For Miniature Components

FROM STOCK

U. T. C. OUNCER SERIES

Weight 1 ounce . . $7 / 8$ Dia. . .
1-3/16 overall height...
40 to 15000 cycles . . . 13 types*
U.T.C.

SUB-OUNCER SERIES
Weight $1 / 2$ ounce...
$9 / 16 \times 5 / 8 \times 7 / 8 .$. Nylon bobbin structure . . 200 to 5000 cycles.

Type	Application	Level	Pri. Imp.	D.C. in Pri	ec. Im	List
						Price
$50=1$	Input	+ 4 V.U.	200	250,000		
			50	0	62,500	\$5.60
S0-2	Interstoge/3:1	+ 4 v.u.	10,000	0	90,000	5.60
S0-3	Plate to line	--23 V.U.	10,000	200		
			25,000	$3 / 1.5 \mathrm{mil}$.	500	5.60
50-4	Output	+20 v.u.	30,000	1.0 mil .	50	5.60
S0.5	Reactor 50 Hy af	1 mil. D.C.	3000 ohms	D.C. Res.		5.10

*For complete list, write for Catalog PS-409

TO SPECIFICATION

hermetically Sealed ouncers

Weight $11 / 3$ ounce ... $15 / 16 \times$ $13 / 8 \times 13 / 8$ high ... all standard ouncer designs plus specials such as 400 cycles 1 waft power. . pulse transformers . . . saturable reactors ... dual units (input \& output in same case.)

HERMETICALLY SEALED SUB-OUNCERS

Weight . 8 ounce . . $15 / 16 \times 13 / 8$ $\times 13 / 16$ high . . . all standard sub-ouncer designs ... plus special units up to 200 KC .

SUB-OUNCER PERMALLOY DUST TOROIDS

Weight $1 / 2$ ounce uncased .8 ounce hermetically sealed. These miniamured HQE coils have characteristics similar to our standard HQA, C, and D coils with little reduction in Q considering minute size.

SUB-OUNCER

TOROID FILTERS

Filters employing su8-OUNCER toroids and special condensers represent the optimum in stable miniaturized filter performance. The unit shown.. $1 \times 1 \times 2 \ldots$ employs 5 coils and 6 condensers for a complete band pass filter... weight 6 ounces.

electronics

FEBRUARY • 1949

RADIO TELESCOPE Cover
Cornell University's new astronomical-research device, equipped with a 17 -foot parabolic antenna, is being used to study inch-long electromagnetic radiations interfering with ultrahigh-frequency reception (details on page 75)
SYNCHRONIZATION OF TELEVISION STATIONS 72System permits closer geographical spacing of stations and easing congestion of video spectrum
RADIO ASTRONOMY, by Chas. R. Burrows 75
Survey of results obtained to date from galactic and solar noise measurements
PHOTOELECTRIC CONTROL OF FURNACES, by F. C. Todd 80Vacuum phototube actuates thyratrons in power circuit to give 1 -percent precision up to $2,500 \mathrm{C}$
A-M AND NARROW-BAND F-M-Part 1, by Emerick Toth. 84Evaluation of modulation types for typical Naval mobile communicationsPUSHBUTTON SELECTIVE CALLING, by J. K. Kulansky.92Automatic dialing and transmitter control speeds mobile radio service
AUTOMATIC DIRECTION FINDER, by John R. Steinhoff 97Novel electronic phase-switching arrangement as used in compact airborne instrument
PHOTOELECTRIC WAVEFORM GENERATOR, by David E. Sunstein. 100A handy device capable of producing practically any shape waveform
CÁPACITOR-DISCHARGE RECORDER APPLICATIONS, by Ronald I. Ives 104
Discusses different circuits with respect ta portablity, simplicity, dependability, and linearity
D.C AMPLIFIER EMPLOYING NEGATIVE FEEDBACK, by Joseph F. Lash. 109Several improvements in amplifier stability and reduction in gain presented for modulation-type d-c amplifier
R-F TRANSMISSION-LINE NOMOGRAPHS, by Phillip H. Smith 112Ten commonly used equations are conveniently plotted
STAGGER-PEAKED VIDEO AMPLIFIERS, by Allan Easton. 118Greatly increased signal is provided by staggered high-frequency compensation
STABILIZING GAIN, by T. S. Korn 122
Improvement in amplifier stability and reduction in gain produced by negative feedback are shown graphically

DONALD G. FINK, Editor; W. W. MacDONALD, Managing Editor; John Markus, Vin Zeluff, Frank H. Rockett, A. A. McKenzie, Associate Editors; William P. O'Brien, James D. Fahnestock, Assistant Editors; Hal Adams Burleson, Ann Mastropolo, Editorial Assistants; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant; R. S. Quint, Directory Manager; John Chapman, World News Director; Dexter Keezer, Director Economics Department

KEITH HENNEY, Consulting Editor

W. MATEER, Publisher, WALLACE B. BLOOD, Manager; D. H. Miller, H. R. Denmead, Jr., New York; Wm. S. Hodgkinson, New Engad; Warren W. Shew, Philadelphia; C. D. Wardner, Chicago; J. L. Phillips, Cleveland; J. W. Otterson, San Francisco; Carl W. Dysinger, Los Angeles; Ralph C. Maultsby, Atlanta; Paul West, London, England; J. E. Blackburn, Jr., Director of Circulation

[^0]Model 4STIA1

Research laboratories, educational institutions, and production test departments will welcome this new low-priced, small sized regulated power supply. Performance-engineered to meet practically every type of application within its field, and every budget requirement, it rounds out General Electric's very complete line of regulated power supplies. A striking number of features have been enclosed in this sturdy steel case-that will impress every engincer as noteworthy. Look them over-then order for immediate delivery.
$\star 41 / 2^{\prime \prime}$ built-in meter with clear, easily read scale.

* Two position switch on panel permits operator to read either volts or milliamperes on the meter.
\star Operator can switch back and forth under load to monitor continuously.
\star The 4STIAI is continuously variable... 180 V to 300 V at 60 milliamperes.
\star Maintains constant output with varying line voltage or varying load conditions.
\star Supplies separate AC voltage at 6.3 V -center tapped at $21 / 2$ amperes.
* The unit may be operated grounded or ungrounded.
\star All components have been ultra-conservatively rated.
\star Ripple is less than 10 millivolts RMS.
For complete information on General Electric Regulated Power Supplies write General Electric Company, Electronics Park, Syracuse, New York

Type PS.4. Dual Regulated Power Supply providing two separately regulated supplies. Individual d-c current output 0 to 200 milliamperes; in parallel 0 to 400 milliam. peres maximum. Voltage output: 250 to 400 volts.

See the wide range of Regulated Power Supplies that are made by-

 GENERALELECTRIC

Type YPD-2. A me-

Type YPD-2 dium power unit of high quality for use wherever a closely regulated d-c voltage of low ripple content is required. D.C current output 0-300 milliamperes. D-C voltage output $250-450$ volts.

Type YPD-4. This uni provides a wide range of output voltages which makes it extremely versatile for laboratory work. D-C current output 0 to 0.125 amperes maximum. D-C voltage output 160 to 1500 volts.

Whey tis stam brings you better ELECTRON TUBES

1912. The first effective high-vacuum pube, developed by the Laboratories for long distanse telephony, was capable of operation at both audio and radio frequencies, and thus marked the beginning of modern electronics.
1919. The introduction of the copper-to-glass seal made water cooled tubes practical. The resulting high power tubes were used for broadcasting and for trans-oceanic radiotelephony.
1940. The beating oscillator, used in the great majority of radar systems. This tube generated a wave in the receiver with which the received microwave was reduced in frequency for amplification.

1937. This microwave generator, the 368A, was the first commercial tube to generate frequencies higher than 1500 mc . This type of tube was used by Western Electric in the first absolute altimeter.
1942. This tiny 6AK5, operating in the vicinity of 400 mc , proved itself invaluable as an amplifier in radar receivers. Design specifications were supplied to other manufacturers by Western Electric to speed war prothe first American multicavity pulsed magnetron from a British model. The team of Western Electric and Bell Laboratories developed 75 new and improved magnetron designs by extending operation into the 10 cm , 3 cm and finally the 1 cm bands, and produced over 300,000 of these wonder tubes of World War II.

1945. The Bell Laboratories traveling wave tube, still in the research stage, amplifies over a band 40 times wider than present tubes-may be able to amplify dozens of color or black and white television programs simultaneously.

0 VER 35 years ago in the laboratories of Western Electric, De Forest's Audion was improved and developed into the high vacuum tube and put to work for the first time amplifying telephone and radio frequency currents. And for over 35 years Western Electric and its research associate Bell Telephone Laboratories have been foremost in designing new and better electron tubes. Every tube shown here and many developments basic to the tube art are examples of that leadership.

Western Electric high power transmitting tubes for the broadcast field are now being manufactured for Western Electric by the Machlett Laboratories, Inc., another pioneer in electron tube development. Thus, in this field a new name has been added to the Bell Laboratories. Western Electric team - Machlett Laboratories.

BELL TELEPHONE LABORATORIES
 World's largest organization devoted exrlusitely to research and development in all phases of electrical commanictitions.
 Western Electric
 Manufacturing unit of the Bell System and the nation's largest prenlucer of communications equipment.

Power Loss $=55.5 \varepsilon^{1} \tan \delta \times f \times V^{2} \times 10^{-6} \mathrm{Watts}$

PORCELAIN

Because they influence efficient and effective operation, low loss characteristics of Zircon Porcelain are most desirable in the manufacture of high frequency equipment. Meeting the requirements of the power loss formula, Zircon Porcelain retains its low loss characteristics over a wide range of temperatures and frequencies. This factor is clearly demonstrated in the charts shown.

For applications in the field of radio, radar and other equipment of this nature, it will pay to get more detailed information. Write direct or discuss the use of Zircon Porcelain with one of our qualified field staff.

CHART 1

CHART 2

TITANIUM AHIOY MPG. DIVISION NATIONAL hPAD COMPANY

Executive and Sales Offices: III BROADWAY, NEW YORK, N. Y. - General Offices and Works: NIAGARA FALlS, N. Y.

Expert mechanical and electrical engineering for their particular jobs by no meansends the processing of Fansteel Selenium Rectifiers. Protective finishes enable each rectifier to defy the most severe attacks in use. Fansteel pioneered rectifier finishes accepted as standard thruout industry. Choice is given of three:

M Finish-High gloss dust and moisture resistant, which withstands worse-than-average conditions.

K Finish-Multiple-layer, meeting the Standard Navy 200-hour salt spray test. K Finish withstands mercury vapor.

T Finish-For tropical conditions. Multiple layer, resistant to high humidity, fungus, salt sprày and mercury vapor. Tests show no deterioration after one year at $135^{\circ} \mathrm{F}$, at 95% to 100% humidity, when idle-worse than operating conditions.

Added Economy! Fansteel Selenium Rectifiers assure longest, dependable trouble-free life. Our specialized rectifier engineers are always glad to counsel with you. Fansteel Metallurgical Corporation, North Chicago, Illinois.

New, ADVANCED Type BT Resistors, for example, are uniformly superior in every important JAN-R-11 requirement. At $1 / 3,1 / 2,1$ and 2 watts they meet JAN-R-11 specifications for fixed composition resistors. Balanced in every characteristic, small IRC ADVANCED BT's are particularly suited to high ambient temperatures and rigorous television circuits. 12-page Bulletin B-1 gives all the performance facts. Use the convenient coupon.

difficult

For close tolerance requirements, IRC Precisions offer a fine balance of accuracy and dependability. Extensively used by leading instrument makers, they excel in every important characteristic. 1% accuracy is standard. Noise level is inherently low, and windings are fully protected against high humidity. Available in a wide selection of ranges and types, as described in Bulletin D-1.

Miniature MPM resistors are IRC engineered for high frequency applications. Their frequency characteristics are outstanding, but absolute balance has been maintained with all other significant electrical characteristics. Thin resistance film is permanently bonded to ceramic rods. Cupped ends of wire lead terminals are cemented to resistor bodies to form axial pigtails. Rated at $1 / 4$ watt, Type MPM's are available in resistance values from 10 ohms to 1.0 megohms. Write for Technical Data Bulletin F-1.

IRC Type W Wire Wound Controls are so carefully balanced, your customers can actually feel the difference. With center tap they are widely used as vertical and horizontal centering controls in television receivers. Design provides maximum adaptability to most rheostat and potentiometer applications within 2-watt power rating. Type W Controls have a $11 / 4^{\prime \prime}$ diameter, and $9 / 16^{\prime \prime}$ depth behind panel. Spiral Spring Connector provides positive electrical connection. Bulletin A-2 gives details. Write for your copy.

All standard IRC resistors are readily a vailable in nominal quantities from your local distributor's well-stocked shelves. This is IRC's Industrial-Service Plan

at work, assuring you 'round-the-corner service on your small order requirements. We'll be glad to send you the name of your nearest IRC Distributor.

INTERNATIONAL RESISTANCE COMPANY
401 N. Broad Sireet, Philadelphia 8, Pa.
In Conoda: International Resistance Co., Lid., Toronto, Licensee

INTERNATIONAL RESISTANCE COMPANY

$t 103$ N. Broad St., Philadelphio ©, Pa.
Want to know more obout the IRC Resistors checked below -
\square Advanced Type BT's $\quad \square$ MPM High Frequ
\square Also end name and address of our IRC Distributor
Name
riste
Cumpany

Auldress

en machine-builders "buy the of AMERICAN PHILLIPS SCREWS
N. "PAYOFFS" climb up toward jackpor levels, where American Phillips icing costs in all assembly departments. Workers work faster and better. are never gouged. For American Phillips Screws and drivers are fumbleoof, slash-proof. And they can be handled by anyone with such ease and e-savings average 50% over slotted screws.
AYS" are sure to be attracted by smartly styled machines, assembled with :tive American Phillips Screws ... the screws with the universal crossed irred heads to snag clothes. No loosening of screws under vibration and And no matter what you make or vend, chances are you can profit doubly, the production savings and merchandising power of American Phillips \therefore.
RICAN SCREW COMPANY, PROVIDENCE 1, R. I. ago II: 389 E. llilinols 5 t.

Defroit 2: 502 Stephenson Building

February, 1949 - ELECTRONICS

Designed for long-time stability

...not for quick post-war sale

Study the significance to you of the following features of the Collins 734A, 10 kw FM transmitter:

- Typically superior Collins engineering.
- Reliability proved by actual operation.
- Phasitron modulator circuit, eliminating more than ten tubes and related components compared with former circuits, and resulting in far greater simplicity and reliability.
- Low tube costs.
- Only 11 tube types in the total complement of but 33 tubes, thus minimizing spares.
- All tubes visible while equipment is in operation.
- Direct crystal control of carrier frequency, utilizing a frequency multiplication of only 486,
provides carrier stability of ± 2 parts per mil-lion-better than ± 250 cycles per second.
- All controls accessible while the transmitter is in full operation.
- Motor driven variable tuning elements.
- Metering circuits for complete observation and recording of transmitter performance.
- Accessibility throughout. Maximum personnel and circuit protection. Easy maintenance.
- Excellent mechanical construction,
- Cabinets smartly styled, in three-tone gray.
- Competitively priced.

Write us about your plans, and ask us for an illustrated bulletin describing the Collins 734A transmitter in more detail.

FOR THE BESTINFM, IT'S...

COLLINS RADIO COMPANY, Cedar Rapids, Iowa

 Hence its wide employment for springs, diaphragms, bellows and similar parts. In addition, its corrosion resistance in combination with high tensile properties render it invaluable in chemical, sewage disposal, refrigeration, mining, electrical and similar applications. In the form of welding rod, Phosphor Bronze has many advantages in the welding of copper, brass, steel, iron and the repair of worn or broken machine parts. Revere suggests you investigate the advantages of Revere Phosphor Bronzes in your plant or product.

ENGINEERING GIVES YOU A NEW

Available as d-c ammeters, milliammeters, microammeters, valtmeters, thermocouple ammeters, and rectifier ammeters, and voltmeters. A-c instruments of same appearance and frontal dimensions also available as ammeters and voltmeters.

Whete space is limited you'll appreciate these new thin panel instruments, Type DO-71. Through the use of internal pivots, depth behind the panel has been reduced to less than one inch. Yet, they are sturdy and accurate.

High-strength Alnico magnets give high torque, good damping, and quick response. This permits the use of large-radius pivots which add to the sturdiness and sustained accuracy of these new instruments.

Easier reading and improved appearance result from the other new features... Lance-type painter, absence cf are lines, simplified scale layout, and legibility-tested numerals all contribute to ease and accuracy of reading.

The high accuracy and performance of the DO-71 instruments will add to the quality of your products. Plan to incorporate them in your design. Your nearest G.E. representative will be glad to discuss applications with you. See him today, or write for Bulletin GEA-5102. Apparatus Dept., General Electric, Schenectady 5, N. Y.

GENERAL (\%) ELECTRIC

Models courtesy of Paravox, Inc.

1Time, space and material savers! That's how Paravox, Inc., Cleveland hearing aid manufacturer, describes Centralab's revolutionary P.E.C. Ampecs. These tiny audio-amplifying units save time for Paravox by eliminating mavy assembling operations.

They save space and material by reducing the number of components needed. What's more - like all CRI Printed Electronic Circuits - they are rugged, deperrdable, resistant to temperature and humidity. For Ampec facts, order Bulletin 973

2
Two-piece Amper and Model 1 Radiobm are the CRL units Paravox uses in its $41 / 2$-ounce hearing aid. Ampec is a complete 3 -stage audio amplifier.

1

Centralan's Filper is designed for use as a balanced diode load filter, combines up to three major components into one tiny unit, lighter and smaller than one ordinary capacitor Capacitor values available from 50 to 200 mf . Resistor values from 5 olms to 5 megohms. For complete information, write for Bulletin 42-9.

Electronic Industry

CRL's Couplate consists of a plate lead resistor, grid resistor, plate by pass capacitor and coupling capacitor. Write for Bulletin 42-6.

Centralab's development of a revolutionary, new Slide Switch promises improved AM and FM performance! Flat, horizontal design saves valuable space, allows short leads, convenient location to coils, reduced lead inductances for increased efficiency in low and high frequencies. Rugged, efficient. Write for Bulletin 953.

For by-pass or coupling applications, check CRL's original line of ceramic disc and tubular Hi -Kaps. For full facts, order Bulletins 42-3 and 42-4.

Wide range of variations in CRL's Model " M " Radiohm simplifies production and inventory. Bulletin 697-A illustrates convenience, versatility!

LOOK TO CENTRALAB IN 1949! First in component research that means lower costs for the electronic industry. If you're planning new equipment, let Centralab's sales and engineering service work with you. Get in touch with Centralab!

Centralab

DIVISION OF GLOBE-UNION INC., MILWAUKEE, WIS.

THE TRUSTY TRIO FOR

Severe operating conditions are a "push-over" for Turner Dynamic mikes. Their accurate pickup and smooth natural response to voice and music is not affected by climate or temperature. Builtin ruggedness enables them to stand up and deliver under abuse that renders an ordinary microphone useless. Typical of Turner Quality are Models 99, 999, and U9S. Professionals both in appearance and performance they will give added efficiency to your operations. Find out more about these Turner Dynamics.

MODEL 99 DYNAMIC

Used by broadcast stations, large city police departments, and specified as standard equipment by internationally known manufacturers. Will not blast from close speaking. Case fits any standard microphone stand and adjustable saddle gives semi- or nondirectional operation. Response is flat within $\pm 5 \mathrm{db}$ from $40-9000$ cycles. Level: 52 db below 1 volt/dyne/sq. cm. at high impędance. Gun metal type finish. Complete with 20 ft . removable cable set in a choice of $30-50$ ohms, 200 ohms, 500 ohms, or high impedance.

MODEL $999{ }^{\text {MMANEED }}$ LINNAMIC

Same style and finish as Model 99. Equipped with Balanced Line features for critical applications and professional results under all conditions. Has voice coil and transformer leads insulated from ground and microphone case. Line is balanced to the ground. Response is flat within $\pm 5 \mathrm{db}$ from 40 9000 cycles. Level: 52 db below 1 volt/ dyne/sq. cm. at high impedance. Complete with 20 ft . balanced line low capacity removable cable set with 3-pin polarized locking connection in a choice of standard impedances.

MODEL UGS DYNAMIC

Four Impedances at Your Fingertips
Whatever impedance you need50 ohms, 200 ohms, 500 ohms or high impedance - you can get it quickly and easily with the turn of the switch on Turner U9S. This flexible unit handles toughest jobs. Same precision engineering and rugged construction as Model 999 with built-in multi-impedance transformer. Response is flat within $\pm 5 \mathrm{db}$ from $40-9000$ cycles. Level: 52 db below 1 volt/dyne/sq. cm. at high impedance. Complete with 20 ft . removable cable set.

- Write for complete literature describing all Turner Microphones for public address, recording, call system, amateur and commercial

THE TURNER COMPANY
905 17th Street N. E. - Cedar Rapids, lowa broadcast, and special applications.

Licensed under U.S. patents of the American Telephone and Telegraph Company, and Western Electric Company, Incorporated.

Month

OHMITE Power Rheostats are Purchased

than all other (8) Makes Combined

That's why Ohmite is first among industrial buyers . . and why it will pay you to standardize on Ohmite rheostats for your product.

Trist Choice of Smatuslyy

sc Right weth OHMMITE

(-)HMTE thin resistors

Send for Bulletin No. 138
OHMITE MANUFACTURING CO
4816 W . Flournoy St., Chicago 44, I/E

Be Right mith
INTEGRALMOLNT-
ING BRACKESS ING BRACKES
OPGMITE

RHEOSTATS • RESISTORS - TAP SWITCHES
 FILTRON

filtered by filtron

filtered by filtron North American Aviation FJ-1 Jet

filtered by filtron North Americon Aviation B-45 Jet

filtered by filtron Foirthild C-II9A Pocket

filtered by filtron Boeing B-50 Superfortress

FILTERED BY FILTRON . . These planes, and others - that form "America's Mighty Armada," are equipped with electrical com. ponents which are FILTERED BY FILTRON ... Some with as many as 27 FILTRONS per plane...These planes repres America's most advanced engineering and design and FILTRONS represent the most advanced engineering and design of radio noise filters. FILTRONS are vital components not only in aircraft equipment, but wherever radio interference must be suppressed . . FILTRON will design the RIGHT filter for your circuit conditions - and to meet your delivery requirements. All measurements are made in our new, modern, specially designed shielded Radio Noise Suppression Laboratory.

RADIO NOISE FILTERS FOR: Electric Motors Electric Generators Electronic Controls Electronic Equipment Fluorescent lights Oil Burners Signal Systems Business Machines Electric Appliances Electronic Signs Electronic Heating Equipment

Shielded Spherical-Seat Terminal filtron - designed for continuous high ottenuation from 150 kc to well above 200 me

SEND FOR CATALOG and Engine ering MANUAL No. FC- 20

The NEW "dag" CRT Wall Coating

for all CRT glass envelopes

Here's an entirely new CRT Wall Coating, developed by Acheson Colloids specifically and solely for use on CRT glass envelopes.
"dag" CRT Wall Coating is very easily applied . . . adheres tenaciously to all types of glass. . . does not yield objectionable by-products on heating.

Prominent cathode-ray tube manufacturers have already found this opaque, electrically conductive "dag" CRT Wall Coating eminently satisfactory, especially in tubes intended for television reception.

Let Acheson Colloids help you with your CRT wall coating problem. Mail the coupon today for information on this or other electronic applications of "dag" colloidal graphite dispersions.

Give me information on "dag" colloidal

 graphite dispersions for:Wall coating of CRT's Electrostatic shielding Corona prevention Dry-film lubrication Copper oxide rectifier disc coating Electrical resistances
Filament cement

LOW CURRENT PAYS OFF...

GENERAL ELECTRIC PM-EM*FOCUS COIL!

Performance-engineered at Electronics Park, the General Electric Focus Coil is now being used by many leading television manufacturers. The reason for this widespread adoption of the G-E Focus Coil by design engineers is best explained by the following equation:

$$
\begin{aligned}
\text { PEM }=I^{2} R=.109^{2} \times 247 & =2.93 \text { watts } \\
\text { PEM-PM }={ }^{2} R=.029^{2} \times 960 & =0.81 \text { watts } \\
\text { Power Saving } & =2.12 \text { watts }
\end{aligned}
$$

In addition to its low current requirements (which permit the use of lower-priced power supplies) the G-E focus coil is small, compact and light in weight. These features provide additional space which TV set designers can use to advantage.

For complete information on the G-E Focus Coil and other television components, write: General Electric Company, Electronics Park, Syracuse, New York.
*Permanent Magnet-Electro-Magnet.

sulation fubing that sets new standards for resistance to extreme high temperatures. Compounded of a plasticized copolymer of vinyl chloride ana vinyl acetate and manufactured with a true wall thickness, smooth inside and outside FLEXITE HITEMP PLASTIC TUBINGS offer the greatest resistance to high and low temperatures, are extremely flexible and have great tensile strength.

Other significant properties of FLEXITE HITEMP compare more than favorably with tubings of similar nature. Check the specifications of HITEMP, compare them with the requirements for products and if you wish ag er insulations for identical use... iEMP sets a new high standard for protection against high temperatures, high dielectric, stretching, tearing, abrasion, exposure to acids, oils and alkalies, flammability, etc., etc., efc. - . . . samples and additional information will be sent upon request.

And for a Plastic Tubing to Withstand Normal High Tempergtures Mitchell-Rand Offers . . . Flexite-Norm . . . write for specificafions.
MITCHELL-RAND INSULATION CO. Inc.
51 MURRAY STRERT. COrtandt 7-9264*NEW YORK 7, N. Y.
A PARTIAL LIST OF M-R PRODUCTS: FIBERGLAS VARNISHED TUBING, TAPE AND CLOTH - INSULATING PAPERS AND TWINES - CABLE FILLING AND PDTHEAD COMPOUNDS - FRICTION TAPE AND SPLICE - TRANSFORMER COM POUNDS • FIBERGLAS SATURATED SLEEVING• ASBESTOS SLEEVING AND TAPE • VARNISHED CAMBRIC CLOTH AND TAPE - MICA PLATE, TAPE, PAPER, CLOTH, TUBING • FIBERGLAS BRAIDED SLEEVING • COTTON TAPES, WEBBINGS AND SLEEVINGS - IMPREGNATED VARNISH TUBING - INSULATED VARNISHES OF ALL TYPES • EXTRUDED PLASTIC TUBING

- The above chart was compiled in 1946 It is based on Aerovox wartime experience in meeting the extra-severe-service re quirements of military equipment. Like wise the needs of workaday electronic assemblies for industrial purposes.

Found in the Aerovox engineering liter ature, this chart classifies Aerovox electro lytic types into four groups based on severity of service and cost considerations. Groups I and I-A comprise hermetically
sealed electrolytics meeting the most rugged conditions of temperature, humidity, pressure and vibration. Group II types compromise between severe-service requirements and cost. Group III types meet cost considerations primarily

Thus today's television requirements, as regards electrolytics quite as well as other capacitors, have been fully anticipated by Aerovox engineering and production developments of long standing.

- Whether your electrolytic re quirements be for extra-severe severe or just normal service. let Aerovox engineers collabo rate in working out the best answer. Visit with us at Booth 124.l.R.E. National Convention

FOR RADIO-ELECTRONIC AND INDUSTRIAL APPLICATIONS

AEROVOX CORPORATION, NEW BEDFORD, MASS., U.S.A.
Sales offices In All principal Cities. Export: 13 E. 40 th St., New York 16, N. Y.

After many months of planning and building, our entire organization has moved into new and vastly expanded manufacturing quarters.

It's a gem of a plant, with 70,000 square feet and a frontage of 600 feet. It's scientifically arranged for streamlined production, and has every modern facility, including an air filtered painting and finishing department.

To our customers and others we extend a cordial invitation to come and see the plant in operation. A tour of our new premises, more than any description, will enable you to visualize what our enlarged facilities mean in terms of better-than-ever service to all customers, large and small, old and new.
From the simplest to the most elaborate precision job, nothing is too big or too small. We invite your inquiries.

Ask For Our Informative New Catalog

KARP METAL PRODUCTS CO., INC.

215-63rd STREET, BROOKLYN 20, NEW YORK Crustom Craftsmon in Sheet Netal

You've got to be ready for Microgroove!

MICrogroove long-playing recordings are here to stay. This means that every broadcast station and recording studio must have quality equipment, especially for microgroove reproduction.

The new Presto type 153 reproducers include two separate Pickering diamond stylus heads for microgroove or regular recording, an exceptionally fine arm, and a 4 -position compensating network

Durability of equipment, fine performance, and economical first cost make these Presto reproducers ideal for microgroove and also for lateral standard recordings.

Write today for full specifications on the Presto 153 M for microgroove recordings and 153 R for regular recordings. Your nearest Presto distributor can show you the equipment.

FOR HIGHEST FIDELITY. . . IT'S PRESTO DISCS

Microgroove, even more than regular recording, demands a perfect disc. The answer is Presto. For, sixteen years ago, Presto made the first lacquer-coated discs ... and today Presto discs are first in quality.

RECORDING CORPORATION
Paramus, New Jersey

Mailing Address: P. O. Box 500, Hackensack, N. J. In Canada: WALTER P. DOWNS, LTD., Dominion Sq. Bldg., Montreal

IMPORTANT TO MANUFACTURERS OF Television Receivers

THERE ARE AT LEAST TEN TIMES AS MANY OPPORTUNITIES FOR

JOINTS IN TELEVISION ASSEMBLES AS THERE ARE IN RADIO SETS. AVOID H.R. TROUBLE AND GET CONSISTENTLY

SORDERING JOINTS WTH

Television receivers contain from five to ten times as many resonant circuits as there are in ordinary radio sets and from ten ;o fifteen times as many connections. That means that there are at least ten times as many places where H.Z. connections may occur through dry joints. It means, too, ten times as many chances of the set not passing the inspection at the end of the assembly line or proving unsatisfactory in service after it has reached the tustomer. H.R. joints are bad for your business and bad for your reputation as a manufacturer.
 Solier speeding production and cutting manufacturing costs. If you are not already using Ersin Multicore Solcer, it will pay you to investigate the advantages of using. The Finest Cored Solder in the World; it complies with all requirements of United States Federal Specification, QQ-S-57 lb. Write NOW tor helpful booklet, "SOLDERS \& SOLDERING," with free samples and technical irformation.

Address U.S.A. and Camadian inquiries to:
BRITISH INDUSTRIES
CORP. 315, Broadway, New York 7, W.Y.
Inquiries regarding cther eerritories to: M ULT.I CORESOLDERS LTD.

Federal

SQUAREDEAL for Desigrers

Another FEDERAL achievement for better designed and better operating equipment.

$M_{\text {ore }}$ watts per cubic inch in your cabinet space... made possible by Federal's 26 -volt RMS square and rectangular Selenium Rectifier plates. By materially reducing the number of plates required for a given output, th is important advance in the art of Selenium Rectifier design and manufacture offers engineers and designers new opportunities for savings in space and weight. Now greater power - with the efficiency and dependability inherent in Federal Selenium Rectifiers-may be had with-
out sacrificing compactness.
This is just one more example of Federal's leadership in Selenium Rectifier development. When you specify Federal Selenium Rectifier stacks, whether square, rectangular or round, you can be sure that Federal will help you see the job through. Our engineers are interested in every application, and are always ready to give you the benefit of more than a decade of Selenium Rectifier experience. For information, write to Department E-213.

Federal Telephone and Radio Corporation

KEEPING FEDERAL YEARS AHEAD... is $17 \& T^{\prime}$'s WOFId-wide research and engineering organization, of which the federal Telecommunication Laboratories, Nutley, N. J., is a unit.

SELENIUM and INTELIN DIVISION, 900 Passaic Ave., Eest Newark. New Jersey
In Canada: Federal Electric Manufocturing Company, Ltd., Montreal, P. Q. Export Distributors: International Standard Electric Corp. 67 Broad St., N. Y.

There's no eye-straining or neck-craning needed to see radio dials made of Transhucent Graphic Lamicoid. Printed matter permanently laminated in the translucent thermosetting plastic stands out clearly with rear illumination. That's why National Company, Inc., uses Graphic Lamicoid for the rear-illuminated dials on the Model NC-173 Receiver.
Besides legibility and clarity, Graphic Lamicoid has many other advantages for instrument dials, control panels, maps, charts and diagrams. Printed markings and colors are sealed against wear, dirt and moisture. Lamicoid holds its size and shape for assured accuracy in precision instruments. It has high heat and wear resistance, excellent mechanical and dielectric strength.
Other types of Decorative Lamicoid-Engraving and Translucent, rigid and flexible-extend the range of application of this versatile material. Lamicoid is available in mechanical and electrical grades, too, that it will pay you to investigate through the nearest sales office or fabricator.

MICA

Schenectady 1, New York

[^1]
NEW -hp430A MICROWAVE POWER METER

Automatic operation! Instantaneous

 power readings! No tedious calculations
or adjustments! Read direct in mw. or dbm!

Use at any microwave frequency!

To measure an unknown microwave rf, just connect the new -hp-430A Microwave Power Meter to the 200 -ohm barreter in your system. This one compact power meter does all the rest! No tedious calculating or knob-twisting. Except for initial range selection and zero set, operation is entively allomatic! You can make direct power readings instantly in milliwatts from 0.02 to 10 mw , or dbm from -20 to +10 dbm . Higher powers may be measured by adding attenuators or directional couplers to the microwave system. Any of 5 ranges are quickly selected by a frontpanel switch. Power is read on an openscale, $4^{\prime \prime}$ square-face meter mounted on a sloping panel.
The new -hp-430A Power Meter is an ac bridge, one arm of which is a 200 -ohm barreter. This bridge is in precise balance with zero if power across the barreter. When rf power is applied, an equivalent in audio power is automatically removed. The bridge remains balanced, but the change in audio power level indicates on the vacuum tube voltmeter. This meter thus
measures the unknown rf directly and instantaneously

The $-h p-430 \mathrm{~A}$ is designed for use with any 200 -ohm barreter and mount, and may be used over any microwave frequency for which the mount is designed. The meter incorporates the famous -hp resistance-tuned oscillator principle, and is ruggedly built for long, trouble-free service. There are no delicate components to get out of adjustment.

For Complete Specifications, Write to
HEWLETT-PACKARDCO. 1830A Page Mill Road, Palo Alto, California

BRIEF SPECIFICATIONS

Power Range: 0.02 mw to 10 $\mathrm{mw}, 5$ ranges, 5 db intervals. Scale also reads dbm continuously from -20 dbm to $+10 \mathrm{dbm} .10 \mathrm{dbm}=.001$ Watt).

External Barreter: Frequency range depends on barreter and mount. (Must be 200 ohms at power level of approximately 15.3 mw .) (Barreter and mount not supplied.)

Accuracy: $\pm 5 \%$ of full scale reading

Size: $12^{\prime \prime}$ wide, $9^{\prime \prime}$ deep, $9^{\prime \prime}$ high. $4^{\prime \prime}$ Square-Face meter.
Power: $115 \mathrm{v}, 50 / 60 \mathrm{cps}, 60$ watts.

Power Supplies Audio Signal Generators Amplifiers Electronic Tachometers frequency Meters UHF Signal Generators Square Wave Generators Audio Frequency Oscillators Attenuators Frequency Standards Noise and Distortion Analyzers Wave Analyzers Vacuum Tube Voltmeters

The right material for your joh right at your fingertips!

How to Save Production Hours and Dollars on Your Electrical Insulating Jobs . . .

One of the surest ways to reduce unit costs on any job is to be right the first time when selecting materials. Continental-Diamond's complete line of high strength electrical insulating materials makes proper product engineering easy.

There are trained C-D technicians on hand at all times to give you personal help in getting bet-DE.4-48

ter, lower-cost applications. To be sure of being right the first time in the selection of materials, call your nearest C-D office whenever the need arises.

C-D HIGH-STRENGTH PLASTICS DIAMOND FIBRE-Vulcanized Fibre. VULCOID-Resin Impregnated Fibre. DILECTO-Laminated Thermosetting Plastic. CELORON-Molded High-Strength Plastic. MICABOND-Bonded Mica Splittings.

BRANCH OFFICES: NEW YORK 17 - CLEVELAND I4 • CHICAGO 11 • SPARTANBURG, S. C. - SALES OFFICES IN PRINCIPAL CITIES WEST COAST REPRESENTATIVE: MARWOOD LTD., SAN FRANCISCO 3 - in CANADA: DIAMOND STATE FIBRE CO., OF CANADA, LTD., TORONTO 8

Gontinental - Diamond
 FIBRE COMPANY

Esfablished 1895. . Manufacfurers of Laminated Plastics since 1911-NEWARK 16. DELAWARE

Announcing... METALLIZED PAPER

A REVOLUTIONARY NEW SPACE-SAVING CONDENSER PAPER WITH AMAZING SELF-HEALING QUALITIES.

NEW!!! NEW!!! Never before has anything like Smith Metallized Condenser Paper been offered the Electric and Electronic Industries.

It's here! Today . . . now . . . Smith Paper, Inc. makes available its new Metallized Condenser Paper that bids fair to revolutionize the entire electric and electronic field. Smith Metallized Condenser Paper makes possible the first one-layer condenser with an $.0003^{\prime \prime}$ dielectric material. It also makes possible a 75% saving in space factor over most conventional capacitors. And hecause of its self-healing characteristics it almost completely eliminates the factor of conducting particles and the usual serious effect of a breakdown.

Answers a long-unfilled need. Design engineers since earliest days of the capacitor industry have sought capacitors that would provide higher capacities, smaller space factors, higher dielectric strength, longer life characteristics, and the elimination of breakdown causes. Since such improvements in design have been limited by the dielectric materials available, the introduction of Smith's Metallized Paper will prove a great boon towards the attainment of these special characteristics. This in-dustry-sought paper not only permits 75% savings in space
factor, but also provides other extraordinary advantages.
Increased insulation resistance. It has been found in the manufacture of metallized paper that by covering the hase Kraft Condenser shect with an extremely thin, continuous and uniform film of lacquer, a marked increase in insulation resistance is obtained. This lacquering causes an increase in the thickness of .00030 condenser paper of .03 - .05 mils; while the succeeding zinc coating operation causes an increase in thickness of 3.5 millionths of an inch.

Smith's New-type Metallized Condenser

 Paper not only reduces space factor by eliminating the use of electrodes, but gives longer life, higher dielectric strength, and ends forever the disastrous effects of breakdowns.Metallized Paper

1 MFD-400 WVDC

4 MFD-150 WVDC Capacitor samples cour.
tesy Sotar Manufacturtesy Solar Manufactur
ing Corp., North

Self-healing on breakdowns. Another of the outstanding properties of metallized paper is its capacity to self-heal on a breakdown. Inotherwords, a capacitor wound with metallized paper may be brought to a breakdown
voltage, but the effects of the breakdown are sufficient to cause a re-insulation around the breakdown areaso that the capacitor is satisfactory for continued use. Numerous break downs do not appear to impair this self-healing characteristic. Smith Paper, by laking advantage of this property, is able to furnish a metallized paper devoid of particles which are conducting at the usual test voltages.
Automatically Controlled. Today equipment has been perfected for automatically controlling and continuously recording (where necessary) such properties as lacquer thickness and consistency, thickness of the metal layer, color and resistance of the metal layer, width of margin, etc. all important characteristics of the product, the close control of which is essential for the best design and manufacture of metallized paper capacitors.
Complete facts available. All facts on Smith Metallized Condenser Paper as it applies 10 your industry may be had on request. Simply address Smith Paper, [nc., Lee, Massachusetts. There is no obligation.

Built for dependable performance...

I-T-E wire-wound Oval Power Resistors-

Abstract

Modern resistors designed for modern applications. . . I-T-E Oval Resistor Assemblies . . . specially suited for installations where space is limited, such as in aviation, sound, radio, and other electronics applications. I-T-E "Ovals" are distinguished by their high unit-area wattage ratios, which are due in part to the heat dissipation qualities of the mounting brackets. An I-T-E Oval Resistor-or an assembly of oval units-has a much higher wattage rating than that of a conventional round resistor of comparable size. And I-T-E Resistors are better-built for a longer life of dependable performance. Bases are best non-hygroscopic ceramics . . . resistance wires are purest obtainable . . . resistances are uniformly wound, mechanically tied, and silver-soldered at high heat for permanent, solid connections. No matter what your resistor problem calls for-compactness, long life, dependability, or exact tolerances-be sure to investigate I-T-E Oval Resistors, the modern wire-wound Power Resistors. Complete technical information, as well as valuable application data, is contained in the new I-T-E Resistor catalog. Send for it today.

There's an I-T-E Resistor for Every Purpose \rightarrow

I-T-E OVAL RESISTORS				
Type	Watts	Length	Maximum Recommended Resistance	Mounting Centers
108 Oral	30	11/4"	10000	$2{ }^{\prime \prime}$
200 Oval	40	$2^{\prime \prime}$	15000	$23 / 4{ }^{14}$
316 Oval	55	31/2"	25000	$41 /{ }^{\prime \prime}{ }^{\prime \prime}$
424 Oval	65	43/4"	35000	51/2" ${ }^{\prime \prime}$
600 Oval	75	$6^{\prime \prime}$	50000	$63 / 4^{1 \prime}$

The Leader In Technical Excellence

I-T-E CIRCUIT breaker co., resistor division, 19th \& hamilton streets, philadelphia 30, pa.
 fion accurocy.

5
 the first line of STANDARD electronic AC voltage regulators and nobatrons

GENERAL SPECIFICATIONS

- Harmonic distortion : max. 5% basic or 2% " S " models
- Input voltage range: either $95-125$ or $190-250$ volts
- Output: adiustable between either 110-120 or 220.240 volts
- Input frequency range: $\mathbf{5 0 . 6 0}$ cycles
- Power factor range: down to 0.7 P. F.

All AC Regulators and Nobatrons may be used at no load.
Special Models designed to meet your unusual applications.
Write for the new Sorensen catalogue. It contains complete specifications on standard Voltage Regulators and Nobatrons.

Special Transformers, D. C. Power Súpplies, Saturable Core Reactors and Meter Calibrators made to order; please request information.

SORENSEN \& Company, Inc.

Stamford, Connecticut
Represented in all principal cities. one of the oldest names in transformers, offers high quality specification transformers custom-built to your requirements. For over 20 years the KENYON "K" has been a sign of skillful engineering, progressive design and sound construction.
MENM now serves many leading companies including: Times Facsimile Corporation, Western Electric Co., General Electric Co., Schulmerich Electronics, Sperry Gyroscope Co., Inc. Yes, electronification of modern industrial machinery and methods has been achieved by KENYON'S engineered, efficient and conservatively rated transformers.
For all high quality sound applications, for small transmitters, broadcast units, radar equipment, amplifiers and power supplies - Specify KENYON! Inquire today for information about our JAN ap. proved transformers.

Cheek Your Requiremente
 "T" LINE TRANSFORMERS HERMETICALLY SEALED TRANSFORMERS "A" LINE TRANSFORMERS

PLATE TRANSFORMERS	INPUT \& OUTPUT TRANSFORMERS
FILAMENT TRANSFORMERS	SPECIAL FREQUENCY TRANSFORMERS
REACTORS	ISOLATION TRANSFORMERS
CHOKES	AUDIO TRANSFORMERS
MODULATION TRANSFORMERS	HUMBUCKING TRANSFORMERS
INTERSTAGE TRANSFORMERS	AUTO TRANSFORMERS

Now - for the first time in any transformer catalog, KENYON'S new modified edition tells the full complefe story about specific ratings on all transformers. Our standard line saves you time and expense. Send for the latest edition of our catalog now!

D FOR OUR CATALOG NOW!

 So start by choosing General Electric ring-seal tubes. Designed directly for grounded-grid circuits, they plug in quickly, firmly, with wide contact areas. Lead inductance is extremely low. The tubes need minimum neutralization.

All external parts are silver-plated to reduce r-f losses. Fernico metal-to-glass seals are used throughout. Sturdy, compact, built to true precision standards, Types GL-5513 and GL-9C24 are acknowledged performance leaders in the TV and FM fields.

Study the ratings of these modern yet serviceproved v-h-f triodes; then phone your nearby G-E electronics office for further facts, plus (if desired) the application counsel of an experienced G-E tube engineer. Or, wire or write Electronics Department, General Electric Company, Schenectady 5, New York.

GENERAL ELECTRIC

RATINGS AND ELECTRICAL CHARACTERISTICS		
	GL-5313	GL-9C24
Filament voltage	6.3 v	6.3 V
Filoment current	32 omp	240 omp
Interelectrode copacitances:		
Grid-filament	21.1 mmfd	24 mmfd
Grid-plate	8.7 mmfd	15.7 mmfd
Plate-flament	.11 mmfd	0.47 mmfd
rype of cooling	farced-air	water and forced-air
Plate ratings per fube, Class Br-f power amplifier (video service, synchronizing peak condilions):		
Max voltage	3,000 v	5,000 v
Max current	1.2 amp	2 cmp
Max inpur	3,300 w	10 kw
Max dissipation	1.200 w	5 kw
*Power output, typical operation	1,160 w	3.4 kw
Plate ratings per fube, Class C r-f power, amplifier (key-down conditions withoul modulation):		
Max voltage	4,000 v	6,500
Max current	1 amp	2 amp
Max input	$3,600 \mathrm{w}$	12 kw
Max dissipation	1,200 w	5 kw
*Power output, typical operation	2.45 kw	9 kw
Includes power transferred from driver to output of grounded-grid omplifier:		

BURNELL \& CO., A

DEVELOPMENT OF

LEADER

 MIIIATVIN SUB-MINIATURE COILSand

INTRODUCES.. THE

WORLD'S SOROIDAL

 'WEDDING

SMALLEST
 HIGH

Models courtesy of Jobnston Hearing Aid Mfg. Co.

TYPICAL "AMPEC"-(actual size, hack view) shows how you can get complete electrical cir-cuits-tube sockets, capacitors, resistors and wir-ing-in one miniature Centralab amplifier unit.

*Centralab's Printed Electronic Circuif - Industry's newest method for improving design and manufacturing efficiency!

USTOMER comfort...greater output...dependable performance. That's what Johnston wanted for its new Goldentone. And that's what it got - with the help of Centralab's amazing P.E.C. Yes-Ampec made it possible to save space and material by reducing the number of components needed. It cut production time by eliminating many assembling operations. It improved performance by minimizing the chance of broken or loose connections and by resisting changes in temperature and humidity
integral ceramic construction: Each Prinied Electronic Circuit is an integral assembly of CRL Hi-Kap capacitors and resistors closely bonded to a steatite ceramic plate and mutually connected by means of metallic silver paths "printed" on the base plate.
This outstanding hearing aid development, illustrated above, was the result of close cooperation between Centralab and Johnston engincers. Working with your engineers, Centralab may be able to fit its Primled Eteclronic Circuit to your specific needs. Write for full information, or call your nearest Centralab Representative.
${ }^{\text {coor }}$ Centralab ${ }^{\ldots \text { wem }}$
Division of GLOBE-UNION INC., Milwaukee

CORDITIS-FREE CORDS "Belden FOR INDUSTRY
 ON REGISTER specially made for the United States Navy . . . used for precision propulsion measurements. Has 6 inch dial, and indicates up to 100 im pulses per second.
yclotron Specialties Impulse Registers were originally designed to meet the exacting requirements of radio-activity research workers. Their outstanding performance has attained for them acceptance in nearly every scientific field and today, many special types are in use by scientific workers throughout the world.

Cyclotron Specialties Registers are unique in their ability to operate at exceptionally high speeds with complete accuracy and without adjustment or maintenance. They are unexcelled for high speed impulse recording and mechanical operations requiring counting in

SPECIFICATIONS OF IMPULSE REGISTER NO. 401•A
Accurately Registers Up to 60 Impulses Per Second
Main, easily-read sweep dial reads 0 to 100 directly
Sweep dial plus auxiliaries read 0 to 9,999 impulses without extra equipment 4000 ohm D. C. resistance
Operates on as low as 100 milliwatt
Smail, compact, light weight
Burable, rugged construction to withstand unavoidable accidents
Bimensions: $3^{\prime \prime} \times 4^{\prime \prime}$ Weight: 2 lbs.

FLUSH MOUNTED Type with four auxiliary dials making possible direct readings to $999,999 \mathrm{im}$ pulses. Similar in construction to regular Flush Mounting.

Simulating Actual Operating Conditions,

Saves Time On Transmitter And Receiver Tuning

It is no longer necessary to final tune transmitters or receivers aboard aircraft. With the new Artificial Antenna (Model DA200) you can precisely simulate, electrically, any normal aircraft antenna. All this without leaving the test bench. This equipment will accept any transmitter power up to 200 watts -- coaxial fitting provides direct 52 ohm metered load. Sturdily constructed for hard usage, can be mounted in standard rack cabinet or used on bench top.

Keeping Your Radio Beacon Signal "On The Air" Is Simple With

Aerocom's Automatic Transfer

The problem of transmitter failure in radio beacons is very serious. The safety of crew and passengers depends on the continuous operation of this navigational aid.
Aerocom's Automatic Transfer provides the means of placing your standby transmitter "On the Air" should the main transmitter fail for any reason except loss of powerline voltage. It can be set to function either on abnormally low carrier power or abnormally low level of keyed tone identification signals.

A letter or wire from you will bring descriptive literature

CONSULTANTS, DESIGHERS AND MANUFACTURERS OF STANDARD OR SPECIAL ELECTRONIC, METEQROLOGICAL AND COMMUNICATIONS EQUIPMENT.

DEALERS: Equipeletro Ltda., Caixa Postal 1925, Rio de Janeiro, Brasil \star Henry Newman Jr..
Apartado Aereo 138, Barranquilla, Colombia \star Radelec, Reconquista 46, Buenos Aires, Argentina

Heat

 can't Mix up this Mixer-The electric food mixer, now a permanent part of the modern kitchen, comes in for constant, hard use in the preparation of 1,095 meals in the home during one year's time. Frequently, the mixer is run for long periods of time, placing a heavy load on the small electric motor which powers the mixer unit. Insulation at vital points within the control unit must be able to withstand high heat and heavy current loads.

BH Extra Flexible Double Braided Fiberglas Sleeving is used to insulate the resistor lead wire in the motor and control unit of the Model 3-B KitchenAid Mixer made by the Hobart Manufacturing Company.

"High temperature and high voltage is the particular strain imposed on sleeving used to insulate the resistor lead wire in the motor and control unit. The heat resistance feature of BH Extra Flexible Double Braided Fiberglas Sleeving led us to choose this sleeving. Dielectric tests were made and BH Extra Flexible Double Braided Fiberglas Sleeving withstood 2000 volts. The results obtained have been quite satisfactory."

BH Extra Flexible Fiberglas Sleeving stays flexible as string because no hardening varnish or lacguer is used. Will not split or crack when bent. Rocists abrasion and wear. Heat resistant to $1200^{\circ} \mathrm{F}$. Write us today about your insulation problem. food mixer say:

$$
\begin{aligned}
& \text { BH } \\
& \text { SLEEVINGS }
\end{aligned}
$$

'BH Non-Fraying Fiberglas Sleevings are made by an exclusive Bentley, Harris process (U. S. Pat. No. 2393530). "Fiberglas" is Reg. TM of Owens-Corning Fiberglas Corp.
Bentley, Harris Mfg. Co., Dept. E-30, Conshohocken, Pa.
I am interested in BH Non-Fraying Fiberglas Sleeving for \qquad operating at temperatures of \qquad ${ }^{\circ} \mathrm{F}$. at \qquad volts. Send samples so I can see for myself how BH Non-Fraying Fiberglas Sleeving stays flexible as string, will not crack or split when bent.

> NAME
\qquad COMPANY \qquad
Send samples, pamphlet and prices on other BH Products as follows:
\square Cotton-base Sleeving and Tubing
\square Ben-Har Special Treated Fiberglas Tubing
ADDRESS \qquad

RELAYS OF ADAPTA:HLITY

Thousands of specifications are filled by the complete line of Allied Relay;-seven of which are grouped around the Allied emblem ot engineering leadership.
Allied Control engineers pioneered the design of relays from signal circuits to 75 ampere contacts, coils from 12 milliwatts to $31 / 2$ watts to give the smailest mounting area and accessible wiring facilities.
"Type "BOHO" is D.P.D.T. relay sealed with standard octal plug. Contact rating of 5 to 10 amperes and coil capacity of $1 \$ 5 \mathrm{v}$. D. C. at 2.5 watts and 220 volts; 25 and 60 cycles at 4.5 volt-amperes.
"Type "CN" is S.P.S.T. doubie break relay with 50 ampere eontacts and coil ceapacity of 115 v . D.C. at 3.5 watts and 220 volts; 60 cycles at 10.5 voli-amperes.
"Type "BN" is 6 P.D.T. relay with 15 ampere contacts and coil capacity of 115% D.C. at 3.5 watts (not available
in A.C.).
"Type "BG" is S.P.D.T. relay with 2 ampere contacts and coil capacity of 25 v . D.C. at 50 milliwatts (not available in A.C.)
*Type "BO" is D.P.D.T. relay with 15 ampere contacts and coil capacity of 115 v. D.C. at 2.5 watts and 220 volts; 25 and 60 cycles at 4.5 volt-amperes.
*Type "F' is S.P.D.T. with 2 ampere contacts and coil capacity of 85 v. D. C. at 1.5 watts (not available in A.C.).
"Type "SK" from S.P.S.T. up to 4 P.D.T. with 1 ampere contacts and coil capacity of 60 v . D.C. at 750 milliwatts (for 4 P.D.T. relay) not available in A.C.
Allied Control representatives are located throughout the United States. A short note to our home office will give you the name of our mearest representative.

FAST TEMPO

 at Templetone RadioHigh speed and high accuracy producing coils for radios

High-speed production of a great variety of lattice-type coils - with the accuracy that a fine radio receiver requires - is why No. 84 Universal Coil Winders were selected by Templetone Radio Mfg. Corp., New London.

Here, No. 84 machines wind antenna, primary antenna, I.F., R.F., self-tuning, blocking oscillator and other oscillating coils. Calibrated strap-type tensions facilitate handling of even the finest wires, and the "gainer"
mechanism which accurately positions the wire turns is quickly adjusted.

The No. 84 Coil Winder is available to wind $1,2,3$ or 4 coils at once, and one operator can handle two machines, depending on coil specifications. Speeds from 400 to 800 rpm. Counter-control provides instant automatic stop upon completion of coil.

Write for Bulletin 84-L.

UNIVERSAL WINDING COMPANY, P. O. Box 1605 , Providence, R.I.

Grandard Telephones and Cables Limited Radio Division

[^2]

IRYINGTON
 Vamish of Insetalat Company

Irvingion 11, New Jersey

Authorized distributors in: Boltimore; Bluefleld, w. Vo.; Boston; Charlorte; Chicogo; Clevelond; Dallas; Denvere Los Angeles: Milwaukee; Minneapolis; New Hortlord, N. Y.; New Orieans; New York; Philodelphio; Pirtsburgh; Portlond, Ore.; Sh. Louis; San Franciso; Seortle; Mamilion, Ontario, Canada.

NOW AVAILABLE FOR YOUR COMMERCIAL APPLICATIONS

PULSE-FORMING NETWORKS
 OR
 CAPACIT FORMING

Developed by General Electric and proven by the thousands in the war, these compact units are now available for any commercial use. They find application in radar and industrial equipment where the normal capacitor discharge shape is not suitable and where an impulse having a definite energy content and duration is required. The network consists of one or more equal capacitor sections and the same number of inductance coil sections. Both capacitors and coils are hermetically sealed in the same metal container. Networks are treated with top quality mineral oil to provide stability of capacitance characteristics over a wide range of ambient temperatures. Sizes from which you can make your selection range from a $0.5-\mathrm{kw}$ output rating to $4500-\mathrm{kw}$. Write for bulletin GEA-4996.

General Electric's new line of $31 / 2$-inch thin panel instruments will save space and add to the appearance of your panels. They're dust-proof, moisture resistant, and vibrations normally encountered in aircraft and moving vehicles have no adverse effects. Especially designed for better readability, the scale divisions stand out by themselves. Lance-type pointers and new-style numbers mean faster reading. Available in square and round shapes, depth behind the panel is only 0.99 inches. Construction is of the internal-pivot type, with alnico magnets for high torque, good damping, and quick response. Check bulletin GEA-5102.

SIMPLIFY CONTROL WIRING

WiTH THESE TERMINAL BOARDS

Easy-action hinged covers protect control wiring, help give your product a neat appearance. Hook-ups are easy with the hard-gripping connectors. Simply strip the wire end, screw down the connector on the bare wire. Blocks are durable, too, constructed of strong Textolite with reinforced barriers between poles to insure against breakage. Marking strips are reversible-white on one side, black on the other. These terminal boards are available with 4 to 12 poles, 2 inches wide, $11 / 4$ inches high. Send for bulletin GEA-1497C.

This latest addition to G.E.'s line of automatic voltage stabilizers comes in $15-, 25$-, and 50 -va ratings. Output is 115 volts, 60 cycles. The small size of the unit makes it particularly applicable
to shallow-depth installations in many types of equipment. You may have a job for this unit which will give you automatically stabilized output voltage at a low cost. There are no moving parts, no adjustments to make; long service is assured. Check bulletin GEA-3634B for more information about this and other G.E voltage stabilizers.

Switchettes* are designed for applications which require a manually operated electric switch in a limited space. Though small, these switchettes are lightning fast in action and are built to withstand severe service. A wide variety of forms and terminal arrangements makes them particularly useful where special circuit arrangements are necessary. Switchette shown above has one normally open and one normally closed
circuit, transferable when button is depressed. Check bulletin GEA-4888. *Switcherte is General Electric's strade anme for these small snap switches.

Here's a fractional-horsepower fan motor suitable for many uses because of its compact design, low servicing requirements, and extreme quietness. Long, dependable operation is assured by sturdy, totally enclosed construction. These Type KSP unit-bearing motors are of shaded pole type design with low starting torque characteristics especially applicable to fans. A continuous oil circulation system furnishes good lubrication. You can use simple, hubless, low-cost blades with the special mounting arrangement. Write for bulletin GEC-219.

23 Truarc rings permit changeover to centerless grinding savings

Truarc simplifies assembly and disassembly. Truarc rings are precision engineered, may be used over and over again, remain always circular to give a never-failing grip. Wherever you use machined shoulders, nuts, bolts, snap rings, cotter pins-there's a Truarc ring that does a better job of holding parts together. Truarc cuts costs, adds sales advantages. Waldes Truarc engineers will be glad to show how Truarc can help you. Send us your problem.
"The use of Truarc Retaining Rings permits centerless grinding of pins instead of plungegrinding. This eliminates the problem of taper and reduces the required tensional tolerances of these parts," reports Acme Steel Company of Chicago. "Furthermore, use of Truarc rings gives the Steelstrapper smoother lines by eliminating unsightly projections. This results in a more streamlined housing, a definite sales advantage."
Making repairs is much easier too. because

is proving to be the RIGHT plastic material for a growing list of electrical manufacturers. Three grades of Laminated INSUROK you'll want to consider, for sheet stock or parts fabricated in our factory are

GRADES T-800

	PROPERTIES OF T-800			
Thickness	$1 / 15^{\prime \prime}$	$1 / 8^{\prime \prime}$	$5 / 64^{\prime \prime}$	$5 / 64^{\prime \prime}$ Sanded
Volatile	0.30%	0.20%	0.31%	0.33%
Moisture Abs.	0.30%	0.18%	0.28%	0.28%
Expansion				
Center	$.0001^{\prime \prime}$	$.0004^{\prime \prime}$	$.0001^{\prime \prime}$	$.0000^{\prime \prime}$
Edge	$.0000^{\prime \prime}$	$.0002^{\prime \prime}$	$.0001^{\prime \prime}$	$.0001^{\prime \prime}$

Tests at Room Conditions
Tensile

Lengthwise	8,500		
Crosswise	7,300		
Modulus			
Lengthwise	$1,195,000$		
Crosswise	$1,081,000$		
Flexural			
Lengthwise	13,750		
Crosswise	12,300		
Compressive	35,000		
Specitic Gravity	1.30	1.30	
Arc Test			
Maximum		20 sec.	22 sec.
Minimum		10 sec.	12 sec.
Diectic			

Dielectric Strength

Short Time	658	540		
Step by Step	554	433		
Power Factor	.0197	.0199	.0206	.0190
Dielectric Constant	3.90	4.14	3.99	3.91
Loss Factor	.0767	.0823	.0821	.0742

Tests after 96 hrs . at 90% Relative Humidity 104° F.

Power Factor	.0210	.0218	.0218	.0213
Dielectric Constant	3.99	4.31	4.11	3.98
Loss Factor	.0838	.0900	.0896	.0849
Insulation Resistance	167,000	166,000	225,000	330,000

T-640
 T-725

COMPARISON OF	INSUROK	T-640	AND	INSUROK	T-725
Grade	T-640	T.840		T-725	
Thickness	$0.075^{\prime \prime}$	$0.078^{\prime \prime}$	T-725	Sanded	
Volatile	$0.45^{\prime \prime} \%$	0.44%	0.31%	$0.077^{\prime \prime}$	
Moisfure Abs.	0.60%	0.67%	0.35%	0.31%	
Expansion					

Expansion	$0.0002^{\prime \prime}$	$0.0002^{\prime \prime}$	$0.0002^{\prime \prime}$	$0.0002^{\prime \prime}$
Center	$0.0005^{\prime \prime}$	$0.0002^{\prime \prime}$	$0.0002^{\prime \prime}$	$0.0003^{\prime \prime}$
Edge				
Cold Flow	0.18%		0.21%	
$122^{\circ} \mathrm{F}$,	1.23%	2.25%		
$212^{\circ} \mathrm{F}$.	Tests at Room Conditions			
Tensile				

Lensile	18,900	18,850	18,875	20,000
Crosswise	14,825	14,400	14,900	13,450

Modulus

Lengthwise	$1,385,000$	$1,340,000$	$1,395,000$	$1,550,000$
Crosswise	$1,125,000$	$1,250,000$	$1,265,000$	$1,145,000$
Flexural				
Leng:hwise	22,825	22,825	22,225	24,250
Crosswise	18,450	17,950	19,350	17,125

Dielectric Strength				
Short Time	680	664	715	692
Step by Step	604	598	653	641

Axc Test

Maximum	78 sec.	138 sec.	86 sec.	135 sec.
Minimum	14 sec.	92 sec.	16 sec.	128 sec.
Power factor	0.0323	0.0307	0.0273	0.0278
Dielectric Constant	4.78	4.78	4.32	4.42
Loss Factor	0.154	0.147	0.118	0.123

Tests affer 96 hrs at 90% Relative Humidify 104° F.

Power Facfor	0.0394	0.0362	0.0301	0.0290
Dielectric Constant	5.08	4.88	4.49	4.66
Loss Factor	0.199	0.177	0.135	0.135
Insulation Resistance	$\mathbf{1 7 , 5 0 0}$	25,500	117,800	95,400

Insulation resistance tested according to A.S.T.M. method D 257-46 using tapered pins.

The RICHARDSON COMPANY
 GENERAL OFFICES: LOCKLAND. OHIO FOUNDED IN 1858
 Sales Headquarters: MELROSE PARK, ILLINOIS

ONE OF THESE 5 WILL BEST FILL YOUR V.O.M. REQUIRHMENTS

MODEL 630. Outstanding Features: (1) The new Triplett Molded Selector Switch with contacts fully enclosed ... (2) Has Unit Construction with Resistor Shunts, Rectifier Batteries in molded base . . (3) Provides direct connections without n mbing no chance for shorts
(4) Big easily read
$51 / 2^{\prime \prime}$ Red • Dot Lifetime Guaranteed Meter.

TECH DATA

D.C. VOLTS: 0.3.12-60.300-1200-6000, at 20,000 Ohms/Volt
D.C. VOLIS: $0.3 \cdot 12-60=00-1200-600$ at 5000 Ohms/Volt
A.C. MICROAMPERS: C. 60 , at 250 Millivolts
D.C. MILLIAMPERES: O- 2-12-120, at 250 Millivolts
D.C. AMPERES: $0-12$, at 250 Millivolts

OHMS: $0-1000 \cdot 10,000 ; 4$ Ohms at center scale on 1000 scale; 44 Ohms center scale on 10,000 zange
MEGOHMS: 0.1-100 ($4400-440,000$ at center scale).
DECIBELS: -30 to $-4,-16,-30,-44,-56,-70$
MODEL 630. ... U.S.A. Dealer net price... $\$ 37.50$ Leather Cérrying Case, \$5.75. . Adapter Prcbe for TV and High Voltage Extra.

MODEL $666 . \mathrm{HH}$. This is a pocket-size tester that is a marvel of compactness and provides a complete miniature laboratory for D.C. and A.C. voltages, Direct Current and Resistance analyses. Equally at zome in the laboratory, on the work bench or in the field... iss versatility has labeled it the tester with a thousand uses... housed in molded case

TECH DATA

D.C. VOLTS: 0-10-50-25.C.IO00-5000, at 1,000 Ohms/Volt A.C. VOLTS: $0.10-50.250-1000.5000$, at $1,000 \mathrm{Ohms} / \mathrm{Vol}$ D.C. MILLIAMPEFES: $0.10 .100-500$, at 250 Millivolts

OHMS: 0-2,000-400,000, (12-2400 at center seale)
MODEL 666-HH. . . U.S.A. Dealer Net Price. . . . $\$ 22.00$ Leather Carrying Case, $\$ 4.75$.

MODEL 625.NA. This is the widest range laboratory-type instrument with long $5.6^{\prime \prime}$ mirrored scale to reduce parallax. Special film resisto:s provide greater stability on all ranges. Completely insulatec molded case. Built by Triplett over a long period of time, it has thoroughly proved itself in laboratories all over the warld.

TECH DATA

SIX D.C. VOLTS: 0-1.25-5-25-125-500-2500, at $20,000 \mathrm{Ohms} / \mathrm{Volt}$
SIX D.C. VOLTS $0-2.510-50-250-1000-5000$, at 10,00) $0 \mathrm{hms} / \mathrm{Volt}$ SIX A. C. VOLTS 0-2.5.10-50-250-1000-5000, at $10,0000 \mathrm{hms} /$ Volt D.C. MICROAMPERES 0 - 50 , at 250 Millivolits D.C. MILLIAMPERES: $\mathbf{c}-1-10$-100-1000, at 250 Millivol-s D.C. AMPERES: 1 - 10 at 250 Millivolts

OHMS: 0-2000-200,000, (12-1200 at center scale)
MEGOHMS: 0.40 , (240,000 at center scale)
SIX DECIBELS RANGES: $-30+30+15,+29+43,+55+69$ (Reference level "O" DB at 1.73 V . on $500 . \mathrm{Ohm}_{\mathrm{h}}$ line.) Six Output on A.C. Volts ranges.
MODEL 625-NA. . . U.S.A. Dealer Net Price . . . $\$ 45.00$ Carrying Case, $\$ 5.50$. Accessories available on special order for extending ranges.

MODEL 2405-A. This instrument combines ultra sensitivity with a large $53 / 4$ " scale meter and is housed in a rugged metal case. . It is furnished with hinged cover so that it can be used for service bench work or for portable field service. Gives A.C. Amperes readings to 10 Amps.

TECH DATA

D.C. VOLTS: $0-10-50 \cdot 250-500 \cdot 1000$, at $20,000 \mathrm{Ohms} /$ Volt
D. AMPERES: 0.10 at 250 Millivolts
D.C. MILLIAMPERES: $0-1-10-50-250$, at 250 Millivolts
D.C. MICROA MPERES: $0-50$, at 250 Millivolts
A.C. VOLTS: O-10.50-250-500-1000 at 1000 Ohms $/ V$ olt
A.C. AMPERES: $0.0 .5-1 \cdot 5 \cdot 10$, at 1 Volt-Ampere

OHM.MEGOHMS: $0.4000-40,000$ ohms- $0.4-40$ megohms (sell-contained
batteries)
DECIBELS: -10 to $+15,+29,+43,+49,+55$. (Relerence level " 0 " DB at 173 V . on 500 -ohm line.)
CONDENSER TEST: Capacity check of paper condensers is possible by following data in instruction book.
MODEL 2405-A. . . . U.S.A. Dealer Net Price $\$ 59.75$

MODEL 2451. Electronic Volt-Ohm-Mil-Ammeter ... is easy to use in complicated testing . . A must in F.M. and TV work in any sensitive circuit where low current drain is a factor

TECH DATA
D.C.A.C.-A.F. VOLTS: 0.2.5.10-50-250-500.1000 R.F. VOLTS: 0-2.5-10.50
D.C. MILLIAMPERES: 0-2.5 10.50-250-500-1000 OHMS O-1K-10K-100K
MEGOHMS: $0.1 \cdot 10-100$
INPUT IMPEDANCE: 11 Megohms on D.C. Volts. 4.8 Megohms on A.C.-R.F. Volts

MODEL 2451. U.S.A. Dealer Net Price \$76.50 External high-voltage probe available on special order. See the Triplett V.O.M. line at your local Radio Parts Distributor or write

MIGHTY Midgt!

Paxilis sull seie haxdles 30 amps!
 ll's the new AOMAKE No. 1110 RELAY

Thirty amps. is a big load, but the new Adlake No. 1110 Relay is rugged enough to handle it. It is small enough to fit in one hand, yet it makes and breaks 30 amps . easily, and with low operating current.

Like all Adlake Relays, No. 1110 is hermetically sealed against dust, dirt, moisture and oxidation; mercury-to-mercury contact prevents burning, pitting and sticking; it's silent and chatterless, absolutely safe and requires no maintenance. And it's cushioned against impact and vibration.

Both contact and coil leads are fastened to the terminal posts. Block is equipped with compression type terminals to simplify installation.

Write today for free, illustrated Adlake Relay folder, giving full details on No. 1107 and other new Adlake Relays. Address: The Adams \& Westlake Company, 1107 N. Michigan, Elkhart, Indiana.

wow Aldms \& Wesilake conemer

Established 1857 - ELKHART, INDIANA - New York - Chicago

Manufacturers of Adlake Hermetically Sealed Mercury Relays for Timing, Load and Control Circuits

The 5655 hos three sections! (1) Image, (2) Scanning; (3) Multiplier, The image section contains a semi-transparent pho ocathode on the inside of the face plate; and on this the scene televised is focused by on. optical lens'system. This causes the photocathode to emit a stream of electrons. 1rom each illumi. nated ared (proportiznct to the fight striking the area), and these are focused on one side of the "target" where they. pro. duce a charge pattern. The opposite side of the torget is scanned by a low-veiscity electron beam from an electron gui in the scanning section. Electrons from the gun are turned bock at the target forming a return beam which has been amplitude modulated by depostion of the electrons at the torget, in accord with the charge pattern whose more positive areas correspond to highliehts of the televised scene. In the multiolier section, the retirn beam is directed to a 5 -stoge omplifier (using secondary em ssion' to amplify electron beam signals). and here the modulated beami is amplified ot least 300 timesto drive the first stage of the video amplifer.

- You don't have to be an expert in higher mathematics to recognize the thorough dependability, accessibility and performance stability of all Du Mont Television Broadcast Equipment. It's there-you can see it in every component, bend of the wire, and soldered joint.

That is the reason why Television Broadcasters, guided by the experience of others, compare design plus workmanship, and then buy Du Mont, the "First With the Finest in Television."

Which simply adds up to this: Before you purchase your telecasting equipment, follow the lead of others-visit Du Mont-examine Du Mont-compare performance - and draw your own conclusions.

- allen b. du mont laboratories,

OIIV INII Friat wite the Thuat in Televicion

ALLEN B. DU MONT LABORATORIES, INC. - TELEVISION EOUIPMENT DIVISION, 42 HARDING AVE., CLIFTON, N. J. - DU MONT NETWORK AND STATION WABD, $5 I 5$ MADISON AVE. NEW YORK 22, N. Y. - DU MONT'S JOHN WANAMAKER TELEVISION STUDIOS, WANAMAKER PLACE, NEW YORK 3, N. Y. - STATION WTTG, WASHINGTON, D. C. - HOME OFFICES AND PLANTS. PASSAIC. N. J.

PRD is pleased to announce a new line of precision cavity type frequency meters for the microwave spectrum. Units now available cover in standard waveguide sizes the important region from 5650 to 10,000 megacycles per second, and offer for the first time such features as linear dials which read directly in frequency, hermetic sealing to eliminate humidity effects, and the use of low temperature coefficient alloys to provide maximum accuracy over a wide range of temperature.

All units are calibrated by means of crystal controlled frequency standards. The use of precision miniature ball bearings and special tem-perature-stable greases assures retention of inherently high accuracy characteristics over long periods. Write to Dept. E-8 for an illustrated catalog of the complete PRD line of microwave test equipment.

202 TILLARY ST. BROOKLYN 1, N, Y.

\author{

- DIRECT READING DIAL
 - HIGH Q, TE 011 MODE CAVITY
 - linear drive
 - TEMPERATURE
 COMPENSATION
 \section*{COUPLING

 - HERMETIC SEALING

 REACTION OR

 TRANSMISSION}
}

are

Silicone-the amazing new syntheticmade headlines when General Electric brought it out during the war. It's news again today for G.E. has now made Silicone bushings and gaskets a standard feature of all its specialty capacitors up through 5000 volts.

This means that your new G-E capacitor is sealed positively, permanently -for maximum life. For Silicone seals by compression alone, without the use of contaminating adhesives. It will never shrink, loosen or pull away it remains elastic at any operating temperature a capacitor will ever meet. Moreover, it is impervious to oils, alkalies and acids, and its dielectric strength is permanently high.

This exclusive G-E feature-with the use of highest grade materials, with strictest quality control and individual testingmake General Electric capacitors finer and more dependable than ever before. Apparatus Dept., General Electric Company, Schenectady 5, N. Y.

Silicone bushings used with capacitors $660-\mathrm{va} \mathrm{cc}$, or $1500-\mathrm{vd}-\mathrm{c}$ and lower.

Silicone bushings and plastic cups used with capacitors 660-v a-c, or $1500-\mathrm{r} \mathrm{d}-\mathrm{c}$ and lower.

Silicone gaskets and porcelain stand-offs used with capacitors rated 2500-v to 5000-v d-c.

Wherever There's a CORE and COIL Choose
 |ERRANTI Power and T||l| Audio Transformers Chokes • Filters

- TYenanti E®lectic, Inc.

30-A Rockefeller Plaza - New York 20, N. Y.

Reeves electronic"BRA/N"uses Sylvania Germanium Duo-Diodes in vital-to-accuracy circuit

T(HE Reeves Electronic Analog Computer (REAC), which compresses thousands of man-hours of calculations into a few hours' time, is one of the first office-size differential analyzers to be developed for industrial laboratory use. It incorporates an extremely sensitive system for automatic balancing of its 20 dc computing amplifiers, to offset any possible drift.

Unbalanced output from an amplifier operates a servo unit driving 20 magnetic clutches, which in turn drive nulling potentiometers till amplifier output is balanced within a few millivolts. Circuit shown in diagram then acts to index stepping relay to the next amplifier.

Two Sylvania 1N35 Germanium Duo-Diodes are used by Reeves Instrument Corporation, New York, in this accuracy-controlling circuit, because of their ability to handle very low voltages and pass an absolute minimum of ac signal.

Light, compact Sylvania Germanium Diodes and DuoDiodes, which simplify wiring and need no heater supplies, are being used constantly by more manufacturers to improve performance, or to reduce cost, size and weight. Why not put them to work in your products?

GET THE FACTS ON TV USES TOO!

SYIVANIA ELECTRIC

Blectronics Division, 500 Fifth Arenic,
New. York 18, N. Y.
ELECTRONIC DEVICES; RADIO TUBES; CATHODE RAY TUEES; PHOTOLAMPS;
FLUORESCENT LAMPS,-FIXTURES, WIRINE DEVCES; ELECTRIC LIEHT BULBS

Blaw-Knox wrom Towers

PAYS ... Ha
 for Hi-Quality T. V. Performance

RCA Victor telcvision receiver Table Model 8 T241 uses many Hi-Q capacitors for Uniform, Dependable reception.

- Not only RCA Victor, but practically every manufacturer of television sets looks to Hi-Q Electrical Reactance Corporation for components of Depeudable quality ...Precision tested and Uniform capacity.

Today's tremendous demand for high quality $\mathbf{H i} \mathbf{- Q}$ components is being met at three (3) modern plants equipped with the most modern machines helping supply the needs of the fast growing electronics industry.

Our competent engineering staff is available for consultation with your engineers in the design of newly developed circuits.

Booth No. 54 at I. R. E.

A FEW OF THE COMPANIES USING Hi-Q ELECTRONIC COMPONENTS
Num

Westinghouse
Spaicone CROStHY

BendixRadio
Tele.tone
MITIT Mamiral Mackard-Bell I
Hi-Q components are specificed by over 200 leading manufacturers. space does not permit
listing all of our valued customers.

BETTER 4 WAYS
Phzcistor
Producl. Accuracy guoranteed from row moterial to finished UNHFORMITY production through continuous monufocturing is mointoined over entire DEPENDABILMY. Interpor sofisfoction . . . Yeor offer yeartor in terms of your custo Our Hi-Q makes your prod year of frouble-free performoners MNNATUREATON
business make possible spollest BIG VALUE
your production costs space saving foctors wonents in the increose your profits.

Electrical Reactance Corp. FRANKLINVILLE, N. Y.

Plants: FRANKLINVILLE, N. Y.-JESSUP, PA.-MYRTLE BEACH, S. C.
Sales Offices: NEW YORK, PHILADEIPHIA, DETROIT, CHICAGO, LOS ANGELES
 Providence, Rhode Island.

"Give us the tools . . ."

What Are Your Chances If There Are No Profits?

Since the November 2 election there has been a dazzling variety of plans to have the government do more and more things and spend more and more money. But there is almost no variety in the plans which are suggested to raise the money.
"Pay for it by taxing profits," is the standard refrain. Slap on an "excess" profits tax. Boost the corporations' income tax rate.

Well - why not? Haven't the corporations been making so much money that a big chunk of it can be turned over to the government spenders without hurting anybody?

The answer is no!
How high profits should be can be debated endlessly. Some people claim that 1948 corporation profits, which will amount to about $\$ 20$ billion, are too high. They emphasize the fact that profits are larger in relation to investment than they were a few years ago. Other people think profits are low. They stress the fact that profits are not much larger in relation to sales than they have been historically. Both sides agree that in some individual cases profits have been too high, as in others they have been too low or non-existent.

But if we cut the total volume of profits drastically, we shall do so at our national peril.

There is no room for debate about that. For we shall choke off the crucially important job of building new plants and equipment for our industries. Squeeze hard enough, and America will go the
way of Britain - down the long and painful skids of industrial decline. Widespread unemployment, especially among our industrial workers who produce new plants and equipment, will mark the dreary way. Here is a fact which the President, the Congress, the C.I.O., and all of us have a real reason to remember:

Almost two-thirds of all profits today are going to rebuild and improve plants and equipment.

More than $\$ 13$ billion of this year's profits are being plowed back. They are going - as a large proportion of profits have always gone - to buy for workers better tools to work with, better surroundings in which to work. They are making possible better products, and more of them, for all of u.

The figures below show how companies have put more and more profit-dollars and a larger share of their profits to work in the business:

YEAR	PROFITS REINVESTED	\% OF TOTAL PROFITS
1929	\$2.6 billion	31\%
1939	1.2 "	24\%
1943	5.9	57%
1944	5.2	53%
1945	4.2 "	47\%
1946	6.9 "	55\%
1947	11.2 "	62\%
1948 est.	13.0 "	65\%

The record shows that each of us is the real beneficiary of this plowing back of profits.

Every American has benefited from these profits. Each dollar that business has put into its plants and equipment in the last thirty years has increased our yearly production by 35 cents.

This re-investment of profits has helped make possible a 75% increase in living standards since 1919.

It has helped increase wages from an average 48 cents an hour in 1919 to $\$ 1.36$ today. Allowing for higher prices, that increase means that an hour's work today will buy twice as much as it did thirty years ago.

Why must business retain these billions of profits to improve its plants and equipment? Why must it plow back more and more? The reason is that business already is caught in a tax squeeze.

Federal taxes alone take at least thirty-eight of each one hundred dollars a company earns. Then, if the company pays out to its stockholders any part of what is left as dividends, the federal personal income taxes of the stockholders may take up to 77% of those dividends. Under these conditions, so few people are willing to invest in industry that the stock market is stagnant. Companies can not raise in that market the money they need for improvements.

The result: business must rely more and more on plowed-back profits to pay for new plants and equipment.

We know that everywhere in industry new and better ways of producing goods are standing ready for use. The previous editorial in this series mentioned some of them. We know, too, that depression and war put our industries far behind schedule - as much as $\$ 100$ billion behind - in getting the new tools they should have had to keep themselves in first-class shape. McGraw-Hill is now completing a survey of industry that will measure these needs. The results will be published in this editorial series. We know already that in 1949 alone industry will need $\$ 18$ billion or more for this purpose.

And all but a small fraction of that sum must come from profits.
Our prosperity, our strength as a nation, our hopes for better living depend on our continuing to generate and to plow back a large volume of profits.

For that reason we should not thoughtlessly follow these people who propose to pay for any and all new government activities by saying simply, "Soak the corporations." There is no need to follow them. There are other ways of obtaining necessary funds.

First and foremost should be economy within the government itself. If its citizens must pay still higher taxes, then surely government should exercise rigid self-restraint, cutting out all but the most essential activities and expenses.

After economy should come consideration of a broader federal tax base.

If these and other methods of raising money are inadequate and if taxes must take a bigger bite from business profits, two facts are clear. We should not adopt an "excess" profits tax with all of its complications and all of its corrupting effect on business. A moderate increase in the regular income tax on corporations is much less dangerous. But even such an increase, if necessary, should be accompanied by special allowances for expansion and depreciation that will encourage companies to continue spending their earnings for new plant and equipment. We all have a stake in that.

At this critical juncture in our history profits have a new and vastly more important role than they have ever had. In unprecedented degree they are the drive behind our present prosperity and the key to a better, stronger future.

Give profits the axe and the blow does not stop there.

It cuts into the employment, the prosperity and the strength of our nation.

Everyone of us has a stake in how the President and Congress handle taxes on profits - and now is the time to remind them of that stake.

President, McGraw-Hill Publishing Company, Inc.

- Here's another job made simple by Indianaz permanent magnets-they hold tension leaves against wear plates to provide even winding tension on yarn-winding machines. And here are the direct benefits: non-multiplying tension; fewer broken filaments; less end breakage, cut ends, or loops at cones; less attention to machines; and a better product af less cost.

"PACKAGED ENERGY' MAY BE YOUR ANSWER, TOO...

Indiana permanent magnets provide constant, predetermined force for many needs. In magnetic chucks and separators for holding and lifting...
in snap switches and pressure devices for replacing springs . . . in magnetic drives for transferring motion through seals without mechanical connections . . . the list is practically endless.
how and where to use permanent magnets . . .
Write for free Book No. 4E-2-the new reference manual by Indiana. It shows how permanent magnets save space, weight, and money; lists applications; gives materials and design data. If you have an application problem, let's get our engineers together. The experience of forty years and more than 30,000 successful designs is at your call. Write today. PERHNEIT THE INDIANA STEEL PRODUCTS COMPANY

BUSINESS BRIEFS

By W. W. MacDONALD

TV Antennas offered to the public break down by types as follows:
> 27% dipole(s) with reflector (s) folded dipole(s) with reflector (s) dipole
> folded dipole
> 15 miscellaneous types

About 33 percent of the types listed use a plurality of dipoles and reflectors. Elements average 3 , ranging from 1 to 12 .

List prices average $\$ 23.82$, with the low at $\$ 1.75$ and the high $\$ 125$.

Nominal impedance of types offered for sale is:
$55 \% 300$ ohms
$37 \% 72$
$8 \quad$ other

And still they come!
Outdoor Tele Antennas, like other vhf types, are subject to null or "picket-fence" effects. Move them a foot or so to the left or right (and sometimes down rather than up) ai. aignals often come through clearer or with more punch. Such skywires do not always work best lashed to a convenient chimney.
This leads us to believe that one or two new arrays that permit moderate lateral movement of elements should do well. Another design in the offing, by the way, appears to be aimed at maximum pickup from each of several local stations rather than compromise coverage of the whole 12 channels.

Indoor Tele Antennas have several makers of the outdoor variety worried. We doubt if any qualified technician really thinks that they will do as good a job, except in a very few unusual cases. The devil of it is that many dealers will take the easy way out if at all possible, as demonstrated in the radio business. So, while we fully underwrite any and all efforts to keep outside skywires in front, at least at this stage of receiver and transmitter development, it is not a crusade to which we would care to devote our declining years.

Speaking of Antennas, we hear that 10 percent of the tele anten-
nas installed in connection with one particular set sold in the metropolitan New York City area are right in the room. Every week sees a new one, put out by another manufacturer, enter the market.

C-R Tube Mortality seems to be greatest during the first few days of use in television sets. One reason is the shipment of tubes in the neck-down position, which funnels internal gunk into the electron gun. Holding the bottles face down and shaking gently before use reduces the trouble to some extent.

Zenith, it seems, has found a way to put a square peg in a round hole.

Many Nuclear Physicists like to "roll their own" electronic apparatus because (1) they don't want outsiders to have any part of confidential information, (2) they believe their problems are too highly specialized for others to understand and (3) because they think they know how to build such gear as well as circuit specialists.

Regarding the first point: The government has cleared many consultants and industrial laboratories for such projects, and these people know how to keep their mouths closed for either military or commercial reasons. The second: If a physicist can explain it a good electronic engineer can understand it. The third: Some home-made apparatus we have heard about makes this presumption subject to question.

Purchase of electric motors, generators, adjustable-speed drives and controls by the nation's key industries in 1949 will match or exceed the previous year, according to 58 district managers and field sales engineers of Reliance Electric.

This sounds plausible to us because, although new plant con-

THESE TUBES...

THE 4-65A . . . is the smallest of the radiation cooled Eimac tetrodes, Its ability to produce relatively high-power at all frequencies up to 200-Mc. and over a wide voltage range offers considerable advantage to the end user. For instance the same tubes may be used in the final stage of an operator's mobile and fixed station. Two tubes, in the mobile unit operating on 600 plate volts will handle 150 watts input, while two other 4-65A's in the fixed station will provide a half kilowatt output on 3000 volts

THE 4-125A . . . is the mainstay of present day communication. These highly dependable tetrodes have been proven in years of service and thousands of applications. Two tubes are capable of handling 1000 watts input (in class-C telegraphy or FM telephony) with less than 5 watts of grid driving power. In AM service two tubes high-level modulated will provide 600 watts output. For AM broadcast they carry an FCC rating of 125 watts per tube.

THE 4X150A ... is highly versatile and extremely small ($21 / 2$ inches high). It is an ex-
ternal anode tetrode capable of operating above $950-\mathrm{Mc}$. As much as 140 watts of useful output can be obtained at $500-\mathrm{Mc}$. Below $165-\mathrm{Mc}$. the output can be increased to 195 watts. It is ideally suited as a wide-band amplifier for television and for harmonic or conventional RF amplification.

THE 4×500 A . . is a top tube for high power at high frequencies and is especially suited to TV and FM. It is a small external anode tetrode, rated at 500 watts of plate dissipation The low driving power requirement presents obvious advantages to the equipment designer Two tubes in a push-pull or parallel circuit provide over $11 / 2 \mathrm{kw}$ of useful output power with less than 25 watts of driving power at 108-Mc.

THE 4-250A . . . is a power tetrode with a plate dissipation rating of 250 watts and stability characteristics familiar to the 4-125A. Rugged compact construction together with low plate-grid capacitance, allows simplification of the associated circuits and the driver stage. As audio amplifiers, 2 tubes will provide 500 watts power output with zero drive.

FOR COMPLETE DATA ON ANY EIMAC TUBE TYPE WRITE TO:

EITEL - MCCULIOUGH, INC.

210 San Mateo Are., San Bruno, California
Export Agents: Frazap \& Hansen, 301 Clay 5t., San Francisco, California

"This National Vulcanized

Fibre Part

solved our problem*-
assured us a product which performed

*Required
A material light in weight, resistant to wear, with good dielectric strength. ready machinability. National Vulcanized Fibre with all these qualities, plus-was the perfect answer.

> In your development of efficient, economical products, it pays to investigate

NATIONAI EIBRE

A tough, horn-like material with high dielectric and mechanical strength. Excellent machinability and forming qualities, great resistance to wear and abrasion, long life, light weight. Sheets, Rods, Tubes, Special Shapes.

About one-half the weight of aluminum, possesses an unusual combination of proper-lies-a good electrical insulator, great mechanical strength, high resistance to moisture; realy machimability. Sheets, Rods, Tuben, Special Shapes.

The first fish paper developed for electrical insulation. Strong, smooth, flexible, with excellent formang quatities. High dielectric strength. Sheets, Rolls, Coils.

PEERLESS INSULATION

struction will probably decline, the equipping of existing plants with more modern machinery seems essential if sales are to be maintained in the face of labor and material costs already pushing prices to a point near infinite customer resistance.

Industrial Business is steadily increasing on the West Coast and accounting for more and more of the electronics dollar. According to Sam Roth of United Catalog it accounts for about 30 percent of distributor sales in coastal cities at the moment, and 50 percent in the Los Angeles area.

Texas Baptists are planning to install 170 ten-watt f-m stations, having a range of about five miles and operating in the 88 to $92-\mathrm{mc}$ educational band, if the FCC gives the nod. We can think of no good reason why Washington wouldn't come through with the necessary approvals, and at least one good reason why they will. So the use of this part of the spectrum by churches should increase sharply in the coming year.

Dog's Life is that of the Montana coyote. The government is now hunting him by plane and jeep, with the aid of uhf radio. The plane does the spotting and the jeep does the shooting.

Railroad Communication: 45 railroads now employ electronic communications equipment in yards and terminals, owning 879 portable and mobile stations (93 percent radio, 7 percent inductive) and 118 fixed stations (82 percent radio and 18 percent inductive). Some 22 railroads have installed equipment for routine communication with trains, 55 percent radio and 45 percent inductive.

Radiophones for passenger use, not included in the above figures, are being installed so fast that any tabulation we could make at this time would be obsolete before this issue of Electronics mailed.

Industry Mobilization Plans: Still stalemated. Looks like we might have peacetime procurement
channeled to "leader" companies but with contingent contracts attached, a straddle embracing industry and military suggestions.

Conventional Methods of making electronic components better, smaller, lighter, cheaper or faster are of interest to the military, but what the current preparedness effort really needs is more bluesky thinking along radical lines, according to Wright Field's Floyd Wenger.

Floyd, who spent many years as an engineer within the industry, says for example, that new core materials materially improve the performance of transformers but how about some one coming up with a magnetic liquid that can be poured into a coil to eliminate the fussy solid core entirely.

You pick it up from there.

More And More subminiature tubes are going into military gear, particularly the airborne stuff. In many instances the tubes are operated far over rating but do their job ok because the application does not require long life. In others forced-air cooling is employed, and in still others complete circuits are hermetically sealed and freon gas is substituted for air.

Electron-Wave Tubes in experimental use are capable of turning out appreciable radio-frequency power in the millimeter-wavelength range. This is down near the infrared spectrum, where point-to-point communications are achieved with a maximum of secrecy, so it should be of considerable interest to the military.

Rumor Has It that one of the big Universities thinks it may soon be able to predict whether or not seeds will germinate, using an electronic technique. More about this later if current experiments pan out.

Record Makers, Note: Keep this up, boys, and we'll have to design a phonograph turntable with stepless universal speed control, triplicate triggers and quadriplicate paddle wheels.

Use a Switch Worthy of Your Design

There is no

 substitute for MALLORY Quality Switches!Mallory RS switches are designed to give you everything you want-maximum efficient service, substantial construction, precision manufacture. Mallory switches are constructed with cam and ball type index assembly, or with positive indexing hill-and-valley double roller type index assembly. Note these many features of the Mallory RS series which make their dependability and quality known wherever switches are used. These advantages are of extreme importance in television and high-frequency applications where stability is essential.

- Insulation of high-grade, low-loss laminated phenolic.
- Terminals and contacts of special Mallory spring alloy, heavily silverplated to insure long life at low contact resistance.
- Terminals held securely by exclusive Mallory two-point fasteningheavy staples prevent loosening or twisting.
- Double wiping action on contacts with an inherent flexing featureinsures good electrical contact with the rotor shoes thoughout rotation.
- Six rotor supports on the stator-insure accurate alignment.
- Brass rotor shoes, heavily silver-plated-insure low contact resistance.
- All shoes held flat and securely to phenolic rotor by rivets-prevents stubbing-insures smooth rotation-minimum of noise in critical circuits.

The Mallory RS series consists of RS-30, RS-40, RS-50, RSA-50, and RSA-60.

ENGINEERING DATA SHEETS

Send for the Mallory Engineer. ing Data Shects on the RS series. They contain complete specifications for available circuit combinations with respective terminal locations, dimensional drawings - everything the engineer needs.

SPECIFICATION SHEETS

Specification sheets for all RS switches have also been prepared. These sheets are printed on thin paper to permit blueprinting. The sectional drawings indicate standard and optional dimensions-make it easy for you to order production samples built to your requirements.

Precision Electronic Parts-Switches, Controls, Resistors

MALLORY

P. R. MALLORY \& CO., Inc., INDIANAPOLIS 6, INDIANA

SERVING INDUSTRY WITH

Capacitors	Rectifiers
Contacts.	Switches
Controls	Vibrators

CROSS

- 10-INCH . . . Several publications, including Electronics, have commented recently on the size of the television picture which can be accommodated on a 10 -inch picture tube. Simple geometry proves that the largest image of 4 -by- 3 aspect ratio that can be placed within a 10 -inch circle without cutting the corners covers 48 square inches. Further, such an image is the only one which takes full advantage of the screen size without wasting any of the transmitted information. Rounding the corners is routine practice in all but projection receivers. It permits a larger picture with little loss of the picture area. The most common practice produces a 52 -squareinch image.

The trend in recent months has been to use more and more of the tube face, at the expense of cutting off more of the corners. One practice is to make the left and right edges of the scanning pattern just tangent to the edge of the tube; the most extreme is to make the top and bottom edges of the scanned rectangle touch the top and bottom edges of the tube face. The latter approach fills the entire face of the tube and achieves a picture area of something over 80 square inches on a 10 -inch tube.
The choice between these pictures will, in the last analysis, be made by the public, and is perhaps not the concern of the engineer. But one result of corner cutting is of great importance to the economy of the television system. In receivers which use the full face of the tube, assuming no scanning distortion, about 40 percent of the image picked up by the television camera is not visible to the audience. If, as a result, the producers of programs take care not to occupy that invisible region with program material, the channel space occupied in scanning the unused area is then purely wasted. Since spectrum economy is one of the principal problems in television today, it would appear that coordination
among receiver manufacturers is needed to decide the best balance between the purely rectangular and the purely circular form. Such coordination is forced on the broadcasters by the FCC; it is rightly voluntary on the part of the set makers. But it is equally pssential to the public interest in either case.

- JIM . . . Our new assistant editor, James D. Fahnestock, whose name appears on the masthead for the first time this month, graduated from Purdue in electrical engineering last August. Like many a recent graduate, Jim's college career was interrupted by a tour of duty in the Army, from 1943 to 1946. His military career started with radar and radio maintenance. But the snafu got him and he was transferred to the infantry as a rifleman and fought in the Battle of the Bulge. Later he was personnel sergeant major of the Second Armored Division headquarters. Now, his degree in his pocket, he's back at radio and radar, with a dash of industrial electronics for flavor. Jim is an active ham, has just finished wiring a 30 -tube television chassis. As for rifles, he's forgotten the whole thing.

F-M vs A-M ... On p 84 of this issue is published the first part of an experimental study of the relative merits of narrow-band $f-m$ and a-m for naval communications. This is a "hot" subject, one on which we sought competent outside advice before publication. The advice was to publish the article and invite comment, which is hereby solicited. We feel everyone concerned with narrow-band f-m, or with any kind of f-m outside the field of broadcasting, will find this article high on his "must read" list. We realize that feelings may run high, and we stand ready to air both sides of the argument. Count ten and then write or telephone.

SYNCHRONIZATION

 of

Block diagram of synchronization system as applied to NBC stations in New York and Washington

Bridged dipole antenna, having 20-to-1 front-to-back ratio, used to pick up Washington station ap Princeton, N. J. Obliquely attached rods broaden the antenna, make it suitable for use on all vhf channels

\boldsymbol{A}^{τ}T THE ENGINEERING CONFERENCE held before the FCC in December, R. D. Kell of the RCA Laboratories at Princeton, N. J. described for the first time his system of synchronizing television stations. This system promises to reduce materially severe inter-station interference which led to the current freeze on applications for television station permits.

The system controls the phase of the carrier of a television station so that it follows accurately any changes in the phase of another station operating on the same channel. The carrier beat between the two stations is thus reduced to zero frequency, and the troublesome horizontal black-and-white bars ("venetian blind" interference) noticed at the fringes of the service areas are removed. The picture scanningrates of the stations need not be synchronized, since interference between the picture content of the two signals is some 15 to 20 db less noticeable than the carrier-beat interference.

Two syschronized stations operating on the same channel may give interference-free service when separated by approximately 150 miles, according to Mr. Kell's testimony, whereas a spacing of about 230 miles would be required for the same grade of service if synchronization were not used. The advantage of the system in permitting more stations to occupy the .congested channels of the vhf band is obvious, so much so that the Joint Technical Advisory Committee (JTAC), commenting on the system at the conference, advised the FCC against proceeding with any allocation which precluded the use of synchronized carriers.

System developed by R. D. Kell holds r-f carriers of interfering stations in rigid phase relationship to eliminate "venetian blind" interference, thus permitting closer geographical spacing of stations and easing congestion of video spectrum

Development work on the synchronization system was begun shortly after the FCC announced that no further action would be taken on the 310 applications for television station construction permits then pending until the problem of interference had been explored. The cause of this action was the fact that, as some new television station took the air, viewers in fringe areas which previously had had some degree of service on a particular channel found that the new station caused such interference that the channel became virtually useless.

Cause of Interference

The interference was caused by tropospheric propagation of the interfering signal. At times the interference became so severe that service radius of one station was reduced to 20 miles when the interfering station was 150 miles away (the minimum separation specified in the allocation at that time). One possible remedy was to put the stations further apart, say 250 miles, but the additional separation would require that many stations be eliminated from the allocation plan.

Synchronization Approach

When two carriers that are not synchronized come closer in frequency, the number of interference bars decreases until the carrier beat reaches 60 cps (the field-scanning frequency). At this frequency, one white and one black bar appear. As the beat frequency falls below 60 cps, the bars disappear, but the brightness of the picture varies as a whole at a rate equal to the beat frequency. The flicker becomes more evident and annoying as the
beat frequency approaches zero. But when the two carriers are locked in a rigid phase relationship, the flicker disappears.

There is, of course, a residual amount of interference due to the presence of the interfering picturecontent. The residual interference resides principally in the sync pulses and blanking pedestals of the interfering video waveform, since these are the parts of the video wave causing the heaviest degree of modulation. Since the distances from the receiver to the two stations are not in general the same, the interfering blanking bar generally is visible somewhere within the frame of the desired picture. Consequently, when the carriers are synchronized and the carrier-beat interference removed, the residual interference from the blanking bar becomes visible as the strength of the interfering signal is increased. The level of interfering signal at which the residual interference becomes visible depends on the depth of modulation of the interfering wave, that is, the residual interference is worse when the picture has a predominantly white background.

The extent to which residual interference is visible depends on the actual phase relationship of the two carriers at the receiving antenna. If the two waves are in quadrature (out of phase by 90 degrees) the residual interference is a minimum, but if the waves are in phase or 180 degrees out of phase, the residual effect is most noticeable. Mr. Kell reported to the FCC that, in the 90 -degree case, carrier synchronization produces an improvement equal to approximately 30 times. That is, the interfering signal volt-
age can be increased 30 times before the residual effects become as annoying as the carrier-beat bars would be in the absence of synchronization. The average improvement incurred over all possible phase conditions was estimated at from 5 to 10 times in voltage.

Apparatus Used

The apparatus used in Princeton consists essentially of two narrowband (100 -kc bandwidth) receivers tuned to the picture carrier on channel 4. One receiver is connected to a dipole and single reflector oriented to receive signals from station WNBT, in New York, about 45 miles distant. The other receiver is connected to an elaborate bridged-dipole antenna, having a front-to-back ratio of 20 times in voltage, oriented to receive station WNBW in Washington, about 180 miles away. This second antenna also has some slight pickup of the New York signal, which is cancelled by feeding to it a portion of the voltage developed on the first antenna in proper amplitude and phase. This cancellation system would not be necessary if the receiver were located more nearly midway between the two stations.

The two receivers have a common local oscillator, so the relative phase relationship of the two signals is preserved throughout the two receivers to the outputs, which are combined in a phase detector. This detector develops a direct voltage proportional to the phase difference in the two carriers. The direct voltage is used to modulate a $1,000-$ cps f-m generator. The resulting f-m signal, varying over the range from 700 to $1,300 \mathrm{cps}$, is transmitted over an ordinary class-C
telephone program-circuit to the New York station. Frequency modulation is used in the control signal so that variations in the gain of the telephone circuit do not affect the control.

At New York the f-m signal is applied to a $1,000-\mathrm{cps} \mathrm{f}-\mathrm{m}$ detector which reconverts the $\mathrm{f}-\mathrm{m}$ signal to a direct voltage proportional to the direct voltage produced by the phase detector in Princeton. This direct voltage is applied to a reactance tube which is connected across the crystal control of the WNBT picture transmitter. The phase of the WNBT signal is thus shifted until it arrives at a fixed 90 -degree relationship with the WNBW signal, as measured at the phase detector in the receiver outputs. Any variation in phase occurring in the Washington signal thus acts to control the phase of the WNBT transmitter continuously and automatically.

Phase Relationships

The system maintains the relative phase of the two signals fixed at 90 degrees at the phase detector, in this case at Princeton. But elsewhere in the service area, the phase between the signals varies from point to point. There is, in effect, a standing-wave pattern created by the two signals traveling in opposite directions much like that caused by a reflected wave in a transmission line.

As in the transmission line, the standing-wave pattern changes from phase addition to phase opposition in a distance of a quarter wave-
length, which varies from about 50 inches (channel 2) to 13 inches (channel 13). These distances apply at locations directly between the two stations; elsewhere the distances increase. In any event, as the location of the receiving antenna is moved, assuming the transmitter antenna positions are fixed, the extent of the residual interference varies from the minimum condition (90 degrees) to the maximum (0 or 180 degrees). Within the service area of the desired station this variation is not pronounced, but it becomes progressively more so at locations more nearly midway between the stations.

The effect is one which might become evident in the form of occasional appearance of residual interference if either the receiving antenna or transmitting fadiator were in motion (due to tower sway, etc) or if rapid variations in the delay of transmission through the troposphere occurred in either transmission path. Neither effect has been noticed to any extent in the observations thus far made, and in any event such variations would change the level of the residual interference only slightly within the desired service area. Further experimentation is under way to evaluate the average degradation of service caused by such phase changes.

System Engineering

Thus far the synchronization system has been applied only to two stations. A full realization of

Demonstration setup at Princeton viewed by JTAC and FCC groups. The rack at center contains the two receivers and synchronization circuits
its advantages is possible only if all stations operating on the same channel, and located in adjacent interference areas, are synchronized as a group.

One possible arrangement is to synchronize the stations in chain fashion, one station taking its comtrol from one direction and passing the control to the next station in the opposite direction. There appears to be no fundamental difficulty in setting up such an arrangement. The cumulative effects of errors in synchronization along the chain should not prove troublesome. In the event of complete failure of the synchronization equipment at one station the other stations in the chain would continue to operate as two separate groups and the loss of synchronization would affect only the area within 150 miles of the point of failure.

An additional system-engineering aspect not yet fully explored is the effect of three or more synchronized signals in the same area, as might occur within a triangle bounded by three stations on the same channel. Mr. Kell reported that a third interference signal has in fact been noted at Princeton from WBZ-TV in Boston when WNBT and WNBW are synchronized. The additional signal did not affect adversely the operation of the receivers and the synchronization circuits.

The theoretical aspects of the synchronization system had not been thoroughly worked out at the time of the presentation to the FCC. The effect of the ratio of the carrier amplitude to the amplitudes of the sideband components, and the effect of percentage modulation on that ratio, were discussed briefly in the JTAC report to the conference. But these and other important questions, such as the demodulation of a weak signal by a strong one in the presence of certain detector characteristics, and the effect of the phase difference on the residual interference as a function of the strength of the undersized signal, had not been studied in detail.

It was understood that Mr. Kell will present a full account of the development in March at the IRE Annual Convention.-D.g.F.

Andromeda Nebula, a source of galactic noise, as taken with the Jewett-Schmidt telescope at Harvard Observatory's Oak Ridge Station (courtesy Donald Menzel). Our own galaxy is thought to be similarly shaped

RADIO ASTRONOMY

Abstract

Highly directional radio systems permit monitoring of uhf radiation from specific points on the sun and in interstellar space. Results show promising correlation between solar noise and radio communication, while galactic noise measurements provide a new tool for astronomers

THE PHOTOGRAPH on the front cover of this issue of ElecTRONICS is that of a radio telescope being built by Cornell University, with the assistance of the Office of Naval Research, for research in radio astronomy.

This new branch of science was opened to investigation in 1931^{1} when radio static of extra-terrestrial origin was observed coming from the center of our own gaiaxy in the constellation of Sagittarius in the Milky Way. Observations were made on a frequency of 20 me

By CHAS. R. BURROWS

Director, School of Electrical Engineering Comell University, Ithaca, New York
during measurements of the direction of arrival of atmospheric static, one of the limiting factors in longdistance radio communication.

In spite of the obviously important practical application of the knowledge of intensity and distribution of galactic noise no further investigations were carried out on the interfering effect of this new
type of noise until after World War II, when the Bureau of Standards undertook a systematic investigation of the time-frequency distribution of galactic noise and its limiting effect on communication by radio waves.

In the meantime another experimenter ${ }^{2}$ built equipment with which he measured the relative intensity of galactic noise as a function of direction on a frequency of 160 mc . More recently ${ }^{3}$ similar measurements have been made at 64 mc , with carefully calibrated equipment
that made possible and worthwhile the laborious task of solving the integral equation for the absolute intensity of galactic noise as a function of direction. The equipment under construction at Cornell is designed to facilitate this reduction to absolute values.

Interpretation of Measurements

While galactic noise was observed first, it is the observation of enhanced solar noise that promises to be of greater help in improving long-distance radio communication. Since the determination of the absolute value of measurements of solar noise is somewhat simpler, let us consider it first.

The power (rate of flow of electromagnetic energy) incident upon the earth's surface from an outside source such as the sun is proportional to the projection of the receiving area on the plane normal to the direction of energy flow, the solid angle subtended by the source and the frequency interval. This proportionality factor, which in general is a function of the direction of arrival, position of the receiver, polarization, frequency and time, is called the specific intensity, and is measured in watts per square meter per steradian per cycle per second.

$$
\begin{gather*}
d P=I_{\lambda}(\Theta, \phi, x, y, z, p, \nu, t) \cos \Theta d \sigma \tag{1}\\
\sin \Theta d \Theta d \phi d \nu
\end{gather*}
$$

where $d P$ is incident power, I is specific intensity in watts per sq meter per steradian per cycle per sec, $\cos \theta d_{\sigma}$ is projected area, \sin

SIGNIFICANCE

For radio engineers: more accurate predictions of optimum operating frequencies, since activity on the sun affects the ionosphere.

For astronomers: a more accurate means of measuring the plane of our galaxy and making heretofore impossible measurements contributing to knowledge of the universe.

For meteorologists: a means of monitoring the complete thickness of the earth's atmosphere, in contrast to sounding measurements that go only to the height of maximum ion density.

FIG. 1 -Solar spectrum, with heavy solid curve showing optical window to sun through earth's atmosphere and heavy dashed line showing newly utilized radio window. Light lines show specific intensity that would be radiated by a black body of temperature T_{ν}
$\theta d \theta d \phi$ is solid angle, and $d v$ is frequency interval. The radio telescope measures the integral of this

$$
P=A B \int I_{v}^{\prime}(\boldsymbol{\theta}, \phi) F(\boldsymbol{\theta}, \mid \phi) \sin \boldsymbol{\theta} d \boldsymbol{\theta} d \phi(2)
$$

Here the projected area is replaced by the equivalent area A of the antenna multiplied by a directivity function, $F(\theta, \phi)$, which in general is more complicated than the cosine of the angle which applies at optical frequencies.

Integrating over the frequency interval gives the bandwidth B which may be taken outside the integral sign. The specific intensity multiplied by the directivity characteristic of the antenna must still be integrated over the solid angle. For a uniform source that subtends an angle which is small compared with the acceptance cone of the antenna, this integration gives

$$
W_{v}=\int I_{v}(\theta, \phi) \underset{I_{v} \pi R^{2} / r^{2}}{F}(\Theta) \sin \theta d \theta d \phi \underset{(3)}{=}
$$

Here πR^{2} is the area of the source at a distance r. For the sun this is numerically

$$
\begin{equation*}
W_{v}=6.795 \times 10^{-5} I_{v} \tag{4}
\end{equation*}
$$

With this introduction let us consider the solar intensity received at the earth's surface throughout the frequency range in which measurements have been made.

Spectrum of the Sun

Figure 1 shows the frequency range at which measurements have been made at the earth's surface.

At the frequencies of the visible spectrum, the sun radiates energy as if it were a black body at a temperature of 6,000 degrees absolute. In the near infrared, the ap-
parent temperature of the sun is about 7,000 degrees absolute, but the energy received at the earth's surface is very much reduced by absorption bands in the earth's atmosphere of methane, carbon dioxide and water vapor. Further toward the infrared the absorption due to water vapor is sufficient to almost completely absorb the sun's rays before they reach the earth's surface. On the ultraviolet side of the visible spectrum the apparent temperature of the sun is somewhat less than in the visible frequency range because of absorption in the solar atmosphere.

In all, there is a frequency range of approximately two decades in and on either side of the visible frequencies at which measurements can be made of electromagnetic radiation from the sun at the earth's surface. On the low-frequency side of this window in the earth's atmosphere there is a frequency interval of approximately two and one-half decades in which the absorption from atmospheric gases is practically complete.

There is another window in the earth's atmosphere beginning at a frequency of about 3×10^{10} cycles per second (wavelength of one centimeter) and extending toward the lower frequencies to the region where the earth is shielded from extra-terrestrial radiation by its own ionosphere. This window extends over a frequency range of about three and one-half decades. Accordingly, radio astronomy enjovs a wider window in the fre-

FIG. 2-Time sequence of a solar noise burst on three different frequencies, showing that such noise occurs first on the highest frequency. Time delay is that required for disturbance to propagate within solar atmosphere to height from which it may be radiated into space
quency spectrum than has been available to astronomers heretofore.

In the microwave region the apparent temperature of the sun is only slightly more than in the visible frequency range and is substantially independent of time, but in the meter wavelength range the radiation from the sun is variable and considerably greater than would be radiated by a black body at a temperature of 6,000 degrees absolute. This minimum radiation, called quiet sun, corresponds to an apparent temperature of approximately $1,000,000$ degrees. This is not as startling as it appears, since spectrographic measurements in the visible and ultraviolet frequency range indicate that the temperature of the solar corona is of the order of $1,000,000$ degrees.

In the microwave region the solar ionosphere appears transparent, so that the radiation from the lower regions of the sun is transmitted directly to the earth. At the longer wavelengths the radiation appears to come from a point in the solar ionosphere at which incoming radiation at this wavelength would be almost completely absorbed. As the wavelength is increased, this point goes to higher levels in the solar corona and accordingly to higher apparent temperatures. This theory has been worked out in some detail, ${ }^{4}$ and numerical agreement with experimental data has been obtained.

In addition to this radiation from the quiet sun, which may be thought of as a temperature radia-
tion from an equivalent black body, there are bursts of solar noise having from one thousand to ten thousand times the radiation from the quiet sun in the meter wavelength region. Sometimes these bursts of solar noise have been observed to occur at approximately the same time at different frequencies, in a time order that is suggestive of a disturbance that originates in the lower regions of the solar atmosphere and is propagated outwards with a velocity reasonable for material particles.

The records in Fig. 2 of the time of commencement of a solar burst on 200,100 , and 60 mc show the disturbance reaching the earth first on the higher frequencies and then on the lower frequencies in order. ${ }^{5}$ This time sequence is in accordance with Martyn's theory for explaining the apparent temperature of the quiet sun in the radio-frequency region.

The solar record samples in Fig. 3 illustrate three characteristic types of signals that have been received from the sun at Cornell on 205 mc . Figure 3A shows enhanced solar noise, which is characterized by a general increase in level and rapid fluctuations. Figure 3B illustrates the quiet sun with an occasional large burst superimposed. Figure 3C illustrates the solar noise from a quiet sun.

Radio Communication Aspects

From solar noise measurements it is hoped that we will learn more about the sun and how it affects radio-wave propagation. Radiation from the sun provides the ionizing energy for the formation of the ionosphere which makes long-distance radio communication possible. It has been known for a long time that there is a good correlation be-

FIG. 3-Simple records of solar noise as obtained at Cornell Radio Observatory. Periodic minimums are reference levels produced by a dummy load. Ordinates are scaled in db above quiet sun
tween solar activity and variations in radio-wave propagation conditions. Sunspots, faculae, flocculi, magnetic storms, auroras, earth currents, and radio-wave propagation are all related.

Measurements of enhanced solar noise have already shown that there is an intimate relation between it and sunspots. Interferometer measurements ${ }^{6}$ made of enhanced solar noise at a time when there was a single large sunspot group showed that the enhanced solar noise came from the same part of the sun in which the sunspots were located. Other measurements ${ }^{-}$on this type of solar noise have shown it to have a component that is circularly polarized, just as would be expected if it were caused by electrons moving in the magnetic field of the sunspot.

Noise measurements during a solar eclipse ${ }^{\text {y }}$ showed good correlation between the intensity of enhanced solar noise and the area of prominences and flocculi. During totality of the visual eclipse the solar noise was reduced to only 0.4 of its uneclipsed value, indicating radiation from the uneclipsed prominences. These prominences increased the effective diameter of the sun at 200 mc to 1.35 times its optical diameter.

Besides providing us with a new means of observing solar phenomena, the solar noise is in fact a measurement of radio-wave propagation through the earth's atmosphere.

This, then, gives us a means of measuring the propagation of a radio wave that has transversed the entire ionosphere instead of one that goes only to the height of maximum ion density and back, as with the usual ionospheric sounding measurements. Accordingly solar-noise experiments shed light on the earth's atmosphere.

Astronomy Aspects

The contribution of radio astronomy to the knowledge of our galaxy may be even greater than to knowledge of the sun. Our galaxy is thought to be a flat disc-shaped group of stars somewhat similar in shape to the Andromeda Nebula. Our sun is situated near the edge of this dise, roughly one-third of the distance to the center. Estimations of the mass of the galaxy require corrections for the absorption of light by interstellar matter. In fact there is some doubt that we can observe the center of the galaxy at optical frequencies because of this absorption.

The absorption that predominates
at optical frequencies decreases rapidly with frequency and should be negligible at radio frequencies. This makes possible more accurate determination of the plane of the galaxy by measurements of the intensity of galactic noise as a function of direction.

Galactic Noise

Contours of equal galactic noise intensity can be plotted on galactic coordinates. The abscissa gives the angle around the plane of the Milky Way and the ordinate gives the angle above and below this plane.

Directional measurements indicate that the maximum radiation is received in approximately the plane of the Milky Way. ${ }^{2,3,8}$ In this plane the maximum radiation comes from a galactic longitude of approximately 330 degrees. This is in the direction of the center of our own galaxy in the constellation Sagittarius. There is a secondary maximum at galactic longitude 45 degrees in the constellation Cygnus. This maximum is not as well developed at 160 mc as at 480 mc , presumably due to the decreased directivity of the antenna.
One phenomenon that has been observed in radio astronomy is the existence of intense apparent point sources. These have been plotted

FIG. 4-Locations of observed point sources of intense galactic noise. So far nothing identifiable with the noise has been seen at these points with optical telescopes
in Fig. 4. By using an interferometer technique, it has been determined that the diameter of these sources is certainly not more than eight minutes of the arc, but even for a source of this size the specific intensity is many times that received from our own sun. In spite of the large intensity of these apparent sources, nothing that can be identified with them has been observed with optical telescopes even though a search has been made in photographic plates taken both in the visible and in the infrared.

Point Sources of Noise

The first point source was observed in the constellation Cygnus. ${ }^{10}$ The more exact location of this point source was determined by an interferometer method ${ }^{\mathrm{U1}, 12}$, in which it was also possible to determine an upper limit to the size of the source.

One interesting property of this point source is that its intensity varies with time. Measurements of signals from Cygnus have been made on $60,85,100,150$ and 200 mc by various experimenters. The amplitude of the variations decreases with increasing frequencies and generally becomes undetectable at 200 mc , though on three successive nights starting Oct. 18, 1948 appreciable variation was observed at 200 mc , as shown in Fig. 5. This point in the sky has been under observation at a frequency of 205 mc , with signals substantially constant.

The variability of the point source in Cygnus has been established beyond doubt ${ }^{22}$ by making interferometer measurements at a frequency of 175 mc , using antennas directed at a high angle where the effects of the earth's atmosphere are at a minimum. Using the same equipment, it was found that signals from the source in Cassiopeia were steady while those from Cygnus were variable. Polarization from Cygnus is random rather than circular polarized, as would be expected if it were caused by the same phenomena that produce the enhanced solar noise.

Possible Explanations

Many hypotheses have been put forth to explain the origin of galactic noise, but none can explain the observed phenomena. It may be

FIG. 5-Variations in noise radiation from general direction of Cygnus on 200 mc as observed by C. L. Seeger and W. E. Gordon on three consecutive days. Only portions of the records for the indicated time intervals are shown
that more than one of these mechanisms combine to produce these phenomena. It may be that galactic noise is caused by a process still unknown to astrophysicists.

One hypothesis is that free electrons in interstellar space may be radiating as classical oscillators. Another hypothesis is that radiation is caused by the free-free transitions of the electrons in the field of a proton. This is the radiation that takes place when an electron approaches a hydrogen nucleus in a parabolic orbit. A more accurate determination of the specific intensity of galactic noise as a function of frequency would help to determine which of these hypothe-
ses, if either, is correct.
A third hypothesis is that galactic noise is caused by the scattering of radiation from type-B stars by electrons in interstellar space. Since this process would result in a preferred direction of polarization, measurements of the polarization of galactic noise will shed light on the correctness of this hypothesis.

Still another hypothesis is that noise is caused by enhanced radiation from stars, similar to enhanced solar noise. Here again measurements of the polarization of galactic noise will be valuable in the interpretation of the data. It has been suggested ${ }^{13}$ that there may be enhanced radiation at a frequency of approximately $1,418 \mathrm{mc}$, which is one of the lines in the hyperfine structure of hydrogen.

There are many questions about both our sun and galaxy that can be answered by the new field of radio astronomy. This branch of science is now at about the point where astronomy was when Galileo invented the optical telescope. Scientists in this new field are just asking themselves the pertinent questions that will be answered in the years to come.

References

(1) Karl Jansky, Directional Studies of Atmospherics at High Frequencies, Proc. Atmospherics at He 1920 Dec. 1932 .
(2) Grote Reber, Cosmic Static, Proc. IRE, p 68, Feb. 1940
(3) Hey, Phillins and Parsons, An Thvestigation of Galactic Radiation in the Radio Spectrum, Proc. Roy. Soc., p 425 Feb. 18, 1948.
(4) D. F. Martyn, Solar Radiation in the Radio Spectrim, Radiation from the Quiet Sun, Proc, Roy. Soc., p 44 , April 22, 1948.
(5) Pavne-Scott, Yabsley and Bolton Relative Time of Arrival of Bursts of Solar Noise Nature, p 256 , August 23, 1947 (f) Ryle and Vonherg. Solar Radiation on 175 Mc , Nature p 339 , Sent. 7, 1946
(7) D. F. Martyn, Polarization of Solar Radio-Frequency Emissions, Nature, p Rad, August 31, 1946 .
(8) Haikin and Chikhachev, Investigation of Radio Emission from the Sun dur${ }^{\text {ing }}$ the Total Sollar (Itin (Izvestia) of Academy of Science, Phys. Ser. $12, \mathrm{p} 3 \mathrm{~S}, 194 \mathrm{~S}$
(9) Grote Reber, Cosmic Static, Proc IRE, p 1,215, Oct. 1948
(10) Hey, Phillips and Parsons, Fluctuations in Cosmic Radiation at Radio Freavencies, Nature, p 234, August 17, 1946.
(11) Bolton and Stanley, Observations on the Variable Source of Cosmic Radin of Cygnus, Australian Journal of Scientific Research, p 58, March 1948.
(12) Ryle and Smith, A New Intense Source of Radio Frequency Radiation in the Constellation
462 , Sept. 18, 1948 .
, Sept. C
(13) H. C. Van de Hulst, Herkomst der Radiogolven, Nederlandsch Tidschrift voor Natuurkunde, p 210 , Dec. 1945.

Photoelectric Control of

Photoelectric sensing unit on $15-\mathrm{kw}$ electric furnace. Operator is checking temperature with optical pyrometer through peep hole. Phototube views flame in 45 -degree mirror

Installation of power thyratrons for control of 50 kilowatts of power to resistance-heated specimen whose temperature is being controlled by circuit like that in Fig. 5

By F. C. TODD

Assistant Supervisor Tndustrial Physics Division Rattelle Memorial Institute Columbus, Ohio

F©OR measurements of the properties of materials, and for some production problems, it has been necessary to employ high temperatures which are held constant to within 1 or 2 percent. This can only be accomplished with automatic control of the electric furnace or of the power dissipated in a re-sistance-heated specimen. The temperature range of interest extends from 1,800 to $5,000 \mathrm{~F}$, or from 1,200 to 3,100 Kelvin.

The function of a control for this application is to hold the temperature constant for a period of time at a value that has been selected with an optical pyrometer. The control performs three functions. It measures the temperature with an energy-sensitive element, converts and amplifies the indication into a

[^3]variable potential or pulse, and employs the amplified signal to vary the primary heating current. Each of these functions will be considered separately here.

Temperature-Sensitive Element

Representative temperature-sensitive elements are listed in Table I in the approximate order of decreasing time of response to a change in temperature.

The amplitude of the signal from each of these devices can be expressed, for a short range of temperatures, as a power n of the absolute temperature. It is important to investigate the value of n. for it determines the stability required in the amplifier for operation at that temperature. As an illustration, if the temperature changes by one percent, the signal will change by (1.01) ${ }^{n}$, or approximately by n percent. If the control changes the temperature by an amount that is proportional to the signal, a drift of n percent in the amplified signal must not change the temperature by more than one percent. A drift
of n percent in the amplifier may therefore be tolerated.

The second column in Table I indicates the approximate range of values of n for the average element at temperatures of $1,200 \mathrm{~K}$ and higher. The last column indicates the amplifier stability required to hold the temperature constant to one percent.

The response of a 919 vacuum phototube to a tungsten filament in a clear bulb is shown in Fig. 1. The value of n varies from 13.4 to 11.3 over the temperature range that was investigated. This is in fairly good agreement with the response reported for barrier-layer cells ${ }^{1}$, in which the value of n is reported to be constant over this same temperature range and equal to 12.45 .

For the proposed temperature range, vacuum phototubes offered the most promise as sensing elements. Resistance thermometers and attached thermocouples may distort the heat flow or interfere with tests on a specimen. There are no reliable thermocouples for the higher temperatures in this

High-Temperature Furnaces

Abstract

Temperatures up to $2,500 \mathrm{C}$ can be held within 1 percent for days. Vacuum phototube serves as sensing element feeding cascaded d-c bridge amplifiers or a-c bridge, followed by amplifier that actuates on-off or continuous phase-shift thyratron control of furnace

range, and both of these indicators require a reference standard that will not be appreciably affected by large changes in ambient temperature which occur near a large furnace. The bolometer and radiation thermocouple have a speed of response that is of the order of a second, which is too slow for some specimens which are heated by passing a current through them.

Vacuum phototubes and their associated resistors are quite stable, and have calculable noise background for known ambient conditions. ${ }^{2}$ They are rapid in their response and may be used with or without an optical filter. The greater response from the unfiltered phototube reduces the noise level with respect to the signal and requires less amplification so that this arrangement has always been employed.

One of the more serious objections to the phototube is the necessity for a clean optical system. For operators trained in the use of opti-

Table I-Comparison of Tem-perature-Sensitive Elements Above $1,200 \mathrm{~K}$

Description	Amplifier Stability, Percent	
Resistance thermometer <1		
Bolometer		
Radiation thermocouple	>4	4
Contact thermocouple	<l	1.
Phototube, monochromatic (calculated for		
$\begin{aligned} & 0.8 \mathrm{mu} \text { and } 1,200 \\ & \text { to } 2,500 \mathrm{~K}) \end{aligned}$	13 to 7	7
(measured with green filter for 0.56 mmt and $2,100 \mathrm{~K}$)		
Phototube, unfiltered	13 to 11	10
Voltmeter across load	0.5 to 0.8	0.5

cal pyrometers, that is not a serious handicap. The phototube must always view a surface with the same optical characteristics. For specimens in inert atmospheres, this introduces no difficulty. With high temperatures in air, the phototube may view a thin target of stable oxides such as alumina or beryllia. This will be satisfactory unless vapors are present that react with the oxide surface or condense on it.

The intensity of radiated energy incident on a phototube observing a given area on a specimen or a furnace wall through a fixed optical system will vary as much as $1,000-$ fold for the required temperature range. Since the phototube and associated amplifier cannot respond with accuracy over such a large change in intensity, an iris diaphragm is placed in the optical path in the region that has the most uniform illumination, as in Fig. 2.

Amplifier Considerations

The d-c amplifier for the phototube may be either the stable zero type or the constant signal amplification type. In the first type, a reference voltage is made approximately equal to the voltage output of the phototube and the difference voltage is amplified. This circuit is as accurate as the zero of the amplifier is stable.

In the second type of amplifier, the iris diaphragm is adjusted to admit approximately the same amount of light to the phototube at each control temperature, so that the output voltage of the amplifier is essentially the same for every temperature to be controlled. The stability here depends on having a constant amplification factor and no zero-drift of the amplifier.

With either circuit, the required
amplification is of the same order, for the output must operate the same on-off or phase-shift control to vary the heating current.

With the difference-voltage amplifier, the permissible zero drift is measured in terms of the reference potential, which is balanced against the phototube signal. Quantitatively, the amplifier output voltage drift e_{d}, the reference voltage e_{r}

FIG. 1-Response of vacuum phototube with S-1 surface to brightness temperature of a tungsten filament

FIG. 2-Method of using iris diaphragm to control amount of radiation reaching phototube. Diaphragm opening may be calibrated roughly in terms of desired range of temperature to be controlled

FIG. 3-Circuit for varying phase shift over 360 -degree range for temperature control, and performance curve
and the amplification μ are related to the required amplifier stability S, which was shown in Table I, by the relation $S=100 e_{d} / \mu e_{r}$ percent.

With the constant-voltage type of amplifier, total drift e_{D}, output signal e, and stability S are related by $S=100 e_{B} / e$, percent.

The value of S in these equations must remain less than 5 percent for a temperature drift of about $\frac{1}{2}$ percent when a phototube is employed as the temperature-sensitive element.

Unless a light chopper is used, the first stage of the amplifier must be a stable-zero d-c amplifier. Bridge amplifiers ${ }^{3,4}$ are satisfactory, for the balance position of these amplifiers is very stable when a few simple precautions are employed. Oversize resistors must be installed, in positions where they are not affected by heat from the other components of the circuit. The unbalance signal from the bridge amplifier is, however, dependent on the voltage applied to the bridge.

The remainder of the amplifier may be of several types. Cascaded bridge amplifiers are stable in theory, but difficulties arise in the cascaded stages from the charging current to the filament through the filament transformers and from other sources. A more satisfactory solution is to employ a regulated a-c voltage on the bridge-type amplifier. The output of the bridge amplifier will then consist of pulses that can be amplified to any desired amount by the more stable a-c amplifiers. A feedback amplifier has proved quite satisfactory. The oscillating amplifier ${ }^{5}$ with feedback at a different frequency appears to have promise.

For furnaces and massive devices
without large heat capacities, an on-off control for 10 to 15 percent of the heating current is sufficient to control the temperature to 1 or 2 percent. For resistance-heated devices with very rapid response and for very accurate control of furnaces having large heat capacity, a phase-shift control for the heating current is desired.

The phase-shift control developed by General Electric ${ }^{\theta}$ has given excellent regulation. This control varies the firing time of two thyratrons which are connected in opposite directions across a resistance in series with the load. The thyratrons are fired in the same phase position on the positive and negative half-cycles.

A modification of a recently described 360-degree phase-shift control ${ }^{7}$, shown in Fig. 3 with its performance curve, appears to provide more efficient control. With the 360 -degree control, the thyratron on the negative half-cycle conducts for the entire half-cycle before the thyratron on the positive half-cycle starts to conduct. A more uniform current control is obtained if the thyratron on the positive half-cycle starts to conduct when the negative thyratron is conducting for 120 degrees. As the phase shift is continued to increase the current, the thyratron on the negative half-cycle will conduct for 180 degrees when the thyratron on the positive half-cycle conducts for 60 degrees.

To get data for the curve the phase shift was measured and the ampere-seconds of conducted current were calculated. The phase shift is not linear with the d-c control voltage, particularly at the start and end of the phase shift,
but there is a long usable range in which the heating current is almost proportional to the amplitude of the d-c signal. A control with this characteristic will have constant temperature sensitivity over a wider range of line-voltage fluctuations or for a wider range of power requirements.

Temperature Control for Furnace

A satisfactory control for a hightemperature furnace is shown in Fig. 4. The first stage of the amplifier is the bridge circuit, which is operated with regulated a-c plate voltage from a Sola transformer. The output of this stage is coupled into a four-stage feedback amplifier that can give much more than the required amplification, but this number of stages is employed to increase the stability. The output of the final stage is rectified, filtered, and operates a 2050 thyratron with a relay in the plate circuit. This relay controls a shunt contactor that varies the heating current to the furnace by about 10 percent. The furnace with which the control is used operates over the temperature range from 1,200 to $3,000 \mathrm{~K}$ and requires a maximum power of the order of 15 kilowatts. Zero drift and amplification are sufficiently stable to limit the drift in eight hours to 2 percent at all temperatures from 1,200 to 3,000 K , which is excellent for an on-off type of control.

Control for Rapid Response

The GE phase-shift circuit was successfully employed in the arrangement of Fig. 5 to control the temperature of a specimen that is heated directly by the passage of a current through it. The specimen

FIG. 4-Temperature control circuit for high-temperature electric furnace
has a thermal time constant estimated to be less than $\frac{1}{2}$ second. For this control it was essential that the time constants in the circuit be minimized. Also, the control had to operate over a continuous range by phase shifting.

With the phase-shift circuit, it is not essential to maintain linearity of voltage amplification. It is more important to increase the amplification to the highest feasible amount. Cascaded bridge amplifiers are employed for the first two stages. The first bridge circuit, fed by a gas phototube having an S-1 surface, is operated on d-c for maximum gain. The circuit is a little sensitive to extraneous fields and care must be employed to balance out the stray capacitive coupling.

The circuit was required to shift the phase of thyratrons on a 4,100 volt Y-connected circuit with the center of the Y grounded. Each line was thus at a potential of 2,300 volts from ground. In order to operate the thyratrons at this potential above ground, an intermediate thyratron circuit was employed. The phase is shifted on 2050 thyratrons and their plate current is coupled to the grid resistors in the high-voltage line by transformers that have very small primary-to-secondary capacitance.

The control with this circuit was excellent. Over a period of three hours, the temperature of the specimen varied by 7 degrees F as read by an optical pyrometer. Since this measurement of temperature is more accurate than is usually accepted for an optical pyrometer, the specimen temperature could not have varied by more than a fraction of this.

The control shown in Fig. 5 has

FIG. 5-Temperature control using vacuum phototube as rapid-response sensing element for monitoring temperature of specimen being heated directly by passage of current through specimen
been applied to furnaces and resist-ance-heated specimens for which the phototube may view a surface that does not change its optical properties with temperature. This includes furnaces with inert gases, and open furnaces in which a thin oxide surface may be viewed. It is particularly adapted to measurement of the physical and electrical properties of semiconductors. In one application, it was applied to resistance welding of steel. The surface was presumed to oxidize in a reproducible manner, and the control was able to interrupt the heating current at a reproducible temperature of the joint. This temperature was only a few degrees below the melting point of the metal. Tests indicated this weld was more reproducible than those made with-
out as close a control of the temperature.

The work on this project was performed by the staff of the Electronics Group at Battelle Memorial Institute. The furnace control was constructed by E. N. Wyler and the specimen control was constructed by V. S. Buccicone and T. N. Hall.

References

(1) B. M. Larson and W. E. Shenk, "Temperature, Its Measurement and Control', Reinhold Pub. Corp., p 1, 150, 1941. (2) K R. Spangenberg, "Vacuum Tubes", McGraw-Hill Book Co., p 698 , 1948 .
1948. M. Artzt, Survey of D-C Amplifiers, Electronics, p 112, Aug. 1945. (4) Y. P. Yu, Bridge-Balanced Amplifiers, Electronics, p 111, May 1948. (5) J. J. Zaalberg van Zelst, Constant Amplification in Spite of Changeability of
the Circuit Elements, Philips Technioal the Circuit Elements, 9 No. 10, p 309,1948 .
(6) H. H. Leigh, Simplified Thyratron Motor Control, GE Review, p 18, Sept. Motor
1946.
1946. J. C. May, H. J Reich and J. G. Skalnik, Thyratron Phase-Control Circuits, ELECTRONICS, p 107, July 1948.

A-M and Narrow-Band F-M

THE investigation reported here was undertaken at the Naval Research Laboratory. It is the latest of several studies made in past years for guidance in choice of modulation type. Every effort was made during its course to insure as thorough and careful a comparison of two basic methods of modulating a radio wave as could be devised.

An ideal fundamental comparison of relative $a-m$ and $f-m$ performance might be made with equal spectrum occupancy and equal radiated power at maximum modulation as basic conditions. The investigation herein reported, however, was conducted with some departure from this ideal. Practical considerations dictated use of a frequencydeviation which resulted in greater spectrum occupancy by the f-m signal than by the a-m signal, and it was found more feasible in both the experimental and theoretical phases of the problem to make the unmodulated rather than the modulated power output of the two transmitters equal.

Any valid operational comparison must be based on identical equipment for both modulation systems, or on equipment with known, accountable differences. The comparison trials described in this paper were made with transmitters and receivers which were identical except for essential differences in the modulator and demodulator ele-

NOTE

The editors of ELECTRONICS consider themselves privileged to present, in two parts, this complete report of a long-term study.
The reader should note that the problems of naval mobile service, and the equipment specifications peculiar to its needs, may militate against the use of frequency modulation. Thus the thinking upon which this study is based does not necessarily carry over into land mobile communications nor, as the author himself points out, does it have any bearing whatsoever upon f-m broadcost practice

Part I

By EMERICK TOTH
Naval Research Laboratory Washington, $D . C$,

FIG. 1-Audio-frequency response and distortion of $\alpha-m$ and $f-m$ circuits

FIG. 2-Simplified block diagrams of transmitter equipment
ments, and with identical antenna installations. In addition to laboratory and field operational trials, a mathematical study of comparative $\mathrm{a}-\mathrm{m} / \mathrm{f}-\mathrm{m}$ performance was undertaken with the intent of determining the applicable theoretical limits, particularly in the weak-signal region into which then available theoretical treatments did not appear to extend.

Examination of all available records of other a-m /f-m comparison trials and investigations has indicated one common shortcoming. In general, the published data on equipment characteristics and operating conditions has been too meager to permit any sound judgment by the reader as to the validity of the tests and the conclusions derived therefrom. The following information concerning operational conditions, equipment characteristics, and data taken is therefore included as a guide to independent judgment and to anticipate some of the inevitable questions.

Operational Conditions

The receiver bandwidth of a radio communication system prior to the
final detector is usually determined by the spectrum occupancy of the radiated signal plus the combined frequency stability of transmitter and receiver. In the case of the equipment chosen for this investigation, this bandwidth was 125 kc at -6 db , a figure determined mainly by the frequency-stability consideration. The increased spectrum occupancy of an f-m signal with a modulation index (m_{t}) of more than 1 could therefore be tolerated, provided that it did not exceed a value of about $\pm 10 \mathrm{kc}$. A figure for m_{t} of about 2.3 was adopted, based on a nominal top modulation frequency of $3,000 \mathrm{cps}$. This choice resulted in a maximum frequency-deviation value of $\pm 7 \mathrm{kc}$, as compared to a maximum a-m spectrum of $\pm 3 \mathrm{kc}$. Such a relatively small difference between a-m and $\mathrm{f}-\mathrm{m}$ spectra (considering the important sidebands only) in an overall bandwidth of 125 kc made it practicable to keep the receiver

[^4]
in UHF Communications

Abstract

An evaluation of two types of voice modulation, under typical conditions of Navy communications experience and restricted to simple circuitry. Overall physical requirements of mobile equipment designed for this specific service are scrutinized

bandwidth the same for both types of modulation. A value of $m_{f}=1$ would have resulted in a maximum deviation of $\pm 3 \mathrm{kc}$, representing only ± 0.0009 percent frequency variation at the carrier frequency used in the tests. Such small variations are difficult to monitor; the errors in measured results would consequently have been greater.

The reference or desired-signal frequency used throughout the trials was 328.2 mc . This frequency was chosen mainly on the basis of a minimum number and amplitude of spurious responses for the trans-mitter-receiver combination employed. The overall audio response range of the equipment was approximately 300 to $3,000 \mathrm{cps}$, corresponding to a maximum intelligibility or articulation factor for ideal conditions with male speech of about 90 percent (1 word in 10 misunderstood). Figure 1 shows the overall audio frequency characteristic of the transmitter-receiver combinations, together with a curve of overall harmonic distortion. The receiving equipment was used in narrow-audio condition; the receivers, as determined by signal-generator tests, had a measured harmonic distortion of well under 2 percent at $1,000 \mathrm{cps}$ for 30 percent $a-m$ operation and less than 0.5 percent with f-m up to ± 20-ke deviation.

It was decided that, for ease of setting-up and measurement of operating conditions, all single-tone modulation tests would be made at 100 percent modulation with a-m and maximum or peak deviation ($\pm 7 \mathrm{kc}$) with f-m. The actual adjustment of modulation voltage in the f-m transmitters was accomplished by using the carrier dropout at $m_{t}=2.4$, as observed with spectrum-scanning equipment at a
modulating frequency of $2,910 \mathrm{cps}$. Voice modulation was maintained at 30 percent average in the a-m system and at about ± 2.1-kc average with f-m. No pre-emphasis or de-emphasis was utilized except in one of the final tests, since, with the i-f and a-f bandwidths employed, both modulation systems were assumed to be about equally capable of improvement by this means.

All output signal-to-noise ratio figures in the graphs and discussions that follow are rms values measured with 100 percent modulation for a-m and ± 7-kc deviation for $\mathrm{f}-\mathrm{m}$, both with $1,000-\mathrm{cps}$ tone modulation, unless otherwise stated. Thus, if a figure of $+30-\mathrm{db}$ output signal-to-noise (s / n) ratio is given, is would be about 10 db less, or +20 db , for 30 percent $\mathrm{a}-\mathrm{m}$ or ± 2.1-ke deviation with f-m.

Choice of F-M Detector

Much thought was given to choice of the $\mathrm{f}-\mathrm{m}$ limiter and de-
tector combination for the receiving equipment. It was considered essential that, in addition to suitable operating characteristics, this portion of the f-m system should not require any considerable design differences in the circuits preceding it, so that gain, selectivity, and all other characteristics up to the final demodulator stage itself would be identical in both the a-m and $f-m$ receivers. Grid-bias plate-saturation type limiters were considered and rejected as unsatisfactory from the standpoint of their relatively poor impulse-noise limiting, inferior adjacent-channel performance, and relatively high limiting threshold; this latter would have required an additional stage of i-f amplification, which was inadmissible. After examination of the various other possible arrangements, such as the locked-oscillator types, the so-called ratio detector was chosen as the best compromise, with the intent that a subsequent

SUMMARY

A- M is preferable to $f-m$ for certain highly mobile conditions of operation, owing to better weak-signal performance and relative freedom from cochannel and adjacentchannel capture effects, as well as generally lower susceptibility to multipath propagation difficulties.

A-M is preferable from the standpoint of spectrum occupancy, increasingly so as the carrier frequency is reduced.

A-M is preferable from the standpoint of ease of equipment alignment, freedom from detector symmetry and centering limitations, and for tolerance of severe detuning with negligible impairment of performance.
A- M is preferable from the standpoint of circuit simplicity, particularly in the receiving equipment.

F-M is advantageous for geographically fixed communication and broadcast systems with proper planning, particularly if the receiving equipment is carefully designed, operated, and maintained.

F-M is generally preferable for truly high-fidelity reproduction of speech or music, with the same limiting conditions as given in the paragraph immediately above.

F-M, in general, permits use of a smaller transmitter with less required primary power for a given carrier-output rating. By use of various devices in $\mathbf{a}-\mathrm{m}$ transmitter design, the difference can be reduced if continuous-peak a-m output is not required.

F-M poses a difficult problem of transmitter modulation in crystal-controlled systems, increasingly so as required deviation increases, and may force high-order multiplication not otherwise required or desirable

FIG. 3-Simplified block diagrams of receiver equipment

FIG. 4-Simplified block diagram of laboratory trial setup
theoretical analysis would be undertaken before final closing of the a-m/f-m comparison problem to determine how far the ratio detector as used caused departure from the theoretical optimum performance of an ideal f-m system.

The ratio detector, which is essentially a phase discriminator with current-balance rectifiers arranged to provide simultaneous detection and half-wave shunt-diode limiting in the discriminator-secondary circuit, was chosen for the following reasons:
Relatively good impulse-noise performance.
Good adjacent-channel interference suppression.
Small deterioration of signal-tonoise ratio with detuning.
Relatively low side responses.
Required no additional i-f amplification, due to its inherently low limiting threshold.
Provided high-level avc voltage, like that of an a-m diode detector.
Could be readily aligned with an $a-m$ signal generator.

The circuit constants were so chosen as to provide optimum a-m rejection in the weak-signal region of operation, with the downward
a-m characteristic as good as possible. This latter was not considered as a particularly serious factor for the purpose of most of the tests, since main reliance was to be placed on the results of laboratory trials, where fading or multipath propagation would not be encountered. It could, however, be a factor in the field tests, provided that the average signal energy reaching the f-m detector fluctuated to a considerable extent at a rate faster than about one-fifth of a second, a figure determined mainly by the detector time-constant. Distortion measurements taken overall showed that the detector linearity was good, the overall harmonic distortion of the receiver being less than 0.5 percent up to ± 20-kc deviation with proper centering of the carrier on the discriminator characteristic.

Transmitters and Receivers

The transmitting equipments utilized are shown in block-diagram form in Fig. 2. Elements A, B, C, D, and E were identical in both the a-m and the f-m equipments; elements G and H were substituted in
the f-m transmitter for element F of the a-m transmitter. The amplitude modulator controlled the plate current of the final r-f amplifier and was required to be capable of supplying as much a-f power as needed for 100 percent modulation of the carrier. The integrating network and phase modulator which provided $\mathrm{f}-\mathrm{m}$, however, operated at a low power level and demanded much less primary power input than the amplitude modulator.

The receiving equipments are shown in block-diagram form in Fig. 3. Elements A, B, C, D, E, and F were identical in both the a-m and the f -m equipments; element I was substituted in the f-m receiver for elements G and H of the a-m receiver. The duo-diode utilized for G and H was reconnected to provide the series-aiding diodes of a ratio detector, and a suitable phase-discriminator transformer was substituted for the final i-f transformer normally used in the a-m equipment. The space provided on terminal boards by removal of the a-m detector and limiter components was utilized for the f-m detector components. The result was a neat conversion, with essentially the same selectivity, reserve gain, freedom from regeneration, and fidelity as the original a-m form of the receiver.

As indicated above, separate equipments were used for the a-m and f-m systems. This step was decided on after consideration had shown the impracticality of switching the same equipment from one type of modulation to the other during the tests. The equipment as used essentially satisfied the requirement of an absolute minimum of difference in characteristics and circuits.

Standardization

The performance characteristics of the a-m transmitters and receivers had been thoroughly investigated prior to this problem. Similar thorough studies were made of the f-m transmitting and receiving equipment before starting the system trials. The measurements included determination of the noise factor ($n f$) of each receiver from the antenna circuit to the plate of the final i-f amplifier. The receiv-
ers were then standardized in pairs, a pair consisting of one a-m and one f-m equipment, each with $n f$ within 1 db of the other. It was subsequently found, as expected, that differences in standard sensitivity figures checked quite well with the differences observed in $n f$ between receivers, and further checking of pairs for $n f$ was done in terms of standard sensitivity. Standardized pairs were used throughout both the laboratory and field tests; these pairs were substantially identical in all characteristics, facilitating the segregation of differences in system performance due to modulation type by cancelling out, in effect, the equipment factor. It was found unnecessary to standardize the transmitters, since the unmodulated power output and degree of modulation, which were the factors of main importance, were easily adjusted and measured in each individual set-up.

Since close alignment of the desired signal to the center frequency of the $\mathrm{f}-\mathrm{m}$ detector was considered essential for optimum and consistent results, a particular effort was made to select standardized or paired control crystals for each f-m transmitter and companion receiver. The crystals were selected so that the f-m system was within $\pm 5 \mathrm{kc}$ of centering in its receiver pass-band at the signal frequency chosen, giving an overall accuracy of about ± 0.0015 percent provided the discriminator circuits were very
accurately aligned. Similar standardized control-crystal pairs accurate within $\pm 20 \mathrm{kc}$ were used for the a-m equipments. Crystals were also selected for detuning, crossmodulation, and other off-channel tests.

Records and Maintenance

Careful records of technical data and meticulous maintenance of equipment in top operating condition are essential in an investigation involving as many observers and tests as did the subject study. All pertinent and useful data were recorded in written form; additionally, magnetic-tape records were made of all significant audio output, to permit subsequent comparison and evaluation. The audio records were considered of particular importance in the analysis of such items as difference in character of noise output from the two systems, presence or absence of transient effects such as swish, the auditory masking caused by heterodyne beats, and other conditions not apparent from meter readings alone. Paper-backed magnetic tape was used, recorded in modified Brush magnetic-recording equipment. This tape could be readily edited, permitting easy juxtaposition of significant sections for immediate comparison or the shortening of long runs of data to the essential material for analysis. The frequencyresponse, dynamic range, and other important characteristics of the
recording system were satisfactory for the purpose intended.

All transmitting equipment was thoroughly checked before each run, including such modulating equipment as was involved in the particular test. Transmitter power output and modulation level were carefully maintained during the runs. Likewise each receiver was checked for alignment, sensitivity, and bandwidth before each test, using calibrated standard signal generators, with particular attention to centering and symmetry of the $f-m$ detectors.

The laboratory trials utilized the receiving and transmitting equipments described above, with simulated propagation paths consisting of lossy cables and special attenuators of 50 -ohm characteristic impedance. Figure 4 shows the setup in block-diagram form. One or more signals could be simultaneously provided in the system; such signals could be any desired combination of modulated carriers, unmodulated carriers, and impulsetype noise.

Intelligibility tests were made using standard word lists and also connected prose, and the relationship of intelligibility with both types of test material to the output signal-to-noise ratio with the approximately 300 to $3,000-\mathrm{cps}$ audio band utilized was established.

Field Trials

Sea trials were conducted, in

FIG. 5-Trial runs, (A) average of six laboratory tests, (B) ship trial, and (C) air-ground range
which three ships were utilized to permit controlled measurements under both single-signal and twosignal conditions. The radiation patterns of all antennas used were carefully determined; these patterns were utilized in planning the ships' courses and allowable deviations therefrom. Similar tests were made of air-to-ground transmission, with the ground station located at one of the field activities of the Naval Research Laboratory, in cooperation with properly equipped aircraft. Radar noise-interference tests were also made.

Two factors were considered of major importance in this problem. The first was the relative operational performance obtained with the two types of modulation, and the second, the influence of the modulation type on the physical design and maintenance requirements of transmitting and receiving equipment.

Since the a-m and f-m systems under consideration were identical with respect to the gain and bandwidth of the audio, intermediatefrequency, and radio-frequency portions of the receivers, it was feasible to make comparisons on the basis of the output signal-to-noise ratios (s / n) obtained for given values of carrier level at the input to the receiver equipment. The performance comparisons which follow are based on this premise. Many factors combine to make it difficult to designate any given single output s / n ratio as an absolute minimum standard of communication. A series of investigations was made, however, to establish an approximate absolute low-limit of output s / n below which intelligible voice communication should not be considered as normally possible without repeats. This absolute lowlimit rms s / n figure was found to be about +5 db (for peak or 100percent modulation) for the audio band employed (approximately 300 to $3,000 \mathrm{cps}$), as determined by laboratory intelligibility and field communication tests using connected prose. The operational figure for minimum acceptable s / n ratio for safe communication employed by several military laboratories is between +16 and +20 db for peak modulation. It is under-

FIG. 6-The $\mathrm{f}-\mathrm{m} / \mathrm{a}-\mathrm{m}$ power relation, no interference
stood that figures of +30 db or over are generally preferred for good land-line telephone practice. It should be emphasized that the +5 $\mathrm{db} s / n$ value is an absolute lowlimit for the 300 to $3,000-\mathrm{cps}$ audio band, which can be tolerated as a transient condition but not used as a design figure for safe-communication range.

In most tests, the receiver output voltages, both signal and noise, were measured with vacuum-tube voltmeters which gave rms indication. In some cases, the signal was separated from the noise by very sharp filters and corrected to give rms values.
In evaluating any communication system, two major operational conditions require examination: singlesignal operation, that is, only one signal carrier present in the system; and multiple-signal operation, with two or more signal carriers simultaneously present in the system.
In the comparisons reported herein, both single-signal and mul-tiple-signal operation were investigated. Although many single-signal characteristics of the equipments used were separately studied and compared, the single-signal operational factor considered of greatest importance in this report is that of relative range, which is indicative of relative radius of communication. In the multiple-signal case, three different conditions of operation were studied:

A desired signal in the presence of the undesired signal, where the unde-

FIG. 7-The $\mathrm{f}-\mathrm{m} / \mathrm{a}-\mathrm{m}$ power relation, impulse interference
sired signal was in the form of spark or impulse noise (noise interference).
A desired signal in the presence of an undesired signal, where both had the same characteristics and the undesired signal was on the same carrier frequency as the desired signal (com-mon-channel operation).

A desired signal in the presence of an undesired signal, where both had the same characteristics except that the undesired signal carrier was separated from the desired signal carrier by a frequency interval of one channel or more (adjacent-channel operation).

As indicated, multiple-signal operation studies were confined to two-signal conditions; time, unfortunately, did not permit threesignal investigations.

Range and Noise Trials

In the laboratory trials, the range data were obtained in terms of $(s+n) / n$ output ratio versus db attenuation in the transmission path. In the field trials, the output $(s+n) / n$ ratios were measured in the same manner as in the laboratory trials but the attenuation was determined in terms of distance. Data were taken in both cases which allowed conversion of the transmission-path attenuation and the distance into microvolts input to the receivers.

Two separate forms of noise interference were investigated, namely, radar interference and spark-noise interference. Radar effects were studied under the worst possible conditions of antenna spacings and equipment separation. No precautions were taken to filter the power lines of the equipments involved. The receivers used were
energized from the same unfiltered power source as the radar equipments. Various pulse lengths, repetition rates and radar carrier frequencies were selected with the intent of producing maximum interference with a desired signal. In the case of the spark-noise tests, a value of 45 microvolts spark noise (quasi-peak) was selected as representative of the general noise level which previous measurements had indicated would prevail under average naval shipboard conditions. It is considered doubtful, however, that a noise level as high as 45 mi crovolts would be encountered in the regions where uhf receiving antennas are normally located. Operation with other levels of spark-noise interference (250 and 3,000 microvolts) was also investigated, with substantially the same results as obtained with 45 microvolts. The spark-noise generator employed was essentially a spark transmitter tuned to provide maximum energy in the range from 280 to 380 mc ; its output spectrum resembled that produced by motor commutator noise.

Common-Channel Trials

Two separate effects are encountered in common-channel operation. One of these is the so-called capture effect, which manifests itself as a suppression or depression of the desired-signal output in the presence of an interfering signal on the same channel. This effect normally occurs in both a-m and f-m systems, although to a different degree. If the two carriers are of identical frequency so that there is no resultant beat, or if the carriers are

FIG. 8 - Cochannel operation, capture effect
sufficiently displaced in frequency so that no audible beat is produced, the capture or signal-depression effect will be more apparent, generally accompanied by variation in output noise level. If the carrier separations are such that the heterodyne products fall in the audible range, heterodyne-tone masking of the desired signal will occur, making it difficult to segregate the capture phenomena.

In these trials, as previously mentioned, a consistent effort was made to secure identical carrier frequencies for both the desired and interfering signals. Due to unavoidable variations between the control crystals, audible heterodynetone effects were encountered in most cases. Therefore, common channel operations were evaluated on two bases. In the laboratory trials, capture effects were segregated by the use of extremely sharp filters. The combined effects, in both the laboratory and field trials, were evaluated using speech intelligibility or articulation techniques. For the purpose of the captureeffect comparisons, a depression of the desired signal output to 30 db below its interference-free level was chosen as the standard of comparison. This value of 30 db represents the maximum depression of desired signal output level beyond which it was considered no longer practicable, under normal operating conditions, to obtain intelligence from the desired signal in the presence of the interfering signal.

Adjacent-Channel Trials

In the adjacent-channel interference studies, the cross-modulation

FIG. 9--Cochannel operation, intelligibility test
measurements were made employing standard Navy techniques. Some of the $30-\mathrm{db}$-below- 30 -watts interference measurements with a-m were discontinued at separations of 2.4 mc , since closer frequency spacings appeared to result in direct breakthrough. Information obtained subsequent to these measurements, however, indicated that direct breakthrough actually occurred at frequency spacings of about 1.2 mc for both the $\mathrm{a}-\mathrm{m}$ and f-m systems.

The standard interfering signal level of 30 db below 30 watts (1.23 volts rms) was adopted as representing the maximum likely interference to be encountered in uhf shipboard installations with present transmitters. The output s / n ratio depression effects are considered to be largely caused by carrier interference phenomena in the limiters and final detector, with possibly some mixer saturation effects. The onset of these effects was indicated by desired signal output decrease or noise output level increase, or, more usually, by the occurrence of both changes simultaneously in the presence of the interfering signal.

Range Trial Results

The average of six laboratory range runs is plotted in Fig. 5A. Increasing attenuation in the propagation path, shown as the abscissa, is equivalent to a decreasing level of signal input to the receivers, such as would result from opening the range in field tests. Figure 5B is part of the record of one of the field tests in the medium and weaksignal region, made with two ships drawing apart in an open-sea area about 200 miles from land. It shows the fluctuations in signal level which make field data more difficult to interpret than controlled laboratory test data. Figure 5C is a similar graph for air-to-ground transmission. These last tests were characterized by very rapid fluctuations of signal input level, which tended to obscure differences in performance by introducing meter lag effects and increasing the difficulty of averaging input and output meter readings. In general, however, the data for all tests indicated a crossover of the $\mathrm{a}-\mathrm{m}$ and $\mathrm{f}-\mathrm{m}$
range curves at output s / n ratios between +14 and +20 db .

Figure 6 shows the transmitter power increase (or decrease) required to provide the same output signal-to-noise ratio with f-m as obtained with a-m for the same range or distance from the transmitter. This comparison is based on the laboratory trials, which were essentially confirmed (within 5 db) by the associated field trials. The transmitter unmodulated carrier output power requirement is the same for both systems at an output s / n ratio of +19 db with the imperfect limiting of the ratio detector. For s / n ratios of less than +19 db , the $\mathrm{f}-\mathrm{m}$ transmitter requires more unmodulated carrier power, while the converse is true for s / n ratios greater than +19 db . The dashed curve shows the theoretical comparison based on an ideal f-m receiver with perfect limiter. Under these conditions, the same a-m and f-m transmitter unmodulated power is required for $+11-\mathrm{db}$ output s / n ratio, with the f-m transmitter requiring about 0.7 db more power than the a-m transmitter for each db decrease of s / n ratio below +11 db and about 0.7 db less power for each db of s / n ratio increase above +11 db .

Radar Interference Test Results

In the two-signal investigations, in which the interfering signal was a pulse-modulated off-channel carrier, radar transmitters were used to produce the undesired signal.

With radar frequencies from well

FIG. 10 -The a-m crosstalk from adjacent channels
below to well above the desired signal (all outside the receiver signal band), peak power outputs of very high level, pulse durations ranging from very short to long, and pulse repetition rates covering a wide range, no observable interference output was noted from the $\mathrm{f}-\mathrm{m}$ receiver under any conditions. Some interference was observed in the a-m receiver output, but this was completely eliminated when the noise limiter was turned on. Spacings between the radar and receiver antennas were adjusted to produce maximum possible interference. Actual antenna separations ranged from one-quarter inch to ten feet. Various levels of desired signal were used, with the receiver on a channel frequency of 328.2 mc .

Impulse-Noise Test Results

In the two-signal studies in which the interfering signal was impulsetype noise, the spark generator previously mentioned was used to provide a broad spectrum of interference which centered close to the desired-signal frequency. The results of these studies are shown in Fig. 7, in the form of the f-m transmitter power increase (or decrease) required to provide the same s / n output ratio with f-m as obtained with $a-m$ for the same distance from the transmitter.

The curves indicate that for s / n ratios of +25 db or less, the $\mathrm{a}-\mathrm{m}$ system with noise limiter on requires less transmitter power than the f-m system and, conversely, for s / n ratios above 25 db , the $\mathrm{f}-\mathrm{m}$ sys-

FIG. 11-Depression of s / n by adjacent a-m carrier
tem requires less transmitter power than the a-m system. The ave conditions marked on the curves apply to both the a-m and the f-m receivers. The large difference between a-m and f-m performance with ave on is believed to be due mainly to the ave bias generated by the noise impulses, which reduced the receiver gain to a level not favorable to best $\mathrm{f}-\mathrm{m}$ limiter action. Incorporation of an f-m limiter more nearly approaching the theoretical ideal should result in more nearly equal performance between the f-m system and the a-m with noise limiter on.

Common-Channel Test Results

Figure 8 is a plot of the capture effect encountered in two-signal operation, with both the desired and undesired carriers nominally of

FIG. 12-Depression of s / n by adjacent f-m carrier
the same frequency and the undesired carrier exceeding the desired carrier level. It was measured by segregating the desired signal from other masking output, such as heterodyne beats by use of a sharp filter (wave-analyzer). The graph shows that for a desired-signal output s / n ratio on the order of +15 to 20 db , the a-m system can withstand an interfering carrier level about 10 db higher than the $\mathrm{f}-\mathrm{m}$ system for a $30-\mathrm{db}$ depression of the desired signal. Incorporation of limiting more nearly approaching the theoretical ideal would re-

FIG. 13-Adjacent-channel operation, interference 2.4 mc below

FIG. 14—Adjacent-channel operation, inferference 2.4 mc above
sult in slight increase in slope of the f-m capture curve, resulting in greater capture effect, with the 30 db standard signal depression occurring at lower undesired-to-desired carrier ratios.

Figure 9 shows an intelligibility comparison with the undesired carrier below the desired carrier level. No output components were filtered out in this test. The graph shows the number of words correctly understood when listening to the f-m system for each one hundred words understood with the a-m system; it is comparative and does not show the absolute intelligibility of either system. The average a-m intelligibility was, however, in the order of 50 percent between -10 and -20 db undesired-to-desired carrier ratio. The $\mathrm{a}-\mathrm{m}$ and $\mathrm{f}-\mathrm{m}$ systems employed in the laboratory tests had a measured audio distortion overall of about 5 percent at 1,000 cps, as previously indicated.

Figures 8 and 9 together cover input ratios ranging from an undesired signal well below the desired signal level, under which condition masking by heterodyne tone is the main effect, to undesired signals well above the desired signal level, where capture effect is of more importance. Incorporation of more nearly perfect limiting could be expected to cause a greater downward tilt of the curve in Fig. 9, when the comparison is based on the same
interference-free output s / n ratio of +27 db .

Adjacent-Channel Results

Figures 10 and 11 show the cross-modulation and s / n ratio depression effects which occur in the a-m system with two-signal adja-cent-channel operation. The crossmodulation curves of Fig. 10 are extrapolated to the region of direct signal breakthrough. The curves show less crosstalk from interfering signals above the desired signal frequency than from interfering signals below the desired frequency. This difference is due mainly to the alignment of the broad preselector circuits preceding and immediately following the first r-f amplifier tube in the receiver relative to the desired carrier frequency.

Figure 12 shows the depression of the s / n ratio of the desired signal in the presence of an interfering signal adjacent in frequency to the desired signal in the f-m system. (A similar difference between the two regions on either side of the desired signal appears as in Fig. 10, for the same reason.) During the course of these trials, no crosstalk due to cross-modulation effects was discernible in the f-m system.

Figure 13 summarizes the effects of adjacent-channel interference in both the a-m and f-m systems, with the interfering signal 2.4 mc below the desired signal frequency at a
level of 30 db below 30 watts. From these curves, it is apparent that:

At input signal levels corresponding to an output s / n ratio of the desired signal without interference of +20 db or less, the interfering signal causes substantially constant depression of s / n. This depression is about 1 db with $\mathrm{a}-\mathrm{m}$ and about 6.5 db with f-m.

Above this $+20-\mathrm{db}$ point, the $\mathrm{a}-\mathrm{m}$ s / n depression remains constant at about 1 db , while the f-m s / n depression decreases.
The major interference effect in the case of the a-m system is the crosstalk resulting from cross-modulation, while in the $\mathrm{f}-\mathrm{m}$ system it is the depression of the s / n ratio of the desired signal.

If it is assumed that the deteriorating effects of cross talk interference and fluctuation-noise interference are of equal significance, it can be concluded that at input signal levels corresponding to an output s / n ratio below about +14 db without interference, the resulting ratio of desiredsignal to interference is higher with $\mathrm{a}-\mathrm{m}$ than $\mathrm{f}-\mathrm{m}$. Above this $14-\mathrm{db}$ point, the converse is true.

Figure 14 is a graph similar to Fig. 13, but with the interfering signal 2.4 mc above the desired signal frequency. The curves show less effect on the desired signal by the interfering signal. The relationships which exist are, however, similar to those shown in Fig. 13. Limiter performance closer to the theoretical ideal in the $\mathrm{f}-\mathrm{m}$ case could be expected to result in greater output s / n depression effect, with, however, a lower de-sired-signal input level required to produce the indicated output s / n without interference.

Interior of line car, showing operating position. Busy and call visual signals above and to right of conductor

Pushbutton Selective

Abstract

Control transmitter is turned on and a four-digit code is automatically keyed in less than a second after the touch of a button. Selective calling unit employs a unique combination of relays and tubes as time-delay elements, replacing conventional dial. A transit dispatching system is described

T1 HE INCREASING USE of $f-m$ radiotelephone equipment by the various services operating in their assigned frequency bands between 152 and 162 megacycles has created a problem of intraservice interference that has only been alleviated by cooperative sharing plans and operating practices to cut the amount of time that any one station uses its facilities.

One scheme for enhancing the usefulness of any one channel is selective calling together with a lockout system that prevents any but the called station from listening or talking while the selective function is employed. Such selective calling equipment has already been described ${ }^{1,2}$ and used. However, selective equipment that encompasses the control of any appreciable number of stations is predi-
cated upon the use of either a telephone type dial or the manipulation of a series of switches in certain sequence. While some services can perhaps afford the time necessary, others, such as taxi dispatching, find that any system taking more time than that required to depress a foot switch is inadmissible.

One of the most usual methods of obtaining a large number of selective combinations is the use of fourdigit codes (such as 1126 or 2314) the sum of which is 10 . It is the necessity for dialing four digits that takes the time.

Pushbutton Calling

With this problem in mind, The Hammarlund Manufacturing Co. has supplemented its line of dialoperated selective calling equipment
with a pushbutton unit that automatically translates the dispatcher's or operator's information into the four-digit 10 -total code required by the system. The equipment to be described employs banks of keys numbered from 1 to 84 , but these numbers can just as well be replaced by serial numbers associated with the remote station, by colored tabs, letters of the alphabet, or even with pictures or symbols.

In operation, when the desired button is depressed the transmitter is turned on, the selective calling code is transmitted, and the transmitter is again turned off. All three operations are accomplished within about 0.8 second. Only the called station can reply, and visual supervisory signals are illuminated at both the control and remote stations to show the dispatching oper-

Complete central station coding unit actuated by pushbution control sends out four-digit cipher

Calling

By J. K. KULANSKY
Mobile Systems Engineer

Hammarlund Manufacturing Co., Inc. New York, N. Y.

Central station selective control board. Numbers can be replaced by symbols or other designations
ator the condition of his equipment.
Simplex operation (customary practice) can be carried on with the dispatcher turning his carrier on and off by means of a foot pedal. When the call has been completed, the central operator presses his reset button. Within a $0.25-$ second period the carrier will be turned on, the coded clearing signal sent out to unlock the remaining remote stations, the carrier will go off and the dispatcher's board will indicate that the system has been restored for normal incoming calls, or for another coded outgoing call. If it is desired to call all stations, a single special button is depressed and 0.4 second later all remote stations can talk or be addressed. Multiple calling of certain predetermined groups can also be accomplished in 0.5 to 0.6 second, by
depressing a single group button for the section desired.

A complete block diagram for the central station is shown in Fig. 1. The significant elements of the earlier dial-operated coder at the left are interconnected with the newer pushbutton device that can be used to replace the dial. The function of the electronic circuits in the three upper right-hand blocks (V_{2}, V_{3}, V_{4} in Fig. 2) will be more fully discussed after the action of the system as a whole has been treated.

The stepping switch K_{7} associated with the digit storage device is actuated by a solenoid and comprises three pairs of wiping contacts that traverse three 20 -position rotary switch banks. Contacts 1 and 11, 2 and 12, and so on, are wired together so that the wipers
are always ready to trace out a 1-to-10 sequence without restoring the switch to a neutral position.

Starting a Call

To initiate a call, the proper button is depressed, resulting in the actuation of the coding delay timer V_{1} which immediately energizes the delay timer control relay, K_{1}. The pulse train initiator relay K_{5} is then closed, energizing the transmitter control relay which puts the transmitter carrier on the air. At the same time, a green carrier indicator lamp is lighted at the control position. When the period of the coding delay timer V_{1} has elapsed, relay K_{1} falls back to its normal position to complete the ground path of the rotary magnet circuit associated with the digit storage device. When this ground path through the interrupter contacts $K_{7 \text {, }}$, normally closed contacts K_{3}, K_{44}, K_{5} and K_{1} is completed, the rotary magnet is energized.

When the rotary magnet armature is pulled closed the pawl on the rotary switch loads a spring that actuates the wiping contacts. When the spring completes the stroke, the interrupter contact $K_{i A}$ opens. At the instant that the rotary magnet was energized, a positive impulse was passed through pulse transformer T_{5} to the grid of the pulse train relay generator V_{2} which, in turn, operates tone keyer V_{0}. The tone keyer sends a 3-kilocycle signal through mixer tube V_{8} to the audio input of the transmitter.

As contacts $K_{7 a}$ open at the completion of the rotary switch initial stepping cycle, a positive pulse is transmitted to digit generator V_{s} and relay K_{3} is immediately energized. When contacts K_{38} open, the circuit through the rotary magnet is broken. It remains broken until the time delay in V_{3} has elapsed, whereupon the contacts $K_{3,}$ close and the stepping cycle is repeated. The action is such that the rotary switch steps at about 20 pulses per second.

Digit Memory

The digit storage device is interconnected with the pushbutton keyboard so as to set up the proper circuits between contact 10 (and 20) and certain intermediate points
for the code that is to be transmitted.

For example, the code for button 79 might be 5221 so that contacts 5,7 , and 9 would be connected via button 79 to contact 10 . When wiper contact $K_{\tau B}$ stops on an interdigit rest interval that is so connected, a positive impulse is passed through the digit storage device to interdigit interval timer V_{4}. Operation of V_{4} triggers digit generator V_{3} in a manner to be described later so that the digit generator control relay remains operated for a period of approximately 100 milliseconds. At the end of this interdigit space, $K_{3,}$ will again be allowed to close and the rotary switch will complete the keying of the predetermined code group, stopping on the tenth contact. Again the interdigit space will be initiated, and in addition, with $K_{3 B}$ closed, the circuit will be closed through wiper contacts K_{-c} to short-circuit the turns of pulse train initiator relay K_{5}. When the contacts $K_{6 \lambda}$ open, the rotary magnet circuit through K_{7} opens. At the same time, the transmitter control relay also opens, turning off the carrier and extinguishing the supervisory indicator light. Concurrently, the red call complete or not reset visual indicator lights to show that the selective call has been established (awaiting the answer of the called station) and that all other stations are in the locked-out condition with their busy lamps lighted. The sequence described provides for simplex operation in which a foot switch or other device is used to place the transmitter on the air for subsequent conversations. It is also possible to depress any other call button and establish communication with any other remote station or stations without releasing the first.

For semi-duplex operation, in which the central station transmitter carrier remains on the air for the full duration of the dispatcher's use, the equipment connections are slightly modified by a switch provided. The call is initiated as before except that the duplex relay K_{6} is energized simultaneously with the pulse train initiator relay $K_{\overline{5}}$ and maintains the carrier on even after K_{5} opens to break the rotary
magnet circuit and terminate the coded digit train.

When the all call button is depressed, the rotary magnet action will continue the stepping switch to the tenth contact without interruption, after which relay K_{5} is shut off. Each of the called stations will then be activated to send or receive.

Reset Cycle

At the completion of a call, the reset button is depressed, resulting in the operation of the coding de-
lay timer V_{1} and the turning on of the transmitter. A mechanical time delay causes the reset switch to operate the reset translator relay K_{4} just before it operates V_{1}. Contacts $K_{6 ;}$ turn out the red call-complete lamp and contact K_{44} opens the lead to the rotary stepping magnet, disabling the calling mechanism during the ensuing recycling operation.

When delay timer control relay K_{1} falls back to its normal position, the reset initiator relay K_{8} is closed through contacts $K_{s c}$. Dash gener-

FIG. 1-Block diagram of the central station control and code-pulsing unit

FIG. 2-Circuit diagram of tube and relay elements used to encipher the calling information
ator V_{5} operates tone keyer V_{8} and the transmitter is modulated with a 3,000-cycle tone for about 250 milliseconds. At the end of this time interval, a positive reset shutoff signal is passed to the interdigit interval timer V_{4}. In the same manner as that described above, digit control relay K_{3} is energized and shuts off K_{5}. All remote units are restored to normal and the transmitter is turned off. The control unit will now indicate the normal standby conditions with both lamps off.

Digit and Interval Controls

That the mechanism is a unique combination of relays used in the simplest possible manner together with electron tubes used as delay and pulsing elements is evident from the simplified circuit diagram of Fig. 2. The action of the digit and interdigit controls is explained with the help of the approximate waveforms given in Fig. 3.

When relay K_{5} (Fig. 1) closes the d-c control circuit to the rotary magnet K_{7} of the stepping switch, the magnet is energized. A positive impulse is transmitted through pulse transformer T_{5}, through capacitor C, to the grid of the pulse train relay generator V_{2}. The plate (pin 5) will go negative for approximately 0.035 second. The rotary magnet will allow the pawl of the stepping relay to engage the ratchet which in turn will load a spring attached to the wiper arm assembly. In approximately 0.017 second the loading cycle will have been completed and the interrupter contacts $K_{7 d}$ carrying d-c to the stepping magnet will be opened. At this time, a positive impulse will be transmitted from pulse transformer T_{4} to the grid of the digit generator V_{3} and the associated plate (pin 5) will go negative.

At this point, the pawl will return to its neutral position just as the spring recoils and steps the wiper assembly to the first contact. The interrupter contacts $K_{T A}$ will again be closed, but the circuit through the rotary magnet is incomplete because of the open contacts K_{34} of the operated digit generator relay K_{3}. When the time interval has elapsed and contacts K_{34} again close, the cycle is repeated.

FIG. 3-Waveforms associated with generation of digits and spaces

However, the circuits are set up to restrict the maximum pulse rate to 20 pps . When the wiper contacts of the stepping switch rest on a coded digit interval at the end of a digit generator cycle, a positive impulse is passed from the plate (pin 5) of V_{s} through the digit storage device to the grid of the interdigit interval timer V_{4}.

The impulse, received at the grid (pin 4) together with the accelerated action provided by inductance L_{4} provides a rapid firing of V_{4}. This effect causes the other plate (pin 2) of V_{4} to rise rapidly in potential and to accelerate further the rise in yoltage of the grid (pin 4) of V_{3} through 1.1 megohm d-c coupling resistor R_{21}. There arises a so-called double-cumulative action between V_{4} and V_{3} that also results in digit control relay K_{3} remaining energized for a period of approximately 0.1 second. At the end of this period, K_{3} again falls back to normal, closing the circuit to the rotary magnet K_{7} through the contacts K_{34}. The cycle is repeated four times to correspond with the four-digit code set up by the pushbutton control to which the digit storage device is connected. The starting and shutoff cycles are controlled by the relay contacts in the ground control lead of the rotary magnet d-c supply circuit (as shown in Fig. 1).

Mobile Decoder Unit

The decoder unit located in the remote or mobile receiving equipment comprises several miniature telephone-type relays and a stepping switch with ten contact positions. The switch is recycled by
means of a return spring with a release magnet to disengage the ratchet detent.

The coded pulse train (Fig. 4) from the pushbutton unit is taken off in the receiver at the discriminator audio output point ahead of any manual volume control. The coded information passes through a bandpass filter tuned to $3-\mathrm{kc}$. The sharpness of the filters is such that frequency channels 100 kc apart might also be used without mutual interference. The information is then fed to limiter-amplifier V_{2} which amplifies only the 3 -kc bandpass information to the exclusion of voice frequencies or spurious noise that occurs when a carrier is not present. A second 3 -kc filter with an effective Q in the order of 150 causes the pulse detector amplifier V_{1} to amplify when a predetermined threshold level is established.

Under these circumstances, a voltage exists via the feedback loop to limiter-amplifier V_{2}. The effect is to increase the overall gain of the amplifier and cause the pulse detector to operate pulsing relay K_{1}. When the pulsing relay closes, the stepping switch K_{7} advances to the first position. In addition, a signal is passed to the decoding relay K_{2} as well as over the release line to the lockout relay K_{θ}.

Initially, the last mentioned operations (decoding and lockout) are used for purposes to be described below. During the space time (no tone) separating the marking cycles (tone on) the lockout relay $K_{\text {}}$ is operated through the lockout line and remains energized. When a digit pulse train (the impulses of a single digit) is ended, the pulsing relay K_{1} will fall back to the normal position and cause voltage to be applied to the decoding relay K_{3} through the coding plug if the first position for this group does not correspond with the code transmitted. In the coding plug all the undesired positions are wired together. The plug bears a code number that represents the unwired or desired positions. The signal response of the decoder can be quickly changed by substitution of a differently wired plug.

Under the call rejection conditions outlined, the decoding relay K_{g} will operate the release magnet

FIG. 4-Simplified block diagram of the mobile decoder attached to radio receiver
$K_{T R M}$ of the stepping switch. When the next code group is transmitted after the 100 -millisecond delay, the pulsing relay K_{1} operates as before, but does not energize the stepping magnet $K_{78 M}$ in the unit because the decoding relay K_{2} remains operated through the marking (tone on) time of the digit pulse train and therefore maintains the decoding relay in its operated position until the entire four-digit code has been completed. Only the called station stepping switch will reach the tenth and final position. All stepping switches other than that at the called station will be resting in a neutral position with lockout relay K_{8} operated. Each transmitter will be locked out, the receiver audio muted, and the busy indicator lighted when this condition of call rejection is achieved.

Called Station Operation

In the called station, lockout relay $K_{\text {e }}$ will be released via the calling release line from $K_{7 B}$. The closed contacts $K_{0 d}$ will then operate call complete relay K_{5} which locks up. As K_{0} de-energizes, contacts $K_{8 B}$ close and the signal and audio lines are completed as far as contacts $K_{5 \lambda}$. The call bell or buzzer sounds, and the call lamp flashes. The busy indicator is extinguished and the transmitter lockout is relinquished.

When the operator lifts the hand-
set, the call-complete relay K_{5} is opened and the call bell and call lamp are disconnected. As contacts K_{id} close, the audio line is completed to loudspeaker or handset, and the remote or mobile station is in readiness for two-way private communications. In some types of service, the alarm circuit can be dispensed with and the loudspeaker directly energized, so that the central dispatch operator can talk immediately without waiting for a reply.

If the called station is temporarily unattended and does not answer, a reset signal is transmitted by the central operator to pulse relay K_{1} as described. In all mobile equipments it will operate coding relay K_{2} which energizes release magnet $K_{\text {r®ur }}$. All stepping switches restore to the neutral position and each lockout relay K_{8} will be released. Although this operation restores the radio channel to normal standby condition and shuts off the bell at the called station, the lamp remains lighted as an indication that a call was put through in the operator's absence.

System Installations

Pilot models of the pushbutton selective calling unit were put into experimental service more than a year ago for taxi dispatching, greatly reducing the fatigue and occasional operator errors as com-
pared with a dial-actuated system.
Other new users of the system include the Philadelphia Suburban Transportation Co. operating trolleys and buses from the 69th Street Terminal to Ardmore, West Chester, Media, Llanerch, and Sharon Hill. The Media line runs off in a direction essentially southwest. The West Chester line to the west is crossed at Llanerch by the northsouth line from Ardmore to Sharon Hill. Total trackage is about 35 miles. Of the 50 -odd trolleys, one new car is radio-equipped and also a line car. Although some installations are contemplated in the older cars, 14 new trolleys scheduled for delivery in January 1949 will come completely equipped with selective calling radio. In addition to trolley installations, there are three dump trucks, a panel truck, two line trucks, and two tow trucks now in full operation. Of the 100 -odd buses some may be equipped as the need for communications arises.

Two aspects of rail transportation produce a need for selective calling radio. Because a trolley car cannot pass a stalled vehicle it may facilitate transportation to use the remaining single track of a dualtrack system for temporary bidirectional traffic. Alternatively, shuttle service on both sides of an obstacle may be a better expedient. With full knowledge direct from the scene of the breakdown, the dispatcher at Llanerch can intelligently direct trolley operations and also call out a line car for towing, or mobile repair equipment over the highways. Because the importance of avoiding mass hysteria and undue anxiety to passengers is well recognized, the privacy of the system by means of selective switching, call buzzers, indicators, lights, and telephone handsets insures that only those who must be involved are aware that a difficulty has arisen.

Acknowledgment

The author acknowedges with thanks the cooperation of all those who have aided in bringing the project to a successful conclusion.

References

(1) J. K. Kulansky, Selective Calling, Elfocronics, p 96 , June 1946 .
(2) E. H. B. Bartelink, Mobile Selective Calling, EuECTRONrcs, p 103, Nov. 1948.

Automatic Direction-Finder

Aircraft instrument employs unique switching circuits, and a novel loop structure which has no moving parts. The indicator will follow bearing changes of one quarter degree

By JOHN R. STEINHOFF

Directional Instruments Corp. New York, N. Y.

DIRECTION-FINDING INSTRUMENTS for aircraft must meet many stringent requirements. The one described in this article combines light weight and small volume with one-degree accuracy and instantaneous automatic operation. Radio transmitters are used as fix points; a dial on the instrument panel gives
continuous bearing readings in degrees.

The externally-mounted loop assembly is stationary, eliminating the need for motors, bearings, and wiping contacts, and since it is hermetically sealed, weather extremes have no effect on the instrument's operation. The loop assembly consists of four coils wound on a cylindrical form. This type of construction permits wide spacing between turns, which results in greatly improved Q. The shield

Externally-mounted loop is hermetically sealed for reliable all-weather operation, and does not move
shell is streamlined for minimum air drag.
A drawing of the loop assembly showing the relative positions of the four coils is shown in Fig. 1A. Coils 1 and 2 are positioned 90 degrees from coils 3 and 4, and the coil pairs are wound so that when combined with signal voltage from the sense antenna the antenna field pattern consists of four right-angle cardioids, shown in Fig. 1B.

By a special switching system, the four coil voltages are sampled

FIG. 1-Block diagram of the entire unit. (A) shows coils in the loop and their positions with respect to each other

Circuit diagram of the automatic direction-finding equipment. All parts, except the loop and indicating meter, are mounted on the chassis shown below. The $250-\mu \mathrm{f}$ capacitors across the indicator coils damp the instrument so that no hunting occurs. Frequency
separately and in sequence for $1 / 200$ th of a second, fifty times a second; and since the individual coil voltages depend on the angle of wave front with respect to the loop assembly, the output will be a fiftycycle waveform, with each cycle divided into quarters, the amplitude of each quarter being proportional to the voltage picked up in the corresponding antenna coil. Typical variations of signal level applied to the grid of the 2nd 6L7 tube have a waveform as seen in Fig. 1C. This stepped voltage is a combination of loop coil and sense antenna signal voltages.

The quarter sections of the receiver output cycles, Fig. 1D, are switched (again, separately and in sequence) to the four coils of the indicating meter, which is constructed and calibrated to give readings in degrees.

Switching System

The heart of the switching system is the four-phase oscillator shown in the complete circuit diagram at the top of the page. It consists of four triodes (two 12AUT's) connected as individual blocking oscillators with similar
circuit values. Each stage is inductively coupled to the preceding stage, so that when one stage ceases to conduct, the following stage is tripped before recurrence of conduction by natural oscillation, as illustrated by the grid voltage curve shown in Fig. 1E.

Since the accuracy of the switching intervals depends on the action of the four-phase oscillator, its operation is controlled by a separate pulse generator which limits the conducting time of each fourphase oscillator triode to about fifty percent of its natural conducting time. Thus circuit variations, such as changes in tube mutual conductances, have no effect on the operation of the four-phase oscillator.

Figure 1F illustrates the cathode waveforms for the tubes in the four-phase oscillator. These current pulses are responsible for the switching of the antenna loop coils. The actual switching process is accomplished by the four germanium crystals, G_{1}, G_{2}, G_{3} and G_{4}, which are connected in series with each individual loop coil and a common impedance-matching transformer. These diodes act as varistors and are individually activated by the
cathode current of the corresponding triode in the four-phase oscillator. With a cathode current of 10 ma through the crystal the r-f resistance is very low. Thus one circuit is completed while the other three circuits are virtually open due to the slight back voltage across the diodes.

The input of the receiver (the grid of the second 6L7) sees the coil voltages combined with the sense antenna voltage, which is electronically coupled to the receiver through its own series of input transformers.

Receiver

The receiver is a three-band superheterodyne covering 200 to $1,700 \mathrm{kc}$ with an average sensitivity of about $1.5 \mu \mathrm{v}$. The receiver sensitivity is a compromise which seems to give the best overall performance of the system.

Two i-f channels are used, one for direction finding and one for audio. A special winding on the frequencycontrol pulse-generator transformer is used in conjunction with a clipping circuit to form a negative pulse on the grid of the audio i-f tube, which causes the tube to cut

range of the receiver is 200 to $1,700 \mathrm{kc}$ in three bands and the average sensitivity is 1.5 microvolis. Two i-f's are used, one for direction finding and one for audio
off momentarily during the transition period of switching, permitting audio reception simultaneously with direction-finding.

The direction-finder channel feeds into a rectifier, which in turn provides a d-c bias voltage to the SC39F voltage amplifier, varying in amplitude at the same ratio as the fluctuations in signal voltage applied to the receiver.

Output Switching

Four type 2D21 thyratrons with identical load resistors and common cathode connections through an inductance form the output switch. The voltage across the common cathode inductance caused by current flow through one of the thyratrons is sufficient to bias the other three thyratrons to cutoff.

Top view of direction-finder chassis

Output switching is accomplished as follows: A winding on the frequency-control pulse generator transformer supplies a momentary negative pulse (positive pulses are clipped by the 12AL5) to the grid of the d-c voltage amplifier. This causes the SC39F to cut off, removing anode potential from the conducting thyratron, thereby deionizing it. Stimultaneously, the grid of the following thyratron is driven more positive, permitting ionization by virtue of the reduced grid bias resulting from the corresponding four-phase oscillator triode's conducting.

Indicator

The indicating meter is essentially a four-terminal differentialpotential instrument similar to a

Indicator is mounted on instrument panel
ratiometer. It is angularly responsive to changes in polarity and current.

Four stationary coils are positioned around the periphery of an Alnico permanent-magnet rotor which is transversely magnetized. Rotor and pointer have jeweled pivots, minimizing hysteresis losses to a point where one quarter of a degree bearing changes will be followed by the indicator. Also a copper tube placed very close to the magnetic rotor induces eddy currents which create mechanical damping.

Opposite coils are connected in series, and potentials applied to the four terminals (Fig. 1G) cause an angular displacement of the indicator pointer.

The meter is connected to the four load resistors in the cathode circuit of the SC39F tube. Four $40-\mu \mathrm{f}$ capacitors across the load resistors and $250-\mu \mathrm{f}$ capacitors across the instrument coils adequately damp any pulsations of the meter pointer due to modulation or transients.

The equipment includes an S meter to facilitate tuning. All apparatus, other than the loop and the indicating meter, is encased in a unit $7 \frac{1}{2}$ inches wide, $6 \frac{1}{2}$ inches high, and $14 \frac{1}{2}$ inches deep. A view of the chassis is shown in the accompanying photograph. The components at the left of the chassis photograph form the vibrator power supply and the four-tube output switch. The r-f portion is at the right (the front of the chassis) and the blocking oscillator transformer unit is mounted underneath the chassis (not visible).
The equipment described is the result of extensive research and flight testing. If the signal is audible in the receiver earphones, the circuit will give a direction indication. A field strength of 5 p.v per meter is sufficient for one-degree accuracy.

The system is, of course, subject to the usual skywave difficulties; and, as in most aircraft instruments, the plane itself introduces distortion of the field and a correction chart must be referred to for accurate bearing readings. The instrument is intended primarily for itinerant aircraft.

FIG. 1-Block and circuit diagrams for rectilinear waveformer. Figure 1 C shows linearity of response to mask height

FIG. 2-Commercial oscilloscope converted to a waveform generator

Photoelectric

By DAVID E. SUNSTEIN

INNUMERABLE APPLICATIONS may be found for an instrument capable of generating a diversity of waveforms. Likewise there is a universal need for a readily reproduceable nonlinear circuit element. It should have a high degree of accuracy and be capable of outputs over a wide range of frequencies. Such a device is the fourterminal instrument described here.

The Photoformer, as it is called since it generates waveshapes through the use of a cathode-ray tube and phototube, is fed with a sawtooth voltage of the desired frequency. This sawtooth voltage causes the cathode-ray tube spot to sweep horizontally, and a phototube viewing the screen, in conjunction with suitable amplifiers, causes the spot to vary vertically to conform to the contour of a paper mask which is fixed to the cathode-ray tube screen. The output voltage waveshape will be a replica of the shape of the paper mask used.

When used as an arbitrary nonlinear four-terminal network, the cathode-ray tube beam is deflected by the input, and the input-output relationship is governed by the edge of the mask used.

Essentially the device functions
degeneratively so that variations of cathode-ray tube brilliance, phototube sensitivity, and the gain of any amplifiers employed have negligible effect on the transfer characteristic. The device is limited in response time by conventional bandwidth considerations and may readily be made to have rise times of 10 microseconds or less. Circuit refinement, with the best of present-day tubes, permits the achievement of rise times of less than 2 microseconds.

Principle of Operation

The basic elements of the instrument are shown in Fig. 1A. The cathode-ray tube is initially adjusted to provide a spot centered near the top of the cathode-ray tube face. The phototube views light emitted from anywhere on the cathode-ray tube face except those regions which lie behind the mask.

The output of the phototube is connected through suitable amplifiers to the vertical deflecting plates of the cathode-ray tube. Thus changes in light intensity at the phototube cause changes in the vertical height of the spot on the cathode-ray tube. Such changes in spot height may cause further
change in light on the phototube.
The feedback loop formed in this manner is phased so that increasing light on the phototube causes the spot to move downward, and if the gain around the feedback loop is sufficiently great, this motion continues until a substantial fraction of the light from the spot is hidden behind the mask. At this vertical position equilibrium is maintained. If the mask is in close juxtaposition to the plane of the phosphor, or if the plane of the phosphor is imaged by a suitable lens into the plane of the mask, then small changes of spot height away from the equilibrium position tend to cause large changes of light on the phototube. Therefore the spot will always reach equilibrium very nearly at the height of the mask.

If the deflection sensitivity of the cathode-ray tube is independent of beam height, which is ordinarily the case, the output voltage is proportional to spot height. Furthermore, since the spot height is very nearly the height of the mask, the output voltage will likewise be substantially proportional to the mask height at any instant of time after equilibrium has been established.

The time to establish equilibrium

FIG. 3-Typical waveforms and the masks used. Top row shows square wave at recurrence frequencies of $75,5,000$ and $16,000 \mathrm{cps}$. Repetition rates of the more gradual shape shown on bottom row are 75, 1,200 and 4,300. Note small distortion

Waveform Generator

Through the use of simple paper masks fixed to the screen of a cathode-ray tube, this instrument is capable of producing practically any shape waveform with good accuracy over a wide range of frequencies. A few of the many possible applications for such a device, other than as a waveform generator, are discussed
and the exact height of the spot at which equilibrium is obtained will be determined from conventional feedback criteria. It is apparent that the duration of the transient prior to establishment of equilibrium is determined by the total delay time around the feedback loop. This delay time includes the decay time of the phosphor cascaded with the delay time through the amplifier and phototube. If short rise times are desired in the output, this total time delay must be short. Phosphors which exhibit short decay time, in order of decreasing persistence, are P1, P11, P5 and P15. By using P5, it is possible to provide rise time in the output circuit of less than 10 microseconds, which corresponds to a high frequency cut-off of approximately 150 kc .

Likewise, the degree of accuracy with which the center of the spot coincides with the mask height is determined in the static case by the
gain around the feedback loop. For loop gains on the order of 40 db or greater, the position of a given portion of the spot (such as its center) will generally coincide with the mask displacement to an accuracy better than ± 1 percent.
The input signal is applied to deffect the spot horizontally. If the input signal varies slowly, the spot will come to equilibrium at the height of the mask corresponding to the horizontal position to which the spot is deflected.
Since horizontal spot displacement is nearly proportional to horizontal deflection voltage applied as input, and since output voltage is proportional to vertical height of the mask, the output voltage bears a relation to the input voltage substantially identical to the relationship between the vertical height of the mask and the horizontal distance measured along the mask. Thus, it is evident that any desired
single-valued transfer characteristic is provided once a simple optical mask is made of the desired characteristic.

Typical Operating Circuit

These fundamental principles have been applied in the apparatus shown in Fig. 2. Here a commercial oscilloscope is provided with an auxiliary light-shielded phototube and an amplifier. The schematic of the waveform-generating portion of the circuit is shown in Fig. 1B.

The output voltage obtainable from this system may be expressed in terms of the vertical height of the mask. When the mask is in close juxtaposition to the phosphor, the output voltage is given directly by the vertical deflection sensitivity of the cathode-ray tube times the mask height corresponding to the horizontal distance at which the spot has been deflected by an input
signal. Output voltages of approximately 50 volts per inch of mask height are typical.

A linearity characteristic was measured with the circuit of Fig. 1B, using the physical apparatus of Fig. 2 so arranged that the mask could be moved by a micrometer. The output voltage was found to vary with mask height as shown in Fig. 1C. In taking the data plotted in Fig. 1C a meter having an accuracy of 0.5 percent was used to read the output. Departures from linearity on the curve are of the order of magnitude of the possible meter calibration error, hence output is linearly related to mask height to within the commercial tolerance of highly precise meters.

In the dynamic case when the spot is deflected rapidly in the horizontal direction and caused to track a mask in the vertical direction, the output may depart from the proper value corresponding to the mask height.

Typical waveshapes generated are shown in Fig. 3. The top row shows the result when a square wave is traced from left to right. The square-wave mask is shown at the left. Because the vertical feedback amplifier passes the d-c component, there is no droop of the horizontal portions of the square wave at any recurrence frequency. The square-wave outputs shown are for recurrence frequencies of $75,5,000$, and 16,000 cycles per second. The rise and fall times are each approximately 10 microseconds, with an overshoot of about

3 percent initiating a decaying $170-$ kc shock-excited transient. The bottom row of Fig. 3 shows the generation of a more gentle wave.

Recurrent Wave Shapes

Using rectilinear coordinates, it is apparent that one cycle of a recurrent wave may be generated as the spot is deflected horizontally at constant writing speed, but to generate a second cycle it is necessary to restore the spot to its initial horizontal position. For this purpose a sawtooth voltage may be used as the horizontal signal. During the retrace time the system will try to generate a complete cycle of the wave in a very short time. This tends to cause a pip in the recurrent output waveshape, the pip occurring at the time of retrace.

If this pip is undesirable it can be eliminated by clamping means during the retrace cycle or more simply by use of a retrace time which is negligible compared to the response time of the Photoformer. The size of the pip is dependent upon the brilliance of the cathode-ray tube spot and any other factor which affects the gain around the feedback loop, since a change in the magnitude of the loop gain affects the response time. By adjustment of the loop gain and by proper choice in phasing of the cycle presented on the mask it is possible to render the pip negligible in most instances without resorting to clamping means.

For applications where a retrace pip is objectionable, an arrange-
ment using polar coordinates has been developed. A block diagram appears in Fig. 4A. The spot is deflected circularly at a constant angular rate by applying sinusoidal waves in quadrature to the deflecting plates. The time axis in polar coordinates corresponds to the angular coordinate. A mask is employed in which the radial distance to the edge of the mask varies with the angular coordinate in accordance with the time variation of the amplitude of the desired wave shape. The spot is made to trace the edge of this mask by permitting light from the spot as it arrives at the phototube to deflect the spot radially towards the mask, For this purpose a cathode-ray tube with a radial deflecting electrode is used.

In this arrangement, after generation of one cycle of the wave the spot is ready to generate a second cycle without being suddenly brought to a new position, hence continuous recurrent functions may be generated without a recurrent pip at the start of each cycle.

In general it will be found that the radial deflection of the spot varies with the voltage applied to the radial deflecting electrode in a nonlinear manner. The polar coordinates to which the waveshape is drawn will therefore have a nonlinear radial axle. This nonlinearity is dependent on the geometry of the cathode-ray tube and can be expected to be quite stable so that once a mask is drawn taking into account this nonlinearity, the wave-

FIG. 4-Block diagram (A) of unit for polar coordinates. Phase shifter and its characteristics are shown in B

FIG. 5-This phase splitter provides quadrature sine waves for circular sweep used in polar coordinate unit. The phase shift imparted by the top channel differs from that of the bottom by about 90 degrees for frequencies between 100 and $5,000 \mathrm{cps}$
shape generated is an accurate replica of the desired waveshape.

In order to provide a circular sweep over a wide range of input frequencies, a phase splitter has been employed as shown in Fig. 5. This phase splitter feeds the input signal into two channels each of which uses a simple phase distortion network of unity gain. Such a network is shown in Fig. 4B along with its phase response. Over a wide range of frequencies the phase shift varies linearly with the logarithm of frequency. By cascading two such networks having different time constants it is possible to increase the frequency range over which this linear relationship holds.

In one channel of the phase splitter of Fig. 5 two networks are employed, one with a quadrature point selected at $8,000 \mathrm{cps}$ and the other at 400 cps . The second channel of Fig. 5 contains an additional pair of phase-shifting networks whose phase shift varies linearly with logarithm of frequency. The time constants of these networks provide quadrature shifts at 1,500 and 75 cps . With this set of time constants, the phase shift imparted by the second channel differs from that of the first channel by 90 $\pm 9 \mathrm{deg}$ for any frequency from 100 to $5,000 \mathrm{cps}$.

Applications

Below are described a few of the innumerable applications of this instrument:

Volume - Compressor-Expander Combination-By employing the compression transfer characteristic as in Fig. 6, the dynamic range in the output is reduced instantaneously over that of the input. Such a compressed signal may be fed over a network having limited amplitude capabilities into an instantaneous volume expander (expansion curve). The curves in Fig. 6 are so chosen that the overall transfer characteristic is linear.

Fourier Analyzer-If the instrument is employed to generate an arbitrary wave from a curve of that wave, and if the output is fed to a wave analyzer or spectrum analyzer, then the Fourier transform of any given curve may be instantly obtained.

Synthetic Speech Generator-By

FIG. 6-A typical compression-expansion characteristic combination
employing a plurality of masks with various speech waveforms it is possible to generate the various sounds required for intelligible audio communication. By manipulating these masks manually through a suitable keyboard and by controlling the rate of horizontal sweep, intonation and syllabification can be provided to closely approximate actual speech.

Musical Sound Generator-For this purpose a plastic deformable mask can be employed which the musician shapes in accordance with the desired sound.

Frequency Modulator-By sending an input signal to be modulated in the form of a transverse vertical vibration along an opaque wire and by using the wire as a mask it is possible to provide an output which is a replica of the input but which is delayed in time in accordance with the horizontal displacement of the pickup spot by a modulating input signal. In this manner the signal to be modulated can be a complex wave.

Speech Scrambler-By providing an input signal to be scrambled in the form of a transverse vibrational wave along the wire as in the frequency modulator, and by employing a scrambling wave to displace the pickup point of signal along the wire according to a regular or arbitrary shape, the components of the speech output may have their various time coordinates thoroughly scrambled.

Bandwidth Compressor-By employing apparatus similar to that described above for a frequency modulator, the bandwidth required to transmit certain types of intelli-
gence may be reduced below that normally required. For example, when the intelligence to be transmitted is in the form of a picture having many areas of relatively constant illumination, the time required to transmit data on these areas by scanning may be reduced by causing these areas to be scanned more rapidly. Similarly, areas of the picture in which sudden changes in intensity take place may be scanned more slowly, thereby increasing the time required for transmission of sudden discontinuities and decreasing the time required for transmission of uniformly illuminated areas. The effect of this is to reduce the maximum frequency required for transmission of the picture without affecting the total time of transmission of the picture.

General Nonlinear Device-Multiplication or division of two unidirectional voltages may be achieved by employing two Photoformers to take the logarithms of both voltages. A third may be employed to take the antilogarithm of the sum or difference of the two logarithm voltages, thereby providing an output which is the product or quotient of the two input signals.

Linearizer-It is possible to correct for any nonlinearity that might appear in a communications process. For example, in recording sound on film by variation of the density of the film in accordance with the sound amplitude, a critical part of the process is the obtaining of a linear relationship between the film density and the input sound intensity. If a Photoformer is employed at either the input to the recording apparatus or at the reproducing apparatus, any nonlinearity in the density-versus-exposure curve may be accurately and quickly corrected, to provide an overall dis-tortion-free linear system. A flat frequency characteristic should be included between the distortion producing apparatus and the distor-tion-correcting unit.

The author expresses his appreciation to E. S. Brotzman, M. T. Bagley, R. D. Brown, W. E. Bradley, W. Miehle, E. Freyer and the many others who took part in the development of the unit and the preparation of this paper.

Capacitor-Discharge Recorder Applications

Abstract

Discussion of various recorder circuits incorporating capacitor-discharge networks. Noted are advantages and disadvantages of each type for various applications. Theory and operation of circuits and components are explained

CAPACITOR - DISCHARGE instruments, both indicating and recording, have been found extremely valuable for measuring wind speeds, and for determining the short-term average rates of similar variable phenomena.
The basic instrument ${ }^{1}$, shown in Fig. 1A, was originally intended for meteorological use, but recent experimentation with it has led to the development of a large number of derivative instruments, some of which have possible applications in many fields. Several of the more practical derivatives are discussed herein.

Relayless Instrument

Search for a very simple circuit, having no moving parts or contacts interposed between the instrument head and the meter, led to the development of the relayless circuit shown in Fig. 1B, which works sat-

By RONALD L, IVES

Department of Geography Indiana University Bloomington, Indiana
isfactorily through a very limited range of input frequencies, but indicates when it is "beyond its depth."

Constants are chosen so that C_{1} just attains $99.9+$ percent of full voltage during the open phase of the shortest contacting cycle to be measured. Also, the current during the longest closed phase likely to occur should not damage the meter. Capacitance of C_{2} is normally several hundred times that of C_{1}.
When the anemometer contacts of this device are open, C_{1} charges from the battery E, its rate of charge being determined by circuit constants. When the anemometer contacts close, C_{1} discharges through R_{2}, initial discharge being

PROVEN APPLICATIONS

Simple Instrument:
Measuring and recording of average wind speeds from contacting anemometer, rates of rainfall from tipping-bucket rain gauge, average stream flow from patent log
Simple Instrument with Auxiliary Infeed:
Measurement and recording of radioactivity disintegration rates, and average number of static bursts during thunderstorms

With Maximeter Attachments:
Indication of maximum or minimum value of any of the above
With Auxiliaries:
Operation of secondary devices when any of the above variables (or similar phenomena) exceeds a given rate
directed into C_{z} by L. As the circuit stabilizes, current flow follows the instrument circuit, $L-R_{3}$, until the anemometer contacts open. Charge remaining on C_{2} drains off through the instrument circuit.

With a recording instrument in the circuit the trace, at very low frequencies, consists of widelyspaced asymmetrical sawteeth. As the frequency is increased, the sawteeth decrease in separation and amplitude, eventually becoming a smooth curve of low amplitude. Further increase in frequency produces a smooth curve of higher amplitude, which reaches a maximum value at some specific frequency, and then falls off again as the frequency is still further increased.

Useful range of the instrument is the central portion of the smooth curve, from the first minimum to the first maximum. Because average current through the instrument is a combined function of frequency, contacting cycle, and circuit constants, calibration by cut and try is preferable to calibration by the somewhat involved formula necessary.

In some instances, a subsidiary resistor between L and R_{3} (Fig. 1B) will be found desirable in the instrument circuit.

In practice, this instrument circuit can be sealed against corrosive fumes, and has both small bulk and low cost. However, the lowest frequency indicated with substantial

FIG. 1 -In (A) the instrument current is nearly a linear function of relay rate. A relayless version is shown in (B)

FIG. 2-Several limitindicator circuits. Simple indicator in (A) is ideal for moblle installations, or where local power supply is limited or erratic. The other circuits are designed for use with triodes and thyratrons
correctness is about one fifth the highest frequency that can be shown, in the general range from five cycles per minute to ten cycles per second.

Limit Indicators

When a specific indication is needed as the impulse rate passes a given predetermined limit, whether high or low, a suitable rate-controlled indicator is produced by inserting an instrument-type relay such as a Weston in series with, or in place of, the instrument in Fig. 1 A .

Suitable correction of the load resistance value ($R_{s y}$ or of other circuit constants, is necessary to retain calibration, which is determined from the formula:

$$
I_{M}=\frac{1,000 C_{1} F E_{2}}{1+C_{1} F R_{M}}
$$

in which I_{s} is instrument current in milliamperes, R_{a} the instrument resistance in ohms, C_{1} the capacity of impulse capacitor in farads, E_{2} the battery voltage, and F the number of impulses per second.

Simplest form of such a limit indicator is shown in Fig. 2A. This arrangement is suitable for portable or mobile installations, or where local power supply is limited or erratic. Coupled to a multipole relay, this indicator can beased to
switch in and out a multiplier in the recorder circuit ${ }^{2,3}$.

Because an instrument-type relay has little power-handling ability, the circuit of Fig. 2B was developed. Here, the instrument-type relay throws the grid bias of a vacuum tube from definitely negative to strongly positive, so that the plate current of a triode can be increased by a factor of as much as 50 , and that of a thyratron by a factor many times greater.

Where very large loads are to be controlled (kilowatts), use of the first tube as a buffer, which operates a power thyratron through a simple cathode follower connection, is usually desirable.

The function of the resistors $R_{G_{1}}$ and $R_{G 2}$ in this circuit is to limit currents in the grid circuit to safe values. If these resistors are omitted, contacts of the relay may be damaged by circulating currents from bias supply and grid.

With a conventional instrumenttype relay, it is possible to have three control ranges-below minimum, between limits, and above maximum (as in Fig. 2B). Because these three ranges can be electrically independent, or can be interlocked in many different ways, a wide variety of automatic control devices can be operated.

Elimination of the relay, by use of a direct connection to the grid circuit of a vacuum tube, is possible, as in Fig. 2C. Adjustment of the magnitude and polarity of the grid bias with respect to the potential across C_{2} permits a very wide range of control possibilities. If a thyratron is used in this arrangement, with a-c on the plate, an electric clock can be operated in the plate circuit, giving a record or indication of the duration of values beyond the predetermined limits. This is shown in Fig. 2D. Many electric clocks function perfectly on half-wave-rectified 60-cycle current, but operation may be improved by use of a small inductor and capacitor to modify waveform.

Quite obviously, use of a vacuum tube alone in the output of a capaci-tor-discharge circuit requires fewer components than does the relayvacuum tube arrangement. Very careful choice of the grid resistor, R_{a}, is necessary, however, or the voltage drop across R_{a} due to grid conduction will modify the charge on C_{2} sufficiently to produce a spurious record or indication.

Since characteristics of a vacuum tube change with age, greatest consistency of operation is usually obtainable from a relay-vacuum tube arrangement. However, where

Circuit operating conditions make a thermionic input essential, and high consistency of operation is required, a two-step control is usually satisfactory. This consists of a long-life tube, such as a telephone repeater, with the grid connected as in Fig. 2C. This tube controls a power tube, such as a thyratron, by means of a conventional cathodefollower connection.

When measurement of the time elapsed since a predetermined limiting value was passed is desired, a push-pull plate supply circuit for a single thyratron may be used, as in Fig. 3. Once the thyratron is started, the plate current flows continuously until the circuit is interrupted or reset. The electric clock in one leg of the full-wave rectifier circuit indicates time lapse. The other leg, in conjunction with a small filter ($L_{P}-C_{P}$) acts as a keep-

FIG. 3-Circuit for non-stop thyratron operation of electric clock for measuring time between occurrences of limiting values
alive. The filter need only be large enough to carry the thyratron for about 0.006 second immediately after the half cycle during which it is charged. Too large a filter will introduce undesired time-delay into the clock circuit.

Maximum Values

Many methods of determining the maximum value attained by a variable electrical phenomenon are known and in common use. Perhaps the simplest of these is the use of a dead hand on any standard indicating or recording instrument. This is pushed upward by the regular instrument pointer or pen, but cannot return to a lower position until it is reset.

Maximum value attained during any one of a number of sequent equally-spaced time intervals can be determined by use of a combination of stepping switches and time-interval units ${ }^{4}$, although the installation becomes very large and involved when three significant figures are required ${ }^{\text {s }}$.

Determination of the maximum value attained by a variable electrical phenomenon during a continuously shifting time interval is a more involved problem of which one phase, the continuous recording of the short-term mean value, is accomplished by use of the Grinnell recorder (Fig. 1A), or a similar capacitor-discharge instrument.

When two capacitors are linked by a diode, as in Fig. 4A, charges

FIG. 4--Maximeter circuits for determining maximum charge attained by C_{2} in terms of time units
can be transferred in plate to cathode direction only whenever a sufficient potential difference exists. In consequence, voltage across C_{s} will be the maximum voltage attained by C_{2} less transfer drop (negligible for a high-vacuum diode, finite and not negligible for a gas diode.) If it is assumed that leakage in the second capacitor has been negligible during the time interval under consideration, maximum charge attained by C_{2} during that same interval can be evaluated by measuring the charge on C_{3}.

This measurement is accomplished by recording the time necessary for the potential across C_{8} to drop from its unknown value to a predetermined low value. This time can be found from:

$$
\begin{aligned}
& T=2.303 R C_{3} \log _{10} \frac{E C_{3}}{E_{D}} \\
& \log _{10} E_{C 3}=\log _{10} E_{D}+\frac{T}{2.303 R C_{3}}
\end{aligned}
$$

where $E_{c_{3}}=$ charge on $C_{3}=I_{u} R_{u}$ less diode drop ($E_{c s}>E_{D}$) for highest value attained by I_{M} during interval under consideration, E_{D} is the drop-out voltage of relay, T the time in seconds, R the discharge resistance in ohms and C_{3} the capacitance in farads.

A circuit arrangement similar to Fig. 4B, using an instrument-type relay, is suitable. In this instance, R of the formula is the resistance of the relay coil.

A somewhat more elaborate arrangement, using a thyratron, is shown in Fig. 4C. Here, R of the formula is the total effective resistance of the grid circuit, which must be high enough, in the gridcathode leg, to reduce the effects of grid conduction to a negligible value. Where high precision, or great power-handling capacity, is required, the necessary grid resistance, $R_{G S}+R_{G X}$, is usually too high to permit adequate operation of the thyratron, so that use of a buffer tube will be desirable or necessary. Coupled to a printing clock (such as a Stromberg timer), this general arrangement is ideal for full automatic and unattended operation.

Operating theory is quite simple. When the switch is in the L position (Fig. 4), C_{8} receives charge increments from C_{2} through the diode whenever the charge on C_{2}

FIG. 5-Capacitor-discharge instrument adapted for kick-coil or flyback operation

FIG. 6-Fundamental circuit for linear capacitor-discharge instrument in which charge increments are equal
exceeds its previous high value. When the switch is in the R position, C_{3} discharges through a resistance of known value, to a known drop-out value, and operates a timer by means of a relay or vac-uum-tube circuit. From the elapsed time of discharge, the initial voltage on C_{3} may be found, and hence the maximum charge attained by C_{2}.

Attainable accuracy, which can be quite high, is limited by the leakage characteristics of C_{3}. In practice, the capacitance of C_{3} is very small relative to that of $C_{2}(0.5 \mu . f$ and $2,000 \mu \mathrm{f}$, for example), so that the charge transferred from C_{2} to C_{s} by the diode is smaller than the discriminatory threshold of the recording or indicating instrument (indicated by R_{3} is use. Although a dry electrolytic capacitor functions satisfactorily in C_{2} position (after due aging), a high-grade impregnated paper capacitor is essential at C_{3}. With direct thyratron operation, the circuit may behave erratically in some ranges: if a buffer tube is used, calibration by formula is satisfactory in most instances.

Combined Values

Determination of the sum and difference of the rates of a number of compatible variables, and of some higher functions of their values, is theoretically possible by combining the outputs of two or more capaci-tor-discharge instruments. This principle has been applied successfully to determine the average of a number of simultaneously-measured wind speeds ${ }^{1}$. Because the fundamental capacitor-discharge circuit
(Fig. 1A) is only approximately linear, only a narrow range of values can be combined with any hope of obtaining a usably accurate answer.
Modifications of the fundamental circuit to produce one of better characteristics were attempted, and several workable instruments resulted. The relay was eliminated, with no impairment of circuit functions, as in Fig. 1B, by adapting it for operation from the inductive kick, or flyback, of an isolating transformer, which also reduced troubles due to line noises and static. This circuit, operation of which has been described elsewhere, is shown in Fig. 5°.

This arrangement is adjusted so that C_{1} is charged from the regulated power supply when the anemometer circuit closes, and the charge is transferred to C_{2} when the primary circuit opens. Except for transfer drops, which are constant, the formula is the same as that for the relay-operated device.

By inserting a triode in this circuit, so connected that its plate current is an inverse function of the voltage across C_{2}, as in Fig. 6, the input voltage of C_{1} is made a constant plus that on C_{2}, so that the charge transferred from C_{1} to C_{2} is the same at all frequencies.

This is accomplished by passing the current from the averaging capacitor, C_{2}, through the instrument, R_{L}, and then through another resistor, R_{5}. Current through the instrument circuit is a function of the charge on C_{2} : hence drop across R_{5} is also a function of this voltage. This potential is applied to the grid
of a triode, operated in the linear portion of its characteristic, so that its plate current is inversely proportional to the current in the meter circuit. When a resistor of suitable value (R_{6}) is inserted in the plate circuit between the voltage regulator and the upper thyratron plate the drop across R_{0}, due to the plate current of the triode, equals a constant minus the potential across C_{2}. Because, in transferring its charge to C_{2}, C_{1} discharges only until the potentials across the two capacitors are balanced, charge increments applied to C_{2} are diminished in potential by that already across C_{2}, and the circuit is nonlinear if the charging voltage is constant.

In the modified circuit (Fig. 6), the charging voltage is no longer constant, but is increased in potential by the voltage already on C_{2} (by means of the triode), so that the charge increments applied to C_{2} are always equal, within the range of the instrument, regardless of the frequency. The circuit characteristic is thus linear, as may be substantiated by a mathematical analysis.

In this circuit, range of theoretical linearity is limited only by the length of the straight-line portion of the triode characteristic. Practical limitations, however, are considerably greater, particularly at the higher frequencies. The charging of C_{1} through R_{5} and R_{6}, takes an appreciable (but short) time. So that C_{2} will not be charged backwards by the voltage drop across R_{5} during this time, the diode is necessary. This introduces an error into the lower part of the in-
strument curve, due to the toe at the base of the diode $E_{B}-I_{B}$ curve; and also imposes a current ceiling at the top of the curve. An additional source of nonlinearity is introduced by the action of the diode because C_{2} does not discharge continuously through the meter, but is partially out of circuit, so far as the instrument (R_{L}) is concerned, while C_{1} charges. This effect is usually negligible, and can be compensated for, in any part of the instrument range, but not in the entire range, by modifying the constants of the triode circuit. A better compensatory procedure is to increase the charging voltage and decrease the capacitance of C_{2}. This is theoretically and practically sound because the charging time increases as the \log of the applied voltage, but varies directly as the first power of the capacity.

A number of variations and parallels, mostly designed for higher frequencies but applicable with modification to lower frequencies, have recently been outlined by Easton and Odessey ${ }^{7}$, with a mathematical description of their behavior. It is interesting to note that the same formulas apply in the range of kilocycles per second and that of cycles per minute.

Practical tests show that a circuit of this type (Fig. 6), constructed with over-the-counter components, is linear within about 0.5 percent through a frequency range of about 30 to 1 ; that the linearity falls off considerably if the range is extended; and that the entire circuit is subject to drift as the triode ages. Frequency range may be extended considerably, in some instances, by use of a suitably-connected tetrode in place of a triode, but drift and other changes in the tube characteristic offset much of the apparent gain. The function of C_{4} in this circuit is as a damping device to prevent a kick in the instrument trace during the time that C_{1} is charging. Its value is usually quite small, a $0.5-\mu \mathrm{f}$ capacitor across a 1,000 -ohm, $0-1 \mathrm{ma}$ EsterlineAngus milliammeter being more than adequate.

Sum and Difference

Outputs of a number of linear circuits may be fed into one indi-

FIG. 7-Sum and difference circuits
cating or recording instrument to produce a sum or average, using a circuit such as Fig. 7A. Any number of inputs, within reason, may be used. The sum is read directly on the instrument, after suitable calibration. Average value is found by dividing the recorded or indicated sum by the number of inputs actually in operation; by use of a new calibration; or by suitable shunting of the instrument.
If two linear capacitor-discharge instruments are connected back to back, the voltage between the two diode cathodes is the difference between the drops across their load resistors. From this voltage, and its polarity, the difference between the two input frequencies may be determined. Theoretically, the load resistors can be omitted, but in practice this is undesirable, for the constant voltage (the lower value) will accumulate, eventually raising the voltage across both capacitors to the supply value, if the capacitors do not puncture first. For this reason, R_{A} and R_{R} are essential. These, in many applications, may consist of the moving coils of a differential instrument; or even the paired coils of a ratiometer (such as the Sensitive Research Model RA). When the meter is connected from cathode to cathode, as in Fig.

7 B , it is in a bridge circuit, and can be calibrated by standard formulas.

When only a same or different indication is needed, or the two values to be compared are nearly alike, use of a linear circuit is unnecessary, and entirely satisfactory frequency matches can be obtained with the simpler nonlinear instrument.

Conclusions

Practical tests with various capacitor-discharge instruments, most of them arranged as recorders, indicate the following:

For overall simplicity, and for field use where power supply is limited, the relay-operated nonlinear instrument (Fig. 1A) is ideal.

For maximum dependability, and for field use where there is a reasonably good source of power, the kick-coil or flyback design (Fig, 5) is very satisfactory.

For maximum linearity, use of the linear capacitor-discharge circuit is indicated.

For most purposes, auxiliary devices employing an instrument-type relay are preferable to those controlling a grid directly.

Tests of various forms of capaci-tor-discharge equipment, indicate that the instrument and its derivative devices have a definite place in the field of instrumentation, particularly in the low-frequency range, and for the measurement of functions that are not uniformly spaced in time. Because of its general flexibility, the instrument can be adapted readily for many uses.

References

(1) S. W. Grinnell, Some Instruments Used by Division 10, NDRC at Dugway Proving Grounds, for the Continuous Recording of Micro-meteorological Conditions, OSRD 6088, 1945 . W. E. K Middleton. "Meteorological Instruments," Toronto, p 129, 1942. R. L. Ives, Continuous Recording of Areal Wind Speeds, Bull. Amer. Met. Soc., 28, p 41, 1947.
(2) R. L. Ives, Anemometer Slowage Indicators, Bull. Amer. Met. Soc., ${ }_{\sim}^{7} \mathrm{p}$ 173, 1946.
(3) R. L. Ives, Automatic Range Switching Equipment for the Grinnell Whind Speed Recorder, Trans. Amer. Geophysical Union, 28 p $67,1947$.
(4) R. L. Ives, Experimental Maximeters for Wind Speeds, Bull. Amer Met. Soc., $27 \mathrm{p} 224,1946$.
(5) R. L. Ives, A Stepping-Type Maximeter Using Standard Parts, Proc. Indiana Acad. Sci. 1947.
(6) R. L. Ives, Kick-Coil Operation of Impulse Registers or Counters, Instruments, 21 p 444, 1948.
Counter An Easton and P. H. Odessey, Counter Circuits for Television ELec tronics, 21 p 120, May 1948.

Feedback Improves Response of D-C Amplifier

Frequency response of a modulation type direct-current amplifier having high gain is made more linear by negative feedback. Gain and feedback controls are ganged to make response independent of amplification. The instrument amplifies low currents sufficiently to drive recording meters

By JOSEPH F. LASH
Research Laboratories Division
General Motors Corporation
General Motors Corporation
Detroit, Mich.

Negative feedback, as usually applied to amplifiers, improves their frequency response, linearity and stability. These benefits can be obtained in directcurrent amplifiers as well as in the more common a-c types. Because d-c amplifiers are used as essential parts of precision equipment, the improvements obtained by using negative feedback with them are especially desirable.

Carrier Type Amplifier

The d-c amplifier to which negative feedback has been applied is a modification of one developed several years ago. ${ }^{1}$ The first model was built to meet the need for a compact, portable instrument, that would detect minute currents from low-energy sources.

The operating principle of the amplifier is the conversion of the d-c input signal into a-c by a mechanical breaker, stepping this a-c up by a transformer, amplifying it with several vacuum-tube stages, and finally rectifying it with a second breaker driven synchronously with the input breaker. Designed to operate with a 5 to 20 ohm input source, the amplifier is capable of measuring direct potentials between 0.01 microvolt and 300 microvolts. Applications of this amplifier to infrared spectroscopy ${ }^{2}$,
and medical research ${ }^{3}$ have been described.

The modifications incorporated in the latest model to make it a more useful laboratory tool consist of (1)
an input signal attenuator to permit using the amplifier with larger signals, (2) a fourth stage of amplification to increase gain and output power, (3) a filter to smooth the

To avoid thermal disturbances, low-impedance input is completely connected with the same type of copper wire. Rigidity and compactness add to instrument's utility

Flexibility of the d-c amplifier is enhanced by incorporating several controls. Because the gain control operates within the feedback loop, it is ganged with the feedback control to give the same response at all settings
pulsating $d-c$ from the output breaker, thus permitting direct connection to modulation-type recorders, (4) a negative-feedback circuit to improve performance and (5) a means of limiting the output to protect meters and recorders.

Arrangements of Inputs

Figure 1 shows a wiring diagram of the amplifier. Low-level signals, introduced at P_{1}, are applied alternately 75 times per second across the two halves of the input transformer, which presents a 5 -ohm input impedance and has a voltage step-up ratio of about 1 to 300 . This is an extremely sensitive input. Therefore, electrostatic shielding, noninductive wiring, and low thermal emf copper-to-copper junctions must be used with the external circuit connected to P_{1} to re-
duce objectionable noise and drift.
The first vacuum-tube stage is overdriven by relatively small input signals in the order of 300 mi crovolts, so that when attempting to use the amplifier with larger input signals some type of divider had to be employed. It was found that in most instances considerable noise and drift were introduced by inductive loops and high thermal emf junctions in the divider. Therefore, another input P_{2} was added by means of which signals could be applied across a 0.05 -ohm section of the internal input circuit. This, in effect, is a built-in divider which reduces the signal by a factor depending upon the external input resistance used. A copper shorting plug is applied to P_{1} to complete the input circuit when using P_{o}. The sensitive part of the circuit is all
compactly inside the same multiple shielding, and is all made of the same copper wire with a minimum number of junctions. Because much larger currents must be introduced at P_{2} than at P_{1} to produce the same input voltage, the external circuit can be less carefully constructed. In a similar manner, zero-bias and test signals are applied across the two 0.01 -ohm sections of the input by means of relatively large currents from the control panel.

Output and Feedback Circuits

A 6Y7 twin triode, operating as a class-B amplifier, was added to increase gain and output power. It feeds push-pull through a stepdown transformer matching into the load on the d-c side of the output breaker. This additional stage was needed to compensate for the

FIG. l-Heaters of voltage amplification stages are supplied with direct current to minimize interference from power frequencies. Dashed box shows components in shielded amplifier proper; above are parts on panel; below are those in separate power supply
gain lost by the action of negative feedback. and the power lost in output filtering. It also increases the net output to 25 volts positive or negative across a 1,500 -ohm load, which is sufficient to drive recording instruments.

The output filter is a resistancecapacitance type with a time constant of about 0.05 second. It reduces the ripple voltage to about 5 percent, which has been found satisfactory for operating into such recorders as the Brown Electronik, Leeds and Northrup Speedomax, and Brush oscillograph.

A small portion of the filtered output is fed back negatively to the $0.05-\mathrm{ohm}$ section in the input circuit. This feedback improves output linearity and speed of response at the expense of gain. It was found that satisfactory output linearity and speed of response were obtained when the negative feedback voltage was such as to reduce gain by a factor of 4 to 1 at all levels of amplification. To maintain this ratio required a different setting of the feedback rheostat, between output and input, for every setting of the 20 -step gain attenuator between the first and second amplifier stages. Therefore, the two controls were ganged as shown in Fig. 1 so that one adjustment changes gain and maintains the same output linearity and response characteristics.

Operating Characteristics

Often the amplifier is used with sensitive meters, which could be damaged by the full 25 -volt output. To prevent this, an output level control was added which reduces the maximum output in 10 equal steps.

The regulated power supply requires 100 watts of 110 -volt, $60-$ cycle power. To reduce 60 -cycle interference, the filaments of the first three amplifier stages are supplied with filtered $d-c$; the fourth stage uses a-c filament supply.

The minimum detectable signal depends, of course, upon noise level, which in turn is affected by input resistance and response characteristics of the overall system including the indicating meter. Expressing noise in terms of equivalent input voltage with a 5 -ohm input resistance and using a five-milli-
ampere Esterline-Angus recorder, the maximum departure from the mean does not exceed 2×10^{-9} volt. ${ }^{1}$

Sinusoidal signals up to 20 cps are passed without serious attenuation. This frequency-response characteristic makes the amplifier satisfactory for use with modulation type infrared receivers. Figure 2A shows relative output of a constant amplitude sinusoidal input signal plotted against frequency, with and without feedback. The rapid attenuation observed without feedback is due primarily to the output filter. Figure 2B shows the response to a one-microvolt 2.5 -cps squarewave with and without feedback.

In Fig. 2C output voltage is plotted against input microvolts at full gain for several settings of the output level control. At level 10 it can be seen that linearity is good up to 20 volts output and satisfactory up to 25 volts for most applications. At minimum gain, about one millivolt input at P_{1} is required for full output. In this case the first vacuumtube stage is not over driven, and linearity is maintained with this amplifier because the voltage applied to the input transformer is considerably less than the actual input signal due to the action of negative feedback. The maximum signal that can be applied at P_{2} will depend, as previously mentioned, upon the external input resistance used; it will be approached when a current of 20 milliamperes is flowing in the input circuit.

A variety of applications has been found for this amplifier. It has the sensitivity and stability necessary for precise measurement of minute currents in the laboratory as well as ruggedness and a wide range of signal coverage for photocell, strain gage, and thermocouple measurements under adverse conditions of vibration and acceleration. It is essentially a currentsensitive device having a low input impedance.

References

(1) Max D. Liston, C. E. Quinn, W. E. Sargeant and G. G. Scott, Rev Sci Inst, $17, p 194,1946 ;$ see al
$2,413,788$ and $2,442,299$.
(2) G. M. Rassweiler, Max D. Liston, J. F. Lash and D. L. Fry, Jour opt Soc Am, 37, p 963, 1947 ; see also U. S. Patents 2,442,298 and 2,442,300.
(3) F. W. Hartman, V. G. Behrmann and F W. Chapman, Am Jour Clinical Path, is, p 1, 1948.

FIG. 2-(A) Feedback flattens frequency response to sinewaves and improves squarewave response (B). At low output levels, amplifier is linear, but at high levels (C), it tends to saturate

By PHILLIP H. SMITH Radio Development Department Bell Telephone Laboratories, Inc Whippany, New Jersey

IN radio engineering, nomographs permit the saving of considerable time, particularly where the repeated solution of mathematical equations is required. They are especially well suited to portraying the relationships between the many electrical and mechanical properties of radio frequency transmission lines since these relationships may generally be expressed by relatively simple mathematical equations. Ten of the most useful of these equations have been plotted as nomographs as a convenience to the radio engineer. Each of these is discussed briefly and the formulas are given to permit an evaluation beyond the accuracy of the nomograph should this be desired in any particular case. The derivation of the formulas is based upon certain simplifying assumptions which are generally considered justifiable for radiofrequency transmission lines.

1. Characteristic Impedance of Transmission Lines
For radio-frequency transmission lines where the losses per wavelength are relatively small, the charactertistic impedance is essentially a pure resistance. The characteristic impedance is numerically equal to the square root of the ratio of the distributed inductance to the distributed capacitance per unit length. Since both of these parameters are uniquely related to the physical size and spacing of the conductors, it is possible to express the

R-F Transmission

characteristic impedance in terms of the physical dimensions of the line.

Thus, the characteristic impedance (Z_{0}) of an open 2 -wire line is

$$
\begin{equation*}
Z_{0}=276 \log _{10}(2 D / d) \text { ohms } \tag{1}
\end{equation*}
$$

where D is the wire separation on centers and d is the wire diameter, both in the same units. Figure 1 shows the characteristic impedance of an open 2 -wire line as a function of the conductor dimensions and their center-line spacing.

2. Characteristic Impedance of a Coaxial Line

The characteristic impedance $\left(Z_{0}\right)$ of a coaxial transmission line is
$Z_{0}=138 \log _{10}(D / d)$ ohms
where D is the inner diameter of
the outer conductor and d is the outer diameter of the inner conductor. This applies only to a line where the medium between conductors is predominantly a gas, such as air, at low pressures.

If the coaxial line is filled with a uniform dielectric material other than a low pressure gas, the characteristic impedance is reduced by a factor equal to $1 / k$, where k is the relative dielectric constant of the material. For a line with bead insulators at small uniform intervals, the effective dielectric constant (k_{o}) may be computed from the following

$$
\begin{equation*}
k_{e}=(k t+s) /(t+s) \tag{2a}
\end{equation*}
$$

where t is the thickness of one bead, s is the spacing between two beads, both t and s in the same units; and

Line Nomographs

Ten equations commonly used to compute relationships between electrical and mechanical properties of radiofrequency transmission lines have been plotted as convenient nomographs

k is the relative dielectric constant of the bead. A number of optimum values for the characteristic impedance of coaxial lines exist which are based upon different considerations such as the maximum power handling capability and the minimum loss. Several of these optimum values are indicated along the characteristic impedance scale on the right hand side of the nomograph. Fortunately, all of these optimums are relatively broad in
their characteristics and a considerable departure can generally be tolerated for any particular application.

Figure 2 shows the characteristic impedance of a gas dielectric coaxial transmission line as a function of the two conductor diameters.
3. High-Frequency Resistance of a Coaxial Line

The high frequency resistance of a coaxial transmission line is one
of the principal factors which determine the attenuation along the line. It is also one of the factors which determine the maximum antiresonant impedance and the minimum resonant impedance of a line section when used as a circuit element. The high frequency resistance of a coaxial line is a function of both conductor dimensions and of the frequency (due to skin effect). It is also a function of the resistivity of the material of which the conductors are made.

For copper coaxial lines the high frequency loop resistance (R) is

$$
\begin{gather*}
R=0.0315 f^{1 / 2}\left[\frac{1}{d}+\frac{1}{D}\right] \mathrm{ohms} \\
\text { per } 1,000 \text { feet } \tag{3}
\end{gather*}
$$

where f is the frequency in kilocycles, D is the inner diameter of the outer conductor in inches, and d is the outer diameter of the inner conductor in inches.

For conductors other than copper, the high frequency resistance is proportional to the square root of the ratio of the resistivity of the conductor to that of copper.

Figure 3 shows the resistance of a copper coaxial line as a function of the conductor dimensions and the frequency. Dielectric losses, which are negligible in a gas dielectric line, are not included.

The nomograph on Fig. 3 is used as follows: draw a straight line connecting points on the first and fourth scales from the left, which show, respectively, the line conductor diameters. Obtain the intersection of this line with the second scale marked Size Factor. Now project this intersection to a corresponding point on the third scale marked Pivot Line, as shown in the example on the nomograph. Finally, connect this new pivot point with a straight line intersecting the desired value on the sixth or frequency scale. The intersection of this latter straight line with the scale marked Resistance in ohms per 1,000 feet gives the desired loop resistance value.

4. Conversion of Loss Resistance to Decibels Attenuation per Unit Length

It is sometimes convenient to convert loop resistance of a transmis-

sion line (as obtained from Fig. 3) to decibels (db) per unit length. This may be done if the characteristic impedance of the line is known. The conversion equation is simply

$$
\begin{equation*}
\mathrm{db}=R / 0.23025 Z_{0} \tag{4}
\end{equation*}
$$

where R is the loop resistance and $Z_{\text {。 }}$ is the characteristic impedance. This relationship is plotted on the nomograph of Fig. 4. The nomograph applies to either open-wire or coaxial lines and does not require the line conductors to be of copper.
5. Antiresonant Impedance of a Transmission Line Section
The antiresonant impedance $Z_{\Delta s}$ of a transmission line section either open or short-circuited at its far end is a function of the total conductor resistance and the characteristic impedance of the section. The relationship is
$Z_{A E}=2 Z_{0^{2}} / R$ ohms
where Z_{0} is the characteristic impedance and R is the resistance of the antiresonant line section.
The shortest antiresonant line section is one-quarter wavelength long (short-circuited at its far end) and accordingly this will have the highest antiresonant impedance. A line section one-half wavelength long (open-circuited at the far end) will have only half as high an antiresonant impedance because its resistance R is twice as great.

Figure 5 shows the antiresonant impedance of a transmission line as a function of the total resistance and the characteristic impedance of the section. The nomograph applies equally to either coaxial or open wire lines.

The resonant impedance of a transmission line section is simply one-half of its total resistance (obtained from Fig. 3) ; accordingly, no nomograph has been plotted for this.

6. Input Reactance of a Transmission Line Section

A short length of transmission line is sometimes used as a reactance element in high-frequency circuits. The input reactance is a function of the electrical length of the line section and its characteristic impedance. The reactance varies between values essentially equiva-
lent to plus and minus one half of the antiresonant impedance (obtained from Fig. 5). In air or gas dielectric coaxial lines, the electrical length is very nearly the same as the physical length measured in terms of free space wavelengths. A dielectric other than a gas results in a reduction in the length of the wave in the line which is proportional to the square root of the average dielectric constant. Thus a polyethylene coaxial cable with a dielectric constant of 2.5 will be electrically (2.5) or 1.6 times as long as if the dielectric were a gas.
The electrical length and the characteristic impedance of a line section as well as its termination (either open circuit or short circuit) determine the magnitude and sign of the input reactance. For an open-wire or coaxial line section, open-circuited at its far end, the input reactance X, is

$$
\begin{equation*}
X_{0}=-Z_{0} \cot (360 l / \lambda) \text { ohms } \tag{6}
\end{equation*}
$$

where l / λ is the electrical length in wavelengths and Z 。is the characteristic impedance.

For an open-wire or coaxial line section, short-circuited at its far end, the input reactance X, is

$$
X_{4}=Z_{0} \tan (360 l / \lambda) \text { ohms }
$$

Figure 6 shows the input reactance of an open or short-circuited transmission line section as a function of the electrical length, the characteristic impedance, and the termination.

7. Quarter - Wave Transmission Line Impedance Transformers

 Impedance transformations are often made along radio-frequency transmission lines by employing a quarter-wave section of transmission line of selected characteristic impedance as an impedance transformer. When such a line section is terminated in a pure resistance its input impedance will be a pure resistance which depends upon the load resistance value and the value of the characteristic impedance of the quarter-wave line section.Figure 7 shows the input resistance R, of a quarter-wave open wire or coaxial line section terminated in a pure resistance load. The relationship is
$R_{s}=Z_{0} 2 / R_{z}$ ohms

where R_{t} is the terminating resistance and Z_{0} is the characteristic impedance.

8. Current-Phase Relationship

 Along a Transmission LineThe phase relationship of the current from point to point along a radio-frequency transmission line will be uniform with length only when the line is terminated in an impedance equivalent to its characteristic impedance; otherwise the phase will vary nonuniformly along the line.

Figure 8 shows the phase relationship of the current at the sending end of a line, with respect to the current in a resistance load, as a function of the ratio of the load resistance to the characteristic impedance of the line, and of the effective length of line. The relationship is

$$
\begin{align*}
& \phi=\arctan \left[\frac{R_{l}}{Z_{0}} \tan \left(360 \frac{l}{\lambda}\right)\right] \tag{8}
\end{align*}
$$

where R_{t} is the load resistance, Z_{0} is the characteristic impedance and l / λ is the electrical length in wavelengths.

The current in the load will always lag the current at the sending end of a transmission line. It will undergo exactly 180 degrees of phase shift in each electrical halfwave length regardless of the ratio of the load resistance to the characteristic impedance.

9. Voltage Gradient along a Coaxial Line

In a coaxial transmission line the maximum voltage gradient occurs at the surface of the inner conductor. When this gradient exceeds the critical value of approximately 20,000 volts (rms) per cm , breakdown will occur in the form of either corona or arcover. If the characteristic impedance of the line is less than the optimum breakdown value of 60 ohms, arcover will occur without corona-if it is more than 60 ohms, corona will precede arcover.
Figure 9 shows the maximum voltage gradient $G_{\text {max }}$ on a coaxial line as a function of the characteristic impedance of the line, the physical size of the inner conductor

	CHARACTERISTIC IMPEDANCE IN OHMS FIG. 7 QUARTER WAVE LINE	
	PHASE LEAD OF CURRENT AT SENDING END OF LINE WITH RESPECT TO CURRENT in RESISTANCE LOAD, IN DEGREES NOTE- ADO 90 DEGREES FOR EACH ADDITIONAL QUARTER' WAVELENGTH OF LINE. $\text { FIG. } 8$ PHASE RELATIONS	

VOLTAGE STANDING WAVE RATIOAT SENDING END
and the applied voltage. The relationship is
$G_{\text {max }}=47.2 E / d Z_{0}$ rms volts per cm (9) where E is the applied rms voltage, d is the diameter of the inner conductor in inches, and Z_{n} is the characteristic impedance.

This nomograph is used as follows: first, connect with a straight line points on the first and third scales from the left which represent the inner conductor diameter and the characteristic impedance (see example on nomograph). The intersection of this line with the second scale labeled Pivot Line is next connected with a second straight line passing through the desired point on the fourth scale labeled Applied Volts, RMS. The intersection of this second straight line with the fifth scale gives the desired value for the gradient on the surface of the inner conductor in rms volts per cm .
Bead insulators may cause higher gradients in their vicinity resulting in premature voltage breakdown particularly if they fit loosely on the inner conductor.
10. Diminution of Standing Wave Ratio Due to Line Loss
A high-frequency transmission line whose characteristic impedance is not matched by the load impedance will have standing waves along its length. The standing wave ratio in the vicinity of the load will be numerically equal to the ratio of the load resistance to the characteristic impedance (or its reciprocal if this is less than unity). If the line has attenuation, there will be a gradual diminution of the standing wave ratio in the direction of the generator.
Figure 10 shows the relationship between the standing wave ratio in a region near the generator (assuming that the wavelength is small compared to the line length), the standing wave ratio near the load, and the line loss in decibels (as obtained from Fig. 3 and 4). The relationship is

$$
\mathrm{db}=\left[10 \log _{10} \frac{\left(S_{L}+1\right)\left(S_{G}-1\right)}{\left(S_{L}-1\right)\left(S_{G}+1\right)}\right]^{1 / 2}
$$

where S_{L} is the voltage standing wave ratio near the load and S_{σ} is the voltage standing wave ratio near the generator.

Stagger-Peaked

FIG. 1-Types of signals which can be handled by the staggered fechnique

FIG. 2-Capacitances C_{1} and C_{2} are the result of tube and circuit

IT HAS BEEN customary to design a video amplifier so that its power output in response to a sinusoidal input voltage is substantially constant between a high and low cutoff frequency. If the wide-band amplifier is to be used primarily for sine-wave work, or is intended as part of a general-purpose oscilloscope, the conventional design procedure ${ }^{1}$ is satisfactory and economical. In the case of video amplifiers which are intended solely for the amplification of pulses or television signals, economies in design can be achieved by the use of staggered high-frequency compensation.

The realization of a desired am-plitude-versus-frequency characteristic by means of stagger-tuning a group of individual cascade amplifier stages is well known when applied to tuned amplifiers ${ }^{2}$. In this

[^5]

FIG. 3-Amplitude plotted against frequency for several combinations of stages using varlous values of \boldsymbol{X}

By ALLAN EASTON*

Assistant Chief Engineer Television Division Teletone Radio Corporation New York, \boldsymbol{N}. \mathbf{Y}.
paper, a similar general principle is applied to video amplifiers.

Characteristics of Video Signal

Figure 1 shows two types of signals for which staggered high-frequency compensation is suitable. The series of narrow pulses in Fig. 1 A is similar to those which result in the narrow wedges in monoscope test patterns. A Fourier analysis of the waveforms of Fig. 1 indicates that while the wave of voltage may have a peak magnitude of E_{p} volts, no one of the spectral components may be that large; in fact, the higher-frequency components become progressively smaller.

In the case of video signal amplifiers for television receivers, it is
customary to specify high-frequency cutoff at about 4 megacycles. However, the signal-frequency components near 4 mc have amplitudes which are only a tiny percentage of E, Therefore, it is not necessary for the amplifier which drives the picture tube grid to deliver equal power throughout the entire frequency spectrum.
Most of the signal energy is concentrated at the low and middle portions of the spectrum and very little is ordinarily found near the upper end of the band. The small components require equal amplification with the lower-frequency components, but do not require as large plate-current swings.

Characteristics of Output Stage

The foregoing qualitative considerations indicate that an amplifier which has constant small signal gain, but a falling power-handling capacity with frequency, will produce a satisfactory picture on the

Video Amplifiers

Staggered high-frequency compensation of a video amplifier provides twice the signal from a given amplifier tube in the conventional shunt-peaking circuit, or permits use of a tube having only half the plate-current consumption
cathode-ray tube. This principle when applied to the output stage of a video amplifier intended for television or pulse signals enables the use of an output-tube plate load resistor of at least twice the size of that dictated by the conventional design procedure.

The proposed approach makes it possible to obtain at least twice as much signal from a given amplifier tube, or, for a given video signal output, to use a tube having at least half the plate-current consumption. The resultant cost of a pulse oscilloscope or of a television receiver might therefore be reduced by a significant amount with no sacrifice in performance.

Design of Video Circuits

An analysis has been made of a pair of video amplifiers employing shunt-peaking compensation and embodying the proposed design principles. Consider the circuit shown in Fig. 2. The gain of this amplifier at low frequencies (neglecting the effects of coupling and screen bypass capacitors) is

$$
\begin{equation*}
A=R_{1} G_{m 1} \cdot R_{2} G_{m 2} \tag{1}
\end{equation*}
$$

where R_{1} and R_{2} are plate load resistances and $G_{m 1}$ and $G_{m 2}$ are tube transconductances.
At any frequency

$$
\begin{equation*}
A=Z_{1} G_{m 1} \cdot Z_{2} G_{m 2} \tag{2}
\end{equation*}
$$

At a particular frequency, f_{s}, designated as the cutoff frequency, the magnitude of the plate load impedance ($|Z|$) may be made equal to R, the load resistor, when

$$
\begin{gather*}
R=X_{e} \tag{3}\\
X_{L}=X_{c} / 2
\end{gather*}
$$

Now suppose

$$
\begin{align*}
& R^{\prime}=K R=K X_{c} \\
& \text { and } X_{L}=X_{e} / 2 \tag{4}
\end{align*}
$$

Since

$$
\begin{equation*}
Z=\frac{X_{L} X_{e}-j R X_{c}}{R+j\left(X_{L}-X_{o}\right)} \tag{5}
\end{equation*}
$$

Substituting into Eq. 5 gives

$$
\begin{gather*}
Z^{\prime}=\frac{\left(\frac{R^{\prime}}{2 K} \cdot \frac{R^{\prime}}{K}\right)-\mathrm{j}\left(\frac{R^{\prime}}{K} \cdot R^{\prime}\right)}{R^{\prime}+\mathrm{j}\left(\frac{R^{\prime}}{2 K}-\frac{R^{\prime}}{K}\right)}= \tag{6}\\
\frac{R^{\prime}}{\bar{K}}\left[\frac{1}{2 K}-\mathrm{j} 1\right] \\
{\left[1-\mathrm{j} \frac{1}{2 K}\right]}
\end{gather*}
$$

from which

$$
\begin{equation*}
\left|Z^{\prime}\right|=\frac{R^{\prime}}{K}=R \tag{7}
\end{equation*}
$$

Equation 7 shows that the gain of the stage at the cutoff frequency is independent of the value chosen for $K_{\text {, }}$ subject to the limitations set forth in Eq. 3 and 4.

If we now set

$$
\begin{equation*}
R_{1}^{\prime}=K_{1} R_{1} ; R_{2}^{\prime}=K_{2} R_{2} ; K_{1}=1 / K_{2} \tag{8}
\end{equation*}
$$

the overall gain at low frequencies of the two stages is

$$
\begin{gather*}
A_{T}=\frac{R_{1}}{K_{2}} G_{m 1} \cdot R_{2} K_{2} G_{m 2}= \tag{9}\\
R_{1} G_{m 1} \cdot R_{2} G_{m 2}
\end{gather*}
$$

and the high-frequency (f_{0}) gain is the same.

The analysis to this point has shown that if the size of the output load resistor is multiplied by a factor K_{2} and the size of the input stage load resistance is multiplied by $K_{1}=1 / K_{2}$, the amplifier will have the same gain at low frequencies and at cutoff frequency as an amplifier designed in the conventional manner ($K_{1}=K_{2}=1$). The values of compensating inductance and circuit capacitance are identical in both types of designs.

There is no change in the overall gain, but it is possible to drive the
amplifier to twice the signal power output without overload when $K_{1}=1 / 2, K_{2}=2$. The first stage pre-emphasizes the higher-frequency components to compensate for the tendency of the second stage to drop off with frequency.

Overall Response

The general frequency response and time-delay characteristic for the above circuits are of interest. The impedance in the plate circuit of either video amplifier is

$$
\begin{equation*}
|Z|^{2}=\frac{R^{2}+\omega_{2} L_{2}}{1-2 \omega^{2} L C+\omega^{4} L^{2} C^{2}+\omega^{2} C^{2} R^{2}} \tag{10}
\end{equation*}
$$

The stated conditions for compensation are:

$$
\begin{align*}
\omega_{c} & =2 \pi f_{c} \\
\omega_{c L} & =\frac{1}{2 \omega_{c} C} \tag{11}\\
R & =\frac{K}{\omega_{c} C}
\end{align*}
$$

from which

$$
\begin{equation*}
L C=\omega_{c}^{2} / 2 \tag{12}
\end{equation*}
$$

FIG. 4-Curve A shows the overall response of four stages, each having different values of K. Curve B applies to four atages. each having $K-1$

$$
\begin{aligned}
& L=\frac{1}{2 \omega_{e}{ }^{2} C} \\
& \omega_{c} L=\frac{1}{2 \omega_{e} C}
\end{aligned}
$$

The generalized dimensionless impedance function is

$$
\begin{align*}
& \left(|Z| \omega_{c} C\right)^{2}= \\
& \frac{\left(\omega / \omega_{c}\right)^{2}+4 K^{2}}{\left(\omega / \omega_{c}\right)^{4}+\left(\omega / \omega_{c}\right)^{2}\left(4 K^{2}-4\right)+4} \tag{13}
\end{align*}
$$

The phase angle may be determined from

$$
\theta=\arctan \omega / R\left[L\left(1-\omega^{2} L C-C R^{2}\right](14)\right.
$$

Substituting the design criteria for L, C, and R gives

$$
\theta=\arctan \left(\omega / \omega_{c}\right)\left[\frac{2-\left(\omega / \omega_{c}\right)^{2}-4 K^{2}}{4 K}\right]
$$

$$
\begin{equation*}
\text { and } \quad \omega_{c} t=\left(2 \pi / 360^{\circ}\right)\left(\theta / \omega / \omega_{c}\right) \tag{15a}
\end{equation*}
$$

The normalized impedance function of a two-stage video amplifier designed in the conventional fashion ($K_{1}=K_{2}=1$) is plotted in Fig. 3, curve A. The corresponding impedance functions for stages having $K_{1}=1 / 2$ and $K_{z}=2$ are shown in curves B and C, the composite of the two stages results in curve D.

Note that in comparing the amplifiers whose responses are shown in curves A and D, the response in the specified pass band is nearly the same for both, while the amplifier for which $K_{1}=1 / 2, K_{2}=2$ displays a greater bandwidth. The $3-\mathrm{db}$ point in this case occurs when ω / ω_{c} equals 1.64 compared with 1.46. This increase in bandwidth indicates that for equal bandwidths the amplifier with staggered compensation may be expected to give approximately 20 percent more gain than the conventional shunt-peaked circuit.

If a four-stage amplifier is set up, with $K_{1}=1, K_{2}=1, K_{3}=1 / 2$, $K_{4}=2$, the composite characteristic would be as in Fig. 4. Response of a conventional four-stage amplifier in which $K=1$ is shown by curve B of Fig. 4.

The time-delay characteristic for each type of amplifier may be deduced from Fig. 5.

The circuit chosen for the above analysis was selected not for its excellence as a video amplifier but rather for the ease and simplicity of analysis and demonstration. The method may also be applied to most other types of high-frequency com-

FIG. 5-Time delay of the video amplifiers plotted against frequency

FIG. 6-Effect of load resistance upon phase shift of amplifier at cutoff frequency $\boldsymbol{f}_{\boldsymbol{c}}$
pensation networks, perhaps with a bit more mathematical difficulty.

It has been shown in a qualitative manner than factors of $K_{1}=1 / 2$ and $K_{2}=2$ should produce no discernible deterioration of amplifier performance principally because the high-frequency components have relatively small amplitudes. Experiment indicates that values of K larger than 2 may be used, but the author has made no extensive mathematical study of this.

Further Applications

An interesting consequence of Eq. 7, which shows that the gain of an amplifier stage at a frequency f_{c} may be independent of the value of load resistance, is in the use of the circuit as a phase shifter.

While the gain of the circuit at f, does not change as R is varied,
the phase shift certainly does. This can be seen from study of Eq. 15. Let K be equal to zero ($R=0$) and $\omega / \omega c=1$, then θ becomes plus 90 degrees. If K becomes very large (R approaches infinity) θ aproaches minus 90 degrees. Thus a variation in R can produce a phase shift which lies between plus or minus 90 degrees. The phase shift is equal to zero when K is $1 / 2$.

Figure 6 is a plot of θ versus K and illustrates the use of this circuit as a constant-amplitude phaseshift network. To obtain a variable phase shift of $n \pi$ radians, it is only necessary to cascade n identical stages.

Referknces

(1) Terman, "Radio Engineers Hand book," McGraw-Hill Book Co., N. Y., 1943 p 413.
(2) H. Wallman, Stagger-Tuned Amplifier Design, Electronics, May 1948.

Visible evidence of cINCH "KNow How"

shim

Cinch Sub-Miniafure No. 54A13124 for printed circuit.
No. EXP 8437-A, conventional wiring type.

Cinch Noval Nine Prong No. 53F12617
Saddle Type-Mica Filled Molded with .093 mtg . hole $11 / \mathbf{s}^{\prime \prime} \mathrm{mfg}$. center

Cinch-Erie Plexicon
No. EXP 8365 with built-in Ceramic Condensers

GINGH MEHS TY DEMANDS

. . . for components ef higher quality moteriols held to closer tolerances. for example, the high guolity of molded parts needed in telgyition was met by cinct with Mifor.

CINCH constantly demonstrates . . . ability to hold tolerances on Mica moldings . . . to mold high dielectric powders, Mica and Melamine . . . to meet the most exacting requirements in small metal plastic assemblies, such as the Plexicon radio socket, Mica molded equipped with ceramic condensers. Engineered electronic metal plastic assemblies, co-ordinated production of metal working, modern molding, and engineered inspection, are combined to produce the standard in use.

CINCH MOLDED MINIATURE

 No. 53C12360-7/8" Mig. Center

Stabilizing Gain

Chart simplifies calculations involving fluctuations in gain with and without negative feedback, amount of feedback and sacrifice in gain to obtain required stability

By T. E. KORN
Research Associate University of Brussels
Brussels, Belgium

ONE ADVANTAGE of applying negative feedback to lowfrequency amplifiers is the stabilization of gain that is obtained. Usually the effects of feedback are calculated from the equation $A^{\prime}=A /(1-A \beta)$ where A^{\prime} is the voltage gain with feedback, A is the voltage gain without feedback, and $A \beta$ is the feedback factor. By converting this equation into logarithmic form and generalizing the reference level, the accompanying chart can be plotted. As used in the chart, A and A^{\prime} are in db .

Usually the variation of gain WITHOUT FEEDBACK is given in the form of two measured values of A or ΔA corresponding to the extremes of power supply fluctuation, change in tube parameters and other effects. The variation OF GAIN WITH FEEDBACK will generally be given in the amplifier specifications. There will be a REDUCTION IN OVERALL GAIN produced by the feedback, which has to be computed so that the initial gain A can be made large enough to give the required A^{\prime} after feedback has been applied. The necessary feedback factor to produce the specified effect may have to be computed, or it may have been obtained already by using the feedback to reduce distortion or output impedance. Although the factors that are given and the ones that are to be found may differ from problem to problem, any two are sufficient to obtain the others from the chart.

Example

An existing amplifier having 5 db more gain than

necessary and a measured variation of gain from the normal of -6 db to +4 db is to be stabilized. How much feedback can be used and what will be the resulting stabilization? A loss of 5 db can be tolerated, therefore at this value along the base locate the diagonal line corresponding to the feedback factor; this is 0.8 . To find the stabilization, locate the intersection of this feedback factor line with the heavy curve; call it point P. Drop from P to the abscissa and move along the number of db corresponding to the variation of gain without feedback. Return upward to a new intersection with the heavy curve, point P^{\prime}. The difference measured along the side (ordinate) of the chart between P and P^{\prime} gives the variation in gain with feedback. For this example the gain will vary with feedback from -3.8 to +2 db .

Insert (A) shows construction. An interesting and usual problem arises when the actual variation of gain and the acceptable variation are given, and the amount of feedback required to produce this stabilization is to be found. Without the chart such a problem entails considerable calculation; with the chart it is simple. As shown in insert (B), the actual and acceptable variations are marked in from the corner of a sheet of paper, forming points P and P^{\prime}. The edges of this sheet are then kept parallel to the coordinates of the chart and the sheet moved until both P and P^{\prime} lie on the heavy curve, which they will at one point if the required stabilization is obtainable. Point P is then at the intersection with the required feedback factor. As before, the loss in gain is given at the intersection of this diagonal with abscissa, as in (A).

Teaching Surgery by Television!

There are more rubber gloves in this picture than you can see. They are worn by Mallory craftsmen in assembling the Mallory FP Capacitor. Thus no human hand* touches any vital part during processing and assembly.
Mallory knows there can be no compromise with quality-in television. New standards are essential for long life, dependability and trouble-free operation. The "rubber glove" technique is typical of Mallory's exacting standards.
Mallory FP Capacitors are accustomed to severe service-have been operating at $85^{\circ} \mathrm{C}$. for years. Even though this extreme temperature may not be apparent in your particular model, it's good to know that Mallory gives you an extra margin of safety. So make it Mallory and be safe.

FP is the type designation of the Mallory developed electrolytic capacitor having the characteristic design pictured. Allopted as standard by RMA, it is famous for deperdable performance.
*The chlorides present in perspiration cause destructive corrosion which shortens the capacitor's life in the field.

SERVING INDUSTRY WITH

Capacitors	Rectifiers
Contacts	Switches
Controls	Vibrators

Power Supplies
Resistance Welding Materials
P. R. MALLORY \& CO., Inc., INDIANAPOLIS 6, INDIANA

TUBES AT WORK

Including INDUSTRIAL CONTROL

Edited by VIN ZELUFF

Ultrasonic Flaw Detector 124
Electronic Load Resistor 124
High-Power F-M Transmitter 126
Automatic Temperature Stabilizer 144
Pyrometer for Molten Steel 152
European Receiving Tubes 156
Egg Records on Wire 162
A Method of Feeding Turnstile Antennas 164

Ultrasonic Flaw Detector

Latest improvement on x-ray for revealing imperfections in metals is the ultrasonic stethoscope devised by engineers of the Westinghouse Electric Corp. to test massive electric generators. Whereas x-ray is practical only for metal thicknesses up to about six inches, the ultrasonic technique tests solid metal ranging in size from 0.25 inch to 30 feet thick.

By using a crystal similar to that in phonograph pickup arms as a transducer, electrical impulses are changed into high-frequency sound waves. When projected through metal these waves reveal flaws such as cracks, cavities and foreign particles and reflect sound back to the crystal. Changed back into electrical impulses the reflec-
tions appear as bright vertical lines on the viewing screen of a cathoderay tube.

Exact location of an imperfection in the metal is found by measuring the time it takes the sound waves to penetrate and bounce back to the crystal. When the metal is flawless throughout, the sound waves reflect from the opposite side of the object.

Electronic Load Resistor

By Rufus P. Turner
Los Angeles, Calif.
The plate-cathode path of a highvoltage triode tube makes an efficient load resistor for checking the

Ultrasonic stethoscope at Westinghouse East Pittsburgh plant is used to examine a new rotor before assembly in a generator
output characteristics of power supply units. The effective resistance can be varied at will over wide limits simply by varying the d-c grid bias of the tube-hence, an electronic rheostat.
At cutoff bias, the resistance is infinite. The lowest resistance (highest current drain) corresponds to that current level, for a given applied voltage, at which the d-c power input equals the plate dissipation of the tube. The electronic load resistor has none of the vagaries evidenced by wirewound rheostats and slider-type resistors usually employed in power-supply testing.

The diagram shows a typical, practical circuit employing two 810's in parallel. The total safe

Continuous loading of a power supply under test is provided by this circuit
plate dissipation is 300 watts for the pair of tubes. When higher currents must be drawn from the power supply under test, additional tubes should be added in parallel. The adjustable bias circuit (comprised by B, R_{1}, R_{2}, R_{3}, and S) is bridge-connected to allow smooth, continuous variation of the grid voltage from a high negative value, through zero, to a high positive value. When R_{3} is at its centerresistance position, the grids have zero bias. At all settings to the right of center the bias is negative, and at all settings to the left of center the bias is positive. In the first instance, plate current is docreased; in the second instance, increased.

When placing the unit into operation, the operator must make certain that potentiometer R_{3} is at its

Lee Electric \& Mfg. Co. seyp "all parts were selected to meet the customers' stringent specification."

HIEINEMANN MAGNETC CIRCUIT BREAKERS

for

MAXIMUM PROTECTION AND LONG LIFE

Culco Constant Current Bathery Charger, Type CE 180 with heinemann Circult Breakers installed.

Lee Electric \& Mfg. Co., oz Los Angeles, realizing the necessity for the most flexible yf unfailing protection of electronic components and equipment, chose HEINEMANN Magnetic CRCUT BREAKERS for this battery charger. In tase af short circuit or dangerous overload, the breakers Irip INSTANTLY, but do-not trip on initial surge or temporary excess current. In this application the breakers in the input and output are interlocked, $s s$ that operation of either one will remove the unit from the A.C. line.

HEINEMANN ELECTRIC COMPANY

highest negative-voltage setting. This will prevent excessive current flow accidentally through the tubes. When tests are completed, switch S must be thrown off to prevent battery drain.

Use of the electronic load is simple: Connect the output terminals of the power supply under
test to the applied d-c voltage terminals of the load circuit and adjust R_{a} until the circuit draws the desired number of milliamperes. At this point, measure the power-supply voltage. Repeat the operation at a sufficient number of points to show the voltage-current characteristic of the power supply.

High-Power F-M Transmitter

WTMJ-FM, Milwaukee, located about 21 miles from the downtown metropolitan district of the city, is providing signal strength at 93.3 mc on the order of 30,000 microvolts over the city area. Primary coverage within the one-thousand microvolt contour is given to an area of approximately 18,000 square miles, including Wisconsin's four largest cities, Milwaukee, Madison, Racine and Kenosha.

The a-m noise level is better than 52 db and the $\mathrm{f}-\mathrm{m}$ noise level is better than 65 db , which includes studio and the 26 -mile circuit of a telephone program line. The transmitter, an RCA BTF-50A, is designed for a nominal output power of 50,000 watts at any frequency between 88 and 109 mc . The second harmonic content was found to correspond to 120 microvolts at a
distance of one-half mile from the transmitter. This value is not considered objectionable to other services.

Single-ended amplifiers, operating class C and comprising a minimum of variable elements, are used throughout the transmitter. The output of the f-m exciter using a reactance tube circuit is coupled through a coaxial transmission cable to the doubler stage which consists of a single $4-125 \mathrm{~A} / 4 \mathrm{D} 21$ tube. A small trimming capacitor provides proper matching between the exciter transmission line and the grid circuit of the doubler. The output of the single-tube doubler is tuned to the carrier frequency. The doubler is used to drive the first r-f (250 watt) amplifier consisting of two $4-125 \mathrm{~A} / 4 \mathrm{D} 21$ tubes which operate in a parallel

At WTMJ.FM, engineer Raymond Hernday holds a 7C24 tube which is used in the $10 \cdot \mathrm{kw}$ stage at left and in the 1 and $3 . \mathrm{kw}$ stages of the center rack. The rack at right contains the modulator

This 120 -kva rectifier unit supplies plate voltage to all power amplifier tubes from the final down to the 250 -watt stage
connection of tube elements.
The first r-f amplifier contains gold-plated variable inductors which are used in conjunction with three-element pi networks (which incorporate the tube plate and grid capacitance) to tune the doubler and first r-f amplifier. This circuit arrangement presents a high L-C ratio, provides a maximum bandpass and reduces distortion and losses to a minimum.

Adjustments of the variable inductors are made from a frontpanel control strip where all tuning controls and switches of the r-f unit are located. The vernier controls are operated by a hand crank and incorporate a calibration dial which provides preset tuning information for future reference. The tuning handle is inserted only during actual tuning, to avoid inadvertent detuning during operation.

Grounded-Grid Amplifiers

Advantages of single-ended circuits, high stability, good shielding and ease of tuning are realized in the design of the 1,3 and $10-\mathrm{kw}$ amplifiers. All employ 7C24 tubes in grounded-grid circuits and are identical in construction with the exception of coupling circuits. The 1 and $3-\mathrm{kw}$ amplifiers consist of two grounded-grid 7C24's in cascade. These tubes provide driving power for the $10-\mathrm{kw}$ amplifier which employs two 7C24's operat-
(continued on p 140)
agnet shown is 10 times actual scale and is the heart of the Magnetic Relay manufactured by Thomas A. Edison, Incorporated, West Orange, Now Jersey.

THE ELECTRON ART

Edited by FRANK H. ROCKETT

Summaries of Papers at Conference on

Instrumentation in Nucleonics and Medicine

Techniques used in instruments and in making measurements were surveyed at a Conference on Electronic Instrumentation in Nucleonics and Medicine sponsored by the AIEE and the IRE and held in the Engineering Societies Building, New York City, from Nov. 29 to Dec. 1; about 500 representatives of industrial, governmental and university laboratories attended the six technical sessions. During the first day, means for measuring biological phenomena were reviewed. On the second day, biological uses of radioactive tracers were discussed. Papers presented the third day described progress being made in detectors for nuclear particles. The speakers, leaders in their various fields, presented, for the most part, papers reviewing the present state of their sciences.

In the following columns, the highlights of interest to ElectronICS readers from the 26 papers are summarized individually. What was presented in the papers, discussions and in conversations before and after the sessions showed that (1) the instrument designer needs to be fairly well acquainted with the phenomena that his equipment is to detect and indicate (the foremost purpose of the conference was to provide an opportunity for research and instrumentation groups to exchange this basic information), (2) electronic methods are the only ones providing the sensitivity and rapidity necessary for refined nuclear and medical measurements, but that instabilities such as noise and drift and limited resolution (frequency response) mask the measurements, and (3) these highly specialized but limited fields of application, by requiring the
utmost of electronics, are providing the impetus for improving techniques. The work described at the conference shows a great intensity of activity in the field and rapid progress.

Biological Applications

Requirements in Amplifiers
By Harry Grundfest
College of Physicians and Surgeons Columbia University

A Review of the action in nervous systems shows that the interval between stimulation and response is in the order of milliseconds. Therefore, in electrophysiology (in which the basic problem is: How do electrical nerve impulses originate and propagate?) electronic techniques are used because the phenomena under study (1) are electrical and (2) act rapidly. In studying nerve potentials, direct-current amplifiers having sensitivities in the millivolt range are used.

The equivalent circuit of the fiber can be deduced from wave measurements along it. The fiber resembles a lossy transmission line. To make measurements on such a line (nerve fiber) without loading, an amplifier with an input resistance of megohms and a shunt capacitance of micromicrofarads is required. To obtain sufficient resolution for studying the waveshape of the transmitted pulses, the frequency response should extend to megacycles; sensitivities of ten to several hundred microvolts with low noise levels are required where oscilloscopic observations of wave-

INSTRUMENTATION REVIEW

This report of the recent conference on nucleonic and medical instrumentation constitutes a concise survey of an exacting and expanding field. From the wealth of material that the speakers presented, the information in which ELECTRONICS readers are most directly interested has been summarized here to form a broad review of the present and potential applications of electronic instrumentation in these two important sciences. The review covers:
Biological Applicationspage 128 Nucleonics and Biology..... page 174 Nuclear Particle Detectors. page 184
shapes are made. The amplifior should not be blocked by large spikes because one frequently wishes to study fluctuations of a few microvolts that follow a millivolt spike.

A general purpose amplifier would have a minimum sensitivity of 200 millivolts across a $10-\mathrm{meg}$ ohm input, $130-\mathrm{db}$ voltage gain that is continuously variable, giving enough output to drive a cathoderay tube, nonintegrating and nonblocking coupling networks and a frequency response that is flat within ten percent to 20 kc , although some measurements, as indicated earlier, require greater sensitivity and frequency response. The input circuit should not produce polarizing voltages across the specimen and should have high rejection of undesired signals. Wirewound resistors, heavy-duty components and battery operation are usually needed to obtain stability.

Present Practice in Biological Amplifier Design
By John P. Hervey
Johnson Foundation University of Pennsylvania Philadelphia, Pa.

So little has been published about differential amplifiers that engineers are not generally acquainted with the problem. Amplifiers for action potentials, which have repetition rates of 10^{-2} to 5×10^{2} per second and rates of rise in the order of microseconds (although this is not an upper limit), may have to

FM-AM SIGNAL GENERATOR
 Type 202-B - 54-216 megacycles

The Accepted Standard of Performance!

In January, 1946, at the I. R. E. National Convention in New York City, a preliminary engineering model of the type 202-A FM-AM Signal Generator was displayed for the first time. Many well known FM and television engineers, invited to comment frankly on performance specifications, suggested refinements and features which they believed would be most desirable in the finished design.
Utilizing this valuable information, Boonton Radio Corporadion's engineers worked another full year before they were ready to place their approval on the final design-the type 202-B FM -AM Signal Generator.
The advantages of this essential instrument were recognized
immediately. Since its enthusiastic reception, the 202-B has increased in popularity and today it is generally accepted as the acknowledged standard of FM-AM signal generator performance. Practically every well known radio manufactoring concern is now placing increasing numbers of this versatile instrument in full time use, assisting their engineers and research staffs to design and produce better, lower cost radio and television receiving equipment.
If you have an FM or television instrument requirement, let us acquaint you with full particulars and technical data concerning the Type 202-B FM-AM Signal Generator. Write for Catalog F.

BENTON RADIO

be measured in the presence of other biological potentials such as a muscle potential between the probes and ground that is larger than the potential being studied. Such a condition requires a differential amplifier (J. F. Toennies, Rev. of Sci. Inst., p 95, 1938).

Several symmetrical amplifiers can be cascaded to produce higher rejection than is obtainable from a single stage, but identical tubes are not available for each stage so that results are short of ideal. Balancing circuits can be used to compensate for inequalities in tubes, but at a sacrifice in high-frequency response. Differential action is obtainable to the order of 100 kc .
To select closely similar triodes for such circuits, the tubes are first aged for 100 hours under their expected d-c operating conditions. Those aged tubes with anode-cathode potential drops within five percent and negligible grid current in the actual circuit are selected for use. Tube noise is intermittent and varies randomly; if it is of appreciable magnitude, the tube is rejected. It is easier to get two matched triodes in separate envelopes than in a single envelope. Type 1620 is preferred for low noise and the good chance of getting matched pairs; it has low grid current.

With pentodes, the inequality in screen characteristics, even after selection by anode current equality, requires a battery or separate power supply so fat screen currents in the common cathode resistor are avoided. Medium-mu triodes (6J5 or triode-connected 6SJ7) give better differential action than either high-mu triodes or pentodes. Tube selection provides an order of magnitude improvement. However, there is no differential action to suppress transients and hum in heater circuits, which are electrostatically picked up inside the tubes. Cathode-follower inputs tend to introduce noise.

Flicker is the most persistent noise source at low frequencies. Little is known about it, but it becomes noticeable below about 100 cps and troublesome below 20 cps ; its most probable period is 0.1 to 1.0 second and masks short period drift, hence both it and drift are
difficult to measure. Amplifiers are mounted in shielded boxes lined with an acoustic insulation to isolate the chassis from vibration.

Audiology Requirements
By Aram Glorig
Walter Reed Hospital Washington, D. C.

Audiometers are used to provide stimuli for studying normal and defective hearing. Quiet ($-60-\mathrm{db}$ noise level), stable operation is necessary to obtain precision. For speech testing, high fidelity (80 to $15,000 \mathrm{eps}$), ave to maintain voice level and low distortion in records when canned voice is used are required. Tape or wire recordings might provide the required low noise. A portable sound-treated room providing at least $40-\mathrm{db}$ attenuation to outside noises would facilitate measurements, as would a smaller, stabler receiver and an automatic group tester.

Diagnosis of the cause (organic, psychogenic or pretended) of defective hearing necessitates development of objective hearing tests. One method is to make use of the differential between apparent loudness increments for each type of hearing impairment, but test equipment for such measurements is limited. Also, test equipment should incorporate means for calibration to check its condition.

> Cathode-Ray Photography By Charles M. Berry
> Cornell University Medical College New York, N. Y.

Tracing velocities, on which the brightness of the image depend, are affected by the vertical motion of the cathode-ray tube spot in tracing the wave. A study of biological data shows that tracing velocities range up to 50 cm per millisecond, but that most actions lie below 25 cm per millisecond. Thus conventional and inexpensive equipment (f2.8 lens, 1,400-volt medium-persistence screen cathoderay tube) can be used. One can use the motion of the film to give the time base thus decreasing the writing rate; film velocities of about 20 cm per second should be used. It
might be easier to move the film horizontally so that the same connections could be used with either the sweep or the film motion for time base. Added conveniences would be provision for numbering each frame and photographing two tubes simultaneously.

Electrocardiograph By John L. Nickerson
College of Physicians and Surgeons Columbia University New York, N. Y

An empirical correlation has been established between the pattern of electrical potentials across the body and cardiac ailments. Significant features of potentials are magnitudes and durations of distinguishable waveshapes in the pattern. These patterns are recorded for study and diagnosis. If records are to be used by students the ink or wax oscillographs should be durable; the recorder should be portable, have a one-centimeter per millivolt sensitivity that is both adjustable and stable over a 30 -minute interval within five percent and have low, but not necessarily directcurrent, response. Cardiographers are interested in resolving hundredths of a second.

Electroence phalograph
By Charles H. Richards
Cormell University Medical College New York, N. Y.

Brain waves arising in nerve elements can be detected from the surface of the scalp where the 50 to 1,000 microvolts on the brain are attenuated to a tenth of this value. The diagnostic technique is to localize the area of abnormal voltages. Direct-inking recording is used to obtain records running up to an hour and to observe the record as it is made.

The patient is examined in an electrically shielded room to minimize interference. Four independent channels are used for clinical work and eight for research, corresponding to the eight lobes of the brain. The alpha rhythm occurring from about 8.5 to 12 cps
(Continued on p 172)

Varglas Permafil Tubing excels oleoresinous and other symthetic coated tubing in several important performance characteristics. Outstanding among these are:

Remains pliable even after severe flexing. This new tubing can be twisted, bent or tied in knots with no loss in its dielectric value (7,000 volts).

SOLVENT RESISTANCE

Is relatively immune to alcohol. Petroleum and aromatic hydrocarbons have only slight effect after long exposure.

(3) heat aging

Withstands more than 2,000 hours at 105° to $110^{\circ} \mathrm{C}$., 1,000 hours at $125^{\circ} \mathrm{C}$. and extensive periods at $150^{\circ} \mathrm{C}$.

Impregnated with PERMAFIL
insuluperior

4 BAKINC
Can be after-treated in baking and varnishing operations-reacts better than most oleoresinous materials.

Makers of Electrical Insulating Tubing and Sleeving

(6) AVAILABLE IN COILS

-in standard colors and wide range of sizes. Meets or ex-
ceeds all requirements of A.S.T.M. specifications. -.. Send for FREE SAMPLE and complete data.
\qquad

NEW PRODUCTS

Edited by A. A. McKENZIE

Miniature Multitester

International Instruments, Inc., 311 East St., New Haven, Conn. The miniature multitester is a combination ohmmeter and voltmeter for resistance, a-c, and d-c

measurements. The d-c voltage range is 300 v with accuracy of plus or minus 2 percent at 10,000 ohms per volt. The a-c range is within 5 percent. Resistance up to 2 megohms can be measured.

Removable Stylus Pickup

The Pickering Co., Oceanside, L. I., N. Y. Model R-150 cartridge reproducer for playing home phonograph records has a removable

stylus that can be replaced by hand. Either sapphire or diamond stylus can be furnished.

Television Transmitter

Radio Corp. of America, Camden, N. J., has in production a new $500-$ watt television transmitter for operation in the higher frequency channels (174 to 216 mc). Under favorable conditions the type TT-

500B, using a coaxial tank circuit, coupled with a six-section super turnstile, can cover a 20 -mile radius.

Microgroove Recorder

Presto Recording Corp., Box 500, Hackensack, N. J. Two new recorders, types K-10 and Y-3 are modifications of types K-8 and Y-2 respectively. They can be used for

both standard and microgroove recording. The series 15 phono turntables are a companion line for reproducing either microgroove or those and standard recordings.

Broadband Oscilloscope

Telemark Electronics Corp., 325 Troy Ave., Brooklyn 13, N. Y. Model 450A 5 -in. oscilloscope em-

ploys amplifiers with bandwith from 2 cycles to 450 kc , extending to 850 kc at 6 db down. Deflection sensitivity is 0.15 rms volt per inch.

Television Matcher

Standard Transformer Corp., Elston, Kedzie and Addison, Chicago 18, Ill. The Telematch unit helps eliminate ghosts and also pro-

vides a better television signal by matching the antenna leadin to the receiver. Price is $\$ 9.50$.

Random Noise Source

Dale Pollack, 35: Pequot Ave., New London, Conn., announces a line of random noise signal generators, using saturated diodes as sources, for facilitating measurement of receiver characteristics. Model 101, for the 1 to $110-\mathrm{mc}$

February, 1949 - ELECTRONICS

RAYTHEON Annoumece... COMMERCIAL MICROWAVE POWER

QK-217
^ 1500 watts continuous power at 2450 megacycles.
\star Efficiency 50%.

* Unipotential indirectly heated cathode.
* Integral magnet construction.
\star Pre-plumbed.

QK-174A

F-M communications magnetron

* Tunable 1990-2110 megacycles.
\star Frequency modulation 15 megacycles.
\star Power 100 watts.
\star Efficiency 35%.

Also a complete line of low power klystrons from G millimeters to 30 centimeters

Data available on request

RAYTHEON

Excellence in Eileduonics

RAYTHEON MANUFACTURINGCOMPANY POWER TUBE DIVISION Waltham 54, Massachusetts

range, has an output impedance adjustable from 50 to 500 ohms and a noise flgure of 0 to 27 db at 500 ohms. Model 102, for the 100 to $3,000-\mathrm{mc}$ range, has an output impedance of 50 ohms and a noise figure of 0 to 20 db .

Focus Coil

Arthur Slepian \& Co., Bridgeport 7, Conn. A new focus coil for television tubes uses a paper-section coil winding. The entire assembly

is wax-impregnated and heat treated to relieve stresses and improve its magnetic qualities.

High-Voltage Resistor

International Resistance Co., Philadelphia, Pa. Type BTAV resistor is designed to operate continuously at much higher voltages than the maximum rated voltage of the standard BT resistor, and to

withstand surges up to 6,000 volts. A variation of the RMA color code, consisting of a wider separation between the first and second signinicant bands, distinguishes it from the advanced BTA resistor.

Television Front End

Vision Research Labs., Inc., 87 50 Lefferts Blvd., Richmond Hill, N. Y. Model TF701 television front end contains r-f amplifier, oscillator and mixer circuits for a television

tuner that covers all 12 channels. The tuning control equipped with a planetary drive covers the bands in a 180 -degree rotation in a manner similar to conventional receivers.

Lab Connector

General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass. The type 874 coaxial connector series can be used at frequencies exceeding 4.5 kilomegacycles whenever a shielded connection is needed.

Chief feature of the new connectors is their ability to be joined without adapters. Each unit is, in effect, a combined male and female connector.

Twin Receivers

Telex, Inc., 1370 Northwestern Bank Bldg., Minneapolis, Minn. The Twinset is a twin receiver headset weighing 1.6 ounces and can be adjusted to fit any head

shape or size. Single cord connection replaces the more conventional Y cord.

Tape Recorder

Fairchild Recording Equipment Corp., 88-06 Van Wyck Blvd., Jamaica 1, N. Y. A new magnetic tape recorder meets NAB specifications set for 30 inches per second

tape travel using a speed of only 15 inches per second. Signal-to-noise ratio is better than 60 db and maximum total harmonic distortion is 2 percent.

Thin-Glass Geigers

Raytheon Mfg. Co., Newton 58, Mass. Three new Geiger tubes, types 1B90, CK1018, CK1019 have thin glass side walls. They vary in recommended operating voltage

from 950 to 1150 volts. The CK types have been designed for use in portable battery-operated counters. Life of the tubes is in excess of 10^{*} counts.

Mobile F-M Equipment

General Electric Co., Syracuse, N. Y, Designed for police departments, public utilities, taxis and the like, the new mobile f-m trans-mitter-receiver for communication in the 152 to $162-\mathrm{mc}$ band operates on 6.3 volts $d-c$ and has a 20 -watt output. Carrier frequency stability is better than ± 0.002 percent from -30 to +60 degrees C and (continued on p . 197)

EVERY KNOWN TEST QUALIFIES WILBUR B. DRIVER ALLOYS FOR SUPERIOR INSTRUMENTATION!

Photomicrographic checking of grain size and quality of metals is only one of the exhaustive tests which Wilbur B. Driver resistance alloys are subjected to throughout production. There are many others including ASTM life, tensile strength, yield point, hardness, micrometer and thorough testing for resistance. These constant checks plus industry-old experience, are the reasons you can depend on all Wilbur B. Driver alloys to perform as specified. The alloys listed are so produced, and are especially recommended for instrumentation.

NEWS OF THE INDUSTRY

Edited by WILLIAM P. O'BRIEN

Research Accrediting Program

Graduate students who wish to undertake basic research in the physical sciences may now do so under the fundamental research program of the Naval Research Laboratory, Washington, D. C. Here it is possible for students to conduct their research leading to advanced degrees at cooperating institutions while employed at the Laboratory, using its facilities for their work.

The scientific program of the NRL is divided into the nine fields of chemistry, electricity, mechanics, metallurgy, nucleonics, optics, physics, radio and sound. A large portion of the Laboratory's effort is devoted to radio and electronic research which is divided into three major programs.

Primary purpose of the first program is to provide a fundamental basis for new and improved radio and electronics systems and components for the Navy. Studies are made of the electric and magnetic properties of matter at radio frequencies, the basic theory underlying antenna operation, microwave components, wave propagation and radio interference caused by radiation of solar origin.

In the second radio research program investigations are conducted for the purpose of achieving maximum effectiveness in the use of radio principles as embodied in ship, shore, airborne, submarine, portable and mobile equipment. Herein are included communication studies and work on countermeasures.
The third program in this field comprises investigations relating to gunfire control, missile guidance and control, and all-weather flying.
Application for admission to the research accrediting program is made by filling out and sending in to the Training Section at the Laboratory a Standard Form 57 of the U. S. Civil Service Commission, obtainable from the Commission, the NRL or from any first or second
class post office. Participants in the program will usually qualify for P-1 or P-2 positions, with an annual salary of $\$ 2,974$ or $\$ 3,727$, respectively as civil service employees.

Tele Network Reorganization

Final step in the complete reorganization of the DuMont television network engineering department was the appointment of Robert Bigwood as facilities engineer. Other engineering department subdivision heads are:

Operations engineer Henry Fra-
ser is in charge of coordinating the entire network engineering operation.

The chief engineers of DuMont's three owned and operated stations, Sal Patremio at WABD in New York, Malcolm Burleson at WTTG in Washington, and Raymond Rogers at WDTV in Pittsburgh are responsible for the operation and maintenance of equipment at their respective stations.

Teletranscriptions engineer Harry Millholland is in charge of the engineering aspects of teletranscriptions, DuMont's system of transcribing television programs from the face of cathode-ray tubes.

Radio Engineering Show

Exhibits in the 1949 Radio Engineering Show to be held at Grand Central Palace, New York City, March 7-10, will exceed all past

NEW SYNCHROTRON SUCCESSFULLY TESTED

Shown checking the University of Michigan's huge new synchrotron for splitting the nuclei of atoms are Dr. H. R. Crane (left), co-designer of the instrument, and George Grover, a research associate. Initial test of the 15 -ton, $300,000,000$-electron volt apparatus was termed a success

What makes BENDIX* dynamotors SO MUCH BETTER?

For the answers look inside!

It Pays to buy Quality... and no finer Quality Dynamotor is available than a BENDIX DYNAMOTOR

TEMPERATURE RISE- $40^{\circ} \mathrm{C}$
STARTING TIME- 3 seconds (or less if specified).
VIBRATION RESISTANCE-Will withstand 03 inches (06 total excursion) between 10 and 60 e.p.s., without special mounts.
TEMPERATURE RANGE-Will operate through ambient range of $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
ALTITUDE-Will operate normally to 20,000 feet and higher if special altitude brushes are specified.
CAA APPROVAL-All Bendix dynamotors are capable of meeting Civil Aeronautics Authority type Certification lests and are in use by major, scheduled airlines and government services.

INSPECTION AND TEST-All Bendix Dynamotors are carefully inspected in every step of production. Every unit receives a six to twelve hour run-in, depending on type, to insure praper brush seating.
records. Firms and organizations numbering 192 had already taken space by Dec. 15, as compared with the total of 185 exhibitors in 1948.

Emphasis is being placed on "spotlighting the new" in equipment and materials. The exhibits will range from raw materials used in radio and electronic manufacture to complete transmitters and studio equipment. Advances in test equipment will also be a major attraction for the 12,000 engineers expected.

A new feature is a nuclear center for exhibiting the test, control and laboratory equipment of nucleonies, in which 14 firms are taking part. There will also be special sound theaters in which six firms will demonstrate their audio equipment.

Fourteen half-day technical sessions will be held in lecture halls in Grand Central Palace, and additional sessions will be at the Hotel Commodore.

Broadcasters Must Use FCCApproved Monitors

All standard broadcast stations are required to maintain a constant check on modulation percentage and frequency deviation by means of monitors which have received formal FCC approval. The Commission had on occasion authorized the issuance of waivers of the rules (on condition that alternate means were provided) due to the shortage of this equipment after the war. Such waivers are no longer necessary because of the supply now available.

Stations at present operating without frequency and modulation monitors must have them installed after March 1, 1949; stations beginning operations after that time will not receive authorization without the approved monitors.

Hotel Installs Telefax

Telegraph service around the clock was recently established in the Wardman Park Hotel, Washington, D. C., by installation of Western Union Telefax. This practical application of Ultrafax principles involves equipment which

MEETINGS

March 7-10: IRE annual convention, Hotel Commodore and Grand Central Palace, New York City.

APRIL 6-12: 27th annual convention of the National Association of Broadcasters, Stevens Hotel, Chicago, Ill.
April 11-15: Sixth Western Metal Congress and Exposition, Shrine Auditorium, Los Angeles, Calif.

April 18-20: Eleventh annual Midwest Power Conference, Sherman Hotel, Chicago, Ill.

April 25-27: Fourth Annual Spring Meeting of the RMA and IRE, Benjamin Franklin Hotel, Philadelphia, Pa.
May 16-20: Radio Parts Industry Trade Show and RMA Silver Anniversary Convention, Hotel Stevens, Chicago, III.
scans telegrams with an electric eye, eliminating keyboard transmission.

The operation involves pressing a button and depositing a telegram in the slot of a Telefax (facsimile) machine located adjacent to the hotel registration desk. Telegrams are then automatically wrapped around a revolving cylinder and scanned by phototube, with resultant signals going out over wires. Incoming telegrams drop out of the Telefax machine ready for delivery.

Radio for Trolley Cars

Fourteen new interurban trolley cars now on order for the Philadelphia Suburban Transportation Co. will be equipped with GE twoway radios. The installation will use selective calling to eliminate loud speakers and insure privacy, with conversations carried on through handsets.

A pilot installation made last

First trolley car in the U. S. to be equipped with GE two-way radio and selective calling. The car is operated by the Philadelphia Suburban Transportation Co.

September on one trolley car and on 12 supervisory and emergency vehicles has proved the advantage of radio in eliminating traffic jams and expediting service.

Radio Consultants Form Association

To meet the need for an association of consulting radio engineers to handle mutual problems, a group of consulting engineers practicing before the FCC have banded into the Association of Federal Communications Consulting Engineers. The object of the organization is to aid and promote the proper federal administration and regulation of the engineering and technical phases of radio communication.

Following the formalities of organization, officers were elected for the year expiring in April 1949, as follows:
C. M. Jansky, Jr., president; Glenn D. Gillett, vice-president; A. D. Ring, secretary ; and George C. Davis, treasurer. Other members of the executive committee are Frank G. Kear, James C. McNary, Joseph A. Chambers and John Creutz.

Other members are: Stuart I. Bailey, John H. Barron, Clyde H. Bond, Lester H. Carr, Ronald H. Culver, Everett L. Dillard, Millard M. Garrison, Paul F. Godley, Robert L. Kennedy, Worthington C. Lent, George M. Lohnes, Frank H. McIntosh, Russell P. May, E. C. Page, William E. Plummer, James O. Weldon, Herbert L. Wilson and Grant R. Wrathall.

The association hopes that mem-
(continued on p 226)

Here's a relay that steps out from the crowd-

TYPE 45 ROTARY SWITCH
A rotary switch that's new and better! 70 steps a second speed... up to 10 (or more) bank levels . . . only one field adjustment. Ask for lit. erature. a relay even better than Automatic's widely used, widely copied, Class " A " relay. Use the Class " B " for your most exacting applica-tion-and discover for yourself its wide margin of superiority in sensitivity . . . dependability . . . compactness . . . versatility . . . and long wearing qualities!

The Class " B " Relay and many others are described in catalog 4071-write for your copy.

Distributors in U. S. and Possessions:
Automatic Electric Sales Corporation
1033 W. Van Buren St., Chicago 7, III
In Canada: Automatic Electric (Canada), Ltd., Toronto

TUBES AT WORK
(continued from p. 126)

Hoist and sling hold the 5592 tube ready for lowering into the tube well in the background. Two of these tubes form the 50-kw final amplifier
ing in parallel into two concentricline tank circuits.

Each plate tank is a tuned trans-mission-line type and is concentric with the anode of its 7 C 24 tube and forms an integral part of the grounded-grid circuit. This design provides a low inductance path from grid to ground, effectively isolates plate circuits from cathode circuits and eliminates the need for neutralization.
The two tubes in the $10-\mathrm{kw}$ amplifier have a common input circuit with motor-driven tuning and coupling adjustments. Just as in the 1 and 3 -kw stages, the plate circuits are tuned by adjusting the position of capacitor-type shorting bars and output coupling is effected by small loops between the inner and outer conductors of the plate lines. In all three stages, input, plate, and output, the circuits are motor-tuned.

Cooling air for the 1,3 and 10 kw stages is supplied by an external blower. Filtered air is also supplied to each 7C24 tube through the center conductor of the plate lines.

Driver and Final
A concentric-line tank assembly provides yood shielding of the driver and power amplifier grounded-grid circuits. The driver amplifier feeds two parallel-connected final sections and each one of these concentric-line tanks forms

This new automatic voltage stabilizer supplies a constant 115 volts

We want to get in touch with any manufacturer whose product will operate better if supplied from a stabilized voltage source.

General Electric has recently announced three new automatic voltage stabilizers that provide steady, dependable output voltages, despite varying input voltages. Rated 15,25 , and 50 voltamperes, these stabilizers are instantaneous (recovery time: 3 cycles), entirely automatic, and have no moving parts. They deliver 115 volts output (\pm one per cent for fixed, unity power factor loads) with the input voltage varying from 95 to 130 volts.

These units will operate continuously at no load
or short circuit without damage to themselves. They will limit the short circuit current to approximately twice normal full load current. Dimensions are $91 / 2 \times 3^{1 / 8} \times 2^{11 / 32} 2^{\prime \prime}$ high-making possible shallow depth installations. Other standard G-E stabilizers are available in ratings from 100 to 5000 va.
Drop us a line if you see a possibility for these new automatic voltage stabilizers in your product. Please give us all the information you can-and if possible, a circuit diagram or description of the load, so that we can help you in evaluating the application. Simply address your nearest G-E Apparatus Sales Office or Apparatus Department, General Electric Company, Schenectady 5, N. Y.

an integral part of the groundedgrid circuit. The one compact unit eliminates neutralization, radiation and r-f pickup in adjacent r-f circuits. Each section is similar in design and uses a 5592 forced-aircooled triode in a grounded-grid circuit. Tubes and components are interchangeable. The base of the concentric-line units forms a chamber for cooling air and contains the control wiring and high-voltage bus. Tuning of the plate line is provided by shorting bars with contact fingers that are moved vertically along the center conductor by mo-tor-driven lead screws. Input tuning is accomplished by two flatplate air capacitors, one motor driven and the other manually operated.

Motor-driven rotatable loops which are reactance tuned by series capacitors provide output coupling. The amplifiers feed equal load impedances, are individually motor controlled, and provide easy load balancing as well as smooth adjustment of power output. The transmitter front panel contains one set of controls for the driver tuning motors and another set to operate the tuning motors of both final amplifier units. For emergency operation at reduced power, the antenna is switched to the $10-\mathrm{kw}$ stage, thus assuring uninterrupted service.

For maximum suppression of harmonic radiation, a harmonic attenuator is included in the transmitter. It consists of a pretuned low-pass filter capable of $38-\mathrm{db}$ attenuation.

The transmission line and antenna are monitored by a circuit that is actuated by any unwarranted change in signal intensity. It then shuts down the transmitter, A reclosing mechanism returns the transmitter to the air, if the fault is cleared.

Tube Derrick

For changing tubes, a mechanically operated tube hoist is solidly mounted in a swivel supporting structure. Two swivel supports are provided and the hoist may be lifted from one support to the next, thus accommodating the tube to be removed.

In the main rectifier, six 857-B mercury-vapor tubes are connected

RELAYS

1 D,olect Their Product: Reputation

Fout mors chim turee decides leciding matinFacrinte lies espectied Lench Reliysthecausc
 for materats engineerug inspection and zerlo ing There tugh standards assure fependatile opraiticine in teach relays. on what lections inalufactives stake the name of their own pradacos It Es Leach quality which memons lones. Fisting rouble itee operation it is theschigit? 3 sandiates that revule in reduced helk secvicins Oot for the munafacturer. They mive Leac: ifnextaes of quality ard desiga migiacenus iss ance fopericiste operit oni-mafitu n custuthe? goostreit -

FOE BETER CONTROLS THROUGH BETIER RELAYSLook to Leacb

TUBES AT WORK
in a three-phase, full-wave circuit with a half-voltage tap to supply the lower power stages. A preheated spare tube can be manually switched in place of any of the six operating tubes, at the same time removing the defective tube from the circuit.

Extended primary windings of the three-phase plate transformer give power plate voltage for test purposes. Only one other rectifier is used (excluding the exciter regulated power supply), and this is a small unit in the low power r-f section which supplies screen voltage.

For fully automatic sequential operation or step-by-step manual operation, as desired, all the necessary controls, circuit breakers and relays are centralized. High-speed air circuit breakers of the mechan-ical-latch type are employed in high-power switchgear. Overload protection consists of a selective relaying system combining high speed tripping on d-c overloads and short circuit faults, with time delay tripping on nominal a-c system over-current and under-voltage faults.

Circuit indicator lamps permit analyzing and localizing transmitter, tube or line faults. A reclosing system returns full power automatically if the plate voltage is removed due to operation of overload devices on rectifier backfires, vacu-um-tube gas ares, antenna flashovers or other causes. This operation is repeated three times on the high-power rectifier. If the fault persists on the third re-application of plate voltage, the recloser locks out until reset manually.

Automatic Temperature Stabilizer

By Robert Rudin
 Columbia University
 New York, N. Y.

The basic principles of the unit described in this article may be applied to any application where smooth and accurate temperature control is important. It was developed at Bell Laboratories to fill the need for such a temperature-controlling device for use in connection

MAGNAVOX . . specialists in quantity production of quality loud speakers!

Over 100 different models . . . speakers for every type installation

MAGNAVOX is loud speaker headquarters for the manufacturing trade-the oldest and largest producer of quality loud speakers. From the smallest speaker to the largest, your specifications are met exactly and production is speedy and economical. From start to finish, through research, design and production, Magnavox speakers are engineered by men whose sole business is the making of better loud speakers!

New, illustrated speaker catalog with complete specifications available on request. Write today on your company letterhead. The Magnavox Co., Sales and Engineering Offices, Components Division, Ft. Wayne 4, Ind.

The modern, new 21⁄2macre Magnavox factory at Paducah, Kentucky is a model of engineering achievement. World-famous Magnavox speakers are coming off the line at a greatly accelerated pace. All efforts are devoted to the most efficient mas production of quality speakers exclusively for the manufacturing trade.

Speaker Model 15 E Model 15E-15" Electrodynamic Speaker

Speaker Model 7B
Model 7B—7" Magneto Dynamic Speaker. Available with $34^{\prime \prime}$ " or $1^{\prime \prime}$ standard voiue coil.

TRAMSFORMER CRIS STOCKED IN STANDARD SIZES

Let us save you die costs on all stock size transformer cans, and make IMMEDIATE DELIVERY. We carry a full range of sizes and can supply with or without covers. List of stock sizes and prints will be furnished upon request.

We are also equipped to fabricate special sizes and shapes (round, square and rectangular) of transformer cans to your own specifications. Tell us your requirements and we will be glad to submit estimates.

> Impartaut: All Craff Transformer Cans are drawn in one piece.

FIG. 1-Block diagram of temperature control for range from 30 to 100 C
with magnetron oscillators.
The block diagram in Fig. 1 and the circuit diagrams of Fig. 2 and 3 show schematically how the device works. A bolometer is brought into thermal contact with the component whose temperature is to be controlled, and connected into a bridge circuit. With a constant voltage supplied by a regulated a-c supply, the output of the bridge will vary with the resistance of the bolometer, which is determined by the temperature of the unit to which the bolometer is connected.

This output voltage is amplified and rectified, and the resulting d-c voltage is superimposed on a variable bias obtained from a potentiometer. The difference between these two voltages is applied to the grid of a d-c amplifier which in turn controls the grid of a power tube. The varying plate current of the power tube moves a shutter in an air valve which allows more or less cooling air to circulate. For safety, the valve is built to open fully in the event of circuit failure.

The device described is intended to control magnetron temperatures in the range of 30 to 100 C . The bridge is balanced at 120 C , the a-c output being nearly proportional to the difference between that temperature and the actual temperature. An extended range of -60 to +100 C may be obtained by use of an attenuator in the final a-c stage.

The regulated voltage of 6.3 volts rms is stabilized by the WE 4B ballast lamp and by the WE 7A ballast lamp in conjunction with the

A snop-on covered multi-contact terminal board assembly constructed of approved materials to meet a client's special requirements

When one of our customers approached us with a terminal board problem a short time ago, the requirements were such that no standard board could be found to do the job.

And that's where C.T.C.'s Custom Engineering Service went to work. The result: the board you see above.

This is just one of many examples in which C.T.C. Custom Engineering has produced results for electronic and radio manufacturers. We are equipped to produce assembled terminal boards of almost any description using any approved material . . . terminal lugs designed and produced to your special requirements in any needed quantity . . . coils and chokes of whatever capacities and characteristics you may need.

Combination lug. Screw on top solder terminal below. Designed as a rugged swaged terminal for top \& bottom wiring applications.
C.T.C. is prepared to meet any special requirements you may have for terminal lugs.

Our engineers will gladly design lugs to fill your needs and produce them in quantity.

$\mathrm{Hi} Q$ oscillator
coil
close
tolerances
mounts directly on mounts directly
bond switch.
C. T. C. has helped many manufacturers in designing special coils and chokes to meet individual conditions. Can we be of service to you? We'll see your problem through from design board to production.

See us at Booth 288 at the IRE Exposition, Grand Central Palace, March 7-10. A C.T.C. Engineer will be glad to discuss problems concerning electronic components.

FIG. 2-Bridge and preamplifier circuits are mounted in a shielded box
3.5-0hm resistor across the primary of $T=$. The voltage drop across this resistor is about 1.8 volts and the voltage delivered to the bridge after transformation is about 1 volt.

Short impulses caused by sudden line voltage changes and the inherent thermal inertia of the ballast lamps are practically eliminated by a filter in the power tube circuit.

The bolometer consists of a flat coil of platinum wire 0.004 inch in diameter. This coil is covered with a 0.005 -inch thick sheet of mica and the whole assembly is enclosed in a copper sheet box which is shaped to match the contour of the magnetron. A shielded cable connects the bolometer to a shielded box which contains the bridge and the 6SJ7-6C5 preamplifier. The power amplifier and output parts are mounted on a separate chassis. A 6C5 amplifies the a-c output from the preamplifier and feeds the rectifier through a step-up transformer T_{5}. The 6 H 6 diode serves as a voltage doubler delivering up to 75 volts for 20 C . The meter reading this voltage is calibrated in temperature units and mounted in an inverted position so temperature rises will read from left to right.

The biasing potentiometer is fed by a d-c voltage which is stabilized

FIG. 3-Output of the power amplifier feeds a coil in a magnetic field

Little lamps bring new sales appeal -add extra features that make sales!

WHEN the choice is between your product and a competitor's, it's often a little thing that swings the sale!

Little lamps that warn when the current is on or off. "Tell-tale" lamps that check the operation of individual circuits. Built-in lamps to light up dark spots or to help in quick reading of instrument dials.

General Electric miniature lamps have dozens of valuable appli-
cations in electronic products. There's a type and size for every use-all voltages and wattages, filament or neon glow. And every General Electric miniature lamp is made to the same high standards as its bigger brothers.

For assistance in selecting the proper type for your particular problems or applications, consult your nearest G-E lamp district office. Or write General Electric, Nela Park, Cleveland 12, Ohio.

G.E LAMPS

general (3) Electric

To indicate higher temperature to the right. the panel meter is inverted
by a VR-105 gas tube. Its dial is calibrated in temperature so that operating temperatures may be set.

The air control consists of a balanced shutter which rotates through an angle of approximately 60 degrees. The plate current of the 6 L 6 varies linearly with the grid voltage of the 6SF5 and controls the air circulation by passing through a coil in the field of a powerful permanent magnet.
A voltage variation of 0.5 volt at the grid of the 6SF5 is sufficient to move the air valve from extreme open to closed, and that voltage will be generated by a change of approximately 0.5 C . The 6 E 5 cathoderay tube indicates the amount of cooling, a closed eye meaning air valve is fully open and the hand valve should be opened to allow the unit to operate at the regulating point.

The bolometer cannot assume the exact temperature of the magnetron, but the relationship between their temperatures is practically constant. For calibration the bolometer is attached to a heating device which duplicates the geometric and thermal conditions of the magnetron. This calibrating unit is brought up to 120 C and the meter is adjusted to read that temperature at full scale by means of R_{1} (this corresponds to the zero reading on the inverted meter). The minimum reading is adjusted by $R=$ with the bolometer at a temperature of 20 C . The temperature-setting potentiometer is calibrated by setting it to approximately mid-

Westinghouse instrument specialists are available in the field for consultation on your instrument p-oblems. Call your nearest Westinghouse office, or write Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Da.

Send for Booklet B-2209-A, Commlnication Instrument Booklet B.3283, or Switchboard Instrument Booklet B-3363.
-

Radio stations can take no chances on "outages"-time off the air is costly. For split-second timing, efficiency, and continuity, all vital operating information must be readily available to the control engineer at a glance.

For these reasons, instruments of unfailing performance and quick readability are a must. The Westinghouse instruments at KMOX solved these problems. They also provide co-ordinated styling and smart appearance.

What are YOUR electrical measuring problems?

Would they include - reliable performance . . . styling . . . size . . . readability or different types of service . . . portable . . . switchboard . . . panel . . . recording?

The vast lines of Westinghouse electrical measuring instruments provide you with the answers to all of these problems. Every Westinghouse instrument is backed up by more than 60 years of skill, "know-how", and experience in every field of industry.
J. 40362

Westinghouse Instruments Also Provide You With

- Dials that stay white under - Springs that remain conall conditions
- Magnets that stay permanent
- Pivots with high shock capacity and low friction stant for life
- Quick delivery of more different ratings and types - Complete Nationwide Service

YOU CAN BE SURE... IF IT'S

 TVANTS IN 25 CITIES... O OFTICES EVER WWHERE

Eleatrical Measuring Instruments for ANY Job

New 50,000-watt transmitter at station KMOX, SI. Louis. This station is one of the important links in the Netion's vital educational, news, and entertainment industry.

because contacts geta GENEROUS WIPE

Unique spring suspension adds a self-cleaning action to the heavy, silver-to-silver contacts of Ward Leonard's 105 Heavy-Duty Midget Relays. These features make them self-aligning, too.

Use Ward Leonard 105 Midgets on jobs normally requiring heavier relays.

Write for Relay Catalog. Ward Leonard Electric Co. 31 South Street, Mount Vernon, N. Y. Offices in principal cities of U. S. and Canada.

Details of air valve construction
scale and adjusting magnetron temperature to the middle of the range by controlling the hand valve.
The capacity of the source of cooling air should be around twice that needed at any particular time to minimize hunting. With this device temperature controls in the order of $\pm 0.1 \mathrm{C}$ are possible. When applied to water-cooled devices, the control is somewhat less accurate and the tendency for hunting is much greater due to the slower circulation of cooling medium.
The author wishes to thank C. J. Calbick of BTL for his cooperation in testing and checking the equipment described.

Pyrometer for Molten Steel

A photoelectronic bath pyrometer for high speed and accurate measuring of molten steel temperatures at greatly reduced production and replacement costs has been developed by Brown Instrument Company in cooperation with metallurgical engineers.

The 7 -foot sighting tube shown in the photograph is immersed in the molten metal, and compressed air, forced through an opening in the end of the tube, forms a pocket in the metal. The phototube, mounted in the other end of the sighting tube, has an output which is approximately a 12th-power function of the temperature of the metal being viewed, providing an extremely open scale over the operating range.

The amplifying unit and 24 -hour

Built with high-quality components that resist humidity and heat, the Kellogg Carrier gives consistently dependable operation without adjustments under all conditions.

MANUFACTURER GUARANTBES PIKFOHMANCE

Kellogg, with years of experience in the Independent telephone equipment field, stands behind its products at all times.

EASY TO INSTALL AND ADAPT TO ALL REQUIREMENTS

All adjustments except voice and carrier output-level pre-set at factory. Mounts on any $19^{\prime \prime}$ rack, needs no oscillator synchronization, no frequency adjustments in the field. And the Kellogg No. 5A Carrier is designed on a flewible "unit" basis, for easy adaptation to various applications. Adding a second channel requires only a few external connections. (Models available, too, to meet every service need.)

GIVES LONG-HAUL PERFORMANCE AT SHORT-HAUL COST

The Kellogg No. 5A Carrier provides a 6 db talking circuit over a circuit 30 db long (measured at $11-\mathrm{KC}$). Thus, operation is possible through substantial lengths of high loss cable, such as 22-ga. exchange cable. Also, because this carrier can work over circuits which are long electrically, it does not usually require impedance matching devices for reducing reflection losses caused by junction of open wire and cable.

SAVES CONSTRUCTION COSTS, IMPROVES TRANSMISSION QUALITY

This single-channel carrier system permits transmission of two conversations simultaneously over a two-wire metallic circuit. Handles double traffic-without the expense of added lines, extra maintenance or heavier poles. This means a real saving, when you consider the cost of material and manpower today. Improves transmission quality too, by eliminating powerline hum.

KELLOGG SWITCHBOARD \& SUPPLY COMPANY 6650 So. Cicero Avenue
Chicago 38, Illinois
Please send complete data on your carrier systems:

NAME:

ADDRESS:
CITY \qquad

Seven-foot air-purged sighting tube is immersed in molten metal for temperature measurements
chart drive circuit are continuously energized, giving immediate response to temperature indication when the pushbutton on the sighting tube is depressed, and continuous indication of the last temperature reading plus the exact time the measurement was made. The photograph shows the dial and a typical 24 -hour chart.
The air blast through the tube serves two purposes. It cools the immersed end of the tube and prevents admission of molten steel and slag into the orifice. A clear glass partition separates the phototube housing from the pressurized air but transmits appropriate wavelengths for operation of the instrument.

Operating Economics

Immersion-tube bath pyrometer systems, as compared to thermocouple methods, have several distinct advantages. For instance, they permit accurate temperature control with low operating and maintenance costs (about 10 cents a reading). Also, the linings of an accurately-controlled furnace last longer (from 13 to 18 heats for each lining). And, most important, the quality of the ingots is improved through better control of refining temperatures.

To make a temperature reading, the operator pushes the air-purged immersion tube end through a hole in the furnace door and into the slag on the surface of the metal. He dips the end in the slag several times until a protective coating of that material forms on the tube end. The tube end is then lowered into the bath so that it is immersed about six inches in the molten steel. The pushbutton on the end of the

The "ETHRA SOMETHLT" that spol/s TOP Periormance

THEY BOTH

1t isn't chance that gives the hockey star his high goal average. A quick eye, accurate judgment and greater speed all combine to impart the "extra something" that spells top performance.

Many elements, likewise, join forces to produce the "Extra Something" that makes top performance possible in Seletron Selenium Rectifiers.
Among these are correct design-quality of component parts maintained at highest standards - structural strength - precision methods of manufacture, quality control and final testing, insuring longevity and uniformity.
Our files contain many unsolicited testimonial letters praising Seletron Rectifiers for their dependability. Let the experience of these satisfied users be your guide in the selection of a rectifying unit, for any AC to DC application.

Seletron Selenium Rectifiers are available in a wide range of sizes, from high voltage power stacks to the low ma. types of the "Miniature Family."

For assured dependable service in all Electronic and Radio applications specify Seletron Miniatures.

CODE					
NUMBER	5L1	5M1	5P1	5R1	5Q1
Current Rating	75 ma	0 m	150 ma .	200 ma .	250 m
Plate Height	1 "	1 "	$13 / 16^{\prime \prime}$	$11 / 2^{\prime \prime}$	$11 / 2^{\prime \prime}$
Plate Width	7/8"	1"	$13 / 16^{\prime \prime}$	$11 / 4^{\prime \prime}$	$11 / 2^{\prime \prime}$

Write today for catalog. Address Dept. ES-14

GRD RADID RECEPRTOR Division

Only $\$ 250^{00}$ side-mounted; $\$ 435^{00}$ top-mounted

Here is why the new ANDREW Multi-V is jour best FM antenna buy:
\star Power Gain of 1.6
$\star 10$ KW Power Capacity
\star Top or side mounting with equal ease
\star Weighs only 70 pounds side mounted; 450 pounds top mounted
\star Low initial cost-low maintenance
\star Omnidirectional pattern
\star Factory tuned to required frequency - no further adjustments required
\star Single feed point - single transmission line
\star Builf to withstand winds of over 100 MPH

* Antenna can be completely assembled on the ground
\star Insulation resistance of feed line can be tested without climbing tower
WANT The most efficient LOW-COST FM ANTENNA FOR YOUR STATION? BUY THE ANDREW MULTI-V!

TRANSMISSION LINES FOR AM-FM-TV ANTENNAS - DIRECTIONAL ANTENNA EQUIPMENT - ANTENNA TUNING UNITS - TOWER LIGRTINO EQUIPMENT - CONSULTING ENGINEERING SERVICE

Eastern Office: 421 Seventh Ave., N.Y.C.

Indicator gage for molten steel refining bath temperatures. Recorder stylus moves only when operator takes reading
tube is then depressed for several seconds until the indicator pointer comes to a rest. The recorder is usually located on the instrument panel for each furnace or on a separate panel which is clearly visible to the operator when using the tube.

A correction factor must be taken into consideration since the air blast used to form the viewing cavity oxidizes the steel around the cavity surface, thereby giving a slightly higher reading than true bath temperature. Where this effect is objectionable, inert gases may be used for purging.

European Receiving Tubes

By H. A. S. Gibas
Ansterdan, Holland
American tubes used in some European countries are manufactured in Europe or imported from the United States. Most of the European continental tubes are produced by one of three manufacturers: Philips, Telefunken and Tungsram. In several countries there are firms, which are owned by one of these three, but which manufacture tubes under a different name.

Most modern European types of receiving tubes are designated according to a standard system, which is explained in Table I. The type number consists of letters and figures. The first letter indicates the heater voltage or current, and the following letters explain the general tube type. The first number gives the base of the tube, and

BUILT FOR LONG, TROUBLE-FREE PERFORMANCE UP TO 450 VOLTS AT $85^{\circ} \mathrm{C}$.

These sturdy little dry electrolytics have what it takes to match the toughest capacitor assignments in television and other exacting equipment where the use of ordinary comporrents may only be inviting trouble. They're compact, easy to mount. They'll
withstand plenty of heat. Thanks to a recently developed processing technique, they are outstandingly stable, even after extended shelf life. In every respect, they are designed for better-than-average service on tougher-than-average jobs.

Table I-Explanation of European Tube Types

A-4va-c:	$\mathrm{E}-6.3 \mathrm{y}$ a-c	K-2vd-c
1-0.18A d-c	$\mathrm{F}-12.6 \mathrm{va}$ c	P0.3A a-c
C. -0.2 A a-0	(i-5v 1 -0	U-0.1才 a-c
D) I.tval c	H-4v d-c	$\checkmark-10.05 \mathrm{~A}$ a-c

Following l.etters-Tube Systems

A-Single Diode	N-Gas 'T'riode
13-Donble Diode	P-Secondary
C-Triode	emission tulso
D-()utput Triote	W-Half-Wave
E-Tetronde	(ias Hectifier
F -Pentiode	X-Fill-Wave
11-Hexode	Gas Rectitier
K-Heptode or	Y-Hall-Wave
Octode	Vacnum Hectifier
1-0utput Pentade	7.-Full-Wave
M-Magic Eye	Vacmum Reclifier

First Figure-Tiabe Base

- Y8A (Europ metal)	5-All-glass
2-Octal or Loctal (188G)	(B8G or 139(i)
3-Octal (K8A)	or specia!
4-188 A limulock	7-Subminiature 9-All-glass (B^{-7}

Figures above 100 simiar to types below 100 but with different base
$\mathrm{EF} 112=\mathbf{E F} 12$
$1 \mathrm{LL} 151=E 1.5$
Second figure indicates serial number
the second number the type of the series.

The first tubes with this designation had only one number between 1 and 9 . They have European bases or P-bases, the so-called potbase in which the tube-holder seems to be a pot. The U-types UBL1, UCH4, UF9 and UM4 have American octal bases.

Types with numbers above one hundred are identical with those below one hundred but have different bases. Thus the EF112 is identical with the EF12; but the EF112 has the cathode separated from the shield and third grid, with separate base contacts.

Philips has developed the Rimlock tubes, standard D, E and U types with small dimensions. The base diameter is 22 mm (0.87 in .). Characteristics are similar to the American miniature series.

A normal 4-tube superheterodyne contains one ECH41 as oscillator and frequency changer, two EAF4's, the first as i-f amplifier and rectifier for automatic gain control, the second as demodulator and i-f amplifier, and one EL41. as the power tube.

The tubes for an a-c/d-c superheterodyne are one UCH41, two UAF41's, one UL41, and one UY41. The heater voltage of all these is 115.2 volts, the heater current 0.1 ampere.

Other new tubes comprise the 1) 70 -series miniature battery tubes,

Fishing reel gears whist operate amoothly at a speed of 3000 revolutions per minute or more, when a cast is executed. These gears must also withstand the strain of hauling in a fighting fish of unpredictable size and strength, thus rendering a dual purpose: speed and velvety smoothness in one direction-strength and durability in the other.

Instruments and machines have individual gear problems. For over a quarter of a century, Quaker City Gear Works has solved thousands of them and produced millions of gears of every description up to $60^{\prime \prime}$ in diameter for manufacturers in many diversified industries.

Aircraft controls, dental drills, electric clocks, gauges, indicators, heat controls, machine tools, radar, radios, washing machines and motion picture projectors are but a few of the many conveniences of modern progress which depend upon the heartbeat of Quaker City Gears. Your gear problem is our business, our large productive capacity is at your service.
YOUR INQUIRIES WILL RECEIVE PROMPT ATTENTION

The heart of the Outdoorsman Castomatic reel illustrated above is but one of many geartrains developed by our engineers and produced in our fully equipped plant.

Philips Rimlock tubes with 22 -mm diameler bases. Heater current is 0.1 amp for 6.3 . volt version
and the 90 -series. The latter type has an outer diameter of 19 mm (0.75 inch) and an F-pin base.

The principal British tube manufacturers are G.E.C. (MarconiOsram), Mazda, Mullard (Philips)

The VELIl encloses two pentodes, one for grid detection and one for power amplification, in one envelope. Dark sprayed shield improves tube's heat radiation
and Standard Telephones. All these make similar tubes as the continental standard types, some with different designations.

Very interesting is the new VEL11 of Telefunken. It contains two tetrodes; the first for grid detection, the second for power ampli-

HOW TO INSULATE

To insulate magnet wire so that it will give long, dependable, satisfactory service, all you have to do is to purchase the finest silks, cottons, nylons, glass and celanese. Wrap these insulations in precise layers around a metal core drawn to tolerances of specified exactness and you have a really high grade magnet wire.
At Wheeler Insulated Wire Company, in Bridgeport, we've been doing this since 1905. Users of Wheeler Insulated Wire products have come to recognize our magnet wire as being of good basic design and engineering, made by skilled workmen and subject to rigid inspection. They know these qualities are to be found in every pound of magnet wire they purchase from us.
The Wheeler Insulated Wire Company can place at your disposal a staff of experienced wire engineers. Let us help you with your wire problems. There's no obligation for this service. Write today for complete information.

the WHEELER INSULATED WIRE CO., INC.

1002 EASTAURORASTREET
WATERBURY 91, CONNECTICUT

MAGNET WIRE • BALLASTS • COILS • COMMUNICATIONS EQUIPMENT

Table II-Characteristics and Typical Operation of dual tetrode VELII

Fil. 90v. 0.05 amp .	A	13
plate Voltage	10	200 voll
Screen Voltag	30	200 voll
Grid Voltage	0	-6 voli
Plate Current	1) 8	29 \%n
Screen Current	0.:	3 ma
Power Output		2 wats
Plate liesistance	0.2	0.009 Meg
Input Resistance.	0.28	0.03 Meg
'Transconductance.	1,500	5.200 mmine

fication. Table II gives the data. With this one tube it is possible to make a sensitive receiver with one tuned circuit. A second advantage is the small heater current. The V-series has a small rectifying tube, the VY2, with a heater voltage of 30 v . Thus a receiver (see accompanying circuit diagram) with one VEL11 and one VY2 has at 120 volts a total heater consumption of

Sensitive 2 -tube single-tuned-circuit receiver using the new type VELIl tube and VY2 rectifier. Heaters connected in series across 120 volts
6 watts. Furthermore in the Vseries there is a triode-hexode frequency changer VCH11 and a high gain pentode, the VF14.

Most modern European tubes are all-glass types. The characteristics are nearly the same as those of the older types. The smaller sizes, the shorter connections to the pins and glass as the only insulating. material make them more suitable for ultra-short-wave work, such as television and frequency modulation.

Egg Records on Wire

Chicken breeders, in developing better strains of laying hens, keep exact records of the number of eggs laid by each fowl. When the breeder has some 12,000 subjects, as is the case on the Heisdorf and Nelson farm near Kirkland, Washington, record keeping becomes quite involved.

This particular farm has saved itself considerable time by wiring its hen houses to permit operation of a wire recorder. Plugs are arranged along the wall at intervals,

Whether your application involves $25,50,60$ or 400 cycles, there's a POWERSTAT variable transformer to meet the need for precise, dependable, continuously-adjustable a-c voltage. Every POWERSTAT features the characteristics of excellent regulation, high efficiency, conservative rating, zero waveform distortion, rugged mechanical construction and smooth control. All are readily adapted to your circuit design.

For 25 cycles operation, a complete line of POWERSTATS are offered for 115 and 230 volt, single and three phase duty. For $50-60$ cycles systems, standard POWERSTAT variable transformers are available in numerous models and ratings. Both manuallyoperated and motor-driven units for push-button remote control are designed for 115, 230 or 440 volt, single and three phase applications.

For $400-800$ cycles, the requirement for variable a-c voltage control usually dictates service specifications. For this reason it is not feasible to offer a standard line. However, many POWERSTATS have been designed and built for these higher frequencies and the experience of the Superior Electric engineers is at your disposal. Consult with these specialists in voltage control at The Superior Electric Company.

WRITE 4029 MEADOW STREET, BRISTOL, CONNECTICUT

Write today for Bulletin 547, complete with ratings and dimension data on standard POWERSTATS.

Powerstat Variable Transformers • Voltbox A C Power Supply © Stabiline Voltage Regulators.

$\$ 5.07$ saved a contract ...and a man's business

Special switches were needed to complete an electrical instrument contract. Late delivery of finished items would kill chances of future orders and lay off men. Switches were 1100 miles away, but Air Express delivered the $\mathbf{1 5}-\mathrm{lb}$. package at 3 A.M. -8 hours after pick-up. Cost, only $\$ 5.07$. Air Express now used regularly. Keeps down inventory, improves customer service by early delivery.

Low as $\$ 5.07$ was, remember Air Express rate included door-to-door service, receipt for shipment and more protection. It's the world's fastest shipping service that every business uses with profit.

World's finest Scheduled Airline fleet carries Air Express. 24-hour service speeds up to 5 miles a minute. Direct to over 1000 airport cities; air-rail for 22,000 off-airline offices.

FACTS on low Air Express rafes:

17-lb. carton of hearing aids goes 900 miles for $\$ 4.70$.
12 lbs. of table delicacies goes 600 miles for $\$ 2.53$.
(Same day delivery in both cases if you ship early.)
Only Air Express gives you all these advantages: Special pick-up and delivery at no extra cost. You get a receipt for every shipment and delivery is proved by signature of consignee. One-carrier responsibility. Assured protection, too-valuation coverage up to $\$ 50$ without extra charge. Practically no limitation on size or weight. For fast shipping action, phone Air Express Division, Railway Express Agency. And specify "Air Express delivery" on orders.

AIR EXPRESS, A SERVICE OF RAILWAY EXPRESS AGENCY AND THE sCHEDLLED AIRLINES OF THE U.S.

Productivity records for 12,000 hens are compiled easily and accurately with a special wire recorder installation
and the wiring extends to an adjacent building where the recorder is kept.

The accompanying photograph shows one of the hands with the microphone strapped to his chest. He plugs his microphone into a convenient outlet, and as he takes each chicken from her nest, reads the number on her leg band and makes appropriate comments on her productivity for that particular day. At the end of the day, the recorder is carried into the office where permanent production records are compiled and transcribed.

The wire recorder installation has cut the record-keeping time to a small fraction of what it was when each hen's record was kept by hand. The cost of wiring the hen houses ($\$ 75$ for each house of 1,200 birds) and the cost of the wire recorder (\$450) are expected to be defrayed in a short time by use of the system.

A Method Of Feeding
 Turnstile Antennas

By Ralph E. Taylor
Electronics Laboratory
National Burerus of Stondurds
Waslington, D. C.

The turnstile antenna, as introduced by G. H. Brown, ${ }^{1}$ consists primarily of two coplanar halfwavelength dipoles mounted in space quadrature as shown in Fig. 1. The dipoles are fed with r-f currents that are equal in magnitude but phased 90 degrees apart in time. Such an arrangement gives a

The Right Switches... at the Right Price...

\qquad STACKPOLE \qquad

riteteatheride une ss comurere

Webster Flectric provides a complete line of precision-luilt cartridges and tone arms to meet the most exacting of today's requirements.. a variety of tracking pressures and net weights . . a selction of voltage outputs and response characteristics. Choose from the wide range of perfected models a a ailable; special requirements nill receive detailed consideration. Write for complete information.

RETRACTABLE CARTRIDGES

This cartridge protects record, needle and crystal from accidental injury due to rough handling of the tone arm. Exceptionally quiet playing. Available in 1 volt or 2 volt models.
Model Q2

MAGNETIC CARTRIDGES

Model M1
This new magnelic cartridge incorporates the latest refinements for superior playing performance. Provides .I volt outpit al 1000 eps . . . comes complete with osminm-tipped replaceable needle.

FEATHERIDE TONE ARMS

w die-rast zine alloy Lishtueipht, low-inertia Beautiful stslip tone arm for use with F feature. This tone arm seriescarlridge, traching at very low pressure.
 stamped of ahmimum. Designed for use with sories cartridges.

Meautiful sty ling . .
cxreptionally rigid, sup. exceptionally rigid, sup-
plied with high fidelity cartridges, retractable cartridge, and N1 maynetic cartridge.

Brush Developmen! (ompany)

Export Dept. 13 E. 40th Streat, New York (16), N. Y. Cable Address "ARLAB" New York City
"Where Quality is a Responsibility and Fair Dealing an Obligation"

Fig. 1-Schematic drawing showing method of feeding turnstile antenna
nearly circular radiation pattern in the plane of the dipoles. A circularly polarized r-f field vector is radiated in directions normal to the plane of the dipoles.

The turnstile antenna may be considered as essentially comprising four identical, symmetricallyspaced elements, with terminals at the points labeled A, B, C and D in Fig. 2A. The relative magnitudes and phases of the various currents can then be represented by means of the vector diagram shown in Fig 2 B . The current I_{A} leads the current I_{D} by 90 degrees. Similarly $I_{\text {, }}$ lags I_{b}, I_{B} lags I_{C}, and I_{A} lags I_{B}, in each case by 90 degrees. If the dipoles are resonant, the current I and voltage E into a given element are in phase. Coupling between adjacent elements is reduced to a minimum by virtue of the fact that they are at right angles to each other.

A method of feeding turnstile antennas is illustrated in Fig. 1. Phasing is accomplished by feeding the dipoles with separated coaxial feeders having physical lengths which are equal, and electrical lengths which differ by a quarter-wavelength. This is achieved by employing different dielectric materials in the feeders. The physical length is given by the relation

$$
L_{P}=\frac{\lambda}{4\left(\sqrt{\epsilon_{A}}-\sqrt{\epsilon_{B}}\right)}
$$

where $\varepsilon_{A}>\varepsilon_{B}$ and λ is the wavelength in free space. ε_{A} and ε_{B} are the respective dielectric constants of the insulating materials in the

Breaking the bottleneck of cathode ray tubes

PRODUCTION of picture tubes for television receivers is being speeded up by installation of DPI vacuum systems like the one pictured above. This in-line system is being used for quantity production at the Lansdale Tube Company of Philco Corporation.
A typical exhaust unit will be on display at our booths at the I.R.E. Show at Grand Central Palace, March 7-10. Stop in and see the latest developments in tube processing.

Visit the DPI EXHIBIT at the
I.R.E.Show
Booths 227-228
Grand Central Palace
March 7-10

Distillation Products, Inc.

727 RIDGEROAD WEST * ROCHESTER 13, N. Y.

record made by Coto-Coil windings. More than a million for one customer and only 476 turned down for imperfections, and this is not an isolated case. With the others it was made possible through finest equipment, skilled operatives and, best of all, engineering "Know how" and over 30 years of experience.

For dependable windings and dependable service, call on COTO-COIL. Send us your specifications . . . we'll be glad to quote.

```
COTO-COIL CO.,INC.
    COIL SPECIALISTS SINCE 1917
65 Pavilion Ave., Providence 5, R. I.
```


Fig. 2-Radiating antenna (A), vector diagram (B), and equivalent circuit (C) for turnstile antenna
dipole feeders. The sense of rotation of the r-f field vector radiated from the dipoles can be reversed by interchanging ε_{A} and ε_{B} in Fig. 1. The center conductors of the dipole feeders are shown attached to the center conductor of a series, coaxial, impedance matching transformer. A symmetrical T connection is formed.

An equivalent circuit diagram is shown in Fig. 2C. The characteristic impedances of the dipole feeders, Z_{A} and Z_{B}, are matched with the respective dipole resistances, R_{i} and R_{2}. Since the dipoles are resonant, no appreciable standing waves exist in the dipole feeders. Length L represents the electrical length of the ε_{B} insulator and $L+\lambda / 4$ the electrical length of the ε_{Δ} insulator. The matching transformer matches the impedance of the parallel combination of $Z_{\text {, and }} Z_{B}$ to the characteristic impedance Z_{o} of the main feeder line. Antenna currents are prevented from flowing on the outside of the main feeder line by means of a balanced-to-unbalanced transformer shown in Fig. 1. This transformer consists of a high impedance, quarter - wavelength, shorted section of balanced transmission line. It also serves as a rigid mechanical support for the dipoles.

Antennas of the type shown in Fig. 1 are used for telemetering from the V-2 at $1,000 \mathrm{mc}$. (Electronics, March, April, 1947). The following parameters were chosen: $\varepsilon_{A}=4.6$ (Grade 1137 Lava from the American Lava Corporation), $\varepsilon_{B}=2.1$ (Poly F-1114, or Telfon, a du Pont de Nemours product), Z_{a} $=51$ ohms, $Z_{n}=61$ ohms, $a=$

KAY ELECTRIC COMPANY

KAY INSTRUMENTS COVER ALL BANDS

Including the proposed HF-TV Bands (475-890 MC)

THE MEGA-MATCH

(Standard)
Simultaneous visual display of reflected energy from antennas and terminations when used with standard oscillo. scopes. Band width of display 30 mc anywhere between 10 and 25 mc . Completes electronic. Includes no slotted lines, moving parts, bridges or other frequency sensitive devices. Oscilloscope display indicates amount of reflected energy vs frequency. Precision frequency meter indieates frequency anywhere along the oscilloscope display. Reflection coemlient dis. play of energy from terminations of nominal 53.5 ohm impedance. External delay cable may be used to display reflected energy from terminations of any practical impedance. Reflection coefficients, standard wave ratios, absolute value of terminating impedance can be calculated from display-By use of auxiliary variable frequency sigral source, the phase angle of the reflection coefficient and resistive and reactive components of terminating impedance may be calculated.

Price $\$ 695$ f.o.b. factory

TME MEGA-MATCH

 (Modified)The Mega-Match (Modified) meets all of the specifications and includes all the features of the standard model between 10 to 500 me. With a slight increase in minimum observable reflection coefficient, this model can be used up to 1000 mc . Hence a
visual display of reflected energy over band width up to 30 mc can be obtained from 10 to 1000 mc . This performance provides an instrument suitable for use in testing antennas, terminations, and rif. input circuits in the proposed high frequency television bands and for other high frequency work. A convenient panel connector makes the Mega-Sweep which forms part of both the standard and modified models of the Mega-Match available as a sweeping oscillator.

Price $\$ 895$ f.o.b. factory
Note: Standard models now in customers' hands modified at factory at price of $\$ 200$ f.o.b. factory.

MEGA-SWEEP pulse modulated by the MEGA-PULSER

THE MEGA-SWEEP

The Mega-Sweep, a wide range sweeping oscillator has been widely used as a source of frequency modulated test signal. Its features include a wide sweep (up to 30 mc), low amplitude modulation while sweeping (less than 0.1 ab . per megacycle), negligible output signal at frequencies other than swept band, low output impedance (50 ohms) and numerous others. It has been advertised as covering the frequency range of 50 kc to 500 mc since this range covered most requirements. BY simple internal adjustment which can be made either by the customer or at our factory, be extended to 100 mc. The Mega-Sweep is therefore applable to the proposk By simple connections and adjustments the Mega-Sweep can serve as a carber source when pulse modulated by the Mega-Pulser, providing ultra narrow pulsed r.f. at any frequency to 1000 mc .

Price \$395 f.o.b. factory

THE MEGA-PIULSEIS
Provides very narrow pulses (0.025, $0.05,0.1$ and 0.25 microseconds wide), amplitude 100 volts positive or negative across 50 ohms, repetition rate from internal trigger 100, 1000,2000 pps. Output pulse delayed 0.25 micro seconds from trigger pulser available (positive or nega tive) for staring sweep oither positive or negative pulses externally triggered by either positive or negative pulses Output pulses 05 microseconds and greacreconds. Pro vides a spectrum which more than covers present or pro posed television video amplifiers. The Mega-Pulser may be used to pulse modulate the Mega-Sweep with sweep width adjusted to zero. This combination provides a pulse modulated carrier up to 1000 mc for studying transient response of broad band r.f. circuits.

Price \$195 f.o.b. factory

WRITE FOR FULL SPECIFICATIONS
KAY ELECTRIC CO., 25 MAPLE AVE., PINE BROOK, N. J.
Telephone: CAldwell 6-3710

The Seamless Cathodes illustrated above are only a few of the many standard designs in regular production at the Superior Tube Company. These cathodes are produced from pure nickel (Electronic Grade) tubing and throughout their production, rigid (chemical and metallurgical) controls assure correct operating characteristics.
Superior offers the following advantages for your design and production:
... Freedom from seams or orher obstructions on both inside and outside surfaces.
... Stiffness-less subject to "bowing".
... Less vibration in the tube assembly.
... A wide range of sizes from $.010^{\prime \prime}$ to $.121^{\prime \prime}$ O.D., . $0015^{\prime \prime}$ to .005" wall in regular production-other sizes can be produced to your specification.
... Complete cathode cutting and embossing facilities.
We invite your request for more information regarding analyses, sizes and standard designs available.

Fig. 3-Typical curves showing ope:ation of antenna using feed system described
0.30λ at $1,000 \mathrm{mc}, b=0.07$ i , at $1,000 \mathrm{mc}$, and $Z_{o}=51 \mathrm{ohms}$.

Figure 3 A is a plot of voltage standing-wave ratio versus relative frequency. The measurements were made on a 51 -ohm coaxial line. The bandpass is 35 percent using a limiting value of vswr ($\left.E_{m a s} / E_{m, n}\right)$ equal to 1.5 to 1 .

Figure 3 B is a plot of the circularity on axis (eccentricity of the rotating r-f field vector) versus relative frequency. The bandpass is 19 percent for a limiting value of 3 db . These measurements were made with a half-wavelength receiving dipole located in a plane parallel to the plane of the turnstile dipo'es. The receiving dipole was spaced approximately ten wavelengths away from the turnstile antenna. It was rotated through 360 degrees about the axis perpendicular to the turnstile dipoles. A comparison was made of the maximum and minimum signals received when the pickup dipole was rotated. This comparison is known as the circularity. Figure 3 C is a plot of the circularity versus angle θ in degrees at the center frequency.

Reference

(1) George H. Brown, The Turnstile Antenna, Electronics, p 14, Apr. 1936.

Announcing... a new line of

PLASTIGONS

 (the plastic film dielectric capacitor)
Exact mechanical duplicates of JAN-C-25 oil-filled paper capacitors (CP 70 style)

In the interest of standardization and ease of replacement, this special line of PLASTICONS has been designed in the same large size contanners as used for paper capacitors. This new line is superior to paper capacitors because;

- PLASTICONS are considerably lighter
- PLASTICONS will operate through a greater femperature range
- PLASTICONS have smaller capacitance/temperapure coefficient
- PLASTICONS are lower in price
- PLASTICONS have a greater safety factor and longer life

NOTE: The standard line of PLASTICON CAPACITORS are smaller, even lighter and less expensive.

A catalog sheet of EXACT DUPLICATE PLASTICONS is available . . . write for your copy on your company letterhead.

Condenser Products Company

1.375 North Branch Street

Chicago 22, Illinois

Paidity wire DE-REELING TENSIONS

... IN THE NEW YORK TRANSFORMER CO., INC. WINDING DEPT., PAMARCO DE-REELING TENSIONS reduce winding costs and resticts*

PAMARCO tensions are the low-cost answer to lower coil winding costs. The free-running action of the PAMARCO iension practically eliminares wire breakage, shorted furns; allows higher winding speeds. Their compact size permits mary more simultaneous cail winds on any machine: Simple thumb screw adjustment makes it possible for the isperator to rapidly adjust for any gauge wire ... no tools or special skill are required.

[^6] 1014 OAK STREET - ROSELLE • NEW JERSEY

THE ELECTRON ART
(continued fron p 130)
(normal variation between individuals) is the dominant component, with a secondary peak at about 30 $\mathrm{c} p \mathrm{~s}$ in a spectrum extending from about 0.5 to 50 cps . Abnormal amplitudes rise to 1,000 microvolts with fast spikes.

Present apparatus needs improved differential features above the presently available 1:100; a discrimination of $1: 1,000$ would help. There should be an overload indication. For research the frequency response should extend to zero and have direct writing with response to 150 cps . Improved methods of analyzing the frequency content of the wave are needed, especially an instrument that gives not only the amplitude of a given frepuency component as do present analyzers but also its phase.

Miscellaneous Recorders By Kendrick Hare
Connell lunversity Medical Colleye

BECAUSE BIOLOGISTS are interested in a wide range of phenomena, no one recorder serves all uses. The frequency range to be recorded extends from a cycle a month to several hundred cycles a second. In certain instances it is simpler to use impulse counters and count the cycles.

Among the phenomena that are measured is resistance in whicir case the effects of electrode $1 e$ sistance are troublesome. For pressure measurements the strain gage and bridge recorder are used becatise of their adaptability (the gage can be modified for insertion inside a body). Volumetric measurements of changes of an internal organ can similarly be measure? Temperature changes are monitored. Although water and CO . losses and consumptions change slowly and so can be measured by sampling techniques, the methods now used are cumbersome and time consuming. An ideal recorder would have multiple independent channels with amplifiers adaptable for wide ranges of source impedances and sensitivities and direct-inking recorders combining both high speed of response and wide excursion;

 sources of supply

With the cross recessed head screw rapidly becoming the preferred screw for all types of industrial assemblies, it is all-important to be sure that present and future needs can be supplied.

Since Phillips is the only cross recessed head screw with multiple sources of supply, Phillips Screws are your logical choice. And this is just one of the five important reasons why only Phillips Screws give you all the advantages of the cross recess design.

GET ALL THE ADVANTAGES OF ASSEMBLY WITH CROSS RECESSED HEAD SCREVIS

American Serew Co. Camcar Prodects Co Central Screw Co. Continental Screw Co
Corbin Screw Div. Corbin Screw Div. of Elrn Tool \& Strew Corp. The H. M. Harner Co. Lamson \& Sessions Co. Milford Rivet and Mactine C National Lock Co.

Russell Eurdsall \& Ward
 Seaboard Screw Corn Shakearoof Inc. The Southington Ha-dware Mig. Co The Steel Company Jf Canada, Lid. Sterling Bolt Co. Striongheld Solt Wales-Eeceh Corp. Wolverise Bolf Cotrpany

Phillips Screw Mfrs.,
c/o Horton-Noyes Co. 1800 Industrial Trust Bldg. Providence, R. I.

Send me the new booklet - "How to Select Recessed Head Screws for Practical Production Driving".

Name

Company

Address

A Justly Famous

 Resistor.

This octstanding model-designed by us in 1939-was the first flat or strip resistor in the field-and it still leads.
Its remarkable performance offers you far more than just higher wattage ratings for unit space required. Other advantages-compared with tubular units of equal ratings include (1) a very substantial reduction in depth behind mounting surface; (2) ease and economy of mounting, either singly or in stacks; (3) lower inductance; (4) light weight; (5) resistor and mounting an integral unit; (6) cannot loosen or rotate.

Standard sizes are available from 30 to 75 watts; resistance range from .10 to 70,000 ohms.

Blue Ribbon resistors may be had with intermediate taps, noninductive winding, non-standard lengths and ratings.
Hardwick, Hindle resistors and rheostats offer many exclusive advantages. We ask you to give our engineers an opportunity to discuss your specific requirements.

FRRDWICK, FINDTE, INC. Rheostats and Resistors

Subsidiary of teE National lock waseer company
NEWARR 5, N. J. Established 1886 U. S. A.

the electron art
the equipment should not be able to apply high voltage to the patient.

Biological Recorder Design

By S. R. Gilford
National Burean of Stanchards Washingtan. D.

To SPECIFY REQUIREMENTS for a recorder, one needs to know the (1) magnitude of the input signal, (2) input impedance and (3) frequency range. A survey of the literature suggests that flat response to 200 cps is desirable, but the physiological requirements have not been rigidly determined. String galvanometers have half-power response at about 300 cps ; amplifier and pen types cut off (half-power) at about 75 cps .

One of the more important characteristics of these recorders is their phase lag. To measure this property a phototube has been set up to observe the record and to generate a blanking pulse passed to the Z axis of an oscilloscope. A circular trace is generated by the X and Y axes at the frequency being measured. The blanking pulse is moved to zero phase by a phase-shifting bridge in the circuit to the recorder input; the bridge angle indicates the phase lag.

These phase measurements show string galvanometers to be linear to about 60 cps and pen motors to about 40 cps . Present instruments are suitable for clinical use but wider ranges of flat frequencyamplitude and linear frequency. phase response are needed. Safety requires that the patient be grounded and that power-line isolation transformers be used.

Nucleonics and Biology

> Nucleonic Instrumentation By A. DAHL
> Instrument Branch
> Atomic Energy Commission Oak Riage, Tenn.

In surveying the field, we can divide it into (1) detectors and (2) indicators. The primary problems in detectors arise from the leakage produced by humidity and the design and construction of the pulse circuits. To obtain uniform calibration the spectral sensitivity of the

Would INSTANTANEOUS

recording of electrical phenomena from D. C. to 100 c.p.s. help in your research?

It's a fact-permanent, instantaneous ink-on-paper recordings by Brush Oscillographs make their use almost unlimited!

Accurate recordings of voltages, pressures, radiation intensity and countless other phenomena can be made over a frequency range of D.C. to 100 c.p.s. Either A.C. or D.C. signals can be measured. Whenever desired, recordings may be stopped for notations on chart-paper.

Investigate Brush measuring devices before you buy . . . they offer more for your money.
Why not have a Brush representative call? At no obligation, of course.

Just call or write - today - you'll find it worth a few seconds' time!

3405 Perkins Avenue - Cleveland 14, Ohio, U.S. A.
MAGNETIC RECORDING DIV. • ACOUSTIC PRODUCTS.DIV.
INDUSTRIAL INSTRUMENTS DIV. - CRYSTAL DIVISION

Conadian Representative: A. C. Wiskman, (Canada) Ltd., P. O. Box 9, Station N, Toronto 14
detectors should closely approximate that of air by being made of material having a comparable atomic number (carbon or graphite is frequently used).

The major electronic problem arises from the high resistance required for the input from the detector, which may be hundreds of megohms. The insulation resistance must be larger than this. Usually radio insulators are from 10^{8} to $10^{1 \prime \prime}$ ohms. Of the special high-resistance insulators, Teflon has the highest resistance, Fluorethene comes next, then Polystyrene. Resistances from 10^{16} to 10^{18} ohms are required, which means that the insulators must be carefully cleaned and not handled. Grid current of electrometers must be low ($5 \times$ $10^{-14} \mathrm{amp}$ is obtained in some subminiature tubes).

Radiosotopes in Biology
By C. A. Toblas, Jr.
Dommer Laboralory of Menlical Phusics L゙いinersilll of crelifornia lievieley. Calif.

Although reliable commercial instruments are generally available, the field of radioactive tracer techniques is in its infancy and many detection and recording problems remain unsolved. Measurement of absolute disintegration rate is difficult; simple, easily calibrated instruments are needed, and means for measuring many samples so as to save the experimentalist's time should be developed (capacity for recording about 1,000 samples). Efficiency of gamma detectors has been greatly improved by the development of fluorescent (calcium tungstate) detectors used with photomultiplier tubes (1P21) so that 20 percent of the gamma rays penetrating the crystal are counted, which is about 150 times the efficiency of G-M detectors.

Prepared Discussion By L. Marinelle, Argonne National Lab., Chicago, Ill.: Radiation detectors are less highly developed than their associated electronic equipment. A very wide range of radiations need to be counted at high rates, high resolutions and low wall absorption. Several investigators have developed methods for separating background from source. For example,

PROTELGRAM

 FOR PERFECTED

 FOR PERFECTED LARGE SIZE HOME LARGE SIZE HOME TV PROJECTION

 TV PROJECTION}

The $2 / 2^{\prime \prime}$ magnetic projection triode $3 \times \mathrm{P} 4$ has a face as small as a compact and is only 10% long.

HERE'S THE OPPORTUNITY THAT MANUFACTURERS
OF TELEVISION RECEIVERS HAVE BEEN AWAITING!
. 10 SIGNIFICANT FEATURES

- $\quad 1$ Flat $16^{\prime \prime} \times 12^{\prime \prime}$ non-reflecting picture
- provides fatigueless viewing from
- less than 5 feet and upward!
- 2 Wide-angle visibility - square
- comers.
- 3 True photographic black and white picture quality-no discoloration.
- 4 Compact unit-suitable for table
- model cabinets.
- 5 Long-life, low-cost picture tube.

NORELCO PROTELGRAM consists of a projection tube, an optical box with focus and deflection coils, and a 25 kv regulated high-voltage supply unit, making possible large-size home projection. More than ten years of exhaustive research resulted in this ideal system for reproducing a projected picture. The optieal components are designed to produce perfected projection for a $16^{\prime \prime} \times 12^{\prime \prime}$ image, the optimum picture size for steady, distant observation and also for proper vicwing at less than 5 feet.

Other $\operatorname{XORFLCO}$ prodacts include standard 10 " direct-virw ing tubes and spectialpurpose cathode-ray tuhes for many applications.

6 Manufacturers can most economically extend their product range into projection television by adapting their $10^{\prime \prime}$ EM chassis for use with PROTELGRAM.
7 Easy to service.
8 High contrast ratio and broad gray tone range.
9 Simple optical adjustment system. 10 Quality built after more than 10 years of development.

IS PICTURE PERFECTION IN PROJECTION

NORTH WERACAN CLlllit company, wc. DEPT. TE-2, 100 EAST 42 nd STREET, NEW YORK $17, N, Y$.

IN CANADA: PHILIPS INDUSTRIES LTD, 1203 PHIIPS SQUARE, MONTREAL * EXPORT REPRESENTATIVE, PHILPS EXPORT CORPORATION, 100 EAST 42 ND STREE, NEW YORK 17 , N. Y.

Sised, shaped and Engilientod fruchely to Your Pertiremonts

Wheo cuirdot Ascemblits

Thatis the Ehan that of herging yout

Whather youseliase enferbling of wivat plowiwh, Ucestor spitat alisy a pouc-
 bl-sath, dedt Topllien anper or oftert

 pridity sonfouring il inte thape and

a detector in a shield with a small entrance channel can be operated with a plug in the channel and then removed to separate background and source counts. The detector can be constructed in such a manner that the area between the sample and detector is a maximum, for example with the sample inside the counter, to increase sensitivity. But detectors and holders need to be arranged to minimize contamination to the counter walls.

Geiger Counters

By H. Friedman
Nuval Research Laboratory
Washington, D, C.
A REview of G-M counters shows that self-quenching types are used almost exclusively. The rate of rise of the pulse depends on tube geometry and is faster for smaller tubes. Hydrogen, for example, quenches the metastable states of such inert gases as krypton, zenon and so on. The addition of smail concentrations of impurities lowers the breakdown threshold voltage. Temperature independence can be achieved by adding a halogen as quenching agent giving a high-speed low-voltage counter. The smallness of G-M tubes is limited by mechanics, not by anything inherent in their operation; the largeness is limited by the dead time requirements.

Because electrons achieve ionizing velocities only near the cathode wire, increasing the number of cathodes per unit volume of gas increases the efficiency of the tube. Although it is difficult to construct a tube that has an inherent directional property, several tubes can be grouped to achieve special directivity and coincidence properties.

Thin-Window Beta Counters By F. C. Henriques, Jr. Tracer Laboratmies. Iur Boston, Mers.

The range of a beta ray for all elements is proportional to the weight per unit area (within 15 percent) where the thickness of the material determines its weight. For monitoring low-energy emitters, the thinnest possible window is preferable. Optical mica can be sliced thinly and sealed to the tube

Red Cab of Indianapolis conducts 5 times more business with "Satellite" 2-way FM system!

THIS advanced system of taxicab dis1 patching used by Red Cab, Inc., of Indianapolis, Indiana, was especially developed by Red Cab, Inc., with the assistance and technical advice of Motorola Radio Engineers to answer the problem of congestion of the single radio frequency allowed to taxicab operators. Replacing the single central station and its single dispatcher with five independent stations, the system makes it possible for a large cab company to conduct many more times the business and radio dispatching without jamming the air. The five stations are
controlled by a set of toggle switches under the various dispatchers'fingertips so that any number of dispatchers from one to five may be used and so that each dispatcher may select onc station at a time or any combination.

And in every set in the 111 radioequipped cabs, Sylvania's rugged LockIn Tubes are firmly seated in their sockets, performing admirably day in and day out, under all kinds of jarring road conditions! For information on Sylvania Tubes see Sylvania Distributors, or write Radio Division, Emporium, Pennsylvania.

$$
\begin{aligned}
& \text { SYLVANIA } \\
& \text { ELECTRIC }
\end{aligned}
$$

Red Cab driver receiving radioed instructions for picking up a fare in his district, in city of Indianapolis.

N every type of service Racon Speakers, Horns and Trumpets operate at higher efficiency than conventional makes through ADVANCED ENGINEERING. Do not be misled by similarity in outward appearance. Only Racon, embodying special features of internal construction, can give you the outstanding superior performance of a Racon unit.

NETOT WUMIOL (iant With Alni'O V Magnets. int l'rise $\$ 50.00$ (as illustrated)

Racon Double Re-Entrant Trumpet

Designed to deliver highly concentrated sound over long distances with highest efficiency. Free from resonant effects. Seven models in bell diameters from $1014^{\prime \prime}$ to $2512^{\prime \prime}$. Also four radial models in widths from $9^{\prime \prime}$ to $36^{\prime \prime}$.

Racon Double Re-Entrant Marine Speakers

Made from a heavy aluminum spinning with heavy aluminum casting for base. Waterproof; not affected by extreme temperature changes. Four models in bell diameters from 61/4" (Miniature marine) to 14" (regular marine). Designed for long range reproduction and pick-up in all types of service. Regular, Midget and Miniature Models approved by Bureau of Marine Inspection and Navigation and Dept. of Commerce, for shipboard use.

Permanent Magnet Horn Units

These units, highly popular in all types of service, embody many improvements. Two groups, one with Alnico V Magnets and one with Alnico Blue Dot Magnets. All steel parts plated to prevent corrosion. Also fitted with corrosion proof metal or plastic diaphragms. Voice coil impedance on all units: 15 ohms. Special ohmages on request.

Write for Catalog of Complete Line

RACON ELECTRIC CO., INC. 52 E. 19th Street, New York 3, N. Y.

by plastic or soft glass bond to form such a window.

So that the thin window will not pop, the outside of the tube is pumped equally with the inside during manufacture and the outside pressure returned as the tube is filled (approximately to atmospheric pressure) with its gas mixture. Windowless tubes can be used. A flanged assembly carries the tube and the sample holder so arranged that the sample can be rotated through a seal into the tube. This windowless construction increases the sensitivity over the background by a factor of two, but requires some time to come to equilibrium after rotation and is easily contaminated.

Autoradiographic Technique By George A. Boyd

```
School of Medicine amel Dentistry
    The University of Rochester
```

AUTORADIOGRAPHY, applicable in all branches of basic science, is restricted in this summary paper to histological and cytological techniques. Where higher resolution of the location of radioactive materials is needed than is possible with detector tubes, photographic records are made by autoradiography.

> Stable Isotope Measwement By David Rittenberg College of Physicians and Surgeons Columbia Thirersit?! New York.

There are two types of mass spectrometers: (1) those used to determine with high precision the mass of positive ions and (2) those used to determine with moderate precision the relative concentration of various masses. The resolution of the instrument depends on its radius of curvature and, in practice, on the width of its slits.

There are two types of constructions: the 60 or 90 -degree sector types and the 180-degree sector types. In the 60 -degree type, positive ions are formed by electron bombardment and are accelerated through holes in electrodes. A focusing magnet is used to confine the bombarding electron beam, but it must be positioned so as not to interfere with the main magnet, creating difficulty in aligning the instrument. In the 180-degree
 sound travels much less than when you talk across the room!

That's because the telephone system carries not sound itself but an electrical facsimile of sound. When you speak into a telephone transmitter your voice is converted into electrical vibrations which are not changed back into sound until they reach the receiver diaphragm.

Conversion of sound into its electrical equivalent, through the invention of the telephone, opened the way to the measurement of sound by accurate electrical methods. In developing means to make the telephone talk farther and sound clearer, the scientists of Bell Telephone Laboratories had to develop the tools for sound-wave analysis and measurement.

bell telephone laboratories

EXPLORING AND INVENTING, DEVISING AND PERFECTING, FOR CON. TINUED IMPROVEMENTS AND ECONOMIES IN TELEPHONE SERVICE.

The condenser microphone, the wave filter, the amplifier - each the product of telephone research - have helped to reveal the structure of sound as never before. Each has helped to build the world's finest telephone system.

MACALLEN MICA

ALL FORMS, ALL QUANTITIES - ALL DEPENDABLE

when you think of MICA, think of MACALLEN

THE MACALLEN COMPANY
- 16 MACALLEN ST., BOSTON 27, MASS

CHIGAGO: 505 W. WASHINGTON bIVD. CIEVEIAND: 1231 SUPERIOR AVE.
types, the magnet is large to achieve a large radius of curvature but it is relatively easily aligned because the main field also focuses the electron beam. The ions are always in the magnetic field and so are not lost, and the gun potential does not affect the ion current.

Associated with the spectrometer proper is the electron gun to produce the ionizing beam, a highvoltage supply and an amplifier employing direct-current feedback, which is troublesome. A simpler amplifier and an ion source of higher yield and stability, in which changing voltages do not change the results, and an arrangement to stabilize voltages to keep the instrument on the peak collector current are needed. To increase the rate of taking data in industrial applications, an automatic voltage sweep should be incorporated to show the mass spectrum.

Protection from Radiation
 By G. Failla
 College of Physicians and Surgeons Columbia University Nev York, N. Y.

Biological cells show different degrees of tolerance to ionizing radiations. There is actually no such thing as a minimum dose that is ineffective, but in practice there seems to be a threshold. Cells show more recovery from small intermittent doses than from the same total continuous dose, but continuous small exposure can lead to permanent cellular damage. The present safe dose of a tenth a Roentgen a day (300 to 400 times that produced by cosmic rays at the surface of the earth) needs to be modified to provide a larger safety factor; three tenths a Roentgen per week is suggested. Additional specifications are being developed such as total body exposure, permissible emergency exposure that can be tolerated once in a lifetime by an individual and age limits for types of exposures.

Protection Instrumentation

By F. R. SHONKA
Argonne Nretionul Iaboratory
Chicayo. Ill.
THE ENERGY OF RADIATION is less interesting biologically than its ionizing effectiveness. Alpha part-

The tuned circuit of the Type 857-A Oscillator is our well-known Butterfly type. The difficulty of sliding contacts in any part of the oscillator circuit is avoided in this unique construction. The photograph above shows the output coupling loop and outpur jack. Coupling can be changed from maximum to almost zero by rotating the output jack.

FEATURES

- Dial calibrated directly in megacyeles to an accuracy of \pm 1%
- Vernier dial with 100 divisions, covering the oscillator range in ten turns
- Output through a coaxial jack with provision for varying coupling
- Output of $1 / 2$-watt at 500 Mc
- Electron-ray tube in power supply to indicate grid current and furnish indication of oscillation
- Filament and plate power furnished by the Type 857-P1 Power Supply which is furnished with the oscillator
TYPE 857-A U-H-F OSCILLATOR (with power supply)..
$\mathbf{\$ 2 8 5}$
WRITE FOR COMPLETE DATA

T^{H}HIS oscillator, designed for use as a power source for general laboratory measurements and testing, covers the frequency range of 100 Mc to 500 Mc . With its associated power supply it is small, lightweight and compact. The entire range is covered with a single-dial frequency control with a slow-motion drive equipped with an auxiliary scale

Available Now!

 COILS

* VERTICAL OUTPUT TRANSFORMERS
* HORIZONTAL BLOCKING OSCILLATOR TRANSFORMERS
* VERTICAL BLOCKING OSCILLATOR TRANS-
N.Y.T. facilities are now expanded to supply all types of inductive television components in quantity. Estimates will be supplied promptly on standard units or types wound to your exact specificadion. In addition to television components, N.Y.T. offers complete manufacturing service on power transformers, chokes, and audio transformers. Moden plant and winding equipment assures finest quality at low cost. Call or write today for information.

IN ANY QUANTITY!
AL P HA
NE W
J
R S -

N W

Tests at 100,000 cycles a second

Core loss and excitation characteristics of $.002^{\prime \prime}$ high quality Armco Thin-Gage Electrical Steel.

show \mathbb{C} op

 magnetic properties of this .002" steelOperating advantages of the newest grades of Armco Thin-Gage Electrical Steel for high frequency equipment are demonstrated by a series of tests made in Armco's Research Laboratories.

Magnetic characteristics of $.002^{\prime \prime}$ steel have been accurately determined up to 100,000 cycles a second These tests reveal superior permeability from lowest to highest inductions; low core loss over a wide range of frequencies; and adequate insulation for even the highest volt-per-turn designs.

Armco Thin-Gage Electrical Steel is given a full-anmealed treatment and insulated at the mill. No additional annealing is necessary except for relieving coiling strains after cores have been wound.

Whenever your applications involve changes in magnetic flux equivalent to frequencies from 400 to as high as 1,000000 cycles a second, this steel has five definite advantage.

1. Supplied in coils $123 / 8$ inches wide for high-speed manufacturing operations.
2. Skin-effect is not appreciable at high frequencies.
3. Stacking factor is high (400 sheets of Armco . 002 -inch insulated steel make a stack only 1 -inch high).
4. Carlite Insulation on both sides assures minimum inter-lamination loss.
5. Hysteresis is exceptionally low.

Whether you are manufacturing high-frequency devices or your equipment is in the "idea stage," be sure to look into the advantages of Armco Thin-Gage Silicon Steel. Write for more information. Armco Steel Corporation, 30 Curtis Street, Middletown, Ohio.

counter responds depends on the thinness of the entrance window.

The unique property of proportional counters is that they distinguish, by the amplitude of the output pulse, the nature of the ionizing particle. Alpha, beta and gamma rays produce progressively smaller pulses. One electron would produce a pulse of about 10^{-8} volt; there is sufficient gas amplification to raise this to 0.01 to 1.0 volt and, of course, each particle produces many ionizations within the tube. Proportional counters are faster than Geiger - Muller counters; pulses can actually overlap, but counters paralyze at high rates.

Neutron Detection
By B. T. Feld
Massuchusetts Inslitute of Tech. Cambridge, Mass.

Neutron detection depends on the kind (energy) of neutron that is to be detected. Neutrons are uncharged and hence cannot be observed directly by ionization techniques, but the ionizing secondary particles that they produce on penetrating atoms can be detected. There are two general categories of detectors using these secondary emissions: (1) instantaneous, in which the neutron produces a reaction the results of which are instantaneously observable, and (2) delayed, in which the reaction or its results are apparent only after an appreciable interval.

In the instantaneous methods, boron absorbs a neutron emitting an alpha particle within 10^{-18} to 10^{-20} second. This alpha particle can be detected by a proportional counter or an ionization chamber. A modification is to use an ionization chamber containing fissionable material to produce an ionizing particle within the chamber that will pulse it.

Delayed detection makes use of cloud chambers, photographic emulsions, or (n, γ) reactions. In cloud chambers, neutrons produce charged particles which in turn form condensation paths that can be observed or photographed. Similar events take place in photographic films. Some time after a neutron is absorbed by an atom, a disintegration may take place that can be detected. (Cont. on page 188)

Speaking of Percentages

 THE
MYCALEX

CORPORATION OF AMERICA

sincerely believes that every user of insulation will be interested in the following progress report on Mycalex 410, molded-exclusive formulation of the Mycalex Corp. of America - for the four year period, 1945-1948:

- Average selling price of Mycalex 410 reduced by more than 50% over the past four year period.
- Raw material costs increased approximately 150%.
- Labor costs to make Mycalex 410 increased approximately 50%.
- Demand and production of Mycalex 410 increased approximately 500%.

The constantly increasing number of users of Mycalex 410 have benefited-with α better product-better service and deliveries-at a lower cost.

Research, plant expansion, improved engineering, additional new efficient manufacturing equipment-have permitted us to make available in increased quantities --Mycalex 410-molded-at prices comparable to other less efficient molded insulations.

MYCALEX 410 is now priced to meet rigid economy requirements

Send us your blue prints. We can handle the tough jobs as well as the less complicated ones. Any interest evidenced on your part in Mycalex products and services - will receive the prompt, courteous and intelligent attention of a competent Mycalex factory sales engineer. He will receive the fullest backing and cooperation from other factory executives - to serve you promptly with a quality product and at an economical and fair price.

TIMING MOTORS • REPEAT CYCLE TIMERS • CLOCK MOVEMENTS • RESET TIMERS • ELAPSED TIME INDICATORS • TIME DELAY RELAYS • INTERVAL TIMERS TIME CONTROL-CLOCKS • SPECIAL TIMING DEVICES

Haydon offers a new 20-page, 2 color catalog on synchronous timing motors, timing devices and clock movements. The catalog contains photographs, dimension drawings and complete specifications for all units. Specifications for 9 different timing motor series include size, mounting, speed, voltages, frequencies, shafts, wattage, torque, standard features and special variations. Complete listings of models and range of variations for all timers and clock movements are also given.
Write today for this new Haydon catalog. A copy is yours for the asking. If you wish, a Haydon representative will deliver a copy to your desk and discuss with you your timing requirements.
2414 ELM StREET, TORRINGTON, CONNECTICUT HAYDON
MANUFACTURING COMPANY, ING.
TORRINGTON,
haRNESS TIME TO
SUBSIDIARY OF GENERAL TIME INSTRUMENTS CORPORATION

THE ELECTRON ART (continued)

Neutrons can be classified by their energy ranges.

TYPE NEUTRON

Thermal
Resonance Intermediate
Fast
Ultrafast

ENERGY RANGE

Average energy, 0.025 ev (2,200 meters per second) From thermal to $1,000 \mathrm{ev}$ From 1 kev to 1 mev From 1 mev to 20 mev From 20 mev on up

Thermal neutrons are detected using ionization chambers with uranium or boron. Foils are frequently used in (n, γ) reactions with G-M counters or electrometers. The cross section of thermal neutrons is quite large. Another method is to take advantage of the difference of absorption in cadmium of particles of different energies to separate thermal neutrons from the total neutron effect.

Intermediate neutrons can be detected by converting them into thermal neutrons in a paraffin sheath about a boron proportional counter. Fast neutrons produce fission in U-238, the threshold property of which can be used to distinguish energy levels. Although the probability of collision decreases with increasing energy, ultrafast neutrons can be detected by proton recoil or by induced fission in some elements, such as bismuth, that are lighter than uranium.

Ionization Chambers

By J. A. Victoreen
Victoreen Instrument Company Cleveland, Ohio
The gold-Leaf electroscope has evolved into the ionization chamber, in which an applied charge escapes due to ionization of the surrounding gas by the radiation to be measured. The unit of radiation, the Roentgen, is defined in terms of the charge produced by ionization in air, air having about the same mass and atomic number as the human body, in which early x-ray operators were interested. In constructing small chambers for wide energy ranges, care must be taken to avoid excessive effects due to the chamber walls. In any event, chambers should be calibrated against standard ionization chambers. The chamber must be large

THE ELECTRON ART
(continued)
enough to absorb all the energy from short wavelengths and the walls thin enough to admit the long wavelengths.

Ionization Measurements

By E. W. Molloy
National Technical Laboratories South Pasadena, Calif.
IN USING ionization chambers for measurement, the problem is to develop circuits, especially for health surveys, that respond to currents from 10^{-14} to 10^{-8} ampere, are light and sturdy, have long battery life and are easily operated and serviced. Basically what is needed is a direct-current amplifier with an input resistance of 10^{11} ohms, low grid current, 0.1volt input, high insulation and sufficient gain so that a sturdy indicating instrument can be used.

Modern circuit methods, using negative feedback, permit making the circuit response nearly independent of tube parameters. Two, or at most three, electrometer tubes can be built into portable equipment; the output tube is operated as a cathode follower making calibration practically independent of battery voltage over a wide range. One arrangement is to operate the first tube as a highgain electrometer and to arrange the second tabe to maintain the input grid at a constant voltage by feedback to decrease its time constant, reduce drift and increase linearity. Gain can be controlled by adjusting the amount of feedback. With a fully-pumped tetrode the required performance can be obtained by operating the coated cathode at 60 percent of its rated current, the grid just enough negative to avoid electron collection, the screen and plate at low voltages with currents in the microamperes and a plate resistor of 100 meg ohms; grid current is then 10^{-14} ampere and the gain is from 100 to 200 . Silicon oils have made the necessarily high vacuum pumping for such tubes possible.

Stabilized Voltage Supplies

By W. A. Higinbotham
Brookhaven National Laboratory
Upton, Loug Island, N. \mathbf{Y}.
THE AVERAGE CURRENT required by counters and chambers is at most a

OPERATION FRIGID:

EOR HAYDON

A Haydon timer, through its delaying action, helps the York Automatic Ice Maker turn out fresh, sparkling, crystal-clear cubes even after periods of inoperation. This specia'iy-designed timing device interrupts normal thermostatic action when the machine is turned on, after a period of inoperation - activates machinery which "harvests" old ice before a cycle is started to make perfect cubes. This delaying action not only produces better cubes - it insures against excessive freezing of partially completed ice-prevents consequent damage to the equipment. York ingenuity, plus Haydon timing development, has resulted in the production of this machine a time and money saver wherever ice is used in large quantities, wherever business depends upon the constant pro-
 duction of ise to maintain customer satisfaction. This is but one instance in which Haydon timers are serving today. There are thousands of applications in which Haydon-engineered timers can help solve timing problems . . . in commerce, in industry, in science and in the home.
If you have a timing problem - if a timing device will serve your need - Haydon can help. On request a Haydon representative will call at your office or send today for the Haydon Engineering Catalog.
WRITE 2414 ELMST., TORRINGTON, CONNECTICUT haydon
MANUFACTURING COMPANY, INC. TORRINGTON

STANDARDIZED REAOVMETAL EQUIPMENT ADAPTABLE FOR EVERY REQUIREMENT
 TO-USE

Par-Metal Equipment offers many features, including func. tional streamlined design, rugged construction, beautiful fional sireamlined design, rugged construction, beautiful
finish... plus ADAPIABILITY. Eliminate need for special made-to-order units on many jobs.

Engineers and manufacturers will effect economies with Par-Metal effect economies with Par-Meral
Products, which are available for every type of job from a small receiver to a deluxe broadcast fransmitter.

Professional techniques and years of specialization are reflected in of specialization are reflected in
the high quality of Par-Metal. .

milliampere including the bleeder current. Ionization chambers do not require stabilized supplies. Pro $=$ portional counters need low noise supplies and voltage stability to 0.1 percent per hour. Geiger-Muller tubes are not critical as to voltage stability or noise. Photomultipliers, on the other hand, require highly regulated supplies. For laboratory and portable equipment, batteries are used, but they become noisy with age. A regulated supply costs about 5 cents per volt.

In supplies for power-line operation, the transformer is the weakest link, especially its insulation. Power lines give from 90 to 135 volts and have small static voltages. For rectification a tube or disc stack can be used; an R-C filter is sufficient for initial smoothing.

The most popular regulator is the degenerative type. The highvoltage resistors necessary in this circuit, if of the composition type, are not satisfactory at high power; use several radio resistors in series. Voltage regulator tubes are not accurate to the several tenths of a percent necessary in some applications. In addition, changes in contact potentials of the grids of the amplifier tubes in the regulator with changes in their heater currents limit the accuracy of regulation.

Chains of gas regulator tubes are used. The shunt regulator can be used. The mu-balance regulator requires rebalancing for new tubes; the mutual-conductance regulator has limited range. Radiofrequency supplies are light in weight and avoid noise from transformer and rectifier, but they have high internal impedance and so need protection from humidityuse a regulator in the d-c supply to the r-f oscillator. The pulse type supply has no particular advantage over the r-f type and is critical with regard to waveshape.

Usually the regulator is followed by additional filtering, but caution must be observed because some capacitors are noisy. In designing the supply, attention must be given (1) to the surge when the power is turned on (a slow-heating rectifier filament would be useful) and (2) to safety; $2 \mu \mathrm{f}$ at 5,000 volts

NOT] OF IMPORTANCE TO THE ELECTRICAL INDUSTRY

VICKERS ELECTRIC DIVISION, Vickers Inc.,
Announces a complete Research and Development Section available for your technical problems in relation to the following -
MAGNETIC AMPLIFIERS
MAGNETIC AUDIO AMPLIFIERS
STATIC VOLTAGE REGULATORS
STATIC MOTOR SPEED CONTROLS
POWER SATURABLE REAGTORS
RECIFIERS
PHOTOELECTRIC GELLS
SERVOMECHANISMS
MAGNETIC FLUID CLUTCHES
SPECIAL MOTORS AND GENERATORS
TRANSFORMERS ARC-WEIDERS
CONTROLLED POWER RECIFERS FOR
ELECTRO-CHEMIGAL PROCESSES

The fundamental schemes employed in inany of the above involve general use of tubeless amplifier circuits-Magnetic Amplifiers.
For information regarding application of the above relative to your requirements, you are cordially invited to consult our Engineering

Department.
 VICKERS :VF ELECTRIC DIVISION

1815 LOCUST ST.
ST. LOUIS 3, MISSOURI
A UNIT OF THE SPERRY CORPORATION
E-2

No. B0-6. For use in high fidelity amplifiers. Couples push-pull 6L6's (7500 ohms, C-T) to $6 / 8$ or $16 / 20-$ ohm voice coil. Center-tapped tertiary winding provides 15% inverse feed-back to reduce harmonic distortion to a minimum. In drawn steel case, $45 / 16^{\prime \prime} \times 37 / 8^{\prime \prime} \times 311 / 16^{\prime \prime}$, with mounting studs and convenient pintype terminals . . . List Price, $\$ 23.00$

No. B0-7. For matching 600 or 150ohm line to a $6 / 8$ or $16 / 20$ ohm voice coil. Frequency response within plus or minus 1 db . at full rated outputmaximum power level, 30 watts. Mounted in compound-filled drawn steel case, $45 / 16^{\prime \prime} \times 37 / 8^{\prime \prime} \times 3{ }^{11} / 6^{\prime \prime}$. Mounting studs and pin-type terminals same as No. BO-6 illustrated aboye.

List Price, $\$ 22.00$

There's a CHICAGO Output Transformer for Every Full Frequency Use

\ddagger Tertiary winding provides $\mathbf{1 5 \%}$ inverse feedback. *Split and balanced windings.

HIGH Q CHOKES for Dynamic Noise Suppression Circuits Two precision-built chokes with inductance values of .8 and 2.4 henrys respectivelyaccurate to within $\pm 5 \%$ with up to 15 ma d-c. Units have a minimum Q of 20. Remarkably compact, $1^{11} / 6^{\prime \prime} \times 238^{\prime \prime} \times 17 / 6^{\prime \prime}$.

Famous "Sealed in Steel" New Equipment Line

The units described above are typical of CT's New Equipment Line featuring transformer engineering that's ahead of the trends in circuit design. Get the full facts on the complete line now. Check the features, and you'll see why CT is called the "Engineer's Transformer." Check the prices: see how little more these advanced units cost over ordinary transformers.
Write for Complete "New Equipment" Catalog Today

CHICAGO TRANSFORMER dIVISION OF ESSEX WIRE CORPORATION

THE ELECTRON ART
is lethal, r-f supplies are easily made safe.

Cloud Chambers

By G. C. Baldwin
General Eleotric Co.
Schenectady, N. Y.
Because cloud chambers give the spatial distribution of ions formed by a nuclear particle, they give more fundamental information than do other detectors. The ions formed in the chamber are, in effect, amplified by preferential moisture condensation on them. The density of the track indicates the nature and state of the particle.

The tracks formed in the gas of the chamber, which may be air, water vapor or alcohol, are photographed using zenon-filled flash lamps, an f2 lens and Super-X film through a mirror arrangement that gives a stereoscopic view. The negatives are then reprojected through a duplicate optical system to produce an image in space that can be located by properly tilting a ground glass to obtain the exact direction of the track. In this way precise determinations of momentums associated with a collision can be made. In evaluating the evidence from the chamber, (1) the intensity of the track indicates the number of ions produced, (2) its curvature in a magnetic field shows the ratio of charge to mass of the passing particle, and (3) the length of the track shows the total particle energy.

Electron Multipliers

By P. S. Johnson
Bureau of Ships, Navy Dept. Washington, $D . C$.
By placing a phosphor over the window of an electron multiplier phototube, a sensitive nuclear detector is obtained that holds interesting possibilities as a portable survey type instrument. Nuclear particles excite scintilations of light in the phosphor that are received and amplified by the phototube. The first consideration in making such counters is the phosphor. Many workers have contributed to this problem: naphthalene, due to Kallmann, and anthracene are the most important of the organic phosphors, the latter being the more sensitive (Bell at Oak Ridge has grown large crystals of
it, which he polishes and coats with a reflecting backing to direct as much light as possible into the phototube, thus getting an additional improvement of two). Transtilbene is fast, phenanthrene is also used. Although inorganic phosphors such as calcium tungstate $\left(\mathrm{CaWO}_{4}\right)$, sodium iodide with thilium activation (NaI-Tl) and potassium iodide (KI-Tl) are slower than the organic ones, they are more durable. Silver activated zinc sulfide (ZnS Ag), if thin, is useful for alpha detection; the problem with it is to incase phosphor and phototube in a light shield that does not absorb alpha rays.

The second consideration is the multiplier tube. The 1P21, which is the selected ten percent having low noise and stable sensitivity of the 931A production, is the most popular, but 931A and 1P28 types are also used. The amplifier into which the tube works is simple; it brings the level up to that required to operate a meter and discriminates against background. Using a coincidence technique with two tubes observing one phosphor, Morton at RCA gets 20 to 50 times the sensitivity of a $\mathrm{G}-\mathrm{M}$ counter for alpha particles.

Crystal Counters

By Robert Hofstadter
Palmer Physical Laboratory Princeton University

There are two types of crystal counters, the scintilation type just described and which has developed in the last two years, and the conduction crystal counter that was invented in 1945 by Von Heerden. In the scintilation counter, an ionizing particle moves an electron into a conduction band in which it drifts about the crystal until it falls back giving forth a fluorescent quantum. Fortunately, sodium and potassium iodide are quite transparent to their own fluorescence. Various materials can be used; the problem now under investigation is to find sensitive and stable crystals.

The conduction-type crystal counter, in which diamond has been widely used, depends on the motion through the crystal of an electron released by an ionizing particle. Electrodes are placed on the crystal

KNOW OUR REPRESENTATIVES

RAY PERRON
Sales Engineering Representative
Ray Perron and staff are located on 131 Clarendon St., Boston 16, Mass., phone KENmore 6-1370 and cover the states of Massachusetts, Maine, Vermont, New Hampshire, Rhode Island and Connecticut for Cannon Electric, excepting power plug series and signal specialties. "Ray" has appointed many radio parts jobbers in these states to handle Cannon Plugs.

H. E. "Pete" WALTON Sales Engineering Representative
The H. E. Walton Company, located in the Francis Palms Building, at 2111 Woodward Avenue, Detroit 1, Mich., phone Cherry 6460, covers the state of Michigan (excepting the peninsula between Lake Michigan and Lake Superior) for all Cannon Electric products, including signal equipment.

The RJC-2 is an 8-page catalog with prices and descriptive material on Cannon Electric types $P, O, X, X K$, XL, TQ, Lamp Sockets, Cable Terminals. Address Dept. B-120 for copies.

3209 HUMBOLDT ST., LOS ANGELES 31, CALIF.
WORLD EXPORT (excepfing British Empire): FRAZAR \& HANSEN, 301 CLAY STREET SAN FRANCISCO 11, CALIFORNIA

relays with either A.C. or D.C.
shunt coils or series coils for electronic applications
Relays are available in standard contact arrangement of single and two pole normally open, normally closed; or double throw with light and heavy contacts. Four and six pole double throw relays are available with 3 ampere contacts at 32 volts or less.

For further information write for Bulletin 570. R-B-M DIVISION, Essex Wire Corporation, Logansport, Ind. Address Dept. D-8. \rightarrow

SPEGIALTY BATTERY COMPANY
 A SUBSIDIARY OF THE RAYOVMC RAY-O-VAC COMPANY

Thax ortracrelinavy etedrical pierfasomance Use SILVER GRAPHALLOY

in BRUSHES
for high current density \bigcirc minimum wear low contact drop ow electrical noise self-lubrication
in CONTACTS
for low resistance Onon-welding character
GRAPHALLOY works where others won't Specify GRAPHALLOY with confidence.
*A special silver-impregncted grophlte

GRAPHITE METALLIZING CORPORATION
 1055 NEPPERHAK ANENUE, YOKXLEAS 3, NEW YORK

by evaporation, sputtering or developing, and a high voltage applied across it. Released electrons then migrate across the crystal, producing pulses of current that can be amplified by electronic circuits. The pulse rise time from these crystal counters is in the order of microseconds, increasing with applied voltage and agreeing with the theoretically computed mobility in the case of pure crystals. In time the trapped immobile holes in the crystal produce a counteracting field that inhibits the action. The crystal can be rejuvenated by heating or, in the case of counting gamma particles, the applied field can be reversed. Growing the crystals is still difficult; test tubes of the molten material are slowly lowered through the freezing point in an oven, the tube broken and crystals cut from the rod.

Counting Techniques

By Matthew Sands

Mrissachusetts Institute of Tech. Cambridge, Mass.
A NUCLEAR ELECTRONIC DETECTOR feeds a pulse amplifier that drives electronic counters to form the basis of the counting technique. The fundamental problems in designing equipment for this technique are (1) to obtain the maximum information from each test and (2) to use inherently stable circuits. The data of interest to nuclear physicists include both the number of incident particles and their energies, thus the pulses should not only be counted but discriminated as to amplitude. Pulses between two amplitude limits can be selected by differential discriminators ahead of a counter. By arranging the equipment to catalog the pulses by amplitudes, much data can be obtained from each run.

Photographic Emulsions

By J. SPENCE

Research Laboratories
Eastman Kodak Co.
Rochester, N. Y.
ALL NUCLEAR DETECTORS use amplification of some form; in photographic phenomena the amplification is obtained by the catalytic development process. If absolute results are to be obtained, a control film should be used with each lot of test film. The requirements for

Ideal for the Accurate measurement of AC voltages in the Audio, Supersonic, Carrier Current and Television ranges.

Use of Logarithmic voltage scale assures uniform accuracy of reading over whole scale while permitting range switching in decade steps.
Each Voltmeter equipped with an output jack so that the instruments can be used as a highgain stable amplifier.

SPECIFICATIONS

 MODEL 300RANGE-, 001 to 100 volts.
FREQUENCY-10 to 150,000 cycles.
ACCURACY- 2% at any paint on scale. AC OPERATION-110-120 volts.

MODEL 304

RANGE-. 001 to 100 volts,
FREQUENCY- 30 c.p.s. to 5.5 megacycles ACCURACY-0.5 DB.
AC OPERATION-110-120 volts.
MODEL 302
RANGE-. 001 to 100 volts
FREQUENCY-5 to 150,000 eycles.
ACCURACY- 2% at any point on scale.
DC OPERATION-self-conlained batteries.
Send for Bulletin for further description

BALLAVTIE LBBORATORIES, IIC. BOONTON, NEW JERSEY, U.S.A.

MPमझसण
"AN" CONNECTORS

FOR POWER, SIGNAL and CONTROL CIRCUITS in AIRCRAFT and ELECTRONIC EQUIPMENT

- Amphenol provides features which compare to and carry beyond the specifications for "AN" Connectors.

1. Non-rotating contacts with solder cups aligned for fast efficient soldering.
2. Coupling rings are a screw machine part made from solid aluminum bar stock providing 80% greater tensile strength.
3. Contacts are of selected high conductivity alloys, silver plated and with pockets pretinned for soldering.
4. On sizes 20 and up. Amphenol provides 70% thicker inserts--stronger to withstand rugged operating conditions.
5. Coupling rings and assembly screws are drilled for safety wiring in accordance with Army-Navy specifications.
6. For satisfaction and security be sure with "AMPHENOL."

- Let Amphenol engineers and technicians assist you in specifying connectors for application and adaptability in instrument, power and control problems - these men are available for consultation without obligation.

72 PAGES OF "AN" CONNECTORS
This is a new catalog, just off the presses a few months; long enough, bowever, to receive the acclaims of top engineers as the most complete and informative on the subject of "AN" Connectors. We are glad to provide a copy for your reference, bindly make request on company letterhead to our Department 13E.
nuclear emulsions are uniform grains and high sensitivity; silver halide concentration is made higher to obtain recognizable tracks. Heretofore, films for use in x-ray technology were the only large application. To provide films for the extended nuclear studies, further development is being carried on. A film so sensitive that the background cosmic rays would fog it in a week (before it could be shipped to the customer) has been made experimentally.

SURVEY OF NEW TECHNIQUES

Vacuum brazing is being applied to large components in a furnace used by the research division of Collins Radio Co. The furnace, constructed by National Research Corp., permits brazing on Resnatrons to be performed at less than a micron pressure so that there is virtually no oxidation.

Unattended weather stations are being developed by the Signal Corps Engineering Labs at Fort Monmouth. Wind-driven generators will charge storage batteries, which may be buried 20 ft below the earth's surface to prevent freezing. The batteries will operate automatic radio stations which will transmit signals indicative of temperature, pressure, relative humidity, wind speed and direction, precipitation and sunshine intensity, thus providing year-round weather reports from nearly inaccessible parts of the world.

Possibility of finding a visible counterpart for audible music was discussed by R. K. Potter of Bell Labs at the Washington convention of the SMPE. He pointed out that loudness might be represented by apparent distance from the observer and frequency by position left or right. Such visible music should give the viewer the impression that he actually hears, not just sees an abstraction. For example, the pattern can be a series of equally spaced spikes each representing a particular frequency the whole giving the appearance somewhat of a wall of fire. (Might be an interesting adjunct to musical programs on television.)

NEW PRODUCTS

(continued from p 134)

selectivity is $60 \mathrm{kc}, 50 \mathrm{db}$ down for an adjacent channel, and 120 kc , better than 85 db down for an alternate channel.

Voltage Multiplier

Sylvania Electric Products Inc., 500 Fifth Ave., New York 18, N. Y., has announced the Polymeter d-c voltage multiplier, which
extends d-c voltage measurements to 10,000 volts. The unit consists of a 48 -in. plug-in flexible lead tested for 22,000 -volt breakdown, nickelplated brass contact pin, removable bakelite safety flange and a varnished bakelite handle $4 \frac{4}{4}$ inches long.

Smoke Density Recorder

Bailey Meter Co., 1050 Ivanhoe Road, Cleveland 10, Ohio. A new smoke density recorder comprises a sealed-beam light source, bolometer smoke detector, and electronic recorder. Voltage across the bolo-

with CONCRETE

- the small extra first cost of test samples pays off in assurance of efficiency and durability of the finished structure.

with TRACING CLOTH...

The small extra first cost of Arkwright Tracing Cloth, over that of tracing paper, repays many times over in the efficiency and durability of valuable drawings.
Arkwright gives both immediate and future advantages. The expert work of the draftsman is made permanent. Your investment in time and money is backed by sharp, clean reproductive quality. Under repeated use - or on file for subsequent need Arkwright assures perfect drawing performance year after year.
For every drawing worth keeping for future use use permanent Arkwright instead of perishable tracing paper. Send now for generous samples and prove this superiority. Sold by leading drawing material dealers everywhere. Arkwright Finishing Company, Providence, R. I.

The Big Six Reasons Why Arkwright Tracing Cloths Excel

1. Elasures re-ink without feathering.
2. Prints are always sharp and clean.
3. Tracings never discolor or go brittle.
4. No surface oils, soaps or waxes to dry out.
5. No pinholes or thick threads.
6. Mechanical processing creates permanent thansparency.

ARKWRIGHT
 TRACINGCLOTHS

AMERICA'S STANDARD FOR OVER 25 YEARS

PRECISION POTENTIOMETERS

Toroidal and Sinusoidal

For use in computing and analyz. ing devices; generation of low frequency saw tooth and sine waves; controls for radio and radar equipment; position indicators; servomechanisms; electro medical instruments, measuring devices-telemetering; gun fire control where 360° rotation, high precision and low noise levels are essential.
The type RL14MS sinusoidal potentiometer is illustrated. It is wound to a total resistance of 35,400 ohms and provides two voltages proportional to the sine and cosine of the shaft angle. It will generate a sine wave true within $\pm .6 \%$. Overall dimensions are $44_{\frac{3}{3}}^{\prime \prime}$ diameter x $4 \quad 11 / 32$ long plus shaft extension $f^{\prime \prime}$ diameter x $1 \frac{1}{4}{ }^{\prime \prime}$ long.

Write for Bulletin F-68

THE GAMEWELL COMPANY

Newton Upper Falls 64, Massachusetts

The SYMBOL of QUALITY for 62 YEARS

WASHERS . . . Standard and Special, Every Type, Material, Purpose, Finish... STAMPINGS of every Description . . . Blanking, Forming, Drawing, Extruding.
Your most dependable source of supply - the world's largest manufacfurer of Washers, serving Industry since 1887. Over 22,000 sets of Dies. Submit your blueprints and quantity requirements for estimates.

WROUGHT WASMER
 MANUFAGTURING
 The World's Largest Producer of Washers

2118 S. BAY ST., MILWAUKEE 7. WIS

Only \$975

Never before a value like this $31 / 2 \mathrm{KW}$ bombarder or high frequency induction heater . . . for saving time and money in surface hardening, brazing, soldering, annealing and many other heat treating operations. Is

Portable . . . mounted on four rubber coasters. Width $141 / 2^{\prime \prime}$; depth 27"; height $42 \frac{1}{2}{ }^{\prime \prime}$; weight $300 \#$.

Operates from 220 volt line. Complete with foot switch and one heating cail made to customer's requirements. Send samples of work wanted. We will advise time cycle required for your particular job. Cost, complete, only $\$ 975$. Immediate delivery.

Scientific Electric Electronic Heaters are made in the following ranges of power: 1-2-3-5-7 $1 / 2-$ $10-12 \frac{1}{2}-15-18-25-40-60-80-100-250$. KW.

Division of
" S " CORRUGATED QuEnCHED GAP CO.
105-119 Monroe St., Gorfield, N. J.
meter filament is balanced against the voltage drop across a motordriven slidewire unit in the recorder. Changes in filament temperature cause potentiometer unbalance. The recording pen is positioned by the unbalance.

Small Battery Tester

Simpson Electric Co., Chicago, Ill. Model 379 pocket-size dry-battery tester has a single rotary switch

which selects the voltage of the battery under test and brings into line the correct loading resistor. A percentage scale shows the exact condition of the battery in percentage of full voltage. All types of batteries can be tested with the unit.

Burglar Alarms

Ripley Co., Inc., Middietown, Conn. A new low-cost photoelectric burglar alarm uses a modulated light

NEW LOW PRICES

transcription turntable. By unbiased tests-delivers the highest signal-to-noise, lowest rumble and flutter content, and also offers a synchronous direct gear drive! Unexcelled for dubbing from disk to disk or film; where seconds count for FM and AM recorded broadcasts; or for laboratory uses where extraneous noise and distortion cannot be tolerated. The Fairchild positive direct-from-thecenter turntable drive provides quick start, high torque, instant speed change to 78 or 33.3 rpm . NEWS! Fairchild Transcription Turntables are available for immediate delivery-at the new low price of $\$ 485$.

UNIVERSAL 6-POSITION EQUALIZER makes it unnecessary to use a separate equalizer for each pickup. You can new experiment with various pickup cartridges while using this one equalizer. Both lateral and vertical transcription arms can be connected and selected without switching - by simply using the proper setting of the 6 -position control knob. The Fairchild PreamplifierEqualizer mounts in place of your present equalizer; prevents obsolescence; saves the cost of additional equalizers; frees one preamplifier; provides for cuing and monitoring; eliminates low level hum problems; and is an investment in economy. Write for complete details.

MICRO-GROOVE FOR RECORDING STUDIOS

studio recorder is receiving high praise from recording engineers since they discovered its excellent Micro-Groove recording performance. Its pitch being continuously variable from 80 to over 500 lines-per-inch, it not only records readily at Micro-Groove pitch but provides for momentary decrease of pitch for indicating the end of one selection and the start of another.
Radio stations, using the new Fairchild Transcription Arm for Micro-Groove reproduction, are experiencing the full advantages of the improved quality, especially at inner disk diameters, as well as the long playing time of these new LP records. Write for complete details.

IT'S A FACT: Fairchild Recording Equipment Corporation has been newly formed to specialize - as its name implies - in sound recording equipment. All Fairchild Camera and Instrument Corporation sound equipment-including Portable Disk Recorders and Unitized Amplifier Systems - are available for immediate delivery at new low prices. Write for complete details: 88-06 Van Wyck Boulevard, Jamaica 1, N. Y.

Components which are contributing an essential service in the progress of radiation instrumentation.

The new 1 B85 Thyrode is a thin rib re-enforced aluminum self-quenched, beta-gamma counter tube operating at 900 volts. Wall thickness $30 \mathrm{mg} / \mathrm{sq}$. cm.

RMA TYPE 1B67 has been assigned to the standard laboratory mica window self-quenched, beta thyrode which operates at 1200 volts. Window thickness 2.0 to $2.6 \mathrm{mg} / \mathrm{sq} . \mathrm{cm}$. Other thicknesses on request.

Hi-Meg
Hi-meg resistors vacuum sealed, from 10^{8} ohms to 10^{13} ohms measured to within 1% accuracy are a symbol of reliability in all ion chamber radiation measuring instrument and electrometer circuits.

Victoceen

5806 HOUGH AVENUE

CLEVELAND 3, OHIO
beam so that it is independent of ambient light. Range of the unit is 250 feet so that the illumination can be reflected from several points to form a crisscrossed protective area.

F-M Monitor

West Coast Electronics Co., 1601 South Burlington Ave., Los Angeles 6, Calif. An f-m modulation monitor designed for use in the

emergency service field has a sensitivity of 200 microvolts or better and can be used for any one of four channels in the band from 30 to 200 mc . Peak deviations of 20 kc can be monitored.

Writing Oscillograph

Electrofax Corp., 30 Burtis Ave., New Canaan, Conn. The direct writing oscillograph illustrated has a frequency response linear to 50 cycles at 30 mm amplitude. Tape

speeds from 1 to 100 mm per second can be attained. A standard amplifier and a larger galvanometer can be supplied.

Pickups

Astatic Corp., Conneaut, Ohio. Type FLT-33 crystal transcription pickup illustrated is one of a complete new line of seventeen different models. Crystal and magnetic types, cartridges with diamond,

sapphire or precious metal needles are available. Standard or longplaying recordings can be used with the broadcast type shown which has a needle pressure of 5 grams.

Isolation Transformer

Andrew Corp., 363 E. 75th St., Chicago 19, 1ll. The Isoformer is an air insulated transformer for supplying 60 -cycle lighting voltages to tower lighting circuits without pro-

viding an r-f path to ground. It is available in two models: type 2015 for maximum lighting loads of 1.5 kw, and type 2030 for maximum loads of 3 kw .

Cueing Amplifier

Fairchild Recording Equipment Corp., 88-06 Van Wyck Blva., Jamaica 1, N. Y., has made available a cueing amplifier for transcription turntables. Using pushpull stages and inverse feedback,

Featuring-

\checkmark Extended frequency range
 \checkmark Time-interval marker
 \checkmark Triggered sweep

- Designed for those who need the best ... the RCA $715-\mathrm{B}$ Oscilloscope permits precise examination of extremely short, sharp-fronted pulses and other unusual waveforms . . . as well as the observation and measurement of either recurrent or transient phenomena such as occur in television transmitters and receivers, radar apparatus, computing equipment, and other pulse-producing devices. The $715-\mathrm{B}$ produces steady, clear traces even with random recurrence of signal.
This oscilloscope features extended frequency range, high vertical deflection sensitivity, triggered sweep, internal timeinterval marker, and input calibration
meter. It's mounted an easy-rolling castors for convenient movement from one location to another.
Ask your local RCA Test and Measuring Equipment Distributor for descriptive bulletin, or write RCA, Commercial Engineer ing, Section 42BY, Harrison, N. J.

Available from your RCA Test and Measuring Equipment Distributor

RADIO CORPORATION OF AMERICA
TEST AND MEASURING EOUIPMEAT
MARRISON. N.J.

"Study that illustration α minute. It won't take you long to see the many design possibilities you gain by using S.S.White remote control flexible shafts to connect variable elements to their controls.
'For instance, the flexible shaft coupling gives you a free hand in locating the elements independently of their controls. This is mighty important when it comes to meeting space, wiring and servicing requirements or when you're working for top circuit efficiency.
"As for the control knobs . . . you get the same freedom in positioning them. This means that you remove many limitations on your cabinet designs and can provide more convenient tuning.
"So, when your circuit design includes variable elements, think of S.S. White flexible shafts. This is a tip many designers of electronic equipment have used to good advantage."

Write for this flexible shaft handbook

It contains 260 pages of facts and technical data on flexible shafts and how to select and apply them. Write for a copy.

S.S.WHITE
 THE S. S. WHITE DENTAL MFG. CO.

 INDUSTRIAL ovivson

NEW PRODUCTS (continued)
the 635-A2 amplifier has a frequency response of 70 to $15,000 \mathrm{cps}$ $\pm 1 \frac{1}{2} \mathrm{db}$. It provides 3 watts of audio output, and transformer input is 10,000 ohms.

Industrial Rectifier

National Electronics, Inc., Batavia Ave., Geneva, Ill. Type NL-653 mercury vapor tube has a

900 -volt peak inverse voltage rating. Peak current is limited to $12 \mathrm{amp} \mathrm{d}-\mathrm{c}$ with average 3 amp maximum.

Meter and Tube Tester

Triplett Electrical Instrument Co., Bluffton, Ohio. Model 3480 combination tester for tubes as well as voltage, current, and resistance

tests measures voltage up to 1,200 volts; current up to 120 ma or 12 amps and resistance up to 50 meg ohms. The equipment operates from 115 volts.

H-V Measurements

Richard Mattison Co., 114 East Sixteenth St., New York 3, N. Y. A high-voltage tester for television work operates with all vtvm's having input impedances of 10 meg ohms and is a multiplier that will

suitable to Volume

Production...it may
pay you to call upon

United-Carr and its
subsidiaries. They
have helped many

* SPEED PRODUCTION
* TURN OUT FINER

FINISHED PRODUCTS

More than 50 years of leadership and experience in developing special purpose cloths for industry. With such a background of experience it is little wonder that Holliston Tracing Cloth is second to none. Try PEL-X.
holliston Pel-X tracing cloth You will never appreciate the superior qualities of PEL-X Tracing Cloth until you try it. Suppose six draftsmen at lunch told you why they preferred PEL-X. There might be six different reasons - all good.

What is your next step? Chances are you will first test PEL-X - give it a stiff workout using your pet testing technique. That suits us. We make it easy for you - just write for a generous sample.

Test PEL-X for speed with pencil, minute perfection of weave, uniform transparency, durability under repeated erasures, high resistance to moisture and perspiration - and other special qualities. Write for generous sample.
$\underset{\text { Chichso }}{\text { THE HLLISTON }} \underset{\text { NORWOOD, MASS. }}{\text { MILS }}$ INC.

For Unusual and Difficult Requirements

Models

Have an ADC catalog in your file for ready
reference. Write us about your special problems.
Have an ADC catalog in your file for read
reference. Write us about your special problem
Foreign Inquiries Solicited. Cable address: AUDEVCO MINNEAPOLIS job is typical of scores of development tasks presented to ADC engineers from university laboratories, communication developments, guided missile programs and developmental engineers everywhere. ADC supplies transformer "know how" with excellent transformer production to assure you a reliable source of dependable transformers.

(and
TRANSFORMERS

- Research
- Models
- Testing

STEEL When a steel company engineer was presented with a problem of testing steel with an application of variable frequency, an oscillator output impedance as low as 0.01 ohms was required over a wide Frequency range.

Through the aid of ADC engineers and the use of special ADC designed transformers a regular oscillator was equipped to perform the test satisfactorily with great savings in time and money to the steel company. Remember ADC as a transformer source for unusual and difficult assignments as well as for high quality and dependable production transformers.

COMMUNICATIONS To-

day a large utility company has a satisfactory communication system between its central location and its mobile units because ADC engineers worked out technical transformer applications for the maker of a power line carrier telephone. From model stage to production this company depended upon the skill of ADC transformer design and production. You, too, will find ADC helpful in all unusual model work as well as produc. tion.

ENGINEERING The development of a computer to check the muzzle velocity of a cannon with greater accuracy required many special transformer applications. This
\rightarrow - Frrond
extend the range of existing instruments by 10. It can also be used with a microammeter by calibrating the scale in kilovolts.

Sealer

Spectrum Mfg. Co., 540 North 63 rd St., Philadelphia 31, Pa. A new electronic sealing machine is

designed to seal documents, cards, or photographs into cellulose acetate envelopes. The edge weld is about $1 / 16$ inch wide.

Rotary-Shaft Seals

H. \& H. Buggie and Co., Madison Ave. and Twenty-second Streets, Toledo, Ohio. Series 1100 rotary shaft seals have been designed for

NEW PRODUCTS

(continued)
electrical and radio equipment with variable controls and from which moisture must be excluded. Four sizes are obtainable. Engineering data are available.

Special Amplifier

Schuttig and Co., Ninth and Kearny Sts., N. E., Washington 17, D. C. Type S174A adjustable threshold power amplifier can be used for straight amplification or

as a noise-suppressing type. A gain of 30 db is provided with power output of 3 watts. Threshold can be adjusted to any level within the range of minus 20 to plus 10 db .

Improved Marker

Kay Electric Co., Pine Brook, N. J. A new model of the Mega Marker has a wider frequency range, from 29 to 39 mc , but is

otherwise identical with the standard model which includes a marker at 4.5 mc for adjustment of television sound discriminators.

Radioactivity Demonstrator

Tracerlab Inc., 55 Oliver St., Boston 10, Mass., has developed the SU-4 radioactivity demonstrator for teaching basic principles in schools and colleges. Radiation is indicated by loudspeaker, by a flashing neon light and quantita-

New Headset from TELEX...

ND PRESSURE OVI HE EMAS

Here's a really new headset: TELEX TwINSET! Sweaty, tiresome "ear-cups" are gone forever! Signal may be piped directly into the ear so that nothing touches the ear at all! Matched in-phase magnetic receivers banish listening fatigue-listen for hours in complete comfort with this high-fidelity, 1.6 ounce headset.
An all purpose headset, the unique Telex Twinset, is designed for your hearing comfort and exacting headset demands. Obtainable from your favorite parts jobber, or, write Dept. 10, Telex Inc., Telex Park, Minneapolis, Minnesota.

SPECIFICATIONS:

Sensitivity-101 decibels above .000204 dynes per sq. cm. for 10 microwatts input
microwatts input
Impedances- 1000 ohms and 64
Impedances-1000 ohms and 64
ohms
ohms
Construction - Weight: 1.6 oz.
Special Cord with built in miniature Volume Contr lalso available

TELEX, Telex Park, Minneapolis, Minnesota
Manufacturers of Telex Monoset* - Telex Pillow Speaker - Telex Precision Hearing Aids

There's good reason why this is the world's most popular high sensitivity volt. ohm-milliammeter. In every part, from smallest component to overall design, no competing instrument can show superiority. It outsells because it outranks every similar instrument. And in the Simpson patented Roll Top safety case, shown here, it brings you important and exclusive protection and convenience.

```
Sub-Panel Assembly -Strong, Simple, Accessible
```

The ruggedness, the simplicity of design, and the consequent ocressibilshown here Molded of sturdiest bakelite, the sub-panel provides separate pockets for resistors. This separation makes for orderly assembly, highes! possible occessibility, and added insufation for preventing shorts. All connections are short and direct. Cable wiring is ellminated. Each battery has its own compartment, again increasing accessi. bility

High voltage probe (25.000 volis) for TV, rodar, x-ray and other high voltage tests, aiso
able.
abl
The New simpson Swith Mechanism. You will find no other switch mechanism on the markel like this Simpson swifch. It is built of molded bakelite discs. Unusually sturdy conmacts, of heavy stamped brass, silver-plated for superior condurtivity are molded permanenily into each disc. They can never come loose, never get out of posifion. When the discs self-enclosed against dust Denger of shorts is automatitally eliminated As the switch is retated from range to range ihe eliminated. As the switch is rotated from range to range, the a ball-andays positive and unvarying
selarited range by a 3 -paint pressure. 5 witch is thus the selariad range by a 3-paint pressure. Switch is thus held This mechanism is afso self-erslosed against dust in a bake. lite housing.

RANGES

20,000 Ohms per Volf D.C. 1,000 Ohms per Vols A.C.
Volts: A.C. and D.C.: $2.5,10,50,250,1000,5000$
Milliamperes, $0,5,10,100,1000$
Milliamperes, D.C.: $10,100,500$
Aicroamperes, D.C.: 100
Amperes, D.C.: 10
Decibels (5 ranges): $-1010+52$ D.B
Ohms: 0.2000 (12 ohms center), $0-200,000$ (1200 ohms center), Model 200 , Size: $51 / ; 7^{\prime \prime} \times 51 /$ center).
Model 260 in Roll Top Safety Cose, as shown.
Bath complete with test leads and 32 -page Operator's Mantial
Ask your jobber or write for complete descriptive literature.

5200-521t W. Kinzie St., Chicago 44, 甘ll.
In Canoda: Bach-Simpson, Lid. London, Ont.

tively with a counting rate meter. The meter will indicate up to 2,500 counts per minute, and by means of a switch will also indicate voltage across the Geiger tube. The instriment operates on 110 volts a-c.

Small Solenoid Valve

Caltron Products Co., 1406 So. Hobart Blvd., Los Angeles 6, Calif. Available in three valve body materials, aluminum, brass, and stainless steel, a new small solenoid valve

can be furnished in a variety of sizes and actuating voltages. Operation from zero to 600 pounds per square inch is possible.

Resistor

Wilkor Products, Inc., 3835 West 150 th St., Cleveland 11, Ohio. A complete line of Carbofilm resistors is available in sizes from ${ }^{\ddagger}$ to 1

IN THE BULL RING
IT'S THE MATADOR

IN COMMUNIGATIONS it's STANDARD'S CRYSTAL TYPE 20

Superior engineering is responsible for this versatile, stable, quality crystal unit-hermetically sealed and filled with dry nitrogen. Frequency range from 1 mc to 75 mc . Meets $\pm .005 \%$ stability in temperature range $-55^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$.
Let us send you a FREE CATALOG with complete information.

STANDARD PIEZD GOMPANY

 Office \& Development Laboratories CARLISLE, PENNSYLVANIAFor heating water, oils, paraffin, chemicals, etc.

VULCAN

ELECTRIC

IMMERSION HEATING UNITS

Various types of Bolt on flanges and threaded bushings available.

Single and three heat with metal rasings. Complete with gaskets, terminal cover, etc.

A new VULCAN Electric Immersion Heater is especially designed for melting fats, greases and similar componnds.

VULCAN ELECTRIC COMPANY DANVERS 10, MASS.

Makers of a wide variety of Heating Elements for assembly into manufacturers' own products and of Heating Specialties that use electricity.

REDUCE ASSEMBLY REJECTS WITH...

TINNED STEATITE

D. C. AMPLIFICATION at moderate cost

The Microsen Balance principle, developed in our electrical instrument laboratory, makes possible for the first time at moderate cost, a D. C. Amplifier incorporating High Stability, Fast Response, Isolated Input, and Versatility.

Models available include Voltage, Current and Potentiometer Type Amplifiers, Direct Current Converters, Direct Current Transformers, and Engineered Designs to meet special requirements.

Line voltage variations of 15% cause output changes of less than $.5 \%$. No mechanical rectifiers or choppers. Standard tubes. Time constant from . . 1 I to .2 seconds. Drift less than 5 Microvolts per day. Not affected by temperature variations.

May we send you our bulletin 143-E.

[^7]watt, in values from 20 ohms to 5 megohms with tolerances from 0.5 to 1 percent. Smallest resistor in the line measures ${ }^{3}$-inch overall length.

Sound Spectrograph

Kay Electric Co., Pine Brook, New Jersey. The Bell Labs sound spectrograph is used for the study of complex sound waveforms as in

speech education for the deaf and foreign language speech training. Recordings are made on current sensitive paper.

Multiple Capacitor

Pyramid Electric Co., 156 Oxford St., Paterson, N. J. Type 85TM capacitor shown operates at tem-

peratures as high as 85 C . The unit contains four sections, three of them totalling 75 microfarads at $450 \mathrm{~d}-\mathrm{c}$ volts operating, and the fourth is 100 microfarads at 50 volts.

Improved Jack

Audio Development Co., 2833 Thirteenth Ave., So. Minneapolis 7, Minn. A new jack designed for audio connections in radio and tele-

vision broadcasting is physically interchangeable with any standard telephone type with a quarter-inch shaft.

Triple Analyzer

Fisher Scientific Co., Pittsburgh 19, Pa. The Nefluoro-Photometer is a line-operated electronic instrument designed for nephelometric, fluorometric and colorimetric analy-

ses. Three light sources are available for various analyses: incandescent, mercury and sodium. The unit employs a built-in galvanometer.

Mobile Rectifier

Industrial Electronics and Transformer Co., Los Angeles, Calif. The mobile regulated rectifier illustrated includes operation from 208 volts, 60 cycles, 400 volts

at 50 cycles and 208 volts at 400 cycles and a remote sense circuit to give voltage regulation at the aircraft end of the d-c cables. The mobile unit is rated 2,000 amperes continuous at 28.5 volts.

Specialty Nut

Prestole Corp., 3119 Bellevue Road, Toledo 6, Ohio. A new spring steel Snap Nut is suitable for

In the television and radio fields, where good work is important and economy in present high labor costs is essential, Kester Solders of the Rosin-Core type fit right into the picture. Made to the highest standards possible, Kester Flux-Core Solders have always been and still are the standard in the industry.

Write for new 28-page manual, "SOLDER and Soldering Technique"

Free technical manual featuring a complete analysis of the application and properties of soft solder alloys and soldering fluxes.

KESTER SOLDER COMPANY
4204 Wrightwood Avenue, Chicago 39, Illinois
Factories Also At

[^8]

SPECIAL FEATURES

SWITCH: Patented knee-action switch for high contact pressure and low, uniform, contact resistance.
VIBRATION-PROOF CONSTRUCTION: Will withstand the Signal Corps Vibration tests.
CONTACT RESISTANCE: .002 ohm. Will remain within .0003 ohm throughout the life of the unit.
TYPE OF WINDING:
1, 10, 100 ohm steps-Ayrton-Perry wound.
0.1 ohm steps-bifilar wound.

1,000 and $10,000 \mathrm{ohm}$ steps-unifilar wound.
TYPE OF WIRE: All units up to 10,000 ohms are wound with manganin. Values over 10,000 ohms are wound with nichrome alloy.
TEMPERATURE COEFFICIENT: All resistors have a temperature coefficient of less than $\pm .002 \%$ per degree C, at room temperature.
FREQUENCY CHARACTERISTICS:
$0.1,1,10$, and 100 ohm steps-flat to 1 MC . 1,000 ohm steps-flat to 50 KC . 10,000 and 100,000 ohm steps-. flat over the audio range.

This new construction is supplied on individual decade units and in decade resistance boxes.

Visit Daven exhibit at the I.R.E. Convention Booth 94-B and 95.

Write for descriptive literature
Dept. E-2

anchoring nut-to-panel for blind attachments. As the screw is driven in, the arched spring arms of the nut expand just enough to permit entry of the screw.

Plastic Preheater

General Electric Co., Schenectady 5, N. Y., has available a new 3 -kw, 40 -mc preheater for plastic preforms. It operates on 220 volts, single phase, 60 cycles, and is de-

signed to heat 40 oz of wood-flour phenolic compound from 70 to 250 F in one minute. Further information is given in bulletin GEA5091.

Antenna Rotator

Alliance MFg. Co., Alliance, Ohio. An electric antenna rotator is now

Wm. C. Copp, Exhibits Manager 303 West 42nd St., New York 18, N Y.

Necu! johnson

TYPE LIARIABLES

CERAMIC SOLDERED FOR STABILITY-STRENGTH

DUAL TYPE
Available in Three Models:
3.5 to $27 \mathrm{mmf}, 4.6$ to $51 \mathrm{mmf}, 6.8$ to 99 mmf . Spacing . $030^{\prime \prime}$ and $.080^{\prime \prime}$

These new JOHNSON Variables are ideal for use where peak efficiency is required under the most adverse conditions, such as portable-mobile operation.
JOHNSON also makes Type L Variables in Single, Differential and butterfly types in many different models.
All are ceramic soldered. There is nothing to work loose causing stator wobble and tluctuations in capacities.

Write For New JOHNSON Type L
Variable Catalog Today!

Je H M S O
a famare name in Sadic E. F. JOHNSON CO., WASECA, MINN.

ULTRA SENSITIVE D. C. AMPLIFIER

An Electronic Replacement For Sensitive Galvanometer Systems

The Model 53 Breaker-type D.C. Amplifier was developed for the measurement of d.c. and low frequency a.c. voltage in the microvolt and fractional microvolt region. It is compact, portalile, and makes an excellent replacement for the suspension galvanometer. The output of the amplifier is sufficient to operate standard meters and recording devices directly.

It has been employed for the amplification ofinfra-red detectors, thermocouples, voltaic photocells, and the like, both in research and industrial applications.

Among the advantages of this amplifier are the following:
I. Noise level that approaches the theoretical limit imposed by Johnson noise.
2. Extremely low zero drift (less than $.005 \mu \mathrm{~V}$ after warmup).
3. Freedom from the effects of vibration such as found in moving velicles.
4. Response characteristics permitting overall amplification flat from 0 to 10 cycles per second.
5. Reliability, as demonstrated by units which have been in continuous operation for several years.

THE PERKIn- ELIMER CORPORATION

Dopt. 52. GLENBROOK•CONNECTICUT

SELFLOCKERS... TMBRD
 Reg. U. S. Pat. Off.

SOCKET SET SCREWS

WITH THE

KNURLED CUP POINT

The KNURLED cup point of this popular "Unbrako" Socket Set Screw makes it a Self-Locker ... becousc the keen edges of the counter-clock-wise KNURLS positively prevent creep, regardless of the most chottering vibrotion. A real fostener, if ever there was one . . . it positively won't shake loose! Sizes from \#4 to $11 / 2^{\prime \prime}$ diameter, in a full range of lengths.

```
Knurling of Socket
Screws originated with
"Unbrako" in 1934.
```

Write us for the name and address of your nearest "Unbrako" Industrial Distributor and for your copy of the "Unbrako" Catalog.
OVER 46 YEARS IN BUSINESS
"HALLOWELL" KEY KIT

You can't tighten or Joosth socket screws without a hes
socket wrench, so why not get
 kit which con Jiandle kes lift which comaths monst all
tors-moliet hits.

STADARD PRESEED STIE 60.

JENKINTOWN, PENNSYLVANA, BOX 596
CHICAGO • DETROIT • ST, LOUIS • SAN FRANCISCO

(PAPER
 MOSINEE "More than Paper"

In the field of electronics and the electrical goods industry, MOSINEE stands for paper-base processing materials with scientifically controlled chemical and physical properties, high quality standards and dependable uniformity... with good dielectric strength, high tensile or tear strength; proper softness or stiffness; creped with controlled stretch or flexibility; specified pH for maximum-minimum acidity or alkalinity: accurate caliper, density, liquid repellency or absorbency . . or other technical characteristics vital to your quality standards and production requirements.

COSINE PAPER MILLS COMPANY - MOSINEE, WIS.

available for $\mathrm{f}-\mathrm{m}$ and television beams. A remote-control unit contains a three-position switch and warning signal to show that the unit has reached one end or the other of its 365 -degree rotation. The motor drives the antenna at approximately 1 rpm . List price is $\$ 39.95$.

Timer and Amplifier

Alec Lansing Corp., 161 Sixth Ave., New York 13, N. Y. Type ALC-101 fam and a-m tuner is designed to work in conjunction with

type A-323C amplifier, which can be separated from the tuner unit by a 6 -foot cable. The amplifier is essentially flat from 20 to 20,000 cycles. The a-m section uses a tuned radio-frequency circuit for local reception. The fem receiver uses a ratio detector.

Ion Charger-Reader

Nuclear Instrument and ChemCal Corp., 223 West Erie St., Chiago 10, Ill. Model 2050 ion chamber charger-reader is designed to read pocket ion chambers used by

personnel exposed to gamma or x radiation. The unit will charge the ion chamber to a known voltage and will measure the residual charge after exposure to radiation.

Vacuum Monitors

Skaneateles Mfg. Co., Inc., 122 Dickerson St., Syracuse 2, N. Y. The Skanascope vacuum monitors use controlled gas-discharge tubes

as the basic sensing element. They feature precision signal and relay output control. Range is from 100 millimeters of mercury to 5 microns absolute. Power required is 115 volts a-c, 60 cycle, at $0.5 \mathrm{am}-$ pere, plus the load on the relay base through a 115-volt a-c outlet.

Pulse Networks

Condenser Products Co., 1375 North Branch, Chicago, Ill. Plasticon TS pulse networks operate at

temperatures up to 150 C with lower losses than those composed of paper or mica capacitors. The dielectric does not fatigue under pulse duty.

Navigational Equipment

Sperry Gyroscope Co., Great Neck, N. Y. The Mark 2 loran receiver indicator using miniature tubes

3 important new Relay Developments Reas

NEW! ...TINY OCTAL BASE RELAYS for $A C, D C$ or half-wave rectified $A C$ TYPE 118 XBX : Available in either open or metal-enclosed types as il. lustrated, also hermetically sealed. Highly sensitive on DC. DP-DT contacts rated 2 amps. at 115 V . AC. DC operating power is .15 watts with maximum coil resistance of 2,200 ohms. Write for Bulletin 2400.

NEW! . . HERMETICALLY SEALED DC RELAYS FOR HICH-ALTITUDE AVIATION

These little CX3554 Relays are insensitive to humidity changes and capable of operation at 70,000 feet, G 's; vibration reshock resistance to 10 G 's; high-speed sistance better hat contact bounce, and operation without an ambient range of reliability over $200^{\circ} \mathrm{C}$. SP-DT contacts $-75^{\circ} \mathrm{C}$. to rated 2 amps . withstand in nominally 12 amps. at 26.5 V . DC. Coilis rated 26.5 V . DC with operating range
 of $18 / 32 \mathrm{~V}$. DC. Write for Bulletin 2410 .

NEW! . . MONEY-SAVER FOR TIMING

 CONTINUOUS PROCESS WORKBesides eliminating the need for numerous cascaded timers, the new Struthers-Dunn DB Timer usually requires much less auxiliary conrequires
trol equipment. An entire process combining many operations can quickly be set up on a singents as Total time cycle adjustmdividual well as the timing of indrite for periods are easily made.
Stepless, wide-speed range.
Complete timing reliability Complete timing reliability

STRUTHERSDUTI
 5,3,48

STRUTHERS-DUNN, INC., 150 N. 13TH ST., Philadelphia 7, PA.
atlanta - baltimore - boston - buffalo - charlotte - chicago CINCINNATI • CLEVELAND • DALLAS • DENVER • DETROIT • HARTFORD • INDIANAPOLIS los angeles • minneapolis - montreal. new orleans . new york - pittsburgh rochester - st.louls - san francisco - seattle - syracuse - toronto

Designed for
 App

PLUGS and SOCKETS for 300 OHM LINE

The new Milden No. 37412 Designed for Application plug is an inexpensive, compact, and efficient polyethylene unit for use with the 300 ohm ribbon type poly ethylene transmission lines. Fits into standard Millen No. 33102 (crystal) socket. Pin spacing $1 / 2^{\prime \prime}$, diameter . $095^{\prime \prime}$. Ideal for many amateur, laboratory, commercial communication and television applications.

JAMES MULLEN MFG. CO., INC.

MAIN OFFICE AND FACTORY MAIDEN MASSACHUSETTS

NEW PRODUCTS
(continued)

features small size, trummionmount, longe numbered meter, motor driven phase-shifting circuit, automatic frequency control and ultraviolet illuminated time-difference meter and station selectors.

Pressure 'Transmitter

Manning, Maxwell \& Moore, INC., 11 Elias St., Bridgeport 2, Conn. The Microsen electromechanical relay is combined with a Bourdon tube to produce a stable

dec signal that can be recorded or read at a distance. Standard pressure ranges up to 50,000 pounds are available. Write for Bulletin 145.

F-M and Tell Sweeps

Coastwise Electronics Co., Inc., 130 North Beatudry Ave., Los Angeles 12, Calif. Model 720 Ferret $\mathrm{f}-\mathrm{m}$ and television sweep generator has a range from 0 to 260 me and

COMPLETE FACILITIES for PRECISIONFABRICATED PLASTICS

It Pays to Call on

SILLCOCKS-MILLER

Nationally recognized for quality production, the Sillcocks-Miller Company applies its long experience, skill and modern facilities to the fabrication of plastic materials, specializing in close-tolerance work.

This organization of specialists is equipped to handle all of the importhant plastic-fabricating processes, such as cutting, printing, stamping, cementing, milling, turning, blanking, drilling, drawing, forming, tamimating and assembling.

Along with these facilities, SillcocksMiller offers a consulting service to assist you in developing your ideas in plastics. Write for illustrated booklet or send specifications for quotation.

The SILLCOCKS-MILLER CO.
10 W. Parker Avenue, Maplewood, New Jersey

> Quality and Service at a Price that is Bight

> THE ONLY BROAD BANDED, HIGH GAIN, STACKED ARRAY ON THE MARKET

Many times more sensitive for TV reception in fringe areas and poor signal locations, the WARD TVS-6 STACKED ARRAY achieves maximum forward gain by stacking two high gain folded dipoles and reflectors with effective $1 / 2$ wave spacing rather than the ordinary $1 / 8$ or $1 / 4$ wave which materially reduces sensitivity. THE ONLY STACKED ARRAY ON THE MARKET THAT IS BROAD BANDED, it will give excellent results with MANY CHANNELS where others are too selective. The advanced engineering and PRE. ASSEMBLED design of the WARD TVS-6 is only one of the reasons why WARD is the largest exclusive manufacturer of antennas in the world. See any leading parts distributor or write for catalog.

THE WARD PRODUCTS CORPORATION
 1523 E. A5TH STREET, CIEVELAND 3, ohio.

Engineers:

HERE IS YOUR SOLUTION TO TELEVISION CONDENSER TROUBLES . . .

THE NEW

PROCESSED TELEVISION BY-PASS CONDENSER

Here is a new condenser that really stands up under the voltages and temperatures encountered in Television circuits. Amoil Processed, these new capacitors approach closely the electrical properties of fine mineral oil impregnated units. Simple tubular construction with high melting point wax seal results in an attractive price range.

Write for samples and prices of thcse two new condensers.

AMERICAN CONDENSER CO.

4410 N. RAYENSWOOD AVE., CHICAGO 40, ILL.

HEAT RESISTANT WIRES FOR EVERY APPLICATION

DESIGN ENGINEERS . . .

> Do those new circuit designs present new wire problems?

Then check with Lewis Engineering for an economic solution and fast delivery. For twenty years we've successfully been solving the heat and age resistance wire problems of industry. We don't stock wire-we make it to your specs-for an experimental run or for the production line. If you're designing in the electronic, electrical or appliance field. . .

HEATING UNITS
HEATING ELEMENTS
RESISTANCE
INE CORD
THERMOCOUPLE WIRE
ASBESTOS LEAD
\& FIXTURE WIRE
INSULATED
RESISTANCE WIRE
FIBERGLAS
INSULATED WIRE
WIRE TO ANY
SPECIFICATIONS

Let Lewis Build The Wire Jor You

Send your electronic control, communications or appliance wir-

TIE LEMS ENGMESiNG CO.
NAUGATUCK
Wire
CONNECTICUT

HAS THE
 Manvir

FM TRANSLATOR
General Electric Model XFM-1

of the old G.E. J.F.M-90
Translator which was used and enjoyed by tens of thousands of discriminating radio listeners.
Covers 88.108 mc range, dial 12 inches long, uses guillotine tuning for highest efficiency, high stability. Designed for export, has power inputs for 110 to 250 volts, $50 / 60 \mathrm{cy}$. Used in conjunction with good audio section or separate amplifier will provide best $F M$ listening you ever heard. In attractive natural walnut cabinet $-103 / 4^{\prime \prime}$ high $\times 15 \frac{3}{4}$ " wide $\times 113 / 8^{\prime \prime}$ deep. complete with 8 tubes. Tropic-proof construction. Quantity limited.
Special Price. $\$ 49.50$
TECHMASTER TV KIT

Complete kit of parts, including pre-wired and aligned RCA front end, condensers; resistors, punched chassis, all tubes including kine, complete manual with service noles, all RCA.

GENERAL
ELECTRIC
1 MFD CONDENSER

15,000 Volts D. C. working, Pyranol filled. Brand New, Shipping Weight 35 lbs. $\$ 14.95$

All prices Net, P.O.E., N.Y.C.
Subject to Change Without Notice
Telephone
LUxemburg 2.1500

103 West 43rd St., New York 18, Ǹ. Y.

NEW PRODUCTS
sweep width from 50 kc to 20 mc . Internal crystal marker is controlled by a plug-in crystal in the range 19 to 40 mc . Write for catalog sheet.

High-Fidelity Amplifier

Special Products Co., Silver Spring, Md. Model 309 phonoamplifier and preamplifier combination may be used with low-level

pickups and with regular crystal cartridges for either standard or microgroove records. Response is essentially flat from 1,000 to 14,000 $\mathrm{cps}(\pm 1 \mathrm{db})$ with rising characteristic of 12 db down to 50 cycles. Hum level is 40 db below maximum signal output.

Process Control

G. C. Wilson \& Co., 2 N. Passaic Ave., Chatham, N. J. The Flexitrol is a new electronic load control for use with all motor-operated pro-

cesses, such as pulverizers, pumps, and extruders. One model is suitable for motors of all ratings.

Persistent CRT

Radio Corp. of America, Harrison, N. J. Model 10KP7 cathode-ray tube is a 10 -in. type employing magnetic deflection and focusing. A long-persistence, two-layer screen exhibits greenish-yellow phosphorescence that lasts several minutes. Overall characteristics of the tube

SILASTIC* INSULATED WIRE AND CABLE

Now Available for High Temperature High Voltage Applications

Silastic* is extruded over wire and cable ronging from No. 18 to 500,000 circular mils in size to provide insulation having maximum resisfance to heat, ozone and weathering.

Silastic* has been chosen to insulate the new line of heat-stable "Okotherm" wire and cable made by the Okonite Company of Passaic, N. J. Silastic* insulation maintains its high dielectric strength even after continuous long time exposure to temperatures as high as $200^{\circ} \mathrm{C}$. $\left(400^{\circ} \mathrm{F} .\right)^{\circ}$ Its dielectric loss factor is low compared with that of organic rubbers.
Silastic* insulation is practically unaffected by corona or ozone. A severe corona resistance test of Silastic 181 for example, was discontinued after more than 4000 hours without breakdown. The best organic rubber insulating materials break down under this same test in 50 to 150 hours.
Silastic* insulated wires and cables withstand severe outdoor weathering without deterioration because of exceptional water repellency, low moisture absorption, resistance to oxidation and flexibility at low temperatures. Serviceable operating temperatures range from -80° to $+400^{\circ} \mathrm{F}$.
These properties plus good resistance to a variety of chemicals and hot oil are now available to you in Silastic* insulated wire and cable. Among the many high temperature applications for Silastic* insulated wire or cable are: power plant wiring and lead wire for electric ovens, furnaces and metors.
Other applications include wiring for high intensity floodlights and street lights, and as high voltage ignition and neon sign cable. Our speciflcations for Silastic* insulated wire and cable are given in pamphlet No. G o-N.
*trademark dow corning corporation

DOW CORNING CORPORATION

 MIDLAND, MICHIGANAtlanta Chicago - Cieveland os Angeles New York In Engiand: Albright and Wilson, Lid., London

facilitate its use as a radar indicator.

Mechano-Electronic

Transducer
Radio Corp. of America, Harrison, N. J. A mechano-electronic triode transducer model 5734 consists of a metal shell (plate connection),

internal shield, plate, grid, heater and cathode elements. The moving element is the plate shaft which extends through a thin metal diaphragm at one end of the tube. The shaft has a deflection sensitivity of 40 volts per degree deflection. The tube is primarily useful for vibration measurements.

Scaler

El-Tronics, Inc., Philadelphia, Pa. Model LS-100 Geiger laboratory set employs a direct-reading decade

scaler. A scale of 100 or 1,000 counts up to 999,999 or 9,999 ,999 before recycling.

Vibration Meter

Calidyne Co., 751 Main St., Winchester, Mass. A new vibration

From l0VA to 300 KVA Dry-Type Only, Both Open and Encased, 1, 2, \& 3 Phase 15 to 400 Cycles.

Over 25 years' experience in the manufacture of specials at cost that compares favorably with standard types. Built-in quality proved by years of actual use.

NOTHELFER WINDING LABORATORIES

TRENTON 3. N. J.

pulse input requirements.

 Serkeley Scientific Company

SIXTH AND NEVIN AVENUES : RICHMOND, CALIFORNIA

Amperite REGULATORS are the simplest, lightest, cheapest, and most compact method of obtaining current or voltage regulation For currents of .060 to 8.0 Amps Hermetically sealed; not affected by altitude, ambient temperature, humidity.

Write for 4-page Illustrated Bulletin.
Mmperite CO., 561 Broadway, New Yö̈k 12, N. Y.
In Canada: Atlas Radio Corp., Lid., 560 King SI., W. Toronto

meter used with a velocity pickup is designed to read vibration levels directly in rms inches or rms inches per second. The device is batteryoperated with internal calibration.

Magnetic Test Set

General Radio C0., 275 Massachusetts Ave., Cambridge 39, Mass. Type 1670-A magnetic test set for materials in laminar form provides measurements of permeability and core loss at 60 cycles. The measure-

ments are made on a Maxwell bridge of the inductance and loss of a solenoid surrounding the sample.

Television Testing

Radio City Products Ca. Inc., 152 W. 25 St.. New York City, N. Y. Two television test instru-

-NOW!

- the yital theory
- design techniques
- industrial uses
of Ultrasonics!
$H^{\text {ERE }}$ is the first engineering consideration of plus an abundance of practical the vital theory, plus an abundance of practical information never
before published 1 This important new book rebefore published This important new book re-
views electronic considerations and outlines of circuits. Mechanical and electrical design and construction techniques of ultrasonic systems are inchuded everything frome the design considerations of holders for ultrasonic use to the experimental ${ }^{n}$,

Just Published!

ULTRASONLCS

By Benson Carlin
Hillyer Instrument Company
Formerly, Product Research Supervisor.
Spery Products
264 pages - 162 illustrations - $\$ 5.00$

BOTH theoretical and practical, this bool B definitely slanted toward engineering design and use in defnite industrial applications. It brings you valuable information on: material testing, agitation, witrasonic transducers, uliraistics of ultrasonic waves that are important in practical applications: curves, waves, and complex waves; Fourier's theorem, wave trains and plex waves, Fourier's theorem, wave trains and sonic waves may be produced, and the electrosonic waves may be produced
mechanical converting systems

Spotlights Practical Uses in Many Fields Brought out of the research laboratory and into industry, ultrasonics has iremendously-broad, pra guide points the This go greater use of way-
to
trasonics in trasonics in, for exTESTING: to detect flaws in metals, plastics and glass. ett.

CHEMICAL INDUS. TRIES: to make better mixtures and emulSions, etc.; METAL. URGY: for extremely uniform mixtures free of air bubbles, etc. It perimental applices experimental applications sion, systens of televisialing, depth sounding, communication, destruction of bacteria, | etc. |
| :--- |
| etruction of bacteria, |

CONTENTS

 1. Ultrašonic Waves 2. Ultrasonic Waves 3. Crystals for Ultrasonic 4. Crystal Holders for 5. Resonance and Reflection6. Continuous-wave Ultrasonic Systems Pulsed Ultrasonic Systems
7. Ultrasonic Agitation
8. Magnetostriction 10. Practical ConsidBrations in
Anplication Aphlication
of Ultrasonic

MAKE YOUR PRODUCT FULLY NON-CORROSIVE! STAINLESS STEEL SCREWS
IMMEDIATE DELIVERY

Machine, Self-tapping Socket, Set, Wood Screws. Also Nuts, Bolts, Washers, Rivets, Pins-all types and sizes - delivered immediately from America's largest stock. PROMPT SHIPMENT ON SPECIALS
for Catalog No. 49C write foday, on your letferhead.

Waxes, Compoonds and Emulsions

ZOPHAR

 Materials fer potting, dipping or impreg

SEND NO MONEY

 See it 10 Days ON APPROVALMeGraw-Hill Book Co 330 W. 42d St., NYC 18

- Send me Carlin's ULTrasonrcs for 10 days examination on approval. In 10 days 1
85.00 will sens a fend $\$ 5.00$ plus a fenp cents delivery charge, or return
the book postagid. Name

Address
City Zone.

New Design Vibration Isolator with Air Damping

BARRYMOUNT TYPE 770 INSTRUMENT VIBRATION ISOLATOR

Revolutionary new design utilizing air damping to limit excursion at resonance. Metalic non-linear springs give constant resonant frequencies throughout a two to one load range. Unaffected by high or low temperatures. For all types of light weight instruments and other applications where a high degree of isolation is required.

Catalog Number	Load Range in Pounds
$770-2$	1 to 2
$770-3$	$1 \frac{1}{2}$ to 3
$770-4$	$2 \frac{1}{4}$ to $4 \frac{1}{2}$
$770-6$	3 to 6

BARRYMOUNTS Control VIBRATION and IMPACT

Standard Barrymounts are available for all sizes of mechanical, electrical, and electronic instruments in commercial industrial, and military appli-cations-also an engineering consulting service on special problems.

SEND FOR BARRY CATALOG

If you haven't sent for the New Barry Catalog, be sure to fill out the coupon below for your Free copy of this 16 page booklet.

Name

Co Title. .

THE BARRY CORPORATION formerly L. N. BARRY CO., iNC.
 \star 177 SIDNEY STREET CAMBRIDGE, MASS

NEW PRODUCTS
(continued)
ments are combined in the Tee Vee 90 combination oscilloscope and sweep generator. The independent sweep generator has continuously variable bandwidth from 50 kc to 6 mc with a range of 4.5 to 30 mc . The oscilloscope has a deflection sensitivity of 350 millivolts rms per inch, both horizontal and vertical.

H.V Socket

Network Mfg. Corp., 19 Cottage St., Bayonne, N. J. Type SOX-1 high-voltage socket illustrated is an

exact replacement for ceramic sockets in television receivers.

Tensile Tester

Instron Engineering Corp., 2 Hancock St., Quincy 71, Mass. Model TT-B is a high-precision tensile testing instrument with a load

range from 2 grams to 1,000 pounds full scale. Hysteresis and relaxation tests can be made with the equipment.

Ferromagnetic Materials

Philips Laboratories, Inc., Irv-ington-on-Hudson, N. Y. Ferroxcube magnetic materials consist essentially of homogenous mixed crystals of metallic oxides and iron

> AMERICAN ELECTRICAL HEATER COMPANY DETROIT 2, MICH., U.S. A.
oxide that have magnetic permeabilities and low remanence and coercivity. The new materials are essentially electrically insulating.

Oscillograph

Sanborn Co., 39 Osborn St., Cambridge, Mass. A direct-writing oscillograph produces permanent

records without use of ink. Registration is rectilinear. Singlechannel recorders are presently available.

Variable Capacitors

E. F. Johnson Co., Waseca, Minn. A new line of variable capacitors type 167 includes the items illustrated. A new method of ceramic

soldering obviates the use of eyelets, nuts or screws. A split-sleeve tension bearing insures positive contact and prevents fluctuation in capacitance.

New Battery

Nickel Cadmium Battery Corp., Easthampton, Mass. The Nicad battery comprises a positive plate of nickel hydroxide and specially treated graphite; active material of the negative plate is a mixture of oxides of cadmium and iron. Elec-

192 PAGES of USEFUL INFORMATION

Engineers, designers, purchasing agents -

GET YOUR COPY

You will find complete data on the lamps used in pilot lights.
And illustrations - all full size - of hundreds of items you will use.
There is a table of resistors for operation of lamps on all voltages.
Complete dimensional data on each unit.
More than 2,000 Underwriters' Listed Assemblies.

The DIAL LIGHT COMPANY of AMERICA

Foremost Manufacturer of Pilot Lights.
900 BROADWAY, NEW YORK 3, N. Y. TELEPHONE SPRING 7-1300
Write for Handbook D-149

1. Higher Dielectric Strength
2. Greater Structural Strength
3. Lower Overall Production Costs
4. Fewer Rejects (Core won't collapse after winding)
5. Shape and Size Tolerances the Same After Winding.
6. Better Quality because Parkwood Tubing is made of a combination of phenolic impregnated paper and mahogany veneer.

Write - TODAY - for complete
details and prices

PARKWOOD CORPORATION WAKEFIELD, MASSACHUSETTS
trolyte is pure caustic potash in distilled water. Catalog 127 describes the battery in detail.

Oscilloscope Camera

Frederick P. Warrick, 8666 Grandville, Detroit 10, Michigan. The camera illustrated can be used in conjunction with any oscilloscope with a short-persistence screen. It

HEXACON MODEL 30H. Weight $51 / 2$ oz. (less cord). 40, or 60 Watts. Both $1 / 8^{\prime \prime}$ and $1 / 4^{\prime \prime}$ tips furnished. Ask for literature on complete line of screw tip, plug tip and hatchet irons.
 130 W. Clay ave., roselle park, N. J.

 ing and speeding production. More comfortable and practical than a pencil iron. No transformer required. Price only $\$ 5.00$.

MODEL 204A REGULATED
 POWER SUPPLY

0-500 VOLTS D.C. AT 300 MA. WITH POSITIVE OR NEGATIVE GROUND

The Model 204 A Regulated Power Supply will provide from $\mathbf{0 - 5 0 0}$ volts of well regulated and well filtered D.C. The output voltage is continuously variable without switching and either positive or negative side may be grounded.

SPECIFICATIONS:

output voltage

High Voltage: $0-500$ Volts D.C. contin High Voltage:
uousily variable
(Without switching). Current: 300 Ma .
Current. Volta 0 . 3 Volts A.C. Low A.C. Voltage: 6.3 Volts A.C. at 6 amps, center-tapped, unregulated

REGULATION

Within 1% for voltage between $30-500$ volts, from no load to full load
Within 10 for line voltage variations from Within 1% for line voltage variations from 105 to 125 volts at full load current for any 2% at 10 volts.

HUM VOLTAGE

Within 10 Millivolts at any voltage or load within ratings.

LINE INPUT

105-125 Volts A.C. $50-60$ cycles.

OUTPUT TERMINATIONS

High and low voltage outputs available from front and rear of unit. Posltive or negative terminal of high voltage output may be grounded as desired.

Defailed specifications will be forwarded upon request without obligation.

Control Instruments. The Brown Instrument Co., Wayne \& Roberts Aves., Philadelphia 44, Pa. Cata\log 15-13 gives 31 pages of schematic diagrams, photographs and dimensional drawings illustrating construction and operation of a line of continuous balance potentiometers, indicators, controllers and pyrometric switches.
R-F Cables. The Telegraph Construction \& Maintenance Co., Ltd., Telcon Works, Greenwich, London S. E. 10, England. Publication No. 10 describes the characteristics of various types of coaxial cables, delay cables, fittings and characteristics.
F-M Antenna. Andrew Corp., 363 East 75th St., Chicago 19, Ill. Bulletin 86 describes the Multi-V antema for f-m broadcasting. The unit can be either side or top mounted on existing structures and has a power gain of 1.6 .
Impedance Matcher. Radex Corp., 2076 Elston Ave., Chicago 14, Ill. A catalog sheet outlines the advantages of the new impedancematching bridge.
Sonic Analyzer. Panoramic Radio Corp., 92 Gold St., New York 7,

POLARAD TELEVISION
 Equipment
 Model PT 101-Television

features

- Built in $3^{\prime \prime}$ oscilloscope with synchronized sweeps for - Synchronized marker system for checking pulse width
- And rise vitae.
- Meaning for edge of master oscillator pulse. Means for checking synchronizing pulses in odd and
even fields.

SPECIFICATIONS

525 line, interiocad, 60 fields, 30 frames, RMA Synch ionling pulses held to tolerance specified in the NRTTPB Blanking, Camera Blanking, Horizontal Driving, Vertical Driving Pulses. ${ }^{6}$ volts across 100 ohm termination
Dual output racks. 115 volts $50 / 60$ cos. tubes.

TELEVISION MONOSCOPE SIGNAL SOURCE

Model PT 102

- Composite Video Signal
- Wide Band Video Ample-
fer, 6 DB down at 10 MC
Dual outputs for feeding
two 75 or j oo lines
Black positive or Black
- Black positive or Black
negative output.
Resolution greater than
600 lines 600 lines
InPUT: Vertical and Torizontal Driving pulses Camera
and
kinescope Barking Pulses.
OUTPUT: Composite Video Signal, 3 sol to $\begin{array}{ll}100 \text { ohm line } & 115 \\ \text { volts } \\ 50 / 60 & \text { cps }\end{array}$ Complete with ing high sand low voltage power

9 FERRY STREET NEW YORK 7, N. Y.

Television engineers and consultants to the nation's great television stations.

for safety later

DO IT BETTER NOW!

SPRINGS are the "life" of a design. On their own power, they pull, push, open, close-actuate vital parts of mechanism. When they fail, so does the product!
For safety, springs should be designed into the product, after the right type, size and metal have been determined. Generally, this is an engineering job, and if you are not set up to do it, you are welcome to this assistance as a "plus" with your order. Just send us a description of the device, preferably with sketch or blue print.

SCREW MACHINE PRODUCTS - The foregoing applies very largely to screws, nuts, turnings, pins, knobs, handles and the thousands of other parts made on modern screw machines, and the same engineering service is yours if you wish it.

SPRINGS \& SCREW MACHINE PRODUCTS the peck spring company

9 King St., Plainville, Conn.

ANOTHER
 DEVELOPMENT
 for

 COMMUNICATIONS EFFICIENCY
CHARACTERISTICS

Receiver and microphone in this headgear provide higher output than standard telephones when used on non. amplified circuit.
Sensitive receiver for inter-communicalions - 135 ohms, damped response. Sensitive lip microphone, noise exclud ing, 50 ohm carbon, all position, extended frequency response.
Lucite temple pad and junction box with connecting cords enclosed in vinylite cushion headband on one side to balance weight of headphone
Whatever your need or problem in communications terminal equipment. Roanwell is qualified to serve you. A skilled laboratory staff will tackle your special development problems. Write today - telling us your requirements. And send for our new catalog.

THE AVIOMETER DIV

662 PACIFIC
662 PACIFIC ST. • BROOKLYN 17. N. Y

Brilliant, realistic reproduction of broadcast and recorded music is assured with the H. H. Scott Model 210-A amplifier. Built to laboratory standards of electrical, mechanical, and musical excellence, this 20 -watt amplifier is essential to satisfactory custom performance in both FM and AM radio reproduction as well as in record playing. FEATURES INCLUDE:

- *Dynamic noise suppressor for both scratch and rumble.
- Equalization for standard and long-playing records.
- Extended listening range.
- Twenty-watt output - negligible distortion.
- Minimum controls - maximum flexibility.
- Compact design - oversize components.
- Full year's guarantee.

For $\mathfrak{f u l l}$ details, request bulletin 902 E 2

Now "DYNAMIC NOISE SUPPRESSION

with your present Radio-Phonograph or Am-
plifier on both Standard and Long-Playing
Records. Records.

Reduces scratch and rumble without fixed loss of "highs" or "lows"
Add realism to your music reproduction by these 2 simple steps.

1. Plug in the "Little Wonder" "Dynamic Noise Suppressor between your pickup and amplifier.
2. Plug in the socket adapter to the power-tube socket.
The "Little Wonder" (Type $110-\mathrm{A}$) realizes the full capabilities of your present equipment; remote control mounts anywhere. high-and-low-frequency noise suppression; two inductor type high-frequency gate circuit. two separate control rectifiers; compact $7 \times 33 / 4 \times 43 / 4$ inches. For full specifications write for bulletin 902 Ei
*Licensed under U. S. and foreign patents pending and issued.
N. Y. Th Sonic Analyzer model AP-1 sepa ates frequency components of a complex audio wave and measures 'requency and magnitude accor ing to a six-page brochure.
Midget R lays. Struthers-Dunn, Inc., 150 N 13th St., Philadelphia 7, Pa. Bull tin 2100 has been compiled to sil plify selection and use of midget $1 \geqslant$ lays.
Microwave Equipment. The Waveguide Mfg. \& Equipment Co., Inc., 190A Duar : St., New York, N. Y. has just is ued a new bulletin on its line of microwave and waveguide equij nent.
New Resis irs. International Resistance C , 401 N. Broad St., Philadelph 8, Pa., has issued a 12-page b rhure on advanced types of fis l composition resistors including 30 detailed charts and graphs.
STL Antennas. Andrew Corp., 363 East 75th St., Chicago 19, Ill. Bulletin 902 describes stl antennas utilizing parabolic dishes for the 920 -to- 960 mc f-m relay band.
F-M STL. Radio Engineering Labs., Inc., 35-54 36th St., Long Island City, N. Y. has just put out preliminary information on the new model 707 relay equipment for use between 920 and 960 mc utilizing the Serrasoid modulator.
Rocket Tubes. Sylvania Electric Products Inc., 500 Fifth Ave., New York 18, N. Y. has put out an interesting 16 -page booklet on a line of planar triodes designed for use at the ultrahigh frequencies.
Marking Tape. Topflight Tape Co., York, Pa. has an illustrated brochure showing some of the many uses to which its printed, adhesive tape can be put.
Geiger Survey Meter. Precision Radiation Instruments Inc., 1101 North Paulina St., Chicago 22, Ill. A sheet describing the model 101 portable Geiger survey meter indicates the elements of the plugin circuit.
Magnetic Amplifiers. Vickers, Inc., 1815 Locust St., St. Louis 3, Missouri, has recently published a 28 -page brochure on the circuits, characteristics, applications, and illustrations of magnetic amplifiers.

- Wlres diawn bare to $0004^{\prime \prime}$ diameter
- Wollaston Process Wire $.0005^{\prime \prime} 10.000010^{\prime \prime}$
- Ribben rolled to .0001" thickness
- Made in almosi ali ductile metals. and alloys; or we will draw wire from your own metals.

Your inquiry, with engineering specifications is invited

Manufacturers use the advertising pages in this magazine to get news about their products or services to you... quickly and effectively. Their advertisements contain information designed to help you do your job better, quicker, and cheaper, which is just as newsworthy as the editorial columns. To be well-informed about the latest developments in your business, your industry... and to stay well-informed... read all the ads too.

McGRAW-HILL PUBLICATIONS

Precision Linear Potentiometer
Specifications covering Fairchild Type 748 Linear Potentiometers guarantee a service life of more than $1,000,000$ cycles at 30 rpm and linearity of $.1 \%$-yet laboratory tests have revealed a service life of several million cycles at 100 rpm with the original linearity tolerance increasing to only $.15 \%$!

This amazing performance stems from Fairchild's exclusive design and precisionized skills that provide just the right contact materials, the right resistance wire-and the exact adjustment of wiper arm pressure.

For further information on the only precision potentiometers that offer a service life of over $1,000,000$ cycles with sustained accuracy address: Dept. J, 88-06 Van Wyck Boulevard, Jamaica 1, New York.

SOLDER PRE-FORMS

Standardize

Save money

Step up production-bring costs in your shop down-with solder preforms. Pre-formed rings, washers, pellets, discs, etc., made to your order, insure better bonds, lower costs, and faster assembly. We can supply you with custom-made pre-forms of any shape required, in a wide variety of solders, copper and brazing alloys.

Write for complete information.

Soldering Specialties

Dept. C, Summit, N. J.

NEWS OF THE INDUSTRY (continued from page 138)
bership will eventually include substantially all professional radio engineers who devote the major portion of their time to the practice of consulting engineering before the FCC and who meet certain minimum requirements set forth in the constitution and by-laws of the organization. Applications for membership or associate membership may be made through A. D. Ring, secretary.

RMA Issues Recommended Standards

To keep pace with wartime and postwar technical developments, the RMA Engineering Department has released thirteen new and revised recommended standards. Most of the recently issued group apply to radio and television components rather than to complete equipment, while two have to do with television and result from the industry's rapid expansion. One of the latter covers requirements for television relay facilities, and the other brings up to date the designation system for c-r tubes.

New and revised standards are as follows: Audio Facilities for Radio Broadcasting Systems (TR-105-A) ; Numerical Values, Decimal Multipliers, and Tolerances (GEN-101) ; Preferred Values (GEN-102) ; Moulded Mica Capacitors (REC-115) ; Fixed Composition Resistors (REC-116) ; Fixed Wire Wound Resistors (REC117); Electrical Performance Standards for Television Relay Facilities (TR-106); Fixed Paper Dielectric Capacitors in Tubular Non-Metallic Cases (REC-118); Vibrator Power Transformers (REC-119) ; Power Transformers for Radio Broadcast Receivers (REC-120) ; Variable Control Resistors (REC-121) ; High Frequency Circuit Switches (REC122) ; Designation System for Cathode Ray Tubes (ET-111).

BUSINESS NEWS

Sylvania Electric Products Inc. has purchased the plant formerly occupied by the Rumsey Pump Co. at Seneca Falls, N. Y., for ex-

YOUNEED THIS BOOK:

IF YOU BUY...USE...
OR SPECIFY SMALL PARTS
Here's one of the most up-todate and complete booklets on practically all types of small metal parts. Gives you engineering specifications and vital data on application of:

Lock Washers	Snap Rings
Lock Nuts	C Washers
Spring Washers	Retaining Rings
Flat Washers	Flat Springs
Stampings	Coiled Springs
Welded Parts	Hose Clamps

You'll find this booklet a valuable ad. dition to your technical library. It is crammed with sizes, facts and figures .. data on latest AN specifications:, information on how you can save your company time and money in the pro. duction of small parts.
This is just another part of Diamond G Service offered to industry by Garrett's, manufacturers of small parts. Whatever your needs-ever though they may seem impossible to meetcall the Diamond G man. We think you'll be amazed. When a promise of quality, price or delivery is given by Garrett's-YOU ARE SURE OF SAT ISFACTION. Diamond G Service is based on furning the seemingly impos. sible into a regular reality

DIAMOND G PRODUCTS
 Manufactured by GEORGE K. GARRETT CO., INC. 1421 Chestnut St., Phila., Pa.

DUMONT GLASSITE

THE WORLD'S FINEST TUBULAR CAPACITORS

At last! . . . after years of painstaking research the Dumont Engineers now offer the finest tubular condenser ever designed. Moulded right into a Ceramic Tube . . . oil sections 100% moistureproof and heatproof. Sizes from 0001 to .5 and from 100 Volts to 20000 Volts. From $1 / 4^{\prime \prime} \times 5 / 8^{\prime \prime}$ long to $11 / 2^{\prime \prime} \times 4^{\prime \prime}$ long.

Also available in
Silicone Oil for $125^{\circ} \mathrm{C}$ operation.
Send for Literature and Samples

PRECISION

HASN'T "SQUARED
THE CIRCLE" BUT HAS "SQUARED THE BOW"

producing

DI-FORMED PAPER TUBES

at no extra cost!

Precision DI-FORMED Paper Tubes have made a most important improvement throughout coil industry: Now ALL coil manufacturers and users can take advantage of the opportunity to obtain Precision DI-FORMED square and rectangular paper tubes for coil bases, at no extra cost!
Results: greater strength—automatic stacking-elimination of coil forming after winding-closer engineering of coils, saving wire. Precision characteristics, spiral winding, better insulation, space and weight saving are improved. Tubes also made round, oval, any shape.

PRECISION PAPER TUBE CO
 79 CHAPEL ST.,

PLANT NO. 2

Type S12-A twelve-element Recording Oscillograph

WRITE FOR BULLETIN SP-I67A

TECHNICRAFT 3 BASIC FLEXIBLE WAVEGUIDE TYPES

DIFFERENT CHARACTERISTICS

Advantageous as it would be to manufacturers and users to standardize, experience has shown that more than one set of charasteristics is needed to meet the requirements of varied applications. To select the correct flexible waveguide for an applitation, consider all characteristics involved and judge ane type of construction against other types.
If a flexible assembly is desired to provide a 90° E-plane bend AND a 90° twist, Technicraft Type L, Interlocked Construction is the logical choice. For a short, very flexible, detachable coupling to a frogile X-band magnetron, or for flexible elbows or bends, Technicraft Type S, Seamless-Corrugated Assemblies are ideal. These units can be infernally pressurized without a jacket. For installations involving a difficult shock mount problem where long life is required with repeated flexibility in ALL planes simultaneously, Technicraft Type V, Vertebra Assemblies will provide unequalled performanee. Great care is taken in the manufacture and testing of Technicraft flexible woveguide assemblies to assure low attenuation and low standing wave ratio. Technicraft assemblies have electrical characteristics which remain stable with flexing.
Our engineers will gladly supply information on different assemblies and recommend the correct type for your particular application. Send us complete details of your problems on flexible and rigid waveguide assemblies, or combinations of both.

Tic Mew!

Technicraft Laboratories Bulletin F-2 entitled "How to Select Flexibe Waveguide Assemblies " now available upon request.

Electrical Characteristics Stable with bending AND TWISTING

TYPE S assemblies seamless-corrugated Preformed flexible couplings maintain desired shape

TYPE V Assemblies VERTEBRA

Unequaled for shock mounts

NEWS OF THE INDUSTRY
(continued)
panded television tube production. The new plant contains approximately 98,000 square feet of space. Acquisition of the plant is consistent with Sylvania's policy of industrial decentralization now operating in twenty-five plants located in five states.

FM Association has moved its offices from the Munsey Building to 526 Dupont Circle Building, Washington, D. C.

Sprague Electric Co., North Adams, Mass., recently acquired the Herlec Corp., Milwaukee, Wisc., to expand production and development of ceramic capacitors and printed circuits.

The American Standards AssoCIATION sectional committee on radio has been reactivated to coordinate Joint Army-Navy specifications with civilian standards.

Cossor (Canada) Ltd. now occupies its new plant and temporary offices in Halifax, Nova Scotia, and will produce its own twin-beam oscillographs and other electronic devices as well as distribute instruments imported from the parent company in England.

Airborne Instruments LaboraTORY, INC. has leased $10,000 \mathrm{sq} \mathrm{ft}$ of space in a building at 61 Second St., Mineola, N. Y., to house its engineering and production division.

Allen B. Dumont Laboratories, INC., recently acquired title to the former Wright Aeronautical plant, East Paterson, N. J., to house its television receiver assembly lines, general offices and engineering laboratories.

Electrical Reactance Corp., Franklinville, N. Y., has acquired a new plant at Myrtle Beach, S. C., to increase facilities for radio and television component manufacture.

Craven, Lohnes and Culver, consulting radio engineers, is a new partnership continuing the practice of Lohnes \& Culver in the Munsey Bldg., Washington, D. C.

Farnsworth Television \& Radio Corp. has consolidated and ex-

CABINET FLUSHING FAN
300 to 450 CFM actual dispiacement - For both push and puli operation. Choice from 6 propellers to match backpressure 11.5 or closed ballbearing motor to perate in am bients of $55^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$. Resilient mounting bients of $55^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$. Resilient mounting incorporated . Low noise level. High qual NOW A STANDARD COMPONENT IN THE COUNTRY'S LEADING BROADCAST 8 TV TRANSM'S SPECIFIED IN CAA \& NAVY TRANSMITTERS Write for copy of RP-22 Technical description \& dimensions RM-24 Airflow \& motor temp. rise curves AN-1 Application Note on dustfilters AN-4 Fan installation suggestions RM-27 Prices \& discount schedule Send for complete cofologue on ROTRON cooling components. Designers \& manufacfurers of components to Gov't spec's

ROTRON DIVISION

(A Division of Jenckes Knifting Machine Co of Pawtucket, Rhode Island - Est'd 18981 Engineering Sales Office WOODSTOCK, N. Y., P.O. BOX 272

RAWSON

Thermocouple Meters

No Wave Form Errors R.M.S. Readings $1 / 2$ of 1% Accuracy
SINGLE RANGES from 1 ma full scale to 10 amperes full scale. Good from DC to 2 megacycles and higher. MULTIPLE RANGE INSTRUMENTS with selector switches. Any practical combination of voltage or current ranges furnished to order.

Example 1.5-5-15-50-150-1500 volts at 1000 ohms per volt, DC to 10 KC . RAWSON THERMAL MULTIMETERS

Ranges on one meter - 10 ma to 3 amps, 300 mv to 1000 volts.

$$
\text { Write for Bulletin } 502
$$

RAWSON ELECTRICAL INSTRUMENT COMPANY

111 Potter Street Cambridge, Mass. Representatives
Chicago Los Angeles New York City

Now Jerminals Can Be ATTACHED \& SOLDERED in ONF Automatic Operation!

New Terminal Attaching Machine-
attaches and solders various sizes and types of pre-soldered tandem terminals (supplied on reels) at rates up to 1200 per hour. Machine cuts off, clinches and solders terminals in one instantaneous operation. Eliminates handling of loose terminals, solder and flux to increase production and lower costs on long runs. Standard types available. Strong, perfectly soldered joints are assured, as absolute control of heat is maintained. Send for detailed information, enclose sample of wire and terminal now used. Address Dept. E.

For ordinary runs in moderate quantity we continue to produce

SEPARATE TERMINALS for ELECTRIC WIRES

We also make SMALL METAL STAMPINGS, exact to Customer's Prints. Modern Plant, Equipment and Methods. Precision Work. Moderate Die Charges. Prompt, Dependable Service.

PATTON-Mac CUYER CONPANY 17 Virginia Avenue, Providence,R.I.

GRAY TRANSCRIPTION ARMS and EQUALIZERS

IDEAL

for the New LP Records
The GRAY TRANSCRIPTION ARM 103-LP, with Selected GE Variable Reductance Cartridge with 1 mil Diamond Stylus, has been especially designed for use with the new LP Micro-Groove Records. Due to such features as adjustable stylus pressure, frictionless motion, self-leveling base and the accommodation of any standard cartridge, arm obsolescence is precluded. Arm, with 1 mil Diamond Stylus Cartridge, $\$ 77.95$
The GRAY \#602 4-position EQUALIZER for GE Cartridge, adjustable for conventional records, transcriptions, and LP recordings-by the turn of a switch: Complete at $\$ 53.50$.

Inquiries invited for development and manufacturing.
GRAY RESEARCH \& DEVELOPMENT COMPANY, Inc.
16 ARBOR STREET
HARTFORD 1, CONN

Form the FLEXITIP on your $8^{\prime \prime}$ Weller Gun into any shape you want and see how it slides oround corners, between wiring, into the tightest spots even when the job's buried deep. Solderlite and 5 -second heating mean hours and dollars saved-your Weller Gun will pay for itself in a few months. And because the transformer is built in-not separate -the Weller Gun is a complete, compact unit, easy to use. There's no need to unplug the gun when not in use; heat comes "on" only when the trigger is pulled.

For laboratory and maintenance work, we recommend the efficient $8^{\prime \prime}$ model-DX. 8 with dual heat; or $4^{\prime \prime}$ types $\mathrm{S}-107$ single heat and D-207 dual heat. Order from your distributor or write for bulletin direct. Be sure to get your copySOLDERING TIPS, the new Weller Handy Guide to easier, faster soldering- 20 pages fully illustrated. Price 10c at your distributor's or write direct.

NEWS OF THE INDUSTRY
(continued)
panded its Fort Wayne, Indiana, plant to include engineering, research, procurement, manufacturing and sales activities.

National Union Radio Corp., Orange, N. J., has purchased a $70,000-\mathrm{sq}$ ft plant in Hatboro, Pa .,

National Union's new Hatboro plant
for the production of all types of c-r tubes.

William Brand \& Co., New York, N. Y., has acquired the tubular braiding plant of the International Braid Co., Fall River, Mass., to provide extra capacity for untreated braided sleeving.

Industrial Electronics Co., Inc., Hanover, Mass., was recently formed to manufacture industrial electronic controls.

The Waveguide Mfg. \& EquipMENT Co., INC., manufacturers of microwave and waveguide equipment, have moved into larger quarters at 190A Duane St., New York City.

Refco Corp., New York City, was recently formed to manufacture radio, electrical and electronic products to specification.

PERSONNEL

William A. Wildhack, member of the NBS staff since 1935 and also associate editor of the Review of Scientific Instruments, has been named chief of the Missile Instrumentation Section of the Electronics Division, National Bureau of Standards.

Marvin W. Smith, formerly vicepresident in charge of engineering and research at Westinghouse Electric Corp., was recently elected executive vice-president of Bald-

Eclipse-Pioneer, foremost producers of Remote Indicating and Control Systems for aviation, have now developed similar systems for industrial applications. Basically, they are a means of translating a minute motivating force such as: motions of pressure, temperature, or moisturesensitive elements into a predetermined type of work such as remote indication, or remote control of a function. Our engineers are available to help you save time, save space and save money with Eclipse-Pioneer Remote Torque Amplification \$ystems

Mem, JOHNSON

TYPE 1 VARIABLES

CERAMIC SOLDERED FOR STABILITY-STRENGTH

BUTTERFLY TYPE
Available in Three Models:
2.8 to $10.5 \mathrm{mmf}, 4.3$ to $26 \mathrm{mmf}, 6.5$ to 51 mmf . Spacing . $030^{\prime \prime}$ and $.080^{\prime \prime}$
Two sets of stator contacts are provided or connecting components to either side of he valiabe the circuit cad inductance of the circuit.
JOHNSON also makes Type L Variables in Single, Dual and Differential types in many different models.
All are ceramic soldered. There is nothing to work loose causing stator wobble and fluctuations in capacities.
Available in $.030^{\prime \prime}$ and $.080^{\prime \prime}$ spacings for all types of communications equipment having tuned circuits operating as high as several hundred megacycles.
Write For New JOHNSON Type L
a bamore maine de Rac
a gamour name co Radso

E. F. JOHNSON CO., WASECA, MINN.
 25 Amperes per Contact Alterable by circuit
S. 506-DB
deep Bracket Characteristics.

Socket contacts phosphor bronze, knife-swith type ${ }_{\text {, cod }}$ cadmium plated. Plug contacts hard brass, cadmium plated. 2, 4, 6, 8, 10, and 12 contacts. Plugs and sockets polarized. Long leakage path fram terminal, and terminal to ground. Caps and brackets, steel parkerized (rusf-proofed). Plug and socket blocks interchangeable in caps and brackets. Terminal connections most accessible. Cap insulated with canvas bakelite.
Write for Jones BULLETIN 500 for full details on line.

HOWARD B. JOISS DIVISIOH 2460 w . GEORGE ST.

new

higher-torque lower cost

standard and synchronous motors

- Now typical Cyclohm compactness and dependable performance are available in a new Split Phase Motor-both Standard and Synchronous types. This new Cyclohm unit is ideal for vending machines, garage doors, appliances, blowers, control mechanisms, and many applications where its high starting torque is an advantage. Since no capacitor is required the cost is lower. Ball bearings or sleeve bearings. Horsepowers up to $1 / 15$ in the Standard, $1 / 25$ in the Synchronous. Various speeds, voltages and frequencies. Write today for details-also for information on Cyclohm Capacitor Type and Speed Reducer Motors.

CYCLOHM MOTOR CORP.
Division Howard Industries, Inc
5-17 46th Road, Long Island City 1, N. Y.
-

An Engineer's DREAM COME TRUE!

When you hear the Newcomb "Red Knob" record condition compensator for the first time, we are sure you'll agree it's really a "Dream Come True." These two great Newcomb Amplifiers with the "Magic Red Knob" do wonders in eliminating needle scratch and record distortion while retaining the maximum natural brilliance.

Of course, it's not only this remarkably effective scratch control that gives you the extreme quality achieved by these two amplifiers. Their measured performance is superb. In every respect, they represent the ultimate in technical perfection, and in addition, there's a listening quality that even performance curves do not tell. That's why we ask you to be sure and hear these two Red Knob Amplifiers before you buy. Both have built in Pre-Amplifization for G.E. or similar variable reluctance type pickups, plus inputs for AM.FM radio and crystal pickups, and the finest of tone cońtrols.

Both are individually, and completely, custom tested to insure each unit will be "Laboratory Perfect." A "Certificate of Performance" accompanies each amplifier. Look for it. It is your assurance of individual perfection.

See your Newcomb Distributor or write for detailed specifications.

LIST PRICE $\$ 225.00$

LISI PRICE $\$ 139.50$

ACCURATE PHASING WITH T.I.C. METHOD OF GANGING PRECISION POTENTIOMETERS

MECHANICAL SPECIFICATIONS

- Precision machined aluminum base and cover $2^{\prime \prime}$ diameter, $l^{\prime \prime}$ depth.
- Precision phosphor bronze bushing.
- Centerless ground stainless steel shaft.
- No set screws.
- Mechanical rotation- 360°.
- Clamping method of gauging permits indi vidual adjustment of angular position.
- Temperature range- $850^{\circ} \mathrm{F}$ to $+165^{\circ} \mathrm{F}$.
- Rotational Life-At least 1 million complete cycles of revolution.

ELECTRICAL SPECIFICATIONS

- Winding-both linear to 0.2% and non-linear to 1% accuracies.
- Paliney contact to winding: two-brush rotor take-off assembly with precious metal contacts.
- High, uniform resolution provided by our method of winding non-linear resistances.
- Electrical rotation maximum 320°
- All soldered connections (except sliding con tacts).

(3 gang RV-2)

Write today for bulletins on other T.l.C. products; 2-Angle Meter . . . R.F. Z-Angle Meter . . . R-F Power Oscillator . . . Translatory Variable Resistors . . . Slide Wire Resistance Boxes . . . Phase Angle Meter.

This general line of precision potentiometers was developed in collaboration with the Fire Control Section of the Glenn L. Martin Company,

TECHNOLOGY INSTRUMENT CORP. 1058 MAIN STREET, WALTHAM 54, MASS.

ENGINEERING REPRESENTATIVES

MEASUREMENTS CORPORATION STANDARD SIGNAL GENERATOR

 2 to 400 MEGACYCLES
 manufacturers of
 MODULATION: Amplitude modulation is contin

model 80

Standard Signal Generators Pulse Generators fM Signal Generators square Wave Generators Vacuum Tube Voltmeters UMf Radio Noise \& Flelo Stringth Meters Capacity Bridges Capacity Briages
Megohm Meters Phase Sequence Indlcators Television and fM Test Equlpment
uously variable from 0 to 30%, indicated by a meter on the panel. An internal 400 or 1000 cycle audio oscillator is provided. Modulation may also be applied from an external source. Pulse modulation may be applied to the oscillator from an external source through a special connector. Pulses of 1 microsecond can be obtained at higher carrier frequencies,

$$
\begin{aligned}
& \text { FREQUENCY } \\
& \text { ACCURACY } \pm .5 \% \\
& \text { OUTPUT VOLTAGE } \\
& 0.1 \text { to } 100,000 \\
& \text { microvolis } \\
& \text { OUTPUT } \\
& \text { IMPEDANCE } \\
& 50 \text { ohms }
\end{aligned}
$$

MEASUREMENTS CORPORATION BOONTO NEW JERSEY

NEWS OF THE INDUSTRY
win Locomotive Works, Eddystone, Pa .

Benjamin P. Shiro, formerly with Noblitt-Sparks engineering department, has been appointed plant manager of Stromberg-Carlson's Erie, Pa., plant which manufactures table radios and radio-phonographs.

Daniel E. Harnett, formerly president of the Harnett Electric Corp., Port Washington, N. Y., was recently appointed director of engineering at Emerson Radio and Phonograph Corp., New York, N. Y.

Cledo Brunetti, former chief of the engineering electronics section of the Bureau of Standards, is now associate director of the Stanford Research Institute.

Emanuel Maxwell, having worked in the microwave field at MIT since 1941, has joined the National Bureau of Standards' Cryogenics Section, where he will work on superconductivity and low-temperature physics.

George F. Maedel has been promoted from superintendent to vicepresident and general superintendent of RCA Institutes, Inc., New York City.

John E. White has been appointed chief of the Electron Tube Section of the Electronics Standards Laboratory of the National Bureau of Standards. He was previously assistant chief of the Bureau's Electron Tube Laboratory.

Courtney Snell, video control engineer for NBC, has been appointed field supervisor for WNBQ operations in the Chicago area.

RAYMOND W. RODGERS, formerly with WFIL-TV, has been appointed

On All 12 Channels

Eliminates interference! Insures stronger signal! Covers ALL television channels! Easiest antenna to erect! Low cost to dealer or service man! Hundreds of satisfied dealers attest to the satisfactory reception being secured with the Premax T-448 allchannel antenna.
Send for specifications, test charts and prices.

PRHMAX PRODUCHS

DIVISION GHISHOLK-RYDER CO., INC. 4902 Highland Ave., Niagara Falls, N. Y.

Littelfuse Makes Headline News with "In-Line" Fuse Retainer

Littelfuse's latest development: the "in line" fuse retainer for fingertip ease in fusing. Precisely molded of high impact bakelite and designed primarily for low voltage applications: car radios, heaters, spot lights and other automotive trouble spots where a fool-proof easy. to-handle fuse installation is desired. The strongly spring-locked retainer opens with a "push-and-twist" of the finger tips. Inside, the fuse rests against knife-edged, cup contacts that assure greatest degree of contact with lowest voltage drop. Doubled wall thickness at juncture of shoulder and lower body.

AUDIO DESIGN ENGINEERS!

In amplifier design, the weakest link in the chain may now be your strongest! Often the difference between a good amplifier and a mediocre amplifier lies with the output transformer. Peerless $20-20$ Line output transformers handle full rated power from 40 to 10,000 cycles within 1 db . Examine this typical curve for an 18-watt rated transformer which shows power output and frequency response. Because of careful design, feedback up to 25 db can be used with these transformers without experiencing appreciable difficulty from phase shift.
PEERLESS 20-20 LINE OUTPUT TRANSFORMERS

Peerless guarantees that published characteristic curves are true, accurate, unretouched, made on production line items.

PEERLESS ELECTRICAL PRODUCTS DIVISION
 6920 McKinley Ave., Los Angeles 1, Calif. 161 Sixth Avenue, New York 13, N. Y.
 AITEC

Frazar \& Hansen Ltd., 301 Clay Street, San Francisco 11, Calif., exclusive export agent

Never Need Oiling . . . Operate Efficiently In Any Position . . .

Motor is equipped with oil storage reservoir and patented oil feed to bearings. Rotor shaft, reduction train, and output shaft, all have double bearings to reduce vibration and assure quiet, efficient operation when mounted in any position.

Brass Gears Operate Against Steel Pinions-Steel Shafts Operate In Babbitt Bearings

There is no compromise for quality in the design and construction of SYNCHRON Timing Motors and Time Machines! If you have any timing design problems, SYNCHRON offers the benefit of long experience and capable design assistance. Write for catalog and engineering data.

HANSEN MANUFACTURING CO., INC.

 Princeton 10, INDIANA(2-49)
Established 1907-a Pioneer in Synchronous Motors

A Pair of Space Savers

 for Your Control Wiring Terminal Block
CURTIS

Type ' M ' and ' $M T^{\prime}$

TERMINAL BLOCKS

Write for your copy of Bulletin DS.119.

Sturdy and compact, these Curtis Terminal Blocks are specially designed for installations where space is limited. Type " $\mathrm{M}^{\prime \prime}$ is plain: Type " MT^{\prime} ' is furnished with white fibre marking tags, providing both circuit identification and increased insulation. Both are factory-assembled in 1 to 24 ferminals. Maximum insulation from the mounting channel is afforded by the solid terminal base. Ample clearance and creepage distances for use in circuits carrying up to 300 volts. 15 amps.

CURTIS
 DEVELOPMENT \& MFG. CO.
 Terminal Block Sales Factory - Milwaukee 10, Wisconsin

acting chief engineer of WDTV, DuMont tele network station in Pittsburgh.

John R: Niles, until recently group supervisor at the Engineering Research Institute, University of Michigan, is now chief engineer at Radioactive Products, Inc., Detroit.

David F. Tuttle, former Bell Labs apparatus development staff member, has been named acting associate professor of electrical engineering at Stanford University, Calif.

Willis W. Harman, previously with an Office of Naval Research project on vacúum tubes, is a newly appointed acting assistant professor of electrical engineering at Stanford University, Calif.

Chester H. Page, formerly chief of the Electronic Computer Section, has been named electronics consultant for the National Bureau of Standards. His services will be available to all Bureau divisions concerned with electronic research.

Frank M. Folsom has advanced from the position of executive vicepresident in charge of RCA Victor to president of Radio Corp. of America.

Walter C. Reed, after 20 years with GE at Pittsfield, Mass., as development engineer, has established a consulting engineering office in Dalton, Mass.

ROBERT BIGWOOD, formerly affiliated with the American Broadcasting Co., was recently appointed facilities engineer for the DuMont television network.

RAlph HAckbuSch, vice-president and general manager of Strom-berg-Carlson Ltd., Toronto, has been elected president of the Canadian Radio Technical Planning Board.

Oliver E. Buckley, president of Bell Telephone Laboratories, has been appointed by President Truman to a six-year term as member of the general advisory committee of the Atomic Energy Commission.

MANUFACTURERS OF MINIATURE TUBE RADIOS AND EQUIPMENT

- Stor Miniature Socket Wirin Plugs for occurate alignmen diniature socket contact of zinc bose alloy-pins of stainless steel. \#JE-9 (9 pin) \#JE-10 (7 pin).
* Star Miniature Tube Pin Stroighteners (with stoinless steel insert) to obtoin o perfect placed in the equip. placed in 15 (9 pin) tJE-13 (7 pin).

Scientifically designed - Precision mode Immediate Delivery in Any Quantities

EXPANSION PRODUCTS CO., INC.
14 CEDAR STREET, NEW YORK 6, N. Y.

WEBSTER

RACINE
 ELECTRIC WISCONSIN
used PARAMOUNT PAPER TUBES in Oil Burner Tgnitian Transfarsuer

Used as a core for primary and secondary coils . . . because of
its moisture resistant qualities and greater meshanical strength

SEND FOR ARBOR LIST OF OVER IEOO SIZES Lists great variety of stock arbors. Includes many odd sizes. Write for Arbor List today.

Inside Perimeters from $.592^{\prime \prime}$ to $19.0^{\prime \prime}$

- This is typical of the wide use of PARAMOUNT .paper tubes by leading manufacturers of electrical, radio and electronic products. With over 15 years of specialized experience, PARAMOUNT can produce exactly the shape and size tubes you need for coil forms or other uses. Square, rectangular, or round. Hi-Dielectric, Hi-Strength. Kraft, Fish Paper, Red Rope, or any combination, wound on automatic machines. Tolerances plus or minus . $002^{\prime \prime}$. Made to your specifications or engineered for yoll.

PARAMOUNT PAPER TUBE CORP.

616 LAFAYETTE ST., FORT WAYNE 2, IND.
Manufacturers of Paper Tubing for the Electrical Industry

IWICTHICI commonse VARIABLE

Lenkurt knows how

Ampex Electric Corp., manufacturer of the new Ampex broadeast-type tape recorder, uses a Lenkurt Adjustable-Core Molded Pot Assembly for peaking the erasing oscillator to required frequency. Inductance is adjustable, stepless, in a 20 per cent range up to 3 hearies.

Other advantages are improved Q, simplified shielding, economy of space and weight, and the possibility of mounting parts closer together. Write for data.

> Send for samples of Birtcher stainless steel tube clamps and our standard catalog listing tube base types, recommended clamp designs, and price list.

LENKURT ELECTRIC CO.
SANCARLOS • CALIFORNIA

a WORKSHOP

 high-gain ANTENNA
will . . .

More than triple the effective power of the transmitter.

Increase the effective power of the mobile transmitter.

Increase the operating area.

Permit the use of low power, low cost equipment.

Workshop High-Gain Beacon Antennas are designed specifically for the 152-162 megacycle band -taxicab, fire, police, and private fleet communications.

Design Features

- Low angle of radiation concentrates energy on the horizon.
- Symmetrical design makes azimuth pattern circular.
- Can be fed with various types of transmission lines. Special fittings are available for special applications.
- Enclosed in non-metallic housing for maximum weather protection.

Available for immediate

 delivery through author. ized distributors or your equipment manufacturer.
-THE
 WORKSHOP ASSOCIATES
 INCORPORATED

PAT. APP, FOR

Specialists in High-Frequency Antennas

Principles of Microwave Circuits

Edited by C. G. Montgomery, R. H. Dicke and E. M. Purcell. Volume 8 in MIT Radiation Laboratory Series, published by McGraw-Hill Book Company, New York, 1948, 486 pages, \$6.00.
This work is a broad study of the properties of passive space-chargefree microwave elements. Its technique is to proceed from the basic laws which govern such devices, wherein much is said about the behavior of virtually any geometrical configuration of conducting walls and dielectric spaces, to an examination of the special characteristics of those elements which, because of their relative simplicity, are in widespread use.

The authors proceed along two fundamental lines. The first they call the Maxwellian approach, wherein the ambitious program of complete field description throughout the element is provided, in theory at least, by Maxwell's equations and the requirements of boundary conditions. The second they call the electrical engineering approach, wherein interest is confined basically to impedance measurements at the various element terminals, and the erection of equivalent circuits in terms of them.

As an apt illustration, it is pointed out that the electrical engineer is seldom concerned with the solution of magnetic distribution around an inductor. For low-frequency work he wants to know only two quantities, inductance and resistance, to ascertain performance in the circuit in question. And these quantities, while admittedly available from a Maxwellian solution (along with a great deal of unwanted information) are more simply obtained via terminal measurements.

Of course, ultimate justification for the impedance technique is itself provided by Maxwellian theory, and this justification is fully and concisely presented.

The book is written on an advanced level. Having established the impedance concept and prepared for description in terms of equivalent circuits, the authors use whatever mathematical weapon is most

ENGINEERING AID

to assure most effective application of low-temperature silver alloy brazing and correct joint design.

DEMONSTRATIONS

in your own shop to show what EASY-FLO and SIL-FOS can do and how to use them correctly.

SAMPLE BRAZING

of specific parts sent in by EASYFLO and SIL-FOS users to determine best brazing procedure.

RESEARCH

constantly seeking new and better ways of using the alloys and solving users' special brazing problems.

"HOW TO" BULLETINS

telling in simple language how to apply low-temperature silver alloy brazing for various purposes.

TECHNICAL BULLETINS

making available to users silver alloy brazing facts and data obtained in the research laboratories.

EMPLOYEE TRAINING

Users' employees may attend our brazing schools or we will help set up a training program in users' plants.

Any or all of the above services are available to users of EASY-FLO and SIL-FOS for the asking. For details about the alloys write for BULLETINS 12-A and 15.

64 NEEDHAM STREET
Newion Highlands 61, Mass.

-MICO

2 \& 3-DIMENSIONAL ENGRAVER

Used in making small molds and dies or engraving panels and nameplates of metal or plastic.
Permits accurate reproduction of three-dimensional master on any of four reduction ratios. Catalog on Request

MICO INSTRUMENT CO.

76 TROWBRIDGE STREET CAMBRIDGE 38, MASS.

For EVERYONE interested in
TELEVISION • RADIO • ELECTRONICS SOUND SYSTEMS • INDUSTRIAL EQUIPMENT EYERYTHING in standard brand equipment!

Professionals! Radia Hams! Television Enthusiasts! Beginnersl Oldtimers! Amateurs! Hobbyists! Here's one book that's a MUST for youl Our FREE 148 pase catalog tammed with aver 20, complete industrial system from one dependable soursel
24-HR MAIL ORDER SERVICE ONE YEAR TO PAY
3 GREAT STORES: Uptown of 115 West 45th St. and Downtown of 212 Fulton St . in NEW YORK 323 W . Madison St . in the heart of CHICAGO MAlL ORDER DIVISIONS: 242 W .55 th St., N. Y. 19 ond 323 West Madison St., Chicago δ, Illinois
 EWTARZ Manl Coupon now WADIO 5 TBLIVISIOW Newark Electric Co.I Dpt B-8, 242 W. 55th St.I new York 19, N.Y.

[^9]

FREQUENCY AND SHIFT MONITOR

For fast and accurate measurements, available in several models. Most are basic secondary standards incorporating crystals in highly stable oven for measuring transmitter output frequency and incorporate direct reading audio frequency meters for measurement of frequency drift. Also measures frequency shift either statically or while keyed. Model illustrated is an 8 channel secondary standard for use with external audio frequency meter.

FOR MORE COMPLETE LINE OF FREQUENCY SHIFT EQUIPMENT, SEE OUR ADVERTISEMENT PAGE \#190-191 ELECTRONIC BUYERS GUIDE.

NORTRRESAM RADJO COMPANY
Incorporated
143-145 WEST 22nd ST. NEW YORK 11, N. Y.

BELLS
FOR ALL apPLICATIONS
THE
ORIGINAL
UNDERDOME
BELL
 - D MAAOFAGTURDAG GOMPANY 154 WEST 14th ST. • NEW YORK 11 , N. Y.

WINCHRRCER (Oypotation

Sioux City 6 , Iowa U.S.A

NEW BOOKS
(continued)
effective in the running attack. There is much manipulation of matrices, as is to be expected in equivalent circuit studies of multiterminal systems, with repeated reference to Maxwell when the situation requires it. For readers who are practiced in these techniques no difficulty will arise, for the developments, while extensive, are complete. Others may be hardpressed to draw off the physical concept that is sometimes left as an implicit by-product of the development at hand.

With regard to scope, the finite length of the book has imposed no regrettable limitation. Specific studies are made of irises, shorting wires and changes in dimensions; tunable screws, holes and slots; bends, branches, T's, ring circuits and turnstiles; systems involving lossy dielectrics, imperfect conductors, ferromagnetic materials and ionized gases.

The treatment of these specialized problems alone will guarantee the book's welcome by microwave engineers, and the broad generalizations from inquiries into the properties of symmetry, resonance, mode transformation and scattering, will be of high interest to theoretical workers.-J. F. McAllister, General Electric Co., Syracuse, N. Y.

Microwave Transmission Circuits

Edited by George L. Ragan. Vol. 9 of the M.I.T. Radiation Laboratory Series. McGraw-Hill Book Co., New York, 1948, 725 pages, $\$ 8.50$.
This volume, one of the ten in the MIT Radiation Laboratory Series devoted to the microwave art, provides the radio design engineer with a wealth of valuable information on microwave transmission circuits and their components. Far from functioning solely as a designers handbook, this book provides the reader with an understanding of the underlying principles involved in each type of component described. As a consequence, it will be of considerable value even as newer and more advanced designs evolve. The subject matter is efficiently arranged, starting with a chapter on elementary line theory HYSTERESIS

- NO NOISE
- no vibration
- HUNT and "WOW" ELIMINATED
- INDEPENDENT of LOAD INERTIA
Displications:
Dise, and film recorders
Sound cameras and projectors
Facsimile equipment
Television equipment
Timing devices
Stroboscopic work
Teletype equipment

We can furnish on quantity orders COMBINATIONS of any two of the following speeds:

$$
\begin{array}{r}
600 \text { R.P.M. } \\
900 \\
1200 \\
1800 \\
\text { R.P.P.M. } \\
3600 \\
\hline 6 . P . M .
\end{array}
$$

Instantly reversible with D.P.D.T. switch! H.P. ratings $1 / 150$ to $1 / 30$ depending on speed combination selected. Round Frame, Resilient Mount, Rigid Base.

The hysteresis design of these new Synchronous Motors lowers noise and vibration level to a fraction of that normally present in conventional salient pole construction. Unaffected by load inertia.

These Hysteresis Motors are now standard equipment on many high quality Recorders.

What are your requirements?

The
 Tektronix Twosome

Tekłronix Type 511-A Oscilloscope $\$ 795$ f.o.b. Portland

NEED WIDE BAND

AND FAST SWEEPS?
The Type 511 -A, with its 10 mc . amplifier and sweeps as fast as $1 \mathrm{microsec} . / \mathrm{cm}$. is excellent for the observation of pulses and high speed transient phenomena. Sweeps as slow as . 01 sec. $/ \mathrm{cm}$. enable the 511-A to perform superla tively as a conventional ascilloscope

Tektronix Type 512 Oscilloscope $\$ 950$ f.os b. Portland

NEED DC COUPLED

 AMPLIFIERS ANDSLOW SWEEPS?
The Type 512 with a sensitivity of $7.5 \mathrm{mv} . / \mathrm{cm}$. $D C$ and sweeps as slow as $.3 \mathrm{sec} . / \mathrm{cm}$. solves mony problems confronting workers in the fields where comparatively slow phenomena must be observed. Vertical omplifier bandwidth of 1 mc . and sweeps as fast as 3 microsec. $/ \mathrm{cm}$. make it an excellent general purpose oscilloscope as well.

BOTH INSTRUMENTS FEATURE:

- Direct reading sweep speed dials.
- Single, triggered or recurrent sweeps.
- Amplitude calibration facilities.
- All DC voltages electronically regulated
- Any 20% of normal sweep may be expanded 5 times.

Phone

EA 6197

Cable Tektronix

712 S. E. Hawthorne Blvd. Portland 14, Oregon

and ending with two well-developed chapters on microwave filter theory and design.

Chapters V, VI, and VII, dealing with flexible coupling units, transition units, and motional joints respectively, should be of particular interest to most microwave engineers, as they contain useful information about these not widely discussed subjects.

Over six hundred curves and illustrations are provided in addition to numerous charts and tables.

A working knowledge of electromagnetic theory is helpful in getting the most out of the work but is not a prerequisite.-Emerson M. Hoyt, Radio Engineering Department, Sperry Gyroscope Co., Great Neck, New York

Electronic Instruments

Volume 21 of the MIT Radiation Laboratory Series, Edited By Ivan A. Greenwood, Jr., J. Vance Holdam, Jr., and Duncan Macrae, Jr. Mc-Graw-Hill Book Co., New York, 1948, 721 pages, $\$ 9.00$.
THIS VOLUME is divided into five parts: Electronic Analogue Computers, Instrument Servomechanisms, Voltage and Current ReguIators, Pulse Test Equipment, and Design and Construction of Electronic Apparatus. Of these, the part on servos occupies nearly half the volume, and the part on computers about a third; the other three parts are short. These subjects are grouped into this volume because they are the central elements of modern measuring and controlling instruments.

Electrical analog computers have long been used, but to limited extents and chiefly only in controllers for industrial plants. The wartime impetus given to the design and application of computers has already projected them beyond the range of che treatment in this book. However, the introduction to fundamentals and recent developments in the first part of this volume constitutes an excellent starting point for engineers entering the field. Chapters describe the basic design problems and outline methods, both technical and organizational (know-how and tricks of the trade), whereby the design is

NOW IN BOOK FORM-
in answer to the pressing demand of the entire Industry
TELEVISION COURSE
by A. C. W. Saunders and B. V. K. French

A popular, easy-to-understand exposifion of current Television receiver principles, operation and practice. Main sections cover Cathode Ray Beam Formation and Conk Beadulation and Synchroniza Modulandes analysis of $C R$ rion. Includes analion camera tubes, voltage supplies, sawtooth generators and their use, sync circuits, control functions receiving antenna circuits, RF input tuning systems, IF sys. tems, $A G C, D C$ restoration, video amplification, con-trast-an authoritative treatment of the listed subjects. Includes full bibliography. 208 pages; pro-

... FOR THE ENGINEER'S LIBRARY ...

1948 AUTOMATIC RECORD CHANGER MANUAL
Complete standardized data on 45 different models made in 1948, including new LP and dual-speed changers, plus leading wire and tape recorders. Entirely original data, based on analysis of the actual instruments. Gives full change data; "expladed" throughout. Over 400 pages; fully illustrated; deluxe binding; $81 / 2 \times 11^{\prime \prime}$
Order CM-2.
Only $\$ 6.75$
1947 AUTOMATIC RECORD CHANGER MANUAL
Covers 41 different postwar changers and recorders produced up to 1948. Includes excellent description of general types of changers and motor drive systems. Over 400 pages; delux binding; $81 / 2 \times 11^{\prime \prime}$.

Only $\$ 4.95$

POST-WAR COMMUNICATIONS RECEIVER MANUAL Provides a complete detailed analysis of more han 50 of the most popular post-war communi cations receivers. Includes Hallicratters, Nalefferson Travis, Airadio, Learadio, Gonset Heath, Motorola and Ranger units. Each receiver is uniformly treated; includes diagrams, chassis photos, alignment data, replacement parts information. All data is based on actual analysis of each instrument. 264 pages; profusely illustrated; durable binding, $81 / 2 \times 11$ Order CR1.
POST-WAR AUDIO AMPLIFIERS
Covers 102 post-war audio amplifiers, FM tun. rs, and intercom systems, as well as popular wire and tape recordersmthe products of 29 well-known manufacturers. Detailed uniform analysis of each unit; entirely original data based on actual laboratory examination. 352 pages; fully illustrated; sturdy binding. $81 / 2 \times 11$ Order AA-1
THE RADIO INDUSTRY "RED BOOK'
This single volume offers complefe information on all replacement parts for approximately 17 . 000 home receivers made from 1938 to 1948. In cludes complete accurate listings of all 9 major replacement components as well as correct re placement parts made by 17 leading parts man facturers. Full data on capacitors, transformers, controls, ifs, speakers, vibrators, phono cart ridges, tubes, dial lights and batteries. 448

$\$ 3.95$
Write for descriptive literature covering famous PHOTOFACT Data Volumes-complete original analysis of all post-war radio peceivers and associated equipment

- 10 DAYS FREE EXAMINATION-

O20 E Washington St Indianapolis 7 , Ind

7, Ind. Send volumes checked below for 10 days' examination on approval. In 10 days, 1 will emi price orbooks will return unwanted bw cents posta
\square TV-1
\square CM-2
CM.]
\square CR-1
\square AA-1
\square "Red Book"

Address
City.
Zone.... State.....
Company
(If you send cash or check with order, wo

ENGINEERED FOR THE HIGHEST POSSIBLE PERFORMANCEREGARDLESS OF COST

This superb two-unit Altec Lansing combination was designed in accordance with a single directive: "They are to be the finest. No component, no circuit, is to be chosen with price in mind. They must be able to realize the full resources of the finest AM and FM programs; they must be capable of receiving and delivering these resources undisturbed to the finest loudspeaker in the world,
the Altec Lansing 604B Duplex." The AM section is an improved tuned radio frequency circuit recognized as the best for high quality reception. The distortion-free circuits of the FM section re-create all of the life-like reproduction possible with FM. The A-323C Amplifier transmits to the loudspeaker the signal delivered by the tuner, changed only in power level. This two-unit com-
bination is available with special accessories to permit rack mounting for professional monitoring. Phonograph and television inputs and required switching are provided.

Technical folder describing ALC. 101 Tuncr and A. 323 C Amplifice sent on request. Write Altec Lansing Corforation, 1161 North Vine Strcet, Hollywood 38, Calif., 161 Sixth Avenue, Netu York 13, N. Y.

Scores of users have found that they save time, trouble and money by turning their electrical wiring harness problems over to Essex specialists. Essex One-Source service handles the intricate job of producing lighting, ignition and control harness assemblies custom-built to your exact specifications and complete with all
manual and electrical control devices for quick, efficient installation.

Through intensive specialization in wiring harness assemblies, Essex has developed line production methods of manufacturing, assembly and inspection, for economical production of high grade, individually tested, specially engineered assemblies.

investigate essex "ONe-sourcen service today

ESSEX WIRE CORPORATION

WIRE ASSEMBLY AND CORD SET DIVISION
SALES DEPARTMENT
MONTICELLO, INDIANA
Sales Offices: Chicago, Ill.; Cleveland, Ohio; Dayton, Ohio; Detroit, Mich.; Kansas Sales Offices: Chicago, Ill.; Cleveland, Ohio; Dayton, Ohio; Detroit, Mich.; Kansas
City, Mo.; Los Angeles, Calif.; Milwaukee, Wis.; Newark, N. J.; Philadelphia, Pa.; City, Mo.; Los Angeles, Calif, Misco, Calif.: St. Louis, Mo.
carried from the broad requirements through functional block diagrams to detailed circuits. Other chapters describe and compare specific methods of performing mathematical manipulations. This first part of the volume is more important to the growing field of computers than the whole of Volume 27, "Computing Mechanisms and Linkages".
The second part, on servomechanisms, approaches the subject from the specialized viewpoint of highperformance instrument servos, but duplicates in some respects the fuller treatment given in Volume 25, "Theory of Servomechanisms". However, the clear and concise treatment of this part is more of a length suited to the instrument engineer than the longer treatment, and forms an essential addition to the part on computers. The part on servos is about equally divided into chapters on theory, specific methods, and components.
The content of the remaining three sections is sufficiently obvious from their titles not to need further comment here, other than to observe that many techniques and components are described in these coordinated sections for information on which readers would otherwise have to consult recent scattered magazine articles. A table, based on limited data, presents an interesting comparison of the characteristics of various voltage regulator tubes.

There is duplication of a sort throughout this volume with other volumes of the series. On the other hand, many of the computer circuits depend on high-gain wideband amplifiers the design of which is covered in Volume 18, "Vacuum Tube Amplifiers", and to which the reader is referred. Volume 22, "Cathode Ray Tube Displays", treats at greater length some of the material presented in the part of this volume on pulse testing. However, it would be misleading to make these comments about duplication appear as adverse criticisms. The approach of this volume in the series is that of the instrument engineer, who must design more reliable equipment than that required in other branches of the art.

The significant contribution of

BAACH-INTERNATIONAL COMPOUND HIGH VACUUM PUMP

This high vocuum pump is widely known and used extensively in the manufacture of electric lamps, radio tubes, fluorescent lamps, for laboratory work and for many industrial applications where high vacuum, plus rapid exhousting are essential requirement in processes of manufacturing.
In free air capacities ranging from 1 cubic foot to 50 cubic feet per minute.
Readings on all sizes guaranteed 0.50 microns or better.

Operates quietly. Prompt deliveries Write for details.

INTERNATIONAL MACHINE WORKS

Manufacturers of Baach-International Hot Cut Flare
machine.
2027 - 46th STREET
NORTH BERGEN, N. J., USA
Tel. UNion 3-7412
Cable Address "INTERMACH" North Bergen, N. J.

ADVANCE RELAYS

Engineers and Designers who insist on dependable components have adapted adVance relays into their control circuits. They are specifying ADVANCE products, and are submitting their relay problems to us. Our expanded engineering and plant facilities, plus the recog. nized dependability of advance relays, make it possible for us to offer the most complete line of relays for light, intermediate and heavy duty applications. Proved and Improved relay performance through ENGINEERED adaptability.

MOLDED RESISTORS

ARE USED IN THIS HIGH-SPEED GEIGER-MULLER COUNTER

They're used in the quenching circuit. Herbach \& Rademan, Inc., Philadelphia, Pa. the manufacturer says-"We have been using and will continue to use S.S. White Resistors since we find them extremely satisfactory and most compact of all types available.'

S.S.WHITE RESISTORS

are of particular interest to all who need resistors with inherent low noise level and good stabil. ity in all climates.

HIGH VALUE RANGE
10 to $10,000,000$ MEGOHMS

STANDARD RANGE
1000 OHMS TO 9 MEGOHMS

WRITE FOR BULLETIN 4505
It will give you full details about S.S.White Resistors including construction, characteristics, dimensions, etc. A copy, with Price List, will be mailed at your request.

S.S.WHITE

s.

DIVISION R. 10 EAST 40 'h ST., NEW YORK 16, N. Y. flexible shafts and accessories MOLDED PLASTICS PRODUCTS-MOLDED RESISTORS
One of Americai AAAA Industrial Enterprises

M Pioneer in Radio Engineering Instruction Since 1927
 aptio Radio Enginefringe Institutie
 An Accredited Technical Institute

ADVANCED HOME STUDY AND RESIDENCE COURSES IN PRACTICAL RADIO-ELECTRONICS AND TELEVISION ENGINEERING

Request your free home study or residence REGISTRAR
16TH AND PARK ROAD, N.W WASHINGTON 10, D. C.

Approved for Veteran Traininu

$$
\begin{aligned}
& \text { electronics } \\
& \text { publishes } 13 \text { issues Yeariy } \\
& \text { including the Mid-gune } \\
& \text { BUYERS' GUIDE }
\end{aligned}
$$

CHECK THESE FEATURES

Two continuously variable B supplies, from 0 to 300 volts at currents up to 120 mo .

One continuously variable C supply, from minus 50 to plus 50 volts of 5 ma .
One heater supply, 6.3 volts A. C. ot 5 amperes.
Power requirements: 105 to 125 volts, 50 to 60 cycles.
Two 5 Y 3 rectifiers, two 6 Y 6 control tubes.
Length $16^{\prime \prime}$, height $8^{\prime \prime}$, depth $83 / 4^{\prime \prime}$. Wgt. 28 lbs.

ILepco ${ }^{\text {WUWR }}$ MULTIPLE SUPPLY

ADVANTAGES

Four commonly used voltages from a single compact unit.
B supplies cannot be burned out even if terminals are shorted.
Control circuit eliminates the use of heavy duty power potential dividers. Complete voltage control from the front panel All connections made to sturdy front panel binding posts.
Voltages are isolated from the chassis.

> The Kepco Multiple Power Supply is now widely used in schools and industrial laboratories.

For complete details Address Dept. K-E
KepcoLaboratories, Inc.
149.14 41st Avenue Flushing, N. Y.

NEW BOOKS

this volume is its approach. Judged on this basis, the volume is an important contribution to the art, showing how accuracy and dependability can be built into electronic instruments. By precept, the authors also encourage the use of modern methods in solving problems of instrumentation.-F.H.R.

Handbook of Industrial Electronic Circuits

By John Markus and Vin Zeluff, Associate Editors, Electronics. McGraw-Hill Book Co., New York, 1948, 272 pages, $\$ 6.50$.
THIS B0ok includes diagrams and descriptive material on some 440 electron-tube circuits. Although as the title indicates, they can all be considered as in the field of industrial electronics, many are radio communication circuits that have been adapted to the industrial field.

The contents pages list some 22 main groups. These include not only the familiar classifications, such as counting circuits, limiter circuits and motor control circuits, but cover a much wider field as indicated by the inclusion of metallocating circuits and ultrasonic circuits.

The range covered by the total of 440 is truly amazing. Examples that would indicate this are "Woofer-tweeter" Crossover Network Using Inexpensive Components," "Speech Scrambling and Unscrambling Circuit Using Balanced Modulator," "Portable Reverberation Meter Measures Acoustic Value of Room," "Ignitron and Cathode-ray Circuit for Testing Pulse-type Power Tubes," "Geophone Portable Amplifier and Vacuum-tube Voltmeter for Geophysical Prospecting," "Frequencymodulated Receiver and Control Circuits for Radio Control of Model Battleship," and "Amplifier-limiterdiscriminator Circuit for Ultrasonic Door-opening System."

Not only will this book interest all engineers in the field of industrial electronics, but it will certainly prove to be of great help to group and section leaders in laboratories and engineering departments to aid them in getting new or inexperienced engineers familiar with the many circuits available today. The values of the circuit com-

clarostat mfg. CO., Inc., Dover, N. H.
In Canada: CANADIAN MARCONI CO., Lid. Montreal. P.Q. and branches
ponents are always included so that it is thoroughly practical.

It is up to date in that it includes a number of circuits used in nucleonic instrumentation. Its completeness is indicated by the inclusion of no less than 18 circuits under the grouping of multivibrator circuits.

It is provided with an excellent index in which the rarious circuits, in addition to their titles, are associated with familiar designations, such as flip-ffop, loran testing and other frequently used terms, as well as commonplace applications as, for example, dish-washer control.
This book is primarily a tool-box for the industrial electronics engineer. Just as a toolmaker has a much finer set of tools than a machinist, so this publication lists circuits for workers and specialists in the field. It is not intended for elementary study of principles or theories.-W. C. White, Electronics Engineer, Research Laboratory, General Electric Co., Schenectady, N. Y.

Principles of
 Servomechanisms

By Gordon S. Brown and Donald P. Campbeld, Massachusetts Institute of Technology. John Wiley \& Sons, New York, 1948, 400 pages, $\$ 5.00$.
Professor Brown and his associate are well known to those who worked with servomechanisms during the recent war and to many others in the control and communication fields. Their efforts to bring together the concepts of these two fields, especially in the classroom, make this book a significant contribution to the literature of servomechanisms.

The subtitle "Dynamics and Synthesis of Closed-Loop Control Systems" defines the approach of the book, which is divided into chapters on dynamics of elementary systems, transient response using Laplace transforms, sinusoidal response, reduction of detailed system diagrams to functional elements (the material presented in this chapter can well be used in all fields of electronics to lighten the burden of the design engineer), methods of synthesis of the gain and frequency

GIVE NEW VERSATILITY TO Bendix-Pacific

In the Bendix-Pacific Telemetering Systems each sub-carrier oscillator unit now is readily plugged into or removed from a unitized telemetering case of standard dimen. sions. This exclusive feature, which combines even smaller components than heretofore used, provides extreme flexibility in the selection of functions and greatly facilitates field maintenance of the system. These plugin connectors entirely eliminate all need for use of schematics or soldering leads, yet they will withstand the extremes of acceleration and vibration.
Bendix-Pacific units operate on telemetering bands of $80-84 \mathrm{mc}$ and $210-220 \mathrm{mc}$, or intelli. gence can be transmitted by the use of a single land line circuit. They are for use in guided missiles, experimental aircraft and for industrial applications where conventional methods of measurement are impractical. In addition to the manufacture of precision components for the remote instrumentation field, Bendix-Pacific facilities include installation and application engineering, field operation, data reduction and engineering consultation

Details gladly furnisbed to qualified companies.

TO MEASURE-TO INDICATE -TO WARN - AT A DISTANCE East Coast Office-475 Fifth Ave., N. Y. 17

ABRADLEY RECTIFIERS

 SMALL.SILE HILH VOITAGE SELENUUM RECTIFIER

Bradley's new high voltage selenium rectifier-model SE8L—is low-priced for production requirements. Rated at 1.5 ma D. C. and up to 3,000 volts peak inverse. For higher voltage requirements, model SE8L can be used in series or multiplier circuits. Measures only $1 / 4$-inch in diameter-up to 3 inches in length. Completely sealed.

PHOTO CELLS

 SIMPLIFY PHOTO CELL CONTROL

Luxtron* photo cells convert light into electrical energy. No external voltage is required to operate meters and meter relays directly from Bradley photo cells, improving control over your processes, reducing your costs. Housed model shown. Many different sizes and shapes, mounted and unmounted.
't. M. reg. u. s. pat. off.

Our engineers will select or develop rectifiers or photo cells to meet your needs exactly. Write for BRADLEY LINE showing basic models.

NEW BOOKS

(continued)
functions, multiple disturbances, experimental procedures and a method for approximating the transient response from the frequency response, this last chapter being based directly on the thesis of G. F. Floyd prepared under the authors' supervision. An appendix contains problems for each chapter.

Compared with other books on control and servomechanisms, this text deals with logical methods rather than with the properties of specific components and assemblies. The authors present a comparison of Laplace and Fourier transforms, both of which are much used by electronic engineers, concluding (p 149) that ". . . the whole structure of algebraic synthesis . . . should be looked on as an implicit assistant rather than an explicit method of attack in synthesis. . . . The procedure . . . expressed in terms of the variable ($j \omega$)contains all the information required."

Although the authors recognize (p 147) that "Synthesis involves essentially creativeness or invention somewhat beyond the scope of this book" their systemization of the method of attack frees designers from much of the uncertainties of approach. Throughout the book, the available methods of attack are reviewed and evaluated and specific tools presented in developing the means whereby engineers can anticipate the relative stability and other factors of performance of closed-loop controls operating under dynamic conditions.-F.H.R.

Radar Scanners and Radomes

Edited by W. M. Cady, M. B. Karelitz and Louis A. Turner. Volume 26 of the MIT Radiation Laboratory Series. McGraw-Hill Book Co., New York, 1948, 491 pages, \$7.00.
Technically the radar scanner, or antenna mount, is the assembly of the antenna and the mechanism that causes the radiated beam to scan. A radome is a plastic enclosure for the antenna. The design and construction of both scanners and radomes involve much mechanical engineering as well as the electrical or electronic aspects which come naturally to mind.

Certain portions of the general

MANUFACTURERS:

QUICKER!

MORE ACCURATE!
TELEVISION SET Aliggment \& Adjistment T1CPRECISION - GENERATORS

BAR \& DOT GENERATOR

A precise means for adjusting horizontal and vertical sweep linearity of television receivers when used in conjunction with Standard Synchronizing Signal and Monoscope Generator or other pattern or picture signal generator. Requires only $51 / 4^{\prime \prime}$ af standard rack spoce. Five convenient push-buttons allow instantaneous selection of: - Standard blanking - Vertical bars only - Horizontal bars only - Vertical and horizontal bars - Complete dot pattern. Has phasing control for adjustment of vertical bar position. Self contained regulated power supply.

CRYSTAL CONTROLLED MULTI-FREQUENCY GENERATOR

A 10 frequency, 400 cps modulated crystal controlled oscillator, ideal for production lime adjustment of stagger tuned I.F. amplifiers in television sets. Available with crystals ranging from 4.5 to 40 mc . provided to exact frequency and in sequence specified by customer. Each frequency is immediately selectable by means of a push button. Output ottenuator range . 5 \checkmark to 500 microvol ts. Self contained regulated power supply.
Write for bulletins $2000 \& 1900$

> TEL Instrumenit Co. inc.
> 50 PATERSON AVE. East Rutherford, New Jersey Ruthertord 2-9720

Necu! johnson

TYPE L VARIABLEE

CERAMIC SOLDERED FOR STABILITY-STRENGTH

SINGLE TYPE
Available in Six Models: 2.8 to $11 \mathrm{mmf}, 3.5$ to $27 \mathrm{mmf}, 4.6$ to 51 mmf 5.7 to $75 \mathrm{mmf}, 6.8$ to $99 \mathrm{mmf}, 11.6$ to 202 mmf . Spacing $.030^{\prime \prime}$ and $.080^{\prime \prime}$
New Bright Alloy Plating
In addition, the JOHNSON Type L Variables feature a new bright alloy plating that is ex-
tremely corrosion resistant, even under extreme tremely corrosion
climatic conditions
JOHNSON atso makes Type L Variabies in Duat, Differential and Butterfly types in many
different models. all
All are ceramic soldered. There is nothing to
work loose causing stator woble and fluctuations in capacities.

Write For New Johnson Type L Variable Catalog Today!

a bannour mane di Eadio

> Use the Vacuum Pump that Gives You
> V Faster Pump Down
> V Lower Pressure V Longer Efficiency Lervice

For vacuum exhausting al low pressures in electronic and electrical work: Beach-Russ Type RP Pumps offer the advantages of positive, ro tary, automatically lubri cated, noiseless and vi brationless performance hat puts them at the lop either for final vacfusion pumps. pressure pumps. Fitted for 4 microns. Thousands use in your industry.

Capacipy - 17 10 845 c.f.m.

> BEACH-RUSS high vacuum PUMPS

Write for Catalog No. 84

BEACH-RUSS COMPANY 52 CHURCH ST. NEW YORK 7, N. Y.

Has High Electrical Resistance

Linde synthetic sapphire offers specific advantages for electronic uses. Sapphire maintains these properties at elevated temperatures.

Dielectric Constan

Ta Point
(Temperature at which resistance becomes 1 megohm)
Melting Point
Thermal Conductivity (cal. sec. ${ }^{-1} \mathrm{~cm} .^{-1}$ deg. C. at 500 deg. C.)
Thermal Expansion Coefficient (per deg. C. $x 10^{6}$ at 1,000 deg. C.)
 The word "Linde" is a trade-mark of The Linde Air Products Company

DANO plus KNOW - HOW

 bring you COIL PERFECTIONOur Engineering Department is at your service Samples cheerfully analyzed without obligation
TRANSFORMERS Made To Orde

Not just any coil but the exact coil winding you need, skilliully made to your exact requirements. The dependability and service behind our name are your assurance of perfect coil performance.

THE
EHECTRIC CO. WIMSTAD, cont

Maintain Low VSWR's with the

MODEL 74
6 position, single coaxial circuit.

MODEL 72-2 Double-pole double-throw.

MODEL 718
8 position, single coaxial circuit.

MODEL 72-R

Double-pole double throw line reversing switch.

NEW BOOKS
subject could not be included in this volume, notably material on antennas operating at wavelengths longer than 10 cm , scanners not developed at the Radiation Laboratory and certain material the nature of which cannot be disclosed or learned because it was deleted for reasons of security.

In spite of these omissions the volume is useful for the simple reason that the material will be found nowhere else. Part I is largely concerned with the mechanical engineering of radar scanners; Part II deals with radomes and is the first comprehensive discussion of this subject. Both parts are properly broken down into smaller divisions, Part I dealing with such matters as ground and ship antennas, including material on reflectors and scanning feeds, ground antenna mounts, stabilization of ship and airborne antennas, and scanner control mechanisms.
Although Part II deals mostly with the electrical design of normalincidence and streamlined radomes, there are chapters on the theory of transmission and reflection of electromagnetic waves by dielectric materials (hitherto untreated in texts), on radome materials and methods of fabrication, and on the installation and testing of radomes. Quite a bit of material on servomechanisms is included.

Although this reviewer is not passionately interested in radar systems or, especially, in mechanical engineering problems, he found this book not only instructive but interesting to read--and to prove it, he read it!--к.н.

Radio Fundamentals

By Arthur L. Albert, Prof. of Communication Engineering, Oregon State College. McGraw-Hill Book: Co., New York, First Edition, 1948, 595 pages, $\$ 4.50$.
Written primarily to serve as a radio course textbook for "beginning students, for radio technicians, and for radio amateurs," this newest contender for classroom adoptions assumes only that the readers have some training in elementary electrical theory. Chapters II, III and IV provide a con-

TECHMICAL MANUALS

CUSTOM DESIINED TO YOUR SPECLIFCATIONS

Planned, written and illustrated by a select staff . . . experts in creating radio and electronic manuals for civilian \& military use.

When you call upon Boland \& Boyce to create your manuals you are relieved of every detail in their preparation. The entire operation is taken over and completed by a specialized staff with years of experience in publishing books \& monuals.

First the requirements for your manual are completely surveyed. The working conditions to which they will be put ore studied and the operations or equipment described in the manual are thoroughly anolyzed. A complete outline is then prepared and submitted for your opproval, along with a dummy of the manual as it will appear when finished. Upon your approval the job is completed and delivered with your satisfaction guaranteed.

Boland \& Boyce manuals incorporate only the most modern editorial and illustrative style. Each project is treated with individual attention in technique of presentation and editorial approach. The Boland \& Boyce military and civilian manuals now in use throughout the world are our best recommendations.
U. S. Navy
U. S. Signal Corps.

Sylvanla Electric Products, Inc.
The National Company Western Electric Co.
Bell Telephone Laboratories
Maguire Industries, Inc.
Allen B. Dumont Laboratorles, Inc. General Electric Co.
Mine Safety Appliances Co.
Write or wire Boland \& Boyce foday
for more Information.
BOLAND \& BOYCE INC., PUBLISHERS

Radio Maintenance Technical Manuals

Radio Data Book
Manual Division M-3 Montclair, N. J. CHICAGO: 333 North Michigan Avenue
densed review of the basic electrical theories applicable to radio, making the book essentially independent of the author's earlier "Electrical Fundamentals of Communication".

Willing or not, the reader of this book gets a full dose of radio, along with problem questions that would test the mettle of many a radio design engineer. Whether such a vast scope of material can be assimilated in the time generally made available for radio in the college curriculum or in trade schools is a moot question. Starting with acoustics and ending with radio receivers, the text goes through components, basic circuits, modulation, demodulation, transmitters and antennas, conscientiously covering even such specialized topics as six-phase rectifiers, single-sideband radio telephony and wave analyzers. Verily, anyone who masters this book should acquire conversational knowledge about a lot of radio topics.

In his endeavor to cover this vast field, the author has been forced to make many statements without having space to give the reasoning back of them; the reader must accept these flat statements on faith, or have them explained by someone who knows the background. We fear that the uninitiated would have a tough time learning the real fundamentals from this text unless he had a good teacher back of it. There is a lot in the book, however, for the man who has had a good practical or theoretical beginning in radio fundamentals.- J.m.

Books Received for Review

RADIO STATION MANAGEMENT. By J. Leonard Reinsch. Harper \& Bros., New York, 1948,177 pages, $\$ 3.50$. Acquisition of a station, organizational setup, handling of programs, sales, personnel, accounting, advertising, promotion, engi-

EXPLORING ELECTRICITY. By Hugh Hildreth Skilling, Prof, of Elec. Eng., Hildreth Skilling, Prof of Elec, Eng., Co. New Yorlk, 1948 , The Ronald Press Corsonal anecdotes and stories about the Personal anecdotes and stories about the haves-Thales, Priestley, Franklin, Galvani, Volta, Oersted, Ampere, Ohm, Cavendish and on up to the little group who watched an explosion at Los Alamos.
A CONCISE HISTORY OF MATHEMATICS. By Dirk J. Struik, Prof. of Math., MIT. Dover Publ., New Yorlk, 1948, 2 vol., 299 pages, total, $\$ 3.00$ per set. The major personages and main concepts of mathematics, in its pure sense, are concisely reviewed to provide a coordinated history and mathematical techniques.

2646 N. MAPLEWOOD AVE., CHICAGO 47. ILLINOIS

Neal johnson

type l variablis
CERAMIC SOLDERED FOR STABILITY-STRENGTH

DIFFERENTIAL TYPE
Available in Three Models:
2.8 to $11 \mathrm{mmf}, 3.5$ to $27 \mathrm{mmf}, 4.6$ to 51 mmf . Spacing . $030^{\prime \prime}$ and $.080^{\prime \prime}$

Silent Bearings

Silent operation on the highest frequencies is assured with a split sleeve tension bearing that also prevents capacity fluctuation. Tension is constant-contact positive.
JOHNSON also makes Type L Variables in Single, Dual and Butterfly types in many different models.

All are ceramic soldered. There is nothing to work loose causing stator wobble and fluctuations in capacities.

Write For New JOHNSON Type L
Variable Catalog Today!

Backtalk

Molten Carbon

Dear Sirs:
We notice in K. H. McPhee's Melting Point Chart on page 118 of the December 1948 issue of ElectronICS a rather obvious error.

Graphite, according to our experience and that of authorities, does not have a melting point, but sublimes (Ed. Note: passes from solid to gas, without going through liquid state). Mantell, ("Industrial Carbon", 1946, pages 429-430) is a bit vague, hedging to the extent of talking about the melting point, and putting down $>3,500 \mathrm{C}$ under Melting Point in the table, but mentioning "there is some evidence that it sublimes."

Chaney, Hamister and Glass, in a paper for the Electrochemical Society published in March 1935 as Preprint 67-18, entitled The Properties of Carbon at the Arc Temperature, state that their "results indicate that carbon sublimes without melting at ordinary atmospheric pressure". The sublimation temperature was determined as $3,810 \mathrm{~K}+10 \mathrm{~K}(3,537 \mathrm{C})$.

The particular point we want to make is not for the exactness of the temperature, but that carbon does not melt!
H. W. Abbotт

Director of Research Speer Carbon Company St. Marys, Pa.

Dear Sirs:

I was pleased to receive H . W. Abbott's comment on the controversial subject of the melting of graphite.

The Melting Point Chart was compiled with the knowledge that the melting of carbon is a phenomenon which has not been completely explained. The chart's purpose is to present melting point data in as simple and direct a form as possible.

Other elements listed on the chart show sublimation tendencies and indeed all of the melting points of the more refractory elements are subject to revision as research is continued.

Many of the more popular handbooks omit mention of the sublimation characteristics and assign a

Glass Jewel Bearings by Bird are highly accurate and surprisingly inexpensive. They're ideal for use in ammeters, volt meters, timing instruments, compasses and other instruments where large volume produciion and low cost must be maintained.

Of special interest to instrument man. ufacturers is Bird's method of mounting jewels. There's a minimum of stress and strain on the bearing itself as a result of Bird's special mounting technique. It is this special mounting feature which adds so materially to the useful life of Bird Jewel Bearings.

Whenever there's a need for jewel bearings - whether in glass or in sapphire - Bird can supply the right bearing to your specifications. Write today for more information and a quotation.

> Sapphire Bearings available in
> all jeu'el styles and monstings

Richard H. Bird \& Co., Inc.

1 Spruce Street
Waltham 54, Mass.
'Sering Indusfry with Fine Jewels
Since 1913'.

STEATITE ceramic

Design engineers and manufacturers in the radio, electrical and electronic fields are finding in LAVITE the precise qualities called for in theit specifications . . high
compressive and dielectric strength. low compressive and dielectric strength, low fumes absorption and resistance to rot, fumes, acids, and high beat. The exceed ingly low loss-factor of LAV plus its high frequency applications.

Complete details on request
D. M. STEWARD MFG. COMPAMY

Moin Offics 0 Works Chottanoone, Tonn. Noedham, Mass. - Chicage - Les Angelas

New York - Philadelphia

PROFESSIONAL SERVICES

Consulting — Patents — Design — Development - Measurements
 in

Radio, Audio, Industrial Electronic Appliances

THE BARRY CORPORATION
 vibration Seclailists in the Control of
 Engineering Deqelopment
 Manufacturing
 179 Sidney Street $\begin{gathered}\text { Telephone: KLIot } 0861-0140 \\ \text { Cambrldge, Mass. }\end{gathered}$

H. RUSSELL BROWNELL
 Consultant

Svecializing in Measurements \& Testing Instruments \& Technleues - Electrical - Elec-
188 West 4th St. Chelsea ${ }^{2-4208}$

CANOGA CORPORATION

Electronic Engineers
Radar, Pulse Techniques, MTI Systems, Pulse and Television Receivers, Vldeo Amplifiers, Test Equipment, Microwave Antenna Appllications, Electronic
Controls, and Microwave Equlpment. Controls, and Mcrowave lquipment.
SHOP AND LABORATORY FACILITIES 14315 Bessemer St. $\underset{\text { STate } 6-9722}{ }$ Van Nuys, Calif.

CROSBY LABORATORIES
murray g. crosby \& staff Specializing in FM,
Communications $\mathcal{E} T V$
Offices, Laboratory \& Model Shop at: 126 Old Country Rd. Garden Clty 7-0284 Mineola, N, Y.

EDGERTON, GERMESHAUSEN

 \& GRIER, Inc.Consulting Engineers
IResearch, Development and Manufacture
Specialists in IIIgh-Speed Photography
155 Massachusetts Arenue. Cambridge 39, Mass.

ELECTRONIC ENGINEERING CO. of CALIFORNIA
Radio and Electronic Consulting and Designing.

> WHEN TIME IS SHORT put the solution of your problioms up to a specialized Consultant whose profes. sional card appears on this page. His borod experience may save you months
of coslly experimentation.

> ELECTRONICS
> 330 West 42nd St., New York 18, N. Y.

ERCO RADIO LABORATORIES, INC.

Radio Communications Equipment Fngineering - Design - Derelopment - Production Pioneers in Frequency Shift Telegraph
Garden Clty - Long Island - New York

FRANKEL \& NELSON

Consultants in Mathematical Physics 7718 Firenze Ave.

Los Angelea 46, Calif.
Granite 6970

GENERAL INSTRUMENT \& ENGINEERING consultation research development $\begin{array}{r} \text { LN } \\ \text { ELECTIRONICS, I. } \end{array}$ E. PHYSICS 100 Barr Building Washington 6, D. C.

PAUL GODLEY CO.

Consulting Radio Engineers great notch, n. J.

Est. 1926
Little Falls 4-1000

HANSON-GORRILL-BRIAN INC.
Product \& Mfg. Deqelopment ELECTRICAL - ELECTIONTC HYDRAULIC - MECHANICAI.
One Continental Hill Glen Cove 1922

ALBERT PREISMAN

Consulting Engineer
Television, Pulse Techniques, Video Amplifiers, Phasing Networks. Industrial Appliances
MANAGEMENTAffliated with 3308-14th St NW

Eugene Mittelmann, E.E., Ph.D.
 Consulting Engineer © Physicist
 High Frequency Heating - Industrial Electronics Appiled Physics and Mathematics
 549 W. Weshington Blvd. State 2-8021
 Chicamo 6. IL.

PAUL ROSENBERG ASSOCIATES

Consulting Physicists
Main office: Woolworth Bullding, New York 7. N. Y.
Cable Address Telephone

PHYSICIST WOrth 2-1939
Laboratory: 21 Park Place, New York 7, N. Y.

A. F. SMUCKLER \& CO.

Electronic Engineers
Electronic Product Manufacturing
Contractors to United States Government 338-346 East 23 rd St. ${ }_{\text {GRamercy }}{ }_{5-8151}$ New York 10. N. Y. GRamercy 5-8151

SPECTRUM ENGINEERS

Electronic \& Mechanical Designers
540 North 63rd St., Phlladelphia 31, Pennsylvanla GRanite 2-2333; 2-3135

YARDENY LABORATORIES, INC.

Research and Development
Remote Controls and Electro Chamical Generators of Eaergy
105 Chambers Street
wo 2-3534, 35 Now York, N, Y.

THE

REAL

V ALUE
of placing your unusual problem in the bands of a competent consultant is that it eliminates the elements of chance and uncertainty from the problem and provides real facts upon which to base decisions.

RCA, Commercial Enginecring Section 42BW, Harrison, N. J.
Send me the RCA publications checked below. I am enclosing \$-_ to cover cost of those books for which there is a charge.
Name
Title or Occupation
Address
City \qquad Zone \qquad State
\square Quick-Reference Chart, Miniature Tubes (F̈ree).
[HB-3 Tube Aandbook (510.00)*
(A) RC-15 Receiving Tube Manual (35 cenis). (C) Receiving Tubes for AM, FM, and Television
Broadcast. (D)
cents $)$. \square Radiatron Designers Handbook ($\$ 1.25$). (E)
\square Quick Selection Guide, Non-Receiving Types
(Free).
\square (Free), and Gas Tubes for Radio and Industry (10 cents). (G)
ypes
\square Phototubes, Cathode-Ray and Special Types R RCA Preferred Types' List (free). (H) Headliners for Hams (Free). *? icice applias 1 , U. S. and possessions only.

BACKTALK
definite melting point to carbon. The "Handbook of Chemistry and Physics," 30th Edition, 1947, lists carbon as follows:

Carbon
Amorphous Graphite Diamoria
Mellor's "Modern Inorganic Chemistry", 1939 Edition, p 329, under the subject of carbon, says: "It is only recently that carbon has been melted and it has been found to solidify to pure graphite. It volatilizes at ordinary pressures at about $3,600 \mathrm{C}$ without melting, and the vapor condenses to amorphous carbon."

The following quotation from a catalog of the Stackpole Carbon Co. summarizes nicely my present feelings on the subject: "While the values of the melting and boiling points of carbon are subject to criticism as to their exactness and implications, the order of magnitude is correct and the comparison between carbon and some of the other elements is interesting. There is evidence that carbon does not melt but that it sublimes."
K. H. McPhee

Collins Radio Co.
Cedar Rapids: Iowa

Wearing a Short-Circuit

Dear Sirs:
IN EQUIPMENT and transmission lines where operating voltages are high, danger is ever-existent. The amount of current that the human body can safely carry without loss of life varies with many factors, including path the current takes.

By creating a short-circuit in parallel with the heart and the vital organs, the current will flow through the conductor rather than the body when accidental contact is made with a high-voltage terminal. This could be done by using a length of insulated elastic conductor to connect together right and left arms, hands or even fingers. An additional wire path from this conductor to a leg or foot provides still more protection. This arrangement may save a life, though it may not prevent burns at the point of contact since the conductors lower the resistance of the body path and hence increase the current.

Steven Pantages New York. N. Y.

- CONTACTS •

FOR THE FIELD OF ELECTRONICS

TELEPHONES

WALL MODEL

\$1595 for 2 EITHER
Common talking and com mon ringing. Any num-

NOW-Telephones of Deluxe quality at low prices.
incorporating latest lm incorporating iatest imtechnique. Nonest to
goodness first class ma-

DESK MODEL her of phones can be connected ir same circuit terial and finest workSimple installation abso- manship. Lowered cost Intely no technical knowl- makes it possible for us to edge required. 25% de-price of $\$ 15.95$ for Two of posit required on all or- either model, complete nosit required on all or- with wire. power supply
ders. F.O.B. Hrooklyn. and instructions. ders. F.O.IB. Hrooklyn. and instructions

> EASTERN TELEPHONE CO.

320 18th. St., Dept. E-1
Brooklyn, N, Y.

CHAS. EISLER
EISLER ENGINEERING CO., INC.
751 So, 13 th St. (Near Avon Ave.), Newark 3, N. J.

\$MV:\$ $\$ 600$ a year in shipping room," say users of Marsh Stencil Machines, Brushes, Inks! Electric and Hand Operated machines cut ${ }^{\prime \prime}$, book, prices, pin this to business letterhead with your name.

MARSH STENCILMACHINE CO.
46 Marsh Building • Belleville III., U.S. A.

EL-TRONICS, INC.

Research, development, and manufacture of electronic equipment-a single model to large quantities.

Specialists in Geiger-Muller equipment 2647-67 N. Howard St., Phila. 33, Pa. Garfield 5-2026

ELECTRON TUBE MACHINERY OF ALL TYPES STANDARD AND SPECIAL DESIGN

- - - e - e e e

We specialize in for the manufacture of RADIO TUBES
CATHODF RAY TUBES
CATHODF RAY TUBES
INCANDESCENT LAMPS
NEON TUBES
PHOTO CELLS
X-RAY TUBES
Production or Laboratory Basis
KahleENGINEERING CO.
1309 SEVENTH STREET
NORTH BERGEN, N. J., U. S. A.
S4TV-15
U. s. Patent No. 1.933.5ss SOLDERLESS
WIRE CONNECTORS
FAST! EFFIGIENT! ECONOMICAL!
STRIP ENDS! SCREW IT!
Nectuch
"
THAT'S ALL
WITH SCRU-ITS!

WRITE FOR DATA SHEET NO. 1071

solar electric corporation

WARREN, PA

LOCKING TYPE
 Stainloss Stow

TUBE CLAMPS
Send for lllustratod catalog and onginoering data THE GEORGE S. THOMPSON CORPORATION South Pasadena, California

EISLER
ELECTRICAL \& ELECTRONIC EQUIPMENT ELECTRONIC TUEE EQUIPMENT
 36 HEAD RADIO TUBE EXHAUSTING

MACHI We Make
Complete
Equlpment
For The
Manufacture
Of Incandes.
cent Lamps
Radio and
Electronlo
Tubes

TRANSFORMERS OF ALL TYPES

CHAS. EISLER
EISLER ENGINEER\|NG CO., INC.
751 So, 13th St. (Near Avon Ave.). Newark 3. N. J.

Searchlight Section Empomarr "OPPORTUNITIES" Euyment

UNDISPLAYED
$\$ 1.20$ per line, minimum 4 lines. To figure
Positions Wanted (full or part time salaried em
ployment only) ployment only) $1 / 2$ the above rates payable In
adrance. advance.
Box Numbers-Care of publication New York, ChiNEWO or San Francisco office count as 1 line.

Discount of 10% if full payment is made in advance Individual Spaces with border rules for prominent ndividual Spaces with border rules for prominent The advertising rate is $\$ 1$
advertising appearing on other than a contract basis. Contract rates (juoted on reonuest.
An advertising inch is measured
An advertising inch is measured $7 / /^{*}$ vertically on one column, 3 columns- 30 inches-to a page. subject to limitations of space available

WANTED

REGIONAL DISTRIBUTORS

Well known $F M$ Broadcast equipment manufacturer has developed low power FM BROADCAST STATION SELLING UNDER $\$ 2000.00$. This is a complete packaged unit-microphone to antenna

Ideal for schools and colleges who want to incortraining with minimum of expense.
Our equipment is fully dereloped-performance install and operat-lowest price in field for this tod quality line.
Some territories open for distributors employing Write giving full particulars, territory covered and linancial status.
Organizations qualified will receive full details of
Sales Promotion Plan.
REPLY TO RW-7427
ELECTRONICS
330 West 42 nd St., N. Y. 18, N. Y.

RADIO ENGINEERS

 SENIORFor Research Laboratories
Must have thorough background in circuit design and test of Gov't-type portable transmitters and receivers.

Write fully
Government Contract Dept. PILOT RADIO CORPORATION 37-06 36th St
L. I. City, N. Y

SCIENTISTS AND ENGINEERS

Wanted for interesting and professionally challengfields of microvaves, radar, gyroscones. servomect anisms, instrumentation, conputers. and genera clectronics. Scientitic or engineering deg ees re
Quired. Salary commensurate with waxperience and ability. Direct inguiries to Mgr. Eng. Personnel

BELL AIRCRAFT CORPORATION P. O. Box 1 Buffalo 5, New York

WANTED-ELECTRICAL ENGINEER a nationally known Chicago company is in need of must be a college graduate with a B.S. in F.E degree. with high sclolastic vecord. Should have from tivo to five vears experience in electronics
preferally with a mininum of two vears in the design of andio amplifiers. In reply gire all particulars and state expected salary.

520 N. Michigan Ave., Chicago 11, 111
WANTED-RECTIFIER ENGINEER-A progressive, expanding southern New England rectifier manufacturer requires a young graduate electrical engineer with recent dry disc rectielectrical engin This is an ex This is an excellent opportunity for a man plete resume (which will be kept confidential) 330 West 427457 Electronics St., New York 18, N. Y.

EXCELLENT OPPORTUNITY FOR AN
 ELECTRO - MECHANICAL PRODUCTION ENGINEER

Wanted immediately by leading manufac

 turer-located in Connecticut near Waterbury and New Haven. This is a permanent position with desirable salary and ad vancement possibilities. Applicant should have 8 to 10 years experience.Write fully in first letter. All applications will be held in confidence.

I'-76:2, Electronics,
330 West 42 nd Street, New York 18, N. Y.

REPLIES (Box No.): Address to office nearest you CW YORK: 330 W. 42nd St. (18) SAN FRANCISCO: 68 Post St. (4)

POSITION VACANT

ELIECTIONICS ENGINEER with experience in the development of measuring and controlling apparatus for aircraft. Age-under 30. Location -Southern New England. P-7577, Electronics.

EMPLOYMENT SERVICES

SALARIED POSITIONS $\$ 3,500-\$ 35,000$. If you are considering a new connection communi
cate with the undersigned. We offer the orlg cate with the undersigned. We offer the origrecognized standing and reputation). The procedure, of highest ethical standards, is individualized to your personal requirements and develops overtures without initiative on your part. Your identity covered and present posi
tion protected. Send only name and address tion protected. Send only name and addres Buffalo 2, N. Y. W. Bixby Inc., 266 Dun Bldg. EXECUTIVES $\$ 3,000-\$ 25,000$. This reliable service, established 1927, is geared to needs nection under conditions assuring, if employed full protection to present position. Send name and address only for details. Personal consul tation invited. Jira Thayer Jennings, Dept. E 241 Orange St., New Haven, Conn

EMPLOYMENT AGENCY

OPENINGS! BROADCAST-TV (1st fone lic.)

 Design, Sales, Crystal, Research, Tube De velopment, Recording, EEs, Electronic Tech TV Employment Bureau, Box 413, Philadelphia
SELLING OPPORTUNITY OFFERED

MANUFACTURER FIGH grade varnished ronic, radio, television line. RW-7341, Elecronice.

SALES ENGINEERS

Manufacturing concern of international prominence wants three topflight sales engineers with back-
ground in electrical engineering and metallurgy and ground in electrical engineering and metallurgy and
proven sales experience to represent company in proven sales experience to represent company in Detrolt, Chicago and on Eastern Seaboard. OD tons. Write in full to
(W)-\%\%, Electronics

520 North Michigan Ave., Chicago 11, Ill.

POSITIONS WANTED

EXECUTTVE ENGINEER, outstanding acad emic and practical experience in electrica engineering and industrial efectronics. Ad vanced degree, former professor of E.E. Superior organizing abilaty Modest investmen 7557. Electronics.

ELECTRONIC PHYSICIST, B.S., Graduate work in Physics. 1 yr, electronic lab experi ence, i year full time and 1 year part time addi-
tional Radar Maintenance. PW-7485, Electronics.

ENGINEER-PHXSICIST, Ph.D wide experience research and production, especially ceramic and mica condensers, molded and de postion carbon resistors, ceramic insulating and
dialectric materials. A yailable April. PW-7575, Electronics.

ENGINEERING EXECUTIVE AVAILABLE

Many years of experience in radio and television engineering and production. Broad scientific backonly toplevel position. Indicate in reply type of posiiton offered.

330 West 42 nd Street, New York 18, N, Y.

Competent Engincering \& Sales Representation
Entiro Eastern Seaboard, throuah four offices In
key citios. is offered to manufacturers of high. key cities. is offered to mannfacturers of high. grate Electronic. Electrical and Eience with most desirable accounts. References furnished on re. auest.

330 West RA 7161 Fleetronics $\mathbf{4}$ St. New York 18, N. Y.

NEW MARKETS IN EUROPE

the Sales Director of long established manufacsound reproduction a pparatus offers personal repAgentation in Europe for sales or fact finding. guages and with associates throughout Europe.

DOUGLAST. BENNET,
60 Paddington St., London, w.
CABLES:-TROOSOUND LONDON
SAVE RESEARCH TIME BY CONSULTING
The Indispensable Bibliographical Reference
ELECTRONIC ENGINEERING MASTER IMDEX
Descriptive Literoture on Request
ELECTRONICS RESEARCH PUBL. CO
2 W .46 h St., N. Y . 19

Additional
 Positions Vacant Ads

on pages 253 and 254

- EXPERT DIAGNOSIS and TREATMENT •

for Ailing Communication and Television Receivers and Transmitters by TRAINED SKILLED TECHNICIANS
when trouble comes and your receiver acts up, don't blame sun spots . . . Tet lactory trained experts
HALLICRAFTERS
HAMMARLUND
COLLINS

NATIONAL
PIERSON
RME
 Authorized Collins, Hallicrafter, National and RME Service Center
WINTERS RADIO LABORATORY
11 WARREN STREET
Cortland 7-1361
New York 7, N. Y.

Radar, Communications

AND
Sonar Technicians WANTED

For Overseas Assignments

Technical Qualifications:

1. At least 3 years practical experience in installation and maintenance.
2. Navy veterans ETM $1 / c$ or higher.
3. Army veterans TECH/SGT or higher.

Personal Qualifications:

1. Age, over 22-must pass physical examination.
2. Ability to assume responsibility.
3. Must stand thorough character investigation.
4. Willing to go overseas for 1 year.
Base pay, Bonus, Living Allowance, Vacation add-up to $\$ 7,000.00$ per year. Permanent connection with company possible.

Apply by writing to
W-72, P.O. BOX 3552,
PHILA. 22, PA.
Men qualified in RADAR, COMMUNICA.
TIONS or SONAR give complete history. Interview will be arranged for successful opplicants.

Mathematicians, Engineers, Physicists Men to train In oll exploration for operation seismouraph instruments, computing soismlo deta and saismlo surveylng. Beginning salary $\$ 250.00$ on Ingenufty and ability. Nature of work required several changes of address each year: work Indoors and out; general location in oll producing NATIONAL GEOPHYSICAL CO., INC. 8800 Lemmon Aye Dallas 9 Texa

Opportunities

 for
Engineers

 and PhysicistsRCA's steady growth in the field of electronics results in attractive opportunities for engineers and physicists.

Experienced engineers are finding the "right position" in the wide scope of RCA's activities. Equipment is being developed for the following applications-Radar, Sonar and Communication Equipment; sound and television equipment for broadcasting; sound equipment and systems of all types; electronic equipment for industrial applications; aviation, communication and navigation equipment.
Whether you are a physicist, a mechanical engineer, or an electrical engineer; a recent graduate or an engineer of experience, RCA has a position for you if you can qualify.

Engineers are finding the RCA plan for graduate work, in top universities, an excellent way of earning a Master or Doctor degree while doing practical engineering.

IF YOU ARE INTERESTED IN A PROFESSIONAL CAREER WITH RCA,

SENIOR
 ENGINEER,
 PHYSICIST

Key position open for top flight electronic man with heavy experience in theoretical analysis of radar systems, missiles, micro-
waves, computers.

Send resume or phone
Personnel Manager
THE W. L. MAXSON
CORPORATION
460 West 34th St.' N. Y.
LOngacre 3-2500
write to the
-his masiers rocicr

Employment Manager, RCA Victor Division, Camden, New Jersey

(i) SEARCHLIGHT SECTION

ELECTRONIC ENGINEERS

Bendix Radio Division
Baltimore, Maryland
manufacturer of

RADIO AND RADAR EQUIPMENT
requires:

PROJECT ENGINEERS

Five or more years experience in the design and development, for production, of major components in radio and radar equipment.

ASSISTANT PROJECT ENGINEERS

Two or more years experience in the development, for production, of components in radio and radar equipment. Capable of designing components under supervision of project engineer.

Well equipped laboratories in modern radio plant . . . Excellent opportunity . . . advancement on individual merit.

Baltimore Has Adequate Housing

Arrangements will be made to contact personally all applicants who submit satisfactory resumes. Send resume to Mr. John Siena, Department 69:

BENDIX RADIO DIVISION BENDIX AVIATION CORPORATION Baltimore 4, Maryland

ENGINEERS

Progressive electronic research and DEVELOPMENT COMPANY
has several openings for Senior Electronic Engineers of superior ability, with experience in design and development. Excellent opportunities for top flight men. Send complete resumes and salary requirements to:
Personnel Department

MELPAR, INC.

452 SWANN AVENUE, ALEXANDRIA, VIRGINIA

SENIOR ELECTRONIC ENGINEER
 FOR

DESIGN - DEVELOPMENT - SUPERVISION
LONG TERM - RESEARCH \& MANUFACTURING EXPANSION PROGRAM interesting work. excellent salary - housing available

HASTINGS INSTRUMENT CO., INC. HAMPTON, VIRGINIA

ELECTRONICS ENGINEER

Senior engineer wanted for Engineering Department of large established, well-known firm, which designs and uses electronic instruments, counters and computing aids extensively for its own operations. Applicants must have degree in Electrical Engineering with Communications major. Graduate study highly desirable. Experience must include two or more years of research or development work in private industry. Location North side of Chicago. Salary open. In reply, please state age, give summary of education, experience and past employers.

```
P7299 Electronics
```

520 North Michigan Ave., Chicago I1, Ill.

PROJECT ENGINEERS

Real opportunities exist for Graduuate Engineers with design and development experience in any of the following: Airplane Stability and control, Servomechanisms, radar, microwave techniques, microwave antenna design, communications equipment, electron optics, pulse transformers, fractional h.p. motors.
Send complete resume to employment office.

SPERRY
GYROSCOPE CO.
Division of the Sperry Corp. GREAT NECK, LONG ISLAND

ELECTRONIC ENGINEERS
 PHYSICISTS

"A leading Electronics Company in Los Angeles, Californio offers permanent employment to persons experienced in advanced research and development. State qualifications fully."

68 Post St., San Francisco 4, Calif.

RADIO, RADAR SETS

BC456 Modul w/Tubes \& Dyn Good Used BC375
BC375
Good
BC
 TA12 W/Clipper Kit fubes, data.
 BC 1206 Setchel Carlson Batty w/tubes, New. 25 Good Used w/tubes (5). Special.
Gibson Girl Gibson Girl Xmitter.
SN ABF/SCR695 Rowr and Equip LN BCI-196 Sig Gen UHF Bat New
BC906 p/o EE46 Fq Mtr \& Monitor 140 to 230 MC
${ }_{\text {APSI3 }} \mathrm{BC} 1073$ Wave Mtr. 150.210 Mc . Used
ACSH3,MNNr Xmtr, less tubes LN Radio Comp Less Tubes. Used
APN4 C'RAY IND less tubs. APN4 C'RAY IND less tubes.

X Band Wavemeter $30 C M$ Maguire
Same M Mg $\& X$ band W Wavemeter.
T23AB OSC Mto \& Transition to parallel Tunable Coax Cavity, w/adj hat 300.400 Pulse Xformer H\&V BTO. GE, Raythioon, UTAH. specify
ANT.
Broken Coil. SPECIALA IKW RF. Brand Now.

FUSES-HOLDERS

250ma/3AG Littelfuse $10 \epsilon @ 10$ for
$200 \mathrm{ma} / 8 \mathrm{AGG}$
Littolfuse 10 c @ 10 for
$4 \mathrm{Amp} / 3 \mathrm{AG} 25$ for 50 c : 60 for
$1000 \mathrm{~V} 1 / 2 \mathrm{Amp}$. FU I2A. 25 c : 15 for...............
 HOLDER 1075 Liftelfuse 20t; 10 for.

Write for Complete Fuse List-Qty Prices TRANSFORMERS $115 \mathrm{~V} / 60 \mathrm{cy}$. Input
 $500 \mathrm{VCT} / 60 \mathrm{ma}, 6.3 \mathrm{~V} / 4 \mathrm{~A}$ Hmtelly Cased
$5 \mathrm{~V} / 115 \mathrm{Amo}$
$\$ 10.95$
 $5 V / 60$ Amp KENYON HV insitd.
 $1150 \mathrm{r} 230 \mathrm{~V} / 16 \mathrm{Amp} / 2 \mathrm{KW}$ TRANSFORMER $11500230 \mathrm{~V} 8 \mathrm{mp} / 1.8 \mathrm{KW}$ AUTOTRANSF. $1100 \mathrm{VCT} / 50 \mathrm{ma} .6 .3 \mathrm{~V} / 3 \mathrm{~A} .5 \mathrm{~V} / 3 \mathrm{~A} \mathrm{HV}$ in $000 \mathrm{VCT} / 150 \mathrm{ma}, 300 \mathrm{Vbias}, 6.3 \mathrm{~V} / 5 \mathrm{~A}$. $5 \mathrm{~V} / 3 \mathrm{As}$. 16.95 6.5A. $6.3 \mathrm{~V} / 1.25 \mathrm{~A}$ CSD50-800cysderl taps 0.8 $1200 \mathrm{VCT} / 300 \mathrm{ma} \$ 5.75$ an for
 Write for Complete Xfmp List-Qty Prices DYNAMIC MIKE \& XFMR SPECIAL! A Terrifc Bargain! Combination high gain
dynamic miketransformer (UTC/Super Elec

POWER PACKS-Basic Kits! Complete CRT \& Scope Pwr Suppiles-llov/60 ${ }_{\text {cye }}^{\text {chaments for }}$ TV or C'Ray scope 1320 Plate ${ }^{\text {R }}$
 term. PLUS 5 Y3GT 2×2 rectifiers ${ }^{5}$ ins ALL

 nput KIT C- 700 VOLTS CT/ 125 Ma , Filament $2 \times 6.3 \mathrm{~V} / 2 \mathrm{~A}, 5 \mathrm{~V} / 2 \mathrm{~A}$ and $115 \mathrm{~V} / 100 \mathrm{Ma}$ I Isolation
Winding FEDERAL Tel for USN HiV ins Hem SId $5 \times 5 \times 33^{3} 4^{\circ}$ PLUS Tel for USN HiV ins Herm 10 mfd electrolytils \& 10 Hy Gsd eot... \$4.49
CHOK E. "TAB KIT D-500 VOLTS CT/ 60 Ma a $6.3 \mathrm{BV} / 4 \mathrm{~A}$. Cylind

POPULAR METER BUYS! 200 Microamp DC GE 4" Sa. 5 Scales AC\&DCV\&ohms Red

Bresd

 Range 51 Ma Rane$25: 82.5 \mathrm{Ma}$ 25182.5
14 mmp
$56 \mathrm{~m}^{2} \mathrm{~A}$ $510{ }^{2} 9 \mathrm{~A}$
7509 Ma
$151 \mathrm{Amp}^{\mathrm{ma}}$
${ }_{30}^{240 \text { Amp }}$
10900 V
150 Volt
7.5 Volt
${ }_{360^{\circ}}^{15}$ Volt
GE Galvmitr zero ctr

AC 31. BkIt Sq. RA 35 Wstg
AC 31% Bkit Sq. Weston 476 $\begin{array}{ll}\text { I-82 Bendix Autosyn } & 4.96 \\ & 4.95 \\ & \end{array}$ n
$\$ 12.95$
$\$ 12.95$

- tab" honey gack guarantee

 \$3 MIN. CRDER F.O.B. N. Y. C.ADD SHIPPING CHARGES AND

PRECISION RESISTORS

$.116$	182	689	2700	inesto 14440
. 42	199	697	2850	14460
. 425	200	700	2860	14500
- 607	209.4	733	2900	15000
$\mathrm{i}^{7}{ }_{3}$	216	750	3000	15500
$1: 75$	220.4	806	${ }_{3100}$	17000
2.5	225	854	3384	17500
${ }_{3} .33$	${ }_{235}$	900	3500	18000
	240	917	3700	18500
4.35	245.4	946	3730	18800
		978	3760	19000
5.025	280	1000	4000	19500
6	271	1030	4200	20000
${ }_{7}$	280	1056	4280	${ }^{20520}$
7.5	286	1100	${ }_{4314}$	21500
7.8	289	1110	4440	22000
7.9	299	50	4444	22500
8	300	1155	450	22990
10	310	1162	4720	23000
10.38	311.5	1175	4750	231
10.48	320	1200	4850	23325
11.25	325	1225	4885	23400
13.5	350	1250	4900	24000
14.2	386.6	1322	5100	25000
14.5	370	1350	5210	25200
15	375	1355	5235	25400
		1400	5200	26600
16.3	390	1495	5500	27500
17	400	1500	5600	29000
20	410	1510	5730	29500
21	414.3	1518	5910	29900
25	418.8	1800	6000	30000
30	426.	1640	6140	31000
37	427	1650	6300	85000
48	440	1670	6495	37000
50	450		6500	38140
51.78	4.52	1710	6840	38500
${ }^{55}$	470	1740	6990	
63	478	1800	7500	43000
68	480	1818	7700	47000
71.4	487	1830	7930	47500
74	500	1865	8000	48000
75	525	1900	8250	48660
81	5	1810	8500	49000
89.8	540 550	1980	88800	50000 52000
90	575	2000	8992	54000
	580	2045	9000	56000
100	600	2080	9445	60000
101	607	2095	9500	61430
105.7	612	2145	9710	62000
107	633	2195	10430	65000
113.1	640	2200	10500	68000
120	641	2250	10600	70000
121.2	649	2300	11000	72000
147.5	657	2400	11400	75000
150.5	665	2480	11690	88000
160	669	2485	12000	84000
170	670 675	2490 2500	12600	90000
			13220	91000 95000
ABOVE	ES EA	CH 308	TEN	FOR \$2.50
100000	166750	240000	380000	620000
110000	169360	245000	400000	621000
115000	180600	250000	402000	654000
120000	185000	265000	422000	750000
125000	198000	268000	458000	761300
130000	200000	275000	478000	800000
140000	220000	294000 307500	520000	930000
145009	225000	314000	521000	${ }_{950000}$
47000	229000	330	570	
50000	235500	333500	575000	

$$
1,12, .25, .6,75, .83, .99 \text { megomms }
$$

SPECIAL $\$ 1.00$. 4.75 megohms 0.5% accuracy $\$ 7.50$
 MFB105 Meo 50 acey/Jan R-29: $51.98 @ 6$ ©or 10.00 Type 2,20 meg JAN
R29/20 KV/
5.5% accy

Attenuators- $100 \mathrm{~K} \& 250 \mathrm{~K}$ Ohms
IRC 100000 ohms $20 \begin{gathered}\text { position } \\ \text { RC } \\ 250000 \\ \text { ohms } \\ 20\end{gathered}{ }^{\text {position }}$
Write far Rety Prices on $1 / 2,1 \& 2 \mathrm{~W}$ Insulated Resistors.
Resistor Kit. asstd $1 / 2 \& 1 / \mathrm{W}^{2} 100$ for........... 986
Xfal Diodes-Thermistor-Varistor

\%

 ${ }^{0} 170396$ HF pwr neas. IC Bulb Time Delay.
USN CW20259 Varistor 38C

(Ti) SEARCHLIGHT SECTION (IT

要: 	ŋ
 	$\sum_{\substack{1}}^{\substack{1}}$
 	砍

(i) SEARCHLIGHT SECTION

HIGH FREQUENCY F. F.

 Probe Fits MOST V.T.V.M.'SA handy
tory. Will
measition to
to tory. Will measure R.F. voltage to
over 200 me, with a minimum of circuit loading. An excellent method of signal tracing for Television, F.M., and amateur radio. Contains the iN34 crystal. This highly accurate and dependable crystal makes a smanll compact unit that is easy to use. Fits the Model 221 and Model $113 \AA$ as well as most other.
YORM. Y.'s KIT
FORM
$\$ 3.75$
COMPLETELY BUILT
$\$ 7.50$
DUMONT 164 E SCOPE
A popular 3 inch scope for the dis. criminating user:

- Freq. response Horiz. and Vert. complif. from 5 to 100,000 CPS Uni. form within $71 / 2 \%$.
- Deflection factor, Vertical. . 7 RMS Volts per inch Max.
- Deflection factor, Horiz. . 55 RMS Volts per inch Max.
- Sweep freq. continuous from 15 to 30,000 cycles.
- Primary input 110 Volts 40 to 60 cy .
ONLY A FEW LEFT
AT THIS AMAZING
$\$ 75.00$

The NEW 900A VTVMVOMAX
Accurate AC-DC and RF Voltage measure. ments of Laboratory caliber:

- $5^{\prime \prime}$ giant meter providing 45 ranges fused.
- 24 Volt DC Voltages thru 3000 Volts.
- AC, AF, IF, RF Ranges 20 cycs, thru 100 megacycles.
- DB ronges from plus 10 minus 10 , plus 30 plus 50 , $0-D B$ equal 1 MW in 600 ohms impedance.
- Current ranges-6 ranges from 1.2 ma . to 12 amps. Plus or minus 2% absolutely stable

GOING MOBILE?

Here is a Rig for 80 or 10 meters. Will deliver 8 watts output modulated. Fits in Glove Compartment or unDesigned for Tli B Mike or Designed for Tl7 B Mike or equivalent. Less tubes, mike, Xtal and power supply. Requires $3-6 A G 7$ and 350V, DC at 110 Ma .
MODEL $129-27$ to 29.7 MC
MODEL 175-3750 to 4000 KC .
YOUR
COST
\$23.95
SET OF TUBES
. \$3.84

MODEL 400-S 5" OSCILLOSCOPE KIT

Easy to read assembly instructions and diagrams.

- Horizontal Sweep Freq. 15 to 30000 cycles.
- Graph screen for measuring peak to peak voltages. - Internal and External Synchronization.
- Deflection sensitivity 65 volts per inch full gain.
- Amplifier freq. response from 50 cycles to 50 KC . YOUR COST
- Input impedance 1 meg. and 50 MMF .

COMPLETE
ABOVE UNIT COM-

- X axis intensity modulation provided.
- Size $81 / 2 \times 13^{\prime \prime} \times 17^{\prime \prime}$ WHT. 38 lbs .

PLETELY ASS
\$39.95

MODEL 221K VACUUM TUBE VOLTMETER KIT

Comes complete, nothing else to buy.

- DC and AC ranges 0-5, 10, 100, 1000 Volts.
- Ohmmeter ranges, ranges 2 to 100 megohms.

5 ranges $\mathrm{R} \times \mathrm{l} \cdot \mathrm{R} \times 100, \mathrm{R} \times 1000, \mathrm{R} \times 10,000$, R $\times 1$ megohm.

- DB scale from minus 20 to plus 16 DB.
- DC input resistance 25 megohms constant on all ranges.
- AC input impedance over $11 / 2$ megohms constant on YOUR COST, \quad KIT \$23.95 all ranges.
- Large $41 / 2^{\prime \prime}$ linear movement 2% accurate with minimum friction.
- Size $97 / 16 \times 6^{\prime \prime} \times 5^{\prime \prime}$ WHT. 10 lbs .

$$
\begin{aligned}
& \text { ABOVE UNIT COM- } \$ 49.95 \\
& \text { PLETELY BUILT }
\end{aligned}
$$

VOLT-OHM MILLIMETER KIT

Easy to assemble-Easy to use.

- $3^{\prime \prime}$ meter.
- Output $0 / 10 / 100 / 500 / 1000$ volts. - DC 0/5/50/250/500/2500 volts. DC mils 0/1/10/100 ma. - AC 0/10/100/500/1000 volts. DC amps 0/1/10.
- Ohmmeter $0 / 500 / 10,000$ and 0/1 meq.
- DB 8 to 55.
- Size $51 / 8 \times 8 \quad 5 / 8 \times 31 / 8$.

COMPLETE KIT
$\$ 14.95$
WIRED AND FACTORY \$17.95

TRANSFORMER
24 volts at 10 amps will deliver 18 Volts DC from full wave selenium rectifier of 10 amps - good quality 110V
60 cy input... $\$ 4.95$
SELENIUM RECTIFIER
2 amps-18 to 24 Volts input-18 to 12 Volts output. Your cost
Ea.

6

1000-1000 Mfd FILTER
Cond.-upright can at 15 Volts-Perfect filter for low voltage DC Supplies.
${ }^{\text {Each }} \$ 1.95$
BUTTERFLY CONDENSER
This cond. has the tank circuit built injusf plug in a tube. (Designed for W.E. be used with any high frequency triode.
\$1.98

RG 22U-TWIN COAX

Nominal impedance 95 ohms-Perfect for television or where Shielded Balanced Transmission Line is $\quad . . .15$ per ft.

DO YOU OWN AN SCR-522?
We have a complete power supply, including a separate voltage regulated bias supply chassis and schematic-all in kit orm, his kit will supply all voltage necessary for operation of the set. All parts guarantieed.
COMPLETE AT THE AMAZ- $\mathbf{~ I N G L Y ~ L O W ~ P R I C E ~ O F ~} \mathbf{1 4 . 9 5}$
IT'S SENSATIONAL
Hottest Item Out! Make your SCR-522 Receiver operate on 144 to 148 MC with ONE DIAL control, in less than 1 hour. $\$ 3.00$
PARTS AND INSTRUCTION $\$ \mathbf{l}$
Model 200-EA 5-ELEMENT 2-METER BEAM KIT
Folded di-pole driven element. All-cluminum construction. Feed with low impednum construction.
AMATEUR NET PRICE
\$8.40

HI FREQUENCY BUZZER
This buzzer and a key will get
.88
$\frac{\text { your code-speed up for that ticke }}{K 200 \text { TWNX }}$

K 200-TWINEX

Mfg. by Federal. Will handle 3 KW of R.F.; very heavy Poly base-Unaffected Ant. Sample on request. Ant. Sample on request. PER FT.
.08

(1i) SEARCHLIGHT SECTION

BRAND NEW GUARANTEED

PIONEER AUTOSYNS

AY1, 26 volts, 400 cycle.
Price $\$ 4.00$ each net.
AY20, 26 volts, 400 cycle.
Price $\$ 5.50$ each net. AY30, 26 volts, 400 cycle.

Price $\$ 10.00$ each net.
AY31, 26 volts, 400 cycle. Shoft extends from both ends.
Price $\$ 10.00$ each net.
AY38, 26 volts, 400 cycle. Shaft extends from both ends.

Price $\$ 10.00$ each net.

PIONEER PRECISION AUTOSYNS

AYlold, new with calibration curve.

PRICE-WRITE OR CALL FOR SPECIAL QUANTITY PRICES
AY131D, new with calibration curve. Price $\$ 35.00$ each net.

PIONEER TORQUE UNITS

Type 12606-1-A.
Price $\$ 35.00$ each net.
Type 12627-1-A.
Price $\$ 70.00$ each net.

PIONEER TORQUE UNIT AMPLIFIER
Type 12073-1-A.
Price $\$ 17.50$ each net.

GYROS

Schwein Free \& Rate Gyro type 45600. Consists of two 28 volt D. C. constant speed gyros. Size $8^{\prime \prime} \times 4.25^{\prime \prime} \times 4.25^{\prime \prime}$. Price $\$ 10.00$ each net.
Schwein Free \& Rate Gyro, type 46800. Same as above except later design.

Price $\$ 11.00$ each net.
Sperry A5 Directional Gyro Part No. 656029, 115 volts 400 cycle, 3 phose. Price $\$ 17.50$ each net.

Sperry A5 Vertical Gyro. Part No. 644841, 115 volts 400 cycle 3 phase.

$$
\text { Price } \$ 20.00 \text { each net. }
$$

Sperry A5 Amplifier Rack Part No. 644890. Contains Weston Frequency Meter. 350 to 450 cycle and 400 cy cle, 0 to 130 voltmeter.

Price $\$ 8.00$ each net.
Sperry A5 Control Unit Part No. 644836. Price $\$ 7.50$ each net.
Sperry AS Azimuth Follow-Up Amplifier Part No. 656030. With tube

Price $\$ 5.50$ each net.
Pioneer Type 12800-1-D Gyro Servo Unit. 115 volts 400 cycle, 3 phase.

Price $\$ 9.00$ each net.
Norden Type M7 Vertical Gyro. 26 volts D.C. Price $\$ 19.00$ each net.

Norden Type M7 Servo Motor. 26 volts D. C. Price $\$ 20.00$ each net.

General Electric Type 8672162 Azimuth Gyro Assembly Contains Delco Type 5067125 Constant speed motor and Signal assembly.

Price $\$ 12.75$ each net.

WESTON FREQUENCY METER

Model 637, 350 to 450 cycles, 115 volts. Price $\$ 10.00$ each net.

D. C. MOTORS

5069625, Delco Constant Speed, 27 volts, 120 R. P. M. Built-in reduction gears and governor. Price $\$ 4.25$ each net.
A-7155, Delco Constant Speed Shunt Motor, 27 volts, 2.4 amps., 3600 R. P. M., 1/30 H. P. Built-in governor.

Price $\$ 6.25$ each net.
5BA10J18D, General Electric, 27 volts, 0.7 omps , 110 R. P. M.

Price $\$ 2.90$ each net.
5066665, Delco Shunt Motor 27 volts, 4000 R. P. M. Reversible, flange, mounted. Price $\$ 4.50$ each net.
C-28P-1A, John Oster Shunt Motor, 27 volts, 0.7 amps., 7000 R. P. M., $1 / 100$ H. P. Price $\$ 3.75$ each net.
D.C. ALNICO FIELD MOTORS 5071895, Delco 27 V., 250 R. P. M. Price $\$ 3.00$ each net.
5069600, Delco, 27 V., 250 R. P. M.
Price $\$ 4.00$ each net.
5069466, Delco, 27
V., 10,000 R. P. M.

Price $\$ 3.00$
each net.

5069611, Delco, 12 V., 10,000 R. P. M.
Price $\$ 3.50$ each net.
5067043 Delco, 12V., 10,000 R. P. M.
Price $\$ 3.50$ each net. 5067125, Delco, 27 V., 10,000 R. P. M. With Governor.

Price $\$ 6.50$ each net.
S. S. FD6-16 Diehl 27 V., 10,000 R. P. M.

Price $\$ 3.75$ each net.
S. S. FD6-18 Dieh! 27 V., 10,000 R. P. M. Price $\$ 3.75$ each net.
GENERAL ELECTRIC D.C. SELSYNS

8TJ9-PDN Transmitter, 24 volts.
Price $\$ 3.00$ each net.
8DJll-PCY Indicator, 24 volts. Dial marked -10° to $+65^{\circ}$.

Price $\$ 4.00$ each net.
8DJIl-PCY Indicator, 24 volts. Dial marked 0 to 360°.

Price $\$ 6.50$ each net.

Write for complete listings 147.57 41st AVENUE FLUSHING, N. Y. Telephone INdependence 3-1919

(I) SEARCHLIGHT SECTION

A.C. MOTORS

5071930, Delco, 115 volts, 60 cycle, 7000 R. P. M.

Price $\$ 4.50$ each net.
36228, Hayden Timing Motor, 115 volts, 60 cycle, 1 R. P. M.
Price $\$ 3.15$ each net.
Hayden Timing Motor- 110 V .60 cycle 3.2 Watts, 4 R. P. M., with brake.

Price $\$ 4.00$ each net.
Eastern Air Devices Type J 33 Synchronous Motor 115 V., 400 cycle, 3 phase, 8,000 R. P. M.

Price $\$ 8.50$ each net.

SERVO MOTORS

CK1, Pioneer, 2 phose, 400 cycle.
Price $\$ 10.00$ each net.
CK2, Pioneer, 2 phase, 400 cycle.
Price $\$ 4.50$ each net.
FPE-25-11, Diehl, Low-Inertia, 75 to 115 V., 60 cycle, 2 phase.

Price $\$ 16.00$ each net.
FP-25-2, Diehl, Low-Inertia, 20 volts, 60 volts, 2 phase.

Price $\$ 9.00$ eačh net.
FP-25-3, Diehl, Low-Inertio, 20 volts, 60 cycle, 2 phase.

Price $\$ 9.00$ each net.

MAGNETIC AMPLIFIER ASSEMBLY

Pioneer Magnetic Amplifier Assembly Saturable Reactor type output transformer. Designed to supply one phase of 400 cycle servo motor.

Price $\$ 8.50$ each net.

INVERTERS

12117-4, Pioneer. Input 24 volts D. C. Output 26 volts, 400 cycle.

Price $\$ 15.00$ each net.
12117. Pioneer. Input 12 volts D. C. Output 26 volts, 400 cycle.
Price \$17.00
 each net.

12123-1-A, Pioneer. Input 24 volts D. C. Output 115 volts, 400 cycle, 3 phase. Voltage and frequency regulated. 100 V.A.

Price $\$ 75.00$ each net.

WG7̇50, Wincharger, PU16. Input 24 volts D. C. Output 115 volts, 400 cycle, 1 phase, 6.5 mps . Voltage and frequency regulated.

Price $\$ 35.00$ each net.

149 H , Holtzer Cabot. Input 28 volts ot 44 amps. Output 26 volts at 250 V . A. 400 cycle and 115 volts at 500 V. A. 400 cycle.

Price $\$ 39.00$ each net.
149F, Holtzer Cabot. Input 28 volts at 36 amps. Output 26 volts at 250 V . A. 400 cycle and 115 volts at 500 V . A. 400 cycle.

Price $\$ 35.00$ each net.

153F, Holtzer Cabot. Input 24 volts D. C. Output 115 volts, 400 cycle 3 phase, 750 V . A. and 26 volts 400 cycle, 1 phase, 250 V. A., Voltage and frequency regulated also built in radio filter.

Price $\$ \mathbf{1 2 5 . 0 0}$ each net.

5D21NJ3A General Electric, Input 24 volts D. C. Output 115 volts 400 cycle of 485 V . A .

Price $\$ 14.00$ each net.

RATE GENERATORS

PM2, Electric Indicator Company, . 0175 V. per R. P. M.

Price $\$ 7.25$ each net.
F16, Electric Indicator Company, twophase, 22 V. per phase ot 1800 R. P. M.

Price $\$ 12.00$ each net.
J36A, Eastern Air Devices, .02 V. per R. P. M. Price $\$ 9.00$ each net.

B-68 Electric Indicator Co., Rotation Indicator, 110 volts, 60 cycle, 1 phase.

Price $\$ 14.00$ each net.
SINE-COSINE GENERATORS
(Resolvers)
FJE 43-9, Diehl, 115 volts, 400 cycle.
Price $\$ 20.00$ each net.

SYNCHROS

If Special Repeater, 115 volts, 400 cy cle. Will operate on 60 cycle ot reduced voltage.

Price \$15.00 each net. ICT Control Transformer, $90 / 55$ volts, 60 cycle. Price $\$ 22.50$ each net.
2J1G1 Control Transformer, 57.5/57.5 volts, 400 cycle.

Price $\$ 2.00$ each net.
2JlH1 Selsyn Differential Generator 57.5/57.5 volts, 400 cycle.

Price $\$ 3.25$ each net.
5G Generator, 115 voits, 60 cycle.
Price $\$ 25.00$ each net.
W. E, KS-5950-L2, Size 5 Generator, 115 volts, 400 cycle.

Price $\$ 3.50$ each net.
Size 5 Generotor, Army Ordnance Drawing No. C-78414, 115 volts, 60 cycle.

Price $\$ 14.00$ each net.
2 J 5 S 1 Selsyn Differential Generator, 105-105 volts, 60 cycle.

Price $\$ 15.50$ ea. net.
2JIF1 Selsyn Generator, 115 volts, 400 cycle.

Price $\$ 3.50$ ea. net.

RELIANGE SPECIALS

PRECISION RESISTORS
WIRE WOUND 1% Tol. or Better
100 pleces.

6.888
10.48
10.84
10.84
11.74

. 25300	${ }_{13.15}^{11.10}$	${ }_{280}^{235}$	${ }^{4,4510}$	15,0000
. 502	46	${ }_{270}$	5.900	17.000
${ }_{\text {. } 27}$	55.1	400	7,000	25,000
76	75	723.1	7,500	30,000
1.01	127.8	2,500	8.000	100.000
			8,500	150,00
2.25	210	4,000	14,825	
	1	WATT-30c		
1.012	${ }_{10}^{5.210}$	$\frac{1.2500}{3.300}$	$\begin{array}{r} 9,0000 \Omega \\ 18,000 \end{array}$	$55,000 \Omega$ 65,000
${ }_{5}^{3.05}$	${ }_{2} 70.9$	7,000	50,00	70,000

$\begin{array}{lllll}100,000 \Omega & 128, C 00 \Omega & 180,000 \Omega & 470,000 \Omega & 525,000 \Omega\end{array}$ $\begin{array}{lllll}120,000 & 130,000 & 250,000 & 500,000 & 600,000 \\ 125,000 & 180,000 & 320,000 & 522,000 & 700,000\end{array}$ 1 Megohm, 1 Watt, $1 \%-65$ c; 5\%-40c

115 V		ELAYS 60	cycle
Mfg. SD		Gontacts DPDT, 6A SPST NO.	$\begin{array}{r} \text { Price } \\ \$ 2.45 \\ \mathbf{2 . 7 5} \end{array}$
Leach Leach	$\begin{aligned} & \text { tiline delay) } \\ & 1355 \\ & 1127 \\ & 2124 \text { SMX } \end{aligned}$	$\begin{aligned} & \text { DPST, N.C. } \\ & \text { DPPTT } \\ & \text { 4PST, N.o. } \end{aligned}$	
Advance	965 B SA (Isolantite)	$\begin{aligned} & \text { DPST. N.O., 10A } \\ & \text { DPDT, } 10 \mathrm{~A} \end{aligned}$	2.10 2.95
Paragon	CPX-24166	60 sec. delay, 10 A .	6.50

FILAMENT

TRANSFORMERS

 WESTINGHOUSE \#6D4298Tested of 34,000 volts
Pri. 115 V. A. C., 60 Cyc. Sec. 5 V @ 6.5 Amp.
ONLY \$8.50

CHOKE

400 MA .12 Henry 90 Ohms, 6,000 V.D.C. Test. 200 MA. 10 Henry, 115 Ohms, 3 多" dia. $\times 41 / 2^{\prime \prime}$,

3 AG	FUSES		3 AG
${ }_{1 / 4}^{1 / 8}$ Amp.	\$4.00 per C	2 Amp .	\$2.50 per C
1/4/4	${ }_{4}^{4.00}$		2.75
${ }_{1}^{1} 1 / 2$	2.50 2.50	10	3.00 3.00

24 Voit, 10 A, cassed.
2.5 Volt, 6.5 ACT each ${ }^{2}$.... $\$ 4.75,10$ for $\$ 45.00$ 5 Volt, 60 ACT, 5 K.V. Ins. 300 Volt, 4 A each of two windings, open, tapped

STEEL JUNCTION BOX

Water-tight, 14 ga. steel. $17^{\prime \prime} \times 25^{\prime \prime} \times \mathbf{x}^{1 / 2 " .}$. Serew type brass hinge on 111. 501 b . Reduced to $\$ 2.50$

CAPACITORS

 OIL FILLED| MFD | v.d.c. | Pricempd | | v.d.c. | Price |
| :---: | :---: | :---: | :---: | :---: | :---: |
| . 012 | 25,000 16,000 | \$ $\$ 6.75$ | $\mid: 2.200$ | $\begin{aligned} & 750 \text { V.A.c. } \end{aligned}$ | 49 |
| .375@ | 16,000 and | | | 2,000 | . 95 |
| 1.75@ | ${ }_{7,500}^{8,000(d u a l)}$ | 12.95 | ${ }_{8}^{10}$ | 1,000 1,000 | 1.75 1.50 |
| . 1 | 7.500 | 1.95 | 4 | 11000 | 1.00 |
| . 1 -. 1 | 7,000 | 2.45 | 3 | 1,000 | . 80 |
| . $02-.02$ | 7,000 | 1.85 | .$_{5}^{2}$ | 1.000 | . 69 |
| . 1 | 6,000 | 1.75 | ${ }^{1}$ | 800 | 40 |
| .03-.03 | 6.000 | 1.65 | 10 | 600 | 1.35 |
| 01 | ${ }^{6.000}$ | 8.50 | 4 | 600 | . 69 |
| ${ }^{0} 1$ | 5,000 | 1,35 | 2 | ${ }^{600}$ | 39 |
| ${ }^{2} 25$ | ${ }_{3.000}^{4.000}$ | 1.75 | . 5 | 500 500 | . 29 |

PRECISION POTENTIOMETERS Guaranteed Perfect-Mostly Original Boxes			
20,000	Muter	314 A	51.70
10,000	Muter	${ }^{4174 \mathrm{~T}}$	${ }_{2}^{2.35}$
	${ }_{\text {GR }}$	${ }_{3717}^{292}$	2.50
10.000 6.000	${ }_{\text {Mr }}^{\text {Muter }}$	${ }_{314}{ }^{47}{ }^{\text {a }}$	(
	${ }_{\text {GJ }}$	260 314 A	
	${ }_{\text {MJ }}^{\text {Muter }}$		
	$\mathrm{Cl}_{\text {GR }}$	${ }_{\substack{2717 \\ 314}}$	2.00
2,	${ }_{\text {DJ }}^{\text {Muter }}$		1.70
1.000	${ }_{\text {OR }}$	${ }_{292}^{314}$	2.50
20 12	${ }_{\text {Gr }}^{\text {dr }}$	301 302 201	1.109

Westinghouse Motor Generator Set

 Phase 3
RPM 13,000
Style $1278129,21 / 2^{\prime \prime} \times 21 / 2^{\prime \prime} \times 51 / 2^{\prime \prime}$
SHIELDED WIRE——\#18
1000 ft.-Only $\$ 12.50$

PULSE TRANSFORMERS

X $143 T$ 2, UTAH, core- $5 /^{\prime \prime} \times 3 /{ }^{\prime \prime} \times 3 / 4 ", 3$ windings, open frame, capable of shortest pulses X 124 T2, UTAH, marked 9262 or 9280 , $\underset{\text { small }}{\$ 1.50}$

Type	Price	Type	Price
2-140	\$. 05 ea.	10-141Y	\$.51 ea.
${ }_{4-140} 3 / 4 \mathrm{~W}$		12-141	
140	. 19	${ }_{20-1419}$. 93
-140	. 14	2-142.	10
	26	${ }^{3-142 Y}$ MSX	. 23
18-240	. 35	4-142..	18
141	. 11	5-142	21
141 Y	11	6-142	25
14	11	7-142	29
14	25	8-142	33
8-141	21	9-142Y	52
$8-141$ 3/4 ${ }^{\text {W }}$	42	10-142 3/4 W	58
$8-141$. 38	10-142.	40
${ }_{9}^{9-141}$	42	10-142	. 58
10-1413/4 W	-47	$12-142 \ldots$.	48
colitily	. 37	17-142	${ }_{67}$
11-141	. 36	-	46

UNIVERSAL JOINT
 $1 / 8^{\prime \prime} 10 n 9 \times 1 / z^{\prime \prime}$ O.D. $1 / a^{\prime \prime \prime} 10$

(2)
$8-32 \times 1 / 8 \quad 8-32 \times 3 / 16$

rice Timken
ND ${ }^{5202 \mathrm{C} 13 \mathrm{M}}$
ND 88503
MRC 206SF
\qquad

B88 1/2" wide
B88 $1 / 2^{*}$ Wide
B108 $1 / 2^{*}$ wide
GB34X $1 / 4^{*}$ wide
Glyptal Cement $\left\{\begin{array}{l}1 \text { gt cans, GE } \\ 1 \text { gallon cans. } \\ 5 \text { gallon cans. }\end{array}\right.$ HARDWARE ASSORTMENT - (mostly brass)

MINIMOM ORDER \$

RELLANCE Mmicharurance co.

Arch St. Cor. Croskey, Philadelphia 3, Pa. Telephone RIttenhouse 6-4927

$110 \mathrm{~V}, 60$ cyc. RELAY 6 A. DPDT Contact
\#GS1729 Only $\$ 2.45$
(ID) SEARCHLIGHT SECTION ID

TUBES
COMPLETE TRANSFORMER
TV POWER SUPPLY KITS
HO TV POWER SUPPLY KITS
High. Low \& Fil voltages. FEA-
TORGN Herm Sill WE, USN
oil-filled XFMR induts 105 , 115 . ,

SURPLUS BARGAINS - - NOW ! !

 croammeter Another of the fa-
mous Weston fan mhaped line. Very shaped
large scale $5.8^{\prime \prime}$
These meng.
meters were These meters were
made by Weston to made by Weston to fications, with special mirrored scale and knife edge point-$0-600$ Microamps Coil Res: 250 Oh Ms
Your Price
$\$ 22.50$
GE TYPE DO 50 DC AMMETER
 ING HOLES
Special Scale, can be used with Ext. Shuat for $\frac{\text { A BUY! } \quad \text { Price } \ldots . .10 \text { for } \$ 27.50}{\text { GE TYPE DO } 50 \text { DC VOLTMETER }}$ GE TYPE DO 50 DC VOLTMETER A BUY! Price...... 10 for $\$ 27.50$ A SCOOP on a 'SCOPE DUMONT Used! Guaranteed
Model 164-E
$3^{\prime \prime}$ CRT operates at accelerating potential of 1100 V-brilliant well - defnned trace, Vert amp voltage
gain approx 43, hariz-
amp voltage gain apamp prox 5 , Freq. range vert. \& hor. amp both ${ }_{5-100,000}^{\text {unform }} \pm 3 \mathrm{DB}$ from 5-100,000 CPS Input impedance 1 megohm
vert, 8 megohm hor. vert, 8 megohm hor.
Operates $115 \mathrm{~V}, 40-60$
cycle.

Price New $\$ 115.00$ Your Cost $\$ 77.50$

MICROVOLTER-FERRIS Model 20B 2 to 100,000 microvolts output, continuously
opariable .- push button selector for 18 frequencles from $455 \mathrm{~K} . \mathrm{C}$. to 22 M.C. . . With or without be varied $\pm 2 \%$ by screwdriver adjustment.

BC 403E OSCILLOSCOPE

Made for Signal Corps by RCA for use in SCR-270D Radar-Can be converted to other
uses A Gold Mine for Parts - Shipping Weight: 400 lbs-Without Cathode Ray Tube 5BP4NEW! \$57.50

HIGH VOLTAGE CAPACITORS

WHSE PORTABLE GALVANOMETER

Type PX-12, Movement ${ }^{7}$ necting terminals, contains a 1 Volt internal cell which canversion to DC AMMETETERS \& VOLTMETERS, with leather case and canvas carrylng strap.

A buy at $\$ 4.95$
STRUTHERS-DUNN RELAYS
D.P.S.T., Normally open, 115 V, 60 Cycle, AC coil, 30 Amp. contacts, fibre base with ${ }^{4}$ holes
for mounting. Dimensions, $41 / /^{\prime \prime} \mathrm{L} \times 3^{\prime \prime} \mathrm{W} \times \mathrm{x}$

PANEL METERS

Code-R-Round, S-Square, B-Bakelite, M-Mctal, F-Flush, SF-Surface, FS-Full Scale

HIGH VOLTAGE TRANSFORMER
GE Cat No. 7470609 can-enclosed with insu-

> PRI—115/230 \vee. $50 / 60$ Cycles
> SEC-14000 V , Rating 1.4 Kra
> Dimensions: $16^{\prime \prime \prime} \mathrm{H} \times 12^{\prime \prime} \mathrm{W} \times 10^{\prime \prime} \mathrm{D}$.
> Shipping Weight: 178 lbs

A buy at $\$ 45.00$
R. C. A. POWER TRANSFORMER PRI- $440 / 220 V_{6} 60$ CYCLES
SEC-125/115/105 V. at 8KVA
 ping weight: approx 40 Your price $\$ 12.50$
STEP DOWN TRANSFORMERS SPECIAL
Made by GE, heavy duty, considerable overdesign, open frame, ideal for rectifier applica-

SEC-15 Y at $12 \mathrm{Amps} \quad \$ 3.75$
Also avallable: SEC- 10 V at $18 \mathrm{Amps} \quad \$ 3.75$
POWER TRANSFORMER
SEC- $125 / 115 / 105$ V., RATING $\mathbf{8 K V A}$
RCA Open construction. Bracket mounted, pri \& sec terminal board. Overall dimensions:

Price $\$ 12.50$
GE Step Down Power Transformer GE Type M Cat \#61021, Enclosed, Size: 4-

$\$ 9.00$
GE STEPDOWN TRANSFORMER Cat No. 6iG5, Fully Enclosed, Wall or Bench PRI- Mounting, Isolation Type 115 Volts .
RATING- 250 Watts, 60 Cycles
Dimensions $-8 \mathrm{Hx43/4} \mathrm{~W} \times 41 / 2 \mathrm{D}$, Shipping Weight
prox. 21 lbs........................... $\$ 6.75$
GE \#K2731 PULSE TRANSFORMER
Pri. Imp. 50 Ohms
Micro-second, 635 PPS, Pri. Input 9.5 KV PK, Sec. Input 28 KV PK, BWR Out 800 KW , Bifiliar 2.75 A .
A buy ot
$\$ 17.50$

Your price
RATING 3KVA, MAX AMPS 26 same as above, can also be reconnected to be used as an isolation type step down with 0 -30V, able secondary, Input. Your price $\$ 18.00$
at 30 Amps .
RATING 1.85 KVA, MAX AMPS 16 same as above, can also be reconnected as isolation type transformer above Input 115 V
Output: $0-30 \mathrm{~V}$, at 16 Amps .

Your price $\$ 17.00$
ONPUT 28 D. 1000 . OUTPUT 1000 V
DC. CAPACITY
350 MA . ${ }^{350}$ With
ulator box on regulator box on top.
 1bs.
A buy at $\$ 5.75$
3PDT \#1XCX114, Coil 115 V . AC Contacts,
 $\frac{31 / 2^{\prime \prime} \times 21 / 2^{\prime \prime} \times 2^{\prime \prime} \mathrm{H}{ }^{\prime \prime} \$ 35}{4 \text { Pole } 5 t, \text { Coil } 115 \mathrm{~V} . \mathrm{AC}, \text { Contacts } 115 \mathrm{~V} . \mathrm{AC}, 30}$ Amps, Fibre Base, Dimensions, $5^{\prime \prime} \times 5^{\prime \prime} \times 3^{3^{\prime \prime}} \mathrm{H}$.

ALL PRICES INDICATED ARE FOB OUR WAREHOUSE NYC. SHIPMENTS WILL BE MADE VIA RAILWAY EXPRESS UNLESS SUFFICIENT POSTAGE IS INCLUDED OR OTHER INSTRUCTIONS ISSUED. WE WILL REFUND EXCESS POSTAGE IN STAMPS.

POWERTRON Electrical Equipment Co.

SAVE MONEY!
 Take advantage of this opportunity-Buy BRAND-NEW-GUARANTEED SURPLUS MATERIAL at PRICES FAR BELOW DEALERS COSTS

D. C. MICROAMMETERS

D. C. MILLIAMMETERS

SPECIAL METERS

FREQUENCY METER JBT 30-F Dual Range cor-
 FREQUENCY METER Range 350 to 450 c $\$$ ycles, 115 volt A.C. Iron core dynamometer thice nove-
ment, 50 cycles per scale division, black scale FREQUENGY METER 50 to 70 cycles, westing within 19 , Accuracy
 house HY $5 \not / 2$ square Proj, mitd. cases. Ac curacy within 1% Electric Dynamometer type HOUR METER, Totals to 99.9999 hours and Deats. WH NH-35, $37 / 2^{*}$ rd. A bake case. 8 OD erates on 230 Folt
D.C. MILLAMMETER, Weston 271 fan t. tye
$1-0-1$ MA ($60-0.60$ M.V.) movement Sal DECIBEL METER, Weston 506 minus 10 to plus

 Seconds to final reading. Only $2-6 \%$ overthrow, 5000 ohms at Zero DB, $16-50$ Damping factor.
Complete with externai
wire wound precision resistors to extend the range to any or all of the following ranges.

30 to plus 16 DB
$\mathbf{3 0}$ to
40
Ideal for sound and broadcasting applications
 Y/2 rd fl bake case, Zero DB = 1.9 voits,
RECTIFIER OYYPE MILLIAMMETEBR W.95 Model 545, type $81,4^{\prime \prime}$ Aircraft type, full scale.
equals 1.1^{\prime} MA AC, 940 UA DC mpt. 70 ohms resistance of moving coil, bl sc. calib $0-270^{\circ}$.
A. C. AMMETERS

Gasoline Heater-Motorola Model GN-3-24
 for use with equipment, farms, boats, bungalows, cabins, trailers, work sheds, darkrooms, moblie equipment, transmitter stations, etc. and any place where a quick heat is required in volume. lon of gasoline which is sufficient for 6 hours operation. Uses any grade gasoline.
This unit is designed primarily for alreraft installation, $24-28$ volts d.c., but it can be readily adapted
for a 115 or 230 voit 60 cycle power supply by use of a transformer and rectiffer. Simple circuit diagram for adaption to 115 or 230 volt 60 cycle use supplied with each unit. Can be used on 32 volt
farm or boat systems as is without the installation of additional transformers, etc. Power consumption Takes very little space-can be readily stored when
 all accessories.
These units are complete with exhaust pipe, $3^{\text {m }}$ air duct elbow, control switch and cord, as illustrated, and are supplied with Technical Manual and Parts
SIMPLE TO INSTALL-SAFE TO USE-
BRAND NEW-INORIGINAL CARTONS-
Matle by Gavilin (Motorola)
NET PRICE
\$22.50

| DUAL RANGE VOLTMETER | $0-15$, | $0-150$ | Volt |
| :--- | :--- | :--- | :--- | :--- |
| A.C. WASton | | | | DUAL RANGE AMMETER, $0-3,0-15$ Amp. A.C.

Weston 528 W. case \& leads.......... $\$ 12.50$ Weston 528 W. case \& leads......... ©
SPEC. COMBINATION above voltmeter
meter hoth for............................ $\$ 21.00$
 Amp. A.C. Triplett $31 / 2^{\prime \prime}$ Rd. meters.
A.C. VOLTMETER, portable, $0-300$ V., for. $\$ 7.95$
R. Steel A.C. VOLTMETER, portable, $0-300$ V., R.S. Steel
6.C. AMMETEBR, port $0-200$ A. Weston 155 , selp

PORTABLE CHRONOMETRIC

 TACHOMETERTo measure speeds from 0 to 20,000 R.P.M. With
scale calibrations in 10 R.P.M. divisions. Divide scale calibrations in 10 R.P.M. divisions. Divide and you can read surface speeds up to 10,000 Each division on large dial indicates 10 R.P.M \% each division on small dial indicates 1000 R.P.M. Readings are similar to those made on kilowatt next test taken. Complete with 2 tlps, peripheral wheel \& operating,
instructions-No stop-watch or other timing mecha-Instructions-No Stop-watch or other tim Co. model

MULTIPLE RANGE, CONTINUOUS INDICATING
PORTABLE TACHOMETER
Three ranges in R.P.M. \& three ranges in F.P.M. Large $4^{4^{\prime \prime}}$ dial shows INSTANTANEOUSLY \& any revolving shaft or surface.
Complete with 4 tips, peripheral wheel, extension rod and operating instructions. No stop watch or other timing mechanism required,

We carry a complete line of surplus now meters suit. able for every requirement, such as
switchboard, laboratory standards, etc.

OVER 50,000 METERS IN STOCK
We also have in stock various surplus components, tubes, code keying and recording units, code-training precision resistors, current transformers, transmitters, receivers, condensers, and other electronic units, parts
and accessories.

(I) SEARCHLIGHT SECTION TI

MICROWAVE TEST EQUIPMENT

5/16" guide. gold plated
$\$ 150.00$
$\$ 65.00$
"X" Band calibrated atteniator.
 Lighthouse tube oscillator with attenuator $\mathbb{\&}$ output meter. 115 VAC input. reg. Pwr. supply. With cir3 cm . waveneter: 9200 to $11,000 \mathrm{mo}$ transmission tspe
3 cm . stahilizer cavity, transmission type $\$ 20.00$ 3 cm . wavemeter, micrometer head mounted on X-Band MAGNETRONS

PULSE EQUIPMENT
MODULATION UNIT BC 1203. B

Prorides 200 - 4,000 to 2,500 milicrosec: 1004 steps, fixed mod.
pulse, subpression pulse, suppression lating pulse, blanking voltage, marker pulse, sweep voltages, calibration voltages, fil.
voltage. Operates 115 roltage- Operates 115 vides various types of voltage pulse outputs for the
modulation of a signal generator such as General Radio $\mp 80+\mathrm{B}$ or $\$ 30+\mathrm{C}$ used in depot bench testing of SCR 695. SCR 595, and SCR 535. New as shown... $\$ 125.00$
MIT. MOD. 3 HARD TUBE PULSER: Output Pulse Power: 114 KW (12 KV at 12 amp). Duty Ratio: max. Puse duration:.5, $1.0,2.0$ microsec. In-APQ-13 PULSE MODULATION. Puise Width . 5 to 1.1 35 KW . Energy 0.018 Joules. ... Pi.. $\$ 49.00$ PS. 3 PULSE MOOULATOR. Pk. Dower 50 amp. 24 pulse line impedance 50 ohms. Circuit-series chargas rectifiers. 115 r. 400 cycle input. New with all tubes MODULATOR DECK, COMD less tubes $\$ 75.00$ APS-10 Low voltage power supply, less tubes. . $\$ 18.50$ W.E, \#DI66173 Hi-Volt inyut transtormer, W.F. Imped to 2 me. 2 sections parallel connected, potted in W.E. ôs 9800 input transsormer. Winding ratio beterminals $6-7$ and $1-2$ is $2: 1$. Frequency range: 380 520 c.p.s. Permalloy core.... 635 PPS, Pri. Imp: 50 Ohms. Sec. Imp: 450 Ohms. Pulse Width: 1 Microsec. Peak Output: 800 KW . Bifilar 2.75 Amp..... $\$ 19.50$ W. E. \#D 169271 Hi Volt Input pulse Transformer. $\$ 9.95$ on pri.. secondary delivers 14 KV . Peak power out G.E. K2748A Puise Input, line to magnctron..... $\$ 12.00$
$\$ 9280$ Utah Pulse or Blocking Oscillator XFMR Freq. $\$ 9280$ Utah Pulse or Blocking Oscillator XFMR Freq. PULSE NETWORKS G.E. \#25E5-1-350-50P2T. 25 KV , 5 sections, "E"' ctrG.E. $\# 6 \mathrm{ES}-5-2000-50 \mathrm{P} 2 \mathrm{I}$, 6 KV , "E., crrcuit, 3 sections, $7.5 \mathrm{E} 3-1-200-67 \mathrm{P}$. 7.5 KV , "E" Creuit, 1 microsec,
 -168184: .5 microsec. up to 2000 PPS, 1800 ohm

DYNAMOTORS

VARISTORS			
D-171631	\$.95	D-168549	\$.95
D-16:176	\$.95	D-162482	\$3.00
D-168687	. $\$.95$	D-166271	\$2.50
D-171812	\$.95	D-162356	\$1.50
D-171528	. \$,95	D-161871A	\$2.85
D-163298	. $\$.95$		

THERMISTORS

MICROWAVE ANTENNAS
AN MPG-I Antenna. Rotary feed type bly, including horn parabolic reflector, Less internal mechanisns, 10
 APS -43 cm . antenna. Complete. $141 / \mathrm{m}^{\prime \prime}$ dish. Cutler feed dipole directional coupler, anl standard $I^{\prime \prime} \times 1 / 2$ waveruide. Drive motor and gear merhanisms for howizontal and vertical scan. New, complete. $\$ 65.00$ diam. Fixtremely lightweistht construction. New. In RELAY SYSTEM PARABOLIC REFLECTORS: Ap prox. range: 2000 to 6000 me. Dimensions: $41 / /^{\prime} \times 3{ }^{3}$.
rectangle. new TDY "JAM" RADAR ROTATING ANTENNA, 10 cm. 30 deg. heam. 115 ra.c. drive. New........ $\$ 100.00$
So-13 ANTENNA. $24^{\prime \prime}$ disl with feedback dipole 360 Heg. rotation, complete twith Crive motor and selsyl.
New DBM ANTENNA. Dual, back-to-back parabolas with
dipoles. Freq. coverage $1,000-4500 \mathrm{mc}$. No drive mechanism

BD Type PE 73CM DM 21 DM 21CX DM 28 R DM 33 A Rtitic BD AR 93 23350 $35 \times 045 B$ B-19 pack
 D-104
 DA-3A*
 45053
 DA CWA $21 A A X$

	Radio	
mps_{350}	${ }_{\text {BC }}^{\text {Set }} 191$	$\begin{gathered} \text { Price } \\ 20.00 \mathrm{~N} \\ 14.00 \mathrm{LN} \end{gathered}$
350	BC 375	24.50 N
90	BC 312	3.45 N
0	BC 312	3.45 Nl
0	BC 348	8.95 N
0	BC 456	5.50 NT
0	SCR 506	6.50 LN
060	RC 36 SCR 515	$\begin{aligned} & 3.95 \\ & 5.25 \mathrm{~N} \end{aligned}$
135		
150	APN-1	4.95 N
075		3.50 N
060		3.50 N
110	Mark H	9.95 N
10		14.95 N
60	SCR 522	8.95 N
60	APN-1	3.95 N
400	TA-2J	25.00 N
35		17.50

MASTER OSCIL LATOR UNITS M.O. unitsoper $2-18$ me TlSK. Flexible plug in units usintype 860 tube in ECO ci\qquad oven assembly and ba\qquad	

ALL MERCHANDISE GUARANTEED. MAIL ORDERS PROMPTLY FILLED. ALL PRICES, F.O.B. NEW YORK CITY. SEND MONEY ORDER OR CHECK ONLY. SHIPPING CHARGES SENT C.O.D. RATED CONCERNS SEND P. 0 .

COMMUNICATIONS EQUIPMENT CO.
131-E Liberty St., New York, N. Y. Cable "Comsupo" Ph. Digby 9-4124, Mr, Chas. Rosen

ANNOUNCING!

The Opening of Our New Larger (formerly ot 63 Dey St.)

SELENIUM RECTIFIERS
Full Wave Bridge Type
INPUT
OUTPUT

NPUT	OUTPUT			
up to 18 v AC	up to	12 v DC	$1 / 2 \mathrm{Amp}$.	\$0.98
up to 18 vaC	up to	12v DC	1 Amp .	1.95
up to 18v AC	up to	12v DC	5 Amp.	4.45
up to 18 v AC	up to	12v DC	10 Amp .	7.45
up to 18 v AC	up to	12v DC	15 Amp.	9.95
up to 18 vaC	up to	12v DC	30 Amp .	14.95
up to 36 v AC	up to	28v DC	1 Amp .	3.45
up to 36 v AC	up to	28 v DC	5 Amp .	7.45
up to 36 vaC	up to	28 v DC	10 Amp .	12.45
up to 36 vaC	up to	28 v DC	15 Amp.	18.95
up to 115 vaC	up to	100 v DC	. 25 Amp.	2.95
up to 115v AC	up to	100 v DC	. 6 Amp .	6.95
up to 115 vaC	up to	100 v DC	5 Amp .	19.95
up to 115v AC	up to	100v DC	3 Amp .	12.95

OIL				
CONDENSERS				
NATIONALLY				

HIGH CAPACITY CONDENSERS $10,000 \mathrm{mfd}-25 \mathrm{WVDC}$. $2500 \mathrm{mfd} .-3$ VDC
3000 mfd . -25 WV D C C
$2 \times 1250 \mathrm{mfd}-10$ VDC.
$1000 \mathrm{mfd} .-15$ WVDC
$100 \mathrm{mfd}-50$ WVDC
$4 \times 10 \mathrm{mfd}-400$ VDC.
$4000 \mathrm{mfd}-18$ WVDC

4000 mfd . -30 WVDC
FILTER CHOKES

8 ny @ 550 ma 8 hy @ 300 ma

 25 hy @ 160 ma 12 hy © 150 ma 30 hy @ 70 ma .. .05 hy @1 15 amps 4 hy @ 600 ma. 200 hy @ 10 ma 600 hy @3 maHI-VOLTAGE INSULATION

AGE			
\$7.95	325 hy @ 3 ma	\$3.45	703A
3.95	1 lly @ 800 ma	14.99	705A
3.49	10 hy (a) 250 ma	2.45	706 CY
2.25	10 hy @ 200 ma .	1.98	714AY
1.39	10/20 @ 85 ma .	1.59	715 B
7.95	15 hy @ 125 ma	1.49	715 C
6.95	15 hy @ 100 m	1.39	717A
5.95	3 hy @ 50 ma .	. 29	721A
3.49	30 hy Dual @ 20 ma .	1.49	723A/B
3.49	8/30 hy (9) 250 ma .	3.50	724A/B
2.49	10 hy @ 100 ma	1.29	$725 A$

RADIO TUBES

NEW! STANDARD BRANDS!

-

189 GREENWICH STREET. NEW YORK, N. Y

500 WATT POWER SUPPLY KIT
 (Ideal for BC-191 \& BC-375E) 1-Transformer-Pri: $105 / 250 \mathrm{v}$.
 60 cyc in 5 v Steps
 Sec: 1120-0-1120v@500MA
 21/2v CT @ 10 AMPS.
 12 v @ 14 AMPS.
 17 v @ ${ }^{3} \mathrm{v}$ 21/2AMPS.
 32v @ . 025 AMPS. $\$ 32.50$
 2—Filter Chakes@\$7.95 ea. . . 15.90
 2-Condensers 3 Mfd @ 2000v DC @ \$4.45 ea.
 2—866 Tubes @ $\$.89$ ea.
 2—PIate Caps Ceramic @ $\$.20$ ea.
 2-Sockets @ \$. 20 ea.
 1—Pair Hash Filter Ca. 40 Extra Special Buy $\$ 49.50$

TRANSFORMER-115 V. 60 Cy HI-VOLTAGE INSULATION

3710v @ 10 ma ; 2 x 23 倍 (a) 3A.
2500v @ 15 ma
2500v@4 ma; $21 / 2 \mathrm{v}$ @ 2 A .6 .3 v @ 1 amp. 2150 v @ 15 ma
1750v @ 4 ma.; 6.3v@3A
1600v (a) 4 ma.; 700v CT @ 150 ma . 6.3 v (a) 9A.

525-0-525v @ $60 \mathrm{ma} .: 925 \mathrm{v}$ @ 10 ma ; 2 x 5 v @ 3A; 6.3v@3.6A;6.3v@2A;6.3v @1A 515-0-515v @ $175 \mathrm{ma} . ; 5 \mathrm{v}$ @ 3A; 2.5 v . © 5 A 500-0-500v @ 25 ma ; $262-0-262 \mathrm{v}$ @ 55 ma.; 6.3v@1A; 2x5v @ 2A.
500-0-500v @ 100 ma ; 5v CT @ 3 A ...
$450-0-450$ @ $300 \mathrm{ma} ; 140-0-140$ @ 100 ma .
36 v @ $1 \mathrm{~A}, 6.3 \mathrm{v}$ @ $5 \mathrm{~A}, 5 \mathrm{v}$ @ $3 \mathrm{~A}, 110 / 220$ Dual. Pri.
400-315-0-100-315v @ 200 ma ; 2.5 v (a) 2A ; 5v @ 3A; 6.3v @ 9A; 6.3v; 9A .
400-0-400v @ 200 ma ; 5 v @ 3A
350-0-350v @ 150 ma ; 5 v @ $3 \mathrm{~A} ; 6.3 \mathrm{v}$ @ $6 \mathrm{~A} ; 78 \mathrm{v}$ (9) 1 A .
$385-0-385-550 \mathrm{v}$ @ $200 \mathrm{ma} ; 21 / \mathrm{v}$ @ 2 A ; 5 v @ 3A; 3x6.3v @ 6A-PRI. 110/220.
$350-0-350 \mathrm{v}$ @ 35 ma .
340-0-340v @ $300 \mathrm{ma} ; 1540 \mathrm{v}$ @ 5 ma.
335-0-335v @ $60 \mathrm{ma} . ; 5 \mathrm{v}$ @ $3 \mathrm{~A} ; 6.3 \mathrm{v}$ @ 2 A ; 0-13-17-21-23v @ 70 ma .-PRI. 110/220 $325-0-325 v$ @ 120 ma ; 10v @ $5 \mathrm{~A} ; 5 \mathrm{v} @ 7 \mathrm{~A}$ $320-0-325 \mathrm{v}$ @ $120 \mathrm{ma} ; 10 \mathrm{v}$ @ $6 \mathrm{~m} ; 5 \mathrm{v}$ @ 7 A
$300-300 \mathrm{ma}$; $2 \times 5 \mathrm{v}$ @ $2 \mathrm{~A} ; 6.3 \mathrm{v}$ @ 2 友A; 6.3v@1A..
150-0-150 @80 ma.; 150 @ 40 ma.; 6.3v © $3.5 \mathrm{~A} ; 6.3 \mathrm{v}$ (1) 1 A .
$150 \mathrm{v} @ 55 \mathrm{~A} ; 150 \mathrm{v}$ @ $2.13 \mathrm{~A} ; 5 \mathrm{v}$ @ 5 A .
120-0-120v 바 50 ma
80-0-80v @ 225 ma ; 5 v @ $2 \mathrm{~A} ; 5 \mathrm{v}$ @ 4 A . 24v @ 6A.
3x18v@2A
$3 \times 10.3 v$ @ 7 A ; CT
12.6v CT @ 10A; 11v CT @ 6.5 A .
6.3 v @ $12 \mathrm{~A} ; 6.3 \mathrm{v}$ @ $2 \mathrm{~A} ; 115 \mathrm{v}$ (3) 1 A
$6.3 v$ @ $10 \mathrm{~A} ; 6.3 \mathrm{v}$ @ 1 A
$6.3 v v^{2}$ @ 1A; 21/2v @ 2A.
$5 v$ @ 20A; Dual 110v PRI
6.3v @ $21 \frac{1}{2} \mathrm{~A}$; 6.3 v @ $2 \mathrm{~A} ; 21 / 2 \mathrm{v}$ (2A.
$6.3 \mathrm{v} @ 1 \mathrm{~A}$.
$8 \vee$ CT 1A
2.5v @ 20A... 3.49 6v @ 15 amps RMS.
$2.5 v @ 20 A . .3 .49$
$6.3 v \mathrm{CT}$ @ $3 \mathrm{~A} ; 5 \mathrm{v} \mathrm{CT}$ @ $\$ \mathrm{~A}$
glass, for which
We check before
wo check
shipment.
shipasent. specify
now to ship.

All Prices Subject to Change Without Notice All merchandise guaranteed. Mail orders promptly filled. All prices F.O.B. New York City. Send money order or check. Shipping charges sent C.O.D. Minimum order $\$ 5.00$. 20% Deposit required with all orders.

(iD) SEARCHLIGHT SECTION (TD

 at a fraction of cost
PEAK ELECTRONICS

WESTINGHOUSE

Type MN Overcurrent Relay, Adjustable From 250 ma to 1 amp. External Push Button Reset. Enclosed in glass case. Hand calibrated adjustments, only

METER SPECIALS-BRAND NEW

$2^{\prime \prime} \mathrm{GE}_{\mathrm{GE}} 0.1$ amp RF (internal thermo
2^{*} GE 0.5 Ma DC (amp scale)
$2^{\prime \prime}$ GE $0-1 \mathrm{Ma}$ DC (volt scale)
McClintock $0-1000 \mathrm{MaO} \mathrm{DC}$
GE 0.30 volts DC 1000 ohms/v.

Weston 150-0-150 micro amps
Westinghouse $0-50$ amps AC
Weston 0.50 amps $A C$
Western EIectrio 0.80 Ma DC
Westly nhouse $0-2$ Ma DC.

- Westinghouse $0-20 \mathrm{Ma} \mathrm{DC}$.
3^{*} GE $0-15 \mathrm{Ma} \mathrm{DC}$ (square case)
3^{*} Wettinghuse 0.150 volts AC .
HIGH VOLTAGE—CURRENT MICAS

* Ceramic Caso. Tol $\pm 5 \%$.

WESTINGHOUSE

RUNNING TIME METER $0-99,999.9$ hours. $31 / 2^{\prime \prime}$ Square Bakelite Case. 110 V
60 Cyele Brand New. 7.95

OIL CONDENSERS

CHOKE BARGAINS

for $\$.99$
for
99

... 2 .99
.99
.99
.59
.75
4.95
6.95 4.95
6.95
11.50 24.50
4.50

Swing. Choke $1.6 / 12$ Henry i amp/ioo ma
H.V.-H. CURRENT PLATE TRANS. 1500-0-1500 volts at 1.5 amps. Tapped at 1350 and
1250 . Pri. $110 / 220$ volts $50 / 60$ cycles in 2 Separate windings. Bnilt to rigid
Navy specs by Amertran. Navy specs by Amertran.
Suitable for broadcast Suitable for broadcast
fransmiters,
Induction iransmitfers, induction duty. ibs. $\times 10 \times 7$. Swt
125 ibs. 125 ibs.

Now only $\$ 39.95$

MEDIUM CURRENT PLATE
As illustrated above. $1500 \cdot 0-1500$ volts at 600 ma .

ADVANCE

D.P.D.T.

ANTENNA RELAY
IO V. 60 cycle coll Steatite
insulation, Only $\$ 1.95$ each
As above but
As above but 4500 ollm
D

RECTIFIER TRANSFORMER

separate 110 v primaries. Sec, $70-75$ v at 3 amps.
GENERAL PURPOSE TRANSFORMER
Ideal for Bias, Filament, I solation Stepdown,

HIGH CURRENT PLATE TRANSFORMER

Thordarson Plate Transf. 2370 volts ct at 250 ma . Thordarson Plate Transf. 2370 volts ct at 250 ma .
Tapped at $300-0-300$ volts. Separate 215 volt 55 ma Tapped at $300-0-300$ volts. Separate 215 volt
bias winding. Pri 110 v 60 cy . Fully shielded.

UTC type PA 5000 ohm plate to 500 ohm line and UTC type PA 5000 ohm plate to 500 olim line and
6 ohm voice coil. 60 to $80,000 \mathrm{cps} \pm 1$ DB. 10 watts

RADAR JAMMER
425-750 MCS AN.APT 2. Con. tains 10 tubes:
(1)-307, (2)-703A (2)${ }_{5 R 4 G Y}{ }^{(1)}$ (1)-6AG7 (1) $\quad(231$ A. Unit has blower motor and 400 cycle own supply com. plete with all tubes, etc.:

STEPDOWN TRANSFORMER $220 / 110$ volts, 100 watts. Fully encased, $51 / 8 \times$
$41 / 4 \times 51 / 8.110 \mathrm{~V} .60$ cycle.............. $\$ 2.49 \mathrm{each}$
U. H. F. COAX. CONNECTORS 831AP-UGI2U-UG2IU-UG-14U-UGI46U-UG-206U. 83IR-83ISP 354 ea.

FILAMENT TRANSFORMERS

110 Volt 60 cy . Pri.-H.V. Ins.-Fully Cased
6.3 V 10 Amps..
5.3 Volts 15 Amps.
2.5 Volts 10 Am
2.5 Volts 10 Amps.
5 Volts Ct 3 Amps

10 Volts Ct 3.25 Amps
2.5 Volts Ct 21 Amos.

MULTI-SECONDARIES

5 VV CT 21
10 volts $\mathrm{CT} 13 \mathrm{Ampsi}, 7.5 \mathrm{~m} 2.5$
6.3 V 21
$5 \mathrm{Amp}, 6.3 \mathrm{v} 2 \mathrm{~A}, 2.5 \mathrm{~V} 2 \mathrm{~A}$
6.3v 21 A

PHASE SHIFT CAPACITOR
 4 Stator Single Rotor. 0.360 Degrees

WIRE WOUND RESISTORS

5 Watt type $A A, 20-25-50-200-470-2500-$
4000 ohms $A A$
10 watt type AB, 25-40-84-400-470-1325.
$1900-2000-4000$ ohms
20 watt type DG, $50-70-100-150-300-750-$
$1000-1500-2500-2700-5000-7500$
$10000-16000-20000-30000$ ohms .20 ea.
$\frac{5300-7500-18000-40000 \text { ohms } 24 \text { ea, }, ~}{\text { Precision } 15 \text { Meg. } 1 \% \text { Accuracy Resistor. }}$
Non-inductive, 7 watt, hermetically sealed
in glass. .29 ea. 10 for $\$ 2.50$

$50 \begin{array}{c}\text { Megohm } 80 \text { watt IRC type MVE } \\ \text { mounting }\end{array}$ Resistor with
10 for $\$ 6.90$

1% PRECISION RESISTORS
Wire Wound-Standard Make 2000-2500-5000-8500-10,000 ohms $\$.39$ ea. 49 ea.
$50000-95000$ ohms

a.			

W. W. POWER RHEOSTATS

WE BC 109IA-Radar RF unlt-with magnetron. etc.. in pressurized tank....................... 59.50 CWI 60 AAG range calibrator and power supply,

VARIABLE CONDENSERSCERAMIC INS.

PERK ELECTRONICS CO.

Git SEARCHLIGHT SECTION TI

> All prices indicated are F O B Tuckahoe, New York. Shipments will be made via Railway Express unless other in structions issued.

MODEL AN/APA 10 PANORAMIC ADAPTER

Provides 4 Types of Presentation: (1) Panoramic
(2) Aural
(3) Oscillographic (4) Oscilloscopic Designed for use with receiving equipment AN/ARR-7, AN/ARR-5 AN/APR-4 SCR-587 o: any receiver with I.F. of $455 \mathrm{kc}, 5.2 \mathrm{mc}$, or 30 mc .
With 21 tubes including $3^{\prime \prime}$ scope tube. For operation from 75 to 125 V .400 to 2600 cycle A.C. power source. $\$ 124.50$ Converted for operation on 115 V. 60 cycle source
$\$ 149.50$
80 Page Technical Manual
$\$ 3.50$

Raytheon RECTICHARGERS

 Input: | 115 |
| :---: |
| volts |
| 10 | Ontput: 48 v. DC at 3 amperes regulatitutable. Charges 23 to 24 cell battery or may be used direct as battery eliminator.

The Raytheon Recticharger is designed to supply current voltage to any radin within its addition to apply current to a storage battery connected across its load, of suff fient amount to maintain full charge. The function of the battery is to supply surge curenty Recticharger for temporary overload, and to act as a "stand-by" source of power in vent of commercial power failure
BRAND NEW $\$ 69.50$

G. E.
 400 CYCLE SERVO AMPLIFIERS

Type 2CV1C1
$\$ 29.50$
Metal Dust Cover Included

> LINEAR SAWTOOTH POTENTIOMETER
> w.E. No. KS 151388
 The d-c potentiometer consists of a closed type die-cast aluminum tinuous resistance winding to Which electric power is supplie
through two fixed taps 180 de grees apart. Two rotating brushes on the resistance winding) and two take-off brushes are prorided the position of the brushes varies the output voltage in accordance with a linear sawtooth wave. current. is arranged for panel or bracket mounting. is anproximately $3-11 / 16$ inches in diameter. mate weight of one pound. Externas an approxiBrand New \$5.75

Type TP-3
For two-way signalling for orce communication. No used on metallic or May be ed circuits, open-wire lines, . switchboards; two-way-local-battery telephones, of common battery switchboards, etc. Contained in treated waterproof fabric

Brand New \$39.50

SYNCHROS

(Selsyns, Antosyns, etc.)
G.E. types 2J5FB1, 2J5S1. Ford Inst. types SSDG Bendix types 1-1, 11-2, X, CAL 18300 Electrolux type Xxi Diehl 5 5CT, 5DG, 1F, and mony other types in stock.

All merchandise guaranteed. Immediate delivery subject to prior sale.

All Prices Subject to Change Without Notice

(4) SEARCHLIGHT SECTION (TD

- THE BEST IN ELECTRONIC SURPLUS

AMAZING "SNOOPERSCOPE" TUBE

An Infra-Red Image Converter Tube that onabled our combat men to see in the dark and through camouffage. No scanning or amplifiers necessary! Uses only infra-red light source and ignition transformer and rectifier tube easily built from toy necessary only for long-ranre work or where magnification image is desired, can be made front toy telescone. Shows imge with good detail in greenish-white color on $136^{\prime \prime}$ screen. Has wonderful possibilities for darkroom work, fog penetration devices, night plotography, etc. With technical data and diagrams. All NEW, individually boxed tubes.

PRICE, EACH
$\$ 10.00$

20-40 MC RADIO BEACON EQUIPMENT

MODEL RC-163 is designed for ready connection to RADIO SET SCR-508, 528 , etc, and 608,628 , ete.- or similar transmitting and tion, and can also be used for navigation by using two beacons on a base line. The beacon eqpt. consists essentially of a rotating directional antenna (Adcock type) synchronized to an automatic code keyer (which can be removed). Four sets of plug-in inductors are supplied to cover the 20 to 40 mc range. Designed to operate from a 12 -volt storage battery, power consumed approximately 54
watts (4.5 amps). Supplied with antenna. array, antenna mount wath rotating motor, code discs, audio oscillator, phase-load box, mast sight, tuning indicator-receiver which checks field strength as well as frequency, valuable compass and tripod, control panel, all necessary cables and complete technical manuals for installation, theory and service. Equipment is NEW and export packed

PRICE, EACH
\$169.50

32 VDC 110 V AC CONVERTER

Mfd. by Kato Engineering, for marine or farm thstallation. Rotary type, compact and ruggedky puilt
for continuous duty. Rubber shock mounting on filter case, with complete input and output filtering. Out-
put 110 volts, 60 cycles AC, ${ }^{225} \mathrm{KVA}$, but will put
operate effititiently on loads up to 300 watts. New
units onls.
PRICE, EACH
\$39.95
Quantities, 10 or more, Each $\$ 32.00$

SPECIAL BARGAINS!!

TYPE-MAB 135 Volt " B " and 1.5 Volt " A " Battery 1Block, for personal and battery portable radios. This battery will give added Recause of the additional plate valtage over conventional battery blocks which are usually only 90 volts. Uses standard 5 -prong plug connector for connection. Dim. shelf-life, and guaranteed per- \$500

HANDF-TALKIE BATTERIES, for SCR536 or BC611. Type BA-38, 103.5 volt, "B" bat-
tery, and type BA-37 i. 5 volt "A", battery All export packed and guaranteed perfect. (both batterles)
$\$ 2.50$
VT-127A Platinum Grid VHF Tube. 450 TH, GE or Machlett.

807 813

813
861
872 A
450 TL
527.

AMPLIDYNE MG SET Motor $110 / 220,60$ C. A.C.

For Automatic or Remote Control of heary equid

 watts. Motor
cycles AC, rated at or
230
HP cycles AC, rated at
capacitor
for starting,
HP RPM-1725. Includes capacitor for starting, and instructions for 115 or moved. and entire assembly shortened to make rai-
uable $3 / 4$ H. P. AC motor. Quantity sufficient to warPRICE, EACH.
$\$ 60.00$

FOR OSCILLOSCOPE USERS

VOLTAGE DIVIDER PROBE. Permits view ing and measuring voltage waves of larger magnitudes than normally possible. Con sists of 3 -piece molded body containing resistors and capacity which make up divider circuit, plus coax cable and alligator and anco ctions. permits measuring and analyzing voltage peak values of 1400 wave, shape distortion. NEW, with tech cal bulletin
PRICE, EACH
\$4.95

RADAR
 TREMENDOUS ASSORTMENT

Hundreds of major radar components, mostly for
navy types, includes power transformers, wave plumbing of all sorts, magnetrons, cavity chambers echo boxes, connectors, antennas. Inspection invited, SF RADAR, NEW and Complete, in priginal cases with operating spares. SF-1 RADAR SPARES. All NEW major units, with tubes, transformers, capacitors, TE SPARES\%5.00 SF RADAR SPARES, NEW PRICE, COM-

RADIO TRANSMITTERS MODULATORS, AND POWER SUPPLIES

Immediate Delivery from Stock
BC-325 Transmitter, 400 W --A1, 100 W -A2 and A3. 1.5 to 18.0 mc . M.O. or X'tal $110 / 220 / 1 / 60 \mathrm{c}$. frequencies. Operates from lent condition. PRICE, EACH $\$ 400.00$ TCR-Radiomarine Transmitter, 125 watts (conservative) A1, A2, \& A3. For ship or shore station radio telephony, ${ }^{6}$ remote control box supplied. Complete RF, modulator and power supply (for 110 Excellent condition, with tubes and cabinet. control box. EACH $\$ 500.00$ BC-319-A Transmitter, CW only 300 watts output. Freq. range 4.0 to 13.4 ms Operates from $110 / 220$ volts, 60 cycles AC. Excellent condition. Less tubes. PRICE,
 cabinet, $96-200 A^{2}$ RF section. Large the $V F O$ intermediate stage. Almost new, but lacks PA ind PA ance only. Power supply separate not available, but can be built. Less
 RCA 8023/HF Ship Transmitter. 200 watts output, A1 and A2. Freq. range 4.0 to 20 in in operates from mg set (not supplied) 8024). WIth transmitter (RMCA type 8024. Wlth tubes, but no receiver. ERX-
cellent cond. PRICE, EACH.
MACKAY MACKAY SHIP TRANSMITIERS. The following Mackay ship-radio types are available: 150 -AY, $151-\mathrm{A} 1,149-\mathrm{A}, 136 \mathrm{~A}, \mathrm{~A}$,
$04-\mathrm{M}, 147-\mathrm{M}$. Some new, most in excel-on-M, $147-\mathrm{M}$. Some new, most in excelLINK FM Transmitter Receive
MC. Model 1498 DC. 50 watts 0utp, 70-100 style cabinet containing transmitter, wall ceiver and 14 Y. D.C. power supply, handset. Dim: $34^{\prime \prime} \times 21^{\prime \prime \prime} \times 11^{\prime \prime}$. NET NEW COM CONDITION Complete with tubes, crystals. speclal telescopic antenna, instruction book
 RADIO TRANSMITTER BC-339, CW only, SIX crystal positions aiso M. 4.0 to 26.5 mcs . mediate stages and two 833 s final. Operates on 220 volts $50 / 60$ cycles. Reconditioned new. Complete with power supply and one set opMoting tubes. PRICE ……..... $\$ 2400.00$ MODEL AT-14A TRANSMITIEER. Mfd. by ${ }_{225 W}$ Philips. Output A1 275 watts A2, A3 positions ${ }^{2}$ separate ${ }^{\text {to }} 20$ M.O. Oper Four xtal $110 / 200 / 220 / 240 / 260$ volts $50 / 60$ on PRICE, complete with power supply cycles. of operating tubes ….............. $\$ 900.00$ above model AT-14A, complete in only for with tubes. Has 1600 Volt D.C. output at 450
 Output A1 150 TRANSMTTTER. Philips. Freq. 2 to 20 mes., with 6 . Mratuned channels. Operates from $90-260$ volts $50 / 60 \mathrm{c}$ A.C. COMPLETE, with tubes........ \$450.00 RCA 2-CHANNEL A.F. AMPLIFIEER. 250W. per channel, total 500 W . Complete with power supply, voltage gain stages for low approx. 6 ft . high. Operates in one cabinet $0 / 60 \mathrm{c}$ A.C. Almost new cond. with volts PRICE BC-1100 (RC-263), $75 \mathrm{~W},{ }^{2}$ A1, $50 \mathrm{~W}, 00.00$ channel, dial selection of channel. 1.5 -10 control New EACH Collins TCB-1, $1.5-12 \mathrm{mcs}, 75 \mathrm{~W}, \mathrm{~A} 1 / \mathrm{A} 2 / \mathrm{A}$, 10 channel, 2 boxes spares, 110 V AC. less TDF Transmitters, 125 W A1/A2, 35 W . ${ }^{2} 300 \mathrm{Kc}$ $300 \mathrm{Kc}-18.1$ Mcs., Operation 115V, DC. Exsipreme ship-to-shore transmitter-receiver, 100W output, 9 channel, ${ }^{2-3}$ mes., crystal
controlled, for 110 V .60 c . A.C. Condition N-2 Controlled, for 110 V . 60 c . A.C. Condition N-2. Eamprete with tubes and microphone. 110V. DC to 110 V AC M. G. For above, $\$ 600.00$ Northern Radio ship to shore transisi...... receivers, 5 channels crystal controlled. 65 W . output, 110 V . DC. 1.5 to 5.6 mcs . With Halstead model iotips transmiters $\$ 250.00$ ${ }_{25} \mathrm{Hal} \mathrm{W}$ tead model 10LFA transmitters, A3, ${ }^{25 W}$. output, $200-400 \mathrm{Kc}, 110 \mathrm{~V} 60 \mathrm{c}$. operation.
Condition N2. EACH............ $\$ 100.00$

LOW
 PRYES
 IMMEDATS DELUETY

(1) SEARCHLIGHT SECTION TI

GENERATORS
 Two separate units couple GENERAL ELECTRIC AMPLIDYNE Model 5 AM 49 AB

 late. MARINE TYPE with roltage regulator and fre quency controller and freAMERTRAN 'TRANSTATS" VOLTAGE REGULATOR
 0 mutor, range $0-115 \mathrm{~V}$. Max Anıps 100. Reconnection dia operation, Brand New, Fac-
tory Cases........... $\$ 75.00$ 115/1/60. Commutator range
 RANSFORMERS
Raytheon Fil Type U 8964 Pri 115 V G0 Cy Se

 Raythoon Dist Type CRP-30382. Pri: $220 / 440$ V
1.71 A. Sec: $115 \vee$ © 6.53 A. Test 4000 W Power Raython Fil U'-5083 Pry $220 / 440$ V 80 Cy Sec 5 Volt @ 30 Amps. 1780 test Volts. $11 . \$ 10.95$ Cy Sec: $640 \mathrm{~V} 80 \mathrm{Ma}: 0.3 \mathrm{~V}$ 3.2A; 5 Volts $3 \mathrm{~A} . .53 .00$
Ratheon Piate and Fli Type Us824. Pri: ils. V ${ }_{60}^{60} \mathrm{Cy}$ Sec: 770 V © 6 Amps : 2.5 v Amps.; 5

10.4 Amperes 80% P. F. Ball hearings. With resistive control of voltage output and frequency permitting line-start operation. Fully enclosed.
Splash-proof. Brand New! Factory Cases. $\$ 100.00$ Same machine for 230 Volts. D. C. Operation ball bearings, fleld coil, etc. in steel case.... $\$ 10.00$

STANDARD BRAND OIL CAPACITORS and \# D22514 Dual Rated. 375 MFD © 16,000 Volts WESTINGHOUSE NOFUZE "DE-ION" +1) WESTON PORTABLE VOLTAMMETER Model 280 . Ranges $3-15-150 ~ V D C ~ a n d ~$
$3-15-30 ~ A D C ~ A c c u r a c y ~$
Black $3-15-30$ ADC Accuracy 1% Black
leather carrying case. Brand New
$\$ 21.00$ RCA REPRODUCERS
 Droofed

> PROJECTOR SPEAKERS
 Imp. Pri ... 10.95 Deck Entrance Insulators (Bowi and Flange Type)
Mfd. by Ohio Brass Co. Heavy galvanized netal
flange $101 / 2^{\prime \prime}$ Dia., porcelain bowl set in rubber flange 101/2 Dia., porcelain bowl set in rubber 1013/2" long. Insulation distance between top bell SCR 511 Walkie-Talkio-Low Power Portable Trans-
Receiver for phone operation on dry or storage batteries. Consists of BC745 RCVR and Transmitter. and ${ }_{2}-6$ Mc. Complete with Crystals and batterles.

STANDARD BRAND RHEOSTATS
HIgh shock rheostats, four $13^{\prime \prime}$
plates with circular contacts,
100 plates 8 whin circular contacts, $8-2 A, 275-345 \mathrm{~V}$ connected in
series. Assembled for back of board series. Assembled for back of board
reversing the supporting brackets for mounting or by reversing the supporting brackets for
 Input 440 V. 30 CJ. ${ }^{3}$
ph. 1A Output 250 VDC
$1.5 \mathrm{~A} ~ 375$ W 3450 TRM Amplidvne Control Aralifier W5999179 List 7 . 115 Control windings in selszn operated amplidyne
 5 amps. Output: 250 VDC, .6 amp . 150 wetts, cont.
duty 40° C. Temp. Rise, 3450 RPM. New.... $\$ 53.50$ Model 5 AM 78 AB 16 Input: 440 V .60 Cy. 3 Ph . Model 5AM 78AB50A Input: 440 V . 60 CF .3 Ph Output 250 V. DC 6A 1.5 KW.
COOPER HEWIT LÄMPS
\#160-A9T2S1. Mercury Vapor Light gives high blue White luminosity almost pure ultra violet. 110 V
60 Cy . Used for lighting photographic, newspaper 60 cy. Used for lighting photographic,
photo-engraving shops and for industrials. $55^{\prime \prime}$ Iong 1 㳊" Diameter NAYTHEON CHOKES

Ohms. M. Choke vx9116. 03 Henries @ 2 (itectitiet
 Dual Choke, WX5146 1.5 Henries 400 MA 1.5 ILen-
 G. E. \#7385576, 87.9 Henries @ . 0672 Amps 10.5 Amertran, 20 Henries SELECTOR SWITCHES Heary duty. Built for U. S. N Remorable contacts enabling any combination of closed and open circult. Your choice 5 section tion- 15 pole; 15 sectlon- 30 pole. $\$ 1.50$ ea. Case
lot of (5) $\$.00$ or (5) cases special price... $\$ 17.50$ Motor Driven "Benjamin" Horn Navy Type- 11 - 8 .
Heary Duty, 115 VDC @ High Pressure Axial Flow Fan Mifd. h. Dynamic 225 Capacity C.F.M. 8000 RPM. Motor is mounted inside a cylindrical tube $11^{\prime \prime} x^{\prime \prime} 6^{\prime \prime}$ and has
$6^{\prime \prime}$ blades one on each end and tro cut off Portable D C Ammeter, Hoyt \#5is o-is ADC Mirrored scale $31 / 2^{\prime \prime}$ L. Molded Bakelite Base $4^{1 / z^{\prime \prime}}{ }^{2}$
 Coril 2 Conductor $\% 18$ cut in 9 ft igths. 10.50 appliance. fan, or blower mfgs., otc. Large

> DELCO CONSTANT
\qquad 2.4 amps. I/30 HP. 3600 $\begin{array}{cc}\text { RPM } \\ \text { Long } \\ \text { sion } \\ 5 / 32^{\prime \prime} & \text { Dinaft } \\ \text { Diam. exten- }\end{array}$ duty ${ }^{4}$ hole unse Mtr CABLE SINGLE CONOUCTOB Neoprene
\#CMPW-43q45. Available in 600° ft. reels only $\$ 190.00$ Der M. IS uses 2 \# ${ }^{\text {In }} \mathbf{6}$ Dry Cells Complete w/bulb but

ITCH RADIO
CRYSTAL DUPLICATOR MODEL CZ-1000

Callbrates crystal plate of unknown frequency against standard plate of desired Prequency. Consists of
standard and test oscillators whose outputs are mixed 0 produce an amplified beat note the frequency 0 50,000 cycles. Metal cabinet whinged of 500,5000 $13^{\prime \prime}$ w 8 19" L. $4^{\prime \prime}$ square activity and

WESTINGHOUSE INDUCTION HEATER An outstanding Value, Westinghouse Induction Heators, 450 MC . 140 Amps. Input $820 / 440 \mathrm{~V}$
 ALI PRICES F.O.B. BOSTON. ORDERS ACCEPTED FOR RATED CONCERNS ON OPEN ACCOUNT

(1) SEARCHLIGHT SECTION (T)

INTEREST IN COMPONENTS FOR THE LABORATORY

2000 Mir. 5 volt (without mounting nut) electrolytic. Price 49c each

\#34-G. E. CR2791-B106C44
S.P.D.T. Double Break. Makes at 11 volts 60
Brealss at 6
M.A. Breaks at 6 volts
$36 \mathrm{M} . \mathrm{A} .180$ ohm 36
coil. M. A. 180 ohm
a cts peres. Priced at peres. Priced at

Bank of 10 Midget telephone relays. These are at tached to rack with knurled thumb screws, thus easily
removed from rack.
Rack of $10-300 \mathrm{ohm}$ coll make one-break none. Prices Rack of $10-300$ ohm coil make two-break one.... $\$ 3.25$
All operate at much lower than rated 24 V .
\#85-G. E. THYRITE Diameter 3 in. Thickness $1 / 6 / 81 \mathrm{ln}$. Hole $3 / 2$ Good voltage regulator, 3rd harmonic Current:
5 ma . at 18 volts; 10 ma . at 23 volts.
Rating: 3 wat wolts; 40 ma at at 36 volts. Rating: 3 watts maximum in air. Priced at 25 c each
We have sold th

\#82-G. E. THYRITE K-8396832-1

Diameter $17 / /^{\circ}$. Thickness $1 / 8^{\prime \prime}$. Hole $1 / 2^{\prime \prime}$ Good voltare regulator, 3rd harmonio Current:

5 ma . at 21 volts
10 ma . at 24 rolts
10 ma. at 24 rolts
20 ma. at 28 rolts
20 ma . at 28 volts
40 ma at 33 volts
Rating $11 / 2$ watt maximum in air. . 15 ea.

\#89-CANNON SOLENOID This item just must be seen and tested to be appreclated. At 2 pound pull at $3 / 8$ in. stroke. has $1 / 2$ pound pull at $3 / 4$ in. stroke: has 11 pound pull at $8 / 4$ fn. stroke; 4 , pound pull at $3 / 8$ in. pound pull at $8 / 4$ inch stroke; 8 pound pull at $3 / 8$ in. has 2 Very compact, easily mounted Tapered shaft that goes clear through the back of the case when energized protruding $1 / 8$ of an inch which would be sufficient to close a micro switch in

EXCESS INVENTORY CORP.

(ID) SEARCHLIGHT SECTION ©

RELAYS FOREVERYPURPOSE Overa Million in Stock!

R-125	24 V	Resistance	Conlacts
R-126	$90-120 \mathrm{~V}$	2000	DPDT
R-504	24.70 V	2800	DPDT
		SPDT	

DIRECT CURRENT MIDGET RELAYS

-WMEILS
320 N. LA SALLE ST., DEPT.-SL, CHICAGO 10, ILL.

APR-1 RADAR SEARCH RECEIVER, range $300-4000 \mathrm{mc}$, similar to APR-4 Receiver, 110 volts, 60 cps .

TUNING UNITS for APR-1 or APR-4 Receivers
TN-17 range 80.300 mc
$\mathrm{TN}-18$ range $300-1000 \mathrm{mc}$
TN-19 range $1000-2000 \mathrm{mc}$
TN-54 range $2000-4000 \mathrm{mc}$
10 Cm TEST LOAD TPS-55 PB/T. . $\$ 5.00$
X BAND VSWR TEST SET TS.12/AP, complete with linear amplifer, direct reading VSWR meter, slotted wave guide with gear driven traveling probe, matched termination and various adapters, with carrying case, new.

X BAND PICK-UP HORN AT-48/UP, with coaxial fitting
. $\$ 5.00$
X BAND POWER LOAD TS-108/AP, new . $\$ 25.00$

SIGNAL GENERATOR MEASUREMENTS 78E, 45-85 MC, 1-100,000 microvolts, calibrated output.
$\$ 100.00$
TS 155A/UP SIGNAL GENERATOR, $2700-3300 \mathrm{mc}$ pulsed, calibrated output, 110 v. 60 cy. New.
TS 9/APQ5 CALIBRATER.
S BAND MIXER, type N signal input, oscillator input, and I.F. output connectors, variable oscillator injection. $\$ 17.50$
MICROWAVE TEST CABLE, 15^{\prime} RG-9U cable with UG-24U connectors. 15 feet long $\$ 4.008$ feet long. . . . $\$ 3.50$
LOSSY CABLE, 10 db at 3300 megacycles, type N connectors.
$\$ 3.50$
TYPE N CONNECTORS AND ADAPTERS, UG-10, 12, 21, 22, 24, 25, 27, 29, 30, $58,59,83,86,167,190,201,245$ and UHF Connectors SO-239, PL-259, 83 , IAP, UG-266, complete with center contacts, immediate delivery.
RADAR JAMMER, T-26/APT-2, 435-715 megacycles, 110 volts, 400 cps , new, complete with antenna.
. $\$ 40.00$
COMPLETE SQ RADAR, $10 \mathrm{~cm}, 300$ yards minimum, max. 3, 15,45 miles, A, B, or P.P. I. presentation, $90-130$ volts, 60 cps . SD-3 SHIPBOARD RADAR EQUIPMENT, complete with all accessories, operates on 115 volts, 60 cps , new.

SA-1 RADAR TRANSMITTER, Receiver and Indicator, 115 volts, 60 cps , new.

ATTENUATOR PADS, 50 ohms, unbalanced pi, 20 decibels $\pm 2 \mathrm{db}$
Type 3, DC-400 mc, type N
connectors $\$ 12.50$ Type 7, DC. 1000 mc , type N connectors . .$\$ 30.00$

MUTUAL INDUCTANCE OR PISTON TYPE ATTENUATOR, type N connectors, rack and pinion drive, attenuation variable 120 decibels, barrel diameter 5/8" . $\$ 30.00$
RADAR RECEIVER BC 1068-A, 150-200 megacycles, individual tuning for the r.f. stages, band widths 4 megacycles, 115 volts, $60 \mathrm{cps}, 14$ tubes......... $\$ 45.00$
GENERAL RADIO PRECISION WAVEMETER, type 724 A , range 16 kc to 50 megacycles, 0.25% accuracy, V.T.V.M. resonance indicator, complete with accessories and carrying case, new. . $\$ 175.00$

125/APR ANTENNA
.$\$ 5.00$
TS 10/AP for APN-1 $\$ 40.00$ TS 203/AP CALIBRATED SELSYN. $\$ 13.00$ W.E. NETWORKS, D-162630, D-162629, D-161637, D-162634....... \$1.00 each.
G.E. DELAY LINE, 4 microseconds 1000 ohms, $0-2 \mathrm{mc}$
.$\$ 4.00$
TRANSFORMERS, 115 volts, 60 cps primaries:

1. 6250,3250 and 2000 volts, tapped primary $\$ 14.00$ 2. 6250 volts 80 ma , ungrounded, G.E. $\$ 12.00$ 3. 2 secondaries at 500 volts 5 amps each, wt 210 pounds.
.$\$ 50.00$
PULSE INPUT TRANSFORMER, permalloy core, 50 to 4000 kc impedance ratio 120 to 2350 ohms.
$\$ 3.00$
PULSE TRANSFORMER, Utah $9280 . \$ 1.50$ PULSE TRANSFORMER GE 68G 828G-I
$\$ 5.00$
HYPERSIL CORE CHOKE I Henry, Westinghouse L-422031 or L-422032. . $\$ 3.00$

VARISTORS WE DI71528, DI71628, D161871-A.

75c each.
$0-350$ volts, 1000 ohms per volt meter, Westinghouse NX-35, $\$ 4.50$ LABORATORY

6 Broad St.

Red Bank, N. J.

Red Bank 6-4247

(il) SEARCHLIGHT SECTION

SAVE MONE Y
 save with TIME KAYLINE

SPECIAL VALUES

Mica-flled amphenol steatite sockets.
Mica-filled octal sockets.
Grid Caps for MIP octal
Sockets for 2×2 high roltage mica-filied.
sockets for 2×2 high roltage mica-flled.
3 AG fuse holder panel type..........
2.5 M. H. Choke. Trans. type.
Dynamotor Model 5051
DC input
volts 27.0
DC output
volts $285 \quad .75$

4 GANG VARIABLE COND.

11-200 MMF. Each
section section counterbalanced. Wght. approx.
$31 \mathrm{bs} .{ }^{7 / 5 / s} 1 \mathrm{ong}$,
$31 / 4^{\prime \prime}$ wide $27 /^{m}$ high. Mounts any Dosition. 1.95

CHEST MIKE
WESTERN ELECTRIC Type
With
Bith Breast Breast
Plate
2.49

NATIONAL TX9 INSELATED SHAFT couplink ab for

$$
\begin{aligned}
& \text { RESET } \\
& \text { SWITCH } \\
& \text { only . } 79
\end{aligned}
$$

WESTERN ELECTRIC INTER-PHONE COMMUNICATION SYSTEM

A wonderful system for use between
nursery and do dustairs, generat home or
office use nursery and downstairs, generat home or
office use. 110 volts, 60 cycles. O. BC605D complete with 1 mas-

RADAR RECEIVER

CAPACITORS-Standard Brands
8 MFD 330 VAC
1.25 16 MFD 330 VAC

PAPER TUBULAR CONDENSERS

11000 VDC-A

.05400 VDC, 8 for
100 VDC-Midget ELECTROLYTIC COND. FP TYPE 40/30/10/10 MPD at $500 / 350 / 350 / 300 /$ VDC...... 1.00 20/20 MFD at 250 VDC. 3 for $\$ 1.00 \ldots .$. . a. . 39 MICA CONDENSERS . 0005 -500 volts. per 1002.95 VACUUM COND. $12 \cdot 25 \cdot 50-100 \mathrm{MMF}$. Write for prices.

WAVEMETER

Here's an amazing value on Waveand contain high quality resonant cavity wavemeter oscillator heterodyne amplifier electric tuning eye com-
plete with 19 tubes. plete with 19 tubes, 110 © AC power
supply. The tubes alone for ceed the entire
ceed
price

RELAYS

2500 Ohms, 4 Ma SIDD, ${ }^{5}$ prong plug in
type. hermeticaly sealed, all 15
TRANSMITTER
Range $150-200 \mathrm{Mc}$ BC-1072A - An outstanding 24.95

HAMMARLUND TRANSFORMER Transf
\# SA16
455 F

TELEPHONE HANDSETS
AMPERITE/DELAY RELAY
6.3 Volts at 90 Sec. Type 6P70 PL68 PLUGS
HIGH VOLTAGE TRANSFORMER, plate; 2100 volts 59 HENRIES, Now MA CHOKE. 12 - 12 HENRIES, DUAL CHOKE 200 MA DC15

> VARIABLE CONDENSERS, STANDARD BRANDS

No.	TYPE	MAX.	MIN.	Plates	AlR	LENGTH	PRIST	PRICE
${ }_{\text {PL }}{ }^{\text {PL-6043 }}$	EV-140-AD	140	5	27	. 020	34	87.60	
PL-8005	XR500-PS	475	${ }^{7} 8$	${ }_{21}^{11}$.070 .030	${ }_{2}{ }^{1}$	7.60 650	1.95
PL-7101	NP-75-DS	75	11	19	. 084	$4{ }_{4}$	6.20 5	2.95 1.95

TERMS: All shipments F. O. Bs. Baltimore, Md. Please send
20% deposit on all orders, balance C.O.D. Mininum order $\$ 2.00$ CABLE ADDRESS: KAYDISCO Unless otherwise stated, all items are sold as is Your inquiries invited on other prts not listed here

Coaxial Cables and Connectors Brand New !! I AV Approved! !!

AN
UG-
U UG- $9 / \mathrm{U}$
$\mathrm{UG}-10 / \mathrm{U}$ UG-10/U UG-13/U $\mathrm{UG}-17 / \mathrm{U}$
$\mathrm{UG}-18 / \mathrm{U}$ UG-18B/U UG-19/U UG-19B/U UG-20A/L $\mathrm{UG}-21 / \mathrm{U}$ UG-21A/U UG-22/U UG-22A/U UG-23/U
UG-23A/U
UG-23B/U UG-27.A/U UG-29/U
UG-30/U UG-33/U UG-35A/U UG-37/U UG-57/U UG-58/ UG-59A/U UG-60/U UG-61/U UG-61A/U UG-8
UG-8
 UG-91/U UG-92/U UG-92A/U $\mathrm{UG}-93 / \mathrm{U}$
$\mathrm{UG}-93 \mathrm{~A} / \mathrm{U}$ UG-94/U UG-94A/U
UG-95/U UG-95A/ UG-96A/

UG TYPE CONNECTORS

Deduct 10\% from prices shown on total order of 100 or more. 1.14	1.14
1.56	
1.45	
1.14	
1.56	

$\begin{array}{rr}\text { AN } & \text { Price e } \\ \mathrm{UG}-97 / \mathrm{U} & 3.5 \\ \mathrm{UG}-98 / \mathrm{U} & \mathbf{1 . 5}\end{array}$ $\mathrm{G}-100 / \mathrm{U} \quad 1.55$ G-107/U $\quad 2$. UG-108/U
UG-109/U G-114/U CW-12:3/ UG-154/U UG-160/U UG-160A/U $\mathrm{UG}-167 / \mathrm{U}$
$\mathrm{UG}-173 / \mathrm{U}$ $\mathrm{G}-175 / \mathrm{U}$ UG-188/U UG-201/U UG-20
2.25
2.34UG-2
UG-2
UG-2

UG-96A/U

Life Clectronic Sales

91 Gold St
Tel: DI gby 9-4154
N. Y. 7, N. Y.

WESTERN EIECTRIC TRANsMITTER

TYPE T-112-B (14-C)

- Freq range 2 to 18 MC .
- Power Output: 800 w. A1, 400 w. A2 A3.
- Telephone dial 10 -channel selector.
- Input: 220/3/60.

This equipment is packed in 8 cases and includes 2 cases of spares. Export crated,
F.O.B. N.Y.C. subject to prior sale.

AIRCRAFT RADIO INDUSTRIES, INC.
101 Dixwell Ave., New Haven, Conn.

TUBES

All Brand New in Original Factory Package

MAGNETRONS

NEW CONDENSER SPECIALS

Standard Brands

COMPUTER CONDENSERS

LOW RETENTIVITY - LOW TEMPERATURE
COEF. 1.0 MF, PRECISION POLYSTYRENE CONDENSERS
Made By Well Known Manufacturer FS-7605, Electronics,
330 West 42 nd St., New York 18, N. Y.
(1i) SEARCHLIGHT SECTION (TD

500 CYCLE GENERATOR

4KVA 110 Volt single phase to hook up to a 60 cycle motor as a power saurce to operate
surplus $400-500$ cycle equid surplus $400-500$ cpele equipshaft, bultt-in exciter \& separator DC output of $14 \mathrm{~V} @ 40$ Amps. $00251 / 2 \times 12^{2}$ dia. Wt. Approx 200 EVERETF or MIDWEST. ea. $\$ 79.95$

AMPLIDYNE

GE\# 5AM3INJ9A 23VDC put at 8.8 Amps. 1 watt field power controls watt 530 ideal DC motor speed voltage control. Brand ea. \$2.95

BALLISTICS COMPUTER

Type\# 2CH1. Designed to add ballistics corrections to B29 fire control systems. Contains 4 servo hundreds of gears, differential selsyns, geared head Wew 100 lbs. Brand
\$29.95
50 RPM GEARED HEAD AC MOTOR

115 Volts 60 cycle single phase wire reversible (uses external 3 Cabot \#RBC- 3712 Torque 100 oz/in. $8 /{ }^{3 \prime}$ dia. shaft. Wt. 9
libs. 13 rand ea. \$8.95

10,000 VOLT 23 MA TRANSFORMER

Pri. 115 Volt 60 cycle GE\#56G9: UL approved. OD $71 / 2 \times 5 \times 5^{\prime \prime}$. Wt. 14 lbs . Brand
ea. \$6.95

1/3 HP VACUUM PUMP

The pump is a MOTAAIR \#588 an air filter, a forced feed oil lubricating \& sealing system s can be used to compress ai
on output side. The motor is a CENTUR SV. The motor is
$50-60$ cyele 17251 HP 220 rolt OD $13 \times 11 \times 7^{\prime \prime}$. Wt. 40 lbs ed. $\$ 39.95$

400 CYCLE INVERTER

GE:\#51221NJSA 28VDC input 110 oit 400 cyele output 485 VA 4.2
 ea. \$7.95

Satisfaction Guaranteed or your money back.

DICK ROSE ERECO
 2912 Hewitt Ave.
 Everett 27, Wash.

PRINTED CIRCUIT KITS

 NO MORE WIRESLearn Printed-Circuit Methods. An important new aid in designing, testing, and repairing modern electronic circuits. Paint working circuits over your rough sketches or any nonconductor. High instruction v alue for colleges. Kits $\$ 3$ and $\$ 5$, contain air-drying conducting and resistance (30 ohms to 2.5 megohms) paints plus free manual. Manual separately 25 f. Free

Microcircuits Company
Dept. 7D, New Buffalo, Michigan

for worthwhile savings to you

CAPACITORS

Standard Brands

1.5
3.5
6.5
2
0.3
0.5
0.5
0.1
0.1
0.1

DRY DISC RECTIFIERS Continuous Duty Ratings

3.5
amp
6.5
an
$0-3$
$0-5$
0.1
0.1
$0-1$
0.

KILOVOLT METER WESTON MODEL
@ 1,000 ohms per $\mathrm{V} ; 3^{\prime \prime}{ }^{20} \mathrm{kV}$
qace @ (alibrated to read 0 to $3^{\prime \prime} 20$ kve I ma full seale deflection; flush
type, calibrated for steel panel type, calibrated for steel panel
mounting: used with Weston mountion: ${ }^{\text {used }}$ with Weston cost over $\$ 125.00$), which is in-
cluded. plus standoff insulators and mounting clips $\$ 1800$

A-C AMMETER

WESTON MODEL 476: $3^{\prime \prime}$ ace, calibraed to read 0 to 120 AGE TRANSFORMERS. ampse has 3 amps full seale
deffection: used with 40 to 1
30 va. $1 . . \$ 6.00 \quad 250$ va.. $\$ 18.00$ ourrent transformer, which is
incluced
is
\qquad
T-102-Filament Transformer American Transformer Co. Spec.
29106 , Type WS . $050 \mathrm{KVA}, 50 / 60$ cyc. Single phase, 35 KVA test 115 V ., secondary 5 V . Primary with integral standoff insulator and socket for 250T, 371, 872 tubes .. $\$ 12.50$

TRANSMITTING RK75/307A 4.50	THYRATRONS 2 D 21 Min. 1.25	RECTIFIERS 371B
$\begin{aligned} & \text { 750TL } \\ & \text { WL533 750W U.H.F. } \end{aligned}$	3C23 4.75	371 B 531 . 5.95 18.00
Triode 17.50	C6A ${ }_{\text {C6J }} 8.850$	872 3822$\ldots \ldots$.
714 AY Magnetron. . 9.50 730A Magnetron. . . 10.75	931 A Photo-Mult.. 2.75 All Tubes New, Boxed	4B28/289414 6 Amp. Rectigon

1527 E. SEVENTH 51. EPCO

NEW SHIPMENT FEBRUARY SPECIALS
 NEW SURPLUS

AC RELAYS!

Leach Type \#1507-MX Coil 115 Volts, 50/60 Iex insulation throughout.
iots Low-Loss MicaIex insuation througnout. i iio Price only \$1.95
Struthers Dunn \#CS2366 Coi Volts, 60 Cycles
3PST Contacts 110 Volts AC 30 Amps. 3PST Contacts 110 Volts AC 30 Amps. Strutliers Dunn \#CS2368A Coil 110 Price only $\$ 2.95$ DPST Contacts 110 V.A.C., 30 Amps. Price only $\$ 1.95$ Cased AC Relay Allied \#BJH 6AlPrice only $\$ 1.95$ 50,60 Cycles DPDT Contucts Housed in hermetic-
ally
sealed can with feed-thru , alerminals.............................ice siss-95

Relays-while they last-any of following types only $\$.39$ each or 3 for $\$ 1.00$
Allied \#808050 Miniature type. Contacts- 3 pole; 2-single-pole single-throw normally oven, plus
single-pole, double-trow. Wide spacing- highvoltage insulation, isolantite spacers. Coil 300 ohms, 28 volts D.
pole single-throw normally type. Contacts- cingle Telophone type RBM \#556-882. Double contacts, double-pole, double-throw, plus single-pole, sin-
gle-throw normally open. Dual winding coil, each winding 170 ohms. Telephone type RBM $\# 556-883$. Double contact D.P.D.T. plus 2 S.P.S.T., one normally open,
other normally closed. Dual winding coil, each Telenhing type RBM \#556-884. Double contacts, 2-S.P.S.T., one normally open, other normally closed. Dual winding coil, ea. Winding 170 ohms.
Telephone Type Relay \#D454 D.P.S.T. Coill 1000 ohms 12 Volts D.C. Dins S. T. T. Price $\$.95$ G. M. Relay D.P.D.T. plus S.P.S.T. Normally open Telephone Type Relay \#DB28091 Dual Contacts ohms and 180 ohms 12 V. D.C. Winding Coll 175 Stinthers Dunn S...P.D.T. Relelay 36 Volt coil- 20 ma .
Contacts 2 amps. at 115 V. A.C.

115-220/440 TRANSFORMER Type CRP. 30451 Pri. $220 / 440$ Volts 60 Cycle Sec.
115 Volts 5.22 amps Test Volts 1770 MMS
Price only $\$ 8.95$

Co-axial Cable RG54/U........Price $\$ 35 / 1000$ Ft. Litz Wire 15 Strands $\# 44$ S. S. Enameled Multiple Case Elecrivic Co Price $\$ 2.25 / \mathrm{ih}$.

 TRANSTAT VOLTAGE REGULATOR

Type RH
Fixed Winding
115
Volts-

Dual Air Trimmer. Mounted on Ceramic base. 6-60 mmit sickles Type. Condensers separated by metal Air-Trimmer. Sickiles type-capacity range ${ }_{6-60}$
 High Frequency Asscmbly Consists of a Sickles ceramic trimmer $6-60$ mird atached to poly-
styrene coil which can be resonated $40-70$ neega eycles. Price $\$.25$
 Write for Latest Catalog

EDLIE ELECTRONICS, INC.

154 GREENWICH STREET
TELEPHONE DIgby-9-3143

BRAND NEW
 U. S. GOV'T. SURPLUS
 GUARANTEED

AMPIIFER BC908 12Tube

MFG. R. C. A.

brand new less than cost of tubes w/print. . . $\$ 13.95$ Amplifier for wire recorder MFG by Brush 9 tubes constant speed motor heary duty 115 VAC...22.50
Amp. BC1292 F/mobile or fxed 6VDC $\& 15$ VAC Amp. BC1292 F/mobile or fixed 6VDC \& 115 VAC
w/turntable \& pickup 20 Watt MFG. Bogen 45.00
 mounted in $6^{\prime \prime}$ dial $12^{\prime} 9$ wire shield. cable $\mathrm{W} /$ ter.
Brd. 2 lights $\mathrm{W} / 25$ ohm 25 Watt oot. new Brd. 2 lights $W / 25$ ohm 25 Watt pot. new Wire \#18 W. 10, coton silk \& enl. 1200 ft
Wire $\# 20 \& 22$ stranded silk rubber per M Trans. Hadley 490 VCT 0.3 V 2 A 5 V 2 A Choke Thordarson 13 C 308 H . 150 Mil . RF\&\&IF coils with ware trap Philco.... 5 for. $\$ 1.00$ D-100 \ldots Dummy antenna 73 ohm 100 watt

FILLTERETTE Tube Type 1176

250 VAC or DC 3 Amp. 4 heavy duty cond. In ois $\& 2$ chokes in one can $4 \times 33 / 4 \times 13 / 4$ for 101 nolse
Fil. Jobs in line ETC. reg. $\$ 15.00$ special.... 1.95 Shield Belden copper $1 / 2^{\prime \prime}$ a real buy 50 Ft . AC Syn. trans. motors type XV 115 VAC pals .9.95 Speakers outdoor reent. type $18^{\prime \prime} 15$ ohm coll used
WAmp. BC 1292 Pop. maties used excell.... 15.50 Rubber tals 500 KC standards 2 reg. 60 ea 6 for $\$ 1.00$ Potentiometer Dejur 2 gang main body 1600 ohm added pot 350 ohm ea, pot body dopth $11 / 2^{\prime \prime}$ body buy
Type J 300 ohm .40 amps Pots $1 / 2-1$ \& 2 meg. with switch 55 ea. 6 for 3.00 250 M all new \& other makes,. 40 ea. 6 for 2.50 Rheostat 12.5 ohm-volts Max 600 Amps $10-3$ with Rheostat brand new 175 ohms 125 v $3.7 \% .6$ Ämps
type WL W/shaft \& knob 7.95

ELECTRONIC TUBE-MAKING MACHINERY

For manufacturing radio tubes, electronic tubes, cathode-ray tubes, lamps. New and used. Reasonably priced, satisfaction guaranteed
AMERICAN ELECTRICAL SALES CO.
67 E. 8 th St. New York, N. Y

(II) SEARCHLIGHT SECTION

BARGAINBUYS!

APQ-2 Transmitter with Power Unit. $\$ 75.00$ PE-1 12 Power Unit,

Weston Ammeter, Model 45, 0-25
cmp. DC. Westinghous 40.00
cycles 22.50

Selsyn motors, 2 Jigi 22.50
General Radio $50,000 \Omega, 25$ w, po2.00
tentiometer
Selenium Rectifier, full-wave, ils v 1.20

TUBES				
350 C	$\ldots \ldots \ldots$	1.50	725 A	

 RK72 ($15,000 \mathrm{v}, 60 \mathrm{ma}$ Rectifier) 1.30 APS-3 RADAR SETS COMPLETE
Radar Pulse Networks and Transformers Vacuum Tube Pump Station, complete with pumps, manifold, ionization gauges, oven, etc. Write for listings of other surplus bargains
LERU LABORATORIES, INC.
360 Bleecker St. New York 14, N. Y.

WANTED

(Additional Wanted Ads on page 282)

WANTED

W. E. Carrier Telephone and Carrier Telegraph Equipment and components. Filters, repeating Coils, Transformers, Equalizers. Type CF1, CF2, H, C, and other carrier equipment, telephone and telegraph repeaters.
330 West 42 -6660, Electronics
330 West 42 nd St.: New York 18, N. Y.
WANTED
300-1000 Mc. sig. gens., test equipment transmitters, recvis., etc.
J. H. POOLE

1009 SECURITY bLDG. LONG BEACH, CALIF.

WANTED

MARINE and AIRCRAFT

Receivers, Transmitters, Radar, Direction Finders, Echo Sounders, RAL-7, RCH, AR 8506-B, AR 8511, ET-8010, -8012, -8019, -8023, -8024, DAG, DAF, DÁE, DAK, DAQ, TAJ, TAQ, TBM. Also MN-26C, AN/ ARC-1, -ARC-3, -APN-9. State quantity, condition and best price.

AMBER COMPANY

37 MONTGOMERY ST., JERSEY CITY, N. J.

SELDNIUM RECTIFIERS AND SPECIALIED ELECTRONIC COMPONENTS

THIS MONTH'S SPECIALS!!
 SILVER CERAMIC TRIMMERS

 TRAHSFORMER

Nat'l Velvet Vernier Planetary Drive From "AM" Dials 5 to 1 806 each. COLLINS FILAMENT TRANSFORMER

 OIL CAPACITOR
. 1125 MFD. 27 KV.DC.
$\$ 1750$
FENWAL THERMOSWITCH
Normally open or closed. Adjusta- $\$ 1.25$
ble from 40 to $+400^{\circ} \mathrm{F}$. each $\$ 1.2$

HIGH CURRENT AMERTRAN
5.1 Volts at 190 Amps.

Can easily deliver 250 Amps. Insulation 35 Kv . Test. Approx. Shipping weight 96 lbs.
Plus $\$ 2$ crating charge
$\$ 1750$

Onput
O-15VAC
0

B6-250	250 MA.	$\$ 1.95$
B6-600	600 MA	2.95
B6-2	2.95	
B6-3X5	3.5 AMP.	$\mathbf{1 2 . 9 5}$

METERS otype.i. G.E. uy Round O-30 v.D.C. West. $22^{2} h^{\circ}$ Rd., altrcratt typ	

To avoid shipping errors, kindly order by type \#. All prices subject to change without notice.

INDUSTRIALS EXPORTERS, SCHOOLS

$$
\text { Minimum order } \$ 3.00 \text {. No C.O.D.'s under }
$$ $\$ 25.00$. 25% deposit on C.O.D. Add 10\% for Parcel Post and handling. Terms: Net 10 days to rated concerns only. Orders Promptly Filled From Our Stocks F.O.B. New York City

SURPLUS LABORATORY
 EQUIPMENT

GENERAL RADIO

620-A HETERODY NE FREQUENCY METER (For frequency measurement be tween ${ }^{\text {tw }}$ 300 Kc and 300 Mc I 0.1%) T24-A PRECISION WAVEMETER $\$ 150.00$ $(16 \mathrm{Kc}$ to $60 \mathrm{Mc}-0.25 \%$ accuracy
821-A TWIN-T IMPEDANCE MEASURING BRIDGE $\$ 325.00$ (460 Kc to 40 Mc --measures ca pacitance, susceptance, conduct ance,
76-A FREQUENCY LIMIT MONITOR (1.6 to 45 Mc) $\$ 125.00$

FERRIS
34-A U.H.F. CRYSTAL CALIBRATOR ($1,5,10$ Mc. Crystals-useful up

WESTERN ELECTRIC

TS5/AP RANGE CALIBRATOR. . $\$ 65.00$ (SWEEP MARKER GENERA TOR)
Statute Miles- 5 , 10 NE Nautical \&

RA-90-A H.V. HIGH ALTITUDE POWER SUPPLIES 1000 V . Input 110 V . 7.50 (+4900V), NEW
NOW
D-151754 MODULATOR OIL UNIT $\$ 40.00$ (Contains 3B24, 1B3, 6AC7, 6SN7,
157-A OUTPUT TRANSFORMERS \$ 9.95 (10,000 To 500 and 250 ohms-35 To $10,000 \mathrm{Cps} \pm 1 \mathrm{DB}-\mathrm{NEW}$)
G. E.

LU RADAR TEST EQUIPMENT $\$ 50.00$ INDUSTRIAL INSTRUMENTS
RN-1 WHEATSTONE BRIDGE... $\$ 60.00$ (.001 ohm To 10 Megohms \pm 0.1%)
MP 8 MEGOHM BRIDGE . $\quad \$ 60.00$ (1-100,000 Megohms $\pm 5 \%$) SHALLCROSS
62I-H RESISTANCE LIMIT BRIDGE
(10 ohms To 10 Megohms $\pm 1 \%$ \$ 80.00 to 25%)

WESTON
MODEL $1(0-300 \mathrm{MA}-$ D.C. $\pm 0.25 \%)$ MODEL $1(0-500$ V.D.C. $\pm 0.25 \%)$) $\$ 49.00$ MODEL 45 ($0-75$ V.D.C. $\pm 0.5 \%$) 35.00 MODEL $45(0-150 \mathrm{MA}$ D.C. $\pm 0.5 \%) \$ 30.00$ MODEL $45(0.300 \mathrm{MA}$ D.C. $\mp 0.5 \%) \$ 30.00$

ALL PRICES F. O. B. N. Y. C. WAREHOUSE SUBJECT TO PRIOR SALE

FAR ROCKAWAY, N. Y.

CABLE ADDRESS NATINSTRU, NEW YORK
TELEPHONE FAr Rockaway 7-1123
785 INDUSTRIAL CIRCUIT TESTER
$\$ 80.00$
AC, DC Volts, Ohms, MA., Amps
Resistance- $1-1000$ Volts,
$50 \mathrm{Microamps}-10 \mathrm{Amps}^{2} 50$ Ohms
796 MEGOHMETER (0-200 Megor . NEW
BOSTON GEAR WORKS $\$ 50.00$
LIST-150 TWWINTATRES
(Gear Reduction $150-1-$ NEW) $\$ 20.0$
BOONTON
140-A BEAT FREQUENCY GENERATOR
(20 Cps to $5 \mathrm{Me}+2 \%$ Output $\$ 550.0$ MV To 32 Volts) F.M. SIGNAL, GENERATOR $\$ 350.0$ (1 To 11 Mc and 38 To $50 \mathrm{Mc}-\overline{\mathrm{Kc}}$
0.1 To 1 Volt output- $0-225 \mathrm{Kc}$

120-A V.H.F. CIRCUIT CHECKER $\boldsymbol{*} 95.00$ (3 Ranges- $24-210 \mathrm{Mc}$.

ELECTRONIC SPECIALS

RA-38 power supplies- $0-15000 \mathrm{~V} @ 500 \mathrm{ma}$, cont. var. 110 V input.
$\$ 275.00$
RA-58 power supplies- $0-15000 \mathrm{~V} @ 35 \mathrm{ma}$, cont var. 110 V input. 140.00

Switches for above-15000V-1.5 amp. oil filled-110V AC drive 42.50

Condensers-1 mfd.@25000V-oil filled—steel case 65.00

Transformers-Modulation Reactors, $2500 \mathrm{~W}, 12000 / 7500 \mathrm{Sec}$ 72.50

Television Replacement Transformers. HV \& LV and Combination.
Transformers, Reactors, Filters, complete line of QBD supersonic components
Varistors-WED-165593, Full Wave, 75 ma. 12 V
Varistors-WED-170225, Phase Detector, Four group, 1 mil.
Television Chassis for 15" Tube. Standard manufacture, Ready to work. Low price. Write for details.
Radar-Considerable stock of SCR-545 and 547 components and units Condensers-. 012 @ 25,000V Tubular
Switches-Ceramic rotary, dozens of combinations in stock
Resistors-Class 1, Grade 1, large stock all sizes
Selsyns-Small, operate on 6 to 10 Volts 60 cycles, per pair 2.85
Power supplies--PE110-\$22.50—PE-237-\$27.50-RA-34-\$95.00—PE-117-\$5.75
Thousands of items of transformers, condensers, resistors, coils, tubes, connectors insulators, selsyns, motors, fans, relays, meters, sockets, television components, speakers, transtats, variacs, test equipment, antennaes, masts, power supplies. Let us know your needs. Prompt service.

DO YOU HAVE ANY SURPLUS ELECTRONICS FOR SALE? HIGHEST PRICES PAID.
MONEY BACK GUARANTEE ON DEFECTIVE MATERIAL. SUBJECT TO PRIOR SALE. ALL ITEMS ADVERTISED ARE NEW UNLESS QUALIFIED.

VETERANS SALVAGE CO., INC.

9 KULIK ST.
CLIFTON, N. J.
PASSAIC 3-6370

D. C. MICROAMMETERS

0.100 ua. 4" sq. G.E. DO 68 $\$ 12.00$ $0-100$ ua $4 y^{\prime \prime}$ round Weston $643 \cdots 14.00$
 $0-60$
ua $3^{\prime \prime}$ sq. G.E. DO $50 \ldots$. 12.00

R. F. MILLIAMMETERS

$0-100 \mathrm{Ma} 31 / 2$, , r. Weston $425 \ldots . . \$ 11.00$ $0-120 \mathrm{Ma} 2 y_{2}$ ", r . Weston $507 \ldots . .{ }^{7.00}$ -10 Ma $4 \frac{1}{2}$ ", r. Weston (vacuum) 22.0n

A. C. VOLTMETERS
$0-300$ v $31 / 2$ " r. Weston $476 \ldots . .$. $\$ 8.00$
Precision Electrical instrument Co. 146 Grand Street New York 13, N. Y.

SAVE AT AMSCO!

PARABOLIC REFLECTORS- $15^{\circ \prime}$ spun alum. AIzak fin. for 1200 Mc. UP. smlit stator $4-15$ mmpd. silver plateds .65 APACITORS ELECTRO. $40-40 \quad 250$ volts 6 VIBRATORS-7 prong 2 voit for GE port
 ILLIAMMETER - Beade 0.1000 DC METER RECTIFIERS Full Wave...
.. $\$ 2.4$

WIRE. WOUND RESISTORS vitreous enam eled 10 watt $1,40,100,200,2000.10000$ and 25000 bhms 25 Watt 12,1000 and 5000 mis

Available 1949 Catalog Write Today

AMERICAN SALES CO. 1811 W. 47th St. Chicago 9, III.

ICONOSCOPES

We have available for immediate delivery 3 new 1846 RCA Iconoscopes. These are electrically and physically interchangeable with the 1848 type. Can be used in field pickups, for instruction, etc.

$\$ 250$ Each

VILLAGE RADIO EQUIPMENT CO. 201 W. 16 St.

New York 11, N. Y

METERS LAB. \&
 SERVICING TYPES

Precision 8446000 VAG \& DC ohms $0-10 \mathrm{Meg}$. mps 0-12 Mils 0-1200 $3 \ddagger$ ranges in Walnut Port. case Hi V. Prods of Inst. book reg. $\$ 39.50$ Weston 663 DCV \& ohms in case Reg. $\$ 69$. Weston 280 DCV $0-150$ DCA $0-30 \quad 3$ ranges each 1500 - 0 VAC lah mitr Feg sis new Weston 10 a 24.50 Test set $1-236$ for DB 3"R Triplett Rect. type 0-lerel 600 ohm. RF ${ }^{0}-1$ 0-5 0-8 Pon. makes your choice new Mils $0-2$ Roller Smith $3^{\prime \prime} R$ new orig. box.

SHEET METAL MACHINERY

NEW and Used - Brakes - Sheart Forming Rolls - Folders _- Punches -Di-Acro, Pexto, Niagara \& Whitney Equip= ment.
R. D. BROOKS CO., INC.

361 Atiantlo Ava, Boston, Mess.

869 B

Widely used Mercury Vapor Rectifier $\$ 29.95$
New, Surplus, Original Cartons AL WILLIAMS
3.1-D Victory Hts. Spokane 9, Wash.

(1) SEARCHLIGHT SECTION

Here is a no-filament tube that will detect objects in the dark, reproduce in a fluorescent image on ACTUAL picture as in television, when illuminated by infro-red radiation or visible light screened by an Infra-red filter.
Designed for snooperscope use, it requires no sconning, has been used successfully for signal communicotions, television cameras and receivers for local or relay work, electronic photography, biological and industrial (burglar alarms, etc.) in the dark.

WE can supply Infro-red filters and components for portable and fixed installations. ORDER NOW and "see" for yourself. Tubes are small, compact, individually boxed, and guaranteed.

For Laboratories, Manufacturers-for anyone in electronics.
AN EXTRAORDINARY BUY, each \$9.00

Complete! Clean! Guaranteed!

Surplus Items for Communications Radio point to point communication with SCR 528

Complete with transmitter, receiver, tubes, dynamotors (12 or 24 V.DC), crystals, microphone, headset, shock mounts, control box, antenna whip and other accessories.

Export packed. Minute description in our bulletin

ALSO IN STOCK . . .

U. S. Navy TDE transmitters, 300-18,100, Kcs Phone -CW, with tubes. Like New.
Wilcox CW-3, fixed frequency receivers, 110 V.AC w/manuals, two sets tubes, New. Coils also available. Compact aircraft and mobile RCA 10 watt AVT112A transmitters, with AVA-126-A vibrator power supply in original cartons.

A few BC-610 (Hallicrofter HT-4) and ART-13 (Collins) with 110 V.AC supply, all like new. High power transmitters also available.

RADAR: Complete sets, test equipment and accessories.

MARINE \& NAVIGATION: Direction finders, transmitters, and accessories.

Offerings subject to prior sale. Cable: Communider

COMMUNICATION DEVICES CO.

New York 27, N. Y.

FOB our
warehouse NYC

Oparates on Flashlight batteries, speod depending on the voltage. Fairly strong on 6 volts, fuli power
and spoed on 27 voits. Design and speed on 27 volts. Designed to be used In bombsights, automatic pilots, etc., 250 © $\$ 5.00$ A nowly Written (i948) Book on Photoelectric tubes
(Eloctrlo Eye) Circuits and $\begin{array}{r}\text { (Electrlo Eye) Circuits and Relays. } \\ 10 \text { for } \$ 7.50 \\ \hline 1.00\end{array}$ HAYDON or TELECHRON
SYNCHRONOUS MOTOR to operate switches, otc., I Rev per minute at this SPECIAL PRICE $\$ 3.85$ Many other speeds available at $\$ 5.25$ up

64 Dey St., New York 7, N. Y

RADAR ANTENNAS

FAGI ANTENNA-ASB Radar 5 element wide spaced array (450 to 560 MC). . $\$ 7.00$ SAME with Sperry type F hydraulic servo controls for remote rotation........ $\mathbf{\$ 2 6 . 6 5}$ SOLBLE STACKEID ASB YAGI- same freq. consists of two 6 element beams. $\$ 12.70$
 SAME with hydraulle servo controls for remote rotation. 370 to 430 MC)........................... $\mathbf{8} \mathbf{4 8 . 7 5}$ AT-49A/APR-4- (300 to 3300 MC) Lor remote rotation $\$ 13.70$

GENERAL ELECTRIC FG-172 THYRATRONS
Brand new in original cartons. This tube is used in many industrial con-
trols. FULLY GUARANTEED trols. FULLY GUARANTEED SPECIALLY PRICEDAT \$14.80 EACH
$\$ 10.00$ each in lots of 10

HYDRAULIC SERVO CONTROLS

Type 1-Sperry type F (or equivalent) for transmitting rotary motion
TYpe 2-SAME except receiver produces linear motion. Either type $\$ 20.00$ per set (transmitter and receiver). each in lots of 10 .

PHASE SHIFT CAPACITOR-4 Stators, single rotor
HOYT Model 515 portable DC ammeter, single rotor...... \$1.92 each; 10 for $\$ 16.75$

200 WATT WIRE-WOUND Ferrule Type RESISTORS

Fired taps at each 10% of full resistance value. Dimensions $11 / 8^{\prime \prime}$ dia. x 25 ohms
25 ohms
50 ohms

500
ohms $\quad 500 \mathrm{ohms} \quad 2000$ ohms 300 ohms 1500 ohms $\mathbf{5 0 0 0}$ ohms 7\% each, 10 for $\$ 6.10$

GENERAL ELECTRIC AMPLIDYNE Motor-Generator Consists of GE. model $5 \mathrm{KKC67BB475}$ 1 HP 115V 1 ph 60 cy 11.5 A .3450 RPM continuous duty motor coupled to G.E. model $5 \mathrm{AM} 65 \mathrm{FB} 31250 \mathrm{~V}{ }^{2} \mathrm{CC}$ 2A 0.5 KW 3450 RPM Amplidyne generator BRAND NEW \$97.50

[^10]
(in) SEARCHLIGHT SECTION

SPECIALS

0-3000 D.C. ammeter, General Electric $\frac{\text { type }}{\text { New }} \mathbf{~ D B - 1 2 ~}$ wilh shunt n. diam. with shunt

REMONO CONTROL, RM29A. stmur to 38 -120 R. F. milliameter. Weston 425New $\$ 5.95$

$0-300$ A.C. voltmeter, Norton $41 / 2$ inch round case -50 A.C. ammeter, Westinghouse NA $0-15$
round A.C. volumeter, Roljer Smith TAS
3 0-10 D.C. voltmeter, Electro Tertype $350.31 / 3$ inch

APN-1 ALTIMETER INDICATOR - Basic | morement $0-1$ m.a., $5 \mathrm{~m} . \mathrm{a}$. Shunt, 270° scale, |
| :--- |
| An excellent basic morement for constructing |
| New |
| $\$ 1.95$ | METER REETIFIEB, full wave myget sol-

ESTON MODFL TRANSFORMER B04 Current Type 1, Ratio 200/5 Cutier Hammer Safety Switch No. 4121119 930 BATTERY CHARGER, G.E Mungar 6RB6B17, amps $\$ 67.50$ B-65 volts, $6-12$ amps................New $\$ 49.50$
-82-SELSYN INOICATING COMPA PLUGS FOR $1-82 \& 1-81$. 70 ea. OYNAMOTOR, PE94 for SCR5 2ew $\$ 6.95$ NVERTER, Winco PU18/AP 28Y D.C. input $\$ 2.95$ WESTON TIECTICAT Model 545 , for use with MOD. 724 Marneto.
Speed $0-2000$ RPM, Ratio $2: 1$ WESTOA TACHOMETER GFNEBATOR Model 724 Type
$5^{\prime \prime}$ P.M. COMPARTMENT SPEAKER, 25 Watt 50 6,000 ohms Waterproor, ExCELLTHT CONDIT

$0-20,000$ D.C. voltmeter, Weston 506 with 4 type MOA 505 precision multipliers. New $\$ 49.00$

 Weston type MLFA505 precision muitipliers, 5 megohms, 5000 voltsTransformer, 115V.A.C. 60 cycle, output 5 volts at 190 amps. ideal for welding et Good condition 12.95 HEADSETS, ILS-23 8000 ohms Brand New EXTEENSION CORD, CD307 with PL-55 and
Headset, HS30 complete with matching transformer. ${ }^{6}$ fi. cord and PL-55. EE-8 TELEPHONE FIELD SETS, New $\$ 15.00$.
IDEAL MOBILE POWER SUPPLY PE237-Heavy duty vibrator power supply, 6 ,
12, or 24 volt input. $525 \mathrm{v}, 95$ ma; $105 \mathrm{v}, 42 \mathrm{ma}$,
 supply-100., 17 ma. ; $1.35 v, 450 \mathrm{ma}$. With tubes,
shock mounted, Brand New. $\$ 29.50$
HANDSET, TSI3 for RM29A. Now $\$ 3.95$

PHOTOFLASH CAPACITOR, $25 \mathrm{mfd}, 2000 \mathrm{~V}$. PHOTOFLASH CABLE, 6 cond. Dlastic, 4000 V.D.C. insulation $\because \ldots$ New $\$ 0.35$ per ft. TRANSFORMFR, 115 V.A.C., 60 cycle, out- put $2500-0-2500$ at $125 \mathrm{~m} . \mathrm{a}$. New 16.50

G.E. INVERTER-400 Cycle \#5D21N.J3A-27V. 35 amps input-115V, 485 VA single phase output.
Brand New $\$ 12.50$ SCR522-Accessorles, Plugs-Complete set $\$ 4.00$ BC631 Jack Box. $\mathbf{\$ 0 . 7 9}$ RC629 Jack Now. $\$ 4.00$
AN104 Antenna. Steel $\$ 1.95$
Copper. $\$ 2.79$ AN104 Antenna, Steel.. $\$ 1.95$ Copper.. $\$ 2.95$
BC602 Control Box................... $\$ 1.00$ CATHODE RAY TUBES
 $\$ 2.50$
$\$ 2.50$

TERMS: F. O. B. Pasadena, 25\% deposit required on C. O. D.

PHOTOCON SALES

1060 N. ALLEN AVE.,
PASADENA 7, CALIFORNIA

WANTED
WESTERN ELECTRIC VACUUM TUBES Types 101F, 102F, 272A, 274A or B, 310A or B, 311A, 313C, 323A, 328A, 329A, 348A, $349 \mathrm{~A}, 352 \mathrm{~A}, 373 \mathrm{~A}, 374 \mathrm{~A}, 393 \mathrm{~A}, 394 \mathrm{~A}, ~ 121 \mathrm{~A}$ Ballast Lamps.
330 W-6641, Electronics
330 West 42 nd St., New York 18, N. Y.

WANTED TO BUY

Western Electric CF-1, CF-2, CF-3, CF-4, CF-5, CF-6, H, H-1 Carrier, EE100, EE101A ringing equipments. All models teletype All models RCA Marine transmitters. All W.E. C.B. switchboards.

W-7462, Electronics, 520 North Michigan Ave., Chicago 11, Ill.

ROTARY VACUUM PUMP

105 cim . with tank and $3 / 60 / 220 \nabla$ motor, plus accessories. Tank approx. 2^{\prime} dia. $\times 8^{\prime}$ high. F. J. Stokes Machine Co. Model \#212-D. Pumps . 2975 inches of vacuum. Used, but in excellent condition priced to sell @ \$475,00.

Warshawsky \& Lazar, Inc. 2127 So Michigan Ave. Chicago 16, III.

WESTINGHOUSE HIPERSIL CORES

OVER 50,000 UNITS IN 20 DIMENSIONS, SEVERAL GAUGES; UP TO 16,000 UNITS IN SOME SIZES. AVAILABLE FOR IMMEDIATE DELIVERY. SEND FOR LIST WITH COMPLETE DESCRIP. TIONS.

RAYTHEON MFG. CO.
Surplus Sales Dept. Waltham, Mass. Tel. Waltham 5-5860-Ext. 2

WANTED

(Additional Wanted Ads on page 279)

WANTED

TS-13 AP
TS-14 AP
TS-33 AP
TS-34 AP
TS-35 AP
And other test sets
Also APR-1 and APR-4 Receivers
W-7335, Electronics
330 West 4 2nd Street, New York 18, N. Y.

WANTED, AIRCRAFT RADIOS

AN/ART-13, BC-348, RTA-1B, AN/APN9, R5A/ARN-7, AN/ARC-1, AN/ARC-3, SCR-718. BC-788-C. I-162. MN-26-C, Ting.
Seta with TS- or I- prefx. State quantlty. condition and best price frat letter.

HI-MU ELECTRONICS
BOX 105, NEW HAVEN, CONN.

WANTED

Telolypewriters complete, component or parts. Any quantity and condition.

W-6654, Electronics
330 West 42nd St., New York 18, N. Y.

WANTED

Oscillograph 6 Beam Galvanometer Type

Quality Minded Electronic Engineers specify PRECISION Electronamic Test Master SERIES 10-20

Combination
Tube Performance Tester,
Battery Tester and 34 range AC-DC Circuit Tester

*Reg. U. S. Patent Office, No. 438,006
Only "Precision" Electronamic tube testers afford the advantages of the exclusive "Electronamic" tube testing circuit.
*A tube tested for just one characteristic does not tube tested for just one characteristic does capabilities. In the Precision Electronamic circuit the tube is electro-dynamically swept over a complete Path of Operation, on a sinusoidal time base, which is outomatically integrated by the meter in direct terms of Replace-Weak-Good. Complete cir-

THE SERIES 10-20 TEST MASTER

Specifically engineered for multi-purpose industrial and electronic maintenance and installation. Tests mitting tubes; facilities up to low power transelement prongs; duali-capped H. F amplifiers 587 pin acorn types, Noval 9 pin tubes, etc. Highest practical order of obsolescence insurance assured thru use of the Precision 12 station Master Lever Element Selector System.

CIRCUIT TESTING FEATURES

34 self-contained ranges, to 3000 volts, 10 megohms, 400 microamperes, 12 omperes, +64 DB ,

 $45 / 8^{\prime \prime}$ meter * All standard functions at only two tip jacks. High Special, Positive Push-button range selection. MODEL. 10-20-P in portable hardwood case (illustrated) complete.Also available in counter and panel mount.
Price includes test feads and ohmmeter batteries "Precision" Electronamic Tube Testers are on display at all leading radio equipment distributors. ube performance resting circuit and Electronamic ube performonce resting circuit and a complete $A M$ of selected test instruments for all phases of

PRECISION
 APPARATUS CO., Inc.
 92-27 Horace Harding Blvd.
 Elmhurst 10, N. Y.

Export Division: 458 Broadway, N. Y. City, U. S. A.
Cables: MORHANEX
 for MICROGROOVE oscs STANDARD oscs VERTICAL ascs
(Special arms not shown)
other models for every purpose

"The Standard big Which Others Are Judged and Valued"g

We have said this often, and we shall repeat it many times because of its importance to YOU the listener:-It is futile to buy the most modern records, if you do not give them the very BEST pick-up to bring out their built-in excellence!
There is so much in present-day dises, that even a mediocre pick-up is bound to bring something out of them. However, to obtain the fullest results of which these discs are capable, they must be reproduced with the finest reproducer for that purpose-the AUDAX TUNED-RIBBON reproducer-operating with the extremely low point-pressure and stylus-point required.
Remember, two singers may both be able to hit "high C"... yet, one will please the ear-the other not at all. There is much more than mere WIDEplease to quality reproduction. AUDAX reproducers deliver not merely WIDE-RANGE, but also all vital factors essential to highest quality of musical performance and unequalled EAR-ACCEPTABILITY.
"Permanent" points*, whether sapphire; diamond or metal, keep their original shape for only a limited number of plays . . . then they progres. sively destroy record grooves. TUNED.RIBBON models permit easy stylus changing-by the owner himself ... very important!
*Write for complimentary pamphlet on the life of permanent needles

AUDAK COMPANY

500 Fifth Avenue

New York 18

"Creators of Fine Electro-acoustical Apparatus since 1915"
Superior
Sylvania
Technier:
Technolo
TELLINSI
Tel Insi
Terminal
Titanium
Triplett
Union Cars
United Transt
Universal Wii
Varfiex Corpor,
Unit Of The S.
Victoreen Instrus.
Waldan Electric C
Waldes Kohinoor, In
Ward Products Corpor
Webster Electric Comp:
Webster Spring Cerporai
Weller Manufacturing $\mathrm{Co}_{2}{ }^{2}{ }^{2}$
Westinghouse Electric Corp
White Dental Mfy. Company.
Whitehead Stamping Compans
Whitohead Stamping compans
Wilson Company, H, A
Wincharger Corporation
Workshop Associates, Inc.
Wrought Washer Mfg. Company
Zophar Mills, Inc.
PROFESSIONAL SERVICES

Winters Al.

The RCA List of Preferred Type Receiving Tubes fulfills the major engineering requirements for future receiver designs.

Most likely to succeed...

RCA preferred type fubes for AM, FM, and TV receiver designs

WHETHER IT'S GLASS, metal, or miniatureRCA preferred type receiving tubes will serve your major requirements for a long time to come . . and RCA preferred types are the tubes you can bank on for your future designs.

These RCA receiving types are especially recommended because their wide-spread application permits production to be concentrated on fewer types. Longer manufacturing runs reduce costs-lead to
improved quality and greater uniformity. These benefits are shared by you and your customers.

RCA Application Engineers are ready to suggest the best preferred types for your receiver design requirements. Just contact our nearest regional office-or write RCA, Commercial Engineering, Section 42BR, Harrison, New Jersey.

The Fountainhead of Modern Tube Development is RCA

TUEE DEPARTMENT

[^0]: Contents Copyright 1949 by McGraw-Hill Publishing Company, Inc. All Rights Reserved. McGRAW-HILL PUBLISHING COMPANY, INCORPORATED, JAMES Contents Copyright 1949, by McGraw-Hil! Publishing Company, inc. All Rights Reserved, Mlbany 1, N. Y., U. S. A. EDITORIAL AND EXECUTIVE OFFICES, 330 West 42 nd St., New York 18 , N. Y., U. S. A.-Member A. B. P. Member A. B. C.
 James H. McGraw, Jr., President; Curtis W. McGraw, Vice-President and Treasurer; Eugene Duffield, Executive Assistant for Publications: Nelson Bond, Dlrector of Advertising; James A. Gerardi, Secretary; and J. E. Blackburn, Jr., Director of Circulation.
 ELECTRONICS. February. 1949, Vol. 22; No. 2. Published monthly, with an additional issue in June, price 75 c a copy for U . S . and possessions, and Canada: 51.50 por Latin America; $\$ 2.00$ for all other foreign countries. Directory issue $\$ 2.00$. Allow at least ten days for change of address. All communications about subscriptions俗 should be addressed to the Director of Circulation. Subscription rates-United States and possessions. $\$ 6.00$ a year, $\$ 9.00$ two years. $\$ 20$ for two years, $\$ 30.00$ for three years. funds accepted), $\$ 7.00$ a year, $\$ 11.00$ for two years, $\$ 14.00$ for three years. yatin American count All other countries $\$ 20.00$ for one year. $\$$, at Post Office, Albany, New York, under the Act of March 3, 1879 . BRANCH OFFICES: 520 North Michigan Avenue, Chicago 11 .
 Atianta 3. Ga.; 621 So. Hope St., Los Angeles 14; 738-9 oliver Building, Pittsburgh 22. ELECTRONiCS is indexed regularly in The Engineering Index.

[^1]: Atlanta - Birmingham - Boston - Chicago - Cincinnati - Cleveland - Detroit - Houston - Los Angeles - Milwaukee - New York - Philadelphia Rochester - St. Louis • San Francisco - FABRICATORS: Lamicoid Fabricators, Inc., Chicago, lllinois - Bakoring, Inc., Houston, Texas Insulating Fabricators Inc., New York City • Insulating Fabricators of New England, Inc., Watertown, Mass.

[^2]: OAKLEIGH ROAD, NEW SOUTHGATE, LONDON, N, 1, ENGLAND

[^3]: This paper was presented at the 1948 National Electronics Conference in Chicago.

[^4]: The opinions or assertions contained in this article are those of the author and are not to be construed as official or necessarily reflecting the views of the Navy Department.

[^5]: - Developed while the author was at Hazeltine Electronics Corp., Little Neck, L. I., N. Y.

[^6]: *The economies effected with PAMARCO tensions are a proven fact in hundreds of installations. For tetailed information call or write today without For detailed

[^7]: Makers of 'American' Industrial Instruments, Hancock Valves, Ashcroft Gauges, Consolidated Safety and Relief Valves. Builders of 'Shaw-Box' Cranes, 'Budgit' and 'Load-Lifter' Hoists and other lifting specialties.

[^8]: Newark, New Jersey - Brantford, Canada

[^9]: Please send me FREE the Newark 1949 Catalog
 INAME \qquad CITY_STATE___

[^10]: WRITE FOR LATEST BARGAIN BULLETIN LECTRONIC RESEARCH LABORATORIES 1021-23 Callowhill St.

 New Location
 Phila. 23, Pa.
 Telephones: MArket $7-6590$ and 6591

