck). The flutter was 0.07% in a weighted rms measurement, and $\pm 0.1 \%$ in a DIN (weighted peak) measurement. The transport moved a C-60 cassette from end to end in 72 seconds.

User Comment. The Kenwood KX-1030 offers a combination of features and performance not commonly encountered in its price class. Although the three-head configuration, per se, makes little difference in the actual performance of the machine as compared to one with first-class combination record/playback heads, it does make it possible to optimize the recorder for any tape (within the limits of a bias-only adjustment). Lacking this feature, the user of a cassette recorder must use the specific tape for which his machine was set at the factory if he is to obtain the rated performance. This information is simply not available from many manufacturers, and is always subject to change without notice (or to obsolescence as new, improved tapes are developed).

When we recorded interstation FM tuner hiss at a level of about -15 dB and compared the playback to the input we could usually hear a trace of dulling at the highest frequencies. The effect was slight, to be sure, and could only be detected by a critical comparison to the original signal. We then trimmed the BIAS controls to minimize the audible difference, and found that an improvement was usually possible. In fact, this proved to be a more sensitive technique for setting the bias than using the recorder's own meters and test oscillators because we did not have to interpret the meter's fluctuating readings. That fluctuation, in
itself, however, is a clue to one of the major advantages of the Kenwood bias adjustment system. It is an ideal way to evaluate the homogeneity of a tape. All else being equal (or even somewhat unequal in respect to frequency response, etc), a tape with a steadier $10,000-\mathrm{Hz}$ output in this adjustment has fewer dropouts and is likely to make a better-sounding recording than a "flatter" tape with a more irregular output.

Of course, most people who use the $K X-1030$ will select a suitable tape and
set up the machine for it in the beginning. There will be no need for regular use of the bias adjustment feature, and the recorder can be used just like any ordinary machine (with the "plus" that one will always be able to hear the recording as it is made). In its overall listening quality, the $K X-1030$ is at least the equal of any other machine we've tested in its price class, as well as some at considerably higher prices. Its modest price for the performance it offers is made possible by the omission of a few refine-
ments, we'd judge. For example, the transport control keys are stiff, requiring appreciable operating pressure. The single-motor transport, though adequate to move the tape smoothly at $17 / 8 \mathrm{ips}$, cannot match the fast speeds provided by some 2- or 3 -motor transports. But these shortcomings are more than made up for, we believe, by the useful and novel features of this machine. We especially like the ability to adjust bias optimally according to the tape used.
circle no 101 on free information caro

Realistic Optımus-10 Speaker System

Two-way vented bookshelf systememploys a passive radiatorformore efficientbass reproduction.

Radio Shack'sRealistic Optimus-10 "bookshelf" size speaker system features a twoway design in an efficient vented enclosure. Its $8^{\prime \prime}(20.3-\mathrm{cm})$ woofer operates with a $10^{\prime \prime}(25.4-\mathrm{cm})$ passive radiator to deliver an extended low-bass response claimed to be comparable to the response obtainable from an acousticsuspension design but at significantly higher efficiency.

The Optimus-10 measures $25^{\prime \prime} \times$ $153 . \mathrm{h}^{\prime \prime} \times 105 / \mathrm{g}^{\prime \prime} \mathrm{D}(63.5 \times 39.1 \times 27 \mathrm{~cm})$ and weighs $45 \mathrm{lb}(20.5 \mathrm{~kg})$. The system is priced at \$139.95.

General Description. The effective crossover between active and passive cones in the system occurs at 60 Hz .

Therefore, the passive radiator operates principally at frequencies between 45 and 60 Hz . A small cone tweeter takes over at frequencies beyond 2500 Hz . No physical crossover network is used, since the natural rolloff characteristics of the drivers provide the necessary crossover action.

The system's nominal impedance is rated at 8 ohms and its power-handling capacity is rated at 75 watts. Although the tweeter's natural low-frequency rolloff supplies the crossover action, the driver is protected against camage from high-magnitude low-frequency signals by a series capacitor. A variable series resistor serves as a BRILLIANCE control that can be used to adjust the output of the tweeter over a $\pm 3-\mathrm{dB}$ range. The cone tweeter is driven by a $1^{\prime \prime}$ ($25.4-\mathrm{mm}$) voice coil formed of aluminum wire.

The $8^{\prime \prime}$ woofer has a four-layer aluminum voice coil whose inductance helps to roll off its response beyond 2500 Hz . The woofer's vent is a $10^{\prime \prime}$ passive cone (instead of the usual hole or ducted port in the speaker board) whose mass and compliance have been selected to cross over its response above 60 Hz to the driven cone. The passive cone resembles a conventional $10^{\prime \prime}$ loudspeaker without a magnet or voice coil. As used in this speaker system, it is equivalent to a $9^{\prime \prime}(22.9-\mathrm{cm})$ diameter port at the end of a $41 / 2^{\prime}(1.37-m)$ duct. Since such a large duct system would obviously be impractical in a compact speaker system, the passive radiator is a much more practical means of obtaining the same acoustical effect.

A major advantage of this type of low-frequency radiator design is the high

Performance Specifications

efficiency it makes possible, as compared to conventional sealed acousticsuspension schemes. Although the driver is rated to handle up to 75 watts of program material, the manufacturer suggests that a 15 - or 25 -watt amplifier will adequately drive the system to produce good listening volume in a typical room, and amplifiers rated up to 100 watts can be used safely.

The brilliance control, together with a graphic display of its effect on the sys-
tem's response, is located behind the grille, where it is concealed from sight in normal use. The center of its range is indicated as the "flat" setting. The enclosure's black grille cloth is on a wooden frame and is held in place by plastic snap fasteners.

Connectors are located on the rear of the enclosure. They consist of a pair of screw terminals and a phono jack for easy connection to amplifiers and receivers fitted with phono-jack speaker

Tone-burstresponse(from left toright) 60,500 , and 5000 Hz .

Composite frequency response for two brilliance control settings.
outputs. The inside of the enclosure has a single sheet of $1 / 2^{\prime \prime}$-thick padding on its rear wall, in contrast to the typically heavier use of sound absorbent material found in most speakers.

Laboratory Measurements. With the BRILLIANCE control set to its center position, frequency response of the speaker system measured in the reverberant field of the room was smooth and generally flat, with a gradual slope beyond 7000 or 8000 Hz . The output varied by about $\pm 2 \mathrm{~dB}$ from 150 to 9000 Hz , and was down another 5 dB or so at $15,000 \mathrm{~Hz}$. The high-frequency response, measured both on-axis with the speaker and about 30° off-axis, was virtually the same in both cases, confirming the excellent dispersion characteristic of the tweeter.
The woofer's response was measured separately for the driven and passive cones, using close microphone spacing. After correcting for relative areas of both drivers, we combined their curves to form a single bass-response curve, which is equivalent to an anechoic measurement. We then joined this curve with the curve we obtained from our middle/ high-frequency response measurements. The resulting curve revealed a broad, smooth frequency response void of significant peaks and dips. The curve varied less than $\pm 3 \mathrm{~dB}$ from 30 to 8000 Hz before dropping off to -7 dB at $15,000 \mathrm{~Hz}$.
The brilliance control's maximum setting boosted output in the upper registers by as much as 3 dB and cut it by about 2 dB . Although the manual that came with the speaker system states that the brilliance control's effect is principally in the $10,000-\mathrm{to}-20,000-\mathrm{Hz}$ range, it actually controlled the output levels at frequencies starting at about 2000 Hz , as would be expected from the system's crossover frequency. With the control set at maximum, the system's overall response was $\pm 3 \mathrm{~dB}$ from 30 to $13,000 \mathrm{~Hz}$.

The system's impedance reached its minimum of about 8 ohms in the range between 100 and 300 Hz . It rose to 40 to 45 ohms at the two bass resonances of 26 and 66 Hz . Bass distortion, measured at a 1 -watt nominal input level, was less than 1% from 100 down to 40 Hz . It rose to 5% at 34 Hz and to 10% at 31 Hz . With a 10 -watt input, the distortion increased markedly, which is not unnatural, measuring 2% to 3.5% down to 40 Hz and 10% at 35 Hz .

The tone-burst response was good at POPULAR ELECTRONICS
all frequencies, and system efficiency was very high. We measured a $93-\mathrm{dB}$ SPL at a distance of 1 meter from the grille with the speaker system driven by one octave of random noise centered at 1000 Hz . This is about 3 dB better than the system's rated sensitivity. The difference is explainable by the fact that our measurement was made in a live room, while the rated sensitivity is based on the system's anechoic response.

User Comment. The speaker system sounded just as its frequency response curve suggests. Its sound is smooth and clean, although it lacks some of the "siz-
zle" that some speaker systems exhibit at the highest frequencies. We generally preferred to use it with the brilliance control fully advanced in our fairly absorbent listening room. In spite of the apparent loss of extreme high-end output, the speaker system certainly did not sound deficient in highs. Its overall sound was nicely balanced, and there was little or no midbass booming or heaviness, in spite of its very good deep-bass response.

We generally drove the speaker system(s) from medium-powered 50-to-80watt receivers, but we also operated it with a 200-watt amplifier with no prob-
lems. There is little danger of blowing out the system, since it produces a very high sound level with power inputs far betow its safe limits. Hence, one's ears would balk at the sound level before the power level reached the danger point for the system.

The Optimus-10 should probably be compared to other speaker systems that carry higher "list" prices, since it is not usually discounted the way most other systems are. Accordingly, it can hold its own nicely in the $\$ 150$ to $\$ 200$ speaker system market. The Optimus-10 is, at the least, a very listenable system that's well worth auditioning.

Pioneer Model GX-5050 Car Stereo FM/AM Receiver

THE Model GX$5050 \mathrm{AM} /$ stereo FM car receiver, to which Pioneer Electronics refers as a "Supertuner," has an FM performance claimed to be the equal of a good home component tuner. In spite of its very compact size, the receiver has pushbutton tuning for five each AM and FM stations. Other features include switchable interstation FM noise muting, nonswitchable afc (automatic frequency control), automatic mono/stereo switching, and a high/low sensitivity switch for received signal conditions.

The audio amplifier section of the receiver is EIA rated at 8 watts output into 4 ohms. The tone control is concentric with the combination volume control and power on/off switch. It gives flattest response at its clockwise limit. The left-toright stereo balance control is concentric with the tuning knob.

The receiver is supplied with a frontpanel bezel that permits in-dash installation in a number of Ford and GM cars. The receiver measures $71 / 8^{\prime \prime} \mathrm{D} \times 51 / 4^{\prime \prime} \mathrm{W}$ $\times 2$ " $\mathrm{H}(18 \times 13 \times 5 \mathrm{~cm})$ and weighs 3.1 AUGUST 1978
$\mathrm{lb}(1.4 \mathrm{~kg})$. Its nationally advertised value is $\$ 149.95$.

General Description. As might be expected of such a compact receiver. the Model GX-5050 takes advantage of the space-saving qualities of IC's. The discrete FM front end has a FET r-f amplifier and bipolar oscillator and mixer. All AM and FM tuning is accomplished by varying inductances, where ferrite cores slide into the coil forms. There are no variable capacitors in the tuning system. The FM afc is applied ihrough a Varactor diode.

The balance of the basic FM tuner and audio amplifier functions are performed by IC's. One IC is used for i-f gain, another for limiting and quadrature detection, two more for multiplex demodulation, and a final two for separate audio channel amplification.

Separate transistors are used for interstation noise muting and voltage regulation. (Although the receiver operates from a nominal 13.8 -volt de supply, its allowable range is 11 to 16 volts, and all its circuits are designed to operate at a potential of roughly 9 volts. This poten-

Pioneer'sin-dash

 automotive receiver provides high sensitivity, low distortion and excellent stereo separation.tial can be obtained in a stable, regulated form with any rated input voltage.)

Surprisingly, the AM tuner section does not use the single IC "tuner on a chip" found in many home receivers. Instead, it employs four transistors and a number of passive components.

The AM/FM selection switch transfers the power supply bus to the selected tuner section and the diode switches that transfer the audio amplifier's inputs to the output of either tuner. It also transfers the mechanical pushbutton linkage to the coils of one tuner or the other. In spite of its very small size, the tuning assembly moves six cores as it is driven from the tuning knob.

The published specifications for the FM tuner include a $12-\mathrm{dBf}$ usable sensitivity and a $50-\mathrm{dB}$ quieting sensitivity of 14.3 dBf (1.1 and $1.4 \mu \mathrm{~V}$, respectively, irto the 75 -ohm antenna input). The 63$\mathrm{dB} \mathrm{S} / \mathrm{N}$ specification is not quite what one would expect from a good home FM tuner, but it is more than adequate for the usually noisy environment of a vehicle. Other ratings include a 1.7-dB capture ratio, $74-\mathrm{dB}$ alternate-channel selectivity (very good), 32-dB stereo chan-

THD into 4 and 8 ohms.

Harmonic distortion at 4 ohms .
nel separation, and 0.8% and 0.95% distortion in mono and stereo. The frequency response is rated at 50 to $12,000 \mathrm{~Hz}$ at the $3-\mathrm{dB}$ down points.

Laboratory Measurements. Although we attempted to test the receiver as we would test a home receiver, some differences were unavoidable. This was particularly true in the audio section because it could be tested only through the FM tuner section and because it is rated by EIA rather than the usual IHF standards used for home hi-fi equipment.

We do not know the EIA standards for car radios offhand. The EIA standards for home-entertainment amplifiers allow power to be rated at 5\% distortion at 1000 Hz and on a music power basis in which the supply voltages are maintained at their no-signal levels. This should give some indication of the fundamentally different approaches taken by the EIA and IHF.

Since we performed our measurements using IHF standards, we had no expectation of duplicating the published ratings for the receiver. Needless to say, there were many discrepancies in our test results when compared to the published specifications. We also used a fully charged 12 -volt automotive battery as our power source instead of the nominal 13.8 -volts normally found in a car's electrical system, which could account for a discrepancy of about 25% in output power measurements obtained versus the published rating.

With both channels driving 4 ohms and a mono signal applied via the antenna terminals, the output clipping power of the receiver measured 1.63 watts/

Frequency response and crosstalk.
channel. (Into 8 ohms, the clipping power was 1.02 watts/channel.) At low frequencies, the distortion rose appreciably, which caused us to elect to measure the distortion-versus-frequency characteristic at a 1-watt output level into 4 ohms. (Through any reasonably efficient speaker, as would likely be used in a car, this power can produce a very considerable listening level.) From a maximum of 3.6% at 50 Hz , the distortion diminished to just slightly greater than 0.3% in the midrange and rose to 1% at
$15,000 \mathrm{~Hz}$. The $1000-\mathrm{Hz}$ distortion was 0.3% or less up to about 1 watt. It reached 1% at 1.8 watts into 8 ohms and 2.8% into 4 ohms. The audio frequency response could not be measured separately, because of the inaccessibility of the audio amplifier's inputs. Hence, it was included in our FM tuner response measurements.

The FM tuner section lived up to its "Supertuner" name, at least in those characteristics that are important in mobile service. The mono iHF usable sensitivity was 11 dBf , or $1.1 \mu \mathrm{~V}$. In stereo, it was set by the automatic switching threshold at $25 \mathrm{dBf}(5 \mu \mathrm{~V})$. The $50-\mathrm{dB}$ quieting sensitivity was $12 \mathrm{dBf}(1.1 \mu \mathrm{~V})$ in mono and $36 \mathrm{dBf}(18 \mu \mathrm{~V})$ in stereo. The respective distortion levels were 1.8% and 0.8%. The LOCAL/DX switch reduced the sensitivity by 20 dB , which might be desirable when driving by a powerful FM station, to avoid overloading the tuner's front end. The FM tuner distortion (including audio distortion, but

Noise and sensitivity curve for the Model GX-5050.
at a fraction of a watt) with a $65-\mathrm{dBf}$ $(500-\mu \mathrm{V})$ input was 0.32% in mono and 0.68% in stereo. The S / N at a $65-\mathrm{dBf}$ input was about 67 dB in both modes

The FM capture ratio was 1.37 dB AM rejection was 63 dB at $45-\mathrm{dBf}$ (50 $\mu \mathrm{V}$) input and 57 dB at 65 dBf . Image rejection was about 50 dB . This was the only specification in which the tuner fell appreciably short of meeting its ratings; it is rated for 61 dB of image rejection. However, the alternate-channel selectivity was a very good 72.6 dB , and adjacent channel selectivity was 6.4 dB . The muting threshold was $9.7 \mathrm{dBf}(0.8 \mu \mathrm{~V})$, which was sufficient to suppress noise between stations without interfering with the reception of any station capable of giving satisfactory quality. The $19-\mathrm{kHz}$ pilot carrier leakage of -42 dB would be considered poor in a home receiver, where it could interfere with the operation of a Dolby circuit in a tuner or tape deck, but neither of these considerations apply in mobile service

The FM frequency response, again including the audio amplifier section, with the tone control set to "flat," was down 2.5 dB at 45 and $15,000 \mathrm{~Hz}$. The stereo channel separation was excellent and very uniform. It was between 34 and 38 dB from 30 to 6000 Hz and still 29 dB at $15,000 \mathrm{~Hz}$. The AM frequency response was down 6 dB at 40 and 2200 Hz . The audio tone control rolled off above 500 Hz at a $6 \mathrm{~dB} /$ octave rate

User Comment. We operated the receiver on our bench from the storage battery, using a $30^{\prime \prime}(76.2-\mathrm{cm})$ clip-lead antenna and a pair of highly efficient, high-quality speakers. Although this could hardly be considered an ideal receiving situation, we were pleasantly surprised to find that we could receive 48 fully listenable stations, most in stereo, with excellent audio quality. We have no doubt that the receiver would perform admirably in a car installation. It is easy to tune, with just enough afc to make up for the lack of a tuning indicator but not enough to interfere with separating closely spaced signals.

Although the FM dial scale is calibrated at only $4-\mathrm{MHz}$ intervals and is about $3^{\prime \prime}(7.6 \mathrm{~cm})$ long. it is usually possible to identify the major stations. The high sensitivity of the tuner complicates matters a little, since the dial is filled with signals.

The receiver is a most impressive example of how much performance can be built into a very small and moderately priced package.

CIRCLE NO 103 ON RREE INFORMATION CARD

O- Where should you start in your search for better sound?

A.At the beginning. With a new Audio-Technica Dual Magnet" stereo phono cartridge.
Our AT12XE, for instance. Tracking smoothly at 1 to $1-3 / 4$ grams, depending on your record player. Delivers smooth, peak-free response from 15 Hz to $28,000 \mathrm{~Hz}$ (better than most speakers available). With a minimum 24 dB of honest stereo separation at important mid frequencies, and 18 dB minimum separation even at the standard high-frequency 10 kHz test point. At just $\$ 65$ suggested list price, it's an outstanding value in these days of inflated prices.

Audio-Technica

 cartridges have been widely-acclaimed for their great sound, and for good reason. Our unique, patented* Dual Magnet construction provides a separate magnetic system for each stereo channel. A concept that insures excellent stereo separation, while lowering magnet mass. And the AT12XE features a tiny 0.3×0.7-mil nude-mounted elliptical diamond stylus on a thin-wall cantilever to further reduce moving mass where it counts. Each cartridge is individually

A SS COMPETITIUE SSSTEM

Yロப CAN OWN A VERSATILE6800 COMPUTER SYSTEMFOR AS LITTLE AS \$799.50!
MP-68/1 Computer Kit $\$ 395.00$
CT-64 Terminal Kit (less monitor) $\$ 325.00$
AC-30 Cassette Interface Kit. \$ 79.50

You can add a 40 -column printer and a professional quality data terminal monitor for only $\$ 460.00$

PR-40 Printer Kit
$\$ 250.00$
MP-L Interface Kit . \$ 35.00
CT-VM Data Terminal Monitor \$175.00

You can expand to a full-scale personal computer system with dual disk drives for only \$1,445.00
MF-68 Dual Disk System Kit. $\$ 995.00$
MP-16 16K Memory (assembled). \$450.00
. . OR buy the complete system at our special low price of $\$ 2,595.00$
YOU GET: A 20K byte computer

- A true "stand alone" data terminal and monitor
- A 40-column dot matrix printer
- A dual drive 200K byte disk system
- Disk BASIC with file handling

These are the same proven, reliable components used in our industrial and business systems. Why settle for the limitations of a so-called "personal computer" or hobby system?

A RISING

 HOMEENTERTAINMENT STAR!
A detailed look at

 home VCR's-types and brands available, how they work, distinguishing features.THE COMING of the home video tape recorder is being announced again, for at least the third time in 10 years. However, there is a difference this time. Consumers are actually buying the new machines. (About 200,000 recorders were said to have been sold in the U.S. during 1977, and more than twice that many are expected to be sold here this year.) What has made the difference now is that the prices for the new video cassette recorders (VCR's)which now have full color capabilityare in the reasonable price range of $\$ 1000$. The new machines are simple to load, thanks to drop-in tape cassettes.

Another difference between today's
successful systems and some of their unsuccessful predecessors is that the current crop of machines have built-in TV tuners. This eliminates the need for modifying existing TV receivers to feed programs to them. It also allows the system to tape one program while a different program is viewed. Timers, either built in or available as accessories, allow programs to be taped without human assistance. Classic movies, sporting events, and other forms of entertainment are now becoming available on prerecorded video cassettes, too

You can also make your own "home movies" by plugging in a video camera. However, color cameras cost as much as, or more than, the recorders themselves, though camera prices are beginning to fall. And the cameras must be tied by cables to the recorders, so you lack the portability of a movie camera.

There are Differences. All the new VCR's have built-in r-f converters that feed signals to your TV receiver, usually on TV channel 3 or channel 4, whichever is unused in your area. (Channel 5-6 converters are available on special order for some models.) The cassettes all hold $1 / 2^{\prime \prime}(12.7-\mathrm{mm})$ magnetic tape, which can be played only in one direction. You do not, as with audio cassettes, flip the tape over to play the other side. But the similarity stops there.

There are three basic VCR systems on the market, all incompatible with each other. The tapes are available in three different types of cassettes. And they run at different speeds in the three VCR families (see Table opposite).

The first new-generation VCR to enter the U.S. market was the Betamax, developed by Sony and available or coming soon from Aiwa, Pioneer, Sanyo, Sears, Teac, Toshiba, and Zenith. Tapes for these VCR's are also available from Scotch and Ampex, and will be available from TDK next year. The Betamax tapes run at $4 \mathrm{~cm} / \mathrm{s}$ (1.57 ips) for one hour in the standard-play mode. Newer two-speed Betamax decks can play tapes for two hours at $2 \mathrm{~cm} / \mathrm{s}(0.79$ ips), with slightly narrower tracks. (Betamax decks operating only at the slower speed are also available now.) This means that the two-speed machines can play tapes made on the earlier, singlespeed models, but not vice-versa. Most Beta-format machines have names like "Betacord" and "Betavision," which makes them easy to identify.

The VHS system, developed and introduced by JVC, will also be marketed by Akai, GE, Hitachi, Magnavox, Curtis Mathes, MGA (Mitsubishi), Panasonic, Quasar, RCA, Sharp, and Sylvania. Tapes for these machines will be available from Fuji, 3M, and TDK. The cassette housing for the VHS tape is 30% larger than that for the Betamax. It runs for two hours at its higher $3.34-\mathrm{cm} / \mathrm{s}$ (1.3-ips) speed or for four hours at half speed.

The third competing VCR system is Quasar's Model VR-1000 "Great Time Machine" (not to be confused with Quasar's Model VH-5000, which is a VHS
machine). The Model VR-1000 runs at $5.2 \mathrm{~cm} / \mathrm{s}$ (2.05 ips) and has several technical differences that set it apart from the Betamax and VHS machines

Naturally, the differences between the three basic home VCR tape formats as embodied in the Betamax, VHS, and the Great Time Machine recorders do not permit a single, common playback mechanism.

Recording Techniques. As in highfidelity audio recording, the object in video recording is to get several octaves of frequencies onto a slow-moving tape. In video, however, the frequencies are much higher and the bandwidth is much wider than in audio (4 MHz vs. 20,000 Hz , which is 17 vs. 10 octaves). Therefore, problems in video recording are more complex than in audio recording.

Achieving sufficient bandwidth for video is a challenge because the output of conventional playback heads is not linear. It rises at a rate of $6 \mathrm{~dB} /$ octave as the frequency increases, dropping suddenly when the recorded wavelengths become too short for the tape-head gap. Whereas a $60-\mathrm{dB}$ difference between a head's maximum and minimum output within the audio range can be compensated for by fairly simple equalization, the 102-dB requirement for video bandwidth is not so easy to compensate for in this manner

To solve the bandwidth problem, most VCR manufacturers select a carrier at about 3.4 MHz and frequency-modulate it with the video (luminance) signal. The color subcarrier is usually converted from 3.58 MHz to somewhere around 600 kHz and is recorded on the same track as the luminance signal. The resulting spectrum resembles that shown in Fig. 1. This approach narrows the fre-

							© 莒 	$\begin{aligned} & \frac{y}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \gg 0 \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{1}{0} \\ & \stackrel{1}{0} \\ & \stackrel{0}{0} \\ & \frac{E}{3} \\ & 0 . \end{aligned}$	$\begin{aligned} & \text { D} \\ & \stackrel{0}{0} \\ & \frac{0}{n} \\ & E \\ & E \\ & \vdots \\ & 0 \end{aligned}$				$\begin{aligned} & \pm \begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array} \\ & 0 \end{aligned}$	¢
	in.	ips	cm/s	ft^{2}	m^{2}	t/s	m / s	$\mu \mathrm{m}$	mm	mm	rpm	MHz	kHz	mm	cm^{3}	
Consumer VCR format: Betamax standard-play	1/2	1.5	4.0	19.7	1.83	22.6	6.9	58.5	1.05	74.5	1800	3.5-4.8	688	$156 \times 96 \times 25$	374	
Betamax long-play	1/2	0.8	2.0	9.8	0.9	22.6	6.9	29.2	1.05	74.5	1800	--. ---	...	$156 \times 96 \times 25$	374	Note 2
VHS standard-play	$1 / 2$	1.3	3.3	16.4	1.52	19.0	5.8	58	1.0	62	1800	3.4-4.4	629	$188 \times 104 \times 25$	489	Note 3
VHS lang-play	1/2	0.7	1.67	8.2	0.8	19.0	5.8	35	1.0	62	1800	3.4.4.4	629	$188 \times 104 \times 25$	489	Note 4
VR-1000 (VX-2000)	1/2	2.1	5.2	25.6	2.4	29.8	9.1	48	0.4	48	3600	3.1-4.6	688	$213 \times 146 \times 44$	1368	Note 5
Institutional \& industrial: V-Cord II	1/2	2.9	7.4	36.4	3.4	25.4	7.7	60	1.0	81.3	3.14.3	688	$156 \times 108 \times 25$	421	
V.Cord (skip-frame mode)	-	1.5	3.7	18.2	1.7	--.-	.-.	---	$\bigcirc .0$	81.3	-.--	... --.	---	$156 \times 108 \times 25$	421	
U-Matic	3/4	3.75	9.5	70.3	6.5	33.7	10.4	85	0.8	110	1800	3.8-5.4	688	$222 \times 140 \times 32$	995	
EIAJ open reel	1/2	7.5	19.1	93.6	8.7	36.4	11.1	110	1.0	115.8	-...	3.1-4.5	767	-.- ---		
Audio recorder formats:																
Compact cassette	1/7	1.88	4.8	3.5	0.33	1.88	4.8	none	0.5	none	none	none	none	$100 \times 64 \times 12$	77	
8 -track cartridge	1/4	3.75	9.5	5.9	0.54	3.75	9.5	none	0.5	none	none	--. ---	..-	$140 \times 100 \times 19$	266	
Elcaset	1/4	3.75	9.5	11.7	1.1	3.75	9.5	none	$i .0$	none	none	-.-	...	-. .-.	...	
71/2 ips reel	1/4	7.5	19.0	23.4	2.2	7.50	19.1	none	1.0	none	none	-.. --	--	... ---		

Note 1: Video S/N: 43 dB ; Resolution (lines): $250 \mathrm{~B} \& \mathrm{~W}, 240$ color; audio response: $50-10,000 \mathrm{~Hz}, \mathrm{~S} / \mathrm{N} 40 \mathrm{~dB}, 3 \%$ HD; Play time: $\mathbf{3 0}, 60$
Note 2: Video $\mathrm{S} / \mathrm{N}: 45 \mathrm{~dB}$; audio response: $50-8000 \mathrm{kHz}$; Play time: 60,120
Note 3: Video $\mathrm{S} / \mathrm{N}: 45 \mathrm{~dB}$; Resolution (lines): $300 \mathrm{~B} \& \mathrm{~W}, 240$ color; audio response: $40 \cdot 10,000 \mathrm{~Hz}, \mathrm{~S} / \mathrm{N} 43 \mathrm{~dB}$; Play time: 60,120
Note 4: Play time: 60, 120 minutes
Note 5: Play time: 60,120 minutes
quency range down to only about 2.5 or 3 octaves.

Frequency-modulating the luminance signal makes it relatively insensitive to noise and dropouts since the constantamplitude signal fully saturates the tape. At the same time, the high-frequency luminance signal serves as an ac bias for recording the chroma signal. This still leaves the problem of recording frequencies far higher than any in the audio range. The culprit is the short wavelengths resulting from the high frequencies, as shown in Fig. 2. The tape's motion past the heads can be speeded up to lengthen any frequency's recorded wavelength to make recording easier. But as tape speed is increased, so also is tape consumption. Narrowing the head gaps (to about 0.02 mil), applying
equalization, and employing other techniques certainly help, but higher head-to-tape speeds must still be used to solve the problem.

It takes a bit of trickery to increase the tape-to-head speed while maintaining an economical reel-to-reel tape consumption. This is accomplished by having the tape heads move, too. This is done with a rotating head drum around which the tape is wrapped during record and playback, as shown in Fig. 3. This allows tape-to-head "writing" speeds of 114 to 358 ips , using tape speeds of only 0.7 to 2.1 ips!

Video is transmitted in discrete "fields". (Two fields, one with odd and
the other with even lines, interlace on the screen of the picture tube to form each complete "frame" of video information.) Since there is a natural break after every field, home video recorders usually record each field as a separate track that runs diagonally across the tape, as in Fig. 4. The drum is, therefore, angled slightly to the tape path to make the diagonal tracks. Each track is a portion of a helix; hence, this track arrangement is called "helical scan." Two other tracks are recorded by stationary heads along each edge of the tape-an audio track along the upper edge and a control track along the lower edge, which synchronizes the drum in playback so that each video head will "read" its proper track.

Audio track widths are 1.0 and 1.05 mm in the VHS and Beta formats, respectively. These tracks could probably be split in two for stereo or bi-lingual use, as is now done with the $0.8-\mathrm{mm}$ au-

Fig. 1. Video signal spectrum of typical VCR.
Luminance signal is recorded as constant-amplitude AM.
dio track of the U-Matic system. The $0.4-\mathrm{mm}$ track of the VR-1000, however. would allow less successful double tracking. (For comparison, stereo sound cassettes have $0.53-\mathrm{mm}$ tracks.) Both Betamax and VHS specify audio frequency ranges of $50-10,000 \mathrm{~Hz}$ at their higher speeds (about equivalent to audio cassette speed), with signal-to-noise ratios of 40 and 43 dB , respectively. This may prove inadequate for the full-fidelity TV sound now transmitted by networks and PBS (up to $15,000 \mathrm{~Hz}$).

Another way to conserve tape is to use very narrow tracks of about 29 to 58 micrometers (1.2 to 2.3 mils) wide. This is only about one-tenth the width of a stereo sound track on a cassette tape. Under these conditions, crosstalk can become a severe problem. One way to avoid the problem is to leave blank "guard" bands (Fig. 5A) between adjacent tracks, as is done with audio and earlier video recorders. But this wastes tape area. Hence, the Betamax and VHS systems omit the guard bands, relying on differences between adjacent tracks to reduce crosstalk. (Fig. 5B)

One such difference relies upon the "azimuth" recording method. Here, the angle between the head gap and its path along the tape is offset slightly from the usual 90°. The two heads are offset in
opposite directions; $\pm 7^{\circ}$ in Betamax and $\pm 6^{\circ}$ in VHS recorders. At the high frequencies of the luminance signal, the 14° or 12° "misalignment" between the playback head and the crosstalk signals from the neighboring tracks greatly reduces the head's pickup of those undesired signals. (In the single-head

Fig. 2. Tape head output peaks when wavelength (λ) is $2 X$ head gap width (g), drops to 0 when both are equal.

Quasar Model VR-1000, of course, this technique cannot be used. It uses guard bands instead.)
The lower frequencies and longer wavelengths of the chroma signal are less sensitive to azimuth differences. Therefore, another way of reducing crosstalk must be used. Here, the electrical phase of the recorded signal on adjacent tracks is changed so that phase cancellation can be used on playback. Phase changes are based on horizontal sweep periods so that crosstalk on adjacent scan lines will cancel out and not be visible on the screen.

But crosstalk is not the only problem caused by the narrow video tracks. There is also the problem of noise. This becomes worse in the extended-play machines, whose track width is only about half that of the "normal-play" Betamax and VHS systems. Both systems therefore incorporate nonlinear pre- and de-emphasis systems, somewhat similar in principle to Dolby noise-reduction. Extra high-frequency pre-emphasis is

Video color cameras, nour costly, pomise to drop in price.
added to the luminance signal during long-play recording. But, as in the Dolby system, this pre-emphasis is reduced when the high-frequency amplitude is already sufficient to override the noise. If the pre-emphasis were not reduced for strong high-frequency signals, the tape would be overmodulated. The playback de-emphasis circuit is also nonlinear, of course. Sony claims that this noise reduction is actually greater than the noise increase caused by the narrower track. In fact, they specify a signal-to-noise ratio 2 dB better at its slower than at its faster speed.

In playback, synchronizing the head drum with the tape so that each head scans its proper track correctly requires the special control track mentioned above. This is usually a $60-\mathrm{Hz}$ squarewave signal. During recording, pulses
derived from the $60-\mathrm{Hz}$ vertical sync pulse at the beginning of each TV field are recorded on this track. Then, during playback, this sync pulse is used to control the speed of the drum and tape transport (Fig. 6). It is also used to insure that the switchover from one head to the other occurs when it would not be visible on the screen. The head drum is controlled by a feedback servo system, usually with a manual "tracking" adjust trimmer in the servo loop to "fine tune" playback for tapes recorded on another machine or for stretched tapes. This is standard practice in video recorders, but it is important in the new home VCR's, where tracks are so narrow.
The use of narrow tracks can cause dropout problems. Dirt and minute tape imperfections that momentarily disturb tape-to-head contact cause these dropouts, which are seen as short streaks on the TV screen. Dropout-compensation circuits are used to combat this problem. A typical circuit stores each line in a delay circuit, where it can be used to substitute for the next line should a dropout occur. Up to three or four sequential lines can contain the same information before the viewer notices that something is amiss.

Threading the Tape. Since the tape inside the cassette must wrap around the head drum-just over half way in the two-head Betamax and VHS systems, and all the way in the Model VR-1000fairly complex tape paths must be used. Most complex of these is Betamax's (Fig. 7A), a simplification of the "U-load" system used in professional U-Matic cartridge machines. Small arms in the transport puil the tape out from the cassette and wrap it around the head drum, audio and control-track heads, and several tape guides.

The VHS system's "M-load" scheme is simpler (Fig. 7B). Here, the tape is

Fig. 3. Tape on rotating head drum allows second head to write second field as first head completes recording its field in this half-wrap helical scan format.

Fig. 4. Head drum axis is tilted so that video heads write diagonal tracks. Audio and control tracks are recorded by stationary heads.

Programmers are available (Panasonic shown) that can be set to
automatically select channels and times for a week's recordings.

Fig. 5. Blank bands between tracks in early video recording (A) prevented crosstalk. Today's VCR's (B), except Quasar VR-100, incline video heads in opposite directions to eliminate blank areas.
drawn almost straight out of the cassette at two points. Then it is wrapped halfway around the head drum.

The "Alpha-wrap" system employed in Quasar's Model VR-1000 is the simplest of all (Fig. 7C). The necessarily higher speed of the single-head drum permits the drum to be smaller for a given "writing" speed. Also, the faster tape speed requires more tape for the same running time and, thus, a larger cartridge. The small drum can easily fit inside the large cartridge. In loading, the cartridge is simply lowered over the drum. No arms are required to pull tape from the cartridge because the tape is already in its wrap position. The tape's full wrap around the head drum resembles the Greek character "alpha" (α), hence the origin of its name. The Model VR-1000's cartridge has another difference: its two tape hubs are arranged one above the other rather than side-byside, as in Betamax, VHS, and audio cassettes.

Tape lengths vary. For the Betamax, there are tapes that run for 30,60 , and 90 minutes at standard-play speed or 60,120 , and 180 minutes at the longplay speed. In addition, an accessory changer with a two-cassette capacity may become available to effectively double these times, with a break of less than 15 seconds for the change cycle. VHS cassettes are available now in lengths running 60, 120, and (later) 180 minutes at normal speed and twice

Fig. 6. Vertical sync signal on control track controls playback motor speed so video heads scan correct video tracks.

Here's an example (Quasar VR-1000) of a video cassette recorder's control layout.

these times at slow speed. The singlespeed Model VR-1000's cartridge offers either 60 - or 120 -minute lengths.

What to Look For. The home video cassette recorders on the market at this writing offer basically similar features. But there are some differences. First is the matter of recording time and tape cost. There's very little on the air that
runs more than two hours (and 3-hour cassettes are coming for the 2-hour machines), so longer recording time may or may not be a factor to consider. However, recording at a slower speed does lower tape cost, which almost certainly will count in your decision. Two-speed machines will also be more compatible with other video recorders than will a one-speed machine. On the other hand,
two-speed decks cost more (though the tape savings should take care of that). Decks operating only at the higher speed may have better picture quality, too, because of their wider track. (This will not be true when playing tapes made on a two-speed machine because the wider-track head will "read" some of the random noise between the narrow tracks.) When it comes to judging pic-

The most popular VCR application is automatic taping of programs you'd miss because you're away, busy, or even watching a nother channel. But with the addition of a video

HOW VCR FORMATS WORK

Fig. 7. Various ways of video-tape passage through
VCR machine: (A) Betamax's modified "U-load;" (B) simpler "M-load" used by VHS; (C) "Alpha-wrap" on Quasar's VR-1000.
ture quality, you may have trouble spotting differences when looking at a small screen. If you want to be sure you get the best possible picture, try to find a store that uses a large-screen TV projection unit for its VCR demonstration.

In comparing VCR prices, check whether the timer is included in the price or not-it always is on models whose timers are built-in, but external timers may or may not be included in the price. You might prefer to get a unit without a timer if one of the new "programmer" units (which change channels as well as turning the set on and off at present times) has been announced for that VCR. Such a programmer makes a 4 hour recording capacity more worthwhile, too, as you can then record several programs on one tape. This can be done even if they're on different channels with time-gaps between them.

There are differences in weight and size, too-ranging from the Quasar VR-1000 ($221 / 2^{\prime \prime} \times 16-1 / /^{\prime \prime} \times 81 / 2^{\prime \prime}, 44 \mathrm{lb}$.) to the compact JVC "VidStar" (17-7/8" x $\left.13-15 / 16^{\prime \prime} \times 5-13 / 16^{\prime \prime}, 30 \mathrm{lb}\right)$.

So, too, are there differences in tape cartridge prices and local availability. Depending on brand and tape length, a blank cartridge could cost anywhere from $\$ 13$ to $\$ 28$. Prerecorded movie prices retail from $\$ 30$ and up.

In Closing. In addition to the details given above, different manufacturers emphasize special features for their VCR's. These include audio dubbing, tape counters, a pause control, and a "dew" indicator and lockout circuit. Several VCR's, for example, contain amber lights that come on when there is excessive moisture in the area around the rotating drum. When this occurs, the drum will not rotate, in which case, the power must be left on until the moisture evaporates and the indicator extinguishes. Quasar's VR-1000 has a heater to accelerate evaporation.

Home VCR's have really been on the market only since 1977 in any quantity. So we can be fairly certain that advances and changes will occur as the market and product matures. For example, JVC has just introduced a varia-ble-speed VCR that features stop-frame and slow motion. Also, portable video tape recorders show promise of being marketed. And, if camera prices decrease appreciably, one can take advantage of the "home movies" capability of VCR's, which costs only 20 cents a minute vs. $\$ 3$ a minute with photo equipment.

BUILD A DICITAL DARHROOM tImer

A solid-state precision interval timer to control an enlarger or other time-powered device.

Fig. 1. Schematic diagram. PMOS clock chip IC1 counts $60-\mathrm{Hz}$ pulses and produces seven-segment and $B C D$ outputs.
display indicates elapsed time, and is useful when dodging or burning-in small areas of a print or when timing multiplechemical processes. The display is rather small and not too bright, so it won't affect most black-and-white printing. (For film processing or work involving very sensitive paper, a deep red filter can be placed over the display.)

Two ac power sockets are mounted on the project enclosure, one for an enlarger and the other for a safe-light. The timer employs a three-position toggle switch labelled focus/off/Time. In the fOCUS position, the enlarger's power socket is energized. This allows the user to install a red filter under the enlarger lens and adjust the focus without exposing the photographic paper. In the time position, a panel-mounted pushbutton switch or optional footswitch resets the circuit and initiates the timing interval. In the OFF position, power is removed from the timer, the enlarger, and, at the builder's option, the safelight.

Of course, the timer can be used in many applications outside the darkroom. As is, it can function as a delayed turn-off switch for a radio, portable television, or a small lamp. When connected to an outboard relay or thyristor, the project can power a large television receiver, an audio system, home lighting, or even a coffee pot!

About the Circuit. A schematic diagram of the timer is shown in Fig. 1. The
heart of the project is IC1, a National Semiconductor MM5309 full-function PMOS clock chip. The MM5309 has multiplexed seven-segment and binary coded decimal (BCD) outputs as well as a reset input. These features make the IC ideally suited for use in this project.

Momentarily closing RESET/START switch S4 causes C4 to apply a nega-tive-going pulse to pin 16, the RESET input of IC1. Upon receipt of this pulse. the clock chip resets its counters to $00: 00: 00$. The ac waveform at the secondary of T1 is sampled by R26, rectified and level-shifted by D18, D19, and R27. The resulting $60-\mathrm{Hz}$ pulse train is applied to pin 19, the timebase input of IC1.
The clock chip counts the pulses and produces multiplexed seven-segment (pins 6 through 12) and BCD (pins 2 through 5) outputs. The seven-segment outputs are connected via current-limiting resistors R6 through R12 to the segment enable lines of DIS 1, a nine-digit, calculator-type LED display. Of the nine digits in the display only three are used. Driver transistors Q1 through Q3 interface the appropriate digit enable outputs of the clock chip and digit enable lines of the display.
The BCD outputs of the clock are routed to one set of inputs of a digital comparator comprising the four exclusiveOR gates, a diode OR gate composed of D1 through D4 and R13, and NAND gate IC3A. The other set of comparator

PARTSLIST

CI-(0)($)$ (0)- $\mu \mathrm{F}$ dise ceramic
C2.C4. C5. C7, CX-0.1- $\mu \mathrm{F}$ dise ceramic
C3—5- $\mu \mathrm{F}$. 12-volt electrolytic
($6-0$) (0)- $\mu \mathrm{F}$ disc ceramic
(9)-I(NO)- $\mu \mathrm{F}$. 16 -volt electrolytic

C $10-100-\mu \mathrm{F}$. 16 -volt electrolytic
D) through D20-1N914 signal diode

D21 through D25-1N4001 rectifier
DIS1-9-digit common-cathode calculator display (National Semiconductor No. NSN- 198 or equivalent)
IC'I—M:15309N PMOS digital clock chip-
(National Semiconductor)
1C2—SN7486 quad exclusive-OR gate 1C3-SN7410) triple three-input NAND gate
[C4—SN7474 dual D-type flip-flop
1C5-SN7400) quad 2-input NAND gate
[C\%-L.M.340T-5.0) 5-volt regulator
JI—RCA phono jack
J2. J3-Ac power socket
KI-Spdt 12 -volt relay (Sigma No. 78REII2DC or equivalent)
Q1. Q2. Q3-2N. 3906 pnp transistor
Q4-2N3904 npntransistor
The following are $1 / 4$-watt, 5% tolerance car-bon-composition or film resistors:
RI-330.(NO) ohms
R2 through R5-7500 ohms
R6 through R 12- 3.30 ohms
R13-68() ohms
R14-220 ohms
R15 through R21-4700 ohms
R22-22.()(0) ohms
R23. R24-1000 ohms
R25-10.0(0) ohms
R26-100.000 ohnes
R27-1 megohm
S1. S2. S3-Thumbwheel switches with BCD outputs.
S4-Normally open momentary contact pushbutton switch
S5—Spst toggle switch
S6-Spdt toggle switch
TI-18-voit. 150-ma center-tapped transformer (Triad No. F161XP or equivalent)
Misc.-Printed circuit board. IC sockets or Molex Soldercons. pc standoffs, suitable enclosure, hookup wire. line cord, strain relief, mise, hardware, solder, etc.
Note-The following are available from California Industrial. Box 3097. Torrance. CA 90503: Complete kit less enclosure (No. DTK). $\$ 34.95$: aluminum/hardwood cab:net (No. DTCAB), \$12.95: etched and drilied printed circuit board (No. DTPC). \$7.95: 9-digit display (No. DTDIS). \$1.39; Spdt 12 -volt relay (No. DTRYS). $\$ 1.39$: thumbwheel switches with BCD outputs (No. DTS 1), $\$ 1.39$ each (three required). California residents please add sales tax. Orders accompanied by check or money order will be shipped postpaid within the U.S.A.

Fig. 2. Full-size etching and drilling (A) and parts placement
(B) guides for a suitable printed circuit board.
inputs receives the BCD outputs of thumbwheel switches S1, S2 and S3 Because the BCD outputs of the clock are multiplexed, those produced by the
thumbwheel switches must be timemultiplexed in a synchronous manner.

This is accomplished by connecting the common (C) switch lugs to the dis-
play driver transistors Q1, Q2, and Q3 When, for example, the BCD equivalent of the first time digit is being applied to the comparator, Q1 simultaneously acti-

vates the appropriate display digit and thumbwheel switch $S 1$. Diodes $D 5$ through $D 16$ are used to isolate the $B C D$ outputs of the inactive switches from those of the thumbwheel switch activated at any given instant.

The digital comparator generates an output pulse each time the BCD output of the clock chip matches that produced by the corresponding thumbwheel switch. Because all the BCD numbers produced by both the clock chip and the thumbwheel switches are not available simultaneously (again, due to multiplexing), some means of "remembering" the coincidence pulses is required. This function is performed by a memory or latch comprising two D-type flip-flops (IC4A and IC4B), several NAND gates, and an RS flip-flop formed by two crosscoupled NAND gates (IC5C and IC5D).

The first D flip-flop is set when the most significant $B C D$ number generated by the clock chip is the same as that generated by S1. Similarly, the second flip-flip (IC4B) is set when the BCD output of $S 2$ matches the next-most significant BCD number generated by the clock chip-only if IC4A has already been set. This is so because the Q output of $I C 4 A$ is connected to the CLEAR input of IC4B, whose PRESET input is tied to +5 volts. Therefore, the Q output of

IC4B will be held low as long as that of IC4A is low.

If the least significant $B C D$ number generated by the clock chip matches the BCD output of S3 and the two D flipflops have been set, the RS flip-flop formed by IC5C and IC5D will be set. Thus, when the elapsed time in BCD form equals the three $B C D$ numbers generated by S1, S2 and S3, the RS flipflop changes state and deprives relay driver Q4 of base current. The transistor then turns off and deenergizes the relay, removing line power from J 2 , the enlarger power socket. If the safelight power socket (J 3) is connected using the " A " wiring (see schematic), power will be removed from it when the relay is energized. If $J 3$ is " B " wired, the relay will have no control over the flow of power to the socket. The safelight will remain powered no matter what position FoCUS/OFF/TIME switch $S 6$ is in, or whether $K 1$ is energized or not.

The RS flip-flop is also used to control the application of the $60-\mathrm{Hz}$ timebase to the clock chip by means of a biased diode network (D18, D19, D20 and R27). When the flip-flop is reset, $60-\mathrm{Hz}$ pulses with high and low levels sufficient to drive the clock chip are applied to pin 19, the chip's timebase input. After the timing interval has elapsed, however, IC5B

changes state and the dc level at the cathode of D18 shifts so that the $60-\mathrm{Hz}$ pulse train can no longer trigger IC 1 . The clock chip no longer counts and the display is frozen at a three-digit number which matches the setting of the thumbwheel switches. The setting of S5 determines the range of the timer-either hours/minutes or minutes/seconds.

Transformer T1, diodes D22 through D25 and electrolytic capacitors C9 and C10 comprise a bipolar, full-wave power supply which produces ± 12 volts dc. The relay requires +12 volts, and the clock chip's $V_{D D}$ terminal -12 volts. A third supply voltage, +5 volts, is required by the TTL IC's. Also connected to +5 volts is the $\mathrm{V}_{S S}$ terminal of the PMOS clock chip. This allows the chip to drive the TTL IC's directly with no need for level shifting. Voltage regulator IC6 derives the required +5 volts from the +12 -volt supply. Capacitors C7 and C8 ensure the stability of the regulator IC and keep noise off the +5 -volt line.

Construction. The use of a printed circuit board will simplify project assembly. Etching and drilling and parts placement guides for a suitable board are shown in Fig. 2. All components except the power transformer, switches S4, S5 and S6, the power sockets and jack J1 mount on the circuit board. Assembly is straightforward, but here are a few hints that will save you some time.

Begin by mounting the jumpers and fixed resistors on the pc board. Save the cut-off resistor leads to mount the display. Note the position of R24 relative to that of IC5. If this IC is to be soldered directly to the board (which is not recommended) or mounted via a standard DIP socket, mount R24 on the foil side of the board. However, if the IC is installed using Molex Soldercons, R24 can be mounted on the component side. The resistor will sit in the "channel" formed by the Soldercons, which will also provide sufficient clearance between the bottom of the IC package and the top of the pc board to accommodate the body of the resistor.

Next, install the silicon diodes, using the minimum amount of heat consistent with the formation of good solder joints. Excessive heat can destroy delicate semiconductors like diodes, transistors and IC's. Also, avoid using too much solder when making a connection. Otherwise, solder bridges between adjacent foil areas might be formed inadvertently. Semiconductors and polarized capaci-
tors must be installed with due regard to pin basing or polarity. Be sure that the diodes are installed so that their banded ends (cathodes) are positioned as shown in Fig. 2. Diodes D18 and D19 must be mounted vertically. Install D18 so that its cathode is down (banded end nearest the board) and D19 so that its cathode is up. Connect the two remaining leads together.

The capacitors can now be installed, paying close attention to the polarities of C3, C9 and C10. The remaining capacitors can be installed either way as they have no polarity. Using sockets or Molex soldercons, mount the TTL IC's, but do not mount the clock chip yet. (That should be the last step of the assembly procedure.) Also, install the digit driver transistors oriented as shown in Fig. 2.

The switches and display can be connected to the pc board using Figs. 3 (photo) and 4 as guides. The layout and pinout details of the display are shown in Fig. 4. No connections are made to holes $1,2,4,5,6,14,16$ and 18 , the decimal point anode and the cathodes (digit enable lines) of the three left- and right-most digits of the display. Either straight pins or the clipped resistor leads can be used to support the display (see Fig. 3). The supporting leads or pins should first be soldered to the display pads and then, after properly positioning the display, soldered to the row of square pads on the main circuit board just above digit driver transistors Q1, Q2 and Q3. Clip off any excess lead length.

Connections between the pc board and those components not mounted on it are denoted in Figs. 2 and 3 by letters enclosed by hexagons. For example, a length of hookup wire should be connected to pad A on the board (normally open contact of $K 1$) and the focus lug of S6 and one side of J2. The safelight outlet, J3, can be wired so that it is not powered when the enlarger is (A) on or so

Fig. 4. No connections are made to holes $1,2,4,5,6,14,16$, and 18 on display board.
that it remains powered (B). Jack $J 1$ is included to accommodate a footswitch. As shown in the schematic, the footswitch can be used to reset and start the timer. Alternatively, the "hot" side of J1 can be connected to the collector of Q4 for footswitch control of the relay-a great convenience for those who do a lot of dodging.

A heat sink must be provided for IC6, the 5 -volt regulator. If the timer is housed in an aluminum enclosure, the tab of the IC can be fastened to it. A mica insulating washer is not required, but a small amount of silicone thermal compound should be spread on the back of the tab. This will improve the transfer of heat from the IC package to the project enclosure. If the timer is in a nonmetallic enclosure, a bolt-on heat sink should be used. Either a homebrew heat sink formed by bending aluminum stock or a preformed commercial heat sink is suitable. Again, a thin film of
silicone thermal compound should be smeared on the back of the IC's tab before it is secured to the heat sink.

Using the Timer. The project should be used as you would a mechanical timer, except that the timing interval is selected by three detented switches rather than by rotating one large knob. Having preset the timing interval, you should load and focus the enlarger, place $S 6$ in the TIME position, and start the timer by closing S4 or the footswitch connected to J1.
Although the project has been designed with the darkroom in mind, it has many nonphotographic applications in the home, shop, lab or classroom. To name just a few, the project can be used to time chemical experiments, as a quiz timer, or as a delayed turn-off switch for a television receiver or audio system. Without a doubt, you'll be able to think of many more.

FREQ OUT. FOR LESS.

Introducing CSC's new
Mini-Max. It brings down the cost of counting up the frequency for CB-ers, hams, computer enthu siasts, audiophiles . . just about any engineer. technician or hobbyist will find it indispensable It's "mini"'sized, too-a pocketable $3 \times 6 \times 1 \frac{1}{2}$ inches But when it comes to performance, Mini-Max means maximum value. Measuring signals as low as 30 mV from 100 Hz to a guaranteed 50 MHz , with $\pm 3 \mathrm{ppm}$ timebase accuracy and better than 0.2 ppm/ ${ }^{\circ} \mathrm{C}$ stability from 0 to $50^{\circ} \mathrm{C}$. Completely automatically. Advanced LSI circuitry with a crystal controlled timebase provides precise frequency readings on a bright, six-digit LED display, with automatic $\mathrm{KHz} / \mathrm{MHz}$ indications. Mini-Max is versatile, too. You can connect it directly to the circuit under
test, or use its matching mini antenna for easy RF checking. Either way the input is protected against overload to 50 V (100 V below 1 KHz)

Mini-Max is as inexpensive to use as it is to own An ordinary 9 volt alkaline battery gives up to 8 hours of intermittent operation, and you have the flexibility of a battery eliminator for AC operation. For increased versatility, there's a complete line of accessories, including standard clip-lead cable and mini antenna - eliminator and carrying case are optional

CSC s new, all-American made Mini-Max is everything you need for highly-accurate checking of frequencies up to 50 MHz . At a price that will Freq you out. Order today. Call 203-624-3103, 9a.m.5 p.m. Eastern Standard Time. Major credit cards accepted. Or see your CSC dealer. Prices slightly higher outside U.S.A.

CONTINENTAL SPECIALIIES CORPORAION

ALTHOUGH there are no industry statistics on the percentage of personal microcomputer ($\mu \mathrm{C}$) sales that are made to businesses, computer store owners generally agree that more than 50% of their local sales are for business purposes. [Among Popular Electronics subscribers, a recent study revealed that primary uses are: business, 37.1%; home, 31.3%; both, 29.6%. This includes computer store and mail-order purchases. And "business" here combines commercial, industrial and engineering uses.]
Lower cost is the major reason for a business man to choose a "personaluse" $\mu \mathrm{C}$. A typical business $\mu \mathrm{C}$ system with 32 kilobytes of memory, dual floppy disks, and a hard-copy terminal can be bought for about $\$ 6000$. A similarly configured commercial $\mu \mathrm{C}$ system can cost as much as several times that price.

Differences in Price. There are several reasons why a commercial $\mu \mathrm{C}$ system (that is, business systems not sold through computer stores or by mail) costs more than a personal $\mu \mathrm{C}$ system. The major ones include small-industry pricing methods, lower sales overhead, less-stringent quality control measures, and less investment in software. Let's examine these in greater detail.

The personal $\mu \mathrm{C}$ industry was originally created around the S-100 bus. (The S-100 bus, as are other types, is a

More and more "home" computers are being used for commercial purposes. Here's why.
set of electrical, mechanical, and logical specifications for the interconnections between the various plug-in subassemblies that transmit or receive data over the bus.) At this writing, there are more than 30 companies manufacturing computers using the S-100 bus and more than 150 companies with plug-in board subassemblies compatible with the S-100 bus. There are also some companies with S-50, IEEE and other bus systems. Since the competition centered on the $S-100$ bus and others is fierce, prices for personal-use computers and subassemblies are quite close to the lowest they can be set for the companies to realize a profit. Competition, therefore, tends to hold down prices for a personal-use computer, whether used at home or by the businessman.

Another reason for the price difference is the method of marketing used. A traditional commercial computer company might make several calls on a customer at the customer's location before making a sale. Following the sale, the customer will probably require assistance in using the system. These extra services cost money and raise the manufacturer's operating overhead.

A personal-use computer, in contrast, is marketed in a retail store where a salesperson's time is used much more efficiently, or by mail. Both methods of selling low-cost $\mu \mathrm{C}$'s make it possible to have a much lower markup and still realize a profit. Even such large companies as IBM have recognized the efficiency of the computer-store approach to marketing. IBM has opened several retail outlets for its small business computers, calling them "demonstration centers."

Though it is true that traditional commercial computer companies have more rigorous quality control, the experience of business users of personal-use computers has been very positive. This is supported by the fact that many computer stores offer a maintenance contract at nominal additional cost. Under the terms of the contract, the computer store agrees to repair any failure in the customer's system at the customer's location. Prices for the typical maintenance contracts are very competitive with those of the traditional commercial computer companies.

Business Hardware. A data-processing application typically requires a central-processing system, memory, du-al-disk drives, and a hard-copy printer. (A CRT terminal might also be used for data observation and manipulation.) The
central-processing system and its associated memory make up the nucleus of the system, while the disks are required for random or rapid sequential access of the data. Dual disks are necessary for reasonable copying operations capability. A hard-copy printer generates the necessary paper forms.

A typical $\mu \mathrm{C}$ configuration may use an 8080 microprocessor unit (MPU). With seven central registers, eight-bit-wide data paths, eight-bit integer arithmetic, and an instruction execution time of 2 to $9 \mu \mathrm{~s}$, the 8080 can directly address 65 K of memory. In terms of path width, instruction execution time, and memory size, the 8080 is roughly compatible to the IBM S/360 Mod 30, the workhorse computer of the 1960s. A 32K memory is usually sufficient for most business applications. In fact, 32K is the typical memory used in many IBM S/360 Mod 30 installations.

In personal or hobby $\mu \mathrm{C}$ systems, BA SIC (the most commonly used high-level language) typically occupies 12 to 20 K of memory, while the remainder of the memory is used for applications programs. Memory expansion to 65 K is possible if an application requires it. Memory management software to support the use of greater than 65 K of memory is not currently available. The memory speed is on the order of 500 ns access time, which is five times the speed of the S/360 Mod 30 system.
For most data processing applications, the most important decision will be the choice of a disk since the disk is approximately half the cost of the entire system. Disk performance ground rules are the same in low-cost computing as they have been in other forms of computing. Data processing applications tend to be limited by the disk, which determines the amount of data that can be accessed at one time and also determines the speed at which it can be accessed. Since the disk is largely mechanical, it will also be one of the least reliable components in the system. Another reason for caution in the selection of a disk is that, in mixed vendor systems, the system software comes from the manufacturer of the disk.
Floppy-disk sizes popularly used today are $8^{\prime \prime}(20.3 \mathrm{~cm})$ and $51 / 4^{\prime \prime}(13.3 \mathrm{~cm})$. Dual $8^{\prime \prime}$ floppy-disk drives, which store 500 to 600 K total, have a $100-400-\mathrm{ms}$ access time and 32-60K byte/second transfer rate. They cost about $\$ 3000$, including the required disk controller. Dual 51/4" floppy-disk drives in contrast, store about 150 to 630 K and have an average
access time of 780 ms . This type of system has a transfer rate of $16-60 \mathrm{~K} /$ second and it costs about \$1800, including the controller. Many personal computer makers offer these disk systems.

We can expect to see some significant increases in the amount of storage we can obtain per dollar in the near future. In fact, Motorola is already delivering its $51 / 4^{\prime \prime}$ dual-floppy disk drives that can store 630 K for about $\$ 1900$, including controller. We can also expect to see hard disks for low-cost computers.

Most computers use the standard RS-232C serial interface for terminals and printers. This is the same interface used by time-sharing terminals, minicomputer terminals, and some printers. Since any terminal or printer that uses the RS-232C interface can be used with hobby computers, a wide selection of these terminals is available.

At the low end of the printer category useful in a business environment, is an impact printer that uses roll paper at 120 characters/second and sells for about $\$ 750$. The Digital Equipment Corp. DECwriter Model LA36 terminal accepts continuous forms, prints at 30 characters/second, and costs about $\$ 1500$. The Texas instruments Model 810 im pact printer prints 150 characters/ second and costs $\$ 2100$. For word-processing applications, the Diablo terminal plots and prints at 30 characters/second and costs $\$ 3000$.

If a printer is chosen, a CRT terminal is also needed. It should be noted that the terminal and/or printer can be one of the most costly components in a computer system. And since the printer is largely mechanical, it may also be a source of maintenance problems.

Most personal computers sold to businesses are fully assembled, burned in, and tested. Such purchases are usually made through computer stores rather than mail order houses because of the convenience of having local support services. Where an owner or employee is also a computer enthusiast, a kit route may be taken, of course.

Business Software. When comparing the capability of personal-use computers to larger computers and timesharing services, the most obvious shortcoming of the personal-use computer is in the software area. There is less business/industry application available compared to that from traditional computer makers.
BASIC is the language most often used in programming personal-use
computers for small business applications. Fundamentals can be learned in a few hours. COBOL, FORTRAN, PL/I, and APL are among the most popular languages used by the traditional computer makers. They're more difficult to learn, however. The use of BASIC is growing, here too, since it is a terminaloriented language and is well-suited to time sharing.

Fortunately, many of the available BASIC's have been extended especially for business applications. These usually include formatted input/output, disk-file manipulation (including random access), decimal arithmetic, string processing, subroutine parameter passing, and chaining of programs. The cost of a BASIC interpreter is about $\$ 100$.

A few application packages are available. They include general ledger, payroll, inventory control, word processing, accounts payable, and accounts receivable. The prices of these programs vary greatly, but $\$ 1000$ to $\$ 2000$ is typical. Application software packages are available from the manufacturers in some cases. For the most part, however, they are offered by individual computer stores. Significant additional offerings can be expected soon, primarily packages for particular types of small businesses, such as medical clinics, personnel agencies, real-estate firms, lawyers, motorcycle shops, and astrologers.

If a business requires custom software for its own particular needs, the programs are usually written by the computer store or a consultant. Custom software can be very expensive, naturally. Since it is not uncommon for a consultant to charge $\$ 1000$ per week for writing programs, the cost of custom software can easily exceed the cost of the hardware.

Presently, the availability of software is the primary factor limiting the use of personal computers in business applications. Many more programs are needed than just the standard business bookkeeping applications. Nearly an endless number of programs are needed to fill the requirements of specialized types of businesses. For example, a personnel agency needs an application package to maintain a file of job applicants and to search that file on command for applicants with certain job qualifications. A multiple-doctor clinic needs a program that can schedule appointments, answer inquiries, and each day print the doctors' schedules. A ready-mix concrete company needs a billing program that will take into account different mix formulas
delivered to different customers. The list goes on and on.

Programs for personal computers in business applications are and will likely continue to be written by independent consultants, computer stores, and business persons with programming ability. It's expected that there will be a growing number of companies to serve as a distribution center for these independently produced programs in much the same way that book companies publish the

Such a contract is similar to a healthcare plan: for a fixed annual fee of, say, $\$ 1000$ to $\$ 1500$ for a $\$ 10,000$ business computer system, repairs and/or replacements will be effected in a timely manner at the customer's location.

A well-tested and burned-in personal computer is very reliable. One company that has 200 business computers in the field reports that, on the average, the cost of customer service for a system over a year's time has been $\$ 90$. As a

Typical video display as used in small business systems. This is usually the entry point for the system operator. It is from the data seen on the screen that the operator selects the program, or part of the program, he wishes to run.
work of independent authors and recording companies distribute the works of many independent musicians. Here, the original author of the program will be paid a royalty on each sale, while the distribution company will market and support the software nationally.

Maintenance. While a computer enthusiast may enjoy spending many hours getting an ailing computer back to working order, a business must get its computer operational as soon as possible. Since most businesses do not have the wherewithall to perform their own computer repairs, they must look to the computer store to provide the necessary service. (As a rule, the only service a personal computer manufacturer provides is through the mail or by phone, which is a time-consuming procedure.)

The degree of service offered by computer stores varies greatly. Some stores offer repair service only in the store, charging by the hour (typically $\$ 20$ or so) or by the type of board (usually a fixed percentage of the initial cost of the board). Some stores make service calls at the customer's location.

Many computer stores sell maintenance contracts on business computers.
result, many customers dropped their maintenance contracts.

The Role of the Computer Store.

Without the computer store there would be virtually no business market for personal computers since typical businesses need help from the planning stages right on through to a maintenance contract.
Many computer enthusiasts are happy enough to master the enormous amount of information that must be assimilated before the various sections of a computer are selected. A hobbyist usually purchases one section at a time, testing the system as he builds it. Typically, there is no particular end use in mind and, therefore, no particular requirement for the size of his computer system-it just grows as his budget and new applications allow. Business, on the other hand, has a specific use or uses for the computer. Business executives want to be sure that the computer system selected will not only work, but do the required job. Thus, the computer store's first service to the business is to answer the question, "Will a personal computer do the job I want done?" If that answer is yes, the store proceeds to
configure (choose the parts of) an appropriate system. Some typical important considerations are the amount of disk storage, the size of memory, and the speed of the printer. The computer store must consider the business application very carefully in making these decisions.

The next service performed by the store is to put the computer system together. Some stores actually do the assembly from kits. If various boards are purchased assembled from manufacturers, the computer store will burn in and test the system before delivery to uncover any infant mortality problems.

Probably the most important service provided by computer stores to businesses is ongoing repair service. Businesses usually cannot do their own repairs, and service from manufacturers by mail is obviously not a satisfactory route to take.

Nearly all computer stores, certainly the older ones, originally saw their market as being only the computer hobbyist. However, when disks became available for personal computers in 1976, business applications rapidly became common. At first, computer enthusiasts started applying personal computers to business problems. Then computer stores started developing standard business software packages for less knowledgeable users with some stores starting to specialize in the business customer.

The physical appearance of some stores started to change, too. Instead of a tile floor and a repair counter in plain view, stores were remodeled to have carpeted floors and no service counter with IC's in view.

With the appearance of the disk drive on the consumer market, computer store owners and personal computer makers have been developing standard business software packages for the businessman. The most common commercial business applications for per-sonal-use computers are bookkeeping and word processing.

The bookkeeping functions include general ledger, accounts receivable, accounts payable, and payroll. Different types of small businesses can make use of the same application software.

Use of Personal Computers in
Business. Word processing is useful to many different businesses, including large companies. In word processing, the computer is used with a typewriterlike terminal to edit manuscript and print form letters.

Here are some examples of how personal computers have been used successfully in the small-business world.

Savings and Loan. A savings and loan association is an excellent example of a business that has a wealth of applications ideally suited to a $\mu \mathrm{C}$. Two Dallas, Texas savings and loan associations recently installed $\mu \mathrm{C}$'s for their daily operations of taking deposits, paying interest, and making home loans. Software was developed by a consultant and a former savings and loan data processing manager.

The first of these companies to install a $\mu \mathrm{C}$ was a medium-sized operation with \$100-million in assets and about 50 employees. Most of its data-processing needs were satisfied by an on-line system provided by a service bureau. However, there were enough small applications not being performed by the service bureau to easily justify the $\mu \mathrm{C}$. In fact, the savings and loan estimates a $\$ 7000$ annual savings based on just those applications initially delivered.

The $\mu \mathrm{C}$ system uses an 8080 microprocessor with 32 K of main memory, dual $8^{\prime \prime}$ floppy disks that store 512 K , and an extended BASIC interpreter, all for a total price of about $\$ 5000$. A DECwriter LA36 was leased, with maintenance, for $\$ 86$ per month to take care of input and output requirements.

Application software was written entirely in BASIC in less than four weeks. The package comprised eight different applications that consist of about 2700 BASIC statements.

One application for the $\mu \mathrm{C}$ system is the preparation of new account letters and closed account stuffers. Form letters are stored on the disk and written on demand to a list of names and addresses entered in a different disk file. The new account letters give the company a marketing advantage as well as a dollar savings on the required twiceyearly audits.

Employees of the savings and loan, including secretaries, accountants, and tellers who use the $\mu \mathrm{C}$ system have accepted it as a working member of their team. One reason for this was the use of a "people-oriented" user interface that gently guides the user through the programs. Each program was almost completely self-instructing.

The second Dallas savings and loan company to install a $\mu \mathrm{C}$ was a mediumsize association having 35 employees. It uses an in-house IBM System/3 for most data-processing functions. Several
applications, however, were found to be more suited to the $\mu \mathrm{C}$. The system identical to the one described above, uses most of the same software and has six additional applications. Including the hardware and the software, the system cost less than $\$ 9000$.
Before the $\mu \mathrm{C}$ was installed, the association's employees spent two days to prepare 30 required reports on loans sold to the Federal Home Loan Mortgage Association. The reports are now prepared in only two hours.

A card file that used to keep track of the due date on 10,000 insurance policies was replaced by a seven-page BASIC program that performs the function of the card file and also sorts the policies by insurance agents. Fewer checks are written, fewer errors are made, and a substantial amount of money is saved.

Before the $\mu \mathrm{C}$ was installed, the payroll was done manually by the controller. Now the controller still makes up the payroll, but he has a computer to assist him. The payroll program used consists of 750 BASIC statements, can handle up to 250 employees, and maintains a pass-word-protected file of information on employees. The 800 bytes of data maintained on each employee can be displayed and modified as required.

Possibly the most interesting application is a program that selects packages of loans for resale. A buyer of a loan package can specify a wide variety of parameter ranges that must be satisfied by the loans in the package. For example, all loans in a package might be required to be between $81 / 2 \%$ and $83 / 4 \%$ and also satisfy several other conditions. In fact, any combination of 12 unique types of constraints can be applied to a given package.

Before the $\mu \mathrm{C}$ was in use, up to two days were required to select a loan package. Now the same operation can be done in only 40 minutes, giving the association a significant competitive advantage when several associations are bidding loan packages to the same buyer.

A set of ledger cards was previously used to keep track of real estate owned by the association. All transactions associated with each piece of property were recorded on the cards. Now the $\mu \mathrm{C}$ has replaced the ledger cards and provides timely, accurate reports on the status of each piece of real estate.

A tickler file for loan commitments was needed to plan cash requirements more accurately. The $\mu \mathrm{C}$ proved to be perfect for this application.

The association has calculated that its total saving due to the $\mu \mathrm{C}$ is $\$ 450$ per month. This compares favorably with the $\$ 350$ per month $\mu \mathrm{C}$ amortization cost over a three-year period.

Tour Agency. A tour agency that operates dedicated flights out of 16 U.S. airports to exotic vacation spots like the Bahamas, Jamaica, and Acapulco, recently installed a personal $\mu \mathrm{C}$ for business purposes. Bookings are accepted from travel agents from all parts of the country. Each booking involves the date and destination, hotel reservations, meal service, and other travel options. Follow-up paperwork and record keeping is extensive. Confirmations and invoices must be issued, alphabetized manifests are required by the airline, and hotel lists must be drawn up.

Seats can be sold right up to the time of departure, so there is little time for paperwork and error checking. Currently, the agency produces its manifests five days prior to tour departure and implements later changes by telephone. The agency may hold more than 20,000 individual reservations at any one time and may schedule 25 different flights during any one three-day weekend. The entire operation is controlled by five to eight clerks staffing the telephones and controlling the flight boards.

The computer setup consists of a distributed data processing network containing 10 personal $\mu \mathrm{C}$'s and one minicomputer. An IBM Series-1 minicomputer controls a database that contains information on all flights and reservations, while 10 PolyMorphic $\mu \mathrm{C}$'s (eight 8810's and two 8813's) interface with it (using a 9600 -baud line) to provide reservation, documentation, accounting, and management information. Six of the 8810's, each with a 90 K minifloppy diskette, serve as intelligent terminals (to the Ser-ies-1) for the individual travel clerks.

Documentation is by two Texas Instruments Model 810 printers under the control of an 8810 and an 8813 with two diskettes. A second 8813 provides support to the accounting function of the agency, while an 8810 provides on-line management information to the general manager. This terminal can also provide trend analysis and other statistical anlayses of the database.

The interface between the personal computers and the IBM computer is a set of microprocessor-controlled RS232 serial ports. There was no special hardware constructed for the system.

For the individual travel clerks, the
system can call up current availability of seating, options, and flights from the database on request and display it on a formatted screen at their location. When the system is first turned on, a list of available services is automatically presented. After signing on with an individual password (used to assign responsibility, prevent unauthorized use of the system, and limit access to some stored data), the operator selects the appropriate function. A formatted screen display is then presented, using software, with a blinking cursor to indicate the entries required. Reservation details are sent to the Series-1, which updates the database and instructs its printer to automatically produce the required confirmations and invoices.

The system provides excellent backup, too. The Series-1 automatically produces a magnetic tape of transactions as they are received from the operators' terminals. If the system "crashes," the tape can be used to recreate the data from the point of failure without having to return to the backup disk produced the preceding night.

If the Series-1 goes down, each $\mu \mathrm{C}$ can conduct limited business by retaining reservation requests on its own minifloppy disk. This allows the agency to continue near-normal operation. When the Series-1 comes back on-line, rapid transfer of information from the $\mu \mathrm{C}$'s to the database can be accomplished.

The system also provides impressive growth potential. The starting six operator positions can be increased to about 18 without changing the configuration of the Series-1.

The Future. Several factors will contribute to the increasing usage of personal computers for small businesses. First, the new and much lower cost threshold for the feasibility of application will open many new areas. More and more packages that include hardware, software, maintenance, and training will be developed for particular types of business applications.

Next, a misconception held by some people that personal computers are not sufficiently powerful or reliable enough for business purposes will be dispelled. As noted earlier, today's personal computer compares quite favorably and closely to the IBM S/360 Mod 30 that was the data-processing workhorse of the late 1960's. And the cost of personal computers is much lower. So we can expect a rapidly increasing use of personal computers by businesses.

Learn Electronics along with MATHEMATICS

The Grantham Electronics-With Mathematics SERIES - in five volumes, written in home-study-course style - now available by mail order...
\square Introductory Electricity With Mathematics. Size, $7 \times 101 / 2.288$ p ... $\$ 12.75$ \square Fundamental Properties of AC Circuits. Size, $7 \times 101 / 2.267$ pages $\$ 12.75$ \square Mathematics for Basic Circuit Analysis. Size, $7 \times 101 / 2.352$ pages . . $\$ 12.75$ \square Basic Electronic Devices and Circuits. Size, $7 \times 101 / 2.431$ pages $\$ 14.75$ \square Antennas, Transmission Lines, \& Microwaves. Size, $7 \times 10 \frac{1}{2}$. 315 pages $\$ 12.75$
The books listed above were written by Donald J. Grantham, whose 25 years of teaching-in print and in the classroom-enable him to anticipate questions in these subjects and thus answer them in these books. 16 lessons and 16 multiple-choice tests in each book (except for the last one, which has ten lessons and ten tests); many circuit diagrams with detailed explanations; many sample problems with step-by-step solutions; many practice problems with answers given; easy-to-understand language; in-depth explanations. Order from GSE Technical Books - address below.

Prepare for Your F.C.C.LICENSE

\square Grantham's FCC License Study Guide.
Size, $7 \times 10^{1 / 2} .377$ pages \$12.75
This not a Q \& A book, not a correspondence course, but simply an authoritative down-to-earth presentation of what you should know to pass FCC license exams for 3rd, 2nd, and 1st class radiotelephone licenses. Four information sections. 1465 FCC-type multiple-choice questions, with more than 65,000 words "explaining" the correct answers. Self-study presentation. Order from GSE - address at bottom of page.

OTHER GSE BOOKS

\square Improve Your Technical Communication (How to write technical reports, manuals, proposals, articles, etc.). Size, $7 \times 101 / 2.216$ pages $\$ 4.95$
\square Geometry for Science and Technology. Size, $7 \times 101 / 2.141$ pages $\$ 5.95$
\square Modern Electronic Calculations. Size, $7 \times 101 / 2.207$ pages $\$ 6.95$
\square Answers in the Mail (The author, a correspondence instructor in electronics, physics, and math, gives examples of questions written in by students, along with his detailed replies.) Size, 6×9.217 pages $\$ 4.95$
TO ORDER any of the books listed abave, check off the ones you want, compute the total price, add only 75a (regardless of the number of books you are ordering) for postage and handling, and mail this ad with your name and address and payment (no C.O.D.s) to:

GSE Technical Books
 (2000 Stoner Avenue)

P.O. Box 25992, Los Angeles, CA 90025

THERE ARE an ever-increasing number and variety of low-cost decimal and hexidecimal keypads available to the electronics experimenter. To successfully use these keypads, one must observe certain criteria to be sure mutually compatible signals are available. You cannot just connect any keypad to any circuit and expect the system to operate properly. Either the keypad selected must be specifically designed for the digital circuit it is to drive, or the digital circuit must be designed to suit the specific keypad.

One major problem with keypads (and most other mechanical switches) is that they are not ideal switches. Instead of producing a single pulse when they are opened and closed, they produce a "train" of brief pulses as they mechanically settle. In ordinary switching applications, this "bouncing" is not a problem. But when switches are used with high-speed electronic counters, each pulse within a train (Fig. 1) can appear as a separate toggle signal, resulting in false counting.

Most keypads are decimal (0 to 9), while many electronic circuits require a

binary-coded-decimal (BCD) input. Hence, a decimal-to-binary decoding system to make the conversion is required. Too, many counting circuits also require a "start" or "sync" signal to "tell" them when a key has been depressed. Therefore, some kind of key-closure sensing system must be used.

How to interface these important mechanical devices with digital circuits.

Debouncing. A basic debouncing circuit for a switch is shown in Fig. 2, accompanied by its truth table. The circuit consists of an AND and an OR gate. When the switch is closed, input A goes low and forces the output of the AND gate low. This low signal is connected to the C input of the OR gate and is additionally used to toggle the bounce-inhibit monostable multivibrator. In response to the low at its input, the multivibrator sends a low signal to the D input of the OR gate for a period of time determined by the monostable time constant. Since both inputs to the OR gate are low, the output of the gate also goes low.

The switch can now be released, causing the A input to go high, due to the pull-up resistor. With the low output of the OR gate connected to the B input, the output of the AND gate remains low. The circuit will remain in this state until the monostable time constant times out and sends a high signal to the D input of the OR gate.

As explained above, the very first closure of the switch causes the circuit to operate but locks out any subsequent bounce-produced signals. The only thing to keep in mind is that the bounceinhibit monostable time constant must produce an output slightly longer than any expected bounce interval.

The circuit shown in Fig. 3 illustrates the use of the debounce circuit with a BCD coding scheme. A function truth table is also shown. You may be surprised to see a hexidecimal table for a 10-key array. If you wish to obtain a hex A (10),
popular electronics

Fig. 1. Pulse train resulting from switch contact bounce. Sweep time is $50 \mu \mathrm{~s} / \mathrm{div}$.
both the 8 and 2 keys must be pressed simultaneously. Similarly, a hex F (15) requires simultaneous operation of the 8 and 7 keys. If you plan to use a hex keypad, use the same AND-OR gate logic for all 16 switches and substitute the circuit shown in Fig. 4.

Fig. 2. Switch debounce circuit is formed from AND-OR gate logic.

Fig. 3. Decimal keyboard binary coding and switch debounce circuitry.

Referring back to Fig. 3, when all keyswitches are open, their associated AND gate (IC1 through IC3) inputs are high. Hence, the outputs of the four encoding NAND gates (IC7 through IC9) are low. Closing any keyswitch except 0 forces at least one of the NAND gate inputs high.

The bounce-inhibit circuit uses a 4input NOR gate (IC10A) to trigger bounce-inhibit monostable multivibrator IC11. When any of the four NOR gate inputs go high (any key closed), the output of the NOR gate goes low and triggers the multivibrator. The multivibrator, in turn, sends a low signal to the OR gate associated with each key. This implements the debounce function. For the RC values given in Fig. 3, the debounce period is about 700 ms . For the 74121 monostable multivibrator, the timing equation is $T=0.69 R C$, with R kept at a value of less than 40,000 ohms.

The circuit remains in the debounce condition and ignores any switch bounce until the monostable multivibrator times out. When this occurs, the circuit resets back to where another key can be operated. Note in Fig. 3 that the multivibrator also produces a "sync" signal in exact time step with the input pulse. This is for use with an external counting or other enabling circuit.

The 0 key requires a different approach from that discussed. Although it has the same debounce circuit as the other keys, when the 0 key is closed, a separate input trigger, B, on the multivibrator is used.

Controlled Pulse Generator. One use for a debounced and BCD-coded keypad is as a controlled pulse generator that delivers a number of output pulses determined by the decimal number inserted via the keypad. The basic logic for this circuit is shown in Fig. 5.

Pressing any key on the keypad in the Fig. 5 circuit sends a sync pulse to an enabling latch and the BCD-coded signal to the inputs of a binary down counter. The latch signal enables the counter's preset input and a controlled-pulse generator. The pulse generator is designed so that both pulse width and pulse period can be controlled. Each time a pulse appears at the ouput, the binary down counter is decremented by one. When the counter reaches zero, it resets the latch and stops the operation.

The actual circuit, shown in Fig. 6, is straightforward. The IC1A/IC1B latch is made from conventional TTL NAND gates, with RC coupling at the inputs to

Fig. 4. Decoding logic for a hexidecimal keypad. This circuit is an addition to that in Fig. 3.

Fig. 6. Schematic of controlled-pulse generator. $R C$ coupling allows generation of fast pulses.
allow rapid action-in fact, a complete pulse train can be generated within the width of the sync pulse. Without RC coupling, the latch would be locked for the duration of the sync time. A transient input is a must to avoid lockout. The IC3 down counter has its LOAD enable input RC coupled to the sync input. This input requires a transient input to operate.

The controlled-pulse generator (IC2) is made up of both halves of a 74123 dual monostable multivibrator. The RC timing of IC2A sets the pulse period. The Q output at pin 13 is connected to NAND gate IC1D, with the second input of this gate connected to the latch. With the latch reset, the NAND gate is locked and its output remains in the high state, regardless of what the multivibrator is doing. In reality, IC2A is not doing anything, since its A input trigger at pin 1 is also enabled by the latch.

The first cycle of the operation is initiated when the latch is set. This causes a high-to-low transition at the A input. When the multivibrator triggers, the Q output at pin 4 goes low. When the multivibrator times out, the low-to-high transition at the Q output retriggers the multivibrator. Because the transition is so fast, the multivibrator appears to be con-

Fig. 7. Scope trace (A) shows switch bounce, while (B) shows four pulses initiated by switch closure. Sweep time is $50 \mu \mathrm{~s} / \mathrm{div}$.

Fig. 8. Nine pulses generated by key switch closure ($50 \mathrm{~ms} / \mathrm{div}$): (A) key closure; (B) sync; (C) outputs of 74123; (D) output QA; (E) output QB; (F) output QC; (G) output QD; all of IC3; and (H) latch input to IC1D.
tinuously in the triggered state
The output of gate IC1D decrements the IC3 counter and triggers the second monostable multivibrator (/C2B). The timing of this circuit controls the width of the pulse.

The only limitation on the frequency and width of the keyed pulses are those determined by the multivibrators. Very long and very short pulses over almost any range can be generated once the counter is preset. The keypad plays no role in this part of the operation.

The oscilloscope waveforms for the Fig. 6 circuit are shown in Fig. 7. The upper trace shows switch contact bounce, while the lower trace shows four pulses initiated by the first switch closure. Note the immunity to switch noise and the fast response possible. The traces in Fig. 8 show the timing of those functions that will be helpful in understanding the operation of the circuit.

Combination Lock. The logic for a four-digit combination lock that can be operated only by someone who knows the code is shown in Fig. 9. This circuit can easily be expanded so that several functions can be derived from a single keypad. Appropriate interfacing must be

Fig. 9. Four-digit combination lock that works with only one selected set of input digits.

Fig. 10. Four-digit lock with combinatian 1365. Keyed code must match jumpered connections to operate lock.

Fig. 11. Latched output for a keypad. Display is on a 7 -segment $L E D$ readout.
added between the circuit and any external devices to be controlled. The actual circuit for the combination lock is shown in Fig. 10.

Operation of the lock begins with the reset mode. This is necessary because the reset can be initiated at any time in the event an incorrect digit is keyed. The output of a two-stage counter is decoded in the steering logic, and the BCD signals from the keypad are integrated into the counter's decoding logic so that a specific digit only can be passed through the enabling latches if both signals are coincident. It is mandatory that the four latches be set in the proper sequence (W, X, Y, Z) because any other combination will be defeated in the sequence detector.

A function table for the lock is given in Fig. 10. The 0 on the DEC IN line is the reset mode. The outputs of FF1 and FF2 assume a 0101 state. The FF1 and FF2 blocks are clocked flip-flops, with the clocking occurring on the trailing edge of the input pulse. The outputs of the keypad are fed to IC4, the outputs of which are selected to form the inputs to the associated NOR gates.

If the correct first digit is keyed in, line W goes to the high state, setting IC5A/ IC5B. Both inputs to NOR gate IC7A are now low, setting the D input to FF3 (IC8A) to high.

The sync pulse from the keypad has once more clocked the counter. If the second digit is correctly keyed in, line X goes high and sets the IC5C/IC5D latch. This clocks a low to one input of (IC7B). Once again, the keypad is operated with the correct digit to cause the associated latch to operate and placing a high on the Y line. This puts a low on AUGUST 1978
the second input of $I C 7 B$. This sets the D input of $I C 8 B$ to high.

The keypad is operated one more time with the final correct digit to set the Z line high. The Z latch clocks IC8B to change its output status. Either of the IC8B outputs can be used to interface to an external circuit.

If any of the four latches is set out of sequence, the clocking of IC $8 A$ and IC8B will be disrupted. The circuit is reset by operating the RESET switch.

Although the Fig. 10 circuit shows the use of a 1-to-10 decoder for the keypad input, a 1-of-16 decoder can be used for a hexidecimal input.

Switch Latch \& Display. One difficulty with a keypad is that it is momentary. Once a key has been released, the action ceases. The addition of a quad latch, as shown in Fig. 11, will hold the switch outputs as long as dc power is applied. The IC1 quad latch is used to drive BCD-to-7-segment decoder/driver IC2 and a common-anode 7 -segment LED display. This combination holds the last key depression and also produces a visible display of the digit depressed.

In Conclusion. In this article, we have described the major problems encountered when using mechanical switches-specifically keypad arrayswith digital circuits. We have offered some examples of how to deal with the problems and given hints on interfacing keypads with the electronic circuits. It is suggested that for further study and understanding of the material presented here you breadboard the circuits presented and do some experimenting on your own. longer. Empire cartridges are designed to track at lower forces. This imposes less weight on the record insuring longer record life.

2.Your records will sound better. Distortion is a mere .0005 at standard groove velocity. Therefore, reproduction is razor sharp with no wavering or fuzziness.

3.More cartridge for your money. We use 4 poles, 4 coils and 3 magnets in our cartridges (more than any other brand).

4.Inspection from head to toe. Every Empire cartridge, regardless of price, is fully inspected both visually and technically. Tests include frequency response, output balance, channel separation and tracking.

5.Diamond control. At Empire we cut, grind, polish and mount the diamonds to our own exacting specifications. We insure total quality of the product from start to finish by buying only the highest quality gems.

For more good reasons to buy an Empire cartridge, write for your free catalogue:
EMPIRE SCIENTIFIC CORP. Garden City, N.Y. 11530
Mfd.U.S.A. $巨$
circle no 15 on free information card

NUD()NLARM BMCKS LP CAR
 WARNING LIGIITSS OR METERS

Easy-to-build circuit sounds an alarm so you won't miss your car's visual warning.

PEOPLE often fail to notice immediately when a red indicator on the dashboard of a car lights to warn that service is required. The "Audible Car Protection Alarm" described here corrects this problem by simultaneously issuing an audio signal when a dashboard warning indicator is activated. It can spell the difference between a minor and a major car repair, or even save lives.

When any one or more of the warning indicators in your vehicle lights, the audio alarm sounds an insistent beeper. Then you can check the indicators to determine what service is required.

In addition to serving as an automatic fault monitor, the alarm can also remind
you to turn off headlights and rear-window defogger. The system can easily be expanded to monitor dozens of points in a vehicle's or boat's electrical system.

About the Circuit. As shown in Fig. 1, triple three-input NAND gate IC1 serves three separate functions. Section A operates as a conventional three-input NAND gate. If one or more of its normally high A, B, and C inputs goes low, the pin-10 output of this gate also goes high.
Section B, also used as a three-input NAND gate, has a $1500-\mathrm{Hz}$ signal applied to its pin-2 input, a $1-\mathrm{Hz}$ signal applied to its pin-1 input, and the output from section A of IC1 applied to its pin-8
input. Hence, when the output from section A goes high, the circuit oscillates at 1500 Hz and is gated on and off at approximately half-second intervals.

Section C of $1 C 1$ is configured as an inverting amplifier whose output is coupled back to its input via R1 and oscillates at a frequency determined by the values of R1 and C1.

The output of section B drives Q1, whose collector load is a conventional miniature 8 -ohm loudspeaker. The combination of C3, R2, and R3 functions as the system's $1-\mathrm{Hz}$ oscillator. Capacitor C3 charges through R2 and discharges through R3. This capacitor must be initially charged before the circuit can os-

Fig. 1 Gates IC1C, IC1B, and Q1 form a $1500-\mathrm{Hz}$ oscillator gated on and off by a $1-\mathrm{Hz}$ signal.

PARTSLIST

CI-0.0047- μ F Mylar
C2- $10-\mu \mathrm{F}, 16$-volt electrolytic
C3-3.3- FF . 25 -volt tantalum
DI through D5-IN4148 or similar silicon diode
IC I-CD4023AE (RCA) CMOS triple three input NAND gate
LED!-Red light emitting diode
Q1-2N2907A or similar pnp transistor
The following resistors are $1 / 4$-watt, 10% :
RI- 100.000 ohms
R2-5.1 and 2.2 megohms in series
R3- 330.000 ohms
R4,R6,R15- 1000 ohms
R5-51 ohms
R7-22 ohms
R8-2200 ohms
R9 through R14-220,000 ohms
SPKR-8-ohm, $100-\mathrm{mW}$ loudspeaker
Misc.-14-pin DIP socker: plastic case; printed circuit or Wire Wrap board; splice-in connectors; hookup wire; solder; machine hardware; etc.
Note: A basic Autotel ${ }^{\text {TM }}$ kit consisting of all parts except D1, D2, D4, D5, LED1, R13. R14, R15, is available for $\$ 4.95$ plus $\$ 1.00$ shipping and insurance from James Electronics, Box 822 . Belmont, CA 94002.

(A)

cillate. With the value shown for C3, a delay of about 15 seconds is provided before the alarm enables. This allows time for normal engine starting and the build-up of oil pressure. Consequently, during normal operation, the alarm will not sound.
To see how the circuit operates under actual in-use conditions, let us assume that the oil pressure drops. As shown in Fig. 2A, the oil-pressure sender grounds the oil-pressure lamp, which then comes on. Simultaneously, the cathode of D4 is placed at ground potential. At this point, D4 conducts through R10 and pin 11 of IC1A goes low, causing the output of this gate to go high. As long as C3 is charged, IC1A allows the $1500-\mathrm{Hz}$ oscillator to operate. When the potential across C3 reduces sufficiently, the oscillator ceases operating until C3 recharges. Therefore, the $1500-\mathrm{Hz}$ oscillator is gated on and off by the R2, R3, C3 circuit at 0.5 -second intervals. The beeping of the alarm continues until all of the circuit's A, B, or C inputs are ungrounded.

In Fig. 2B, diodes D1 through D3 are connected to the ignition, headlights, and defogger (if any) circuits so that when any of these switches is closed, the associated diode is forward biased
and conducts to apply power to the alert circuit via R7 and its associated C2 filter capacitor.

As an example of the foregoing, assume that the ignition is turned off, but either the headlights or the defogger is left on. The alarm will then receive power through the diode attached to the headlight or defogger switch, thereby sounding off and continuing to do so until the headlight or defogger switch is turned off. This is because when the engine is turned off, the oil pressure drops to close its sensor switch, thus activating the alarm. This action will also occur even if the oil-pressure lamp is burnt out, since the A input will still be grounded. The rear window defogger is also included since in many cars, this accessory will still operate when the ignition is turned off.

Construction. The simple circuit that makes up the system can be wired by any convenient means, including a printed circuit board, Wire Wrap, and point-to-point. Since there are no high frequencies with which to contend, lead dress is not critical.

The alarm can be mounted in any box that will accommodate it and the speaker. A barrier strip, mounted on the enclo-
sure, can then be used to make all power, ground, and sensor connections.

The diode coupling technique shown in Fig. 2A can be used to increase the number of sensing points to monitor other elements in a mobile system. Each NAND-gate input can handle a large number of inputs, connected in parallel.

Note in Fig. 2A how a LED parking brake set circuit can be added to the alarm circuit. The switch associated with this sensor can be a conventional microswitch mounted so that, when the parking brake is set, the switch closes. The LED can be mounted on the dashboard and suitably identified.

Installing the System. Before the alarm is installed in a vehicle, it should be tested for proper operation. Connect a 9 -volt battery between the ignition input and ground. Temporarily connect sensor input A to ground. After about 15 seconds, the alarm should begin to beep. Disconnect the sensor input from ground; the alarm should cease beeping. Repeat this procedure with sensor inputs B and C. The positive terminal of the battery can be connected with a jumper wire to the headlight and defogger inputs to test the operation of these functions.

Make all connections to the various points in the vehicle's electrical system securely and with care, preferably with splice-in connectors where possible. If you use a strip-and-wrap splice, make sure you cover each connection with vinyl electrical tape.

Dress all wires to protect them from mechanical and heat damage. Do not connect the ignition input to the ignition coil; otherwise, it may be damaged by transients from the coil. It goes to some accessory that is powered only when the ignition switch is turned on. Make sure that the headlight and defogger input power connections are made as shown in Fig. 2 B .

After installation is complete, turn on the ignition but do not start the engine. (Set the ignition switch to the ON position only.) Since the low-oil pressure switch will be closed, after the delay period, the alarm should begin to beep. Turn on the headlights and turn off the ignition. The alarm should continue to beep and stop only when you switch off the headlights.

The alarm circuit can be used for monitoring other dc electrical systems. If failure modes are indicated by a "high" voltage, these can be diode OR'ed at input F (see Fig. 1) with the output of IC1A.

Solid State

ON THE LIGHT PATH

By Lou Garner

FEW OF THE advantages that fiber-optic coupled communications systems offer over conventional wired systems are greater noise immunity, smaller diameter, and absence of crosstalk. As a result, subsidiaries of the enormous Bell System have installed optical systems in a number of locations for exhaustive field tests. Several major electronics manufacturers, including industry giant RCA, are now offering fiber-optic communications systems and components as standard "off-the-shelf" products. If present trends continue, then, the wave-of-the-future might well be a light wave, at least as far as communications links are concerned. What's more, the increasing interest in optical communications and the resulting improved availability of special optoelectronic components and devices has opened new and exciting areas for the serious experimenter and hobbyist.

Illustrated diagrammatically in Fig. 1, RCA's new optical communications link, Type C86003E, is designed specifically for digital data applications. With a 20 -megabit (Mbs) capability, it can be used in computer links, digital telephone, data processing and process control systems as well as in highvoltage optically-isolated systems. The system consists of two basic units-a transmitter and a receiver. These are connected to opposite ends of a suitable optical fiber cable (Dupont type PFXS120R or equivalent), which can range in length from a few meters up to one kilometer. Self-contained within a two-inch square by one-inch thick module, the transmitter requires only a signal source and a 5 -volt dc power supply. It includes a TTL buffer, a GaAIAs LED and LED modulator/driver circuits. Housed in a similar-size package, the receiver comprises a silicon pin photodiode, an amplifier, threshold detector circuitry, and a TTL buffer. Supplying digital output signals, it requires a dual $\pm 6 \mathrm{~V}$ dc power source in addition to $a+6$ to +45 V dc bias supply for operation.
Although excellent for many commercial, industrial and laboratory applications, RCA's C86003E system, which is cur-

rently priced at $\$ 850$ each (exclusive of optical fiber cable), is rather on the expensive side for typical experimenter and hobbyist projects. Even where cost is not a factor, however, most experimenters prefer to assemble their own circuits and systems using individual devices. With a little imagination, a little care, a willingness to modify and adapt standard circuits, and a modicum of skill, such projects are well within the reach of the average experimenter's budget and can be assembled using readily available commercial components.

As a general rule, IR (infrared) emitting diodes or injection diode lasers are used as transmitting sources. These are more efficient than visible light LED's and can develop higher peak output levels. As a further advantage, the silicon photodiodes used as detectors are more sensitive to infrared than to visible radiation. A typical IR emitter driver circuit is illustrated in Fig. 2. Using standard devices, this circuit was abstracted from RCA's 24-page booklet Solid State IR Emitters and Injection Lasers, publication No. OPT-113C. In addition to this and other practical circuits, the publication includes outline drawings of typical devices, condensed specifications, definitions of special terms, a discussion of safety considerations, characteristic curves, and a valuable review of basic theory.

Featuring a CA3085A/B positive voltage regulator IC, the simple driver circuit given in Fig. 2(A) permits IR emitters to be driven by unregulated dc sources of from 7 to 11 volts. It provides adequate voltage regulation and limits maximum forward current to protect the emitter diode. This basic circuit may be modified for use as an optical digital data transmitter by keying the IR emitter on and off using a series control transistor or other switching device capable of handling currents of up to 100 mA .

Much higher radiant flux outputs may be obtained from IR emitters when they are operated in pulsed rather than dc (CW) modes. For example, the RCA SG1010A will deliver approximately 7.0 mW when driven at its maximum continu-

Fig. 1. Block diagram of RCA's C86003E fiber-optic data link.

Fig. 2. Basic IR emitter-driver circuits: (A) direct current; (B) simple pulser.
ous forward dc rating of 100 mA . If pulsed with a peak forward current of, say, 3.5 A, however, its peak radiant flux output is better than 120 mW . Naturally, when an IR emitter is operated in a pulsed mode, the pulse width and pulse repetition rate (PRR) must be adjusted so that the average power dissipation is within the maximum limits of the device. In addition, heat sinking may be required for some applications.

A simple pulser for IR emitter diodes is shown in Fig. 2(B). Here, a CA555 timer IC serves as the pulse oscillator. The oscillator output is applied through a 250 -ohm drive amplitude
control potentiometer to the base of a 2N6180 pnp transistor which, in turn, furnishes the drive current to the IR emitter diode. Coarse and fine adjustments are provided for both the pulse width and pulse repetition rate (PRR). With the component values specified, the pulse width can be adjusted from 4 μs to $250 \mu s$ while the PRR range is from 6 Hz to 3 kHz . In practice, the pulse width is adjusted first, then the PRR for optimum performance without exceeding the diode's rated power dissipation. When operated on a 15 -volt dc source, this circuit can supply pulse currents of up to 3.5 amperes.
(Continued on page 72)

(3) wire wrapping center 2 ?

DIP SOCKETS

PRE-CUT
PRE-STRIPPED WIRE

*MINIMUM ORDER $\$ 25.00$, SHIPPING CHARGE $\$ 1.00$. N.Y. CITY AND STATE RESIDENTS ADD TAX

Advanced Electronic Career

ANNOUNCING A New CREI Program: Minicomputer \& Microprocessor Technology Including A Microprocessor Laboratory

The microprocessor has ushered in the age of microtechnology and electronics will never again be the same. The microprocessor has made possible the placing of an entire computer on a silicon chip one quarter inch square. The microprocessor "miracle chip" is in the process of changing the world. Soon all technical personnel in electronics will have to understand and work with the microprocessor. It is invading virtually every area of electronics. And it is profoundly affecting your electronics career.

Brand New
 Program

CREI has a brand new program to help you learn how to work effectively with this revolutionary electronics development. CREI's new program in Minicomputer and Microprocessor Technology is designed to prepare you for this field by giving you the education and practical experience you need.

The program provides solid preparation in electronics engineering technology with a specialization in minicomputers and microprocessors. In addition, it includes a microprocessor laboratory which features a fully programmable microcomputer which utilizes the Motorola 6802 microprocessor chip. This is an extremely important element of your program.

Programming Essential

As you may well know, you must learn how to program the microprocessor in order to design, service or troubleshoot microprocessor electronic systems. There is only one effective way to learn this all-important skill of programming, and that is by actually doing it. CREI's new program gives you this opportunity as you work with the exciting microprocessor laboratory.

Programming Is Easy

With CREI's new program, learning the skill of programming is simple. Within a few hours you'll be programming the microprocessor and in a short time you'll learn how to program it in three languages: BASIC, assembly and machine languages. In addition, you will learn how to interface the microprocessor with other systems and to test and debug specialized programs.

Preparation at Home

Wide Choice
 of Programs

Please note however, that CRFI's new program is only one of 16 state-of-theart programs in advanced electronic technology offered by CREI. So even if you choose not to specialize in microprocessor technology. CRFI has an adtvanced electronies program to meet your needs.

With CREI. you may choose from any of the following areas of specialization in advanced electronics:

Microprocessor Technology
Computer Engineering
Communications Engineering
Digital Communications
Electronic Systems
Automatic Controls
Industrial Electronics
Television Engineering
Microwave Engineering
Cable Television
Radar and Sonar
Nuclear Instrumentation
Satellite Communications
Aeronautical and Navigational
Solid State Theory
Nuclear Engineering

Unique Lab
 Program

An exclusive option available with (REI programs in electronic engineering technology is CREI's unique Flectronic Design Laboratory program. It gives you actual experience in designing practical electronic circuits. It also helps you to understand the theories of advanced electronics and gives you extensive experience in such areas as tests and measurements, breadboarding, prototype construction. circuit operation and behavior. characteristics of electronics components and how to apply integrated circuits. Only CREI offers this unique I ab Program.

Practical
 Engineering

CREI programs give you a practical engineering knowledge of electronics. That is, each part of your training is planned for your "use on the joh." By using your training. you reinforce the learning process. And by demonstrating your increased knowledge to your employer. you may qualify for faster career advancement.

Free Book

There isn't room here to give you all of the facts about career opportunities in advanced electronics and hoss CREI prepares you for them. So we invite you to send for our free catalog. This fully illustrated. so page book describes in detail the programs. equipment and ser ices of CRFI.

Qualifications

You may be eligible to take a CREI college-level program in electronics if you are a high school graduate for the (rite equivalent) and have previous training ot experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Mail card or write describing qualifications to

BREI

Gl Bill
CREI programs tre approwed for training of reterons and servicementinder the G.I. Bill.

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Northwest
 Washington, D.C. 20016

Accredited Member National Home Siudy Council

-

(Continued from page 67)
Offering greater output, the more complex high-performance pulser circuit illustrated in Fig. 3 uses additional CA555 devices to provide a time delay, to permit synchronization of the pulse with an external signal, and to shape and invert the drive signal waveform. With an appropriate dc source, this pulser can supply current pulses of up to 10 amperes at PRR's from 1.5 Hz to 3.7 kHz , pulse widths of from 0.2 to $1200 \mu \mathrm{~s}$, and a delay range of 2.8 to $1000 \mu \mathrm{~s}$. In operation, capacitors C1, C2 and C3 determine the PRR, delay, and pulse width ranges, respectively. With $C 1$ at $10 \mu \mathrm{~F}$, the PRR range is 1.5 to 36 Hz , for $1 \mu \mathrm{~F}, 15$ to 365 Hz , and for $0.1 \mu \mathrm{~F}$, 150 to 3.7 kHz . The time-delay range varies with C2's value as follows: $0.001 \mu \mathrm{~F}, 2.8$ to $20 \mu \mathrm{~s} ; 0.005 \mu \mathrm{~F}, 13.8$ to $100 \mu \mathrm{~s}$; $0.01 \mu \mathrm{~F}, 28$ to $200 \mu \mathrm{~s} ; 0.05 \mu \mathrm{~F}, 138$ to $1000 \mu \mathrm{~s}$. Finally, with C3 at 1 pF , the pulse width range is 0.2 to $1.2 \mu \mathrm{~s}$, for 0.001 $\mu \mathrm{F}, 1.1$ to $12 \mu \mathrm{~s}$, for $0.01 \mu \mathrm{~F}, 11$ to $120 \mu \mathrm{~s}$, and for $0.1 \mu \mathrm{~F}$, 110 to $1200 \mu \mathrm{~s}$. Unless otherwise indicated, all resistors are half-watt types, all smaller value capacitors either high-quality ceramics or Mylar film types, and larger capacitors electrolytics, except for timing capacitor C1, which should be a tantalum type. The pulse oscillator, wave-shaping and control circuits are operated on a standard 15 -volt dc source, while an adjustable 0 to 100 volt (negative to ground) dc power supply is required for the output driver stage. The 2N6500 npn output transistor must have an adequate heat sink.

Another and different type of IR emitter driver circuit is shown in Fig. 4(A). Using a 741 type op amp in conjunction with an npn transistor power stage, this circuit was designed originally for use with RCA's unique three-element C30121 optically-coupled isolator, shown schematically in Fig. 4(B). Comprising a GaAs IR emitter and two coupled silicon pin photodiodes, the C30121 is supplied in a modified TO-5 package. Within the circuit configuration, one photodiode serves as an output device, the other as a feedback element and bias control. The basic design can be modified readily, however, for use as a linear IR emitter driver for fiber-optic communications systems, although the light power output and effective maximum range will be much lower than can be obtained with pulsed emitter systems. As with many other standard op-amp circuits, the design requires a dual ($\pm 12 \mathrm{~V}$) dc power supply for operation.

Where greater radiant flux power levels are needed for maximum range, higher switching speeds for maximum digital data transfer, or superior high-frequency responses for analog communication systems, injection laser diodes are preferred over conventional IR emitters as fiber optic system transmitters. Although they also are p-n junction diodes, injection lasers differ in construction from conventional LED's in that they employ an optical cavity and are designed for higher injection carrier densities. The optical cavity-essentially a short section of optical waveguide-is formed by cleaving and polishing the opposite ends of the diode junction to form partially reflecting surfaces, then sawing the adjacent sides to complete the rectangular structure.
Unfortunately, space limitations have limited our discussion to light sources, the transmitter end of fiber optic communications systems. In a future column, we'll examine photosensor and amplifier circuits suitable for use at the "other end" of the cable, that is, as receivers.

Reader's Circuit. From deep in the heart of Texas, reader Thomas Jay Hubbard (5603 Colmesneil, Pearland, TX 77581) has written to offer a capacitance measurement circuit which should be of interest to experimenters who like to assemble

A
Fig. 4. RCA's C30121 optically coupled isolator: (A) driver circuit; (B) lead connections.
their own test instruments. According to Tom, his design is accurate to within $\pm 10 \%$ and is capable of measuring units ranging in value from 10 pF to $10 \mu \mathrm{~F}$. Tom also indicates that his circuit, illustrated in Fig. 5, can be assembled for well under 20 dollars, exclusive of the external meter used as a null indicator.

Referring to the schematic, Tom has used the ubiquitous 555 timer, IC1, as an oscillator. Transistor Q1 provides a discharge path for range capacitor CK complementary to the IC's internal discharge circuit (pin 7) across the unknown test capacitor, Cx. The RK-CK and RF-Cx networks are connected from IC1's output terminal 3 to each side of the power source,

B1, with the voltage here applied through "L" filter R4C2 to an external zero-center meter, M, where it is compared to the source's mid-point voltage, established by voltage-divider R2R3. Shunt diodes D1 and D2 limit the maximum voltage across the meter.

The values of capacitor CK and resistor RF are preselected for the desired measurement range. In operation, then, potentiometer RK is adjusted for a 50% duty cycle, as indicated by a " 0 " reading on the null meter, M. At this point, RK's value will be directly proportional to the value of the unknown test capacitor, $C x$, permitting it to be calibrated directly in the desired capacitance values.

$$
\begin{aligned}
& \text { Save even more } \\
& \text { when you build } \\
& \text { your own } A C E \text {. }
\end{aligned}
$$

Yes, now you can save even more when you build an ACE from one of our two ACE Models kits. ACE is the better solderless breadboard from A P Products. There's just no faster or easier way of building and testing circuits and circuit ideas.

Part No.	ACE Model No.	Tie Points	OIP Capacity	No. Buses	No. Posts	Board Size (inches)	Price Each
923333	$200-\mathrm{K}$ (kit)	728	$8(16 \mathrm{~s})$	2	2	496×5916	$\$ 18.95$
923334	$201-\mathrm{K}(\mathrm{kit})$	1032	$12(14 \mathrm{~s})$	2	2	$49 / 16 \times 7$	$\$ 24.95$

Order from your AP distributor today. Our distributor list is growing daily. For the name of the distributor nearest you call Toli-Free 800-321-9668.

Send for our complete A P catalog, the Faster and Easier Book.

Neither layout nor lead dress should be overly critical, so the circuit can be duplicated using point-to-point wiring on perf board, wire-wrap, or a suitable board, at the builder's option. The fixed resistors are half-watt types, C1 a low-voltage ceramic or plastic film capacitor, and C2 a 10 - to 15 -volt electrolytic. Jacks J 1 through J 4 may be binding post or plug-in types. Standard general purpose diodes are used for D1 and D2, but the 555 timer, IC1, and type 2N2222 npn transistor, Q1, should be high-quality, low-leakage devices. The critical components are CK, RK, RF, R2 and R3. Of these, CK should be a high-quality, low-tolerance polystyrene or Mylar plastic film capacitor, while RK consists of a 68 K fixed resistor in series with a 1-megohm potentiometer, the latter a good-quality unit with a linear taper. Resistors RF, R2 and R3 should be low tolerance ($5 \%, 2 \%$, or lower) types. Different values are used for $C K$ and RF, depending on the measurement range needed, as specified in the table below. If a full-range instrument is preferred, the basic design may be modified by adding a multi-section, multi-position rotary switch, wired to select any of the listed values in order.

RANGE	$\boldsymbol{C x}$	$\boldsymbol{R F}$	$\boldsymbol{C K}$
A	$8 \mathrm{pF}-130 \mathrm{pF}$	820 K	100 pF
B	$80 \mathrm{pF}-1300 \mathrm{pF}$	82 K	100 pF
C	$800 \mathrm{pF}-0.013 \mu \mathrm{~F}$	82 K	1000 pF
D	$0.008 \mu \mathrm{~F}-0.13 \mathrm{~F}$	8200	1000 pF
E	$0.08 \mu \mathrm{~F}-1.3 \mu \mathrm{~F}$	8200	$0.001 \mu \mathrm{~F}$
F	$0.8 \mu \mathrm{~F}-13 \mu \mathrm{~F}$	820	$0.001 \mu \mathrm{~F}$

Fig. 5. Capacitance measurement circuit is said to be accurate to within 10%, in either direction, and will measure values from 10 picofarads to 10 microfarads.

Once the instrument's assembly and wiring have been completed and double checked for errors, shorts, opens and correct polarities, RKs scale may be calibrated by measuring known capacitors within each range. Intermediate values may be interpolated easily as needed to complete the scale. The external null meter, M, should be a high impedance VTVM or FET voltmeter with a 1.5 V range, adjusted to zero at the center of the scale.

By John McVeigh

LONGWAVE IMAGE

Q. Recently, while tuning across my shortwave receiver's longwave band, I picked up WOAI, a local radio station, at a frequency of 280 kHz . Is this some type of relay broadcast or is my receiver faulty?-Troy Hollan, Fowleston, TX.
A. My copy of the World Radio and TV Handbook (available from Gilfer Associates, Box 239, Park Ridge, NJ 07656, for $\$ 11.95$ postpaid) lists WOAI as operating on 1200 kHz with a transmitter power output of 50,000 watts. The station broadcasts from San Antonio. I don't know how far that is from Fowleston, but you say it's a local.
If your receiver has an i-f of 460 kHz . then its local oscillator is running at 740 kHz . The AM broadcaster's signal is probably so strong that a portion of it is
getting past the front end and into the receiver's mixer. The signal is there heterodyning with the local oscillator to produce a frequency-shifted version of WOAI's program at 460 kHz -the i-f frequency. The i-f stage can't distinguish this image signal from one original at 280 kHz , so it amplifies the signal and passes it to the detector. Actually, most receivers have a $455-\mathrm{kHz}$ i-f, not one at 460 kHz . If this is the case with your receiver, you are actually tuned to 290 kHz if the image is twice the $i-f$ away at 1200 kHz . Perhaps your receiver's calibration is off somewhat on the longwave band.

Considering the strength of the image station, I don't think that you should consider your receiver "faulty." A $455-\mathrm{kHz}$ $i-f$ can result in image problems on the higher shortwave bands, where the im-

age is less than one octave away from the desired one. However, 1200 kHz is almost five octaves above the frequency to which the receiver is tuned, so the front end will attenuate the broadcastband signal to a high degree. The signal is so strong that, even after this attenuation, enough is getting to the mixer to produce the image.

You can supplement your receiver's image rejection by installing the wave trap shown in the figure at the antenna input. The inductor is a ferrite-loop antenna coil such as the Radio Shack No. 270-1430, and the capacitor a $365-\mathrm{pF}$ variable tuning capacitor. Mount the components in a metallic box. The antenna lead-in can be connected to the wave trap via a binding post. Be sure that both the wave trap enclosure and the receiver chassis are grounded to earth ground by way of a direct, lowresistance path. To attenuate the imagecausing station, simply tune the capacitor so that the circuit resonates at that frequency. (Some capacitors come equipped with knobs with frequency markings for the AM band imprinted on them, making tuning a simple task.) The same circuit can be used to alleviate the cross modulation that strong, local AM stations produce in some receivers on the lower shortwave bands.

누우영 Experimenter's Corner

By Forrest M. Mims

DIGITAL TO ANALOG CONVERTERS, PART 2

AST MONTH, we saw how an $R-2 R$ resistor ladder network can be used as a rudimentary digital-to-analog (D/A) converter. We're now going to expand it into a full-fledged D/A converter and connect the converter to a few digital IC's. First, let's look at the circuit we'll be using to provide a binary input to the D/A converter.

A Simple Binary Input Circuit. A

 BCD (binary coded decimal) counter makes a convenient input circuit for the D/A converter. If you prefer, however, you can use a 4-bit RAM (such as the 7489) or any other chip with a 4-bit output. You can assemble both the binary input circuit and D/A converter on a plastic solderless breadboard.Figure 1 shows the counter circuit along with a simple clock oscillator made from two of the inverters in a 74C04 hex inverter. I used CMOS chips, but you can use the TTL equivalents for the specified IC's. The pin numbers are the same for both.

If you use TTL chips, be sure to use a 5 -volt power supply. If you don't have a suitable supply, use a 6 -volt battery. Insert a IN4001 diode in series with the positive power supply lead to reduce the battery voltage to about 5 volts.

You can vary the clock frequency and
count rate of the decade counter by varying the values of R1 or C1 or both. Increasing the capacitance of C1 from 0.1 to 1.0 should give enough range.

The D/A Converter. Figure 2 shows how to add an operational amplifier to the $R-2 R$ resistor ladder network we experimented with last month. After you assemble the circuit, connect the binary inputs of the ladder network to the BCD counter outputs and then connect the probe of an oscilloscope between the output of the op-amp and ground. (If you don't have access to a scope, we'll shortly show you how to observe the operation of the circuit with a voltmeter.) With the clock running, you'll see a scope trace something like the diagram shown in Fig. 3. Obviously, the scope is showing the stepped voltage ramp coming from the op amp as the counter cycles through its 0000-1001 sequence.

Notice the ramp has not sixteen (as you would have expected from a 4-bit D/A converter); but ten, voltage levels.

The reason for this, of course, is that the 74 C 90 is a BCD and not a pure binary (0000-1111) counter. Use a binary counter and you'll get a ramp with sixteen voltage steps.

The simple circuit in Fig. 2 can be used to synthesize waveforms digitally. A capacitor across the output will smooth the stepped waveform. The sequentially counting 74 C 90 will produce only ramps, but you can program a 7489 16-by-4-bit RAM to produce more complex waveforms.
Improving the D/A Converter. It's possible to improve the performance of the basic D/A converter by adding a second op-amp. The output voltage from the first swings from negative to positive as the ramp is created by the stepped voltage. It would be convenient to be able to adjust the ramp so that its baseline is ground, or any voltage you specify. The offset adjustment available to the first 741 isn't adequate for this purpose.

The second op amp (Fig. 4) makes adjusting the baseline of the ramp easy. In operation, the BCD counter is allowed to reach a count of 0000 . The clock is then disabled to stop the count and the output of the second 741 is adjusted for any desired voltage. When the clock is reactivated, the output voltage will step through a ramp of ten voltage levels and automatically recycle as before.

You can set the 0000 count to equal 0 volt, so it's easy to use a voltmeter to

Fig. 2 How to connect an op amp to the resistor ladder D/A converter.

Fig. 1. CMOS clock and BCD counter for supplying binary inputs to D/A converter.

Fig. 3. Ramp voltage output from D/A converter in Fig. 2.

Fig. 4. Schematic of an improved D/A converter.
see the circuit in operation if you don't have access to a scope. First, insert a $10-\mu \mathrm{F}$ capacitor in parallel with C1 to slow down the clock to a few hertz. Then connect a voltmeter between pin 6 of the second 741 and ground. The needle on the meter will jump to about 3 volts and fall toward 0 volt in equally spaced increments. The cycle will then repeat.
Notice that the second 741 reverses the slope of the voltage ramp. The ramp from the first 741 goes from a low to a high voltage, while the ramp from the second 741 goes from high to low.

It's possible to reverse the slope of the ramp by inverting the binary input to the resistor ladder. The clock circuit uses only two of the inverters in the 74C04, so you have four uncommitted inverters, just enough to do the trick. Simply connect one inverter between each BCD counter output and the respective input to the resistor ladder.

Using the D/A Converter. By now, you should have a good understanding of the operation of a basic D/A converter. Let's use the circuit we've built in a practical application. Last month we noted that a D/A converter permits you to control the brightness of a lamp digitally.

Fig. 5. Driver added to converter.

Figure 5 shows how a single driver transistor can be connected to the second 741 in our D/A converter to control the brightness of a 222 lamp.

Be sure to adjust the D/A converter so that a 0000 input gives an output of 0 volt. This will ensure that the lamp receives the highest voltage for a binary input of 1001. The lamp I used with the prototype circuit displayed six distinct brightness levels for binary inputs of 0100-1001. The counts 0000, 0001, 0010, and 0011 produced too little voltage to light the lamp.

You can also use the driver transistor circuit to power a small dc motor. In this mode, the D/A converter functions as a digital-motor speed controller. When the clock is slowed to a rate of less than a few Hz , you can easily observe the speed variations as the motor slows from a relatively fast clip to a full stop.

Remember, you can supply binary inputs to the D/A converter with a 4-bit memory such as the 7489 (see "Experimenter's Corner," December 1977 and January 1978). This means you can program any sequence of analog voltages you choose.

Further Reading. In a future column we'll explore the world of analog-to-digital (A/D) converters. Meanwhile, if you've found these experiments with D/A converters interesting, you'll want to read more on the subject. For starters, see "The How's and Why's of D/A and A/D Converters" by Robert D. Pascoe in the April 1977, Popular Electronics. For more details aboul resistor ladder networks, see "Fundamentals and Applications of Digital Logic Circuits" by Sol Libes (Hayden Book Company, 1975, pp. 131-138).

Introductory Offer-FREE AC ADAPTOR
The first and only lab accuracy portable DMM Kit featuring MOS/LSI IC economy and reliability. Measures DC/AC Volts, Kilohms, DC/ AC milliamps in 21 ranges. Polarity indicators and overload protection are provided, and 0.5 inch LED displays give easiest-to-read digital readout to 1999. The 270 features a basic 0.5% DC accuracy, 10 Meg ohm input impedance, low voltage drop in all current ranges and auto-matically-flashing overrange indicator. Assembled $\$ 109.95$
FREE '78 EICO CATALOG
Check reader service card or send 50 c for first class mail. See your local EICO Deater or call (516) 681-9300, 9:00 a.m.-5:00 p.m. EST. Major credit cards accepted.
EICO-108 New South Rd.
साज Hicksville, N.Y. 11801

IOur new Bearcat ${ }^{\text {® }} 250$
has all the fantastic space age features of our super popular Bearcat ${ }^{*} 210$, but now we've added:

- 50 synthesized crystalless channels
- User selectable scanning speeds
- Priority channel
- Digital time clock-accurate to seconds
- Automatic or user conitrolled squelch
- Search Direction-Search "up" or "down" for quicker return to desired frequencies - Transmission activity counter-tells you how busy each frequency has been
- Search \& Store-Will find and "remember" up to 64 active frequencies for later recall
- Direct channel select-Advance directly to a channel without stepping through interim channels
- Non volatile memory-No batteries required to
retain memory, even when scanner is unplugged
- Auxiliary-On/Off control of equipment (tape deck, alarms, lights, etc.) when transmissions occur on programmed channels
To reserve your space-age Bearcat 250 and receive your order priority number for springsummer delivery, send $\$ 389.00$ plus $\$ 5.00$ for U.S. U.P.S. shipping. Foreign orders invited at slightly higher cost. Visa and Master Charge card holders may call toll free 800-521-4414 to order. Outside tre U.S. and Michigan dial 313-994-4441. To crder by mail or for a free catalog completely describing the fantastic crystalless Bearcat 250 write: COMMUNICATIONS ELECTRONICS. Box 1002 -Dept. 8, Ann Arbor, Michigan 48106 U.S.A. L - circle no 7 on mete information caro

MOTOROLA MODEL CM550 MOBILE AM/SSB CB TRANSCEIVER

Switchable noise blanker provides good range on $A M$ and SSB.

THE Motorola Model CM550 is a mobile AM/SSB 40-channel transceiver for Citizens Band communications. Full-band operation is accomplished with the aid of the usual phase-lockedloop (PLL) frequency synthesis system.

The transceiver's features include: large numeric LED channel display; $r-f$, audio, and squelch controls; S/r-f/SWR meter; clarifier control; switchable noise blanker; transmit indicator; AM/LSB/USB mode in dicators; PA operation; externalspeaker jacks; detachable push-to-talk microphone with built-in preamplifier and gain control; top-facing speaker; electronic voltage regulation; operation from a nominal 13.8 -volt, negativeground dc source; and reverse-polarity protection.

The transceiver measures $9^{\prime \prime} \mathrm{D} \times 7^{\prime \prime} \mathrm{W}$ $\times 23 / 8^{\prime \prime} \mathrm{H}(22.9 \times 17.8 \times 6 \mathrm{~cm})$. Price is $\$ 319.95$.

Technical Description. A 10,695kHz i-f is employed in the receiver, with selectivity obtained with crystal and ceramic filters. Dual-gate MOSFET's in the r-f amplifier and mixer stages assure good signal-handling capabilities. IC's are employed in the AM and productdetector and agc circuits, while amplified squelch is obtained with transistors.

A full-time automatic noise limiter (an!) is provided for AM, with part of the audio system using transistors and an IC that contains the power-output stage. The power-output stage is also used to modulate the transmitter in the AM mode.

A signal derived from a $10,240-\mathrm{kHz}$ crystal oscillator provides the standard reference for the PLL system. The signal at the mixer from the local heterodyning oscillator is $10,695 \mathrm{kHz}$ above the CB signal and is initiated by the voltagecontrolled oscillator (vco). The PLL system employs an IC for the various divide functions.

On transmit, the signal derived from the vco is sum-mixed with a 10,695 - or $10,700-\mathrm{kHz}$ signal, depending on the selected transmitting mode. This produces the on-channel frequency at a mixer output, which for AM goes directly to an r-f amplifier stage and then to a driver and the r-f power-amplifier stages. The driver and power-amplifier stages are col-lector-modulated.

The SSB signal is generated in an IC balanced modulator and a crystal filter. The modulator and filter are located ahead of the mixer.

Automatic modulation control (amc) is provided to prevent overmodulation on AM. An automatic level control (alc) sys-
tem provides the same thing on SSB.
The output from the power amplifier goes through a multisection network that provides correct impedance matching to 50 -ohm loads and that greatly attenuates spurious responses. This network also serves as part of the input circuit for the receiver to enhance image and other unwanted-signal responses and to minimize receiver-antenna radiation.

The antenna circuit also contains a transformer-coupled directional wattmeter for providing SWR indications. Transmit/receive transfer is conducted via a relay and diode switches.

Laboratory Measurements. No specifications were provided with our test transceiver. Hence, we had nothing against which we could compare our test results.

The sensitivity of the receiver measured better than is the usual case. It was $0.4 \mu \mathrm{~V}$ for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$ on AM at 30% modulation at 1000 Hz and 0.1 μV on SSB. The squelch threshold range was $0.5 \mu \mathrm{~V}$ on AM and $0.2 \mu \mathrm{~V}$ on SSB up to a nominal $1000 \mu \mathrm{~V}$. The S meter registered S 1 with a $0.5-\mu \mathrm{V}$ signal and S9 with a nominal $30-\mu \mathrm{V}$ signal. Image and spurious- and adjacent-channel rejection were excellent at 90,80 , and 65 to 70 dB , respectively. I-f signal rejection was 63 dB , while unwanted-sideband suppression was 50 dB on LSB and 60 dB on USB at 1000 Hz .

The overall $6-\mathrm{dB}$ audio response was 400 to 2000 Hz on AM and nominally 500 to 3800 Hz on SSB. The audio output measured 2.5 watts with a sinewave input into 8 ohms at 10% THD on AM and 2% THD on SSB. With slight clipping, the output was as high as 3 watts.

Operating the transceiver from a 13.8volt dc source, the AM carrier output measured 3.9 watts. Using an audio tone of 1000 Hz , modulation was limited to 85% to 90% with a THD of 1.75% and 2.75%, respectively, with inputs of 16 and 25 dB greater than required for 50% modulation. Under these conditions, splatter was 60 dB down at 1000 Hz and 55 dB down at 2500 Hz . During dynamic operation (voice), the modulation kicked slightly beyond 100% on both the positive and the negative peaks, with the microphone gain control at its maximum setting. At that point, splatter was 55 to 60 dB down. The overall $6-\mathrm{dB}$ response, not including that of the microphone preamplifier, was 500 to 4500 Hz .

On SSB, the output measured 11 watts PEP with a two-tone test signal. It
was 14 to 16 watts PEP during dynamic operation. The overall $6-\mathrm{dB}$ response was nominally 600 to 2700 Hz . Sideband suppression at 1000 Hz was a minimum of 60 dB , while carrier suppression was 55 dB on LSB and 60 dB on USB. The third-order distortion products were 30 dB below PEP.

The output frequency tolerance of the transmitter held to within $\pm 10 \mathrm{~Hz}$ of +30 Hz on any channel.

User Comment. This rig's symmetrical front-panel layout is certainly neat. We would have liked to have seen larger rotary control knobs, however, as well as easy-to-see position markers. The CLARIFIER control, though, has a detented center position, which helps when making adjustments. Also, the mode switch's detents are quite tight on our sample, which can make operation somewhat stiff with the very small control knob. The small edgewise-mounted meter's black background against its white pointer provides an easy-to-read contrast.

During operation, the use of the noise blanker effectively extended the range of the receiver on weak signals by attenuating certain noises to improve the sensitivity-versus-S/N under adverse man-made noise conditions. From the circuit diagram, it was noted that a fulltime anl is provided for AM, but in our on-the-road experience, it was not quite as effective as we have come to expect. On the other hand, switching in the noise blanker gave us excellent noise suppression. Even on SSB, the noise blanker was very effective.

As was apparent from our audio output tests, the distortion on AM was somewhat greater than on SSB. Hence, AM signals at fairly high levels may not sound as clean as SSB signals.
in on-the-road tests, this transceiver provided high-quality performance, with high sensitivity, excellent signal-handling capabilities, and fine rejection of unwanted signals. We also produced good-quality transmissions. We did note, however, that on transmit, the microphone gain had to be reduced on occasion to prevent excessive modulation, particularly on SSB. A built-in modulation indicator would have aided in setting the proper mike level, of course.

As with other new CB SSB models, the Motorola CM550 gave clear evidence that SSB performance is greatly superior to AM.

Circle no. ica on free information card (Test Reports continued overieaf.)
(a) A (0) Read about it in ... dïitaniate abe Don't miss a single issue. Subscribe NOW. Your future may depend on it. Every issue jam-packed with articles on: - Fundamentals of Computers - Software Programs \& Games \square Languages \& Systems Designs - Exciting New Products

Computing for Home and Business Applications.

Make Check or Money Order (U.S. Funds drawn on U.S. Bank) payable to: INTERFACE AGE MAGAZINE P.O. Box 1234, Dept. PE8 Cerritos, CA 90701 Charge my: \square Visa Card \square Master Charge \square American Express Card N_{0} \qquad Expiration Date \qquad
Signature
Name (print)

Company _Title
Address
City
State
Zip

 Get all the newest and latest information on the new Mcintosh Sol-

 id State equipment in the McIntosh catalog. In addition you will receive an FM station directory that covers all of North America.

FM/FM STEREO - AM TUNER AND PREAMPLIFIER

I McIntosh Laboratory, Inc.
I East Side Station P.O. Box 96
Binghamton, N.Y. 13904
1 Dept. PE
\| NAME
| ADDRESS
| CITY \qquad STATE \qquad _ZIP \qquad
If you are in a hurry for your catalog please send the coupon to Mcintosh.
For non rush service send the Reader Service Card to the magazine. cIRCLE NO 30 ON free information caro

LEADER ELECTRONICS MODEL LBO-508 OSCILLOSCOPE

Dual-trace, triggered-sweep 5 " scope has 20-MHz bandwidth.

DURING the past few years, a number of excellent laboratory-grade oscilloscopes have come onto the market at moderate prices. Most of them offer a host of functions and features that just a decade ago were found only in true laboratory instruments at a cost of several thousand dollars. A good example of the current crop of high-performance scopes selling for moderate prices is the Leader Electronics Model LBO-508 dual-trace, triggered-sweep scope, at a suggested selling price of $\$ 769.95$. Included with the Model LBO-508 oscilloscope is a pair of lowcapacitance probes.

The Model LBO-508 is a multifunction 5 " (12.7-cm) oscilloscope whose rated bandwidth is dc to 20 MHz . It measures about $15^{\prime \prime} \mathrm{D} \times 111 / 2^{\prime \prime} \mathrm{W} \times 6$ " $\mathrm{H}(37.5 \times 29$ $\times 16 \mathrm{~cm}$) and weighs about $15.5 \mathrm{lb}(7$ kg). The scope is equipped with a carrying handle that doubles as a tilt stand.

General Description. The two vertical amplifier channels of the scope have a rated bandwidth of dc to 20 MHz in the dc mode and 2 Hz to 20 MHz in the ac mode. The input sensitivity in both cases is rated at $10 \mathrm{mV} / \mathrm{cm}$. An 11 -step attenuator, with a 1-2-5 sequence, allows the user to observe input signals with magnitudes up to $50 \mathrm{~V} / \mathrm{cm}$ at full attenuation, using the associated variablegain control. Accuracy is specified to be within 3%. Rise time is rated at 17.5 ns .

The input impedance of each vertical channel is 1 megohm shunted by 35 pF . The maximum safe input potential to the scope is 600 volts dc plus peak-to-peak ac. The polarity of channel 2 can be inverted as required by test conditions. The inputs to the vertical channels are BNC type connectors.

The two input channels can be used independently of each other, singly, simultaneously for a conventional dualchannel display, in an $X-Y$ vector mode, or in an algebraically add mode.

The triggered-sweep time base contains an 18 -step speed selector, with the speed positions arranged in a $1-2-5$ sequence. Its range is from $0.5 \mu \mathrm{~s} / \mathrm{cm}$ to $200 \mathrm{~ms} / \mathrm{cm}$, with an accuracy of 5%. A $5 \times$ magnifier allows observation of $100-\mathrm{ns} / \mathrm{cm}$ waveforms.

Both alternate and chopped modes are provided for displaying both channels simultaneously on the $8-\times-10-\mathrm{cm}$ screen of the CRT. The chopped mode is automatically selected by the scope with sweep speeds between 200 and $0.5 \mathrm{~ms} / \mathrm{cm}$, while the alternate mode is used between 200 and $0.5 \mu \mathrm{~s} / \mathrm{cm}$.

In the vector mode, the frequency response is from dc or 2 Hz to 800 kHz , depending on whether dc or ac coupling is selected. The phase difference in the two input channels is rated at less than 3% at 100 kHz .

Sweep synchronization can be switch selected to be either manual or automatic. The sync can be obtained from either an internal or an external source. Both positive and negative slopes are also selectable. A built-in TV sync clipper allows synchronization from TV-type video. Internal trigger sensitivity is from 2 Hz to 20 MHz with a $1-\mathrm{cm}$ screen signal. External sensitivity covers the same range from a $150-\mathrm{mV}$ peak-to-peak external signal. A built-in line-frequency, 0.5 -volt peak-to-peak calibration signal, whose accuracy is rated at 3%, is also available.

Test Results. We used a laboratorygrade dc voltage standard to investigate
accuracy of the two vertical channels for attenuation and control operation. Both channels checked out well within published specifications. We performed this test with both channels set to the dc mode and connecting both signal probes simultaneously to our voltage reference. This allowed us to observe the trace positions above (positive) and below (negative) the zero line.

For our frequency-response test, we injected signals from our crystal-controlled audio and low-rf signal generators. At the same time, we took careful note of the stability of the sweep trigger and linearity. The sweep remained stable at frequencies beyond 30 MHz , which is the limit of our burst tester. When we switched from positive to negative slope and back, there was no drift.

Excellent sweep linearity was noted when we used a crystal-controlled square-wave generator. The square waves from our tunnel-diode generator were displayed with neither low-frequency deficiency tilting nor excessive high-frequency response ringing. The 4MHz upper limit square wave from our generator revealed that the scope had an excellent response out to 40 MHz . At this frequency, the sync was steady and both polarities could be selected.

A sine-wave source was fed through a phase-shift network to check the vector display mode of the scope. Both vertical channels tested very close to each other in phase shift, and clear circles were produced at a number of selected frequencies during our test.

User Comment. Leader's LBO-508 oscilloscope was a very easy instrument to use. Its front panel is extremely clean, and the various controls and switches are color coded and clearly identified according to channel and function. This, plus the fact that each control and switch has plenty of room around it for easy manipulation, greatly simplified operation under most any working condition.

We used this oscilloscope for several weeks in our lab after performing initial tests to determine just how useful it really is under actual working conditions. It performed flawlessly during the whole time. In fact, we often found ourselves using it preference to our 10 -year-old true laboratory scope.

Before returning the scope to its manufacturer, we ran a few quick tests to determine if any changes in calibrated performance had resulted. There were no detectable changes.

CIRCLE NO. TOS ON FREE INFORMATION CARD

By Glenn Hauser

CURRENT NEWS AND FUTURE PLANS

ADVENTIST World Radio plans to put on a $20-\mathrm{kW}$ shortwave transmitter in Guatemala this year, probably operating on the 9- and $11-\mathrm{MHz}$ bands. This may give us a chance to hear the AWR DX program, so far limited to Europe. The Autonomous University of Nuevo León plans to add not only an FM station in Monterrey, Mexico, but also a shortwave station on 5.97 MHz , no later than September.

Brazil still intends to close down all private shortwave stations on the bands to clear frequencies for Brasilia's big new international service, expected to begin later this year. Radio Renascenca, the Catholic station in Portugal, has purchased shortwave transmitters, expected on the air in early 1979, to reach emigrants wherever possible.

Radio RSA is considering resuming a transmission for western North America. They are heard well there at present, but at inconvenient times.

Radio Australia is rebuilding its cy-clone-damaged Darwin relay, actually on the Cox Peninsula, and also installing their transmitters for a Northern Territory domestic shortwave service. A new site in the North West Cape region is also being sought.

Voice of America plans to close down its Dixon CA and Bethany OH sites as satellite feeds to overseas relays make the shortwave feeds obsolete.

France, which has conspicuously ignored us for years, and only recently condescended to broadcast a home service relay in our mornings, has registered with the ITU six frequencies beamed to North, Central and South America for the summer season at 2300-0400 GMT: 9.505, 11.735, 11.745, $11.755,11.925,15.135 \mathrm{MHz}$. There's little prospect of an English program any time in this block. To lobby for this, the Radio France International Listeners Club has been formed. For details, send $26 \not \subset$ in stamps to Matthew Brown, 3310 Picardy Ct., Mequon, WI 53092.

SSB Broadcasting Update. Switz-
erland's year-long test began May 7. In addition to the usual AM Irequencies, check 17.74 MHz at 1315 GMT and 11.78 at 0145 . Then send them a reception report comparing the results. Radio Sweden's home service relay in Swedish on SSB, even though not beamed to North America, often comes in better than Radio Sweden's English programs, which are beamed to North America. The current schedule: 0500-0830 on 21.55, 0930-1600 on 21.555, 1600-2000 on $17.785,2000-2130$ on 15.19 MHz .

DX Conventions. All the following clubs welcome interested nonmembers to their conventions; send an SASE when inquiring. Aug. 4-6, Louisville, KY, Worldwide TV-FM DX Association; details from Box 202, Whiting, IN 46394. Aug. 11-13, Portland, OR, International Radio Club of America (MW only); information from Frank Aden, 1535 NW Ithaca Ave., Bend, OR 97701. Sept. 1-3, Atlanta, GA, National Radio Club (MW only); information from Karl Jeter, 2816 Frontier Trail, N.E., Atlanta, GA 30341.

DX Programs. For the very latest DX news, don't miss our two weekly reports on alternating Sunday broadcasts of Radio Canada International. Also, ClarinDX, GMT-Sundays at 0000-0030 on 11.70 MHz , includes my regular reports. George Wood is doing an extra DX program, through August only, on Radio Sweden's Thursday broadcasts. After much urging, Austrian Radio has scheduled its "SW Panorama" when North Americans can hear it-GMT Sundays at $0300-0315$ on 6.155 and 9.77 MHz . Immediately following, try for "Radio Monitors International" from Sri Lanka, at 0315-0330 on 15.425. It's repeated Mon. at 1115 on 17.85, 15.12, 11.835 and Sun. at 1900 on $17.85,15.120$, 15.115, and 11.87. Also good is 0400 GMT Wed. and Sat. is Radio Budapest's "Calling DX'ers and Radio Amateurs."

Pirate Activity Rising. "From the frozen north," Voice of the Voyage(u)r

SAVE! MONEY • TIME • FREIGHT QUALITY STEREO EQUIPMENT AT LOWEST PRICES.

YOUR REQUEST FOR QUOTATION RETURNED SAME DAY.
factory sealed cartonsgUARANTEED AND INSURED.
save on name brands like:

PIONEER	SANSUI
KENWOOD	DYNACO
SHURE	SONY
MARANTZ	KOSS

AND MORE THAN 50 OTHERS bUY THE MODERN WAY BY MAIL-FROM

12 East Delaware Chicago, Illino is 60611 312-664-0020

CIACLE NO 20 DN FREE INFORMATION CARD

Finally, there's an exclusive club for scanner owners in North America . . . a united voice dedicated to the advancement of scanning. with dozens of special membership benefits!

- Feature packed quarterly newsletter with news, tech tips, great feature stories and more!
- Exciting contests with super prizes!
- Membership in the SCAN Buyer's Co-op. group buying power on items ol special interest! - Award program for public satety ofticials you nominate!
- FCC trequency assignment char!
- Handsome Oificial Membership Cerrificate, I.D. card, and vehicle decal!

Plus much, much more!
All for only 55.00 annual dues.
ACT NOW WHILE WERE ACCEPTING
CHARTER MEMBERSHIPS AT A
SPECIAL $\$ 4.00$ ANNUAL RATE!
SEND CHECK OR MONEY ORDER TODAY. OR WRITE FOR FREE DEIAIS.
SCANNER ASSOCIATION OF NORTH AMERICA

maintained a regular schedule on 5.85 MHz this spring, GMT Sat. and/or Sun. between 0400 and 0500 . The wildsounding announcers loved to play old, old records. Each time they broadcast a different phone number for listeners to call, and rewarded them with handmade QSL sheets. Several other pirates have been operating just above 6.20 MHz .

Cuban Clandestines, Too. Most likely using ham equipment, Radio Abdala and Radio Rebelde have both been heard around 7.08 MHz with anti-Castro speeches. Another one bearing the same name as a Cuban government network is La Voz de Cuba, heard in Argentina on 6.100 MHz .

Buzz, Buzz. It seems the FCC does not require private U.S. shortwave broadcasters to monitor their own signals on an ordinary receiver. As a result, for well over a year, WYFR has been broadcasting a "ripple," "hum," or "buzz" on many frequencies, making their signal a pain to listen to. The synthesizer problem cannot be detected on the FCC type-approved direct demodulation monitors they are required to use! Also, their old Scituate plant barely survived an ice storm in February, making them more eager to move to Florida.

HF Happiness. The rapid upswing in the sunspot count this year has led to much improved propagation above 15 MHz . More and more flea-powered harmonics can be heard on a good day in the $23-25$ - and $30-31-\mathrm{MHz}$ ranges. The $15-$ and $17-\mathrm{MHz}$ bands stay open all night between Europe and North America. The $21-\mathrm{MHz}$ band is open at very unusual times, such as from Pakistan at 0230-0245, heard in North America on 21.59 with dictation-speed English news. A few more stations are likely to venture into the $25-\mathrm{MHz}$ band, besides Israel on 25.605, Radio Liberty on 25.69 and VOA Greenville on 26.04. During the last sunspot peak, 25 MHz provided excellent reception from the few countries using it. This time, however, we must cope with CB interference. And as in every solar activity peak, while conditions can be excellent, there are also more blackouts in store rather than the generally mediocre reception of the past few years. Various estimates place the peak of Cycle 21 in late 1979 or early 1980 at a maximum of about 150 sunspots.

CIRCLE NO 23 ON FREE INFORMATION CARD
Put Professional Knowledge and a

COLLEGE DEGREE

in your Electronics Career through

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of directed but self-paced home study.
The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then to the B.S.E.E. degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. Write for Bulletin E78.

Grantham College of Engineering 2000 Stoner Avenue
 $$
\text { P. O. Box } 25992
$$

Los Angeles, CA 90025
Worldwide Career Training thru Home Study
CIRCLE NO 18 ON FREE INFORMATION CARD

By Leslie Solomon

DIRECT-WIRE REMOTE CONTROL

AT VARIOUS times, Popular Electronics has introduced ideas and circuits for using a computer as a re-mote-control device. Published circuits used the ac power line as the interface between the computer and the remote electrical appliance being controlled. This approach was taken because we assumed that most users would not wish to rewire their homes to accept direct remote control.
Now we find that many readers do wish to direct-wire their systems. This way, any possible signal malfunction due to power-line noise and other unwanted signals on the ac line will not affect the program being transmitted. Moreover, the "bill of materials" would be lower doing it this way. Many readers have also told us that they were either building a new house or renovating an old one, so that direct wiring could easily be included. Here is information on some direct-wire control systems to assist these readers.

Direct-Wiring Accessories. Gimix, Inc. (1337 West 37 PI., Chicago, IL 60609; Tel: 312-927-5510) has such a system and had, in fact, built a comput-er-controlled house in the Chicago area. The Gimix system is based on a Driver Relay board that can be obtained directly from the company or a local computer store. The board is designed to drive up to 31 GE RR8 power relays, each of which can handle up to 20 amperes at 250 volts ac. Since this mechanically latched relay requires a 1/120-second ($8.33-\mathrm{ms}$) pulse to turn on or off, standby current is negligible.

The Relay Driver board measures a large $24^{\prime \prime} \times 5^{\prime \prime}(61 \times 12.7 \mathrm{~cm})$. Relays are mounted on a separate bracket. Both the pc board assembly and metal relay bracket can be housed in a conventional $30^{\prime \prime} \times 12^{\prime \prime} \times 6^{\prime \prime}(76.2 \times 30.5 \times$ 15.9 cm) electrical case. The only other item required is a low-current 24 -volt transformer to supply relay power.

The system is driven from a conventional $20-\mathrm{mA}$ current-loop serial port. Up AUGUST 1978
to four of these boards can כe driven in series, and each board is assigned its own specific port number.

A board-generated relay status signal allows the processor to detect faulty relays and permits the use of manualoverride switches. Since the data rate can be up to 1200 baud, up to 120 relays can be activated in one second.

The board operates in either the active or the scan mode, as specified by the computer. In the active mode, the board interprets the 8 -bit data received as a command to turn on or off a particular relay. Following a brief interval to allow the selected relay to operate, the board senses that relay's status (on or off). If the status is other than expected, the computer takes appropriate action, as determined by the program.

A command received in the scan mode has the same results, except for relay activation. This allows the mode to check relay status at any time.

If the on-board UART detects a transmission error, such as in framing, parity, or overrun, no relays are activated and no status scan occurs.

The Gimix catalog contains listings for a number of other interesting remotecontrol items. Among them is an OptoBoard, which is a general-purpose interface between 34 switches and the computer. The switches can be from a keyboard, an intrusion alarm system, firealarm devices, clocks, timers, thermostats, lighting circuits, etc. Each switch input is through an optical isolator that has a rated 1500 -volt isolation.

All switch ports are constantly scanned by an on-board circuit (no processor time required), with 0.9 ms required to scan all ports. A built-in memory buffer saves up to 64 closed-switch signals, permitting the processor to complete lengthy tasks between interruptions. The board connects to any 8 bit parallel port.

Another remote-control Gimix board is its Tone Recevier Board, which converts standard DTMF (telephone) tones into binary signals. This allows the use of

4-for-1 SALE!
Top Quality J.I.L. 4-in-1 IN-DASH AM-FM CAR STEREO with 8-TRACK or CASSETTE PLUS 40-CHANNEL CB ! ans 4900
NWNV:

 percussion units... the PROGRAMMIABLE DRUM SET features: score editing, bridges, intros, external sync to sequencers foot controls, memory save switch \& much more.

Enter scores in seconds -
NO PROGRAMMI NG KNOWLEDGE IS REQUIRED!

High Fidelity describes the 3750 as "an easy project. . . fun to do and yields delightful results.... an excellent educational tool and versatile aid to the musician who can't afford a live rhythm section."
\#3750 $\$ 84.95 .$. (+\$3 shipping)

AnotherGreatKit from: ;an

8 D 1020 WEST WILSHIRE BIVD. OKLAHOMA CITY, OK73II6
\square Send Programmable Drum Set Kit
($\$ 84.95+$ shipping enclosed)
\square TELL ME MORE... Send the instruction manual first ($\$ 2.00$ refundable upon kit purchase)
name:
address:
City: \qquad State: \qquad Zip \square SEnd FREE CATALOG
CIRCLE NO 37 ON FREE INFORMATION CARO

THE MEAN LITTLE KIT

New compact 24 -piece kit of electronic tools for engineers, scientists, technicians, students, executives. Includes 7 sizes screwdrivers, adjustable wrench, 2 pair pliers, wire stripper, knife, alignment tool, stainless rule, hex-key set, scissors, 2 flexible files, burnisher, miniature soldering iron, solder aid, coil of solder and desoldering braid. Highest quality padded zipper case, $6 \times 9 \times 1-3 / 4^{\prime \prime}$ inside. Satisfaction guaranteed. Send check, company purchase order or charge BankAmericard or Mastercharge. We pay the shipping charges
JTK-6 TOOL KIT . .
. $\$ 65.00$
FREE CATALOG
152 pages of hard-to-find precision tools. Also contains 10 pages of useful "Tool Tips" to aid in tool selection. Send for free copy today!

JeNSEN TOOLS \& AlLOYS
1230 5. PRIEST DR. TEmPE, AZ. 85281
conventional Touch-Tone telephones for remote control. The board also uses an 8 -bit parallel port. A 16 -button re-mote-control keypad that can work at distances of up to a mile from the computer is also available.
z80 Controller. Manufactured by Dynabyte (4020 Fabian, Palo Alto, CA 94303; Tel: 415-494-7817) the Z80based Basic Controller sells for $\$ 750$ assembled and tested. The Controller features a variation of BASIC, called ZIBL, which is a proprietary language specifically written for control applications. This single board divides the world into six categories: sense inputs, flag outputs, lights, relays, A/D conversions, and D/A conversions. ZIBL implements 64 channels of each in such a way that the user need know nothing about them, other than their names.

The file structure allows multiple programs to be written into RAM, and each program can be individually loaded, renamed, and run. Any program can access another program as a subroutine while still retaining its own line numbers and variables. Listing, printing, and inputting can be from either the serial or the parallel I/O channel or the built-in CRT I/O. Interaction with the controller is via the user's keyboard and video monitor that can be "plugged" into a board connector.

On-board hardware includes a Z80 microprocessor that operates at 2.5 $\mathrm{MHz}, 4 \mathrm{~K}$ of RAM (expandable to 16 K), 4 K of EPROM with programmer, two RS-232 I/O ports configurable via software with one port having a $20-\mathrm{mA}$ current loop, one parallel input and one parallel output port, 300-baud cassette interface with file handling and motor control, and a keyboard-input port.

The internal video interface generates 16 lines of 64 characters and has standard video output. There are also 32 individual memory-mapped flag outputs, 32 individual memory-mapped sense inputs, and eight relays, four of which handle 0.75 amperes and four of which handle 5 amperes. Other visual outputs include eight individual memory-mapped LED's and one 8-bit light port for displaying the data.

Floppy Update. Southwest Technical Products Corp. (219 West Rhapsody, San Antonio, TX 78216; Tel: 512-344-0241) has announced availability of its Model DMAF1 dual-drive, sin-gle-density, double-sided $8^{\prime \prime}(20.3-\mathrm{cm})$ floppy-disk system. It sells for $\$ 2095$ as-

Have decorating fun with this amazing array of phones you can really own. Styles and colors to express your every mood. Elegant onyx, 24 K goldplate, polished wood; nostalgic 20's 'n 30's styles; contemporary acrylic 'n chrome and frankly functional from $\$ 17.95$ to $\$ 2,500$. All government FCC approved, ready for existing jack. Answering machines, dialers and telephone accessories, too. Write today for 16 page, full color catalog. FREE.

THE TELEPHONE BOOTH

One Tandy Center, Dept. AR, Fort Worth, Texas 76102
A Division of Tandy Corporation
CIRGLE NO 54 ON FREE INFORMATION CARD

sembled and tested or $\$ 2000$ in kit form. The hardware consists of an SS-50 buscompatible DMA controller that is capable of handling up to four drives, two CalComp 143M double-density rated disk drives, both enclosed in a $20^{1 / 2} 2^{\prime \prime} \mathrm{D} \times$ $171 / \mathrm{s}^{\prime \prime} \mathrm{W} \times 53 / \mathrm{g}^{\prime \prime} \mathrm{H}(52.1 \times 43.5 \times 13.7$ cm) aluminum chassis that also contains a regulated power supply, drive-motor control board, cooling fan, diskette, etc.

Software includes a DOS, 8K BASIC with disk file and string function capability. Each diskette holds approximately 600 K . Hence, with dual disks, more than one megabyte is provided.

Video News. TDL (Research Park, Blag. H, 1101 State Rd., Princeton, NJ 08540; Tel: 609-921-0321) has released its VDB at $\$ 369$ assembled and tested. Consisting of two board assemblies, one piggybacked on the other, only one S-100 connector is used.

The VDB contains its own display buffer with two pages of 2580 -character lines. Since the display memory does not employ a memory address, the entire computer memory is left intact for user programs. In addition to the 96 up-per- and lower-case ASCII characters (with descenders), 64 unique display symbols are provided to permit graphic resolution with 160 horizontal and 75 vertical elements. The display can accept data at a 400,000-character/ second rate. The blinking cursor is addressable, and a mode register allows any combination of characters to blink, insert, or do both simultaneously

Ohio Scientific (1333 S. Chillicothe Rd., Aurora, OH 44202; Tel: 216-562-3101) has introduced a Model 540 video display board for the company's Challenger III line. Costing $\$ 249$, this display features a 32-row by 64column display of the standard 64-character ASCII display font in a 5×7 dotmatrix form. Standard features include programmable 32×32 or 32×64 formatting. The board also has a keyboard port. The Model 540 also supports a graphics character generator that features lower-case and about 170 special characters for plotting and gaming.
$\mathbf{z 8 0}$ Board. The company to take up the "standard" for putting a Z80 into every S-100 bus computer is Vector Graphic Inc. (790 Hampshire Rd., Westlake Village, CA 91361; Tel: 805-497-6853) with its Z-80 CPU board that sells for \$175 in kit form or \$215 assembled. This new board offers fully blocked design with on-board wait-state AUGUST 1978

select and is jumper-selectable for operation at 2 or 4 MHz . All $\mathbf{Z 8 0}$ lines are fully buffered, and the board will operate with 8080 software without modifications.

Upcoming Meetings.

July 22-23
Amateur Computing 78 ,
Sheraton National Motor Hotel
Arlington, VA
Aug 24-27
Personal Computing 78,
Civic Center, Philadelphia, PA
Sept 15-17
2nd National Microcomputer

Expo and Conference, Coliseum, New York, NY
Sept 29-Oct 1
International Microcomputer Expo, Dallas Convention Center, Dallas, TX
Oct 5-8
Midwest Personal Computing Expo,
Expocenter, Chicago, IL
Oct 12-15
Mid-America Personal Compr Show, O'Hare Expo Center, Chicago, IL

Nov 3-5

3rd West Coast Computer Faire,
Los Angeles, CA

Software

 Sources
THE MICROCOMPUIER MART COMPUTER RETAIL STORES

CALIFORNIA

Byte Shop \#1
1063 West El Camino Real
Mountain View, California 94040
(415) 969-5464

Rainbow Computing, Inc.
Complete Apple II Line
10723 White Oak Avenue
Granada Hills, California 91344
(213) 360-2171

GEORGIA

Datamart, Inc.
Apple Specialists
3001 North Fulton Drive, NE
Atlanta, Georgia 30305
(404) 266.0336

ILLINOIS

American Microprocessors
Equipment and Supply Corp.
At the Chicagoland Airport
20 North Milwaukee Avenue
Half Day, Illinois 60069
(312) 634.0076

INDIANA
Audio Specialists
Stock Commodore PET
415 North Michigan Street
South Bend, Indiana 46601
(219) 234-5001

MICHIGAN

The Computer Mart
Personal/Professional Systems
1800 West 14 Mile Road
Royal Oak, Michigan 48073
(313) 576.0900

United Microsystems Corp.
Professional Computer Store
2601 South State Street
Ann Arbor, Michigan 48104
(313) 668-6806

NEW JERSEY

Computer Mart of New Jersey
The Microcomputer People ${ }^{\text {TM }}$
501 Route 27
Iselin, New Jersey 08830
(201) 283-0600

NEW YORK

Byte Shop of New York
Small Business Systems \& Software
130 East 40th Street
Corner of Lexington Avenue
New York, New York 10016
(212) 889.4204

Computer Factory
Low Prices/Home \& Office Computers
485 Lexington Avenue
New York, New York 10017
(212) 249-1666 or (212) PE-T-2001

Readout Computer Stores
6 Winspear Avenue
Buffalo, New York 14214
(716) 835-7750

PENNSYLVANIA

Personal Computer Corp.
First in Pennsylvania
Frazer Mall
Lancaster Avenue and Route 352
Frazer, Pennsylvania 19355

TEXAS

Compushop
Computers for Home \& Business
13933 North Central Expressway
Dallas, Texas 75243
(214) 234 -3412

KA Electronics Sales
Computers and Components
1220 Majesty Drive
Dallas, Texas 75247
(214) 634-7870

The Computer Shop
6812 San Pedro
San Antonio. Texas 78216
(512) 828.0553

VIRGINIA

Computer Systems Store
Processor Technology \& PET
1984 Chain Bridge Road
McLean (Tysons Corner), Virginia 22101
(703) 821-8333

The Computer Hardware Store, Inc.
818 Franklin Street
Alexandria, Virginia 22314
(703) 548.8085

The Computer Workshop of Northern Virginia 5240 Port Royal Road \#203
Springfield, Virginia 22151
(703) 321-9047

8080 Inventory Package. Inven-tory-1 is an interactive inventory control system for S-100 bus computers. It is designed to run on Shugart Mini-Floppy drives. The program provides three-second access to any item in the inventory file. "HELP" and "EXPLAIN" commands are available to prompt the firsttime user. The system includes a set of "skeleton" programs which can be used to implement special, userdefined commands; using these "skeleton" programs, the system is claimed to make it possible to produce the software necessary to generate a special report within 5 minutes. \$99.95. Write: The Software Works, Inc., Box 4386, Mountain View, CA 94040.

1802 Cosmac EIf Music and Games. This 44 -page book includes music programming instructions and several "scores," utility subroutines, random numbers. Tic-Tac-Toe, and others. $\$ 2.50$ (Connecticut residents add 7% tax). Paul C. Moews, 39 Mansfield Apts., Storrs, CT 06268.

6502 Assembler/Text Editor \& Relocating Loader. The Assembler/ Editor portion of this program produces relocatable object code on tape (with checksum) and can store executable code in memory during assembly. It can assemble source programs from tape or memory, and has 17 user commands (including tape control and one user-definable command) and 16 pseudoops. Labels may be up to 10 characters in length. Lines are automatically numbered, and there are 18 error codes. A manuscript feature allows the program to generate letters and other text. The Relocating Loader can reload relocatable object code at practically any location. The program resides in less than 4 K of RAM or ROM (specify hex starting addresses of 0200, 0400, 1000 or 2000), and support up to two tape decks. it is pre-configured for TIM-based systems, but information is supplied on modifying it for other systems. Hex listing and operators manual, \$25. C.W. Moser, 3239 Linda Dr.. Winston-Salem. NC 27106.
WhatMuow sece
Artive NXSCAL3
Hectronic Salsctip

Stock level Part No	Price	
46000	74 HOO	.16
1300	74 HO	.16
11600	74 HOL	.16
8900	74 HO	16
51000	74 HO	17
9000	74 HO	.17
1500	74 HO	.22
17000	74 H 10	.16
4400	74 H 11	.22
1000	74 H 12	16

Stock level Part No Price 46000 74H00 $130074 \mathrm{HO} \quad .16$ 1600 74H02 . 16 8900 74H03 . 16 $51000 \quad 74 \mathrm{HO4} \quad 17$ $900074 \mathrm{HO5}$ $17000 \quad 74 \mathrm{H} 10 \quad .16$ 100074 H 12.16

Stock level PariNo. Price $4000 \quad 74 \mathrm{H} 15.17$ $12000 \quad 74 \mathrm{H} 20 \quad 16$ $6000 \quad 74 \mathrm{H} 22 \quad .16$ $2000 \quad 74 \mathrm{H} 30.18$ $24000 \quad 74 \mathrm{H} 40 \quad 16$ $3000 \quad 74 \mathrm{H} 50.16$ $2000 \quad 74 \mathrm{H} 51.17$ $1000 \quad 74 \mathrm{H} 52 \quad .17$ $6000 \quad 74 \mathrm{H} 53.17$ 1000 74H54. 18

Slock level Parl No. Price

2000	$74 H 55$.18
3000	$74 H 60$.18
2000	$74 H 61$	18
2000	$74 H 62$.18
2000	$74 H 64$	16
6000	$74 H 55$	16
1000	$74 H 71$	35
2000	$74 H 72$	31
2000	$74 H 73$	49
24000	$74 H 74$.24

TTL
PLASTIC DUAL. IN-LINE I.C.'s

Stocklevel	Parı No.	Price
36000	7400	.09
22000	7404	.09
6800	7423	.07
13000	7425	.12
43000	7437	.09
57000	7438	.09
22000	7443	.15
38000	7445	.19
23000	7454	.07
32000	7460	.07
41000	7472	.12

$41000 \quad 7472$

Slock level Part No. Price $\begin{array}{rrr}15000 & 7480 & 19 \\ 26000 & 7482 & 15 \\ 56000 & 7491 & 19 \\ 45000 & 74150 & .39 \\ 69000 & 74151 & .29 \\ 12000 & 74152 & .89 \\ 90000 & 74153 & 29 \\ 33000 & 74154 & 49 \\ 2900 & 74155 & .29 \\ 23000 & 74156 & .19\end{array}$ 4200074157.29

Stock revel Part No Price

41000	74162	.34
90000	74174	39
21000	74175	39
11000	74180	.34
13000	74181	.79
31000	74182	.29
30000	74190	.34
48000	74191	.34
16000	74194	.34
56000	74195	.29
8000	74199	.69
33000	74283	.49

NEW 1978 CATALOGUE

Our new and expanded comprehensive 1978 catalogue (144 pages), listing complete descriptions, illustrations and monolithic pricing on over 10,000 items is available on request.

- Subject lo prior sale
- Prices valid only till September 15th, 1978 Standard 1978 catalogue prices on
the above devices will once again take the above devices will once again take effect September 15th, 1978

MICROPROCESSOR CHIPS CPU's
Siock level Part No Price

7100	$8080 A$	7.95
5500	6800	9.95

UV EPROM
$\begin{array}{ccc}\text { Slocklevel Pari No } & \text { Price } \\ 11900 & 2708 & 8.99\end{array}$
MOS STATIC RAM'S
Stock level Part No Price
$13500 \quad 2114$ 4K 450NS 9.95
84600 2102LFPC 1K 350NS 1.19 (Low power)

MOS DYNAMIC RAM's Stock level Pari No

O.

Price
72004060190604 K 300 NS 3.95 $2800 \quad 416 \quad 16 \mathrm{~K} \quad 250 \mathrm{NS} 19.95$ UART'S
Stock level
ParlNo Price
$\begin{array}{lrr}\text { Siock level ParlNo } & \text { Price } \\ 16500 & \text { AY5-1013A } & 4.95\end{array}$
12300 AY3-1015 5.95

Stocklevel Part No Price $1200 \quad 74 \mathrm{H} 76 \quad .55$ $1000 \quad 74 \mathrm{H} 78 \quad .55$ $1500 \quad 74 \mathrm{H} 872.75$ 100074 H 101.35 100074 H 102.35 $100074 \mathrm{H} 103 \quad 50$ 200074 H 106.45 $\begin{array}{ll}200074 \mathrm{H} 106 & 45 \\ 100074 \mathrm{H} 108 & 49\end{array}$ $100074 \mathrm{H} 108 \quad 49$ $300074 \mathrm{H} 113 \quad 24$ 200074 H 114.24 120074 H 1832.25

Dual In-line
Sockets

- pluggable socket for ic packages WITH LEADS
- LOW COST NO GOLDIS USED IN THE RECEPTACLE OR NEEDED ON THE LEADS - HIGH RELIABILITY GAS TIGHT JOINT FOR GOOD AS GOLD" PERFORMANCE - COMPACT LOW PROFILE DESIGN
- NO WICKING WHEN SOLDERED TO

C BDARD

- flammability hating ul 94v.0

Slock level	Conlacts	Price
185.000	8 PIN	11
245.000	14 PIN	13
190.000	16 PIN	15
29.000	18 PIN	19
80.500	22 PIN	.27
60.000	24 PIN	.28
30.000	28 PIN	.36
65.000	40 PIN	.48

BRAND NEW
Complete integrated sircuit data selector. New 978 edition (2200 pages) year. Master guide to the tatest I.C. s including nicroprocessors and sonsumer circuits.

Free quarterly updates
\$24.95
Lowest price available

INTEFFACE
SUPPORT CIRCUITS

Stock level	Parl No	Price
8300	8212	1.98
3500	8214	4.95
25200	8216	1.98
3300	8224	2.75
2400	8226	1.98
3100	8228	4.75
1400	8238	4.75
5700	8251	5.95
1100	8253	14.95
2700	8255	5.95
1000	8257	9.95
840	8259	14.95
4500	6810	3.95
8000	6820	4.95
9600	6850	5.95
1500	6852	5.95

7400					TTL
7400	.18	7442	108	74107	49
7401	.21	7448	1.15	74121	.55
7402	.21	7450	.26	74122	.49
7404	.21	7451	.27	74123	105
7405	.24	7453	.27	74125	.60
7407	45	7454	.41	74126	.81
7408	.25	7460	.22	74132	3.00
7409	.25	7472	.39	74141	1.15
7410	.20	7473	.45	74150	1.10
7411	.30	7474	.45	74151	1.25
7413	.85	7475	80	74153	1.35
7416	43	7482	1.75	74154	1.54
7417	.43	7483	1.15	74157	1.30
7420	.21	7485	1.12	74161	1.45
7422	1.50	7486	.45	74164	1.65
7425	.43	7489	2.49	74165	1.65
7427	.37	7490	.69	74166	1.70
7428	.35	7491	1.20	741744	1.95
7430	.26	7492	.82	74175	1.95
7432	.31	7493	.82	74180	1.05
7437	47	7494	.91	74181	3.55
7438	.40	7495	.91	74191	1.50
7440	.21	7496	.91	74195	1.00
7441	1.10	74100	1.25	74197	1.00

74L SERIES TTL
$74 \mathrm{LOO} \quad .33 \quad 74 \mathrm{LSO4} 45 \quad 74 \mathrm{LS113}$ $74 \mathrm{~L} 10 \quad .33$ 74LS $10.39 \quad 74 \mathrm{LS13}$, 99

 74HOO TTL $\begin{array}{llllll}74 H 00 & .33 & 74 H 11 & .33 & 74453 & .39 \\ 74401 & .33 & 74420 & .33 & 74455 & .39 \\ 74404 & .33 & 74 H 21 & .33 & 74 H 73 & .59 \\ 74045 & .35 & 744300 & .33 & 74 H 74 & .59 \\ 74 H 10 & .33 & 74 H 40 & .33 & 74 H 76 & .65\end{array}$

MOTOROLA

 MM3001 19.50 MN3002 11.70 MM3003 9.45
HALLIC:DN834 1.25 DN837 1.50 DN835 1.35 DN838(NEW)

ZENER DIODES

$1 / 2$ Walt. $\pm 10 \%$........ $\$.30$ each to 33 V 1 Watt, $\pm 10 \% \ldots \$.40$ each to 33 V
Voltages to 200 V , and $\pm 5 \%$ A vailable
1 Megohm Polentiometer . Made by Clarostat. 1_{a} " diam., split, knurled shaft $1 /{ }^{\prime \prime}$ " long. NT544 $\$.39$ Three for $\$ 1.00$

5400 SERIES

$\left(\right.$| 5400 | | | |
| :--- | :--- | :--- | :--- |
| 5400 | 1.00 | 5475 | 1.50 |
| 5404 | 1.25 | 5486 | 1.90 |
| 5410 | 1.00 | 5493 | 2.00 |
| 5426 | 1.25 | 54100 | 1.80 |
| 5473 | 1.50 | 541 SO | 1.00 |

RESISTORS
\% Watt $\pm 5 \%$ Packed 5 of any one value
one valus \pm Packed 5 of any
STANDARD RESISTANCE VAU UES

VOLT.REG $\begin{array}{ll}\text { LM340K-S } & 1.70 \\ \text { LM340K-6 } & 170\end{array}$	Lм 340 K-8	1.70

 | LM340K 18 | 1.70 |
| :--- | :--- | :--- |
| LM340K.24 | 1.70 | LM340T. 5

 $\begin{array}{ll}\text { LM } 340 \mathrm{~T} .6 & 1.50 \\ \text { LM } 340 \mathrm{~T} .8 & 1.50\end{array}$ LM340T. 121.50 LM340T.15 1.50 LM340T. 18 1. 50 LM34GT. 241.50
SEE OUR AD ON JAPANESE TRANSISTORS AND IC's IN THIS ISSUE.
MINIMUM ORDER $\$ 5.00$ All orders add $\$ 1.50$ Postage \& Handling Canada \$2.00
N.J. Residents add 5\% Sales Tax.

ELECTROLYTIC CAPACITORS

2.2MF50	Axisl Leads	. 15	30MF25	Axial Leads	. 18
3.3MF10	Axial Leads	. 15	47MF25	Radial Leads	. 19
3.3MF10	No Polarity	. 15	47MF50	Radial leads	. 24
10MF25	Axiel Leads	. 15	100MF16	Radial Leads	. 19
10MF50	Axiel Leads	. 16	100 MF 25	Radial Leads	. 24
10MF150	Axist Leeds	. 20	$500 \mathrm{MF50}$	Axial Leads	. 60
25MF35	Axisl Leads	. 18	1000MF35	Axial Leads	. 65
MICROPROCESSOR					
C1702A	9.952		34.95	8008	19.95
2101	5.75 C	101-3	4.50	8080a	19.95
2102	1.75 M	15013	3.25	8224	10.45

RECTIFIERS

	10	100
	For	FOr
iN 4001	.60	5.00
iN 4002	.70	6.00
iN4003	.80	7.00
iN4004	.90	8.00
1N4005	1.00	9.00
1N4006	1.10	10.00
1N4007	1.20	1.00

MARDWARE - SOCKETS
Nylon Screws. Nuts and Rivers - 50 piece assonment $\$ 1.99$
MK 20 TO-3 Mounting Kit MK 20 TO-3 Mounting Kit

NEW FROM NEW-TONE

Tiny Meter. Small enough to add to almost any equip. ment, this 300 uA S-meter has a removeable scale. Use it as is or in a voltmeter, as a tuning indicator, battery tester, etc. Meter face is $1 / 2^{\prime \prime} \times 3 / 4^{\prime \prime}$. Body over-all is a $3 / 4^{\prime \prime}$ cube. Mounting centers $1 \frac{1}{3}$ ". NT579 $\$ 2.293$ for $\$ 6.00$ 12-Volt DC Relay. Rugged 12 -volt SPDT relay, with a 5 amp contact rating, housed in a tough white nylon case.

NT $565 \$ 1.79$
Pioneer 6" Speaker • 71/2-watt, 3.2-ohm speaker made the way speakers should be made. Has heavy-duty treated paper cone, protected magnet housing, and a ceramic terminal strip marked with polarity. A beautiful speaker at half the price you'd expect. NT526 \$2.39 Three for $\$ 6.00$
PC Boards - MIL grade, $1 / 1{ }^{\prime \prime}$ glass-epoxy boards with 2 . ounce copper on one side.
NT521 6"x3' \$.50, NT522 6"x6" \$.90' NT523 6"x8" \$1.20 Regulated Power Supply Components Kit - Contains the components needed to build a fixed-voltage regulated supply including: $117 / 17 \mathrm{~V}-1$ ampere Transformer, Bridge Rectifier, 2000 uF Capacitor, and a 1 ampere LM340 3-terminal IC Regulator. Makes a fine "on board" supply or use it for breadboarding. Components only. Specify $5,6,8,12$ or 15 volts

NT525 \$4.99
Dry Transfer Patterns for PC Boards - Includes 0.1" spaced IC pads, donuts, angles, and 3 -and 4 -connector pads. Over 225 patterns on a $2^{\prime \prime} \times 7^{1 / 4}{ }^{\prime \prime}$ sheet NT520 $\$ 1.49$
5" Taut-Band Meter - One milliampere full scale, $31 / 2$ ", scale length. Coil resistance 465 ohms. Made by Modutec for Bose Meter scale in VUs $(-20$ to +3$)$. Meter is designed to be mounted coil up. Complete with "smoke" plastic cover. Over-all $51 /{ }^{\prime \prime} \times 4$ ''. Meter face mounts in a $51 / 8^{\prime \prime} \times 2 y^{\prime \prime}$ cutout: A beautiful meter.

NT539 \$4.89

NEW FROM NEW-TONE HIGH FIDELITY SPEAKERS

8-INCH COAXIAL

Combines a high quality $8^{\prime \prime}$ wooler and a tweeter into a pre-phased souna reproducer. Buill-in cross-over network. Excellent choice for a low cost Hi-Fi system for autos. vans. or in your home. Frequency response is a smooth $80-15000 \mathrm{~Hz} .8-0 \mathrm{hm}$ VC. 1002 . ceramic ring magnet. 25 W rating.

NT577 \$13.99
plus 40 cents postage

10-INCH WOOFER

The speaker for your "big sound" system. Frequency response is $20-1000 \mathrm{~Hz}$; 8-ohm aluminum VC: powerful 2002 . ceramic ring magnet and a rubberized accordion-edge suspension for excellent compliance. Handles 50 W max. Use with the NT576 for a super system.

NT578 \$17.99
plus 40 cents postage

50 W DOME TWEETER

Here is the super tweeter. A rugged $10 \mathrm{~cm}\left(4^{\circ}\right)$ dome tweeter which handles 50 W max. Frequency response is $4000-20000 \mathrm{~Hz}$. 8 -ohm VC. 802 . ceramic magnet. Your system can have a brilliance you never imagined.

NT576 \$6.99

PO BOX $1738 A$ BLOOMFIELD, N.J. 07003
PHONE: (201) 748-6171, 6172, 6173

DIGI-KEY TOL
 CORPORATION
 Quality Electronic Components
 FiJE

DON'T FORCET OUR DISCOUNTS WHEN COMPARING PRICES I.C.'S RESISTORS - TRANSISTORS © CAPACITORS © DIODES \& I.C. SOCKETS \& PINS SWITCMES
CIOCK MODULES OPTOELECTRONICS BREADBOADING \& TESTING DEVICES - DRAFING SUPPLIES DATA BOOKS - HEAT SINKS - WIRE - TOOLS... AND MORE... WRITE FOR FREE CATALOG INTEGRATID CIRCUIIS

\square AMD

THE HOT LINE FROM ANCRONA All Our AMD Parts Meet Quality Requirement MIL-M-38510

SANKEN Seres SI-1000G amplitiors
are self-contained power fiybrid am
 systems and other audio applications.
The amplifiers have quasi comple. The amplifiers have quast comple.
mentary class \mathbf{B} outpur The circuif employs flio-chio iransssiors with
high reliabiliy and passiveted chip power uansistors withe excellent sec.
ondary breakdown strength. Built-ing ondary breakdown stengin burt-1n
current limiting is orovided for S1-
1050 G and all devices can be oper ated from a single or split powet
suoly

\square Use a POWERACE for faster and easier prototyping of all types of electronic circuits

 cirenity
sounce 5 MA.

VIM-1

THE COMPLETE MICROCOMPUTER SYSTEM
 KIM-I compatiblel - TV Controller Board Interface - CRT compatible intert Plannest VIM.I Expansion Features - TV Interface Card Iwith ASCII Keyboard and Numeric Paxil- Basic Inter pret
pansion Kin - RAM Expansion Kit.

VIM-1
\$269 응

15 MHz PORTA OSCILLOSCOPE	OPTIONS: 48900 4140 Lea Case $41-14110$ 10 Meg	OPTIONS: usable on both MS-215or MS-1541-140 Leather CarryingCase $\$ 30.00$41-141 to 1 Probe with 10 Megohm Input$\$ 24.50$
Over 20,000 in Use Field Proven Lab Accuracy DPM PM-4 0.02\% Accuracy - $\pm 1 .+10 \pm 100$ or $\pm 1000 \mathrm{~V}$ range. - Auto zero \& polarity. - Programmable decimal. - Range change capabllity - Protected input. - $1^{\prime \prime} \mathrm{H} \times 2.5^{\prime \prime} \mathrm{W} \times 3.25^{\prime \prime} \mathrm{D}$ - Large 0.3" LED display.		

DATA AND TECHNICAL BOOKS

MORE NEW ITEMS!

JUMBO LED READOUT ARRAY
 By Bowmar. 5 in character common cathode. Designed for use with multiplexed clock chips
\qquad
MICRO-MINI TOGGLE SWITCH 99¢ MADEINUSA:WITHHOWR

EACH

NATIONAL SEMICONDUCTOR
JUMBO CLOCK MODULE

MA1008A
 BRAND NEW:

${ }^{5} 69$
FEATURES:
FOUR JUMBO \% INCM LED DISPLAYS 12 HR REAL TIME FORMAT 50 OR 60 LARM SIGNAL OUTPUT LED BRIGHTNESS CONTROL - POWER FAILURE INDICATO

- SLEEP \& SNooze timers * DIRECT LED DRIVE (LOW RFI)

ASSEMBLEDI NOT A KIT
ZULU VERSION:
We have a limited number of the 24 HR Real PERFECT FOR USE lime version of this module in siock. WITH A TIMEBASE \#MA1008D - $\$ 9.95$

COMPARE AT UP TO TWICE OUR PRICE! MANUFACTURER'S CLOSEOUT!

MOTOROLA 4K RAM's - 99¢

A major U.S. computer mfg . removed these parts from PC boards. then retested them to full specs. Best Memory Buy in the U.S.A.! 4096×1 Blts. One of the easiest Dynamic RAM's to use. A complete memory board deslgn using these chips is detailed in the MOTOROLA M6800 APPLICATIONS MANUAL starting on page 470. The 6605 is the popular 22 Pin Dip.

8 FOR 56^{95}

FAIRCHILD JUMBO READOUTS . 5 Inch Char. High Efficiency FND-503-Common Cathode FND-510-Common Anode YOUR CHOICE G9E 10 FOR $\$ 5.75$	DISC CAPACITORS . 1 MFD 16V. P.C. leads. Most popular value! By Sprague. 20 for $\$ 1.00$	Full WaveBridge 4 Amp 200 PIV 69сеа. 10/5.75
FET SALE! 2N4304. Brand New N Channel. Junction Fet. BVGD0-30V IDSS-15 MA Typ 1500 uMHOS. TO- 18 Plastic Case. Mig. by Teledyne. 6 FOR \$1	Motorola PNP Power! 2N4905 TO-3 case 90W. VCEO-60. HFE-100 max at 2.5A. Good mate for the 2N3055. PRIME! $75 \uparrow$ ea. 4/\$2.50	COMPUTER CAPACITOR By GE. 36.000 MFD 15W VDC Small Size: $4 \% \times 13 / 4$ Inches. SUPER DEAL! $\$ 2.95$ Each 3 FOR \$8

LED IC Counter Kit You Get: 1-7490; 17475; 1-7447; 1-Led Readout. All this for $\$ 1.99$ (Led Readout is famous SLA-1. . 33 in. By Opcoa.)

MALLORYY
POWER SUPPLY CAPACITOR 1500 MFD 16 WVDC $3 / \$ 1.00 \quad 10 / \$ 2.95$ FACTORY FRE:SH! SMALL SIZE

LS SERIES TTL

74LSOO-33c 74LS74-49c $74 \mathrm{LSO4-35c} 74 \mathrm{LS} 138-89 \mathrm{c}$ 74LSO 8-35c 74LS154-1.49 74LS10-33c 74LS175*1.10 $74 \mathrm{LS} 20-33 \mathrm{c}$
$74 \mathrm{LS} 367-75 \mathrm{C}$
$74 \mathrm{LS} 73-49 \mathrm{c}$
$74 \mathrm{LS} 368-85 \mathrm{c}$

2N3904-House No. TO-92. NPN. VCEO-45.
HFE 100 to 300 10 for $\$ 1.00$

Motorola Quad Op-

Amp MC3401. Pin for Pin Sub for popular LM3900

3/\$1.00

Radio Shack: No. 1 Parts Place Low Prices and New Items Everyday!

Top-quality devices, fully functional, carefully inspected. Guaranteed to meet all specifications, both electrically and mechanically. All are made by well-known American manufacturers, and all have to pass manufacturer's quality control procedures. These are not rejects, not fallouts, not seconds. In fact, there are none better on the market! Always count on Radio Shack for the finest quality electronic parts!

Linear ICs
By National Semiconductor and Motorola - first quality

\begin{tabular}{|c|c|c|}
\hline Type \& Cat. No \& ONLY

\hline 301CN \& 276.017 \& $49 ¢$

\hline 324 N \& ${ }^{276}$-1711 \& 1.49

\hline ${ }_{386 \mathrm{CN}}$ \& 276.1712

276-1731 \& 1.49
996

\hline 386 CN
$555 C N$ \& $276-1731$
276.1723 \& 996

\hline 556 CN \& 276-1728 \& 1.39

\hline ${ }_{566 C N}$ \& ${ }^{276.1724}$ \& 1.69

\hline 567 CN \& 276-1721 \& 1.99

\hline 723 CN \& 276.1740 \& 694

\hline 741 CN \& 276.007 \& 498

\hline 7414 \& ${ }^{276-010}$ \& 496

\hline 3900 N \& ${ }^{276-1713}$ \& 996

\hline 3911 N \& 276.1705
276.1706 \& -996

\hline 4558 CN \& ${ }^{276-038}$ \& ${ }_{79}$

\hline 75491 \& 276.1701 \& 99 c

\hline 75492 \& $276 \cdot 1702$ \& 996

\hline 7805 \& 276-1770 \& 1.29

\hline 7812 \& 276-1771 \& 1.29

\hline 7815 \& 276-1772 \& 1.29

\hline
\end{tabular}

Computer Chip

8-Bit Data Bus,
16-Bit Address Bus
8080A Microprocessor. 100\% prime CPU handles up to 65 K bytes memory
276.2510 . Reg. $17.95 \ldots .$. Sale 12.95

RAM Memory IC

Under 450 ns Access Time

2102 1K Static RAM. Low power ver sion. 16 -pin DIP. Buy 8 and save
$276-2501$ 276-2501
2.49 Ea or $8 / 14.95$

TTL and CMOS Logic ICs

Full-Spec Devices Direct from
Motorola and
National Sem

Type	Cat. No.	ONLY
7400	276-1801	354
7402	276-1811	396
7404	276-1802	354
7406	276-1821	496
7410	276-1807	39 c
7413	276-1815	796
7420	276-1809	394
7427	276-1823	49 c
7432	276-1824	49 s
7441	276-1804	996
7447	276-1805	998
7448	276-1816	996
7451	276-1825	39¢
7473	276-1803	496
7474	276-1818	494
7475	276-1806	796
7476	276-1813	594
7485	276.1826	1.19
7486	276-1827	496
7490	276-1808	794
7492	276-1819	696
74123	276-1817	994
74145	276.1828	1.19
74150	276-1829	1.39
74154	276-1834	1.29
74192	276-1831	1.19
74193	276-1820	1.19
74194	276.1832	1.19
74196	276-1833	1.29
4001	276-2401	496
4011	276-2411	49 c
4013	276-2413	896
4017	276-2417	1.49
4020	276-2420	1.49
4027	276-2427	896
4049	276-2449	696
4050	276-2450	696
4511	276-2447	1.69
4518	276-2490	1.49

NEW EDITION:

Update Your Semiconductor Library Now!

REGULARLY \$1.95. Archer ${ }^{\text {® }}$ Semiconductor Reference and Application Handbook. Complete specs and application data on every Archer semiconductor - display devices, too! 46,000 cross-reference/substitution listings plus glossary of words, symbols, abbreviations. 276-4002 ... With Any $\$ 5$ Parts Purchase, Only 99 \& Offer good at participating Radio Shack stores and dealers

Wire Wrapping Accessories

(A Slope Front. Sloping top panel - ideat for lab projects. 13/4 to $23 / 4 \times 7 / / 8 \times 5 \% / 9^{\prime \prime} .270-265$

Volts	Current	Cat. No.	Each	Volts	Current	Cat No.	Each
6.3	12 A	273-050	2.49	6.3 CT	3 A	273-1510	3.99
6.3	300 mA	273-1384	1.99	12.6 CT	3 A	273-1511	4.69
12	300 mA	273-1385	1.99	25.2 CT	2 A	273-1512	4.99
24	300 mA	273-1386	2.49	12	5 A	273-1513	8.95
24	1.2 A	273.1480	2.99	18 CT	4A	273-1514	8.95
12.6 CT	1.24	273-1505	2.89				

-Ideal for 5 V (using CT) or 12 V solid-state regulators
Archer ${ }^{\circledR}$ Project-Boards - Ready to Build

High efficiency - provides approxi mately 0.5 voit at 400 mA . For higher in series or parallel. 276-1215.99
All Include Finished Circuit Board,
Front Panel Trim and Manual
Solar Cell

21/4" Round Silicon Device

2-Watt IC Stereo Amp. Uses LM377 IC for 2 watts RMS/Channel into 8 ohms. Dual volume controls headphone jack. phono/tape inputs. Output curren limiting, thermal protection. Reg. $\$ 5.99$. 277-118. (PCB less parts, case) Sale 3.99

Electret Mike Element

Condenser mike element for new or replacement use. Built-In FET preamp. 3015.000 Hz audio response.
Requires 2 to 10 VDC . Requires 2 to 10 VDC .
$270-092$

Extra Length Test Clips NEW

Ideal clips for precision testing of components on PC boards or chassis. $3^{\prime \prime}$ each.
$270-352 \quad$ Pkg. of $2,1.59$

WHY WAIT FOR MAIL ORDER DELIVERY? IN STOCK NOW AT OUR STORE NEAR YOU!

Radio Shack
A DIVISION OF TANDY CORPORATION • FORT WORTH, TEXAS 76102 OVER 7000 LOCATIONS IN NINE COUNTRIES

COMPUTER INTERFACES \& PERIFERALS

For free catalog including parts lists and schematics, send a self-addressed stamped envelope.

APPLE II SERIAL I/O INTERFACE *

Part no. 2

- Baud rates up to 30,000 - Plugs into Apple Peripheral connector - Low-cur rent drain - RS-232 Input and Output SOFTWARE - Input and Output routine from monitor or BASIC to teletype or other serial printer. - Program for using an Apple II for a video or an intelligent terminal. Also can output in correspondence code to interface with some selectrics. Board only - $\$ 15.00$ with parts - \$42.00; assembled and tested - $\$ 62.00$.

MODEM*

Part no. 109

- Type 103 - Full or half duplex • Works up to 300 baud - Originate or Ans wer - No coils, only low cost components - TTL input and output-serial Connect 8 ohm speaker

$$
\text { and crystal mic. directly to board } \bullet \text { Uses XR FSK }
$$ demodulator - Requires +5 volts - Board $\$ 7.60$; with parts $\$ 27.50$

DC

POWER SUPPLY*
Part no. 6085

- Board supplies a regulated +5 volts at 3 amps.. $+12,-12$, and -5 volts at 1 amp. - Power required is 8 volts AC at 3 amps ., and 24 volts ACC.T. at 1.5 amps. - Board only \$12.50; with parts excluding transformers $\$ 42.50$

TAPE INTERFACE *

Part no. 11

- Play and record Kansas City Standard tapes • Converts a low cost tape recorder to a digital recorder •Works up to 1200 baud - Digital in and out are TTL-serial • Output of board connects to mic. in of recorder - Earphone of
 recorder connects to input on board - No coils Requires +5 volts, low power drain \bullet Board $\$ 7.60$: with parts $\$ 27.50$

T.V. TYPEWRITER

Part no. 106

- Stand alone TVT - 32 char/line. 16 lines, modifications for 64 char/line n cluded - Parallel ASCII (TTL) inpul • Video output - 1 K on board memory Output for compu. ter controlled cur-
 ser - Auto scroll -Non-destructive curser - Curser inputs: up, down, left. right, home, EOL. EOS - Scroll up, down - Requires +5 volts at 1.5 amps , and -12 volts at 30 mA - All 7400 . TTL chips - Char gen. 2513 - Upper case only • Board only $\$ 39.00$, with parts $\$ 145.00$

TIDMA *

Part no. 112

- Tape Interface Direct Memory Access - Record and play programs without bootstrap loader (no prom) has FSK encoder/decoder for direct connections to low cost recorder at 1200 baud rate, and direct connections for inputs and outputs to a digital recorder at any baud rate. $-S-100$ bus compatible - Board only $\$ 35.00$; with parts $\$ 110.00$

UART \& BAUD RATE GENERATOR*

Part no. 101

- Converts serial to parallel and parallel to serial - Low cost on board baud rate generator • Baud rates: 110. 150, 300, 600, 1200, and 2400 - Low power drain +5
volts and -12 volts required
 - TTL compatible - All characters contain a start bit 5 to 8 data bits, 1 or 2 stop bits, and either odd or even parity. - All connections go to a 44 pin gold plated edge connector - Board only $\$ 12.00$; with parts $\$ 35.00$ with connector add $\$ 4.00$

8K STATIC

RAM

Part no. 300

- 8K Altair bus memory Uses 2102 Static memory chips • Memory protect - Gold contacts - Wait states - On board regulator - S-100 bus compatible - Vector input option - TRI state buffered - Board only $\$ 22: 50$; with parts $\$ 160.00$

RF MODULATOR *

Part no. 107

- Converts video to AM modulated RF, Channels 2 or 3 . So powerful almost no tuning is required. On board regulated power supply makes this ex-
 tremely stable. Rated very highty in Docior Dobss' Journal. Recommended by Apple. - Power required is 12 volts ACC.T. or +5 yolts DC • Board $\$ 7.60$; with parts $\$ 13.50$

RS 232/TTY

 INTERFACE*Part no. 600

- Converts RS-232 to 20 mA current loop, and 20 mA current loop to RS-232 - Two separate circuits - Requires +12 and -12 volts - Board only $\$ 4.50$, with parts $\$ 7.00$

RS 232/TTL

INTERFACE*

Part no. 232 - Converts TTL to RS-232. and converts RS-232 to TTL • Two separate circuits

- Requires -12 and +12 volts - All connections go to a 10 pin gold plated edge connector - Board only $\$ 4.50$; with parts $\$ 7.00$ with connector add $\$ 3.00$

ELECTRONIC SYSTEMS

Dept. PE, P.O. Box 21638, San Jose, Calif. USA 95151

$\begin{aligned} & 21 \mathrm{~L} 02 \\ & \text { Static }(450 \mathrm{~ns}) \\ & 100 @ \$ 1.10 \mathrm{eas} . \end{aligned}$	$8 @ \$ 3.75$	6502 Microprocessor $5 @ \$ 11.00$ ea.		$\begin{aligned} & 21 \mathrm{LO2} \text { (250 } \mathrm{ns}) \\ & \text { Static Rams } \\ & 100 @ \$ 1.36 \mathrm{ea.} \\ & \hline \end{aligned}$	Z-80A Microprocessor $5 @ 25.00$ ea.	$\begin{gathered} 8212 \\ 8 \text { Bit } 1 / 0 \text { Port } \\ 25 \text { @ } \$ 3.00 \text { ea. } \end{gathered}$	$\begin{aligned} & 4116 \text { (200ns) } \\ & 16 \mathrm{~K} \text { Dyn. Ram } \\ & 16 @ \$ 24.00 \mathrm{ea} . \end{aligned}$
Microprocessor $5 @ \$ 20.00 \mathrm{ea}$.	Clk.Gen. \& Dur. $25 @ \$ 8.75 \mathrm{ea} .$	410 D (200ns) Static Ram 100 @ $\$ 8.75 \mathrm{e}$	Dynamic Ram 100@\$3.50	$\begin{aligned} & 4200 \mathrm{~A} \text { (} 200 \mathrm{~ns}) \\ & \text { Static Rams } \\ & 25 @ \$ 10.00 \mathrm{ea.} \end{aligned}$	74 LS367 Hex Buffer 100 @. $70 \not \subset$ ea	$\begin{aligned} & 74 \text { LS } 368 \\ & \text { Hex Inverter } \\ & 100 @ .70 \not \subset \text { ea. } \end{aligned}$	$2513 \quad(5 \mathrm{v})$ $5 \text { @ } \$ 9.00 \mathrm{ea} \text {. }$

MICROCOMPU	
MICROPROCESSOR'S	
	${ }^{16.95}$
	12.00 28 1095
	19,95
	22.95
	18.95 85.00
	25.95
8035 8800 A	22.00
${ }_{\text {TMS }}^{8089} 9$	27.00
8080A SUPPORT OEVI	
8212 8214 8	3.50 9.08
8216 82216 8224	
- ${ }_{8}^{82264.4}$	${ }^{9.95}$
- 8228	7.95
	9.95
${ }_{8255}$	21.95
825 829 8	$2{ }^{21.95}$
8275 8279	${ }_{20} 75.00$
FLOPPY OISC	C Contr
17718.01	55.95 57.95
KEYBOARO	CHIPS
	${ }_{13.75}^{13.75}$
PROM'S	
${ }^{17024}$	14.00
2708 2716	12.00 30.00
2716	38.00
O3f0:	4.50
5203 AG	5.00
6834	17.50
${ }_{8}^{62523}$	4.95
${ }^{82531298}$	${ }^{4.55}$
6800 SUPPORT	
(6850	
68606862688	
	28.
6_{6880}	${ }_{2.50}$

${ }_{3881}^{280 ~ S U P P O R T}$ DEVICES $\begin{array}{ll}3881 \\ 3882 & 12.95 \\ 12.95\end{array}$

Character generators	
${ }^{2513} 513$ Sv upper	cer $\begin{aligned} & 6.75 \\ & 9.75\end{aligned}$
${ }_{\text {25 }}$	10.95
MCM 571	(10.95
MCME5 ${ }^{\text {P/ }}$	${ }_{13} 25$
WAVEform	generator
${ }_{\substack{8038 \\ M C 4024}}$	3.50 2.25
${ }_{566}{ }^{\text {M }}$	2.50
DYNAMIC RA	AMS
${ }^{11607 / 4116}$	32.00 1.00
${ }_{2107}^{2104}$	4
21098 -4	3.95
TMs4050	4.90
TMS5070-2	32.00
${ }_{4146} 416160$	32.00
MMS $270{ }^{\text {che }}$	4.50
USRT	
52350	10.75
UART'S	
AYS.1013 ${ }^{\text {a }}$	5.25 8.25
TM16028	5.25
$1 \mathrm{M6} 403$	10.80

BARE GOARD $\$ 30.00$

COMPONENTS
MISC. DTHER COMPONENTS

STATIC RAM BOARDS

$\$ 189.95$
 6800 ADAPIER Do S .100 Sysitem $\$ 169.95$
$\$ 12500$
25.00 $16 K$ 250ns ASSEMBLED \& TESTED
45Ons ASSEMBLED \& TESTED asons assembled \& tested $\$ 435.00$ 450ns K1T 250ns assembled \& TESTED $\$ 850.00$
$\$ 775.00$
$\$ 675.00$ DYNAMIC RAM BOARDS

,

expandable			32 K	
${ }^{96 \times 13}$	$15 n \leq 1$	KıI		\$151.00
${ }^{166}$	1375 nsl	${ }^{\mathrm{K} 1 \mathrm{~T}}$		\$259.00
${ }_{32 \mathrm{~K}}^{24}$	(1375ns)	${ }_{\substack{\mathrm{K}, \mathrm{T} \\ \mathrm{KIT}}}$		
expandable			64 k	
16K	1375ms	K1T		\$281.00
32k	1375ns)	KIT		\$519.00
48 K 64 K		KıIT		5757.00 $\mathbf{S 9 9 5 . 0 0}$

THE PROM SETTER

WAITE \& REAOEPROM	
Uw sochen Luw '	
Solimer molitra	
KIT	\$210.00
ASSEMBLED	\$375.00

KIM-1

ASSEMBLED \& TESTED $\$ 245.00$

MEMORY PLUS

for KIM-1
$8 K$ RAM (21L02)
SK EPROM
ASSEMBLED \& T'ESTED
$\$ 245.00$

E-PROM BOARDS

JADE Z80
mpen suons bir KIT $\$ 135.00$ EA. ${ }^{\text {an }}$ 2 $\$ 149.95$ EA. ${ }^{\text {ananzz }}$ bate boaro $\$ 35.00$

TU-1

Convert T.V. set to Video
KIT IT …........ $\$ 8.95$
$\$ 8.95$

$\operatorname{JADE}^{\text {Jind }} \text { ZOO }$
\$135.00 EA.
\$149.95 EA.
bate boaro \$35.00

\square

| Stoo bus compatibig | compertime
 CT 100 |
| :---: | :---: | time \& calentas Mietoprocessors need the power that a real time clock can oller. Date and time becomes instantly avalable COMPU/TIME does not have to be inil alased every tome

the system is powered up. It possesses a alysial contilled time base to obtain supptior accuracy and thas two setable coincidence counters. Time. date, and counters are set via soltualie.

COMPUTATIONAL FUNCTION Microprocessors need to be complimented by hardware arithmetics to tree up memory Dages dedicated 10 Hoal Inspoint routines and mathmalical saltware comput algebraic, whonometric, basic arthmenc protlenis can be solved without the need al develoding sophisticated sof tware.
COAPU.TIME CTIOO S $199 \mathrm{KIT} \quad \mathrm{S} 245$ Askemblell COMPU ontly E109 S149 KIT $\$ 189$ Assemitited

S80

JADE VIDEO

JADE VIDEO INTERFACE KIT
FEATURES
$\$ 99.95$
S. 100 Bus Compatible
32 or 64 Characters

16 lines Characters per line
Graphics $\{128 \times 48$ matrix
Parallel $\&$ Compositive vided
On board low-power memory
Powerful software included for
Cursor, home. EOL. Scroll Graphics. Upper case lower case \& Greek
Black on-white \& white-on-black

full ASCII
PROFESSIONAL KEYBOARDS
full 128 Chatacter Ascm Tri.Mude MOS Enioding' MOS OTI TH_{L} Comparable Gervout I mothey kotlover tevel and Dulse Sluobe MODEL Smiky and Alpha lore Selec'able Parily' 756 POnlive or Negorve logir PRICING INFORMATION \|56 keys)

REAL TIME CLOCK FOR S. 100 BUS
IMHz Crystal Oscillator
Two independent inter rupts
One invernpt uses 16 bit counte, in
10 USEC steps
Ohnet interrupt
100 USEC to 10 sec.
Both sot tware programmable
Both sot tware programmable
Board can be selecté by 128 dev
code parts. ware to display time of day.
Double sided solder mask
Silk scteen parts lay
G-RT ASSEMBLED \& TESTED S179.95 JG-RT KIT $\$ 124.95$ BARE BDARD with Marual $\$ 30.00$

TARBELL

CASSETTE INTERFACE

- Plugs directly into your IMSAL or ALTAIR. - Extremely Reliable - Phase encoded (self clocking) - 4 Exta Stopus Lines. 4 Extro Control Lines 37. page manual included

Device Code Selec:able by DiP swolch

- Capable of Generating Kansas City tapes also
- No modilication required on audlo cassetre recorder JADE KIT S99.95 ASSEMBLED $\$ 175.00$ - 16 montil wailanty Irom JADE) MANUAL $\$ 4.00$

JADE PARALLEL/SERIAL

 INTERFACE KITS. 100
\$124.95 KIT
2 Serial Interfaces with RS232 merfaces or 1 Kansas City cassetie nteriace
Sertal interfaces are crystal controlled Selectable baud rates. parallet pors up to 1200 baud

DITh COWMUNEATIUS IDAPTER

80.103A Serial 10 . .na F SK modem 10 . Completerly compatible with your IMSAI, ALTAIR SOL " of athar 5.100 mictocomputers Thadiomerks of 'MITS, "Procestor Tochnologyy

- Bell 103 standard Irequercies
- Automated dial fpulisedf and answer

PRICES: ARE BOARD And Mimual $\$ 49.95$ Assumbletel (48 lw, bunn mi $\$ 279.95$
JG DCA KIT $\$ 159.95$

NUMBER CRUNCHER
tor usc son those applications that require fass versatile Thathernatical solutions. The CT200 has

 completwly compartble with $280,4 \mathrm{MMZ}$ vetsion afso.
8080.6800 .6502 muctopencesint.
 and hranch instructrons. All decoding of S 100 bus
signals tho sefect or controt furicioms) is perfor ned isith

Includes Marual. PRICE; $\$ 249.00$

CONNECTORS

$\begin{array}{lr}O B-25 P & \$ 3.00 \\ O B-25 S & \$ 4.00\end{array}$

COVER $\$ 1.50$

$\$ 1.95$
$\$ 2.50$
$\$ 1.95$
$\$ 2.50$
$\$ 5.00$ $\$ 5.00$ $\$ 5.00$
$\$ 4.50$
$\$ 3.75$

 CMOS

LINEAR

 \% \%IICROPROCESSOR CRYSTALS

$$
\$ 2.00
$$

MA1003, 12 V DC CLOCK MODULE

 II time base. Propec fed geninst
autorvoth a volt fingients Automatic orighinass con aisplar Display giserionot $\$ 17.95$

Computer Products
5351 WEST I WAIT STREET AWNOALE CALIFORNIA 90260 121316793313

RETAIL STORE HOURS M.F 9.7 SAT 9.5
Discounts available at OEM quantities Aad $\$ 1.25$
978 CATALOG NOW AVAILABLE

雕 Rato Hut

Jumbo LED Car Clock Kit

A. Bowmar Jumbo 5 inch LEO array
B. MOSTEK - 50250 - Super clock chip
D. 12 or 24 hour Real Time formal
E. Pertec! lor cars, boats, vans, elc.
F. PC board and all parts (less case) inc.

Alarm option - $\$ 1.50$

\$16.95

MUSICAL HORN

One lune supplied with each kit. Additional tunes - $\$ 6.95$ each. Special tunes available. Standard tunes now available; Olile - Eyes of Texas -- Oink Panther - Aggle War Song Anchors A way - Never on Sunday - Yellow Rose of Texas Deep in the Heart of Texas - Boomer Sooner - Bridge ove Aiver Kwai $\begin{array}{cccc}34.95 & \begin{array}{c}\text { AR } \\ 34.94 T \\ 29.95\end{array} & & \text { Case } \$ 3.50\end{array} \begin{gathered}\text { \& Tested } \\ \text { Add } \$ 10.00\end{gathered}$

TELEPHONE RELAY

Assembled \& Tested $\$ 29.95$
Automatically Starts \& Stops Tape Recorders Surreptitious interception of felephone conversation is a violation of Federal Law and this device is not Intended for violation use.
such use

6 DIGIT ALARM CLOCK KIT
Features: Litronix dual $1 / 2^{\prime \prime}$ displays, Mostek 50250 super clock chip, single I.C. segment drlver, SCR digit drivers. Kit includes all necessary parts (except case). Ximr optional Eliminate the hassle
AC XFMR $-\$ 1.50$ Case $\$ 3.50$
AC XFMR - $\mathbf{5 1 . 5 0}$ Case $\$ 3.50 \quad \$ 12.95$

NEW IMPROVED UNSCRAMBLER! $\$ 25.00$
Punched and Printed Case

Ragla
Hut
(All prices subject to change

Money back guarantee. NO COD'S. Texas residents add 5% sales tax. Add 5% of order for postage and handling. Orders under $\$ 15.00$ add 75 cents. Foreign orders add 20% for postage For your convenience, call your Bank Americard or Master Charge orders in on Our Toll Free Watts Line: 1-800-527-2304. Texas residents call collect: 1-214-271-8423

PLANNING TO

MOVE?
Let us know 8 weeks in advance so that you won't miss a single issue of POPULAR ELECTRONICS.
Allach old label where indicated and print new address in space provided. Also include your mailing label whenever you write concerning your subscription. It helps us serve you promplly.

Write to: P.O. Box 2774, Boulder, CO 80322 giving the following information:
\square Change address only \square Extend my subscription ENTER NEW SUBSCRIPTION
1 year $\$ 13.00$ Allow $30-60$ days for elivery
\square Payment enclosed (1 extra BONUS issue) \square Bill me later

NEW ADDRESS HERE 0224

Name

please neint

Address
A
Apt.
City
State
Additional postage on foreign orders: add 83 a year for Canada, 85 Additional oostage on foreign orders: add $\$ 3$ a year for Canada. $\$ 5$
a year for all other countries outside the U.S. and its possessions. Cash only on foreign orders, payable in U.S. currency.

Sinclair $31 / 2$ Digit Multimeter Batt./AC oper. 1 mV and . 1 NA resolution. Resistance to 20 meg. 1% accuracy. Small, Resistance to
portable, completely assem. in case. 1 yr. portable, completely as sem. in case. 1 yr.
guarantee. Best value ever!
$\$ 59.95$

Not a Cheap Clock Kit $\$ 14.95$ Includes everything except case. 2-PC boards. 6-50"LED Displays. 5314 clock chip, transformer, all components and full instrucs. Green and orange displays also
avail. Same kit w/.80 displays. $\$ 1.95$
Digital Temperature Meter Kit Indoor and outdoor. Switches back and forth. Beautifull $50^{\prime \prime}$ LED readouts. Noth ing like it available. Needs no additional parts for complete, full operation. Will measure $-100^{\circ} 10+200^{\circ}$, tenths of a degree.air or liquid. Very accurate. $\$ 39.95$ Beautiful hardwood case w/bezel $\$ 11.75$

NiCad Batt. Fixer/Charger Kit Opens shorted cells that won't hold a charge and then charges them up. all in one kit w/full parts \& instruc. $\quad \$ 7.25$

RCA Cosmac VIP Kit $\mathbf{2 7 5 , 0 0}$ Video computer with games and graphics

'78 IC Update Master Manual

 1978 IC Update Master Manual $\mathbf{\$ 3 0 . 0 0}$ Complete iC data selector 2175 pg . Masteir reference gulde. Over 42000 cross ter reterence gulde. Over 42,0 cross 1978. Domestic poskage 3.50 Hirign

New Cosmac Super "ELF" RCA CMOS expandable to 64 K microcomputer w/HEX keypad input and video output for graphics. Just turn on and start loading your program using the resident monitor or ROM. Pushbuton seleotion of all four CPU modes. ED indicators of current CPU mode and four CPU stats. Single step op for prooram det sates. in in pwr. supply, 256 Bytes of RAM, audio amp. \& spkr. Detailed assy. man. w/PC board \& all parts fully socketed. Comp. Kit $\$ 106.95$. High address display option 8.95: Low address display optlon 9.95; Custom hardwood cab.; drilled front panel 19.75; Nicad Battery Backup Kit whall parts 4.95; Fully wired \& tested in cabinet 151.70; 1802 sottware club. 1012 pg . monthly publication $\mathbf{1 2 , 0 0}$ per yr. 4K Elf Expansion Board Kit with Cassette I/F $\quad \$ 79.95$ Available on board options: 1 K super ROM monitor $\$ 19.95$ Parallel $1 / 0$ port $\$ 7.95$ RS232 I/F $\$ 3.50$ TTY $20 \mathrm{ma} \mathrm{I/F} \$ 1.95$ S-100 Memory I/F $\$ 4.50$

Tiny Basic for ANY 1802 System Cassette $\$ 10.00$. On ROM Monitor $\$ 38.00$. Super Elf owners, 30\% off. Object code listing or paper tape with manual $\mathbf{\$ 5 . 5 0}$. Original Cosmac "ELF" kit All parts and instructs. $\quad \mathbf{S 8 9 . 5 0}$ | All parts and instructs. | 589.50 |
| :--- | ---: |
| Board only | 14.95 | Video Modulalor Kit $\$ 8.95$ Convert your TV set into a high quality monitor withour affecting normal usage. Complete kit with full instructions.

P.0. Box 4430C Santa Clara, CA 95054

60 Hz Crysial Time Base
Kit $\$ 4.40$ Converts digital clocks from $A C$ line frequency to crystal time base. Outstanding accuracy. kit includes: PC board, MM5369, crystal, resistors, capacitors and trimmer.

Clock Calendar Kit $\$ 23.95$

CT7015 direct drive chip displays date and time on . $6^{\prime \prime}$ LEDS with AM-PM indlcator. Alarm/doze feature includes buzzer. Complete with all parts, power supply and Instructions, less case.
2.5 MHz Frequency Counter Kit Complete kit less case $\$ 37.50$ 30 MHz Frequency Counter
Kit Complete klt less case $\quad \$ 47.75$ Prescaler Kit to $350 \mathrm{MHz} \quad \$ 19.95$

Stopwaich Kil $\$ 26.95$ Full six digit battery operated. 2-5 volts. 3.2768 MHz crystal accuracy. Times to 59 min. . $59 \mathrm{sec} .991 / 100 \mathrm{sec}$. Times sid. split and Taylor. 7205 chlp. all components minus case. Full Instruc. Molded plastic case with bezel.

Auto Clock Kit

$\$ 15.95$
DC clock with 4-.50" displays. Uses National MA-1012 module with alarm option. Includes light dimmer, crystal timebase PC boards. Fully regulated. comp. instructs. Add $\$ 3.95$ for beautiful dark gray case. Best value anywhere.

Operation Assist

egupment-a scmemalic. parts hist efc -another reacer

 might be able to assist Simply send a posicard lo Opeta lon Assisi Populaf Electronics i Park Ave New York Ar 10016 For those who can nelp readers please re spord durectly to them They 11 apprecrate 11 IOnly those ferms regarding equrpment no avaltable from normalPreclsion Signal Generator model E200C. Service and alignment manual, Carlos Jayne, 21 Knoll-Crest, Chatham,

Slgnal Corps U.S. Army BC-348-Q recelver. Schematic and/or tech manual. A. McGinnis, 55 Patton St., Iselin, NJ 08830.

ESE Model ES210 VOM digital meter Need schematic of switches and technical manual or instruction book. C. Faulstich Apt. 1314, 14130 Rosemary Lane, Largo. FL 33540.

Collins ARR-15 surplus radio receiver. Schematic diagram and alignment intormation. E.H. Wilkie, 2828 W. Charleston Ave.. Phoenix, AZ 85023

Russian-made shortwave receiver model VEF 202 . Schematic, pictorlals, ferrite antenna coil, tuning capacitor and loudspeaker. James R. Bailey, N71, W26590 White Oak Drive. Sussex, WI 53089

Lafayette model KT-200 receiver. Schematics, parts list. instructions. Dick Patten. 1072 Lanette Dr., Cincinnati. OH 45230.

Hammarlund HQ-100. Operation manual or any other infor mation. Jeft Audet, 2049 W. 32nd. Erie. PA 16508.

Presto series 625 tape reproducer with 909 and 915 electronics. Operating manual. Stanley Salek. 3001 N. Ocean Dr., Hollywood, FL 33019.

Uher model 704L open-reel tape recorder. Service manual and schematic. Rick Ryan, 102 Hancock St., Cambridge, MA 02139

Electro-Volce dual conversion model 4350 communications receiver. Schematic, operating manual, service manual. J. Grant, 701 W. Harrison, Chandler, AZ 85224.

Lafayette Model \# Micro P-450. Serviceable unit or unf front end. Alignment procedure. Conner TV Service, 709 W Craighead Rd., Charlotte, NC 28206.

Dura of itel Model 1051 computer terminal. Schematic, op erator and service manuals, component list. Peter Davies Box 4757. G.P.O.. Sydney, 2001, Australia.

Panoramic Model PCA-2. T-200 panadaptor. Schematic or any information. Operating manual. Sylvanla tube tester, type 620. Schematic and operating manual. New London Instrument Co., Amplifier. Model 160. Allan Vontorcik. 17301 Mapleboro, Maple Helghts, OH 44137.

Radiola model 690 comblnation radio and automatic electric phonograph. Schematics and any information. Brian Coombs. Box 226, West Lynn, MA 01905.

Zenlth Transoceanic Royal 1000 shortwave receiver Schematic and alignment information. Harold Carvajal Apartado Aereo 20130 S. Femando. Call-Columbia-S.A.

Monroe Monsomatic model CSA-8 calculator. Operating manual and motor schematic. David Truran, 1582 Rose Hedge Dr., Poland, OH 44514.

GPL Precision 1000 video camera driver. Operating and service manual. Richard Ulene, 8943 Enfield Ave., North ridge, CA 91325.

RCA model 242 radio. Schematic. Joe Huber, 1180 S. Plea santree Or., Little Rock, AK 72211

Gonset GR-212. Need alignment and schematic data. Gor don Gillette, 5248 Jepson St., Niagara Falls, Ontario, L3E, 1 L2

Phillps GM 3156 oscilloscope. Schematic and service man val. Walter Adelman, Box 6761, APO NY 09633.

Knight model $83 Y Z-144$ oscilloscope. Need troubleshooting data such as voltages, resistances. Samuel Benveniste, 434 Briarwood PI., Highland Park. IL 60035.

Magnecorder model PT5AH tape deck. Schematic, service
manual, and parts source. Bill Stottemyer, Box A, Treze vant, TN 38258

Collins $51 \mathrm{~J}-4$. Collins $51-\mathrm{J}$. Halllcrafters 5×62. Operating manuals. Carl McCormick, Rt. 5, Box 403A. Shrevepori, LA 71107

Jackson Electrical Instrument, Co., model TVG2, televi sion signal generator, sweep and marker tube type. Sche matic and operating instructions. Box Grauch, 13946 Stroud St., Van Nuys, CA 91402

Textronix type 512 oscilloscope. Schematic and manual W.E. Schwartz, 2137 S. Wichita, Wichita, KS 67213

Heathkit receiver model AR-3. Schematics and instruction manual. R. A. Sitler. 415 W. Governor Rd., Hershey. PA 17033.

Jackson model 637 dynamic output tube tester. Instruction manual, schematic and calibration data. parts list. Elco 615 adaptor (for fube tester). Any available information and/o complete unit. Capehart Panamuse model 19M3. Schematic, parts list, alignment information and/or any available in formation. William E. Paterson, 5006 Wlishusen Ave Shrewsbury, St. Louis, MO 63119.

Waterman oscilloscope model S-11A. Need schematic dia gram of unit, R.O. Liedtke, 973 Pool Ave., Vandalia, OH 45377

Solar Exam-Eter model CF capacitor analyzer. Schematic and operating manual. Manuel Gonzalez, 911 Urban, Lare do. TX 78040

Concord model MTC-15 closed circuit TV camera. Sche matic and service information. Roland Jordan, 812 Young St., Selma. AL 36701

Elan Industries, flame detector model FD22. Need hook-up diagram. C. Vorlicek, 25181 Treadwell Ave., Euclid, OH 44117

Regency model DR-200 HI -20 whi monitor radio. Operation manual and schematic. John Rudlck, 330 Gallivan Blvd. Dorchester, MA 02124.

Knight-Kit R100 shortwave receiver. Need oscilloscope and $r-1$ coils. G. Lenarz, 1424 165th Ave., San Leandro. CA 94578

Hewlett-Packard oscilloscope model 150A. Operation manual. R. Maslow, 100 Richard St., West Haven, CT 06516.

Hallicrafters HT-32A amateur transmitter. Need transmitter and manual. Lance Stronk. 27 Ralph Rd., Bethany, CT 06525.

Dumont oscilloscope model 401B. Schematic. A. Reges, 16W761 White Pines, Bensenville, IL 60106.

Ballantine $320 / \mathrm{S}-\mathrm{Z}$ true-rms voltmeter. Schematic, manual John Pearsall, 225 S.W. Whitaker, Portland, OR 97201.

Radio Mig. Engineers model RME-84 AM/shortwave re ceiver. Operator's manual and any other information. Dale Pomerantz. 5941 Franmar Circle, Huntington Beach, CA 92649

Trlumph 830 oscilloscope. Schematic. S. Goldhor, 1014 B St., Hayward. CA 94541

Dumont oscilloscope model 164E, serial \#3316. Manual and schematics. Frank Smith, 33 Westminster Ave., Arlington. MA 02174

Hycon color-bar-dot generator model 616. Operating manu al and schematic. Robert Vigil, 2760 Corabel Ln., \#57, Sacramento. CA 95821.

Friden electronic calculator model 130. Schematic, parts tist service information. P.J. Mischkot, 2510 Turtlecreek Dr Sherman. TX 75090.

Dokorder 9020V open-reel recorder. Schematic. parts source for plug-in or remote-control unit. Ron Garrison, Box 891. Hot Springs, SD 57747.

Friden electronic calculator model 130. Manual and schematic. Lester Viles, 21255 Bon Huer St., St. Clair. M1 48081.

Magnavox electrostatic headphone power supply, model 1A9217. Ken Mossman \#3 1205 Bay Victoria, B.C.Canada V8T1S7.

RCA receiver made for Royal Canadian Air Force. Model GR-10. Manuals and any other information. Chris Pallen. 67 Gables Ct., Beaconsville, Quebec, Canada. H9W-5H3.

LInear System mobile power supply for KWM-2 model century 400. Robert B. Monteith WIHDB/4, 307 Sunset Blvd., Melbourne Beach FL 32951.

Hallicrafters model CR-3000 stereo and shortwave receiver. Schematic. N. Sabo. Avenue Du Domaine, 67 Brussels. Belgium.

RCA Superheterodyne model BT-42. Manual, schematic and voltage requirements. John Jones, 1030 Wood Eden Dr., Kingsport: TN 37660

Sony model M-5-24 solid-state TV. Schematic diagram. Ben Marlo Suarez, 135-D Lopez Jaena Street, La Paz, Iliolo City. Phillppines.

Hallicratters model SBT-20 SSB/CW transceiver. Manual or schematic. Ralph Irish, Box 122, Utica, M1 48087.

Gonset Communicator II, 2-meter vfo, vyif power amplifier model 3063. Schematic and instruction manual. Richard Dawson, 1308-F St., The Dales, OR 97058.

Mckurdo Silver signal generator model 906. Manual and schematlc. H.W. Brown, K1TO. 1015 Concord Circle. Haddonfield, NJ 08033.

Knight model 83YZ-144 oscilloscope. Operating and servicing instruction. Samuel ل. Benveniste, 434 Briarwood Pi., Highland Park, IL 60035.

Bayior radio model SD15-6. Schematic. Roosevelt Jones, Route 4, Box 139, Huntsville, TX 77340.

Zensth Radio Corp. multi-band AM radio receiver. Chicago Coin "Home Run" pinball machine. Schematics and parts lists. Chuck O'Connor, Box 264, Santa Clara. CA 95052

Telfqulpment model SG-1 Canadian signal generator Jackson tube tester model 648A. Manuals and schematics S. Lear, Box 566, Pomiho Capreol, Ontarlo, Canada.

Superlor Instrument Co., model 670-A. Parts list, schemat ic and operating manual. Roy P. Swanger. 104 Valley Dr. Bridgeport, CT.

믄 InTEGRATED ELEETROMIES

540 Weddell Drive, \#4, Sunnyvale, CA 94086 (408)734-8470

RADAR Detector

HAWKEYE RADAR DETECTOR This all-new radar detector gives you a very miles from the radar source. Detects all X-band radar, around corners, over hills, etc. Smartly
styled unit mounts atop dashboard in a special quick-release bracket, so that it may be removed while auto is left unattended. 12VDC
operation, comes complete with cigarette lighter adap ter: just plug it in and you're ready to $90!$ Original price for the detector was
$\$ 79.95$... now priced at a super-low B\&F price of only $\$ 28.88$! Sh. Wt. 3 or. HAWKEYE \#8K30262......... $\$ 28.88$ each RADAR DETECTOR Lighier Adepter
$\begin{aligned} & \text { These unique systems were } \\ & \text { designed for direct dispersion }\end{aligned} \infty \rightarrow$ Q designed for direct dispersion
of the high frequencies and
wide dispersion of the low tones. Cabi-
net measures $17 \times 101 / 2 \times 91 / 2^{\prime}$ deep. Kit includes: 2 -cabinets; $2.8^{\prime \prime}$ woofers; $2-4^{\prime \prime}$ dome tweeters; crossovers; grill cloth \&
instructions. Assembled systems deliver freq. resp of 30 to $20,000 \mathrm{Mz}$. Buy the completekit or just the cabinets!
\qquad

Video Monitor Mew crr insaled

Used checked-out monitors outfitted with brand
now $12^{\prime \prime}$ CRT. Solid state monitors will display 80 characters $\times 16$ lines. Std. comp. video signal inpur your CCTV or Micro Computer! aty. Lid. Great for

VIDEO GAME PARTS A compere viduogsame except the 0^{2}. LED displays LS $0.5^{\prime \prime}$ LED displays; LS and CD CMOS chips: 555 timers: $2^{\prime \prime} 8$ ohm speaker; 3 .lead 12 V regulator; large control \#8GV80028 Use Your BA.MC or AE for telephone Please add POSTAGE -

B\&F ENTERPRISES Dept. "P-8'
119 Foster Street
Peabody, MA. 01960
(617) 531-5774 IRCLE READER SERVICE CARD FOR

Introducing Prime 4000 Series CMOS At Lowest Prices Anywhere

74xx TTL	7480 7482	$\begin{array}{r} 0.31 \\ 0.50 \\ 0.50 \end{array}$	$\begin{aligned} & 74181 \\ & 74182 \\ & 7 \end{aligned} \ldots 0.75$	$\begin{aligned} & \text { 74LS42 .. } 0.60 \\ & \text { 74LS47 } \ldots 0.75 \end{aligned}$	$\begin{aligned} & \text { 74LS } 192 \\ & 74 \mathrm{LS} 193 \end{aligned}$	$\begin{array}{r} 0.90 \\ .0 .90 \end{array}$	$\begin{aligned} & 74578 \\ & 745112 \end{aligned}$	$\begin{aligned} & 0.58 \\ & 0.58 \end{aligned}$	$\begin{aligned} & 74 C 48 \\ & 74 \mathrm{C} 73 \end{aligned}$	$\begin{array}{r} 0.96 \\ 0.62 \end{array}$	$\begin{aligned} & 4007 \\ & 4008 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.74 \end{aligned}$	$\begin{aligned} & 4086 \ldots . . .64 \\ & 4089 \ldots . .2 .75 \end{aligned}$	VOLUME DISCOUNT SCHEDUEE
	7483	0.54	74184 ... 1.75	74LS48 - 0.72	74LS194	0.85	745113	0.58	74674	0.48	4009	0.35	4093 ...1.55	Merchandise Total Discount
7400 ... SO. 14	7485	0.80	74185 ... 1.75	74LS51 .. 0.25	74LS195	0.50	748174	0.58	74 C 76	0.68	4010	0.35	4099 ... 2.10	S 0.00-S 9.99.......... NET
7401 0.15	7486	0.27	74188 . . 2.80	74LS54 . 0.25	74LS196	0.80	$74 \leqslant 132$	0.75	$74 \mathrm{C83}$	1.28	4011	. 0.16	4104*.... 2.40	S 10.00-S 24.99...... LESS 5%
$7402 \ldots 0.15$	7489	1.75	$74190 \ldots 0.95$	74L555 . 0.25	74LS197	0.80	745133	0.38	$74 \mathrm{C85}$	1.20	4012	0.16	4503 ... 0.98	S 25.00-S 99.99 LESS 10%
$7403 \ldots 0.15$	7490	0.40	74191.0 .95	741573 ...0.38	74LS221	1.05	$74 \leq 134$	0.38	74686	0.40	4013	. 0.31	$4507 \ldots 0.37$	\$ 100.00-\$499.99 LESS 15\%
$7404 \ldots .0 .16$	7491	0.51	$74192 \ldots 0.80$	74LS74 . 0.35	74LS251	0.80	745135	0.49	74689	3.95	4014	. 0.73	4510 … 0.95	S 500.00-\$99999 LESS 20\%
7405 0.16	7492	0.40	$74193 \ldots 0.80$	74LS76 . 0.37	7415253	. 0.80	745138	0.77	74690	0.92	4015	. 0.73	$4511 \ldots 0.93$	S1000.00and U0....... LESS 25%
$7406 \ldots . .0 .24$	7493	0.40	$74194 \ldots 0.80$	74LS78 . 0.36	74LS257	0.70	745139	1.50	74693	0.92	4016	. 0.28	$4512 \ldots 0.64$	S100.00 dnd Up.........Less 25\%
$7407 \ldots . .0 .24$	7494	0.60	74195 ... 0.49	74L583 . 0.75	74LS258	. 0.70	745140	0.47	74695	1.04	4017	. 0.78	4516 … 0.76	
7408 ... 0.17	7495	0.60	$74196 \ldots 0.73$	74L585 -1.30	74LS259	1.60	748151	1.25	74 C 107	0.68	4018	. 0.78	$4518 \ldots 0.76$	STANDARDSHIPPINCMCHARCES
7409 0.17	7496	0.60	$74197 \ldots 0.73$	74LS86 .. 0.36	74LS260	. 0.34	745153	2.10	74 C 151	1.78	4019	0.21	45190.62	If your Merchandise Total is between:
$7410 \ldots 0.15$	7497	2.45	$74198 . . .1 .30$	74LS90 . 0.50	74LS266	. 0.26	745157	0.75	74 C 154	2.90	4020	0.83	4520 \ldots. 0.68	S 0.00-5 4.99.......add \$2.00
7411 0.18	74107	0.29	74199 ... 1.30	74LS92 . 0.50	74LS279	0.52	745158	1.25	74 C 157	1.78	4021	0.83	4527 ... 1.48	S 5.00-524.99........add $\$ 1.00$
$7412 \ldots . .0 .20$	74109	0.32	74251 ... 1.00	74.593 -. 0.50	74LS283	. 0.72	$74 S 174$	1.50	$74 C 160$	1.08	4022	. 0.83	4528 ...0.86	\$ 25.00 - 549.99 add \$ $\$ 0.75$
7413 ...0.25	74121	0.29	74279 ... 0.49	74L595 . 0.85	74LS290	. 0.60	745175	1.45	$74 C 161$	1.08	4023	. 0.16	4532 * $\ldots 0.80$	S 50.00-599.99 add 50.50
$7414 \ldots 0.55$	74122	0.35	74283 ... 1.00	74LS107 . 0.35	74 LS295	. 0.90	745189	2.75	74.162	1.08	4024	. 0.66	45395 ... 1.10	Sl00 and Up NO CHARGE
$7416 \ldots .0 .22$	74123	0.39	$74290 \ldots 0.59$	74LS109 . 0.35	74LS298	. 0.90	745194	1.75	74 C 163	1.08	4025	0.16	4555 …0.67	Stomap No Charge
7417 0.22	74125	0.37	$74293 \ldots 0.57$	74LS112 . 0.35	74LS365	. 0.52	74S200	3.25	74 C 164	1.08	4027	0.37	4556 0.88	
7420 ...0.15	74126	0.38	$74298 \ldots 0.92$	74LS113 . 0.35	74L5366	. 0.52	745206	3.75	74 C 165	1.08	4028	0.73	$4582 \ldots 0.88$	
7421 0.77	74132	0.65	$74365 \ldots 0.62$	74LSI 14 -0.35	74LS367	0.52	744253	0.95	$74 C 173$	1.16	4029	0.98	$4584 \quad \ldots 0.74$	First Class Nail or UPS (your choice).
$7423 \ldots 0.25$	74141	0.70	74366 ...0.62	74LS123 - 0.90	74LS368	. 0.52	745257	1.15	$74 C 174$	1.08	4030	0.21	$4702 \quad .7 .10$	and insurance on all dom
7425 0.25	74145	0.65	$74367 \ldots 0.62$	74LS125 -0.46	74LS386	. 0.36	745258	1.15	$74 C 175$	1.04	4031	2.97	4703 ...8.85	shipments.
7426 ... 0.22	74147	1.50	74368 ...0.62	74LS126.0.46	74LS390	. 1.65	745280	2.25	74 Cl 192	.1.30	4034*	2.75	$4704 \times .7 .30$	
$7427 \ldots 0.19$	74148	1.15		74LS132 -0.72	74LS393	. 1.35	745287	3.20	74 C 193	. 1.30	4035	. 0.84	4705 9.25	CIAL SHIRPING CHARGES
$7430 \ldots 0.15$	74150	0.79	74LSxx TTL	74LS133 0.34	7415490	1.10	745289	3.55	74 C 195	1.10	4040	0.86	4706 - . 9.975	OO 51.00 -additional
$7432 \ldots 0.23$	74151	0.59		74LS136 -0.35	7415670	2.29	745300	1.60	740200	7.50	4041	0.64	4707*. 9.9 .25	S Blue \$1.00-additional
$7437 \ldots 0.21$	74152	0.59	74L500 . 50.21	74LS138 - 0.70			745305	1.90	746221	1.38	4042	0.64	4708*...14.35	Stal Insurance .. \$1.00-additional
7438 0.21	74153	0.60	$741501 \quad 0.27$	74LS139 - 0.70	745xx	TTL	745310	${ }^{2} .85$	746901	0.48	4043 4044	0.62 0.62	$4710 * \ldots . .6 .40$ 4720 1.6 .95	Special Delivery . . . St.25-additional
7439 … 0.25	74154	0.95	74LS02 -0.21	74LS151 -0.65			745312	1.05	$74 C 902$	0.48	404	0.62	4720 ...6.95	
7440 0.15	74155	0.65	74LS03 . 0.21	74LS152 . 0.65	74500	\$0.35	745313	1.55	$74 \mathrm{C903}$	0.48	4046	. 1.35	4721** . 31.35	
$7441 \ldots 0.70$	74156	0.65	74 L504 . 0.24	74LS153 . 0.66	74502	0.35	745316	2.80	746904	0.48	4047	1.45	4723 .. 0.93	
$7442 \cdots . .0 .38$ 7443	74157 7458	0.59 0.59	$\begin{array}{llll}741505 & .0 .24 \\ 741508 & 0.23\end{array}$	74LS154-1.00	748503	.0 .35 0.36	${ }_{7}^{745331}$	4.10 1.20	746905 $74 c 906$	6.00 0.48	4048	0.95 0.33	4724 4725 \cdots	INTERNATIONAL
$7444 \ldots . .055$	74160	0.79	$741509 . .0 .73$	74LS156 -0.62	74505	0.36	745343	4.95	746907	0.48	4050	0.33	40014 . 0.72	
7445 0.55	74161	0.79	74LS10 . 0.21	74LS157 -0.62	74508	. 0.38	745346	1.25	746908	0.96	4051	0.89	40085 . 1.47	PONEN
$7446 \ldots 0.62$	74162	0.79	74 SS11 . 0.21	74LS158 . 0.70	74509	. 0.38	745362	2.15	$74 C 909$	1.78	4052	0.89	40097*. 0.54	
$7447 \ldots 0.57$	74163	0.79	74LS12 . 0.27	74LS160 . 0.82	74510	. 0.35	745387	4.70	$74 C 910$	6.00	4053	0.89	40098*. . 0.54	
7448 ...0.60	74164	0.79	74 LS13 . 0.40	74LS161 . 0.82	74511	0.38			$74 C 914$	0.90	4060	1.40	40106 . . 0.90	CORPORATION
$7450 \ldots 0.15$	74165	0.90	74LS14 . 0.85	74LS162 . 0.82	74515	0.38	8 CaO	318	74 C918	1.16	4066	0.54	40160 .. 1.08	
$7451 \ldots 0.15$	74166	0.95	74LS15 . . 0.26	74LS163 -0.82	74520	. 0.35			$74 C 925$	7.80	4068	0.34	40161 ... 1.08	P. O. 80X 1837
7453 0.15	74167	3.20	$741520 \ldots 0.23$	74LS164 - 0.98	74522	. 0.36	$74 C 00$. 50.24	$74 C 922$	7.80	4069	0.26	40162 ... 1.08	COLUMBIA, MO 65201
$7454 . .0 .15$	74170	1.85	$741521 \ldots 0.23$	7415168.0 .83	74530	. 0.27	74002	0.24	74 74927	7.80 780	4070	0.40	40163 $\ldots 1.08$ 40174 1.08	
7459 ...0.15	74173	1.10	74LS22 .. 0.23	74LS169 . 0.83	74532	. 0.50	$74 C 04$	0.26	$74 \mathrm{C928}$	7.80	4071	0.19	40174 ¢ 1.08	E.
$7460 \ldots 0.15$	74774	0.85	74.526 . . 0.31	74LS170-1.60	74540	. 0.35	$74 C 08$	0.25			4073	0.21	ltems irdicated	
7470 ... 0.27	74175	0.75	$741527 \ldots 0.26$	74LS173. 1.00	74551	. 0.17	${ }^{74} 740$	0.24	4 xxx	CMOS	4075	0.21 1.16		
$\begin{aligned} & 7472 \\ & 7473\end{aligned} \ldots . .0 .0 .24$	74176 74177	0.69 0.70	$\begin{array}{llll}74 L S 30 & 0.23 \\ 74 \text { LS32 } & \text { O.30 }\end{array}$	74LS174 0.75 7415175 0.079	74560 74564	0.35 0.38	$74 C 14$ $74 C 20$	0.90 0.25	4000	S0.16	4076	1.16 0.46	the time that this	
7474 0.24	74178	1.20	741537 . . 0.31	74LS181. 2.50	74565	. 0.38	74.30	0.24	4001	. 0.16	4078	0.35	being prepared.	
7475 ... 0.45	74179	1.20	74L538 . 0.31	74LS190 . 0.90	74574	0.58	74.32	0.25	4002	0.16	4081	0.19	Please inquire	
$7476 \ldots 0.29$	74180	0.65	74LS40 . . 0.26	74LS191 . 0.90	74576	0.58	74C42	0.94	4006	0.85	4085	0.64	aboul avail.	

 YOU'ME READING POPULAREIECTRONICS.

That already says a lot about you. That you're fascinated by the diversity of elec tronics. Everything from microcomputers to audio. from construction projects to ham radio. Who knows what area of electronics will catch your interest next Thats why you read P.E. To keep in touch with allt that's new and best in the Popular Electronics

Electronics

REGULAR CLASSIFIED: COMMERCIAL RATE: For firms or individuals offering commercial products or services, $\$ 2.40$ per word. Minimum order $\$ 36.00$. EX-PAND-AD* CLASSIFIED RATE: $\$ 3.60$ per word. Minimum order $\$ 54.00$. Frequency discount: 5% for 6 months; 10% for 12 months paid in advance. PERSONAL RATE: For individuals with a personal item to buy or sell, $\$ 1.40$ per word. No minimum! DISPLAY CLASSIFIED: $1^{\prime \prime}$ by 1 column ($2-1 / 4^{\prime \prime}$ wide), $\$ 280.00$. $\mathbf{2}^{\prime \prime}$ by 1 column, $\$ 560.00$. $3^{\prime \prime}$ by 1 column, $\$ 840.00$. Advertiser to supply film positives. For frequency rates, please inquire. COLOR: Color avail. for all classified ad styles at eamed rate plus additional 25%. Color choice Publisher's option and subject to availability. Publisher reserves right to run ad in black if color not avail. on classified pages. In such cases color charge will be refunded or credited. GENERAL INFORMATION: Ad copy must be typewritten or clearly printed. Payment must accompany copy except when ads are to be billed on credit cards - American Express, Diners Club. Master Charge, VISA - or when ads are placed by accredited advertising agencies. First word in all ads set in caps. All copy subject to publisher's approval. All advertisers using Post Office Boxes in their addresses MUST supply publisher with permanent address and telephone number before ad can be run. Advertisements will not be published which advertise or promote the use of devices for the surreptitious interception of communications. Ads are not acknowledged. They will appear in first issue to go to press after closing date. Closing Date: 1 st of the 2 nd month preceding cover date (for example, March issue closes January 1st). Send order and remittance to Classified Advertising, POPULAR ELECTRONICS, One Park Avenue, New York, N.Y. 10016. For inquiries, contact Gladys Mathieu at (212) 725-3926.

FOR SALE

FREE! Bargain Catalog-I.C.'s. LED's. readouts, fiber optics. calculators parts \& kits. semiconductors. parts. Poly Paks. Box 942PE. Lynnfield. Mass. 01940.

GOVERNMENT and industrial surplus receivers, transmitters. snooperscopes, electronic parts. Picture Catalog 25 cents. Meshna, Nahant. Mass. 01908.
LOWEST Prices Electronic Parts. Confidential Catalog Free. KNAPP. 4750 96th St N., St. Petersburg. FL 33708.
ELECTRONIC PARTS, semiconductors, kits. FREE FLYER. Large catalog $\$ 1.00$ deposit. BIGELOW ELECTRONICS. Bluftion. Ohio 45817.
RADIO-T.V. Tubes- 36 cents each. Send for free catalog. Cornell. 4213 University. San Diego. Calif. 92105.
AMATEUR SCIENTISTS, Electronics Experimenters. Science Fair Students . . . Construction plans - Complete. including drawings. schematics, parts list with prices and sources . . . Robot Man - Psychedelic shows - Lasers Emotion/Lie Detector \rightarrow Touch Tone Dial - Quadraphonic Adapter - Transistorized Ignition - Burglar Alarm - Sound Meter . . . over 60 items. Send 50 cents coin (no stamps) for complete catalog. Technical Writers Group. Box 5994. Unıversity Station. Raleigh. N.C. 27607.
ROTARY SWITCH 4P11P 5/\$5: 6P11P 5/\$7.25. Dip Switch 10 -SPST $10 / \$ 15$. Transformers 12.2 V CT-6A plus $8.5 \mathrm{~V}-5 A$ $\$ 6.95$. $24 \mathrm{~V}-5 A \$ 5.95$. 10^{\prime} RG58C/U $12 / \$ 10$. Fertiks, 5400 Ella St., Philadelphia. PA 19120.
SOUND SYNTHESIZER KITS-Surf \$14.95. Wind \$14.95. Wind Chimes $\$ 19.95$. Musical Accessories, many more. Catalog free. PAIA Electronics. Box J14359. Oklahoma City. OK 73114.
HEAR POLICE FIRE Dispatchers! Catalog shows exciusive directories of "confidential" channels. scanners. Send postage stamp. Communications, Box 56.PE, Commack, N.Y. 11725.

UNSCRAMBLERS: Fits any scanner or monitor, easily adjusts to all scrambled frequencies. Only 4^{*} square $\$ 29.95$. fully guaranteed. Dealer inquiries welcomed. PDQ Electronics, Box 841, North Little Rock. Arkansas 72115

POLICE/Fire scanners. large stock scanner crystals. antennas. Harvey Park Radio, Box 19224, Denver, CO 80219.
BUILD AND SAVE TELEPHONES, TELEVISION. DETECTIVE, BROADCAST Electronics. We sell construction plans with an Engineering Service. Speakerphones. Answering Machines. Carphones. Phonevision. Dialers. Color TV Converters, VTR, Games, \$25 TV Camera, Electron Microscope. Special Effects Generator. Time Base Corrector, Chroma Key. Engineering Courses in Telephone, Integrated Circuits. Detective Electronics. PLUS MUCH MORE. NEW Super Hobby Catalog PLUS year's subscription to Electronic News Letter. \$1.00. Don Britton Enterprises, 6200 Wilshire Blvd. Los Angeles. Calif. 90048 .
NAME BRAND Test Equipment. Up to 50% discount. Free catalog. Salen Electronics. Box 82, Skokie, Illinois 60076.
SURPLUS COMPONENTS. Communication and test equipment. Illustrated catalog 25 cents. E. French, P.O. Box 249 Aurora. Illinois 60505.
TELEPHONES UNLIMITED, Equipment Supplies. AII types, Regular, Keyed, Modular. Catalog 50 cents. Box 1147E, San Diego, California 92112

[^1]TELETYPE EQUIPMENT for sale for beginners and experienced computer enthusiast. Teletype machines, parts, supplies. Catalogue $\$ 1.00$ to: ATLANTIC SALES, 3730 Nautilus Ave., Brooklyn. NY 11224. Tel: (212) 372-0349.
WHOLESALE C.B., Scanners, Antennas. Catalog 25 cents. Crystals: Special cut, $\$ 4.95$. Monitor $\$ 3.95$. Send make. model, frequency. G. Enterprises, Box 461P. Clearfield. UT 84015.

ORGAN KITS KEYBOARDS

THE ULTIMATE IN DESIGN AND SOUND Demo Record \& Brochure $\$ 1.00$

DEVTRONIX ORGAN PRODUCTS, Dept. C 5872 Amapola Dr. San Jose. CA 95129

UNSCRAMBLE CODED MESSAGES from Police, Fire and Medical Channels. Same day service. Satisfaction guaranteed. Don Nobles Electronics, Inc., Rt. 7. Box 265B. Hot Springs, Arkansas 71901. (501) 623-6027.
USED TEST EQUIPMENT -- Tekironix. HP. GR. Wrise: PTI. Box 8699. White Bear Lake. MN 55110. Phone: (612) 4292975. .

WEATHER MAP RECORDERS: Copy Satellite Photographs, National-Local Weather Maps. Learn How! $\$ 1.00$. Atlantic Sales, 3730 Nautilus Ave., Brooklyn, N.Y. 11224. Tel: (212) 372-0349

AUDIO EXPERIMENTERS, Serious Music Synthesizer Stuff: literature, kits, components, circuits and more. Send SASE for FREE INFO. CFR Associates, POB F. Newton, NH 03858.
NAME BRAND TEST EQUIPMENT at discount prices. 72 page catalogue free. Write: Dept. PE. North American Elec tronics. 1468 West 25th Street. Cleveland, OH 44113.
UNSCRAMBLERS FOR any scanner. Several models available. Free literature. Capri Electronics. 8753T Windom, St. Louis. MO 63114.
RADIO SHACK Authorized Sales Center offering 10% discount off catalog prices. $\$ 25.00$ or more delivered. 1117 Conway. Mission. TX 78572.
TRANSISTORS FOR CB REPAIR, IC's and diodes. TV audio repairs, 2SC799 - \$3.00, 2SC1306 $\$ 2.95$. 2 SC1307 - $\$ 3.85$, TA7205 - $\$ 3.50$, more. Free catalog and transistor. B\&D Enterprises. Box 32. Mt. Jewett, PA 16740.

UNSCRAMBLER KIT. Tunes all scramble frequencies, may be buill-in most scanners, 2-3/4 $\times 2-1 / 4 \times 1 / 2$. $\$ 19.95$. Factory built Code-Breaker. \$29.95. Free Catalog: KRYSTAL KITS, Box 445. Bentonville, Ark. 727 12. (501) 273-5340.
SUMMER SPECIAL! Complete CARTRIVISION TELEVISION RECORDER ELECTRONIC ASSEMBLY. (see previous issues) $\$ 11.50$ plus $\$ 3.50 \mathrm{~S} \& \mathrm{H}$. Master Charge, BankAmericard. M.E.C., 369, Madison, Alabama 35758.
SEEKING ORIGINAL JAPANESE TRANSISTORS for CB, TV. STEREO REPAIR. Request complete list. Compare 1 to 9 prices: 2SC710 .45, 2SC517 3.95, 2SC799 3.60. 2SC1306 2.90, 2SC1678 2.25. TA7205P 2.90. BA521 2.90. SG613 5.95. Fuji-Svea Enterprise. Dept. P. P.O. Box 40325. Cincinnati. OH 45240.

B\&K Test Equipment. Free catalog. Free Shipping. Dinosaur discounts. Spacetron-AH. 948 Prospect, Elmhurst. IL 60126.

SURPLUS ELECTRONICS
 ATTENTION HOBBYISTS - SEND FOR YOUR FREE CATALOG

Great buys in tape drives, keyboards, power supplies, and transtormers. We also have heat sinks, steel cabinets, course components, fans, wire, and cable Write now to
Worldwide Electronics $\begin{aligned} & 10 \text { Flagstone Drive } \\ & \text { Hudson, NH } 03051\end{aligned}$

DETROIT APPROVED: No rust or weld sediment - Install one hour - llghtwelght, no bodywork required - Complete Klf - Guaranteed lite of venicle - Meets Federal \& State standards For free Catalog-TOLL FREE 800/433-2386
(In TEXAS call 817/756-6221)
PICKUP \& VAN EQUIPMENT CO. Dept. PE, P.O. Drawer C, Hewitt, TX 76643
BUILD THE ARTISAN ELECTRONIC ORGAN ... The 20th century successor to the classic pipe organ. Kits feature modular construction, with logic controlled stops and RAM Pre-Set Memory System. Be an ar-ti-san. Write for our free brochure. AOK Manufacturing, Inc., Box 445, Kenmore, WA 98028.

RECONDITIONED TEST EQUIPMENT. Catalog $\$ 1.00$. James Walter Test Equipment, 2697 Nickel. San Pablo, CA 94806.

AUTOMOTIVE PARTS AND EQUIPMENT. Nationally advertised brands at discounted prices for mechanics. Send stamped envelope for specials. Associated Distributors, 401 Augusta St., Cincinnati, OH 45202. Dept. Z.
SMALL ECONOMICAL TEST EQUIPMENT. Decade Resistance Box, Counter. Pulse Generator, Regulated Powe Supplies. Scope Calibrator, and many more priced from $\$ 20.00$ to $\$ 70.00$. Free Catalog - Cincinnati Electrosystems. 469 Wards Corner Road, Loveland. Ohio 45140.

TUBES: "Oldies", Latest. Supplies, components, schematics Catalog Free (stamo appreciated). Steinmetz, 7519-PE Ma plawood, Hammond, ind. 46324

TUBES-RECEIVING, Industrial and Semiconductors Factory Boxed. Free price sheet including TV, Radio and audio parts list. Low, low prices. Transelectronic, Inc., 1365 39th St., Brooklyn, Now York 11218. Telephone: (212) 633-2800. Toll free: 800-221-5802.
TUBES 29 cents up, also have industrials, obsoletes. 25 cents tor catalog and $\$ 1$ credit cerlificate. Connolty, Box 1333P. Sun Valley, CA 91352.

TAPE AND RECORDERS

Q-TRACK and CASSETTE BELTS - money back guarantee. Long wearing. Free Catalog - $\$ 3$ minimum order. PRB Corp. Box 176, Whitewater, Wisconsin 53190. (800) 558-9572 ex cept WI.
TAPE HEAD CLEANER. 8 oz. - $\$ 2.30$. Includes postage and handling. Write: "Cleaner", Box 176, Whitewater, WI 53190 . 800-558-9572 except WI.
RECORDS - TAPES! Discounts to 73%; all labels, no purchase obligations: newsletter; discount dividend certificates; 100\% guarantees. Free details. Discount Music Club 650 Main St., Dept. 5-0878, New Rochelle, New York, N.Y 10801.

SAVE $\$ \$ \$$ on blank cassettes. First line state-of-the-art quality guaranteed. No minimum. Easy ordering. Fast, free shipping. Sample C-46, \$1.00. Larksong, Box 641, Point Arena, CA 95468.

PARANOID ABOUT SPECS? Prove or disprove playback performance cassette or record player with surprising new lechnique developed by Emory Cook. Test cassette or record, instructions $\$ 3.95$ (Connecticut residents add tax). COOK ABORATORIES, Inc.. 375 Ely Avenue, Norwalk, CT 06854.

PERSONALS

MAKE FRIENDS WORLDWIDE through international correspondence, illustrated brochure free. Hermes-Verlag. Box 110660/Z. D-1000 Bertin 11, Germany.

INVENTIONS WANTED

If you have an idea for a new product, or a way 10 make an old product better, contact us, "the idea people "We'll develop your idea, introduce it to industry. negotiate for cash sale or royalty licensing.

Write now without cost or obligation for free information. Fees are charged only for contracted services. So send tor your FREE "Inventor's Kit." It has important Marketing Information, a special "Invention Record Form" and a Directory of 1001 Corporations Seeking New Products.
\# R RAYMOND LEE ORGANIZATION
the 4 idea people:

230 Park Avenue North. New York.NY 10017 At no cost or obligation. please rush Al FREE "Inventor's Kit No. A. 112

YOU CAN make money from your ideas!!! FREE details. Write: Advanced Research Scientific, P.O. Box 19041-R, Detoit, MI 48219.

INSTRUCTION

SCORE high on F.C.C. Exams . . . Over 300 questions and answers. Covers 3rd, 2nd, 1st and even Radar. Third and Second Test, $\$ 14.50$; First Class Test, $\$ 15.00$. All tests, \$26.50. R.E.I., Inc., Box 806, Sarasota, Fia. 33577.

SELF-STUDY CB RADIO REPAIR COURSE. THERE'S MONEY TO BE MADE REPAIRING CB RADIOS. This easy-to-learn course can prepare you for a career in electronics enabling you to earn as much as $\$ 16.00$ an hour in your spare time. For more information write: CB RADIO REPAIR COURSE, Dept. PE088, 531 N. Ann Arbor, Oklahoma City, Okla. 73127.

UNIVERSITY DEGREES BY MAIL! Bachelors, Masters, Ph.D's. Free revealing details. Counseling, Box 317-PE08, Tustin, California 92680.
FCC License Study Course prepares you to pass examinations for 1st, 2nd, 3rd and radar. Study Guide manual gives examples, problems and solutions. Question-Answer manual provides hundreds of practice questions. $\$ 9.95$ each or both manuals $\$ 14.95$. Postpaid. Oeffinger, Box 1240, Garden Grove, Calif. 92642

LEARN WHILE ASLEEP! HYPNOTIZE! Astonishing details, strange catalog free! Autosuggestion, Box 24-ZD, Olympia, Washington 98507.
GRANTHAM'S FCC LICENSE STUDY GUIDE - 377 pages, 1465 questions with answers/discussions - covering third, second, first radiotelephone examinations. $\$ 13.50$ postpaid. GSE, P.O. Box 25992, Los Angeles, California 90025.
INTENSIVE 5 week course for Broadcast Engineers. FCC First Class license. Student rooms at the school. Radio Engineering Inc., 61 N. Pineapple Ave., Sarasota, FL 33577 and 2402 Tidewater Trail, Fredericksburg, VA 22401.

1978 "TESTS - ANSWERS" for FCC First Class License. Plus - "Self Study Ability Test." Proven! $\$ 9.95$ Moneyback Guarantee. Command Productions, Box 26348-P, San Francisco, CA 94126.
LEARN ELECTRONICS Capsule Course basic d.c. textbook plus taped instruction. Details send to: Box 4457, Ind. Sta., St Paul, MN 55104.

GOVERNMENT SURPLUS

MANUALS for Govt Surplus radios, test sets, scopes. List 50 cents (coin). Books, 7218 Roanne Drive, Washington, D.C. 20021.

JEEPS- $\$ 59.30$! - CARS- $\$ 33.50$! - 200,000 ITEMS! GOVERNMENT SURPLUS - MOSI COMPREHENSIVE DIRECTORY AVAILABLE tells how, where to buy - YOUR AREA - $\$ 2.00$ - MONEYBACK GUARANTEE - Government Information Services, Department GE-30, Box 99249 San Francisca, Califomia 94109 (433 California).
GOVERNMENT SURPLUS. Buy in your Area. How, where Send $\$ 2.00$. Surplus, 30177-PE Headquarters Building Washington, D.C. 20014

BUSINESS OPPORTUNITIES

| MADE $\$ 40,000.00$ Year by Mailorder! Helped others make money! Free Proot. Torrey, Box $318-\mathrm{NN}$, Ypsilanti, Michigan 48197.

FREE CATALOGS. Ropair air conditioning, refrigeration Tools, supplies, full instructions. Doolin, 2016 Canton, Dallas Texas 75201.
ELECTRONICS ASSEMBLY, Lowest wages in hemisphere skilled operators. Information: J. D. Herter, Box 33, Port-Aur Prince, Haiti, W.I.

hiahty PAOFITABL ONE-MAN ELECTRONIC FACTORY

investment unnecessary, knowledge not required, sales handled by professionals. Postcard brings facts about this unusual opportunity. Write today! Barta-DH, Box 248, Walnut Creek, CA 94597
$\overline{\text { NEW LUXURY Car Without Cost. Free Details! Codex-ZZ, }}$ Box 6073, Toleado, Ohio 43614.

GET RICH!!! Secret law erases debts. Free report exposes millionaire $\$ \$$ secrets. Blueprints, No. EE8, 453 W. 256, NYC 10741.

MILLIONS in Mail!!! Free Secrets. $\$ 100$ weekly/kitchen table! Free brochure. American, Box 428-ZG. Pomona, Kansas 66076.

EARN $\$ 1000$ monthly stuffing envelapes! No gimmicks. guaranteed!! Free details: L.O.E. Box ZD-06180. Portland OR 97206.

HOW TO MAKE $\$ 100.00$ weekly/kitchen tablel Free Brochure. American, Box 428-ZD, Pomona. Kansas 66076
$\$ 650$ WEEKLY for beginners!! Free report: Mailorder Consultants MEE8, 453 W256, NYC 10471.

MECHANICALLY INCLINED Individuals desiring ownerstip of Small Electronic Manufacturing Business - without in vestment. Write: BUSINESSES, 92-K2 Brighton 11th, Brooklyn, New York 11235.

REPAIRS AND SERVICES

SERVICEMEN - Cleaners, Lubricants, Adhesives for all electronic repairs. Write for FREE catalog. Projector-Recorder Belt Corp., Box 176, Whitewater, WI 53190. 800-558-9572 except WI.

HOBBYIST give your project the prolessional look. PRINTED CIRC: IIT boards from your skeich or artwork. Affiordable prices. Rush free details. DANOCINTHS, Box 261 , Westland, MI 48185.

CATALOGS GALORE! Your name sent to over 100 mailorder advertisers. \$1. "Lists", 19-14 Pond Way, Manorville, NY 11949.

EMPLOYMENT OPPORTUNITIES

ELECTRONICS/AVIONICS EMPLOYMENT OPPORTUNITIES. Report on jobs now open. Details FREE. Aviation Emplbyment Information Service, Box 240E, Northport, New York 11768.

SALES REPS. WANTED. KEDMAN COMPANY is expanding their sales operations, seeking more intensive national coverage on Quick-Wedge screwholding screwdrivers and Huntsman welding helmets, face shields and accessories. Some choice teritories are open. If you are interested, send complete information and resumes - lines carried, territories covered, etc. to: Kedman Company, P.O. Box 25667, Salt Lake City, Utah 84125
ELECTRONICS TECHNICIANS. Min. Experience. No Degree Start as high as $\$ 21,000 \mathrm{yr}$. or more! Jobs throughout U.S. Free details. Write: TJM, Box 13832, Sacramento, CA 95813.

DO-IT-YOURSELF

MOLDULAR TELEPHONES now available. Sets and components, compatible with Westem Electric concept. Catalog 50 cents. Box 1147W, San Diego, California 92112.
FREE MANUALS of 25 to 250 WATT amplifier kits. MO@NLIGHTER ELECTRONICS, 117 Inverness, San Francisco, CA 94132.

TELEPHONES \& PARTS

COF:OLESS TELEPHONES: Operate 300 ft. from base. Facory rechecked, schematics included for personal maintenans:e. Originally $\$ 399.50$ - now $\$ 179.00$. Check M.O. or Credit Card. Telephone Marketers, P.O. Box 216, Brookfield, WI 53005 .

REAL ESTATE

BIG . . . FREE . . . CATALOG! Over 2,500 top values coast to coast! UNITED FARM AGENCY, 612-EP, West 47th, Kansas Cily. MO 64112.

RUBBER STAMPS

RUBBER STAMPS FOR PC BOARDS. Free marking devices catalog. Jackson's. Brownsville Road - E-100, Mt. Vernon, IL 62 2f4.

MOTION PICTURE FILMS

JULY SPECIALS: S8 400' Sound feature films. "Thoroughly Modern Millie" with Mary Tyler Moore/Julie Andrews, "Machine Gun McCain" with Peter Falk, 1976 World Series (Reds/ Y ankees) in Eastman color/sound only $\$ 42.95$ ea + $\$ 1.50$ shipping limited offer. Save $\$ 7.00$. "Fail Safe" with Walter Matthau, "Creature with the Atom Brain" (science-fiction) + Charles Bronson in "Breakout". Super 8400 ' b\&w/sound $\$ 24.95+\$ 1.25$ shipping. Save $\$ 5.00$ Walter Lantz's choice "Woody Woodpecker Fowled Falcon" or "Bats In The Belfry" S8 color sound 200^{\prime} reel $\$ 29.95$ ea ppd. Ali/Spinks (title changes hands) one $\$ 8400^{\prime}$ color sound film $\$ 49.95 \mathrm{ppd}$ or complete fight four 400^{\prime} reels at $\$ 189.95+2.50$ shipping. Save $\$ 10.00$. A.J. Foyt (glorious 4 th) 1977 indy " 500 ". Spectacular 200' S8 color w/script $\$ 19.95+95 \notin$ shipping. Sportlite Fil.ns, Ring Classics, Columbia order forms 354 each. SFORTLITE FILMS, Elect-8/78, 20 N. Wacker, Chicago, ill. 60606.

FREE CATALOG HUGE DISCOUNTS Stereos, Coax, Cassettes, MATV, Nemal Electronics, Box 402712 , Miami, FL. RG $5859 \mathrm{~F} \$ 7.95 / 100 \mathrm{ft}$. Postpaid Visa. (305) 531-5017.

THE BEST CB ANTENNA

send forfree pal full line CATALOG AND DECAL

ELECTRONIC SURPLUS FREE CATALOGS ETCO ELECTRONICS, Dept.EB North Country Shopping Center Rt. 9N, Plattsburgh, N.Y. 12901

BREAKERLESS ELECTRONIC ignition: Auburn Sparkplugs, Synthetic Lubricants. Wheel Stabilizers. Information 26 cents. Anderson Engineering, Epsom, N.H. 03234.
NEW WIREWRAP BOARDS, Connectors, other goodies, send SSAE for list to: RLP, 18U Fernwood Dr., Bolingbrook, IL 60439.

CONVERT TV INTO 7 Fool Pictures! Projector Lens/Plans. \$19.95. Mailine, P.O. Box 570, Wall Street Station, N.Y. N.Y 10005.

PHONT REGORDNG CAIL ADAPIER

Record incoming and outtsing calls autamatically with this all salid state unait connected to your telepitonet record. Dan't depand on your memery to recall in. portant details of busimess and persamsal calls. Easily instailed. Ho extra manthly ploae cligs. FCC Appro

$1 / 4 \times 3 / 4 \times 1 / 2 \quad$ St. World's smallest, solid state, self contained with 1.3 V Merc. Bat. furs. Pieks up most sounds and transmits
 Use as mike, ampf., alarm 2 alert system, baby sitter,
 add tax. Free data. Mail Order, B/A, M/C, cod's oht Qty. бisc. avail. AMC SALES, Dept. $24 \rightarrow$ g 335 Lutec St., Box 928, Diwaey, CA 90241 .

FULL 18"x24" B\&W WAL POSTER
Shop or school (know values at a glance). $\$ 1.00$ McIntyre Enterprises $2630 \times$ Street
Sacramento. Calii. 95816
PRINTED CIRCUITRY. From copying without photography to gold plating. Catalog $\$ 1.00$ refundabie. CIRCOLEX, Box 198. Marcy, NY 13403.
LOWEST PRICES. CPUs: 3001 \$14, 3002 \$9, $3003 \$ 10$ $8035 \$ 21,8035 \cdot 8 \$ 16$. 8080A Zus $\$ 7.85,8080$ A- 11.3 us $\$ 11$ 8080A-2 1.5us \$8.95, 8085 1.3us $\$ 18$, 8085A-2 .8us $\$ 29.95$ $8748-4$ 2.5us $\$ 49.95,8748-8$ sus $\$ 45.95$. Pace 16 bit $\$ 38$ PROMs: $2716 \$ 39.95,3621-150 \mathrm{~ns} \$ 5.95 .8755$ eprom $\$ 65$ RAMs: 1103A .95, 2114 \$11.15, 2115-2 45ns $\$ 6,2116 \$ 49$, 2117-4 \$52, 2125A 45ns $\$ 5.95,3106 \mathrm{~A} \$ 3.20,5101 \mathrm{~L}$ cmos $\$ 8,8080 / 8085$ Back up: $8155 \$ 17,8156 \$ 18,8251 \$ 10,8253$ \$22, 8255 \$8, 8257 \$15, $8259 \$ 16,8275 \$ 75,8279 \$ 17.8741$ \$72; Terms: Money Order or Certifed Check. Calif. Residents, add 6% tax. BYTE ELECTRONICS. Box 8603 -E. San Jose, CA 95155.
SAVE 15% or more NORTHSTAR, CROMEMCO others. MINI MICRO MART, 1618 James, Syracuse N.Y. 13203. (315) 422-4467.

CAR STEREOS

 NAME BRANDS AT DIRECT-TO-YOU PRICES!CRAIG, CLARION, JENSEN AND MORE.
SEE OUR CATALOG FOR BEST SELECTION -WHOLESALE PRICES!
Imagine-a name brand AM/FM 8 Track in-dash stereo w/channel indicator, local-distant switch, auto repeat (installation kit incl.) for only \$47. Master Charge \& Visa accepted. Satisfaction guaranteed on all merchandise.
SEND $\$ 1.00$ (REFUNDABLE ON FRST ORDER)
WITH YOUR NAME \& ADDRESS TO: CCS DISTRIBUTORS, INC. DEPT. 104, P.0. BOX 262
OAK FOREST, IL. 60452

PLANS AND KITS

QUALITY KITS, over 7,000 schematics. $\$ 1$ (refundable) for illustrated catalog. Tek-Devices, Box 19154c, Honolulu, HI 96817.

FREE KIT Catalog contains Test and Experimenter's Equipment. Dage Scientific Instruments, Box 1054P, Livermore, CA 94550.

(1)WER5I

Wersi Electronics, Inc.
Dept. 2D, 1720 Hempstead Road Lancaster, PA 17601

MODIFY YOUR P.L.L. or Crystal Synthesis C.B. for extra channels, linear and antenna tips. Send $\$ 12.95$ for instruction book. Action Protection Systems, RD1, Box 6003, Milford, PA 18337.

BUILD YOUR OWN COLOR ORGAN for under $\$ 10.00$. Send \$1.25 for plans. PPG, 14725 Oxnard, Van Nuys, CA 91401.
LASER-SOLAR-ELECTRONIC-PLANS: WELDING-Burning Laser - $\$ 9.00$, Five Laser Plans - $\$ 8.00$, Laser Light Show - $\$ 19.00$, Incredible "Wild Ideas" Catalog - $\$ 2.00$. Solaser, "PE878", Box 1015, Claremont, CA 91711.

KITS. 500 MHz Frequency Counter \$79.95. 650 MHz pre scaler, $\$ 17.95$. Flashing LED, $\$ 1.00$. SASE, Lectronix, Box 42, Madison Heights, MI 48071.
ELECTRONIC HELP JUST A PHONE CALL AWAY. We'l help you design projects, find components, advice. Low rates, first 2 minutes free. 24 hours a day, 7 days a week. BAC VISA, MASTERCHARGE; Don Brition Enterprises, (808) 395-7458.
SECRET CB - VOLUME I or II Confidential Factual Repon - Schematics, Tune Up Procedures, Switch Kits, Etc. Prepaid $\$ 12.95$ each. Send a check or money order to: Selman Enterprises, P.O. Box 8189, Corpus Christi, TX 78412.
"FUNDAMENTALS" OF ROBOT DESIGN $\$ 10.00$. Write: Advanced Research Scientific, P.O. Box 19041-R, Detroit. Michigan 48219

TESLA COIL - 40" SPARKS! Plans \$7.50. Information 75 cents. Huntington Electronics, Box 2009-P, Huntington, Conn. 06484.

RAIN-BRAIN Moisture Sensitive switch, to control your car's wipers. For plans including schematic, parts list, construction hints, and installation tips, send $\$ 5.00$ to: Rain-Brain, 615 N . Pike, Shelbyville, Indiana 46176.

ALARMS

QUALITY BURGLAR-FIRE ALARM EQUIPMENT at discount prices. Free Catalog! Steffens, Box 624K, Cranford, N.J. 07016.

DON'T PURCHASE alarm equipment before getting our free value packed catalog. Sasco, 5619-C St. John, Kansas City, MO 84123. (816) 483-4612.
ALARM DEVICE - generates weird, eerie, penetrating sound. Hooks up to DC and amplifier. One minute cassette $\$ 3.00$. Schematic $\$ 1.50$. Parts package $\$ 3.50$. All three $\$ 6.50$. DAY Enterprises, 148 Bennington Rd., Amherst, NY 14226.

MUSICAL INSTRUMENTS

UP TO 60\% DISCOUNT. Name brand instruments catalog. Freeport Music, 114 G, Mahan St., W. Babylon, N.Y. 11704.

HIGH FIDELITY

DIAMOND NEEDLES and Stereo Cartridges at Discount prices for Shure, Pickering, Stanton, Empire, Grado and ADC Send for free catalog. LYLE CARTRIDGES, Dept. P. Box 69, Kensington Station, Brooklyn, New York 11218. For Fast Service call Toll Free 800-221-0906.

Lambda Series II by Speakerkit, Lid.

Woofers with butyl surrounds. Transmission lines. Open dome midrange and tweeters. Infra-woolers and ultratweeters. Accurate sound at a rea sonable price. Send 25% for Series

Speakerkit, Box 12PE, Menomonie, Wll 54751

MICROCOMPUTERS

HYPNOTISM

FREE Hypnotism. Self-Hypnosis. Sleep Learning Catalog! Drawer H400, Ruidoso, New Mexico 88345.

TUBES

RADIO \& T.V. Tubes- 36 cents each. Send for Iree Catalog. Comell, 4213 University, San Diego, Calif. 92105.

quantitic
 FAMILY.

These static memory kits (one for the H8 buss, all others S-100 compatible) deliver outstanding performance at prices even the dynamics can't match. What others consider "extras" we consider necessities, such as full buffering on all lines, reliable DMA, sockets for all ICs, gold-plated card fingers, prime ICs... and all the other signs of quality that make up an Econoram. No matter what machine you use, we want to be your memory suppller. and we know the best way to do that is to offer a superior product at the lowest possible price.

NEW: $16 K \times 8$ ECONORAM IVTM KIT (\$329)
Guaranteed current consumption under 2000 mA . Manual write protect switches for 4 K blocks; use with or without phantom line. Fully static. Comes with sockets and bypass caps soldered in place for easy assembly. Add $\$ 35$ for assembled/tested.

NEW! $24 K \times 8$ ECONORAM VIITM KIT (\$490)

Our densest board is your best value in 24 K memory. Current consumption under 2500 mA ; configured as two 4K blocks and two 8K blocks with independent manual write protect switches for each block. Use with or without phantom lines, comes with sockets and bypass caps soldered in place for easy assembly. Add $\$ 35$ for assembled/tested.

BK $\times 8$ ECONORAM IITM KIT (\$135)

A truly cost-effective package that has drawn raves from both owners and reviewers (see the 1/78 Kilobaud for an example). If you have the space in your motherboard, there's no better way to get 24 K of memory than taking advantage of our quantity offer (3 kits for $\$ 375$). Add $\$ 20$ to single kit price for assembled/tested.

H8 COMPATIBLE ECONORAM VITM KIT (\$235)
$12 \mathrm{~K} \times 8$ for the H 8 , with the same features that have made our S - 100 boards so popular, Ad. ditionally, all sockets and bypass capacitors are already soldered in place so you can get right into the best part of kit building.

TRS-BO 16K CONVERSION KIT

This kit contains 8 uPD416 $1 \times 16 \mathrm{~K}$ dynamic memories and instructions on converting your 4 K RS-80 to a 16 K machine. You could pay up to $\$ 290$ elsowhere, but our klt is only $\$ 190$

SOMETHINQ TO MAKE LIFE EASY: We carry AP test clips for both 14 pin and 16 pin ICs. Gold plated wiping action; sturdy pins for scope probes: plated wiping action; sturdy pins for scope probes
also removes ICs from sockets without damage also removes (Cs from sockets withoul damage. $\$ 4.75$. We also carry the A.C.E. 201K breacboarding kit (with 1,032 solderless plug-in tie point capacity) for only $\mathbf{\$ 2 4 . 9 5}$.

MORE? Send for our flyer

TERMS: Please allow up to 5% for shipping: excess ralunded.
Add $\$ 1$ handing for orders under $\$ 10$. Cal res add iax. Coo ok with street addreas for UPS. For VISA $=$ Mastercharges orders call our order desk (24 hrs) al (415) 562-0636. Pfices good inrough cover monith of magazine.

BOOKS AND MAGAZINES

FREE book prophet Elijah coming before Christ. Wonderful bible evidence. MEGIDDO Mission, Dept. 64, 481 Thurston Rd., Rochester, N.Y. 14619.
HOW DOES THE OPERATOR KNOW your telephone number without you telling her. Ten digit, state of the art, call tracing systems and Telco operation detailed in depth. Government and C.C.I.T.T. publications tell it all. For comprehensive listing send s.a.s.e. and $\$ 2.00$ 10: Tell It, Box 523 , Westbrook, CT 06498.
HAD IT WITH McINTOSH'S FREE FM LIST? Let the FM Atlas and Station Directory, help you enjoy more FM stations at home or on the go. $\$ 3.95$. FM Atlas, Adolph, MN 55701.

WANTED

GOLD, Silver, Platinum, Mercury, Tantalum wanted. Highest prices paid by refinery. Ores assayed. Free circular. Mercury Terminal, Norwood, MA 02062.

DOKORDER 9200 IN MINT condition. Write or call anytime (613) 376-3642. Randall Hook, RR \#1, Sydenham, Ontario, Canada.

> WANTED!CB DEALERS AND DISTRIBUTORS PAL '(Firestikk' Antenna Corp.

2614 EAST ADAMS • PHOENIX. ARIZONA 85034

MISCELLANEOUS

[^2]
READER

SERVICENO. ADVERTISER PAGENO.
1 AP Products, Inc 73
3 Ancrona Corp. , 93
Audio-Technica U.S., Inc 37
484 B \& F Enterprises106
CREI, Capitol Radio EngineeringInstitute$68,69,70,71$
55 Chaney ElectronicsCleveland Institute of
Electronics Inc.26, 27, 28, 29
Cobra, Product of Dynascan
7 Dynascan 77
Consumers Company.
8 Contemporary Marketing, Inc. 52
10 Digi.Key Corporation 91
11 Digital Research Corp. 94
50 Douglas Dunhill
77
12 EICO
13 Edlie Electronics 105
Edmund Scientific 00. ${ }_{81}^{94}$
Electra Company 81
9
15 Empire Scientific Corp. 99
63
16 Fordham Radio Supply 106
17 Godbout Elecs, Bill 111
18 Grantham College of Engineering 82
GSE Technical Books
11
5 Heath Company
106
19 I E Integrated Electronics
81
81
20 Illinois Audio
20 Illinois Audio 79
11 International
107
107
21 International Components Corp. 94
$33 \mathrm{~J} \& \mathrm{R}$ Music World 82
23
49 JS\&A National Sales Group 100,101
25 Jameco Electronics 88, 89
loys
Lafayette Radio83 ELECTRONICS is maintained on one of the world's most modern, efficient computer systems, and if you're like 99% of our subscribers, you'll never have any reason to complain about your subscription service.
We have found that when complaints do arise, the majority of them occur because people have written their names or addresses differently at different times. For example, if your subscription were listed under "William Jones, Cedar Lane, Middletown, Arizona," and you were to renew it as "'Bill Jones, Cedar Lane, Middletown, Arizona," our computer would think that two separate subscriplions were involved, and it would start sending you two copies of Popular Electronics each month. Other examples of combinations of names that would confuse the computer would include: John Henry Smith and Henry Smith; and Mrs. Joseph Jones and Mary Jones. Minor differences in addresses can also lead to difficulties. For example, to the computer, 100 Second St. is not the same as ion 2nd St.

So, please, when you write us about your subscription, be sure to enclose the mailing label from the cover of the magazine-or else copy your name and address exactly as they appear on the mailing label. This will greatly reduce any chance of error, and we will be able to service your request much more quickly.

29 Motorola Semiconductor Products inc 86

NRI Schools

. $\quad16,17,18,19$

31 Netronics R \& D Ltd. 14
56 Newman Computer Exchange 85
32 New-Tone Electronics 90
33 New-Tone Electronics 103
34 OK Machine \& Tool Corporation 67
35 Olson Electronics 103
36 Optoelectronics 12
37 PAIA Electronics, Inc. 84
38 Page Digital Electronics 74
38 Page Digital Electronics . 97
39
40 Quest Electronics 104
41 Radio Hut . 102
42 Radio Shack 15, 98
42 Regency Electronics
51 Sabtronics International, Inc. THIRD COVER
43 Scientific Audio Electronics, Inc. 10
44 Solid State Sales 107
44 Solid State Sales........................ 38
Speakerlab, Inc.
46 Stanton Magnetics, Inc. 21
47 Tab Books 82
54 Telephone Booth 84
Texas Instruments Inc.
CLASSIFIED ADVERTISING.
108.109.110...111

Protection for Private Data

Protecting private data in computer files is becoming a more and more serious problem both for businesses who want to keep their plans and figures from competitors, and individuals who want to keep their personal data limited to the organizations to which that data was originally given. As a result, last year the National Bureau of Standards selected an official Data Encryption Standard as a way of scrambling data so that only those with the authorized key could understand the results. IBM has already produced hardware and software for use of the new standard on its System 370 computers; DES equipment and programs for other computer systems are doubtless in the works. Unscrambling data encrypted according to the new standard requires a key of 56 binary digits. Since more than 70 quadrillion ($7 \times$ 10^{16}) such keys are possible, and the key can be changed frequently, getting unauthorized access to data should be difficult.

Electronic Voices for the Voiceless

A portable speech synthesizer called "Phonic Mirror HandiVoice" from HC Electronics. a subsidiary of American Hospital Supply Corp. . can actually talk for a vocally impaired person. The synthesizer is pre-programmed with the English alphabet, 13 morphemes (word prefixes/suffixes). 16 short phrases ("My name is" "I want" and so on), 45 phonemes (speech sounds) and a selection of complete words. The

lap-board-style Model HC 110 has a vocabulary of 373 words (in addition to those which can be created with morphemes and phonemes). and a "keyboard" with 128 touch-sensitive pads. Another model, HC120, which resembles a calculator. uses 3 -digit numeric coding from a 10-digit keypad and has a pre-programmed vocabulary of 893 words.

Keeping It Clean

Radio waves are used for more than communication: Western Electric uses them to weld, heat, and clean in industrial applications. And to ensure that these operations do not interfere with normal radio and TV reception. airplane navigation equipment, public service radio and the like, they have a watchdog, Jerry Schaeffer.

His job is to develop machinery r-f emission standards and to continually monitor the level of stray r-f emissions from Western Electric's industrial machinery. Once every three years he visits each plant in his mobile laboratory to make sure they're not polluting the r-f spectrum with "radio garbage." To see Jerry operating his mobile lab you'd think he was a Smokie operating a radar trap, but he's not. He's just Western Electric's "radio garbage man" keeping the airwaves clean.

New Antennas for Voice of America

The Voice of America's relay station at Delano, California, has a new antenna-a dipole-curtain array type. Currently operating in the 49 -Meter ($6-\mathrm{MHz}$) and 31 Meter $(9-\mathrm{MHz})$ bands, with a $250-\mathrm{kW}$ transmitter, the antenna is designed for operation in the 40-meter (7MHz) band as well. The antenna, a standard Model 611 from Technology for Communications International (TCI), is rated for up to 22 dBi of gain, providing high signal levels in targeted reception areas. The antenna's wideband design will allow VOA to use it for additional frequencies, should the 1979 World Administrative Radio Conference (WARC-79) expand the current shortwave broadcast bands.

Careers in Organ Repair

Electronic organs are becoming increasingly commonplace. More than 200,000 are now sold in this country every year, according to the National Association of Electronic Organ Manufacturers (150 East Huron, Chicago IL 60611). As a result, there is a strong demand for qualified electronic-organ service technicians. How do you learn organ repair? According to NAEOM president Byron Melcher, many technical schools offer courses on the subject, which should include electronics and computer training. Moreover, most manufacturers in the field offer two-day workshops, usually free (though you must pay your way to the workshop). A music background is not necessary, though it would obviously be helpful. An NAEOM spokesman estimates that salary or fees for a full-time career in electronic organ repair and maintenance is $\$ 14,000$ to $\$ 18,000$ today.

New Automobile Sound System

Soon to be introduced in some new cars from the Ford Motor Company is a sound system, claimed to be fully electronic and possessing "ultra-fidelity." An AM/ stereo FM radio will be combined with a quadrasonic 8track tape player and high-compliance-cone rear speakers. Other features include: quartz-crystal tuning, memory storage and recall of favorite stations. digital display of frequencies. four tuning modes, and four audio channels. The amplifier will provide 12 watts rms per channel for the rear speakers.

We've done the impossible again! A versatile and superior frequency counter kit for only \$89.95

Now you can forget about price/performance trade-offs when you select a frequency counter. In Sabtronics' Model 8100 you get features you once expected to pay several hundreds of dollars for. But you pay only our low, low price of $\$ 89.95$!
Dare to Compare. This frequency counter, using LSI technolcgy, has the performance and input characteristics you demand. Note the specifications: You will see that the frequency range is guaranteed all the way to 100 MHz ; and a high or low input impedance allows you to select for high-frequency operation. And you'll see a sensitivity that holds well over the frequency range; convenient selectable gate-time for best resolution; and selectable attenuation; and even an optional pre-scaler. Note the highly accurate time base, and its excellent ageing and temperature characteristics. And a full 8 -digit LED display with floating decimal point, leading zero suppression, and overflow indicator.

You would expect to find all these features together only on a much higher-priced instrument. But Sabtronics' advanced digital technology combines with your own skill - you assemble this kit from our easy-to-follow instructions - to make it possible for you to have this fine frequency counter at a fraction of what you would otherwise expect to pay.

Free 10-day trial

Examine the 8100 Frequency Counter Kit for 10 days. If not completely satisfied, return unassembled for full refund of $\$ 89.95$ purchase price.

Brief Specifications

- Frequency Range: 20 Hz to 100 MHz guaranteed (10 Hz to 120 MHz typical) - Sensitivity: 25 mV RMS, 20 Hz to 70 MHz (20 mV typical); 45 mV RMS, 70 MHz to 120 MHz (30 mV typical) - Selectable Impedance: $1 \mathrm{M} \Omega$ at 25 pF , or 50Ω - Selectable Attenuation: $\mathrm{X} 1, \mathrm{X} 10$, or X100 - Accuracy: $\pm 1 \mathrm{~Hz}$ plus time-base accuracy Ageing rate: $\pm 5 \mathrm{ppm} / \mathrm{yr}$ - Temperature stability: $\pm 10 \mathrm{ppm}, 0^{\circ}$ to $50^{\circ} \mathrm{C}$. Seiectable Gate-time: $0.1 \mathrm{sec}, 1 \mathrm{sec}$., or 10 sec. - 8-digit LED display with floating D.P., overflow indication - Input: $9-15$ VDC, 350 mA (550 rA with optional prescaler) - Input protection: 150 V RMS, 20 Hz to $10 \mathrm{kHz} ; 30 \mathrm{~V}$ RMS to 2 MHz ; and 3 V RMS to 100 MHz - Optional prescaler extends frequency range to 650 MHz . (Available soon)

To: Sabtronics International, Inc. 13426 Floyd Circle, Dallas, TX 75243

Please send me___Sabtronics Model 8100
Frequency Counter Kit(s) at $\$ 89.95$ each $\$$
Texas Residents add Sales Tax
Shipping and handling, $\$ 5.00$ per unit
(USA only) *
Payment enclosed \square
\qquad
\qquad
Charge my Master Charge Visa
Account No. Exp. Date \qquad
Name

Street
City
State Zip
*Canada $\$ 6.50$. All other countries $\$ 19.00$ Airmail.

[^0]: Scientific Audio Electronics, Inc.

[^1]: CARBON FILM RESISTORS $1 / 4 \mathrm{~W} .1,2 \mathrm{~W}-1.7$ cents each FREE sample / specifications. Other components. COMPO NENTS CENTER, Box 295, W. Islip. New York 11795.

[^2]: MPG INCREASED! Bypass Pollution Devices easily. REVERSIBLY!! Free details - Posco GEE8, 453 W. 256. NYC 10471.

 PERSONALIZED BOUTIQUE SUNGLASSES for guys and gals. Glamorous, tinted lenses. Details free. Products International, Box 8327, St. Louis, MO 63132.

