[B/B/

Broadcast Equipment

BTE-15A
FM Exciter
ES-560631

Broadcast Equipment

Instructions

BTE-15A FM Exciter

ES-560631, ES-560632, ES-560633,
ES-560634, ES-560635, ES-560636

BTE-10AT FM Broadcast Transmitter ES-560698 and ES-560698A

BTS-1B Stereo Generator,
Complete with Rack Mount and Power Supply ES-560639

BTX-1B SCA Generator,
Complete with Rack Mount and Power Supply ES-560640 and ES-560641

SAFETY PRECAUTIONS

This equipment is designed to fully safeguard all personnel from operating hazards. Labels on the equipment and caution notices in the instruction book clearly point out these potential hazards.

Any module or Printed Wiring Board may have hazardous voltages exposed, so caution must be exercised.

Follow the recommended procedures provided in the Instruction Book for care and maintenance of the equipment.

Always replace the protective covers after servicing the equipment.

WARRANTY ITEMS

Particular parts and/or equipment covered by warranty are specifically stated as such in the warranty or contract given to the customer at the time of sale. The warranty or contract also stipulates the conditions under which the warranty may be exercised.
To obtain a new replacement for such warranty items, contact your local RCA sales office and please supply Product Identification (including the Original Invoice Number, MI Number, Type Number, Model Number, and Serial Number) and Replacement Part Identification (including Stock Number and Description). Requests for warranty replacements may be unduly delayed if all this information is not supplied.

EQUIPMENT LOST OR DAMAGED IN TRANSIT

When delivering the equipment to you, the truck driver or carrier's agent will present a receipt for your signature. Do not sign it until you have (a) inspected the containers for visible signs of damage and (b) counted the containers and compared with the amount shown on the shipping papers. If a shortage or if evidence of damage is noted, insist that notation to that effect be made on the shipping papers before you sign them.
Further, after receiving the equipment, unpack it and inspect thoroughly for concealed damage. If concealed damage is discovered, immediately notify the carrier, confirming the notification in writing, and secure an inspection report. This item should be unpacked and inspected for damage WITHIN 15 DAYS after receipt. Report all shortages and damages to RCA, Communication Systems Division - Camden, New Jersey 08102.
RCA will file all claims for loss and damage on this equipment so long as the inspection report is obtained. Disposition of the damaged item will be furnished by RCA.

FIELD ENGINEERING SERVICE

RCA Field Engineering Service is available at current rates. Requests for fielc engineering service may be addressed to your RCA Broadcast Field Representative or the RCA Service Company, Incorporated - Broadcast Service Division - Camden, New Jersey 08102. Telephone 609-963-8000.

TECH ALERT

Emergency 24 hour telephone consultation service for technical problems is available. Call TECH ALERT at 609-963-8000 extension PC3434.

WARNING

> VOLTAGES THAT ARE DANGEROUS TO LIFE ARE INVOLVED IN THE OPERATION OF THIS ELECTRONIC EQUIPMENT. OPERATING PERSONNEL MUST AT ALL TIMES OBSERVE ALL SAFETY REGULATIONS. DO NOT CHANGE TUBES OR MAKE ADJUSTMENTS INSIDE THE EQUIPMENT WITH VOLTAGES APPLIED. DANGEROUS CONDITIONS MAY EXIST IN CIRCUITS WITH POWER CONTROLS IN THE OFF POSITION DUE TO CHARGES RETAINED BY CAPACITORS, ETC. ALWAYS DISCHARGE AND GROUND CIRCUITS PRIOR TO TOUCHING THEM TO AVOIDPERSONAL INJURY OR LOSS OF LIFE.

EMERGENCY

FIRST AID INSTRUCTIONS
Personnel engaged in the installation, operation, or maintenance of this equipment or similar equipment are urged to become familiar with the following rules both in theory and practice. It is the duty of all operating personnel to be prepared to give adequate Emergency First Aid and thereby prevent avoidable loss of life.

RESCUE BREATHING

1. Find out if the person is breathing.
You must find out if the person has stopped breathing. If you think he is not breathing, place him flat on his back. Put your ear close to his mouth and look at his chest. If he is breathing, you can feel the air on your cheek. You can see his chest move up and down. If you do not feel the air or see the chest move, he is not breathing

2. If he is not, open the airway by tilting his head backward.
Lift up his neck with one hand and push down on his forehead with the other. This opens the airway. Sometimes doing this will let the person breathe again by himself. If it does not, begin rescue breathing

3. If he is still not breathing, begin rescue breathing:
Keep his head tilted backward. Pinch his nose shut.
Put your mouth tightly over his mouth.
Blow into his mouth once every five seconds.
Do Not Stop Rescue Breathing Until Help Comes.

LOOSEN CLOTHING - KEEP WARM

Do this when the victim is breathing by himself or help is available. Keep him quiet as possible and from becoming chilled. Otherwise, treat him for shock.

BURNS

SKIN REDDENED: Apply ice cold water to burned area to prevent burn from going deeper into skin tissue. Cover area with clean sheet or cloth to keep away air. Consult a physician.

SKIN BLISTERED OR FLESH CHARRED: Apply ice cold water to burned area to prevent burn from going
deeper into skin tissue. Cover area with clean sheet or cloth to keep away air. Treat victim for shock and take to hospital.

EXTENSIVE BURN-SKIN BROKEN: Cover area with clean sheet or cloth to keep away air. Treat victim for shock and take to hospital.

LIST OF REVISED, ADDED OR DELETED PAGES

The following is a list of the pages in this Instruction Book that have been Revised, Added, or Deleted with their effective date of change:

Front Cover - New
Title Page - New
I through III - New
A - Added
V thorugh 154-New

TABLE OF CONTENTS

BTE-15A EXCITER

TECHNICAL SUMMARY 1
Electrical Specifications 1
BTE-15A FM EXCITER SYSTEM OPTIONS 2
CRYSTAL UNITS 3
TRANSISTOR AND IC COMPLEMENT 4
RECOMMENDED TEST EQUIPMENT 4
DESCRIPTION 5
BTE-15A Exciter System. 5
FM Exciter 6
Modulated Oscillator 8
Radio Frequency Power Amplifier (RFA) 8
AFC Circuit. 9
BTS-1B Stereo Generator 9
Stereo Carrier and Pilot 10
Audio Channels 10
Switching Modulator 10
Monaural Operation 12
Monaural Audio Module 12
BTX-IB SCA Subcarrier Generator 12
Modulated Oscillator 13
Muting Circuits 13
BTE-15A Main Frame 15
Off-Frequency Shutdown Circuit 15
Meter Amplifier 16
INSTALLATION 16
Ma in Frame 16
Connections 16
FM Exciter- 17
Stereo Generator 17
SCA Generator. 17
TUNING 17
BTE-15A RF Amplifier (RFA) 17
BTS-IB Stereo Generator 18
BTX-IB SCA Generator 19
Typical Panel Meter Readings (Table) 20
PARTS ORDERING INFORMATION 24
Replacement Parts. 24 24
Emergency Parts Service. 24
REPLACEMENT PARTS 25
SUGGESTED EQUIPMENT SPARES 40
SUPPLEMENT I
BTE-10AT FM BROADCAST TRANSMITTER
EQUIPMENT LIST 131
BTE-10AT FM Broadcast Transmitter, Cabinet Mounted Version, ES-560698 131
BTE-10AT FM Broadcast Transmitter, Rack Mounted Version, ES-560698A 131
TECHNICAL SUMMARY 137
Electrical Specifications 131
Mechanical Specifications. 131

SUPPLEMENT I (Continued)

BTE-10AT FM BROADCAST TRANSMITTER

DESCRIPTION 132
General 132
INSTALLATION 133
OPERATION 134
REPLACEMENT PARTS 134
SUPPLEMENT II
BTS-1B STEREO GENERATOR
EQUIPMENT LIST 137
BTS-1B (Rack Mounted) ES-560639 137
TECHNICAL SUMMARY 137
Electrical 137
Mechanical 137
DESCRIPTION 138
REPLACEMENT PARTS 140
SUGGESTED EQUIPMENT SPARES 140
SUPPLEMENT III
BTX-1B SCA GENERATOR
COMPLETE with RACK MOUNT and POWER SUPPLY
EQUIPMENT LIST
BTX-1B (Rack Mounted) ES-560640 147
BTX-1B (Rack Mounted) ES-560641 147 147
TECHNICAL SUMMARY
147
147
Electrical 147
Mechanical 148
REPLACEMENT PARTS 150
SUGGESTED EQUIPMENT SPARES 150

LIST OF ILLUSTRATIONS

Figure BTE-15A Exciter System Page
BTE-15A System, Block Diagram
2 Page
FM Exciter, Simplified Block Diagram 6
BTS-1B Stereo Generator, Simplified Block Diagram 11
5 BTX-1B SCA Generator, Simplified Block Diagram 14
5a Typical Waveforms, BTS-1B Stereo Generator 21
BTE-15A Exciter System, Front View, 42
BTE-15A System, Module Extender 43
BTE-15A System, Module Extender Installed 43
BTE-15A System, Modules Removed 44
Main Frame, Rear View 45
Main Frame, Parts Location 46
Main Frame, Rectifier and Filter 47
Main Frame, Fuse Pane 1 47
Main Frame Metering Amplifier Board, Parts Location 48
Main Frame Metering Amplifier Board, Parts Location 49
Main Frame Metering Amplifier Board, Parts Overlay, $\mathrm{T} O \mathrm{P}$ 50
Main Frame Metering Amplifier Board, Parts Overlay, Bottom 51
Exciter, Top View 52
Exciter, Modulated Oscillator Board, Parts Location 53
Exciter, Modulated 0scillator Board, Parts Location 54
Exciter, AFC Board, Parts Location 55
Exciter, RF Amplifier, Parts Location, Top 56
Exciter, RF Amplifier, Parts Location, Bottom 57
Exciter, Modulated Oscillator Board, Parts Overlay, Top 58
Exciter, Modulated Oscillator Board, Parts Overlay, Bottom 59
Exciter, AFC Board, Parts Overlay, Top 60
Exciter, AFC Board, Parts Overlay, Bottom 61
Stereo Generator, Overall View 62
Stereo Generator Board, Parts Location 63
Stereo Generator Board, Parts Location 64
Stereo Generator Board, Parts Location 65
Stereo Generator Board, Parts Location 66
Stereo Generator Sub-Board, Parts Location. 67
Stereo Generator Board, Parts Overlay, Top 68
Stereo Generator Board, Parts Overlay, Bottom 69
Stereo Generator Sub-Board, Parts Overlay, Top 70
Stereo Generator Sub-Board, Parts Overlay, Bottom 71
Monaural Audio Board, Parts Overlay, Top. 72
Monaural Audio Board, Parts Overlay, Bottom 73
SCA Generator Overall View. 74
SCA Generator Board, Parts Location, Ser. No. 1 through 999 75
SCA Generator Board, Parts Location, Ser. No. 1 through 999 76
SCA Generator Board, Parts Location, Ser. No. 1000 and up 77
a
SCA Generator Board, Parts Location, Ser. No. 1000 and up. 78
43 SCA Generator Board, Parts Location, Ser. No. 1 through 999. 79
SCA Generator Board, Parts Location, Ser. No. 1000 and up.. 80
44 SCA Generator Board, Parts Location, Ser. No. 1 through 999 82
44a SCA Generator Board, Parts Location, Ser. No. 1000 and up 83
45 SCA Generator Board, Parts Overlay, Bottom, Ser. No. 1 through 999 84
45a SCA Generator Board, Parts Overlay, Ser. No. 1000 and up 85
46 SCA 0ption Select Board, Parts Overlay, Top 86
47 SCA Option Select Board, Parts Overlay, Bottom. 86
BTS-1B Power Supply Board, Parts Overlay 87
49 BTX-1B Power Supply Board, Parts Overlay 87
Semiconductor Base Data 88
Integrated Circuit Schematics. 90
50 BTE-15A Main Frame, Schematic Diagram. 95
BTE-15A FM Exciter, Schematic Diagram. 97
BTS-1B Stereo Generator, Schematic Diagram 99
Monaural Audio Module, Schematic Diagram. 101
54 BTX-IB SCA Generator, Schematic Diagram, Ser. No. 1 through 999 103
BTX-1B SCA Generator, Schematic Diagram, Ser. No. 1000 and up 105
101 Connection 107
Test Fixture 108
BTX-7B Low-Pass Filter Installation 109
Main Frame, Wiring Diagram. 111
Main Frame Door Assembly, Wiring Diagram. 113 115
61 Exciter, Modulated Oscillator and AFC Assembly, Wiring Diagram. 117
62 Exciter, RF Amplifier Assembly, Wiring Diagram. 119
63 Stereo Generator, Wiring Diagram. 121
64 Stereo Generator Filter and Transformer Assembly, Wiring Diagram. 123

LIST OF ILLUSTRATIONS (Continued)

Figure Page
65 a 125
66 SCA Generator, Wiring Diagram 127
67
67 BTE-10AT FM Transmitter ES-560698. BTE-10AT FM Transmitter ES-560698. 132 132
68 133Connector Cap Assembly Details....
BTS-1B Stereo Generator ES-560639. 138134
71 BTS-1B Stereo Generator, Rear View. 139
72 BTS-1B Stereo Generator Main Frame, Schematic Diagram. 141
73 BTS-1B Stereo Generator Main Frame, Wiring Diagram. 143
74 BTX-1B SCA Generator ES-560641 148
BTX-1B SCA Generator, Rear View. 149
SCA Generator Main Frame, Schematic Diagram 151
SCA Generator Main Frame, Wiring Diagram 153

TECHNICAL SUMMARY

BTE-15A FM EXCITER SYSTEM OPTIONS

The BTE-15A FM Exciter System is available in several forms.

1. Mono System, ES-560631; includes
(A) 1 Main frame 1 BTE-15A r-f exciter module

M1-560710
MI-560712
(C) 1 Monaural audio module (replaces BTS-1B Stereo generator)

MI-560716
(D) 2 Blank panels (used in place of SCA generators)

MI-560715
(E) 1 Crystal, with oven (operate crystal for BTE-15A exciter module)

MI-560717-*
(F) 1 Module extender

MI-560719
2. Mono and 1 SCA System, ES-560632, includes
(A) 1 Main frame

MI-560710
(B) $1 \mathrm{BTE}-15 \mathrm{~A}$ r-f exciter module
(C) 1 Monaural audio module (replaces BTS-1B Stereo generator)
(D) 1 BTX-1B SCA generator

MI-560712
M1-560716
(E) 1 Blank panel (used in place of second SCA generator)
(F) 1 Crystal, with oven (operate crystal for BTE-15A exciter module)

MI-560714-*
MI-560715
(H) 15 kHz low pass filter (installed)
-560717-*
MI-560719
MI-560221
3. Mono and 2 SCA System, ES-560633, includes
(A) 1 Main frame
(B) $1 \mathrm{BTE}-15 \mathrm{~A}$ r-f exciter module

MI-560710
MI-560712
(C) 1 Monaural audio module (replaces BTS-1B Stereo generator)

M
(D) 2 BTX-1B SCA generator
(E) 1 Crystal, with oven (operate crystal for BTE-15A exciter module)

MI-560714-*
MI-560717-*
(F) 1 Module extender

MI-560719
(G) 25 kHz low pass filter (installed)

MI-560221
4. Stereo System, ES-560634, includes
(A) 1 Main frame

MI-560710
MI-560712
(C) 1 BTS-1B Stereo generator

MI-560713
(D) 2 Blank panels (used in place of SCA generators)
(E) 1 Crystal, with oven (operate crystal for BTE-15A exciter module)

MI-560715
MI-560717-*
(F) 1 Module extender

MI-560719
5. Stereo and 1 SCA System, ES-560635, includes
(A) 1 Main frame

MI-560710
(B) $1 \mathrm{BTE}-15 \mathrm{~A}$ r-f exciter module

MI-560712
(C) 1 BTS-1B Stereo generator

MI-560713
(D) $1 \mathrm{BTX}-1 \mathrm{~B}$ SCA generator

MI-560714-*
(E) 1 Blank panel (used in place of second SCA generator)

MI-560715
(F) 1 Crystal, with oven (operate crystal for BTE-15A exciter module)

MI-560717-*
(G) 1 Module extender

MI-560719
(H) 15 kHz low pass filter (installed)

MI-560221
6. Stereo and 2 SCA System, ES-560636, includes
(A) 1 Main frame

MI-560710
(B) 1 BTE-15A r-f exciter module

MI-560712
(C) 1 BTS-1B Stereo generator

MI-560713
(D) 2 BTX-1B SCA generator

MI-560714-*
(E) 1 Crystal, with oven (operate crystal for BTE-15A exciter module)

MI-560717-*
(F) 1 Module extender

MI-560719
(G) 25 kHz low pass filter (installed)

MI-560221
A 41 kHz SCA can not be used simultaneously with stereo.
In addition, the following subsystems are available for use with existing FM exciters:

1. BTS-1B Stereo Generator, ES-560639. includes
$\begin{array}{ll}\text { (A) } 1 \text { Main frame (mounts stereo generator only) } & \text { MI-560711 } \\ \text { (B) } 1 \text { BTS-1B Stereo generator } & \text { MI-560713 }\end{array}$
$\begin{array}{ll}\text { (B) } 1 \text { BTS-1B Stereo generator } & \text { MI-560713 } \\ \text { (C) } 1 \text { Module extender } & \text { MI-560719 }\end{array}$
2. BTX-1B SCA Generator (One) ES-560640, includes
(A) 1 Main frame (mounts 1 or 2 SCA generators only)

MI-560720
(B) 1 BTX -1B SCA generator

MI-560714-*
(C) 1 Blank panel (used in place of second SCA generator)

MI-560715
(D) 1 Module extender

MI-560719
(E) 15 kHz low pass filter (installed)

MI-560221
3. BTX-1B SCA Generator (Two) ES-560641, includes
(A) 1 Main frame (mounts 1 or 2 SCA generators only) MI-560720
(B) 2 BTX-1B SCA generators

MI-560714-*
(C) 1 Module extender

M I-560719
(D) 25 kHz low pass filter (installed)

MI-560221
The following optional items are available for use with BTE-15A Exciter Systems:

1. Recommended Spare RF Transistors M1-560718
2. A set of Connector Plugs for the BTE-15A Exciter

MI-560734

[^0]
CRYSTAL UNITS

MI Number*	Carrier Freq. MHz	Crystal Freq. KHz	MI Number*	Carrier Freq. MHz	Crystal Freq. KHz
560717-1	88.1	86.0351	560717-51	98.1	95.8008
560717-2	88.3	86.2305	560717.52	98.3	95.9961
560717-3	88.5	86.4258	560717.53	98.5	96.1914
560717-4	88.7	86.6211	560717-54	98.7	96.3867
560717-5	88.9	86.8164	560717-55	98.9	96.5820
560717-6	89.1	87.0117	560717-56	99.1	96.7773
560717-7	89.3	87.2070	560717-57	99.3	96.9727
560717-8	89.5	87.4023	560717-58	99.5	97.1680
560717-9	89.7	87.5977	560717-59	99.7	97.3633
560717-10	89.9	87.7930	560717-60	99.9	97.5586
560717-11	90.1	87.9883	560717-61	100.1	97.7539
560717-12	90.3	88.1836	560717-62	100.3	97.9492
560717-13	90.5	88.3789	560717-63	100.5	98.1445
560717-14	90.7	88.5742	560717-64	100.7	98.3398
560717-15	90.9	88.7695	560717-65	100.9	98.5352
560717-16	91.1	88.9648	560717-66	101.1	98.7305
560717-17	91.3	89.1602	560717-67	101.3	98.9258
560717-18	91.5	89.3555	560717-68	101.5	99.1211
560717-19	91.7	89.5508	560717-69	101.7	99.3164
560717-20	91.9	89.7461	560717-70	101.9	99.5117
560717-21	92.1	89.9414	560717-71	102.1	99.7070
560717-22	92.3	90.1367	560717-72	102.3	99.9023
560717-23	92.5	90.3320	560717-73	102.5	100.0977
560717-24	92.7	90.5273	560717-74	102.7	100.2930
560717-25	92.9	90.7227	560717-75	102.9	100.4883
560717-26	93.1	90.9180	560717-76	103.1	100.6836
560717-27	93.3	91.1133	560717-77	103.3	100.8789
560717-28	93.5	91.3086	560717-78	103.5	101.0742
560717-29	93.7	91.5039	560717-79	103.7	101.2695
560717-30	93.9	91.6992	560717-80	103.9	101.4648
560717-31	94.1	91.8945	560717-81	104.1	101.6602
560717-32	94.3	92.0898	560717-82	104.3	101.8555
560717-33	94.5	92.2852	560717-83	104.5	102.0508
560717-34	94.7	92.4805	560717-84	104.7	102.246 i
560717-35	94.9	92.6758	560717-85	104.9	102.4414
560717-36	95.1	92.8711	560717-86	105.1	102.6367
560717-37	95.3	93.0664	560717-87	105.3	102.8320
560717-38	95.5	93.2617	560717-88	105.5	103.0273
560717-39	95.7	93.4570	560717-89	105.7	103.2227
$560717-40$	95.9	93.6523	560717-90	105.9	103.4180
$560717-41$	96.1	93.8477	560717-91	106.1	103.6133
560717-42	96.3	94.0430	560717-92	106.3	103.8086
560717-43	96.5	94.2383	560717-93	106.5	104.0039
560717-44	96.7	94.4336	560717-94	106.7	104.1992
560717-45	96.9	94.6289	560717-95	106.9	104.3945
560717-46	97.1	94.8242	560717-96	107.1	104.5898
$560717-47$	97.3	95.0195	560717-97	107.3	104.7852
560717-48	97.5	95.2148	560717-98	107.5	104.9805
560717-49	97.7	95.4102	560717-99	107.7	105.1758
560717-50	97.9	95.6055	560717-100	107.9	105.3711

*Each MI consists of one crystal oven and one crystal.

THE CRYSTAL FREQUENCY IS COMPUTED AS FOLLOWS:
F crystal $=\frac{\mathrm{F} \text { carrier }}{1024}$

TRANSISTOR AND IC COMPLEMENT

BTE-15A FM EXCITER		
Q1	Modulated Oscillator	2N4427
Q2	Buffer	2N4427
Q3	RF A mplifier	2N3866
Q4	RF Amplifier	2N4440
Q5	RF Amplifier	2N5 102
Q6	Logic Changer	2N3640
Q7	Logic Changer	2N4037
Q8	Crystal Oven Control	2N3054
IC1	Divider	MC1027P
IC2	Divider	MC1013P
IC3	Divider	MC1013P
IC4	Divider	MC9802P
IC5	Divider	MC890P
IC6	Divider	MC890P
IC7	Divider	MC890P
IC8	Divider	MC890P
IC9	Divider	MC890P
IC10	AFC Reference Oscillator	CA 3028
IC11	Divider	MC890P
IC12	Divider	MC890P
IC13	Phase Comparator	MC825 P
IC14	Inverter-Amplifier	CA-3018
BTE-15A MAIN FRAME		
Q101	1/2 Darlington Regulator	2N3055
Q102	1/2 Darlington Regulator	2N5293
Q103	Emitter-Follower Regulator	2N5293
Q104	Emitter-Follower Regulator	2N3740
Q105	Emitter-Follower Regulator	2N5 293
Q106	1/2 Darlington Relay Driver	2N3053
Q107	1/2 Darlington Relay Driver	2N3053
Q108	Regulator Control	2N3565
Q109	Meter Amplifier	2N3053
IC101	Meter Amplifier	CA3018

MONAURAL AUDIO MODULE		
Q201	Amplifier	2N3053
Q202	Buffer-Amplifier	2N3053
IC201	Mono Pre-Emphasis	CA3015
IC202	Amplifier	CA3015
BTS-1B STEREO GENERATOR		
Q301	Buffer-Amplifier	2N4037
Q302	Regulator	2N3053
Q303	Pilot Amplifier	2N3053
Q304	Right Channel Buffer-Amplifier	2N3053
Q305	Buffer-Amplifier	2N3053
Q306	Buffer	2N3053
IC301	76 KHz Oscillator	CA3028
IC302	Divider	MC890P
IC303	Buffer-Amplifier	CA3018
IC304	Right Pre-Emphasis	CA3015
IC306	Buffer	CA3018
Q404	Left Channel Buffer-Amplifier	2N3053
Q405	Buffer-Amplifier	2N3053
Q406	Buffer	2N3053
IC404	Left Pre-Emphasis	CA3015
IC407	Buffer-Amplifier	CA3015
BTX-1B SCA GENERATOR		
Q501	Lamp Driver	2N3053
Q502	Lamp Driver	2N3053
IC501	Amplifier-Modulator	CA3018
IC502	Modulated Oscillator	CA3018
IC503	Buffer	CA3018
IC504	Muting Amplifier	CA3018
IC505	Detector-Buffer-Trigger	CA3018

RECOMMENDED TEST EQUIPMENT

Figure 1. BTE-15A Exciter System

DESCRIPTION

BTE-15A EXCITER SYSTEM

RCA's new FM Multiplex and Stereo System provides on-air FM stations with an inexpensive means of broadcasting two or more services simultaneously over their regularly assigned broadcast channel. Stations can offer background music or other services while retaining presently scheduled FM mono or stereo broadcast programming. The use of the equipment for subsidiary communications and stereo is type accepted by the FCC.

Excellent monaural, stereo and SCA performance that more than meets industry and FCC standards are achieved by the new RCA modular, solid-state, "Direct FM" exciter. This exciter can be substituted directly for the BTE-10C Exciter in present BTF-1E1 or BTF5/10/20C FM Transmitters and can be operated, for a reasonable period of time, into either a short circuit or open circuit without damage to the output transistor.

New design features include a modular design that plugs into a frame accommodating the Exciter, Power Supply and Switching, BTS-1B Stereo and one or two BTX-1B SCA Generator modules. When operating monaural only, the BTS-1B Stereo Generator is replaced with
another module. The exciter frame is 19 inches wide and designed for standard rack mounting. A module extender is provided to permit easy servicing of modules outside the main frame.

The heart of the system is the new Type BTE-15A Stereo Multiplex Exciter, an all solid-state unit utilizing integrated circuits, and employing RCA's "Direct FM" principle of operation. An important feature of the new exciter system is that it is fully metered using two meters to measure not only operating parameters but also modulating signals.

Stereophonic programming requires the use of an optional plug-in Stereo Generator, Type BTS-1B. One or two Type BTX-1B Subcarrier Generators permit one or two additional program channels to be transmitted along with the regular FM mono program channel. This is accomplished by transferring the subchannel programs into the supersonic frequency range and frequency modulating the subchannel program on $41-67 \mathrm{KHz}$ subcarriers. The FM supersonic carriers are then used to modulate the rf carrier. When a BTS-1B Stereo Generator is switched into the system only one BTX-1B SCA Generator on 67 KHz can be used. A safety feature
prevents turning on the 41 KHz SCA subcarrier when the BTS-1B Stereo Generator is in the stereo mode.

The RCA BTE-I5A FM Broadcast Exciter provides an adjustable rf output to 15 watts at any specified frequency between 88 MHz and 108 MHz . All applicable requirements of Section 73.322 of the FCC Rules and Regulations will be met when used in conjunction with the BTS-1B Stereo Subcarrier Generator.

The BTE-15A FM Broadcast Exciter can be used with any RCA FM Broadcast Transmitter which can be driven at carrier frequency. The exciter was designed to provide superior performance under stereophonic, monophonic and SCA conditions. In the design, particular emphasis was placed on ease of maintenance and reliable operation. Printed circuit boards have strategically located test points so that important voltages can be measured and waveforms observed. Two front panel meters allow monitoring of audio levels and exciter functions without interrupting operation. The exciter employs integrated circuits, transistors, and other semi-conductors for reliability and long life. No vacuum tubes are employed, thereby keeping heat dissipation and power consumption to a minimum. The exciter lends itself particularly well to unattended and remote operation.

The shiełding of the exciter is such that it is unaffected by strong external rf fields and the exciter cabinet radiation is negligible. The unit is designed to fit into a standard 19 inch rack.

FM EXCITER

Refer to block diagram, Figure 3. The exciter can be
subdivided into the Modulated Oscillator, Radio Frequency Amplifier and AFC sections.

The Modulated Oscillator Q1 is a transistorized oscillator operating at the carrier frequency. Direct frequency modulation of the oscillator is accomplished by varying the oscillator tank circuit capacitance by applying audio modulation to series varicap diodes CR2 and CR3, in the oscillator tank circuit (refer to Modulated Oscillator Simplified Schematic Diagram). The junction capacitance of CR2 and CR3 will vary with the audio modulation and cause a corresponding change in the resonant frequency of the oscillator tank circuit. The carrier frequency deviation is a function of, the amplitude of the modulating frequency. Tapped inductor L5, located in the emitter circuit of Q1, supplies the required feedback necessary to sustain oscillations. Capacitor C13 is the oscillator coarse center frequency adjustment and AFC adjust capacitor C14 (an oscillator fine frequency adjustment) is adjusted for proper functioning of the AFC circuit. The output of the oscillator is coupled from the collector of Q1 to the base of Buffer Amplifier Q2, through a 10 dB resistive attenuator. The buffer serves to isolate the oscillator from the Radio Frequency Amplifiers Q3, Q4 and Q5. Buffer Amplifier Q2 supplies an rf signal at a power level of approximately 500 mW to the rf Amplifiers. Thus, the stability and modulation characteristics of the basic direct FM oscillator are not disturbed by adjustments to the following rf power amplifiers. Q3, Q4 and Q5 amplify the 500 mW input to a level of 15 watts nominal output. The basic oscillator, buffer amplifier, and AFC circuits are mounted inside a shielded enclosure. The rf power amplifier is contained in a separate shielded enclosure.

Figure 2. BTE-15A System, Block Diagram

Figure 3. FM Exciter, Simplified Block Diagram

A sample of rf is taken from the output of the Buffer Amplifier Q2 and applied to IC1 in the AFC circuit. IC1, IC2, and IC3 are "divided by two" circuits. The output of IC3 is approximately 12 MHz . Q6 is a logic level changer that changes the +3.5 volts (0 level) and +4.5 volts (1 level) output of IC3 to 0 volts (0 level) and +1.0 volts (1 level) respectively. IC4, IC5, IC6, IC7, and IC8 are "divide by four" circuits. IC9 divides its input frequency by 2. The output of IC9 is at a frequency of approximately 6 KHz or $1 / 16,384$ of the center frequency of the Modulated Oscillator Q1, Q7 is the crystal controlled AFC reference oscillator. The reference oscillator operates at approximately 100 KHz and is divided by a factor of 16 by IC11 and IC12 to about 6 KHz .

The 6 KHz reference frequency and the frequency divided output of the modulated oscillator (6 KHz) are fed to the IC13 "NOR" gate for phase comparison. In order to have a positive output out of the IC13 "NOR" gate, it is necessary that both the 6 KHz reference and the 6 KHz divided signal be negative simultaneously. As the phase between the 6 KHz reference and the divided output shifts, the percentage of time that the "NOR" gate output is positive varies. It can vary from 0% to 50% of one full 6 KHz cycle. The output signal is inverted in the second "NOR" gate in IC13 and applied to IC14 where it is amplified and reinverted to its original shape. The average collector voltage at the output of IC14 varies according to the phase relationship between the divided output of the modulated oscillator and the divided reference signal and hence, varies with the difference between the modulated oscillator frequency and the reference oscillator frequency. This voltage is applied to two AFC varicap diodes (CR8 and CR9) in the Modulated Oscillator to change the frequency of the oscillator.

Modulated Oscillator

The modulated oscillator (refer to figure 51) is a printed circuit board consisting of an oscillator, Q1, and a buffer, Q2. The oscillator is an emitter-coupled tapped-coil modified Hartley configuration operating at carrier frequency. Coil L5, capacitors C10 through C14 and varicap diodes CR2, CR3, CR8 and CR9 make up the oscillator tank circuit.

Audio is applied to the modulated oscillator diodes CR2 and CR3 through a network composed of C4, C5, R3 and L1. L1 acts as a low-pass filter which isolates oscillator and input circuitry at carrier frequency, but passes audio frequencies readily. R3 and C5 act to improve the audio channel response for optimum stereo performance. The audio signal varies the capacitance of varicap diodes CR2 and CR3 causing the oscillator frequency to vary at an audio rate, about its center frequency. With an audio signal applied, the output of
the oscillator Q1 will vary in frequency at a rate which is a function of the frequency of the audio modulating signal. The amount of deviation from the oscillator center frequency is a function of the amplitude of the audio modulating signal. The bias for Q1 is derived from the 22 volt line. Zener diode CR1 in conjunction with R4, R5, and R6 provide regulated bias for the modulator diodes.

AFC control voltage (dc) is fed to the two AFC varicaps CR8 and CR9 through L4, R8 and R9. When locked, the AFC voltage can vary between approximately 0.5 volts to 4.5 volts but will usually be between 2 to 3 volts as measured at the AFC test point, TP13. R8 and C8 comprise the main AFC high frequency roll-off to prevent the AFC from removing audio modulation. R7 and C7 form a lead network which provides an improved AFC circuit response during frequency acquisition and lock. During acquisition CR4, CR7, R74 and R75 act as time constant bypasses to allow the AFC to achieve lock where there is a low (but not zero) frequency difference between the reference oscillator and the modulated oscillator. During this time the amplitude of the frequency error is large enough to overcome the 0.6 volt bias at CR4 and CR7 and the error information is conducted directly to AFC varicap diodes CR8 and CR9 by L3. After lock is achieved the diodes (CR4 and CR7) no longer conduct any error signals to the AFC diodes and the AFC time constant action is normal.

Some low frequency program modulation does appear on the AFC line, but it is low enough in amplitude so that it cannot exceed the 0.6 volt bias present across CR4 and CR7 and therefore does not have any degrading effect on the modulation amplitude or linearity. The output of the modulated oscillator is about 500 mW and is attenuated to 50 mW in a 10 dB pad composed of resistors R15, R16 and R17. The 10 dB pad gives further isolation of the modulated oscillator. The rf signal is amplified by Q2, which is a conventional Class A buffer amplifier, and fed to a matching network consisting of L7, L8 and C22. The circuit composed of R22, R23, C23 and CR10 make up a diode detector which rectifies a small sample of the divided output and applies it to the front panel meter for monitoring when the meter function switch is in the MOD OSC position. The 500 mW output of the buffer is applied to the Radio Frequency Amplifiers for additional power amplification.

Radio Frequency Power Amplifier (RFA)

The Radio Frequency Power Amplifier consists of three RCA "overlay" transistors Q3, Q4 and Q5. The 500 mW signal from the buffer amplifier is attenuated by a 500 ohm 10 dB pad consisting of resistors R60, R61 and R62 to a level of 50 mW . In this manner,
isolation between the buffer amplifier Q2 and the rf amplifier is realized. The rf signal, at a level of 50 mW , is matched to the base circuit of the first rf amplifier Q3, by L12, C59, C60 and C61. The 1.5 watt signal at the collector of Q3 is matched to the base of Q4 by L14, C66, L15 and C68. The 6.0 watt output of Q4 is applied through a matching network consisting of L17, L18, C71, C88, C73 and C86 to the base of Q5. The output of Q5 is a nominal 15 watts rf and is applied to a three-section, pi-matching harmonic filter (L21 through L23 and C76 through C81) used to match the if output of the rf amplifier to the final 50 ohm load.

AFC Circuit

A small sample of the rf output is fed to IC1, which is a high speed JK flip-flop operating in the current saturated mode. The supply voltage for IC1, IC2 and IC3 is 5 volts and is derived from the +15 volts supply thru a 100 ohm 5 watt resistor, (R56). The divided outputs of IC1, IC2 and IC8 have logic levels of +3.5 volts and +4.5 volts. The input frequency is divided by 2 in each integrated circuit. The output of IC3 is therefore about 12 MHz . Logic level changer Q6 changes the +3.5 volt and +4.5 volt logic levels to 0 volts and +1 volt respectively. The signal is divided by a factor of 4 in dual JK flip-flop IC4. This process is repeated until the output of IC9 at pin 5 is the modulated oscillator frequency divided by 16,384 (IC9 divides by a factor of 2) or approximately 6 KHz . Verification of the presence of the 6 KHz can be observed on the front panel meter with the meter switch in the DIVIDER OUTPUT position. When the last flip-flop of IC9 is oscillating, the average output is about 0.5 volts so that the panel meter reads half scale. If no divided output is present the meter will indicate a reading of less than 20 or more than 90.

The reference oscillator includes IC10 and the reference crystal. The crystal frequency will vary depending on the assigned carrier frequency (refer to Exciter Crystal Data Table). The crystal oscillator frequency will be about 100 KHz . The 100 KHz signal is divided by a factor of 16 for a final reference frequency of approximately 6 KHz .

Phase comparison between the frequency-divided output of the modulated oscillator signal and the reference signal is achieved in IC13, which is a "NOR" gate. A property of the "NOR" gate is that both input signals must be negative at the same time for the output to be positive. As the phase between the 6 KHz reference signal and frequency-divided buffer output signal shifts, the percentage of time that the "NOR" gate output is positive varies. It can vary from 0% to 50% of one full 6 KHz cycle. This signal is inverted in the second "NOR" gate in IC13. It is then amplified and reinverted to its original shape by IC14.

The duty cycle of the waveform at pin 12 (collector)
of IC14 is proportional to the phase angle between the reference signal and the modulated oscillator (buffer) divided output. Therefore, the average voltage at this point varies with phase. R52, C50, R53 and C51 act to integrate or "average" the voltage at IC14, pin 12, which is then fed through the AFC DISABLE-OPERATE switch and L4 to the modulated oscillator AFC varicap diodes. In this fashion, the modulated oscillator center frequency is phase locked to a crystal reference.

If the AFC falls out of lock, the waveform at pin 12 of IC14 will have a low frequency ac component. This ac component is coupled by C 45 to the AFC error detector consisting of R44, R45, C46, C47 and CR18. The dc level out of the AFC error detector is used to actuate an "off-frequency" relay in the Main Frame assembly. This relay, K102, is also activated by lack of an output from either the reference divider or the modulated oscillator divider.

The remaining two transistors in IC14 are used as divider output amplifiers. These outputs are ac coupled, rectified into a negative voltage and referenced to the +3.6 volt supply. If a 6 KHz signal from IC13 (the divided reference signal) is fed to pin 6 of IC14, the voltage at the junction of CR14 and C42 is approximately -6 volts dc. If, however, the 6 KHz is not present, no negative voltage is developed across C42 and the junction of CR14 and C42 will rise to +3.6 volts. This causes the voltage across C 47 to become positive, thereby closing the AFC unlock relay K102 located on the Main Frame Assembly. The divided modulated oscillator output is processed in the same manner as the divided reference signal and applied across C47.

Resistors R50 and R51 make up a voltage divider which provides the panel meter AFC signal. The panel meter range is such that center scale on the meter corresponds to the center of the AFC lock range. Capacitors C49 and C50, resistors R54 and R55 and diode CR19 comprise the AFC unlock detector which operates the front panel meter when the meter function switch is in the UNLOCK VOLTAGE position.

The crystal oven temperature is controlled by the oven thermostat. The oven thermostat switches oven control transistor Q8 from the "off" to the "on" state at intervals which are a function of oven temperature. Thus, a positive control of oven temperature is established with only a small current through the thermostat contacts. This minimizes problems with oven thermostat contact wear, as well as noise problems. Capacitor C31 is used to slow up the oven ON and OFF time to prevent the introduction of transients into the power supply.

BTS-1B STEREO GENERATOR

Refer to block diagram of the RCA Model BTS-1B Figure 4. The BTS-1B utilizes unique circuitry tc
generate the stereophonic composite waveform. A 76 KHz crystal oscillator drives an integrated circuit frequency divider to provide a frequency stable 38 KHz stereo subcarrier. This has been done in order to minimize the possibility of cross talk into an SCA channel operating in the 67 KHz region. Further, the switching time between the left and right channels is extremely fast, generating an inherently pure stereo signal.

Stereo Carrier and Pilot

The 76 KHz signal is generated in the crystalcontrolled multivibrator using IC301. Buffered and amplified by Q301, it is then applied to the first section of the dual binary IC302. This first section delivers push-pull 38 KHz square waves which are applied to buffer amplifiers located in IC303. The outputs of these amplifiers are used to provide the carrier excitation to the series diode modulator. Refer to Figure 52.

The first half of IC302 also drives the second half of that binary, providing a square wave at 19 KHz . This is subsequently amplified by a transistor in IC303, by power amplifier Q303, and sinusoidalized by tuned circuit C311, C312 and L301. Adjusting this tuned circuit slightly one side or the other of resonance will adjust the pilot phase.

Notice that the stereo carrier and pilot waveforms have been generated by digital or switching techniques, leading to an inherently stable generator. There are no linear amplifiers in this portion of the circuitry.

Audio Channels

The two audio channels are similar: one will be discussed first and then will be compared with the second channel, which is adjustable to some extent. Both lead to the modulator.

The audio to both channels is terminated in a resistive pad (R373 through R377 in the right channel and R473 through R477 in the left channel) and drives a transformer to convert from balanced or floating input connection to an unbalanced configuration.

In the case of the left channel, the transformer feeds IC404 to provide gain and the capability of active pre-emphasis. The gain is controlled by the ratio of the sum of R433 and R438, divided by R430. Hence, the gain of this circuit is near unity at low frequencies. But at high frequencies, the feedback ratio is altered by the series network of R431 in series with C414. This network is shunted across the feedback network and so reduces the amount of feedback at higher audio frequencies. This is the method of obtaining pre-emphasis in the BTS-1B.

When 75 microsecond pre-emphasis is desired, C413 and C414 are connected in parallel by strapping. Only C414 is connected when 50 microsecond pre-emphasis is desired, and neither capacitor is connected when flat response is wanted.

The left and right preamplifiers are matched for equal low frequency gain by adjusting the value of R329 so that the sum of R329 and R330 is equal to R430. This sets the two channel gains identical at low frequencies.

At 5 KHz the two channels are matched by adjusting the point where the pre-emphasis takes effect. This is accomplished by adjusting the point in the resistor chain where the RC network is connected. R431 and C414 are connected to a 3300 ohm resistor, R438, which is connected to the emitter of Q404 in the left channel. The corresponding resistance is adjustable in the right channel by adjusting R334.

Adjustment of the two channels for the same time delay is accomplished by adjusting the value of the stopping resistor. In the left channel this is fixed at 47 ohms (R431); in the right channel it is the sum of a 33 ohm fixed resistor (R331) and a 50 ohm variable resistor (R332).

This degree of matching enables the two audio channels, including the following low-pass filters, to be matched to the point where stereo cross talk measurements of the order of 45 dB are obtainable. They are unique with this generator design.

The outputs of the two buffer amplifiers, Q304 and Q404, are fed to the two 17 KHz low-pass filters (FL301 and FL401). These filters are less than 0.5 dB down at 15 KHz , and greater than 50 dB down at 19 KHz and above. This insures an absolute minimum of disturbance to the pilot carrier and subcarrier regions by the program material. Exact equalization of time delay in the 15 KHz region is accomplished by adjustment of 15 KHz phase adjustments C330 and C421.

The outputs of the filters are terminated in their characteristic impedance by R342 and R442 and fed to buffer amplifiers Q305 and Q405. These buffers provide outputs for monaural operation (via the individual gain controls R349 and R449). They are again applied to another pair of buffers, Q306 and Q406, to provide low-impedance drive to the switching modulator. At this point audio output samples are taken for metering purposes via R347 and R447.

Switching Modulator

The series diode switching modulator alternately switches between the left and right audio channels at a 38 KHz rate. The switching time is considerably less than 1 microsecond thereby providing a nearly ideal

Figure 4. BTS-1B Stereo Generator, Simplified Block Diagram
stereo signal. The switched signal is almost free from second harmonic components and so provides an inherently clean signal, a characteristic especially important in the SCA (67 KHz) region. CR305 and CR401 form a pair of "AND" gates whose inputs are the audio signals and the 38 KHz excitation. The output of the "AND" gates are summed in an "OR" gate consisting of CR306 and CR402. The summed output is then applied to a buffer amplifier (emitter follower), part of IC306.

The output of this buffer is applied to a phase-linear filter to remove the third and all higher order harmonics of the switching signal. A by-product of this filtering operation is an excess of L-R (difference) signal. This is compensated for by taking a selected amount of $L+R$ (sum) signal and routing it around the switching modulator. This is accomplished with the aid of R354, R454, R357, R358 and R359.

At the base of IC306, Section C, Pin 2, a stereo signal is present consisting of the switched signal, switched alternately between left and right, and a corrective signal consisting of a small amount of the sum of the left and right channels. The output of this stage is applied to the 55 KHz low-pass filter, FL302, through source resistance R363. The pilot signal is added to the input of the filter through resistor R325.

The output of the filter is a high-quality stereophonic waveform which is routed, via contacts on relay K301, to the output buffer amplifier, IC407. This directcoupled amplifier has sufficient bandwidth to maintain full stereo fidelity far in excess of FCC requirements, and provides a low-impedance source to drive the BTE-15A FM modulated oscillator.

Monaural Operation

If monaural operation is desired, diode-relay logic is incorporated to determine which audio channel should be used and whether the signal should be stereo or monaural. This complex function is provided by relay K301 (selecting stereo or mono), relay K302 (selecting right or left) and diodes CR309 through CR320. Holding contacts on the relays parallel the pushbuttons in order that only a temporary contact closure (of the pushbuttons) is required for selection of any mode. In addition, all contacts for the signal selection are brough̆t out on the rear of the unit for full remote control.

MONAURAL AUDIO MODULE

When the BTE-15A FM System is not used for stereophonic transmission, the Monaural Audio Module is used to accept and process the audio input signal.

Refer to Monaural Audio Module schematic diagram, Figure 53. Audio is routed to a resistive input pad, assuring that the driving audio processors, such as the RCA Models BA-46 and BA-47, look into a resistive
load. Following the input pad is a transformer T201, which makes possible the transition from balanced (floating) to unbalanced circuit configuration. The transformer secondary is terminated by R206.

The audio is then applied to an operational-amplifier circuit, IC201, to obtain pre-emphasis by means of frequency-selective negative feedback. This pre-emphasis is field-convertible from standard 75 to a 50 microsecond curve, or it may be strapped with optional components for any other curve, including a flat response. Components have been added to the operational amplifier for stabilization against oscillation.

The output of this preamplifier is applied to a 17 KHz low-pass filter, FL201, which assures that no modulating components above 17 KHz are applied to the BTE-15A FM Exciter, thereby keeping the subcarrier region free of unwanted components for superior SCA transmissions.

The output of this filter is terminated by R219 and applied to a buffer amplifier. Following this is a gain-adjustment control, R223, for vernier adjustment of the module gain. This control may be used in conjunction with the common step-type attenuators in setting the correct degree of modulation of the BTE15 A , or it may be used to standardize the gain of the monaural with that of the RCA BTS-1B Stereo Generator.

The gain control adjusts the level of the program material applied to the output buffer amplifier. This amplifier is heavily controlled with negative feedback to reduce its distortion and output impedance to very low figures. Again, appropriate stabilizing components have been added to this operational amplifier.

The actual output of the monaural audio module is either the output of the operational amplifier IC202, or an external signal, selected by switch S201. If an external signal, such as that from test equipment or a composite studio-to-transmitter link, is applied to the WIDEBAND input jack, located at the rear of the main frame of the BTE-15A, and if the S 201 is switched to the External position, then the external signal will be applied to the modulator circuitry in the BTE-15A FM exciter. Return to normal monaural programming is accomplished simply by switching S201 to Monaural.

Internal regulation of power supply voltages is accomplished by a pair of Zener diodes CR201 and CR202 on the printed circuit board. Test points are included to facilitate maintenance checks.

BTX-1B SCA SUBCARRIER GENERATOR

Certain unique options are included in the BTX-1B which set it apart from other SCA Subcarrier Generators. One is the ease of adding radio remote control metering signals. The unit is pre-wired to include this
feature and the metering signals need only be applied to the rear of the unit. The signals are normally in the 20 Hz to 40 Hz range with a level about 15 dB below full modulation of the SCA subcarrier and are not audible on the subscriber's receiver.

Another unique feature is the interchangeability of the modules; the 41 KHz and 67 KHz units may be. interchanged on the main frame of the BTE-15A Exciter System and no difference will be observed. This is because of the method of wiring the SCA modules. The main frame is wired in such a manner that both audio input signals go to both SCA connectors, but only to the appropriate pins of each connector. The same technique is employed for the pre-emphasized audio sampling, the injection metering sampling and the external muting.

Test points are included on the BTX-1B for maintenance checks: black is ground, red is for the incoming 15 volt line and orange is for the regulated 10 volt line. The remaining test points follow the standard color code as the signal is traced from input to output: yellow for input audio, green for pre-emphasized audio, blue for the modulated oscillator, violet for the filter input and grey for the output. Test points are not required in the muting section because the front panel lamps provide that function.

Early SCA units employ serial numbers 1 through 999, while later units, with an improved oscillator circuit, employ serial numbers 1000 and up. These boards are directly interchangeable. In the illustrations, figures with the basic number refer to the early boards, while the boards from 1000 up have the suffix "a".

Modulated Oscillator

Refer to the BTX-1B SCA Generator Schematic Diagram, Figure 54(54a), and to the BTX-1B Simplified Block Diagram, Figure 5. Audio is applied to pins 2 and 4 of the input circuitry and is fed through the isolation pad, R501 through R505, to assure that preceding audio processing equipment, such as the BA-43/46 Limiter Amplifier and the BA-43/47 Clipper Amplifier, will see a resistive load. Following the isolation pad is an input transformer, T501, which converts a balanced (floating) to an unbalanced configuration.

Between the transformer and following circuitry is an optional 5 KHz low-pass filter, FL501. The filter in conjunction with external audio processing equipment will prevent higher-order lower side band energy in the 67 KHz SCA signal from penetrating the stereophonic subcarrier region. The modulation control R506 terminates the 5 KHz filter. When stereo is transmitted, t is recommended that the 5 KHz filter (available as MI560721) be installed and the input be preceded by frequency-sensitive processing such as the RCA BA-47 clipper (normally used with a BA-43 amplifier). Deviation of the SCA signal should be limited to $\pm 4 \mathrm{KHz}$ when stereo and SCA are transmitted simultaneously.

Following the modulation control is a high-gain audio amplifier IC501 which serves to amplify the.incoming modulating signal, thereby eliminating the requirement for a line amplifier, and to provide SCA signal preemphasis. The pre-emphasis is obtained by virtue of frequency-selective negative feedback and is field convertible for a standard 150 microsecond or a 75 microsecond curve. The unit may also be strapped for a flat response if desired.

The modulating signal appearing at the output of the audio amplifier (IC501, pin 12) is resistively summed with a dc frequency control voltage at the input to a buffer amplifier (part of IC501). The buffer amplifier is coupled to the modulated oscillator, IC502. The frequency of the modulated oscillator (IC502) is a function of the modulating signal and of the dc control voltage. Frequency adjustment is provided by COARSE FREQ potentiometer R517 and FREQ control (vernier) R515, located on the front panel of the SCA module.

The modulated oscillator output is coupled to a series diode gate consisting of diodes CR505 and CR506. This gate is keyed on and off by a signal from the muting amplifier. The filter (between IC503 terminal 11 and IC503 terminal 6) removes subcarrier harmonics, leaving only the fundamental components. The output of the filter is applied to a buffer amplifier, part of IC503, and then to the output by way of output level adjustment R546.

Muting Circuits

The audio preamplifier drives not only the modulated oscillator but also the muting system. The first section of IC504 is used as a buffer to derive a sample of the pre-emphasized audio to be routed to the metering amplifier printed circuit board (located on the BTE-15A Main Frame). Part of the load impedance for the buffer is the muting sensitivity adjustment R558.

Audio from the muting amplifier (second and third transistor portion of IC504) is fed to a voltage doubler, CR507 and CR508, which drives the first transistor portion of IC505, charging storage capacitor C533. The storage capacitor will charge rapidly with program material applied but has a long discharge time, through DELAY potentiometer R587. The voltage across capacitor C533 is applied to a buffer transistor (the second section of IC505) and then to a Schmitt trigger using the third and fourth sections of IC505. When the input audio level exceeds a certain value, the voltage across C533 rises above a reference level, causing the Schmitt trigger circuit to "fire" and key ON the series diode gate CR505 and CR506 and key the lamp drivers to give a visible indication of the subcarrier status. An RC network consisting of R579, R580, C535 and diode CR509 shape the rise and fall time of the Schmitt trigger output.

Figure 5. BTX-1B SCA Generator, Simplified Block Diagram

BTE-15A MAIN FRAME

The main frame power supply transformer T101 includes a split and tapped primary for use with 120 or 220 volt primary power. The secondary of the transformer has three windings which deliver after rectification $+40 \mathrm{~V},+20 \mathrm{~V},-20 \mathrm{~V}$, and +5 V dc supply voltages. The 40 volt output is regulated to +22 volts by Q101, Q102 and Q108. Q101 and Q102 are used as an emitter-follower, Darlington series pass element, the output of which is controlled by Q108. Zener diode CR106 holds the emitter of Q108 at a fixed reference potential. The output of Q101 is divided down by R106, R107, and R108 and fed to the base of Q108. The difference appears at the collector of Q108 and controls the output of Q101. Adjustment of the output voltage is achieved by R107.

The +20 volt dc output is regulated to +15 volts dc by Q103 acting as an emitter-follower regulator. CR107 is the +15 volt dc reference, and the reference source is the +22 volt supply.

The -15 volt dc supply and +3.6 volt supply operate in the same manner as the +15 volt dc supply. The -15 volt dc supply, however, uses a PNP transistor as a regulator and its own -20 volt input as a reference source.

Off-frequency Shutdown Circuit

An off-frequency detector is incorporated in the design of the BTE-15A FM Exciter. When the basic oscillator frequency is not phase locked to the reference crystal, an ac component appears at the AFC output. This voltage is rectified to operate a relay whose contacts can be used to turn off the FM transmitter.

Q106 and Q107 operate as relay drivers for K102, the AFC Unlock relay. If a phase lock is not realized in the AFC circuitry, a positive voltage is applied to the base of Q107. This turns on Q106 and closes K102. The contacts of K102 can be used to control the output of the FM transmitter.

CB101 is a magnetic breaker intended to be used as both an ON-OFF switch and overload protection for the power line.

K101 is the remotely operated rf power ON-OFF relay which applies +22 volts to the rf amplifier through F101, S103 and R101. F101 protects the power supply from shorts in the rf amplifier circuitry. F101 also protects the rf amplifier from overvoltage. If Q101 should short circuit, applying +40 volts to rf amplifier circuitry, CR101 will conduct heavily and draw enough current through F101 to open it. S103 is a front panel ON-OFF switch for the rf amplifier. R101 is the front panel rf power output control. Only the power to the
last two rf amplifier stages is controlled by R101. This prevents spurious outputs which might be caused by operation of amplifiers at low collector voltages.

Two multimeters are located on the hinged door in front of the regulated power supply section. One of these meters is used to indicate power supply and operating voltages within the exciter and three stage rf Amplifier. The second meter is a peak-reading voltmeter that is used to indicate key modulating signals.

S101 is the monitor meter (M101) selector switch. Position 1 is the EXTERNAL METERING position, and the meter leads are directly available at J 101 , pins 3 and 4.

The modulated oscillator (MOD. OSC) position indicates the detected output of the oscillator buffer chain (Q1 and Q2).

The XTAL OSC position measures the collector voltage on the last binary (IC9) in the reference frequency (crystal oscillator) divider chain. If the indication is approximately center scale, both the oscillator and the oscillator divider chain are operating. If not, the meter will read either less than 20 or more than 90.

The DIVIDER OUTPUT position samples the collector voltage of the last binary in the modulated oscillator divider chain. Again, if the indication is approximately center scale, operation is normal. If the dividers are not functioning normally, the reading will be less than 20 or more than 90 .

The AFC VOLTAGE position measures the output of the AFC circuitry which is used to drive the AFC varicap diode in the modulated oscillator. It should read approximately center scale and be controllable by the AFC ADJUST knob (C14) on the front of the FM exciter module.

The UNLOCK VOLTAGE position indicates the presence of an AFC unlock voltage if present.

The BUFFER INPUT position reads the base bias developed on the first rf amplifier transistor Q3.

The DRIVER CURRENT position measures the collector current of the second rf amplifier transistor. The POWER AMP CURRENT position similarly measures the third and last rf amplifier collector current. The POWER AMP VOLTAGE position indicates the supply voltage to the last two rf amplifier transistor stages.

The POWER AMP OUTPUT position monitors a small sample of the rf voltage at rf output connector $\mathbf{J} 2$. The indication is affected by VSWR and can be used as a reliable indication of power output only when the output is terminated by a 50 ohm resistive load. C105,

C106, L101 and L102 comprise a power line input filter which prevents leakage of rf either into or out of the unit via the line cord.

Meter Amplifier

The audio and SCA modules in the BTE-15A FM Exciter System provide outputs for sampling audio and program levels and relative SCA injection. These are routed to the calibration controls near the front of the metering amplifier circuit board, located in the power supply compartment, and then to the selector switch S 102 . S102 selects which sample is to be applied to the metering amplifier.

The metering amplifier itself consists of a 5 -stage circuit. The first stage is of relatively high input impedance and high gain. This is followed by a second stage, designed for somewhat lower gain, good linearity and low output impedance. This second stage is followed by a pair of emitter followers, (Darlington configuration) for current amplification. The second of these emitter followers, the fourth section of IC101, is coupled through blocking capacitor C 121 to power amplifier Q109. Q109 is forward biased by means of
temperature-sensing diode CR116. The non-linear transfer characteristic of Q109 results effectively in rectification of the audio signal. Positive peaks therefore charge capacitor C122 to the peak value of the selected waveform. To accomplish rapid charging of C122 large values of current are required, and this is the reason for the large amount of current amplification in the amplifier.

Capacitor C122 can discharge only through resistor R126 via the meter M102. This discharge rate has been chosen to approximately follow the audio envelope; the resulting meter movement is similar to the station's modulation monitor or typical VU meter. However, because of the extremely rapid charging rate possible, the system will respond correctly to very short program signal bursts. Further, because the transient signals are routed around the meter multiplier resistor R126 by capacitors C123 and C124, the actual meter movement is accelerated, especially on the upswing. R 127 critically damps the meter and so controls the overshoot.

More sophisticated than an elementary VU meter, this peak-reading multimeter with its complete system monitoring capability enables the broadcaster to accurately measure parameters in the BTE-15A heretofore measured only by oscilloscopes or similar complex equipment.

INSTALLATION

MAIN FRAME

The BTE-15A main frame is 19 inches wide and $10-1 / 2$ inches high and is designed for standard rack mounting. All connections are made to the rear of the unit. It houses the FM Exciter, Stereo Generator (or Monaural Audio Module), and one or two SCA Generators (or SCA Generator Blank Panels). It may be operated with $117 \mathrm{~V}, 208 \mathrm{~V}$ or 240 volts $50 / 60 \mathrm{~Hz}$ input.

CAUTION

Make certain that T101 is properly connected for the voltage input at J103. Refer to Figure 55.

Connections

1. Terminate the exciter rf output jack $\mathbf{J} 2$, using a suitable 50 ohm dummy load (this may be the transmitter rf input circuit).
2. If necessary, change primary connections to exciter power transformer T101, for operation at the available line voltage. See Figure 55. AC line power is applied to exciter main frame power connector J103.

NOTE: In RCA BTF-5E1, BTF-10E1, and BTF-20E1 FM transmitters, exciter AC line voltage should be connected at transmitter terminals 1TB1-13 and 1TB1-14.
3. To secure rf output it is also necessary to energize the coil of remote power "ON-OFF" relay K101. The relay normally supplied incorporates a 240 volt operating coil, which is operated by application of 240 volts (AC) to exciter terminals J101-1 and J101-2. This voltage is supplied in RCA BTF-5E1, BTF-10E1, and BTF-20E1 transmitters when transmitter connector 1P5 is connected to exciter connector J101.

NOTE: If 240 volts AC is not available to operate K101, other voltages may be used, provided that a new relay (K101) is substituted which is compatible with the voltage used (at J101-1 and J101-2).
4. Power output should now be available from the exciter when RF OUTPUT switch S103 is set to the ON position. The rf power output may be set by simply varying the setting of RF POWER ADJUST rheostat R101.

FM EXCITER

The BTE-15A FM exciter is mounted in and receives power from the main frame. All connections are made to the main frame, including input and output connections.

STEREO GENERATOR

The BTS-1B stereo generator is mounted in the main frame of the BTE-15A exciter system or it may be mounted in a special smaller frame by itself, as a retrofit for the BTS-1A stereo generator. In either case, power is derived from the main frame. All connections are made to the main frame, including power, remote control
connections (if used), audio input(s) from the signal source or audio processors and the output connection.

SCA GENERATOR

The BTX-1B SCA generator is normally mounted in the main frame of the BTE-15A exciter system or it may be mounted in a special smaller frame by itself, as a retrofit for the RCA BTX-1 A SCA generator. In either case, power is derived from the main frame. All connections are made to the main frame including power, remote control connections (if used), audio input from the signal source or audio processors and the output connection, either the subcarrier itself or the complete output of the BTE-15A exciter.

TUNING

BTE-15A RF AMPLIFIER (RFA)

NOTE: This is not a complete tuning procedure. It is to be used only following a transistor replacement or other malfunction such that the RFA is known to have been operating properly at one time. If it is desired to alter the frequency to which the exciter is tuned, it is recommended that the unit be returned to RCA for this purpose.

1. Disconnect the BTE-15A from the transmitter and connect it through a wattmeter to a 50 ohm dummy load of 25 watts or greater power handling ability.
2. Mount the exciter drawer on the extender and loosen the two nuts on either end of the RFA. Rotate the RFA toward the rear and remove the cover plate to expose the RFA tuning adjustments.

CAUTION

Use only a completely insulated tuning tool.
3. Apply power to the exciter and turn the POWER control fully clockwise.

NOTE: The RFA has been previously tuned. Therefore, it should not be necessary to turn any control more than 10° from its original position. It might be well to mark the original positions before beginning to adjust the unit.
4. The interstage matching networks each contain two controls which must be adjusted as a pair, for an
optimum condition. This is done as follows:
A. Adjust one of the capacitors in a pair for a maximum of power output as read on the wattmeter.
B. Slightly detune the other capacitor of the pair to reduce the power out by $2-3$ watts.
C. Adjust the first capacitor again for a peak in power. If this peak is greater than the previous one, again slightly detune the second capacitor in the same direction as before.
D. Repeak the first capacitor and continue this procedure until no further improvement can be noted.

If the first readjustment resulted in a lower power out, the second capacitor should be detuned the opposite way.

When tuning the RFA it is important to start at the beginning and work straight through. DO NOT GO BACK. When all adjustments have been made, go back to the beginning and go straight through a second or third time, until no further improvement can be noted. A minimum expected power output after this procedure is 17.5 watts.

The capacitor pairs to be adjusted are, in order, C59 and C61, C66 and C68, C71 and C73.

Do not adjust the six output matching capacitors unless the previous procedure fails to produce a minimum of 17.5 watts output.

These capacitors are also adjusted in pairs, as follows: C 76 and C77, C78 and C79, C80 and C81.

The RFA now has optimum power output. All that remains is to broad-band it and verify stability.

Apply 100 Hz sinusoidal modulation of sufficient amplitude to modulate the exciter 133%.

Place the EXCITER MULTIMETER switch in the PWR AMP OUTPUT position.

Connect an oscilloscope so that the Y axis is deflected by voltage between C83 on the RFA and ground, and the X axis is deflected by the 100 Hz modulation input.

The audio oscillator, Exciter, and Oscilloscope now form a sweep generator and detector. The more nearly horizontal and flat the scope trace, the better the RFA tuning.

Go through the RFA as previously described, adjusting the coupling networks very slightly for a flat, horizontal scope trace, simultaneously watching the wattmeter to see that power out does not drop below 15 watts.

After a preliminary adjustment has been made, slowly turn the POWER control towards minimum, simultaneously watching the scope trace. The amount of incidental AM (shown by tilt or bumps in the scope trace) will change. It is necessary to adjust the RFA so that a compromise condition is reached, and the incidental AM is not too severe at any power level.

When adjusting power out and observing the scope, if any "stairsteps", or discontinuities are noted at any power level, adjust the RFA so as to eliminate them. They represent instabilities due to improper tuning and must not be present at any power setting when tuning is completed.

As a final adjustment to flatten the passband of the RFA, slightly tune C22 for minimum incidental AM.

When tuning is complete, the BTE-15A should deliver at least 15 watts in a 50 ohm dummy load. The sweep output on the oscilloscope should be reasonably flat at all settings of the POWER control, and there will be no discontinuities in the sweep response at any power level.

BTS-1B STEREO GENERATOR

NOTE: To obtain an $\mathrm{L}=\mathrm{R}$ stereo signal, feed the LEFT and RIGHT audio channels from a common audio generator and connect in phase. To obtain an $L=-R$ stereo signal reverse one channel so that the RIGHT and LEFT audio are 180° out of phase. The circuit diagram for an easily fabricated test fixture, which may be employed to facilitate stereo tests, is given in Figure 56. An RCA Type BW-85A Stereo Modulation Monitor is recommended for the following tests.

1. Set all controls and adjustments on the BTS-1B Stereo Generator to the maximum counterclockwise position.
2. Set PILOT LEVEL (R322, Front Panel) at minimum.
3. Read the 38 KHz TEST position on the BW-85A monitor and adjust the BTS-1B CARRIER BALANCE control (R356, Front Panel) for a 38 KHz null.
4. Set the BW-85A function switch to the TOTAL MODULATION position and apply a $50 \mathrm{~Hz} \mathrm{~L}=\mathrm{R}$ audio input.
5. Adjust the audio level so that the BW-85A monitor reads 90% on the TOTAL MODULATION range and then turn the BW-85A FUNCTION selector to the $\mathrm{L}-\mathrm{R}$ position and observe the level indicated on the monitor.
6. Adjust the 50 Hz ADJ CONTROL (R329, on printed circuit board) for null as indicated by the monitor while in the L-R MODULATION position.
7. Change the frequency of the audio generator to 5 KHz but leave the audio phase conditions set for $\mathrm{L}=+\mathrm{R}$. Set the audio generator level to read 90% modulation as indicated in the TOTAL MODULATION position on the monitor.
8. Adjust 5 KHz ADJ CONTROL (R334, on PC board) for null as read in the L-R MODULATION position on the BW-85A monitor.
9. Set the frequency of the audio oscillator to 15 KHz while still feeding the audio in the $\mathrm{L}=+\mathrm{R}$ phase. Set the level of the audio oscillator to indicate 90% modulation as read in the TOTAL MODULATION position of the BW-85A monitor.
10. Set the 15 KHz ADJ CONTROL (R332 on PC Board) for null as indicated in the L-R position of the stereo monitor.
11. Both the 5 KHz ADJ and 15 KHz ADJ adjustments should be rechecked for best null as indicated in the L-R MODULATION positon of the monitor.
12. Set the frequency of the audio generator to 5 KHz and leave the phase of the audio in the $L=+R$ condition.
13. Adjust 50 Hz ADJ for null as indicated in the L-R MODULATION position of the stereo monitor FUNCTION switch.
14. Set the SEPARATION control (R359, on the Front Panel) to minimum resistance (CCW).
15. Set the audio generator to 10 KHz and switch the phase of the audio to $\mathrm{L}=\mathrm{R}$. Set the signal generator level to read 90% modulation on the BW-85A monitor as indicated in the TOTAL MODULATION position.
16. Adjust SUB to MAIN (R357, on PC Board) for null as indicated in the L+R MODULATION position of the stereo monitor.
17. Turn the FUNCTION selector switch on the stereo monitor to the PILOT MODULATION position and set PILOT LEVEL (R322, on the Front Panel) to read approximately 5% modulation.
18. Adjust the PILOT PHASING (L301, on PC Board) for maximum on the meter as indicated in the PILOT MODULATION position on the stereo monitor. Readjust the PILOT LEVEL control for 10% injection.
19. Feed LEFT only at 13 KHz to the stereo generator and adjust the input level of the audio generator to produce 100% modulation as indicated in the TOTAL MODULATION position on the BW-85A monitor.
20. Switch the monitor FUNCTION switch to the L+R MODULATION postion. Read and note the level indicated.
21. Switch the FUNCTION selector to the L-R MODULATION position and note this reading. Adjust the SEPARATION control (R359, on Front Panel) until the level indicated agrees with the level indicated in step 20. At this time switching between $\mathrm{L}+\mathrm{R}$ and $\mathrm{L}-\mathrm{R}$ on the stereo monitor FUNCTION switch should produce the same indication on the meter.
22. Readjust the audio level for 100% modulation as indicated in the TOTAL MODULATION position on the stereo monitor. Switch to the RIGHT channel only position and read the separation.

NOTE: If a BW-85A stereo monitor is used, verify that the monitor phase adjustment is optimum. See monitor alignment procedure for details.
23. Carefully adjust SEPARATION control (R359) and PILOT PHASE control (L301) for best separation.
24. Adjust FILTER TERMINATION (R366, on PC Board) for best separation. Stereo separation should be 33 dB or better.
25. With no audio input applied and the AUDIO MULTIMETER switch set to PROGRAM OUTPUT, check that there is no deflection on AUDIO MULTIMETER M102. If necessary, adjust METER ZERO control R129.
26. Set the audio generator frequency to 400 Hz . Set the level to 10 dBm . Push the LEFT monaural button on the front panel of the stereo generator.
27. Adjust the LEFT MONO GAIN control (R449, on PC Board) for 100% modulation as read with the BW-85A FUNCTION switch set to the TOTAL MODULATION position.
28. Move the output of the audio oscillator to the RIGHT input connector and press the RIGHT monaural button on the front panel of the stereo generator.
29. Adjust the RIGHT MONO GAIN control (R349, on PC Board) for 100% modulation, read with the BW-85A FUNCTION switch set to the TOTAL MODULATION position.
30. Switch the stereo generator to the STEREO mode and apply a $400 \mathrm{~Hz} \mathrm{~L}=\mathrm{R}$ signal. Set audio generator level to produce 100% modulation as read with the BW-85A FUNCTION switch set to the TOTAL MODULATION position.
31. With the AUDIO MULTIMETER switch (on BTE-15A main frame) set to the LEFT AUDIO (MONO) position, set calibration control R136, designated LEFT CAL, for an indication of 0 dB on AUDIO MULTIMETER M102. Calibration control R136 (and other associated calibration controls) are located on the meter amplifier and power supply regulator printed circuit board in the main frame.
32. Set the AUDIO MULTIMETER switch to the RIGHT AUDIO position. Adjust calibration control R135, designated RIGHT CAL, for an indication of 0 dB on AUDIO MULTIMETER M102.
33. Set the AUDIO MULTIMETER switch to the PROGRAM OUTPUT position. Adjust PGM CAL control R134 for an indication of 0 dB on AUDIO MULTIMETER M102.

bTX-1B SCA GENERATOR

1. If both stereophonic and SCA operation are planned, it is recommended that the optional 5 KHz low-pass filter (MI-560721) be included in the BTX-1B SCA Generator. This unit immediately follows input transformer T501, when supplied. Use of this filter prevents higher-order lower sideband energy in a 67 KHz SCA signal from penetrating the stereophonic subcarrier region. This filter is available as optional MI-560721. Installation details for MI-560721 are shown in Figure 57.

NOTE: The following SCA Generator Adjustment procedure requires the use of an FCC approved multiplex monitor, such as the RCA BW-95A.
2. Set the front panel control switch S 501 to the ON position. This holds the subcarrier on regardless of whether or not there is audio modulation present.
3. Adjust front panel control R515 (designated FREQ) for the proper SCA subcarrier frequency. If necessary, reset coarse SCA subcarrier frequency control R517 as required. This adjustment should be made without modulation applied to the SCA generator.
4. Adjust the SCA Generator output level control R546 (designated OUT on the front panel) for the desired degree of injection to the BTE-15A (or other) exciter. Injection is usually set at 9 to 10% when stereo is transmitted and 10 to 20% with monaural signals. With monaural programming the arithmetic sum of the modulation of the main carrier by SCA subcarriers should not exceed 30 percent.
5. With the AUDIO MULTIMETER switch (on BTE-15A main frame) set to the SUB 1 INJECTION position, set calibration control R132, designated SCA 1 INJ, for an indication of 0 dB on AUDIO MULTIMETER M102. Calibration control R132 (and other associated calibration controls) are located on the meter amplifier and power supply regulator printed circuit board in the main frame.
6. Now apply audio modulation to the SCA channel. Set the SCA monitor for measurements on the SCA subcarrier frequency in use. Advance the MOD control (R506, at SCA Generator front panel) until the SCA monitor modulation meter indicates the desired degree of deviation of the subcarrier. Where the BTX-1B is used in conjunction with a BTE-15A exciter, the exciter AUDIO MULTIMETER switch should be set to the SUB 1 AUDIO position. The AUDIO MULTIMETER should indicate near the zero dB calibration mark. If not, reset the SUB 1 MOD control R133 as required.
7. Note that the AUDIO MULTIMETER on the BTE-15A is peak-reading, and will respond correctly to the instantaneous value of modulation regardless of modulating waveform, whether it be a sine wave or program material.
8. If two SCA channels are to be used, repeat steps $2,3,4,5$ and 6 for the second SCA generator. In this
case the AUDIO MULTIMETER switch is set to the SUB 2 INJECTION and SUB 2 AUDIO positions and control R130, designated SCA 2 INJ, is used to calibrate the AUDIO MULTIMETER (with the AUDIO MULTIMETER switch set to the SUB 2 INJECTION position) and R131 (SUB 2 MOD) is used to normalize the audio multimeter reading (in the SUB 2 AUDIO position of the meter switch).

Couple the BTX-1B output to an SCA receiver, or alternatively, if preferred, the normal BTX1B / BTE-15A combination may be used, with a suitable main channel demodulator included.

Switch the BTX-1B control switch to the AUTO position. Adjust the DELAY control, R587, until the receiver handles the signal as smoothly as possible. It is suggested that a delay of between 1 and 2 seconds be used. This control adjusts only the time lag between disappearance of audio and the muting of the subcarrier: It does not control the subcarrier envelope rise and fall time.

Each BTX-1B SCA generator is supplied with an MI5607215 kHz low pass filter, installed. When stereo is transmitted, it is strongly suggested that the SCA generator audio input be preceded by frequency-sensitive processing equipment such as the RCA BA-47 Clipper, to prevent higher-order lower sideband SCA components from penetrating the frequency spectrum occupied by the stereo signal.

Deviation of the SCA signal should be limited to ± 4 KHz when stereo and SCA are transmitted simultaneously.

TYPICAL PANEL METER READINGS		
	P $_{\text {out }}$	
Meter Position	15 W	10 W
MOD OSC	43	43
XTAL OSC	65	65
DIVIDER OUTPUT	55	55
AFC VOLTAGE	60	60
UNLOCK VOLTAGE	4	4
BUFFER INPUT	24	20
DRIVER CURRENT	35	30
PWR AMP CURRENT	48	37
PWR AMP VOLTAGE	40	32
PWR AMP OUTPUT	48	36

Note: Readings taken with exciter terminated in a 50 ohm dummy load.

TYPICAL WAVEFORMS, BTS-1B STEREO GENERATOR

1. Waveforms taken with a Tektronix Type 531A oscilloscope with type H plug-in and 10X probe. The Tektronix Type 535A, 535B or equivalent may be used.
2. Squares on graticule equal 1 centimeter (horizontally and vertically); $\mu \mathrm{sec} / \mathrm{cm}$ refers to sweep time base, and V / cm refers to vertical calibration.

GROUP 1

400 Hz audio fed to left stereo generator input (Jl09).
No signal input to right stereo generator input (J 110). Audio level set for $\pm 75 \mathrm{kHz}$ deviation of carrier, including 9% pilot.

Stereo mode.

*TP408 (yellow); Left Input $1 \mathrm{~V} / \mathrm{cm}, .5 \mathrm{~ms} / \mathrm{cm}$
Sync: Ext. audio generator

TP411 (white); Composite Output $1 \mathrm{~V} / \mathrm{cm}, .5 \mathrm{~ms} / \mathrm{cm}$
Sync: Ext. audio generator

TP303 (green); 38 kHz \#2 $2 \mathrm{~V} / \mathrm{cm}, 10 \mu \mathrm{sec} / \mathrm{cm}$
Sync: Ext. from TP304

*TP409 (yellow); 17 kHz Filter Input
$1 \mathrm{~V} / \mathrm{cm}, .5 \mathrm{~ms} / \mathrm{cm}$ Sync: Ext. audio generator

TP301 (yellow); 76 kHz
$2 \mathrm{~V} / \mathrm{cm}, 10 \mu \mathrm{sec} / \mathrm{cm}$
Sync: Ext. from TP304

TP304 (blue); 19 kHz
$2 \mathrm{~V} / \mathrm{cm}, 10 \mu \mathrm{sec} / \mathrm{cm}$
Sync: Ext. from TP304

*TP410 (yellow); 17 kHz Filter Output
$1 \mathrm{~V} / \mathrm{cm}, .5 \mathrm{~ms} / \mathrm{cm}$
Sync: Ext. audio generator

TP302 (green); $38 \mathrm{kHz} \# 1$ $2 \mathrm{~V} / \mathrm{cm}, 10 \mu \mathrm{sec} / \mathrm{cm}$ Sync: Ext. from TP304

Junction of L301 and R325; Pilot Signal
$1 \mathrm{~V} / \mathrm{cm}, 10 \mu \mathrm{sec} / \mathrm{cm}$
Sync: Ext. from TP304
*With a signal input to the right stereo generator input (J110), these waveforms will appear at TP308, TP309 and TP310.

TP311 (green); Switch
$.5 \mathrm{~V} / \mathrm{cm}, 10 \mu \mathrm{sec} / \mathrm{cm}$
Sync: Ext. from TP304

TP312 (blue); Switch $.5 \mathrm{~V} / \mathrm{cm}, .5 \mathrm{~ms} / \mathrm{cm}$
Sync: Ext. audio generator

TP411 (white); Composite Output $1 \mathrm{~V} / \mathrm{cm}, .5 \mathrm{~ms} / \mathrm{cm}$
Sync: Ext. audio generator
Waveform showing insufficient amplitude of L-R signal.

TP311 (green): Switch
$.5 \mathrm{~V} / \mathrm{cm}, .5 \mathrm{~ms} / \mathrm{cm}$
Sync: Ext. audio generator

TP313 (violet); Unfiltered Stereo $.1 \mathrm{~V} / \mathrm{cm}, .5 \mathrm{~ms} / \mathrm{cm}$
Sync: Ext. audio generator

TP411 (white); Composite Output $1 \mathrm{~V} / \mathrm{cm}, .5 \mathrm{~ms} / \mathrm{cm}$
Sync: Ext. audio generator Waveform showing excessive amplitude of L-R signal.

TP312 (blue); Switch . $5 \mathrm{~V} / \mathrm{cm}, 10 \mu \mathrm{sec} / \mathrm{cm}$ Sync: Ext. from TP304

TP314 (gray); 55 kHz Filter Output $.1 \mathrm{~V} / \mathrm{cm}, .5 \mathrm{~ms} / \mathrm{cm}$ Sync: Ext. audio generator

TP411 (white); Composite Output $1 \mathrm{~V} / \mathrm{cm}, .5 \mathrm{~ms} / \mathrm{cm}$
Sync: Ext. audio generator Waveform showing effect of extreme overmodulation; input level increased to give more than 200% modulation.

GROUP 2

400 Hz audio fed to left (J109) and right (J 110) stereo generator inputs, phased such that $\mathrm{L}=-\mathrm{R}$. Audio level set for $\pm 75 \mathrm{kHz}$ deviation of carrier, including 9% pilot.

Stereo mode.

TP411 (white); Composite Output $1 \mathrm{~V} / \mathrm{cm}, .5 \mathrm{~ms} / \mathrm{cm}$
Sync: Ext. audio generator Normal L-R waveform

TP411 (white); Composite Output . $1 \mathrm{~V} / \mathrm{cm}, 50 \mu \mathrm{sec} / \mathrm{cm}$ Sync: Ext. audio generator Photo to left expanded to show waveform when pilot phase is properly adjusted.

TP411 (white); Composite Output $.1 \mathrm{~V} / \mathrm{cm}, 50 \mu \mathrm{sec} / \mathrm{cm}$ Sync: Ext. audio generator Photo to left expanded to show waveform when pilot phase is misadjusted.

GROUP 3
400 Hz audio fed to left (J 109) and right (J 110) stereo generator inputs, phased such that $\mathrm{L}=\mathrm{R}$.
Audio level set for $\pm 75 \mathrm{kHz}$ deviation of carrier, including 9% pilot.
Stereo mode.

TP411 (white); Composite Output
$1 \mathrm{~V} / \mathrm{cm}, .5 \mathrm{~ms} / \mathrm{cm}$
Sync: Ext. audio generator
Normal L+R waveform.

GROUP 4
9% pilot injection (9% modulation of carrier due to pilot).

TP411 (white); Composite Output . $1 \mathrm{~V} / \mathrm{cm}, 10 \mu \mathrm{sec} / \mathrm{cm}$ Sync: Ext. from TP304 No left or right input, normal pilot only signal without modulation.

TP411 (white); Composite Output $.1 \mathrm{~V} / \mathrm{em}, 10 \mu \mathrm{sec} / \mathrm{cm}$ Sync: Ext. from TP304 Left only input at J109; audio level set for 15% modulation of carrier, including 9% pilot. This waveform may be used to identify the left channel.

TP411 (white); Composite Output $.1 \mathrm{~V} / \mathrm{cm}, 10 \mu \mathrm{sec} / \mathrm{cm}$ Sync: Ext. from TP304 Right only input at J110; audio level set for 15% modulation of carrier, including 9% pilot. This waveform may be used to identify the right channel.

PARTS ORDERING INFORMATION

REPLACEMENT PARTS

Replacement parts bearing a Stock Number should be ordered by Item, Description, and Stock Number from RCA, Distributor and Special Products Division, Deptford, New Jersey 08096. Items listed under a Master Item (MI) Number should be ordered from RCA, Commercial Communications Systems Division, Camden, NJ 08102.

Because of possible products modifications and/or the unavailability of parts, the item which will be supplied against an order for a replacement part may not be an exact duplicate of the original part. As a result, some of the replacement parts received may require a mount-
ing modification of the customer's design. In some cases, parts and/or instructions for adapting the substitute parts will be supplied. In no way will the substitute parts impair the operation or performance of the equipment.

For information regarding the use of any parts received, write RCA, Tech Alert, Bldg. 2-8, Camden, NJ 08102, or call (609) 963-8000 Extension PC-3434.

EMERGENCY PART SERVICE

For emergency part service after working hours, contact RCA Distributor and Special Products Division, Telephone 609-963-8000 or 609-848-5900.

LOCATION	ORDERING INSTRUCTIONS
Continental United States, including Alaska and Hawaii	Replacement Parts bearing a STOCK NUMBER should be ordered from RCA Distributor and Special Products Division - 2000 Clements Bridge Road - Deptford, NJ 08096. Replacement Parts bearing a MASTER ITEM (MI) NUMBER should be ordered from RCA, Commercial Communications Systems Division - Camden, NJ 08102 or your nearest RCA Regional Office. Replacement Parts with NO STOCK or MASTER ITEM (MI) NUMBER are standard components. They are not stocked by RCA and should be obtained from your local electronics distributor.
Dominion of Canada	Order from your local RCA Sales Representative or his office or from: RCA Victor Limited, 1001 Lenoir Street, Montreal, Quebec.
Outside of Continental United States, Alaska Hawaii, and the Do- minion of Canada	Order from your local RCA Sales Representative or from: RCA International Division, Clark, NJ - U.S.A. - Wire: RADIOINTER

REPLACEMENT PARTS

Symbol	Stock No.	Drawing No.	Description
1		3456736-	BTE-15A FM EXCITER ES-560631
			BTE-15A RF EXCITER UNIT MI-560712 $\text { P/4 3720225-501 REV } 4$
			QTE-15A RF EXCITER UNIT
			CAPACITDRS
C 1	240845		CERAMIC, . 001 MF 1000 V GERAMIC, OOLUF 1000 V
C 2	240846		GERAMIC, OOLUF 1000 V CERAMIG, 001UF 1000 V
C3	240846 423738		CERAMIC, .001UF 1000 V TANTALUM, 33 MF 4 V
$C 4$ $C 5$	423738 244247		CERAMIC, 22 PF 1000 V
C6	107323		CERAMIC, 270 PF 1000 V
C^{7}	249941		CERAMIC, 0.47 MF 50 V
C 8	423.736		TANTALUM, $2,2 \mathrm{MF} 20 \mathrm{~V}$
$C 7$	423739		CERAMIC, .22UF 35 V
C10	244392		CERAMIC, 15 OF N750 (iNOMINAL)
C11	244327		CERAMIC, 15 PF NP[(NIMINAL)
C12	244329		CERAMIC, 15 PF NPU (ivDMINAL)
C13	245164		VARIABLE, 2.4-24.5 PF 500V
C14	245165		VARIABLE, $1-13$ PF
C15	107323		CERAMIC, 270 PF 1000 V
C16	245165		CERAMIC, 33 PF NPD
C 17	107323		CERAMIC, 270 PF 1000 V
C18	107323		CERAMIC, 270 PF 1000 V
C19	248251		ELECTRULYTIC, 150 MF 15 V
C20	107323		CERAMIC, 270 PF 1000 V
C21	107323		CERAMIC, 270 PF 1000 V 200 V
$C 22$ $C 23$	245164 240846		CERAMIC, . 001 MF 1000 V
$C 23$ $C 24$	240846 107323		CERAMIC, 270 PF 1000 V
C25C 26 THRU	427229		ELECTROLYTIC, 1500 UF AT 25 V
	245167		CERAMIC, OO1 MF 500 V
$C 31$	245168		ELECTROLYTIC, 100 MF 20 V
C32	21966 ?		MICA, 10 PF 500 V
C33	240846		CERAMIC, DO1 MF 1000 V
C34	240845		CERAMIC, .001 MF 1000 V
C35	240845		CERAMIC, .001 MF 1000 V
$C 36$ $C 37$	127801		CERAMIC, O1 MF 100 V
$C 37$ $C 38$	127801 423664		CERAMIC, O1 MF LOOV
$C 38$ $C 39$	423664 239235		VARIAELE, 3-34 PF
$C 39$ $C 40$	426768		FIWM.O182 MF 2\% 100V
$C 41$ $C 44$	127801		CERAMIC, .01 MF 100 V
C45	245163		ELECTROLYTIC, 22 MF 20 V
C46	248374		FIbM, $022 \mathrm{MF} 2 \% 100 \mathrm{~V}$
C47	245103		ELECTRULYTIC, 22 MF 20 V
$C 48$ $C 49$	127801 423737		CERAMIC, 01 MF 100 V ELECTROLYTIC, 0.22 MF 35 V
C50	247837		ELECTROLYTIC, 0.1 MF 35 V
C51	247837		ELECTROLYTIC, 0.1 MF 35 V
$\begin{array}{ll} C 52 \\ C 58 \end{array}$	245167		CERAMIC, .001 MF 500 V
C59	245171		VARIABLE, 3-25 PF 500 V
C60	245163		CERAMIC, 33 PF NP[
C61	245171		VARIABLE, 3-25 PF 500 V
$C 62$ $C 63$	245167 245167		CERAMIC, .OO1 MF 500 V CERAMIC, 001 MF 500 V
$C 63$ $C 64$	245167 432444		CERAMIC, CERAMIC, CRNT MF
C65	425984		TANTALUM, 6.8 MF 35 V
C66	245171		VARIABLE, 3-25 PF 500 V
C67	245167 245171		CERAMIC; .001 MF 500 V
$\mathrm{C68}$	245171		VARIABLE, $3-25$ PF 500 V
$C 69$ $C 70$	245167 432444		CERAMIC, 001 MF 500 V CERAMIC,

Symbol	Stock No.	Drawing No.	Description
C71	245171		VARIAELE, 3-25 PF 500 V
$C 72$	245167		CERAMIC, .001 MF 500 V
$C 73$	245171		VARIABLE, 3-25 PF 500 V
C74	245167		CERAMIC, .001 MF 500 V
C75	432444		CERAMIC, OL MF 500 V
$C 76$ $C 81$	245171		VARIABLE, 3-25 PF 500 V
C 82	121291		CERAMIC, 2,2 PF
C83	245167		CERAMIC, 001 MF
C84	423664		ELECTROLYTIC 1 IMF 35 V
C86	127396		CERAMIC, 10 PF NPQ
C87	219215		CERAMIC, 22 FF NPG
C88	109316		CERAMIC, 15 PF NP[]
C89	232927		$\begin{array}{lll}\text { CERAMIC, } & 0.47 \mathrm{MF} 3 \mathrm{~V} \\ \text { CERAMIC, } & 0.47 \mathrm{MF} 3 \mathrm{~V}\end{array}$
$C 80$ $C 91$	232927 232927		$\begin{array}{lll}\text { CERAMIC, } & 0.47 \mathrm{MF} \\ \text { CERAMIC, } & 0.47 \mathrm{MF} 3 \mathrm{~V}\end{array}$
$C 92$ $C 9$	248250		CERAMIC, 4.7 PF NPQ
C93	423735		ELECTRULYTIC, 0.1UF 35 V
C94	423736		ELECTRULYTIC, 2.2 MF 20 V
C95	240846		CERAMIC, OOIMF IOOOV
C96	248253		TANTALUM, 27 MF 35 V
C97	248253		TANTALUM, 27 MF 35 V
C98	423736 432444		
$C 99$ $C 100$	236617		TANTALUM, $22 \mathrm{MF} 35 \mathrm{~V} 5 \%$
CR1	424857		OIDDE - TYPE 1 N5240B ZENER
CR2	245173		DIODE, VARICAP - TYPE MV84J
CR3	245173		DIDQE, VARICAP - TYPE MV840
CR4	234552		OIDDE $=$ TYPE 1002
CR7	234552		QIUDE - TYPE 1002 TVPE MVP40
CR8	245173		DIDDE, VARICAP - TYPE MV840
CR9	245173		DIDDE, VARICAP - YYPE MV840
CR10			
CR21	242220		DIODE - TYPE IN4154
CR 23 CR24	426189 248254		DIDOE - TYPE IN4IS
1 Cl	245174		INTEGRATED CIRCUIT - TYPE MC1027\%
1 C 2	245175		INTEGRATED CIRCUIT - TYPE MCIOI3P
$1 C 3$	245175		INTEGRATED CIRCUIT - TYPE MCIOI3P
IC4	429605		INTEGRATED CIRCUIT - TYDE MC9802P
1610	C $\triangle 3029 \mathrm{~B}$		INTEGRATED CIRCUIT - TYPE CA3028日
1C11	420547		INTEGRATED CIRCUIT - YYPE MCB9OP
1 Cl 2	420547		INTEGKATED CIRCUIT - YYPE MC890\%
IC13	423737 244345		INTEGRATED CIRCUIT - TYDE MC825
$1 \mathrm{Cl} \mathrm{l}^{1}$	244345 223973		INTEGRATED CIRCUIT - TYPE CA3OLG CONNECTOR - BNE
J?	223973		CONNECTDR - BNC
L1	245173		CHDKE - 2.7 UH
13	245178		CHOKE - 2.7 UH
14	245179		CHOKE - 20 H
L. 5	245180		COIL = OSCILLATOR
16	245178		CHOKE $=2.7 \mathrm{UH}$
17	245178		CHOKE - 2.7 UH
L8	245181		CHDKE $=0.47 \mathrm{UH}$
19	245178		CHOKE $=2.7 \mathrm{UH}$
L10	245182 245183		CHOKE $=0.1 \mathrm{H}$ CHOKE -150 UH
LI L12	245183 245184		CHOKE
113	245741		CHOKE
L 14	245186		CHOKE
L15	245185		CHOKE
L16	245741		CHOKE
L17	248257		CHOKE
L18	245184		CHOKE
$L 19$ $L 20$	245132		$\begin{aligned} & \text { CHOKE }-2,4 \text { UH } \\ & \text { CHOKE, } 3 \text { TURNS } \$ 18 \text { AWG W } 1 / 4 \text { IN OIA } \end{aligned}$
$\begin{array}{r}L 19 \\ \mathbf{L} 21 \\ \hline\end{array}$	245187		CHOKE

Symbol	Stock No.	Drawing No.	Description
L22	245187		CHOKE
L23	245187		CHOKE
L24	245182		CHOKE - 0.1 H
L25	248256		CHOKE - 1 MH
Q1	247994		TRANSISTOR - TYPE 2 N4427
Q2	247994		TRANSISTIR - TYPE 2N4427
Q 3	2113866		TRANSISTOR - TYPE 2N3866
Q4	2N4440		TRANSISTOR - TYPE 2N4440
Q5	2, 15102		TRANSISTOR - TYPE 2N5102
Q6	236267		TRANSISTOR - TYPE 2N3040
Q 7	2N4037S		TRANSISTOR - TYPE 2N4037
Q8	215293		TRANSISTOR - TYPE 2N5293
P1	248258 248260		GONNECTUR - BNC GONNECTOR
P2	248266		RESISTORS FIXED COMP UNLESS NQTED
R1	426219	99206-080	33 K DHMS 10\% 1/4W
R2	426219	99206-080	33K DHMS $10 \% 1 / 4 W$
R3	108809	99206-076	$\frac{15 K}{} 310$ HMS 10\% $1 / 4 \mathrm{~W}$
R4	219458	99206-056	330 DHMS 10\% $1 / 4 \mathrm{~W}$ 2200 UMMS $10 \% 1 / 4 \mathrm{~W}$
R5	108806	99206-066	2200 EHMS 10\% $1 / 4 \mathrm{~W}$
R6 R 7	108864 108871	$99206-058$ $99206-092$	470 OHMS $10 \% 1 / 4 \mathrm{~W}$ 47,000 OHMS $10 \% 1 / 4 \mathrm{~W}$
R8	232383	99206-094	470,000 DHMS $10 \% \quad 1 / 4{ }^{\text {W }}$
R9	223709	99206-086	100,000 पH14S 10\% 1/4 w
R10	218499	99206-074	10,000 OHMS $10 \% 1 / 4 \mathrm{~W}$
R11	426232	99206-038	10 0H\% $10 \% 1 / 4 \mathrm{~W}$
R12	426213	99206-070	4700 OHMS 10\% $1 / 4 \mathrm{~W}$
R13	108865	99206-062	1000 OHMS $10 \% 1 / 4 \mathrm{~W}$
R14	426233	99206-042	22 [HMS 10\% $1 / 4 \mathrm{~W}$
R15	230605	99206-043	27 OHMS 10\% 1/4 W
R16	226975	99206-045	39 OHMS 10\% $1 / 4.4$
R17	230605	99206-043	27 10 OHMS 10
R18 R19	426232 426213	99206-038	10 OHMS $10 \% \quad 1 / 4 \mathrm{~W}$ 4700 OHMS $10 \% \quad 1 / 4 \mathrm{~W}$
R20	108865	99206-062	1000 OHMS $10 \% 1 / 4 \mathrm{~W}$
R21	502047	82283-127	47 DHMS $10 \% 1 / 4 \mathrm{~W}$
R22	108885	99206-062	1000 DHMS 10\% $1 / 4 \mathrm{~W}$
R23	227755	99206-090	220,000 OHMS 10\% 1/4 W
R24	134744		33 OHMS $10 \% 5 \mathrm{~W}$ WW
$R 25$ $R 26$	108866 108860	$99206-066$ $99206-066$	$\begin{array}{llll}2200 & \text { DHMS } & 10 \% & 1 / 4 \\ 2200 & \mathrm{WHMS} & 10 \% & 1 / 4\end{array}$
$R 26$ $R 27$	108860 108861	$99206-066$ $99206-050$	100 OHMS $10 \% 1 / 4 \mathrm{~W}$
R28	218758	99206-054	220 DHM S $10 \% 1 / 4 \mathrm{~W}$
R29	108865	99206-066	2200 OHMS 1000 10\% 10
$R 30$ $R 31$	108865 108865	$99206-062$ $99206-066$	
R32	502010	82283-111	10 OHMS 10\% $1 / 4 \mathrm{~W}$
R35	108861	99206-050	100 DHMS 10%. $1 / 4 \mathrm{~W}$
R36	108865	99206-062	1000 UHMS 10\% $1 / 4.4$
R37	108865	99206-062	1000 [1HMS 10\% 1/4 W
$R 38$ $R 39$	426213	$99206-070$ $99206-086$	4700 UHMS $10 \% 1 / 4 \mathrm{~W}$ $100,000 \mathrm{CHMS} 10 \% \quad 1 / 4 \mathrm{~W}$
R39 R40	223769 108865	$99206-086$ $99206=062$	100,000 OHMS $10 \% \mathrm{l} / \mathrm{l}^{\mathrm{W}} \mathrm{W}$ 1000 OHMS $10 \% ~ 1 / 4 ~ W ~$
R4 1	428213	99206=070	4700 OHMS $10 \% 1 / 4 \mathrm{~W}$
$R 42$ $R 43$	223769 108866	$99206-086$ $99206-066$	100,090 OHMS 10\% 1/4 W 2200 DHMS 10\% $1 / 4 \mathrm{~W}$
R44	218499	99206-074	10,000 DHMS $10 \% 1 / 4 \mathrm{~W}$
R45	218499	99206-074	10,000 GHMS 10\% 1/4 W
R46	218499	99206-074	10,000 OHMS 10\% $1 / 4 \mathrm{~W}$
R47	108863	99206-066	2200 UHMS $10 \% 1 / 4 \mathrm{~W}$
R48	426112	99206-078	22,000 GHMS $10 \% 1 / 4 \mathrm{~W}$
R49	426112	99206-078	22.000 OHMS $10 \% 1 / 4 \mathrm{~W}$
R50	223769	99206-086	100,000 DHMS 10\% $1 / 4 \mathrm{~W}$
R51	108869	99206-076	15,000 DHMS 10\% $1 / 4.4 \mathrm{~W}$
R52	218499	99206-074	10.000 OHMS 10\% 1/4 W
$R 53$ $R 54$ $R 5$	218499 108869	$99206-074$ $99206-076$	$\begin{array}{lll}10,000 & \text { DHMS } & 10 \% \\ 15,000 & 1 / 4 & \mathrm{~W} \\ 10 & \\ 10 \% & 1 / 4 & \mathrm{~W}\end{array}$
$R 54$ $R 55$	218499	99206-074	10,000 OHMS $10 \% 1 / 4 \mathrm{~W}$

Symbol	Stock No.	Drawing No.	Description
R56	430178		WIREWOUND, 100 OHMS 10\% 5W
$R 57$ 502	502222	82283-066	2200 OHM ${ }^{\text {2 }}$ 10\% 1/2 W
R58 50	502222	82283-066	2200 DHMS $10 \% 1 / 2 \mathrm{~W}$
R59	502247	82283-070	4700 OHMS 10% 1/2 W
R60 50	502027	82283-043	27 OHMS 10\% 1/2 W
R61 50	502039	82283-045	39 OHM5 10\% 1/2 W
R62 50	502027	82283-043	27 OHMS 10\% $1 / 2 \mathrm{~W}$
R63 50	502017	82283-038	10 DHMS 10\% $1 / 2 \mathrm{~W}$
R64	502047	82283-046	47 OHM $510 \% 1 / 2 \mathrm{~W}$
R65 5	502310	82283-074	10,000 OHMS $10 \% 1 / 2 \mathrm{~W}$
R66 23	23793.		0.24 UHMS 5\% 2 W
R67 5	502027	$82283-043$	27 OHMS 10\% $1 / 2 \mathrm{~W}$
R68	502247	82283-070	4700 [HMS $10 \% 1 / 2 \mathrm{~W}$
R69	241643	82283-525	2,2 DHMS $10 \% 1 / 2 \mathrm{~W}$
R70	502047	82283-046	47 OHMS 10\% $1 / 2 \mathrm{~W} \mathrm{~W}$
R 71 R 72	502247 502247	$82283-070$ $82283-070$	4700 OHMS 4700 10\% 4
R72 R73	502247 502368	$82283-070$ $82283-084$	68,000 DHMS $10 \% 1 / 2 \mathrm{~W}$
R 74 THRU R 77	218499	99206-074	10 K DHMS 10\% 1/4W
R78	502210	82283-062	1.000 OHMS 10\% 1/2 W
R79	108861	99206-050	100 OHMS 10\% 1/4W
R80	108864	99206-058	470 OHMS 10\% 1/4W
$\begin{aligned} & 51 \\ & \times 101 \end{aligned}$	245191		SWITCH
\pm THRU	423743		SOCKET-STRIP OF 7
XIC10	423740		SOCKET
$x \mid c 11$	423743		SOCKET-STRIP OF 7
$\times 1 \mathrm{Cl2}$	423743		SOCKET-STR!P QF 7
X1C13 $\times 1014$	423743		SOCKET-STR!P DF 7 NOTUSED
X1C14 XQ1	422416		SOCKET, 2 N4427
XQ2	422416		SDCKET, 2 N4427
XQ3 $\times 24$	248259 248248		SOCKET - TYPE $2 N 3860$ SDCKET - TYPE $2 N 4440$
XQ3 $\times 04$ $\times 05$	248248 248248 22248		SOCKET - TYPE 2N5102
X06	422416		SOCKET - TYPE 2N3640
XQ7	422416		SOCKET - PYPE 2N4037
XQ8 $\times Y \mathrm{Y}$	248369 423741		SDCKET - TYPE 2N5293 SICKET-CRYSTAL OVEN
Y ${ }_{1}$			GRYSTAL - SEE MI-560717
21	245741		CHIKE $=$ RF
22	245741 245741		CHOKE - RF CHOKE - RF
$\begin{array}{lll}23 & \\ 24 & \text { THRU }\end{array}$	245741		CHOKE - RF
214	245132		REACTUR FERRITE READ
MECHANICAL			
16	$\begin{aligned} & 248375 \\ & 423774 \\ & 248370 \end{aligned}$		CDUPLER - SHAFT FINGER STRIP-8 IN, LENGTH IC PAD, WHITE
23	248377		PAD - INTEGRATED CIRCUIT, WHITE
25	423742		KNOB 1/4 IN DIA (C14)
27	229767		KNDB 1/8 IN DiA (51)
41	430892 248249		MEAT SINK SHOCK MOUNT - FM SU
51	$\begin{aligned} & 248249 \\ & 423774 \end{aligned}$		FINGER STRIP

Symbol	Stock No.	Drawing No.	Description
			B
			BTS-1B STEREO GENERATOR MI-560713 M/t 3720216-501 REV 3
			CAPACITORS
C301	$24335 ?$		MICA, 15 PF 500 V
C 302	217378		
C 303	238220		
C304	248378		FItM, 0.1 MF 10\% 100 V
C 305	248379		FILMs . 047 MF 10\% 100 V
C 306	248379		FILM, $047 \mathrm{MF} 10 \% 100 \mathrm{~V}$
C307	223777		ELECTROLYTIC, 47 MF AT 20 V
C308	79191		MICA, 330 PF 500 V
C309	223777		ELECTRLLYTIC, 47 MFO 20 V
C 310	223777		ELECTROLYTIC, 47 MFD 20 V
C311	248379		FILMs 0.047 MF 10\% 100 V
C C 12	248380 248387		FILM, .0068 MF 10\% 100 V
$C 313$ $C 314$	248387 248374		FIlM. . $022 \mathrm{MF} \mathrm{2} \mathrm{\%} 100 \mathrm{~V}$
C315	215198		H!CA, 33 PF 500 V
C316	215198		HICA, 33 PF 500 V
C317	237797		ELECTRULYTIC, 15 MF 20 V
C318	237797		ELECTROLYTIC, 15 MF 20 V
C320	223777		ELECTRULYTICS 47 MF 20 V
$C 321$ $C 322$	432444 223777		CERAMIC, .01 MF $10 \% 100 \mathrm{~V}$
$C 322$ $C 325$	223777 223777		ELECTROLYTIC, 47 MF 20 V
C320			
C329	432444		CERAMIC, .01 MF 10\% 600V
C330	248265		VARIABLE, 10-70 PF
C413	248387		FIGM, 012 MF 10\% 100V
C414	248374		FIWM, .022 MF $2 \% 100 \mathrm{~V}$
C415	215198		MICA, 33 PF 500 V
$C 416$ 6417	215199 237797		MICA, 33 PF 500 V
$C 417$ $C 418$	237797 237797		ELECTROLYTIC, 15 MF 20 V
C420	223777		ELECTROLYTIC, 47 MF 20 V
C421	248265		VARIABLE, 10-70 PF
C423	216971		MICAs 22 PF 500 V
C424	221678		M1CA2 47 PF 500V
CR301	242220		DIODE - TYPE ${ }^{\text {P }}$ N4154
CR302 CR303	242220 225312		DIDDE $=$ TYPE LN4154
CR304	225312		DIDQE, ZENER = TYPE $12 C 10 T 10$
CR 305	242220		OILDE - TYPE 1N4154
CR306	242220		DIUDE - TYPE IN4154
CR309THRU			
CR320	234552 242220		DIUDE - TYPE 1002
CR401 CR402	242220 242220		DIUDE - TYPE 1 N4 154
CR402 DS 301	242220 245152		GAMP - LEFT
DS302	245153		LAMP - STERED
DS303	245154		LAMP = RIGHT
FL301	245158		FILTER - LDWmPASS, 17 KHZ
FL 302	245159		FILTER - LOW-PASS, 55 KHZ
FL401	245158 $C 43029 B$		FILTER - LDW-PASS, 17 KHZ
10301 10302	CA3029B 420547		INTEGRATED CIRCUIT - TYPE CA3028B INTEGRATED CIRCUIT - TYPE MCB90P
1 C 303	244345		INTEGRATED CIRCUIT - TYPE CA3018
1 1 3104	C43015A		INTEGRATED CIRCUIT ${ }^{\text {C TYPE CA3013 }}$
1 C 306	244345		INTEGRATED CIRCUIT - TYPE CA3018
10404	CA3015A		INTEGRATED CIRCUIT - TYPE CA3015

Symbol	Stock No.	Drawing No.	Description
10407	CA3015A		integrated circuit - type ca 3015
K301	24642)		RELAY
K 302	246429		RELAY 10 MH NOM, PILIT PHASE
1301	245155		COIL $=10$ MH NOM, PILUT PHASE
1302	245182		CHDKE - O. $\mathrm{LH}^{\text {H }}$
P301 0301	248266 21.140375		CONNECTOR TRANSISTOR - TYPE 2N4037
Q301	21140375		
$\begin{aligned} & \text { Q302 } \\ & \text { THRU } \end{aligned}$			
Q3n6	2113053S		TRANSISTOR - TYPE 2N3053
Q404	2 3 0535		TRANSISTDR - TYPE 2N3053
Q405	2N3053S		TRANSISTOR - YYPE 2 2N3053
Q400	21130535		TRANSISTDR - TYPE 2N3053
			RESISTURS - FIXED COMP UNLESS NITED
R303	502210	82283-062	1000 DHMS 10\% :/2 W
R 304	502210	82283-062	1000 GHMS $10 \% 1 / 2 \mathrm{~W}$
R305	502210	82283-062	1000 UHMS 10\% $1 / 2$
R 306	502222	82283-066	2200 UHMS $10 \% 1 / 2 \mathrm{~W}$
R307	502147	82283-058	470 OHMS $10 \% 1 / 2 \mathrm{~W}$
R308	502147	82283-058	470 OHMS $10 \% 1 / 2 \mathrm{~W}$
R309	502222	82283-066	2200 LHMS 10\% $1 / 2 \mathrm{~W}$
R310	502222	82283-066	2200 UHMS $10 \% 1 / 2 \mathrm{~W}$
R311.	502047	82283-046	47 OHMS $10 \% 1 / 2 \mathrm{~W}$
R 312	502222	82283-066	2200 [HMS 10\% 1/2 W
R313	502210	82283-062	1000 UHMS $10 \% 1 / 2 \mathrm{~W}$
R314	502222	82283-066	
R315	502222	82283-066	$\begin{array}{ll}2200 \\ 1000 & \text { OHM }\end{array}$
R316 R317	502210 502210	$82283-062$ $82283-062$	$\begin{array}{llll}1000 & \text { UHMS } & 10 \% & 1 / 2 \\ 1000 & \text { UHMS } & 10 \% & 1 / 2\end{array}$
R318	502210	82283-062	1000 DiHMS 10% //2 W
R319	502310	82283-074	10,000 DHMS 10% 1/2 W
R320	502010	82283-038	10 OHMS $10 \% 1 / 2 \mathrm{~W}$
R321	502110	82283-050	100 OHMS 10\% $1 / 2 \mathrm{~W}$
R322	431102		VARIABLE, 1000 UHMS
R323	502133	82283-056	330 OHMS $10 \% 1 / 2 \mathrm{~W}$
R324	502222	82283-066	2200 0HMS $10 \% 1 / 2 \mathrm{~W}$
R325	502347	82283-082	47,000 DHMS 10\% 1/2 W
R320	522043	99126-126	43 DHMMS $5 \% 2 \mathrm{~W}$
$R 327$	522110	99126-050	100 DHMS 10\% 2 W
$R 328$ $R 329$ R	502168 243748	82283-060	
R329 R330	502247	82283-070	4700 DHMS $10 \% 1 / 2 \mathrm{~W}$
R331	502033	82283-044	33 OHMS $10 \% 1 / 2 \mathrm{~W}$
R332 R 333	423747 502256		VARIABLE, 50 GHMS 5600 OHMS $10 \% 1 / 2 \mathrm{~W}$
R333 R 334	502256 234008	82283-071	$\begin{array}{ll}5600 \text { GHMS } & 10 \% \\ \text { VARIABLE, } 2000 \text { OHMS }\end{array}$
R 335	502310	82283-074	10,000 aHMS $10 \% 1 / 2 \mathrm{~W}$
R336	502222	82283-066	2200 पHMS $10 \% 1 / 2 \mathrm{~W}$
R 337	502222	$82283-066$ $82283-171$	2200 UHMS 10% 1/2 W 3300 UHMS
R338 R339	502233	$82283-171$ $82283-058$	3300 UHMS 5\% $1 / 2 \mathrm{~W}$ 470 DHMS $10 \% 1 / 2 \mathrm{~W}$
R 340	502247	82283-070	4700 UHMS $10 \% 1 / 2 \mathrm{~W}$
R 341	431212		4990 DHMS 1\% 1/2W
R342	431212		4990 DHMS 1\% $1 / 2 \mathrm{~W}$
R343	502247	82283-070	4700 EHMS $10 \% 1 / 2 \mathrm{~W}$
R 344	502122	$82283-054$ $82283-070$	220 bHk 4700 सHMS $10 \% 1 / 2$ in
R345 R 346	502247 502047	$82283-070$ $82283-040$ $82283-074$	4700 OHMS $10 \% 1 / 2 \mathrm{~W}$ 47 UHMS $10 \% ~$
R347	502310	82283-074	10.00\% OHMS $10 \% 1 / 2 \mathrm{~W}$
R348\%	502247 423749	82283-070	4900 LHMS $10 \% 1 / 2 \mathrm{~W}$ VARIARLE, 10,000 DHMS
R349 R350 $R 351$	423749 50231%	82283-074	VARIAPLE, 10,000 DHMS 10,000 OHMS $10 \% 1 / 2 \mathrm{~W}$
R351	502310	82283-074	10,000 DHMS $10 \% 1 / 2 \mathrm{~W}$
R 352	502247	82283-070	4700 CHMS 10\% 1/2 W
R353	502247	82283-070	4700 UHMS $10 \% 1 / 2 \mathrm{~W}$
R354	502222	82283-066	2200 DHMS 10% 1/2 W
R355 R350	502247 431102	82283-070	4700 OHMS 10% /12 W VARIAB6E, 1000 [HM

Symbol	Stock No.	Drawing No.	Description
IC201	243347		INTEGRATED CIRCUIT - TYPE CA3015
IC202	243343		INTEGRATED CIRCUIT - TYPE CA3015
$\times 2201$	422415		SOCKET, TRANSISTIR
X0202	422416		SICKET, TRANSISTIR
MECHANICA			
	$\begin{aligned} & 248377 \\ & 248372 \end{aligned}$		Pal) - Ifitegrated Circult, whitf. INSULGTJR - TRANSISTIK
			BTX-1B SCA GENERATOR MI-560714 SERIAL No. 1 through 999 P/\& 3720213-501 REV4
			CAPACITORS
C501	223777		ELECTROLYYIC: $47 \mathrm{MF} 10 \% 20 \mathrm{~V}$
C502	245142		CERAMIC, .005 MF $10 \% 500 \mathrm{~V}$
C503	223777		ELECTROLYTIC, $47 \mathrm{MF} 10 \% 20 \mathrm{~V}$
C504	221679		MICA, $47 P F 10 \% 500 \mathrm{~V}$
C505	248385		FILM, $0.47 \mathrm{MF} 5 \% 100 \mathrm{~V}$
C506	238220		CERAMIC, 470 PF 500 V
C507A	228121		CERAMIC, 820 PF SOUV USED ON 41 KHZ AND 67 kHZ
C507B	426865		GERAMIC, 560 PF 500 C USED IN 41 KHZ
C508A	228121		$\begin{aligned} & \text { CERAMIC, } 820 \text { PF } 500 \mathrm{~V} \text { USED ITN } 41 \mathrm{KHZ} \\ & \text { AND } 67 \mathrm{KHZ} \end{aligned}$
C508R	426865		GERAMIC, 560 PF 500V USEO MN 41 KHZ
C509	432444		CERAMIC, 01 MF $20 \% 500 \mathrm{~V}$
C510	236781		ELECTROLYTIC, $2.2 \mathrm{MF} 10 \% 35 \mathrm{~V}$
C511	248378		FILM 0.1 MF 10\% 100 V
C5 12	432444		CERAMIC, 01 MF 20\% 500 V
C513	245142		CERAMIC, .005 MF 10\% 500 V
C514A	238220		CERAMIC, 470 PF 500 V , USED IJN 67 K
C51.4B	218971		CERAMIC, 750 PF 500 V , USED ITN 41 K
C515A	426711		M!CA, 120 PF 500 V USED UN 67 KHZ
C515B	426227		M1CA, 150 PF 500V USEL [IN 41 KHZ
$C 5164$	426711		M1CA, 120 PF 500 V USEO DN 67 KHZ
C5168	228121		CERAMIC, 820 PF 500 V U5ED ON 41 KHIL 67 KHZ
C516C	228121		CERAMIC, 820 PF SOOV USEO [JN 41 KHZ
C517A	248286		MICA, 430 PF 500 V , USED DN 67 KHZ
C5178	228121		CERAMIC, 820 PF 500V USED [IN $41 \mathrm{KH} Z$
C518A	228121		CERAMIC, 820 PF 500 V USEO DN 41 KHZ 67 KHZ
C518B	426865		CERAMIC, 560 PF 500 V USEO ON 41 KHZ
C519	248378		F!LM, 0.1 MF $10 \% 100 \mathrm{~V}$
C520	245142		CERAMIC, .005 MF $10 \% 500 \mathrm{~V}$
C521	248378		FILM, 0.1 MF 10\% 100 V
C522	248378 248379		FiGM, 0.1 MF FiLM, 047 MF $10 \% ~ 100 ~$ 100 V
$C 523$ $C 524$	248379		NOT USED
C525	237797		ELECTRDLYTIC, $15 \mathrm{MF} 10 \% 20 \mathrm{~V}$
C526	236781		ELECTRDLYTIC, $2.2 \mathrm{MF} 10 \% 35 \mathrm{~V}$
C527	248386		FlbM, 022 MF $10 \% 100 \mathrm{~V}$
C528	248378		FibM, 0.1 MF 10\% 100 V
C529	223777		ELECTROLYYIC, $47 \mathrm{MF} 10 \% 20 \mathrm{~V}$
C530	236781		ELECTRDLYTICJ $2.2 \mathrm{MF} 10 \% 35 \mathrm{~V}$
C531	248385		FImM, $022 \mathrm{MF} 10 \% 100 \mathrm{~V}$
C532	236781		ELECTRDLYTIC, $2.2 \mathrm{MF} 10 \% 35 \mathrm{~V}$
C533	223777		ELECTROLYYIC, $47 \mathrm{MF} 10 \% 20 \mathrm{~V}$
C534	223777		ELECTROLYTIC, $47 \mathrm{MF} 10 \% 20 \mathrm{~V}$
6535	237797		ELECTRDLYTIC, $15 \mathrm{MF} 10 \% 20 \mathrm{~V}$

Symbol	Stock No.	Drawing No.	Description
CR501 THRU			
CR509	242220		DIDDE - TYPE 1 N4154
CR510	225312		OIDDE - ZENER = TYPE 1ZCIOT10
CRS 11	218612		DIDDE - TYPE IN2069
05501	245144		LAMP PILOT, GREEN
DS502	245145		LAMP - PILOT, RED
10501 THRU			
10505	244345		INTEGRATED CIRCUIT - TYPE CA30İ
L501	245146		! NDUCTAR
L502	245147		! NDUCTOR
P501	248266		CONNECTOR
Q 501	21/3053S		TRANSISTOR - TYPE 2N3053
Q 502	2N30535		TRANSISTOR - TYPE 2N3053
			RESISTORS FIXED COMP UNLFSS NOTED
$R 501$	502122	82283-054	220 DHMS 10\% $1 / 2 \mathrm{~W}$
R502	502122	82283-054	220 OHMS 10\% $1 / 2 \mathrm{~W}$
R503	502122	82283-054	220 DHMS 10\% 1/2 W
R 504	502147	82283-058	490 OHMS 10\% 1/2 W
R505	502122	82283-054	220 OHMS 10\% 1/2 W
R506	426023		VARIABLE, 1000 DHMS
R 507	502310	82283-074	10,000 OHMS 10\% $1 / 2 \mathrm{~W}$
R508	502322	82283-078	22,000 OHMS $10 \% ~ 1 / 2 \mathrm{~W}$
R509	502110	82283-050	100 DHMS 10\% $1 / 2 \mathrm{~W}$
R 510	502227	82283-066	2200 DHMS 10\% 1/2 W
R 511	502147	82283-058	470 OHMS $10 \% 1 / 2 \mathrm{~W}$
R512	502322	82283-078	22,000 DHM $510 \% 1 / 2 \mathrm{~W}$
R5 13	502322	82283-078	$\begin{array}{ll}22,000 \\ 22,000 ~ O H M S ~ & 10 \% \\ 20 \% & 1 / 2 \\ \end{array}$
$R 514$ $R 515$ $R 215$	502322 426023	82283-078	22,000 DHMS $10 \% 1 / 2 \mathrm{~W}$ VARIABLE, 1000 all
R 516	502310	82283-074	10,000 DHMS $10 \% 1 / 2 \mathrm{~W}$
R 517	234008		VARIABLE, 2000 UHMS
R 518	502115	82283-052	150 DHMS 10\% 1/2 W
R 519	502219	82283-062	1000 OHMS $10 \% 1 / 2 \mathrm{~W}$
R520	502315	82283-076	15,000 OHMS $10 \% 1 / 2 \mathrm{~W}$
R521	502222	82283-066	2200 DHMS 10\% $1 / 2 \mathrm{~W}$
R522	502222	82283-066	2200 DHMS 10\% $1 / 2 \mathrm{~W}$
R 523	502222	$82283-066$	2200 UHMS 10\% 1/2 W
R524	502247	82283-070	4700 UHMS 10\% 1/2 W
R525	502268	$82283-072$	6800 DHMS $10 \% 1 / 2 \mathrm{~W}$
R526	502268	82283-072	6800 DHMS $10 \% 1 / 2 \mathrm{~W}$
R 527	502222	82283-066	2200 DHMS 10\% 1/2 W
$R 528$ $R 529$	502247 502210	82283-070	4700 TIHMS $10 \% 1 / 2 \mathrm{~W}$
R530	502210	82283-062	1000 DHMS 10\% $1 / 2 \mathrm{~W}$
R531	502110	82283-050	100 DHMS 10\% 1/2 W
R532	502347	82283-082	47,000 DHMS $10 \% 1 / 2 \mathrm{~W}$
R533	502310	82283-074	10.000 DHMS $10 \% 1 / 2 \mathrm{~W}$
R534	502247	82283-070	4700 DHMS 10\% 1/2 W
R535	502347	82283-082	47,000 DHMS 10\% 1/2 W
R 536	502310	$82283=074$	10,000 DHMS 10% 1/2 W
R537	502412	82283-087	120,000 OHMS 10\% 1/2 W
R538	502322	82283-078	22,000 DHMS $10 \% 1 / 2 \mathrm{~W}$
R539	502233	82283-068	3300 DHMS 10\% $1 / 2 \mathrm{~W}$
$R 540$ $R 541$	502127 502247	$82283-055$ $82283-070$	270 DHMS $10 \% 1 / 2 \mathrm{~W}$ 4700 DHMS $10 \% 1 / 2 \mathrm{~W}$
R542	502310	82283-074	10,000 QHMS $10 \% 1 / 2 \mathrm{~W}$
R543	502122	82283-054	220 OHMS 10\% 1/2 W
R544	502322	82283-078	22,000 OHMS $10 \% \frac{1 / 2}{} \mathrm{~W}$
R545	502210	82283-062	1000 DHMS $10 \% 1 / 2 \mathrm{~W}$
R546	232646		VARIABLE, 5000 DHMS
R 547	502322	82283 -078	22,000 DHMS 10\% 1/2 W
R548	502322	82283-078	22,000 OHMS $10 \% 1 / 2 \mathrm{~W}$
R549	502122	82283-054	220 OHMS 10\% 1/2 W
R550 R551	502222 502322 502347	$82283-066$ $82283-098$	2200 OHMS $10 \% 1 / 2 \mathrm{~W}$ 22000 OHMS O $10 \% 1 / 2 \mathrm{~W}$
R552	502347	82283-082	47.000 OHMS 10\% 1/2 W
R 553	502233	$82283-068$	3300 DHMS 10\% 1/2 W
R554	502110	82283-050	100 DHMS 10\% $1 / 2 \mathrm{~W}$

Symbol	Stock No.	Drawing No.	Description
R 555	502233	82283-068	3300 GHMS 10\% 1/2 W
R556	502122	82283-054	220 OHMS 10\% 1/2 W
R557	502247	$82283-070$	4700 UHMS $10 \% 1 / 2 \mathrm{~W}$
$R 558$	232646		VARIABLE, 5000 OHMS
R559	502410	82283-086	100,000 DHMS 10\% 1/2 W
R560	502422	$82283-090$	220,000 DHMS 10\% 1/2W
$R 561$	502222	82283-066	2200 DHMS 10\% 1/2 W
R562	502247	82283-070	4700 DHMS $10 \% 1 / 2 \mathrm{~W}$
8563	502368	82283-084	68,000 DHMS 10\% $1 / 2 \mathrm{~W}$
R564	502310	82283-074	10,000 OHMS $10 \% 1 / 2 \mathrm{~W}$
R 565	502222	82283-066	2200 CMMS 10\% 1/2 W
R 566	502110	82283-050	100 QHMS 10\% $1 / 2 \mathrm{~W}$
$R 567$	502322	82283-078	22,000 DHMS 10\% 1/2 W
R568	502347	82283-082	47,000 DHMS $10 \% 1 / 2 \mathrm{~W}$
R 569	502247	82283-070	4700 OHMS $10 \% 1 / 2 \mathrm{~W}$
R 570	502147	82283-058	470 DHMS $10 \% 1 / 2 \mathrm{~W}$
R571	502122	82283-054	220 DHMS 10\% 1/2 W
R 572	502310	82283-074	10,000 OHMS 10\% $1 / 2 \mathrm{~W}$
R 573	502222	82283-066	2200 OHMS 10\% 1/2 W
2574	502222	82283-066	2200 DHMS 10\% 1/2 W
R 575	502110	82283-050	100 DHMS 10\% 1/2 W
R 576	502310	82283-074	10,000 DHMS $10 \% 1 / 2 \mathrm{~W}$
R 577	502310	82283-074	10,000 DHMS $10 \% 1 / 2 \mathrm{~W}$
R578	502222	82283-066	2200 [HMS 10\% 1/2 W
2579	502222	82283-066	2200 OHMS 10\% 1/2 W
R 580	502222	82283-066	2200 DHMS 10\% 1/2 W
R 581	502310	82283-074	10,000 DHMS $10 \% 1 / 2 \mathrm{~W}$
R 588	502310	82283-074	10,000 OHMS 10% 1/2 W
R 583	502127	82283-055	270 UHMS 10\% $1 / 2 \mathrm{~W}$
R584	502127	82283-055	270 OHMS 10\% 1/2 W
R585	502047	82283-046	47 OHMS $10 \% 1 / 2 \mathrm{~W}$
2586	502110	99126\%050	100 OHMS $10 \% 2 \mathrm{~W}$
R587	245157		VARIABLE, 100,000 DHMS
5501	430897		SWITCH = POGGLE
T501	245149		TRANSFDRMER
x05501	248262		SDCKET - LAMP
XDS502	248262		SOCKET - LAMP
MECHANICAL			MISCELGANEDUS
	$\begin{aligned} & 248370 \\ & 248377 \end{aligned}$		PAD - INTEGRATED CIRCUIT, WHITE PAD = TRANSISYOR
			BTX-1B SCA GENERATOR MI-560714 SERIAL No. 1000 and up P/6 3720213-502 REV 4
			CAPACITORS
C501	223777		ELECTROLYTIC\& 47 MF 10\% 20 V
C502	245142		CERAMIC, 0005 MF $10 \% 500 \mathrm{~V}$
${ }^{C} 503$	223777		ELECTROLYTICS $47 \mathrm{MF} 10 \% 20 \mathrm{~V}$
C504	221678		M! CA, 47PF 10\% 500V
C505	249954		YANTALUM, 22 LF 20V
C506	249954		TANTALUM, 22 UF 20 V
C5074	426865		CERAMIC, 560 PF YOOV USED ON 67 KHZ
C5078	215198		CERAMIC, 330 PF 500 V USED ON 41 KHZ
C507e	228121		CERAMIC, 820 PF SOOV USED ON 41 KHZ
C508A	426865		CERAMIC, 560 PF 500 V USED ON 67 KHZ
C5088	215198		CERAMIC, 330PF 500V USED UN 41 KHZ
C508e	228121		CERAMIC, 820 PF SOOV USEU ON 41 KHZ
$C 509$ $C 510$	432444 236781		CERAMICO ELECTROLYTIC, $2.2 \mathrm{MF} 10 \% 35 \mathrm{~V}$
C511	248378		FIGM, 0.1 MF $10 \% 100 \mathrm{~V}$
C512	423731		FILM, 101UF 10% 100V
C513	245142		CERAMIC, 0005 MF 10\% 500 V
C514A	238220		CERAMIC, 470PF 10\% 500V-USED ON 67K
C5148	213971		CERAMIC, 750PF 10\% 500V.USED ON 41K

Symbol	Stock No.	Drawing No.	Description
R 526	502239	82283-069	3900 OHMS 10\% $1 / 2 \mathrm{~W}$
R529	502222	$82283=066$	2200 OHMS 10\% $1 / 2 \mathrm{~W}$
R530	502222	82283-066	2200 UHMS 10\% $1 / 2 \mathrm{~W}$
R531	502110	82283-050	100 DHMS 10\% $1 / 2 \mathrm{~W}$
R532	502347	82283-082	47.000 OHMS 10\% $1 / 2 \mathrm{~W}$
R533	502310	82283-074	10,000 0HMS 10\% $1 / 2 \mathrm{~W}$
R534	502247	82283-070	4700 GHMS 10\% $1 / 2 \mathrm{~W}$
R535	502347	82283-082	47000 DHMS 10\% 1/2 W
R536	502310	82283-074	10.000 OHMS $10 \% 1 / 2 \mathrm{~W}$
R537	502412	82283-087	120,000 OHMS 10\% 1/2 W
R 538	502322	82283-078	22,000 GHMS 10\% 1/2 W
R539	502233	82283-068	3300 DHMS 10\% 1/2 W
R540	502122	82283-054	220 OHMS 10\% $1 / 2 \mathrm{~W}$
R 541	502247	82283.070	4700 OHMS 10\% $1 / 2 \mathrm{~W}$
R542	502310	82283 -074	10,000 OHMS 10\% 1/2 W
R543	502122	82283-054	- 220 OHMS 10\% $1 / 2 \mathrm{~W}$
R544	502322	$82283-078$	22,000 OHMS 10\% 1/2 W
R545	502210	82283-062	1000 पHMS 10\% $1 / 2 \mathrm{~W}$
R546	232646		VARIABLE 5000 OHMS
R547	502322	82283-078	22,000 OHMS 10\% 1/2 W
R548	502322	82283-078	22,000 OHMS 10\% 1/2 W
R549	502122	82283-054	220 DHMS 10\% $1 / 2 \mathrm{~W}$
R550	502222	82283-066	2200 DHMS 10\% $1 / 2 \mathrm{~W}$
R551	502322	$82283=078$	22,000 DHMS $10 \% 1 / 2 \mathrm{~W}$
$R 552$	502347	82283-082	47,000 DHMS 10\% $1 / 2 \mathrm{~W}$
8553	502233	$82283-068$	3300 ロHMS 10\% $1 / 2 \mathrm{~W}$
R554	502110	82283=050	100 DHMS 10\% $1 / 2 \mathrm{~W}$ (3300 DHMS 10\% $1 / 2 \mathrm{~W}$
$R 555$ $R 556$	502233	$82283=068$ $82283-054$	3300 DMMS 10\% $1 / 2 \mathrm{~W}$ 220 OHMS 10\% $1 / 2 \mathrm{~W}$
$R 556$ $R 557$	502122 502247	$82283-054$ $82283-070$	220 OHMS $10 \% 1 / 2 \mathrm{~W}$ 4700 OHM $10 \% ~ 1 / 2 ~ W$
R 558	232646		YARIABLE, 5000 OHMS
R559	502410	82283-086	100,000 DHMS 10\% 1/2 W
R560	502422	82283-090	220,000 OHMS 10\% 1/2W
R561	502222	82283-066	2200 DHMS 10\% 1/2 W
R562	502410	82283-086	100,000 OHMS $10 \% 1 / 2 \mathrm{~W}$
R563	502368	82283-084	68.000 OHMS 10\% $1 / 2 \mathrm{~W}$
R564	502310	82283-074	10.000 OHMS 10\% $1 / 2 \mathrm{~W}$
$R 565$	502222	82283-066	2200 IHMS 10\% $1 / 2 \mathrm{~W}$
R566	502110	82283-050	100 DHMS 10\% $1 / 2 \mathrm{~W}$
R567	502322	82283-078	22,000 OHMS 10\% 1/2 W
$R 568$ $R 569$	502347 502247	$82283-082$ $82283-070$	47,000 OHMS $\quad 10 \% 1 / 2 \mathrm{~W}$ 4700 OHMS $10 \% \quad 1 / 2 \mathrm{~W}$
R 570	50.2147	82283-058	470 DHMS 10\% $1 / 2 \mathrm{~W}$
R571	502122	82283=054	220 DHMS 10\% $1 / 2 \mathrm{~W}$
R572	502310	82283-074	10,000 OHMS $10 \% 1 / 2$
R573	502222	82283-066	2200 OHMS 10\% $1 / 2 \mathrm{~W}$
R574	502222	82283-066	2200 DHMS 10\% $1 / 2 \mathrm{~W}$
R575	502110	82283-050	100 OHMS 10\% $1 / 2 \mathrm{~W}$
R576	502310	82283-074	10.000 OHMS 10\% $1 / 2 \mathrm{~W}$
$R 577$ $R 578$ $R 578$	502310	82283-074	100000 OHMS $10 \% \frac{1 / 2}{} 10 \mathrm{~W}$
$R 578$ $R 579$	502222 502222	$82283-066$ $82283-066$	2200 OHMS 2200 OHMS 10% $1 / 2$
R579 R580	5	82283-066	2200 OHMS 10\% 1/2 W
R581	502247	82283-070	4700 OHMS 10\% $1 / 2 \mathrm{~W}$
R 582	502247	82283-070	4700 OHMS 10\% 1/2W
R583	502127	82283 -055	270 DHMS 10\% $1 / 2 \mathrm{~W}$
R 584	502127	$82283-055$	270 OHMS 10\% 1/2 W
R585	502047	82283-046	47 OHMS 10\% 1/2 W
$R 586$ $R 587$	502068 245157	82283-048	68 OHMS 10\% $1 / 2 \mathrm{~W}$ VARIABLE, 100,000 OHMS
R587	245157		VARIABLE, 100:000 DRMS
S501	430897		SWITCH - TOGGLE
T501 $\times 05501$	245149 433750		TRANSFDRMER
XDS501 XDS 502	423750 423750		SOCKET-LAMP
mechanical			
	$\begin{aligned} & 248370 \\ & 248377 \\ & 423733 \end{aligned}$		Pad - integrated circuit, white PAD - TRANSISTQR FIGTERELDW PASS

Symbol	Stock No.	Drawing No.	Description
			SET OF CONNECTOR PLUGS MI-560734
1	921359	1510013-101	1G-88C/U (CUNNECTS J2, 1108 \& J111)
2	211509	481799-001	NUDIU (CONTECTS AOM, JICO,
3	32661	878243-001	2 CONDUCTIDR (EXCITER FIWERAGINNEGTS T10 J103)
4	55808	727969-008	- TERMINAL FEMALE (CONTECTS TO Jlol
5	54254	727969-018	12 TEKMINAL FEMALE CONNECTS TU J102
6	101906	3722886-007	dummy plug substitute fir exciter REMITE POWER RELAY K101)
	424269	8544669-001	CONNECTJR, CUAXIAL (AUAPTER RNC-N)
	243867 426159	8528981-001	$1500 \text { UHM } 1 \% 1 / 2 W \text { CDMP }$ OIRECTIDNAL CUUPLER
			MODULE EXTENDER MI-560719
1		3456737-	HoULLE EXTENIER
5	$\begin{aligned} & 248266 \\ & 245138 \end{aligned}$		CONNECTIR CONNECTIR
			RECOMMENDED SPARE RF TRANSISTORS MI-560718
	247994		TRANSISTTJR - TYPE 2N4427
2	21.3866		TRANSISTUR - YYPE 2 N 3866
3	214440 2145102		TRANSISTOR - YYPE $2 N 4440$ TRANSISTDR - YYPE 2N5102

SUGGESTED EQUIPMENT SPARES

BTE-15A FM EXCITER

Description	Symbol	Quantity
Capacitor, Electrolytic - 0.1 uF 35V	C50, C51	1
Capacitor, Electrolytic - 0.22 uF 35V	C9, C49	Stock No.
Capacitor, Electrolytic - 1.0 uF 35V	C38, C84	1
Capacitor, Electrolytic - 2.2 uF 20V	C8, C94, C98	1
Capacitor, Electrolytic - 22 uF 20V	C45, C47	447837
Capacitor, Electrolytic - 100 uF 20V	C31	24739
Capacitor, Electrolytic - 150 uF 15V	C19	423736
Capacitor, Electrolytic - 1500 uF 25V	C25	245163
Oven, Crystal - MI-560717A	12	245168
(Crystal not included)	1	248251
One Each of All Integrated Circuits,	MI-560730	1
Transistors and Diodes (1N3518,		1
1N4151, 1N4154, 1ZC30T5, 10D2,		
MV840, 2N3640, 2N3866, 2N4037,		
2N4427, 2N4440, 2N5102, 2N5293,		
CA3018, CA3028, MC825P, MC890P,		
MC1013P and MC1027P)		

SUGGESTED EQUIPMENT SPARES (Continued)

bTS-ib Stereo generator

Description	Symboz	Quantity	Stock No.
Capacitor, Electrolytic - 15 uF 20 V Capacitor, Electrolytic - 47 uF 20 V Lamp, Left - $28 \mathrm{~V}, 40 \mathrm{~mA}$ Lamp, Stereo - 28V, 40 mA Lamp, Right - 28V, 40 mA Resistor, Variable - 50 ohms Resistor, Variable - 1000 ohms Resistor, Variable - 1000 ohms Resistor, Variable - 2000 ohms Resistor, Variable - $10,000 \mathrm{ohms}$ Resistor, Variable - 100,000 ohms $10 \% 1 / 2 \mathrm{~W}$ Crystal - 76.000 kHz One Each of All Integrated Circuits Transistors and Diodes (1N4154, 1ZC10T10, 10D2, 2N3053, 2N4037, CA3015, CA3018, CA3028 and MC890P)	C318, C418, C419 C307, C309, C310, C320, C322, C325, C420 DS301 DS302 DS303 R332 R322, R356 R357, R366 R334 R329, R349, R449 R359 Y301 MI-560731	1 3 3 3 1 1	$\begin{aligned} & 237797 \\ & 223777 \\ & \\ & 245152 \\ & 245153 \\ & 245154 \\ & 423747 \\ & 261451 \\ & 423746 \\ & 234008 \\ & 243748 \\ & 245157 \\ & 248382 \\ & \text { RO392 } \end{aligned}$
MONAURAL INPUT ADAPTER			
Capacitor, Electrolytic - $47 \mathrm{uF}, 20 \mathrm{~V}$ Resistor, Variable, $10,000 \mathrm{ohms}$ One Each of All Integrated Circuits, Transistors and Diodes (1ZC10T10, 2N3053 and CA3015)	$\begin{aligned} & \text { C207 } \\ & \text { R223 } \\ & \text { MI-560733 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 223777 \\ & 259322 \\ & \text { RO394 } \end{aligned}$
BTE-15A MAIN FRAME			
Capacitor, Electrolytic - $1600 \mathrm{uF}, 50 \mathrm{~V}$ Lamp, Pilot Fuse - AGC 2.5A 250V Resistor, Variable - 12 ohms, 50 W Resistor, Variable - 200 ohms Resistor, Variable - 10, 000 ohms One Each of All Integrated Circuits, Transistors and Diodes (1N1344A, 1N1361, 1N4154, 1ZC4.3T10, 1ZC16T10, 1ZS1OA, 10D2, 2N3053, 2N3055, 2N3565, 2N3740, 2N5293 and CA3018)	C101, C102, C103, C104 DS101 F101 R101 R129 R107, R130 thru R136 MI-560729	$\begin{aligned} & 1 \\ & 3 \\ & 5 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	423779 248263 243680 215840 258091 259322 RO390
BTX-IB SCA GENERATOR			
Capacitor, Electrolytic - 2.2 uF 35V Capacitor, Electrolytic - 15 uF 20V Capacitor, Electrolytic 47 uF 20V Lamp, Pilot - Green Lamp, Pilot - Red Resistor, Variable - 1000 ohms Resistor, Variable - 2500 ohms Resistor, Variable - 10, 000 ohms Resistor, Variable - 5,000 ohms Resistor, Variable - 100, 000 ohms One Each of Integrated Circuits Transistors and Diodes (1N2069, 1N4154, 1ZC10T10, 2N3053 and CA3018)	C510, C526, C530, C532 C525, C535 C501, C503, C529, C533, C534 DS501 DS502 R506, R515 *R517 **R517 R546, R558 R587 MI-560732	$\begin{aligned} & 1 \\ & \\ & 1 \\ & 1 \\ & \\ & 3 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	236781 237797 223777 245144 245145 245156 248264 259322 232646 245157 RO393

*Used on SCA boards serial no. 1000 and up.
** Used on SCA boards serial no. 1 through 999.

Figure 6. BTE-15A Exciter System, Front View

Figure 7. BTE-15A System, Module Extender

Figure 8. BTE-15A System, Module Extender Installed

Figure 9. BTE-15A System, Modules Removed

Figure 10. Main Frame, Rear View

Figure 11. Main Frame, Parts Location

Figure 12. Main Frame, Rectifier and Filter,

Figure 13. Main Frame, Fuse Panel

Figure 15. Main Frame Metering Amplifier Board, Parts Location

Figure 16. Main Frame Netering Amplifier Board, Parts Overlay, Top

Figure 17. Main Frame Metering Amplifier Board, Parts Overlay, Bottom

Figure 18. Exciter, Top View

Figure 20. Exciter, Modulated Oscillator Board, Parts Location

Figure 22. Exciter, RF Amplifier, Parts Location, Top

Figure 23. Exciter, RF Amplifier, Parts Location, Bottom

Figure 24. Exciter, Modulated Oscillator Board, Parts Overlay, Top

Figure 25. Exciter, Modulated Oscillator Board, Parts Overlay, Bottom

NOTES
1 UNLESS OTHERWISE SPECIFIED RESISTOR VALUES ARE IN
CAPACITOR VALUES ARE IN MICROFARADS.
DENOTES IN4I54 DIODE

Figure 26. Exciter, AFC Board, Parts Overlay, Top

Figure 27. Exciter, AFC Board, Parts Overlay, Bottom

Figure 28. Stereo Generator, Overall View

Figure 29. Stereo Generator Board, Parts Location

Figure 30. Stereo Generator Board, Parts Location

Figure 31. Stereo Generator Board, Parts Location

Figure 32. Stereo Generator Board, Parts Location

Figure 33. Stereo Generator Sub-Board, Parts Location

Figure 35. Stereo Generator Board, Parts Overlay, Bottom

NOTES:
I. RESISTOR VALUES ARE IN OHMS, $1 / 2 \mathrm{~W}, 10 \%$
2. DIODES ARE IOD2

Figure 36. Stereo Generator Sub-Board, Parts Overlay, Top

NOTES:

1. RESISTOR VALUES ARE IN OHMS, $1 / 2 \mathrm{w}, 10 \%$
2. DIODES ARE IOD2.

Figure 37. Stereo Generator Sub-Board, Parts Overlay, Bottom

2KO15
NOTES:
I. UNLESS OTHERWISE SPECIFIED RESISTOR VALUES
ARE IN OHMS, $1 / 2 \mathrm{~W}, 10 \%$.

Figure 38. Monaural Audio Board, Parts Overlay, Top

Figure 39. Monaural Audio Board, Parts Overlay, Bottom

Figure 40. SCA Generator, Overall View

Figure 41. SCA Generator Board, Parts Location, Ser. No. 1 through 999

Figure 42. SCA Generator Board, Parts Location, Ser. No. 1 through 999

Figure 42a. SCA Generator Board, Parts Location, Ser. No. 1000 and Up

Figure 42b. SCA Generator Board, Parts Location, Ser. No. 1000 and Up

Figure 43. SCA Generator Board, Parts Location, Ser. No. 1 through 999

Figure 43a. SCA Generator Board, Parts Location, Ser. No. 1000 and Up

FREQ.	C 507	C 508	L501	L502	C514	C515	C516	C517	C518
67 KHz	820 pf	820 pf	4700 $\mu \mathrm{H}$	3900 $\mu \mathrm{H}$	470 pf	120 pf	820 pf +120 pf	430 pf	820 pf
41 KHz	820 pf +560 pf	820 pf +560 pf	10,000 $\mu \mathrm{H}$	4700 $\mu \mathrm{H}$	750 pf	150 pf	820 pf +820 pf	820 pf	820 pf +560 pf

[^1]Figure 44. SCA Generator Board, Parts Location, Ser. No. 1 through 999

FREQ.	C507\#	C508\#	L 501	L502	C514	C515	C 516	C517	C 518
67 KHz	$560 \mathrm{p}{ }^{\text {F }}$	560 pf	$\begin{array}{r} 4700 \\ \mu \mathrm{H} \end{array}$	$\begin{gathered} 3900 \\ \mu \mathrm{H} \end{gathered}$	470 pf	I20pf	$\begin{aligned} & 820 \mathrm{pf} \\ & +120 \mathrm{pf} \end{aligned}$	430 pf	820pf
41 KHz	$\begin{aligned} & 820 \mathrm{pf} \\ & +330 \mathrm{pf} \end{aligned}$	$\begin{aligned} & 820 \mathrm{pf} \\ & +330 \mathrm{pf} \end{aligned}$	$\begin{gathered} 10,000 \\ \mu \mathrm{H} \end{gathered}$	$\begin{array}{r} 4700 \\ \mu \mathrm{H} \end{array}$	750 pf	150 pf	$\begin{array}{\|c\|} \hline 820 \mathrm{pf} \\ +820 \mathrm{pf} \end{array}$	820 pf	$\begin{array}{\|c\|} \hline 820 \mathrm{pf} \\ +560 \mathrm{pf} \end{array}$

NOTES:

1. UNLESS OTHERWISE SPECIFIED
RESISTOR VALUES ARE IN OHMS, I/2 W, IO \%
CAPACITOR VALUES ARE IN MICROFARADS.
$2 . \square$ DENOTES IN $5 I 54$ DIODE
$3 . *$ FREQUENCY DEPENDENT COMPONENT

Figure 44a. SCA Generator Board, Parts Location, Ser. No. 1000 and Up

$\frac{\infty}{\frac{\infty}{5}}$	$\begin{aligned} & \stackrel{+}{O} \\ & 0 \\ & \mathbf{O} \\ & \infty \end{aligned}$	$\begin{array}{ll} 4 & 4 \\ \hline 0 & 0 \\ 0 & 0 \\ N & 6 \\ \infty & 1 \\ \hline \end{array}$
$\frac{N}{10}$	$\begin{array}{\|l\|} \hline \stackrel{4}{\alpha} \\ 0 \\ 0 \\ \mu \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & \mathbf{Q} \\ & 0 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$
$\left\|\begin{array}{c} \frac{6}{5} \\ 0 \end{array}\right\|$	$\begin{array}{ll} 4 & 4 \\ 0 & 0 \\ 0 & 0 \\ N & N \\ \infty & + \end{array}$	$\begin{array}{ll} 4 & 4 \\ 0 & \alpha \\ 0 & 0 \\ N & N \\ \infty & \infty \\ \hline \end{array}$
$\frac{10}{5}$	$\begin{aligned} & 4- \\ & 0 \\ & 0 \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 0 \\ & \underline{0} \end{aligned}$
$\frac{\sigma}{6}$ 0	$$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 10 \\ & 1 \end{aligned}$
$\left[\begin{array}{l} N \\ 0 \\ 0 \\ 1 \end{array}\right]$	$\begin{array}{ll} O & I \\ O & \\ \sigma & 1 \\ m & \end{array}$	$\begin{array}{ll} 0 & I \\ 0 & 1 \\ \sim & I \\ \sigma & \end{array}$
$\begin{aligned} & \overline{0} \\ & \mathbf{n} \\ & \hline \end{aligned}$	$\begin{array}{ll} O & I \\ O & \\ A & I \end{array}$	$\left\|\begin{array}{ll} 0 & \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}\right\|$
$\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & \stackrel{4}{\circ} \\ & \hline \\ & \underset{\infty}{\infty} \end{aligned}$	$\left\lvert\, \begin{array}{ll} 4 & 4 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \infty & 0 \\ \infty & + \end{array}\right.$
$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{4}{\circ} \\ & 0 \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{array}{ll} 4 & 4 \\ 0 & 0 \\ 0 & 0 \\ \infty & 0 \\ \infty & + \end{array}$
$\left\lvert\, \begin{aligned} & \dot{O} \\ & \underset{\sim}{v} \\ & u \end{aligned}\right.$	$\begin{aligned} & N \\ & N \\ & Y \\ & X \\ & \hline \end{aligned}$	$\begin{aligned} & N \\ & I \\ & \frac{I}{V} \\ & \hline V \end{aligned}$

[^2]Figure 45. SCA Generator Board, Parts Location, Ser. No. 1 through 999

Figure 45a. SCA Generator Board, Parts Location, Ser. No. 1000 and Up

NOTES
I. USE SOLID LINE WIRING FOR 67 kHz UNITS USE DOTTED LINE WIRING FOR 41 kHz UNITS
2. RESISTOR VALUES ARE IN OHMS

Figure 46. SCA Option Select Board, Parts Overlay, Top

NOTES:
I. USE SOLID LINE WIRING FOR 67 kHz UNITS USE DOTTED LINE WIRING FOR 41 KHz UNITS
2 RESISTOR VALUES ARE IN OHMS

Figure 47. SCA Option Select Board, Parts Overlay, Bottom

NOTES:

1. \square - DENOTES IO D2 DIODE
2. UNLESS OTHERWISE SPECIFIED CAPACITOR VALUES ARE IN MICROFARADS

Figure 48. BTS-1B Power Supply Board, Parts Overlay

NOTES:

I.
 - denotes io d2 diode
2. UNLESS OTHERWISE SPECIFIED

CAPACITOR VALUES ARE IN MICROFARADS

Figure 49. BTX-1B Power Supply Board, Parts Overlay

SEMICONDUCTOR BASE DATA

MC790P • MC890P DUAL J-K FLIP-FLOPS

NUMBER IN PARENTHESIS INDICATES LOADING FACTOR FOR mW MRTL. NUMBER IN BRACKETS IADICATES LOADING FACTOR FOR MRTL.

$$
\mathrm{fr}_{\circ \mathrm{og}}=4 \mathrm{MHz}
$$

Two J-K flip-flops in a single package.

$$
P_{\mathrm{D}}=182 \mathrm{~mW}
$$ Each flip-flop has a direct clear input in addition to the clocked inputs.

1. Direct input (C_{D}) must be low.
2. The time period prior to the negative transition of the clock pulse is denoted t_{n} and the time period subsequent to this transition is denoted t_{n+1}.
3. Q_{n} is the state of the Q output in the time period t_{n}.
4. Clock pulse fall time must be $<100 \mathrm{~ns}$.

ELECTRICAL CHARACTERISTICS
TEST PROCEDURES ARE SHOWN FOR ONE FLIP-FLOP ONLY. THE OTHER FLIP.FLOP IS TESTED IN THE SAME MANNER.

Characteristic	Symbol	$\left.\begin{array}{\|c\|} \text { Pin } \\ \text { Under } \\ \text { Test } \end{array} \right\rvert\,$	MC890P \quad Test Limits							MC790P Test Limits							TEST VOLTAGEAPPLIED TO PINS LISTED BELOW:					Gnd
			$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$		Unit	$+15^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+55^{\circ} \mathrm{C}$		Unit						
			Min	Max	Min	Max	Min	Max		Min	Max	Min	Max	Min	Max		$V_{\text {is }}$	$V_{\text {on }}$	$V_{\text {вот }}$	$V_{\text {off }}$	$V_{\text {cc }}$	
Input Cursent	$\begin{aligned} & \mathrm{I}_{\mathrm{in}} \\ & 2 \mathrm{I}_{\mathrm{in}} \\ & \mathrm{I}_{\mathrm{inu}} \\ & \mathrm{I}_{1 \mathrm{n}} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 12 \end{aligned}$		$\begin{aligned} & 600 \\ & 1200 \\ & 600 \\ & 600 \end{aligned}$	-	$\begin{aligned} & 600 \\ & 1200 \\ & 600 \\ & 600 \end{aligned}$		$\begin{aligned} & 570 \\ & 1140 \\ & 570 \\ & 570 \end{aligned}$	MAdc		$\begin{aligned} & 500 \\ & 1000 \\ & 500 \\ & 500 \end{aligned}$		$\begin{aligned} & 500 \\ & 1000 \\ & 500 \\ & 500 \end{aligned}$	-	$\begin{aligned} & 470 \\ & 940 \\ & 470 \\ & 470 \end{aligned}$	uAdC	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 12 \end{aligned}$	-	13 1,3 14 14	-	$\begin{gathered} 11 \\ 1 \\ 1 \end{gathered}$	$\begin{gathered} \mid 2,3,4,12 \\ 4,12 \\ 1,2,4,12 \\ 1,2,3,4 \end{gathered}$
Output Current	$\mathrm{I}_{\mathrm{A} 3}{ }^{\text {s }}$	$\begin{aligned} & 13 \\ & 14 \\ & 14 \end{aligned}$	$\begin{gathered} 1.80 \\ \downarrow \end{gathered}$	-	$\begin{gathered} 1.80 \\ ! \end{gathered}$	-	$\begin{gathered} 1.71 \\ b \end{gathered}$	-	$\stackrel{\text { mAdc }}{\square}$	$\begin{gathered} 1.65 \\ \downarrow \end{gathered}$	-	$\begin{gathered} 1.65 \\ \downarrow \end{gathered}$	-	$\begin{gathered} 1.56 \\ p \end{gathered}$	-	mAdc \downarrow	-	$\begin{gathered} 13 \\ 14 \\ 12,14 \end{gathered}$	$\begin{gathered} 1 \\ 3,12 \\ 3 \end{gathered}$	12	11	$2,3,4$ $1,2,4$ $1,2,4$
Output Voltage	$V_{\text {out }}$	$\begin{gathered} 13 \\ 13^{* *} \\ 13^{* * *} \\ 13^{* * *} \\ 14^{* * *} \\ 14^{* *} \\ 14^{*} \# \end{gathered}$		${ }_{5}^{500}$	- - - - -	8	- - - - - - -	$\left.\right\|^{400}$	mVdc	- - - - - - -	400	- - - - -	$\begin{gathered} 300 \\ 7 \end{gathered}$	- - - - - - -	${ }_{8}^{320}$	mVdc		$\begin{gathered} 12 \\ 1,3 \\ 1 \\ - \\ 1,3 \\ 3 \end{gathered}$	- - - -	$\begin{gathered} - \\ - \\ 3 \\ 1,3 \\ \overline{1} \\ 1,3 \end{gathered}$	11	$\begin{gathered} 1,2,3,4,14 \\ 4,12 \\ \\ \\ \\ \end{gathered}$
Saturation Voltage	$\mathrm{V}_{\text {CE(sat) }}$	13 $13 \#$ $14 \# \#$	-	400 \downarrow	-	${ }^{300}$	-	$\stackrel{350}{\square}$	mVdc	-	$\begin{gathered} 300 \\ \hline \end{gathered}$	-	$\stackrel{290}{ }$	-	$\stackrel{320}{\square}$		-	-	12 -12	-	$\stackrel{11}{1}$	$\left.\begin{gathered} 1,2,3,4,14 \\ 1,2,3,4,12 \\ 1,2,3,4 \end{gathered} \right\rvert\,$

Ground unused input pins. Other pins not listed are left open.

* Clock pulse to pin 2, see Figure 1,
$\$ I_{A 10}$ is symbol for MC790P.

MC718P • MC818P DUAL 3-NPUT GATES

Two 3 -input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.
(1)

(1) 13
(1)

$$
3=\overline{2+12+13}
$$

NUMBER IN PARENTHESIS INDICATES MW MRTL LOADING FACTOR

$$
\begin{aligned}
& t_{p d} \equiv 27 \mathrm{~ns} \\
& \mathrm{PD}^{\prime}= 12 \mathrm{~mW} \text { (Input High) } \\
& 6 \mathrm{~mW} \text { (Inputs LoW) }
\end{aligned}
$$

ELECTRICAL CHARACTERISTICS
TEST PROCEDURES ARE SHOWN FOR ONE GATE ONLY. THE OTHER GATE IS TESTED IN THE SAME MANNER.

Characteristic	Symbol	Pin Under Test	MC818P Test Limits							MC718P				Test Limits			TEST VOLTAGE APPLIED TO PINS LISTED BELOW:					Gind
			$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$		Unit	$+15^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+55^{\circ} \mathrm{C}$		Unit						
			Min	Max	Min	Max	Min	Max		Min	Max	Min	Max	Min	Max		$V_{\text {in }}$	$V_{\text {an }}$	$V_{\text {bor }}$	$V_{\text {sff }}$	$V_{C 6}$	
Input Current	${ }_{\text {inn }}$	2 12 13	-	$\begin{gathered} 150 \\ t \end{gathered}$	-	$\begin{gathered} 140 \\ \downarrow \end{gathered}$	-	$\begin{gathered} 140 \\ \downarrow \end{gathered}$		-	$\begin{gathered} 150 \\ p \end{gathered}$	-	$\begin{gathered} 150 \\ 1 \end{gathered}$	-	150		2 12 13	-	$\begin{gathered} 12,13 \\ 2.13 \\ 2.12 \end{gathered}$	-	11	4 7
Output Current	$\mathrm{I}_{\text {A } 4}$	3	570	-	570	-	535	-	$\mu \mathrm{Adc}$	570	-	570	-	570	-	$\mu \mathrm{Adc}$	3	-	-	2,12,13	11	4
Output Voltage	$V_{\text {out }}$	3 3 3	-	$\begin{gathered} 400 \\ \downarrow \end{gathered}$	-	$\begin{gathered} 350 \\ \quad \\ \hline \end{gathered}$	-	$\begin{gathered} 300 \\ \nabla \end{gathered}$	mVdc	-	$\stackrel{400}{\downarrow}$	-	$\stackrel{300}{t}$	-	$\begin{gathered} 320 \\ ! \end{gathered}$		-	12 13 2	-	-	$\begin{gathered} 11 \\ ! \end{gathered}$	$\begin{array}{\|r} 2.4 .13 \\ 2.4 .13 \\ 4,12,13 \\ \hline \end{array}$
Saturation Voltage	${ }^{\text {CE }}$ (sat)	3 3 3	-	$\begin{gathered} 250 \\ \end{gathered}$	-	$\begin{gathered} 250 \\ \end{gathered}$	-	$\begin{gathered} 250 \\ \quad \\ \hline \end{gathered}$	mVde \downarrow	-	$\begin{gathered} 220 \\ \downarrow \end{gathered}$	\cdots	$\begin{gathered} 230 \\ 1 \end{gathered}$	-	$\begin{gathered} 320 \\ \downarrow \end{gathered}$	mVde †	-	-	12 13 2	-	11	$\begin{aligned} & 2,4,13 \\ & 2,4,12 \\ & 4.12,13 \\ & \hline \end{aligned}$
Switching Time	$t_{\text {on }}+t_{\text {off }}$	3,13	-	-	-	90	-	-	115	-	-	-	90	-	-	ns	Pulse In 13	Pulse Out 3	-	-	11	2,4,12

Ground unused input pins. Other pins not listed are left open.

SWITCHING TIMES TEST CIRCUIT AND WAVEFDRMS

MC1013 MC1213

85-MHz AC.COUPLED J-K FLIP-FLOPS

Designed for use at clock frequencies to 70 MHz minimum (85
MHz typical). Logic performing inputs ($\overline{\mathrm{J}}$ and $\overline{\mathrm{K}}$) are available, as well as dc SET and RESET inputs.

CIRCUIT SCHEMATIC

120-MHz AC-COUPLED J-K FLIP-FLOP

Designed for use at clock frequencies to 100 MHz minimum (120 MHz typical). Logic performing inputs (\bar{J} and \vec{K}) are available, as well as dc SET and RESET inputs.

CIRCUIT SCHEMATIC

ER TERMINALS LOCATED ON SUB-BOARD. USE SOLID
S FOR GI KH UNITS, DOTTED LINES FOR $4 I K H E$ UMITS.

- DEPENDENT COMPONENT VALUES

Figure 55. T101 Connection

Figure 56. Test Fixture

Figure 62. Exciter, RF Amplifier Assembly, Wiring Diagram

Figure 64. Stereo Generator Filter and Transformer Assembly, Wiring Diagram

Broadcast Equipment

Supplement 1

BTE-10AT FM Broadcast Transmitter

ES-560698 and ES-560698A

EQUIPMENT LIST

BTE-10AT FM BROADCAST TRANSMITTER, CABINET MOUNTED VERSION, ES-560698

Quantity	Description	Reference
1^{*}	BTE-15A FM Exciter System as Specified on Sales Order	
	BTE-15A FM Exciter System, Mono	
	BTE-I5A FM Exciter System, Mono and 1 SCA	ES-560631
	BTE-15A FM Exciter System, Mono and 2 SCA	ES-560632
	BTE-15A FM Exciter System, Stereo	ES-560633
	BTE-15A FM Exciter System, Stereo and 1 SCA	ES-560634
	BTE-I5A FM Exciter System, Stereo and 2 SCA	ES-560635
$* *$	Spare Crystal Unit	MI-560736
	Set of Spare rf Transistors	MI-560718-*
1	Panel, Blank	MI-36547-1
1	Cabinet Assembly	MI-560304-A
	Installation Material Kit	MI-560883

*Crystal unit to be ordered to suit customer's assigned frequency.
**One supplied if and as specified on sales order.

BTE-10AT FM BROADCAST TRANSMITTER, RACK MOUNTED VERSION, ES-560698A

Quantity	Description	Reference
1^{*}	BTE-15A FM Exciter System as Specified on Sales Order	
	BTE-15A FM Exciter System, Mono	
	BTE-15A FM Exciter System, Mono and 1 SCA	ES-560631
	BTE-15A FM Exciter System, Mono and 2 SCA	ES-560632
	BTE-15A FM Exciter System, Stereo	ES-560633
	BTE-15A FM Exciter System, Stereo and 1 SCA	ES-560635
	BTE-15A FM Exciter System, Stereo and 2 SCA	ES-560636
	Mi-560717-*	
	Spare Crystal Unit	MI-560718
	Set of Spare rf Transistors	MI-560883

*Crystal unit to be ordered to suit customer's assigned frequency.
**One supplied if and as specified on sales order.

TECHNICAL SUMMARY

ELECTRICAL SPECIFICATIONS

Power Output
10 Watts
All other specifications are identical to the BTE-15A. Refer to the BTE-15A TECHNICAL SUMMARY at the front of this instruction book.

MECHANICAL SPECIFICATIONS

Exciter
Height, inches (cm)
Width, inches (cm)
Depth, inches (cm)
Weight, pounds (kg)
Cabinet
Height, inches (cm)
Width, inches (cm)
Depth, inches (cm)
Weight, pounds (kg)

Net
10-1/2 (26.7)
19 (48.3)
12-5/8 (32.1) 40 (18.1)
Net
17-1/4 (43.8)
23-1/2 (59.6)
17-1/4 (43.8)
20 (9.07)

Shipping (approx.)
19 (48.3)
24-1/4 (56.5)
17-1/2 (44.5)
59 (26.8)
Shipping (approx.)
22-1/4 (56.5)
28 (71.1)
24 (61)
35 (15.9)

Figure 67. BTE-10 AT FM Transmitter ES-560698

DESCRIPTION

GENERAL

The BTE-10AT FM Broadcast Transmitter consists of a standard RCA BTE-15A FM exciter system, together with provisions for power output determination. The BTE-IOAT is available housed in a metal cabinet or without a housing, for rack mounting. The version which includes a metal cabinct is identified as ES-560698. The version intended for rack mounting is identified as ES-560698A.

The BTE-10AT FM Transmitter provides an rf output of ten watts at any specified freguency in the FM broadcast band. By selection of the proper BTE-15A Exciter System combination, the BTE-10AT may be used for transmission of monophonic or stereo and SCA signals. Low distortion, wide frequency response, ease of adjustment, and high reliability are characteristics of this equipment. All circuitry is solid state.

The BTE-10AT is designed to conform to FCC requirements for educational transmitters.

When stereophonic operation is desired, the BTE-10AT Transmitter should include The BTS-1B Stereo Generator. If, in addition, SCA operation is desired, the BTX-1B SCA Generator should be used. One or two additionai SCA program channels may be transmitted along with the regular FM monophonic program channel. When stereophonic programming is transmitted, only one SCA channel may be utilized, using a 67 kHz BTX-1B SCA Generator.

For circuit description and information on technical features of the BTE-15A, see the DESCRIPTION section at the front of this instruction book.

Power output is controlled by R101, the RF POWER ADJUST control. Ten watts power output is provided when M101 indicates 100 (full scale) with the MULTIMETER switch set to the PWR AMP OUTPUT position.

INSTALLATION

The installation Material Kit, MI-560883 provides the components required to complete the BTE-10AT Transmitter installation, to be used with the BTE-15A Exciter System and cabinet items. A power output metering modification is also included, enabling power output determination in compliance with FCC regulations.

The power output metering modification consists of a simple wiring change in the BTE-15A main frame, MI-560710. Although normally done at the factory, this wiring change is described for reference purposes only, as follows:

1. Remove the BTE-15A Exciter Main Frame bottom cover and make the following changes. Refer to the schematic diagram, Figure 50 and the wiring diagram, Figure 58.
A. Disconnect and tape the brown/white wire at TB102-46.
B. Connect the precision metering resistor (MI560883 item 3A) between TB102-46 and TB102-57.
C. Ground TB102-56 by connecting it to TB102-55 with a short jumper (Part of MI-560883 item 3D).

WARNING

Check that pins 1 and 3 are connected on the dummy plug, and that no other connections are made on the plug. Installation of an improperly wired dummy plug can cause extensive damage.
D. Install the dummy plug (MI-560883 item 5) in the K101 socket. Refer to Figure 11.
E. The BTE-15A is normally supplied with the transformer connected for 115 Vac input. For other line voltages or to check the line voltage connections, refer to Figure 55.
F. Install the blank panel, MI-36547-1 at the bottom of the cabinet with the hardware provided with the cabinet, as shown in Figure 67.
G. Replace the BTE-15A Exciter Main Frame bottom cover.

NOTE: Wiring changes outlined above are shown in heavy lines on the upper left corner of Figure 50.
2. Mount the BTE-15A Exciter Main Frame in the BTE-10AT cabinet, using the hardware provided with the cabinet.
3. Install the Type N to BNC coaxial adapter (MI-560883 item 2) at the TRANSMITTER connector of directional coupler Z601. Directional coupler Z601 is supplied preassembled to panel assembly, MI-560883 item 6.
4. Install panel assembly, MI-560883 item 6, immediately above the BTE-10AT Exciter Main Frame using the hardware provided.
5. Install connector plug P602 (prewired to panel assembly MI-560883 item 6) at J102 on the main frame.
6. Install cable assembly (MI-560883 item 1) between the BTE-10AT rf exciter output jack J2 and directional coupler Z601 TRANSMITTER jack, utilizing coaxial adapter installed in step 3. Refer to Figure 68 for connector cap assembly details (M1-560883 part of item 6).

Figure 68. Connector Cap Assembly Details
7. Connect antenna transmission line to the LOAD connector jack on directional coupler Z601. The transmission line coaxial connector is provided by the customer.
8. Make audio (program) connections using MI560883 item 3C connectors.
9. If connections through J101 are to be used, wire and install connector plug P601 (MI-560883 item 3B).
10. Set CB101 in the OFF position (see Figure 11).
11. Set the RF OUTPUT switch, S103 to the OFF position (see Figure 6).

CAUTION

Before applying ac power to the BTE-10AT, make certain that the ac power line voltage is 115 volts ac. For other line voltages or to check line voltage connections, refer to figure 55.
12. Install the ac power cable assembly (MI-560883 item 7).
13. The BTE-10AT FM Transmitter is now ready for operation.

Figure 69. BTE-10AT FM Transmitter, Rear View

OPERATION

The BTE-10AT FM Transmitter may now be put into service. For detailed operating instructions, refer to the Operation section of the BTE-15A instructions.

With the output metering circuitry now provided, the "direct" method of power output determination is employed. When M101 reads 100 (full scale) with S101 in the PWR AMP OUTPUT position, power output is 10 watts. Adjust R101, the RF POWER ADJUST control, as required.

No provision is included for use of the "indirect" (efficiency factor) method for power output determination.

For FCC application purposes, the efficiency factor "F" for the BTE-10AT, operating at 10 watts power output, is 0.83 .

For typical panel meter readings, refer to the table on page 20.

REPLACEMENT PARTS

Symbol	Stock No.	Drawing No.	Description
$\begin{aligned} & \text { P603 } \\ & \text { P601 } \\ & \text { P602 } \end{aligned}$		MI-560734	SET OF CONNECTOR PLUGS FOR BTE-15A
	921359	1510013101	CONNECTOR, UG88C/U (CONNECTS TO J2, J108 AND Jlll)
	211509	481799001	CONNECTOR, AUDIO (CONNECTS TO J109, J110, J112 AND J113)
	32661	878243001	CONNECTOR, 2 CONDUCTOR (CONNECTS TO J103)
	55808	727969008	CONNECTOR, 8 TERMINAL FEMALE (CONNECTS TO JIO1)
	54254	727969018	CONNECTOR, 12 TERMINAL FEMALE (CONNECTS TO J lo2)
	101966	3722886007 3722890	DUMMY PLUG (SUBSTITUTE FOR K1O1) DRAWTNG DUMMY PLUG WTRTNG TNSTRUCTIONS
		372280001	
	424269	8544669001	CONNECTOR, COAXIAL (ADAPTER BNC-N) RESISTOR, CARBON, 500 OHMS 1\%, 1/2W
	426159	8528981001	DIRECTIONAL COUPLER

Broadcast Equipment

Supplement 2

BTS-1B

Stereo Generator
Complete with
Rack Mount and Power Supply

ES-560639

EQUIPMENT LIST

BTS-1B (RACK MOUNTED) ES-560639

Quantity	Description	Reference
1	Main I rame	MI-560711A
1	BTS-1B Stervo Generator	MI-560713
1	Module Ixtender	MI-560719
1	Set of Connectors	MI-561322

TECHNICAL SUMMARY

ELECTRICAL*		
MECHANICAL		
Heght, anches (cm)	3-1/2 (8.9)	5-1/2 (14)
Width, inches (cm)	19 (48.3)	20 (50.8)
Depth, inches (cm)	10-5/8 (27)	13 (33)
Weight, pounds (kg)	19 (8.6)	24 (10.9)

*For additional technical information. refer to pertinent information in the BTE-15A TLCHNICAL SUMMARY in the front of this book.

Figure 70. BTS-1B Stereo Generator ES-560639

DESCRIPTION

In addition to use in the BTE-15A FM Exciter system, the BTS-1B Stereo Generator is available in a separate housing and with a self-contained power supply, for use in other applications.

A typical application for the separately housed BTS-1B Stereo Generator would be to convert a monophonic FM transmitter installation to stereo operation. FM transmitters using "Direct FM" modulation are best suited to this conversion. A transmitter utilizing the RCA BTE-10C FM Exciter is suitable for use of the separately housed BTS-1B Stereo Generator.

Program output level required for full transmitter modulation will vary, depending on the characteristics of the FM exciter in use. For example, where the BTS-1B Stereo Generator is used with an RCA BTE-10C FM Exciter, it is recommended that feedback resistor, R471,
in the BTS-1 B be changed to 27,000 ohms, $1 / 2$ watt, to reduce the program output to approximately 1 volt peak-to-peak with 10 dBm audio input. This level provides approximately 100% modulation of the FM signal when using the BTE-10C Exciter.

Similar simple circuit changes may be required with other FM exciters. Any changes required may be determined from a study of the exciter instruction manual.

Operation and maintenance of the separately housed BTS-1B Stereo Generator is similar to that for the BTS-1B when part of the BTE-15A Exciter system. Refer to the appropriate section of this instruction book for detailed information. The separately housed stereo generator main frame schematic diagram and main frame wiring diagram is presented in figures 72 and 73 respectively. Power supply board parts location information is presented in Figure 48.

Figure 71. BTS-1B Stereo Generator, Rear View

REPLACEMENT PARTS

SUGGESTED EQUIPMENT SPARES

BTS-IB MAIN FRAME*

Description	Symbol	Quantity	Stock No.
Capacitor, Electrolytic -1500 MF	C704, C705, C706	1	423020
Fuse $-1 / 4$ Amp Slo-Blo	F701	300124	
One each of all integrated circuits,	MI-560743	RO395	
transistors and diodes (1ZC16T10,		1	
$10 D 2,2 N 3054,2 N 3740)$			

*For the Stereo Generator spares, refer to the BTE-15A Suggested Equipment Spares.
141/142

Broadcast Equipment

Supplement 3

BTX-1B SCA Generator
 Complete with
 Rack Mount and Power Supply

ES-560640 and ES-560641

EQUIPMENT LIST

BTX-1B (RACK MOUNTED) ES-560640

Quantity	Description	Reference
$\mathbf{1}$	Main Frame	MI-560720
1	BTX-1B SCA Generator	MI-560714-*
1	Module Extender	MI-560719
1	Blank Panel	MI-560715
1	5 kHz Low Pass Filter (installed)	MI-560721
1	Set of Connectors	MI-561323

[^3]BTX-1B (RACK MOUNTED) (ES-560641)

Quantity	Description	Reference
1	Main Frame	MI-560720
2	BTX-1B SCA Generators	MI-560714-*
1	Module Extender	MI-560719
2	5 kHz Low Pass Filter (installed)	MI-560721
1	Set of Connectors	MI-561323

*Specify two SCA carrier frequencies

TECHNICAL SUMMARY

ELECTRICAL

Output ${ }^{\text {O }}$. Adjustable to 4 volts peak-peak max.Power Line Requirement . $117 / 240 \mathrm{~V} \pm 5 \% ~ 50-60 \mathrm{~Hz}$		
MECHANICAL		
	Net	Shipping
Height, Inches(cm)	3-1/2(8.9)	5-1/2(14)
Width, Inches(cm)	19(48.3)	20(50.8)
Depth, Inches(cm)	10-5/8(27)	$13(33)$
Weight, lb. kg)	17(7.7)	22(10)

[^4]

Figure 74. BTX-1B SCA Generator ES-560641

DESCRIPTION

In addition to use in the BTE-15A Exciter system, the BTX-1B SCA Generator is available in a separate housing and with a self-contained power supply, for use in other applications.

A typical application of the separately housed BTX-1B SCA Generator would be to add SCA operation to either a monophonic or stereophonic FM transmitter. FM transmitters using "Direct FM" modulation are best suited to this type of operation. For example, any transmitter utilizing the RCA BTE-10C FM Exciter is suitable for operation with the separately housed BTX-1B SCA Generator.

When the BTX-1B SCA Generator is used with FM exciters other than the BTE-15A, it will usually be
necessary to make adjustments for the desired SCA injection and SCA modulation levels. For technical information concerning adjustment of the OUT control, R546, for the correct amount of injection, and for correct adjustment of the MOD control, R506, for the correct modulation level, refer to steps 4,5 , and 6 of the BTX-1 B SCA Generator adjustment procedure on page 20.

Operation and maintenance of the separately housed BTX-IB SCA Generator is sinilar to that for the BTX-1B when part of the BTE-15A FM Exciter system. Refer to the appropriate section in this instruction book for detailed information. The separately housed SCA generator main frame schematic diagram and the main frame wiring diagram are shown in Figures 76 and 77, respectively. Power supply board parts location information is presented in Figure 49.

Figure 75. BTX-1B SCA Generator, Rear View

REPLACEMENT PARTS

Symbol	Stock No.	Drawing No.	Description
			BTX-1B MAIN FRAME ASSEMBLY MI-560720
FROI	427383		FUSE $1 / 4$ AMP SLIT ELU
Jegl	223973		CINNECTOR - BNC
$J 804$	211510		CONNECTOR - AUDIO
J80,5	211512		CONNEGTGR - AUOİ
J808 $\times 8801$	245134 48894	-	GONNECTUR
			BTX-1B POWER SUPPLY ASSEMBLY
CHOL	432444		.01 1fF 600 V
Cras	432444		.01 UF hnoV .01 UF hoov
C803 C904 C8,	432444 248371		1.01 UF 600 V
crajel	234552		U110E - TYPE 1002
CR80?	23455?		MIDDE - TYPE LOD2
CREC3	245128		IIJUE - TYPE LZC16T10 ZENER
L801	245132		RF CHOKE
L802	245132		EF CHUKE
Prol	248266		COTNLCTIR
Q801	21.3054		TRANSISTIR - TYPE 2N3.054
$\mathrm{Ra}^{\text {a }} \mathrm{S} 2$	522122		220 GhiM lo\% 2 W COMP
S801 T801 X	225745 423018		SWITCH, TIGGLE SPST TRANSFTRMER
$\times 7801$	248367		SUCKET, TRANSISTJR
			SET OF CONNECTORS M1-561323
	721351 21.1507		GONNECTUR, bNC UG 88C/U (CONNECTS TO J801, J804 AND J805) CONNECTIR, AUDIU (CONAECTS TO J802 AND J803)

SUGGESTED EQUIPMENT SPARES
BTX-1B MAIN FRAME*

Description	Symbol	Quantity	Stock No.
Capacitor, Electrolytic - 1500 MF	C 804	1	423020
Fuse, 1/4 Amp Slo-Blo	F801	5	300124
One each of all integrated circuits,	MI-560744	RO396	
transistors and diodes (1ZC1610,			
10 D 2 and 2N3 054$)$			

*For the SCA Generator spares, refer to the BTE-15A Suggested Equipment Spares.

Symbol	Stock No.	Drawing No.	Description
1xv101	243469	464586 C05	SOCKET - 7203/4CX250B
$1 \times \mathrm{V} 102$	236438	3471557502	SOCKET ASSEMRLY - TUBE, 4CX15000A
1xv102-46	225091	8465194501	CONTACT. ASSEMBLY - SCREEN, GRID CCLEET, 2 REOUIRED PER SOCKET
1xV102-03	220958	644382 n04	CONTACT - CONTROL GRID
1XV102-04	$? 20959$	644382005	COntact - outer filament
$1 \times$ 102-05	220960	644382 006	CONTACT - InNER FILAMENT
$1 \mathrm{XV102-15}$	225081	8446964 n02	
$1 \times V_{102-15}$	225081	8446954002	CAPACITOR - SILVER MICA. C1178 C117-DESIGNED
$1 \times V 102-15$ $1 \times V 102-15$	225081 225081	8446964 844690402	
$1 \times \mathrm{V} 102-15$	225081	8446964002	
1xV102-15	225081	8446964002	
1xv102-15	225081	8446964002	CAPACITIR - SILVER MICA. C1458 C145-DESIGNED
$1 \times V 102-15$ $1 \times \mathrm{P} 102-15$	$\begin{aligned} & 225081 \\ & 225081 \end{aligned}$	8446954 8446964 002	CAPACITIR - SILVER MICA. C145C CAPACITIR - SILVER MICA, C145D IN 4 SEGMENTS
1XV102-49	237298	3462635501	CONTACT ASSEMBLY - PART OF 1.1113 SLIDING ADJUSTMENT
$1 \mathrm{XV102-45}$	236512	3467564-501	BASE ASSEMBLY, SCREEN GRID COLLET
$1 \times \mathrm{V} 102-48$	232301	3462634001	SPACER PT OF 1L113 SEMI-FIXED ADJUSTMENT
1XV102-47	232302	3462634002	SPACER PT OF 11.113 SEMI-FIXED ADJUSTMENT
1XV102-09	225106	8519978001	PING - InSULATOR
1xV102-10	225087	8863044007	WASHER - TEFLON BUSHING
1xV102-11	233405	8519977004	INSULATOR - POST, 1/2 IN DIA X . 655 IN LG
1 XV102-16	797459	426763003	INSULATID - NS5W400. BOTTOM DF SOCKET
1xv102-39	217719	426763009	INSULATOP - NS5W4003, TOP OF SOCKET
1XV102-41	208115	426765009	INSULATOD - VS5w0106
MECHANICA	PARTS		P/L 8541907-504 REV 14
11	230429	8761072001	SHELF - HPDER, FOR C113
8	243458	8486379001	```SUPPORT - PLASTIC. MOUNTS. STOCK NO 23O429, qight side```
10	243459	8486379003	SUPPORT - DLASTIC. MOUNTS. STOCK NO 230429. pear
9	243473	8494379001	SUPPORT - PLASTIC, MOUNTS, STOCK NO 230429, LEFT SIDE
$? 2$	099933	464586 no3	CHIMNEY - FOR $1 \times \mathrm{XV} 109$
161	243460	3467932001	SHORTING - RAIL, PART OF 1 L105
29	230433	8766808002	PLATE - RACKING, PART OF 1 L105
28	230432	8766808 n01	PLATE - BACKING, PART OF وL1DG
156	243471	3464209503	LEAD SCRE' ASSY - PART OF 11105 OR 1L106
155	243462	3456357 n01	GUIDE - STRIP, PART OF 1L105 TR 1L106
157	243461	3730738001	RING - SPACER, USFD UNDER 1C1:3
158	243453	3456428 ก01	block - SPaCER, USED AT BOTTOM OF OUTPUT LINE ASSEMBLY
39	230424	8468301501	CONTACT ASSEMBLY - FOR 1 LT 105 AND 1L10K
167	243472	69273183 8766827501	$\begin{aligned} \text { BRASS STUN }-1 / 4-70 \times 2.75 ~ L G, ~ P A R T ~ O F ~ \end{aligned}$
42	230435	8766827501	OUTPUT LINE ASCEMRLY
159	211081	426767 ค18	INSULATOD - ? REQD, $3 / 4$ DIA $\times 3.00$ IN LG PART OF 1 P10G HARMONIC SUPRFSSOR
160	231640	426767015	INSULATOR - STEAT., 3/4 IN DIA X 2.50 I.G PART OF 1 R107 HARMONIC SUPRESSOR
54	233872	480368 n07	STUD - FASTENER, DOAR UPPFR
55	233869	8886047003	WASHER - NETAININT, DOOR STUD
57	233871	480368008	STUD - FASTENER, DOAR MIDDLE
58	233870	480368 110	STUU - FASTEVER, DOUR BJTTOM
59	230430	8761074501	CONTACT ASSEMBLY - DONR, $\mathbf{1 5 . 7 5}$ LONG
50	230431	8761074502	CONTACT \triangle SSEMBLY - DOOR. 37.00 LONG
63	233834	433422506	DIAL - ASSEMRLY
68	233835	748586012	orive - right angie

Symbol	Stock No.	Drawing No.	Description
89		8494371501	COUNTER ASSEMBLY
4	220304	$8986503 \mathrm{nO2}$	COUNTER
7	797461	8827138 no?	GEAR - MItEq
8	212531	8914895501	gear assemaly - includes miter gear and
10	922202	8513284	RRASS BuShINg
117	235298	748586 ก13	JOINT - INIVERSAL
70		8494371502	COUNTER ASSEMALY
11	? 20303	8986503001	COUNTER
7	097461	882713 A 0 0?	GEAR - "It ${ }^{\text {a }}$
8	? 22531	8914895501.	gear assemgly - includes miter gear and BRASS RUSHIVG
1.0	9222 n2	8513284001	JOINT - JNIVERSAL
72	922202	8513284 no1	JOINT - JHIVERSAL. ATtaches to right angle
75	235436	1510920017	DRIVE FOR 1LI05 AND 11.106 KNOB - PA PLATE TUNING CR PA OUTPUT LVADING
76	208711	$8898610 \mathrm{nO1}$	COUPLING - INSULATED, FLEXIBLE
7.9	? 11370	426772 203	INSULATOR - STEAT; $1 / 2$ In So x . 75. IN LG
80	? 11423	426765 n03	INSULATOR - STEAT. 3/8 IN DIA X 50 IN LG
86	230425	8491388503	CABLE ASSEMBLY (Comnects 1XV102 to 1C115 and 1C116-
87	230428	8544458001	RETAINER 2 required)
107	?2ヶ714	3450782 ก03	CONTACT - FINGERS. DOOR
108	215854	8413444501	CONTACT - ASSEMBLY̌, DOOR 4.88 INCHES IONG
	243464	8544435502	Jumper carle assy - jumpers door hinges
38	243890	8489378501	Plate - contact finger moinnting. for 1 Lio5
33	243903	8494375 no?	BLOCK. AND 1L106
32	243904	8494375001	BLOCK - SPACER. FOR TOP OF 1L106
52	243899	8543110001	DOMR - HINGE. FOR RF ROX
136	243899	3475614101	COVE - AIR GUIDE, FOR $1 \times \mathrm{X} 902$
1L111			INDUCTOR - VARIABIEE.FRONT
101	243892	3455763101	SHORTING GLOCK. 8R.1 MH7 TO 105.9 MHZ
101	243891	3455763002	SHORTING BLOCK, 106.1 MHZ TO 107.9 MHZ
10 ?	243893	3455135001	PLATE - GRID TUNING INDUCTOR,
10?	243894	3455764 009.	PLATE - GRID tuming inductor,
10 ?	243896	3462864 n01	Q3. 1 MH 7 TO 105.9 MHZ PLATE - GRID TUMING INDUCTOR.
$1 \mathrm{L112}$			INJUCTOR - VARIABIE, REAR
101			NOT USEI. - SHORTING BLOCK. 88.1 MHZ TO
101	243892	345576301	SHORTING $\mathrm{BLOCK}^{89.9 \mathrm{MHZ}} 9 \mathrm{M.1} \mathrm{MHZ} \mathrm{TO} 105.9 \mathrm{MHZ}$
101	243891	3455763002	SHORTINS BLDCK, 1 O6.1 MHZ TO 107.9 MHZ
103			VOT USED - PLATF - GRID TUNING INDUCTIOR,
103	243895	3455764002	
103	243896	3462864 ก01	
134	243897	3455147001	
133	243898	3455156001	CLAMP - ? RFDUIRED RESISTOR - 1910 GEE FIECTRICAL PAQTS
			HARIONIC SUPRESSOE: INCLUES IRIOT
134	243897	3455147001	TUZING - 2 REQUIRED, $11 / 8$ IIA $\times 83 / 8$ LG
133	243898	3455156001	CLAMP - ? REDUIRED
160	231640	$426767 \cap 15$	INSULATOR - ? RFOD, 3/4 DIA $\times 2.50$ in Lg RESISTOR - 10107 SEE EIECTRICAL PARTS
173	249529	3721194009	SCREW, PH - . 090 (10) - $32 \times .75$ LONG, PPD
			POWER DETERMINING COMPONENTS MI-560508
107	220328	990194 n51	PADER, HIGH VOLTAGE FILTER 3 MF $10 \% 7500 \mathrm{~V}$
$1 \mathrm{C10}$	\$10004.4	36091523	MICA, METER PYDASS, - $100 \mathrm{MF} 2 \mathrm{n} \mathrm{\%}$
$1 \mathrm{L3}$	229894	8494093001	REACTOR - HIGH VDI TAGF FII, TER
$1 \mathrm{M}^{4}$	229895	993052153	AMMETER - PLATE
1R24	229896	8491308 no3	relay shurat

Z fo T әбед
てL6T ‘カ Kaenuqəき

6ZSLZ08－gI
ーーカ9を－をむ
Tコ5＋5－むむg

BTF-5+5E1
TB-364-1
IB- 8027529

February 4, 1972
Page 1 of 2

EXTENDING TUBE LIFE IN FM TRANSMITTERS

Proper attention to the filament voltage of the 4CX5000A/8170, 4CX10,000D/8171 and $4 C X 15,000 \mathrm{~A} / 8281$ tubes used in RCA FM broadcast transmitters can result in greatly increased tube life.

Excessive filament voltage causes rapid deterioration of the filament resulting in limited tube life. An Eimac Engineering Newsletter states "Theoretically it is estimated that a 3% increase in filament voltage will result in a $20^{\circ} \mathrm{K}$ increase in temperature, a 20% increase in peak emission, and a 50% decrease in life due to carbon loss".

Note that at the normal 7.5 volts for the $4 C X 5000 \mathrm{~A}$ and $4 \mathrm{CXIO}, 000 \mathrm{D}$, this 3% is an increase of only 0.225 volts. The normal 4CX15,000A filament voltage is 6.3 volts.

The newsletter suggests that for "extended life in broadcast and communication service" the filament voltage be 7.2 volts for the 4CX5000A and 4CXIO,000D tubes. The list suggests 6.0 volts for the $4 C X 15,000 \mathrm{~A}$. Naturally it is assumed that a voltmeter of sufficient accuracy will be used.

However, many stations have reported to us that when the filament voltage is adjusted to the lowest value that does not limit the power, when the new tube is first installed and is very carefully maintained at that point by regular and careful adjustment of the filament voltage, several extra thousands of hours are obtained. This is particularly true where the 4CXIO,OCOD is operated at or near full power. Following this procedure of adjusting the filament voltage does not require an accurate voltmeter.

A further increase in tube life may be realized by using a constant voltage transformer to regulate the filament voltage. This is particularly true where there are line voltage fluctuations such as may be experienced at the top of tall buildings or at the end of long rural lines. The line voltage variations may prevent maintaining the filament voltage at the optimum value. There are a number of satisfactory units available to control these fluctuations of filament voltage. One such satisfactory unit where the line frequency is maintained closely is the "Sola" constant-voltage transformer.

[^5]Further, the Sola types listed have sufficient capacity to also handle the bias supply in the present RCA transmitter. The following chart lists the various types for 50 and 60 Hertz.

Tube Type	$\frac{60 \mathrm{~Hz} \text { Type }}{23-25-210}$	$\frac{50 \mathrm{~Hz} \text { Type }}{23-25-710}$
$4 \mathrm{CX5000A}$ or 4CX10,000D	$23-25-215$	$23-25-720$

Connection instructions are available for using the Sola type constant voltage transformers indicated. Piease write to:

Mr. A. S. Jarratt
RCA
Building 2-2
Camden, NJ 08102
U.S.A.
A. S. Jarratt

EXTENDING TUBE LIFE IN FM TRANSMITTERS

Proper attention to the filament voltage of the 4CX5000A/8170, 4CX10,000D/8171 and $4 C X 15,000 A / 8281$ tubes used in RCA FM broadcast transmitters can result in greatly increased tube life.

Excessive filament voltage causes rapid deterioration of the filament resulting in limited tube life. An Eimac Engineering Newsletter states . . "Theoretically it is estimated that a 3% increase in filament voltage will result in a $20^{\circ} \mathrm{K}$ increase in temperature, a 20% increase in peak emission, and a 50% decrease in life due to carbon loss".

Note that at the normal 7.5 volts for the $4 C X 5000 \mathrm{~A}$ and $4 \mathrm{CXIO}, 000 \mathrm{D}$, this 3% is an increase of only 0.225 volts. The normal 4CXl5,000 f filament voltage is 6.3 volts.

The newsletter suggests that for "extended life in broadcast and communication service" the filament voltage be 7.2 volts for the 4CX5000A and 4CX10,000D tubes. The list suggests 6.0 volts for the 4CXI5,000A. Naturally it is assumed that a voltmeter of sufficient accuracy will be used.

However, many stations have reported to us that when the filament voltage is adjusted to the lowest value that does not limit the power, when the new tube is first installed and is very carefully maintained at that point by regular and careful adjustment of the filament voltage, several extra thousands of hours are obtained. This is particularly true where the 4CXIO,000D is operated at or near full power. Following this procedure of adjusting the filament voltage does not require an accurate voltmeter.

A further increase in tube life may be realized by using a constant voltage transformer to regulate the filament voltage. This is particularly true where there are line voltage fluctuations such as may be experienced at the top of tall buildings or at the end of long rural lines. The line voltage variations may prevent maintaining the filament voltage at the optimum value. There are a number of satisfactory units available to control these fluctuations of filament voltage. One such satisfactory unit where the line frequency is maintained closely is the "Sola" constant-voltage transformer.

[^6]Further, the Sola types listed have sufficient capacity to also handle the bias supply in the present RCA transmitter. The following chart lists the various types for 50 and 60 Hertz.

Tube Type	60 Hz Type	50 Hz Type
4CX5000A or 4CX10,000D	23-25-210	23-25-710
4CX15,000A	23-25-215	23-25-720

Connection instructions are available for using the Sola type constant voltage transformers indicated. Piease write to:

Mr. A. S. Jarratt
RCA
Building 2-2
Camden, NJ 08102
U.S.A.
A. S. Jarratt

Maintenance and modification notes on equipment supplied by RCA Communications Systems Division, Camden, New Jersey, 08102
$\mathrm{BTF}-5+5 \mathrm{E} 1$
TB-364-2
Page 1 of 3
IB-8027529
P.A. OUTPUT LOADING ADJUSTMENT - 1L106

The output loading of the "E" line FM transmitter is by means of a coaxial tuning line assembly and shorting bar assembly with finger stock contact making the mechanically active portion of the tuning of the P.A. output loading (lllo6-Figure 17 of IB for BTF-5El).

The finger stock should be mechanically under slight compression all along the tuning line, and the whole assembly including the inner conductor of RF output feed line should be mechanically stable with essentially no movement in the component parts.

The spacing of the tuning line should be held to 2.00 inches where measuring from the outside of the backing plate (mechanical part 28) to the inside of the complementary plate that is part of the output line assembly (part 42), as in Figure lattached. This dimension should be held to a close tolerance of $1 / 32$ of an inch preferably, or no greater than $1 / 16$ of an inch the entire length of the tuning assembly.

Should the tolerance of these lines be out, and if the shorting assembly finger stock is not under slight compression along the entire range of tuning, then several things must be done.

Disconnect the inner conductor of the coaxial output feed line from the plate blocker (lCll3) and rotate the inner conductor until the lower insulating post of the inner conductor is perpendicular to the tuning line plate or until it is mechanically secure. Reconnect the inner conductor and remeasure the spacing of the strip lines. If the tolerance of the strip tuning lines is not improved or if the finger stock is not under slight compression along the whole length of the line, then you may want to replace the coaxial assembly or the inner conductor assembly.

The output line assembly is ordered from RCA Parts and Accessories under Stock No. 230435, and the inner conductor can be ordered separately under Stock No. 429559. This latter part has been recently added to the materials available from P\&A. Please mark your instruction book accordingly.
W. W. Warren

FM Transmitter
Product Management
att (1)

> FPONT VIEW
> OF RF COMPARTMENT

EXTENDING TUBE LIFE IN FM TRANSMITTERS

Proper attention to the filament voltage of the 4CX5000A/8170, 4CXIO,000D/8171 and 4CX15,000A/8281 tubes used in RCA FM broadcast transmitters can result in greatly increased tube life.

Excessive filament voltage causes rapid deterioration of the filament resulting in limited tube life. An Eimac Engineering Newsletter states "Theoretically it is estimated that a 3% increase in filament voltage will result in a $20^{\circ} \mathrm{K}$ increase in temperature, a 20% increase in peak emission, and a 50% decrease in life due to carbon loss!

Note that at the normal 7.5 volts for the 4CX5000A and 4CXI0,000D, this 3% is an increase of only 0.225 volts. The normal 4CXl5,000A filament voltage is 6.3 volts.

The newsletter suggests that for "extended life in broadcast and communication service" the filament voltage be 7.2 volts for the 4CX5000A and 4CX10,000D tubes. The list suggests 6.0 volts for the 4CX15,000A. Naturally it is assumed that a voltmeter of sufficient accuracy will be used.

However, many stations have reported to us that when the filament voltage is adjusted to the lowest value that does not limit the power, when the new tube is first installed and is very carefully maintained at that point by regular and careful adjustment of the filament voltage, several extra thousands of hours are obtained. This is particularly true where the 4CXIO,000D is operated at or near full power. Following this procedure of adjusting the filament voltage does not require an accurate voltmeter.

A further increase in tube life may be realized by using a constant voltage transformer to regulate the filament voltage. This is particularly true where there are line voltage fluctuations such as may be experienced at the top of tall buildings or at the end of long rural lines. The line voltage variations may prevent maintaining the filament voltage at the optimum value. There are a number of satisfactory units available to control these fluctuations of filament voltage. One such satisfactory unit where the line frequency is maintained closely is the "Sola" constant-voltage transformer.

[^7]Further, the Sola types listed have sufficient capacity to also handle the bias supply in the present RCA transmitter. The following chart lists the various types for 50 and 60 Hertz.

Tube Type	$\frac{60 \mathrm{~Hz} \text { Type }}{23-25-210}$	$\frac{50 \mathrm{~Hz} \text { Type }}{23-25-710}$
$4 C \times 5000 \mathrm{~A}$ or $4 \mathrm{CXIO}, 000 \mathrm{D}$	$23-25-215$	$23-25-720$

Connection instructions are available for using the Sola type constant voltage transformers indicated. Please write to:

> Mr . A. S. Jarratt
> RCA
> Building $2-2$
> Camden, NJ 08102
> U.S.A.
A. S. Jarratt

Maintenance and modification notes on equipment supplied by RCA Communications Systems Division, Camden, New Jersey، 08102

BTF-5E1
TB-339-4 Page 1 of 3
IB-8027529

P.A. OUTPUT LOADING ADJUSTMENT - 1L106

The output loading of the "E" line FM transmitter is by means of a coaxial tuning line assembly and shorting bar assembly with finger stock contact making the mechanically active portion of the tuning of the P.A. output loading (lLl06-Figure 17 of IB for BTF-5E1).

The finger stock should be mechanically under slight compression all along the tuning line, and the whole assembly including the inner conductor of RF output feed line should be mechanically stable with essentially no movement in the component parts.

The spacing of the tuning line should be held to 2.00 inches where measuring from the outside of the backing plate (mechanical part 28) to the inside of the complementary plate that is part of the output line assembly (part 42), as in Figure 1 attached. This dimension should be held to a close tolerance of $1 / 32$ of an inch preferably, or no greater than $1 / 16$ of an inch the entire length of the tuning assembly.

Should the tolerance of these lines be out, and if the shorting assembly finger stock is not under slight compression along the entire range of tuning, then several things must be done.

Disconnect the inner conductor of the coaxial output feed line from the plate blocker (1C113) and rotate the inner conductor until the lower insulating post of the inner conductor is perpendicular to the tuning line plate or until it is mechanically secure. Reconnect the inner conductor and remeasure the spacing of the strip lines. If the tolerance of the strip tuning lines is not improved or if the finger stock is not under slight compression along the whole length of the line, then you may want to replace the coaxial assembly or the inner conductor assembly.

[^8]The output line assembly is ordered from RCA Parts and Accessories under Stock No. 230435, and the inner conductor can be ordered separately under Stock No. 429559. This latter part has been recently added to the materials available from P\&A. Please mark your instruction book accordingly.
W. W. Warren

FM Transmitter
Product Management
att (1)

FRONT VIEW
OF RF COMPARTMENT

R®ת Technical Bulletin

Maintenance and modification notes on equipment supplied by RCA Communications Systems Division, Camden, New Jersey, 08102

```
BTF-5El
TB-339-5
IB-8027529
```


LOOSE HARDWARE ON PRIMARY TERMINALS OF HIGH VOLTAGE POWER TRANSFORMER

Page 1 of 2
July 8, 1974

Reference: Transformers MI-34507, MI-561022

Recent factory tests of the high voltage power transformers used with the BTF-20El and BTF-40El have conclusively proven that if the hardware (nuts, links, flat washers, and lock washers) is not tight, the temperature rise at the terminals of the primary input connection becomes excessive.

In summation, it is our conclusion that all hardware on the primary side of the high voltage transformer must be tightened and regularly inspected to assure that they have not been loosened by the normal expansion and contraction cycle of on and off operation of the transmitter.

Inasmuch as the loosening effect of the hardware has been found to exist in the BTF-20El and BTF-40El Transmitters, we are also advising owners of the BTF-5E1 and BTF-lOEl Transmitters of this condition. The terminal hardware on the high voltage transformer for these latter two transmitters should also be inspected for tightness to be assured of trouble-free operation.

A proper procedure for tightening the series of three nuts without breaking the primary terminal board is to use two wrenches against each other. To rely on tightening the nuts against the terminal board using only one wrench results in eventual loosening of the bolts.

[^9]We urge each station to immediately inspect their high voltage transformer primary connections since abnormal temperature rise at the connections can cause serious charring of the terminal board and damage the transformer itself.

Failure to observe the condition of the tightness of the primary connection to these transformers could affect the warranty replacement of these transformers.

GACLClidecec
W. W. Warren

FM Transmitter
Product Management
Building 2-7
Camden, NJ 08102

R®ת Technical Bulletin

Maintenance and modification notes on equipment supplied by

BTF-5E1
TB-339-6
IB-8027529

Page 1 of 2
February 10, 1975

GROUNDING SWITCHES (1S19 and 1S20)
USED IN BASIC TRANSMITTER MI-560507A

As a precautionary warning it is suggested that all owners of the BTF-5El using the MI-560507A Basic Transmitter unit immediately inspect the grounding switches 1 S 19 and 1520 mounted on the transmitter frame behind the rear doors and in the middle of the door opening on the bracket beside the door interlock pushbutton switch.

Occasionally a malfunction is experienced with the plunger which is part of the grounding switch and which acts against the contact spring to open or close the grounding contacts. The malfunction is in the form of a "hang-up" of the plunger which then does not allow the grounding switch to operate when either back door is opened.

This condition can be highly dangerous to the safety of station personnel during maintenance and other occasions when the basic transmitter rear doors are opened, and high voltages are exposed.

During regular maintenance checks, it is recommended that these grounding switches be manually operated several times on a regular basis. They should be removed and cleaned also on a regular basis so that foreign matter will not accumulate in the plunger hole and bind the plunger mechanism. Do not attempt to lubricate with any lubricant or graphite powder since the lubrication or powder tends to attract foreign matter and thus invite the possibility of a malfunction of the switch.

[^10]TB-339-6 -2- February 10, 1975

It is further suggested that a notation be placed in the transmitter instruction book (listed above) to the effect that the grounding switches should be operated several times when the transmitters rear doors are open, and that regular inspection and cleaning be undertaken to assure proper operation. If the station maintains a "Maintenance Log", it would be wise to have the Maintenance Engineer indicate that the switches were inspected, manually operated, and cleaned during each major maintenance period.
W. W. Warren

FM Transmitter
Product Management
Building 2-7
Camden, NJ 08102
WWW : pw

Maintenance and modification nótes on equipment supplied by RCA Communications Systems Division, Camden, New Jersey, 08102

Page 1 of 2
TB-339-7
IB-8027529

February 10, 1975

HIGH VOLTAGE GROUNDING SWITCH FOR MI-560342-6 POWER SUPPLY UNIT

It has come to our attention that the High Voltage Grounding Switch (2S4) installed in the MI-560342-6 Power Supply for the BTF-5El transmitter can be made to fail by allowing the shorting bar to drop clear of its ground contact. Should the mechanism become loose, the shorting bar will not function properly when the top lid of the power supply cabinet is lifted. This condition can be highly dangerous to the safety of station personnel during maintenance and other occasions when the pwer supply unit is opened.

Within 30 days a new High Voltage Grounding Switch Kit (2S4) will be sent to all stations using the MI-560342-6 Power Supply. This kit is designated MI-561378-3 and will be furnished free of charge for all present installations.

When the MI-561378-3 kit is received, please remove and destroy the present switch and install the new High Voltage Grounding Switch (2S4) immediately, following the instructions supplied with the kit. Do not retain the parts of the old switch assembly or attempt at some future date to reinstall the unit.

If in the future you should feel the need to replace any part of the new assembly (MI-561378-3) parts are available from RCA Parts and Accessories, Deptford, NJ under the following stock numbers and drawings:

Symbol	Stock No.	Drawing No.	Description
29	432038	3724531168	Spacer-Grounding Switch
31	432037	3720249005	Bar-shorting
32	432036	3454962502	Strap-Flexible

W. W. Warren

FM Transmitter
Product Management
Bldg. 2-7
Camden, NJ 08102
WWW: pw
NOTE: Please make the above information a part of the referenced instruction book.

CLARIFICATION OF NEUTRALIZATION PROCEDURES

The PA neutralization procedures as described in the tuning section of the above transmitter is intended for use during the initial tune up of the transmitter. The step by step instructions do not provide simple explanation to the reader of a way to re-neutralize or to confirm the neutralization adjustment of an operating transmitter.

The following explanation will clarify the procedures of neutralizing your transmitter and includes alternative methods of disabling the plate voltage to facilitate this procedure.

NOTE: Prior to performing any of the steps described below, carefully examine the condition of the grounding hooks provided with the transmitter. Make sure the cable is intact and that good electrical connections exist at the hook and at the point where the cable is grounded to the transmitter frame.

Hang the hook on the connections of any components or touch the connections firmly with the ground hook before you attempt to remove (or replace) any components or perform any adjustment.

Never presume upon safety.

[^11]
NEUTRALIZATION PROCEDURE

1. Connect a dummy load and wattmeter (0 to 15 watt, 50 ohm) to the PA output line, using a reducer cone (MI-27791K-5A) and a short length (6 ft.) of RG-8U cable with appropriate connectors.
2. Remove and carefully lay aside resistors 1R13, 1R14, 1R15, and 1 R16 to remove PA screen voltage and to open the PA screen path to ground. Set the multimeter switch 1 S 2 to some other position than to the PA Eg2 position during the neutralization procedure.
3. Remove and lay aside resistor 1 R9 and replace with 1 R13 or 1R14 (6300 ohms) previously removed in step 1 . Set the Driver Screen Control 1R38 to the center of its range.
4. PA plate voltage can be removed by either of the two methods which follow. The first method is "easier on the transmitter" than the second, but is more time -consuming.
a) Disconnect the primary connections to 3 Tl (the high voltage plate transformer). Tape the exposed connectors at the ends of the disconnected wires to prevent short circuits between the wires and from grounding out against the transmitter frame.

OR ALTERNATIVELY
b) Remove and lay aside resistor 1R25.

NOTE: If this method is used, the PA plate voltage meter needle will indicate off scale when power is applied. This is not harmful to the meter.
5. Set switch 1 S13 to the "disable" position.
6. Depress the transmitter on and plate on pushbuttons. After the plate time delay relay cycles, applying plate voltage, readjust driver plate tuning control 1 Cll2 for minimum driver cathode current. Set multimeter switch 152 to the PA lg position. If a grid current indication is noted, adjust both 1 Cll 2 and 1 Cl 23 for maximum indication. (If no grid current is apparent initially, operate the power raise pushbutton as required to initiate grid current).

Using the power raise/power lower pushbuttons, establish a reference value of PA grid current. A reading of 35 milliamperes is a convenient value. This reference value should be held constant during the neutralizing procedure.
7. The small wattmeter connected at the PA output now indicates feed-through power (power coupled from PA grid circuit to PA output circuit through the "feed-through" capacitance of the PA tube).
8. Adjust PA plate tuning control 1 Ll 05 and PA output loading control 1 Ll 06 for a peak in the wattmeter indication.
9. Remove power from the transmitter. Adjust the front neutralizing slide (part of $P A$ tube socket assembly) 3/8inch to the right. Reapply power, adjust 1 Ll 05 and 1 LL 106 , and note the change in the wattmeter reading. If the meter reading has decreased, repeat this procedure until a minimum wattmeter reading is obtained. If the meter reading increased, move the neutralizing slide to the left and repeat. If an appreciable movement is required at the front neutralizing slide, all four slides should be adjusted so that they are approximately balanced. If necessary, one of the s mi-fixed slides may be removed.

Normally, with 35 milliamperes of PA grid current (to establish a reference driving voltage) it should be possible to obtain a feed-through power indication of less than one watt. However, the important consideration in neutralization is to secure a minimum feed-through indication.

Note that the reflectometer meter is not sufficiently sensitive and cannot be used in place of the wattmeter specified in step one.
10. Depress and hold the power lower pushbutton until the driver Eg2 indication is zero, then remove all power.
11. After completion of neutralization of the PA stage, replace resistors 1R9, 1R13, 1R14, 1R15, 1R16, and 1RI7 in their normal mounting positions.
12. If method $4 a$ was used to remove plate voltage, reconnect the primary leads of high voltage transformer 3Tl (refer to Table 3). Tighten connections securely.

OR ALTERNATIVELY

If method 4b was used, replace resistor lR25 (first apply the grounding hook to both resistor clips).
13. Disconnect the dummy load and wattmeter and reconnect the PA output line as before. Tighten the coaxial connectors securely.

This completes the neutralization procedure.
W. W. Warren

FM Transmitter
Product Management

REתTechnical Bulletin

Maintenance and modification notes on equipment supplied by RCA Communications Systems Division, Camden, New Jersey, 08102

```
BTF-5E1
```

TB-339-9
IB-8027529

August 25, 1975
Page 1 of 4

TRANSMITTER COOLING SYSTEMS

This information is supplied to assure optimum performance of cooling systems employed in conjunction with RCA BTF-E line FM Transmitters.

Several recent installations of RCA "-El" line FM Transmitters have experienced an undesirably high temperature rise in the transmitter cabinet.

Upon investigation, it was found that air plenum or duct configurations at these installations were so constructed as to allow hot exhaust air from the RF power amplifier to re-enter the transmitter cabinet through the perforated top cover of the cabinet. The recirculation of heated air through the transmitter power amplifier caused an abnormal build-up of heat in the transmitter cabinet. Components located in the control section of the cabinet were thus subjected to higher than normal temperatures. This is believed to have caused component failure in some instances.

If the air exhaust system of your transmitter is of such a configuration as to allow recirculation of heated exhaust air, as described above, it should be changed to air exhaust method I or II, described below. (A typical example of an undesired exhaust system is one with a large plenum chamber installed to cover the entire transmitter top, with power amplifier exhaust air vented into the plenum and ductwork from plenum to outside air).

[^12]
BTF-E LINE AIR EXHAUST SYSTEM

Most of the power dissipation in these transmitters occurs in the power amplifier stages. Heated exhaust air from the power amplifier is ducted to the perforated transmitter top cover by sheet metal air conduit (approximately 13×17 inches in crosssection). This air conduit (from transmitter power amplifier to transmitter top cover) is part of the transmitter cabinet.

It is considered acceptable to vent heated PA exhaust air from the transmitter by one of the two following methods:

Ductwork Used To Vent Transmitter

I) Extend the 13×17 inch power amplifier exhaust air conduit, previously described, through suitable ducting, into an exhaust system which removes the heated air to outside the transmitter room. No part of the added ductwork, other than the vertical run which connects to the 13×17 inch power amplifier duct, should be located less than 18 inches from the transmitter cabinet. The added ductwork should not introduce a back pressure of more than 0.1 inch water pressure. This requirement makes the use of rightangle extensions, or sudden changes in cross-sectional shape in the added ductwork, undesirable. In order to achieve a sufficiently low back pressure, it may be necessary to incorporate a large fan in the added ductwork.

Cooling of the interior of the transmitter cabinet is accomplished by drawing air from the transmitter room through the perforated transmitter top cover above the control section with air flow through the control section (left half of transmitter cabinet, front view), through the large fiberglass air filters, into the blower compartment, and thence up through the power amplifiers.

No Ductwork Used

II) Using a procedure of no ductwork, the heated exhaust air from the transmitter power amplifier is allowed to vent directly into the transmitter room. When this method is used, appropriate action must be taken to maintain the transmitter room air temperature within the prescribed limits of $-20^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ 。

A large transmitter room exhaust fan or sufficient air conditioning will normally be required. Cooling of the interior of the transmitter cabinet is by the same cooling action as in method I previously described. (See Figure 1).

Note that neither method I or II is intended to allow appreciable recirculation of heated exhausted air into the transmitter cooling system. Method I is superior to method II in this regard, and in preferred over method II.

The subject transmitters have been designed for a maximum air temperature in the interior of the transmitter cabinet (excluding power amplifier exhaust air) of $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$. The rise in air temperature, in the interior of the transmitter cabinet, is thus limited to a maximum value of $15^{\circ} \mathrm{C}$ above transmitter room temperature, when the room temperature reaches $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$. Recirculation of hot exhaust air from the power amplifier into the control section of the transmitter cabinet will readily cause this $15^{\circ} \mathrm{C}$ rise to be exceeded.

Under no conditions should hot exhaust air from the power amplifier be allowed to recirculate into the control section of the transmitter cabinet.

AIR EXHAUST KIT MI-563465 (FIGURE 2)

A modification kit is now available from RCA which will afford optimized cooling of the interior of the transmitter cabinet. It is designed to be used with either exhaust method I or II, previously described. It is not designed for use where heated exhaust air recirculation, previously described, is allowed. This modification adds air holes in the sheet metal shield behind the BTE-15A FM Exciter Unit (to allow air flow into the exciter area) and in the sheet metal shield above the exciter unit (to allow air flow out of the exciter area). Also, a non-perforated sheet metal section is installed to cover the left half of the perforated transmitter top cover, blocking air recirculation through the top cover. A ceiling fan (590 CFM rating at low pressure) is added, mounted near the center of the new top cover. Finally, a sheet metal cover is placed over the inside fiberglass air filter.

This modification provides a positive air flow through the control section of the transmitter cabinet, from bottom to top, with a lowered temperature rise.

This modification, Air Exhaust Kit MI-563465, is available from RCA Order Service, Bldg. 2-3, Camden, N.J. 08102. Price is (estimated) $\$ 495.00$ f.o.b. Meadow Lands, PA. One kit is used per transmitter (two for BTF-40E1 or BTF-10+10E1 Transmitters, etc.).

COCOCDRssen
W. W. Warren

FM Transmitter
Product Management
WWW: pw

$$
\begin{aligned}
& \text { ivas }
\end{aligned}
$$

FIGURE 1

As a precautionary warning it is suggested that all owners of the BTF-5E1 using the MI-560342-1 Power Supply Cabinet immediately insoect the grounding switches 253 and 25 ' mounted on the power supply frame beneath the top lift cover.

Occasionally a malfunction is experienced with the plunger which is part of the grounding switch and which acts against the contact spring to open or close the grouading contacts. The malfunction is in the form of a "hang-up" of the plunger which then does not allow the grounding switch to operate when either back door is opened.

This condition can be highly dangerous to the safety of station personnel during maintenance and other occasions when the power supply top lift cover is opened, and high voltages are exposed.

During regular maintenance checks, it is recommended that these grounded switches be manually operated several times on a regular basis. They should be removed and cleaned also on a regalar basis so that foreign matter will not accumulate in the plunger hole and bind the plunger mechanism. Do not attempt to lubricate with any lubricant or graphite powder since the lubrication or powder tends to attract foreign matter and thus invite the possibility of a malfunction of the switch。

It is further suggested that a notation be placed in the transmitter instruction book (listed above) to the effect that the grounding switches should be operated several times when the power supply top lift cover is open, and that regular inspection and cleaning be undertaken to assure proper operation. If the station maintains a "Maintenance Log", it would be wise to have the Maintenance Engineer indicate that the switches were inspected, manually operated, and cleaned during each major maintenance period.

[^13]| Symbol | Stock No. | Drawing No. | Description |
| :---: | :---: | :---: | :---: |
| $1 \times \mathrm{V} 101$ | 243469 | 464586005 | SOCKET - 7203/4CX 250 CB |
| $1 \times \mathrm{V} 102$ | 236438 | 3471557502 | SOCKET ASSEMBLY - TUBE, 4CX15000A |
| 1xv102-46 | 225091 | 8465194501 | CONTACT ASSEMBLY - SCREEN, GRID CCLLET, 2 REQUIAED PER SOCKET |
| $1 \times \mathrm{V} 102-03$ | 220958 | 644382004 | CONTACT - CONTROL GRID |
| $1 \times \mathrm{V} 102-04$ | 220959 | 644382005 | CONTACT - OUTER FILAMENT |
| $1 \times \mathrm{V} 102=05$ | 220960 | 644382006 | contact - inner filament |
| 1XV102-15 | 225081 | 8446964 00? | CAPACITOR - SILVER MICA, C117A |
| $1 \times V 102-15$ $1 \times V 102-15$ | 225081 | 8446964 no2 | CAPACITOR - SILVER MICA. C117B C117-DESIGNED |
| $1 \times V 102-15$
 $1 \times V 102-15$ | 225081 | 8446964 8446964 | CAPACITOR - SILVER MICA, C117C ${ }^{\text {c }}$ (IN 4 SEGMENTS |
| 1XV102-15 | 225081 | 8446964002 | CAPACITOR - SILVER MICA. C117D |
| 1XV102-15 | 225081 | 8446954002 | CAPACITOR - Silver micas Ci45al |
| 1xv102-15 | 225081 | 8446964002 | CAPACITOR - SILVER MICA, C145日 C145-DESIGNED |
| 1xv102-15 | 225081 | 8446964002 | CAPACITOR - SILVER MICA, CIA5C IN 4 SEGMENTS |
| 1xv102-15 | 225081 | 8446964002 | |
| 1XV102-49 | 232298 | 3462635501 | CONTACT ASSEMBLY -- PART OF $1 / 113$ SLIDING ADJUSTMENT |
| $1 \times V 102-45$ $1 \times V 102-48$ | 236512 | 3467564-501 | BASE ASSEMBLY, SCREEN GRID COLLET |
| | 232301 232302 | 3462634001 3462634002 | SPACER PT OF 1L1.13 SEMI-FIXFD ADJUSTMENT SPACER PT OF 1L913 SEMI-FIXFD ADJUSTMENT |
| 1XV102-09 | 225106 | 8519978 ก01 | RING - Insulator |
| 1XV102-10 | 225087 | 8863044 ก07 | WASHER - TEFLON BUJSHING |
| 1 XV102-11 | 233405 | 8519977004 | INSULATOR - POST, $1 / 2$ IN DIA X . 655 IN LG |
| 1XV102-16 | 097459 | 426763003 | INSULATOR - NS5W4001. BOTTOM OF SOCKET |
| $1 \mathrm{XVY502-39}$ | 217719 | 426763009 | INSULATIR - NS5W4003, TOP OF SOCKET |
| 1XV102-41 | 208115 | 426765009 | INSULATOR - NS5W0106 |
| MECHANICAL | PARTS | | P/L 8541907-504 REV 14 |
| 11 | 230429 | 8761072001 | SHELF - llprer, F09 C113 |
| 8 | 243458 | 8486379001 | SUPPORT - PLASTIC. MOUNTS. STOCK NO 230429, |
| 10 | 243459 | 8486379003 | SUPPORT - PLASTIC. MOUNTS'. STOCK NO 230429, qEAR |
| 9 | 243473 | 8494379001 | SUPPORT - PLASTIC. MOUNTS; STOCK NO 230429.
 LEFT SIDE |
| 22 | 099933 | 464586003 | CHIMNEY - FOR ixviol |
| 161 | 243460 | 3467932001 | SHORTING - RAIL, PART OF 1 L105 |
| 29 | 230433 | 8766808002 | PLATE - RACKING, PART Of 1 L105 |
| 28 | 230432 | 8766808001 | Plate - backing, part of iling |
| 1756 | 243471 743462 | 3464209503 | LEAD SCRE ASSY - PART OF 11105 OR 11106 |
| 157 | 243461 | 3730738001 | GUIDE - STRIP, PART OF 1 Stios 0 R 11.106 |
| 158 | 243463 | 3456428 ח01 | BLOCK - SPaCER; USED AT BOTTOM OF OUTPUT LTNE ASSEMBLY |
| 39 | 230424 | 8468301501. | CONTACT ASSEMBLY - FOR 1L905 and 1LIOG |
| 167 | 243472 | 69273183 | $\begin{aligned} \text { BRASS STUN }- & 1 / 4-20 \times 2.75 \text { LG. PART OF } \\ & 1 L 105 \text { AND } 1 \mathrm{~L} 106 \end{aligned}$ |
| 42 | 230435 | 8766820501 | OUTPUT LINE ASSEMRLY |
| 159 | 211081 | 426767 118 | INSULATOR - ? REQD, $3 / 4$ DIA $\times 3.00 \mathrm{IN}$ LG PART OF 1 P10G HARMONIC SUPRESSOR |
| 160 | 231640 | 426767015 | INSULATOR - STEAT., $3 / 4$ IN DIA $\times 2.50 \mathrm{LG}$ PART OF 1 RIOT HARMONIC SUPRESSOR |
| 54 | 233872 | 480368007 | STUD - FASTENER, DODR UPPER |
| 55 | 233869 | 8886047003 | WASHER R RETAINING, DOOR STUD |
| 57 | 233871 | 480368008 | STUD - FASTENER, DONR MIDDLE |
| 58 59 | 233870 230430 | 480368 8761074 8010 | STUD - FASTENER, DOUR BOTTOM CONTACT ASSEMELY - DOOR, 15.75 LONG |
| 60 | 230431 | 8761074502 | CONTACT ASSEMBLY - DODR, 37.0日 LONG |
| 63 | 233834 | 433422506 | DIAL - ASSEMBLY |
| 68 | 233835 | 748586012 | orive -- rtght angi.e |

[^0]: *MI item number, depending on Frequency, must be added.

[^1]: UNL
 RESISTOR VALUES ARE IN OHMS, $1 / 2 \mathrm{~W}, 10 \%$ CAPACITOR VALUES ARE IN MICROFARADS. \square DENOTES IN 5 I54 DIODE
 3. * FREQUENCY DEPENDENT COMPONENT values.

[^2]: NOTES:.
 RESISTOR VALUES ARE IN OHMS, $1 / 2 \mathrm{~W}, 10 \%$ RESISTOR VALUES ARE IN OHMS, INOFARADS $2-\square$ DENOTES IN4I54 DIODE 3. * FREQUENCY DEPENDENT COMPONENT VALUES.

[^3]: *Specify SCA carrier frequency

[^4]: *For additional technical information, refer to pertinent information in the BTE-15A TECHNICAL SUMMARY in the front of this book.

[^5]:

[^6]:

[^7]:

[^8]: "The information contained in this bulletin is furnished as a free service to users of RCA equipment to aid in the maintenance, alignment or possible modifications of such equipment. By furnishing this information, RCA assumes no obligation or responsibility to supply parts, to pay for the cost of modifications, to exchange existing equipment for new production models, or otherwise. Any prices which may be mentioned in this bulletin are those prevailing at the present and are subject to change without notice at any time."

[^9]:

[^10]: "The information contained in this bulletin is furnished as a free service to users of RCA equipment to aid in the maintenance, alignment or possible modifications of such equipment. By furnishing this information, RCA assumes no obligation or responsibility to supply parts, to pay for the cost of modifications, to exchange existing equipment for new production models, or otherwise. Any prices which may be mentioned in this bulletin are those prevailing at the present and are subject to change without notice at any time."

[^11]: "The information contained in this bulletin is furnished as a free service to users of RCA equipment to aid in the maintenance, alignment or possible modifications of such equipment. By furnishing this information, RCA assumes no obligation or responsibility to supply parts, to pay for the cost of modifications, to exchange existing equipment for new production models, or otherwise. Any prices which may be mentioned in this bulletin are those prevailing at the present and are subject to change without notice at any time."

[^12]: "The information contained in this bulletin is furnished as a free service to users of RCA equipment to aid in the maintenance, alignment or possible modifications of such equipment. By furnishing this information, RCA assumes no obligation or responsibility to supply parts, to pay for the cost of modifications, to exchange existing equipment for new production models, or otherwise. Any prices which may be mentioned in this bulletin are those prevailing at the present and are subject to change without notice at any time."

[^13]: "The information contained in this bulletin is furnished as a free service to users of RCA equipment to aid in the maintenance, algnment or porsible modifications of such equipment. By furnishing this information, RCA assumes no obligation or responsibility to supply parts, to pay for the cost of modifications, to e tharge existing equipment for new production models, or otherwise. Any prices which may be mentioned in this bulletin are those prevailing at the present and are subject to change without notice at any time."

