He led two lives - as magazine editor and as hospital attendant in coronary and intensive-care units. He saw firsthand how electronic equipment and devices
are used in a modern hospital where performance can mean the difference between life and death. For his on-the-spot views of the technology and people, see p. 24.

Pulse problems change and change and change and change..............and

so does the 1900 pulse system

HP's brand new solution for people with pulse problems is a set of multipurpose building blocks. You put what you want in your pulse generating system. With the HP 1900 Pulse System, you start with a standard mainframe that contains only power supplies and optional programming wiring.

Where do you go from there? That's up to you. HP is currently offering seven different functional plug-ins with more to come later. You can start with a relatively simple system and add to it as your needs change. Even complex pulse systems can be formed easily by using several mainframes and appropriate plug-ins.

Just to give you an idea of the capability of the 1900 system, here is a very brief description of the 7 existing plug-ins and some of their capabilities. And, keep in mind that the optional programming wiring allows you to make the 1900 completely automatic!

HP 1905A Rate Generator-provides output triggers variable in fre-
quency from 25 Hz to 25 MHz ; it includes a pushbutton for single pulse triggers. (\$200)

HP 1908A Delay Generator - delays or advances pulses up to 25 MHz over a range of 15 ns to 10 ms and includes a double pluse mode. (\$200)
HP 1910A Delay Generator-pulses up to 125 MHz can be delayed from 5 to 100 ns in 5 ns steps. It has a 3 ns risetime and sufficient output to drive two variable transition time output plug-ins. (\$150)

HP 1915A Variable Transition Time Output-varies pulse risetime and falltimes from 7 ns to 1 ms and output currents from 40 mA to 1A, amplifies RZ or NRZ word formats. (\$1600)

HP 1917A Variable Transition Time Output-varies pulse risetime and falltimes from 7 ns to $500 \mu \mathrm{~s}$, amplifies RZ or NRZ word formats, 0.2 to 10 V amplitude at frequencies up to 25 MHz (\$525)

HP 1920A Pulse Output-provides very fast 350 ps fixed risetime and 400 ps falltime with variable width and 0.5 to 5 V amplitude. Reversible
polarity and offset capability. (\$1750)
HP 1925A Word Generator-provides 2 to 16 -bit words, RZ or NRZ format at frequencies to 50 MHz . Has remote programming and pseudorandom noise sequence generation capabilities. (\$850)

Two mainframes - are available to let you select the one that best meets your power requirements. Price: HP 1900A Mainframe, \$750; HP 1901A Mainframe, \$450.

Put together the system that best fits your needs. No other pulse system will do so much, so well-at such an economical cost! For more information, contact your local HP field engineer. Or, write to Hewlett-Packard, Palo Alto, California 94304. Europe: 1217 Meyrin-Geneva, Switzerland.
onv/9

HEWLETT
 PACKARD

The $\$ 1200$ Bad-Apple Finder.

. GR's New 1662 Resistance Limit Bridge !

You can't plug an apple into the new GR 1662 (it's only a one-terminal device), but if you have barrels of resistors to sort, the 1662 will find the out-of-tolerance components for you - quickly, easily, and inexpensively! It's the ideal instrument for selecting and qualifying resistors by percent deviation either manually or in an automatic system.
To handle all the resistance test requirements you're likely to face, the 1662 has percent-deviation ranges of $\pm 0.3, \pm 1.0$, $\pm 3.0, \pm 10$, and $\pm 30 \%$. Test results are indicated by meter reading, dc-voltage levels, and HIGH-GO-LOW lights. The high limit and low limit can be adjusted independently (by front-panel controls or external dc voltage) to any value within the full-scale meter range.
Use the $\mathbf{1 6 6 2}$ for manual sorting and get precise meter readings in one second or use the HIGH-GO-LOW lights for faster sorting limited only by the speed of the operator. Use
automatic sorting equipment like the GR 1782 Analog Limit Comparator (from $\$ \mathbf{5 5 0}$) to get maximum test rates of four components per second. The 1782 allows simultaneous multiple-tolerance-limit sorting. (Apples can be tested only with a core-memory device.)
For straight resistance measurements, 1662 has a basic bridge accuracy of 0.02%, a comparison accuracy of 100 ppm , and a total range of 1 ohm to 111.1111 megohms. The resolution of the 1662 is 0.01 ohm on the 111 -kilohm range to 10 ohms on the 111 -megohm range.
Oh, yes. Even at $\$ 1200$, the 1662 Resistance Limit Bridge is available with a quantity discount for two or more. For more information, write General Radio Company, West Concord, Massachusetts 01781 or telephone (617) 369-4400. In Europe write Postfach 124, CH 8034 Zurich , Switzerland.
Prices apply in U.S.A.

This newest of 13 data generators from Datapulse fires 16 -bit words at clock rates from 10 Hz to 75 MHz . At $\$ 2715$, it's the first (and only) economical high-speed data generator.

Our Model 212 is fast enough to challenge your most advanced digital circuits, and variable enough to simulate nearly any input requirement. Baseline zero level can be independently adjusted from $+2 v$ to $-2 v$ on both the "positive true" and "negative true" outputs. The "true" level of each output is adjustable to $5 v$ from the baseline, and word complement is available by front panel switch.

Model 212 is only the fastest. Other Datapulse data generators produce words up to 100 bits long, have as many as 13 channels, and provide NRZ and/or RZ outputs. Applications range from PCM simulation to pattern sensitivity testing with pseudo-random data. Prices start at \$680.

Our catalog will give you the whole story of the types, models, and options available. Contact Datapulse Division, Systron-Donner Corporation, 10150 W. Jefferson Blvd., Culver City, Calif. 90230. Phone (213) 836-6100.

A fast talker to test your hottest logic circuits

DATAPULSE
OIVISION

Another S-D instrument first!

Electronic counters
Pulse generators
Microwave frequency
Digital clocks
Memory testers
Analog computers
Time code generators
Data generators

NEWS
21 News Scope
24 Where EE and MD link up to prolong life An inside look at hospital electronics by a staff member who took a job as an attendant.
30 Breaking the laser communications barrier Modulation and power problems are expected to be solved in system that NASA will test in 1972-1973.
32 Packaging method cuts semiconductor memory costs
34 Device is an adaptive filter or transformer
40 NASA's relay satellite faces a wobbly future Spinning orbit delays tests with ATS.V, and the opposition of fishermen may force system redesign.

47 Washington Report

TECHNOLOGY

66 Need a low-voltage dc converter? Use this solid-state multiplier circuit. It operates from sources as low as 0.1 V .
70 Decipher the Gray code. Convert it into binary or decimal equivalents or use it directly in arithmetic computation.
76 For Sales/EE interface: sell-don't battle. Who knows? You might lose the customer in the war.
80 Ideas for Design
92 Semiannual Index of Articles: July through December, 1969
D1 Product Source Directory: Power Supplies
D10 Avoid the pitfalls of power-supply connections
D22 Make sure you pick the right power supply
D24 Tables of specifications

PRODUCTS

97 Instrumentation: Thirty-range DMM for $\$ 795$ checks five parameters.
106 Microwaves \& Lasers: MIC flatpack amplifiers can be soldered together.
116 Packaging \& Materials: DIP-sized multilayer package accepts four chips.
123 Data Processing
128 ICs \& Semiconductors
134 Components
140 Modules \& Subassemblies
146 Tools \& Engineering Aids

Departments

55 Editorial: Electronics... it follows you everywhere nowadays.
13 Designer's Calendar 154 Application Notes
52 Sidelights
156 New Literature
150 Evaluation Samples 174 Advertisers' Index
152 Design Aids 176 Information Retrieval Service
Information Retrieval Service Card inside back cover
Cover: Designed by Art Director Cliff Gardiner and photographed
by Henry Ries

[^0]

Universal Interconnect is the only system that can perform all interconnection missions. It includes connectors in all shapes and sizes, terminal modules and individual wires - even plug-in components such as relays, meters and switches.

It does this with one contact style, one service tool and one assembly/service technique.

This system* is now part of numerous military and industrial specifications: MIL-C-38999, MIL-C-83723, MIL-C-24308, MIL-T81714 and ARINC 404.

And now these products are available to you from multiple sources - the leaders of the connector industry. .. and ITT Cannon makes them all.

The Universal Interconnect System evolved from the LITTLE CAESAR ${ }^{\circledR}$ rear-release contact retention assembly. It permits rear insertion and extraction of crimp snap-in contacts, lets you service connectors without unmating.

Find out how Universal Interconnect can solve your wiring system problems. Write to ITT Cannon Electric, 3208 Humboldt Street, Los Angeles, California 90031. A division of International Telephone and Telegraph Corporation.
*itt Cannon electric patents inilioog3, ê3158424

INFORMATION RETRIEVAL NUMBER 4

Feel Free To Flex

Yes, we know . . . we used to recommend Beldfoil Shielded Cable only for fixed applications. We were too modest. Extended testing proves Beldfoil, even after repeated flexing, provides more physical shield coverage than braided wire or spiral wrapped (served) shields. And greater shield effectiveness. Beldfoil is a layer of aluminum foil bonded to a tough polyester film (for insulation and added strength). A Belden invention. We apply it in different ways for different applications. We can even form a unique shield that's like a continuous aluminum tube. This we call ISO-Shield ${ }^{\text {™ }}$. \square When new (or in fixed applications) Beldfoil ISO-Shield is extremely effective in limiting crosstalk or interference . . . whether from outside sources or between shielded elements in the same cable. \square Under frequent flexing minor separations may occur in the foil. But special Beldfoil construction features prevent performance from becoming seriously affected. We do, however, recommend that you tell us if cable flexing is to be extreme. We have special designs available to meet severe flexing requirements. Beldfoil makes possible a small. lightweight cable that terminates easily and is modest in
price. Your Belden distributor stocks or can quickly obtain just about any size or type you need . . . from single conductor audio and sound cable up to data cable having 27 individually shielded pairs (more pairs available on special order). Ask him for the latest "Belden Electronic Wire and Cable Catalog." Or for technical information, contact Belden Corporation, P. O. Box 5070-A. Chicago, Illinois 60680; phone (312) 378-1000.

Beldfoil ${ }^{\circ}$ Shielded Cable -shield effectiveness remains outstanding

"The Clevite electrostatic printer increases our printout capability anywhere from eight to two hundred times."

That's how Mr. Stanley Y. Curry, President of Chi Corporation sums up their experience with the Clevite 4800 hardcopy printer.
A Cleveland-based computer service firm founded by Case Western Reserve University, Chi wanted a fast, versatile printer to complement its third generation Univac 1108. Chi uses its Clevite 4800 printer to perform a wide variety of highly sophisticated scientific and engineering computations, for both the university and over 100 customers currently using the firm's many services.

Here are some more
of Mr. Curry's observations . . .
"We use the Clevite 4800 in three principal areas . . . text editing; intermixing text and pictures; circuit diagrams, plotting and perspective drawings. Currently, we're experimenting with applying it to our billing procedures and are exploring its use for high-speed label printing. It looks as if the printer is useful for just about any output.
"Take text, for example. The 4800 is ideal because of the speed with which it provides copies. Change, delete, add, then program the computer accordingly. Almost instantly the electrostatic printer provides a clean copy of the edited material.
"Our experience with core dump has been quite impressive. Here is an area where the printer's diagnostic
ability really comes to play. Our computer stores some four million binary bits of information, and core dumping used to take around twenty minutes. With the Clevite Printer, we're now completing a core dump in just two minutes," Mr. Curry concludes.
MORE FACTS ON THE CLEVITE 4800
Clevite 4800 reproduces signals from any source of digital input or data transmission by telemetry, radio microwave, and/or land line. It produces accurate printouts of both alphanumerics and graphics almost as fast as the computer supplies them.
A productivity rate of 412,000 characters per minute means fast-acting computers are no longer hampered by mechanical equipment, noisely hammering out a few hundred lines per minute. No other printer gets as much out of your computer as fast as Clevite 4800. And no other printer is so economical. The Clevite 4800 reduces capital investment, because conventional equipment costs more per unit. Also, there are few moving parts, reducing the need for constant maintenance and servicing. Clevite 4800. It's faster, more versatile, quieter, and more dependable than anything else you can buy. Drop us a line to find out how it fits into your computer room. Graphics Division, Gould Inc., 3631
Perkins Ave., Cleveland, Ohio 44114.

${ }^{\text {gould }}$ CLEVITE

Clevite 4800. The next generation of high-speed printers.

TI's quiet revolution in Linear ICs

Here's your biggest choice for system interface design- 10 sense amps, 2 memory drivers, 6 line circuits.

System interface designers have long needed an IC line big enough to work with. TI's quiet revolution in Computer Interface has provided the answer-the biggest family now available. Choose from 18 proven functions - all in stock.

The 10 sense amps (Series 7520N) offer you a selection of three basic circuit designs - three versions of dual preamplifiers driving com-mon-output circuits, or two complete sense amps in a single package. You gain low propagation delay, fast overload recovery, high d-c noise margin, individual channel strobing, TTL compatible out-
puts-and substantial cost savings.
From the group of six drivers and receivers, you can pick dual line receivers which translate transmission line signals to logic signals or perform level shifting operations (SN75107/SN75108). Or receivers which can be applied as differential or single-ended receivers or as comparators (SN75100/ SN75120). Or pick dual channel line drivers useful in balanced, unbalanced and party line systems (SN75109/SN75110).
Of the two memory drivers, the SN75303-a 150 mA transistor ar-ray-interfaces between bipolar
logic levels and magnetic memory systems. The SN75324 replaces traditional discrete high-current transistor-transformer circuits in magnetic memory systems.
If you're ready to whip interface problems the IC way, we'll send you our new brochure on our Computer System Interface Circuits. Circle 288 on the Reader Service Card or write Texas Instruments Incorporated, P.O. Box 5012, M.S. 308, Dallas, Texas 75222. That's where the quiet revolution is going on. Or call your authorized TI Distributor.

Texas Instruments
 INCORPORATED

L.E.D. users: 3 things will be evident in low-cost, high-volume, state-ofthe-art designs!

MLED600
Mini.T* Plastic
Gallium-Arsenide-
Phosphide Red
Light-Emitting Diode

MLED...Plastic Gallium-Arsenide IR Light-Emitting Diode

See us in this new light today.

We're new in L.E.D.'s. So our first of three new device announcements - the MLED600 red L.E.D. - offers you performance advantages unseen elsewhere.

Low, 45 mA typical drive current furnishing 700 footlamberts brightness. Unique, molded Mini-T lens. Reliable, oxide-passivated construction. Low-nanosecond response time. 660 nanometer typical emission wavelength. And the first, clear-plastic package stripline-produced in volume economy..

$\$ 1.45$ each, 1,000 up!

The MLED600 will be a distinct asset in panel indicators, light modulators, shaft or position encoders, punched card readers, optical switching and logic circuits, or any
application requiring high visibility, low drive power, long life and stability.

And, our 5,600-angstrom green and 9,000 angstrom infra-red L.E.D.'s will soon appear in similar volume and low-cost!

In the meantime, send to Box 20912, Phoenix 85036 for AN508, "Applications Of Phototransistors In ElectroOptical Systems." It handles theory, characteristics and terminology, design of E-O systems using device information and geometric considerations and includes circuit designs for DC,low and high-frequency applications.

We'll include a data sheet on the state-of-the-art MLED600.

Both should be seen to be appreciated.

Designer's Calendar

MARCH 1970						
\mathbf{S}	\mathbf{M}	\mathbf{T}	\mathbf{W}	\mathbf{T}	F	\mathbf{S}
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{8}$	$\mathbf{9}$	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

Mar. 11-13
Scintillation \& Semiconductor Counter Symposium (Washington, D.C.) Sponsor: NBS, IEEE. R. L. Chase, Brookhaven National Laboratory, Upton, N.Y. 11973

CIRCLE NO. 320
Mar. 23-26
IEEE Convention and Exhibition (New York City) Sponsor: IEEE. H. L. Nicol, The Institute of Electrical and Electronics Engineers, 345 E. 47th St., New York, N. Y. 10017

CIRCLE NO. 321

APRIL 1970						
S	M	T	W	T	F	S
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30		

Mar. 31-Apr. 2
International Symposium on Submillimeter Waves (New York City) Sponsor: IEEE et al. J. Fox, Microwave Research Institute, Polytechnic Institute of Brooklyn, 333 Jay St., Brooklyn, N. Y. 11201

CIRCLE NO. 322
Mar. 31-Apr. 2
Symposium on Law Enforcement Science and Technology (Chicago) Sponsor: U.S. Dept. ot Justice. IIT Research Institute, Law Enforcement Science \& Technology Center, 2024 West St., Annapolis, Md. 21401

[^1]

the sure way to let customers know you care about quality...

Simpson

panel instruments
on your equipment
Simpson's advanced self-shielding annular and core magnet construction provides optimum torque-to-mass ratio. Rugged Taut Band and Pivot \& Jewel movements can withstand punishing shock and vibration. Your assurance of an instrument that will stay accurate. No wonder so many manufacturers with reputations to protect (or build!) specify Simpson.

Over 1,400 stock ranges, sizes, and types. Get "off the shelf" delivery from your local electronic distributor.

ELECTRIC COMPANY
5200 W. Kinzie Street, Chicago, Illinois 60644 - Phone (312) 379-1121
EXPORT DEPT.: 400 W. Madison Street, Chicago, Illinois 60606. Cable Simelco IN CANADA: Bach-Simpson Ltd., London, Ontario - IN INDIA: Ruttonsha-Simpson Private Ltd., International House, Bombay-Agra Road, Vikhroli, Bombay
INSTRUMENTS THATSGTAYACCURTE INFORMATION RETRIEVAL NUMBER 9

To make Decoders that can drive every major display device,

Three Fairchild MSI decoder/drivers cover the requirements of every major military and industrial display device on the market. The 9315. The 9317. And the brand new 9327. Each device has a built-in driver stage - an important feature that means smaller, lower-cost systems with higher reliability.
NIXIE-The 9315 One-of-Ten Decoder/Driver accepts decimal inputs and provides ten mutually exclusive outputs which directly drive NIXIE* tubes. Stable high-voltage output characteristics also make the 9315 ideal for driving relays, lamps and similar devices.

SEVEN-SEGMENT — Fairchild's 9317 and 9327 Seven-Segment Decoder/Drivers convert 4 inputs in 8421 BCD code into appropriate outputs for driving seven-segment numerical displays. The 9317 is designed for use with incandescent lamps, neon, electroluminescent and CRT displays, as well as light emitting diode indicators. The 9327 is used for DIGIVAC S/G** vacuum fluorescent readouts. Both devices feature automatic ripple blanking, lamp intensity modulation, lamp test facility, and blanking output. Outputs are disabled by codes in excess of binary 9 . Flags are removed on the 6 and 9 , which reduces the number of ambiguous states.
*NIXIE is a registered Trademark of Burroughs Corporation.
**DIGIVAC S/G is a registered Trademark of Wagner Electric Corporation.

To order these Decoder/Drivers, call your Fairchild Distributor or ask for:

PART NUMBER	PACKAGE	TEMPERATURE RANGE	$(1-24)$	PRICE $(25-99)$	$(100-$ $999)$
U4L931551X	Flat	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\$ 22.00$	$\$ 17.60$	$\$ 14.65$
U4L931559X	Flat	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	11.00	8.80	7.30
U6B931551X	DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20.00	16.00	13.30
U6B931559X	DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	10.00	8.00	6.65
U4L9317513	Flat	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28.00	22.40	18.70
U4L9317593	Flat	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14.00	11.20	9.35
U7B9317513	DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	25.40	20.30	17.00
U7B9317593	DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	12.70	10.15	8.50
U4L9327591	Flat	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	13.05	10.50	8.80
U7B9327591	DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	11.90	9.55	8.00

you have to get serious about MSI family planning.

We put together a family plan by taking systems apart. All kinds of digital systems. Thousands of them.

First we looked for functional categories.We found them. Time after time, in a clear and recurrent pattern, seven basic categories popped up: Registers.Decoders and demultiplexers. Counters. Multiplexers. Encoders. Operators. Latches.

Inside each of the seven categories, we sifted by application. We wanted to design the minimum number of devices that could do the maximum number of things. That's why, for example, Fairchild MSI registers can be used in storage, in shifting, in counting and in conversion applications. And you'll find this sort of versatility throughout our entire MSI line.

Finally, we studied ancillary logic requirements and packed, wherever possible, our MSI devices with input and output decoding, buffering and complementing functions. That's why Fairchild MSI reducesin many cases eliminates-the need for additional logic packages.

The Fairchild MSI family plan. A new approach to MSI

REGISTERS 9300-4-Bit Shift Registe 9328 -Dual 8-Bit Shift Register

COUNTERS 9306 - Decade Up/ Down Counter 9310 - Decade Counter 9316 - Hexidecimal Counter

OPERATORS 9304 - Dual Full Adder/Parity Generator

LATCHES 9308 - Dual 4-Bit Latch 9314 -Quad Latch

DECODERS AND DEMULTIPLEXERS 9301 -One-Of-Ten Decoder 9315 - One-Of-Ten 9315 - One-Of-Ten 9307 -Seven-Segment Decoder 9311 -One-Of-16 Decoder
9317 -Seven-Segment
Decoder/Driver 9327 -Seven-Segment Decoder/Driver

1 Decoder

ENCODERS 9318 - Priority 8-Input Encoder

With a 10 megohm input resistance and a highsensitivity (0.3 V DC full scale) meter, this handy little Triplett Model 310-FET can handle practically any in-circuit electrical measurement you may need.

For instance, the voltage ranges cover from 0.005 to 600 V DC in 6 steps at 10 megohms and 0.1 to 600 V AC in 5 steps at 5,000 ohms per volt . . . 4 resistance ranges from 1 ohm to 5000 megohms with 50 ohms at the centerpoint of the low resistance scale... current in 2 ranges from 0.002 to 1.2 mA DC . With its optional clamp-on ammeter attachment, the Model 310 -FET will read AC from 0.2 to 300 A in 6 steps. Accuracy on DC ranges is $3 \% \ldots 4 \%$ on $A C$.

Never one to stand short when it comes to offering features and real value in its instruments, Triplett has even equipped the Model 310 -FET with a rugged suspension-type meter to soak up the hard knocks and a polarity-reversing switch to simplify operation.
Value? It's priced at only $\$ 74$ suggested USA user net, and it's available right now at your Triplett distributor. Ask him or your local Triplett sales representative for a demonstration. Triplett Corporation, Bluffton, Ohio 45817.

II
 TRIPLETT

The World's most complete line of V-O-M's . . . choose the one that's just right for you

Shown actual size

1. All Solid-State (F.E.T.) with 10 Megohm input resistance, battery operated.
2. High sensitivity (300 mV DC fs) for transistor bias measurements, resistance measurements to 5,000 Megohms.
3. Hand-size with single selector switch and provision for attaching AC clamp-on adapter.

MOS CLOCK DRIVERS

How many MOS devices can a clock driver operate? There is no hard and fast answer. Fanout is bounded by the driver's current and power ratings, but can vary greatly with drive requirements and with the way the driver itself is driven by the clock signal source.

Any of the drivers in the table might clock an MOS shift-register string with thousands of stages, for instance, but if that were the only consideration we wouldn't be producing a variety of types. All the drivers have the same basic functiontranslating a bipolar clock signal to MOS voltage levels and boosting the output current. They have similar output stages, whose operation was detailed in AN-18, "MOS Clock Driver."

What makes them tick differently is their input stages. The NH0007 includes an input AND gate and can be coupled directly to a TTL or DTL gate. The NH0009 is directly or capacitively coupled to a TTL line driver that provides at least 20 mA . To work at its full speed, the NH0012 requires directcoupled, opposite phase inputs from a TTL driver. And the NH0013 is capacitively coupled to a TTL driver.

The NH0013 offers high fanout at lowest cost. It is most efficient because it does not have a built-in level shifter and the output duty cycle is lower than the input duty cycle. Essentially, it is the NH0OO9 without the Q1-Q2 input stages seen in Figure 1. However, the NH0013's output pulse width depends on the input drive circuitry rather than the input pulse timing. This is also true of the NH 0009 when it is capacitive coupled.

When it is direct-coupled as shown in Figure 2 (most people use it capacitive coupled), the NH0009 will follow the input. That is, the driver output will remain at the MOS " 1 " level (near V2) for as long as the input is at the TTL " 1 " level. The output will be MOS " 0 " (near V3) while the input is at TTL " 0 ". The NH0OO7 and NH0O12 do the same.

In contrast, the NH0O13 (or an NH0OO9 capacitively coupled) as shown in Figure 3 will produce an output MOS " 1 " level pulse during the period following the bipolar logic transition from the TTL " 0 " state to the " 1 " state. At all other times, the output will remain at the MOS " 0 " level. The width of the " 1 " output pulse depends on the cur-

FIGURE 2. Directly Coupled Dual Driver

Characteristics of National MOS Clock Drivers

TYPE	PACKAGE	OUTPUT PHASES	INPUT COUPLING	$\begin{gathered} \text { INPUT } \\ \text { LEVEL } \\ \text { TRANSLATOR } \end{gathered}$	$\begin{aligned} & \text { MAX REP } \\ & \text { RATE-MHz } \end{aligned}$	MAX OUTPUT SWING-V	Iout-mA	$\begin{gathered} \mathrm{P}_{\mathrm{MAX}}-\mathrm{mW} \\ @ 25^{\circ} \mathrm{C} / @ 70^{\circ} \mathrm{C} \end{gathered}$	Poff mW
NH0007	TO-5	1	dc	Yes	5	30	± 500	800/600	5
NH0009	TO. 8	2	dc or Cap	Yes	3	30	± 500	1500/1000	0
NH0012	T08	1	dc	Yes	10	30	± 1000	1500/1000	20
NH0013	TO. 8	2	Cap	No	5	30	± 500	1500/1000	0

FIGURE 3. Capacitively Coupled Dual Driver
rent available from the TTL driver and the input capacitor (see Figure 4):

$$
\text { P.W. } \alpha \mathrm{C}_{\text {IN }} \times \mathrm{V}_{\text {drive }} / I_{\text {drive }}
$$

As soon as the input rises about 0.5 V , the output is driven to the MOS "1" level (V2). The output returns to the MOS " 0 " level (V3) when the input capacitor charges.

Capacitive coupling from the TTL driver to the NH0013 helps cut system power consumption and cost to the bone when used with other low duty cycle techniques. Low duty cycle driver efficiency is discussed in AN-18 and low frequency memory operation to reduce system power is discussed in AN-19, "Low Power MOS."

FIGURE 4. Waveforms, Each Half of Dual Driver
One point not covered in previous application notes is that capacitive coupling yields an additional fanout bonus by significantly reducing the power dissipation in the driver input (See NH0013 data sheet for more detailed calculations). Let's compare fanouts of half an NH0009 operating dc and half an NHOO13 under the following typical conditions:
$\mathrm{f}=2 \mathrm{MHz}$
$V_{2}=-16 \mathrm{~V}$
$\mathrm{t}_{\mathrm{r}}=50 \mathrm{~ns}$
$\mathrm{V}_{3}=0 \mathrm{~V}$
P.W. = 200 ns
$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$
where t_{r} is the rise time and P.W. the pulse width of the input signal.

One factor limiting fanout is $\mathrm{P}_{\text {max }}$, the package power dissipation. This is 500 mW for each half at $70^{\circ} \mathrm{C}$, which covers both the internal dissipation $P_{d c}$ and the transient dissipation $P_{a c}$ involved in driving the load. That is,

$$
P_{\max }=P_{d c}+P_{a c}
$$

The only significant $P_{d c}$ in National's two-phase drivers occurs during the " 1 " output, so $P_{d c}$ in half a direct-coupled NH0OO9 is

where $I_{\text {IN }}$ from the TTL driver averages 20 mA and R_{b} is the output collector load resistor of $1.1 \mathrm{k} \Omega$. Therefore,

$$
\begin{aligned}
P_{\cdot .1 " 1 "} & =\left(21 \times 20+16^{2} / 1.1\right) \times 0.4 \times 10^{-3} \\
& =261 \mathrm{~mW}
\end{aligned}
$$

This allows $P_{a c}$ to be 239 mW in the NH0009.

In the NH0O13, the input voltage component is only the TTL " 1 " level of about 4.0 V , so its P ./ 1 " is only 125 mW and P_{ac} can be 375 mW . In all drivers,

$$
P_{a c}=C_{L} f \times\left(V_{3}-V_{2}\right)^{2}
$$

where C_{L} is the capacitive load presented by the MOS devices' clock inputs. Therefore, in this example each half of the directly coupled NH0009 would drive 467 pF worth of MOS devices, and the NH0013, 732 pF . The difference is more pronounced when the voltage swings are larger. In other words, each NH 0013 could drive several more large MOS registers while dissipating the same power as the direct-coupled NH0009.

The two become equal when the absolute limit on fanout imposed by output current capability is reached. This is

$$
C_{L(\text { max })}=I X t_{r} / V
$$

where I is the output current limit and V the output voltage swing. These drivers will withstand transient currents of 600 mA , so $\mathrm{C}_{\mathrm{L},(\max)}$ would be $1,875 \mathrm{pF}$ at $\mathrm{V}_{2}=-16 \mathrm{~V}, \mathrm{~V}_{3}=0 \mathrm{~V}$ and $\mathrm{t}_{\mathrm{r}}=50 \mathrm{~ns}$. Techniques such as lowering the duty cycle or making both V_{3} and V_{2} more positive can be used to work C_{L} up toward $C_{L(\text { max })}$. But don't exceed it (a precaution that has sometimes been overlooked on the data sheets of rival devices).

Auto ScaleFactor Readout

means faster measurements with fewer errors

The New Tektronix 7000-Series Oscilloscope System has AUTO SCALE-FACTOR READOUT-just one of many new convenience features which refine waveform measurement ease. Auto ScaleFactor Readout labels the oscilloscope graph with deflection factors and sweep speeds, invert and uncalibrated symbols, and identifies the trace and its data. When magnified sweeps and the New P6052 or P6053 10X probes are used, the readout is automatically corrected. Press either a probe-tip or front-panel switch, the trace shifts vertically and its deflection factor is replaced by the word IDENTIFY to associate waveforms with scale factors. Scale factors of inverted and uncalibrated displays are prefixed by invert (\downarrow) and uncalibrate ($>$) symbols. Now, you can forget the inconvenience of hand labeling photographs. With AUTO SCALE-FACTOR READOUT you look in only one place for accurate data. On the CRT where it's displayed automatically . . . with the waveforms!

New Convenience, a Wider Performance Spectrum, and Four PlugIn Flexibility are some factors which make the New Tektronix 7000-Series Oscilloscopes an asset to your measurement capabilities.

Prices of Instruments shown:
7704 DC-150 MHz Four Plug-In Oscilloscope \$2500
7A12 Dual-Trace Amplifier Plug-In \$ 700
7A16 Single Trace Amplifier Plug-In \$ 600
7B71 Time-Base Plug-In \$ 685
7B70 Time-Base Plug-In $\$ 600$
Note: 7504 DC - 90 MHz Four Plug-In Oscilloscope with Auto Scale-Factor Readout
\$2000
For information, call your local Tektronix Field Engineer or write: Tektronix, Inc., P. O. Box 500, Beaverton, Oregon 97005.

The Readout System presently displays up to 49 symbols and responds to various functional instructions. Less than half of the symbols are needed for today's plug-ins.

Tektronix, Inc.

committed to progress in waveform measurement

Made to be used everywhere

 ... and priced so they can be
TRIGATE PULSE

TRANSFORMERS

. . . your lowest-cost answer to SCR triggering!

- Type $11 Z$ TRIGATE Pulse Transformers are well qualified for industrial use, yet fully affordable for massproduced commercial equipment. They can be used to both cut costs and improve SCR triggering in numerous applications such as: appliances, lighting controls, industrial controls, air conditioning and heating controls.

Unique features include:

1. Balanced pulse characteristics and energy transfer from primary to secondary and tertiary windings.
2. Minimum saturation effect to allow operation where increased pulse widths are required.
3. Fast pulse rise time and increased current capability to prevent SCR $d i / d t$ failure.
4. Increased energy transfer efficiency.

Operating temperature range, -10 C to +105 C . 2- and 3 -winding designs for half- and full-wave applications. Turns ratios, $1: 1,1: 1: 1,2: 1,2: 1: 1$, $5: 1$. Available for use with line voltages up to 240 VAC or 550 VAC. Inductances to 1 mH at $550 \mathrm{~V}, 5 \mathrm{mH}$ at 240 V .

For complete technical data, request Engineering Bulletin 40,003A. Write to: Sprague Electric Co., 347 Marshall St., North Adams, Mass. 01247

Highlighting
 THE ISSUE

DS Series	$26.8-$	$3-1$
	29.2	
A6A Y101	$10-29.9$	0.1
A6BY101	$10-29.9$	0.1
A6CY101	$10-29.9$	0.1
A6DY 101 R	$10-29.9$	0.1
A6AY 252	$10-29.9$	2.5
A6BY252	$10-29.9$	2.5
A6CY252A	$10-29.9$	2.5
A6AY502	$10-29.9$	5

specifications for approximately 3500 power supplies made by 68 manufacturers are presented in convenient tabular form to assist you with your requirements. In addition, articles bring you up to date on technology in the field.

For convenience power supplies have been divided into 5 categories: high current, constant current, high voltage, laboratory type, and modular type.
PAGE D1

The medical electronics field is about to expand dramatically.
"When we installed our radiology department, we spent $\$ 240$,000," says Robert Heinlein, director of Overlook Hospital in Summit, N. J. "This year we are going to spend $\$ 230,000$ on new equipment alone."

Electronics is not only doing a critical job in hospitals, Heinlein says, but "physicians and nurses are now more sophisticated in their understanding of what electronic machines can do."
PAGE 24

Intended for use as a highly versatile bench instrument, a new four-digit multimeter with 100% overranging features a low cost of only $\$ 795$ in an instrument that is capable of measuring five functions in 30 ranges.

With 13 push buttons, the model DM414 integrating digital multimeter with a $100-\mathrm{ms}$ response, measures ac and dc voltages, ac and dc currents, and resistances, all in very wide ranges.
PAGE 97

Why NIXIE tubes when we just developed SELF-SCAN"' panel displays?

Now from Burroughs - two great digital readouts, NIXIE tubes and SELF-SCAN panel displays form a bright new team in digital readouts.

NIXIE tubes are your only logical choice for digital readouts containing up to 8 digits. Their long life, uniform brightness (200 ft . lamberts with no chance of partial fadeout) and the wide choice of configurations available help make NIXIE tubes the most economical, reliable, and readable digital readouts on the market for most panel displays.

BUT

When your display requires 8 to 10 or more digits, turn to Burroughs' amazing new SELF-SCAN panel displays.

Designed for larger displays, SELFSCAN panel displays reduce drive circuitry up to 90%, thereby eliminating a major cost of readout systems. And
you can specify SELF-SCAN panel display systems with or without memory. Flicker-free, comfortably readable in the brightest light or darkest shadows, SELF-SCAN panel displays provide unparalleled savings for readouts with 8 to 400 digits of alphanumeric display.
Regardless of your readout requirements, one of Burroughs team of digital displays - industry standard NIXIE tubes or the outstanding state-of-theart advance, SELF-SCAN panel display systems - will meet your needs.

For additional information write to Burroughs Corporation, Electronic Components Division, P.O. Box 1226, Plainfield, N.J. 07061. Tel: (201) 757-5000.

It's a matter of

More than 8 digits? Choose the new Burroughs SELF-SCAN panel display.

Buirroughs

U. S. Budget for fiscal 1971; A mixed anti-inflation bag

The underlying theme in the $\$ 200.8$-billion U. S. budget request for fiscal year 1971 is the Administration's declaration of war on inflation, with austerity its chief weapon.

Money for defense is down, and funds for the exploration of space are at a new low. Showing a rise, however, are requests for funds to deal with the well-publicized airline traffic problems in the domestic skies and to fight crime.

In his first budget message to Congress, President Richard M. Nixon said: "For the first time in two full decades, the Federal Government will spend more money on human resource programs than on national defense."

Although the raw picture looks grim at a glance, closer scrutiny shows a number of programs continuing full blast and new ones opening up. The need for good market research this year has reached a high.

Out of the whole federal budget, defense gets only 34.6%-its the lowest percentage since 1950. Total obligation authority requested for 1971-new money plus unspent money from previous years-is down 14.8%. The figure for 1970 was $\$ 85.6$-billion; this year's request is for $\$ 72.9$-billion.

And the defense outlay-money expected to be spent-is down 12%, from $\$ 81.6$-billion to $\$ 71.8$-billion.
"There will be a 30% drop in procurement." a Defense Dept. spokesman told a pre-budget briefing. "There will be a reduction in contractor personnel from July, 1969, to July, 1971 of 640.000 employees, and there will be a substantial closure of military bases."

Money for strategic (global war) forces is up $\$ 400$-million. Minuteman III missiles will replace the older Is. For the Safeguard antimissile system, $\$ 1.5$-billion is asked.

Short-range attack missiles for bombers will be bought, and $\$ 100-$ million is being sought to start work on a new manned bomber, the B-1. A new over-the-horizon radar will be started, and Awacs, the long-delayed airborne warning and control system, is pegged for an $\$ 87$-million start.

Ship-building will hold its own at $\$ 2.6$-billion. And outlays for aircraft will be up, including funds for the F-15, F-14A and S-3A.

Some of the items that won't get as much this year as they did in 1970 include the EA-6B, the A-7E and A-7D, F-111, C-5A, nuclear aircraft carriers, nuclear guided missile destroyers, attack submarines and conversion of Polaris submarines to handle the bigger Poseidon missile.

NASA's planned expenditures of \$3.4-billion in fiscal year 1971 include roughly $\$ 1.3$-billion for electronics, based on an estimate by the agency's Administrator, Dr. Thomas O. Paine.

Although the lowest NASA budget request since fiscal 1962, the total may represent a nadir, says Dr. Paine. He discloses "an understanding" with President Nixon, obtained in late January, that the space agency will be supported at or above this level in succeeding years.

Dr. Paine firmly rejects a statement by a top White House official alluding to elimination of additional NASA centers. In a budget press briefing, Dr. Lee Dubridge, Presidential Scientific Adviser, indicated that more NASA research centers might be axed. But Dr. Paine says he has a Presidential okay to hold the existing NASA facilities together "as a national asset."

Losses to the electronics industry from the space budget will be compensated partly by marked in-
creases in funding for the Federal Aviation Administration and multiagency expenditures for anti-crime research and Federal law-enforcement assistance.

A total of $\$ 1.77$-billion is being asked for the FAA-an increase of $\$ 440$-million over last year. Nearly $\$ 240$-million of this is for R\&D and new equipment and facilities.

An additional $\$ 292$-million will be asked for airways and airport development-for radars, communications, and computer facilitiesbut this is dependent on separate legislation expected from the Congress this year.

For the reduction of crime, the Administration is asking $\$ 1.26$-bil-lion- 41% of it to assist state and local law-enforcement agencies, or nearly double the sum available last year.

From machine tools to minicomputers

The Cincinnati Milling Machine Co., Cincinnati, Ohio, has announced its entry into the minicomputer market with two 8 -bit models. The CIP/2000 is a microprogrammable, dedicated computer with a read-only memory that has 1024 instructions. The larger CIP/2100 has three read-only memories plus a 4 K core memory that is expandable. The company is offering the two models to the OEM market, and it has not announced any plans for using the machines in conjunction with its machine-tool product line.

Bell to test waveguide communications system

Bell Telephone Laboratories has announced plans for a 20 -mile millimeter waveguide communications system that it expects to field-test in 1974. This system-reported by Electronic Design in its issue of Sept. 13, 1969 (see "Dither Over Data." p. 30)-will carry 250.000 simultaneous phone conversations.

A spokesman for the Long Lines Div. of the Bell System says construction of the waveguide system will begin in 1973, with commercial service slated for the late 1970s.
The millimeter waveguide will consist of two-inch, copper-lined
steel pipe enclosed in a protective conduit four feet underground. The system is to operate at 40 to 100 gigahertz-a frequency band with a greater capacity than all of the lower radio frequencies combined.

Pulse code modulation will be used to convert all types of sig-nals-voice, TV, Picturephone and data-for transmission through the waveguide.

In addition to its communication capacity, a major advantage of the millimeter wave system is that signals can travel about 20 miles before requiring amplification. Repeater stations with present coaxial systems are spaced two to five miles apart.

Computers can spot offshore oil leaks

A new system has been developed that reduces the possibiilty of disastrous oil leaks, like the one off Santa Barbara, Calif.

Developed by Ocean Science and Engineering, Inc. of Long Beach, Calif., the system can operate up to 16 wells simultaneously in waters up to 1500 feet deep. The system, known as Deep Oil, includes a computer that monitors several performance parameters of the wells. According to W. Saxe Montgomery, western marketing manager for Ocean Science, the computer checks each well every three seconds.
"The system is fail-safe," says Montgomery. "Any failure noted in a valve or line pressure or oil flow rate will automatically shut the whole system off. No one need be around. The computer can be miles away. The computer's console has built-in diagnostic aids that show exactly where the failure has occurred. The Seafioor Oil Well Completion Unit (a submersible vehicle with robot-like arms) is then dispatched to the scene to make repairs."

Deep Oil eliminates the need for the Texas Tower type of structure
above ocean floor wells, since no one need be at the site. Wells are set in place by drilling ships with the help of the submersible vehicle.

This system was shown to attendees of the Marine Technology Society's Second Work in the Sea Symposium last month in Los Angeles.

MIT Alumni Center attacks urban problems

In an effort to use its members' technical knowledge to solve urban problems, the Public Service Group of the MIT Alumni Center of New York has set up a clearinghouse to put interested alumni in touch with urban-improvment organizations. The alumni are acting as unpaid consultants to such organizations as the Urban Coalition, Applied Resources, Inc., Model Cities and the Interracial Council for Business Opportunity.

As William A. Loeb, chairman of the public service group, explains it, most of the projects in which the group has so far become involved fall into three major categories: housing, helping small businesses and job training. Several of the small businesses-usually run by minority-group businessmenhave been in the electronics area. A computer service bureau and a microelectronics firm are cited as examples.

Belgian manufacturers set up New York office

To promote liaison between Belgian and American manufacturers in electronics and other industries, Fabrimental, manufacturers' association of Belgium, has opened new offices at 50 Rockefeller Plaza, New York City.

Léon Félix, Fabrimetal's representative, will assist American firms in settling up licensing agreements and joint ventures.

Job market dark for June EE grads

June graduates with advanced degrees are facing a "temporary
job market depression," Stanford's Director of Placement, Dr. Ralph Keller, believes.

The Placement Service records show that 58 major companies and seven government agencies that normally hire electrical engineers have already canceled their Stanford recruiting dates for January, February and March. Normally. this is the peak period for visits by campus recruiting teams.
This includes firms in the "bluebook of American industry" that have never canceled before, Keller reported. In the past, cancellations have never amounted to more than a dozen, mainly from lack of student interest. More than 450 companies annually contact Stanford for recruits.

The whole spectrum-government, business, industry and edu-cation-is suffering a market slump, Keller said. However, the less defense-oriented the firm, the less it is suffering.
The problem is more acute for graduate students than for undergraduates, Dr. Lauress Wise, Associate Dean of the School of Engineering at Stanford, told Electronic Design. The reason, he said, is that most undergraduates either go on to graduate school or enter military service. He pointed out that while the total number of job interviews for EEs is well below what it was this time last year, the salary amount of each offer actually made is some $\$ 30$ higher.

He said that MBAs with a BSEE have a higher probability of finding the job they want than MSEEs-but not better than PhDs in electrical engineering. He mentioned, however, that jobs for PhDs this year are harder to come by than ever before.

Intelsat III starts commercial service

The new Intelsat III satellite stationed over the Atlantic began full-time commercial service earlier this month. It will handle communications between the U.S., Latin America, Europe, North Africa and the Mid-East. The satellite is the sixth in the Intelsat series. It was launched on January 14.

AN INSIDE LOOK AT HOSPITAL ELECTRONICS
 Where EE and MD

John N. Kessler, News Editor

The elevator doors open briskly on the ninth floor of Overlook Hospital, and a nurse and a therapist. moving at an efficient pace, wheel out a stretcher. The therapist is pumping an Ambu bag, a handheld, balloon-like respirator that is used in emergency cases, and as the stretcher moves past the nurses' station on the floor, I can see through the window that it is a little girl.

She is Laurie, 6 years old, an auto accident victim. Her mother and grandmother, who were with her in the car, are already dead. The diagnosis on Laurie: severe brain-stem damage. She is motion-less-unconscious.
"Put her in 924," the head nurse says.

Machines sustain life

The girl is wheeled into Room 924 -ICU, they call it at Overlook Hospital. The initials stand for Intensive Care Unit, an area where electronics is playing an increasing role in the care of patients.

Swiftly, attendants connect Laurie to a respirator that does her breathing. Nurses set up intravenous flows to keep her body fluids in balance and to maintain normal blood pressure. They also connect her body to a hypothermia unit to keep her temperature down.

Later an electroencephalogram is used to determine the extent of her brain activity. And an Echo-

Hospital attendant John Kessler gets his orders from a nurse in Overlook's Coronary Care Unit. Cardiac monitors have a 15 -second memory loop and an adjustable pulsemeter alarm. An alarm in the patient's room automatically notifies medical personnel of any emergency and sets off a clock above the patient's bed.

link up to prolong life

encephalogram is brought in to determine possible shifts in the midline of her brain.

The brain tests prove negative -indicative of severe damage and a possible shift in the brain. For three days, aided by electronic monitors and instruments, the staff watches and works over Laurie. She never regains consciousness. She dies on Jan. 23, 1970.

By now I have become nearly acclimated to the continual flowing and ebbing of life in a modern hospital. For I am just about at the end of a week's stint as a re-porter-attendant in Overlook Hospital, a nonprofit, community institution in Summit, N.J. I wanted to find out how electronics is being used in American hospitals and where it is headed, so I took a job in a typical hospital right near my home.

I spent two days learning about the duties and responsibilities of a hospital attendant and then five days working in various areas of the hospital. I found that a broad range of electronic equipment is in use and is being planned for use: computer time-sharing, telemetry, cardiac monitors, communication systems, laboratory analytical instruments, closed-circuit TV and such instruments as respirators, which are just beginning to incorporate the sophistication that electronics affords.

Major expansion likely

The medical electronics field is about to expand dramatically, I concluded.
"When we installed our radiology department, we spent $\$ 240$,000," says Overlook Hospital's director, Robert Heinlein, "This year we are going to spend $\$ 230,000$ on new equipment alone."

Electronics is not only doing a critical job in hospitals, Heinlein says, but "physicians and nurses are now more sophisticated in their understanding of what electronic machines can do."

ICU is a 14 -bed intensive care unit. Each nurse on the 7 a.m-to3 p.m. shift is assigned two patients. Most patients here are listed as "critical," but they are considered to have a good chance of recovery. The unit is not used for "terminal" patients.

Electronics in ICU

At least five types of electronic equipment are available in ICU, and each can have a significant bearing on whether or not a patient will recover:

- Respirators. These are breathing machines that have largely replaced the "iron lungs." Early respirators delivered a constant supply of air to a patient. But researchers found that in normal breathing a person sighs several times a minute-a natural reaction that keeps the lungs flexible and the airways open. Electromechanical respirators did not allow for such sighing, and doctors found this could lead to a breakdown of lung tissue. Now, an electronic counter can vary the total volume of air and oxygen delivered each minute, so that the patient is "sighed" automatically.
- Hypothermia units. These have taken the place of the hot water bottle and the ice pack. They raise or lower body temperature. Basically the unit consists of a cooling compressor, heating elements and pumps to circulate a heat-transfer liquid (20% alcohol in distilled water) from the unit to a vinyl pad. Pad temperature can be reduced from
105° to $40^{\circ} \mathrm{F}$ in about five min utes, depending on the size of the unit. Settings are usually accurate to $\pm 1 / 2$ degree F. A thermistor probe for esophageal or rectal use provides a constant temperature readout.
- Cardiac monitors. These provide a visual readout of the electrical activity of the heart. There is a monitor at each bedside and and a slave scope in the nursing station. A high-low alarm pulsemeter is set at 40 and 120 heartbeats per minute. It gives a signal when abnormal heart rhythm or speed occur. If an alarm does go off, a memory module automatically records the patient's EKG 15 seconds prior to the onset of the alarm. These tracings are taped to the patient's chart so they can be interpreted by a cardiologist.
- Automatic rotating tourniquets. These are cuffs (similar to those used for taking blood pressure). Placed on the arms and legs, they slow circulation of blood returning to the heart and the lungs. This reduces interpleural pressure, an important factor in treating patients with pulmonary edema.
- Communication systems. These consist of an intercom between each room and the nursing station, telephones to the main switchboard, and four pneumatic tubes to carry written messages throughout the hospital and small medications from pharmacy to the ICU nursing station.

In Overlook's laboratory, a serum analyzer made by Technicon Corp.-the SMA 12/60-typifies the interdependence of chemistry and electronics in modern medicine. The Tarrytown, N.Y., company has programmed its Sequential Multiple Analyzer to analyze 12 constituents of blood serum. The chart on which these measure-

Two-million-volt Van de Graaff generator in the treatment room at Overlook. A TV camera and monitor is used to observe the patient undergoing radiation therapy.

The operating rooms at Overlook all have anti-spark outlets, intercoms, cardiac monitors and fiber optic scopes. Electronics can aid in designing new types of scalpels, drills, cauterizers.

ments are recorded shows those regions considered to be normal. It takes one minute to perform all tests and obtain a printout.

Jane Chatfield, chief technologist in Overlook's laboratory, says there has been rapid growth in the last four years in the development of electronic equipment for hospitals-"and it's possible to reduce costs." She points out that the analysis done by the SMA is considerably less expensive than would be the case if such tests were performed separately by hand under a microscope.

Overlook presently is tied into the computer bank of the New Jersey Hospital Association, which provides statistical information concerning financial aspects of hospital administration: accounts payable, personnel records, etc.

By early spring, the Medelco data communication system is slated to be installed. This will link Overlook with a large-scale computer in Princeton, N.J. Medelco, a division of Scam Instruments, Inc., Chicago, calls its program

THIS-Total Hospital Information System.

THIS will relay information from one section of the hospital to any other in 10 seconds. Small consoles will be set up at each nursing station.

Dr. Warren Nestler, director of medical education, emphasizes the need to speed medical orders, especially in emergencies. But the system will also handle a complexity of routine items that affect the care of each patient: orders to X-ray, changes in diet and medications, labels for pharmaceuticals and orders to the business office will be automatically printed out.

A small computer within the system will tie in equipment from Overlook's laboratory to all the nursing stations so test results will be available immediately. The cost of a time-shared program is expected to be substantially less than that of a full-scale computer within a hospital.

A third shared-computer program will be used to analyze the outputs of all equipment that

yields linear data.
Telemetry is another burgeoning area in hospitals. Four years ago Overlook had four cardiac monitors. Now there are 12 in CCU (the Coronary Care Unit) and six in ICU. The need for monitoring has become so great that Overlook will soon be installing a special ambulatory cardiac telemetry system. Recuperating coronary patients in need of constant monitoring will wear a small external transmitter over the chest. This will pick up basic EKG information and transmit it to a receiver at the nursing station. Patients will be able to move around and still be observed by EKG.

There are three X-ray units at Overlook equipped with remotecontrol TV. In the control room is a videotape recorder. All the X ray and fluoroscopy equipment can be moved automatically. A videotape recorder enables a doctor to make a permanent record of fluoroscopic images.

In the X-ray therapy room. along with a 2 -million-volt Van de

Remotely controlled X-ray unit is also equipped to video-tape fluoroscopic images. Overlook Hospital will spend $\$ 230,000$ on new radiological equipment this year.

Graaff generator, is a video camera. A monitor in the control room permits outside observation of a patient while he is under treatment.

The day starts at 7 a.m.

The typical day shift for the hospital attendant begins at 7 a.m., and a sampling from the diary I kept runs as follows:

Jan. 15 at 7 a.m. In all noncritical areas of the hospital, "the report"-the accounting by the nurse in charge of the status of her ward-is taped prior to the arrival of the new shift. In ICU and CCU the report is given orally by the head nurse:
"921: Robert Wilkenson, pneumonia acute MI (myocardial infarction) with congestive heart failure . . . 49 years old . . . has some chest' pains, and he's had Demerol for that. Getting nasal oxygen continuously, and he is on a monitor with a regular sinus rhythm with an inverted T wave. EKG was done. He is alert.
"924-Frank George, post-pace-
maker of last night. Respiratory arrest, CVA (cerebral vascular accident) and tracheostomy. And this is the order of the attending doctor-he doesn't want any heroics. They did an EEG; it was flat. And an Echoencephalogram was negative for any localized findings."

The report drones on.
Same day, 1:15 p.m. An Echoencephalogram is wheeled into Room 924. This machine, made by Hoeffrel Instruments, Norwalk, Conn., can determine a shift in the midline of the brain.

Lorraine Gillard, cardio-pulmonary technician, holds the electrodes on both sides of Mr. George's head. A wave flickers across the screen. We see the peaks representing the sides of the skull, but nothing to denote a midline.
"We know where the main echo is, but we get it and lose it," says an assistant technician.

The problem here is not only to see the echoes, but to photograph them using a polaroid attachment to the scope. When Mrs. Gillard says "Now!" I step down
twice on the food pedal to trigger the shutter. The camera cannot be triggered automatically.

Jan. 21 at 7 a.m., 10th floor. Here are Overlook's 11 operating rooms. All have Grouse-Hinds, three-pin anti-spark outlets. Each room has an intercom to the nursing station.

Much of the equipment is electric, but in need of the advances that electronics can provide. A sampling includes:

- A metal locator-a pencilshaped probe that uses hysteresis and eddy-current effects to pinpoint embedded metal particles.
- A Dermatone for cutting precise layers of skin for transplant to another area of the body.
- An electrocoagulator-a for-ceps-and-scalpel device used for cauterizing as a cut is made.

11 a.m. Next to one wing of operating room is a small darkroom. Joseph Barefoot, chief inhalation therapist, is developing a paper roll containing an EKG and a phonocardiograph. Both tracings are made by light beams scanning photosensitive paper. "Light beams-rather than a pen recorder-are used," says Barefoot, "because light will respond to higher frequency inputs."

The EKG picks up electrical impulses produced by the heart muscle itself. The phonocardiogram is a visual record of the sounds the heart makes as it contracts and expands. "With this," says Barefoot, "we can pick up such things as murmurs and calcified valves."

What about the future of electronics in inhalation therapy?
"Electronics in medicine in general, especially in inhalation therapy, hasn't even scratched the surface," Barefoot says. "We've just begun to see machines coming out with printed-circuit boards. We have many crude instruments. In inhalation therapy, we're not doing what is physiologic at all.
"A person normally breaths in. He creates a vacuum in his chest -lower pressure in the chest

Blood serum analyzer can measure the 12 constituents of blood in one minute. A new, time-shared computer
program will route such reports from Overlook's laboratory to any nursing station in 10 seconds.

Phonocardiogram, used to obtain a visual image of the sounds of the heart as it pumps, is demonstrated by Lorraine Gillard. The equipment detects murmurs and other heart disorders.
than outside. But with a respirator, you are creating a pressure on the outside of the patient and blowing air in. This is physiologically unsound. It works; we can do the job. But we must sample arterial blood gases three or four times a day."

Barefoot looks to the day when "we can tie a computer directly into the respirator and monitor the arterial blood gases at a reasonable price: If the oxygen goes down, the machine automatically gives the patient more oxygen; if the CO_{2} goes up or down, it adjusts the respirator accordingly."

Jan. 22. Tomorrow my career as a hospital attendant will be over. I have learned that machines can sustain life-prolong it, even in hopeless cases. Electronics is making this equipment more compact, more sophisticated. But there is room for improvement, for major advances through ingenious design.
3 p.m. Sitting in the office of Overlook's director, I talk with

Heinlein about the role of electronics in hospitals. He is very much concerned about possible hazards. Procedures in handling equipment have been carefully worked out at Overlook to avoid the danger of electric shock.
"But," says Heinlein, "we're not biomedical engineers. We have a difficult time evaluating equipment. The purchase of new electronics is decided on by a committee of doctors and nurses who will be using it.
"We have some built-in standards. We buy only equipment that is Underwriters or similarly approved for safety. We consult people who have used the equipment, and then we ask to use it here on a trial basis. This is the best practice-not only from the standpoint of safety but from the standpoint of use."
"Why not hire electrical engineers as part of the hospital staff?" I ask.

Heinlein smiles. "That's in the works," he says. ■.

The number is nine.
Because that's how many MSI counters we make at Signetics - more than anybody else. Which lets you choose exactly the counter that's right for you. (No more buying too much. Or, worse yet, too little.)

You want high-speed counters? We've got'em. Medium-or low-power counters? Take your pick. Binary, decade, divide-
by-12, synchronous, ripple?
Just say the word. And all are available in either flat packs or DIP's.

So, write for specs on the whole line. And see how each Signetics counter does more, dollar for dollar, than any other counter in the industry.

After all, when you get right down to it, isn't that the one thing that really counts?

Breaking the laser communication barriers

Modulation and power problems are expected to be solved in system NASA will test in 1972-73

David N. Kaye
West Coast Editor

Laser communication in space, while highly desirable, has been stymied up to now by two major barriers: lack of an efficient way to modulate the beam and lack of adequate power in a small laser. But Aerojet-General Corp. of Azusa, Calif., expects to overcome these problems in a communications system it is developing for NASA.

The system will employ CO_{2} lasers. The output power of the transmitter laser will be 547 mW at a transmitter wavelength of 10.6 microns ($\mathrm{P}-20$ line). A $5-\mathrm{cm}$ GaAs piezoelectric crystal in the laser cavity will be used to modulate the laser. The modulation will be fm, with a signal bandwidth of from 30 Hz to 5 MHz .

If the system is successful, it will make possible the first broad-
band, point-to-point laser communication in space. The target date for a start on experimental operation is early 1972.

NASA has given Aerojet-General a $\$ 5$-million contract for the developmental work, and the company has awarded a subcontract to RCA, Ltd., Montreal, for the CO_{2}, laser subsystem.
" CO_{2} lasers were chosen," says Alexander W. Belikow, manager of advanced engineering project research at Aerojet-General, "because of their efficiency and the advanced state of the CO_{2} laser art."

Dr. George L. Clark, chief scientist on the experiment for Aerojet-General, points out that laser communication on earth is not practical because weather conditions can upset transmissions through the atmosphere. But in space, laser communication requires equipment that weighs less and is smaller than that in microwave sys-

Laser communications package will be on board the Applications Technology Satellite F scheduled for launch in early 1972.
tems. In addition the bonus of greatly increased bandwidth may one day enable deep-space transmission of live television pictures over millions of miles.

According to William F. Funnell, project engineer for the opto-mechanical portion of the experiment at Aerojet-General: "The capability of the first package will be a $5-\mathrm{MHz}$ communication bandwidth. This is enough for a single channel of television."

In the future, laser communication is expected to yield much larger bandwidths than 5 MHz .

The Aerojet-General system will be on board the Applications Technology Satellite-F when the latter is launched in early 1972. The first communication experiments will be conducted between a transportable ground station in the Mojave Desert and the satellite, weather permitting. The satellite will be in a synchronous orbit over the United States.

Early in 1973 a second package will be carried into synchronous orbit over India on board the ATS-G satellite. This will permit experiments in point-to-point communications between the two ATS satellites.

Three lasers planned

In addition to the transmitter laser, the system will have a local oscillator laser and a back-up local oscillator laser. The local oscillators will be of sealed ceramic platinum electrode construction, as will the transmitter laser. They will put out 22 mW and be on the 10.6 -micron wavelength, P-18 line. (Fine gradations of wavelength are denoted by P lines.)

Reception of signals will be through use of an Hg Cd Te photovoltaic detector. The detector and other receiver parts are being supplied by the AIL Div. of CutlerHammer Corp., Melville, N. Y.

The sensitivity of the receiver will be $10^{-12} \mathrm{~W}$ in a $10-\mathrm{MHz}$ bandwidth. The receiver signal-to-noise ratio will be 23 dB .■

New radar will solve mysteries of storms

A new doppler radar technique will, for the first time, permit meteorologists to obtain a threedimensional view of the swirling interiors of severe storms and other turbulent weather conditions.

Developed by Dr. Robert Lhermitte, a physicist at the Environmental Science Services Administration in Boulder, Colo., the system will consist of an array of three portable doppler radars, strategically stationed for a multiple, simultaneous probe of the weather phenomena under study, and a high-speed digital computer.

Lhermitte's doppler radars, two of them already built, work on a pulse and range-gate principle.

Like any other radar, they transmit a signal, which reflects from the target (in this case small precipitation particles) and returns to the antenna. The range or distance to the target is determined by the time it takes for the radar signal to make the round trip. The radar beam actually penetrates the storm cloud, but it is partially reflected by any precipitation along the penetration path. Scientists can select the part of the penetration path they want to examine by opening an electronic "gate" at precisely the right time to let in that reflection and no other.

In their present form Lhermitte's dopplers simultaneously observe a series of 24 points in range along each radar beam. The gates open once for each pulse but at a slightly different time for successive pulses, so that they receive reflections from progressively deeper penetrations. Thus radial velocity data is received for precipitation particles at the 24 points from front to rear of a storm.

Every two seconds the antenna automatically shifts to a new direction and observes another 24 points. Working under simultaneous digital control, the three radars complete a total-volume scan in a few minutes. By repeating the scan every few minutes during the storm's lifetime, Lhermitte believes he can observe the air circulation and structural dynamics of the storm system. - ■

World's first.

New Pee Cee Ductor

A subminiature fixed shielded radial lead inductor designed for P.C. mounting.

Nytronics' new Pee Cee Ductor for printed circuits offers the same quality and performance of our Wee-VL series in an economical fixed version. Designed to meet MIL-C15305C, Grade 1, Class B, Q ranges from 60 to 115 with L at 0.10 to $100,000 \mathrm{uH} \pm 10 \%$. The unitized epoxy-molded shielded construction allows for maximum density packaging (3% coupling maximum when two units are tested side by side). And best of all, Pee Cee is available "off-the-shelf" in 73 standard stock values.

Write today for additional specs and temperature curves.

Pee Cee Ductor . . . another first from

How to cut semiconductor memory costs

Instead of hermetic sealing, Intersil bonds the unpackaged chips directly to the PC card

Elizabeth de Atley
West Coast Editor

For years, designers have been predicting that ferrite cores in computer main frame memories will be replaced by semiconductors. But how do you package the semiconductors to hold down the cost?

Intersil of Cupertino, Calif., believes it has one solution to the problem. It attaches the unpackaged chip directly to the printedcircuit card.
"Doing it this way," according to Donald Rogers, vice president of marketing, (who has since left the company) "we can get the finished product down to a price that is competitive with cores."

The conventional way to package a semiconductor memory, explains

Rogers, is to put it in a hermetically sealed multi-lead package, which may cost the semiconductor company as much as $\$ 2$. Die attaching, bonding, sealing and other steps can add another $\$ 2$, he points out. "And that doesn't count the $\$ 2$ packages you throw away because of mistakes in assembly," he adds.

Every package must be individually tested, not only by the semiconductor company but usually by the systems company as well.
"When you add to all this the expense the systems company must undergo to assemble these costly packages onto PC cards," says Rogers, "it's not suprising that they usually stick with cores."

Intersil's method cuts package and assembly costs and eliminates

Unpackaged chips are attached directly to the printed circuit board in Intersil's semiconductor memory. The chips shown above are N-channel MOS 256×1 random-access read-write memories with full decoding on the chip. The silicon in the photo is clear, but normally it would be opaque to protect the chips from light.
duplication of effort by systems and semiconductor companies.

How does Intersil produce a reliable system without using hermetically sealed packages?
"First we passivate the chips by silicon nitride techniques," explains Frank Todd, senior packaging engineer. "Then we attach the die face-up to a gold island on the PC card, using a conductive silver paste rather than a high-temperature die attach, which would heat up the board. We run wires from the chip to the gold trace on the PC card and weld them ultrasonically."

The chips and wires are then encapsulated in a viscose silicone compound. "We use silicone rather than the traditional epoxy," says Todd, "because epoxy and aluminum are not compatible and aluminum tends to decompose."

A packaged system of this type has to be custom, says Rogers, because every customer has different system needs. To produce it at the lowest possible cost, Intersil works with its systems customers from the early conceptual stages.
"It has to be a common venture from the beginning," Rogers points out, "because at that point we can control the final system cost. We get together with the customer and with him decide how to design the memory and how to package it as a final system.
"We use N-channel MOS for most of our memories," says Rogers, "because the speed is three to five times faster than that of a comparable P-channel device, and power dissipation is only slightly greater."

For example, he points out. Intersil's new $256 \times 1 \mathrm{~N}$-channel read-write random-access memory has an access time of 350 ns . A comparable P-channel device would be roughly 1 microsecond.

The reason for the higher speeds obtainable with N -channel devices, he explains, is that N-type material has higher carrier mobility and therefore higher transconductance than P-type.

Integrated Circuiit

How SUHL circuils improve avionics systems.

Computer family uses our ICs and functional arrays to obtain powerful, compact, airborne navigation package.

A small, lightweight, computer using Sylvania SUHL circuits has been selected for use in the navigation system of the new Lockheed TriStar passenger jet. The computer is a member of Micro-D family designed and developed by the Arma Division of Ambac Industries. Both computers in the family depend on SUHL logic for high-speed operation and design flexibility.

One of the computers, a serial type, is being used in inertial navigation systems, airborne loran receivers and cockpit displays for area navigation systems. The computer uses 342 Sylvania SUHL circuits of 10 different types. Arma selected SUHL TTL circuits for their design because they offered high noise immunity, excellent fan-out/fan-in capability and high reliability. On the latter point, Arma is assuring a MTBF of 10,000 hours on every computer.

The computer operates at 1.5 MHz clock speed, weighs 5.7 pounds and occupies less than 0.1 cubic foot of space. An optional high-speed clock provides a 50% increase in computation speed.

Packaging of the computer uses nine multilayer circuit boards that plug into a multilayer mother board. The memory stack and associated electronics occupy five of the nine boards, three boards are used for logic and control operations, and the last includes clock and timing circuitry. The rugged package can withstand 35 g 's in all three axes.
(continued on next page)

This issue In capsule

MSI Applications

Read-only memory features on-chip decoding.

IC Specifications

Where we stand on MIL-STD 883.

IC Applications

Interface family solves transmissionline noise problems.

LSI Developments

Uni-Cell LSI flies high in airborne computer.

Manager's Corner

Where will the next price break come in ICs?

The second SUHL equipped Arma computer is an 18-bit word, parallel-organized system that weighs in at 9 pounds and takes up 0.2 cubic foot of space. This is the computer selected for use in the area navigation system of the new Lockheed L-1011 TriStar passenger jet. This computer uses 495 SUHL circuits of 9 different types, including a number of functional arrays. Again, Arma selected SUHL TTL circuits for their high noise immunity, fan-in/fan-out capability and high reliability.

According to Arma, the liberal use of Sylvania functional arrays provides an extra measure of flexibility in speed and architecture. The multiplicity of flip-flops and gates in the MSI packages permits compact packaging without compromising reliability and economy.

The central processor contains 13 registers for manipulation of instructions and data. Two 18-bit registers form a double-length accumulator to provide double precision computation. Three 15-bit registers are also available to insure efficiency of programming and memory conservation.

Like all of the SUHL TTL circuits used in these computers, both systems are available off-the-shelf.

CIRCLE NUMBER 300

Read-only memory features on-chip decoding.

Single-chip 256-bit device has typical access time of 35 ns.

Sylvania's new SM-320 read-only memory has a 256-bit capacity arranged in 32 -word x 8 -bit format. All decoding is done directly on the chip. The outputs have free collectors, thus making it easy to parallel devices to expand system capacity. A 5-bit address code enables the selection of any one of 328 -bit words stored in the memory.

The SM-320 read-only memory is shown in block diagram form in Fig. 1. The input address gates and chip enable gate are located in section A, the address decoder matrix (5 bits for 32 words) is located in section B, and the memory storage area (256 bits) is located in section C. Section D contains the output transistors which have open collectors to facilitate feeding data onto a common bus. Pull-up resistors can be added externally.

Operation of the memory can be seen from Fig. 2. Selection of any one of the 32 -bit words stored in the memory is implemented by 325 -input emitter selector transistors. Only one word may be selected at a time. The chip enable signal controls selection or inhibition of all words in the memory.

In a larger system using more than one device, the chip enable can be used to select individual units or groups of units. In this manner, for example, data in multiples of 8 bits can be sequenced onto a serial bus line. Decoding of appropriate units, as in character generation, can also be implemented in this manner.

The 5 emitters of each selector transistor accepts appropriate inputs from the address gates. In the unselected state, at least one emitter on all 32 decoding transistors will be at logic " 0 " due to the chip enable inhibiting that particular address bit. If, for example, the network $Q_{1}, Q_{2,}, Q_{3}$ is considered, the emitter of Q_{1}, which has a logic " 0 " presented to it, will allow current to flow through it to ground. This insures, through the $V_{B E}$ drops of Q_{1} and Q_{2}, that Q_{3} is turned off. Therefore, no current will flow in any of the 8 emitters of Q_{3}. Thus, transistors Q_{4} through Q_{11} will be turned off, causing a logic " 1 " condition to appear at the outputs. In the "selected" state all 5 emitters of Q_{1} would go to a logic " 1 " condition by appropriate application of input signals and by the chip enable line enabling the address gates. This causes Q_{3} to turn on, allowing current to flow in all 8 emitters. In turn, transistors Q_{1} through Q11 turn on, setting all 8 outputs to the logic " 0 " state.

This condition would be true, however, only if all 8 emitters of the word selected are connected to their individual bit lines. If any emitter is not connected, no current will flow into the base of its corresponding output transistor. That transistor will not turn on and a logic " 1 " will appear at the output. Thus, to set up a logic " 1 " in any of the 8 -bit positions in a word, the appropriate emitter connection must be broken or etched away. A logic " 1 " is obtained by breaking the connection between the emitter and the bit line, and a logic " 0 " is obtained by allowing the linkage to remain intact.

The SM-320 read-only memory has a typical access time of less than 35 ns and provides an output current of 10 mA at 450 mV . Input load current is typically 1.4 mA . The SM-320 comes in a 16 -lead dual in-line package using ceramic or CerDip construction.

SM-320 read-only memory

Where we stand On MIL-STD-883

There has been a lot of confusion about MIL-STD-883. Here's a chart that will clarify Sylvania's position on this important document.

Like its predecessors, MIL-STD-883 contains a wide variety of options as to stress levels and methods of testing. The chart shown here gives Sylvania's standard reliability specifications for the three reliability levels called for in

MIL-STD-883. The five-digit numbers shown in many of the boxes refer to specific sections of Sylvania's standard reliability manual where full test procedures are detailed.

Of the three levels of reliability, option A is the most stringent and is designed for circuits to be used where repair is difficult or impossible and where high reliability is imperative. Option B circuits are intended for applications where repair is less difficult to perform but high reliability is still required.
The standard reliability level is actually the test procedures applied to all off-the-shelf Sylvania SUHL logic circuits. These circuits should be selected where repairs can readily be made but high reliability is desirable.

CIRCLE NUMBER 302

Table 1. General Reliability Specification

I. Production Screens Pre-seal Visual Inspection	$\begin{aligned} & \text { Option A } \\ & 100 \% \\ & (91-928) \end{aligned}$	Reliability Level Option B 100\% (91-917)	$\begin{gathered} \text { Standard } \\ \text { Sample } \\ \text { (91-910/91-913) } \end{gathered}$	Remarks 91928 identical to 883 Method 2010 Test Cond. A except for 1 level 75X mag.
Stabilization Bake	48 hours (91-176)	24 hours (91-176)	16 hours (91-176)	All $200^{\circ} \mathrm{C}$
Temperature Cycle	20 Cycles (91-205)	10 Cycles (91-205)	$\begin{aligned} & 5 \text { Cycles } \\ & (91-144) \end{aligned}$	All -65 to $+200^{\circ} \mathrm{C} 10$ cycles 91-205 meets 883 Method 1010 Cond. D
Constant Acceleration	30K 6's; Y_{1} and Y_{2} (91-194)	30K 6's; Y1 only (91-194)	None	Meets 883 Method 2001 Cond. E
Electrical Screen	DC, (Go/No-go at temp. extremes)	DC. (Go/No-go at temp. extremes)	Specified DC, \& AC Go/No-go tests	Per test spec. sheet for appropriate type
Burn-in	RL to simulate 15 (RL-270 ohms) 168 Hrs., $125^{\circ} \mathrm{C}$ (91-929)	RL to simulate 7 (RL-470 ohms) $96 \mathrm{Hrs} ., 125^{\circ} \mathrm{C}$ (91-929)	None	Same as 888 Method 1015, Cond. D (flip-flops) or Cond. E (gates) except no. of gates not limited to 21 in Cond. E
Electrical Screen	DC, Go/No-go at temp. extremes; AC at $25^{\circ} \mathrm{C}$	DC, Go/No-go at temp. extremes; $A C$ at $25^{\circ} \mathrm{C}$	None	Per test spec. sheet for appropriate type
Fine Leak Screen	$5 \times \underset{(91-163)}{10-8 \mathrm{cc} / \mathrm{sec} .}$	$5 \times \underset{(91-163)}{ } 5 \times-8 \mathrm{sec} .$	None	Meets 883 Method 1014
Gross Leak Screen	(91-162)	(91-162)	(91-162)	Same as 883 Method 1014 except omit Step 1 \& vacuum sequence

Table 2. Product Acceptance Tests

Inspection	Acceptance Criteria LTPD/a (max)*			Remarks
	Relia bility Level			
	A	B	Std.	
Electrical Verification DC at $25^{\circ} \mathrm{C}$ AC at $25^{\circ} \mathrm{C}$ DC at High Temperature DC at Low Temperature	$\begin{gathered} 5 / 2 \\ 5 / 2 \\ 10 / 3 \\ 10 / 3 \end{gathered}$	$10 / 3$ 10 / 3 Not Required Not Required	$10 / 3$ $10 / 3$ Not Required Not Required	Conditions and limits on test spec sheet for appropriate type
Mechanical Verification	$\underset{(91-908)}{5 / 2}$	$\begin{gathered} 10 / 3 \\ (91-908) \end{gathered}$	$\begin{gathered} 10 / 3 \\ (91-908) \end{gathered}$	Meets 883 Method 2009
Fine \& Gross Leak Verification	$\left\lvert\, \begin{gathered} 10 / 1 \\ (91-911) \end{gathered}\right.$	Process Control	Process Control	883 Method 1014 (See Table 1)

Table 3. Design Assurance Tests (for information only)

Test	Acceptance Criteria per Subgroup LTPD/a (max)*			Remarks
$88-200$ Group B	$10 / 3$	$10 / 3$	$10 / 3$	Individual tests per Appropriate methods in 883
$88-200$ Group C	$10 / 3$	$10 / 3$	$10 / 3$	

Table 4. Traceability

Reliability Level		
A	B	Std.
Lot travel	Lot travel	Date
card from	card from	code
visual	preseal	
inspec.	visual	

*LTPD $=$ Lot tolerance percent defective
a (max) = Maximum acceptance number

Interface lamily solves transmission-line noise problems.

Line driver and two receivers are completely compatible with SUHL logic and other types of TTL.

Here is a family of circuits specifically designed for digital data transmission in high-noise environments. The family consists of a quad logic-level driver to transmit digital signals and two types of receivers. One receiver is a quad single-ended type and the other is a dual differential receiver.

When used together, these devices provide high system noise immunity due to an increased logic " 1 " level of the driver and increased thresholds of the receivers.

The two receivers feature diode decoupling of the inputs

Fig. 1. Single transmitter unit of quad logic-level driver.

SS-342 series quad high-threshold logic receiver.

Fig. 2. Receiving element used in quad logic-level receiver.

Fig. 3. Complete circuit of dual differential receiver.
to protect against power-down conditions. Thus, if driver power is turned on before receiver power, the devices will not be damaged by transmitted levels of up to +11 V referenced to receiver ground.

The SS-207/-208 logic-level driver, shown in Fig. 1, consists of four identical inverters integrated on one monolithic chip. The main advantage of this driver over a typical TTL integrated-circuit gate is that it has a high logic " 1 " level, allowing greater system noise immunity.

Each inverter is capable of driving six single-ended receivers or four differential receivers while maintaining a logic " 1 " level of 4.5 V . Input loading of each device is equivalent to four SUHL I gates and is typically 4.0 mA at logic " 0 " and 160μ A maximum at the logic " 1 " level.

Although the input threshold of the logic-level drivers is approximately the same as SUHL I, the output logic " 1 " is about 1 V higher than TTL logic. This is achieved by two variations from conventional TTL circuitry. First, the base of the upper cascode is returned to +12 V through R_{2}, resulting in a high static logic " 1 ". Second, the ratio of collector-to-emitter resistor is about 5 to 1 virtually eliminating the " 1 " level sag observed in typical TTL logic.

The logic-level receiver package, SS-209/-210, contains four independent single-ended receivers. (Fig. 2) When used with SS-207/-208, logic-level driver, this design allows $\pm 1.5 \mathrm{~V}$ of noise rejection. Output circuitry of the receivers is similar to SUHL I circuitry and displays the same basic
characteristics. The input circuitry is a departure from TTL design that provides higher thresholds. Basically, the input threshold is established by a current source which is compensated to obtain a stable transfer characteristic over the temperature range. The receiver is designed to drive directly SUHL logic and other types of TTL.

The design of the SS-194/-206 dual differential receiver allows for large shifts in ground and V_{cc} levels between the line driver and receiver. The input of each of the two independent differential switches can swing from +11 to -5.25 V , referenced to receiver ground. The differential receiver is normally driven by two complementing logic signals. These could be derived from the \bar{Q}, \bar{Q} outputs of a flip-flop, the input and output signals of a NAND gate or the input and output of a logic-level driver.
The output of the receiver will go to a logic level " 1 " when the non-inverting input voltage is at least 1.5 V more positive than the inverting input voltage, within specified input voltage limits. Conversely, a logic " 0 " will appear at the output when the inverting input is at least 1.5 V more positive than the non-inverting input voltage. Thus, the receiver responds to the difference between the two input signals rather than their absolute magnitudes. This is especially valuable in high-noise environments.

All three devices in our interface family come in 14 -lead flat packs and are available in both commercial and military temperature ranges.

CIRCLE NUMBER 303

Uni-Cell LSI flies high in airborne compuier.

Adaptive four-bit shift register replaces 28 standard ICs in compact lightweight system.

Sylvania's approach to LSI, Uni-Cell, got its first real test in Raytheon's new AS-80 airborne computer. And it came through with flying colors.

The compact computer uses a Sylvania-designed adaptive four-bit shift register. Using only three control lines, the register can shift right or left, count up or down, clear, hold, read-in paralleled data and complement.

Raytheon designed the AS-80 computer to make use of the latest state-of-the-art LSI and MSI circuits. The result is a small, high-speed fourth generation machine.

The unit is a high-speed 16 -bit parallel processor incorporating a 32 -word 100 ns scratchpad memory, programmed input-output channel and a convenient repertoire of 25 instructions. The unit weighs only 10 pounds and occupies 0.3 cu . ft . of space.

The four-bit shift register made for the Raytheon computer consists of 20 Uni-Cells-the equivalent of 80 logic gates. This LSI package replaces 28 discrete ICs and reduces external connections from 292 to 28. Inside the device, the reduction of wire bonds from 586 to 56 enhances system reliability. Other advantages gained over the use of discrete

ICs are a reduction in clock interval from 125 ns to 60 ns , a decrease in power from 1.4 W to 0.75 W , and a speedpower product lowered from $175 \mathrm{~ns}-\mathrm{W}$ to $45 \mathrm{~ns}-\mathrm{W}$.

Sylvania's Uni-Cell design is a highly flexible approach to LSI. A typical uncommitted Uni-Cell wafer is shown in Fig. 1. Each basic Uni-Cell element contains the equivalent of four gate functions and a sufficient number of components to permit metallization of any one of eight different logic functions.

When you use the Uni-Cell approach, all you have to do is define the logic function you want, partition the system and deliver the functional logic diagrams to our semiconductor facility at Woburn, Mass. We'll take it from there.

Our engineers will convert your diagrams into Uni-Cell groups and determine the minimum array size. Then they will prepare the metallization patterns. The first layer of metallization interconnects the Uni-Cell components to define the lowest sub-logic to be performed. The second layer metallization (Fig. 2) defines cell interconnections in the horizontal direction. The third metallization layer (Fig. 3) defines the signal paths in the vertical direction and brings terminal points to bonding pads for connection to package leads. A typical Uni-Cell device mounted in a 28-lead package is shown in Fig. 4 ready for testing and capping .

If you think LSI is the way to go in your next project, show us your logic diagrams and we'll show you what UniCell can do for you.

CIRCLE NUMBER 304

Fig. 1. Section of an uncommitted Uni-Cell wafer ready for metallization.

Fig. 3. Third metallization step brings
connections out to bonding pads.

Fig. 2. Uni-Cell wafer with first and second metallization steps completed.

Fig. 4. Completed Uni-Cell circuit mounted
in 28-lead package ready for testing and capping.

HOT LINE INQUIRY SERVICE

Need information in a hurry? Use Sylvania's "Hot Line" inquiry service. It's easy and it's free. Just circle the reader service number(s) you're most interested in. Then fill in your name, title, company and address. We'll do the rest and see that you get further information by return mail.

You can also get information by using the publication's inquiry card elsewhere in this issue. However, using the card shown here will simplify handling and save time.

Buffalo, N. Y.

POSTAGE WILL BE PAID BY
Sylvania Electric Products Inc. Sylvania Electronic Components 1100 Main Street

Buffalo, New York 14209

MANAGER'S CORNER

Where will the next price break come in ICs?

Higher yields and improved technology have been instrumental in knocking down the prices of integrated circuits to their present low levels. But, there is a limit as to what can be done in these areas to further improve the price picture.

One of the key cost factors remaining in the present state of the IC art is the cost of connecting the chip to the outside world.

In the vast majority of circuits produced today, thermocompression or ultrasonic bonding techniques are used. Both of these methods involve high labor cost because of the skill required by the operator and the fact that each pad on the chip must be connected individually.

The fact that many manufacturers use overseas plants in low-cost labor areas indicated the importance of this step in the overall IC cost picture.

Obviously, the area of chip mounting and bonding is ripe for technological advances. And there are a number of these advances now in the development stage. Among these techniques are flip-chip, spider bonding and beamleading.

All three methods place some restriction on the layout of the chip and all three are only suitable for high-volume production.

Beamleading promises to be one of the most effective approaches to the problems of lower device cost and greater design flexibility.

Unlike flip-chip, beamlead devices are mounted face-up thus making testing easier. Beamleads also have a limited degree of flexibility that permits bonding to surfaces that are not perfectly flat.
Because of advanced masking techniques and the perfection of batch processing methods, it is easier to attain exacting precision with beamleads than with spider bonds.

Sylvania has been working on the beamlead process for over three years and has developed many special pieces of equipment for handling and mounting these devices. We see beamleading as a major answer to lower costs in automated high-volume production runs.

H. K. Ishler

Director, Integrated Circuit Engineering

NEW CAPABILITIES IN: ELECTRONIC TUBES•SEMICONDUCTORS•MICROWAVE DEVICES•SPECIAL COMPONENTS•DISPLAY DEVICES

I am especially interested in ICs for following application(s)

NAME

TITLE

COMPANY
ADDRESS

CITY			STATE	Z1P
	Circle Numbers Corresponding to Product Item			
300	301	302	303	304

No other multimeter gives you all this

and no one but
 Cimron can make a claim like that stick

Here's the first and only 4-digit instrument that you can take with you and hook up for full multimeter performance anywhere. Cimron, the Customer Concern Company, puts your needs first. That's why this new Cimron 6453 is just one more the competition will have to catch up with.

You get the most advanced MSI and IC construction plus a thin film attenuator . . . which, by the
way, eliminates 75% of the normal calibration requirements. Single plane Digivac readout tubes result in the lowest power consumption of any digital multimeter, and make full-day battery operation possible. The same amplifier used in the most costly instruments provides an input impedance ten times greater than any meter in its class.

The basic instrument gives you 5 ranges of DC voltage measurement with 5th digit overrange, autoranging in all functions, autopolarity, and pushbutton selection. Add remote control, AC,

resistance, print output and the 8-hour battery pack options, and you have full remote programming capability anywhere. And it's computer compatible. The 6453... just 8 pounds and $31 / 2^{\prime \prime} \times 8^{\prime \prime} \times 12^{\prime \prime}$, sells for only $\$ 1,125$. A full multimeter is less than \$1,600. Call us for a demonstration. Phone (714) 276-3200 or write Cimron, Dept. D-129, 1152 Morena Blvd., San Diego, Cal. 92110.

Device is an adaptive filter or transformer

RCA develops tiny, ferroelectric/piezoelectric unit for memory and remote-control applications

Jim McDermott
 East Coast Editor

Scientists at RCA Laboratories in Princeton, N.J., have developed a tiny "adaptive" device with ac signal characteristics that can be set at any number of discrete levels by applying 100 to $300-\mathrm{V}$ pulses. The ferroelectric/piezoelectric device, which comes in two versions-an adaptive resonant filter and a broadband transformer -is expected to find wide use in consumer and industrial memory and control applications.

Pulses can be applied by simply pushing a button or by using relatively sophisticated circuits. Practical applications considered include simplified kitchen appliance controls for blenders, mixers and fans. For example, multibutton blender speed controls could be replaced by a single pulsing button that, when pressed, could control an infinite range of speeds.

Or the unit might be connected to a remote control designed to turn night lights up to a desired level of brightness upon command from the night table.

Because the devices are low powered and purely electronic they could be used for remote control of almost anything to which wires are connected; without wires, operation by radio or ultrasonic links is possible.

Both are sandwiched

The two versions of the device were developed by Dr. Stuart S. Perlman and Joseph H. McCusker of the Laboratories.

One is an adaptive resonant filter, with an effective " Q " of 100 at zero-center frequencies from 100 Hz to 10 MHz . The other ver-sion-to be described by Dr. Perlman at this month's International Solid State Circuits Conference in Philadelphia Feb. 18 to 20 -is a broadband transformer or nonresonant electronic attenuator that passes signals from 10 Hz to 40 kHz , with essentially zero phase shift.

Both devices are of sandwich construction, similar to the familiar Bimorph phonograph cartridge element, and they should

An adaptive transformer, at left, and adaptive filter, at right, are mounted on transistor headers. One-millimeter squares in background show the relative sizes of the components.
sell for less than a dollar when eventually produced in quantities, according to RCA.

These adaptive units are small, in the order of 20 mils thick, and they utilize a unique combination of piezoelectric and ferroelectric phenomena. They are fabricated as a tiny sandwich of two wafers of PTZ-5 type of ceramic lead-zirconate/lead-titanate materials, bonded together on a center electrode. The input signal is applied to one wafer, and is taken from the second (see Fig. 1.)

When a signal is applied to the input wafer, it vibrates because of its piezoelectric properties, and these mechanical vibrations are transmitted to the second wafer, which converts them back to an electrical output signal.

The way in which the output is controlled is this: If the material is highly polarized, it produces maximum vibrations in response to an input signal; or in response to vibrations, it gives a maximum output signal. Thus, piezoelectric activity of the wafer is controlled by the degree of ferroelectric polarization.

But polarization of this type of material can be changed by apply-

1. New adaptive device uses sandwich construction. Input signals produce piezoelectric vibrations that are transferred to the output side. At the output, vibrations are converted back to electrical signals.

Miniature, subminiature contacts, no.
Microelectronics can give you a pain in the tweezers. You have to be perfect. And you have to be perfect in places so small that a flea would have trouble scratching his back.

Actually, the electronics part isn't too hard, what with piezoelectric this's and thin-film that's to work with.

But, inevitably, there comes the day when all the this's and that's have to be put together. It's a problem. Mechanically. Electrically.

You don't want to put a big fat plug on a skinny little mini-circuit.

So you need miniature or subminiature connectors. Those we have. By the catalogfull.

But you sure don't need undernourished contacts. You need all the strength you can get, all the contact area you can get, all the hang-togetherness you can get.

Those we give you. Every miniature in our catalog is made with our patented Varicon ${ }^{\text {TM }}$ contacts (you probably already know about them). Our never subminiatures are made with $\mathrm{Bi} /$ Con $^{\text {TM }}$ contacts (which

is sketched at the left).
See the four mating surfaces?
Four mating surfaces, coined so that they're exceptionally hard and smooth.
Four mating surfaces, held together snugly by the springlike action of the design. And by the innate characteristics of the phosphor-bronze.
Four mating surfaces, strengthened by a reinforcing web.
Four mating surfaces, on a contact that floats in its insulator to make sure that the four mating surfaces mate.
No comparably sized contact can match the Bi/Con's dimensional, electrical, and mechanical characteristics. And no subminiature contact can match the $\mathrm{Bi} /$ /Con's incredibly low price, either.

For more information, write, wire, call or TWX us for our Microelectronics catalog. Elco Corporation, Willow Grove, Pa. 19090. (215) 659-7000. TWX 510-665-5573.

NEWS

(adaptive device, continued)
ing 100 to $300-V$ pulses. For one polarity of the pulses, the polarization is increased, while reversing the pulse polarity reduces the polarization. By pulsing either the input or the output side (or both) of the wafer, the gain of the device can be set to either maximum or minimum attenuation or anywhere in between (see Fig. 2).

The acoustical coupling mechanism provides stable characteristics, and once a given level is set, it will maintain that level indefinitely. As a result, these adaptive devices are essentially an analog memory element potentially useful in computer memory circuits, learning circuits, adaptive logic circuits. system control, and re-mote-control circuitry.

The maximum input signal to the resonant filter is 1 V rms. The application of the adapting pulses

2. Gain of adaptive filter is changed by output of pulse generator. The
higher the voltage, the greater the change. The effect is reversible.
is cumulative. According to Dr. Perlman, the output signal can be varied in analog fashion over a dynamic range of 60 dB in $100 \mathrm{mi}-$ croseconds, or as long as 10 min utes, depending upon pulse voltage and length.

In the transformer-type device,
there is a minimum 10% loss, with a maximum of $60-\mathrm{dB}$ attenuation. In essence, this unit is a resonant filter operated substantially below its resonant frequency.

The impedance presented to the circuit by both devices is capacitive.

Portable terminal keeps computer on call

For the man on the roadwhether he be an engineer, salesman or insurance agent-IBM has developed a portable terminal to enable him to talk to the homeoffice computer from any standard telephone.

A product of the company's center in Research Triangle Park, N.C., the audio terminal is built into an attache case. Users can enter alphabetic and numeric information into an IBM System/360 (with audio response capability) and get computer-compiled spoken responses to their inquiries.

The terminal is expected to find wide use among engineers and students, insurance agents and at manufacturing plants. "It can go anywhere a businessman goes and be used wherever a telephone is handy," notes Howard G. Figueroa, marketing vice president of IBM's Data Processing Div.

The handset of the telephone fits into the terminal's acoustic coupler, a cradlelike connecting
device.
The user would query the computer, using the unit's keyboard. The computer's reply is heard over the terminal's built-in speaker, or through an earphone. The spoken words are selected by the computer

Portable terminal in an attache case will permit users to "talk" to a computer from any standard telephone.
from its audio response unit.
The terminal has 60 keys- 26 letters, 10 numerals and 24 special characters and controls.

To prevent unauthorized access to data stored in the computer, each 2721 can be assigned an identification code.

The terminal operates continuously for at least eight hours on rechargeable batteries, or can be plugged into any 110 -volt ac line. It has a battery charge indicator and an automatic charger.

The unit measures $16 \times 9 \times 4$ inches and weighs less than 10 pounds.

IBM's elastic diaphragm switch technology-flat, prewired switches that eliminate mechanical key linkage, keeps maintenance to a minimum, according to Figueroa.

The terminal communicates with all of the System/360 Models through an IBM 7770 audio response unit. It can be purchased for $\$ 600$ or will rent for $\$ 20$ per month.

Our 5-band carbon comps are cats of a different stripe

Okay, so the other leading brand is also great on military specs. But our Speer resistors have still more to offer. \square They provide superior soldering characteristics. They're backed by the first and most sophisticated on-line computerized resistor quality control system. They're delivered in an exclusive foil pack. \square And they're accompanied by written documentation. \square Another helpful note-both our $1 / 2$-watt and $1 / 4$-watt types qualify under the new Established Reliability Specification at the S level. \square Our 4-band carbon comps are something special, too -particularly now. They offer all of our traditional quality features - plus competitive prices. \qquad To learn more about our resistors-and the reliable customer service that backs them upwrite AIRCO SPEER ELECTRONIC COM-

PONENTS, St. Marys, Pennsylvania 15857.Five "stripes" or four-you may even decide we're a whole new breed.

The passive innovators at \triangle IRCD Speer

Speer resistorsResistor and conductor paste \square Jeffers JC precision resistors Jeffers JXP precision resistors and networksJeffers inductors \square Jeffers capacitorsPEC variable resistors and trimmer potentiometers.

We make

 components forguys who can't stand failures.

Everybody hates failures in their electronic gear. It's just that some guys hate failures a little bit more than others.

These are the guys that we try to please.

At Corning, we make our resistors and capacitors to perform like your whole system depended on them, because many times it does. We build an extra measure of performance into all our components to let you build extra reliability into the equipment you design.

Take our precision tin oxide resistors, for example. They're the best of the metal film class. Because the resistive tin film is completely oxidized and molecularly bonded to the glass substrate, our tin oxide resistors are impervious to moisture and environmental degradation. No other resistor can deliver the same stability and reliability over load life. They offer guaranteed moisture resistance across all ohmic values to set a standard of reliability that can't be matched by metal film, wire wounds, carbon comps or metal glaze resistors.

After a recent 56-day-long heat
test in an environment of extremely high humidity, our tin oxide resistors showed a resistance change of just 0.2 per cent. And in an ambient temperature test-now in its ninth year-not one of the 600 tin oxide resistors being tested has exceeded a resistance change of 1.5 per cent.

Take our glass capacitors. The U.S. Air Force has found that our glass capacitors have much better stability and much higher insulation resistance than the ceramic, mica and the other capacitor types they tested. That's why glass capacitors are designed into so many major aerospace and missile projects.

And we've got something to offer when economy and value are the prime considerations. We've developed the Glass- $\mathrm{K}^{\text {TM }}$ capacitor to give you the volumetric efficiency and economy of monolithic ceramic capacitors, but with the much improved stability and reliability that only a glass dielectric can add. In resistors, our tin oxide resistors already offer long term economy over metal film, precision wire wound and metal glaze resistors.

Our new C3 resistors, in addition to giving you a small case size, compete costwise with carbon comps.

Another important Corning development is the flame proof resistor. These resistors can withstand overloads of up to 100 times rated power without any trace of flame. And because they open under overload, they provide protection for the rest of the system.

At Corning we make components for guys who can't stand failures. Guys like your most important customers. Guys like you. So, next time you're designing a system, reach for your CORNING ${ }^{\oplus}$ capacitor and resistor catalogs and call your local Corning authorized distributor for off-theshelf delivery. They'll help you design-in an extra measure of performance.

If you don't have our catalogs, ask your Corning distributor for copies or drop us a line at: Corning Glass Works, Electronic Products Division, Corning, New York 14830. CORNING

[^2]
NASA's relay satellite faces a wobbly future

Spinning orbit delays tests with ATS-V, and the opposition of fishermen may force system redesign

C. D. LaFond, Chief
Washington News Bureau

A NASA program to test the effectiveness of a relay satellite in long range communications and navigation has run into complications, a satellite malfunction and opposition by commercial fishermen.

The first could cause delays of up to a year in the ground-satel-lite-aircraft experiments; the second may result in redesign of future satellites, a NASA official says.

The satellite effort involves the PLACE (Position Location and 'Aircraft Communications Equipment) concept and is being directed by the Goddard Space Flight Center, Greenbelt, Md. Initial tests were to begin late last year, using L-band relay and ranging techniques through Applications Tech-
nology Satellite-V. Launched last summer into stationary orbit, the satellite failed to stabilize with its antenna aimed earthward and is now spinning rapidly, the space agency reports. Goddard hopes to work around the spin problem by late this year.

But conceptual disagreement with PLACE arose last year during a two-week conference in Europe with potential user organizations, says William Gould, assistant chief of the Application Experiments Branch at Goddard. Position papers are still being analyzed, he discloses, but the argument centers largely on fishingfleet operators, who ultimately would use the system to determine their positions at sea.

They want a passive systemone that will avoid revealing their position to others. Commercial fishing is a highly competitive busi-

Experimental PLACE system configuration. First full-scale tests of an air-traffic-control system that uses satellite relay is scheduled to begin in 1972 with Applications Technology Satellite-F.
ness, dependent for its success on locating exclusively those areas of the ocean where the fish are abundant. PLACE is designed for cooperative (two-way) position-location techniques.

The U.S. must now take another look at the existing active timedivision multiplex scheme, as opposed to some form of passive, continuous earth-coverage mode, Gould says.

Comprehensive testing of PLACE had been scheduled for 1972 with the more complex, but not yet built, ATS-F (the letter designation changes to VI after launching). Some redesign may be required to test passive location techniques, Gould suggests.

L-band to be used

The PLACE experiments will link aircraft through ATS-V (and later ATS-VI) to a principal ground control center at NASA's Rosman, N.C., tracking facility. A backup NASA station at Mojave, Calif., and a mobile facility also will be used.

Communications relay tests between airliners and ground stations have been successfully performed in the past two years, using ATS-I and ATS-III with standard vhf (118 -136 MHz) voice and data.

Goddard officials describe the next steps in the program as follows:

With ATS-V, the ground-satellite link will be via C-band (4-6 GHz) ; ATS-VI will use X-band. (possibly $10-14 \mathrm{GHz}$). The satel-lite-aircraft links for both satellites will use the aeronautical radio navigation frequencies in L -hand ($1550-1650 \mathrm{MHz}$) for the first time. Ground stations also will receive the L-band transmissions.

The Rosman tracking station will perform the measurements and transmit back all position data to the aircraft. The aircraft will be equipped with sensors and a telemetry channel to transmit altitude and velocity vector informa-

AMP makes the only no-solder, no heat, SMA,MII: 39012 connectors in the world.

 And that'stelling youeverything except details:

- terminate semi-rigid subminiature cable in one-tenth the time required by conventional heat-and-solder method
- no special skills required to achieve consistently reliable electrical and mechanical performance levels
- completely pre-assembled plug
- single tool does the entire operation
- 70-pound (plus) tensile strength
- salvageable for reapplications
- field maintainable
- intermateable with all presently available SMA connectors
More details? They're available right now. So is an AMP sales engineer with samples. Write: AMP Incorporated, Harrisburg, Pa. 17105 today.
tion to ground via the satellite.
Both the satellite transponder and the aircraft transceiver will employ similar frequency synthesizers. An independent oscillator in the Rosman station will serve as the system frequency standard. Thus the satellite will lock onto frequency and phase of the carrier component transmitted from Rosman; the aircraft. similarly, will lock onto the signal frequency and phase from the satellite.

The synthesizers will generate all frequencies required by either craft, and the aircraft subsystem will provide a gross Doppler correction in transmission paths.

The C-band (or X-band) transmissions from the satellite to ground will be used by the control center to determine positional information for all aircraft using the system and for the communications links. L-band transmissions between aircraft and satellite also will be received at the ground stations for monitoring and control purposes. The control center will use the L-band signals to provide range and range-rate measurements between it and the satellite.

ATS-V during final tests at Hughes Aircraft Co., El Segundo, Calif. Prior to launching on Aug. 12, 1969. The rectangle with a dozen small circles at the upper right section of the satellite is the antenna portion of an L-band communications and naviga. tion system.

ATS-V has a 3.5 -foot effective aperture planar-array antenna, with a receive gain of 32 dB and a transmitting half-power gain of 19 dB. ATS-YI will carry a 30 -foot-diameter deployable dish with a $28-\mathrm{dB}$ gain. The ATS-V groundaircraft transponder will produce a $40-\mathrm{W}$ output; its aircraft-ground transponder will have an output power of 4 W . The aircraft antenna has an effective gain of 25 dB and a transmit power output of 50 watts.

Position determined on ground

PLACE designers at Goddard believe the system, with a single satellite, will be able to locate and keep track of up to 200 aircraft at any given time. Gould estimates aircraft location will be determined to within 1 -mile accuracy.

Transmissions required for location will be automatic, and all signal processing will be performed at Rosman. Position will be determined by the intersection of three spheres derived by the ground computer, Goddard engineers say.

The first will be developed by the aircraft altitude. The second by ranging measurements between the satellite and aircraft. A circular line of position, on which the aircraft is located, will result from the intersection of the two spheres. The third sphere, obtained by a ranging measurment from the aircraft with the help of the Navy's Omega vlf ($10-14 \mathrm{kHz}$) navigation transmission, will establish the aircraft position at the point it intersects with the circular line of position.

Spin problem under study

NASA scientists are now working out an answer to the spin problem encountered with ATS-V. Gould is optimistic that some valid PLACE tests may still be performed. The original goals were to evaluate and characterize three parameters: ocean multipath, the background noise environment and the positioning accuracy obtainable at L-band in an operating environment.

At present, the NASA engineer discloses, the craft can be used only 5 per cent of the time. It is
spinning at 80 rpm , and communications with it must be synchronized with the rotating antenna. NASA is now preparing to try rudimentary time-division multiplex tests that will use data only. not voice, says Gould. This would permit position determination and provide some propagation information, the engineer predicts.

Both the satellite ranging at Lband and the aircraft ranging at vlf will be performed with sidetone measurement techniques, originally developed for the Goddard range and range rate tracking system, the center says. To determine range, propagation times or phase delays in a multi-tone signal will be measured and compared as they traverse both radio paths from ground-to-satellite-toaircraft.

A basic tone will be used for fine range resolution, a set of sidetones will be used for ambiguity resolution. Similar measurements will be made between the ground station and satellite, and thell subtracted to obtain the necessary range calculation from satellite to aircraft. the tracking experts say.

Range accuracy will vary with errors introduced by the transmission medium and the signal-tonoise ratio maintained over the radio path. Other small errors will be added by the dual transmissions involved and the two-to-three mile error that may occur with use of the Omega system. (The Goddard tracking system was designed for a theoretical range accuracy to within 15 meters.)

If the plans had called for a second satellite to be used, the Omega system would not have to be employed. Because of the sev-eral-minute delay in obtaining data from the Navy system, it probably will not be used in an operational navigation satellite system, space officials indicate.

PLACE will employ a secondary method of ambiguity resolution called Satellite Inertial Navigation Determination. Position will be determined with the use of satellite-to-aircraft sidetone ranging, aircraft altitude and the aircraft velocity rector telemetered from on-board accelerometers. A fourth factor, aircraft range rate relative to the satellite, must also be determined. ■■

EVEN

 SQUINTING WON"T HELP.No use, fellas. You need a microscope to see the world's most densely packed LSI circuit.

That's what Electronic Arrays has done this time.

4692 transistors (4096 bits of memory) on a single 88×94 mil chip

Since that kind of density is not available elsewhere, may we take this hallowed moment to proudly proclaim our EA 3300 (a 512 word, 8 bit/word ROM) the champion of the LSI world.

We didn't, however, design the EA 3300 this way just to show off.

EA 3300 has the most functional complexity of any product available today in a 24 pin package.

That reduces cost.
A smaller die further reduces costs by giving you higher yields and greater product performance and reliability.

Our entire line of Registers, ROM's, Read/Write RAM's and Logic circuits is made in production quantities with the same close-tolerance MOS technology as the EA 3300.

And all products are available immediately from 24 distributors nationwide, and 6 international distributors.
To see is to believe. Do both by addressing your purchase orders to your nearest EA distributor or to Electronic Arrays, Inc., 501 Ellis Street, Mountain View, California 94040. (415) 964-4321.

柬
electronic
arpays, Inc.
Proven MOS products delivered in volume.
Forms for your specialized bit patterns are available from any of our
representative offices or directly from the factory. The EA 3307, which is an EA 3300 already programmed to be an EBCDIC to ASCII and ASCII to EBCDIC code converter, is available from distributor and factory stock. Features include two output inhibit controls that give 1024 4/bit words; nine input addresses; all decoding on the chip; power requirements less than 100 milliwatts; synchronous 2-phase clock, 24 pin hermetic dual-in-line package.

The new small rack and panels with the big difference.

Bendix is the difference.
The difference in distribution, delivery and supply. The difference that means you can get the rack and panels you need when you need them.

A big difference. A big advantage. But there are others. Bendix Regal B subminiatures are built to MIL-C-24308. Application potentials are practically unlimited. Use them in switching circuits, computers, business machines. In industrial equipment, communications, test equipment. And in rack and panel modular or printed circuit technology.

The selection of mounting options is just about endless, too. Choose from among 120 or . 154 -inch diameter, straightthrough holes, clinch nuts, float mounts, lock posts, plain flange and through-bulkhead types. Neoprene spacers or grommets. And solder or printed circuits. Even a crimp version with rear-release contacts comes in a variety of shell sizes and mounting configurations. All interchangeable with existing rack and panel connectors.

For more details, write: The Bendix Corporation, Electrical Components Division, Sidney, New York 13838.

Electronics

Optima small cases...
For information call or write
Optima, Box 13654,
Atlanta, Georgia 30324
Telephone 404-939-6340
A product of
Scientific-Atlanta

More higher-altitude spy satellites expected

Washington aerospace industry informants predict an increasing reliance by the Dept. of Defense on high-altitude (polar orbit and synchronous) surveillance satellites during the 1970s. Launchings of the short-lived, low-altitude spacecraft have declined in the last two years.

The spy satellites provide recoverable photo and electronic intelligence packages. No official statements on their operation are ever issued by the Pentagon. Based on leaks of information, however, it is believed that the Air Force is now looking toward a sophisticated, multi-spacecraft approach to high-altitude surveillance. Industry informants say three systems ultimately may be combined into an expanded earlywarning system.

One is Project 647 (previously Project 949), an integrated earlywarning satellite surveillance system under development by TRW Systems, Inc. It would employ an infrared, long-range optical system, operating in the 2.3 -micron range, to detect enemy missiles from launching through final propulsion burnout. A second system, under study by TRW and Philco-Ford, is for a mid-course satellite surveillance system. This would employ infrared tracking in the 8 to 14 -micron range to follow the missiles after propulsion burnout and in low-altitude orbit. Project 313 would complete the network. It would be employed for satellite-to-satellite data relay. Studies are under way by TRW and General Electric for a wideband, narrow-beam, millimeter-wave satellite relay system.

A less-expensive Main Battle Tank is the new goal

The long-awaited decision by Deputy Defense Secretary David Packard on the future of the controversial Main Battle Tank has been made, but it's not likely to end the controversy. High costs were at the root of the dissent by some Congressmen, so Packard, in a secret report to Congress, has recommended continuation of the MBT-70 program, but with greatly reduced costs and a funding policy that would end joint development of the tank with the Federal Republic of Germany. Present plans are to build the tanks for about $\$ 500,000$ each- $\$ 200,000$ less than original estimates.

But an Army program official, who admits not having seen the report to Congress, says he cannot envision at this time how the armoredvehicle design can be altered sufficiently to produce such a cost saving."

Domestic-satellite recommendation pleases carriers

"For five years we've had indecision, and now that the White House has given direction on future domestic satellite policy, I believe it has unnerved the whole industry," says one pleased top official of a principal common carrier. "It was not a decision I had expected."

This about sums up the response here by industry to the recent White House recommendation that ownership and operation of U.S. domestic communications satellites be opened to competition. The nod had been expected to go to Comsat.

Washington Report continue

The Executive recommendation is contained in a report to the Federal Communications Commission by a Presidential committee headed by Dr. Clay Whitehead. The FCC chairman, Dean Burch, has promised that the recommendation will receive the "highest priority." An FCC decision is expected by the end of this month or early March.

Prospects rosy for international weather satellites

Chances are very good for a cooperative international weather satellite system, says David S. Johnson, director of the National Environmental Satellite Center, but he offers no timetable. Discussion with many countries for such an effort has been in progress for several years, says this official of the Environmental Science Services Administration, and he expects this collaboration to continue.

Under the proposed U.S. plan, says Johnson, a global geostationary satellite system employing at least four spacecraft would be equispaced around the equator. The U.S. would provide at least one spacecraft with one backup for the system, and other nations, either jointly or individually, would provide the remaining satellites.

Federal law enforcement assistance climbs

The impact of funds available for equipment and research from the Law Enforcement Assistance Administration of the Justice Dept. is only now becoming discernible. Sen. John L. Fannin (R-Ariz.) recently noted short-term increases in funding under the national program within his own state. In fiscal 1969, the Arizona State Justice Planning Agency obtained nearly $\$ 500,000$ in block grant funds, plus participation with other states in two discretionary grants of $\$ 600,000$ and an additional $\$ 70,000$ in college grants for law-enforcement students. In fiscal 1970 the same agency will receive $\$ 228,000$ planning funds, plus over $\$ 1.5$ million in action funds for crime-program improvements.

A summary list by the Scnator reveals that 11 states in 1969 were either expanding or improving their command and control communications and information networks. These include Alaska, Colorado, Florida, Nebraska, Nevada, New Jersey, Rhode Island, Texas, Vermont, Wiscon\sin and Wyoming.

Electronic clothing tags aim to reduce shoplifting

A new industry may be burgeoning: rf-excited electronic warning devices for store theft prevention and industrial security. A pioneer in the field is Knogo Corp., Westbury, N.Y., which is now arranging franchises to market its systems throughout the country. The first franchise arrangement was instituted in the Washingon area last September with the establishment of Knogo of Washington. Six franchises now exist, and up to 50 is the goal of Knogo's president and system inventor, Arthur J. Minasy.

The anti-shoplifting system uses a transmitter-receiver to radiate a signal through a cluster of loop antennas around an exitway. This field generates a very low-level rf response from the passive Knogo printedcircuit tags attached to apparel, according to Robert Burch, president of the Washington franchise. The printed circuit is contained within a patented plastic wafer, which includes an unusual connecting device that penetrates and locks onto fabric. "It can be removed, without destroying the fabric, only by a special tool," Burch asserts.

Centralab introduced thick film technology in 1945.
The result - microcircuits with superior design and performance today.

No one offered thick film microcircuitry as a serious answer to reliability and miniaturization requirements 25 years ago. But Centralab got right into the thick of it. And it's difficult to catch someone with a 25 year head start. In numbers alone our lead is commanding. We've produced more than $500,000,000$ units, with some 5,000 custom designs. No one can approach this production record. In material selection our experience again gives us a sharp edge. Ceramics, metallizing compounds, resistor inks, glaze and sealing materials have all been
specially developed by Centralab's Material Sciences Group to our specifications for durability in processing and application. The Semiconductor Division is a ready source for a wide variety of chips. We even manufacture our own ceramic substrates through an exclusive thin sheet process that is superior to any other method in the industry. And our computer-aided analysis service provides prompt, practical answers to circuit design problems. We don't mean that thick film chip hybrids are the answer to every problem in microcircuitry.

But you'll be surprised at how many solutions these low-cost custom units provide. For more information on how you can get into the thick of it with Centralab, turn the page.

CENTRALAB
Electronics Division GLOBE-UNION INC. 5757 NORTH GREEN BAY AVENUE MILWAUKEE, WISCONSIN 53201

Centralab pioneered thick film microcircuitry in 1945 when we developed a miniature oscillator-amplifier circuit for a mortar shell proximity fuse. This first-of-a-kind unit, admittedly crude by today's standards, consolidated carbon composition resistors, silver-ceramic capacitors and silver circuit paths screened onto a ceramic substrate, which met tough shock requirements. The completely sealed unit was about 3 inches in diameter and 4 inches long.

100,000,000th microcircuit

Centralab's new thick film chip hybrid This assembly, which became known as a Packaged Electronic Circuit (PEC), opened the door to an entirely new technology. By 1959, we had produced our $100,000,000$ th unit. A plaque commemorating this historic production is on permanent display at the Smithsonian Institute, a milestone in the electronic industry.
PECs are still being used extensively for industrial, military and consumer applications. But continued technological developments have brought a new degree of sophistication to the art of thick film microcircuitry. So we've developed our new thick film chip hybrid microcircuits. Chip active devices - diodes, transistors, and ICs are combined with fired on resistors, wiring and capacitors to provide a reliable circuit module. These are smaller, harder working, more sophisticated devices that are custom designed for specific applications.
We're uniquely qualified to provide thick films because our 25 years of experience have given us an intimate knowledge of materials, technology, design, production and service. Following, in more specific terms, is what we mean:

Materials to service: The Centralab capability

Basic to the ultimate performance of thick film chip hybrid microcircuits is the evaluation, selection and development of materials that will withstand sophisticated manufacturing processes as well as demanding applications. The Centralab Material Sciences Group of specialized technical personnel determines what materials will best support the special requirements of our design and production facilities.

Materials developed
specifically by Centralab

One example of the work of this group is the ceramic substrate used in our thick film circuits. To meet design parameters for maximum thermal conductivity and mechanical strength, as specified by our engineers, an exclusive thin sheet ceramic production process was developed that produces substrates of unexcelled surface finish and reliability. These are so superior to others available, that Centralab is a leading supplier to other microcircuit manufacturers. Our ceramic capability has also provided high performance hermetic packages.

Another joint effort of our materials and engineering development personnel resulted in a monolithic chip capacitor (Mono-Kap) that has virtually eliminated pin holes that destroy capacitor reliability and long life.

We've also produced molybdenum/gold substrates with amazingly complex pattern geometry. These substrates, and our proprietary process (patent applied for) for producing them, permit thicker gold deposits and are ideally suited to ultrasonic and thermocompression bonding methods.

Our computer-aided design and circuit analysis services can provide optimum design to minimize failures, enhance performance, and reduce cost. Our comprehensive thick film background gives us another head slart in being able to program our computer so that improved design is assured at the most reasonable cost.

All of our experience and technological skills are reflected in the design and production of Navy Standard Hardware Modules. These plug-in modules combine circuit functions to constitute a complete electronic system that is reliable, flexible and economical.

Navy Standard Module
One more thing. With all our capabilities, we realize that speed is often the most important criteria for judging a thick film microcircuit manufacturer. That's why we are geared to provide production samples to your specifications in as little as three weeks; production quantities eight weeks after prototype approval.

It all adds up to one fact: No other manufacturer is better qualified to help you find the most efficient use of thick film chip hybrids in your circuit design. And if you'd like to find out precisely how we can help you, send your requirements or circuit design to Centralab Application Engineering. There's no better way to get into the thick of it.

CENTRALAB
Electronics Division GLOBE-UNION INC. 5757 NORTH GREEN BAY AVENUE MILWAUKEE, WISCONSIN 53201

Control Full-Wave Power To 6,000 W+ With Rugged, New MAC35 Triacs!

There's only one way to go for compact, economical, stepless control of 60 cycle AC for your demanding industrial/military designs - rugged, new MAC35/36 Triacs!
Rated at a full 25 amperes RMS, this "heavy muscle" series will easily handle 6,000 watts (240 V) and higher in light dimmers, power supplies, heating, A / C and motor controls, welding equipment and power switching systems, to name a few. And provide these important performance advantages:

- symmetrical gating and holding for AC applications
- low, 1.5 V (max) on-state voltage at 35 A
- uniform characteristics through all-diffused junctions
- 225 A peak one-cycle surge current protection
- 4 mA (max) peak blocking current @ $\mathrm{V}_{\text {DrM }}$

Turn-on time is a scant $1.0 \mu \mathrm{~s}$, too, assuring efficient switching in all applications.
Even when cost is the prime consideration, the MAC35 series ensures optimum balance between price and continuous control performance - prices start as low as \$1.70, 100-up!
If you're now looking at Circuit Applications for the Triac, we have a new application note by the same name we'll send along with complete technical data on the MAC35/36. AN-466 discusses basic theory with control methods and circuit applications - a comprehensive guide to new and better ways to control power in today's thyristor circuits . . . with Triacs!
See your franchised Motorola distributor for stud or pressfit evaluation units now . . . or any of 155 other Motorola standard power thyristors!

Series	Package	Vom Range V	$\begin{aligned} & \text { Itimas) } \\ & A \end{aligned}$	lat (typ) mA	$\begin{gathered} I_{H} \\ \text { (typ) } \\ \mathrm{mA} \end{gathered}$
$\begin{aligned} & \text { MAC35-1 } \\ & \text { to }-7 \end{aligned}$	Pressfit	$\begin{gathered} 25 \\ \text { to } \\ 500 \end{gathered}$	25	20	10
$\begin{aligned} & \text { MAC36-1 } \\ & \text { to }-7 \end{aligned}$	Stud				

(4)

- where the priceless inqredient is care!

MOTOROLA
Power Thyristors

Now
 Burr-Brown IC op amps to MIL-STD-883

Loop Gain of 93 dB .

All units are 100% tested for guaranteed performance

And, prices reduced up to 45\%, delivery from stock!

FOR COMPLETE TECHNICAL INFORMATION

contact your Burr-Brown Engineering Representative
or use this publication's reader service card.

BURR-BROWN

RESEARCH CORPORATION
International Airport Industrial Park. Tucson, Arizona 85706 TELEPHONE: 602-294-1431. TWX: 910.952-1111. CABLE: BBRCORP

Operational Amplifiers
Instrumentation Amplifiers Active Filters
Multiplier / Dividers
A/D-D/A Converters

over 50\% more device area in these 14 and 16 lead

AlSiPak® No. SZ-80107-AB 14 lead package with device area $.170 \times .200$

AISiPak

ALL CERAMIC
PACKACES

AlSiPak@
No. SZ-80108-AC 16 lead package with device area $.170 \times .220$

SHOWN ACTUAL SIZE.
LEADS ON . 300 ROW CENTERS.

rus s.s. woust tut BIG DIFFERENCE!

Prices and Detailed Specifications on Request

Probe lightsup to check logiclevels in a flash

Make contact with the new Kurz-Kasch Logic Probe ... With the speed of light, you can visually trace pulses or test the logic levels of DTL, TTL and related circuits. Probe flashes "true" and "zero" logic readings by illuminating signal lamps in the end of the instrument. Like having a lab of test equipment at your fingertips. Indicates "infinity" too, identifying improper logic or a disconnection. Displays symmetrical wave forms by illuminating both lamps.

You'll light up at the low user price of $\$ 39.90$. The probe is used for testing, inspection, troubleshooting and circuit design. Fits in a shirt pocket; leads attach to unit being tested for power. Responds to systems from 3.75 to 6.5 vdc . Input impedance: $150 \mathrm{k} \Omega$? (logic "true"). Logic Probe is available through your local electronic distributor for immediate delivery, or for demonstration upon request. For additional information write Kurz-Kasch, Inc., Logic Instrument Division, 1421 S.
Broadway, Dayton, Ohio 45401. (513) 223-8161.

another A.B resistor enters the

exclusive

Here's the latest Allen-Bradley resistor - the Type BB $1 / 8$ watt - to
A-B hot-molded fixed resistors are available in all standard resistances and tolerances, plus values above and below standard limits. Meet MIL-R-39008 at S level for all values meet the requirements of MIL-R-39008 Established Reliability Specifrom 2.7 ohms to 22 megohms, except fications at the highest level-the S level. Now, A-B provides this "peak" performance in all four ratings - the 1 watt, $1 / 2$ watt, $1 / 4$ watt, and $1 / 8$ watt. A clear demonstration of the type of leadership you've come to expect from Allen-Bradley.

An exclusive Allen-Bradley hot-molding technique ensures high uniformity from resistor to resistor-billion after billion. Their predictable performance makes them ideal for critical military applications.

For immediate delivery at factory prices, call your authorized A-B Industrial Electronics Distributor. For technical specifications write Marketing Dept., Electronics Div., Allen-Bradley Co., 1201 South Second Street, Milwaukee, Wis. 53204. Export Office: 1293 Broad Street, Bloomfield, N. J., U.S.A. 07003. In Canada: Allen-Bradley Canada Limited. Type BB which is from 10 ohms to 22 megohms. Shown actual size.

[^3]

Winchester Electronics

the

 innovative thinking needed to solve today's problems.Looking for a quick solution to a particularly knotty connector problem? Look to Winchester Electronics first.

We've got a reputation for producing answers to problems before they exist. So there's always a chance yours might not be a problem after all. For example, we produced our MRE series of miniature rectangular connectors before any specs existed. They've since become the standard for mil spec MIL-C008384. Our MRAC crimp-contact connectors set the standard for MIL-C-22857.

So you see, it's a good idea to contact Winchester Electronics first before you call a problem a problem. With our pioneering spirit, we may have solved your problem years ago. To find out, write or call Winchester Electronics, Main Street and Hillside Avenue, Oakville, Conn. 06779.

WINCHESTER ELECTRONICS DIVISION OF LITTON INDUSTRIES

Publisher

Hugh R. Roome

Editors

New York Office
850 Third Ave.
New York, N.Y., 10022
(212) 751.5530

Editor, Howard Bierman
Managing Editor, Frank Egan
Computers, Milton J. Lowenstein Circuits, Don Mennie
Microwaves, Michael J. Riezenman Microelectronics, Raymond D. Speer.
Management, Richard L. Turmail
News Chief, Ralph Dobriner
News, John N. Kessler
Military-Aerospace, John F. Mason
New Products, Roger Allan
New Products, Lucinda Mattera Directory Manager, Greg Guercio
Copy, Marion Allen

Field Offices

Washington
Charles D. LaFond
P.O. Box 138

Burke, Va. 22015
(702) 461-7210

Massachusetts
Jim McDermott
P.O. Box 272

Easthampton, Mass. 01027
(413) 527-3632

San Francisco
Elizabeth de Atley
2051 Wellesley St. (Suite D)
Palo Alto, Calif. 94306
(415) 321.7348

Los Angeles
David Kaye
2930 Imperial Highway
Inglewood, Calif. 90303
(213) 757.0183

Editorial Production

Dollie S. Viebig
Richard D. Grissom

Art

Art Director, Clifford M. Gardiner
Assistant, William Kelly
Rita Jendrzejewski
Lynn Thompson
JoJo Miskimmon

Production

Manager, Thomas V. Sedita
Helen De Polo
Kathleen McConkey
Leslie Stein

Circulation

Manager, Nancy L. Merritt
Information Retrieval
Genate Piccinetti

EDITORIAL

Electronics . . . it follows you everywhere nowadays

Never sick a day in your life, and yet here you are being wheeled into the coronary-care unit of the local hospital. "Myocardial infarction" was the term the doctor used.

How about that. You-a heart attack. And Joe always said you'd live to be a hundred. That's probably how long it would take to move into his slot as chief engineer. He isn't going anywhere, even though he is a darn good engineer. He just doesn't know a thing about company power politics.

What a heck of a time for this to happen. Those new op amps are due in next week, and you just know that they won't be tested properly. It's not Sam's fault. As a technician, he's not responsible, although by now you'd think he would know enough. Ed's the problem. It's his project-but you'd never know it the way he operates. He lets vendors get away with murder. You keep telling him he better keep on top of them and maybe even throw a scare into them periodically, just to keep them honest. But he won't listen. The frustrating part is that his projects generally result in good designs, completed on schedule. It doesn't seem possible, though, for his luck to hold out forever.

What are you doing? Here you are flat on your back in bad shape, and all you think about is work. Don't worry-they'll manage without you.

How long will you be here in the hospital? A week, a month? What will you do to pass the time? Write a technical paper, that's what you'll do. At least you'll be able to write it in peace and quiet. Not like those other ones that you always seem to be writing at the dining-room table, with the kids hollering and your wife accusing you of work, work, work.

Maybe she's right. You haven't taken her on a vacation in four years. Wait a minute-that's wrong. You took her to Wescon with you two years ago.

Oh well! Things will be different when you get out of here. No more carrying the ball all by yourself at work. They pay you to be a group leader, and that's what you'll be. Fifty-hour weeks and 800 -mile overnight trips are out. More time with the family. That's what you're going to do.

Hey-what's that. Oh, it must be the display and monitoring panel for the coronary unit. Look at that. Modular amplifiers, CRTs, strip-chart recorders-the works. This really must be a growing field.

Wonder what the chances are for a small-time company that could design components for these systems? When you get back on your feet, you could use your savings and operate out of your garage. Of course, at least for a while, you'd keep your job and just do this evenings and weekends. And then you could . . .

Now turn to page 24 for an inside look at medical electronics from the hospital's point of view.

Frank Egan

Our new
 high energy silicon power transistors. 15 Amperes. 80 to 120 Volts.

For Switching.

The Delco Radio DTS-100 series. NPN. Triple diffused. Rugged.

All the experience gained from our very high voltage silicon power line has gone into the development of these new transistors.

They were especially designed for the extreme under-the-hood environment of our I.C. voltage regulator. We found these devices ideal for applications requiring high efficiency switching or high power amplification.

The Delco triple sequential diffusion gives the DTS100 series the high

SEMICONDUCTOR DISTRIBUTORS

ALA., BIRMINGHAM - Forbes Distributing Company, Inc. (205)-251-4104

ARIZ., PHOENIX • Sterling Electronics, Inc. (602)-258-4531

- Hyer/Cramer Electronics, Inc. (602)-263-1112

CAL., LOS ANGELES • Kierulff Electronics, Inc. (213)-685-5511

- Radio Products Sales, Inc. (213)-748-1271

CAL., PALO ALTO • Kierulff Electronics, Inc. (415)-968-6292
CAL., SAN DIEGO • Milo of California, Inc. (714)-232-8951
COLO., COLORADO SPRINGS • L. B. Walker Radio Co. (303)-636-1661
COLO., DENVER • L. B. Walker Radio Co. (303)-935-2406

- Hyer/Cramer Electronics Inc. (303)-758-2100

FLA., MIAMI • Mountain Electronics, Division of Mountain National Co. (305)-634-4556
energy reliability that's needed for very tough switching jobs-resistive or inductive. The 28 -volt shunt regulator above, for example, is amply handled by the DTS-103 ($\mathrm{V}_{\text {CEx }}$ of 80 volts). For complete data on this circuit, ask for our application note No. 42.

In the direct coupled audio amplifier above right, the DTS-107 displays the excellent frequency response, gain linearity and transconductance of this family. This circuit is covered in our application note No. 43.

Our solid copper TO-3 package provides maximum thermal capacitance to absorb peak power pulses. Its low thermal resistance ($0.75^{\circ} \mathrm{C} / \mathrm{W}$ Max.) assures the extra reliability you expect from Delco.

Like more information? Just call us or your nearest Delco Radio distributor. All our distributors are stocked to handle your sample orders.

FLA., WEST PALM BEACH • Mountain Electronics, Division of Mountain National Co. (305)-833-5701
ILL., ROSEMONT - F-J-R/Midwest, Inc. (312)-678-8560
ILL., SKOKIE • Merquip Electronics, Inc. (312)-282-5400
IND., INDIANAPOLIS • Graham Electronics Supply, Inc.
(317)-634-8486
MD., BALTIMORE • Radio Electric Service Co. (301)-823-0070 MASS., NEWTON . The Greene Shaw Co., Inc. (617)-969-8900 MICH., KALAMAZOO • Electronic Supply Corp. (616)-381-4626 MICH., ROMULUS (Detroit) • Harvey Radio Co. (313)-729-5500 MINN., MINNEAPOLIS . Stark Electronics Supply Co. (612)-332-1325 MO., KANSAS CITY. Walters Radio Supply, Inc. (816)-531-7015 MO., ST. LOUIS - Electronic Components for Industry Co.
(314)-647-5505

For Audio Amplification.

	Ic Cont. Amps.	Ic Pulsed Amps.		VCEO $@ .25 m A$ Volts	$\begin{aligned} & \text { VCEO(sus) } \\ & @ 250 \mathrm{~mA} \\ & \text { Volts } \end{aligned}$	hfe @ $5 A$	$h_{f E}$ @ 20A (Min.)	VCE (sat) @ 10A (Max.)		P_{1} Watts (Max.)
DTS. 103	15	20	80	60	60	20-55	5	1.8	4	125
DTS-104	15	20	80	60	60	50-120	10	1.5	4	125
DTS-105	15	20	100	80	75	20-55	5	1.8	4	125
DTS-106	15	20	110	90	80	20-55	5	1.8	4	125
DTS-107	15	20	120	100	85	20-55	5	1.8	4	125

Kokomoan's Regional Headquarters
Union, New Jersey 07083 Box 1018 Chestnut Station (201) 687-3770

Santa Monica, Calif.* 90401 726 Santa Monica Blvd. (213) 870-8807

Detroit, Michigan 48202 57 Harper Avenue (313) 873-6560

GM

MAAK OF EXCELIENCE

DELCO RADIO

DIVISION OF GENERAL MOTORS

 KOKOMO, INDIAMA THE KONOMOANS ARE IN POWERN.J. CLIFTON • Eastern Radio Corporation (201)-471-6600
N.M., ALBUQUERQUE • Hyer/Cramer Electronics Inc. (505)-265-5767

- Sterling Electronics Inc. (505)-247-2486
N.Y., BINGHAMTON • Federal Electronics, Inc. (607)-748-8211
N.Y., NEW YORK • Harvey Radio Co., Inc. (212)-582-2590
N.Y., WOODBURY, L.I. • Harvey Radio Company, Inc. (516)-921-8700

OHIO, CINCINNATI • United Radio, Inc. (513)-761-4030
OHIO, CLEVELAND • The W. M. Pattison Supply Co., Industrial
Electronics Division (216)-441-3000
OHIO, DAYTON • F-J-R/Ohio, Inc. (513)-278-9411
OKLA., OKLAHOMA CITY • Radio, Inc. (405)-235-1551
OKLA., TULSA • Radio, Inc. (918)-587-9123

PENN., PHILADELPHIA • Almo Electronics, Division of Sterling Electronics (215)-676-6000
PENN., PITTSBURGH • RPC Electronics (412)-782-3770
TEXAS, DALLAS • Adleta Electronics Company (214)-742-8257
TEXAS, FORT WORTH • Adleta Electronics Co. (817)-336-7446
TEXAS, HOUSTON • Harrison Equipment Co., Inc. (713)-224-9131
UTAH, SALT LAKECITY. Hyer/Cramer Electronics Inc.(801)-487-3681
VA., RICHMOND • Meridian Electronics, Inc., a Sterling Electronics Company (703)-353-6648
WASH., SEATTLE • Kierulff Electronics, Inc. (206)-763-1550
WASH., TACOMA • C \& G Electronics Co. (206)-272-3181
CANADA, ONT., SCARBOROUGH • Lake Engineering Co., Ltd.
(416)-751-5980

Another way to reduce your risk is to help expand the life-saving programs of your Heart Association.

so more will live HEART FUND \dagger.

MORE SWITCH FOR THE MONEY.

NOW YOU CAN SPECIFY PRACTICALLY ANY CUSTOM PUSHBUTTONS ON SWITCHCRAFT'S DW "Multi-Switch ${ }^{\ominus}$ "
There's almost no limit to the variety of pushbuttons you can use on this spacesaving, multiple-station pushbutton switch. It has a newly designed "CrossRib" actuator located on each module

that makes the switch more versatile than ever.
The "Cross-Rib" actuators conform to industry standards and are furnished $3 / 4^{\prime \prime}$ and $1 / 66^{\prime \prime}$ long to accommodate different size pushbuttons. They solve many operator-machine interface problems
when used with Switchcraft nonilluminated "Dual," "Showcase," concave or convex face, rectangular, round or square pushbuttons, or the unique "Glo-Button" that achieves simulated illumination.

MORE QUALITY FOR THE MONEY.

In a nutshell, the Series 70000 . 71000 DW "Multi-Switch ${ }^{\text {® }}$ " is an economical 1 to 18 station switch, that offers up to 4 PDT switching per station; Interlock, All-Lock, Non-lock or Push-lock/ Push-release functions, plus an almost unlimited variety of electromechanical and electrical accessory options. These switches are adaptations of the Switchcraft Series 65000 DW
"Multi-Switch ${ }^{\text {" }}$ switches that are noted for their simplicity, economy and reliability.

SWITCHCRAFT FORUM

Join the SWITCHCRAFT FORUM by
sending us a request on your company letterhead. Just give us details

on your application,
function and the circuitry required. We'll forward a free sample of the Series 70000 D W "Multi-Switch ${ }^{\text {® }}$ " plus our "FORUM FACTS on 'Multi-Switch ${ }^{\text {® }}$ ' SWITCHES" handbook that's loaded with specifications and
 application information. Your name will also be added to our TECH-TOPICS mailing list. Over 12,000 design engineers find the application stories in this technical publication extremely useful in their work.

SWITCHCRAFT, INC.
5529 N. Elston Avenue Chicago, Illinois 60630

EMMEMPAFN

INFORMATION RETRIEVAL NUMBER 34

MODEL 605: THE LOW-COST MULTIPLIER 1\% ACCURACY NO TRIM POTS

Compare specifications and you'll see that the Zeltex 605 beats every other low-cost multiplier on the market. It provides full-power output to 100 kHz , and small-signal frequency response is 500 kHz .

Yet the price, in quantity, is only $\$ 39$!
To get your copy of Bulletin 1056C containing complete specifications and Applications Bulletin 1063A, circle the reader service number below, or write or phone

Other key specifications include:
Output 10V@4mA
Noise 2 mV rms
Slew Rate $6 \mathrm{~V} / \mu \mathrm{s}$
Size $1.5 \times 1.5 \times 0.62$ inches

ZELTEX, INC.

A Subsidiary of REDCOR CORPORATION
1000 Chalomar Road, Concord, Calif. 94520
(415) 686.6660

Test up to 50 KVDC. With accuracy you can bet on (without gambling safety).

0 to 50 KVDC. That's our range. And our measuring and testing instruments are the safest and fastest, with comparable accuracy, in that range.
Our Ripple Detectors for measuring AC ripple on top of High Voltage DC, provide all the flexibility and accuracy of any lab-made detectors, yet can compete with them on cost. Plus ours are much safer. Prices from $\$ 73$.
The same is true of our High Voltage Dividers. Our nine models of dividers (some double as extenders) combine a 10 or 20 KVDC voltage with 25 to 100 microampere current drains to give you a wider choice for your specific requirements. Prices from $\$ 285$.

Ripple Detector-50 KV

- Maximum 50 KVDC plus peak to peak ripple.
- Optional surge protection.
- 20,000 Megohms minimum DC input impedance.
- Maximum Ripple: 30,000 V. (500 V with surge protection.)

High Voltage Divider-10 KV

- 10,000: 1 fixed division ratio.
- 10 KVDC maximum voltage in.
- 1.0 VDC maximum voltage out.
- Accurate to $\pm 0.25 \%$ at $20^{\circ} \mathrm{C}$. to $30^{\circ} \mathrm{C}$.

For prices and descriptive literature on these and other off-the-shelf High Voltage instruments, write Capitron Division, AMP Incorporated, 155 Park Street, Elizabethtown, Pennsylvania, 17022. In Canada, AMP of Canada Ltd., Esna Park Drive, Don Mills, Ontario.

The more complicated it gets...

Photo courtesy of Motorola Semiconductor Products Inc., Phoenix. Arizona

The more engineers control your market

COMPLEXITY AND DESIGN To the layman, even the simplest electronic device seems complex. But, to engineers, complexity is commonplace. They thrive on it. Faced with an evolving technology that can pack 2,500 circuits in the space of a thin dime, who but the engineer can speak the language? Yet, the staggering intricacies of the IC, MOS, and MSI generations bring with them a clear message to marketers: The more complex and sophisticated the product or system becomes, the more OEM buying power is placed in the hands of engineers and engineering managers.

ELECTRONIC DESIGN DELIVERS THE ENGINEERS

Electronic Design concentrates its circulation exclusively among electronic engineers and engineering managers. Of the three leading publications, Electronic Design provides by far the greatest number of prime specifiers in the EOEM! Primary circulation now exceeds 72,515, December, '69 (up more than 2,000 from June). From an estimated total engineering universe of 275,000 Electronic Design's total readership projects to more than 261,000. Right away, Electronic Design brings you the biggest slice of the market!

EXPLODING A MARKETING MYTH Some publications would have you believe that the electronic OEM is fragmentedthat buying power has become scattered-moved away from its engineering base. This is not substantiated by the facts. Your market is not fragmented, it is concentrated! It is increasingly engineer-dependent.Now, more than ever, the prime responsibility for product development lies with design engineers and engineering managers-the men who select and specify.

NEW PROOF SUPPORTS OUR

 CLAIM The engineer-dependence of your market shows up clearly in a 1969 study conducted by Dr. James J. Mullen, President, University Research Associates, Chapel Hill, North Carolina. Buying practices were examined for 25 product categories in 87 representative plants.Take Integrated Circuits, for example. 84.9% of those respondents who "select and specify brand" are engineers and engineering managers. For capacitors, it's 80.2%. For power supplies, it's 84.2%. Engineers and engineering managers are your primary prospects-the great non-silent majority who will examine, specify, authorize purchase, or in many cases, even purchase directly from your advertising!

Electronic Design24

ELECTRONIC DESIGN DE-

 LIVERS THE READERSHIP Examine your own customer list. What do you find? Nine chances out of ten, the majority of your prospects are engineers or engineering managers. Nine times out of ten, when surveyed, these prospects rank broad, industry-wide publications low in readership, while Electronic Design, directed exclusively to engineers and engineering managers, comes out the runaway leader. Electronic Design has placed "first in readership" in over 90% of all studies conducted on an independent basis by manufacturers in this market. Why? Because Electronic Design offers more technical material of direct application and immediate usefulness to the working engineer . . . more marketing assistance . . . more inquiries and direct sales for the advertiser.MARKETING BEGINS WITH DESIGN When you put Electronic Design first on your schedule, when you concentrate, your program starts with the greatest base of engineering readership obtainable in this industry. Then, as you give engineers the information they need-the facts and data about your prod-ucts-watch specification/purchase accelerate on a mass scale. In the EOEM, marketing begins with Design!
Electronic Design
For Engineers and Engineering Managers A HAYDEN PUBLICATION
850 THIRD AVENUE, NEW YORK 10022 • 212-751-5530

High speed commercial memory system - NANOMEMORY 2600 Full cycle time of 600 nanoseconds, and word capacities of 16 K by 18 or 8 K by 36 . It's all done with a second-generation 2-1/2D drive system with efficient circuit and logic design, for reduced component count and high MTBF, and wide operating margins - the real feature of the 2-1/2D configuration. It is easily expandable in the field, and comes in a standard 19" rack.

Perfect for high speed, large capacity mainframe memory systems NANOSTAK 3020 ...technology breakthrough in 3W, 2-1/2D stacks. Stackable. compact size is an amazing 25% of competitive planar stacks and offers a significant advantage in form factor for system packaging Extremely fast 650 nanosecond cycle time for 8K or 16 K by 40 , or 32 K by 20 word memories.

Five new memory cores for your next stack or system. All are medium or high drive, all coincident current, and all are fast switching for your high speed applications. Four new cores available in $18 \mathrm{mil}, 20 \mathrm{mil}$, and two types of 30 mil sizes for use from 0° to $70^{\circ} \mathrm{C}$. Also. a new wide temperature range 18 mil core for severe environments of -55° to $+100^{\circ} \mathrm{C}$.

Compact. ATR compatible memory system SEMS-6 for use in military and rugged commercial aircraft applications. Reliable performer is optimized around 8 K or 16 K with maximum capacities of 8 K by 40 or 16 K by 20 . Full cycle time of 2 microseconds, with access time of 700 nanoseconds. Meets MIL-E-5400. low power consumption and lightweight

Rugged design for ground based mobile equipment. NANOSTAK 020 commercial memory stack. High speed $850-$ nanosecond full cycle time for 4 K memories. Features 3W. 3D organization with word capacities to 16 K by 40 Built-in reliability and dependability. Available with wide temperature range cores for operation in severe environments.

Who else but Electronic Memories could introduce five brand spanking new memories-at once

Only Electronic Memories, the technology leader, could introduce five important new memories at once. Each one offers significant advances to provide you with faster, more reliable, and lower cost memories. Each one is loaded with outstanding new design features to give you faster access, larger capacity, and more economical operation. From cores and stacks to megabit memories, Electronic Memories has the memory products for your next, faster, more powerful computer system. For more facts and figures, just write.

COMES WITH EVERY GE WET-SLUG CAPACITOR A woman's touch

When tender loving care is needed for optimum reliability in high-volumetric efficient tantalum wet-slug capacitors, what do you do? You use the deft hands of a woman. Careful assembly of the tantalum anode and its fine silver case demands exacting personal attention. A woman's touch is needed to protect the delicate dielectric coating of tantalum oxide during final assembly. Through gentle care and a spider support for the anode in its case, a consistently low stable leakage current characteristic for GE wet-slug units is obtained. This extra effort to prevent tantalum oxide damage has proved out in reliability analyses of over 10,000 hours at rated conditions. GE wet-slug capacitors meet or exceed the requirements of MIL-C-3965 and MIL-C-39006. They are also available in subminiature sizes down to .312 inch by .112 inch, with acid or non-acid electrolyte.

Choose from standard ratings (No voltage derating necessary to assure reliability)
Voltage Ratings: 6 VDC to 150 VDC
Capacitance Ratings:
3.3uf to 2400 uf

Temperature Ratings: -55 C to $+85 / 125 \mathrm{C}$ or let GE's 20 years of experience special-design a tantalum wet-slug capacitor to fit your slim, trim circuit needs.

Call your GE Electronics Distributor or GE ECSO District Sales Manager, or write Section 43039, General Electric Company, 1 River Road,
Schenectady, N. Y. 12305
Electronic Capacitor \& Battery Dept., Irmo, S. C.
GENERAL (9\%) ELECTRIC

Keep your power dry

Dow Corning ${ }^{\circledR}$ silicone molding compounds and four organic plastics were tested under identical condi-tions-93\% relative humidity at 70C for 5000 hours. The organic plastics absorbed nearly five times as much moisture as the silicones. Moral: silicones protect your power devices from galvanic corrosion. Other advantages of silicones include
superior resistance to thermal shock, cracking and burning. No derating is necessary, the initial cost is low, and you get faster production because of good mold release and minimum flash. Dow Corning silicone molding compounds are a genuine bargain that can improve your product and save you money Our new booklet gives complete details on Dow Corning silicone
molding compounds. For your copy, write Dow Corning Corporation, Dept. A-9433, Midland, Michigan 48640.

Electrical / Electronic

 materials fromDOW CORNING
DOW CORNING
bow cokning

Chips or cans... for hybrids or modules.

Get the high performance and low cost advantages of dual FETs as your op amp input. Our nearly three dozen different duals are specifically designed for your applications, and they're available off-the-shelf. What's more, the specs are guaranteed by the world's leader in FET development. Here are typical applications, features and specs of the more popular Siliconix duals:

APPLICATION	Outstanding Features	$\frac{\Delta\left\|\mathrm{V}_{\mathrm{GS},} \cdot \mathrm{~V}_{\mathrm{GS} 2}\right\|}{\Delta \mathrm{T}}$	$\underset{(\mathrm{mV})}{\left\|\mathrm{V}_{\mathrm{Gs} 1}-\mathrm{V}_{\mathrm{os} 2}\right\|}$	$\begin{gathered} \mathrm{I}_{\mathrm{G}} \\ (\mathrm{pA}) \end{gathered}$	$\underset{(\mu \mathrm{mho})}{\mathrm{g}_{\mathrm{t}}}$	$\left(\begin{array}{c} \bar{e}_{n} \\ \left(n \mathrm{~V} / \sqrt{H_{z}}\right) \end{array}\right.$	goss 1 - $g_{\text {oss } 2}$ ($\mu \mathrm{mho}$)	Conditions	Pkgd. Series	Chip Type
CENERAL PURPOSE	Meets most OP AMP requirements where low I_{G} and low noise are important.	5-40	5-15	15	700	$\stackrel{20}{20}(1 \mathrm{kHz})$	1.0	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{VO}}=20 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~N} 5196- \\ & \text { N } 5199 \end{aligned}$	CDNP01 ${ }^{\circ}$
ELECTRO- METERS	Ultra-Low I_{6}.	5-40	5-15	1.0	50	$\begin{gathered} 200 \\ (100 \mathrm{~Hz}) \end{gathered}$	0.2	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=30 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DO}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { U248A- } \\ & \text { U251A } \end{aligned}$	CDNT01 ${ }^{\circ}$
LOW-NOISE HICH CMRR	Extremely low noise, high common mode rejection ratio.	5-40	5-15	100	500	$\begin{array}{\|c\|} \hline 15 \\ (10 \mathrm{~Hz}) \\ 10 \\ (1 \mathrm{kHz}) \end{array}$	0.1	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DG}}=20 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { 2N5520- } \\ & \text { 2N5524 } \end{aligned}$	CDNS01 ${ }^{\circ}$
WIDEBAND DIFFERENTIAL AMPLIFIERS	High $g_{t g}$ and low noise to very high frequencies. High $g_{f s} / C_{189}$ ratio.	20-40	10-15	100	5,000	$\begin{gathered} 20 \\ (10 \mathrm{kHz}) \end{gathered}$	20	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DG}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { U252- } \\ & \text { U253- } \end{aligned}$	CDNZ01 ${ }^{\circ}$
BALANCED MIXERS		-	100	-	5,000	$\begin{gathered} 30 \\ (10 \mathrm{kHz}) \end{gathered}$	20	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DG}}=12 \mathrm{~V} \end{aligned}$	U257	CDNZ01*

- Specifications apply to packaged devices but are generally representative for chips. Detail chip specifications are available on request.

You'll want complete data and pricing information, of course, so just write to us or phone any of our regional sales engineers:
New York: Sy Levine (516) 796-4680
New England: Al LaCroix (617) 762-8114
Ft. Worth/Dallas: Charlie Williams (214) 231-8151
St. Louis: Jim Spicer (314) 291-3616
Minneapolis: Ed Koelfgen (612) 920-4483
So. Calif.: Dave Ferran (213) 420-1307
No. Calif.: Chuck Brush (408) 246-8000

S

Need a low-voltage dc converter?
 Use this solid-state multiplier circuit. It operates from sources as low as 0.1 V .

Multiplying low-level dc voltages is often a headache. All conventional solid-state rectifiers have forward voltage drops, under any appreciable current, of 0.3 to 0.6 V , and if the source voltage to be multiplied is under one or two volts the problem looks insurmountable. But it isn't.

Bipolar transistors, with their low ($50-\mathrm{mV}$) collector-to-emitter saturation voltages make excellent rectifiers for low-voltage multipliers. Connected in a special multiplier circuit, and driven by solid-state clocking circuitry, they can multiply de sources as low as 0.1 V . And at source voltages of 1.35 V , with a load current of 1.25 mA , efficiency has been measured at 55%. An added plus: the new circuit can easily be built in hybrid form.

A basic doubler circuit, which uses bipolar transistors operating in the saturation mode as rectifiers, is shown in Fig. 1. The switching voltages E_{s} and E_{s} are 180° out of phase, and have a peak value equal to the supply voltage V_{k}. With E_{s} at 0 V , capacitor C_{1} charges to (V_{s} $\mathrm{V}_{\text {cel (sat) }}$). With E_{s} equal to V_{s} and $\overline{\mathrm{E}_{\mathrm{s}}}$ equal to 0 V , the voltage at point A reaches $\left(2 \mathrm{~V}_{\mathrm{s}}-\right.$ $\left.\mathrm{V}_{\text {cel (sat) }}\right)$, and C_{2} charges to ($2 \mathrm{~V}-2 \mathrm{~V}_{\text {cel (sat) }}$), assuming equal saturation voltages. Actual circuits, built with transistors having saturation voltages of 10 mV , have achieved output voltages of 2.68 V using a supply voltage of 1.35 V .

The clock is the key

The key to the successful operation of the circuit of Fig. 1 is generating the clock voltages E_{s} and E_{s}. A clock circuit designed for this purpose is shown in Fig. 2.

The clock circuit operates basically as an astable multivibrator. The $1-\mathrm{k} \Omega$ resistors have been selected so that Q_{1} and Q_{3} saturate for low values of E_{s} and $\overline{E_{s}}$, whereas Q_{2} and Q_{1} saturate for large positive values of E_{s} and E_{8}. Since E_{s} and E_{s} are 180° out of phase, this means that for

[^4]

1. A simple low-voltage doubler circuit uses pnp transistors as rectifiers (a). The forward voltage drop across each transistor is $\mathrm{V}_{\text {ce(sat) }}$, roughly 15 mV , and the circuit can work well with source voltages as low as 100 mV . Voltages E_{s} and $\mathrm{E}_{\mathrm{w}}[(\mathrm{b})$ and (c)], vital to the operation of the doubler, are obtained from a special clock.

2. The clock circuit is an astable multivibrator (a), which can achieve rise and fall times of 50 and 20 ns on a $0.5-\mathrm{mA}$ supply current (b).

3. A complete doubler for a $1.35-\mathrm{V}$ source (a) achieves a load voltage of 2.52 V at 1.25 mA and an efficiency of 55.7%. Efficiency falls to 20.8% for a load current of $0.26 \mathrm{~mA}(\mathrm{~b})$, and open-circuit output voltage rises to 2.62 V .
one-half of a cycle of the square wave both Q_{2} and Q will be in saturation with Q_{1} and $Q_{\text {, cut }}$ off, and the reverse will be true for the other half of the cycle.

The capacitors charge and discharge through the saturation resistances of the pnp and npn transistors, respectively, thereby achieving excellent rise and fall times for the square-wave output waveform. For the values shown in Fig.2, for example, rise and fall times of 30 and 20 ns respectively are achieved with an input current of 1 mA .

A complete doubler circuit operating from 1.35 V is shown in Fig. 3. The table lists the characteristics of this particular circuit. Noteworthy is the efficiency, which is 55.7% for a load current of 1.25 mA and a load voltage of 2.52 V .

Voltages of higher output can be obtained, of course, using additional stages, with each additional stage requiring one additional resistor, capacitor and transistor.

The doubler circuits shown are not limited

4. A germanium transistor clock operates on O.1-V supplies, and will enable multiplication of 0.4.V nuclear sources when they are available. The polarities shown are for a negative output doubler, and the rise and fall times of the circuit are both $0.8 \mu \mathrm{~s}$.
to $1.35-\mathrm{V}$ cell sources. With slight redesign, they can accommodate sources as low as 0.1 V .

Multiply sources as low as 0.1 V

Nuclear sources, for instance, expected to be available in the near future, will have terminal voltages of 0.4 V . If nuclear sources are used with this doubler configuration, it will be necessary to redesign the clock circuit to use germanium transistors, with their lower junction voltages.

The redesigned, $0.4-\mathrm{V}$ clock circuit is shown in Fig. 4. There is no fundamental difference between this clock circuit, of course, and that of Fig. 2. The polarities shown are necessary if the clock is to be used for a negative output doubler.

Operation of the circuit of Fig. 4 is possible from supply voltages as low as 0.1 V . With $\mathrm{V}_{\mathrm{s}}=0.3 \mathrm{~V}$, the rise and fall times of the output square wave are both $0.8 \mu \mathrm{~s}$, with an input current of 0.31 mA .

Instrumentation needs low-voltage multipliers

There is a rapidly growing need for small power sources-especially in biomedical and instrumentation work-which will provide enough voltage to drive solid-state circuitry.

Simple series-connected cell supplies are usually too bulky for these applications, and single cells (mercury cells, for instance) supply only up to 1.5 V . But the junction voltages of bipolar transistors and the pinch-off voltages of junction FETs are in the order of 0.3 to 0.6 V , and direct coupling in the amplifier usually re-
quires de level shifting. The result is a requirement of at least a $2.6-\mathrm{V}$ supply for proper amplifier operation. Some means of boosting the voltage of a single cell is needed.

Transformer multipliers are out, obviously, because they are far too large. And the use of conventional diodes in a doubler circuit has greatly limited effectiveness because, with any appreciable current, the junction voltages approach 0.3 to 0.6 V . But bipolar transistors offer a way out of the dilemma.

5. A four-stage multiplier yields -1.29 V at an output current of 1.1 mA , from a $0.4-\mathrm{V}$ source. Used with a
nuclear source it can mean miniaturized sources, equivalent to mercury cells, with ratings of mA-years.

6. A voltage tripler configuration with dual-polarity output uses the same circuit techniques. It supplies a
nominal $\pm 3.6 \mathrm{~V}$ from a 1.35 V source and is ideally suited to hybrid construction.

A complete four-stage multiplier circuit using the clock circuit of Fig. 4 and giving a negative output voltage is shown in Fig. 5. With $\mathrm{V}_{\mathrm{s}}=$ 0.4 V and an input current of 1.1 mA , the output voltage of this circuit is -1.29 V . This circuit, when used with a $0.4-\mathrm{V}$ nuclear power source, would become an equivalent mercury cell with a rating of mA -years rather than mA -hours.

An extension of these ideas makes possible converters with dual-polarity output voltages derived from a single-polarity input voltage.

A dual-polarity tripler circuit is shown in Fig. 6. The block labeled CLOCK is the clock circuit of Fig. 2. Q_{1}, Q_{i} and Q_{i} make up the positive output tripler circuit which generates an output voltage of 3.6 V . Assuming negligible values for $\mathrm{V}_{\text {ce(sat) }}, \mathrm{C}_{1}$ is charged to 3.6 V through Q_{1} and $Q_{\text {: }}$, since with E_{3} equal to $0, Q_{i}$ will bias Q_{i} into saturation. With $\mathrm{E}_{s}>0$ and positive, Q_{i}, $Q_{\text {: }}$ and Q_{i} are open and Q_{5} is in saturation. Transistor Q, in saturation, grounds the positively
charged side of C_{1}, which effectively shunts the collector Q_{s} and the base of $Q_{\text {., }}$ with -3.6 V .

These multiplier circuits are ideally suited to hybrid construction. Minimal difficulty should be encountered with single-polarity outputs, since only two pnp units are required for the clock circuit. These could be two beam-leaded chips. For dual-polarity outputs, with their greater number of both types of devices and more complex circuitry, the approach could involve individual monolithic structures for the pnp and npn groups of devices. It should be possible to achieve a final package that would be smaller than the currently projected size of $0.4-\mathrm{V}$ nuclear cells.

References

Cochrun, B. L. and Rochefort, J. S., Report Number 2, NASA Research Grant NGL 22-011-024, Sept. 1, 1968.

[^5]
19 AIm-NPBC TTRITIP(DT' P(DTENTIOIIE'TERRS

MIL-R-39015

MIL-R-27208

MIL-R-22097

BOURNS HAS MORE POTENTIOMETERS ON DESC'S OPL THAN ANY OTHER MANUFACTURER!

Available from your local Bourns Distributor!

Bourns is the world's largest manufacturer of adjustment potentiometers, with 18 years of leadership. Bourns is also the largest manufacturer of Mil-Spec potentiometers, backed by a total of 12 RT, RJ and RTR models in our line.
The 6 RT, 5 RJ and 1 RTR models not only meet the specifications of MIL-R-27208, MIL-R-22097 and MIL-R-39015, but each is designed and manufactured to consistently exceed each facet of these requirements.

As in the past, you can depend on Bourns to deliver the potentiometer you need. In this tradition of service we now offer the Mil-Spec unit you may need for your next critical application with 12 RT, RJ and RTR models.

* Not yet stocked in depth by distributors.

BOURNS

Decipher the Gray code. Convert it into binary or decimal equivalents or use it directly in arithmetic computation.

The Gray code, a modified binary code, is distinguished by the fact that there is a change in only one bit in any transition between consecutive numbers. This characteristic is used to speed operation in shaft encoders and counters and to minimize instantaneous error. Numbers written in Gray code, however, are not as easy to work with or to recognize as those in the more familiar binary or binary-coded decimal (BCD).

The techniques for the conversion of Gray to binary or decimal and vice versa are not widely known. There are the paper and pencil conversion of a number in Gray to a recognizable number in binary or decimal, and the physical conversion using gates and clocks to perform some computation.

In addition, there are techniques for carrying out computations in Gray code without converting to a more familiar form.

Gray code speeds counting

In a convetnional counter, there are many transitions in which most bits are inverted. For example, if binary 127 (01111111) is incremented by one to 128 (10000000), every bit is inverted. Since some binary elements are faster than others, large instantaneous errors can exist. A delay equal to the settling time of the slowest element is used to prevent these errors from having adverse effects. This slows machine operation. The Gray-code restriction to only a one-bit change minimizes this problem.
"Unit distance," "cyclic,"' and "reflected" are other designations for this type of code. The most common, though, is the Gray ${ }^{2}$ which is illustrated in Fig. 1 with binary and decimal equivalents for comparison.

Note that except for leftmost column in Fig. 1 the number of transitions in a given Gray column is one-half the number that appears in the equivalent binary column. ${ }^{3}$ This feature of Gray code permits a given size of shaft encoder to contain twice the information that could be con-

[^6]tained in binary.
The relationship between binary and Gray is defined as follows:
$\mathrm{G}_{\mathrm{i}}=\mathrm{B}_{\mathrm{i+1}} \cdot \overline{\mathrm{~B}_{\mathrm{i}}}+\overline{\mathrm{B}_{\mathrm{i}+1}} \cdot \mathrm{~B}_{\mathrm{i}}=\mathrm{B}_{\mathrm{i}+1} \oplus \mathrm{~B}_{1}$ (1) where the symbol \oplus means exclusive $O R$. The parallel mechanism for this is shown in Fig. 2a, using NAND logic.

Another way of regarding Eq. 1, convenient for paper and pencil conversion, is that each bit immediately to the right of a binary 1 is inverted to obtain the equivalent Gray bit. The serial mechanism of this is shown in Fig. 2b. The serial train must be received MSB (most significant bit) first, and the flip-flop must be in the reset condition prior to receiving the first bit.

Convert Gray to binary

The relationship between Gray and binary ${ }^{3}$ is defined as follows:
$B_{i}=B_{i+1} \cdot \bar{G}_{i}+\overline{B_{i+1}} \cdot G_{i}=B_{i+1} \oplus G$ (2)
This equation implies that not only the Gray bits but also encoded binary bits must be used in the logic. The parallel circuit for this is shown in Fig. 3, using NAND gates. Another way of regarding Eq. 2 is that the binary output changes only at each Gray 1 position.

Figure 3 also illustrates the serial realization of Eq. 2, using NAND gates and a J-K flip-flop. The serial train must be received MSB first. and the flip-flop must be in the reset condition prior to receiving the first bit.

It can be seen that the parallel binary-to-Gray and Gray-to-binary circuits in Fig. 2 and 3 are quite similar. The same circuit configuration and number of gates are used for each encoded bit. The only difference between the circuits is that the binary-to-Gray uses the nth input bit as an input to the ($n-1$) th encode gate, while the Gray to binary used the nth output bit as the input to the ($n-1$) th encode gate. By logically selecting this gate input, a reversible binary-to-Gray or Gray-to-binary converter is possible.

The serial binary-to-Gray and Gray-to-binary ${ }^{4}$ circuits shown in Fig. 2 and Fig. 3 are also quite similar. The only difference between the two cir-

GRAY			
0			
D			
0 B A 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0			

DECIMAL
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

BINARY				
8	4	2	1	DECIMAL
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

1. The Gray-code counting sequence differs from binary. Gray with decimal equivalent is on the left; binary is on the right.

2. Gray-to-binary conversions can also be parallel (a) or serial (b). The circuit of (b) differs from Fig. 2(b) only in the uninverted K flip-flop input.

3. Binary can be converted to Gray by using parallel or serial methods. A 4-bit parallel converter is shown in (a) and the serial version in (b).

Convert decimal 29 to Gray

4. Decimal can be converted to Gray on paper. The least significant bit is 1 because the remainder is 0 and the parity to that point is odd.
cuits is the K input to the flip-flop. In the binary-to-Gray conversion, the K input is equal to the inverse of the J input ($\mathrm{K}=\overline{\mathrm{J}}$). In the Gray-tobinary conversion, the K input is equal to the J input ($\mathrm{K}=\mathrm{J}$). If the K input is selected to invert or not invert upon command, the same circuit can be used for either conversion.

Make Gray-decimal conversions on paper

For pencil and paper methods it is convenient to be able to convert directly from decimal to Gray and Gray to decimal. ${ }^{5,6}$

To convert directly from decimal to Gray, refer to Fig. 4 and proceed as follows:

1. Subtract the decimal number (n) from the power of two next greater than n .
2. Subtract successively the absolute value of the remainders from the descending powers of two.
3. Positive remainders are Gray 1, and negative remainders are Gray 0.A 0 remainder is Gray 1 if the parity (total number of bits) to that point is odd, and Gray 0 if parity to that point is even.
4. The Gray number is the converted bits after the first subtraction.

The reverse conversion, Gray to decimal, is shown in Fig. 5 and in the following rules:

1. Write powers of 2 above the Gray number, starting with 2 above the least significant bit (LSB).
2. Add an even parity bit to the Gray number. This bit is added below decimal 1 to the right of the LSB. A 1 is entered for the parity bit if the Gray number has an odd number of 1 s ; a 0 is entered if it has an even number of 1s. Thus, the resulting Gray number including the parity bit must have an even number of ones.
3. Place alternating plus and minus signs between the one bits.
4. Sum the series.

Another method is to assign the weight of $2^{\text {n+1 }}-1$ to each Gray bit position and then to place alternating plus and minus signs in front of each 1 bit. The sum of the series is the decimal equivalent of the Gray number.

Gray codes can count

In number sequencing, the straight binary approach suffers from the disadvantage of ambiguity during many transitions. ${ }^{7}$. One method of correcting this is to use a Gray-code counter. ${ }^{8,9}$

This can be shown for a 4 -bit counter, using J-K flip-flops and NAND gates.

First, a truth table is written showing the sequence to be counted. Next a Karnaugh map is drawn with each Gray state number shown in the square representing the particular combination of variables for that state (see Fig. 6a).

The Karnaugh read-out of the J input to the A flip-flop is shown in Fig. 6b. The numbered squares are the required states; \mathbf{X} indicates the optional states.

The input equations can be directy implemented; however, certain savings in hardware can be made by noting the following:
J-A is the EXCLUSIVE OR of B,C, and D; i.e., $\mathrm{B} \oplus \mathrm{C} \oplus \mathrm{D}$
$\mathrm{K}-\mathrm{A}$ is the inverse of J -A; i.e., $\mathrm{B} \oplus \mathrm{C} \oplus \mathrm{D}$
$\mathrm{K}-\mathrm{B}$ is A AND the exclusive OR of C and D ; i.e. $A(C \oplus D)$.

The counter is mechanized, using the simplifications, as shown in 7 a . Note that even with these simplifications the counter is quite complex. As the number of bits increases, the ratio of gates per flip-flop also increases. In this type of design the first flip-flop uses more gates than any other. This is in direct contrast to the straight binary counter.

Simplifications are possible

The Gray-to-decimal conversion (Fig. 5) seems to imply that a Gray counter could be considered similar to a binary counter if a dummy (parity) flip-flop is used prior to the counter proper. This is the trick for simplifying Gray counter design. A new truth table is written using an additional column for parity. Simplifications are made on the Karnaugh map and the input equations written as before.

Figure 7b shows the resulting counter, using J-K flip-flops and NAND gates. The counter consists of flip-flops A, B, C, and D. Flip-flop P (parity) is the dummy. Note that flip-flop D has redundant gating. This is necessary to bring the counter into synchronization if a disallowed state should occur.
The addition of one flip-flop reduces the number of NAND gates in the counter from 21 to 6 . The saving is even more pronounced for counters of greater length.

There is one additional feature of the Gray code that should be mentioned. With the exception of the most significant column, each column of the truth table is completely symmetrical. It is therefore possible to convert the basic Gray counter of Fig. 7b into an up down counter by merely selecting the output of flip-flop P. The circuit for accomplishing this is much simpler than in a straight binary counter. ${ }^{10}$

In the process of converting a Gray number to
a) Convert Gray 1011101 to decimal
$\left.\begin{array}{cccccccc}128 & 64 & 32 & 16 & 8 & 4 & 2 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1\end{array}\right)$ parity bit
1011101 Gray $=128-32+16-8+2-1=105$
This is equivalent to: $\left(2^{n+1}-1\right)-\left(2^{\mathrm{p}+1}-1\right)+\left(2^{r+1}-1\right)-\ldots$
or $2\left(2^{n}-2^{\mathrm{p}}+2^{r}-\ldots\right)$ for an even number of terms
or $2\left(2^{\mathrm{n}}-2^{\mathrm{p}}+2^{r}-\ldots\right)-1$ for an odd number of terms
Note that $\mathrm{n}, \mathrm{p}, \mathrm{r} \ldots$ are assigned only to 1 positions

b) or | 127 | 63 | 31 | 15 | 7 | 3 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 0 | 1 | 1 | 1 | 0 |

1011101 Gray $=127-31+15-7+1=105$
Thisinen $\quad i=n \quad i=r$
This is equivalent to: $\sum_{i=0} 2^{i}-\sum_{i=0}^{i} 2^{i}+\sum_{i=0}^{i}-\ldots \ldots$
Where $\mathrm{n}, \mathrm{p}, \mathrm{r} \ldots$ are assigned only to 1 positions and the furthest right bit is 2°
5. Gray-to-decimal conversion is based on powers of two. The parity bit is required to give the Gray number even parity. Alternate methods are given in (a) and (b).
decimal, some bits are added, others subtracted. with 0 bits ignored. This implies that the Gray code is in reality a disguised incomplete trinary code. The code is shown unambiguously in Fig. 8 with a parity bit added.

To decode a Gray number, it is necessary to differentiate between the negative and positive read-out of each 1 bit. A Gray counter with this characteristic is possible, using three states rather than two for each bit. Of course, a minimum of two flip-flops are necessary for three states.

From the table in Fig. 8, it can be seen that the number of 0 entries in each column is the same as the number of combined +1 and -1 entries. Thus, it is obvious that a four state counter with two states decoded as 0 should suffice.

In the actual design, a 2-bit Johnson partition is used. Other partitions are possible but the Johnson appears to be the most efficient. Figure 9 shows the counter with the decoded read-out and truth table.

The counter in Fig. 9 is quite remarkable because it counts in Gray and binary simultaneously. Also, it uses no gates at all. It gives direct parallel conversion between binary and Gray, and it can be used as a Gray to analog converter by applying conventional binary ladder techniques.

The Johnson partition used in this counter is based upon the Johnson or switch-tail counter.

6. This Gray-code Karnaugh map (a) is drawn from the Gray truth table in Fig. 1. A readout of J.A is derived from the Karnaugh map (b).

The Johnson counter is essentially a shift register with the outputs of the last flip-flop inverted and fed back to the first flip-flop. Each pair of flip-flops in Fig. 9 is connected in this fashion.

Gray code can figure

It is a little known fact that arithmetic operations ${ }^{11}$ can be performed in Gray code. The amount of hardware necessary to mechanize a Gray arithmetic unit is about three times greater than for binary. There are, however, several advantages in using Gray: It is not necessary to complement the subtrahend in subtracting operations; an automatic parity check is built into the code and can be used as is; and Gray-to-binary conversion is avoided when using encoder inputs.

In decoding a Gray-code number an understood, though not written, 2^{n} bit is always present, as previously decribed. This 2^{0} bit is chosen in order to give even parity to the total Gray number. In Gray arithmetic operations, this "understood" bit is always written and used.

The rules for Gray-code addition are as follows (Fig. 10):

1. Align the two numbers to be added, as in binary.
2. Starting at the right and working left one column at a time, group the 1 bits into pairs. The pairs may be grouped vertically, horizontally, or diagonally. If there is a choice of grouping, vertical takes precedence over diagonal.
3. Write 1 , one bit to the left of all vertical and diagonal pairs. These 1 s are the equivalent of the carry bits in binary arithmetic.
4. Sum all columns modulo 2 (i.e., for odd number of 1 s write 1 , for even number of 1 s write 0).
5. The modulo 2 sum of these bits will be the desired Gray code sum.

The rules for subtraction are essentially the same as for addition with one exception. Place an imaginary 1 to the left and to the right of the

7. Two versions of a 4-bit Gray code counter are compared. A brute force approach results in (a). When more finesse is used and one flip-flop is added, 21 gates are reduced to 6 (b).
minuend. These 1 s will be used for grouping pairs only and will not actually be utilized in the arithmetic (Fig. 10b).

To multiply a Gray number by a power of two (2^{n}), it is only necessary to add n zeros to the modified Gray number (including the 2° bit). For example, Gray number 13 is 10111 (including the 2° bit) ; to multiply Gray 13 by 2^{3} merely add three zeros, i.e., 10111000.

From the above, a procedure for Gray multiplication is possible. The rules are (Fig. 10c)
(1) Write the multiplicand (A) in modified form and multiply by the most significant 1 of the multiplier (B).

16	8	4	2	1	
0	C	B	A	p	0
0	0	0	0	0	1
0	0	0	1	-1	2
0	0	1	-1	0	3
0	0	1	0	-1	4
0	1	-1	0	0	5
0	1	-1	1	-1	6
0	1	0	-1	0	7
0	1	0	0	-1	8
1	-1	0	0	0	9
1	-1	0	1	-1	10
1	-1	1	-1	0	11
1	-1	1	0	-1	12
1	0	-1	0	0	13
1	0	-1	1	-1	14
1	0	0	-1	0	15
1	0	0	0	-1	
	0			0	
					0

8. Gray code can be considered to be a form of trinary. This truth table illustrates the relationship.

Y3	$\times 3$	Y2	$\times 2$	YI	XI	P
0	0	0	0	0	0	0
0	0	0	0	0	1	1
0	0	0	1	1	1	0
0	0	0	1	1	0	1
0	1	1	1	0	0	0
0	1	1	1	0	1	1
0	1	1	0	1	1	0
0	1	1	0	1	0	1
1	1	0	0	0	0	0
1	1	0	0	0	,	1
1	1	0	1	1	1	0
1	1	0	1	1	0	1
1	0	1	1	0	0	0
1	0	1	1	0	1	1
1	0	,	0	1	1	0
1	0	1	0	1	0	1

(a)

9. The Johnson partition counter can decode Gray considered as trinary. The truth table is (a) and the circuit is (b).

10. Arithmetic operations can be carried out in Gray code. Addition is given in (a), subtraction in (b), and multiplication in (c).
(2) Subtract (A) multiplied by the second most significant 1 of (B).
(3) Continue alternately adding and subtracting (A) multiplied by the decreasing 1 orders of (B).

Gray code arithmetic can be used to convert decimal to Gray. Multiplication by 10 in Gray is difficult, but multiplication by 8 and then by 2 and adding the results is not. The technique for the conversion is to rewrite the decimal number as a sum of decimal digits multiplied by 8 and 2 and then to use Gray arithmetic to complete the conversion. For example, decimal 35 which is $3 \times 10+5$ becomes $3 \times 8+3 \times 2+5$ or $101000+1010$ +1111 in Gray. (Note that parity bits have been added.) Completing the addition gives 110010 as the equivalent of 35 .

References

1. Gilbert, E. N., "Gray Codes and Paths on the n-Cube," The Bell System Technical Journal, May, 1958, pp. 815-826.
2. Gray, F., "Pulse Code Communications," U.S. Patent 2,632,058, March 17, 1953.
3. Foss, F. A., "The Use of a Reflected Code in Digital Control Systems, IRE Transactions on Electronic Computers, Vol. EC-3, No. 4, Dec., 1954, pp. 1-6.
4. Wang, Michael, C., "An Algorithm for Gray to Binary Conversion," IEEE Transaction on Electrovic Computers, Vol. EC-15, No. 4, Aug., 1966, pp. 659-660.
5. Flores, Ivan, "Reflected Number Systems," IRE Transactions on Electronic Computers, Vol. EC-5, No. 2, June, 1956, pp. 79-82.
6. Atkins, Eugene J.; DeMong, Maurice; and Hartman, Sigmund, "A New Method for Number System Conversion," Computer Design, April, 1967.
7. Walker, M., "Binary Bits," EDN, Nov. 22, 1967, pp. 50-51.
8. Fishmann, A. F., "A Gray Code Counter," IRE Transactions on Electronic Computers, June, 1968, p. 120. 9. Cohn, M., and Evens, S., "A Gray Code Counter," IEEE Transactions on Computers, Vol. C-18, No. 7, July, 1969, pp. 662-664.
9. Walker, M., "Carry Out Your Up-Down Counter Designs," Electronic Design, June 6, 1968, pp. 74-78.
10. Lucal, H. M., "Arithmetic Operations for Digital Computers Using a Modified Reflected Binary Code," 1 RE Transactions on Electronic Computers, December, 1959, pp. 449-458.

Test your retention

Here are questions based on the main points of this article. Their purpose is to help you make sure you have not overlooked any important ideas. You'll find the answers in the article.

1. What is the basic advantage of the Gray code over binary?
2. In what kind of equipment is one likely to encounter the Gray code?
3. What is the disadvantage of carrying out arithmetic operations in Gray code?
4. What number system is suggested by Gray code?

New-from the industry leader in Solid-State Power:

TA7625

 HybridRESISTANCE VALUES IN OHMS, CAPAGITANCE VALUES IN MICROFARADS-- UNLESS OTHERWISE SPECIFIED

Schematic diagram of unenkapsulated TA7e25

From the latest advances in power hybrid technology, RCA introduces the TA7625 7A linear amplifier-a complete, all-silicon power module for industrial, military and commercial applications.

The solid-state TA7625 is ruggedly packaged...so small it fits in the palm of your hand. It will offer you new opportunities in design - new economies in systems production. As for design features:

- 7 amperes of peak load current capability
- single or split power supply (30-75 volts)
- load line limiting
- $>60 \mathrm{~dB}$ power gain
- provision for external feedback control
The RCA developmental TA7625 is now available for your engineering evaluation. Its potential uses are numerous and challenging:
- servo-motor driver (AC, DC, or pulse-width modulated)
- positive and negative output power supply
- self-excited and driver inverter
- linear amplifier
- power Op Amp
- bridge amplifier
- audio power amplifier

For more information on RCA Hybrid Power Circuits, see your local RCA Representative. For technical data, write RCA Electronic Components, Commercial Engineering, Section I-G2 /UC1, Harrison, N. J. 07029. In Europe: RCA International Marketing S.A., 2-4 rue du Lièvre, 1227 Geneva, Switzerland. information retrieval number 40

For Sales/EE interface: Sell - don't tell. When designers and salesmen battle each other, they stand to lose not only the war but the customer as well.

The telephone rings in an engineering department and this dialogue follows:
Salesman: This is Collins. Why didn't you return my call?
Engineer: Sorry, we got busy.
Salesman: I'm busy, too, trying to sell your damned product design to a hard-nosed customer!
Engineer: Okay, okay! What do you need this time?
Salesman: I still need what I asked you for two months ago-that product proposal.
Engineer: (Grimaces.) We haven't started on it yet.
Salesman: What! My customer is expecting your write-up on the special self-calibration featureand you haven't even finished the proposal?
Engineer: You'll get it as soon as you give us the details on the application you promised us seven weeks ago.
Salesman: I got busy, too. Why didn't you remind me?
And so the conversation goes until the salesman or the engineer says something he's sorry for, or hangs up, which leaves the customer hung up as well.

In this particular case, the salesman was at fault. The factory was waiting for the details he promised, and he should have followed up on them. But there's another twist: had he sold the importance of time to his proposal, his support man might have reminded him that he was awaiting details.

Why is there friction between salesmen and engineers? What are the basic antagonisms between them, and what's behind them? Salesmen and factory support men alike complain about being let down, misled, or just plain lied to.

Factory troops claim that the salesmen know nothing about the products they're trying to sell and even less about how they'll be used. They say also that salesmen call in with impossible questions, demand solutions yesterday, and won't take "no" for an answer.

Frank J. Burge, Marketing Consultant, Ness Consultants Division, Ness Industries, Inc.

Salesmen, in turn, complain that the factory isn't giving them any support, because they're late on delivery, and they never return a call. Sales types also complain that designers talk like computers instead of people, emphasizing specifications instead of interpreting their meaning to the customer.

Although there's an element of truth in both sides of the story, both protagonists are to blame for the friction between them. On each side, the conflict arises out of a basic misunderstanding that results from a breakdown in communications.

For example: Perhaps the salesman hasn't asked the factory the right question. (There's a big difference between "When does that order get out of production?" and "When will it be shipped?" The real question is, "When will my customer have it?") Or the factory hasn't given the salesman useful information. Technical specifications may not communicate much to anyone outside the design team.

Getting to know your counterpart

One of the keys that will help to open a door to more effective communications is understanding the function of your counterpart. What are the needs of the salesman, and of the engineer? Let's examine the sales function first.
The salesman is much more than an order taker. Not only is he responsible for developing relationships with potential customers so that they will want to own his company's products, but he is also responsible for explaining new products or possible customization that may solve the customer's needs. To do this, he must have a thorough knowledge of the product and how its features relate to the specific application.
To help him carry out this function he needs cooperation-proposals, sales-promotion material and engineering support from the factory. In short, he must be able to do more than recite specifications if he is to gain the confidence of his customers.

If he's done his product homework he won't be guilty of bugging the factory with a lot of ir-

relevant questions. For he must convince the factory that his needs are important. If he treats every problem as a crisis, his inside contact will soon learn to ignore him.
Another function of the salesman is to provide the factory with feedback on product acceptance, changing needs, new product requirements, new markets, and the like. All too often, this function is overlooked, despite the fact that the salesman is in a much better position to supply these inputs than anyone else. He is out in the field, in constant contact with the customer. His observations are vital if the factory is to supply products that coincide with market demand.

The factory engineer, for his part. must be responsive to market needs in terms of product development, and the factory must provide the salesman with adequate product education in terms of customer benefits. The product must be explained to the salesman not in terms of technical specifications, but of what benefits it will bring to the customer's application.
The factory must also provide technical support so that the salesman can respond directly to customer needs. If the salesman has been adequately trained, he will not be asking for proposals that aren't needed.

Stringing the guidelines

Now that you have a better idea of what your opposite number is responsible for, you should have greater insight into his needs during your next conversation.

Four elementary guidelines in communications will also help to improve understanding. They are: listening; summarization; examination; and commitment.

Since most factory-sales communications come in from the field, we'll take the receiving end, the engineering end, for our analysis. But remember that communication is a two-way street, and the following guidelines apply equally to both parties.

- When the salesman calls make sure you listen to him, even though you think he's making an unreasonable request. If you listen carefully enough, you may find his request is not so unreasonable after all, because the idea behind it may be sound. Establish, by example, with each salesman that you are a good listener. He, in turn, will listen more carefully to what you have to say. All too often, we begin to plan our reply even before the other person has finished talking. The only way you'll ever learn what he wants to communicate is with your mouth shut and your mind focused on what he is saying. If the salesman is "windy," let him talk. Later, you can develop a strategy for making him get to the point.
- Then in your own words, summarize what
you think you heard. The time to clear up any misunderstanding is while he is still on the phone. If you have misunderstood ask that the data be repeated and listen more attentively. Then, repeat again what you understand has been said. It is the author's belief that at least half of all communications problems between the factory and the field are a direct result of misunderstanding what was communicated.
- Now that you know the problem, examine why the customer wants a certain application. During this phase of the communications, you may learn the cause for what seemed like an unreasonable request from the salesman. You may find that what has been requested will not solve the customer's problem. The salesman may have suggested some options that are really not required, or you may find certain important measurements cannot be made unless the product is modified. Since the factory technical troops usually know much more about the product than the salesman, they are in the best position to evaluate and make suggestions on hardware configurations. On the other hand, the salesman is more familiar with his customer's needs. In any case, examine the application carefully.

A word of caution: The salesman may go on the defensive when questioned about the customer's application. If he does, it's because he doesn't know all the answers and feels threatened. Don't pin the poor devil to the wall. Simply explain what data you need and why. He will then realize that you are trying to help him close the sale, and will be more cooperative in finding out what you want to know.

Finally, make certain you both understand what investment the customer is prepared to make. A customer with $\$ 18,000$ cannot afford a $\$ 60,000$ solution to his problem, even if it is creative.

- Now, make a commitment to the salesmanone you can keep. You know how long it will take to get an answer, and how much time is required to write a proposal. Don't be pressured into making unrealistic promises. Normally, the salesman will allow some margin for slippage, but if you always let him down, he'll start demanding immediate answers even when he doesn't need them for a month. He wants to protect his relationship with his customer.

Sell it—don't tell it!

The important thing to remember is to sell the other person on what you're saying instead of just giving orders. The constant frictions generated by broken promises, delayed reports, and misinformation could, more often than not, be replaced by impressive results of cooperation based on selling instead of telling. - "

TRW

... higher power for telemetry, ECM, NAVAIDS, Radar

TRW has added still another member to its Gigahertz family. PT8610 provides 10 watts output power at 2 GHz , with 7 dB gain and 15% bandwidth. It is a singlechip device in a new low parasitic MIC package.

The broadband capability of the device provides circuit design simplicity and insures repeatable system-to-system per-
formance with a minimum of circuit tuning elements.

Designed for use in commonbase circuits, PT8610 can be cascaded with other TRW broadband devices to extend reliable solid state power at 2 GHz . Companion transistors are the 5 watt 2N5768, 2.5 watt 2N5767 and the 1 Watt 2 N5766.

For further information contact
any TRW distributor or TRW Semiconductor Division, 14520 Aviation Boulevard, Lawndale, California 90260. Phone (213) 679-4561. TWX: 910-325-6206

Actual Size

TRW.

Improved sawtooth generator has grounded reference point

Problems associated with sawtooth generators using operational amplifiers stem from difficulties with resetting. An improved circuit eliminates this problem through the use of a ground-referenced capacitor yet allows high linearity of the classical integrator.

The classical integrator configuration is shown in Fig. 1. The approach has the disadvantage that the discharge switch, S_{1}, is difficult to implement since the capacitor is floating between input and output of the amplifier. Switching in this configuration may reduce linearity and make it quite difficult electrically to change the capacitor if a new frequency range should be desired.

These difficulties are avoided by the design in Fig. 2, which has a ground-referenced capacitor and reset switch. This circuit can be reset by standard 5-V IC logic.

If the circuit has been reset with a pulse long enough to completely discharge the capacitor, V_{c} will be zero. The reference voltage E (0 to -3 V) produces an output voltage, $-\mathrm{R}_{2} / \mathrm{R}_{3} \mathrm{E}$, which divides across resistors R_{1}, R_{4}, and R_{5} and causes the capacitor to charge. The charging would be asymptotic except that V_{c} adds to the output with a gain of 2 and is fed back by a 0.5 voltage divider with R_{5} properly adjusted. This causes the capacitor to charge linearly. In effect, the drop from the capacitor to the output is fixed, and this holds the charging current constant between reset pulses.

$$
\mathrm{E}_{\mathrm{o}}(\mathrm{~s})=\frac{\mathrm{R}_{2}+\mathrm{R}_{3}}{\mathrm{R}_{3}} V_{\mathrm{c}}(\mathrm{~s})-\frac{\mathrm{R}_{2}}{\mathrm{R}_{3}} \frac{\mathrm{E}}{\mathrm{~S}} \text {, neglecting R6 }
$$

where $\mathrm{V}_{\mathrm{c}}(\mathrm{s})=\frac{\mathrm{R}^{\prime} \mathrm{E}_{\mathrm{o}}(\mathrm{s})}{\mathrm{R}_{1}^{\prime} \mathrm{R}_{4}^{\prime} \mathrm{CS}+\mathrm{R}_{1}^{\prime}+\mathrm{R}_{4}^{\prime},}$

$$
\mathrm{R}_{1}^{\prime}=\mathrm{R}_{1}+a \mathrm{R}_{5}, \mathrm{R}_{4}^{\prime}=\mathrm{R}_{4}+(1-\mathrm{a}) \mathrm{R}_{5}
$$

If $R_{1}^{\prime} R_{3}-R_{2} R^{\prime}{ }_{4}=0$ or $R_{1} / R_{4}^{\prime}=R_{2} / R_{3}$

$$
\begin{gathered}
E_{o}(s)=\frac{-R_{2} E}{R_{3} S}-\frac{R_{2}\left(R_{1}^{\prime}+R^{\prime}{ }_{4}\right) E}{R_{1}^{\prime} R_{3} R_{4}^{\prime} C S^{2}} \\
E_{o}(t)=\frac{-R_{2} E}{R_{3}}-\frac{R_{2}\left(R_{1}^{\prime}+R_{4}^{\prime}\right)(E) t}{R_{1}^{\prime} R_{3} R_{4}^{\prime} C}, 0<t<T
\end{gathered}
$$

Thus if R_{5}^{5} is adjusted to give $R_{1}^{\prime} / R_{4}^{\prime}=R_{2} / R_{3}$, a

1. Classical integrator has capacitor that floats between input and output.

2. Improved sawtooth generator has capacitor that is referenced to ground potential.

FROM THE

Krohn-Hite pioneered the development of reliable, variable electronic filters. These filters can offer a variety of functions such as low pass, band pass, high pass and band reject in a single instrument. They also provide complete flexibility of adjustment for both high and low cutoff frequencies over a frequency range of six decades. Since both cutoff frequencies can be independently varied over wide limits, the center of the pass band or rejection band can also be placed at any desired frequency.

Since Krohn-Hite filters are active, they provide an overall gain of unity (no insertion loss). They offer very high input impedance, require no appreciable signal power and are

THE FInEST In VARIABLE Electronic FILTERS

New multifunction Tunable Filter, Model 3750.
not sensitive to the value of source impedance. Their low output impedance makes the frequency response independent of the load impedance. Lowering the load impedance merely reduces the maximum output voltage obtainable, due to maximum current limitation of the output stage.

Every Krohn-Hite filter provides a choice of Butterworth or Low Q
(transient free) transfer characteristic. These filters represent the optimum
practical approach to ideal filter characteristics, combined with versatility to give unsurpassed performance.

Yes, Krohn-Hite, innovators in filter design for over twenty years, is making waves again!

The table below lists all of the important features of the complete Krohn-Hite variable electronic filter line.

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Frequency |
| Range |

BP - Band Pass BR - Band Reject HP - High Pass LP - Low Pass "Add suffix "R" for Rack mounting

For complete details, write: The Wavemakers: Krohn-Hite Corporation, 580 Massachusetts Avenue, Cambridge, Mass. 02139 U.S.A.
perfect linear ramp is generated. If $\mathrm{R}^{\prime} / \mathrm{R}_{4}{ }_{4}<\mathrm{R}_{2} / \mathrm{R}_{3}$ or $R_{1} / R_{4}>R_{2} / R_{3}$ a negative or positive exponential is generated respectively. Adjusting R_{6} or E controls the output amplitude.

If the feedback is greater than 1 , the capacitor voltage V_{r} adds increasingly to the charging rate, and the output takes off with a positive exponential. When the feedback is less than $1, \mathrm{~V}_{\mathrm{c}}$ adds decreasingly to the charging rate, and the output is a negative exponential.

Changing the polarity of E changes the polarity of the ramp, but with the circuit shown only a $-1-\mathrm{V}$ peak-to-peak ramp can be generated. The positive ramp amplitude is limited only by the operational amplifier signal swing. If a more negative ramp is desired it is only necessary to keep the transistor base at +3 V in the ON state and negative with respect to the ramp in the OFF state. Note that if the unity feedback condition exists, the amplifier theoretically exhibits an infinite input impedance.

The actual generator output is a dc level summed with the sawtooth. Frequency response of the amplifier limits the high-frequency output to 100 kHz , but a good sawtooth can be taken directly from the capacitor up to several megahertz. A larger capacitor will reduce the low frequency limit, but a longer reset pulse is then required to completely discharge the capacitor. It is suggested that the transistor be connected directly across the capacitor with a single common ground wire to reduce ground transients during the discharge cycle. Although the circuit requires the setting of a potentiometer, the ground-referenced capacitor more than compensates for this disadvantage. All parts used are standard 5% components, and the uA709 was operated with zero dB compensation from ± 15-V supplies.
Robin J. Larson and Gerald A. Dunn, Design Engineers, Department of Defense, Laurel, Md.

Vote for 311

Wiring modification improves voltage variable delay circuit

Triggering of an emitter-coupled monostable multivibrator with voltage-variable output pulse duration can be made more reliable by a simple change in the triggering circuit.

In the figure, C_{1} and R_{d} comprise a differentiating circuit that shapes the triggering pulses. In the absence of triggering pulses Q_{1} is OFF and Q_{2} is saturated. When a positive pulse of sufficiently large amplitude is applied to the base of Q_{1} the circuit goes into a quasi-stable state in which Q_{1} is active and Q_{2} is $O F F$. The duration of this quasi-stable state, designated T , varies linearly with the bias voltage V. Diode D prevents the negative pulses from prematurely terminating the output pulses by turning Q, OFF.

When R_{c} is returned to ground in the conventional manner, the average level of V_{c} is zero volts. The peak value of the triggering pulse appearing at the base of Q_{1} is:
$\mathrm{V}_{\mathrm{p} 1}=\mathrm{V}+\left(\mathrm{V}_{\mathrm{t}}-\mathrm{V}_{\mathrm{d}}-\mathrm{V}\right)\left[\mathrm{R}_{\mathrm{b}} /\left(\mathrm{R}_{\mathrm{b}}+\mathrm{R}_{\mathrm{t}}\right)\right]$ where
$\mathrm{V}_{\mathrm{t}}=\left[\mathrm{R}_{\mathrm{t}} /\left(\mathrm{R}_{\mathrm{t}}+\mathrm{R}_{\mathrm{s}}\right)\right] \mathrm{V}_{\mathrm{s}}$
$R_{t}=R_{s} R_{t} /\left(R_{s}+R_{d}\right)$
$\mathrm{V}_{\mathrm{d}}=$ forward voltage drop of the diode.
The triggering circuit may be improved by returning R_{d} to V as shown. Now the average level of V_{c} is V . The peak value of the triggering pulse appearing at the base of Q_{1} is now:

$$
\mathrm{V}_{\mathrm{p} 2}=\mathrm{V}+\left(\mathrm{V}_{\mathrm{t}}-\mathrm{V}_{\mathrm{d}}\right)\left[\mathrm{R}_{\mathrm{b}} /\left(\mathrm{R}_{\mathrm{b}}+\mathrm{R}_{\mathrm{t}}\right)\right]
$$

Improved voltage-variable-delay circuit uses no additional components and requires no change in any circuit values.

Note that:
 $\mathrm{V}_{\mathrm{p} 2}=\mathrm{V}_{\mathrm{p} 1}+\mathrm{V}\left[\mathrm{R}_{\mathrm{b}} /\left(\mathrm{R}_{\mathrm{b}}+\mathrm{R}_{\mathrm{t}}\right)\right]$

This assumes that C_{1} is sufficiently large so that the attenuating effect of C_{s} (stray capacitance) is negligible.

The modified circuit provides a larger triggering pulse at the base of Q_{1} with no change in the total number or value of components. This results in more reliable triggering by providing a margin of safety against variations in either the

Solid state displays

The MAN 1 is a seven-segment light-emitting all-semiconductor alpha-numeric readout.
Put the attention-demanding red light from electrically excited GaAsP to work in your digital displays for industry, computer peripherals, or avionic/marine instrumentation. Our MAN 1 is shock-resistant and long-lived. Offers styling advantages because it's flat, parallax-free and visible within 150°. Reads out all numbers plus A, C, E, F, H, J, O, P and U. Available now. Any quantity.

Brightness: 200 ft -lamberts @ $\mathrm{I}_{\mathrm{f}}=20 \mathrm{ma}, 3.4 \mathrm{~V}$, per segment Compatibility: directly interfaces with off-the-shelf IC decoder/drivers

12 mW @1A IR emitters

New high power low cost 9000 A GaAsLITEs give you extra mW for your \$.
Design these powerful infrared sources into your next card or tape readers, intrusion alarms, or calibration units. Anything that uses silicon detectors wants our ME 2 and ME 5 GaAs infrared emitters. They give you a $2500-\mathrm{mil}^{2}$ emitting area with either lambertian (ME 2) or collimated (ME 5) radiation patterns. Guaranteed minimum output: 10 milliwatts at 1 amp . (Less expensive ME 2A and 5A versions radiate 7.5 mW .)
Peak forward current: ($1 \mu \mathrm{~s}$ pulse width, 300 pps) 25 amps
Forward voltage: 1.3 V typ $\left(I_{f}=1.0 \mathrm{~A}\right)$
Rise time: 10 nanoseconds
Prices: ME 2, 5: 1-9, \$30; 1,000, \$12.50
ME 2A, 5A: $1-9, \$ 14.75 ; 1,000, \$ 8.00$

The superfast detector
Our 500-picosecond silicon PIN photodiodes, MD 1 and MD 2, complement our light-emitting diodes.
High speed optical switching has all kinds of sexy uses today: Laser detecting, for instance, and optical encoding. Even simple burglar alarms can use it.
Their half-a-nanosecond response cycle makes them perfect mates for Monsanto GaAsLITEs. And they work with other sources, too. Packaged in standard transistor cans, they're easy to handle and mount. Available with either flat lens or built-in optics.
Rise time: . 5 nanoseconds ($\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=50 \Omega$)
Breakdown voltage: $50 \mathrm{~V}\left(\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}\right)$
Sensitivity: MD $1 \quad 1.5 \mu \mathrm{~A} / \mathrm{mW} / \mathrm{cm}^{2}(\mathrm{~min})(.9$ microns, $\mathrm{V}_{\mathrm{R}}=20$ volts)
MD $23.0 \mu \mathrm{~A} / \mathrm{mW} \mathrm{cm}^{2}(\mathrm{~min})(.9$ microns, $\mathrm{V}_{\mathrm{R}}=20$ volts)
Price: 1-9, $\$ 6.25$: $1,000, \$ 3.40$

GaĀsLITE Update

voltage of the triggering source or the triggering level of the multivibrator.

The multivibrator shown can be reliably triggered with values of V_{5} greater than or equal to 3.9 volts for all values of V between 1.10 and 1.80 volts. As V is varied over this range, the
output pulse duration varies from 1.10 to 8.35 ms . The recovery time of the circuit is approximately 1.7 ms .
A. J. Duelm, Research Engineer, Southwest Research Institute, San Antonio, Tex.

Vote for 312

Find the absolute value of bipolar pulses

Many applications require that bipolar pulses be counted, without regard to their polarity. A circuit that modifies such pulses so that their absolute number can be determined is shown in the illustration.

If the input signal is positive, D_{1} conducts. D_{2} is reverse-biased, and the input current path is

shown in (b). Q_{1} and Q_{2} also conduct, biasing Q_{3}. This makes the output of Q_{3} positive.

If the input signal is negative, D_{2} conducts, D_{1} is reverse biased, and the input current path is that of (c). Q_{1} and Q_{2} conduct in the same way as when the input signal is positive, again biasing Q_{3}. The output of Q_{3} is thus again positive.
R. L. Billon, Tech. Manager, ALP UNION TECHNIQUE, Grenoble, France.

Vote for 313

Bipolar signal is converted to its absolute value with only three transistors (a). Current flow through Q_{1} and Q_{2} is the same for both positive (b) and negative (c) inputs.

Use an audible alarm to indicate a blown fuse

Much time is often wasted before a blown fuse is detected and replaced. This is particularly true in prototype debugging, since the engineer may feel that his unproved design, rather than an accidentally blown fuse, is causing the problem. In unattended equipment such as component lifetest racks and process-control systems, a positive means of quickly alterting personnel to a blown fuse would be of great value. Fuse holders with neon indicators, though useful, do not adequately
satisfy this need, since their signal may not be observed when it would be of greatest value.

An audible alarm wired across all system fuses, as shown in the figure, will be activated whenever a fuse blows. The alarm can be one of the small panel-mounting piezoelectric units now available through electronic distributors, or an inexpensive doorbell buzzer. Diodes are required for isolation when more than one fuse is being monitored, but they also permit the use of alarms
silicon semiconductor chips made specifically for use in hybrid microcircuits . . . available from Centralab Semiconductor ...designed and fabricated to be compatible with all thick and thin film hybrids . . . to bond to all types of substrates without problems. We're the chip house. Our hybrid applications engineering group is available to help you with tough problems. Their services are free. And at nominal cost we can supply you with a zener chip sampling kit made for designers' use.
Contact us for information on chips, the zener chip sampler kit or for engineering assistance.
silicon chips in zeners, temperature-compensated zeners, scr's, rectifiers, core drivers, general purpose diodes and tunnel diodes.
that require dc for proper operation.
Fuse holders having built-in neon indicators can be used in this circuit, to show which fuse needs replacement.

Thomas E. Skiopal, Design Engineer, Acopian Corp., Easton, Pa.

Vote for 314

VOTE! Go through all Idea-for-Design entries, select the best, and circle the appropriate number on the Reader-Service-Card.

SEND US YOUR IDEAS FOR DESIGN. You may win a grand total of $\$ 1050$ (cash)! Here's how. Submit your IFD describing a new or important circuit or design technique, the clever use of a new component or test equipment, packaging tips, cost-saving ideas to our Ideas-for-Design editor. You will receive $\$ 20$ for each accepted idea, $\$ 30$ more if it is voted best-of-issue by our readers. The best-of-issue winners become eligible for the Idea Of the Year award of $\$ 1000$.

Audible fuse alarm system indicates an open circuit and alerts repair personnel.

Linear temperature sensor uses only a single transistor

Variation in the base-emitter voltage of a transistor can be used to sense temperature and, through transistor action, provide a high level output. Linearity is approximately $\pm 1 \%$ over a temperature range of $-40 \%^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
The transistor biased as a dc amplifier is shown in Fig. 1. A high beta silicon transistor (2 N 2222) is used with a low-resistance base bias

1. Transistor temperature sensor uses transistor with collector connected to case for fast response.
network. The 2N2222 was chosen because it has a low thermal resistance from junction to case. The case is connected to the collector, thus providing fast response to temperature change.

Output scale factor is controlled by the ratio

2. Temperature calibration curve is within $\pm 1 \%$ between $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

The best gets better.
The HP 5248 General-Purpose Counter can now measure to 3 GHz with a single plug-in - without any gaps. This is made possible by our new 150 MHz to 3 GHz Heterodyne Converter, Model 5254C, and by extending the direct counting range of the 5248 counter mainframe to 150 MHz .

There's another benefit unique to these instruments that's not immediately apparent. Converter and counter ranges actually overlap so you derive the final answer by merely adding the converter dial reading and counter reading. There's no need to remember to subtract readings over any part of the frequency range.

Even before the latest improvements, no other counter could match the
usefulness and flexibility of the 5245
Series. We now offer fourteen different plug-ins to help you make all the measurements you need. These include six frequency converters; transfer oscillator to 18 GHz ; two time interval units; two prescalers; video amplifier; DVM; and preset unit.

And you can't beat the 5245 line for reliability either. Its remarkable dependability has made it extremely popular, particularly with rental firms-some of our best customers. When their clients rent an HP counter, rental firms know they won't lose rental fees because of downtime.

The price of the new 5254C Heterodyne Converter is $\$ 825$. The

5248 L counter is $\$ 2900$. You won't find a more economical single-package solution to your dc to 3 GHz counter needs. Your local HP field office has all the details. Give them a call. Or write to Hewlett-Packard, Palo Alto, California 94304; Europe: 1217 Meyrin-Geneva, Switzerland.

ELECTRONIC COUNTERS

There's a new reason why this continues to be the world's most popular counter line.

of emitter to collector resistor. Bias point is controlled by the bias-set potentiomenter. The output scale factor is very constant from transistor to transistor ; however, the bias point varies considerably between transistors. For this reason, the bias-set potentiometer must be adjusted for each unit at a standard temperature.

Fig. 2 shows the calibration curve.
James M. Loe, Engineer Specialist, PhilcoFord Corp., Blue Bell, Pa.

Vote for 315

Varacator diode is the key to a simple frequency divider

In a parametric amplifier the pump frequency is twice the frequency of the signal to be amplified. Increasing the gain of the amplifier will eventually turn it into an oscillator producing an output signal exactly half the frequency of the pump frequency. This effect can be exploited to create a frequency divider.

As shown in the figure, $L_{1} C_{1}$ resonates at 150 MHz and is coupled to $\mathrm{L}_{2} \mathrm{C}_{2}$, which resonates at 75 MHz due to varactor BA111. In this circuit the divider operates over a 4% bandwidth. Using a high Q inductor for L increases the bandwidth. The output level is relatively insensitive to input level changes up to 10 dB .

This circuit costs a tenth the price of an IC designed to operate at these frequencies. This same technique can be extended to higher frequencies.
M. Stevens, D. Steward, Design Engineers, Cossor Electronics Ltd., Harlow, Essex, England.

Vote for 316

Varactor diode provides low cost frequency division.

Go/no go circuit gives visual indication of RTL logic level

Trouble shooting a board containing many digital ICs is tedious when using a scope and probe. A go no go visual indication greatly reduces the effort involved.

The simple probe shown in the figure lights up when a pulse or dc level above 0.7 V is found, and minimizes eye and head movements. The input impedance is high enough to protect most digital circuits from loading.

Level detector Q_{1} has the same threshold (0.7 V) as RTL logic. If this level is exceeded, Q_{1} turns on, triggering a 1 -ms monostable multivibrator (Q_{2} and Q_{3}). This turns on the lamp (L) momentarily. Steady inputs above 0.7 V hold L on.

This circuit is easily packaged in a $3 / 8$-inchdiameter plastic tube with the probe tip epoxied at one end. A light emitting diode (example: HP 5082-4400) coupled with a 470Ω series resistor may be substituted for the lamp if faster response is desired.
J. M. Firth, Design Engineer, National Research Council of Canada, Ottawa, Canada.

Vote for 317

Level detector triggers monostable multivribrator to give visual indication of logic level.

Make tables with a time-shared computer

Every engineer has his own table requirements, and most engineers have access to time-shared computers, but how many engineers think of using these computers to make tables for their own special needs?

Here are a few examples that illustrate how

There isn't another like it. A $1 / 4$-inch, single-pole, six position, 28 -vdc. Helipot switch for PC boards.

Beckman ${ }^{*}$ INSTRUMENTS, INC.
HELIPOT DIVISION
Fullerton, California 92634
INTERNATIONAL SUBSIDIARIES: AMSTERDAM; CAPE TOWN: GENEVA; GLENROTHES, SCOTLAND; LONDON: MEXICO CITY MUNICH: PARIS: STOCKHOLM; TOKYO; VIENNA

(1)

1. Routine generates a chart showing the relationship between dB of reference noise (DBRN), voltage across 600 ohms, and dBms. The program is listed in (a). The chart is divided into two parts that are printed out side by side (b). The first column entries go to DBRN $=45$, and the second to 91 . Only the first five entries in each column are shown here.
```
RTRF
100 PRINT "THIS TABLE IS BASED ON PURELY RESISTIVE IMPEDANCES."
1 1 0 ~ P R I N T
128 PRINT
139 PRINT" Z(1):Z(2) RETURN LOSS REFLECTION LOSS"
158: ***.*aDB ****:1 ****MDB
168 FOR L=1.25 TO 5 STEP . }2
170 GOSUB 248
180 NEXT L
190 FOR M=6 TO 30
20日 LET L=M
210 GOSLB 248
228 NEXT M
230 STOP
248 LET A=L+1
259 LET B=A^2
268 LET C OL-1
278 LET D=4*L
280 LET E=20\circ}((\operatorname{LOG}(A/C))/LOG(10)) 
290 LET F=18\bullet((LOG(B/D))/LOG(10))
30日 PRINT USING 150.L:E:F
318 RETURN
320 END
(1)
RTRF 7:59 S2 FRI 08/29/69
```

THIS TABLE IS BASED ON PURELY RESISTIVE IMPEDANCES.

2(1):2(2)	RETURN LOSS	reflection loss
1.25:1	19.880b	. 0 5DB
1.58:1	13.9808	.1808
1.75:1	11.2908	. 3408
2.88:1	9.54 DB	.5108
2.25:1	8. 3008	. 7808
	(b)	

2. Return reflection loss (RTRF) is programmed in (a) and tabulated in (b). The table is set up for impedance ratios to $30: 1$. Only the first five entries are listed. Lines 160 and 190 of the program make the spacing between impedance ratios 0.25 from 1.25 to 5.00 and 1.00 from 5.00 to 30.00 .
easy it is to make tables that are useful in telephone transmission. The programs are in BASIC and employ a useful addition to the languageimage statements. These are offered in one form or another by most time-sharing services.

The tables are arranged to have a slightly wider than usual left-hand margin so that nothing will be hidden by binding. The equations are available from many sources. Bell System Engineering Practices or ITT's "Reference Data For Radio Engineers" are two examples.

Bill E. Johnson, Design Engineer, Pacific N.W. Bell Telephone Co., Portland, Ore.

VOTE FOR 318

Two-transistor circuit blocks wrong voltage polarity/level

Many circuits can be destroyed if improper voltage or polarity is applied. A simple yet effective technique, using only two transistors, avoids this possibility.

The circuit shown in the figure prevents circuit burnout caused by the accidental application of incorrect supply voltage or polarity. This is accomplished without shorting the supply as in SCR and and zener protectors. Under normal supply voltage, Q_{1} is ON and $\mathrm{Q}_{\text {: }}$ is OFF provided that:

$$
\begin{aligned}
& \mathrm{R}_{1} \leq \beta_{1}\left[\mathrm{~V}-\left(\mathrm{V}_{\mathrm{D}}+\mathrm{V}_{\mathrm{BE} 1}\right)\right] / \mathrm{I}_{\mathrm{L}(\text { max })} \\
& \mathrm{I} \geqslant \mathrm{I}_{\mathrm{L}(\text { max }} / \beta_{1} \beta_{2} \\
& \mathrm{R}_{3} \leq \mathrm{V}_{\mathrm{BE} 2} / \mathrm{I} \\
& \mathrm{R}_{2}=\left(\mathrm{V}-\mathrm{V}_{\mathrm{D}}\right) / \mathrm{I}-\mathrm{R}_{3}
\end{aligned}
$$

In case the supply voltage exceeds V , Q : turns ON, diverting the base current I_{1}, to ground thus turning $Q_{1} \mathrm{OFF}$. In the case of wrong polarity, Q_{1} never turns on due to the absence of base current I_{l}, which is blocked by diode D.

Arthur W. Vemis, Development Engineer, Aerospace Research inc., Brighton, Mass.

Vote for 319

Voltage watchdog prevents wrong level or polarity from being applied to load.

For multilayer or precision double sided boards with plated-thru holes, - in volume-the place to go is Cinch-Graphik - the world's largest independent producer of precision circuits.

For information on the capabilities and automated facilities of Cinch-Graphik, contact your local Cinch Electronics Group District office or Cinch-Graphik, 200 South Turnbull Canyon Road, City of Industry, California, 91744.
Phone (213) 333-1201.

ADIVISIONOFTRWINC

July - December 1969

ELECTRONIC DESIGN semiannual index of articles
 The articles in the various sections of this index are grouped under key words that indicate their general topics. Articles are listed more than once if they have to do with more than one general topic.

Departments key

ART Technical Article
IFD Idea for Design
PF Product Feature
SR Special Report

Subject Listing

Avionics
Circuits \& Circuit Theory
Communications
Components
Computer-Aided Design
Computers \& Data Processing
Consumer Electronics
Displays
General Industry
Industrial Electronics
Management
Materials \& Packaging
Medical Electronics
Microelectronics
Microwaves \& Lasers
Military \& Aerospace
Product Source Directories
Semiconductors
Systems
Test \& Measuring

Avionics
Airline communications surge expected by ' 85

NEWS, ED 14, p. 22
Airlines demonstrate anti-collision system NEWS, ED 21, p. 21
Airlines moving to spot malfunctions in advance

NEWS, ED 15, p. 21
Anticollision device protects copter pilots NEWS, ED 15, p. 21
Area navigation: Relief for air traffic jams NEWS, ED 16, p. 38
Avionics for the private flier ready for takeoff. . NEWS, ED 15, p. 38
FAA takes steps to automate airways NEWS, ED 19, p. 21
Military scopes to show plane's height, identity.

NEWS, ED 23, p. 21
$\$ 1$ million for 747 Superjet elec. tronics NEWS, ED 15, p. 28
S.3A to get totally integrated avionics NEWS, ED 19, p. 38
Solid-state alarm to speak its warning NEWS, ED 16, p. 22
Town goes it alone-equips own airport NEWS, ED 20, p. 21
Why doesn't radar prevent midair collisions? . . NEWS, ED 22, p. 25

Circuits \& Circuit Theory

Accurate digital clock uses inexpen. sive IC gates

IFD, ED 17, p. 242
Active clamp circuit uses only two transistors . . . IFD, ED 24, p. 92
Agc controlled oscillator is extremely stable IFD, ED 15, p. 106
Amplify biological signals with ICs. ART, ED 17, p. 218
Analog-to-period converter can simplify telemetry systems

IFD, ED 17, p. 240
Analyze nonlinear control systems
ART, ED 19, p. 84
Block reverse gain in your transistor
amplifier... ART, ED 17, p. 205
Bridge amplifier compensates for strain-gauge variations

IFD, ED 14, p. 84
Build flip-flops with AOI gates
ART, ED 23, p. 72
Build stable current-feedback pairs
ART, ED 23, p. 66
Circuit and simple recorder make inexpensive digital test system

IFD, ED 15, p. 110
Circuit prevents single phasing of SCR-driven motors

IFD, ED 16, p. 118
Circuit keys twin-T oscillator without generating transients

IFD, ED 17, p. 246
Consider dual JFET input stages
ART, ED 21, p. 86
Convert Boolean algebra to arithmetic ART, ED 22, p. 82
Crystal-controlled oscillator operates from one mercury cell

IFD, ED 23, p. 109
Cut binary-to-BCD conversion costs
ART, ED 21, p. 104
Cut Butterworth filter phase distortion.

ART, ED 24, p. 74
Darlington inverter features turn-off drive and low $\mathrm{V}_{\text {(E:mat }}$

IFD, ED 14, p. 86
Design digital converters logically ART, ED 24, p. 66
Design T feedback networks with ease ART, ED 14, p. 64
Determine inverter risetime quickly. ART, ED 16, p. 74
Diode bridge makes adjustable lowlevel limiter. IFD, ED 21, p. 123
Diode bridge protects sensitive circuits...... IFD, ED 17, p. 246
Divide by 3,5 or 10 with a minimum of hardware .. IFD, ED 20, p. 87
Don't be fooled by risetime specs on pulsed microwave tubes

ART, ED 17, p. 190
Don't shun the shunt regulator
ART, ED 14, p. 70
Drive high-C loads, like MOS regis-
ters, by resonating them
IFD, ED 21, p. 119
Dual level detector uses one active device......IFD, ED 21, p. 117
Epoxy transistor yields 200-watt picosecond pulses.

IFD, ED 24, p. 90
Fast differential amplifier has high slew rates...IFD, ED 19, p. 110
Feedback amplifiers are a snap
ART, ED 21, p. 98
Flip-flop measures frequency difference between two signals.

IFD, ED 25, p. 101
Full-wave chopper modulator uses only one transformer.

IFD, ED 24, p. 94
Generate variable-phase square waves this cheap, easy way
.IFD, ED 20, p. 85
Get rid of ground-loop noise
ART, ED 15, p. 84
How tight a tolerance is really needed?........ART, ED 18, p. 82
IC operational amplifiers solve bias level problems

IFD, ED 22, p. 109
Inexpensive audio IC serves as regu. lator. IFD, ED 23, p. 101
Inexpensive circuit generates precision unipolarity output.

IFD, ED 24, p. 96
Inexpensive IC pulse generator uses DTL and TTL circuits.

IFD, ED 25, p. 105
Inexpensive radio-controlled door opener uses only one SCR

IFD, ED 23, p. 109
Inexpensive staircase generator spans 1 to 16 V in $1 / 2 \cdot \mathrm{~V}$ steps

IFD, ED 15, p. 112
Integrated-circuit hi-peaker shapes frequency response

IFD, ED 21, p. 123
LEDs have advantages as constant brightness sources

IFD, ED 20, p. 91
Linear pulse stretcher has wide dynamic range . IFD, ED 14, p. 80
Linear pulse-width modulator uses monostable multivibrator

IFD, ED 23, p. 103
Low-frequency multiplier uses twin-T network

IFD, ED 18, p. 100
Low-power timer drives stepping relay.......... IFD, ED 17, p. 238
Multivoltage monitor circuit uses only a single transistor

IFD, ED 26, p. 81
Narrow-band rejection filter uses twin-T.....IFD, ED 21, p. 127
New log amp cascades to desired range ART, ED 22, p. 86
Phase-lock detector requires no external power supply

IFD, ED 22, p. 107
Precision voltage reference combined with voltage regulator

IFD, ED 18, p. 102
Pre-pulsed diode bias is a feature of novel duplexer

IFD, ED 27, p. 244
Pulse sequence generator uses delay
line and NAND gates
IFD, ED 26, p. 83
Pulse-width to pulse-height converter uses standard blocks

IFD, ED 16, p. 114
Pulse widths up to 10 seconds provided by hybrid one-shot.
.IFD, ED 16, p. 112
Reduce common mode voltage in multiplexed systems

IFD, ED 19, p. 118
Reduce stray reactances at vhf and uhf. ART, ED 19, p. 98
Relay driver provides delay and controls closure time.

IFD, ED 18, p. 106
Reliable semiconductor replaces centrifugal motor starting switch.
. IFD, ED 17, p. 248
Restorer and op amp convert pulses to dc level.. IFD, ED 22, p. 107
Schmitt trigger and comparator combine to form window detector
. IFD, ED 19, p. 116
Schmitt trigger uses MOS to achieve high input impedance.
.IFD, ED 24, p. 96
SCR threshold detector eliminates ambiguities. IFD, ED 18, p. 104 SCRs provide bidirectional dynamic braking for dc motors

IFD, ED 15, p. 108
Shunt diode protects load in SCR circuit...... IFD, ED 22, p. 109 Simple crystal oscillator uses monostable integrated circuit

IFD, ED 26, p. 85
Simple duplexer requires only inexpensive components

IFD, ED 14 , p. 80
Simple pulse stretcher uses three integrated circuits

IFD, ED 15, p. 108
Single map method speeds design of sequential logic circuits.

ART, ED 26, p. 66
Single op amp equalizes both amplitude and group delay

IFD, ED 25, p. 103
Solid-state spdt switch has high speed and isolation
.IFD, ED 26, p. 85
Streamline feedback-amplifier design
. ART, ED 20, p. 74
Symmetrical threshold converter operates over wide conditions.

IFD, ED 19, p. 112
Sync signal controls frequency of UJT oscillator conveniently.

IFD, ED 19, p. 120
Temperature stable supply uses IC as error amplifier

IFD, ED 23, p. 103
3 extra parts give astable multi a wide frequency range

IFD, ED 14, p. 82
Timing circuit has independent turnon and turn-off delays

IFD, ED 17, p. 238
Transformer-less Meacham bridge employs IC op amp

IFD, ED 20, p. 87
Transient inrush current is limited by series transistor.
.IFD, ED 21, p. 121
Transposing emitter capacitor speeds amplifier response time

IFD, ED 24, p. 94
Triangular waveform generator is simple yet effective

IFD, ED 22, p. 111
Try active overload protection for your dc voltage regulator.

ART, ED 19, p. 80
Tunnel-diode VCO is both linear and inexpensive. IFD, ED 19, p. 114 Ultralinear ramp generator uses UJT to drive Darlington

IFD, ED 21, p. 117
Variable length counter is switched easily....... IFD, ED 15, p. 110
Voltage-controlled oscillator uses two integrated circuits

IFD, ED 23, p. 109
Wide-range agc amplifier uses optoelectronic control circuit.
.IFD, ED 23, p. 105

Communications

Aircraft com system has 8000 -foot antenna....NEWS, ED 15, p. 22
Airline communications surge expected by ' 85

NEWS, ED 14, p. 22
Communications terminal is selfcontained data center.

PF, ED 23, p. C46
Dither over data: another phone system crisis?. . NEWS, ED 19, p. 25
NASA plans tests in ' 72 of laser communications

NEWS, ED 26, p. 22
Navy to modify plans for extra-If network. NEWS, ED 24, p. 21
Plan national private-line microwave net NEWS, ED 22, p. 32
Pre-pulsed diode bias is a feature of novel duplexer

IFD, ED 17, p. 244
Simple duplexer requires only inex. pensive components

IFD, ED 14, p. 80
Small microwave firm wins decision from FCC.. NEWS, ED 18, p. 21
Telemetry is down, but don't count it out

NEWS, ED 21, p. 25
TV brings the university to industry NEWS, ED 17, p. U84
What's delaying U.S. satellite communications? . .SR, ED 20, p. 36

Components

Ceramic $15 \cdot \mathrm{mil}$ chips mate directly with ICs PF, ED 16, p. 126
Double-divider potentiometer is accurate to 1 part in 10^{s}

PF, ED 23, p. 116
Fast switch devised for light systems
NEWS, ED 26, p. 28
Four-quadrant $\$ 39$ multiplier oper. ates with 1% accuracy.

PF, ED 18, p. 110
Hall-effect amplifier chip switches dual load to 10 mA .

PF, ED 21, p. 138

New phosphors convert infrared to 4 colorsNEWS, ED 16, p. 42
Rack-and-panel set dons metal shells . PF, ED 25, p. 162
Rugged SMA connectors increase performance. PF, ED 25, p. 158
Savings envisioned in connector field NEWS, ED 24, p. 22
Solid-state touch pushbutton senses fingertip capacitance. PF, ED 25, p. 122
Ten-bit $\$ 69 \mathrm{~d} / \mathrm{a}$ converter settles within only 750 ns PF, ED 23, p. 112
The Hall Effect: Success at 90 SR, ED 21, p. 38
Transistor-sized mixer covers audio-to-uhf band...PF, ED 20, p. 100

Computer-Aided Design

Are company designers becoming obsolete?.... NEWS, ED 25, p. 34
Build digital models of analog systems. ART, ED 21, p. 90
Design attenuator pads the easy way ART, ED 16, p. 90
Develop useful general models ART, ED 20, p. 68
For design, the program is the thing SR, ED 23, p. C8
Lumped model improves CAD analysis of transmission lines. IFD, ED 20, p. 89
Make linear models of op amps ART, ED 19, p. 92
Program a time-shared computer for easy curve plotting IFD, ED 25, p. 99
SCR model simplifies computer programs ART, ED 22, p. 92
Talk it out with your computer ART, ED 18, p. 86
Visualize a new design graphically. SR, ED 23, p. C20

Computers \& Data Processing

All-solid-state keyboards switch with magnetic cores

PF, ED 22, p. 120
Avoid pitfalls in computerized testing ART, ED 17, p. 196
Can a computer design another computer?. NEWS, ED 23, p. 25
Communications terminal is self-contained data center

PF, ED 23, p. C46
Computer dispatches police cars in seconds . . . NEWS, ED 25, p. 36
Computer-run monorail for airport transit . . . NEWS, ED 26, p. 28
Computer speeds spectral analysis. NEWS, ED 26, p. 34
Computerized 'eye' to shed light on the sunNEWS, ED 20, p. 30
Convert Boolean algebra to arithmetic. ART, ED 22, p. 82
Convert digital data from parallel to serial and from serial to parallel ART, ED 26, p. 70
15.20% growth seen for computer industryNEWS, ED 23, p. 22
Fully modular $\$ 75$ keyboard shuns PC cards and soldering

PF, ED 22, p. 122
Here are more digital converters
ART, ED 25, p. 84
IBM's System/3 design questioned by critics..NEWS, ED 17, p. 22
It's time for change in computer peripherals NEWS, ED 26, p. 25
LSI computer to cut time-sharing costsNEWS, ED 21, p. 52
Magnetic tape system performs at 15 MHzPF, ED 22, p. 118
Megabit bubble memory? In 5 years, maybeNEWS, ED 18, p. 25
Memory designers looking to semiconductors . NEWS, ED 24, p. 36
MOS 2560 -bit memory codes in ASC II format . .PF, ED 15, p. 124
Multi-purpose computer expander system adds on-line real-time service versatility. PF, ED 23, p. C44
New memory developments in the spotlight at FJCC

NEWS, ED 25, p. 21
$\$ 9$-billion market seen for computer services NEWS, ED 22, p. 22
Non-electronic $\$ 68$ keyboard encodes within key station

PF, ED 23, p. C42
Phonograph records store data at low cost . . . NEWS, ED 23, p. 22
RCA plans expansion in time-sharing field NEWS, ED 20, p. 22
Remote computer terminal prints 30 characters/s. . PF, ED 23, p. C48
Self-renewing computers reach for the stars...NEWS, ED 21, p. 32
Semiconductor memory will set speed record....NEWS, ED 23, p. 21
Single-map method speeds design of sequential logic circuits

ART, ED 26, p. 66
Stock exchange makes automation study NEWS, ED 20, p. 22
Superfast printer built for remote operations. NEWS, ED 14, p. 22
There's a computer in the car of the future NEWS, ED 18, p. 22
2-trillion-bit memory will use videotape

NEWS, ED 16, p. 22
Typewriter-sized desktop impact line printer hammers out 200 lines/ minute at 500 kHz .

PF, ED 23, p. C40
Versatile desktop calculator accepts 392 program steps

PF, ED 21, p. 130
Visualize a new design graphically
SR, ED 23, p. C20
Will computers eliminate the specialist?. NEWS, ED 26, p. 30
Wiresonic memories access at random.

PF, ED 15, p. 130

Consumer Electronics

Animal tests to help evaluate TV radiation.

NEWS, ED 20, p. 32 Cassette videoplayer demonstrated
by Sony . . . NEWS, ED 25, p. 21
Consumer imports soar to new highs
NEWS, ED 14, p. 21
EIA adopts new system for number. ing TV tubes

NEWS, ED 26, p. 22
Electronic thermostat offers portability.....NEWS, ED 19, p. 22
Electronics trade joins fight on U.S. car thieves. NEWS, ED 14, p. 21 Holographic TV tape player on way for home ...NEWS, ED 23, p. 32 Innovations in stereo, color TV designs brighten consumer electronics show...NEWS, ED 15, p. 34 Low-cost color TV player demon. strated by RCA

NEWS, ED 21, p. 22
Microwave radiation called growing hazard...NEWS, ED 14, p. 28 Rapid battery charger uses 'burping' method.... NEWS, ED 18, p. 22 There's a computer in the car of the future.... NEWS, ED 18, p. 22 TV brings the university to industry NEWS, ED 17, p. U84

Displays

Dynamic-focus CRT supply modulates out to 100 kHz

PF, ED 23, p. 114
Infrared sensors star in new displays
NEWS, ED 22, p. 36
Light-emitting diodes headed for wider use. . NEWS, ED 17, p. 22
Military scopes to show plane's height, identity

NEWS, ED 23, p. 21
Multi-color single-gun CRT responds to current density

PF, ED 17, p. U142
New phosphors convert infrared to 4 colors NEWS, ED 16, p. 42
Three-channel CRT display shows in. puts in three colors

PF, ED 19, p. 128
'Turn on' designs with new displays
SR, ED 25, p. 68
Visualize a new design graphically
SR, ED 23, p. C20
Wall-sized displays are 100 times brighter... NEWS, ED 21, p. 22
Wanted: easy-on-the-eye displays
SR, ED 26, p. 56

General Industry

Electronics in 1980-as experts see it NEWS, ED 24, p. 25 Federal research funds may move from campus.

NEWS, ED 19, p. 22
15.20% growth seen for computer industry. ...NEWS, ED 23, p. 22
IC sales in U.S. to hit $\$ 900$-million in $1973 \ldots$ NEWS, ED 22, p. 21 In Japan, everything is coming up ICs.......NEWS, ED 23, p. 34
$\$ 9$-billion market seen for computer services ... NEWS, ED 22, p. 22

RCA plans European semiconductor plant.

NEWS, ED 25, p. 22
Steady growth forecast for electronics in '70s . . NEWS, ED 20, p. 21
World electronics sales to triple by 1980NEWS, ED 19, p. 21

Industrial Electronics

Analyze nonlinear control systems
ART, ED 19, p. 84
Bridge amplifier compensates for strain-gauge variations

IFD, ED 14, p. $8 \dot{4}$
Circuit prevents single phasing of SCR-driven motors

IFD, ED 16, p. 118
Lightning detector prevents explosions.

NEWS, ED 23, p. 38
Low-power timer drives stepping relay.

IFD, ED 17, p. 238
The Hall Effect: Success at 90
SR, ED 21, p. 38
SCRs provide bidirectional dynamic braking for dc motors

IFD, ED 15, p. 108

Management

Are you engineering your career? ART, ED 22, p. 98
Diary of a leadership trainee ART, ED 15, p. 96
Engineers need to stretch their minds ART, ED 26, p. 76
How do you make a young company grow?. ART, ED 24, p. 84
LEND: a helping hand in aerospace ART, ED 25, p. 92
Managerial sensitivity training works ART, ED 16, p. 98
No engineer wants to be a crybaby! ART, ED 18, p. 94
One step ahead of need (never two) ART, ED 20, p. 78
So you want to star, a company
ART, ED 14, p. 74
Yes! Engineering management is "sinful'ART, ED 23, p. 94

Materials \& Packaging

Beware of electronic dirt
ART, ED 24, p. 80
Fixtures mask selected areas during PC board encapsulating

IFD, ED 21, p. 125
Learn the ABCs of metal purity.
ART, ED 23, p. 90
The delicate art of packaging
NEWS, ED 16, p. 57

Medical Electronics

Drive focuses on perils in medical equipment. NEWS, ED 26, p. 21
IR device said to improve cancer detection.... NEWS, ED 21, p. 28
The hospital comes to the patient NEWS, ED 24, p. 40

Microelectronics

Amplify biological signals with ICs
ART, ED 17, p. 218
An Electronic Design Special Report MOS: A Critical Review SR, ED 18, p. 65
Automated MOS design from Collins Radio. NEWS, ED 19, p. 21
Ceramic $15-\mathrm{mil}$ chips mate directly with ICs
. PF, ED 16, p. 126
Chip bonding: promises and perils SR, ED 22, p. 61
Compact IC supplies put out 5 V at 10 A PF, ED 15, p. 144
Electron-beam masking ups yields, cuts costs. NEWS, ED 19, p. 22
First ion-implant device being offered By Hughes. NEWS, ED 24, p. 21
IC power supplies trim size and weight. PF, ED 16, p. 128D
IC sales in U.S. to hit $\$ 900$-million in $1973 \ldots$ NEWS, ED 22, p. 21
In Japan, everything is coming up ICs. NEWS, ED 23, p. 34
Low-cost TO-8 op amp meets industrial needs . . . PF, ED 14, p. 90
LSI analog multiplexer chip combines bipolars and FETs.

PF, ED 17, p. U152
LSI computer to cut time-sharing costs NEWS, ED 21, p. 52
LSI testing is a large-scale headache SR, ED 16, p. 24
Memory designers looking at semiconductors. . NEWS, ED 24, p. 36
MOS 2560 -bit memory codes in ASC \square format. . PF, ED 15, p. 124
Semiconductor memory will set speed record.

NEWS, ED 23, p. 21

Microwaves \& Lasers

Compact CO_{2} laser developed by Sylvania NEWS, ED 20, p. 21
Count backward for high resolution ART, ED $15, \mathrm{p} .78$
Cut pulse-radar frequency drift ART, ED 25, p. 80
CW chemical lasers operated successfully... NEWS, ED 25, p. 21
Don't be fooled by risetime specs on pulsed microwave tubes ART, ED 17, p. 190
Holographic TV tape player on way for home . . NEWS, ED 23, p. 32
'Laser circuitry' explored in the lab NEWS, ED 16, p. 21
Mars antenna upped in power and flexibility...NEWS, ED 25, p. 22
Microwave diodes break kilowatt barrier.NEWS, ED 24, p. 37
Microwave radiation called growing hazard.... NEWS, ED 14, p. 28
NASA plans test in ' 72 of laser communications. NEWS, ED 26, p. 22
Plan national private-line microwave net. NEWS, ED 22, p. 32
Powerful laser generates tiny nuclear blastsNEWS, ED 21, p. 52
Small microwave firm wins decision
from FCC. NEWS, ED 18, p. 21
Solid-state microwaves gains on 3 fronts NEWS, ED 25, p. 30
Solid-state S-band amplifier delivers gain and downs noise PF, ED 15, p. 118
Stable X-band source phase-locks noise out.. PF, ED 24, p. 108

Military \& Aerospace

AEC develops batteries for ocean and the moon NEWS, ED 16, p. 21
Air Force seeks larger role in space shuttle NEWS, ED 23, p. 21
Aircraft com system has 8000 -foot antenna...NEWS, ED 15, p. 22
Ambitious space astronomy program proposed to NASA.

NEWS, ED 24, p. 21
Anticollision device protects copter pilots NEWS, ED 15, p. 21
Anti-sub warfare and the hostile sea NEWS, ED 14, p. 34
Army's war on EMC fought along 5 fronts NEWS, ED 15, p. 22
Designing for the coming space-station era...NEWS, ED 25, p. 24
From $81 / 3$ bps to 16,2000 bpsHere's how. . NEWS, ED 20, p. 25
Giant telescope to probe sun's secrets.NEWS, ED 19, p. 22
Industry still demanding wide procurement probe NEWS, ED 15, p. 21
Long analysis precedes Navy's S.3A award.... NEWS, ED 17, p. 22
Man on the moon.
SR, ED 17, p. 25
Navy holds up work on antisubma. rine plane. . NEWS, ED 14, p. 22
Navy to modify plans for extra-If network......NEWS, ED 24, p. 21
Navy will switch to solid-state relays NEWS, ED 21, p. 21
New Mars photos show a fourfold gain in detail

NEWS, ED 17, p. 21
$94-\mathrm{GHz}$ radar to 'picture' objects in spaceNEWS, ED 14, p. 25
Pershing 1-A: A 400% greater walIop NEWS, ED 18, p. 33
S-3A to get totally integrated avionics NEWS, ED 19, p. 38
Search for downed pilots made easier NEWS, ED 19, p. 32
Tests aim to tame nuclear-blast pulse NEWS, ED 15, p. 25 The Hall Effect: Success at 90 SR, ED 21, p. 38
The shake, rattle and roll test for electronics. NEWS, ED 18, p. 30 We could put astronauts on Mars in ' 82 if NEWS, ED 18, p. 36 Will Soviets' manned lab speed up NASA's plans? NEWS, ED 22, p. 22

Product Source Directories

Digital voltmeters...ED 24, p. D18 Field strength meters. ED 26, p. 89

ANY voltage from 2.0 to 16.0 at the industry's LOWEST PRICESI

Quantity
Price each
$1-99$
\$1.07
100-499 .97
500-999
.91
1000-4999
.86
5000 up
.82

THE

HI-RELIABLE!

No fragile nail heads.
Silicon junction aligned between two, parallel, offset tantalum heat sinks . . . great lead tension strength.
All welded and brazed assembly.
High pressure molded package.
Gold plated nickel-clad copper leads.
Write or phone for Form 68-4 for complete rating data and other tolerance prices.

Semiconductor Division

SCHAUER
MANUFACTURING CORP.

4511 Alpine Avenue Cincinnati, O. 45242 Ph. (513) 791-3030

Frequency counters. . ED 24, p. D30
Oscilloscopes......ED 24, p. D40
Spectrum analyzers..ED 24, p. D54
Sweep generators . . . ED 25, p. 107
Vacuum-tube voltmeters
ED 24, p. D62

Semiconductors

Consider dual JFET input stages
ART, ED 21, p. 86
Don't just fight semiconductor noise ART, ED 17, p. 228
Navy will switch to solid-state relays NEWS, ED 21, p. 21
New memory developments in the spotlight at FJCC

NEWS, ED 26, p. 21
New phosphors convert infrared to 4 colors. . . . NEWS, ED 16, p. 42
Npn/pnp pairs for $\$ 1$ handle 25 W at 4 A

PF, ED 24, p. 105
Plastic $\$ 1$ complements handle 25 W at 4 A.

PF, ED 21, p. 140
Solid-state touch pushbutton senses fingertip capacitance.

PF, ED 25, p. 122
It makes sense to use LEDs in sen singART, ED 16, p. 84
LEDS have advantages as constant brightness sources

$$
\text { IFD, ED } 20, \text { p. } 91
$$

Light-emitting diodes headed for wider use . NEWS, ED 17, p. 22
Low-cost TO.8 op amp meets indus. trial needs
.PF, ED 14, p. 90
Mars antenna upped in power and flexibility . . NEWS, ED 25, p. 22
Memory designers looking to semiconductors. NEWS, ED 24, p. 36
Stable X-band source phase-locks noise out. PF, ED 24, p. 108

Systems

Analog-to-period converter can simplify telemetry systems

IFD, ED 17, p. 240
Anti-sub warfare and the hostile sea NEWS, ED 14, p. 34
Automated lab to transmit Antarctic data NEWS, ED 19, p. 36
Cold power: Tomorrow's electric system?NEWS, ED 14, p. 30
Convert digital data from parallel to serial and from serial to parallel

ART, ED 26, p. 70
Count backward for high resolution ART, ED 15, p. 78
Cut pulse-radar frequency drift
ART, ED 25, p. 80
Get rid of ground-loop noise
ART, ED 15, p. 84
Here are more digital converters
ART, ED 25, p. 84
It makes sense to use LEDs in sens. ing ART, ED 16, p. 84
LSI testing is a large-scale headache SR, ED 16, p. 24
Magnetic tape system performs at 15 MHz .

PF, ED 22, p. 118
Make systems fail-operational
ART, ED 17, p. 213

Mapping the sky at low frequencies
NEWS, ED 26, p. 32
$94 . \mathrm{GHz}$ radar to 'picture' objects in space NEWS, ED 14, p. 25
Telemetry is down, but don't count it out NEWS, ED 21, p. 25
Tests aim to tame nuclear-blast pulse NEWS, ED 15, p. 25
The Hall Effect: Success at 90 SR, ED 21, p. 38
Versatile system counter-timer performs at data terminal and display PF, ED 19, p. 126
Wanted: easy-on-the-eye displays SR, ED 26, p. 56

Test \& Measuring

Avoid pitfalls in computerized testing ART, ED 17, p. 196
Building-block generator is a system in a console... PF, ED 22, p. 126
Caution: test op amps carefully ART, ED 23, p. 84
Circuit and simple recorder make inexpensive digital test system

IFD, ED 15, p. 110
Determine inverter risetime quickly ART, ED 16, p. 74
Digital multimeter lowers cost to \$1995 PF, ED 25, p. 132
Digital $\$ 345$ multimeter ends loading problems

PF, ED 17, p. U120
Digital voltmeter and counter readout with LED numerics

PF, ED 20, p. 94
Dual-trace oscilloscope performs from dc to 250 MHz

PF, ED 17, p. U118
Economy voltmeter and multimeter uphold performance with fewer parts

PF, ED 16, p. 122
Four-digit DMM for $\$ 379.50$ measures five functions

PF, ED 23, p. 118
Get the most out of your DVM
ART, ED 24, p. D12
LSI testing is a large-scale headache
SR, ED 16, p. 24
Match your counter to your requirements

ART, ED 24, p. D26
Plotter with floating motor scans 40 in. /s within 0.001 in .

PF, ED 23, p. C38
Printing digital voltmeter occupies only 8 -in. width

PF, ED 17, p. U122
Solid-state signal generator programs frequency and level

PF, ED 17, p. U136
Solid-state sweeper system goes from 10 MHz to 18 GHz

PF, ED 25, p. 142
The shake, rattle and roll test for electronics. NEWS, ED 18, p. 30 Universal power supply replaces five sources PF, ED 22, p. 130
Upgrade your diode applications
ART, ED 15, p. 90
Versatile systems counter-timer performs as data terminal and display. PF, ED 19, p. 126

The Kepco 4-in-a-rack hardware system offers a flexible means for combining various sized power units in standard rack dimensions.

Panel adapters make easy the assembly of power modules into custom multioutput combinations.

CPS/JQE
Kepco's extensive JQE and CPS inventury provides 36 different voltage regulating power supplies in models from 6 volts to 100 volts, 1 ampere to 90 amperes, in quarter-rack, half-rack and full-rack sizes. A precision I-C regulating amplifier delivers 0.0005% line, 0.005% load regulation. All models are fully programmable and are available in fast-programming models also.

BロP
The unique Bipolar Operational Power Amplifier/ Power Supply provides four quadrant operation with outputs of + to -36 volts and + to -72 volts at ± 1.5 amperes and ± 5 amperes. The BOP's will deliver full output modulated from d-c to 20 kHz . The front panel of the metered models is a complete operational patch board with summing inputs and adjustable feedback.

\square This low-cost, $4 \frac{1}{2}$ digit calibrator features 0.02% absolute display accuracy with 0.0005% line and 0.001% load regulation ($0-1$ ampere). The readout is a clear, easy-to-read digital display from 0.0000 volts to 100.00 volts in three factor-of-ten ranges.

OPS (Hybrid)

Three of the highest voltage op-amps going! $0-500$ volts $/ 40 \mathrm{~mA}, 0-1000 \mathrm{~V} / 20 \mathrm{~mA}, 0-2000 \mathrm{~V} / 10 \mathrm{~mA}$. All feature Kepco's operational patch panel making input and feedback connections easy. Gain $>0.5 \times 10^{6} \mathrm{~V} / \mathrm{V}$; slewing rate $>1 \mathrm{~V} / \mu \mathrm{sec}$.

\square B D B A digital programming system offering a $31 / 2$ digit, $41 / 2$ digit or $51 / 2$ digit computer interface for any of the JQE, CPS, BOP OPS and many other Kepco supplies. Serial or parallel input formats with keyboard input too.

Product Source Directory

DC Power Supplies

Compiled and edited by Greg Guercio, Directory Manager

Specifications for approximately 3500 power supplies made by 68 manufacturers are presented in convenient tabular form to assist you with your requirements. In addition, technical articles bring you up to date on power-supply technology and the factors to consider when selecting power supplies.

For convenience power supplies have been divided into five categories.

- High Current
- Constant Current
- High Voltage
- Laboratory type
- Modular type

See the how-to-use section on page D4 for a detailed description of each type. Obtain complete manufacturers' data by using the reader service numbers in the Master Cross Index on page D6.

How to use the tables . D4
Master Cross Index . D6
Avoid the pitfalls of power-supply connections D10
Make sure you pick the right power supply D22
High-current dc power supplies . D24
Constant-current dc power supplies. D34
High-voltage dc power supplies . D40
Laboratory-type dc power supplies. D44
Modular-type dc power supplies........................... . . D54
Advertisers' Index . D66

How to use the tables

Each table covers a particular type of power supply and lists pertinent technical specifications. Notes describing additional features for all power supplies are located at the end of each section.

Power supplies have been divided into five basic categories for ease of use. There are two tables on each page.

- High Current-Includes those supplies having maximum output currents greater than 3 A and cover output voltages up to 1500 V . These are sorted by maximum voltage in the column colorcoded white.
- Constant Current-Represents those supplies that are current regulated. They are sorted by maximum current in the column color-coded white.
- High Voltage-Includes those supplies having output voltages of 1500 V and up. They are sorted by maximum voltage in the column color-coded white.
- Laboratory Type-Power supplies in this category have maximum output currents of less than 3 A and cover output voltages up to 1500 V . They are sorted by maximum voltage in the column color-coded white.
- Modular Type-These supplies cover the voltage range from 0 V to 50 V . They all have inputs of 95 to 130 Vac . Modular types are sorted by maximum voltage in the column color-coded white.

The following abbreviations apply to all power-supply listings:

- ina-information not available
- n / a-not applicable
- req.-request

An index of models by manufacturers, with the exception of modular supplies, is included at the end of each table. A location code is included after each model, permitting quick location of specifications for that instrument.

Power-supply specifications are given in separate columns. The complete specifications for any one power supply can be read across the page.

The complete name, address and Reader Service offerings can be found in the Master Cross Index on page D6.

Those companies advertising in the power-supply section are marked with an asterisk.

The greatest selection of Dipped Mica Capacitors available-from the exclusive CD6 (the smallest dipped mica in existence) through the entire range of standard mica ratings.

Master Cross Index

	Company	$\begin{array}{l}\text { Reader } \\ \text { Service } \\ \text { No. }\end{array}$
Abbrev.	$\begin{array}{l}\text { Abbott }\end{array}$	$\begin{array}{l}\text { Abbott Transistor Labs. } \\ \text { 5200 W. Jefferson Blvd. } \\ \text { Los Angeles, Calif. 90016 } \\ \text { (213) WE 6-8185 }\end{array}$

Abbrev.	Company	Reader Service No.
CEA	CEA Division Berkleonics Inc. 1221 S. Shamrock Monrovia, Calif! 91016 (213) 359-9261	363
Chalco	Chalco Engineer ing 15126 S. Broadway Gardena, Calit 90247 (213) FA 1.0121	364
Christie	Christie Electric Corp 3410 W. 67th St Los Angeles. Calif. 90043 (213) $750-1151$	365
CP	Computer Products 2709 N. Dixie Highway P.O. Box 23849 F1. Lauderdale, Fla. 33307 (305) 565-9565	366
Del	Del Electronics 250 E. Sanford Blvad. Mi. Vernon, N. Y (914) 699.2000	367
Deltron	Deltron Inc. Wissahickon Ave. N. Wales, Pa 19454 (215) 669-9261	368
0.8	Dressen-Barnes 250 N. Vinedo Ave Pasadena, Calit 91107 (213) 681-0643	369
Dynage	Dynage Inc. 1331 Blue Hills Ave. Bloomfield, Conn. 06002 (203) 243 -0315	370
Elasco	Elasco Inc. 5 Northwood Rd. Bloomfield, Conn. 06002 (203) 242.0708	371
EPL	Electro Products Labs. 6125 W. Howard St. Chicago, III. 60648 (312) 647.8744	372
EMC	Electronic Measurement Div Rowan Controller 2 Crescent Place Oceanport, N.J 07757 (201) 229.5000	373
ERA	Electronic Research Assoc. 67 Sand Park Road Cedar Grove, N.J. (201) 239.3000	374

Abbrev.	Company	Reader Service No.
Endevcu	Endevco 801 S. Arroyo Pkwy. Pasadena, Calif. 91109 (213) 681.2401	375
Fluke	John Fluke Mig. P. O. Box 7428 Seattle, Wash 98133 (206) 774.2211	376
GE	General Electric Co. Specialty Transformer Dept Fort Wayne, Ind (219) 743-7431	377
Grafix	Gratix, Inc. P.O. Box 3296 Albuquerque, N.M. 87110 (505) $265-6905$	378
Hamner	Hamner Division Harshaw Chemical Co. 6801 Cochran Road Salon, Ohio (216) 248.7400	379
Heath	Heath Co. Benton Harbor, Mich. 49022 (616) 983-3961	380
H-P	Hewlett Packard Co. New Jersey Div 110 Locust Ave. Ber keley Heights, N.J. 07922 (201) 464.1234	381
Hipo	Hipotronics Inc P.O. Drawer A Route 22 Brewster, N. Y. 10509 (914) 279.8091	382
Holt	Holt Instrument Labs. P. O. Box 230 Oconto, Wis. 54153 (414) 834.2222	383
Hyp	Hyperion Industries 134 Coolidge Ave. Watertown. Mass 02172 (617) 926.0140	384
ITI	ITI Electronics Inc. 369 Lexington Ave Clifton, N.J. 07011 (201) 473-0900	385
Int. Cont.	International Contronics Inc. 1038 W. Evelyn Ave. Sunnyvale, CAlif. 94086 (408) 736.7620	386

Abbrev.	Company	Reader Service No.
Keithley	Keithley Instruments Inc. 28775 Aurora Rd. Cleveland, Ohio 44139 (216) 248-0400	387
Kepco	Kepco Inc. 131.38 Sanford Ave. Flushing. N.Y. 11352 (212) $461-7000$	388
Lambda	Lambda Electronics 515 Broad Hollow Rd. Melville, N Y Y 11746 (516) MY 4.4200	389
Litton	Litton Industries Special Products Data Systems Div. 9001 Fulbright Ave. Chatsworth, Calif 91311 (213) $781-8211$	390
Mid-East	Mid-Eastern Industries 660 Jerusalem Ad. Scotch Plains, N.J. 07076 (201) $233-5900$	391
Monroe	Monroe Electronics 5 Vernon St. Middleport, N.Y. 14105 (716) 735-3721	392
NJE	NJE Corp. 20 Boright Ave. Kenilworth, N.J. 07033 (201) 272.6000	393
North Hills	North Hills Electronics Alexander Place Glen Cove, N. Y. 11542 (516) 671 -5700	394
Nucor	Nuclear Corp. of America 2 Richwood Place Denville, N J. 07834 (201) 627.4200	395
P/N	Philbrick/Nexus Research 17 Allied Drive Nedham, Mass. 02026 (617) 329.1600	396
Plastic	Plastic Capacitors 2620 N. Clybourn Ave Chicago, III. 60614 (312) 348.3735	397

Albrev.	Company	Reader Service No.
Power Des	Power Designs Inc 1700 Shames Drive Westbury, N Y. 11590 (516) 333.6200	398
Power/Mate	Power/Mate Corp. 514 S. River St. Hackensack, N.J. 07601 (201) 343.6294	399
Powertec	Powertec Div. of Airtronics Inc. 9168 Desoto Ave Chatsworth, Calif 91311 (213) 882.0004	400
Prec Stan	Precision Standards Corp. 1701 Reynolds Santa Ana, Calif 92705 (714) 546 -0431	401
RCA	RCA Electronic Components \& Devices Harrison, N.J. 07029 (201) $485-3900$	402
Ratelco	Ratelco Inc. 610 Pontius Ave. N. Seattle, Wash. 98109 (206) 624.7770	403
R-S	Rohde \& Schwarz 111 Lexington Ave. Passaic, N J. 07055 (201) 773-8010	404
Rosemont	Rosemont Plug-in Inc. 1416 Lebanon Rd. Nashville, Tenn. 37210 (615) 244-1330	405
Scint	Scintillonics Inc. P.O. Box 701 Fi. Collins, Col 80521 (303) 482-4752	406
SCI	Semi-conductor Circuits 163 Merrimac St. Woburn, Mass 01801 (617) 935 •5200	407
Sorensen	Sorensen Operation Raytheon Co. Richards Ave Norwalk, Conn. 06856 (203) 838.6571	408

Abtrev.	Company	Reader Service No.
Spectro	Spectromagnetic Industries 25393 Huntswood Ave. Hayward, Calif. (415) 782.1300	409
Spellman	Spellman High-Voltage 1930 Adee Ave. Bronx. N.Y 10469 (212) 547.0306	410
Techni	Technipower Inc. Benrus Center Ridgefield, Conn 06877 (203) 438-0333	411
Topaz	Topaz Inc. 3802 Houston St. San Diego, Calif. 92110 (714) 297.4815	412
TDI	Transistor Devices Horsehill Road Cedar Knolls, N J. (201) 267.1900	413
Tivgon	Trygon Electronics 111 Pleasant Ave. Roosevelt, N.Y. 11575 (516) 378-2800	414
Uni-Volt	Universal Voltronics 27 Radio Circle Drive Mt. Kisco, N.Y. 10549 (914) $241 \cdot 1300$	415
Valor	Valor Instruments Inc. 2430 Amsler Torrance, Calit. 90505 (213) 534.2322	416
Vector	Vector Engrg Inc. 58 Brown Ave. Springfield, N.J. 07081 (201) 379.7800	417
Waniess	Wanless Electric Co. Industrial/Distributor Products Div 2165 S. Grand Ave Santa Ana, Calif. 92705 (714) 546.8990	418

Consider Wagner as the primary source for your power supplies. Nowhere will you find greater capability, or more complete facilities to design and economically produce the power supplies you require, than at Wagner.
Right now, Wagner is a major producer of power supplies for the business machine industry. Production is computerized, with more than 275 bills of material totalling more than 6000 components stored in memory banks ready for production cycling. With the aid of roller-line assembly techniques, production has run as high as 25,000 units a month. And complex units at that.
Wagner capability encompasses a wide variety of products, electrical and electronic. Technologies encompass high voltage and high power, integrated circuitry and high density packaging. Wagner's experience has frequently contributed to design modifications that have reduced costs, improved the product; or both.

If this suggests things we might talk about, write or phone Mr. Richard Vieser, General Manager.

TUNG-SOL DIVISION

WAGNER ELECTRIC

CORPORATION

630 W. Mt. Pleasant Avenue, Livingston, N.J. 07039
TWX: 710-994-4865 Phone: (201) 992-1100 (212) 732-5326
INFORMATION RETRIEVAL NUMBER 634

Avoid the pitfalls
 of power-supply connections

Modern power supplies are flexible, high-performance instruments designed to deliver a constant or controlled output with a maximum of reliability and versatility. In many cases, however, the user inadvertently degrades this performance capability by making improper wiring connections to the input, output, or control terminals. In other words, he falls into one of the five pitfalls of connecting power supplies:

- Improper de distribution.
- Ground loops.
- Improper remote-sensing connections.
- Improper remote-programming connections.
- Improper ac power-input connections.

This article presents rules for avoiding each of the pitfalls.

Avoid improper dc distribution

The simplest, and most common, example of improper load wiring is illustrated in Fig. 1. Each load sees a power-supply voltage that is dependent upon the current drawn by the other loads and the IZ drops they cause in some portion of the load leads. Since most power-supply loads draw a current that varies with time, a timevarying interaction results among the loads. In some cases this interaction can be ignored, but in most applications the resulting noise, pulse coupling, or tendency toward interload oscillation are undesirable and often unacceptable. Avoidance of this problem leads to the first rule:

> A1. Designate a single pair of terminals as the positive and negative dc distribution terminals (DCDTs).

These two DCDTs may be the power-supply output terminals, the $\mathrm{B}+$ terminals at the dc load (or the $B+$ terminals on one of several parallel dc loads connected to the same supply), or a separate pair of terminals established expressly for dc distribution. If remote sensing is not used,

Arthur M. Darbie, Hewlett-Packard Co., Berkeley Heights, N.J.
locate the DCDTs as close as possible to the power-supply output terminals. Optimum performance results when the supply terminals themselves are used as the DCDTs (Fig. 2).

If remote sensing is used, the DCDTs should be located as close as possible to the load terminals. Sensing leads should then be connected from the supply sensing terminals to the DCDTs (Fig. 3).

From Figs. 2 and 3, then, the next rule is apparent:

> A2. Connect one pair of wires directly from the power-supply output terminals to the DCDTs, and then a separate pair of leads directly from the DCDTs to each load.

There should be no direct connection from one load to another, except by way of the DCDTs.

Although for clarity the diagrams show the load and sensing leads as straight lines, some immunity against pickup from stray magnetic fields is obtained by twisting each pair of plus and minus load leads, and all sensing leads should be shielded as explained later.

A3. Be sure that the dc load-wire sizes are adequate.

As a bare minimum, each load wire must be of sufficient size to tolerate the power-supply output current that would flow if the associated load terminals were short-circuited. However, impedance and coupling considerations usually dictate the use of larger load-current wires than are required to satisfy current rating requirements.

Power supplies and load wires are normally expressed in terms of their schematic equivalents: the battery symbol and line connections. The simplistic circuit models that these symbols imply are adequate for many purposes, but we must resort to more exact models when evaluating the regulation properties of a power supply connected to its load(s).

The battery symbol represents an ideal constant voltage source with perfect regulation and zero output impedance at all frequencies. How-

1. A common example of improper load wiring results in time-varying interaction among the loads.

2. When remote sensing is not used the dc distribution terminals should be close to the supply's output terminal.

(dcDT'S ARE SHOWN SOLID)
(a)

(b)

3. When remote sensing is used the dc distribution terminal should be close to the load terminals.
ever, every regulated power supply has some small output impedance at low frequencies and a much higher output impedance at high frequencies. Thus a more exact circuit model for a power supply includes an equivalent source resistance and inductance (Fig. 4).
R_{s} is the power-supply output impedance at dc, and it is found by dividing the load regulation by the current rating. For example, a power supply that has a load regulation of 10 mV for a full load change of 10 A has an equivalent R_{s} of $1 \mathrm{~m} \Omega$, a typical value. Similarly, a power supply with an output impedance of 0.2 ohm at 100 kHz and 2 ohms at 1 MHz has an equivalent highfrequency output impedance, L_{s}, of $0.32 \mu \mathrm{H}$ a value typical of high performance supplies.

For determining necessary load-wire sizes, it is usually sufficient to consider only the equivalent lumped constant series resistance and inductance ($L_{n}, L_{1}, L_{2} \ldots$ and $R_{v}, R_{1}, R_{2} \ldots$. . Given wire size and length, lumped equivalents can be determined from wire tables and charts.

In general, the power-supply performance degradation seen at the load terminals becomes significant whenever the wire size and length result in a load-wire impedance comparable to or greater than the equivalent power-supply output impedance. With one load, this degradation can be evaluated by comparing $2 \mathrm{R}_{\mathrm{o}}$ with R_{s}, and $2 \mathrm{~L}_{\mathrm{n}}$ with L_{s}. The total impedance seen by the load is $Z_{r}=\left(R_{s}+2 R_{n}\right)+j \omega\left(L_{s}+2 L_{n}\right)$, and the variation of the dc load voltage caused by a sinusoidal variation of load current is $\mathrm{E}_{\mathrm{AC}}=\mathrm{I}_{\mathrm{Ac}} \mathrm{Z}_{\mathrm{T}}$. If loadcurrent variations are more pulse or step-shaped than sinusoidal, then the resulting load voltage "spike" will have a magnitude $\mathrm{e}_{\mathrm{I}}=\mathrm{L}_{\mathrm{T}} \mathrm{di} / \mathrm{dt}$ where $L_{r}=L_{s}+2 L_{n}$, and di dt is the maximum rate of change of load current.

If these calculations indicate that the resulting variations in dc voltage provided to the load are greater than desired, then shorter and/or larger load leads are required.

With multiple loads (Fig. 4b) it is necessary to consider separately the common or mutual impedance seen by the loads- $\left(R_{s}+2 R_{n}\right)+j \omega$ ($\mathrm{L}_{\mathrm{s}}+2 \mathrm{~L}_{1}$) -and the added impedance seen by each load individually- $\left(R_{1}+j \omega L_{1}\right), \quad 2\left(R_{2}+\right.$ $j \omega \mathrm{~L}_{z}$), etc. Remember that the mutual impedance presents an opportunity for a variation of one load current to cause a dc voltage variation at another load. If the loads are pulse or digital circuits, false triggering may result. Similarly, if one load is the output stage of a high-gain amplifier, and another load contains low-level stages feeding the same signal path, unintentional feedback may occur via this mutual impedance, with resulting amplifier oscillation.

Connecting remote sensing to the load terminals of Fig. 4a or the DCDTs of Fig. 4b has the effect of reducing R_{0} by a factor equal to the loop
gain of the power-supply regulator, usually of the order of $10^{3}, 10^{4}$, or 10^{5}. However, remote sensing does not in general alter the effective value of $L_{1 "}$ seen by the load, since $L_{\text {" }}$ predominates at frequencies above the bandwidth of the power-supply regulator.

Since remote sensing affords little or no reduction in the effective load-wiring impedance at high frequencies, some amount of capacitive load decoupling is sometimes desirable when multiple loads are connected to a power supply.

A4. Consider adding a local decoupling capacitor across each pair of load and distribution terminals.

This addition reduces the high-frequency impedance seen by any individual load looking back toward the power supply, and reduces highfrequency mutual coupling effects between loads fed from the same supply. The use of load decoupling capacitors is most often employed with multiple loads drawing pulse currents with short rise times; without local decoupling these current changes can cause spikes that travel down the load distribution wires and falsely trigger one of the other loads (Fig. 5).

To be effective, the high-frequency impedance of local decoupling capacitors, $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3} of Fig. 5, must be lower than the impedance of wires connected to the same load. Thus a decoupling capacitor must be chosen with care, with full knowledge of its inductance and effective series resistance, as well as its capacitance. Moreover, it is imperative that the shortest possible leads be used to connect local decoupling capacitors directly to the load and DCDT terminals (not to the other points along the dc wiring path) so that the wiring impedance between the capacitor and its connection point is minimized.

Avoid ground loops

Ground loops represent the most persistent, subtle, difficult-to-analyze and generally troublesome problem connected with power-supply wiring. The origins of ground-loop problems are so diverse that the designer frequently resorts to empirical solutions. A little extra thought and care will reduce or eliminate this problem.

Start by recognizing that the ideal concept of a single "quiet" ground potential is a snare and a delusion. No two ground points have exactly the same potential. The potential differences in many cases are small, but even a difference of a fraction of a volt in two "ground" potentials will cause amperes of current to flow through a complete ground loop.

To avoid ground-loop problems, it is necessary to have only one ground return point in a power-

5. Adding a local decoupling capacitor across each pair of load and distribution terminals reduces the high-frequency impedance seen by any individual load looking back toward the power supply. It also reduces high-frequency mutual coupling effects between loads fed from the same supply.

GROUND SYSTEM, CONSISTING OF ALL CHASSIS
FOR POWER SUPPLIES AND THEIR GROUND TERMINALS, SAFETY GROUND, oc GROUND, GROUND
WIRING, RACK FRAMES, ETC.

ALL EVENTUALY LEAD TO COLD WATER PIPE
supply system, which includes the power supply and all its loads and all other power supplies connected to the same loads. However, the selection of the best dc ground point is dependent upon the nature and complexity of the load and the dc wiring, and there are practical problems in large systems that tend to force compromises.

For example, a rack-mounted system consisting of separately mounted power supplies and loads generally has multiple ground connections-each instrument usually has its own chassis tied to the third, "safety ground," lead of tis power cord. and the rack is often connected by a separate wire to safety ground (the cold-water pipe). With the instrument panels screwed to the rack frame, circulating ground currents are inevitable. However, as long as these ground currents are confined to the ground system and do not flow through any portion of the power-supply de distribution wiring, the effect on system performance is probably negligible. In essence, then, as long as you do not allow the de distribution circuits to have any conductive paths in common with ground currents, you will in general reduce or eliminate ground-loop problems.

The only way to avoid such common paths is to connect the dc distribution system to ground with only one wire. In Fig. 6, dc (and signal) currents circulate within the upper box, while ground-loop currents circulate within the lower box. So long as there is only one connection between the two boxes, the ground-loop currents, while not eliminated, do not affect the power-supply dc output and load circuits. Notice that any magnetic coupling between the dc system and ground system or any capacitive leakage from the dc system to ground can provide a return path, enabling ground-loop current to link the de and ground.

The first rule for avoiding ground-loop is:

B1. Designate one of the dc distribution terminals as the dc common point (DCCP).

There should be only one de common point per de system. If the supply is to be used as a positive source, then the minus DCDT is the dc common point; if it is to be a negative source, then the plus DCDT is the DCCP. Here are some added tips for selecting the best dc common point.

- Single ungrounded load: Select either the positive or negative dc distribution terminal as the dc common point. A single isolated load exists when a power supply is feeding only one load, and that load circuit has no internal connections to the chassis or ground. If the power-supply output terminals are to be used as the dc distribution terminals, then the dc common point will be either the positive or negative power-supply output terminal (Fig. 7a). If remote sensing is to be

7a. For single ungrounded load, without remote sensing, select either plus or minus dc distribution terminal as the dc common point.
7b. For single ungrounded load, with remote sensing, select either plus or minus load terminals as the dc common point.
7c, d. This alternative is applicable when there are two or more separate loads with separate pairs of load leads, and none of the load circuits has an internal connection to chassis or ground.
7e, f. Single ground load without remote sensing (e) and with sensing (f). The load terminals of the grounded load must be designated as the DCDTs, and the ground terminal of the load is the DCCP.
$7 \mathrm{~g}, \mathrm{~h}$. This method of DCCP selection is followed when there is only one load and it has an essential internal connection to ground or chassis (g) without sensing or (h) with sensing.

7i. Ground current path through dc load wires is inevitable, unless each connection is removed from all but one load.
7j. Loads ungrounded from ground: The dc common point should be shorted to the dc ground point through a $1 \mu \mathrm{~F}$ capacitor instead of through a solid-wire connection.
employed and the load terminals will serve as the DCDTs, then either the positive or negative load terminal is designated as the DCCP. (Fig. 7b).

- Multiple ungrounded loads: Select the positive or negative dc distribution terminal as the dc common point. This alternative is applicable when there are two or more separate loads with separate pairs of load leads, and none of the load circuits has an internal connection to chassis or ground (Fig. 7c and 7d).
- Single grounded load: The load terminals of the grounded load must be designated as the DCDTs and the grounded terminal of the load is the DCCP. (Fig. 7e and 7f).

This method of DCCP selection is followed when there is only one load and it has an essential (internal) connection to ground or chassis, or when there are multiple loads and only one of them has an internal connection to ground or chassis (Fig. 7 g and 7 h).

- Multiple loads, with two or more individually grounded: This situation must be avoided or eliminated, if possible. There can be no avoidance of ground-loop currents circulating through dc and load wiring as long as separate loads connected to the same power supply (or dc system) have separate ground returns (Fig. 7i). One cure is to break the circuit connection to ground in all of the loads and then select the dc common point following the multiple ungrounded alternative above, or break the circuit connection to ground in all but one of the loads and treat it as in the single grounded case. In other cases the only satisfactory solution is to increase the number of power supplies.
- Load system floated at a dc potential above ground: In some applications it is necessary to operate the power-supply output at a fixed voltage above or below ground potential. In these cases it is usually advantageous to designate a dc common point, using whichever of the four above alternatives is appropriate, just as though conductive grounding would be employed. Then this dc common point should be shorted to the dc ground point through a $1 \mu \mathrm{~F}$ capacitor, instead of through a solid-wire connection (Fig. 7j).

> B2. Designate a particular terminal, which is connected to ground as the dc ground point (DCGP)

The dc ground point may be any single terminal, existing or added, which is part of the ground system of Fig. 6, and which is conductively connected to "safety ground" of the building wiring system and eventually to the cold-water pipe and earth. It may be the separate ground terminal located on one of the power supplies or loads in a system, or it may be a special system ground terminal, buss or plane established ex-
pressly for ground-connection purposes.

> B3. Connect the DCCP to the DCGP (unless one load is already grounded), making certain there is only one conductive path between these two points.

This connection should be short, and the wire size used should be such that the total impedance from the DCCP to the DCGP is not large compared with the impedance from the DCGP to the ultimate ground. Braided leads are used to further reduce the high-frequency component of the ground lead impedance.

Sometimes the impedance between the DCCP and the DCGP is minimized by using a single terminal for both. In these cases, care should be taken that all dc system connections are made at one end of the terminal, or bar, and any ground-system connections at the other, so that the dc and ground-system currents are not intertwined.

When checking for unintentional paths from dc to ground, be sure that any straps or wires between the power-supply output and ground terminals have been removed (unless this is the single desired connection between the DCCP and the DCGP).

Avoid remote-sensing problems

In using remote sensing (Fig. 8), some amount of compromise with respect to normal powersupply performance characteristics can be expected, particularly transient performance and output impedance. When remote sensing is properly employed, these compromises are of secondary importance compared with the performance improvement at the remote terminals. The necessary precautions for insuring proper remotesensing performance are in part interrelated with the precautions already given for establishing a proper dc distribution system and avoiding ground loops. The rules detailed earlier must be understood and followed before any attempt is made to use the added rules given here.

> C1. Remove any straps or wires that connect the power-supply sensing terminals to the power-supply output terminals.

C2. Using shielded two-wire cable, connect the power-supply sensing terminals to the DCDTs.

Do not use the shield as one of the sensing conductors.
To ensure that the temperature coefficient of the copper sensing leads will not significantly affect the power-supply temperature coefficient

8. Remote sensing leads and shields are shown properly connected.

10. In remote sensing, impedance of the load leads is included inside the power-supply feedback loop. Oscillation will occur due to phase shift and added time delay.

(a)

(b)
9. Sensing protection using resistor configuration is shown in (a) using diode configuration in (b).

11. Proper connection of remote programming leads and shields is shown.
and stability specifications, it is necessary to keep the IR drop in the sensing conductors less than 20 times the power-supply temperature coefficient (stated in $\mathrm{mV} /{ }^{\circ} \mathrm{C}$.)

C3. Connect the end of the shield to the DCCP. Leave the other end unconnected.

In nearly all cases this method of connecting the sensing shield will minimize ripple at the load distribution terminals. Experiment may in rare cases show that a different ground return point for this shield is preferable. In such cases, it is important to verify by experiment that this relative advantage applies under all possible combinations of load and line.

C4. Eliminate or protect against any possibility of an open-circuit remote-sensing path that might occur on a long-term or transient basis.

Such open-circuit conditions are likely if the remote-sensing path includes any relay, switch, or connector contacts. Any interruption of hard wire connection between the power-supply sensing terminals and the dc distribution terminals should be avoided wherever possible.

When a sensing open occurs, the regulator circuit within the supply reacts as though the load voltage were zero. Usually, the output voltage corrects this deficiency by climbing rapidly toward the maximum rectifier voltage, a value that is significantly larger than the power supply's maximum rated output voltage.

To reduce the degree of output overshoot that can result from opened remote-sensing connections, many regulated power supplies include internally wired resistors or small silicon diodes, as shown in Fig. 9. If they are not part of the power supply, and if the power-supply application involves long sensing leads, sensing paths that include relay, switch, or connector contacts, or any other cause of open circuits in the remote sensing paths, then the user should in most cases add either resistors or silicon diodes. Connect them directly between correponding sensing and output terminals, and check their effectiveness by opening the sensing path and noting the resulting output voltage rise.

If the diode configuration of Fig. 9b is used, operation will be satisfactory up to about a 0.5 volt drop in either load lead between a powersupply output terminal and the corresponding DCDT; greater drops use diodes in series.

If the resistor configuration of Fig. 9a is included by the manufacturer or added by the user, it may be necessary to check that the power rating of this resistor is adequate, particularly for sizable sensing drops. Remember that the actual

12. When programming the output using a remote source the use of a zener across the programming terminals will prevent the supply's output from exceeding a predetermined limit.
dissipation in the remote-sensing protection resistors is $\mathrm{E}_{\mathrm{D}}{ }^{2} / R$, where E_{1}, is the IR drop from either power-supply output terminal to the corresponding DCDT, and R is the ohmic value of the protective resistor.

C5. Determine the minimum wire size for the load current leads from the power-supply output terminals to the DCDTs.

Most well regulated power supplies have an upper limit to the load-current IR drop around which remote sensing may be accomplished without losing proper regulation control. This maximum drop limitation is typically $0.5,1$, or 2 V , and may apply to the positive, negative, or both output leads. Consult the instruction manual or the manufacturer if in doubt concerning the exact limitation applicable to a particular supply.

> C6. Check for possibility of power-supply oscillation when connected in the system for remote sensing.

Impedance of the load leads is included inside the power-supply feedback loop (Fig. 10). In remote-sensing applications involving small or long load wires, there is a tendency for powersupply oscillation to occur due to phase shift and added time delay.

In some cases readjusting a "transient recovery" or "loop stability" control inside the supply will be adequate; in more severe cases the powersupply loop equalization may have to be redesigned and tailored for the application.

As suggested previously in rule A4, capacitor C_{0} is commonly included to suppress load transients and reduce the power-supply impedance at the load at high frequencies. The capacitor must be chosen with care if power-supply oscillation is to be avoided, since any capacitor resonances or other tendency toward high impedance within or near the bandpass of the power-supply regulator will reduce loop stability. It is therefore common in extreme remote-sensing applications to remove C_{0} from the supply and use it as $\mathrm{C}_{10}{ }^{\prime}$.

C7. Check for proper current limiting operation while the power supply is connected in the system for remote sensing.

With some power-supply designs, the resistance of one of the current-carrying leads adds to the resistance used for current limit monitoring, thereby reducing the threshold value at which current limiting begins. Watch whether the current limit value changes significantly while shorting out $+S$ to + OUT and $-S$ to -OUT at the power supply. If it does, look in the instruction manual for corrective adjustments.

Avoid improper remote-programming connections

D1. Carefully note and follow the powersupply manufacturer's instructions for strapping patterns and correct connection terminals for remote programming.

Different terminals, and many different connection patterns are possible. The proper ones depend upon the power-supply design, whether the programming input will be resistance, voltage, or current, and whether remote control will be exercised over the power-supply voltage loop or its current loop, or both (Fig. 11).

D2. Using shielded two-wire cable, connect the power-supply progiamming terminals to the remote-programming source.

Do not use the shield as one of the programming conductors. With most supplies, the programming current (10 mA or less) associated with resistance programming the voltage loop can be found by taking the reciprocal of the specified programming coefficient (e.g., 1000 ohms volt $=1 \mathrm{~mA}$ programming current).

D3. Connect one end of the shield to the DCCP. Leave the other end unconnected.

D4. Check that programming leads and source will not contribute to output drift, noise, etc.

The wire size of the programming leads must be adequate to withstand any programming surges. Consider the effects of any large capacitive storage that has to be charged or discharged through the programming leads. The temperature coefficient of very long programming leads may degrade power-supply temperature coefficient and stability specifications. This is particularly true if the power supply is well regulated, or the programming leads are subjected to considerable ambient temperature changes, or when programming is done with low resistance values.

Programming resistors should be wire-wound for low noise and surge immunity, have a temperature coefficient (TC) of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less, depending on the power supply's inherent TC, and be operated at less than one-tenth their power rating to insure that self-heating does not substantially influence TC and noise performance.

Voltage or current sources used to program power supplies must be free of drift, ripple, noise, etc., to the same degree as desired in the power-supply output. Remember that a percentage change in the output of a remote voltage or current programming source causes the same percentage change in the power-supply output.

D5. Eliminate any possibility of an opencircuit remote-programming path that might occur on either a long-term or transient basis.

Such open-circuit conditions are likely if the remote-programming path includes any switch, relay, or connector contacts. When resistance is being programmed, any interruption of the programming path, however momentary, is interpreted by the power supply the same as an intentionally programmed high-resistance value. The power-supply output responds by rising rapidly toward the maximum rectifier voltage. By using make-before-break switches and series programming resistor strings, instead of selecting one of several parallel programming resistors, programming overshoots and undershoots can be avoided. With remote voltage or current inputs, an opencircuit programming path usually results in the power-supply output falling to zero or near zero.

D6. To provide added protection against excessive output due to programming inputs, add protective zener diodes directly across the power-supply programming terminals.

When resistance programming the output voltage with a remote resistance input, nearly all power-supply designs are such that a zener diode connected across the programming terminals will prevent the power-supply output voltage from exceeding the zener-diode breakdown voltage, regardless of program resistance value. This method also limits the output voltage to the zener value in the event the programming path becomes open-circuited. The zener diode should have a current rating equal to or greater than the powersupply programming current, which is usually the inverse of the programming coefficient.

When the output is programmed using a remote voltage or current source, the use of a zener diode across the programming terminals will prevent the power-supply output from exceeding a
predetermined limit, even though the programming source may provide an excessively high input command (Fig. 12). The relationship between the zener diode and the input limit value depends on the power-supply design and the programming connection. In any case it can be determined by considering the power supply as equivalent to an operation amplifier. The zener diode must have a current rating equal to or greater than the largest current that the remoteprogramming source can provide. In some cases the power rating of the zener diode can be reduced by a fixed resistance in series with the programming path.

Avoid improper ac power input connections

The last pitfall to optimum power-supply performance involves the ac power connections.

> E1. Retain ac (hot), acc (cold) and thirdwire safety ground continuity without accidental interchange from ac power outlet to the power-supply input terminals.

Accidental interchanging of ac and safety ground leads may result in the power-supply chassis being elevated to an ac potential equal to the line input voltage. This is a potentially lethal shock hazard if the chassis is not grounded or, if the chassis is grounded, blown fuses or circuit breakers may result.

If ac and acc are accidentally interchanged, the power-supply switches and fuses are thereby placed in series with the cold side of the power line instead of the hot side. If the power-supply fuse later opens as the result of performing its normal protective function, the hot side of the power line will then be connected to exposed components within the power supply.

Accidental interchanging of acc and ground leads places the chassis at the acc potential, giving rise to circulating ground currents flowing through the power-supply chassis and other associated ground return paths. The result is excessive power-supply output ripple and malfunction of associated instruments.

E2. If an autotransformer (or isolation transformer) is connected between the ac power source and the power-supply input terminals, be sure it is rated for at least 50% of the maximum rms current required by the power supply, and has its common terminal connected to the acc (not ac) terminals of both the power supply and the input power line.

Because a power-supply input circuit does not draw current continuously, the input current
wave is not sinusoidal, and the peak-to-rms ratio is generally greater than $\sqrt{2}$, and can be as high as two or more at full output. To avoid autotransformer saturation, with consequent limiting of peak input current, the autotransformer must have a rating higher than is suggested by the power supply's rms input current. Failure to follow this precaution may result in the power supply not meeting its specifications at full output voltage and current, combined with low input-line-voltage.

If ace is not connected to the common terminal of the autotransformer, the input acc terminal of the power supply will have a higher than normal ac voltage connected to it, contributing to a shock hazard and, in some cases, greater output ripple.

> E3. Do not use an ac input-line regulator to feed a well-regulated power supply without first checking with the power-supply manufacturer.

Such regulators tend to increase the impedance of the ac line in a resonant fashion, and can cause malfunctioning of the power supplies if they employ SCR or switching-type regulators or preregulators. Since the control action of the most common line-voltage-regulators is accompanied by a change in the ac output waveshape, their advantage in providing a constant rms input to a power supply is practically nil.

E4. Be sure that the ac line wire is of adequate size.

This check is generally not necessary if the power supply comes furnished with its own power cord. However, many larger power supplies require the connection of ac power in accordance with local electrical codes. Manufacturers sometimes prefer not to supply an ac connecting cable with the unit rather than risk providing something that might violate such local codes.

When connecting ac to a power supply for which the manufacturer has not provided an ac cable it is necessary to use a wire size that is at least rated to carry the maximum powersupply input current. A check should be made to determine whether a still larger wire size will be required to retain a sufficiently low impedance from the ac service outlet to the powersupply input terminals, particularly if a long ac cable is involved.

As a rough guideline, it is suggested that any user-provided ac input cable should employ wire size sufficient to insure that its IZ drop at maximum rated power supply input current will be equal to or less than 1% of the nominal line voltage. -

FEATURES

- A new breakthrough in the science of aerodynamics
- Compact - $411 / 16^{\prime \prime}$ square and ONLY 11/2" deep
- Lightweight - only 1.2 lbs.
- Quiet - as low as 40 db (SIL) on 60 Hz power
- Economically priced
- U.L. Yellow Card Recognition (File No. E31293)
- Impedance protected

New aerodynamic principles by Rotron permit the Centaur fan to achieve greater aerodynamic efficiencies than ever before from axial flow fans - and with low acoustical disturbance and compact size.
The Centaur with its computer designed five-bladed impeller molded of high impact polycarbonate is precisely matched to a powerful shaded pole motor - available with either oil-impregnated sleeve bearings or precision ball bearings lubricated for life. The recommended operating ambient temperature is $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ with sleeve bearings, and $-40^{\circ} \mathrm{C}$ to $+72^{\circ} \mathrm{C}$ with ball bearings. The motor is mounted to a spider of die cast aluminum which is in turn assembled to a venturi of high temperature resistant black phenolic.
The Centaur will deliver 120 cfm of air, free delivery operating at 115 volts, 60 Hz , or 100 cfm free delivery at 230 volts, 50 Hz making it possible for the design engineer to select a fan to deliver the same cfm on European power sources as Muffin fans or Sentinel fans at 60 Hz power used in the U.S.A.

The Centaur is designed to be physically interchangeable with the Muffin fan or the Sentinel fan.

For complete technical details write today to Rotron Incorporated, Woodstock, N.Y. 12498.

Make sure you pick the right power supply

In selecting a power supply, designers must choose from a wide variety of types. Basically all supplies can be classified into two major subdivisions, linear and nonlinear.

The linear power supply is the most popular because of its ability to have simultaneously highspeed transient response, very good voltage and current regulation and very low output ripple. Although generally quite reliable, it has the disadvantage of dissipating as much heat into its own enclosure and the surrounding environment as the load wattage it supplies.

There are three types of nonlinear powersupply systems in use today: ferroresonant, switching-transistor-regulated and SCR-regulated. These types all contain a nonlinear element that is turned on and off, thus achieving high efficiency in the semiconductors used.

The ferroresonant type has higher losses than the equivalent standard transformer, since during part of each cycle a portion of the core is saturated. This increases the hysteresis losses in the iron. In terms of reliability, the ferroresonant type is the most reliable because it has fewer components.

The typical ferroresonant power supply consists of saturating transformers, an oil-filled ac capacitor, a pair of rectifiers and an electolytic capacitor or pi filter. Although the paper-wound capacitors do not have a wearout mode as the

Robert Hyde, Chief Engineer, Power/Mate Corp., Hackensack, N.J.
electrolytics do, they carry large ac currents. This heats up depending on their dielectric losses and cannot be used in high ambient temperatures.

Although the switching-transistor types run cooler, due to their high efficiency, the switches have a failure mechanism not covered by MIL HBK 217. The high-voltage switching transistor supply depends on its control circuit. If the driver section should fail, leaving one transistor to carry the load, the high-frequency transformer can become dc unbalanced and tend to saturate. This increases the current switching transistor by several times and heats up the junction. Even slightly unbalanced inputs in the square or quasisquare wave increase the exciting magnetizing current, and the transformer must be gapped to prevent saturation.

If one transistor is left on and the other off, and if a dc path is available, transistor failure is immediate. Many of the newer types of circuits use a half bridge that has no normal de path, and this has the disadvantage of destroying both transistors if one fails since they are across the dc voltage.

A type that has not been fully exploited in computer applications is the SCR-regulated. These power supplies have more parts than the ferroresonant types, but they have the advantage of better line and load regulation, output voltage and current limiting adjustment. The power supply is very efficient and does not contribute to computer cooling problems. Today's state of the art for various types of regulated dc power supplies is shown in the table. - ${ }^{-}$

Table. Major computer power-supply specifications

Type	Input	Rectifier	Filter	Output adjust \%	Line reg \%	Load reg \%	Current reg \%	Cost \$/output	Regulation means	Efficiency avg. \%	Features available		
											Over voltage	Over current	Cooling
Line regulatéd	ferroresonant xformer	SI	C, LC	none	1	$3 \cdot 10$	25	1/W	same as input	75	ext	int	conv
Narraw range (slor)	xformer	SI	C	$\pm 5 \cdot 20$	0.03	0.03	25	1/W	transistar (silican)	40	8xt	int	canv
Wide range	x former	SI	C	100	0.01	0.01	0.1	2NW	transistor (silicon)	30	ext	int	conv
High wattage:													
$>500 \mathrm{w}$	x former	SI	C. LC	100	0.1	0.1	1	0.50/ W	SCR	75	- ext	int	blower
Low ripple	xformer	SI	C, LC	limited	0.1	0.1	1	0.60/W	SCR \& transistor filter SCR, transistar switch	70	ext	int	blawer
Good regulation	xformer	SI	C	100	0.01	0.01	0.1	0.70/W	\& pass	50	ext	int	blower
High efficiency:													
Small size	rectifier	SI	C	100	0.05	0.05	0.1	1/W	switching transistor (Hv)	80	ext	int	conv
Nominal size High wattage	xformer rectifier	SI SI	C	50 50	0.05 0.05	0.05	0.1	$1 / \mathrm{W}$ 0.50 W	switching transistor (Lv)	75	ext	int	conv
High wattage High valtage:	rectifier	SI	C	50	0.05	0.05	0.1	0.50/W	switching SCA (Hv)	75	ext	int	conv
Narrow range ($100 \cdot 300 \mathrm{~V}$)	xformer	SI	C	30	0.03	0.03	0.1	1/W	transistor (Hv)	40	ext	int	conv
Wide range	x former	SI	C	100	0.01	0.01	0.1	1.50/W	transistor 2 stage (Hv)	30	ext	int	conv
$300 \cdot 3000 \mathrm{~V}$	x former	SI	C	100	0.01	0.01	0.1	2/W	vac. tube \& S.C. control	25	ext	int	conv
High current	xformer	SI	C	100	0.1	0.1	0.1	1.50/W	SCR (usually primary)	60	ext	int	option
5-50 kV	xformer	SI	C mult.	50	0.05	0.05	option	$1 / \mathrm{W}$	tube	30	ext	int	aption

AIRTBORTE POWER SUPPITES wirmownurea

CHARACTERISTICS

INPUT:
115 VAC, $400 \mathrm{H}_{\pi}, 3$ phase, per MIL-Std-704
OUTPUTS:

+ 28 Volts@ 6 amps
+15 Volts@ 5 amps
-15 Volts@ 5 amps
- 5 Volts@ 5 amps

REGULATION:
$\pm 1 \%$ line, load and temperature
RIPPLE:
25 mv Peak to Peak
PROTECTIVE CIRCUITRY:

1. Output protection from short circuits for indefinite period without damage.
2. Over voltage - in the event of regulation failure, supplies are terminated in less than 20 microseconds.
3. Overload - supply is protected to prevent damage resulting from overloading in any one of the outputs.

OTHER POWER SUPPLY CAPABILITIES

High Power TWT Low Noise TWT Display tube/CRT Klystron

Chances are that Keltec Florida has the Power Supply design to satisfy your requirements. If not, we can supply customdesigned units for optimum performance in your system. May we be of assistance? Keltec is eager and willing to meet most any challenge.

KELTEC FLORIDA
A DIVISION OF AIKEN INDUSTRIES, INC.
P. O. DRAWER 1348, FORT WALTON BEACH, FLORIDA 32548
(904) 651-1210 • TWX 510-730-7775

	Mfr	Model	OUTPUT		REGULATION			Notes	Price$\$$	Mfr	Model	OUTPUT		REGULATION			Notes	$\begin{array}{\|l} \text { Price } \\ \$ \end{array}$
			Range Volts	Max Amps	Line \%	$\begin{array}{\|l\|} \hline \text { Load } \\ \% \end{array}$	Ripple mV					Range Volts	Max Amps	$\begin{gathered} \text { Line } \\ \% \end{gathered}$	$\begin{gathered} \text { Load } \\ \% \end{gathered}$	$\begin{aligned} & \text { Ripple } \\ & \mathrm{mV} \end{aligned}$		
$\begin{gathered} \mathrm{HC} \\ 1 \end{gathered}$	Int Cont	CPS500-1	2	25	0.05	0.05	5	\dagger	995	Sorensen	QSB6-4	5-9	4.4	± 0.015	± 0.015	0.25	abcdej	115
	- Trygon	LH54-14	2.5	14	0.01	0.01	1		229	Sorensen	QS86-8	5-9	8.8	± 0.015	± 0.015	0.25	abcdej	170
	- ERA	SRO2 18	1-3	15	± 0.01	0.05	0.8	abd	430	- Sorensen	QSB6-15	5-9	16.5	± 0.015	± 0.015	0.25	abcdej	300
	* ERA	SRO225	1-3	25	± 0.01	0.05	0.8	abd	515	*Sorensen	QS86-30	5-9	33	± 0.015	± 0.015	0.25	abcdej	400
	Chalco	T0458F5	2-3.5	58	0.005	0.005	0.01\%	abdi	510	*JE	PVC-10-4	0-10	4	0.01	0.01	0.25	abcde	195
	Chalco	T0497F7	2-3.5	97	0.005	0.005	0.01\%	obdi	655	- NJE	LVCII-10-4	0-10	4	0.01	0.01	0.25	abcde	171
	Beco	301	0-4	7.2	0.01	0.1	0.2	dep	reg	- Hyp	HY-VS-10	0-10	4	0.01	0.01	0.5	abcdej	199
	* H-P	6463A	0-4	2000	50 mV	50 mV	280	abcdey	3500		-4							
	*Trygon	L3R-4-40	2.5-4. 5	40	± 0.005	0.005	0.5		470	- NJE	PVC-10-8	0-10	8	0.01	0.01	0.25	abcde	295
	*Trygon	L5R4-70	2.5-4. 5	70	± 0.005	0.005	0.5		575	- $\mathrm{H}-\mathrm{P}$	6282A	0-10	10	0.01	0.01	0.5	obede	350
$\begin{gathered} \text { HC } \\ 2 \end{gathered}$	- ERA	SR	0-5	4	± 0.01	0.05	0.8	abd	325	Holt	275	10	10	0.1	0.05	0.02	cd	2060
	* ERA	CP55	5	6.5	0.05	0.03	1	abd	145	Prec Stan	104	0-10	10	0.005	0.01	0.1	abcdef	269
	Wanless	PSS1-5	5	7.5	± 0.005	± 0.01	0.75	w	275	- Techi	LA 10-12M	0-10	12	± 0.1	± 0.15	0.2\%	abode	370
	- ERA	SR058	0-5	8	± 0.01	0.05	0.8	obd	390	Hyp	HY-S1-10-	0-10	12.5	0.01	0.01	0.5	abcdej	299
	*ERA	CP5 10	5	13	0.05	0.03	1	abd	185		12.5							
	Wanless	PSS2-5	5	15	± 0.005	± 0.01	0.75	w	325	Prec Stan	109	0-10	15	0.005	0.01	0.1	abcdef	370
	*ERA	CP517	5	22	0.05	0.03	1	abd	230	-Mid-East	HW20-15	0-10	15	0.01	0.01	1	abcde	310
	- ERA	CP525	5	32	0.05	0.03	1	abd	310	- H -P	6256B	0-10	20	0.01	0.01	0.2	abcde	450
	Hyp	HY-SI-5-	0-5	50	0.01	0.01	2	abcdei	499	Hyp	HY-S1-	0-10	25	0.01	0.01	0.5	abcdei	499
	- ERA	CP550	5	65	0.05	0.03	1	abd	495	-Techni	LA 10-25M	0-10	25	± 0.01	± 0.15	0.2\%	abcde	410
$\begin{gathered} \mathrm{HC} \\ 3 \end{gathered}$	Plastic	LV5-250	4.9-5.1	2.5	0.05	0.05	3	abdfghi	122	-	6259B	0-10	50	0.01	0.01	0.5	abcde	650
	Plastic	LV5-750	4.9-5.1	7.5	0.05	0.05	3	abdfghi	161	* $\mathrm{H}-\mathrm{P}$	6260B	0-10	100	0.01	0.01	0.5	abcde	825
	- Trygon	LQS4-3.8	2.5-5.5	3.8	0.01	0.01	0.5		135	Hyp	HY-51-	0-10	100	0.01	0.01	0.5	abcdei	1240
	* H-P	6384A	4-5.5	8	1 mV	1 mV	1	cde	220		10-100							
	- Trygan	LQS4-8.4	2.5-5.5	8.4	0.01	0.01	0.5		174	EMC	SCR10-250	0-10	250	0.1	0.1	5	abode	1300
	- Kepco	CPS6-10M	0-6	10	0.0005	0.005	0.2	abcde	366	EMC	SCR10-500	0-10	500	0.1	0.1	5	abcde	1700
	* Kepco	JQE6-10M	0-6	10	0.0005	0.005	0.2	abcde	289	*Trygon	LQS8-3. 1	6.5-10.5	3.1	0.01	0.01	0.5		139
	*Kepco	JQE6-22M	0-6	22	0.0005	0.005	0.2	obede	520	*Trygan	LQS8-6.5	6.5-10.5	6.5	0.01	0.01	0.5		189
	*Kepco	CPS6-22M	0-6	22	0.0005	0.005	0.2	obcde	585	*Trygon	LH58-11.5	6.5-10.5	11.5	0.01	0.01	1		239
	*Kepco	JQE6-45M	0-6	45	0.0005	0.005	0.2	abcde	625	-Trygon	LH58-21	6.5-10.5	21	± 0.005	0.005	1		320
$\begin{gathered} \mathrm{HC} \\ 4 \end{gathered}$	* Kepeo	CPS6-45M	0-6	45	0.0005	0.005	0.2	abede	660	*rygon	L3R8-25	6.5-10.5	25	± 0.005	0.005	0.5		470
	*Kepco	JQE6-90M	0-6	90	0.0005	0.005	0.2	abcde	977	-Trygan	L5R8-50	6.5-10.5	50	± 0.005	0.005	0.5		595
	*Kepco	CPS6-90M	0-6	90	0.0005	0.005	0.2	abcde	995	Dynage	KHC10/10	9-11	4	± 0.05	± 0.05	2	abdfg	325
	Wanless	SSS1-1	3-6.5	15	± 0.03	± 0.03	0.5	bv	250	*Trygan	LQS 10-	8.5-11.5	6.5	0.1	0.01	0.5		189
	Wanless	SSS2-1	3-6.5	25	± 0.03	± 0.03	0.5	bv	315		6.5							
	- Trygon	HH7-40\%	0-7	4	0.01	0.01	0.5		189	-Trygon	LHS10-	8.5-11.5	11.5	0.01	0.01	1		239
	- ERA	MS074	0-7	4	± 0.01	0.05	0.8	abdk	455		11.5							
	Wanless	LABI	0-7	5	± 0.05	± 0.05	0.75	de	125	*Trygon	LHS 10-21	8.5-11.5	21	± 0.005	0.005	1		320
	Power Des	6050	0-7	5	0.01	0.01	1	abcd	195	-Trygon	L3R10-25	8.5-11.5	25	± 0.005	0.005	0.5		505
	*ERA	MS078	0-7	8	± 0.01	0.05	0.8	abdk	595	*Trygon	L5R 10-50	8.5-11.5	50	± 0.005	0.005	0.5		620
$\left\lvert\, \begin{gathered} \mathrm{HC} \\ 5 \end{gathered}\right.$	Chalco	H0739F5	2-7	38.5	0.005	0.005	0.01\%	abdi	510	*ERA	MS124	11-12	4	0.01	0.05	0.8	abdk	455
	Chalco	H0744F5	3.5-7	44	0.005	0.005	0.01	abdi	510	Wanless	PSSI-12	12	5	± 0.005	± 0.01	0.75	w	275
	Chalco	T0749F5	4.5-7	49.2	0.005	0.005	0.01\%	abdi	510	*ERA	MS128	11-12	8	0.01	0.01	0.05	abdk	595
	Chalco	H0764F7	2-7	64	0.005	0.005	0.01	abdi	665	Wanless	PSS2-12	12	10	± 0.005	± 0.01	0.75	w	325
	Chaleo	H0774F7	3.5-7	73.5	0.005	0.005	0.01\%	abdi	665	Power	1210S	0-12	10	0.01	0.01	1.5	abcd	329
	Chalco	T0782F7	4.5-7	82	0.005	0.005	0.01\%	obdi	655	Des								
	* H-P	62814	0-7.5	5	0.01	5 mV	0.2	abede	210	Ailas	P3070	12	30	0.5	1	5		880
	-Sorensen	QRE7.5-10	0-7.5	10	± 0.01	± 0.01	0.3	abcdei	345	-Kepco	K012-100M	$0-12$	100			30	abcde	1095
	*Sorensen	ORE7. 5-20	0-7.5	20	± 0.01	± 0.01	0.3	abede	495	Plastic	LV12-400	11.75-	4	0.05	0.05	3	abdfghi	139
	*Sorensen	QRE7.5-50	0-7.5	50	± 0.01	± 0.01	0.3	abcdei	645			12.25						
$\begin{gathered} \mathrm{HC} \\ 6 \end{gathered}$	*Trygon	LQS6-3.3	4.5-7.8	3.3	0.01	0.01	0.5			Plastic	LV12-600	11.75-	6	0.05	0.05	3	obdfghi	161
	*Trygon	LOS6-7.7	4.5-7.8	7.7	0.01	0.01	0.5		179			12.25						
	- Trygon	LH56-13.5	4.5-7.8	13	0.01	0.01	1		229	Plastic	LV12-800	11.75-	8	0.05	0.05	3	abdfghi	178
	- Trygon	LH56-24	4.5-7.8	24	0.01	0.01	1		320			12. 25						
	*Trygon	L3R6-40	4.5-7.8	40	± 0.005	0.005	0.5		470	Dynage	KHC12/12	11-13	3.6	± 0.05	± 0.05	2	obdfg	325
	Trygon	L5R6-70	4.5-7.8	70	± 0.005	0.005	0.5		595	${ }^{\text { Kepco }}$	SM14-7AM	0-14	7	0.01	0.05	1	bcde	427
	Beco	302	0-8	3.6	0.01	0.1	0.2	dep	reg	*Kepco	SM14-	0-14	15	0.01	0.05	1	bode	552
	-Power/	BP-8D	0-8	4	0.01	0.01	0.25	abcdej	129		15AM							
	Mate									*NJE	TC-14-	5-14	15	0.5	0.5	1000	abcd	365
	*Power/	BP-8E	0-8	6.5	0.01	0.01	0.25	abede ${ }^{\text {j }}$	210		15M							
	Mate									*NJ	TC-1	5-14	30	0.5	0.5	1000	abcd	500
	*Power/	BP-8F	0-8	9	0.01	0.01	0.25	abcdei	235		30M							
	Mate									${ }^{*}$ Kepco	SMI430AM	0-14	30	0.01	0.05	1	bode	762
$\begin{gathered} \mathrm{HC} \\ 7 \end{gathered}$	-Power/	BP-8G	0-8	12	0.01	0.01	0.25	abcde ${ }^{\text {j }}$	290	*NJE	TC-1	5-14	200	0.5	0.5	1000	abcd	1550
	Mate										200M							
	*Kepco	KS8-15M	0-8	15	0.005	0.01	1	abede	657	*rygon	LQS 12-5.7	11-15	5.7	0.01	0.01	0.5		174
	*Power/	$\mathrm{BP}-8 \mathrm{H}$	0-8	15	0.01	0.01	0.25	abcde ${ }^{\text {i }}$	345	*Kepco	CPS15-6M	0-15	6	0.0005	0.005	0.2	abcde	366
	Mate									*Kерсо	JQE 15-6M	0-15	6	0.0005	0.005	0.2	abcde	289
	*Kepco	KS8-25M	0-8	25	0.005	0.01	1	abcde	798	Hyp	HY-SI-	0-15	10	0.01	0.01	0.5	abcdei	299
	*Trygon	M3P8-250V	0-8	25	± 0.005	0.005	1		575		15-10							
	*Kepco	K58-50M	0-8	50	0.005	0.01	1	abcde	1103	*Kepco	PR15-10M	0-7.5-15	10	± 1	2	2\%	cde	378
	*Trygon	M5P8-500V	0-8	50	± 0.005	0.005	1		750	*Tryon	LHS 12-10	11-15	10	0.01	0.01	0.5		229
	*Trygon	M7C8-100-	0-8	100	± 0.005	0.005	1		995	- Керсо	CPS 15-12M	0-15	12	0.0005	0.005	0.2	abcde	585
		OV								*Kерсо	JQE 15-	0-15	12	0.0005	0.005	0.2	abcde	520
	*Kepco	KS8-100M	0-8	100	0.005	0.01	1	obede	1523		12M							
	* H -P	6464A	0-8	1000	25 mV	25 mV	80	abcdey	3300	${ }^{*}$ Trygon	LHS 12-18	11-15	18	0.01	0.01	0.5		320

Reader service numbers for literature and application notes, see page D6

Power Supply Specs:

Voltage Regulation	(Load) $0.01 \%+1 \mathrm{mv}$ (Line) 0.005% Current Regulation (Load) $1.0 \%+10 \mathrm{ma}$ (Line) $1.0 \%+10 \mathrm{ma}$ Meters (RMS)250 microvolts Voltmeter -3 ranges Ammeter -3 ranges

Plug in I.C. Regulator Cards Voltage Resolution (3 mv-15 mv)

Digital Readout Specs:

Power Supply Output Readout
Voltage - (19.99V-199.9V) Two Ranges Current* (.5-1.0-2.0-4.0A) Single Range

External Voltage Readout

Voltage - (19.99V-199.9V) Two Ranges
To be applied into DVM on front panel terminals.
Three Digit Display with " 1 " overrange
Readout Accuracy 0.1\%

* current readout will depend on max. rating of mated power supply

FEATURES

- Dial your Output Voltage or Current and Readout on Display.
- Improved Resolution and Voltage/Current Accuracy.
- BCD Signal available for Digital Printout.
- Useable as DVM to read external voltage.

	Ratings			Ratings			
Model No.	Voltage	Current	Price(1)	Model No.	Voltage	Current	Price(1)
LVC II/DVM 10-2	$0-10 \mathrm{~V}$	$0-2 \mathrm{~A}$	$\$ 399$	LVC II/DVM 10-4	$0-10 \mathrm{~V}$	$0-4 \mathrm{~A}$	$\$ 446$
LVC II/DVM 20-1	$0-20 \mathrm{~V}$	$0-1 \mathrm{~A}$	$\$ 399$	LVC II/DVM 20-2	$0-20 \mathrm{~V}$	$0-2 \mathrm{~A}$	$\$ 446$
LVC II/DVM 50-.5	$0-50 \mathrm{~V}$	$0-.5 \mathrm{~A}$	$\$ 399$	LVC II/DVM 50-1	$0-50 \mathrm{~V}$	$0-1 \mathrm{~A}$	$\$ 446$

(1) Price includes Digital Readout as described above.

ALSO AVAILABLE WITH 0.01\% CURRENT REGULATION (PVC POWER SUPPLY)

Kenilworth, New Jersey 07033 / (201) 272-6000 / TELEFAX: FFP • TWX: (710) 996-5967

					regulation		Notes	${ }_{\text {Prect }}^{\text {Picc }}$	Mir	Notel	- ourpur	aeguation			
	Mir		bege	${ }_{\text {Max }}^{\text {max }}$, ${ }^{\text {Linem }}$						${ }_{\text {Nox }}$	Lood	\%		
${ }_{8}^{\text {rch }}$												$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.010,0 \\ & 0.0 .051 \\ & 0.21 \\ & 00.1 \\ & 0.1 \end{aligned}$		abcde	
9															
														$\begin{aligned} & \text { abcae } \\ & \text { abcde } \\ & \text { abcdej } \\ & \text { abcde } \\ & \text { abcdej } \end{aligned}$	
											p.0.05	$\begin{aligned} & 0.056 \\ & 0.050 \\ & 0.05 \\ & 0.05 \\ & 0.01 \\ & 0.01 \end{aligned}$	PR		
			$\left\lvert\, \begin{aligned} & 0.20 \\ & 0.20 \\ & 0.20 \\ & 0.20 \\ & 0.20 \end{aligned}\right.$									0.01 0.01 0.001 0.05 0.1 0.1 0.05 0.05	0.18 0.25 0.3 0.5 0.5 $\frac{5}{5}$ $\frac{8}{0.8}$ 0.8		
			$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} 0.20 \\ 0.20 \\ 0-20 \end{array}$												
			$4{ }_{4}^{0-2} \begin{aligned} & 0-2 \\ & 0-2 \end{aligned}$				abacei abces					$\begin{aligned} & 0.007 \\ & 0.05 \\ & 0.05 \\ & 0.001 \end{aligned}$	(esm	${ }_{\text {bed }}^{\substack{\text { bed }}}$	

We met their battery needs. What can we do for you?

When the Bogen Division of Lear Siegler Inc. designed its solid state Pagemaster-an ingenious pocket-sized device that enables a doctor on a call or a roving
 employee to be contacted wherever he may be-they needed a special kind of battery to power it. A battery tiny in size yet packed with energy. One that would far outlast ordinary batteries.
Naturally they turned to Mallory, makers of DURACELL, the amazing long distance power cell. And Mallory made it. A one-ounce DURACELL mercury battery that can last up to 1000 hours and can maintain about 80% of its energy up to two years in storage.

Among our 1000-plus existing battery types-one of which is our high-rate (HRA-2401) Alkaline battery series
recently developed for high-drain, low temperature applications-there may be one ready to meet your specifications. If not, we'll design one that will. As we did for Bogen.
For more information about Mallory battery systems, write: Technical Sales Department, Mallory Battery Company, a division of P. R. Mallory \& Co. Inc., South Broadway, Tarrytown, New York 10591. Telephone: 914-591-7000.
(In Canada: Mallory Battery Company of Canada Limited, Sheridan Park, Ontario.)

MAILORY
(24) Registered trademark of P. R. Mallory \& Co. Inc.

High Current Power Supplies

	Mfr	Model	OUTPUT		REGULATION			Notes	$\begin{gathered} \text { Price } \\ \$ \end{gathered}$	Mfr	Model	OUTPUT		REGULATION			Notes	$\begin{aligned} & \text { Price } \\ & \$ \end{aligned}$
				Max Amps	Line \%	$\begin{gathered} \text { Lood } \\ \% \end{gathered}$	$\begin{aligned} & \text { Ripple } \\ & \mathrm{mV} \text { 保 } \end{aligned}$					Range Volts	Max Amps	$\begin{gathered} \text { Line } \\ \% \end{gathered}$	$\begin{gathered} \text { Lood } \\ \% \end{gathered}$	Ripple mV		
$\begin{aligned} & \mathrm{HC} \\ & 15 \end{aligned}$	- ERA Chalco - Trygon Chalco Chalco Chalco * Trygon * ERA - Sorensen	WR338 H3315F5 L3R28-15 T3318F5 H3324F7 T3330F7 L5R28-30 SL36-4M QSB28-4	$\begin{aligned} & 1-33 \\ & 16-33 \\ & 24-33 \\ & 22-33 \\ & 16-33 \\ & 22-33 \\ & 24-33 \\ & 0-36 \\ & 18-36 \end{aligned}$	9.6 14.5 15 17.8 24 30 30 4 4.4	$\begin{aligned} & \pm 0.01 \\ & 0.005 \\ & \pm 0.005 \\ & 0.005 \\ & 0.005 \\ & 0.005 \\ & +0.005 \\ & \pm 0.01 \\ & \pm 0.005 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.005 \\ & 0.005 \\ & 0.005 \\ & 0.005 \\ & 0.005 \\ & 0.005 \\ & 0.05 \\ & \pm 0.005 \end{aligned}$	0.8 0.01% 0.5 0.01\% 0.01 0.01% 0.5 1 0.25	abd abdi abdi abdi abdi abcde abcdej	$\begin{aligned} & 305 \\ & 510 \\ & 470 \\ & 510 \\ & 665 \\ & 655 \\ & 565 \\ & \\ & 290 \\ & 255 \end{aligned}$	Techni * $\mathrm{H}-\mathrm{P}$ *Trygon *Sorensen ${ }^{*}$ Mid-East * $\mathrm{H}-\mathrm{P}$ "Sorensen *Trygon * $\mathrm{H}-\mathrm{P}$	LA40-25M $6434 B$ M5C36-30 QRC40-30A RA40-30 6268B DCR40-35A M7C40-50 6269B	$\begin{aligned} & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 40 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & 18 \mathrm{mV} V \\ & \pm 0.005 \\ & \pm 0.005 \\ & 0.01 \\ & 0.01 \\ & \pm 0.075 \\ & \pm 0.005 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \pm 0.15 \\ & 40 \mathrm{mV} \\ & 0.005 \\ & \pm 0.005 \\ & 0.01 \\ & 0.01 \\ & \pm 0.075 \\ & \\ & 0.005 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.2 \% \\ & 40 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0.4 \% \\ & 1 \\ & 1 \end{aligned}$	abcde abcde abcde ${ }^{\text {i }}$ abcde abcde ${ }^{i}$ abcde	$\begin{aligned} & 530 \\ & 550 \\ & 690 \\ & 775 \\ & 665 \\ & 695 \\ & 750 \\ & 975 \\ & 875 \end{aligned}$
$\begin{aligned} & \mathrm{HC} \\ & 16 \end{aligned}$	* NJE Power Des Power Des * Kepco - Kepco - Kepco * ERA - Sorensen * H-P	$\begin{aligned} & \text { RVC36-5M } \\ & 3650 S \\ & 3650 R \\ & \text { KS36-5M } \\ & \text { SM36-5AM } \\ & \text { JQE36-6M } \\ & \\ & \text { SL36-8M } \\ & \text { QSB28-8 } \\ & \text { 6433B } \end{aligned}$	$\begin{aligned} & 0-36 \\ & 0-36 \\ & 0-36 \\ & 0-36 \\ & 0-36 \\ & 0-36 \\ & \\ & 0-36 \\ & 18-36 \\ & 0-36 \end{aligned}$	5 5 5 5 5 6. 8 8.8 10	0.01 0.01 0.01 0.005 0.01 0.0005 ± 0.01 ± 0.005 18 mV	0.01 0.01 0.01 0.01 0.05 0.005 0.05 ± 0.005 36 mV	$\begin{aligned} & 1 \\ & 1.5 \\ & 0.5 \\ & 1 \\ & 1 \\ & 0.2 \\ & 1 \\ & 0.25 \\ & 36 \end{aligned}$	abede abed abcde abcde bede abcde abcde abcdej abcde	$\begin{aligned} & 375 \\ & 299 \\ & 350 \\ & 552 \\ & 415 \\ & 520 \\ & 355 \\ & 325 \\ & 370 \end{aligned}$	EMC ${ }^{*}$ Sorensen EMC *Sorensen EMC ${ }^{*}$ Sorensen *Sorensen	SCR40-60 DCR40-60A SCR40-125 DCR40- 125A SCR40-250 DCR40- 250A DCR40- 500A	$\begin{aligned} & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \end{aligned}$	60 69 125 138 250 275 550	$\begin{aligned} & 0.1 \\ & \pm 0.075 \\ & 0.1 \\ & \pm 0.1 \\ & 0.1 \\ & \pm 0.1 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & \pm 0.075 \\ & 0.1 \\ & \pm 0.1 \\ & 0.1 \\ & \pm 0.1 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & 5 \\ & 0.4 \% \\ & 5 \\ & 160 \\ & 5 \\ & 160 \\ & 0.4 \% \end{aligned}$	abcde abcde ${ }^{i}$ abcde abcde ${ }^{i}$ abcde abcde ${ }^{i}$ abcdej	$\begin{aligned} & 1010 \\ & 925 \\ & 1375 \\ & 1375 \\ & 2500 \\ & 2340 \\ & 3850 \end{aligned}$
$\begin{aligned} & \mathrm{HC} \\ & 17 \end{aligned}$	Power Des - Kepco * Kepco * NJE * ERA * Kepco * NJE - Kepco * Kepco	36 100R K536-10M SM36-10AM SY36-10M SL-36-12M JQE36-13M RVC-36- 15M KS36-15M SM36-15AM	$\begin{aligned} & 0-36 \\ & 0-36 \\ & 0-36 \\ & 10-36 \\ & 0-36 \\ & 0-36 \\ & 0-36 \\ & \\ & 0-36 \\ & 0-36 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.005 \\ & 0.01 \\ & 0.01 \\ & \\ & \pm 0.01 \\ & 0.0005 \\ & 0.01 \\ & \\ & 0.005 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.05 \\ & 0.01 \\ & \\ & 0.05 \\ & 0.005 \\ & 0.01 \\ & \\ & 0.01 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0.2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	abcde abcde bcde abed abcde abcde abcde abcde bede	$\begin{aligned} & 463 \\ & 657 \\ & 552 \\ & 390 \\ & 455 \\ & 625 \\ & 545 \\ & 767 \\ & 657 \end{aligned}$	NJE Chalco Chaleo Chalco Cholco *Kepco Deltron Deltron	SP4 1-20 SP4 1-30 H451IF5 T4514F5 H4518F7 T4523F7 K045-30M OEM	$\begin{aligned} & 10-41 \\ & 10-41 \\ & 22-45 \\ & 29-45 \\ & 22-45 \\ & 29-45 \\ & 0-45 \\ & 3-48 \\ & 3-48 \end{aligned}$	20 30 11 13.8 18.4 23 30 9 36	50 mV $50 \mathrm{~m} V$ 0.005 0.005 0.005 0.005 1 0.05 0.005	$\begin{aligned} & 100 \mathrm{mV} \\ & 100 \mathrm{mV} \\ & 0.005 \\ & 0.005 \\ & 0.005 \\ & 0.005 \\ & 1 \\ & 0.05 \\ & 0.005 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 0.01 \% \\ & 0.01 \% \\ & 0.01 \% \\ & 0.01 \% \\ & 20 \\ & 1 \\ & 0.5 \end{aligned}$	bed bed abdi abdi abdi abdi abcde abdgi abdgi	$\begin{array}{\|l} 800 \\ 940 \\ 510 \\ 510 \\ 665 \\ 655 \\ 895 \\ 75- \\ 85 \\ 79- \\ 299 \end{array}$
$\begin{aligned} & \text { HC } \\ & 18 \end{aligned}$	* Trygon * NJE * ERA - NJE Power Des * Kepco * Kepco * NJE * H-P	M5P36-15 $S Y-36-20 M$ SL36-25M RVC-36- 25M 36250A JQE36-25M KS36-30M SY-36-30M 6456B	$\begin{aligned} & 0-36 \\ & 10-36 \\ & \\ & 0-36 \\ & 0-36 \\ & \\ & 0-36 \\ & 0-36 \\ & 0-36 \\ & 10-36 \\ & 0-36 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 25 \\ & 25 \\ & \\ & 25 \\ & 25 \\ & 30 \\ & 30 \\ & 100 \end{aligned}$	$\begin{aligned} & \pm 0.005 \\ & 0.01 \\ & \\ & \pm 0.01 \\ & 0.01 \\ & \\ & 0.01 \\ & 0.0005 \\ & 0.005 \\ & 0.01 \\ & 0.2 \% \end{aligned}$	$\begin{array}{\|l\|} 0.005 \\ 0.01 \\ \\ 0.05 \\ 0.01 \\ \\ 0.01 \\ 0.005 \\ 0.01 \\ 0.01 \\ 0.2 \% \end{array}$	$\begin{array}{\|l} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.5 \\ 0.2 \\ 1 \\ 1 \\ 160 \end{array}$	abcd abcde abcde abcde abcde abcde abcd abcdey	615 485 650 690 875 977 1208 645 1275	R-S EMC *NJE *NJE *Trygon *Trygon *Trygon *Trygon *Kepco	SC048-40- 125 NG RS50/5 SCR50-200 TC-52-6M TC-52-12M LHS48-3. 3 LHS48-5.8 L3R48-8. 5 L5R48-17 JQE55-4.5M	$\begin{aligned} & 2-48 \\ & 0-50 \\ & 0-50 \\ & 20-52 \\ & 20-52 \\ & 32-53 \\ & 32-53 \\ & 32-53 \\ & 32-53 \\ & 0-55 \end{aligned}$	$\begin{aligned} & 40 \\ & 5 \\ & 200 \\ & 6 \\ & 12 \\ & 3.3 \\ & 5.8 \\ & 8.5 \\ & 17 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0.25 \\ & \pm 10 \\ & 0.1 \\ & 0.5 \\ & 0.5 \\ & 0.01 \\ & 0.01 \\ & \pm 0.005 \\ & \pm 0.005 \\ & 0.0005 \end{aligned}$	$\begin{array}{\|l} 0.25 \\ \\ 0.001 \\ 0.1 \\ 0.5 \\ 0.5 \\ 0.01 \\ 0.01 \\ 0.005 \\ 0.005 \\ 0.005 \end{array}$	$\begin{array}{\|l} 20 \\ \\ 0.2 \\ 10 \\ 1000 \\ 1000 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.2 \end{array}$	abcde cd abcde abcd abed	940 670 2500 420 850 229 295 520 640 520
$\begin{array}{r} \text { HC } \\ 19 \end{array}$	*Trygon Hyp * H-P 'Plastic Christie * Kepco - Kepco * Sorensen - NJE - Mid-East	$\begin{aligned} & \text { CR36-100 } \\ & \text { HY-CR3- } \\ & 28-100 \\ & 6469 A \\ & \text { LV36-400 } \\ & \text { SC036-50- } \\ & 125 \\ & \text { PR38-5M } \\ & \text { PR38-15M } \\ & \text { QRC40-4A } \\ & \text { SVC-4-5M } \\ & \text { HW40-5 } \end{aligned}$	$\begin{aligned} & 36 \\ & 18-36 \\ & 0-36 \\ & 35.3-36.7 \\ & 2-37 \\ & \\ & 0-19-38 \\ & 0-38 \\ & 0-40 \\ & 0-40 \\ & 0-40 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 300 \\ & 4 \\ & 50 \\ & 5 \\ & 5 \\ & 15 \\ & 4 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.2 \\ 0.2 \\ \\ 0.2 \\ 0.05 \\ 0.25 \\ \\ \pm 1 \\ \pm 1 \\ \pm 0.005 \\ 0.01 \\ 0.01 \end{array}$	0.2 0.2 0.2 0.05 0.25 2 2 ± 0.005 0.01 0.01	$\begin{aligned} & 150 \\ & 180 \\ & 180 \\ & 3 \\ & 200 \\ & \\ & 1 \% \\ & 1 \% \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	abcdei abcde abdfghi abcde cde cde abcde ${ }^{j}$ abcde	1350 1150 2300 215 839 357 520 350 345 295	*Kерсо EPL *Kepco Arlas *Power/ Mate *NJE Hyp * $\mathrm{H}-\mathrm{P}$	$\begin{aligned} & \text { JQE55-9M } \\ & \text { PSR-500-55 } \\ & \text { JQE55-18M } \\ & \text { P3130 } \\ & \text { BP-60H } \\ & \text { SVC-60- } \\ & 3.5 M \\ & \text { HY-SI- } \\ & 60-5 \\ & 6438 B \end{aligned}$	$\begin{aligned} & 0-55 \\ & 2-55 \\ & 0-55 \\ & 45-55 \\ & 0-60 \\ & 0-60 \\ & 0-60 \\ & 0-60 \end{aligned}$	9 10 18 25 3.25 3.5 5 5	$\begin{aligned} & 0.0005 \\ & 0.1 \\ & 0.0005 \\ & \pm 2 \% \\ & \max \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 30 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.005 \\ & 1.0 \\ & 0.005 \\ & \pm 2 \% \\ & \max \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 60 \mathrm{mV} \end{aligned}$	0.2 0.5% 0.2 1% rms 0.25 1 0.5 120	abcde c abcde d abcdei abcde abcdei abcde	625 395 977 835 360 365 349 360
$\begin{aligned} & \mathrm{HC} \\ & 20 \end{aligned}$	Hyp * $\mathrm{H}-\mathrm{P}$ - H-P - Trygan - Techni * Sorensen * NJE - Mid-East - Mid-East Hyp	$\begin{aligned} & \text { HY-S1-40-5 } \\ & 6266 B \\ & 6291 A \\ & \text { RS } 40-5 A \\ & \text { LA } 40-6 M \\ & \text { QRC } 40-8 A \\ & \text { SVC-40-10M } \\ & \text { PR-40-10 } \\ & \text { RA40-10 } \\ & \text { HY-S1-40- } \\ & 10 \end{aligned}$	$\begin{aligned} & 0-40 \\ & 0-40 \\ & 0-40 \\ & 40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 6 \\ & 8 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & \pm 0.01 \\ & \pm 0.005 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	0.01 0.01 0.01 0.01 ± 0.15 ± 0.005 0.01 0.01 0.01 0.01	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.5 \\ & 0.5 \\ & 0.2 \% \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0.5 \end{aligned}$	abcde abcde abcde abcdei abcde abcdei	$\begin{aligned} & 299 \\ & 435 \\ & 395 \\ & 445 \\ & 360 \\ & 470 \\ & 475 \\ & 485 \\ & 415 \\ & 399 \end{aligned}$	*Kepco *NJE *Mid-East *Mid-East *NJE *Trugon Hyp ${ }^{*}$ Kepco *Trygon	KS60-5M SY-60-6M RA60-7 PR60-7 SVC-60- 7M RS60-7.5A HY-S1- 60-7.5 KS60-10M M5P60-10	$\begin{aligned} & 0-60 \\ & 10-60 \\ & 0-60 \\ & 0-60 \\ & 0-60 \\ & \\ & 60 \\ & 0-60 \\ & 0-60 \\ & 60 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 7 \\ & 7 \\ & 7.5 \\ & 7.5 \\ & \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & \\ & 0.005 \\ & \pm 0.005 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.005 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0.5 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	abcde abcd abcde abcdei abcde	$\begin{aligned} & 678 \\ & 420 \\ & 425 \\ & 500 \\ & 595 \\ & 625 \\ & 499 \\ & 940 \\ & 660 \end{aligned}$
$\begin{gathered} H C \\ 21 \end{gathered}$	* H-P * Trygan * Sarensen - Techni * Sorensen - NJE - Mid-East - Mid-East - Ratelco - Sorensen	6267B RS 40-10A DCR40-10A LA40-12M QRC40-15A SVC-40-20M PR40-20 RA40-20 PS-8 DCR40-20A	$\left\lvert\, \begin{aligned} & 0-40 \\ & 40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 1-40 \\ & 0-40 \end{aligned}\right.$	10 10 11.5 12 15 20 20 20 20 23	$\begin{array}{\|l\|} 0.01 \\ 0.01 \\ \pm 0.075 \\ \pm 0.01 \\ \pm 0.005 \\ 0.01 \\ 0.01 \\ 0.01 \\ 1 \\ \pm 0.075 \end{array}$	$\begin{array}{\|l\|} \hline 0.01 \\ 0.01 \\ \pm 0.075 \\ \pm 0.15 \\ \pm 0.005 \\ 0.01 \\ 0.01 \\ 0.01 \\ 1 \\ \pm 0.075 \\ \hline \end{array}$	$\begin{aligned} & 0.2 \\ & 0.5 \\ & 0.4 \% \\ & 0.2 \% \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 10 \\ & 0.4 \% \end{aligned}$	abcde abcdei abcde abcdei abcde abcdei	525 475 360 420 650 670 675 440 500 500	*NJE Lambdo *NJE *Mid-East -Mid-East *Trygon *Sorensen * H-P * $\mathrm{H}-\mathrm{P}$	SY-60-12M LK-340A SVC-60- 14M PR60-14 RA60-14 M5C60-15 DCR60-13A 6439B 6274A	$\left\lvert\, \begin{aligned} & 10-60 \\ & 0-60 \\ & 0-60 \\ & 0-60 \\ & 0-60 \\ & 60 \\ & 0-60 \\ & 0-60 \\ & 0-60 \end{aligned}\right.$	$\begin{aligned} & 12 \\ & 13.5 \\ & 14 \\ & 14 \\ & 14 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	0.01 0.015 0.01 0.01 0.01 ± 0.005 ± 0.075 60 mV 0.01	$\begin{array}{\|l\|} \hline 0.01 \\ 0.015 \\ 0.01 \\ \\ 0.01 \\ 0.01 \\ 0.005 \\ \pm 0.075 \\ 120 \mathrm{mV} \\ 0.01 \end{array}$	0.5 1 1 1 1 0.4\% 60 0.5	abcd abcdeg abcde abcdei abcde abcde	$\begin{aligned} & 515 \\ & 330 \\ & 690 \\ & 670 \\ & 510 \\ & 725 \\ & 500 \\ & 550 \\ & 695 \end{aligned}$

High Current Power Supplies

	Mfr	Model	OUTPUT		REGULATION			Notes	Price ς
			Range Volts	Max Amps	Line \%	Lood	Ripple $\mathrm{m} V$		
$\begin{array}{\|c} \mathrm{HC} \\ 22 \end{array}$	*NJE *Kepco "Mid-East *Sorensen *Trygon Lambda *Sorensen Lambda *H-P *H-P	SY-60-18M KS60-20M RA60-20 DCR60-25A M7C60-30 LK-350 DCR60-40A LK-360-FM 6459A 6472A	$\begin{aligned} & 10-60 \\ & 0-60 \\ & 0-60 \\ & 0-60 \\ & 60 \\ & 0-60 \\ & 0-60 \\ & 0-60 \\ & 0-64 \\ & 0-64 \end{aligned}$	$\begin{aligned} & 18 \\ & 20 \\ & 20 \\ & 28.8 \\ & 30 \\ & 35 \\ & 45 \\ & 66 \\ & 50 \\ & 150 \end{aligned}$	0.01 0.005 0.01 ± 0.075 ± 0.005 0.015 ± 0.075 0.015 0.2 0.02	0.01 0.01 0.01 ± 0.075 0.005 0.015 ± 0.075 0.015 0.2 0.02	$\begin{array}{\|l} 1 \\ 1 \\ 1 \\ 0.4 \% \\ 1 \\ 0.5 \\ 0.4 \% \\ 0.5 \\ 160 \\ 160 \end{array}$	abcd abcde abcde i abcdeg abcdei abcdeg obcdey abedey	665 1418 675 875 1070 640 1090 950 1275 2600
$\begin{gathered} \mathrm{HC} \\ 23 \end{gathered}$	*Trygon *Kepco *Kepco *Kepco *Kepco *Kepco *NJE "Sorensen *Techni *NJE	CR65-55 K070-20M SM75-5AM JQE75- 6.5M SM75-8AM JQE75-13M TC-80-4M DCR80-5A LA80-6M TC-80-8	$\begin{aligned} & 0-65 \\ & 0-70 \\ & 0-75 \\ & 0-75 \\ & 0-75 \\ & 0-75 \\ & 25-80 \\ & 0-80 \\ & 0-80 \\ & 25-80 \end{aligned}$	$\begin{aligned} & 55 \\ & 20 \\ & 5 \\ & 6.5 \\ & 8 \\ & 8 \\ & 13 \\ & 4 \\ & 5.75 \\ & 6 \\ & 8 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.2 \\ 1 \\ 0.01 \\ 0.0005 \\ \\ 0.01 \\ 0.0005 \\ 0.5 \\ \pm 0.075 \\ \pm 0.01 \\ 0.5 \end{array}$	0.2 0.05 0.005 0.05 0.005 0.5 ± 0.075 ± 0.15 0.5	$\begin{aligned} & 150 \\ & 30 \\ & 1 \\ & 0.2 \\ & 1 \\ & 1 \\ & 0.2 \\ & 1000 \\ & 0.4 \% \\ & 0.2 \% \\ & 1000 \end{aligned}$	abcde bede abcde bede abcde abed abcdei abcde abed	1350 995 552 625 657 977 320 380 430 545
$\begin{aligned} & \mathrm{HC} \\ & 24 \end{aligned}$	*Sorensen * Kepeo *Techni *NJE "Sorensen *Techni *Sorensen *Trygon *Trygon *Kepco	DCR80-10A PR80-8M LA80-12M TC-80-20 DCR80-18A LA80-25M DCR80-30A L3R65-6 L5R65-12 JQE 100-5M	$\begin{aligned} & 0-80 \\ & 0-80 \\ & 0-80 \\ & 25-80 \\ & 0-80 \\ & 0-80 \\ & 0-80 \\ & 50-83 \\ & 50-83 \\ & 0-100 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 8 \\ & 12 \\ & 20 \\ & 20.7 \\ & 25 \\ & 34.5 \\ & 6 \\ & 12 \\ & 5 \end{aligned}$	$\begin{aligned} & \pm 0.075 \\ & \pm 1 \\ & \pm 0.01 \\ & 0.5 \\ & \pm 0.075 \\ & \pm 0.01 \\ & \pm 0.075 \\ & \pm 0.005 \\ & \pm 0.005 \\ & 0.0005 \end{aligned}$	$\begin{aligned} & \pm 0.075 \\ & 2 \\ & \pm 0.15 \\ & 0.5 \\ & \pm 0.075 \\ & \pm 0.15 \\ & \pm 0.075 \\ & 0.005 \\ & 0.005 \\ & 0.005 \end{aligned}$	0.4% 0.7% 0.2% 1000 0.4% 0.2% 0.4% 0.5 0.5 0.2	abede ${ }^{i}$ cde abcde abed abcde i abcde abcde ${ }^{i}$ abcde	$\begin{aligned} & 600 \\ & 499 \\ & 535 \\ & 850 \\ & 850 \\ & 660 \\ & 900 \\ & 530 \\ & 650 \\ & 625 \end{aligned}$
$\begin{array}{\|c} \mathrm{HC} \\ 25 \end{array}$	*NJE R-S *Kepco Deltron EMC *Trygon * H-P *Kepco *Kepco *Mid-East	$\begin{aligned} & \text { TC-100-6 } \\ & \text { NGR100/10 } \\ & \text { JQE 100- } \\ & \text { 10M } \\ & \text { SP } \\ & \text { SCR100-100 } \\ & \text { CR10-30 } \\ & \text { 6475A } \\ & \text { KS120-5M } \\ & \text { KS120-10M } \\ & \text { RA } 125-3.2 \end{aligned}$	$\begin{aligned} & 40-100 \\ & 0-100 \\ & 0-100 \\ & 0-100 \\ & 0-100 \\ & 110 \\ & 0-110 \\ & 0-120 \\ & 0-120 \\ & 0-125 \end{aligned}$	$\begin{aligned} & 6 \\ & 10 \\ & 10 \\ & \\ & 50 \\ & \\ & 100 \\ & 30 \\ & 100 \\ & 5 \\ & 10 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 0.5 \\ & \pm 10 \\ & 0.0005 \\ & 0.005 \\ & \\ & 0.1 \\ & 0.2 \\ & 0.2 \\ & 0.005 \\ & 0.005 \\ & 0.01 \end{aligned}$	0.5 0.001 0.005 0.005 0.1 0.2 0.2 0.01 0.01 0.01	$\begin{aligned} & 1000 \\ & 0.5 \\ & 0.2 \\ & 0.5 \\ & 10 \\ & 10 \\ & 550 \\ & 220 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	abcd cd abcde abcdei abcde abcdey abcde abcde	$\begin{aligned} & 625 \\ & 750 \\ & 977 \\ & \\ & 220- \\ & 920 \\ & 2500 \\ & 1450 \\ & 2600 \\ & 1019 \\ & 1523 \\ & 425 \end{aligned}$
$\begin{aligned} & \mathrm{HC} \\ & 26 \end{aligned}$	-Mid-East *NJE	$\begin{aligned} & \text { PR125-3.2 } \\ & \text { SVC-125- } \\ & 3.2 M \end{aligned}$	$\begin{aligned} & 0-125 \\ & 0-125 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.2 \end{aligned}$	$\begin{array}{\|l\|} 0.01 \\ 0.01 \end{array}$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	abede	$\begin{aligned} & 575 \\ & 765 \end{aligned}$

Mfr	Model	OUTPUT		REGULATION			Notes	Price 5
		Range Volts	$\begin{aligned} & \text { Max } \\ & \text { Amps } \end{aligned}$	Line \%	Load \%	Ripple mV		
EPL	$\begin{aligned} & \text { PSR-500- } \\ & 125 \end{aligned}$	2-125	5	0.1	1.0	0.5\%		425
- Mid-Eas	RA 125-6.5	0-125	6.5	0.01	0.01	1		560
*NJE	$\begin{aligned} & 5 V C-125- \\ & 6.5 M \end{aligned}$	0-125	6.5	0.01	0.01	1	abcde	1110
*Mid-East	PR125-6.5	0-125	6.5	0.01	0.01	1		875
*Trygon	L3R 100-4	80-126	4	± 0.005	0.005	0.5		530
"Trygon	L5R100-8	80-126	8	± 0.005	0.005	0.5		680
*Sorensen	$\begin{aligned} & \text { DCR150- } \\ & 5 A \end{aligned}$	0-150	5.75	± 0.075	± 0.075	0.4\%	abcdei	600
*Sorensen	$\begin{aligned} & \text { DCR150- } \\ & 10 A \end{aligned}$	0-150	11.5	± 0.075	± 0.075	0.4\%	abcdei	850
- Sorensen	$\begin{aligned} & \text { DCR150- } \\ & \text { 15A } \end{aligned}$	0-150	17.3	± 0.075	± 0.075	0.4\%	abcdei	900
*Sorensen	$\begin{aligned} & \text { DCR150- } \\ & 35 A \end{aligned}$	0-150	38.5	± 0.1	± 0.1	500	abcdei	1500
*Sor ensen	$\begin{aligned} & \text { DCR150- } \\ & 70 A \end{aligned}$	0-150	77	± 0.1	± 0.1	500	abcdei	2495
*Kepco	PR1556-4M	0-155	4	± 1	2	0.6\%	cde	473
* Керсо	SM1604AM	0-160	4	0.01	0.05	1	bode	
*Trygon	M5C 160-5	160	5	± 0.005	0.005	1		995
*Trygon	M7C160-15	160	5	± 0.005	0.005	1		1550
*Techni	LA 160-6M	0-160	6	± 0.01	± 0.15	0.2\%	abede	565
*Trygon	M7C 160-8	160	8	± 0.005	0.005	1		1250
- Techni	LA 160-12M	0-160	12	± 0.01	± 0.15	0.2\%	abcde	680
EMC	SCR160-30	0-160	30	0.1	0.1	10	abcde	1500
* Trygon	L5R150-6	115-161	6	± 0.005	0.005	0.5		690
Deltron	L	0. 5-200	72	0.005	0.005	0.5	abdgi	$\begin{aligned} & 190- \\ & 924 \end{aligned}$
* H-P	6477A	0-220	50	0.2	0.2	330	abcdey	2600
Deltron	C	3-250	36	0.003	0.003	0.5	abdgi	$\begin{aligned} & 75- \\ & 470 \end{aligned}$
* Sorensen	DC R300-5A	0-300	5.75	± 0.075	± 0.075	0.4\%	abcdei	850
* Sorensen	DCR300-8A	0-300	9.2	± 0.075	± 0.075	0.4\%	abcde ${ }^{\text {i }}$	925
- Sorensen	$\begin{aligned} & \text { DCR300- } \\ & 18 \mathrm{~A} \end{aligned}$	0-300	19.8	± 0.1	± 0.1	0.4\%	abcdei	1500
- Sorensen	$\begin{aligned} & \text { DCR300- } \\ & 35 A \end{aligned}$	0-300	38.5	± 0.1	± 0.1	0.4\%	abcdei	2495
* H-P	6479A	0-300	35	0.2	0.2	300	abcdey	2600
Lambda	LB-700	0-300	300	0.05	0.1	10	abcdeg	1100
EMC	SCR500-5	0-500	5	0.1	0.1	10	abcde	1300
EMC	SCR500-10	0-500	10	0.1	0.1	10	abcde	1700
* H-P	6483B	$\begin{aligned} & 0-440 \\ & 0-500, \\ & 0-600 \end{aligned}$	$\begin{aligned} & 25, \\ & 20, \\ & 15 \end{aligned}$	0.5	0.5	600	abcdey	2600

Remote programming
†. Reversible polarity.
Remote sensing
Price includes meters
Solid state
k. Specify BC series for 0.5% line $\&$ load regulation at reduced cost.

310 series for remote programming and sensing.
Automatic crossover from constant current to constant voltage.
Multi output type
Dual output
g. This model designation covers a series of modular supplies. Thase supplies are listed in the tables according to their output valtage.
u. Select any voltage by selecting the desired voltage and current
after letter series. Constant current models available.
v. IC Power Supply
h. Contral section and high voltage tank enclosed in one unit.
w. Slot type
y. Line 8 load regulation combined

Index by Model Number

Name	\|Model	Code	Name	Model	Code	Name	Model	Code
Atlas	P3070	HC5		H4518F7	HC17		T0782F7	HC5
Atlas Controls	P3130	HC19		H0739F5	HC5	Christie	SCO15-100-12S	HC9
				H0744F5	HC5	Christie	SC036-50-125	HC19
Beco	301	HCl		H0764F7	HC5	Electric	SC048-40-12S	HC18
Beco Solid	302	HC6		H0774F7	HC5	Corp.		
State				T1631F5	HC9			
Systems				T1651F7	HC9	Deltron, Inc.		
				T3330F7	HC15		LA	HC 24 HC 11
Chalco	H1636F5	HC9		T4514F5	HC17		${ }_{\sim}^{\text {N }}$	$\mathrm{HCl11}$ HC 17
Chalco	H1643F7	HC9		T4523F7	HC17			${ }_{+} \mathrm{HC17}$
Engineering	H3315F5	HC15		T0458F5	HCl		SP	$\mathrm{HC17}$ HC 25
	H3324F7	HC15		T0497F7	HC1		SP	HC25
	H4511F5	HC17		T0749F5	HC5	Dynage	KHC10/10	HC4

The Acopian promise of 3 -day shipment doesn't apply to just part of our line-or to even 90% of our line. It is your assurance that whenever you order supplies listed in the Acopian catalog, your order will be on its way to you in 3 days. We guarantee it.
Do you have the latest Acopian catalog? It lists AC to DC power modules with both single and dual outputs. Regulated and unregulated. With plug-in, barrier strip or solder lug terminations. For industrial or MILspec applications. For your copy, write Acopian Corp., Easton, Pa. 18042 or call (215) 258-5441. And remember, every Acopian power module is shipped with this tag...

INFORMATION RETRIEVAL NUMBER 607 D30

Index by Model Number (continued)

Name	Model	Code	Name	Model	Code
Dynage, Inc.	$\begin{aligned} & \mathrm{KHC12/12} \\ & \mathrm{KHC15} / 15 \end{aligned}$	$\begin{aligned} & \text { HC6 } \\ & \text { HC9 } \end{aligned}$		$\begin{aligned} & \text { 6463A } \\ & 6464 A \end{aligned}$	$\begin{aligned} & \mathrm{HCl} \\ & \mathrm{HC} 7 \end{aligned}$
EMC	SCR10-250	HC3		6466A	HC11
Electronic	SCR10-500	HC3		6469A	HC19
Measure -	SCR20-125	HC8		6472A	HC22
ment Div.	SCR20-250	HC8		6475A	HC25
	SCR20-500	HC8		6477A	HC24
	SCR30-100	HC12		6479A	HC25
	SCR30-200	HC12		6483B	HC26
	SCR40-60	HC16	Holt	275	HCl
	SCR40-125	HC16	Holt		
	SCR40-250	HC16	Instrument		
	SCR50-200	HC18	Hyp	HY-CR3-28-100	HC19
	SCR100-100	HC25	Hyperion	HY-S1-5-50	HC2
	SCR160-30	HC24	Industries	HY-S1-10-12.5	HC2
	SCR500-5	HC25		HY-S1-10-25	HC2
	SCR500-10	HC25		HY-S1-10-100	HC3
EPL	PSR-500032	HC13		HY-S1-15-10	HC7
Electro-	PSR-500-55	HC19		HY-S1-20-6	HC12
Products	PSR-500-125	HC21		HY-S1-20-10	HC12
Labs				HY-S1-20-20	HC13
ERA	CP55	HC2		HY-S1-20-50	HC8
Electronic	CP510	HC2		HY-S1-40-5	HC20
Research	CP517	HC2		HY-S1-40-10	HC20
Associates	CP525	HC2		HY-S1-60-5	HC19
	CP550	HC2		HY-S1-60-7.5	HC20
	LC325	HC12	Int Cont	CPS500-1	HCl
	LC3210	HC13	International		
	MS074	HC4	Contronics		
	MS078	HC4	Kерсо	SPS6-10M	HC3
	MS124	HC5	Kepco Inc.	SPS6-22M	HC3
	MS128	HC5		CPS6-45M	HC4
	MS184	HC10		CPS6-90M	HC4
	MS188	HC10		CPS 15.6 M	HC7
	MS244	HC9		CPS 15.12 M	HC7
	MS248	HC9		CPS 15.25 M	HC8
	MS284	HC10		CPS 15.50 M	HC8
	MS288	HC11		JQE6-10M	HC3
	MS324	HC12		JQE6-22M	HC3
	SL36-4M	HC15		JQE6-45M	HC3
	SL36-8M	HC16		JQE6.90M	HC4
	SL36-12M	HC17		JQE15-6M	HC7
	SL36-25M	HC18		JQE15-12M	HC7
	SR054	HC2		JQE15-25M	HC8
	SR058	HC2		JQE15-50M	HC8
	SR0218	HC1		JQE25-4M	HC9
	SR0225	HC1		JQE25-9M	HC9
	TR Series	HC12		JQE25-18M	HC9
	WR334	HC14		JQE25-36M	HC10
	WR338	HC15		JQE36-6M	HC16
H-P	6256B	HC2		JQE36-15M	HC17
Hewlett-	6259B	HC3		JQE36-25M	HC18
Packard	6260B	HC3		JQE55-4.5M	HC18
Co.	6261B	HC8		JQE55-9M	HC19
	6263B	HC12		JQE55.18M	HC19
	6264B	HC13		JQE75-6.5M	HC23
	6266B	HC20		JQE75-13M	HC23
	6267B	HC21		JQE100-5M	HC24
	6268B	HC15		JQE100-10M	HC25
	6269B	HC15		K012-100M	HC5
	6274A	HC21		KO25-50M	HC10
	6281A	HC5		KO45-30M	HC17
	6282A	HC1		K070-20M	HC23
	6285A	HC11		KS8-15M	HC7
	6286A	HC12		KS8-25M	HC7
	6291A	HC2O		KS8-50M	HC7
	6384A	HC3		KS8-100M	HC7
	6427B	HC13		KS18-10M	HC10
	6428B	HC14		KS 18-15M	HC10
	6434B	HC15		KS18-25M	HC11
	64388	HC19		KS18.50M	HC11
	6439B	HC21		KS36-5M	HC16
	6453A	HC9		KS36.10M	HC17
	6456B	HC18		KS36-15M	HC17
	6459A	HC22		KS36-30M	HC18

HC1
HC7
HCll
HC22
HC25
HC24
HC26
HCl

HC19
HC2
HC2
HC2
HC3
HC7
HC12
HC12
HC8
HC20
HC2O
HC20
HCl

HC3
HC3
HC4
HC7
HC8

$\mathrm{HC8}$
HC

HC3
$\mathrm{HC3}$
HC
HC7
HC7
HC8
HC8
HC9
HC9
HC9
HC10
HC16
HC18
HC18
HC19
HC23
HC23
HC 24
HC 25
HC5 HC10 HC23 HC7 HC7
HC7 HC7 $\mathrm{HC1O}$
HC 10 HC11 $\mathrm{HC11}$
HC 16 HC17

HC18

Name	Model	Code	Name	Model	Code
	KS60-5M	HC2O		SY-60-18M	HC22
	KS60-10M	HC20		TC-14-15M	HC6
	KS60-20M	HC23		TC. 14-30M	HC6
	KS120-5M	HC25		TC-14-200M	HC7
	KS120-10M	HC25		TC.32-10M	HC13
	PR15-10M	HC7		TC-32-20M	HC13
	PR15-30M	HC8		TC-32-30M	HC13
	PR38-5M	HC19		TC-32-50M	HC13
	PR38-15M	HC19		TC-32-120M	HC14
	PR80.8M	HC24		TC-52-6M	HC18
	PR1556-4M	HC23		TC.52-12M	HC18
	SM14-7AM	HC6		TC.80-4M	HC23
	SM14-15AM	HC6		TC-80-8	HC23
	SM14-30AM	HC6		TC-80-20	HC24
	SM36-5AM	HC16		TC-100-6	HC25
	SM36-10AM	HC17	Plastic	LV5-250	HC3
	SM36-15AM	HC17	Plastic	LV5-750	HC3
	SM75-5AM	HC23	Capacitors,	LV12-400	HC5
	SM75-8AM	HC23		LV12-600	HC6
	SM160-4AM	HC23		LV12.800	HC6
Lambda Lambda Electronics	LB-700	HC25		LV24-400	HC9
	LK.340A	HC21		LV28-400	HC11
	LK-350	HC22		LV28-500	HC11
	LK-360-FM	HC22		LV36-400	HC19
Mid-East Mid-Eastern Industries	HW20-4	HC11	Power Des	12105	HC5
	HW20-10	HC12	Power	3650R	HC16
	HW20-15	HC2	Designs,	3650S	HC16
	HW40-5	HC19	Inc.	6050	HC4
	PR20-15	HC13		36100R	HC17
	PR20-30	HC14		36250A	HC18
	PR40-10	HC2O	Power/Mate	BP-8D	HC6
	PR40-20	HC21	Power/Mate	BP-8E	HC6
	PR60.7	HC20	Corp.	BP-8F	HC6
	PR60-14	HC21		BP-8G	HC7
	PR125-3.2	HC26		BP-8H	HC7
	PR125-6.5	HC22		BP.18E	HC9
	RA20-15	HC13		BP-18F	HC10
	RA20-25	HC14		BP.18G	HC10
	RA40-10	HC20		BP-18H	HC10
	RA40.20	HC21		BP-30F	HC11
	RA40-30	HC15		BP-30G	HC11
	RA60.7	HC20		BP.30H	HC12
	RA60. 14	HC21		BP.60H	HC19
	RA60-20	HC22	Prec Stan	104	
	RA125-3.2	HC25	Precision	105	HC11
	RA125-6.5	HC22	Standards	109	HC2
NJE NJE Corp.	LVCII-10-4	HCl^{1}	Corp.	110	HC12
	PVC-10.4	HC1		111	HC12
	PVC-10-8	$\mathrm{HCl}^{\text {c }}$		PS-8	
	PVC-20-4	$\mathrm{HCl1}$ HCl	Ratelco, Inc.	PS-9	HC11
	RVC-36-15M	HC17	R-S	NGGS30/10	HC12
	RVC-36-25M	HC18	Rhode \&	NGR100/10	HC25
	SP32-20	HC13	Schwarz	NGRS30/10	HC12
	SP32-30	HC13	Sales Corp.	NGRS50/5	HC18
	SP32-50	HC13	Sorensen	DCR20-125	HC8
	SP32.100	HC14	Sorensen	DCR20-250A	HC8
	SP41-20	HC17	Operation,	DCR40-10A	HC21
	SP41-30	HC17	Raytheon	DCR40-20A	HC21
	SVC-20-7.5M	HC12	Co.	DCR40-35A	HC15
	SVC-20-15M	HC13		DCR40-60A	HC16
	SVC-20-30M	HC14		DCR40-125A	HC16
	SVC-40-5M	HC19		DCR40-250A	HC16
	SVC-40-10M	HC20		DCR40-500A	HC16
	SVC-40-20M	HC21		DCR60-13A	HC21
	SVC.60-6M	HC2O		DCR60-25A	HC22
	SVC-60-7M	HC2O		DCR60-40A	HC22
	SVC-60-14M	HC21		DCR80-5A	HC23
	SVC-125-3.2M	HC26		DCR80.10A	HC24
	SVC-125-6.5M	HC22		DCR80-18A	HC24
	SY-36-10M	HC17		DCR80-30A	HC24
	SY-36-20M	HC18		DCR150-5A	HC22
	SY-36-30M	HC18		DCR150-10A	HC23
	SY-60.6M	HC20		DCR150-15A	HC23
	SY-60-12M	HC21		DCR150-35A	HC23

ANNOUNCING:

These new power modules from ERA provide cool performance, total protection for specialized use in IC, computer, telemetry, strain gauge and transistor applications.

The Transpac CP series is equipped with unique heat sinking for $\operatorname{cool}\left(71^{\circ} \mathrm{C}\right.$, free air) operation at high currents, protects itself and your equipment through built-in short circuit protection with instant recovery, adjustable current limiting and overvoltage protection.

A special burn-in test program at the factory assures reliability while compact silicon design saves space.
Send for catalog. Write today - before you design.

STANDARD MODELS

Oulput Vollage vDC	Current @			Modal	Price
	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$71{ }^{\circ} \mathrm{C}$		
3.6	3.2	2.8	2.5	CP-3P6-2P5	\$125 00
5	3.2	2.8	2.5	CP-5-2P5	\$125.00
3.6	6.5	5.7	5.0	CP-3P6.5	\$145.00
5	6.5	5.7	5.0	CP-5-5	\$145.00
3.6	13.0	11.4	10.0	CP-3P6-10	\$185.00
5	13.0	11.4	10.0	CP-5-10	\$185.00
3.6	22.0	19.5	17.0	CP-3P6-17	\$230.00
5	22.0	19.5	17.0	CP-5-17	\$230.00
3.6	32.0	28.5	25.0	CP-3P8-25	\$310.00
5	32.0	28.5	25.0	CP.5-25	\$310.00

ERA TRANSPAC CORPORATION

A Subsidiary of
Electronic Research Associates, Inc. 67 Sand Park Road, Cedar Grove, N.J. 07009 (201) 239-3000

Index by Model Number (continued)

Name	Model	Code	Name	Model	Code	Name	Model	Code
	DCR150-70A	HC23		QSB28-8	HC16		L3R48-8.5	HC18
	DCR300.5A	HC25	Techni	LA10-12M	HC2		L3R65-6	HC24
	DCR300.8A	HC25	Technipower,	LA10-25M	HC2		L3R100-4	HC22
	DCR300-18A	HC25	Inc.	LA20-6M	HC12		L5R-4-70	HC1
	DCR300-35A	HC25		LA20.12M	HC13		L5R6.70	HC6
	QRC20-8A	HC12		LA20-25M	HC13		L5R8-25	HC4
	QRC20-15A	HC13		LA40-6M	HC20		L5R10.50	HC4
	QRC20-30A	HC14		LA40-12M	HC21		L5R12.50	HC8
	QRC40-4A	HC19		LA40-25 M	HC15		L5R18.40	HC9
	QRC40-8A	HC2O		LA80-6M	HC23		L5R24-30	HC10
	QRC40-30A	HC15		LA80-12M	HC24		L5R28-30	HC15
	QRE7.5-10	HC5		LA80-25M	HC24		L5R48-17	HC18
	QRE7.5-20	HC5		LA160-6M	HC24		L5R65-12	HC24
	QRE7.5-50	HC5		LA160-12M	HC24		L5R100.8	HC22
	QRS20.4	HC11		CR10.30			L5R150-6	HC24
	QSB6-4	HC1	Trygon	CR10-30			LH54-14	HCl
	QSB6-8	HCl	Trygon	CR20.150	${ }^{\text {HC8 }}$		LH54-25	HC10
	QSB6-15	HCl		CR36.100	HC19		LH56-13.5	HC6
	QSB6-30	HCl		CR65.55 HH7.40V	${ }_{\text {HC2 }}$		LH56-24	HC6
	QSB12-4	HC1O		H 3 R 4.4 .40	HC1		LH58-11.5	HC3
	QSB12-8	HC10		L3R-4-40	HC6		LH58-21	HC3
	QSB12.15	HC10		L3R8-25	HC4		LHS10-11.5	HC4
	QSB12-30	HC11		L3R10.25	HC4		LHS10-21	HC4
	QSB18-3	HC10		L3R12-25	HC8		LHS12-10	HC7
	QSB18.6	HC10		L3R18.20	HC9		LHS12-18	HC7
	QSB18-12	HC10		L3R24-15	HC10		LHS18-7.5	HC9
	QSB28-4	HC15		L3R28-15	HC15		LHS18-13	HC9 $\mathrm{HC10}$
							LHS24-10	HC10
							LHS28-5.5	HC14
							LHS28-9	HC14
							LHS48-3.3	HC18
							LHS48-5.8	HC18
							LQS4-3.8	HC3
Why waste time with detail spec of POWER SUPPLIES? You'll find exactly your needs in our CATALOG/DESIGN DATA BOOK with supplements Largest assortment offered by any manufacturer Installation data Application data Thermal data More than 400 most-popular models stocked in depth for immediate shipment! Free engineering consultation on power supply problems. TECHNIPOWER							LQS4.8.4	HC3
							LQS6-7.7	HC6
							LQS8-3.1	HC3
							LQS8-6.5	HC3
							LQS10-6.5	HC4
							LQS12-5.7	HC7
							LQS18-4.3	HC9
							LQS24-3.3	HC10
							M3P8-250V	HC7
							M5C15-50	HC8
							M5C36-30	HC15
							M5C60-15	HC21
							M5C160.5	HC24
							M5P8-500V	HC7
							M5P15-30	HC8
							M5P36-15	HC18
							M5P60-10	HC20
							M7C8-100.0V	HC7
							M7C15-80	HC8
							M7C40-50	HC15
							M7C60-30	HC22
							M7C160-8	HC24
							M7C160-15	HC24
							RS20-7.5A	HC12
							RS20-15A	HC13
							RS40-5A	HC20
							RS40-10A	HC21
							RS60-7.5A	HC2O
						Wanless Wanless Electric Co.		
						LABI	HC4	
						MOS series	HC11	
						MP. 16	HC9	
						PCD16	HC9 HC2	
						PSS1-12	HC5	
						PSS2. 5	HC2	
						PSS2.12	HC5	
						PSS2-24	HC9	
						SSS1-1	HC4	
						SSS2-1	HC4	

We make it possible by harnessing the space-saving advantages of the switching regulator -but have pulled its RFI fangs (input and output meet MIL-I-6181).

When you read our data sheet carefully, you'll also find it full of hidden features that other manufacturers would loudly acclaim.

Such as an IC regulating amplifier, automatic overvoltage crowbar, self-resetting automatic overload and short circuit protection, and even 30 ms full-load storage after the input voltage disappears.

Efficiency is so high that the very hottest spot on the heat sink has a rise of only $25^{\circ} \mathrm{C}$.

You can actually hold our unit after hours of full-load bench operation without smelling burning flesh!

And is there any other unit you've heard about that will continue to deliver full-load at $71^{\circ} \mathrm{C}$.-without derating, heat sinking or forced air cooling.

Single, dual, or triple outputs at voltage levels of 3 V to 30 V can be provided to your specific needs.

By the way, if you think our $\$ 400$ price is high, try adding the "optional extras" to anybody else's standard you had in mind.

Trio Laboratories, Inc., 80 Dupont Street, Plainview, L. I., N.Y. 11803. Tel.: (516) 681-0400.

TWX: (510) 221-1861.

Now you can squeeze your $5 \mathrm{~V} / 20 \mathrm{~A}$ power supply down to fit your microcircuitry.

Constant Current Power Supplies

	Mfr	Model	OUTPUT			REGULATION			Notes	$\begin{gathered} \text { Price } \\ \$ \end{gathered}$	Mfr	Model	OUTPUT			REGULATION			Notes	$\begin{array}{\|c} \text { Price } \\ \$ \end{array}$
			$\begin{aligned} & \mathrm{Min} \\ & \mathrm{~mA} \end{aligned}$	Max Amps	Max Volis	$\begin{gathered} \text { Line } \\ \% / \end{gathered}$	Lood	$\begin{aligned} & \text { Ripole } \\ & \mathrm{mV} \end{aligned}$					$\mathrm{Min}_{\mathrm{mA}}$	Max Amps	Max Volts	$\begin{gathered} \text { Line } \\ \% \end{gathered}$	$\begin{gathered} \text { Load } \\ \% \end{gathered}$	$\begin{aligned} & \text { Ripple } \\ & \mathrm{mV} \end{aligned}$		
CC	North Hills - Kepeo North Hills - Kepco - Kepco - Kepco - Kepeo - H-P	CS-120 ABC2500M CS-151 ABC1500M ABC 1000 M ABC425M ABC200M $6186 B$	$\begin{aligned} & 0.0001 \\ & 0 \\ & 0.1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.002 \\ & 0.01 \\ & 0.01 \\ & 0.02 \\ & 0.05 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2500 \\ & \pm 10 \\ & 1500 \\ & 1000 \\ & 425 \\ & 200 \\ & 300 \end{aligned}$	0.07 0.1 0.0005 0.1 0.1 0.1 0.1 25 ppm	0.07 0.1 0.0005 0.1 0.1 0.1 0.1 25ppm	$\begin{array}{\|l\|} 0.15 \% \\ 0.1 \\ 0.0002 \% \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.005 \end{array}$	abcde bdi abcde abcde abcde abcde abcde	$\begin{aligned} & 995 \\ & \\ & 383 \\ & 2995 \\ & 309 \\ & 309 \\ & 220 \\ & 220 \\ & 475 \end{aligned}$	- Trygon - Kepco - Kepco - Kepco - Kepco - Trygan - Trygon - Kepco - Trygon	HR40-750 CK $40-0.8 \mathrm{M}$ HB8AM ABC2-1M ABC15-1M SHR20-3A DL40-I CC21-1M DL40-1	0	$\begin{aligned} & 0.75 \\ & 0.8 \\ & 0.8 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 325 \\ & 2 \\ & 15 \\ & 20 \\ & 20 \\ & 21 \\ & 40 \end{aligned}$	0.01 0.01 0.01 0.1 0.1 0.01 0.01 0.0005 0.01	$\begin{aligned} & 0.05 \\ & 0.01 \\ & 0.01 \\ & 0.5 \\ & 0.5 \\ & 0.01 \\ & 0.01 \\ & 0.005 \\ & 0.01 \end{aligned}$	0. 15 0.05\% 0.01% 0.1% 0.1\% 0.5 0.25 0.02\% 0.25	abcde abcde abcde abcde abcde abcde abcdef abcdef	$\begin{array}{\|l} 169 \\ 281 \\ 435 \\ 131 \\ 175 \\ 239 \\ 249 \\ 195 \\ 249 \end{array}$
$\begin{gathered} c c \\ 2 \end{gathered}$	* Kepco Keithley North Hills EMC - Kepeo Int.Cont. North Hills	$\begin{aligned} & \text { BHK2000- } \\ & 0.1 M \\ & 225 \\ & \text { CS-11 } \\ & \text { C612AM } \\ & \text { PAX100- } \\ & 0.1 H S \\ & \text { CC200 } \\ & \text { CS-152 } \end{aligned}$	$\begin{array}{\|l} 0 \\ 1 \times 10^{-7} \\ 0.001 \\ 0.001 \\ 1 \\ 30 \\ 0.1 \end{array}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 2000 \\ & \pm 100 \\ & 100 \\ & 260 \\ & 100 \\ & \\ & 100 \\ & \pm 25 \end{aligned}$	$\begin{aligned} & 100 \mu \mathrm{~A} \\ & \pm 0.005 \\ & 0.001 \\ & 0.15 \\ & 0.1 \\ & 0.05 \\ & 0.0005 \end{aligned}$	$\left\lvert\, \begin{aligned} & 100 \mu \mathrm{~A} \\ & \pm 0.005 \\ & 0.001 \\ & 0.10 \\ & 0.1 \\ & 0.05 \\ & 0.0005 \end{aligned}\right.$	$\begin{aligned} & 0.1 \\ & 0.01 \% \\ & 0.02 \% \\ & 0.0005 \\ & 1 \\ & 1 \\ & 0.0002 \% \end{aligned}$	abcde dei d abe bdi	$\begin{aligned} & 825 \\ & \\ & 550 \\ & 1295 \\ & 320 \\ & 104 \\ & \\ & 190 \\ & 3495 \end{aligned}$	- Trygon - Kepco - Kepco - Kepco North Hills EMC - Kepco - Sorensen - Kepco	SHR60-1A JQE 100-1M KS120-1M HB250M CS-12 C630CM PAX7-1HS DCR300- 1.25A CC 15-1.5M	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0.001 \\ & 0.01 \\ & 1 \\ & 0 \end{aligned}$		60 100 120 250 12.5 280 7 300 15	0.01 0.005 0.01 0.01 0.001 0.15 0.1 ± 0.075 0.0005	0.01 0.01 0.01 0.01 0.001 0.10 0.1 ± 0.075 0.005	$\begin{aligned} & 0.05 \\ & 0.02 \% \\ & 0.1 \% \\ & 0.01 \% \\ & 0.02 \% \\ & 0.004 \\ & 1 \\ & 0.4 \% \\ & 0.02 \% \end{aligned}$	abcdef abcde abcde obcde d abc obcdei	$\begin{array}{\|l} 239 \\ 300 \\ 578 \\ 595 \\ 1495 \\ 962 \\ 104 \\ 400 \\ 195 \end{array}$
$\begin{gathered} C c \\ 3 \end{gathered}$	North Hills - Kepeo - Kepca - Kepco - Kepco - Kepco	CS-153 PAX72- . 15HS CClOO- 0.2 M ABCIOO- 0.2 M HB2AM BHK 1000- 0.2 M	0.1 1 0 0 0 0	$\begin{aligned} & 0.15 \\ & 0.15 \\ & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & \pm 100 \\ & 72 \\ & 100 \\ & 100 \\ & 325 \\ & 1000 \end{aligned}$	0.0005 0.1 0.0005 0.1 0.01 100 ha	$\left\lvert\, \begin{aligned} & 0.0005 \\ & 0.1 \\ & 0.0005 \\ & 0.5 \\ & 0.01 \\ & 100 \mu \mathrm{~A} \end{aligned}\right.$	0.0002\% 0.02% 0.1% 0.01% 0.1	bdi abcde obcde obcde	$\begin{aligned} & 4500 \\ & 104 \\ & 195 \\ & 197 \\ & 325 \\ & 825 \end{aligned}$	- Trygon - Trygan - Kepco - Trygon - Kepco - Kepco - Kepco - Trygan - Trygon	HH32-1.5 HR20-1.5 CK36-1.5M SHR40-1.5A JQE75-1.5M CC7-2M ABC7.5- 2M DL40-1 T50-2	1	1.5 1.5 1.5 1.5 1.5 2 2 2	$\begin{aligned} & 32 \\ & 20 \\ & 36 \\ & 40 \\ & 75 \\ & 7 \\ & 7.5 \\ & 20 \\ & 50 \end{aligned}$	0.01 0.01 0.01 0.01 0.005 0.0005 0.1 0.01 0.05	$\begin{aligned} & 0.01 \\ & 0.05 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.005 \\ & 0.5 \\ & 0.01 \\ & 0.05 \end{aligned}$	0.5 0.15 0.05\% 0.5 0.02\% 0.02\% 0.1% 0.25 0.5	abede abcde abcde obcde obcde abcde obcdef bede	$\begin{array}{\|l} 165 \\ 169 \\ 321 \\ 239 \\ 300 \\ 195 \\ 175 \\ \\ 249 \\ 249 \end{array}$
$\begin{gathered} \mathrm{CC} \\ 4 \end{gathered}$	Buchler EMC - H-P - Kepco - Ken=o EMC - Kepco - Kepco	3-1014A C633CM 61818 ABC30- $0.3 M$ CC72-0.3M C633CM PAX36- $0.3 H S$ $8 H K 500-$ 0.419	4 0.0022 0 0 0 0.0022 1 0	$\begin{aligned} & 0.2 \\ & 0.22 \\ & 0.25 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.4 \end{aligned}$	1000 730 100 30 72 420 36 500	± 1 0.15 25ppm 0.1 0.0005 0.15 0.1 $100 \mu \mathrm{~A}$	0. 10 25ppm 0.5 0.005 0.10 0.1 $100 \mu \mathrm{~A}$	1 0.001 0.02 0.1% 0.02% 0.0005 1 0.1	edi abc abcde abcde abc abcde	$\begin{aligned} & 595 \\ & 700 \\ & 425 \\ & 131 \\ & 195 \\ & 500 \\ & 104 \\ & \\ & 825 \end{aligned}$	- Kepco - Kepco Deltron - Trygon - Trygon - Kepco - Kepco Plastic	JQES5-2M KS60-2M CA/CD HR160-2B H?60-2.5B JE-100-2.5M KSI20- $2.5 M$ LVC5-250	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 500 \end{aligned}$	2 2 2 2 2.5 2.5 2.5 2.5	55 60 100 160 BC 100 120 4.9- 5.1	$\begin{aligned} & 0.005 \\ & 0.01 \\ & 0.05 \\ & 0.01 \\ & 0.01 \\ & 0.005 \\ & 0.01 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.05 \\ & 0.01 \\ & c .01 \\ & 0.01 \\ & 0.01 \\ & \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & 0.1 \% \\ & 0.25 \\ & \\ & \text { U.5 } \\ & 0.5 \\ & 0.02 \% \\ & 0.1 \\ & 3 \end{aligned}$	abcde abcde obdeg\| abcde abcde abcde obcde obdfghi	$\begin{array}{\|l\|} \hline 300 \\ 552 \\ 99- \\ 119 \\ 510 \\ 355 \\ 520 \\ 730 \\ 132 \end{array}$
$\begin{gathered} C C \\ 5 \end{gathered}$	*Kepco - Kepco - Kepco - H-P - Trygon - Trygon - Kepeo	HB 4AM CC40-0.5M ABC40- 0.5 M $6177 B$ SHR160- 5008 DL40-1 ABC 18- 0.5 M	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & 0.4 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 325 \\ & 40 \\ & 40 \\ & 50 \\ & 160 \\ & \\ & 40 \\ & 18 \end{aligned}$	0.01 0.0005 0.1 25pom 0.01 0.01 0.1	0.01 0.005 0.5 25ppm 0.01 0.01 0.5	0.01\% 0.02\% 0.1% 0.04 0.5 0.25 0. 1\%	obede obcde abcde obcde abcdef abcde	$\begin{aligned} & 365 \\ & 195 \\ & 175 \\ & 425 \\ & 329 \\ & 249 \\ & 131 \end{aligned}$	- Sorensen - Sorensen - Trygon - Kepco - Trygon - Kepco Deltron	DCR150- 2.5A DCR300- 2.5 HH 15-3 JQE36-3M HR40-3B JQE75-3M RP	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2.88 \\ & \\ & 2.88 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 150 \\ & 300 \\ & 15 \\ & 15 \\ & 36 \\ & 40 \\ & 75 \\ & 100 \end{aligned}$	$\begin{aligned} & \pm 0.075 \\ & \pm 0.075 \\ & 0.01 \\ & 0.005 \\ & 0.01 \\ & 0.005 \\ & .005 \end{aligned}$	$\begin{aligned} & \pm 0.075 \\ & \pm 0.075 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & .005 \end{aligned}$	0.4% 0.4% 0.5 0.02% 0.5 0.02% 0.25	obcdei abcdei abede abcde abcde abcde abcde \|	360 600 169 289 325 520 $159-$ 205
$\begin{gathered} c c \\ 6 \end{gathered}$	- Kepco North - Hills - Kepco - Kepco - Kepco - Kepco - Kepco	H8525M CS-111 PAX21- 0.5 HS CK60-0.5M HB6AM ABC10- . 75M PAX15- .75HS	$\begin{aligned} & 0.001 \\ & 0.001 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.6 \\ & 0.75 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 525 \\ & 250 \\ & 21 \\ & 60 \\ & 325 \\ & 10 \\ & 15 \end{aligned}$	0.01 0.0025 0.1 0.01 0.01 0.1 0.1	0.01 0.0025 0.1 0.01 0.01 0.5 0.1	$\begin{aligned} & 0.01 \% \\ & 0.03 \% \\ & 1 \\ & 0.05 \% \\ & 0.01 \% \\ & 0.1 \% \\ & 1 \end{aligned}$	abcde d abcde abcde abcde	$\begin{aligned} & 550 \\ & 1795 \\ & 104 \\ & 321 \\ & 395 \\ & 131 \\ & 104 \end{aligned}$	- Kepco Plastic Plastic - Trygon - Kepco - Sarensen Plastic Plastic Plastic Plastic	CK 18-3M LVC48-300 LVC36-300 HH7-40V JQE25-4M QRC40-4A iVC12-400 LVC24-400 LVC28-400 LVC36-400	$\begin{aligned} & 1 \\ & 500 \\ & 500 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	18 $47-49$ $35.3-$ 36.7 7 25 40 12.25 24.5 28.6 36.7	0.01 0.05 0.05 0.01 0.005 ± 0.005 0.05 0.05 0.05 0.05	0.01 0.05 0.05 0.01 0.01 ± 0.005 0.05 0.05 0.05 0.05	$\begin{aligned} & 0.05 \% \\ & 3 \\ & 3 \\ & 0.5 \\ & 0.02 \% \\ & 0.2 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	abcde abdfgh abdfgh\| abcde abcde abcde\| obdfghi abdfghi obdfgh\| abdfghi	$\begin{array}{\|l} 321 \\ 225 \\ 160 \\ \\ 189 \\ 289 \\ 350 \\ 149 \\ 160 \\ 160 \\ 225 \end{array}$

Reader service numbers for literature and application notes, see page D6.
Companies advertising in the power supply section are marked by an asterisk.
Additional features explained on p. D36.
Manufacturers and model numbers, see p. D37.

Weston does its own thing: an AC/DC,
 Volts/Amps/Ohms, bench/panel/portable DMM...

Nobody does it like Weston, because nobody else has as much metering and digital experience.
That's why our new Model 1240 multimeter is not just an assemblage of stock components fitted to a package, but a custom-designed instrument embodying the very latest in technology by the leader in precision measurement.
From its rugged, glass-filled thermoplastic case down to its feather-touch pushbuttons, this is proprietary engineering at its finest.
Versatility? The Weston 1240 goes anywhere. It will fit your attache case, weighs only four pounds when carried by its self-contained handle (which doubles as a tilt stand for bench use), and comes completely equipped for
mounting in a standard $31 / 2^{\prime \prime}$ panel. No extras to buy.
An external switch provides for 115 V or 230 V operation, and if you're in the boondocks you can plug in an optional battery pack.

Other user exclusives . . . complete circuit overload protection, fuses replaceable from outside the case. recessed controls, in-house designed positive-detent range switch, pluggable Nixie* tubes, automatic polarity and outrange indication.

Performance-wise, the Model 1240 is a $31 / 2$-digit, high-impedance unit with ten DC, ten AC and six Ohms ranges, plus full voltage and current measuring capability. Accuracy is 0.1% of reading $\pm .05 \%$ F.S. on DC volts.

Weston engineered features include patented dual slope** integration and shunt circuitry, ultra-reliable gold-ongold switch contacts, and non-blinking display with automatic decimal positioning.

Also available at less cost is our Model 1241 DC volt/ohm meter. Both models are in stock now for immediate delivery. See them at your Weston Distributor, or ask us about the "going thing" in measurement . . . the Model 1240 DMM by Weston.
WESTON INSTRUMENTS DIVISION, Weston Instruments, Inc., Newark, N.J. 07114, a Schlumberger company

M E S O M

- Registered trademark, Burroughs Corp.
\bullet U.S. Pat. \#3,051,939 and patents pending.

for \$379.50 complete.

Reader service numbers for literature and application notes, see page D6.
Companies advertising in the power supply section are marked by an asterisk.
Manufacturers and model numbers, see p. D37.

	Mfr	Model	OUTPUT			REGULATION			Notes	Price S	Mfr	Model	OUTPUT			REGULATION			Notes	Price \$
			$\begin{aligned} & \mathrm{Min} \\ & \mathrm{~mA} \end{aligned}$	Max Amps	Max Volts	Line \%	Lood \%	Ripple mV					Min mA	Max Amps	Max Volts	Line \%	Load \%	Ripple mV		
$\begin{array}{\|c} \hline C C \\ 13 \end{array}$	*Trygon Christie Chalco *Sorensen Chaleo *Sorensen *Trygon	CR65-55 SC015-50- 12S F4563F7 DC R40-60A F1675F5 DCR150- 7OA M7C 15-80	2500	$\begin{aligned} & 55 \\ & 55 \\ & \\ & 63 \\ & 69 \\ & 75 \\ & 77 \\ & 80 \end{aligned}$	65 37 45 40 16 150 15	$\begin{aligned} & 0.2 \\ & 0.25 \\ & 0.005 \\ & \pm 0.075 \\ & 0.005 \\ & \pm 0.1 \\ & \pm 0.005 \end{aligned}$	0.2 0.25 0.005 40.075 0.005 ± 0.1 0.005	$\begin{aligned} & 0.15 \\ & 200 \\ & 0.01 \% \\ & 0.4 \% \\ & 0.01 \% \\ & 500 \\ & 1 \end{aligned}$	cey abcde abcdei abcde abcdej abcde ${ }^{\text {i }}$ obcde	$\begin{aligned} & 1350 \\ & 839 \\ & 1000 \\ & 925 \\ & 900 \\ & 2495 \\ & 1250 \end{aligned}$	*Sorensen *Sorensen *Trygon Spectro Spectro Sorensen	DCR40125A DCR20125A CR20-150 6004 6020 DCR20250A	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & -1000 \\ & -1.5 A \\ & 0 \end{aligned}$	$\begin{aligned} & 138 \\ & 144 \\ & \\ & 150 \\ & +155 \\ & 262 \\ & 275 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 20 \\ & 56 \\ & 94 \\ & 20 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & 0.075 \\ & \\ & 0.2 \\ & 0.0005 \\ & 0.0005 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & 0.075 \\ & 0.2 \\ & 0.0005 \\ & 0.0005 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & 160 \\ & 0.4 \% \\ & 0.15 \\ & 3 \\ & 6 \\ & 160 \end{aligned}$	abcdei abcdei cey acdi acdi abcdej	$\begin{aligned} & 1375 \\ & 1150 \\ & 1450 \\ & 5990 \\ & 9600 \\ & 1500 \end{aligned}$
$\begin{gathered} \text { CC } \\ 14 \end{gathered}$	Chalco ${ }^{*}$ Kepco *Kepco *Trygon *Trygan Spectra Christie Chaleo	$\begin{aligned} & \text { F3380F7 } \\ & \text { JQE6-90M } \\ & \text { KS8-100M } \\ & \text { M7C8- } \\ & 1000 V \\ & \text { CR36-100 } \\ & 6003 \\ & \text { SC015- } \\ & 100-12 S \\ & \text { A } 1625 F 7 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & -1000 \\ & 5000 \\ & 0 \end{aligned}$	$\begin{aligned} & 80 \\ & 90 \\ & 100 \\ & 100 \\ & 100 \\ & +110 \\ & 110 \\ & 125 \end{aligned}$	33 6 8 8 36 39.6 15 16	$\begin{array}{l\|} 0.005 \\ 0.005 \\ 0.01 \\ \pm 0.005 \\ 0.2 \\ 0.0005 \end{array}$	$\begin{aligned} & 0.005 \\ & 0.01 \\ & 0.01 \\ & 0.005 \\ & 0.2 \\ & 0.0005 \\ & 0.2 \\ & 0.005 \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & 0.02 \% \\ & 0.1 \% \\ & 1 \\ & 0.15 \\ & 2 \\ & 50 \\ & 0.01 \% \end{aligned}$	abcde ${ }^{\text {j }}$ abcde abcde abcde cey ocdi abcde abcdei	1000 977 1523 995 1350 4940 1025 1000	-Sorensen *Sorensen *Sorensen	$\begin{aligned} & \text { DCR40- } \\ & 250 A \\ & \text { DCR40- } \\ & 500 A \\ & \text { DCR20- } \\ & 1000 \end{aligned}$	0 0 0	$\begin{aligned} & 275 \\ & 500 \\ & 1100 \end{aligned}$	$\begin{aligned} & 40 \\ & 550 \\ & 20 \end{aligned}$	± 0.1 ± 0.1 ± 0.1	± 0.1 ± 0.1 ± 0.1	15 0.4% 160	abcdei abcdei abcde\|	$\begin{aligned} & 2340 \\ & 3850 \\ & 4200 \end{aligned}$

Index by Model Number

Name	Model	Code	Name	Model	Code	Name	Model

CREATE YOUR OWN POWER SUPPLY SUB-SYSTEMS

with OFF THE SHELF TDM modules

all on a single panel (we'll assemble it for you)

Transistor Devices' famous TDM and TDMD modules may be grouped together and bolted on a single $51 / 4^{\prime \prime}$ panel to meet your exact requirements in a single package. No expensive cabling, racks, or accessories required. Modules feature front panel voltage and current limit adjustment, test points, and indicator lamps. OV crowbar protection is built in.

SPECIFICATIONS

■ Input $103.5-126.5 \mathrm{~V}, 47-63 \mathrm{~Hz}$

- Outputs $0-305 \mathrm{~V}, 0-60 \mathrm{~A}$
- Transient Response 50 Usec
- Temperature Coefficient $.01 \% /{ }^{\circ} \mathrm{C}$
$\square 0-55^{\circ} \mathrm{C}$ Ambient at full rating

REGULATION	TDM	TDMD
LINE	$.01 \%+5 \mathrm{mV}$	$.1 \%+10 \mathrm{mV}$
LOAD	$.01 \%+5 \mathrm{mV}$	$.1 \%+10 \mathrm{mV}$
RIPPLE	$.001 \%+200 \mathrm{mV}$	$.01 \%+1 \mathrm{mV}$

Index by Model Number (continued)

Name	Model	Code	Name	Model	Code	Name	Model	Code
Plastic	LVC5-750	Cc9		DCR150-15A	CC7		HR20-10B	CC10
Capacitors	LVC12.400	Cc6		DCR150-35A	CC11		HR40-3B	CC5
	LVC12.600	CC9		DCR150.70A	CC13		HR40-5B	CC7
	LVC12.800	CC10		DCR300.1.25A	CC2		HR40-7.5B	CC9
	LVC24-400	CC6		DCR300-2.5A	CC5		HR40.750	CC1
	LVC28-400	CC6		DCR300.5A	CC8		HR60-2.5B	CC4
	LVC28.500	CC8		DCR300.18A	CC8		HR60-5B	CC7
	LVC36-300	CC6		DCR300-35A	CC11		HR160-2B	CC4
	LVC36-400	CC6		QRC20-8A	CC9		M3P8-250V	CC8
Power Des	3650R	CC7		QRC20-15A	CC12		M5C15-50	CC12
Power De-	36100R	CC11		QRC20-20A	CC9		M5C36-30	CC10
signs, Inc.	36250A	CC9		QRC40-4A	CC6		M5C60-15	CC7
Sorensen	DCR20-125A	CC13		QRC40-8A	CC9		M5C160-5	CC8
Sorensen	DCR20-250A	CC13		QRC40-15A	CC7		M5P8-500V	CC12
Operation,	DCR20-1000	CC14		QRC40-30A	CC9		M5P15-30	CC9
Raytheon	DCR40-10A	CC11	Spectro	6003	CC14		M5P36-15	CC7
Co.	DCR40-20A	CC8	Spectro-	6004	CC13		M5P60-10	CC11
	DCR40-35A	CC11	magnetic	6020	CC13		M7C8-1000V	CC14
	DCR40.60A	CC13	Industries	6021	CC10		M7C15-80	CC13
	DCR40-125A	CC13		6030	CC9		M7C40-50	CC12
	DCR40-250A	CC14		6121	CC10		M7C60-30	CC10
	DCR40-500A	CC14	Trygon	CR20-150	CC13		M7C160-8	CC10
	DCR60.13A	CC7	Trygon	CR36-100	SS14		RS20.7.5A	CC9 CC12
	DCR60-25A	CC9	Electronics	CR65-55	CC13		RS20-15A	CC12
	DCR60-40A DCR80.5A	CC11		CR110-30 DL40-1	$\begin{aligned} & \mathrm{CC10} \\ & \mathrm{CC1}, \mathrm{CC3}, \end{aligned}$		RS 40.5 A RS40-10	$\begin{aligned} & \text { CC7 } \\ & \text { CC11 } \end{aligned}$
	DCR80-10A	CC12			CC5, CC7		RS60-7.5A	CC9
	DCR80.18A	CC8		HH7.40V	CC6		SHR20-3A	CC1
	DCR80-30A	CC10		HH15-3	CC5		SHR40-1.5A	CC3
	DCR150-2.5A	CC5		HH32-1.5	Cc3		SHR60-1A	CC2
	DCR150-5A	CC8		HR20-1.5	CC3		SHR 160-500B	CC5
	DCR150-10A	CC12		HR20-5B	CC7		T50-2	CC3

Each of us will be asked to take an active part in the 1970 census, the 19th time at 10-year intervals that our Nation has taken stock of its greatest asset, its people. Census Day will be April 1, 1970.
You will be asked to be your own census taker. Your census form will be delivered by mail, and you are asked to answer the questions about your household. Most of us, those who live in the larger metropolitan areas, will be asked to return the form, with all questions answered, by mail. In other areas census enumerators will call at your home to collect the form.
I ask you to use your position of leadership in your firm and your community to urge your associates also to fill out their census forms, and to follow instructions which tell each head of household whether to return the form by mail or hold it until a census enumerator calls to pick it up.

IT'S EASY

Most households, four out of five, will have a maximum of 23 questions, requiring about 15 minutes for an average family. Simply use a pencil to fill in the circle which indicates the correct answer for each question. If you don't know the precise answer, your best estimate will be accepted.

IT'S SECRET

No one but census employees ever will see your answers on a questionnaire and every census worker takes an oath of confidentiality. The information will be used only for statistical purposes. It will never be made available to tax collecting agencies, police or regulatory agencies. This is assured by the Federal Census Law and backed by long tradition of the Census Bureau.

IT'S IMPORTANT

The statistics produced by a census tell all of us not only how many of us there are in the Nation and each of its parts, but also how we are living: whether we are gaining or losing in our efforts to provide adequate jobs, education, housing, and other elements that we have established as our goals and which segments of our population are being left behind in the attainment of those goals. The information provided by the census will be used to guide governments and businesses in major decisions during the coming years.
In the United States, everyone counts, and the census counts everyone!

MAURICE H. STANS
Secretary of Commerce

"Space contribured by Hayden Publishing Company Inc." business press advertising contributed for the public good

							Notes	Price	Mir	Wodel Wols							
			$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.6 \\ & 1.8 \end{aligned}$	0.5 0.15 0.1 0.01 0.005 0.015 ave 0.1								$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.015 \\ & 0.025 \\ & 0.05 \\ & 0.15 \\ & 0.05 \\ & 205 \end{aligned}$	$\begin{array}{\|l\|l\|} 0.001 \\ 0.001 \\ 0.001 \\ 0.01 \\ +1 \\ \pm 1 \\ \pm 1 \\ \pm 0.0101 \\ 0.000 \end{array}$		2000 1 5 15 115 22% 3.5% 1.5% 2000 0.03%		
			$\begin{aligned} & 2.012 \\ & 2.012 \\ & 2.11 \\ & 2.11 \\ & 2.11 \end{aligned}$				$\begin{array}{\|l\|} \text { cde } \\ \text { chi } \\ \text { chi } \\ \text { ocshi } \\ \text { chi } \\ \text { dif } \end{array}$				12 15 15 15 15 15 20 20	$\begin{aligned} & 0.002 \\ & 0.002 \\ & 0.002 \\ & 0.01 \\ & 0.02 \\ & \text { a020 } \\ & 0.000 \end{aligned}$					
		$\left(\begin{array}{l} 0_{0}^{0} \\ 0 \\ 0 \\ 5000 \\ 5000 \\ 5000 \end{array}\right)$									$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.15 \\ & 0.15 \\ & 0.20 \mathrm{~A} \\ & 0.1004 \\ & 0.000 \\ & 0.004 \end{aligned}$					
			$\begin{aligned} & 3 \\ & 3.5 \\ & 3.1 \end{aligned}$					$\begin{aligned} & 575 \\ & \hline 7505 \\ & 1250 \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.1 \\ & 0.03 \\ & 01 \\ & 0.0 \end{aligned}$				
		HV15KM 0 HV15KM 0 S327 500	$\begin{aligned} & 3.12 \\ & 3.55 \\ & 3.55 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.000 \\ & 0.0002 \\ & 0.0025 \\ & 0.015 \\ & 0.015 \end{aligned}$							$\begin{aligned} & 60 \\ & 00 \\ & 80 \\ & 800 \\ & 100 \\ & 100 \\ & 120 \end{aligned}$			$\left[\begin{array}{l} 0.6 \\ i,-25 \\ 7,0 \\ 7.61 \\ 0.0 \\ 8, .3 \\ i s-25 \end{array}\right.$			(10500
				$\begin{aligned} & 0.055 \\ & 0.1 \\ & 0.1 \\ & 0.5 \\ & 0.50 . \\ & 0.00 \\ & 0.0 \mathrm{Na} \end{aligned}$							$\begin{aligned} & 120 \\ & 120 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 200 \\ & 200 \\ & 300 \\ & \hline \end{aligned}$	o.0.005 0.005 0.02 0.02 0.005 0.005 0.005 0.001				$\operatorname{cocdi}_{\operatorname{cdic}}$	(1295
	men		$\begin{aligned} & 10 \\ & 10 \end{aligned}$						$\underbrace{\text { U }}_{\substack{\text { Uni-Volt } \\ \text { Serion } \\ \text { Serion }}}$		600 LATE 2.5 20			${ }_{0}^{0.01}$	$\left.\right\|_{s_{\rho-p}} ^{\substack{p-p}}$		(1000

[^7]g. This model designation covers a series of modular supplies. These
h. Contral section and high voltage tank enclosed in one unit.
i. Control section and high valtage tank are separate units.
i. Reversible polarity.
f. Dual output I. Line regulation optional, consult factiry.

Reader service numbers for literature and application notes, see page D6.
Companies advertising in the power supply section are marked by an asterisk.

RCA Solid-State Data for Designers

Switching regulator ofters high efficiency

Where space and weight are important factors, the switching regulator has some impressive advantages. Here's why:

The switciling regulator is basically a relaxation oscillator (positive feedback is introduced via R_{1}) and, unlike conventional Class A dc regulators, it's either in the "Off" statewith essentially zero internal dissi-pation-or saturated in the "On" state with low dissipation. Thus the operating efficiency is high.

The regulator's state is determined by the voltage difference between the internal reference (pin 5) and the sense input (pin 6). When the sense input is more negative than the reference, the regulator is on. Conversely, if the reference is more negative, the regulator is off.

The RCA-CA3055 makes an excellent switching regulator. Its load and line regulation capability is 0.025% and it can deliver up to 100 mA . It has an input voltage range of 7.5 V to 40 V and an adjustable output from 1.8 V to 34 V .

Circle Reader Service No. 641.

Typical operating characteristics:

Output Impedance	$<0.15 \Omega$
Line Regulation	$.03 \%$
Efficiency	76.5%
Rise Time	$1 \mu \mathrm{~s}$
Switching Frequency	60 kHz
Output Voltage	11 V
Output Current	400 mA

No trade-off on power capability with two new high voltage types

RCA's 2N5804 and 2N5805 are two new triple-diffused silicon n-p-n transistors that offer the best in highvoltage, high power characteristics ($\mathrm{P}_{\mathrm{T}}=110 \mathrm{~W}$)-in an economical TO-3 package. Especially useful in efficient power conversions, the 2N5804 and 2N5805 will find design applica-
(ion in switching inverters, series regulators, linear amplifiers, deflection amplifiers, and motor controls.

Designed primarily for use in the industrial and military markets, these devices round out a line that already makes RCA the silicon power leader in the industry.

The 2N5804 features $\mathrm{V}_{\text {CEO }}$ (sus) of 225 V (max.), while 2N5805 offers $\mathrm{V}_{\mathrm{CEO}}$ (sus) of 300 V (max.). Both silicon power transistors have a current capability of 8 A and are beta controlled at 5 A.

Circle Reader Service No. 642.

New COS/MOS 4-Bit Full Adder is significantly faster than P-MOS adders

RCA's CD4008D is a new generation 4-Bit Full Adder featuring a fast lookahead carry capability. The CD4008D combines low quiescent power dis-sipation-5 $\mu \mathrm{W}$ (typ)-with highspeed operation where sum propagation delay is typically 400 ns and carry-in to carry-out delay is 50 ns . This rapid carry feature is especially valuable in assembling multiple adder stages such as a 16 -bit full adder where all sum outputs will settle to final values in 660 ns .

The new COS/MOS adder will operate with a single power supply over a wide voltage range -6 to 15 V -and with power consumption sev-
eral orders of magnitude lower than bipolar adders.

The circuit shown here is a typical computer application of a CD4008D. It also incorporates two other COS/ MOS integrated circuit types - the CD4013D Dual D-Type Set/Reset Flip/Flop and the Developmental TA5652 Quad ANDOR Select Gate.

Registers " A " and "B" are each 4-bits long. The true complement select gate gates information from the " A " register to the four " A " inputs of the adder. The Bus/ B register select gate

(3) feeds the " B " register with information from either the Bus line or the SHR/SHL select gate (1) and the " B " register, in turn, passes this information to the four " B " inputs of the adder. The select gate (1) provides a means for shifting the " B " register information one position either left or right, thus permitting multiplication or division by two.

The CD4008D adder's output is the sum of its " A " and " B " inputs. When the " A " input from true/complement select gate (2) is true, the adder's output is " A " plus " B "; conversely, when the " A " input from the true/ complement select gate is the complement, the adder's output is " B " minus "A".

Circle Reader Service No. 643.

Ultra reliable: RCA's radiation-hard transistors

Reliability was the hallmark of the successful lunar landing of Apollo 12's "Intrepid" and the redocking maneuver with the "Yankee Clipper." One of Apollo's most important systems - the Rendezvous Radar-uses an ultra-high-reliability version of RCA's $2 N 2857$ family of radiationtolerant, low-noise UHF amplifiers

For applications demanding radia-tion-tolerant devices, RCA's pioneering low-noise, ultra-high frequency 2N2857 family has demonstrated its
tolerance to a severe radiation environment consisting of steady-state fast-neutron radiation with near-fission spectrum ($E>0.1 \mathrm{MeV}$); fluence $1.2 \times 10^{14} \mathrm{n} / \mathrm{cm}^{2}$ accompanied by reactor gamma radiation ($\mathrm{E}=1.0 \mathrm{MeV}$) gamma dose 1.5×10^{7} rads. Peak primary photo current (Ipp) for a dosage rate of $10^{\circ} \mathrm{rad} / \mathrm{sec}$ is about 0.006 ampere.

The following table depicts the survivability of the 2N2857 family:

Device unbiased during irradiation			
Parameter	Test Condition	Pre-Irradiation	Post-Irradiation
$\mathrm{hfe}_{\text {e }}$	$\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}$	80	20
$\mathrm{h}_{\text {fe }}$	$\begin{aligned} & V_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA} \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$	18	18
$\mathrm{I}_{\text {Сво }}$	$\mathrm{V}_{C B}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	0.008 nA	0.35 nA
$V_{\text {IBRI Cbo }}$	$\mathrm{I}_{\mathrm{C}}=1 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	33 V	36 V
$V_{\text {IBRI Ceo }}$	$\mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0$	20 V	27 V
$\mathrm{V}_{\text {CE }}$	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$	0.16 V	0.37 V
$\mathrm{G}_{\text {PE }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1.5 \mathrm{~mA} \\ & \mathrm{f}=450 \mathrm{MHz} \end{aligned}$	13.4 dB	13.0 dB
NF	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1.5 \mathrm{~mA} \\ & \mathrm{f}=450 \mathrm{MHz} \end{aligned}$	4.4 dB	4.5 dB
$\mathrm{C}_{\text {obo }}$	$\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	1.1 pF	1.1 pF

Contact your local RCA Representative who will be pleased to work with you on your high-reliability requirements.
For further data on the 2N2857 family, circle Reader Service No. 644.

For price and availability information on all solid-state devices, see your local RCA Representative or your RCA Distributor. For specific technical data, write RCA Electronic Components, Commercial Engineering, Section B18-2/UM4, Harrison, N.J. 07029. In Europe: RCA International Marketing S.A., 2-4 rue du Lièvre, 1227 Geneva, Switzerland.

The key to intrusion alarms RCA GaAs laser diodes

Alarms using RCA's developmental type TA7699 (or its TA7699R reverse polarity counterpart) gallium arsenide (GaAs) laser diodes disclose many intruders. These laser diodes are designed into protective systems for both military and commercial applications.

Single laser diode assembly
The TA7699 and TA7699R are "Close Confinement" laser diodes. (Close Confinement is a manufacturing technique that limits radiation to the junction area and results in lower threshold currents and greater efficiency.) They operate in the near infrared region (9050 angstroms), and are capable of 15 watts (minimum) output.

Here are three big reasons for using the TA7699 and TA7699R: 1)' operating range in excess of 1000 feet; 2) readily available silicon photodetectors can be used for receivers; 3) relatively low drive current required-so battery life can be a year or more.

Also available are selected RCA GaAs "CC" diodes that have outputs up to 25 watts at the same low drive current as the TA7699-as well as the following "CC" diode types:

Characteristics	TA7606	TA7608	TA7610
High Radiant Peak Power Output (Watts)	1 (min.)	5 (min.)	10 (min.)
Source Dimension (Mils)	2 (typ.)	6 (typ.)	13 (typ.)
Typical Threshold Current, Ith (Amperes)	4	6	9
Low Drive Current, IFM (Amperes)	10	7	10

Circle Reader Service No. 645.

	Mfr	Model	OUTPUT		REGULATION			Notes	Price \$	Mfr	Model	OUTPUT		REGULATION			Notes	Price \$
			Range Volts	Max Amps	Line \%	$\begin{aligned} & \text { Lood } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Ripple } \\ & \mathrm{mV} \end{aligned}$					Range Volts	Max Amps	$\begin{gathered} \text { Line } \\ \% \end{gathered}$	Load \%	$\begin{aligned} & \text { Ripple } \\ & \mathrm{mV} \end{aligned}$		
$\begin{array}{\|l\|} \text { LT } \\ 1 \end{array}$	*Kepco Int Conit Power Des *H-P *Trygon - Power/ Mate *Kepco *H-P *Trygon *H-P	$\begin{aligned} & A B C 2-1 M \\ & C V 100 \\ & 630 \\ & 6203 B \\ & L Q S 6-33 \\ & B P-8 C \\ & A B C 10- \\ & 0.75 M \\ & 6214 A \\ & E A L O-10 \\ & 6213 A \end{aligned}$	$\begin{aligned} & 0-2 \\ & 2-6 \\ & 0-6 \\ & 0-7.5 \\ & 4.5-7.8 \\ & 0-8 \\ & \\ & 0-10 \\ & \\ & 0-10 \\ & 0-10 \\ & 0-10 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 3 \\ & 3 \\ & 1.9 \\ & 1.5 \\ & 0.75 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.008 \\ & 0.01 \\ & 3 \mathrm{mV} \\ & 0.01 \\ & 0.01 \\ & 0.05 \\ & \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.03 \\ & 0.01 \\ & 5 \mathrm{mV} \\ & 0.01 \\ & 0.01 \\ & 0.05 \\ & \\ & 0.01 \\ & 0.2 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 1 \\ & 1 \\ & 0.2 \\ & 0.5 \\ & 0.25 \\ & 0.25 \\ & 0.2 \\ & 0.5 \\ & 0.2 \end{aligned}$	abcde abed abcde obcdei abcde cde cde	131 160 150 169 135 89 131 115 99 90	*Trygon *H-P Power Des *H-P *Trygon *Trygon *NJE *NJE *H-P Hyp	$\begin{aligned} & \text { HR20-1. } 5 \\ & 62018 \\ & 2015 R \\ & \\ & \text { 6200B } \\ & \text { LQS24-1.5 } \\ & \text { LQS18-1.9 } \\ & \text { LVCII-20- } \\ & 2 \\ & \text { PVC-20-2 } \\ & 6253 A \\ & \text { HY-VS- } \\ & 20-3 \end{aligned}$	$\begin{aligned} & 0-20 \\ & 0-20 \\ & 0-20 \\ & 0-20 \\ & 18.5-27.5 \\ & 13.5-20.5 \\ & 0-20 \\ & 0-20 \\ & 0-20 \\ & 0-20 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.9 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.03 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.01 \\ & 0.03 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.2 \\ & 0.45 \\ & 4 \\ & 4 \\ & 0.5 \\ & 0.5 \\ & 0.25 \\ & \\ & 0.25 \\ & 0.2 \\ & 0.25 \end{aligned}$	e abcde abcde abcde abcde abcde abcdef obcdei	169 169 175 189 135 135 171 195 445 199
$\begin{aligned} & \mathrm{LT} \\ & 2 \end{aligned}$	*Mid- East *H-P *NJE Prec Stan *NJE Int Cont *Trygon P/N En- deveo P/N	PMA 10-1.5 6113A PVC-10-2 103 LVCII-10-2 CV100 LQS 10-3 PR-30 4203 PR-300	$\begin{aligned} & 0-10 \\ & 0-10 \\ & 0-10 \\ & 0-10 \\ & 0-10 \\ & 0.5-10.5 \\ & 8.5-11.5 \\ & \pm 15 \\ & 1-15 \\ & \\ & \pm 15 \end{aligned}$	1.5 2 2 2 3 ± 0.03 0.2 ± 0.3	$\begin{aligned} & \pm 0.01 \\ & 0.001 \\ & 0.01 \\ & 0.005 \\ & \\ & 0.01 \\ & 0.008 \\ & 0.01 \\ & \pm 0.05 \\ & 0.01 \\ & \pm 0.005 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.001 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.03 \\ & 0.01 \\ & \pm 0.05 \\ & 0.01 \\ & \pm 0.005 \end{aligned}$	1 0.04 0.25 0.1 0.25 0.28 0.5 $3 p-p$ $0.1 p-p$ 0.25	abed abed abcde abcde abcde bd	$\begin{aligned} & 165 \\ & 375 \\ & 148 \\ & 169 \\ & 124 \\ & 160 \\ & 139 \\ & 98 \\ & 180 \\ & 250 \end{aligned}$	*H-P *Soren- sen -Soren- sen North Hills Wanless *H-P *H-P *H-P EPL *H-P	6284A QRD20-4 QRS20-4 VS-36 PSSI-24 6224B 6215A 6216A PSR-12-25 6220B	$\begin{aligned} & 0-20 \\ & 0-20 \\ & 0-20 \\ & 21.1 \\ & 24 \\ & 0-24 \\ & 0-25 \\ & 0-25 \\ & 0-25 \\ & 0-25 \end{aligned}$	$\begin{aligned} & 3 \\ & 4.4 \\ & 4.4 \\ & 0.1 \\ & 2.5 \\ & 3 \\ & 0.4 \\ & 0.4 \\ & 0.5 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.01 \\ & \pm 0.005 \\ & \\ & \pm 0.01 \\ & 0.0025 \\ & \\ & \pm 0.005 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.01 \\ & \pm 0.005 \\ & \pm 0.01 \\ & 0.0025 \\ & \pm 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	0.2 0.2 0.4 0.02\% 0.75 0.2 0.2 0.2 100 0.2	abcde abcde iy obcdej bd abcde cde cde c abcdef	$\begin{aligned} & 210 \\ & 278 \\ & 255 \\ & 1450 \\ & \\ & 275 \\ & 325 \\ & 90 \\ & 115 \\ & 110 \\ & 250 \end{aligned}$
$\begin{array}{\|l} L T \\ 3 \end{array}$	*Trygon *Heath - Kepco *Kepco *Soren- sen *Soren- sen Beco *Trygon Power Des	$\begin{aligned} & \text { HH15-3 } \\ & \text { IP-18 } \\ & \text { ABC 15-1M } \\ & \text { CDT 15- } \\ & 1.5 M \\ & \text { QRS15-2 } \\ & \\ & \text { QRD 15-2 } \\ & 30.3 \\ & \text { LQS 12-2.5 } \\ & 6050 \end{aligned}$	$\begin{aligned} & 0-15 \\ & 1-15 \\ & 0-15 \\ & 0- \pm 15 \\ & 0-15 \\ & \\ & 0-15 \\ & 0-15 \\ & 0-115 \\ & 0-15 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.5 \\ & 1 \\ & \pm 1.5 \\ & 2.2 \\ & \\ & \\ & 2.2 \\ & 2.4 \\ & 2.5 \\ & 3 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 50 \mathrm{~m} V \\ & 0.05 \\ & 0.005 \\ & \pm 0.01 \\ & \\ & \\ & \pm 0.005 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	0.01 50 mV 0.05 0.01 ± 0.01 ± 0.005 0.1 0.01 0.01	0.5 5 0.25 0.25 0.4 0.2 0.2 0.5 1	c ae abcde abcden abcdej abcdei den abcd	169 22 kit 175 399 145 178 reg 135 195	* $\mathrm{H}-\mathrm{P}$ Power Des *Soren- sen Rosemont Endeveo *H-P -Acopian * Kepco AUL Topaz Prec Stan	$\begin{aligned} & 62278 \\ & 6050 \end{aligned}$ QSB 18-1.5 SPS-2089- L-A 4204 721A K55 ABC30- 0.3M RS-30A 151 113	$\begin{aligned} & 0-25 \\ & 0-25 \\ & 13-26 \\ & 1-28 \\ & \\ & 1-30 \\ & 0-30 \\ & 1.25-30 \\ & 0-30 \\ & 1-30 \\ & 0-30 \\ & 0-30 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1.6 \\ & 0.5 \\ & 0.1 \\ & 0.15 \\ & 0.3 \\ & 0.3 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1 \mathrm{mV} \\ & 0.01 \\ & \\ & \pm 0.005 \\ & \\ & 25 \mathrm{mV} \\ & \\ & 0.01 \\ & 15 \mathrm{mV} \\ & 10 \mathrm{mV} \\ & 0.05 \\ & \\ & 20 \mathrm{mV} \\ & \pm 0.02 \\ & 0.005 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & \pm 0.005 \\ & 25 \mathrm{mV} \\ & \\ & 0.01 \\ & 30 \mathrm{mV} \\ & \pm 0.5 \\ & \mathrm{u} .05 \\ & \\ & 20 \mathrm{mV} \\ & 5 \mathrm{mV} \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 1 \\ & 0.25 \\ & 1 \\ & 0.1 \mathrm{pp} \\ & 150 \\ & 1 \\ & 0.25 \\ & 3 \\ & 1 \\ & 0.18 \end{aligned}$	abcde abcd abcdej bd cde cdi abcde abcde	450 195 115 98 180 145 98 131 45 reg 169
\|LT	*Soren- sen *Soren- sen P / N Topaz *Kepco *Power/ Mate Wan- less -Soren- sen *Power/ Mate *Kepco	QRD15- 2-7.5-3 ORD15- 2-7.5-3 NPS-300A 91PQ ABC 18-0.5M BP-18C LABII QSB 12-2 BP-18D CK 18-3M	$\begin{aligned} & 0-7.5-15 \\ & 0-7.5-15 \\ & 12-18 \\ & 5-18 \\ & 0-18 \\ & 0-18 \\ & 0-18 \\ & 9-18 \\ & 0-18 \\ & 0-18 \end{aligned}$	2.2- 3.3 2.2- 3.3 ± 0.3 0.5 0.5 1 1.25 2.2 2.5 3	$\begin{aligned} & \pm 0.005 \\ & \pm 0.005 \\ & \pm 0.05 \\ & \pm 0.05 \\ & 0.05 \\ & 0.01 \\ & \pm 0.05 \\ & \pm 0.005 \\ & 0.01 \\ & 0.005 \end{aligned}$	$\begin{aligned} & \pm 0.005 \\ & \pm 0.005 \\ & \pm 0.05 \\ & 5 \mathrm{mV} \\ & 0.05 \\ & 0.01 \\ & \pm 0.05 \\ & \pm 0.005 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 1 \\ & 1 \\ & 0.25 \\ & 0.25 \\ & 0.75 \\ & 0.25 \\ & 0.25 \\ & 0.5 \end{aligned}$	abcdefi abcdeff abcde abcdei def abcdei abcdei abcde	396 198 135 reg 131 89 150 115 129 321	AUL *H-P AUL *Heath *Soren- sen Soren- sen Beco -Power/ Mate R-S Prec Stan	PS-30 6206B PSS-30 1P-28 QRS30-1 QRD30-1 304 BP-30E NGN 114	$\begin{aligned} & 0-30 \\ & 0-30 \\ & 0-30 \\ & 1-30 \\ & 0-30 \\ & 0-30 \\ & 0-30 \\ & 0-30 \\ & 0-30 \\ & 0-30 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1.1 \\ & \\ & 1.1 \\ & 1.2 \\ & 2.5 \\ & 2.5 \\ & 3 \end{aligned}$	0.01 0.01 0.01 25 mV ± 0.01 ± 0.005 0.01 0.01 -15- $+10$ 0.005	0.01 0.01 0.01 50 mV ± 0.01 ± 0.005 0.1 0.01 ± 0.5 0.01	$\begin{aligned} & 1 \\ & 0.2 \\ & 1 \\ & 5 \\ & 0.4 \\ & \\ & 0.2 \\ & 0.2 \\ & 0.25 \\ & 2.5 \\ & 0.18 \end{aligned}$	abcde abcde abcdei abcdei dep abcdei cfi abcde	63 169 120 48 kit 145 178 reg 210 610 269
$\begin{array}{\|l} \mathrm{LT} \\ 5 \end{array}$	*RCA -RCA *RCA *Trygon *H-P *H-P *Soren- sen *H-P *NJE *H-P	WP703A WP-702A WP-700A EAL20-500 6823A 62048 OHS20-1.0 6111 A LVCII-20-1 6101 A	$\begin{aligned} & 0-20 \\ & 0-20 \\ & 0-20 \\ & 0-20 \\ & -20 \text { +o } \\ & +20 \\ & 0-20 \\ & 0-20 \\ & \\ & 0-20 \\ & 0-20 \\ & 0-20 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.2 \\ & 0.5 \\ & 0.5 \\ & 0.6 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	7 mV 30 mV 30 mV 0.01 0.02 0.01 lppm 0.001 0.01 0.001	10 mV 50 mV 50 mV 0.2 0.02 0.01 5ppm 0.001 0.01 0.001	$\begin{aligned} & 0.2 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 2 . \\ & 0.2 \\ & \\ & 0.1 \\ & 0.04 \\ & 0.25 \\ & 0.04 \end{aligned}$	cd cdf cd c z abcde obcdei abcde abcde abcde	$\begin{aligned} & 59 \\ & 87 \\ & 48 \\ & 99 \\ & 194 \\ & 144 \\ & 345 \\ & 375 \\ & 375 \\ & 124 \\ & 265 \end{aligned}$	*Trygon *Trygon *Power/ Mate *Power/ Mate *Power/ Mate - Power/ Mate *Soren- sen	HH32-1. 5 LOS28-1.4 BP-89 BP-34C BP-118 BP-34D QSB28-1	$\begin{aligned} & 0-32 \\ & 22-33 \\ & 0-34 \\ & 0-34 \\ & 0-34 \\ & 0-34 \\ & 18-36 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.4 \\ & 0.5 \\ & 0.5 \\ & 1.5 \\ & 1.5 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & \pm 0.005 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & \pm 0.005 \end{aligned}$	0.5 0.5 0.25 0.25 0.25 0.25 0.25	abcde abcdei abcde abcde ${ }^{i}$ abcde ${ }^{\text {i }}$	165 135 89 89 118 129 115
$1 \begin{aligned} & L T \\ & 6 \end{aligned}$	*Mid- East *NJE *Trygan Prec Stan *Sorensen	PMA2O-1.0 PVC-20-1 SHR2O-3A 102 OHS2O- 1.0 L	$\begin{aligned} & 0-20 \\ & 0-20 \\ & 0-20 \\ & 0-20 \\ & 0-20 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & \\ & 0.01 \\ & 0.01 \\ & 0.005 \\ & 1 \text { ppm } \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 5 \mathrm{ppm} \end{aligned}$	$\begin{aligned} & 1 \\ & 0.25 \\ & 0.5 \\ & 0.15 \\ & 0.1 \end{aligned}$	abed abcde abcde abcdei	$\begin{aligned} & 165 \\ & 148 \\ & 239 \\ & 169 \\ & 265 \end{aligned}$	*Kepco *Керсо -ERA *ERA *Soren- sen *Kepco	$\begin{aligned} & \text { CK36-1. } 5 \mathrm{M} \\ & \text { BOP36- } \\ & 1.5 M \\ & \text { SL36-2/2M } \\ & \text { SL36-2M } \\ & \text { QSB28-2 } \\ & \text { JQE36-3M } \end{aligned}$	$\begin{aligned} & 0-36 \\ & \pm 36 \\ & 0-36 \\ & 0-36 \\ & 18-36 \\ & 0-36 \end{aligned}$	1.5 ± 1.5 2 2.2 3	$\begin{aligned} & 0.005 \\ & 0.1 \mathrm{mV} \\ & \\ & \pm 0.01 \\ & \pm 0.01 \\ & \pm 0.005 \\ & 0.0005 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 1 \mathrm{mV} \\ & \\ & \pm 0.01 \\ & \pm 0.01 \\ & \pm 0.005 \\ & 0.005 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 3 \\ & 1 \\ & 1 \\ & 0.25 \\ & 0.2 \end{aligned}$	abcde acdz abcdef obcde obcde ${ }^{-}$ abcde	321 525 465 235 170 289

New precision de power supplies with $0.1 \%+1 \mathrm{mV}$ aceuracy $\mathbf{\$ 3 4 5 0 0}$

The QHS Series is composed of three instruments, each having: = direct voltage programming to 6 digits $=11 \mu \mathrm{~V}$ resolution $=0.1 \%+1 \mathrm{mV}$ calibration accuracy $=$ constant voltage regulation of $1 \mathrm{ppm}+30 \mu \mathrm{~V}$ for 20% line voltage fluctuations $=$ constant voltage regulation of $5 \mathrm{ppm}+50 \mu \mathrm{~V}$ for 100% load changes $100 \mu \mathrm{~V}$ p-p ripple $(10 \mathrm{~Hz}-500 \mathrm{kHz})=10 \mathrm{ppm}$ $+100 \mu \mathrm{~V}$ stability for 8 hours - resetability of 30 ppm or $200 \mu \mathrm{~V}$. optional overvoltage protection $\quad 250$ hour factory pre-aging.

The QHS 20-1 (0-20 Vdc @ 1A), QHS 40-.5 (0-40 Vdc @ ,5A) and QHS 100-.2 (0-100Vdc @ .2A) are available for immediate delivery in a $31 / 2^{\prime \prime} \times 81 / 4^{\prime \prime} \times 123 / 4^{\prime \prime}$ modular package suitable for rack mounting.

			OUTP			GULATI	ION					OU	PUT	REG	UlAtio			
	Mfr	Model	Range Volts	Max Amps	Line \%	$\begin{array}{\|c} \text { Load } \\ \% \end{array}$	Ripple $\mathrm{m} V$	Notes	Price s	Mfr	Model	Range Volts	Max Amps	Line \%	Load \%	$\begin{aligned} & \text { Ripple } \\ & \mathrm{mV} \end{aligned}$	Notes	Price S
$\begin{aligned} & \text { LT } \end{aligned}$	Plastic	LV36-300	$35.3-$ 36.7	3	0.05	0.05	3	abdighi	150		5015 T	0-50	1.5	0.01	0.01	0.75	abcd	235
	Int Con	CPS400-1	0.1-38	1	0.05	0.05	5	\dagger	395	*Kepco	JQE55-2M	0-55	2	0.0005	0.005	0.2	abcde	300
	*RCA	WP704A	0-40	0.25	7 mV	20 mV	0.5	cd	59	*NJE	PVC-50-2	0-50	2	0.01	0.01	0.25	abcde	295
	* H-P	6204B	0-40	0.3	0.01	0.01	0.2	abcde	144	*Trygon	T50-2	0-50	2	0.05	0.05	0.5		249
	*Mid-	PMA40-. 5	0-40	0.5	± 0.01	0.02	1	abcd	175	Prec	106	0-50	2	0.005	0.01	0.2	abcde	269
	East									Stan								
	*Kepco	ABC40-	0-40	0.5	0.05	0.05	0.25	abcde	175	Prec	112	0-50	3	0.001	0.01	0.2	abcde	370
		0.5M								Stan								
	* H-P	6112A	0-40	0.5	0.001	0.001	0.04	abcde	375	*Trygon	LQS48-. 67	32-53	0.67	0.01	0.01	0.5		139
	*Soren-	QHS40-. 75	0-40	0.5	1 ppm	5ppm	0.1	abcdei	345	*Trygon	LQS48-1.9	32-53	1.9	0.01	0.01	0.5		185
										*Mid-	PMA60-. 35	0-60	0.35	± 0.01	0.02	1	abed	175
	*Kepco	CDT40-	0- ± 40	± 0.5	0.005	0.01	0.25	abcden	399	East								
		0.5M								*Kepco	CK60-0.5M	0-60	0.5	0.005	0.01	0.5	abcde	321
	$\begin{aligned} & \text { *Soren- } \\ & \text { sen } \end{aligned}$	QHS40-. 5L	0-40	0.5	1 ppm	5ppm	0.1	abcdei	265	Power Des	6050	0-60	0.5	0.01	0.01	1	abed	195
LT		6102A TRO40M 6205B 6202B HR40-750 6200B CK40-0.8M GRD40-. 75 ORS 40-. 75	$0-40$		0.001	0.001	0.04	abcde obcdeg obcdef obcde e abcde abcde abcdei	265				0.5			$\begin{aligned} & 0.2 \\ & 3 \\ & 0.2 \end{aligned}$		
	- ERA *H-P *H-P *Trygon * $\mathrm{H}-\mathrm{P}$ *Kepco -Saren- sen *Soren- sen		$\begin{aligned} & 0-40 \\ & 0-20-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \end{aligned}$	0.5	± 0.15	0.03	0.8		$\begin{aligned} & 130 \\ & 235 \end{aligned}$	AUL *Soren- sen "Sorensen	$\begin{aligned} & \text { RSD-30A } \\ & \text { QRD60-. } \end{aligned}$	$\begin{aligned} & 0-60 \\ & 2-60 \\ & 0-60 \end{aligned}$	0.50.50.55	$\begin{aligned} & 0.01 \\ & 20 \mathrm{mV} \\ & \pm 0.005 \end{aligned}$				$\begin{aligned} & 169 \\ & 85 \end{aligned}$
				0.3-0.6	0.01	0.01	0.2								± 0.005		abcdei	$\begin{aligned} & 85 \\ & 185 \end{aligned}$
				0.75	0.01	0.01	0.2		169							0.2		
				0.75	0.01	0.05	0.15		169		QRS60-. 5	0-60	0.55	± 0.01	± 0.01	0.4	abcdei	155
				0.75	0.001	0.001	0.04		189									
				0.8	0.005	0.01	0.5		$\begin{array}{\|l\|l\|} 281 \\ 178 \end{array}$									
				0.825	± 0.005	± 0.005	0.2											
					± 0.01					Beco *Power/ Mate *Power/ Mate	$\begin{aligned} & 305 \\ & B P-60 D \\ & B P-60 E \end{aligned}$	$\begin{aligned} & 0-60 \\ & 0-60 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.01 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.2 \\ & 0.25 \end{aligned}\right.$	dep abcdei	$\begin{aligned} & \text { reg } \\ & 129 \end{aligned}$
			0-40	0.825		± 0.01	0.4	abcdei	145									
												0-60	1.25	0.01	0.01	0.25	abcdei	220
LT	$\begin{array}{\|l\|} \text { *H-P } \\ \text { *Soren- } \end{array}$sen	6255AQRD40-$.75-20-$1.5SHR40-1. 5 A6289AMP-40	$\left\lvert\, \begin{aligned} & 0-40 \\ & 0-20-40 \end{aligned}\right.$	$\begin{aligned} & 1.5 \\ & 0.75- \\ & 1.5 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.01 \\ & \pm 0.005 \end{aligned}\right.$	$\left[\begin{array}{l} 0.01 \\ \pm 0.005 \end{array}\right.$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	abcdef abcdefi	$\begin{aligned} & 445 \\ & 396 \end{aligned}$	*ERA	SL601-2M	$\begin{aligned} & 0-60 \\ & 0-60 \\ & 0-30-60 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0.5-1 \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & 0.01 \\ & \pm 0.005 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & 0.01 \\ & \pm 0.005 \end{aligned}$		abcde abcdefi	440
										*Trygon	SHR60-1A					10.50.2		$\begin{aligned} & 239 \\ & 205 \end{aligned}$
										*Soren-	QRD60-. 5							
										sen	-30-1							
	*Trygon		0-40	1.5	0.01	0.01	0.5	e	239	* H -P	6294A	0-60	1	0.01	0.01	0.2	abcde	210
	*H-P		0-40	1.5	0.01	0.01	0.2	abede	210	*ERA	SL60-1M	0-60	1	± 0.01	± 0.05	1	obcde	220
	less Wan-		0-40	1.6	± 0.01	5	0.25	dev	225	AUL *ERA	PSD-30 LC Series	$\begin{aligned} & 0-60 \\ & 4-60 \end{aligned}$	1 1-	$\begin{aligned} & 0.01 \\ & \pm 0.01 \end{aligned}$	0.01	1		120
			$\begin{aligned} & 0-40 \\ & 0-20-40 \end{aligned}$	1.6	± 0.005										0.05	0.8	abdegi	$\begin{aligned} & 95- \\ & 225 \end{aligned}$
		PDC-40					50.5		375				12.5					
	$\left\lvert\, \begin{aligned} & \text { less } \\ & \text { *Soren- } \end{aligned}\right.$	QRD40-.75-			± 0.005	± 0.005		abcdefi		Prec	116	0-60	1.5	0.005	0.01	0.24	abcde	269
				$0.825-$			0.2		198	Stan *Soren-								
	sen *Trygon "MidEast *Sorensen	20-1.5 DL40-1 HW40-2 QRD40-2	$\left\lvert\, \begin{aligned} & 0-20-40 \\ & 0-40 \end{aligned}\right.$	$\begin{aligned} & 0.825- \\ & 1.65 \\ & 0.5-2 \\ & 2 \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.01 \\ & \pm 0.005 \end{aligned}$		fobcde			QRD60-	0-30-60	1.65-	± 0.005	± 0.005	0.2	abcdefi	305
					$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$		$\begin{aligned} & 0.25 \\ & 1 \end{aligned}$		$\begin{aligned} & 249 \\ & 225 \end{aligned}$	sen *Soren-	$\begin{aligned} & 1.5-30-3 \\ & \text { QRD60-1.5 } \end{aligned}$		3.3					
												0-60	1.65	± 0.005	± 0.005	0.2	obcdei	285
										sen								
			0-40	2.2	± 0.005	± 0.005	0.2	abcdei	278	*Mid- East	HW60-1.5	0-60	1.5	0.01	0.01	1		225
										*Soren-	QRS60-1. 5	0-60	1.65	± 0.01	± 0.01	0.4	abcdei	265
										sen								
	*Saren-	QRS 40-2	0-40	2.2	± 0.01	± 0.01	0.4	abcdei	255	-Power/	BP-60F	0-60	1.75	0.01	0.01	0.25	abcdei	245
										Mate								
	*H-P	62658	0-40	3		0.01	0.2			*Kepco	KS60-2M	0-60		0.005				552
	*Techni	LA40-3M	0-40	3	± 0.01	± 0.15	0.2\%	abcde	320	North	TC-602CR	60	2	0.0001	0.0001	0.05	abed	1750
10	*Trygon	HR40-3B	0-40	3	0.01	0.01	0.5	e	325	Hills								
	- H -P	6290A	0-40	3	0.01	0.01	0.5	abode	350	*Trygon	HR60-2. 58	0-60	2.5	0.01	0.01	0.5		355
	*Soren-	QRD40-2-	0-20-40	2.2-	± 0.005	± 0.005	0.2	abedefi	298	Prec	118	0-60	2.5	0.005	0.01	0.24	abcde	370
		20-4		4.4														
	Plastic	LV48-300	47-49	3	0.05	0.05	3	abdighi	215	-Power/	BP-60G	0-60	2.5	0.01	0.01	0.25	abcdei	300
	* H-P	62174	0-50	0.2	0.01	0.01	0.2	cde	90	Mate								
	*Trygon	EAL50-250	0-50		0.01	0.2	5	c	99	*H-P	6296A	0-60	3	0.01	0.01	0.5	abcde	395
	* H-P	6218 A	0-50	0.2	0.01	0.01	0.2	cde	115	*Mid-	HW60-3	0-60	3	0.01	0.01	1		310
	*EPL	PSR-12-50	0-50	0.25	0.01	0.01	100		110	East								
	Prec	101	0-50	0.4	0.005	0.01	0.2	abcde	169	*H-P	62718	0-60	3	0.01	0.01	0.2	abcde	435
	Stan									*Kepco	BOP721.5M	± 72	± 1.5	0.1 mV	1 mV	3	ocdz	1125
	*NJE	LVCII-50-. 5	0-50	0.5	0.01	0.01	0.25	abcde	124	*Kерсо	JQE75-	0-75	1.5	0.0005	0.005	0.2	abcde	300
	* $\mathrm{H}-\mathrm{P}$	62208	0-50	0.5	0.01	0.01	0.2	abcdef	250		1.5M							
11	*NJE	PVC-50-. 5	0-50	0.5	0.01	0.01	0.25	abcde	148	*Kepco	SM75-2M	0-75	2	0.01	0.05	1	bcde	447
	Power	50055	0-50	0.5	0.005	0.005	1	abcd	150	*Kерсо	ABC7.5-	0.75	2	0.05	0.05	0.25	abcde	175
	Des																	
	*NJE	LVCII-50-1	0-50	1	0.01	0.01	0.25	abcde	171	*Kepco	JQE75-3M	0-75	3	0.0005	0.005	0.2	abcde	520
	* H-P	6228B	0-50	1	1 mV	0.01	0.25	abcde	450									
	Power	6050	0-50	1	0.01	0.01		abed	195									
										*Techni	LA80-1. 5M	0-80	1.5	± 0.01	± 0.15	0.2\%	obcde	325
	*H-P	61308	0- ± 50	1	2 mV	2 mV	1		150	*Kepco	PR80-2.5	0-80	2.5	± 1	2	0.7\%	cde	357
	*NJE	PVC-50-1	0-50	1	0.01	0.01	0.25	obcde	195	*Techni	LA80-3M	0-80	3	± 0.01	± 0.15	0.2\%	abcde	355
LT	* $\mathrm{H}-\mathrm{P}$	6824 A	-50 to +50	1	0.02	0.02	10	2	350	*Trygon	LQS65-1.3	50-83	1.3	0.01	0.01	0.5		199
12	-Heath	1P-27	0.5-50	1.5	0.05	15 mV	0.25	cde	80 kit	AUL	RST-30A	3-90	0.5	20 mV	20 mV	3		125
	* $\mathrm{H}-\mathrm{P}$	32268	0-50	1.5	0.01	0.01	0.2	abcde	325	*H-P	6106A	0-100	0.2	0.001	0.001	0.04	obede	265
										*Trygon	LHS65-2.8	50-83	2.8	0.001	0.001	0.5		
											JQE75-							

Laboratory Type Power Supplies

more than a power supply

You get more than a power supply when you specify this or any Hewlett Packard power supply. An international network of 220 sales/service offices are at your disposal . . . the most comprehensive service manuals detailing every aspect of the supply from theory and operation to troubleshooting . . . protection circuitry including an internal overvoltage "crowbar" to safeguard delicate loads, standard on this Low Voltage Rack (LVR) Series. OUTPUTS: 10V @ 20, 50, or 100A; 20V @ 10, 20, or 50A; 40V @ 3, 5, 10, 30, or 50A; 60V @ 3 or 15A.
RIPPLE AND NOISE: typically $200 \mu \mathrm{~V}$ rms, 10 mV p-p. Remote Programming and lots more. Prices start at $\$ 350$.

and you can customize it with these options...

- 10-Turn Output Voltage and Current Controls - Chassis Slides - 3-Digit Graduated Decadial for Voltage or Current - 115V, 208V, or 230 Vac Inputs - 50 Hz Input.

E

From $10 \mu \mathrm{~V}$ to 4000 V
From 1μ A to 2000A
From $\$ 90$ to $\$ 3,500$
From manual to computer controlled.

LOW COST SUPPLIES

Compact laboratory power supplles can be stacked or rack mounted. Choose from 6 wellregulated models: 10 V @ 1A; 25V @ .4A; 50V @ .2A. Three Constant Voltage/Current limiting models - $\$ 90$. Three Constant Voltage/Constant Current models - $\$ 115$.

Constant Voltage/Constant Current with Automatic Crossover, Remote Programming, Remote Sensing, Auto-Series or Parallel, Optional Internal Overvoltage "Crowbar"

MEDIUM POWER /

 TRANSISTOR REGULATED

Precisely regulated. Programming speeds as fast as $500 \mu \mathrm{~s}$. 20 models: 7.5 V @ 3 or 5 A ; 10V @ 10A; 20 V @ 1.5, 3, 5, or 10A; 30V @ 1A; 40V @ .75, 1.5, 3, or 5A; 60V@1 or 3A; 100V@.75A; 160V@.2A; 320V @ .1A. $\$ 144$ to $\$ 395$.

MEDIUM POWER / SCR REGULATED
8 models: 20V @ 15 or 45A, 40 V @ 10 or 25A; 60 V @ 5 or $15 \mathrm{~A}, 120 \mathrm{~V} @ 2.5 \mathrm{~A}$; 600 V @ 1.5 A . $\$ 360$ to $\$ 550$.

HIGH POWER/SCR REGULATED
12 Models: 4V @ 2000A; 8V @ 1000A; 18 V @ 500A: 36V @ 300A; 64V @ 150A: 110V@ 100A; 220V @ 50A: 300V @ 35A; 600V @ 15A. $\$ 1275$ to $\$ 3500$.

a

Index by Model Number

Name	Model	Code
Acopian	K55	LT3
Acopian Corp.		
Assoc Spec	3	LT14
Associated	13	LT17

Associated Specialties Co.	13	LT17
AUL	PS-30	
AUL, Inc.	PSD-30	LT4
	PSS-30	LT9
	RS-30A	LT4
	RSD-30A	LT8
	RST-30A	LT12
Beco	303	LT3
Beco Solid	304	LT4
State Systems	305	LT8

LT16
Buchler
3-1014A
Buchler Instruments

Deltron	RP	LT14
Deltron,	Inc.	SP

EPL PSR-12-25 LT2
Electro-Product PSR-12-50 LT11
Labs

ERA	SL36-2M	LT6
Electronic	SL36-2/2M	LT6

Research	SL60-1M	LT9
Associates	SL601-2M	LT9
	TR040M	LT8
Endevco	4204	LT3

Fluke 332B LT17
John Fluke 335A LT17
Manufactur- 341A LT17

ing Co.	343A	LT17
	$3330 A$	LT17

H-P 721A LT3
Hewlett- 890A LT13
Packard Co.895A LT14
6101A LT5
6102A LT8
106A LT12
6112 A
6113A LT2
6130B LT12
6131B LT13
6200B LT1
6200B LT8
6201B LT1
6202B LT8
6203B LT1
6204B LT5
6204B LT7
2205B LT8
6206B LT4
6206B LT8
6209B LT13
6213A LT1

6214A LT1
6215A LT2
6216A LT2
6217A LT10
6218A LT11
6220B LT2

220B LT11
6224B LT2
6226B LT12
6227B LT3
6228B LT11
6253A LT1
6255A LT9
6265B LT10
6271B LT11
6284A LT2
6289A LT9
6290A LT10

6294A LT9

Name	Model	Code
	6296A	LT10
	6299A	LT13
	6443B	LT15
	6448B	LT15
	6521 A	LT16
	6823A	LT5
	6824A	LT12
Heath	$1 \mathrm{P}-17$	LT15
Heath Co.	1P-18	LT3
	$1 \mathrm{P}-27$	LT12
	1P-28	LT4
Hyp Hyperion	HY-VS-20-3	LT1
Int Cont	CPS400-1	LT7
International Contronics	CV100	LT1, LT2
Keithley	240A	LT17
Keithley Instruments		
Kepco	ABC2-1M	LT1
Kерсо, Inc.	ABC2-1M	LT1
	ABC10-0.75M	LT1
	ABC15.1M	LT3
	ABC30-0.3M	LT3
	ABC40-0.5M	LT7
	ABC100-0.2M	LT13
	ABC200M	LT17
	ABC425M	LT15
	ABC1000M	LT16
	BHK500-0.4M	LT15
	BHK1000-0.2M	LT16
	B0P36-1.5M	LT6
	BOP72-1.5M	LT11
	CDT 15.1 M	LT3
	CDT40-0.5M	LT7
	CDT100-0.2M	LT13
	CK18-3M	LT4
	CK36-1.5M	LT6
	CK40-0.8M	LT8
	CK60-0.5M	LT7
	HB2AM	LT14
	HB4AM	LT14
	HB6AM	LT14
	HB8AM	LT14
	HB250M	LT13
	HB525M	LT15
	JQE36-3M	LT6
	JQE55-12M	LT7
	JQE75-1.5M	LT11
	JQE75-3M	LTI1
	JQE100-1M	LT14
	JQE100-2.5M	LT14
	KS60-2M	LT10
	KS120-1M	LT15
	KS120-2.5M	LT15
	PR80-2.5M	LT11
	PR155-1M	LT15
	PR220-3M	LT17
	PR310-0.6M	LT13
	PR310-2M	LT13
	PV5100-1M	LT14
	SM75-2M	LT11
	SM160-1AM	LT16
	SM160-2AM	LT16
	SM325-0.5AM	LT14
	SM325-1AM	LT14
	SM325-2AM	LT14
	400B	LT15
	430D	LT16
	605	LT15
	615B	LT15
	800B	LT17
	1250B	LT16
	2400B	LT15
Lambda	LH	LT15
Lambda Electronics	LL. 900 LP. 400	LT14 LT13

Name	Model	Code
	LPD. 400 LR-600 LS-500	$\begin{aligned} & \text { LT13 } \\ & \text { LT13 } \\ & \text { LT13 } \end{aligned}$
Mid-East	HV350-1	LT14
Mid-Eastern	HV350-2	LT14
Industries	HV350-3	LT15
	HW40-2	LT9
	HW60-1.5	LT9
	HW60-3	LT11
	HW100-2	LT14
	HW200-1	LT17
	PMA10-15	LT2
	PMA20-1.0	LT6
	PMA40-. 5	LT7
	PMA60. 35	LT7
	PMA100-. 2	LT13
NJE	LVCII-10-2	LT2
NJE Corp.	LVCII-20-1	LT5
	LVCII-20-2	LT1
	LVCII.50-. 5	LT11
	LVCII-50-1	LT11
	PVC-10-2	LT2
	PVC-20-1	LT6
	PVC-20-2	LT1
	PVC-50.5	LT11
	PVC-50.1	LT12
	PVC-50-2	LT7
	SVC-12-1.6M	LT15
North Hills	TC-100.2BR	LT13
North Hills	TCR-602CR	LT10
Electronics	VS-36	LT2
P/N	NPS-300A	LT4
Philbrick/	PR-30	LT2
Nexus	PR-300	LT2
Plastic	LV36-300	LT7
Plastic Capacitors	LV48-300	LT10
Power Des	630	LT1
Power	2015R	LT1
Designs,	5005S	LT11
Inc.	5015T	LT7
	6050 LT3, LT7,	LT11
Power/Mate	BP-8C	LT1
Power/Mate	BP.18C	LT4
Corp.	BP-18D	LT4
	BP-30E	LT4
	BP.34C	LT5
	BP.34D	LT5
	BP-60D	LT8
	BP-60E	LT8
	BP-60F	LT10
	BP.60G	LT10
	BP-89	LT5
	BP-118	LT5
Prec Stan	101	LT11
Precision	102	LT6
Standards	103	LT2
Corp.	106	LT7
	112	LT7
	113	LT3
	114	LT4
	115	LT14
	116	LT9
	117	LT13
	118	LT10
RCA	WP700A	LT5
	WP702A	LT5
	WP703A	LT5
	WP704A	LT7
R-S	NGN	LT4
Rohde \& Schwarz	NGU	LT13
Rosemont	SPS-2089-L-A	LT3
Rosemont		
Plug-In Inc.		

INFORMATION RETRIEVAL NUMBER 624 D50

Name	Model	Code
Sorensen Sorensen Operation, Raytheon Co.	DCR150-2.5A	LT15
	DCR300-1.25A	LT13
	DCR300-2.5A	LT13
	QHS20-1.0	LT5
	QHS20-1.06	LT6
	QHS40.5L	LT7
	QHS. 75	LT7
	QHS 100-. 2	LT13
	QHS. 2 L	LT13
	QRD15-2	LT3
	QRD15-2-7.5-3	LT4
	QRD20-4	LT2
	QRD30-1	LT4
	QRD40.. 75	LT8
	QRD40-2	LT9
	ORD40-2-20-4	LT10
	QRD60-5	LT8
	QRD60-.5-30-1	LT9
	QRD60-1.5-30-3	LT9
	QRD60-1.5	LT9
	QRS 15.2	LT3
	QRS20-4	LT2
	QRS30-1	LT4
	QRS 40.75	LT8
	QRS40.2	LT10
	QRS60. 5	LT8
	QRS60-1.5	LT9
	QSB12-2	LT4
	QSB18-1.5	LT3
	QSB28.1	LT5
	QSB28-2	LT6
Techni	LA40-3M	LT10
Technipower, Inc.	LA80-1.5M	LT11
	LA80-3M	LT12
	LA160.0.75M	LT15
	LA160.1.5M	LT16
	LA160-3M	LT16
Topaz	91PQ	LT4
Topaz, Inc.	151	LT3
Trygon	DL40-1	LT9
Trygon Electronics	EALO-10	LT1
	EAL20.500	LT5
	EAL50-250	LT10
	FT300-500	LT13
	HH15-3	LT3
	HH32-1.5	LT5
	HR20-1.5	LT1
	HR40-3B	LT10
	HR40-750	LT8
	HR60-2.5B	LT10
	HR160 2B	LT16
	L3R150-3	LT16
	LHS65-2.8	LT12
	LHS150-1.9	LT16
	LQS6-33	LT1
	LQS10-3	LT2
	LQS12-2.5	LT3
	LQS18-1.9	LT1
	LQS24-1.5	LT1
	LQS28-1.4	LT5
	LQS48-67	LT7
	LQS48-1.9	LT7
	LQS65-1.3	LT12
	LQS158-67	LT16
	RS160-1A	LT16
	RS160-3A	LT16
	RS320-1.5B	LT14
	SHR20-3A	LT6
	SHR40-1.5A	LT9
	SHR60-1A	LT9
	SHR160-500B	LT15
	T50-2	LT7
Wanlass	LAB11	LT4
Wanlass	MP. 40	LT9
Electric Co.	. PDC-40	LT9
	PSSS1-24	LT2

The New Heath "Stack-n-Patch"

Old Methods Can't Solve New Problems. Critical specs, higher density circuits, costly devices, tight schedules... these are today's design problems. Conventional breadboarding can't solve them. A more efficient method is needed. That method is here... the Heath EU-53A "Stack-n-Patch"... a totally new technique for circuit design and teaching.
A Better Way. The "Stack-n-Patch" eliminates soldering...just insert hookup wire or component leads into the special connectors. Because there's no soldering, there's no waste...no need to dike out components and throw them away. Expensive FET's can't be damaged from heat... limited quantity samples can be reused. The problems of the multi-layered rat's nest of breadboarding are also eliminated... the 177 patch connectors on the Component Patch Card are laid out according to common circuit board practice and closely simulate the circuit density and "stray" interaction of today's printed circuits.
Your Design-Stack It... Patch It. Included in the "Stack-n-Patch" are the Desk-Top Chassis, the Power Patch Card for bringing power from your choice of supply and the Component Patch Card. Designing is fast and simple. Pick your supply and connect it to the Power Patch Card...stack the Component \& Power Patch Cards in the chassis... patch power to the Component Card and you're ready to go.
Pick A Card... Any Card. For IC work and other types of design that can't be built conveniently on the Component Card, Heath offers a wide variety of factory assembled cards to stack in the Chassis... Dual \& Quad J-K Flip Flops, And-Or-Invert, Nand Gate, Dual Monostable, Op Amp...even a Dual Inline IC socket card and a blank circuit card ready to etch. Pick the one that meets your needs...stack it... patch it.
There Is A Better Way To Design. Order your Heath "Stack-n-Patch" now... and discover it!
Assembled EU-53A, 6 lbs. $\$ 37.50$

Power Patch Card

Pick Your Power Supply

EU-801-11 delivars 5 V © 2 A max: 170 V @ 40 mA max : Plus and Minus 15 V @ 150 mA max. \$75.00, 8 lbs.

EU-41A delivers 0-15 V (a) $0-750 \mathrm{~mA}$. $\$ 50.00$, 6 lbs .

INFORMATION RETRIEVAL NUMBER 625

Let Power/Mate's wide range UniPower SPECIFICATIONS

INPUT - 105-125V, 47-420 CPS.
OUTPUT VOLTAGE $-0-30$ volts for all units except Uni76 (0-34V); Uni-88 (0-34V); and UniTwin 164 (0-25V dual output).
OUTPUT VOLTAGE RANGE - Set in overlapping ranges by means of internal quick disconnect taps.
REGULATION - Uni-76 and Uni-88 better than $\pm 0.005 \%$ or 1 MV for line and load. All other units better than $\pm 0.01 \%$ or 1 MV for line and load.
RIPPLE - Less than 250 microvolts.
RESPONSE TIME - Less than 20 microseconds.
TEMPERATURE COEFFICIENT - Better than $0.01 \% /{ }^{\circ} \mathrm{C}$. LONG TERM STABILITY - Better than 0.025% for 8 hours. OVERLOAD \& SHORT CIRCUIT PROTECTION - Solid state short circuit and overload protected. Instantaneous recovery, and automatic reset. Unit cannot be damaged by prolonged short circuits or overloads.

POLARITY - May be either positive, negative or floating up to 300 volts.
AMBIENT OPERATING TEMPERATURE - Continuous duty from $-20^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ ambient.
STORAGE TEMPERATURE $--55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
OUTPUT CURRENT vs. TEMPERATURE - Unit is rated for full current output at temperatures between $-20^{\circ} \mathrm{C}$ and $+45^{\circ} \mathrm{C}$ and is linearly derated from $+45^{\circ} \mathrm{C}$ to 70% of the full output at $+71^{\circ} \mathrm{C}$.
REMOTE-LOCAL SENSING - Provision is included to permit remote sensing of the output voltage directly at the load for improved over-all regulation. Unit may be connected for local sensing if desired.
REMOTE-LOCAL VOLTAGE ADJUST - Output voltage may be remotely adjusted, or internally adjusted with coarse and fine controls. Both are accessible through holes in the terminal end of the supply.

OUTPUT VOLTAGE vs. OUTPUT CURRENT FOR VARI-RATED UNI SERIES

VOLTAGE MODEL		5	6	8	10	12	14	15	16	18	20	22	24	26	28	30
UNI-76							0.5	p thr	ughout	ange						
UNI-88							1.5	ps thr	ughout	ange						
UNI-30C	4	4	4	4	4	3.75	3.6	3.5	3.4	3.25	3.0	2.9	2.75	2.5	2.5	2.1
UNI-30D	6	6	6	5.6	5.2	5.0	4.7	4.5	4.3	4.2	4.1	3.7	3.5	3.4	3.3	3.1
UNI-30E	12	12	11	10.5	9.5	9.3	8.5	8.0	7.7	7.5	7.0	6.5	6.0	5.7	5.5	5.2
UNI-30F	15	15	15	14.2	12.8	12.0	11.5	11.0	10.0	9.9	9.4	8.9	8.7	8.5	8.0	7.6
UNI-30G	24	22	21	20	18	17	16.5	16.0	15.5	15	14	13.5	13	12.5	12	11.5
UNI-30H	34	32	31	29	25	23	22	21	20	19	17	16.5	16	15.5	15	14.3

Racks and Accessories:

Power/Mate offers a complete line of racks and accessories to complement the UniPower Series.

IIN-76
$0-34$ volts, 0.5 amp over entire voltage range. Regulation: Better than $\pm 0.005 \%$ or 1 Mv for line and load.
$35 / 16^{\prime \prime} \mathrm{W} \times 37 / 8 \mathrm{H} \times 51 / 8{ }^{\prime \prime} \mathrm{D}$

WEIGHT: Net $33 / 4 \mathrm{lbs}$.. Shipping $43 / 4 \mathrm{lbs}$.

$0-34$ volts, 1.5 amps over entire voltage range. Regulation: Better than $\pm 0.005 \%$ or 1 Mv for line and load.
$35 / 16^{\prime \prime} \mathrm{W} \times 37 / 8^{\prime \prime} \mathrm{H} \times 67 / 8$ "D
WEIGHT: Net $5 \frac{1}{4}$ lbs.. Shipping $63 / 4 \mathrm{lbs}$

DUAL OUTPUT 0-25 volts. 0.75 amps over entire voltage range. Regulation: Better than $\pm 0.005 \%$ or 1 Mv for line and load.
$35 / 16^{\prime \prime} \mathrm{W} \times 43 / 16^{\prime \prime} \mathrm{H} \times 67 / 8{ }^{\prime \prime} \mathrm{D}$

WEIGHT: Net $53 / 4$ lbs.. Shipping $71 / 2$ los

Series fill all your Power Supply needs.

WEIGHT: Net $201 / 4 \mathrm{lbs}$. Shipping $241 / 4 \mathrm{lbs}$

Also from Power/Mate, the largest line of Bench Pacs ever offered.

All of your laboratory and systems needs are sure to be met by these new, high-performance economical Bench Pacs. Twenty-three different models cover voltages from 0 to 60, and currents up to 15 amperes.

They feature both voltage and current regulation, adjustable current limiting, five-way binding posts, easy-to-read dual meters, and built-in short circuit protection.

Low-cost, versatile, high-performers, these general purpose bench supplies from Power/Mate are worth a lot in money saved and added convenience. Ask for complete literature.

POWER/MATE CORP.
514 S. River Street, Hackensack, N. J. 07601
SAME DAY SHIPMENT

	Mfr	Model	OUTPUT		REGULATION			Notes	$\begin{gathered} \text { Price } \\ S \end{gathered}$	Mfr	Model	OUTPUT		REGULATION			Notes	Price §
			Range Volts	Max Amps	Line \％	$\begin{gathered} \text { Load } \\ \% \end{gathered}$	Ripple $m V$					Range Volts	Max Amps	$\begin{aligned} & \text { Line } \\ & \% \end{aligned}$	$\begin{gathered} \text { Load } \\ \% \end{gathered}$	$\begin{aligned} & \text { Ripple } \\ & \mathrm{mV} \end{aligned}$		
$\begin{gathered} M \\ 1 \end{gathered}$	Dynage －Acopian Dynage －Acopian Dynage Dynage	D Series 1」 10 D Series 1．5」Series D Series D Sories	$\begin{aligned} & 0.5-1.2 \\ & 0.75-1.25 \\ & 1.2-1.8 \\ & 1-2 \\ & 1.8-2.3 \\ & 2.3-2.7 \end{aligned}$	$\begin{aligned} & 0.2-1 \\ & 0.1 \\ & 0.2-1 \\ & 0.2- \\ & 0.75 \\ & 0.2-1 \\ & 0.2-1 \end{aligned}$	$\begin{aligned} & \pm 0.025 \\ & \pm 0.05 \\ & \pm 0.025 \\ & \pm 0.05 \\ & \pm 0.025 \\ & \pm 0.025 \end{aligned}$	$\begin{aligned} & \pm 0.025 \\ & \pm 0.25 \\ & \pm 0.025 \\ & \pm 0.4- \\ & \pm 0.7 \\ & \pm 0.025 \\ & \pm 0.025 \end{aligned}$	$\begin{aligned} & 1 \\ & 0.5 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	abdgu abdi abdgu abdf｜ abdgu abdgu	90－ 101 70 $90-$ 101 70－ 85 90－ 101 90－ 101	Valor Dynage Dynage －Techni －Nucar －Nuear	CG4 Series D Series H Series HFT－5－100 NPS Series NPS Series	3．5－5 4．7－5．2 3．1－5．3 2．5－5．3 4．7－5．3 4．7－5．3	$\begin{aligned} & 8,15 \\ & 0.2-1 \\ & 11.3-46 \\ & 100 \\ & 0.375- \\ & 1.5 \\ & 3-12 \end{aligned}$	$\begin{aligned} & 5 \mathrm{mV} \\ & \pm 0.025 \\ & \pm 0.025 \\ & \pm 0.1 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.05 \\ & \pm 0.025 \\ & \pm 0.025 \\ & \\ & \pm 0.3 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1 \\ & 1 \\ & 30 \\ & 2 \\ & 3 \end{aligned}$	obdg abdgu abdgu dju dju	165， 197 90－ 101 195－ 435 1095 req reg
M 2	Valor －Acopian Dynage Dynage Dynage	CG2 Series 2．5」Series H Series D Series H Series	$\begin{aligned} & 1.75-3 \\ & 2-3 \\ & 0.5-3.1 \\ & 2.7-3.1 \\ & 0.5-3.5 \end{aligned}$	$8,15$ 0．2－ 0.75 11．3－46 0．2－1 3．3－6． 4	$\begin{aligned} & 5 \mathrm{mV} \\ & \pm 0.05 \\ & \pm 0.025 \\ & \pm 0.025 \\ & \pm 0.025 \end{aligned}$	0.05 $\pm 0.4-0.7$ ± 0.025 ± 0.025 ± 0.025	0.5 1 1 1 1	abdg abdfi abdgu abdgu abdgu	$\begin{aligned} & 165, \\ & 197 \\ & 70- \\ & 85 \\ & 195- \\ & 435 \\ & 90- \\ & 101 \\ & 124- \\ & 147 \end{aligned}$	Elasco －Acopian Abbot！ ＊Techni Dynage SCl SCI	MS 5 51200 R5T20 HF80 Series D Series 2．6． 100 2．6．50	$\begin{aligned} & 4.5-5.5 \\ & 4.5-5.5 \\ & 4.5-5 \cdot 5 \\ & 2.8-5.5 \\ & 5 \cdot 2-5.8 \\ & \pm 6 \\ & \pm 6 \end{aligned}$	0．1－ 0.75 2 20 3－50 0．2－1 ± 0.05 ± 0.05	$\begin{aligned} & 0.05 \\ & \pm 0.5 \\ & \pm 0.05 \\ & \pm 0.05 \\ & \pm 0.025 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.05 \\ & \\ & \pm 0.5 \\ & \pm 0.05 \\ & \pm 0.05 \\ & \\ & \pm 0.025 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & 5 \\ & 5 \\ & 0.2 \% \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	dsu abdi bdgl u abdgu bdf bdf	70－ 95 140 462 150－ 480 90－ 101 49 39
M 3	－Acopian Elasco Dynage Dynage SCI SCl	3」 Series MS3 D Series D Series 1．4． 100 1．4． 200	$\begin{aligned} & 2.5-3.5 \\ & 2.8-3.5 \\ & 3.1-3.5 \\ & 3.5-3.9 \\ & 4 \\ & 4 \end{aligned}$	$0.2-4.0$ $0.1-0.5$ $0.2-1$ $0.2-1$ 0.1 0.2	$\begin{aligned} & \pm 0.05 \\ & 0.05 \\ & \pm 0.025 \\ & \pm 0.025 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\pm 0.3-0.7$ 0.05 ± 0.025 ± 0.025 0.05 0.05	$\begin{aligned} & 1 \\ & 0.01 \% \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	abdfi dsu abdgu abdgu bd bd	70－ 165 70－ 90 90－ 101 90－ 101 38 49	SCI SCI SCl Acme Acme Acme ACDC Acopion	P2．6．25 2．6． 200 1．6． 100 PS -65424 PS－65426 PS－65500 JR5k 10 5．J Series	$\begin{aligned} & \pm 6 \\ & \pm 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 3-6 \\ & 4-6 \end{aligned}$	$\begin{aligned} & 0.025 \\ & \pm 0.05 \\ & 0.1 \\ & 10 \\ & 15 \\ & 30 \\ & 10 \\ & 0.2-5 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.01 \\ & 0.01 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & 0.1 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.05 \\ & 0.05 \\ & \pm 2 \\ & \pm 2 \\ & \pm 2 \\ & 0.1 \\ & \pm 0.2- \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 1 \% \\ & 1 \% \\ & 1 \% \\ & 3 \\ & 1 \end{aligned}$	bdf bdf bd abd abdfi	$\begin{aligned} & 20 \\ & 59 \\ & 38 \\ & \text { ina } \\ & \text { ino } \\ & \text { ina } \\ & 250 \\ & 70- \\ & 180 \end{aligned}$
M 4	＊Kepco ＊Acopian Valor Dynage Elasco Dynage	PAR－4 4J Series CG3 Series D Series MSA D Series	4． 2．75－4 3．9－4． 3 3．5－4． 5 4．3－4． 7	$\begin{aligned} & 11 \\ & 0.2-4 \\ & 8.15 \\ & 0.2-1 \\ & 0.1- \\ & 0.75 \\ & 0.2-1 \end{aligned}$	$\begin{aligned} & 0.005 \\ & \pm 0.05 \\ & 5 \mathrm{mV} \\ & \pm 0.025 \\ & 0.05 \\ & \pm 0.025 \end{aligned}$	0.01 $\pm 0.2-0.5$ 0.05 ± 0.025 0.05 ± 0.025	0.25 1 0.5 1 0.01% 1	abdfi abdg abdgu dsu abdgu	205 70－ 165 165， 197 90－ 101 70－ 95 90－ 101	Valor Power Des Power Des Power Des CP Dynage	CG5 Series UPM－16 UPMD－56 UPMD－6 PM728 D Series	$\begin{aligned} & 4.75-6 \\ & 5,6 \\ & 5,6 \\ & 3,4,5,6 \\ & 4.8-6.3 \\ & 5.8-6.4 \end{aligned}$	$\begin{aligned} & 7,8,14 \\ & 5 \\ & 10 \\ & 10 \\ & 3 \\ & 0.2-1 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~m} V \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & \\ & \pm 0.05 \\ & \pm 0.025 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & \pm 0.05 \\ & \pm 0.025 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	abdgu abd abd abd s abdgu	165， 197 169 225 245 99.60 90－ 101
$\begin{aligned} & M \\ & 5 \end{aligned}$	CP CP P / N CP CP Elasco SCl ，SCI －ACDC	PM705 PM703 2205 PM707 PM709 LIC5－1A 1．5． 1000 C1．5． 2000 IC5N2．7	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 0.05 \\ & \pm 0.5 \\ & \pm 0.1 \\ & \max \\ & \pm 0.5 \\ & 0.05 \\ & 0.5 \\ & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.05 \\ & \pm 0.5 \\ & \pm 0.1 \\ & \max \\ & \pm 0.5 \\ & 0.05 \\ & 0.5 \\ & 0.1 \\ & 0.1 \\ & 0.05 \end{aligned}$	1 1 2 2 max 1 1 10 2 2 2	5 3 5 5 V bd bd abd	49.90 44.90 48 49.90 54.90 29 35 75 98	Dynage Rose－ mount Rose－ mounf －Sorensen －Sorensen Wanlass Valor	H Series SPS－2055 SPS－2062P OSA5－14．6 QSA 18－2 30－OEM－1 CS7－1．0	$\begin{aligned} & 3.5-6.4 \\ & 1-6.5 \\ & 1-6.5 \\ & 3-6.5 \\ & 3-6.5 \\ & 3-6.9 \\ & 0-7 \end{aligned}$	2．9－6． 4 0.3 0.6 17.6 20.5 2.5 1	$\begin{aligned} & \pm 0.025 \\ & 15 \mathrm{~m} V \\ & 15 \mathrm{mV} \\ & \\ & \pm 0.01 \\ & \pm 0.01 \\ & \pm 1 \\ & 2 \mathrm{mV} \end{aligned}$	$\begin{aligned} & \pm 0.025 \\ & 15 \mathrm{~m} V \\ & 10 \mathrm{~m} V \\ & \\ & \pm 0.01 \\ & \pm 0.01 \\ & \pm 1 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1 \\ & 1.5 \\ & 1.5 \\ & 0.3 \\ & 0.3 \\ & 0.1 \% \\ & 0.05 \end{aligned}$	abdgu bd bd abdegi abdegi abdg	124－ 147 68 72 209 249 46 60
$\begin{gathered} M \\ 6 \end{gathered}$	Arnold Arnold Wanlass Atlas Elaseo Wanlass Wanlass	$\begin{aligned} & \text { PHU-10(CT) } \\ & \text { PHU-5 } \\ & 111-\text { OEM5 } \\ & -5 \\ & \text { P3310 } \\ & \text { LIC5-7A } \\ & \text { P6OHP- } \\ & 7.51 \mathrm{C}-5 \\ & \text { P60-7.5IC- } \\ & 5 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & 5 \\ & 7 \\ & 7 \\ & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & \pm 0.1 \\ & \pm 5 \\ & \pm 25 \mathrm{~m} V \\ & \pm 0.01 \\ & \pm 0.02 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \pm 0.1 \\ & \pm 5 \\ & \pm 25 \mathrm{mV} \\ & 1 \mathrm{mV} \\ & \pm 0.02 \end{aligned}$	10 10 1 50 10 0.1 0.3	$d f$ d abdg d abdg abdg	$\begin{aligned} & 291 \\ & 220 \\ & 90 \\ & 323 \\ & 55 \\ & 220 \\ & 195 \end{aligned}$	${ }^{*}$ Kepco ${ }^{*}$ Kepco ＊Kepco Valor Lambda Lambdo Lambda －Power／ Mate	$\begin{aligned} & \text { PAX7-1 } \\ & \text { PCX7-2 } \\ & \text { PA } 7-2 \\ & \text { CS7-3.0 } \\ & \text { LM-F } \\ & \text { LM-G } \\ & \text { LM-H } \\ & \text { RD-5 } \end{aligned}$	$\begin{aligned} & 0-7 \\ & 0-7 \\ & 0-7 \\ & 0-7 \\ & 0-7 \\ & 0-7 \\ & 0-7 \\ & 3-7 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 25 \\ & 35 \\ & 52 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.0005 \\ & 0.0005 \\ & 2 \mathrm{mV} \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.005 \\ & 0.005 \\ & 0.05 \\ & 0.02 \\ & 0.02 \\ & 0.02 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.1 \\ & 0.1 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 8 \end{aligned}$	abdg abdg abdg abdg abd	94 111 121 98 450 575 875 55
$\begin{aligned} & M \\ & 7 \end{aligned}$	Arnold －ACDC ＊ACDC Wanlass Wanlass ＊ACDC ＊ACDC ＊ACDC	PHU－5WW IC5N9． 5 IC5N13．5 P120－151C－ 5 P120HP－ 151C－5 IC5N25． 0 IC5N70 IC5N 100	$\begin{array}{r} 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \end{array}$	$\begin{aligned} & 8 \\ & 9.5 \\ & 13.5 \\ & 15 \\ & 15 \\ & 15 \\ & 25 \\ & 70 \\ & 100 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \\ & 0.05 \\ & \pm 0.02 \\ & \pm 0.01 \\ & \\ & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1 \\ & 0.05 \\ & 0.05 \\ & \pm 0.02 \\ & \\ & 1 \mathrm{mv} \\ & \\ & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 10 \\ & 2 \\ & 2 \\ & 0.3 \\ & 0.1 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	d abd abd abdg abdg abd abd abd	290 134 186 240 265 258 529 835	－Power／ Mate －Sarensen Elaseo －Acopian －Acopian	RC－5 OSA5－6． 4 MS6 6L Series 6． Series	$\begin{aligned} & 3-7 \\ & 3-7 \\ & 5-7 \\ & 5-7 \\ & 5-7 \end{aligned}$	$\begin{aligned} & 1 \\ & 7 \\ & 0.1- \\ & 0.75 \\ & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & 0.3 \\ & \pm 0.01 \\ & 0.05 \\ & \pm 0.5 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & 0.7 \\ & \pm 0.01 \\ & 0.05 \\ & \pm 0.5 \\ & \\ & \pm 0.05- \\ & 0.7 \end{aligned}$	4 0.3 0.01% 5 1	abd｜ abdeg｜ dsu abd｜ obdfi	$\begin{aligned} & 65 \\ & 149 \\ & 70- \\ & 95 \\ & 50- \\ & 140 \\ & 60- \\ & 180 \end{aligned}$

Reader service numbers for literature and application notes，see page D6．
Companies advertising in the power supply section are marked by an asterisk．
Additional features explained on p．D65．

Meet JR.
The world's first
Guaranteed Forever
miniaturized power supply.
Five times smaller. 50\%
better efficiency.
Competitively priced.
Write for complete catalog.
acdc electronics, inc.
2979 North Ontario St.,
Burbank, Calif. 91504.

Reader service numbers for literature and application notes, see page D6.
Companies advertising in the power supply section are marked by an asterisk.

	Mfr	Model	OUTPUT		REGULATION			Notes	Price \＄	Mfr	Mode	Range Volts	Max Amps	Line \％	$\begin{gathered} \text { Lood } \\ \% \end{gathered}$	Ripple mV	Notes	Price S
			Range Volis	Max Amps	Line \％	$\begin{gathered} \text { Lood } \\ \% \end{gathered}$	$\begin{aligned} & \text { Ripsle } \\ & \mathrm{mV} \end{aligned}$											
$\begin{aligned} & M \\ & 13 \end{aligned}$	SCI SCI SCl SCI SCl SCI Aflas SCI SCI SCI	2．12．200」 2．12． 200 1．12． 200 C2． 12.200 C1．12．300 C2． 12.500 P2762 P2． 12.60 C1． 12.600 C1．12． 1000	$\begin{aligned} & \pm 12 \\ & \pm 12 \\ & 12 \\ & \pm 12 \\ & 12 \\ & \\ & \pm 12 \\ & \pm 12 \\ & \pm 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.02 \\ & 0.02 \\ & 0.3 \\ & 0.3 \\ & \\ & 0.5 \\ & 0.5 \\ & 0.06 \\ & 0.6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.05 \\ & 0.05 \\ & \\ & 0.05 \\ & \pm 0.1 \\ & 0.01 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & \pm 0.2 \\ & 0.05 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 5 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	bdf bdf bd bdf bd bdf df df bd bd	70 65 49 98 65 119 429 50 70 85	Valor Valor Deltron ＊K ерсо －Kepco Valor R－S	CG13Series CS15－0．4 OS／PS PAX15－0．7 PAT15－1． 5 CS15－2．0 NGG15／15	$\begin{aligned} & 12.5-14 \\ & 0-15 \\ & 0-15 \\ & 0-15 \\ & 0-15 \\ & 0-15 \\ & 0.3-15 \end{aligned}$	$\begin{aligned} & 6,12 \\ & 0.4 \\ & 0-0.6 \\ & \\ & 0.75 \\ & 1.5 \\ & 2 \\ & 15 \end{aligned}$	$\begin{aligned} & 5 \mathrm{mV} \\ & 2 \mathrm{mV} \\ & 0.02 \\ & \\ & 0.05 \\ & 0.0005 \\ & 2 \mathrm{mV} \\ & \pm 10 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.02 \\ & \\ & 0.05 \\ & 0.005 \\ & 0.05 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.05 \\ & 0.5 \\ & \\ & 0.25 \\ & 0.1 \\ & 0.5 \\ & 1 \end{aligned}$	abdg abdg dfg abdg cd	165， 197 60 49－ 89 94 121 98 380
$\begin{aligned} & M \\ & 14 \end{aligned}$	Aflas SCI Acme Arnold Wanlass Wanlass GE Wanlass Acme －Kepco	P2761 E2．12． 1000 PS47623 PHU－12 111－OEM 12 -5 P60HP－51C 12 9766 Y5 1 P60－51C－12 PS－65428 PAR－12	$\left\{\begin{array}{l} 12 \\ \pm 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \end{array}\right.$	$\begin{aligned} & 0.75 \\ & 1 \\ & 3 \\ & 3.3 \\ & 5 \\ & \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.01 \\ & \pm 1 \\ & 0.1 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 1 \\ & \pm 0.02 \\ & \pm 1 \\ & 0.005 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.01 \\ & \pm 2 \\ & 1 \\ & \pm 0.1 \\ & \\ & 1 m V \\ & \\ & 5 \\ & \pm 0.02 \\ & \pm 2 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 5 \\ & 1 \\ & 1 \% \\ & 20 \\ & 1 \\ & \\ & 0.1 \\ & \\ & 1 \% \\ & 0.3 \\ & 1 \% \\ & 0.25 \end{aligned}$	df bdf d abdg abdg d abdg	429 148 ina 235 90 220 147 195 ina 205	－ERA Litron ＊Techni Elasco ＊Acopian －Acopian	DVSeries 541400 HF80 MS 14 14LSeries 14」Series	$\begin{aligned} & 4-15 \\ & 3-15 \\ & 7.5-15 \\ & 13-15 \\ & 13-15 \\ & 13-15 \end{aligned}$	$\begin{aligned} & 0.06-1 \\ & 6 \\ & 1.5-25 \end{aligned}$ 0．1－ 0.75 2 3	0.05 ± 0.25 ± 0.05 0.05 ± 0.5 ± 0.05	$\begin{aligned} & 0.05 \\ & \pm 0.25 \\ & \pm 0.1 \\ & 0.05 \\ & \pm 0.5 \\ & \pm 0.05- \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 50 \\ & 0.2 \% \\ & 0.01 \% \\ & 5 \\ & 1 \end{aligned}$	bdef su 420 dsu abdf｜ abdf｜	105－ 189 reg 140－ 420 70－ 95 45－ 150 65－ 170
$\begin{aligned} & M \\ & 15 \end{aligned}$	Wanlass Wanlass Acme GE Acme GE Lambda －Nucar －Nucar Dynage	$\begin{aligned} & \text { P } 120 \mathrm{HP} 101 \\ & \text { C-12 } \\ & \text { P120-10C- } \\ & 12 \\ & \text { PS65430 } \\ & 9 T 66 \text { Y53 } \\ & \text { PS } 65432 \end{aligned}$ 9166 Y 978 LM－H NPSSeries NPSSeries D Series	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 11.4-12.5 \\ & 11.4-12.5 \\ & 11.4-12-6 \end{aligned}$	10 10 10 15 15 20 150 $0.1-1.5$ $3-12$ $0.1-$ 0.75	$\begin{aligned} & \pm 0.01 \\ & \pm 0.02 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \\ & \pm 1 \\ & 0.01 \\ & 0.05 \\ & 0.05 \\ & \pm 0.025 \end{aligned}$	$\begin{aligned} & \operatorname{lm} V \\ & \pm 0.02 \\ & \pm 2 \\ & 5 \\ & \pm 2 \\ & \\ & 5 \\ & 0.02 \\ & 0.05 \\ & 0.05 \\ & \pm 0.025 \end{aligned}$	0.1 0.3 1% 1% 1% 1% 0.5 2 3 1	abdg obdg d d abdg diu dju abdgu	265. 240 ina 178 ina 194 995 reg reg 76－ 105	Valor SCI P / N SCl SCI SCI Burr－ Brown SCI Rose－ mount	$\begin{aligned} & \text { CG 14Series } \\ & \text { P2.15.25 } \\ & \text { PR-30C } \\ & 2204 \\ & 2.15 .50 \mathrm{~J} \\ & \text { P2. } 15.50 \mathrm{~J} \\ & 2.15 .50 \\ & 527 \\ & \text { P2. } 15.60 \\ & S . S-2074 \mathrm{D} \\ & -S \end{aligned}$		$\begin{aligned} & 6,11 \\ & 0.025 \\ & \pm 0.03 \\ & \pm 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.05 \\ & \\ & 0.06 \\ & 0.065 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~m} V \\ & \\ & 0.02 \\ & \pm 0.05 \\ & \pm 0.03 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & \pm 0.2 \\ & \\ & 0.01 \\ & 3 \mathrm{~m} V \end{aligned}$	0.05 0.2 ± 0.5 ± 0.015 0.05 0.05 0.05 ± 0.2 0.05 6 mV	0.5 2 $3 p-p$ 1 1 1 1 1 1 1	bdf bdf df bdf df df bdf	$\begin{aligned} & 165, \\ & 197 \\ & 20 \\ & 98 \\ & 46 \\ & 35 \\ & 55 \\ & \\ & 30 \\ & 39 \\ & \\ & 50 \\ & 83 \end{aligned}$
$\begin{aligned} & M \\ & 16 \end{aligned}$	－Power／ Mate －Power／ Mate Rose－ mount Rose－ mount Rose－ mount	$R C-12$ RD－12 SPS－2077P SPS－2057P SPS－2064P	$\begin{aligned} & 11-13 \\ & 11-13 \\ & 9-13 \\ & 9-13 \\ & 9-13 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0.05 \\ & 0.2 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.15 \\ & 3 \mathrm{mV} \\ & 2 \mathrm{mV} \\ & 5 \mathrm{mV} \end{aligned}$	0.1 0.2 6 mV $5 m V$ 10 mV	4 8 1.5 0.5 0.5	abdi agdi bd bd bd	65 55 48 61 68	P / N SCl SCI SCl SCl Elaseo Rose－ mount	2203 P2．15． 100 2．15．100」 2．15． 100 1．15． 100 2Q15－100－ PC SPS－2018P	$\begin{aligned} & \pm 15 \\ & \pm 15 \\ & \pm 15 \\ & \pm 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	± 0.1 0.1 0.1 0,1 0.1 0.1 0.125	$\begin{aligned} & \pm 0.03 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.1 \\ & 6 m v \end{aligned}$	$\begin{aligned} & \pm 0.03 \\ & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.1 \\ & \\ & 12 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 1 \end{aligned}$	df bdf bdf bd df bd	$\begin{aligned} & 57 \\ & 60 \\ & 53 \\ & 48 \\ & 38 \\ & 36 \\ & 51 \end{aligned}$
	－Acopion ＊Acopian Dynage Dynage Elasco	12L Series 12」Series KH 12／12 $K-12 / 12$ MS 12	$\begin{aligned} & 11-13 \\ & 11-13 \\ & 11-13 \\ & 11-13 \\ & 11-13 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 1.8-3.6 \\ & 0.15- \\ & 0.5 \\ & 0.1- \\ & 0.75 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 0.05 \\ & \pm 0.05 \\ & \pm 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 0.05- \\ & 0.25 \\ & \pm 0.05 \\ & \pm 0.05 \\ & \\ & 0.05 \end{aligned}$	5 1 2 2 0.01%	abdfj abdfi abdfg abdfg dsu	$\begin{aligned} & 45- \\ & 150 \\ & 60- \\ & 170 \\ & 225- \\ & 325 \\ & 117- \\ & 155 \\ & 70- \\ & 95 \end{aligned}$	Rose－ mount SCI SCI SCI SCI Elasco P / N SCI	$\begin{aligned} & \text { SPS-2121P } \\ & \text { C2.15.200 } \\ & 2.15 .200 J \\ & 2.15 .200 \\ & 1.15 .200 \\ & 2 Q 15-250 \\ & P C \\ & P R-300 C \\ & C 2.15 .300 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 15 \\ & \pm 15 \\ & \pm 15 \\ & 15 \\ & 15 \\ & \pm 15 \\ & \pm 15 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.25 \\ & \pm 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 5 \mathrm{mV} \\ & \\ & 0.05 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.1 \\ & \\ & \pm 0.005 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 10 \mathrm{mV} \\ & 0.1 \\ & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.1 \\ & \\ & \pm 0.005 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 0.25 \\ & 1 \end{aligned}$	bdf bdf bdf bdf bd df bdf	$\begin{aligned} & 102 \\ & 80 \\ & 70 \\ & 65 \\ & 49 \\ & 47 \\ & 200 \\ & 98 \end{aligned}$
$\begin{aligned} & M \\ & 17 \end{aligned}$	Valor Abbatt Dynage －Sorensen －Sorensen	CG12Series T12D－12．3A H Series QSA12－1．3 QSA 12－2． 1	$\begin{aligned} & 11.5-13 \\ & 11.6-13 \\ & 8.5-13.9 \\ & 8-14 \\ & 8-14 \end{aligned}$	$\begin{aligned} & 6,12 \\ & 9.72 \\ & 7-32.8 \\ & 1.4 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 5 \mathrm{mV} \\ & \pm 0.2 \\ & \pm 0.025 \\ & \\ & \pm 0.005 \\ & \pm 0.005 \end{aligned}$	$\begin{aligned} & 0.05 \\ & \pm 0.5 \\ & \pm 0.025 \\ & \\ & \pm 0.005 \\ & \pm 0.005 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \% \\ & 1 \\ & 0.3 \\ & 0.3 \end{aligned}$	abdg dgi abdgu abdeg｜ abdeg｜	165， 197 285 195－ 435 89 109	SCl CP CP SCl CP Burr－ Brown	$\begin{aligned} & \text { C 1. } 15.300 \\ & \text { PM731 } \\ & \text { PM733 } \\ & \text { C2.15. } 500 \\ & \text { PM743 } \\ & 516 \end{aligned}$	15 15 15 ± 15 15 ± 15	$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.05 \\ & \pm 0.1 \\ & \pm 0.02 \\ & 0.05 \\ & \pm 0.02 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & \pm 0.1 \\ & \pm 0.02 \\ & 0.1 \\ & \pm 0.02 \\ & \pm 0.1 \end{aligned}$	$\begin{array}{\|l} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \end{array}$	bd s s bdf s	$\begin{aligned} & 65 \\ & 32 \\ & 37 \\ & 119 \\ & 41 \\ & 75 \end{aligned}$
	－Sorensen －Sorensen －Sorensen －Acopian －Acopian	QSA 12－3．8 QSA 12－9．3 QSA 12－1．3 13LSeries 13JSeries	$\begin{aligned} & 8-14 \\ & 8-14 \\ & 8-14 \\ & 12-14 \\ & 12-14 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 11 \\ & 15.4 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \pm 0.005 \\ & \pm 0.005 \\ & \pm 0.005 \\ & \pm 0.5 \\ & \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & \pm 0.005 \\ & \pm 0.005 \\ & \pm 0.005 \\ & \pm 0.5 \\ & \pm 0.05- \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \\ & 5 \\ & 0.5-0.1 \end{aligned}$	abdegi abdeg｜ abdegi abdfi abdfi	$\begin{aligned} & 129 \\ & 199 \\ & 249 \\ & 45- \\ & 150 \\ & 65- \\ & 170 \end{aligned}$	CP SCI Power Des	PM741 C1． 15 ． 600 UPMD－11	$\begin{aligned} & 15 \\ & 15 \\ & \pm 15 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.6 \\ & 1 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & 0.05 \end{aligned}$ 0.1 mV	± 0.1 0.1 0.15 mV	$\begin{aligned} & 1 \\ & 1 \\ & 0.15 \end{aligned}$	s bd abdf	$\begin{aligned} & 36 \\ & 70 \\ & \\ & 275 \end{aligned}$

Reader service numbers for literature and application notes，see page D6．

	Mfr	Model	OUTPUT		REGULATION			Notes	$\begin{gathered} \text { Price } \\ \$ \end{gathered}$	Mfr	Model	OUTPUT		REGULATION			Notes	Price §
			Range Volts	$\begin{aligned} & \text { Max } \\ & \text { Amjos } \end{aligned}$	Line	$\begin{gathered} \text { Lood } \\ \% \end{gathered}$	$\begin{aligned} & \text { Ripple } \\ & \mathrm{mV} \end{aligned}$					Range Volis	$\begin{aligned} & \text { Max } \\ & \text { Amps } \end{aligned}$	$\begin{gathered} \text { Line } \\ \% \end{gathered}$	Load	$\begin{aligned} & \text { Ripple } \\ & \mathrm{mV} \end{aligned}$		
$\begin{aligned} & M \\ & 18 \end{aligned}$	5Cl SCI Burr - Brown Burr- Brown Lambda Power Des Acme	C1.15.100u E2.15.100 503A 506/16 LCD-4-152 UPMD-15 PS47508	$2 \begin{aligned} & 15 \\ & \pm 15 \\ & \pm 15 \\ & \pm 15 \\ & 15 \pm 5 \% \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1.5 \\ & 2 \\ & 2 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.05 \\ & 0.01 \\ & \pm 0.1 \\ & \pm 0.1 \\ & 0.01 \\ & 0.01 \\ & \pm 1 \end{aligned}\right.$	$\begin{aligned} & 0.1 \\ & 0.01 \\ & \pm 0.1 \\ & \pm 0.1 \\ & 0.01 \\ & 0.01 \\ & \pm 2 \end{aligned}$	1 1 1 1 1 1%	bd bdf 9 abjg abdf	85 148 325 340 220 265 ino	- Nucor *Nucor Valor SCI SCI Rose- mount SCI SCI	NPS Series NPS Series CG 17 Series P2. 18.50 2. 18.50 SPS-2019P 1. 13. 100 2. 18. 100	$\left\lvert\, \begin{aligned} & 16.5-18 . \\ & 16.5-18.5 \\ & 16.5-18 \\ & 18 \\ & \pm 18 \\ & 18 \\ & 18 \\ & 18 \\ & \pm 18 \end{aligned}\right.$	$\begin{aligned} & 0.1-1.5 \\ & 3-12 \\ & 5.10 \\ & 0.05 \\ & 0.05 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 5 \mathrm{mV} \\ & 0.01 \\ & 0.01 \\ & 7 \mathrm{mV} \\ & \\ & 0.01 \\ & 0.01 \end{aligned}$	0.05 0.05 0.05 4.05 0.45 14 mV 0.05 0.05	$\begin{aligned} & 2 \\ & 3 \\ & 0.5 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	diu dju abdg df bdf bd bd bdf	req req 165, 197 65 49 51
$\begin{aligned} & M \\ & 19 \end{aligned}$	*Kepco "Nueor Dynage -TDI - Nucor Power Das SCl	PAR-15 NPS Series D Series TDMD NPS Series UPM-11 402	$\begin{aligned} & 15 \\ & 13.7-15.2 \\ & 13.9-15.3 \\ & 1-15.5 \\ & 13.7-15.6 \\ & 0-16 \\ & 0-16 \end{aligned}$	$\begin{array}{\|l\|} 6 \\ 0.1-1.5 \\ 0.075- \\ 0.75 \\ 1.7-12 \\ 3-12 \\ 1 \\ 1 \end{array}$	0.005 0.05 ± 0.025 0.01 0.05 0.01 0.01	0.01 0.05 ± 0.025 0.01 0.05 0.01 0.01	$\begin{aligned} & 0.25 \\ & 2 \\ & 1 \\ & 0.2 \\ & 3 \\ & 1 \\ & 1 \end{aligned}$	diu abdgu obdfgi di abdf cdf	$\begin{aligned} & 205 \\ & \text { req } \\ & 76- \\ & 105 \\ & 129- \\ & 530 \\ & \text { req } \\ & 199 \\ & 199 \end{aligned}$	GE Acme Acme GE GE GE Dynage Elasco	9766 Y6 1 PS-65434 PS-65436 9766 Y966 $9 T 66 \mathrm{Y} 967$ 9T66Y965 D Series MSI8	$\left\lvert\, \begin{aligned} & 18 \\ & 18 \\ & 18 \\ & 18.5 \\ & 18.5 \\ & 18.5 \\ & 16.9-18.7 \\ & 17-19 \end{aligned}\right.$	$\begin{aligned} & 5 \\ & 5 \\ & 10 \\ & 6 \\ & 12 \\ & 24 \\ & 0.075- \\ & 0.75 \\ & 0.1-0.75 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \\ & \pm \pm 1 \\ & \pm \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 0.025 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 4 \\ & \pm 2 \\ & \pm 2 \\ & 4 \\ & 5 \\ & 5 \\ & \pm 0.025 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1 \% \\ & 1 \% \\ & 1 \% \\ & 1 \% \\ & 1 \% \\ & 1 \% \\ & 1 \\ & 0.01 \% \end{aligned}$	d d d id abdgu dsu	$\begin{aligned} & 134 \\ & \text { ino } \\ & \text { ino } \\ & 139 \\ & 166 \\ & 391 \\ & 76- \\ & 105 \\ & 70- \\ & 95 \end{aligned}$
$\begin{aligned} & M \\ & 20 \end{aligned}$	SCl Power Des -Power/ Mate -Power/ Mate *ACDC Dynage	371 UPM-33 RC-15 RD-15 OA12/ 15D0. 5 $K-15 / 15$	$\begin{aligned} & 0-16 \\ & 0-16 \\ & 13-16 \\ & 13-16 \\ & 14-16 \\ & 14-16 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.15- \\ & 0.5 \end{aligned}$	0.01 0.01 0.075 0.15 0.01 ± 0.05	0.01 4.01 0.1 U. 2 0.01 ± 0.05	1 4 8 0.5 2	cd abd abdi abdi abd abdfg	100 143 65 55 119 117- 155	- Acopian *Acopian Valor - Techni *Techni - Techni -Mid- Eastern	18L Series 18」 Series CG 18 Series RA20-6 RA20-12 RA20-25 DB Series	$\begin{aligned} & 17-19 \\ & 17-19 \\ & 17.5-19 \\ & 0-20 \\ & 0-20 \\ & 0-20 \\ & 6-20 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 5,10 \\ & 6 \\ & 12 \\ & 25 \\ & 0.075 \end{aligned}$	± 0.5 ± 0.05 5 mV ± 0.1 ± 0.1 ± 0.1 ± 0.02	$\begin{aligned} & \pm 0.5 \\ & \pm 0.05 \\ & -.02 \\ & 0.05 \\ & \pm 0.15 \\ & \pm 0.15 \\ & \pm 0.15 \\ & 0.1 \end{aligned}$	5 1 6 0.5 0.2\% 0.2% 0.2\% 0.5	abdfi abdfi abdg dfg	50- 150 60- 160 165, 197 245 275 340 69- 85
$\begin{aligned} & M \\ & 21 \end{aligned}$	- $A C D C$ -Acopian - Acopian Dynage - ACDC	OA12/ 1501.1 15L Series 15J Series KH 15/15 OA12/ 15D3.7	$\begin{aligned} & 14-16 \\ & 14-16 \\ & 14-16 \\ & 14-16 \\ & 14-16 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 2 \\ & 3 \\ & 1.6- \\ & 3.2 \\ & 3.7 \end{aligned}$	0.01 ± 0.5 $\pm 0.01-$ 0.05 ± 0.05 0.01	$\begin{aligned} & 0.01 \\ & \pm 0.5 \\ & \pm 0.05- \\ & 0.25 \\ & \pm 0.05 \\ & 0.01 \end{aligned}$	0.5 5 1 2 0.5	abd abdfi abdfi abdfg abd	$\begin{aligned} & 149 \\ & 45- \\ & 150 \\ & 60- \\ & 170 \\ & 225- \\ & 325 \\ & 195 \end{aligned}$	Rose- mount Rose- mount - Techni - Techni Valor *Acopian	$\begin{aligned} & \text { SPS-2 100P } \\ & \text { SPS-2110P } \\ & \text { SCR20. U-25 } \\ & \text { SC R20.0-50 } \\ & \text { CG } 19 \text { Series } \\ & \text { 19L Series } \end{aligned}$	$10-20$ 10-20 10-20 10-20 18.5-20 18-20	$\begin{aligned} & 0.125 \\ & 0.2 \\ & 25 \\ & 50 \\ & 5,10 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 10 \mathrm{~m} V \\ & 15 \mathrm{~m} V \\ & \pm 0.5 \\ & \pm 0.5 \\ & 5 \mathrm{~m} V \\ & \pm 0.5 \end{aligned}$	15 mV 15 mV ± 0.5 ± 0.5 0.05 ± 0.5	1 1\% 1\% 0.5 5	bd bd abdg abdfi	62 69 420 595 165, 197 123
$\begin{aligned} & M \\ & 22 \end{aligned}$	Delfron Valor Abbolt Dynage Wanlass Wanlass Wanlass	D CGI5Series V24D-15.7A D Series 30-OEM-2 60-OEM-2 120-OEM-2	$\left\{\begin{array}{l} 4.5-16 \\ 14 \cdot 5-16 \\ 14.8-16 \cdot 6 \\ 15 \cdot 3-16.9 \\ 9-17 \\ 9-17 \\ 9-17 \end{array}\right.$	$\begin{aligned} & 0.4-1.5 \\ & 5,6,11 \\ & \\ & 15.36 \\ & 0.075- \\ & 0.75 \\ & 2.5 \\ & 5 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 5 \mathrm{mV} \\ & \pm 0.2 \\ & \pm 0.025 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.05 \\ & \pm 0.5 \\ & \pm 0.025 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \% \\ & 1 \\ & 0.1 \% \\ & 0.1 \% \\ & 0.1 \% \end{aligned}$	obdgi abdgu dgi abdgu	118- 179 165, 197 350 76- 105 46 56 86	-Acopian SCI SCl SCl Rosemount "Techni	19.J Series 2.20.50 1.20. 100 2.20. 100 SPS-2047P PL80 Series	18-20 ± 20 20 ± 20 20 10.3- 20.2	$\begin{aligned} & 2 \\ & 0.05 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1-6 \end{aligned}$	± 0.05 0.01 0.01 0.01 6 mV ± 0.5	$\pm 0.05-$ 0.2 0.05 0.05 0.05 12 mV ± 0.5	$0.5-1.0$	abdfi bdf bd bdf bd	70- 160 49 49 55 51 60- 195
$\begin{aligned} & M \\ & 23 \end{aligned}$	Rose- mount Rose- mount Rose- maunt Elasco *Acopian	SPS-2078P SPS-2058P SPS-2065P MS 16 16.J Series	$\begin{aligned} & 13-17 \\ & 13-17 \\ & 13-17 \\ & 15-17 \\ & 15-17 \end{aligned}$	0.04 0.175 0.275 ن.1-0.75	3 mV 2 mV 4 mV 0.05 ± 0.05	$\begin{aligned} & 6 \mathrm{mV} \\ & 5 \mathrm{mV} \\ & 8 \mathrm{mV} \\ & 0.05 \\ & \pm 0.05- \\ & 0.2 \end{aligned}$	1.5 0.5 0.5 0.01% 1	bd bd bd dsu abdfi	48 61 68 70- 95 60- 160	*Techni *Techni *Techni - Techni Dynage	P8O Series F115 Series PM95 Series MCS65 Series H Series	$\begin{aligned} & 10.3- \\ & 20.2 \\ & 10.3- \\ & 20.2 \\ & 10.3- \\ & 20.2 \\ & 10.3- \\ & 20.2 \\ & 11.4- \\ & 20.6 \end{aligned}$	$\begin{aligned} & 0.1-25 \\ & 0.1-25 \\ & 0.2-25 \\ & 0.25- \\ & 30 \\ & 1.3- \\ & 3.8 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.025 \end{aligned}$	± 0.5 ± 0.05 ± 0.5 ± 0.5 ± 0.025		su 54 su obdgu	65- 470 130- 1355 90- 635 65- 455 124- 154
$\begin{gathered} M \\ 24 \end{gathered}$	-Acopian Valor P / N *Power/ Mate - $A C D C$ -Acopian *Acopian	16L Series CG16Serizs NPS-300 PT-99 JR15k4 17. 10 17J Series	$\left\{\begin{array}{l} 19-17 \\ 15 \cdot 5-17 \\ 12-18 \\ 12-18 \\ 12-18 \\ 16-18 \\ 16-18 \end{array}\right.$	$\begin{aligned} & 2 \\ & 5,11 \\ & \pm 0.3 \\ & 0.4 \\ & 4 \\ & 0.1 \\ & 2 \end{aligned}$	± 0.5 $5 m \mathrm{~V}$ ± 0.05 0.05 0.1 ± 0.5 ± 0.05	$\begin{aligned} & \pm 0.5 \\ & 0.05 \\ & \\ & \pm 0.05 \\ & 0.05 \\ & 0.1 \\ & \pm 0.5 \\ & \pm 0.05- \\ & 0.2 \end{aligned}$	0.5 1 0.25 3 5 $\begin{aligned} & 0.5- \\ & 1.0 \end{aligned}$	obdfi abdg abdfgi abd obdfi abdfi	45- 150 165, 197 135 99 250 50 65- 160	Dynage *Kepco *Kepco *Kepco *Kepco - Power/ Mate *Power/ Mate	D Series PAX21-0.5 PAT21-1 PCX21-1 PCX15-1. 5 RC-19 RD-19	$\begin{aligned} & 18.7- \\ & 20.6 \\ & 0-21 \\ & 0-21 \\ & 0-21 \\ & 0-21 \\ & 16-21 \\ & \\ & 16-21 \end{aligned}$	$\begin{aligned} & 0.075- \\ & 0.75 \\ & 0.5 \\ & 1 \\ & 1 \\ & 1.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	± 0.025 0.05 0.0005 0.0005 0.0005 0.075 0.15	$\begin{aligned} & \pm 0.025 \\ & 0.05 \\ & 0.005 \\ & 0.05 \\ & 0.005 \\ & 0.1 \\ & 0.2 \end{aligned}$	0.25 0.1 0.1 0.1 4 a	abdgu abdi abdi	76- 105 94 121 111 111 65 55

	Mir	Model	OUTPUT		REGULATION			Notes	Price S
			$\begin{array}{\|l\|l\|} \hline \text { Ronge } \\ \text { Volts } \end{array}$	Max Amos	$\begin{array}{\|c} \hline \text { Line } \\ \% \end{array}$	$\begin{gathered} \text { Lood } \\ \% / \end{gathered}$	$\begin{aligned} & \text { Ripple } \\ & \mathrm{mV} \end{aligned}$		
$\begin{aligned} & M \\ & 25 \end{aligned}$	Rose- mount Rose- mount Rose- mount Elaseo -Acopian	SPS-2079P SPS-2059P SPS-2071P MS2O 20」Series	$\begin{aligned} & 17-21 \\ & 17-21 \\ & 17-21 \\ & 19-21 \\ & 19-21 \end{aligned}$	0.03 0.15 บ. 2 $0.1-0.75$	3 mV 2 mV 4 mV 0.05 ± 0. 5	6 mV 5 mV $8 m V$ 0.05 $\pm \cup$. un- $^{-}$ i. 2	1.5 0.5° 0.5 0.01% 1	bd bd bd dsu abdfi	48 61 68 70- 95 60- 160
$\begin{aligned} & M \\ & 26 \end{aligned}$	-Acopian Valar - Sorensen -Sorensen *Sorensen - Sorensen - Sorensen -Acooian	20L Series CG20 Series CSA 18-1. 1 CSA18-1.9 OSA18-3. 6 OSA18-10. CSA13-6.8 21JSeries	$\begin{aligned} & 19-21 \\ & 19.5-21 \\ & 14-22 \\ & 14-22 \\ & 14-22 \\ & 14-22 \\ & 14-22 \\ & 20-22 \end{aligned}$	$\begin{aligned} & 2 \\ & 5.9 \\ & \\ & 1.2 \\ & 2.1 \\ & 3.3 \\ & 14.0 \\ & 7.9 \\ & 1 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & 5 \mathrm{mv} \\ & \pm 0.005 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & 0.05 \\ & \pm 0.005 \\ & \pm 0.65- \\ & 0.15 \end{aligned}$	5 0.05 0.3 บ.. 3 0.3 0.3 C. 3 C. 5-1.	obdfi obdg obdegi obdegi abdegi abdegi obdegi obdfi	$\begin{aligned} & 50- \\ & 150 \\ & 165- \\ & 197 \\ & 89 \\ & 109 \\ & 129 \\ & 249 \\ & 199 \\ & 70- \\ & 100 \end{aligned}$
$\begin{aligned} & M \\ & 27 \end{aligned}$	-Acopian Valor Acme *Techni Rosemount Dynage	21L Series CG21 Serie: PS57352 HF80 Series SPS-202CP H Series	$\begin{aligned} & 20-22 \\ & 20.5-22 \\ & 22 \\ & 11.3- \\ & 22.5 \\ & 22.5 \\ & \\ & 13.9- \\ & 22.7 \end{aligned}$	$\begin{aligned} & 2 \\ & 4,5,9 \\ & 25 \\ & 1-15 \\ & 0.09 \\ & \\ & 5.2- \\ & 26.6 \end{aligned}$	± 0.5 5 mV ± 1 ± 0.05 4 mV ± 0.025	\pm J. 5 0.05 ± 2 ± 0.1 12 mV ± 0.025	5 0.5 1\% 0.2\% 1 1	obdfj obdgu su bd abdgu	$\begin{aligned} & 55- \\ & 150 \\ & 165, \\ & 197 \\ & \text { ino } \\ & 140- \\ & 425 \\ & 51 \\ & 195- \\ & 435 \end{aligned}$
M 28	Dynage Elaseo -Acopian *Acopian Valor	D Series MS22 22L Series 22」 Series CG22 Series	20.6- 22.7 21-23 21-23 21-23 21.5-23	$\begin{aligned} & 0.05- \\ & 0.75 \\ & 0.1- \\ & 0.75 \\ & 2 \\ & 2 \\ & 4.9 \end{aligned}$	± 0.025 0.05 ± 0.5 ± 0.05 $5 m V$	± 0.025 0.05 ± 0.5 $\pm 0.05-$ 0.2 0.05	1 0.01% 5 0.5-1. 0 0.5	abdgu dsu obdfj abdfi abdg	76- 105 70- 95 50- 150 60- 160 165, 197
$\begin{aligned} & M \\ & 29 \end{aligned}$	Rose- mount SCI SCl Rose- mount SCI SCI SCI SCI	SPS- 2076D-P 2.24. 50 P2. 24.50 SPS-2011P C2.24. 100 2.24. 100 1.24. 100 C2.24.200	$\begin{aligned} & \pm 24 \\ & \pm 24 \\ & \pm 24 \\ & 24 \\ & \pm 24 \\ & \pm 24 \\ & 24 \\ & 24 \\ & \pm 24 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.05 \\ & 0.05 \\ & 0.09 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 3 \mathrm{mV} \\ & 0.01 \\ & 0.01 \\ & 5 \mathrm{mV} \\ & 0.05 \\ & 0.01 \\ & 0.01 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 6 \mathrm{mV} \\ & 0.05 \\ & 0.05 \\ & 12 \mathrm{~m} V \\ & 0.1 \\ & 0.5 \\ & 0.05 \\ & 0.1 \end{aligned}$	1	bdf bdf df bd bdf bdf bd bdf	84 49 65 51 80 55 49 90
$\begin{aligned} & M \\ & 30 \end{aligned}$	SCl SCI SCI Wanlass Wanlass Wanlass Power Des	$\begin{aligned} & \text { C 1.24.200 } \\ & \text { C1.24.300 } \\ & \text { C1.24.600 } \\ & \text { P60HP- } \\ & 2.51 \mathrm{C}-24 \\ & \text { III-OEM24- } \\ & 2.5 \\ & \text { P60-2.51C- } \\ & 24 \\ & \text { UPMD-10 } \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \end{aligned}$	0.2 0.3 0.6 2.5 2.5 2.5 3	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \neq 0.02 \\ & 0.04 \end{aligned}$	0.1 0.1 0.1 1 mV $\pm \mathrm{c} .1$ ± 0. v 2 0.04		bd bd bd abdg abdg abdg abd	70 75 85 220 90 195 180
$\begin{aligned} & M \\ & 31 \end{aligned}$	*Kepco Wanlass Wanlass GE GE GE GE Acme	PAR-24 P120-51C- 24 P120HP- 51C-24 9166 Y988 9166 Y 989 9166 Y 990 $9 T 66$ Y991 PS Series	$\begin{aligned} & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & 5 \\ & 5 \\ & 6 \\ & 10 \\ & 20 \\ & 50 \\ & 2-100 \end{aligned}$	$\begin{aligned} & 0.005 \\ & \pm 0.02 \\ & \pm 0.01 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & 0.01 \\ & \pm 0.02 \\ & 1 \mathrm{~m} V \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & \pm 2 \end{aligned}$	0.25 0.3 0.1 1\% 1\% 1\% 1\% 1\%	obdg obdg d d d d	$\begin{aligned} & 245 \\ & 240 \\ & 265 \\ & \\ & 150 \\ & 174 \\ & 228 \\ & 402 \\ & \text { ina } \end{aligned}$

Mfr	Model	OUTPUT		REGULATION			Notes	Price 5
		Range Voliss	Max Amps	Line \%	$\begin{gathered} \text { Lood } \\ \% \end{gathered}$	Ripple mV		
*Acopian	23. Series	22-24	1	\pm U. 05	$\pm 0.05-$	0.5-1.0	abdf i	$70-$
*Acopian	23L Series	22-24	2	± 0.5	± 0.5	5	abdfi	55-
Valor	CG23 Serie	22.5-24	4,3	5 mV	0.05	0.5	abdg	165,
- Power/	UNI-164	0-25	0.75	0.005	0.005	0.25	obdfg\|	164
Elaseo	VS Series	10-25	$\begin{aligned} & 0.1- \\ & 0.75 \end{aligned}$	0.05	0.05	0.01\%	dsu	$\begin{aligned} & 80- \\ & 100 \end{aligned}$
Rosemount	SPS-800CP	21-25	0.025	3 mV	6 mV	1.5	bd	48
Rosemount	SPS-2072P	21-25	0. 175	4 mV	6 mV	0.5	bd	60
Dynage	D Series	22.7-25	$\begin{aligned} & 0.05- \\ & 0.5 \end{aligned}$	± 0.025	± 0.025	1	obdgu	$\begin{aligned} & 80- \\ & 108 \end{aligned}$
Elaseo	MS24	23-25	$\begin{aligned} & 0.1- \\ & 0.75 \end{aligned}$	0.05	0.05	0.01\%	dsu	$\begin{aligned} & 70- \\ & 95 \end{aligned}$
- Acopian	24L Series	23-25	2	± 0.5	± 0.5	5	abdfi	$50-$
-Acopian	24] Series	23-25	2	± 0.05	$\begin{aligned} & \pm 0.05- \\ & 0.2 \end{aligned}$	0.5-1.0	obdfi	$\begin{aligned} & 60- \\ & 160 \end{aligned}$
Valor	CG24 Serie:	23. 5-25	4,3	5 mV	0.05	0.5	abdg	165, 197
*H-P	SLOT Series	5.8-26	1.5-35	0.05	0.05	1	abde	$\begin{aligned} & 72- \\ & 197 \end{aligned}$
- Power/	RC-24	21-26	0.5	0.075	0.1	4	abdi	65
-Power/ Mate	RD-24	21-26	0.5	0.15	0.2	8	abdi	55
- Acopian	25L Series	24-26	0.75	± 0.5	± 0.5	5	andfi	55-
- Acopion	25J Series	24-26	2	± 0.05	$\begin{aligned} & \pm \cup .05- \\ & 0.2 \end{aligned}$	0.5-1.0	abdfi	$65-$
Volar	CG25 S aries	24. 5-26	4,3	5 mV	0.05	0.5	abdg	165, 197
SCI	2.26.50	± 26	0.05	0.01	0.05	1	bdf	49
SCI	2.26. 100	± 26	0.1	0.01	0.05	1	bdf	55
Burr- Brown	507/16	± 26	0.6	± 0.1	± 0.1	1	व	380
Acme	PS-47202	26	4	± 1	± 2	1\%		ino
Acme	PS-47603	26	8	± 1	± 2	1\%		ina
Abbott	$\begin{aligned} & \text { U10D- } \\ & 24.7 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 23.3- \\ & 26.1 \end{aligned}$	4.04	± 0.2	± 0.5	0.2\%	dgi	337
Elasco	MS26	25-27	$\begin{aligned} & 0.1- \\ & 0.75 \end{aligned}$	0.05	0.05	0.01\%	dsu	$\begin{aligned} & 70- \\ & 95 \end{aligned}$
- Acopian	26JSeries	25-27	2	± 0.05	$\begin{aligned} & \pm 0.05- \\ & 0.2 \end{aligned}$	0.5-1.0	abdfi	$\begin{aligned} & 65- \\ & 175 \end{aligned}$
- Acopian	26L Series	25-27	2	± 0.5	± 0.5	5		55-
Valor	CG26 Series	25. 5-27	4,8	5 mV	0.05	0.5	abdg	165,
Dynage	D Series	25-27.6	$\begin{aligned} & 0.05- \\ & 0.5 \end{aligned}$	± 0.025	± 0.025	1	abdgu	$\begin{aligned} & 80- \\ & 103 \end{aligned}$
- $A C D C$	$\begin{aligned} & B \times 2- \\ & 28 N 5.0 \end{aligned}$	2-28	5	0.01	0.01	0.5	abdgk	134
- $A C D C$	$\begin{aligned} & B \times 2- \\ & 28 N+10 \end{aligned}$	2-28	10	0.01	0.01	0.5	abdgk	274
- $A C D C$	$\left\lvert\, \begin{aligned} & 8 \times 2- \\ & 28 \mathrm{~N} 20 \end{aligned}\right.$	2-23	20	0.01	0.01	0.5	abdgk	395
Deltron	LA	3-23	1.7-39	0.005	0.005	1	abdgi	109-
- Acopion	27L Series	26-28	0.75	± 0.5	± 0.5	5	obdfi	$60-$
-Acopian	27. Series	26-28	2	± 0.05	± 0.05 -	0.5-1.0	abdfi	$70-$
SCI	2.28.50	428	0.05	0.01	0.2 0.05	1	bdf	$\begin{aligned} & 175 \\ & 49 \end{aligned}$

Reader service numbers for literature and application notes, see page D6.
Companies advertising in the power supply section are marked by an asterisk.
Additional features explained on p. D65.

Modular dc Power Supplies

	Mfr	Mode 1	OUTPUT		REGULATION			Notes	Price $\$$	Mfr	Model	OUTPUT		REGULATION			Notes	Price S
			Range Volis	Max Amps	$\begin{gathered} \text { Line } \\ \% \end{gathered}$	$\begin{gathered} \text { Load } \\ \% \end{gathered}$	$\begin{aligned} & \text { Ripple } \\ & \mathrm{mV} \end{aligned}$					Range Volis	Max Amps	$\underset{\%}{\text { Cine }}$	$\begin{gathered} \text { Lood } \\ \% \end{gathered}$	$\left[\begin{array}{l} \text { Ripple } \\ \mathrm{mV} \end{array}\right.$		
$\begin{aligned} & M \\ & 32 \end{aligned}$	Rose－ mount SCI SCI Wanloss ＊Kepco GE GE Acme GE	$\begin{aligned} & \text { SPS-202IP } \\ & \text { 1.28.100 } \\ & \text { 2.28.100 } \\ & \text { C214-OEM } \\ & \text { PAR-28 } \\ & \text { 9T66Y83 } \\ & \text { 9T66 Y85 } \\ & \text { PS Series } \\ & \text { 9T66Y6 } \end{aligned}$	28 28 28 28 28 28 28 28 28	$\begin{aligned} & 0.08 \\ & 0.1 \\ & 0.1 \\ & 2.5 \\ & 3.7 \\ & 8 \\ & 20 \\ & 8-30 \\ & 50 \end{aligned}$	$\begin{aligned} & 6 m v \\ & 0.01 \\ & 0.01 \\ & \pm 2 \\ & 0.005 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & 14 \mathrm{mV} \\ & 0.05 \\ & 0.05 \\ & \pm 2 \\ & 0.01 \\ & 3 \\ & 3 \\ & \pm 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0.1 \\ & 0.25 \\ & 1 \% \\ & 1 \% \\ & 1 \% \\ & 1 \% \end{aligned}$	bd bd bdf	51 49 55 46 205 318 472 ina 450	＊Techni Wanlass Wanlass Wanlass Rose－ mount Rose－ mount ＊ACDC	HF80 Series 30－OEM－3 60－OEM－3 120－OEM－3 SPS－2101P SPS－2111P JR25k2	$\begin{aligned} & 15-30 \\ & 17-30 \\ & 17-30 \\ & 317-30 \\ & 20-30 \\ & 20-30 \\ & 22-30 \end{aligned}$	$\begin{aligned} & 0.75-12 \\ & \\ & 2.5 \\ & 5 \\ & 10 \\ & 0.1 \\ & 0.175 \\ & 2 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & 10 \mathrm{mV} \\ & 15 \mathrm{~m} V \\ & 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & 10 \mathrm{~m} V \\ & 15 \mathrm{~m} v \\ & \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.2 \% \\ & 0.1 \% \\ & 0.1 \% \\ & 0.1 \% \\ & 1 \\ & 1 \\ & 3 \end{aligned}$	su bd bd obd	145 430 46 58 86 62 69 250
$\begin{aligned} & M \\ & 33 \end{aligned}$	Valor Valor Rose－ mount －$A C D C$ －ACDC －Elosco	CG27 Series CG28 Series SPS－2061P BX28NO． 3 BC28NO． 3 MS28	$\begin{aligned} & 26 \cdot 5-28 \\ & 27.5-29 \\ & 27-29 \\ & 27-29 \\ & 27-29 \\ & 27-29 \end{aligned}$	$\begin{aligned} & 4,8 \\ & 4,8 \\ & 0.12 \\ & 0.3 \\ & 0.3 \\ & 0.1- \\ & 0.75 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~m} V \\ & 5 \mathrm{mV} \\ & 6 \mathrm{mV} \\ & \\ & 0.01 \\ & 0.5 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 15 \mathrm{mV} \\ & 0.01 \\ & 0.5 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 1 \\ & 0.5 \\ & 5 \\ & 0.01 \% \end{aligned}$		165， 197 165, 197 63 76 73 70－ 95	－Sorensen －Sorensen Power Des ＊Acopian ＊Acopian Valor	OSA 28－6． 0 OSA28－8． 8 UPM－6 29L Series 29」Series CG29Series	$\begin{aligned} & 22-30 \\ & 22-30 \\ & 24-30 \\ & 28-30 \\ & 28-30 \\ & 28-5-30 \end{aligned}$	6.8 10.2 1.5 0.4 1 4，8	$\begin{aligned} & \pm 0.005 \\ & \pm 0.005 \\ & 0.01 \\ & \pm 0.5 \\ & \pm 0.05 \\ & 5 \mathrm{mV} \end{aligned}$	$\begin{aligned} & \pm 0.005 \\ & \pm 0.005 \\ & 0.01 \\ & \pm 0.5 \\ & \pm 0.05- \\ & 0.1 \\ & 0.05 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.3 \\ 0.3 \\ 1 \\ 5 \\ 0.5-1.0 \\ 0.5 \end{array}$	obdegi obdegi abd obdf｜ abdf｜ obdg	$\begin{aligned} & 209 \\ & 249 \\ & 158 \\ & \\ & 60- \\ & 70 \\ & 70- \\ & 105 \\ & 165- \\ & 197 \end{aligned}$
$\begin{aligned} & M \\ & 34 \end{aligned}$	＊ACDC ＊ACDC ＊Acopian ＊Acopian －$A C D C$ －ACDC ＊ACDC ＊ACDC	$8 \times 28 \mathrm{NI} .2$ BC28N1．2 28L Series 28」Series BC28N2．5 BX28N2．5 BC28N5．0 BX28N5．0	$\begin{aligned} & 27-29 \\ & 27-29 \\ & 27-29 \\ & 27-29 \\ & 27-29 \\ & 27-29 \\ & 27-29 \\ & 27-29 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \\ & 2 \\ & 2 \\ & \\ & 2.5 \\ & 2.5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.5 \\ & \pm 0.5 \\ & \pm 0.05 \\ & 0.5 \\ & 0.01 \\ & 0.5 \\ & 0.01 \end{aligned}$	0.01 0.5 ± 0.5 $\pm 0.05-$ 0.2 0.5 0.01 0.5 0.01	$\begin{aligned} & 0.5 \\ & 5 \\ & 5 \\ & 0.5-1.0 \\ & 5 \\ & 0.5 \\ & 5 \\ & 0.5 \end{aligned}$	abd abd abdfi abdfl abd abd abd abd	$\begin{aligned} & 116 \\ & 111 \\ & 55- \\ & 165 \\ & 65- \\ & 175 \\ & 1122 \\ & 137 \\ & 178 \\ & 184 \end{aligned}$	SCI Dynage ＊Acopian －Acopian Valor	P2． 30.50 D Series R Series K Series CG30 Series	$\begin{aligned} & \pm 30 \\ & 27.6- \\ & 30.4 \\ & 2.75- \\ & 30.5 \\ & 2.75- \\ & 30.5 \\ & 29.5- \\ & 30.5 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05- \\ & 0.5 \\ & 10 \\ & 10 \\ & \\ & 4.8 \end{aligned}$	$\begin{aligned} & 0.01 \\ & \pm 0.025 \\ & \pm 0.05 \\ & \pm 0.05 \\ & 5 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.05 \\ & \pm 0.025 \\ & \pm 0.2- \\ & 1.0 \\ & \pm 0.2- \\ & 1.0 \\ & 0.05 \end{aligned}$	1 1 1 0.5	df abdgu abd｜ abd｜ obdg	65 80－ 111 195 205 165， 197
$\begin{aligned} & M \\ & 35 \end{aligned}$	Abbott －ACDC －ACDC －ACDC －ACDC －Techni ＊Techni －Nucor	R28S5 BC28N10 B $\times 28 \times 10$ BC28N20 B $\times 28$ N20 PL80 Series MCS65 Series NPS Series	$\begin{aligned} & 27-29 \\ & 27-29 \\ & 27-29 \\ & 27-29 \\ & 27-29 \\ & 20.2- \\ & 29.2 \\ & 20.2- \\ & 29.2 \\ & 26.8- \\ & 29.2 \end{aligned}$	5 10 10 20 20 $0.1-3$ $0.125-$ 15 $0.1-1.5$	$\begin{aligned} & \pm 0.05 \\ & 0.5 \\ & 0.01 \\ & 0.5 \\ & 0.01 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \\ & 0.05 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & 0.5 \\ & 0.01 \\ & 0.5 \\ & 0.01 \\ & \pm 0.5 \\ & \\ & \pm 0.5 \\ & \\ & 0.05 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 0.5 \\ & 5 \\ & U .5 \\ & 1 \\ & 5 \\ & 2 \end{aligned}$	bdgl abd abd abd abd su su diu	$\begin{aligned} & 225 \\ & 265 \\ & 274 \\ & 384 \\ & 395 \\ & 60- \\ & 170 \\ & 70- \\ & 405 \\ & 1 \text { eq } \end{aligned}$	－Power／ Mate －Power／ Mate －Acopian －Acopian Elasco	RD－28 RC－28 30」Series 30L Series MS30	$\begin{aligned} & 26-31 \\ & 26-31 \\ & 29-31 \\ & 29-31 \\ & 29-31 \end{aligned}$	0.5 0.5 2 2 $0.1-$ 0.75	$\begin{aligned} & 0.12 \\ & 0.06 \\ & \pm 0.05 \\ & \pm 0.5 \\ & 0.05 \end{aligned}$	0.2 0.1 $\pm 0.05-$ 0.2 ± 0.5 0.05	$\begin{aligned} & 8 \\ & 4 \\ & 0.5-1.0 \\ & 5 \\ & 0.01 \% \end{aligned}$	abd｜ abd｜ abdfi abdf｜ dsu	55 65 60－ 175 60－ 165 70－ 100
$\begin{aligned} & M \\ & 36 \end{aligned}$	＊Nucor CEA	NPS Series CEAGAYOI CEAGBYOI CEA6CYIOI CEAGDY 101 I CEAGAY 252 CEAGBY252 CEA6CY252 CEA6AY502	$\begin{aligned} & 26.8- \\ & 29.2 \\ & 10-29.9 \\ & 10-29.9 \\ & 10-29.9 \\ & 10-29.9 \\ & 210-29.9 \\ & 10-29.9 \\ & 10-29.9 \\ & 10-29.9 \end{aligned}$	$\begin{aligned} & 3-12 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 2.5 \\ & 2.5 \\ & 2.5 \\ & 5 \end{aligned}$	0.05 0.01 0.002 0.0005 0.0001 0.01 0.002 0.0005 0.01	0.05 0.04 0.008 0.002 0.0004 0.04 0.008 0.002 0.04	3 0.01% 0.001% 0.005% 0.0005% 0.01 0.001% 0.005% 0．01\％	diu	$\begin{aligned} & \text { req } \\ & \\ & 85 \\ & 95 \\ & 145 \\ & 215 \\ & 175 \\ & 185 \\ & 235 \\ & 220 \end{aligned}$	＊ACDC SCI SCI R－S R－S Scint －Powertec	BX30NO．3－ 5.0 370 401 NGR30／30 NGRM30／ 40 PC Series $7 B$ Series	$\begin{aligned} & 29-31 \\ & 0-32 \\ & 0-32 \\ & 0-32 \\ & 0-32 \\ & \\ & 2-32 \\ & 3.6-32 \end{aligned}$	0．3－5 0.3 0.3 30 40 1.5 1．4－7．5	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & \pm 10 \\ & \pm 10 \\ & \\ & 0.05 \\ & 0.03- \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.001 \\ & 0.001 \\ & 0.05 \\ & 0.03- \\ & 0.05 \end{aligned}$	$\begin{aligned} & 5 \\ & 1 \\ & 1 \\ & 0.3 \\ & 0.5 \\ & 1 \\ & 1 p-p \end{aligned}$	abdgk cd cdf cd cd bdg｜ su	92－ 257 90 195 750 750 66 492
$\begin{aligned} & M \\ & 37 \end{aligned}$	CEA CEA CEA CEA AUL ＊Power／ Mate Litton －Powertec	CEA6BY502 CEA6C502R CEA6AY253 CEA6BY253 MS Series UNI Series 541420 9D Series	$\left\{\begin{array}{l} 10-29.9 \\ 10-29.9 \\ 10-92.9 \\ 10-29.9 \\ 3-30 \\ 3-30 \\ 3-30 \\ 3-30 \end{array}\right.$	$\begin{aligned} & 5 \\ & 5 \\ & 25 \\ & 25 \\ & 0.25-3 \\ & 0.5-34 \\ & 5 \\ & 1-6 \end{aligned}$	0.002 0.0005 0.01 0.002 0.1 0.005 ± 0.25 ± 0.05	0.008 0.002 0.04 0.008 0.01 0.005 ± 0.25 ± 0.1	0．001\％ 0.0005% 0．01\％ 0.001% 0.25 50 2．5－10		$\begin{aligned} & 230 \\ & 280 \\ & 375 \\ & 385 \\ & 35- \\ & 38 \\ & 134- \\ & 315 \\ & \text { req } \\ & 180 \end{aligned}$	－Powertec －Powertec －Acopian ＊Acopian －Nueor	7C Series 7D Series 31120 31JSeries NPS Series	$\begin{aligned} & 3.6-32 \\ & 3.6-32 \\ & 30-32 \\ & 30-32 \\ & 29.2- \\ & 32.7 \end{aligned}$	$\begin{aligned} & 3.8-17 \\ & 7.5-34 \\ & 0.2 \\ & 1 \\ & 0.05- \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.03- \\ & 0.2 \\ & 0.03- \\ & 0.2 \\ & \pm 0.5 \\ & \pm 0.05 \\ & 0.05 \end{aligned}$	$0.03-$ 0.05 0．03－ 0.05 ± 0.5 $\pm 0.05-$ 0.1 0.05	$\begin{aligned} & 3 p-p \\ & 3 p-p \\ & 5 \\ & 0.5-1.0 \\ & 2 \end{aligned}$	Su su abdfl abdf｜ dju	593 789 65 65－ 105 req
$\begin{aligned} & M \\ & 38 \end{aligned}$	Litton －Trygon －Trygon Eloseo Valor Valor Scint	541410 TPSA Series TPSC Series Q Serias CS30－0．3 C530－1．0 PR Series	$\begin{aligned} & 3-30 \\ & 3.2-30 \\ & 3.2-30 \\ & 5-30 \\ & 10-30 \\ & 10-30 \\ & 10-30 \end{aligned}$	$\begin{aligned} & 6 \\ & 1.25 \\ & 5 \\ & 0.015- \\ & 0.065 \\ & 0.3 \\ & 1 \\ & 6 \end{aligned}$	$\begin{aligned} & \pm 0.25 \\ & 0.02 \\ & 0.02 \\ & 0.1 \\ & 2 m V \\ & 2 m V \\ & 0.01 \end{aligned}$	$\begin{aligned} & \pm 0.25 \\ & 0.05 \\ & 0.05 \\ & 0.1 \\ & 0.05 \\ & 0.05 \\ & 0.01 \end{aligned}$	50 1 1 2 0.05 0.5 0.5	$\begin{aligned} & \text { su } \\ & \text { su } \\ & \text { dsu } \\ & \text { abdg } \\ & \text { abdg } \\ & \text { bdgi } \end{aligned}$	req 111－ 121 125－ 147 60 60 98 145－ 185	－ERA Elasco －Acopian ＊Acopian ＊ACDC	WR Series SVS－10A 32．Series 32L Series BX32NO．3－ 5.0	$\left[\begin{array}{l} 1-33 \\ 3-33 \\ 31-33 \\ 31-33 \\ 31-33 \end{array}\right.$	0．6－9．6 10 1.5 2 0．3－5	$\begin{aligned} & \pm 0.01 \\ & 0.05 \\ & \pm 0.05 \\ & \pm 0.5 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & \pm 0.05- \\ & 0.15 \\ & \pm 0.5 \\ & 0.01 \end{aligned}$	0.8 0.01% 0．5－1．0 5 5	abdeg dsu abdf｜ abdi abdgk	$\begin{aligned} & 130- \\ & 305 \\ & 300- \\ & 335 \\ & 65- \\ & 175 \\ & 60- \\ & 165 \\ & 112- \\ & 248 \end{aligned}$

Reader service numbers for literature and application notes，see page D6．
Companies advertising in the power supply section are marked by an asterisk．
Additional features explained on p．D65．

	Mfr	Model	OUTPUT		REGULATION			Notes	Price \＄	Mfr	Model	OUTPUT		REGULATION			Notes	Price $\$$
			$\begin{array}{\|l\|l\|} \hline \text { Range } \\ \text { Volts } \end{array}$	Max Amps	$\begin{gathered} \hline \text { Line } \\ \% \end{gathered}$	Lood	$\begin{aligned} & \text { Ripple } \\ & \mathrm{mV} \end{aligned}$					Range Volis	Max Amps	$\begin{gathered} \text { Line } \\ \% \end{gathered}$	$\begin{gathered} \text { Lood } \\ \% \end{gathered}$	$\begin{aligned} & \text { Ripple } \\ & \mathrm{mV} \end{aligned}$		
$\begin{aligned} & M \\ & 39 \end{aligned}$	Dynage ＊Power／ Mate －Sorensen ＊Sorensen －Sorensen －Acopion －Acopian	D Series UNI Series OSA28－． 7 OSA28－1．3 QSA28－2．0 34L 10 34」Series	$\begin{aligned} & 30.4- \\ & 33.6 \\ & 0-34 \\ & \\ & 22-35 \\ & 22-35 \\ & 22-35 \\ & 33-35 \\ & 33-35 \end{aligned}$	$\begin{aligned} & 0.05- \\ & 0.5 \\ & 0.5-1.5 \\ & \\ & 0.77 \\ & 1.4 \\ & 2.2 \\ & 0.1 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \pm 0.025 \\ & 0.005 \\ & \pm 0.005 \\ & \pm 0.005 \\ & \pm 0.005 \\ & \pm 0.5 \\ & \pm 0.05 \end{aligned}$	± 0.025 0.005 ± 0.005 ± 0.005 ± 0.005 ± 0.5 $\pm 0.05-$ 0.2	$\begin{aligned} & 5 \\ & 0.25 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 5 \\ & 0.5-1.0 \end{aligned}$	abdgu abdg｜ abdegi abdegl abdegi abd \mid abdf｜	80－ 111 76－ 99 89 109 129 60 65－ 175	Dynage －Acopian ＊Acopian ＊ACDC ＊Acopian －Acopian	D Series 40L 10 40」 Series BX4ON0．3－ 5 4IL 10 41」Series	$\begin{aligned} & 37-40.8 \\ & 39-41 \\ & 39-41 \\ & 39-41 \\ & 40-42 \\ & 40-42 \end{aligned}$	$\begin{aligned} & 0.05- \\ & 0.3 \\ & 0.1 \\ & 1 \\ & 0.3-5 \\ & 0.1 \\ & 0.4 \end{aligned}$	± 0.025	$\begin{aligned} & \pm 0.025 \\ & \\ & \pm 0.5 \\ & \pm 0.05- \\ & 0.2 \\ & 0.01 \\ & \pm 0.5 \\ & \pm 0.05- \\ & 0.1 \end{aligned}$	$\begin{aligned} & 5 \\ & 1 \\ & 5 \\ & 5 \\ & 5 \\ & 1 \end{aligned}$	abdgu abdi abdfi abdgk abdi abdfj	80－ 111 60 65－ 125 118－ 257 60 70－ 95
M 40	＊ACDC ＊Kepco Litton －Acopion －Acopian ＊K ерсо －Power／ Mate	BX34NO．3－ 5.0 PAX 36 －0． 3 541440 35L 10 35」 Series PAR－36 RD－34	$\left[\begin{array}{l} 33-35 \\ 0-36 \\ 4-36 \\ 34-36 \\ 34-36 \\ 36 \\ 31-37 \end{array}\right.$	$\begin{aligned} & 0.3-5 \\ & 0.3 \\ & 30 \\ & 0.1 \\ & 1 \\ & 2.8 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.05 \\ & \pm 0.25 \\ & \pm 0.5 \\ & \pm 0.05 \\ & 0.005 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.05 \\ & \pm 0.25 \\ & \pm 0.5 \\ & \pm 0.05- \\ & 0.2 \\ & 0.01 \\ & 0.2 \end{aligned}$	5 0.25 225 5 $0.5-1.0$ 0.25 8	abdgk abdi abdf｜ abd｜	$\begin{aligned} & 118- \\ & 247 \\ & 94 \\ & \text { req } \\ & 60 \\ & 65- \\ & 125 \\ & 205 \\ & 55 \end{aligned}$	－Power／ Mate －Power／ Mate －Acopian －Acopian ＊ACDC ＊Acopian	$\begin{aligned} & \text { RD-40 } \\ & \text { RC-40 } \\ & 42 \mathrm{Series} \\ & 42 \mathrm{~L} 10 \\ & 8 \times 42 \mathrm{~N} 0.3- \\ & 5 \\ & 43 \mathrm{~L} 10 \end{aligned}$	$\begin{aligned} & 37-43 \\ & 37-43 \\ & 41-43 \\ & 41-43 \\ & 41-43 \\ & 42-44 \end{aligned}$	0.5 0.5 0.6 0.1 0．3－5 0.1	$\begin{aligned} & 0.01 \\ & 0.05 \\ & \pm 0.05 \\ & \pm 0.5 \\ & 0.01 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.1 \\ & \pm 0.05- \\ & 0.15 \\ & \pm 0.5 \\ & 0.01 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & 8 \\ & 4 \\ & 0.5-1.0 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	abd｜ abd｜ abdf｜ abd｜ abdgk abd｜	55 65 70－ 115 60 118－ 257 60
$\begin{aligned} & M \\ & 41 \end{aligned}$	＊Power／ Mate ＊Acopian Dynage Dynage Dynage	RC－34 X Series H Series H Series D Series	$\begin{aligned} & 31-37 \\ & 4-37 \\ & 20.6-37 \\ & 22.7-37 \\ & 33.6-37 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.8-2.3 \\ & 3.3-19 \\ & 0.05- \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.05 \\ & \pm 0.05 \\ & \pm 0.025 \\ & \pm 0.025 \\ & \pm 0.025 \end{aligned}$	$\begin{aligned} & 0.1 \\ & \pm 0.05 \\ & \pm 0.025 \\ & \pm 0.025 \\ & \pm 0.025 \end{aligned}$	0．25－ 0.5 1 ± 0.025 5	abdi abd｜ abdgu abdgu obdgu	$\begin{aligned} & 65 \\ & 75- \\ & 110 \\ & 124- \\ & 162 \\ & 195- \\ & 470 \\ & 80- \\ & 111 \end{aligned}$	＊Acopian Aeme Dynage Elasco ＊Techni ＊Acopian	43J Series PS－57356 D Series VS Series HF Series 44L 10	$\begin{aligned} & 42-44 \\ & 44 \\ & 40.8-45 \\ & 20-45 \\ & 22.5-45 \\ & 43-45 \end{aligned}$	0.3 25 0．05－ 0.3 0．05－ 0.5 0．5－8 0.1	$\begin{aligned} & \pm 0.05 \\ & \pm 1 \\ & \pm 0.025 \\ & 0.05 \\ & \pm 0.05 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & \pm 2 \\ & \pm 0.025 \\ & 0.05 \\ & \pm 0.1 \\ & \pm 0.5 \end{aligned}$	0．5－1．0 1% 5 0.01% 0.2% 5	abdfi abdgu dsu su abdi	70－ 95 ina 80－ 111 75－ 95 145－ 435 60
$\begin{aligned} & M \\ & 42 \end{aligned}$	－Acopion －Acopian ＊ACDC ＊Acopian －Acopian －Acopian	36 L 10 36」 Series B $\times 36$ N0．3－ 5.0 37J Series 38L 10 38」Series	$\begin{aligned} & 35-37 \\ & 35-37 \\ & 35-37 \\ & 36-38 \\ & 37-39 \\ & 37-39 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 1.5 \\ & 0.3-5 \\ & 1 \\ & 0.1 \\ & 1 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \\ & 0.01 \\ & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 0.05- \\ & 0.2 \\ & 0.01 \\ & \pm 0.05- \\ & 0.1 \\ & \pm .5 \\ & \pm 0.05- \\ & 0.2 \end{aligned}$	5 0．5－1．0 5 0．5－1．0 5 0．5－1． 0	abdi obdfj abdgk obdfi abdi abdfj	60 65－ 175 118－ 257 65－ 125 60 65－ 125	－Acopian ＊ACDC ＊Acopian ＊Acopian －Acopian ＊Acopian	44」 Series BX44N0．3－ 5.0 45L 10 45」 Series 46L 10 46」 Series	$\begin{aligned} & 43-45 \\ & 43-45 \\ & 44-46 \\ & 44-46 \\ & 45-47 \\ & 45-47 \end{aligned}$	0.6 0．3－5 0.1 0.6 0.1 0.6	$\begin{aligned} & \pm 0.05 \\ & 0.01 \\ & \pm 0.5 \\ & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & \pm 0.05- \\ & 0.15 \\ & 0.01 \\ & \pm 0.5 \\ & \pm 0.05- \\ & 0.15 \\ & \pm 0.5 \\ & \pm 0.05- \\ & 0.15 \end{aligned}$	0．5－1．0 5 5 $0.5-1.0$ 5 0．5－1．0	abdf $;$ abdgk abdfi abdf｜ abd｜ obdfi	70－ 120 118－ 257 60 70－ 125 60 70－ 125
M 4	＊ACDC Elasco Scint ＊Kepco ＊Kepco Deliton	BX38N0．3－ 5.0 MS Series ACF Series PAT4O－0．5 PCX40－0．5 B	$\begin{aligned} & 37-39 \\ & 31-39 \\ & 7.2- \\ & 39.5 \\ & 0-40 \\ & 0-40 \\ & 0-40 \end{aligned}$	$\begin{aligned} & 0.3-5 \\ & \\ & 0.1- \\ & 0.75 \\ & 1.5 \\ & 0.5 \\ & 0.5 \\ & 0.2-1.2 \end{aligned}$	0.01 0.05 0.01 0.0005 0.0005 0.02	0.01 0.05 0.03 0.005 0.005 0.02	5 0．01\％ 0.5 0.1 0.1 0.5	abdgk dsu bdgi obdgi	$\begin{aligned} & 118- \\ & 257 \\ & 70- \\ & 100 \\ & 70 \\ & 121 \\ & 111 \\ & 59- \\ & 69 \end{aligned}$	＊ACDC ＊Power／ Mate －Power／ Mote －Power／ Mate ＊Power／ Mate	BX46N0．3－ 5 OEM－A OEM－B OEM－C OEM－D	$\begin{aligned} & 45-47 \\ & 3-48 \\ & 3-48 \\ & 3-48 \\ & 3-48 \end{aligned}$	$\begin{aligned} & 0.3-5 \\ & 1.25 \\ & 2.5 \\ & 4 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	5 0.25 0.25 0.25 0.25	abdgk abd｜ abdi abd｜ abdi	$\begin{aligned} & 118- \\ & 257 \\ & 79 \\ & 102 \\ & 137 \\ & \\ & 154 \end{aligned}$
$\begin{aligned} & M \\ & 44 \end{aligned}$	－Techni －Techni ＊Techni ＊Techni Litton Litton Litton Litton －Techni	RA40－3 RA40－6 RA40－12 RA40－25 541220 541200 541210 541250 SCR4O Series	$\begin{aligned} & 0-40 \\ & 0-40 \\ & 0-40 \\ & 0-40 \\ & 4-40 \\ & 4-40 \\ & 4-40 \\ & 4-40 \\ & 20-40 \end{aligned}$	$\begin{aligned} & 3 \\ & 6 \\ & 12 \\ & 25 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 12-50 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.1 \\ & \pm 0.1 \\ & \pm 0.1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \pm 0.15 \\ & \pm 0.15 \\ & \pm 0.15 \\ & \pm 0.15 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & 0.2 \% \\ & 0.2 \% \\ & 0.2 \% \\ & 0.2 \% \\ & 15 p-p \\ & 15 p-p \\ & 15 p-p \\ & 15 p-p \\ & 1 \% \end{aligned}$	\checkmark	$\begin{aligned} & 235 \\ & 265 \\ & 320 \\ & 395 \\ & \text { req } \\ & 395- \\ & 715 \end{aligned}$	Deltron ＊Power／ Mate ＊Power／ Mate ＊Power／ Mate ＊Power／ Mate	OEM OEM－E OEM－F OEM－G OEM－H	$\begin{aligned} & 3-48 \\ & 3-48 \\ & 3-48 \\ & 3-48 \\ & 3-48 \end{aligned}$	0．7－9 12 18 24 34	$\begin{aligned} & 0.05 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.25 \\ & 0.25 \\ & 0.25 \end{aligned}$	abdg｜ abdi abd obdi abdi	75－ 85 177 208 260 318
$\begin{aligned} & M \\ & 45 \end{aligned}$	－Techni －Techni －Acopian －Acopian Rose－ mount Rose－ mount	PL80 Series MCS65 Series 39 LIO 39」 Series SPS－2102P SPS－2112P	$\begin{aligned} & 29.2-40 \\ & 29.2-40 \\ & 38-40 \\ & 38-40 \\ & 30-40 \\ & 30-40 \end{aligned}$	$\begin{aligned} & 0.05- \\ & 1.5 \\ & 0.065- \\ & 15 \\ & 0.1 \\ & 1 \\ & 0.075 \\ & \\ & 0.15 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.05 \\ & 10 \mathrm{~m} V \\ & 15 \mathrm{~m} V \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \\ & \\ & \pm 0.5 \\ & \pm 0.05- \\ & 0.2 \\ & 10 \mathrm{mV} \\ & 15 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \\ & 5 \\ & 0.5-1.0 \\ & 1 \\ & 1 \end{aligned}$	su SU abd｜ abdfi bd bd	$\begin{aligned} & \text { 55- } \\ & 155- \\ & 65- \\ & 510 \\ & 60 \\ & 65- \\ & 125 \\ & 62 \\ & 71 \end{aligned}$	Deltron ＊Powertec －Powertec －Powertec ＊Powertec －Powertec	N 38 Series 3C Series 5B Series 3D Series 5C Series	$\begin{aligned} & 3-48 \\ & 3.6-48 \\ & 3.6-48 \\ & 3.6-48 \\ & 3.6-48 \\ & 3.6-48 \end{aligned}$	$\begin{aligned} & 0.21-36 \\ & 0.05- \\ & 0.35 \\ & 0.18- \\ & 1.5 \\ & 0.5-2.5 \\ & 0.3-3.5 \\ & \\ & 1-5 \end{aligned}$	0.005 $0.075-$ 0.3 $0.075-$ 0.3 ± 0.05 $0.075-$ 0.3 ± 0.05	$\begin{array}{\|l\|} \hline 0.005 \\ 0.075- \\ 0.3 \\ 0.075- \\ 0.3 \\ \pm 0.05 \\ 0.075- \\ 0.3 \\ \pm 0.05 \end{array}$	$\begin{aligned} & 0.5 \\ & 1 \\ & 1 \\ & 0.01 \\ & 1 \\ & 0.01 \end{aligned}$	abdg｜ su su su su	79－ 299 34 42 229 49 259

	Mfr	Model	OUTPUT		REGULATION			Notes	$\begin{gathered} \text { Price } \\ \$ \end{gathered}$	Mfr	Model	OUTPUT		REGULATION			Notes	Price $\$$
			Range Volis	Max Amps	$\begin{array}{\|c} \hline \text { Line } \\ \% \end{array}$	Lood \％	Ripple mV					Range Volts	Max Amps	$\begin{gathered} \text { Line } \\ \% \end{gathered}$	Load \％	Ripple mV		
$\begin{aligned} & M \\ & 46 \end{aligned}$	－Poweritec －Powerted －Powertec －Powerted －Powerted ＊Powertao	3E Series 3F Series 5D Series 5E Series 3G Series 3H Series	$\begin{aligned} & 3.6-48 \\ & 3.6-48 \\ & 3.6-48 \\ & 3.6-48 \\ & 3.6-48 \\ & 3.6-48 \end{aligned}$	$\begin{aligned} & 0.8-5 \\ & 1.6-10 \\ & 2-10 \\ & 4-20 \\ & 3.2-20 \\ & 6.4-35 \end{aligned}$	$\begin{array}{\|l\|} 0.075- \\ 0.3 \\ 0.075- \\ 0.3 \\ \pm 0.05 \\ \pm 0.05 \\ 0.075- \\ 0.3 \\ 0.075- \\ 0.3 \end{array}$	$\begin{aligned} & 0.075- \\ & 0.3 \\ & 0.075- \\ & 0.3 \\ & \pm 0.05 \\ & \pm 0.05 \\ & 0.075- \\ & 0.3 \\ & 0.075- \\ & 0.3 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0.01 \\ & 0.01 \\ & 1 \\ & 1 \end{aligned}$	su su su su su su	89 119 299 379 169 249	Wanlass Wanlass Scint Power Des Power Des Wanlass	200HP Series 2001C Series RC Saries UPM－22 UPM－44 $30-\text { OEM-4 }$	3．6－60 3．6－60 $\pm 9-60$ $16-60$ $16-60$ 30－60	25 25 1 0.5 1 2.5	$\begin{aligned} & \pm 0.05 \\ & \pm 0.25 \\ & 0.05 \\ & 0.01 \\ & 0.01 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.25 \\ & 0.05 \\ & 0.01 \\ & 0.01 \\ & \pm 1 \end{aligned}$	5 5 1 1 1 0．1\％	d d bdfg｜ abdf abd	250 200 79 199 148 46
$\begin{aligned} & M \\ & 47 \end{aligned}$	－Techni －Techni －Techni ＊Acopion ＊Acopian ＊Kepco	F115 Series P80 Series PM95 Series 47L 10 47」 Series PAR－48	20．2－48 20．2－48 20．2－48 $46-48$ $46-48$ 48	0．05－12 0．05－25 0．05－25 0.1 0.3 2.3	$\begin{aligned} & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.05 \\ & 0.005 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.05 \\ & 0.01 \end{aligned}$	1 5 5 5 0．5－1．0 0.25	su su su abd｜ abdf｜	$\begin{aligned} & 135- \\ & 2850 \\ & 70- \\ & 475 \\ & 90- \\ & 630 \\ & 60 \\ & 70- \\ & 95 \\ & 205 \end{aligned}$	＊Techni Wanlass Wanlass －Sorensen －Sorensen －Sorensen Dynage	HF80 Series $60-$ OEM－4 120 －OEM－ 4 QSA48－． 4 QSA48－． 8 QSA48－1．2 H Series	$\begin{aligned} & 30-60 \\ & 30-60 \\ & 30-60 \\ & 35-60 \\ & 35-60 \\ & 35-60 \\ & 37-60 \end{aligned}$	$\begin{aligned} & 0.375- \\ & 6 \\ & 5 \\ & 10 \\ & \\ & 0.44 \\ & 0.88 \\ & 1.3 \\ & 0.5-1.4 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & \pm 1 \\ & \pm 1 \\ & \pm 0.005 \\ & \pm 0.005 \\ & \pm 0.005 \\ & \pm 0.025 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 0.005 \\ & \pm 0.005 \\ & \pm 0.005 \\ & \pm 0.025 \end{aligned}$	$\begin{aligned} & 0.2 \% \\ & 0.1 \% \\ & 0.1 \% \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 1 \end{aligned}$	su abdeg｜ abdeg｜ abdeg｜ abdgu	145－ 440 58 86 89 119 129 135－ 179
$\begin{aligned} & M \\ & 48 \end{aligned}$	GE GE Acme ＊Acopian Elasco ＊Acopian －ACDC	9766 Y 93 9166 Y94 PS Series 48L 10 MS Series 48」Series BX48N0．3－ 5.0	$\begin{aligned} & 48 \\ & 48 \\ & 48 \\ & 47-49 \\ & 39-49 \\ & 47-49 \\ & 47-49 \end{aligned}$	4 10 4－25 0.1 $0.1-0.5$ 0.6 0．3－5	$\begin{aligned} & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 0.5 \\ & 0.05 \\ & \pm 0.05 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & \pm 2 \\ & \pm 0.5 \\ & 0.05 \\ & \\ & \pm 0.05- \\ & 0.15 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 1 \% \\ & 1 \% \\ & 1 \% \\ & 5 \\ & 0.01 \% \\ & 0.5-1.0 \end{aligned}$ 5		$\begin{aligned} & 139 \\ & 191 \\ & \text { ina } \\ & 60 \\ & 70- \\ & 100 \\ & 70- \\ & 130 \\ & 118- \\ & 257 \end{aligned}$	Dynage Burr－ Brown ＊Kepco ＊Acopian ＊NE	D Series 508／16 PAR－60 60J Series HT Series	$\begin{aligned} & 54.5-60 \\ & \pm 60 \\ & 60 \\ & 59-61 \\ & 0-62 \end{aligned}$	0．05－ 0.2 0.5 2 0.4 0．12－10	$\begin{aligned} & \pm 0.025 \\ & \pm 0.1 \\ & 0.005 \\ & \pm 0.05 \\ & 0.05 \end{aligned}$	± 0.025 ± 0.1 0.01 ± 0.05 0.05	5 1 0.25 1 1	abdgu 9 abdf ${ }^{j}$ abd	
$\begin{aligned} & M \\ & 49 \end{aligned}$	Dynage ＊Trygon R－S ＊ERA Dynage ＊Power／ Mate	D Series LVW Series NGR50／20 SV Series H Series RD－48	$\begin{aligned} & 45-49.9 \\ & 0-50 \\ & 0-50 \\ & 5-50 \\ & 37-50 \\ & 43-50 \end{aligned}$	0．05－ 0.3 1.4 20 0.015 3．1－14 0.5	$\begin{aligned} & \pm 0.025 \\ & 0.01 \\ & \pm 10 \\ & 0.5 \\ & \pm 0 \quad 925 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \pm 0.025 \\ & 0.01 \\ & 0.001 \\ & 0.5 \\ & \pm 0.025 \\ & 0.02 \end{aligned}$	5 0.5 0.3 0.05 1 8	abdgu su cd abdeg abdgu abdi	$\begin{aligned} & 80- \\ & 111 \\ & 122 \\ & 700 \\ & 65- \\ & 75 \\ & 195- \\ & 470 \\ & 55 \end{aligned}$	＊NJE ＊ERA Ëlasco －ACDC －Acopian	SC Series ST Series VS Saries BX6ONO．1－ 1.2 65」Series	$\begin{aligned} & 2-62 \\ & 1-63 \\ & 50-65 \\ & 55-65 \\ & 64-66 \end{aligned}$	0．12－12 $1-2$ 0．05－ 0.25 $0.1-1.2$ 0.3	$\begin{aligned} & 0.05 \\ & \pm 0.01 \\ & 0.05 \\ & 0.01 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.01 \\ & \pm 0.05 \end{aligned}$	1 0.8 U． $\mathbf{~ J ~ \% ~}$ 5 1	abd abdefg dsu abdgk abdfl｜	77－ 219 165－ 195 65－ 100 93－ 193 75－ 125
$\begin{aligned} & M \\ & 50 \end{aligned}$	＊Acopian ＊Acopian Elasco Elaseo Elasco Elasco	49．Series 49 L 10 SVS－1A SVS－2A SVS－3．5A SVS－5A	$\begin{aligned} & 48-50 \\ & 48-50 \\ & 3-51 \\ & 3-51 \\ & 3-51 \\ & 3-51 \end{aligned}$	0.3 0.1 1 2 3.5 5	$\begin{aligned} & \pm 0.05 \\ & \pm 0.5 \\ & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	± 0.05 ± 0.5 0.05 0.05 0.05 0.05	$0.5-1.0$ 5 0.01% 0.01% 0.01% 0.01%	abdf \mid abdi dsu dsu dsu dsu	$\begin{aligned} & 70- \\ & 95 \\ & 60 \\ & 105- \\ & 140 \\ & 135- \\ & 165 \\ & 145- \\ & 210 \\ & 185- \\ & 290 \end{aligned}$	Jynage Elasco ＊Acopian ＊Kepeo ＊Kepco ＊Kepco	$\begin{aligned} & \text { D Series } \\ & \text { MS Series } \\ & 70 \text { S Series } \\ & \\ & \text { PAX72- } \\ & 0.15 \\ & \text { PC } \times 72-0.3 \\ & \text { PAT72-0.3 } \end{aligned}$	$\begin{aligned} & 60-66.1 \\ & 59-69 \\ & 69-71 \\ & 0-72 \\ & 0-72 \\ & 0-72 \end{aligned}$	$\begin{aligned} & 0.075- \\ & 0.2 \\ & 0.05- \\ & 0.25 \\ & 0.3 \\ & 0.15 \\ & \\ & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \pm 0.025 \\ & 0.05 \\ & \pm 0.05 \\ & 0.05 \\ & \\ & 0.0005 \\ & 0.0005 \end{aligned}$	± 0.025 0.05 ± 0.05 0.05 0.005 0.005	5 0.01% 1 0.25 0.1 0.1	abdgu dsu abdfi	95－ 125 75－ 85 75－ 125 94 111 121
$\begin{gathered} M \\ 51 \end{gathered}$	－Acopian －Acopian －ACDC Dynage Elasco ＊Acopian	50 L 10 50」Series 8×50N0．3－ 5.0 D Series VS Series 55」Series	$\begin{aligned} & 49-51 \\ & 49-51 \\ & 49-51 \\ & 49.5- \\ & 54.5 \\ & 40-55 \\ & 54-56 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.5 \\ & 0.3-5 \\ & 0.05- \\ & 0.3 \\ & 0.05- \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \\ & 0.01 \\ & \pm 0.025 \\ & 0.05 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & 0.5 \\ & \pm 0.05- \\ & 0.1 \\ & 0.01 \\ & \pm 0.025 \\ & 0.05 \\ & \pm 0.05 \end{aligned}$	5 0．5－1．0 5 5 0.01% 1	abd｜ abdf｜ abdgk abdgu dsu abdf｜	60 70－ 135 118－ 257 80－ 111 85－ 100 65－ 140	＊Techni Dynage －ACDC －Acopian c̄lasco CEA	MCS65 Series D Series BX70NO．1－ 1.2 75」Series MS Series CEAGAY 103	$\begin{aligned} & 40-72 \\ & 66.1- \\ & 72.8 \\ & 65-75 \\ & 74-76 \\ & 69-78 \\ & 10-79.9 \end{aligned}$	$\begin{aligned} & 0.065- \\ & 15 \\ & 0.05- \\ & 0.2 \\ & 0.1-1.2 \\ & 0.2 \\ & 0.05- \\ & 0.25 \\ & 10 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 0.025 \\ & 0.01 \\ & \pm 0.05 \\ & 0.05 \\ & 0.01 \end{aligned}$	± 0.5 ± 0.025 0.01 ± 0.05 0.05 0.04	5 5 5 1 0.01% 0.01%	Su abdgu abdgk abdfl｜ dsu	75－ 570 95－ 125 93－ 193 85－ 125 75－ 85 375
$\begin{aligned} & M \\ & 52 \end{aligned}$	Elasco －Techni Lambda Lambda Wanlass Wanlass Wanlass Wanlass	MS Series PL80 Series LCD－3 LCS－3 60IC Series 60 HP Series 1201C Series 120HP Series	$\begin{aligned} & 49-59 \\ & 40-59 \\ & 0-60 \\ & 0-60 \\ & 3.6-60 \\ & 3.6-60 \\ & 3.6-60 \\ & 3.6-60 \end{aligned}$	$\begin{aligned} & 0.05- \\ & 0.25 \\ & 0.05- \\ & 1.5 \\ & 0.7 \\ & 1.2 \\ & 7.5 \\ & 7.5 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.05 \\ & \pm 0.5 \\ & 0.01 \\ & 0.01 \\ & \pm 0.25 \\ & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & 0.05 \\ & \pm 0.5 \\ & 0.01 \\ & 0.01 \\ & \pm 0.25 \\ & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & 1 \\ & 1 \\ & 1 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	dsu su abdfg abdg d d d d	$\begin{aligned} & 75- \\ & 100 \\ & 65- \\ & 170 \\ & 150 \\ & 90 \\ & 125 \\ & 150 \\ & 170 \\ & 195 \end{aligned}$	CEA CEA	CEA6BY 103 CEA6CYIOIR CEAGBYIOI CEAGAY101 CEAGDY $101 R$ CEA6CY 252R CEA6BY252 CEA6AY252 CEAGAY502 CEAGBY502	$\begin{array}{r} 10-79.9 \\ 30-79.9 \\ 30-79.9 \\ 30-79.9 \\ 30-79.9 \\ 30-79.9 \\ 30-79.9 \\ 30-79.9 \\ 30-79.9 \\ 30-79.9 \end{array}$	$\begin{aligned} & 10 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 2.5 \\ & 2.5 \\ & 2.5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.0005 \\ & 0.002 \\ & 0.01 \\ & 0.0001 \\ & 0.0005 \\ & \\ & 0.002 \\ & 0.01 \\ & 0.01 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.002 \\ & 0.008 \\ & 0.04 \\ & 0.0004 \\ & 0.002 \\ & \\ & 0.008 \\ & 0.04 \\ & 0.04 \\ & 0.008 \end{aligned}$	$\begin{aligned} & 0.001 \% \\ & 0.0005 \% \\ & 0.001 \% \\ & 0.01 \% \\ & 0.0003 \% \\ & 0.0005 \% \\ & 0.001 \% \\ & 0.01 \% \\ & 0.01 \% \\ & 0.001 \% \end{aligned}$	rs rs Ps is rs rs rs	385 160 110 100 230 330 280 270 335 345

Reader service numbers for literature and application notes，see page D6．
Companies advertising in the power supply section are marked by an asterisk．
Additional features explained on p．D65．

Modular dc Power Supplies

	Mfr	Model	OUTPUT		REGULATION			Notes	Price $\$$	Mfr	Modal	OUTPUT		REGULATION			Notes	Price$\$$
			Range Volts	Max Amps	$\underset{\%}{L \text { Line }}$	$\begin{gathered} \text { Load } \\ \% \end{gathered}$	$\begin{aligned} & \text { Ripple } \\ & \mathrm{mV} \end{aligned}$					Range Volts	Max Amps	$\begin{gathered} \text { Line } \\ \% \end{gathered}$	$\begin{gathered} \text { Lood } \\ \% \end{gathered}$	$\begin{aligned} & \text { Ripple } \\ & \mathrm{mV} \end{aligned}$		
M 53	CEA R－S ＊Techni ＊Techni Dymage	CEA6CY 502R NGGS80／ 5 RABO Series SCR8O Series D Series	$\begin{aligned} & 30-79.9 \\ & 0-80 \\ & 0-80 \\ & 40-80 \\ & 72.8- \\ & 80.1 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 1.5-25 \\ & 6-25 \\ & 0.05- \\ & 0.15 \end{aligned}$	$\begin{aligned} & 0.0005 \\ & \pm 10 \\ & \pm 0.1 \\ & \pm 0.5 \\ & \pm 0.025 \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.05 \\ & \pm 0.15 \\ & \pm 0.5 \\ & \pm 0.025 \end{aligned}$	0.0005% 0.5 0.2% 1\％ 5	cd u abdgu	395 500 240－ 525 415－ 780 95－ 125	Dynage ＊Acopian ＊ERA ＊ERA ＊ACDC	D Series 105」Series ME Series TR Series BXIOONO．2－ 1.2	97．1－ 106.8 104－106 0－110 5－110 90－110	0．025－ 0.1 0.2 0．05－2 0．1－0． 2 0．2－1． 2	$\begin{aligned} & \pm 0.025 \\ & \pm 0.05 \\ & \pm 0.01 \\ & \pm 0.05 \\ & 0.01 \end{aligned}$	± 0.025 ± 0.05 0.05 0.5 0.01	$\begin{aligned} & 5 \\ & 1 \\ & 0.8 \\ & 0.05 \% \\ & 5 \end{aligned}$	abdgu abdf \mid abdeg bd abdgk	95－ 125 115－ 145 ina 70－ 90 148－ 249
M 54	＊Acopian Elasco －$A C D C$ －Acopian ＊Techni	80」 Serias VS Series BX80N0．1－ 1.2 85J Series PL80 Series	79－81 70－85 75－85 84－86 59－88	$\begin{aligned} & 0.2 \\ & 0.05- \\ & 0.25 \\ & 0.1-1.2 \\ & 0.2 \\ & \\ & 0.05- \\ & 0.75 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & 0.05 \\ & 0.01 \\ & \pm 0.05 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & 0.05 \\ & 0.01 \\ & \pm 0.05 \\ & \pm 0.5 \end{aligned}$	0.01% 5 1 1	abdf｜ dsu abdgk obdfl su	$\begin{aligned} & 85- \\ & 125 \\ & 85- \\ & 100 \\ & 93- \\ & 193 \\ & 90- \\ & 135 \\ & 80- \\ & 175 \end{aligned}$	－Acopian －Acopian Dynage Elaseo Lambda	110」Series 115」 Sories D Series MS Series M．1－E－CS	$\begin{aligned} & 109-111 \\ & 114-116 \\ & 106.8- \\ & 117.2 \\ & 99-118 \\ & 10-120 \end{aligned}$	0.2 0.2 0．025－ 0.1 0．05－ 0.1 0.2	± 0.05 ± 0.05 ± 0.025 0.05 0.01	± 0.05 ± 0.05 ± 0.025 0.05 0.01		abdfl abdf｜ abdgu dsu abdg	$\begin{aligned} & 115- \\ & 145 \\ & 125- \\ & 155 \\ & 95- \\ & 125 \\ & 105- \\ & 110 \\ & 115 \end{aligned}$
$\begin{aligned} & M \\ & 55 \end{aligned}$	Dynage Elasco ＊Sorensen －Sorensen GE －Acopian ＊ACDC	D Series MS Series QSA75－． 5 QSA75－． 8 9T66Y985 90」 Series BX90N0．1－ 1.2	$\begin{aligned} & 80.1- \\ & 88.2 \\ & 79-89 \\ & \\ & 60-90 \\ & 60-90 \\ & 90 \\ & 89-91 \\ & 85-95 \end{aligned}$	$\begin{array}{\|l\|} 0.05- \\ 0.15 \\ 0.05- \\ 0.1 \\ 0.55 \\ 0.88 \\ 10 \\ 0.2 \\ \\ 0.1-1.2 \end{array}$	$\begin{aligned} & \pm 0.025 \\ & 0.05 \\ & \pm 0.005 \\ & \pm 0.005 \\ & \pm 1 \\ & \pm 0.05 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \pm 0.025 \\ & 0.05 \\ & \pm 0.005 \\ & \pm 0.005 \\ & 3 \\ & \pm 0.05 \\ & 0.01 \end{aligned}$	5 0．01\％ 3 0.3 1 1 5	abdgu dsu abdegi obdegi d abdf｜ abdgk	95－ 125 80－ 85 119 139 265 95－ 135 93－ 249	Lambda Lambda Lambda Lambda Lambda Lambda Lambda Lambda	$\begin{aligned} & \text { M.1-E-CD- } \\ & 2 \\ & \text { LCS-1 } \\ & \text { LCD-2 } \\ & \text { M. I-E-CS- } \\ & 2 \\ & \text { LCS }-2 \\ & \text { LCD-A } \\ & \text { LCD-4 } \\ & \text { LM-A } \end{aligned}$	$\begin{aligned} & 0-120 \\ & 0-120 \\ & 0-120 \\ & 0-120 \\ & 0-120 \\ & 0-120 \\ & 0-120 \\ & 0-120 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.275 \\ & 0.3 \\ & 0.45 \\ & 0.55 \\ & 1 \\ & 1.8 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0.05 \end{aligned}$	abdg abdg abdfg abdg abdg abdg abdg abdfg	$\begin{aligned} & 230 \\ & 70 \\ & 125 \\ & 130 \\ & 0 \\ & 80 \\ & 155 \\ & 190 \\ & 79 \end{aligned}$
$\begin{aligned} & M \\ & 56 \end{aligned}$	＊Techni ＊Techni －Techni ＊Acopian Dynage	F115Series P8O Series PM95 Series 95」 Series H Series	$\begin{aligned} & 48-96 \\ & 48-96 \\ & 48-96 \\ & 94-96 \\ & 60-97.1 \end{aligned}$	$\begin{aligned} & 0.05-6 \\ & 0.05-12 \\ & 0.05-12 \\ & 0.2 \\ & 0.38-1 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.05 \\ & \pm 0.025 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.05 \\ & \pm 0.025 \end{aligned}$	5 5 1	su su su obdif abdgu	165－ 2380 80－ 535 95－ 725 95－ 135 139－ 181	＊Techni Lambda ＊Kepco ＊Kepco ＊Kepco	HF80 Series LCS－4 PRM I80F Series PRM 120 Series PRM 180 Series	$70-120$ 0－120 5．2－120 5．2－120 5．2－120	0．2－3 3.3 1．5－25 1－15 1．5－25	$\begin{aligned} & \pm 0.05 \\ & 0.01 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	± 0.1 0.01 0．7－3．8 0．5－4．6 0．5－2． 2	0.2% 1 $0.003-$.04 $0.3-0.4$ $0.3-0.4$	su obdg su su	$145-$ 445 130 178 104 125
$\begin{aligned} & M \\ & 57 \end{aligned}$	Dynage Elasco ＊Kepco ＊Kepco ＊Kepco	$\begin{aligned} & \text { D Series } \\ & \text { MS Series } \\ & \text { PAX100- } \\ & 0.1 \\ & \text { PAT100- } \\ & 0.2 \\ & \text { PCX100- } \\ & 0.2 \end{aligned}$	$\begin{aligned} & 88.2- \\ & 97.1 \\ & 89-99 \\ & 0-100 \\ & 0-100 \\ & 0-100 \end{aligned}$	$\begin{aligned} & 0.05- \\ & 0.15 \\ & 0.05- \\ & 0.1 \\ & 0.1 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & \pm 0.025 \\ & 0.05 \\ & 0.05 \\ & 0.0005 \\ & 0.0005 \end{aligned}$	$\begin{aligned} & \pm 0.025 \\ & 0.05 \\ & 0.05 \\ & 0.005 \\ & 0.005 \end{aligned}$	5 0.01% 0.25 0.1 0.1		95－ 125 80－ 85 94 121 111	Elasco SCI Burr－ Brawn －Acopian GE Acme	VS Series C2． 120.50 509／16 120」 Series 9766 Y970 PS Series	$\begin{aligned} & 100-120 \\ & \pm 120 \\ & \pm 120 \\ & 119-121 \\ & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & 0.05- \\ & 0.1 \\ & 0.05 \\ & 0.25 \\ & 0.2 \\ & 4 \\ & 2-6 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & \pm 0.1 \\ & \pm 0.05 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	0.05 0.1 ± 0.1 ± 0.05 2 ± 2	$\begin{aligned} & 0.01 \% \\ & 1 \\ & 1 \\ & 1 \\ & 1 \% \\ & 1 \% \end{aligned}$		$\begin{aligned} & 115- \\ & 120 \\ & 135 \\ & 480 \\ & 135- \\ & 155 \\ & 194 \\ & \text { ina } \end{aligned}$
$\begin{aligned} & M \\ & 58 \end{aligned}$	Deltran R－S Scint Abbott ＊Mid－ Eastern Scint	CD／CA NGRS 100／3 1113 Series R Series Hi－HTA Series RS5 Series	$\begin{aligned} & 0-100 \\ & 30-100 \\ & 2-100 \\ & 4.5-100 \\ & 6-100 \\ & 9-100 \end{aligned}$	$\begin{aligned} & 0.15-2 \\ & 3 \\ & 5 \\ & 20 \\ & 4 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.01 \\ & \pm 10 \\ & 0.05 \\ & \pm 0.05 \\ & 0.025 \\ & 0.05 \end{aligned}$	0.01 0.001 0.05 ± 0.05 0.02 0.05	0.25 0.5 0.5 0．02\％ 1 1	abdeg｜ cd bdg｜ bdgi abdg dgi	$\begin{aligned} & 99- \\ & 119 \\ & 670 \\ & 100 \\ & 86- \\ & 397 \\ & 169 \\ & 66- \\ & 89 \end{aligned}$	－Acopian ＊Dynage ＊Acopian －TDI ＊Acopian	125J Series D Series 」Series SCR 130」Series	$124-126$ $117.2-$ 128.7 $2-130$ $6-130$ $129-131$	$\begin{aligned} & 0.2 \\ & 0.025- \\ & 0.1 \\ & 2.0 \\ & 2.5-15 \\ & \\ & 0.2 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.025 \\ & \\ & \pm 0.05- \\ & 0.5 \\ & 0.5 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.025 \\ & \pm 0.05- \\ & 1.0 \\ & 0.5 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \\ & 1.0-5.0 \\ & 0.3 \end{aligned}$	abdfj obdgu abdi bdg｜ abdfi	$\begin{aligned} & 135- \\ & 155 \\ & 95- \\ & 125 \\ & 70- \\ & 160 \\ & 99- \\ & 360 \\ & 125- \\ & 155 \end{aligned}$
$\begin{aligned} & M \\ & 59 \end{aligned}$	Elaseo Powar Des Aeme －Acopian －Techni ＊Nucor	VS Series UPMD－X9 PS 47718 100」 Series MCS65 Series NPS Series	$\begin{aligned} & 80-100 \\ & 100 \\ & 100 \\ & 99-101 \\ & 72-105 \\ & 96-105 \end{aligned}$	$\begin{aligned} & 0.05- \\ & 0.25 \\ & 0.25 \\ & 4 \\ & 0.2 \\ & 0.065- \\ & 8 \\ & 0.05- \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.03 \\ & \pm 1 \\ & \pm 0.05 \\ & \pm 0.5 \\ & 0.05 \end{aligned}$	0.05 0.03 ± 2 ± 0.05 ± 0.5 0.05	$\begin{aligned} & 0.01 \% \\ & 1 \\ & 1 \% \\ & 1 \\ & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { dsu } \\ & \text { abdf } \\ & \text { abdf\| } \\ & \text { su } \\ & \text { d\|u } \end{aligned}$	85－ 100 260 ino 95－ 145 100－ 695 req	－Acopian Elasea CEA CEA CEA CEA CEA	135」 Series MS Serios CEAGAY500 CEA6BY500 CEAGCY 500R CEAGDY 500R CEA6AY252	$\begin{aligned} & 134-136 \\ & 118-138 \\ & 80-139 \\ & 80-139 \\ & 80-139 \\ & 80-139 \\ & 80-139 \end{aligned}$	0.2 0．05－ 0.1 0.05 0.05 0.05 0.05 2.5	± 0.05 0.05 0.01 0.002 0.0005 0.0001 0.01	$\begin{aligned} & \pm 0.05 \\ & 0.05 \\ & 0.04 \\ & 0.008 \\ & 0.002 \\ & 0.0004 \\ & 0.04 \end{aligned}$	1 0.01% 0.01% 0.001% 0.0005% 0.0003% 0.01%	abdf \mid dsu rs rs rs rs rs	145－ 155 105－ 110 125 135 185 255 400

Reader service numbers for literature and application notes，see page D6．
Companies advertising in the power supply section are marked by an asterisk．
Additional features explained on p．D65．

Reader service numbers for literature and application notes, see page D6.
Additional features explained on p. D65.
Companies advertising in the power supply section are marked by an asterisk.

Modular dc Power Supplies

	Mfr	Model	OUTPUT		REGULATION			Notes	Price S	Mfr	Model	OUTPUT		REGULATION			Notes	Price $\$$
			Range Volis	$\begin{aligned} & \text { Max } \\ & \text { Amps } \end{aligned}$	$\begin{gathered} \text { Line } \\ \% \end{gathered}$	$\begin{gathered} \text { Lood } \\ \% \end{gathered}$	$\begin{aligned} & \text { Ripple } \\ & \mathrm{mV} \end{aligned}$					Range Volts	$\begin{aligned} & \text { Max } \\ & \text { Amps } \end{aligned}$	$\begin{gathered} \text { Line } \\ \% \end{gathered}$	$\begin{gathered} \text { Lood } \\ \% \end{gathered}$	$\begin{aligned} & \text { Ripple } \\ & \mathrm{mV} \end{aligned}$		
M 64	Dynoge Dynage CEA CEA CEA CEA	H Series D Series CEAGD Z500R CEAGC Z500R CEAGBZ 500 CEAGAZ500	$156.1-$ 252 $228.5-$ 252 $140-259$ $140-259$ $140-259$ $140-259$	$\begin{aligned} & 0.13- \\ & 0.4 \\ & 0.025- \\ & 0.05 \\ & 0.05 \\ & 0.05 \\ & \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & \pm 0.025 \\ & \pm 0.025 \\ & 0.0001 \\ & 0.0005 \\ & 0.002 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \pm 0.025 \\ & \pm 0.025 \\ & 0.0004 \\ & 0.002 \\ & \\ & 0.008 \\ & 0.04 \end{aligned}$	5 0.0003% 0.0005% 0.001% 0.01%		161- 210 130- 155 275 205 155 145	Fluke man Power Des Power Des Abbot	423A MRM3P 1500 UPMD- 530N UPMD- 530P U Series	$\begin{aligned} & 0-3000 \\ & 1.5-3 k \\ & 200-3 k \\ & 200-3 k \\ & 4.7- \\ & 3650 \end{aligned}$	0.01 0.0005 0.01 0.01 13.83	0.001 0.01 0.0025 0.0025 ± 0.2	0.001 0.25 0.0025 0.0025 ± 0.5	$\begin{aligned} & 5 \mathrm{p}-\mathrm{p} \\ & 3000 \\ & 10 \\ & 10 \\ & 0.2 \% \end{aligned}$	ad dh dh dghi	460 req 385 420 175- 716
M 65	*ACDC *TDI -Acopian *TDI *ERA *ERA	BX250NO.1- 0.6 STR RFI Series TDM MS Series SR Series	$\begin{aligned} & -240-260 \\ & 3-300 \\ & 85-300 \\ & 1-306 \\ & 0-310 \\ & 0-310 \end{aligned}$	$\begin{aligned} & 0.1-0.6 \\ & 0.25-10 \\ & \\ & 0.025 \\ & 2.8-60 \\ & 0.05-8 \\ & 0.05- \\ & 40 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.05 \\ & \pm 1-3 \\ & 0.01 \\ & \pm 0.01 \\ & \pm 0.01 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.05 \\ & \pm 1-2 \\ & 0.01 \\ & 0.05 \\ & 0.05 \end{aligned}$	0.2 2-18 0.2 0.8 0.8	abdgk abdgi obdgi abdeg abdeg	158- 249 75- 215 39 109- 475 220- 595 115- 685	Abbott -Spellman Abbot 1 *Spellman Abbott	GBk 17D- 3460A FRHM5P 10D HN2D- 4860A MRM6P 1500 GN4D- 7000A	$\begin{aligned} & 3260- \\ & 3650 \\ & 5000 \\ & 4580- \\ & 5140 \\ & 3-6 \mathrm{k} \\ & \\ & 6600- \\ & 7400 \end{aligned}$	0.049 0.002 0.004 0.0002 0.004	$\begin{aligned} & \pm 0.5 \\ & 0.01 \\ & \pm 0.5 \\ & 0.01 \\ & \pm 0.5 \end{aligned}$	± 2 0.01 2 0.25 2	1% 1000 2\% 6000 2\%	djh od djh ad djh	716 235 495 req 765
$\begin{aligned} & M \\ & 66 \end{aligned}$	*ERA -ACDC Assoc Spec -Sorensen *Techni	TR Series BX300NO.1 0.6 2 QSA265- .15 PM95 Series	$5-310$ $290-310$ $200-325$ $200-330$ $192-340$	0.5-8 0.1-0.6 0.1 0.17 0.05-3	$\begin{aligned} & 0.05 \\ & 0.01 \\ & 1 \\ & \pm 0.01 \\ & \pm 0.5 \end{aligned}$	0.05 0.01 1 ± 0.01 ± 0.5	2 5 10 0.3 5	obdw abdgk abdegi su	90- 360 186- 282 64.50 175 210- 900	*Spellman Abbott Abbott Abbott *Spell- man	FRHMIOP 10D T Series \checkmark Series GN4D- 9900A MRM 12 P 1000	$\begin{aligned} & 10000 \\ & 47- \\ & 10,400 \\ & 4.7- \\ & 10,400 \\ & 9300- \\ & 10,400 \\ & 6-12 \mathrm{k} \end{aligned}$	0.001 19. 44 19.44 0.004 0.0001	0.01 ± 0.2 ± 0.2 ± 0.5 0.01	0.01 ± 0.5 ± 0.2 ± 2 0.25	2000 0.2% 0.2% 2\% 12000	ad dgh \mid dghi dhi ad	260 140885 145- 885 885 req
$\begin{aligned} & M \\ & 67 \end{aligned}$	*Techni *Techni *ACDC *Techni *ACDC	F115Series P80 Series BX350NO. $1-$ 0.6 HF80 Series BX400NO.10.6	$\begin{aligned} & 210-340 \\ & 210-340 \\ & -340-360 \\ & 225-375 \\ & -390-410 \end{aligned}$	0.051.5 0.05-3 $0.1-0.6$ 0.03-1 $0.1-0.6$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.5 \\ & 0.01 \\ & \pm 0.05 \\ & 0.01 \end{aligned}$	± 0.05 ± 0.5 0.01 ± 0.1 0.01	1 5 5 0.2% 5	su abdgk su abdgk	355- 2401 165- 670 186- 282 130- 455 186- 282	-Spellman *Spellman -Spellman *Spell- man Del	FRHM 15P 10D MRM 18P 1800 FRHM2UP 10D FRHM30P 10D TRHV Series	15000 9-18k 20000 30000 1-301kv	0.0006 0.0001 0.0005 0.0003 0.005	0.01 0.01 0.01 0.01 0.25	0.01 0.25 0.01 0.01 0.25	3000 18000 400 u 6000 0.5%	ad ad ad ad dg	435 req 435 480 245- 615
$\begin{aligned} & M \\ & 68 \end{aligned}$	CEA CEA CEA - EEA -Techni *Techni	CEA6D Z 102R CEA6C Z 102R CEA6BZ 102 CEA6AZ102 HF80 Series HF80 Series	$260-500$ $260-500$ $260-500$ $260-500$ $300-500$ $600-1000$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0.025- \\ & 0.5 \\ & 0.012- \\ & 0.375 \end{aligned}$	$\begin{aligned} & 0.0001 \\ & 0.0005 \\ & 0.002 \\ & 0.01 \\ & \pm 0.05 \\ & \pm 0.05 \end{aligned}$	0.0004 0.002 0.008 0.04 ± 0.1 ± 0.1	0.0003% 0.0005% 0.001% 0.01\% 0.2% 0.2%		690 620 570 560 140- 460 175- 475	Uni- Volt Del	BPER HRM Series	$\begin{aligned} & 1-30 \mathrm{k} \\ & 0.6-50 \mathrm{kV} \end{aligned}$	$\begin{aligned} & 5 \mathrm{nA} \\ & 0.005 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 0.1-0.25 \\ & 0.0 .3 \% \end{aligned}$		$\begin{aligned} & 250- \\ & 1000 \\ & 315- \\ & 1080 \end{aligned}$
$\begin{aligned} & M \\ & 69 \end{aligned}$	*ERA *Techni Arnold Arnold Abbott	SV Series HF80 Series PHU- 1500 PHU-2000 HAk 12D- 1970A	$\begin{aligned} & 75-900 \\ & 450-750 \\ & \\ & 1150- \\ & 1500 \\ & 1500- \\ & 2000 \\ & 1860- \\ & 2080 \end{aligned}$	0.005- 0.02 $0.025-$ 0.75 0.015 0.01 0.061	± 1.5 ± 0.05 0.1 0.1 ± 0.5	1.5 ± 0.1 1 1 ± 2	0.1 0.2% 0.1% 0. 1\% 1\%	abdm su d d djh	80- 165 160- 470 350 350 425									

a. Remote programming

Remote sensing
Price includes meters
Solid state
e. Automatic crossover from constant current to constant voltage.

Dual output
This model designation covers a saries of modular supplies. Thase supplies are listed in the tables according to their output voltage.
i. Reversible polarity.
k. Specify BC series for 0.5% line 8 load regulation at reduced cost.
m. Triple outpur.
q. Model 506/16 power rack adapter will house 10 or 12 units of the
type in a standard relay rack.
r. Select any voltage by inserting the desired voltage ofter CEA6 plus letter series. Output valtages fixed or adjustable $5 \%, 10 \%, 20 \%$,
$30 \%, 40 \%$ or 50%. Constant current models available, specify.
s. Dual output available
u. Select any voltage by selecting the desired voltage and currant after letter series. Constant current models availabie.
v. IC Power Supply
w. Slot type

Reader service numbers for literature and application notes, see page D6.
Companies advertising in the power supply section are marked by an asterisk.

Know the Difference?

HW 10-8
Right. One HW power supply is a io-volt, 8 -amp model; the other a 200 -volt, 1 -amp model. They are two of twenty constant-voltage, constant-current power supplies ideally suited for lab or system. $.01 \%$ load and $.005 \%$ line regulation are standard - as are remote programming and sensing, series/

parallel operation, 500μ volt ripple, and separate voltmeter and ammeter. Many other standard and optional features and prices for this and other series power supplies are fully detailed in our color catalog. Send for yours now.
Oh, yes. Another difference is that one costs $\$ 205$ and the other $\$ 355$.

Mid-Eastern Industries a Division ol Eanco. Inc. 660 Jerusalem Rd. / Scotch Plains, N.J. 07076 / (201) 233-5900

"the Voltswagon"

INTRODUCING
The VW Series * . . Power supplies providing Economy, Reliability and Performance by NUCOR

- Available in $65^{\circ} \mathrm{C}+95^{\circ} \mathrm{C}$ Base Temp. Ratings

Nuclear Corporation of America 2 Richwood Place
Denville, New Jersey 07834
(201) 627-4200 (TWX) 710-9878487 INFORMATION RETRIEVAL NUMBER 630

Precise automatic battery charging

. . . For microwave, communication, telemetering, standby power, starting emergency generators, any unattended battery powered equipment. Use-proven by public utilities.

Ratelco Quality Features

Fully Automatic: Constant voltage . . . output current automatically regulated to meet battery demands . . . can't overload!

Unaffected by Line Voltage variations: Compensates automatically - output varies less than 1% with line voltage variations of 10%. Exceeds government and utilities requirements.

Simple, reliable: Solid state circuits-no relays or moving parts.
Easy to install: Takes little space, easy mounting, full access to terminals, not damaged if connected with polarity reversed.
May be paralleled: Without special accessories.
Capacities: Up to 20KW available.

Write for more information or phone (206) 624-7770.

INFORMATION RETRIEVAL NUMBER 629

Advertisers' Indek

Advertiser Page
ACDC Electronics, Inc. D55
Acopian Corporation D30
Cornell-Dubilier Electronics D5
ERA Transpac Corporation D31
Heath Company D51
Hewlett-Packard D48, D49
Hipotronics, Inc. Cover III
Keltec Industries, Inc. D23
Kepco, Inc. Cover II
Mallory Battery Company D27
Midwestern Instruments,
A Subsidiary of the Telex Corporation. D66
NJE Corporation D25
Nuclear Corporation of America D66
Power/Mate Corp. D52, D53
Power-Tec Division, Airtronics, Inc. D39
RCA Electronic Components and Devices
D42
Ratelco. Inc. IV
D66
Rotron, Incorporated D21
Sorenson Operation, Raytheon Company D45
Spellman High Voltage Co., Inc. D41
Technipower, Inc. A Benrus Subsidiary D32
Transistor Devices, Inc. D38
Trio Laboratories, Inc. D33
Trygon Power Supplies D50
Tung-Sol Division, Wagner Electric Corporation D8. D9
Weston Instruments, Inc., Newark Division D35

When it comes to high voltage dc power supplies, come to the

from Hipotronics. Here we are, one of the world's largest suppliers of HV Test Equipment and some people don't know we make HV DC Power Supplies. And we're getting bigger and better all the time: We just expanded our facilities by 150 percent, allowing us to more fully supply the needs of present - and future - customers.

CAPABILITIES:

\square EHV DC Power Supplies; i.e., 1 million volts (a 20 ma, with reversible polarity
$\square H V$ "Brute Force" Supplies; i.e., 500 KV (a 100 ma
\square HV High Energy Supplies; i.e., 200 KV (a 1 amp or 100 KV (${ }^{2} 2 \mathrm{amps}$, with reversible polarity
$\square 100 \mathrm{kw}$ Constant Current Monocyclic Capacitor Charging Supplies
\square Pouer Packs, epoxy and oil filled
\square Standard HV Power Supplies; i.e., 100 watts to $200 \mathrm{ku}, 1000$ volts to 1 million volts

FACILITIES:

\square Capacitor manufacturing facility Corson Electric Division of Hipotronics)
\square Transformer manufacturing facility
\square Vacuum, varnishing and impregnating system, for coils up to 7 foot diameter
\square Advanced vacuum oil processing system
\square Indoor high bay assembly and test area for operating units into the megavolt range
\square Lift facilities in excess of 25 tons AND
$\square 85,000$ square feet of modern air-conditioned plant facilities.

Call or send your specific requirements to

Mr. David Spiegelman, Chief Engineer, Power Supplies

High Potential Electronics
BREWSTER, NEW YORK 10509 / (914) BR 9-8091

smooth

RCA WP-700A, 702A, 703A and 704A constant voltage dc power supplies are all solid-state. A negative feedback circuit maintains constant output voltage with low ripple - regardless of varying line. In fact, at rated load, these supplies are so smooth that "they hardly cause a ripple."
They are versatile bench-type units-ideally suited for use in circuit design, servicing, industrial, and educational applications.
Output voltage of the WP-700A and WP-702A is continuously adjustable from 0 to 20 volts at current levels up to 200 mA .
Output voltage of the WP-703A is continuously adjustable from 0 to 20 volts at current levels up to 500 mA .
Output voltage of the WP-704A is continuously adjustable from 0 to 40 volts at current levels up to 250 mA .
All four power supplies have built-in electronic short-circuit protection - and a front panel overload-indicator that signals approach to maximum rated current level.

WP-700A: $\$ 40.00$ (five or more) $\$ 48.00 *$ (less than five)

WP-703A: $\$ 49.00 *$ (five or more) $\$ 58.00 *$ (less than five)
WP-704A: $\$ 49.00$ (five or more) $\$ 58.00$: (less than five)

- Optional Distributor Resale Price.

WP-702A: Siamese Twins of WP-700A, but electrically isolated \$73.00* (five or more) $\$ 87.00$ * (less than five)

For further information write: RCA Electronic Components, Commercial Engıneering, Department 2-15-W97, Harrison, N. J. 07029

Four-digit low-cost multimeter
checks 5 functions in 30 ranges

Dynasciences Corp., Instrument Systems Div., 9601 Canoga Ave., Chatsworth, Calif. Phone: (213) 341-0800. $P \& A: \$ 795 ; 90$ days.

Intended for use as a highly versatile bench instrument, a new four-digit multimeter with 100% overranging features a low cost of only $\$ 795$ in an instrument that is capable of measuring five functions in 30 ranges.

With 13 pushbuttons and a 100 ms response time, the model DM414 Maxi-Ranger digital multimeter is capable of measuring ac and dc voltages, ac and dc currents, and resistances, all in very wide ranges.

It can measure de voltages from $1 \mu \mathrm{~V} /$ digit to 1000 V full scale in six ranges, with a standard accuracy of $0.05 \%+1$ digit. Resolution is from $1 \mu \mathrm{~V}$ to 100 mV , and
input impedance covers 10 to $10,000 \mathrm{M} \Omega$.

Ac voltages can be measured from $10 \mu \mathrm{~V} /$ digit to 1000 V full scale in five ranges, with a standard accuracy of $1 \%+0.05 \%$ of full scale. Resolution is $10 \mu \mathrm{~V}$ to 100 mV . and input impedance is $10 \mathrm{M} \Omega$.

It can measure dc currents from $1 \mathrm{nA} /$ digit to 1 A full scale in six ranges, with a standard accuracy of $0.05 \%+1$ digit. Resolution is 1 nA to $100 \mu \mathrm{~A}$, and input impedance extends over 0.1Ω to $10 \mathrm{k} \Omega$.

Ac currents can be measured from 1 nA /digit to 1 A full scale in six ranges, with a standard accuracy of $1 \%+0.05 \%$ of full scale. Resolution is 1 nA to 100 $\mu \mathrm{A}$, and input impedance ranges from 0.1Ω to $10 \mathrm{k} \Omega$.

Resistances are measured from 1 $\mathrm{m} \Omega /$ digit to $10 \mathrm{M} \Omega$ full scale in seven ranges, with a standard accuracy of $0.05 \%+1$ digit to 0.5% $+0.05 \%$ of full scale. Resolution is $1 \mathrm{~m} \Omega$ to $1 \mathrm{k} \Omega$, at a sampling current of $0.5 \mu \mathrm{~A}$ to 10 mA .

The multimeter's frequency response ranges from 47 Hz to 10 kHz , and it is input protected to accept up to 1200 V ac or dc (top two ranges), or 300 V on ac and dc current and resistance inputs.

CIRCLE NO. 250

Also in this section:

Computing counter for $\$ 750$ logs frequencies from 1.0000 Hz to 1.0000 MHz . p. 98 .
Low-noise S-band MIC flatpack amplifiers can be directly soldered together. p. 108.
Multi-layer ceramic wiring structure fits four complex ICs in standard DIP. p. 116.
Modular read/write memory cards feature 10 -ns cycle time and 15 -ns access time. p. 123.
Evaluation Samples, p. 150
Design Aids, p. 152.
Application Notes, p. 154
New Literature, p. 156.

filter magic? watch envelope-delay problems disappear!

High-speed data transmission demands Reeves-Hoffman Hi-Fidelity crystal filters with advanced control of envelope delay combined with optimum selectivity!

Available at most IF frequencies

Our Hi-Fidelity crystal filters minimize en-velope-delay distortion, and eliminate the need for discrete equalizers.

Describe your requirement

Reeves-Hoffman designs to your specifications. Call, TWX, or write today for delivery and price.

One of 4 channels
1750.000 kHz

55dB
1749.745 kHz
1746.965 kHz
1750.250 kHz
1746.750 kHz
1.0dB
$0 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$
50 ohms
$+10^{\circ}$ 10 $+64^{\circ} \mathrm{C}$

> Corrier frequency Corrier suppression IdB point, min.
> IdB point, max.
> 70 dB point, min.
> 70 dB point, max. Passband ripple, $25^{\circ} \mathrm{C} .$. Insertion loss, $25^{\circ} \mathrm{C}$ In and out impedance
> Operating temp. range

One of 4 channels

Craft-masters in crystal controls
REEVES-HOFFMAN
DIVISION, DYNAMICS CORPORATION OF AMERICA 400 WEST NORTH ST., CARLISLE, PENNSYLVANIA 17013 • 717/243-5929 • TWX: 510-650-3510 INFORMATION RETRIEVAL NUMBER 49
1750.000 kHz 55dB 1749.745 kHz 1746.965 kHz 1750.100 kHz 1746.700 kHz 0.5 dB 3.0dB 200 ohms $+5^{\circ}$ to $+65^{\circ} \mathrm{C}$

CIS HVRRII ILCTO. OFF-IIESHell

878/879 Voltage Regulator

A 2 ampere regulator in a TO-3 package which is externally adjustable from 8 V to 57 V .
Prices: 1 to $9-\$ 20.00$ ea; $100-\$ 13.00$ ea.

862 Operational Amplifier

850/851 Relay Drivers

A single 700 ma or dual 350 ma driver in a compact
TO-8 package can be driven directly or with
TTL or DTL inputs. Prices: 1 to $9-\$ 15.00$ ea;
100-\$11.50 ea.

$873 \pm 15 \mathrm{~V}$ Voltage Regulator
Independent +15 V and -15 V regulators in a TO-8 package. Offers better than .03\% line regulation and $.05 \%$ load regulation. Externally adjustable from 8 V to 36 V .
Price: 1 to $9-\$ 32.00$ ea.; $100-\$ 20.85$ ea.

8705 Volt Regulator

Offers $.05 \%$ line and load regulation and built in short circuit protection. TO-3 package provides safe and rugged high power operation.
Prices: 1 to $9-\$ 27.25$ ea; $100-\$ 17.70$ ea.

861 Log I.F. Amplifier

Used in cascade, the 861 Series provides a log video output. It features internal supply decoupling, built in video detector and allows direct rf coupling between stages.
Prices: 1 to $9-\$ 36.00$ ea; 100-\$26.50 ea.

Operates from $\pm 6 \mathrm{~V}$ to $\pm 28 \mathrm{~V}$ supply and will drive 50 ohm load. TO-5 package.
Prices: 1 to $9-\$ 22.80$ ea; $100-\$ 14.80$ ea.

Pick your standard CTS microcircuits off-the-shelf. All available for fast, 48 -hour delivery from stock and all produced under the same stringent processes as CTS custom hybrid circuits. These precision packages are hermetically sealed and operate over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ full military temperature range.
Try CTS total hybrid circuits capability for all your requirements. Complete in-house facilities assure you get the package you need to meet your exact requirements. Ask for our Hybrid Microcircuits Brochure. CTS Microelectronics, Inc., West Lafayette, Indiana 47906. Phone: (317) 463-2565.

AT LAST a reliable and inexpensive cryogenic refrigerator.

We made the Displex" to meet growing demands for a small system that "runs and runs." Its displacer expander provides controlled cold from $30^{\circ} \mathrm{K}$ to $300^{\circ} \mathrm{K}$ and produces 17 watts at $77^{\circ} \mathrm{K}$. No refilling and consumables - it's a closed-cycle system, so you get longterm operation with high reliability. Gas cushioned displacer action in the expander results in low vibration and low noise.

Wherever you need a portable or installed unit for cryogenic operations, the Displex Model CS-102 will give months of round-the-clock service. May we help you with cryogenic application engineering for your need? Air Products and Chemicals Inc., Advanced Products Dept., Allentown, Pa. 18105. Tel. 215/395-8446.

Low-cost digital clock has two time modes

Pulse Monitors, Inc., 351 New Albany Rd., Moorestown, N.J. Phone: (609) 234-0556. P\&A: \$69; 2 wks.

By touching the probe tip of a new hand-held logic probe to a circuit under test, one can determine logic levels of DTL, TTL and RTL circuits. The model 1280 C DigiProbe detects pulse trains, improper levels, open circuits, a single pulse as fast as 25 ns and relative duty cycles. Its readout is displayed by two (HI and LO) indicator lamps.

CIRCLE NO. 253
Compact oscilloscopes widen response to 7 MHz

Analogic Corp., Audobon, Rd., Wakefield, Mass. Phone: (617) 246-0300. P\&A: \$144; stock to 2 wks.

The new AN500 series of panelmounting counter/displays are compact units with up to five full decades of digital display or counting functions. They are DTL/TTL compatible and can count at rates up to 10 MHz . Optional features include a polarity symbol, an overrange "one", buffer storage registers and decade counters.

Datatron, Inc., 1562 Reynolds Ave., Santa Ana, Calif. Phone: (714) 540-9330. Price: $\$ 1200$.

For only $\$ 1200$, including options, a new IC digital clock accumulates time from the line frequency or an external one-pulse-per-second source in real or elapsedtime modes. The model 3350 uses standard Nixie tubes to display time in days, hours, minutes and seconds. Options include days accumulated and displayed, internal oscillator and parallel BCD output.

CIRCLE NO. 252
Hand-held logic probe detects most levels

Hewlett-Packard Co., 1501 Page Mill Rd., Palo Alto, Calif. Phone: (415) 326-7000. P\&A: \$950, \$1175; stock.

Additions to the 1200 -series oscilloscopes are two new oscilloscopes with a frequency range of dc to 7 MHz each. Models 1215 A and 1217 A are single and dual-channel instruments, respectively. Both have deflection factors from 5 $\mathrm{mV} /$ division to $20 \mathrm{~V} /$ division and 21 sweep times from $1 \mu \mathrm{~s} /$ division to $5 \mathrm{~s} /$ division.

CIRCLE NO. 254
Compact panel meters indicate to five digits

Band-Pass Filters

Band-Reject Filters

Single SIde-Band Filters

PARAMETER
RANGE

Center Frequency \qquad $10 \mathrm{Khz}-35 \mathrm{Mhz}$
Pass Bandwidth 01% to 2% of C.F.
Carrier Rejection ..>40 db
Shape Factor Carrier Side<1.15:1
Shape Factor Side-Band Side $<1.25: 1$
Insertion Loss ..<3 db
Ripple ...<1 db

Write for Bulletins today
MICROSONICS
60 Winter Street, Weymouth, Mass. 02188
Tel: 617 337-4200
A division of the Sangamo Electric Company

DPM with 3-1/2 digits adjusts its own zero

Digilin, Inc., 6533 San Fernand" Rd., Glendale, Calif. Phone: (213) 246-8161. P\&A: $\$ 169$; stock to 3 whs.

Featuring $3-1 / 2$ digits and low cost, a new digital panel meter eliminates the need for zero adjustment. The model 330 automatically zero-adjusts itself by grounding its input amplifier, comparing its output to ground, and using the difference signal to generate a zero-correction signal. Its input amplifier features a technique that eliminates circuit loading.

CIRCLE NO. 256
Wideband variable filter attenuates in 4 slopes

Kron-Hite Corp., 580 Massachusetts Ave., Cambridge, Mass. Phone: (617) 491-3211. $P \& A$: \$850; stock.

Spanning the range of 0.02 Hz to 20 kHz , a new variable filter offers four selectable attenuation slopes. The model 3750 is a lowpass, high-pass, band-reject and bandpass filter with attenuation slopes of $6,12,18$ or 24 dB /octave. Its passband gain is unity (0 dB) or ten (20 dB) and it attenuates more than 80 dB for the $24-\mathrm{dB}$ octave position.

CIRCLE NO. 257

You no longer have to fight a fist-full of spaghetti when you service a stepping switch. Exclusive Clare Quick-Mount lets you pull out the old switch and plug in the replacement-in less downtime than it takes to install the simplest device.

Clare Quick-Mount is available on all spring-driven stepping switches, using 15,22 or 28 -pair connectors. You can get up to 416 switching points in less space than most other hard-contact devices.

Clare offers a complete line of standard and spe-cial-purpose stepping switches to meet every application requirement-spring-driven and direct driveoperating voltages from 6 to 110 vdc , speeds to 60 steps/second.

For complete information, circle Reader Service Number, or write for Manuals 601, 602, and Data Sheet Series 651. C. P. Clare \& Co., Chicago, Illinois $60645 \ldots$ and worldwide.

C-COR

AMPLIFIERS

- UNIVERSAL -

Wide Dynamic Range Super Video - Wideband R.F.

Bandwidth: $5 \mathrm{~Hz}-425 \mathrm{MHz}$
Gain: $\quad 20.60 \mathrm{~dB}$
Output: $\quad+10$ to +28 dBm
Price: $\quad \$ 85-\$ 850$

- FAMILY FEATURES -
- High Output
- Wide Dynamic Range
-greater than 80 dB
- Spin-offs from Critical Military/ Aerospace Projects
- Meet Many MILSPEC Applications without Modification
- Exceptional Reliability
- $20 / 40 / 60$ dB Gain Versions Available

EXAMPLES

	Freq				Gain	Output
Model	Hz	Gain				
3364^{*}	$1 \mathrm{~K} \cdot 200 \mathrm{MHz}$	40 dB	+20 dBm			
$3388 \cdot \mathrm{E}^{*}$	$5 \mathrm{~Hz} \cdot 130 \mathrm{MHz}$	60 dB	+25 dBm			
$3010 \cdot \mathrm{~A}$	$6 \mathrm{MHz}-425 \mathrm{MHz}$	23 dB	+28 dBm			
$3007 \cdot \mathrm{~L}$	$2 \mathrm{~K} \cdot 230 \mathrm{MHz}$	20 dB	+28 dBm			
3528	$100 \mathrm{~Hz} \cdot 100 \mathrm{MHz}$	20 dB	+12 dBm			

*20/40/60 dB Gain Versions Available
Select from 29 models off-the-shelf. See ELM '69.'70 Edition Section 1100, Page 517.
"C-COR Amplifiers . . . Rated First Where Performance is Rated First."

HCCOR
 C-COR

ELECTRONICS, INC.
60 Decibel Road
State College, Pennsylvania 16801 814 238-2461

Tri-function generator outputs within $\pm 0.05 \mathrm{~dB}$

Varitron Corp., Box 2594, St. Louis., Mo.

Developed for requirements of continuously variable waveforms in the audio and ultra-sonic frequency ranges, a tiny new wideband generator simultaneously supplies square, triangular and sinusoidalwaveform outputs. It has a frontpanel control for adjusting the square wave to variable-width negative or positive pulses, and for adjusting the triangular waveform to right or left-sawtooth outputs. CIRCLE NO. 259

Phase-angle voltmeter measures six quantities

Pulse Monitors Inc., 351 New Albany Rd., Moorestown, N. J. Phone: (609) 234-0556. Price: \$1290.

Eliminating the need for peripheral instrumentation is a new analyzer that tests ICs and modules. Model 2080 has a built-in generator with 3 clock frequencies and 4 synchronous waveforms. A monitor indicates logic levels and detects square waves, pulse trains and open circuits. A supply provides 3 to 7 V for energizing chips and modules.

CIRCLE NO. 261

Clarke-Hess Communications Research Corp., 43 W. 16th St., New York, N.Y. Phone: (212) 255-2940. P\&A: $\$ 365$; stock to 2 wks.

Providing outputs from 0.001 Hz to 2 MHz , a new generator can be voltage or fm-swept with output amplitude variations of less than $\pm 0.05 \mathrm{~dB}$. Model 743 has sine, square and triangular-wave outputs and includes tone-burst and synchronization capabilities.

CIRCLE NO. 258
Tiny function generator
supplies 3 waveforms

North Atlantic Industries, Inc., Terminal Dr., Plainview, N.Y. Phone. (516) 681-8600. $P \& A$: \$490; 4 whs.

Using plug-in ICs and PC cards, a new phase-angle voltmeter meassures total ac voltage and five other quantities of the total voltage. The model 210 can measure in-phase, quadrature and fundamental components of the total voltage, plus the phase angle and a reference signal. It accepts 3 mV to 300 V full scale from 20 Hz to 40 kHz .

CIRCLE NO. 260

IC and module analyzer

 eliminates peripherals

There's more to rubber parts than electrical resistance.

In these days of guarantees, zero-defects and fail-safe performance, Stalwart custom compounds elastomers to meet customers' critical performance requirements. Important requirements like resistance to heat aging, radiation, flame, and compression set-to mention only a few. What's more, Stalwart offers design assistance to make sure molded, extruded, and calendered rubber parts conform to precise tolerances. Ask your Stalwart representative for an objective analysis of your design problems. Or, send today for your copy of the 18 -page "Stalwart Rubber Selector."
SR

Stalwart Rubber Company
Bedford, Ohio 44146 Subsidiary of Blasius Industries, Inc.

X-band transistor yields 1 mW at 8 GHz

Texas Instruments Inc., Components Group, P.O. Box 5012, Dallas, Texas. Phone: (214) 2382011. $P \& A: \$ 300$; first quarter, 1970.

Providing fundamental oscillator power at low X-band frequencies, a new microwave transistor delivers 20 mW at 6 GHz and 1 mW at 8 GHz when used as a class C oscillator. Typically, model MS0146 generates 0.6 W saturated output power at 4 GHz and 0.4 W at 5 GHz . A second transistor, model MS0147, is also available for lownoise applications to 6 GHz .

CIRCLE NO. 262

Hot-carrier diodes slash prices to 32ϕ

Hewlett-Packard Co., 1501 Page Mill Rd., Palo Alto, Calif. Phone: (415) 326-7000. $P \& A$: 32\&; stock.

Prices on a line of hybrid hotcarrier diodes have been cut as much as 25% on quantity orders. Unit price of type 5082-2800 is now 32ϕ in quantities of 100,000 , versus the previous price of 43ϵ. The price for larger quantities can be expected to drop to less than 20ϕ each in quantities of $1,000,000$. Lower prices make it feasible to use these diodes where price has been a deterrent.

CIRCLE NO. 263

Gunn-effect devices give 75 mW at 9.5 GHz

Mullard, Torrington Pl., London, W. C. 1, England.

Two new Gunn-effect devices for use from 8 to 12 GHz give outputs of 50 or 75 mW operating in a coaxial cavity at 9.5 GHz . Types $820 \mathrm{CXY} / \mathrm{A}(50 \mathrm{~mW})$, and $820-$ CXY/B (75 mW) operate with a supply voltage of 9 V dc and are contained within hermetically sealed pill encapsulations. They are particularly suitable for doppler and wide tuning-range oscillator transmitters, as well as local oscillators of microwave radar equipment.

CIRCLE NO. 264

THE 5000 PARM R:OD

front panel ideas

- Prices shown are single lot.
Inquire about quantities. Inquire about quantities.

10Keyboard Switch A reliable reed switch is actuated by a permanent magnet. Stringent close tortor pressure and operating points are standard RSM-41 with plain key cap. 2.70*

CIRCLE NO 151

Replace-a-Lamp Pilot

Miniature lamp assembly utilizes unbased T-1 lamps replaceable from front. Equlpped with $\# 680$ lamp rated 5 V @ 60 ma . Screw lens colors optional. BFK-5.

CIRCLE NO 153

Ceramic	Enhance equipment
Terminal	with high quality ce-
Strips	ramic. Simplifies com-
	ponent repacement,
	Long lite. Trial Kit,
	2 ea, ${ }^{7}$ sizes. Snap mounting. (MEP-N日).
	10.00 Kit

Remole Contral

Relay

Plugs into 117
VAC outlet and
provides "sate"
low-voltage re-
mote control.
FRE-103.
CIRCLE NO 156
4.95*

Immediate Deliveries on Above Items!

ELECTRONIC PRODUCTS, INC Lawrence. Massachusetts 01843

S-band IC flatpack amplifiers can be soldered together

Avantek Inc., 2981 Copper Rd., Santa Clara, Calif. Phone: (408) 739-6170. P\&A: from \$350; 60 days, or stock to 30 days.

Supplied in ceramic IC flatpacks about the size of a razor blade, a new line of thin-film widerange S band amplifiers allow the output leads of one stage to be soldered directly to the input leads of the next stage. Besides interconnection convenience, series UAT-2000 units hold noise figure to 6.5 or 7.5 dB maximum over their full frequency range of 100 to 2000 MHz .

The direct-soldering feature is made possible through copper tabs that are attached to the extremities of the package. These tabs can also be soldered to power supply leads, as well as the tabs of other amplifier stages.

These ceramic flatpacks, according to the company, offer increased reliability because there are no connectors. At rf frequencies, the performance characteristics of connectors can be ambiguous-for instance, a connector could act like a filter if properly installed.

Besides the ceramic flatpack housing, the new amplifiers also can be supplied in shielded stain-less-steel cases complete with SMA connectors. These units are designated as series AMT-2000. They also offer a maximum noise figure
of 6.5 or 7.5 dB over the frequency range of 100 to 2000 MHz .

The new thin-film amplifiers consist of sapphire substrates, on which gold leads and tantalum resistors are evaporated via sputtering. Chip transistors and capacitors are then die-attached to the substrate and gold-ball bonded to the circuit leads.

Series UAT-2000 devices consist of four models: types 2001, 2002, 2003 and 2004. Minimum gain is 9 dB for the 2001 and the 2002, 18 dB for the 2003 , and 26 dB for the 2004. Gain flatness is either ± 0.5 or $\pm 1 \mathrm{~dB}$.

There are seven models in the series AMT-2000 family: types 2001 to 2007, inclusive. Minimum gain is 9 dB for the 2001 and 2002. 18 dB for the $2003,26 \mathrm{~dB}$ for the 2004, 35 dB for the $2005,42 \mathrm{~dB}$ for the 2006 , and 50 dB for the 2007. Gain flatness varies from ± 0.5 to $\pm 3 \mathrm{~dB}$, depending on the model.

Power output for a $1-\mathrm{dB}$ gain compression is +4 dB at most for both series. Input and output VSWR is 2:1 maximum for each of the amplifier families.

The UAT flatpacks measure 1.15 $\times 1.5 \times 0.225$ in. Their metalcase sisters come in two package sizes- $1.3 \times 1.3 \times 0.6 \mathrm{in}$. or $2.3 \times 1.3 \times 0.6 \mathrm{in}$.

Thin-film S-band amplifiers come in IC ceramic flatpacks that can be soldered together, or in conventional metal cases with standard SMA connectors. Noise figures are as low as 6.5 dB from 100 to 2000 MHz .

When You Choose An AC Meter Best Isn't Always Most Expensive

So you're going to buy an AC meter. You want the best meter for your jobat the best price. Right? You have a problem! Let's talk about it.
We have AC meters, lots of AC meters. We have AC meters that sell for more than $\$ 4500$ - and for their job, they can't be beat.

But how about the engineer who doesn't have a big production problem or need 5 -digit resolution? How about the engineer who is making only two or three measurements a day... or week? We have a series of meters for him, too.
A series that has built a solid reputation for accurate performance and reliability-most of you have used them in the past. About three years ago, Hewlett-Packard updated with three redesigned, solid-state instruments-the 400 E/EL for broad frequency, 10 Hz and 10 MHz ; the $400 \mathrm{~F} / \mathrm{FL}$ for high sensitivity, $100 \mu \mathrm{~V}$ to 1000 V ; and the 400 GL for broad dB range, -100 to $+60 \mathrm{~dB}, 100 \mu \mathrm{~V}$ to 1000 V sensitivity.

These instruments are packed with convenience features. Two of these meters have a built-in 100 kHz lowpass filter to take out unwanted high frequencies for low-level audio mea-

surements. You get fast response-a reading in less than 2 seconds after turn-on, and <2 seconds overload recovery. These instruments have an internal wideband ac amplifier, with an 80 dB gain - so we put an output on the back. With all these you can have the log scale uppermost for greater resolution in dB measurements.

Each HP-made taut-band suspen-

INFORMATION RETRIEVAL NUMBER 60
sion friction-free meter movement is individually calibrated to its scale for accurate readings over the entire range. Elimination of friction gives these meters excellent repeatability.

These, and more, are the features that assure reliable, day-in, day-out performance that gets the job doneon time. If your problem is in sonar, acoustics, audio response, communications, calibration, ac to dc conversion and amplification - or any other application where precision ac voltage measurements are a must - then consider the HP 400 series carefully. They will fit your measurement requirements, leave your wallet fatter, and make your job easier and faster.

Check your HP catalog, starting on page 201, and choose the meter that best meets your measurement needs. Order today by calling the nearest HP order desk. For data sheets, write to Hewlett-Packard, Palo Alto, California 94304. Europe: 1217 Meyrin-Geneva, Switzerland. Price: $\$ 300$ to $\$ 390$.

HEWLETT
 PACKARD

ANALOG VOLTMETERS

Me LEAN'S NEW Soldo
SAAE CONTROLLER
SOLVES THE PROBLEM of Nolsy COOLING

Yup! It AUTOMATICALLY SLOWS OOWN BLOWER SPEED SO YOU GET QUIETR OPERATION AND JUST THERIGHT AMOUNT OF COOL AIR!

FURTHERMORE THE SLOWER BLOWER SPEEO RESULTS IN LONGER LIFE FOR COMPONENT AND BLOWERS! THIATS REAL ECONOMY!

Yes, a transistorized control and modulating thermostatic probe sense the temperature of your components, or outlet air temperature. The preset system regulates airflow between $80^{\circ} \mathrm{F}$ and $90^{\circ} \mathrm{F}$. For instance, if it senses outlet air temperature at $90^{\circ} \mathrm{F}$ it operates at full volume and, as it cools the equipment, it gradually decreases output. The slower blower speed results in more peace and quiet plus big savings in blower and component life.

Princeton Junction, New Jersey 08550 • Phone: 609-799-0100 - Telex: 84-3422

TEC Can Save You 477*Steps on Your next Display Panel

"Based on a 60 indicator panel.
To build a conventional panel you'll:

Buy, stock and inspect	60 indicators	Mount .	60 indicators
Punch	60 panel holes	Wire	120 terminals
Engrave	60 legends	Inspect	120 connections

To install TEC DATA•PANEL® Display Systems you'll:

Buy, stock and inspect . . .	1 display	Punch Connect . . .

You're probably taking advantage of the economics possible with IC's. Right? Then it's time you looked into IP's. IP's - Integrated Panels - are TEC DATA•PANEL Display Systems that convey messages and symbols brilliantly and colorfully in a single viewing plane. Better display, yet costing less per point than individual indicators. And they cut installation work by 50% or more.

DATA•PANEL Display Systems handle any message, any symbol, in any size, in any color. Adaptable to any installation. Flexible. Reliable. Complete. Function as a total input-output system.
TEC is the leading independent supplier of a complete line of display/control products and systems. For information, call: (612) 941-1100. Or write: TEC, Incorporated, 6700 So. Washington Avenue, Eden Prairie, Minnesota 55343.

Permanent Magnet DC Motors
 at New, Low Prices

Now, automatic production equipment allows American Electronics, Inc. to reduce the prices of Size 9 and 13 permanent magnet dc motors by 40%. And every AEI dc motor still has precision ball bearings, a dynamically balanced armature, long lasting brushes and powerful Alnico V magnets.
These motors are available with ratings from 0.8 ounce-inch and from 4,000 to 20,000 RPM. Accessories tailored to fit your application.
Circle the Reader Service number now, and we'll send you our short form catalog and our Design and Applications booklet. Or call today for prices. Phone (714) 8713020. TWX 910-592-1256.

```
AEI
```


AMERICAN ELECTRONICS INC.

 1600 East Valencia Drive Fullerton, California 92634 information retrieval number 63Impatt oscillators span 8 to 18 GHz

Linear varactor diodes extend Q over 12,000

Broadband transistors

 handle 80-W outputs

Three vhf transistors form a 25-W power kit

Varian, Solid State Div., Salem Rd., Beverly, Mass.
Four series of high-Q impatt oscillators with low a-m and fmnoise characteristics and in tunable and fixed-frequency versions operate from 8 to 18 GHz with outputs of 25 to $200-\mathrm{mW}$. Units in the VSX-9500 series span 8 to 10 GHz ; the VSX-9501-series units span 10 to 12.4 GHz ; the VSU-9502-series units span 12.4 to 15 GHz and units in the VSU-9503 series span 14 to 18 GHz .

CIRCLE No. 268
Standard Kollsman Industries Inc., 111 New York Ave., Westbury, N.Y. Phone: (516) 997-8300.

Featuring a linear response and a spread of 5:1 at 3 to 30 volts, a new series of varactor diodes shows a Q of more than 12,000 . Model SK-210, SK-420 and SK-525 devices provide linear capacitance-versus-voltage characteristics for simpler designs and lower costs. They are completely passivated units and are encased in plastic housings.

CIRCLE NO. 269
TRW Semiconductor Div., 14520 Aviation Blvd., Lawndale, Calif. Phone: (213) 679-4561. P\&A ! $\$ 140, \$ 160$; stock.

Two new broadband communications transistors, operating from a $28-\mathrm{V}$ source, provide $80-\mathrm{W}$ outputs. Type PT5666 operates at frequencies to 150 MHz with a 15% bandwidth. It has a gain of 6 dB and its efficiency is 70%. Type PT5666A operates at frequencies to 125 MHz with a 50% bandwidth. Its gain is 6 dB and its efficiency is 65%.

CIRCLE NO. 270
Fairchild Semiconductor, 313 Fairchild Dr., Mountain View, Calif. Phone: (415) 962-3563. P\&A: $\$ 58$ per kit.

A kit of three compatible $n p n$ power transistors form a vhf amplifier system with $25-\mathrm{W}$ outputs from a $12-\mathrm{V}$ supply. It consists of the MSA8506, MSA8507 and MSA8508 transistors. Connected serially, they provide a power gain of 24 dB over the range of 150 to 175 MHz . Full outputs are achieved with inputs of 125 to 500 mW .

And that's fast for a 16 bit machine ...for less than $\$ 10,000$ and Much Less in OEM Quantities

SPC-16 is a powerful new 16 -bit machine ... 960 nanoseconds fast ... expandable 4K memory.
It's organized to provide for efficient handling of bits, bytes and words in read/write and macroprogramming in ROM ... and ready-to-use GA productized software reduces programming time, effort and cost to a minimum.
SPC-16 gives you big computing power, accuracy, reliability and programming simplicity ... and flexibility in interfacing with peripherals through the GA family of mini-controllers ... and the SPC-16 is supported by expert consultation, systems engineering, programming and customer training services.
You'll be surprised just how fast you can add the SPC. 16 to your product or system . . . so find out today.

Ask about other low-cost computers in the GA family. The SPC-12 for less than $\$ 5000$. System $18 / 30$ for under $\$ 20,000$.
GENERAL AUTOMATION, INC.
Automation Products Division
706 West Katella, Orange, Calif. 92667
(714) 633-1091, TWX 910-593-1601
CALIFORNIA
LOS Altos, (415) 941.5966
TEXAS
Dallas. (214) 358.0271
Houston, (713) 774.8716
ILIINOIS
Des Plasines, (312) 298.4650
(California G.A. Corp.)
OHIO
Clevaland. (216) 351.2275

Los Altos. (415) 941.5966
TEXAS Houston, (713) 774.8716
ILLINOIS
Das Plaines, (312) 298.4650
(California G. A. Core.)
OHIO
Clavaland. (216) 351.2275

GEORGIA
Allante. (404) 261.6203
pennsylvania
King of Prussia. (215) 265.6525
MARYLAND
Milvar Spring. (301) 593.6010
connecticut
Stamford. (203) 325.3883

MASSACHUSETTS
Waliham, (617) 899.6170 international
INTERNATIONAL
G. A. I
24 Buld de l'Empereur

24 Buld de l'Emper
Bruxelles, Bolgium
G. A. Lid.
G. A. Ltd.

Wren House, Portsmouth Rd
Esher, Surrey. Esher 65764

FACT:

 LIGHTNING CAN COMPLETELY DESTROY A JOSLYN PROTECTOR AND YOUR ELECTRONICS WILL STILL WORKFor more than 10 years Joslyn has never once had one of its protectors fail to perform its surge protection function. Some have been hit repeatedly with direct lightning strikes, voltage/current strikes, over-illumination even burned up and blown apart . . . but the electronics they protected continued to work.

Contact Joslyn today for full information and delivery from stock for the field-proven surge protection equipment that will solve your particular problem. Full line includes precision spark gaps.

J05LWn

ELECTRONIC SYSTEMS

Santa Barbara Research Park

 P. O. Box 817Goleta, California 93017
Tel. (805) 968-3551

Tiny spdt coaxial relay takes 50 W at 1.2 GHz

Dow-Key Co., Box 348, Broomfield, Colo. Phone: (303) 466-7303.
Measuring approximately 2×2 $\times 3 / 4 \mathrm{in}$., a new single-pole doublethrow magnetic-latching coaxial relay handles 50 watts of cw power at frequencies up to 1200 MHz . The \#181-2307 relay has a maximum VSWR (voltage standingwave ratio) of 1.3:1 at 1200 MHz and requires a coil-voltage of 26 V dc for operation. It is fitted with type TM coaxial connectors and consumes very little power.

CIRCLE NO. 272

Rf power transistor gives 60 W at 150 MHz

Solitron Devices, Inc., 1177 Blue Heron Blvd., Riviera Beach, Fla. Phone: (305) 848-4311. P\&A: $\$ 66$; 3 to 4 whs.
Operating at a collector-to-emitter voltage of 28 V , a new rf power transistor delivers 60 W at 150 MHz with a minimum gain of 6 dB. Known as the SRD54117, it also can deliver 50 W at 175 MHz with a minimum gain of 6 dB . The device has a VSWR (voltage stand-ing-wave ratio) of $3: 1$ and is packaged in a TO-128 power tower.

CIRCLE NO. 273

We build 8 different data sets for dependable high-speed data communications. They work. Even with line conditions that lick other modems.

ICC data sets transmit at speeds from 1200 bps to $1,000,000 \mathrm{bps}$.
They're built to deliver maximum throughput at the speed specified.
Without problems.
Send for new descriptive literature.

Infernational Communications Corporation
7620 N.W. 36th Avenue, Miami, Florida 33147 Telephone $305+691-1220$ TWX 810-848-6588
a milgo company

NEW PRODUCTS FROM EDC
ELECTRONIC DEVELOPMENT CORP. boston, massachusetts

TWIDDLE BOX HAS DC OUTPUTS dOWN TO 10 NANOVOLTS. The Model MV-106 has three (3) output ranges with resolution of 1 ppm . Operator may select output voltages from 10 nanovolts to 11 volts bipolar. Accuracy is $\pm .005 \%$, based on the Limit of Error concept. There is up to 50 mA of current available in the volt ranges. The warm-up and stabilization time is 30 seconds from turn-on. Stability of the dialed voltages is better than $\pm .0005 \%$ for 8 hours on any range. Versatile in applications, this instrument may be used as a Source, Reference, Calibrator, Simulator, and Standard. Among the many applications are general calibration, thermocouple and transducer calibration, simulation and measurements, recorder calibration and lincarity. A very useful instrument for bridge excitation for transducers; and it is an extremely valuable instrument for checking the gain of low-level amplificrs. Optiun: Rack mountable moclels.

INFORMATION RETRIEVAL NUMBER 67

digitally programable dc stanDARDS are programed from BCD 8421 lugic signals (other codes available). True digital pragraming (not resistive or voltage programing). Many models and options available to mect engineering requirements. Programable voltage ranges from 100 mV (f.s.) to 100 Vdc (f.s.), plus 10% over-range Option: 10 ppm or 100 ppm resolution. Oprions: Current output 10 mA to 100 mA , remote sensing, unipolar or bipolar output. Logic level input suing: from (min.) $2 V$ siving to (max.) 28 V swing. Output accura cies (Limit of Error Concept): $\pm .02 \%$ to $\pm .01 \%$ of setting. Output electrically isolated from digital control circuit and chassis. Operator may program for either serial (by decimal digit) entry or full parallel entry. Programing speed 5 ms . Prices range from S1019.00 to \$1650.00 F.O.B. Buston. Delivery: Stock 1030 days
INFORMATION RETRIEVAL NUMBER 68
Instruments available for no-charge enginecring evaluation.

Electronic Development Corporation 11 Hamlin Street • Boston, Mass. 02127 (617) 268-9696

PACKAGING \& MATERIAL

Multi-layer IC wiring structure packs 4 chips in standard DIP

E. I. DuPont de Nemours \& Co., Inc., Electronic Products, Wilmington, Del. Phone: (302) 774-1000. P\&A: $\$ 10$ to $\$ 150 ; 90$ days.

Multilox ceramic wiring structures are a new development in IC packaging technology that satisfy the current design need for speed and complexity on a single substrate. The new structures consist of high-alumina ceramic parts containing one or more layers of buried high-conductivity hermetic wiring.

Hermetic risers connect the buried wiring to the top and bottom of the assembled structure. The various layers are then assembled. stacked on top of each other,

Multi-layer ceramic wiring structure accommodates four complex integrated circuits in the space normally occupied by a single chip. Only the size of a standard DIP, it adds inter. connection versatility to packaging designs.
and fired together as a single unit
The short interconnections made with the buried lines permit high chip density on the same substrate. This, in turn, provides minimum signal delays in high-speed circuits, and very low line resistance (typically one ohm per inch for buried runs and 0.5 ohms per inch for surface conductors).

Another advantage of the Multilox structures is their ability to be processed in high-temperature oxidizing or reducing environments. This means that an! one of the three metal technologies-thick film. thin film or active metalmay be employed on the top and bottom surfaces for package sealing and lead attachments.

The structure shown is an example of how a standard buriedwiring configuration can be used to form more than 50 different logic functions from four IC chips by discretionary top-surface wiring. It also demonstrates how four IC chips can be packaged in the space normally required for one.

This general-purpose multi-layer configuration is the size of a standard dual-in-line package. The large metallized areas are for back-bonding of the dice. The 5 and 10 -milwide lines accept ultrasonic or thermocompression-bonded wires from the ICs and make connections to the proper risers. A slight modification of the top surface layout would allow use of fip-chips or beam-lead devices.

Buried interconnections are the real key to the new structure's versatility. The upper buried level carries conductors running the length of the package. These wires are used for service functions like yround. voltage, clock and reset signals.

The lower buried level provides two crosslinks under each IC position. Connections are also made to risers from the outboard connection pads on the bottom of the substrate. The risers from the outboard pads are terminated at this level and weave through the buried wiring.

CIRCLE NO. 274

*PROVEN-The industry standard. Units in use by the largest manufacturers and users (names on request);

ECONOMICAL—Costs far less than any other testing method, including black boxes;

DELIVERABLE—Normal shipment in 45 days;
VERSATILE-Can be programmed in less than 15 minutes for almost any type array (LSI-MSI-MOS), IC, digital PC board, or functional chassis . . . without punched cards, paper tape or magnetic tape.

For complete information, write or phone:

North American Electronic Systems
division of emucational computer corpobation Sicklerville, N. J. 08081

Tel. 609-629-4141

THIS PROVEIET TEst Cansole alles provilems ol LSI Iesining Oll your minu!

Features of The TC4100 System:

- a word generator capable of 40 outputs, each 100 patterns deep, bit rates from DC to 2.5 MHz . (options: adjustable depth, split-phase advancement); - a four channel clock generator with adjustable frequency, sequencing, positioning, inhibiting, and leveling of clock pulses;
- a 16 channel comparator with adjustable strobe width and position, 1 and 0 level windows, don't care inhibits, and error overrides;
- a 40 channel converter with every word adjustable for 1 and 0 levels;
- a work area with quick connect fasteners for different array socket carriers;
- word toggling capability for words up to 800 bits.

Functional Components:
Clocks, comparators, converters, word generators, and automatic wafer probing interface accessories are separately available.

Looking for an economical system building block?

REDCOR 720 MUX/A-D CONVERTER

REDCOR's Model 720 Multiplexer/A-D Converter is an economical and versatile system-building block that accepts up to 32 channels of analog data. Time-shared multiplexing and successive approximation analog-to-digital conversion are utilized to process the analog input data into a format suitable for inputting directly into a computer. The basic 720 contains modular multiplexers, high-input impedance buffers, a sample and hold, an ADC, power supplies, and a voltage reference.

The 720 Multiplexer/A-D Converter offers distinct cost-performance advantages for a wide variety of data-acquisition problems where high resolution and attendant accuracy must be compared to system cost and throughput rates. The 720 is available in 8 to 12 bits binary, with system throughput rates ranging from 40 KHz to 20 KHz . Either single-ended or differential inputs are provided, with full-scale input ranges from 5 v to 20 v in bipolar or unipolar configurations.

The 720 is completely self-contained in a forced-air-cooled 19 -inch chassis that requires only $13 / 4$ inches of panel space. Modular concepts are employed throughout the instrument, with all circuitry contained on plug-in circuit modules that are removable from the master interconnect mother PC board. All test points required for system test calibration and maintenance are available from the swing-out front panel. The modular structure of the 720 ensures ease of maintenance and simplifies field expandability of channels.

Simplified operation, low-cost, ease of interfacing, and guaranteed system performance specifications make the Model 720 Multiplexer/A-D Converter attractive for any computer-controlled data-acquisition or processcontrol application.

Complete Systems Capability/7800 Deering Avenue, P.O. Box 1031,
Canoga Park, California 91304-(213) 348-5892

Silicone rubber sealant eliminates corrosion

 Mich. Phone: (517) 636-8510.

Long-term corrosion of coaxial cable connectors can be practically eliminated by the application of a new silicone rubber sealant to the made-up connection. By applying sealant \#732 in a thin bead to the cable-connector joint and over the connector's external mating surface, the connection is rendered completely vapor and water-proof. Cable disconnection and reconnection is not affected and is still easy to achieve.

CIRCLE NO. 275

Flat-ribbon coax cable handles fast signals

Zippertubing Co., 13000 S. Broadway, Los Angeles, Calif. Phone: (213) 321-3901.

Meeting the need for high-speed signal transmission in data processsing and communications applications is a new sub-miniature coaxial cable in a flat-ribbon configuration. FRC-Fab-Ri-Cable's drain wire and center conductor have a silver-plated alloy for greater strength and higher conductivity. The drain wire is helically applied in a flexing situation for maximum life.

CIRCLE NO. 276

New 40 Amp high voltage SCRs from IR. Up to 80% less weight in 20% of the space.

 TO-83 you replace with one new IR 40RCS silicon controlled rectifier, rated from 700 to 1200 volts. Applications: precision dc motor drive controls. Industrial ovens. Light-dimming systems. And all applications requiring the highest surge and $I^{2} t$ ratings available in this size device. Including the avionics and hydraulic landing and control surface systems of tomorrow's electrifyingly changed aircraft.
Our six new high voltage 40RCS devices are metal-cased and glass-sealed for superior hermiticity and resistance to shock, vibration and moisture. They and our previously announced $50-600 \mathrm{~V}$. types are available from distributor stock to speed your electrifying change.
See how IR's 40RCS line matches up against competition-write for a full comparison table and watch the specs fly. Also up-to-date catalog, application data or engineering assistance.

The Northern Precision Laboratories' Binary To Decimal Converter converts Gray Code, V-Scan or True Binary Inputs into a decimal display thru the use of a fixed program computer. Upon receipt of an update pulse the computer samples the input, information and processes it via shift registers and control logic. At the end of the conversion process, the resulting $B C D$ number is stored in registers until the next update pulse is received. The BCD data is then used to drive a Nixie ${ }^{\text {TM }}$ Display and/or is fed directly to output buffers. A complete conversion of 16 bit data is attained in approximately 50 microseconds; visual tracking of the input information is accomplished by utilizing an automatic internal update period of less than 5 milliseconds.

APPLICATIONS ...

Peripheral Equipment Interfacing Binary Format System Monitoring Digital Test Equipment
send for new catalog...

PC transistor socket lowers its profile

Interdyne, 2217 Purdue Ave., Los Angeles, Calif. Phone: (213) 4776051. Availablity: stock.

Developed to meet the changing needs for larger devices that are capable of being wire-wrapped are two new 36 and 40 -pin sockets for dual-in-line components. These sockets are the only receptacles that will accept any width center $(0.5,0.6$, or 0.8 in .). They can be designed in any custom configuration and can be wire-wrapped for maximum versatility and performance.

CIRCLE NO. 278

PC-board connectors

 offer 312 combinations

Berk-Tek, Inc., Box 60, Reading, Pa. Phone: (215) 376-8071.

Designed for situations where many signal lines of a specific characteristic impedance are required, with space at a premium, is a new 32-twisted-pair cable for interconnecting computer peripherals. It uses Vylex wire insulation, a Mylar laminate, and a flame-retardant overjacket of polyurethane. Conductors are AWG \#28 and the insulation thickness over each conductor is typically 0.0033 in .

CIRCLE NO. 280

Cinch Mfg. Co., Div. of TRW, Inc., 1501 Morse Ave., Elk Grove, Ill. Phone: (312) 439-8800. Availability: stock.

Engineered for PC-board applications is a new low-profile threelead socket for TO-5-cased transistors. Its overall height above the PC board is only 0.113 in . and it uses contacts of the closed-entry type. It can accept TO-18 case styles if full-length leads are used, or if leads are formed to TO-5 centers.

CIRCLE NO. 277

Wire-wrapped sockets accept dual-in-lines

Sylvania Electric Products Inc., 730 3rd Ave., New York, N.Y. Availability: 4 to 6 wks.

Called the P101 series, a line of PC-board connectors permits the ordering of up to 312 connector combinations from available tooling. They have bifurcated contacts and metal or plastic polarizing keys. Four types are available: connectors with gold-plated bellows, or with a gold-dot contact, each with 0.1 or $0.125-\mathrm{in}$. contact centers.

CIRCLE NO. 279
Cable for computers has 32 wire pairs

Dynamic variety in subminiature switches. Our SM and 1SX switches.
Take our SM series with a complete variety of integral or auxiliary actuators, bifurcated gold contacts for improved reliability and quick-connect
detent terminals. It's temperature resistant and meets Military Specification 8805.

And if our SM won't fit your needs, try our tiny 1SX. It's the smallest of the snap-action switches, and has low differential-. 001 inch max. And it has all the features of the SM.

LOGIC DESIGNERS WHO

EECO'S LOGIC-WARE COMPUTER AUTOMATED SYSTEM WILL GET YOU HOME ON TIME.

In a typical logic design project, you can spend over 200 hours generating "from-to" wire lists, and other routine activities. That's work designers shouldn't have to do; and that's why EECO developed LogicWare, a computer automated system for design, hardware and production.

Logic-Ware takes the dirty, sticky, unrewarding monotony out of logic design, but it's more than just a design aid. It's software, hardware, production and final test. It's a total package available at any level of design or manufacturing. It can become "involved" in the initial circuit development, during hardware selection or the production phase. We've even worked from
schematics. You give us a pin list - that's all - we do the rest.

Our computer will simulate your logic and help goof-proof your design. It will compute optimum wire routing and produce machine wiring instructions. From there EECO will automatically wire wrap on two levels, leaving the third for any later design changes. And, provide operational hardware with a lifetime warranty in a standard drawer or on planes. 30 days after getting your pin list.

Write for our Logic-Ware do-it-yourself kit: The Emancipator. We'll get you home on time.

EECOS
 LOGIC-WARE.

It's a full service system for the logic designer.

Computer automated design aid - logic simulation, error checking exception reports, string list and documentation.

Computer automated production system - wire routing, component placement and wire wrapping.

Hardware - boards, chassis, cards, connectors, power supplies, IC's, racks, frames, sockets, panels and drawers. Final assembly and checkout.

Electronic Products Division Electronic Engineering Company of California 1441 East Chestnut Ave. Santa Ana, Calif. 92701 Ph: (714) 547-5651

standard Synchron

 reliability with upto 98 0z.-in. torque

Now, without sacrificing compact size, you can get high torque even at higher speeds-from 1 to 900 RPM. Synchron ${ }^{(3)} 900$ Series has thick, wide gears, specially designed to give the added gear strength that makes full use of its power increase. Highest quality instrument gear train for all speeds below 900 RPM.
The new self-starting hysteresis motor has positive direction of ro-tation-right or left hand. Plus extra heavy phenolic first gear for low noise level. It can be stalled continuously without electrical or mechanical damage.
Added strength in both the rotor and gear train enables 900 Series to handle your toughest timing and control jobs. Because of its compact dimensions, it is often interchangeable with motors of lower torque. To find out what 900 SERIES can do for you, write or phone today to have a representative contact you.

HANSEN MFG.CO., INC.
Princeton, Indiana 47570

HANSEN REPRESENTATIVES: CAREY \& ASSOCIATES, Houston and Dallas, Texas: . S. HOPKINS CO., Sherman Oaks, Calit.; MELCHIOR ASSOCIATES, INC., San Carlos, Calif. THE FROMM CO.. EImwood Park, III: JOHN ORR ASSOCIATES. Grand Raoids. Mich.: H. C. JOHNSON AGENCY. INC., Rochester, N.Y. WINSLOW ELECTRIC CO., Essex, Conn., Villanova, Pa., and New York, N.Y
EXPORT DEPARTMENT: 2200 Shames Drive, EXPORT DEPARTME
Westbury, N.Y. 11590

Cassette demagnetizer keeps heads in tune

Small disc memories store 145,000 bits

Cassette circulator

 stretches playback

Fast graphic terminal digitizes hard copy

Robins Industries Corp., 15-58 127th St., College Point, N.Y. Phone: (212) 445-7200. Price ${ }^{\text {S }}$ $\$ 8.30$.

Built into a compact cassette case, the model TD-10 demagnetizer removes excessive magnetic build-up from cassette-equipment heads to keep fidelity high and sound loss low. A flat mylar-copper laminate lead wire permits closing the cover of the player. Other features include a pilot light and operation on standard house current. Price is only $\$ 8.30$.

CIRCLE NO. 285
Information Data Systems, Inc., 8260 E. Eight Mile Rd., Detroit, Mich. Phone: (313) 891-2400.

Developed for the mini-computer market, new compact lightweight disc memory systems feature a storage capacity of 145 k bits, fixed non-positioning (no head-to-disc contact), flying heads and read/ write electronics. Series 8100 selfcontained units measure only 9 -in. wide by 9 -in. deep by $10-1 / 2-\mathrm{in}$. high. They have eight data tracks.

CIRCLE NO. 286
Norelco Div., North American Philips Corp., 100 E. 42nd St., New York, N.Y. Phone: (212) 69\%3600. Price: $\$ 19.95$.

A new cassette circulator is a snap-on device that gives continuous playback capacity to automatic cassette changers. Model CG6, which has no moving parts, makes possible 12 hours of non-stop norepeat playback and then starts the cycle over again. It handles four to six cassettes, automatically flips each for second-side play, and then re-stacks them.

CIRCLE NO. 287
Data Conversion Systems, P.O. Box 1008, State College, Pa. Phone: (814) 237-6521.

Fully compatible with all popular tape recorders and large and small-scale computers, a new graphic conversion terminal can convert an 11×17-in. document into electrical signals in less than 60 seconds. The digitizing of graphic information by model GC-2 allows cross and auto-correlation, spectrum stripping. convolution and deconvolution, and digital filtering.

CIRCLE NO. 289

Measure any complex waveform from random noise to pure sinusoidal for its true rms value from 2 Hz to $\mathbf{2 ~ M H z}$ over a 0 to 1100 volt range with an accuracy of 0.05% and a crest factor of 10 .

Now you can measure complex waveforms at nearly all the useful frequencies over a wide voltage range. Two instruments are available from Fluke. First, the new 931B True RMS Differential Voltmeter which features a 2 Hz to 2 MHz bandwidth and recorder output (ac to dc conversion). With this low frequency response, the 931B is extremely well suited to vibration, acoustic and seismic measurements as well as noise and power supply ripple measurements. It can also be used as a secondary ac measurement standard.
Basic price of the Model 931B is $\$ 995$. Options include line or rechargeable battery power (\$100).

The new Fluke 9500B, the only fully automatic 0.05% true rms ac digital voltmeter on the market, features 60\% overranging and isolated data output. Use it to measure noise, spurious signals, intermodulation distortion, losses in magnetic devices, microphonics, harmonic distortion, and power ripple.
Other features include frequency response essentially flat 20 Hz to 700 KHz , low capacitance, high resistance input, self calibration, and DTL logic compatibility. Floating inputs can be accepted. Up to 1100 V RMS can be applied to any range without damage.
Price is $\$ 2485$. Options include rear panel BNC input (\$50), and isolated 1-2-4-8 or 1-2-2-4 BCD outputs (\$445).

For full details, see your Fluke sales engineer (listed in EBG) or contact us directly.

BREAKTHROUGH! Now nickelcadmium batteries can be safely recharged in 15 minutes or less! RAPIDCHARGE, the new energy source system from McCulloch Electronics brings fully discharged sealed nickel-cadmium batteries up to rated capacity in 15 minutes or less. Conventional systems take 14 to 20 hours!

Design opportunities are limited only by imagination. The utility of existing batterypowered products can be increased many
times with RAPID-CHARGE. Entire NEW concepts are now possible for portable-power products for home, business and industry.
The RAPID-CHARGE system can be adapted to any nickel-cadmium power-pack configuration or capacity. And McCulloch engineers will assist in the development of RAPID-CHARGE applications to meet your design requirements.
Write today for additional information.

Twelve-bit ladder fits on single chip

Motorola Semiconductor Products Inc., P.O. Box 20924, Phoenix, Ariz. Phone: (602) 273-6900. $P \& A$: $\$ 2.75$; stock.

Requiring only the addition of a miniature bulb, a new monolithic tuning indicator circuit, which costs only $\$ 2.75$, indicates proper fine tuning of color TV and fm receivers. When the receiver is correctly tuned, the circuit's two input voltages are equal and the lamp is turned ON. Model MC1335 has a typical standby current of 5.5 mA .

CIRCLE NO. 294
Dual matched FETs occupy same chip

Solitron Devices, Inc., Transistor Div., 1177 Blue Heron Blvd., Riviera Beach, Fla. Phone: (305) 848-4311.

Supplied in chip form for hybrid applications, a new line of silicon planar power transistors include $2,5,10$ and $20-\mathrm{A}$ devices in npn , $p n p$ and $n p n$ high-voltage families. The npn and pnp chips are offered as complementary pairs with sustaining voltages up to 100 V ; the npn high-voltage chips have sustaining voltages up to 300 V .

CIRCLE NO. 296

Hy Comp, Inc., 146 Main St., P.O. Box 250, Maynard, Mass. Phone: (617) 897-4578. P\&A: \$175; stock to 2 wks.

Cramming 12 bits on a single chip for digital-to-analog conversions, a new thin-film resistor ladder network features an accuracy of one-half the last significant bit from -55 to $+125^{\circ} \mathrm{C}$. Model HC100 is supplied in a 24-lead flatpack ($1 / 4 \times 3 / 8 \mathrm{in}$.) or in a 24 -lead DIP, either hermetically sealed or epoxy encapsulated.

CIRCLE NO. 293
Monolithic $\$ 3$ circuit indicates fine tuning

National Semiconductor Corp., 2975 San Ysidro Way, Santa Clara, Calif. Phone: (408) 245-4320. P\&A: $\$ 2.40$ to $\$ 12.70$; stock.

Series FM3954 monolithic nchannel matched dual FETs eliminate the difficulties of matching and testing individual die by integrating both transistors on one chip. This makes possible very close tracking regardless of bias point, from 50 to $500 \mu \mathrm{~A}$, a low leakage of 100 pA and a high gain of 1000μ mhos. Uses include balanced modulators.

CIRCLE NO. 295
Power transistor chips carry 20 A at 300 V

How to catch a code in time

Feel a time code coming on? If you're tagging analog data for correlation and indexing, Datatron timing instrumentation can catch coding problems before they start.

Problems like the chronic congestion caused by enormous equipment. Or acute inaccessibility for maintenance. Or even progressive "'inflexiblitis rigor mortis." And finally irritating costs.

Now there's fast, round-theclock relief. Datatron timing instrumentation goes right to work with its proven 4 -way action: Flexibility, ease of maintenance, size and cost.

To begin with, unparalleled versatility is afforded by Datatron's exclusive "main frame" construction. This approach features
identical logic, power supply and chassis for both the time code translator and generator.

What's more, Datatron generators handle up to five time codes simultaneously. And the translators change codes by the flick of a switch or by changing a printed circuit card.

Equipment maintenance is facilitated by a unique "pancake" design that permits simultaneous accessibility to all circuitry.

And when it comes to size, Datatron isn't a tough pill to swallow. Dosage is concentrated in only $31 / 2^{\prime \prime}$ of vertical rack space.

Datatron's fast-acting ingredients? Dual in-line DTL and TTL integrated circuits. Wide dynamic range AGC Amplifier. And precision oven controlled crystal oscillator.

As for cost, just consider this one fact: Features that Datatron offers as standard are usually optional on more expensive competitive equipment.

So at the first sign of timing aches and pains, take one Datatron 16-page brochure. It completely details the Datatron timing family, including Tape Search Units, DC Code/Failsafe units and Remote Display units.

Send for it today. It won't hurt a bit.

Datatron Inc.

1562 Reynolds Avenue
Santa Ana, California 92705
(714) 540-9330

Or combine power any way, N-ways. There's an ANZAC answer in our complete family of power dividers/combiners. Precise outputs, broad bandwidths and ity for telemetry, receiver and

These connector types
 high-power handling capabiltransmitter applications. (BNC, TNC, Type N, 3mm) and our plug-in versions provide frequency and performance compatibility which makes them usable with the entire broad band of ANZAC signal processing devices.
Representative of over 80 ANZAC N-way power dividers/combiners are:

MULTI-WAY

Model	Outputs	Freq.	Isol.	Loss	Unbalance	
DS-30	30	10.500 MHz	30	4.0	3.0°	± 0.2
DS-45	45	10.300 MHz	35	4.5	3.0°	± 0.2

BROADBAND (compact) ${ }^{\dagger}$

$3 \mathrm{H}-50$	3	$2-200 \mathrm{MHz}$	30	0.75	2.0°	0.2
$4 \mathrm{~V}-50$	4	$20-200 \mathrm{MHz}$	30	0.75	2.0°	0.2

\dagger Also available in standard "plug-in" packages.
ULTRA-BROADBAND - 10 OCTAVES

DS-4	4	$2-2000 \mathrm{MHz}$	25	0.5	3.0°	0.5
DS. 8	8	$2-2000 \mathrm{MHz}$	25	0.75	3.0°	0.5

HIGH-POWER (1,000 W \& higher)

DS-134	4	$50-200 \mathrm{MHz}$	30	0.5	5.0°	0.4

PRECISE OUTPUT, LOW-LOSS (microstrip)

DS-160	2	$1.25-1.75 \mathrm{GHz}$	20	0.1	0.5°	0.1
DS-161	3	$1.25-1.75 \mathrm{GHz}$	20	0.1	1.0°	0.2

ANZAC Electronics • 39 Green Street • Waltham • Massachusetts 02154 • Tel: (617) 899-1900 information retrieval number 81

Dual 100-bit registers are $2-\mathrm{MHz}$ LSI chips

Intel Corp., 365 Middlefield Rd., Mountain View, Calif. Phone: (415) 969-1670. P\&A: $\$ 30$ to $\$ 60$; stock.

Guaranteed to operate at clock rates up to 2 MHz , four dual $100-$ bit LSI shift registers provide a clock input capacitance of 35 pF . and use only 15 mA of powersupply current at 10 V . Models 1-406 and 1-407 operate from -55 to $+125^{\circ} \mathrm{C}$, while models 1-506 and $1-507$ operate from -25 to $+70^{\circ} \mathrm{C}$. All units may be interfaced directly with standard DTL and TTL.

CIRCLE NO. 297

IC op amp for $\$ 3.50$ upholds performance

Teledyne Philbrick Nexus, Allied Drive at Route 128, Dedham, Mass. Phone: (617) 329-1600. P\&A: \$3.50; stock.

Costing only $\$ 3.50$ in quantities of 1 to 9 , model 1301 general-purpose operational amplifier provides a common-mode voltage range of $\pm 13.2 \mathrm{~V}$, voltage offset of $\pm 2 \mathrm{mV}$, and a voltage drift of $\pm 5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The input circuitry is fully protected against damage from transient overloads and accidental connection of the input terminals to signals as large as the power supply voltages.

CIRCLE NO. 298

Room Ior improvement

General Electric's TO-5² transistor-size sealed relays give you more room for increased power, improved performance

We didn't cut any corners on this high-reliability, transistor-size sealed relay. We left them on so there'd be more room for a more powerful magnet- $21 / 2$ times more powerful.
This added power means this type 3SBS, 2PDT, 1 amp relay gives you higher contact forces, larger contact gaps, and greater overtravel to minimize mechanical shifts. Shifts which usually increase early-in-life failures.
Though there's more room inside to give you all these advantages, the outside dimensions-top-to-bottom (.275") and side-to-side (. $370^{\prime \prime}$)-are the same as any transistorsize relay
So don't cut corners on your next transistor-size relay application. Specify GE's square Type 3SBS. For full details, write General Electric, Section 792-45, Schenectady, New York 12305.

DIVERSIFIED Power Supplies . . . OUR CAPABILITY SUPPORTS YOUR LINE

From Diversified Electronics...Iow cost, custom-engineered OEM Power Supplies-based on imaginative new ideas in designing Power supplies for particular needs! Design-proven circuits are combined to achieve the power performance you require and the packaging flexibility needed. All this with off-the-shelf cost and delivery advantages plus custom-engineered OEM reliability.

DIVERSIFIED EXPERIENCE . . . engineered supplies for: BWO-VTM-TWT - Photomultipliers • Storage and Display Cathode Ray Tubes - Discrete and Integrated Solid State Devices. Swept Power Supplies • Solid State Pulse Modulators.
For answers to all your power conversion needs - call or write:

Diverifilid

ELECTRONICS CO. INC.

718 EAST EVELYN AVENUE SUNNYVALE, CALIFORNIA 94086 (408) 738-3911

Tuning diode for $\$ 5.95$ has ratio of 14 at 1 MHz

Motorola Semiconductor Products Inc., P.O. Box 20924, Phoenix, Ariz. Phone: (602) 273-6900. $P \& A$: $\$ 5.95$; stock.

A new low-cost hyperabruptjunction voltage-variable capacitance diode, type MV1401, features a minimum tuning ratio of 14 at 1 MHz , specified for a reverse-voltage range of 1 to 10 V . The device also has a high nominal capacitance of 550 pF at 1 V and 1 MHz , and a minimum figure of merit of 200 at 2 V and 1 MHz .

CIRCLE NO. 3
334
Power Tech, Inc., 9 Baker Court, Clifton, N.J. Phone: (201) 4786205. $P \& A$: $\$ 172$ to $\$ 325$; stock.

Eliminating clips or wire bonds, a new series of $300-\mathrm{W}$ power transistors come in a TO-114 stud package that incorporates integrallead construction. Series PT-700 units are 100% tested at rated power to assure maximum high reliability. They feature a maximum collector-emitter saturation voltage of less than 1 V at 100 A , and a guaranteed dc gain to 100 A .

CIRCLE NO. 335

High-voltage thryistor handles up to 2000 V

Siliconix Inc., 2201 Laurelwood Rd., Santa Clara, Calif. Phone: (408) 246-8000. P\&A: \$18 or \$31; stock.

Three new monolithic bipolar/ MOS driver switches include the DG122 two-channel differential switch with driver, the SI3001 special-function driver switch and the SI3002 spdt switch with driver. All the devices can be used as multiplexers or d/a converters. They can handle analog signals up to 20 V pk-pk. Their inputs are compatible with $5-\mathrm{V}$ DTL, TTL and RTL.

Power transistors take 300 W at 100 A

Westinghouse Semiconductor Div., Youngwood, Pa. Phone: (412) 925-7272. $P \& A$: $\$ 300$ or $\$ 320$; 2 to 3 wks.

Said to be the highest-voltage commercially available thyristor, a new thyristor has a peak forward blocking voltage as high as 2000 V without trading-off other important characteristics. It can handle surge currents up to 6000 A . Type 286-Y30 contains an integral heat sink, while type $270-\mathrm{Y} 30$ is a studmounted design.

CIRCLE NO.
336
Driver switches are bipolar/MOS ICs

Tips on cooling off hot transistors

See how circuit designers use IERC heat dissipators to protect semiconductors...improve circuit performance and life.

Fan-top dissipators for TO-5 and TO-18 cases drop temperatures dramatically; cost just pennies. T-shape adds almost nothing to board height; allows components to snuggle close to transistors. Spring fingers provide fast, press-on installation.

To cool off low-to-medium power transistors in TO-5 and TO-18 cases, use IERC's efficient LP's. Patented, staggered-finger design maximizes radiation and convection efficiency, radiates heat directly to ambient. Available in single or dual mounting for thermal mating of matched transistors.

IERC Therma-Link Retainers provide efficient thermal links between transistors and chassis or heat sinks. (Also, excellent dissipation when used on $\mathrm{p}-\mathrm{c}$ boards.) Integral BcO washers reduce capacitance up to $2 / 3$. Fast, no-snap installation; transistors are firmly held.

New! Dissipators and retainers for plastic and epoxy transistors. 3 new series for RO-97A, RO-97 and X-20's. Permit a jump of 10% to 33% in operating power.

Free 8-page short form catalog discusses IERC's complete line of dissipators, retainers and tube shields. Gives specifications, prices, how to order. Send for your copy today.

Special insulating coating - Insulube 448, a special non-hygroscopic finish developed by IERC, combines excellent dielectric propertics, 50 K megs insulation resistance, and high heat emissivity. Also protects against salt spray, fungus, ctc.

Tough heat dissipating problem? IERC engincers welcome your letterhead inquiry for specific information or assistance in selecting heat dissipators.

[^8]

Our MOX-1125. A rare specimen made only by Victoreen. With rare qualities in the $1-10,000$ Megohm range. Rated at 1.00 W $@ 70^{\circ} \mathrm{C}$. 5,000 volts maximum. Yet it's just . $130^{\prime \prime}$ in diameter by $1.175^{\prime \prime}$ long.
It's one of Victoreen's Mastermox metal oxide glaze resistors. About one-half the size of competitive resistors of similar power handling capacity.
All Mastermox resistors are rare performers. Excellent stability: As little as 1% drift under full load in 2000 hours - with more than 40 watts power dissipation per cubic inch. $\pm 0.5 \%$ tolerance. 10 K ohms to 10,000 Megohms resistance range. Voltage and temperature cycling leaves no permanent effect. And Mastermox stays potent on the shelf - less than 0.1% drift per year.
Get Mastermox. Rare resistor performance.

DMA 532

Master Specialties Co., 1640 Monrovia, Costa Mesa, Calif. Phone: (714) 642-2427. PA: \$28; 3 to 4 wks.

With segments that are comprised of a series of dots, a new line of 16 -segment plug-in alphanumeric readouts utilize fiber optics to provide 99.5% light transmission efficiency from the lamp to the readout face. Character height is 0.42 in . on the readout face, which measures $0.625-\mathrm{in}$. high by 0.75 - in. wide. Series 902 units come in six illuminated face colors.

CIRCLE NO. 338

Colorful indicators are one-piece units

Industrial Devices, Inc., Edgewater, N.J. Phone: (201) 943-4084.

Able to be easily mounted in $5 / 16$-in. diameter holes with pushon mounting nuts, Glo-Dot indicator lights are one-piece lens/body units with ratings of 6 or 12 V . This new series is available in five different lens colors: red, white, green, blue, and yellow. The units have built-in incandescent lamps, and $4-1 / 2$-in. long AWG \#24 insulated leads, which are prestripped $1 / 2 \mathrm{in}$. for rapid connection.

CIRCLE NO. 339

MINITAN . . . the world's smallest, proven microminiature solid electrolyte capacitor gives you the capacitance-to-volume ratios you've been searching for.
$\mathbf{7 5 \%}$ Smaller than equivalent CS13 Sizes I With Minitan you solve high density hybrid or thick film packaging problems without sacrificing performance. Polar and non-polar types from .001 to 220 ufd . . . working voltages to 35 volts . . . yet packaged in a case about the size of a pin-head - as small as . $100 \times .050 \times .040$.

Flexibility To Fit! 11 resin-sealed mylar case sizes . . . rectangular and tubular shapes . . . axial or radial leads. Easy-soldered nickel leads, as well as gold-plated kovar ribbon leads for maximum IC compatibility. Standard tolerances to $\pm 5 \%$.

Proven Reliability! 1,679,000 Life Test Hours @ $85^{\circ} \mathrm{C}$ with only one failure. 130% surge voltage rating. Operating temp. range from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. DC leakage typically less than . 01 UA per ufd - volt.

Specified for manned space flights - where reliability and performance count! Specified for micropackaged commercial computers, portable communications, thick film hybrids - where reliability and performance count.

Specify Minitan to solve your space problems. Write today-we'll rush data sheets, samples and documented proof of Minitan reliability. See EEM file system 1500.

If you don't find it here, give us a call.

SILICON RECTIFIERS

Ask about our many types of custom rectifiers and rectifier assemblies.

SEMICONDUCTOR DIVISION, 1000 N. SHILOH ROAD, GARLAND, TEXAS 75040 (214) 272-4551

Mercury-film relay undersizes TO-5 can

Ladder filter sells for $\$ 5.50$

FR Electronics Div., Flight Refuelliny Ltd., Wimborne, Dorset, Enyland.

Less than two-thirds the size of a TO-5 can relay, the Logcell $8210-$ 1 A spst relay uses mercury-film contacts to give bounce-free operation and stable contact resistance It is suitable for switching at very-low to medium-power levels, and can operate at radio frequen(ies up) to 50 MHz . When it is mounted in proper coaxial packaging, the frequency range can be extended to the $2-\mathrm{GHz}$ level.

CIRCLE NO. 340
Murata Corp. of America, 2 Westchester Plaza, Elmsford, N.Y Phone: (914) 592-9180. P\&A. $\$ 5.50$; ${ }^{\text {stock. }}$

Designed for communications and general-purpose applications. the model CFR-4550 $455-\mathrm{kHz}$ ceramic ladder filter, which sells for $\$ 5.50$, has a $3-\mathrm{dB}$ bandwidth of $\pm 7 \mathrm{kHz}$ and a $60-\mathrm{dB}$ bandwidth of $\pm 20 \mathrm{kHz}$. Maximum insertion loss is 5 dB , and both input and output impedances are $1.5 \mathrm{k} \Omega$. The unit operates over the full temperature range of -20 to $+60^{\circ} \mathrm{C}$.

CIRCLE NO. 341
Resistor modules are 8-lead DIPS

CTS of Berne, Inc., Berne, Ind. Phone: (219) 589-3111. Price: 744.

Compatible with standard monolithic DIPs, new eight-lead cermet dual-in-line resistor modules are now available for applications requiring seven or fewer resistors. Series 760 modules can be supplied with capacitor chips and/or active devices. Resistance tolerances are $\pm 2-1 / 2 \%$; temperature coefficient is $\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$; and resistances range from 50Ω to $1 \mathrm{M} \Omega$. Lead spacing is 0.1 in .

CIRCLE NO. 342
Legitron, 3118 W. Jefferson Blvd., Los Angeles, Calif. Phone: (213) 733-9105. $P \& A: \$ 5.50$: stock.

The DG-19 series eight-segment digital indicator provides a lowvoltage and low-power planar-readout device. Digits, symbols and letters are composed of phosphorcoated segments with clarity between digits at distances up to 40 feet. Different-color outputs and gridded design are available.

Instant Changes.

Revisions are easier with Kodagraph Wash-Off Films.

Here's a real bonus for draftsmen.

You don't need to retrace an entire drawing that needs only revision. A beautiful reproduction on Kodagraph Wash-Off Film can be made that includes only the unchanged areas. You merely draw the new details.

The improved drafting surface on these Estar Base Films takes pencil or pen nicely-holds up under repeated erasures. Photographic lines are wet erasable. Resulting diazo prints will be sharp and clean.

Ask your local Kodak Technical Service Representative to show you all the drafting shortcuts possible with Kodak Photo Drawing Systems. Or write Eastman Kodak Company, Business Systems Markets Division, Rochester, New York 14650.

DR AWING REPRODUCTION SYSTEMS BY KODAK

Capacitance trimmers
adjust incrementally

Consolidated Resistance Instruments, Inc., 44-46 Prospect St., Yonkers, N.Y. Phone: (914) 96.35900. $P \& A$: $\$ 7.50$ to $\$ 23$; stock.

Offering the performance of a decade in the size of a trimmer. three new incrementally adjustable precision capacitance trimmers cover the range of 1 to $100,000 \mathrm{pF}$ in $1-\mathrm{pF}$ steps. Models CT1, CT2 and CT3 consist of several shuntconnected silver mica capacitors, each in series with a microminiature screw-adjustable switch.

CIRCLE NO. 344
Patch thermocouples zig and zag along

Hy-Cal Engineering, 12105 Los Nietos Rd., Sante Fe Springs, Calif. Phone: (213) 698-7785.

Designed for making accurate surface temperature measurements, series TC 2345 patch-type thermocouples feature an unusual zig-zag configuration to compensate for normal temperature losses through lead wires. They are supplied encased in H-Film for protection, and with a special pressure-sensitive silicon adhesive backing for quick and easy mounting.

15 nano-second memory...

there's a lot behind it

For one year we have been quietly mobilizing the industry's most capable semiconductor memory team. Personnel from all disciplines to design, assemble, test and volume produce the fastest, most reliable memory systems.

Here are the results:

1. Our memories are the world's fastest -15 nsec. access and 10 nsec. cycle times.
2. Our designs are pre-evaluated and optimized by computer simulation.
3. Our chips are individually packaged in proven, low-cost, ceramic Dual-InLine packages and mounted on standard P/C cards.
4. Our cards are fully functional and incorporate our own logic support circuits to enhance system performance and minimize overhead circuit requirements.
5. Our quality is verified every step of the way by computerized testing that performs up to 5000 tests $/ \mathrm{sec}$. on the chip, the packaged devices, and the modular assemblies.
6. We are now in production.

We design our memories to be modularly expandable and we supply them in ECL and TTL compatible configurations. Our products reflect total capability...The kind of capability that puts a lot behind us, including the competition.

Our first series of modular cards is now available. To order :

	Price: (1 to 9)	ECL Compatible	TTL Compatible*
32×8	$\$ 768.00$	AMS 0328E	AMS 0328T
32×9	$\$ 845.00$	AMS 0329E	AMS 0329T
"Delivery on TTL-one month.			

You can count on Optron for high interest and undivided attention to your most exacting optoelectronic device requirements. And, you'll get product design, development and manufacturing benefits that only Optron experience can offer.

For example, through continuous process monitoring made possible by the use of diffusion lot traceability, Optron maintains the highest possible reliability. Still other special Optron manufacturing techniques make possible optimum device performance in variable light and temperature conditions. You get sensors with a lens/device relationship previously thought impossible.

Versatile OP 600 Series NPN planar silicon light sensors eliminate cross-talk and are ideally suited for high density arrays. In addition, these small, rugged devices will satisfy virtually any application requirement in optical character recognition. But, if your application isn't standard, you'll especially like Optron's fast reaction to your custom programs, too.

1201 Tappan Circle Carrollton. Texas 75006 214/242-6571

Analog multiplier can modulate too

Hybrid Systems Corp., 95 Terrace Hall Ave., Burlington, Mass. Phone: (617) 272-1522. P\&A: \$55; stock to 2 wks.

Without using external trimming or components, the model 107 transconductance analog multiplier can multiply, divide or find square roots with a 1% accuracy. With the addition of a single potentiometer, the null of the unit can be reduced to 0.1%, allowing it to be used as a modulator. Bandwidth is 400 kH and full-power response is 100 kH .

CIRCLE NO. 346

Chopper op amps hold $0.5 \mathrm{pA} /{ }^{\circ} \mathrm{C}$

Burr-Broun Research Corp., International Airport Industrial Park, Tucson, Ariz. Phone: (602) 2941431. $P \& A: \$ 49$ to $\$ 89$; stock.

Three new chopper-stabilized operational amplifiers offer tempera-ture-drift performance as low as $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for voltage and 0.5 $\mathrm{pA} /{ }^{\circ} \mathrm{C}$ for current. In addition, noise is low ($2 \mu \mathrm{~V}$ pk-pk from 0.01 to 10 Hz) to ensure a minimum of input uncertainty for dc and low-frequency signals. The three models are types 3291/14, $3292 / 14$ and $3293 / 14$.

CIRCLE NO. 347

Wideband amplifier slews at $1000 \mathrm{~V} / \mu \mathrm{s}$

Intronics, 57 Chapel St., Newton, Mass. Phone: (617) 332-7350. P\&A: \$122.50; stock.

Designed for high-frequency inverting applications, a new operational amplifier will drive loads of $\pm 50 \mathrm{~mA}$ to $\pm 10 \mathrm{~V}$ while slewing at $1000 \mathrm{~V} / \mu \mathrm{s}$. Model A501 offers a wide bandwidth of 100 MHz and operates over a temperature range of -25 to $+85^{\circ} \mathrm{C}$. Minimum openloop gain is 500,000 , and output short-circuit protection is standard. The unit occupies 0.87 cubic inches.

CIRCLE NO. 348

High-voltage op amps slew at $50-\mathrm{V} / \mu \mathrm{s}$ rate

Analogic Corp., Audubon Rd., Wakefield, Mass. Phone: (617) 246-0300. $P \& A: \$ 90$ or $\$ 99.50$; 2 to 3 whs,

With a slewing rate of $50 \mathrm{~V} / \mu \mathrm{s}$, the AN290 operational amplifier settles to 0.01% in $25 \mu \mathrm{~s}$ for a $200-\mathrm{V}$ step input, while the AN291 op amp settles to a 0.01% in 50 $\mu \mathrm{s}$ for a $300-\mathrm{V}$ step input. The first unit is a $100-\mathrm{V}$ inverting amplifier, and the second is a $150-\mathrm{V}$ follower amplifier. Both devices are short-circuit proof to ground and operate from 0 to $60^{\circ} \mathrm{C}$.

CIRCLE NO. 349

Our new dry test bath is getting a great reception

This should give you a pretty clear picture of what Fluorinert " Brand Electronic Liquids are all about.

They give you a dry test bath for temperature and gross leak testing of electronic and microelectronic units and integrated circuits. They detect flaws and leaks with great accuracy . . . and are efficient over a wide range of temperatures.

Fluorinert Liquids have high dielectric strength... which means you can safely test on-circuit. They do not react with the most sensitive of materials . . . which means you can test about anything.
Fluorinert Liquids drain clean, dry fast and leave no messy residue. You can use and ship units directly out of the test bath. without cleaning.

In fact, Fluorinert Electronic Liquids are now approved for the MIL-Standard 883 and the MIL-Standard 750A gross leak tests for microcircuits.

We have lots more information about this remarkable new test bath. The coupon will bring it all or call your local 3 M representative.

Fluprinert Electronic Liquids 3m

3M Company, Chemical Division, 3M Center
St. Paul, Minn. 55101
Send me all the details about Fluorinert Brand Electronic Liquids.
\qquad
Company Title -
Address

Small wonder!

New air variable capacitors only $0.310^{\prime \prime}$ in diameter for vertical or horizontal tuning.

Johnson introduces these new Type " T " subminiature air dielectric capacitors for trimming applications that call for small size ($0.310^{\prime \prime}$ diameter), high Q (greater than 1500 at 1 mHz), low TC, and low cost. Mounting dimensions of vertical mount " T " are identical to common $3 / 8^{\prime \prime}$ diameter PC mount ceramic disc trimmers.
Nominal capacities available range from 1.3 pF minimum to 15.7 pF maximum. Minimum voltage breakdown is 250 VDC. End frame is 95% alumina, grade L624 or
better, DC200 treated. Metal parts are silver plated and Iridited to inhibit discoloration.

Plates are precision machined from brass extrusions and offer exceptional uniformity, stability, and absolute freedom from moisture entrapment. Temperature coefficient is plus $30 \pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Retrace characteristics are excellent. Outstanding stability during vibration from 10 to 2000 Hz . These new capacitors meet or exceed EIA-RS 204 and MIL Standard 202C Methods 204A and 201A.Please rush a sample of your new Type "T" capacitors, detailed specs and prices.Include Catalog 701 covering the entire E. F. Johnson component line.
}

NAME \qquad TITLE

FIRM ADDRESS
\qquad
CITY STATE P.

E. F. JOHNSON CIMPANY

3302 Tenth Avenue S. W.. Waseca, Minnesota 56093 Providing nearly a half-century of communications leadership

Miniature supply powers 10 op amps

Datel Corp., 943 Turnpike St., Canton, Mass. Phone: (617) 828-1890. P\&A: \$59; 2 wks.

Designed for powering linear integrated circuits, a new miniature dual dc power supply can drive up to 10 operational amplifiers with its $\pm 15-\mathrm{V} \quad 50-\mathrm{mA}$ output. Model UPM 15-50 is completely self contained and includes an input isolation transformer. It can mount directly on printed circuit boards with $0.5-\mathrm{in}$. centers. Output noise is 1 mV rms .

CIRCLE NO. 350
Regulated supplies cost just \$19.95
 Merrimac St., Woburn, Mass. Phone: (617) 935-5200. Price : $\$ 19.95$.

Selling for only $\$ 19.95$ in singleunit quantities, series LCD dualoutput power supplies provide ± 6, ± 12 or $\pm 15 \mathrm{~V}$ at 25 mA . Models P2.6.25. P2.12.25 and P2.15.25 have a maximum line regulation of 0.05%, and a maximum load regulation of 0.2% from 0 to 100%. Their ripple and noise are less than 2 mV pk-pk; temperature coefficient is $0.02 \% /{ }^{\circ} \mathrm{C}$ maximum from -25 to $+71^{\circ} \mathrm{C}$.

CIRCLE NO. 419

Print 63 characters per second

INFORMATION RETRIEVAL NUMBER 94

TWONEW BELI RNEERSR FroM Deita

DELTALERT... Your night watch-

 man for pennies a month!Delta introduces its all new ultrasonic silent sentry, the total motion detection, intrusion and monitoring alert system. The system plugs into any wall outlet. It also features variable sensitivity control and adjustable timing which provides the most advanced sentry system on the market.

SPECIFICATIONS:

Ultrasonic Frequency: 35 KHZ \triangle Area Coverage: 15-30 feet (depending on shape of area) \triangle Controls: On-Off Switch; Bullt In Timer; Variable Sensitivity Control \triangle Output: 110-130V at 1 Amp. Δ Power Requirements: 110-130V,
 plete with 110-130V Drop Cord Δ Walnut designer finish.
For Complete Unit, Ready to UseONLY \$59 9 ppd
DELTA PRODUCTS, INC.
P.O. BOX 1147 • GRAND JUNCTION, COLORADO 81501 PHONE: (303) 242-9000

HIGH VOLT ANALYST tune your

 car like a pro.Delta's new concept in automotive tuneup. The High Volt Analyst, is a unique and complete auto analyzer which provides all the primary advantages of a scope and is completely portable.

SPECIFICATIONS:

Accuracy - Tachometer $\pm 2 \%$ of full scale (all ranges) - Dwell Meter $\pm 1 \%$ (both ranges) - OHMS Scale $\pm 5 \%$. Low Voltage $\pm 2 \%$ of full scale. High Voltage $\pm 5 \%$ of full scale \triangle General - Fully protected meter clicuit* - Size: $6^{1 / 2} 2^{2} \mathrm{~W} \times 8^{\prime \prime} \mathrm{H} \times 31 / 2^{\prime 2} \mathrm{D}$. Weight: $3^{33 /} \mathrm{lbs} . \Delta$ Ranges -DC Volts $0-15 \mathrm{~V}, 15 \mathrm{KV}$ and 45KV-OHMS: $0-1$ Meg. (10K center scale) - Dwell: 4, 6 and 8 cyllinders - Tachometer: $0-1500$ RPM, 6000 RPM
*Batteries (8 Type AA cells) included. Comes complete with standard lead set.
a special probe. and high tension lead.

DELTA: Please send me literature immediately.
I am enclosing \$ \qquad
\square DELTALERT
\square High Volt Analyst, Assembled
\square High Volt Analyst, Kit form for items checked.

Please ship immediately.
Name
Address
City / State Zip

COMPARE closevips

specify Johanson.
Look at the obvious ... Johanson craftsmanship - 24 Kt . gold plating, watchmaker's precision machined parts and handcrafted assembly and soldering just not available in other trimmers. This built-in quality means you get superior performance characteristics .. 16 pF in a 10 pF package, Q greater than 5000 at 100 Mz , a temperature coefficient of $0 \pm 15 \mathrm{PPM}^{\circ} / \mathrm{C}$, with tuning stability and long life.
Why settle for ordinary trimmers when the best is available - send today for our new catalog sheet on our $\mathbf{5 2 0 0}$ series and start comparing.

MANUFACTURING CORPORATION
< INFORMATION RETRIEVAL NUMBER 135

Sprague Electric Co., Semiconductor Div., 347 Marshall St., North Adams, Mass. Phone: (413) 6644411.

Series UM-1400 Moduline digi-tal-to-analog converters are packaged in a modified plastic dual-inline case. The basic UM-1400 module is a four-bit d/a converter that contains a buffer amplifier, ladder network and a ladder switch. The UM-1450 is a set of three Moduline assemblies which gives an over-all accuracy of one-half the least significant bit at 12 bits.

CIRCLE NO. 420
Hewletl-Packard, 150 Page Mill Rd., Palo Alto, Calif. Phone: (415) 326-ז000. Price: $\$ 640$.

Costing as little as $\$ 365$ per channel, a new data amplifier provides switchable gains (1 to 1000 in decade steps) and switchable bandwidths (10 or 100 Hz , and 1 , 10 , and 50 kHz). Model 2471A has a gain accuracy of $\pm 0.01 \%$ of output, a common-mode rejection of more than 120 dB from dc to 60 Hz , a drift of $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, and noise of $5 \mu \mathrm{~V}$ rms at full bandwidth.

CIRCLE NO. 421
Digital counting unit can be seen for 150°

Datel Corp., 943 Turnpike St., Canton, Mass. Phone: (617) 8281890. P\&A: \$59; 2 wks.

Powering up to 40 DTL dual quad gates, a new miniature dc power supply measures only 1×2 $\times 0.4$ in. The BPM 5-300 has an output of 5 V at 300 mA and regulates to $\pm 0.05 \%$. It mounts on PC boards having $0.5-\mathrm{in}$. centers and is short-circuit and overvoltage protected. It operates on 115 V ac and has low noise of 1 mV rms .

CIRCLE NO. 423

Accurate data amplifier selects gain and band

Varitron Corp., P.O. Box 2594, St. Louis, Mo.

A new digital counting unit, which can be incorporated into any digital system, uses a readout tube that displays the accumulated count as a green high-visibility numeral, which can be read at angles up to 150°. Multiple units can be mounted in combination and wired in cascade to allow counts as high as desired. The new counter is available as a one-piece subassembly or as a plug-in card for a 15-pin card socket.

CIRCLE NO. 422 Modular power supply measures only 0.8 in. ${ }^{3}$

MODEL BPM
D.C, POWER SUPPLY
POWER MITE
SERIES

So what if Grant Slides save hours of down time?

Is there a quicker, more efficient way to get to a fault location than by immediate and smooth extension of the unit for simple, fast oneck-out?

Would you guess the saving: from being able to keep equipmen connected (and in-operation) while maintenance takes place?

What's it worth if slides enable equipment to be serviced in half -or less than half the time it ordinarily takes bolting and unbolting, fastening and unfastening?

Virtually every product can use the ready access provided by Grant Slides. There are thousands of types, styles and sizes available.

Slides that tilt, lock, extend and lock and perform dozens of other functions. Undoubtedly, there's a Grant Slide that can help make your product better too.

Write for complete data.

21 HIGH STREET, WEST NYACK, NEW YORK 10994 WESTERN DIVISION: 944 LONG BEACH AVE., LOS ANGELES, CALIF. 90021

THE GIANT KILLERG

REGULATED and UNREGULATED DC POWER SUPPLY ENCAPSULATED MODULES

Here's a sampling:

REGULATED

3.6 VDC @ 250 MA to 180 VDC @ 10 MA

PM 529B 5V @ 250 MA - \$33.95*
PM $551 \pm 15 \mathrm{~V}$ @ $65 \mathrm{MA}-\$ 34.95^{*}$
PM $555 \pm 15 \mathrm{~V} @ 100 \mathrm{MA}-\$ 43.95^{*}$
Single and dual output
Typical line/load reg. $\pm 0.04 \%$
Typical temp. coeff. $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$

UNREGULATED

5 VDC to 45 VDC up to 440 MA output current
PM 810 5V @ 400 MA - \$13.40*
PM 830 16V @ 165 MA - \$12.40*
PM 836 25V @ 100 MA - \$12.40*

* 10-29 Quantity Prices

Computer Products, Inc., P.O. Box 23849, Ft. Lauderdale, Fla. 33307
Phone: 305/565-9565

\oplusGOMPUTER PROOUCTS
FORT LAUDERDALE

SWITCH/INDICATORS

Alternate Action

1,000,000-cycle reliability!

Push-on, push-off! Two circuit dri-reed switch for controlling separate circuits. When button-lens is depressed, one circuit is closed, the other opened Button stays down until pressed again.

Has front-replaceable midget flanged base incandescent lamp. Match-mated with other TECLITE indicators for panel design harmony. Available in 14 lens colors. Rear Mounts in $3 / 8$ " hole on centers as close as $\frac{19}{12}$ ". Contact rating: 12 volt amp. As low as $\$ 4.90$ in quantities of 100-499.
For more information on ABL-ABS switch/indicators - or any part of our complete line of display/control products and systems - write: TEC, Incorporated, 6700 So. Washington Avenue, Eden Prairie, Minnesota 55343. (612) 941-1100.

INFORMATION RETRIEVAL NUMBER 98

Think ELFIN-the new single plane, segmented neon readout indicator that provides brighter displays arid wider viewing. Only 0.41" dia. ELFIN display 0-9, + and -, some alpha symbols and decimal.

The MS-4000 Series has new readouts added to include numeric and symbol indications. Each model is a miniature encased readout with the flat single-plane viewing, and uses $100,000 \mathrm{hr}$. \#683 T-1 subminiature lamps. Plug-in feature expedites replacement. Photograph above shows five MS-4000 readouts used with a module mounting and bezel kit.

ALCO's RK numeric and symbol readouts have a unique in-line design to provide clear displays without focusing problems. The precision machined 1-piece aluminum case also serves as a heat sink.

The MS Mosaic numeric segmented indicators are available in 2 sizes and use either 6 14 or 24V lamps for flezibility in design.

Solder/desolder tool accepts up to 85 tips

W.T.O./Aquatemp Co., Box 352, Fort Lee, N.J.

Featuring quick-changing slidein tips, a new soldering tool accepts up to 85 different soldering tips. Model M-64 accepts such tips as chisels, conical points and special bevels with no screws or set pins. With the tip removed, it can be used as a single-shaft desoldering tool, shrinking tubing with puffs of heat. It is available up to $500^{\circ} \mathrm{C}$-versions with some models weighing as little as 1 oz .

CIRCLE NO. 426
Technical Devices, 1402 Norman Firestone Rd., Goleta, Calif. Phone: (805) 684-2413. Price: \$44.

Designers, engineers, scientists, model makers, artists, architects, sign makers and craftsmen will find a number of uses for the new Model Machine plastic foam-cutting device. It cuts plastic foam, such as Styrofoam up to 6 in. thick, with ease and accuracy. The cutting wire does not vibrate, saw or move, since it works by melting a fine cut through the material.

CIRCLE NO. 427
Two connector tool kits insert/remove contacts

Foam cutting machine multiplies its uses

Jonard Industries Corp., Precision Tools Div., 3047 Tibbett Ave., Bronx, N.Y. Phone: (212) 5497600. Price: $\$ 39.50, \$ 51.50$.

Only two tool kits, numbers KA260 and KR-260, enable the insertion and removal of contacts for most connectors. They insert and remove contact sizes \#12, \#16 and \#20. For ease of identification, tools are color-coded for different contact sizes. Each tool has a protective probe guard and meets federal and military specifications.

CIRCLE NO. 428
Technical Specialties International, Inc., 420 First Ave. West, Seattle, Wash.

A complete quality-control inspection set has a range of probes, each with a medical-type lamp powered by two $1.5-\mathrm{V}$ batteries in a handle. It consists of straight, angled, rigid and flexible probes, each producing a patch of light to be used in conjunction with a slipon magnifier and mirrors for close inspections. A hook and magnet for parts retrieval are also provided.

CIRCLE NO. 429

- INFORMATION RETRIEVAL NUMBER 101

Lighted-probes QC kit enhances inspections

What do you need in Multi-Conductor Cable?

$\sqrt{\text { ictor }}$

will make it.
Get exactly what you need in multiconductor cable. We'll design and produce multi-conductor cable to meet just about any individual requirement.

We have the plant, the equipment, the personnel and the knowhow to solve your particular problem.

YOUR WARRANTY SHOULD PROTECT YOU... AS WELL AS YOUR CUSTOMER

And a calendar can't do this!

A calendar is an old-fashion and extravagant way of warrantying your product. It's usage that counts-and we count usage.
An ENM elapsed time indicator records actual hours of usage-from minutes to thousands of hours. And it can do this for as little as $\$ 6.00$ a unit. (Think of what this can save you!)

One customer's week could be another customer's year.

ELAPSED TIME INDICATORS IN STOCK

Model T4B - Miniature use-time indicator. Scale to 9999.9 hours, with tenths in red. Nonreset. 110 V., 60 hz . Pan el or bracket mount $1.59^{\prime \prime}$ wide.

T30A-Choice of hours minutes or seconds scale-4 or 5 digitstenths in red. Push button reset. 115 V., 60 hz . Universal bracket mount. 3.0" wide

Model T5BB-Economi cal use-time indicator Scale to 9999.9 hours with tenths in red. Nonreset. 110 V., 60 hz . Panel mount. 2.88" dia.

T3B-Double scale usetime indicator 99,999.99 hours total time and reset time Tenths in red, hun. dredths with sweep hand. Reset scale knob resettable. 115 V ., 60 hz Panel mount. 1.87" square.

Many other standard elapsed time indicators carried In stock. Specials to fit your requirements. OEM discounts available. Also complete lines of electrical, mechanical and predefermined counting devices. Send for new 4page Condensed Catalog and Price List 69A.

WRITE OR PHONE FOR DETAILS.

5306 W. Lawrence Ave. • Chicago, III. • 60630 • (312) 282.8787 Representatives in Principal Cities
Stocking Distributors: W. W. Grainger Co. \& Newark Electronics

The original miniature ALCOSWITCH ${ }^{\circledR}$ has been the engineer's 1st choice for contemporary front panel designs.

When most every one was working with conventional switches of the 1930's, ALCOSWITCH ${ }^{\circ}$ introduced the concept of mass-produced switches compatible with the new technology of miniaturization.
Ulitra-miniature in size, the original ALCOSWITCH ${ }^{\circ}$ combines high current capacity and exceedingly long life into a $1 / 2$ " size case. Contacts are solid silver and the phenolic body has high voltage barriers between terminals and contacts.

Since its introduction the original ALCOSWITCHO has withstood the test of time, where today it is the "most-asked-for" miniature switch.

This broad line of miniature switches includes toggles, push buttons and rotaries, all available in one, two, three and four pole in a single case construction.

ELECTRONIC PRODUCTS, INC. Lawrence, Massachusetts 01843

Evaluation samples

Chip capacitors

A sample packet of a ncw size of ceramic chip capacitors is now be-. ing offered as a free evaluation sample. The new chip measures $0.23 \times 0.21 \mathrm{in}$. and will replace the old $0.23 \times 0.23-\mathrm{in}$. size. Capacitance ranges from 1200 to $470,000 \mathrm{pF}$ with capacitance tolerances of $\pm 5, \pm 10$ or $\pm 20 \%$. Standard voltage ratings are 50 V dc at $125^{\circ} \mathrm{C}$ and 100 V dc at $85^{\circ} \mathrm{C}$; operating temperature range is -55 to $+125^{\circ} \mathrm{C}$. The new chips are available in both NPO and generalpurpose dielectrics with noblemetal terminations. Vitramon Inc. CIRCLE NO. 430

Self-sealing bags

Kwik-Seal automatic-seaiing corrugated bags are constructed of single-faced corrugated cardboard with adhesive-coated flaps. Their corrugated construction furnishes shock absorbing ribs for maximum protection with minimum weight, while their self-sealing flap ends the need to staple bags closed. The new bags, which are supplied in 10 basic sizes, can hold almost any shape, thereby making their usage universal. Free evaluation samples are available. United States Box Crafts, Inc.

CIRCLE NO. 431

Spring-like packing

A new type of Teflon TFE plastic V-ring packing offers good sealing characteristics and long life due to its unique spring-action design. Series 6225 self-energizing lip-type rings have a 12-degree differential angle between the slopes of the top and bottom surfaces. When stacked and compressed, they demonstrate a controlled degree of springiness, expanding evenly for efficient sealing and long life. The rings can withstand operating temperatures to $500^{\circ} \mathrm{F}$, remain flexible at low temperatures, neither age-harden nor flex-crack, and do not corrode metal parts. Free evaluation samples are available. Chicago Gasket Co.

CIRCLE NO. 432

Stick-on signs

Self-adhesive weather-proof emblems in a choice of co-ordinated sizes and designs for use on large, medium and small equipment are now available as free evaluation samples. These signs are printed on pressure-sensitive vinyl or Mylar in a choice of more than 11 colors. They eliminate the expense of specialized painting labor, and the cost and time involved to have equipment lettered. They are washable, will not wrinkle or buckle, and resist oils, solvents and acids. Seton Name Plate Corp.

CIRCLE NO. 433

Does the work of relays twice its size.

Its applications are practically unlimited - this series MK medium power General Purpose Relay. A versatile little fellow who wears so many hats. For instance, he comes open, hermetically sealed, or enclosed in plastic dust covers made of Styrene, Butyrate, Polycarbonate-clear, translucent and opaque. Colors? A variety at no extra charge.

And in the matter of mounting you have four choices of terminals: solder lug, plug-in, printed circuit and . 110 snap-ons. For chassis mounting - studs on side or base.

As you can see, it's a real space-saver. Yet electrically it stands "ten feet tall" with 5 and 10 amp. load contacts (AC \& DC) and sensitivity down to 60 Milliwatts per pole DC ideal for plate circuits.

Even the contacts are varied: Fine Silver or Silver Cadmium Oxide (gold flashed), Gold diffused in addition to 1, 2, and 3 PDT combinations. With a few extras like spotlights to indicate coil state and a true 10 amp . socket which can be used for PC boards, also solder terminals for .110 snap-ons.

And to top it off, this little giant has U.L. No. E36213.
About the price - as low as $\$ 1.60$ in quantity. For a prototype, please specify coil and contact requirements.

Confronted with a variety of Integrated Circuits to be tested? Enter Barnes versatile RD-86 Universal Mating Connector. Quick as a wink, you can insert a Barnes socket . . . for TO's . . . for DIP's . . . or for flatpacks. RD-86 Mating Connectors permit rapid interchange of sockets for maximum test flexibility. Features include positive polarization, wiping type contacts and $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ or $200^{\circ} \mathrm{C}$ operating ranges. Write or call us for complete information. Lansdome, Pa. 19050•215/MA2-1525
barnes / THE FIRST WORD IN CARRIERS, CONTACTORS AND SOCKETS FOR I.C.'S

INFORMATION RETRIEVAL NUMBER 106

- Operating temperature from $-55^{\circ} \mathrm{C}$ to $310^{\circ} \mathrm{C}$
- Low dissipation factor
- Good insulation resistance
- Resist radiation
- 100VDC to 10,000VDC

Because of their high energy density, the GLA Series of high voltage, high temperature mica paper capacitors are available in extremely small volumes. To suit specific application needs, these units are custom designed in epoxy housings, metal encased and uncased. They are constructed to meet the most stringent military specifications. Write or call today for comprehensive technical bulletin.

GENERAL LABORATORY ASSOCIATES, INC.

Norwich, New York 13815. Telephone: 607-334-3264 a subsidiary of Simmonds Precision

Design Aids

Transistor charts
Chock full of charts, tables, and curves, a new 12-page design aid entitled "Economy Transistors" cross-references transistor type designations, specific direct replacements, preferred types, and nearest equivalents for easy simple selection by design engineers. Specifically, this guide details the Silect line of low-cost transistors, which includes plastic-encapsulated silicon bipolar transistors, unijunction transistors, and fieldeffect transistors. In addition, an applications section shows recommended device uses and lists electrical parameters. Texas Instruments Inc.

CIRCLE NO. 434

Lettering wall chart

A convenient wall chart provides a handy reference guide to many styles and sizes of dry transfer lettering and symbols. Engineers, draftsmen, artists and others will find the chart a great time-saver when in need of a direct and simple selection guide. Tactype Inc.

A good news for VHF-UHF designers!

N E W
 Tunable non-reciprocal circuit elements

TDK HEXALATORS - new type circulators-come in 5 models for 3 tunable frequency ranges covering the region from 100 to 600 MHz . Add a simple matching circuit (capacitors) to each port: that's all you have to do to select your frequency.
HEXALATOR's gyro-magnetic component uses TDK ferrite and is very low in impedance - a feature that places HEXALATOR above other lumped-element parts. Small in size 3.3 cm and 4.2 cm). Easy to mount and connect. Usable even as isolators. TDK and ferritetogether the two never go wrong.

Tunable frequency range(MHz)	Model	Power (W)	Typical attenuation (band center)	
			Insertion loss (dB)	Isolation (dB)
	CU311A	30	<1	>20
	CU312A	50	<1	>20
$200 \sim 400$	CU321A	30	<1	>20
	CU322A	50	<1	>20
$300 \sim 600$	CU331A	30	<1	>20

HEXALATOR is the latest development from the joint research work of NHK Technical Research Laboratory and TDK, and based on the NHK patents (US 3335374 \& Japan 498885)

Write to MH\&W for full technical data and information on applications Representative in U.S.A \& Canada for Ferrite Core for Communications MH\&W INTERNATIONAL CORPORATION
280 Midland Avenue, Saddle Brook, N.J. 07662
Phone: (201) 791-6277 (212) 244 -0695

TDK ELECTRONICS CO., LTD.
2.14.6 Uchikanda. Chiyoda-ku, Tokyo Japan.

MINIATURE

 POWNER

CHASSIS-MOUNT TYPE • NEW LAMINAR DESIGN • LOW PROFILE • 50% REDUCTION IN SIZE AND WEIGHT • COMPLETELY NON-INDUCTIVE • T.C.: 50 PPM/ ${ }^{\circ} \mathrm{C}$ • RESISTANCE TOLERANCE: $\pm 1 \%$

Madel No.	Pawer Ratingt	Max. Valtage	Diel. Str.	High Temp.TC	Resistance Range	Terminals
MP311	15 Watts	300	600	50	$50 \Omega-200 \mathrm{~K}$	$12^{\prime \prime}$ Min Teflon Leads $26 A W G 7 x 34$
MP312	15 Watts	300	600	50	$10 \Omega-200 \mathrm{~K}$	Gold Plated Solder Lugs

\dagger Power rating based on chassis mounting - MP311 and MP312 on $6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime} \times .040$ aluminum chassis
\ddagger TC. $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Referenced to $25^{\circ} \mathrm{C}, \Delta \mathrm{R}$ taken at $+150^{\circ} \mathrm{C}$ and $+275^{\circ} \mathrm{C}$. (Low temp. TC will be nominally - $85 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ at $-55^{\circ} \mathrm{C}$. See typical R.T curve.)

Resistance Tolerance: $\pm 1 \%$ standard (Other tolerances on special order.)
Insulation Resistance: 10.000 Megohms, dry. Method-Mil•R-18546D, para. 4.6.8
Solderability: Per Mil-R-18546D, para. 3.7, para. 4.6.4
Terminal Strength: Per Mil.Std 202. Method 211, Cond. A (Pull Test), 5 lbs., and Cond. B (Bend Test). Max. $J R$, 2% or 2Ω, whichever is greater
Thermal Shock. Per Mil-R.18546D para 469 max \triangle R 5% or 20, which Thermal Shock: Per Mil-R. 18546 , para 4.69 max. $\Delta R, 5 \%$ or 2Ω, whichever is greater
Momentary Overload: 2 times rated power or 1.5 times max. allowable working voltage whichever gives the lower power, for 5 seconds. Max. $\Delta R, .5 \%$ or . $2!$, whichever is greater
Moisfure Resistance: Mil-Std-202, Method 106B, less steps 7a and 7b, max. Δ R, 5% or . 2Ω, whichever is greater
Life: Per Mil-R-18546D, para. 4.6.12, 1,000 hrs. Max. $\Delta R, .1 \%$ or $.2!$, whichever is reate
Shoch, Medium Impact: 50G, per Mil-Std-202, Method 205, Cond. C
Vibration, High Frequency: Per Mil.Std-202. Method 204. Cond. B. Max. Δ R, 2% or .2s!, whichever is greater, through shock and vibration sequence.

Application
 Notes

Noise figures

A four-page brochure describes the value of noise figures as a tool in specifying the proper amplifier for a given low-level signal source. It provides specific examples of four typical amplifier matching problems, selection of the right preamplifier. determining optimal operating frequency and source resistance, approximating minimum detectable signals, and determining equivalent input noise resistance. Briefly described are the sources of amplifier noise, and a method for its experimental determination. Princeton Applied Research Corp.

CIRCLE NO. 436

Computer corrosion

Corrosion control in computer facilities is the subject of a 12 page technical bulletin. The report briefly reviews the use of environmental control systems for removing gaseous pollutants and/or toxicants from corrosive interior atmospheres affecting computer operations. The systems discussed utilize an air purification medium -a blend of permanganate and activated alumina in pellet-formthat absorbs, adsorbs and oxidizes corrosive impurities in air passed through filter beds of pellets. BorgWarner Corp., Marbon Div.

CIRCLE NO. 437

Infrared detectors

"Technical Communications" volume 10 , number 93 , is a 120 -page publication containing articles about systems that use infrared detectors. The 8-1/4 $\times 11-3 / 4$ maga-zine-style publication is fully illustrated with charts, drawings and diagrams on a wide range of infrared detectors for designers of such systems as fire alarm (flame-detector), heat locator and closedcircuit television. Mullard, Inc.

CIRCLE NO. 438

Diode design

Opportunities for improving discrete diode designs by means of multi-functional diode assemblies and monolithic arrays are outlined in a 24 -page designer's guide. It shows how the multiple diode design approach achieves better performance at less costs, using standard or custom-mode products. Presented are several diode charts with electrical parameters, thermal ranges and matching data needed for the evaluation of assembly and array designs. Also included are typical applications and schematic drawings. Fairchild Semiconductor

CIRCLE NO. 439

Storage tubes

"Extending Storage Time" is the title of a brochure with information on direct-view display storage tubes. It includes discussions on ion charging, means of extending storage time and flood-gun pulsing. Also discussed is periodic viewing, ion balancing and storage field compensation. A glossary of storage-tube terms is also included. Hughes Aircraft Co., Vacuum Tube Products Div.

CIRCLE NO. 440

Silicon wafer defects

The various defects occurring during epitaxial growth on silicon and their possible causes are discussed in a six-page article. The defects are described and classified into groups. The brochure contains several photographs of surface growths and defects of silicon wafers. Hacker Instruments Inc.

Metallizing ceramics

Low-temperature metallizing processes for alumina ceramics and other dielectric materials is described in a nine-page brochure. The processes are for plating nickel on non-conductive materials. Materials considered include alumina, beryllia, magnesium-oxide, steatite, barium titanate, ferrites and organic polymers. The compositions of reagents used are described and the plating process are detailed. The processes described present a new approach to the formation of conductive electrodes in microcircuitry and other important applications in electronics. Other means for metallizing are compared with the new metallizing processes. Transene Co., Inc.

CIRCLE NO. 442

Passive repeaters

A 24-page engineering manual on passive repeater systems gives an extensive treatment to these reflectors of microwave energy. The text regards the antenna and passive repeater as effective point sources of radiated power and as a function of aperture and direction. This theoretical discussion is amply spiced with curves, equations. illustrations and tables. Microwave Systems Co.

CIRCLE NO. 443

Energy capacitors

A four-page technical bulletin describes applications for a line of energy discharge capacitors. The bulletin provides curves, charts and formulae to aid in the selection of the proper energy discharge capacitor. In addition, information is provided on an expanded listing of standard units as well as a check list of data required when ordering special units. Aerovox Corp.

That's our Molex MiniConnector. It's doing big things. Like saving assembly steps. And time. And money. Getting wiring in place with greater production efficiency and operational integrity than you might think possible. Our business is creating these mini-devices to meet your system requirements. We take it seriously. And have the facilities, design capabilities, know-how and everything it takes to produce economical connections . . . fast!
If you would like a free sample of our MiniConnector, please write. If you would like a sample of performance, you can make connections by calling (312) 969-4550

Resins and epoxies

A new series of illustrated technical bulletins enable the user to choose the best resin-catalyst combination for his application. Typical applications include large embedments and encapsulations such as power transformers, delicate electronic component encapsulations and dip coats for small electronic components. Various cured properties of these resins are listed in the technical bulletins. Emerson \& Cuming, Inc.

CIRCLE NO. 445

Thyristors

The reliability and performance of plastic encapsulated thyristors are covered in a 24 -page reliability report. The report covers blocking and operating life, thermal and mechanical stress and corrosion and moisture resistance. It also shows solderability and lead-bend tests that are performed to a wide range of military-specification conditions. Also included are product specifications for planar thyristors. Transitron Corp.

CIRCLE NO. 446

Silicon carbide rectifiers

Silicon carbide rectifiers operating at double the temperature and ten-times the radiation that disable conventional silicon rectifiers are covered in a four-page booklet. The illustrated publication gives design parameters and electrical properties of these rectifiers. It discusses elimination of their overvoltage spikes, encapsulation designs and radiation resistance and includes graphs which illustrate their properties. Westinghouse Astronuclear Laboratory.

Lafayette catalog

The new 112-page 1970 Lafayette Radio catalog 702 is now available. It features the latest in high-fidelity components, systems and citizens-band equipment. Also included are portable radios, audio lights, stereo tape recorders, televisions and test meters. Other featured new items are cassette and cartridge tape recorders, speaker systems and mobile citizens-band transceivers. Lafayette Radio Electronics Corp.

CIRCLE NO. 448

Instrumentation journal

The January issue of the Hew-lett-Packard Journal is now available. It is packed with discussions on dc-to-vhf oscilloscope, a fastwriting high-frequency CRT, and a wideband oscilloscope amplifier. It also includes a discussion on monolithic transistor arrays for high-frequency applications, and a fast time base for a high-frequency oscilloscope. The discussions are supplemented with waveform photographs, circuit schematics, and product specifications. HewlettPackard.

CIRCLE NO. 449

Thermocouples

A line of ultra-miniature thermocouples offering extremely fastresponse and high-accuracy characteristics is contained in a new technical catalog. They are designed for use with temperatures ranging from cryogenic conditions to $5000^{\circ} \mathrm{F}$. They have excellent resistance to thermal shock and are available with a variety of probetip configurations. Miniature receptacles, probe holders and thermo wells are also presented. Also included is detailed information on design features, specifications, dimensional drawings, accessories and ordering. High Temperature Instruments Corp.

CIRCLE NO. 450

Transformer materials

"Guide to Insulating Materials and Systems for Transformer Designs" is a four-color booklet that describes new transformer insulation materials. They were developed for new design and assembly techniques to meet aerospace industry requirements for thin, light weight materials. It tells what types of insulation are available for different temperature and voltage ranges and for special environmental conditions, and offers suggestions on how the materials may be used. 3M Co.

CIRCLE NO. 451

Power converters

Solid-state ac-to-dc, dc-to-dc and dc-to-ac converters are described in a condensed four-page catalog. Shown are miniature, subminiature and high-voltage regulated types as well as miniature power transformers, inductors, current limiters and filters. Included are specifications, modifications, features and mounting dimensions. Arnold Magnetics.

CIRCLE NO 452

Paper capacitors

Custom, high temperature, mica paper capacitors are described in a new brochure. It explains major application areas, graphs of insulation resistance, dissipation factors and capacitance changes against temperature. In addition, a section on performance characteristics describes the radiation resistance, corona resistance, high energy storage, cost advantage and reliability of a line of wound-mica paper capacitors. General Laboratory Associates, Inc.

antennas anyone?
 from P-band through K-band frequencies

VEGA antennas meet and surpass the transmission needs of most airborne vehicles. More and more project engineers and technicians are looking to VEGA for high performance at extreme environmental conditions. See VEGA-for: Slotted Blades, Quartz Cavity-backed Helixes, Stubs, LoopVees, Bi-conicals, Power Dividers, and Variable Power Dividers. Picture a VEGA antenna in your next airborne vehicle. In every way VEGA fits into the picture. Contact: VEGA PRECISION LABORATORIES, INC. 239 Maple Avenue, Vienna, Virginia 22180 (703) 938-6300

INFORMATION RETRIEVAL NUMBER 111
OAK MANUFACTURING CO.
A Division of OAK ELECTRO/NETICS COWD
Crystal Lake. Illinois 60014
Phone: 日15-459-5000 TWX: 910-634-3353
*For most applications
We've got the button... throws from 1 PST to 8 PDT per button; sizes: . $388^{\prime \prime}$ sq., $.388^{\prime \prime} \times .585^{\prime \prime}$ or $.388^{\prime \prime} \times .782^{\prime \prime}$; legends engraved to your specifications; black or white buttons are standard, other colors on special order.
Push Rod Stroke... $5 / 3^{\prime \prime}$ plus $1 / 6^{\prime \prime}$ overtravel; push rod lengths optional at $1 / 2^{\prime \prime}, 5 / 8^{\prime \prime}$ standard length, $3 / 4^{\prime \prime}, 7 / 8^{\prime \prime}$ and $1^{\prime \prime}$
Easy to wire... clips are Oak-pioneered doublewiping. For printed circuit boards or wire-soldering, PCB terminals are $3 / 2^{\prime \prime}, 1 / 8^{\prime \prime}$, $1 / 6^{\prime \prime}$ standard length, $7 / 32^{\prime \prime}$ and $1 / 4^{\prime \prime}$ shoulder to tip. Choose terminals for wiring only or P.C. dual-purpose which have the wire hole in addition to the P.C. lug.
Compact Convenience ... more buttons per area24 on $.394^{\prime \prime}$ centers, 16 on $.591^{\prime \prime}$ centers, 12 on $.788^{\prime \prime}$ centers. Any switching-momentary, pushpush, interlock, or blockout or combinations. For full details, write today for Bulletin SP-346.

100,000 technicians are expected to attend

SALON

INTERNATIONAL DES COMPOSANTS ELECTRONIQUES
Scientific, Technical and economic problems from April 6.10, 1970. . Paris - Conference Room of UNESCO Program, schedule and reg. istration on request.

[膡 INTERNATIONAL CONFERENCE ON ADVANCED MICROELECTRONICS

Under the supervision of the National Federation of Electronic Industries. 16 . Rue de Presles. PARIS (15 ${ }^{\circ}$) - Tel. 273.24.70+

Torque motors

A comprehensive guide to a line of brushless dc torque motors is now available. It includes dc mov-ing-coil torque motors, de tachometers, dc torquer/tachometers, and dc torquer amplifiers. The brushless concept and its benefits and applications are given a concise definitive evaluaton. Shown are specfications of typical types of motors, related performance curves and a table of conversion factors. Aeroflex Laboratories Inc.

CIRCLE NO. 454

Relays

A six-page brochure summarizes the specifications of TO-5 and solid-state ac relays. It presents specifications and drawings for several lines of relays including basic and hybrid military TO-5s, industrial TO-5s, and industrial solid-state relays. Lines include magnetic latching spdt, dpdt and $4 p$ st, sensitive spdt and dpdt, and bi-filar relays. A page in the brochure describes hybrid TO-5 relays which may be ordered with transistor drives and/or operational amplifiers inside the TO-5 case. Teledyne Relays, a Teledyne Co.

CIRCLE NO. 455

We'd rather switch than fight.

And have we ever switched! If you put any one of these 8 new subminiature switches on your "whatever", you'll have a better periorming "whatever." All C\&K switches are competitively-priced and Made-in-America. How's that for a switch? Ask for our new catalog.

C\&K COMPONENTS, INC.

103 Morse Street, Watertown, Massachusetts 02172 Tel: (617) 926-0800

Fast-Connect PC BOARDS SAVE YOU MONEY!

If latest developments of your products indicate use of PC boards. contact us BEFORE designing expensive etched terminals, custom connectors and costly new wiring harnesses!
Our technique of combining PC boards with STANDARD FAST-CONNECT TERMINAL TABS does the job inexpensively and well, and permits use of existing equipment for wiring.
We supply money-saving PC board SUB-ASSEMBLIES with solid state components wave or hand soldered, and basic boards with fast connect terminals of $0.110,0.187,0.205$ and 0.250 in . from stock tooling - ready for immediate use with standard quick-connect style plug-ons.

FREE Cafalog and Designer's Guide

Wheelock probably has the reed relay you're looking for. Write for catalog describing the Wheelock Big Family of Small Relays 273 Branchport Ave Long Branch, N. J. - 201-222-6880

Schrack's NEW MINIATURE STEPPING SWITCH, Type RTM, is the smallest stepping switch available on the market today. Only $1 / 4$ the size of comparable steppers, it combines high performance with economy of space and cost.

The RTM is equipped with 2×10 or 2×12 gold-plated contacts and mates with our socket which meets standard printed circuit spacings. Unique hold-down spring enables mounting in any position.

Write for free catalog today. Schrack also manufactures all types of relays, stepping switches and accessories. Catalogs upon request.

$141 / 64^{\prime \prime} \mathrm{L} \times 13 / 16^{\prime \prime} \mathrm{W} \times 15 / 16^{\prime \prime} \mathrm{H}$

1140 Broadway, New York, New York 10001
tel: (212) 683-0790

NEW LITERATURE

FUSED-IN-GLASS AELIAGILITY

Device reliability

Reliability report $\mathrm{R}-169$ covers a line of fused-in-glass zener diodes, rectifiers and rectifier assemblies, thyristors and microwave $\mathrm{p}-\mathrm{i}-\mathrm{n}$ diodes. Contained in this informative report is a discussion of product design as it affects reliability, failure analysis and corrective action procedures. Also contained is information on material control and process control procedures, acceptance testing procedures and a discussion of reliability engineering as related to the effectiveness of stress screening. Unitrode Corp.

CIRCLE NO. 456

Connectors

Two connector lines, qualified to MIL-C-83723 (USAF), are shown in a new catalog. They meet military aircraft needs for upgrading environment-resistant connectors. Shown are threaded-coupling connectors that are intermateable and interchangeable with MIL-C-5015 connectors, and bayonet-coupling connectors that are intemateable and interchangeable with MIL-C26482 connectors. Both connectors operate in temperatures from -55 to $+175^{\circ} \mathrm{C}$ and can be made to operate from -55 to $+200^{\circ} \mathrm{C}$. ITT Cannon Electric.

CIRCLE NO. 457

For maximum frequency stability, get Motorola oscillators.

Currently available

 in production or prototype quantities.When the maximum in frequency stability is required, choose from Motorola's line of proportional ovenized precision oscillators. All are enclosed in an ovenized housing where the quartz crystal and its oscillator circuit are held to temperature changes of small fractions of a degree.
High Stabilities. To parts in 10-10 vs: environmental factors.
Wide Frequency Range. From 60 KHz to 20 MHz normal. Extended ranges available on special order.
Wide Temperature Range. From $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Low Aging. Less than $5 \times 10-10 /$ day.
And if you need a non-standard oscillator, let us know your requirements. We'll design one specifically to meet your needs.

For complete information send for your free copy of Bulletin TIC-3401 today. Write Component Products Dept., Motorola Communications \& Electronics Inc., 4501 W. Augusta Blvd., Chicaso, Illinois 60651.
information retrieval number 119

Proven:Your most efficient circuit board heat sink
 NATURAL CONVECTION CHARACTERISTICS

Most versatile line of 1100 aluminum heat sinks dissipates up to 15 watts with an $80^{\circ} \mathrm{C}$ rise. Free air circulation design permits mounting in any position. Accepts nearly all popular transistors.

Only 73¢ in lots over 500. Send for Bulletin 680.
WAKEFIELD
ENGINEERING INC., Wakefield, Mass. 01880 • 617-245-5900 INFORMATION RETRIEVAL NUMBER 121

Going to IC's? Or Higher IF's?

 Go with Clevite's off-the-shelf coupledmode quartz filters.

Now you can get immediate delivery on Clevite Uni-Wafer® coupled-mode Quartz Filters. Eleven models are available right off-the-shelf-two, four, and six pole; center frequencies of $10.7,20.5$, and 30 MHz ; AM or FM bandwidths of 9,14 , and 30 kHz . And they're available in coldweld-sealed flatpacks or solder-sealed HC 18 cans.

Clevite's exclusive Uni-Wafer design uses trapped energy techniques to maximize resonant energy over arrays of resonators on a single quartz wafer. As a result, you get higher performance in a smaller package.

Clevite Uni-Wafer Filters are ideal for matching IC or conventional circuitry in VHF or UHF communications receivers, and radar, telemetry or aerospace systems. They're smaller and more reliable than discrete filters, have steeper skirt ratios, lower insertion losses, and better spurious mode rejection.

If you're going to IC's or higher IF's, Clevite Uni-Wafer coupled-mode Quartz Filters are the best way to go. For more information, including complete specifications, write Piezoelectric Division, Gould Inc., 232 Forbes Road, Bedford, Ohio 44146.

${ }^{\text {Gouto }}$ CLEVITE

INFORMATION RETRIEVAL NUMBER 120

The capacitor manufactured with close control process insures long-term reliability to the telephone communication industry standards. S\&El capacitors are utilized in many telephone line card and repeater circuits, with special purpose circuits for outlying areas that require modified apparatus. Our service to you makes available versatility of design capabilities, quick action on prototype and production needs, with process controls to assure you the confidence of utmost reliability to complement your design criteria. We invite you to call or write to give us an opportunity to demonstrate our service.

- Extremely small size: $.400^{\prime \prime} \times .300^{\prime \prime} 00$
- Occupies less than 0.03 cu . in
- Ultra-high speed 100 Microseconds operate time excluding bounce
- Stock voltages $3,6,12$ and 24 volts
- Available with either leads or pins with $0.2^{\prime \prime}$ spacing

Special voltages, resistances, electrostatic and/ or magnetic shields available. Write for new Data Sheet MR-9.1

COTO-COIL COMPANY, INC 59 Pavilion Avenue, Providence, R. I. 02905 Tel: (401) 941-3355

Precision components

Hundreds of new precision components are listed in a supplemental catalog. It includes miniature speed and motor reducers, ultra-precision gears, slip clutches and couplings, coreless plastic belts, plastic pulleys, portable power supply pulleys, portable power supply clamps and heavy-duty precision gears. In addition, many new fasteners such as metal inserts, belleville washers, hardened dowel and cotter pins, retainer rings, lockwashers and assortment kits are included. PIC Design Corp.

CIRCLE NO. 458

Data acquisition

A new-generation digital data acquisition system is shown in a 16 -page brochure. The entire system consists of a single compact housing containing all IC plug-in assemblies for the systems components. It includes a six-digit numerical display which serves as a time-shared readout for channel identification, time and calendar, and can scan up to 600 channels of analog signals. Lear Seigler. Inc., Cimron Div.

CIRCLE NO. 459
transistor test equipment

Transistor testers

Descriptions and specifications of four transistor-testing instruments are included in an eightpage bulletin. One model measures dc parameters of $n p n$ and pnp transistors on a go/no-go basis. It also tests many types of diodes. SRCs, and other semiconudctors. A second model tests medium and high-power transistors under vari-able-duty cycle conditions. A third model measures transistor gain under high frequency operating conditions. A fourth model tests basic transistor parameters. BairdAtomic, Inc.

CIRCLE NO. 460

Connectors

Twelve types of military-specification connectors used in military design are described in a 28-page manual. Categories include printed circuit, power, and communications connectors specified by eight major application specifications, which govern the design of airborne, missile, naval (ship and shore) communications, and test equipment. A tabular index illustrates the connectors and briefly indicates their characteristics and special features. The manual also contains complete descriptions and specifications of all connectors, as well as crossreference data for QPL items. Elco Corp.

For the Computer Industry

Print Bars and Drums

At Buckbee-Mears we etch the entire drum in one operation. Costly assembly problems are eliminated because there are no segments to line up. We are also geared to etch print bars faster at lower costs. Our print drums and bars are made of hardened tooled steel for extra long life.

For more information, see your nearest Buckbee-Mears representative. Or contact Bill Amundson, our industrial sales manager. You'll be glad you did.

BUCKBEE-MEARS COMPANY

245 E. 6th St., St. Paul, Minn. 55101 / (612) 227-6371

INFORMATION RETRIEVAL NUMBER 124

ENGINEERS

Telecommunications SAN FRANCISCO BAY AREA

- CIRCUIT DESIGN DEVELOPMENT ENGINEERS

We have openings for Engineers to work in frequency multi plex carrier, pulse code modulation and data development groups.
Responsibilities include electrical design and development of commercial communications products as they apply to microwave radio, trunk and subscriber systems. BS or MSEE re quired.

- TRANSFORMER \& INDUCTOR DESIGNER

Responsibilities include trouble shooting factory problems as well as writing test specifications for components designed BSEE (or equivalent) required plus a minimum of 2 years experience.

LENKURT IS THE LEADER in the manufacture and development of communications systems for the Tele phone, Industrial and Government markets. We offe stable employment with excellent opportunity for ad policy - in addition to spacious, modern Engineering Laboratories.
Applicants are invited to send complete resume, in confidence
to: Barrett D. Johnson, Employment Manager

LENKURT ELECTRIC

GENERAL TELEPHONE \& ELECTRONICS
1105 County Road
San Carlos, California 94070
(415) 591-8461

- an equal opportunity employer -

Resistors

Up-dated technical information on over 35 series of wirewound resistors as well as new advancements in the register field are the subjects of a new 1970 resistor handbook. It contains information on precision, power, special tem-
perature-coefficient, PC, miniature and economy types. Also shown are precision fuse resistors, ladder and summing networks, fast-rise-time, beryllium oxide and aluminum-housed models. An abundance of temperature curves is included. RCL Electronics, Inc. CIRCLE NO. 462

Coaxial components

A new line of precision coaxial adapters and short circuits is contained in a four-page brochure. The new line of low-VSWR broadband adapters are available for IN and Between-series applications at frequencies up to 18 GHz . They comply with type N and proposed SMA specification MIL-C-39012A. The fixed short circuits are designed to provide a reflection coefficient of approximately one when used with , the appropriate coaxial mating connectors. Precision Microwave Corp.

CIRCLE NO. 463

Rectangular connectors

Miniature rectangular connectors with crimp removable contacts are featured in a 24 -page catalog. It includes a connector line with coaxial $0.0625-\mathrm{in}$. dia contacts along with a $0.040-\mathrm{in}$. contact line. An illustrated ordering chart shows each plug and receptacle combination with available hardware and catalog numbers. Detailed drawings, dimensions and tooling requirements are listed with each type of contact, and hand and automatic tooling is described. Burndy.

NCR, Los Angeles, is the largest. fastest-moving commercial computer manufacturing facility in Southern California and one of the most advanced in the world. Here, you can share new fourth-generation challenges with men who have already placed some of the world's most advanced digital systems hardware and software on the market

- people who have pioneered highspeed thin-film technology, advanced dise memories, monolithic integrated circuitry and automatic production techniques. NCR means business in 121 countries. The NCR Electronics Division can mean a non-stop, nondefense, no-limit future for you today.

MAGNETIC HEAD
DESIGN ENGINEERS
To design and develop flying magnetic recording heads and the required prototype tooling. Positions require BS or MS in EE, ME or physics plus three years of applicable experience. Knowledge of ferrite machining technology and ferrite heads desirable.

ADVANCED DEVELOPMENT
ENGINEERS
Positions available for senior MECHANICAL and ELECTRONIC engineers with strong experience in high-speed mechanisms and mechanical, hydraulic and electromechanical systems.

LOGIC DESIGN ENGINEERS

Senior-level positions in logic design for persons with knowledge in MSI and LSI circuitry for fourth-generation computer systems. Also positions in manufacturing engineering for digital test equipment design. Positions require BSME/BSEE and five years' related experience.

CIRCUIT DESIGN ENGINEERS

For design and development of LSI circuitry arrays, including detailed circuit design and extending through integrated fabrication. Will also evaluate LSI packaging con-

BROAD-HORIZON, PRESENT-TENSE, NON-DEFENSE, NON-STOP ENGINEERING AND PROGRAMMING OPPORTUNITIES AT NCR, SOUTHERN CALIFORNIA

cepts and interface with semiconductor vendors. Prefer BSEE and several years of related experience.

SYSTEMS ANALYST ENGINEERS

Junior and senior level positions available for ENGINEERS, ANALYSTS and PROGRAMMERS who have several years' experience in any of the following areas:
Systems analysis and evaluation of business systems. Selected applicants will determine and participate in the establishment of either small processor systems or a large multi-processing system.
Study and development of on-line systems in business data communication environment
Evaluation of multi-programming, multiprocessor time sharing systems using simulation techniques.

SOFTWARE PROGRAMMERS

To design, code, de-bug and document operating systems software or on-line executive software modules. Prefer degree in business or a science discipline and/or experience in systems programming.

DIAGNOSTIC PROGRAMMERS

Positions involve the writing of diagnostic programs for checkout, acceptance test, file maintenance of EDP systems. Requires previous programming experience.

NOW INTERVIEWING

Positions are open at NCR Los Angeles and San Diego facilities. To schedule an interview in your area or at the IEEE International Convention in New York City, March 21-24, send resume, including salary history, to Steve Williams at the address below.

$\mathrm{N} \mid \mathrm{Cl}$. (6)

The National Cash Register Company ELECTRONICS DIVISION 2817 West El Segundo Boulevard, Hawthorne, California 90250 An equal-opportunity employer

BASIC programming

A new BASIC-plotting software brochure attempts to standardize the software required by the user of Complot plotting hardware. It describes in detail the latest version of the BASIC plotting software plus two new subroutines in addition to extensive changes made to existing subroutines. An initialize routine has been added to the BASIC software to accomplish the task of setting the routines to handle the desired computer, plotter, and communications configuration. Houston Instrument.

CIRCLE NO. 465

Dc components

A four-page short form catalog contains a list of digital panel meters, galvanometer drivers and dual de power supplies. It also includes dc data, differential and voltage-to-frequency converters. Covered are over 30 models and 12 options of DPMs for dc and ac voltage, current, and ratio, in two, three and four-digit types. Described are dc data amplifiers with models featuring four-pole active filtering, switchable bandwidths, and multiple buffered outputs. Applications for photomultiplier and dc differential amplifiers, ac-to-dc converters and dc nower supplies are also included. Newport Laboratories, Inc.

Connectors
A full line of connectors with 18 different types is included in a new 48 -page catalog. Included are printed-circuit, rack-and-panel. side-mount, umbilical and roundkeyed shell types. Among the new styles listed is an SHP modularstyle PC connector designed to meet requirements of the U.S. Navy's Standard Hardware Program. Also included are two new Edgeboard additions to a PC line for $1 / 32-\mathrm{in}$. and $1 / 16-\mathrm{in}$. boards with $0.050-\mathrm{in}$. centers. Complete dimensional information and ordering details on all models is shown. Dale Electronics, Inc. Connector Div.

CIRCLE NO. 467

Industrial safety

An important safety eyeglass message for the industrial employee is available on an attractive series of 13 bulletin board posters. They are extremely suitable for a continuing year-round safety education program. Each $8-1 / 2 \times 11$ in. poster features the case history and photograph of a person who was saved from serious injury because he wore safety eyeglasses. Entitled "The Eye Protection PayOff," the series features individuals employed in a variety of industries from the Atlantic to the Pacific. Bausch \& Lomb.

ELECTRICAL/ELECTRONIC ENGINEERS-Develop and evaluate a wide variety of product concepts, systems, and associated test equipment involving solid state devices, memory systems, control logic, integrated circuits and logic design.
ELECTRONIC DESIGN ENGINEERS-Will deal with a wide variety of solid state devices and laboratory test equipment, using basic logic theory to design control logic circuitry. Responsibilities include all phases of electrical layout, packaging and documentation in areas of circuit layout, interconnectors, control systems and components specification. Will involve liaison with vendors, design drafting groups and manufacturing.
ELECTRICAL DEVELOPMENT ENGINEERS-Initiate novel approaches for the development of new products and develop and validate product concepts through design, test and prototype evaluation, keeping in mind quantity production. Experience in business machines, appliances, photographic equipment or other precision equipment desirable

COMPONENTS ENGINEERS-Will provide component sourcing, testing and evaluation. Experience should include practical electromechanical/electronic design or sourcing work. BSEE or BSME.

INSTRUMENTATION TECHNICIANS-Repair, calibrate, test and evaluate standard laboratory electrical and electro-mechanical instrumentation throughout all phases of product development. 2 year AAS degree required in electronics, electromechanical or instrumentation technology. Experience will be considered in lieu of degree.

Xerox: For engineers who think of more than engineering.

ANTENNA ENGINEERS

Antenna design, development and test including large aperture unfurlable antennas. Background in electromagnetic theory, with experience in the design and development of sophisticated, broadband feed systems. Knowledge of computer programming and applications of computer techniques to antenna problems is desirable. For more information write to Mr. H. W. Bissell, Professional Placement Manager, P.O. Box 504, Sunnyvale, California 94088. Lockheed is an equal opportunity employer.

LOCNHEED
 MISSILES \& SPACE COMPANY
 A GROUP DIVISION OF LOCKHEED AIRCRAFT CORPORATION

INFORMATION RETRIEVAL NUMBER 903

Still the best value and the most reliable. One-five price shown, lower prices in quantity.
opportunity employer
Transco Products, Inc., 4241 Glencoe Ave., Venice, Calif. 90291

NEW LITERATURE

Cooling devices

Analyzing and explaining fanselection criteria is a six-page two-color short-form catalog and engineering-data bulletin for cooling devices for industrial and scientific equipment. Three of the six pages are devoted to a technical exposition of how and why certain design features of a fan affect its reliability and effectiveness as a cooling device. Selection criteria are developed from this theoretical exposition. Also covered is an entire line of subminiature, miniature, and larger fans, grouped according to size, volume of air-flow, or special application. Pamotor Inc.

CIRCLE NO. 469

Magnetic tape heads

A detailed and comprehensive 24-page catalog presents specifying information for a line of magnetic heads for a number of applications. In addition to detailed technical data and full physical and electrical specifications, it provides comprehensive ordering information and other head selection aids. Design helps incorporated in the catalog include a new cross-reference between OEM and distributor part numbers and a convenient chart of recording track configurations that is suitable for wall hanging. Nortronics Company, Inc.

CIRCLE NO. 470

Nuclear equipment

A new 16-page catalog contains a wealth of nuclear instruments and materials for sale. It includes such items as nuclear detectors, foils, gloves and boots, isotopes, lead products, license-exempt products, monitors, pippets and planchets. Also included are pulseheight analyzers, ratemeters, scalers, scintillators, sources and references, survey meters, training systems, vials and warning tags, tapes and signs. All products are shown with photographs, specifications and prices. Nuclear Equipment Chemical Corp.

Free Career Inquiry Service
 Absolutely Confidential

Respond to the career opportunities advertised in this issue. Fill out and send us this handy resume. Electronic Design will do the rest - neatly typed copies of this form will be mailed to the companies of your choice, indicated by the circled Career Inquiry Numbers at the bottom of this page.

Additlonal Training - non-degree, industry, military, etc.

Professional Societies

Published Articles

Career Inquiry Numbers:

900	901	902	903	904	905	906	907	908	909		ELECTRONIC DESIGN
910	911	912	913	914	915	916	917	918	919	925	850 Third Avenue
New York, New York 10022											

- Designed for use with 24 and 36 lead I.C.'c on . 600 " between rows.
- Accepts packages with round or flat leads.
- Contoured entry holes for easy, damage free I.C. insertion.
- Available in Diallyl Phthatate with gold plated contacts
- Wire Wrap or printed circuit termination.

Request Data Sheet 166D
AUGAI
TEL: 617/222-2202
NC. 31 PERRY AVENUE, ATTLEBORO, MASS. 02703

INFORMATION RETRIEVAL NUMBER 128

SHIELDED BOXES with CARD GUIDES

Rugged die-cast aluminum boxes, slotted to accept $1 / 60$ circuit boards and shielding dividers. Excellent for packaging electronic circuitry. Boxes have removable top and bottom covers. Useable inside space: $4^{\prime \prime} \times 2^{\prime \prime} \times 1^{1 / 2} 2^{\prime \prime}$. Several models with various connectors.

Write for 1969 Catalog

POMONA ELECTRONICS CO., INC.
1500 E. Ninth Street, Pomona, California 91766

Thermistors

Specifically designed for electronic engineers, designers and purchasers is a condensed 12-page thermistor catalog. It includes a selected list of a wide variety of solid-state thermistors, varistors and related components. Tables of characteristics, dimensioned outline drawings, product discussions and operating curves are thoroughly detailed. Victory Engineering Corp.

CIRCLE NO. 472

Counters

A complete line of electrical impulse counters, accessories and drivers is described in a new sixpage catalog. It consolidates information formerly containcd in 14 separate technical bulletins. Included is such information as illustrated counter photographs with complete case dimensions, a listing of counters with model numbers and pertinent technical descriptions. Kessler Ellis Products Co.

CIRCLE NO. 473

Equipment installation

The sound benefits of protection derived from an installation and erection service for electrical power equipment is shown in a new four-page bulletin. It explains the advantages offered by this service such as technical familiarity, assurance of approved assembly, apparatus inspection and on-site updated modifications. Westinghouse Electric.

CIRCLE NO. 474

Modular program system

The characteristics of an advanced modular programming system are described in a four-page brochure. It contains a complete outline drawing and dimensional information about the individual module. Included are a rendering of system buildup, and diagrams of the shorting pins and diode holders which can be used interchangeably with it. Programming Devices Div. of Sealectro Corp.

Design Data from Manufacturers

Advertisements of booklets, brochures, catalogs and data sheets. To order use Reader-Service Card
(Adverisement|

Free-Brushless Torque Motor Guide

A comprehensive guide to the Aeroflex line of Brushless DC Torque Motors, DC Moving Coil Torque Motors, DC Tachometers, DC Torquer/ Tachometers and DC Torquer Amplifiers. Includes a concise, definitive evaluation of the "Brushless" concept, its benefits and application directions. Complete specification guide of typical types, related performance curves and a "Table of Conversion Factors" provide the Design Engineer of Direct Drive DC Devices with the graphic facts to make specifying decisions.

Aeroflex Laboratories Incorporated

South Service Road
Plainview, L.I., N.Y. 11803
171

Quality Fasteners For All Designs

This 8 -page catalog provides design data on the
 complete group of DZUS $1 / 4$-turn self-locking fasteners for standard, high speed and panel applications, as well as universal high strength multiple thread fasteners for high tensile and shear stresses. Dzus stud assemblies, wire forms and receptacles offer an exceptional, wide variety of combinations from stock to fit specific fastening requirements. Diagrams and tables give full details for rapid, unlimited design selection. Condensed or complete Catalog available on request.

Dzus Fastener Co., Inc.
West Islip, L. I., N. Y. 11795

CRT AND SHIELD CATALOGS

Two information-packed catalogs are available from Inter-Tech to give you data on CRTs and the shields to go with them. One is a catalog of more than 100 proven-quality British CRTs now available in the U. S. It's a 32-page summary of valuable facts on tubes for: radar, oscilloscopes, data display, and TV. The second brochure gives you data on a complete line of shields. Send for your CRT catalog and you'll automatically receive both.

THE INTER-TECHNICAL GROUP, INC.
P. O. Box 23 / Irvington-On-Hudson, New York 10533

Phone: (914) 591-8822 / TWX 914-693-0164

Electronic Design

Design Data from

Advertising Sales Staff
Keith Aldrich
Sales Manager
New York 10022
Robert W. Gascoigne
Thomas P. Barth
Samuel M. Deitch
850 Third Avenue
(212) Plaza 1.5530

TWX: 867-7866
Philadelphia 19066
William C. Repetto
P. O. Box 206

Merion Station, Pa.
(215) MA-3-5888

Boston 01945
Joseph F. Palmer
P. O. Box 645

Clifton Station
Marblehead, Mass.
(617) 742.0252

Chicago 60611
Thomas P. Kavooras
Berry Conner, Jr.
200 East Ontario
(312) 337-0588

Cleveland
Thomas P. Kavooras
(Chicago)
(312) 337.0588
(call collect)
Los Angeles 90303
Stanley I. Ehrenclou
W. James Bischof

2930 Imperial Highway
Inglewood, Calif.
(213) 757.0183

San Francisco 94022
Arthur R. Shields, Jr.
175 San Antonio Rd., S 243
Los Altos, Calif.
(415) $941-3084$

London W. 1
For United Kingdom and Holland Brayton C. Nichols
44 Conduit Street
TeI: REGent 4714
Verviers, Belgium
For Continental Europe
Andre Jamar
1, Rue Mallar, 1
(087) 253.83 Telex 41563

Tokyo
Haruki Hirayama
Electronic Media Service
Rm. 601, Daini Miyauchi BIdg
6.8.14, Roppongi,

Minato-ku
Phone: 402-4556
Cable: Electronicmedia, Tokyo

AMERICAN BUSINESS PRESS, INC.

1970 Electronic Components Drafting Aids Catalog

Free Catalog! Free Samples! Exciting innovations in pressure-sensitive electronic component drafting aids and methods are detailed in the new 1970 edition of the combined Bishop Technical Manual and Catalog 104A.
68 illustrated pages of over 15,000 multi-pad configurations, symbols, tapes, sequential refer. ence designations plus hundreds of time-and-money-saving hints in making artwork for PC boards. Includes instructions for using the industry's only red and blue tape system for making two-sided boards in perfect registration.
Send now for free Catalog 104A and free samples.
Bishop Graphics, Inc. 7300 Radford Avenue North Hollywood, California 91605
(213) 982-2000 Telex: 674672

174

Clamp or Tie Wire Bundles In Seconds!

Six-page catalog contains complete ordering information for CAB-L-TITE ${ }^{11}$ clamps and BUND-L-TITE ${ }^{(1)}$ straps, devices which provide a fast and reliable means of securing wires and wire bundles. Units withstand loadings greater than 50 G's, are removable in seconds for re-routing wires, and are self-locking-no tying, no knots, no hitches to come loose. Lightweight Du Pont Zytel meets MIL-P-17091 and MIL-P-20693. Proved in aircraft and missiles. Photos, dimensional drawings, tables, physical properties, specifications, price list. Request cata$\log A$.
Dakota Engineering, Inc.
4315 Sepulveda Blvd.
Culver City. California 90230

175

Miniature Self-clinching fasteners

PEM miniature self-clinching fasteners are made for permanent mounting on thin panels. Dimensioned to fit into minimum space, they provide strong, self-locking threads equal to MIL.N. 25027C. Available in four types for panel thickness as thin as .020", they are always flush with one surface when squeezed into pre-punched or drilled holes. They are offered in thread sizes from $\# 0.80$ to $1 / 4-20$ in 303 stainless steel for optimum hardness to imbed into most panel materials coupled with good ductility for smooth, non-galling self-locking characteristics.

NON-FADING LAMP COLOR BOOTS.

SiliKromes ${ }^{\left({ }^{~}\right)}$ are silicon rubber colored filters that instantly change the color of clear miniature lamps. Capable of operating in extremely difficult environmental conditions, SiliKromes serve, for example, at $500^{\circ} \mathrm{F}$ for 1000 hours or more with out color fade or degradation of the elastromer properties. Interchangeable and reusable, the filters come in any color, meets MIL-S-22885 and other applicable Mil-Specs, and are ideally suited for switch indicators, lighting panels, instrument lighting, automotive radios and dash panels and many other military and commercial applications. Write today for free SiliKrome samples, and detailed information.

APM Hexseal Corporation
 44 Honeck Street, Englewood
 New Jersey 07631 (201) 569-5700

NEW RELAY SOCKET ASSEMBLIES CATALOG

The new Curtis line of printed circuit snap-in track-mounted relay socket assemblies is completely illustrated in this new 2 -color, 6 page catalog. Variations include RS8 octal relay sockets, as well as RS11 and RS15 with eleven and fifteen pin relay sockets. Complete dimensional draw. ings and list prices are included. All units snap in or pop out vertically from prepunched vinyl track and feature Curtis barrier terminal blocks. CSA approved. Send today for your free copy.

See us at booth 4E11-IEEE Show

Curtis Development \& Mfg. Co.

3236 North 33rd Street

Milwaukee, Wisconsin 53216

$$
178
$$

FUNDAMENTALS OF INTEGRATED CIRCUITS

A practical guide to integrated circuits, their theory, manufacture, and applications. This new guide by Lothar Stern offers compete, highly readable coverage of the various techniques of circuit fabrication, and their effect on circuit design and performance. As to marketing considerations, it compares the characteristics of the numerous IC structures devised to date in terms of economics and logistics. A volume in the Motorola Series in Solid-State Electronics. 198 pages, 7×10, illustrated. \$8.95, clothbound. Send for 15 -day examination copies.

Hayden Book Company, Inc.

179

Advertisers' Index

We put so much in this hylorid thicki:film sandwich. we call it our hero.

But it's a hero for more reasons than that. For while our exclusive custom package gives you 50% more circuit area than conventional TO-8 substrates, it doesn't use any more space.

A typical package has 16 leads on $0.100^{\prime \prime}$ centers. Conforming to a TO-8 pin configuration. The outer dimension is .610" square, with height depending upon the number of substrates. A metal cover is sealed to the header to give an hermetic seal of $1 \times 10^{-8} \mathrm{CC}$ per second of helium, at a differential pressure of one atmosphere.

So now you can design a complete system into one module. For instance, a four substrate unit may consist of an operational amplifier, switching circuits, resistor networks and a D / A converter.

What's more, it's not expensive like other hybrid thick-film packages. First, because it contains more. Also, because it's more economical to produce. Since each substrate is analyzed individually, unacceptable ones are replaced without affecting the others. That means we have higher yields and lower costs. Also, it means extremely high reliability of the delivered product.
Economy of space and cost, system capability and high reliability make a great combination for a sandwich. To find out what you can put on it, call or write:

Columbia Components Corporation, 60 Madison Avenue; Hempstead, N. Y. 11550, (516) 483-8200. On the West Coast: (213) 272-9525.

Intormation Retrieval Service

All products, design aids (DA), application notes (AN), new literature (NL), and reprints (R) in this issue are listed here with Page and Information Retrieval numbers. Reader requests will be promptly processed by computer and mailed to the manufacturer within three days.

Category	Page	IRN
Components		
capacitors (AN)	154	444
capacitors (NL)	156	453
capacitors, chip (ES)	150	430
components (NL)	162	458
components, dc (NL)	167	466
detectors, IR (AN)	154	438
filter, 455-kHz	136	341
indicator, digital	136	343
indicator lights	134	339
Lafayette catalog (NL)	156	448
motors (NL)	158	454
readouts, fiber-optic	134	338
relay, spst	136	340
relays (NL)	158	455
resistor modules	136	342
resistors (NL)	164	462
thermocouples	138	345
thermocouples (NL)	156	450
trimmers, capacitance	138	344
tubes, storage (AN)	154	440
Data Processing		
calculator, desktop	123	282
cassette circulator		
data sets, acoustic	124	287
data system (NL)	166	292
demagnetizer, cassette	124	459
graphic terminal	124	285
graphis, plotter	123	289
memories, disc	124	286
memories, high-speed	123	281
memory, read-only	126	291
modem, parallel	123	283
teleprinter terminal	126	290
Instrumentation		
analyzer, IC/module	104	261
clock, digital	100	252
corrosion control (AN)	154	437
counter, computing	98	251
DPM, 3-1/2-digit	102	256
DPMs, five-digit	100	255
filter, variable	102	257
generator, function	104	259
generator, function	104	258
instruments (NL)	156	449
Lafayette catalog (NL)	156	448
multimeter, digital	97	250
noise figures (AN)	154	436
oscilloscopes, 7-MHz	100	254
probe, logic	100	253
testers. IC (NL)	162	460
voltmeter, phase-angle	104	260
ICs \& Semiconductors		
device, reliability (NL)	160	456
diode, tuning		
diode design (AN)	132	334
FETs, dual	154	439
ladder network	128	295
op amp, low-cost	128	293
rectifiers, Si (NL)	130	298
shift registers, LSI	130	447
switches, driver	132	297

RCA's ESP (Exceptional Switching Performance) type 2N5805 and its companion 2N5804 are veritable "switch hitters" through an unusual combination of capabilities: both transistor types have excellent current handling-at high voltage - in economic TO-3 packages. For example, the 2 N 5805 can switch 375 volts and 5 amperes in less than $2 \mu \mathrm{~s}$.

You'll find that for efficient and economical power conversions, these two new triple-diffused n-p-n units will excel for use in military and industrial applications.

Rounding out a transistor line that already makes RCA the industry leader in silicon power, these ESP devices-the 2N5804 (formerly TA7130) and 2N5805 (formerly TA7130A)-feature:
\square Current capability to 8 A
\square Controlled beta at 5 A$\mathrm{V}_{\text {ctx }}-375 \mathrm{~V}$ (2N5805); 300 V (2N5804)$\mathrm{V}_{\text {cॄo }}-300 \mathrm{~V}$ (2N5805); 225 V (2N5804)Fall time-2 $\mu \mathrm{s}$ @ 5 AFull safe area operating protection
If your requirements are for a highvoltage transistor family that has more than ordinary power, try RCA's new 2N5804 and 2N5805. As switch hitters,
they're ideally suitable for such applications as: switching inverters, switching regulators, converters, solenoid and relay drivers, modulators, deflection amplifiers, and motor controls.

For more information on these and other RCA silicon power transistors, just contact your local RCA Representative or RCA Distributor. For technical information, write: RCA Electronic Components, Commercial Engineering, Section I-G-2-15 / UT6, Harrison, N. J. 07029. In Europe: RCA International Marketing, S. A., 2-4 rue du Lièvre, 1227 Geneva, Switzerland.

[^0]: ELECTRONIC DESIGN is published biweekly by Hayden Publishing Company, Inc., 850 Third Avenue, New York. N.Y. 10022. James S Mulholland, Jr.. President. Printed at Brown Printing Co. Ínc., Waseca. Minn. Controlled circulation postage paid at Waseca, Minn., and New York, N.Y Copyright (C) 1970, Hayden Publishing Company. Inc. 81.402 copies this issue

[^1]: CIRCLE NO. 323

[^2]: CORNING presents "THE YOUNG AMERICANS", an entertainment special on ABC-TV, March 12, 1970, 9:00 PM EST. We invite you to watcl.

[^3]: C Allen-Bradley Company 1969

[^4]: N. Poirier, Research Associate, and B. L. Cochun, Associate Professor, Northeastern University, Boston, Mass.

[^5]: Acknowledgment
 This work was sponsored by NASA-ERC under NASA Grant NGL 22-011-024.

[^6]: Monty Walker, Digital Manager, Instrumentation Division.
 Gertsch Operation, The Singer Co., Los Angeles, Calif.

[^7]: a. Remate programming
 b. Remote sensing
 . Price includes meters
 d. Solid state
 e. Automatic crossover from constant eurrent to constant valtage.

[^8]:

