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Abstract

Interfacial fracture mechanics covers a number of situations that at different levels characterize
the appearance and growth of damage in Composites. The boundary element method (BEM) is
well equipped to deal with situations where the variables of interest are associated to the boundary,
fracture and contact mechanics being typical examples of these situations. This chapter is devoted
to the application of interfacial fracture mechanics using BEM to characterize at different scales
the damage in a fibrous composite material.

First, a review of the present situation of interfacial fracture mechanics including the two
existing models (open model and contact model) that represent the stress state at the neighborhood
of the crack tip is presented. The approaches based on the stress intensity factor (SIF) and the
energy release rate (ERR) concepts are presented for isotropic and orthotropic materials. Special
attention is devoted to the relation of the mode mixity measures that appear in the open model with
the use of the two aforementioned approaches. A new expression for this relation is deduced and
presented in this chapter. Then, the growth criteria (for crack propagation and kinking) derived
from the SIF and ERR approaches are presented and discussed for both models.

Two applications at different levels of representation are analyzed. The first, at mesomechanical
level of a composite, corresponds to the study of a delamination crack in a [0m, 90n]S laminate.
The second, at micromechanical level of a composite, corresponds to an interface crack between
fiber and matrix under a load transverse to the fiber. The growth of the debonding crack and its
kinking into the matrix is studied.

1 Introduction: interface cracks in fiber reinforced composites

Fracture Mechanics applied to the study of cracks in isotropic homogeneous materials can be
considered at present a well established area of knowledge (see, for instance, Andersson [3] and
Janssen et al. [60]).

In contrast, Fracture Mechanics applied to interfacial cracks, a topic that has attracted an
enormous research effort in recent years, is still a discipline under development. Since the pioneer
work of Williams [145], England [32], Erdogan [34], Rice and Sih [113] and Malyshev and
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190 Fracture and Damage of Composites

Salganik [75] among others, there have been significant contributions, the content of most of
them being covered in Sections 2 and 3 of this chapter.

The development of Fracture Mechanics applied to interfacial cracks arises from the necessity of
characterizing cracks of this type in different engineering applications, namely, the necessity
of bonding metallic to composite components in the aeronautical industry, the characterization
of internal damage (delamination) in composites or the use of layers of materials (recently of
functionally graded materials) as thermal barrier coatings.

The applications considered in this chapter are associated to interface cracks that appear in
composite materials characterizing mechanisms of damage at different levels. Thus, interface
cracks between fibers and matrix at micro-mechanical level and delamination cracks between
different layers at meso-mechanical level will be studied. There are many other possibilities
of applications in the field of composites, such as the modeling of the fragmentation, pull-out,
push-out or peeling tests.

Two Fracture Mechanics approaches have been developed for the analysis of interfacial cracks.
One is called the open model and the other is called the contact model. In the open model the crack
is assumed to be open whereas in the contact model the lips of the crack are assumed to come into
contact at the two crack tips under the application of the load. The first approach is based on the
works of Williams [145], Rice [112] and Hutchinson and Suo [56], among others, whereas the
second is essentially based on the works of Comninou [19, 21], Comninou and Schmuesser [24]
and Gautesen and Dundurs [40, 41].

Typically each approach has been applied to those cases where the coincidence of materials,
geometry and loads made it more appropriate. There are however situations, see for instance the
problem treated in París et al. [101] also treated here in Section 7, where both approaches can
be used. To the knowledge of the authors there are many more publications based on the open
model and in any case very few involving (either analytically, numerically or experimentally)
both approaches.

The problems under consideration involve features (singular state of stresses at the boundary
and contact along parts of the boundary) that make the boundary element method (BEM) the most
suitable numerical method to deal with them. The three main characteristics of the use made of
BEM in this study are Fracture Mechanics, Contact Mechanics and orthotropic behavior.

First in Sections 2 and 3 the background of the theory of interfacial cracks is presented. The
proposals to deal with the two aforementioned models based on the stress intensity factor (SIF) and
on the energy release rate (ERR) approaches are reviewed.Anew relation between the mixity of the
two fracture modes (I and II) in accordance with the two approaches mentioned is presented. The
crack growth criteria associated to the two models considered and the two approaches followed
are presented in Section 3.

A brief revision of the features of the BEM procedure here applied for isotropic and orthotropic
materials is performed in Section 4. The features and solution procedure of the non linear contact
problem is described in Section 5, with special emphasis on describing the application of contact
conditions in a weak form.

Sections 6 and 7 present the two applications to composite materials already mentioned, the
general conclusions being presented in Section 8.

2 Interface crack models

Consider two homogenous linearly elastic materials (denoted as 1 and 2), which are perfectly
bonded along a surface except for a debonded region referred to as interface crack, subjected to
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Figure 1: An interface crack problem configuration.

a far field loading, as in fig. 1. The interface between these materials is considered as a tough
two-dimensional object without thickness. Tractions and displacements coincide at both sides of
the bonded interface part whereas at the interface crack both materials may separate or maintain
the contact, with or without relative sliding.

Referring to a fixed rectangular coordinate system (x, y, z), let σij and ui be the stresses and
displacements in a linear elastic material. For the sake of simplicity, and also in view of the
applications studied in Sections 6 and 7, theoretical explanations are in this work limited to
plane situations. The analysis of anisotropic materials is restricted to orthotropic materials with
symmetry planes coincident with the coordinate planes. Therefore, in-plane and out-of-plane
solutions are decoupled, only in-plane stresses σij (i, j = x, y) being induced, but not σiz (i = x, y),
and the present work is only concerned with in-plane elastic solutions of interface crack problems.

In the open model of interface cracks, analyzed originally by Williams [145], the crack faces
are supposed to be traction free in the same way as is usually supposed for cracks in homo-
geneous solids. An ‘unexpected’ basic aspect of the near-tip elastic solution of this model is
that for a non-vanishing bimaterial mismatch parameter β �= 0 (see definition for isotropic and
orthotropic materials respectively in Sections 2.1 and 2.2) stresses and displacements start to
oscillate when crack tip is approached. As a consequence of these displacement oscillations, an
infinite number of regions where the crack faces interpenetrate and wrinkle is predicted by this
solution (England [32], Erdogan [34]). The size of the zone where these physically non-admissible
interpenetrations occur may be frequently very small, sometimes of atomic or subatomic scale.
In view of this feature of the elastic solution in this open model, one would expect the existence
of one or several contact zones in the vicinity of the interface crack tip.

In order to overcome the above inconsistencies of the open model, Comninou [19] developed the
contact model of interface cracks. Proving that, allowing a frictionless contact between the crack
faces, a physically correct solution with one (connected) contact zone at the crack tip is obtained
when β �= 0. Typically this contact zone extent is smaller than the size of the interpenetration
zone in the open model, see París et al. [101] for a physical explanation of this relation, in a
particular case.
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192 Fracture and Damage of Composites

Following an analysis by Rice [112], the actual behavior of an interface crack depends on
the size of the zones of nonlinear material response (plasticity, nonlinear elastic deformations
or other nonlinear effects) and/or contact. When this size is sufficiently small in comparison
with the smallest characteristic length of the specimen (e.g. crack length or an adjacent layer
thickness), then the open linear elastic model (Williams [145]) is adequate for interface crack
growth predictions. The concept of small-scale contact zone (SSC) was introduced by Rice [112] to
characterize such a situation with reference to a sufficiently small size of the near-tip contact zone.

However, if the above zones start to be physically relevant, being comparable to, or larger
than, the smallest characteristic length of the specimen, other models including the phenomena
which happen on a relevant scale, like linear elastic contact model (Comninou [19]), elasto-
plastic (Shih and Asaro [117, 118]) or non-linear elastic (Knowles and Sternberg [63], Geubelle
and Knauss [44]) models, should be applied.

In the present work, small-scale yielding (SSY) conditions (a basic concept of linear elastic
fracture mechanics), with plasticity effects restricted to a sufficiently small zone, to characterize
an interface crack growth by a linear elastic model, either open or with contact, will be assumed.

In this preliminary section some relevant properties of the near-tip singular elastic solutions
associated to both, open and contact, models of interface cracks will be presented and discussed.
Although a straight interface is considered here, it is believed that the basic conclusions given are
applicable to the near-tip fields of curved interface cracks as well. The case of isotropic bimaterials
will be analyzed first, and later some results dealing with generally orthotropic bimaterials will
be introduced.

To complete the present review, the authors would like to recommend the following publica-
tions: a classical reference work on interfacial fracture mechanics by Hutchinson and Suo [56], a
concise introduction to interface crack modeling in Hills et al. [54], and finally, a comprehensive
review of the state of the art in interfacial fracture mechanics in the volume edited by Gerberich
and Yang [42].

2.1 Isotropic bimaterials

Following Dundurs [31] the solution of a wide class of plane elastic problems for isotropic
bimaterials depends only on two dimensionless mismatch parameters:

α = G1(κ2 + 1) − G2(κ1 + 1)

G1(κ2 + 1) + G2(κ1 + 1)
= E′

1 − E′
2

E′
1 + E′

2
, (1)

β = G1(κ2 − 1) − G2(κ1 − 1)

G1(κ2 + 1) + G2(κ1 + 1)
, (2)

where Gk is the shear modulus and κk the Kolosov’s constant of material k = 1, 2. Let Ek and
νk denote Young elasticity modulus and Poisson ratio respectively, then Gk = Ek/2(1 + νk ).
Effective elasticity modulus E′

k = Ek/(1 − ν2
k ) and κk = 3 − 4νk for plane strain, and E′

k = Ek
and κ = (3 − ν)/(1 + ν) for plane stress state. α and β vanish for identical materials. In plane
strain state, β is a measure for the mismatch in bulk moduli and vanishes for two incompressible
materials or one incompressible and the other rigid.

Physically admissible values of mismatch parameters are restricted to a parallelogram in (α,β)
plane enclosed by lines defined as α = ±1, and by α = 4β± 1 or α = (8β± 1)/3 respectively in
plane strain or plane stress state. Therefore, their ranges are −1 ≤ α ≤ 1 and −0.5 ≤ β ≤ 0.5.
Notice that, considering ν1 � ν2, α,β > 0 means that material 1 is stiffer than 2 and vice-versa
for α,β < 0.

 
 www.witpress.com, ISSN 1755-8336 (on-line) 
WIT Transactions on State of the Art in Science and Engineering, Vol 21, © 2005 WIT Press



Analysis of interface cracks with contact in composites by 2D BEM 193

2.1.1 Open model
According to Williams [145] asymptotic series expansion, near-tip singular tractions acting on
the bonded part of an interface are approximated by:

(σyy + iσxy)θ=0 = (σsing
yy + iσsing

xy )θ=0 + O(1) = Kriε

√
2πr

+ O(1), for r → 0, (3)

where r is the distance from the tip, i = √−1, ε is the oscillation index of the interface crack:

ε = 1

2π
ln

1 − β

1 + β
, (4)

|ε| ≤ ( ln 3)/2π ∼= 0.175, and K = K1 + iK2 is the complex SIF, which depends on the geometry
and applied loading.

For β = ε = 0, solution in (3) is identical to that for a crack in a homogenous material and K1
and K2 coincide with the classical SIFs, KI and KII.

However, for ε �= 0 SIF components K1 and K2 do not represent the opening and shear fracture
modes respectively. Notice that the term riε = eiε ln r = cos (ε ln r) + i sin (ε ln r) is responsible
for the above mentioned oscillatory behavior (including sign changes) of each traction component
superimposed over its well-known square root singular behavior when r → 0. An implication
of this oscillatory behavior in (3) is that, for ε �= 0, infinite shear and normal (tensional and
compressive) stresses are predicted at the crack tip independently of the character of the far-field
load applied (tensile, shear or a combination of both). A consequence of these facts is that no
separation of fracture modes, as for cracks in homogeneous solids, is possible here.

Nevertheless, it may be useful to observe that, multiplying expression in (3) by its conjugate,
the sum of squares of normal and shear stresses obtained does not include any oscillatory term.
This fact may be used in numerical solution of interface crack problems for an evaluation of the
absolute value |K | of the complex SIF.

The near-tip displacement jump across the crack �ui(r) = ui(r, θ = π) − ui(r, θ = −π) is
approximated by:

�uy + i�ux = �using
y + i�using

x + O(r)

= 8

1 + 2iε

Kriε

cosh (πε)E∗

√
r

2π
+ O(r), for r → 0, (5)

where
1

E∗ = 1

2

(
1

E′
1

+ 1

E′
2

)
(6)

is the average Young modulus, and 1/cosh (πε) = √1 − β2. Multiplying the expression in (5) by
its conjugate it is obtained that the magnitude of the displacement jump has no oscillatory term.

If the scale of perturbations of the theoretical linear elastic solution (like inelastic zone, contact
zone, interface thickness and asperities) is sufficiently small in comparison with the smallest
characteristic length of specimen rg , given by the total crack length 2a, thickness of an adjacent
layer, etc., Williams singular oscillatory solution is approximately unperturbed in an annulus with
the interior radius larger than the perturbation zone size but with the exterior radius smaller than
rg . Then, the elasticity field is completely characterized by the complex SIF K within this so-called
K-annulus (Rice [112]).
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As discussed in depth by Rice [112], K in (3) contains logarithms of length (which is a mean-
ingless concept), its unit depends on ε and its phase angle depends on the length unit applied.
Thus, it is suitable to introduce a reference length scale l defining a new complex SIF K̂ = Kliε,
which has the same units as the classical SIF in homogenous solids. Notice that |K̂ | = |K |. The
choice of l is usually based either on the specimen geometry (crack length or layer thickness) or
on a material scale (the plastic zone or fracture process zone).

Local phase angle ψK = arg K̂ , defined through relation K̂ = |K̂ |eiψK , is an l-dependent
measure of fracture mode mixity, tanψK being equal to the relative proportion of shear to normal
traction at the distance r = l ahead of the crack tip. The following relation:

tan
(
ψK + ε ln

r

l

)
= Im[K̂(r/l)iε]

Re[K̂(r/l)iε]
= σ

sing
xy

σ
sing
yy

(r, θ = 0), (7)

implies that the ratio σ
sing
xy /σ

sing
yy varies periodically with ln (r/l) for ε �= 0. In particular, what

appears as a tensile field at a particular distance r to the crack tip will appear as a pure shear field
at the distance e−π/2εr or a pure compressive field at the other distance e−π/εr. Recall that this
ratio is constant for cracks in bimaterials with ε = 0, as in homogeneous materials, where ψK

reduces to the familiar mode mixity measure tanψK = KII/KI.
Local phase angles ψK and ψ′

K associated to two different reference lengths l and l′ are related
by equation

ψ′
K = ψK + ε ln (l′/l). (8)

Hence, the local phase angle shift between two choices of l in an interval of physically relevant
scales may be negligible when ε is sufficiently small.

Note that the fracture mode mixity ψK may be nonzero when the far-field load phase angle φ
defined in fig. 1 by tan φ = σ∞

xy /σ
∞
yy vanishes, i.e., when the load is perpendicular to the interface

crack. Although ψK and φ are in general different, naturally there exists a strong correlation
between them. In particular, the following relation (Rice [112]) holds for the case of two bonded
half-spaces as in fig. 1: ψK = φ + arctan (2ε) + ε ln (l/2a).

As follows from the previous explanations, when ε �= 0 then the reference length l should
always be explicitly specified when ψK is used. Nevertheless, for the sake of simplicity l is
usually tacitly omitted from expressions.

Expression (5) can be applied to determine regions where interpenetrations are predicted by
the open model, Hills and Barber [53]. An estimation of the first interpenetration point defined
by its distance from the crack tip ri is obtained as the largest value of the expression

ri = l exp

(
((2n − 1

2
)π − ψK + arctan (2ε))/ε

)
, (9)

which is smaller than the crack length 2a, n standing for an integer number.
In the particular case of two bonded half-spaces, it can be shown starting from (9) and assuming

some tensile component of the far-field load, i.e. −π
2 < φ < π

2 , and ε > 0, that ri = 2a exp ( −
(φ + π

2 )/ε) (Rice, 1988). Thus, ri will be extremely small for φ near π/2, but it will not remain
small for any ε > 0 when φ approaches −π/2.

Usually, following Rice [112], SSC conditions are associated to situations where the size of
the interpenetration zone is less than 1% of the crack length, ri/2a < 0.01. Hence, in the case of
two bonded half-planes, SSC conditions are fulfilled when φ > −π/2 + 4.605ε.

The singular oscillatory term in the asymptotic expansion of the near-tip stress and displace-
ment field (cf. (3) and(5)) can be expressed in the form usually used for cracks in homogeneous
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materials as:

σ
sing
ij (r, θ) = 1√

2πr

(
Re
[
K̂(r/l)iε

]
σI

ij(θ, ε)

+ Im
[
K̂(r/l)iε

]
σII

ij (θ, ε)
)

, −π ≤ θ ≤ π, (10)

using
i (r, θ) = 1

2Gk

√
r

2π

(
Re
[
K̂(r/l)iε

]
uI

i (θ, ε, κk )

+ Im
[
K̂(r/l)iε

]
uII

i (θ, ε, κk )
)

, θ−
k ≤ θ ≤ θ+

k , (11)

where θ−
k = 0, −π, and θ+

k = π, 0 (k = 1, 2). Universal dimensionless functions σm
ij and um

i
(m = I, II) were presented by Deng [26, 30] in cartesian coordinates. Rice et al. [114] presented
expressions and plots of σm

ij in polar coordinates. A somewhat surprising feature of expression in
(10) is that, when ε = 0 this expression reduces to the classical expression of near-tip stresses for
cracks in homogeneous solids independently of α value.

With reference to the energy approach in interfacial fracture mechanics, the total strain ERR
due to a crack extension along the interface (Gint) can be evaluated applying the classical virtual
crack closure method, originally developed by Irwin [59] for cracks in homogeneous solids, to
the near-tip elastic field of the open model as well. Consider first a small but finite crack extension
�a in Irwin’s crack closure integrals. Then

Gint(�a) = Gint
I (�a) + Gint

II (�a), (12)

where

Gint
I (�a) = 1

2�a

∫ �a

0
σyy(r, 0)�uy(�a − r)dr, (13)

Gint
II (�a) = 1

2�a

∫ �a

0
σxy(r, 0)�ux(�a − r)dr. (14)

The total ERR Gint(�a) is converging (even being constant when only singular terms in
(3) and (5) are considered) for �a → 0. Thus, the following limit exists:

Gint = lim
�a→0

Gint(�a). (15)

The Irwin-type relation of the total strain ERR Gint in (15) in terms of the complex SIF was
deduced by Malyshev and Salganik [75]:

Gint = |K̂ |2
cosh2 (πε)E∗ (16)

This relation can be directly obtained by evaluation of the integral:

1

2�a

∫ �a

0
(σsing

yy (r, 0) + iσsing
xy (r, 0))(�using

y (�a − r) − i�using
x (�a − r))dr, (17)

applying formula ∫ �a

0

(
�a − r

r

)1/2−iε

dr = π�a

cosh (πε)

(
1

2
− iε

)
, (18)
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which implies that the imaginary part of (17) vanishes.
As can be seen Gint only depends, as in homogenous materials, on the magnitude of the complex

SIF K̂ and not on its phase angle ψK . The maximum value of Gint that an interface can sustain
at a prescribed ψK without decohesion is called interface toughness at this fracture mode mixity
denoted as Gint

c (ψK ).
In the following, the possibility of defining a fracture mode mixity measure based on the ERR

concept will be shortly discussed. Due to the oscillatory character of the near-tip elastic field,
Gint

I (�a) and Gint
II (�a) oscillate as well, and consequently their limits do not exist as �a → 0.

This oscillatory behavior was studied by several authors, see Sun and Jih [124], Raju et al. [111]
and Toya [138] among others. Mantič and París [82] recently deduced (developing a Toya’s
result, [138]) the following new explicit expressions of the individual components of the ERR
associated to �a, considering only singular terms in (3) and (5):

GI,II(�a) = 0.5Gint [1 ± F(ε) cos {2(ψK + 2ψ0(�a/l, ε))}] , (19)

where

2ψ0(�a/l, ε) = 2ε ln (�a/2l)+ ϕ(ε) − arctan (2ε), (20)

F(ε) =
√

sinh (2πε)

2πε(1 + 4ε2)
and ϕ(ε) = arg

[
�( 1

2 + iε)

�(1 + iε)

]
, (21)

�( · ) being the gamma function. Basic features of the behavior of the amplitude function F(ε)
and phase angle shift function ϕ(ε) are clearly seen from their Maclaurin series:

F(ε) = 1 + 1.289868ε2 + O(ε4) and ϕ(ε) = −2ε ln 2 + 2.404114ε3 + O(ε5). (22)

As follows from (19), the ‘energetic’ mode mixity Gint
II /Gint

I , frequently used in some appli-
cations for cracks in homogenous materials, cannot in general be unambiguously defined for
interface cracks due to the oscillatory behavior of Gint

I (�a) and Gint
II (�a) with �a. A conse-

quence of these oscillations is that the phase angle ψG , an ERR based measure of the mode
mixity, defined as:

tan2 ψG = Gint
II (�a)

Gint
I (�a)

, 0 ≤ ψG ≤ π

2
, (23)

depends on �a. Nevertheless, the fact that, for a very small ε, ψG is a weak function of �a inside
a physically relevant interval of �a (in a similar way as ψK is a function of l), is used by some
authors as a justification for application of the ‘energetic’ mode mixity to predict interface crack
behavior.

Starting from (19), the following simple equation relating the ERR and the SIF based measures
of mode mixity, phase angles ψG and ψK , can be deduced:

cos (2ψG) = F(ε) cos {2(ψK + ψ0(�a/l, ε))} . (24)

The phase shift ψ0(�a/l, ε) vanishes when �a/l = 2 exp [( arctan (2ε) −ϕ(ε))/2ε] for an ε �= 0,
which gives the following interval for such values of �a: 10.1169 < �a/l < 10.8731.

An in-depth study of new relations (19) and (24), recently presented by Mantič and París [82],
showed that in a typical situation the following relation can be used as a first reasonable approx-
imation: ψG ≈ ψ′

K , ψ′
K = |ψK + ψ0(�a/l, ε) + nπ| with n being an integer number (usually

n = 0, ±1) giving 0 ≤ ψ′
K ≤ π/2. However, an important consequence of the fact that F(ε) > 1
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for ε �= 0 is that the oscillating values of Gint
I (�a) and Gint

II (�a) surprisingly achieve slightly
negative values for some intervals of �a as �a → 0. Notice that for such �a the phase angle
ψG cannot be represented, in view of (23), by a real number. These facts, which apparently have
not previously been mentioned by other authors, might question the concept of ‘energetic’ mode
mixity when applied to interface cracks. Therefore, a further study to establish physical reasons
for these unexpected aspects of the open model of interface cracks will be required.

2.1.2 Contact model
In order to overcome inconsistencies of the open model, Comninou [19] developed an alternative
model, usually referred to as the contact model, admitting the existence of one connected fric-
tionless contact zone at each interface crack tip and one open part separating both contact zones.
As a consequence of this hypothesis, instead of an infinite number of zones where interpenetra-
tions occur in the open model at a crack tip, for β �= 0, one connected near-tip contact zone
appears. Solution of this model, whose uniqueness was proved by Shield [116], is the only totally
physically acceptable solution of an interface crack problem under the assumptions adopted here:
linear elastic behavior and an abrupt change along the interface (of zero thickness) between the
perfectly bonded and debonded parts.

Due to the presence of a near-tip contact, no fracture Mode I SIF arises ahead of the crack tip,
KI = 0. Thus, the interface crack grows in Mode II exclusively.

Stresses in the contact model are square root singular as at a crack tip placed in a homogenous
material. However, when β �= 0, the basic features of the near-tip stress states are very different
from those known for the homogenous case: shear stresses ahead of the crack tip and compressions
at the contact zone are singular, and both normal stresses (parallel and perpendicular to the
interface) are bounded ahead of the crack tip. Furthermore, the near-tip singular elastic state is uni-
parametric, being governed by one multiplicative constant represented by the fracture Mode II
SIF: KC

II . Hence, for a particular bimaterial, relations between values of singular stresses are
independent of the far-field load configuration.

With reference to the other extreme of the near-tip contact zone, Comninou and Dundurs [23]
proved that the transition from this contact zone where crack faces slip to the zone where these
crack faces are separated has to be smooth with vanishing contact pressure according to the square
root law at the separation point.

According to Comninou [19] asymptotic series expansion, singular tractions acting on the
interface at the right-hand crack tip as shown in fig. 2 are expressed as

σxy(r, 0) = σ
sing
xy (r, 0) + O(

√
r) = KC

II√
2πr

+ O(
√

r), for r → 0, (25)

σyy(r, ±π) = σ
sing
yy (r, ±π) + O(1) = − βKC

II√
2πr

+ O(1) ≤ 0, for r → 0. (26)

An important consequence of the inequality in (26), implied by a requirement of near-tip
compressive stresses between crack faces, is that

βKC
II ≥ 0. (27)

Therefore, the sign of KC
II depends only on the bimaterial mismatch parameterβ, being independent

of the far-field load direction.
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Figure 2: An interface crack subjected to a tension-shear load with a large and an extremely short
contact zone.

Comninou [19] asymptotic expressions imply that the near-tip relative slip between the crack
faces �ux(r) = ux(r, θ = π) − ux(r, θ = −π) is expressed by:

�ux(r) = �using
x (r) + O(r) = 8KC

II

cosh2 (πε)E∗

√
r

2π
+ O(r), for r → 0, (28)

hence the only allowed direction of the near-tip relative slip is defined by the relation β�ux(r) ≥ 0
for r → 0.

Starting from expressions(12)–(14) and (15), taking into account that here Gint,C
I (�a) = 0,

applying (25), (28) and formula (18), with ε = 0, an Irwin-type expression for the total ERR due
to an interface crack growth with frictionless contact at the crack tip is obtained:

Gint,C = lim
�a→0

Gint,C
II (�a) = (KC

II )2

cosh2 (πε)E∗ . (29)

The singular term in the asymptotic expansion of the near-tip stress field is expressed as:

σ
sing
ij (r, θ) = KC

II√
2πr

σC
ij (θ,β), −π ≤ θ ≤ π, (30)

using
i (r, θ) = KC

II

2Gk

√
r

2π
uC

i (θ,β, κk ), θ−
k ≤ θ ≤ θ+

k , (31)

where θ−
k = 0, −π, and θ+

k = π, 0 (k = 1, 2). Universal dimensionless functions σC
ij and uC

i were
deduced by Comninou [19] in polar coordinates. When β = 0 this term reduces to the classical
expression for a crack in a homogenous material subjected to fracture Mode II, independently of
α value. Thus, σC

ij (θ, 0) in (30) equals both σII
ij (θ, 0) in (10) and σII

ij (θ) in (55).

From a typical angular variation of functions σC
ij shown in fig. 3 it can be observed that singular

compressions σsing
θθ (r, θ) < 0 act in the stiffer material (0 < θ ≤ π for β > 0 (fig. 2)) for all values
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Figure 3: Angular variation ofσC
θθ(θ,β),σC

rθ(θ,β) andσC
rr(θ,β) in the contact model for an isotropic

bimaterial with β = 0.25.

of the polar angle θ. Therefore, it can be expected that a possible kink onset from an initially
closed crack tip will be directed into the more compliant material (−π ≤ θ < 0 for β > 0).
Additionally, fig. 3 reveals that the local maximum or minimum of the opening stress σsing

θθ (r, θ)

is achieved at values of the polar angle θ where the shear stress σsing
rθ (r, θ) vanishes. This fact is a

consequence of the following relation:

∂σC
θθ(θ,β)

∂θ
= −3

2
σC

rθ(θ,β), (32)

which follows from the expressions of the singular stresses presented by Comninou [19].
With reference to a priori unknown near-tip contact zone extent rc, Hills and Barber [53] showed

that the ratio between the rc and the interpenetration zone size ri can be approximated by a very
weak function of ε:

rc/ri = 4e− arctan (2ε)/ε (33)

in the case where both zones are sufficiently small in comparison with the characteristic length
of problem geometry rg , i.e. rc, ri � rg . According to (33), ratio rc/ri varies between 0.541 for
vanishing ε and 0.584 for ε = 0.175.

A striking consequence of relation (27) is that in the vicinity of the crack tip the local singular
elastic solution has for a bimaterial system the same shape independently of the far-field loading.
Therefore, the near-tip slip can be performed in one direction only, which depends on the sign of β,
see an in-depth analysis by Comninou and Dundurs [23]. When the global imposed shear loading
agrees with this intrinsically allowed slip direction a relatively large near-tip contact zone may
take place. However, when the applied global load tends to originate slip opposite to the allowed
near-tip slip direction, only a very small contact zone, typically of subatomic size, appears at this
tip. The two cases of allowed and not allowed near-tip slip directions are illustrated in fig. 4.

A gap, sometimes referred to as a ‘bubble’, appears between two contact zones sliding in
opposite directions, the microscopic one at the crack tip in the intrinsic direction and the macro-
scopic one in the direction imposed by the load. The slope of the relative normal displacements
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Figure 4: Intrinsically allowed and not allowed slip direction near a closed interface crack tip.

in the interface near the microscopic contact zone is very large. This behavior of an interface
crack solution was first studied by Comninou [21], Comninou and Schmuesser [24], Gautesen
and Dundurs [40] in interface cracks between two half-planes, and further discussed by Leguil-
lon [70] and Audoly [6]. As a consequence, asymptotic singular solution of the contact model in
presence of the ‘bubble’ extremely close to the crack tip becomes physically meaningless, such
situations definitely fulfill SSC conditions, no near-tip contact zone is observable in experiments
and, thus, the locally open model is adequate for analysis and predictions of crack behavior in
such situations.

2.2 Orthotropic bimaterials

Plane interface crack problems in anisotropic, and in particular orthotropic, bimaterials were stud-
ied by many authors starting from the late sixties, see Deng [30] and Ting [132] for comprehensive
review works.

Consider the following form of the three-dimensional stress-strain law for a linear elastic
material written in the contracted Voigt notation: εi = sijσj (i, j = 1, . . . , 6), where sij are elastic
compliances (see Ting [132]). Then, the plane stress-strain law for an orthotropic material in
which the planes of material symmetry coincide with the coordinate planes is expressed as: εxx

εyy

2εxy

 =
s′

11 s′
12 0

s′
12 s′

22 0
0 0 s′

66

 σxx

σyy

σxy

 , (34)

where

s′
ij = sij − si3s3j

s33
(i, j = 1, 2, 6) (35)

represent reduced elastic compliances for plane strain deformations, and

s′
ij = sij (i, j = 1, 2, 6) (36)

for plane stress deformations.
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Let material parameters s± be defined as follows:

s± =
√√

s′
11s′

22 ± (s′
12 + s′

66/2
)
. (37)

From the positive definiteness of strain energy it follows that s+ is always positive.
Let L and S denote the real valued Barnett-Lothe tensors [132] of the orthotropic material

considered. Then, L−1 and SL−1 can be expressed as:

L−1 = √
2s+

√s′
11 0

0
√

s′
22

 , (38)

SL−1 =
(√

s′
11s′

22 + s′
12

)[
0 −1
1 0

]
. (39)

Consider now a crack located at the interface between two dissimilar orthotropic materials, as
in fig. 1, where y > 0 for material 1 and y < 0 for material 2. Magnitudes associated to each
material will be denoted by a subindex giving the material number.

Let

D =
[

D11 0
0 D22

]
= L−1

1 + L−1
2 and W =

[
0 −w
w 0

]
= S1L−1

1 − S2L−1
2 . (40)

Notice that D is a symmetric positive definite matrix and W is an antisymmetric matrix. The posi-
tive definite Hermitian matrix D− iW associated to the bimaterial considered will be fundamental
in characterizing elastic interface crack solutions (see Ting [132]). The dimensionless matrix

D−1W =
[

0 − w
D11

w
D22

0

]
(41)

is called the mismatch matrix and the generalized Dundurs mismatch parameter β introduced by
Ting [133] is defined as:

β = − w√
D11D22

, |β| < 1. (42)

Notice that for an isotropic bimaterial, like that studied in Section 2.1.1:

D = 4

E∗ I, W = −4β

E∗

[
0 −1
1 0

]
and D−1W = −β

[
0 −1
1 0

]
. (43)

2.2.1 Open model
The following short explanation of the open model of interface cracks in orthotropic bimaterials
is based on two substantial contributions due to Wu [146] and Suo [127]. In these works two dif-
ferent, although in fact equivalent, approaches to represent near-tip elastic fields were developed.
The present explanation follows Wu’s approach although some advantageous aspects of Suo’s
approach with reference to a measure of fracture mode mixity are applied.

Adimensionless matrix R[c] given as a function of a complex number c, introduced byWu [146]:

R[c] = Re[c]I + β−1Im[c]D−1W =
 Re[c] Im[c]

√
D22
D11

−Im[c]
√

D11
D22

Re[c]

 (44)
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will be applied in the following expressions of the near-tip elastic solutions in the open model of
an interface crack. It can be shown that R[1] = I and R[c1]R[c2] = R[c1c2]. As follows from
the explicit expression of the matrix in (44), R[c] is in fact independent of W.

Introducing a characteristic length l, as in Section 2.1.1, the near-tip traction vector ahead of
the crack tip along the interface can be expressed as (Wu [146]):[

σxy

σyy

]
(r, 0) =

[
σ

sing
xy

σ
sing
yy

]
(r, 0) + O(1)

= 1√
2πr

R
[( r

l

)iε]
K̂ + O(1), for r → 0, K̂ =

[
K̂2

K̂1

]
, (45)

and the near-tip relative displacement across the crack as[
�ux

�uy

]
(r) =
[
�using

x

�using
y

]
(r) + O(r)

=
√

r

2π

2D
cosh (πε)

R
[

1

1 + 2iε

( r
l

)iε]
K̂ + O(r), for r → 0, (46)

where the oscillation index ε of the interface crack is given as in (4). Notice that in view of (42)
there is no similar limit for ε to that valid for isotropic bimaterials (see Section 2.2.1.)

Explicit expressions of the singular oscillatory term in the expansion of the near-tip stress and
displacement fields, analogous to (10–11), can be found for instance in Wu [148].

Although there are other definitions of the SIF used for interface cracks in orthotropic bimaterials
(e.g. Suo [127]), the advantage of the present definition due to Wu [146] is that it reduces, as ε
vanishes, to the classical SIF definition in homogenous orthotropic solids by Sih et al. [119]. For
a revision of different definitions of the SIFs at interface cracks in anisotropic bimaterials see
Hwu [57].

As follows from (45) the SIFs K′ and K associated to two different reference lengths l′ and l
respectively are related by:

K̂
′ = R

[(
l′

l

)iε
]

K̂. (47)

The phase angle of the SIF as a measure of the mode mixity (see Section 2.1.1) can be
defined, in a standard way, by ψ̂K = arg (K̂1 + iK̂2) or equivalently in terms of stresses as
tan ψ̂K = σ

sing
xy /σ

sing
yy (l, 0). However, in order to maintain the phase shift rule (8) it is necessary

to modify this definition using a scale factor, as discussed by Suo [127] and Wang et al. [143],
in the following way: ψK = arg (K̂1 + i

√
D11/D22K̂2) or in terms of stresses as tanψK =√

D11/D22σ
sing
xy /σ

sing
yy (l, 0). The disadvantage of the last definition is that it does not reduce to the

phase angle of the classical SIF in homogenous orthotropic solids for vanishing εwhen D11 �= D22.
A simple relation existing between these two phase angles, tanψK = √

D11/D22 tan ψ̂K , may be
used where required.

By substituting (45)–(46) into (13)–(14) the total ERR Gint in (12) is expressed as (Hwu [57]
and Wu [146]):

Gint = 1

4 cosh2 (πε)
K̂

T
DK̂ = D22K̂2

1 + D11K̂2
2

4 cosh2 (πε)
, (48)

which reduces to (16) for an isotropic bimaterial. It is easy to show that whereas Gint is independent
of the choice of the characteristic length l [146], the module of K̂ varies with l.
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2.2.2 Contact model
Comninou frictionless contact model (originally developed for isotropic bimaterials (see Sec-
tion 2.1.2)) has been generalized to anisotropic, or in particular orthotropic, materials in the
works of Wu [147, 149], Deng [27, 28, 30], Lee and Gao [68], and Ting [132] among others.

Relations for singular tractions acting along the interface at the right-hand crack tip, as shown
in fig. 2, coincide with those given in (25)–(26) together with the inequality in (27) when β is
taken from (42).

The near-tip relative slip between the crack faces is expressed analogously to (28) as:

�ux(r) = �using
x (r) + O(r) = 2D11KC

II

cosh2 (πε)

√
r

2π
+ O(r), for r → 0. (49)

The Irwin-type expression of the total ERR due to an interface crack extension, analogous to
that in (29), takes the form:

Gint,C = lim
�a→0

Gint,C
II (�a) = D11(KC

II )2

4 cosh2 (πε)
. (50)

It should be mentioned that Wu [147] proved the existence of a correspondence between
solutions of the contact model for an interface crack in an orthotropic and an isotropic bimaterial.
Through this correspondence, the SIF and the sizes of the contact zones associated to an interface
crack in an orthotropic bimaterial can be obtained from these quantities for an equivalent interface
crack problem in an isotropic bimaterial.

2.3 Remarks on application of the interface crack models

The current understanding of the problem of interface cracks is that both, open and contact, linear-
elastic models are important in analysis and prediction of interface crack propagation. None of
these models is free of some inconsistencies and/or difficulties in its application to modeling
behavior of interface cracks. There are situations where application of only one of the above
linear elastic models is adequate. However, there are also intermediate situations where both
models may be applied providing similar results.

Although, the solution of the contact model, as opposed to the open model solution, is the
only physically correct solution (within the context of linear elasticity) of the interface crack
problem regardless of the geometry and the loading conditions, this model is not always adequate
to characterize fracture. From an operative point of view for instance, the previous statement
would correspond to the fact that the open solution is linear with load, thus being relatively
easily obtained by FEM or BEM, whereas the frictionless contact solution is only a homogeneous
function of load, requiring application of a non-linear algorithm to evaluate the a priori unknown
contact zone length. However, as will be explained in the following, the adequacy of the contact
model to characterize an interface crack growth basically depends on the relation between the
near-tip contact zone extent rc and the size of the zone of nonlinear material response (including,
e.g., fracture process zone) rp (Rice [112], Hills and Barber [53]).

As explained above, SSC conditions refer to a situation where rc is smaller than rp. Then, the
near-tip singular solution of the open model contains all the relevant information. In particular,
the singular term of the open model solution, governed by the complex SIF K̂ , is suitable for
representing a fracture mode mixity at the crack tip under SSC conditions, in opposition to the
singular term of the contact solution, which is governed by only one parameter, SIF KC

II , and thus
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it is not able to represent any fracture mode mixity. Note that under SSC conditions |K | ∼= KC
II

and equivalently Gint ∼= Gint,C .
The above described disadvantage of the contact model is also reflected in the discontinuity of

the singular term when β → 0. Singular term of the near-tip contact solution governed by one
SIF for β �= 0, changes in the limit to the singular term governed by two classical SIFs for β = 0.
This implies, for instance, that when KI = 1 and KII = 0 for β = 0, then introducing the most
insignificant material discontinuity yields KC

I = 0 and KC
II ≈ 1 for β �= 0 (Hills et al. [54]). This

strange behavior is associated to the extremely small (subatomic) size of the near-tip contact zones
(and of zones dominated by KC

II as well) for β ≈ 0 which implies that other asymptotically non-
singular terms start to contribute significantly to the solution value at small physically relevant
distances from the crack tip.

On the other hand, when rc is significantly larger than rp, the open model solution and the contact
solution differ significantly outside the zone of nonlinear material response, and it appears that
only the contact solution is able to provide useful information relevant to micromechanics of
fracture Mode II present at the crack tip. Thus, in such situations the contact model is adequate
to analyze and predict interface crack growth.

Therefore, in a general practical numerical procedure for interface crack analysis both models
should be included, in a way similar to that proposed by Hills and Barber [53] and Hills et al. [54]
and implemented by Liu and Feng-Chen [74]. In such a procedure, both models are competing
between each other, the open model being applied where SSC conditions hold (ri � rp and
consequently also rc � rp), otherwise the contact model is applied.

In fact, in presence of a significant shear load in case of burried interface cracks, SSC conditions
are typically fulfilled only at one crack tip, where an extremely short contact zone is present, while
at the other tip a large contact zone of length comparable to the total crack length appears (e.g. tests
with Brazilian nut sandwich specimen by Banks-Sills and Ashkenazi [8] and Yuuki et al. [151],
among others). Thus, when analyzing this type of problem, one model is suitable at one crack
tip and the other at the opposite crack tip. Another situation, where both models are applied,
appears sometimes during modeling of an interface crack growth, a switch between models being
required. The numerical procedure may start, for instance, with the open model as the adequate
one and when the crack extends further the contact model may become more suitable, e.g. due
to a change of the load orientation with respect to the crack tip following a curved interface (see
Section 7).

3 Interface crack propagation and kinking

The possibility of predicting accurately whether a bi-material interface crack will propagate along
the interface, kink out of the interface, or not propagate at all, will be discussed in this section.
As in the rest of the paper, the considerations are restricted to plane situations. Additionally, the
results presented in this section are restricted to isotropic materials. This in spite of the fact that
in Section 6a case of an interface crack in an orthotropic bi-material is studied, but the objective
of that study does not involve kinking. In fact, the authors are only aware of a few works dealing
with application of criteria for interface crack propagation and kinking in anisotropic bi-materials:
Miller and Stock [88], Wang [142] and Wang et al. [143].

The effect of the finite stress parallel to the interface (so-called T-stress) in kinking of an
interface crack will not be considered in the following analytical review of the available theory.
Thus, the applicability of the results of this study would be in relation to the initiation of the
kinked crack. In Section 7 the representability of the singular term and the influence of T-stress
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in the energy released by a kinked crack are evaluated in the case studied. An influence of the
T-stress on the interface crack propagation was studied by He et al. [5] in isotropic bimaterials
and by Wang [142] in anisotropic bimaterials.

3.1 Crack paths in homogeneous isotropic materials

Although as follows from a large number of recent studies and experiments (Miller and McDowell
[87], Pook [109]), two fundamentally distinct classes of crack growth, maximum principal stress
dominated (crack growth in Mode I) and shear-dominated (crack growth in Mode II), are under
consideration at the time, the present section is concerned with common Mode I crack growth,
which assumes traction-free crack lips in the vicinity of the crack tip. Additionally, static load
and SSY conditions are assumed. Several well-known criteria for crack growth prediction in
homogeneous isotropic solids in such a situation, which relate the local stress field at the crack
tip to the crack extension, will be briefly presented and discussed, for both smooth and kinked
crack paths.

3.1.1 Crack growth following a smooth path
The path of a smooth propagation of a crack, under a certain state of load which originates a near-
tip stress field governed in general by SIFs KI and KII, has been proposed to obey the three proved
equivalent propagation criteria: maximum energy release rate criterion (MERR) by Erdogan and
Sih [35], local symmetry criterion (LS) (KII = 0) by Goldstein and Salganik [46] and maximum KI
criterion (MKI), e.g., Broberg [16]. In simple terms it means that crack propagates maximizing
the energy release rate in pure opening Mode I. Following this path the fracture criterion for
initiation of crack advance takes the classical form:

KI = KIc, GI = GIc, (51)

where GIc = K2
Ic/E′ represents the fracture toughness of the material in Mode I.

Note that Amestoy and Leblond [2], considering a smoothly propagating crack under propor-
tional loading, deduced, applying LS criterion, a general equation for smooth crack path, which
predicts path curvature at any regular point.

3.1.2 Crack kinking
Consider a stationary crack subjected to a mixed mode loading (KII �= 0) with a local mode mixity
defined by angle ψK , tanψK = KII/KI. Such a crack may kink, changing abruptly its direction of
propagation.Astraight kink crack of a small length b with SIFs km(θ, b) (m = I, II) associated to its
tip, as shown in fig. 5, is considered in the present work. There are several proposals to predict kink
angle θkink, the following four being those most commonly used: MERR, LS and MKI criteria,
which are only approximately equivalent in this case (see Melin [84], He and Hutchinson [50],
Amestoy and Leblond [2], Broberg [17]), and the maximum circumferential stress criterion (MCS)
by Erdogan and Sih [35].

MERR, LS and MKI criteria require to evaluate SIFs km(θ) to be evaluated at an infinitesimal
kinked extension. They are obtained evaluating limits of km(θ, b) for a vanishing kink length b:

km(θ) = lim
b→0

km(θ, b), m = I, II, (52)
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Figure 5: Crack kinking in a homogeneous material due to a mixed mode loading.

as linear combinations of the SIFs of the parent crack KI and KII:

kI(θ) = Ch
11(θ)KI + Ch

12(θ)KII,

kII(θ) = Ch
21(θ)KI + Ch

22(θ)KII, (53)

where superindex h means homogeneous material. Dimensionless coefficients Ch
ij(θ) were com-

puted in tabulated form by Amestoy et al. [1], Hayashi and Nemat-Nasser [49] and Melin [86],
and series expansions of these coefficients were deduced through extensive analytic calculations
by Amestoy and Leblond [2]. These coefficients are universal in the sense that they apply to
arbitrary geometry of the body and crack, material and loading.

In contrast with the above cumbersome procedure, application of MCS criterion is very simple,
only knowledge of the analytic expression of the asymptotic singular term of the stress field at
the parent crack tip before the kink onset, σsing

ij (r, θ), being required.
In order to write explicit forms of the former criteria, let the energy release rate at an infinitesimal

kinked extension be expressed as

Gkink(θ) =
(

k2
I (θ) + k2

II(θ)
)
/E′, (54)

and the asymptotic singular stress field at the original crack tip (equivalent to (10) for ε = 0
there) as

σ
sing
ij (r, θ) = 1√

2πr

(
KIσ

I
ij(θ) + KIIσ

II
ij (θ)
)
. (55)

Then, the above criteria can be simply expressed respectively as:

(MERR)
∂Gkink

∂θ

∣∣∣∣∣
θ=θkink

= 0 and
∂2Gkink

∂2θ

∣∣∣∣∣
θ=θkink

< 0, (56)
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(LS) kII(θkink) = 0, (57)

(MKI)
∂kI

∂θ

∣∣∣∣
θ=θkink

= 0 and
∂2kI

∂2θ

∣∣∣∣
θ=θkink

< 0, (58)

(MCS)
∂σ

sing
θθ

∂θ

∣∣∣∣∣
θ=θkink

= 0 and
∂2σ

sing
θθ

∂2θ

∣∣∣∣∣
θ=θkink

< 0. (59)

All these criteria yield fairly similar results. Thus, for instance, for a straight crack subjected
to a pure Mode II, KI = 0 and for example KII > 0, the kink angles predicted by these criteria
respectively are: θkink = −75.8◦, −77.3◦, −76.6◦ and −70.5◦. Consequently experimental results
have not as yet provided a decisive argument in favour of any one of them (see e.g., Erdogan and
Sih [35], Broberg [16], Vaughan [139]).

Supposing a kink direction obtained by one of the above criteria, the criterion for onset of crack
growth is given by:

Gkink(θkink) = Gc, (60)

where Gc stands for the fracture toughness of the material. This criterion corresponds to classical
crack propagation criterion written as

kI(θkink) = KIc, (61)

if LS criterion has been previously applied to predict θkink.
As will be shown in the following, fracture criteria discussed above, although developed

primarily for cracks in homogeneous materials, can be readily extended to interface cracks.

3.2 Interface crack paths

The problem of the growth of an interface crack subjected to a load is studied. This crack may
grow by its further extension along the interface or kink out of the interface. Depending on the
asymmetry of the material properties, interface cracks have a strong tendency to kink into one of
the materials adjacent to the interface.

One complexity of interfacial fracture mechanics is that toughness of each constituent material
and the interface itself, together with possibly substantially different fracture mechanisms of both
materials and the interface itself (e.g. bonding a ductile and a brittle material) have to be taken
into account.

It is believed that cracking path is defined by the local singular stress state at the parent crack
tip and by the relation between fracture toughness of interface Gint

c and fracture toughness of
the material towards which the kink is directed Gkink

c . The competition between interface crack
extension and kinking (assuming Mode I propagation after kink) can be formulated on the energetic
basis comparing ratios of the corresponding energy release rates associated to a load level, Gint

and Gkink, and the fracture toughness for extension and kinking (He and Hutchinson, [50]):

Gint

Gint
c

>
Gkink

Gkink
c

⇒ extension,
Gint

Gint
c

<
Gkink

Gkink
c

⇒ kink. (62)

Note that Gkink corresponds to a kink angle θkink predicted by a fracture criterion. Additionally,
whereas Gkink

c is independent of θkink in isotropic materials, it may be a function of this angle in
anisotropic materials.
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As has been explained in Section 2, depending on the problem configuration, and in particular
on the load direction, the contact zone size at an interface crack tip can be either relatively small
with respect to the crack length (even extremely small of subatomic size), or it can have a finite
and physically relevant length. Crack tips with a small contact zone can be effectively treated
using the open crack model supposing SSC conditions while the contact model is required for
those with a finite contact zone. Application of fracture criteria in these two models will be treated
separately in the following sections.

3.2.1 Interface crack propagation under SSC conditions
Rice [112] and He and Hutchinson [50] proposed that under SSC conditions a prediction of the
interface crack growth, extension or kinking, can be based on the singular crack tip field of the open
model. Recall that the asymptotic crack tip field is defined by two parameters: either the real and
imaginary part of the complex SIF K̂ = K̂1 + iK̂2 or, equivalently, by energy release rate Gint

and the fracture mode mixity ψK = arg K̂ . Recall that ψK depends on the choice of the reference
length l. However, this dependence is relatively weak in the range of physically relevant scales
for typical values of the oscillatory index ε (see (8)).

3.2.1.1 Interface crack extension When Gint
c is relatively small, the first inequality in crack

path selection criterion (62) implies that the interface crack may be trapped at the interface and
propagates along it in mixed fracture mode (ψK �= 0). In such situations, Gint

c as a function of
ψK can be measured. Strong dependence on the mode mixity of interface toughness Gint

c (ψK ) has
been observed in extensive experiments performed starting from the late 1980s (e.g., Wang and
Suo [144], Hutchinson and Suo [56], Liechti and Chai [73], Wang [141], Banks-Sills and Ashke-
nazi [8]). Interface toughness (equal to the total energy required to produce crack growth along
the bonded line) depends on the mechanism of failure of the bimaterial system (the constituent
materials, the possible interphase and the corresponding interfaces) and can be considered as a
sum of the work of separation and the dissipation energy. It has been proposed (Evans et al. [36],
Volinsky et al. [140]), that the separation work is independent of ψK whereas the dissipation
energy is strongly dependent on ψK . Values of Gint

c (ψK , l) (for simplicity usually written only as
Gint

c (ψK )) for high values of ψK can be one order higher than those for near zero values of ψK .
It is clear from all the above considerations that ψK is an important parameter governing

interface crack growth. Thus, rather than a single toughness value used to quantify fracture
resistance of a homogeneous material (assuming that in a homogeneous material the crack will
grow under Mode I), toughness values at a range of mode mixities characterize fracture resistance
of an interface. This is a distinctive feature of interfacial fracture mechanics under SSC conditions
in comparison with fracture mechanics of brittle homogeneous solids.Adetermined interface crack
may have different mixities due to different loadings and even under a particular system of loads
the mixity will change (in accordance with Section 2.1.2), with the growth of the crack.

Mechanisms contributing to dissipation energy depend on constituent materials and also on the
way in which these materials are adhered (Evans et al. [36], Swadener et al. [129]). The most sig-
nificant contribution is usually due to a plastic zone (Shih andAsaro [117], Tvergaard [135]), which
will generally surround the fracture process governing separation if at least one constituent is a
metal or polymer.Another form of dissipation energy at an interface crack is, for instance, asperity
contact between crack faces. When thinking of an interface fracture criterion two options arise, to
give Gint

c as a function of ψK or to define a failure locus in (K̂1, K̂2)-space. Several phenomeno-
logical laws for Gint

c (ψK , l) were suggested in the past, the following expressions representing
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two families of realistic ones (Hutchinson and Suo [56], Charalambides et al. [25]):

Gint
c (ψK , l) = G1

(
1 + (1 − λ) tan2 (ψK − ψ0)

)
, (63)

Gint
c (ψK , l) = G1

(
1 + tan2 (1 − λ)(ψK − ψ0)

)
, (64)

where G1 is the fracture Mode I toughness (associated to the minimum value of Gint
c (ψK , l)), λ is

an adjustable material parameter that reflects both plasticity in the crack tip as well as interface
roughness (λ = 1 corresponds to an ideally brittle interface with no mixed-mode effect whereas
a strong mode dependence exists when λ is small), and ψ0 represents a phase shift. This shift
may be modified by a different choice of the reference length l. In particular, defining a new
reference length as l′ = le−ψ0/ε eliminates this shift. Typical forms of curves Gint

c (ψK , l) and
Gint

c (ψK , l′) are shown in fig. 6. This corresponds particularly to (63) with λ = 0. Note that
experimental curves Gint

c (ψK ) do not need to be symmetric with respect to any vertical line due
to the strong differences in the deformed configuration in the surrounding area of the predicted
near-tip contact zones associated to different signs of ψK , as was explained in Section 2.1.2, and
to the related asymmetry in the plastic dissipation, e.g. the volume of the near-tip plastic zone is
different for different signs of ψK , see Liechti and Chai [73], Tvergaard and Hutchinson [136],
Swadener and Liechti [128]. For interfaces, like glass/epoxy, (63) with λ = 0 represents a very
good approximation of experimental results (see Liechti-Chai [73], Charalambides et al. [25],
Banks-Sills and Ashkenazi [8]).

It is useful to observe that the particular graph of Gint
c (ψK ) shown in fig. 6 corresponds to a

failure locus, given in this particular case by a straight line, in (K̂1, K̂2)-space (fig. 7). Although the
Gint

c (ψK ) graph is that commonly used, linear regression might be applied to estimate G1 and ψ0

using the failure locus in the (K̂1, K̂2)-space. Note that this failure locus is rotated when another
reference length l′ is chosen.

Once Gint
c (ψK , l) is determined experimentally, the criterion for onset of an interface crack

extension along the interface can be written as

Gint = Gint
c (ψK , l), (65)

where Gint is given by (15).

Figure 6: Interface toughness function.
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Figure 7: Graph of K̂1 versus K̂2 at interface fracture (Corresponds to eqn (63) for λ = 0).

As a summary, the fact that an interface crack may stay trapped at the interface, as a weak plane,
in a mixed mode is the origin of the difficulties of Interfacial Fracture Mechanics. In a homoge-
neous material the “weak plane” is locally that associated to Mode I. Thus, while in homogeneous
materials one number KIc is sufficient to characterize fracture toughness of one material under
any load, here a functional dependence Gint

c (ψK ) is necessary to fully characterize the toughness
of an interface. Toughness function Gint

c (ψK ) is a property of the interface and is independent of
the specimen geometry and loading. This fact associated to mode mixity inherent to an interface
crack substantially complicates the Interfacial Fracture Mechanics from an engineering point of
view, perhaps even more than the oscillatory behavior of the linear elastic field.

3.2.1.2 Interface crack kinking Consider, as in Section 3.1.2, a straight kink crack of length b,
small compared to the parent interface crack length 2a (fig. 8). We can assume that the kink crack
onset and its angle θkink are determined by the near-tip stress field of the interface crack and
by Gkink

c .
The difficulty with extension of the classical criteria for fracture in homogeneous solids dis-

cussed in Section 3.1.2 to the present case when β �= 0 is associated to the oscillatory character
of the singular elastic solution for the parent interface crack. As a consequence of this oscillatory
character, these criteria do not predict a unique value of kink angle without specifying either
a fixed kink crack length (criteria MERR, LS, MKI) or the distance to the tip (criterion MCS)
for which the criteria are evaluated (He and Hutchinson [50], Geubelle and Knauss [43, 44] and
Makai et al. [89]). Different kink lengths or different distances to the tip will imply different kink
angle values predicted by these criteria. Thus, an additional characteristic length scale is necessary
to make predictions by these criteria unique. This characteristic length could be considered as a
property of the bi-material and determined experimentally by computing the horizontal shift of
the “master curve” to fit experimental data (θkink,ψK ), Geubelle and Knauss [43].

He and Hutchinson [50] suggested, as a pragmatic way of overcoming the difficulties caused by
the oscillatory character of the analytic solutions, downplaying the role of β by arbitrarily taking
β = 0, when these solutions are applied to make predictions or interpret experiments, especially
when β is small. They showed that such an approach is reasonable because the fracture variables
of interest depend weakly on β.
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Figure 8: Interface crack kinking due to a mixed mode loading.

Once θkink is predicted by a certain criterion, (62) may be applied to the competition between
kinking and further interface crack extension. For a discussion of competition between extension
along interface and kinking see Yuuki et al. [151]. When, following a criterion, the predicted θkink
is oriented into a sufficiently tough material, then as follows from (62) the interface crack will
not kink, being trapped at the interface and will propagate in a mixed mode. There are, however,
situations where interface crack kinking is not governed by (62), see an example given by Wang
and Suo [144] and their explanations.

Let us now revise an application of the different criteria for predicting θkink. Recall that MCS
criterion represents a very simple and operative option for θkink prediction, requiring only knowl-
edge of the near-tip field of the parent crack, while MERR, LS or MKI criteria require much more
involved analytic and/or numerical calculations including kink crack modeling.

Geubelle and Knauss [43] analyzed prediction of θkink by MCS criterion. By substituting (10)
into (59) θkink is given by the following implicit relation:

tan
(
ψK + ε ln

r

l

)
= −
[

dσI
θθ

dθ
(θ, ε)

/
dσII

θθ

dθ
(θ, ε)

]
θ=θkink

. (66)

Hence, the value of θkink varies with varying radius r of the circumference where σθθ is maximized.
This radial dependence of θkink appears as a shift ε ln r

l of the “master curve” in the diagram of
θkink versus ψK .

MERR, LS and MKI criteria require an evaluation of SIFs at a kink crack. Applying a dimen-
sional analysis, He and Hutchinson [50] deduced the expressions for SIFs at an infinitesimal kink
crack as functions of the complex interfacial SIF K̂ :

kI(θ, b) = Co
11(θ,α,β)Re[K̂(b/l)iε] + Co

12(θ,α,β)Im[K̂(b/l)iε],
(67)

kII(θ, b) = Co
21(θ,α,β)Re[K̂(b/l)iε] + Co

22(θ,α,β)Im[K̂(b/l)iε],

which are equivalent to (53) for ε → 0. According to (67) SIFs are oscillating with kink length
b, and consequently no limit exists for b → 0 when β �= 0. He and Hutchinson [50] tabulated
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coefficients Co
ij in (67) for several pairs of α and β. They suggested maximum energy release rate

criterion and considering, instead of the oscillating value of

Gkink(θ, b) = k2
I (θ, b) + k2

II(θ, b)

E′
kink

, (68)

where E′
kink is the elasticity modulus for the material towards which the kink is directed, the

following non b-dependent representative value

Gkink,∗(θ) = Gkink(θ, l), (69)

where l is the above discussed characteristic length scale. Value of Gkink,∗(θ) associated to l,
placed somewhere between maximum and minimum of Gkink(θ, b), gives a good approximation
for several representative bi-materials with ε ≈ 0.

He and Hutchinson [50] observed a strong influence of α and only a relatively weak influence
of β on Gkink,∗ as a function of θ. Thus, considering MERR criterion, the effect of β on curves
of θkink values, which are associated to the maximum value of Gkink,∗, versus ψK appears to be
relatively weak as well.

He and Hutchinson [50] and Mukai et al. [89], observed that the more compliant the material
into which the crack kinks, the larger the energy release rate. Conversely, if the crack kinks into
relatively stiffer material the energy release rate is reduced.

Note that the relation between θkink and mode mixity ψK predicted by MERR criterion is not
one-to one, because for a certain range of ψK the criterion predicts that maximum Gkink,∗ is
achieved at the interface. Geubelle and Knauss [43] observed such a range of ψK when interface
toughness Gint

c was comparable to at least the toughness of the weaker constituent. If Gint
c is much

smaller than the toughness of either constituent, the crack will be trapped at the interface for even
a wider range of ψK than before.

He and Hutchinson [50] compared also LS and MERR criteria, very similar predictions of
θkink having typically been obtained, although there are situations where MERR criterion predicts
extension along the interface while LS criterion would predict a kink at a high angle near a local
maximum of Gkink,∗. Geubelle and Knauss [43] observed that differences between MCS and
MERR criteria are higher than in homogeneous materials and that MERR criterion was more in
accord with their experiments.

Finally, let us recall that while, according to (67), θkink predicted by MERR or LS criterion
is a function of both mismatch parameters, α and β, this angle predicted by MCS criterion is only
a function of β parameter.

3.2.2 Interface crack propagation from an initially closed crack tip
When SSC conditions are not fulfilled due to a physically relevant size of the contact zone at
an interface crack tip, it is believed that a prediction of the interface crack growth, extension or
kinking, can be based on the singular near-tip elastic solution of the contact model. A distinctive
feature of the singular asymptotic term in contact model, in comparison with that in the open
model, is that it is governed by one parameter only: real SIF KC

II . Thus, the form of distribution
of these singular stresses is always the same for a particular bi-material independently of the
global problem configuration (geometry, loads, etc.), the magnitude of the stresses being given
by a multiplicative constant represented by KC

II .
In the present work only the frictionless contact model will be considered. For an analysis

of a friction contact model of interface cracks, see Comninou [20], Comninou and Dundurs
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Figure 9: Interface crack kinking from an initially closed crack tip.

[23], Stringfellow and Freund [121], Deng [28, 29, 30], París et al. [101], Sun and Qian [126],
Leguillon [70], Audoly [6] and Leblond and Frelat [67].

The fact that the local stress field depends only on one-parameter, has an important conse-
quence for application of the above propagation criteria to kink angle θkink prediction. As in
Section 3.2.1.2, a straight kink crack of length b small compared to the parent interface crack
length 2a, is considered here again (fig. 9). θkink predicted by a criterion will be independent of
the global load configuration, assuming a sufficiently large contact zone is developed at the crack
tip. Thus, for a particular bi-material, each criterion will predict only one value of θkink. Recall
that this is the opposite to the situation when SSC conditions are fulfilled as was discussed in
Section 3.2.1.2.

3.2.2.1 Interface crack extension In presence of a physically relevant near-tip contact zone
(rc � rp), the mixity of the singular near-tip solution disappears and the fracture toughness does

not require to be defined by a function of the mixity. Instead, a single value, Gint,C
c , is used. The

criterion of growth then takes the following expression

Gint,C = Gint,C
c . (70)

Although not explicitly indicated, this Gint,C is, according to (29), entirely due to mode II. When
Gint,C

c is relatively small, then according to (62) the crack will continue growing along the interface.
It should be pointed out that Gint,C evaluated using the contact model has been found smaller than
that obtained in the open model, this difference becoming significant for large near-tip contact
zones, see Section 7. Only a few experimental works, where some interface crack extension
was observed in presence of a detected near-tip contact zone, is known to the present authors,
see Liechti and Chai [72, 73] and Banks-Sills and Ashkenazi [8]. Additionally, a measurement
of Gint,C

c in the presence of physically relevant near-tip contact zones was not an objective of
these works.
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Aquestion associated to the use of the frictionless model considered up to now arises here, if it is
realistic to neglect a possible shielding effect of friction on the crack tip when the near-tip contact
zone is relatively large. Note that a difficulty in including friction effects in such an analysis lies
in the fact that in this case the singularity order of the near-tip stresses is different from 0.5 when
β �= 0 (Comninou [20]), being typically less than 0.5, which implies a theoretically vanishing
Gint,C

II (�a) for �a → 0. This issue has recently been studied by Sun and Qian [126], Qian and
Sun [110], Leguillon [70], Audoly [6], and Leblond and Frelat [67]. Sun and Qian [126] and
Qian and Sun [110] observed in a numerical study by FEM that this decrease in Gint,C

II (�a) was
compensated by an increase in the energy dissipated due to friction resulting in a non-zero limit
of the energy used for an infinitesimal crack extension. Additionally they showed that, depending
on the frictional coefficient, the frictional dissipation energy may constitute a substantial part of
the total energy needed for finite crack extensions considered there. A usual approach to solve
the ‘paradox’ with vanishing Gint,C

II (�a) is to introduce a material dependent characteristic crack

extension length �a0 to characterize the interfacial fracture toughness, Gint,C
II (�a0) then being

applied in a fracture criterion.

3.2.2.2 Interface crack kinking Taking into account that normal stressesσsing
θθ of the Comninou

singular asymptotic stress field are negative for all angles θ directed towards the stiffer material
(material 1 for β > 0), only kink towards the more compliant material is expected. Then, applying
conditions (59) to the Comninou asymptotic term of σsing

θθ (r, θ) in (30), the following expression
of θkink, predicted by MCS criterion is obtained (París et al. [103]):

θkink = −2sgn(β) arccos

√
2 + |β|
3 + |β| for β �= 0, (71)

where sgn( ·) gives the sign of a real number. Recall that the shear stress component σsing
rθ vanishes

at θkink given by (71) (see (32)).
The range of the predicted kink angles (mentioned already by Hayashi and Nemat-Nasser [49])

is 64.6◦ ≤ |θkink| ≤ 70.5◦. There seems to be a misprint in the kink angle value (16◦) predicted
by this criterion in Comninou [22], the θkink here defined associated to this value 90◦ −16◦ = 74◦
being outside of the range for isotropic materials.

It should be stressed that angles θkink observed in experiments by Comninou [22] agree
reasonably well with prediction by MCS criterion.

With reference to the application of MERR, LS and MKI criteria a certain kinked crack is
required. Now consider a tip of an interface crack with a slipping zone adjacent to the interface
crack tip. Let a straight open kink crack of a sufficiently small length b be initiated at this tip. It
is expected that after kinking, there will be two adjacent zones along the parent interface crack
near its tip, an open zone adjacent to the parent crack tip and a slipping one behind it. The
correctness of this assumption has been confirmed by numerical solutions of the corresponding
contact problem by FEM in Leblond and Frelat [65, 66] and by BEM in the present work (see
Section 7).

A simple and illustrative mechanical explanation, based on the previously discussed Comninou
condition βKC

II ≥ 0, of the fact that the kink necessarily deviates towards the softer material,
shown schematically at fig. 10, was given by Leblond and Frelat [65, 66].

After the kink, the whole crack is an ordinary one open in the zone adjacent to the tip in a
homogeneous material, ordinary SIFs km(θkink, b) being associated to this tip (m = I, II). Limits of
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Figure 10: Tendency to open kink crack in two possible situations.

these SIFs for b → 0 can be expressed in a similar way as in (53):

kI(θkink) = CC
12(θkink,α,β)KC

II ,

kII(θkink) = CC
22(θkink,α,β)KC

II . (72)

Leblond and Frelat [65, 66] have shown that universal dimensionless functions CC
i2 are functions

only of mismatch bi-material parameters, α and β, and kink angle θkink. Thus, they apply for any
situation (geometry of bi-material specimen with crack and load).

According to Leblond and Frelat [65], the coefficients associated to Mode II in (53), and in
both (67) and (72) for α = β = 0 coincide, i.e. Ch

i2(θ) = Co
i2(θ, 0, 0) = CC

i2(θ, 0, 0).
MERR, LS and MKI criteria may be applied to predict θkink in an analogous way as done in

Sections 3.1.2 and 3.2.1.2. In particular, θkink predicted by MERR criterion maximizes the energy
release rate at an infinitesimal kink:

Gkink(θ) = k2
I (θ) + k2

II(θ)

E′
kink

. (73)

θkink predicted by LS criterion solves the following implicit equation CC
22(θkink,α,β) = 0, and θkink

predicted by MKI maximizes kI(θ). As explained above angles θkink predicted are independent
of the loading under the condition of sufficiently large initial near-tip contact zone in the parent
crack just before the kink onset. Finally, criteria for kink crack onset take the same form as in
(60) and (61).

Recall that, similarly to crack kinking under SSC conditions, θkink predicted by MCS criterion
is independent of α while its prediction by MERR or LS criteria is a function of both mismatch
parameters, α and β.

A comparison of θkink predicted by MCS criterion (71) and LS criterion (computed for some
particular bi-materials by FEM in Leblond and Frelat [65, 66]) presented in fig. 11 shows that
θkink predicted by both criteria are only weak functions of mismatch parameters. However, it is
somewhat surprising to observe that for ν1 = ν2 and increasing ratio of shear moduli G1/G2, angle
θkink predicted by MCS criterion is decreasing while that predicted by LS criterion is increasing. A
further analysis of θkink predictions by all criteria (particularly by MERR, LS and MKI that depend
on α and β) is required to explain this difference. However, with the exception of experiments
carried out by Comninou [22], there are no specific experiments studying cracks kinking from an
initially closed interface cracks known to the authors.
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Figure 11: Kink angle θkink predicted by MCS, eqn (71), and LS (Leblond and Frelat [65, 66])
criteria as a function of β in the contact model.

In situations where during an interface crack growth the contact zone, originally negligible
(rc � rp), comes to be physically relevant (rc � rp), the following analysis may be significant
in the competition between further crack extension and kinking when this is considered to be
governed by (62). Recall that, assuming a sufficiently large contact zone at the parent crack tip
in the instant of the kink onset, θkink predicted by a criterion is fixed, being independent of the
problem geometry and loading. Then, taking into account expressions (29) and (73) with (72),
Gint,C/Gkink is also fixed for a bi-material, being independent of the problem geometry, loading
and, in particular, independent of KC

II . The implication of this result for the interface crack growth,
where the near-tip contact zone length rc is increasing, is that the crack will not kink, if has not
already kinked before a significant contact zone has arisen. In other words, there are no reasons for
a crack to kink once the contact model controls the crack extension process. All this considering
that the singular term of the Comninou contact model controls the initiation of the kink, the
T-stress having no influence in this initiation.

4 BEM for 2D orthotropic elasticity

Boundary element method (BEM), París and Cañas [100] is a numerical method particularly
suitable to solve interface crack problems due to the fact that the only elastic variables of the
problem (displacements and tractions) which are managed directly are those associated to the
boundaries and interfaces of the constituent materials. Several advanced applications of BEM to
isotropic and orthotropic (or in general anisotropic) interface crack problems have been developed
in the past, see Ang et al. [5], Lee and Choi [69], Liu and Feng-Chen [74], Graciani et al. [47],
Mantič et al. [77], Matsumoto et al. [83], Paula and Aliabadi [108], París et al. [101, 102], Selcuk
et al. [115], Sládek and Sládek [120], Tan et al. [130] and Yuuki and Cho [150], among others.

In this section, first a complex variable formulation of two-dimensional orthotropic elasticity
is briefly introduced for the two classes of orthotropic materials, the so-called mathematically
non-degenerate and degenerate materials, Ting [132]. Then, a formulation of the Somigliana
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displacement and stress identities for plane orthotropic elastic bodies is introduced. Simple explicit
formulae in complex variable formulation of all the integral kernels Uij, Tij, Dijk and Sijk and also
of the free term coefficient tensor Cij in the Somigliana displacement identity are presented for
both classes of orthotropic materials. Finally, a BEM implementation of both Somigliana identities
is described.

4.1 Some basic concepts of the complex variable formulation of 2D orthotropic elasticity

The notation used in this section will be closely related to that used in Ting’s monograph [132]
which presents a comprehensive review of the modern theory of anisotropic elasticity.

Applying the concept of theAiry stress function and using (34), the strain compatibility equation
yields the following Lekhnitskii characteristic equation of an orthotropic material [71]:

s′
11p4 + (2s′

12 + s′
66)p2 + s′

22 = 0, (74)

whose conjugate roots pα and p̄α (α = 1, 2) are expressed by:

pα = ±s− + is+√
2s′

11

, (75)

where s± were defined in (37).
Due to the fact that s+ is always positive, the imaginary part of pα can always be taken as

positive, Im pα > 0.
A particular class of orthotropic materials with s− = 0, and consequently p1 = p2 = p, are

called mathematically degenerate materials, Ting [132], and will be treated separately from the
case of mathematically non-degenerate materials. The most important cases of mathematically
degenerate materials are isotropic materials and transversally isotropic materials when the x3-axis
is the symmetry axis. In these particular cases the roots of (74) are p1 = p2 = p = i.

4.1.1 Mathematically non-degenerate materials
Complex representations of displacements u(x), tractions t(x) and stresses σij(x) (i, j = x, y),
x ∈ R

2, first deduced by Lekhnitskii [71], can be written in terms of analytic functions of complex
variables zα(x) = x + pαy and some complex matrices A and B introduced by Stroh [122, 123].
Roots pα of (74) give the eigenvalues and the columns of A and B form the eigenvectors of the
fundamental elasticity matrix N in the Stroh formalism of the anisotropic elasticity [132]. The
following simple expressions of A and B were introduced by Mantič and París [78]:

A =
[

is−s+ − s′
66/2 −(is−s+ + s′

66/2)
−p1(is−s+ + s′

66/2) p2(is−s+ − s′
66/2)

]
, B =

[−p1 −p2
1 1

]
. (76)

Note that A and B in the above expressions are not normalized in the sense considered in [132].
The Stroh orthogonality relations for anisotropic materials [122, 123] are fundamental for the

modern theory of anisotropic elasticity. They reflect the symmetry and positive definiteness of
the equations of equilibrium [79] and in the case analyzed can be written as:

AT B + BTA = K = diag
[
κ2

1, κ2
2

]
, Ā

T
B + B̄

T
A = 0, (77)
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where the bar denotes complex conjugate, and the diagonal matrix K of the normalization
coefficients is defined by (see [78]):

κ2
α = 2

2∑
k=1

AkαBkα = ∓4is−s+pα �= 0. (78)

Then, the normalized form of A and B is obtained by AK−(1/2) and BK−(1/2).

4.1.2 Mathematically degenerate materials
In the case of a repeated root of (74) the complex representations of displacements, tractions and
stresses can be written in terms of analytic functions of complex variable z(x) = x + py and
its complex conjugate z̄(x) = x + p̄y, and the complex matrices A and B. In the present case
the first columns of these matrices form the eigenvector and the second columns the generalized
eigenvector of the fundamental elasticity matrix N in the Stroh formalism. Simple expressions of
A and B are written as:

A =
[

−s′
66/2 2s2+ − s′

66/2

−ps′
66/2 p̄(2s2+ − s′

66/2)

]
, B =

[
−p −p̄

1 1

]
. (79)

As in the case of non-degenerate materials, expressions of A and B presented are not normalized.
The Stroh orthogonality relations write now as:

AT B + BTA = K =
[

0 κ2

κ2 0

]
, Ā

T
B + B̄

T
A = 0, (80)

where the normalization constant is given as:

κ2 = −4s2+p �= 0. (81)

4.2 The Somigliana displacement identity

Let a linear elastic body be defined by an open domain D ⊂ R
2 with a finite and piecewise smooth

boundary ∂D. Starting from the Betti theorem of reciprocity of work and using the concept of
concentrated load the Somigliana displacement identity can be derived (e.g. [100]):

Cij(x)uj(x) + p.v.
∫
∂D

Tij(x, y)uj(y)ds(y) −
∫
∂D

Uij(x, y)tj(y)ds(y) = 0, (82)

where the integral kernels Uij(x, y) and Tij(x, y) respectively are the displacements (weakly
singular) and the tractions (strongly singular) at y originated by the unit-concentrated loads at x.
The free-term coefficient tensor Cij(x) = δij for x ∈ D, and Cij(x) = 0.5δij for x ∈ ∂D with the
exception of the corner points of ∂D. Note that for x ∈ ∂D the first integral in (82) is taken in the
sense of Cauchy principal value (p.v.) defined by a vanishing circular zone.
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Mathematically non-degenerate materials
By application of (77) the following explicit formulae were derived in [78] (see also [81]):

Uij(x, y) = Re

{
2∑

α=1

1

πiκ2
α

AiαAjα log zα(y − x)

}
, (83)

Tij(x, y) = Re

{
2∑

α=1

1

πiκ2
α

AiαBjαBkα
nk (y)

zα(y − x)

}
, (84)

Cij(x) = Re

{
2∑

α=1

1

πiκ2
α

AiαBjα log
z(1)
α (x)

z(2)
α (x)

}
, x ∈ ∂D, (85)

where n(y) is the unit outward normal vector to ∂D at y, and z(e)
α (x) = r(e)

1 (x) + pαr(e)
2 (x), r(e)(x)

are the two unit tangential vectors to ∂D with the origin at x.

Mathematically degenerate materials
By application of (80) the following new explicit formulae, whose deduction is based on the
previous work developed in [78, 81], can be derived:

Uij(x, y) = Re


2∑

α,β=1

1

πiκ2
AiαAjβGαβ(z, z̄)

 , (86)

Tij(x, y) = Re


2∑

α,β=1

1

πiκ2
AiαBjβ(Gαβ,z(z, z̄)Bk1 + Gαβ,z̄(z, z̄)Bk2)nk (y)

 , (87)

Cij(x) = Re


2∑

α,β=1

1

πiκ2
AiαBjβ(Gαβ(z(1)(x), z̄(1)(x)) − Gαβ(z(2)(x), z̄(2)(x)))

 ,

x ∈ ∂D, (88)

where z = z(y − x) and z̄ = z̄(y − x),

G(z, z̄) =
[

z̄z−1 log z
log z 0

]
, G,z(z, z̄) =

[−z̄z−2 z−1

z−1 0

]
, G,z̄(z, z̄) =

[
z−1 0
0 0

]
, (89)

and z(e)(x) = r(e)
1 (x) + pr(e)

2 (x).
It is an easy matter to verify that in the particular case of isotropic materials the above

expressions coincide with the classical ones, see for instance [100].

4.3 The Somigliana stress identity

By differentiation of (82) at x ∈ D and application of Hooke’s law (34), the Somigliana stress
identity can be derived [100]:

σij(x) +
∫
∂D

Sijk (x, y)uk (y)ds(y) −
∫
∂D

Dijk (x, y)tk (y)ds(y) = 0, (90)
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where the integral kernels Dijk (x, y) and Sijk (x, y) respectively are displacements (strongly singu-
lar) and tractions (hypersingular) at y originated by a dislocation dipole (a kind of strain nucleus)
at x [80, 81].

Mathematically non-degenerate materials
The classical direct approach already mentioned to deduce the integral kernels that appear in (90)
does not yield simple explicit expressions at these kernels. Simple expression of these kernels can
only be obtained for mathematically non-degenerate materials using a symmetrical representation
of the stresses [80] as done in [81].

Dijk (x, y) = −Re

{
2∑

α=1

1

πiκ2
α

BiαBjαAkα
1

zα(y − x)

}
, (91)

Sijk (x, y) = Re

{
2∑

α=1

1

πiκ2
α

BiαBjαBkαBlα
nl(y)

z2
α(y − x)

}
. (92)

Mathematically degenerate materials
By using a procedure analogous to that used in the deduction of (91)–(92) and taking into account
the results of Section 4.1.2, (86)–(87) and (89), the following new explicit formulae of Dijk and
Sijk have been obtained:

Dijk (x, y) = −Re


2∑

α,β=1

1

πiκ2
Biα(Gαβ,z(z, z̄)Bj1 + Gαβ,z̄(z, z̄)Bj2)Akβ

 , (93)

Sijk (x, y) = Re


2∑

α,β=1

1

πiκ2
Biα(Gαβ,zzBj1Bl1 + Gαβ,z̄z(Bj2Bl1 + Bj1Bl2))Bkβnl(y)

 , (94)

where

G,zz(z, z̄) =
[

2z̄z−3 −z−2

−z−2 0

]
, G,z̄z(z, z̄) =

[−z−2 0
0 0

]
. (95)

4.4 Some features of BEM implementation

BEM code applied in the present work solves the Somigliana displacement identity (82) by the
standard collocation approach using linear continuous elements in the way described by París
and Cañas [100]. Integrals of the products of the integral kernels and the boundary element shape
functions can be evaluated analytically or numerically, Avila et al. [7]. The advantage of the above
complex variable representation of the integral kernels is an easy derivation of the formulae for
analytic integrations in the case of linear continuous elements applied. In the present work, all
the integrals, regular and singular, have been evaluated analytically.

The removal of the rigid body movements in the case of elastic problems with boundary
conditions in tractions is carried out using a procedure based on the Fredholm theory of the
boundary integral equations developed in Blázquez et al. [10].

The evaluation of stresses inside the domain is performed, once the boundary values of displace-
ments and tractions have been computed, in the postprocessing stage by means of the Somigliana
stress identity (90). Here also, all the integrals can be evaluated analytically or numerically.
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The adaptation of the present BEM code to the solution of non-linear contact problems will
be described in Section 5. Note that the solution of linear multi-domain problems, with perfect
interface conditions, is implemented in this code through a particular and simpler variant of the
more general contact algorithm.

5 Weak formulation of interface/contact conditions in BEM with
non-conforming meshes

Understanding of the contact problem began with the studies of Hertz [52]. Many problems,
although usually involving simple geometries and loads and frictionless contact, have been ana-
lytically solved since then, Gladwell [45] and Johnson [61]. Nevertheless, numerical methods are
required to solve more complicated problems.

The first pioneering works on contact problems using FEM are, among many others, Chan and
Tuba [18], Fredriksson [38], Oden and Pires [92] and Okamoto and Nakazawa [93]. In BEM,
some of the pioneer works are Andersson [4], Man et al. [76], París and Garrido [104, 106]
and París et al. [107]. All of them use identical meshes in the zones of the bodies candidate
for contact, establishing the contact conditions between the corresponding pair of nodes. Later,
algorithms in which the contact conditions are established between non-conforming meshes arise.
These algorithms simplify significantly the preparation work of the meshes and also permit more
complex problems to be considered (e.g. with large displacements). The first non-conforming
algorithms, Bathe and Chaudhary [9] and Klarbring and Bjorkman [62] in the field of FEM and
Blázquez et al. [11], Huesmann and Kuhn [55] and Olukoko et al. [94] in the field of BEM,
extrapolate the ideas of conforming meshes and establish the contact conditions between nodes
and intermediate points of the elements, using a scheme that can be called strong imposition or
node-to-point scheme of application of contact conditions. Blázquez et al. [14] investigated the
problems that might arise with this scheme of application of the contact conditions and developed
a scheme called weak approach, Blázquez et al. [15], that avoided the problems found with the
former scheme. This weak approach of application of contact conditions will be followed in
this chapter.

5.1 Contact conditions

Let us assume (fig. 12) two 2D bodies, A and B, occupying the domains DA and DB with boundaries
∂DA and ∂DB, which interact between them through a common contact zone ∂DA

c = ∂DB
c =

∂Dc. The loads, which are assumed to depend on a parameter λ, are given by the tractions and
displacements prescribed along the boundaries ∂DK

t , ∂DK
u and ∂DK

ut respectively, ∂DK
t + ∂DK

u +
∂DK

ut = ∂DK
l = ∂DK − ∂DK

c , K = A, B. Thus, the boundary conditions of the problem along ∂DK
l

are expressed as:

uK
i = ūK

i (λ), along ∂DK
u , i = 1, 2, K = A, B,

tK
i = t̄K

i (λ), along ∂DK
t , i = 1, 2, K = A, B, (96)

uK
i = ūK

i (λ), tK
j = t̄K

j (λ), along∂DK
ut , i, j = 1, 2, i �= j, K = A, B,

Directions i can be associated to any cartesian system of reference, although typically they are
referred to a local system used for contact conditions that will be defined in that which follows.

Contact conditions are established in a normal-tangential coordinate system and are classified
in three groups: equilibrium (97), compatibility of normal displacements (98) and, assuming
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Figure 12: The contact problem.

Figure 13: The contact coordinate system.

frictionless case, zero tangential stress (99). For a point M that belongs to the contact zone, these
conditions are established with reference to a local system where axis 1K is the outward normal to
∂DK and axis 2K is anticlockwise tangent to ∂DK . In the numerical solution of contact problems,
due to the fact that the outward normals to the two contacting solids may not coincide, it is
necessary to define a common system of coordinates in which the former contact conditions and
their corresponding checking are carried out. The system used here defines (fig. 13) at each point
M of the contact zone, direction 1 as the average of the two outward normals to the boundaries
(nA, nB), direction 2 being perpendicular to direction 1 and anti-clockwise.

• Equilibrium:
tA
i (M ) = tB

i (M ) ≤ 0, i = 1, 2, (97)

where the compression character of the contact tractions has been explicitly shown.
• Compatibility of normal displacements:

uA
1 (M ) + uB

1 (M ) = g, (98)

g being the gap that exists between the surfaces of the bodies at point M .
• Tangential stresses are null:

tK
2 (M ) = 0, K = A, B. (99)
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In the case of bonded boundaries the conditions that must be applied are (97) and (98), taking
into account that the gap is null and the normal stresses can be tensions. The condition of null
shear stress (99) must be replaced by the compatibility of tangential displacements:

uA
2 (M ) + uB

2 (M ) = 0. (100)

5.2 Weak formulation of contact conditions

Following the basic idea of imposition of the contact conditions with non-conforming discretiza-
tions, described by París et al. [97], compatibility equations will be imposed on one of the bodies
whereas equilibrium equations will be imposed on the other body.

5.2.1 Compatibility
Two fields of displacements, (101) and (102), will be defined in order to apply compatibility
conditions on body A.

uA
i (x), ∀x ∈ DA �⇒ displacement solution of body A, (101)

u∂A
i (y),∀y ∈ ∂DA �⇒

{
uA

i (y) along ∂DA
l ,

− uB
i (y) + δi(y) along ∂DA

c .
(102)

Notice that the displacement field uA
i (x), which corresponds to the solution of the problem, is

defined at all points of body A, and will have associated a compatible strain field εA
ij(x), whereas

u∂A
i (y) is only defined at points on the boundary. Note that the physical meaning of the variable
δ1(y) that appears in (102) is the value of how close or how far the boundaries get at point y,
whereas δ2(y), also in (102), represents the relative displacement between the two surfaces at
point y.

To establish compatibility between these two fields of displacements, the principle of virtual
forces (i.e. the principle of virtual work where the stress field is a virtual field in equilibrium and
the displacement and strain fields correspond to the actual problem) is applied. This principle, for
the case of the absence of body forces, takes the expression:∫

DA
σ

Aψ
ij (x)εA

ij(x)dv =
∫
∂DA

tAψ
i (y)u∂A

i (y)ds, (103)

an expression that must be satisfied for every virtual field of stresses σAψ
ij and tAψ

i in equilibrium.
According to [15] it follows that, for the displacement fields defined in (101) and (102) to be

compatible: ∫
∂DA

c

tAψ
i (y)
(

uA
i (y) + uB

i (y) − δi(y)
)

ds = 0. (104)

Expressing eqn (104) in an approximate form, according to the discretization performed, and
taking into account that (104) must be fulfilled for any field tAψ

i in equilibrium:

NCA∑
k

∫
∂DkA

(
NkA
)T

NkAdsukA
i +

NCA∑
k

∫
∂DkA

(
NkA
)T

NBdsuB
i

−
NCA∑

k

∫
∂DkA

(
NkA
)T

NkAdsdk
i = 0, (105)
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where NCA is the number of elements of the body A which belong to the potential contact zone and
the superindex k makes reference to the element of NCA along which the integration is performed,
N are matrices that contain the shape functions of the corresponding elements, u are vectors that
contain the displacements of the bodies and d is a vector that contains the relative normal and
tangential displacements between the two surfaces of the bodies at each node of A. Note that the
shape function matrix NB has been kept complete due to the fact that an element of A will not
necessarily contact with a single element of B and vice versa.

The computation of the integrals that appear in (105) is commented on in detail in [15]. That
multiplying to ukA

i and dk
i only depends on the length of the element k of body A, being independent

of the relative positions of the nodes of both bodies. With reference to that multiplying to uB
i , it

depends on the relative positions in which the nodes of B are situated along the element k of A.

5.2.2 Equilibrium
Analogously to compatibility, two stress states will be defined for the body B:

tB
i (x, n) = σB

ij (x)nj, ∀x ∈ DB �⇒ stress solution of body B, (106)

t∂B
i (y), ∀y ∈ ∂DB �⇒

{
tB
i (y, nB) along ∂DB

l ,

tA
i (y, nB) along ∂DB

c ,
(107)

where n is an arbitrary unit vector and nK is the outward unit normal to the boundary of body K
at point y.

Notice again that tB
i (x, n) is defined on the whole of body B, whereas t∂B

i (y) is only defined
along the boundary of body B.

Applying now the principle of virtual displacements (i.e. the principle of virtual work where
the displacement and strain fields are virtual compatible fields and the stress field corresponds to
the actual problem), it must be fulfilled, in order to guarantee the equilibrium between these two
stress fields, that: ∫

DB
σB

ij (x)εBψ
ij (x)dv =

∫
∂DB

t∂B
i (y)uBψ

i (y)ds, (108)

for any field of displacements uBψ
i and compatible strains εBψ

ij .
According to [15], performing similar operations to those indicated for the compatibility

equation, the following equation system is obtained:

NCB∑
k

∫
∂DkB

(
NkB
)T

NkBdstkB
i −

NCB∑
k

∫
∂DkB

(
NkB
)T

NAdstA
i = 0. (109)

The integrals that appear in these equations are similar to those that appeared in the compatibility
equations and they are computed in a similar way.

It should be noticed that this manner of imposing the equilibrium equations ensures the global
equilibrium of forces and moments of the problem. Obviously, the finer the discretization used
for uBψ

i (y), the more similar the values of tractions at points of the two bodies obtained from the
system of equations (109) will be.

5.2.3 Frictionless condition
As has been commented previously, in this chapter only the frictionless case is considered,
tK
2 (y) = 0. Due to the fact that these conditions affect the stresses, they must be imposed on
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the nodes of body A, which controls the stresses along the contact zone. Then:

tA
2 = 0. (110)

The system of equilibrium equations (109) translates this condition to the boundary of the solid B.

5.3 Stability conditions

In order to guarantee the correct use of non-conforming meshes a study on the influence of the
non-conformity on the results has to be performed. Using BEM, the errors may be more significant
in the stresses and appear more frequently in problems with friction. In [12, 97] it is concluded that
the results are substantially better if more elements are in the body that controls the displacements:
NCB � NCA, a conclusion confirmed in later publications by these authors.

With reference to this point, a particular study is performed in [13] to detect the errors that appear
as a function of the relative position of the point where the node of A contacts the element of B.
The conclusion of this work is that the degree of conformity (or unconformity) of a discretization
is directly related to the relative distance from the nodes of the body that controls the stresses to
the nodes of the discretizations of the body that controls the displacements, and not to the relative
size of the elements of the meshes of both solids. The lesser this distance the smaller the errors
introduced, and this distance decreases if there are many more nodes controlling displacements.

This problem is inherent to the non-conforming character of the discretizations and it is more
severe in node-to-point approaches, but it also appears, although to a much lesser extent, in a
weak approach.

5.4 Incremental approach

In frictionless problems the final solution is not dependent on the path and the problem can be
solved in one increment of load once, after an iterative procedure, a correct solution (compatible
and in equilibrium) is reached. The dissipative character of the friction resulted in an incremental
procedure following the evolution of the load being required in the presence of friction.

With reference to the frictionless case, the non-lineal character of the problem comes from the
possible variations in the extent of the contact zone with the application of load. The increase in
the size of the contact zone is detected checking the interpenetrations in the zone free of contact.
The decrease in the size of the contact zone is detected checking the presence of tensions in the
contact zone. These checks are performed at the nodes of solid A (which controls the stresses), due
to the fact that it is in them that the relative normal displacements (102) and the stresses appear.

Although an iterative procedure would be applicable for the frictionless case under considera-
tion, an incremental procedure will be applied here due to the fact that it is the general approach
used by the authors for all contact cases including friction, see [104, 106] for conforming meshes
and [97, 15] for the details associated to non-conforming meshes. Due to this general purpose of
the approach followed, all the equations will be presented in incremental form.

Let us assume that after a certain application of load the i-th increment starts with a certain set of
contact conditions. The system of equations to be solved in this increment of load is constituted by:

• The set of integral equations corresponding to the two bodies involved in the contact, equations
(82) in incremental form.

• Compatibility equations corresponding to the potential contact zone, applied to one of the
bodies, called body A, equations (105) in incremental form.
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• Equilibrium equations corresponding to the potential contact zone, applied to the other body,
called body B, equations (109) in incremental form.

• The condition of free stress surface must be imposed at all the nodes n that belong to the
potential contact zone of body A but are not in contact:

�tA
1 (n) = 0, �tA

2 (n) = 0. (111)

• In nodes of body A that are in contact, the conditions:

�δ1(n) = 0, �tA
2 (n) = 0, (112)

must be applied.
• Finally, in nodes of body A that are in a bonded interface, the conditions:

�δ1(n) = 0, �δ2(n) = 0, (113)

must be applied.

The remaining load is applied (in fact any value can be applied because what is interesting to
detect is the evolution of the solution with the load), and the adequate increment of load must be
determined once the system has been solved. In frictionless cases two possible limits of application
of the contact conditions are checked, thus detecting the fraction of load λj (0 ≤ λj ≤ 1, j = 1, 2)
for which the end of linear behavior for each type of condition is reached. The maximum admissible
increment of load that can be applied is defined by the value λ = min(λj), these λj being associated
to the following situations:

1. Reduction of the contact zone, originated by the appearance of tractions at a node, n, of body A:

tA
1 (n)i−1 +�tA

1 (n) > 0. (114)

The correct value of λ1 is calculated identifying the final value of the normal stress in (114)
with zero.

tA
1 (n)i = tA

1 (n)i−1 + λ1�tA
1 (n) = 0 �⇒ λ1 = − tA

1 (n)i−1

�tA
1 (n)

. (115)

The node will be moved, after the application of this increment of load, from ∂DA
c to ∂DA

t .
The situations described here can obviously arise at several nodes, the value of λ1 defined by
(115) being the minimum of all.

2. When there are nodes of A that trespass the boundary of body B, this means an increase in
the size of the contact zone. Under the hypothesis of small displacements, it is normal to
work with a gap associated to each node of body A (for instance the distance, projected on
the normal, from the node of A to the corresponding point of the boundary of body B). The
fraction of load that must be applied is that which makes the gap zero:

g(n)i = g(n)i−1 + λ2δ1(n) = 0 �⇒ λ2 = −g(n)i−1

δ1(n)
. (116)

After the application of the increment of load the node will pass from ∂DA
t to ∂DA

c .

After an increment of load the geometry (and consequently the integration constants) may
be updated, allowing the consideration of situations different from those covered by the small
displacement theory.
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6 BEM analysis of delamination in 0◦/90◦ laminate

The presence in a laminate of laminas oriented 90◦ with respect to the preferred direction of load
generates almost immediately the appearance in these laminas of cracks transversal to the load
(parallel to the fibers in the lamina). These cracks reach the interface with the neighboring lamina,
which is usually oriented 0◦. This can originate the bifurcation of the crack, which appears to
be propagating as a delamination crack between the two laminas. The stress states that appear at
the neighborhood of the tips of the transversal cracks terminating at an interface and of the tips
of the interface cracks are very complex and have attracted the attention of a great number of
authors (see for instance Ang et al. [5], Hwu and Hu [58], Tewary and Kriz [131] and Ting and
Hoang [134], among others). The length of the delamination crack, oriented parallel to the load,
may originate the appearance of contact between the crack faces. Each lamina can be modeled,
considering it from a macroscopic point of view, as a homogeneous orthotropic material subjected
to a generalized plane strain state.

The laminate under consideration in this study is a [0m, 90n]S under tension as described in
fig. 14. A crack transversal to the load is present in the 90◦ lamina. Due to the symmetry, only
one fourth of the problem requires to be studied.

Material characteristics of both laminas are as follows, direction 1 corresponding to the fiber
direction: E11 = 45.6 GPa, E22 = E33 = 16.2 GPa, ν12 = ν13 = 0.278, ν23 = 0.4, G12 = G13 =
5.83 GPa, G23 = 5.786 GPa.

The load is defined by a displacement, uy = 0.02 mm, imposed at the top side, and a generalized
plane strain state, with a transversal strain applied of εzz = −0.001258 which corresponds to the
application of a nominal elongation of εyy = 0.01 for the undamaged material, is assumed in both
laminas.

6.1 Stress State at the neighborhood of the crack tip

In Mantič et al. [77] a detailed study of the stress state that appears at the neighborhood of the
delamination crack of this specimen for a length of L = 2 mm is performed. Results corresponding
to this problem and d/L = 0.1 are shown in fig. 15. The dashed line that appears in the graph
corresponding to σxx represents the values obtained for the case in which the transversal crack is
complete and there is no delamination crack, d = 0.

Two comments are appropriate with reference to the understanding of the results obtained [77]:

• At the neighborhood of the interface crack tip very high and localized values of normal stresses
σxx are obtained, which apparently have singular character. It is worth observing that these
values correspond to tension, while this area is placed in a zone where nominal stresses are
given by compression (understanding as nominal the values obtained for the case d = 0 taken
as reference and included in fig. 15. A detail of this distribution of σxx in the zone discussed
is shown in fig. 16.

• In agreement with the distribution of stresses σxx at the neighborhood of the interface crack tip,
where there is a zone with zero stresses, a separation of boundaries of both laminas appears.
The appearance of this bubble has already been explained in Section 2.1.2 (see fig. 4). The
morphology of the bubble numerically computed, shown in fig. 17, is absolutely similar to
that predicted by analytical studies of interface cracks between isotropic materials carried out
by Comminou and Schmueser [24] and Gautesen and Dundurs [41].

The actual situation, in accordance with the discretization performed (as will be seen, more
extremely refined discretizations would not produce more useful information from a Fracture
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Figure 14: Configuration of the problem.

Figure 15: Results for L = 2 mm and d/L = 0.1.
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Figure 16: σxx at the crack tip (d/L = 0.1).

Figure 17: Gap at the crack tip (d/L = 0.1).

Mechanics point of view), is the following. The near-tip contact zone predicted by the contact
model has not been found in the BEM analysis performed due to the fact that the estimated size
of this zone, of an order of 10−70 mm, is not detectable by the discretization carried out. In view
of this extremely small size of the near-tip contact zone predicted, the small-scale contact (SSC)
conditions are fulfilled, the open model being adequate for an analysis of the delamination crack
growth. Consequently, a singular distribution of both traction components, σxx (that is bounded
in the contact model of the interface cracks, Section 2.1.2) and σxy, has been obtained.

In [77] it is shown that, although the distribution of the stresses along the interface, at the
neighborhood of the crack tip, is qualitatively similar for any delamination crack, for the cracks
with length smaller than d = 0.1 mm (one half of that here presented but significantly greater
than 0.005 mm which is the size of the bubble for d = 0.2 mm), there is no finite contact zone.
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Figure 18: Values of the ERR G as a function of d/L for the configuration of plain strain and
generalized plain strain.

Consequently, the whole delamination crack appears to be open. In contrast, for greater lengths
of the delamination crack (as for the size here considered) there is always a finite contact zone
(separated from the crack tip by a bubble) whose appearance is basically due to the Poisson effect
of the 90◦ lamina.

6.2 Energy release rate of the delamination crack

Figure 18 represents the evolution of the ERR by a delamination crack as a function of its size.
The two parts of the ERR corresponding to Modes I and II have been separately represented. The
upper index ‘int’ (used in Sections 2 and 3) has here been omitted from ERR values because it is
not ambiguous in this section, where kinking is not considered.

It can be observed that except for small lengths of delamination the growth will be controlled
by Mode II, which is obviously coherent with the relative orientation of the crack with respect
to the load. Nevertheless, it is quite significant for the generation and progression of the crack
in the earlier state that the dominant mode is I due to the smaller value of the fracture toughness
associated to this mode.

In fig. 18 the results corresponding to the plane strain case have also been included in order to
compare them with those corresponding to generalized plain strain. It can be observed that the
results corresponding to the two models are for this particular case qualitatively similar and only
differ slightly from a quantitative point of view.

In accordance with the evolution of the ERR G with the delamination, it is suggested that there
is a period of stable initiation of the crack (dominated by Mode I), followed by another period
of unstable crack growth (up to a length of 20% of L, d = 0.4 mm, in the configuration studied).
Finally, a period of stable growth, consistent with the fact that G must tend to zero when d tends
to L, appears.
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Figure 19: Comparison of the values of G normalized by effective stress for different delamination
cracks.

Figure 19 shows the influence of the length of the specimen on the evolution of the ratio G/σ2
yy

versus d , σyy being the average stress applied. From the figure it is clearly noticeable that the
functional dependence of G on σyy has the form:

G = σ2
yyF(d ). (117)

An immediate consequence of this relation is its lack of dependence on the length of the specimen.
The points that appear in the figure out of the plateau value correspond to the natural evolution of G
on d when the crack approaches the end of the specimen (L = 2 mm and L = 4 mm in the figure).
The fact of having found a plateau value of G/σ2

yy is related to the results obtained analytically
for a specimen of infinite length by O’Brien [91], using a very simple model. The value obtained
using an O’Brien model for the case under consideration is G/σ2

yy = 1.09 × 10−5kJ × m2/kN2,

whereas the value numerically obtained is G/σ2
yy = 0.94 × 10−5kJ × m2/kN2.

6.3 Concluding remarks

The stress state found at the neighborhood of the crack tip for different lengths of the delamination
crack is qualitatively independent of the length of the crack. Once a certain significant length of
the crack is reached, a finite contact zone separated from the crack tip by a bubble appears. Thus,
the characteristic singular behavior (associated to the open model of interface cracks) of both,
normal and tangential, stresses takes place ahead of the delamination crack tip.

If the test is displacement controlled (fig. 18) the study of the ERR of the delamination crack
shows that there is initially an evolution of ERR with the delamination length under mixed mode,
an evolution which is independent of the length of the specimen. Sizes at which this behavior
appears are very small and of questionable application for Fracture Mechanics considering the
plies as homogeneous. The length of the crack at which Mode I disappears is comparable to
a length at which Fracture Mechanics can be applied, the growth of the crack being from this
moment under pure Mode II.
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7 BEM analysis of propagation of fiber/matrix interface crack subjected to
transversal load

Under loads normal to the direction of the fibers, composites suffer failures that are known as
matrix or inter-fiber failures, typically involving interface cracks between matrix and fibers, the
coalescence of which originates macrocracks in the composite, as shown in fig. 20. The purpose
of this section is to develop a micromechanical model, using the BEM, to generate information
aiming to explain and support the mechanism of appearance and propagation of the damage. To
this end, a single fiber surrounded by matrix and with a partial debonding is considered in this
study.

A scheme of the micromechanical view of the failure is represented in fig. 21, where all stresses
that might have any influence in the failure, París et al. [102], appear, though only σ22 is considered
in this study. In particular, in fig. 21(a) the failure at a plane in an idealized configuration of a
fibrous composite is presented, a failure along a vertical plane being assumed in this case. This
failure at micromechanical level involves, as a first step of the mechanism of damage, the presence
of a crack running between the fiber and the matrix as is indicated in fig. 21(b). The second step
of the mechanism includes the kinking of the crack, once it has grown to a certain extension in the
interface, then continuing its propagation through the matrix and coalescing with other cracks,
then giving rise to a macrocrack.

This exercise is divided into two parts corresponding to both steps of the mechanism of failure.
In the first one the circumferential interface crack between the fiber and the surrounding matrix is
considered (Section 7.2). In the second one the kink and penetration of the crack into the matrix
is considered (Section 7.3).

7.1 The BEM model

The geometry of the target problem appears in fig. 22. Results for the first step of the mechanism
of damage under study, that is, the propagation of the crack along the interface, are obtained
using a model where boundaries corresponding to the kinked crack are not considered, a similar
configuration having already been studied by París et al. [101]. The BEM model employed
considers the possibility of the appearance of a contact zone and makes use of linear continuous
elements. To characterize the problem from the Fracture Mechanics point of view, the ERR for a
determined debonding θd is used:

Gint(θd ) = lim
δ→0

1

2δ

∫ θd +δ

θd

{
(σrr)θd (�ur)θd +δ + (σrθ)θd (�uθ)θd +δ

}
dθ, (118)

Figure 20: Matrix/inter-fiber failure.
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Figure 21: Micromechanical scheme of the matrix/inter-fiber failure.

Figure 22: The single fiber model employed.

where σrr and σrθ represent respectively radial and shear stresses along the interface and �ur and
�uθ their associated relative displacements, θd being the angle of the crack.

All results have been obtained for a glass-epoxy system of properties: νf = 0.22, νm = 0.33,
Gf = 29 × 109 Pa, Gm = 1.05 × 109 Pa, a = 7.5 × 10−6 m.

7.2 The interface crack

In this section the first part of the mechanism of damage under study, i.e. the evolution of the
crack along the interface, is studied. Three aspects have been considered here to be the main ones
in the study of the interface crack: the origin of the contact zone that appears between both lips
of the interface crack, the character of the stresses at both sides of the crack tip and the evolution
of the ERR as the crack grows along the interface.
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7.2.1 Contact zone size
In order to understand the evolution of the contact zone as the crack grows along the interface,
knowledge of the origin of the appearance of the contact zone is required. Two reasons were
mentioned by París et al. [101] to explain the appearance of this contact zone. One was the
change in the relative orientation of the end of the crack, when the crack grows, with respect to
the direction of the applied load. The other reason was the already mentioned fact, demonstrated
by Comninou [19], that there is always a contact zone in a crack between dissimilar materials.
The existence of this contact zone is independent of the presence of normal or tangential stresses,
although the size of the contact zone is a very small fraction of the crack length in the presence
of normal stresses and the contact zone can reach a significant part of the crack length under
tangential stresses.

To clarify the contribution of these effects to the appearance of the contact zone (the connection
with the type of growth of the crack will be studied later), the case of dissimilar materials studied
in [101] will be compared here with the case of similar materials using the properties of the
matrix. The applicability of the Comninou effect is restricted to the case of cracks between
dissimilar materials. Thus, studying the same configuration but with the same properties for both
the matrix and the fiber, the appearance of the contact zone should only be caused by the load
orientation effect.

Figure 23 shows the evolution of the contact zone versus the size of the crack, for both cases,
fiber and matrix and similar materials. A meaningful delay is observed in the appearance of the
contact zone for the case of similar materials with respect to the case of dissimilar materials.
This appearance, for similar materials, takes place for a debonding angle of 77◦, the code having
detected, with the discretization performed, no contact up to that point. This result is in excellent
agreement with Muskhelishvili solution [90] which gives 76.9884◦. Thus, it can be deduced that
all contact appearing for debondings lower than 77◦, for dissimilar materials, must be due to the
Comninou effect in either of its two variants, first caused by the normal stress when the crack is
very small and later leading to detectable size when large tangential stresses appear. From 77◦
on, the effect of the orientation of the load is added to the former ones.

Figure 23: Contact zone evolution versus debonding angle.
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Figure 24: Character of stresses at both sides of the crack tip for θd =60◦.

7.2.2 Study of the stresses character at both sides of the crack tip
For the case of dissimilar materials, the appearance of the contact zone in the interface crack is
specially perceived in the character of the stresses near the crack tip, París et al. [102]. Thus, it
was stated that for debondings lower than approximately 60◦, before appearance of a physically
relevant contact zone, normal and tangential stresses showed apparent singular character, in
agreement with the open model of interfacial cracks, Toya [137]. But for higher debondings
(see for instance the 60◦ case in fig. 24), in which the appearance of the contact zone is clear),
results obtained with the numerical model differ from the analytical solution associated to the
open model. The singular behavior of normal stresses along the bonded zone disappears (the
values of these normal stresses, in spite of the appearance of a contact zone, for the debonding
angle considered, being in tension). The singular behavior of the compression stresses is observed
in the incipient contact zone detected. The singular character of the tangential stresses is the same
as for lower debondings. For higher debondings, around 80◦, the observed tendency for the 60◦
case is maintained, though normal stresses turn into compressions in the bonded zone.

7.2.3 Energy release rate
The ERR and its components for Modes I and II, obtained with BEM, are represented jointly in
fig. 25. Analytical results, associated to the open model, predicted by Toya’s solution are also
included. An apparently unstable growth up to a maximum of Gint placed at the interval between
60◦ and 70◦ for the cases studied can be deduced from fig. 25. After the maximum of the curve,
there appears a zone of stable growth, where a load increase is necessary for the crack to grow.
Mode I decreases when a very small contact zone shows up (near 30◦ in the present BEM model)
and later disappears when the size of the contact zone becomes physically relevant.

The evolution of Gint, and its components Gint
I and Gint

II , with the debonding permits the appro-
priateness of using the two interface crack models to be clearly understood. When the debonding
is small and no relevant contact zone is detected (SSC conditions), the appropriate model to be
used is the open model and the criteria to predict the growth would be those associated to this
model, expression (65) in Section 3.2.1. On the other hand, when a relevant contact zone is
detected the appropriate model is the Comninou contact model, the growth being controlled by
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Figure 25: Gint, Gint
I , Gint

II and Gint
ana for the interface crack.

expression (70), Section 3.2.2. Note the difficulty of establishing the type of growth in the period
under SSC conditions (θd ≤ 60◦ � 70◦) where the open model is applicable. In this interval of
debondings the mode mixity is strongly changing and consequently the fracture toughness Gint

c
is increasing to a great extent in accordance with Section 3.2.1.1. The maximum of this fracture
toughness function is the toughness value that controls the growth for greater debondings, Gint,C

c ,
where the contact model is applicable.

7.3 Kinking of the interface crack

The study of kinking using BEM can be divided into two different phases: first of all, the deter-
mination of the direction of propagation of the kinked crack through the matrix and, secondly, the
evaluation of the ERR of the kinked crack along the estimated direction; this parameter will not
only allow the character of the growth of the kinked crack to be analyzed, but also would help
to decide, by means of a comparison with the ERR of the interface crack, whether the kinking
would take place or not at a specified debonding angle.

7.3.1 Orientation of the kinked crack
Referring to the first question, i.e. the search for the expected direction of kinking, maximum
circumferential stress (MCS) criterion is applied (see Section 3). Therefore, it is assumed that, if
the crack growing along the interface changes its direction of growth to penetrate into the matrix,
the chosen direction of growth is that along which the circumferential stress was maximum, based
on the fact that Mode I is, in general terms, the main cause of a crack growing and it is along
MCS direction that the effect of this mode dominates.

Thus, a numerical study aimed at determining the direction of the MCS at the neighborhood
of the crack tip is first performed for two debonding angles θd = 60◦ and 70◦, angles in whose
neighborhood it has been found that, as was explained in fig. 25, the stable character of growth
of the crack starts.
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Figure 26: Circumferential stress at the neighborhood of the crack tip.

In the context defined, the value of the circumferential stress along a circumference centred
at the crack tip is calculated for different angles of this circumference (fig. 26). The selection of
the characteristic distance to the crack tip, referred as radius R at which the study is going to be
carried out, must be performed carefully. On one hand the value of R must be small enough in
order to allow the possible change of direction of the crack be controlled by the stresses, but on the
other hand it must be large enough to maintain the physical meaning of the matrix as a continuum
media. Two values of R (R = 0.1% and 1% of the fiber radius a) satisfying these conditions have
been considered.

From the results shown in the fig. 26 it is important to point out that the MCS appear, for the
two radii considered, for a value of the circumferential coordinate between 65◦ and 70◦. This
direction corresponds to the expected direction, normal to the load, and, moreover, this result can
be considered independent of the radius in the range studied. Thus, this conclusion leads us to
think that, if kinking occurred, it would not only start in the direction normal to the load, but also
the crack growing through the matrix would maintain this direction at least as far as a distance
equivalent to the greater value of the radii used, R = 0.01a, if no other external factor disturbed
crack propagation.

It has to be emphasized that the T-stress term has no noticeable influence in these numerical
calculations on the direction of maximum σθθ , which supports, at least in this case, the use of
MCS criterion based exclusively on the singular term of σθθ stress series expansion.

It is of interest to extend the study carried out for the debondings of 60◦ and 70◦ to a wider
range of debondings, 25◦ to 90◦, in order to find out whether, for debondings apart from the
mechanically expected range of debondings at which kinking occurs, the MCSs also suit the
direction normal to the load.

Conclusions obtained from the results of this study can be better understood on the scheme
of a fiber fig. 27, where the evolution of the directions of MCS along the fiber-matrix interface
has been plotted for the range of θd under study. An interval of directions is represented when
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Figure 27: Directions of maximum circumferential stress.

there is a variation in the angle of MCS for different radii R of inspection between 0.01a and
0.001a. The angle predicted by eqn (71) is also represented for comparison. It is possible to
observe that the value of this angle is placed in the interval of directions numerically predicted
by the MCS criterion for θd greater than 50◦. This is due to the fact that for these debondings a
non negligible contact zone appears at the interface crack tip and the singular asymptotic term
of the Comninou contact solution starts to govern the near-tip solution at physically meaningful
distances, as R = 0.01a and R = 0.001a considered.

It is clear how the angle of MCS is approximately oriented normal to the nominal load only for
values of θd in the interval between 60◦ and 70◦, which makes again this interval as the candidate
to change the damage from debonding to kinking.

A final interesting point to highlight in the results is that the MCS for each θd reaches its
maximum as a function of the θd between 60◦ and 70◦. Bearing all this in mind it seems logical
to think that the value of the debonding angle at which the kinked crack goes into the matrix
along the direction of MCS, this direction being normal to the load, is around the interval of
60◦−70◦ of θd .

7.3.2 Energy release rate at kinking
This section will evaluate how possible it is for a crack that is growing along the interface to
go into the matrix following the kinking direction previously determined. To this end an ERR
analysis at kinking is going to be performed.

The ERR of a kinked crack associated to a debonding of 70◦ and penetrating into the matrix
along the direction of MCS is now calculated. The results of this case are shown in fig. 28, where
ERR values appear, as well as their components, versus the length of the kinked crack.

The unequal contribution of the two modes of failure to the total ERR is first of all noticeable
for both cases. While contribution of Mode I, Gkink

I , is very important, the contribution of Mode
II ERR component, Gkink

II , is almost non-existent. This result was foreseeable, observing the
completely transversal position of the applied load in relation to the direction of the kinked crack.

Referring to the evolution of the ERR, it can be observed that it increases with the crack length.
Thus, taking into account that Mode I completely dominates the growth it can be concluded that
crack propagation is unstable. In this situation, once kinked, no additional load increase would
be necessary for the crack to continue growing.
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Figure 28: Gkink, Gkink
I and Gkink

II for a growing kinked crack for θd =70◦.

Figure 29: Comparison between ERR of an interface crack and kinked cracks.

Having studied the case of a 70◦ debonding, the behavior for different debondings is now
investigated in order to evaluate the variation with the debonding of the ERR of the kinked crack.
Results obtained for debondings in the range under study suit the idea of arising character of the
ERR with the length of the kinked crack, previously observed for the 70◦ case. Minimum values
of the curves Gkink−θd for each debonding in the range under study, that is, nearly asymptotic
values of the ERR of the kinked cracks, are represented jointly in fig. 29. The tendency shown
in fig. 29 favours the idea that, if kinking appears, the most plausible debonding angles are those
between 60◦ and 70◦, where Gkink and Gkink

I reach a maximum.
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In order to have more information about the plausibility of such an occurrence, it is necessary
(although not sufficient to conclude whether the kinking appears because, according to (62), it
involves the Gint

c and Gkink
c values of interface and matrix) to compare the ERR of the crack prop-

agating through the matrix, shown in fig. 25, with the ERR of the crack continuing to grow along
the interface. Thus, this curve is additionally represented in fig. 29. For the sake of completeness
the values of the ERR of a kinked crack growing in the direction of MCS have also been included,
in addition to the case of vertical kinked cracks predominantly studied here.

First of all, the two cases of the kinked cracks considered show a coherent evolution with the
debonding angle. The values coincide at 70◦ debonding where the direction of MCS is approxi-
mately normal to the nominal load, the values of G at the neighborhood of 70◦ being very close
to each other. The main discrepancies appear for small angles where, in agreement with fig. 27,
the MCS direction is quite far from normal direction to the load, the effect of Mode I, which was
the dominant contributor to Gkink, then being less important.

With reference to the comparison of the ERRs for the kinked crack versus the crack continuing
to grow along the interface, the significantly greater values of the ERR of the kinked crack in the
interval of interest are quite apparent. It has additionally to be remembered that the presumably
unstable growth of the interface crack (after fig. 25) up to a debonding at the neighborhood of
60◦−70◦ where the stable growth clearly starts, would theoretically prevent the crack (unless
interference with another crack arose) from separating from the interface. At debondings between
60◦ and 70◦ the maximum differences appear between the ERR of the crack continuing to grow
along the interface and the kink, it having been made clear previously that whereas the growth of
the crack along the interface is stable, the growth of the crack penetrating the matrix is unstable.

In addition, and although, as was previously stated, the prediction of growth of the crack along
two alternative paths would imply a knowledge of the fracture toughness for the interface and
for the matrix, it has to be remembered at this point that whereas the growth along the interface
is approximately in Mode II, for larger debonding values, the growth through the matrix is in
Mode I, the values of the fracture toughness for Mode I for a determined configuration (material
or interface) being significantly smaller than the values of the fracture toughness for Mode II.

All of this supports the idea that the most plausible values of the debondings at which kinking
can appear are in the interval between 60◦ and 70◦.

7.4 Concluding remarks

A micromechanical model attempting to represent the real mechanism of matrix failure of a
fibrous composite has been developed. First of all, the nature of the contact zone that appears
between fiber and matrix has been clarified. This is an important aspect of the problem because
the appearance of the contact zone controls the validity of the open model or of the contact model.

When representing the evolution of the ERR with the debonding, it can be seen that the values of
the ERR predicted by the open model and the contact model almost coincide until a contact zone of
macromechanical meaning appears, which starts to happen for a debonding of 60◦. For debondings
greater than this, the open model predicts greater values than the contact model (París et al. [101]),
the correct model to use being the second one.

From a Fracture Mechanics point of view, the evolution of ERR with the debonding angle has
shown, for debonding angles greater than those in the interval 60◦−70◦, that the energy released
is purely in Mode II and the growth of the crack is stable. Comparing this evolution with that
of the energy released by a kinked crack for the interval mentioned, the mechanical conditions
are favorable for a crack running along the interface to leave it and penetrate into the matrix at a
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value of debonding in the interval mentioned, a fact that can be observed experimentally with a
reasonable degree of repeatability.

8 Conclusions

A comprehensive review of the present state of knowledge of interfacial fracture mechanics and
its applications to composite materials at different levels of modeling have been presented.

The two linear elastic models of interface cracks, open model due to Williams [145] and contact
model due to Comninou [19], have been described and reviewed in parallel. A few new theoretical
results have been introduced. They may provide a rounded off explanation of the theory available
at present. Existing relations between the two models and the adequacy of each model for a
particular situation have been discussed in depth.

It is worth mentioning that in the framework of the open model, a new relation between
the measures of mixity of fracture Modes I and II based on the SIF approach and on the ERR
approach has been deduced. This new and simple relation permits new connections between these
two approaches to be generated. In this chapter both approaches have been developed in parallel,
self propagation growth of an interface crack and kink appearance together with growth criteria
have been revised and the conclusions obtained have been used in the examples shown.

Theoretical fundamentals of the BEM applied to the solution of two-dimensional elastic
problems in orthotropic materials have been presented in a concise and modern way using advan-
tages of both, Lekhnitskii and Stroh, complex variable formalisms of two-dimensional elasticity.
Orthotropic elastic materials in two-dimensions are classified in two classes depending on the
number of different roots of the Lekhnitskii-Stroh characteristic equation of a material, mathe-
matically non-degenerate with different roots and mathematically degenerate with repeated roots
of this equation. Explicit and compact formulae of the integral kernels in the Somigliana displace-
ment and stress identities together with the formulae of the coefficient tensor of the free term in
the Somigliana displacement identity have been presented for both classes.

An advanced BEM code with the capacity to solve non-linear, friction and frictionless, contact
problems has been applied to the analysis of problems in the applications presented.An outstanding
feature of this code is its capacity to deal efficiently with non-conforming discretizations of
interfaces and contact zones by a weak imposition of the interface and contact conditions. It is
also worth mentioning that the removal of the rigid body movements in traction problems is carried
out using a procedure based on the Fredholm theory of the boundary integral equations in this code.

The two applications developed have led to several conclusions, some of them deserve to be
mentioned.

With reference to the delamination cracks studied in the [0m, 90n]S laminate, it has been found
that for a nominal level of load applied, ERR is, from a certain small length of the crack (of a
value which is independent of the length of the specimen, and at which Fracture Mechanics at
the meso-mechanical level of modeling used is applicable), a constant value and in pure Mode II.
This result is in accordance with analytical predictions obtained by means of simplified models.

With reference to the debonding cracks between fiber and matrix the BEM model developed
has been used to generate knowledge about the micro-mechanical aspects of the circumferential
growth of the crack along the interface and the possibility of its kinking and penetrating into
the matrix. In this problem some conclusions derived from the theory developed are applicable.
Thus, if the local state of stress predicted by Comninou solution controls the growth of the
interfacial crack and its kinking, then the constant relation between the ERR of the interface crack
and the ERR of the kinked crack for any debonding implies that as soon as a contact zone of
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macro-mechanical meaning appears, the interface crack will kink for this value of the debonding
or will not kink for greater debondings. This fact can be quite well observed experimentally.

The knowledge generated in this chapter and in connected publications with the BEM model
here presented can constitute the basis for proposing in the future inter-fiber and delamination
failure criteria based on the actual mechanism of failure.
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[80] Mantič, V. & París, F., Symmetrical representation of stresses in the Stroh formalism and
its application to a dislocation and a dislocation dipole in an anisotropic elastic medium.
J. Elasticity, 47, 101–120, 1997.
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