
"M" TYPE TOROIDS M Minimum site
UTC Permalloy Dust Toroids have been the standard of the industry for over 15 years. The M Q sefres of colls provide the highest a factor in their class (see curves below), with miniaturized dimensions. All units are hermetically sealed to MIL-T-27 Specifications.

The stability is excellent. For the MQE-7 the inductance change is less than 1% for voltoges from .1 to 3 volts. The MQA-13 change is less than 1% for applied voltages from . 1 to 20 volts. The MQB-S change is less than 1% for applied voltages from . 1 to 50 valts. DC is permissible through the coil (values listed below). Inductance is virtually independent of frequency femperature and vibration.

Hum pickup is extremely low due to the toroidal winding structure, with windings uniformly spread over the core. The case is of high permeability, affording additional shielding such that close spacing of units can be effected, the coupling attenuation being approximately 80 DB .

Other values of inductance than those listed are available on special order at the price of the next higher listed volues.

TYPICAL Q CURVES

MQA TYPES			
Type No.	Inductance		*DC Max
maA. 1	7	mhy.	250
MaA. 2	12	mhy.	200
маА. 3	20	mhy.	150
MaA 4	30	mhy.	125
MQA. 5	50	mhy.	100
mas. 6	70	mhy.	80
MaA. 7	120	mhy.	60
ma4-8	. 2	hy.	50
mad. 9	. 3	hy.	40
má 10	. 5	hy.	30
mas. 11	. 7	hy.	25
MaA-12	1.	hy.	20
MQA. 13	1.5	hy.	17
мQA. 14	2.5	hy.	13
мQa-15		hy.	10
мQA. 16		hy.	9
mas 17	10	hy.	7
MaA-18	15	hy.	5
mQA-19	22	hy.	4

*This value of D.C. (MA) will drop the coil inductance 5%. Values of D.C. below this will show proportionately (linear) less inductance drop. For example, MQE-1 will drop $1 / 2 \%$ in L with 13.5 MA .

- 250 -

\square

- MQB TYPES
- Type No. Inductance *DC Max.

MaB-1	10	mhy.	400
MaB-2	30	mhy.	250
- MOB-3	70	mhy.	170

MaB-2	30	mhy.	250
MaB-3	70	mhy.	170
- MaB-4	120	mhy.	120
MaB.5	.5	hy.	60

- MQB-6 $\begin{array}{r}\text { MQB-6 } \\ \text { MQB. } \\ \text { MAB. } \\ \hline\end{array}$ MaB-8
MaB-9
MOB-10 MQB.10
- $\quad \begin{array}{r}M Q B-11 \\ M Q B .12\end{array}$

-

MOE

- MaE CASE

> COMPONENTS FOR PRINTED CIRCUITS-Designed with blade-type terminals that extend through panel for later mechonized dip-soldering, a Chicago Telephone Supply Corp. volume control is fitted into printed-circuit chassis of a Hallicrafters clock radio (see p 202).
> COVER
FIGURES OF THE MONTH, includes Electronic Output Index 4
INDUSTRY REPORT, top-level news, trends and market interpretations 5
ELECTRONIC EQUIPMENT IN RAILROADING, by John M. Carroll 130
TRANSISTOR-CONTROLLED MAGNETIC AMPLIFIER, by Richard H. Spencer 136
COMPONENTS DEPARTMENT AIDS PROJECT ENGINEERS, by Stanley Kramer ond Seymour Gurian 141
STANDARDS CONVERTER FOR INTERNATIONAL TV, by A. V. Lord 144
REMOTELY-STEERED COAL-MINING MACHINE, by John Markus 148
COZI-COMMUNICATION ZONE INDICATOR, by L. C. Edwards 152
OPERATION OF JUNCTION TRANSISTORS, by Abraham Coblenz and Harry L. Owens 156
HOW TO MEASURE LOW-LEVEL R-F SIGNALS, by Kenneth E. Mortenson 162
OPTICAL FEEDBACK FOR MULTIPLIER PHOTOTUBES, by Victor H. Scliger 164
DESIGNING DISCONE ANTENNAS, by J. J. Nail 167
JUNCTION TRANSISTOR CIRCUIT APPLICATIONS, by Peter G. Sulzer 170
DESIGN OF EXPORT TELEVISION RECEIVERS, by George D. Hulst 174
TRAVELING-WAVE OSCILLATOR TUNES ELECTRONICALLY, by H. R. Johnson and J. R. Whinnery 177
PHASE DETECTOR USES GATED-BEAM TUBE, by Fronk S. Holman, Jr. 180
GENERAL PURPOSE SHORT-PULSE GENERATOR, by Abe Hershler and Arthur H. Seidman 182
TRANSIENT ANALYSIS BY TIME SELECTION, by Roymond Winfield 184
PULSE AVERAGING CIRCUIT, by F. E. Boyd and N. W. Guinard 188
RATE-OF-DESCENT INDICATOR SPEEDS AIRCRAFT TESTS, by Myles V. Barasch 190
TOROID DESIGN CHARTS (Reference Sheet), by R. E. Prouty 193

W. W. MacDONALD, Editor; VIN ZELUFF, Managing Editor; John Markus, A. A. McKenzic, James Fahnestock, Associate Editors; William P. O'Brien, John M. Carroll, William G. Arnold, William E. Pettit, David A. Findlay, Assistant Editors; Marilyn Wood, Editorial Assistant; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant

KEITH HENNEY, Editorial Director

H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Buyers' Guide Manager; N. F. Cullinan, Promotion \& Research Assistant; H. E. Hilty, Classified Manager; D. H. Miller, James Girdwood, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; C. D. Wardner, Chicago; J L. Phillips, Cleveland; T. H. Carmody, R. C. Alcorn, San Francisco; Carl W. Dysinger, Los Angeles; Robert H. Sidur, Atlanta

[^0]The Beckman Model DU is considered the key precision instrument for spectrophotometric analysis-a technique which is fast revolutionizing the fields of investigative and control chemistry.
Based on the spectral light characteristics of liquids, solids and gases, precision spectrophotometry quickly and accurately analyzes thousands of varied materials, both qualitatively and quantitatively ...providing data which is vital for accurate, economical product and process control.
Whatever the material - be it orange juice, metal alloys; lubricating oils, fertilizers or vitamins - chances are you'll find modern spectrophotometry playing a key role in its efficient and économical production, processing or control.

The Sorensen Model E-0/2-5 Nobatron, With Regulation Accuracy of $\pm 0.01 \%$, Gives Stability of Batteries With None of the Disadvantages.

When you use a Beckman Spectrophotometer you expect the utmost in performance. And you get it - so long as the power supply is dependable.

The Sorensen Model E-6/2-5 Nobatron is dependable. It has been specifically designed to provide your Beckman with 2 and 6 volts DC, plus or minus 0.01%, with that accuracy maintained indefinitely and continuously!

No more replacing or recharging storage batteries! No more uncertain results because of voltage drop! To you this means no more interrupted work schedules, no more time-consuming re-runs!

The stability of the E-6/2-5 Nobatron is accomplished electronically, with no moving parts and a minimum of tubes. Two years' rigorous testing of prototype instruments have yielded results far exceeding specifications. Write for information today.

SORENSEN

SORENSEN AND COMPANY 375 FAIRFIELD AVE., STAMFORD, CONN.

Well, not exactly, but you can hook-up to receive weather charts measuring $188^{\prime \prime} \times 22^{\prime \prime}$ for hours at a time without an operator.
If the weather is your concern, or indeed if the transmission of any graphic material - drawings, newspapers, legal documents - is a problem, maybe we can help you; write now.

18" MUFAX CHART RECORDER TECHNICALITIES

Maximum chart size $18^{\prime \prime}$ wide $\times 22^{\prime \prime}$ long Index of co-operation 576
Helix speed
Scanning rate
1 or 2 r.p.s.
Maximum input signal (black) +5 to - 15 db ref ImW
Signal frequency

Power supply AM: $1500 \mathrm{c} / \mathrm{s}$
FM: 1500c/s black 2300c/s white
 $95-125 \mathrm{~V}, 60 \mathrm{c} / \mathrm{s}$ or $200-250 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$.

FIGURES OF THE MONTH

RECEIVING TUBE SALES

(Source: RTMA)	May '52	Apr. '53	May '53
Receiv. tubes, total units	23,636,484	41,342,599	37,253,308
Receiving tubes, new sets	15,807,449	30,441,417	27,261,346
Rec. tubes, replacement	4,178,292	8,236,990	7,422,621
Receiving tubes, gov't.	2,433,605	1,167,234	723,852
Receiving tubes, export	1,217,138	1,496,958	1,845,489
Picture tubes, to mfrs.	247,724	721,283	579,332
SEMICONDUCTOR SALES			
(Source: RTMA)	May '52	Apr.' 53	May '53
Germanium Diodes		2,450,015	1,466,362
		Quarterly Figures	
INDUSTRIAL TUBE SALES	Year Ago	Previous Quarter	Lotest Quarter
(Source: NEMA)	1st'52	4th'52	1st '53
Vacuum (non-receiving)	\$11,320,000	\$12,790,000	\$11,340,000
Gas or vapor	\$3,100,000	\$3,480,000	\$3,140,000
Phototubes	\$500,000	\$760,000	\$930,000
Magnetrons and velocity modulation tubes	\$8,460,000	\$10,510,000	\$10,070,000
Gaps and T/R boxes . .	\$2,450,000	\$2,090,000	\$2,050,000

COMMUNICATION AUTHORIZATIONS

(Source: FCC)	May '52	Apr. '53	May '53
Aeronautical	32,852	38,887	42,213
Marine	35,476	39,745	40,076
Police, fire, etc.	10,965	12,956	13,238
Industrial	13,056	16,515	16,850
Land Transportation	4,966	5,769	5,830
Amateur	110,931	110,884	111,011
Citizens Radio	1,175	2,074	2,124
Disaster	65	189	189
Experimental	357	432	439
Common carrier	970	1,144	1193

EMPLOYMENT AND PAYROLLS

(Source: Bur. Labor Statistics)	Apr. '52	Mar. '53	Apr. '53
Prod. workers, comm. equip.	326,500	417,300	414,200
Av. wkly. earnings, comm.	$\$ 63.75$	$\$ 66.42$	$\$ 66.58$
Av. wkly, earnings, radio	$\$ 59.51$	$\$ 64.24-r$	$\$ 64.08$
Av. weekly hours, comm.	40.3	41.0	40.6
Av. weekly hours, radio	39.7	40.4	39.8

STOCK PRICE AVERAGES

(Source: Standard and Poor's)	June'52	May'53	June'53
Radio-TV \& Electronics	288.9	295.3	271.5
Radio Broadcasters...	276.7	287.3	266.0

FIGURES OF THE YEAR	1952 Total
Television set production	$6,096,279$
Radio set production	$10,934,872$
Television set sales	$6,144,990$
Radio set sales (except auto)	$6,878,547$
Receiving tube sales	$368,519,243$
Cathode-ray fube sales	$6,120,292$

INDUSTRY REPORT

electronics—AUGUST • 1953

'Copters Need Navigational Aids

New electronic system with street-by-street precision needed for flights in fog

Beginning of sixteen regularly scheduled helicopter passenger flights daily from New York's three metropolitan airports in July served to emphasize the growing need for better electronic navigational aids for rotating-wing aircraft.

As yet, no single electronic system appears to meet the requirements of lightness, operation-bypilot simplicity and street-by-street navigational accuracy during instrument flying weather. These are the conclusions of the recent Helicopter Symposium of the International Air Transport Association, recently held in San Juan, Puerto Rico for exchange of information between airline operators, pilots, metropolitan helicopter operators, manufacturers and government authorities from 20 different countries.

[^1]was found to be highly dependent on the kind of landing site and its surroundings. The vhf talking beacons, while simple and omnidirectional, were felt to be insufficiently accurate for landing purposes.

Tetrode Transistors Available August 15

Sylvania-developed point contact units perform functions of two triodes

COMMERCIAL availability of tetrode and pentode point-contact transistors was announced July 21 by Sylvania. The tetrode units are to hit the market August 15, with
pentodes following by the end of the current year.

The tetrode and pentode units have two and three emitters respectively, and with appropriate circuitry they are comparable to multipurpose tubes.

Preliminary tests on circuits using the multiemitter transistors prove their usefulness in certain types of computer circuits.

Radio Helps Big Steel Move an Iron Mountain

DEPLETION of America's reserves of high-grade iron ore has sent steel men scurrying to far-flung places. An estimated 400 -million tons of high-grade ore in the ground brought U. S. Steel to the

Massive antenno helps span vast Venezuelan jungle for U. S. steel

Orinoco-delta country of Venezuela. Shipments of ore, moving 2,000 miles by rail and water to the giant Fairless Works in Morrisville, Pa., are expected to start next year.

- Communications-Setting up a vast mining operation in an underdeveloped region required first an adequate communications network. Links have been established by the Orinoco Mining Co., Big Steel's Venezuelan subsidiary. A high-frequency voice and teletype circuit links the company's offices in Caracas with Ciudad Bolivar, nearest large town to the mine. Very-high-frequency radio-telephone circuits linking Ciudad Bolivar; the mine, Cerro Bolivar; and the shipping point, Puerto Ordaz form a 206 -mile triangle.

A mountain-top repeater station at Piacoa relays vhf signals to tugs, dredges and quarter boats engaged in dredging a deep-water channel in the Orinoco River.
\rightarrow Railroad-Space radio will be used to control the railroad during its normal operation. A 90 -mile single-track railroad built to move the ore to Puerto Ordaz will have four sidings controlled electronically by signals passed over vhf radio. Two of the robot sidings will be controlled by radio transmitters located near the mine. The remaining sidings will be switched by transmitters located near Puerto Ordaz. Control-point will be Puerto Ordaz and a broad-band 88 -mc trunk will link the two transmitting stations.

The system is an adaptation of CTC or centralized traffic control used on many American railroads,

- Background-Remote switching by space radio has been tried before by railroads but never relied unon for full-time operation. The present system grew out of tests conducted in 1946 on the Pennsylvania Railroad. Success of the Orinoco Mining Company's electronically controlled railroad may help prove out radio for remote train control and possibly enlarge greatly the scope of electronics in the railroad industry.

TYPICAL COLOR TV STATION EQUIPMENT PRICES

BROADCASTERS look of the investment side of the picture as

Transmitter Makers Gird for Color

RCA and GE announce that complete color equipment will be ready in 1954

AVAILABILITY of compatible color television broadcast equipment within the next year was indicated by RCA and GE when they announced prices and delivery dates late last month. DuMont and Federal, other major manufacturers of tv station equipment, have not as yet disclosed their plans but indications are that they will wait for final FCC approval of compatible color tv standards before making such plans known.

- RCA-Ready to accept custom orders for complete compatible color tv broadcast equipment for
delivery in the spring of 1954, RCA states its equipment will be similar to that used for field tests in New York and will be designed to operate in accordance with present signal specifications of the National Television System Committee. As soon as final standards have been adopted by FCC, large-scale production of commercial-type color equipment will begin.

With a July 30, 1953, deadline set for ordering the equipment listed in the box above, RCA's Engineering Products Department says that orders have been coming in at a good rate despite the possibility that present prices could be 2 or 3 times higher than
(Continued on page 8)

Sylvania Computer Crystal Diodes

All Dynamically Tested at $55^{\circ} \mathrm{C}$. For High Back Resistance and Stability

Sylvania Types 1N111, 1N112, 1N113, 1N114 and 1 N 115 were designed specifically for computer use. All Sylvania's Computer Diodes are tested at raised temperatures simulating actual operating conditions. To insure maximum stability and life, all units are tested for
evidence of drift and hysteresis. Each diode is hermetically sealed in glass and is designed so that it may conveniently be soldered or clipped into a circuit.

Mail this coupon Today

LIGHTING • RADIO • ELECTRONICS • TELEVISION

In Conada: Sylvama Electric (Canada) Ltd., University Tower Building
Si, Catherine Street, Monfreal, P. Q.

Sylvania Electric Products Inc.
Dept. 3E1008, 1740 Broadway, New York 19, N. Y.
Please send me data sheets on Sulvania Computer Crystal Diodes.
\qquad

Address
\qquad
those later to be set for quantity production. Most of the orders so far received are for film or slide operation rather than for the less expensive network-only equipment.

- GE-In a statement to its district sales managers, General Electric lists its color broadcast equipment schedule in three phases: network, slide-film and studio.
- Cost of equipment needed to rebroadcast network color programs is estimated at $\$ 13,800$. Items of equipment include a gamma amplifier, stabilizing amplifier, color monitor, transmitter kit, de-modulator kit, diplexer kit, wave-form kit and stock items. An additional stabilizing amplifier is recommended at $\$ 1,600$ and if a $2,000-\mathrm{mc}$ relay is involved, a modification kit is required at approximately $\$ 560$. Cost of test equipment is about $\$ 5,000$. It is estimated that this equipment will be available during the first quarter of 1954.
- For slide-film transmission, GE divides equipment into three groups. To originate slide programs only, cost of equipment is set at $\$ 39,500$. Equipment needed includes camera channel, calibration monitor console, sync color adaptor and sync generator kit, color utility amplifier group, color monitor, monitor switching unit, bar generator, stock items and slide projector assemblies.

For $16-\mathrm{mm}$ film projection only, cost of equipment needed is estimated at $\$ 49,500$ and includes $16-\mathrm{mm}$ projector assemblies and all items listed for slide operation except the slide projector assemblies.

Cost for both slide and $16-\mathrm{mm}$ film projection is $\$ 68,500$. Slidefilm equipment availability is planned for the second quarter of 1954.

- To originate studio color programs, GE estimates that the studio camera channel and associate switching equipment will run about $\$ 69,500$. Equipment for this type of operation is based on a relay switching system and includes a studio camera channel
with camera and view-finder, central console with color monitor, rack and associate equipment, calibration monitor console, monitor switching unit and stock items. A dolly is not included with the channel. Availability is scheduled for the fourth quarter of 1954.

Electronic Companies View Working Capital

Current assets exceed liabilities by growing amounts but ratios are down

Trend in working capital for all manufacturing companies has moved steadily upward in the past few years and companies in the electronics field have followed the same course. For 12 major companies in the industry, working capital increased nearly a half billion since 1948. The increase last year was the largest for the period with a rise of 0.19 billion over the 1951 total.

- Ratio-Despite the rise in working capital for electronic manufacturers surveyed, which seems to indicate an improving financial position, the ratio of current assets to current liabilities has moved downward to a low point in the past five years. In 1952 and in 1951 the ratio for the firms surveyed stood at 2.2 while in the previous three years it ranged between 2.3 and 3.0. These figures follow closely those for the entire electrical equipment industry as reported by SEC which shows a current ratio of 2.1 for 1952 and 2.0 for 1951.
- Cash-Current assets include cash, government securities, receivables, inventories and other current assets payable within a year. The relation of these components to current liabilities gives further evidence of the liquidity or ability to convert assets promptly into cash. Taking cash alone for the companies surveyed and comparing it to current liabil-

ities shows the following ratios: 1948, 0.78 ; 1949, 1.0; 1950, 0.69 ; 1951, 0.57; 1952, 0.62. Thus, as with current asset ratios, the cash ratios for the 12 companies show a downward trend.
\rightarrow Debts-Reasons for the decline in the ratios of current assets to current liabilities in recent years is attributed to a number of factors. The rise in short-term debt is one of them. Companies have had to have more money to keep pace with the increasing costs of doing business.

Federal income and excess profits taxes have also affected the ratios and kept current liabilities climbing along with current assets. For the companies surveyed, current liabilities doubled during the five-year period while current assets increased 1.7 times.

TV Manufacturers Show New Lines

Industry hits high order volume with full array of new radio and tv sets

No summer slump is occurring in introductions of new tv models by the radio-tv industry. At press time 25 companies had introduced new models.

The average line contains about 30 new models. Philco leads the parade with a total of 47 .

Most of the manufacturers dis(Continued on page 10)

Sprague, on request, will proside you with complete application engineering service and assistance for optimum results in the design and use of PulseForming Networks.

This new Sprague Pulse-Forming Network was designed for laboratory use in radar research and development. With it, the five most needed pulse lengths- $1 / 4,1 / 2,1,2$, and 3 microseconds-may be obtalned without distortion of the pulse shape.

Sprague's unique method of common switching keeps the flat portion of the pulse flat at all pulse lengths. Capacitor switching takes place in the common lead and hence at half network voltage-important at the higher voltages. The pulse lengths all correspond to the halfpower point as measured by synchroscope at 70% voltage level utider resistance load.

In addition, the rise time remains the same-approximately 0.1 microseconds from the 10 to 80% level. Network H .850 is designed to work into a 50 ohm impedance load. Its peak voltage rating is 13 Kilovolts for each pulse length, making it useful for normal low power ranges in radar equipment employing hydrogen thyratron tubes.
Universal Laboratory Network $\mathrm{H}-850$ is typical of Sprague's advancements in pulse-forming networks. Sprague made the first commercially available radar network during World War II and has been the acknowledged leader in this field ever since!
For complete data on the Universal Laboratory Network H-850-or on other networks to meet your precise needswrite on your business letterhead to the Sprague Electric Co., 35 Marshall Street, North Adams, Massachusetts.
played sets in every picture-tube size ranging from 17 inches to 27 inches. Many companies featured the 24 -inch set, RCA being a major exception, but the consensus of the industry seems to be that the 21 inch receiver will be the volume seller.

- Prices-Range of tv retail prices is fairly consistent. Majority of new lines introduced are priced from $\$ 180$ - $\$ 200$ for 17 -inch table models to $\$ 600-\$ 800$ for deluxe 21 -inch combinations. Low for the industry was set by Emerson with a 17 -inch vhf-only table model at $\$ 149.95$. Du Mont, with its 30 inch receiver at $\$ 1,795$ continues to maintain the high for the field.
- UHF-Practically all companies featured all-channel sets in their summer lines on an optional basis. A few continue to offer converters. Price of optional all-channel tuners have not changed much and continues to range between $\$ 40$ and $\$ 50$.
- Radio-Summer showings of new radio receivers have been numerous also. Emerson introduced a total of 60 new models including a pocket-size portable that uses subminiature tubes. But high-fidelity was the theme of a number of companies. So far, a dozen firms have introduced their version of hi-fi at summer showings.
- Results-Philco stated that it had taken orders for more radio sets at its convention than at any in the past five years and that tv orders were twice those of last year's mid-summer showing.

Zenith announced that its June sales convention was the most successful in the company's history with distributor radio and to orders totalling approximately $\$ 50$ million, more than double the orders booked at its 1952 June showing.

CBS-Columbia revealed that its tv-radio orders approximated $\$ 7.5$ million which is almost 50 percent more volume than it signed up at its mid-summer model introduction meeting last year.

Electronic Plants Are Growing Fast

Growth in working area continues as manufacturers increase production

ONE index of the growth of the radio-tv-electronics industry in the past five years is the amount of plant space that representative manufacturers have added in that time.

For 15 firms in the field, working area rose from 82.4 million square feet in 1948 to 105.8 million at the end of 1952.

The big expansion years were 1950 and 1951. In 1950 plant area for these companies increased by 9 million square feet and in 1951, the top year for the period, square footage rose by 9.6 million.

- Companies-Most major radiotv companies now have over 1 million square feet of working area in use. Giant of the industry is GE with 58.9 million square feet in its 131 plants in 99 cities. The company increased its square footage by 10.9 million since 1948 for the largest increase among the companies surveyed.

In terms of percent gain in plant space, Admiral stands near

the top. Plant increased 500 percent since 1948 to a total of over 1.5 million square feet in 1952.

- Future-Electronic manufacturers are continuing to expand plant facilities and 1953 is likely to show gains similar to those of 1952. However, some such growth may level off in 1954-55 because the government's fast tax amortization program will have run its course by then, barring unforeseen changes. Also, more efficient production methods are coming into use and existing plant areas are expected to be able to turn out more product per square foot of space so that the need for additional plant will not be as urgent in the future.

Consumer Installment Credit Zooms

Amount of credit extended by outlets selling radio-ty causes concern

Installment credit made available to consumers by household appliance retail stores which include radio-tv dealers reached an all-time high of $\$ 242$ million at the end of May, according to the latest Federal Reserve figures. At no time since 1939 has such credit been extended so far, especially in the first half of the year.

As the chart on page 14 shows, the amount outstanding usually reaches its high point in the final months of each year. The previous high for the month of May
was in 1951 when it reached $\$ 207$ million. The all-time high before the present record was set in December last year when the amount outstanding was $\$ 239$ million.

- Concern-As a result of the record increase in consumer installment credit used to buy radio-tv and appliances, some manufacturers fear that consumer indebtedness may be over-extended and may curtail sales of the high outputs planned for the remainder of this year. They point out that installment sales represent about 60 percent of total sales last year.

Not all manufacturers believe that consumer credit is overex-
(Continued on page 14)

how to handle orders for

military electronic equipment...

better and faster!

4)

SEE

Choose CENTRALAB
 - 1

 America's widest line of components

 America's widest line of components that meet military specifications

CENTRALAB MODEL 2 VARIABLE RESISTORS

There's no prior contract approval or waivers required if you specify Centralab's Model 2 variable resistors on your next military order. They meet JAN R94, characteristic U requirements. Two types available - RV2A and RV2B - plain or with attached switches. Ratings from 2000 ohms to one megohm. For complete engineering data, check Bulletin No. 42-85 in coupon below.

Model 1, miniature variable resistors ...no bigger than a dine . . available in Standarc or Hi-torque types. Either with or without on-off switch. Also available with slot-front or rearfor screw-criver adjustment. Hi-torque units hold settings under conditions of vibration ar shock. For complete data check No. 42-158 in coupon below.

For miniature switches - specify Centralab's Series 20 with Steatite or Phenolic sections. Steatite is Grade L5. Meets JAN I-8 specs. Phenolic sections conform to JAN P-13 ... Grade L'TSE4. Available in 2 to 11 positions with stops, or 12 positions, continuous rotation-single or multiple sections-with or without attached on-off switch. Check No. 42-156.

Centralab's Medium-Duty Power Switches. Use for R. F. or 110-115 V. application... $71 / 2 \mathrm{amps}$. Voltage breakdown to ground - 3000 volts - RMS 60 cycles. Available with Grade L5 (JAN I-8) Steatite sections shorting or non-shorting contacts. Models in 1, 2 or 3 poles, 18 contacts per section with adjustable stops, can be furnished up to 20 sections per shaft. Contacts and collector rings are coin silver. For complete data, check No. 42-136 in coupon.

Centralab's Type 850 high voltage ceramic capacitors are especially designed for high voltage, high frequency circuits. Centrelab's Type 950 high accuracy ceramic capacitors are especially developed for exacting electronic applications. Check bulletin No.'s 42 102 and 42-123.

TC (Temperature Compensating) Tubulars No prior contract approval or waiver necessary. Meet JAN-C-20A requirements. Type $T C Z$ shows no capacitance change over wide range of temperature. Type TCN has special ceramic body to vary capacitance according to temperature. Bulletin No. 42-18.

BC (Bypass Coupling) Tubulars - Recommended for bypass coupling. Well suited to general circuit use. Centralab's own Ceramic X body provides imperviousness to moisture and low power factor. Easily withstands temperatures normally encountered in most electronic equipment. Bulletin No. 42-3.

Ceramic Disc Hi-Kap Capacitors hold thickness to a minimum ... have very high cafacity in extrenely small size. Use in h.f. circuits for bypass and coupling. Ceramic body assures low inductance. Other characteristicshumidity resistance, power factor, etc. similar to BC Tubulars, Bulletin No. 42-4R.

Something new in miniature ceramic capacitors! These "button types" are available in 5 different styles. Used for bypassing in lowpower, high-frequency applications where small size, low inductance and light weight are essential. Check Bulletin No. 42-122 in coupon for more information.

Centralab Ceramic Trimmers meet applicable portions of JAN-C-81. Very small size. Screw driver adjustment over full capacity range (180° rotation). Maintain stability in any position and under vibration. Spring pressure contact for rotor and stator. Bulletin No. 42-101.

Centralab's New Eyelet-Mounted Feed-Through Ceramic Capacitors are smallest available. They meet applicable portions of JAN-C.20A specifications. Capacities range from 10 to 3000 mmf ... the widest range on the market. Voltage rating. 500 V.D.C.W. Check No. EP-15 in coupon.

New Sub-miniature Model III Ampec - a full three-stage speech amplifier of remarkably small dimensions - approximately $11 / 32^{\prime \prime} \mathrm{x}$ $15 / 16^{\prime \prime} \times 1 / 32^{\prime \prime}$ (barely larger than a postage stamp!). Excellent for microphone preamplifiers and similar applications. Check No. 42-130 on coupon for complete information.

Centralab standard and custom-molded Steatite ceramics plain or metallized... fully comply with JAN I-8. Steatite is Grade L5 for military use. Characteristics - high dielectric strength, low loss at high frequencies, high mechanical strength. For data on standard parts or custom molding, check No. 720.

Centulab
 A Division of Globe-Union Inc.

914-H EAST KEEFE AVENUE • mILWAUKEE

Please send me Technical Bulletins as marked

\qquad
\qquad
\qquad

tended. R. D. Siragusa, president of Admiral, asserted in a recent speech that the increase in consumer credit was not necessarily dangerous. The ratio of outstanding credit to the total of personal income available after spending for food, clothing, and housing still is sharply below the pre-World War II level, he explained. Income available for discretionary spending will be about $\$ 134$ billion this year, compared with $\$ 26.5$ billion in 1940 .
"Before we reach the credit basis which was considered perfectly secure in 1940, present consumer credit could go almost $\$ 18$ billion higher," he said.

- Future-It seems a good bet that installment credit will continue to rise in the months ahead. RCA Victor has relaxed credit requirements for its distributors and household appliance retail stores will benefit. DuMont has also liberalized credit requirements for dealers in the New York area. Other companies plan similar moves.

Defense Department Plans Research Cuts

Economies in basic research financed by the agency are proposed by Secretary Wilson

Large stake of some electronic companies in government financed research and development may be whittled down some if economies proposed by the Department of Defense are approved. In 1951
over 58 percent of the research and development done in electronics was financed by the Federal agencies and there are no indications that the percentage has dropped.

- Budget-Here is how total U.S. Research and Development was financed last year, in millions:

$$
\begin{aligned}
& \text { Total:........................ } \$ 3 \text {. } 300 \\
& \text { Privately Financed } \\
& \text { Industry Financed } \\
& \text { Other, including Foundations } \\
& \text { Federally financed } \\
& \text { Department of Defense } \\
& \text { Agencies }
\end{aligned}
$$

The figures show that the Department of Defense has been the largest backer of research and development. Secretary of Defense

Wilson wants to cut his department's share, is against the department paying for basic research. It is estimated that Defense Department's basic research obligations totaled $\$ 31.2$ million in fiscal 1952 and $\$ 32.7$ million in fiscal 1953. Since the research budget is "top secret", it is not known which basic projects may be cut.

- Future-Plans of the government for future research and development spending to be done by government agencies are as follows, according to the National Science Foundation and Chemical Week (figures in millions) :

U. S. Research Rudgets	1952 (Actual)	1953 (Fst.)	1951 (Est.)
Department of Defense	\$1,316	\$1,400	\$1,300
Atomic Energy Commission	250	260	266
Nat'l Adv. Comm, for Aero	67	79	88
Dept. of Agriculture.	57	58	63
Dept. of Health, Educ. \& We?	65	74	59
Dept. of Interior.	33	37	34
Dent. of Commerce	28	24	26
Other Agencies	24	29	29
Total	. \$1,839	\$2,059	\$1,865

Electronic Stockholders Increased

Trend in number of shareholders has been upward and hit a new high last year

Indication of how investors feel about the prospects of the electronics business is seen in the growing number of stockholders in 22 companies in the field for the past five years. Although there is a substantial fluctuation in the number of shareholders from day to day, the overall trend has been upward.

Last year, the number of stockholders in 22 major radio-tv-electronics firms reached a total of 675,000 , the highest number in the past five years. Low point in the period was in 1949 when the number of shareholders dropped to 403,000 .

- Gains-Of the 22 firms surveyed, General Electric, RCA and Westinghouse, in that order had the largest number of shareholders. Company showing the largest increase in shareholders was

Westinghouse with an increase of over 36,000 in the five-year period.

In percent gain, Hoffman Radio was among the leaders with an increase of over 500 percent. The company's shareholders increased from 599 in 1948 to 3,200 in 1952.

- Distribution-Little is known about the number of shares held by individual investors but firms have expressed some interest in
(Continued on page 16)

SHOCK - VIBRATION - NOISE ISOLATION NOTES

This NEW Product Bulletin gives YOU COMPLETE ENGINEERING DATA on ALL-METL BARRYMOUNTS

1. Transmissibility curves showing performance under test conditions of JAN-C-172A.
2. Curves showing reduction of transmitted acceleration and displace. ment.
3. Curves showing how changes in loading affect transmissibility at resonance and natural frequency for vertical motion.
4. Curves showing effect of high and low temperature on isolator performance.
5. Shock-characteristic data, including curves showing vibration isolation after 15 g shock test.
6. Application data, including curves that show you how to choose isolators for unsymmetrical loads.
7. Dimensioned drawings of unit isolators, channel pairs, and mounting bases.
8. Detailed data on the construction, operating principle, and weights of mounts and hases.
9. A complete list of load ratings and catalog numbers for unit isolators, channel pairs, and bases.

We'l be glad to send you a FREE COPY of this, the first really comprehensive bulletin on knitted-wire vibration isolators. Ask for Barry Product Bulletin 534. And, if you have a special problem, count on getting the right answer from our Field Engineering Service.

finding out more about their owners. As yet, such statistics are not complete enough to give any conclusive picture. One company's annual report shows that the average number of shares held by its stockowners had decreased from 300 to 100 shares in the past 14 years giving some indication that stock ownership is spreading out.

Tubes Take Over Elevator Operation

Electronic programming circuits assume job of starter and operators

Having already replaced elevator operators with electron tubes in many buildings throughout the country, the Otis Elevator Company recently announced another step toward eliminating completely the need for human supervision in "vertical transportation". The familar starter, with his Christmas tree of call lights and pushbuttons, has been electronically relieved of his duties except those of greeting incoming personnel and answering questions as to the location of various facilities within the building.

The new Otis system is completely automatic. Timed signals anticipate rush-hour crowds and prepare the elevator system for handling them. Some cars are retired during slack periods and returned to service in time to accommodate crowds.

Capacitance-operated doors diplomatically nudge a person standing in an open car door, and, after a polite interval, the doors close slowly and gently force him to go in or out.

- Savings-Installations of automatic operatorless equipment in a typical office building have proved to save $\$ 7,000$ per elevator per year. During the current year, 80 percent of Otis installations will include the operatorless feature.

In a model setup, designed for demonstration purposes and for laboratory analysis of sample traffic problems, 325 tubes are used to operate four elevators.

RTMA Expands With

The Industry

Membership hits all-time high as the association girds for further growth

Company membership in the Radio-Television Manufacturers Association reached a total of 353 in mid-1953, the highest number since the association was founded 29 years ago. And the organization is preparing for even broader representation of the electronics industry, particularly in industrial and military fields.

A reorganization plan for this purpose has been approved by the board of directors and will be submitted to the full membership at a proxy meeting to be held in Washington on July 27. At the same time, the RTMA membership will be asked to vote on the board's recommendation to change the name of the association to the Radio-Electronics-Television Manufacturers Association.

- New setup-If the reorganization plan is approved, a radio-television industry committee and an electronics industry committee will be established. Among the immediate expansions approved by the board are the establishment of a regional office in Los Angeles, the expansion of the RTMA Engineering Office in New York, and the appointment of a manager of a newly created export depart'ment. The association's government relations activity is to be given greater recognition through the creation of a new department which will report directly to the electronics industry committee.
- Why-Need for broader representation in the association was made evident by president A. D. Plamondon's report at the recent annual meeting in Chicago. According to the report, more than $\$ 5.5$ billion in electronic products for the armed forces have been delivered since the start of the Korean war and deliveries of electronic equipment and components

to the military in 1953 are expected to total $\$ 3$ billion.

In the commercial field, the industry expects to produce approximately 7 million tv receivers in 1953. Set production during the first half of 1953 has been the highest of any first-half year since the tv boom began.

Radie production has also been booming. The increase in clock radios was nearly half again as great in the first half of 1953 as in 1952 and double that of 1951. Portable radio production has been at its highest rate this year and the number of auto radios manufactured so far in 1953 is rapidly approaching the 3 -million mark, representing more than 80 percent of the automobiles produced in the same period.

Failures Blamed On Front Office

Sixteen manufacturers of electronic equipment and components and eight distributors of radio, tv and electronic apparatus failed during the year ended May 30, according to the annual report of the credit committee of RTMA.

- Cause-"The most common cause of these failures," according to H. A. Pope, chairman of the committee, "may be summed up as inadequate management. ... In several instances it was clear that management had not provided it-
(Continued on page 18)

R-F CABLE MEASUREMENTS

in accordance with

 JAN SpecificationsComplete Setup for atienuation rreas ar ments at the JAN specifed freq sency of 400 Mc . Equipmert inclules the G-R Type 120ε In t Cscillator, the 1231-B Ampl fie- anc Null Detector and varic us r axaia comoonents. With appropriate high-frequency cscillatcrs, measu-ements mas je made at azy frequency from 200 Mc

Fcr Designers, Manufacturers

offers a well integrated group of instruments and components for highly accurate measurements of . Attenuation ... Characteristic Impedance . . . Velocity of Propagation. Capacitance. . . Insulation Resistance.

Manufacturers of coaxial and dual-coaxial cables, t-v twin-lead and shielded twin-lead are now using G-R equipment with highly satisfactory results. In the insertion-loss method illustrated above, attenuation

Cable Capacitance and Capacitance Unbalance are measurable to a high degree of accuracy with the Type 716-C Capacitance Eridge - an instrument used the woild aver for capacitance standardization.
In substitution measurements, accuracies obtainableare $\pm 10.1 \%$ or $\pm 0.5 \mu \mu \mathrm{f}$, whichever is greater, for values up to $1000 \mu \mu \mathrm{f}$ - frequency range is 30 cycles to 300 kc . With appropriate techniques, this bridge will also measure inductance and resistance as well as capacitance and conductance.
Typs 716-C Capacitance Erldge (mounted in waleut cabinet) . . $\$ 545$ measurements are made with an accuracy of better than $1 \%+0.2 \mathrm{db}$. Accuracy is independent of crystal-detector calibration. Well-designed G-R Type 874 coaxial connectors eliminate troubles from leakage and bad contacts. The equipment is readily assembled and easy to operate.

Key Element is the Tige 3 -GA princiole. It is accurzte, conds ony on the wavergide-bery sindard whose uitimate insid diame.er of the $8 . . . \$ 55$ mechanical dimensions; suzc of twe screw tireads. Price ator tube and the arcu

Velocity of propagation is measured, to an accuracy of within $\pm 0.5 \%$, with the same equipment in another configuration. Characteristic impedance is readily calculated from the values for velocity of propagation and capacitance per foot of cable.

[^2]self with satisfactory accounting tools and records. These businesses were losing money but were reporting profits. Others had accepted defense contracts at too low a price, or the contract called for work too difficult in terms of their production or engineering experience."

Of the 16 manufacturing companies, 4 were set assemblers; 1 made test equipment; 1 produced hearing aids; 2 made sound equipment and phonographs; 3 manufactured items primarily of a military nature and 5 produced components.

- Distributors-The report noted that electronic parts distributors increased their sales about 13 percent and that 50 new wholesalers were organized, reflecting the increasing number of sets in use that accentuates the demand for service parts, accessories and equipment. "So rapid an expansion in the experience of many wholesalers has demanded an increase in working capital that could not be met by reinvestment of earnings, in view of the continuing higher taxes."

Because of the higher unit price on so many tv items and the necessity for carrying larger stocks of merchandise, an investment of less than $\$ 20,000$ for a new distributing company jeopardizes the possibility of successful operation. the report concluded.

No Special Channels For Theater TV

FCC rules that theater tv should be a common carrier operation in 5 to 1 decision

Proponents of theater television received a setback when the Federal Communications Commission ruled that theater television transmission should be a common carrier operation on frequencies already allocated to the common carrier services.

The Commission reported that it heard no persuasive evidence that
common carrier frequency allocations are not adequate for the service and that it finds no necessity for a separate allocation for theater tv. If there are not enough common carrier frequencies, FCC noted, theater tv proponents are free to take steps to establish a separate carrier or require reasonable service from existing carriers.

- Merits-In making the decision, the FCC pointed out that its ruling did not pass on the quality of interconnecting service or the adequacy of present common carrier service. These problems, it said, could be taken up if and when they arise on specific petition.

The FCC also pointed out that it was not passing on the merits or desirability of theater tv in general. "We recognize theater tv as an existing service which will continue to expand or not depending upon public acceptance and support thereof. Our concern is merely with the question of whether there should be a separate allocation of frequencies for the exclusive use of this service. Finding that there is no necessity for such an allocation, we have decided that this proceeding should now be terminated."

Commissioner Hennock issued a dissenting statement. Commissioner Doerfer did not participate.

Lumberiack Radio Grows Rapidly

Forest products becomes fourth largest operator of industrial radio

SINCE its inception five years ago, the forest-products radio service has grown from two experimental installations to 9,310 transmitters used by more than a hundred logging and tree farming concerns. Of the total, 570 transmitters are fixed and 8,740 mobile.

Two-way radio serves to link remote lumber camps with lumber mills, pulp mills and company offices

LOGGER uses two-way rodio to contact office from mill.

as well as to coordinate mobile crews engaged in logging, tree farming and harvesting. Lumbermen find that two-way radio speeds supply and repair orders, save lost motions in logging and decreases fire and accident hazards through closer communication with doctors and fire wardens. Radio networks of large logging firms also form important links in the aircraft-spotter service along our northern border.

- Location-Approximately 77 percent of all forest radio operations are in the Pacific northwest and
(Continued on page 20)

A Vew Approach in Economical Side-Hand Filters

- M GOMMUNIGAIION NETWORK COMPONZNIS Bumedf civels sudeoand filtas

The potertial temand for singl! side band
 betiond the "iacked corfe o. Irostritios",
 to unleck hiose deary ant ratese ar exen bredier demand for side bate equipmont small fincigh and irexpansime meysh to reamaken the intelest if zarmunicat on encigment manafactivers in ths fietry for
+tabich
 a $27-1-8-15-15$ 5 - 19 34

F

 monc=a=3 IT
both civilian and militer applictios, Is the latter field single side tand systena were virtually protibitive tecarse of the inadegualeness of crystal filter: tor field ese. The BURNELL system now sliminates all the cbjectionable features.

 Bervell siwers sios-annd fitras

II adition to the sartier, lower side bial ard upper side badd filters illustrited or 3.5 KC pass bands, there is avilable a bur pass fites fer the demodatation cirestit. There is also azaiatle for wider band operdion side band filters havist a $6 \times \mathrm{C}$ Mass band, with the eame dimensioss and weidth

By adding his sgoup of fitters to ourcregiar series of ruttijex fiters we can, with prite, - state that BUPRELL \& COMPAYY has sule a long way torad assisting the comminia. .tions indussy to derdop high speed comins. ications resulting from more etficient operdion and greder freedom from interfereich,

If you are an engineer in 'communicatioss', you will be interested in our brochare describing the BURYELL single side bud Jillers in greate debil.
nearly 18 percent are located in southern states.

The forest-products radio service is primarily an industrial operation but in many cases it supplements forestry-conservation service operated by state governments. Concerned largely with fire protection, over 16,000 transmitters are operated by conservation authorities.

ARQ Equipment Rejects Garbled Messages

Hand-keyed radiotelegraph signals are still used by amateurs, ship operators and others to get the message through. But most intercontinental circuits use faster radioteletypewriter equipment to handle volume traffic from point to point.

Corrections to Morse-code signals are fairly apparent to the operator. When he is in doubt, he asks for an RQ (request for correction). But fading and static of ten garble teleprinter signals without any operator being aware of a change in
conditions. For this reason, a special seven-unit code was developed. Most static or missed impulses owing to fades are caught by special equipment that refuses to recognize signals outside the special code. The equipment alerts the receiving operator and prints an error-indicating symbol.

- Leased Circuits-Big customers of world-wide communications networks, like the press associations and airlines, can't be bothered asking for corrections. The new ARQ (automatic request for correction) device asks for corrections, receives a reply and only then passes the information along to the customer.

Each character transmitted is stored for a short time. When the automatic repeat signal is received, the transmitter stops, the last three transmitted characters are taken out of storage and re-sent. The customer gets only the perfect message, none of the garbled portion. RCA Communications, Inc. says that mutilation rates on their transAtlantic circuits should be reduced in a ratio better than 100 to 1 .

Light Control Speeds Traffic Flow

Traffic lights under the control of an electronic system have proven so successful in speeding traffic through a three-street intersection in White Plains, N. Y. that additional units are being ordered for other heavily-loaded intersections.
The $\$ 12,000$ electronic unit keeps track of the number and spacing of cars approaching the intersection through roadway trippers placed 250 ft before each corner. Pedestrians use pushbuttons placed at the corners to inform the control that they are waiting to cross.

- Operation-In its normal position the control unit gives the green light to the main street of the intersection. The control is set so that a pre-determined number of cars waiting on one of the other streets will automatically take the green light away from the main street. Rates at which cars are approach-
ing the intersection is also considered by the unit. If a series of closely spaced cars approaches the intersection from one of the streets, right-of-way is taken from the main street and given to the street carrying the group.

If the time between cars on the main street should drop below a preset level the light is switched to one of the other streets having cars waiting.

A cycle started by a pedestrian pushbutton will give the walk light to the waiting pedestrian at the end of a waiting period or sooner if the traffic drops below a preset level.

The system, installed by the Automatic Signal Division of Eastern Industries, handles 25,000 cars per day plus thousands of pedestrians. The equipment will pay for itself in the reduction of the number of officers at the intersection from three to one.

Financial Roundup

Profit statements by companies in the electronics field continue to show that business has been good in 1953. Security transactions during the past month were lighter than usual.

- Profits-Nine companies issued the following profit statements:

	Net-3 Months	
Company	(in thousands)	
	1953	1952
AT\&T (5 m.)	$\$ 99,894$	$\$ 85,535$
Arvin	906	615
Bendix Av.	4,721	3,638
CBS	2,404	1,522
DuMont (6 m.)	913	56
General Prec.	646	601
IT\&T	4,832	4.735
Sentinel (12 m.)	404	263
Stewart-Warn.	1,076	956

- Offerings-Avco of Canada offered a $\$ 2$ million issue of 15 year, $5 \frac{1}{2}$-percent sinking fund debentures, series A, at 98 and accrued interest to yield 5.7 percent. Proceeds will be used to purchase the assets of Crosley Radio and Television and Bendix Home Appliances, both of Canada, and for general corporate purposes.

Ampex registered with SEC covering 160,000 shares of common stock (50-cent par) to be offered for public sale. Proceeds will be used to retire bank loans, demand notes and for working capital.

IT\&T registered with SEC covering $\$ 35,883,300$ in twenty-year convertible debentures to be offered to stockholders at the rate of $\$ 100$ principal amount of debentures for each 20 shares of capital stock held. Proceeds will be used to repay bank loans in the U.S. Offering was later postponed.

- Filings-Technograph Printed Electronics filed with SEC covering 99,906 shares of common stock (par 40 cents) to be offered to stockholders of record July 13 at one new share for two now held. Subscription price is $\$ 3$ per share. Proceeds will be used for licensing activities and for improving the company's patent position. Remainder will be used for working capital.

Soundscriber filed with SEC covering 15,588 shares of capital
(Continucd on page 22)

Write for new edition of Raytheon Reliable Subminiature Tube Booklet.

RAYTHEOM MANUFAGTURING GOMPANY

Receiving 7 ube Division - for application information call

stock (no par) to be offered at $\$ 6.25$ per share. Proceeds will be used to pay debts and for working capital.

Muntz TV filed with SEC covering 12,000 shares of common (par $\$ 1$) to be offered at market (about $\$ 3.25$ per share) for the account of F. W. Muntz, president.

New British air-sea rescue device transmits coded pulses to searchers

SARAH Helps Locate Downed Flyers at Sea

Self-powered beacon transmitter gives accurate fixes up to 66 miles away

Chances of a downed pilot's being rescued are greatly enhanced if he has SARAH with him. Following the trend to assign feminine names to air-sea rescue devices, Ultra Electronics, Ltd., of Lordon, named the equipment after the three functions it facilitates, Search And Rescue And Homing.

The equipment weighs 31 pounds and fits inside an ordinary Mae West. Signals sent out by a downed pilot can be picked up by another aircraft flying at 10,000 feet and a distance of 66 miles away. Usable range to surface vessels is about 6 miles. Peak power is 16 watts and self-con-
tained batteries provide 20 hours of continuous operation.

- Works in Water-A downed pilot simply releases the hood on a case containing a collapsed 31-inch antenna. The antenna springs out, and the transmitte: begins sending out precoded pulses which, in addition to giving an accurate fix, provide positive identification of the pilot in trouble. Fixes may be made to within 100 feet.

A version of the equipment, modified to meet American specs, will be made and sold by Simmonds Aerocessories of Tarrytown, New York.

FCC Reviews First Post-Freeze Year

Total of 398 new tv stations were authorized by the Federal Communications Commission in its first post-freeze year ending June 30, 1953. Some 300 cities in 47 states, Hawaii and Puerto Rico now have one or more ty authorizations. Vermont, where the only two applicants are in competition, is the only state without a grant.

Of the 398 new ty stations authorized, 256 are for uhf operation and 142 ara for vhf operation. A total of 89 stations have received special temporary authorizations to start operation.

- Noncommercial-Educational tr grants total 17; 13 uhf and 4 vhf. KUHT-TV in Houston with a vhf grant is the only noncommercial educational station on the air. Channels reserved for noncommercial educational use have been allocated to 245 municipalities.

During the year, 6 construction permits were dropped by their holders; 2 on vhf and 4 on uhf.

At present, about 600 applications for additional tv stations are pending before the commission, including 31 noncommercial educational ones. Most of the applicants for commercial stations are in hearing or face hearing because they are competitive. About 250 channel assignments in some 175 cities are in contest.

Electronics Business Increases Overseas

Electronics is big business in foreign countries too. Last month these developments made news:

- British Television-A ten-year development plan presented by the BBC aims at a 95 -percent coverage of Great Britain and Northern Ireland and a second program service. At present only one tv channel is available to viewers in any locality.

First stage of the $\$ 84$-million plan will be erection of five medi-um-power and eight low-power transmitters to supplement the five high-power units now in use. Color television is under consideration but will have to wait until a color system fully compatible with present British receivers is developed.

An expansion of program service may force British television into the uhf band; vhf channels are occupied largely by military and emergency services. Price estimates on uhf converters range from $\$ 14$ to $\$ 100$.

- Machine Tools-Ultrasonic equipment for industry on display at the British Instrument Industries Exhibition at Olympia July 11-30 included: a device for determining the elastic modulus of concrete, soldering irons and deeptinning baths and machine tools using carborundum abrasive. The ultrasonic machine tools are said to be useful particularly in machining hard, brittle materials such as tungsten carbide, magnetic ferrites, ceramics and quartz.
- Eagle Eye-Used to televise the races at Ascot, Marconi's 80 -inch tv camera lens is said to be able to spot a fly on the nose of a man half a mile away.
- German Electronics-Radio production in West Germany last year was $2,600,000$ sets valued at $\$ 114$ million, of these, 400,000 sets valued at $\$ 14$-million were exported. Sales of television sets
(Continued on page 24)

in Germany are expected to reach 80,000 this coming fall and winter.
- Italian Television-Italy's first regular service is promised for Jan. 1, 1954. At that time four stations will be on the air: two in Milan, one in Rome and one in Turin. Major problem is making a home receiver within the means
of the average worker who earns $\$ 359$ annually.

Sales possibilities for cathoderay tubes to the Italian television industry seem good, however. Domestic production has not yet reached a commercial scale. At present the 17 -inch tube is most in demand.

RADIO MOSCOW'S tv master control and film-scanners are proof that

Television Lags In Soviet Russia

Three stations are on air with less than 100,000 receiving sets in operation

News that an additional threecamera studio has been opened in the Ukranian capital of Kiev recalls that only three Soviet television transmitters are known to be on the air. These are located at Moscow, Leningrad and Kiev. A few years ago, a transmitter was reported on the air in Kharkov but this station has not been mentioned lately.

Location	Frequency in $M C$
Kharkov	unknown
Kiev	visual-
	anral-
Leningrad	visual-
	anral-75
	69.25
Moscow	visual-
	aural-

Standards 625 lines, 25 frames, 8 -me channel width, f.m sound

Hours of Operation -8-11 p-1m local time, six nights a week

- Home Receivers-Standard Russian ty set is a 7 -inch model selling for $\$ 300$. A luxury model with a 9 -inch screen sells for $\$ 600$; it includes a 10 -inch loudspeaker and all-band radio. A 19 -inch model is reported to be in production.

The tv screens are said to have a distinct greenish cast.

Sets in use number between 50,000 and 100,000 . Sales of tv receivers in the Moscow area last year totaled 6,000 with 40,000 radios sold. The Russians have recently announced experiments in the fields of color tv and 3-D.

- Radio-A recent report from Riga, Latvia, announces a new a-m broadcast transmitter designed to serve rural areas.
Signals from a central transmitter are picked up by five intermediate receivers and retransmitted over telephone lines to amplifiers in the homes of subscribers. This gives complete control over the listener's program choice
- Communications-A teleprinter enabling two-way traffic at speeds up to 20,000 words per hour was shown at a recent radio show in Moscow. Also shown was a highspeed transmitter capable of transmitting up to $1,000 \mathrm{wpm}$. Development of high-quality portable transmitting equipment is said to occupy the energies of many radio engineers.
-Siberia-Workers and students of the Kirov Polytechnical Insti-
tute at Tomsk built an experimental television transmitter which. has an effective range of about 6 miles.
\rightarrow Confession-Even Pravda, the official Communist newspaper, admits that electronics lags in Russia and has demanded prompt correction of serious defects in its radio and television industries. It complains that the speed with which radio facilities are being extended in all sections of the U.S.S.R. "cannot be considered satisfactory." It added that the Ministry of Communications, fundamentally responsible for this work, failed to fulfill the plan assigned to it during the past year.

Turning to tv, Pravda admits that the problems of color tv, have not been solved. It calls for accelerated scientific research both in this field and in three-dimensional tv. Pravda also reports its readers complained repeatedly about the defects of their tv sets and the monotony and inadequate preparation of programs.

Microwaves Aid Atomic Research

Four microwave radio-relay systems, valued at over one-quarter million dollars, are helping speed research efforts at two installations operated by the Atomic Energy Commission. The equipment is used for transmission of voice intelligence, remote control of equipment and transmission of scientific data by telemetering. All equipment has a capacity of 24 voice channels, each of which can be subchanneled to as many as 18 telemetering channels.

- Nevada, California-One link, operating at the Nevada Proving Grounds, consists of two terminals with 100 -percent standby equipment. Single-hop path length is 50 miles. One terminal is on the test site itself, at an elevation of 4,300 feet. The other is at Spring Mountain, 9,000 feet above sea level;
(Continued on page 26)

A new Collins Engineering and Research building, containing more than 100,000 square feet of floor space, is now under construction. This modern structure is being built on a 52 acre wooded tract in Cedar Rapids. It will contain the latest architectural refinements and be one of the finest, most completely equipped engineering-research laboratories in the country.

This new Engineering and Research building will supplement Collins Main Plant and Aeronamtical Research Laboratories in Cedar Rapids. Its facilities will also be available to the Research and

Manufacturing Divisions of Collins' Burbank and Dallas plants.

Learn more about the possibilities of joining the excellent staff of engineers working in these modern surroundings. If you are a graduate engineer or physicist with several years experience in the design and development of electronic communications and navigation equipment, write Glenn Johnson, Collins Radio Company, Cedar Rapids, Iowa. A copy of Collins' booklet "Electronic Engineering" will be sent to you.

For the best in engineering opportunity, it's . . .

COLLINS RADIO COMPANY, Cedar Rapids, Iowa

RCA equipment with frequency-division channeling is used.

Other systems are at Salton Sea Test Base in California. The three separate single-hop systems link outlying test facilities with the central control building. Each link is about 15 miles long. The equipment operates 200 feet above sea level. Six terminals with pulsetype channeling are used. This equipment is Motorola.

Metallic Rectifiers Gain In Volume

Dollar volume of domestic orders received for selenium and copperoxide rectifier cells and stacks in 1952 reached $\$ 11.3$ million compared to $\$ 10.7$ million in 1951.

Further evidence of the growth of the field is that there are now more than 50 manufacturers of metallic rectifiers, compared to 35 in 1951.

- Growth - Selenium rectifiers have shown the greatest growth of the metallic rectifiers in the past few years. One company that estimates that its production last year accounted for one-third of industry's total volume, sets its present production rate at 1.5 million a month.

Belgian Electronics Gains Momentum

Shot in the arm was given to electronics production in Belgium when the country's leading manufacturer, Ateliers de Constructions Electriques de Charleroi, signed a Belgium government contract to supply mobile radar units SCR584 for the Belgian Army. The equipment was not specified for delivery until July, 1953. The company, however, was ahead of schedule, the first unit having been delivered in April of this year. By August it is hoped the units will be coming off the production line at ten a month. An electronics industry has only been in existence in Belgium since the end of the war. Before that, little electronic equipment outside of radio was manufactured.

MEETINGS

AUG. 3-5: Argonne National Laboratory Symposium On Digital Computers, Argonne National Laboratory, Lemont, Ill.
Aug. 17-22: Third International Congress of Electroencephalography And Clinical Neurophysiology, Boston. Mass.
AUG. 19-21: WESCON (Western Electronic Show \& Convention), IRE (7th Region) and WCEMA (West Coast Electronic Manufacturers' Association cosponsors, Municipal Auditorium, San Francisco, Calif.
Aug. 21-22: Fourteenth Annual Summer Seminar, Emporium Section of IRE, Emporium, Pa .
Aug. 29-Sept. 6: West German Radio and Television Exhibition, Duesseldorf, Germany.
SEPT. 1-3: International Sight and Sound Exposition, Palmer House, Chicago. Inl.
SEPT. 1-12: British 20th National Radio \& Television Ex-
hibition 1953, Earlscourt, London, England.
SEPT. 14-16: Fourth Annual Convention and Manufacturer's Conference, NEDA, St. Louis, Mo.
SEPT. 21-25: Second Analytical Instrument Clinic, Chicago, Ill.
Sept. 21-25: Eighth National Instrument Exhibit, Sherman Hotel, Chicago, Ill.
Sept. 28-30: Ninth annual National Electronics Conference, Sherman Hotel, Chicago, Ill.
Oct. 5-8: Fall Technical Meeting sponsored by Canadian National Committee, URSI and IRE Antenna Group, Ottawa, Canada.
Oct. 20-22: Thirteenth Annual Session Of A.A.R. Communications Section, Hotel Plaza, San Antonio, Texas.
Nov. 9-12: Conference on Radio Metorology, Austin, Texas.
Nov. 19, 14: Annual Electronics Conference, Hotel President, Kansas City, Missouri.

Industry Shorts

- Tape recorder sales of $\$ 200 \mathrm{mil}$ lion a year by 1956 are predicted by A. J. Palmer, president of Ampro.
- Radios in working order in the U. S. totalled 110 million on Jan. 1, 1953, according to the four major networks, an increase of 5 million over last year's estimate.
- First assembly-line production of transformers has been achieved in Bulgaria, according to Pravda.
- Two tons of Marconi radio goes air freight to Bermuda to increase communications facilities for the forthcoming Three-Power Conference.
- India plans to establish a factory for making wireless and radar equipment. Production is expected to begin in 1956.
- Electronic manufacturers can no longer prematurely grab engineers from military service. De-
fense Department's new directive prohibits employment interviewing at separation centers.
-Some 40,000 crystal sets and more than a million old-fashioned loudspeaker receivers are still operated in Poland. Radio licenses there totaled over 2.2 million at the end of March, 1953.
- Czechoslovakia's first ty transmitter began operating in June. Hungary plans to start ty broadcasting next year.
- Pentagon keeps cool with the aid of rooftop electronic sensing elements that measure the sun's heat and regulate the building's air conditioning system.
- SEAC (Standards Eastern Automatic Computer) is expected to reduce from 240 to 20 the machinehours needed to complete Loran tables at the National Bureau of Standards.

BOY, HAVE WE GOT
 HITGH COMPRESSION GLASS-TO-METAL

VACUUM SEALS!

TERMINALS

Constantin's extensive fine of HIGH COMPRESSION TERMINALS are available in all combinations of hooks, eyes, tubes and pierced flats. Hot tin dipping at $530^{\circ} \mathrm{F}$. allows easy soldering and prevents rejec. tions occuring from thermal shock.
Engineering know-how and controlled manufacturing procedures go into producing these fine examples of glass-to-metal sealing. Standard units of the complete line have test ratings from 1,000 to 15,000 volts R.M.S. and 5 to 25 amperes.
Consult our engineering department for further information about standard or special items.

Before you specify that

CHECK THF WIDE RANEE OF

Dhelps bodge offers the most diversified line of standardized magnet wire in the industry-over 400 different types with thousands of practical applications. Time after time, electrical manufacturers have solved "special" magnet wire problems, with great savings in time, effort and expense, merely by consulting Phelps Dodge. This approach has

Fostfor Lasting Quality PHEIPS DODEE COPPER PROUUCTS CORPORATION

"Special" Magnet Wire . . .

 Phelps dodef "standarbj"
better safely tactor
worked for many different products, including television and radio coils motors, aircraft generators, relay coils, distribution trar sformers, hearing aids and many others.

Any time magne wire is our froblem, consult Pleelps Dodge for the quickest, ersiest ansuer!

Low-Build Formvar Glass Wire

Improved space factor
for aircraft generators and starters

- from Mineto Market!
 INCA MANUFACTURING DIVISION

FORT WAYNE, INDIANA

New metal-clad subminiature capacitors withstand extreme temperatures

RUGGEDLY CONSTRUCTED G-E subminiature metal-clad capacitors meet all requirements of JAN-C-25 and the proposed MIL-C-25.

Permafil solid dielectric permits operation up to 125C without derating

Here's a complete new line of General Electric metal-clad subminiature capacitors designed to meet difficult operating conditions. Now you need no increase in capacitor size for applications with high working temperatures.
G. E.'s exclusive permafil solid dielectric eliminates the possibility of leakage without derating from -55 C to +125 C and up to +150 C with proper derating. Silicone bushings give high shock resistance - both thermaland physical -and leadscan be soldered right up to the bushing.

Muf ratings range from .001 to 1.0 muf in $100,200,400$ and 600 volts d -c working. They can be operated at full voltage up to altitudes of 50,000 feet.

If you need even smaller capacitors, G. E. has introduced another line of new Pyranol* (liquid-filled) metal-clad capacitors. These are designed for operation from -55 C to +85 C without derating and offer the same electrical advantages as their permafil cousins. For further information on permafil capacitors, send for new Bulletin GEC-5934.

Compact high-voltage components built for extra long service life

These G-E high-voltage components offer a continuous-service life for long periods under extreme temperatures and mechanical shocks. All are oil-filled and hermetically sealed to resist moisture, dirt and dust. For applications 5000 volts and higher, where corona must be held to a minimum, a wide range of ratings can be tailored to meet your needs. In your inquiry, please include all functional requirements, any physical limitations, and expected quantities. Contact your G-E Apparatus Sales representative for more information.

Detects, measures light accurately

G-E photovoltaic cells for applications where electronic amplifiers are not practical-provide extra-high output with stability and long life in capturing light energy and converting it into electrical energy. This self-generating power plant can detect, measure, and control light-and can measure variations in colors. These G-E cells are available in a hermetically sealed series with standard mountings, and in a wide variety of mounted and unmounted sizes. See Bulletin GEC-690.

Speeds solution to field problems

The G-E analog field plotter offers a valuable aid to electronics equipment engineers in simplifying complex field studies. Problems in electrostatics, electromagnetics, and many other fields are rapidly solved with this sensitive, versatile plotting board and associated equipment. It needs only a low-voltage d-c supply, and is not affected by linevoltage variations. Explanation and instructions are covered in a 50 -page manual accompanying plotter. For details, see Bulletin GEC-851.

Cover wide temperature range

 From -55 C through +100 C -that's the wide range covered by these new G-E miniature selenium rectifiers. Stacks-available for either lead or bracket mounting-have the same outstanding features as larger G-E selenium cells: long life, good regulation, high reverse resistance, and low heat rise. For protection, they are enclosed in either Textolite* tubes, or hermetically sealed in metal-clad casings. For more data, contact your G-E Apparatus Sales representative.

design summary
Equipment-
Electronic Data Processing Machines, designed and manufactured by International Business Machines Corporation.

Application and

 SolutionII A Cunife magnet used to build up the magnetic surface on the drum used in the IBM Magnetic Drum Reader and Recorder Unit of the Electronic Data Processing Machines.
INDIANA Cunife has been selected to do this specific phase of the work because of its high coercivity and remanence . . properties which enable it to produce proper signals.
\qquad perform a very important function in determining the lape control movement in the Magnetic Tape Reader and Recorder Unit of the Electronic Data Processing Machines.

INDIANA Alnico magnets were selected becouse of their high efficiency which permits on immediate pickup of signals and a high
degree of sensitivity in the unit.

For a complete selection of experimental permanent magnets, write for:

Cast Catalog No. 11-A8 or
Sintered Catalog No. 12-A8.

IBM

electronic data processing machines

Magnetic Drum Reader and Recorder Unit of the IBM Electronic Data Processing Machines which uses an INDIANA Cunife magnet.

INDIANA Alnico magnet in housing used in the Magnetic Tape Reader and Recorder Unit of the computer.

HIGH-SPEED COMPUTER USES INDIANA PERMANENT MAGNETS

This versatile IBM computer is a remarkable addition to Americas productive effort and a valuable tool in furthering its economic growth. IXDIANA feels honored in being selected to contribute to the progress of high-speed electronic calculation by providing the Cunife and Alnico fermanent magnets for this machine.

Just as IBM did, so you, too, can rely on INDIANA for qual ity permanent magnets . . . for top engineering assistance on your problems. Rigid quality control during all plases of production is your assurance of magnets with exact magnetic and physical characleristics. Consult INDIANA, Ioday

THE INDIANA STEEL PRODUCTS COMPANY
VALPARAISO, INDIANA
WORLD'S LARGEST MANUFACTURER OF PERMANENT MAGNETS

INDIANA PERMANENT MAGNETS

PERMANENTMAGNETSMAYDOITBETTER

DIRECT
INTERELECTRODE CAPACITANCES

Heater to Cathode: (H to K)
$4.0 \mu \mu f$
Plate to cathode and heater: P to $(H+K)$
$8.5 \mu \mu \mathrm{f}$
Cathode to plate and heater: K to $(P+H)$
$11.5 \mu \mu \mathrm{f}$

RATINGS ${ }^{\text {A }}$

Interpreted according to RTMA Standard M8-210

6 AU4
 GT

DAMPER DIODE

A Tung-Sol Designed and Developed Tube

His an ent rely tew Dampe- Diode designed to keep pace with the development of the large screen 90° deflection picture tubes. Wider deflection angles ame the ncreasec second anode voltage so necessary to maintain picture brigthess requirs higher deflection power and increosed circuit efficiens. The 175 mo . rating of type 6AU4GT is more than adequate - wit yrkle safety fazlor-for these new designs. "Stretching" the ratings of tybes designed for 70° deflection service is not sound engineering and invar ably leads tc production troubles and jeopardizes the service life in the fels This new ube is the answer.

The $6 A U \angle G^{-}$re-ans the maly feavres which have esfablished the 6AXAGT as altrertie for the 79° deflection designs. Insulation between heater and cethcee cisigned to withstend the full pulse plate-fo-cathode voltage eliminctse the need to sepa ate power transformer windings insulated for t'gl velfage. Imprevemenss in the heater-cathode insulation hove decreaced the warm-up tme ard resulted in improved reliability. The GAU4GTs prodused under the same careful manufacturing techniques and the tharggh qualiz control which the industry has come to expect from the Turg-Sol orgarization

Output voltage is unaffected by changes in the magnitude of $a-c$ line voltage or output load current. Stabilization and regulation is ± 0.25 volts.
R.M.S. ripple voltage is less than 0.1 volts.

ADJUSTABLE OUTPUT SETTINGS

Any desired output of $d-c$ voltage from 0 to 30 volts is achieved by simply rotating the handwheel on the front panel.

CONVENIENT, EASY TO USE

The VARICELL is operated by simply plugging into any handy a-c voltage source supplying a nominal 115 volts, 60 cycles $_{\text {s }} 1$ phase. The load is connected to either of the two pairs of SUPERIOR 5-WAY Binding Posts. The assembly is energized by an "On-Off" switch. A valtmeter visually identifies the output voltage at the binding posts. An ammeter shows the output load current.

ENGINEERS, LABORATORY TECHNICIANS, PRODUCTION TEST MEN and ALL OTHERS WORKING WITH LOW D-C VOLTAGES . . . get complete information now on the VARICELL. Use coupon below to get your copy of Bulletin V1051.

THE SUPERIOR ELECTRIC COMPANY
 208 Mae Avenue, Bristol, Connecticut

THE SUPERIOR ELECTRIC co. BRISTOL, CONNECTICut

Please send my free copy of Bulletin V1051 describing the VARICELL.
NAME
position
COMPANY \qquad

Shown Approximately Twice Size.

Everything you need in standard terminal lugs . . . or made to your own specifications!

C.T.C. has exactly the types and sizes of terminal lugs you want or will quickly make them to your specifications in any production quantity. Very likely you'll find what you're looking for in the broad C.T.C. line of standard terminals. There are 28 different types, each available in varied shank lengths.
C.T.C. standard terminals are of silver plated brass, coated with water dip lacquer to keep them chemically clean for soldering.

In addition, combination screw and solder terminals are available in 3 sizes, and a complete line of phenolic or ceramic terminals can be furnished.

All materials, procesees and finiehes meet applicable govarnment specifica-
tions. Finishes include hot tinned, electro-tin, cadmium plate or gold plate on special order. In the event standard terminals don't meet your needs, C.T.C. offers a special consulting service to solve your solder terminal problems without extra cost or obligation.

For all specifications and prices, write to Cambridge Thermionic Corporation, 437 Concord Avenue, Cambridge 38, Mass. West Coast Manufacturers contact: E. V. Roberts, 5068 West Washington Blvd., Los Angeles 16 and 988 Market Street, San Francisco, California.

PANELYTE:

 THE STRUCTURAL PLASTIC

 THE STRUCTURAL PLASTIC}
(For Years a Standard for Radio and TV)

Offers You FULL RANGE of Finest Quality Laminates
 This range of Industrial Laminates, with phenolic, melamine and silicone resins, includes insulation for radio,

 TV and other electronic purposes. Available in sheets, rods, tubes, molded specialties and fabricated parts.

Paper Base Irsulation

Silicone Fiberglas Insulation

High Insulation Resistance Laminate

Paper Base Tubing

STANDARD GRADES TO GOVERNMENT and INDUSTRY SPECIFICATIONS

SHEET STOCK			
Pandyte Gradie	Nema Grade	DESCRIPTION	government spec.
750	x	Paper Base. Phenolic Resin. Macha alca!	. (PBM)
550	$x x$	Paper Base. Phenolic. Resin, Mechanical \& Electrical	MIL-P-3115B (PBG)
520	$x \times x$	Pape, Base, Phenolic Resin. Electrical	$\overline{M J L-P-3115 B ~(P B E) ~}$
770	$P(X P)$	Paper Base. Phenolic Resin. Cold Punctuing. General Electrical	
772	${ }^{P} \mathrm{C}$	Paper Base. Phenolic Resin, Cold Punching. Secondary Electrical	
774	XXP	Paper Base. Phenolic Resin. Hot Punching, Good Electrical	
776	XXXP	Paper Base, Phemolic Resin. Hot Funching. High Frequency	$\overline{\text { MIL-P-3115B (PBE.P) }}$
900	C	Fabric Base, Phenolic Resin, Mechanical	MIL-P-15035B (FBM)
910	CE	Fabric Base. Phenolic Resin. Good Electrical, Fair Mechanical	MIL.P.15035B (FBG)
940	L	Fabric, Base (Fine Weave), Phenolic Resın, Fine Machinability	MIL-P-15035B (FBI)
950	LE	Fabric Base (Fine Weave). Phenolic, Good Electrical. Fair Mechanicat	MIL-P-15035B (FBE)
580	A	Asbestos Paper. Phenolic Resin, Heat Resistance, Low Voltage	$\ldots .(\mathrm{PBH})$
980	AA	Asbestos Cloth, Phenolic Resin, Very High Impact	$\ldots . .$. (FBH)
115	G8	Giass Mat. Melamine Resin, Fire \& Are Resistant	
120	G1. G2	Staple Glass Cloth. Phenolic Resin. Heat Resistance
130	67	Continuous Glass Cloth, Silicone Resin, High Heat Resistance	MIL-P-997B (GSG)
135	G6	Staple Glass Cloth, Silicone Resin. High Heat Resistance	-.....
140	G5	Continuous Glass Cloth, Melamine Resin, Arc Resistance. High Strength	MIL-P-15037B (GMG)
170	G3	Continuous glass Cloth, Phenolic Resin, Highest Strength
190	NI	Nylon Cloth, Phenolic Resin, Lowest dielectric \& loss factor	MIL-P-15047B (NPG)
780	...'	Paper Base. Phenolic Resin, Good Insulation Resistance	MIL-P-3115B (PBE-P)
9101	Fabric Base, Phenolic Resin, Low Water Absorption	Navy Spec 33B4
920	…	Fabric Base (Medium Weave). Phenolic, Good Impact, Good Machinability	MIL-P-I5035B (FBM)

ALL ROD AND TUBE TO SPECIFICATION MIL-P-79B.
PANELYTE can be of service anywhere you have use for Industrial Laminates. Would you like a free sample of Panelyte? Or a free copy of the Panelyte Industrial Catalog? Or a visit from a Panelyte engineer? Or all three? No obligation, of course.

Just let us know by sending in the coupon below, now.

OTHER PANEIYTE PRODUCTS

1 DECORATIVE, for table-tops, all hurizoutal work sirfacer, wall-covering,
2 Molded laminated parts pancls. breaher strips. spor cialty molded items, breaker frimes.

3 INJECTION MOLDINGS

43, 60. 200 oz. cap acity. Tel... -ision masks, refrigerator parts, industrial items, etc.

AREINFORCED PLASTICS-
4 sheets, fabricated parts.

ANETKTE

DIVISION

ST. REGIS PAPER COMPANY

230 PARK AVENUE - NEW YORK 17, NEW YORK Offices in Principal Cities

QUINTERRA TYPE 5 TAPE-LEAD INSULATION

QUINTERRA TYPE 5 TAPE-STRAP INSULATION

How Stearrs Magnetic Inc.

Builds greater loads

 per lift into magnetswith Duinterra
asbestos electrical insulation

- Stearns Magnetic Inc. - a pioneer in its field - wanted improved performance for lifting magnets. So they turned to Quinterra Electrical Insulations to insulate the turns of copper strap in the pancake coils and to protect lead wires. The thinness, flexibility and uniform caliper of Quinterra permit a higher number of turns of copper ribbon per given area. Quinterra thereby improves thespace factor and increases efficiency. Its lasting dielectric strength, high thermal stability and good heat dissipa-
tion permit heavier current loads with less danger of shorting the coils.

This application is typical of the many ways in which Quinterra Electrical Insulations help improve product performance. With these insulations, manufacturers can also reduce equipment size, save weight and materials. Quinterra permits equipment to operate at higher temperatures because it remains a dielectric despite heat and time . . . the bulk of its dielectric strength is in the highly purified asbestos base sheet. More-
over, it has ample mechanical strength for normal handling and resists corrosion. Available both in treated and untreated forms.

Quinterra Electrical Insulations may lower your production costs and improve product performance. For more information, send for free booklet EL-40A, "Pyrolysis Protection Pays Well."
Simply write to Johns-Manville, Box 60, New York 16, New York. In Canada, the address is 199 Bay Street, Toronto 1, Ontario.

Out of this World...

FOR MPFENDABLITY!

Super rugged, absolutely

 rigid, practically indestructible-
ELECTRICAL INDUSTRIES

 - E-I Compression Seals are produced by an exclusive process wherein the glass remains under constant compression and is thereby extremely strong and difficult to put under stress. The result is a new and vastly greater resistance to shock and vibration. All headers are silicone treated for maximum immunity to humidity and tin-dipped for easy soldering. These headers are guaranteed vacuum tight.E-1 ... your headquarters for hermeticallu-sealed MUTIPLE HEADERS, OCTAL piUg.ins, terminals, color CODED TERMINALS, END SEALS, ett.

COIL FORMS

STONIZED-PHENOLIC

High dielectric paper base impregnated forms hav ing low moisture absorption and good fabricating qualities-Several grades to meet the specific needs of the electrical and electronics industry

BOBBINS

Strong, light-weight forms to close tolerances for high speed coil winding-Cores
 of tish paper, kraft, or ace.
 tate-Flanges of fibre, pressboard and other materials

SQUARES AND RECTANGULARS

Spiral wound tubes of neutal kratt and hish paper designed to meet the exacring requirements of irregular shaped forms.

ROUND-PAPER

Low cost forms in wide range of constructions, diameters, and wall thicknesses-Can be furnished notched, punched, and printed to your specitications.

$$
\begin{aligned}
& \text { - STOHE PAPER TUBE COMPANY } \\
& \text { Incorporated } \\
& \text { - STONILED PRODUCTS COMPANY, IXC. } \\
& \text { 900-922 Fronklin St. N.E. Washington 17, D.C. }
\end{aligned}
$$

NOW BOTH!

 Reset and Non-Reset

 Reset and Non-Reset Elapsed Time Meters

 Elapsed Time Meters}

For applications where it may be desirable to reset to zero at any time, Industrial Timer now offers Reset Time Totalizers, in addition to its Running Time Meters.
SYNCHRONOUS MOTOR DRIVEN. Both types of elapsed time meters provide you with an exact record of machine hours on A.C. operated machines... up to 100,000 hours with "electric clock" running accuracy. Both utilize heavy duty synchronous motors that are self lubricating for long life. And both are available in enclosed and open type models. Running Time Meters are enclosed in black bakelite cases. Reset Time Totalizers in steel housings with baked black finish.
WIDE VARIETY OF APPLICATIONS. These Industrial Elapsed Time Meters permit you to compute readily production costs on A.C. operated machines - predict replacements for equipment of predetermined life expectancy. They can be used in a wide variety of applications such as: radio transmitters, vacuum tube devices, refrigerators, oil burners, molding machines, life test equipment, diesel generators, conveyors and many other types of machinery and equipment. For technical data, request Bulletin 88-53.

Reset Time Totalizer - Model					
CASED	OPEN	COUNT	RANGE	voltages	CYCLES
C5		$1 / 10 \mathrm{hr}$.	$10,000 \mathrm{hrs}$.	115,220	$60,50,25$
	C7	$1 / 10 \mathrm{hr}$.	$10,000 \mathrm{hrs}$.	115	$60,50,25$
C 5A		1	hr.	$100,000 \mathrm{hrs}$.	115,220
	C7A	1	hr.	$100,000 \mathrm{hrs}$.	115

Running Time Meters - Model						
CASED	OPEN	COUNT	RANGE	volfages	CYCLES	
C 2		$1 / 10 \mathrm{hr}$.	$10,000 \mathrm{hrs}$.	$115,220,440$	$60,50,25$	
	C 4	$1 / 10 \mathrm{hr}$.	$10,000 \mathrm{hrs}$.	115	$60,50,25$	
C 2A		1	hr.	$100,000 \mathrm{hrs}$.	$115,220,440$	$60,50,25$
	C 4A	1	hr.	$100,000 \mathrm{hrs}$.	115	$60,50,25$
C 2D		$1 / 10 \mathrm{~min}$.	$10,000 \mathrm{~min}$.	$115,220,440$	$60,50,25$	
	C 4D	$1 / 10 \mathrm{~min}$.	$10,000 \mathrm{~min}$.	115	$60,50,25$	
C 2F		1	min.	$100,000 \mathrm{~min}$.	$115,220,440$	$60,50,25$
	C 4F	1	min.	$100,000 \mathrm{~min}$.	115	$60,50,25$

MANUFACTURERS OF THESE AND OTHER TIMERS AND CONTROLS FOR INDUSTRY CaM timers - time delay timers - automatic recycling timers manual set timers - instantaneous reset timers.

> Timers that Control the Pulse Beat of Industry TIMÉR (conberato

INDUSTRIAL TIMER CORPORATION
IIS EDISON PLACE, NEWARK 5, N.J.

They can't forget the lock washer

MEPCO'S NEW SEALED Precision Resistors STOP Humidity Failures

TYPE	NOMINAL wattage RATING	resistance		$\begin{gathered} \text { NO } \\ \text { SECTIONS } \end{gathered}$	$\begin{gathered} \text { SUPERSEDES } \\ \text { JAN-R-93 } \\ \text { TYPE } \end{gathered}$
		MIN.	MAX		
$\begin{aligned} & \text { RB15 } \\ & \text { (M15) } \end{aligned}$	$\begin{aligned} & .25 \\ & .50 \end{aligned}$	$\begin{aligned} & 0.1 \text { ohm } \\ & 0.1 \text { ohm } \end{aligned}$	$\begin{aligned} & .185 \mathrm{meg} \\ & 6 \quad \mathrm{meg} \end{aligned}$	2	RBIO
$\begin{aligned} & \text { RB16 } \\ & (M 16) \end{aligned}$	$\begin{array}{r} .35 \\ 1.00 \end{array}$	$\begin{aligned} & 0.1 \text { ohm } \\ & 0.1 \text { ohm } \end{aligned}$	$\begin{array}{cc} .3 & \text { meg } \\ 1.5 & \text { meg } \\ \hline \end{array}$	2	RB11
$\begin{aligned} & \text { RB17 } \\ & (M 17) \end{aligned}$	$\begin{array}{r} .50 \\ 1.00 \end{array}$	$\begin{aligned} & 0.1 \text { ohm } \\ & 0.1 \text { ohm } \end{aligned}$	$\begin{array}{rr\|} .3 & \mathrm{meg} \\ 2.0 & \mathrm{meg} \end{array}$	4	RB12
$\begin{aligned} & \text { RB } 18 \\ & (M \mid 8) \end{aligned}$	$\begin{array}{r} .50 \\ 1.00 \end{array}$	$\begin{aligned} & 0.1 \text { ohm } \\ & 0.1 \text { ohm } \end{aligned}$	$\begin{array}{cc} .75 & \text { meg. } \\ 40 & \text { meg. } \\ \hline \end{array}$	4	RB13
$\begin{aligned} & \text { RB19 } \\ & (M 19) \end{aligned}$	$\begin{aligned} & 1.00 \\ & 2.00 \end{aligned}$	$\begin{aligned} & 0.1 \text { ohm } \\ & 0.1 \mathrm{ohm} \end{aligned}$	$\begin{array}{rr} 4.0 & \mathrm{meg} . \\ 15.0 & \mathrm{meg} . \end{array}$	8	RB14
$\begin{aligned} & \text { RB52 } \\ & \text { (M52) } \end{aligned}$	$\begin{aligned} & .25 \\ & .50 \end{aligned}$	$\begin{aligned} & 0.1 \text { ohm } \\ & 0.1 \text { ohm } \end{aligned}$	$\begin{array}{ll} .1 & \text { meg. } \\ .5 & \text { meg. } . \end{array}$	2	R85 1

MIL - R - 93A
WATTAGE \& RESISTANCE TOLERANCE

TOLERANCE SYMBOL	RESISTANCE TOLERANCE	PERCENT OF NOMINAL WATIAGE
B	0.10%	50%
C	0.25%	50%
D	0.50%	75%
F	1.00%	100%

MIL-R -93A
TEMPERATURE COEFFICIENT
(referred to $25^{\circ} \mathrm{C}$)

SYMBOL	EXPRESSED IN PERCENT PER DEGREE C.	
	NEGATIVE, MAX.	POSITIVE, MAX.
E	0.0022	0.0022
J	0.0040	0.0155
K	0.0050	0.0255

SPECIAL REQUIREMENTS

Variations of the above ratings, tolerances, temperature coefficient, etc. can be supplied to special order.

M

Over 2 years of laboratory development and testing were required to achieve a sealed resistor design up to Mepco's standard of quality. No sacrifice of our standard time-proven features have been made in order to perfect this sealed resistor.

SPECIFICATIONS: Meets all requirements of MIL-R-93A and JAN-R-93.
SEALING: Completely encapsulated and bonded.
OPERATING TEMPERATURE: $-65^{\circ} \mathrm{C}$. to $+125^{\circ} \mathrm{C}$.
WINDINGS: Reversed and balanced Pl-windings for low induc. tance with use of only the finest "certified" resistance alloys.
EXCLUSIVE INTERNAL FEATURES: Internal section's cross-over wire insulated from winding by 2000 v . insulation (patented). Special metal molded connecting feature, which bonds end of winding and terminal in a non-corrosive and mechanically secure manner - no solder or flux used.
TERMINALS: Rigid hot solder coated brass terminals for easier and more secure soldering.

EVENLY

 9/16 $6^{\circ \prime}$ O.D. $\times 3 / 8^{\prime \prime}$ I.D.

 9/16 $6^{\circ \prime}$ O.D. $\times 3 / 8^{\prime \prime}$ I.D. Wire-44 AWG Wire-44 AWG Winding Speed- $\mathbf{5 0 0} \mathrm{rpm}$ Winding Speed- $\mathbf{5 0 0} \mathrm{rpm}$
 1.1/8"O.D. \times 3/4"I.D.

Wire-44 AWG
Winding speed-500 rpm
The MICAFIL Model RW-0 Toroidal Coil Winder automatically winds toroidal coils continuously around 360° and sector coils from 30° to 180°. To produce smooth, even layers of wire, the winder is adjusted easily to wind any wire size between 26 and 45 AWG and to obtain the proper pitch. Winding direction can be changed and feeds can be adjusted while machine is in operation.

1.1/8" O.D. $\times 3 / 4^{\prime \prime}$ I.D.

Wire-38 AWG
Winding Speed-800 rpm

CAPACITY

Coil Sizes
Minimum finished I.D. 1/4" Maximum finished O.D. $2^{\prime \prime}$ Minimum finished O.D.
.... $1 / 2^{\prime \prime}$
Wire Sizes 26 to 45 AWG
Winding Speed-
according to wire size . . up to 800 rpm
Shuttle Capacity-
according to wire size 48 to 500 ft .
MICAFIL Toroidal Coil Winders are made in three larger sizes for winding coils up to 8" O.D. and with 11 AWG Wire.

O.D. $1.5 / 8^{\prime \prime} \times 7 / 8^{\prime \prime}$ I.D.

Wire-38 AWG
Winding Speed-800 rpm

SPIRALING DEVICE - Device winds spirals for shuttle loads-in advance. . . Newly developed to permit continuous operation of Coil Winder ... Winds to predetermined lengths.

SHUTTLES - Made in four different ring diameters to accommodate range of spiraled wire sizes ... Larger wire capacities... More than one coil can be wound with single loading... Changed within 2 minutes... Loaded in less than a minute.
ACCURATE MECHANICAL TURNS COUNTER-Preset for required number of turns... Automatically stops winder when turn count is reached.

Let Cosa Engineers study and recommend the winder for your needs. Or, write for literature.

"Unitized" Pulse Control Equipment saves time and money in electronic enqineering

There's no longer any need to tie up choincering personnel with the time-consuming work of developing and "brcadboarding" electronic test circuits. Burroughs, a leader in the office machine industry, now oflers an integrated line of "Unitized" Pulse Control equipment covering all the basic functions in pulse circuit engincering. These one-trasicfunction units are designed with a maximum of flexibility to be used as building blocks for test systems ranging from the very simple to the most complex. Engineers need only make a block diagram of the apparatus noceded, assenble the necessary burroughs units in the plug-in rack, and interconnect them with the various standard coaxial cables and accessories. It's really that easy! It's equally easy to reassemble your unis for a different project when your present tests arc completed.

YOU SIMPLY "PLUG IN" BURROUGHS FLIP.FLOPS

Burroughs Flip-Flop, Type 1101 C , demonstrates the one-basic-function principle that makes Burroughs "Unitized" Equipment so suitable for your needs.

This flip-tlop is a bistable circuit designed specifically to provide an output gating voltage to be used in coincidence circuits. The unit contains a pentode EcclesJordan circuit capable of being switched at rares up to 2.5 megacycles per second, with 0.1 microsecond pulses.
There are three inputs-Zero, One and Complement-operating from pulse amplitudes of 12 volts or more. Coaxial output jacks marked "Zcro Gate" and "One Gate" supply cither 0 volts or -23 volts at an impectence level of approximately 680 ohms.

Two neon lighes on the front of the panel indicate the position of the Hip-flop. A terminal block on the rear of the unit can be used to operate indicator lights installed at a remote point for visual monitoring.
Proved by inore than two ycars of constant use, Burroughs "Unitized" Pulse Control equipment has been purchased by many leading electronic research organizations. Some of the users are: Massachuscus Insitute of Technologe, University of Michigan, Stanford Research Institute and National Union Radio Corporation.

Scale-of-Four Binary Counter Using Burroughs "Unitized" Equipment

The left Hip-Hop, Type 1101 C , changes state with each input pulse, so that the left coincidence detector (CD) or gate, Гype 1201 B . is alternately opened and closed with succeeding input pulses, with the result that every other input pulse passes through the left coincidence detector, giving a count of 2. A similar llip-Hop and gate combination cascaded to the first combination gives a total scale of $2 \times 2=4$. The number of tlip-flop and coincidence detector combinations that can be cascaded is unlimited.

For full information on Burroughs "Unitized" Pulse Control Equitment. zerite or call Department 12R, Electrenic Instruments Division, Burnoughs Copperation, $51 / \mathrm{N}$. Broad St, Phitadelphia 23, P'a. MIXERS

BEST LONG.TERM INVESTMENT IN TV STUDIO SPEECH CONSOLES the New antis ce-1"Proqram Master"

- Versatility - by reason of wide range of plugin amplifiers
- Accommodates 14 plug-in units, 10 pre-amplifiers, 2 line amplifiers, 1 monitoring amplifier, 1 power supply
- Buy this GATES Console with the number of amplifiers needed - add later for expansion

2. Here is a TV speech console that call grow will jour station. Meets ALL large studio demands for TV (and AM too) yet is flexible enough for any station requirement.

It features NEW GATES PLLUG-IN amplifiers throughout. There's room for 14 - hut you buy only what you need and add later as you need them.
The NEW GATES CC-1 was designed following months of study covering all phases of TV programming and production. It fully meets every requirement for complex or simplified production techniques.

The NEW GATES CC. 1 Speech Console is beautifully constructed, providing a new high in rigid performance standards - both electrical and mechanical.

Before you invest, investigate the newest and latest in speech input equipment - the GATES CC-J "PROGRAM MASTER".

Outstanding
 Features

- Ten mixing channels
- Provision for ten or lesser number of pre-amplifiers
- Provision for single sr duplicate line amplifiers
- Choice of 8 or 16 watt monitoring amplifier
- Complete remote line cuing, creep ride and auxiliary switching facilities
- Provision for patch panel termination of all major circuits
- Duplicate VU meters
- Group control of any number of mixing positions provided by we SUB and one MASTER gain controls
- Color coded control facilities

GATES RADIO COMPANY, QUINCY, ILLINOIS, U. S. A. MANUFACTURING ENGINEERS SINCE 1929

Canadian Marconi Company, Montreal, Quebec

Marco Industries. Inc.. Depew, N. Y. manufactures "quality motors tailored to your product at readymade prices". They are available in $1 / 100-1 / 8$ H.P. range: 4 and 6 pole: 1,2 and 3 specd; .and in open. enclosed. or fan cooled types.

Their quiet. efficient performance in air moving equipment. office machines. pumps.
 and many other applications is the result of excellent basic design. modern production and test methods. and careful selection of materials. Natvar Slot cell insulation is used because of its uniformly high dielectric strength and resistance to abrasion, oil. and moisture.

If you need insulating materials wih good physical and electrical properties, you can depend on Natvar flexible insulation. It will pay you to get in touch with your distributor or with us direct.

Varnished cambric-cloth and tape

- Varnished canvas and duck
- Varnished silk and special rayon
- Varnished-Silicone coated Fiberglas
- Varnished papers-rope and kraft
- Slot cell combinations, Aboglas(1)
- Varnished-lacquered tubing and sleeving
- Extruded vinyl tubing and qape
- Styroflex flexible polystyrene tape
- Extruded identification markers

Ask for Calalog No. 22

JOB-TALILRED TAPES NEAILY FILL THE BILL AT PECO!

Harnessing and insulating jobs are no headaches at Power Equipment Co., Detroit, Mich. These specialists in controlled rectifiers use the tapes that are tailored to do each job right-"Scotch" Electrical Tapes.

Dozens of different "Scotch" Pressure-Sensitive Electrical Tapes are available to help you meet your rigid specifications, too. There are tapes with
thermosetting adhesives, tapes with special backings of vinyl plastic, treated paper, glass cloth, acetate and neoprene. They're all clean to handle, easily and quickly applied. They all stick at a touch-right off the roll.

You name it - "'Scotch" Brand has it! For complete information write Minnesota Mining \& Mfg. Co., Dept. E-83, St. Paul, Minn.

MNHPNN sheet leads on this ANGIUIIIG PECO transformer coil requires a strong but not bulky tape. The job is done to order with "Scotch" Electrical Tape No. 45. Sheet leads can be punched, then wired directly to the transformer. No terminal bond is needed.

INSU LTING a PECO rectife har: INSULATING ness calls or a compact tape with high dielectric. Here, super-thin "Scotch" Plastic Electrical Tape No. 33 neatly meets specifications. Has dielectric strength of 10,600 volts, yet is only 7 mils thick! Carries IL seal.

CAn MN terminal lead-outs for JADJLIA PECO coils is correctly done with "Scotch" Electrical Tape No. 38. Thermosetting adhesive is heat-cured to form a permanent bond, highly resistant to solvents. Caliper: 10 mils. Dielectric strength: 1500 volts. Treated paper backing.

Why electrical products using weigh less, cost less,

Circuit Breakers-Here, a Carboloy magnet assembly simplifies trip element. It eliminates a coil and polarizing connection ... makes possible reverse-current tripping independent of system voltage. Breaker weighs less, costs less to build.

Instruments - Figure A is damping magnet once used in GE indicators. Figure B is tiny Carboloy magnet now used. It permits smaller indicator design (Fig. C), cuts materials and assembling costs . . . speeds up calibrations.

YOU GET ALL THESE BENEFITS IN

 CARBOLOY PERMANENT MAGNETS- Cool-generate no heat
- Require no electrical energy
- Cost nothing to operate
- Eliminate coils, windings, wiring, etc
- Need no maintenance-no coils to burn out, no slip rings to clean or replace, etc
- Simplify mechanical assemblies-exert strong tractive force for holding, lifting and separating devices that eliminates component parts, makes product design and fabrication simple.
- Save space-great magnetic strength in small sizes
- Powerful-and power is constant
- Combine electrical and mechanical features-transform electrical energy into mechanical motion; mechanical motion into electrical energy
- No power failures ever
- Resist moisture-no coils to collect dampness
- Give uninterrupted operation
- Create savings-often eliminate costly, power-supplying parts
- Simple-no operating parts
- Reduce weight, product size
- Supply a permanent source of energy

Carboloy permanent magnets

 work betterIF you manufacture any electrical device using an electromagnet, you will probably save money by substituting, instead, a Carboloy permanent magnet.

For these magnets are permanent sources of energy that need no wires, coils or operating parts. Their power and small size let you simplify design, build more compact, finerperforming products, and save on material and assembly costs.

Check the magnet applications on these pages. Perhaps they ll suggest similar uses in your product. If so, contact a Carboloy magnet engineer. He'll welcome the chance to work with you on your design and application idea at no charge, of course.

And the Carboloy name assures you of highquality, uniform, high-energy permanent magnets in any size, shape; cast or sintered to your specifications. Send coupon for free Magnet Design Manual PM-101 and Standard Stock Catalog PM-100.

Magnetos - To save space and weight, Scintilla Magneto Division, Bendix Aviation Corporation, now makes aircraft magneto rotors from Carboloy permanent magnets. Figure A shows old-style rotor that weighs 4 lbs. 9 ozs. Figure B shows new rotating Carboloy permanent magnet weighing only 2 lbs. 4 ozs. - less than half as much as old-style rotor.

Hearing Aids - New all-magnetic, all-transistor "Radioear" hearing aid (made by E. A. Myers \& Sons, Inc., Pittsburgh) uses Carboloy permanent magnets in both microphone and receiver. These magnets have eliminated hearing aid failure caused by severe heat and humidity encountered in normal use.

CARBOLOY
 DEPARTMENT OF GENERAL ELECTRIC COMPANY

"Carboloy" is the registered trademark for the products of the Carboloy Department of General Electric Company

MAIL COUPON TODAY

Carboloy Department of General Electric Company 11139 E. 8 Mile Street, Detroit 32, Michigan

Sirs:
Rush me, without cost or obligation, copies of Permanent Magnet Design Manual PM-101 and Standard Stock Catalog PM-100.
\qquad

Company

Address \qquad
City Zone

General Phte Products that solve your Electronic Problems

tRUFLEX THERMOSTAT METALS
TRUFLEX thermostat metals are manufactured in a wide variety of types, each with a different reaction to temperature. consistent performance. Precision parts fabricated to exact specifications.

COMPOSITE CONTACT MATERIAL
Precious metals and alloys bonded to base metals available in following types single and double inlay, Top-Lay, ready tor you to fabricate into contacts.

COMPOSITE METALS
Available in practically any combination of precious to precious, precious to base or base 10 base metals. Combinations for electronics include aluminum-clad iron, nickel-clad iron for anode materials

COMPOSITE CONTACTS
General Plate can supply all types of fabricated composite contacis buttons. rivets, contact assemblies made to cus tomer's specifications. These contacis give electrical conductivity and long life at reduced costs.

ALCUPLATE
Copper clad aluminum for component Cases or cans, chassis, cooling fins, etc., light weight, excellent conductivity. Cop. per surface is ideal for soft soldering and electroplating.

WAVE GUIDE and COLLECTOR RINGS RECTANGULAR WAVE GUIDES. Solid silver, silver lined brass or aluminum. Sizes to government specifications. COLLECTOR RINGS. Solid silver or precious metal on base meral. All sizes.

GENERAL PLATE PRODUCTS

Alfer, Alnifer, Nifer-AlumiAlfer, and Nickel-clad steel for anode plates.
Alcuplate ${ }^{(1}$ - Copper-clad Aluminum for component cases, chassis, cooling fins condenser blades, etc.
Alsiplate ${ }^{(B)}$ - Silver clad alu Alsiplare for lightweight conminuma, etc.
Composite Contacts and Contact Composite Contacts an strength Materiols-increat life at reduced cost. cost. Rings - Fabricated - Collector Rings - Fabricals or - Coliector solid precious menals or precious-clad base metal of Sizes ranging fromach diaman inch to few feet in diam eter.

- Truflex (${ }^{(1)}$ Thermosial Metal Sheet, strip, formed produced to and assemblo specification.
- Thin Gauge Metals - Beryllium copper, nickel, pure beryl. copper, nicke., Stellite alloys. lium,

Platinum-Group Melals - Sheet wire, tubing, parts of all wire, tubing, Complete assay and recypes. Comples for platinum group metals.

- Silver and Goid Braxing Alloys Silver and as sheet, wire, Avallabler and fabricaled parts.
Bondwich - Solder.clad brazing shim for carbide-tipped tools.
Bronco - Phosphor Bronze. clad copper for bigh conductive springs.
Conflex - Copper-clad spring - Conflex-Copper-ciad and thersteel for electrical springs at mal cond.
720 Manganese Age-Hardening - Alloy Manganese Corrosion resistant Alloy - material for diaspring ms, springs, finger stock, etc.
- Rectanqular Wave Guide Tubing Rectangular Wave Guide to gov ernment specifications. Write for catalog PR700

General Plate Composite Metals, made by metallurgically bonding one metal to another, are available in sheet, strip, tubing or wire in various widths, thicknesses and diameters.
Silver, gold and platinum-group metals bonded on base metals give solid precious metal performance at a fraction of the cost of solid precious metal. The precious metal provides specific performance requirements such as electrical conductivity and corrosion resistance while the base metal provides workability, strength, and solderability.
Composite base metals provide a new group of engineering metals with properties not available in solid metals. Their use frequently results in lower material costs as compared to solid metals.

In many electronic applications further economy results when General Plate supplies fabricated parts ready for assembly into your product. General Plate makes an infinite variety of fabricated parts, such as electrical contacts, collector rings and TRUFLEX thermostat metal parts to customer's exact specifications.
General Plate Engineers will gladly help you witt your problems.

You can profit by using General Plafe Composite Metals!

ELECTRONIC TEST INSTRUMENTS

Read the

Ip JOURNAL
 ..for up-to-the-minute news of electronic developments, techniques entrumentation, sent regularly -the-minute news of and instrumentation, senarge without chat

The -hp-Journal is an engineering periodical sent to you as another service of the Hewlett-Packard Company. It is written for engineers, by engineers. Typical papers discuss such subjects as:
> "Design notes on the RC Oscillator Circuit" "Direct-Reading UHF Power Measurements" "Good Practice in Slotted Line Measurements" "New 100 kc Counter for Electronics and Industry"

Articles also contain technical data, performance information and operating suggestions for $-h_{p}$ - test instruments. All issues are fully illustrated.

See us at WESCON
San Francisco
Booths 1111.1112

Write today for your free subscription

(Please give your title or position; or state if engineering student)
HEWLETT-PACKARD COMPANY
2784 A PAGE MILL ROAD. PALO ALTO, CALIFORNIA, U.S.A.
sales representatives in all principal areas

WORLD'S LARGEST EXCLUSIVE MANUFACTURER OF ELECTRONIC TEST INSTRUMENTS
Vacuum Tube Voltmeters - Audio Oscillators - Frequency Counters, Monitors and Standards - Audio, VHF, UHF and SHF Signal Generators - Square Wave Generators - FM and TV Broadcast Monitors - Wave and Distortion Analyzers - Slotted Lines - Tunable Bolometer Mounts - VHF Bridges - VHF Detectors - Microwave'Test Equipment and Power Meters - Standing Wave Indicators - Low Pass Filters - Electronic Frequency Meters - Attenuators - Wide Band Amplifiers - Regulated Power Supplies - Electronic Tachometers Voltage Dividers, Multipliers, Shunts - Accessories

(p)
 Instruments for Complete Coverage

ALLIED CONTROL'S

Designed to withstand a shock of 50G, these new Allied Control double-throw miniature relays were developed to meet the rigid requirements of U.S.A.F. Specifications MIL-R-5757A.

Known as the Allied MH series, this new line of relays consists of the 6-pole MH-18, the 4 -pole MH-12, and the 2 -pole MH-6. Contacts are rated at 2 amps resistive or 1 amp inductive at 28 volts D . C.
The high performance of these relays has been achieved
in an extremely compact, unitized construction and parallels the most recent advances in airborne equipment design. The "actual size" photographs shown above highlight the 66% savings in overall size, the 48% savings in weight and the 30% reduction in chassis area.

For detailed specifications and drawings of these new relays, contact your local Allied Control Representative or write us for Bulletin 1002.

SIX DIFFERENT MOUNTINGS

FEATURES

Wide Ambient Temperature Range: $55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ standard- $65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C} \mathrm{MHB}$-type
Vibration Resistant: 15G's vibration to 500 cycles - Operating Shock: no contact chatter to over 50G's
High Altitude: seal-tested to 70,000 feet
Dependable Operation: !ife expectancy of over 1 million operations at rated load
High Speed: operate-to-malie time under 8 ms .
release-to-make time under 4 ms .
release-to-break time under 2 ms .
 2 EASTEND AVENUE, NEW YORK $21, \mathrm{~N}$. Y.

Wanted!

 Tough circuit problems for GLOBAR
Ceramic Resistors

To help you solve those tough problems, five types of globar Brand Ceramic Resistors, with distinctly different characteristics, are available in a wide range of shapes and sizes. Whenever you have difficult temperature or voltage compensation problems in your electrical or electronic circuits, you can count on Globar Ceramic Resistors to help you out. In ordinary circuits, too wherever maximum resistor life and dependability are required-try globar Ceramic Resistors.
globar Ceramic Resistors are engineered to meet your exact requirements. They are electrically fired in one piece, and will withstand the severest service. They are always uniform, because they are strictly controlled from design and manufacture to final inspection.

GLOBAR Brand Ceramic Resistors			
TYPE	TEMPERATURE COEFFICIENT	VOLTAGE COEFFICIENT	DISSIPATION CAPABILITY
" ${ }^{\prime \prime}$	LOW	LOW	NORMAL
"cx"	LOW (POSITIVE)	PRACTICALLY ZERO	EXCEPTIONAL
"B"	MODERATE (NEGATIVE)	MODERATE	NORMAL
"F"	HIGH (NEGATIVE)	PRACTICALLY ZERO	ABOVE NORMAL
"BNR"	MODERATE (NEGATIVE)	extremely high	NORMAL
		For useful engine Ceramic Resistors Bulletin R to Dep	ata on globar for your copy of -124.

If you have a resistor problem, let our engineers help you-without obligation, of course. Just send complete circuit information.

GLOBAR Ceramic Resistors by CARBORUNDUM

[^3]

SPECIFICATIONS FOR MODEL GM49P-1

400 Cydle Capacitor Run Induction Gear Motor
115 Volts - 400 Cycles - 1 Phase - 0.5 Amps.
full Load Torque: 100 Oz .1 ln .
Starting Topque: Over 100 Oz .-In.
Gear Head Lubricated per Mil-G-3278
22 R.P.M. - 314 to 1 Gear Ratio - Reversible Rotation Intermittent Duty: 15 Minutes on, 15 Minutes off

Ambient Temperature: -55° to $+74^{\circ} \mathrm{C}$
Altitude: to $50,000 \mathrm{Ff}$.

TYPICAL APPLICATIONS

- Military and Aircraft
- Follow Up Devices
- Instrument Controls
- Automatic Controls
- Automatic Pilot

Radar Equipment - Electronic Control

- Actuators
- Timers

A precision gear head combined with a miniature motor gives you the answer to high torque at low speed. The motor can be 60 cycle, 400 cycle or variable frequency - in single, two or three phase with non-cooled or self-cooled frame types. The gear head is arranged to provide the output speed you require, with standard timing ratios of 60,3600 or 8000 to 1 possible. High output torques, to drive, actuate or control, in confined areas, make this line of tiny gear motors ideal for a wide variety of applications on the ground and in the air.

SOLVING SPECIAL PROBLEMS IS ROUTINE AT 匋島

If your problem involves rotating electrical equipment, bring it to EAD. Our completely staffed organization will modify one of our standard units or design and produce a special unit to meet your most exacting requirements.

When you have an application requiring a capacitor with maximum stability over an extreme temperature range specify RMC's new Type J DISCAPS.

Because of RMC's exclusive dielectric element design the actual capacity change of Type 1 DISCAPS between $-60^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$ is only $\pm 15 \%$ of the capacity at $25^{\circ} \mathrm{C}$. Between $+25^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$ the change is only $\pm 5 \%$ of the ca pacity at $25^{\circ} \mathrm{C}$. Type \rfloor DISCAPS are rated at 1000 working volts.

Now available in capacities between 220 MMF and 2000 MMF, Type J DISCAPS combine exceptional mechanical and dielectric strength with a moderate price for trouble free performance and lower production costs.

If you have a design problem requiring a standard or special type of ceramic capacitor we invite your inquiry.

STABLE

 CAPACITY
dISCAPS

Type J

A New Development from the RMC Technical Ceramic Laboratories

SEND FOR SAMPLES AND TECHNICAL DATA

RADIO MATERIALS CORPORATION General Office: 3325 N. California Ave., Chicago 18, III.

FACTORIES AT CHICAGO, ILL. AND ATTICA, IND. DISTRIBUTORS: Contact Jobber Sales Co., 146 Broadway, Paterson 1, N. J.

Long coils of DI-MAX Quality permit continuous press operation, eliminate end-ol-sheet scrap losses.

COLD FINSHING gives you This Improved Electrical Steel

Armco DI-MAX, a hot-rolled electrical steel with a coldreduced finish, offers you these advantages:

1. Flatter laminations with excellent stacking factor
2. Increased die life
3. High permeability at all inductions
4. Magnetic properties fully developed at mill
5. Supplied in long butt-welded coils, with ductile welds having the same thickness tolerance as the sheets

ADEQUATE INSULATION

DI-MAX Quality electrical steels as supplied have insulation adequate for many applications. Where extra interlamination resistance is required, the steel is supplied with Armco No. 4 insulation.

GRADES IN DI-MAX

DI-MAX Quality is available in coils in the following hotrolled electrical grades: Armco TRAN-COR 72, 82, 101, Electric and Armature.

Write us for more information on DI-MAX OUALITY.

High pressures developed by four-high cold-finishing mills improve lanumation factor in stacked cores.

ARMCO STEEL CORPORATION
3693 CURTIS STREET, MIDDLETOWN, OHIO
EXPORT: THE ARMCO INTERNATIONAL CORPORATION

An Ampex Automatic Station now in operation at KEAR in San Mateo, California. It sustains the evening programs on tapes prepared by the daytime staff.
($)$ nnouncing THE AMPEX AUTOMATIC STATION
a new concept in radio programming and operation

Now a 16 hour broadcast day can be handled by an 8 hour staff. Commercials and announcements for the full broadcast day can be pre-taped in fast succession and will be automatically cued to prepared program material.

AUTOMATIC CUEING

Your broadcast time can be sustained automatically by alternate operation of two Ampex 450 Continuous Tape Reproducers. One carries a program tape - the other has a tape with commercials and announcements. One stops-the other starts. It's "cued automatically" with sub-audible"trigger signals" recorded on the tapes themselves. And when desired both machines can be stopped and live programs, separate tapes or discs can still be broadcast in the conventional manner.

ELECTRONIC SPLICING

The announcer pre-records his announcements, pressing a button between each one to place the "trigger signal" on the tape. In effect he is putting the announcement in its proper place with a fast "electronic splice."

PRE-PLANNED PROGRAMS

Program tapes for use in your Ampex Automatic Station will contain the cueing signals. Selections and exact performance times are available to your program director for accurate integration with commercials and local announcements.

Sub-audible tones on each tape
stop one machine and automatically start the other.

Write today for further information to Dept. E-1217A

AMPEX CORPORATION

934 Charter Street, Redwood City, California
Distributors in principal cities
In Canada : Canadian General Electric Company

YOU'LL FIND THE RIGHT FUSE, FASTER in the Gomplete Line of Electronically

 Testedfor Television • Radio -

Radar • Instruments • Controls •

Avionics

You'll save time and trouble when all your fuse needs are supplied by one, dependable source. The complete BUSS blocks and holders line makes it easy for you to select the fuse to do the job right.
The makers of BUSS fuses insist on perfection. Every fuse is electronically tested in a sensitive device that rejects any fuse not properly calibrated, properly constructed and right in all physical dimensions.

Take advantage of the profit-saving efficiency that you can gain by standard-- izing on the complete line of BUSS fuses.

MAIL THIS COUPON TODAY...

IF YOU WOULD LIKE ASSISTANCE

Varnished
 Alass Eloth that's prieed for Hlass "A"Use!

* Made with Fiberglas Yorns

Want extra performance

in Class \boldsymbol{A} equipment at no premium cost?

... in transformer layer or phase insulation? If you do, you'll want to know more about this stronger, safer, longer-lasting varnished glass cloth. For this is cloth in sheet or tape form that's priced for general Class A use . . . wherever straight-cut organic textile fabrics were formerly used!

STRONGER

A stronger, more permanent support for insulating varnish is provided because Fiberglas* yarns have greater tensile strength than organic textile-based yarns of equal thickness.

SAFER

Equipment withstands higher temperatures, breaks down less readily, because Fiberglas glass-based varnished cloths provide higher thermal heat dissipation and higher heat resistance.

LONGER LASTING

Class A equipment lasts longer, gives better performance when suitable varnished glass cloths are used. Glass cloths are inorganic - will not rot ... resist moisture, oil and severe weathering.

AVAILABLE NOW

If you haven't already checked into the possibilities of this cloth, be sure to call your supplier today-or write direct to Owens-Corning Fiberglas Corp., Dept. 860, 16 East 56th Street, New York 22, N. Y.
*Fiberglas is the trade mark (Reg. U. S. Pat. Off.) of Owens-Corning Fiberglas Corporation for a variety of products made of or with fibers of glass.

"if it's Fiberglas, it's Owens-Corning!"

 plus operation of the moving contact by a precision ground lead screw. All Borg Micropots are automatically machine-tested for a zero-based linearity of $\pm .25 \%$ or $\pm 0.1 \%$, with overall resistance $\pm 5 \%$. Available on special request with $\pm 0.05 \%$ linearity.
Other important features of the Borg Micropot are accuracy in setting and resetting (due to Borg anti-hacklash device)... very fine resolution... rigid terminals, moulded integrally with the housing. Micropots are available for immediate shipment in 1.15 to 3 ohm and 30 to 250,000 ohm ranges.

FOR IMMEDIATE SERVICE CALL YOUR NEAREST BORG REPRESENTATIVE

ARIZONA AND CALIFORNIA
W. S. Harmon Company 1638 South LaCienga Blva. Los Angeles 35
Phones: Bradshaw 2-3321 Crestview 6-3027
NEW ENGLAND STATES Gerber Sales Company 42 Church St., New Haven Phone: University 5-2147 739 Boylston St., Boston 16 Phone: COpley 7-0061-0062

DEL., EASTERN PA., SOUTHERN N.J. L. Parker Naudain Broad St. Station Bldg.
Philadelphia 3
Phone: Rittenhouse 6-3185

ILLINOIS
Jerome Kleker Company 177 Sunset Ave., Glen Ellyn Phone: 2297

INDIANA
Hoemig Sales Company 1730 Clover Lane, Fort Wayne Phone: Anthony 2083
KAN., MO., NEB., OKLA., TEXAS The George E. Harris Co.
1734 N. Hillside, Wichira Phones: 62-2731 and 63-9226

John Pilkington
6315 Brookside, Kansas Ciry Phone: Delmar 9600

BORG ten-turn MICRODIAL

Borg Microdials indicate contact position to an indexed accuracy of one part in one thousand. For use on Borg Micropots or similar multi-turn applications. It is composed of two concentric dials ... one for counting increments of each curn in $1 / 100$ ths, the other for counting turns. Borg Microdials can be friction-held in any position against accidental turning.

BORG EQUIPMENT DIVISION
 THE GEORGE W. BORG CORPORATION
 Janesville, Wisconsin

Novel Use of Kel-F in Tube Socket Boosts "Ceiling" on Tube Performance... Cuts Altitude Leaks

The simple expedient of lengthening the base connector barriers, formerly employed (see comparison photo-old style, left; new style, right) prevents arc-over or ionization in rarefied atmospheres; or under high humidity, and enables the tube to perform perfectly at high altitudes... 15% above the tube's rated "ceiling." This improvement is the result of using Kel-F polymer as the insulation for the new socket-a unique plastic tough enough to stand up unde: thermal cycling, operational shock and vibration, without cracking or deforming even in the thirsections required for the longer barriers.

The Elco Corporation, custon molders and electronic manufacturers of Philadelphia, Pa., in-jection-molded this miniature tube socket for a major producer of electronic gear. Molded on standard equipment, tolerances required for the "floating" contact slits and the barriers were provided for in the mold and no machining was required. The high mechanical strength and non-stick properties of Kel-F also assured a low production reject rate caused by mold breakage.

Hefer to Report E-1/2

Transparent, Heat-Proof "Armor" of Kel-F for Carbon Resistors Cuts Damage ...
 Boosts Efficiency ...Simplifies Maintenance

Compact electrical installations, where heat and physical damage to resistors has been a "bug," are now relying on tubular "armor" of Kel-F trifluorochloroethylene polymer plastic. Because of its nonflammability, unusual heat resistance and high impact and compressive strength, this versatile plastic prevents damage due to fire or elevated temperatures, a careless slip of a tool (or severe operational

vibration, shock), and chemicals or lubricants. Protecting both the harrel and caps of each resistor, the sleeves last indefinitely without aracking or deforming. And, these "armor" sleeves of Kel-F polymer remain transparent even after extended use, making quick identification of resistor ratings or markings possible without removal.

The resistor sleeves shown are but a lew of the many types and sizes produced by The Garrison Company, Fanwood, N. J., for major producers and users of resistors. The Garrison Company extrudes lengths of the required diameter tubing from Kel-F polymer molding powder using standard techniques. A specially-designed attachment automatically cuts the extruded tubing to required size and forms one end. On installation, the other end may be formed to a similar shape. At present, the protective sleeves are produced in $.178^{\prime \prime}$ to . $30 \mathcal{Z}^{\prime \prime}$ I.I). sizes and in lengths from $1 / 2^{\prime \prime}$ to $31 / 4^{\prime \prime}$. Sizes are kept to strict tolerances to fit standard carbon resistors smugly.

Antennae Insulator-Mount of Kel-F Blocks RF Leakage . . . Takes High Wind Loads ... Eliminates Fungus Losses

Found to be the material with the lowest RF loss, Kel-F trifluorochloroethylene polymer, with its toughness and dimensional stability, enables the antenmae imsulator nount shown above to stand up under high wind and shock loads and other physical abuse that caused other mounts to fail after a short time.

The dual insulator-mount and two insulating washers, designed to hold a "short" and "long" an-

Be Sure to Get This
 Handy
 Reference...

Whether you're looking for a source of supply of a particular basic form of Kel-F, a finished produch or a reputable firm to do custom molding or fabricating, you'll find it easily in the "Buyers Guide." just off the press. Write to Technical Service for your copy.
tenna, are injection-molded and used by the JFD) Electronics Corporation of Brooklyn, N. Y. in portable military radio receivers. The complex antennal insulator. together with insulating washers, are produced by standard procedures in a single "shot," using multiple-cavity molds.

Kel-F triflnorochloroethylene polyner was sperified for this critical application on the basis of its unique combination of desirable properties. The high electrical insulation resistance of Kel-F at high and low temperatures is further enhanced by the plastices zero water absorption and non-wettability. Since Kel-F remains unaffected by sustained exposure to moisture, surface electrical losses are eliminated. The non-wetting and non-stick properties of this floorocarbon plastic prevent the formation or adthesion of conductive fungus growths. Kel-F polymer also extends trouble-free operation of the part by eliminating corrosion and loosening of metal inserts due to release of plasticizers.

Molders of the Month

Leading molders and exiruders specialize in fabrication of materinls and parts made of Kel-F . . enth month this column will "potlight sereral of these rompanies with

General American Transportation Corporation Chicago, III.

Injection Molding
Compression \& Transfer Molding Electrical, Electronic Components
A. Gusmer, Inc. (Stalpic Division) Woodbridge, N. J.
Dispersion Coating
Nichols Engineering Company Stratford, Conn.

Machining
Liquid Level Gages \& Glasses

Santay Corporation

Chicago, lll.
Injection Molding
Electrical, Electronic Components

Severna Metals Company

E. Orange, N. I.

Machining

Sinko Manufacturing \& Tool Company Chicago, III.

Injection Molding
Electrical and Electronic
Components
Standard Plastics Company, Inc. Attleboro, Mass.

Injection Molding
Electrical, Electronic Components

For complete information regarding any item mentioned in DESIGN AND PRODUCTION NEWS, ask for detailed APPLICATION REPORTS, write

DuMont features Eimac Klystrons In 5 kilowatt UHF-TV Transmitters

W. H. Sayer, Dumont research engineer, places Eimac klystron in RF section of DuMont 5 kw transmitter.

DuMont combines the latest in electronic design and engineering techniques in its new, up-to-theminute five kilowatt UHF-TV transmitters. With Eimac klystrons as final amplifiers, DuMont utilizes the only tubes that offer all these features for highpower UHF-TV-1) Low initial cost and operating
economy 2) Light weight 3) Reserve power for long life in typical operation 4) High power gain of 20 db . or more 5) Three tubes to cover the spectrum 6) Convenient external tuning makes efficient and accurate circuit alignment possible.

EIMAC TUBES IN DRIVER AND FINAL STAGES

VISUAL

For further information about Eimac klystrons write aur Application Engineering department.

*3K20,000LA channels 14-32
*3K20,000LF channels $33-55$
*3K20,000LK channels 56-83

EITEL-McCULLOUGH, INC.

SAN BRUNO, CALIFORNIA Export Agents: Frazor \& Honsen, 301 Cloy St., Son Francisco, Colifornio

Type J Bradleyometer in single unil construction, without line switch

ADJUSTABLE RESISTORS and POTENTIOMETERS

Type 1 Bradleyometer for screw driver adiustment with bushing shoft lock

During manufacture, the molded resistor con be varied in resistance throughout its circumference. Afler molding, it is unaffected by temperoture or moisture.

SHAFT ROTATION

Type J Bradleyometer in triple unit construction

QUALITY CONTROLS for CRITICAL CIRCUITS

If you need a potentiometer or adjustable resistor that is not affected by moisture, cold, or age, specify the Allen-Bradley Type J Bradleyometer. It is not a film or paint type resistor. The resistor can be built up to produce any form of resistance-rotation curve.

After molding, the resistor is no longer affected by heat, cold, moisture, or age. There are no rivets, nor welded or soldered connections. The shaft, cover, faceplates, and other metal parts are made of corrosion resistant metal. Let us send you the latest Bradleyometer data. Allen-Bradley Co., 110 W . Greenfield Ave., Milwaukee 4, Wis.

A NEW IRVINGTON CLASS "B" INSULATION...

By bonding a range of thicknesses of Quinterra asbestos to various thicknesses of Mylar-a tough, strong polyester film with the highest dielectric strength known-Irvington now brings you a line of Class "B" insulation that balances cost and properties to meet your needs. The Mylar gives IRV-O-BESTOS its high tensile, tear and dielectric strength. The Quinterra makes for ease of gripping- gives_added heat stability and added thickness at moderate cost.
Since Quinterra is available in thicknesses from $.003^{\prime \prime}$ to $.015^{\prime \prime}$, and Mylar from $.0005^{\prime \prime}$ to $.007^{\prime \prime}$, a very large number of combinations are
available-in duplex constructions or in triplex, with either the

Look to

IRVINGTON
for Insulation Leadership insulating varnishes VARNISHED CAMBRIC VARNISHED PAPER VARNISHED FIBERGLAS insulating tubing CLASS "H" insulation Quinterra or the Mylar on the outside, Whether your requirements
 are for high dielectric strength, or fo
IRV-O-BESTOS will fill your needs.
Mail the coupon for technical data and samples of this outstanding new Class " B " insulation.

Send this convenient coupon now Irvington
 VARNISH \& INSULATOR
 COMPANY

11 Argyle Terrace, Irvington 11, New Jersey Plants: Irvington, N. J.; Monrovia, Calif.; Hamilton, Ontario, Canada

Irvington Varnish \& Insulator Company Ex, 8/53 11 Argyle Terrace, Irvington 11, N. J.
Gentlemen:
Please send me technical data sheet and samples of your new IRV-O.BESTOS Class "B" insulation.
Name.
Tille. \qquad
Company
Street.
City.
\qquad
Zone.
State.

UNIVERSAL NO. 102 HI-SPEED COIL WINDER specifically designed for spool-wound coils. Has these desirable characteristics: instant starting over-end tension . . . will accommodate wire size from No. 24 to No. 42 (B\&S) . . . can wind two coils per head simultaneously . . . winds up to 4700 rpm , but can be operated at 650 rpm when recuired.

in Coil Winding with this fast machine

This is the coil winder that does it fast and does it right.
It increases the operator output of spool-wound coils particularly those having a high number of wire turns. It is well suited for winding timing motor coils, telephone relays, small motor fields and other coils not requiring insulation between layers.

Wherever it has been put to work the result has been greater
operator and machine efficiency. The operator can supervise several heads simultaneously. Winding and handling time can be synchronized so that there is no unproductive waiting time.
DETAILS YOURS FOR THE ASKING. You'll want to know more about the Universal No. 102 Coil Winder because everything you learn will lead to greater winding efficiency. Your copy of Bulletin $102 \cdot \mathrm{H}$ will go in the mail the day we get your request.

UNIVERSAL WINDING COMPANY

For winding coils in quantity accurately....automatically use Universal Winding Machines

Now 4 D-H Special Alloys Cover Most Glass-to-Metal Sealing Needs

From a single source, the Driver-Harris Company, you can now obtain metal alloys to meet your glas-to-metal sealing needs for both hard and soft glass.

NEW ALLOY THERLO* This cobalt, nickel iron alloy, possesses ideal properties for sealing hard or thermal shock resistant glass. It matches such commercial hard glasses as Corning 7052 and 7040 in expansivity from $80^{\circ} \mathrm{C}$ to the annealing point. It produces a permanent vacuum-tight seal with simple oxidation procedure and resists att ack by mercury. Readily machined and fabricated, it can be welded, soldered or brazed.
DRIVER-HARRIS 142 ALLOY contains 42% nickel. This is the standard alloy for scaling into seaied heam auto lamps using Corning 776 glass. Used with a borated copper coating. it is the accepted seal for incandescent lamps and radio tubes and matches 8160 glass.

DRIVER-HARRIS 52 ALLOY contains 50% nickel. It provides a slightly higher coefficient of expansion than the D.H 142 alloy and seals successfully with 0120 glass.

DRIVER-HARRIS 146 ALLOY contains 46% nickel. It offers special expansion properties, which permit seals with ceramic coated materials as shown alove.

Manufactured to the same high standards that have made Driver-Harris the leader in special purpose al. loys for more than 40 years, these alloys are availathle as rod, wire, strip, sheet foil-and in special shapes. They enable you to meet your specific sealing needs from a single source - so why not monsult us today.

Driver-Harris Company
 HARRISON, NEW JERSEY

BRANCHES: Chicago, Detroit, Cleveland, Los Angeles, San Francisco
In Canada; The B. GREENING WIRE COMPANY, Ltd, Hamiltan, Ontario.

THEY'RE MADE OF

berryco

BERYLLIUM COPPER

When you discard a tin can, you may nat think you're throwing awcy a precision device, but you are. All parts of a can must be accurately formed to within one ten-thousandth inch, otherwise leakage and spoilage will result.
The flat and bevel gibs shown here are used on a bodymaker producing 12 and 6 oz. spray cans. Twenty-siz dies, each guided by similar Berylco gibs, turn out 100 can badies per minute. Talerances are so critical that gib wear of less than .001'* can couse trouble. Production stoppages pile up headaches, and thousands of cans can be ruined through corrosion.
Gibs machined from Berylco \#25 bar
stock have now been employed for the 'SPRA-TAINER' bodymaker twice as long as any previously used material, and there have been no shufdowns. The superior wear resistance of Beryico is due not so much to its heat-treatable feature-work-hardening alone is suffi-cient-as to its dense, less porous structure, which reduces friction and makes Jubrication less critical.*

Wear resistance is only one of the many desirable engineering qualities of Berylco beryllium copper. Its unique combination of such properties as strength, conductivity, elasticity and fatigue resistance has enabled designers to convert difficult or
"impossible" jobs into standard production items.
As the world's largest producers, we will be glad to help you include beryllium copper in your plans for the future. For sample material or engineering assistance, call or write any of the offices below.

VALUABLE ENGINEERING INFORMATION

on Berylca beryllium copper is con-
tained in ci series of technical bulle-
lins, published monthly. To receive
your copy regularly, write on your
business lefterhead.
TOMORROW'S PRODUCTS ARE PLANNED TODAY-WITH BERYLCO BERYLLIUM COPPER

BERYLCO
 THE
 BERYLLIUM
 CORPORATION

DEPT. 3H, Reading 21, PENNSYLVANIA

New York • Springfield, Mass. - Rochester, N. Y. - Philadelphia - Cleveland • Dayton • Detroit • Chicago • Minneapolis • Seattle - San Francisco - Los Angeles
Representctives in principal wor/d-trade centers

ERIE components are stocked by leading electronic distributors everywhere.

Sales Offices: Cliffide, N.J. Philadelphia, Pa. - Buffalo, N. Y. - Chicago, III.
Detroit, Mich, Cincinnati, Ohio - Los Angeles, Calif.
Factories: ERIE, PA. - LONDON, ENGLAND - TORONTO, CANADA

Speer makes it easy for you to choose the right Carbon resistor!

 circuit every time.
Speer resistors are made better - are the right resistors for every circuit. By using very high pressure to create an inseparable bond between the protective phenolic shell and the carbon core, Speer gives its resistors these important advantages:

1. More efficient heat transfer.
2. Greater alility to sustain overloads for long periods of time.
3. Uniform diameter resistive clement for the entire length of the resistor, which eliminates weak points and potential burn-outs.

Write today for your free copy of Speer

Resistor's new

complete catalog

SPEER RESISTOR DIVISION
SPEER CARBON COMPANY
St. Marys, Pennsylvania
Other Divisions: Jeffers Electronics
International Graphite \& Electrode

Want to punch something?

T
all punched from Taylor Vulcanized Fibre or Laminated Plastics. They are typical of the wide variety of shapes and sizes that can be economically produced to close tolerances.

When you use Taylor Vulcanized Fibre and Laminates for your punched parts, you have a wide range of physical, electrical and mechanical properties to choose from. Vulcanized fibre can be furnished in sheets, rolls and rods . . . laminated plastics in sheets, tubes and rods. A variety of colors and finishes is available.

For switch insulation, brush holders, arc barriers, refrigerator latch gaskets, shielding, relay covers, armature slot insulation, luggage reinforcing strips, and washers . . . just to name a few applications . . . be sure and investigate the advantages of Taylor materials for making punched parts.

A Taylor Engineer will be glad to help you pick the grade of Vulcanized Fibre or Phenol, Melamine or Silicone Laminated Plastics that are best suited to your particular requirements.

Taylor Fibre Co., Norristown, Pennsylvania-La Verne, California.

A COMPLETE LINE OF ALL THESE PRODUCTS IS IN STOCK -READY FOR SHIPMENT

Varnished Cambric Products
Insulating Paper
Varnished Tubing
Saturated Sleeving
Insulating Varnish
Vulcanized Fibre
Phenolite
Fibre Wedges
Wood Wedges
Buili-up Mica Products
Asbestos Insulation Woven Glass Insulation Pressure Sensitive Tape
Cotton Tape
Cotion Sleeving
Commutators Built To Specifications
Teflon
Silicone Resins
Silicone Insulations

Helping manufacturers in the selection and application of all types of electrical insulating materials for many years has given your IWI Representative a store of practical experience that would be difficult to match in the industry. Also at his command, and yours, are the research and engineering departments of the leading insulation manufacturers which IWI represents. All of this "know-how" is at your disposal - to help you choose exactly the right product for the job, no matter how special. Your inquiries are solicited-any time, without obligation.

IF IT'S ELECTRICAL INSULATION YOU CAN GET IT FAST FROM IWI

IMMEDIATE SERVICE from a warehouse near you. Get your small production lots and seldom-used items from IWI.
TOP QUALITY PRODUCTS only are sold by IWI—nationally adver. tised and used by leading electrical manufacturers everywhere.
Hour Most Complete and Dependable Souree

A MATIOHAL MBTWORK OF WAREHOUSES SEBVIMG ELECTRICAL MANUFAGTURERS

 INSULATION AND WIRES INCORPORATED3435 Chouteau Avenue - St. Louis 3, Missouri
Write For The Address of The Warehouse Nearest Your Plant

Hiperthin ${ }^{\text {Cores. . . }}$

newest approach to electronic circuit designs

New circuit designs, often making it possible to replace tubes in amplifiers, computers, modulators and similar electronic equipment, are being developed through the use of Westinghouse Hiperthin Cores.

An entirely new, thin magnetic material, capable of retaining its desirable qualities even when rolled as thin as $1 / 8 \mathrm{mil}$, is the reason.

Compounded of grain-oriented silicon or nickel-iron alloys, it combines the fast response, high permeability and low coercive force needed in vhf circuits. Non-deteriorating, it eliminates the periodic replacement problem encountered with tubes, assuring sustained and accurate performance.

To manufacture the new core economically, *Trade Mark

Westinghouse engineers devised new production methods. The illustration above shows a core being subjected to an electronically controlled spot weld, after being wound. New lechaiques have also been developed for effectively insulating the turns, and for annealing the metal on a ceramic form as a unit to insure permanent stability.

All your core requirements . . . whether they're for electrical or special electronic applications ... can be met best by engineers who know and understand your problems. For further information write for reprint No. 4866, Progress in Core Material for Small Transformers. Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pennsylvania. J.70676

PERFECT

The Type 2003 contains, in addition to the tuning fork, all circuit components which are selected or critical.-The fube and remaining components - three resistors and two .01 capacitors - are external and can be laid out and integrated with your equipment.

Also
TYPE
2007
($\left.41 / 2^{\prime \prime} \times 11 / 2^{\prime \prime}\right)$
COMPLETELY SELF.CONTAINED including vacuum tube

TUNING FORK STANDARD, hermetically sealed. SIZE - $41 / 2$ inches long. $11 / 2$ inches diameter.
SIMPLE EXTERNAL CIRCUIT, 1 tube, 3 resistors, 2 capacitors.
TUBE - Choice of 12AT7, 6201, 5751, 6BF7, 6BG7 or 6021.
POWER REQUIRED, 75 to 300 V at 1 to 5 m.a. - 6.3 V at 300 or 350 m.a.

AVAILABLE - in 400 or 500 cycles
ACCURACY guaranteed to $.002 \%$, 15° to $35^{\circ} \mathrm{C}$.
Write for descriptive literature,
specifying Type 2003.

Manufacturer of high precision frequency and timing instruments controlled by tuning fork oscillators.

American Time Products, Inc.

MONOSCOPE SIGNAL SOURCE
Model PT-102
SYNCHRONIZING GENERATOR
Model PT-101

PORTABLE TELEVISION WAVE FORM MONITOR Modet TO-1

Look To Polarad For. ..

Monoscope Signal Source and Synchronixing Generator are used for the generation of composite Video Signals eration of composite video Signals Systems.
Fecrures:
PT-101
Standard RTMA signals for driving camera
Built in 3" oscilloscope for monitoring output signals and for general maintenance
simple adiustment controls for ant output pulses on front panel

PT-102
Standard RTMA composite Video Sig-nals- 3 outputs 2 volts deross 75 ohms.
Overall resolution 500 lines
Linear high definition test pattern for laboratory and industrial use

Self contained regulated and high voltage supply

Features:
Special Sync separator for TV signals
5' cathode ray tube
Signal calibration accuracy 2%
Large horizontal expansion amplifica. tion- 24 tube diameters
Frequency response $4 \mathrm{mc} \pm 3 \mathrm{db}, 60 \mathrm{cps}$ sq. wave less than 2% tilt
Portable instrument that may be rack mounted
Uses:
General purpose oscilloscope, especially designed for Video Wave form analysis

Feafures:
Monochrome and/or color signals per FCC and NTSC standards

Resolution, 450 lines or better
12' Kinescope
Portable instrument that may be rack mounted
Horizontal and vertical linearity excellent
Uses:
High Fidelity Picture Monitor-Studio or Laboratory
Use with storage and traveling wave tubes

Model: Oufpul voltage Oufpul current
PT-110 400-450 Vi 250-300 Ma PT-11] 250-300 V. 100-400 Ma PT-111D 250-300 V. 100-400 Ma PT-112 250-300 V. $\quad 150-800 \mathrm{Ma}$
Features:
Electronically regulated power supplies Ripple less than 30 mv . peak to peak
Rack mounting-dishpan constructionall parts readily accessible
Centering current for T.V. application

VOITAEE REEUULTEED POWER SUPPIIES

For Industrial and Research Use

WORKMANSHIP

Workmanship is of a quality with the highest existing production standards and best instrument electronic practices consistent with the intended use of the item as a continuous duty voltage regulated power supply. Dil filled paper condensers and re-sistor-board construction are included in the design.

MANUFACTURERS OF ELECIRONLC EQUIPMENT • RESEARCH • DEVELOPMENT

Waldes Truarc Ring Saves' 2.84 Per Unit, Cuts Labor-Time and Materials in Hydraulic Packing Unit

OLD STYLE stuffing box required skilled worker to install packing rings one at a time, then adjust packing glands by trial and error. Disassembly was equally difficult, time-consuming and costly.

NEW Monopak Cartridge is smaller, lighter, streamlined and installed with one Truarc Retaining Ring. Disassembly and reassembly with new cartridge takes unskilled worker just 1 minute.

Hydraulic Accessories Company of Van Dyke, Michigan, uses a single Waldes Truarc Inverted Ring (internal series 5008) to hold Monopak Cartridge in cylinder head.

New design eliminates costly machining and saves $21 / 8 \mathrm{lbs}$. of material. Re-design with Waldes Truarc Retaining Ring reduces stuffing box diameter from $31 / 2^{\prime \prime}$ to $27 / 8^{\prime \prime}$, and reduces length from $57 / 8^{\prime \prime}$ to $43 / 8$ ". Allows savings in assembly, adjusting and testing.

NEW DESIGN USING WALDES TRUARC RING PERMITTED THESE SAYINGS PER UNIT

machine time saved:
Chucking, facing and baring . . . $\$ 72$
Drilling and tapping 3 holes . . . 18
Drilling and counterboring 3 holes . .12
Assembling, adiusting, testing . . . 90
MATERIAL SAVED:
$11 / 2$ lbs. cast iron 30
$1 / 2 \mathrm{lb}$ bronze 23
3 studs 36
3 nuts 03
TOTAL $\$ 2.84$

Waldes Truarc Retaining Rings are precision-engineered... quick and easy to assemble and disassemble. Always circular to give a never-failing grip. They can be used over and over again. There's a Waldes Truarc Ring to answer every fastening problem.

Find out what Waldes Truarc Retaining Rings can do for you. Send your blueprints to Waldes Truarc engineers for individual attention, without obligation.

For precision internal grooving and undercutting . . . Waldes Truarc Grooving Tool.

For every Electrical need

CHECK General

for ELECTRICAL

AUTOMOTIVE - AIRCRAFT

MINING-EARTH MOVING

communications

MUNICIPAL

CONSTRUCTION

POWER

general industry

RAILROADS

MFRS. electrical apparatus

SHIPBUILDING-SHIPYARDS

GENERALCABLE

"More Power 5) H to You"

Executive Offices: 420 Lexington Avenue, New York 17, N. Y.
Sales Offices in Principal Cities of the United States

Cable FIRST

 WIRE and CABLECopper, bronze and aluminum conductors in thousands of different sizes and types of product. Constructions and insulations of every modern variety.

This is General Cable, a prime source of supply for everyone who generates electricity, distributes electricity or utilizes electricity.

Whatever your electrical wire and cable need, whenever you need it-say "General Cable" to your purchasing agent, your distributor-or call on the nearest General Cable office.

ONE Source of Complete Supply
ONE Completeness of Service
ONE Standard of Quality

Weston

PANEL INSTRUMENTS...

...outward evidence
of the high quality
builı within
fine electronic equipment
 ment bulletin.

WESTON ELECTRICAL INSTRUMENT CORPORATION, 614 Frelinghuysen Avenue, Newark 5, N. J.

Today, adlake Relays are increasing efficiency and assuring dependable operation in timing and control circuits in many of the most exacting installations in industry! They are saving money by doing-year in and year out-the jobs that conventional relays can do in an uncertain manner at best!

For instance, adlake Relays have proved their ability to stand up under the most adverse conditions of temperature and moisture. Their time delay characteristics are fixed and non-adjustable . . . normal line voltage fluctuations or ambient temperatures from -38.8° to $200^{\circ} \mathrm{F}$. have no material effect on these characteristics.

Yes, in chick incubators or diesel locomotives . . . wherever sensitivity and dependability are required adlake Relays can be counted on. Send for complete Relay catalog today . . . The Adams \& Westlake Company, 1171 N. Michigan, Elkhart, Indiana. In Canada, write Powerlite Devices, Ltd., of Toronto.

EVERY ADLAKE RELAY IS TESTED-
AND GUARANTEED-TO MEET SPECIFICATIONS!

Type 1040-44 ADLAKE Relcy... available with time delay or load fealures and either mormally open or normally closed w. Adams \& Westlake comenur

Established 1857 - ELKHART, INDIANA • New York • Chicago

Manufacturers of ADLAKE Hermetically Sealed Mercury Reiays

Ever See Our 50,000 Watt Conglomerator?

It doesn't put out quite 50,000 watts and it's only the seventh cousin, twice removed, of an electronic brain. But every one of its, precision-made parts fulfills a vital function in military or civilian electronic apparatus of one type or another.

As the Conglomerator clearly demonstrates, too, Ucinite is equipped to manufacture, assemble and wire to your specifications a wide variety of connectors, sockets, mountings and other electrical parts for
use in electronic apparatus of all types.
With our own molding facilities for thermoplastic materials as well as volume production equipment for metal stamping and fabricating, Ucinite is ready to supply any need for metal or metal-and-plastics assemblies.
The specialized abilities and experience of the Company's own staff of design engineers are available for work on special problems.

The UCINITE CO.

Newtonville 60, Mass. Division of United-Carr Fastener Corp.

Specialists in ELECTRICAL ASSEMBLIES, RADIO AND AUTOMOTIVE

have Your fastening methods

It's a long way from crystal and cat whisker to UHF and TV ... and design changes never stop. That's why it pays to have your fastening methods checked by trained specialists . . . constantly.

United-Carr offers you \star Complete engineering and design service \star Complete facilities for volume production of specialized fasteners and allied devicus. \star Wide experience with the top manufacturers of electronic equipment, automobiles, aircraft, appliances, furniture. \star The varied technical knowledge of all our divisions and subsidiary companies combined . . . to help you cut costs, speed assembly, improve product performance.

Call your nearest United-Carr field engineer before your new product designs crystallize. It is in this allimportant planning stage that you can make

and obtain the electrical insulation best suited for the job.

MIRAGLAS VARNISHED
tapes, cloths and sleevings - miraglas tapes, braided sleevings and tying cords . miraglas silicone ireateo cloths, tapes AND TUBINGS - MICA TAPES, Cloths and mica. fiberglas combinations. FIBRE, PHENOL FIBRE AND MIRALITE POLYESTER RESIN SHEET INSULATING PAPERS-DURO, FISH, PRESSBOARD, ETC. Varnished cambric tapes, CLOTH AND SLOT insulations - cotton tapes and sleevings . twines and tie tapes asbestos tapes sleevings and cloth, transite and ASBESTOS EBONY. ARMATURE WEDGES AND bANDING WIRE - VARNISHED TUBINGS, HYGRADE, MIRAGLAS, hYGRADE VF, miraglas silicone thermoflex ano flexite extruded plastic tubing. PERMACEL MASKING tapes and electrical TAPES - BI-SEAL, BI-PRENE; friction tapes and rubber splice COMPOUNDS -
transformer, cable filling, pothead, etc. INSULATING VARNISHES OF ALL TYPES.

mincthelimiannd

A few false prophets have said that tape recording will replace ciscs entirely. But don't be deceived by such assumptions. Sales figures prove that the use of presto discs has shown a steady increase during the past year. They prove something else, too . . . that more broadcasters, recording companies, and schools prefer presto to any other disc. The reason is plain . . . Presto discs are ranufactured from superior aluminum and finer lacquer . . . produced in the world's most modern disc plant . . . and inspected and selected for quality. Yes, the use of presto discs is going up not down . . . and presto "Green Label" brand are flying highest of all.

WORLDS LARGEST MARIFAETURER OF PRECISION RECORDING EQUIPMENT AND DISCS

Scinflex ASSURES

YOU PEAK PROTECTION

AGAINST CIRCUIT FAILURE

When operating conditions demand an elecrrical connector that will stand up under the most rugged requirements, always choose Bendix Scinflex Electrical Connectors. The insert material, an exclusive Bendix development, is one of our contributions to the electrical connector industry. The dielectric strength remains well above requirements within the temperature range of $-67^{\circ} \mathrm{F}$ to $+275^{\circ} \mathrm{F}$. It makes possible a design increasing resistance to flashover and creepage. It withstands maximum conditions of current and voltage without breakdown. But that is only part of the story. It's also the reason why they are vibration-proof and moisture-proof. So, naturally, it pays to specify Bendix Scinflex Connectors and get this extra protection. Our sales department will be glad to furnish complete information on request.

- Moisture-Proof - Radio Quiel - Single Piece Inserls -Vibration-Proof • Light Weight • High Insulation Resistance
- High Resistance to Fuels and Oils. Fungus Resistant Easy Assembly and Disassembly - Fewer Parts than any other Connector * No additional solder required.

SCINTILLA MAGNETO DIVISION of SIDNEY, NEW YORK

Export Salos: Bendix International Division, 72 Fith Avenue, New York 11, N. Y.
factory branch offices: 118 E. Providencia Ave., Burbank, Calif. - Stephenson Bldg., 6560 Cass Ave., Detrois 2, Michigan - Brouwer Bldg., 176 W. Wisconsin Avenve, Milwaukee, Wisconsin - 582 Market Sireel, San Francisco 4, California

Booth from Brooklyn Important Spot at

QFE -low cost, custom-built sheet metal cabinets,
chassis, housings and enclosures that convinced
leading West Coast electronics manufacturers
to choose Karp. SEE SEE -intricate heliarc welding of aluminum sheet to aluminum casting.

-simple design revisions on enclosures that cut costs up to 60%.
-how Karp enclosures cut your assembly-line costs to the bone.

VIST
 KARP

Booths 1006-1007, Civic Auditorium, San Francisco, August 19-21

Copper Alloy Bulletin

Bridgeport
MILLS IN BRIDGEPORT, CONN. AND INDIANAPOLIS, IND. - IN CANADA: NORANDA COPPER AND BRASS LIMITED, MONTREAL

New low-cost Bead Belt - a sprocket drive for TV tuners, machines, etc. Timing and movement accurately controlled because slippage and backlash are avoided. Courtesy The Bead Chain Manufacturing Co., Bridgeport, Conn

Uses of Multi-Swaging Products Challenge Imagination

Do you know that multi-swage products are among the most familiar items of everyday use? Examples are bead chain of a thousand uses; radio tube pins, terminals, jacks, contact pins and friction fasteners for electronic, electrical, and mechanical devices; stop pins, dowel pins, rest pins for appliances and novelties; spacers; shaft bearings for toys and other light duty applications.

Just how and where multi-swage products can be used advantageously

Multi-swage products - hollow tubular parts with tightly swaged seans - are widely used for contact pins, terminals, jacks, and sleeves. Friction fasteners made by this process retain their spring properties remarkably well. Courtesy The Bead Chain Manufacturing Co., Bridgeport, Conn.
for new applications in modern design is up to the imagination of designers and engineers.

Efficient and Economical

The multi-swage products illustrated are made by The Bead Chain Manufacturing Company, Bridgeport, Conn. They are mainly produced from annealed narrow width strip brass (70-30) of uniformly close tolerances for composition, temper, gauge and flatness. Strip is fed into an extremely
ingenious but very complicated highspeed automatic machine. It operates similar in principle to the eyelet machine except that some of the stages are designed for multiple swaging. This operation causes the metal to flow into the proper form of the product design and results in an article which is extremely work hardened with accompanying great strength and stiffness.

Multi-swage products are hollow and have a longitudinal seam which remains tightly closed because of the stresses imparted from the swaging operation. When forced apart by a tapered pin, a strong spring pressure is developed. When the pin is removed, the seam closes tightly even after the above operation is repeated thousands of times. Sizes range up to a maximum of $1 / 4^{\prime \prime}$ diameter and $11 / 2^{\prime \prime}$ long.

Because of the minimum waste involved, and high speed of manufacture, the multi-swage method is more economical than other methods of manufacture for producing small tubular parts in large volume. Other advantages are dimensional accuracy and a variety of shapes. Fitting up charges for tooling, etc., for new items are surprisingly modest.

The New Bead Belt

Outstanding features of bead chains are nonkinking, low friction, and unusually great strength in proportion to its weight, especially in the small sizes. Tensile strength ranges from 15 pounds
to 200 pounds depending upon size and metal used.

A new development in the accurate spacing of the beads and an ingenious method of closing the ends has led to the manufacture of a belt drive from bead chain. Specially designed sprockets fit the individual beads and eliminate slippage and backlash. Timing and movement of various parts are accurately controlled.

It is being applied in TV tuners, eliminating costly gearing mechanisms. Other applications are for timing devices, recorders, air conditioners, etc.

Many Alloys Used

Aside from brass, other alloys are used. Nickel Silver (copper 65%, nickel 18%, zinc remainder) is excellent as a white base for silver plated goods or for higher strength.

For decorative jewelry, Red Brass (85% copper, 15% zinc), and Commercial Bronze (90% topper, 10% zinc) are used because of their rich, golden colors.

For high strength and resistance to corrosion and wear, Silicon Bronze 609 (98% copper and 2% silicon) and Phosphor Bronze 35 (95% copper, 5% tin and 0.15% phosphorus) are recommended.

Bridgeport Brass Company is always glad to work with customers who have special metal requirements, as exemplified by multi-swage process which calls for careful control of uniformity and accuracy in gauge and temper. Fabricators desiring to improve their products through the selection of superior alloys, or who wish to reduce operating costs and spoilage by using metal designed for their particular requirements, should contact the nearest Bridgeport district office.
 following methods: 1. flared: 2. rolled: 3. slitted, turing Co., Bridgeport, Conn.

New Ultra-Stable Mierowave Oscillator

MODEL 803

Also Available: LFE Model 802 for ultra-stable microwave frequencies in the X -Band

The LFE Model 803 Stabuencies suizable for plications where a high degree or sand design of highly stabilized nicrowave frequary other applicacionents and general martart fearure. The main monitor ined power supply. work. A dial accatately calibrated on ascillator a stabilizing a self-contained power supply are a kylstron oscill aplifier and a self-contained librated dual-mode reference caviry, a the oscillator.

- Frequeacy Coverage
 2700-2950 Mc. - S-Band

Dial Calibration
 Calibrated directly in frecuency - 1 Mc. per division.

- Frequency Stability

Short Term Deviation - ess than one part in 10^{8}. Long Term Drift - less than $100 \mathrm{Kc} / \mathrm{sec}$ from original serting.

- Modulatian

Can be modulated 25% when stabilized; 100% modulation possible when stabilization is removed.

- Astenuation

Atenuator provides 100 db . range of control.

- Power Output

15 milliwatts.
Output Connector-Tyje N.

- Power Consumption

150 watts.

For complete information, see your LFE engineering representative or write -
representative or write -

LABORATORY for ELECTRONICS, INC. 75-3 PITTS STREET BOSTON 14, MASS.

EIECTROMATIC reiefe vale depenald on WARD LEONARD RELAYS

CONSOL DATED ELECTRJMATIC RELIEF valve a tuajej by ward leonard reLAYS, keeps boile: pressures batance 1 within one pe:ceat of a predetermined level. This conserses powe-. mainta as uniform line pressure and ciacreases maintenance of spring-locided saizty valve=.

This relief valve, made by Manning, Maxwell \& Moore, Stratford, Conn., is designed to increase the efficiency of steam generating systems by automatically keeping boiler pressures balanced within cne percent of a predetermined value.

The relays used in the control unit which actuates this relief va-ve must give trouble-free performance with practically no attention. While they mar be calle t into action frequently or only once or twice a year, it is extremely important that they function perfectly when needed. Such trigger-sharp sensitivity after long inoperative periods s a very exacting and unusual requirement for any relay. Ward Leonard relays handle this assignment dependably and accurately.

WARD LEONARD'S

 attention to every detail in the construction of relay components gives you accurate, dependable performance

CONTACT Pressure of every relay is measured on a gram gauge in Ward Leonard"s Mount Vernon plant.

Take the Ward Leonard relay coils, for example. All magnetic relays have coils, but there can be a world of difference between them. Here's how Ward Leonard insures perfect performance in every relay coil as a routine production procedure:

Coils are layer wound using insulated magnet wire with insulating paper between each layer. They are vacuum impregnated with heat reactive varnish. Their ends are sealed with an end seal compound. Insulated tape used for anchoring provides auxiliary insulation. The outside wrap provides excellent mechanical protection. The final finish dip in insulating varnish provides a virtual hermetic seal for the coil.

These features of the relay coil are indicative of the detailed attention given to every component of Ward Leonard relays. And after the components are assembled, all finished relays are measured for resistance, close dimensional tolerances, pick-up, drop-out, dielectric strength and contact continuity.

Whether you make heavy industrial equipment like the Electromatic Relief Valve, or highly sensitive electronic apparatus, there's a Ward Leonard electrical control that will meet your needs.

For complete information, write for our Relay Catalog. Ward Leonard Electric Cc., 31 South St., Mount Vernon, New York. $\quad 3.15$

A GOOD NAME TO REMEMBER

 WHEN YOU NEED DEPENDABLE COMPONENTS... faster!

Stackpole Carbon Company, St. Marys, Pa. AISO - LINE AND SLIDE SWITCHES - CERAMAG® (ferrife) CORES - IRON CORES - MOLDED COIL FORMS - GA "GIMMICK' CAPACITORS, EIC.

One Sure Way to Get MORE DEFENSE FOR LESS MONEY

$H_{\text {ow can }}$ we get more national defense for less money? The best answer yet given to this question appears in a little-noticed section of the new defense budge.. That answer, with which this editorial is concerned, is to provide more equipment with which to step up munitions production in an emergency. Thus we can eliminate much of the need to stockpile finished munitions in advance.
The new defense budget provides an appropriation of $\$ 500$ million, to be invested by the Secretary of Defense in specialized facilities required to produce munitions on a wartime scale, but not adapted to profitable operation by private industry in normal times. Facilities of this type are known as "stand-by capacity."
There is no strictly political controversy over the "stand-by capacity" program. It was originally suggested by Clay Bedford, Special Assistant to the Secretary of Defense during the Truman administration. It has since been reviewed and endorsed by the Eisenhower administration. Moreover, it involves little or no technical controversy. Civilian and military experts are well agreed that the only alternative to enormous expenditures for stockpiling
military equipment is to provide enough facilities for producing it quickly in an emergency.

Here is the Key Idea

In his speech of May 19, introducing his defense budget to Congress and the nation, President Eisenhower stressed the value of such reserve capacity in these terms, "The more swiftly and smoothly we can mobilize, the less our dependence upon costily standing armies and navies."

In accord with this idea, the $\$ 500$ million requested for the present reserve capacity program would be invested in tools that require a long time to produce, and so present grave complications in an emergency unless they are ready in advance. Some such tools would be installed in new plants that are needed to eliminate potential bottlenecks in the defense production program. Others would be ordered to replace that part of the government's present machine-tool inventory which is made obsolete by changes in the design of defense products. By completely "tooling up" with the most modern equipment, the admin-
istration hopes to realize a production potential many times greater than could be achieved by spending the same amount of money on military end-products.

Examples of Savings

In the specialized field of defense production, adequate modern capacity is the key to both economy and speedy delivery in a pinch. Here are some striking examples from the recent report of the Advisory Committee on Production Equipment (Vance Committee) to the Director of Defense Mobilization:*

- In the case of certain ammunition components, the cost of new capacity can be recovered in only six weeks of full production.
-If $\$ 500$ million worth of special tools needed to make aircraft are purchased in advance, aircraft production during the first two years of war will be increased about $\$ 18$ billion. In other words, it costs $1 / 36$ as much to acquire the tools in advance as to acquire the aircraft.
- In the case of a certain ordnance item, an expenditure equal to the cost of only 150 units of the item will provide the capacity to produce thousands and save three years' time in meeting mobilization requirements.

Moreover, reserve plants and equipment can be kept up-to-date at only a small fraction of the cost required to maintain an up-to-date reserve of military end-products. The cost of replacing 5,000 obsolete tanks is at least $\$ 1$ billion. The cost of new tools for a tank plant would be less than 10% of that amount.

[^4]
Savings Will Multiply

On the basis of facts like these, the Vance Committee recommended that the Defense Department spend $\$ 500$ million to $\$ 800$ million per year on specialized defense production facilities in order to provide substantial reserve capacity as soon as possible. It also recommended that expenditures for military endproducts which get obsolete rapidly be held to a minimum. The Eisenhower administration has adopted this approach to the problem of munitions production in asking that $\$ 500$ million be invested in reserve capacity.
The importance of this approach is much greater than is indicated by the amount of money to be spent on new tools, although this amount will go far toward assuring a healthy machine tool industry, adequate to meet emergency demands. What is really important is the great saving that can eventually be made in the cost of our defense program by a modern tooling program. If we are to maintain this program for a long period, and if we are to pay as we go, we must have a low-cost program. No other plan to reduce and control the cost of a garrison economy can compare with the new approach suggested in the Vance Report and now embodied in the new defense budget.

Congressmen will do well to scrutinize all military appropriations carefully. They have a chronic tendency to be too big. But there should be no penny-pinching on investments in capital equipment that will pay out in as short a time as six weeks in a war emergency. It would be tragic if this opportunity for real economy were lost in the controversy over other aspects of the defense program. The tooling program is a key part of the Eisenhower effort to cut defense costs. It should be promptly approved.

McGraw-Hill Publishing Company, Inc.

Sciaky giant PMM5CT-400-60 three phase seam and roll spot welder

Clare Relays which perform precise functions in control of Sciaky welders are of plug-in type with dust covers

Where ordinary relays won't do... ...that's where you find GIANT SEAM for instance
in SCIAKY BROS. giant Sciaky Seam Wel.der. It has a $54^{\prime \prime}$ throat depth for longitudinal seam welding . . a a $60^{\prime \prime}$ throat depth for ćircular seam welding . . . and will deliver a maximum of 150,000 amperes of welding current between the electrodes.

Engineers of Sciaky Bros., internationally famous pioneers and inventors of electric resistance welding equipment, found Clare Relays a natural selection for their controls which demand the utmost in precise operation. Among the requirements were:

* Extremely fast operation . . Within half a cycle, two relays - one operating another - have to be energized and operate their contacts.
^ Complete structural uniformity . . . Two relays with colls in series must operate their contacts simultaneously and maintain this performance consistently.
No, this was no job for ordinary relays. Clare Relays were selected and are used for important precision controls in all Sciaky control panels

If your product, like the Sciaky welder, is a quality product . . . if you must have only the highest quality components . . a consultation with the engineers of C. P. Clare \& Co. can save you time and money. E=perienced sales engineers are located in principal cities. Call them direct or write: C. P. Clare \& Co., 4719 West Sunnyside Avenue, Chicago 31), Illinois. In Canada: Canadian Line Materials Ltd., Toronto 13. Cable address: Clarelay.

PAR is just another habit!

When you keep your eye on the balland keep playing the game for all you're worth, day after day - you're pretty sure to be a better-than-average performer.

That's the way it goes in the brass mill business, too. And here at Bristol we are able to score consistently enough - both in production and service - so that quite a few of the country's top users of sheet, rod
and wire have taken us on as their partner.
Care to shoot a "Practice round" with us some time?

THE

Bristol Brass CORPORATION

Makers of Brass since 1850 in Bristol, Connecticut Offices or warehouses in Boston, Chicago, Cleveland, Dayton, Detroit, Los Angeles, Milwaukee, New York, Philadelphia, Pittsburgh, Providence, Rochester.

Lindberg Dual Filament Transformers have been developed specifically for industrial electronic applications. Each transformer supplies filament power for two rectifier tubes simultaneously. Furnished complete with sockets . . . contained in one enclosure . . . conserves space . . . simplifies mounting and handling. Available in two sizes . . 100 VA and 200 VA, 115 volt primary, dual 5 volt filament supply, each secondary circuit center tapped at 2.5 volts. These transformers arc available from stock.

Lindberg Anode Power Transformers are engineered to exacting specifications with particular attention paid to rugged construction, long life and ability to take momentary high voltage stresses and overloads. They are available in sizes 5 KVA to 100 KVA in both single and three phase construction. Long experience in the design and manufacture of specialized transformer equipment enables us to give proper attention to your application. Delivery can be made to meet your requirements.

Lindberg filament and anode power transformers have been used exclusively in all Lindberg High Frequency Induction Heating Units and have proven to meet the exacting requirements demanded of them in this highly specialized field.
We invite your inquiries giving details of your special applications.

LINDBERG Transformers

Added Evidence that Everyone Can Count on
MED

Yes, this Veeder-Root Gasoline Pump Compouter speaks the languages of 144 countries! A rugged, accurate mechanism of 800 -plu sports, it's the modern protection given you by gasoline pump manufacturers, gasoline refiners and their service-station outlets... to make sure you get full measure in your tank, and the right change in your pocket (or you can buy in "even money"). And what's more, it underscores the fact that "Veeder-Root Counts Everything on Earth". . . electrically, mechanically or manually... with standard and special devices of every conceivable type. Do you have a counting problem, in any of your defense work or any of your regular production? If so, you can count on V-R to help you in every possible way.

VEEDER-ROOT INCORPORATED
"The Name That Counts"
HARTFORD 2, CONNECTICUT
Chicago 6. Ill. - New York 19, N. Y. - Greenville, S. C.
Montreal 2, Canada • Dundee, Scotland Offices and Agents in Principal Cities
Counts Everything on Earth"

Here's the tube that gives WMC』 FREEDOM FROM ARC-OVERS-LOWER HUM!

"... a definite improvement in tube design," says WMCA
Federal's Double Helical Filament - in Federal's F-892-R - has achieved an outstand ng record of dependability at WMCA-America's Leading Indeper dent Station, and First on New York's Dial.

WMCA reports that these tubes "have giver us complete freedom from arc-overs in maintain ing continuously high modulation percentages. Also, in our proof of performance runs we have found that these tubes have about 2 Valame Units lower hum than tubes with regular filaments."

Federal's F-892-R-wound through 360° for mechanical stability and carrying opposing, electrical fields which provide improved electrical stability - cefir itely eliminate bowing - one of the primary causes of filament-to-grid shorts!

Sturdier, longer lasting and more economical, Federal's double helical filament tubes are the key to a new era of performance quality and operating dependanility for 5 and 10 KW transmitters. Write for full information zoday, address Dept. K-313.

"Federal always has made better tubes"

Federal's F-892-R

 with the Federal-developed DOUBLE HELIGAL FILAMENT- Does away with bowing
- Greatly increases tube performance and life

No. 1030 Low Frequency "Q" Indicator

No. 10208 Megohmmeter

Decade Inductors

No. 1040
Vacuum Tube Voltmeter

Na 1210
Null Detector 8 Vacuúm Tube Voltmeter

HIGH FIDELITY-HIGH LEVEL OUTPUT TRANSFORMERS
The Freed "Quality Grade" audio transformers are wide band, high fidelity components featuring as"atic construction, longitudinal balance, low harmonic distortion, uniform response, high efficiency, and constant impedance match throughout the audio frequency spectrum. Maximum neutralization of stray fields is accamplished by use of humbalanced coil structures and multiple alloy shielding. High fidelity is achisved on every tap of the universal impedance winding without line reflection or transverse coupling. All Quality Grade Components are thoroughly impregnated in a special non-hygroscopic varnish, and fully encapsulated in a moisture proof, high melting point compound.

catalog	application	$\begin{aligned} & \text { Impedanc } \\ & \text { Phimary } \end{aligned}$	$\begin{aligned} & \text { CE Level } \\ & \text { Es } \\ & \text { ECOMDARY } \end{aligned}$	$\operatorname{maximum~}_{\text {POWER }}^{\text {V.U. }}$	ratio	$\begin{aligned} & \max _{P E R} P R I \text { SIDE } \\ & \text { Ma. } \end{aligned}$	UNBAL. Ma.	FREQ. RESPONSE c. P. S.	$\begin{aligned} & \text { ECASE } \\ & \text { HUMBER } \\ & \hline \end{aligned}$
QGA 25	Pp 2A3, 684, 6 L6 300A. 275 A io Univ. 500 ohm line	$\begin{aligned} & 5,000 \\ & \mathbf{S P L I T} \end{aligned}$	U-500	$\left(15+5_{\text {WAITS }}\right.$	3.16:1	50	5	$\begin{aligned} & \pm 0.5 \mathrm{DB} \\ & 20.30000 \end{aligned}$	DC-587
QGA 2 E	As above to Univer. sal Voice coil	$\begin{aligned} & 5.000 \\ & \text { SPLII } \end{aligned}$	U.16	+42	17.7:1	50	5	$\begin{array}{r} \pm 0.5 \mathrm{DB} \\ 20.30000 \end{array}$	DC.587
QGA 21	Push-pull 6V6, 6AQ5. 7C5. 6N7 to Unir. 500 ohm line	$\begin{aligned} & 8.000 \\ & \text { SPLIT } \end{aligned}$	U.500	$+42$	4:1	50	5	$\begin{aligned} & \pm 0.508 \\ & 20.30000 \end{aligned}$	DC.58T
QGA 28	As above to Univ. voice Coil	$\begin{aligned} & 8,000 \\ & \text { SPLIT, } \end{aligned}$	U.16	+42	22.4:1	50	5	$\begin{aligned} & \pm 0.5 \mathrm{DB} \\ & 20.30000 \\ & \hline \end{aligned}$	DC.58T
QGA 29	616 to Universal 500 ohm line	$5.10 .000$	U.500	+42	4.47:1	40	${ }^{4}$	$\pm 0.5 \mathrm{DB}$ $20-30000$	DC.58T
QGA 36	As above to Univer. sal yoice Coll	$\begin{aligned} & 10.000 \\ & \text { SPLIT } \end{aligned}$	U.16	+42	25.1	40	4	$\begin{array}{r} \pm 0.508 \\ 20.30000 \\ \hline \end{array}$	DC-58T
QGA 31	P.P. 807, 1614 . KT.66. Williamson Amplitier) to 500 to 300 onm line	$\begin{aligned} & 10.000 \\ & \text { SPLiT } \end{aligned}$	U.500	$(36+45.5$	4.47:1	50	5	$\begin{aligned} & \pm 0.508 \\ & 20-30000 \end{aligned}$	DC.6AT
QGA 3:	As above to Univer. sal voice coil	$\begin{aligned} & 10,000 \\ & \text { SPLIT } \end{aligned}$	U-16	+45.5	25:1	50	5	$\begin{array}{r} \pm 0.508 \\ 20.30000 \\ \hline \end{array}$	DC.6AT
QGA 33	P.P. Parallel 2 2A3, GA5G 300 a to Univ. 500 onm line	$\begin{aligned} & 2.500 \\ & \text { SPLIT } \end{aligned}$	U-500	+45.5	2.24:1	100	10	$\begin{aligned} & \pm 0.508 \\ & 20.30000 \end{aligned}$	DC-6AT
QGA 34	$\begin{aligned} & \text { As above to Univer- } \\ & \text { sal voice Coil } \\ & \hline \end{aligned}$	$\begin{aligned} & 2.500 \\ & \text { SPLIT } \end{aligned}$	U. 16	+45.5	12.5:1	100	10	$\begin{aligned} & \pm 0.5 \mathrm{OB} \\ & 20.30000 \\ & \hline \end{aligned}$	DC.6AT
OGA 3j	P.P. 616 or P.P. parallel 616 to Unir. 500 ohm line	$\begin{aligned} & 3.800 \\ & \text { SPLIT } \end{aligned}$	U.500	$\left(50^{+47}\right. \text { watts) }$	2.75:1	130	13	$\begin{gathered} \pm 0.5 \mathrm{DB} \\ 20-30000 \end{gathered}$	DC.7BT
QGA 3	As above to Universal voice Coil	$\begin{aligned} & 3.800 \\ & S P L I I \end{aligned}$	0.16	+47	15.4	130	13	$\begin{array}{r} \pm 0.508 \\ 20.30000 \\ \hline \end{array}$	DC.78T
QGA $\overline{\text { I }}$	High level multiple line to Universal Voice Coil	U.500	0.16	+42	5.6.1	0	0	$\begin{aligned} & \pm 0.5 \mathrm{DB} \\ & 20.30000 \end{aligned}$	DC.5BT
$Q G A=8$	High level multiple line to Universa Voice Coil	U-500	U-16	+47	5.6:1	0	0	$\begin{aligned} & \pm 0.508 \\ & 20.30000 \end{aligned}$	DC-78T

U-16 IMPEDANGES IN OHMS $2,4,8,12,16$ U-500 IMPEDANCES IN OHMS ${ }_{20}^{50}$, $125,200 \mathrm{CT}$. 145 and 500 ohm tan be used for 150 and 600 ohms

How many research hours in a day?

 controlling temperature, flow, and dozens of other variables, Honeywell offers these special ElectroniK instruments of interest to research men:
Function Plotter: automatically plots the relation of two independent variables.
Two-Pen Recorder: simultaneously measures two variables on a single chart.
Extended Range Indicator: featuring automatic range-changing, readable to one part in 5000 .
Narrow Span Recorder: measures spans as narrow as 100 microvolts, without external pre-amplifier.
Brown Electrometer: measures currents as low as $10-^{15}$ ampere.
High Speed Recorder: features pen speed of only one second for full scale travel.

OOBSERVING tests, measuring critical conditions, collecting data, plotting curves . . . the routine labor of research takes a lot of time out of each day . . . each week . . . each month.
You'll find that ElectroniK instruments can save countless scientific man-hours by doing all these laborious but essential jobs for you. They free highly trained scientists for more important work . . giving them an opportunity to use their brainpower most effectively. And these instruments do the routine work faster, more accurately than could be done by human hands.
ElectroniK potentiometers are accelerating the pace of research in academic and industrial laboratories, atomic energy projects, pilot plants, and test centers throughout the world. For a discussion of how they can help your own research programs, call our nearest engineering representative . . . he is as near as your phone.
Minneapolis-Honeywell Regulator Co., Industrial Division, 4428 Wayne Ave., Philadelphia 44, Pa.
reference data: Write for Research Bulletin 15-14, "Instruments Accelerate Research", . . and for Data Sheets on specific instruments.

SLANT

 YOUR requirements to INSTRUMENT CORP. OF AMERICA for miniaxure
sill

This Instrument Corporation of America plant contains the most modern and complete facilities available anywhere in the world for the exclusive prodiction of Miniature Slip-Ring and Commutator Assemblies to precision standards. It is now in full scale production to meet your requirements in the fastest possible time at the lowest possible cost.

COMPLETE ENGINEERING AND PRODUCTION FACILITIES AVAILABLE

Our assemblies can be supplied at low cost. Quality is the highest in the industry. Dimensional accuracy and other characteristics are excellent and these units are highly recommended for instruments such as synch ros, etc.

ONE PIECE ELECTRO.PLATED

TYPES FOR EXTREME ACCURACY
Wherever extreme dimensional precision, accurate concentricity and high dielectric qualities are required, the electro-deposition method is recommended. the production of which is licensed under an exclusive arrangement with the Electro Tec Comporation.
 ing C-Cores wound from $1 / 4,1 / 2,1,2,4$ and 12 -mil Silectron strip. The ultra-thin oriented silicon steel strip is rolled to exacting tolerances in our own plant on precision cold-reducing equipment of the most modern type. Winding of cores, processing of butt joints, etc. are carefully controlled, assuring the lowest possible core losses, and freedom from short-circuiting of the laminations.

We can offer prompt delivery in production quantities -and size is no object, from a fraction of an ounce to C-Cores of 200 pounds or more. Rigid standard tests-and special electrical tests where required-give you assurance of the highest quality in all gauges. - Your inquiries are invited.

Wound form precision rolled
was 4363

Every motor at U. S. Electrical Motors, Inc., is checked for dynamic balance before being placed in service. Vibration elimination, important in all motors, is vital to the satisfactory performance of vertically mounted motors that drive deep-well pumps. Their high centers of gravity magnify and transmit any imbalance through long vertical shafts to submerged pumps. To prevent damage to motor, shaft and turbine impellers, every U. S. Verticlosed motor is pre-checked with Consolidated instrumentation. Vibration monitoring is a profitable practice, paying off in greater customer satisfaction. If vibration elimination would improve your process or your product, our long experience in the field of dynamic measurement can help you.

Consolidated Engineering

300 North Sierra Madre Villa, Pasadena 15, California
Sales and Service through CEC INSTRUMENTS, INC.,
a subsidiary with offices in: Pasadena, New York, Chicago, Washington, D. C., Philadelphia, Dayton.
analytical instruments for science and industry

For smoother operation and longer life

Vibration Meter
 -and Vibration

 Pickup, a simple, effective dynamic measuring combination. Consolidated makes many types of transducers, amplifiers, bridge balances and recording oscillographs for use in science and industry. Write for CEC Bulletin 1505B-X10
Key Components in Hundreds of

Applications ...

SELENIUM RECTIFIERS

Arc Welders
Bowling Foul Indicators
Computer Power Supply
Counters
Dictating Machines
Electric Brakes
Electric Clutches
Electric Razor Device
Electroplating
Elevator Controls
Elevator Motor
Operation
Facsimile Telegraph
Fast Chargers
Fence Chargers
Generator and
Motor Fields
Guided Missiles
Guided Target Planes
Gun Fire Control

Industrial Truck Battery Charging
Jet Engine Starters
Low Voltage Lighting Controls
Magnetic Amplifiers
Magnetic Memory Devices
Motor Speed Control
Motion Picture
Arc Projectors
Oscilloscopes
Portable Radios
Radio Transmitters
TV Boosters
TV Sets
Therapeutic Machines
U.H.F. Convertors

Voltage Regulators
X-Ray Machines

Our engineering department will be glad to aid you in the solution of your rectification problems. Submit your requirements and let us make recommendations . . . without obligation, of course! See our catalog in Sweet's Product Design file, or write us for Bulletin No. E-1

> Seletron and Germanium Division RADIO RECEPTOR COMPANY, Inc.

Nince 1922 in Itadio and Electronics
sales department: 251 west 19Th Street - new york 11, N. y. FACTORY: 84 NORTH 9TH STREET - BROOKLYN 11, N. Y.

Diameters - wall thicknesses ond lengths to meet regular or special adaptations.
IN RADIO AND TELEVISION their use is almost universal. They have high insulation resistance and low moisture absorption. Their low dielectric loss is suitable for ultra high frequency applications. CLEVELITE is produced in seven grades.

GRADE APPLICATION

E Improved post-cure fabrication and stapling.
EX Special grade far TV yoke sleeves.
EE Improved general purpase.
EEX Superiar electrical and moisture absorption properties.
EEE Critical electrical and high voltage application.
XAX Special grade for government phenotic specifications.
SLF Special for very thin wall fubing having less than .010 wall.

Why Pay More?
For the Best...
Call cleveland!

CLEVELITE LAMINATED PHENOLIC TUBING

is more than ever before-the first choice in the electronic and electrical industries.

It combines proven performance with low cost and excellent service!
Wherever high dielectric strength, low moisture absorption, mechanical strength, low loss and good machinability are of prime importance . . . the combined electrical and physical properties of

CLEVELITE are essential

IMMEDIATELY AVAILABLE! Tell us your needs.

S

 NEW AND IMPROVED DESIGN

Skecifications..

Attenuation (Spectrum Amplitude): 3-70 db uncal.
Frequency range: $8430 \mathrm{Mcs}-9660 \mathrm{Mcs}$.
Frequency sweep: $10-30 \mathrm{cps}$ continuous.
Frequency swing (FM sawtooth) of analyzer r-f oscillator: 40-50 Mcs.
Maximum error: ± 4 Mcs.
Maximum dispersion of spectrum: 1.5 Mcs per inch.
Overall i-f bandwidth at half power point: 50 Kcs.
Sensitivity to CW:
a. Spectrum amplified position: 80 db below 1 W per inch deflection on oscilloscope screen.
b. Spectrum position: 55 db below 1 W per inch deflection on oscilloscope screen.
Weight: 86 pounds (complete in armored case with all accessories).

Partial list of satisfied users of the G \& M TS-148/UP include:
Bell Aircraft Corp. (Lab.)
California Institute of Technology (Lab.)
Consolidated Vultee Aircraft Corp. (Lab.)
Douglas Aireraft, Inc. (Lab.)
Fairchild Engine \& Airplane Corp. (Guided Missiles Div.)
French Naval Base (Toulon)
Gilfillan Bros. (Electronics)
Royal Canadian Air Force (Lab.)
Westinghouse Electric Corp. (Lab.)

We alsa manufacture...

1-96-A VHF Bench Test Equipment. [E-17-A SCR-536 Test Equipment. IE-19-A VHF Portable Test Equipment. MB-2 Marker Beacon Test Equipment, Portable.
TS-E6 Slide Back Volimeter for E-3, E-4, E-5, otc. Firing Systems). TS-E7 Moving Target Simulator itor E-3, E-4, E-5, etc Firing Systems). TS-170-C ILS Portable Tesp Equipmenf.

TS-173-C ILS Portable Test Equipment. TS-239/UP Wide Band Oscilloscope. UPM-1 Radar Test Set.
Special items to order, such as:
1 KW Transmitters and Jamming Equipment.
5 KW Transmitters and Jamming Equipment.
Direction Finders.
Communication Receivers, etc.

SHIPPING AND CARRYING CASE

 Armored foot locker with foam rubber cushions inserted.
WRITE OR WIRE FOR PRICES AND DELIVERY SCHEDULES

"Where Hi-Quality is Fundamental"

Combat mission . . . or freight flight . . . now we we working to help the pilot locate his position without a radio beacon - merely by equipment right in the cockpit of his plane! Thanks to a Ford Instrument Company design, development and manufacture . . . another step is being taken toward greater flying safety.

This is typical of the problems that Ford has been given
by the Armed Forces since 1915. For from the vast engineering and production lacilitics of the Ford Instrument Company. conne the mochanical, hydraulic, electro-mechanical, magnetic and electronic instruments that bring us our "tomorrows" today. Control problems of both Industry and the Military are Ford specialties.

[^5]

ELECTRICAL CORDS KEEP YOUR APPLIANCES IN SERVICE

MANUFACTURERS WHOSE PRODUCTS SERVE BEST...

sway Bedeli
 WIREMAKER FOR INDUSTRY

KAHLE MACHINES

 for Automatic Production of TRANSISTORS ELECTRONIC TUBES fromSub-miniature to Cathode Ray

More than forty years of precision-engineering experience is built into the Kahle machines which are supplied to the electronics industry for general purpose or for special purpose. Hundreds of production problems have been presented to Kahle - in every case Kahle has designed and developed a machine to produce results as specified. Kahle specializes in equipment for manufacturing sub-miniature, miniature, standard, cathode ray, transmitting tubes and transistors . . . and other glass parts in limited quantity for laboratory needs or for maximum production runs.
Illustrated at right and below are a few representative machines:
(1) MODEL 2148, Alwomatic Lead Wire Welding Machine, (2) MODEL 2179. Automatic Button Stem Machine: (3) MODEL 1384. Sub-miniature Button Siem Machine; (4) MODEL 2185. CR Tube Combination Neck Cuting and Neck Splicing Machine.

Write Kahle now for full details

Wahle enoinering company

ALL fixed mica El-Menco Capacitors are factory-tested at double their working voltage. Yet, you pay no premium for their superior performance. Meeting all significant specifications of JAN-C-5, they are being used in more and more military and civilian electronic applications.

Type CM-15, our tiny silvered mica capacitors, includes capacities from 2 to 420 mmf . at $500 \mathrm{vDCw}-2$ to 500 mmf . at 300 vDCw . Our other types - silvered and regular - offer ranges up to $10,000 \mathrm{mmf}$. Why not test them? The Electro Motive Manufacturing Co., Inc., Willimantic, Conn.

WRITE FOR FREE SAMPLES AND CATALOG ON YOUR FIRM'S LETTERHEAD

MICA TRIMMER
MOLDED MICA C1TMenco
Jobbers and distributors are requested to write for St., New York, N. Y. - Sole Agent for Jobbers and Distributors in U. S. and Canada.

Small G-E Tantalytic Capacitors do big job in new Bell System carrier circuit

The new Bell System N Carrier System is a 12 -channel, double-sideband system for single calle application . . providing low loss, stable, high velocity service for toll and exchange circuits in the range from 15 to 200 miles . . . at a minimum manufactured, insalled and maintenance cost. This system requires the use of miniaturized components which will yield large reductions in size and weight yet still give maximum service.

G-E Tantalytic capacitors are a"natural"

for the system to handle the job of series d-c hocking, r-c timing and d-c power noise filtering. Recently developed, these polar and non-polar electrolytic capacitors are recommended fior victually all lowvoltage d-c applications (ratings from 175 mul al 5 vdc to 12 muf at 1.50 vdc) where small size, large capacitance, long operat-
ing life and long shelf life are major considerations. And since they offer greater capacitance per unit volume than aluminum electrolytics and paper capacitors, they are ideally suited for miniaturized equipment. In some short-lime applicatinns, i.e. guided missiles, it is now possible to operate these capacitors in a temperature range from -55 to +110 C with proper voltage and life derating.

If your application calls for a small size capacitor with superior performance, it will pay you to investigate the new G-E Tantalytic capacitor. For further information on Tantalytic and other General Electric specialty capacitors for a-c and d-c applications, see your local C-E representative or write for "Tantalytic Capacitors" Bulletin GEC.-808 to General Electric Co., Section 442-5, Schenectady 5, New York.

G-E tANTALYtIC capacitors installed in telephone carrier amplifier.

At Last! STANDARD COMPONENTS to mount your circuitry in vertical planes that SAVE SPACE ... SAVE PRODUCTION COST ... are naturals for plug-in construction

It's as simple as this -

ALDEN PRE-PUNCHED ALEENINAL MOUNTING CARDS pre-cut to proper size for Alden 7 -pin, 9-pin, 11 pin and 20-pin Plug in Pack. ages. Or in 3' strips for chassis

ALDEN MINIATURE STAKING TERMINALS mount in any pattern on Ratchet slots hold elements for soldering without pliering for soldering with
or wrap-around.

AIDEN TERMINAL CARD MOUNTING SYSTEM

Take the above basic components, lay them out on full scale Planning Sheets
 found in Alden Handbook. Following the Plan Sheet, Miniature Terminals and Tube Sockets stake into place on Card.
\qquad We can do it for you if you have volume production, so cards come to you ready to snap electronic elements and wiring into place for quick soldering. \qquad Both sides can be used for wiring Your design and production are simplified. Wiring is an open, easy-io-work sub-assembly, so units can come through production independently or be easily subcontracted.

- and how beautifully these circuitry planes become plug-ins

— and how easy to assign to each plug-in unit a tiny tell-tale to spot trouble instantly

4 SIZES OF PLUG-IN PACKAGES

Here are siny sensing and
indicating elements that
really make sense. Require
a minimum of panel space.
Assemble by simplest pro.
duction methods. Give
your equipment quality
appearance, safety conven.
ience in use and servicing.

ALDEN JUMPER STRIP stakes right under Terminals providing common circuit without soldering.

ALDEN CARD MOUNTING TUBE SOCKETS for miniature 7 pin and 9 -pin and octal tubes.

1

 $=$

 FULDE-LITE" Fuse blows - Lice glows. Simply unscrew and blown fuse comes out with it.

- and give chassis easily traceable interconnects and $\mathbf{3 0}$-second replacement

2 HERE'S HOW TO USE IT -

Arrange Alden Side Rails (1) and Alden Lock Frame (2) to suit your chassis. Alden Serve-A-Unit Locks (3) mount in your chassis to engake pre punched holes in Alden Lock Frame (2) to pilot, draw in, lock or

ROTOR SO LIGHT

...it floats on water!

Rotar unit of $\mathrm{H}-3$ motor with cover removed

Model H-3-for radio timers, process timers, and time switches

Telechron Synchronous Timing Motors

Hard, special-formula steel. Yet the rotor floats. It's so light, mere surface tension holds it up. Imagine what an advantage like this can mean to you when you specify Telechron Synchronous Timing Motors for your equipment.

There's little inertia to overcome. So Telechron motors start almost instantly-reach full speed in less than 3 cycles ($1 / 20$ th sec.). Low-weight rotor virtually floats in the magnetic field. Rotor shaft rides on a film of oil-no metal-to-metal contact-giving longer life, and assuring true synchronous operation.

These advantages are yours in all models of Telechron Synchronous Timing Motors-no matter what the application. Let us help you select the model that will best give you the performance you are looking for.
Write for complete catalog and information on our Application Engineering Service. Telechron Department, General Electric Company, 48 Homer Ave., Ashland, Mass.

MARKOF TIMING LEADERSHIP

This famous trademark has dual significance: Hallmark of quality in hermetic seals, it is also the symbol of HERMETIC's earnest desire to make such units available to industry at prices that make sense.
HERMETIC recognizes the importance of price to industry. Therefore, it makes every effort to keep prices in line . . . without subordinating its own high quality standards.
To maintain these long recognized standards, every phase of production, every operation, is supervised by specially trained engineers. And, more inspectors, more inspections, more testing equipment are used to check electrical and mechanical characteristics . . . including the ultimate mass spectrometer test.
It is because of this quality and wide acceptance
that hermetic now manufactures the largest line of hermetic seals in the world ... and has produced more innovations than any other supplier in its field. Little wonder that hermetic has received generous endorsements from our country's Services and from industry.
Moreover, the HERMETIC line has grown increasingly. New developments, advanced design and quality standards, which enhance the value of every control on which HERMETIC headers are used, have attracted more and more buyers.
Now is the time for you to check with hermetic to find out how these headers can be adapted to your particular products. Send for your free copy of HERMETIC's colorful, informative 32 -page brochure, the most complete presentation ever offered on hermetic seals.

31 South Sixth Street, Newark 7, New Jersey

Keep TABS on

WIRING

Chester ENGINEERED plastic insulation, laboratory and field tested to more than meet specifications provides both easier working qualities and longer service life. These rugged plastic coatings offer maximum immunity to abrasion, weather, oil and most chemicals. Smooth and pliable, they pull through channels and conduit

easily and offer excellent appearance in open wiring. Chester single or multiconductor wires and cables are available for electrical, electronic, TV, radio, telephone and many other industries. Call or write for illustrated bulletins, today!

CTESTE: H1PERCH16

TOO LATE TO HIDE . . . from a RELIABLE missile

ACCURATE CONTROL IS A MUST IN GUIDING THE MISSILE, BUT . . . W\|LL CONTROL FAIL IN THESE LAST TWO SECONDS?

Hundreds of test hours become worthless, should a component fail at this critical moment. A maior source of last-minute failure is the unpredictable jamming of a hydraulic control valve by just a single particle of dirt.

Now, Sanders Associates. Inc. offers a hydraulic valve that is accurate . . . and reliahle. Utilizing a unique form of mechanical feedback, this new valve creates forces as high as 500 pounds to break free any jamming particles. Interfering metal chips are literally chopped up. Here is a self-clearing valve that operates without oil filters, even with dirt, sludge and metal
particles in the hydraulic fluid supply . . . this is reliahility . . "built-in" reliability.

Sanders Associates. Inc. is active in complex research and development programs where new concepts of accuracy and reliability are essential. Typical of the product development under such programs is this two-stage hydraulic servo valve
a key component in guided missiles, fire control, auto-pilots, automatic machine control and other applications where the transfer from electrical to hydraulic energy must be both accurate and reliable.

Address inquiries to Dept. 40-E.

Du Pont TEFLON* provides excellent dielectric properties...

Coaxial connectors and cable made by Microdot Division,
Felts Corporation, S. Pasadena, Calif.

better things for better luving .. . through chemistry

Polychemicals
 DEPARTMENT

PLASTICS • CHEMICALS

... heat resistance and strength
in new miniature parts

The demand for micro-miniature components in scale with miniaturized circuit designs has created an insulating problem. Miniature circuits often develop high heat and carry an increased electrical load that can result in failure of these tiny components.
The Felts Corporation faced such a problem with its miniature coaxial connector. They needed a material for the connector and primary wire insulation that had good dielectric properties and a wide resistance to heat, chemicals and corrosion. It also had to be moistureresistant and strong.

After testing many materials, they chose Du Pont "Teflon" tetrafluoroethylene resin. "Teflon" is an excellent insulator. It has a dielectric constant of 2.0 and a loss factor of 0.0005 . Its power factor is less than 0.05% even at frequencies as high as 30,000 megacycles. And these dielectric properties are unaffected by temperatures from $-80^{\circ} \mathrm{F}$. to $500^{\circ} \mathrm{F}$. Du Pont "Teflon" is inert to all chemicals except molten alkali metals and fluorine. It is tough and durable-will not crack or arc. "Teflon" has zero water absorption and helps reduce self-generated noise at high termination impedances.

Du Pont "「eflon" serves many uses in electrical equipment-stand-off and feed-thru insulator terminals, insulation for wire, cables and motor windings, and other parts where high temperatures, dielectric strength and durability are required. Perhaps "Teflon" can help you improve or develop a product. For full information, write: E. I. du Pont de Nemours \& Co. (Inc.), Polychemicals Department, Room 228T, Du Pont Bldg., Wilmington 98, Delaware.

[^6]
PREGISIDI NALOG COMPUTER

1
A ricw chassis design-each chassis formed in a U -shape effecting an unusually compact arrangenent of components and providing the facilities for extremely efficient cooling.

1
A new ligh gain, low drift, contact stabilized d-c amplifier with outstanding arcuracy, frefuency sesppuse and output power characteristics.

A new system (nppional) for selecting and setting an attenuator to a value within approximately $\pm .01$ \% by depressing the keys of an adding machine type keyboard.

ELECTRONIC ASSOCIATES Sreooporated

>
Compatibility with other makes of analog computing equipmeme whicle allows the precision components of this sysicill to the used with other manufacturers' systems.

A new high quality patel board assembly, issing an 1800 position pre patch pancl made of metal to avoid leakages beiween terminals and to improve overall computer accurac\%.

All compuiting resistors and capacitors contained in an oven io maintain them at a constant temperature to insure relialse and accurate performance.

Centratized operation of the entire computcr from a control console providing maximum case of operation and fiexilsility in the use of the system plus minimizing the cest of expansion.

Long Branch, New Jersey
Send for complete data

PROVEN RESULTS ${ }_{\text {specity }}$

McGRAW-HILL

Mailing Lists

You can save time, avoid needless expense, increase your results by having McGraw-Hill Lists do your mail advertising job!

Three quarters of a century of practical experience is made available to you when you turn your direct mail jobs over to McGraw-Hill. And these seventy-five years of leadership in the development and perfection of lists assure you the maximum results at the lowest cost per order or inquiry.

Those who are acquainted with mailing lists know that year-after-year acceptance of lists does not come by chance or luck. Accepted lists, like McGraw-Hill's, hold their places by merit alone. Nor does success one day guarantee success the next. Vigilant eyes must constantly add new names, delete, change, check, recheck, etc. Inferior lists are dropped as soon as shortcomings are noticed . . . "good lists" yield to better lists.

For seventy-five years expert list users have preferred McGraw-Hill by long odds. No matter how few names you use-whether your business is large or small-the best lists, McGraw-Hill Lists, are the most economical in the long run.

The world-wide reputation McGraw-Hill has earned as builders of the finest mailing lists was born of constant research in our office and in the field-constantly adding new names . . . developing new markets, new avenues of revenue for direct mail list users.

McGraw-Hill Mailing Lists are built -and constantly maintained-to provide, as accurately as humanly possible, complete rosters of the industries we serve.

Investigate their tremendous possibilities in relation to your own product or service. Your specifications are our guide in recommending the particular McGrawHill lists that best cover your market. When planning your industrial advertising and sales promotional activities, ask for more facts or, better still, write today. No obligation, of course.

[^7]330 W. 42nd Street, New York 36, N. Y.

Faster.

COMPACT, PORTABLE

 BENCH-TYPE TESTING UNIT FOR RAPID HIGH and LOW TEMPERATURESPrimarily developed for a branch of the armed forces, this high and low temperature testing unit has a temperature range from $-80^{\circ} \mathrm{F}$. to $+185^{\circ} \mathrm{F}$. Rapid temperature pull-down to $-80^{\circ} \mathrm{F}$. requires 30 minutes or less. Heat application is accomplished through reverse cycle refrigeration. Hazards of open heating elements are eliminated. Test chamber dimensions are $12^{\prime \prime} \times 12^{\prime \prime} \times 12^{\prime \prime}$ and the overall dimensions are $50^{\prime \prime}$ long, $26^{\prime \prime}$ high and $20^{\prime \prime}$ deep. Approximate weight is 450 pounds. The unit is compact and is entirely self contained. Controls are simplified and easy to operate. Equipped
with air-cooled compressors, the unit is quiet in operation. Cabinet is of stainless steel with all controls visible. A blower is provided for even distribution of temperatures and greater testing accuracy. The door illustrated is a latch type door providing for complete removal from the cabinet. Holes may be drilled for electrical contacts.

This is one of the many examples of Webber engineering skill and another of the many firsts built by Webber in the low temperature field.
Write for more complete information:

INDUSTRIAL FREEZER DIVISION
WEBBER MANUFACTURING COMPANY, INC., 2745 MADISON AVENUE, INDIANAPOLIS 3, INDIANA
(Formerly Webber Appliance Co., Inc.)

'HERE'S a webber unit for every need

THE UNITED STATES TIME CORP. and SANDERS ASSOCIATES, INC. join hands

to make available for the first time on a mass production basis . . . at volume prices -

world's Smallest

SUBMINIATURE PRECISION RATE GYROSCOPES

These gyros, developed and perfected by Sanders Associates, are now made available in volume through the close-tolerance, mass production techniques and facilities U.S. Time has acquired in nearly a century of precision manufacturing experience.
U.S. Time is the world's largest manufacturer of wrist watches and mechanical time fuses. Twelve years ago it began manufacturing precision gyroscopes for the
armed forces. During this period, it has produced gyros at the rate of $17,000 \mathrm{per}$ month in its ultra-modern, completely airconditioned plant.

Now-the skills and experience gained in attaining this outstanding record in mass precision production are being applied to the manufacture of Sanders Associates' Rate Gyro-the ultimate in subminiaturization, flight proven in production missiles.

Tantalum Capacitors For Extreme Temperatures

$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

New Standard 7/8 Inch Case Size

Saves up to 20% in Weight . . 16% in Volume

When the Tamtalum Capacitor was introduced by Wallory, it provided the first answer to dependable operation in the extremely high ambients such as result fromminiatmization of electronic equipment.
Now. Mallory has reduced the higher capacity $11 / 8^{\prime \prime}$ Tantalum Capacitors to $7 / 8^{\prime \prime}$, thereby cstab. lishing a single zandard case diameter. This refimement not only simplifies installation and mounting
hardware; it will also produce sulstantial reductions in the weight and size of high capacity units.
Be sure and look into the advantages of Mallory Tantalum Capacitors for your equipment. Our engineers will be glad to talk over any problem you may have in the application of capactors, the developenent of special ypes, or the simplification of related circuits.

FOR MORE INFORMATION...

Write for vour coply of the new Tectmical Bulletin on Mallory Tantalum Capaciurs. It contains complete mechanical and electrical duta and performance charncteristics.

Expect more... Get more from MALLOR

Parts distributors in all major cities stock Mallory standard components for your convenience

CROSS
 TALK

- RESEARCH . . . Answer to the current Washington controversy over who should pick up the check for basic research-government or industry-is obviously "both." Unless such research is supported at all educational levels, civilian business as well as the military program will eventually stall.

Production techniques have already progressed far ahead of research in many fields. Engineers engaged in the growing of synthetic mica find themselves handicapped by inadequate background on crystals. Producers of devices employing barium titanate can go just so far by almost arbitrarily trying more and more complex mixes. There are many unknowns in the important semiconductor equation.

In the long run, basic research pays off. Without it, tomorrow would bring military and management, as well as engineering, frustrations.

- TRANSISTORS . . . First use

 of transistors in mass-produced tv sets may be to replace two germanium diodes and a triode tube in noncritical circuits. Junction types are, we understand, already being used experimentally in this application. Circuit parameters are such that good performance is obtained from near-rejects. Higher temperatures than those normally encountered in home equipment do not appear to upset operation.- INTERFERENCE . . . Radiation of unwanted signals has existed since the early days of wireless. It became more troublesome with the advent of radio and is a very real problem indeed in this age of television and electronics in industry.

F-m tuners frequently interfere with tv. Television interferes with itself. Uhf sets sometimes interfere with other services. Color could interfere still more if manufacturers do not take seriously suggestions for minimizing radiation which will be in their hands before its commercial advent. Diathermy and industrial heating apparatus have been serious offenders.

It is difficult to visualize circuitry inherently incapable of radiating; oscillators are part and parcel of the art. Confinement of radiation to specific frequencies is not a good long-range solution; there are no frequencies that can be so wasted. The only sensible solution is to confine unwanted signals to the devices that generate them. Nothing, in our opinion, is more worthy of concerted industry action.

- HI-FI . . . We've been wondering if the type of customer who has in the past bought big phono-combinations would be permanently lost as tv cuts deeper and deeper into the radio business. Will car sets, portables and clock-type table models alone satisfy music
lovers and others who like to listen rather than look?

It is now becoming clear, not only to us but to a number of oldline radio manufacturers, that while high-fidelity equipment is not likely to achieve the unit volume which once belonged to consoles it can represent important dollar volume.

Sixty-four-dollar question is the extent to which hi-fi should be "packaged." On the one hand, packaging in a single unit simplifies manufacture and distribution and reduces cost. On the other, a variety of readily interconnected units is very appealing to the customer and has the virtue of permitting subsequent equipment improvements.

We're inclined to think that a compromise between the singleunit and the six or seven-unit approach may be the answer.

- COMPLAINT . . . Talked to a number of maintenance men in industrial plants this month, and many complained about the types of circuit diagrams manufacturers of electronic equipment supply. It seems that a high percentage of these diagrams may be crystal clear to a communications man but don't make sense to all-around mechanics.

A breakup by units rather than overall-unit schematics would help materially. So would semi-mechanicals and common electrical symbols, we are told.

Electronic Equipment

Mobile and point-to-point radio uses expand. Industrial electronics speeds freighthandling, simplifies maintenance of tracks and pole lines, and finds new applications in signaling. Radar, television, magnetic amplifiers and transistors all prove useful

By JOHN M. CARROLL

Assistant Editor
EILECTRONics

Microwave tower on the Santa Fe's radio-relay network presents new look in railroad radio

ELECTRON TUBES are not newcomers to the railroad industry.

One of the first applications of the electron tube in industry came in 1922. Four 32 -volt pliotrons were used to amplify block-signal-code impulses inductively picked up from the tracks. These coded impulses operated cab-mounted signal lights to inform the engineer of track conditions ahead ${ }^{1}$. By 1931, 4,500 locomotives were using cab signals; 4,551 locomotives are equipped today.

Railroads have been hesitant in adopting electronic signaling equipment for use out on the main line, clinging rather to fail-safe electromechanical devices. Electronic signals are used mainly to furnish supplementary data. In freight-car classification and forwarding yards, however, operation is not as critical as on the road, so modern electronic equipment such as television and radar is rapidly coming into use to speed the nation's freight handling.

Mobile Radio

Most of the electron tubes at work for the railroads are in communications equipment. The vhf railroad-radio service has made impressive strides in the past few years. Over 12,000 transmitter authorizations have been granted in the 159 to $162-\mathrm{mc}$ band. Several roads, notably the Pennsylvania, have also adopted inductive carrier for train-to-base and train-to-train communications; 1,735 installations have been made. Figure 1 shows
the expansion in railroad communications during the last four years.

Bell-System telephones board crack trains furnish public communications for passengers. Two services are used: the highway mobile telephone service, $30-44 \mathrm{mc}$, and the urban mobile service, 152162 me .

With their great fleet of coastal and harbor vessels, the railroads are also large users of marine radiotelephone equipment. The New York Central is planning installation of low-frequency auto-matic-direction-finding equipment on its Weehawken ferry. The system will comprise a receiver aboard ship and a low-power beacon located on the ferry slip. The system will permit operation under poor visibility conditions.

Point-to-Point

Maintaining communications along right-of-way is a major function of railroad communications engineers. Carrier-telephone equipment finds use throughout their extensive wire-line plant.

Microwave radio-relay systems have been installed by the Rock Island and the Santa Fe railroads. The Santa Fe system replaces 315 miles of open-wire telephone line. It operates in the 6,575 to $6,875-\mathrm{mc}$ band and consists of terminals at Galveston and Beaumont, Texas, with three intermediate repeater stations. All stations have standby r-f equipment. Eight duplex voice channels are provided by pulse-amplitude modulation of the shf carrier. One channel is a party line

in Railroading

Electronic freight handling. Television camera picks numbers as car enters yard; electronic scales weigh car and record weight

Maintaining freighl-qard communications; vhf radio in switch engine features failsafe operation. Talk-back loudspeakers keep yard workmen in touch
with drop and insert at each repeater. It also carries a fault-alarm tone.

Figure 2 is a block diagram of ore of the repeaters in the SantaFe relay. Incoming f-m signals at $6,830 \mathrm{mc}$ are mixed with the $6,740-\mathrm{mc}$ signal from the klystron local oscillator. The $90-\mathrm{mc}$ i-f signal is detected and applied through a direct-coupled voltage amplifier to the repeller of the klystron.

The klystron is thus made to follow the incoming signal in frequency and functions both as receiver local oscillator and transmitter for the next leg of the relay.

The Rock Island's system spans 106 miles between Norton and Goodland, Kansas. It operates in the 6,575 to $6,875-\mathrm{me}$ band and consists of two terminals and four repeaters.

Early Microwave

Experiments with railroad microwave radio date from 1946, when the Rock Island used $2,660-\mathrm{mc}$ equipment for cab-to-caboose and cab-to-wayside communications. Since then, however, vhf radio has gained general acceptance for railroad mobile communications.

Early experiments with microwaves for right-of-way communica-
tions were carried on in 1949 on the Long Island, where 8-channel, $6,660-\mathrm{mc}$ equipment was used for remote operation of power-distributing substations, remote control of switches and signals, metering electric power, telephone, telegraph and facsimile communications ${ }^{3}$.

Major factor inhinting more widespread use of micr.wave by the railroads has been the attitude of some telephone companies towards interconnection of therr facilities. Railroads have historically enjoyed interconnection privileges with their wire-line circuits for both on-line and off-line calls. Interconnection with microwave links is not granted in these contracts.

Transistors

Both magnetic amplifiers and transistors are finding application in railroad work. Magnetic-amplifier regulators have been used with axle-driven generators to supply power for radio equipment installed in freight-train cabooses.

A transistor amplifier used in Baltimore and Ohio telephone subsets helps overcome attenuation on heavily-loaded train-dispatching circuits. A junction transistor with base input is used. The amplifier operates from the $4 \frac{1}{2}$-volt local battery used to supply current to the carbon microphone. The transistor amplifier is normally connected in the receive position and is controlled by a push-to-talk button. The circuit shown in Fig. 3 uses an $n p n$ junction transistor.

Input in receive position is from a line-bridging transformer. On transmit, the carbon microphone works into a resistor in the base circuit. Although amplification is limited by circuit noise along the line, subsets now in use have gains of 20 db . This gain exceeds that of telephone repeaters used on dispatching lines.

About 15 transistor-amplifier subsets are presently in use. These were built by B \& O personnel. The subset has been recently redesigned for mass production.

Politics

Bills to transfer authority over railroad electronic equipment from the FCC to the Interstate Com-

Electronic train identification. Oscillator tank coil in weatherproof housing between tracks couples to tuned circuit in rubber doughnut suspended below caboose, producing change in output
merce Commission are among the hardy perennials on Capitol Hill'. Most recent one, HR 3,095, tossed in the hopper by Rep. Melvin Price (D., Ill.) would give the ICC authority to require railroads to install certain electronic or electrical safety equipment subject to FCC approval of required licenses, station permits or other required permits. The FCC would still retain its jurisdiction over communications equipment.

Equipment mentioned in the bill includes: telegraph, telephone, radio, inductive carrier for wayside and/or train communication; also, block signals, interlocking, automatic train stop, train control
and/or cab signals and similar equipment.

Freight-Yard Electronics

Making up freight trains constitutes a large-scale industrial operation. In modern freight-car classification yards, electronic equipment is making a major contribution to safe and speedy freight handling.

In a typical operation, freight cars are pushed by a switch engine to the top of a rise called the hump. An industrial television camera may then pick up the car numbers and relay them to a clerk.

The cars are decoupled and weighed on electronic scales; the

FIG. 1-Railroad radio booms while inductive carrier installations increase slowly
car's net weight is recorded for the weighmaster by an electric printer. Remote switches are then operated and the car rolls by gravity into one of several tributary tracks where the freight trains are made up.

A radar speed meter clocks the car as it rolls down grade. This warns the operator in the yard's control tower if the car's speed is too great for safe coupling with others on the tributary track. The operator can then manipulate remote controls that check the car's speed by engaging the retarders. These are long steel clamps or shoes that work against spring pressure to squeeze the car's wheels.

Electronic Weighing

The electronic car scales can weigh 4 to 5 standard 40 -foot freight cars per minute. Cars are pushed over the scale at $2 \frac{1}{2} \mathrm{mph}$, which leaves each car alone on the scale for about 3 seconds. Two weight indications are provided, a large visual indicator and a remote printer. The printer automatically subtracts tare weight from gross weight. Full-scale reading is 400 ,000 pounds and the scales are accurate within 100 pounds.

The scale platform is a 90 -foot section of track divided into four sections. Eight waterproof-jacketed weighing cells support the scale

Sweep-frequency oscillator unii in concrete bungalow adjoining railroad tracks sweeps from 160 to 310 kc

FIG. 2-Microwave repeater used on Santa Fe has single klystron for receiver local oscillator and transmitter
platform. The cells are essentially resistance-wire strain gages, connected in a $400-\mathrm{cps}$ Wheatstonebridge circuit. An a-c amplifier amplifies the unbalance of the bridge and actuates a servomecharism that operates to restore bridge balance.

Weight-scale pointers are coupled to this servomechanism.

Radar Eases Jolts

The radar speed meter works on the Doppler principle. A 2 C 40 lighthouse triode operating as a fixed-
frequency oscillator delivers 4.5 watts $\mathrm{c}-\mathrm{w}$ to two half-wave dipoles fed in phase. Frequency is 2,455 mc , in the industrial-medical-scientific band. Oscillator resonant circuits comprise a cylindrical-grid cavity and associated anode in combination with a feedback cavity cut for the operating frequency.

A small amount of transmitter power is mixed in the receiver input with the signal reflected from the target, the freight car. The receiver output frequency thus depends upon the speed at which the car is moving. This frequency is detected and used to operate two voltmeters calibrated directly in miles-per-hour. One meter is mounted in the case with the transceiver while the other is located on the retarder-operator's desk.

Intercoms

Freight-yard communications are vital for safe and efficient operation. Southern's modern Norris Yard at Birmingham, Ala. uses 40 paging and 150 talk-back loudspeakers to coordinate operations. Two hundred ground-line loud speakers are also installed. To operate one of these as a microphone, the talker depresses a foot pedal, that also mutes all nearby units to eliminate sources of acoustic feedback. Conversations can be carried on using any nonadjacent loudspeakers.

Twenty-two vhf receivers and 21 transmitters also help knit yard operations together. The equipment fails safe in that a $1,200 \mathrm{cps}$ beep tone is transmitted regularly for one-half second at ten-second intervals. Hearing this tone in his loudspeaker, the engineer is assured that he is not depending upon a dead radio receiver for instructions.

Train Identification

A train-position indicator introduced some years ago on the Rock Island used signals having frequencies identified with fixed points along the line ${ }^{5}$. When keyed by the train, these signals were passed over wayside wires, through appropriate filters, amplifiers, triggertubes and relays to actuate signal lamps and recorder pens that showed the train's progress.

On the Erie, an electronic trainidentification system enables the

FIG. 3-High efficiency railroad dispatcher's telephone subset uses junction transistor

FIG. 4-Electronic train watcher identifies trains passing unattended junction. Train is tagged by tuned circuit suspended below caboose
dispatcher at Salamanca, N. Y. to identify westbound freight trains passing from single-track, manualblock to double-track, automaticblock territory at an unattended junction at Waterloo, 22 miles distant.

Four freight trains are operated over this division and each is identified by an individual lamp on the dispatcher's board at Salamanca. The lamps are selected by code-rate signals transmitted each time the caboose of a westbound freight
passes the junction. A numbered recording pen is also actuated on a strip-chart recorder to indicate time of identification.

The code-rate signals consist of pulses sent over wired carrier from electromechanical transmitters. Each of the four cabooses is represented by a different pulse-repetition rate, which may be 120,180 , 240 or 405 pulses per minute. The proper code-rate signal is put on the wire by a relay selected by the electronic train identifier.

Each caboose is tagged by an r-f tuned circuit sealed in a rubber doughnut suspended beneath it. Each circuit is tuned to a distinct frequency in the $160-310-\mathrm{kc}$ band. The tank circuit of an $160-$ 310 -kc sweep-frequency coscillator is located in a weatherproof housing between the tracks. As a train approaches the junction, a track relay turns on the sweep-frequency oscillator and the four code-rate transmitters.

A portion of the sweep-oscillator power is applied to four frequencysensitive gate generators, f_{1} to f_{4} in Fig. 4. These gate generators each produce a pulse when the oscillator sweeps past its resonant frequency. These resonant frequencies correspond to those of the caboose tuned circuits. The four gate pulses are applied sequentially to each of the identification relay control circuits. The control circuits are coincidence gates and remain cut off unless a caboose is passing over the sweeposcillator tank circuit.

Operation

When a caboose passes over the track coil, its inert tured circuit couples to the oscillator tank, causing a change in oscillator output. The oscillator reaction amplifier detects this reaction and amplifies it, applying it to the master relay control and the oscillator-reaction pulse generator. The master relay control energizes the master relay indicating the presence of a caboose.

Simultaneously, the oscillatorreaction pulse generator: produces an enabling pulse that is applied to all four identification-re ay control circuits. Coincidence occurs only in the control circuit associated with the caboose-coil resonant frequency. When both master and identification relays are energized, the proper code-rate transmitter keys the 17 -kc wire-line carrier and remote identification is made. The dispatcher acknowledges the signal by pushing a button that sends a disabling signal over another carrier channel to restore the equipment to its normal condition.

Remote Control

The wire-line-carrier transmitter and receiver shown in Fig. 5 can be used both to actuate remote signal

FIG. 5-Carrier-current control unit for remote signaling comprises 17 -kc transmitter and receiver
devices and to indicate their position. The transmitter as shown operates on 26 volts d-c using special railroad-type tubes. Heater power may be 26 volts, a-c or d-c. The transmitter delivers 0.1 watt r-f into a 600 -ohm line at a carrier frequency of 17 kc . The carrier transmitter output is keyed by the electromechanical code-rate transmitter while the rectified receiver output operates the appropriate code-rate-sensitive relay.

Maintenance of Way

America's railroad industry must maintain an immense physical plant. Electronics is on the job here too. For several years, self-propelled track inspection cars have patrolled 200,000 track-miles annually at 12 mph searching for potentially defective rails ${ }^{\text {e }}$. Internal fissures in the steel, particularly transverse ones, can grow suddenly to such a size that the rail will break under load. The track inspection car passes a heavy current, $8,000 \mathrm{am}$ peres at 1.8 volts, through the rails, recording local variations in magnetic field due to fissures. Defective rails are located on a strip chart and automatically sprayed with white paint.

Smoothness of roadbed is moni-
tored by the Chesapeake \& Ohio's roadway inspection car. The car has a gyro-balanced measuring truck suspended beneath it. An eight-pen strip-chart recorder notes the rail profile, alignment of the rail, difference in elevation between rails and the general surface of the track. In addition, bells ring and lights flash as the car passes over low joints or faulty surface.

Five thyratron circuits like the one shown in Fig. 6 record rightrail joints $\frac{1}{4}$-in. low, right-rail joints $\frac{1}{2}$-in. low, track surface, left-rail joints $\frac{1}{4}$-in. low and left- rail joints $\frac{1}{2}-i n$. low. When a rail joint $\frac{1}{4}-\mathrm{in}$. low is detected, a light flashes, a bell rings and the fault is recorded both on an electromechanical coun-

FIG. 6-Thyratron rail-fault detector helps maintain roadbed smoothness by locating low rail joints and surface irregularities
ter and stripchart recorder. If the joint is $\frac{1}{2}$-in. low, two lights flash. The surface-fault detector records elevation differences between the center measuring truck and either the car's front or rear truck.

When a low joint is encountered, the contactor in the thyratron grid circuit is closed, connecting the grid to the positive terminal of the $22 \frac{1}{2}-$ volt battery. The gas-filled tube fires and draws heavy current. The plate-circuit relay is energized, closing contacts that energize a second relay. This relay's contacts close to actuate the bell, light and counter. Another set of contacts on this relay opens the thyratron plate circuit; thus the tube is deionized and remains ready to detect the next track flaw.

Fault Finder

The railroads operate many thousand miles of pole line in their communications service. The Southern Pacific and the C \& O are making use of a radar-like device to locate troublesome faults along their lines. This device transmits a pulsed very-low-frequency signal that is reflected by the mismatch presented by a line fault.

The carrier frequency selected depends upon the transmission characteristics of the line and may be from 400 cps to 30 kc . The pulse repetition rate is adjustable from 200 to $2,000 \mathrm{cps}$. The distance from the line fault to either the transmitter or to some known mismatch may be determined by aligning the received echo on the face of the cathode-ray tube with either the outgoing transmitter pulse or with the echo from a known mismatch. The phase-shifter dial is generally calibrated in miles. Line fault locators are under development that display the distance from a line fault to a known mismatch directly in miles using a decade counter.

References

(1) Electronic Equipment in Train Control, Electronics, p 219, Dec. 1981
(2) E. A. Dahl, 2,660-Mc Train Communications System, Electronics, p 118 , Jan. 1946 .
(3) Mierowaves For Railroad Control Eiectronics, p 150. Jan. 1949.
(4) J. Courtney, Railroad Radio ${ }^{\circ}{ }^{\circ}$ June 1946 .
(5) E. A. Dahl, Train Position Indicator, Electhonics, p 122, Oct. 1946 .
(6) R. D. Waiker. Jr., Railroad Track Inspection Car, Electionics. p 66 , Oct

Transistor-Controlled

Experimental transistor-controlled magnetic amplifier using single-winding toroid with CK722 junction transistor. With $60-\mathrm{cps}$. 12.5 -valt rms carrier voltage applied to terminals at right, output signal cur rents up to 100 ma peak can be obtained in connected load for emitter input signal currents under 0.5 ma peak

T0 UNDERSTAND the operation of the transistor-controlled magnetic amplifier, a comprehension of magnetic-core behavior is required.

Magnetic cores are usually characterized by their B-H curves. If a winding is placed on a core, the curve is conveniently converted to a flux-current plot. Figure 1 shows a representative $\mathrm{B}-\mathrm{H}$ and flux-current plot for a grainoriented nickel-iron core when excited at a particular frequency.

FIG. 1-Characteristic plots for grainoriented nickel-iron used in magneticamplifier cores

By RICHARD H. SPENCER

Department of Electrical Engineering Massachusetts Institute of Technology Cambridge, Massachusetts

The independent variable of the flux-current plot is usually thought of as the current, but there is no reason why the flux cannot be so considered. ${ }^{2.4}$ Indeed, by going one step further and showing the relationslip between flox and winding voltage, a whole step in circuit analysis is saved.

Circuitwise, not fux but the related quantity, voltage, is of importance, Flux and voltage both appear in the elementary expression $e=-V(d \emptyset) / d t$, where e is the winding voltage, N is the number of turns of winding and \emptyset is the flux through the winding. The solution of this differential equation is

$$
\phi=-\frac{1}{V} \int \rho d t
$$

The flux axis of the flux-current plot may thus be replaced by this
expression and $\int e d t$ considered as an independent variable directly proportional to flux. The winding current may now be determined simply by observing fedt which has accumulated at the terminals of the winding. Flux no longer need be considered at all.

Analysis of Simple Series Circuit

The behavior of the simple circuit of Fig. 2A can be examined by using this principle for analysis. The circuit consists of a winding on a magnetic core in series with an alternating voltage source and a small resistance. Assume that the operating point on the $\int e d t$ versus i plot is point a of Fig, 2B at the start of the positive half-cycle of supply voltage. To determine the current, examine the added fedt which has developed across the winding terminals and note the current corresponding to this added Sedt on the plot of Fig. 2B. With a small series resistance the $i R$ drop is assumed negligible and the full supply voltage is considered as impressed on the winding.

Magnetic Amplifier

Combining the junction transistor with a magnetic amplifier, using Ramey reset control circuit, utilizes best characteristics of each. Circuit is simple, delivers greater power than transistor alone, and responds to signal changes in one carrier-frequency cycle

For a very small increase in the source voltage $v_{\text {, }}$, the operating point moves from point a to point b; that is, very little \int edt need be applied to the winding to cause the current to become the value at point b. As more integral of voltage accumulates across the winding, the operating point moves from b toward c.

For simplicity, it is assumed that the total integral of voltage applied during the positive halfcycle is just sufficient to cause the operating point to reach c. This
point is then reached at the end of the positive half-cycle of supply voltage. When the supply voltage becomes negative, $\int e d t$ becomes less and the operating point moves along the left side of the fedt versus i plot, eventually returning to point a when the added $\int e d t$ equals zero at the end of the negative half-cycle.

The current that flows under these conditions is called the magnetizing current; it does not exceed the relatively low values corresponding to points c and e.

Waveforms illustrating this mode of operation are shown in Fig. 2C.

An important extension of the circuit just described is the addition of an ideal diode poled as shown in Fig. 3A. To determine the currents in this circuit, again assume the same initial point a with conditions as before. The circuit behavior during the first positive half-cycle of supply voltage is identical to that of Fig. 2A. The diode has no effect during this part of the operation. As the voltage source becomes negative, the diode absorbs the entire

FIG. 2-Simple series circuit using magnetic core. Only small magnetizing current flows

FIG. 3-Crystal diode in simple series eircuit. Current on positive half-cycle is determined by v_{s} and R

FIG. 4-Modified diode circuit using shunt rheostat to establish operating conditions between those of Fig. 2 and 3
supply voltage and no negative voltage is applied to the winding. The operating point stays at point c^{\prime} during the entire negative halfcycle of supply voltage; that is, no change in fedt occurs during the negative half-cycle of supply voltage.

During the following positive half-cycle, the source tends to apply an added positive fedt to the winding but the core is now saturated, and the winding current tends to become very large; the small resistance which was previously ignored now absorbs the entire supply voltage. The waveform of the current follows that of the supply voltage for the positive half-cycle of supply voltage. Again, as the supply voltage becomes negative, the diode absorbs voltage and no current exists. The circuit behavior is as if the magnetic core were not even present. Large currents may exist and considerable power be delivered to the resistor.

Circuit With Rheostat Control

Two conditions of core operation have been described. In the first, the series resistor absorbed very little power since the core limited the circuit current to the magnetization value. The second condition allowed large currents to exist, limited only by the value of the resistor.

The only difference in these two circuits was the use of an ideal diode. Suppose that a variable resistor $R_{\text {b }}$ is placed across this diode as shown in Fig. 4A. If the resistance is made very low, the operation is that of the first case-small circuit current. If the resistance is made large, the operation is that of the second mode-large current.

With these two modes in mind, consider the resistor at an intermediate value. If the operation during the negative half-cycle is examined, one finds that R_{b} (the drop across R is negligible) absorbs some of the supply voltage and the core the remainder. If a suitable value of resistance is selected, half the integral of supply voltage accumulates across the resistor, and half across the winding. In this instance, the core operating point moves from c^{\prime} through d to e, just half-way down the left side of the
$\int e d t$ versus i plot, during the negative half-cycle of supply voltage.

During the next positive halfcycle of supply voltage, the core absorbs the supply voltage until $\int e d t$ is the saturation value. The required additional fedt to reach saturation is only half of that available from the supply. When this amount of additional integral has been supplied, the core is saturated and the current suddenly increases to the value v_{s} / R and follows the supply-voltage waveform for the remaining interval of the positive half-cycle of supply voltage. Waveforms are shown for this mode of operation in Fig. 4C.

Rest-Control Action

The above discussion has shown that the current through resistor R may be controlled with the circuit of Fig. 4A merely by varying a second resistor R_{b}. The value of this resistor determines the point on the fedt versus i plot at which the core is left at the end of the negative half-cycle of supply voltage. This point in turn determines the duration of time in which load current exists in the following

FIG. 5-Operation of transistor-con. trolled maqnetic amplifier circuit
positive half-cycle of supply voltage. Restated, the condition of the core at the end of the negative halfcycle of supply voltage determines the operation during the positive half-cycle. Resistor R_{b} need only pass currents up to the peak magnetization current to control load currents many times greater.

Available transistors have characteristics which allow them to perform the function of the ideal diode and resistor; that is, a transistor can be considered as a diode in which the back current is readily controlled.

Transistor-Controlled Magnetic Core

Figure 5A shows the circuit of a transistor-controlled magnetic amplifier. This circuit is the same as that of Fig. 4A except that a transistor takes the place of the diode and its paralleling resistor.

The characteristics of the circuit elements are shown in Fig. 5B. Assume as before that at the start of the positive half-crcle of supply voltage, the magnetic element is at point a. As the characteristics show, the transistor may be considered as a very low resistance during this half of the operating cycle.

With the supply voltage becoming slightly positive, the operating point of the magnetic element moves from point a to point b, with the magnetic element absorbing essentially zero voltage. To move from point b to point c, however, requires that the core absorb a time integral of voltage equal to the difference in ordinates from point c to point b. During this absorption of voltage, the circuit current increases from I_{b}, the value at point b, to I_{c}, the value at point c. These currents are shown both on the transistor characteristic and the magnetic-element characteristic. With the supply voltage adjusted as before, this added $\int e d t$ is just sufficient to bring the operating point to c during the positive halfcycle of operation.

As the supply voltage passes through zero the negative halfcycle starts. During this negative half-cycle, the transistor characteristics become significant and the constraint imposed by a particular
value of emitter current must be considered. Such a constraint requires that the transistor operate on a specified curve of the family shown in Fig. 5B. This curve shows that the transistor acts as a low resistance until the collector current I exceeds the value at the knee of the characteristic, after which it acts as a high resistance.

Thus, during the negative halfcycle the magnetic element again absorbs the supply voltage, and the operating point moves down the left-hand side of the $\int e d t$ versus i plot until the magnetic-element current reaches the value of current corresponding to the knee of the transistor curve. The transistor then absorbs all the supply voltage and maintains the magneticelement current at a substantially constant value. The operating point corresponding to this condition is shown as point d.

When the negative half-cycle is completed, the magnetic element is left at point e and the device is ready for the following positive half-cycle of operation. During this positive half-cycle, an added fedt accumulates across the core winding and the operating point moves from e to f and then to c. As the voltage integral tends to increase beyond the value required to reach point c, the core no longer absorbs voltage and the entire supply voltage is impressed across the load resistor. There is then a resultant sudden change in circuit current to the value at point g, determined simply by the instantaneous value of supply voltage v_{0} and the value of load resistor R. The core remains saturated during the remaining portion of the positive halfcycle and power is delivered to the resistor.

When the supply voltage reaches zero, the positive half-cycle is completed and the core if left at point h. The waveforms corresponding to this operation are shown in Fig. 5C. By varying the emitter current of the transistor, any value of fedt can be applied to the winding during the negative half-cycle, and thus the interval of time in which load current exists during the following positive half-cycle is controllable.

An experimental circuit which
has been investigated is shown in Fig. 6A. The parameter values are in part determined by three transistor properties: (1) The peak voltage which may be applied to the transistor collector electrode; (2) the maximum permissible collector current; (3) The allowable collector dissipation, which limits the amount of collector current in the opposite-from-normal polarity.

Property 1 limits the peak supply voltage usable. Property 2 determines how much reset current is available. Property 3 determines the peak load current. Associated waveforms are shown in Fig. 6B.

Extensions of Circuit

A more efficient use of the circuit results if the collector and base terminals of the transistor are paralieled with a good diode. Such an arrangement was constructed employing a 4JA1A1 junction diode.

FIG. 6-Experimental version of final circuit, with waveforms of a-c supply voltage and load current

FIG. 7-Vacuum-tube equivalent of magnetic amplifier circuit having grounded-emitter transistor shunted by diode

This was capable of supplying one watt of power to the control phase of a two-phase servo motor.

An auxiliary diode also allows the transistor to be placed in the grounded-emitter connection. This connection ailows the input signal to work into a higher resistance than is presented by the groundedbase connection. As shown in Fig. 7, a vacuum triode paralleled with a diode can be made to operate in approximately the same manner as the transistor circuit.

Conclusions

This paper describes a combination of magnetic core and transistor which permits an efficient coupling of these devices. Load powers in excess of those capable of being handled by a transistor alone are available in this configuration. The circuit operates in the Ramey manner, ${ }^{1,2}$ manifesting complete response to a change of input signal in one cycle of carrier supply frequency. The device forms a convenient stepping stone from the powers available from transistors to the powers available from magnetic amplifiers. Many variations of the basic circuit are possible and should find wide application.

Appendix

In designing a magnetic element for use in the transistor-controlled magnetic amplifier, several factors must be determined. Once a particular square-loop core material has been selected, three choices remain to be made-the core length, core cross-section and the number of turns of winding. The transistor and the circuit performance requirements determine these factors.

Consider first that the peak voltage chosen for the supply must not exceed the maximum allowable transistor collector voltage, but at the same time should be capable of causing the core to change from negative to positive saturation. For the particular core material chosen there exists a given value of saturation flux density. Half a cycle of supply voltage should be capable of changing the core flux from the negative to the positive saturation value. The voltage induced in the
core winding is $e=-d \lambda / d t$ where λ represents the flux linkages of the coil and is equal to $N A B$. Here N is the number of turns on the core, A is the cross-sectional area of the core and B is the flux density in the core.

With e constrained to be a sine wave of peak amplitude E 。

$$
e=E_{0} \sin \omega t=-N A \frac{d b}{d t}
$$

Integrating these terms over a half-cycle of e verifies that $E_{o}=$ $\omega N A B$.

The maximum allowable transistor current must be able to provide enough ampere-turns to saturate the core, hence with H, representing the saturation magnetizing force, $N I_{c}=H, l$. Here N is the number of turns on the core, l is the length of the core and I_{0} is the allowable transistor current.

To form a third expression involving the three unknowns, use the criterion that the winding resistance be some fraction F of the minimum allowable circuit resistance. The minimum allowable resistance is the peak value of supply voltage E_{0} divided by the maximum allowable forward (lowresistance direction) current of the transistor I_{+}. Thus the winding resistance should be $F E_{o} / I_{+}$. With the assumption that the average turn length on a practical toroid of mean length l is $l / 2$ and the effective window area is $n l^{2} / 4 \pi$ (n being the efficiency of using the area), the winding resistance is $R=\rho L / A=$ $2 \pi N^{2} \rho / n l$, where ρ is the resistivity of the winding material and N the number of turns on the toroid. The three expressions for determining l, A and N are thus

$$
\begin{aligned}
& E_{o}=\omega N A B, \\
& N I_{o}=H_{a} l \\
& \frac{2 \pi N^{2} \rho}{n l}=\frac{F E_{o}}{I_{+}}
\end{aligned}
$$

The solution of these expressions gives

$$
\begin{aligned}
& N=\frac{n E_{o} I_{o} F}{2 \pi H_{a} \rho I_{+}}=\frac{K}{2 \pi} \\
& A=\frac{2 H_{0} \rho I_{+} \pi}{\omega B_{a} F I_{o} n}=\frac{2 E_{o}}{\omega B_{a} K} \\
& l=\frac{n E_{o} I_{o}^{2} F}{2 \pi H_{o}^{2} \rho I_{+}}=\frac{I_{o} K}{2 \pi H_{a}} \\
& K=\frac{n E_{o} I_{o} F}{H_{a} \rho I_{+}}
\end{aligned}
$$

FIG. 8-Nature of power dissipation in a junction transistor

FIG. 9-Composite characteristic of magnetic core, illustrating behavior during reset half-cycle

For an example, the values of the constants for the illustrative amplifier were $\rho=1.8 \times 10^{-8}$ ohmmeters, $E_{0}=18$ volts, $I_{0}=0.5 \mathrm{ma}$, $n=0.5, F=0.2, H_{1}=26$ ampere turns per meter, $\omega=377$ radians per second, B. $=1.2$ webers per square meter and $I_{+}=100 \mathrm{ma}$. Using these constants, the following calculated parameter values were obtained; in parentheses after each is the value actually used, for comparison: $N=3,060(3,000)$ turns; $A=4 \times 10^{-6}\left(23 \times 10^{-9}\right)$ square meters; $l=0.059$ (0.075) meters. As the calculations show, these expressions should be used to provide nominal parameters only.

Collector Dissipation

In the junction transistor a limit is placed on the collector dissipation. For normal use of the transistor this dissipation takes place at, or very near, the collector junction; if the dissipation becomes too great, the junction itself may be destroyed and the transistor become useless.

In the case of current passing through the junction in the backward direction, the heating of the transistor is not localized at the junction, but occurs throughout the base and collector materials. These two modes of dissipation are illustrated in Fig. 8.

Since the volume of the transistor is small, it is thought that the
dissipation should still be kept to the value specified for normal operation. To determine how much current could safely be passed in the backward direction, the static volt-ampere characteristic of the transistor was measured and the load current limited to a value causing the average dissipation at full amplifier output to be less than the rated value.

Core Behavior

During the reset half-cycle (negative half-cycle of supply voltage) the magnetic element operating point moves from point h to point d on the characteristic of Fig. 9. At the current corresponding to point d, it was said that the transistor operating point was at the knee of its characteristic and any further increase in transistor voltage did not increase the circuit current substantially. However, since the current is held at an almost constant value after point d is reached, the core no longer operates on the same magnetization loop and the composite characteristic of the core must be considered.

The portion of the loop from point d to saturation becomes almost a vertical straight line. The very small increase of current permitted as the transistor voltage increases is effective in causing a reset to d^{\prime} greater than that to d as would be predicted from the normal magnetization characteristic. This behavior removes the possibility of making an easy analysis of the circuit, but does not destroy the usefulness of the circuit. The limits of the reset current I_{n} and I_{m} still remain the same, and the current swing for total control is the difference between these two values.

The work on which this article is based was supported by the Office of Naval Research and the Navy Bureau of Ships. The author expresses his appreciation to his associates, including Professor T. S. Gray, for their helpful suggestions.

References

(1) R. A. Ramey, On the Mechanics of Magnetic Amplifier Operation, AIEE Trans, 70, Part II, p 1,214, 1951 .
(2) George M. Attura, Magnetic Amplifier With Reset Control, Electronics, p 161, June 1953 .

Components Department Aids Project Engineers

Almost one-half more of a project engineer's time is available for actual design if responsibility for meeting military specifications on components and materials is transferred to a centralized group that serves all project engineers

By STANLEY KRAMER and SEYMOUR GURIAN
Applications Engineer
Germanium Division
Radio Receptor Company, Inc., Brookly Communications Division

INCREASING DEMAND by the government upon civilian contractors and industry to produce government material and equipment has brought about a new problem, that of government-contract administration. The government requires and demands stringent adherence to the many diverse specifications under which the contract is awarded, covering manufacturing procedures, materials, processes, parts, operation, packaging and shipment.

Specifications Problem

Under the project-engineer system, the project engineer, being responsible for the entire job, is faced with an insurmountable load of specifications to which he must adhere. Not only must his design meet specifications in operation, but the components and parts that go into the final manufacture of the overall equipment must also conform to their individual specifications. As a result, a great many man-hours that would normally be devoted to design work by the project engineer are spent delving into specifications, interpreting them and carrying on correspondence with the government agencies concerned for waivers and deviation approvals.

By divorcing the project engineer from responsibility for compliance with all specifications other than those directly related to the design of the equipment, at least one-half more of his time can be put into actual design.

Responsibility for meeting the other specifications is turned over to a group designated with the sole responsibility of contract administration. Its prime functions are to provide the project engineer with sufficient information about the spe-
cifications on his particular contract and to handle all of the administrative and engineering functions other than those strictly concerned with design. This includes contract analysis, approval of component parts, waivers, deviations, descrip-

FIG. l-Organization chart of new components group

FIG. 2-Average distribution of project engineer time on a military contract with old system (left) and with new components-group system taking over much of his clerical work (right)
tive patterns, drawing specifications and supplying a flow of components, materials and processes acceptable to the government agency concerned for use in this end equipment. This group is called the components group, and is organized as shown in Fig. 1.

Organization of Group

The chief components engineer is responsible for the function of the entire group. He also serves as the liaison man for dealing directly with representatives of the government agencies concerned, and is the final review point for all parts, materials and processes employed in this particular project.

The contract administrator is responsible for analyzing the contract, picking out all the specifications that are part of the contract, and collecting all subsidiary specifications. He then prepares a contract analysis that is used as a guide for the project engineer and the components group in the choice of parts, materials and processes. Another responsibility is that of maintaining correspondence of an official nature with the government to record waivers and interpretations of the specifications.

The specifications engineer is responsible for completing components drawings so that the specifications include all of the government standards for finishing, material, processes, workmanship, marking and other details. His drawings must meet the requirements of the government agencies. These manufacturer's drawings are ultimately submitted as part of the overall equipment for future procurement needs.

The prime responsibility of the standards engineer is to maintain a flow of approved components for use in the equipment. The standards section has a sample-test laboratory where all component parts are sam-ple-tested for compliance with the design requirements of the project and the added requirements of the government specifications which are applicable.

Test results are recorded in the form of an engineering sample report that is ultimately transmitted to the procurement department.

The parts analyst heads a sec-
tion responsible for the complete descriptions of the component parts used in the overall equipment, along with preparation of parts lists, preferred lists for procurement, processes, bills of materials and nomenclature assignments. This section also is responsible for stock numbering and for supplying information to the instruction-book department for the ultimate completion of the instruction book.

The librarian provides the entire organization with a complete set of government specifications, civilian specifications, catalogs, brochures, technical literature and standards as set up by the organization.

The existing purchasing department retains all of its normal functions, except that it is limited to procuring components that have individually been tested and approved by the components group.

Customer Liaison

The chief components engineer is the sole representative of the organization in direct relationship with the government agency. Much more uniform operation is attained, since only one individual meets with the government agents and therefore controls policy as well as operation. In an organization where many projects are simultaneously in progress, one representative is able to bring about approvals for all projects at the same time since many of these projects are interrelated in design and construction even though made for different government agencies. Where one piece of equipment is being purchased by several military agencies at the same time, such as by the Air Force, Navy and Signal Corps, it has been found extremely advantageous for the chief components engineer to sit with all agencies at the same time and bring about a common set of specifications, engineering design, components, materials and processes. This eliminates the necessity for extreme controls at the production and assembly lines.

Comparison of Systems

Where the project engineer is in direct relationship with the government engineers, one project may get approval for a particular component while the project for another
agency is denied such approval. This means that the production line must segregate its output for individual waivers, necessitating individual stock control systems, individual procurement and parallel assembly facilities. The new com-ponents-department system eliminates this.

In the project-engineer system, when a particular component is required to fit design needs, the project engineer must investigate, on his own, the ability of the component manufacturer to produce this component according to government specifications, and must gain approval of the component by the government agency for which his project was designed.

When twelve or more projects are run simultaneously, it means that twelve or more project engineers are performing the same task. Under the components-group setup, these problems are relayed instead to the standards engineer. He at one time investigates the component, submits the component for approval to the various government agencies, subjects this component to sample-tests at his own laboratory, and issues to all project engineers the results of this investigation. In addition, he maintains a catalog of acceptable components for use on military equipment, thus performing in one-twelfth of the time what twelve project engineers would be capable of performing, working independently.

The specifications engineer is able to provide a certain amount of uniformity throughout the organization in the choice of components by establishing so-called preferred lists of acceptable components. This assists the procurement arm of the organization as fewer types of components are required to be purchased and stocked than previously. In addition, he raises the general level of standards for the entire organization by devoting a good part of his time to weeding out those components that are generally inferior to present engineering practices. Such components do creep into design equipment when the project engineer chooses them because of incomplete knowledge of components then available in industry.

Representalive sample board maintained by components department. Types having JAN approval can be used without farther checking

The specifications engineer also supplies uniform manufacturing drawings that can be used by all project engineers at the same time. Heretofore, the project engineers had their own draftsmen and designers assigned to them, and each project engineer specified the components and drawings in his own manner. Now, this is done in a uniform system. Usually one drawing takes the place of twelve or more individual drawings and satisfies the requirements of all projects simultaneously. The chief components engineer places his signature on each drawing to certify compliance with specifications, approval status and acceptability of the component $f \in r$ the specified application.

The parts section provides the same type of saving of time and energy in the sense that a description
for a part is written once. It is necessary only, in order to bring out a tabular list of parts, to review part descriptions, collate the masters and run off a set to make a new tabular list of parts.

Conclusions

A study was made to determine the amount of time, labor, money and energy saved by the compon-ents-group method of operations. Results are shown in Fig. 2.

The cost of setting up a components group is not a factor as all of its functions are of necessity already being performed by someone somewhere in the plant. Once running, there is a major saving because centralized checking is more efficient.

When the country is in full production, there is a definite shortage
of qualified design engineers. Saving of time and money is then enhanced by the freeing of skilled and hard-to-get design engineers. The new system thus enables an organization to use its limited manpower in the most efficient manner.

Sales representatives of components manufacturers, in addition to calling on purchasing, are also required to contact the components group to establish approval of their products. This means seeing only one man, getting a more thorough product evaluation and giving the salesman assurance that the information will be disseminated to the right engineers when they need it. Before, in a large company it was often necessary for a salesman to call on as many as 40 engineers to insure that his message got to all prospects for his producis.

Standards Converter

FIG. 1-Scanning-standards converter includes high-quality receiver that presents picture to be converted on long-persistence cathode-ray tube. Resulting optical image is scanned by image-orthicon-type camera operated according to desired scanning standard

MULTIPLE scanning standards in use throughout the world have posed the problem of developing a satisfactory method for converting television pictures from one set of standards to another.

One type of standards converter is illustrated in Fig. 1. It consists of an arrangement whereby the picture to be converted is displayed on a high-quality cathode-ray tube and the resulting optical image is rescanned by a television camera operated according to the required standard.

Experiments have revealed three problems that require solution before satisfactory results can be obtained. The first problem arises be-
cause the display on the cathode-ray tube is an intensity-modulated light spot rather than a continuous image. If the scanning camera should then behave like a simple phototube in which any variation of the total light flux causes current fluctuation in the output circuit, a signal will appear at the output corresponding to the brightness variations of the cathode-ray-tube spot. Thus an unconverted component of the input signal will appear at the converter output. This effect is illustrated in Fig. 2.

A second difficulty encountered arises from interference or strobing patterns produced when the scanning beam of the camera tube

By A. V. LORD

Research Department
$B B C$ Engineering Dirision
London, England
explores the line structure of the image to be converted. This is known as line beating.

The third problem is associated with any difference of field frequency that may exist between the two standards. Such a frequency difference results in a cyclic variation of the vertical distance on the target of the camera tube, separating the image of the cathode-raytube spot and the camera scanning beam.

Unconverted Signal

The characteristics of the camera tube are important in eliminating from the output signal any unconverted components of the input. signal. If the camera tube used in the converter is either an iconoscope or orthicon, the intensitymodulated photo-emission at the mosaic results in a varying displacement current flowing in the signalplate circuit. For the image iconoscope, a similar effect takes place through an intensity-modulated electron beam in the image section of the tube.

Camera tubes whose output signal is derived from the return scanning beam, such as the image orthicon, do not behave as simple phototubes and therefore do not suffer from photo-signal difficulties.

Another solution to the unconverted signal problem may be to separate the input and output signals by high-frequency modulation of the reading beam together with insertion of a suitable bandpass filter in the output. Perhaps a more convenient method is to employ a phosphor in the converter cathode-ray tube that has a persistence characteristic extending over a time in the order of one television

For International TV

Interchange of television programs between countries using different scanning standards is made possible by converter consisting of camera viewing picture on cathode-ray tube.
 Proper choice of camera and picture tube overcomes chief technical difficulties

field. Thus the camera tube is presented with a nearly continuous image rather than an intensitymodulated spot.

Figure 3 illustrates how phosphor afterglow characteristics influence the ratio of converted-signal to photo-signal interference. The curves represent the afterglow characteristics of two phosphors having different decay constants. For the same amplitude of con-verted-signal output, the same total light flux should fall on the camera target during storage time; the area under the two curves must be equal. Therefore the phosphor having the shorter persistence must be operated with a higher initial brightness.

The photo-signal is generated by the camera tube operatirg as a phototube and its amplitude is di-
rectly proportional to the peak brightness of the screen. Thus, to deduce the improvement in the ratio of converted signal to photo-signal that will be obtained when phosphor persistence is increased, it is necessary to calculate the ratio of the peak brightnesses at which the two phosphors must be operated to give the same amplitude of converted signal.

Trree phosphors having exponential decay characteristics have been tested and Table I shows the relevant values of decay time constant $1 / \alpha$ for each type.

Use of phosphors B or C on the conversion crt will improve the ratio of converted signal to photosignal approximately 23 db as compared with phosphor A.

The exact determination of this ratio is governed by many factors,
including camera-tube storage characteristics and the distribution of light and dark areas in the primary pictures. Experiments show that a satisfactory ratio can be achieved using phosphor B or C and that persistence is insufficient to cause serious blurring on moving subject matter.

Line-Beating

The second problem in standards conversion arises because the pattern or raster swept out by the writing spot consists of very thin horizontal lines between which there are unscanned areas. The reading process then introduces interference beat patterns except where the reading spot exactly retraces the written pattern. The difficulty may be overcome if the dimension of the wrinting spot in the field direc-

Equipment for converting between French 819 -line standards and British 405-line standards is located at Cassel in northern France Twin standards converters are at right with monitor console. left. Television scenes of coronation ceremony were rauted through Cassel via microwave links to feed a five-nation television network
tion is made exactly equal to the distance separating two successive lines of the primary field. This required shape may be approximated by suitable arrangement of the focusing fields but may be obtained more conveniently by spot wobble, high-frequency deflection of the spot in the field direction. Spot wobble permits close control of the effective spot dimension achieved.

Field-Frequency Differences

If the converter camera tube is of either the iconoscope or imageiconoscope type, satisfactory conversion will be effected only between standards having identical field frequencies. Moreover, with these tubes it is necessary to maintain a certain phase relationship between the field synchronizing pulses of the two standards to maximize the converted signal output. With either the orthicon or image-orthicon, it is not necessary to maintain a particular phase relationship between the writing and reading processes although a frequency difference will introduce additional problems.

When the field frequency of the writing standard is lower by a ratio of 8:10 than that of the reading standard, every fifth reading field will be devoid of signal, and conversely if the field frequency of the writing standard is higher than that of the reading standard every fourth reading field will provide a signal of double amplitude. These irregularities in the reading signal cause intolerable flicker. Furthermore, if the two standards are of the interlaced type then broadening the reading spot effectively halves the normal vertical resolution.

When the reading standard is of

FIG. 2-Photo-signal interference. Unconverted component of input signal shows up as bright horizontal bars on standard BBC test pattern
the interlaced type and the reading beam has a high resolving power, charge storage may last as long as two reading-field periods and the reading signal amplitude will never fall to zero. If the field frequency of the writing standard is lower than that of the reading standard the output signal, during the time of ten reading fields, will consist of four fields of an amplitude derived from the reading of one writing field and six fields of a nominally double amplitude derived from the reading of two superimposed and stored writing fields.

When the field frequency of writing is higher than that of reading, there are again two amplitudes of reading signal, corresponding, this time to the reading of two or three superimposed and stored writing fields. In both the above cases intolerable flicker results.

If, however, the writing process is arranged to continue substantially throughout one writing field as it will with a long-persistence phosphor, signal variations due to differing field frequencies will be considerably reduced.

A further reduction in signal fluctuation will result either if the

Table I-Decay Characteristics of Three Cathode-Ray-Tube Phosphors

reading beam does not effect complete erasure of the written pattern or if the storage surface is such that the efficiency of charge storage is reduced when the charge stored exceeds a given maximum value. Either or both of these effects may be approximated by suitable operation of an image orthicon as the storage and reading device.

Experiments with suitable longpersistence phosphors and an image-orthicon camera tube show that successful conversion may be carried out between standards whose field frequencies differ by a few percent but that if the fieldfrequency difference is of the order of 20 percent, the signal output tends to become unacceptable due to flicker effects.

Studies have shown that for a conversion where the field frequency is increased from 50 to 60 cps the output signal will be flickermodulated at beat frequency to a depth of approximately 24 percent. When the field frequency is increased from 50 to 51 cps flicker modulation falls to 3 percent.

Flicker modulation is also high, 15 percent, when the field frequency is changed from 60 to 50 cps, and that for a conversion from 51 to 50 cps , the flicker modulation is low. 3 percent. The greater output signal will always be obtained for a conversion involving fieldfrequency reduction.

Practical Arrangement

In a system developed the signal to be converted is first applied to a stabilizing amplifier (Fig. 1). This unit performs three principal functions. First, black-level stabilization of the input signal removes any interfering signals such as hum. Next, synchronizing pulses, derived from the input signal, are made available for locking the timebases of the display unit. Finally, the unit provides some measure of high-frequency preëmphasis to the input signal to compensate for aperture losses in the conversion ca-thode-ray tube.
The display unit contains the conversion cathode-ray tube. Line broadening or spot wobble is made available in the display unit by an auxiliary deflection coil excited by a low-power oscillator. Flyback sup-
pression is applied to the cathoderay tube to permit the primary picture to be set up well beyond the point where flyback lines would normally be visible. Thus the contrast law of the picture displayed may be somewhat modified to suit the contrast characteristic of the camera. Satisfactory results may be achieved by this means although a fully flexible gamma circuit would be the ideal solution to the problem.

The image produced at the screen of the display cathode-ray tube is

FIG. 3-Phosphor afterglow characteristics show that the phosphor having the shorter decay time must be operated at a higher initial brighiness level, B_{2}

FIG. 4-French mademoiselle appears on British television screens. Picture originated in Paris at the 819 -line standard and was distributed throughout EBC network at 405 lines

FIG. 5 - Suggested method for obtaining flicker-free output when converting from U. S. scanning standards to British
viewed by the image-orthicon camera. To equalize the aperture loss of the conversion camera, an equalizer is inserted in the video signal path between the camera-head amplifier and the main amplifier in the control unit. It is highly desirable that this equalization be achieved before insertion of blanking signals into the video waveform.

The equalizer used is of the timederivative type and it has been found that the principal aperture losses of the conversion camera may be compensated by subtracting from the camera signal an amplified version of its second derivative. This type of equalizer is also ideal for preëmphasizing the input signal in the stabilizing amplifier.

The pulse generator provides all timing, blanking and synchronizing signals for the conversion-camera channel.

The optimum setting for all focus controls may be found by removing the wobble from the display-unit scanning spot to obtain a line-beating pattern on the final picture. All focus controls are now adjusted for maximum visibility of this pattern after which the spot-wobble is restored and its amplitude adjusted to remove the interference pattern. Some residual beat pattern will be observed unless a high degree of field-scan linearity is maintained.

The overall contrast law of the system may be adjusted by the dis-play-tube bias control with a consecuent adjustment of gain to maintain constant peak-white brightness.

The iris and target-bias controls of the camera tube will also affect the converter contrast characteristic and will, in addition, influence the performance of the apparatus when a small difference of field frequency exists between the original and converted pictures. This is because the storage characteristics of the camera tube are dependent upon luminous input and target potential.

Results

A twin-channel version of this converter was developed early in 1952 and used during an exchange of television programs originating in Paris at the 819 -line standard
and distributed through the BBC network at the 405 -line standard. (See Electronics, Industry Report, p 8, Aug. 1952.)

Figure 4 is a photographic reproduction of the converted picture as received in London.
Figure 5 shows a possible method of obtaining a flicker-free output signal when converting between U. S. and British standards. The signal output of the standards converter is applied to a modulator in which variations of amplitude due to the change of field frequency are removed. This is done by a control waveform of suitable amplitude and waveshape applied to the modulator.

To insure that the control waveform has the correct frequency and phase relationship, a pulse generator is driven by field-frequency pulses derived from both the primary and output signals of the standards converter.

Bibliography

CCIR. "Pelevision Sysiems", Documents of VIth Plenary Assembly, Rnt No. 15, p of VIth Plenary Assembly, 1951 . Proc DEE. Kemp, Television Re
Proc IEE F. N C. Fr. N. Gillette, G. Wing and Euc Tronics, p 90 , Oct. 1950
${ }^{\text {Tronics, p }} 90$, Oct. 1950 de Tansforma tion des Stamdards de Télevision, L'Onde Electrique, p 178 , Apr. 1951.
J. D. McGee, "Electronics", p 135, Pilot press. 1947 .
J. D. McGee and H. G. Lubszenski, E. Jr. D. Cathode-Ray Television- Transmission Tubes, Jown IRE, 84, p 468, Apr. missi
1939.
1939. K. Zworykin, G. A. Morton and L. E. Fiory. ."Theory and berformance of the Iconoscope", Proc. $I R E, 25 . \mathrm{p} 1,071$, the $180 n o s$.
Aug. 1937.
A. Rose and H. Iams, The Orthicon. a Television Pickup Tube, RCA Review, p 186 . Oct. 1939.
p 186. Oct. 1939. A Review of Some Television Pickup Tubes, Proc. IEE, 97, 377. Nov. 1950
${ }^{3} \dot{H}$. Tams, G. A. Morton and V. K. Zworykin, The A. Image Iconoscope. Proc IRE, 27, p 541. Sept. 1939 .
A. Rose, P. K. Weimer and H. B. Law. The Inage Orthicon-a Sensitive Televi sion Pickup Tube, Proc. IRE, 34, p 424, Juls 1946
H. W. Leverenz, Luminescence and Te nebrescence as Applied to Radar, RCA Revifu. p 199, June 1946.
W. N. Sproson, M. Gilbert and W. West. Some Fundamental Aspects of Color Television, Proc. IEE, p 842, Apr.-May 1952.
T. C. Nutall, More About Spot Wrobble, Wireless Worla. 56, 189, May 1950.
V. IF. Zworykin and E. G. Ramberg, Standards Conversion of Television Signals, Electronics, 25, p 86. Jan. 1952. L. Lax and D. Weighton, 1 Gamma Control Circuit using Crystal Diodes, Proc. IEE. 1 804, Apr.-Nay 1952
G. G. Gouriet, Spectrum Fqualization hy Direct Operation on the Time Function, Wireless Engineer. May 1953.
T. H. Bridgewater, Paris-London Television. Electronic Eng., 24, 110, Sept. 1952 M. Knoll and B Kazan, Storage Tubes and Their Basic Princinles, John Wiles and Sons, New York, 1952.
F. Schroeter, Image Storage Problems Buli Sohweiz Elehtrot Verein, 40 , p 564 , 1949.

Mining-machine engineer points to differential pickup mounted on cutting tooth of outer cutting head, used to deliver signal proportional to hardness

Mining machine, with cutter and front end of first portable conveyor already underground at start of new tunnel. Power and control cables, stored on large upper-deck reels, ride in L-shaped hooks at far side of conveyor. Windows of control station can just be seen at right on machine

Remotely-Steered

Nobody goes underground. Operator in control room outside of mine watches two cathoderay screens as crawler-mounted cutter burrows into hill. Differential pickups on cutter teeth generate signals proportional to hardness of strata in vein. Selsyns synchronize rota-
tion of cutters with polar presentations on scopes to give positional information

FIG. 1 -Side view of new mining machine, which runs on cross rails paralleling face of hill when moving to new position for start of next tunrel. Crawler powered by electric motors supports rotating cutters that break up coal for conveyor feed out of tunnel to waiting trucks. Thirty-foot conveyor sections, added or removed as needed, are towed by crawler as it advances into vein of coal

Operator at control station on first floor of mining machine steers cutter along vein by watching pips on two cathode-ray polarcoordinate indicators. Bpproximately, twenty electrical indicating systems, connected to crawler equipment by 57-conductor cable, tell exactly what is going on underground. Operator can steer machine by remote control to mine the desired coal to best advantage, using paps corresponding to bare coal layers and to slate or shale roof and bottom of cut as guides

Coal-Mining Machine

The Blue Creekr: West Virginia coal properties of Carbide \& Carbon Chemicals Co. lie high up in scalloped ridges. The typical ridge has some soil on top, then 35 feet or more of rock. Below this is the first of several lush coal seams, which lie in wavering layers. Strip mining is out, because there's too much rock to remove. Deep mining is no better, because the ridges aren't big enough to justify the expensive installation. A new unmanned, re-motely-controlled machine was developed especially to do this, mining job economically.

New Mining Technique

A horizontal shelf is bulldozed along the side of the ridge, roughly following the coal seam. On this, a railroad track is laid to carry the machine.

The mining rig is a self-propelled double-deck structire, constructed as in Fig. 1. On the lower deck is the control room and a runway or

By JOHN MARKUS

launching platform for the mining machine. This deck is also provided with a conveyor that receives coal from the mining conveyor and feeds it to truck-loading equipment at the rear. The upper deck contains the huge reels from which the power and control cables pay out as the cutter advances into the hill.

The coal-cutter or miner is mounted at the front of a crawler driven by a large variable-speed electric motor. Separate electric motors drive the four overlapping rotating cutting heads tipped with tungsten-carbide bits. The coal in between the four round holes made by the heads is broken out by bulldozer blades on top and bottom, to give a horizontal hole 116 inches wide and 38 inches high, rounded at the ends.
When the cutter has penetrated
the seam to the length of one section of conveyor belt (about 30 feet), it is stopped and a couple of minutes is spent hooking in another conveyor section. The cutter can then go another 30 feet. Maximum depth of holes presently is 690 feet, which is the limit of the conveyors now on hand. With additional conveyors, up to 1,500 feet of penetration is considered entirely practicable. The entire string of conveyors is pulled in by the crawler as it pushes the cutters into the coal vein.

When the hole has been mined to the desired distance, the cutter is withdrawn and the whole rig is rolled a little way down the track to the next spot to be mined. Enough coal is left between drillings to hold up the top of the ridge. Leaving 3 -foot ribs between holes and making second cuts in each where practicable, recovery is approximately 60 percent. Maximum production ranges up to $1 \frac{2}{3}$ tons per

Appearance of hillside after coal vein has been mined by machine. Three-foot ribs are left between 116 -inch-wide cuts to hold up hill. In present operation, holes go in only 690 feet because additional conveyors are not yet available
minute or up to 100 tons an hour.
By making one or more cuts below the first, thicker seams can be mined. Normal practice at Blue Creek is to make a second cut.
Since the cutter is not accompanied by an operator, steering required developing 20 indicating and control instruments and equipment. One cable carrying 14 conductors is used for power, and another cable having 57 conductors is used for the indicating equipment. Hydraulically powered reels with spooling devices are used to reel in, pay out and store the cables. The capacity of each reel is 1,000 feet on the present machine.
The coal seams wander up and down in pronounced waves. If the cutter is not guided, it will stray from the steam, either wasting its
time in already mined territory, or ruining its cutter heads on the hard stone that sandwiches the coal layer. To solve this problem, a sensing tooth is mounted on each of the outer cutting heads. These teeth project about an inch beyond the cutter and are spring-loaded. The amount of deflection of a sensing tooth varies with the hardness of the various layers in, above and below the coal seam.

On each sensing tooth is mounted a differential pickup designed to be responsive chiefly to movements in line with the forces acting on the tooth during cutting. General vibration of the cutting head thus does not affect the pickup output signal. Electrical connections to the lowimpedance pickup are made through slip rings and brushes associated

FIG. 2-Electronic control system for steering cutter accurately, at predetermined distance from roof or floor of wavy, wandering coal vein, for distances up to 1.500 feet in from control station
with the drive shaft of the cutting head. No preamplifier is needed at the cutter even with 1,000 feet of connecting cable.

Rotation of the sensing tooth is synchronized with the travel of the electron-beam spot around the circle of the polar-coordinate oscilloscope in the control by the method shown in Fig. 2. A selsyn transmitter is gear-driven by the cutter shaft and is electrically connected to a selsyn receiver and a-c power source at the control station. The selsyn receiver motor in turn drives a two-phase generator that is comected to the circular time base input terminals of the cathode-ray oscilloscope.

Scope Indications

The output signal of the pichup is fed to the high-impedance signal input terminals of the oscilloscope through an impedance-matching transformer. When a sensing tooth cuts through anything harder than coal, it deflects more and vibrates momentarily, causing the pickup output voltage to go up. This produces radial deflections or pips on one part of the circle on the screen. Movement of the pip in either direction on the circle normally means that the machine is going up or down. The top of the cut corresponds to 12 o'clock on the scope screen and the bottom of the tunnel to 6 o'clock. A pip at 3 or 9 o'clock would therefore indicate a thin seam of hard bone coal halfway down from the top of the cut.
When starting into the vein, the operator notes where the bone coal pips are. If the pips stay at these positions as the machine goes in, the operator knows that he is following the vein.

Normal cutting, just hitting draw slate at top or 12 o'clock and going through bone coal strata at about 3:30 o'clock

Hitting mixed slate and sandstone at top, indicating that cutter should be run down to stay in seam

Full conlact with sandstone top; bone-coal pip at 8 o'clock instead of 3:30 also means cutter has gone way too high

Going into bottom shale on second or bottom cut; this means operator should bring cutter up immediately

Examples of cathode-ray patterns that guide operator in steering robot coal miner, with interpretations of significance. Operator would rarely see the two righthand patterns, because they generally mean he had been napping or had ignored earlier warning indications that the cutter was going astray underground

Two complete strata-indicating systems or stratoscopes are required, one on the outermost cutting tooth of each outside cutting head, to indicate tilting of the cutter and to permit accurate operation in sidewise-slanting seams. The patterns appearing on the two screens therefore represent the strata being cut at that time by the sensing teeth.

Steering correction is applied by actuating a hydraulic jack to raise or lower the cutting head, which is pivoted on the main body of the miner.

Drift from one side to the other can be caused by faulty direction, by worn bits on either side or by a change in the character of the coal. A light beam can be employed for checking straightness of the tunnel, but the major reliance is placed on a drill at the rear of the machine on the side next to the rib. Every 30 feet, when a new conveyor is added, the drill bores through the rib. The drill reverses automatically as soon as it breaks through, and the length it goes is registered on a dial in the control cab. If drifting is occurring, guide shoes at the front of the machine are energized to correct direction by pushing against the side of the hole.

Conclusions

The new continuous coal-mining machine opens to economical recovery vast, rich coal lands that hitherto have been too expensive or too difficult to work. Even here
cost cutting is achieved, possibly as great as 40 percent of present conventional coal-mining methods. With this machine, the company expects no trouble in supplying its own fuel needs at slightly under $\$ 3$ a ton delivered.

Another benefit of automation in coal mining is elimination of underground mining accidents. Nobody goes underground here; if jamming or mechanical trouble develops, the machine can pull the conveyors and cutter out backward with winches, after first retracting the cutter-head bulldozer blades to get more clearance. As each conveyor section emerges, it is unhooked and hoisted out of the way
for later use when going in again. Output of 50 tons per 8-hour manshift continuously and up to 100 tons per man per shift in softer coal veins is commanding the attention of the entire coal industry. Although electronically controlled mining deep underground is not possible with the present unit, engineers feel they can modify the machine for this purpose also.

Bibliography

Digging Coal-No Hands. Business Week. p 70 , Nov. 8, 1952.

Underground Mining from the Surface with the Carbide Miner, Coal Age, $D 73$, Dec. 195 ?
Paul I. Alspaugh and Graham Cook, Farth Strata Cutting Indicator, U. S. Patent 2,620,386

ELECTRIC MOTORS USED IN MINER

Cutter heads-two $60-\mathrm{hp} \mathrm{a-c}$, geared down to drive heads at 60 rpm

Crawler drive—special $71 / 2-h p d-c$ motor energized by $\mathrm{m}-\mathrm{g}$ set on top floor of mining rig; field voltage control on $d-c$ generator varies speed of advance from 0 to 30 inches per minute. Usual speed of 20 inches per minute yields about 2 tons of coal per minute. Tramming in retraction and launching at speeds up to 30 ft per minute is provided by additional $20-\mathrm{hp}$ a-c motor on crawler
Conveyor motor on crawler- $71 / 2 \mathrm{hp} a-\mathrm{c}$ (moves coal back from cutter heads to input of first portable conveyor)
Portable conveyors-3-hp a-c motor on each of 22 units, for driving conveyor belts independently (conveyors themselves are towed by crowler)
Hydraulic jacks on crawler- $1 / 2$-hp e-c pump motor
Guide-shoe adjustment on crawler- $1 / 3-\mathrm{hp}$ a-c
Spiral-correction on crawler-1/3-hp a-c
Rib-thickness drill—2-hpa-c
Platform conveyor on mining machine-5-hp a-c
Transfer conveyor on mining machine-3-hp a-c
Elevating conveyor to truck-loading hopper-71/2-hp a-c
Total power demand with all conveyors in operation-200 kw

Optimum working frequency for prevailing ionospheric conditions is determined instantly. Recently declassified equipment utilizes backscatter of transmitted pulses obliquely incident on the ionosphere to provide indication

By LEONARD C. EDWARDS
Raytheon Manufacturing Company Equipment Engineering Division Cewton. Mass.

IN LONG-DISTANCE radio communication, there exists the problem of determining the optimum operating frequency at a given time for a given communications link. The problem arises from changing ionospheric conditions. Common practice today is for operators to depend for their knowledge of propagation conditions upon their own past experience and the monthly predictions of ionospheric conditions, published by the Central Radio

Propagation Laboratory.
The equipment to be described is commercially available for determining the optimum operating frequency by instantaneously measuring skip distances and communication zones. Designated by the Air Force as the Propagation-Fre-quency-Evaluation Set, AN/GPQ-3 (XW-1), the equipment is known to those concerned with its development as COZI, Communication Zone Indicator. It has only recently been declassified.

General Description

The Propagation-FrequencyEvaluation Set is a low-power oblique-incidence ionosphere sounder designed primarily to in-
dicate skip distances and communication zones within the range 500 to 2,000 miles. The equipment consists of a transmitter, receiver, timer, indicator and antenna duplexer. These units are contained in two small cabinet racks as shown in the photograph.

Operating principles are similar to those of ordinary radar. Transmitted pulses reflected by the ionosphere strike the earth at and beyond the skip distance and are scattered in all directions. Some of this scattered energy returns to the transmitting source, retracing its outgoing propagation path. It has been shown that the portion of the energy that arrives first may be associated with skip distance.

PULSE WIDTH - 2500 MICROSECONDS

Communication Zone Indicator, Left-hand bay cortains timing, indicating and receiving units. Transmitter and antenna duplexer are at right

Presentations of bcckscatter, showing increase in skip distance as transmitter frequency is increased

An example of the calibrated Ascope presentation of the transmitted pulse and echo return, or backscatter, appears on the next page. Range markers indicate one-millisecond intervals. The transmitted pulse appears to the left at the beginning of the sweep and the leading edges of the backscatter returns from the one and two-hop skip distances appear at 15 and 28 milliseconds. The frequency of operation was approximately 16 megacycles, the peak pulse power 500 watts, the pulse length 2,400 microseconds and the antenna a horizontal rhombic beamed westward from a point on the northeast coast of the U.S. Experiment has shown that the
backscattered signals received when transmitting broad pulses at low power, 1,500-2,500 microseconds, 500 watts, are stronger than the signals received when using much higher power but narrower pulse, 20-50 kw, 50-200 microseconds.

Skip distance depends upon the frequency of the transmitted wave. The higher the frequency the greater the skip distance. To picture the variation of skip distance with frequency, it is necessary only to sample the ionosphere at several frequencies in the communication band with an obliqueincidence sounding device and convert the measured delay time of the backscattered signals to skip distance. The chart shown in Fig.

1 is determined by simple geometric consideration of the propagation path. It has been used successfully to obtain skip distance from measurements of backscatter delay time. The estimation of reflecting layer height does not introduce errors of appreciable magnitude.

Transmitter

Designed to operate on any one of six pretuned frequencies in the 5 to 32 -megacycle band, the COZI transmitter has a peak pulse power output of 600 to 900 watts, a pulse length variable from 500 to 2,500 microseconds and pulse-repetition rate of 20 puises per second. After the initial setup, frequency changing in the transmitter is accom-
plished merely by changing two switch positions.

Six identical plug-in exciter subchassis are provided which, by use of the proper plug-in coils, cover the 5 to 32 -megacycle band in six overlapping ranges. Each exciter subunit consists of a Pierce oscillator, pulsed frequency doubler, amplifier and second frequency doubler feeding the final amplifier. The crystal oscillator operates continuously. Pulsing is accomplished at the first frequency doubler. This avoids the problems of pulsed crystal oscillators; however, it introduces the difficulty of harmonic feedthrough into the receiver between pulses. The fourth harmonic of the crystal is the frequency to which the receiver is tuned. To prevent blocking the receiver, it is necessary to provide adequate shielding and to keep the output of the crystal oscillator as low as possible. Necessary pulse amplification is provided in the later stages.

The final amplifier consists of an Eimac $4-250 \mathrm{~A}$ tetrode and six separate tank sections. The tank coils are turret mounted and the vacuum tuning capacitors are front-panel mounted as shown in the photograph. The output is taken by link coupling at the cold end of the output tank coil. The load impedance must be essentially resistive in the order of 300 to 800 ohms. Although this is an unbalanced output, the unbalanced currents are not a seriouls factor when operating into a balanced load impedance.

Duplexer

Since it is desirable to use the same antenna for both transmitting and receiving, duplexing circuits are provided for operation into either balanced or unbalanced load impedances. The duplexer is a six-seconds. The fixed $20-\mathrm{cps}$ repeti-

Table I-Skip Distance as a Function of Frequency

Approximate Frequency Mlegacycles)	Backscatter Delay Time (Milliseconds)	Oıe-Hop Skip Distance (Kilometers)
7.0		
9.0	5.0	less than 500
13.0	6.0	600
16.0	8.0	1,020
22.0	10.5	1420
30.0	21.0	2,050
		3,025

Range-scope presentation shows transmitted pulse and backscattered signals
channel, lumped-constant device. Each channel covers the frequency range of the corresponding transmitter channel and is pretuned to the desired frequency by frontpanel screwdriver adjustment of slug-tuned coils. A schematic of the balanced duplexer is shown in Fig. 2. During pulse transmission, the gas tube conducts and shorts the receiver input, preventing damage from the high $r-f$ voltage on the transmission line. The small input capacitors present a high impedance compared with the impedance of the transmission line. During reception, the duplexer is essentially a T-network matching the transmission line to the receiver input.

The first COZI equipments used a standard commercial receiver, the National Company HRO 50-1, suitably modified for pulse reception and equipped with a video output stage.

Timer-Indicator

Mounted on a single chassis with the indicator, the timer provides the transmitter with a 150 -volt modulating pulse continuously variable in width from 500 to 2,500 micro-

FIG. 3-Block diagram of timing and indicating circuits
of transmission is fixed. No indication of azimuthal variation of skip distance may be obtained. It has been found decidedly advantageous to obtain such information to identify properly the mode of propagation. It is sometimes difficult to differentiate between scattered echoes returaing over E and F-layer paths. Since the azimuthal variations of E (especially sporadic E) and F-layer propagation paths have somewhat different characteristics, the data presentations obtained using a rotatable antenna are helpful as an aid to interpretation. Usually, obtaining azimuthal information at a single frequency in the 10 to 15 -megacycle band is sufficient to clarify the situation. Yagi antennas of at least three elements possess the necessary characteristics, and arrangements for rotation are relatively simple.

Data Presentation

The COZI equipment was set up for demonstration purposes at a Raytheon ionosphere-sounding station in New England. The unit was pretuned to frequencies near 7,9 , $13,16,22$ and 30 megacycles feeding a horizontal rhombic antenna
beamed southward. Twelve pictures of the A-scope presentations were taken, two on each frequency. The entire operation was accomplished at a normal working pace in eight minutes. This represents the time taken to switch the transmitter and duplexer through the six frequencies, to retune the receiver each time and to photograph the scope face.
The pictures obtained when the pulse width was 2,500 microseconds are shown as a series of six waveform photographs. Note how the time delay to the scatter group increases with increasing frequency. With this data and the chart, Fig. 1, skip distance may be tabulated as a function of frequency. See Table I.

This method of determining skip distances on various frequencies or evaluating propagation conditions at some particular time has been used successfully in numerous tests designed specifically to check the validity of the technique. The tests were conducted over several years and under as varied conditions as were conveniently possible. The tests were performed by the iono-sphere-sounding station in New England and other stations both
fixed and airborne at distances up to several thousand miles. Never did an attempted contact fail when backscatter indicated that communication should be established. The results of the various tests demonstrate conclusively the value of this technique for determining skip distances and communication zones.
The author wishes to express his gratitude to D. A. Hedlund for his helpful criticisms during the preparation of this manuscript and to A. L. Anderson for editing and preparing the paper for publication.

This technique and equipment for evaluating ionospheric propagation conditions was developed under the auspices of the Air Research and Development Command's Rome Air Development Center.

Bibliography

W. G. Abel and L. C. Edwards, the Source of Long-Distance Backscatter. Proc. IRE, 39, No. 12, Dec. 1951.
A. H. Benner, Predicting Maximum Usable Frequency from Long-Distance Scatter, Froc. $R R E, \mathbf{3 7}$, No. 1, Jan. 1949. W. Dieminger, The Scattering of Radio Waves, proc. of the Phys. Soc., 64, No. 2, Feh. 1951.
T. Fono, Experimental Study on Scattered Echoes. Rpt. of Ionosphere Reseatch in Japan, Vol. IV, No. 3 and 4. 1950. A. M. Peterson, The Mechanism of -Layer Propagatel Tackscath+r Jehoes. ounh of Geophys. Kesearch. j6. No. 2, June 1951.

TRANSISTORS: Theory and Application

Operation

By AbraHAM COBLENZ and HARRY L. OWENS

Signal Corps Engineering Laboratories
Fort Monmouth, New Jersey

IN THE PRECEDING ARTICLE in this series the theory of operation of the point-contact transistor was discussed. In this article the theory of operation of junction transistors will be presented, and a brief description will be given of the method of manufacture of these units.

Biases

In considering the problem of the application of bias to the pointcontact transistor a mnemonic was introduced to assist in the establishment of the polarities of the applied voltage. This mnemonic can be used to establish polarities of biases for junction transistors even without full knowledge of the theory of operation.

In Fig. 1 an equivalent sketch is shown which represents a $p n p$ junction transistor. The name is based on the fact that physically it is made of three alternate layers of p, n and p-type materials respectively as shown in the figure.

From left to right the connections are emitter (E), base (B) and collector (C). To determine the polarity of the emitter bias, the following reasoning applies:
(1) Since the emitter is a p material, the impurity atoms are acceptors. In the p material, near the $p-n$ junction, it is convenient to consider an array of fixed negative charges shown by the encircled negative signs in Fig. 1. Together with the corresponding positive array on the other side of the junction due to the donors in the n material, the acceptors form a
small potential hill indicated by the dashed battery across the emitter junction.
(2) The emitter is always biased in the forward or low-resistance direction.
(3) To connect the bias battery in the low-resistance direction it is necessary to overcome or flatten the potential hill mentioned in (1); and hence the polarity is as shown, positive to emitter, negative to base.

An entirely analogous process of reasoning, recalling that the collector is always biased in the highresistance direction, yields a polarity in collector circuit as shown; positive to base, negative to collector.

Theory of Operation

The p material in the emitter region contains an excess of holes

Artist's drawing of inside of typical pnp iunction transistor made by diffusion or alloy process
which are the majority carriers. Under the influence of the electric field as supplied by the battery E_{e}, holes will acquire sufficient energy to move into a conduction band, become carriers of electric current, and be transported into the n region. The n region is of the order of 1 mil in width. Holes drift toward the collector primarily by diffusion and also under the influence of the electric field due to the battery E_{c} with recombinations taking place all the time. Holes which emanate from the n region actually slide down a potential hill in terms of the donor and acceptor picture. The fact that the holes, which are the current carriers in the $p n p$ transistor, slide down a potential hill means that many of them will get across; many holes mean many carriers, and many carriers mean low resistance.

The high resistance in the collector circuit is not due to the resistance across the collector junction or the p material at the collector. In the pnp transistor, initially, the collector-circuit resistance is low due to the effect of the holes sliding downhill from the n to the p region as discussed above. This effect is shown in Fig. 2A as a low resistance in region $A B$ of the $V_{c}-I_{c}$ or collector characteristic. As the collector voltage is increased, more current carriers are needed to sustain this low resistance than are available from the supply of holes. There is an apparent sharp increase in the circuit resistance as the voltage keeps rising but the current remains small.

of Junction Transistors

Physical and electrical properties of diffused-junction and grown-junction transistors are discussed in detail in this sixth article of a series on transistor electronics. Also covered are transistor tetrodes, pnpn junctions and the phototransistor

Collector circuit resistances of the order of megohms are possible, and in general the $V_{0}-I_{c}$ curve for the junction transistor is steeper in the operating region at C than is the corresponding curve for the point-contact transistor.

This can be seen by comparing Fig. 2A and 2B. Comparison of 2A and 2 B also shows that whereas the high-resistance region of the collector characteristic is approached slowly in the point-contact transistor, it is approached abruptly in the junction type.

The point-contact transistor is composed largely of n-type material and while the main streamlines of current carriers are in an approximately straight line from the collector to the base, there are secondary streamlines which follow curved paths. Therefore, there is made available a relatively large volume of material from which electrons may be supplied. Even when the current carriers necessary to sustain the low resistance are nearly exhausted, enough electrons can be drawn in from adjacent regions with the help of the positive space charge to permit a small current flow. Such an arrangement will not permit a very abrupt change in the voltage-current relationship.

In the junction transistor, however, when the holes which act as carriers are exhausted beyond the point where they maintain the lowresistance characteristic, there is no further way in to augment the carriers except to increase the emitter current. However, in-

FIG. 1-Diagram of carrier paths in a pap junction transistor show how conduction in p regions is principally by holes. Holes from emitter p region pass through base n region, suffer recombinations and complete circuit through collector p region. Base current is small because I_{s} and I_{c} flow in opposite directions as shown. Equivalent batteries (dashed) simulate effect of potential hills
creasing the emitter current leads to thermal difficulties which limit the permissible emitter current. Thus the available carriers are limited in number to those which can be supplied from the narrow n region and after a critical voltage is attained, no additional carriers are available. The collector resistance rises sharply.

A certain amount of recombination of holes and electrons is unavoidable when the holes transfuse into the n region. This means that not all of the carriers which represent the emitter current I_{e} will reach the collector where these carriers contribute to I_{c}. On this
basis it is impossible for the current gain or alpha of a junction transistor to be unity or greater than unity. Further, the wider the n region, the longer the holes will reside in a material whose excess carriers are electrons, the greater will then be the number of recombinations, and therefore, the poorer the alpha or current gain of the transistor.

As an illustration, a barrier-region width of 15 mils or more is considered not to produce a usable transistor and the width of the region is usually kept in the neighborhood of 1 mil . In addition to the reason of current gain it is

FIG. 2-In (A) is shown collector characteristic for junction transistor, Note very steep operating region at point C indicating high collector-to-base resistance. In (B), the point-contact characteristic, collector resistance of about 18,003 ohms at operating point C is indicated, compared with 1 megohm for junction type

FIG. 3-Essentials of diffusion process for manufacturing pnp junction transislors are shown. Undiffused portion of indium (or gallium) dot is used to make appropriate connection
undesirable to make the n region too wide because this increases the overall transit time and would tend to make the frequency response poorer.

Germanium Preparation

Germanium used in transistors is usually obtained from germanium dioxide by heating in a hydrogen atmosphere. Further purification is achieved by a zone-melting process that causes impurities to concentrate in one end of a bar, leaving the other end quite pure. A single crystal is then formed and individual transistor slabs are cut out with diamond saws.

PNP Transistors

One method of making pnp transistors is the diffusion or alloy process. ${ }^{1}$ Starting with a pellet or die of n-type germanium about 50 mils square and 10 mils thick, a bead of a p-forming element such as indium or gallium is placed on top of the germanium slab approximately in the center and the entire assembly is heated in an oven to a temperature below the melting point of germanium but above the melting point of the indium. The
result is that the indium or gallium diffuses into the germanium slab approximately as shown in Fig. 3 by the top blob in solid lines. The process is then repeated on the other side as shown by the lower blob. In diffusing into the germanium during the heating process the trivalent p-forming impurity, gallium or indium, forms p-type germanium on either side of the central and unaffected n-type layer with the result that a $p n p$ structure is obtained.

NPN Transistor

In Fig. 4 is shown pictorially the construction and method of biasing of the npn transistor. The unit consists of alternate layers of n and p material, the center or carrier layer being p type. The mnemonic for determining of the polarities of the applied biases which has been discussed for the point-contact and $p n p$ transistors is directly applicable to this case also: (1) the donors have a positive charge in the n region and the acceptors have a negative charge in the p region; (2) low resistance is necessary in the emitter circuit and high resistance in the collector circuit; and (3) the applied battery overcomes the potential hill in one case and accentuates it in the other.

The theory of operation as in the case of $p n p$ transistors is extremely simple. Under the influence of the applied electric field, electrons cross the barrier from the emitter n region to the base p region where some of them recombine with the holes which are the majority carriers of the p region. Thereafter, under the influence of the applied collector battery, electrons move towards the collector terminal to establish the collector circuit.

Analogous to the case for the $p n p$ transistor, the electrons are initially sliding down hill from the base region into the collector n region and the collector circuit resistance is low. Figure 2 is entirely applicable for this case also. When the supply of electrons necessary to maintain this low-resistance region has been exhausted, further increases in collector potential do not yield proportionate increases in the number of carriers available resulting in a very high resistance of the
order of megohms. In general, this resistance is somewhat higher in npm transistors than in the pnp type.

Due to the recombinations in the base region the collector current changes are less then the emitter current changes so that the alpha of the $n p n$ transator, as for any junction transistor, is always less than one. This failure of i_{c}, the a-c component of collector current, to equal i_{e}, this a-c component of emitter current represents a current loss. However, it is more than compensated for by the substantial resistance gain possible. Values can be given to illustrate this fact both for the $p n p$ and $n p n$ types and to afford a comparison with the point-contact transistor.

Typical Values

Typical ranges for alpha are: point-contact types, 2.0 to 2.5 ; junction types, 0.95 to 0.99 . These figures indicate how the point-contact type affords a current gain and the junction type a current loss. Typical values of emitter-to-base resistance, r_{11}, and collector-to-base resistance, r_{22}, for the point-contact type have already been given as 300 and 18,000 ohms. These values should be compared with the corresponding values of 500 ohms and $1,000,000$ ohms for the junction types.

Mention has already been made that the voltage gain of the transistor is the product of the current gain by the resistance gain. ${ }^{2}$ It follows that the voltage gain of $2.5 \times 18,000 / 300=150$ for the point-contact type must be compared with $0.95 \times 1,000,000 / 500=$ 1,900 for the junction types.

Thus substantial voltage gains are feasible with the junction transistor especially since $n p n$ junction transistors have been made which showed a collector-tobase resistance of 10 megohms. Certainly the potentialities for large voltage and power gains appear to rest more with the junction types than with the point-contact types. At the present time the point-contact types enjoy a superiority over the junction types mostly in the matter of frequency response and in their suitability for
switching applications.
So far most commercial $n p n$ junction transistors have been made by the grown-junction method 3 in contradistinction to the diffusion method commonly used for $p n p$ units.

P-Layer Formation

The preparation of the germanium up to the pulling stage is common to the construction of the $p n p$ and $n p n$ units. For npn units, in the pulling process, a p layer is formed perpendicular to the long or pulling axis of the single crystal. This is done by dropping into the melt a small bit of p-forming trivalent impurity such as gallium or indium. Refer to Fig. 5. The p forming impurity rapidly diffuses throughout the melt due to thermal currents and the agitation of the bath resulting from the rotational motion superimposed on the vertical pulling motion.

As the crystal is pulled up, a p layer adheres to the crystal. After a carefully controlled time, an n forming pentavalent impurity such as arsenic is added in a controlled amount, returning the bath to its predominantly n-type character.

An interesting phenomenon which occurs in this process is that in the conversion from n to p and p to n types, the melt goes through what may be described as a zero hole-electron pair stage, wherein the effect of the trivalent and pentavalent impurities cancel and at one instant the net number of
carriers may be zero. Because of the constant addition of impurities, however, it should be clear that in practice more than one such npn sandwich may not be feasible before stopping the operation.

While this process may not appear to provide particularly close control of the width of the p layer, nonetheless excellent $n p n$ junctions can be formed. In general, the grown junction method produces $p-n$ junctions which have electrical characteristics comparable to those produced by the diffusion method. By careful control as the single crystal is slowly pulled upward, a suitably thin region of the crystal is obtained as p type, and the proper $n p n$ sandwich is formed, with a barrier layer of about 1 mil wide.

The ingot resulting from this process is then cut into slabs at right angles to the long axis of the crystal, each slab being about the size of a half dollar and about a fourth as thin. Thereafter, the slabs are diced into suitable sizes for the transistor, each pellet being about 0.100 inch long, with a cross section about 30 mils on a side. Each pellet is a true germanium sandwich of n material on the outside and p material between. Considerable skill and craftmanship are needed to locate the actual p region and to weld a fine connecting wire to it.

Generally speaking, the junction transistors are inferior to pointcontact transistors in the matter of
frequency response due to the larger inherent capacitance of the junction units and to the longer transit time. Nonetheless, junction units have been made which exhibit a frequency response very favorably comparable with that of point-contact units. The record for frequency response, of the order of 300 mc , is still held, however, by the point-contact unit.

Two Methods

There have been discussed thus far two principal methods for construction of junction transistors: the diffusion method commonly used to make pnp transistors, and the grown-junction method usually used to make npn transistors. It must not be inferred that these are the only two methods presently known for the construction of these two types. The diffused junction technique can be used to create npn units, and the grownjunction technique is quite feasible

FIG. 5-Sketch indicates technique for preparing grown-junction transistors. The p-forming pellet melts and spreads through molten germanium

FIG. 4 -Diagram of carrier paths for on npn junction transistor. Conduction in n regions is by electrons; in p region by holes. Again dashed batteries simulate potential hills
for the construction of $p n p$ units. At present, the most common techniques are the ones first described -diffusion for $p n p$, and grownjunction for the nipn. The metallurgy of the techniques for both processes, as applied to both transistor junction types, must still be considered to be in a state of development, and there is room for important improvements in this field.

Rate-Grown Junctions

A new technique, announced quite recently, for the manufacture of junction transistors, is the socalled rate-grown junction. ${ }^{\text {. }}$ It is based on the following three signifi-
cant aspects of the metallurgy:
(1) Most impurities in germanium, except boron and silicon, prefer the liquid phase rather than the solid state. Stated differently, at the border between a solid and molten region, the atoms of most of the impurities tend toward the molten region, or are more soluble in the melt than in the solid.
(2) The extent to which the impurities are soluble in the solid, or the solubility, varies with the rate at which the germanium crystal grows during the crystal pulling or creation process. Solid-phase solubility of impurities in monocrystalline germanium increases with the rate of growth of the germanium crystal. This is particularly true for antimony although it is not true for trivalent impurities such as gallium and indium.
(3) For gallium or indium, which are trivalent, p-forming impurities, the solubility in the solid phase is very nearly independent of the rate of growth of the crystal.

These unusual characteristics of the crystal growth process are utilized to make alternate p and n regions in the rate-grown-junction method. When the crystal growth rate is small, the solubility of the n-forming impurities, such as antimony, in the germanium is small, but the solubility of the p-forming impurities, gallium and indium, is constant and relatively large. Hence, more p-forming impurities enter the solid phase and a p region results.

When the crystal growth rate is
large, the solubility of the pentavalent, n-forming impurity antimony in the solid phase, is large compared to the constant solubility of the Ga or In, and the majority carriers will be n type. By cycling the crystal growth rate, alternate regions of n and p-type germanium can be formed. Excellent $n p n$ and $p n p$ units have been made in this way; however, the method is at a very early stage and considerable improvement in technique must be effected before the process becomes an established art in the manufacture of junction transistors.

Transistor Tetrode

There has recently been announced ${ }^{5}$ a four-terminal transistor which represents a modification of the npn junction unit. While complete information on this new addition to the transistor family is still not available, the essentials of the modification can be described.

A second ohmic contact is made to the base region on the face of the far opposite that used for the normal base contact, as shown in Fig. 6. A bias is applied to the second base terminal, $\left(b_{2}\right)$, making it negative with respect to the base terminal b_{1}. This bias is large compared to the emitter-to- b_{1} bias. The theory of operation of the $n p n$ transistor states that electrons from the emitter n region cross over into the center p region due to the flattening of the potential hill between the emitter n and the base p regions.

FIG. 6-Transistor tetrode operation depends on added field supplied by battery connected to side of base opposite usual base connection. Added field bunches electrons in emitter region. Equivalent batteries simulate potential hills, and resistance R represents uniform voltage divider within base region from top to bottom of germanium bar

For example, assume that the applied forward bias potential is approximately 0.1 volt, battery $E_{\text {. }}$ As the figure shows, a bias of approximately 6 volts is applied to the upper base terminal b_{1}, and along the edge of the p region, near the emitter side, a potential gradient from -6 v to 0 exists, from top to bottom. The p region may be considered a continuous resistor, and along this resistor will exist an (assumed) uniform drop.

Electrons from the base will arrive at the emitter-base barrier at a pressure or potential of -0.1 volt, approximately. The significant point then, is that only those electrons which arrive at the emitterbase junction far enough down so that their -0.1 potential is negative with respect to the potential level of the gradient as determined by resistor R, will get across. For such electrons, the effective potential hill is flattened. Electrons near the top of the bar, arriving at the barrier with a potential of -0.1 v , encounter a gradient level of almost -6 volts, and for them the potential hill is in essence raised. Few, if any, will get across.

The net effect then is to render impassable the portion of the barrier shaded in the figure, and to restrict the lines of current flow through the p layer to the region near b_{1} as shown. The same effect is obtained by imagining that the negative electric field effectively forces the current stream lines of electrons down toward the lower region as indicated.

The circuit effects obtained by this technique include improved voltage gain at higher frequencies, and a lower collector capacitance. In practice, the p region for these units is also made somewhat narrower than is the practice for $n p n$ units, and this further improves the frequency response by reducing the transit time.

A parameter to be introduced in a subsequent article, the base resistance, r_{b}, is much decreased by the tetrode principle. A decrease in base resistance produces the improved voltage gain frequency response and reduced positive feedback.

The base resistance, for the junction units, may be thought of
as the equivalent resistance introduced into the external circuit by virtue of the motion of carriers thru the base region on their way to and from the emitter and collector barriers. The transistor tetrode is not yet available commercially.

P-N Hook Transistor

Another special type of transistor ${ }^{6}$ which holds forth great promise for important current gains and efficient amplification, is the pnpn type of junction transistor. A conventional $p n p$ transistor, with the collector region replaced by a $p-n$ junction, may be operated in such a way that a hookshaped potential hill is created at the final junction; hence the name p-n. hook.

The essentials of the mechanical construction are illustrated in Fig. 7, but it is to be noted that the central n and p regions are quite narrow. The device will not operate satisfactorily if the central p region is too wide.

The theory of operation is based on the fact that holes which are the carriers in the left-hand $p n p$ region, on arriving at potential hill No. 3, encounter the positive field of the right-hand n-region donors, and are trapped, that is, their further travel is impeded. The accumulation of holes at the barrier creates a positive space charge which tends to annihilate the effect of potential hill No. 3. Electrons from the collector, passing through the righthand n region would ordinarily find a high-resistance path due to the array of acceptors in the central p region at the right-hand barrier.

The effect of the holes accumulating at potential hill No. 3 is to decrease this negative field at the barrier, and electrons from the collector are enabled to cross this barrier into the central p region.

Since these electrons must travel through the p region mainly by diffusion, it must be made very thin or narrow to prevent excessive recombinations. Note that in the overall system one recombination process is already going on as the holes from the left-hand p region moves through the central n region,

FIG. 7-Simplified diagram shows operation of pnpn hook transistor. Current gains of more than 20 have been exhibited by this type
and this recombination introduces its own loss. Electrons which survive the trip through the central p region easily slide down potential hill No. 2, enter the central region which is the n base, and complete the circuit.

Thus the holes allowed to take part in the left-hand $p n p$ arrangement and as modulated by an a-c input signal, control a much enhanced electron current due to the positive space charge, and very appreciable current gains are possible.

Although junction transistors have a current gain or alpha less than unity, the current gain of junction transistors employing the hook principle may be greater than unity. Current gains of 20 and greater have been reported.

Phototransistor

An important member of the transistor family is the phototransistor. ${ }^{7}$ While the physical construction is that of a $p-n$ diode, the de, vice is considered to belong to the transistor category because light performs a function analogous to the emitter.

The theory of operation is based on the ability of light to impart enough energy to electrons in valence bonds to raise them to the conduction band. The disruption of the valence bonds increases the available electron and hole supply, and these act as current carriers to decrease the resistivity. Thus, when light shines on the junction, a marked decrease in the resistance is observed, or, for constant impressed voltage, a marked increase in current.

Phototransistors at present are commercially available in limited
quantities. They are extremely practical in that large voltage swings are attainable and they are small in size and weight.

A phototransistor need not be a junction unit-practical phototransistors may be made using point-contact principles as well.

Summary

The salient points of this article are:
(1) Holes are the current carriers in the $p n p$ transistor, and electrons in the $n p n$ transistor.
(2) Junction transistors are capable of very high orders of voltage and power gain compared to the point-contact units.
(3) The transistor industry is at present in need of improved metallurgical processes for the construction of $p-n$ junctions and the processing of germanium (and silicon) in general.
(4) Special transistors such as the $p n p n$ and phototransistors are examples of the steadily-growing list of semiconductor devices with properties unusually attractive for commercial applications.

References

(1) R. N. Hall and W. C. Dunlap, PN Junctions by Impurity Diffusion, Phys $R e v_{1,}$ 80, p 467, 1950.
(2) Abraham Coblenz and Harry L. Owens, Point-Contact Transitor Prin ciples, Part V, TRANSISTORS: Theory and Operation, p 15s, ELECTRONICS July 1953.
(3) G. K. Teal, M. Sparks, and E. Buehler, Growth of Germanium Single Crystals Containing PN Junctions, Phys. Rev., 81, p 637, Feb. 1951.
(4) R. N. Hall, $P N$ Junctions produced by Rate-Growth Variation, Phys. Rev., 82, p 138, Oct. 1952.
(5) R. L. Wallace, Jr., L. G. Schimpf and E. Dickten, A Junction Transistor Tetrode for High-Frequency Use, Proo. $1 R E$, p 1,395 , Nov. 1952.
(6) W. Shockley, "Electrons and Hole in Semiconductors,' D. Van Nostrand Co., p 112, 1950 .
(7) J. N. Shive. Properties of M-1740 Photocell, Proc. $I R E$, $p 1,410$, Nov. 1952.

How To Measure Low-Level R-F Signals

Cross-correlation system is useful in detecting and measuring low-level r-f radiation despite high ambient noise level. Technique can be applied to measure atteruation of r-f filters and check effectiveness of shielding or other radiation suppression measures

By Kenneth e. Mortenson

Electrical Engineering Department
Rensselaer Polytechuic Institute
Troy, New York

RADIO-FREQUENCY measurement is often complicated by poor signal-to-noise ratio of the signal to be measured. This can occur when a signal generator and receiver are used to measure the attenuation of r-f filters. The output of the filter may be too small compared to receiver noise to detect let alone measure. Another example might be measurement of radiation from shielded oscillators, amplifiers, cables and other equipment where atmospheric noise or interfering signals prevent detection of the radiation. Measurement of a signal with poor signal-to-noise ratio can be accomplished using a simple correlation technique.

Cross-Correlation

The signal to be measured can have a poor signal-to-noise ratio, but a second signal having a good signal-to-noise ratio must be available. These signals must originate from the same source (Fig.1). The
original source would be a signal generator for filter measurements or the driving source for radiation measurements. The transfer medium would be either the filter to be measured or the radiating system and appropriate pickup. Both the direct and indirect signals go into the measuring device or cross correlator.

Correlation System

Consider the system shown in Fig. 2. Two coherent sine-wave signals enter separate channels of amplification. Both channels are superheterodyne receivers served by a common local oscillator. Sufficient amplification is provided such that the signals cause appreciable deflection of an oscilloscope beam. A straight diagonal line will be observed on the scope provided the two signals are adjusted to the same amplitude and put in phase by the delay circuits. If noise is present on the indirect signal, it will appear

FIG. 1-Basic components of a cross-correlation sysiem
as random light traces expanding in the horizontal direction an amount depending upon its amplitude. Such a response is illustrated in Fig. 2. By proper adjustment of the scope-beam intensity control, it is generally possible to eliminate entirely the noise traces leaving only the straight line of correlated response.

The indirect signal can be replaced by a calibrated sine-wave and a direct comparison made on the screen to determine the input magnitude of the indirect signal. The calibrating signal must either be derived from the original sine-wave source or synchronized with it.

If receiver noise is not the limitation, another measurement technique is to remove both the direct and indirect signals after having noted the peak horizontal deflection caused by the indirect signal, exclusive of noise. Then cause an equal deflection by a sine-wave, properly tuned and calibrated, injected into the input circuit of the indirect channel. This method does not require a calibrating signal originating at the same source as the original signal.

Filter Attenuation

In a setup for measuring filter attenuation, the signal generator has a calibrated output of 100,000 $\mu \mathrm{V}$ maximum and an uncalibrated one-volt output. The receiver has

FIG. 2-Twin-channel superhet and crt oscilloscope provide one-to-one Lissajous pattern to detect and measure signals with poor signal-to-noise ratio
an equivalent input noise level of $1 \mu \mathrm{v}$ at maximum gain and the filter has a nominal attenuation of 120 db . Even using the maximum calibrated output of the signal generator, an output signal-to-noise ratio of one tenth would exist. Under these conditions no comparison could normally be made.

Measurement

Using cross-correlation measurement can be made, however. With both receiver channels tuned to the signal-generator frequency, the output from the filter is fed into one channel while the uncalibrated output of the signal generator is fed into the other. An ellipse superimposed on light, random noise traces will appear on the scope. By adjusting the gain and the delay circuits of each channel, a straight diagonal line will be obtained. In general it will be possible to eliminate large amplitude noise traces by adjustment of the intensity control. Measurement is made by substituting the calibrated output of the signal generator for the output of the filter. By adjusting the output of the signal generator and readjusting the delay circuits, the same screen response will be obtained. The ratio of the two signal-generator readings, input to correlator divided by input to filter, will yield the measured attenuation.

The primary limitation imposed
by signal-to-noise ratio depends upon the dynamic range of the amplifiers and the deflection system of the cathode-ray tube. A signal-tonoise ratio of 1-to- 20 for the indirect signal has been observed directly on the screen, and if the noise traces are allowed to go beyond the limits of the screen, much smaller signal-to-noise ratios can be handled.

Overdriving the amplifier with noise can block it, resulting in no output. However, it should be possible to use limiting action in the indirect signal channel to prevent such overloading.

Other Aspects

The direct signal will usually be considerably greater than the indirect signal at the input terminals of the amplifiers. Thus the directsignal channel can be operated at such a level that amplifier noise will be negligible compared to the signal. If the direct-signal amplifier should be overdriven even with minimum gain, a frequency-insensitive attenuator should be used before the input stage of the channel. Should the direct-signal input be at such a low level that amplifier noise is appreciable, the detecting system will still function properly. However, instead of having light noise traces expanding in the horizontal direction only, an entire rectangle will be filled. But in the
center will still remain the straightline response. Thus, noise can be present in both the direct and indirect channels if there is no correlation between the noise.

Receiver Channels

Maximum receiver-output frequency should not exceed 30 mc . If the input frequency to the amplifiers is very high, it may be necessary to use two intermediate frequencies to obtain a suitable output frequency for deflection of the crt beam. Two such frequency translations may also be required if the input level is particularly low and sufficient gain can not be provided at one intermediate frequency without introducing amplifier-stability problems. For every frequency translation introduced, a common local oscillator must be employed. The amplification required will depend upon the signal input levels and the voltages needed for full deflection. However, it is usually desirable to incorporate enough frequency selective stages to minimize the background noise.

The author wishes to thank T. Martin for his assistance in carrying out the experimental work and H. Harris and V. Babits for their critical review of the paper. Coles Laboratory of the Signal Corps sponsored the research contract under which this technique was developed.

Optical Feedback for

Abstract

Poor stability of the phototube is corrected by feeding back out-of-phase current through aniplifier. Resultant reduction of light from compensating glow lamp in collimator cancels original measured increase in light, effecting negative feedback. Improvement in stability does not sacrifice sensitivity

FTOR LOW-LEVEL photometry, ${ }^{1-5}$ multiplier phototubes offer many advantages to the electronics designer. They have high photometric sensitivity (as much as 300 amperes per lumen) are small in size (about 5 cu in.), draw little power (about 1.5 w . maximum), and have long service life.

Unfortunately, the phototubes currently available exhibit serious defects ${ }^{9,4,5}$. These faults seem to be characteristic of electron multiplier devices, and therefore not likely to be eliminated in the near future by improved manufacturing techniques or design elaboration. The defects may be divided into two categories:
(1) Large random variations in sensitivity, including severe shorttime fatigue.
(2) A great dependence of the sensitivity on the dynode voltage. The sensitivity of the type 931-A photomultiplier varies roughly as the 6.5 th power of the dynode voltage. An economical and straightforward method for rendering negligible both of these defects by applying a novel form of negative feedback is described below.

Optical Feedback

In the proposed method, the feedback signal is introduced optically. The effect of this technique is to substitute the relatively high photoelectric stability of a conventional glow lamp for the poor stability of the multiplier phototube. Feedback

By VICTOR H. SELIGER
Forest Hills, N. Y.

has been used before to stabilize the phototube against dynode voltage changes by applying the correcting signal effectively in series with the dynode supply. ${ }^{2}$ This technique involves the use of well-regulated and carefully adjusted power supplies, and results in a logarithmic output characteristic, which is sometimes useful but often undesirable. The arrangement to be described compensates effectively for wide variations in both dynode voltage and tube sensitivity, while maintaining a linear output characteristic and high overall sensitivity.

System Description

Figure 1 shows a photometer in which a multiplier phototube, cur-

FIG. 1-Block presentation of the feedback photometer
rent amplifier, feedback light source and light collimator have been arranged in a closed loop configuration. The phototube and current amplifier constitute the forward portion of the loop, the latter serving to amplify further the current output signals of the tube. The feedback light source comprises the feedback portion of the loop and the light collimator serves as the comparator, or error-detecting element. The operation of the closed-loop photometer is most readily described by listing a sequence of events following a change in measured light intensity. This sequence is as follows:
(1) An increase in input light intensity produces an increase in photomultiplier tube output.
(2) This positive current change is applied to the input of the current amplifier, which has an odd number of phase-inverting stages. The resultant output current change is much larger than the input signal, and is inverted in phase. The effect is therefore that of a decrease in instantaneous amplifier output current.
(3) The decrease in current is applied to the feedback light source, causing a reduction in instantaneous feedback light output.
(4) The reduction in feedback light output appearing at the light collimator tends to cancel the original increase in measured light intensity, thereby effecting negative feedback.

More quantitatively, the system

Multiplier Phototubes

FIG. 2-Multiplier phototube, left, and current amplifier used to invert phase and control glow lamp
may be described as follows: Let
$\lambda_{M}=$ measured light intensity in lumens
$\lambda_{F}=$ feedback light intensity in lumens
$\lambda_{i}=$ collimator output light intensity in lumens
$I_{P T}=$ phototube output current. in
amperes
$I_{o}=$ amplifier output current in amperes
Then the four essential elements of the closed-loop photometer can be characterized by the following constants:

Light collimator:

$$
\begin{equation*}
\lambda_{i}=k_{1} \lambda_{M}+k_{2} \lambda_{I} \tag{1}
\end{equation*}
$$

where
k_{1} and k_{2} represent the attenuations of the optical system, including the collimator
Photo-tube: Sensitivity $S=\frac{\Delta I_{P T}}{\Delta \lambda_{i}}$ in amperes per lumen
Current Amplifier:
Current gain $-|K|=\frac{\Delta I_{0}}{\Delta I_{P r}}$
Light Source:
Transformation ratio $R=\frac{\Delta \lambda_{F}}{\Delta I_{0}}$
in lumens per ampere

Thus, for changes of input intensity within the linear operating region of the photometer

$$
\begin{align*}
\Delta I_{o} & =-|K| \Delta I_{P r}=-|K| S \Delta \lambda_{i} \tag{5}\\
\text { and } \Delta \lambda_{i} & =k_{1} \Delta \lambda_{M}+k_{2} \Delta \lambda_{F} \\
& =k_{1} \Delta \lambda_{M}+k_{2} R \Delta I O
\end{align*}
$$

From Eq. 5 and 6

$$
\Delta I o=\frac{-|K| S k_{1} \Delta \lambda_{\Delta I}}{1+|K| S k_{2} R} .
$$

The exact analogy between this system and conventional feedback circuits is more readily seen if we let

$$
\begin{aligned}
\mu & =|K| S k_{1} \\
\text { and } \beta & =\left(\frac{k_{2}}{k_{1}}\right) k
\end{aligned}
$$

Then, if S^{\prime} is overall sensitivity of the feedback photometer, in amperes per lumen,

$$
S^{\prime}=\frac{\Delta I_{o}}{\Delta \lambda_{M}}=\frac{-\mu}{1+\mu \beta}
$$

Here, μ represents the effective forward gain of the system, in amperes per lumen, while β represents the transfer function of the feedback loop, in lumens per ampere.
It is apparent that if $\mu \beta \gg 1$, we can write

$$
\left|S^{\prime}\right| \approx \frac{1}{\beta}=\frac{k_{1}}{k_{2} R}
$$

an expression independent of variation in $|K|$ and S. Thus, for sufficiently high values of the parameters $|K|, S, k_{1}$, and k_{2}, the sensitivity of the feedback photometer can be made arbitrarily high and arbitrarily independent of
phototube and amplifier variations. The only theoretical system restrictions are an upper limit on sensitivity provided by inherent system noise; and limiting stability equal to that of the feedback light source.

To eliminate the zero-balance problem common to d-c amplifiers, it is best to confine the photometer to measurement of changing values of light. This is easily carried out by various conventional means, depending on the application. Two such means are the use of stroboscopic illumination in applications in which the quantity measured is a reflected light, and the use of a mechanical light chopper whenever the output of a luminous source is to be measured.

Experimental Results

The theoretical results derived above were verified in practice by a photometer ${ }^{\text {a }}$ constructed along the lines indicated in Fig. 1. A type 931-A multiplier phototube was used as being representative of phototubes employed in the field. The circuit configuration was the conventional one shown in Fig. 2. A type AR-1 argon glow lamp was selected for the feedback light
source because its light output is reasonably linear with current input, and its output range and spectrum are compatible with the 931-A characteristics.

Light Collimator

A semitransparent mirror of approximately equal transmission and reflection characteristics was employed as the light collimator. The remainder of the optical system comprised three condensing lenses, a frosted glass filter for diffusion, and a Wratten 2B ultraviolet blocking filter arranged as in Fig. 3. The current amplifier schematic is shown at the right in Fig. 2.

In addition to the optical system of the photometer itself, a measured light source as shown in Fig. 1 was provided. This light source, another type AR-1 glow lamp, was supplied with current pulses of variable amplitude from a square-wave generator. Its controlled output, consisting of approximately rectangular pulses of light, was measured by the photometer during test runs.

To demonstrate the theoretical results most simply, photometer sensitivity measurements were made on a comparative basis; output responses were compared in terms of given input current pulse amplitude to the measured light source glow lamp, rather than in
terms of light pulse amplitude directly. The consistency of results obtained was more than ample to justify this method of measurement.

The results of principal interest are shown graphically in Fig. 4, which illustrates the great reduction in dependence of photometer sensitivity on dynode voltage when the feedback loop is closed. In particular, note that for dynode voltages above 900 volts, the relative change of sensitivity for a change in dynode voltage is negligibly small. This condition is to be contrasted with an average open-loop relative change of some 700 percent!

Stability Increase

The theoretical increase of stability with feedback is given by the factor

$$
\frac{1}{1+\mu \beta}
$$

The curve of Fig. 4 is in excellent agreement with this theoretical increase in stability. Furthermore, it should be noted that, for example, at a dynode supply voltage of 900 volts, the closed-loop sensitivity was roughly 200 times the open-loop sensitivity (owing to the presence of the high-gain current amplifier). This factor was much higher at lower dynode voltages, where the

FIG. 3-Dimensions of the optical and light system employed in the photometer. Calibrated light source is introduced ot left

FIG. 4-Effect of feedback upon stability
open-loop sensitivity was much less, while the closed-loop sensitivity was only slightly decreased.

The experimental results strikingly illustrate the improvements in stability and sensitivity which can be realized by the use of optical signal feedback in multiplier phototube circuits. In general practice, significant improvement can be obtained economically. A small amplifier and a feedback light source and optics suffice to replace the poor stability of the phototube as normally used by the relatively good stability inherent in an inexpensive glow lamp, sensitivity being in no wise sacrificed. This method seems promising for many low-level photometry applications.

The results described in this article were obtained during work on a thesis at the Polytechnic Institute of Brooklyn.

Acknowledgement

Thanks are due H. S. Rogers, president of the Institute, for permission to publish this material, and gratitude is expressed to Theodore C. Gams, chief engineer of Douglas Laboratories, whose suggestions and encouragement were of invaluable assistance in the development of the method herein described.

Bibliography

[^8]
Designing

Discone Antennas

Cross-sectional area of the antenna can be minimized for a given bandwidth and matching to a $50-\mathrm{ohm}$ transmission line can be optimized for a given cone angle without introducing complexities of construction or feed, using experimental data recently obtained

By J. J. NAIL
Federal Telecommunication Labs., Inc. An 1. T. \& T. Associate
Nutley, N.J.

THE DISCONE ANTENNA ${ }^{1,2,3,4}$ is intended primarily for vertical polarization and, like a vertical dipole, gives an omnidirectional pattern in the horizontal plane. The discone's most distinctive feature is its simplicity of construction and feeding. Its most important characteristic is satisfactory operation over a wide band of frequencies.

Kandoian ${ }^{1}$ has given dimensions for two discone radiators that performed satisfactorily but were not necessarily optimum. Since this information was published, additional work has been done that allows the cross-sectional area of the antenna to be minimized for a given bandwidth and permits the match to a 50 -ohm transmission line to be optimized for a given cone angle. This information permits the most efficient design for a particular application without introducing dimensions that must be held to close tolerances or complicating in any way the original simplicity of construction and feeding.

The geometry of the discone is such that an analytical expression for the field components that will satisfy Maxwell's equations is in-

This work was supported in part by contract with the Bureau of Ships, Navy Dept.
volved and, so far as is known, has not been obtained in a useful form.

The investigation to be described was experimental in nature. It is the purpose of this paper to summarize the work in such a manner

FIG. 1-Discone antenna parameters

FIG. 2-Optimum values of disk-to-cone spacing and disk diameter versus flare angle
as to enable the designer to choose the smallest flare angle compatible with bandwidth requirements, choose the proper disk size and disk-to-cone spacing for optimum match to a 50 -ohm line and predict the free-space radiation-pattern characteristics.

Impedance

A sketch of the discone radiator is shown in Fig. 1. The following nomenclature will be used
$\phi=$ cone flare angle (total)
$L=$ cone slant height
$C_{\mathrm{MAX}}=$ maximum cone diameter
$C_{\text {MIN }}=$ minimum cone diameter
$D=$ disk diameter
$S=$ disk-to-cone spacing
For a fixed value of $L, C_{\text {MIN }}, \phi$ and frequency, the vswr on a 50 ohm line was measured for various combinations of disk-to-cone spacing S and disk diameter D. A series of such measurements allows a value of S and D to be chosen that gives the best match over the largest range of frequencies. This process was repeated for several values of ϕ and the results obtained are plotted in Fig. 2.

Each point represents an optimum value of disk diameter and disk-to-cone spacing for a given value of ϕ in that these values

FIG. 3-Standing-wave ratio versus ratio of lowest operating frequency to f_{0} when f_{0} is frequency at which slant height is a fourth wavelength

FIG. 4-Standing-wave ratio versus frequency for several discone angles
produce the best match to a $50-\mathrm{ohm}$ line over the largest frequency band. These measurements were repeated keeping ϕ fixed and varying L and $C_{\text {min }}$ independently. From these data it was determined that the optimum values of D and S are independent of L and $C_{\text {arix }}$. If the data shown in Fig. 2 are averaged as shown, the optimum values of S and D / C_{MA} may be considered to be independent of ϕ, allowing the following simple design formulas to be written

$$
\begin{aligned}
& S=0.3 C_{\mathrm{MIN}} \\
& D=0.7 C_{\mathrm{MAX}}
\end{aligned}
$$

These relations are independent of L and ϕ; bandwidth is inversely proportional to $C_{\text {MIN }}$.

Flare Angle

The slant height is a function of frequency. For all values of flare angle considered, 25 through 90 deg, the slant height is always slightly greater than a quarter-
wave length of the lowest frequency at which the antenna is to be operated. The ratio of the lowest operating frequency to the frequency at which the discone slant height equals one-quarter-wavelength is plotted as a function of vswr for various flare angles in Fig. 3. This ratio is called K. Then the minimum slant height is found by multiplying a quarter-wavelength at the lowest operating frequency by K.

Utilizing this design information, six discone antennas, each antenna employing a different flare-angle cone, were designed for optimum bandwidth. The vswr produced by each radiator on a 50 -ohm line is plotted as a function of frequency in Fig. 4.

The mismatch as plotted is caused by the antenna alone, the discontinuities produced by fittings having been averaged out using the cycling, or beat, method. The values of L are $9.8,8.9,8.5,8.2,8.1$, and 7.9 inches for the $25,35,50,60$, 70 and 90 -degree cones respectively. The value of $C_{\text {min }}(0.4 \mathrm{in}$.) was the same for all the cones.

The large-angle discone exhibits some of the characteristics of a high-pass filter in that once the slant height of the cone exceeds approximately $\lambda / 4$, the match to a 50 -ohm line remains good over an extremely wide frequency range,
discone, the data plotted in Fig. 5 and 6 were taken. The measured characteristics shown here include discontinuities produced by fittings.

Another method of reducing size is to use a section of large-flareangle cone near the feed point joined with a cone of reduced angle. Although this possibility has not been fully explored, it was found that the mismatch at $1.8 f_{0}$ for the $35-\mathrm{deg}$ discone could be reduced to 2 to 1 on a 50 -ohm line by inserting a small section of $60-\mathrm{deg}$ cone at the feed point. The length of the $60-\mathrm{deg}$ cone that was required in this case was only about 0.085 L .

All the measurements discussed have been for a discone antenna with no insulators between disk and cone. A weatherproof and a semiweatherproof mechanical design have been developed that allow the discone to be built from the design data presented with negligible change in performance. The semiweatherproof design, which should prove adequate for all except the most severe operating conditions, consists of a thin-walled cylindrical insulator made from a low-loss dielectric fitted between disk and cone with weep holes drilled in the bottom of the insulator parallel to the surface of the cone. The weatherproof design consists of a thinwalled cylindrical radome surrounding the semiweatherproof discone.

FIG. 5-Optimum parameters, standing-wave ratio versus frequency, for 60 -deg discone
higher-order-resonance effects being negligible. For smaller-angle cones the mismatch may exceed the allowable limit when the slant height approaches $\lambda / 2$. From Fig. 4, the behavior in this critical region may be determined allowing the minimum flare angle for a given bandwidth.
To demonstrate the high-pass characteristics of a large-flare-angle

The H-plane pattern of a discone antenna is independent of angle while the E-plane field closely approximates that of a dipole at frequencies near f_{o}. However, as the operating frequency is increased, there is a tendency for the E-plane pattern to push downward, away from the plane containing the disk.

Normalized E-plane field patterns for discone antennas designed for
optimum impedance characteristics are shown in Fig. 7 for values of ϕ of 35,60 and 90 deg. Near f_{0} the patterns are nearly independent of flare angle, there being a slight tendency for the pattern to become broader with increased values of ϕ. In this region, the patterns are nearly the same as those of a short dipole. At frequencies above approximately $1.5 f_{o}$, the shape of the resulting pattern is affected significantly by the cone flare angle, the decrease in field with frequency in the horizontal plane being somewhat less for the larger flare angles.

Gain Figures

For example, the gain in the horizontal plane $(0=90$ and 270 deg) is approximately 2 db less than a dipole for the 60-deg discone at $3 f_{o}$ while for the $90-\mathrm{deg}$ discone at $3 f_{o}$ the gain in the horizontal is less than that of a dipole by about 1.5 db . Measurements made up to $5 f_{o}$ on the $60-\mathrm{deg}$ antenna indicate that the maximum loss in the horizontal plane is 3.3 db with respect to a dipole and occurs at $3.75 f_{o}$. At $4.85 f_{0}$ the loss is 2.5 db . Although no investigation has been made, it appears that the larger-flare-angle discones ($\phi \geqq 90 \mathrm{deg}$) give better performance in the horizontal plane over large frequency bands than the smaller-flare-angle discones.

A limited number of measurements has been made that confirm small changes in the ratio of S to $C_{\text {min }}$ and D to $C_{\text {max }}$ have an insignificant effect on pattern characteristics.

At this time considerably more effort has been devoted to perfecting the impedance characteristics of this antenna than to improving

FIG. 7-Relative E-plane normalized field patterns for different angles of ϕ
the pattern characteristics. Additional effort is to be directed toward correcting the pattern assymmetry inherent above $2 f_{o}$ to $3 f_{0}$, with the aim of ultimately obtaining good performance over a 10-to-1 frequency range.

The writer wishes to express appreciation to A. G. Kandoian and W. Sichak for their many useful comments and suggestions, to C. R. Brown and W. Spanos for assist-
ance in taking the pattern data and to H. Augenblick, formerly of FTL, for assistance in taking and analyzing the impedance data.

References

(1) A. G. Kandoian, Three New Antenna Types and Their Applications, Proo $I R E, 34, \mathrm{p} 70 \mathrm{~W}$, Feb. 1946 . Sichat and (2) A. G. Kandoian, W. Slchak and R.A. Felsenheld, Elect. Comm., 25, p 139. June 1948
(3) Sky. Bower, Discone- 40 to 500 (4) Mack' Seybold, The Low Frequency Discone, $C Q, 6, p 13, J u l y 1950$.

Junction Transistor

By PETER G. SULZER
Kensington, Maryland

AVAILABILITY of large quantities of transistors from several manufacturers has stimulated many new application hunts. It is usually necessary for the experimenter to spend considerable time scanning the literature to locate simple building-block circuits, and then quite often, he finds that special developmental or experimental transistors have been used in described circuits.

This article describes a number of simple circuits using commer-cially-available junction transistors. Although some variations in characteristics of a given transistor type still exist, many applications are feasible, and through simple design techniques, the effects of these variations may be reduced to a minimum.

Voltage Amplifiers

The voltage amplifier of Fig. 1A employs the grounded-emitter circuit ${ }^{1}$ and provides a high gain with a moderately low value of input impedance. The base is connected to a voltage divider, and a bypassed resistance is inserted in series with the emitter to provide direct-current stabilization ${ }^{2}$. Such stabilization is essential to compensate for variations between transistors and to decrease the effects of temperature drift.

With the circuit constants shown in the diagram, approximately onethird of the supply voltage is lost across the emitter series resistance. This appears to be a reasonable compromise for equipment design. Stabilization could be improved by decreasing the values of the resistors used in the base voltage divider, but the effective input impedance of the amplifier would be decreased and more power would be dissipated in the divider.

(A)

(C)

(B)

(0)

FIG. 1-Voltage amplifier using d-c stabilized grounded-emitter circuit is shown in A. Curves show circuit operating characteristics

Table I—Summary of Measurements Made on Voltage Amplifier Circuit (Fig. 1A)

	$L_{b \prime}=3 \mathrm{~V}$			$E_{6 b}=22.5$		
	Min	Ave	Max	Min	Ave	Max
$i_{6}(\mathrm{ma})^{*}$	0.10	0.14	0.17	0.61	0.77	0.85
V_{2} / V_{1}	20	28	36	56	115	160
$Z_{i}(\mathbf{k} \Omega)$	3	4.1	7	0.8	1.6	3
$f_{0}(\mathbf{k c})$	50	80	100	50	85	110
$f_{0}^{\prime}(\mathrm{kc})$.	10	18	30	12	23	:3

* Less variation between units will be noted if the minimum operating current is 0.25 ma .

Table I shows the performance of the amplifier with two different supplies, 3 and 22.5 volts. The values given are average values for a total of ten samples.

The open-circuit voltage gain V_{2} / V_{1}, was measured at 1 kc with a zero generator resistance R_{0}. The input impedance, which is resistive at medium audio frequencies, was also measured at 1 kc . The cutoff ($3-\mathrm{db}$ down) frequency f o was measured with $R_{o}=0$, while the cutoff frequency f_{o}^{\prime} was measured
with $R_{g}=Z_{\text {b }}$ at 1 kc . Note particularly the wide variation of $f_{0}{ }^{\prime}$.

Figure 1B shows the variation of the magnitude of $Z_{\text {, with }}$ frequency for a typical CK722 transistor. The rapid decrease of $Z_{\text {, }}$ with frequency is caused principally by the increase in the phase angle of amplification factor $\alpha^{E, 4}$.

Figure 1C shows the voltage gain with a constant input voltage (R, $=0$) as a function of frequency for the same CK722. Here the variation of the magnitude of α is re-

Circuit Applications

Basic circuits using commercially-available junction transistors are described. Included are voltage amplifiers, impedance-changing circuits, phase inverters, oscillators, multivibrators, blocking oscillators and sawtooth sweep oscillators

FIG. 2-Two-stage amplifier with high input impedance and direct-current stabilization

FIG. 3-Grounded-collector stage has high input impedance and low output impedance. Voltage gain approaches unity
sponsible for the decrease in gain at high frequencies.

Figure 1D combines the cutoff effects of the preceding two figures and shows the magnitude of the amplifier gain vs frequency with a generator resistance equal to the low-frequency input impedance ($R_{\varepsilon}=Z$, at 1 kc). The combined effects of the decrease of both input impedance and gain produce a comparatively poor high-frequency response.

High-frequency response can be
improved by driving from a low source impedance. This can be accomplished with the additional advantage of a higher input impedance, by driving the grounded-emitter stage with a grounded-collector stage. It is convenient to employ direct coupling, as shown in Fig. 2 A .

The gain characteristic is shown in Fig. 2B, and the magnitude of the input impedance is shown in Fig. 2C. The input impedance is increased by a large
factor, and therefore the groundedcollector circuit is a useful interstage coupling element. In this application it might be compared to the use of a cathode-follower tube for coupling between video-amplifier stages to decrease capacitanceloading effects.

Grounded Collector

In applications requiring a high input impedance the grounded-collector circuit of Fig. 3A has been found useful. Direct-current stabi-

FIG. 4-Basic phase inverter (A) and phase inverter with amplifier
lization is employed as in the previous circuits. Feedback is applied from the emitter to the base voltage divider to decrease the shunting effect of the divider.

Figure 3B shows the open-circuit voltage gain vs frequency. The voltage gain is very nearly unity, particularly with the higher supply voltage, and does not decrease with frequency as much as might be expected.

Figure 3C shows the open-circuit input impedance as a function of frequency. An impedance as high as one-half megohm can be obtained in the audio-frequency range. Loading the circuit will decrease the voltage gain, decreasing the internal transistor feedback and also the external feedback to the voltage divider. The resulting in-put-impedance decrease is shown in Fig. 3D. The output impedance is comparatively low with the input shorted: 750 ohms with a 3 -volt supply, and 100 ohms with a 22.5volt supply. This test was made at 1 kc. The CK721 was chosen for this application because its high value of a produces a gain closer to unity.

A simple phase inverter is shown in Fig. 4A. Unlike its vacuum-tube counterpart a perfect balance is not automatically produced.

Unbalance Action

A portion of the input current must flow to ground through the emitter, since the transistor is essentially a current-operated device, and therefore, with equal load resistors the emitter will always produce a higher voltage gain than the collector. It is obvious that a higher value of α will produce a better balance. Typical values of voltage gain to both outputs are shown in the figure.

A useful direct-coupled amplifier and phase inverter is shown in Fig. 4 B .

Sinusoidal Oscillators

It is apparent that an oscillator can be obtained by connecting a tuned phase-inverting transformer between the output and input of the amplifier of Fig. 1. The use of separate or tapped windings can be avoided with the Colpitts-type circuit of Fig. 5A by connecting suitable reactance from collector to
emitter and from emitter to ground. With a 30 -volt supply the maximum operating frequency of the ten transistors tested ranged from 0.5 to 5 mc . The average value of maximum frequency was 2 mc , and the average supply current was 1 ma. The average voltage coefficient of frequency was 100 cycles per megacycle per volt with a $50-\mu \mu \mathrm{f}$ tuning capacitor.

A Clapp oscillator ${ }^{5}$ suitable for operation at 2 mc is shown in Fig. 5B. It contains lower values of reactance across the transistor itself as well as a low-capacitance seriestuned circuit. A voltage coefficient of frequency of 12 cycles per megacycle per volt was obtained at 30 volts.

A crystal oscillator based on the Clapp circuit is shown in Fig. 5C. Oscillation was obtained at frequencies as high as 4 mc with one transistor out of ten, while seven out of ten would oscillate at 1 mc .

Pulse Circuits

Although the point-contact transistor is very well suited for timing and switching purposes because of its inherent negative-resistance characteristic, junction transistors can also be made to work in such applications. Point-contact units will provide faster switching than junction triodes, but they are more expensive and require more power.
An adaptation of the conventional astable multivibrator is shown in Fig. 6A. An operating frequency of 10 kc is obtained with the values shown in the figure. The circuit will not oscillate with coupling capacitors smaller than 0.001 α. A maximum frequency of 20

FIG. 5-Three typical transistor oscillators. Upper frequency limit depends, among other factors, on transistor used
kc is obtained by decreasing the base resistances to 50,000 ohms.

Base and collector waveforms are shown in the figure. The rise time of the collector voltage is 4 $\mu \mathrm{sec}$. For applications requiring a lower operating frequency it should be pointed out that frequency is inversely proportional to $R C$, providing that R is less than $\frac{1}{2}$ megohm and C is greater than $0.001 \mu \mathrm{f}$. Some reverse conduction takes place in the base circuit, which tends to limit the maximum useful value of R. For this reason large frequency variations with temperature changes occur with high values of R.

A monostable multivibrator suitable for pulse generation is shown in Fig. 6B. In the absence of an input pulse $J T_{1}$ conducts, while $J T_{a}$ is biased to collector-current cutoff by a suitable adjustment of R_{1}. A negative trigger pulse applied to the collector of $J T_{1}$ through a small coupling capacitor will establish conduction in $J T_{2}$, driving the base of $J T_{1}$ positive with respect to ground, and decreasing the collector current of $J T_{1}$. When the collector current of $J T_{2}$ has risen sufficiently to permit a loop gain of unity the action becomes cumulative, and $J T_{1}$ is rapidly cut off.

With the circuit shown a 9 -volt positive pulse with a rise time of $2 \mu \mathrm{sec}$ is produced at the collector of $J T_{2}$. The circuit will remain in this condition until the charge on C leaks sufficiently through R_{2} and through the back conduction in $J T_{1}$. Shortly after emitter current flows in $J T_{1}$ the circuit will restore itself to its original condition.

A pulse duration of $250 \mu \mathrm{sec}$ with a maximum repetition frequency of $1,000 \mathrm{cps}$ is obtained with the circuit constants given. The pulse duration is proportional to $R_{2} C$ with C greater than $0.001 \mu \mathrm{f}$ and R_{a} less than $\frac{1}{2}$ megohm.

Bistable Multivibrator

A bistable multivibrator (scale of two) is shown in Fig. 6C. If it is assumed that $J T_{1}$ is conducting and $J T_{2}$ is cut off, the diode connected to the collector of $J T_{1}$ is cut off. A short positive input pulse will therefore appear only at the collector of $J T_{2}$, and then at the
base of $J T_{1}$. The collector current $J T_{1}$ will decrease, its collector will become more negative with respect to ground, and $J T_{\mathrm{s}}$ will conduct. The effect is cumulative with the application of a sufficiently large input pulse, and finally $J T_{1}$ is cutoff and $J T_{2}$ is conducting. The next input pulse will restore the circuit to its original condition because the input pulse can now pass through the diode connected to the collector of $J T_{1}$.

The maximum counting rate (input frequency) is 100 kc with a 22.5 -volt supply, and 50 kc with a 4.5 -volt supply. The transition time is $4 \mu \mathrm{sec}$ with a 22.5 -volt supply.

Blocking Oscillator

A blocking oscillator is shown in Fig. 6D. The frequency is variable from 3 to 50 kc , and is inversely proportional to $R C$ with R smaller than $\frac{1}{2}$ megohm and with C greater than $0.005 \mu \mathrm{f}$. The duration of the initial collector-voltage swing is $5 \mu \mathrm{sec}$. The blocking oscillator can be synchronized to a pulse or sinusoidal input by coupling to the base or collector through a small capacitor. Reliable frequency division by integers up to 10 can be obtained.

A transistor version of Puckle's sweep circuit ${ }^{6}$ is shown in Fig. 6E. During the short part of the operating cycle $J T_{2}$ conducts and charges C. During this time $J T_{1}$ is cutoif by the pulse developed across R_{1}. As the charging current through C decreases, the magnitude of the pulse across R_{1} decreases, permitting $J T_{1}$ to conduct, and therefore cutting off $J T_{2}$.

Capacitor C then discharges through R_{2} until $J T_{2}$ once more conducts.

A moderately linear, positive"going sawtooth is produced across C during the long part of the cycle. The duty cycle varies from $1 / 30$ to $\frac{1}{8}$. The range of operating frequencies is shown in the diagram. Reliable synchronization can be obtained by coupling input pulses or other waveforms to the base of $J T_{1}$ through a $10,000-\mathrm{ohm}$ resistor and a $0.1-\mu \mathrm{f}$ capacitor in series.

The circuits described represent but a small fraction of the more obvious possibilities. It is hoped

FIG. 6-Pulse circuits include an astable multivibrator (A), monostable multivibrator (B), bistable multivibrator (C), blocking oscillator (D) and transistorized version of Puckle's sweep circuit (E)
that they will aid in the application of junction transistors.

References

(1) R. L. Wallace and W. J. Pietenpol, Some Circuit and Properties and Applications of NPN Transitors, Proc. $1 R E, 39$, p 753, July 1951.
(2) Richard F. Shea, Transistor Operation: Stabilization of Operating Points, Proc. IRE, 40, p 1,425, Nov. 1952.
(3) D. E. Thomas, Transistor-Amplifier Cutoff Frequency, Proc. $12 E, 40, p 148$, Nov. 1952
(4) R. L. Pritchard, Frequency Variation of Current-Amplification Factor for Junction Transistors, Proc. $\operatorname{IRE}, 40, \mathrm{p}$ (5) Cov. 1952.
(5) C. W. Clapp, An Inductance-Capacitance Oscillator of Unusual Frequency 1948.
(6) O. S. Puckle, "Time Bases," p 30 Wiley, New York, 1943.

Power sub-chassis helps to isolate powcrifequency fields in an export iv set

FIG. 1-Sketches show optimum location for power transformer in tablemodel tv receiver (A) and spots on cathode-ray tube studied in tests (B)

Design of Export

By GEORGE D. HULST

Export Receiver Engineering Laboratory
Allen B. DuMont Laboratories
East Paterson, New Jersey

In TELEVISION systems the vertical scanning of the receiver is synchronized with the transmitter by a transmitted synchronization signal. Operation of the receiver is thus not directly dependent upon the frequency of the power source. However, many television receivers which operate satisfactorily with a power source having the same frequency as their vertical scan exhibit noticeable defects in the picture when energized from a source whose frequency is appreciably different.

Picture Defects

These defects usually take the form of small variations in scanning and are caused by minor amounts of coupling between the power circuit and the cathode-ray beam or scanning circuits. If the vertical scan is exactly synchronized with the power line, these variations are stationary, and deviations of perhaps $\frac{1}{8}$ inch in a 21 -inch picture can be tolerated. If slow
changes in phase occur between scanning and power, as is now the usual condition in this country, these changes cause a slow weaving and stretching of the picture. In this case, a total deviation of perhaps $\frac{1}{18}$ inch or less is not objectionable.

Where the rate of change of phase is greater than about one cycle per second, however, the motion or wiggle in the picture is very apparent to the eye, and scanning variations that exceed about σ^{\prime} inch are objectionable.

Such is the case when U. S.-standard broadcasts having 60-cycle vertical scanning are received in areas utilizing 50 -cycle power. In this case, the picture defects take the form of picture wiggle or flicker having an apparent 10 -cycle repetition rate, which is the difference frequency.

The designer of television receivers for use in such nonsynchronous power areas is therefore faced with the problem of locating and elimi-

FIG. 2-Curves show effect of placement of power transformer on interaction between power-line and electron beam

Television Receivers

Techniques are discussed for making television receivers independent of power-line frequency. Virtual freedom from interaction is obtained by relatively simple positioning, shielding and filtering techniques applied to conventional sets

Photographs show use of subchassis to isolate power transformer and rectifier from cathode-ray tube to reduce interaction between power-frequency, scanning circuits and the electron beam. Receivers shown are 21 -inch (left) and 17 -inch models converted for nonsynchronous operation
nating all forms of coupling between the power line and the picture tube having amplitades of more than about one-tenth that which is usually tolerated.

The causes of nonsynchronous defects are magnetic radiation from the power transformer, filter choke, heater wiring, primary-circuit wiring, B-supply wiring and tube heaters, plus conductive coupling from the B supply and tube heaters.

Receiver Design

In compact designs magretic radiation from the power transformer is a major design consideration, since any component of magnetic flux not parallel to the electron beam of the picture tube will cause deflection deviations. It is rot usually practical to shield magnetically
either the transformer or the cath-ode-ray tube. The power transformer is too large to be positioned underneath the chassis. Copper banding of the transformer to minimize its magnetic radiation is, however, both practical and effective. In addition, the transformer must be positioned and oriented to minimize coupling to the electron beam.

Only two regions within the confines of table-model cabinets are suitable for mounting the power transformer. These regions are the two lower rear corners of the cabinet, the areas marked L and R in Fig. 1A.

The transformer must be mounted in the lower part of the cabinet to insure proper convection cooling. It must be mounted in a
rear corner of the cabinet to avoid the severe magnetic coupling to the picture tube that would ensue if the transformer were mounted near the front or center of the cabinet. Magnetic coupling to the picture tube is further reduced by selecting the exact position and orientation for a given transformer within the preferred region.

Coupling Measurements

ITeasurement of coupling is complicated by the fact that deviation must be studied which is close to the limit of visual acuity. It is desirable that each separate form of coupling be reduced to a level which produces deviations of the oider of one-half or one-third the $\frac{1}{b^{1} \pm \text {-inch limit established above. }}$

Large quantities of data must be
taken since there are five independent variables, two of these being horizontal position, one being horizontal angle of rotation and two being angle of tilt. A sixth variable, that of height, is not independent of the others, since it is related to that of tilt by means of an axis of symmetry through the center of the cathode-ray tube.

Different parts of the cathode-ray display are effected in different ways. Any optimum condition for the entire picture is, in effect, a compromise between what happens in various parts of the picture. A certain amount of weighting of factors is necessary in this process of compromise.

It is much more important, for instance, to avoid wiggle effects in the center of the picture where most of the action takes place than at the extreme edges of the picturetube screen.

Measurement Technique

In making deviation measurements the receiver was removed from the cabinet and the power transformer connected to it by extension leads. The transformer could then be moved and oriented easily to ascertain the optimum position and orientation within given space limitations. The set was operated from 50 -cycle power.

Measurements were made at nine positions of the cathode-ray-tube face as indicated by the numbers 1 through 9 in Fig. 1B. In general both a direction and a magnitude were recorded. In analyzing the recorded data, it turned out that with the power transformer in the region indicated by the dotted lines, the record of performance at only four points on the face of the picture tube gave a complete summary of performance for the entire picture. These four critical positions are the points $3,5,7$ and 9 , encircled in the figure.

The results for a typical series of measurements on a 21 -inch table model are shown in Fig. 2. The transformer was mounted horizontally (Fig. 2A) and centered approximately 3, 5 and 7 inches (Fig. $2 \mathrm{~B}, 2 \mathrm{C}$ and 2 D respectively) in front of the rear edge of the cabinet and rotated horizontally to determine optimum orientation.

In Fig. 2B (D $=3$ inches) the best compromise rotational position is 18 degrees, but the deviation in the lower corner, 9 , is too large for an acceptable picture. Figure 2C shows that an optimum position of 20 degrees provides a deviation less by 2 to 1 than the allowable limit. The rotational angle in this case is not particularly critical.

For the 7 -inch spacing (Fig. 2D) the compromise angle is 12 degrees, and deviation in the lower corners is barely acceptable.

Other Coupling

Magnetic radiation from the power transformer thus being controlled, other forms of coupling

FIG. 3-Drawing shows positions of tubes and filament current of each
were investigated and independently minimized. The technique for checking the extent of these other forms of coupling, is to reinsert the chassis into the cabinet with the power transformer removed at a distance but connected to it by extension leads.

Magnetic coupling from filter chokes or similar relatively small magnetic components is conveniently avoided by mounting them underneath the chassis.

Magnetic radiation from the heater wiring provides an appreciable design problem. It has been the practice in the industry to ground one side of the tube heaters to the chassis at each socket. This practice results in heater current flow through the chassis to a common heater return point. This practice, when applied to nonsynchronous receivers, has been found to cause objectionable magnetic coupling to the picture tube.

This coupling can be avoided by the use of a center-tapped 12.6 -volt heater winding on the power transformer with the center-tap connected to ground, providing thereby two 6.3 -volt sources of opposite polarity to which the heaters are connected. By intermixing tubes in the two heater strings, chassis currents can be localized and heater-current radiation effects avoided. Since the center-tap connection usually carries a small difference current between the two strings, its location also is critical.

In Fig. 3 is shown one arrangement of heaters and ground returns which has proved to be successful. Ground currents of heaters connected to one voltage polarity are identified by underlined numerals indicating the currents of each tube in amperes. Those connected in the other polarity are identified by numerals without underlines.

Magnetic radiation from either primary or B-supply currents has not been found to be appreciable. The wiring carrying these currents is usually located underneath the chassis where it is shielded by the chassis from the picture tube.

It has been found possible, however, to have appreciable magnetic radiation from the tubes themselves. In particular, radiation effects from the heaters of a 5 U 4 G rectifier were noted when it was located forward in close proximity to the picture tube. This type of coupling was avoided by moving the rectifier tube to a transformer subchassis located to the rear and away from the picture tube.

Conductive coupling between the power circuits and the deflection circuits must be avoided. Adequate filtering of the B circuits is essential in order to prevent ripple in the B supply.

Conductive coupling from the heater circuits is usually in the form of heater-cathode or heatergrid leakage. The deflection circuits in common use today are reasonably immune to such conditions. In designing these circuits large direct voltages between heaters and cathodes should be avoided. Occasional tubes which exhibit heater leakage effects to a noticeable extent are the exception and can be replaced.

One of the traveling-wave tubes tested in oscillator service. Cutaway shows arrangement of an oscillator circuit

Traveling-Wave Oscillator Tunes Electronically

Single electronically-short tube delivers over 100 milliwatts at $3,000 \mathrm{mc}$ and tunes 4.5 percent as helix voltage is varied. Oscillator uses external feedback through a filter to eliminate undesired modes

By H. R, JOHNSON and J. R, WHINNERY*
Research and Development Laboratories
Hughes Aircraft Company
Culver City, Califomia

MICROWAVE TUBES utilizing waves along an electron stream have a wide bandwidth made possible by interaction of nonresonant circuits or fields with the beam. Best known of these wavetype devices is the traveling-wave tube although the double-stream

[^9]magnetron and velocity-jump amplifier have similar characteristics.

Work on wave-type tubes has been concerned largely with amplifier design, nevertheless the tubes are useful also as oscillators. Traveling-wave-tube oscillators consist of a single tube with feedback through an external filter for elimination of undesired modes. The tubes can be designed for power
outputs of one watt or more and are electronically tunable over 4 to 8 percent. A traveling-wave tube designed for use as an oscillator is usually shorter electrically than one designed for amplifier service.

Principle of Operation

A traveling-wave amplifier tube with output and input circuits well matched over a reasonable band-

FIG. 1-Block diagram of traveling-wave-tube oscillator

FIG. 2-Phase and attenuation versus frequency for a typical bandpass filter
width and with enough attenuation to prevent oscillations arising from internally reflected waves is connected as indicated in Fig. 1. The output is fed to a matched load with a portion coupled out, passed through a filter and fed back to the input to produce oscillations.

For oscillations to build up, the total electrical length of the closed loop consisting of the tube, matches, filter and connecting cables must be an integral number of wavelengths. In addition, loop gain must be greater than unity. The first condition commonly occurs at several frequencies, each one of which is referred to as a distinct mode of oscillation defined by an integer n. The purpose of the filter is to insure that the second or gain condition is satisfied for only one mode.

Electronic tuning is accomplished by varying the helix voltage, which is equivalent to varying the electron velocity inside the helix. This produces a corresponding change in the velocities of the four helix waves. A given change in electron velocity results in a corresponding change of about half of that amount in the phase velocity of the growing wave. In an oscillator, this change in phase velocity inside the tube must in general be accompanied by
a change in frequency. If the phase velocity of the wave around the loop is independent of frequency, an increase in phase velocity because of higher electron velocity must be accompanied by an increase in frequency to remain in the same mode. Ordinary dispersion in the filter circuit, such as is associated with a filter consisting of one or several transmission cavities in cascade, narrows the electronic tuning range. This is so because in such a device a small frequency increase results in a greatly increased phase lag of the wave traveling through the filter.

Tube Design

Gain of the growing wave, expressed in decibels per slow wavelength, is proportional to a dimensionless quantity C, where $C^{\text {a }}$ is one fourth the ratio of helix impedance to d-c beam impedance. This gain persists over a fractional range of helix-to-cathode potential roughly equal to $4 C$; this corresponds to a fractional range of $2 C$ in the electron velocity within the helix, or to a fractional range of approximately C in the phase velocity of the growing wave. Thus the total electrical length of the tube at one frequency can be changed by a fractional amount C while maintaining net gain.

For oscillation in a given mode, provided there is no dispersion in either tube or external circuit, a change in electrical length will be compensated for by a fractional change C in frequency. To prevent mode interference, C must be less than the fractional spacing between modes.

In a tube without dispersion in either external circuit or helix, the fractional frequency spacing be-
tween modes is $1 / n$, where n is the electrical length in wavelengths of the tube and the external circuit. This requirement will be satisfied by traveling-wave tubes with less than about $20-25 \mathrm{db}$ gain. The tubes were designed for gain in this range, and with as high values of C as was convenient (about $0.08)$.

Filter Design

The two main requirements for the filter are that it transmit the desired mode while suppressing the undesired ones and that it contribute neither appreciable length nor dispersion to the feedback circuit. The ideal filter is one of zero dispersion, but for many easily realizable filters the dispersion is considerable. So long as the plot of phase versus frequency is linear, there is no signal distortion in car-rier-operated transmission through such a filter. For the oscillator application, more stringent requirements on dispersion are necessary.

Consider the filter actually used for the experimental tests of the oscillator, a simple transmission cavity with characteristics as shown in Fig. 2. At frequencies well below resonance, it behaves as a line shunted by an inductance of low reactance; therefore the output leads the input by 90 deg . At frequencies well above resonance, it behaves as a line shunted by a capacitance of low reactance, so the output lags the input by 90 deg. Between 3-db points, the total phase variation is 90 deg and is linear; this results in reducing the fractional spacing between modes from $1 / n$ to $3 / 4 n$.

If the squareness of the attenuation versus frequency characteristic of the filter is improved by

FIG. 3-Phase and gain versus helix voltage for oscillator using tube 135 wavelengths long
using m cavities in cascade, the phase shift over the passband will be roughly $90 m$ deg, which will reduce the fractional spacing between modes to $(4-m) / 4 n$. For two and three cavities the reduction factors are $\frac{1}{2}$ and $\frac{1}{4}$ respectively. For more than three cavities, it is impossible to separate the modes at all. Such networks are examples of the minimum-phase-shift type, a large class that includes all ladder networks. The phase characteristic of a minimum-phase network is determined once the amplitude characteristic is known for all frequencies.

Experimental Results

Measurements were first made on a long, low- $C, 8,500-\mathrm{mc}$ tube. When the signal was fed back through a tuned cavity, an electronic tuning range of 20 mc (0.24 percent) was observed, whereas theory predicts about 50 mc for an external circuit of zero dispersion and negligible length. To determine whether the fault was with the tube phase-shift versus voltage characteristics or with the external path, phase and gain measurements were made. The results are shown in Fig. 3. For a total tube length of 135 electrical wavelengths, the gain was reasonably high over a range of ± 20 volts, but the phase changed 400 deg. According to the theory, phase shift over this range should be 406 deg. Theory and experiment agree on a phase shift of 0.18 radian per volt.

The second tube tested was designed as a $3,000-\mathrm{mc}$ oscillator. This tube had maximum smallsignal gain at about 440 volts and a beam current of 10 to 20 ma . Electrically it was 14 wavelengths long and had a C-value of about 0.06 . Gain and phase measurements made on this tube are indicated in Fig. 4. Again there is appreciable net gain over a fractional range of helix voltage equal to $4 C$. Because of the higher beam current and shorter length of this tube, there is appreciable gain over a greater fractional range of helix voltage. The rate of change of phase with voltage is 0.055 radian per volt, whereas theory predicts 0.050 radian per volt. An oscillator test was made with the arrangement

FIG. 4-Phase and gain versus helix voltage for oscillator using tube 14 wavelengths long

FIG. 5-Tuning curve for oscillator using 14 -wavelength traveling-wave tube
shown in the drawing. The total width of the mode was 3.4 percent, as shown in the tuning curve of Fig. 5. Oscillation was detected with a relatively small coupling loop, therefore the power output was small. It seems reasonably certain, however, that more than 100 milliwatts could have been obtained from this tube with some sacrifice in electronic tuning range.

The third oscillator tube tested is shown in the photograph. Electronic tuning from 2,640 to 2,800 mc , a range of 4.5 percent, was obtained between mode edges. A power output of 300 milliwatts was obtained at mode center, but no effort was made to maximize the power; more than a watt should be
obtainable. The width of the mode between $3-\mathrm{db}$ points is not much less than the full width because of the steep mode skirts.

BIBLIOGRAPHY

E. M. T.,Jones, "Traveling-Wave-Tube Oscillators," Stanford University E.R.L. Tech. Rpt 28, Aug. 15, 1950.
V. H. Schnitger and D. Weber, Untersuchungen Uber Selbsterregte Schwingungen in der Wanderfeldrohre, Frequenz, 3, p 189, July 1949 .
L. M. Field, "Initial Studies of Harmonic Output Wide-Tuning TravelingWave Oscillators,' Stanford University E.R.I. Tech. Rpt 20, Sept. 1949.
O. Doehler, W. Kleen and P. Paulluel, Les Tubes a Propagation d'Onde Comme Oscillateurs a Large Bande d'Accord Electronique,
68 , Jan. 1949.
H8, Jan. Heffner, Stanford University E.R.L. Tech. Rpt 48, June 18, 1952.
Tech. Rpt 48, Jone 18, 1952 . Whinnery, $I R E$ Group on Electronic Devices, Winter 1952-53 (in print).
J. R. Pierce, "Traveling-Wave Tubes," D. Van Nostrand, 1950.
H. W. Bode, "Network Analysis and Feedback Amplifier Design," D. Van Nostrand, 1945.

Phase Detector Uses

Abstract

Type 6BN6 tube produces output voltage that is function of phase-difference between two voltages independent of their amplitude. Three types of corrections are possible for dealing with signals that vary in amplitude. Practical circuit enables measurement of 1 degree phase shift at 10 mc

USE of the type 6BN6 gatedbeam tube has been extended to detection of the phase between two voltages. The interest in this tube was motivated by a need to detect phase-shifts in the order of 1 degree or more at 10 mc . However, the results to be presented are useful in the general problem of phase measurement or square-wave production by means of the 6BN6.

The general requirements of a phase detector are that it produce an output voltage that is some known function of the phase-difference between two voltages and that the output voltage be independent of the amplitude of the two voltages. The 6BN6 lends itself well to this problem, as it accomplishes both the amplitude independence and the phase detection in the same envelope.

Operation

The circuit diagram for a simplified phase detector and the platecurrent limiter-grid voltage curves for a 6BN6 are shown in Fig. 1. For simplicity, the quadrature grid is assumed to have the same transfer characteristics as the limiter grid. Then the limiter and quadrature grids function approximately as off-on switches with each being able to cut off the plate current independently, but both grids being required to turn it on. As a result of the off-on action of the grids, a sine-wave applied to either grid will produce a trapezoidal waveshape of plate current, provided the amplitude of the sine wave is such that the grid is driven either to cutoff or saturation over a considerable portion of a half cycle.

Applying signals of the desired amplitude, but with different phase, the grids will again produce a

FIG. 1-Simplified phase detector (A) and plate-current limiter-grid voltage curves for 6BN6 (B)
trapezoidal waveshape of plate current. However, the width of the trapezoid will be dependent on the coincident portion of the on period of each grid as shown in Fig. 2A. Waveforms in Fig. 2B show the instantaneous plate voltage resulting from $1-\mathrm{mc}$ signals, 14 volts in amplitude, and shifted in phase by 20 deg applied to the grids. These waveforms were measured with a 517 Tektronix scope whose bandwidth is approximately 100 mc .

Upon integrating the plate-current waveform over a complete cycle, an average plate current results that is dependent on the area of the trapezoid. Assuming the amplitude of the signal to be sufficient as stated above, and the area under the sloping sides of the platecurrent waveform to be negligible compared to the total area, the average plate current is then dependent only on the width of the pulse, which is linearly dependent on the phase-difference in grid voltages.

Thus an output voltage is produced that is linearly dependent only on the phase as it varies from 0 to 180 deg . This is a somewhat idealized case, but is sufficient if signals are comparatively constant in amplitude. If signals are variable in amplitude, however, it is necessary to make certain refine-
ments in the circuit.
In discussing amplitude distortion, it is convenient to define e_{a} as the a-c component of the plate voltage resulting from amplitude modulating the signals 30 percent at 400 cycles. Then the amplitude rejection is defined as $20 \log e_{o} / e_{a}$ where e_{0} is the plate-voltage change resulting from a phase change of 1 degree. Improving the amplitude rejection requires minimizing the changing area of the plate-current pulse resulting from the a-m.

If the transfer function of the

FIG. 2-Predicted waveforms (A) and reproductions of crt waveforms (B)
grids is assumed to be idealized as shown in Fig. 1B it is possible to have complete amplitude rejection by biasing the two grids at a point equally distant from cutoff and saturation as shown in Fig. 2B. The characteristics are not ideal, so corrections have been classified as first, second and third-type corrections.

The corrections are better understood if one expands the plate current i_{b} in a Taylor series about the bias potential E_{0}.

$$
i_{b}=a_{0}+a_{1}\left(e_{0}+E_{c}\right)+a_{2}\left(e_{0}+E_{c}\right)^{2}+\ldots \text { (1 }
$$

For good amplitude rejection, the

Gated Beam Tube

By FRANK S. HOLMAN, Jr.

Electronics Research Laboratory Stanford University, Calif.
area $A_{1}-A_{2}$ shown in Fig. 3 must be a minimum. Since the areas are integrations of the plate current, it is intuitively reasoned from the general shape of the transfer curves that a value of $E_{\text {c }}$ can be chosen to minimize this difference in areas.

Now if the transfer functions are reflections about the origin, i_{b} consists of only odd terms and applying an odd function ($\sin \omega t$) to the grids and integrating term by term, the difference between the two areas becomes zero. The corrections are then:
(1) Let the bias on both grids be the same and adjust this bias by a variable cathode resistor. This correction is significant, since the tube was so designed that with certain potentials on the other electrodes the correct grid bias would be about the same for both grids.
(2) Bias each grid individually, thus placing it at its correct bias.
(3) Vary the plate voltage (plate load resistor) over the range from 80 to 220 volts and minimize e_{n} / e_{0}, where e_{0} results from a given phaseshift, for each value of plate voltage by adjusting the individual grid biases. A plot of the minimized e_{a} / e_{0} as a function of plate voltage

FIG. 3-Enlarged grid voltage curves show two voltages of different amplitude

FIG. 4-Circuit used for making meas. urements with standing-wave detector

FIG. 5-Output voltage and amplitude rejection for the circuit shown in Fig, 4
will also have a minimum, indicating the plate potential for best amplitude rejection. This corresponds to picking the transfer function that most closely approximates an odd function and consequently maximizes the amplitude rejection.
The correction used can be determined from the type of phase meter desired. For metering over a wide range of phase-difference, the first or second correction is the only one necessary, since changes in phase correspond to changes in plate voltage thus destroying the more sensitive bias settings. For accurate metering over a range of 10 or 15 degrees phase-difference, the third type of correction is desired. A method of making the above adjustment is to amplitude modulate (30 percent) the signals and adjust for minimum modulation voltage in the plate circuit.

In general the sensitivity, or the amplitude rejection, of the phase detector does not depend on the phase-difference between the signals. However, the phase-difference does affect the plate voltage, thus for moderate supply voltages and good amplitude rejection the optimum phase-difference is from

50 to 130 degrees in most cases.
With a given supply voltage the minimum phase-difference is governed by the minimum plate voltage at which the tube can function properly. There is also a maximum phase-difference for a given amplitude of signal, because amplitude variations make the results meaningless above this value. For successful operation it is necessary that the composite plate currents reach saturation before the lagging edge of the leading signal cuts the current off. If this were not the case, the plate current would depend on amplitude as well as phase.

Figure 4 shows the circuit used to measure very small phase-differences at 10 mc and Fig. 5 shows the output voltage and amplitude rejection as a function of the phase-difference. The small phase shifts were obtained by introducing a signal into a sliding contact of a standing wave detector, connecting the two ends of the standing-wave detector to the two inputs of the phase detector, and terminating the lines in their characteristic impedance. The phase-difference between the two ends is thus a function of the position of the sliding contact.

In order to determine the loading effect of the 6BN6 on the 6AK5's, it was necessary to measure the effective input resistance of the 6BN6 as a function of its grid voltage. The measurements were made by noting the Q of a tuned circuit, across the grid to ground, as a function of the peak voltage applied to the grid. The effective input resistance was found to decrease as the voltage increased up to 8 volts peak. At this voltage the resistance was 20,000 ohms, and increased slightly as voltage increased.

Bibliography

General Electric Engineering Bulletin ET-B28, "The Gated Beam Tube and Its Application in Intercarrier Television." Robert Adler, A Gated Beam Tube, Electronics. p 82 , Feb. 1950.
Louis E. Garner, Jr., Square Wave Generator Using Gated Beam Tube, Electronics, p 128 , Muly 1951 .
S. Ruhin and G. E. Boggs, Gated Beam Mixer, ELectronics, p 196, Oct. 1951 . Norris C. Hekimian, Frequency-Deviation Meter Plots Drift, Elecrronics, p 134, June 1952 .

Oscillograms show typical pulses produced by inexpensive pulse circuit. Left to right are pulses of $500 \mu \mathrm{sec}$ at $600 \mathrm{cps}, 0.3 \mu \mathrm{sec}$ at 50 kc and a series of $1-u \mathrm{sec}$ pulses at 25 kc

General Purpose

Straightforward circuit uses low-cost components to convert low-voltage sine wave into procession of high-voltage pulses with variable widths down to a fraction of a microsecond. Typical applications are crt markers, gating, counting and frequency division

By ABE HERSHLER and ARTHUR H, SEIDMAN

Project Engineer
Sentor Engineer
Electro-Marine Manafacturing Corp.
New York, N. Y.

SEver.al excellent variable-length pulse generators have been described in the literature. ${ }^{1,4 / 3}$ Most of these, however, are restricted in frequency range and output pulse amplitude.

For certain applications $i *$ is de-
sirable to have a pulse generator whose input frequency can be varied over a relatively large range and whose input waveform can be arbitrarily smooth and of low amplitude. It is usually desirable to have an output of sufficient ampli-

Front view of completed generator shows simplicity of construction. Channel-lock cabinet used is $10 \times 4 \times 21 / 2 \mathrm{in}$.
tude to eliminate need for further amplification.

The unit to be described is simple yet versatile, and it provides excellent output waveform and amplitude. With a sine wave input as low as 100 mv rms from 500 cps to 100 kc, pulses exceeding 100 volts from $0.3 u \mathrm{sec}$ to $1 / f \mu \mathrm{sec}$ (where f is the operating frequency in mc) in length with rise times of less than 0.04 sec can easily be obtained.

Figure 1 shows a schematic diagram of the pulse generator.

Circuit Description

As shown in the diagram, the input waveform is first raised in amplitude and shaped to provide a trigger for the blocking oscillator. The blocking oscillator, in turn, provides a high-amplitude sharp trigger, relatively independent of the input waveform's shape and amplitude, which fires the multivibrator. The multivibrator produces the var-iable-length pulse.

Referring to Fig. 1, V_{i} is employed as a high-gain over-driven amplifier. The output of this tube

Control of pulse-length adjustment is illustrated at left by pulses of $2,4 \frac{1}{2}, 7$ and $10 \mu \mathrm{sec}$. At center are $50-\mu \mathrm{sec}$ pulses at 10 kc and a $0.5 \mu \mathrm{sec}$ pulse at 20 kc

Short-Pulse Generator

FIG. 1-Circuit diagram of variable-length pulse generator. Power requirement, exclusive of filaments, is about ten watts; regulated $B+$ and bias supplies are recommended
is fed to a half-section of a 12AT7 and then differentiated to provide a suitably-shaped pulse to fire the parallel trigger tube. Parallel triggering is used with the pulse transformer to isolate the blocking oscillator from its trigger source. ${ }^{\text { }}$

Blocking Oscillator

One-half of a 5814 (or 12AU7) is used in a conventional blockingoscillator circuit. ${ }^{5}$ The developed pulse of the blocking oscillator, the length of which is less than 0.3 $\mu \mathrm{sec}$ and approximately 200 volts in amplitude, is employed as a trigger for the cathode-coupled multivibrator.

Negligible loading of the output winding of the pulse transformer is accomplished by the isolating diode with its 8.2 -megohm load. The isolation preserves the amplitude and the waveshape of the blocking-oscillator pulse. The other half triode section of the 5814 (or 12AU7) is connected as a diode, although any other diode may be used as well. The multivibrator circuit is a straight-forward cathode-coupled
monostable multivibrator. ${ }^{\circ}$ The $150-$ $\mu \mu \mathrm{f}$ capacitor and the setting of the 10-megohm potentiometer determines the length of the generated pulse.

The only parameter in the circuit which is somewhat critical is the bias applied to the blocking oscillator. It should be maintained at the value shown to insure stable operation over the range mentioned, namely 500 cycles to 100 kc , without permitting the blocking oscillator to become free-running. A voltage regulator tube and a suitable dropping resistor could provide the bias. A regulated 300 -volt power supply is recommended.
The accompanying oscillograms illustrate the various waveforms obtained from the unit. The amplitudes of the waveforms are in excess of 100 volts.

Applications

For compactness the generator may easily be converted into a selfcontained unit. A one-tube Wienbridge oscillator may be added as a front end, thus eliminating an ex-
ternal sine-wave generator.
The pulse generator may be used wherever well-defined pulses and variable pulse lengths are required; for example, direct Z -axis spot brightening for a cathode-ray tube, gating, counters, markers, and frequency division. By varying the bias on the blocking oscillator, various division ratios may be obtained. Ratios of 1 to 5 have been obtained by the simple expedient of adjusting the bias to a lower value than specified.

Many other applications will suggest themselves to the user of this versatile unit.

References

[^10]
Transient Analysis

Abstract

Direct-reading instrument, designed for studying persistence of cathode-ray tube screens, measures response under observation at predetermined intervals after step excitation. Only slight modification is required for other applications

WHEN Investigating transient waveforms, it is usually necessary to record the waveform for quantitative measurements. Mechanical recorders are satisfactory only where relatively lowfrequency components are involved, and for good accuracy high chart speeds must be used. Oscillographic displays require that photographs be taken and generally employ cumbersome and tedious procedure for accurate screen calibration. This is especially true if a wide range of amplitudes is encountered, as is often the case in present-day electronic instrumentation applications.

The instrument to be described is a direct-reading time-selective transient voltmeter intended for persistence measurements on cathode-ray tube screens.

However, the techniques employed should be applicable to a wide variety of additional applications in transient measurements and analysis.

The complete system is shown in block form in Fig. 1 with waveforms to indicate sequence of operations.

Persistence Measurements

Screen persistence characteristics are measured under periodic screen excitation, Fig. 1H. Screen bombardment by the cathode-ray electron beam produces a rapid rise in screen fluorescence followed by a slower phosphorescent decay, Fig. 1G. The magnitude of phosphorescent light output on successive excitations increases, displaying the screen's build-up characteristic. The desired value of phosphorescence Y

By RAYMOND WINFIELD

Electronic Scientist Material Laboratory
New York Naval Sthiphatad
Brooklyn, Nंew York
may lie on any of the decay curves, each curve having a greater light output at a given time after excitation than in the preceding decay interval. Since each decay curve is different, information about the desired point is supplied once during the entire measurement cycle.

To effect a reading of this value, the multiplier phototube signal is allowed to pass from the phototube amplifier to the output meter only after the desired persistence time has elapsed. Ideally, this condition

FIG. 1-Block diagram and associated waveforms show sequence of operations
of signal feedthrough is maintained for zero time. At this instant, the signal is fed to a vacuum-tube voltmeter whose deflection indicates the phosphorescent light output from the screen, Fig. 1F.

Measurement Cycle

The measurement cycle is initiated by the grid drive signal of the cathode-ray tube, Fig. 1A, 1H, which turns on the electron beam for $1 / 60$ second, once each second. The first leading edge of this waveform establishes zero reference time and is used to trigger a time-delay multivibrator, Fig. 1D, which in turn triggers a fixed-width gate multivibrator, Fig. 1E. This gate is then used to turn on the amplifier and voltmeter circuits for a time equal to the width of the gate pulse. The signal is electronically recorded in this short interval, after which the output meter follows the curve shown in Fig. 1F.

Since the initiating synchronizing signal is periodic, additional gates would be produced, one each second, and the output meter would respond to the changing input to the phototube amplifier at the end of each time-delay interval. To prevent this, a bistable multivibrator is used as an electronic switch to prevent all triggers after the first from triggering the time-delay multivibrator, Fig. 1C.

Circuits

Circuit details are given in Fig. 2 and 3. The synchronizing signal is fed to a sync limiter V_{10} from the cathode of V_{14} and to amplifier V_{B}. Differentiation of the sync signal takes place in the output of $V_{1 A}$.

By Time Selection

FIG. 2-Complete circuit of sync limiter-amplifier and multivibrator chain

Since the synchronizing signal is obtained from the grid drive voltage of the tube under test, the amplitude will vary with the tabe type. For this reason, a sync level control is provided as well as limiting, to keep the maximum trigger voltage at the grid of V_{B} at appreximately 25 volts. This tube is normally biased near cutoff, and with positive sync input, the tube is driven to conduction and triggers the grid of $V_{\Sigma B}$, the normally-conducting half of the bistable multivibrator. These initial conditions are established when an input pulse is generated by pressing the reset switch before the measurement cycle is begun.
The step in plate potential of $V_{2 B}$ when the multivibrator flips is differentiated and triggers the timedelay cathode-coupled, monostable multivibrator which delivers a negative pulse to the differentiating circuit at the grid of $V_{\text {c. }}$. The width of this pulse is equal to the desired time delay, (decay time). Subsequent negative triggers from the plate of the sync amplifier produce no further change at the plate of $V_{2 B}$ since that tube is already cut off. Therefore, only the first synchronizing pulse is effective in triggering the time-delay multivibrator.

For the speciic application shown, delays of $0.1,0.3,1,5$ and 10 seconds, preset on calibration, are provided. A variable plug-in delay $R C$ is also available. The delay multivibrator is inherently less accurate than Miller type linear sweeps used for highly accurate time delays. However, by returning the grid of V_{38} to a regulated supply of 500 volts and by regulating the iilament voltage, the delay has been found to vary by less than 2 percent in an 8 -hour period after initial warm-up.

The output of the time-delay multivibrator is differentiated, Fig. 1D, and the trailing positive pulse triggers the gate multivibrator, V_{1} in Fig. 2. This is also a cathode-coupled monostable multivibrator, but differs from the time-delay circuit in that the width of the output is varied by adjusting the bias on $V_{\text {u. }}$. This determines to what value the plate potential will drop when the multivibrator is turned over. This in turn is a measure of how far the grid of $V_{G B}$ is driven negative and beyond cutoff.

Hence, adjusting the gate-width control for a less negative bias will increase the gate width, which is adjustable from approximately 20 to $1,200 \mu \mathrm{sec}$. The value chosen for the given application is $500 \mu \mathrm{sec}$
and depends upon the useful persistence range of the screens under test, which in turn is reflected in the time delays for which the instrument is set up. Since the gate width is only 0.5 percent of the minimum delay of 0.1 second, the change in light output during the 500 - μ sec gate time is negligible. The output reading can be considered a true indication of the phosphorescence at the end of the chosen decay time.
The output of the gate multivibrator is a negative-going square pulse which cuts off cathode follower V_{E}, producing a 50 -volt negative gate at the grid of $V_{\theta B}$, Fig. 3 . This tube and V_{8} form a modified diode switch with the photo amplifier interposed between the two. With the function switch in the read-position and no gate present at the grid of tube $V_{G B}$, the signal at the input to the photo amplifier cannot pass to the input of the electrometer vacuum-tube voltmeter $V_{\text {o }}$. This occurs because the low plate potential of $V_{6 A}$, due to maximum plate current of $V_{\theta B}$ corresponding to zero grid bias, is amplified to make the cathode of V_{8} negative with respect to its plate for all values of the negative photo input signal.
When the gate multivibrator is triggered, the pulse delivered to the grid of $V_{\theta B}$ cuts the tube off for approximately $500 \mu \mathrm{sec}$. The plate potential of $V_{0 A}$ rises and is now passed to the cathode of the diode switch as a negative pulse whose amplitude is proportional to any voltage present at the input to the photo amplifier. It is this pulse which represents the light output of the cathode-ray tube screen at the time the delayed gate is generated.

Diode V_{s} now conducts and C_{c} and C_{G} are charged, with the voltage across C_{a} being measured in the cathode circuit of an electrometer vacuum-tube voltmeter.

Electrometer VTVM

This circuit is a modification of a commercial electrometer. ${ }^{3}$ The
$30,000-$ ohm resistor in series with the external precision meter was found necessary to reduce excessive damping of the circuit on the selected meter, while the $1.5-$ volt battery in series with the 60,000 -ohm resistor is used to raise the operating current of the 5803 to a value giving good linearity. The extremely low grid current of the 5803 allows the use of the $0.1-\mathrm{xf}$ capacitor C_{θ} as the only grid return without altering the grid potential due to grid-current effects, and produces an extremely high dis-charge-time constant.

Reading Time

Once the signal charge has been delivered to C_{G} loss of charge is determined by the potential at the cathode of $V_{7.4}$, the back resistance of V_{8}, and the leakage of both C_{σ} and C_{C}. These factors directly affect the reading time, which is the time in which an observer can take a reading before the indication drops a specified amount.

To consider these factors, the operating procedure must be examined. Initially the function switch is set on Zero 1 position, C_{G} is shorted out and the electrometer is adjusted to zero. This circuit has a low short-time drift and requires occasional readjustment. In this position the electrometer side of C_{c} is also shorted to ground and therefore assumes the potential of the cathode of V_{74}.

When the function switch is thrown to zero 2 position, C_{0} is placed in its normal operating position in series with the photo ampli-
fier output. Diode switch V_{8} is now shorted out. Any voltage previously existing at the cathode of V_{74} is now also across C_{c} which effectively cancels drift voltage from the photo amplifier, leaving a net output of zero volts across C_{σ} without a signal input. Thus, the function switch may be thrown to zero 1 position at any time to zero the photo amplifier automatically.

The cathode of $V_{7,}$ can be adjusted to ground potential with the amplifier zero adjustment when the function switch is in other than READ position and no signal is present. The control need not be adjusted in the normal operation.

If the output of the photo amplifier drifts several volts, then C_{c} will also operate with this voltage across its terminals in zero 2 position and will slowly discharge through its leakage resistance. This will cause C_{0} to charge slowly and produce a down-scale deflection on the output meter. This will result in calibration error in zero 2 position. To make the choice of capacitors somewhat less critical, the circuit shown was chosen to operate the cathode of $V_{T A}$ close to ground potential so that the initial voltage across C_{c} is nearly zero.

It is desirable to eliminate the coupling battery at the plate of $V_{7 B}$ and to ground the $0.2-\mathrm{meg}$ cathode resistor of $V_{i A}$, thereby eliminating the amplifier zero adjust. Connecting the plate of $V_{\text {т }}$ to the grid of $V_{7 A}$ places the cathode of $V_{7 \Delta}$ at approximately 170 volts. Because of the switching arrangement, this is cancelled out along with any drift

FIG. 3-Gated photo amplifier and electrometer vacuum-tube voltmeter circuits
voltage since C_{c} will now operate at a potential of about 170 volts without a signal. No balancing reference voltage is needed. For a given time interval, however, C_{c} will discharge by a much greater amount due to the higher initial voltage across it, and will cause a slowly-increasing down-scale deflection since the sum of the voltages across C_{c} and C_{G} must equal the cathode voltage of $V_{T A}$. Use of a laboratory grade capacitor for C_{c} will correct this.

With the function switch in ZERO 2 position, full scale d-c meter calibration is effected. The output from the phototube for a standard light source is adjusted until the output meter reads full scale. Tube $V_{\text {es }}$ is inoperative with its cathode circuit open, simulating the presence of the delayed gate which cuts off $V_{\text {sB }}$. However, the accuracy of this method is affected by the charging time constant under actual pulse input to the cathode output circuit of $V_{7 A}$, consisting of the forward resistance of diode V_{8} and C_{c} and C_{θ} in series. It is also affected by the leakage resistance of each capacitor since the voltage division between the two is not the same for both a-c and d-c inputs. The leakage time constant of the two capacitors would have to be equal for this to be true.

Capacitor C_{c} serves the purpose of reducing the charging time constant in addition to zeroing the amplifier automatically as described above. The value used is a compromise to obtain reasonably fast charging time, long discharge time for stability of reading, and to keep down the loss of output voltage due to the capacitance divider of C_{c} and C_{0} in series. An alternate method for obtaining a fast charging time is that of cascaded diode-coupled circuits ${ }^{3,5}$ where a fast charging circuit is followed by a slow one. This was not attempted because of extra switching circuits entailed.

Reading

After the meter has been zeroed and calibrated, the function switch is placed in the read position. This completes the cathode circuit of $V_{\theta B}$, and places the diode gate $V_{\text {, }}$ in series with the amplifier output. A reading can now be taken after setting the desired time delay and
then turning on the grid drive signal, Fig. 1A and IH, which initiates the measurement cycle. The delayed gate is then generated and cuts off $V_{B B}$ for the duration of the gate width, while C_{θ} is charged. For the component values shown, and using an allowable charging time of $500 \mu \mathrm{sec}$ (gate width), the output will indicate approximately 96 percent of full scale under actual test conditions in the READ position, with a photo input equal to that giving full scale in zero position. Since doubling the gate width produces only about 1 percent increase in deflection, no attempt was made to improve the charging time by reducing the capacitance of C_{C}. This would require a greater input with a loss of linearity, a higher leakage resistance for C_{C}, and a greater back resistance for the diode gate V_{g}.

Calibration Error

The error in d-c calibration can be eliminated by dynamically calibrating the full scale reading in the READ position where the reading takes place only on arrival of the delayed gate at the grid of $V_{0 n}$, as in an actual test reading. With the use of the MANUAL switch, a trigger is internally generated which results in a gate being delivered to $V_{\theta B}$ in the same manner as the external synchronizing signal.

If the output of the phototube is adjusted each time after a reading is taken until a full scale reading is achieved, for a standard light source, then all calibration error is eliminated. This method takes slightly longer than $\mathrm{d}-\mathrm{c}$ calibration but is not at all difficult. The overall linearity in either case is approximately 1 percent of full scale, and the frequency response of the amplifier is adequate for the specified working range. An input of approximately 0.5 volt at the photo input terminal will produce full scale deflection of the output meter.

When the function switch is in the READ position with the gate inoperative the potential at the cathode of $V_{T A}$ is approximately 40 volts higher than in the zero 1 and ZERO 2 position due to the change in plate potential of V_{64}, although this varies with the photo input signal. This will cause C_{c} and

Front panel view of time-selective transient voltmeter used for cathode-ray tube persistence measurements
C_{θ} to charge to this value or C_{G} will discharge if a reading has already been taken. In either case a down-scale deflection will occur unless the back resistance of V_{8} is extremely high. Clamping may be used to keep the cathode of $V_{\tau A}$ near its initial potential.

The diode back resistance is the most critical factor influencing stability of zero and the constancy of deflection. Ordinary receivingtype diodes or high-voltage diodes do not have sufficient back resistance for this application. For example, a discharge time constant of 100 seconds requires a back resistance of 20,000 megohms. This is a relatively short time constant for in 10 seconds the reading will fall approximately 10 percent.
The circuit illustrated can maintain its reading for approximately 5 minutes before the reading will drop more than 2 percent of full scale. This is obviously more than ample time for an observer to take a reading. However, if it is desired to obtain several points on a transient waveform in a single measuring cycle, a large reading time is desirable, especially if a difference in readings is required.

By duplicating the system from the output of the bistable switch to the input of the vacuum-tube voltmeter for each additional point on the transient, the grid of the output meter may be switched to each 0.1$\mu \mathrm{f}$ capacitor.

Other Features

Additional features are a MANUAL switch for manually de-
energizing a cathode-ray tube screen and simultaneously initiating a trigger for producing a delayed gate. It is also used for calibration as described above. For calibrating the time-delay multivibrator, the bistable switch is converted to an amplifier for continuous triggering of the delay multivibrator.

This is accomplished by throwing the REPETITIVE-SINGLE switch to repetitive position. This opens the cathode of $V_{2 A}$ allowing $V_{2 B}$ to act as an amplifier.

The repetitive position may also be used to monitor the continuous rise in the value of Y, Fig. 1G, in successive decay intervals. Internal calibration voltage is provided for checking the linearity of the photo amplifier and vacuum-tube voltmeter.

The instrument described resulted from work on a project of the Naval Material Laboratory to simplify evaluation of long persistence phosphors originally established at the M.I.T. Radiation Laboratories. The author is indebted to D. H. Andrews and B. Bernstein of the Material Laboratory for their helpful suggestions, and to M. Turntine who constructed the instrument and aided in the testing of the final unit.

References

(1) Joseph C. Tellier and Joseph F. Fisher, Testing Long-Persistence Screens, Fisher, Testing Long-Persistenc
(2) "Waveforms,", Feb. 1948.19 Volume Radiation Laboratory Series, p 170, McGrawtion Laboratory Series, p 170 , McGraw(3) Vacuum Tube Electrometer, Keithey Instruments, Cleveland, Ohio. ley Instruments, Pleak Signal Monitor Circuits, Electronic Engineering, p 365 , Aug. 1952 . (5) "Waveforms,"" Volume 19, Radiation Laboratory Series, p 509. McGrawHill Book Company, Inc., New York, 1949.

Pulse Averaging Circuit

Voltmeter-type device employing three standard tubes and three crystal diodes measures average of varying input pulse train with pulse widths as small as 0.35 microsecond. Assuming linear output, maximum error is 10 percent full-scale reading. Improvement is obtained by sacrificing minimum pulse width

By F. E, BOYD and N. W, GUINARD
Naval Research Laboratory Washington, D. C.

MEASURING THE AMPLITUDE of pulses can become extremely tedious and time consuming especially when more than a few pulses must be observed. In a repetitive system it is not always necessary to determine the amplitude of every pulse since the average amplitude of a number of pulses will yield the desired information. If the spread as well as the average is required, such a device becomes an important anxiliary.

The basic circuit shown in Fig. 1 has been used previously in a counting rate meter ${ }^{1}$ but in adapting the circuit for measurement of average amplitude information a number of important modifications became necessary.

Basic Voltmeter

A positive pulse of amplitude E is applied across C_{1} in series with diode D_{1} and C_{2}. Capacitance C_{1} is much smaller than C_{2} and therefore C_{1} becomes fully charged during each pulse. Regardless of the relative sizes of C_{1} and C_{2}, the same amount of charge is deposited on each.

$$
\begin{equation*}
q=C_{1} E \tag{1}
\end{equation*}
$$

Diode D_{1} serves to isolate C_{2} during the discharge period between pulses so the voltage that builds up across C_{2} is proportional to the average amplitude of the pulses.

FIG. 1-Basic voltmeter circuit

FIG. 2-Circuit using vacuum diode

Output voltage, E_{0}, is

$$
\begin{equation*}
E_{0}=i_{3} R_{3} \tag{2}
\end{equation*}
$$

and since $i=\delta q / \delta t$,

$$
\begin{equation*}
i_{3}=n q \tag{3}
\end{equation*}
$$

where n is the number of pulses per second. Substituting the value of q from Eq. 1

$$
\begin{equation*}
i_{3}=n C_{1} E \tag{4}
\end{equation*}
$$

and using this value of i_{8} in Eq. 2

$$
E_{0}=n C_{1} E R_{\mathbf{1}}
$$

Since the circuit is sensitive to pulse rate and pulse amplitude, either one can be measured by holding the other constant.

Linearity of the system is dependent on the value of C_{1} and the back resistances of diodes D_{1} and D_{2} in series. But the minimum usable pulse width is the shortest possible time required to charge C_{1} fully,
and this is dependent on the forward resistance of diode D_{1} as well as the output impedance of the driver.

Improved Rectifier

The solution to this situation depends on a diode with zero forward resistance and infinite back resistance. Since this condition is impossible to obtain, two alternatives present themselves. For the measurement of pulses of greater width than one microsecond, a 6AL5 tube is used for D_{1} and D_{2} as shown in Fig. 2. A battery is inserted to balance out the Edison effect of the diodes. This circuit has good linearity and will give a fairly accurate average for the prescribed pulse. Unfortunately this arrangement will not work for pulses much shorter than a microsecond since the forward resistance of D_{1} is too great to allow C_{1} to charge fully and therefore the circuit becomes pulsewidth sensitive.

Practical Circuit

In the completed circuit, Fig. 3, the charging time constant has been lowered by using crystal detectors in place of diodes and also a very low-output-impedance driver. The forward resistance of a crystal is about 80 ohms as compared with a diode forward resistance of about 200 ohms. Unfortunately, one difficulty arises that is not present when the vacuum diode is used. The crystal resistance is dependent on applied voltage as shown by the curve in Fig. 4.

FIG. 3-Pulse-averaging voltmeter circuit

When the back voltage is below 50 mv the effective back resistance is relatively low-less than 50,000 ohms. At this point an appreciable portion of the discharge current from C_{2} (Fig. 1) is through the back resistance of the crystals. This condition results in the nonlinear output shown in Fig. 5A. By increasing C_{1} to 450 p. . the voltage output is raised appreciably and the nonlinearity is improved to 4 percent of full-scale reading. However, the minimum measurable pulse width is $0.7 \quad \mu \mathrm{sec}$, as compared with $0.35 \mu \mathrm{sec}$ with C_{1} equal to $150 \mu \mu \mathrm{f}$. If the value is reduced very much below 100 wif the performance is adversely affected by stray capacitance.

To minimize the nonlinear output it is important to select crystals for use at D_{1} and D_{2} that have higher back resistance at low levels of applied voltage. This can be done by measuring the back resistance with 50 mv applied. In general, the individual units of the type 1 N 54 crystals exhibit higher back resistance than the type 1N34 units.

Temperature Characteristics

Crystal characteristics vary radically when units are subjected to high temperatures, such as occurs when enclosed in apparatus containing a number of tubes or dissipating elements in a confined space. Therefore, care should be exercised in physical arrangement and ventilation.

Another compromise which must be made concerns R_{3}. The output
voltage must be a quantity large enough to measure conveniently. Because the current is small, R_{3} must be fairly large. Yet, R_{3} must

FIG. 5-Amplitude characteristics for two values of series capacitor in Fig. 1 and 2

FIG. 6-Effect of pulse width with constanl peak amplitude for two values of series capacitor

FIG. 7-Effect of pulse rate frequency on output

FIG. 4--Resistance of 1N35 unit
be kept much smaller than the combined back resistance of the crystals and of such a value that the time constant $R_{3} C_{2}$ is large enough to average the pulses. Capacitor C_{2} is limited by the consideration that the voltage developed across it must be much smaller than that of C_{1} so small pulses will not be neglected in the average.

The first three tubes in Fig. 3 make up a $3.5-\mathrm{mc}$ video amplifier permitting a one-volt positive pulse to give an output of 0.3 volt d-c. A selection of averaging times is available at switch, S_{1}. The crystal at the 6AK5 grid serves as a limiter, preventing burnout of the other crystals.

This voltmeter is especially sensitive to noise because noise contains many high-frequency components. Output increases with frequency and therefore a small noise voltage produces a relatively large output. In one instance of use where noise was unavoidable, its effect was successfully eliminated by the insertion of a squelch circuit.

For measuring the average of pulses whose width is 1 microsecond or greater the use of the circuit in Fig. 2 is reasonably accurate. The circuit of Fig. 3 will produce an average of a varying pulse train with pulse widths as small as 0.35 microsecond. Assuming linear accuracy, maximum error will be 10 percent of full scale reading.

Reference

(1) Nucleonics, p 43, Apr. 1948.

Rate-of-Descent Indicator

Abstract

Reflected-light system uses phototube-triggered thyratrons to measure vertical speed of landing planes. Unit makes available immediately information that formerly required time-consuming analysis of photographs

BASIC information required during acceptance tests of aircraft includes the vertical component of the rate of descent just prior to touchdown. This information is used as an aid in determining the impact on landing gear and other structures of the plane.

Prior to the development of the unit to je described cameras were used exclusively for obtaining rate-of-descent data. Airfield installation required cameras to be loaded and set with precision. Reduction of the information obtained by this method required considerable time and in many cases results would vary as much as 30 or 40 percent.

The employment of a doppler radar to measure rates of descent has been tried, but such a system requires aircraft modifications that

By MYLES V. BARASCH

Staff Engineer.
Missiles and Control Equipment North American Aviation, Inc. Downey, Califormia
increases weight, cost, and complexity. These factors have discouraged the use of doppler radar other than for flight tests.

TRODI

Factors considered in developing the Touchdown Rate of Descent Indicator (TRODI) required that a minimum of equipment be installed in the aircraft, and rate-of-descent values should be immediately available on direct-reading meters. The unit also had to be light weight, portable and easy to calibrate.

To satisfy these requirements, a
unit combining electromechanical and optical components was designed. Readings obtained are a function of the time it takes an aircraft to descend a vertical distance of one foot.

A trihedral prism weighing less than $1 \frac{1}{4}$ pounds is the only part of the system installed on the plane. The trihedral prism because of its three mutually perpendicular reflecting surfaces, will reflect any incident light directly to its source as shown in Fig. 1.

The prism is mounted on the landing-strut that will be nearest the detector unit during landing. If the design of the aircraft makes a strut unavailable for the installation of the prism, another location may be chosen, preferably near the plane's centerline to reduce the pos-

Detector portion of unit transmits and receives light beams

Nonlinearity of velocity scale makes two meters necessary to cover range from 3.5 to 35 ft per sec

Speeds Aircraft Tests

FIG. 1-Prism returns light to its source

Two-unit descent indicator measures time required for plane to descend one foot
sibility of false readings caused by aircraft roll. The prism must be mounted so that it can see the detector unit, but need not be aimed precisely toward it. The prism is mounted pointing 15 degrees outboard of the longitudinal axis of the aircraft. The prism installation is simple and in no way critical, requiring no modification of the aircraft.

The basic installation consists of a detector assembly and indicator assembly. A block diagram of both units is shown in Fig. 2.

The Detector

The detector assembly projects and receives beams of light. It contains two light sources and a rotating disk that chops the beam of light at a frequency of $5,600 \mathrm{cps}$.

Light from a vertical lamp filament passes through a heat-absorbing glass into a lens system and is focused on the plane of rotation of a radially-slotted chopping disk. A stationary vertical slot with a width approximately equal to that of the disk slots is mounted immediately in front of the chopper.

Chopped light from the disk is reflected downward through a prism toward the axis of the lower receiving lens. This prism, composed of
two right-angle prisms housed together, rotates the filament image 90 deg. so that its length is in the horizontal direction.
The light then passes through a cylindrical lens mounted in contact with the prism. The focus of this lens is placed at or near the filament image and the rays of light leaving the lens fan downward.

A right angle prism reflects this fan forward into a horizontal plane. The fan is nearly 30 deg . wide and less than one deg. thick vertically. The width equals the angular spreading of the rays leaving the chopper, while the thickness is determined by the cylindrical lens.

By means of a similar optical system, an upper fan of light is projected forward one foot above the lower fan. The thickness of the two fans increases with distance and they overlap and merge at a distance of about 70 feet. At 200 feet, each fan has a width of about 107 feet and a thickness of about 3 feet.

Receiver

When an aircraft descends through the upper fan-shaped beam, the trihedral prism on the landing gear returns the light beam to its source. Light transmitted by the detector is reflected back to this
region. Some of this light enters the receiver lens, which focuses the light on a slotted plate. As the trihedral prism descends, its image on the plate ascends. The ascending image falls briefly upon the slit and through a lens system on a 931A phototube. An amber filter is used to increase the signal-to-noise ratio by excluding much of the blue sky light, while admitting most of the light returning from the trihedral prism.

The optical system that transmits the beams of light determines a fan of illumination several inches or feet thick. The receiving optical system determines a fan of sensitivity such that the light source must be in this fan to illuminate the phototube. The fan of sensitivity is about 30 deg . wide and is fixed by the length of the slit in the plate and the focal length of the receiving lens. The thickness of the sensitivity fan is about 0.5 inch at a distance of 200 feet and lies wholly within the fan of illumination.

When light reflected by a trihedral prism entering the upper fan of illumination reaches the upper slit, the upper phototube is briefly illuminated and its resultant pulse triggers a timing circuit in the in-

FIG. 2-Block diagram of optical and electronic system of rate-of-descent indicator
dicator unit. The lower phototube is unaffected at that time, because no light from the prism can enter the lower slit. As the prism descends into the lower fan of illumination, the lower phototube is affected and this second pulse triggers its timing circuit in the indicator. The time interval between the two triggers is measured and, since the two fans of sensitivity are precisely one foot apart, the rate of descent is determined.

The Indicator

The method of measuring the time interval, as the aircraft drops the one foot between the two optical receiving fans is illustrated in the block diagram, Fig. 2.

Light reflected to the upper phototube from the trihedral prism is modulated at $5,600 \mathrm{cps}$. This light causes a $5,600-\mathrm{cps}$ current to flow through the multiplier phototube creating a voltage across its plate-load resistor. This voltage is amplified by a single triode stage and supplied by a cathode follower through a 250 -foot low-capacitance coaxial cable to the indicator unit.

The 5,600-cycle signal received at the indicator unit is further amplified by two triode stages; one utilizing a resonant circuit as the plate load to narrow the bandwidth of the amplifier and improve the signal-tonoise ratio. The amplifier signal is used to trigger a thyratron, which acts as a switch to connect a care-fully-regulated voltage to two R-C circuits allowing the capacitor to charge.

The signal caused by the trihedral prism, when it passes through the sensitive area of the lower phototube, is handled in the same manner as the signal to the upper tube. This signal triggers a second thyratron to remove the applied voltage from the $\mathrm{R}-\mathrm{C}$ combination. The capacitor voltage which is approximately proportional to the elapsed time is applied through a cathode follower to an ammeter in a compensating and balancing circuit.

Meters

Since velocity of descent is equal to one foot divided by the elapsed interval of time, the velocity scale on the meter is nonlinear. This nonlinearity is so great that it is impractical to cover the entire operating range from 3.5 to 35 ft per sec with one meter and still provide good accuracy. To assure accuracy, two R-C networks with time constants adjusted to cover different ranges are charged simultaneously. The rate of descent is thus indicated on two separate meters; one meter covers the slow descent range of 3.5 to 18 ft per sec, the other meter covers the fast descent range of 14 to 35 ft per sec. By this means, the scale divisions are sufficiently separated to permit instruments of 1 percent accuracy to be utilized.

The reading remains on the meters for an appreciable length of time without evident change, providing sufficient time for observation and recording.

The instrument is reset by a control that extinguishes the thyra-
trons and discharges the memory capacitors.

Gain controls are provided in the two amplifying channels in the indicator unit and are accessible during operation. The gain of the first channel is adjusted so that random noise-pulses trigger the thyratron at approximately 2 -minute intervals. Because the second channel cannot be triggered until the first channel is actuated, the gain of the second channel is adjusted to provide a delay of approximately 20 seconds after the first channel is triggered before it will trigger on random noise pulses.

Calibration

To calibrate the indicator unit internally, a precision one-shot multivibrator is provided to produce two pulses separated by time intervals corresponding to 3.5 ft per sec, 14 ft per sec, and 35 ft per sec. These pulses trigger the thyratrons and are utilized to adjust the meters accurately.

When TRODI is used in the presence of excessive ambient light, as when the detector is facing the sun, it is found necessary to increase the brightness of the projected beams. Therefore, a beam-intensity control has been incorporated in the system. This control increases the brilliance of the projection lamps giving a more intense beam and increasing the signal-to-noise ratio. Beam-intensity controls are located on the detector and indicator units, to enable beam intensity to be increased from either position.

Toroid Design Charts

Reference to these charts permits speedy determination of Q, frequency range, size and type of permalloy core, wire size and number of turns for toroidal transformers to meet performance specifications in the $1-\mathrm{kc}$ to $100-\mathrm{kc}$ frequency range

By R. E. PROUTY

Sound Division, A irborne Sonar Pranch Vaval Research Laboratory

Washington. D. C.

IN DESIGNING toroidal transformers it is necessary to determine the proper type (permeability) and size of core and the required size and number of turns of wire. Circuit considerations set the required Q, inductance and operating range. The accompanying charts tie all the parameters together. A majority of the possible combinations for $0.8-\mathrm{in}$. O.D., $1.06-\mathrm{in}$. O.D. and the 1.84-in. O.D. molybdenum permalloy cores are covered.

Design

In searching for the ideal toroidal transformer for a given application, the practical limits of each core and wire size are first established.

Each master chart (Fig. 1, 2 and 3) covers one core size. Each chart is plotted on 5 -cycle loglog paper. The number of turns of wire necessary to obtain a given inductance for cores with typical mu values can readily be found. The horizontal lines that intersect the diagonal lines at their approximate upper limits establish, for the wire sizes indicated, the maximum number of turns that can be hand wound on that size of core.

By winding over two cores instead of one, the inductance can be exactly doubled for a given number of turns of wire. For example, referring to Fig. 1, the maximum possible inductance obtainable with No. 24 wire on a single core of 125 mu in the $1.84-\mathrm{in}$. size is 400 mh . In other words a maximum of 1,200 turns

FIG. 1-Master design chart for toroids with 1.84 -in. (O. D.) cores

FIG. 2-Master design chart for toroids with 1.06 -in. (O. D.) cores

FIG. 3-Master design chart for toroids with 0.8 -in. (O. D.) cores

FIG. 4-Auxiliary design chart for toroids using 1.84 -in. cores

FIG. 5-Auxiliary design chart for toroids using 1.06 -in. cores

FIG. 6-Auxiliary design chart for toroids using 0.8 -in. cores
of No. 24 wire can be wound on a 1.84 -in. core. Using two superimposed cores, an inductance of 800 mh can be obtained with only 1,200 turns. Since this is a logarithmic progression, halving the number of turns will not halve the inductance.

Figure 1 is supported by a turns-against-Q chart (Fig. 4.) for each of the four core types. These show the actual Q obtained by winding the specified number of turns. Diagonal Q lines are plotted for each wire size. These are intersected by a dashed line indicating the limit of the number of turns that can be wound on a given core.

Figures 5 and 6 similarly refer to the master charts, Fig. 2 and 3 respectively.

Chokes

Since a transformer is nothing more than a multiplicity of chokes wound upon a common core, the data is valid for either a choke or transformer. In designing a transformer, the total number of turns of wire (primary and secondary) must be kept in mind. Since maximum efficiency is obtained when the toroidal core is wound fully with wire, the smallest possible core, or the largest possible wire size should always be chosen; Q, of course, holds precedence over other factors. The larger the diameter of wire used, the higher the Q. The choice of core permeability is inversely related to the operating frequency desired. The higher-mu cores operate best at the lower frequencies and conversely.

There is no set rule for using these charts. Some may find it more expedient to look first for the highest obtainable Q at a given frequency, then settle for the core that will provide it. Others may be inductance conscious and settle for the highest obtainable Q at a given inductance.

Figures 7 to 9 give quantitative data on toroids wound by the the author in compiling the accompanying charts.
(continued on p 196) TELEVISION. HALLICRAFTERS fEDERAL TELEVISION . CERTIFIED RADIO. with QUALITY Components TELEVISION. PEERTHEY CHOSE CINCH
;S TELE SPARTAN • TELECOT . TRAD. DEHART-FARNSWOR
HON TELEVISION P PEER-
WNGTON SCOTT

 ERS ELECTRIC COMPANY - MONTE TV - TROIA MEIR COIL - S.M.A. SARKES-TAOTOROLA MULTI PACKARD O FEDERAL TELENSWORTH. CERT NIELSON - ARVIN INDUSTRIES GENERAL ELECTRUNSWICK - CAPE HART GTHON. MARS TELEX X. BR UN MAX MARATHON•MARS TEL ERS - BELL TELEVISNONT - BENDIX BIO MAGNAVOX ELECTRONICS - REMING RADIO - HOFFMA NERNATIONAL TELEVISION . RCA - REGAL ELF O WARNER - SYM
 - PHILCO - PILOT RADELEQUIP•STARRET / WAL TELESIS
 WILCO KING - STROMBERG-CARLSON • M

Cinch Sockets and shields to JAN Specifications:

Consult Cinch for the production of any component assembly for commercial or Military use that falls within the general category of elec. tranics parts manufacture.

Cinch Manufacturing Corporation 1026 South Woman Ave., Chicago 24, Illinois

	Single Core			1,500	3,000	Double Core	
	Freg	375	750			375	750
20000	in	turns	turns	turns	turns	turns	turns
200 -0/5 sh $\quad 1.0$ SLOPE	ke	Q	Q	Q	Q	Q	Q
160 k 30.	1	25	50	100	162	35	90
	2	50	100	158	215	65	140
12005	3						165
80 x\% 3 -	4	100	148	185	155	115	160
	6	120	160	152	70	140	100
200 - 10 SLDPE	- 7		162			145	
$160-$ -	8	135	158	100		140	43
$0^{160} 0$	10	140	138	60		142	
${ }_{120}{ }^{-10} \%{ }^{\circ} \mathrm{F}$	12	138	118	35		135	
	1.5	130	87			117	
$80-100$	18	118	55			100	
FREQUENCY In kc	20	104	45			82	
	22	100				70	
FIG. 7-Design data for toroids	25	94				55	
wound with No. 30 Formex wire on	30	70					
1.84-in., 125-mu core.	40	45					
	50	26					
	$L(\mathrm{mh})$	38.7	154	618	2,530	78	
	Q	140	162	185	215	115	
	C ($\mu \mathrm{f}$)	0.006	0.003	0.0024	0.0025	0.006	
	$R_{\text {d-c }}$	7.75	16	33.7	73	12.6	

FREQUENCY IN KC

Freq	375	
in	turns	61.5 $($ max $)$ turns
kc	Q	Q
2	42	6.5
3	65	100
1	82	125
5	100	150
6	118	170
7	130	18.5
8	14.5	200
10	168	215
12	182	230
15	202	238
18	205	232
20	212	228
25	215	210
30	210	190
40	185	138
50	162	100
60	140	68
70	115	
80	90	
90	72	
$L(\mathrm{mb})$	10.2	30.05
Q	215	238
$C(\mu \mathrm{f})$	0.0039	0.0038
$R_{\text {d-c }}$	2.47	4.6

FIG. 8-Design data for toroids wound with No. 27 Formex wire on 1.06-in., 60-mu core

Freq. in	94 turns	$\underset{\text { turns }}{187}$	$\begin{gathered} 375 \\ \text { turns } \end{gathered}$
kc	Q	Q	Q
4			55
6		43	80
8		58	100
10	38	68	120
12	43	80	136
15	48	90	152
18	62	109	16.5
20	65	118	170
30	85	138	176
40	100	142	162
50	102	139	148
60	112	138	138
70	108	132	128
80	106	120	108
90	104	112	98
100	99	104	86
120	92	90	70
150	79	77	
180	64	68	

$L(\mathrm{mh})$	0.3	1.14	4.68
\mathbf{Q}	112	14.	176
$C(\mu \mathrm{f})$	0.0177	0.0141	0.0059
$R_{\mathrm{d} \cdot}$	0.382	0.768	1.71

FIG. 9-Design data for toroids wound with No. 27 Formex wire on 0.8 -in., $60-\mathrm{mu}$ core

Get Accuracy... Flexibility. . . Reliability. . . with MALLORY RECTOPOWER ${ }^{\circledR}$ SUPPLIES

BROAD DC VOLTAGE ADJUSTMENT RANGE				GOOD DC VOLTAGE REGULATION				VERSATILE AC INPUT SYSTEM			
	$\begin{array}{r} \text { LEXIE } \\ \text { PU } \end{array}$						ADE TP	UATE FILTE	$\begin{aligned} & \text { DC } \\ & \text { RIN G } \end{aligned}$		
SPECIFICATIONS ON MALLORY RECTOPOWER SUPPLIES											
Mallory Rectopower Supply Model No.	dC OUTPUT				Approx. Output Regulation 0 to Cont. Amps.	RMS Ripple at Cont. Amps. Less than		Output Capacity in MFD	AC INPUT		
	DC Volts		DC Amps.								
	Rating	Range	tinuous	mittent		Percent	Erms		Volts $\pm 5 \%$	Phase	Watts
6RS10	6	0.8	10	20	60\%	15\%	1.0	10.000	115	1	175
6RS25-1	6	0.8	25	40	15\%	8\%	. 5	10,000	115	1	400
12R55	12	0.16	5	10	55\%	12\%	1.0	6.000	115	1	135
12RS6D	$12{ }^{6}$ or	$\begin{aligned} & 0.8 \text { or } \\ & 0-16 \end{aligned}$	$\begin{array}{r} 10 \\ 6 \\ \hline \end{array}$	$\begin{array}{r} 20 \\ 14 \\ \hline \end{array}$	$\begin{aligned} & 95 \% \\ & 65 \% \\ & \hline \end{aligned}$	$\begin{array}{r} 12 \% \\ 5 \% \\ \hline \end{array}$. 8	$\begin{aligned} & 12,000 \\ & 12,000 \\ & \hline \end{aligned}$	115	1	150
12RS14D	12^{6} or	$\begin{aligned} & 0-8 \text { or } \\ & 0-16 \end{aligned}$	$\begin{aligned} & 25 \\ & 14 \\ & \hline \end{aligned}$	$\begin{array}{r} 40 \\ 20 \\ \hline \end{array}$	$\begin{array}{r} 15 \% \\ 6 \% \\ \hline \end{array}$	$\begin{gathered} 10 \% \\ 3 \% \\ \hline \end{gathered}$. 6	$\begin{aligned} & 6,000 \\ & 6,000 \\ & \hline \end{aligned}$	115	1	400
28RS15D	$\begin{aligned} & 14 \text { or } \\ & 28 \end{aligned}$	$\begin{aligned} & 0.16 \text { or } \\ & 0.32 \end{aligned}$	\%0	$\begin{array}{r} 50 \\ 25 \\ \hline \end{array}$	$\begin{aligned} & 8 \% \\ & 5 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \% \\ & 1 \% \\ & \hline \end{aligned}$. 14	$\begin{array}{r} 12,000 \\ 6,000 \\ \hline \end{array}$	115	1	800
VA400	$\begin{aligned} & 6 \text { or } \\ & 12 \text { or } \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \text { or } \\ & 0-16 \text { or } \\ & 0.32 \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \\ & 121 / 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 64 \\ & 32 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \% \\ & 15 \% \\ & 15 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \% \\ & 2 \% \\ & 2 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & .32 \\ & .64 \\ & \hline \end{aligned}$	$\begin{aligned} & 40,000 \\ & 20,000 \\ & 10.000 \\ & \hline \end{aligned}$	115	1	1.2 KW
VA800	$\begin{array}{r} 6 \text { or } \\ 12 \text { or } \\ 24 \\ \hline \end{array}$	$\begin{aligned} & 0.8 \text { or } \\ & 0-16 \text { or } \\ & 0.32 \end{aligned}$	$\begin{array}{r} 100 \\ 50 \\ 25 \\ \hline \end{array}$	$\begin{array}{r} 128 \\ 64 \\ 32 \\ \hline \end{array}$	$\begin{aligned} & 10 \% \\ & 10 \% \\ & 10 \% \end{aligned}$	$\begin{aligned} & 2 \% \\ & 2 \% \\ & 2 \% \\ & \hline \end{aligned}$	$\begin{array}{r} .16 \\ .32 \\ \hline \end{array}$	$\begin{aligned} & 40,000 \\ & 20,000 \\ & 10,000 \end{aligned}$	115/208-230	1	2.4 KW
VA1500	$\begin{array}{r} 6 \text { or } \\ 12 \text { or } \\ 24 \\ \hline \end{array}$	$\begin{aligned} & 4-8 \text { or } \\ & 8-16 \text { or } \\ & 16-32 \\ & \hline \end{aligned}$	$\begin{array}{r} 203 \\ 100 \\ 50 \\ \hline \end{array}$	$\begin{array}{r} 250 \\ 125 \\ 63 \\ \hline \end{array}$	$\begin{aligned} & 25 \% \\ & 25 \% \\ & 25 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \% \\ & 2 \% \\ & 2 \% \\ & \hline \end{aligned}$	$\begin{aligned} & .16 \\ & .32 \\ & .64 \\ & \hline \end{aligned}$	None None None	$\begin{gathered} 208-230 \text { or } \\ 460 \end{gathered}$	3	3.0 KW
VA3000	$\begin{array}{r} 6 \text { or } \\ 12 \text { or } \\ 24 \\ \hline \end{array}$	$\begin{aligned} & 4.8 \text { or } \\ & 8.16 \text { or } \\ & 16.32 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 200 \\ & 100 \end{aligned}$	$\begin{array}{r} 500 \\ 250 \\ 125 \\ \hline \end{array}$	$\begin{aligned} & 25 \% \\ & 25 \% \\ & 25 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \% \\ & 2 \% \\ & 2 \% \\ & \hline \end{aligned}$	$\begin{array}{r} .16 \\ .32 \\ .64 \\ \hline \end{array}$		$\begin{gathered} 208-230 \text { or } \\ 460 \end{gathered}$	3	6.0 KW
VA4500	$\begin{aligned} & 6 \text { or } \\ & 12 \text { or } \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.8 \text { or } \\ & 8.16 \text { or } \\ & 16.32 \\ & \hline \end{aligned}$	$\begin{aligned} & 600 \\ & 300 \\ & 150 \\ & \hline \end{aligned}$	$\begin{array}{r} 750 \\ 375 \\ 187 \\ \hline \end{array}$	$\begin{aligned} & 25 \% \\ & 25 \% \\ & 25 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \% \\ & 2 \% \\ & 2 \% \\ & \hline \end{aligned}$	$\begin{aligned} & .16 \\ & .32 \\ & \hline \end{aligned}$	None None None	$\begin{gathered} 208-230 \text { or } \\ 460 \end{gathered}$	3	9.0 KW
VA6000	$\begin{array}{r} 6 \text { or } \\ 12 \text { or } \\ 24 \\ \hline \end{array}$	$\begin{aligned} & 4.8 \text { or } \\ & 8.16 \text { or } \\ & 16.32 \end{aligned}$	$\begin{aligned} & 800 \\ & 400 \\ & 200 \\ & \hline \end{aligned}$	$\begin{array}{r} 1000 \\ 500 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 25 \% \\ & 25 \% \\ & 25 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \% \\ & 2 \% \\ & 2 \% \\ & \hline \end{aligned}$	$\begin{aligned} & .16 \\ & .32 \\ & \hline \end{aligned}$	None None None	$\begin{gathered} 208-230 \text { or } \\ 460 \end{gathered}$	3	12.0 KW

For designing, testing, building and repairing DC eleetrical and electronic equipment, Mallory Rectopower Supplies provide accurate simulation of actual operating conditions over a wide range of fluctuating DC current requirements.
Check these specifications See for yourself, the advantages you get with Mallory.

$6 R S 25.1$
$12 R S 140$
$28 R S 15 D$

Ample transient pouer storage capacity. Mallory Rectopower Sup$\sqrt{\text { plies are ideal for use with vibrator-powered equipment. }}$ Accurate DC woltmeters and ammeters. D'arsonval meters with meter range changing switch in VA models. Moving magnet meters in RS models.
Overloud protection and "On-Off" suilch in all models. Manual reset \checkmark IC line overload protection in VA models. Automatic reset overload and reverse battery cireuit breakers in RS models.

When flexibility, reliability and low cost are important-specify Mallory Rectopower Supplies. They will give you more for your money. For complete information, let us send you a copy of Technical Bulletin 5-27.

Expect more...get more from
MAlloriv
PARTS DISTRIBUTORS IN ALL MAJOR CITIES STOCK MALLORY STANDARD COMPONENTS FOR YOUR CONVENIENCE

MĀILORYSERVING INDUSTRY WITH THESE PRODUCTS: Electromechanical - Resistors - Switches - Television Tuners - Vibrators Electrochemical-Capacitors - Rectifiers - Mercury Batteries Metallurgical-Contacts • Special Metals and Ceramics• Welding Materials

ELECTRONS AT WORK

Including INDUSTRIALCONTROL

Edited by ALEXANDER A. McKENZIE

Detector Monitors Vapor Concentration 198 Multiband Tuner Design Chart........ 200
Cathode-Ray Sterilization Preserves Food and Drugs

Beam Tube
High.Voltage Power Supply 226
Spring Mounting for Phonograph Chassis 230
Radioelectrophysiologograph 232
Electronic Measurement of Camera Shutter Speeds 234
Measuring Resistance and Reactance of an R-F lmpedance. 238
Aluminum Antimony Semiconductors. . 246
Pertinent Patents
.246

OTHER DEPARTMENTS

featured in this issue:

Page
Production Techniques . 268

New Products 300
Plants and People 350

New Books 389

Backtalk 394

Portable vapor detector powered from wet battery was developed for atomic energy program

FIG. 2-Audio alarm circuit uses a thyratron to protect contacts of meter-relay shown in Fig. 1

When the bridge is balanced, the flow of an absorption type vapor into the sampling chamber will retard the light sampled and an electrical unbalance in the bridge will then result. Normal sensitivity of the device is 0 to 3.2 milligrams of mercury per cubic meter, but a multiplying position of the range switch allows measurements down to 0.1 milligrams of Hg per cubic meter at full scale deflection

NEW Q Meter Inductors for measurements up to 260 mc !

INDUCTORS Type 590-Aaccessories to Q Meter Type 190-A

TYPE 590-A INDUCTORS					
Type	Inductance νh	Capacitance $\mu \nu f$	Approximate Resonant Freq. mc	Approximate Q	Approximate Distributed C $\mu \nu f$
$590-A 1$	0.05	$8.0-95.0$	$70-230$	320	1.5
$590-A 2$	0.1	$10-100$	$50-160$	350	1.8
$590-A 3$	0.25	$8.0-80.0$	$30-100$	310	2.3
$590-A 4$	0.5	$7.5-80.0$	$25-70$	340	2.4
$590-A 5$	1.0	$7.5-65.0$	$20-50$	300	2.9
$590-A 6$	2.5	$9.0-25.0$	$20-30$	300	2.9

Q METER Type 190-A

This new 190-A 9 Veter measures an essential figure of merit of fundamental components to better overall accuracy than has been previously possible. The V'TVM, which measures the Q voltage at resonance, has a higher impedance. Loading of the test component by the Q Meter and the minimum capacitance and inductance have leeen hept very low.

SPECIFICATIONS-TYPE 190-A

FREQUENCY RANGE: 20 mc . to 260 mc .
RANGE OF Q MEASUREMENT:
Q indicating valtmeter $\quad 50$ to 400
Low Q scale
Multiply Q scale
1010100
Diffirnicale
0.5 to 3.0

0 to 100
5 to 1200
PERFORMANCE CHARACTERISTICS OF INTERNAL RESONATING CAPACITANCE: Range -7.5 mmfd , to 100 mmfd . (direct reading). POWER SUPPLY: $90-130$ volts -60 cps (internally regulated). Type 190-A Price: $\$ 625.00$ F.O.B. Factory sooron. .x. .s.sal Corpotation

Inductors Type 590 -A are designed specifically for use in the Q Cirenit of the Q Meters Type 170-A and 190-A for measuring the radiofrequency characteristics of condensers, resistors, and insulating materials. They have general usefulness as reference coils and may also be used for periodic checks to indicate any considerable change in the performance of the Q Meters.

Each inductor Type 590-A consists of a high Q coil mounted in a shield and is provided with spade lugs for connection to the coil terminals of the Q Meters. The shield is connected to the lugs which connect to the Low Coil terminal in order to minimize any changes in characteristics caused by stray coupling to elements or to ground.
of the indicating meter.
To obtain as constant a source of ultraviolet light as possible, the type G4T4/1 ultraviolet tube is excited by the $66-\mathrm{mc}$ oscillator shown.

When used as a warning, rather than simply as a measuring, device, the thyratron-controlled relay shown in Fig. 2 operates a bell for any preset meter reading.

In order to make portable operation possible, a standard synchronous vibrator power supply is used, powered by a $6-v$ wet battery. A low-frequency filter is not required since this ripple does not interfere with operation of the associated detector circuits. Some slight jitter in the d-c high voltage, probably caused by frequency hunting of the vibrating reed is only in the order of 0.5 percent of the microammeter scale and has no practical bearing on the accuracy of the measurements.

Information on this instrument was abstracted from a University of California Radiation Laboratory report by C. S. Presenz furnished through the United States Atomic Energy Commission.

Multiband Tumer Design Chart

By George J. Maki
Staff Engineer $D \& R, L t d$.
Santa Barbara, Calif
The chart shown in Fig. 1 can be used to determine rapidly the design factors for multiband continu-ous-coverage tuners. Either the number of bands required, the tuning ratio per band or the frequency
limits of the tuner can be found when the other two are known.

The functions are based on the relationship

$$
r=\sqrt[n]{f_{n} / f_{l}}
$$

where r is the tuning ratio per band, n is the number of bands, f_{k} and f_{l} thus are the upper and lower frequency limits of the tuner.

FIG. 1-Chart determines design factors for continuous-coverage tuners having up to six bands

Cathode-Ray Sterilization Preserves Foods and Drugs

According to Chemical Week, the electron can be a powerful tool for industry when liberated from the fundamental forces that bind it to
the atomic nucleus. "As a free agent it will induce polymerization of monomers, deactivate enzymes, promote a number of chemical re-

Converted x-ray machine used to produce electron stream. Experiments now in progress show that cold sterilization and prevention of spoilage may be possible by lethal effect of cathode rays on insects, bacteria and mold. Test have already been conducted, with apparently favorable results, on oranges, bread and minute steaks
actions, sterilize foods and drugs, depolymerize many substances and of ten alter the properties of matter in useful ways."

Experiments to this end were carried out in a recent cathode-ray sterilization symposium held during the opening of GE's Milwaukee laboratory. Equipment used was a modified million-volt x-ray unit. The tungsten target was removed, allowing the stream of electrons to be emitted through a thin metal window. In ordinary use, the electron stream strikes the tungsten target to produce x-rays.

Prime source of power is a syn-chronous-motor-driven alternator. A 180-cycle resonant transformer has the properties of a high-Q tuned circuit. It is excited at its natural frequency as determined by its inductance and distributed capacitance plus special tuning capacitance to ground. The magnetic core used in conventional construction is eliminated although mag-

Whenever circuits call for precision and high resolution in compact space...

тhere's a 10 -turn Helipot to meet your requirements

With the development of the original HELIPOTthe first multi-turn potentiometer-an entirely new principle of potentiometer design was introduced to the electronic industry. It made possible variable resistors combining high resolution and high precision in panel space no greater than that required for conventional single-turn potentiometers.
The Helipot
High resolution and precision settings require a long slide wire. But by coiling a resistance element into a helix, it Principle... is possible to gain desired resolution and precision without wasting panel space. This principte is applied in various Helipot models with slide wires ranging from 3 to 40 helical turns.
Advantages are immediately apparent. In the case of the widely-used 10 -turn Model A Helipot, for example, a $45^{\prime \prime}$ long slide wire-coiled into ten helical turns-is fitted into a case $13 / 4 \prime$ in diameter, and $2^{\prime \prime}$ in length. Another advantage of the $i 0$-turn pot is that, when equipped with a turns-indicating RA Precision Duodial, slider position can be read directly as a decimal, or percentage, of total coil length traversed.

10-TURN HELPPOT MODELS-CONDENSED SPECIFICATIONS			
	Model A	Model AN	Model AJ
No. of turns	10	10	10
Resistance Range	$\begin{aligned} & 10 \text { ohms to } \\ & 300,000 \text { ohms } \end{aligned}$	100 ohms to 250,030 ohms	100 ohms to $50,000 \mathrm{ohms}$
Resistance Tolerance: Standard Best	$\begin{aligned} & \pm 5 \% \\ & \pm 1 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 5 \% \\ & \pm 1 \% \end{aligned}$	$\begin{aligned} & \pm 5 \% \\ & \pm 3 \% \end{aligned}$
*Linearity Tolerance: Standard Best	$\begin{gathered} \pm 0.5 \% \\ \pm 0.05 \% \\ (1 \mathrm{~K} \text { ohms } \\ \text { and above) } \end{gathered}$	$\begin{gathered} \pm 0.5 \% \\ \pm 0.025 \% \\ \hline(5 \mathrm{~K} 0 \mathrm{hms} \\ \text { and above) } \end{gathered}$	$\begin{gathered} \pm 0.5 \% \\ \text { (above } 5 \mathrm{KK} \text { ohms) } \end{gathered}$
Power rating @ $40^{\circ} \mathrm{C}$	5 watts	5 watts	2 watts
Mechanical Rotation	$3600^{\circ}+4^{\circ}$ -0°	$\begin{array}{rr}3600^{\circ} & +1^{\circ} \\ -0^{\circ}\end{array}$	$3600^{\circ}+12^{\circ}$ -0°
Electrical Rotation	$3600^{\circ}+4^{\circ}$ -0°	$\begin{array}{r}3600^{\circ}+1^{\circ} \\ -0^{\circ} \\ \hline\end{array}$	$3600^{\circ}+12^{\circ}$ -0°
Starting Torque	20 za in	1.0土. 307 in .	. 7502 ln in.
Running Torque	1.502 in .	$0.6 \pm .3 \mathrm{oz}$. in.	.60 oz . in.
Net Weight	40 Oz .	4 Oz.	102.

*i.e. INDEPENDENT LINEARITY. The ahove linearity tolerances are based on the following definition recently proposed to cla ify and standardize nomenclature related to precision variable resistors... "Independent linearity is the maximum deviation in perprecision variable resistors. ... Independent linearity is the maximum deviation in percent of the total electrical output of the actual electrical output at any pest straight line drawn

10-Turn Helipot Highlights

From the basic Helipot principle, model variations have been developed to meet new requirements:

Model A Helinot

the original 10 -turn Helipot provides a resolution from 12 to 14 times that of conventional single-turn potentiometers of same diameter $\left(13 / 4^{\prime \prime}\right)$, linearities as close as $\pm 0.05 \%$ in resistances as low as 1 K ohms.
The samte multi-furn principle is also available in 3 turn units (Model C), and larger-diameter thits of 15 turns (Model B), 25 turns (Model D), and 40 turns (Model E)-a type for every application from 5 olims to 1 megolm.

Model AN Helipot

an ultra-precision version of the basic 10-turn Helipot. Produced in volume to extremely close electrical and mechanical tolerances, this unit features precision ball bearings (Class 5), servo mounting lid, plus linearity tolerance as close as $\pm 0.025 \%$ as low as 5 K . A 3-turn unit (Model CN) is also available.
Models AN and CN are particularly recommended for precise servo-mechanism applications and represent the most adranced design and highest duality available today in the field of precision potentiometers.

Model AJ Helipot

a 10-turn miniature Helipot only $3 / 4^{\prime \prime}$ in diameter, weighs 1 oz., has slide wire $18^{\prime \prime}$ long. Also available with servo mounting (Model A.IS) and servo mounting with hall bearings (Model AJSP). Lincarities as close as $\pm 0.1 \%$ as low as 5 K .

Designed for long life wnder severe operating conditions, the AJ Series is widely used where small size and weight are vital.

Design details on above units are subject to change without notice. Certitied drawings available upon request. (This line shall be measured through the extent of the effective electrical angle.) The slope and position of
the straight line from which the linearity deviations are measured must be so adjusted as to minimize these deviations."

Only Helipor is oble to supply-in volume-multi-turn helical potentiometers with special features to meet your particular needs. . . Special Shafts, Extra Spot Welded Taps at any position, Ganged Assemblies (except AJ), Special Temperature Coefficients, etc. Send us your requirements!

For complete details contact your nearby Helipot representative. Or write for Data File 106-802
T M

COR P P O R T O N

South Pasadena, California
Field 0ffices: Boston. Rochester. New York. Philatelphia. Cleveland, Detroit, Chicago. St. Louis, Los Angeles,
Seattle, Dallas. High Point. N. C. and Fort Myers. Florida, In Canada: J. S. Root, Toronto. Exdort Agents: Frathom Co.. New York 36 . New York.

netic shielding of the tank to reduce eddy-current loss is used. Ratio of apparent or circulating kva to the output kw is about 15 to 1 . As a consequence, the secondary voltage waveform is nearly sinusoidal and relatively independent of load changes.

A frequently used window structure consists of 0.002 -in.-thick type 347 stainless steel supported on the vacuum side by a stainless steel
grid consisting of a series of short concentric cylinders held together by radial fins. Windows of this type have lasted over 900 hours at 800 kv peak and beam-out currents ranging up to 1.25 ma continuous duty. Although average power dissipation across the surface of the window is in the order of 20 to 30 watts per sq in., local intensities are higher and high-velocity air cooling is required.

Transistorized Superhet Receiver

The low input impedance and relatively high output impedance of the transistor presents special problems in radio receiver circuits. Resistance-capacitance networks usually cannot be used for interstage coupling in the receiver. Either a matching transformer or a cathode-follower stage must be employed for coupling. The pointcontact transistor is unstable in the cathode-follower arrangement and consequently is not a desirable circuit element.

The transistor, in every position in the receiver, must be treated as a power amplifier rather than as a voltage amplifier, since each transistor has to supply considerable power to the low-impedance input of the following transistor stage. Also, because of the low input im-
pedance, the transistor seriously loads tuned circuits associated with it. In a tuned circuit with a Q of 100 , for instance, with an L-C ratio that allows it to match the output impedance of the preceding transistor and also to match it to the input impedance of the succeeding transistor by tapping the inductor or otherwise, only $\frac{1}{3}$ of the unloaded Q will be left-that is, 33 .

For oscillators, the simplest form using the point-contact type, requires base loading. A groundedbase circuit is employed but with the resonant tank circuit in series with the base, so that the base is not grounded at the resonant frequency, and the circuit goes into oscillation there.

Transistor circuits in general, so far as radio applications are con-
cerned, are similar to vacuum-tube circuits. In a receiver using transistors, there is a chain of cascaded power amplifiers, which, except for the mixer, are intended to be linear in terms of input-current control. A selectivity sacrifice is necessary in such a receiver, or more stages are needed for a given selectivity than are required with modern vacuum tubes. Likewise, more transistor stages are needed to provide a given gain. Regulation must be provided for the d-c input-bias current of each stage.

The relatively high power levels available with vacuum tubes are not yet available with present transistors. Therefore, in designing

FIG. 1-Circuit of eight-transistor superhet receiver. A lN34 crystal is used as a detector
transistor receivers, overload and blocking conditions must be carefully studied in each stage, particularly since the transistors can be permanently damaged by electrical overload. This lack of power-output capability also can result in harmonics of the i-f amplifier frequency appearing in the r-f circuits of the receiver causing birdies. The transistor's noise figure is high and frequency dependent, and the gain of the audio, intermediate,

tested comporents.

from a single source

In specifying components for

 electronics use important considerations are twofold: Are the parts the best obtainable for the particular application? Can they be purchased economically, from a single source? Only Amphenol can answer these questions in the affirmative. Amphenol quality is a byword in the electronics industryand we work to keep it that way. Continuous quality controlconstant testing of actual production line samples, insure that each and every Amphenol component fully measures not only up to but beyond specifications. No part goes out without inspection. No component escapes the rigid testing demanded by Amphenol's high standards.And the double advantage of Amphenol is the completeness of the line of components offered. Over 9,000 separate listings are in the catalogs, representing the largest single source available to all who specify electronic components.
and radio-frequency amplifier sections of the receiver must be carefully proportioned.

Gain control is a big problem with the transistor receiver. The gain of a sharp-cutoff triode cannot be satisfactorily controlled by change of grid bias, because the amplification usually changes comparatively little until either outputcurrent cutoff or saturation begins to occur, at which points the signal becomes seriously distorted. A po-tential-divider type of control, such as an antenna potentiometer, may be used. It is difficult to obtain a wide range of control with such a device, particularly at radio frequencies, where tapered r-f potentiometers providing constant db change are not available.

Automatic gain control is out of the question. If a variable-mu-tube equivalent in transistor form should become available, age can be provided, although one other problem may be troublesome. The agc system in a receiver using currentcontrolled devices must control bias currents, which means that it has to provide control power. In other words, the agc system must be a power system, and it might require a considerable number of additional transistors.

There are some circuits that cannot be put to practical use with transistors as yet, such as high-impedance types of series noise-peak limiters often employed in vacuumtube communication receivers. In general, high-impedance d-c circuits such as would be normal in vacuum-tube receiver systems cannot be used.

Useful Circuit

The circuit diagram of the superhet receiver, Fig. 1, is similar to one using vacuum-tubes. The receiver has one r-f amplifier stage (550 to $1,550 \mathrm{kc}$), a mixer, a heterodyne oscillator operating 455 kc above the signal frequency, three $455-\mathrm{kc}$ i-f amplifiers, a diode second detector, one audio interstage amplifier and an audio-output stage. There are eight transistors and one crystal diode in all. This receiver has about 90 db gain with no reserve. The gain-control system comprises two ganged potentiometers, one at
the input to the r-f amplifier and the other at the input to the first i-f amplifier. These provide about $50-\mathrm{db}$ maximum attenuation each, giving 100 db total range. Sensitivity is about 200 microvolts for 6 milliwatts of output at $1,000 \mathrm{cps}$, with $10-\mathrm{db}$ output signal-to-noise ratio.

Maximum audio power output is in the order of 15 or 20 milliwatts for 5 percent harmonic distortion at 1,000 cycles. The selectivity curve at $6-\mathrm{db}$ down is about 8 kc wide. The $60-\mathrm{db}$ down figure is about 80 kc , giving a selectivity ratio of about 10 .

The receiver requires about one watt of d-c power input; 3 volts, 8 milliamperes for the emitter bias circuits; and 30 volts, 30 milliamperes for the collector circuits. This results in an overall power efficiency of about 2 percent, based on the ratio of maximum undistorted audio-output power to the battery power input, which is just about the same as for a typical com-munication-type vacuum-tube receiver. The sensitivity of such a vacuum-tube receiver, however, would be much better than the 200 -microvolt sensitivity of the transistor receiver.

This article has been abstracted from a paper entitled "Application of Transistors to Radio Receiver Circuitry" by Emerick Toth, presented at the Colloquium on Transistors in Theory and Practice, Naval Research Laboratory, Washington, D. C.

Solderless Component Assembly

One solution to practical application of mechanized wiring has been suggested by Paul J. Selgin for a Navy project being carried out at the National Bureau of Standards. The system depends upon molding one or two circuit elements into a block containing three contacts. These blocks, about $\frac{7}{8}$ inch high, $\frac{1}{2}$ inch wide by $\frac{1}{2}$ inch thick, fit into a suitable frame fastened to a base plate on which has been printed the desired circuit configuration.

Positive contact is assured, without soldering, by the three-point

\square.
 continuors high quality.

The finest components for electronics use ever available to precision-minded industry now come in profusion from Amphenol's five plants. The expanded production of Amphenol during the last year plus the continuing high quality of every part supplied recommends Amphenol to all who specify components and to all who manufacture equipment. AN connectors, RF connectors, cables, sockets, literally almost everything needed by todays industrial scientists are being supplied
from Amphenol.
Amphenol is always ready to assist in the developement of a new component. If your needs are special, consult with Amphenol's engineers upon your problems. That they have come up with solution to tough engineering questions time and again is attested to by the Amphenol catalogsmany of the components listed evolved from parts designed first for a special application.
 chicago 50, illinois

FIG. 1-Cellular technique for mechanized wiring employs threeterminal molded cells that fit into two tube building block. Printed wiring is used on base plate. Extensions of tube-socket springs make contact and hold blocks in place
mechanical construction of the contact mechanism and the spring loading afforded by contacts extending down from the tube socket assembly atop the frame.

Quick replacement of cells is assured without requiring the use of plugs or connectors. The block framework can be removed from the base plate that contains the printed circuit by removing a few screws. It is believed that the lack of soldering and the simplicity of the fundamental elements will reduce manufacturing cost of equipment employing the system.

In the preliminary units, cells were formed at room temperature using a casting resin. For quantity production, cells could be molded in phenolic resins by a process similar to that now in wide use for making resistors and capacitors.

Foamed Polyethylene

Dielectric
Engineers at Anaconda Wire and Cable Co. have produced an ingenious compromise between solid and air insulation by foaming polyethylene with dry nitrogen. The resultant firm mass contains tiny gas-filled cells separated from one another so that internal moisture condensation cannot take place.

First application of the new ma-

4
 FINE RHEDSTATS

Announcing 3 new sizes now in production

We have added to our new H-50 rheostat, announced a few months ago-the new H-75, H-100 and $\mathrm{H}-150$ models. These higher wattage rheostats incorporate all the new improved features that have made the $\mathrm{H}-50$ so successful.

- Unequalled perfection in brush control, which automatically adjusts tension to complete, continuous contact.
- Positive, smoothly-controlled spring action which eliminates all strains tending to bind shaft in the bushing.
- Greater flexibility-no risk of backlash.

All models are of course completely bonded with our new high-temperature-enamel;-thermo-shock-proof; more resistant to heat; increased safety factor; higher terminal strength.
and
And all are designed to comply with current standards of:
(a) Military Specifications JAN-R-22.
(b) Underwriters' Laboratories.
(c) R.T.M.A.
(d) N.E.M.A.

Send today for our new bulletin, containing additional information.

150 watts H-10

100 avatrs

After years of development, the NATIONAL MOLDITE COMPANY has engineered and built an automatic machine for making molded coil forms held to the most exact dimensions for length and O.D. This new machine is geared for high speed production, thus providing prompt shipment on most popular sizes.

Here is another example of MOLDITE pioneering in order to provide the radio, television, and communication industries with quality engineered components.

Yes, look to MOLDITE for precision engineered magnetic iron cores, RF filter cores, and now MOLDED COIL FORMS.

MAGNETIC IRON CORES • FILTER CORES - MOLDED COIL FORMS THREADED CORES • SLEEVE CORES • CUP CORES

NATIONAL

Samples promptly submitted upon request for design, pre-production, and test purposes
SEVD FOR CATALOG 110

Robat T. Murriay Jerry Golten Co. 614 Sentral Ave. 2750 W. Hoth Ave. East Jrango, N. J. Chicrge 22 III.

1410 Chestnut Ave., Hillside 5, N. J.

Designed for Application

Mu Metal Shields

The James Millen Mfg. Co. Inc. has for many years specialized in the production of magnetic metal cathode ray tube shiclds for the entire electronics industry, supplying magnetic metal shields to manufacturing companies, laboratories and research organizations. Stock shields are immediately available for all of the more popular sizes and types of cathode ray tubes as well as bezels for $2^{\prime \prime}, 3^{\prime \prime}$ and $5^{\prime \prime}$ size tubes.

Many production problems, however, make desirable special shields designed in conjunction with the specialized requirement of the basic apparatus. Herewith, are illustrated a number of such custom built shields. Our custom design and fabrication department is at the service of our customers for the development and manufacture of magnetic metal shields of either nicoloi or mumetal for such specialized applications.

main office

 MALDEN, MASSACHUSETTS, U.S.A.
KLEIN Quality Pliers SHPCMAHIX DIESIGNEED

FOR THE ELECTRONICS INDUSTRY

Now, Klein quality pliers are available in new compact patterns for precision wiring and cutting in confined space. Note, too, the replaceable leaf spring that keeps the plier in open position,
ready for work. All are hammer forged fromhigh-gradetool steel, individually fitted, tempered, adjusted and tested-made by plier specialists with a reputation for quality "since 1857."

LONG NOSE PLIER
307-5-1/2L-Exiremely slim pattern ideal for the really tight spots. Jaws are knurled to in. sure a positive grip.

CHAIN NOSE PLIER
317-5L-A full inch smaller than standard pattern. Has a very fine knurl that will not damoge soft wire. Also available without knurl.

TRANSVERSE END CUTTING PLIER
204-6-Useful in precision work where ordinary oblique or end cutters are too bulky. Gives a clean, flush cut

DUCK BILL PLIER

306-5-1/2-This compact plier has jaws of sufficient width to hold smoll springs, yet small enough to form wire in confined places.

ThisKlein Pocket Tool Guide gives full informationonalltypesand sizes of Klein Pliers. A copy will be sent without obligation.

ASK YOUR SUPPLIER

Foreign Distributor: International Standard Electric Corp., New York
"Since 1857"

Model DVH 27.20.34 1800 CFM
Model DVM 18.14.20 780 CFM
Model DVD 14.14.18 486 CFM
Model DVD 14.9.18 311 CFM
Model DVM 12.8.14 218 CFM
Model DVD 8.8.10 110 CFM
Model VSD 8.8.11 52 CFM
Model VSM 7.7.8 27 CFM
Model VSM 5.5.6 13 CFM

Compound

Model CVM 8.6.10
46 CFM
Model CVM 5.5.6
15 CFM
5 CFM
2 CFM

Model CVM 3534	5 CFM
Model CVM 3153	2 CFM

There's a qualified Kinney Vacuum Engineer in your region, ready to talk vacuum in your plant. Call on him. See how the BIG LINE . . . the Kinney line of vacuum pumps can be profitably used in exhausting lamps and tubes, freeze-drying pharmaceuticals and antibiotics, vacuum metallizing, vacuum production of titanium and other miracle metals, vacuum fumigation and impregnation and in the countless other ways vacuum serves industry today. Kinney Manufacturing Co. - manufacturers of vacuum and liquid pumps. Boston, New York, Chicago, Detroit, Cleveland, Atlanta, Pittsburgh, Philadelphia, Los Angeles, Charleston (W. Va.), Houston, New Orleans, San Francisco, Seattle, and foreign countries.

SEND COUPON FOR DETAILS!

National's famous line of velvet vernier mechanisms has been accepted by well-known commercial users as well as individual builders. Having a standard 5 to 1 ratio, they are available to fit either $3 / 16^{\prime \prime}$ or $1 / 4^{\prime \prime}$ shafts. Types are also available with insulated or noninsulated output hubs for connecting to $1 / 4^{\prime \prime}$ output shafts. Write for drawings and specifications.

Microphone lowered into tank picks up high frequency sounds emitted by porpoise
response $\pm 2 \mathrm{db}$ from 20 to 100,000 cycles and furnished up to 20 watts of power to an underwater sound projector.

The projector was a U.S. Navy Underwater Sound Research Laboratory Type 1-K. Its power output is dependent upon frequency but above 1,000 cycles it can handle 10 to 15 watts. The frequency response is linear to 20 kc and has response, with peaks, to 200 kc . The radiation angle of the projector is 75 degrees.

Preliminary results of these experiments indicate that porpoises emit sounds with energy in the frequency spectrum up to the limit of the available recording equipment. A complete analysis of these results will be released at a later date.

Some observations were made directly on correlating the porpoise sounds with physical movements. A man, equipped with diving gear and underwater headphones, descended into the pen and watched the animals while listening to their sounds.

The porpoises react to strange sounds in their hearing range by sudden accelerated movements and jumping from the water. Since the porpoises make sounds almost continuously, a random portion of the recorded tape was played through the bandpass filter and projected into the water. A short burst was sent and three observers checked the reactions of the animals.

A series of tests was made with this setup and then the audio oscillator was substituted for the tape

C-D probably has the answer to your electrolytic problem! Is it for a motor? TV circuit? Photoflash? Micro-wave communications? If anybody has the answer to your electrolytic problem, it's likely to be Cornell-Dubilier, the greatest name in capacitors. Write for the complete catalog to: Dept. K-83, Cornell-Dubilier Electric Corp., General Offices, South Plainfield, New Jersey.

CORNEIT-DUBILTER

world's largest manufacturers of capacitors

converters

‘DIAMOND H' RELAYS

Shown Actual Size

Ntions as guided missiles, jet aircraft, fire control and fire detection, radar, commmication, high speed camera, geophysical and computer apparatus . . . wherever positive operation is demanded under eritical conditions.
A 4PDT hermetically sealed, miniature aircraft relay basically, they are now also available DPDT with two independent coils, either or both of which will operate the units.

Abstract

In their field still the smallest and lightest, (1.6 ch. in. 3.76 oz.) combining highest operating shock resistance (to 50 " C^{\prime} " and ligher), widest temperature range (-65° to $+200^{\circ}$ C.) and greatest ability to break high currents and high voltages, Series R Relays consistently operate over 400,000 cycles without failure at 5 A . and go 3,500 or more under 30 A , at 30 V., D.C., resistive. They carry voltages up to 300 D.C. at $4 / 10 \mathrm{~A}$. for more than 400 , 000 cycles. With low contact

loading, life expectancy is 10 million cycles or better.
Operating time is 10 ms . or less; drop out time 3 ms . or less. Coil resistances up to 35,000 oluns are standard; to 50,000 ohms available for special units. Sensitivity approaches 100 mw . at 30 " $\mathrm{G}^{\text {" }}$ operational shock resistance. Inter-electrode capacitance is less than 5 mmf. contacts to case-less than $21 / 2$ munf. between contacts, even with plug-in type relay and socket. Vibration range is from 0 to 500 cycles per second and upward it 1.5 " G " without chatter.

All standard mounting arrangements, including ceramic socket, are available. Uniquely simple design permits compact grouping . . . and a firm bond between relay and chassis.

Designed to meet 'all requirements of USAF' Spec. MIL-R-5757B, they far surpass many. Bulletin R-150, giving basic performance data under varying conditions, is yours on request. Our engineers are prepared to work with you to develop variations to meet your specific requirements. Tell us your needs.

FIG. 2-Porpoise reaction tested with recorded sounds and single tone from audio oscillator
recorder and filter. Use of the oscillator enabled a more accurate indication of frequency response since only a fundamental signal was transmitted. A definite response by the animals was indicated at frequencies to 80,000 cycles. There is a good possibility that the porpoise uses this extended-range hearing and voice as a means of locating objects in a manner similar to that of sonar. The only other animal known to emit these highfrequency sounds is the bat.

The porpoise is a fast swimmer and seems to travel day or night with equal ease. His vision alone could not enable him to avoid objects in dark and murky waters, especially at night. While this assumption has not been proved conclusively, all test results point towards it.

Magnetic Shaft-Position Digitizer

By Arthur J. Winter
 Telecomputing Corporation Burbank, California

OUTPUTS of Many precision devices occur as shaft rotations. When the position of such a shaft must be determined to an accuracy beyond the reach of analog instruments, or when the data must be processed by digital equipment, an analog-to-digital conversion must be made. It is often essential that the digitizer present no appreciable mechanical load to the shaft under measurement. A further requirement that often must be met is that readings be taken while the shaft is in motion at speeds varying from

BUILT-IN SOLA REGULATED POWER TRANSFORMER

The photograph above skows a complese Type No. 5 three channel Transmimed Carrier Telephone Terminal made by Kellogg (an Associate of International Telephone and Telegraph Corp.) The Sola Constant Voltage Transformer is a standard component of the power supply chassis at the top of the rack.

Assures Positive Signalling and Protects Components

ON KELLOGG NO. 5 TRANSMITTED CARRIER TELEPHONE SYSTEM

Low voltages cause disconnects and false signalling on telephone carrier systems. Abnormally high voltages can result in damage to components and premature filament failure of electronic tubes.

The Kellogg Switchboard and Supply Company provides dependable performance, positive signalling and satisfactory transmission by building in a Sola Constant Voltage Transformer as an integral component of their system's power supply. The custom Sola unit they employed automatically maintains voltage constant within $\pm 3 \%$ with line voltage variations from 95 to 125 volts.

Like Kellogg Switchboard, you can assure reliable performance of your electronic equipment. Make sure of the proper input voltage with a Sola Constant Voltage Transformer. Any reasonable combination of plate and filament voltages can be provided to meet your specifications.

Sola stabilizers are static magnetic regulators . . . regulation is continuous and automatic . . . response time is 1.5 cycles or less.

There are no moving parts, no tubes, no manual adjustments. The cost is reasonable. Regulation within $\pm 1 \%$ with line voltage fluctuations as great as 30% can be provided. Your inquiry will receive prompt attention.

BUILD-IN AUTOMATIC VOLTAGE STABILIZATION WITH

Constant Voliage TRANSFORMERS

COMPLETE CATALOG AVAILABLE. Write for Bulletin DCV-142

[^11]
Maximum Electronic Performance in any WEATHER

 mitting and receiving must give continuously accurate results. For instance, note this "inside" view of the Collins Transceiver, mounted on Lord Temproof Mountings which isolate it from vibration and shock. Lord Temproof Mountings function efficiently throughout operational ranges of temperature from - 80° to $+250^{\circ} \mathrm{F}$. The Collins Transceiver with automatically tuned elements for maximum flexibility and high power output delivers maximum performance in any weather, completely protected from vibration, shock and excessive equipment motion at resonant frequencies by Lord Temproof Mountings.

May we give you further details on this Lord application or help you solve your specific mounting requirement?

BURBANK, CALIFORNIA 233 South Third Street
dallas, texas philadelphia 7, pennsylvania dayton 2, ohio 413 Fidelity Union 725 Widener Building 410 West First Street Life Building

DETROIT 2, MICHIGAN NEW YORK 16, NEW YORK CHICAGO 11, ILLINOIS CLEVELAND 15, OHIO 311 Curtis Bldg. 280 Madison Avenue 520 N . Michigan Ave. Room 811 Hanna Building

LORD MANUFACTURING COMPANY - ERIE, PA.

Headquarters for Vibration Control

zero to many hundreds of rpm.
This paper deals with a recently developed shaft-position digitizer designed more nearly to satisfy these requirements. Two previous types that led to its development will be discussed first.

An early type of digitizer uses a rotating slotted disk to interrupt a light beam. A photoelectric tube pickup and d-c amplifier produce an output signal of varying amplitude. If this signal is fed through a d-c operated trigger into a counter, the counter will accumulate angular increments by counting the number of slots. By using another phototube angularly separated from the first by an amount equal to one-half of a slot, an additional signal is derived 90 deg out of phase with the first. Since the phase relationship will change with direction of rotation, the second signal may be used to prepare gates in the accumulator

FIG. 1-Shaft position digitizer using serrated drum and phototubes to measure shaft rotation
causing the counters to subtract when the digitizer reverses direction. In this way the digitizer can be used on a shaft which may hunt, oscillate, or reverse direction, without introducing errors. Readouts may be obtained without stopping the digitizer or losing the count in the accumulator.

The slotted disk digitizer is limited in resolution by the number of slots that it is possible to cut in any given diameter disk, and has been used only for applications requiring resolution of about 200 counts per revolution or less.

The next to be developed was a serrated-drum digitizer. In this type the slotted disk is replaced by a drum with many serrations on its surface. The serrations act as concave mirrors reflecting light into two phototubes, as shown in Fig. 1. The output from the phototubes is

MOLONEY H/PEPCOME ELECTRONIC cORES

... for Any Electronic Application

Moloney HiperCore Electronic Cores assure better transformer performance because of their advanced wound core design. These wound cores have greater flux carrying capacity and lower losses than other types of cores of comparable sizes. In addition to better performance, a smaller, lighter core is obtained. In electronic applications, where size and weight are critical, Moloney HiperCore Electronic Cores are particularly desireable. Because they are wound cores, savings in assembly time can be favorably reflected in accelerated production. Rigid production control assures cores that test well within industry standards. More than 1000 standard sizes are available and special sizes can be made for specific applications, if desired.

Moloney HiperCore Electronic Cores are wound with grain oriented silicon steel of 1,2,4 or 12 mil thicknesses.

Write today for bulletin SR-205 containing specifications, performance data and prices on over 300 stock sizes.

MOLONEY ELEGTRIC COMPANY

Manufacturers of Power Transformers • Distributions Transformers - Load Ratio Contral Transformers Step Voltage Regulators - Unit Substations

HNGINHEIRS
 AND

PHYSICININ

Inquiries are invited regarding openings on our Staff.

HUGHES rescarch in the fields of Radar, Guided Missiles, Semiconductor Products, Electronic Computers, Microwave Devices and Electron Tules is creating nell openings for those qualified in these fields.

IN RESEARCH AND DEVELOPMENT the problems are concerned with the physical design of electronic equipment involving Servo Mechanisms, Computers, Pulse Circuitry, Miniaturization, Hydraulics-Gyros, Test Equipment, Subminiaturization, Stress Analysis, Instrumentation, Structures and Precision Production Problems.

ELECTRONIC MANUFACTURING
includes the fields of Microwave Test Equipment Design, Production Test-
ing and Quality Control.

COMMERCIAL PRODUCTS

activities have to do with Semiconductor Products Applications Enginecring, Test Equipment Design, Semiconductor Components Engineering and Technical Writing.

FIELD SERVICE AND SUPPORT

consists of Field Engineering, Technical Writing, Field Modifications and Personnel Instruction.

HUGIIES

research and development laboratories electronic manufacturing division COMMERCIAL PRODUCTS DIVISION FIELD SERVICE AND SUPPORT

Assurance is required that relocation of the applicant won't cause disruption of an upgent military project.

Culver City
Los Angeles County California
amplified and handled in the same way as in the case of the slotted disk digitizer. The advantage of the serrated drum over the slotted disk is that more serrations can be machined in a given diameter drum than slots could be cut in the same diameter disk. However, since the light output is not as great, phototube and amplifier drifts are more of a problem.

The magnetic shaft-position digitizer designed to overcome disadvantages in the two previous types, has higher resolution and is free from drift due to phototubes and d-c amplifiers. It is much more rugged and reliable.

The basic principle of operation is shown in Fig. 2. A high-frequency generator causes a current to flow through a conductor shaped so that at any instant the current flow in adjacent parallel segments of the conductor are 180 deg out of phase.

The arrows in the diagram indicate polarity of current flow at some instant of time. If a pickup coil were placed over any one of the conducting segments, such as A or C, it could be used to measure the intensity of the field near that segment; and if the coil were placed halfway between two adjacent segments, position B, its output would be essentially zero. If the output of the pickup is amplified and demodulated, the resultant d-c output signal will fluctuate from maximum to null as the pickup coil is moved across conductor segments. Fluctuations in these signals can be used to count the number of segments. To obtain two outputs for direction sensing as in the previous digitizer, two pickups must be used, spaced one-quarter of a segment apart.

In order to adapt this principle

FIG. 2-Adjacent conductors are 180 deg out of phase causing null point to occur at B

Hughes Diodes
have set

A

 NEW
STANDARD

 OF
RELIABILITY

Reliability in a germanium diode is determinted principally by permanent freedom from the two major causes of diode failure-moisture penerration of the diode envelope, and electrical instability under extreme operating conditions.
hUGHES GERMANIUM DIODES are designed to prevent such failures through two exclusive features :

1. Fusion Sealing - The glass-to-metal seal, proved in billions of vacuum tubes, is incorporated to full advantage in diode manufacture by the Hughes-developed process of fusion sealing at high temperature. The result is a rigid onepiece glass envelope making moisture penetration impossible.
2. 100\% Testing - One hundred per cent testing insures the satisfactory operation of hughes diodes under adverse conditions of moisture, temperature, vibra-
tion and severe shock. Hughes testing procesfures invite instabilities to occur prior to shipment and assure rejection of every defective diode. Each hughes dIODE is humidity-cycled, temperaturecycled, JAN shock-tested, and electrically tested under vibration.

Reliability of hughes diodes has been proved in airborne military electronic equipment for navigation, fire control and guided missiles. The same high standard required for these uses is your insurance against costly shutdowns, high maintenance expense and time losses.

Specify hughes diodes wherever reliability is essential.

HUGHES GERMANIUM DIODE ELECTRICAL SPECIFICATIONS AT $25^{\circ} \mathrm{C}$.					
Description	RTMA Type	Test Peak Inverse Voltage* (volts)	Maximum Inverse Working Voltage (volts)	Minimum Farward Current (a) +1 v (ma)	Maximum Inverse Current (ma)
$\begin{aligned} & \text { High } \\ & \text { Peak } \end{aligned}$	$-\frac{1}{1} \frac{N}{N} 65 \frac{B}{B}$	$-\frac{190}{130}$	$-\frac{150}{100}$	$-\frac{5.0}{3.0}$	$-\frac{0.500}{0.62} \frac{(a)}{(a)}-\frac{150}{100} \frac{v}{v}--------$
High Back Resistance	$-\frac{1}{1} \frac{N 67 A}{1} \frac{1}{N} 99$	$\begin{array}{r} 100 \\ -100 \\ -100 \\ \hline \end{array}$	$\begin{array}{r} 80 \\ -80 \\ -80 \end{array}$	$\begin{array}{r} \frac{4.0}{10.0} \\ -\frac{10.0}{20.0} \end{array}$	
High Back Resistance	$--\frac{1}{1} \frac{N 89}{N}-$	$\begin{array}{r} 100 \\ -100 \\ 100 \\ \hline 100 \\ \hline \end{array}$	$\begin{array}{r} 80 \\ -80 \\ -80 \end{array}$	$\begin{aligned} & \frac{3.5}{10.0} \\ & \frac{10.0}{20.0} \end{aligned}$	
High Back Resistance	$--\frac{1 N 116}{1 N 1} \frac{17}{17}-$	$-\frac{75}{75}-\frac{75}{75}$	$\begin{aligned} & \frac{60}{60} \\ & -60 \end{aligned}$	$-\frac{5.0}{10.0}-$	
General Purpose	$-\frac{1}{1} \frac{1}{N 90}-1$	$-\frac{75}{75}$	$\begin{aligned} & 60 \\ & -60 \\ & -60 \\ & \hline \end{aligned}$		
JAN Types		$-\frac{75}{5} 5$	$\begin{array}{r} 60 \\ -\frac{100}{40} \\ \hline \end{array}$	$-\frac{5.0}{3.0}-$	
*That voltage at which dynamic resistance is zero urider specified conditions. Each Hughes Diode is subjected to a voltage rising linearly at 90 volts per second. **Formerly 1 N69A. †Formerly 1 N7OA. \ddagger Formerly 1 N81A.					

(C) 1953, H.A.C.

In addition to RTMA types, HUGHES DIODES are also supplied 100 per cent factor γ-tested to special customer specifications.

feach
 CONTROL RELAYS
 for Unexcelled PERFORMANCE

Furnishing Relays that excel in performonce is a Leach specialty. Their rugged strength and smooth endurance provide uniform control, protection and dependability.

No matter what your Relay application, we invite you to share our nearly four decades of experience apd facilities as designers, engineers and manufacturers of a complate line of relays.

[^12]

FIG. 3-Rotor (A) and stator (B) patterns for magnetic shaft-position digitizer
to shaft digitizing, the circuit of Fig. 2 was arranged in the circular pattern shown in Fig. 3A. This is a reduced negative of a 500 -segment pattern photoetched onto a $2 \frac{1}{2}$ inch disk and used as the rotating element of a shaft-position digitizer. The connections at the center are for injection of the high frequency carrier current. To avoid using slip rings the carrier current is coupled to the rotor by means of a small air core transformer whose secondary is mounted on the rotor.

The arrangement in Fig. 3B is used as a pickup device. This pickup pattern functions in the same way as a pickup coil would except that there is coupling to every segment in the rotor, and the output signal is a much more accurate indication of position, since each null and each maximum results from an average of all of the conducting segments. The pickup pattern is also photoetched on a disk and consists of two conductors displaced angularly one-quarter of a segment space, Connections for two amplifiers and a common ground are at the outer edge of the disk.

Figure 4 shows the arrangement of the assembled digitizer. The

jet assemblies permit easy adaptation of the system to the higher vacuums probably required for color TV tube aluminizing.

For smaller scale operations, CVC offers an integrated system of one to six individual pumping units with common roughing and bolding pumps. Timing devices control cyoling automatically and permit one operator to handle all systems.

CVC's vast experience in designing inline exhaust systems makes these units trouble-free and economical in operation. We will be pleased to give you the details on specifications, costs, and deliveries. Consolidated Vacuum Corporation, Rachester 3, N. Y. (a subsidiary of Consolidated Engineering Corporation, Pasadena, California).

Here is an inline system capable of aluminizing TV tubes with the same efficiency and high production rates as the famous inline exhaust systems pionecred by CVC.

Similar to the exhaust system, individual aluminizing units move around an oval track, one revolution completing the aluminizing cycle. Each cart is completely self-contained with mechanical and diffusion pumps, valves, power pickups, and controls for automatic operation. The operator need only load and unload tubes and replenish the aluminum on the filaments.

This new CVC system can handle any size TV tube currently produced. Interchangeable diffusion pump

FIG. 4-Diagram of magnetic digitizer
rotor and the transformer secondary spin with the shaft. The transformer primary is fed by a 1.6 megacycle oscillator. The pickup, or stator, supplies signals to two tuned amplifiers.

This type of shaft-position digitizer has a permissible shaft speed of from zero to $1,800 \mathrm{rpm}$; and since its output contains directional information, it can reverse direction or hunt without introducing errors. Use of the photoetching process has made it possible to obtain high resolution. Digitizers of 1,000 and 2,000 counts per revolution have been built. It is electrically more stable and not subject to drifts since it is an a-c carrier operated nuiling device. Low impedance and tuned circuits make the unit less subject to stray electrical pickups. The smaller rotor disk presents less of an inertial load to the shaft.

Another advantage of the magnetic digitizer is the averaging effect of the pickup element. The position of the exact point on the circle at which the output goes through any given null is at least an order of magnitude more accurate than it would be if the signal were derived from a pickup over only one rotor segment. Development is now under way to take advantage of this potentially high accuracy by electrically dividing the increments between nulls so that the number of counts per revolution may be multiplied many times.

Magnetic Material from Aluminum and Iron

Development of techniques for rolling have made available a new magnetically soft material known as 16-Alfenol, composed of 16 percent aluminum and 84 percent iron. Although the alloy has been known

WJR-Detroit, Michigan, uses 200 kw . GM Diesel generator set as stand-by power for 50,000 -watt transmitter. Compactness of unit permitted installation in garage adjoining transmitter building-eliminating cost of a specially designed building.

WKTV_UTICA, N. Y., uses a 100 kw . General Motors Diesel generator sef for stand-by power. Set can be started remotely from the control room. Low vibration characteristic of engine permitted installation in room adiacent to transmitter and within 30 feet of studio.

If you are planning stand-by power, be sure to check the advantages of General Motors Diesel generator sets, listed briefly below. GM Diesel generators are meeting the exacting requirements of military service in all parts of the world. They supply emergency power for more than 1100 telephone and telegraph exchanges-for microwave relay stations, for hos. pitals, government buildings, banks, airports. There is a GM Diesel distributor near you who will analyze your power requirements and make his recommendations without obligation. Look in the yellow pages of your phone book for his listmg, or write direct to us.

[^13]- Instont push-button power storling on safe Diesel fuel-or fully automatic starting. Immediate power, no "warmup" period.
- Dependable starting-no sparkignition system to fail because of damp. ness or corrosion-always ready to start.
- Easy to install-compoct---lightweight -requires no special building, no special base. Complete instrumentation provided.
- Distributors and Dealers throughout the country.

DETROIT DIESEL ENGINE DIVISION

GENERAL MOTORS - DETROIT 28, MICHIGAN
SINGLE ENGINES . . 16 to 275 H.P. MULTIPLE UNITS . . Up to $840 \mathrm{H} . \mathrm{P}$.
It pays to Standardize on Wrife for Generator Sel Catalog 6 SA 20.
for some time and was used by the Japanese during the war, the extreme hardness and brittleness of the material restricted its use and prevented efficient rolling of sheets.

Metallurgists at the U. S. Naval Ordnance Latooratory developed a method of cold rolling and discovered that the metal could be formed into thin tapes with desirable magnetic properties.
The metal tapes show isotropic magnetic properties and high bulk resistivity that prevents electrical losses. In rolling, it develops its own insulating layer. For transformer cores, like those used at high frequencies, the new material shows properties superior to those of silicon iron that is now widely used.

A comprehensive technical report is now in process of preparation by NOL.

Zero-Crossing Detector
Using Gated-Beam Tube

By Paul Rosen
Lincolr Laboratory
Massachmsetts Institute of Technology Cambridge, Mass.

The 6BN6 gated-beam tube as applied here makes a simple zerocrossing detector, providing $100-$ volt negative spikes at the zero crossing on both positive and negative slopes of a sine wave.

The 6BN6 has two control grids, both having nearly the same control characteristics. If the two grids are connected in push-pull as shown

FIG. 1-Gated-beam tube zero-crossing detector uses push-pull connection on two grids to keep tube cut off except in zero-voltage region

> rugged local oscillators for radar and beacon services

full production quantity prices
firm basis for new equipment design

* Trademark

Field representatives in 21 Cities.

READY NOW for your specification into production equipment. This comprehensive series of Varian X-Band Klystrons includes the type variations illustrated-all having these outstanding features:

Non-microphonic characteristic
Negligible barometric-frequency coefficient
Rapid warmup-on frequency in 30 seconds
Low-voltage operation-see data below
Production tested-under high-amplitude vibration

		V-260, V-270		V-280, V-290		X-13	
GENER AL	Frequency Range, kmc	8.5-10.0		8.5-10.5		8.2-12.4	
DATA	Heoter Voltage, v		6.3		6.3		6.3
	Heater Current, amp.		1.2		1.2		1.2
	Tuner	slotted shaft		locknut		micrometer	
MAXIMUM	Resonator Voltage, v		350		385		500
RATINGS	Resonator Current, ma		42		74		65
	Reflector Voltage, v	0 to - 1000		0 to-1000		0 to-1000	
TYPICAL	Resonator Voltage, v	200	300	200	300	300	500
OPERATION	Frequency, kme	9.3	9.3	9.3	9.3	10	10
	Resonator Current, ma	17	28	23	42	28	58
	Power Output, mw	20	70	15	48	90	560
	Electronic Tuning Range, mc	30	48	50	82	46	43
	Temperọture Coefficient, kc/ ${ }^{\circ} \mathrm{C}$	60	60	60	60	100	100
	Reflector Voltage, Y	-120	-160	-80	100	-230	-600
	Load VSWR, less than	1.1	1.1	1.1	1.1		
<	Warm-up Time, sec to oscillation	15	15	15	15	15	15

FOR LABORATORY x-band measurement - the basic Varian X-13 Klystron general-purpose signal source is now available for early shipment in production quantities

for Bulkhead Mounting Filterette No. 16131000 volts DC 5 amperes

tObe filterette Series 1613

This wide-hand radionoise filter is designed for connection in series with any single line that may be carrying radio interference, Hermetically sealed in a metal case, it is huilt to make use of the shield. ing afforded by metal bulkheads or firewalls. Installed in a $1-5 / 32^{\prime \prime}$ hole in the bulkhead, Filterette 1613 has a mounting flange that completes the filter circuit to ground. External-tooth lockwashers are recommended hetween the mounting flange and the metal bulkhead to maintain low-resistance contact. This unit conforms to applicable military specifications, and is suitable for use at high altitudes. Its attenuation characteristics are shown below.

TOBE DEVISCITALIN CORPORATION NORWOOD, MASSACHUSETTS

Sine-wave input at top, results in series of sharp negative peaks in the output
in Fig. 1, the tube is cut off by the negative excursion of one of the grids during most of the cycle. For a short period, however, when both grids are around zero, the tube conducts heavily. The result is a sharp spike appearing at the plate.

The input sine wave and the output pulses are shown in the photograph. For best results the input amplitude should be at least fifty volts peak-to-peak.

High-Voltage Power Supply

By WhiliaM C. Dayidon Director of Research Suclear Instrument and Chemical Corp. Chicago, Ill .

THE VARIABLE-VOLTAGE, electron-ically-regulated, high-voltage power supply shown in Fig. 1 has the advantage of having high voltage impressed across only one tube, regardless of the high voltage output. No high voltage surge above the desired value occurs during the initial warmup time, eliminating the need for a time delay circuit. Filaments of all tubes except the high voltage rectifier, can be operated at low potentials with respect to ground, for a negative high voltage supply.

Current through the high-voltage bleeder is equal to the current through the amplifier tubes. The high-voltage output assumes a value such that the bias on the 6 AH 6 is the correct value to provide

RCA-pre-eminent in the design and development of phototubes-offers a full line of high-quality phototubes to meet your needs in designing lightactuated devices. This line of phototubes includes a wide selection of gas types (for sound-on-film and relay work)-vacuum types (for high-speed work and precision measurements) and multiplier types (for applications where extremely high sensifivity is important).

RCA phototubes are available in a variety of spectral responses, plysical shapes, and sizes. For help on phototube equipment design problemswrite RCA Commercial Engineering, Section 42 HR, Harrison, N. J. Or call the RCA Field Office nearest you:
(EAST) Humboldt $5-3900$
415 S. 5 th St., Harrison, N. J.
(MIDWEST) Whitehall 4-2900
589 E. Illinois St., Chicago, Ill.
(WEST) Madison 9.3671
420 S. San Perlro St.s Los Angeles, Cal.

Check your application - seléct your phototube

Application	RCA Phototube Types			
Sound Reproduction	1P40, 920, 927			
Light and Color Measurements	\|P21,	P22, 1P28,	P29.	P39 917, 919, 926, 931.A, 935, 6217
Relay Applications	IP39, IP40, IP41, IP42, 917 919. 921, 922, 925, 931-A			
Scintillation Counting	IP21, 931-A, 5819, 6199			
Facsimile	934, 5652			

Visit the RCA Exhibit at the Western Electronic Show and Convention, San Francisco-August 19-20-21
RADIO CORPORATION of AMERICA
ELECTRON TUBES
HARRISOM, N. J.

- For duty at high voltage and high current, the Lapp Gas-Filled Condenser offers a combination of characteristics not available in any other type of capacitor . . . extreme compactness . . . low loss . . . high safety factors ... puncture-proof operation . . . constant capacitance under temperature variation . . . and reliability of performance assured by a 15 -year service record.

In construction, the Lapp Gas-Filled Condenser assembly is supported on a top aluminum ring, the steel tank serving only as a support and as a leak-proof gas container. High-potential plates are stationary, carried on a rigid aluminum center stud, supported by a ceramic bowl. Rotor plates are grounded, carried on ball-bearings in a race almost the full diameter of the tank. This construction provides a grounded tuning shaft on variable models, makes possible efficient and complete water cooling for high current operation, and results in direct and short current paths to condenser plates.

Units available in 5 tank diameters, $7^{\prime \prime}$ to $24^{\prime \prime}$, for duties at capacitances up to $60,000 \mathrm{mmf}$; current ratings to 525 amps at 1 mc ; voltages to 100 Kv peak. Write for Bulletin 302, with complete description and characteristics data. Lapp Insulator Co., Inc., Radio Specialties Division, 104 Sumner St., Le Roy, N. Y.

FIG. I-Circuit of high-voltage power supply
the required output current. To the first approximation, therefore, the output voltage can be obtained by considering that the 6AH6 grid is at ground potential and that the output voltage bears the same relation to 105 volts as the corresponding resistors in the bleeder. If for any reason the output of the rectifier should increase, the 6AH6 will be biased more negatively, increasing the voltage drop across the 6 AH 6 and 2C5:3 combination and maintaining constant output voltage. If the high-voltage load is increased, the bias is reduced resulting in decreased impedance of the tube combinations and maintaining the output voltage relatively constant.

At a 2,500 -volt output a onemilliampere bleeder gave better regulation, stability and reduced ripple than the same circuit using a 100-microampere bleeder. Voltage measurements made throughout the circuit are listed in Table I. The measurements were taken with 120 volts a-c input and the output voltage set at 2,000 volts. The output voltage could be varied with the components as indicated from less than 500 volts to over 2,500 volts.

Regulation and stability measurements were made by comparison between a high-voltage battery and the high-voltage output of the power supply. At 2,000 volts output, a line voltage change of 120 to 130 volts increased the output by 1.5

PERFORATED METAL IN BRASS, BRONZE and COPPEK

BEARING BRONZE BARS

CCall us for anything from Bearing Bronze Bars to Brass or Bronze Bolts . . . or any other brass or copper item for maintenance, repair, operating or production.

Twenty-four Chase warehouses are located in major industrial centers from coast to coast. Phone the one nearest you. We can usually fill your orders from stock.

The only miniature snap switch

where size and high rating come to terms with cost

Abstract

Repeat: where size and high rating come to torms with cost. Consider this in terms of engineering that seeks to increase product efficiency while holding costs at a minimum. Then base your snap switch specifications on the following facts.

TYNISWITCH is a low cost compact snap-action unit based on simplified construction principles. It permits high-load switching in a minimum amount of space. It eliminates costly, nonfunctional bulk in new or redesigned products. No other model or make - of comparable size and rating - can match its high-standard performance. Its action is flawlessly smooth and dependable. Moreover, it has been conclusively proven by approved laboratory tests that tyniswitcu is completely reliable . . . for over millions of cycles!

Investigate these and many other tyniswitch advantages today. New models can be developed economically to fit your specifications - or you can select conventional circuit arrangements from a variety of standard units. Write for details. TYNISWITCH Division, The Sessions Clock Company, 103 East Main Street, Forestville, Connecticut.

volts. A line voltage change from 110 to 120 volts increase the output by approximately 2 volts. A onema additional load reduced the high voltage by 11 volts, a two-ma additional load reduced the high voltage by 17 volts.

The circuit as constructed, supplies a negative high-voltage output. To supply a positive output, a small low-voltage supply isolated from the line and from the chassis should be used for the VR105.

Table I-High Voliage Supply Operating Data

Rectifier outp	3,500 volt
Voltage on VR105	107 volts
VR105 current	
6АН6 screen cur	0.3 ma
Meter current	0.8 ma
Grid to cathode 2C53.	2.5 volts
Grid cathode 6AH6,	2.3 volts

Spring Mounting for
 \section*{Phonograph Chassis}

By KJ Prytz
Sonofon Radiofabrik
Gentofte, Denmark

To prevent feedback caused by loudspeaker vibrations returning to the phonograph pickup, the phonograph chassis must be isolated from the speaker. When spring mountings are used it is important that the spring compliance be adjusted so that frequencies in the amplification range are transferred only in a negligible degree. The resonance frequency of the suspended chassis has to be well below the lowest amplified frequency not more than 5 to 10 eps . As there normally are 3 or 4 springs, many resonance frequencies are possible, but we restrict our considerations to the simple case where all the springs are operating in equal phase as one single spring.

In fig 1 the chassis is concentrated in the mass m, grams, and the springs in one single spring which is compressed $x \mathrm{~cm}$ from the unloaded position. Movement of m up and down, attenuation being neglected, can be expressed by the differential equation:

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}=m g-k x \tag{1}
\end{equation*}
$$

Henry P. Cowen, President of MacGregor Golf Co., Cincinnati, Ohio, asks an unusual question

"Which club is worth \$8,000?"

'Jack Burke was teed off
He was leading the Texas Open after two red hot rounds. Then a souvenirhound stole a custom-made 11 -iron from his bag. Without that MacGregor 'Double Duty' iron, he was in trouble!
'He sent us a desperate telegram at Cincinnati. We called Air Express and a duplicate club was in his hands the next morning!
'He went on to win the Texas Open and three more tournaments in quick succession. His new MacGregor 11 -iron (6 th from the right) was worth $\$ 8,000$ in prize money - thanks to Air Express ! ELECTRONICS - August, 1953
"Jack and our other staff profession als are the 'proving ground' for Mac Gregor golf equipment. Keeping these famous players supplied as they move from tournament to tournament could be a tough job. But Air Express reaches them quickly-wherever they are.

Demands of tournament committees, pro shops and retailers keep us calling on Air Express day in and day out. Air Express has never failed us. Yet costs on most of our shipments are actually lower than other air services.
'We save money by specifying the fastest service - Air Express!'

Want more information? Use post card on last page.

It pays to express yourself clearly Say Air Express! Division of Railway Express Agency

AIR EXPRESS

GETS THERE FIRST
via U. S. Scheduled Airlines

You can't beat a soldered connection

 for electrical $\{$ conductivity and permanence! SOLDERED comections climinate loss of current, fire hazard, radio interference and excess heat which result from loose, corroded, arcing NQN-SOLDERED connections.For over 50 years experts have specified American Beauty Electric Soldering Irons. They know American Beauty Irons are built to LAST LONGER, OPERATE DEPENDABLY and BE SERVICED QUICKLY.

Build beiter with solder . . . Solder better with Jmerigan Beauty
 WRITE FOR FREE LITERATURE
 Dependable • Durable • Efficient SINCE 1894
 AMERIGAN ELECTRICAL HEATER COMPANY
 DETROIT 2, MICHIGAN

FIG. 1-Simplified concept of chassis and springing used in setting up equathon for finding resonance of mounting springs
where g is the acceleration due to gravity 981 cm per $\mathrm{sec}^{\text {persec }}$ and k the stiffness of the spring in dyn per cm . This equation has a solution

$$
x=x_{o}+\alpha \sin 2 \pi f t
$$

where $x_{0} \mathrm{~cm}$ is the spring compression at rest, $\alpha \mathrm{cm}$ the amplitude of the oscillating movement of the mass m, and f the oscillating frequency in cps. Differentiating twice and substituting in Eq. 1 we find the frequency

$$
f=\frac{1}{2 \pi} \sqrt{\frac{g}{x_{o}}} \cong-\frac{\bar{o}}{\sqrt{x_{o}}}
$$

This equation displays a simple correlation between the resonance frequency f and the spring compression (or elongation) at rest $x_{\text {。 }}$ when the mass is suspended against force of gravity. The resonance frequency is inversely proportional to the square root of the spring compression at rest without regard to the mass. If the spring compression is 1 cm the resonance frequency will be 5 cps.

An easy way to determine the spring compression at rest for a gramophone chassis is to measure the distance from chassis to base in normal working position and the same distance with chassis turned upside down. The difference is then $2 x_{0}$.

Radioelectrophysiologograph

Electrocardiograms have recently been made with subects in motion, according to the London Times. Changes in potential indicating heart action as well as those norm-

Corning Film-Type Resistors

With a film material that is entirely new for resistors, Corning Film-Type Resistors afford a rugged unit with exceptional stability and capable of withstanding high ambient, high operating temperatures. (The film material is fired in at red heat to make integral contact with the heat-resistant glass base, forming a tough bond.)

Corning Film-Type Resistors are available in two types: Type N with a resistance tolerance of 1% and capable of operating at ambient temperatures up to $140^{\circ} \mathrm{C}$.; Type S with a normal resistance tolerance of 2% and capable of operating at ambient temperatures up to $200^{\circ} \mathrm{C}$.

Corning Metallized Glass Inductances

The exceptionally high electrical stability and low temperature coefficient of Corning Metallized Glass Inductances are the result of the integral contact of the fired-on metallizing with dimensionally stable glass coil forms. Drift is negligible, even under unusually variable ambient temperatures. High Q is inherent.

Whether you require uniform, variable or double pitch windings-fixed tuned, permeability tuned or permeability tuned inductance-trimmer com-binations-we can meet your requirements exactly and to close tolerances.

Corning Metallized Glass Midget Trimmer Capacitors

Since these components are produced by permanently bonding metal to tubes made of glass with practically zero temperature coefficients in the VHF range, capacity shift is negligible even with widely variable ambient temperatures.

Corning Metallized Glass Midget Trimmer Capacitors are available in standard types from . 3 to 12 u.u.f., or can be designed to meet your own particular needs. They are simple to solder, rugged and easy to tune critically. With rirect traverse trimming, there is negligible capacity shift under vibration, and an absolutely smooth capacity curve.

- Corning inductances, capacitors and resistors are mass produced on automatic machinery to close tolerances consistently duplicated from piece to piece. Our engineers will be glad to work: with you on whatever design assistance you need. For complete information, use the coupon below.

Corming Glass Woriks

CORNING GLASS WORKS, Dept. EL-8, Corning, N. Y. Please send me information on:
\square CORNING Metallized Glass Inductances, \square CORNING Film-Type Rosistors \square CORNING Melallized Glass Trimmer Capacitors

Name... Title.	
Company	
Address	
City	Zone......... State

Speeding Electronic Progress
through

The JK G- 12 is a precision 100 kc G-T cut crystal intended for operation in Meacham Bridge and similar oscillators. Available for operation at series resonance or into large load capacities. Resistance approximately that of usual lamp used for amplitude stabilization, simplifying bridge circuit design. The JK G-12 is vacuum sealed. Equipped with octal base it is more convenient than usual "solderedin ${ }^{\prime \prime}$ type of precision standard crystal. Suitable for transistor oscillators.Will fit JK 07EH temperature control unit. Consult us on specific applications.

Did you know?

FIG. 2-Light passes through camera shutter during exposure. Slopes AC and $D F$ are values during the opening and closing of the shutter
admitted during the time that the shutter is opening and closing. This interval from B to E is the average open-time interval that will be measured in determining the time of the shutter exposure.

Test Procedure

To make the test, the shutter mechanism is placed between the light source and the phototube and the shutter is operated. The output of the phototube is applied to the vertical deflecting plates of the crt.

The internal sweep of the oscilloscope is adjusted until its time interval agrees with the average time interval of the shutter. To obtain this adjustment the shutter is repeatedly opened and closed and the sweep is varied until the pattern overlaps as shown in Fig. 3 at points B and E, which are one-half the maximum amplitude. At this point the frequency of the internal sweep is equal to the shutter speed. To determine the time interval of the sweep the output of the audio oscillator is applied to the vertical plates of the oscilloscope and the oscillator frequency is varied until one complete cycle is obtained on the screen. The time interval rep-

FIG. 3-Oscilloscope sweep is adjusted so points B and E on light curve will overlap
invited to request their copies, now!

COMPLETE FACILITIES and over a quarter century of metal forming to close tolerances assure precision components for the most critical applications. Kaupp experience includes forming and drawing of intricate shapes in stainless, inconel, aluminum, cold rolled steel, brass and other alloys. Gauges from .002 to $\frac{3}{8}$ stock. For full details ask for your copy of the new brochure.

New! For Experimental and development engineersHYDROFORMING reduces costs, saves time on short runs and development components

New process sharply reduces tooling time and 1001 costs. Punch and nest ring ore the anly tool requirements os hydraulic oil functions as the die member. Send draw ings for quotations and information.

are rated and matched EXACTLY to guard against OVERLOADING-OVERHEATING

Rectifiers in your equipment are as dependable as their weakest cells. With rectifiers operating at rated load, over-rated cells tend to over-load . . . over-heat and age excessively. If one cell fails, the entire rectifier-and your equipment-may fail.

In Vickers rectifiers, each cell is accurately rated, its performance carefully matched with every other cell. Load is evenly distributed, cell temperatures are safe. There's protective margin for brief circuit overload. Vickers rectifiers, with performance-matched cells, are dependable in your equipment.
more reasons why Vickers makes
a better
rectifier

- Automatic electroforming "pre-stresses" cells
- Hydraulic assembly assures mechanical strength and dimension
- Rectifiers shock and vibration tested to military specifications
- 255 tests and inspections guard quality from start to finish

Write for Bulletin 3000. Vickers engineering service is available without obligation.
ally recorded on a electroencephalograph are sent out by a small f-m radio transmitter to the receiver and recorder nearby.

States of anxiety have been noted when the subject is in a situation fraught with danger, such as looking down from the top of a ladder. With the new method, it is possible to record reactions standing still, marking time or walking up stairs.

Some difficulty is reported having been encountered with static electricity but attempts are being made to eliminate this source of interference, not to the radio signal, but to the brain impulses.

Electronic Measurement of Camera Shutter Speeds

By A. V. Donnelfy
Dept. of Electrical Engineering State University of Iowa Iowa City, Iowa
A SIMPLE AND EFFECTIVE method of calibrating camera shutter speeds uses the internal sweep of an oscilloscope to compare the shutter timing with the frequency of an audio oscillator.

In operation, a source of illumination, which may be a 25 or 60 watt lamp in a reflector, passes light through the camera shutter to a phototube (Fig. 1). The output of the phototube is displayed on a cathode-ray oscilloscope. An audio oscillator is then used as a variablefrequency generator for comparison purposes.

A curve showing the amount of light that passes through the camera shutter during one operation of the shutter is indicated in Fig. 2. The steep curves from A to C and D to F indicate the amount of light

FIG. 1-Phototube circuit used to measure camera shutter speed

G-E Electronic Timer Has High Repetitive Accuracy

PHOTOELECTRIC RELAY CR7505-K100

General Electric Electronic Timers assure precise timing of repetitive operations. One manufacturer reports the use of G-E timers on bearing grinding machines where they control cutting time and drift time. Here, G-E timers perform over 500 repetitive time cycles per hour. Where you require a uniform product turned out at high speed, put the accuracy of the General Electric Electronic Timer to work for you.

Controls F-hp Motor Directly

Here, a G-E Electronic Timer controls directly the small motor of a box conveyor. The timer tells the motor when enough boxes have been delivered to the gravity conveyor. A limit switch, actuated by the first box, tells the timer when to start. You can get a G-E Electronic Timer to start frac-tional-horsepower motors directly or handle motor starters up to NEMA Size 3.

Can Be Remotely Adjusted

Here a steel company, through a furnace control desk, controls the time cycle of high-speed rolls even though the timer is inaccessible. A limit switch actuated by the steel slab starts the electronic timer. Your G-E Electronic Timer can be located wherever necessary and remotely adjusted from a convenient location.

SPECIFICATIONS

exCellent repetitive accuracy
High-quality capacitors permit errors no greater than $\pm 2 \%$ of dial setting, independent of normal temperature changes.

three time ranges available

$.06-1.2, .6-12,6-120$ seconds, each continuously adjustable through a 20:1 range.

TWO TYPES OF OPERATION

Can be set for immediate or delayed start.

HIGH CONTACT RATING

One million operations at full-load, up to ten million at less load. Handles motor starters to NEMA Size 3, starts f-hp motors directly.
REMOTE CONTROL
Timing potentiometer and dial assembly may be located where most convenient.

CONSTRUCTION

High quality components, conservatively rated for top performance and long life.

Send to Section E 785-1, General Electric Company, Schenectady 5, New York
Please send me the following bulletins:
\square Electronic Timer, GEA-5255B
One of a complete line of devices for all photoelectric applications. This model is inexpensive, has broad application. Bulletin GEA-3533D.

NAME

TITLE

COMPANY
ADDRESS
city
STATE

ELECTRONIC DEVICES

The introduction of pressure sensitive tape for industrial uses offered many advantages if label data could be printed on the tape in the plant itself when needed. Markem developed methods that permit printing of stock number, part number, trade mark or other designation on this tape. Label inventory problems are thus eliminated. Manufacturers can now print the exact number of labels required . . . readily changing variable information or color of ink when desired. The Markem method used includes a Markem machine which makes up to $85 \mathrm{im}-$ prints per minute, rewinds the roll of tape automatically, and shuts itself off after a selected number of imprints. Thus Markem has provided industries of all types with a more modern, more attractive and less expensive means of labeling.

CAN MARKEM Printing labels on pressure sensitive tape is but an example of how Markem solves industry's marking problems. Markem has been providing industry with production techniques and equipment HELP YOU? to identify, decorate or designate its products, parts and packages
since 1911. Markem also provides technically trained men who are since 1911. Markem also provides technically trained men who are
available in your area to assure continued satisfaction with Markem methods and equipment.
When you have a marking problem, tell us about it and send a sample of the item to be marked. Perhaps a complete Markem method has already been developed to solve your problem. If not, Markem will work out a practical solution.

> Markem Machine Company, Keene 5, N. H., U.S.A.

the most efficient and smallest TRANSISTOR TRANSFORMER

7 types
available for immediate delivery! "TINYFORMERS"

GRAMER TRANSFORMER CORPORATION 2734 NORTH PULASKI ROAD - CHICAGO 39, ILLINOIS

GYRO LOOKING FOR NEW WORLDS TO CONQUER

We're migbty bappy with the performance of our Cageable Vertical Gyro as an autopilot component in fighters and guided missilesand in radar stabilization systems.

But we feel that this gyro-which can be caged in under ten seconds, uncaged in only three seconds - has a lot of undeveloped possibilities for our armed services.

Some of them we know. But you may have problems and applications of which we are not aware.

So if you get any ideas from the specs below, drop us a line.

And remember, here at Honeywell we're specialists in gyros, have become one of the leaders in the field. Our gyro "family"- which includes other vertical, rate and the extremely sensitive Hermetic Integrating Gyros-is now available to manufacturers who require precision performance.

If you'd like to know more about any of the products in our gyro line, we'd be pleased to send details. The address is Honeywell Aero Division, Dept. 401 (E), Minneapolis 13, Minnesota.

Cageable Vertical Gyro JG 7044A Specifications

Power Requirements: Gyro motor: 115 volts, $400 \mathrm{cPs} \pm 10 \%$, single-phase. Erection motors: 30 volts, 400 cps , single-phase. Caging circuit: 28 volts dc. Power Load: Gyro motor: 50 watts max (starting) ; 20 watts max. (running)

Erection motors: 5 watts (each) Caying operation: 12 watts (operating); 6 watts (standby).
Gyro Speed: $22,000 \mathrm{rpm}$. (minimum) Angular Momentum: 4.75×10^{6} $\mathrm{gm}-\mathrm{cm}^{2} / \mathrm{sec}$.
Roll Axis Freedom: 360°.
Pitch Axis Freedom: $\pm 85^{\circ}$ Caging Time: 10 seconds. (max.). Gyro Run-down Time: 8 min . (min.). Erection Rate: 2° to 6° perminute (factory adjustment).
Drift Rate: 30° per hour (maximum).
Accuracy: 0.15° of true vertical in each axis.
Resolution: $1 / 13^{\circ}$ each axis.
Environment: Designed to meet AAI:
Spec. 27500 D .
Weight: 5 lbs.

Hőnèyoviéll

To telemeter changes, Specify the new...

$$
\frac{d^{2} x}{m_{2}}=-k_{1} x+k_{3}\left(x_{1}-x\right)-k_{3} \frac{d x}{d t}+F_{3} \sin \omega_{1} t
$$

tronger signals at greater distances are BUIL.T-IN this new narrow-angle
antenna. Ideal for serving long stretches of highway, rail or pipe lines, it is equally effective for point-to-point
communications, or back-to-back with other services. Gains up to 12 DB can be achieved by stacking. Vertically polarized, uni-directional, Andrew Corner reflector antennas are available in all mobile communications bands. Put them to work for you to INCREASE and IMPROVE your radio coverage. For more information, write us today.

North American F-86F Sabrr Jet

VIBRATION DATA

 recorded by14-channel Brush Magnetic Head

A precision Brush multichannel head assures faithful reproduction in the Davies magnetic tape data recorder, used to record vibration in jet aircraft and shock waves in seismic and oil field exploration.

This head has one synchronizing channel and 13 data channels, all of which record on a single tape $13 / 4^{\prime \prime}$ wide. Precision gap alignment permits recording on one machine and playback on another machine with all signals in perfect time-phase relationship-an exclusive advantage of Brush multichannel heads.

For complete information, write Brush Elec. tronics Company, Dept. K-8, 3405 Perkins Ave., Cleveland 14, Ohio.
P is the voltage insertion loss ratio at resonance.
The inductance component L of the unknown impedance is derived directly from the value of the resonating capacitor

$$
L=\frac{1}{w^{2} C}
$$

If the variable capacitor C is not calibrated and no convenient means are at hand for determining its capacitance at resonance, the reactance X_{b} of the unknown inductive component may then be determined from two insertion loss measurements as follows

$$
X_{L}{ }^{-}=100 \sqrt{P_{1}^{2}-P^{2}}
$$

where P_{1} is the insertion loss of the unknown impedance alone, with the resonating capacitor C removed from the circuit, and P is the previously measured insertion loss of the unknown impedance at resonance with the capacitor C.
The parallel connection, shown in Fig. 2, is applicable when the resistance component R of the unknown impedance is small compared to 50 ohms. The measurement procedure is similar to that described for Fig. 1 except that the unknown impedance and series resonating capacitor are inserted, for the $E_{\text {, }}$ determination, between line and ground in parallel with the source and load. Resonance in this case is indicated by a minimum in detector output as the capacitor C is varied.
For the parallel connection, the resistance component R is related to the insertion loss ratio P at resonance by the expression

$$
R=\frac{25}{P-1}
$$

also, as before,

$$
L=\frac{1}{w^{2} \mathbf{C}}
$$

Here too, the unknown inductive reactance X_{L} may be derived from two insertion loss measurements, one with and the other without the resonating capacitor C in the circuit. For the parallel connection, the following formula applies

$$
X_{L}=\frac{25}{(P-1)} \sqrt{\frac{P^{2}-P_{1}^{2}}{P_{1}^{2}-1}}
$$

in which P_{1} is the insertion loss of

This fastener

works

through thick and thin!

Spring-Lock-the easy-to-use removable fastener for modern designs-works whether panel thicknesses run over or under specifications! Spring wire deflects automatically to handle greater or lesser thicknesses. Spring-Lock's design flexibility makes it more than a fastener: it can be adapted as a shelf support, door strike, knob or any similar panel-mounted device. Many standard shapes and sizes of Simmons Spring-Locks are available from stock.

SIMMONS FASTENER CORPORATION
 1750 North Broadway, Albany 1, New York

HERE'S HOW SPRING-LOCK WORKS

1. Insert fastener.

2. Half-turn locks it in place.

With production costs on the uptrend, you can figure on Spring-Lock as an assembly time and money-saver, because:

- Installation is BLIND
- Installation is EASY: no special tools are needed
- Installation is QUICK : a half-turn locks it in place
- Installation is SECURE: the spring steel locks the fastener, resists vibration

Send for details and samples, or write us about your fastening problem.

... give positive, powerful snap action!

he magnetic pull moves the armalure along the Solenoid axis. This action is efficiently converted into a rotary motion by means of ball bearings on inclined races. The inclined ball races are made to compensate for the magnetic pull increase as the Solenoid air gap closes, thereby providing substantially constant torque throughout the Solenoid stroke. The rotary snap-action power of the Ledex can be efficiently harnessed with a minimum of linkages, through the use of one or more standard features available on all models.

here's why LEDEX ROTARY SOLENOIDS are dependable!

As can be seen from the exploded view, Ledex Rotary Solenoids are simply constructed with few moving parts. All parts are manufactured to exarting folerances and are carefully inspecied and assembled.

The copper wire coil, the heatt of the Solenoid, was developed especially for this preduct. It is wound by a precision wincing process that puts a maximum amount of magnet wire info available space . . . giving tremendous power to compact Ledex Rotary Solenoids.
six basic ledex
ROTARY SOLENOIDS
to choose from!

Madel Number	2	3	5	6	7	8
Diameler	$11 / /^{\prime \prime}$	$15 / 6^{\prime \prime}$	$17 / 8^{\prime \prime}$	$21 / 4^{\prime \prime}$	$23 / 4^{\prime \prime}$	$33 / 8^{\prime \prime}$
Torque lb . -in.	$1 / 4$	1	5	10	25	50
Weight lbs.	$1 / 6$	$1 / 4$	$1 / 2$		$21 / 4$	$41 / 4$

Engineering data is ovailable upon request. Write for descriptive literalure today!
the unknown impedance, and P is the insertion loss of the unknown impedance at resonance.

Aluminum Antimony

Semiconductors

Investigations at Battelle Memorial Institute by R. K. Willardson, A. C. Beer, H. Goering and A. E. Middelton indicate that electrical properties of aluminum antimony compounds may compete with those of germanium and silicon.

Aluminum antimony has two kinds of atoms in its lattice. Either p or n type aluminum antimony can be produced. Room-temperature electrical resistivity has been varied by a factor of more than 500,000 through controlled processing.

Because the intrinsic energy gap of aluminum antimony is larger than that for silicon, the former may have advantages over germanium and silicon for high-temperature applications.

Diode rectifiers made with the newly investigated material have rectification ratios close to 10,000 . Since the material is photosensitive, it may have further interesting applications.

The cost of constituent materials is less than fifty cents a pound.

Pertinent Patents

W. M. Gottschalk of Watertown, Massachusetts is the inventor of a "Microwave Energy Amplifier" that was granted U. S. patent 2,627,586 . The patent is assigned to the Raytheon Manufacturing Co.

The invention consists of an evacuated envelope such as that of the familiar cathode-ray tube. The structure within the envelope is illustrated in Fig. 1. An electron gun projects a beam of electrons toward a collector anode along a path A that is centrally positioned in the tube and within a resonant Lecher-wire fork, a half wavelength long and forming a halfwave parallel line shorted at one end. This forms the input electrode.

A pair of full-wave lines similar to the input electrode form output electrodes. The output electrodes

The Iron Horse that reads and heeds with Electronic Eyes

The Super Chief of the Santa Fe Railway carries electronic equipment that "reads" the conditions of the track ahead and describes the signal lights to the engineer. If, for some reason, he fails to heed this message, the equipment automatically takes over control of the throttle. This is truly safety in motion.

Holtzer-Cabot motor generator sets, which power electronic equipment on the Super Chief
control system, employ Regohm voltage regulators exclusively. Wherever the going gets rough on land, sea or air applications, this compact, electro-mechanical controller withstands severe vibration, shock or ambient temperature conditions. And standard models provide voltage output constant within less than $\pm 2 \%$.

Here are the reasons why Holtzer-Cabot engineers have standardized on Regohm voltage regulators:

1. Low Cost-Regolm costs less, does more, than the complex equipment that once was the only a vailable solution to control problems.
2. Ruggedness-Upgrade, downgrade, working on a railroad demands the ability to "take it." Regolim has it, is sturdy and reliable.
3. Long Life-In properly engineered installations, Regohm's life is measured in years. This means low maintenance cost. Shelf-life is substantially unlimited.
4. Simplified Maintenance-Regohm's plag-in feature simplifies replacement and maintenance by unskilled crews. There are no parts to renew or lubricate.
5. Good Regulation-Regohm insures continuous control and will stabilize control systems with widely varying characteristics.
Our engineering and research staff can belp you develop optimum design for your eanipment and system. Learn how Regohan can belp you with your regulation problem. Write for Bulletin 505.00. The address: Department E., Electric Regzlator Corp., Norwalk, Comm.
 and turrets having other characteristics

FIG. l-Microwave energy amplifier tube (\bar{A}) and circuit detail (B)
are a quarter wave apart. As the beam of electrons passes through the input fork, it is modulated by the microwave energy impressed on the input. As a result, the electron beam is scattered. The scattered microwave-modulated electron beam passes through the output fork elements from which is extracted an amplified counterpart of the input wave.

The inventor claims a gain of 5 for his microwave amplifier and a high operating efficiency.

Transitron Sweep

The invention of a "Sweep Generator" was awarded patent 2,627.025. This was issued to G. C. Trembly and assigned to the United State of America as represented by the Secretary of the Navy.

In this invention a transitronoscillator sweep generator is disclosed. In Fig. 2 the circuit of the generator is shown. The oscillator is triggered by a positive pulse from a gas tube. The gas tube operation is initiated by external positive trigger pulses. The output pulse of the gas trigger tube is applied to the suppressor grid of the transitron oscillator tube.

In the steady state the control grid of the transitron oscillator pentode is drawing current through the grid resistor, returned to a positive voltage point in the circuit. The pentode is now conducting heavily through its screen grid. At the same time the suppressor grid

Names that mean outstanding quality

Copehent

SYLVANIA

Motorola

RAYTHEOD

... RELY ON

1

 Onidland CRYSTALSManufacturers with front-rank reputations make sure of every component that goes into their products. Such reputations can be maintained only through constant vigilance and selection of suppliers who also have proud reputations to uphold.

Names of distinction in every field of communications depend on Midland Crystals for reliable frequency control in their products. That's tribute enough to the kind of performance Midland Quality Control has built into millions of crystals faithfully doing a first-class job on land, sea, and in the air

Whatever your Oyytal need. conventional or highly specialized When it has to be exactly right, contact

FIG. 2-Transitron oscillator sweep generator
is at a negative potential. The screen is at a somewhat lower positive potential than the plate. When the positive trigger pulse is applied to the suppressor grid it is driven to ground potential. Conduction is thereby shifted from screen to plate in the pentode. The shift is graphically illustrated in Fig. 3.

The suppressor is held at ground potential by the circuit elements until the screen is again able to conduct. The resulting drop in plate voltage as conduction shifts to plate is applied to the control grid through the coupling capacitor between control grid and plate. The grid voltage is forced down to the point at which the plate current will be supported. At this point a degenerative action starts a linear sweep.

The drop in plate current is maintained linearly now by the discharge of the grid-to-plate coupling capacitor. When the plate current has reached a certain limiting value the screen begins to conduct again and screen and suppressor voltages go down. The grid quickly goes positive and plate current is cut off. The grid current recharges the grid-plate coupling capacitor. One of the limiting diodes quickly removes any charge remaining on the capacitors coupling suppressor and

FIG. 3-Conduction shifts from screen to plate in pentode

Now a new

synthetic

helps
dial telephone

service

In a large, modern telephone office, two million relay contacts await the orders of your diat to clear a path for your voice. They open and close a billion times a day.

Anong the elements that guard your dial telephone service are electrical capacitors. They help prevent the formation of arcs that pit and may eventually destroy relay contacts. But millions more of these capacitors are needed each year. How could they be made less costly?

Bell Laboratories engineers, on the lookout for new materials, became alert to the possibilities of the new "Mylar" polyester film. A product of the Du Pont Company, "Mylar" is chemically the same as Du Pout's "Dacron" polyester fiber used to make fabrics. Bell engineers discovered that it also had remarkable dielectric properties-of just the right kind to help their capacitor problem.

The film takes the place of impregnated paper formerly used to separate the metal foil electrodes. It is tougher, stands more voltage and needs no impregnation. The new capacitors require no protective housing and are much smaller and less costly.

Here is another example of the way America's techuology advances through the sharing of knowledge. Just as Bell Telephone Laboratories makes many of its discoveries-the Transistor, for example-available to other companies, so does it adapt the inventiveness of others when it can help your telephone service.
bell telephone laboratories
There are many opportunities for creative scientistio and engineers at Bell Telephone Laboratories. Fer details see our advertisement on page 410

What you have waited for \#17908等

CX WOVEN GLASS TAPE Priced to Compete with Cotton Tapes!

AT LAST! . . . a woven glass electrical insulating tape developed to compete with cotton tapes in performance and price. Now, cost-conscious manufacturers of low temperature apparatus can gain the benefits of glass tape . . . including resistance to moisture, dirt, and acid; high strength; space-saving thinness; and speedy heat conduction away from "hot spots."

INTENDED only for Class A insulation work, you may be able to use . 004 inch Imcor Type CX glass tape to replace both .005 inch and .007 inch cotton tapes for permanent or sacrifice work. It is designed for tying, filling, and wrapping of coils and conductors in motors, armatures, transformers, controls, and other electrical units.

ECONOMICAL, continuous-filament glass yarns, which are treated to permit machine or hand winding of the tape, are used in Imcor CX glass tapes. Standard widths are $1 / 2,3 / 4,1,1 \frac{1}{4}$, and $1^{1 / 2}$ inches.

PLAN NOW to test Imcor CX woven glass tape on a trial basis to determine its possibilities for your application. Ask your nearest IMC office for prices, samples, and specifications.

IHSULATION
 MANUFACTURERS CORPORATION

FIG. 4-Waveforms encountered in transitron sweep circuit
screen. The sweep thus terminates abruptly until a new trigger pulse appears.

The waveforms illustrated in Fig. 4 show the operation of the circuit at various points.

Tone Generator

Patent 2,627,413 for a "Method and Means for Producing Simple and Composite Notes or Tones" was granted to A. H. Frisch and A. Silverberg of New York, N. Y.

This invention, while not specifically an electronic circuit application as such, has potential applicability in electronic systems that makes it interesting.

The inventors disclose a method whereby magnetic tapes may be printed with magnetic fields corresponding to musical sounds.

The illustration of Fig. 5 shows the structure of one of the printing dies. A magnetic path is formed between a toroidal magnet and an iron base through the magnetic tape and a preformed die. The tape becomes magnetized in the degree of contact or separation of undulations in the bottom of the die structure proximate to the magnetic tape. The tape thus will bear a magnetic pattern such that when pulled

Vacuum Processed Bradley Rectifiers a plus in your circuit but not in your cost

RECTIFIER STABILITY, longevity and uniformity are the sum of many things. One determining factor is the quality of the selenium crystalline structure. The better or more closely controlled this structure, the better the rectifier. Bradley, through its unique vacuum process, uses the most advanced safeguards to assure excellent crystalline structure. It's one big reason why we can rate our rectifiers conservatively, why you can be sure of Bradley stability and long life under operating conditions. Vacuum processing is coupled at Bradley with engineer inspection at all points of production. This laboratory control saves time and materials, which are translated into low unit cost to you. For a plus in your circuit but not in your cost, specify Bradley rectifiers.

For further information or consultation, write or phone our sales engineering department. Special problems are wetcomed.

bRADLEY LABORATORIES, INC., 168E Columbus Avenue, New Haven 11, Conn.

NOW for the first time in Oven BOGUE 400 CYCLE GENERATORS

Due to the extremely high production at our newly enlarged plant, we are able to offer for immediate shipment from stock "World Famous" Bogue HiCycle Generators in the following sizes:

5, 10, 20 and 50 KVA Single Phase \& Three Phase Output 220 /440 Volt Input

Deliver 400 cycles regardless of load and inpuf variations

LOW HARMONICS close voltage regulation

Our engineering department will be glad to supply full specifications on stock units as well as on special units to meet all Hi-Cycle requirements.

FIG. 5-_Printing die for impressing magnetic pattern on tape
through a magnetic-tape reproducing head a tone will be produced that will have a frequency determined by the tape speed and the separation between the elements in the formation of the die base.

While the inventors only claim their invention's usefulness in respect to the generation of musical tones, and foresee the preprinting of simple tonal effects on magnetic tape, incorporation of devices and the method disclosed in this invention in computing devices can be foreseen.

Any fixed signal pattern can be imparted to the die base as shown in Fig. 6. It is certainly a reasonable extension of this idea to set up predetermined signal code patterns that can be printed on magnetic tape information storage devices in electronic computing systems. When in the programming of the computer device the information code must be struck onto the tape, it may be done as described by the inventors in their patent and drawn off or read out at the appropriate time in the computing sequence by a magnetic-tape reproducing head.

Telephone Amplifier

People who use telephones over extended periods, and acquire sore ears in the process, should find patent $2,632,811$ of interest. The patent was granted to M. L. M. Souget and N. L. Chalfin for "Telephone Amplifying Apparatus".

The circuit of the telephone am-

FIG. 6-Uniform (A) or complex (B) pattern depends on die base

Behind the radar curtain that guards our shores

c.

Mcgnetron illustrations courtesy of Raytheon Manufacturing Company

Source of UHF waves that make possible the radar screen glarding our continental perineter is the magnetron.

Essential elements of the magnetron, and the anorles and cathodes of the companion direct-reading oscilloscope are produced by Superior Tube Company. For example, in the Raytheon magnetron above. Superior furnishes: A. The cathode (heart of the magnetron); B. The anode; C. The sleeve on the wave trap (or choke) assembly.

All of these parts are made from Superior seamless nickel tubing. As a matter of fact, there is Superior tubing in every one of the 400 different types of Raytheon magnetrons-a record possible only because of great satisfaction with Superior alloys, fabrication, deliveries and service. Put your chief dependence upon Superior. Superior Tube Company, 2500 Germantown Ave., Norristown, Pa.

OVER 200 BASIC TYPES TO CHOOSE FROM

Do audio attenuator problems cost you money? Chances are Shallcross has a model to match your specifications exactly-and at moderate cost.

Shallcross attenuators are made in over 200 basic types. Each type can be supplied with a choice of attenuation characteristics . . . with a positive detent mechanism . . and in numerous input and output impedances. Where calibration must be extremely accurate, Shallcross precision wire-wound resistors are used. For less critical applications, models with high grade composition resistors can be supplied-often at lower cost.
A complete description of all Shallcross attenuators - mountings, characteristics, and circuits is yours for the asking in Bulletin L-4A.

SHAlLCROSS MFG. CO., 522 Pusey Avenue, Collingdale, Penna.

FIG. 7-Telephone amplifier features feedback
plifier is shown in Fig. 7. The particular novelty of the telephone amplifier is illustrated in the feedback path. While overall degenerative feedback in a three-stage audio amplifier is by no means novel, in this case it was the solution to a problem of feedback familiar to many unsuccessful attempts to provide a telephone-amplifying device. The general purpose of such amplifiers is to free telephone users' hands-particularly where the calling party must wait for the called party, or listen to a long recital of figures or names. Another important use is for conference calls to a large group.

The induction pickup unit of the telephone amplifier is employed as illustrated in Fig. 8. Magnetic leakage currents from the receiver of the telephone handset induce signal voltages in this pickup, which is mounted beneath a depression in the top of the telephone amplifier cabinet. The top of the cabinet is contoured to fit most currently used telephone handsets. The telephone, using the induction device of this invention, delivers an incoming call at loudspeaker volume without any

FIG. 8-Induction pickup obviates need for direct connection to telephone

How many of these electrical insulation problems do you have?

1. Looking for an efficient coil wrapping for small spaces? EMPIRE ${ }^{(8)}$ varnished bias-cut nylon tape is highly flexible, strong and efficient . . . makes a thin insulation of unusually high dielectric strength with good resistance to sil and water.

2. Looking for a better material for wiring diagrams, controls, instruments, dials and nameplates? DECORATIVE LAMICOID® resists wear, aging, weathering, oils, corrosive vapors, moisture and temperature extremes. Won't warp, check or chip. Good electrical properties. Wipes clean with a damp cloth.

3. Need accurately punched mica stampings for filament, grid and plate supports? MICO produces mica stampings to extremely fine tolerances. Whenever you need precision-fabricated mica parts of the highest quality, call on MICO.

4. Need a class H segment plate that's easy to work with? ISOMICA* Segment Plate - made of built-up continuous mica sheet - shows no tendency to split or flake. Small segments of heavy thickness may be punched, and larger segments can be accurately sawed, milled, punched, etc.

Whatever electrical insulation material you need - standard or special class A to class H - MICO makes it best. We manufacture it, cut it to size, or fabricate it to your specification. Send us your blueprints or problems today.
*Trade-mark

LAMICOID (Laminaled PIasfic) -MICANITE (Built-up Mica) -EMPIRE (Varnished fabrics and Paper) .FABRICATED MICA •ISOMICA :
physical electrical comnection of the invention to the telephone instrument.

Impedance Measurement
The design of impedance-measuring devices has always presented difficulty. The problems are most notable in designing instruments for measuring the extremes because stable standards of admittance or impedance are difficult to construct. It is also difficult to avoid error due to the large bridge ratios necessary in measuring extremes. Likewise, the stray impedances of uncertain value become part of the measured element and constitute an undeterminate error.

The invention of Ben Secker, of London, England, patent 2,617,857, recently issued for an "Impedance Measuring Device", proposes to overcome these difficulties. The patent is assigned to International Standard Electric Corp. of New York.

The impedance-measuring device provides an electrical admittance or impedance bridge comprising two equal ratio arms formed by two equal, balanced, and closely coupled inductive windings. One of the windings is coupled to the impedance to be measured, or to one or more standards, at least one of which is comnected to the other winding through an attenuator. A test voltage, or test current, is applied to the impedance or admittance under test, and to all standards. A meter indicates when the algebraic sum of all the voltages or currents in the impedances or admittances is zero.

The circuit of the impedance measuring device of Secker's inven-

FIG. 9-Impedance measurements depend upon bridge circuit

A compact and economical equipment, it is designed to fit neatly under vehicle dashboards but is also available in transportable form.
Reason enough that it should feature so prominently in over two-thirds of the V.H.F. schemes in the United Kingdom.

IF YOU WORK WITH ELECTRICAL OR ELECTRONIC CIRCUITS

A color film with schematic animation and supporting narration... to help you select connectors engineered to your requirements and operating conditions. Disconnect system? Number of contacts? Voltage? Amperage? These and other factors are covered in this helpful film. In addition you'll learn how the printed Cannon Plug Guide (below) leads you to the right connector for any job. Request your free showing today.

CANNON PLUG GUIDE . . . An easy-to-follow graphic ald.

CURRENT CAPACITY and its relation to contact spacing.

SPACING AND NUMBER of contacts involves many factors.

CANNONELECTRIC

since 1915
Main office and plant, Cannon Electric Company, Los Angeles 31, California. Factories in Los Angeles, New Haven, Toronto. Representatives in principal cities.
modern talking picture service, inc.
45 Rockefeller Plaza, New York 20, N. Y.
NAME
IRM
DATE TO BE SHOWNL
ALTERNATE DATES
ADDRESS
CITY \qquad ZONE
\qquad STATE
tion is shown in Fig. 9. In Fig. 10 A , the left side of the bridge is shown in equivalent-circuit form including attenuator 1. Figure 10B shows the circuit without attenuation so that the voltage is reduced to E / K where K is the attenuation factor of attenuator 1.

The entire bridge of Fig. 9 will be equivalent to the circuit of Fig, 10C. Here, Y_{x} is the unknown admittance. Symbols G_{a} and G_{c} are conductances in both sides of the circuit through adjustment of the variable conductance element. Capacitances C_{a} and C_{c} are those introduced by the variable differential capacitor. Values K and K_{2} are the attenuation factors introduced by attenuators 1 and 2 , respectively. The emf's on the C side of the bridge will be opposite in sign to those on the A side.

Zero current in the detector will be found when

$$
\begin{aligned}
& \frac{E}{Z+\frac{1}{Y_{x}}}+\frac{E}{K_{1}\left(Z+\frac{1}{j \omega C_{a}}\right)^{-}}+ \\
& \frac{E}{K_{2}\left(Z+\frac{1}{G_{a}}\right)}=\frac{E}{K_{2}\left(Z+\frac{1}{j \omega C_{0}}\right)} \\
& \frac{E}{K_{2}\left(Z+\frac{1}{G_{c}}\right)}
\end{aligned}
$$

which reduces to

$$
Y_{z}=\frac{\left(G_{c}-G_{a}\right)}{K_{2}+\frac{j\left(C_{c}-C_{a}\right)}{K_{1}}}
$$

The inventor points out the series impedance element in the test admittance input circuit (dashed in Fig. 9) may be omitted for small values of Y_{s} but that the others are necessary for properly terminating the input circuits of the attenuators. Other details may be obtained by reference to the patent.

For those who may desire copies

FIG. 10-Equivalent circuit (A) of left side, circuit with attenuator removed (B) and equivalent circuit of entire bridge (C)

0.02 of 1\%

 accuracy

 accuracy}

Designed to the most exacting specifications for such applications as timing operations in industrial laboratories or for measurement processes in the chemical and metals industries. Incorporates new principle of differential clutching that prevents slippage and ceverrun and insures unusually high accuracy and dependable performance.

FEATURES

High Accuracy... Better than 0.02 of 1% of full scale reading.

Positive Clutching...Differential gear clutch provides positive action. No friction element to slip or wear. Accuracy fur ther improved by clutching at a high. speed part of the gear train.
Extra Strength Motor... High torque motor insures adequate reserve for adverse operating conditions.
Easy-to-Read Dial . . Large sweep hand permits extremely precise readings.
Compact Size . . . Takes up minimum space on crowded panels. . . ideal for portable or airborne equipment.

Military Specifications .. Models available to meet exacting specifications as to shock, vibration, temperature, etc.

the R. W. CRAMER CO., INC.

Box No. 3, Centerbrook, Conn.

Im this urique clutch mechanism, the motor is permanently connected to the sun gear of a differential gear system. A solenoid pawl moves between the two differentiol members so that only one is free to rotate at one time. Storts and staps are thus effected by pasitive engagement of pawl with glear. There con be none of the slippage ar overrun associ ated with friction clutches; nor can characteristics change wifh oge.

Please send complete information about (Please check) the ET Tims Totolizer.
Send copy of General Bulletin on Synchronovs Timing Motors and Electric Timers. \square

NAME:
Address: \qquad

POSITIVE ACTION CLUTCH
WITH OIFFERENTIAL GEAR
PREVENTS SLIPPING OR OVERRUN

Sensitive DC-VTVM Furthers Electronic Research and Production

Progress in electronic engineering, as in other fields of engineering, is closely linked with the development of more sensitive measuring instruments. During the past 4 years our MV-17B DC Vacuum Tube Millivoltmeter has helped substantially to advance both research and production throughout the entire electronic field. Crystal diodes and transistors for instance have benefited from it due to its ability to measure small $D C$ voltages with minimum circuit loading (1 mV full scale, 6 megohms input impedance). As a null detector, in bridges, the MV-17B can be overloaded up to 100,000 times, thereby eliminating suspension-galvanometer trouble and increasing measuring ranges and sensitivity. Grid current measurements, small voltage drops in regulated power supplies, delicate temperature measurements, insulation material research are but a few other applications which have made this instrument a reliable stand-by in nearly all leading laboratories in America and abroad.

"It Measures Where Others Fail"

Other Millivac Meters, Similar to MV-17B.

- MV-17BX DC Millivolt meter, identical with MV-17B but equipped with external output terminals. Used as a high-gain DC amplifier or to operate external indicating and recording instruments.
- MR-67B DC Millivolt Recorder, sensitivity 200 microvolts per centimeter. Uses Sanborn heat-writing unit.
- MV-18B High Frequency Voltmeter. Has MV-17B DC measuring circuit and external crystal probes. Covers 1 MC to $2,500 \mathrm{MC}$, lowest reading 1 mV . Measures also 100 microvolts to 10 mV DC .
of the patents reviewed in these payes, they may be obtained by writing Commissioner of Patents, Washington 25, D. C. Each patent is available at a cost of 25 cents and should be ordered by patent number.

Radar Photography

A method of producing visual images of objects by their reflection of radio waves is the subject matter of U. S. Patent 2,627,600 granted to R. H. Rines of Brookline, Mass.

The basic concept of Rines' invention is illustrated in Fig, 11. An object irradiated with radiofrequency energy in the manner of a madar system normally reradiates the energy. By means of a radio-wave-refracting lens, such as one of polystyrene, the reradiated energy from the object may be focused onto a film. The film is a mosaic of minute silicon detectors on a heatsensitive surface. The sides of the mosaic are dimensioned to act as quarter-wave resonators.

The heat-sensitive layer may be composed of acid salts readily decomposable on the application of

FIG. 11 -Basic concept of radar photographic method by r-f reflection
heat along with a basic salt that decomposes only slowly under heat. A decomposable acid salt suggested is barium acetate. Secondary ammonium phosphate is suggested as the basic salt. Other combinations are disclosed in the patent. The reradiated energy from the object in the radiated beam, when focused on the heat-sensitive layer disposed at the focal point of the lens, will produce differing amounts of energy on the film, depending on the field strength magnitudes reflected from

Efficient from $500^{\circ} \mathrm{F}$. to $-85^{\circ} \mathrm{F}$.
Moisture and Fungus Resistant
Flame Resistant - Self extinguishing
Abrasion Resistant
Dielectrically Strong with average readings up to 7,000 volts.
Available in 10 colors - at no extra cost.
Samples of Varglas silicone products as well as samples of our complete line of tubing and sleeving are available in a convenient sample folder. Just drop us a line telling us your problem and its peculiarities.

VARFLEX Sales Ca.,

TRIAD

SUB-MINIATURE HERMETICALLY SEALED
transistor transformers

- standard MIL cases
 - hermetically seaied
 - magnetically shielded

Triad offers Teansistor Transtormiers,
both cased and uncased, for
all applications in connection
with both NPN and PNP type of
transistors. Cased types are listed below. Dimensions, $3 / 4 " \times 3 / 4 / 4 \times 1 \frac{1}{8}$ "

FIG. 12-Arrangement of camera for radar photography
the object itself.
The silicon particles rectify the energy impinging on them. The heat generated from the rectifying action will amount only to microjoules of energy, but this will be sufficient to decompose the film coatings in varying amounts thereby changing the pH concentration of the acid-basic-salt mixture in varying amounts depending on the radio frequency energy imported to the resonant mosaic silicon surfaces.

Developing of the film is accomplished by dipping it in a litmus, or phenolphthalein solution. Thus, the image of the reradiating object will appear in degrees of red under a litmus development, corresponding to the volatile-acid or volatilebase pH concentration.

If the radio-photographic technique described in the Rines invention works as claimed, it seems reasonable to project into the future the possibility of identification of distant objects in a radar beam by more detailed, instantaneous observation than is now possible on the conventional radar scope where considerable time intervals elapse between one scanning sweep over an area and a succeeding sweep.

One point that seems logically made in the specification of this invention is that the greater the range of the objects being observed, the longer the exposure required.

By including a litmus solution in the film surface, the inventor claims to be able to make the object visible without development.

In Fig. 12 there is shown a boxcamera representation of the technique proposed in this invention.

Unusual Klystron

An unusual approach to the design of velocity-modulated tubes of the type generally known as

COMPRESSION MOLDED Plastic 7aroids

* Meet JAN temperature and humidity requirements
We consider this development as revolutionary as the development of the molded mica capacitor. The bothersome mounting problems and fragility of the uncased toroid have been entirely eliminated. Complete uniformity of dimensions are maintained by precision molds. To keep mounting pressure off the plastic, a bushing of brass is molded into the center. Type " A " provides a center hole to clear a 6-32 screw. Type "B" is threaded for a 6-32 screw. Tooling is complete for molding any of the $.90 \times .40$ coils. The complete unit is compact, measuring only $1 \frac{1}{16}{ }^{\prime \prime}$ by $\frac{1}{2}{ }^{\prime \prime}$ thick.
Complete data available on request; samples will be furnished for your evaluation.

Want more information? Use post card on last page.
August, 1953 - ELECTRONICS

Hardly a day passes but what we receive interesting research problems on the application of toroids.
CAC engineers welcome the opportunity to consider your specific requirements in frequency selective networks For your convenience use our specification list (below) which covers most filter requirements:

FILTER SPECIFICATIONS

1. Pass Band
a) Frequency limits: \qquad to

0 \qquad $d b$
b) Max. insertion loss at min. point: db
2. Attenuation Band
a) Frequency limits \& relative attenuation required:

3. Terminations *
a) Input

1) impedance in pass band: \quad ohms
2) impedance beyond pass band: \square increase \square decrease \square nct important
3) \square balanced, \square unbalanced
b) Output
4) impedance in pass band: \qquad ohms
5) impedance beyond pass band: \square increase \square decrease \square not important
6) \square balanced, \square unbalanced
4. Operating Conditions
a) Power level \qquad DBM
b) Temperature range \qquad -10 \qquad - F or C
c) Vibration
\qquad ts
5. Case Requirements a) Max. dimension: \qquad in. x \qquad in. x \qquad in. \square stud b) Mounting by No. \square tapped inserts.
\qquad -- (thread) \qquad in. studs

Location of terminals and mounting provisions: on \qquad in. x \qquad in. surface
d) Hermetic Seal: \square yes \square no.
e) Finish Color; \square dark gray \square light gray \square blackSpecial (Specify)
6. Other Requirements
a) Military specifications applicableMIL-T-27 \square \qquad \square none
b) Special Requirements:
*NOTE: If low frequency limit of pass band is d.c., input and output impedances are usually equal and must both be either balanced or unbalanced.

DESTRUCTIVE OLD AGE

B
Y the time you discover old age has attacked your important drawings - it's too late. By then, the damage has been done. The time to effectively block old age is NOW while tomorrow's drawings are still in the preparatory stage.

The way to do it? Specify Arkwright Tracing Cloth. Arkwright checks the destructive effects of old age. Arkwright won't fray at the edges, turn brittle or opaque. You are assured perfect transparency, regardless of age.

There are other reasons why it pays to work with Arkwright. This superior tracing cloth can "take" all the erasing you're likely to give it in a month of Sundays - and still provide sharp, clear lines. You need never worry about "feathering" or "blobbing" or imperfect blueprints.

So insist on quality. You'll get it with Arkwright... America's Standard for over 32 years. Arkwright Finishing Co., Industrial Trust Bldg., Providence, R. I.

ARKWRIGHT Tracing Cloths

klystrons is the subject matter of patent 2,603,764 issued to Ernest Rostas of Paris, France, and assigned to the International Standard Electric Co., of New York.

In the inventor's statement of objects he proposes that his system provide means whereby the electron streams of the velocity-modulated tube may be separated into two groups of mean transversal velocities. Transversal velocity is understood to mean the velocity component of the electron stream perpendicular to the magnetic field used around the tube.

The two electron streams are controlled by the magnetic field established along the general axis of the electron-beam path and a highfrequency electric field that is perpendicular with the axis of the beam. The electron beam does not consist substantially of the electrons whose displacement is perpendicular to the axis of the beam. Means are provided to eliminate the electrons having a certain mean transversal velocity after the electrons have been divided into two groups of differing transversal velocities by a circle that envelops the orbits of the electrons of accelerated transversal velocities or according to their absolute tangential velocity. Reflection electrodes are employed to accomplish the encirclement.

A magnetic field and a high-frequency electric field are made to pass two or more distinct regions of the tube that are traversed in succession by a single electron beam. The two fields are perpendicular to the beam axis. Electrons that are shifted along the beam axis at the entry to the first region, where a parallel magnetic field and a perpendicular high-frequency electric field is provided, are not included.

Various other combinations of magnetic and electric fields are employed to generate the characteristics sought by the inventor: In one of these, illustrated in Fig. 13, a

FIG. 13-Combination of magnetic and electric fields in mass spectrometer
magnetic field of cone shape, parallel with beam direction, creates a conic beam of electrons converging toward the input of a region where a magnetic field is provided in the axis of the beam and an electric field perpendicular to it.

FIG. 14-Physical structure (A) and field regions (B) of special klysiron

Meanwhile, another beam is permitted to pass on through the structure where at a further point in the path another field acts upon it. The second beam of greater mean diameter takes on a conical shape and is collected at an anode structure in the tube. In the invention many structures are shown that generate two beams of different characteristics, one of which is eliminated insofar as it is used within the tube (although some undisclosed external use is made of the energy) and the other is passed on to a final collector electrode after an oscillatory energy is first imparted and then lost. The velocity at which electrons finally strike the collector electrode is retarded with a view to reducing the power consumption of the device.

In Fig. 14 the physical structure embodying the invention is shown together with the various magnetic and electric field regions and tube components.

ant H_{6} O ideaf 5 rogor

This Huski-Duty shipping box means lower reight cost, minimized damage claims and excellent dealer relations. Get all three in your shipping boxsend for booklet "How To Pack II.' Hinde \& Dauch, Sandusky 10, OHIO.

Production Techniques

Edited by JOHN MARKUS

Air Cylinder Replaces
Drill-Press Feed

Foot-controlled air cylinder, replacing feed handle of drill press. leaves both hands of operator free for holding and indexing meter cases being drilled
AN AIR CYLINDER mounted on a standard drill press and controlled by a foot-operated valve leaves both hands of the operator free for holding and indexing the work in the Bayamon, Puerto Rico plant of Triplett Electric Co. of P. R. Inc.

The operation involved is drillingr holes in plastic meter cases at pre-

Mirror Table Speeds Smali-Parts Inspection

Both sides of shaved cathodes for vacuum tubes are inspected at the same time for chips and other defects by placing the parts on an ordinary mirror in the Bloomfield, N. J. plant of Tung-Sol Electric Inc.

The mirror is a conventional type with silvered back surface. It is
air cylinder is mounted in such a way that it brings the drill slowly down through the guide bushing and through the work at constant pressure when the foot valve is actuated.

OTHER DEPARTMENTS featured in this issue:

Electrons at Work. 198

New Products 300
Plants and People 350

New Books 389

Backtalk
394
mounted in a wood box that supports it just high enough above the bench surface to give a clear separation between each tiny cathode and its mirror image when the operator is seated at the bench.
Sloping plastic-covered wing boards go downward from the box to the bench on either side to pro-

Mirror setup used for inspecting both sides of small parts simultaneously

vide comfortable sum rests for the operator. A wood rack at the rear of the box supports the special molded plastie trays used for
handling and storing the cathodes. Individual cathodes are handled only with tweezers to prevent contamination of the emissive surface.

Empty-Carton Slide Aids Packing of Radios

Final packing bench for radio sets. Conveyor line is within easy reach of operator at right, who unloads empty cartons and loads full cartons after sealing them

An overhead empty-carton slide is combined with an efficient bench arrangement to simplify the procedure for packing radio sets in shipping cartons at Crosley's Cincinnati plant. The conveyor line that brings empty cartons to this position and takes away filled cartons dips down to laading level at the right-hand end of the bench. The man at this position picks empty cartons off the conveyor pans
as needed to keep the overhead slide almost full, pushing the cartons to the left each time so that the empties are within reach of the other two men at this final packing station.

At the carton-loading position, the bench is covered with carpet to prevent scratching of the radio cabinets. The support for the overhead slide contains shelves for holding instruction books and slips.

Soldering Iron Holders Free Both Hands

Method of using soldering iron in holder for fastening ferrules to end of shielding braid on cable

In the operation of soldering together the inner and outer ferrules that capture the shielding braid at the termination of a multiple-conductor cable, the procedure recommended by Amphenol involves bringing the work up to a rigidly mounted soldering iron and rotating it while applying solder. The accompanying illustration shows one satisfactory method of supporting the soldering iron while per-

Vertical support for soldering iron used in soldering ferrules of cable shield to shell of connector plug
forming this operation.
First, blocks of wood are assembled to form a mounting platform that slopes toward the operator. At the lower end of this platform, a square of hard-pressed asbestos board and a U-shaped metal piece are mounted to serve as a holder for the heated part of the soldering iron.

Farther up, an ordinary toolholding clip is fastened to the platform to serve as a tight-gripping holder for the soldering-iron handle. This arrangement holds the iron with adequate rigidity yet permits easy removal for other uses.

A modification of this holder, involving use of two clamps for holding the soldering iron vertically, is used later for soldering the ferrules to the shell of the connecting plug, for giving a watertight seal.

Glass Windows on Bench

To minimize pickup of dust during assembly of delicate meter movements, a tunnel is built on top of the assembly bench to protect the units as they are moved down the production line in the Bayamon, Puerto Rico plant of Triplett Electric Co. of P. R. Inc.

The tunnel has a sliding glass

A NEW PERMANENT MAGNET MATERIAL...

Here is another Ferroxcube "first": a permanent magnet material with outstanding magnetic characteristics-and no critical materials are involved in its manufacture. Magnadur's extremely high coercive force and unusually high resistance to demagnetization permit entirely new magnet designs.
Magnadur will be produced in a variety of shapes. Production for the current year is concentrated on Magnadur toroids -developed specifically for TV focusing ring magnets.
Magnadur focus rings provide a real answer to TV focus problems. The double lens systen, which is focussed by adjusting the relative position of two toroidal magnets, reduces stray fields to a minimum and provides a highly symmetrical field. Maximum sharpness and spot symmetry are assured.

Technical information will be sent upon request. Ferroxcube engineers are at your service for consultation. We'll be pleased to have you call or write.

"We minimized scrap loss...

- ... cut fabricating costs 23.9\% by letting

fabricate our

TUNGSHEN and MOFBDENUM

A shori molybdenum rod (1) was hol forged to form basic cone (2), and the part (3) was finished by machining and drilling.

COMPONENTS

More and more tungsten and molybdenum users are finding Fansteel fabrication the answer to complicated and costly production problems. Fansteel's long-experienced engineers and technicians not only recommend the material to be used but also the shape best adapted to solve a specific problem. Why not use Fansteel fabrication to your advantage, too? Fansteel will help you effect important cost savings by eliminating the scrap and reject problem, minimizing inspection costs, and releasing

Fansteel Metallurgical Corporation north chicaco, uимоіs, us.a.

Bench arrangement incorporating transfer and storage tunnel at rear, with sliding glass windows for access, to minimize contamination of meter movements during assembly. All parts are stored in the tunnel. Windows are closed at the end of the working shift
window in front of each operator. During working hours, operators leave their windows open far enough so they can conveniently reach in. Each finished part is placed on a slide in the tunnel, from which it travels downward by gravity to the open window in front of the next operator. Similarly, the next part to be worked on is taken from the bottom of the slide of the preceding operator. Parts thus move down the assembly line by way of the tunnel step by step, with much less risk of contamination than was formerly obtained when passing parts directly down the work bench from operator to operator.

Switch Used
 for Motor Protection

ON MOTORS which are mounted in such a way that the weight of the motor keeps the belt tight, a micro switch mounted just above the motor can serve in place of a fuse for opening the circuit and stopping the motor in the event of stalling or overloading. The normally-closed

Method of using switch in place of fuse to break circuit when fractional-horsepower electric motor stalls

Tiny, yet so mighty, in guarding against voltage breakdowns. Yes, special dielectric materials developed by ceramic pioneer-specialists do safeguard your circuiry, associated components, operational conditions, reputation.

The HI-Q Series HV line includes extra-severeservice slug fype ceramic capacitors in ratings up to 20,000 V. D. C. W.; disks up to 6,800 ; tubulars to 7,000; and high-voltage plates where cubical configuration permits greater space utilization.

HI-C

 AEROVOX CORPORATION OLEAN, N.Y. AEROVOX coromation WILKOR mivison NEW BEDFORD MASS. CLEVELAND, OHIOExport: 41 E. 42 nd St. Now York 17, N. Y. - Coble; AEROCAP. N. Y.

- In Conddo: AEROVOX CANADA tTD., Homilton, Ont. JOBEER ADORESS: 740 Bellevilte Ave., New Bedford, Mass.
snap-action switch is wired in series with the motor circuit. Best results are obtained with a switch mounting having a lever with a roller on the end for actuating the switch button.

When the motor stalls or overloads, tightening of the belt causes the motor to rise and actuate the switch. This opens the circuit and stops the motor, thereby eliminating blown fuses or the possibility of burning out the motor. This switch arangement also acts as a safety feature in the event that the operator's clothing gets caught in the equipment.

This production safety idea was suggested by Walter G. Wilson of Maywood, Illinois in a letter to the Idea Exchange Department of Microtips, a publication of Minne-apolis-Honeywell Rerulator Co., Freeport, Illinois.

Potting Transistors

An EXPERIMENTAL PILOT production setup for potting small batches of point-contact transistors in TungSol's Bloomfield, N. J. plant requires only easily available tools and supplies.

The first step in potting is cutting the tops off No. 1 Lilly gelatin capsules with a heated razor blade. A single-edge blade is heated by placing it on an ordinary electric warming plate. The longer end of the capsule is placed over a brass rod projecting out of a block the desired distance for the encapsulating tube, and the heated razor blade is moved across the top of the rod to slice off the closed end.

Next, the cut sleeve is pushed

Preparing transistor - encapsulating sleeve by slicing top off pharmaceutical capsule with heated razor blade

Placing sleeve over transistor. Units are stored in foam polystyrene black between operations
down over the base of the assembled transistor. Styrofoam foam polystyrene blocks are used in place of trays as supports for the transistors before and after this operation. The somewhat flexible transistor leads are easily inserted in this block for holding the units upright and for transporting them.

As the final operation, a medicine dropper is used to fill the sleeves of the transistors with Araldite resin

Using medicine dropper to fill eack: transistor sleeve with potting resin

Eliminating all vacuum tubes, Acme Regulated Power Supplies provide extremely dependable, trouble-free, accurate, most economical service for industrial and laboratory purposes. Regulated by magnetic amplifiers.

Such units will give a minimum of 20,000 hours' continuous service. Available in variety of voltages and frequencies. Typical:

Here shown is Type 5-730. Input: 100-120 v. AC; $\mathbf{3 8 0}$ to 420 cps. Output: 6000 v. DC $\pm 5 \%$, with 100 microampere load; 600 v . DC tap; ripple voltage less than 120 v . peak-to-peak at 100 microampere load. Temperature Range: Designed to operate from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and at $-55^{\circ} \mathrm{C}$ at $50,000 \mathrm{ft}$. altitude.
Potted Unit which elminates altitude problems inherent in oilfilled designs. This particular unit does not include magnetic amplifier.

求 function-fitted to your needs
Send us your power supply requirements. Acme either has a standord unit that will do, of will design and build o special unit for you. Literature on request.

division
OIEAN, N. Y
OLEAN, N. Y. NEW BEDFORD MASS.
AEROVOX CORPORAIION

WILKOR DIVISIon Cievelano, omio
 Export: 41 E. 42nd 5t., New York 17. N. Y. - Cable: AEROCAP, N. Y.

Cable

assemblies?

CAN MAKE THEM FOR YOU!

Whatever the design, or requirement . . . standard and special, HHB can provide skill and facilities to make cable assemblies to your exact specifications.

Or, if you are a user of connectors and components, including AN 'Types, RF Types, Rack and Panel Types, and special items, we can help you with your requirements.

A new HHB catalog is available illustrating many of these outstanding products of HHB craftsmanship. A copy will be mailed to you if requested on your business letterhead.

H. H. BUGGIE And Company

Sales Engineers in All Principal Cities

Poting germanium diodes with mixture of resin and lampblack, kept at 120 C with an oil bath on hot plate in back ground. Beaker in foreground merely serves as support for plastic strip hold ing diodes
that has been warmed to about 120 C. The sleeve acts as a shell, without dissolving or fusing. The resin is later cured in an oven for about 24 hours at 110 C .

A similar procedure is used for potting special uhf germanium diodes for use up to $1,000 \mathrm{mc}$ as uhf mixers. Coil dope is used here to fasten the sleeve to the glass base, and carbon black is used in the resin. The diodes rest in drilled holes in a strip of sheet plastic for this potting operation.

Checking Threaded Holes

A POWER-DRIVEN thread gage speeds inspection of the magnesium castings that make up the chassis of Raytheon's PRC-6 hand-held f-m transmitter-receiver. Each one of the 36 blind precision-tapped holes

Setup for checking threaded holes in magnesium chassis castings
for 2-56 screws and studs is checked at high speed on this machine. This preliminary inspection minimizes cross threading or jamming and insures that each screw and stud will hold its share of tersion.

The operator holds each hole in the chassis in turn against the master screw. This is turned rapidly into the hole by the motor until the screw strikes bottom. Rotation is then automatically reversed and the screw comes out.

Cable Test Sets

Assembly procedures recommended by Amphenol for attaching power plugs to multiple-conductor cables involve the use of five different test sets. Two are used for checking insulation resistance on different types of cables, two for applying high-voltage breakdown tests and one for making the final electrical inspection to detect possible short-circuits.

The first insulation resistance checker handles one cable at a time, but has front-panel fittings for three different types of male power

Using insulation resistance fest set directly for checking one cable at a time. Operator's hand is on zero-adjust knob. Metal strip at left on panel prevents operator from moving one of the loggle switches accidentally

THE RELIABLE ELECTRONIC MEMORY

MAGNETIC DRUM STORAGE SYSTEMS for Rapid-Access Data Storage

The Magnetic Storage Drum has proved to be the most versatile rapid-access electronic memory yet developed. ERA pioneered the development of these systems. Today, you can select from the family of ERA Magnetic Storage Drums, a model with characteristics best suited to your requirements-without the necessity of costly special development. ERA Magnetic Drum Memory Systems provide all of these features:

- LARGE STORAGE CAPACITY allows a recorded density as high as 2200 binary digits per square inch.
- HIGH SPEED of associated equipment permits storage or reading of data at rates up to 125,000 digit-groups per second.
- CONTINUED RE-USE of recording surface-recording heads are not in contact with drum surface and no wear occurs.
- NON-VOLATILE STORAGE means stored information is unaffected in the event of power failure.

Send us your requirement. Write on your business letterhead to: Engineering Research Associates Division of Remington Rand Inc., 1902 West Minnehaha Avenue,

[^14]DIGITAL COMPUTERS . . . DATA-HANDIING SYSTEMS . . . MAGNETIC STORAGE SYSTEMS . INSTRUMENTS . . ANALOG MAGNETIC RECORDING SYSTEMS . . . COMPUTING SERVICE

The designer of a cabinet type oil heater had to provide a manual control for an oil and air metering valve which was placed at the bottom of the unit. He wanted to place the control knob on the front of the heater where it could be easily seen and operated. To do this meant bringing the control linkage around a 90° turn. To solve the problem, he chose

THE LOW-COST SOLUTION

 AN S.S.WHITE REMOTE CONTROL FLEXIBLE SHAFT

In this way he was able to connect the control dial to a rod running to the valve with a single part which did not require alignment and could be installed in a minimum amount of time. The net result was impressive savings in assembly and manufacturing costs, advantages that most designers gain when they use S.S. White flexible shafts to solve their remote control problems.

Get These Flexible Shaft Facts

This 256-page flexible shaft handbook, containing full facts on flexible shaft selection and application will be sent free if you write us direct on your business letterhead.

Method of using insulation resistance test set with adapter (in box underneath) for checking five cables at a time
plugs and one female connector. The test set is essentially a highrange ohmmeter with the meter scale calibrated to read from 0 to 5,000 megohms. A zero-adjust switch on the right side of the panel is readjusted for each cable to compensate for drift in the test circuit. The test here is made between the outer metal housing of the plug and all cable leads shorted together; this reveals in one measurement the lowest leakage resistance value between any of the conductors and

High-voltage cable breakdown test set emoloying snap-action switches as conductor selectors. Operator is pressing the tiny projecting button that actuates one of these switches
the plug housing. Shorting of leads is done by the sockets mounted on the front panel of the test set.

Another type of insulation resistance set uses the same basic ohmmeter in combination with an adapter for checking five paralleled cables simultaneously. Sockets for these cables are mounted on the front of the adapter and the measurement is made between the five paralleled plug housings and the five sets of paralleled conductors. A special cable, fitting into the male socket on the test set, makes connections to the adapter. A logarithmic meter scale reading from 0.1 to 10,000 megohms is used on this test set.

Five identical cables can be checked simultaneously on each of the high-voltage breakdown test sets. Here again, standardized test sets are employed in conjunction with easily interchangeable adapter boxes, each of which accommodates a different type of cable plug.

The first type of high-voltage test set has fourteen tiny buttons projecting through holes in its panel. Each button actuates a snap-action switch for applying the test voltage between one individual conductor and the plug housing. After this, the operator presses different combinations of two buttons at a time, in an attempt to break down the cable between different pairs of conductors. The operator watches the meter as she manipulates the switches; any lowering of the meter reading indicates a defect in the cable. The operator then has to pull out the cable plugs one at a

Improved version of high-voltage test set, having ten circuit-switching buttons and hence less flexibility

The s.s.white Industrial "Airbrasive" Unit provides a fast, accurate and low-cost way to handle those tough, high precision jobs that are either impossible or impractical to do by conventional methods. For instance, it will:

- Cut germanium or other hard, brittle materials.
- Cut and shape fragile crystals.
- "Trim" surface coatings on printed circuits without harming the base material.
- Remove oxidation from circuits printed by the copper etch method.
- Produce fine matte finishes on metal and glass.
- Cut calibration marks on precision glassware.
- Do light deburring.
- Drill thin sections of glass and other material.
- Cut spiral bands on deposited carbon resistors.

The secret of the "Airbrasive" Unit's amazing precision and versatility is its unique principle of cutting by means of a high speed gas propelled stream of abrasive particles. The stream, which is directed at the work through a tiny orifice, produces a cool, shockless and controllable cutting effect which can be held to extremely close tolerances.
We'll be glad to conduct tests on samples of any material or parts you have and advise you as to the suitability of the "Airbrasive" cutting process for your needs. Write today. For full details...
WRITE FOR BULLETIN 5307. It provides a comprehensive outline of the many ways in which the Industrial "Airbrasive" Unit can be used. Send for a copy.

FILTERS

to assure
your product's performance
Lenkurt tests them mesh by mesh

When you guarantee your product's performance - you are guaranteeing the components it contains. That's why the confidence you can have in LENKURT FILTERS is so important. Lenkurt uses laboratory care even in mass production quantities.
Typical of Lenkurt's extra care is the well engineered procedure for testing both filter meshes and final assemblies. Each mesh of a Lenkurt filter is tested for frequency response, effective a.c. resistance and other significant requirements. The frequency sources used are accurate within ± 1 cycle. Lenkurt's testing techniques are direct reading to cut testing time and eliminate sources of human error. Their efficiency makes possible the uniform adherence to any teasible specification you request.
Lenkurt's efficient testing techniques were the subject of an article in Electronics Magazine, April 1953. Reprint copies are furnished on request. Write today for further information.

Operator matches corresponding pairs of conductors with this test set to check for short-circuits in cables at final electrical inspection station
time to determine which one is guilty, since the high voltage is applied to corresponding leads of all five cables simultaneously.

A more modern version of this test set employs ten conventional pushbuttons of the doorbell type, with a 500 -volt full-scale meter and a neon lamp above the meter to provide additional visual indication. A batch of five cables can be tested in about two minutes with this test set, including the time for attaching and removing the five plugs.

Even though cables pass the insulation resistance and breakdown tests, they can still have shorts between wires. These shorts are revealed in the final electrical tests, using a test set that checks two cables at a time. The cable plugs are attached to the sockets at the front of the test set. The operator then matches corresponding colors of leads at the other ends of the cables and touches the strip ends together momentarily. A buzzer sounds to indicate a short.
The foregoing procedure is abstracted from a booklet, "OK Methods", available from American Phenolic Corp., Chicago 50, IIl.

Soldering Flexible Braid

In order to solder a highly fléxible metal conductor to the moving armature of an aircraft relay without having the solder creep up into the braid and stiffen it, a soldering technique involving the use of a

Method of using resistance-soldering unit to heat relay armature terminal for critical soldering operation

Wassco 450-watt Glo-Melt soldering unit was developed by Phillips Control Corp., San Juan, Puerto Rico.

The metal braid is looped through the terminal hole in the armature and then crimped around the opposite side of this terminal, so that the end of the braid is distinctly separate from the point where the braid enters the terminal.

The operator next holds the armature terminal against the carbon electrodes of the soldering unit to heat it up, then applies 0.020inch diameter $60 / 40$ rosin-core solder carefully to the end of the braid. This gives a good joint without impairing the flexibility of the connection and minimizes breakage at the solder joint.

The soldering unit uses carbon electrodes having copper shells. Strapping on the front panel under the electrodes is used in conjunction with an output voltage control on the front panel to give three different electrode voltage ranges: $0.1-1.5 \mathrm{v} ; 1.8-4 \mathrm{v} ; 2.5-5.4 \mathrm{v}$.

The same setup is used for soldering silver contacts to the relay

When Sangamo HUMIDITITE Molded Mica Capacitors were first put on the market, the great interest shown in these remarkably moisture resistant capacitors far exceeded our expectations. We have increased our manufacturing facilities and our production capacity . . . initial demands have been met . . . and we can now handle quantity orders for Humiditite Micas with full assurance that delivery requirements will be met.

*what is HUMIDITITE?

Humiditite is the very effective new plastic molding compound, developed by Sangamo, that gives Sangamo Mica Capacitors moisture resistance properties far superior to any others on the market.
Sangamo Humiditite Micas, under the standard moisture resistance tests described in MIL-C-5A (proposed) Specification, tested in excess of 50,000 megohms - more than 500 times the specification requirements.
Humiditite is just another example of the advanced engineering that enables Sangamo to meet the existing and future needs of the electronic industry. For additional information about HUMIDITITE, write for Engineering Bulletin No. TS-111.

Trose uhtotnow...

chosse Sangamas SANGAMO ELECTRIC COMPANY MARION, ILLINOIS
contact blades, except that here solder preforms are used in place of spooled solder.

Checking Hole Diameters in Mica Punchings

Sampling inspection of punched mica spacers for vacuum tubes is facilitated through use of a rack and gear arrangement for quickly raising the spindle of the micrometer. The operator first sets the gage to zero when the spindle is resting on the unpunched surface, then allows the precisely tapered spindle to drop into the hole being gaged. Readings of tolerance limits are expressed in terms of dial readings on this setup, so that pieces outside of tolerance are detected directly.
The micrometer gage employed, made by B. C. Ames Co., Waltham, Mass., serves to check hole sizes to tenths of thousandths of an inch when used in this manner in the Rio Piedras, Puerto Rico plant of Sylvania Electric of P. R. Inc. The indicator is rigidly attached to the upright part of the metal fixture.

Also on this upright part is mounted a small! gear and a slide for a corresponding rack. Turning

Operator here is rotating knurled knob clockwise with right hand to lower spin dle, for gaging diameter of center hole in mica spacer
a kmoled knob counterchockwise moves the rack up, thereby raising the spindle for shifting the mica to a new hole or for testing the next piece. Rotating the knob clockwise allows the spindle to drop by gravity for gaging a hole. The lowering arm clears the spindle as soon as the spindle encounters resistance, hence does not affect the accuracy of readings.

Comb for Braided Shield

A USEFUL tool for combing out the braided strands of shieided cable, suggested by engineers at Navy

Suggested tool for combing metal braid into parallel strands

Yard Norfolk, is easily made from a strip of steel wire brush taken from a file brush. This brush is wrapped around a 6 -inch length of 1-inch wood dowel, then glued and tacked in position as shown in the diagram.

The steel wire strip should be wrapped so that the direction of the wire ends is in the direction of the expected use. This is essential so the teeth of the comb will dig into and pull out the strands on the braided shields, in preparation for making a connection to the bratid.

Heat Treatment for Nylon Molded Parts

Dimensional changes subsequent to the molding of electronic components from nylon can be prevented by heat-treating soon after molding, to relieve residual stresses. The process involves immersion in a heat-transfer medium at 350 F . A suitable medium for the purpose is Glycowax S-932, made by Glyco Products Co., 26 Court St., Brooklyn 2, N. Y. This is available in convenient flake form, melts at about 150 F , and has the required high

Here is an all-new production tool expressly designed to make small and miniature soldering simpler and surer than ever before. It is so fast that some joints can now be soldered in less than 1 second! . . . so much lighter and easier to handle than soldering irons or guns that a woman can use it all day long without fatigue! Check this unique combination of features against your job requirements:
gets into small, tight spots because of smaller electrode pencil.
NO HEAT DAMAGE-instant resistance heating makes sound joints before resistors, condensers, printed circuits, terminal fibre, etc., can be damaged. Pinpoints the heat!
NO "COLD FLOW JOINTS"-resistance principle reguires that metal be heated before the solder will flow. Tap switch adjust heat as needed.
SAFE-Soldering pencil uses harmless (6 v) voltage and high amperage from separate step-down transformer.
LESS FIRE HAZARD-electrodes are hot only when in use.
Less replacement cost-oniy low cost electrodes to buy.

dowels set into the ends of the frames serve as pivots. A bolt through one of the vertical side supports serves to lock the frame in the optimum position for convenient work.

Neck Cutter and Slicer Salvages Picture Tubes

A SINGLE combination neck cutting and neck splicing machine developed by Kahle Engineering Co. of North Bergen, N. J., will salvage 24 -inch, 27 -inch, 30 -inch, 33 -inch and larger cathode-ray picture tubes with one handling of the bulb. Rejected tubes can then be easily repaired and returned to the assembly line.

Neck cutting is performed by the hot-chill method, producing a clean, square cut. The cutoff mechanism is adjustable up and down.

Neck splicing incorporates an upper centering chuck which automatically lines up the bulb if part of the neck remains. The lower centering chuck moves up and down as required for splicing on a new length of neck. The splicing fires are likewise movable up and down as well as in and out under control of a foot pedal. A special hold-down

Machine for puting nev neck on rejecied picture tubes ranging up to 33 inch in size and even larger

Under all conditions, the delicate mechanisms of Kollsman products must function with accuracy and rugged dependability.

2e. AIRCRAFT INSTRUMENTS AND CONTROLS
M OPTICAL PARTS AND DEVICES
S MINIATURE AC MOTORS
2. RADIO COMMUNICATIONS AND

NAVIGATION EQUIPMENT
Current production is largely destined for our defense forces; but our research facilities, our skills and talents, are available to scientists seeking solutions to instrumentation and control problems.

kollsman
INSTRUMENT CORP.

Users and prospective buyers of Magnet Wire may expect from Wheeler a technical service that gets right to the heart of their problems . . . for radio, electronics, television or other applications. Since 1909, we've accumulated a wealth of practical experience that has been of considerable value to manufacturers in these fields.

From our initial operation of drawing electrolytic copper "rod" down to finished wire in sizes from AWG \#22 to \#50 ... through our automatic Formvar and other insulating machines . . . high speed enameling production lines . . . or textile yarn wire covering machines . . . there's no let-up on testing and inspection to insure top quality of product.

Wheeler engineers and representatives are competent, friendly and willing cooperators.

MAKES THESE PRODUCTS A

THE WHEELER INSULATED WIRE COMPANY, INC. Division of The Sperry Corp. - liol east aurora st., WATERBURY 20, CONN.
attachment is provided for use when the neck is gone entirely.

Gun sealing may be accomplished with a special gum-mount pin avaiiable for this purpose with the machine.

Dipping Capacitors in Wax

A Spiral spring fastened to a conventional flanged-pulley drive belt serves as the conveyor line for giving finished paper capacitors their final sealing bath in molten beeswax, in one production setup used at Pyramid Electric Co. Two operators load the belt by pushing capacitor leads between the turns of the spring. The spring is fastened to the belt approximately every four inches with wood screws to keep the turns sufficiently tight so units do not fall off as they go around the bend and into the tank.

Just before the first loading position is an automatic unloader resembling the claws of a carpenter's hammer. This pushes the leads out from between the turns as the spring travels through the slot, allowing the waxed units to drop into a carton below.

Another type of machine used for the same purpose in this plant has solid round leather belts in place of springs. Loading is done by bending one lead of each capacitor in turn around the leather belt. Unloading simply involves pulling the

Wax-dipping machine using coil spring attached to rubber V-belt. Operators are loading belt by pressing one lead of each capacitor between turns of the spring. Length of belt is sufficient for wax to harden before units are knocked off automatically
units off individually or in handfuls. Though equally effective, this machine involves piacing one additional bend in leads that are already badly out of shape.

Clawtype device for removing dipped capacitors from coil spring as the spring moves from right to left through the claws

Leather-belt conveyor arrangement for dipping paper capacitars into beeswax in heated tank at lower right

Surge Comparison Tester
Turns ratios and other characteristics of magnetic-amplifier coils and windings of rotating machines are checked precisely with a cathode-ray instrument known as the Westinyhouse surge comparison tester, in the Paterson, N. J., plant

ADVANCED ELECTRONIC DESIGNS

FREQUENCY CONVERTER-MODEL 400

A 400-CYCLE POWER SUPPLY
 BENCH SIZE

- Plugs into 60 -cycle line
- Delivers 100 volt-amperes
- Output frequency and amplitude adjustable through entire AN-E-19 Range: $380-420 \mathrm{cps}$ 105-130 volts

Frequency Regulation: Better than $\pm 1 \mathrm{cps}$ Voltage Regulation: Better than $\pm 1 \%$ Harmonic Distortion: Total better than 3\% Independent of power factor

The small size ($17^{\prime \prime}$ long $\times 11 \frac{1 / 2^{\prime \prime}}{}$ wide $\times 9^{\prime \prime}$ high), power output ($100 \mathrm{~V}-\mathrm{A}$), and low cost afford the convenience of using one converter for each bench set-up. Four hundred cycle power handling capacity need be paid for only as required.

PRECISION VOLTAGE REGULATOR-MODEL 116 400-CYCLE

- Regulation: $\pm 0.01 \%$ for 0 to 50 VA load variation $\pm 0.02 \%$ for 0 to 100 VA load variation (When output set to center of $\pm 10 \%$ input voltage variation)
- Developed harmonics: better than 1%
- Transient time constant: better than 0.01 seconds

Low harmonic distortion and low transient time constant result from the use of a push-pull feedback amplifier in the output. These features, together with the unusually high regulation, suggest the superiority of the Model 116 as compared with ordinary 400 -cycle regulators.
Send for complete data on these Avion products

OTHER AVION PRODUCTS
Altitude \& Air Speed Control Units. Electranic Choppers. Electronic Inverters Magnetic Memory Systems * Miniature Plug-In Amp Multron - Power Supplies. Rewlaceable Subrniniature Amplifier Assemblies - Signal Generatós

299 Highway No. 17 • Paramus, New Jersey

EXPORT REPRESENTATIVE: Rocke International Corp, 13 E. quin Street. New York 16, N. Y. Cables: "ARLAB" New York. All Codes
CANADIAN REPRESENTATIVE: Aeromotive Engineoring Products, 5257 Queen Mary Road, Montreal, Que.

Checking windings with surge comparison tester. Similar setup is used for magnetic amplifiers
of Bogue Electric Mfg. Co.
One method of use involves applying a voltage stress between turns of a coil, between phases, between two electrically similar windings or between a winding and ground. The windings are stressed by the application of a repetitive surge voltage in opposite directions. If a short-circuit, an improper connection, a reversed coil or a ground exists in one half of the centertapped winding but not in the other half, the difference in impedance in the windings causes two different traces to be observed on the oscilloscope. If the windings are identical, the resulting traces will coincide.

Tests are made quickly and easily on singe-phase or polyphase stator or rotor windings as well as on coils and transformers.

Cabinet Inspection

A 90 -percent reduction in the number of rejected units out of television cabinet and paint shops followed the introduction of female inspectors in this department of

PRODUCTION TECHNIQUES
(continued)
National Electronics Mfg. Co., makers of Natalie Kalmus tv sets. The women proved to have a finer eve for the detection of minute flaws and blemishes.

Water Test for Cables

ArTER ASSEmbly of Amphenol power plugs on the ends of multi-ple-conductor cables, it is often essential to test the water-tight seal by actual immersion.

One recommended proceduce involves submerging the connector along with the length of cable in a trough of water. The open ends of the cable are fastened to an air fixture that permits applying 30 pounds of pressure. Bubbles emerging from the connector or cable under water reveal the location of a leak that must be eliminated.

In one test setup, an air cylinder is used to press sponge rubber strips over the tops of the cables, so as to press the cables tightly against the walls of the metal grooves in which they have been placed. The arrangement is such that cables project into an airtight chamber when the cylinder is down. Operation of the hand valve that brings the cylinder down also serves to admit air into this chamber, from which it is forced out between the conductors of the cable. A pressure gage is attached to read the pressure in the chamber; a

Setup for using single air cylinder to check power plugs on cables ct air pressures up to 30 lb per sq in. while plugs are under water

meet

the Slectra deposited carbon "TRANSISTOR" RESISTOR

- Wattage- $1 / 8$
- Resistance Range 4 ohms-250K ohms
- Length of body-9/32"
- Diameter of body-5/64"
- Accuracy $\pm 1 \%$
- Maximum Rated Voltage-250

These are the key specifications of "TINY" the No. DC-1/8 Deposited Carbon Resistor made only by Electra. It is especially adapted to all miniature requirements and like all Electra resistors, offers these advantages:
STABILITY! You can depend on Electra Carbon-Coat Resistors. You get maximum stability regardless of resistance value tolerance. Order $\pm 1 \%, \pm 5 \%$ or $\pm 10 \%$ - all are equally stable.

ECONOMY! When you specify stability, accuracy and small physical size, Electra Carbon-Coat Resistors are your most economical buy.

Electra Deposited Carbon Resistors are available in nine sizes from $1 / 8$ watt to 2 watts; in resistance ranges from 2 ohms to 50 Megohms; in resistance value tolerances of $\pm 1 \%, \pm 2 \%, \pm 5 \%$, $\pm 10 \%$; in hermetically sealed types as well as standard.

Setup using two air cylinders and longer trough for checking submerged cables for air leaks
typical test pressure is 30 lb per sa in.

In another setup, used for testing six smaller but longer cables simultaneously for leaks, two air cylinders are arranged to act on opposite ends of the same trough. Again, sponge rubber is used to eliminate air leaks from the chamber.

Inspecting and Vacumm-

Cleaning Punched Mica Parts

Tiny punched mica insulators and spacers for subminiature tubes are automatically fed through a vacuum-cleaning arrangement and spread out so they slide down a glossy white table for inspection, in an arrangement recently installed in the Rio Piedras, Puerto Rico plant of Sylvania Electric of P. R. Inc.

Boxes of punched parts coming from the punchpress department are dumped into the bowl of a Syntron Vibra-Flow feeder, the speed of which is controlled with a knob on an associated Syntron electric controller. The feeder produces a steady flow of punchings down a metal slide and then across a wire mesh positioned under the mouth of a vacuum-cleaner pipe. Loose flakes of mica are sucked up the pipe by the vacuum, and small particles drop through the screen.

Complete punched parts travel
down the screen onto a smooth white slide mounted on a Peeco vibrator feeder. An operator watches the parts as they slide down, and with her fingers pushes off any that are incomplete or otherwise defective. The cleaning screen is attached to the vibrating inspection table to provide vibration needed to make the parts slide down the screen at the slight angle employed. The vacuum source for cleaning is an ordinary Lewyt vacuum cleaner.

Arrangement used for clsaning and inspecting tiny punched mica parts. Vacuum cleaner under bench is connected to flared metal outlet over screen with thin metal tubing

Fabricating Technique

 for Foil-Clad LaminatesFabrication of the metal-clad plastic sheets employed in printed or etched circuits can generally be done with the same machinery and methods used for plastic sheets without foil. Shearing and sawing offer no additional complications. With progressive piercing and blanking dies, special care must be taken in die design, so that the stripper plate will prevent any lifting of the foil as punches are withdrawn.

When drilling a foil-clad laminate, drills should be sharpened with a negative rake similar to that used when drilling aluminum. This rake prevents the drill from catching the foil and lifting it away from the laminate when holes are drilled through a narrow line of metal or at the termination of a line.

The toughest production problem is rapid punching in exact register

INTERNATIONAL RECTIFIER

 C O R P O R A \dagger I O1521 E. Grand Ave., El Segundo, Calif. Phone: ORegon 8-3778 CHICAGD: 205 W. Wacker Drive. Phone: Franklin 2-3889 NEW YORK: 12 W. §2nd. St. Phone: Chickering 4.0016

NOW...

a three-speed phonomotor designed for HIGH-FIDELITY REPRODUCTION...

General Industries

MODEL DSS (4-pole) PHONOMOTOR

Here's a three-speed phonomotor that was designed expressly to meet the requirements of high-fidelity reproduction. From its dependable, heavy-duty 4-pole motor to its unique step-shaft speed change mechanism, this new GI Model DSS Phonomotor represents the ultimate in phonomotor engineering, design and construction.
Specifications, quantity price quotations on this or its companion, the new Model SS, with 2-pole motor, will be furnished promptly upon request.
with the etched pattern. No general solution exists, however, since each printed circuit is of a different size and shape. The method of handling will depend on the type of tools required, the length of the strip and a number of other factors, according to Norman A. Skow, director of research for Synthane Corp.

Winding Primary Coil for Soldering Gun

A Carefully planned combination of split bobbins, preformed insulating sheets and a modified winding machine serve to produce primary windings for soldering guns at a high production rate despite the irregular shape of the coil, in the Bayamon, Puerto Rico plant of Weller Mfg. Co.

After unloading a finished coil by taking apart the bobbin, the parts of the bobbin are put together again and locked with a thumb screw, after which preformed fiber insulating sheets are slipped under holding tabs on the

Start of primary winding on bobbin

End of primary winding. Winding machine is made by Universal Winding Co. Operator has just finished putting spaghetti on ends of leads
bobbin. Preforming is done beforehand by dipping punched fiber sheets in water, then forming to shape in a press having heated dies. After the bobbin has been placed on the arbor of the winding machine, a few turns of insulated wire are wrapped around the bobbin to serve as the low-voltage winding for energizing the spotlights of the soldering gun. An insulating sheet is wrapped over this and fastened with Scotch tape, after which the large primary winding is started and run. While one coil is being wound, the operator is unloading, reassembling and preparing the other bobbin for the next winding.

Mercury-Contact Unit Checks Coil Continuity

A simple continuity tester speeds checking of stators for B-50 aircraft tachometers at Bogue Electric Mfg. Co. The jig is made from two transparent plastic blocks, hollowed out for a neon indicating lamp and associated connections. Test leads go to two countersunk half-inch holes about $\frac{3}{4}$ inch deep in the top surface. The holes are filled with mercury. An extension cord bringing in the test voltage enters the block from the rear through a tight-fitting hole. Use of mercury contacts eliminates the need for removing the insulating coating from fine wires to make quality tests in between production operations.

The operator merely grips the leads of a coil by their insulation

Electronic Embedment techniques, as you may have discovered, have distinct advantages-and hidden pitfalls. Emerson \& Cuming know-how can show you how to build-in the specific qualities you need with one of its standard resins - or a plastic specially formulated for your particular use.

Stycast resins are simple to use: They are manufactured for but one purpose: To make superior electrical embedments.

Stycast 40 A clear, transparent, casting resin used for preliminary embedments of electronic circuits or components, and permanent castings where visual inspection is required. Temperature range: $-10^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. Coil assembly used in high speed photographic equipment operaling at 22,000 volts.

Stycast 1030 CM A tough, black, rubbery material with high impact strength for embedments used over a temperature range from $-90^{\circ} \mathrm{C}$. to $+170^{\circ} \mathrm{C}$. Monopole transformer at left sealed in Stycast 103 CM.

Stycast 4030 CM A black, opaque quick-curing material, well adapted to production applications. Temperature range: $-65^{\circ} \mathrm{C}$. to $+200^{\circ} \mathrm{C} . G-E^{\circ}$ Binary Scaler; entire circuit potted in Stycasi 4030 CM for stabilization and hermetic sealing.
Stycast 5050 CM Combines good low and high temperature characteristics with excellent adhesion and high insulation qualities. Glass thermister sealed in aluminum housing to withstand underwater pressure of 300 psi .

Stycast 35 Polystyrene casting resin with excellent electrical qualities. Dielectric constant 2.6; dissipation factor below 0.0009 from 60 to 10^{10} cycles. Well adapted to this Waveguide Plug and to many RF applications.

Stycast TP A material which combines excellent electrical and physical qualities over a wide temperature range: $-65^{\circ} \mathrm{C}$. to $135^{\circ} \mathrm{C}$. Dielectric constant 2.6; dissipation factor below 0.002 from 60 to 10^{10} cycles.
Write for data on Stycast Resins and brochure of recent applications. Let's discuss your problem.

©merson ©ु Cumingy Inc.
 Engineering Plastics for Electronics Production 869 Washington Street, Caniton, Mass.

BOSTON	Buffalo	EHICAGO
R. W. Gray, Inc.	L. E. Markle, Jr.	Came Sales Compo
2 Washington Streat	235 Hopkins Road	3023 N. Cicero Ayenue
Weilesley, Massochusetts	Willamsville 21, N. Y.	Clitcogo 41, llinois

Holding leads of stator in mercury pools of continuity tester for coils of tachometers and miniature a-c and d-c motors and generators

Help for DESIGNERS who can use these properties of POLYPENCO ${ }^{\circledR}$ TEFLON*

To any man wanting to gain the full benefits of Teflon, Polymer offers this complete service ...

Technical Help in Applicotion: Polymer controlled quality Teflon is the result of Polymer Corporation's early pioneering in the field of extruded specialty industrial plastics. At your request, Polymer engineers will work with you on the newest ideas and techniques to apply and fabricate POLYPENCO Teflon easily, economically.
$(2$ Dependable delivery of shapes and parts to meet your specifications: Polymer offers complete stocks of POLYPENCO Teflon rod, tape, tubing and slab. In addition, you can also get quick delivery of controlled quality Teflon parts fabricated to your individual specifications.

Excellent Stability
-
Water Repellent
Chemically Inert
-
Excellent Electrical Insulation Properties at High Temperatures and High Frequencies
-
Low Dielectric Loss
-
Low Temperature
Impact Strength

For the kind of "shirt sleeve" help that goes right to work in helping you apply and use POLYPENCO Teflon, take this step now: Drop us a line on your company letterhead for full details. No obligation, of course.

also available to your specifications

The POLYMER CORPORATION of Penna. - Reading, Penna.
In Canada: C-H Engineering Company • Montreal • Toronto
*registered trodemark of the Du Pont Company
and inserts them in the mercury pools while watching the neon lamp inside the transparent plastic jig. Use of the mercury contacts with a completely enclosed housing of plastic also permits safe testing at high voltages when necessary. The tester can also be used in conjunction with a vacuum-tube voltmeter for checking turns by the comparison method.

Coil-Installing Tool

Insertion of a Tinzerman Speed Nut coil support in chassis slots is facilitated through use of a special pushing tool. The operator places a clip in the recesses of the tool, uses the tool to insert the clip in its in-

Method of installing coil-mounting clips in chassis of GE dip-soldered television receiver. Mcunted clip can be seen just above head of tool

Appearance of mounted coils. Note use of captive speed nuts and self-tapping screws for fostening insulated side plate to chassis
tended holes in the chassis, then pushes gently on the handle of the tool to lock the clip in position.

In a subsequent operation, the fiber coil forms are easily pushed over the mounted clips to complete the coil assembly operation.

Tesing Plug.In Capacitors

DUAL-SECTIGN plug-in electrolytic capacitors having octal bases are quickly tested for leakage with a setup devised by Pyramid engineers. The operator places each unit in turn between two horizontal rods on a iig and rotates the unit until the aligning key drops into the socket mounted at the rear of the jig. She then pushes in the unit

Jig on beach speeds testing of plug-in electrolytics for leakage

Designed as a production and laboratory test instrument by the Technology Instrument Corporation for quality control in the manufacture of their precision potentiometers, the Type 394-A Ponogometer is now available for such uses as:

1. Incoming inspection of single or multi-furn potentiometers.
2. To establish noise-performance criteria for precision potentiometers in servo, control, or instrumentation applications.
3. For laboratory investigations and/or quality control in single or multiturn potentiometer manufacturing.

Working to a definition \ddagger of noise covering, in part, the voltages created by the equivalent, transient contact noise resistance appearing between the wiper and resistance element of a precision potentiometer, the 394 - A Ponogometer monitors this contact resistance, providing an audible and visual indication when a prescribed threshold level is exceeded.

SPECIFICATIONS
Range: Equivalent Noise Resistance - -threshold level adjustable from 10 to 5000 ohms. Lower levels can be set up by means of accessory amplifiers.
Wiper Exciting Current: Constant 1 milliampere. Other values can be set up by means of accessory current sources.
Type indication: Audible tone and a neon light, essentially independent of speed of operation of total resistance, and resistance function of potentiometer.
Write for specifications and further details in \#Laboratory Report No. 6

Technologr nsstruyen corr.

533 Main Street, Acton, Massachusetts, Telephone: Acton 600

Details of capacitor-testing jig
and glances up at the meters to note the speed at which the needle drops. If the unit is excessively leaky, the pointer stays upscale as an indication of high leakage current.

A somewhat similar setup is used at another position for checking capacitance.

Centering Relay Contacts

To obTAIN PRECISE centering of moving-armature contacts between the two sets of fixed contacts on aircraft relays, gaging and contactspinning operations are combined ingeniously in the San Juan, Puerto Rico, plant of Phillips Control Corp.

The relay is assembled completely, including the moving armature. The two gaps for each of the three pairs of fixed contacts are next measured with a square rod-type step gage and each reading noted. This gives gap spacings in steps of 0.002 inch per gage.

Next, the three-blade armature for this relay is taken out and placed on a modified Delta drill press having in its chuck a spinning tool. A Starrett dial indicator is mounted alongside the drill press

Using step gage to measure contact gap in aircraft relay

Reducing thickness of moving contact. after removing armature temporarily from relay, by applying pressure with spinning tool while watching resulting change in thickness on dial indicator
in such a way that it reads changes in contact thickness. From the readings of the step gage the operator knows how much each contact must be flattened by spinning so that the sums of the two gaps will be the same for each armature. He then brings down the drill press lever until the dial indicates that the desired change in contact thickness has been obtained, for each contact in turn.

The spinning tool is a metal roll mounted horizontally, with the diameter of the roll reducing gradually from the ends to the center so that no flat spots will develop as the shaft of this roll is rotated in a horizontal plane by the drill press.

Parts Mounted on Prints Aid TV Inspectors

Final inspection of each dipsoldered television chassis is expedited in the Syracuse plant of General Electric Co. by placing in front of each inspector a mounted parts layout print on which have been placed all of the parts that are her responsibility.

To prepare the sample board, small holes are drilled in it at the Capacitance Resistance Dissipation Factor (D) \checkmark Storage Coefficient (Q) Plot Impedance Functions

ZiAnqle Wecter

The type 310A Z.Angle Meter measures impedance directly in polar coordinates as an impedance magnitude in ohms and phase angle in degrees: Z / θ Impedance Range: 5 to 100,000 ohms, covered by a single dial and a four position range switch. Accuracy: $\pm 1 \%$
Frequency Range: 30 cycles to 20 kc . for impedances below 5000 ohms, measurements can be made up to 40 kc . For frequencies from 100 kc . to 2 mc ., write for specifications for the type $311 \mathrm{~A}-\mathrm{RF}$ Z-Angle Meter.
Phase Angle Range: 0° to 90° Direct reading on panel meter. Meter is also Calibrated in D and Q.
Phase Angle Accuracy: Within 2° of meter indication.
Internal Oscillator: 60 cycles and 400 cycles. Terminals are provided for an external, variable frequency signal generator for measurements at other frequencies.

In the field, the laboratory, the production test floor or the class room, the extreme occuracy and the simplicity of operation has proved the type 310A Z.Angle Meter to be a superb and reliable instrument.

Write now for more detailed information
ENGINEERING REPRESENTATIVES
Chicago, 111. - UPtown 8.1141 Arnprior, Ont., Can. Arnprior 400 Cleveland, Ohio - PRospect 1-6171 Hollywood, Cal. - HOllywoad 9-6305 Waltham, Mass. - WAltham 5-6900 Boonton, N. J. - Baonton 8-3097 Dayton, Ohio - Michigan Roseland, New Jersey - Caldwell 6-4545 Dayton, Ohio - Michigan-8721 Wyncote, Pa. Ogontz 8805 Silver Spring. Md. - Sligo 7-550

Iechnology Instrument Corp.

YOU CAN ALWAYS RELY ON EDISON COMPONENTS

for Electronic

and

Communications Equipment Because of:

HERMETICAL SEALING in rigid glass.
TAMPER-PROOF stability that defies time and abuse.
ACCURACY. Patented feature permits calibration after sealing.

THERMAL TIME DELAY RELAYS

Cathode and filament protection - Gyro Erection - Prevent surges and false starts in sensitive auxiliary equipment - Miscellaneous circuit switching

SPECIFICATIONS

> Standard Octal Base
> Delays ... 2 seconds to 5 minutes
> Heater... 5 wates nominal, continuous operation Voltages: 6.3,26.5 and 117
> Contacts . . . 6 amps maximum, 3 amps to 450 voles a.c. or d.c.
> Vibration ... $1 / 16^{\prime \prime}$ amplitude at 55 cps .50 g shock. Ambient ... -60 to $+85^{\circ} \mathrm{C}$ Seated Height . . $31 / 4 \mathrm{max}$.
> Delays... 5 seconds to 75 seconds
> Heater ... 2.5 watts nominal, continuous operation Voltages: 6.3 and 27.5
> Contacts . . 2.5 amps max. 1 amp at 125 volts d.c. Vibration . . . 1/16" amplitude at 55 cps .50 g shock. Ambient ... -60 to $+85^{\circ} \mathrm{C}$ Seated Height ... $21 / 4$ max.

SPECIFICATIONS

Heavy duty-type D8
Max. temp. . . $320^{\circ} \mathrm{C}$
Max. walts. . . 1000
Max. amps. . . $8.0 \mathrm{~d} . \mathrm{c}$
Calibration tolerance. .. $\pm 2.5^{\circ} \mathrm{C}$
Length, $23 / 4$ "; dia., 9/16" (approx.)

Precision control-type $\$ 1$
Max. temp. . . $190^{\circ} \mathrm{C}$
Max. watts... I 50
Max. amps 1.0
Control differential at $1 / 4 \mathrm{amp}=0.1^{\circ} \mathrm{F}$
Length, $21 / 2^{\prime \prime}$; dia., $3 / 8^{\prime \prime}$ (approx.)

Write for free bulletins and application data to:

I NCOR O ORATED
DEPT. 54, WEST ORANGE, NEW JERSEY

Inspection position on chain-conveyor assembly line, showing method of mounting layout prini. All parts and leads assigned to this operator have been mounted on this print in their correct positions
exact positions corresponding to the chassis terminal pins for the parts and leads to be inspected. These parts and leads are then inserted in the holes, and the projecting ends are bent over on the backide for anchoring. Two wood llocks with grooves sawed at an ingle support the sample board on he shelf over the onerator at the nost convenient pusition for quick reference.

Assembling Germanium Diodes

Welding catwhisk? to germanium diode

Induction soldering is employed for mounting a 0.045 -inch square pellet of germanium on the flattened cathode electrode of a uhf

RFDUGE SARBUILDING coStS..

with this New. Sylvania Integral Eyelet Socket

Ycull sped ue radio and television set assembly and pare chown oosts with this new Syvania socket! The eyelets are actually formed into tle eaddle. Just 2 simple apeat ons and these sockets ar firm ly secured to the chassis. You save rivet costs save time, and get a sturdy, durable, top-quality job.

Made with 3 types of bases

These new Sylvania sockets are now avalable with 7 -pin, octal, or 9 -pin bases. Insulators are either general-purpose or low-loss phenolic
For prices and full information about this latest Sylvania quality part, write today to: Sylvania Electric Products Inic., Dept. 3A-1008 1740 Broadway, New York 19, N. Y.

SYLVANIA

RADIO - LIGHTING ELECTRONICS•TELEVISION

In Canada: Sylvania Electric (Canada) Ltd., University Tower Bldg., St. Catherine St., Montreal, P. Q.
tronic, nucleonic and related fields, since it provides wide-range voltage at comparatively heavy current. Meters and controls are conveniently arranged on a compact panel. The instrument is self-contained, easily rolled or transported from one location to another, and connects into any standard a-c outlet.

H-V POWER SUPPLY is continuously variable

The Spellman Television Co., Inc., 3029 Webster Ave., Bronx, N. Y., has developed a new h-v power supply unit. Model LAB-40, which features a continuously variable regulated 25 to $40-\mathrm{kv} \mathrm{d}-\mathrm{c}$ power supply, has a 4 to $6-k v$ focus tap for use with flying spot kinescope recording tubes and the like. The unit has regulations of 0.5 percent at 1 ma , and is available either with locking controls or a standard knob. The model is 19 in . wide. $12 \ddagger$ in high and 15 in . deep.

TINY RESISTOR

is rated at 0.10 w
The Daven Co., 191 Central Ave., Newark, N. J., has a new subminiature resistor, type 1106 , ($i_{6}^{3} \mathrm{in}$. diameter x 궁 in. long), to meet the miniaturization program of the Armed Forces, aircraft and elec-
tronic industries. Maximum resistance, wound with Evenohm, Karma, or equivalent is 100,000 ohms. It is rated at 0.10 w . Other resistance wires with different temperature coefficients are available with a lesser maximum resistance per spool. This resistor is specially impregnated against conditions of extreme humidity. Tolerances are available to ± 0.05 percent. Regular wire or Tensolite leads can be furnished.

WIRE STRIPPER is a tiny wheel-type

Rush Wire Stripper Division, The Eraser Co., Inc., 1068 S. Clinton St., Syracuse 4, N. Y. Model R-1 midget wheel-type wire stripper is specially designed for efficient highproduction stripping of film insulation from very fine magnet wires. A built-in space-regulating screw limits minimum spacing between wheels-prevents breaking wires or reducing their diameter. A builtin pressure regulator allows the wheels to separate as the wires enter and brings them back to the fixed setting for complete stripping.

AIRCRAFT RELAYS are supersensitive units

Potter and Brumfield, Princeton, Ind. A new group of precision-built
supersensitive relays, designated as the SS series, and operating on 10 mw or less with $10-\mathrm{G}$ vibration resistance, has been developed for aircraft equipment. These relays are available in open ($1 \frac{1}{6} \mathrm{in} . \times{ }^{\frac{3}{1}}$ in. $x 1+\frac{1}{5} \mathrm{in}$. high) and hermetically sealed ($1 \frac{1}{2} \mathrm{in} . \times 1 \frac{1}{2} \mathrm{in} . \times 2 \frac{1}{16} \mathrm{in}$. high) types. Both types are equipped with 1 form C (spdt) pure silver contact combinations rated at 2 amperes, $28 \mathrm{v}, \mathrm{d}-\mathrm{c}$, or 115 v a-c. noninductive load. The balanced armature, set on needle-point bearings, is virtually friction-free in its movement. The beryllium copper torsion spring maintains stable performance over a wide operating temperature range. The relays are equipped with series-connected coils, available up to 60,000 ohms and maximum sensitivity of 1 to 2 mw .

TRANSISTORS

available in two types
Westinghouse Electric Corp., Box 284, Elmira, N. Y. Two transistors, types WX-3347 and WX-4813, for developmental use in amplifier, oscillator and switching circuits, are available in sample lots. Both types are provided with leads for wired-in installation. The WX-3347 is a point-contact type transistor. Typical operating characteristics when used as a grounded-base amplifier under small signal conditions are: collector current, 2 to 3 ma ; power gain, 18 db ; and cut off frequency, 2 mc. The WX-4813 is a pnp junction-type transistor. When used as an amplifier with grounded emitter and base input, typical operating characteristics are: col-

SUPERIOR PERFORMANCE

DATA

1. Wider Bandwidth: Complex waves from 5 Cycles to 15 Megacycles. Sine waves from 3 Cycles to 20 Megacycles.
2. Extended Sweep Frequencies: Linear from 10 Cycles to 20 Megacycles internally synchronized. Triggered sweep, from single random impulses to irregular pulse-intervals up to as high as 6 Megacycles.
3. Square Wave Response: Rise time 0.042 Microseconds; only 5% droop on flat-topped pulses as long as 30,000 Microseconds duration.
4. Greater Stability: Electronically regulated power supplies throughout to maintain accuracy and constant operation under varying line conditions or line surges. You can display surges on the line from which Model LA-239C is being powered without distortion of the trace!
5. Higher Signal Sensitivity: Maximum sensitivity without Probe: 10.4 millivolts. With Probe: 100 millivolts. (Maximum signals, 125 V. Peak and 450 V. Peak respectively.)
6. Timing Markers: Interval Markers of $0.2 ; 1 ; 5 ; 20 ; 100 ; 500$; or 2,000 Microseconds may be superimposed on the trace for the accurate measurement of the time base.
7. Voltage Calibration: Signal amplitude is compared against a 1,000 cycle square wave (generated internally) the amplitude of which is controlled by a step-and-slide attenuator calibrated in peak volts. (A jack is provided to deliver 40 V Peak for use in calibrating other instruments.)
8. Sweep Delay: Any portion of the sweep longer than a 10 Microsecond section may be expanded by $10: 1$ for detailed study of that portion of the signal.
9. Power Source: 110 to 130 V AC; from 50 to 1,000 cycles. 295 Watts. (Fused at 4 Amperes.)
10. Dimensions: In Bench Cabinet: $191 / 2 \mathrm{in}$. Wide; $151 / 4 \mathrm{in}$. High; $163 / 4 \mathrm{in}$. Deep. In Rack Mounting (With cabinet removed to fit standard relay rack): $191 / 2 \mathrm{in}$. Wide; 14 in . High.

On 3 Cycles to 20 Megacycles

THE LAVOIE MODEL LA-239C has been designed to surpass the high performance of the TS-239A/UP, which has been the standard test oscilloscope for the Armed Services since its introduction. Model LA-239C is the result of a long period of research and development which has included the study of new tubes, new circuits, and new techniques. Rugged design has been combined with functional simplicity to produce an instrument as attractive as it is efficient.
To create a circuit that will produce a certain complex wave form, or study transients and pulse phenomena, no better precision instrument is available today.
Lavoie Laboratories take pride in offering this precision oscilloscope as the combination of engineering perfection and manufacturing skill.

designers and manufacturers of electronic equipment

YOU MIGHT BE AMAZED

AT WHAT YOU CAN DO
WITH
SIGMA SENSITIVE RELAYS

- CENSORED Unfortunatcly the proudmanuforturer of the device we should be describing dbove is either a timid soul orlacks a sense of humor because he wouldint hear of this type of reference to kis pride occause he wouldnt hear or this type of reference to kis pride to do anything except print it as above.

SIGMA INSTRUMENTS, INC.
B2 PEARL ST., SO, BHAINTREE, BOSTON 85, MASS.

lector current, 1 to 2 ma; and power gain, 30 db .

NULL METER is phase sensitive

The Industrial Test Equipment Co., 55 E. 11th St., New York, N. Y., has introduced the Phazor null meter, model 100A. The instrument permits phase sensitive null detection and effectively eliminates noise and harmonic components. It is extremely useful for bridge, potentiometer and other null-type circuits. It also finds wide application in synchro zeroing, incremental impedance detection and phasing of transformer devices. The unit features a sensitivity of 6 mv off-scale deflection; a frequency range of 30 to $10,000 \mathrm{cps}$; and an input impedance of 2.5 megohms shunted by 15 upf. Power input is 105 or $125 \mathrm{v}, 60 \mathrm{cps}, 25 \mathrm{w}$.

POTENTIOMETERS for industrial control

Ward Leonard Electric Co., Mt. Vernon, N. Y., has developed the Bulletin 68 plunger potentiometers designed for industrial electronic control applications such as constant cutting speed machine tool
drives, winder drives and processing machinery as well as numerous "dancer roll" systems. The vitreous enameled resistance element and the precious metal sliding contact are protected by an oil-tight enclosure with external mounting holes. The operating plunger, with its rollertype cam follower, requires only -in. linear movement for complete traverse of the 10,000 -ohm potentiometer. The unit measures only 8 in. wide $\times 4 \frac{1}{2}$ in. deep $\times 7 \frac{\bar{y}}{5} \mathrm{in}$. high over plunger roller.

29 FRAME MOTOR with centrifugal switch

Induction motors Corp., 55-17 37th Ave., Woorlside 77, N. Y., announces that its 29 Frame Motor can now be supplied with a special centrifugal switch for use in control applications in electronic equipment. At present this switch is being used successfully at ambient 120 C on a fan motor in electronic equipment in the event the fan becomes inoperative, thus avoiding damage to expensive components. The switch is designed in a special manner so that no wear occurs in actuating components, thus making for millions of trouble-free operations.

H-V POWER SUPPLY

has variety of uses
The Spellman Television Co., Inc., 3029 Webster Ave., Bronx, N. Y. Model PN-60 high-voltage power supply is ideal for electrostatic paint spraying, capacitor charging and testing, as well as many other uses. Its reversible polarity r-f d-c power supply is continuously variable from 0 kv to 60 kv. Polarity changes are made on the front panel. Current output is

TYPE 756-

Fairchild's latest single-turn PRECISION POTENTIOMETER

Gives you all these advantages...

1 Extremely low noise level and longer life with sustained high accuracy result from improved windings and wiper design. These improvements also permit higher rotational speeds with minimum of wear.

2 Higher resolution (0.05% at 2,000 turns) and close functional 2 tolerances (linear $\pm 0.25 \%$; non-linear 0.35% with $3: 1$ slope ratio in high resistance ranges) give higher point-to-point tracking qualities.

3 Stanclard electrical functional angle is 320 deg. nominal with ORV tolerance of $\pm 5 \%$ in resistance range from 800 to 40,000 ohms. Electrical functional angle of 350 deg. nominal with ORV tolerance of $\pm 3 \%$ in resistance ranges of 50 to 45,000 ohms cian be supplied on special order.
4. Greater flexibility - For non-linear functions as many as 13 taps can be provided by adding extra terminal boards.
5 All the desirable qualities of the well-known Type 746 unit, including easy and more accurate phasing, ganging up to 20 units on a single shaft, all-metal precision-machined housing and shalt, low torque, ete, are inclucled in the Type 756.
Full information about the entire line of Fairchild Precision Potentiometers, including specifications of the Type 756 mit and how we cen help solve your potentiometer problems, is available for the asking. Write to Polentiometer Division, Fairchild Camera and Instrament Corporation, Park Avenue, Hicksville, Long Island, New York, Department 140-39A 1.

SUB-MINIATURE

PILOT LIGHTS
 AND IMPROVED IN

SUB-MINIATURE INDICATOR ASSEMBLIES

A great aid to your miniaturization program

MOUNT IN 15/32" HOLE ALL LENS COLORS

Easy lamp replacement with any midget flanged base lamp types

> Complete blackout or semi-blackout dimmer types

NON.DIMMING
No. 8.1930-621

THESE ASSEMBLIES LOGICALLY REPLACE LAMPS NO. 319, 320, and 321

1 ma at 60 kv . The overall dimensions of the unit are $22 \frac{1}{2} \mathrm{in}$. x 21 in. $\times 15 \mathrm{in}$.

RECTIFIER

is three-phase type
The Electronic Rectifier Co., Rochester, N. Y., has announced a new, 3-phase, 25 -ampere rectifier, housed in a square cabinet about 22 in . wide and high, and approximately 8 in . deep. On its face are ammeter, voltmeter and switch. Ventilation is through lourres in the top. It is pierced for wall mounting in case shelf or floor mounting is not desired. It can be used to operate d-c motors, magnetic chucks, magnetic separators and the like. It can also be operated as a battery charger.

TRANSMISSION LINE
for uhf performance
Plastoid Corp., 42-61 24th St., Long Island City 1, N. Y., has announced the Synkote Ultratube, a new tubular twin-lead for uhf, so designed that attenuation is negligible under all weather conditions. The new transmission line has the leads spaced several millimeters within the tube, equidistant from the outer insulation. Consequently. the magnetic field between them is unaffected by any moisture or salt that may condense on the outer corering, and signal strength is main-
tained at a maximum all the way down the line. Ultratube is recommended not only for uhf but for peak transmission vhf signals in stormy weather, in fringe areas, and in seacoast areas where moisture and salt spray are factors.

SIGNAL GENERATOR uses no reactance tube

New London Instrument Co., P. O. Box 189, New London, Conn., announces model 100 C f-m signal generator with a single tuning range that covers 25 to 216 mc . The instrument is ideally fitted for testing the bandwidth, alignment and sensitivity of $\mathrm{f}-\mathrm{m}$ receivers. Utilizing a novel, single-stage r-f circuit that contains no reactance tube, the 100 C minimizes drift and reduces distortion, $a-m$ and hum. Since it is designed on fundamentals, spurious outputs which might result from mixing and multiplication are eliminated. Accuracy is below 0.1 $\mu \mathrm{v}$.

MAGNETIZER charges permanent magnets

Leo Klein-Electronics, 2404 S. La Brea Ave., Los Angeles 16, Calif. Model LG16 electronic magnetizer provides an efficient, inexpensive means for charging permanent magnets. Used with simple coils

anóther example of therman pioneering...

The S-12-B RAKSCOPE is a rack mounted, JANized version of the famous WATERMAN S-11-A POCKETSCOPE, with the addition of a triggered sweep and a special calibrating circuit for rapid frequency comparisons. The entire oscilloscope is built to occupy but seven inches when mounted in a standard relay rack. The vertical and horizontal amplifiers are identical, having sensitivities of 0.05 Volt rms/inch and frequency responses which are flat within -2 db from DC to 200 KC . These features permit observation of
low frequency phenomena without undesirable frace bounce. The sweep rate is continuously variable from 5 cycles to 50 KC in either the triggered or repetitive mode with synchronization polarity optional. The return trace is blanked. Because provisions are made for applying input signals from the rear, as well as the front, the $\mathrm{S} \cdot 12-\mathrm{B}$ is the ideal combination, systems monitor and trouble-shooting oscilloscope. Investigate the multiple applications of this instrument as an integral part of your "rack mounted" projects.

WATERMAN PRODUCTS CO., INC.

PHILADELPHIA 25, PA. CABLE ADDRESS POKETSCOPE

Waterman products include
5-4-A SAR PULSESCOPE S-5-A LAB PULSESCOPE S-11-A INDUSTRIAL POCKETSCOPE S-I4-A HIGH GAIN POCKETSCOPE S-14-B WIDE BAND POCKETSCOPE S-15-A TWIN-TUBE POCKETSCOPE

Also RAYONIC(i) Cathode Ray Tubes and Other Associated Equipment

miniature Sip ring and commulutor assenblies

- 6 Insulated

COntact rings

- RING WIDTH .030"
- barrier wioth .ot5"
- RIng diameter .045"
- weight 5.5 grains ($1 / 80$ OUNCE
- RINGS $60-70$ brinell FINE SIIVER - tarnish resistant FRICTION MINIMIZING SURFACE DEPOSITS - 1000 VOLt hi-pot bETWEEN RINGS - color coded leads

PROBLEM: ULTRA MINIATURIZATION - Design

 and mass produce an extremely miniaturized slip ring assembly. Reduce diameter of rings to absolute minimum to lessen torque friction. Maintain microtolerances; eliminate accumulated errors common to "assembled" slip rings,
SOLUTION: electro tec exclusive* method

of unitized, one piece construction provided a prompt, economical solution to this problem. Final design was even smaller than was originally specified and tolerances were held to closer limits.

consisting of a few turns of wire wound to suit the shape of the piece to be magnetized, the LG16 is capable of charging magnets up to 4 cu in. in volume. Magnets contained in p-m motors and phono cartridges, ion traps and meters are easily charged often after assembly in the end product. It operates from standard $110-120 \mathrm{v}, 50-60$ cycle power outlet.

RECORDER
 has I-f characteristics

Magne-Pulse Corp., 140 Nassau St. New York 38, N. Y. "One shot" or irregular frequency phenomena containing components from d-c to 30 -ke can now be recorded and displayed on an oscilloscope through the use of the type 103 magnetic transient recorder. The low frequency characteristics of this recorder, which makes possible the faithful reproduction of square waveforms with duration periods as long as 20,000 usec, is achieved through the use of pulse-time modulation. This unit should find application in recording Geiger pulses, heart beats in hospitals, and in laboratories conducting research on radar, television, atomic phenomena, computers and allied fields.

SUPPRESSOR
for use with d-c relays
Internatlonal Rectifier Corp., 1521 E. Grand Ave., El Segundo, Calif., hat developed a rectifier-
suppressor for use with d-c relays. The type D-2906 is encapsulated within a thermosetting plastic material offering complete protection in adverse environmental conditions such as moisture, fungus, salt spray and corrosive vapors. The unit consists of two elements-one provides half-wave rectification of the a-c input and the other provides a path for the current resulting from the collapse of the magnetic field of the relay coil during the nonconducting half-cycle. This arrangement provides chatter-free operation of the relay. The unit measures $\frac{3}{4} \mathrm{in}$. in diameter and 1 in . long and is provided with three pigtail leads. It is rated 48 v maximum input and 5 ma output in 100 C . It is ideal for operation of $30 \mathrm{v} \mathrm{d-c}$ relays from an a-c supply.

MICROWAVE RELAY is easily installed

Sarkes Tarzian, Inc., 539 S. Walnut St., Bloomington, Ind. Model MT-1A microwave relay is based on experience in relaying tv programs over long distances and studio remotes. Emphasis has been placed on simplicity and reliability of operation. Designed for unattended operation, the equipment has builtin facilities for monitoring programs and checking all circuits. Complexity of the circuits has been reduced so that equipment is easily installed and maintained. The equipment meets all the standards

Permanent Magnets

Magnet Design—Bulletin 151. Written for the design engineer. Covers application, properties, design problems and testing of permanent mag. nets.

Standard Magnets-Catalog SM-1252. Complete data with dimensional drawings of standard magnets offered from stock for working models, small requirements, without special tooling.

Core Materials

Laminations-Bulletin L-752. Data on stamped silicon-iron laminations covering material applications, general specifications, typical value graphs. Also covers T \& S OrthoSil oriented materials.

Wound Cores-Bulletin WC-353. New bulletin describing T\&S Wound "C" and Toroidal Cores. Complete with specifications and value graphs.

> Select the bulletin or catalog you need-write Thomas \& Skinner today.

THOMAS \& SKINNER Steel Products Compony, Inc.

SOLID BRASS ELECTRONIC HARDWARE AND FITTINGS

for

Industrial
and Marine
Applications

Precision machined from solid brass ... plated to your requirements.
Spherical seat (ball and cone type). RF fittings including ferrules, adapters, couplings, nuts; receptacles, etc. Made in accordance with BuShips drawing RE-49A-501A for use with flexible metal hose, conduit, tubing, etc.
Rapid delivery on standard or special sizes. Let's discuss your needs! Write or phone, today.
HARDWARE DIVISION

FACTORY: 2082 Lincoln Ave. Altadena, Calif. Sycamore 8-1185 Offices in WASHINGTON, D. C.

[^15]NEW PRODUCTS
(continued)
of commercial tv program relays. Technical information is available on request.

TRANSFORMERS

for transistor circuits

Gramer Transformer Corp., 2734 N. Pulaski Rd., Chicago 39, Ill. The tiny transformers illustrated are being used mostly in conjunction with transistors by manufacturers of hearing aids, portable f-m transceivers, radios and a wide range of advanced miniature electronic equipment for defense as well as in miniature electronic apparatus for civilian use. Size is $\frac{1}{3} \frac{1}{2} \mathrm{in} . \mathrm{x}_{\frac{8}{8}} \mathrm{in}$.; weight, 0.005 lb ; match impedance, 20,000 to 1,000 ohms ; primary inductance, 5.5 henrys with $0.5 \mathrm{ma} \mathrm{d}-\mathrm{c}$ at $1 \mathrm{v}, 1,000$ cycles. Primary d-c resistance is 1,150 ohms.

ANALYZER

measures resistances
The Kuljian Corp., 1200 N. Broad St., Philadelphia 21, Pa., has produced an electronic resistance analyzer that is particularly adapted to the selection and measurement of resistances used in analog computers. The instrument can be used by resistor manufacturers for selecting resistors to within speci-

. . . instantly ready for setting up single or ganged, linear or non-linear potentiometer assemblies.

Experimental laboratories and design engineers! . .

Servotrol's Pot-kit provides you with a versatile assort ment of "Unitized" Type RVCz potentiometers. mounting plates and clamp rings. With this set of transducers mechanical shatt rotation can be converted to a most

Versatility of the Pot-kit eliminates delays!
Any of the fourteen linear potentionters may be converted to non-linear functions by connecting shunt resistors of proper value across the three cqually spaced taps on the winding. The Pot-kit enables you to translate your ideas to conclusions without delay.

NEW, UNIQUE SERVOCALCULATOR
included in the kit
Calculating values of shunt resistors and effective potentiometer resistance accomplished in o matter of seconds with direct readings from the dise scales Eliminates time-consuming computations.

360° Sine Function
A sine function potentiometer with a complate 360° function angle of rotation is provided to broaden the range of experimentation with the Pot kit.

The extreme versatility of Servatrol's Pot-kit B simplifies breadboarding and speeds decision as to the needed potentiometer or assembly for your prototype systems.

ENGINEERING REPRESENTATIVES
Cleveland, Ohio -- PRospect 1-6171
Chicago, III. - UPtown 8-1141
Rochester, N. Y. - Monroe 3143
Canaon, Conn. - Canaan 649
Baltimore Md - Plaza 7694
Arnprior, Ontario, Can. - Arnprior 400
New York N Y. Can. MUrray Hill 8-5858
Nambridge, Mass. - ELiot 4-1751
Cambridge, Mass. - Eliot 4-1751
Dallas, Texas - Dixon 9918
Immediafe deliveries:
For further details -
Write,

SERVOTROL

COMPANY
114 W. Illinois st., ehicago 10, Illinois

- TEL. Supgelor 7.2087

EASTERN OFFICE: FRAMINGHAM CENTRE, MASS. - iet. tramingham 4azt
fied limits. A precision of balance of 0.02 percent is realized over almost the entire range. The instrument is designed for 115 va a-c operation. Range and accuracy are as follows: 1,000 to 10,000 ohms to 0.5 percent; 10,000 to 11 megohms to 0.15 percent; and 11 megohms to 111 megohms to 1 percent.

FILTERS

for s-s equipment

Burnell \& Co., 45 Warburton Ave., Yonkers, N. Y., announces development of a new series of flters for commercial single-sideband receiving equipment. For most applications these filters can replace the more expensive and hard to get crystal filters. The filters result from a new approach which employs a 25 -kc i-f system.

LINE EQUALIZERS

for community tv
Spencer-Kennedy Laboratories, Inc., 186 Massachusetts Ave., Cambridge 39 , Mass. Like long telephone lines, wideband tv distribution systems in large hotels and apartment houses or cities and towns present an equalization problem because the coax cables have higher attenuation for the higher frequency to channels than for the lower frequency tv channels. As a result, it is necessary to equalize or compensate for this loss when more than a few hundred feet of cable is used. The series 400 line equalizers are designed to provide this equalization. Models 423 and 431 are meant for use in community tv systems. They have standout type N connectors and accurately

Fill in and mail the
coupon for quick information on COLE Meters.

1320 so. grand avenue los angeles 15, calif.

MINIATURE

This mighty mite of a COLE— $13 / 4^{\prime \prime}$ Meter combines maximum accuracy with surprising readability. It is available in all ranges and scales, and in hermetically sealed cases.

OR GIANT!

The big face of this $12^{\prime \prime}$-COLE - Meter shouts its readings from remote positions, even in uncertain light. This giant is particularly suited to many production installations requiring quick and accurate readability.

Between the miniature and the giant, many other -COLE - Meters meet the needs of defense, industry, and science. A quarter of a century of fine custom building has established their ruggedness and quality. -COLEhas combined the finest of materials and workmanship to produce standard meters with accuracies as high as $1 / 2$ per cent.
Best of all, these highest-quality -COLEMeters can be delivered immediately. Special orders take just a little longer.
You may wait longer, but you will not get a better meter than a -COLE-.

Be sure to see our exhibit, Booth 903, at the Western Electronics Show and Convention, Civic Auditorium, San Francisco, August 19-21.
name TITLE

COMPANY
Street address, qr box number
CITY

the most economical way to FOCUS a TV tube

the original Focomag

CUTS RECEIVER COSTS BY ELIMINATING CENTERING AND FOCUSING RHEOSTATS.

 Also lowers cost of power transformer. Perfectly focuses $27^{\prime \prime}, 21^{\prime \prime}$ and all smaller tubes having magnetic deflection. Highly efficient ring magnet uses only 4 oz . Alnico P. M.

NO HARMFUL EXTERNAL FIELD. Ring magnet is completely enclosed by the external shunt (an original Heppner design). This prevents the leakage field from having any magnetic effect on other components. Uniform field produced by ring magnet.

FLEXIBLE NYLON ADJUSTING SHAFT ELIMINATES BREAKAGE
Picture-positioning lever. You apecify mounting arrangenent.

Write today for information an lowering your set costs with this FOCOMAG.

HEPPNER

MANUFACTURING COMPANY
Round Lake, Illinols (50 Miles Northwest of Chicago) Phone: 6-2161
SPECIALISTS IN ELECTRO•MAGNETIC DEVICES

Representatives: John J. Kopple 60 E. 42 nd St, New York 17. N. Y. James C. Mugglaworth James C. Mugglaworth

Ralph Haffey

R. R. 1, U. S. 27. Coldwater Rd., Ft. Wayne 3. Indiana
Ifv. M. Cochrana Co. 408 So. Alvarado St., Los Angeles, Calif.
match 75 ohms at both input and output to prevent any reflections. Model 413 is equipped with miniature connectors for use in large apartment house and hotel systems.

P-M MATERIAL is made of ceramic

Henry L. Crowley \& Co., Inc., West Orange, N. J., is producing Cromag, a new ceramic permanentmagnet material featuring magnetic and physical potentials applicable in numerous fields. Light weight, magnetically-hard Cromag has exceptionally high coercive force and at the same time has a suitable residual induction to cover a wide variety of applications. In h-f applications it shows a very low loss and minimum proximity effect on associated circuitry. Cromag is a powdered material that is fabricated by powder metallurgy methods adaptable to pressing in a wide variety of intricate shapes with no machining necessary. In addition, this material can be supplied in long rods, tubes, square, rectangular or other symmetrical shapes.

SIGNAL GENERATOR for 3,800 to $7,600 \mathrm{mc}$

Hewlett-Packard Co., 395 Page Mill Road, Palo Alto, Calif. Model 618B signal generator, designed for use in the 3,800 to $7,600-\mathrm{mc}$ range, is particularly applicable for the testing of radar and radio relay equipment. The repetition rate is continuously variable from 40 to $4,000 \mathrm{pps}$, and pulse width is variable from 0.5 to $10 \mu \mathrm{sec}$. Sync-out signals are simultaneous with the r-f pulse, or in advance of the r-f pulse by any time span from 3 to
?ou s.sec. The instrument may be synchronized with an external sinewave or with positive or negative pulse signals.

MULTITESTER

has $71 / 2$-in. meter
Electronic Measurements Corp., 280 Lafayette St., New York 19, N. Y. Model 207 tests tubes, batteries, resistance and capacitance. It features a large, easy to read, $7 \frac{1}{2}-\mathrm{in}$. meter for counter use. It is a durable, accurate instrument that gives direct readings for all tubes through the standard emission method of testing. Four-position lever type switches are used.

TINY CONNECTOR

is pressure-tight
Winchester Electronics, Inc., Glenbrook, Conn. The CR5-2-R miniature multicontact pressuretight connector, with leakage of less than 1 cu. in. per hr at 30 psi pressure differential, finds extensive use in airborne electronic equipment. It provides individual neoprene seal rings around each contact and between the molded body and the die cast aluminum housing. Use of individual rings assures positive sealing and allows the contacts to float thereby precluding alignment difficulties. Dimensions are 1 in . maxi-

Economical, dependable system ... Needs only a single telephone circuit!

Substantial reductions in operating costs can be made by taking advantage of the recent authorization by the FCC to permit remote control of AM and FM broadcast transmitters. FCC regulations for this mode of operation stipulate that complete and continuous control of remotely situated transmitters must be maintained at all times. It is desirable, also, to obtain highly dependable equipment having a reasonable first cost and low operating expense. Hammarlund equipment offers distinctive advantages in all these respects.

Included in the Hammarlund remote control and metering system are the following basic features that are vital to efficient and economical remote transmitter operations:

1. Only a single telephone circuit is required. May be operated over VHF or microwave. No DC circuit is used.
2. Full control of up to nine separate circuits.
3. Telemetering of nine separate electrical quantities.
4. Up to four emergency alarm indications.
5. Fail-safe operations assured at all times.

In most cases, this equipment will pay for itself through savings effected in operating costs in less than a year.
Write to The Hammarlund Manufacturing Company for full details about this equipment.

The Hammarlund Manufacturing Co., Inc. 460 W. 34th Street, New York 1, N. Y.

Maintenance and repairs will always be with us. But the time-wasting business of "getting at" a defective part can be

repairs?

 practically eliminated. A component equipped with Grant Industrial Slides can be rolled out of its rack, pivoted and locked at a convenient working angle in about five seconds. Grant Industrial Slides are available in stock and ready for immediate delivery in a great variety of models, or custom designed to your special needs. Write for our Industrial Slide Catalog. Grant Pulley and Hardware Company, 31-73 Whitestone Parkway, Flushing, New York.
Grant Industrial Slides

1. Eontinuous ball bearing action permits non-jar chassis removal. I Lockis when fully extend ed, unlocks to return.

 from quadrant mechan. Ism, enables unit to be tlited by simply raising.

2. Unit locks at 45 or 90 degrees. Speclal pivoted positions can be obtalned for individual requirements.

3. Maintenance, repairs easily made. Access is galned In a few seconds. Special slides glve plus or minus 90° tlit.

mum diameter and $127 / 32$ in. engaged length with a total weight of receptacle and plug of 2 oz .

VARISTORS

available in 5 ceil sizes
[nternational Resistance Co., 401 N. Broad St., Philadelphia 8, Pa., has introduced a new line of Varistors (nonlinear resistors). The units have many applications in circuits where sharp variation of resistance with applied voltage is required, and are available in 5 convenient cell sizes (two of which are illustrated) in a wide variety of enclosures. Designed to conform with MIL and JAN specifications on humidity, shock, vibration, temperature cycling, solder pot and fungus resistance, they have unusually low shunt capacitance and can be used effectively in r-f circuits. The response is instantaneous. Ask for catalog data bulletin SR-3.

COUNTER for lab and industry

Hewlett-Packard Co., 395 Page Mill Road, Palo Alto, Calif. Model 522 B electronic counter is a compact, low-cost, versatile instrument offering accurate frequency, period and time measurements, designed specifically for laboratory and industrial applications in the measurement of these quantities. Results
are displayed instantly, automatically and in direct-reading form. It can be readily used by unskilled personnel. The unit will measure frequencies from 0.00001 cps to 100 kc with excellent accuracy. It is arranged to measure time intervals from $10 \mu \mathrm{sec}$ to 100,000 seconds (27.8 hrs). Accuracy is ± 1 count \pm stability (at least 5 parts per million per week.)

PULSE GENERATOR
 is a wide range unit

Teletronics Laboratory Inc., 54 Kinkel St., Westbury, Long Island, N. Y. Model PG-200A pulse generator with two PGA-210 range extenders produces calibrated pulse widths from 0.1 to $1,000 \mu \mathrm{sec}$, calibrated rep rates from 0 to 17,500 pps , calibrated delays with respect to output trigger of ± 0 to 1,000 μ sec and pulse rise and fall times of $0.03 \mu \mathrm{sec}$. It can be driven with a simple sine wave down to 20 cps .

RECEPTACLES

for printed circuits
Winchester Electronics, Inc., Glenbrook, Conn., has available a line of printed-circuit receptacles, designated as series K, in sizes ranging from 2 to 22 contact positions. They permit easy removal and replacement of printed circuit cards for maintenance purposes, facilitate external wire soldering operations and provide proper identification of individual circuits. A polarizing pin allows engagement in the correct position only while the wiping action of the contacts insures positive contact at all times. Monobloc construction eliminates unnecessary creepage paths and re-

Prefarmed Contact Finger Stock is an ideal electrical weather stripping around doors of equipment cabinets as well as being excellent for use with VHF and UHF circuitry. Silver plated, it comes in three widths - $\frac{1}{3}$, $\frac{21}{3}$ and $1 \frac{9}{1 / f i}$ iaches.
Variable vacuum capacitors come in three models, are lightweight, compact, eliminate the effects of dust and atmospheric conditions and have low inductance. Also available are eight types of fixed vacuum capacitors.
Air-system sockets, designed for Eimac tube types $\subseteq-400 \mathrm{~A}$, $4-1000 \mathrm{~A}, 4 \mathrm{X} 150 \mathrm{~A}$, and 4 X 150 D , simplify cooling and assure adequate air-flow to various seals. The $4-400 \mathrm{~A}$ socket can also be used with the 4 -125A and 4 -250A
radial-beam power tetrodes if desired.

HR heat dissipating connectors

 provide efficient heat transfer from the tube element and glass seal to the air while making electrical connections to plate and grid terminals. Precision machined from dural rod, HR connectors come in ten sizes to fit most of Eimac's internal anode tubes.High Vacuum Rectifiers come ir eight models, are instant heating, have radiation-cooled pyrovac* plates and can be operated in a variety of rectifying and voltage multiplying circuirs. Also available are four types of mercuryvapor rectifiers.

- For further infermation write our Anplication Emgineering department

EITEL-MCCULLOUCH, INC.

SAN B R U N O C ALIFO R NIA
Export Agenis: Frazor \& Hansen, 301 Qay 5t.; San Francisco, Calitormia

MAXIMUM RELIABILITY

is achieved in Texas Instruments transistors by means of a hermetically sealed enclosure incorporating glass-to-metal seals. Moisture or other contamination due to ambient conditions cammot affect the operating characteristics.
NEW Tl N-P-N grownjunction transistors meeting the latest basing standard are now availahle for amplifier and oscillator appliations. Careful control of all manufacturing process sassures uniform electrical characteristics.

junction

 transistors hermetically salaled

IIIhermetically sealed point-contact transistors are also available in limited quantities. For complete information on both point-contact and junction transistors, write today.

TEXASINSTRUMENTS 1 N CO R P O NA T E D 6000 LEMMON AVE. DALLAS 9, TEXAS

[^16] 316
duces the number of moisture and dust pockets. Molded melamine bodies (in accordance with MIL-P-14b)-mineral filled-are fungusproof and provide high dielectric and mechanical strength.

TEST ADAPTERS

available in three types
CBS-Hytron, A Division of Columbia Broadcasting System, Inc., Danvers, Mass., is offering, in addition to its 7 -pin test adapter, a 9 -pin miniature test adapter and an 8-pin octal test adapter. Now servicemen can test all sockets topside without wrestling with a heavy chassis. There is no need to disturb wiring or parts-just plug tubes into test adapters and adapters into sockets.

C-R TUBE
 meets tough tolerances

Electronic Tube Corp., 1200 E. Mermaid Lane, Philadelphia 18, Pa., has announced a c-r tube that displays up to five independent phenomena simultaneously. The type 7 X , built to tighter RTMA specifications, is designed for multichannel oscilloscopes where a number of transient, random or h-f signals must be observed simultane-

Want PRECISION SHEARING at HIGH SPEED?

LIKE MORE INFORMATION?

Send for 32-page catalos

Gives full details on both hand and power onerated Di-Acro Shears, Benders, Brakes, Notchers, Punch Presses, Rod Parters and Rollers. Mail your request today.

O'NEIL-IRWIN MFG. CO
321 8th AVE
LAKE CITY, MINN.
Want more information? Use post card on last page.

ously and with great accuracy. The tube uses electrostatic focusing and deflection for each of its five electron guns. Crosstalk is eliminated by adequate shielding of individual guns. The 7 X employs a post accelerator intensifying electrode and has connections to the deflector plates brought out to a basing ring in the tube neck to minimize interelectrode capacitance.

VHF RECEIVER
 requires little space

Scifuttig and Co., Inc., Ninth and Kearney Sts., N. E., Washington 17, D. C., has announced a new vhf communications receiver developed for airports, communication centers and other installations. Known as the S 220 A , it requires 40 percent less rack space than ordinary vhf receivers. Bandwidth at the 6 db point is $\pm 20 \mathrm{kc}$; at the 60 db point it is $\pm 100 \mathrm{kc}$. A $1-\mu \mathrm{v}$ signal modulated 30 percent provides 1 watt audio output at 10 db or better sig-nal-to-noise ratio. Its avc action keeps the output constant within 1 db at all input levels between 5 and $200,000 \mu \mathrm{v}$.

PULSE TRANSFORMER for blocking oscillators

Raytheon Mfg. Co., Waltham 54, Mass, has announced a new line of miniaturized pulse transformers for blocking oscillator applications. These new pulse transformers, suitable for use in commercial as well as in government equipments, are available in three different styles. One style has a plug-in octal base construction; the second, a hermetically sealed MIL-T-27 construction; and the third, an encapsulaterd version with a built-in solder seal for chassis mounting. Designed

Plug Code No.	Receptacle Code No.	Small Contacts				Weight-02.		D. C. Volls Breakdown Between Contacts	
		Number	Solfer Cup	AND ELECLarge Contacts					
		$\begin{gathered} \text { of } \\ \text { Contasts } \end{gathered}$	Dis. In.	$\begin{gathered} \text { of } \\ \text { Contacts } \end{gathered}$	Dio. In.	Plug	Res.	Sea Level Normal Humidity	$\begin{aligned} & 60,000 \text { Feet } \\ & \text { Alritude } \end{aligned}$
FSP-Gi	F55-6	-	\cdots	5	. 081	. 5	. 6	4500	1100
F2P-85-6	F25-8P-6	2	. 043	6	. 081	. 8	. 7	4500	1100
F9P-95-6	F95-9P-6.	9	,043	9.	. 081	1.0	. 9	4500	1100

IF GUIDE PINS ARE NOT DESIRED, OMIT "G" FROM CODE NOS.

MONOBLOC* CONSTRUCTION eliminates unnecessary creepage paths, motsture and dust porkets and provides stronger molded parts.

MOLDED MELAMINE BODIES (in accordance with MIL.P.14) mineral filled - are fungus-proof and pravide
mechanical strength as well as high ary and dtelectric reststance.
PRECISION MACHINED CONTACTS: Pins from brass bar ($Q Q-B 611$) and sockets from spring temper phos. phor bar ($Q Q-B 746 \mathrm{a})$. They ore gotd plated over silver for consistent low
contact resistance, reduction of corrosion and ease of soldering.
POLARIZATION: Guide pins and gulde sockets assure postifive engagement.
RACK AND PANEL MOUNTING:
Either plug or receptacle may be mounted on a panel or chassls.

Wire or write for catalog of other types or advise your special requirements
Winchester Products and Winchester Designs are Available Only From Winchester Electronics, Inc.

West Coast Branch: 1729 Wilshire Blvd.,
Santa Monica, California

ALL-WEATHER COMMUNICATION DEMANDS

that's why the apelco, Radiotelephone uses

buld Moun
 the thoulde Truphest Tromed pmores

Applied Electronics Company, Inc., of San Francisco, builds the apelco 260S Radiotelephone for point-to-point communication in oil exploration.
This dependable equipment is the last word in rugged construction, designed to operate without failure in climatic extremes ranging from $35^{\circ} \mathrm{F}$. below zero to the high temperatures and heavy humidity of tropical climates. For intermittent duty, the equipment must operate effectively from 80 volts to 140 volts input at $50-70$ cycles.

Because the rugged performance of Apelco Radiotelephone equipment is strongly dependent upon the quality of the components used, Applied Electronics specifies and uses chicago Sealed-in-Steel Transformers throughout.
Wherever optimum dependability and rugged performance are requirements, you'll find chicago - the world's toughest transformers.

You'll want the full details on CHICAGO'S New Equipment Line, cover ing the complete range of "Sealed-in-Stee:" transformers for every modern circuit requirement. Write for your Free copy of Catalog

Export Sales Div. Scheel International, Inc 4237 N. Lincoln Ave. Chicago, III., US.A. CABLE ADDRESS HARSHEEL
with a choice of several different wiring connections, these standard models will satisfy the large majority of applications of blocking oscillator circuits.

SIGNAL GENERATOR

 for uhf and vhfRadio City Products Co., Inc., 152 W. 25th St., New York, N. Y., has developed the advanced design uhfwhf Do-All tv signal generator. Covering all the uhf and vhf channels for every tv and f-m receiver, the model 750 contains test facilities for use as a pattern generator, marker generator and a signal generator. The instrument features an inductuner that insures accuracy within 0.5 percent over the entire range of 9 mc to 900 mc . It is designed for either portable or bench use.

FILTERS

eliminate distortion
Ortho Filter Corp., 196 Albion Ave., Paterson, N. J., announces a new series of type DE filters for eliminating distortion from signal sources. They will eliminate harmonic frequencies from the second to the eighth by a minimum of 60 db , and are so designed that a drift of ± 3 percent in frequency of the signal source will not affect the filtering action. These units are available in a variety of impedances and can be made for any frequency from 20 cps to 20 kc . The filters can be made for use in balanced or unbalanced circuits and find wide application in production test setups making low distortion measure-
ments with any available signal generator.

RECTIFIERS for radio and tv use

International Rectifier Corp., 1521 E. Grand Ave., El Segundo, Calif., has developed a complete line of selenium rectifiers for use in radio, television, tv boosters and uhf converters. The units are rated for 130 v rms maximum input for load currents of $20,30,40,50,65$, $75,100,150,200,250,300,350$, 450 and $1,000 \mathrm{ma}$. The rectifier illustrated is a type RS75E. It is rated as follows: maximum input, 130 v rms ; maximum peak inverse, 380 v ; maximum output current, 75 ma. A series resistor of at least 22 ohms is recommended as a current limiter when used with a capacitive filter. Overall dimensions are 1 in . wide x 1 lin. in. high x 3 in. deep. It is provided with a clearance hole for a number 8 machine screw for mounting.

RESISTOR

of the axial-lead type

Shallcross Mfg. Co., Collingdale, Pa., has developed a new axial-lead precision wirewound resistor for subminiature electric and electronic equipment. Type 18 resistor is rated at 0.25 w , yet it measures only 3 in. long by ${ }^{9} \mathrm{in}$. in diameter. Featuring a noninductive winding and a standard tolerance of 1 percent, the tiny resistor is available in resistance values up to 400,000 ohms. The resistor's tinned axial

Air National Guard units throughout the country now have the same time-saving jet-transition training as all of our flying services-made possible by the new Link C-llB Trailerized Electronic Jet Trainer.

In the same manner as stationary units installed at U. S. Air Force and U. S. Navy bases throughout the world, the new trailerized unit simulates every power and aerodynamic factor that influences take-off, flight and landing.
Link Electronic Jet Trainers operate with dependable certainty. They duplicate exactly the take-off, landing and "in air" conditions of today's most advanced aircraft-speed, direction, rate of climb, effect of fuel consumption on trim, flight position, deviation and a host of others. the corneecting L_- link hotween

IINK invites employment applications from engineers and draftemen.

WHITNEY BLAKE

Whitney Blake Company is equipped to mold rubber and plastic fittings onto flexible cord, shielded communications wires and multiple conductor cables - in addition to making the cordage itself.
Whitney Blake has wide experience in designing and manufacturing shielded multiple conductor cables and assembling intricate connectors for electronic applications. Skilled workers, modern equipment, efficient production methods and careful quality control assure dependable, first quality cord sets.

Where standard molds are unsuitable, Whitney Blake will design and make special plugs, connectors, strain reliefs and junction box blocks that provide the water-and impact-resistance, small size, light weight and protection from tampering required for many new applications.
For help with your special cord set problems, contact us for the address of your nearest Whitney Blake representative. He will be glad to work with you. If your product is in the design stage, information on its intended use may enable him to suggest a cord set construction using conventional parts at savings to you.

WELL BUILT WIRES SINCE 1899

NEW HAVEN 14, CONNECTICUT.
wire leads are firmly anchored to the steatite bobbin. When processed with the company's BX impregnation, the resistor will give reliable operation under prolonged exposure to high humidity. For less severe atmospheres, the resistor is available with lacquer coating.

C-R OSCILLOGRAPH offers h-f analysis

Allen B. Dumont Laboratories, Inc., 760 Bloomfield Ave., Clifton, N. J. Type 303AH c-r oscillograph operates at $10-\mathrm{kv}$ accelerating potential, exhibits a maximum sweep speed of 6 in . per usec, a deflection factor of 0.16 v per in. with $0.033-$ u.sec rise time. In addition to excellent sync performance on rectangular waves, it syncs well on sine waves from 20 cps to more than 15 mc. These figures include the selfcontained delay line.

SPEAKER CROSSOVER

is resistive-capacitive

Hermon Hosmer Scott, Inc., 385 Putnam Ave., Cambridge 39, Mass. With the 214-X8 variable speaker crossover, speaker woofers and tweeters can operate under the best condtions of speaker damping relative output balance, and without the undesirable effects of L-C crossover networks. Since the unit is entirely resistive-capacitive, all effects of resonant underdamping are eliminated, thereby avoiding effects of L-C filters which are critical with respect to terminated impedances. Two controls are provided. One provides continuous adjustment of crossover frequency from 175 to 3,000 cycles, and the other allows continuous ad-
fustment of acoustical batance between woofer and tweeter to compensate for different speaker efficiencies.

VARNISH

is heat-resistant type

Irvington Varnish and insulator Co., Irvington, N. J. A new insulating varnish, known as Irvington No. 180, has undergone extensive laboratory and preliminary field tests which indicate no adverse effects on numerous electrical applications when operated at elevated temperatures as high as 356F (180 C). It has a clear color, excellent oil and moisture resistance, with a dry dielectric strength of $2,100 \mathrm{v}$ per mil. Complete information on its properties is found in a recently issued technical data sheet.

OSCILLOGRAPH

is compact and portable
Brush Electronics Co., 3405 Perkins Ave., Cleveland 14, Ohio, has announced a new portable 6-channel oscillograph, designed for use where the need for a lightweight, compact and portable instrument is important. Model BL-225 oscillograph is equipped with 6 model BL-902A Penmotors that permit the simultaneous recording of 6 chamnels of instantaneous electric phenomena, or mechanical phenomena that can be converted to electrical phenomena, in the frequency range of $d-c$ to 100 cps. A large window in the top of the instrument permits viewing the chart as information is being recorded. Controls

Like pieces in a jig-saw puzzle, all components in a Transicoil servo system are designed to fit each other . . . coordinating to form the complete picture. Systems made by piecing together unmatched components usually spoil the picture by limiting the final efficiency of the entire system.

But if building your own system seems desirable, you'll find that individual Transicoil components offer the best performance in the job each is required to do. Built to your exact specifications, ready for immediate application, their ability to fit into the picture of your system is limited only by the restrictions you place upon them.

Details covering Transicoil Servo Systems, or components are available upon request to ...

For RF interference suppression

$P \mathbb{R} O \mathrm{~V} \mathbb{N}$. . . the best shielding

 available over the major portion of the Spectrum in use today. . .Attenuation characteristics approaching the ultimate, jig-precision sectional construction, and superior set-up flexibility have won top rating for MULTI-CELL® Shielding rooms with military, industrial and scientific organizations. Their better performance, under the most difficult of field conditions, has been thoroughly proved and fully recorded for the information of engineers with shielding problems. Consultation available anywhere - without obligation.
---JAN-1 225. 16 E4 (Ships), MIL-1-16910,* MIL-S-4957-- ; Specifications fully met, in addition to all others for electrical and electronic equipment performance in research, development and production. Attenuation Min. 100 db from .15 to $10,000 \mathrm{MC}$. Room sizes and types as required.

* Standard, approved Military specifications for shielding rooms

Greatly increased manufacturing facilities and
CATALOG personnel now enables us to give PROMPT ON REQUEST SERVICE and FAST DELIVERY anywhere.
CHICAGO, ILL., OFFICE: 5306 W. Lawrence Ave.
LOS ANGELES, CAL., OFFICE: 2924 Selby Ave. Phone: Vermont 9-6388
"The Tolont to Crootio The Still to Produce ${ }^{\text {id }}$
provide starting, stopping and selec tion of chart speeds of 5.25 and 12 J mm per sec.

BREAKDOWN TESTER

for high-voltage use

Industrial Instruments, Inc., 89 Commerce Road, Cedar Grove, N. J., announces model P-7-20 high-voltage breakdown tester. It supplies a-c and d-c continuously variable between 0 and $20,000 \mathrm{v}$ at low current drain. Maximum currents available are approximately 15 ma d-c or 20 ma a-c. Short circuit current is limited in value by the internal resistance of the test set and no damage will occur if the short circuit current is maintained for long periods of time. Cutoff control is provided so that power is turned off when load current exceeds any preset value from 5 to 20 ma. Load current, a-c or d-c, i read directly on the milliammeter: The d-c voltage and peak a-c voltag are read directly on the voltmeter.

TINY BALL BEARING

 is oil-sealedLandis \& Gyr, $45 \mathrm{~W}, 45$ th St., New York 36, N. Y. Measuring 0.1969 in. O.D., with a bore of 0.0591 in., this miniature sealed ball bearing is a Conrad type with deep-groove inner and outer raceways and a ball retainer: Outstanding feature is a capillary film of lubricating oil that forms between the tapered outer surface of the inner race and the edge of a precision closure. This film of oil effectively seals the bearing against dirt and moisture and prevents loss of the lubricant, without any significant increase in fric-

DIMENSIONS
$1^{\prime \prime} \times 1^{\prime \prime} \times 13 / 4^{\prime \prime}$

(mant

the ned series 100 relay (Hermetically Sealed)
O_{ne} of the greatest challenges in the field of elec. tronics is the designing of components small enough and rugged enough for today's and tomorrow's "miracle" machines and equipment.

The engineers of the Signal Engineering \& Mfg. Co., always alert to this challenge, now offer the new Series 100 Miniature Relay which is among the smallest and most sensitive of the double-pole type. It maintains high precision under varying conditions and is ideally suited to such equipment as military guided missile controls which must withstand extremes of shock, vibration, and temperature.

Write now for Bulletin SR-6

Engineering Representatives in Principal Cities.

BRTRTBAOT Electrande WIRE \& CABLE

For ALL Your Wiring Needs! GOVT. SPEC. HOOKUP WIRE

- JAM-C. 76 SBIR-SRHV PLASTIC
intral Marklage
- JACKET

Solld 4 viufs or siptral Markioges

- AlRCRATt WIre-nylom JACKET MIL-W-5086 (Supersedes AN-J-C-48at also
MIL-C-7078 and
MLL-C-7078 (with shiela).
- 105° C. U.L. APPROVED Thermoplastle Hookup Wire
- JAN-C. 76 WL.GLASS BRAIO Holla or Trarer Colors
- MULTICONDUCTOR. SHIELD. ED CABLES 1 to 8 cond., Rabler covered, shielded \&
unsulelded.

COMPLETE WAREHOUSE STOCKS

To Readers Outside North America

The Field Maintenance Department of Tektronix, Inc. has replacement parts available for immediate shipment to users throughout the world. On replacement parts shipments, Tektronix assumes the cost of surface transportation anywhere, and the cost of emergency air shipments in North America. Although it is economically unsound to assume overseas AIR transportation costs, in the case of urgency Tektronix will dissume half these costs. As a convenience we will prepay overseas air shipments and invoice the customer for his half of th cost. This service applies to "in-warranty" and "out-of-warranty" replacements, and is possible because the Tektronix Field Maintenance Department is operated as a non-profit customer service.
is is is

Laborafory Oscilloscope

The Tektronix Type 514A-D Cathode-Ray Oscilloscope has the versatility necessary for general purpose laboratory use. Its direct-coupled 10 me vertical amplifier provides excellent transient response. Six centimeters of undistorted vertical deflection can be displayed on the new precision flat-faced 5" cathode-ray tube. A new $5 x$ sweep magnifier adds to the utility of the wide, continuously variable time base range. Direct-coupled unblanking assures a steady intensity level with sweep speed or duty cycle changes. The amplitude and duty cycle of the new square-wave voltage calibrator are both continuously variable.

Condensed Specifications

Vertical Amplifier
 Time Base Ronge

Risetime- $0.04 \mu \mathrm{sec}$
Bandwidth-dc to 10 mc
ac - 2 cycles to 10 mc
Sensifivity
$0.1 \mu \mathrm{sec} / \mathrm{cm}$ to dc- $-0.3 \mathrm{v} / \mathrm{cm}$ to $100 \mathrm{v} / \mathrm{cm}$ Calibrafor
0 to 50 y square wave, accurate within 3%, duty cycle variable 2% to 98%
$0.01 \mathrm{sec} / \mathrm{cm}$, continuously variable, accurate within 5%
Single, triggered, or recurrent sweeps recurrent sweeps
$5 x$ sweep magnifier $3 \times$ sweep magnifier electronically regulated Supply Voltage - 105 to 125 v or 210 to 250 v . 50 to 60 cycles.
Type 514A-D \$950 f.o.b. Portland, Oregon
Tektronix, Inc.
P.O. Box 831 A, Portland 7, Oregon Cable: TEKTRONIX

Carol antenna cable is ideal for connections to TV and FM receiving antennas and motorized antenna rotators. Insulation is Carol Polyethylene-a low-loss, high strength dielectric that stays flexible and strong over a wide temperature range, and resists moisture, oxidation and corona.

Consistently high quality in the cable you receive is guaranteed by precision extrusion - accurate temperature control... and strict production control methods including constant inspection and micrometer gauging.

Supplied in twin-conductor types, No. 18, 20 or 22 AWG; and 3,4 or 5 -conductor, No. 20 AWG; with clear, amber, or brown polyethylene.

Write or call Carol today for full details on our complete line of cables for electronic applications.

Want more information? Use post card on last page.
tional torgue. The bearings are recommended for indicating and recording meters, precision instruments, computers and any small mechanism where low torgue and long life with a minimum of attention are desired.

Literature

Toroidal Inductors. Torocoil Co., 1374 Mobile Court, St. Louis 10, Mo., has released a two-page folder describing numerous features of its standard line of toroidally wound powdered molybdenum permalloy inductors. Frequency characteristics, temperature effect, quality factor, size and price of the individual units are covered.

Single-Sideband Filters. Burnell \& Co., 45 Warburton Ave., Yonkers, N. Y., announces a two-page flyer describing a new series of singlesideband filters and including frequency response curves. They also announce that there will soon be available an entirely new and complete catalog of toroidal coils, filters and audio networks.

Compound Diffraction Projector. Electro-Voice, Inc., Buchanan, Mich., has published bulletin No. 197 giving full details of the CDP compound diffraction projector, a new p-a loudspeaker system designed to provide improved voice penetration and full range musicasting. The bulletin explains the performance and operating features of this compact, rugged new type coaxial sound projector, illustrates and describes the audio diffraction principle, compares polar pattern and response curve with existing reentrant type horns, gives coverage and efficiency information and mounting instructions. It also lists and describes the accessories available for the CDP.

Quality Report. Hunter Spring Co., Lansdale, Pa. A new 12-page booklet discusses the quality report, its interpretation and value to users of springs and other manufactured products. Written in a clear, brief

Gives a Quick, Accurate Check of VHF Airborne Navigation Equipment

TYPE H-14
108-132 Megacycles

- Favorite, dependable instrument for quick, accurate check of VHF airborne omnirange and localizer receivers in aircraft or on the bench. It checks up to 24 omni courses, omni course sensitivity, to-from and flag-alarm operation, left-center - right on $90 / 150$ cycle localizers. Widely used for all quantitative bench tests. For ramp check, RF output 1 volt into 52 ohm line; for bench checks, $0 \cdot 10,000$ microvolts. AF output available for bench maintenance and trouble shooting.
Price $\$ 942.00$ net, f.o.b. Boonton, N. J.
Ask for literature on new A.R.C. Type H-16 Standard Course Checker - a simple, precise instrument for checking the phase-accuracy of the modulation on VOR (omnirange) signal generators. For laboratory or
 field use.

Price $\$ 398.00$ f.o.b. Boonton, N.J.

Aircraft Radio Corporation
 EOONTON NEW JGRSEY

Want more information? Use post card on last page. August, 1953 - ELECTRONICS

ELIMINATE SHDCK PROBLEMS SPECIFY
Staudard Pieza
CRYSTALS

Standard Piezo Crystals are rugged . . . built to deliver dependable per. formance under extremely adverse conditions. Send for our completely illustrated catalog, or outline your own particular crystal problem. Our engineering department will be glad to assist you.

Standard Pieza COMPANY CARLISLE, PENNA.

SQUARE PULSE GENERATORS
 for the MILLIMICROSECOND TO MICROSECOND RANGE
 Model 100

 Model 200

For nuclear pulse work, radar, TV, wide band amplifiers and in the design, calibration, and servicing of fast electronic systems.
NOW-New Square Pulse Generators with a rise time of one millimicrasecond (10^{-9} seconds) and a pulse width which can be varied from one millimicrosecond to several microseconds is commercially available. Positive and negative pulses of 100 volts maximum amplitude are generated; the pulse amplitude can be varied from 100 volts to 0.006 volts in 1 db steps. The output impedance is matched to the common impedance coaxial cables in use.

> MODEL 100-Single pulse output
> MODEL 200 -Double pulse output-
> (each pulse may be individually attenuated and delayed)
> MODEL 300 -Three or more pulse outputs

ELECTRICAL AND PHYSICAL INSTRUMENT CORPORATION DESIGN, DEVELOPMENT AND MANUFACTURE electronic and electrical devices

Sales and Business Office 25 West 43rd Street New York 36, N. Y.
Telephone: Longacre 4-2265
Engineering Division 42-19 27th Street
Long Island City 1, N. Y.
Telephone: Stillwell 4-6389

REON

PRECISION wire wound RESISTORS

... surpass MIL-R-93A specs!

from every angle... the TOUGHEST CONDITIONS require REON RESISTORS

Production line ruggedness

 with hair-line accuracy!You can be sure once it's mounted it stands up for good!

One of the largest sample departments in the country! Prompt delivery of samples to your needs in approx. two weeks. Production quantities in four weeks.

High standards of quality!

 Whether for Commercial or for Government equipment, Reon Resistors are manyfactured to the same rigid
specifications.

RB15, RB16, RB17, RB18, RB19 Wattage Ratings:
MIL : $1 / 4$ to 1 watt COM: $1 / 4$ to 2 watts
WRITE. for compiete specifications on the Reon Resistor MIL-R-93A series and for information on other standard commercial and specict types. Request our application sheet
\qquad esisto sistors
REON PRECISION WIRE WOUND RE
are dependable Under

NEW PRODUCTS
(continued)
style for engineers and purchasing agents as well as for inspectors, the handy $5 \frac{1}{3} \times 7 \frac{1}{4} \mathrm{in}$. booklet is divided into 8 sections covering such subjects as "Types of Inspection" and "How to Use a Quality Report." A quality report is a frequency distribution of the critical characteristics of a product, prepared during final inspection by the manufacturer and delivered to the user with each shipment as graphic verification of conformance to specifications. The booklet describes the preparation of a frequency distribution in variables inspection by either the user or manufacturer. A section called "Interpreting the Quality Report" gives 15 typical frequency distributions and states for each what product condition it represents and what action is indicated.

Meters and Controls. Bailey Meter Co., 1050 Invanhoe Road, Cleveland 10 , Ohio. Bulletin 18 is a comprehensive catalog offering information on the company's complete line of meters, control equipment and engineering services. It is written for engineers in power plants, public utilities and process plants. Fifteen measured variables common to power and process operations form the index for selecting appropriate metering and control equipment. Basic specifications, illustrations and detailed literature references are included.

Regulated Power Supplies. Perkin Engineering Corp., 345 Kansas St., El Segundo, Calif. Bulletin L453 is an 8 -page publication covering a line of magnetic amplifier regulated power supplies for laboratory testing applications. The bulletin describes high-voltage and lowvoltage power supplies with regulations down to 0.15 percent.

Sound Equipment. Shields Laboratories, Inc., 810 N . Lincoln Ave., Pittsburgh 12, Pa., has available two catalog sheets on its audio equipment. One describes and illustrates the model PE-1 preampli-fier-equalizer that fulfills necessary functions in the reproduction of recorded music from modern magnetic pickups. The other lists the outstanding features of the model

U. G. CONNECTORS Our Coaxial Cable Connectors Meet All Government Specifications
 \star ALL ORDERS DELIVERED PROMPTIY \star Manufacturers of Highest Quality Connectors ALLIED INDUSTRIES, INC. 1023 S. 21st STREET LOUISVILLE 10, KY.

Phone Arlington 4640

GOMPACT
DEPENDABLE
efficient Poweor

THE NEW

DC-AC CONVERTER

These latest of all Carter DC to AC Converters are specially engineered for professional and commercial applications requiring a high capacity source of 60 cycle AC from a DC power supply. Operates from storage batteries, or from DC line voltage. Three "Custom" models, delivering 300 , 400 , or 500 watts 115 or 220 V . AC. Wide range of input voltage, 12, 24, 32, 64, 110 or 230 V . DC. Unequalled capacity for operating professional recording, sound movie equipment and large screen TV receivers. Available with or without manual frequency control feature.

MAIL COUPON FOR CATALOG
Carter Rotary Power Supplies are made in a wide variety of types and capacities for communications, laboratory and industrial applications. Used in aircraft, marine, and mobile radio, geophysical instruments, ignition, timing, etc. MAIL COUPON NOW for complete Dynamotor and Converter Catalogs, with specifications and performance charts on the complete line. (

2646 N. Maplewood Ave.
Carter Motor Co.
2646 N. Maplewood Ave., Chicago 47
Please send new catalogs containing complete information on Carter "Custom" Converters and other Rotary Power Supplies.

Name

Address
City

BOWSER ENGINEERED . . . YOU SEE

NESA GLASS

Nesa Coated Glass used in Bowser Low Temperature Chambers has an electrically conductive surface that can be heated . . . preventing icing, frosting or fogging of observation windows.

RVC-10 remote volume control that is designed to provide the user with a convenient means of varying the volume of any high-fidelity music system, radio or ts receiver from a remote point. The RVC-10 described provides over 30 db of continuous, smooth volume variation.

Components Catalog. P. R. Mallory \& Co. Inc., 3029 E. Washington St., Indianapolis 6, Ind., has available the 1953 catalog (No. 553) of precision electronic components. The catalog lists and describes more than 2,200 items, mostly replacement components, that are handled through the company's distributor system. The catalog also includes list prices for items listed. Components shown represent 7 of the company's 10 manufacturing divisions: Battery, Capacitor, Rectifier, Resister, Switch, Tuner and Vibrator.

Microwave Radio for Pipelines. Westinghouse Electric Corp., Box 2099, Pittsburgh 30, Pa. Application of the new $2,000-\mathrm{mc}$ microwave radio equipment to the pipeline industry is described in booklet B-5851. Features of the type FR microwave radio and type F.J multiplexing equipment and their importance to the pipeline industry are discussed. Points covered include frequency division multiplexing, crystal frequency control, standby equipment, maintenance features and many others.

Electronic Computer. Ferranti Ltd., Moston, Manchester 10, Lancashire. England, has published a well-illustrated booklet dealing with the Manchester universal electronic computer. Included are historical information, a complete description of the application of computers, technical data on this particular type and a brief survey of the company's products. One page of the booklet is devoted to an invitation for inquiries.

Tubular Paper Capacitors. Pyramid Electric Co., 1445 Hudson Blyd., North Bergen, N. J. Catalog PG-3 contains complete engineering data, performance curves. construction styles. sizes, capacitance and voltage listings for a line of

FORD INSTRUMENT COMPONENTS

Ford Instrument Company makes the finest precision instruments and mechanisms for industry and the armed forces.

FORD MECHANICAL DIFFERENTIALS with single spider gear-available in 3/16." $1 / 4^{\prime \prime}$ and $5 / 16^{\prime \prime}$ shaft diameters -high accuracy, low friction.

FORD IELESYN UNITS are available in wide selection of sizes-proved precision accuracy, corrosion and fungus resistance mean better synchros when you specify Telesyn.

FORD SERVO MOTORS (60 and 400 cucles) for extremely low inertia and high frequency response. $1 / 5 ; 1 / 2 ; 11 / 2$; 212: 5; 10-watt models in both low and high voltage. including magnetic amplifier controlled types.

FORD ELECTRICAL RESOLVERS available in sizes 23 and 31 -interchangeability, temperature compensation $-60^{\circ} \mathrm{F}$ to $+160^{\circ} \mathrm{F}$, highest accuracs. adaprability, 400 cycle frequency.
Ford Instrument also makes magnetic amplifier systems, computers, converters, mechanical integrators and other instruments and equipment. Write for more details.

FORD INSTRUMENT COMPANY
Division of The Sperry Corporation 31.10 Thomson Ave., Long Island City 1, N. Y.

A rugged Jack Cover that provides a moisture-proof seal over the opening of a Phone Jack. This Jack Cover is a special lock-nut with hinged coverspecial molded rubber washer inside cover provides a close fit to the special nut.

Switchcraft produces a complete line of Jacks to meet JAN specifications, consisting of such types as JJ-026, JJ-033, JJ-034, JJ-082, JJ-089, etc. Full information will be found in our catalog. Send for catalog S-52.

1336 N. Halsted St., Chicago 22, III. Conadion Representative:
Atlas Radio Corp. Ltd, 560 King St. W.
Toronto 2B, Conada. Phone: Waverly 4761

VISIT OUR BOOTH
No. 919
WESTERN ELECTRONIC SHOW and CONVENTION SAN FRANCISCO AUGUST 19-21

- Reglstered Trademark

AVAILABLEATALLLEADING RADIOPARTS JOBBERSO

urn to FINNFLEX for relief !

FINNFLEX offers MAXIMUM PRO. TECTION for VITAL EQUIPMENT by means of:-

AIRBORNE MOUNTING BASES VIBRATION ISOLATORS SHOCK MOUNTS

Conform to JAN-C-I72A, but are actually made to exceed MIL-E-5400 (Superseding AN-E-19) Drop Test requirements,
FINNFLEX Mounts isolate vibration and shock from Electronic, Communication, and Control Equipment. They offer unimpaired efficiency from -80° to $+250^{\circ} \mathrm{F}$., "Selective Action" friction dampening, non-linear steel springs, and other features. Many sizes, load ratings available.

FINNFLEX 3-POINT SERVICE for SPECIAL
PROBLEMS: (1) Testing: We have complete laboratory facilities for Vibration, Shock and Drop Testing . . . (2) Designing: We design and recommend a Shock or Vibration Mount best suited to your special needs ... (3) Manufacturing: We have substantial facilities for manufacturing the desired unit in any quantity, economically, and on schedule.
Send us your problem today, or write for Catalog MB-110.

These units have exceptional ruggedness, plus a special reinforced structure to withstand shock far in excess of 30 " G ". This characteristic makes these bases ideal for use in carrier-based aircraft.

TYPE "CG" MOUNTINO BASE
Especially designed for equipment having eccentric CG permitting a wide variation in the loads applied to the individual mounting. The use of FINNFLEX Vibration and Shock Material assures you of superlative Industrial or Governmental Bases and Mounts.

FINWFLPX

T. R. FINN \& COMPANY, Inc.

Specialists in Vibration Control 333 JACKSON AVENUE, NEW YORK 54, N. Y. Phone: CYpress 2.4192-3-4

Glasseal hermetically seaied miniature tubular paper capacitors. Also available is a wall chart giring a graphic representation of minimum insulation resistance requirements of the type H (Halowax impregnated), type M (mineral oil impregnated) and type X (synthetic oil impregnated

Tape Wound Cores. Thomas \& Skinner Steel Products Co., Inc, 1122 E. 23rd St., Indianapolis, Ind. Bulletin WC-353 describes a line of tape wound cores for saturable reactor: power transformers, and other electronic and electrical applications. It covers cores in both rectangular C and round toroidal types. Specifications and value graphs are provided. covering wound cores in 12 mil Ortho Sil. or oriented silicon-iron. for $60-$ cycle applications; and in 4 mil OrthoSil for 400 cycle and higher applications. The value graphs give evidence of Ortho Sil's high flux densities, with correspondingly low losses. Also shown by graph is OrthoSil's orthographic characteristic, providing an extremely rectangular nysteresis loop.

Power Wire Wound Resistors. International Resistance Co., 401 N . Broad St., Philadelphia 3. Pa. Catalog bulletin C-1 covers cubular and flat power wire wound resistors. It includes comprehensive data on adjustable features. brackets, characteristics, coating, dimensions, derating, insulation, specifications, tolerances and windings. Contained in the 12 pages are photos, detailed charts and graphs.

Capacitors and Pulse Forming Networks. Aircraft-Marine Products, Inc., 2100 Paxton St.. Harrisburg, Pa., has published a 28 -page brochure that provides design and test data on Capitron capacitors and pulse forming networks and gives information on all important features of these components. Particular attention is given to Amplifilm, the new sunthetic dielectric that makes it possible to effect tremendous reductions in size and weight of the units. Profusely illustrated with reproductions of

let WILLIAMS help you apply

ferric oxides

to the manufacture of your

You'll be well repaid by getting the facts on a special group of Pure Ferric Oxides, developed by Williams expecially før use in the manufacture of ferrites. Williams Ferric Oxides analyze better than $99 \% \quad \mathrm{Fe}_{2} \mathrm{O}_{3}$. They contain a minimum of impurities. They are available in a broad range of particle sizes and shapes. Among them, we're certain you'll find one that's "just right" for your requirements. The proper application of Ferric Oxides to the manufacture of Ferrites is our specialty.
Tell us your requirements . . . we'll gladly send samples for test. Chances are good that our Ferric Oxide "Know How" can save you considerable time and money. Address Dept. 25, C. K. Williams \& Co., Easton, Pa.

WIIIIAMS
 COLORS \& PIGMENTS

C. K. WILLIAMS \& CO.

Easton, Pa. - East St. Leứs, III. Emeryville, Cal.
F. We also produce IRN Magnetic Iron powders for the Electronic Core Industry, the Magnetic Tape Recording Industry and others. Write for complete technical information.
any shape . . . length . . ID or OD . . to meet your specific requirements

SEND FOR ARBOR LIST

Free to you upon request . . . lists over 2000 sizes . . . all promptly available. A free sample is also yours for the asking ... just send your specifications.

Precision Paper Tubes are spiralwound of finest dielectric kraft, fish paper, cellulose acetate, or combinations.

Write us today!

PRECISION PAPER TUBE CO.

Plant No. 2: 79 Chapel St., Hartford, Conn. Also Mfrs. of Precision Bobbins

PREFERRED WHERE

thisTEFLON gives you uniform parts...
 electrically...dimensionally

Non porous FLUOROFLEX ${ }^{\text {® }} \cdot \mathbf{T}$ assures electrical stability. It's stress relieved for uniform machinability.

It's in the processing-not in the appearance-that the real difference in Teflon shows up. Natural discolorations don't mean a thing to performance. But variable properties do.

That's why Fluoroflex-T products are extruded or molded under rigid control. Specially designed equipment compacts Teflon powder to the critical density which not only prevents porosity, but also assures highest tensile strength. Resistoflex processing relieves internal stresses to provide better dimensional stability without any porosity. In short, Fluoroflex-T rods, tubes and sheets offer uniformly optimum properties.

All this means non absorbent insulators, for optimúm UHF performance . . and also uniform måchining with fewer rejects. Why not specify Fluoroflex-T for your Teflon parts? For more information write for Bulletin FT-1.
*DuPont trade mark for its tetrafluoroethylene resin. © Resistoflex trade mark for products from fluorocarbon resins.

RESISTOFLEX

corporation
Belleville 9, N.J.
actual test charts, the booklet points out that Capitrons are not made in a standard line of types or models, but are designed for the specific requirements of the equipment in which they are to be used.

TV Fuse Guide. Littelfuse, Inc., 1865 Miner St., Desplains, Ill., has prepared a new and up-to-date tv fuse guide containing the very latest information on fuse usage in modern tv sets. The style of the revised guide has been changed because of the increase in the numbers of tv sets and models since the previous issue was published. The booklet is perforated so that set manufacturers, jobbers and service men can hang it on the wall conveniently and easily.

Silicon Diodes. Microwave Associates, Inc., 22 Cummington St., Boston, Mass., announces a new 2 color. 4-page brochure describing 11 silicon diodes for microwave mixer and video use. Designated as catalog 53 S , the brochure is complete with distribution charts and tables for diodes for use from 10 to less than 1 cm . Special mention is made of new low noise, uniform impedance characteristic detectors for radar and the new microwave relay frequencies. Several types of diodes matched for use in balanced mixer use are described.

Airborne Transformer-Rectifiers. Perkin Engineering Corp., 345 Kansas St., El Segundo, Calif., has available literature dealing with a new series of airborne trans-former-rectifier units for 28 -v aircraft d-c power systems. The units described have current ratings up to 200 amperes; and are designed in accordance with the environmental and electrical requirements of MIL specifications, and result in considerable savings in weight, space and efficiency

Mass Spectrometer. Consolidated Engineering Corp., 300 N. Sierra Madre Villa, Pasadena 15, Calif. Bulletin CEC-1824 deals with the model 21-610 mass spectrometer that is designed for accurate, highspeed process monitoring and control. The instrument described is tailored to the needs of the oil

Compact . . . Dust-Proof TIME DELAY RELAYS
solenoid actuated-pneumatically timed
Introduces time delays into a-c or d-c circuits. Easily adjusted to provide delays ranging from 0.1 second to five or more minutes.

The AGASTAT is small, light, and operates in any position. Dust-proof timing chamber assures long operating life with a minimum of maintenance.
Write for Bulletin.

Dept. A1-84,

Division of Elastic Stop Nut Corporation of America 1027 Newark Avenue, Elizabeth 3, New Jersey

STERLING
 A DEPENDABLE SOURCE FOR

 TRANSFORMERS

- Pulse
- Audio
- Power
- Filter Choke
- Filament
- RF Coils

Custom Built to your Specifications

DEPEND ON

Manufacturers of Special-Purpose Electron Tubes, Inverters, Dynamotors and Fractional D. C. Motors

type and model index				$\begin{aligned} & \text { TYPICAL OPERATING } \\ & \text { CONDITIONS } \end{aligned}$		
$\begin{gathered} \text { Bendix } \\ \text { Ho. } \end{gathered}$	$\underset{\mathrm{No} .}{\mathrm{Rr}} \mathrm{~A}$	$\begin{gathered} \text { JAN } \\ \text { No. } \end{gathered}$	$\begin{gathered} \text { Boneral } \\ \text { Type } \end{gathered}$	Heater Voltage	$\begin{array}{\|c\|} \hline \text { Plate } \\ \text { Voltage } \\ \text { Pase } \\ \text { Plate } \\ \hline \end{array}$	M.A.A.
TE-2		5839	OCTAL FULL WAVE RECTIFIER	26.5	350	70
IE-3	5838		FUCTAL WAVE RECTIFIER	12.6	350	70
IE-5		5852	octal fULL wave RECTIFIER	6.3	350	70
TE-10	5993		MINIATURE Full wave RECTIFIER	6.3	350	70
TE-22	6106		FUCTAL WAVE RECTIFIER	5.0	350	100

EATONTOWN, N. J

Export Sales: Bendix International Division, 205 East 42nd St., New York 17, N. Y.

AIR-SPACED ARTICULATED

offer a unique combination of
FRACTIONAL CAPACITANCE

HIGH
IMPEDANCE
MINIMUM ATTENUATION along with EXCEPTIONAL FLEXIBILITY LIGHT WEIGHT

38 STOCK TYPES

FOR ANY OF YOUR STANDARD or special applications

A few of the very low capacitance types are:

$T_{\text {ype }}$. No.	Capacitance $\mu \mu F / f$	${ }_{\substack{\text { Impedance } \\ \text { ohms }}}^{\text {a }}$	o.D.
c. 44	4.1	252	1.03^{*}
c. 4	4.6	229	1.03**
c. 33	4.8	220	0.64**
c. 3	5.4	197	0.64*
c. 22	5.5	184	0.44*
c. 2	6.3	${ }^{171}$	${ }^{0.44 * *}$
c.II	6.3	173	${ }^{0.36^{*}}$
c. 1	7.3	150	0.36

we are specially organized to handle direct orders or enquiries from overseas
SPOT DELIVERIES FOR U.S.
billed in dollars - settlement by your check CABLE OR AIRMAIL TODAY

TRANSRADIO courracoios ion

138a CROMWELL RD., LONDON, S.W. 7 ENGLAND
CABLES: TRANSRAD LONDON

Sensitive minature relays
PERFECTLY COUNTER-BALANCED
Contact arrangements up to and including DP DT 3 Amp at 28 volts D.C., or 100 Milliamperes af 150 volts D.C. resistive load.

Hermetically Sealed.

Required coil power as low as 20 milliwatts.

Coil resistance up to 15,000 ohms.

Weight, maximum 3.5 oz .

DUE TO ITS PERFECTLY COUNTER-BALANCED FEATURES THIS RELAY WILL WITHSTAND HIGH ACCELERATION, VIBRATION, SHOCK AND TUMBLING

Mass Production Requirements Invited
Detailed information on request.

Phaostron Company - 151 Pasadena Ave. - South Pasadena. Calif.

MINIATURE HIGH-RELIABILITY WIRE-WOUND POTENTIOMETERS

Precision-built, to military requirements

THE WATERS TYPE RT SERIES of miniature, wirewound potentiometers will satisfy your most stringent requirements. Anodized-aluminum bodies with sealed, line-reamed shaft bushings and sealed terminal plates enable these units to meet severe envirommental tests - immersion, salt spray, fungus, shock, vibration, and wide temperature range.

CHECK these SPECIFICATIONS:

- Size... $7 / s^{\prime \prime}$ diameter, $3 / \mathbf{z}^{\prime \prime}$ depth.
- Power dissipation . . 3 walts al 80 degrees C.
- Operating temperature . .

$$
-55 \text { degrees } C \text { to }+80 \text { degrees } C \text {. }
$$

- Weight . . . 5/16 ounce.
- Temperature coefficient . . .
0.002% per degree C, above 100 ohms.
- Rotational life . . . more than 1,000,000 revolutions.
- All mechanical contacts of precious metal.
- All non-wiping contacts soldered as well as mechanically secured.
- Resistances . . . 10 ohms to 50,000 ohms, linear taper. WRITE TODAY FOR FULL TECHNICAL INFORMATION AND PRICES

$$
\begin{aligned}
& \text { WATERS MANUFACTURING, inc. } \\
& \text { Waltham 54, Massachusetts } \\
& \text { aprication enemererve offics in pricipat citiss }
\end{aligned}
$$

installation man in selecting the proper antennas for all types of reception areas and conditions. Full technical data, including gain curves and directivity patterns are included on most of the models. Completely up-to-date, the 2 -color brochure also includes a section on interaction filters, which permit the use of a single transmission lead with two or more antennas, vhf and uhf. Complete information is also included on towers, telescoping masts, mounting accessories and the Katy-B tv booster.

Electronic Components. Erie Resistor Corp., 644 W. 12th St., Erie, Pa., has issued a complete, new 16-page catalog of electronic components for distributors and service departments. This catalog, D-53, supersedes previous catalogs and includes all new items introduced since publication of their last catalog, together with the longtime standard numbers. It is complete with up-to-date listings, illustrations and descriptions.

Tape Recorder. Ampex Electric Corp., 934 Charter St., Redwood City, Calif. A 4-page folder illustrates and describes the model 350 professional-type magnetic tape recorder that is designed for broadcast stations, recording studios, educational institutions, high-fidelity enthusiasts and other highly critical users. The unit described features convenience, ease of cueing and editing, simplicity of control, accessibility for servicing and reliability. General performance characteristics and specifications are given.

Tube Characteristics. Sylvania Electric Products Inc., 1740 Broadway, New York 19, N. Y., has released new versions of its characteristics booklets. The familiar green "Sylvania Television Picture Tube and General Purpose Cathode Ray Tube" characteristic chart has been revised to include the latest modifications, type changes and the like. Over 30 tube types have been added, which brings the total types listed in the booklet to over 250. There are 56 different basing diagrams accompanying these tube types. The revised "Svlvania Radio and Television Re-

STANDARD RANGE

1,000 OHMS TO 9 MEGOHMS
These resistors are used extensively in commercial equipment, includ ing ratio, telephone, telegraph, sound pictures, television, etc They are aloo used in a variety of U. S. Navy equipment.

HIGH Value Range
10 TO $10,000,000$ MEGOHMS
This unnsual range of high value resistors las been developed to meet the needs of scientific and industrial control, measuring and haboratory devices-and of high voltage applications.

SEND FOR BULLETIN 4906

If gives details of Standard and High l'alue Resistors, including construction, characteristics. dimensions, etc. Also described are S.S.White BMX hesistors, designed for extremely high volfage equipment. Copy with Price List sent on request.

WESTERN DISTRICT OFFICE: Times Building, Long Beach, Calif.

SHARP PERMANENT MARKING

For legible permanent marking of metal components use (G15) enwraved lettering tools. Precision engraved dies and inserts for indenting or embossing identification on your parts will

1. Improve appearance.
2. Advertise throughout life of part.
3. Facilitate reordering.

III rite for free cutalog on Production Marking Equipment.

Geo. T. Schmidt, Inc.

MARKING MACHINES
MARKING TOOLS

1801 Belle Plaine Ave.. Chiedgo 13. III.

COMPLETE MACHINE FACILITIES TO PRODUCE

- Steel Type
- Hand Stampe
- Engraved Inserts for Dies
- Shank Style Stamping Dies
- Embossing Dies
- Code Stamps
ceiving Tubes" booklet includes, in addition to previously listed types, the very latest of the company's tv receiver and subminiature tubes. Over 750 different receiving tube types are listed in the chart-along with their basing diagrams. For easy reference, the basing diagram appears on the same page as the tube to which each belongs.

Casting Resins. R. S. Aries \& Associates, 400 Madison Ave., New York, N. Y. An 8-page brochure deals with Aritemp potting and casting resins for high and low temperature electrical and other applications. Illustrations and information on encapsulating techniques are included. Also given are general characteristics, applications and mechanical and electrical properties of Aritemp 201 and Aritemp 302.

Subminiature Paper Capacitors. Astron Corp., 255 Grant Ave., East Newark, N. J., has available bulletin AB-18 containing complete performance characteristics and test specifications on new Meteor hightemperature subminiature paper capacitors. In the line described, dependable operation at temperatures up to 125 C without derating is provided through the use of a newly developed impregnant, X250. Chief features of the capacitors are outlined.

Volt-Ohm-Milliammeter. Simpson Electric Co., 5200 W. Kinzie St., Chicago 44, Ill., has prepared a special publication entitled "1001 Uses For the Model 260," a new booklet dealing with the model 260 volt-ohm-milliammeter that will read electrical quantities of voltage, current and resistance. In its 50 pages, profusely illustrated, the publication offers detailed data on technical features of the unit, explaining how it works under various types of applications.

TVOR. The Collins Radio Co., Cedar Rapids, Iowa. A singlesheet bulletin illustrates and describes the company's tvor equipment that provides in packaged form all the units necessary for a complete terminal visual omni-

*For complete specifications on thesp and otber models write for catalog E-50.

New! All-Nylon! Fungus-Proof! GUDE-NYLACE Flat Braided Lacing Tape

Write for samples, complete information

\author{

- EASY on hands - SAVES TIME
}

\author{

- FLAME RESISTANT
}

Flat braided lacing tape for all electrical harnesses with either continuous or interrupted ties.

Guaranteed free of all wax and foreign materials -only 100\% pure Dupont Nylon is used in the construction of Gude-Nylace- excellent for strength, durability.

Slip-proof knots, easy to tie, easy on operator's hands even without gloves.

Complies with fungus resistant requirements of Gov Spec. Jan-T-713.

GUDEBROD BROS. SILK CO., INC.
Electronic Division: 225 West 34th Street, New York I, N. Y.
Executive Offices: 12 South 12th Street, Philadelphia 7, Pa.

Simple...Easy to Operate...Economical Standardization of Unit Makes This New Low Price Possible.
Maximum economies can be obtained only by use of correct frequency and power combinations when applying the techniques of induction heating to manufacturing processes.
It is significant that only Scientific Electric in the present market, can offer you a selection of frequencies depending on power required, in wide power range. $2 \cdot 31 / 2 \cdot 5-6 \cdot 7 \frac{1}{2}-10 \cdot 121 / 2 \cdot 15 \cdot 18 \cdot 25 \cdot 40-60 \mathrm{KW}$ (all units above 60 KW are considered custom built). This means that electronic heating equipment produced by Scientific Electric is toilored to your needs... fitted perfectly to the task entrusted to it, enabling you to keep your initial investment in equipment to a minimum while affording you all the proven advantages of electronic heating.
Write now for complete information or send samples of work to be processed. Specify time cycle for your particular iob. We will quote on proper size unit for your requirements.
DESIGNEES AND MANUFACTURERS OF HIGH FREQUENCY AND HIGH VOLTAGE EQUIPMENT SINCE 1921

You know from experience, I'm sure, how troublesome varying shrinkage can be. Well, here again Steward's Engineers have an answer that will give you accurate, uniform "Lavite" Steatite parts right through your entire order and all repeat orders.

That's right - allowance is made for possible shrinkage and then they can be machined to final closer tolerances if required. And, please remember, Steward's interest in your parts start with the material. That's why "Lavite" Steatite - a product of private research and development-can claim and prove individually superior qualities. Why not learn first-hand, on your own parts, how this dimensional control can save your production time and help you produce a better product at a saving.

D. M. STEWARD MANUFACTURING CO.

3604 Jerome Ave., Chattanooga 1, Tennessee Sales Offices in Principal Cifies

Stetuard's Engineers-are your
Engineers-Consult them freely and often. No obligation!
Send your specifications for recommendations.

range ground station. The entire package station discussed is supplied complete with external housing. main antenna, monitor antenna, $50-w$ vhi transmitter, modulation eliminator, monitor and local and remote control units. A tror block diagram is included.

Wires and Cables. United States Wire \& Cable Corp., Progress \& Monroe Sts., Union N. J. A new, compact catalog No. PM-3 has been issued. It lists and illustrates wires and cables used in such industries as communications, electronics, aviation, transporation and television. This 24-page catalog is lithographed in two colors for added legibility, and contains many valuable reference tables, diagrams and charts. Each class of wire or cable is described in detail as to construction, cinemical and physical properties. and typical uses.

Miniature Variable Speed Changers. Metron Instrument (6).. 432 Lincoln St., Denver 3, Colorado. has available the technical data sheet No. 3 describing general specifications and ratings plus the principle of operation for the series- 3 miniature variable speed changers. Helpful engineering data such as horsepower ratings, torque ratings, speed ratings and speed adjustability are given in logical sequence and easy-to-understand graph form. Principle of operation is easily comprehended with an exploded and cutaway view and reference descriptive copy of the unit.

Industrial Motors. General Dynamics Corp.. Ave. A and North St., Bayonne, N. J., has published a new 12-page consolidated catalog giving detailed information on performance, dimensional data, construction advantages, installation photographs and company history on a line of motors for ordinary applications of polyphase squirrel-cage induction use. It also tells about electrical and mechanical modifications that are available for particulat installation needs.

Audio Equipment. Atlas Sound Corp., 1449 39th St., Brooklyn, N. Y. The latest 12 -page catalog describes

In electronics or any part of the electrical field where clamps are needed for rigidity and stability in holding tubes, compact plugs or socket type units, Augat clamps provide the answer. Approved and used in electronic equipment for the armed forces, an innumerable variety of stock numbers are ready for immediate delivery while clamps made to your specifications can be had easily and quickly.

Augat clamps are precision produced and made of 18% nickel silver for greater fatigue value, increased tensile strength and for utmost durability. They have withstood a two hundred-hour salt spray test with no adverse effect.

Catalog and samples promptly sent on request.

AUGAT BROS. INC.
 31 PERRY AVEVUE - ATtLEBORO, MASS.

TELEVISION TUBE ALUMINIZERS

From laboratory or semi-production models to complete production systems.

We also make oil diffusion pumps, high vacuum evaparators, pumping systems, vac uum metallizers, high vacuum furnaces. We can supply special high vacaum equipment to customers' specifications.

OPTICAL FILM ENGINEERING COMPANY
2731-37 North Sixth Street Philadelphia 33, Pennsylvania

PIX
 WIRE FORMING SPECIALISTS

Precision Parts to meet your Production and Engineering needs. From .002" dia. to $125^{\prime \prime}$ dia. Radio tube parts-Stampings-Drawings Modern facilities, high-production equipment.

Metal Crystal Holder Parts
Send sketch or print for quotation. PIX MANUFACTURING CO., Inc. 24A Bedford St. Newark 3, N. J.

SPECIAL CONSTRUCTION AVAILABLE FOR HIGH TEMPERATURE APPLICATIONS

NEW HUMPHREY ACCELEROMETER

Readily adapled to wide selection of g ranges.

Accuracy: From plus or minus 1% at zero. to plus or minus 2% at maximum acceleration

A RUGGED, COMPACT ACCELEROMETER with integral Potentiometer take-off, giving amazing accuracy under adverse conditions, due to the rugged construction. No "cross-talk".

FULLY TESTED AND QUALIFIED FOR MILITARY APPLICATIONS

430 Grande Vista Ave, Los Angeles 23, Calit 25 Stillman Street, San Francisco 7, California 1915 Ist Avenue South, Seottle 4, Washington 806 East Abram Street, Arlington, Texas EASTERN REPRESENTATIVE: AERO ENGINEERING INC. Mineola L.I., N.Y. . Indianapolis. Baltimore . Montreal

DISTRIBUTORS

Allied Radio Corp., Chicago, Itlinois
W. D. Brill Co., Oakland, California Gifford-Brown, Des Moines, lowa Harris on Equipment Co., Houston, Texas Industrial \& Electronics Supply, Dallas, Texas Radio Shack Corp., Boston, Massachusetts Southeastern Radio Supply Co., Raleigh, No. Carolina Terminal Radio Corp., New York City, New York W. \& W. Distributing Co., Memphis, Tennessee

WEST COAST REPRESENTATIVE

Carlton Engineering Co. Los Angeles-San Francisco, Californio

EXPORT DISTRIBUTOR

Terminal Radio Corp., New York City, New York Cable TERMRADIO
(continued)
the complete line of p -a loudspeakers and accessories, microphone stands and accessories as well as recommended applications for each product. In the category of loudspeakers, the catalog illustrates and lists specifications for such products as projectors, radials, pagings, talk-backs, tweeters, baffles, driver units and transformers. Microphone floor stands, desk stands, boom stands, boom brackets, sky hooks and cable hangers are among the many products in the mike stand category discussed.

Tiny Bushings. Thor Ceramics, Inc., 225 Belleville Ave., Bloomfield, N. J. A complete line of standard Steatite miniature Feed-Thru bushings for efficient low- and highfrequency equipment are illustrated and fully described in the new catalog Bulletin No. 153. Complete with full engineering data, specifications and dimensional drawings, the bulletin covers the company's standard miniature Feed-Thru bushings, made to conform to government and commercial specifications.

Furnace \& Oven Control Instruments. The Bristol Co., Waterbury 20, Conn., has published a new catalog of control instruments for furnaces, ovens, dryers and kilns. The catalog, No. P1255, features electronic Dynamaster potentiometer and millivoltmeter type pyrometer controllers, recorders and indicators. A wide variety of electric, air-operated, and electronic control instruments for use with fuel-fired and electric heating equipment of all types is listed. Complete engineering specifications and prices are given. In addition to numerous photographs, the catalog is liberally illustrated with diagrams of the various control arrangements and dimension sketches.

Research and Development Services. Designers for Industry, Inc., 2915 Detroit Ave., Cleveland 13, Ohio, has issued a 4-page folder calling attention to the need for careful direction and scheduling of research in the mechanical, hydraulic, electromechanical and electronic engineering fields. A de-

INSURE
 Proven 2ualitey PLUGS \& SOCKETS

 P-306-CCT — Plug, Cable Clamp ín cap.

Series $\mathbf{3 0 0}$ Small Plugs \& Sockets for 1001 Uses
Made in 2 to 33 contacts for 45 volts, 5 amps, for cap or panel mounting. Higher ratings where circuits permit. All plugs and sockets polarized. Knife switch socket contacts phosphor bronze, cadmium plated. Engage both sides of flat plugdouble contact area. Bar type plug contacts hard brass cadmium plated. Body molded bakelite.

Get full details in Catalog 18 . Complete Jones line of Electrical Connecting Devices, Plugs, Sockets, Terminal Strips. Write today.

.today's best answer to high temperature electrical-conductive problems

Electrical engineers in many industries now give Sylvania's Kulgrid the highest rating. This improved nickel-clad copper wire maintains excellent electrical conductivity at advanced temperatures. Its heavy nickel coating resists corrosion and guards the copper conductor against oxidation, flaking, brittleness or deterioration.

IDEAL FOR MANY APPLICATIONS

Kulgrid shows exceptional stability and performance in the high temperature operation of vacuum tubes. Other applications include: wir-
 ing of electric furnaces, industrial baking ovens, electric stoves, and numerous aircraft electrical installations, including jet engines.

AVAILABLE IN STRANDED FORMS

You can now obtain Kulgrid in stranded forms in various combinam tions of diameters and numbers of strands. Kulgrid welds readily to itself, nickel, copper, and can be welded to tungsten and molybdenum. New illustrated booklet gives detailed

LIGHTING• RADIO - ELECTRONICS • TELEVISION
In Conado: Sylvania Electric (Canada) Lid., University Tower Building, St. Cahtherine Sı., Montreal, P, Q.
scription of the services offered in development engineering projects is included with the steps undertaken in a typical research and development program.

Metallized Paper Capacitors. Astron Corp., 255 Grant Ave., East Newark, N. J., has available a new 4-page bulletin, AB-19, containing complete performance characteristics and test specifications on the new Hy -Mets high temperature metallized paper capacitors. The capacitors described are designed for exceptionally dependable operation over a wide temperature range of -55 C to +125 C .

Video Recorder. Allen B. DuMont Laboratories, Inc., 1000 Main Ave., Clifton, N. J. A recent catalog sheet illustrates and describes the video recorder, a unit designed and manufactured to provide the tv broadcaster with superior quality recorded television programs. The unit discussed uses a special 7 -in. picture tube to provide a clear tv picture on which a standard television recording camera is focused. Chief features and operating information are included.

Transistor Curve Tracer. Sylvania Electric Products Inc., 254 Rano St., Buffalo 7, N. Y. A 4-page bulletin illustrates and lists specifications for the model 664 transistor curve tracer. Principles of operation, circuit description and application notes are included.

Resistance-Sensitive Relay. General Electric Co., Schenectady 5. N. Y. Bulletin GEA-5893 covers a new electronic resistance-sensitive relay. Chief features are illustrated and described. Dimensional diagrams and technical specifications are included.

Line Regulators \& Frequency Changers. Sorensen \& Co., Inc., 375 Fairfield Ave., Stamford, Conn. Catalog No. 353 gives full information on an extensive line of electronic a-c line regulators, as well as descriptions and specifications for electronic frequency changers. The regulators described include models with capacities ranging from 150 va to 15 kva , at nominal

Research - Development - Engineering - Manufacturing

CUSTOM BULIT EEECTRONCS!

CDC are designers and engineers of Electronic Devices to fit your requirements.

- Digital and Analogue	- Product Engineering and Design
Computers	- Parts Machining and Assembly
- Test and Measuring Equipment	- Instrument and Electronic
Equipment Overhaul	
- Servo Systems	- Field Maintenance of Electronic
- Instrumentation	Computers
- Engineering Consulting Service	- Developments for Armed Forces

YOUR ENQUIRIES WILL RECEIVE
PROMPT AND EFFICIENT ATTENTION

COMPUTING DEVICES of CANADA LIMITED

General Offices-338 Queen Street Laboratories-475 Cambridge Street, Ottawa, Ontario, Canada

7. MICROMETER SCALE
at $1000 \mathrm{Mc}-$
1 Division equals 290 KC
at 1400 Mc -
1 Division equals 350 KC at 2000 Mc -
1 Division equals 450 KC
at 2600 Mc -
1 Division equals 555 KC
8. EXTERNAL SIZE
$61 / 2 \times 93 / 4 \times 7^{\prime}$
9. WEIGHT

Four pounds
(Cavity units are also available for custom housing)

FREQUENCY mcs METERS Lightweight - Portable Units For Field and Laboratory Use!

ALPHA METALS, INC. 59 WATER ST., JERSEY CITY 4, N.J.

Specialists IN SOLDER For Over Fifty Years

If we
haven't already made it we'll design it for you - -

High Temperature Alloys. The H. M. Harper Co., 8251 Lehigh Ave., Morton Grove, Ill. Pertinent Ave., Morton Grical information about high temperature alloys and how they are being made into the highest precision fastenings is contained in Volume 18, No. 2 of "Bolt News." An illustrated 2-page article takes one behind the scenes at the company's new Aero Division. the company's new Aero Division.
Supplementing the lead story is a descriptive article on the process known as "cold heading" and four informative stories on unusual applications of the company's cor-rosion-resistant fastenings.

Radiation Instruments. Radiation Instrument Development Labora-
tory, 2337 W. 67 th St., Chicago 36 , Instrument Development Labora-
tory, 2337 W. 67 th St., Chicago 36 , Ill., has published a 32 page bookIll., has published a 32 page book-
let illustrating and describing a line of radiation instruments. Included in the line dealt with are 4 basic laboratories, 8 special purpose instruments, 6 decimal scalers, 8 binary scalers, 6 counters, special counters and accessories.

Electronic Tachometer. The Standard Electric Time Co., Springfield, Mass. Bulletin No. 200 covers the company's electronic tachometer for precisely measuring speed or frequency. It includes illustrations, general information, some outstanding features of design and technical specifications. A listing of the tube complement is given.

Crystal Diode Interchangeability Chart. National Union Radio Corp., Hatboro, Pa., has prepared an interchangeability chart for germanimum type diode crystals to aid service engineers and technicians in determining what diode types may be used as replacements or as substitutions in various tv
115 or 230 v . The frequency changers discussed convert 60-cycle line to regulated 400 -cycle (adjustable ± 10 percent) or regulated $50 / 60-$ cycle similarly adjustable. The catalog includes abundant information on electronic regulator circuitry, uses of regulators, and requirements for special reculators. General specifications and electrical specifications are treated at length.

路

To solve your specific potentiometer problem, send an outline of your specs to Gamewell. You'll get prompt service on your order for a prototype to meet your requirements.

Linear and non-linear Gamewell Precision Potentiometers are described in the booklet shown below. We "ll be glad to send you a copy.

THE GAMEWELLCOMPANY NEWTON UPPER FALLS 64, MASSACHUSETTS
In Canada: Northern Electric Co., Ltd., Belleville, Ont.

PRECISION POTENTIOMETERS

Electron

Tube

Technicians

We now have openings for work in the fabrication and processing of experimental electron twbes.

Applicants should be high school graduates with a natural aptitude for making small parts. Experience in electronics, precision machine work and experimental tube work is desirable

Address resume of
experience and trainins to

Hughes

RESEARCH AND DEVELOPMENT

 LABORATORIESTechnical Persomel Department Culver City, Los Angeles Comity, California

Send for descriptive bulletin
HAYDON SWITCHCO.
232 NORTH ELM ST., WATERBURY, CONN.

Yes, as leading manufacturers know ... the DX 90° Deflection Yoke for $27^{\prime \prime}$ receivers gives the ultimate in performance and compactness. Enclosed in an Underwriters' Approved Tenite case, this yoke assures α sharp, full-screen focus without use of pincushion magnets. Ingeniously designed for mass production on special equipment, it provides the attractive price and top quality major manufacturers demand. We invite your inquiry.

DEFLECTION YOKES... TOROID COILS . . CRYSTALS I. F. TRANSFORMERS . . . R. F. COILS . . . DISCRIMINATORS SPEAKERS . . TV TUNERS . . . ION TRAPS . . . TRANSFORMERS

and electronic equipment. It shows outlines of the various styles of diodes to scale, so that full cognizance of the variations in physical characteristics may be taken into account. Ask for bulletin 1003.

Picture Tube Data. Allen B. DuMont Laboratories, Inc., 1500 Ma in Ave., Clifton, N. J., has announced the eighth edition of its picture tube data chart that lists complete specifications for more than 150 picture tubes of all manufacturers. It incorporates all newly manufactured 21-, 24- and $27-\mathrm{in}$. tubes registered with the RTMA at the time of printing. Typical data listed for both magnetic focus and electrostatic focus types are: basings: bulb dimensions; deflection angle: radius of face curvature; envelope and contact; ion trap magnet; maximum design center values; application notes and comparative focus current. The chart is suitable for wall hanging and is also folded to handy notebook size.

Molded Plastic Capacitors. Astron Corp., 255 Grant Ave., East Newark, N. J., has available a new 4-page bulletin. AB-20A, containing complete performance characteristics and test specifications on Blue-Point molded plastic capacitors. The capacitors described are housed in a yellow, tough, noninflammable molded plastic case and are permanently sealed against heat and moisture by means of a special solid glass-like thermosetting bond that becomes an integral part of the case. The bond discussed also locks in the leads so that they cannot be pulled out. (Neither lead, bond nor case is affected by Hame or soldering iron heat, regardless of how close they are applied.)

Decade Inductor Units. Torocoil Co., 1374 Mobile Court, St. Louis 10, M o., has released a new bulletin describing the characteristies of a new line of precision decade inductor units. The units discussed are designed so as to be used either singly or in combination to give an extremely wide range in inductance selection. Included with the specifications are typical uses, quality factor, rating, accuracy and the price of the individual units.

FOR television and other electric installations

Ground lads

Low cost drawn steel Ground Rods, heavily cop per plated to insure perfect electrical contact-and pointed for easy driving. In $4^{\prime}, 6^{\prime}$ and 8^{\prime} lengths, $3 / 8$ to $5 / 8^{\prime \prime}$ diameter. Send for Bulletin and prices, and use Premax in your TV installations.

PRHMAx PRODUGIA
 DIVISION CHISHOLM-RYDER CO., INC.

BREW delay lines

Flexible type delay from . 1 to 2 usec.

Here at Brew, complete design and manufacturing facilities plus real cooperation . . . gives you the flexible delay lines you want . . . delivered on schedule.
SPECIFICATIONS: To military specifications. Delay .1 to 2 usec. Tol. $\pm .05$ usec. Z 1200 ohms $\pm 15 \%$. Hermetically sealed, nonnutrient construction. Available in cans.

In Canadaa Cossor (Canada) Lid.,
301 Windsor St., Halifax, N. S. $\mathbf{4 3 3 6 \text { NORTH KNOX AVE., CHICAGO }} 41$

IN-RESCCO AX ATHERWEIGHT! TYPES CX \& BX FEATHERWEIOH

 QESEEOE for CIRCUIT DESIGNERS

PLANTS AND PEOPLE

Edited by WILLIAM G. ARNOLD

RTMA Elects McDaniel Temporary President

Glenn McDaniel, who served as the first paid president of the RadioTelevision Manufacturers Association in 1951-52, was elected as temporary president of RTMA pending the selection of another full-time paid president. He also will continue as general counsel of the Association.

The RTMA board of directors also elected Robert C. Sprague, chairman of the board of Sprague Electric Co., as chairman of the RTMA board for the next fiscal year. Mr. Sprague, who succeeds A. D. Plamondon, Jr., is a past president of the association and served as its chairman for two years in 1950-52.

Leslie F. Muter, president of the Muter Company, was reelected treasurer, and W. R. G. Baker, vice-president of GE, was re-elected director of the engineer-
ing department of RTMA.
Other RTMA officers re-elected by the board are James D. Secrest, executive vice-president and secretary, and John W. Van Allen as general counsel emeritus.
The elections occurred at the final business sessions concluding the four-day 29 th annual convention of RTMA at the Palmer House in Chicago.

Earlier, members of the five divisions elected their respective chairmen and directors. The division chairmen and newly elected directors are as follows:

Set Division: Robert S. Alexander, president of Wells-Gardner \& Co., chairman; Leonard F. Cramer, vice-president and assistant general manager of Crosley Division of Avco Mfg. Corp., director.

Tube Division: John Q. Adams,

BAKER AWARDED MEDAL OF HONOR

Former RTMA president and chairman of the board of directors, A. D. Plamondon, Jr., displays the RTMA Medal of Honor as W. R. G. Baker, vice-president of GE and director of the RTMA Engineering Department. (center) expresses his thanks. Max F. Balcom, of Sylvania Electric Products Co. and a former RTMA president (right) looks on as Dr. Baker receives the 1953 RTMA Medal of Honor for his outstanding contributions to the radio-television-electronics industry

OTHER DEPARTMENTS
featured in this issue:
Page
Electrons at Work....... 198
Production Techniques . . 268
New Products......... .300
New Books 389
Backtalk 394
vice-president and sales manager of Hytron Radio \& Electronics Co., chairman.

Parts Division: Matt Little, president of Quam-Nicols Co., chairman.

Technical Products Division: Carlyle W. Miller, application engineering manager of Westinghouse Electric Corp., chairman; Harold L. George, vice-president \& general manager of Hughes Aircraft Co., director.

Amplifier \& Sound Equipment Division: F. W. Bell, president of Bell Sound Systems, chairman and director.

WESCON Program Established

August 19 TH opens the ninth annual Western Electronic (Trade) Show at Civic Auditorium, San Francisco for a three-day run. Electronic manufacturers will occupy 327 booths to display products used in broadcasting, communication, telemetry, air and marine navigational aids, industrial production and controls, instrumentation, computers, professional electronic research and education, nucleonic and geophysical detection and research, servicing and installation accessories. No home-use receivers are to be displayed, and the general public is not admitted. Trade and engineering attendance is expected to reach 14,000 .

Four technical sessions daily, at an advanced level, sponsored by the 7th Region of the Institute of Radio Engineers, are to take place. The complete technical sessions

schedule follows on page 381.

Community Antennamen Rename Malarkey

At THEIR SECOND annual national convention held Monday, June 8 in New York's Park Sheraton Hotel, members of the National Community Television Association reelected Martin F. Malarkey, president of Transvideo Corp., Pottsville. Pai., president of the association for a one-year term.

Other officers include: Gerard B. Henderson of Carmel, Calif., vice president; Claude E. Reinhard of Palmerton, Pa., secretary; and William J. Calsam of Schuylkillhaven, Pa., treasurer. Members of the association's 10 -man board of directors include: Clyde Davis II of Wilkes-Barre, Pa., A. J. Malin of Laconia, N. H., J. Holland Rannells of Cumberland. Md., Eli Kramer of Harrisburg, Pa., C. C. Daker of New Philadelphia, O., Kenneth H. Chapman of Honesville, Pa., John Colling of Grass Valley. Calif., Sumner Sewell of Bath, Me.. George H. Bright, Jr. of Lansford. Pa., and Ned Cogswell of Oil City, Pa .

Westinghouse Builds New Research Center

Westinghouse Elfctric Corp. has broken ground for a new research center on a 70 -acre plot about 10 miles east of downtown Pittsburgh's Golden Triangle.

Construction of the center will give current company research activities a new home and provide the necessary space and flexibility to meet new research requirements.

The new labs will be approximately one-third larger than the present laboratories and will provide room for future expansion. In addition to laboratories and offices the structure will house an auditorium capable of seating about 250 persons, a cafeteria of similar size and a large technical library, one of the most complete in the area.

The new research center will ultimately replace the present Westinghouse Research Laboratories, located since 1916 only a few miles away from the new site.

Sylvania Plans New Television Set Plant

Proposed Sylvania iv receiver plant

Sylvania Electric laid plans for a new $416,000 \mathrm{sq} \mathrm{ft}$ tv set-manufacturing plant to be built in Batavia, N. Y.
H. Ward Zimmer, Sylvania president, said the new plant will be built in anticipation of greatly increased production and sales of Sylvanial tv sets.

John K. McDonough, general manager of the division, said division headquarters will remain in Buffalo, N. Y. The activities of the Buffalo plants will also continue as in the past.

The plant is expected to be completed about February 1, 1954, and manufacturing operations will begin on a partial basis immediately thereafter. It is expected that the

Batavia plant will be in full operation within six months of the completion date.

Mr. Zimmer said the new plant will employ approximately 1,200 persons when in full operation. Some key personnel of the ty setmanufacturing operation at Buffalo will be transferred to Batavia, while approximately 1,100 persons from the Batavia area will be employed.

The new facility, which will be the largest Sylvania plant under one roof, brings the company's total square footage in manufacturing plants to approximately $4,650,000$. Batavia will be the 33 rd community in ten states in which the company has at least one manufacturing plant.

McNaughten Joins RCA; NARTB Appoints Walker

Neal McNaughten, formerly director of engineering for the NARTB, joined the RCA Victor Division of RCA as administrator of the broadcast market planning section of the Engineering Products Department.

In a statement commenting on the announcement, Harold E. Feows, president of NARTB, declared:
"Neal MrNaughten has performed many fine services for the nation's broadcasters during the time he headed NARTB's engineering operations. The most recent evidence of this performance was
the successful broadcast engineering conferenec in Los Angeles, which Neal directed. We regret his loss to NARTB but wish him every success in his new position with RCA."
A. Prose Walker, presently eastern supervisor of Conelrad for the FCC, will assume the post of manager of engineering for the association, succeeding Mr. McNaughten. Mr. Walker has had thirteen years of service with the FCC. He has been eastern supervisor of Conelrad for the FCC, reporting to FCC Commissioner George Sterling, since July, 1951. He has been responsible

DON'T JUST LONG FOR IT:

Success begirs when longing stops and action starts! The important thing for engineers in these times is to look to the future. Do you feel that perhaps there might be a place for $y+n$ in an industry that offers exceptional advantages today, and even greater opportunity for tomorrow? Longing won't get it for you.

Perhaps you are not employed at your highest skill. At Westinghouse, top management philosophy dictates that every engineer be provided with challenging assignments . . . that management potential be quickly recognized and developed . . . and that inventive abilities be stimulated and encouraged.

For many years, Westinghouse has been setting the pace for the electrical industry. Westinghouse engineers have profited from this ... in the form of excellent pay . . liberal patent awards and stock-purchasing plans . . . and all of the usual personal security benefits.

Opportunities exist for men with experience as

Circuit Engineers
Computer Engineers
Servo Engineers
Technical Writers
DON'T just long for these things
write us today and tell us about yourself. We'll reply by return mail.

Dept. AE

Westinghouse

ELECTRIC CORPORATION
109 W. LOMBARD ST. BALTIMORE 1, MD.

for providing technical assistance to the Air Defense Command affecting plans for the Control of Electromagnetic Radiation (Conelrad) concerning all non-government radio services licensed and regulated by the FCC.

HERMETICALLY SEALED TO MIL-T-27 SPECIFICATIONS

NYT offers a wide variety of transformer types to meet

 military and civilian specifications, designed and manufactured by specialists in transformer development.Latest NYT service for customers is a complete test laboratory equipped and approved for on-the-spot MIL-T-27 testing and faster approvals.

NEW YORK TRANSFORMER CO., INC. ALPHA, NEW JERSEY

Clevite-Brush Appoints Three Executives

Appointment of three new executives of Clevite-Brush Development Co., the product development unit of the Clevite Corp. group of companies, has been announced by A. L. W. Williams, president of the unit.

Waldo H. Kliever, formerly director of research of MinneapolisHoneywell, joined the company as vice-president and director of instrument development.

Dr. Khever, who became research director of Minneapolis-Honeywell in 1945 , will have charge of the measuring instruments and magnetic recording sections, and is to head a control development section.

Thomas E. Lynch becomes vicepresident and continues as director of ordnance products development. He joined the Brush Development Co. in 1939 as an engineer and has worked in the fields of underwater sound detection and magnetic recording.

William P. Short becomes vicepresident in his position as director of piezoelectric and sonic products development. He joined CleviteBrush in March of this year, coming from Pleasantville Instrument Corp., where he had been vice-president in charge of operations.

General Leavey Elected President Of Federal Labs

Major General Edmond H. Leavey, U.S.A. (Retired), has been elected president of Federal Telecommunication Laboratories, Nutley, N. J. research associate of IT\&T, it was announced by Col. Sosthenes Behn, chairman and William H. Harrison, president of IT\&T. General Leavey fills the vacancy created by the recent death of Vice-Admiral Carl F. Holden.

General Leavey has been vicepresident of IT\&T since November, 1952, when he joined the corpora-

General Edmond H. Leavey
tion, and also is a member of the board of directors of a number of the corporation's subsidiary companies.

General Leavey is experienced in both the operational and administrative fields of engineering. He was chief of the Logistics Division of Supreme Headquarters of the Allied Powers in Europe (SHAPE) before his retirement in 1952. During World War II, he occupied key posts in both the European and Pacific theaters.

General Leavey, a registered professional engineer in civil and industrial engineering, also holds honorary degrees of Doctor of Laws and Doctor of Engineering from Texas A.\&M. and Rensselaer Polytechnic Institute, respectively.

Sylvania Appoints Carter And Richardson

Sylvania Electric Products, Inc. announced the appointments of E. Finley Carter as vice-president and

E. Finley Carter

Anather New Iteiland Product

Tfeiland

Amplifier System

 ing Oscillograph and Made 82-6 Bridge Balance unit.

Now, for the first time, a complete measuring

 system, including Oscillograph, Amplifier and DC balancing units, can be conveniently installed in a standard 19 -inch relay rack with the accessory mounts available, or placed side by side on tables with equal ease and simplicity. Removable shock mount bases can also be supplied for installation in moving vehicles, aircraft, etc., where shocks and accelerations are encountered. Housed in a rugged, yet lightweight cast aluminum case finished in attractive silver-gray gloss enamel.
FEATURES:

- Rack, table or shock mounting
- Plug-in units, readily removable
- Compact
- Rugged
- One - surface operation
- Local or remote calibration
- High sensitivity
- Carrier Amplifier flat to 1000 cps .
- High power output
- Two or more systems may be synchronized
- Low gage - voltage required for maximum output
- Highly stable carrier generator
- High stability amplifiers

Specifications

Size: $11^{\prime \prime} \times 16^{\prime \prime} \times 18^{\prime \prime}(6$ channels and power supply).
Weight: Approximately 70 pounds (6 channels and power supply)
Number of Channels: 6
Power Output: $\pm 50 \mathrm{Ma}$, into 18 ohm load
Sensitizity: 0005 volts input for fult scale output
Carrier Frequency: 5000 cps .
Frequency Rangei Carier 1000 cps. linear integrating 3000 cps .

See the first showing of the Heiland Madel 119 Amplifier System at the I.S.A. Show-Chicago, September 21 through 25.

Write for our free catalog of Record. ing Oscillographs, Bridge Balance units
\& Galvanometers.

SKILLED HANDS

Yours for the Asking ... These are special hands . . . skilled hands . . . hands trained to translate creative engineering and design into production reality. These hands produce compact, high precision gyros, synchros, and servo motors providing the sensory information, the computing brain and the muscle for the automatic controls of modern industry and aviation.
These helping hands are ready, willing and able to assist by the development and manufacture of the advanced precision components you require for today's problems and tomorrow's progress.
Let us Help. Inquiries for information on standard or special units, for a particular application are cordially invited Technical Bulletins are available and will be sent upon request.

KEARFOTT COMPONENTS

 INCLUDE:Gyros, Servo Motors, Synchros, Servo and Magnetic Amplifiers, Tachometer Generators, Hermetic Rotary Seals, Aircraft Navigational Systems, and other high accuracy mechanical, electrical and electronic components.

CREATIVE ENGINEERING
PRODUCTION ACHIEVEMENT

[^17]

Howard L. Richardson
technical director of the company and Howard L. Richardson as vicepresident in charge of engineering operations. Mr. Carter has been a vice-president since 1945 and Mr. Richardson since 1951.

President H. Ward Zimmer, in making the announcement, said Mr. Carter's new appointment came as the result of the heavily increasing role that broad technical problems are playing in overall management decisions. In his new capacity, the president said, Mr. Carter will furnish technical counsel to Sylvania's management and engineering groups, and will handle broad technical relations with industry, universities, the armed services and other organizations.

Mr. Richardson assumes the operating responsibilities that previously were held by Mr. Carter as vice-president in charge of engineering. He was formerly vicepresident in charge of industrial relations.

GE Tube Department Opens Midwest Quarters

Formal Opening of the new GE Tube Department central regional headquarters and distribution center in Chicago was attended by more than 300 electronics, business and civic leaders. I. J. Kaar, manager of engineering for GE's Electronics Division, speaking at the opening ceremonies, said that GE predicts an increase in the industrywide tube business of 57 percent from 1953 to 1961.
The $\$ 875,000$ structure has almost $100,000 \mathrm{sq} \mathrm{ft}$ of floor space. The building, besides serving as a warehouse, also is sales head-
quarters and commercial service headquarters for the GE Tube Department central regional sales organization.

The regional sales organization services 16 midwest and central states, including the electronics and manufacturing area in the immediate vicinity of Chicago. Included in the new one-story brick building are complete laboratory facilities employing specially built GE testing equipment to enable company engineers to work more closely with electronics equipment manufacturers.

The present staff at the new building is expected to increase to 160 when peak operation is attained later in the year.

Warehouse manager is John A. Cavaliere, while J. J. Shafter is supervisor of commercial service. Walter J. Fitzpatrick heads the replacement sales organization and Roger F. Long heads the original equipment sales organization.

Midwest Research Plans Million-Dollar Lab

A functional 2-story laboratory and headquarters structure, planned to provide maximum area for tasks of scientific inquiry as well as space for future expansion, is planned for construction soon by the Midwest

Proposed Midwest laboratory
Research Institute in Kansas City, Missouri.

The new building will contain $71,000 \mathrm{sq} \mathrm{ft}$ of floor area and will be located on a 9 -acre plot in the cultural center of Kansas City.

Construction will probably start in October on the building, planned to cost one and a quarter million dollars. All operations of Midwest will be consolidated in the structure. The Institute now occupies six scattered buildings.

Organized nine years ago to serve
to users of fasteners
Everyone who designs, specifies or purchases needs this useful

Simplifies your job; saves time, speeds choice of right fastener. Easy to read, easy to use, handsomely lithographed in red, white and blue. Shows various tubular and split rivets, part catalog number, normal clinch allowance, size of clearance hole in work and other details to aid your product manufacturing. Sturdily riveted together for lasting use. Write for yours today!

The name to RIVET in your memory for fasteners.

THE MILFORD RIVET \& MACHINE COMPANY

855 BRIDGEPORT AVENUE, MILFORD, CONNECTICUT
806 ILLINOIS AVENUE, AURORA, ILLINOIS
1106 WEST RIVER STREET, ELYRIA, OHIO
26 PLATT STREET, HATBORO, PENNSYLVANIA
715 SO. PALM AVENUE, ALHAMBRA, CALIFORNIA
as a technological and research center for middlewestern states, Midwest Research Institute now carries on projects for sponsors and clients throughout the nation. Its annual research volume is in excess of one million dollars. It has served some 460 sponsors and has undertaken more than 1,000 separate projects.

Among special services now being developed is an electronic computer center, which will house both digital and analog devices to be employed by business and industrial organizations for solution of special computational problems.

Sprague Expands In

North Carolina

Sprague Electric Co. is undertaking construction of a new plant in the Blue Ridge Mountain area in extreme northwestern North Carolina, which will employ about 250 workers when it reaches full scheduled production. In announcing plans for the company's seventh branch operation, Julian K. Sprague, president, said that the new plant will manufacture capacitors, the most important of the many types of electronic components made by the company.

Location of the plant will be about seven miles from West Jefferson, Ashe county, which is only a few miles from both the Tennessee and Virginia state lines. Ernest L. Ward, executive vice-president, said construction of the manufacturing plant and of auxiliary water purification facilities will begin immediately. It is expected that the plant will start operation about November 1 of this year. At that time training of a small complement of employees will begin, and the plant will be expanded as fast as the training program permits until the initial target of 250 employees is reached.

The new Sprague factory will be of modern design in steel and red brick construction and will contain $50,000 \mathrm{sq} \mathrm{ft}$ of floor space. It will be situated on a 30 -acre tract on a bend of the New River. Process water for the manufacturing operations will be taken from the stream, purified, and returned to the river

TANDEM TERMINALS

Cut costs . . . boost production effect more efficient terminations! On long runi, change from slow hand attachment and soldering of loose terminals to P-M machine at tached Pre-Soldered Tandem Terminals. Produced in continuous form and supplied on reels, P-M Tandem terminals are cut off, clinched and soldered to wires in one instantaneous operation on the P-M precision machine af rates up to 1200 per hour-with consistently perfect

terminations. Many standard types available. Ask for demonstration, or send for details and enclose sample of terminal and wire now used. Catalog on request.

For ardinary runs we have dies to produce over 400 different kinds of separate terminals for electric wires. Also, we are large producers of Small Metal Stampings made exact to customers' prints.

PAITON:WacGUYER COMPAUY

201 Chapman Street, Providence, R. I.

STOP RF LEAKAGE ON THE DRAWING BOARD

. . . When you design metex electronic WEATHERSTRIPPING INTO YOUR EQUIPMENT YOU GET ITS POSITIVE SHIELDING EFFECTIVENESS - AT MAXIMUM OVERALL ECONOMY

Plan now to take full advantage of Metex Electronic Weatherstripping's unusual effectiveness in shielding all types of electronic equipment. Because it is made of knitted wire mesh, Metex Electronic Weatherstripping is both conductive and resilient. It assures positive metal-to-metal contact between all mating surfaces. And being resilient it accommodates itself positively to surface inequalities.
In reality, Metex Electronic Weatherstripping can do more for you than just shield RF leakage. It can cut the cost of machining mating surfaces to close tolerances. It can eliminate the need for extra fasteners and many other costly means of making joints RF tight.
To get the best results and lowest production costs, design with Metex Electronic Weatherstripping, available in 3 basic forms:
1 Continuous lengths in various cross sectional shapes with or without fin for attachment.
2 Die-formed shielding gaskets, and
3 Sealing gaskets where the knitted wire gasket is combined with a sealing medium.

For detailed information on METEX
ELECTRONIC PRODUCTS, write for FREE copy of "Metex Electronic Weatherstrips" or outline your SPECIFIC shielding problem - it will problem - it
receive our immediate attention

Each of these is made in various sizes and shapes which are readily adaptable to practically any equipment. The resiliency can be varied where necessary to meet specific requirements.

Applications in which Metex Electronic Weatherstripping has already proved its effectiveness include pulse modulator shields, wave-guide choke-flange gaskets, local oscillators on TV sets, dielectric heaters, etc.

> Metix electronic WEATHERSTRIPPING

For shielding on all types of electronic and electrical equipment

Theodore A. Smith
was vice-president in charge of the Wincharger Corp. His work in the sales and distribution phases of the electronics industry began in 1923.

Mr. Smith, previously assistant manager of the Engineering Products Department, has been associated with RCA since 1925 when he joined RCA's Technical and Test Laboratories at Van Cortlandt Park, New York. Three years later, in 1928, he supervised the construction of RCA's pioneer television station in New York.

Mr. Smith entered commercial engineering work in 1930 as RCA eastern district sales manager for broadcast equipment. In 1938, he was assigned to Camden headquarters, where he since has held key sales and administrative posts in the RCA Victor Division.

GE's Utica Electronic
 Plant Starts Operations

Research, development and manufacturing operations for the production of specialized electronics equipment for military purposes are now in full progress at GE's newlycompleted military electronics plant on French Road in Utica, N. Y.

The plant consists of a steelframe, single-story structure, 842 ft long and 352 ft wide, with a twostory office and laboratory section 632 ft long and 75 ft wide. Four penthouses on the roof of the structure are used for special engineering development work on antennas. While a major portion of the plant is for bench assembly of a wide

Ever since 1875 the Bulova name has been the symbol for integrity ... quality .. precision craftsmanship . . . and dependability These are the very factors demanded by users of crystal units!

Now Bulova applies the art of precision production to the fabrication of crystal units for standard and special application. In production now and available in quantity
lots are $100 \mathrm{KC} \cdot \mathrm{GT}$ standards. The 100 KC-GT unit has been accepted by the National Bureau of Standards as the basis for Time Measurement reference.

The supreme accuracy and quality that are inherent in all Bulova prod. ucts are also found in the massproduced CR types ... which meet the most exacting military and commercial demands.

On Crystals for Your Special Application... Write:
QUARTZ CRYSTAL DIVISION
BULOVA WATCH COMPANY, INC., BULOVA PARK, FLUSHING 70, NEW YORK

Write Dept. E-8. DeJUR AMSCO CURrORAIION, 45-01 Northern ziva., Long Island City 1, N. Y

 West Coast: 405 North Maple Drive, Beverly Hils, Californiavariety of electronic military equipment, a substantial portion is devoted to development and testing of new types of equipment.

For convenience, compactness and efficiency, power supply for research and production test facilities are centralized in a 51 ft by 176 ft area termed the Test Powerhouse. An unusual feature of this area is a 72 ft long main plug board with a thousand-cable distribution network. To get power at desired voltages and frequencies, the technician at the test station calls the plug board operator who wears a headphone, and the operator thereupon makes the proper plug-in on the board.

Test areas in the plant include production test cubicles, shock, vibration, environmental and special shielded test rooms, and the test penthouses on the roof. The production test cubicles are six-foot square steel enclosures mounted on platforms elevated eight feet above the floor and fastened to the building columns. This arrangement permits maximum free floor space for assembly benches.

Paint, welding and machine shops, and a completely equipped plating installation located in a special area walled off from the rest of the plant because of corrosive plating liquids, are included in the plant.

An elaborate conveyor system running around the interior of the plant transports thousands of small parts used and produced in the plant, into and out of storage.

Honeywell Names Research Head

The appointment of Finn J. Larsen as director of research for Minneapolis-Honeywell Regulator Co. was announced recently by William J. McGoldrick, vice-president.

Dr. Larsen, a member of the company's research and engineering organization since 1948, succeeds Waldo Kliever who has resigned to accept a position with CleviteBrush Development Co.

Since 1952, Dr. Larsen has been director of ordnance engineering for Honeywell; supervising the

NEW from Weitionon Finsicull

The new FM Signal Generator Model 100C gives the same excellent performance as the 100A and 100B-but increases the tuning range to cover all the way from 25 to $\mathbf{2 1 6}$ megacycles in a single band.
Leakage, spurious outputs, drift and hum are all very low. There is no mixing, no multiplication. A piston attenuator gives accurate attenuation from .02 to 100,000 microvolts. Frequency deviation is in two ranges: 0 to 30 kc and 0 to 250 kc
Designed and constructed to withstand hard use, the 100C is an ideal production test as well as a highly accurate laboratory instrument.
The consistent quality standard of Runzel wire, cord and cable offers manufacturers complete assurance of performance. Rurizel products under. go such thorough inspections in the process of their manufacture that flaws are reduced to an absolute minimum.
Your wire needs in hook-up, lead-in, shielded wire speaker cords and all types of insulated wire are available from this centrailly located source. We maintain a camplete engineering service. Your wiring problems are solicited. For their scientific solution, the Runzel Laboratory provides research assistance.

TRANSFORMERS

- Fill Your Need to a

DESIGNED TO COMMERCIAL AND MILITARY SPECIFICATIONS (MIL-T-27 and AN-E-19)

EPCO Products Inc.

2500 Allantic Ave.
Brooklyn 7. New York

AMERICAN ELECTRIC

 Miniature Motors Weigh only OUTVES yet deliver POWERFIOUSE PEFFORMANCF Mlofi or Ilyound!

Hysteresis Type
Synchronous Drive Motor

MODEL 228
Induction Drive Motor

MODEL 300
Reluctance Type
Synchronous Drive Motor

Need low weight for mechanization of MODEL 168
Propelter Fan $\begin{aligned} & \text { airborne gear... want unusual compact- } \\ & \text { ness for ground equipment? Amencan } \\ & \text { Enectaic can provide the drive motor to }\end{aligned}$ dit your specialized requirements.

These miniatures are built as small as 1.45 inches in diameter... Even the "big boys" measure only $3 \mathrm{~F} / 16$ inches across! Yet with all their diminutise size and weight Anerican Electuic Miniatures are regular "power-houses" in their field ...designed to utilize all magnetic materials to the ultimate, thus reducing useless, "no-pay" weight to an absolute minimum!
No design compromises-AMERICAN Electurc offers the greatest range of production and prototype models available todia! Let Amemican Electric quote on your miniature motor requirements. Write, wire or phone today!

TWO MINIATURE DRIVE MOTOR TYPES
Induction Motars-Output torque range: $1 / 2 \mathrm{in}$. oz. to 120 in . oz
Synchronous Motors-Output torque range: . 01 in. oz. to 10 in . oz. in both Hysteresis and Reluctance types.
TWO MINIATURE COOLING TYPES
Centrifugal Blowers
Propeller Fans

MODEL 220
 Double Ended

Motor-Blower
Manufcciurers also of HIGH FREQUENCY Inductor. Alternator tyductor-Alternator 75 KVA output Port. able Semi-Portable and Stationary Types

4811 Telegraph Boad, Los Amseles 22, Casiforma

Engineering Representatives: TRAVCO ENGINEERING CO. Silver Spring (Md.), Chicago, New York, Los Angeles
work the company's expanded ordnance division has been carrying out in the development of fire control systems for tanks, as well as other control devises in the fields of radio activity, explosives and missiles.

He will continue to have responsibility for this work, in addition to his new duties as research director.

Dr. Larsen joined Honeywell after receiving his Ph. D. in 1948 from Iowa State College, where he also was an instructor in physics. He started as a physicist in the company's research department. Before becoming director of ordnance engineering, he wats assistant to the director of research.

Marconi Marine Names Techmical Manager

Tife Marconi International Marine Communication Co. announced that George J. McDonald, deputy technical manager of the company, has been appointed technical manager.

Mr. McDonald joined Marconi Wireless in 1935 and engaged in research and development work under G. M. Wright, now engineer-in-chief of that company, concentrating especially on direction-finding technique. He transferred to the Marconi Marine Co as deputy technical manager in 1949, on the staff of the late F. P. Best who was technical manager.

National Company Names Cosgrove

Charles C. Hornbostel, president of the National Company, has announced the retirement, effective

Raymond C. Cosgrove

June 1, of William A. Ready as chairman of the board of directors and nember of the executive committee.

Mr. Ready has been an official of the company for 38 vears and until March of this year served as president and chairman of the board.

Mr. Ready has been succeeded as board chairman by Raymond C. Cosgrove, formerly execut ve vicepresident of the Avo Manufacturing Corp. and president of RTMA.

William A. Ready

Minmesota Mining
 Aequires American Lava

AcQuisition of Americin Lava Corp. of Chattanooga, Tenn. by Minnesota Mining \& Manufacturing Co. through a 85 million stock transfer was announced recently.

Herbert P. Buetow, 3M president, and John Kruesi, president of American Lava, said officers of the two firms have approved a deal by which the Chattanooga firm would become a wholly-owned 3 M subsidiary.

Terms call for American Lata stockholders to trade their common and preferred shares [or 3 M common.

Mr: Buetow said his firm's primary interest in acquiring Lava was to broaden BM's particibation in the electronics field.
"We are the world's largest producer of Hexible electrical insulating materials," Mr. Buetow said. "The electronics industry is already a griant on the American business scene and many phases of its development are just beginning. By joining forces, 3 M and American Lava will play a far larger role in

VECTRON'S two new R. F. Heads, 20 C 1 and 20 C 2 , provide continuous coverage of microwave frequencies in C-band from $4,240 \mathrm{mc} / \mathrm{s}$ to 6,150 mc / s. They are engineered for immediate operation in Vectron's Spectrum Analyzer Chassis SA10 or SA20 . . . no conversion, no adaptation.
Specific Band Coverage . . . Vectron's R. F. Heads (L-band. S-band, Chand and X-band) are interchangeable in any Vectron SA20 Spectrum Analyzer. Display Unit and Heads can be purchased separately, as needed, to provide a wide choice of operating frequencies without the bulk and unnecessary expense of equipment which covers large arcas in unused lands.
Early Delivery . . . Individuat R. F. Heads and SA20 Amalyzers are available for early delivery. Other new Heads are well along in development and will be announced soon. Send for Bulletin SAZ0 (sec below) and specify the frequencies you need.
For Microwave Radar and Communications Equipment The Vectron SA20 Spectrum Analyzer presents visually the frequency distribution specitun of the power output of pulsed or CW microwave oscillators and can be used as a sensitive R. F. detector for checks and measurements in the design, production and maintenance of microwave radar and communications equipment and components.

Vectron's development program includes additional R. F. Heads to cover microwave frequencies newly opened for military and civilian use. For information on these additional R. F. Heads
 and for complete engineering data, send for Bulletin SA20. Write today and be sure to specify the operating frequencies you need.

ONLY THE SERVOSCOPE

Output wave forms of Servoscope displayed against internal linear sweep generator frequency $1 / 2$ cycle.

* is applicable to both AC carrier and DC servo sys-

 tems.* has a built-in low frequency sine wave generator for obtaining frequency response of DC servo systems.
* has a built-in electronic sweep with no sweep potentiometer to wear out and require replacement.
* has a dynamic frequency control range of $\mathbf{2 0 0}$ to $\mathbf{1}$.

MORE and MORE aircraft companies, universities, process control manufacturers, government laboratories and others are adding the Servoscope to their list of required laboratory equipment. If you are designing, developing or producing servomechanisms or process controls, the Servoscope will save many hours of design and engineering time.

The Servoscope is available in two standard models- 1100 A (. 1 to 20 cps.), 1100 B (. 15 to 30 cps .) Custom modifications quoted on request.

For bulletin giving complete specifications: write Dept. E-8

SERVO CORPORATION OF AMERICA

 2020 Jericho Turnpike, New Hyde Park, N. Y. Fieldstone 7-2810the industry than they could hope to play separately."
"American Lava's excellent record in the field of ceramic insulators dovetails with the business 3M has developed through its electrical insulating and sound recording tape division," he added.

Mr. Buetow said 3M plans no changes either in American Lava's management group or in its operating policies. Mr. Kruesi will continue as president and all officers and executives will continue in their present capacities.

Robert L. Westbee, general manager of 3M's electrical insulating and sound recording tape division, will be responsible for liaison between the parent company and the new subsidiary.

Pearce And Williams Join AMF Electronics

John M. Pearce
John M. Pearce, former president of Phebco, and Douglas R. G. Williams, former works manager of Arma Corp., have joined American Machine \& Foundry Co., Electronics Division, Boston, as director of engineering and factory manager, respectively, it was announced by Morehead Patterson, AMF board chairman and president.

Mr. Pearce holds the Presidential Citation of Merit, highest civilian award given by the government, bestowed in recognition of his pioneering contribution to the proximity fuze program at the Applied Physics Laboratory at Johns Hopkins University during World War II. He was also actively engaged in the guided missile program from

IBM
 thade mark

Leading manufacturer of electronic digital computers, electronic and electrical business machines, time systems and electric typewriters.
offers career opportunities for

Electrical and Electronic Engineers

at
Endicout, N. Y. Poughkeepsie, N. Y.

If your background has been in: Electronic Design, Computer Design, Electrical Design, Product Engineering or Product Development-you owe it to yourself and your future to investigate the opportunities waiting to be filled at IBM. Interview will be arranged in your city. Write, giving full details of education and experience to:

Mr. C. F. McElwain
Dept. 686 (4)
International Business Machines
590 Madison Avenue
New York 22, N. Y.

MALING TRANSFORMERS IS OUR 意 BUSINESS

- For more than 35 years Acme Electric transformers have become components of all types of electrical and electronic equipment. The vast technical experience accumulated during this time is now available to west coast manufacturers through our Los Angeles branch.

ACME ELECTRIC CORPORATION

 MAIN PLANT: 318 Water Street Cuba, N. Y. West Coast Engineering Laboratories: 1375 W. Jefferson Blva. - Los Angeles, Calif. In Canada: ACMEELECIRIC CORP. LTD. - 50 North Line Rd. - Toronto, Ont.

Brush holders, commutators electronic specialties
Standard sizes or to your specification 4.6 Micro finish

Minimum coefficient of friction, wear, brush noise
Diameters from 035 - to your specification
Operating capacities - 1 amp intermittent, .6 amp continuous load
Rhodium or gold plating over silver rings No porosity factor
Concentricity guaranteed to . 002 T.I.R. - to your specification

Instrument Components Inc.
1834 Franklin St., Santa Monica, Calif Division: Marshall Engineering Company

when time is short... Ptite

MEASURE TIME IN $1 \neq \boldsymbol{\sim}$ sec. STEPS FOR:
 - VELDCITY
 - ACCELERATIDN
 - DETDNATION TIME
 - DOPPLER FREQUENCIES
 - PULSE CHARACTERISTICS

For every timing application where a fraction of a microsecond is important, specify this new Potter high-resolution Counter-Chronograph. You can split a second into 8,000,000 parts - read the results quickly and directly with an accuracy of $1 / 8$ usec.

Here are the features that make this precision instrument, the Model 471, outstanding when time is short:

ACCURATE 8 mc time base provides the highest resolution of time measurement available in direct reading instruments.
DIRECT READING Digital registration indicates time from 1 usec to 1 second on patented Potter decades. Fractional parts of a microsecond are counted and indicated by a three stage binary in steps of $1 / 8$ usec.

DEPENDABLE Straightforward three stage binary used at 8 mc frequency assures highest stability.

PROVED PERFORMANCE 11 years of service in proving grounds and research centers are your best assurance that the Potter Counter-Chronograph provides maximum reliability for critical timing applications.

VERSATILE There is a Potter instrument for every timing application, and digital recorde's are available for permanent records at rates up to 150 per second. For information on the best equipment to fit your requirements, write to Dept. E-7.

Douglas R. G. Williams

1947 (1) 1952 at the Glenn L. Martin Co. of Baltimore ats chief electronic engineer. Prior to that he was chied engineer in charge of develonment of guided missiles at Bendix Aviation Corp. Pacific Division. For 17 rears he was assistant chief engineer at radio station WGN in Chicago.
Mr. Williams, the new factory manager, will be in complete charee ut all manufacturing operations at the AMF Electronics Division. He was with Westem Electric Commany for four years and with the Foxboro Co. for eight years as sales engincer: Following this, Mr. Williams was factory manager and assistant to the vice-president for manufacturing and engineering of Behr Manning Corp. More recently he was works manager at Arma Corp. in Brooklyn, N. Y.

Smith Elected Head GOf Indiama Stael
Robfrt F. smath, vice-president of the Indiana Steel Prorluct, Co. Valpataiso, Ind.. and acting chief executive of the company for the past several months. has been ele ted president of the company and a member of its board of directurs. according to an amouncement br the company
The company also announced the election of John H. Bonwmeester: vice-president in charge of manufacturinge as a member of the board of directors. and Anthony Astroloyes, formerly manufacturing comtroller and assistant treasurer, as theasturer
At the same time, Ivan A. Dicker, assistant sales manager, was promoted to sales manayer, and P. MI.

Wheeler was named mid-western rerional sales manager with offices in Chicsgo. Mr. Botummeester and Charles A. Maynard, vice-president in charge of engineering and research, were re-elected to vicepresidencies.

Mr. Smith, a veteran of 16 years service with the company, had served as vice-president since 1948 and as greneral manager since May. 1949.

The 45 -year-old firm produces over 50 million magnets a year for thousands of industrial and consumer applications.

Robert F. Smith
RCA Victor To Build Plant In Ohio
The rica lictor Division of RCA announced the purchase of ground to construct a new plant at Findlay. Ohio, for the manufacture of electronic component parts for radio and to hume receivers.
Present plans call for the building of a modern, single-story structure providing approximately 150 ,$000 s_{y} \mathrm{ft}$ of thoor space, according to R. T. Orth, vice-president in charge of the RCA Tube Department which will operate the plant.

Mr. Orth said ground-breaking is scheduled for late this summer. The first unit of the new facilities is expected to be in operation in the spring of 1954. A major item to be produced will be deflection components for tv receivers.
The new Findlay plant, 50 miles southwest of Toledo, will become RCA's fourth manufacturing center in Ohio. The company now produces electron tubes at Cincinnati,

Who's the best performer of the miniature choppers?

"MMDCF?

 Airpax chopper, by long odds!

 Airpax chopper, by long odds!}

THE RIGHT WEIGHT . . . weighs only 1.2 ounces! THE RIGHT LENGTH . . . measures only $1.625^{\prime \prime}$ long!
THE RIGHT DIAMETER755" and will fit a 7-pin miniapure shield base!

THE RIGHT DESIGN FOR MAXIMUM PERFORMANCE!
Snall size and big performance have won wide acclaim for the C747 MIDGET chopper. Avgilable with SPDT contacts, a 6.3 volt dive for $\mathbf{4 0 0}$ cycle operation, usually a $\mathbf{3 8 0}$ to $\mathbf{4 2 0}$ cycle frequency range. Phase angle nominal 65°, dwell time of 135°.

RCA Estate gas and electric kitchen ranges at Hamilton, and Victrola phonographs at Cambridge.

Keys Named President Of Guthman Co.

Eugene M. Keys
Eugene M. Keys was named president of the Edwin I. Guthman Co. of Chicago, following action by the board of directors.

Mr. Keys formerly was the executive vice-president of the electronic components manufacturing company, whose founder, Edwin I. Guthman, died in April.

The new president, who is 37 years old, joined the company in 1942 as a member of the purchasing department. In 1945 he was named assistant sales manager and in 1947 he was promoted to the position of sales manager, a post he retained for four years.

In 1951 he was named vice-president in charge of sales and a year later was made executive vice-president of the company, the position he held at the time of his appointment to the presidency.

SAMA Elects New
 Officers, Directors

Edward J. Albert, president of Thwing-Albert Instrument Company, Philadelphia, was elected president of the Scientific Apparatus Makers Association. Election of the officers and board members took place at the annual meeting held recently at The Greenbrier, White Sulphur Springs, W. Va.
L. B. Swift, chairman of the

MICROWAVE RESISTORS TELEWAVE TYPE R

SMALLEST RESISTOR AVAILABLE

(Ideal for Miniałurization)

TYPE R RESISTORS employ noble metal film deposits on specially selected heat resistant glass.
FILM THICKNESS offers negligible skin effect, at microwave frequencies. POWER CAPACITY of $1 / 4$ watt provides high power hancling ability. PHYSICAL STRUCTURE is ideally suited to impedance matching in standard coaxial line and woveguides. FINISH. Coated with a special silicone varnish to protect the film.
TELEWAVE LABORATORIES, INC.
100 Metropolitan Ave. - Brooklyn 11, New York

And, it's no cocident, of course. The Dano rigid palicy of attentive testing and inspectina everv coil in all vital tragns of production guarantees perfect performance. Send us samples or specifications with quantity requirements for our

- Form Wound
- Paper Section
- Acetate 3obbin
- Molded Coils - Bakelite Bobbin
- Cotton Interweave
- Coils for High Tem perature Application. Also, Transformers Móde To Order

TYPICAL APPLICATIONS

- Power measurement al any
- Matched terminations for wave
- guides or coaxial lines Resistive power pickup loops - RF pads or attenustors - Dummy loads
- Temperature measurements
- Impedance matching

SPECIFICATIONS
Resistance: 50 ohms standard, other values on request.
Tolerance: 5% or 10%
Wattage: $1 / 4$ watt continuous duty at $25^{\circ} \mathrm{C}$
Size: $1 / 16$ inch diam. $\times 3 / 16$ inch long Terminals: Tinned sections $1 / 16$ inch long
Film Length: Type R-063 - $1 / 16$ inch Type R-093 - 3/32 inch Temperature Coefficient power Sensitivity: Approx. 10 ohms/ watt watt

That's What Production Engineers Say about IDAND CDILS

Printed Gircuit

is a WIRING DEVICE

Yes, a Printed Circuit, more accurately termed a Printed Wiring Board, is nothing more nor less than a Wiring Device. It is a most significant wiring device in that volume applications in conjunction with multiple soldering techniques permit the simultaneous production of up to 100 electrical connections

A five tube superheferodyne in volume production utilizing multiple soldering and semi-automatic assembly techniques . . on excellent application of printed wiring methods by Raytheon Manufacturing Company.

Printed Wiring Boards can be made to your engineering-specifications by Methode, an electronic wiring device manufacturer equipped and experienced in the specialized manufacturing techniques necessary to support continuous high production. Typically, the printed wiring panel will be a smaller cost item than most other major component portions of an electronic device.

FM/AM SIGHAL GENERATOR TF 995

A crystal standardized generator either frequency or amplitude modulated. Frequency range: 13.5 to 216 megacycles. Output range 0.1 microvolts to 100 millivolts. Internal or external modulation gives f.m. deviations to 600 kilocycles and a.m. depths to 50 per cent.

UNIVERSAL BRIDGE TF 868

Measures inductance and capacitance at 1,000 cycles, resistance at d.c.; direct reading I microhenry to 100 henries, I micro-microfarad to 100 microfarads, and 0.1 ohms to 10 megohms. Q range O.I to $1.000, \tan \delta 0.00 \mathrm{I}$ to 10.

FM DEVIATION METER TF 934

With crystal-standardized deviation ranges of 5, 25 and 75 kilocycles, alternative high- and low-level buffered inlets, visual checking for optimum tuming and level, together with a separately buffered audio outlet, this ruggedized deviation meter is ideal for carriers in the range 2.5 to 200 megacycles.

STANDARD SIGNAL GENERATOR TF 867

For precision receiver measurements: Covers on an expanded full-vision scale 15 kilocycles (or less) to 30 megacycles, crystal standardized, with an output contintiously variable from 4 volts to 0.4 microvolts. Up to 100 per cent. a.m., with unmeasurablef.m., monitored by dual rectification.

MARCONI instruments

VACUUM TUBE VOLTMETERS FREQUENCY STANDARDS • OUTPUT METERS WAVE METERS • WAVE ANALYSERS - Q METERS • BEAT FREQUENCY OSCILLATORS

23-25 BEAVER STREET•NEWYORK 4

CANADA: CANADIAN MARCONI CO., MARCONI BUILDING, 2442 TRENTON AVENUE, MONTREAL ENGLAND: Head Office: MARCONI INSTRUMENTS LIMITED, ST. ALBANS, HERTFORDSHIRE Managing Agents in Export :
Marcon's Wirblbss Telegraph Company Limited. Marcon House. Strand. London, W.C. 2
board of Taylor Instrument Companies, Rochester, N. Y., was elected president pro-tempore of SAMA and T. M. Mints, president of E. H. Sargent \& Companies, Chicago, was re-elected treasurer of the group.

New section chairman include E. J. Rhein, sales manager of the scientific division of Kimble Glass Company, Toledo, laboratory apparatus section; L. B. McKinley. vice-president of Bausch \& Lomb Optical Co., optical section and P. R. Bassett of Sperry Gyroscope Co., Great Neck, L. I., nautical, aeronautical and military instrument section.

The following were re-elected chairmen of their sections: G. A. Downsbrough, president of Boonton Radio Corp., industrial instruments; O. L. Lethander, president of L. Peterson \& Co., Chicago, laboratory equipment; and Henry F. Dever, president of MinneapolisHoneywell Regulator Co., Brown Instrument Division of Philadelphia, recorder-controller section.

Cornell-Dubilier Plant Near Completion

Cornelle-Dubilier Electric Corporation's new capacitor manufacturing plant, being built at Sanford, North Carolina, is nearing completion, it was announced by Octave Blake, president of the corporation.

Production has already begun on Daper tubular and electrolytic type capacitors at the new plant. Mr. Blake stated.

Situated on a 27 -acre tract, the new platht, part of the expanding program of the corporation, will provide $270,000 \mathrm{sq} \mathrm{ft}$ of operating

Cornell-Dubilier plant
space, including a two-story administration building.

Facilities are provided for a potential of some 2.900 employees, Mr. Blake pointed out, and additional expansion has been planned for anticipated future requirements.

()hio Crankshafit Nantes Benninghoff V-P

W. E. Benninghoff
()hio Crankshaft's president, W. C. Dunn, announced the elfction by the board of directors of W. E. Benninghoff to the post of vicepresident of the company. Mr. Benninghoff continues as general manager of the company's Toceo division. Another major executive change was the election of Foster H. Pettay, a vice-president, to the additional post of secretary-tieasurer of the compans.

Mr. Benninghoff was graduated from Case Institute of Technology in 1920 with an electrical engrineering degree. Until 1935 he vas associated with the Cleveland Electric lluminating Co. as a power sales engineer. In that year president W. C. Dunn brought hinn to Ohio Crankshaft for the develonment of high-fremuency induction hardening of crankshafts. From this beginning he guided the Tocco Division of the company to its present position in the induction heating field.

Westinghouse lPlans
 Missile Subdivision

As A result of the rapid growth of development work in guided missiles, the Westinghouse Electric Corp. is expanding the engineering

- Hidden in the lid of every Deepfreeze Home Freezer is a Honeywell Mercury Switch. This tiny, glass enclosed unit acts to flash on the lamp which lights up the freezer.

Engineers of Deepfreeze Appliance Division, Motor Products Corporation, selected this Honeywell Mercury Switch because:

$$
\begin{aligned}
& 1 \text { It operates by the mere action } 2 \text { It assures long life and abso- } \\
& \text { lute dependability. }
\end{aligned}
$$

3 It is unaffected by extreme cold or temperature variations or by moisture.

Experiences have shown that devices controlled by Honeywell Mercury Switches do not fail. Mercury switches go a long ways toward reducing manufacturing costs and eliminating field service expense. If your application provides tilt motion and requires low operating force, a Honeywell Mercury Switch may be the component you are looking for. MICRO field engineers, fully experienced in all types of switch problems, are available to help you choose the switch best suited to your needs. Write or call the nearest MICRO branch office.

A DIVISION OF
MINNEAPOLIS-HONEYWELL REGULATOR COMPANY
MAKERS OF PRECISION SWITCHES
FREEPORT, ILLINOIS TI

UX-7307A - UX-7350A

These hermetically sealed, MIL-T27 type pulse transformers are designed for universal blocking oscillator use at repetition rates from 50 to 5000 pps.
UX-7307 A and UX-7350 A are identical in electrical characteristics, having two windings for 1000 ohms impedance and two windings to match 250 ohms. To cover a wider variety of applications, the windings are arranged differently in the two transformers.

These units are also available in octal type tube bases as UX-7307 and UX-7350. Bulletin DL-K-320 gives complete information including typical circuits. Write for it.

AVAILABLE FROM Stock

Pulse Width in Micro Seconds*	Rise Time in Micro Seconds	Droop	Front-edge Overshoot	Trailing Edge Back Swing
0.25	.07	1%	4%	5%
0.50	.07	1%	4%	6%
1.00	.07	2%	4%	6%
2.00	.07	4%	4%	7%
5.00	.07	10%	4%	11%

*measured at base of pulse
Electrical characteristics measured by a H-P \#212A pulse generator and a Dumont \#303 oscilloscope. Measurements made with secondary loaded with 1000 ohms. The transformers are tested at 1000 V D.C., and the maximum voltage across the 1000 ohm windings is 300 volts peak.

RAYTHEON

MANUFACTURING COMPANY EQUIPMENT SALES DIVISION
DEPT. 6270. A WALTHAM 54, MASSACHUSETTS district offices: Boston, new york, cleveland. chicago, new ORLEANS, LOS ANGELES (WILMINGTON), SAN FRANCISCO, SEATTLE INTERNATIONAL DIVISION: 19 RECTOR ST., NEW YORK CITY

> RAYTHEON PRODUCTS NNCIUDE: WELDPOWER* welders; Voltage stabilizers (regulators); Transformers; Sonic oscillators for laboratory research; Standard control knobs; Electronic calculators and computers; Radio, television, sub. miniature and special purpose tubes and otber electronic *Reg. U. S. Pot. Off. equipment. *Reg. U. S. Pat, Off.
facilities of the Electronics Division in Baltimore, Md., according to Walter E. Benoit, division manager.
The new engineering subdivision will be known as Guided Missile Ground Control Engineering. The section will concern itself exclusively with the development, design and manufacture of models and equipment for guidance of highspeed, high-altitude missiles.

The new subdivision will eventually be housed in its own building, which will be located adjacent to the company's microwave mantfacturing plant.
Named to head up the new department was Maynard R. Briggs. a veteran of 23 years with Westinghouse, and formerly engineering manager of the communication equipment subdivision in Baltimore.

Horizons Appoints
 Cameron G. Harman

Horizons Incorporated of Princeton, New Jersey, and Cleveland, Ohio, announced that Cameron G. Harman has joined its scientific staff in Cleveland as head of the ceramics department.

For the past eight years, Dr. Harman has been the head of the ceramic division of the Battelle Memorial Institute of Columbus, Ohio. He is currently a trustee of the American Ceramic Society and chairman of the ceramic committee in the American Society for Testing Materials.

For a period of ten years he was

Measurements
Corporation

MODEL 59

MEGACYCLE METER

The only grid-dip meter covering the wide range of 2.2 Mc. to 400 Mc.

FREQUENCY CALIBRATION: $\pm \mathbf{2} \%$
For determining the resonant frequency of tuned circuits, antennas, transmission lines, bypass condensers, chokes, etc. For measuring inductance and capacitance. May also be used as an auxiliary signal generator; for signal tracing and many other applications.

Complete data on request.
MEASUREMENTS CORPORATION

PLANTS AND PEOPLE
(continued)
the assixtant mofessor of ceramis engineering at the University of Illinois. following which he was the chief ceramic engincer for the Lorke Insulator Corp. of Baltimore in the general field of electrical non'celain.

Motorola OpenNew Parts Depot

Moiorola's parts depot
f. S. Goebel, nationat sales and service manager of Motorola Communications and Electronics, resently ammounced the establishment of a new regional parts depot in Dallas. Texas. The parts section oscupies approximately $6,000 \mathrm{sq}$ ft of floor space in the new $\$ 100,000$ building lucated in the Trinity industrial district of Dallas.

Richard J. Clark has been appointed the new parts depot manager:

An additional $3,000: s y$ ft of office sace in the new building will be occupied by the southwest regional office. E. L. Falls, southwest revional manager, heads the parts depot activities and a group of apmoximatel, 25 radio communications engineers who serve six zones overing five southwestern states.

Magnavox Plans New Produrtion Farilities

The Magnavox Co. has purchased a 22 -acce industrial tract at Urbana, 111.. and is moving ahead with plans for the development of new production facilites in that city.
The land was purchased from Biodern Research Industries of Upbana and is located east of the business section in a newly dereloped industrial area.
"We have selected this site after a nationwide survey of possible new phant locations," it was explained by Frank Freimann, president. "Our studies show that Urbana, Ill, afers Magnavox the best possible

new nis
 PRECISION RF STEP * ATTENUATOR

Model AT-120 0 to 1000 MC

Small, rugged ladder attenuator achieves attenuation accuracy and low vswr from dc to uhf. Suitable for all signal and sweep generators in this frequency range.
Care in design assures maximum flexibility in mounting, drive, and types of input and output connections.
Easily adaptable for inclusion in different types of test equipment and in laboratory and production test applications.

SPECIFICATIONS

MAXIMUM STEPS

Ten (eleven contact positions)

attenuation range

Up to 120 db total
Attenuation per step optional

OUTPUT IMPEDANCE

50 or 75 ohms nominal

INPUT IMPEDANCE

100 or 150 ohms nomina
50 or 75 ohms optional

INPUT AND OUTPUT VSWR

1.1 to 1000 mc at 50 ohms

ACCURACY

$\pm .3 \mathrm{db}$ per 20 db step from its dc

PLANTS AND PEOPLE

(continued)
combination of georraphical lucation, labor availability, access to raw materials, transportation. housing facilities and other factors important to the successfal operation of our type of business. In addition, the outstanding engineering and research facilities of the University of Illinois offer an unusual advantage to an alectomios manufacturer."

The compans is now completing plans for use of the land and for the erection of modern facilities for the production of its prodicts.

Hoffman Radio Appoint-
 Willard Geer

Willard Geer
Whlard (iEER has been appointed a consultant on color in tr and militaly applications at the Hoffman Radio Corp. and Hoffman Laboratories, according to ammouncement by H. Leslie Hoffman, president.

Dr. Geer is currently associate professor of physics at the University of Southern California and has been a faculty member there since 1943. Previous to that he was a physics instructor for five years at the Long Beach, Calif. City College.

While his services will include activity with the to manufacturing division, it is expected that most of his Hoffman assignments will be on military gear.

Acme Expands

In California
Construction has been started on a new office and factory building to be occupied by Acme Electronics of Pasadena, a subsidiary of Aerovox Corp. The new plant will include more than $51,000 \mathrm{sq} \mathrm{ft}$ of oftice and

AVIATION PRODUCTS for air-borne quality and dependabilify

Here is an enginuering and production skiil sou can wse to heif you whicue safer Hght. extra frght. For 25 ycars. OSTER has spectalized in eletoo-mednamical products. A staft of trand heddengineers is at your service. Call on us to help vau select the product best suited (t) youl job.

INSTRUMENT CONTROL MOTORS

1. Synchrin Gencratur Synh Revoluers

anchro Comeral

Transturmer
Two speed synchros
 Synoho Differntials lo. Servo Tomue Untits DRIVE MOTORS \& BLOWER MOTORS 1. Pomanent Mamet $\begin{aligned} & \text { 2. } D \mathrm{DC} \\ & \text { 6. } 100 \text { Cycle, } 2 \text { Phe, } 3 \text { Phase }\end{aligned}$ 2 DC (0) Cycle tC
ino Cycle 1 phase

AIRCRAFT ACTUATORS

1. Rotary 2. Linear

100 Cycle, 3 Phase
$7.50-1600$ Cyde.

Variable Frequency

Fine wire and ribbon in base, rare, and precious metals, and alloys for new and highly engineered applications In small units and sizes, and to close tolerances.
Further detanls on request

tricity with features and performance that make it a standout!
The CW is compact and lightweight. It's easier to install and requires a minimum of servicing. Air-cooling avoids trouble from leaking or freezing.
New vacuum cooling and the smoothrunning, 4 -cycle, twin-cylinder engine give the CW amazing quietness. All nooving or heated parts are safely enclosed.
The Onan CW, with all its exclusive advantages, costs less than any other complete electric plant of its capacity:

Deluxe equipment. Nothing extra to buy WRITE FOR SPECIFICATIONS

WRITE FOR SPECIFICATIONS

D.W.ONAN \& SONS INC.

7035 University Avenue S.E.
-
Minneapolis 14, Minnesota

New Acme Plant
plant space on a $9 \frac{1}{2}$-acre site located at Monrovia, Calif.
W. Myron Owen, president of Aerovox, announced that the erection of the structure marks another step in the Aerovox long-range program to provide fast delivery service on quality electronic components to all markets.

Hugh P. Moore, president of Acme, announced that the company expects to add approximately 200 employees to the organization when the new building is completed and anticipates considerably higher production on both the existing Acme line and the Aerovox capacitor line.

Donat Joins TRESCO

Oswald Donat, formerly of Keystone Products Co., has been appointed production and quality control director of Transformer and Electronic Specialties Co. in Philadelphia, according to Edward Fisher, president of Tresco.

Johnson \& Hoffman Move Into New Plant

Johnson \& Hoffman Manufacturing Co., designers and producers of electronic parts, moved into their new plant in Mineola, L. I., N. Y. The factory includes a completely equipped tool and die shop, automatic production facilities and a new parts assembly section.

Production is already under way in the new facilities on the company's line of standard parts and on made-to-order components.

Guthman Names Dendy

King Dendy has been appointed to the research staff of the engineering division of the Edwin I. Guthman Co., according to E. M. Keys, president. Mr. Dendy, who formerly was head of research and development for PCA Electronics of

Model WWVR
Designed specifically to conveniently receive and make maximum use of all the Standard Frequency Transmissions of WWV without any special setup.

Send for complete specifications

A Company is Known
 by the Company It Keeps

Write, wire, or phone GArden City 7-652C for out tatest billetin and price schedules. * Sollucher itictronics \& 12 Herrichs poed. Mineoler New Yerf

AMPLIFIES INPUT SIGNALS 1,000,000 TIMES!

I.ook at the extremely high power output of this new Westinghouse Type FG variablefrequency amplifier. It can take an audio signal of about 10 milliwatts from any conventional 30 to $20,00 \%$ cps source . . and build it up to 5 or 10 KW with uniform response and low distortion.

This suggests uses such as: powering vibration shakers ... powering supersonic transducers . . . exploring high-frequency vibration phenomena . . . producing supply power at any audio frequency . . testing equipment under laboratory-controlled conditions.
The Type FG amplifier is completely selfcontained, and self-protected against overload or blower failure. Easily installed, the unit requires only 23 spuare feet of floor space. Conversion from 5 KW to 10 KW is simple. For information write Westinghouse Electric Corporation, Electronics Division, I.E. Devices Section, 2519 Wilkens Avenue, Baltimore 3, Maryland.

YOU CAN BE SURE...IF IT'S FVeStillololise

"Special" is right down STAR's alley for we have built our business on Custom Porcelain Sperialties for more than 50 years. Every piece of STAR porcelain produced is designed and fabricated to meet customers' specific needs for high dielectric strength, low loss factor, heat and moisture resistance, thermal shock resistance and other proper ties essential to high performance.
porcelain company
49 Muirineod Avervo . Trenton 9. .N. J.

TERMALINE DIRECT READING R. F. WATTMETERS

(DUAL RANGE)
MODEL 611-0.15 and 0-60 Watts MODEL 612-0-20 and 0-80 Watts IMPEDANCE-511/2 Ohms

Models 611 and 612 are popular instruments in research and design laboratories, vacuum tube plants, transmitter manufacturing plants, and in fixed and mobile communication services.
They are ruggedly built for portable use, and are as simple to use as a D.C. voltmeter. The power absorbing load resistor is non-radiating, thus preventing transmission of unvanted signals which interfere with message traffic in communication services.
Frequency range: 30 to 500 MC (30 to 1.000 MC by special calibration 1

Impedance: 51.5 OHMS - VSWR less than 1.1
Accuracy: Within 5% of full scale
Input connector: Female " N " which mates with UG-2I or UG-2IB. Adapter UG-146/U is supplied to mate with VHF plug. PL259.
Special Scalo Model "6Is" are available as low as $1 / 2$ watt full scale, and other models as high as 5 KW full scale. Catalog Furnished on Request

Specify Injection Molded SILICONE RUBBER

Designers of original equipment now specify silicone rubber parts if they must undergo extreme temperature changes or if they require constant dielectric properties. Insulators, bushings, grommets and other small units are in continuous mass-production in our plants. Prompt quotations on receipt of your sample or blueprint.

- MINNESOTA SILICONE RUBBER CO. 5724 West 36th Street MINNEAPOLIS 16, MINNESOTA OFFICES IN PRINCIPAL CITIES

PLANTS AND PEOPLE
(contimued
Santa Monica, Calif., will specialize in delay lines and pulse transformers for the Guthman Company.

WCEMA Awards Over 86,000 In Scholarships

The West Coast Electronic Manufacturer's Association has awerded over $\$ 6,000$ in electronic scholarships, according to Noel E. Porter: chairman of the WCEMA scholarship fund trustees.
The scholarships, for deserving students to start or continue studiein electronic engineering or allied branches of technical education. have been divided between eight coast institutions, in collaboration with the deans of engineering in each college or university.
They include: California Institute Of Technology ; Stanford University; University of Washington: University of California; University of California at Los Angeles; University of Southern California; Oregon State College and the University of Santa Clara.

Canter Elected Head Of Mica Fabricators

J. W. Canter, president of the Mical Fabricating Co. of Rochelle Park. N. J., was elected president of the Mica Fabricators Association at it., annual meeting at the Greenbrier in White Sulphur Springs, West Virginia.
The association represents about 90 percent of the nation's custom fabricators of strategic mica.
F. C. Farnam of the Farnam Manufacturing Co. of Asheville, North Carolina and Peter Yannello of the Reliance Mica Co. of Brooklyn, N. Y. were elected as vice-presidents. The Association acted on matters affecting the industry and approved an appropriation for a quarterly Mica Review to present facts on mica and its use, to assist engineers and purchasing arent. in mica-using industries.

Power Leaves Hoffman

Ralph L. Power, rounding out his tenth year as editor of the Hoffman Transmitter (Hoffiman Radio Corp., Los Anceles) and heading its trade
publicity division, resigned in July and embarked on a leisurely cruise around South America.

Upon return. Dr. Power will ayain operate his own public relations office for manufacturing clients including Cinema Engineering Co., Gertsch Products. Inc., James B. Lansing Sound, Inc., Helipot Corp., California Chassis Co. and others.

A onetime professor at USC, he has been in technical radio since 1922 and is currently executive sec-retary-treasurer of the Los Angeles chapter of The Representatives.

Ralph L. Power

Wescon Program

 EsablishedWHDNESSAY, 10:00 AM-12:3u E'M, AUGUST 19 th
sersion I: Electron Devices I
\therefore skion Chairman: Dr. Chodorow, Staniord University. High Gain Videband InT Amplifier A Roberts, and P. P Cagerstrom, Electronics Fiesearch Latboratory, stanford University.
H. F. Johnson, Hughes Research and Development Laboratories.
3. A Wide Tuning Range dicnowave osch ator-Amplifier
ohn L. F'utz and William R. Luebke, Electronics Research Laboratory. Stan-
ord Triversity.
t. Helix-Type Backward-Wave Oscillators 1). A. Watkins, Stanford University
5. Cross-modulation In Traveling-Wave

Arthur W. C. Nation and Joseph W. Fhristie, Dept. of Electrical Fingineering, Tniversity of Washington.

Session 11: Computers I

Session Chairman: To be announced in
official program). G. A. Neff, R. L. Sink, and H. R. Burke, Consolidated Engineering Corporation, Pasadena, California.

Try Remler for Service-Tested "Hard-to-Get" Components

sllastic rubber SHOCK MOUNTS
(1) Ideal for sub-panel mounting Isolates tubes from shock and vibration. Mount retains compliance from minus 70° to plus $480^{\circ} \mathrm{F}$. Invaluable for military and airborne equipment.

Metal-plastic components designed and manufactured to order. Write for quotations specifying electrical and mechanical characteristics. Describe application. No obligation.

MINIATURE TUBE CLAMP

(2) Corrosion resistant. Holds miniatures in sockets under severe conditions of shock and vibration without restricting air circulation. Easy to insert and withdraw tubes. Three sizes.

Remier Company Lid.
 Since $/ 9 / 8$ pioneers in elect
NEW mODEL 202c
WIDE-BAND CHAIN AMPLIFIER EXTENDED LOW FREQUENCY RESPONSE 1 kc - 210 mc

SPECIFICATIONS

 phase shift make the new SKI Model 202 C Wide-Band Chain Amplifier ideal for the accurate amplification of pulses and transients. The flat frequency response curve of the Model 202C Wide-Band Chain Amplifier permits cascading of a number of stages. Thus, low-level broad band voltages such as pulses, transients, and television signals can be amplified to useful levels. The Model 202C Wide-Band Chain Amplifier finds application in oscillography, radar, nuclear and television research.- rise time $.0026 \mu^{\text {sec }}$
- VOLTAGE GAIN 20 db
- BANDWIDTH $1 \mathrm{kc}-210 \mathrm{~ms}$
- IMPEDANCE 200 ohms
- STABILIZED POWER SUPPLY
For further information write for Bulletin 202P-4

SKL SPENC:ERRENNEDY LABORATORIES, INC.
186 MASSACHUSETTS AVE., CAMBRIDGE 39, MASS.

- WITH - shortrise time and flat top pulses
- FOR - blocking oscillator, impedance matching, or isolation applications
- AT-low or medium average power
- \mathbb{N}-plug-in or chassis mounting, hermetically sealed or encapsulated units

POLYPHASE INSTRUMENT CO., bryn mawr, pa

NEW"PARAFORMED"paper Tubis
 MAKE YOUR GOIL WINDING EASIER! FASTER! BETIER!

 SPARAL WOUND
 ANY SIZE—SQUARE OR HECTANGULAR
 Entirely new technique in tube naking developed and perfected by PARAMOUNT now for the first time solves many coil winding problems, yet costs you no more! Hi-Dielectric. Hi-Strength. Kraft, Fish Paper, Acetate, Red Rope or any combination wound on automatic machincs. Produced from stock arbors or special sizes engineered for you. Write on Company lefterhead for stock Arber list of over 2000 sizes Allows faster stacking of wound coils
 PARAMOUNI PAPER TUBE CORP.
 616 LAFAYETTE STREET, FORT WAYNE 2, INDIANA

Manufacturers of Paper Tubing for the Electrical Industry Since 1931
verter Jweizig, Jet Propulsion Laborator? Calitornia Institute of 'l'echnology, l'asidena, Caifomia.
3. An Analog-To-Digital Conversion šs tem With Printed Decimal Read Hut John L. Lindesmith, Clary Aultiplier Cor poration, San Gabriel, California.
4. An Analog-To-Digital Converter
A. D. Scarbrough, Hughes Aireralt Company, Culver City, Caliornia.
David TI. Shenard, Intelligent Machines IEsealch Corporation, Arlington, Virginia
Session III: Noise And Signal Spectra
Session Chairman: WV. W. Harman, Stan ford Iniversity. Or Measurabie Fre1. Instantaneous

A D Wit and J Zurick Nilioun A. D. W att and . 2. Ihe Response Of Linear Systems To Non-Gadsian Noise B. Gold and G. O. Young, Huphes lie search and Development Laboratories. 3 vinear Detection
Noise-Like Signals velomment Laboratories
4. A System of Noise Analvsis
4. A System of Noise Analvsis

Researeh and Development Lob, Humhes
WFDNESDAY 2:30 PM-5:30 PT AUGUST 19th

Session IV: Computers II
Session Chairman: Dr. Torben Meislisig University of California, Berkeley.

1. On Inproved Reading System For Magnetically Recorded Digital Data
Samuel Lubkin, Electronic Computer Divi sion, Underwood Corporation.
2. Magnetic Materials For Digital Computers
David R. Brown, Digital Computer Labora tory, Massachusetts Institute of Tech nologr.
3. Panel Discussion On The Relative Merits Of Different Memory Types Moderator: Professor P. L. Morton, Uni versity of California, Berkelev.

Session V: Airborne Electronics
Session Chairman: Allen R. Fllis, Stanford liesearch Institute.

1. The Air Navigation Develomment Board's Progran For The Development Of The Common Sustem Of Air Navigation And Traffic Control
D. K. Martin, Air Navigation Develonment Board.
2. Tlie Nieasurement of Performance (O) Airborne, Voice-Modulated Communication Systems
F. J. Moore and John Taylor, Stanforil Research Institute.
3. Corona Interference Reduction Fs Polarity Discrimination
M. M. Newman. T,ightning and Transients Research Institute.
4. Magnetic Amplifiers And Their Applications
Victor Iroros and David Seldman, Pols technic Pesearch and Development Con
5 , Any inborne Weather Radar For Transuort Aircraft Richard Wriste. TransWorld Airlines, Tm,

Session VI: Instrumentation I
Session Chairman: Dr. D. B. Sinclair General Radio Company
The Application Of Counter Techniguts To Precision Frequency Measurements A. F. Boff, Berkeley Scientific Division of Peckman Instruments, Richmond, Cal fornia.
2 J'wn Timing Circuit Inovations
H. B. Brooks, Hughes Aircraft Co., Tuscon Arizona.

- Strain Gage Oscillator

F, A. Varallo. Rarmond Rosen Fingineering Products. Phjadelphia. Pennsylvania 4. Measumements of Time Jitter In Trainof Video Pulses
John L. Fitch and Robert R. Buss, FlecTronics Research Laboratory, Stanford 5. A Peak Peading Vacumm Tube Volt meter Which Has A wons Decay Time And Is Capable Of Measuring The AmpliLeonard S . Cutler, Gertsch Products. Ine. Los Angeles.

Session YII: blectron Devices
Session Chairman: Dr. T. Moreno, Vilian

DEPENDABLE FMometare RADIO FILTERS

- Saves space!
$-115 \mathrm{~V} \mathrm{ac} / \mathrm{dc}, 20 \mathrm{amp}$.
-Excellent attenuation
-Feed through installation
-Flange mounting bracket
-Corrosion \& fungus resistant If you bate radio interference problems, urite or wire us, TODAY!

нøркіNS
 Enqineering

FACTORY: 2082 Lincoln Ave., Altadena, Calif. SYcamore \&-1185 Offices in WASHINGTON. D. C. and DETROIT

Measures phase shift in transformers, amplifiers, filters, and phase displacement networks.

- Measures from 0 to 360 degrees.
- Readings not affected by noise and harmonics.
- Phase shifts of the order of .01 degree can be measured employing special circuit te-hniques. - Measures in-phase and quadrature components separafely.

SPECIFICATIONS \qquad
Accuracy-Basic accuracy plus or minus 2 degrees. Plus or minus 1 degree due to meter error.
Noise and Harmonic Rejection. $\quad 40 \mathrm{db}$. down Sensitivity $\quad 6$ millivolts full scale Maximum Input Voltage …........... 125 volts RMS Peak input $\quad 20$ to 20,000 eps Input Impedance 20 to 20,000 eps. Input Impedance

High Gain 2.0 megohm shunted by 25 mmfd . Low Gain 2.5 megohm shunted by 10 mmid . Reference input mpedance $\quad . \quad . \quad .000$ ohms
Power Supply 105 to 125 volts, 60 cps. 25 watts Power Supply.... 105 to 125 volts, 80 eps., 25 watts Dimensions-Length $15 \mathrm{in} ., \mathrm{Hgt} .9 \mathrm{in} . \mathrm{Depth} 8 \mathrm{in}$.

INDUSTRIAL TEST EQUIPMENT CO.
 55 EAST 11th ST., N. Y. 3-Tel: GR. 3-4684

SWEEPMASTER

Sweep Frequency Generators give you these outstanding advantages

- Frequency Marker with an accuracy indepencent of Sweep Width. Inserted after external detection, it eliminates erroneous interpretation-eliminates possibility of undesirable transient distortion or limiting actions. The Marker is adjustable in amplitude and, after adjustment, remains independent of other controls.
- An attenuator whose performance is free of Frequency, assuring you that the Output

Envelope is the same as that indicated by the Internal Monitor.

- A simple switching operation to permit examination of either Envelope of the Swept Frequency Signal.
- Durable, compact, lightweight Output and Detector Probes, either of which can be detached easily and replaced by cables having standard connectors.

SPECIFICATIONS

MODEL	CENTER FREQUENCY	RF OUTPUT 50 ohm TERMINATION	SWEEPWIDTH CONTINUOUS ADJUSTMENT	FREQUENCY MARKER
SM I	100 KC to 14 MC	1 volt RMS	150 KC to 14 MC	100 KC to 14 MC
SM II	500 KC to 50 MC	0.2 volt RMS	150 KC to 20 MC	500 KC to 50 MC
SM III	500 KC to 75 MC	0.1 volt RMS	150 KC to 20 MC	500 KC to 75 MC

FLATNESS: Less than 1 DB variation over maximum sweepwidth range. FREQUENCY MARKER: Engraved calibration accurate to $\pm 2 \%$.
HORIZONTAL DEFLECTION: A 60 cps sine wave tinuously or blanked out for $1 / 2$ of each 60 cycle for application to horizontal input of oscilloscope is supplied. period
BLANKING: The RF signal may be operated con-
Blocking capacitor of 400
*75 ohm available when specified
MANUFACTURERS ENGINEERING \& EQUIPMENT CORP. 15 Mill Road - Hatboro, Pa.

Size

508
 sit

the advantages in performance and economy that are yours wilt.

sumal NYLON COIL BOBBINS

These plastic moldings are more uniform, more accurate, less expensive

- THE SUPERRIOR RESULT OF

an exclusive single cavity molding method which assures low mold and maintenance costs. Only from Gries can you get the many advantages of

Write for sample of Gries coil bobbins and similar small parts in nylon and other thermoplastics
Send Specifications for Prompt Quotation
GRIES REPRODUGER GORP.

R. F. WATTMETER ME-82/U

Model MM-625 Series 50 to more than 1000 MCS.

This series of instruments was designed to measure RF power up to 400 watts, and serve as an excellent dummy antenna load 1000 MCS in 52 ohm coaxial line circuits.

Some of the outstanding features are:

1. Direclional coupler pick-up probe Which eliminates high frequency resonant responses and errors due to slight deviations in the load impedance.
2. Rugged construction for field and laboratory use.
3. Hermetically sealed and ruggedized indicating instrument in accordance with specifications MIL-M-10304.
4. Two spare crystal rectifier supplied with each instrument.
5. Model MM-625 has recently been assigned the Armed Forces nomenclature ME-82/U.

SPECIFICATIONS

Impedance
Frequency Range
Maximum VSWR
RF Power Scale
Model MM- 25
Model MM-626
Model MM-627
Accuracy
RF Connector

Size
Weight

52 Ohms
50 to over 1000 MCS 1.2

120 watts
40 watts 400 watts
$\pm \mathbf{5} \%$ of full scale Type C (Adopters available for other types)
$6 \times 71 / 8 \times 13-9 / 16$
$91 / 2 \mathrm{lbs}$.

M. C. JONDS

ELECTRONICS COMPANY BRISTOL, CONNECTICUT
Distributed outside of Continental U.S.A. by

Assuciates

Convection Uurrent Nuise-Theory And Experingent
. V. Yadavalli, Microwave 'Tube Groull Universit! of California

Micowave Oscillator Stability
George Het land and Liobert R. Buss, Ele ronic: Research Laboratory, Stantord niversity, Stanford, California
dir-Crolers For High Power Vacuum Tubes
A. L. Lundon, Devartment of Mechanical Fingineering, Stanford University, Stan4. I High-Gain K-Band Amplifier
W. G. Abraham and F. I\&. Salisbury Varian Associates. 5. Operating Bek

Pulsed Klystrons Pulsed Klystrons
Stanford Iniversty
THURSDAY 10:00 AX-L2:30 PM AUGUST 20 th

Session VIII: Transistors
Session Chaimman: (To be announced in llicial program)

1. Recovery Time Measurements On Point Contact Germanium Diodes
Morgan McMahon, T. E. Firle. J. H^{*} Roach. Research and Development Laboratories, Hughes Aircraft Company
2. A Point Fmiter-Junction Collector Transistor
$\underset{R}{ } \quad \underset{H}{ }$ Kinsiston Lincoln Laboratory
R. H. Kingston, Lincoln Laborator
Massachusetts Institute of Technology.

Massachusetts Institute of Technology. Parameters of Transistors
Geoffrey Knight Jr. R A. Johnson R P Holt Transistor Products. Ine
Holt, Transistor Products, Inc. trical Properties ot Semi-Conductors Lither Davis, Jr.. Cawrence Rubin, W. D. Straub, Raytheon Manufacturins Combans

Session Iが: Antennas I

Session Chairmatn: A. S. Dunbar, Lealmo Victor Co., San Carlos, California.
Design And Ferformance Of RotaDesign And Ferformance Of Rotationally Symetric Feeds For Paratololdal R. W. Haas, R. W. Dressel, R. D. Bwing. New Alexico College of Agriculture and Mechanic Arts. State College New 2. A New Intenna Feed Having Fuual F And H Plane Patterns
And H Plane Patterns Aivin Chlavin. Hughes Company Culver City California.
3. Waveguide Slot Arrays Of Large Squint incle
R. J. Adams, A. M. Lide, Nitral Research Iaboratory, lvishington. D. C.
4. The Inpedance Pronerties Of Narrow ladiating Slots in The Broad Face Of Rectangular Waveguides
Arthur A. Oliner, Nicrowave Research In stitute, Polytechnic Institute of Brooklyn . Principles Oi Spiral Scanners Lor dqual Pulse Distribution
J. Richard Huynen. Dalmo Victor Co., San Carlos, California.
6. Boresight Theory For Homogeneous Dielectric Radones
M. C. Horton, W. F. I. Bovee, F. O Hartig roodyear dirraft Corb., Akmon Ohio.
seosion x : Nuchar Padiation Mtane ments
Session Chairman: H. S. Bright, U. S
Naval Radiological Defense Laboratory San Francisco.
Tentative 'lopics
Gamma And Flection Spectrometrs With Crystals At High Energy
. A Discussion Of Some Unsolved Instru nentation Problems In Nuclear Physics . The Current Status Of Radiation D ector Development
(ritles and speakers to be announced in oflicial program).

Session XI: Servomechanisms
Session Chairman: Otto J. Smith, Electrical Engineering Division, University of California, Berkeley.

1. Nonlinear Control Systems With Random Inputs
. C. Booton. Jr., Dynamic Analysis and Control Laboratory, Massachusetts Institute of Technology
$?$ Comparison Of Linear And Nonlineat Servomechanism Response
. M. Stout, Electrical Engineering Divi-
 J．F．Waddel and H．D．Morvis，Fadiation「aboratory，University of Califurnia． 1．Stability Of Feedback Ssemem Lising a Sual Locus Diagram Paul Jones．Jet Pronutsion Laboratmry California Institute of Technology，Pasa lena．
5．Geometrical Intemuetation Of＇The Response of Linear Sistemis To Suecial Inputs
T．Rt．Moore．North Nmerician Aviation Downey，California

THURSDAY 2：30 PM－5：01 1יM
AUGUST 20 th
Session KII：Transistor Cirmits
Session Chairman：H．M．Zeidlet，stan ord Research Institute． $1 n$ Transistors Irving Wolff，Radio Corporation of America．
2．Transistor Shift Registers
R．H．Baker，I．L．Lebow，IR．E．Me Mahon， sincoln Iaboratory，Massachuse\＃ts Insti－ tute of Technology．
 Transmitter
D．E．Thomas，Bell Telephone Labora ories，Inc．，Murray Hill，N．J．
．A Four－Digit Transistor Acemmulator D．J．Fickl，Lincoln Latboratury．Massa－ husetis Institute of echnolog
A Transistor Feedback Amplitier Fos Garrier Frequency Application T．C．Lozier，D．D．Cherry，Bell 1 elephone laboratories，Inc．Murray Hih
session XIII：Microwave Theory \＆＇lech nimues 1
tession Chairman：E．＇J＂Jaynes，Stanford ＂niversity．

Morle Represwitations In Oper Anc Glosed Uniform Waveguid．
vathan Marcuvitr，Polytechmic fustitute Brooklyn．
Applications Of Coupled Hellees
Peter D．Lacy，Hewlett－Packard Company 3．New Applications Of Faraday Rotation In Waveguides
1．G．Fos，M．T．Weiss，S．E．Miller，Bell Telephone Lahoratories，Inc．，Holmdel 4．Non－Reciprocal Circuits Comprisind Ferrite－Toaded Rectangular Wayeguides Tiell Telephone Iaboratories．Inc．，Holm lel．N．J． 5．Fhe Generation Of Flectromagnetic inscillations In The Microwave Region Sincr An Adiabatic Kind Of Amplification redalia ITeld．Flectronics Research raboratory，University of Calitornia lierkeley

Nercion N゙「V：Antennas II
Session Chairman：J．T．Rollj，Tho，Stan－ orr Research Institlte．Spach Non－Reso nant Slots
Robert ．J．Stegen and Rirhari H．Reed Hushes Aircraft Co．．Culver City，Cali ornia．
？．Diffraction Theory And The Pattern O．Suppressed Antennas George Sinclair．Intenna Laboratory niversity of Toronto．

Beam Shaping And Oplimun Rams width Methods Applied Too LHE TV Transmitting Antwhats
John Ruze and John Martin．Tho lohn Ruze and John Fo Martin，Tha rabriel Tahora
Massachusetts． Massachusetts．
1．Voltage Prolection Oi Isolited Cal Nirrear Antemmas
 \therefore titute．Sloted ryinder Omni Range Pro T ${ }^{\prime}$ ．Shamklin．Collins Radio Co

Session SV：Sirromechanism Equipment xession Chatroban：（To he ambouncer in ＂loitles and atuthons in be listed in official liongram）．

「H1゙HSDAY EVVENIS゙G 8 0n P．M－10：00

stssitul XVI：The N＇l．SC And Color Tele 1Fion）
session Chailman：II．IT．Doherty，Bell Telephone Jaboratories．Hns．Murray Hill． Speakers：W．1：．（8．Baker．Vice Presikent

AEROCOM MEANS TROUBLE－FREE SERVICE！ From Ground To Air or Point to Point

SILVER GRAPHALLOY Hillill
 Hulity

 (2)
... for applications requiring low electrical noise, low and constant contact drop, high current density and minimum wear.

EXTENSIVELY USED IN SELSYNS ROTATING THERMOCOUPLE and STRAIN-GAGE CIRCUITS ROTATING JOINTS GUN-FIRE CONTROLS DYNAMOTORS eic.

Wide range of grades available for standard and special applications.
Brush holders and coin silver slip rings available for use with Silver Graphalloy Brushes.

OTHER GRAPHALLOY PRODUCTS:

Oil-free self-lubricating Bushings and Bearings, Oilfree Piston Rings, Seal Rings, Thrust and Friction Washers, Pump Vanes.

Write us for Data Sheets and further information
Graphite Metallizing Corporation
1055 NEPPERHAN AVENUE - YONKERS, NEW YORKPlease send data on Grapholloy brushes and CONTACTS send dola on bushings.

NAME \& title

COMPANY

STREET
CITY

PLANTS AND PEOPLE
n charge of Electronics, General Electric Co., syracuse, N. Y ; and Chairman of the National Television Systems Committee. Donald G. Fink, Director of Research (R, , $T \& A$), Philco Corporation, Philadelphia, Pa.; Chairman, Panel 12 of the NTSC.

FRIDAY 10:00 AM-12:30 PM, AUGUST 21st
Session XVII: Audio Symposium
Session Chairman: Vincent Salmon, Stan lord lResearch Institute
Panel: Microphones: William B. Snow Western Electro-Acoustic Laboratory Beverly Hills, Calif
Recording: Frank G. Lennert, Ampex Cor poration, Redwood City, California Amplifiers: Arthur N. Curtiss, PCA Victor Division, Los Angeles.
Loudspeakers: Bob Hugh Smith, Univer sity of California, Berkeley.

Session KVIII: Circuit Theory I
Session Chairman: B. J. Bennett, Stanford desearch Institute, Stantord, California. 1. The Practical Implication And Applica bions Of Formal Network Theory
2. Design Of A Simple Band-Pass Ampli ier With Approximate Ideal Frequency Characteristics
V. E. Bradley, Philco Corporation
3. Quasi-Distortionless Filter Functions

I, Stewart, University of Michigan luctuation Noise Theory As Applied Co Circuit Design

Anter George, Air Force Missile Tes位, Patrick Air Force Base, Florida.
session KIX: Microwave Theory \& Techniques II

Nession Chairman: J. R. Whinnery, Uni ersity of Callfornia, Berkeley.
A Microwave Oscillograph
lichard C. Honey, Stanford Research In \therefore titute.
2. Instrumentation Of Microwave Electron Fesonance In Magnetic Fields: R. C Mackey and W. D. Hershberger, Univer sity of California, Los Angeles
3. An Improved Cross Guide Directional Coupler
lienry J. Riblet, Microwave Development laboratories, Inc., Waltham, Massachu setts.
4. Two Novel Types Of Waveguide Anusas Cratt Century Dlectronics. Divi Amasa Pratt, Centur Electronics. Divi sion of Century Metalcraft Corp., Van

Broad Banding Circular Polarizing Transducers
N. L. Margerum, Microwave Engineering Company, Los Angeles.

Session XX: Propagation-General
Session Chairman: Dr. Allen M. Peterson Radio Propegation Laboratory, Stanford University.

1. Waveguiding on Surfaces With And Without Loss
Francis J. Zucker, Air Force Cambridge lesearch Center.
2 A New Solution To The Ionospheric tave wquation
A. J. Mallinckrodt, The Ralph M. Parsons Company, Pasadena.

Ionosphere Sounding By Cross-Correlation Techniques
P. 13. Gallagher and A. M. Peterson, Radio Propagation Laboratory, Department of Electrical Engineering, Stanford Univer-
4. The Long-Distance Horizontal Directivity of A 13.7 Mc. Antenna Richard Sllberstein, Nationa
Richard Silberstein, National Bureau of Standards, Washington, D. C.
. H. Crary and R. A. Melliwell, Radio Pronogation Laboratory, Stanford UniverPropo
sity.

FRIDAY 2:30 PM-5:00 P.MI., AUGUST 21st

Session XXI: Propagation VHF UIIF
Session Chairman: Dr. J. B. Smyth, U. S Naval Electronics Laboratory, San Diego California.

1. Results of Tropospheric Propagation Measurements On Frequencies From 92 to 1046 Mc. At The Cheyenne Mountain Field Station
Alfred F. Barghausen and K. O. Hornberg National Bureau of Standards, Boulder
Colnrado.

ANW $H W_{H}$ Hen:
 IN AUDIO WAVE FORM ANALYSIS

PANORANIC SONIC ANALYZER

Specifically designed for applications demanding maximum resolution, the LP-1 offers many new possibilities and high speed analysis of sounds, vibrations and electrical wave forms.

4 Selectable Scanning Ranges
Log Scan 40 cps to $20,000 \mathrm{cps}$

3 Linear Scanning Ranges	Resolution
100 cps	26 cps
500 cps	53 cps
1500 cps	105 cps

- Graphic presentation of frequency vs voltage - Selection and magnification of any spectrum segment for sharp, derailed analysis Automatic maximum tinuously variable tuning control from 40 cps to 20 KC . One cycle per second scanning rate - Wide input voltage range of $500 \mathrm{M} . V$ to 500 V . Sweep oscillator output connection for operation with Panoramic Sonic Response Indicator G-2

SPECIAL APPLICATIONS - Investigations of closely spaced sound and vibration frequencies - Harmonic analysis of waveforms having low frequency fundamentals * Spectrum analysis requiring constant band width

hadio phoducts, inc.

10 South Second Ave., Mount Vernon, N. Y. Phone: MOunt Vernon 4-3970
Want more information? Use post card on last page.

Just Published!

TELEVISION AND RADIO REPAIRING

by John Markus
Associate Editor, ELECTRONICS
556 pages, 225 illus., $\$ 7.95$

The practical, quick approach Liven before sou're halfwas though this book rou cail
 only with the things that go wrong in sets- the incividual parts-and how to handle thern, including troublethods such as soldering, tube replacement, vire splicing etc.

Simple, easy steps
For every television and radio Wart, no mater what make
the set is. Markus shows you how to recognize symptoms of trouble . . how to test 10 make sure : Now to order
the new part . . and how to the new part, and how to and repair pictures inlustrate each step of the way.

TELEVISION AND RADIO REPAIRING Shows you how
to test television and radio to test television and radio
jarts with a multimeter, how to test and replace all tubes including picture tubes, how to repair. andust. or repiace all parts, instal anternas,
and even repair whotograph

Your first repair pays for the book!

```
10 DAYS' FREE EXAMINATION
McGraw-Hill Book Co.
McGraw-Hill Book CO.g
Send me John Markus' TELEVISIon and RADIO
    Send me John Markus' TELEVISION AND RADIO
    REPAIRING for 10 days eximination on approval
    delivery, or return book nostpaid. (lve bay for de
    divery if you remit wild this colpon; same return
    privilege.)
    (Print)
    Aduress
    City
    Company
    l`osition
        (This offer applics in U. S. only)
```


For SPECIFIED PERFORMANCE Specify JELLIFF RESISTANCE WIRE
 COMPLETE CONTROL OF MANUFACTURE
 A WIDE RANGE OF EXPERIENCE A WIDE RANGE Of ALLOYS

make JELLIFF the ideal source of Resistance Wire to assure your Product's

Performance According to Specs.

Precision resistors-rheostats-relays-thermocouples-ohmmeters —bridges—high-temperature furnaces can all benefit from the PLUS-PERFORMANCE of JELLIFF RESISTANCE WIRE

Detailed Enquiries Welcomed. Address Dept. 25
made right to work right

BENDIX-FRIEZ

high-precision thermistors
Whether you use these temperature responsive resistors in standard or special models, you can be sure of this. They'll match your needs for resistance values, size, temperature coefficient, mountings and quality. Made in our own plant under carefully controlled conditions, Bendix-Friez Thermistors know no equal.

STANDARD TYPES FOR IMMEDIATE DELIVERY

Size (inches)	$\left(a+30^{\circ} \mathrm{C}\right.$.	@ $0^{\circ} \mathrm{C}$.	$@-30^{\circ} \mathrm{C}$.
$.140 \times .75$	45.0 ohms	86 ohms	194 ohms
$.640 \times 1.5$	12,250 ohms	26,200 ohms	65,340 ohms
$.018 \times 1.5$	35,000 ohms	82,290 ohms	229,600 ohms

Write for details.

FRIEZ INSTRUMENT DIVISION of 1454 Taylor Avenue, BALTIMORE 4, MARYLAND Export Sales: Bendix International Division $\mathbf{7 2}$ Fifth Avenue, New York 11, N. Y.

Used in this typical application for sensing the temperature of hydraulic oil.

In your design, plan to use the correct type of winding for your specific requirement. Our engineers co-operate in prototype designingcan advise on proper coil application from low-cost bobbin to highest quality interwoven type. CotoCoil Company, 65 Pavilion Avenue, Providence 5, R. I. New York Office: 10 E. 42nd Street, New York 17.

$$
\begin{aligned}
& { }^{2} O U N^{\circ}
\end{aligned}
$$

Investigate the 400 Series low pass filters based on a new resistance-capacity network, and specially designed for amplifier and control circuits.

- Linear phase shift
- Low insertion loss
- An attenuation peak to reject carrier or power frequencies
- Stability over wide ambient temperature variation
- Small size and weight
- Encapsulated for protection

Write for Bulletin 400

INSTRUMENT LABORATORIES

203 RIVERSIDE DRIVE AUSTIN 4, TEXAS

ACME STAR COMPOUND

A Roytheon transtormer molded with Acme Star Compound

NOTE THESE

OUTSTANDING
ADVANTAGES:

- Non-toxic
- Non-corrosive
- Eliminates Voids
- Thorough impregnation

- Simple one-phase molding process

- Tenacious adhesion to metal
- Assures comiplote moistureproof seal

Acme Star Compound a so passes Specification MIL-C-16923 (Ships), Compound, Embedding (Electronic Equipment), Type C

Exterior cases are not required, as the compound alone provides pro tection.

ACME WIRE CO.

NEW HAVEN, CONN.
Coils - Varnished insulations

- MAGNET WIRE

NEW BOOKS

Television Receiver Design

I. F. Stages

By A. G. W. Uitakns. V. I. Philips Gloeilampentabrieken, Philips Tech nical Library, Cleaver Hume Press. London; Elsevier Press, Ver. Yurk, 1953, 177 pages, $\$ 4.50$.

This is the first of a series of six to eight monographs on television receiver design currently under preparation by Dutch engineers of the Philips organization. It deals with the use of pertodes in the i-f section of superheterodyne receivers and the r-f section of trf receivers. It treats, first, the twoterminal coupling network as used in stagger-tuned i-f stages. Three chapters give detailed accounts of the gain-bandwidth relations of such stages, the overall response curve of several stages, and distortions in the transmission of the step function. The fourth chapter covers the same q round, in somewhat more compact fashion, for the four-terminal inductively or capacitively coupled) stage.

The theory and practice of noise reduction in 1 -f and i-f stages follow; the meaning and computation of noise figure and signalnoise ratio, and sources of noise within tubes (including the important subject of cathode-lead conductance) are extensively discussed. The nature and control of feedback in i-f and r-f stages occupy a chapter of 30 pages. The concluding chapter is devoted to practical considerations. such as overall sensitivity and gain requirements, choice of tubes and adjustment of stagger-tuning. Five appendices (on responses of tuned circuits, filters, step functions, noise figures, and the derivation of certain equations) and four tables (vacuum tube characteristics, stag-ger-tuning bandwidths, step function data and comparative bandwidths of synchronous and staggered stages) are included.

This volume is a definitive treatment, well balanced between theory and practice, and copiously illustrated. As such, it will serve as a valuable guide and reference work for students and engineers con-

2 MUSTS

For Low-Cost Servicing of Mobile Radio Systems

Lampkin equipment gives you the lowest cost per channel, whether you supervise a large multiple frequency system, or whether you service numerous smaller instal. lations! Lampkin equipment measures center frequencies and modulation deviation, to FCC specifications!

The Type 205 FM Modulation Meter For Multiple Mobile Frequencies.

The Type 205 FM Modulation Meter measures peak frequency swing dae to voice modulation of FM transmitters, as required by the FCC. Indicates 0-25 KC. deviation. Instantly tunable to any frequency from reading. No charts. Price Net $\$ 240.00$

For Any Number of Frequencies, AM or FM. The Type 105-B Micrometer Frequency Meter

The Type 105-8 Micrometer Frequency Meter measures center-frequency deviation on any number of transmitters, from 100 KC . to 175 MC .; also precisely simulates weak transmitter signals, for mobile receiver alignment, 20 MC . to 175 MC . Overall accuracy within 0.0025%, with spot check on WWV. Price $\$ 220.00$.

Return coupon TODAY for complete literature
LAMPKIN LABORATORIES, INC.
Instruments Div., Bradenton, Floridc
defivery information on the following tampki
defivery information on the following tampki designed instriments

- Type 205 IM Moduation Meter

\square
City

AN INSTRUMENT FOR ALL YOUR MAGNETIC MEASURING PROBLEMS

Dyna-Labs ${ }^{\text {畐 }}$ D-79 GAUSSMETER

This precision built instrument measures flux density, determines direction of How. It locates and measures stray fields and plots variations in strength and checks production lots against a standard. Simple to operate. No ballistic readings . . . no jerking or pulling. Supplied with protective carrying case.

- Other Features -
- Reads 10 to 30,000 Gauss Flux Fields
- Probe is only $.025^{\prime \prime}$ thick
- Active area .01 square inches
- Overall size $13^{\prime \prime} \times 6-3 / 4^{\prime \prime} \times 10-1 / 2^{\prime \prime}$
- Net weight only $10-1 / 2 \mathrm{lbs}$
- Power supply 105.125 volis, 50.60 cycles

Dyna-Labs

PRECISION
 TRANSFORMERS
 for Exacting
 military and industrial requirements

Atlas offers a thoroughly reliable source of custom built transformers. We design - to your performance requirements - transformers incorporating the latest manufacturing techniques. Atlas precision controlled processes and inspection assure reliable performance.

Atlas facilities are arranged for fast delivery of small or large scale production. Testing facilities include a wide range of instruments, insuring exhaustive testing of even the most exacting circuits. We manufacture to MIL-T-27 or ANE-19 government specifications. Available are all standard transformers: power, pulse, audio, interstage, output, modulation, phase changing etc., as well as all types of chokes, reactors, bobbins and layer wound coils.

We specialize in:

MAGNETIC AMPLIFIERS and associated circuit development for industrial sensing and control applications.
INSTRUMENT TYPE REFERENCE TRANSFORMERS and bridge transformers featuring: phase errors as low as $1 / 20^{\circ}$, ratio errors to $1 / 100$ of 1%.
cerned with this aspect of television receiver design. It contains far more detail, as might be expected of a specialized monograph, than is available in other books; as such it fills a unique place in the technical literature

This is not to say that the book answers all questions currently before designers. European engineers have not yet had to face the selectivity problem as fully as their American colleagues. In consequence, the treatment of traps is rudimentary; the general equations (notably as given in Appendix I) apply to trap design, of course, but there is no organized discussion of trap attenuation requirements and related problems.

A more important omission is the question of automatic gain control; the application of age voltage to i-f and r-f stages is not treated except by inference in the selection of the applicable values of transconductance. This leaves uncovered one of the most intriguing recent developments in i-f amplifier design: the shifting poles and zeros in the tuned circuit design as a function of agc voltage.
It is, perhaps, too much to expect that techniques developed during the past four years would find full treatment in a textbook. In such matters, there is no substitute for actual contact with design engineers working on current problems. The inexperienced engineer, on joining such a group, will do well to study this book since it provides a thorough background for the majority of the problems in i-f amplifier design.Donald G. Fink, Philco Corporation, Philadelphia, Pa.

Construction Types:

- Hermetically sealed cans
- Fosterite
- Scotch cast
- Open type

THUMBNAIL REVIEWS

Position of Electricity Industry in OEEC Countries. Columbia University Press, New York, N. Y., 45 pages, $8 \frac{1}{2} \times 11$ inch, $\$ 0.75,1953$. Results of a questionnaire into the installed capacity, production and consumption of electricity, 1951 and 1952.
Abstracts of Theses, June, 1951. Massachusetts Institute of Technology, 156 pages, $\$ 2.00$. Abstracts of 79 theses offered in partial fulfillment of the requirements for Doctor's de-

SYNCROGEN

 FORM GENERATOR AND PULSE SYNCRONIZATION UNIT

The E-10 provides, at repetition rates of 1 cycle per second to 100 kilocycles per second: 1. Sawtooth waves; 2. Square waves or Square Pulses, one microsecond to one second duration with rise time of 0.15 microseconds; 3. Integrated or Differentiated versions of the square waves and pulses. All outputs are simultaneously available and independently variable in amplitude. All outputs may be synchronized, triggered or gated by sine waves, pulses or other complex wave fo ms.

Additionol applications of the SYNCROGEN include: oscilloscope sweep phaser, delayed pulse generator, oscilloscope trace expander, f:equency divider, and pulse fime or pulse with modulator. The SYNCROGEN is an excellent educational demonstrator and useful alectronics laboratory accessory.

AMPLITRONIX
inc.
280 9th Ave. NYC 1, N. Y.

"INDUSTRIAL"

for
ELECTRONIC
COMPONENTS
Precision engineered electronic components and connecting devices for all your needs.

- ANODE CONNECTORS
- INTERLOCK PLUGS
- LAMINATED TUBE SOCKETS
- TERMINAL STRIPS
- WIRED ASSEMBLIES
- METAL OF BAKELITE STAMPINGS
- TERMINAL BOARD ASSEMBLIES
- SCREW MACHINE PARTS
——NEW ITEMS——
- TUNER STRIPS, SOCKETS and BRACKETS for UHF

Our extensive design and production acilities are available for developing cations. Representatives in principal cities throughout U.S.A. Call or write for samples and information.
oRegon $7-1881$.

INDUSTRALAL HARDWARE Mfg. Co., Inc. 109 PRINCE STREET - NEW YORK 12, N. Y

ENGRAVING•PROFILING

for heavy production

with the

Write for literature describing:

1. Heavy Duty model (as illustrated) - Catalog H 29
2. Portable models - Catalog IM 29

NEW HERMES, Inc. 13 -19 University Place, n.Y. 3, N.Y.

In Canada: 359 St. James St., Mantreal
World's Largest Monufacturer of Portable Engroving Machinas

WHAT MAKES A MAILING CLICK?

Me GRAW-HILL gatct mal ust service

Xdvertalng mon agree . . . the list is more than hals the story. MeGrew-Fill Mailling Lista, used by leading manufacturern and industrial service organizations, direct your advertising and sales promotional efforts to key purchaning power.
ln viow of present day difficulties in maintaining your own mailing lists, this officient personalized service is particularly important in socuring the comprohengive markot coverage you need and want. Investigate today.

McGraw-Hill Publishing Co., Inc. DIRECT MRIL DIVISION
330 West 42nd Street New York 36, New York

SUnset 3.3860
11423 VANOWEN ST., NORTH HOLLYWOOD, CALIFORNIA

REPRESENTATIVES:

Jack Beebe, 5707 W Lake Street, Chicago. Illinols
George E. Harris \& Co., Box 3005 , Municcipal Airport. Wichita, Kansas
Marvin E. Nulsen, 5376 E . Washington St,
Marvin E. Nulsen, 5376 E . Washington St., Indianapolis 19, Indiana
Burlingame Associates. 103 Latayette Street, New York City
Canada: John R. Tilton. 1166 -A Lake Shore Road, Long Branch, Ontario

For further information contact your neares Hycar representative or Hycar representative Bulletin R

> Facts you should know about HEYCO STRAIN RELIEFS!

the Nylon Bushings that Anchor cord to housing

1. Absorb cord pull, push and torque
2.

Insulate wire from housing

CUT PRODUCTION COSTS IMPROVE PRODUCT QUALITY APPROVED ©

SAMPLES? Send wire size and chassis informationTry HEYCOS at no cost to you - today!
MADE IN All SIZES FOR CLOCK WIRE TO S•10/3 CABLE
heyman manufacturing company
KENILWORTH2, NEW JERSEY

THE HEYMAN ORGANIZATION WITH 25 YEARS STAMPING EXPERIENCE HAS MODERN PRESS CAPACITY FOR OVER 2,000,000 FINISHED STAMPINGS PER DAY. ASK FOR BULLETIN 33

gree, and listing by title of theses accepted for the Master's and the Engineer's degrees; 372 theses in all.

American Electricians' Handbook, 7th Edition. By Terrel Croft, revised by Clifford C. Carr. McGraw-Hill Book Co., New York, 1953, 1,773 pages, $\$ 10.00$. A fully revised edition of a well-known practical electrician's handbook, taking into account the 1951 National Electrical Code. For the every-day electrical worker, with a minimum of theory and a maximum of down-to-earth data and guidance for selection, installation, operation and service of all types of electrical apparatus and materials.

Physical Formulae. By T. S. E. Thomas. John Wiley \& Sons, Inc., New York, N. Y., 118 pages, 1953 , $\$ 2.00$. Another of the small Methuen Monographs on Physical Subjects, containing basic formulas and equations of mathematics and statistics, mechanics, hydraulics, elasticity, general physies, acoustics and Fourier series, heat. light, electricity and magnetism and electronic physics.

Construction and Ipplications of Conformal Maps. National Bureau of Standards. Applied Mathematics Series 18.280 nases, $\$ 2.25$ from Government Printing Office. Theory, applications and methods presented at NBS Institute for Numerical Analysis symnosium, Los Angeles, 1949. Applications to electric and magnetic fields. elasticity, fuid dynamics, supersonic flow: : methods include graphical. network, relaxation. and electrolytio tank:

Clarostat iv Control Replacentent Manual, ㅇnd edition. Clarostat Mfg Co.. Inc.. Dover, N. H., 262 pages, $\$ 1$. Lists replacement controls by set model and chassis designation, set manuiacturer's part number, Clarostat catalog number, function and de scription. Guides distributor and service man in stocking the most likely replacements for any wiven localits or trade.

Numerical Solution of Differential Equations. By William E. Milne. John Wiley \& Sons, Inc., New York, N. Y. 1953,275 pages, $\$ 6.50$. Many examiples plus text on solving problems of mechanics, astronomy, electricity and nuclear physics. Ordinary and partial rifferential equations: explicit and implicit methods

Hass Spectroscopy in Physics Researeh. Bureau of Standards Circular 522,273 pages, $1953, \mathrm{U}, \mathrm{S}$. Government Printing Office, $\$ 1.75$. Proceedings of symposium September 6-8, 1951. At total of 36 papers by physicists from this country and 10 other countries on all aspects of mass spectroscopy.

Stochistic Processes. By J. L. Doob John Wiley \& Sons Inc. New York, N. Y.. 1953, 654 pages, $\$ 10.00$. Contents include: processes with mutually independent random variables: proces-

How to keep

informed on

the

"with what"

part of

your business

At your finger tips, issue after issue, is one of your richest veins of job information-advertising. You might call it the "with what" type -which dovetails the "how" of the editorial pages. Easy to read, talking your language, geared specifically to the betterment of your business, this is the kind of practical data which may well help you do a job quicker, better-save your company money.

Each advertiser is obviously doing his level best to give you helpful information. By showing, through the advertising pages, how his product or service can benefit you and your sompany, he is taking his most efficient way toward a sale.

Add up all the advertisers and you've got a gold mine of current, on-the-job information. Yours for the reading are a wealth of data and facts on the very latest in products, services, tocls . . . product developments, materials, processes, methods.

You, too, have a big stake in the advertising pages. Read them regularly, carefully to keep job-informed on the "with what" part of your business.

McGRAW-HILL PUBLICATIONS

NEW BOOKS
ses with mutually uncorrelated or orthogonal random variables; Markov processes-discrete and continuous parameter ; and martingales. Processes with independent and orthogonal increment: stationary processes-discrete and continuous parameter. and linear least squares prediction-sta tionary (wide sense) processes.

Price Guide To Collectors Records. Edited by J. M. Moses. American Record Collectors' Exchange. 825 Serenth Are., New York 19, N. Y., 1952, 32 pages, paper-covered, $\$ 2.50$. Lists every celebrity disc made up to 1925 with its current market price, with values ranging from $\$ 1$ to $\$ 150$. The approximately 7,300 listings include over 5,000 Victor Red Seal records. Most Caruso records are listed at $\$: 2$ to $\$ 4$ each.

How Tu Control Production Costs. Phil Carroll. McGraw-Hill Book Co. New York, 1958, 272 pages, $\$ 5.00$. Practical guide to keeping costs down and product quality up, written snecifically for management. Shows step by step how to get more accurate produetion costs, how to apply overhead expense properly to cost estimates, how to set budgets, how to set up real production control, how to improve engineering to cut production costs right at the start, how to use production incentives effectively, and how to take action when cost leaks are discovered and reported.

Remote Control By Ratio. By A. H. Bruinsma. Philips Gloeilampenf:abrieken, Eindhoven, Holland, 95 pages, \$1.50. Distributed in this country by Elsevier Press, New York. Author describes series of radio-controlled model boats that he designed and built for exhibition. Complete circuit details are given, and many of the mechanical details are shown in photographs. One ship uses a relatively simple two-channel system; another uses an eight-channel system to control various functions remotely, including the catapulting of a miniature airplane from the deck of a three-foot model. A remote-controlled crane is also provided for fishing the plane from the water after lambhing

High Frequency Heating And Temperature Distribution In Surfare Hardening of Steel. By L. A. Dreyfus. Acta Polytechnica, Vol. 4. Nr. 5, 115 pages, 1952 , Sw Kr. 18:00, Stockholm. An extensive engineering treatment of the subject, published as part of the electrical engineering series of the Royal Swedish Academy of Engineering Sciences.

Accounting Guide For Defense Contracts. By Paul M. Trueger. CCH Products Co., 214 N. Michigan Ave., Chicago. 384 pages, $\$ 7.50,1953$. How to handle the complicated accounting problens in connection with defense contracts, with samples of the required forms, how to renegotiate or terminate a contract, the facts of allowable and unallowable costs, etc.

Plug In Meter-Relay

Hermetically Sealed and Shock Mounted. Model 265 non-indicating meter-relay has balanced movement, locking contacts, 0.2 microam peres sensitivity and sealed case.

Sensitivity Ranges

0.2 microamperes to 50 amperes, or .05 millivalts to 500 volts. The range can be changed with shunts or series resistors.

Accuracy

Factory adjustment within 3% of the specified current or voltage for most units. By adjust ing circuit resistance the accuracy can be im proved to better than 1%.

Contacts

S.P.S.T. or S.P.D.T, rated 5 to 25 milliamperes D.C. at 75 to 125 volts. Contacts lock in by a holding coil in the relay. They are released by breaking the circuit to the holding coil. The diagram shows internal wiring arrange. ment and basic circuit requirements.
Load resistance R
limits contact cur-
rent to rated value.

Speed

Design variations allow for a range of re sponse time from 1 millisecond to 10 seconds for most ranges. Time delay can be cali brated in seconds,

Case Style

Round metal can. sealed. Octal plug con nector or other type of sealed header is optional. Rubber shock mount protects the jew eled movement from jars and vibration. Size: $21 / 4^{\prime \prime}$ dic, $\times 21 / 4^{\prime \prime}$.

A.C., D.C., R.F., F , C

The Model 265 used with copper oxide or crystal diode rectifiers works well on A.C. Rectifiers may be built in, likewise R.F. ther mocouples. Calibrated in millivolts and with bimetal compensation this relay gives accurate control or safety alarm when used with temperature thermocouples. For further specifications write or call Bradley Thomp son, Assembly Products Inc., Chagrin Falls 43. Ohio. Phone CH 7-7374

Want more information? Use post card on last page

BACKTALK

Civilization??

Dear Sirs:

Dr. Wiener's essay in the June issue of Electronics ("A Machine Wiser Than its Maker," New Books, p 368) carries the implication, at least to one so inclined, that ultimately nothing is impossible.

Lest anyone working in the physical sciences start getting too big for his breeches, it might be well to call attention to the pitiful smallness of what science and engineering have so far accomplished for the good of mankind.

As Rebecca West has pointed out, modern technology has not been able to provide a cheap house, nor cheap food.

Improvements in transportation have become, from the utilitarian point of view, smaller and smaller each year, with signs of retrogression appearing in automobile traffic. Floors must still be swept, clothes washed, dishes washed, taxes paid, clogged drains opened and lawns mowed in the usual way.

Science has made distinct inroads into some areas of the ancient problem of making life physically easier, for example, more efficient production of certain goods, public health, easy communication; and it has nibbled at the others. But in the broadest sense, the advances have been exceedingly small,

Humility is still a virtue.
Lawrence Fleming
Falls Chuch, Virginia

Dots Missing

Dear Sirs:
Witil regard to the article by Gerald W. Lee entitled, "Broadcast Transmitter Remote Control System", appearing on page 138 of the June 1953 issue of Electronics, I fear that the diagram presented with the text is in need of some checking.

In the third paragraph on page 139, the author says that K_{1} energizes K_{2}, which in turn pulls up K_{3}. Since the diagram shows K_{g} cannot pull up until K_{3} has pulled up, nor

USES OF PRINTED CIRCUITS

Printed Circuits have already replaced, in industry, many component parts. The following is a partial hist of how printed circuits are now being used

- Coils
- Condensers
- Resistors
- Switches
- Wiring

TYPICAL APPICATIOMS of PRINTED CIRCUITS

- Amplifier wiring
- Radio chassis wiring
- TV antenna crossover networks
- Filter networks
- Flush switches
- Bounceless switches
- TV IF transformers
- Radio loop antennas
- Meter wiring

advantages of prlited circuits

- Costs are drastically reduced
- Eliminates all human errors
- Eliminates all soldering operations
- Circuits can be made extremely small

A sketch or print of your product, sent to us, will receive an immediate reply with complete information as to its prinied circuit appearance and price quotations.

If desired our sales engineer, in your area, will visit your plant and give you whatver assistance you need in adapt. ing your product to printed circuits.

CENTRORILSS COMPANY

21-04 122 Street
College Point, L. I., N. Y
FLushing 3-7390
can K_{3} pull up until K_{2} has pulled up, it is a little hard to see how K, can do anything but drop out both relays after they have been pulled in by some other means.

I am sure you will take this comment in the spirit of pure correction, the article being very good in every respect-even with the error. Hilton Remley Des Plaines, Illinois
(Editor's Note: The error lies in the accidental omission of a dot at the junction between the 115 -volt a-c supply wire [near the lettering $K_{2} 1$ and the wire between K_{2} and the moving contact of $N a$)

Dear Sirs:
With reference to the article "Con-stant-Current Power Amplifiers" by Sterling and Sobel appearing on page 122 of the March 1953 issue of Electronics, the resistor values in the plate circuits of the first pair of 6AK6's and in series with the 5 R4GY 450 -volt supply were omitted in Fig. 2. It is also noted that the above 6AK6's and the first 12AX7 have no direct plate supply voltage except for the IR drop in the cathode resistors of the 12B4. Is this correct?

Prentiss B. Alger Cranford, New Jersey
(Editor's Note: The values for the plate resistors in the first GAK6 stage are 39,000 ohms each. The 12AX7 stage plate supply is the cathode drop of the 12B4. Plate voltage for the first $6 A K 6$'s comes from the same source, and a dot at the intersection of the wire to the center of the unlabeled plate resistors and the cathode of the 12B4 will fix that part of the circuit. The resistor in series with the 450 -volt supply is simply a cur-rent-limiting resistor and may be 22 ohms. An error in the explanation for the feedback phasing capacitors has also been noticed. These values should be adjusted for minimum ringing on square waves, not maximum as shown on the drawing.)

Credit

Dear Sirs:
This is referring to my paper "High-Speed Number Generator" Uses Magnetic Memory Matrices" which appeared on page 200 of the

ELECTRONIC GLASS WORKING EQUPPMENT

. For Radio, Television Tubes, Incandescent Lamps, Glass Lathes for Tolevision Tubes

TURNTABLES

We make Transformers, Spot and Wire Butt Welders, Wire Cutting Machines and 500 other items, indispensable in your production. Eisler Engineers are constantly developing New Equipment. If you prefer your own designs, let us build them for you. Write to Charles Eisler who has served The Industry over 33 years.

We make over 100 types of turnrobles; filting
models and positioners.

More Eisler Stem and Sealing Machines are in use in the Electronics Industry than all other makes combined. There is a reason; they are simple, well-built, compact, last long, have good production, and are constantly being improved to give more production.

EISLER B POSITION AUTO INDEEX SEALHGG MACH, SENEV DRIVE

Dr. Charles Eisler, President
EISLER ENGINEERING CO., INC.

High Sensitivity . . Logarithmic AC VOLTMETERS

```
SELF CONTAINED
ALL AC OPERATED
    UNITS
NO PREAMPLIFIERS
    NEEDED
```

These extremely sensitive and highly stable instruments serve simultaneously as voltmeters and high gain circuit protects mirror scale circuit protects mirror scale
indicating meter aqainst all indicating meter against all
overloads (maximum input voltage on most sensitive rance)

MODEL 47 emas $\pm 2 \%$ 15C to 30 KC 50 MICROVOLTS to 500 VOLTS

Write for

Mod.	Voltage Range	Frequency Response	Input Impedance	Inprox Feedback	$\begin{aligned} & \text { Overiap. } \\ & \text { Scale } \end{aligned}$	$\begin{aligned} & \text { Amp. } \\ & \text { Gax̂̃ } \end{aligned}$
45	.0005-500	$5 \mathrm{C}-1600 \mathrm{KC}$	$\begin{aligned} & 2 \text { Megohms } \\ & 12 \mathrm{MMI} \end{aligned}$	22 DB	NO	1600
451 B	.0005-500	10C-250KC	$\begin{aligned} & 5 \text { Megohms } \\ & 12 \mathrm{MMF} \end{aligned}$	$3{ }^{9}$ 1) ${ }^{\text {a }}$	NO	1600
47	.00005-500	15C-30kC	$\begin{aligned} & 1 \text { Merohm } \\ & 15 \text { MMF } \end{aligned}$	29 DB	10 DB	23000
47 B	.00005-15	15C-30KC	$\begin{aligned} & 50 \text { Mesohms } \\ & 15 \mathrm{MMF} \end{aligned}$	27113	NO	23000
53	.00015-500	10C-250KC	$\begin{aligned} & 5 \mathrm{Mesohms} \\ & 12 \mathrm{MMF} \end{aligned}$	351013	10 DH	5300

Instrument Electronics Corm 90 man sr: PORT WASHINGTON, N. Y.

SIGNAL, NOISE AND RESOLUTION IN NUCLEAR COUNTER AMPLIFIERS

Just Published!

sinple theoretical and practi al treatment of the signal to noise ratio of nuclear counters and associated ampliffers, Emphasizes lonization chambers. covers proportional and scinGillespie, Atomic Energy Reearch Establishment, England 15.5 tp.. 61 illus.. $\$ 4.50$.

RADIO ANTENNA ENGINEERING

Provides guidance in designing both receiving and transmitiling antennas used in point-to-point, ground-to-air, and military ing. Includes advanced designs suggested hy very-high-frequency and ultra-highrequency lechniques, emphasizing their growing importance. Largely deals with cus!om-built antennas up to 30 megs: shows how to choose a site, how in choose conductivity etc By. Edmuma there soll Chief Eur'r, RCA int Dix sis. pib 386 illus., \$10.00

ELECTRONIC ANALOG COMPUTERS

tives atid in the design and operation of electronice computers of the d-e nnalog type used as differential analyzers and setiong up problems that iessens the chief error of faulty assignment of scale lactors Gives samples of practical applications Covers design of computer circuits, auxilbaty componerts, and complele installations to meet smecifie needs. By Granino A, Korn, Stafr Fingr. Lorkherd Aircraft Corp., and Thereain. Korn, craft Co. sfx nu. TO illus. $\$ 7.00$

TELEVISION ENGINEERING

Second latition Covers the whole television process-from sludio to receiver - clearly, and in detail. 'Treats TV technology operating principles of TV systems, use of equipment. Provides prac:llues of parts, tube types, etc. Explains color TV, intercarrier sound reception histributed amplification, and many other phases. By Donald G. Fink. Editor. Electronics. 2nd ed., $\boldsymbol{f e} 1$ pr.. 512 illus. s8.75

SEE THESE BOOKS 10 DAYS FREE

May 1953 issue of Electronics. In my paper I omitted an acknowledgement which should have appeared.
The first such number generator was built by Wang Laboratories fulfilling a contract for Laboratory for Electronics. Inc., under a subcontract between L.F.E., Inc. and the University of Michigan, under prime contract No. AF30(602)-9 between the United States of America and the University of Michigan. Credit is due to Mr. B. M. Gordon and Mr. R. N. Nicola of Laboratory for Electronics. Inc. in their original suggestions of using dot sequential system and the possible use of magnetic cores in the system.

A. Wang

Bunk TV

Dear Sirs:
In the May 145: issue of Electrontes (p 20) you published pictures of the industrial television system installed at the New York Savings Bank. This is a Telescreen System for banks. designed and installed by our cumpany.

(Editor's Note: Mention of Telescreen's part in the New York Sarings Bank installation was inadvertantly omitted from the article in question.)

More Trons

Dear Sirs
In addition to the "Tron" family listed in Electronics for May, 1950 (p 112), I herewith submit several additional relatives in the hope you have not met them.

Cheepatrom - Replacement for phantastron.

Cymatron-Frequency multipliex.
Maxitron-General Electric Xray generator

Phasitrm-Television antenna.
Polaryon-National Union tube.
Solartron - Regulated power supply.

[^18]
DOES YOUR MIDWEST SALES PICTURE NEED RETOUCHNG

We're looking for qual products in the Electronics Field that we can introduce to our extensive channels of distribution in the Midwest.
Complete servicing and warehousing facilities available. Modern display offices, centrally located. We are now in a position to add one or two quality products to our other well-established lines. If your midwestern sales are sagging, ask for details of our comprehensive program for revitalizing accepted products

AMERICAN SOUND PRODUCTS

INCORPORATED
1303 S. Michigan Boulevard CHICAGO 5, ILLINOIS

IMPORTED AUTOMATIC TOROIDAL COIL-WINDING MACHiNES

Designed and made in Germany. Available in 4 sizes for a minimum I.D. of 5/16", 7/16", $11 / 16^{\prime \prime}$ and 13/16" after winding. Rings are revolved outomatically by an adjustable gearing. The feed is odjustable during operation. Coils can be wound continuously around 360° or in sectors

Exclusive Distributor:

REX RHEOSTAT CO. BALDWIN, L. In N. Y.

McGRAW-HiLL TECHNICAL WRITING SERVICE
 TWS offers you a single INTEGRATED publishing service prepared to undertake a project from research and planning through finished manuscript and art, typesetting, mechanical preparation, printing and binding. Whatever the situation, whatever the type of literature you need, our editorial and art consultants can help you, bringing to your most specialized job the craft and skill of publishing experts.
 WRITING EDITING ILLUSTRATING PRINTING

TO YOUR OWN OR GOVERNMENT SPECIFICATIONS

Whether you need an instruction book or service manual, to accompany your equipment, written to government' specifications
or product catalogues or training booklets . . or annual reports . . . or company histories . . our writing staff can do the job for you, our artists can create and execute the illustrations. And McGraw-Hill printing, binding, and paper resources are among the best in the country.
save money and time LET OUR STAFF be YOUR STAFF FOR
TECHNICAL and BUSINESS PUBLICATIONS

ASK
our representative TO CALL

Write • Phone
Technical Writing Service
McGraw-Hill Book Co., Inc.
330 W. 42nd St., N. Y. 36, N. Y. LOngacre 4-3000

BOESCH Sub-Miniature WINDING MACHINES

Model SM-A designed especially for winding of subminiature sized coils. Finished windings up to $1^{\prime \prime} 0 . D$. to as small as $1 / 16^{\prime \prime}$ nominal hole size. Wire range \#34 through \#44 AWG. Speed variable.
*Available to licensees of the Western Electris Co., Ine.
Designers and Builders of coil winding machinery, special machinery and equipment. Write for brochure

WORLD'S MOST VERSATILE

 WINDING MACHINES STABILITY MEASURED IN

PARTS PER MILLION SERIES 400
EJPECIALLY FOR NUCLEAR WORK

- Regulation- 100 PPM for line voltages

105 V to 130 V .

- Load Regulation-7S PPM from no load to full load.
- Stability- 100 PPM for $3 \mathrm{hrs} / 1500$ PPM
- Rer day. $\begin{aligned} & \text { Rippeter than } .01 \% \text {--(negligible }\end{aligned}$
noise and bounce. 1
- Transient-free for all line disturbances.
- Far more stable than batteries

JOHN FLUKE ENGINEERING COMPANY

1111 W. NICKERSON STREET SEATILE 99, WASHINGTON

SPECIFICATIONS
Model 400B. 1000 to $5000 \mathrm{~V}, 0-1 \mathrm{MA}$. Negative side grounded.
Model 400C. 500 to 1500 O-1 MA Negative side grounded.
Mode 4000. 1000 to 5000 O-1 MA. Fositive side grounded
Model 4OOE. 500 to 1500 O-I MA Fositive side grounded

Models to your specific voltage requirements ovailable on order.

Also
For wider voltage range and for higher output current, for even greater stability and for regulation to 20 PPM, we offer the 300 Series Precision Direct Current Power Supplies -Catalog literature available on requas? to Dept. NF-12.

Represented by:
D. C. MILEER CO. Hollywood San Francisco, AHALDGUE1 tue, Seattle: Hol Fwood. ODELL. Cleveland, Dayton: EARL IAPSCOMP ASSOC. Dallas. Houston:
M. RICHARDSON \& CO. Minneapolis. Nimm.

Need to be sure of CONTINUOUS, ADEQUATE-VOLTAGE POWER?

USE THIS ASC』 COMBINATION

Automatic Transfer Switch

with Close Differential Relay

When installing your

 emergency power supplyx
Be sure of continuous power by installing an ASCO Automatic Transfer Switch to transfer the load to emergency should normal power fail.

4Be sure of adequate-voltage power by equipping your ASCO Automatic Transfer Switch with ASCO Close Differential Relays, to provide for transfer and retransfer of the load on a small voltage differential.
POINT The best electronic equipment is useless without power; you need an emergency supply to prevent costly shutdowns. But even with this emergency source, unless automatic load transfer is provided, your equipment will be inoperative until the emergency power switch is located and manually thrown. During this "waiting period" your equipment is useless and time and money are wasted.
ASCO can eliminate this delay by supply. ing an Automatic Transfer Switch that will transfer in two to five cycles on small units and five to nine cycles on large!
Once the normal source is again in proper operating condition, the ASCO Transfer Switch will automatically restore the load to the normal source.
POINT 2 Where adequate-voltage power is importani, ASCO Transfer Switch equipped with ASCO Close Differential Relays can provide transfer on a 5% differential in power supply voltage (less, if required).
Close differential relays are also available as unit devices for any application.

Our ideas on the automatic transfer of loads are discussed in a special free pamphlet. May we send you a copy?
Automatic $\mathrm{S} \overline{\mathrm{w}} \mathrm{itch} \mathrm{Co}$. Want more information? Use post card on last page.

Trajectrom-University of Michigran instrument.

John H. Hewitt Newton Highlands haseachuselts

Bated Breath

Dear Sirs:
In "Crosstalk", (col. 1, p 129, May 1953 Electronics) you make a most interesting and truthful statement, namely, "The public is not now waiting with baited breath for color".

Now, in view of the known facts, I don't want to argue with you about the actions of the public. However, the statement leaves me quite puzzled. Just how do you bait breath anyhow? With Scotch and sod:t, or what?

Seems like you didn't use the word you intended. Bated fits much better, and is defined as "to lessen by retrenching, deducting, or reducing - to abate-etc-as to bate one's breath". (Webster's New International Dictionary, Second Edition, Springfield, 1952, Vol. 1, p 230). Certainly this fits the context better than baited, which means carrying or having attached to it "anything, especially good, used in catching fish" (Webster, op. (it., p 205).

Ronatd I. Ives Williamsille. New York

In The "Crosstalk" department of Electronics (May 1953) the following sentence caught my eye:
"The public is not now waiting with baited breath for color".

Noah Webster and I hope you have a profitable session with your proof-readers, and we await (with bated breath) the "Crosstalk" section of the June issue.

A. T. Williamson

Canmian Industries Ltd.
Mc.1usterville, Queber

Re "Cronstalk", Electronics, May 195:3, line 6. "The public is not now waiting with batited breath for color".

What kind of bait? Money? Worms?

With bated breath I await your reply.

John II. Miller
\ewark, New Jersey

All too often, farsighted engineering ideas and aims are held in check by everyday job requirements. Engineers made of the right "stuff" hold a secret yearning to break the shackles of today - to think in terms of the possibilities of tomorrow.

Sylvania thinks that way, toohas thought so for years. As a result, Sylvania encourages its engineers to pioneer, develop, follow through on their ideas, write and speak on their chosen subject to gain professional recognition.
If you are looking for a stimulating challenge that will last a lifetime - investigate the splendid career opportunities with fastgrowing Sylvania.
Send your resume to
JOHN C. WELD
Supervisor of Employmen
254 Rano Street, Buffalo 7, New York

RADIO AND TELEVISION DIVISION 254 RANO STREET
BUFFALO 7, NEW YORK

Want more information? Use post card on last page.
August, 1953 - ELECTRONICS

All business

 is specialized

 is specialized}

. . . and nothing

specializes

on your business
like your business paper

You can sell suntan lotion on Broadway or Beacon Street, but this seagoing salesman can sell a whale of a lot more . . . because he specializes.

Your business is specialized, too. That's why it pays to keep up with your business paper. It specializes on business problems you meet every day. It helps you do a whale of a lot better job by keeping you posted on your whole field. You can move ahead when you know what's ahead; you can make quicker, surer decisions when you have a clear perspective on what's happening; and you get all this from your business paper.

Every page counts. The editors gather facts, weigh and interpret them. The advertisers line up new products,
materials and equipment . . . tell you what they do and where to buy them. To know what's new that's important to you, read every issue - thoroughly! It will keep you one of the best informed people in your field.

This business paper in your hand has a plus for you, because it's a member of the Associated Business Publications. It's a paid circulation paper that must earn its readership by its quality.. And it's one of a leadership group of business papers that work together to add new values, new usefulness, new ways to make the time you give to your business paper still more profitable time.

A copy of this quick-reading, 8-page booklet is yours for the asking. It contains many facts on the benefits derived from your business paper and tips on how to read more profitably. Write for the "WHY and HOW booklet." Room 2710.

McGRAW-HILL PUBLISHING COMPANY 330 West 42 nd St., New York 36, N. Y.

One of a series of advertisements prepared by THE ASSOCIATED BUSINESS PUBLICATIONS

Professional Services

ANNIS ELECTRIC RESEARCH LABORATORY, INC.
 CONSULTANG RESENRCH - DEVELOINENT
 SlESCIALSST Gilitary
 Equipment and Dirnetinuil Antemat CO. Box 581

CROSBY LABORATORIES, INC.

Murray G. Crosby \& Staff Badio. Elcctronic
licseareh Development A Manutacturint Communications, FM \& TV
Rohbins Lane Hicksille, N. Y Hickstille 3-3191

EDGERTON, GERMESHAUSEN \& GRIER, INC

Consulting Engincers

Heseath. Developmert and Nanufactut Specialists in 1 inh Speetl photokraph 160 Brookline Avenue Bositon tī. Mass

Eldico of New York, Inc.
Trancers of Television Interference Elinination from Traa
etc.

Donala J. S. Merien \& Finginering Staff 44-31 Douglaston Pkwy Douglaston, N. Y Bawside : ?-868f

ERCO RADIO

 LABORATORIES, INCRudio Communications Equipment Enguneering - Desigh - Development - Production

Garden City • Iong Island - Nev York

HARRIS GALLAY

Consultant
Electronic Project Development for Industry Day, Week and Duration of Project Servires Our Laboratory Facilities Optional Plymouth 9-4237 b0 Perry St., Rellerille 9. N. J.

GENERAL LABORATORY ASSOCIATES, INC.

Specialisis in Glass to Metal Sealing Manufacturing and developmert facilities now bevelopment and Fifbrication we invite tuthe inquiries.
Norwich, N. Y.
Telephone Nonwich 4 -3: itit

GORDON ASSOCIATES, INC.

Gozernment Contract Liaison and Consulting Specializing in Signal Corps Llectronic hequire-
ments. Teehnical Manuals. Tabular Ifist of larts, Drawings.
I. Gordon, Ires I'. Treston. Ch. Engr.

57 Broad Street
Hed Bank 6.2.4:

HANSON-GORRILL-BRIAN INC

Products \& Mtg. Developmen. ELECTRICAL - ELECTIONIC HVBIALLIC - MECHANICAl
Ghe Continental Ril
Clen Cone. N. Y Glen Core 4-730n

HIGHLAND ENGINEERING CO

William R. Spittal \& Stajf
 Lectnowic. ind © MTMLA\& ALLIED FIELD Main \& Urban: Westhury, L.I., N.Y.

HOGAN LABORATORIES, INC.

foln Y: I Hognn. 1riez.
Applied Rescurch, Developnent, Engineering
Lst. 1924 lilectronics, Optic, Mechanisms. Wat
 155 Perry Street, Vew Yorli if. CHelsen 2-78

THE KULJIAN CORPORATION

Consultantr - Engineers - Constructors
Vilemtronic Contro
Specrialista
Utility - Industrial - \&hemical
1200 N. Vroart St.
Dhtha. 21, Ita.

MAGNETIC INDUSTRIES, INC.

Development E Manufacture
surm Magnefle Ampliffers and Special Relats

2640 Hulde
Housturn 'i. Texa

MEASUREMENTS CORPORATION

Researib \& Manutacturing Engineers

Specialists in the Design and
Development of Efectronic Test Instruments
foonton. New Jersey

Eugene Mittelmann, E.E. Ph.D. Consulting Engineer \& Pbysicist
High Frequency Heating-Industrial Electronics Applied Physies and Xhathematic
$5+9$ W. Washington IMrel

$$
\text { State } 2-8021
$$

NEW ROCHELLE TOOL CORP.

 Main st. Vew fachetle, Xist Youl

NIAGARA ELECTRON LABORATORIES

CONSTISMION - DESIGN - CONSTIUCTION

- The Thock relay

Spreializing in solution of problens of electronic and elcetro-phrsinat instmmentation for the reprohlems also invited.
Andorer, New York Cable Nedress: NATHONL, ME

[^19]
PICKARD AND BURNS, INC.

Conrulting Electronic Engineers Analysis and Exaluation of leadio Systems of Special Electronic Equipment
2 ± 0 Jhatant Nix. Needham 94. Mass,

JOSEPH RACKER COMPANY

Radu* Consultanis \& Fditors Technical Manual
ckeareh and borelophem
140 Na-nall strent, New York 38, ぶ, Y
Wmth 4-1463

ROTRON RESEARCH CORPORATION

Rerearch and Development
Fluid Dsmamics and Hent Transfer
Exclusirely Electronic Applications
Cooling l'roblems. Heat Exchangers. Fans.
Woodstock, Turbines and Pump Tesimns. Phone 2408

SKINNER, HARLAN AND IRELAND, INC. Consulting Engineers

Spectalizing in Magnetic Materials and Their Application
1122 E. 23rd St. Indianadolis i. Indiam,

THE TECHNICAL MATERIEL CORPORATION
 Communications Consultant.s Systemis Engineering
 General Offices and Laborstory
 121 Spenrer Place. Mamaroneck. N. Y.

WHEELER LABORATORIES, INC
 Tadio and Electronics Consulting-Research-Derelopmen R-H Circuits-Lines-Antemias
 Microwave Components- T est Equipment Harold
 Gireat Neck, N.
 Great Neck 2-7804

WIHTOL LABORATORIES

Consulting - Research - Development
Flectron tuhes--Vacuan and gas tube manufacturing techniquc-Glass techniques-Special purpose tubes
2333 Grey. Lianston. D1. Un. 4-7896

A PRIVATE TECHNICAL
PLATING SERVICE
PALLADIUM
oftering . RALLADIUM
toin, intermediote ond heovy elecirodeposits informotion regarding electroploted thicknesses upon request.

DANIEL D. ZIELIK
Brown's Lanc Fuirtield, Conmecticut

Shorted Turn Indicator

Sensitive, rugged, non-shock ng for unmounted coils; $\$ 150$. f.o.b HUNTINGTON BEACH, CALIF.
 WKARTRON WALKIE-RECORDALL A is mumiant BATTERY Continuous, permanent, indexed recording, up to 4 hrs.. only 3 c hr. Instantaneous, vermanent playback. l'icks up sound up to 60 ft . hecords conferenses, lectures, dictation, 2 -way phone \& sales talks: whilu.
walking, riding or flying. IRecords in closed brietca* walking. riding or dying lecords in closed briefca*e
with 'hidden mike' W Wite for Detailed Literature.

MILES REPRODUCER CO., INC.
 312 IROADWAY DEDT E-8NFW YORK 3. N. Y.

SUBCONTRACTING

 MILITARY AND COMMERCIAL Design, development and manufacrure of Servomechanisms, Controls, Toroids, Saturable Reactors, Magnetic Amplitiors. FIDELITY INSTRUMENT CORPORATION TEL. 7675 1320 W. MARKET STREETK, PENNA.

EISLER MANUFACTURES COMPLETE EQUIPMENT WELDERS FOR SPOT \& WIRE BUTT
WELDERSFOR SPOT \& WIRE BUTT

RADIO, TV TUBE EQUIPMENT \& REPAIR UNITS
INCANDESCENT, FLUORESCENT MFG EQUIPMENT
NEON SIGN MAKERS EQUIPMENT, GLASS LATHES
ELECTRONIC EQUIPMENT, VACUUM PUMPS. Etc.
Wet Glass SLICING \& CUTTING MACHINES for Lab Us
EISLER ENGINEERING CO., INC.
751 So. 13th St.

LARGE SHALI.OW SOLDER POTS

UNIFORM DISTRIBUTION OF HEAT
dajusiabla tong-life
Coramic embedder

Wetar hable drows tray Inconditiamalls. -unaranteed for ${ }_{5}$ months.

 F.-atso custon buit

Write for Bulletin
DEE ELE ETRIC COMPANY Melting Pots
M5. X. Paulina at
Chicago :2?. [11.

COILS

RF-IF Sub-asscmblies
Production \& Special Test Equipm:nt AN/APR-1, AN/APR-4 Receivers JERRELL ELECTRONIC, INC. 1970 Neva Dr.

ORegon $1351^{\text {D }}$

use this

CONTACTS SECTION

to

- PROMOTE NEW USES
- PROMOTE NEW USERS
- get new sales outlets
- REACH ALL BUYING INFLUENCES
- EFFECTIVELY ** ECONOMICALLY

wide range DECADE resistor

Especially designed for use in development and productlon laboratorres where standardized RTMA resistor values are to be determined easily and quickly.

Rochester Electronics Co., Inc.
DEPT S.4 BOX 227 PENFIELD, NEW YORA

Have you problems in -
Matal to Gilass Senls?
NAME IT . . . WE'LL MAKE IT! TERMINALS HEADERS
END SEALS ... SPECIAL ITEMS
OUALITY PRODUCTS CO.
337 Charles St., Providence, R. 1.

CLASSIFIED

EMPLOYMENT

SEARCHLIGHT
 BUSINESS

UNDISPLAYED RATE
$\$ 1.80$ a line, minimum 3 lines. To figure ad vance payment count ING OPPORTUNITY WANTED advertising rate is one-half of above rate advertising rate is one-half of above rate BOX NUMBERS count 1 line additional.

INFORMATION

DISCOUNT 10% if full payment is made in advance for four consecutive insertions of undisplayed ads (not including proposals).
EQUIPMENT WANTED OR FOR SALE Advertise ments acceptable only in Displayed Style

OISPLAYED-RATE PER INCH
The advertising rate is $\$ 16.10$ per inch for all advertising appearing on other than a contract basis. Contract rates quated on request. AN ADVERTISING INCH is measured $7 / 8$ inch vertically on one column, 3 columns- 30 inches -to a page

REPLIEN (Bot No.) : Addrexs to office ncarest you NEW YWRN: 330 W I2nd st. (36) CHICAGO 520 N. Michigan Ave. (11) SIN FhANCISCO: 68 Post st. (i)

POSITION VACANT

PROGRESSIVE FASTRRN manufacturing enEineers seeking Project Engineer, Electronics,
BSEE or equivalent minimum BSEE or equivalent, minimuin 7 years experience HF, HF antennas. Background in microMany valuable benefits plus very liberal compensation to right man. Future unlimited Please send complete information to $\overline{\mathrm{F}}$-8426, Electronics.

POSITIONS WANTED

ELECTRONIC IENGINHER, maintenance, teaching, and technical writing experience frative position on Long Island. Desire adminis trative position on Long Island. PW-8379, Elec
tronics.
EQUALITY CONTROL Engineer Fiectrical Mechanical experienced precision work, sla tistics. PW-8473. Electronics
DUTCH COMMUNYCATIONS Engineer, graduate 1938 mechanical, aeronautical and radio
engineering. single, tesires responsible work engineering. single, tesires responsible work
overseas. jighly experienced in large communic. systeins and broadcast in Europe, Mid dle East and South East Asta, thorough knowledge of five languages adaplable to any situation no objections against much travel-
llng. PW'- 8467 , Flectronics.

MANUFACTURERS' REPRESENTATIVE

well-established in Chicago area and midwest, wants additional lines such as resistors, tubes, hardware and related items.

RA 8482, Electronics 330 W. 42nd St.
New York 36, N. Y.

EXPERIENCED SALES-TECHNICAL

REPRESENTATIVE

Interested In Additional Line of Electro-Mechano-Plastics Components To Offer Es-Mechano-Plastics Components To Offer EsComplete Office Facilities. Est., 1945 . JAMES L. FITZSIMMONS 39 Lackawanna Plaza

Bloomfield, N, I

When

Answering

BOX NUMBERS...
to expedite the handling of your correspondence and avoid confusion, please do not address a single reply to more than one individual box number. Be sure to address separate replies for each advertisement.

ELECTRONIC ENGINEERS

SENIORS:

SPECIALISTS:
To act as a group leaders on design, development and production of radio, radar, television transmitters, receivers and test equipment.
(2) Microwave circuitry and UHF plumbing, preferably with microwave test equipment design experience.

Must have minimum five years practical experience, including knowledge of Government specifications, airborne, ground and/or naval equipments. Excellent opportunity for advancement. Write, giving outline of education, experience, background and salary expected, to

Engineering Personnel Department
EIREEID ELECTIEONICS AND CONTROLS CORPORATION 200 Hudson Street, New York 13, N.Y. Manufacturers of
Radio and Television Receivers
Industrial Controls \qquad Electronic Equipment Nucleonics Instruments

ELECTRONIC INSTRUMENT DEVELOPMENT

Design-development engineers, having excellent technical ability, are needed for developing precision electronic laboratory equipment. Interesting and challenging work. This opportunity will be particularly attractive to those who wish to join a progressive company of moderate size located in eastern Massachusetts, very near M.I.T. and Harvard. The work is primarily for the civilian market.

SPENCER-KENNEDY LABORATORIES, INC.
 186 Massachusetts Avenue
 Cambridge 39, Massachusetts

What is Your Problem?

Do you need competent men for your staff? Men to fill executive sales or technical positions?

Or are you one of the readers of ELECTRONICS seeking employment in any of these capacities?

Or are you looking for-or offering-a business opportunity of special interest to men in the industry served by this publication?

Or are you seeking buyers for surplus used equipment from your plant-or to buy such equipment from other plants?

The solution of any of these problems can logically be found first among other readers of-ELECTRONICS. You can get their attention-at small cost-through an advertisement here.

What means most toan Engineer?

A Career at RCA offers all Four!

RCA offers opportunities now-real career opportunities - for qualified Electronic, Computer, Electrical, Mechanical and Communications Engineers... Physicists . . Metallurgists . . Physical Chemists . . Ceramists... Glass Technologists.

Positions are open in research, development, design and application. Long range work in many fields is being carried on both for commercial developments and military projects for war and peace.

At RCA you'll work in an exciting professional atmosphere, with technical and laboratory facilities unsurpassed anywhere in the radio-electronic industry. You are in close and constant
association with leading scientists and engineers. Individual accomplishment is not only recognized, it is sought out. Delightful suburban living is easily available for your family. And there's ample opportunity for income and position advancement.
Plus, Company-paid hospitalization for you and your family . . accident and life insurance . . . progressive retirement plan ... fine recreational program . . . modern tuition-refund plan at recognized universities for advanced study.
Join the team at RCA, world leader in electronic development, first in radio, first in recorded music, first in television. Rest easy in the knowledge that your future is secure, the rewards many and varied.

Personal interviews arranged in your city.
Please send a complete resume of your education and experience to:

MR. ROBERT E. McQUISTON, Manager
Specialized Employment Division, Dept. 200H
Radio Corporation of America
30 Rockefeller Plaza, New York 20, N.Y.

Positions Open In: RESEARCH -DEVELOPMENT-DESIGN-APPLICATION in any of the following fields:

RADAR - Circuitry-Antenna Inesign-ServoSys-tems-Information Display Systems- Gear Trains-Stable Elements-Iniricate Mechanismo

COMPUTERS - Digital and Analog-Systems Plan-ning-Storage 'Technique - Circuitry - Servo Ming-Siorage Asemilyue- Corcuiry-simen Intricate Mechanisnis

COMMUNICATIONS - Microwave - Aviation Mobile-Specialized Military Systerns

MISSILE GUIDANCE-Systemis F'lanning and Design - Ratar and Fire Control-Servo Mechanisms - Vadar and Fire Control-Servo

NAVIGATIONAL AIDS-I Ioran Shoman-Altim-eters-Airborne Radar

TELEVISION DEVELOPMENT- Receivers-Transmitters and Studio Equipment

COMPONENT PARTS-Transformer Coil-Relay -Capacitor-Switch-Motor- Resistor

ELECTRONIC TUBE DEVELOPMENT Receiving
Transmitting-Cathode-Ray - Phototulses and Magnetrons
ELECTRONIC EQUIPMENT FIELD ENGINEERS Specialists for domestic and overseas assignment on military electronic communications and detection gear.

a challenge -
ASSIGNMENT - you will assist in the installation, operation, and maintenance of our equipment at aircraft plants and Air and maintenance of our equipment at aircraft plants and Air
Force bases. The work will include liaison between $A C$ and the customer, training of customer personnel, analysis of problems, and recommendations for improvements. In these positions you"ll gain invaluable experience in all phases of both engineering and manufacturing.
YOUR BACKGROUND - your educational background can be in any of the fields of AE, EE, ME, Physics, or equivalent. To be successful in these positions you should hove a definite interest in people as individuals and be willing to relocate to field assignments. Married men on regular assignment have their families with them.
TRAINING - regardless of your background, our theoretical and applied in-plant training (here in Milwaukee) will prepare you for these assignments.
In addition to your salary, you will receive a field allowance and a substantial bonus if selected for overseas assignment . if you're lookirg for on opportunity with a "present" and o fufure write us for further facts.
matym

ENGINEERS

electronic SERVO MECHANICAL

DESIGNERS

ELECTRONIC MECHANICAL

"AC" OfFERS A Challenge to Men of Resourcefulness

Abstract

We need men of high calibef, experionced in the field of airborne automatic electro-mechanical control equipment. You will be engaged in the manufacture and developmert of highly complex equipment of the most advanced type in a steadily expanding division of our company-a division with 20 years of successful operation in the precision instrument field. We offer many advantages to those who join our organization- SALARY increases are based on merit and initiative . . . two weeks VACATION with pay . . HOSPITALIZATION BENEFITS . . . LIVING and RECREATIONAL FACILITIES cre among the best anywhere along Lake Michigan . . . POSITIONS AFE PERMANENT due to long-range manufacturing and development programs . . . in short-here at our " $A C^{\prime}$ Milwaukee plant you get small company advancement opportunities with large company employe benefits . . . EXPENSES incident to interviews are all absorbed by us. For less experienced engineering graduates, we have a Junior Engineer Training Program which makas it possible for you to become acquainted with all phases of our company . . . you can also take advantage of educational apportunities for advanced degrees af Marquefte University and the University of Wisconsin. We answer ALL inquiries . . . write or apply

GENERAL MOTORS CORPORATION

Pleasant Working Conditions

So we're exaggerating a little! If you want to get technical about it (and you probably do) your life at our company won't be quite this cushy. We can promise this though-even the sky's not the limit for future opportunity. You work with a congenial group of engineers. People will listen to your ideas. The boss's door is always open. Who you are-You're an Electronic or Mechanical Engineer. You're experienced in air communication and navigation circuitry and development. You have worked with low or high frequency circuits, instrumentation, component utilization or associated problems.
What you do now - Simple! Just contact:
Arthur E. Harrison, Vice President, Engineering
wilcox Electric Company, Inc.
Fourteenth \& Chestnut, Kansas City 27, Mo.

electronics enciners WANTED

 southern californaAttractive opportunities offered to Engineers experienced in and qualified to design aircraft flush antennas and radomes.

Complete modern facilities for laboratory testing and evaluation arail. able.

Salary dependent upon experience and ability.

Contact Mr. J. C. Buckwalter, Chief Engineer

dOUGLAS AIRCRAFT COMPANY, Inc. LONG BEACH; CALIFORNIA

DESIGN RESEARCH DEVELOPMENT

key words to your employment opportunities at GOODYEAR AIRCRAFT pioneer and leader in lighter-than-air craft . . . an established and growing company building an outstanding technical reputation

DESIGN ENGINEERING opportunities exist in the fields of airships, airplanes, and components, airframes, power-plant installations, controls, hydraulics, electronics systems, fuel cells, canopies, and wheels and brakes
DEVELOPMENT of missiles, jet aircraft, and helicopters, electric and electronics system, servomechanisms, fiber resin laminates, and many other projects present an urgent need for capable engineers
WELDING ENGINEERS, civil engineers, mechanical engineers with ability in metals fabrication, and industrial engineers experienced in time study are needed. Job opportunities also exist for technical editors and illustrators POSITIONS are open at several levels, and inquiries are also invited from recent graduates. Salaries are based on education, ability, and experience

PAID VACATIONS, free group life insurance, a good hospitalization plan, paid sick leave, company-sponsored pension plan, planned recreation, and free parking are among the facilities at the plant

A FRIENDLY CITY, Akron, Ohio, is located in the center of the midwestern industrial region
IF YOU ARE INTERESTED in a secure future, write, giving details, or request an application from

GOODYEAR AIRCRAFT CORPORATION, 1210 Massillon Road, Akron 15, Ohis

ENGINEERS
 Unusual Opportunities for Men with Long-Range Plans

- We are one of the leading Electronics firms in the Chicago area and require Design and Development Engineers with from 3 to 5 years' experience. Positions also available at Project Engineer, Engineer and Junior Engineer levels.

We will consider men with the necessary experience and ability who are ready to take on the responsibilities of these openings. The men selected will be given intermediate and advanced level assignments in our well- equipped Television, Radio, and Government Equipment Laboratories.

We are located in the northwest section of Chicago where living and working facilities are sec-
ond to none. We are within easy access of all shopping centers with convenient city transportation. Close by are many suburbs where one can live and commute back and forth in a short time-adjacent to all great centers of learning.

Our company has a long-range program of design and development in which you mary participate . . . all positions are permanent.

We suggest you write Mr. Walter Wecker, Personnel Division, giving educational qualifications and related experience. Interviews will be crranged at your convenience.

Admiral Corporation
 3800 W. Cortland St. Chicago 47, IItinois

to men who want the best

ENGINEERS, EE

1. Development of radio and radar components and systems.
2. Design of components for the magnetic deflection of Cathode Ray Tubes.
3. For component and system development work in airborne navigational equipment.

DESIGNERS

1. Electromechanical design of UHF and microwave systems.
2. Electromechanical navigational computers:

Kollsman provides excellent focilities for the design and development of America's finest aircraft instruments. In our modern radio communications group you'll find a congenial atmosphere in which you can do your best work. You'll be encouraged to advance as our progressive organization continues to grow.

At Kollsman you'll receive liberal benefits including paid life, hospitalization, surgical, accident and health insurance. Not to be overlooked is the convenient location in a quiet residential section only 20 minutes from the heart of New York City. Why not find out what Kollsman has to offer you?

KOLLSMAN INSTRUMENT CORP.
80-08 45th Ave., Elmhurst, L. I., New York

ENGINEERS

AND PHYSICISTS

BS-MS-Ph.D:

Responsible positions in mechanical, electrical or electronic engineering, physics or engineering physics for adranced development and design of spesial equipment and instruments. Prefer men with minimum of two years' experience in experimental research design and development of equipment, instruments, intricate mechanisms, electronic apparatus, optical equipment, servomechanisms, control devices and allied subjects. Positions are of immediate and permanent importance to our operations. Southwestern location in medium sized community. Excellent employee benefits. Reply by letter giving age, experience and other qualifications. All applications carefully considered and kept strictly confidential.

Ind. Rel. Manager
Research \& Development Dept.
PHILLIPS PETROLEUM COMPANY
Bartlesville Oklahoma

Electronic Research Opportunities

The Cook Research Laboratories, division of the Cook Electric Company one of the nation's foremost research organizations requires the services of several outstanding scientisis.

STAFF ENGINEERS ELECTRONICS MECHANICS AERODYNAMICS

Openings also exist for top level personnel in the following fields.

RADAR \& PULSE SYSTEMS

VHF-UHF DEVELOPMENT EXPERIENCE
DESIGN \& PACKAGING SERVOS METEOROLOGICAL INSTRUMENTATION
EXCELLENT STARTING SALARIES IDEAL WORKING CONDITIONS A staff composed of a group of engineers and scientists eminently qualified in their respective fields and with whom you would be proud to be associated.
Contact or write Mr. D. M. HALLIDAY COOK RESEARCH LaBORATORIES 8100 N. Monticello Avenue Skokie, Illinois

Engineers, physicists, designers, technicians-

Investigate the challenging new opportunities in the guided missile industry

BENDIX OFFERS EXCELLENT POSITIONS IN ITS WELL-ESTABLISHED GUIDED MISSILE PROGRAM

To men interested in the rapidly growing guided missile industry an association with Bendix offers unusual advantages. For here at Bendix, guided missile work is not a side line, but a well-established program with over seven years of successful development and research backing up today's operations.
No finer engineering and production facilities are found anywhere in the industry, and the men responsible for the Bendix guided missile program are recognized leaders in their field. Job opportunities range from theoretical systems analysis, through product and test equipment design and development, to field test and flight evaluation.

OPENINGS IN:

Aerodynamics	Hydraulics
Electronics	Mechanics
Microwaves	Servo Mechanisms
Dynamics	Structures

LET'S DISCUSS OUR MUTUAL INTERESTS Write:

Employment Dept. Bendix Products Division
Bendix Aviation Corporation, 401 Bendix Drive
South Bend 20, Indiana

Exceptional Oppartunities for...

electrical engineers mechanical engineers mechanical designers
in the field of electronic computers and associated equipment for use in business machines.

Write, giving education and experience to Employment Manager.
Reply to Department A.

THE NATIONAL CASH REGISTER COMPANY, Dayton 9, Ohio

WANTED
ENGINEER WITH EXPERIENCE IN VHF or UHF

Interesting ereative wedt with the mosit resourceful and progressive firm in the field of television aquipment.
This position is pernasems. If vill olfer every opportunity for unlimited advancement and for developing o successful career. The plant is now housed in a newly-acquired larger beilding, only 22 miles from downlown Kew York City. The surroundings and afmosphere are stimulaling and congenial.

Attractive Salary

Write stating qualifications.

BLONDER-TONGUE LABORATORIES

526-536 NORTH AVENUE WESTFIELD, NEW JERSEY

Electrical Engineers and $\mathbf{P}_{\text {bysicists }}$
- Radar Simulation - Advanced Circutry
- Analog Computars
- Ballistics
- Mapping
- Telemetering

Senior and Junior Engineers

Doin a Firm

with a Future

Our future is bright . . . we're small but we're growing. We offer you the opportunity to grow with us . . . to gain individual recognition by working closely with technical management . . to advance rapidly. You will work and live in a delightful suburban community ... associate with other top-notch engineers, and with them, develop yourself by contact with a complete project, not just a segment of a project. If you are interested in allying your future with a firm with a future . . . write:

Industrial Research Laboratories Hilltop and Frederick Roads Baltimore 28, Maryland

HOUSTON, TEXAS

Precision equipment manufacturer needs qualified experienced engineer for audio and sub-audio transformer design and development. Experience with high, permeability alloys desirable. Knowledge of magnetic circuitry must be sufficient for development work on magnetic amplifiers. Salary commensurate with ability.

SOUTHWESTERN

INDUSTRIAL ELECTRONICS CO.
P. O. box 13058, houston 19, -EXAS

Bell Telephone Lalloriatories

has career openings for experienced electrical engineers mechanical engineers physicists

For work on Guided Missiles, Radar, Fire Control and Underwater Systems in New Jersey (20 miles from New York City).

The company that has pioneered many of the major developments in the fields of communications and electronics now onvaluable experience and great satisfaction Here you will gain lenging diversified nature of the work. To qualify, you must be a college graduate (preferably not over 40 years of age) with related experience of the following types:
Sysfems Engineering

Analysis
Coordination Evaluation Planning Studies

Sysfems Development
Fundamental Development Circuit Design Mechanical Design Equipment Development Field Testing

UHF-VHF

 SENIOR ENGINEERSWE ARE LOOKING FOR ENGINEERS FOR OUR ELECTRONIC RESEARCH AND DEVELOPMENT DIVISION.

THESE ARE THE REQUREMENTS:
3 to 5 years genuine design and development experience, specializing in VHF and UHF measurements, and component and tuner engineering projects.

Good theoreticians, but with solid practical experience and excellent records of achievement. Prefer graduate Electrical Engineers.

THESE ARE THE ADVANTAGES:
A ground floor connection in the new research and dovelopment division of one of the oldest and most highly regarded manufacturers of radio and television components.
The opportunity to work in a fully equipped, completely modern research laboratory on permanent long range commercial projects.

To work directly with prominent electronic research director, who will encourage and give full consideration to your ideas.

To locate in one of the many desirable suburban residential communities adjacent to Philadelphia and within easy driving distance of the seashore.

ADDRESS REPLIES TO:

RADIO CONDENSER COMPANY
 Davis \& Copewood Sts. Camden 3, N. J.

We have several positions of technical leadership available in our growing Gadership available in our growing Guided Missile over four years experiemce and/or have over four years experiezce and or
advanced degrees in either missile guidadvanced degrees in either missile guidfire control computers, or U. H. F. tech. niques.
Our plant is located in beautiful suburban St. Louis, where, You can enjoy the comforts of "county" living with easy access to "big city" shopping, entertaining, medical and educational facilities. Moving alowance for qualifed applicants. Our Housing Representative will assist you in
relocating.

Address replies to:
Technical Placement Supervisor Box 516, St. Louis 3, Mo.

ELECTRICAL ENGINEERS

Several positions in our Research Development and Design Departments for men with E. E. degrees and one to five years' experience in electronic or electrical circuit design. Experience in instrumentation or in control circuits is preferred. Location in North Philadelphia, Pennsylvania. Excellent benefit programs and working conditions. Brochure available. Send resume to D. E. Whiteley, Employment Manager:

BROWN INSTRUMENTS DIVISION
 Minneapolis-Honeywell Regulator Co. Wayne \& Windrim Avenues PHILADELPHIA 44, PA.

MICROWAVE ENGINEER

For production design and development of wavequide systems, klystron oscillators, attenuators, and echo boxes. Send resume to Personnel Manager.

VEETRON, INC.
400 Main Street Waltham, Mass.

[^20]MECHANICAL ENGINEERS
ELECTRONICS ENGINEERS

- ELECTRICAL ENGINEERS
- PHYSICISTS
- AERODYNAMICISTS
- mathematicians
technical writers

WORK

ON THE FRONT LINE OF THE NATION'S VITAL DEFENSE PROGRAM. Sandia Corporation is engaged in the devolopment and production of atomic weapons-a challenging new field that offers exciting opportunities in research and development to men with Bachelor's or advanced degrees, with or without applicable experience. Here you can work with able colleagues, eminent consultants and superior facilities on advanced projects of high importance-and also build a permanent career in a rapidly expanding field with a company that recognizes and rewards individual ability and initiative.
LIVE IN ALBUQUERQUE, THE HEART OF THE SUNNY SOUTHWEST. Located in the historic Rio Grande Valley at the foot of the Sandia Mountains, mile-high Albuquerque is internationally famous for its climate-mild, dry and sunny the year around. A modern, cosmopolitan cify of 150,000, Albuquerque offers unique advantages as a place in which to live. Albuquerque's schools, churches, theaters, parks, and modern shopping facilities afford every advantage of metropolitan life-yet hunfing, fishing, skiing and a multitude of scenic and historic attractions may all be found within a few hours' drive of the city. New residents have litfle difficulty in obtaining adequate housing.

ENJOY

 THESE OTHER IMPORTANT ADVANTAGES.These are permanent positions with Sandia Corporation, a subsidiary of the Western Electric Company, which operates Sandia Laboratory under contract with the Atomic Energy Commission. Working conditions are excellent, and salaries are commensurate with qualifications. Liberal employee benefits include paid vacations, sickness benefits, group life insur-
 ance, and a contributory retirement plan. This is not a Civil Service appointment.

> You're needed 10 work on: Radar, G.C.A., Mobile Radio, Auto Radio. Airborne Communication \& Novigation Equipment. Television. Antennas, Microwave Equipment, Servo Mechonisms and Guided Missiles.

You will benefit trom high wages, a modern, air-conditioned plant, paid vacotions and holidays, group insurance and a good chance for advancement.
Housing immediately available in the beautiful suburban and county areas that surround the Bendix Radio plant.

Bendix Radio

DIVISION OF BENDIX AVIATION CORPORATION Baltimore-4, Md. Phone: VAlley 3-2200 Makers of the Worlds Finest Electranic Equipment

AS THE

MAN-POWER

SHORTAGE

becomes more acute

You may be facing the problem of finding enough engineers or highly technical men to keep your production up to the new demands growing out of the defense effort.

In a recent advertisement, one of the leading aircraft manufacturers restated a wellknown but seldom practiced principle: "a trained, experienced engineer in one specialty can be retrained in almost any other engineering specialty with a minimum of time and effort expended".

Engineers follow with intense interest the publication devoted to their particular field. And so they are gathered into convenient groups whenever you wish to reach them - as readers of America's industrial publications.

Let us help you select the proper publications in order to reach just the type technical men you need.

Classified Advertising Division
McGRAW-HILL PUBLICATIONS 330 W. 42nd St. N. Y. 36, N. Y.

ENGINEERS:

ELECTRONIC ENGINEERS

EE or ME degree, minimum 3 years' experience in research and development work involving microwave

TV COLOR TUBE OPPORTUNITIES

Leading Tube Manufacturer has several engineering positions opening in the West in design and development on color picture tubes. Write giving full resume to

P-8322, Flectronics
68 Post St. San Franciseo 4, Calli.

RESEARCH ASSISTANTSHIPS

Ph.D. candidates in chemistry and M.S. candidates in chemistry, electrical engineering (Electronics), chemical engineering, physics and geology are wanted by the Institute of Science and Technology, University of Arkansas, Fayetteville, Arkansas.
These positions provide part-time research duties with time for academic work toward advanced degrees. Stipends are up to $\$ 2,150$ for 12 months. Nonresident fees are waived.
W. W. GRIGORIEFF, Director INSTITUTE OF SCIENCE \& TECHNOLOGY UNIVERSITY OF ARKANSAS

ELECTRONICS ENGINEERS

This established electronics manufacturer located in the heart of western New York requires men with design experience. Permanent positions available for senior and junior men with EE or ME degrees or equivalent experience. Fine cultural community in which to live with good schools, homes, and progressive associates. Please write to:

CHIEF ELECTRONICS ENGINEER

STROMBERG-CARISON COMPANY

ROCHESTER 3, NEW YORK

ELECTRICAL ENGINEER

Large Gulf Coast Chemical Company has opening for graduate electrical engineer- 25 to 35 years of age-communications experience de sirable supervisory position-salary open. P-8542. Electronics

$$
520 \text { N. Michigan Ave., Chicago 11, Ill. }
$$

FOR SALE

(Aaditional For Sale Advertising oo pages 414-432)

FOR SALE

GEN. RADIO-IIO5A FREQ. MEAS. EQUIP 650A BRIDGE 1802 CRYSTAL GALVO
Boont 160A "Q" Meter
Boonton-160A Q Meter
Measurements $C v . \# 80$.
ALL IN GOOD CONDITION. NO REASONABLE OFFER REFUSED.

FS-8469, Electronies
330 W .42 St., New York $36, \mathrm{~N} . \mathrm{Y}$

General Precision Laboratory

A progressive group of young, successful men, firmly established as designers and manufacturers of electronic equipment . . . a medium-sized staff in which you receive individual recognition . . . a policy of promotion-from-within that helps qualified men move ahead swiftly . . a modern laboratory located in a pleasant suburban community ideal for family living.

> Expenses will be paid for qualified oppliconts who come for interviews. Please submit complete resume to: Mr. H. F. WARE

GENERAL PRECISION LABORATORY

INCORPORATED
A Subsidiary of GENERAL PRECISION EQUIPMENT CORPORATION 63 BEDFORD ROAD, PLEASANTVILLE, NEW YORK

W A N TED

WE URGENTLY NEED

induction generators, arma, 1 B 400, 5 CP's, 3 C 22 's, $3 \mathrm{~K} 22^{\prime} \mathrm{s}$

ALSO WANT
Pulse Transformers, Pulse Networks, Selsyns and Synchros

ELECTRONICS, INC.
92 Broad St. Babson Park 57, Mass.

WILL BUY

All ART-13/type T-47. $\$ 200.00$; ART-13/type
 $\$ 600.00 ; 1277$ Recelvers $\$ 300.00 ;$ AllC-1 $\$ 300.00$; 13C-312 \$60.00: BC-342 \$60.00. Ship via Express C.O.D., subject to inspection to: H. FINNEGAN

49 Washington Ave. Little Ferry, N.J.

!! WANTED!!

IN ORDER TO SUPPLY GOVERNMENT AND INDUSTRIAL REQUIREMENTS, WE ARE PAYING TOP DOLLAR FOR ALL TYPES OF RADIO AND ELECTRONIC SURPLUS. WE SPECIALIZE IN TEST EQUIPMENT AND COMPLETE RADIOS, SUCH AS:
APA, APN, APQ, APR, APS, APT, ARB, ARC, ARN, ART, ATC, BC, DY, I, IE, LM, MG, PE, PU, SCR, TCS, TN, TS, and many others.
WE ESPECIALLY NEED: APAIO, APN9, APR4, APS4, ARC1, ARC3, ARTI 3, ATC, BC221, BC342, BC348, BC611, BC721, DY12, DY17, 1100 , LM10 to LM18, MG149F, MG149H, PU14, R5/ARN7, R5R/ARN7, SCR718C, TCS, TN16, TN17, TN18, TN19, TN54, TS3, TS13/AP, TS33, TS35, TS45, TS75, TS76, TS102, TS147/UP, TS148/UP, TS173, TS174, TS175, TS250, TS251, TS323, (1CT, 1F, IG, 5CT, 5DG, 5F, 5G, 6DG, 6G 115V. 60 c.p.s. Selsyns), and all types of Hewlett Packard, General Radio Co., Measurements Corp., Boonton Radio, Ferris, Leeds \& Northrup, and other test equipment.

Please state accurate description, condition, and your lowest price. Explain modification, if any. We pay freight chargen. PURCHASING AGENTS, ENGINEERS. EXPORTERS, INDUSTRIAL BUYERS, DEALERS, AND INDIVIDUALS, Please send us your sequirements.

NEW CATALOG NOW AVAILABLE.

PHOTOCON SALES
417 N. Foothill Blyd. Pasadena 8, California

SYeamore 2-413 RYan 1-6751

Recelving Tubes		Type No. 1×2.	$\begin{array}{r} \text { Price } \\ .93 \end{array}$	Type No. 6AU5GT.	Price	Type No. 6N7GT.	$\begin{array}{r} \text { Price } \\ .89 \end{array}$	Type No. 7 C 7	$\begin{array}{r} \text { Price } \\ .79 \end{array}$	Type No. 12×3.	$\begin{aligned} \text { Price } \\ .89 \end{aligned}$
		2 A 3	1.28	6AU6	. 65	6P5GT	.96	7E5	. 79	1223.	. 89
		2 A 7	79	$6 \mathrm{CB4G}$	55	607 $6 R 7$. 89	7E6	. 58	1444	97
Type No.	Price	${ }_{2 B}$. 79	6 6 5	1.25	$6 \mathrm{6S4}$	79	7 F 7	. 89	14 A 7	. 74
OOA	\$1.50	2 E 5	94	6137	. 95	6 S 7	1.06	7F8	1.35	14188	. 74
OA1	. 67	2 X 2	. 50	6138	. 75	6S7	. 99	7G7	. 89	14 C 5	1.10
OZ4	. 59	$2 \times 2 \mathrm{~A}$	1.85	6B8G	. 75	$6 \mathrm{SA7}$. 71	7 H 7	.79	14 C 7	1.93
O24A	. 63	3 34 4.	. 65	6BA6	. 65	6SA7GT..	.67	$7 \mathrm{J7}$	1.10	14E6	99
1 A 5	. 72	3A8 ${ }^{\text {ari }}$	1.50	6BC5	1.20	${ }_{6} 6 \mathrm{SC} 7$	1.04	$7 \mathrm{7L} 7$	1.10	14 EF 7	1.09 .89
146	. 72	3 B 7	. 1.57	6BC7	1.10	6SD7GT	. 94	7 7	97	14 H 7	.89
1 A 7 GT	. 79	3 C 6	1.15	6BD5GT	1.60	$6 S F 5$. 83	$7 \mathrm{O7}$	79	14.5	89
$\begin{aligned} & \text { 1B3GT } \\ & \text { 1B4P.. } \end{aligned}$. 99	3 D 6	57	68D6	85	6SF5GT. .	. 80	7R7	94	14N7	. 89
185	74	3LF	.91	$6 \mathrm{6BE6}$. 65	6SF	75		1.11	14R7	89
1C5GT. . .	. 85	305	. 83	6BF6	1.10	${ }_{6 S H} \mathbf{6}$. 75	${ }_{7}{ }^{\text {W7 }}$	111	14 S	89
$1 \mathrm{C6}$. 69	3 S 4	. 77	6BG6G	1.89	${ }_{6} \mathrm{SH}_{7} \mathrm{GT}$	75	7 Y 4	73		89
1C7G	. 69	3 V 4	. 79	6BH6	. 95	6SJ7...	. 71	7Z4.	. 79	18	. 89
1D5GP	. 69	$5 A Z 4$	54	$68 J 6$. 95	6SJ7GT. .	. 69	10	. 39	19	. 89
$1{ }^{10} 1$. 69	5R4G	1.59	613K7	1.60	6SJTY	85	12A	65	19 T 8	. 99
105GP	.71	5 T 4	1.91	6HL7GT.	1.45	6SK7	. 72	12 A 6	. 64	22	1.16
1 F 4	. 69	5 V 4 G	. 98	6BN6 6 GT	1.59	6SK7GT.	. 72	${ }_{12 A} 12 \mathrm{~A}$ (. 64	24 A	.89 1.16
1F5G	. 69	5W4	. 82	6 C 4	1.56	6SN7GT.	. 73	${ }^{12 A 8} 8 \mathrm{GT}$. 16	25 L	1.16
1F64GT	. 71	$5 \times 4 \mathrm{G}$. 79	6C5	. 70	6SN7WGT	2.10	12AH7GT	1.32	$25 \mathrm{Z5}$.79
1G4GT...	. 69	5Y3GT	. 47	6CB6	. 79	$6 \mathrm{SO}_{7}$	65	12AL5.	. 79	26	. 79
$1 \mathrm{G6GT}$. 69	${ }^{5} \mathbf{Y} 4 \mathrm{G}$	71	${ }^{6} \mathrm{C} 6$. 73	6SQ7GT	65	12AT6	55	27	. 69
1 H 4 G	. 89	524	7	${ }^{6} \mathrm{CD}$	21		63	12A	99	28	. 95
1H5G	. 69	6 A6	82	6D6	88	6ST7	1.05		86		. 75
1H6G	. 75	6 A7	1.05	6D8C	. 83	6T7G	1.09	12AV6.	. 54	31.	. 54
$1 \mathrm{H6GT}$	79	6 A8	95	6E5	1.10	6 T 8	. 98	12AV7	. 99	32	. 69
$1 J 5 \mathrm{G}$. 74	6AB4	. 83	6F5GT	83	6 U	. 98	12AW6	1.20	32L. 7 GT .	. 87
1 L 4	. 69	${ }_{6 A B 7}$. 98	6 F 6	. 99	6U7G	. 65	12 AX 7	. 99	33	. 64
$1 \mathrm{LA4}$.	. 87	6AC5G	1.19	6 F	87	6 V 6	1.49	$12 \mathrm{BA}{ }^{\text {a }}$. 69	34	. 69
1 LA 6.	. 99	6AC7 ${ }^{\text {W }}$	3.85	6 F	1.05	${ }_{6 V 6 G T}$. 89	12 BA 7	. 95	35/51	. 59
$11 \mathrm{B4}$.	1.01	6AD6G.	. 98	6G6	. 99	6W4GT	. 64	12 BE 6	. 66	35 B5	.75
$1 \mathrm{LC5}$.	81	6AD7	1.29	6H6	. 66	6W6GT	. 88	12 C 8	. 65	35L6GT.	.1.7
$1 \mathrm{CC6}$.93	6AE6G	. 89	6H6GT	. 66	6×4	. 59	12F5GT	.79	35W4	
ILE3	.93	6AF6G	. 89	$6 J 5$. 59	6N5GT	. 59	$12 \mathrm{H6}$. 69	35 Y 4	. 72
1 LH 4	. 82	${ }_{6 A G 7}$	1.75	${ }_{6 J 5}{ }^{\text {d }}$. 64	$6 Y 6 \mathrm{G}$. 89	12.5 GT	.55	35Z4GT	. 69
1LN5	.74	6AH6	1.29	${ }_{6} 65$.	. 95	7 74 -	. 76	$12 \mathrm{K8}$. ${ }^{\text {ch }}$. 70	${ }_{36} 3$.	.55
1N5GT	. 83	6AJ5.	1.95	657	. 99	7×5	. 79	12SA7GT	69	37	. 69
1N6G	. 75	6AK5	84	6, 7 7GT	. 79	7A6	.75	12 SF 5	. 79	38	. 69
1 P5GT.	. 69	WE-6AK5	1.85	6 6 8 G	1.28	747	. 76	12SF5GT.	. 79	39/44	.59
1054T.	. 99	6AK5W	2.95	6 K 5 GT	. 99	7A8	. 78	12 SF 7.	. 85	41	.71
1 R 5.	. 79	6 6ALS	. 59		. 65	7AD7	1.44 1.08	$12 \mathrm{SG7}$. 85	42	79
154	71	GAL5W.	2.65	6 K 7 G	86	714	1.08	12 S	71		79
155	. 69	$6 \mathrm{AO5}$. 72	6 L 5 G	1.06	785	. 79	12S.J7GT	. 65	4525GT	. 89
1 T 4	. 71	6 A06	. 79	6 L 6	1.87	786	. 79	12SK7	69	46	81
1T5GT.	. 71	6AR5	79	6L6G	1.49	787	. 79	12SL7GT.	. 93	47	. 99
U4.	. 73	6 AS5	. 99	6L6GA	1.39	$7 \mathrm{B8}$. 78	12SN7GT	. 89	50	1.09
U5.	. 77	6AS6.	4.25	${ }_{6 L 7}^{6 L}$. 99	${ }_{7}^{7} \mathrm{C} 5$. 49	$12 \mathrm{SO}{ }^{\text {dGT }}$. 68	50 A 5	. 89
V	. 65	6AT6	4.25 .63	6N7.	. 89		. 79	${ }_{12 S R}^{12 S G 7}$. 79	50C5	9
								301			
	H	,		1		$\begin{aligned} & 83-1 A C \\ & 83-1 A P \\ & 83-1 \mathrm{~F} \\ & 83-1 H \\ & 8311 \mathrm{HP} \\ & 83-1 J \\ & 83-1 \mathrm{P} \end{aligned}$	5.42 .30 1.10 .12 .73 .40	$\begin{aligned} & 83-1 \mathrm{R}^{\prime} \mathrm{Y} \\ & 83-1 S P \\ & 83-1 \mathrm{SPN} \\ & 83-1 \mathrm{~T} \\ & 83-2 \mathrm{AP} \\ & 83-22 \mathrm{AP} \\ & 83-22 \mathrm{~F} \\ & 83-22 \mathrm{~J} \end{aligned}$	$\begin{array}{r} .65 \\ .45 \\ .50 \\ 1.30 \\ 1.95 \\ 1.40 \\ 2.10 \\ 1.40 \end{array}$	$\begin{aligned} & 83-22 \mathrm{R} \\ & 83-22 \mathrm{SP} \\ & 83-22 \mathrm{~T} \\ & 83-168 \\ & 83-185 \\ & 8-765 \\ & 83-776 \end{aligned}$	$\begin{array}{r} .68 \\ .89 \\ 1.95 \\ .12 \\ .12 \\ .24 \\ .5 \end{array}$

FULL LINE OF JAN APPROVED COAXIAL ${ }^{83-223}$ CONNECTORS

IN STOCK UHF-N-PULSE-BN-BNC

1.10
1.10
1.45
2.30
5.50
2.75
.90
.95
2.65
2.65
.85
1.95
1.80
1.65
1.35

COAXIAL CABLE				
RG-5/U.... $\$ 140.00$	Type price Per M Fto	Type Price Per M1Ft,	Type Price	er MFt.
RG-6/U....... 180.00	RG-17/U......		RG-57/U.	\$325.00
RG-7/U. 85.00	RG-18/U.… 90.0		RG-58/U	60.00
RG-8/U....... 100.00	RG-19/U. 1250.00	RG-35/U...... 900000	$\mathrm{RG}_{\text {R-58 }}$ / $/ \mathrm{U}$	70.00
RG-9/U. $\cdot \cdots$.	RG-20/U. 1450.00		RG-59/U	60.00
RG-9A/O..... 275.00	RG-21/U...... 220.00	RG-55/U...... 110.00	RG-77/U.	75.00 100.00
RG-10/U..... 240.00	RG-22/U.C... 150.00			
RG-11/U..... 100.00	RG-22A/U... 285.00	ADD 25\% TO PRICES SHOWN FOR OUANTI.		
RG-12/U..... 240.00	RG-24/U..... 675.00	TIES UNDER 500	N	-

rersunvorgroodoc
ー~

PULSE TRANSFORMERS

G.E.-K2464	AN/APN. 9 (352-7251)
G.E.-K2468	AN/APN-9 (901756-501)
G.E.-K2469	AN/APN-9 (901756.502)
G.E.-K2744B	Westinghouse-132AW2
G.E.-68G627	Westinghousp-139D W2F
G.E. -68 G 828	Westinghouse-i66AW2F
G.E.-68G929GI	Westinghouse-176A W2F
G.E.-80G13	Westinghouse-187AW2F
G. E. -80G152	R aytheon-UX-7350
Philco-352-7071	Paytheon-UX-5137
Philco-352-7149	Raytheon-UX-7361A
Philco-352-7150	Raytheon-UX. 10066
Philco-352-7178	W.E.-D-161310
Philco-352-7190	W.E.-D-163247
Philco-352-7224	W.E.-D. 163325
AN/APN-9 (352.7250)	W.E.-D.164661

FILAMENT TRANSFORMERS Kenyon - 5V 60A
Kenyon-Input 105-125V-sec. 5 V 115A
mertran - nput 105-10 35 KV Sec 5V. 190A
INPUT-208/230 V.. 50/60 CYCLES]
GE 2.5 V.CT.@ 10A., insul.-5KV Encl. Case. $\$ 2.10$ GE 5V. CT. @.5A; insul. 1.5 KV Open Frame 3.45 $\begin{array}{lll}\text { GE } & \text { SV.CT. (3) 7.5A; Insul.7KV Open Frame. } & \mathbf{5 . 2 5} \\ \text { GE } & \text { SV.CT. (3). } \\ \text { GE }\end{array}$

VARIABLE TRANSFORMERS Amertran-Type PH-Input 115 V 400 cycles. Output Amertran $29 / 41$ input iisv 60 cy i $\boldsymbol{\phi}$. Output-
 Powerstat-Superior 1226 - input iis/230 VAC $50 / 60$
cy.-Output $0-270 \mathrm{Amp} 9.4 \mathrm{KVA} . . . \$ 37.00$ ea.

TRANSFORMERS

 Constant Volt. Transformer-Thordarson T-44193AVAC 350 VA $\$ 52.50$ Constant Volt. Transformer-Sola 30307 -Input $95-$
125 VAC 60 cy. Output 115 VAC 250 VA... $\$ 49.00$

[^21]

Price Type Type No. Price Price

 681
550
C.
A.
A.
A.
HY
CY
GY
A.
B.
14 A.
14.

 Йй Type No.

[^22]\qquad

K Band RF Head EQUIPMENT netron, 2K33A Klystron etc.) (incl. 3131 Mag. plete Transmitter T-85/APT-5 $300 \cdot 1600$ MC $\mathbf{c o m - 2}$ AN/APRA- Brod Band Receiver and Tuning Units
TN-16 $(38-95 \mathrm{MC})$, TN-17 (76.300 MC). TN-18 ($300-1000 \mathrm{MC}$)
Ideal Lab Receiver-Prices on Refluest
10 Cm Crystal Mixer-Type "N " Fitting 10 CM Crystal Mixer-Type "N" 0 CM Freq. Meter CW-fio ABM 0 CM R.F. Load CG.97/AP. ABM........... $\$ 18.50$ CM R.F. Load-150W. Avg. Pwr. TS-108A/AP $\$ 22.50$

X" BAND ACCESSORIES UG. $163 / \mathrm{U}$ A Alapter
AT-48/UP Pick-Up Horn Antenna..

TYPE "J" POTENTIOMETERS \$1.25 ea.

 00 SS 2500 SS meg SS $\quad 1 \mathrm{meg} \mathrm{SS}^{2} / \mathrm{s}^{\prime \prime}$ TRIPLE "JJJ"" POTS_- $\$ 3.95$ ea
2ϕ LOW INERTIA SERVO MOTORS Diehl FPE-25-11-75V 60 cy. . II Amp 4 Watts. KOLLSMAN-4 Volt 60 cycle 4 watts 1500 RPM $\$ 31$. PIONEER-10047-2.A 26 valt 400 cycle with $40: 1$ PIONEER-CK
\qquad
TACHOMETER GENERATOR
Elinco type PM-IM
DC Tachometer
$\$ 27.50$

SYNCHROS

ARMY ORDNANCE_-NAVY ORDNANCE-COMMERCIAL

SYNCHRO CAPACITORS
$2 J D s A 2$

C-69406-1
-78670
ONCHRO OVERLOAD INDICATORS

GENERATORS AND INVERTERS Pioneer type 716-3A Generator (Navy Model NEA.
 30 Volts 60 Amps. Brand new.
Pioneer type $1235.3 A$ Generator. Pioneer type 1235.3A Generator. Output-30 Volts DC

15 Amps. Branil New-Original Packing $\$ 15.50$ | 15 Amps. Branil New-Original Packing |
| :--- |
| Pioneer $12133-1 A$ Inverter- $\$ 8 \mathrm{VDC}$ to 115.50 |
| VAC |
| 400 | cy 3 , 250 VA 0.8 PF . Volt. and Freq. Regulatod. Pioneer 12137-1A Inverter-24VDC to 115 Va ($\$ 225.00$ cy $3 \quad \phi \quad 250 \mathrm{VA}$-Volt. and Freq. Regulated. PE-IO91D Inverter-I3.5 VDC to 115 VAC 400 cy . 175 PE-218 Inverters 28 VDC to 115 VAC 400 cy 1500 Pioneer Type $800-1 \mathrm{~B}$ inverter-28VDC to 120 V 800 G. ${ }^{C y}$ E. Inverter-28 VDC to 120 VAC 800 cy 750 VA ATR Inverter 6VDC to נ10 VAC 60 cy 75 w. . $\$ 32.95$ Pioneer type 12121-1A Inverter-Voltage and frequency regulated-24VDC 18 Amp input-AC out-

put $115 \mathrm{~V} 3 \phi 400$ ey 250 VA 0.7 PF (new) Pioneer type 12116 Inverter-28 VDC to 115 VAC Pioneer type 12117 Inverter-28 VDC to 26 VAC eland 10563 Inverter- 28 VDC to 115 VAC 400 cy

CERAMIC-CASED TYPE G

MICA CONDENSERS
09 MFD 1500 VDC GI
$02 \mathrm{MF}, 3000 \mathrm{VDC} \mathrm{GI}$
.004 MFD 6000 VDC Gi
.00015 MFD 20000 VDC
ea. $\quad \$ 9.25$
ea. $\quad 9.25$ ea. 18.10
ea. 24.50

SEARCHLIGHT SECTION

Buy TOP Radio-Electronic Values! AIR THIMMER CONDENSEIRS

STOCK NO.	CAPACITY Min. Max.	MANUFACTURER'S NUMBER	FIGURE	SHAFT LENGTH	POST LENGTH	$\begin{aligned} & \text { GROUND } \\ & \text { LUG } \end{aligned}$	PRICE EACH
$\begin{aligned} & 2937 \\ & 5716^{*} \end{aligned}$	${ }_{3}^{2.5}=7$	Hamm 250034	D	5/16.			
5717.	3 3 3	ASP 17 A 214.	A	9/16.	3/32	Right.	18%
4090	$2-15$	ASP 482212.	A	9/16. ${ }^{1 / 4}$	3/32	To Post	18 d
2939	$3-15$	ASP 217-2.	C	1 $\times 1 / 4$	3/32		25 \%
5718	$3-15$	Telrad 682070-30	D	5/16.	1/4	Top..	20.
231.	$3-25$	CAIM 481881	A	$9 / 16$.		Right.	20%
5720 5721	3 3	Hamm 11725-1	D	5/16	$3 / 32$ $3 / 32$	Left	25\%
5721 5723	$2.5-28$ $3-29$	Comar M420864-6	D		3/32	Right	258
5724	$4.5-30$	$\bigcirc \mathrm{OB7751E-25}$	${ }_{\text {A }}$	9/16.	3/32	To Post	25 \%
5086	5 5 30	Hamm SBL-72265-3.			5/16		30%
${ }_{5087}^{232}$	5 5 5	Hamm ESA682070-35	D	5/16..	$3 / 32$ $3 / 32$	Bottom	330
5087	5 -54	Hamm BL 72265-4...	B	$\begin{aligned} & 5 / 10 \\ & 1 / 2 \end{aligned}$	$3 / 32$ $3 / 32$	Left...	40 \%
236 6124.	8 8 6	ASP 19A 34504.	D	5/16	3/32		40\%
5726.		ASP $19 A 54023$ OAK 114 M 510	E	5/8	1/4"		558.
* Houlle spaced plates. Adjusts hoth endis, some arailahle w/dust cover Fig. A Round Shaft Screwdriver adj, w/locknut. Fig. is lakelite Knob ins. sicrewdriver adj.			fig. Ct Round shaft Screwdriver and Fig. D Ilexnut Screwdriver adj. Fig. E $1 / 4$ Round Shaft. Fig. F Double Ind Plate.			Top	95 \%

2 VOLT BATTERY
Slgnal Corps Tyno BB-54A 2 Volt 27 Ampere Hour
Storage Storage Battery. Non-Spillanhe Transparent Acidl
Proof Plastic Case has Built in Ball Type Hy Proof Plastic Case has Built-in Ball Type Hy -
drometer. $3^{i \prime} \times 4^{4} \times 5^{n}$ $\begin{array}{ccc}\substack{\text { Stock } \\ \text { No. } \\ \text { 5458A }} & \begin{array}{c}\text { Price } \\ \text { Each }\end{array} & \mathbf{\$ 2 . 5 0}\end{array}$
304TL'S EIMAC JAN 304 TL's
INDIVIDUALLY BOXED $\$ 10.95$

HIGH VOLTAGE TRANSFORMER 21,000 volt 100 MA . Half Wave oil filled. Maloney
Electric Co. Electric

$$
\begin{array}{ccc}
\begin{array}{c}
\text { Stook } \\
\text { No. } 572 \mathrm{BA}
\end{array} & \begin{array}{c}
\text { Price } \\
\text { Each }
\end{array} & \$ 300.00
\end{array}
$$

HIGH CURRENT FILAMENT TRANSFORMER
Primary 115 VAC 60 Cycle. Secondary 1.25 VAC at 100 Amp .

Stook No. 5783A	Prics Each	$\$ 5.00$

FILAMENT TRANSFORMER 2 VOLTS TAPPED AT 14 VOLTS @ 20 AMPS PRIMARY TAPPED IN 5 VOLT STEPS FROM
210 TO 240 VOLTS $50-60$ CYYLE STANCOR $10696.4^{* \prime} \times$
Stock
N
Stock
No. $6292 A$
Price
Each
$\$ 4.95$
MIL-T-27
FILAMENT TRANSFORMER
PRIMARY: 107.5; 112.5: 117.5; 122.5: 5 SECONDARY: 6.3 Volts @ 5.3 AMPS and 6.3 Volts @ 3 AMPS. Ceramic bushings with solder lug terminals. Rated tor continuous duty under sealed case, $23 / 4^{4} \times 31 / 2^{2 / 2} \times 31 / 8^{\prime \prime}$ speos. high. Hermetically

Stock
No. 6284 A
Price
Each
\$3.50

SENSITIVE RELAYS

midget type relays
Automatic Electrle Type R-45, 6500 ohm Coil Normally open contacts excopt as noted.
 .

Same type and style as above, but has 24 V . A. C. Intermittent duty. will operate on 6 vin.c. Coil. tinuous denty. Contactsi S.P.S.T.-N.O. ind S. Con

Stock	
No.	
102248 A	Price
Each	

01 MFD.-600 VOLT

 MICA CONDENSERSLarge quantities avaiiable in both CM-35 and CM-40 case sizes PRICE PER 1000
$\$ 150.00$

	1000
5%	$\$ 150.00$
10%	125.00
20%	100.00

SIGNAL CORPS \& NAVY TRANSFORMERS Over 200,000 transformers, chokes etc. For Signal Coras and Navy Equipment. Send us your requirements, or ask for our catalog listing by Sianal
Corps Numbers. DON'T DELAY?

HEAVY DUTY SWITCHES

H\&H ${ }^{\text {4.P.D.T.Toggle Switch. } 5 \text { AMP. @ } 250}$ Volt. 10 Anip. @ 125 Volt. Single $3 / 4^{*}$ hoie mount. Stock
No. 6203A $\quad \begin{gathered}\text { Price } \\ \text { Each }\end{gathered}$
\$1.95
CUTLER HAMMER TYPE 8905K628 4 Pole D.T. Neutral Center Toggle Switch. Lumi4 Pole D.T. Neutral Center Toggle Switch. Lumi-
nous Ti .
Bat Handle. 2 Hole Mtg. $\begin{array}{ccc}\begin{array}{c}\text { Stook } \\ \text { No. } 6291 \mathrm{~A}\end{array} & \begin{array}{l}\text { Price } \\ \text { Each }\end{array} & \$ 1.95\end{array}$

RECTIFIERS

A precision balanced copper oxide double bridoe rectiffer. Housed in a sealed metal container ${ }^{\prime \prime} \times$ $1-3 / /^{\prime \prime} \times \mathrm{l}^{\prime \prime}$ high, Tapped mitg holes in bottom. Dises have vaporized goid contact surfaces. Made
by Bradley Labs. to W . E . spee. D. Nominal input volts to 10.5 W . E. E.C. spee. 5 MA 220005. $\begin{array}{cc}\text { Stock } & \text { Price } \\ \text { No. } 6283 \mathrm{~A} & \text { Each }\end{array}$
$\$ 1.50$

Band pase 800 to 1200 cyeles input 10000 ohms -Output 25000 Ohms Level 10DB

Stock No. T48500 Price to: $\$ 5.50$ ea.

6.3 VOLT FILAMENT TRANSFORMERS

Primary 115 Volt 60 Cycle 1600 Insulation Three 6.4 Volt Secondaries
6.3 Volts @ 4.9 Amps 6.3 Volts @ 4.5 Amps,
6.3 Volts @ 1.1 Amps. stork No. Stork
.5254.

Horizontal Half Shell Mounting. 21/4" x $213 / 16^{\prime \prime}$ Mounting Centers. $213 / 16^{\prime \prime} \times$ $33 / \mathbf{B}^{\prime \prime}$ Core Size. 21/2" above Chassis. Soder Lug Terminals-All Terminals Marked.

Erich

TERMS:	
Oepen Accouns to rated or Acceptable I	
I subiect to thange without notice. Mer-	
IORDER TODAY!	

Rado Surpurs corp.

A LEADING SUPPLIER
 A. C. SYNCHRONOUS MOTORS
 110 Vt. 60 Cycle
 HAYDON TYPE 1600, 1/240 RPM HAYDON TYPE 1600, $1 / 60$ RPM HAYDON TYPE 1600, 4/5 RPM HAYDON TYPE 1600, 1 RPM HAYDON TYPE 1600, $11 / 5 \mathrm{RPM}$ TELECHRON TYPE B3, 2 RPM TELECHRON TYPE BC, 60 RPM HOLTER CABOT, TYPE RBC 2505,2 RPM, 60 oz . 1 in. torque.
 SERVO MOTORS
 PIONEER TYPE CK1, $2 \phi 400$ CYCLE
 PIONEER TYPE 10047-2-A, 2 , 400 CYCLE, with 40:1 reduction gear.
 D. C. MOTOFS
 BODINE NFHG-12, 27 VTS., governor controlled, constant speed 3605 RPM, $1 / 30$ HP.
 DELCO TYPE 5068750, 27 VTS., 160 RPM, built in brake.
 DUMORE, TYPE EIY2PB, 24 VTS., 5 AMP., . 05 H.P., 200 RPM.
 GENERAL ELECTRIC, TYPE 5BA10AJ18D, 27 VTS., 110 RPM, 1 oz .1 ft . terque.
 GENERAL ELECTRIC, TYPE 5BAIOAJ37C, 27 VT5., 250 RPM, 8 oz .1 in. torque.
 BARBER COLMAN ACTUATOR TYPE AYLC 5091, 27 VTS.s 7 amp., 1 RPM, 500 in. lbs. torque.
 WHITE ROGER ACTUATOR TYPE 6905, 12 VT., 1.3 amp., $11 / 2$ RPM, 75 in. lbs. forque.
 AMPLIDYNE AND MOTOR
 AMPLIDYNE, GEN. ELEC. 5AM31NJ18A input 27 vts ., at 44 amp . output 60 vts . at $8.8 \mathrm{amp} ., 530 \mathrm{watts}$.
 MOTOR, GEN. ELEC. SBASOLJ12, armature 60 vts. of 8.3 amp., field 27 vts. at 2.9 amp. $1 / 2$ H.P., 4000 RPM.

PIONEER AUTOSYNS 400 CYCLE

TYPE AY1, AY5, AY14G, AY14D, AY20, AY27D, AY38D, AY54D.
PIONEER AUTOSYN POSITION.
INDICATORS \& TRANSMITTERS.
TYPE 5907.17, single, Ind. dial graduated 0 to $360^{\circ}, 26$ vis., 400 cycle.
TYPE 6007-39, dual Ind., dial graduated 0 to $360^{\circ}, 26$ vts., 400 cycle.

INVERTERS

WINCHARGER CORP. PU 16/AP, MG750, input 24 vts. 60 amps. outputs 115 vts., 400 cycle, $6.5 \mathrm{amp} ., 1$ phase.
HOLTZER CABOT, TYPE 149 F , input 24 vts. at 36 amps ., output 26 vts. at 250 V.A. and 115 vts. at 500 V.A., both 400 cycle, 1 phase.
PIONEER TYPE 12117, input 12 vts., output 26 vts. at 6 V.A., 400 cycle.
PIONEER TYPE 12117, input 24 vts., output 26 rts. at 6 V.A., 400 cycle.
WINCHARGER CORP., PU/7, MG2500 input 24 vts . at 160 amp ., output 115 vts . at $21.6 \mathrm{amp} ., 400 \mathrm{cycle}, 1$ phase.
GENERAL ELECTRIC, TYPE 5D21NJ3A, input 24 vts. at 35 amps., output 115 vts. at 485 V.A., 400 cycle, 1 phase.
LELAND, PE 218, input 24 vts. at 90 amps. output 115 vts. at 1.5 K.V.A., 400 cycle, 1 phase.
LELAND, TYPE D.A. input 28 vts., at 12 amp. output 115 vts. at 115 V.A., 400 cycle, 3 phase.

ENGINE HOUR METER

JOHN W. HOBBS, MODEL MI-277 records time up to 1000 hours, and repeats, operates from 20 to $\mathbf{3 0}$ volts.

VOLTAGE REGULATOR

LELAND ELEC. CO. TYPE B, CARBON PILE. input 21 to 30 valts D.C. regulated output 18.25 vts. at 5 amp .
WESTERN ELEC. TYPE BC937B, input 110 to 120 volts, 400 cycle. Output variation if to 7.2 ohms at 5 to 2.75 amps.
WESTERN ELEC. TRANSTAT, input 115 wts., 400 cycle output adjustable from 92 to 115 vts., rating . 5 K.V.A.
AMERICAN TRANS. CO., Transtat Input 115 vts., 400 eycle output 75 to 120 vts. or 0 to 45 volts, rating $\mathbf{7 2}$ K.V.A.

SYNCHROS

1 F SPECIAL REPEATER 115 vts. 400 cycle. 2JiF1 GENERATOR, 115 vt. 400 cycle. 2JIF3 GENERATOR, 115 vt. 400 cycle.
2J1G1 CONTROL TRANSFORMER 57.5 vt. 400 cycle.
2JIHI DIFFERENTIAL GEN. $57.5 / 57.5 \mathrm{vt}$. 400 cycle.
5G GENERATOR, 115 vt. 60 cycle.
5DG DIFFERENTIAL GEN. 90/90 vts. 60 cycle.
5HCT CONTROL TRAN. $90 / 55$ vts. 60 cycle. 5CT CONTROL TRAN. $90 / 55$ vts. 60 cycle. 5SDG DIFFERENTIAL GEN. 90/90 vts. 400

TACHOMETER GENERATOR \& INDICATOR

GENERAL ELECTRIC, GEN. TYPE AN5531-1, Pad mounting 3 phase variable frequency output.
GENERAL ELECTRIC, GEN. TYPE AN5531-2, Screw mounting 3 phase variable frequency output.
GENERAL ELECTRIC, IND. 8DJI3AAA, works in conjunction with above generators, range 0 to 3500 RPM.

D. C. ALNICO FIELD MOTOR
 DIEHL TYPE FD6-23, 27 vts. 10,000 RPM.

GENERAL ELECTRIC D. C. SELSYNS

8TJ9-PAB TRANSMITTER 24 VTS.
8TJII- INDICATOR, dial 0 to $360^{\circ}, 24$ vts.

RECTIFIER POWER SUPPLY

HAMMETT ELECTRIC MFG. CO. MODEL SP5-130. Input voltage 208 or 230 volts, 60 cycle, 3 phase, 21 amps. Output 28 volts af 130 amps. continuous duty, 8 point tap switch, voltmeter ammeter, therma reset all on front panel.

MISCELLANEOUS

PIONEER MAGNETIC AMPLIFIER ASSEMBLY Saturable reactor type, designed to supply variable voltage to a servo motor such os CK1, CK2, CK5 or 10047.
SPERRY A5 CONTROL UNIT, part No. 644836.

SPERRY A5 AZIMUTH FOLLOW-UP AMPLIFIER, part No. 656030.
SPERRY A5 DIRECTIONAL GYRO, part No. 656029, 115 vt. 400 cycle, 3 phase.
SPERRY A5 PILOT DIRECTION INDICA. TOR, part No. 645262 contains AY 20. ALLEN CALCULATOR, TYPE C1, TURN \& BANK IND., part No. 21500,28 vts. D. C.
TYPE C1, AUTO-PILOT FORMATION STICK, part No. G1080A3.
PIONEER GYRO FLUX GATE AMPLIFIER, Type 12076-1-A, 115 vt. 400 cycle.

TYPE 4550-2-A, Transmitter, 2-1 gear ratio 26 vts., 400 cycle. cycle.

INSTRUMENT
 ALL PRICES
 GREAT NECK

100 small assorted gears. Most are stainless or brass.
Experimenter's dream! $\mathbf{\$ 6 . 5 0}$
HAYDON TIMING MOTOR 1 R.P.M., 115 V., 60 Cycle. . . $\$ 1.95$

TIMING MOTOR 8 RPM 115 Y 60 cyc
E. Ingraham Co.
\# 10800 in: $20-28$ V.D.C. 92 A. 8000 R.P.M. Out: 115 V.
400 Cyc. 1 phase, 1500 V.A. 90 PF............ $\$ 29.50$

| Amp. Per 100 | Amp. FUSES | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Ampr 100 | Amp, Per 100 | | |

np. Per 100	Amp. Per 100	Amp.	er 100
\$4.00	3/4..... $\begin{array}{r}54.00 \\ 3.00\end{array}$		\$3.00
4.00	3.00	10	3.00
$1 / 2 \ldots 3 \text { AG FUSE HOLDERS (Finger) } 25 \% \text { 3.00 }$			

 AVAILABLE IN ALL STANDARD RMA VALUES
RAYTHEON PLATE TRANSFORMER
PRI. $110 \mathrm{~V} / 220 \mathrm{~V} / 440 \mathrm{~V} / 60 \mathrm{CF} 55 \mathrm{~A}$
EC. 1300 V (G) 4 AMPS
02. 1780 RMS TEST
$\$ 19.95$
Brand New Meters-Guaranteed

SELENIUM RECTIFIERS

Full Wave 200 MA 115 V
Halp Ware 100 Ma
15 V

$\$ 1.70$

TS-10 SOUND POWERED HANDSET

Used, Excellent Condition
INCLUDES 6 FT COID \& IES OR FXTFIRNAL POWER
SOURCE

SPECIAL

FILAMENT TRANSFORMER
 80 lbs. Ideal for use as spot welder. Only.
$\$ 29.50$ Time

Chest Set RCAWith 24 Ft. Cord Per Pair
USED $\$ 17.60$
NEW $\$ 26.40$
POSTAGE STAMP MICAS AVAILABLE IN ALL STANDARD RMA VALUES
5 mmf to 910 mm
.0015 to .0056 mid
.0062 to .0091 mfd
.01 mfd .
Smi mmi SIVER MICA

mmif	mmp	mmi	mmit	mmi	mmf	mfd	mid	mfd
10	50	100	170	360	510	. 001	. 0024	0047
18	51	110	180	370	525	. 0011	. 0025	. 005
22	56	115	208	390	560	. 0013	. 0027	. 0051
23	60	120	225	400	570	. 0015	. 0028	0056
24	62	125	240	410	680	. 0016	. 003	006
25	68	130	250	430	700	. 0018	. 0033	0068
27	68	135	25.5	470	800	. 0022	. 0039	. 0082
30	75	150	260	488	900	. 0023	. 004	. 01
40	82	155	270	500				
				c	hed			
10 mmt to 700 mfd								
. 00022 mfd to 002 mfd to 0082 mfd								
.0022 mid to .0082 mid								

[^23]PULSE TRANSFORMERS
$\begin{array}{lllll}\text { UTAH-9262 } & 9278 & 9289 & 9318 & 9340 \\ \text { WFSTERN ELECTRIC-DI66173 } & 9350\end{array}$ KS8696. KS9800, KS9862, KS13161
JEFFERSON ELECTRIC-C-12A-1318
$\begin{array}{lll}\text { Diso } 352-7250-2 A: \quad ~ & 352-7251-2 A: ~ T R 1049 \\ \text { T-1229621-60 }\end{array}$

AN CONNECTORS
See Our Ad February, 1953 Electronics PHONE! WIRE! WRITE! YOUR NEEDS

PRECISION RESISTORS— $1 / 4$ WATT- 30 R $\begin{array}{ccccccc}2 & 11 & 13.52 & 62.54 & 125 & 301.8 & 2,193 \\ 3.5 & 11.25 & 13.89 & 79.81 & 147.5 & 366.8 & 3,500 \\ 6.68 & 11.74 & 14.98 & 105.8 & 147.5 & 368.8 & 3.500 \\ 10.48 & 12.32 & 15.8 & 123.8 & 220.4 & 414.3 & 8.000 \\ 10.84 & 13.02 & 16.37 & & & 58,148\end{array}$

PRECISION RESISTORS— $1 / 2$ WATT- 35 c

DIFFERENTIAL Used $\$ 4.95$ 115 VC, 60 Cycle New $\$ 9.95$ Used between $5 \%^{\prime \prime}$ long converted to 3600 RPM Motor in 10 minutes. Con- rersion sheet sumplied. (Converted).......... 55.50 Mounting Brackets-Bakelite for selsyns, and dip- \qquad

MFD	v.d.c.	Price	MFD	v.d.c.	Price
${ }_{6} 5.2$		50.85	0.5	3,000	2.40
$\times 3$	400	1.85		3,000	4.50
3	${ }_{500}$	1.85	${ }_{0}^{2} 01$	5,000	-95
1	609	. 55		5,000	4.88
0. 5-0.5	600	-40	0.03-0.03	6,000	1.50
${ }^{2}$	600 600	1.75		6,000	9.95
8	${ }_{600}^{600}$		0.02-0.02	7,000	1.55
${ }_{10}$	${ }_{6}^{600}$	${ }^{1} .85$	${ }_{0}^{0.1} 10.1$	77.000	${ }_{5.95}^{1.79}$
4×3	600	2.50	0.1	7,500	2.25
8-8	${ }_{800}^{600}$	1.95	$0.075-0.075$	8,000	6.50
1	800 1,000	. 69	${ }_{0}^{0.15-0.15}$	8, $\begin{array}{r}8,000 \\ 20,000\end{array}$	$\begin{array}{r}6.95 \\ \hline 19.95\end{array}$
2	1,000	. 95		20,00	3.95
3	1,000	1.70		$\begin{aligned} & 1 \mathrm{mfd} \\ & 6,000 \\ & \mathbf{V}, \mathrm{D} . \mathrm{C} . \end{aligned}$	
10	1,500	1.45			
${ }^{0} 0.1020 .15$	2,000	${ }_{1} .65$	N		
0.1-0.5	2,030	1.95			
${ }_{3}{ }^{3}$	2,000	3.75		\$9.95	
8	2,000	7.75	3		
0.25	3,000	2.25			

OIL FILLED AC CONDENSERS

2J1G1 SELSYNS $\$ 8.50$
400 CYCLE BRAND NEW \qquad
(f) 1 , 4

Minimum Orders $\$ 3$ Alt order's fo.l. Phila., PA.

RELLANCE menerainuzare co.

Arch St., Cor. Croskey Phila. 3, Pa. Telephone Rittenhouse 6-4927

ALNICO FIELD MOTORS (Approx. size overa
 DELCO TYPE
27.5 volts DC;
$25069600:$
RPM PM Motor, Delco Type \#5069371; 27.5 \$19.95 DC Alnico Fteld; 10,000 r.p.m.; dimensions ""x $1^{\prime \prime}$ x $2^{\prime \prime}$ long; shaft extension $1_{2}^{\prime \prime}$ diamPIONEER GYRO FLUX GATE AMPLIFIER Type 12076-1-A, complete with tubes $\begin{gathered}\text { \$27. } 50 \text { ea }\end{gathered}$

AC CONTROL MOTOR

A. C. SYNCHRONOUS MOTOR Type RBC 2505; Volts 115; Cycles 60: RPM 60; Mfg

400 CYCLE MOTORS

PIONEER: TYPE CK5 2 Phase; 4 no cycles EASTERN AIR DEVICES TYPE $\mathbf{\$ 4 9 A}: 115$ V; 0.1A; 7000 r.p.m. Single phase 400
 phase 6500 RPM; 1.4 amp ; Torque 4.6 in OZ: HP ASTR AIR DEVICES TYPE JMGB: 200 VAC ; $1 \mathrm{amp} ; 3$ phase; 400 cycles, GASTERN ATR DEVICES. TYPE J31B: 115 V. 400-1200 Cycle. Single Phase $\$ 12.50$ ea
 Phase, 400 Cycle, 2 H.P.; 11,000 RPM.
8 amns. $\$ 79.50$ ea
 Phase, ${ }^{400}$ Cycle, 12 H.P. 12500 RPM Elentrle Motor: PNT-1400-A1-1A Serial No. 207. 208 V., 400 cycles. 3 phase Kearfott SERVO MOTOR 10047-2-A; 2 Phase; 400 Cycle, with 40-1 Reduction Gear SMALL DC MOTORS
DEIACO \#5072000: $27.5 \mathrm{VDC} ; 11.75 \mathrm{rpm} \$ 15.00$ DELCO \#5068750: constant speed; 27 VDC 160 RPM; built-in reduction gears and Jovernor : series reversibie motor: $1 / 50 \mathrm{th}$

 General Elertric Type sAB10Aja7: 27 Volts.
$\mathrm{DC}: 5 \mathrm{amps}$ \& oz. inches tornue; 250 RPM . shunt woind: 4 leads: reversihle. S15.00 ea. General Electric. Mod. 5BA1nFJ33: 12 nz. inches torque, $12 \mathrm{~V} \mathrm{DC} .50 \mathrm{RPM}, 1.02 \mathrm{zmp}$. General Electric-Type 5BA10AT52C; 27
 145 RPM ; shunt wound; 4 leads; reversible 5RA10AJ64. 160 r.p.m.; 65 amp: 12 oz-in.

 DELCO FAN
DELCO FIN - TYPE S.S.P. 115 Volts AC. blades rubber shock mounted Noiseless, idea for exhaust and cooling mouning as pictured
NEEV. Original Car
ions......... $\$ 5.95$ ea

RECTIFIER POWER SUPPLY
INPUT: 220 VAC: 60 Cycle; 3 PH. OUTPUT:
BLOWER

Eastern Air Devices. Type J31B; 115 volt $400-1200$ cycle; single phase: variable fre | quency: continuous duty; L\& $R=2$ blower: |
| :--- |
| approx. $22 \mathrm{cu} . \mathrm{ft} . / \mathrm{min}$. | BLOWER ASSEMBLY

115 Volt 400 Cycle, Westinghouse Type FL. 17CFM. complete with capacitor

SENSITIVE ALTIMETERS
Pioneer Sensitive altimeters,
$0-3.000$ ft. range A. cali
brated in 10 's of feet. Baro braied in $10{ }^{\prime}$'s of feet. Baro-
metric setting adjustment. No metric setting adjusiment.
hooli-up recuired...s12.95 ea

INVERTERS

10563 LELAND ELECTRIC Output: $115 \mathrm{VAC} ; 400$ cycle; 3-phase: 115 VA: 75 PF. Input: 28.5 VDC
amp. $\$ 69.50$ ea.

PE 218 LELAND ELECTRIC Output: 115 VAC; Single Phase: PF 90 ${ }_{92}^{380 / 500}$ cycle 1500 VA. Input: $25-28 \mathrm{VDC}$; ${ }_{\text {BRAND }}{ }^{82}$ ampsi 8000 RPM; Exc. Volts ${ }^{27.5}$

PE 109 LELAND ELECTRIC
Output: 115 VAC 400 cyc.; single phase: 1.53 amp ; 8000 RPM , Imput: 13.5 VDC . 29 amp

MG-0-75 ONAN

Navy Type PU/11 : Output
俗 115 VAC; (0) 38 amp Input: $115 / 230 \mathrm{VAC} 60$ cyc. incle phase

MG 153 HOLTZZE-CABOT
Input: $24 \mathrm{~V}, \mathrm{DC}, 52 \mathrm{amps}$; Output: 115 volts -460 cycles, 3 -phase. 750 VA . and 26 volt$\$ 89.00$ ea.
PIONEER 12130-3-B Output: 125.5 VAC: 1.15 amps. 400 cycle
single phase, 141 ViA. Input: $20-30$ VDC, $18-12$ amps. Voltage and frequency regulatea 12116 -2-A PIONEER
Outpat: 115 VAC; 400 cyc.; single phase:
10285 LELAND ELECTRIC
Output: 115 Volts AC, 750 V.A., 3 phase, 400 cycle, 90 PF, and 26 volts. 50 amps.
single phase, 400 cycle. 40 PF . Input: 27.5 VDC, 60 amps. cont. तuty. 6000 RPM . Voltage and Frequency regulated..... \$195.00 10486 L Output: 115 VAC: 400 Cycle: 3-phase: 175 Duty 80 PF Input : 27.5 DC....5... $\$ 90.00 \mathrm{ea}$.

PIONEER 10042-1-A
DC INPUT 14 Volts; OUTPUT 110 Volts: 400
94-32270-A LELAND ELECTRIC

Output: 115 Volts: 190 VA; Single Phase;

 $400 \mathrm{Cycle;} .90 \mathrm{PF}$. and 26 , Volts: 60 VA;400 Cycle; 40 PF . Input: 27.5 Volts DC: 400 Cycle; 40 PF . Input: 27.5 Volts DC ;
18 amps ; cont. duty, voltage and freq. regulated

115 VOLT GENERATORS

Brand new Eclipse genertors: 115 VAC 9.4 amp
to
1000 watts: single phase 1000 watts: single phase:
800 cycles. $2400-4200 \mathrm{rpm}$. 800 cycles. $2400-4200 \mathrm{rpm}$.
DC output is 30 volts at 25 amp. Unit has spline drive shatt and is self-

MICROPOSITIONER

Barber Colman AYtZ al33-I Polarized D.C. Relaw: Double Coil Differential sensitive, $5 \mathrm{amps} ; 28$. Used for remote positioning: synchronizing, control, etc. $\$ 12.50$ ea.
PORTABLE GAMMA SURVEY METER
 Model 24713: For detect ing and measuring highradiations while obtain. $\underset{i n g \quad d i s c r i m i n a}{\text { radiations while obtain- }}$ ing discrimina-
tion against other radiatlons. Range switch permits selection on scales
of zero to 50 , zero to 500 . of zero to 50 , zero to 500.
zero to 5000 and zero to zero to 5000 and zero to
50,000 milliroetgens hour MR/HR). Entire-
mit consists of a watertight aluminum case with sealed detector assembly. hermetically sealed meter. vacuum tubes and circuit components with power supply of $1-45 \mathrm{~V}$ dry battery and $1-300 \mathrm{~V}$ dry battery. Dimensions are 10-3/4" wide; $12-59 / 64^{\prime \prime}$ high; weight $12-3 / 4$ libs. incl. batteries. M.g. coctoreen instruit at a tremendous savings
. $\$ 99.50$
Immediate Delivery
ALL EQUIPMENT FULLY GUARANTEED
All prices net FOB Pasadena, Calif.

BENDIX AIRCRAFT TYPE GENERATOR
Bendix-Eclipse Aviation; Type 1235
Counter-clockwise rotation. Speed $2500-4500^{\circ}$ RPM: 28.5 VDC 015 A. A Two-Brush ball bearing generator suitable for any application where 28 volt output is required. Field and armature taps for anjustment of volt-

G. E. GENERATORS

General Electric Tule 5 -ASB-31JJ3; 400 cycles out
at 115 volts; 7.2 amps: 8,000

SINE-COSINE GENERATORS

(Resolvers)
Dieh1 Type FJE43-9 (Single Phase Rotor). Two stator windings 90° apart, provides two outputs equal to the sine and cosine of the angular rotor displacement. Innut voitage 115 volts. 400 cycle............ $\$ 30.00$ ea. except it supplies maximum stator voltage of 220 volts with 115 volts applied to rotor.........
Arma Mesolver Type 213014; equal in size to size 5 synchro; $55-60$ cycle; single nhase
primary, 2 phase secondary......... $\$ 79.50$

VOLTAGE GENERATORS (RATE) ALNICO MIDGET D.C. VOLTAGE GENERATOR TYDE B-35-D AICOMIGGTDCHTAGEGENERATOR TYYe B-44-D. A.C. GENERATOR: 67 Y. 20 Cyc. ${ }^{2}$-Phase
.015 Amps. Type PM-1. 1200 R.P. $\$ 15.00$

SYNCHRONOUS SELSYNS

 110 volt. ${ }^{60}$ cycle, ${ }_{4}{ }^{\text {brass }}$ dia cased. ${ }_{6}$ approx ${ }^{4 \prime \prime}$ dia. ${ }^{\text {Mfg. }}{ }^{6}{ }^{6}$ " ${ }^{\text {long }}$ BendixQuantities Available
 REPEATERS

SYNCHROS

AUTOSYN MTR. KOLLSMAN Type 403 ; 32 VAC: 60 cycle; single AUTOSYN MTR., BENDIX Type $=851$: 32 VAC: 60 cycle: single phase. KEARFOTT Type R-212-1A-A Rotor: 26 Volts; single cycle, siasyn UNTT, Tyne 1C-006-A. $\$ 25.00$ MICROSYN UNTT, Tyne $1 \mathrm{C}-006 \mathrm{CA}$. $\$ 35.00$ IF Special Repeater ($115 \mathrm{~V}-400 \mathrm{Cyc}$)
2JF 3 Generator ($115-400 \mathrm{cyc}$) , $\$ 10.00 \mathrm{ea}$. 5CT Control Transformer: $90-50$ Voit: 60
 5G Generator ($115 / 90$ volt- 60 cy 5/DG Differential Generator ($90-94$ volts TRANSMITTER, BENDIX C-7828: 15 Differential-C- $\mathbf{7} 8249: 115$ Volt: 60 Cycle 5N MOTOR (115 Voits/ 60 Crie)s $\mathbf{\$ 2 5 . 5 0}$ REPEATER, BENDIX C-78410; 115 Volt. REPEATER. AC synchronous 115 V. ${ }^{\text {6n }}$ REPEATER. DIEIIL MFG. No. FJE z2-2: 115 Volt: 400 Cycle: Secondary 90 Volt $\$ 27.50$ iG Synchro Generator (115/90 volti, fin CO Synchro Generator (115/90 volt: 6 . 6 n GDG Svachro Differential Generator $90 / 9 n$
 WDSHA1 Selsyn Gencrator: 11:-105 Vnlts ?,NVI GENERATOR: $115-57.5$ Volt: 400 CVCle DIFFERENTIAT GENEPATOR
 R $\$ 7.50$ cat PIONEER AUTOSYNS

VG Volt-400	Cycle...... 86.95
+Y-5... 20 Volt-4n	\$7.95
AY? ${ }^{\text {A }}$	\$12.50
AY6- ${ }^{\text {c } 6}$	958 ¢9.
AY30D-26	125.00 eat
AY14D	

TVPE 12601-3-A: Contain CK5 Motor con plef to output shaft throush 125.1 gear re
duction train. Output shaft coupled to aut duction train. Output shaft coupled to autn
synt follow-up AY43). Ratio of output
shof to follow-mp Antosyn is 15.1 sono TYPF 12602-1-A: Same as 12f06-1-A excent it has a $30: 1$ ratio between output shaft and TYPE 12602-1-A: Same ns 12606-1-A excent it has hase mounting type cover for motnr
and gear train...................$~$
70.00 ea.

COMMUNIGATIONSEQUIPMENTGO.

723A $\$ 12.50 \mid 2 K 25 / 723 A / B \$ 27.50$

723A/B 19.50 417-A (Sperry) 17.50

SELSYNS	
115 VAC 60 CYCLES	1 PHASE
$\begin{aligned} & \text { 1—Tronsmitter \#C-78248 } \\ & \text { 1—Differential \#C-78249 } \end{aligned}$	$\begin{gathered} \text { Per Set } \\ \$ 24.50 \end{gathered}$
Transmitter Units Only	\$17.50 ea.

PULSE NETMORKS

${ }^{15 A-1.400 .50:} 15 \mathrm{KV}$. "A" CKT. 1 mícrosec. 400

 7.5E31-200-67P. 7.5 KV NUS Circuit. i nicrosec 200 $7-5 \mathrm{E} 4-16 \cdot 60,67 \mathrm{P}, 7.5 \mathrm{KV},{ }^{2} \mathrm{E}$, Circuit, 4 sections 16

PULSE EQUIPMENT

MIT. MOD. 3 HARD TUBE PULSER: Output Pulse 1'ower 144 KW (12 KV at 12 Amp). Duty Ratio:
.001 max. pulie duration: $5,1.0 .2 .0$ mineosec. Input

 sec. pulse line inmedance so ohms. Circuit- series

PULSE TRANSFORMERS

G.E, $\#$ K- 2449 : Line to magnetron: Pri: 50 ohnis Z. 9.5

 UTAH Xranstormer $\times 151 \mathrm{~T}-1:$ Dual Transformer, $2 \mathbf{2}$ Wge. per sec| tion |
| :---: |
| DCR |
| $1: 1$ llatio per sec 13 MH inductance 30 ohms | UTAH X-I50T-1: Two sections, 3 Wdgs per section.

 K01695-501: latio ioi, Pri. Inp. 40 ohm, Sec.
40 Olms.
Passes vilse 0.6 usec with 0.05

 RAYTHEON: UX8693., UX5986

 K-2450: Pulse-inversion auto-transformer: primary 13

MICROWAVE COMPONENTS
"S Band," RG48/U Waveguide POWER SPLITTER for use with trpe 726 or any 10
CA Sheyheril Klystron. Enerky is fed from Klystron CAI Shepheril Klystron, Enerky is fed from Klystron connectors
DIRECTONAL COUPLER, Broadband Coupling. 20 db . with std. flanges. Navy \#CABV LHTRAN-2GHTHOUSE ASEEMBLY........... $\$ 37.50$

 MAGNETRON TO WAVEGUUDE Coupler with RT-39 APG-5 io cuit il blthouse Jis head c/o Xintr.
 721 A TR BOX complete with tube and tuning plungers Monally klystron cavities for 707 B or $\begin{array}{r}2 \mathrm{~K} 2 \mathrm{~K}^{2} \\ \$ 4.00\end{array}$ WAVEGUIDE TO $\gamma^{2 / 2}$ RIGID COAX "DOORKNOIV' MROLD IRIND
ASI4A AP-10 CM licl up Dinole with win Cable OAJ ECHO BOX 10 CM TUNABLE.

Adapters. 1. F. AMP. STRiP. 30 MC, 30 A. . gain, 4 MC Band POLYRGD ANTENNA, ASBI/APN-7 in Lucite

7/8" RIGID COAX—3/8" I. C. ROTARY JOINT. Stub-supported, UG 46/UG 45 fittingg 10 CM STABILIZER Cavity, tunable, standard UGidif RG 44/U RIGID CoAX, stul) support, 5 ft . sections. RIGHT ANGLE BEND, with flexible coax output pirkRT ANGLES for ahove
SHORT RIGHT ANGLE BEND, with Dressurizing

X Band-RG 52/U WAVEGUIDE

 UG 39 Flanges.UG 40A Broathand Choke Fianges............\$1.65 UG ${ }^{1 / 2 / 2}$ waveguide in 5^{\prime} lengths, UG 39 flanges to
Uotating Rotating joints sumplied either with or withent deck
mounting. With UG\&11 flanges.each, $\$ 17.50$ Bulkhead Feed thru Assembly
Pressure Gauge Section 15 lb . gauge and dress nipole
 TR-ATR Duplexer, section for alove.............s8.50
Waveguide section 12^{4} long chove to cover 45 deg.
 Waveguide Section $21 / 2 \mathrm{ft}$. long silver plated with chole Rotary foint choke to choke with deck mounting. $\$ 17.50$

 45 degree twist Complete with L.O. and AFC Mixer and Wavesuide Input Circuits. 6 1.p. Stages give approximately 120 width; 2 MC. Uses latest type AFC circuit. Complete with ail tubes, including $723 \mathrm{~A} / \mathrm{B}$ Local OscilADAPTER, wavenuide to type "N", UG 8i/U. $\mathrm{D} / \mathrm{T}, \mathrm{TS}$
 Flange for TS-45. etc. $\$ 2.50$ each

APS-15
 SPARE WAVEGUIDE PARTS

CU.73/APS-15A, SCS \#2Z3265-73 right angle bend,
 deg. twist. One end pick-up loop with press. thtink 2-614: Philco 756-1142 CG124/APS-15A. Wave-selector: approx. 16 with 15 deg. bend at center Philco $348-1425$. 180 deg. bend. with pressure fliting Z-609, Philco 348-1629. 131/2" run, with bend \& 90 deg. 2-606: 8" run with 30 deg. bend (E-plane) one nd Phico 348-1427 E plane bend $11^{\prime \prime} \times 6 \neq{ }^{*}{ }^{n} \ldots \ldots$. S6.50 CGI/APS-3 Philico 358-5212. S-curve $16^{\prime \prime} \mathrm{L}$ with round contact flanges

RADAR TEST SETS

TS.56A/AP Slotted Line

Frequency Range and Characteristic /mpedance The Model 'IS-obiv/A!' slutted Line is designed for
oderation over a frequency range or 360 to 675 megacyeles. The slotted line has a characteristic impedance ind ohms.
The indicator consists of a detector and meter whic when mounted on the slotted line indicates the voltase along the line.
The indicator is divided into two separable units; the tains the meter, battery aud an wiriue the resunator box contains the 957 tube, the probe and the tumin condenser in the remonat chamber.
The trequency linit as set by the resonant cavity of The trequency limit as set by the reson
the indicutor box is $340-690$ mesacycles.
the indicator
Slotted Line
Since the length of the slot is 41.8 centimeters, no Wave or wavelength gruater than two times 41.4 centi-
meters can be used ou the stoted tine. This wavelensth meters can be used on the slotted hile. This wavelensth eorrespondy to a rruathes of 358 huegacycles. The slot frequency linits of the complete unit are set by tuning ralse of the ¥ucator box
Cable
The
The cable supplied is the RG-8/U co-axial cable ter nal characteristic mpedunce of the cable is 52 nomi The dieleetric is stabilized polyethylene and the norma overall diameter is U.4U5 inches.
special inplenol which comectors are provided with a special insert which is in the torm of a shell that make
contact with the brad and the $\forall \mathbf{S}-\mathrm{Al}$ connector, The insert maintains the cable in on position and also pro vides electrical continuty between the slotted line and the cable.
Adapters
T'wo "Amphenol to Selectar" adapters are provided for use with an Amphenol y3-F connector (on end of nect a cable with a Selectar C-4 4145 comnector to the NEW, COMP. WITH ALL ACCESSORIES AND CARRYING CHEST. \$235

TEST OSCILLATOR TS-4T/APR

A. Function: The oscillator provides a calibrated high erated from either an a-c or a d-c power source
B. Electrical Characteristics

115 to 500 hace: 'lwo bands, 40 to 115 mc and
Signal Output: Sine wave of 1.000 cos modulated 50 percent, or a 70 -mirosecond pulse with prf of C. Specifications

A-c Uperation: 80,115 , or 230 volts at 50 to 2,600
D-c Operation: 6.3 folts at 0.30 ampere (dial Hght off) and 202.5 volts at 0.016 ampere. Dial light
draws 0.25 ampere. Four $i-1 / 2$ volt and three 67.5 draws 0.25 ampere. Four $1-1 / 2 \cdot$ vo
volt dry batteries are required.
Tube Complemen
2 tubes 10002
D. Signal Corps Stock No. 3F3910-47

Price, New
FS 268/UP $\begin{aligned} & \text { Crystal Test Set for checking type } \\ & \text { N2N } 1 \text { N21A, } 1 N 22 \text {. } 1 \times 23 \text {, etc. }\end{aligned}$ Fxtremely compact. reliable, rupged. Operates from TS 270A/UP: Echo- Box for checking overequipment operating in $\mathbf{S q}$ pand. Brand new, comequipment operating in Sq Band. Brand new, com
pleta with plek-up horn, spare crsstals, cords. etc.
SPERRY MICROLINE $\mathrm{Ex}-12$ Po wer ulator, for operating $2 \mathrm{~K} 39,2 \mathrm{K41}$,417 A , vte. Operates
from i15V, 60 Cy . Used. Excellent supplied with $2-$
417 A Klystrons. 417A Klystrons.
P. O.R. Price on Request

HIGH-POWER GEAR
 TRANSTAT:

ALTERNATOR:
Louis.Allis Co. Type "'AL"" 198.C, Output $110 / 220 \mathrm{~V}$ regulating with built in exciter.
Brand new, original crates...... $\$ 795.00$

MAIL ORDERS PROMPTLY FILLED. ALL PRICES F.O.B. NEW YORK CITY. SEND M.O. OR CHECK. ONLY SHIPPING SENT C.O.D.
RATED CONCERNS SEND P O. ALL MDSE SUBJECT TO PRIOR SALE AND PRICES SUBJECT TO CHANGE WITHOUT NOTICE RATED CONCERNS SEND P. O. ALL MDSE. SUBJECT TO PRIOR SALE AND PRICES SUBJECT TO CHANGE WITHOUT NOTICE.

[^24]131 Liberiy St., New York 7, K. Y. Depi E-8,Ghag. Rosen Phone: Dighy g-4124

Purchasing Agents NOTE: all tubes are New, Standard Brands, Packed in original cartons. Immediate delivery. Terms 25% with order, balance C.OD. today for detailed price list

METROPOLITAN OVERSEAS SUPPLY CORPORATION

Special

 Values!
RADAR INDICATOR

unit for conversion to test scope or for use as a modulation mon-
\(\left.\begin{array}{l}NEW

\$ \mathbf{1 t o r} Less stand-

ard 5BPl tube\end{array}\right\}\)| and controls. |
| :--- |
| Complete with |
| 7 tubes. |

WRITE FOR PRICES

APS3 components TS159/TPX
TS 184/APí13
PE237
BC433G EE8 Telephones
MG153 BC134
TN16, TN17, TN18, BC342
BC1033 BC639 with RA52
APS13
SCR269F \& G APR2

APR4 with tuning units	(large quantity available)
APR5	BC376
SCR625	RA42
SCR 508 crystal	CRT3
350 ft. RG 54U	PM10
cable	MN26Y
TS10	LP21LM
TS16	BC1277
TS59	BC1287
TS69	IE19A
IS92	MN26C

TS 100/AP
PLUGS
large quantity available-write for prices! PL166 PL171 MC277 PL169 PL170 PL172 ART-13-U6U
Write for our new 1953 catalog! Shipments FOB warchouse. 20% Deposit on orders. Minimum order $\$ 5.00$. Mlinois tance. Prices subject to change without notice.

R W Electroictas
 Dept. EL, 1712-14S. Michigani Ave. Chicago 16; III: PHONE: HArrison 7-9374.

TALLEN VALUES PLUGS

PL 68 (W. E. Type 309) used W. E. Plug 310 used PL 68.
$\begin{array}{ll}\text { PLP } & 170 \\ \text { PLQ } & 169\end{array}$
$\begin{array}{ll}\text { PLQ } 169 \\ \text { PLQ } & 171\end{array}$
PLQ 172
Bias Meters 1-97
P 4 Computers
E 78 Signal Generator
Antenna AT5/ARR-1
Tuning Units for BC-610 NEW

.... . 25

MOTOR SALE
$1 / 40$ HP WITH SHAFT \& FLANGE MTG. 115 V. 60 CY. 3450 RPM
$\$ 2.00$ EA
110 V. 2 POLE 60 CY. 1 PHASE OILITE BEARINGS 1750 RPM $11 / 2^{\prime \prime}$ SHAFT FOR DISPLAY MECHANICS WITH MOUNTING BRACKET
. 60 EA.

LIP MICROPHONES

MC 419 NEW.
60,000 Used Headsets on sale 1.00 each
HS 18-HS 30-HS 38
Pressurizing Kit-Hand Pump-Dehydrato
Cyl., 30 lbs pressure, Gauge and Hose
Brand NEW . . . $\$ 4.50$

CRYSTALS

25,000 Pieces in FT. 241 Holders New @ $\$.10$ each

Recorder for underwater sound equipment cy. 26 VDC NEW $\$ 20.00$ Radar Transmitter T-26/APT-2, 115v. 400 cy. 200 Watts NEW............ $\$ 30.00$ Corner Radar Reflector NEW $\$ 5.00$ R5/ARN-7 Type Certificated. 2550.00 TS125 Test Set, complete, NEW . $\$ 125.00$ ea. TS10 Test Set, NEW............... S20.00 ea. TS16 Test Set, NEW $\$ 20.00$ eq.
TALLEN CO., INC. 159 CARLTON AVE. BROOKLYN 5, N. Y.

TRIANGLE 5-8241

CARRIER EQUIPMENT

Western Electrio CF-IA 4-ohannel carrier tolophono
EE-101-A 2-channel $1000 / 20$ cycle carrier ringers. Crorminal channol carrier pilot regulated tolopheno CFY. cy ringing
CFD-B 4-channel pilot regulated tolophono re
c. $42-\mathrm{A}$ - V . F. telegraph in from 2. to 12 -channe

FMC, or 2 ohannels cartier telephone terminala
FMC 1 or ${ }^{2}$ ohanbels carter telephone torminale automatio regulation, duplox signaling oach
channel. Carrier freauencies above 35 KC . Idea for adding channels above type " C ", complote engineering and installation servlowe offered.

RAILWAY COMMUNICATIONS, INC.

X-RAY

All types for industrial and experimenta application. Tubes, cables and components.

MEDICAL SALVAGE CO., INC.
217 E. 23 rd St., New York 10, N. Y Murray Hill 4.4267

POWER TUBES REBUILT

UNIVERSAL VACUUM TUBE CORP.
137 Alexander Ave., Yonkers 2, N. Y.

SEE OUR PREVIOUS ELECTRONICS ADS FOR LISTINGS OR WRITE FOR CIRCULARS

TELEPHONE TYPE RELAYS

These relays have been standardized so tha coils and irames of most manafacturers can be interchanged without affectirg adjustments wide variely of applicable combination are thus palays.

Listed below are frames and coils from our stock. They may be purchased separately. However, a complete relay consists of coil and frame. In ordering complete relays specify which coil with which frame, i.e.: F101 with K117
Representative completed relcys are also isted with voltage and current ratings. Values are indicative of sensitivity that may be expected from similar combinations
CLARE, 6500 ohm, 8maDC, 3 makes (3As) \#R276 5035 A 7 AUTOMATIC, $1300 \mathrm{ohm}, 8 \mathrm{maDC}, \mathrm{SPST} \begin{aligned} & \$ 4.25 \\ & \text { n. } \\ & \$ 1.75\end{aligned}$ CLARE K103, © 100 ohim. SPDT, 2 min DC. Jast Ac-

$\underset{\text { of }}{\substack{\text { or } \\ F}}$	FRAM Cost of Rela me to Pri		ice		
Stock		Price	Stock		Price
NJ.	Contacts	each	No.	Coritacts	each
F10:	1.1	1.25	F111	$1 \mathrm{~B}, 2 \mathrm{~A}$	1.75
F102	21	1.50	F114	1B.3A	2.00
F103	3 A	1.75	F133	$1 \mathrm{~B}, 1 \mathrm{C}$	1.75
F104	4.	2.00	F108	1B, 1A, 1C	2.00
F127	8A	3.00	F131	1B, 9A, 1C	4.00
F128	12A	4.00	F107	2B, 1A	1.75
F106	1A, 1B	1.50	F135	23, 1C	2.00
F107	1A, 2 B	1.75	F112	2B, 2A, 2C	3.00
F108	1A, 13, 1C	2.00	F136	2B, 3A, 1C	2.75
F109	1A, 1C	1.75	F121	5B, 1C	2.75
F110	1A, 2C	2.25	F122	1 C	1.50
F111	$2 \mathrm{~A}, 1 \mathrm{~B}$	1.75	F123	2 C	2.00
F137	2A, 1Cl	2.00	F109	1C, 1A	1.75
F112	2A, $2 \mathrm{~B}, 2 \mathrm{C}$	3.00	F137	$1 \mathrm{C}, 2 \mathrm{~A}$	2.00
F129	2A, 2B, 6C	5.00	F117	1C, 5A	2.75
F114	$3 \mathrm{~A}, 1 \mathrm{~B}$	2.00	F133	$1 \mathrm{C}, 1 \mathrm{~B}$	1.75
F136	3A, 2B, 1C	2.75	F135	1C, 2B	2.00
F115	3A, 2C	2.75	F108	1C, 1A, 1B	2.00
F117	5A, 1C	2.75	F136	1C, 3A, 2B	2.75
F120	1B	1.25	F121	1C, 5B	2.75
F132	23	1.50	F110	2C, 1A	2.25
F134	3B	1.75	F115	2C, 3A	2.75
F106	1B, 1A	1.50	F112	2C, 2A, 2B	3.00

SPECIAL CONTACT ARRANGEMENTS

We can supple anr contact arrangment up to 20 ontact leafs $(10$ form A or 10 form B; or combinacoms; or B, form C) for a nominal extra charge To blank frame plus 50 fo reach forme atditis. 25 for ach form A or B and 2.00 as the nominal extra $1.00+.50+.75+.50+2.00=4.75$

ADVANCE RELAYS						
Type	coll		CONTAC		Stock	Price
No.	Volts	Ohms	Circuit	Ampis	No.	Each
400	115 AC		DPDT(2C)	10	R530	6.95
45.5	20ma	1800	DPST(2A)	1 m	R53.5	2.95
951 B	6 DC	115	SPsT(1A)	10	R596	1.95
951 C	24DC	276	SPST(1A)	20	R527	5.25
964 B	115 AC		DPDT(2C)	10	R528	3.50
96413	220 AC		DPDT(2C)	10	R529	3.75
K1504A	220 AC		DPD'Г(2C)	5	R531	2.95
K1604A	121/2ma	6.500	DPDT(2C)	5	R582	2.95
1.13 A	30 ma	1000	$4 \mathrm{PDT}(4 \mathrm{C})$	5	R 533	4.95
1813A	115 AC		$4 \mathrm{PDT}(4 \mathrm{C})$	5	R456	4.95
1916A	24DC	160	5PDT(5C)	5	R535	2.95

FERRULE AND OTHER

WIRE WOUND RESISTORS
AT A FRACTION OI
MANUFACTURERS' ORIGINAL COST!

IMMEDIATE DELIVERY

From Our Wide Assortment from 0.2 Ohms to 15 Megohms.

ENAMEL • GLASS
FIXED • ADJUSTABLE
New and in Perfect Condition. Ncarly all made to JAN Specifications.

Send us your requirements. We have 250,000 wire wound resistors in a large variety of sizes in stock. Complete listing available upon request.

$\begin{gathered} \text { CFor } \\ \text { of } \\ \text { Co } \end{gathered}$		Add P of Fra		(1)	
Stock		Price	Stock		Price
No.	Ohms	each	No.	Ohms	each
K101	0.75	1.25	K10s	900	1.75
K131	5.0	1.25	K109	1000	1.75
K102	12	1.25	K136	1200	2.00
K156	50	1.25	K111	1300	1.75
K132	175	1.25	K13i	1425	2.25
K153	300	1.50	K138	1.500	2.25
K154	400	1.50	K139	1 fiO	2.25
K104	40%	1.50	Kı12	2 mon	2.25
K105	500	1.50	K140	2300	2.50
K133	600	1.50	K155	2501	2.50
K134	700	1.50	K11.3	30 nim	2.50
K107	7.50	1.50	K116	6500	2.75
K135	800	1.75	K118	40,500	3.25

A-C COILS

Steck		Price
No.	Voltage	ch
K119	givic	1.75
K121	HaVar	2.60

Stock No.	Ohms	$\begin{aligned} & \text { Price } \\ & \text { each } \end{aligned}$	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	Ohms	$\begin{aligned} & \text { Price } \\ & \text { each } \end{aligned}$
K141	50/2000	2.25	K145	1000/1000	2.25
K142	125/1300	2.25	K10f	1100/510	2.00
K143	200/100 (i)	2.00	K142	1300/125	2.25
K106	500/1100	2.00	K144	1890/500	2.50
K144	500/3:00	2.50	K141	$2000 / 50$	2.25
K143	1000/2006	2.00			
	$A=\text { Normall }$	Open: $=\text { Dout }$	$e \mathrm{Th}$	maily Clos	
	TELEPH	$\begin{aligned} & \text { ESSO } \\ & \text { ONE } \end{aligned}$	$\begin{aligned} & \text { RIES } \\ & \text { TYPE } \end{aligned}$	FOR RELAYS	
Clare	CiR1 Molu		trcera	${ }^{4} \mathrm{CR} 1$	90
Clare	BR2 Long	Relay ${ }^{13}$	arket	P1R2	29
Clare	BRt Shor	Pelay 1	ravket	- RR.	15

CAPACITORS

TRANSMITTING TYPE 4

MFD	WVOC	Test	Color	Price each
.00003	1200	2500	Y	.30
.00008	1200	2500	Y	.30
.0901	2500	5000	Y	.50
.001	600	1200	Y	.25
.001	1200	2500	13	.35
.001	1200	2500	Y	.40
.002	600	1200	B	.30
.002	1200	2510	Y	.45
.003	600	1200	Y	.35
.004	2510	5000	Y	.80
.01	600	1200	Y	.35
.01	1200	2500	Y	.45
.02	600	1200	Y	.45

TERMS:-All Prices Fo. B. Our Plant. Rated Firms.
Net 10 Days: All Others Remittance
with Order

LEACH RELAYS
(Many Others in Stock)

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Coil } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Volts } \\ & \text { D.c. } \end{aligned}$	Ohms	Cir-	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Price } \\ & \text { Each } \end{aligned}$
${ }^{604}$		12	40	$2 \mathrm{C}, 1 \mathrm{~A}$	R536	7.50
1010	356 C	22.5	325	1 A	R212	1.50
1016	357D	24	375	$1{ }^{1 A}$	R286	50
1024	砛	24	265	${ }^{3 A}$		2.25
1025 SNBF	${ }_{357 \mathrm{Cx}}^{354}$	24 24	265 425	${ }_{28}^{2 A}$	R214	
1054 B	356A	24	265	${ }_{2 A}{ }^{\text {a }}$	R253	2.25
1027	- 354	${ }^{6}$	24	2	R53	2.95
1028-4	359	0 ma	1550		R539	2.95
${ }_{1054}^{1037}$		2 ma	,000		R5	4.50
${ }_{1077 \mathrm{BF}}^{1054 \mathrm{~B}}$	3564 3550	24	265	${ }_{2}{ }^{1}$	R2	2.25
1154	371BL	50 A		2 A	R215	2.25
1204	- 355	12	95	${ }^{2 A}$	R217	2.25
	356A	24	265	A		2.00
${ }_{122005}^{12200}$	- 354	- ${ }_{\text {12-24 }}$	24 95	${ }_{14}^{1 A}$ (d.b.	R542	1.95
1224 DE	355	12	95	${ }_{2}{ }^{\text {A }}$	R219	2.25
1251		${ }_{12}^{2.4}$	${ }^{4}$	1 A	R220	2.00
1251	${ }_{361} 35$	120	10.000	${ }_{1}^{1 A}$	${ }_{\text {R221 }}$	200
1253 DLW 3	2)355D	24	160 (ea)	1×2		
1254	55	on	He bas		${ }^{\text {R } 544}$	5.25
		12	95	${ }^{14}$	R2	00
1257 M		12	67	C		${ }^{3.25}$
	372	24	250	1 c		. 09
1257 WC	3545		160	${ }_{2 \mathrm{C}}^{2 \mathrm{C}}$	R548	3.95 3.00
$2 \times{ }_{1252}^{12515 R}$	$3685 R$	${ }_{6}^{6}$	16(ea)	${ }_{18}^{2 \times 1 A}$		
2 Slow Release plus 1 Normal Relay on 1 Base						
${ }_{202405}$	${ }_{354}^{355}$	12	95	${ }^{\text {a }}$	${ }_{\text {R } 251}$	2. 25
2024DE	55D	24	160	4 A	R252	3.25

LEACH LATCHING RELAY

 LEACH SOLENOIDS

B5R		24	153	1 A	R549	2.95
1204-1		24	153	1 A	R550	2.95
B8		7.5-29	6.5	1 A	R551	2.95
5023CG17	50	24	100	1 A .1 B	R282	5.00
5030 CSP	50	12	25	1A	R125	2.50
5058	200	24	10	1A	R283	6.00
7064-12C	50	12	40	1A	R284	2.25

AIRCRAFT SOLENOID CONTACTORS Alt types B2: B2A: B4; B4A: B5: B5A: B5B; B6A ;
B6B: B7A: B7B: B8: B9: B1I: 1204-1: $1204-3$ etc available fiom, stnck in quantities in porular makes
at low prices. SEND US YOUR REQUREMENTS.
G. M. LABORATORIES RELAYS
DUAL COIL IOAMP CONTACTS

Type				Price
	Volts	Ohms	Circuit	Each
${ }_{\text {12885-1 }}^{12792}$	$18-24$	100 300		2.25
12700	1.0	- $11 / 2$	1A. $1 \mathrm{1B}, 2 \mathrm{C}$	3.25
12897-1	24	1300	DPDT(${ }^{\text {(2) }}$	$\underline{2.75}$
${ }_{13016}{ }^{12917}$	8 ma	2200 300	${ }^{18}$	2.00
13020	${ }_{24}^{24}$	300 500	${ }_{4}^{4 \mathrm{AP}, 1 \mathrm{ib}}$	3.95 2.25
12666	48	750	${ }_{3}{ }^{\text {c }}$. 95

KOVAR GLASS TO METAL SEALS HIGH-VOLTAGE FEED THRU

Jany types and sizes. Send us your bineprint or sample for nur fuletp. Gur prites are a fraction of

in USA postraid

COAXIAL CABLES:

RG-8/U (SPECIAL) 51.5 ohms. Same size as RG-

PE-103 DYNAMOTOR
With Filter l'ase and Cables, 6 or 12 VDC input;
output 500 VDC 160 MA. output 500 VDC 160 MA....NEW: $\$ 39.95-$ USED:

INVERTERS

5D21 N13A-27 VDC input; output 110 Volt 400

 PE-115 or PE-206-Input 28 VDC 36 APW: $\$ 49.95$ Volts R00 cyele 7. Amps..... Lilie New: $\$ 12.95$
TYPE 800.1.0-Input 28 Volts 62 A: output 115 V
 NEW: $\$ 69.95$

BLOWERS

${ }^{115}$ Volt 60 cycle RLOWER Dis. $21 / /^{n}$ intake: 2^{100} CFM surplus
${ }^{\text {Orfler }} \mathrm{No} 1 \mathrm{Ca3}$
\$8.95
has blower aosen-my in as liv-520 abore, except NOMPACT TYPE-IO8 CFMI motor biilt Inside

 Co. 1 CSO

TRANSFORMERS AND CHOKES:

400 TO 2600 CYCLE

PLATE TRANSFORMER-Primary: $0-80-115$ Volt
$400-2600$ CPS Max. AA 78 : See.: $2000-0-2000.3$ Amps. Ins. 8000 Volts, Thermador \equiv CS- 5626 FILAMENT TRANSFORMERS: $\$ 19.95$ Primary: $0-80-115$ lolt $400-2600$ ClPS Max. VA
$35:$ Sec. 2.5 Volts 10 Amps. Ins. 5000 Volts. 35 ; Sec. 2.5 Volts 10 Amps. Ins. 5000 Volts. $\$ 6.95$
Thermador $\mathrm{FS}-8751$. $400-2600$ CDS Mar Primary: $0-80-115$ Volt $400-2600$ CPS Max VA 100 Sec: ${ }^{5}$ Volts 15 Amps. Ins. 5000 Volts. $\$ 9.95$
Thermador ${ }^{\text {TCS-8750 }}$ FILTER REACCOR-Inductance 2 iis. DC current,
0.3 Amp. Ins. 5000 Volts.

TRANSFORMERS-100V. 60 Cycle Pri. 5 VOLT CT-25A- 10,000 Y. Ins. OP'EN FRAME-

MOTORS:

24 VOLT DC $1 / 10$ H P 2800 RPM, Reversible Motor,

 GEAR HEAD for above motor to 1 reduction Geared Shaft. 10 COMBINATION: Motorand Re- 24 VAC OPEN FRAME-20 RPMI Double Shaft Hack
 24 VAC OPEN FRAME-3 RPM Back Gear Motor 1'rice: $\$ 5.95$ 24 VDC REVERSIBLE-5000 RPM with Nagnetic

 26 VOLT 60 CYCLE—60 RPM Synchronous Cramer
Motor \#
 ${ }_{6} 6$ V
 12 VDC $1 / 30$ HP. 4500 RPM. Motor size: $3^{\prime \prime} \times 2-1 / 2^{\prime \prime}$,
Shaft size: $1^{\prime \prime} \times 3 / 16^{\prime \prime}$. Delco $\# 5047520 \ldots . . . \$ 4.95$
24 VDC REVERSIBLE MOTOR-3.7 RPM, 40 lh
Torque, Motor Size: $5-1 / /^{\prime \prime}$
4-1/32" $\times 3-5 / 10^{\prime \prime}$ Shaft Size
$21 / 32^{\prime \prime} \times 5 / 16^{\prime \prime}$. AIso operate ${ }_{24}^{24} \mathrm{~V}$

27.5 VDC-600n RPM, 1.5 oz.

50169-207 …

SOLA
 CONSTANT VOLTAGE TRANSFORMERS

500 VA
50.00

95-125/115 V

western engineers

ELK GROVE, CALIFORNIA

(ci)
 CHECK AND COMPARE OUR COMPLETE STOCKS

The following is just a portial list of the current electronic and aircraft equipment now in our warehouse. Write for complete informa tion. Prompt replies to all inquiries

RC-103 \& AN/ARN-5 ILS
New in ariginal cartons. Complete. Consists of all accessories, plus $A S$ 27A, RR89B/ARN-5 and BC-733D. Modified to flag alarm.

TBS 4 \& 5, NEW, COMPLETE IE-17 TEST SET
AN/ARN-7 COMPLETE
SCR-269 COMPLETE
AN/ARC-1 VHF EQUIPMENT

> BC-611 \& BC-721 HANDIE
> TALKIES, Plus SPARE PARTS Quantify available

AN/ART-13 EQUIPMENT

ATC XMTR T-47/ART-13 XMTR CU-25 ANT. LOAD MT-283 MOUNT MT-284 MOUNT SA-22 ANT. LOAD

T-47A/ART. 13 XMTR CU-24 ANT. LOAD DY-11\& 12Dynam't'r $0-16$ LFO AIC DYNAM'T'R C-87 CONTROL BOX

AN/APG-13-A RADAR
Absolutely complete, brand new

AN/APN-2

SCR-729 New TA2J-24 RTA-1B BC-1016
APA- 6 INDICATOR
MG-153
APS-2, 3, \& 15 Components AN/ARC-5 VHF SCR-274 \& ARC-5 Commant Equipm' APA- 11 INDICATOR R-4/ARR-2 Receivers APA-17 RADAR BC. 640 VHF XMTR HS-33 HEAD SETS, SCR-510

NEW
SCR-510
MG-149F \& H MG-153
SPARE PARTS
SCR-720
SO-7
SCR-522
AN/ARN. 7
SCR-269
AN/ART-13
AN/ARC-1
BC-611
SCR-718
Altimeter equipment-complete
To insure the finest of service and quality of merchandise, we have just recently put into operation our own reconditioning and function-testing plant, complete with all facilities

WANTED

ART-13 CFI UNITS, ART-13 BC-788 $1-152$ BC- 348 Q \& R
TOP DOLLAR PAID

EXPORT INQUIRIES INVITED We carry an unusually large stock of Airline Equipment. Test Equipment, Radar Sets. etc Write for our low prices and complete informa Inquiries. Write today

V\&
ELECTRONIC INDUSTRIES INC.

2033 West Venice Blvd.-Dept. E-25

Los Angeles 6, California
Phone: REpublic 3-1127

A NEW BUILDING IMPROVED FACILITIES for the manufacture of WESTON TEST EQUIPMENT

DUMMY LOAD TS-90B/AP AVAILABLE NOW

Weston Laboratories, Incorporated is pleased to announce the availability of the new dummy load TS-90B/AP. These precision 50 ohm loads provide a means for terminating high power pulse modulators and for dividing the output by 50 for the purpose of measuring and viewing the output pulse with an oscilloscope. Capable of standing 500 watts of average power at a peak voltage of 5000 volts, these units are exceptionally well built with special components for unusually long life. Furnished with instructions from stock.

Other desirable pieces of test equipment include:

AN-APA-10	${ }_{\text {BC- }}^{\text {B95-T0 }}$ (${ }^{\text {P }}$	${ }_{1-122}^{1-117}$	${ }_{1-222 / \mathrm{A}}^{1-212}$	${ }_{\text {P4 }}^{\text {Paw }}$	TS-32A/TRRC-1	TS-89/AP*	TS-148/UP*	TS-218/UP	TS-359A/U
AN-APR-4	BC-1066A		1-223/A		TS ${ }^{\text {-34/AP }}$	TS-92/AP	TS-155	TS-226A	TS-375
AN-TSM-4	${ }_{\text {BC1203 }}$	${ }_{1-1348}$	-	TAA-16WL	TSS-36/AP	TS-98/AP	TS-164/AR	TS-232/TPN-2	TS ${ }_{\text {TS }}^{\text {-389/4 }}$
As-23	BC1236/A	1-135		TS-1ARR	TS-39/TSM	TS-100/AP	TS-170/ARN-5	TS-239B	TS-418
	$\mathrm{BC-125}^{\text {BC-127 }}$ A	${ }_{\substack{1-137 A \\ 1-139}}$	${ }_{\substack{15-21 A}}^{15}$	TS-3A/AP	TS-45/APM	TS-101/AP	TS-173/UR	TS-250/APN	TS-419/U
AT-39	BC-1287A	1-140A	$1 \mathrm{~F}-12 / \mathrm{C}$	TS-10A/APN-1	TS-47/APP	TS-108/AP*	Ts-175/	TS-257/AWR	TS-433/U
AT-48	${ }^{1-488}$	1-145	15-185	TS-11/AP	TS-51/APG	TS-110/AP	TS-182/UP	TS-263	TS-465/U
${ }^{\text {BC-221* }}$	1-56	1-153A	LAD	TS-13/AP*	TS-56/AP	TS-11/GP	TS-189/U	TS-270A	TS-505
BC-376	1-618	${ }^{1-157 A}$	LAE-2	TS-14/AP	TS-59	TS-118/AP	TS-192/CPM-4	TS-281/TRC-7	TS-589/
${ }_{\text {BC-439 }}$	${ }_{1}^{1-83 A}$	-1-167	$\mathrm{LAF}^{\text {L }}$	TS-15B/AP	TS-60/U TS-61/AP	TS-125/AP	TS-194/CPM-4	${ }_{\text {TS-285/G }}$	TS-615/
BC-638	1-95A	1-177	LU-2	TS-18	TS-62/AP	TS-131/AP	TS-197/CPM-4	${ }_{\text {TSS-301/ }}$	TS-617/U
${ }_{\text {BC-639 }}$	1-96A	- ${ }_{1-186}^{1-178}$	LU-3	TS-19/AP	TS-63/AP ${ }_{\text {TS }}$	TS-1428	TS-198/CPM ${ }_{\text {TS }}$	TS-301/	TS-620/U
BC-918B	$1-98 \mathrm{~A}$	1-196A	ME-6/U	TS-24/APM-3	TS-69A	TS-143		TSS-31/FSM-1	TSS-4SE
${ }_{\text {BC- }}$-923A	${ }_{1-114}^{1-1054}$	${ }_{\text {1-203A }}^{1-198}$	${ }_{\text {OAA }}^{\text {OA }}$	TS-24/APR-2	TS-76-APM	TSS-146	TS-207	TS-324/U	TUN-8HU
BC-949/A	1-115	1-208	OAK	TS-27/TSM	TS-87/AP	TS-147/AP*	TS-210/MPM	TS-328	TTX-10RH

WESTON LABORATORIES, INC. HARVARD, MASS.
Cable: WESLAB Tel: HARVARD 250—AYER 300—TWX 193

\section*{SELENIUM RECTIFIERS

 fULL WAVE BRIDGE TYPES D.C. $10-26$ VAC 0-52 VAC 0-130 VAC 0-156 VAC

 \begin{tabular}{|c|c|c|c|c|}
\hline $$
\begin{array}{r}
.5 \\
1.0 \\
1.0
\end{array}
$$ \& \$5.55 \& \$10.10 \& 59.85
15.50
20.50 \& $\$ 11.40$
18.15
23.95

\hline 4.0
6.0 \& 7.45
8.00 \& 13.95
14.65 \& 29.65
30.40 \& 36.00
37.00

\hline 8.0 \& 8.65 \& 18.20 \& | 32.00 |
| :--- | \& 49.60

\hline 12.0
15.0 \& 10.25
17
18.40
18.20 \& 19.05
32.80
34.30 \& 43.85 \& 51.80

\hline
\end{tabular}

RECTIFIER TIAANSFOIRMERS
All Primaries Tapped
10.125 Vac 60 Cycles

HI-AMIP CHOKES
5 AMPS
10 AMPS
$\begin{array}{ll}03 \mathrm{HY} & .201 \mathrm{OHM} \\ 015 \mathrm{HY} & .0601 \mathrm{M}\end{array}$
20 AMPS
.030 HM
FILTEIR CAPACITORS

MOTOR SIPECIAL

60 Diehl Cat fFB2l01-6 115 Vae 60 Cycles 0.4 Amps. 1800 ItPa
4 -Pole Shaded Type
Shaft
 Brand New. $\$ 4.50$

OII. CAIPACITOIR
2 x 15 MFD 80007 V.D.C. Use both section in parallel for 3 MFD or in series for .075 MFD. Cat Lots of six in orig. carto........................

MISCELIANEOUS

Grain-O-Wheat bullis, type 319A, 3 volts Doz. . . 51.00 Selonium Rect. Bridge, $\mathbf{3 6 V A C}$-2bVDC 2 Amp... 4.95

Thordarson Choke 10 Hys. 55 Ma . Fully Cased
Fuse, $1 / 40$ Amp. BAG. 8 . Phase Inverter, FTE MC-4AC KGM6080 Phase Inverter, FTR MC-413-A w/ubes.
Oil Capacitor, 5 MFD 400 VDC , l . c . Shaft Coupline, ceramic. $1 / 4^{\prime \prime}$ to $1 / 4$ "

$\frac{8}{4}$

FILTER CHOKE

50 Hys. 40 ma. 1780 v . R MS Test. Hay theon Type U7402. Dimen. $31 /$ T $^{\circ} \times 312^{\prime \prime}$ $\times 3 \frac{1}{4}{ }^{\prime \prime}$. Shbg. weight 6 lbs $\$ 1.50$

MInimum order \$5.00. All prices are FOB ship. ping point. Send check or MO. We will ship transportation charges collect. Rated concerns send P.O., Terms Net 10 days.

GATES ELECTRIC

63 WEST BROADWAY
New York, N. Y.
Phone WO 2-7587

We have one of the largest stocks of special purpose tubes in the United States for immediate shipment. We sell tubes only and consequently each order receives individual attention from tube specialists. We sell only new tubes, standard brands either JAN or commercial specifications depending on stocks on hand.

LOOKING FOR MARD-TO-FIND PARTS \& EQUIPMENT?

Just a partial list of our present stock:

- BC-348 - BC-342 •ART-13
- ARC-3 - APN-9 - LM
- BC-221 - BC-611
- VARIOUS TEST EQUIPMENT

NEW EXPORT DIVISION FOR ALL FOREIGN ORDERS

Prompt attention to all
inquiries-all languages
Atten: Schools, Labs, Hams!
WE PAY MORE FOR RADIO PARTS \& EQUIPMENT Cash, in on your surplus equipment-
or we'll trade for someth ing you really or we'll trade for somithing you really
need. Write today!

Write for free Surplus Catalog.
HARJO SALES CO
4109 BURBANK BLVD.
P. O. Box 1187

Magnolia Park Station BURBANK, CALIFORNIA Cable: HARJO

GI.ASS TURING

 PYREX - NONEX URANIUM RUIRS \& CYLINDERS WRITE FOP FREE MONTHLY LIST HOUDE SUPPLY COAIPANY M. R. $=1$ PHONE KEYPORT 7.128.
NATVAR-YELLOW VARNISHED CAMBRIC CLEARANCE SALE Cloth

5000 Lin Yds. $005^{\prime \prime}-37^{\prime \prime}$ wide at 45 y yd Seamless Bias Tape
2500 Gross Yds. $005^{\prime \prime} \& 300$ Gross Yds .007" both $3 / 4^{\prime \prime} \times 72$ yds. at $\$ 1.70$ pe

Samples on Request.
Quantity Discounts
All Prices F.O.B. your plan
J. M. HIRSCH CO.

622 Washington St., San Francisco 11, Calif.

HARPER TUANEL KILN

Model VM 912180—CCK 48, continuous car type, 48 feet long tunnel, overall length of 65 feet with two resistor chombers, 15 feet in length. Complete with tronsformer, recording controllers and Globar elements. Purchosed in 1951 and used briefly.

M. SHERMAN

Carboloy Department of General Electric Co. P. O. Box 237, Roosevelt Park Annex Detroit 32.

(1)	$4 \times A$	$1)$	$1)$	FTJ	(
C1A... $\$ 6.25$	3DP1 A. $\quad 5.00$	RK-73... 1.00	310A... 4.50	706AY - 30.00	812	2.00
1B22.... 1.75	3E29.... 10.50	FG.81A. 3.00	311A... 4.75	706FY . 30.00	813.	9.00
1B24.... 7.75	3EP1 3.50	FG-95... 16.50	313C.... 2.25	706GY.. 30.00	814.	2.50
1B35... . 8.00	3FP7.... 1.00	100TH. . 7.00	316A. . 1.00	$707 \mathrm{~A} . . \mathrm{4.50}$	815.	3.50
2AP1... 6.75	3GP1... 3.00	F-128A. 65.00	323A... 11.25	707B... 9.50	829A	7.50
2C40... 5.75	3JP12... 15.00	VT-158.. 50.00	328A... 4.25	708A... 2.75	829B.	9.00
2C43.... 8.75	3KP1.... 9.75	FG-172.. 18.75	329A. . 6.00	709A... 2.75	832.	6.00
2C44... 1.00	4C27.... 12.75	FG-190.. 9.00	348A...-4.50	714AY.. 5.25	832A	7.50
2E22... 1.75	5BP1.... 3.50	203A. . 4.50	349A... 6.50	715A... 3.50	833 A.	30.00
2J22.... 5.25	5BP4.... 3.50	204A. . 37.50	353A... 3.25	715B... 4.50	836...	2.50
2J26.... 11.25	5CP1.... 3.50	F-207. . 180.00	354A. . 15.00	715C.... 13.75	837.	1.00
2J27.... 11.25	5CP7... 7.00	212E.... 32.00	355A... 10.50	719A.. 18.25	838.	2.50
2J31... 20.25	5D21... 13.75	WL-218. 35.00	368AS . 5.25	721 A . 2.00	846..	65.00
2J32.... 22.50	5FP7.... 1.50	221A. 1.50	375A. . 10.50	722A... 1.50	849.	22.50
2J33... 20.25	5FP14... 12.25	F-232CH180.00	394A... 3.00	723A/B 13.50	860.	2.75
2J34.... 18.75	5JP1... 16.75	250R.... 7.00	417A.. 6.00	724A... 2.00	861.	10.00
2J38... 9.00	5JP4... 16.75	250T. . . 10.00	GL-434A 9.75	724B.... 2.00	866A.	1.00
2J50... 15.75	5JP11... 16.75	250TH. . 13.50	446A. . 1.00	725A. . 4.75	879A.	2.25
2J55... 63.75	5J23... 30.00	250TL... 11.25	446B... 2.25	726A. . 10.50	878.	1.50
2J56... 122.50	5J29.... 9.00	253A.. 11.75	450TH . 40.00	726B... 35.00	884.	1.25
2J61.... 30.00	5J30... 29.50	267B... 8.75	450TL. . 35.00	728CY. - 25.00	902-P1	4.75
2×2A.. 1.25	5R4GY.. 1.00	271A... 7.25	GL-451 . 3.00	728DY. . 25.00	918...	1.25
3AP1 . . . 6.00	6C21.... 18.25	272A... 5.25	464A... 6.00	728EY . 25.00	927.	1.00
3BP1.... 3.75	6CF.... 12.75	274B... 2.25	WL-530. 12.75	728GY . 25.00	931 A.	3.75
3B24.... 4.25	C6L..... 9.00	276A... 7.50	575A.. 10.50	730A.. 18.75	CK-1006	2.75
3B26... 2.75	7BP7.... 4.50	282A. . 10.25	700A... 12.50	$803 \ldots 3.00$	1622.	1.50
3C23... 8.75	9LP7.... 2.25	286A. . 6.00	700D... 12.50	$805 \ldots . . .2 .25$	1624.	1.00
3C24.... 1.25	12DP7-10.75	304B.... 5.75	701 A . . 4.50	$807 \ldots 1.25$	2050	1.00
3C31... 2.50	12GP1. . 13.50	304TH. . 6.00	702A... 2.006	808. . . . 2.00	8012	1.50
3D21... 2.25	RX-21.. 2.75	304TL... 5.00	703A... 3.50	810.... 7.50	8013.	2.00
3DP1... 3.00	RK-60... 1.50	307A... 3.25	705A... 1.25 年	$811 \ldots . .2 .25$	8025.	3.50
- Receiving tube quotations upon request - Usual terms apply		ELEM	ALIFORNIA	- Subject to prior disposition		
		ELK GROVE, CALIFORNIA				
GEORGE WHITING, OWNER						

WANTED

ARC-1, 3, ART-13, BC-342, 348, APS-10, 15, TS-13, 35, 146, 147, 148, 174, 175, 263 ETC. ALL SCR, $B C, A N, T S$. ALL TUBES.

RADAR

APS-15A\&B

Complete sets available checked out.

APS-3

Complete sets avail. checiked out. . $\$ 1050.00$
APS-4
Complete sets avail. checked out. . $\$ 1050.00$

APN-2

Complete sets avall. checked out SCR729 also avail

ASD

3CM search \& nav. radar compl. sets avall. APS-10 3 cm lightwelght navigational \& search radar 5" PPI
UPN-4 3 cm portable radar beacon
APR-1 38-1000me receiver
APR-4 38-4000me receiver
APR-5 $1000-6000 \mathrm{mc}$ receiver
APT-5 $300-1300 \mathrm{mc}$ Trans.
SCR-522 100-156me Xmit-Rec.
SCR-555 $18-65 \mathrm{mc}$ long range dire-tion finder SCR-536 Handi-Talkies
BC-312 and BC-342 1.5-1.8me Recelvers
Many other alrbourne, ground End marine military equipment avallable. "WRITE"

TUBES ALL Fully

TERMS—Minimum order $\$ 25.00$ all prices $F O B$ New York City. 25% deposit with arder, balance COD. Rated firms open account. Prices subject to chonge without notice.

TEST SETS

TS-3/AP S band power, freq. meter. \$215.60 TS-13/AP 3 CM sig. gen. power meter, freq. meter 110 v. 60 cycle.
freg meter. 110 v 60 cycle. power meter, Treq.meter. 110v 60 cycle......... $\$ 6 \boldsymbol{1} 0.00$ TS-35/AP 3 CAI sig. gen. power meter, freq.
meter 110 v 60 cycle. TS-45/AI' 3 CM sig. gen. a
TS-61/AP 10 CM echo box.
TS-61/AP 10 CM echo box
TS-62/AP 3 CM echo box
TS-6?/AP 3 CM echo bo
TS-185/AP 10 CM precision power meter TS-2?6/AP $300-1000 \mathrm{MC}$ power mete
I-100 radio compass test set.
I-208 V. H.F. fleld radio test set.
3C-221 freq. meter Mod. $\$ 175.00$

E-19 100-156MC test set.
TEX6 SCR 522 test set.

SPECIAL

K-band 23,000 , 24,000 MC RF heads using 2K50 klystrons and 3 J21 packaged magnetron and magic TEE AFC mixer very late type. Also K-band complete $A P K$-band sig. gen. power meter, freq. meter also available. Write
X and K-band Wave Guide
Components
Slotted lines, term, adapt., crys, mounts, etc. in stock. SEND YOUR REQUIRE-
MENTS.

WRITE FOR OUR CATALOGUES

ARROW SALES ING
 POplar 5.1810 - STanley 7-6005 - Cable Address: ARROWSALES

WHEX YOU ORDER weus COMPONENTS here's what YOU GET

- IMMEDIATE DELIVERY FROM STOCK
(in any quantity) ■ FINEST QUALITY OF FAMOUS BRANDS G GENERALLY LOWER PRICES - RETURN PRIVILEGE FOR FULL CREDIT IF NOT SUITED TO YOUR REQUIREMENTS

The valuable service Wells provides to the industry is being used by many of our greatest manufacturers as a matter of course.
Our vast stock (the world's largest) may contain just the components you need to fill urgent orders - at a substan. tial savings in time and cost.

ADEL CLAMPS * ANTENNAS, Insulators, Mast Sections BINDING POSTS B BLOWERS CABLE ASSEMBLIES - CHOKES • COILS • CONDENSERS Oil Filled, Bathtub, Hearing Aid, Transmitting Micas, Silver Micas, Ceramic. Variable, Trimmer - CRYS. IALS © FILIERS FUSES \& MOUNTINGS - GEN. ERATORS GROUND RODS : HEADSETS • I.F. COILS • JACKS • JACK BOXES KEYS. Telegraph KNOBS : LAMPS IORD MOUNTS LUGS MOTORS \& BRUSHES - PLUGS - RECTIFIERS Selenium, Copper Oxide, Meter, Diode - RESISTORS-All
IYpes SELSYNS Types SELSYNS SOCKETS TIMERS STCHES
Aircraft, Micro. Switchettes, TOggle TUB. Aircraft, Micro. Switchettes, Toggle TIMERS © TUB-
ING-Flexible . TUNING SHAFTS TRANSFORMERS All Types : VIBRATORS • WALKIE TALKIES

DYNAMOTORS

OVER 100,000 NEW DYNAMOTORS IN STOCK!

DM 32A - DM 53A - PE 86 - PE 101 C DM 33A - D 101 - PE 94, etc.
Large quantities of brushes for all lypes of dynamotors and motors.
Write us for quotations. Advise us your requirements.

A complete signal Corps stock number list ing of items in our stock. Write for listing No. SG-200. (For government agencies and contractors only.)
Manufacturers and distributors-write for new Condenser Catalog C-10 now available
Write, Wire, Phone Your Requirements all phones: SEeley 8-4143

Hy.ing

SAVE ON TU:BS BRAND NEW TU:ZS GUARANTEED TU:ZS

AN/APR-4 LABORATORY RECEIVERS

Complete with all five Tuning Units, covering the range 38 to $4,000 \mathrm{Mc}$.; wideband discone and other antennas, wavetraps mobile accessories, 100 page technical manual, etc. Versatile accurate, compact-the aristocrat of lab receivers in this range. Write for data sheet and quotations.
We hove a large variety of other hard-to-get equipment, in cluding microwaye, aircraft communications, radar: and lo oratory electronics of all kinds. Quality standards maintained Get our quotations!
We will buy any Electronic Material at top prices. SCHOOLS unload your dusty surplus for cash or credit

ENGINEERING ASSOCIATES
434 PATTERSON ROAD
DAYTON 9, OHIO

WHOLESALE ONLY

ELECTRONIC COMPONENTS AIRCRAFT EQUIPMENT

 HYDRAULICSRADIO \& ELECTRONIC SURPLUS 13933-9 BRUSH STREET

Detroit 3, Mich. TO 3, 3403

T47A/ART-13 TRANSMITTERS
BC-610-E TRANSMITTERS
BC-312, BC-342, BC-348 RECVRS.
BC-221 \& LM FREQUENCY METERS ALLTRONICS
BOX 19. BOSTON 1, MASSAGHUSETTS RIChmond 2.0916. LYחn 8 -3100

RELAYS

Quavilty lots recerved too late for detailed liseting

 $\begin{array}{ll}\text { Leach \# } & 1257 \\ & \\ \text { Leach }\end{array}$ $\begin{array}{ll}\text { Leach \# 2024-188 } \\ \text { Leach } 77108-\mathrm{Dha4} & \text { Chapin RE-800-1-10 } \\ \text { Cook }\end{array}$
 $\begin{array}{ll}\text { Guardian } 32439 & \text { Hart 694.R10 } \\ \text { Gart } 694 . \text { RI5A }\end{array}$
 METERS
DC Microamps, 0.50. Simpson $3^{\prime \prime}$ rd....@ $\$ 11.85$ DC Microamps, 0-200, Simsson $4^{\prime \prime}$ square $Q 10.95$
 DC Ammeters, 0-2; 0-10; 50.0.50; Simpson DC ${ }^{3} V_{01}^{\prime \prime \prime}$ Voltmeters, $0.5,0-10 ; 0.25 ; 0-50,0.100$ $A C^{0-150: S i m p s o n} \mathbf{3}^{\text {in }}$ rd AC Voltmeters, $0.3 ; 0.10 ; 0.50 ; \mathrm{simp}^{\prime \prime}{ }^{\prime \prime} \mathrm{rd}^{\mathrm{ed}}$ AC Voltmeter, 0.150; 0.300; Simpson $3^{\text {ean }}$ (@ AC Voltmeter, 0.500, Simp. $3^{\prime \prime}$ rd with ea
 We suecil....................... 8.10 We specialize in meters, test instruments, etc. All
MARITIME SWITCHBOARD
336 CANAL ST, NEW YORK, 13, N. Y. worth 4-8216 (7)

IN STOCK

FOR IMMEDIATE DELIVERY BRAND NEW JAN-C-25 CAPACITORS

CP53-CP54-CP55 CP61-CP63-CP65 CP67-CP69
Every "E" \&"F" Characteristics Item Listed In Jan-C-25
also
CP70 CAPACITORS
"E" \& "F" Characteristics 600 and 1000 Volts " B " and " E " Terminals

O'DEL ELECTRONICS CORPORATION

293 WEST BROADWAY NEW YORK 13, N. Y. CANAL 6-4700

Our stock of more than a million relays - in over a million relays - in over a
thousand different types - is the world's largest. Don't delay your production for want of large or tion for want of large or
small quantities of relays of any type.
Telephone, wire or write for quotations.

EMPIOYMENT

INDEX TO THE SEARCHLIGHT ADVERTISERS

AUGUST, 1953
This index is published as a convenience to the readers. Care is taken to make it accurate but ELECTRONICS assumes no responsibility for errors or omissions.

SEARCHLIGHT SECTION
(Classified Advertising)
H. E. Hilty, Mgr.

Positions Vacant
Jositions Wanted

EQUIPMENT
(Used or Surplus New)
For Sale $.413-432$

WANTED
Equipment

ADVERTISERS INDEN

Admiral Corporation	406
Allied Electronics Sales	422
Alltronics	429
Arrow Appliance Co.	413
Arrow Sales, Inc.	428
Barry Electronics Corp	425
Rell Telephone Laboratories In	410
Bendix Products Div.	407
Bendix Radio, Div. of Bendix Av	412
Blan	431
Blonder-Tongue Labotatories Inc	408

Capehart 1 arnsworth Corp................... 410
Carbolos. Department of General Electric Co. 426
Coln II Sales Co.... Sales
Coletronic Sales.
419
Communications Fquipment Co.........420, 421
Cook Research Laboratories
Convait
Douglas Aircraft Co., $\mathrm{I}_{\text {IIC............... } 404} 404$

Electronic Engineering Co. of California.. 409
Electronicraft Inc......................... 413
Empire Electronics Co.......................... 431
Enginecting Associates............................ 420

Fair Radio Sales
Finnegan, H.
Fitzsimmons, James
424
413
402
402

Gates Electric Co........................ 426
Grencral Motors Corp. A. Div. 404
Gencral Motors Corp. A.C. Spark ling Div. 404
General Precision Laboratory Inc.
G \& G Radio Supply Co
Goodvear Aircraft Corp
413
428

Harjo Sales 426
Hoftman J.aboratories Inc 402
Hoflan Supply Co..................................... 426

Industrial Research Laboratories......... 409 Instrument Associates

417
J.S.H. Sales Co........................... 429

POWER RHEOSTATS

	W	E.			a.	ohms	
-1	${ }_{25} 5$	4.88	50	50	${ }^{2} .18$	500	3.60
5	50			25		-	93
${ }^{5} 5$	150	4.89	75	50	2.10	$750 \quad 25$	1.86
1	50	2.34	75	75	3.25	750150	90
2	50	2.14	80	50	2.10	1000	2.10
2	100	${ }^{3.88}$	100	25	${ }_{1.86}^{1.86}$	100050	2.22
2	300	${ }_{6}^{6.93}$	100	50	2.10	1200225	6.41
3	110	3.85	100	100	${ }^{3.60}$	120030	${ }_{6}^{6.93}$
	225	6.41	125	25	${ }^{1.86}$	1250	2.22
	25	1.86	150	50	2.10	1250	${ }^{2} .98$
	50	2.10	175	25	1.86	1500	2.10
	100	3.86	185	25	${ }_{1}^{1.86}$	1500	2.22
	150	${ }^{4.63}$	200	35	1.86	1600	2.22
5	5	1.86	200	100	3.60	1800150	${ }_{5}^{5.15}$
6	${ }_{75}^{50}$	3.2	225	150	2.63	${ }^{20}$	${ }_{2.22}^{2.10}$
7	25	1.86	250	25	1.86	2250150	5.15
7.5	75	3.25	250	50	2.10	2500	2.22
7.5	225	${ }^{6.41}$	${ }^{300}$	50	2.10	2500100	3.71
10	5	2.10	300 300	75		$\begin{array}{lll}2500 \\ 3000 & 150\end{array}$	5.15
10	5	${ }^{2.10}$	${ }_{350}^{300}$	25	${ }_{1.86}$	3000 3000 100	3.71
10	100	${ }^{1.60}$	350	100	3.60	500025	2.22
12	35	${ }_{2}^{1.86}$	${ }_{3}^{350}$	150	${ }_{1}{ }^{4} 68$	500050	2.34
${ }^{12}$	50	210	378 378	150	${ }_{4.63}^{1.86}$		2.3
15	75	3.25	400	25	1.86	1000050	2.5
15 20	${ }_{50}^{100}$	3.60	400	75	3.25	15000	4.75
22	50	2.10	500	25	1.86	2000	
25	25	1.86	500	50	2.10		
50	25	1.86	500	75	3.25		

HIGH POWER TR. MICA

TYPE "J"

		TYPE "J" POTENTIOMETERS		
$\begin{gathered} \text { TYPE "J. } \$ 1.25 \\ \hline \end{gathered}$		$\begin{gathered} \text { TYPE "JJ'" TYPE "'JJ"' } \\ \$ 1.50 \quad \$ 2.95 \end{gathered}$		
- ohms		onms	${ }_{500}^{\text {ohms } 500 \times+}$	
${ }_{\text {200\% }}^{150}$	- $\begin{aligned} & 40000 \\ & 5000 \\ & \\ & \text { a }\end{aligned}$	$80 \mathrm{~K} \dagger$ 100 K	$\left\|\begin{array}{l} 500-500 * \\ 600-600 \dagger \end{array}\right\|$	$\begin{aligned} & 130 \mathrm{~K}-130 \mathrm{~K} \\ & 150 \mathrm{~K}-150 \mathrm{t} \end{aligned}$
200*	${ }^{65000+1}$	125 K *		100K-200K
${ }^{400}$	$10 \mathrm{~K} \cdot+1$	$165 \mathrm{~K} \dagger$	2000-50 K*	$300 \mathrm{~K}-300 \mathrm{~K}$
500*	12 K	250K*	2200-25K	350 K
600	15	$300 \mathrm{~K}+$		
${ }_{750+}^{650+}$	$20 \mathrm{k}{ }^{+}+$	${ }^{400 \mathrm{~K}}$.	${ }^{25005-10 \mathrm{~K}+5}$	$10 \mathrm{~K}-10$
1000*	30K* +1	${ }_{1 \mathrm{meg} \dagger}^{\text {2meg }}$	$25 \mathrm{~K}-10 \mathrm{~K}+$	$1 \mathrm{meg-1meg} \dagger$
				$5 \mathrm{~K}-5$
1500*+	67 K	$3 \mathrm{meg} *$	300K-5K+	$400 \mathrm{~K}-400 \mathrm{~K}+$
0*	75K \dagger		$25 K-400 \mathrm{~K} \dagger$ $1 \mathrm{meq}-500 \mathrm{~K}$	$\begin{array}{r} 500 \mathrm{~K}-500 \mathrm{~K} \\ \mathrm{~K} \end{array}+\begin{aligned} & 50 \mathrm{~K} 50 \mathrm{~K} * \\ & \hline \end{aligned}$

 $700 \mathrm{~K}-700 \mathrm{~K}-700 \mathrm{~K} \dagger \quad 1 \mathrm{meg}-1 \mathrm{meg}-1 \mathrm{meg} \dagger$

Many other Hard-To-Get items available for Mmmediate delivery from our large inventory. send us your requirements and let us quote. New MICA listing now rady.

A. MOGULL CO.

17 Warren St., N. Y. 7, N. Y. Phone: WORTH 4-0865-6

Genuine
TELECHRON Mators 2 RPM. $\$ 2.90$ 3 RPM. 32.90 4 RPM. 3.90 3.6 RPM. . . 3.15 1 RPM. $60 \mathrm{RPM} \ldots . .4 .30$
$3 \mathrm{RP} . \mathrm{Hr}^{2} .2 .85$ R.P. 12 Hr 4.25
 and Cranted C Cenergors Hand Cranked A.C. Generators $\quad\left\{\begin{array}{l}2 \\ 3 \\ 3 \\ 5\end{array}\right.$ Polarized Bell or Buzzer Works on Magneto or 115 volt A.C. .
Complete 2 Station Magneto Manger .. $\$ 5.50$ $\$ 150$ Complete 2 Station Magneto Mnger
$\$ 1750$
ZFNITH Motorlzed Lemote contral made for T.V but ideal for opening doors-windows-Turntablee former 16 cabl and reversing button. $\$ 895$ former 16 ft cable and reversing button.
 NE-16 LiA Watt NEON iamp D.C. $\$ 300$

 AR-1 $\quad 2$ Watt ARGON lamp Med. $\$ 300$ NE-40 3 Watt NEON lamd Med. $\$ 350$ \#313 ${ }_{\text {Miniature }}^{28}$ Amp. Pullot $1 \mathrm{lamp} \$ \mathbf{2 n}^{280}$ \#1820 \#49 28 volt. 1 Amp. Pillot 1 lamp $\$ 200$
 Transformer
tube fllarnent.
made
Will
Hght of the above \#49 lamps..... $\$ 150$
$13 / 4$ volt of the above $\$ 49$ lamps..... $\$ \mathbf{\$}$ \#C1256 but no pins to hold it in
 \#1800 $\begin{aligned} & \text { 1.35 rolt. } 08 \text { Amp. Allot lamp } \$ 100 \\ & \text { Mindature }\end{aligned}$

 HAYDON SYNCHRONOUS TIMING MOTOR
110 г. 60 cycle 30 R1PM... $\$ 2.60$ 110 r. 60 cycle $1 / 10 \mathrm{ILPM} . \$ 2.35$ 110 ซ. 60 cycle 1 RPM.... $\$ 2.85$ 220 г. 60 cyele 2 IRPM.... $\$ 1.65$
New Sound Powered HAND SET TELEPHONES $\stackrel{50^{\prime}}{\text { Pai }}$

Fler. Rumer corered cable Fint. $\$ 19.00$
LLL PRICES F.O.B. N. γ

64A Dey St
New York 7, N. Y.

Perhaps the smallest reversible GEARED-MOTOR in the world Delco-PM-Permanent Magnet Alnico Fleld Moto $=5071895$ some with $11 / 16^{\prime \prime}$ gear, sone with smooth pending on the voltage. Designed to be used in bonbsights. automatic pilots. ete. Cost at the fac
tors $\$ 26.0$ Delivery 4 months. $\$ \mathbf{7 7 5 0}$

"eckaging for parcel post costs money; it costs no more to Dack two motors in the same box, so you
SPECIAL
COMBINATION $1 / 2$ Price OFFER 1st motor. . . $\$ 17.50$, 2nd motor. . . $\$ 8.75$ 2 MOTORS AT FRACTION OF

FACTORY COST
..... \$26.25 Also have \#5067127

Clamps to hold motor: $\$ 1.50 \mathrm{ea}$. Subject to prior sale

(1) GRAIN OF WHEAT LAMPS \#322 $3 \mathrm{~V} . \quad .19 \mathrm{amp}$ \#328 6 V. . 2 amp .

100 for $\$ 25.00 \quad 10$ for $\$ 3.00$

MARKTIME

 5 HOUR SWITCHA 10 amp. timing device. Pointer mores back to rero
after time clapses. Ideal for after time clapses. Ideal for
shutilig off radios and TV sets when you go to bed cial PRICE.......$\$ 4.90$
Also available in 15 min ., $30 \mathrm{~min} ., 1 \mathrm{hr}$. at $\$ 5.90$
10 Seconds to 24 Minutes Timer A hand wound electric TIMMNG SWITCII, Polnter Milectrie Mixer-Photorta phic Devices-T1me Delm etc. Furnished with Calibration Chart ${ }^{\text {wn }}$ In rointer Knob. Biggeat
hargain we erer had...
3^{3} Round Eladerd
$\$ 12^{50}$
General Electric
..$\$ 15.50$
Westinghouse Square $\$ 16.00$

REDMOND Powertul 5° Blower or Ventilator 115 voits AC 60 cecles 18 watts. For Kitelen - Laboratory. Heat or Cold or Chemicals.....57.50

A Miracle switch that will not leare you
$\$ 1.95$

CONNECTORS IS OUR BUSINESS

WORLD'S MOST COMPLETE STOCK
Types in stock: $A F, A N, A P, A R C, B N, B N C$, C, CLT, CN, CUF,' D, DPB, DPD' E,' F, FK' FM, FT, FW, GK, HN, IOH, IK, JJ, JK, LC,
 PYE, RF, RFK, RGK, RNK, RTC, RWK, S', SF,
SK, SKL, SO, U, UG, UHF, WK, XL, ZA.
HAROLD H. POWELL CO. 2104 Market St. LOcust 7-5285 Philadelphia 3, Pa.

WE BUY AND SELL GOVERNMENT SURPLUS

electronic components, units, wire, etc. Your Inquiries Invited LAPIROW BROS.
1649 Hoffner 8 Kiry 1285 Cinelinnati 23. Ohlo

4 PDT RELAY

24 VDC midget 425 ahm. $\$ 2.95$ Above frame also in

 RELAY 3 POT 2.4 vdc 250 ohm clare Type K. $\$ 2.75$ S BAND CONVERTER Navy CG-46ABW ISOLATION XFORMER 35 watts iisv....... 99.54 MONCHR $400-1800$ cyc $115 V$ EAD 131 C cycles 14.95
 TRANSISTOR OA 5 pin submini socket.
 $300-3500$ cycle 1400 w variable freq. electronic generator, 220 V .60 cy input. CML $\# 1400$
$2 \% .002$ Silver Mica- $3 A G$ fuses-Switches-J Pots Ill above Neto, Guaranteed.

EMPIRE LIEGTRONCS CO
409 Ave, L, Brooklyn 30, WiY. cloverdale 2-241,

Curront	18/14	36/28	54/40	130/100
Cant.	Volts	Volt	Volts	Voles
1 Amp	51.35	\$2.15	33.70	57.50
2 Amp	2.20	3.60	5.40	10.50
4 Amp	4.25	7.95	12.95	25.25
6 Amb	4.75		13.5	33.00
10 Amp	6.75	12.75	20.00	40,00
12 Amp	\%.50	16.25	25.50	45.00
20 Amp	${ }^{13}$-25	25.50	39.00	79.50
24.	16.25	32.50	45.00	90.00
Full Wav	Rect ${ }^{\text {a }}$	8. 11	ocy	
up to 14 V	Cat 12			98
op to 28 V	C st 12			
$\text { ad to } 28 \mathrm{c}$		deiote	PECIAL	$\mathrm{s}^{129.00}$
	RECT	R		
12	$\mathrm{CT}^{\text {CT }}$ -	$\mathrm{l}^{18} \mathrm{~V}$	mp...	58.75
12-9-	-CT-12-1	248	Amp	\$16.75
jv/2A			1.98: 3	+or 35.49
	RECT		KES	
2 Amp			\% hm	
1 Amp	.004		Onm	29.95
				-
		10	$2 \mathrm{v}$	2 AMP
		rrs		
				model
				-
wo	${ }_{\text {and }}$	\% 1	St ${ }^{\text {raing }}$	${ }^{\text {S } 20.00}$
	FILAM	NT	NS.	
	51.08;			
$2.5 \mathrm{~V} / 2 \mathrm{~A}$				
25	,	.		
Sctio	兂			
		-		
12	or $24 \mathrm{~V} / 2$	\$3.	woint	

Barry Corporation 15	
Belden Manufacturing Company	113
Beli Aircraft Corporation	337
Beh Telephone Laboratories	251
Bendix Aviation Corporation, Eclipse-Pioneer Division	111
Friez Instrument Division.	387
Pacific Divislon	242
Red Bank Division	334
Bentiey, Harrls Mfg. Co	241
Beryilium Corporation	70
Bird Electronio Corporation	380
Blrmingham Sound Reproiucers Itd	351
Birnbach Radlo Co., Inc	323
Birtcher Corporation	354
Hoesch Manufacturing Co., Ine	397
Bogue Electric Mfg. Co	254
Boonton Radio Corporatio	199
Borg Corp., George W	64
Bowser, Inc.	328
Bradley Laboratories, Inc	253
Brew \& Co., Inc., Richard D	349
Bridgeport Mrass Co	92
Bristol Brass Corporation	98
Brush Electronics Co	24.1
Buggie and Company, II. H	276
Bulova Watch Company, Inc	361
Burnell \& Company	19
Burroughs Research f'rntar. Electronic Instruments bis	45
Bussmann Mfg. Co	61

Cambridge Thermionic Corb 34

Cannon Electric Co 260
Carboloy Dept. of General Electric Co.50,
1

Carboruablum Company
Carter Mlotor Co.
C+ntralab Division of Globe-Union.
lne. 11
cintronion Company 13
Crntronin Company $\mathbf{3 9 1}$
Chase Ikrass \& Copper Co $2: 29$
Chester Cable Corp. 120
Chieago Telephone Supply
Corporation
Chicago Transformer, Div. of Esse's Wire Corp.

Chare d Co., Inc., C. P................. 97
Cleveland Container Co.................. . 109
Cohn Corp., Sigmund. 343
Cole Inst rument Compauy 311
Collins Radio Company. 25
Communication Accessories Co........264. 260
Conputing Devices of Canada limited. . 345
Consolidated Fingineering Corp......... 107
Conmolidated Vacuum Corp 221
Constantine \& Co., L. L................... 27
Continental Conneators Electronic Sales
Div.. Dedur Amsco Corp 36:

Cornell-I)ubilier Electric Corp.......... 213
Corning Glass Works. 235
Cornish Wire Co., Inc.................. 378
Cosi Corporation 44
Coto-Coil Company 388
Cramer Co., Inc., R. W. 261
Crescent Co., Inc., The................. 324
Cros-Co.. 11 375

Hastern Alr Devices, Inc.................. 5 . Fdison, Incorporated, Thomas \........ 298 Hisler Lingineering Co., Inc..........395, 101
Eitel-McCullough, Inc. $\mathbf{6 5}, 315$
Nlectra Mfg. Co..
0, 315

Electran Mfg. Co
289

Electric Regulator Corp.
Llectrical \& Physical Instrument Corp... 325
Electrical Industries Div, of Amperex
Nectronic Corp.
Electro Motive Mr Co Inc
Electro Tec Corporation. 308
Electronic Associates, Inc................ 12 :
Emerson \& Cuming, Inc.............. 293
Engineering Research Associates 2\%
Epco Products, Inc
Erie Rrsistor Corp.

Fairchild Camera \& lnstrument Corp. . 305 Fansteel Metallurgical Corporation. 27 2 Federal Telephone \& Radio Corporation. 101 Ferroxcabe Corporation of America $2 \% 1$
Fidelity Instrument Corp . 401
Finn \& Company, Inc., T. R.............. . 330
Fluke Fingineering Co., John............ 3

Vacuum Tube Electrometer has many uses

Here is an exceptionally versatile dc voltmeter, and a few of its many uses. The Keithley Instruments Model 200 Electrometer has an input resistance of over 10^{14} ohms shunted by 6 mmf ; 2 and 20 volt scales, with input currents of 5×10^{-14} and 5×10^{-13} ampere respectively. Accuracy is within 2% full scale, or within 5% of the reading at low values.

potintials ovir 20 volts-Model 2002 Voltage Divider has 100: 1 ratio, clips over guard ring of HI terminal. Thus, de circuit potentials up to 500 volts, such as the open circuit voltage of this high impedance source, are read directly.

RESISTANCES UP TO 10^{16} ohms are easily measured with Wheatstone Bridge circuit diagramed, or by measuring current resulting from known applied voltage. Typical uses include: standardizing resistors, measuring insulation samples.
exciptionally past way to check capacitor leakageby direct measurement of voltage decay. Also easily measured: piezo electric potentials, vacuum tube electrode potentials, electrostatic fields.

curarnts as low as 10-14 ampere are measured directly with Model 2001 Electrometer shunts. Available with resistances from 1.0×10^{6} up to 1.0×10^{12} ohms. Typical uses: photocell currents (shown), ion chambers, capacitor and insulation leakages.

ratio abms
cow aesistance
UMKNOWN AMD

UHKNOWN
STANOARD

frim comres

PYROFERRIC IRON CORES are scientifically manufactured, under strictest quality controls to close electrical and mechanical tolerances.

PYROFERRIC services are available for the engineering of your core production requirements... your letterhead request will bring you M.P.A. Data Sheets and tables which give complete information including recommended sizes and tolerances, as well as a cross-referenced index of manufacturers' material designation.

Ford Instrument Company 112, 329s
Freed Transformer Co., Inc 103
Freduency Stamdards 345

Cr M Equipment Co.. Inc............ 110
G-M Laboratories. Inc. 349
Gamewell Company … 346
Gates Rulio Company. 46
General Cable Corporation82. 83
General Electric Company
Mpparatus Iept.........30. 31. 116. 23 \%
General Industries ('o..................... 292
General Radio Company.............. 1%
Good-all Electric Mss. Co.......... 23
Gramer Transformer Corp 239
Gribut Pulley \& Hardware Co 314
Graphite Medallizine Corp............. 386
Grayhill 383
Green Instrumment Co., Ine 371
Grids Keproducer Corp 384
Gudebrod Ibros. Silk Co., Inc........... 339
Gyromechanism. Inc. 375

Ideal Industries, Inc	$28:$
Indians Stecl Products Company	32
Industrial Hardware Mff. Co., Inc	391
Industrial Test Equipment Co.	383
Industrial Timer Corporation	40
Instrumment Components, Inc	367
Instrument Corporation of America	10%
Inatrument Electronica Corp	39.5
Instrument Resistors Co	319
Insulation Manufacturers Corp	252
Insulation \& Wires Inc	76
International Rusiness Machines	36%
International Rectifier Corp	291
Ippolito \mathbb{S} Co., Inc., James	337
Irvington Varnisls \& Insulator Co	67

Kahle Enginerring Co................ It 14
Karp Metal l'roducts Co 91
Kirtron 101
Kaupp :un! suns. C. IS 233
Kearfott Company, Ine............... 356
Keithley Fitstruments 133
Kelloge Company. M. W.64A. 641s
Kenyon Transformer Co., Inc \boldsymbol{z}_{8}^{7}
Kepco Laboratories, Inc................. so
Kester Solder Company......................
Kinge Electronics Co., Inc 273 Kinney Manufacturing Co 11 Klein \& Sons, Mathias. 210
Knights Compars, Jimes Kollsman Instrument Corp.
Lalmoratory for Electronirs. Ins. 93 Lambda Electronic- Corp. 39
Lampkin Lalooratorian Inc
Lapy Insulator Co.. Ine Lavoie Laburatoriex. lne. Leuch İelay (${ }^{\text {a }}$
lapland, Int". G. Hi
Lenkurt Elettria sales Cu. Eewis \& Kantman. l.t.I. Limblberg Enginedring Co., Transformer Div.
Link Aviation, Int
Lord Mfg. Co.

Mallory \& Co.. Huc.. P. K ...
Manufucturers limanearing \& Equipment Corp.
Marconi Instrimunts
Markem Machina ('ompans
McGraw-HIll book Ca
383
pan! … 238
Measurements Corporation
Mepco, Inc.
Metal Textile ('mporation
Metals \& Controls Corp.
General 1plat* Dit
Methode Manuliarturing Corl
Mica Insulator ('a.
Micro, A Division of Minmonpolis
Honeywell Reswlator Co
Midland Mfg. Co.. Ine.
Miles Reproducer ('u.. In
Milford Rivet A dialibe Co
Millen Mfg. Co., Ine., Jamas
Millivac Instriment Corp
Minnenpolis-llonn: Well Ragulator Mo., Industrial Division
Aero Division
Minnesota Mining id Mfg. ('o
Minnesota Sllicome Kubber Co.
Mitchell-Kand Iusulation Co.. Inc
Modern Talking l'ieture Survice Inc
Moloney Electric ('ompansy
Motordyne Inc.
Muirhead \& Co., limited

National Compans, In
National Moldite Co.
Natvar Corporation
New Hermes, Ine.
New London Inst rument $\mathrm{CO}_{\text {i }}$
New York Transformer Ce.. Ine
Nothelfer Winding Laboratoriten

[^25] c

Optical Film Engintwring Co Owens-Corning Fiberglas Corp

Answer to VHF, UHF and Microwave Requirements

J.PIN minIature tuge sockets

9.pin miniature timbe sockets

CRYSTAL SOCKETS

9.PIN CONNECTORS

STAND-OFF INSULATORS

fied-through insulators

- LOW LOSS FACTOR - Less than 0.0005 .
- STABLE DIELECTRIC CONSTANT-2.0 (60 cycles to 30,000 megacycles).
- HIGH SURFACE RESISTIVITY-3. 3.5 10^{13} ohms. Won't carbonize under arcing or DC plate.
- WIDE SERVICE TEMPERATURE RANGE $-110^{\circ} \mathrm{F}$ to $+500^{\circ} \mathrm{F}$.
- ZERO WATER ABSORPTION-ASTM Test.
- DURABLE - withstands thermal and mechanical shock and vibration in assembly and service.
- Chemically stable-Inert, nongassing, immune to corrosive atmospheres, fungi, oils, solvents.

Write for Catalogs: Miniature Tube Sockets, No. SO-428; 9-pin Connectors, No. CN409-M; Crystal Sockets, No. CS-441; Stand-off Insulators, No. TE-401; Feed-Through Insulators and Terminals, No. CF-400.

TRUE ZERO CENTER VTYM 7" FULL VIEW METER with direct peak reading hieh frea. schles Plus Standard 1000 Ohms per Volt Functions 59 Ranges to: 6000 Volts, 2000 Megohms DC. VTVM range to 2 Amperes. +7 7.0B D.c. .

RANGE SPECIFICATIONS

\star EIGHT ZERO.CENTER YTVM RANGES: $\pm 3, \pm 12, \pm 60, \pm 120, \pm 300, \pm 600$, $\pm 1200, \pm 6000$ volts D.C.
\star HIGH INPUT RESISTANCE-
1343 megs. to 600 V ., $262 / 3$ megs. at 1200 v., $1331 / 3$ megs.'at 6000 volts.
\star four olrect peak reading ranges: 0-3.12-60-120 peak volts.亿Requires Series RF-10A High Frequency Probe described below.
\star SIX OHM and megohmmeter ranges: $0.2000-200,000$ ohms.
0-2-20-200-2000 megohms.
\star Eight extra a.c.-D.c. volt rahees at 1000Ω. for routire circuit testing. .

- Eight d.c. current ranges:
0.300 microamperes.

0-1.2-6-30-600-1200 MA. 0-1.2 Amperes. \star EIGHT DB RANGES: -20 to +77 db . Calibrated for 1 MW ., 600 ohms zero dib.

IMPORTANT FEATURES

\star Voltage Regulated-Bridge Type circuit.

* True Zero-Center VTVM-Simultaneously indicates both voltage and polarity. * Rotary Range and Function Setectors. * Recessed 6000 volt Safety Jacks. * Shieided Coax Test-Cable Connectors for both D.C. and R.F. probes.
* Electronic-Bridge Ohm-Megohmmeter. \star Electronic-Bridge ohm-Megohmmefer.
Uses 2 self-contained 1.5 V . batteries. * Extra-large 7" Rectangular Pace Meter. 200 microampere, $\pm 2 \%$ sensitivity. \star 1\% Film Type and Wire-Wound Resistors.
EV-10A (MCP) I In black ripple finished, heavy gauge steel case. Size $101 / 2^{\prime \prime} \times 12^{\prime \prime}$ $\times 6^{\prime \prime}$. Complete with coaxial circuit isolating test probe, shielded ohmmeter test cable, standard test leads, ohmmeter battery and manual...

SERIES RF-10A
 R.F. Probe

Accessory for Series Ev-10A above; affords Evirect high frequency direct high frequency
peak voltage measurepeak voltage measure-
ments. Employs 9002 miniature tube...... $\$ 14.40$

PRECSION APPARATUS COMPANY, INC. $92-27$ horace harding bivo., ampurst is, n. r.

Want more intormation? Use post card on last page.

Potter lnst rument Company, Inc......... 368
Precise Measurements Co................ 401
Precision Apparatus Co., Inc............ 436
Precision Paper Tube Co............... 331
l'remux l'roducts, Div. Chisholm-Itrder Co., Inc.
I'resto Recording Corj) 89
Fre Limited 959
Fyroferric Co. 43.

Quakrr City (iear Works
348
Quality Produets Co.
401

R-15-M Div., Easex Wire Corp........... 206
Kadio Corp. of America. . gind 2, Hourth Cover
Radio Materials Corporation. 58
Kadio Receptor Co., Inc......... 108
Railway Express Agency, Dir
Express Div.
231
Rastheon Manufacturing (0 37
Kemler Company Ltd................... 981
Keon Resistor Corp 326
Research Development Minmifiturf Jur. 38
Resistoflex Corporation 332
Rex Rheostat Company................ 396
Hobinson Incorporated, Edward E..... $\mathbf{3 6 3}$
Rochester Electronics Co.. Inr.......... . 101
Hoyal Metal Mfg. Co
Rinzel Cord \& Wire Cn 363

Nanders Assochates, Inc.................. 121
Nangamo Electrio Company 282
Sarkes Tarzian, Inc., Rectifior Div. 370
schmidt, Inc., Geo. T. 338
Schweber Electronles 379
Scientiflo Electric, Div. "s" Corrugated 339
Scintilla Magneto Div. of Bendix
Aviation Corp. 90
Secon Metals Corporation............... 377
Servo Corporation of America 366
Nervotrol Company 310
Sessions Clock Co. Tyni-Switch Dirtsion, 230
Shakeproof Div. of Illinois Tool Works.. 41
Shallcross Manufacturing Co 256
Shielding, Inc. 322
Sigma Ingtruments, Inc 304
Signal Engineering \& Mfg. Co........... 323
Simmons Fastener Corp................... 245
Simpson Electric Compans 305,299
Sola Llectric Co. 215
Sorensen \& Company 2
Specifle Products . 3%
Speer Kesintor Division, Spear Carbon
Company 74
Spencer-Kennedy Laboratories, Inc 381
Sprague Electric Co.......................
St. Regis Paper Company, Panelyt.
Division 35
Stackpole Carbon Company... \mathbf{a}_{6}
Standard Piezo Company 325
Star Porcelaln Company. 379
Sterling Transfomer Corp. 333
Steward Mantfacturing Co., D. M 340
Stodulart Aircraft Radio Co.............. $2 \$ 8$
Stone Paper Tube Co..................... . . 39
Stupakoff Ceramic © Manufacturing Co.. 49
Sun Parts Distributors Lta............. . 40 t
Superior Electric Company. 33
Superior Tube Company 255
Switcheraft. Inc. 329
Sylvania Electric Products. Inc. . $301, \underset{398}{34 .}$

Taylor Fibre Co

Tektronix Inc.
Telechron Dept, of General Electric Co. . 118

Crinite Company, lliv. of United-Ciarr United Carr Fastener Corp. 86
Dnited Manuficturing $\&$ Service Company 102
United States Gasket Co 435
United Transformer Co. Socomil Cover
Unitermal Winding Co. 6x
Varian Associates 285
Vectron, Inc 263
eeder-Root Incorporated 100
Vickers Eleotric Div.. Vi
Victoreen Instrument Co 234
342
Vulcan Electric Company $34:$
Valdes Kohinoor, In 81 4. 90
Ward Leonard Electric Company
Ward Leonard Electric Company
Waterman Products Co., Inc. 336
Webber Manufacturing Co., Inc 125
Western Gold \& Platinum Works 376
Westinghouse Electric Corp. . . . 7\%, 353, 379
Weston Electrical Instrument Corp ... 84Wheeler Insulated Wire Co., Inc......... $\mathbf{2 8 6}$White Instrument Iaboratories 388
Whitney Blake Co388
Villams \& Co., C. K 331
Wilmad Glass Co., Ine 375
Winchester Electronics lies 317
Aelik. Damiel 1 401
347
PROFESSIONAL SERVICES. 400
SEARCIllight SECTION(Classified Advertising)
H. E. HILTE Mor.

SEARCHLIGHT ADVERTISERS INDEX

This Intex is published as a convenience to the readers. Every care is taken to make it accurate, but ELECTRONICS assumes no responsibility for errors or omissions.

THESEARETHE

RHASO IVS

WHY DAVEN IS THE

LEADER IN THE

AUDIO ATTENUATOR

Greatly expanded production fac:lities enable Daven to make deliyery
from stock on a large number of standard aitenua-

LA-130 Series, Ladder Network 30 Steps, $13 / 4$ Diameter FIELD
(1) "KNEE-ACTION" ROTOR . . gives positive contact and low contact resistance under all conditions.
(2) BRASS CASE OF 2-PPECE CONSTRUCTION ... gives excellent shielding and allows more compact equipment design.
3 "LOCK-TITE" DUST COVER . . . designed to withstand severe vibration and at the same time allow ęasy accessibility.
4

5 LOW-LOSS MOLDED TERMINAL BOARD . . . has high resistance to leakage.

Write for complete catalog daila:

...with rCA thoriated-tungsten filament
 tubes

RCA-577I
SAVE-70\%

Designed specifically for industrial, communication, and broadcast services, these high-power tubes can save hundreds of dollars a year in filament power-can cut initial equipment power costs substantially.

For instance - RCA-5770 takes 150 -kw input up to 20 Mc , yet this triode requires only 3.1 kw of filament power-saves 60% over the comparable pure-tungsten-filament type - RCA-5671 takes 100-kw input up to 10 Mc . This air-cooled triode requires only 3.1 kw of filament power-saves 60% over the comparable pure-tungsten-filament type - RCA-5771 takes $60-\mathrm{kw}$ up to 25 Mc . This triode requires only 1275 watts of filament power-saves 70% over the pure-tungsten-filament type - RCA-5762 takes $5.5-\mathrm{kw}$ input up to 110 Mc . This VHF triode takes only 365 watts of filament power!

Consider these important features for the equipment you design. For additional technical information write RCA, Commercial Engineering, Section 42HR, Harrison, New Jersey. For application assistance, simply call your nearest RCA Field Office:
(EAST) Humboldt 5-3900, 415 S. 5th St., Harrison, N. J.
(MIDWEST) Whitehall 4-2900, 589 E. Illinois St., Chicago, Ill. (WEST) Madison 9-3671, 420 S. San Pedro St., Los Angeles, Cal.

[^0]: Broadway, Albany 1, N. Y

 Executive, Editorial and Advertising Offices: McGraw.Hill Bailding, 330 w. 42 St., New York 36. N. Y. Curtis W. McGraw, President: Winlard Chevalier, Executise Vice resident; Joseph A. Gerardi, Vice-President and Treasurer: John . Conke, Secretary: Paul Montgomery, Senior Vice-President, Publication Dirision: Ralph B. Smith, Vlce resident and Editorial Director; Nelson Bond. Vice-President and Director of Advertising; J. E. Blackburn, Jr., Vice-President and Director of Cliculation.
 Subseriptions: Address correspondence to Electronics-Subscription Service, 99.129 N. Broadway, Albany 1, N. Y.. or 330 W. 42 nd St.. New York 36 . N. Y. Allow one onth for change of address. Subscriptions are solicited only from persons engaged in theory, research, design, production, maintenance and use of electronic and industria ontrol components, parts and end products. Position and company connection must be indicated on suliscription orders

 Sincle copies 75d for United States and possessions, and Canada; \$1.50 for Latin America; \$2.00 for all other foreign countries. Buyers' Guide \$2.00. Subscrintion rates Or two years. All other countries $\$ 20.09$ a year; $\$ 30.00$ for two years. Entered as second class matter August 29 . 1936 , at the Post Office at Albany, 15.00 a year; $\$ 25.00$

 Haverty Bldg., Atlanta 3, Ga. : 1111 Wilshize Blvd. Los Angeles 17; 738.9 Oliver Building. Fittshurg 22. ELECTRONICS is indexed regularly in The Engineering Index.

[^1]: - Landing Aids-Forseeing operation by a one-man crew, European operators asked for simple presentation of data that could be easily read by the pilot alone and would increase in accuracy as the heliport is approached.

 Going still further, U. S. carriers desired versatility adequate to simulate visual conditions at all times. For navigation between many points in an area of up to 150 square miles, such as for mail pickups, it was felt that something in the nature of a radar pictorial display might be required.

 Talk-down radar had been tried as a landing aid for helicopters, but

[^2]: Company

[^3]: "Carborundum" and "Globar" are registered trademarks which indicate manufacture by The Carborundum Company, Niagara Falls, New York

[^4]: *This Committee, headed by Mr. Harold Vance, President of the Studebaker Corporation, included Clay Bedford, then President of Chase Aircraft, Manly Fleischman, former Defense Production Administrator, and several retired military leaders with wide experience in procurement.

[^5]: You can see why a job with Ford Instrument offers young engineers a challenge. If you can qualify, there may be a spot for you in automatic control development at Ford, Write for brochure about products or job opportunities. State your preference.

[^6]: * $_{\text {reg. u. s. pat off }}$

[^7]: Direct Mail Division, MeGraw-IIill Publishing Co.
 330 West 42 nd strect, New York 36 , N. Y.
 Please send me, at no cost, mailing list information that will cover my markets.
 \qquad
 \qquad
 \qquad
 \qquad
 \qquad
 Product or Service.

[^8]: (1) Sweet, Direct Reading Color Densitometer, ELECTRONICs, p 102, Mar. 1945. (2) Sweet, Logarithmic Photometer, Electronics,' p 105, Nov. 1946.
 (3) Sommer, The Multiplier Photo-Cell, Its Advantages and Limitations, Electronic Engineering, p 164 , Sept. 1944.
 (4) Nicol, Multiplier Photocells, Metal Treatment, p. 217, Winter, 1948-1949.
 (5) Engstrom, Multiplier Phototube Characteristics: Application to Low Light Levels, Jour. Opt. Soc. of Amer. p 420 , June 1947 .
 (6) Seliger, A Stabilized Electron Multiplier Photometer, unpublished thesis submitted in partial fulfillment of requireInstitute of Brooklyn, June 1951 .

[^9]: * Now with the Dept. of Electrical Englneering, University. of California, Berkeley, Calif.

[^10]: (1) Rufus P. Turner, "Basic Electronic Test instruments," p 219, Rinehart Books, 503.
 (2) Richard N. Close and Matthew T. Lebenbaum, Design of Phantastron Time Delay Circuits, Electronics, April 1948. p. 100 .
 (3) Louis E. Garner, Jr., An InexpenSive Pulse Generator, Radio and Television News, p 36, Feb. 1951.
 (4) Chance, Hughes, MacNichol. Sayre, and Williams, "Waveforms," p 218, Mc-Graw-Hill, 1949.
 (5) ibid, p 205.
 (6) M.I.T. Radar School Staff. "Principles of Radar,'" second edition, p2-53. Mc-Graw-Hill. 1946

[^11]: Transformers for: Cantant Vodsogz Fie. Fuoreseent tighting - Cold Cathode Lighting - Mercury Vapor Lighting e Luminous Túbe Signs
 NEW YORK 35: 103 E. J25th. St., TRafalgar $\mathbf{S O}^{2} 6464$

[^12]: 5915 AVALON BOULEVARD - LOS ANGELES 3, CALIFORNIA
 Representatives in Principal Cifies of U.S. and Canada

[^13]: - Wide ronge of models-121/2 to 200 kw., 220 or 440 volts, single or threephase current.
 - Excellent frequency and voltage regulation for the most exacting requirements.
 - Powered by General Motors Diesel en-gines-dependable, smooth 2-cycle operation-low cost maintenanceeasy to service.
 - Built by one manufacturer-one warranty, one responsibility for both engine and power generator.

[^14]: 1902 West Minnehaha Avenue, Dept.E-1/4, St. Paul W4, Minnesofa

[^15]: Want more information? Use post card on last page

[^16]: Want more information? Use post card on last page.

[^17]: KEARFOTT COMPANY, INC., 1150 MCBride AVe., Little Falls, N.J. West Coast Office: 253 N. Vinedo Ave., Pasadena, Calif. A General Precision Equipment Corporation Subsidiary

[^18]: (Continued on p. 398)

[^19]: MAURICE I. PARISIER \& CO.
 Communturions Exper:
 Inernational Ensmeering Consultus
 mamming enstahation superrision - Broal Ner Yort No Offices: Pars-Betinos - Vires-Sao Paolo- Imanas

[^20]: RADIO and TV ENGINEER
 Interesting, permanent job, testing ard analyzing TV sets, FM.AM receivers, high fidelity sound
 equipment, etc. in NYC Iab. Degree and 3 yrs. equipment, etc. in NYC lab. Degree and 3 yrs.
 experience in industry. Familiar with IRE test mothods. Salary commensurate with ability and experience. Sent resume.

[^21]: Terms 25% cash with order, balance C. O. D. unless rated. All prices net'F. O. B. our warehouse, Phila., Penna., subject to change without notice.
 CABLE ADDRESS - "LECTRONIC PHILADELPHIA

[^22]: Price
 Type No. Price

[^23]: .0022 mid to .0082 mfd

[^24]: MAIL ORDERS PROMPTLY FILLED. ALL PRICES F.OB. NEW YORK CITY SEND MO. OR CHECK. ONLY SHIPPING SENT COD
 RATED CONCERNS SEND P O. ALL MDSE SUBECT TO PRIOR SALE AND PRICES CUBIFCT TO CHANICE WITHOUT NOTICE RATED CONCERNS SEND P O. ALL MDSE SUBIECT TO PRIOR SALE AND PRICES SUBMCT TO CHANICE WITHOUT NOTICE.

[^25]: Pacitie Scientifle co
 Panoramie Kiadio l'roulucts, Ime'
 Paramount Paper 'İilie Corp Par-Metal Products Corporation Pation-MacGuyer Compans Phalo Plastics Corparation l'haostron Co.
 Phelpa Dodge Copper I'romats Carp.
 nca Manufacturiner Biy
 Pix Manufacturing Ca.. Inc
 Polarad Electronics (orן
 Polymer Corporation
 Polyphase Instrument Co

