

B1: Evidence on physical activity for adults (18 to under 65 years of age)

Guiding Questions

- B1. What is the association between **physical activity** and health-related outcomes?
 - a. Is there a dose response association (volume, duration, frequency, intensity)?
 - b. Does the association vary by type or domain of physical activity?

Inclusion Criteria

Population: Adults 18 years of age and older

Exposure: Greater volume, duration, frequency or intensity of physical activity **Comparison:** No physical activity or lesser volume, duration, frequency, or intensity of physical activity

Outcomes	Importance
All-cause and cause-specific mortality	Critical
Incidence of CVD	Critical
Incidence of cancer	Critical
Incidence of Type 2 Diabetes	Critical
Adiposity/Prevention of weight gain/Body composition	Critical
Mental health outcomes (e.g. depressive symptoms, anxiety symptoms)	Critical
Cognitive outcomes (e.g. dementia, cognition)	Critical
Sleep duration and quality	Important
Incidence of hypertension	Important
Health-related quality of life	Important

Abbreviations: CVD = cardiovascular disease; NA = not applicable; PA = physical activity

Included Evidence

Seventy-five reviews (published from 2017 to 2019) were initially identified that examined the association between physical activity and health-related outcomes among adults (1-75). However, 35 reviews were excluded from further evaluation given the study design, populations, exposures, or outcomes that were out-of-scope or other concerns regarding the quality or relevance of the review. **Table 2.1** presents the reviews that were excluded and their reason for exclusion.

Table 2.2 presents the ratings for each remaining review according to all the AMSTAR 2 main domains. In general, the included reviews had many limitations in their design, execution, and reporting. Only two systematic reviews were rated as having high credibility based on the AMSTAR 2 instrument. Fifteen were rated as having moderate credibility, 11 were rated as having low credibility, and the remaining 9 were rated as having critically low credibility. Given concerns regarding the comprehensiveness and the validity of the results presented in reviews rated as having critically low credibility, they were not incorporated into the final Evidence Profiles. All 3 pooled cohort studies were rated as good quality according to the Newcastle-Ottawa Scale (**Table 2.3**).

Table 2.4 lists the 28 reviews and 3 pooled cohort studies that were included in the evidence profiles by outcome. Most of the included reviews searched for evidence through 2016 or 2017; very few reviews searched for evidence into 2018 or 2019. As a result, very few individual studies represented within the reviews were published in 2018 or 2019. Most reviews had narrow foci in terms of study designs, exposures (limited to specific types of physical activity), and outcomes. Extracted data for each included review is presented in **Appendix 2.**

Table 2.1. Excluded Systematic Reviews, with Reasons for Exclusion

Author, Year	Reason for Exclusion	Rationale
Al Tunaiji 2019 <i>(1)</i>	Design	Includes no studies published after 2017
Amirfaiz 2019 <i>(3)</i>	Outcome	Outcome (metabolic syndrome) out of scope
Banno 2018 <i>(5)</i>	Population	Review limited to persons with insomnia; not generalizable
Coenen 2018 (16)	Exposure	Occupational physical activity
Colpani 2018 <i>(17)</i>	Exposure	Any lifestyle factor, not physical activity independently
Del Pozo-Cruz 2018 <i>(18)</i>	Exposure	Replacing sedentary time
Fernandes 2018 (22)	Exposure	Acute exercise only
Flahr 2018 <i>(23)</i>	Population	Review limited to studies of shift workers; not generalizable
Fuezeki 2017 <i>(24)</i>	Design	Analysis of NHANES data only
Guo 2017 <i>(27)</i>	Exposure	Any cardiovascular health metric
Halloway 2017 <i>(28)</i>	Outcome	MRI brain imaging
Herold 2019 <i>(30)</i>	Outcome	Required measures of functional or structural brain changes
Hussenoeder 2018 (32)	Design	Overview-of-reviews
Igarashi 2018a <i>(33)</i>	Outcome	Continuous blood pressure
Igarashi 2018b (34)	Outcome	Continuous blood pressure
Jiang 2017 <i>(35)</i>	Population	Review limited to persons with insomnia; not generalizable
Lewis 2018 (37)	Outcome	Outcome (zeitebers/circadian system time cues) out of scope
Lipnicki 2019 <i>(38)</i>	Design	Not a systematic review
Liu 2018 <i>(40)</i>	Design	Pooled data from Asia consortium; study is included in the review by Blond (11)
Lopez-Valenciano 2019 (41)	Outcome	Continuous blood pressure
Loprinzi 2018a <i>(44)</i>	Exercise	Acute exercise
Loprinzi 2018c <i>(42)</i>	Population	Most studies conducted with rodents
Lowe 2019 <i>(45)</i>	Population	Review limited to persons with insomnia; not generalizable
Murphy 2019 <i>(48)</i>	Outcome	Continuous blood pressure
Nordengen 2019 <i>(49)</i>	Outcome	Continuous blood pressure
Oja 2018 <i>(52)</i>	Outcome	Continuous blood pressure
Origua Rios 2017 (53)	Outcome	Results not presented by study nor in format amendable to GRADE evaluation
Prince 2019 <i>(56)</i>	Relevance	Aim is to examine the prevalence of different types of PA according to various occupational types
Shepherd-Banigan 2017 (62)	Relevance	Only 3 new trials identified that examined the effects of yoga on the incidence of hot flashes among peri- and post-menopausal women
Smart 2019 (64)	Outcome	Continuous blood pressure
Stringhini 2017 (67)	Design	Not a systematic review
Viana 2019 (71)	Quality	Statement of concern published by journal to alert readers of uncertainty about the weight and significance reported by authors
Wang 2019 (72)	Population	Review limited to persons with active sleep disturbances or insomnia; not generalizable
Wewege 2018 (74)	Redundancy	Review by Andreato 2018 is more recent, more comprehensive, and better quality and includes all included studies by Wewege; similar results were found with both reviews.
Zhang 2018 (75)	Outcome	Continuous blood pressure

Table 2.2. Credibility Ratings (based on AMSTAR 2 (76))

	R2 (na	seu on A		IR Z (70))									7			
Author, Year	PICO ¹	Apriori Methods ²	Study Design Selection ³	Lit Search Strategy ⁴	Study Selection ⁵	Data Extraction ⁶	Excluded Studies ⁷	Included Studies ⁸	RoB Assessment ⁹	Funding Sources ¹⁰	Statistical Methods ¹¹	Impact of RoB ¹²	RoB Results ¹³	Heterogeneity ¹⁴	Publication Bias ¹⁵	COI ¹⁶	Overall Rating ¹⁷
Amagasa 2018 (2)	Υ	Y	N	PY	Ν	Y	PY	Y	N	N	N/A	N/A	N	Y	N/A	Y	Low
Andreato 2019 (4)	Y	PY	N	PY	Y	Y	PY	Y	Y	N	Y	N	Y	Y	N	Y	Moderate
Barredo 2017 (6)	N	N	N	N	N	Y	N	N	PY	N	N/A	N/A	N	N	N/A	N	Critically Low
Baumeister 2019 (7)	Y	N	N	РҮ	Y	Y	PY	Y	Y	N	Y	Y	Y	Y	Y	Y	Moderate
Behrens 2019 (8)	Y	PY	N	PY	Y	Y	PY	PY	PY	N	Y	Y	Y	Y	Y	Y	Moderate
Benke 2018 <i>(9)</i>	Y	PY	N	PY	Ν	Y	PY	PY	Y	N	Y	Y	Y	Y	Y	Y	Moderate
Binkley 2019 (10)	N	N	Ν	N	Ν	Ν	N	Y	Y	N	N/A	N/A	N	N	N/A	N	Critically Low
Blond 2019 <i>(11)</i>	Y	PY	N	PY	Y	Ν	PY	Y	Y	N	Y	Y	Y	Y	Y	Y	Moderate
Boyer 2019 <i>(12)</i>	Y	N	Ν	N	Ν	Ν	N	Y	Y	Ν	Y	Y	Y	N	Y	N	Low
Brasure 2018 (13)	Y	Y	Y	PY	Y	Y	Y	Y	Y	Ν	N/A	N/A	Y	Y	N/A	Y	High
Chastin 2019 <i>(14)</i>	Y	Y	Y	PY	Y	Y	N	Y	PY	N	Y	Y	N	N	Y	Y	Moderate
Cocchiara 2019 (15)	Ν	N	Ν	PY	Y	Y	N	N	Y	Ν	N/A	N/A	N	N	N/A	Y	Critically Low
Dinu 2019 <i>(19)</i>	Y	N	Ν	PY	Y	Y	PY	PY	Y	N	N	Y	Y	Y	N	Y	Low
Ekelund 2019 <i>(20)</i>	Y	PY	Ν	PY	Ν	Y	PY	Y	Y	Ν	Y	Ν	Ν	Ν	Y	Y	Moderate
Engeroff 2018 (21)	Y	N	Ν	РҮ	Y	Y	PY	Y	PY	Ν	N/A	N/A	Y	Ν	N/A	Y	Moderate
Gordon 2017 <i>(26)</i>	Y	PY	Ν	PY	Ν	Ν	PY	PY	PY	Ν	Y	Y	Y	Y	Y	Y	Low
Gordon 2018 <i>(25)</i>	Y	PY	Ν	PY	Ν	Y	N	PY	PY	Ν	Y	Y	Y	Y	Y	Ν	Low
Hart 2019 <i>(29)</i>	Y	N	Ν	Ν	Y	Y	N	PY	PY	Ν	Y	Y	Y	Y	Y	Y	Critically Low
Hidayat 2019 <i>(31)</i>	Y	PY	Ν	PY	Y	Y	PY	N	Ν	Ν	Y	Ν	Ν	Y	Y	Y	Critically Low
Kovacevic 2018 (36)	Y	PY	Ν	Y	Y	Ν	PY	Y	PY	Ν	N/A	N/A	Y	Y	N/A	Y	Moderate
Liu 2019 <i>(39)</i>	Y	PY	Ν	PY	Y	Y	PY	PY	Y	Ν	Y	Y	Y	Y	Y	Ν	Moderate
Loprinzi 2018 <i>(43)</i>	Υ	N	Ν	PY	Ν	Ν	N	PY	Ν	Ν	N/A	N/A	Ν	Y	N/A	Y	Critically Low
Maillard 2018 <i>(46)</i>	Ν	N	Ν	PY	Ν	Ν	PY	N	Ν	Ν	Ν	Ν	Ν	Y	Ν	Y	Critically Low

Author, Year	PICO ¹	Apriori Methods ²	Study Design Selection ³	Lit Search Strategy ⁴	Study Selection ⁵	Data Extraction ⁶	Excluded Studies ⁷	Included Studies ⁸	RoB Assessment ⁹	Funding Sources ¹⁰	Statistical Methods ¹¹	Impact of RoB ¹²	RoB Results ¹³	Heterogeneity ¹⁴	Publication Bias ¹⁵	COI ¹⁶	Overall Rating ¹⁷
Martinez-Dominguez 2018 (47)	Y	PY	N	РҮ	Ν	Ν	PY	PY	Y	Ν	Y	Y	Y	Y	Y	Y	Moderate
Northey 2018 <i>(50)</i>	Y	РҮ	N	РҮ	Y	Y	PY	PY	Y	Ν	Υ	Y	Y	Y	Y	Y	Moderate
Paudel 2019 <i>(54)</i>	Y	Y	N	РҮ	Y	Y	PY	PY	PY	Ν	Ν	Y	Y	Y	Y	Y	Low
Perez-Lopez 2017 (55)	Y	РҮ	N	РҮ	Y	Y	PY	PY	Y	Ν	Y	Ν	Ν	Y	Y	Y	Moderate
Rathore 2017 <i>(57)</i>	Y	N	Υ	РҮ	Ν	Ν	Ν	Y	Y	Ν	Υ	Y	Y	Y	Ν	Y	Low
Robbins 2019 (58)	Y	РҮ	N	РҮ	Y	Y	PY	PY	PY	Ν	N/A	N/A	Ν	Y	N/A	Y	Low
Saeidifard 2019 (59)	Y	N	N	РҮ	Y	Y	PY	Y	Y	Ν	Ν	Ν	Ν	Ν	Ν	Y	Critically Low
Schuch 2018 <i>(61)</i>	Y	РҮ	Υ	Y	Y	Ν	Y	Y	Y	Ν	Υ	Y	Y	Y	Y	Y	High
Schuch 2019 <i>(60)</i>	Y	РҮ	Υ	РҮ	Y	Y	Y	Y	PY	Ν	Y	Y	Y	Y	Y	Y	Moderate
Stanmore 2017 (66)	Y	N	N	РҮ	Y	Ν	Ν	Y	Y	N	Y	Y	Y	Y	Y	Y	Low
Stutz 2019 <i>(68)</i>	Y	РҮ	N	РҮ	Y	Y	Ν	Y	Y	Ν	Υ	Y	Y	Y	Y	Y	Moderate
Su 2019 <i>(69)</i>	Y	PY	N	PY	Y	Ν	PY	PY	Ν	Ν	Υ	Ν	Ν	Y	Y	Y	Critically Low
Sultana 2019 <i>(70)</i>	Y	N	N	PY	Y	Y	N	Y	PY	Ν	Υ	Ν	Y	Y	Y	Y	Low
Wang 2017 <i>(73)</i>	Y	Ν	Y	РҮ	Ν	Y	Ν	Y	Y	Ν	Υ	Ν	Y	Y	Ν	Ν	Low

Abbreviations: COI = conflict of interest; N = no; N/A = not applicable; PICO = population, intervention, comparator, outcome; PY = PY; RoB = risk of bias; Y = yes

¹ Did the research questions and inclusion criteria for the review include the components of PICO?

² Did the report of the review contain an explicit statement that the review methods were established prior to the conduct of the review and did the report justify any significant deviations from the protocol?

³ Did the review authors explain their selection of the study designs for inclusion in the review?

⁴ Did the review authors use a comprehensive literature search strategy?

⁵ Did the review authors perform study selection in duplicate?

⁶ Did the review authors perform data extraction in duplicate?

⁷ Did the review authors provide a list of excluded studies and justify the exclusions?

⁸ Did the review authors describe the included studies in adequate detail?

⁹ Did the review authors use a satisfactory technique for assessing the risk of bias (RoB) in individual studies that were included in the review?

¹⁰ Did the review authors report on the sources of funding for the studies included in the review?

¹¹ If meta-analysis was performed did the review authors use appropriate methods for statistical combination of results?

¹² If meta-analysis was performed, did the review authors assess the potential impact of RoB in individual studies on the results of the meta-analysis or other evidence synthesis?

DRAFT Evidence profile prepared for the WHO Guideline Development Group FOR CONSULTATION ONLY

¹³ Did the review authors account for RoB in individual studies when interpreting/ discussing the results of the review?

¹⁴ Did the review authors provide a satisfactory explanation for, and discussion of, any heterogeneity observed in the results of the review?

¹⁵ If they performed quantitative synthesis did the review authors carry out an adequate investigation of publication bias (small study bias) and discuss its likely impact on the results of the review?

¹⁶ Did the review authors report any potential sources of conflict of interest, including any funding they received for conducting the review?

¹⁷ Shea et al. 2017. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both.

DRAFT Evidence profile prepared for the WHO Guideline Development Group FOR CONSULTATION ONLY

Table 2.3. Quality Ratings of Included Pooled Cohort Studies (based on Newcastle-Ottawa scale (77))

Table 2.3. (Quality Ratings	of Included	d Pooled Co	ohort Studi	es (based	on Newcastle-Ottav	va scale (2	77))	1.1			
Author, Year	Represen- tativeness of the exposed cohort	Selection of the non- exposed cohort	Ascertain- ment of exposure	Outcome of interest was not present at start of study	Bias in selection of the exposed cohort	Comparability of cohorts on the basis of the design or analysis	Bias due to con- founding	Assessment of outcome	Was follow- up long enough for outcome to occur	Adequacy of follow- up of cohorts	Bias due to outcome ascertain- ment	Quality Rating
O'Donovan 2017 <i>(51)</i>	Truly representative of the target populations of the corresponding countries	Drawn from the same community as the exposed cohort	Structured interview	Yes	Low	Controlled foo age, sex, smoking, total cholesterol, SBP, BMI, longstanding illness, and SES	Low	Record linkage	Yes	No statement	Low	Good
Siahpush 2019 <i>(63)</i>	Truly representative of the civilian noninstitutional population of the US	Drawn from the same community as the exposed cohort	Structured interview	Yes	Low	Controlled for BMI, alcohol consumption, presence of chronic condition, sex, age, poverty status, education, home ownership, marital status, race/ethnicity, nativity, and survey year	Low	Record linkage	Yes	Subjects lost to follow up unlikely to introduce bias	Low	Good
Stamatakis 2017 <i>(65)</i>	Truly representative of the target populations of the corresponding countries	Drawn from the same community as the exposed cohort	Structured interview	Yes	Low	Analysis controlled for BMI, age, educational attainment, presence of long-standing illness, weekly frequency of alcohol consumption, smoking habits, psychological distress/depression, number of servings of fruit and vegetables	Low	Record linkage	Yes	No statement	Low	Good

DRAFT Evidence profile prepared for the WHO Guideline Development Group FOR CONSULTATION ONLY

Table 2.4. Included Systematic Reviews, by Author

Table 2.4. Include	ed Systema	tic Review	s, by Auth	or									
					0	utcomes							
Author, Year	All-cause mortality	CVD mortality	Incidence of CVD	Incidence of cancer	Incidence of Type 2 Diabetes	Adiposity- related outcomes	Mental health- related outcomes	Cognitive function	Sleep	Incidence of HYP	Health- related QOL	Last Search Date	Credibility/ Quality
Amagasa 2018 <i>(2)</i>	Х					х	х	х				Jan-2017	Low
Andreato 2019 <i>(4)</i>						х						May-2018	Moderate
Barredo 2017 (6)											х	Nov-2015	Critically Low
Baumeister 2019 (7)				х								Aug-2018	Moderate
Behrens 2019 (8)				х			X.	0				Mar-2018	Moderate
Benke 2018 <i>(9)</i>				Х				5				July-2017	Moderate
Binkley 2019 <i>(10)</i>						х					х	Jan-2015	Critically Low
Blond 2019 (11)	Х	Х										Mar-2019	Moderate
Boyer 2019 <i>(12)</i>					х							Jun-2016	Low
Brasure 2018 (13)								х				Jul-2017	High
Chastin 2019 <i>(14)</i>	Х					х						Feb-2018	Moderate
Cocchiara 2019 (15)							х		Х			Feb-2017	Critically Low
Dinu 2019 <i>(19)</i>	х	х	х		х							Feb-2018	Low
Ekelund 2019 <i>(20)</i>	Х											Jul-2018	Moderate
Engeroff 2018 (21)								х				Nov-2017	Moderate
Gordon 2017 <i>(26)</i>							х					Feb-2017	Low
Gordon 2018 <i>(25)</i>							х					Aug-2017	Low
Hart 2019 <i>(29)</i>											х	Dec-2017	Critically Low
Hidayat 2019 (31)												Jul-2018	Critically Low
Kovacevic 2018 (36)									Х			Jun-2016	Moderate
Liu 2019 <i>(39)</i>												Aug-2018	Moderate
Loprinzi 2018 <i>(43)</i>								х				Sep-2017	Critically Low
Maillard 2018 (46)						Х						Jul-2017	Critically Low

Martinez-Dominguez 2018 <i>(47)</i>							х					Jul-2017	Moderate
					0	utcomes							
Author, Year	All-cause mortality	CVD mortality	Incidence of CVD	Incidence of cancer	Incidence of Type 2 Diabetes	Adiposity- related outcomes	Mental health- related outcomes	Cognitive function	Sleep	Incidence of HYP	Health- related QOL	Last Search Date	Credibility/ Quality
Northey 2018 <i>(50)</i>								х				Nov-2016	Moderate
O'Donovan 2017ª (51)	х	х										NA	Good quality
Paudel 2019 (54)					Х	Х				Х		Mar-2018	Low
Perez-Lopez 2017 (55)							Х		Х		Х	Jun-2017	Low
Rathore 2017 (57)								Х				Dec-2016	Low
Robbins 2019 (58)									Х			Sep-2018	Low
Saeidifard 2019 (59)	Х	Х	Х									Sep-2017	Critically Low
Schuch 2018 (61)							Х					Oct-2017	High
Schuch 2019 (60)							Х					Oct-2018	Moderate
Siahpush 2019 ^a (63)	Х	Х										NA	Good quality
Stamatakis 2017ª (65)	Х	Х										NA	Good quality
Stanmore 2017 (66)								Х				Jan-2017	Low
Stutz 2019 (68)									Х			Jun-2017	Moderate
Su 2019 <i>(69)</i>						Х						Jul-2018	Critically Low
Sultana 2019 (70)						Х						Jun-2019	Low
Wang 2017 (73)											Х	Jan-2015	Low

^a Not a systematic review. Pooled cohort analysis.

DRAFT Evidence profile – FOR CONSULTATION ONLY

Ø

B. ADULTS

B.1. Physical Activity

Questions: What is the association between **physical activity** and health-related outcomes? Is there a dose response association (volume, duration, frequency, intensity)? Does the association vary by type or domain of PA?

Population: Adults 18 years of age and older

Exposure: Greater volume, duration, frequency, or intensity of physical activity

Comparison: No physical activity or lesser volume, duration, frequency, or intensity of physical activity

 Table B.1.a. All-cause mortality: Association between physical activity and all-cause mortality among adults (in alphabetical order by author)

 See the Supplementary materials for description of evidence and conclusions of US PAGAC by outcome

	No. of	Quality A	ssessment					
Systematic review evidence Review credibility	studies/ Study design No. of participants	Risk of bias	Inconsistency	Indirectness †	Imprecision	Other	Description of evidence Summary of findings	Certainty
Amagasa 2018 <i>(2)</i> Low	4 cohort studies N=17,133	No serious risk of bias	No serious inconsistency	No serious indirectness	No serious imprecision	None	All four cohort studies used data from NHANES 2003 to 2004 and 2005 to 2006; age range 50 to 80 years and compared replacing SB with LPA (3/4 studies) or quintiles of LPA (1/4 study). 3/4 studies reported replacing 30-60 min of SB with LPA was associated with lower all-cause mortality risk after adjustment for MVPA (HR range, 0.80 to 0.88 [95% CI range, 0.73 to 0.92]). 1/4 only found an effect among women with low MVPA when comparing modest to high levels of LPA vs. very low LPA.	MODERATE®

DRAFT Evidence profile - FOR CONSULTATION ONLY

	No. of	Quality A	ssessment					
Systematic review evidence Review credibility	studies/ Study design No. of participants	Risk of bias	Inconsistency	Indirectness †	Imprecision	Other	Description of evidence Summary of findings	Certainty
Blond 2019 <i>(11)</i> Moderate	48 prospective cohort studies N=NR	No serious risk of bias	Serious inconsistency	No serious indirectness	No serious imprecision	Dose respo nse relatio nship	Five studies used accelerometers to measure PA while all other studies used self-reported PA. Eight measures included occupational PA. Most studies focused on MVPA or leisure-time PA. A curvilinear relationship was found between total PA and all-cause mortality (p non-linearity <0.001). Compared with 750 MET min/week, those participating in 2000 MET min/week (4 hrs/week) had a statistically significantly lower risk of all-cause mortality (HR = 0.82 [95% Cl, 0.81 to 0.84]) with an ARD = -16 deaths per 10,000 person years [95% Cl, 0.17 to -14 deaths]. Other comparisons presented below.	MODERATE

	No. of	Quality A	ssessment					
Systematic review evidence Review credibility	studies/ Study design No. of participants	Risk of bias	Inconsistency	Indirectness †	Imprecision	Other	Description of evidence Summary of findings	Certainty
Chastin 2019 <i>(14)</i> Moderate	12 prospective cohort studies N=127,724	No serious risk of bias	Serious inconsistency	Serious indirectness	No serious imprecision	None	Studies compared <u>high vs. low levels of physical activity</u> (as defined by each study, and inconsistent between studies). Of the 5/12 prospective cohort studies that were pooled two studies used self-report of light PA whereas 3 studies used accelerometer-measured light PA. Light PA was defined variably including 100-2019 counts/min, 100-1040 counts/min, using Freedson cutpoints, MET>1.5 – 2.99, or self-report light activity (e.g., very easy). Most studies were among adults ≥50 years. A pooled analysis of 5 studies reporting all-cause mortality found a statistically significant reduced risk of all-cause mortality for the highest vs. lowest levels of light intensity physical activity (HR = 0.71 [95% CI 0.62 to 0.83], 5 studies).	LOW
Dinu 2019 <i>(19)</i> Low	11 prospective cohort studies N=231,259	No serious risk of bias	Serious inconsistency	Serious indirectness	No serious imprecision	None	All studies evaluated the effects of <u>active commuting</u> (cycling 5 studies, walking 3 studies, mixed mode 3 studies) on health outcomes. Exposure levels of active commuting were variably reported as minutes spent walking or cycling for transportation per day, as dichotomized variables (yes or no), or as METs with the reference category as no active commuting in most studies. Follow-up ranged from 4 to 25 years. Persons engaged in <u>active commuting</u> had a significantly lower risk of all-cause mortality compared with those participating in no active commuting (RR = 0.92 [95% CI 0.85 to 0.98], 11 studies). When the 3 studies that had the largest estimates of effects were removed from the analysis, the heterogeneity was reduced (l ² of 67% to 11%) and the direction of effect changed (RR = 1.00 [95% CI, 0.96 and 1.04], 8 studies).	LOW ^d

	No. of	Quality A	ssessment					
Systematic review evidence Review credibility	studies/ Study design No. of participants	Risk of bias	Inconsistency	Indirectness †	Imprecision	Other	Description of evidence Summary of findings	Certainty
Ekelund 2019 <i>(20)</i> Moderate	8 prospective cohort studies N=36,383	No serious risk of bias	No serious inconsistency	No serious indirectness	No serious imprecision	Dose- respo nse relatio nship	Harmonized meta-analysis from eight prospective cohort studies, including data from 3 large surveillance systems and 2 from unpublished data. Mean age in studies was 63 years with median follow-up of 5.8 years (range 3 to 14.5 years). All 8 studies used accelerometers to measure PA and SB; exposure variables differed within each study including total volume of PA (cpm), min/day spend in intensity-specific variables (sedentary ≤100 cpm, light 101-1951 cpm, moderate to vigorous ≥1952 cpm, vigorous ≥5725 cpm), bouts of MVPA (10 or more minutes of consecutive readings ≥1952 cpm). Data was categorized into quartiles with the least active quartile as the referent. Compared with the lowest levels of PA, any level of PA regardless of intensity (i.e., total PA) was associated with a lower risk of mortality. The magnitude of risk for increasing quarter of total PA was least active (referent, 1.00), 2 nd quarter (adjusted HR = 0.48 [95% Cl, 0.43 to 0.54]), 3 rd quarter (adjusted HR = 0.34 [95% Cl, 0.26 to 0.45]), and 4 th quarter (adjusted HR = 0.27 [95% Cl, 0.23 to 0.32]). Higher levels of light intensity PA, low light intensity PA, and high light intensity PA were also significantly associated with reduced risk of death during follow-up as was MVPA (including when controlling for SB time) (table below). The low angle transmit to the associated with reduced risk of death during follow-up as was MVPA (including when controlling for SB time) (table below). The low angle transmit to the associated with reduced risk of a latent to the associated with reduced risk of latent the associated with reduced risk of a latent to the associated with reduced risk of latent belows. The low and the associated with reduced risk of latent belows. Intensity PA were also significantly associated with reduced risk of latent belows.	HIGHe

	No. of	Quality A	ssessment					
Systematic review evidence Review credibility	studies/ Study design No. of participants	Risk of bias	Inconsistency	Indirectness †	Imprecision	Other	Description of evidence Summary of findings	Certainty
Siahpush 2019 ^j <i>(63)</i> Good quality ^g	Pooled cohort analysis N=68,706	No serious risk of bias	No serious inconsistency	No serious indirectness	No serious imprecision	None	Smokers who reported <u>meeting aerobic and strengthening PA</u> <u>guidelines</u> ^h had significantly lower risk of all-cause mortality (adjusted HR = 0.71 [95% CI, 0.62 to 0.81]) than those not meeting either recommendation as did those meeting aerobic PA recommendations (adjusted HR = 0.81 [95% CI 0.75 to 0.88]) versus those not meeting either recommendation. There was no association between all-cause mortality and meeting strength recommendations (and not aerobic PA recommendations) vs. meeting neither recommendation (HR = 0.90 [95% CI,76 to 1.07]).	MODERATE
Stamatakis 2018 ^k <i>(65)</i> Good quality ^g	Pooled cohort analysis N=80,306	No serious risk of bias	No serious inconsistency	No serious indirectness	No serious imprecision	Dose- respo nse relatio nship ¹	Adherence to both <u>aerobic and strengthening PA guidelines</u> ^h vs. not adhering to either (adjusted HR = 0.71 [95% CI 0.57 to 0.87]) and adherence to the strength exercise guideline ^m vs. not adhering (HR = 0.80 [95% CI, 0.70 to 0.91]) was associated with significantly reduced risk of all-cause mortality Additionally, participation in any strength-promoting exercise vs. no strength-promoting exercise (adjusted HR = 0.77 [95% CI, 0.69 to 0.87]), as well as own-body-weight strength activities vs. none and gym-based strength activities vs. none were associated with a significantly reduced risk of all-cause mortality.	MODERATE®

Abbreviations: ARD = absolute rate difference; CI = confidence interval; cpm = counts per minute; HDL-C = high-density lipoprotein cholesterol; HR = hazards ratio; LPA = light physical activity; MET = metabolic equivalent of task; min = minutes; MVPA = moderate-to-vigorous intensity PA; NR = not reported; PA = physical activity; RR = risk ratio; SB = sedentary behaviour

* Serious indirectness indicates measurement of intermediate/indirect outcomes or heterogeneity in exposures and comparisons assessed; certainty of evidence was not always downgraded for indirectness if it was not judged to impact the certainty in the findings for the outcome evaluated in the review

^a Certainty of evidence upgraded given no serious limitations in included evidence

^b Certainty of evidence upgraded given no serious risk of bias of included studies and evidence of dose-response relationship; however, serious inconsistency (high between study variance, I²>77%) present ^c Certainty of evidence not upgraded given serious inconsistency in effects between studies and statistical heterogeneity and indirectness in comparisons of exposures

^d Certainty of evidence not upgraded given serious risk of bias (not appropriately adjusting for confounding), serious inconsistency (heterogeneity) and indirectness in comparisons of exposures

e Certainty of evidence upgraded given no serious limitations in the body of evidence, individual participant-level data meta-analysis, and evidence of a dose response relationship

^f Not a systematic review. Pooled analysis of nine cohorts of the Health Survey for England and the Scottish Health Survey and linked to the British National Health Service Central Registry for data on mortality ^g Quality rated based on the Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses (77)

^h 150 min/week of moderate-intensity leisure time PA, or at least 75 min/week of vigorous-intensity leisure-time PA, or an equivalent combination and performing strengthening exercises >2 times/week ⁱ Certainty of evidence upgraded given no serious limitations in included evidence

^jNot a systematic review. Pooled analysis of 1998-2009 National Health Index Survey and linked National Death Index

*Not a systematic review. Pooled analysis of 11 cohorts of the Health Survey for England and the Scottish Health Survey and linked to the British National Health Service Central Registry for data on mortality

¹There was evidence of a trend for greater reduced risk for all-cause mortality when comparing high, low, and no weekly volume of any strength exercise and own-body-weight strength activity ^m Performing strengthening exercises >2 times/week

ⁿ Certainty of evidence upgraded given no serious limitations in included evidence; some evidence of dose-response relationship but not judged to warrant further upgrading

	No. of Q	Quality A	ssessment					ł
Systematic review evidence Review credibility	Studies/ Study design R No. of participants	Risk of Dias	Inconsistency	Indirectness †	Imprecision	Other	Description of evidence Summary of findings	Certainty
Blond 2019 <i>(11)</i> Moderate	48 prospective N cohort se studies ri bi N=NR	No erious isk of bias	Serious inconsistency	No serious indirectness	No serious imprecision	Possib le public ation bias Evide nce of a dose- respo nse relati onshi p	Five studies used accelerometers to measure PA while all other studies used self-reported PA. Eight measures included occupational PA. Most studies focused on MVPA or leisure-time PA. An inverse relationship was found between PA and CVD mortality (<i>p</i> non-linearity <0.001). The mortality risk was lower for all PA levels above the recommended level compared with the recommended level (750 MET min/week). Compared with 750 MET min/week, those participating in 2000 MET min/week (4 hrs/week) had a statistically significantly lower risk of all-cause mortality (HR = 0.81 [95% CI, 0.77 to 0.85]) with an ARD = -5 deaths per 10,000 person years [95% CI, -6 to -4 deaths).	MODERATE ³

Table B.1.b. CVD mortality: Association between physical activity and CVD mortality among adults (in alphabetical order by author)See the Supplementary materialsfor description of evidence and conclusions of US PAGAC by outcome

	No. of Quality Assessment							
Systematic review evidence Review credibility	studies/ Study design No. of participants	Risk of bias	Inconsistency	Indirectness †	Imprecision	Other	Description of evidence Summary of findings	Certainty
Dinu 2019 <i>(19)</i> Low	9 prospective cohort studies N=177,239	Serious risk of bias	No serious inconsistency	Serious indirectness	No serious imprecision	None	All studies evaluated the effects of mixed mode (cycling and/or walking) active commuting on health outcomes. Exposure levels of active commuting were variably reported as minutes spent walking or cycling for transportation per day, as dichotomized variables (yes or no), or as METs with the reference category as no active commuting in most studies. Follow-up ranged from 4 to 25 years. There was no significant association between <u>active commuting</u> and CVD mortality compared with those participating in no active commuting (RR = 0.94 [95% CI 0.85 to 1.05], 9 studies).	LOW ^b
O'Donovan 2017 ^c <i>(51)</i> Good quality ^d	9 cohort studies N=37,059	No serious risk of bias	No serious inconsistency	No serious indirectness	Serious imprecision	None	Compared with those who met PA guidelines ^e and whose HDL-C was normal, CVD mortality risk was not significantly elevated in those who did not meet PA guidelines and whose HDL-C was normal (adjusted HR = 1.11 [95% CI, 0.82 to 1.52]); CVD mortality risk was elevated among those who did not meet PA guidelines and whose HDL-C was low (adjusted HR = 1.63 [95% CI 1.16 to 2.27]) compared with those meeting recommendations and with normal HDL-C.	LOW ^f
Siahpush 2019 ^g <i>(63)</i> Good quality ^d	Pooled cohort analysis N=68,706	No serious risk of bias	No serious inconsistency	No serious indirectness	No serious imprecision	None	Smokers who reported meeting aerobic and strengthening PA guidelines ^h (adjusted HR = 0.54 [95% CI, 0.39 to 0.76]), those meeting only aerobic PA guidelines (adjusted HR = 0.85 [95% CI 0.72 to 0.99]), and those meeting only strengthening exercise guidelines (HR = 0.63 [95% CI 0.43 to 0.93]) had significantly lower risk of CVD mortality than those not meeting both recommendations.	MODERATE
Stamatakis 2018 ^j <i>(65)</i> Good quality ^d	Pooled cohort analysis N=80,306	No serious risk of bias	No serious inconsistency	No serious indirectness	No serious imprecision	None	There was no association between participation in any strength exercises vs. no participation (adjusted HR = 0.88 [95% Cl, 0.71 to 1.08]) or meeting vs. not meeting the strength exercise guideline ^k (adjusted HR = 0.92 [95% Cl 0.72 to 1.12]) and CVD mortality, including analysis limited to own-bodyweight exercises and gym-based exercises.	MODERATE

Abbreviations: ARD = absolute rate difference; CI = confidence interval; CVD = cardiovascular disease; HDL-C = high-density lipoprotein cholesterol; HR = hazards ratio; MET =metabolic equivalent of task; min = minutes; MVPA = moderate-to-vigorous intensity physical activity; NR = not reported; RR = risk ratio; SB = sedentary behaviour

* Serious indirectness indicates measurement of intermediate/indirect outcomes or heterogeneity in exposures and comparisons assessed; certainty of evidence was not always downgraded for indirectness if it was not judged to impact the certainty in the findings for the outcome evaluated in the review

^a Certainty of evidence upgraded given no serious risk of bias of included studies and evidence of dose-response relationship; however, serious inconsistency (high between study variance, I²>77%) present; possible small studies effects/publication bias not judged as sufficient to warrant additional downgrading

^b Certainty of evidence not upgraded given serious risk of bias (not appropriately adjusting for confounding) and indirectness in comparisons of exposures

^c Not a systematic review. Pooled analysis of 9 population-based cohorts

^d Quality rated based on the Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses (77)

e 150 min/week of moderate-intensity leisure time PA, or at least 75 min/week of vigorous-intensity leisure-time PA, or any combination of moderate- and vigorous-intensity PA equivalent to at least 7.5 METh/week

^f Certainty of evidence not upgraded given imprecision in estimates of effects

^g Not a systematic review. Pooled analysis of 1998-2009 National Health Index Survey and linked National Death Index

^h 150 min/week of moderate-intensity leisure time PA, or at least 75 min/week of vigorous-intensity leisure-time PA, or an equivalent combination and performing strengthening exercises >2 times/week ¹Certainty of evidence upgraded given no serious limitations in included evidence

^jNot a systematic review. Pooled analysis of 11 cohorts of the Health Survey for England and the Scottish Health Survey and linked to the British National Health Service Central Registry for data on mortality * Performing strengthening exercises >2 times/week

¹Certainty of evidence upgraded given no serious limitations in included evidence and evidence of dose-response relationship

Table B.1.c. CVD incidence: Association between physical activity and CVD incidence among adults (in alphabetical order by author) See the Supplementary materials for description of evidence and conclusions of US PAGAC by outcome

Systematic review	No. of studies/ Study	Quality A	ssessment				Description of evidence Summary of findings	Certainty
evidence Review credibility	design No. of participants	Risk of bias	Inconsistency	Indirectness †	Imprecision	Other	<i>0''</i>	
Dinu 2019 <i>(19)</i> Low	5 prospective cohort studies N=183,872	Serious risk of bias	No serious inconsistency	Serious indirectness	No serious imprecision	None	All studies evaluated the effects of mixed mode (cycling and/or walking) active commuting on health outcomes. Exposure levels of active commuting were variably reported as minutes spent walking or cycling for transportation per day, as dichotomized variables (yes or no), or as METs with the reference category as no active commuting in most studies. Follow-up ranged from 4 to 25 years. Persons engaged in <u>active commuting</u> had a significantly lower risk of CVD incidence (coronary heart disease, stroke and heart failure) compared with those participating in no active commuting (RR = 0.91 195% C10.83 to 0.991, 5 studies).	LOWª

Abbreviations: CI = confidence interval; CVD = cardiovascular disease; MET = metabolic equivalents of task; PA = physical activity; RR = risk ratio

* Serious indirectness indicates measurement of intermediate/indirect outcomes or heterogeneity in exposures and comparisons assessed; certainty of evidence was not always downgraded for indirectness if it was not judged to impact the certainty in the findings for the outcome evaluated in the review

^a Certainty of evidence not upgraded given serious risk of bias (not appropriately adjusting for confounding) and indirectness in comparisons of exposures

DRAFT Evidence profile - FOR CONSULTATION ONLY

Table B.1.d. Cancer incidence: Association between physical activity and cancer incidence among adults (in alphabetical order by author)See the Supplementary materialsfor description of evidence and conclusions of US PAGAC by outcome

	No. of	Ouality A	ssessment					
Systematic review evidence Review credibility	studies/ Study design No. of participants	Risk of bias	Inconsistency	Indirectness†	Imprecision	Other	Description of evidence Summary of findings	Certainty
Baumeister 2019 (7) Moderate	14 prospective cohort studies N=2.39 million (2,738 cases)	No serious risk of bias	Serious inconsistency	No serious indirectness	No serious imprecision	None	Examination of the relationship between self-reported PA and liver cancer. Mean follow-up was 11.6 years (range 6-20 years); median age=45 years (range 20 to 93 years) at baseline. PA was significantly inversely associated with liver cancer risk , comparing high levels of PA to low levels of PA (HR = 075 [95% CI, 0.63 to 0.89]).	LOWª
Behrens 2019 <i>(8)</i> Moderate	3 prospective cohort studies (N=12,605 cases), 5 case-control studies (N=1,295 cases)	Serious risk of bias ^b	No serious inconsistency	No serious indirectness	No serious imprecision ^e	None	Studies examined the relationship between PA and melanoma risk. Most studies examined recreational PA. Cohort studies revealed a statistically significant positive association between high versus low physical activity and melanoma risk (RR= 1.27 [95% CI, 1.16 to 1.40]) whereas case-control studies yielded a statistically non-significant inverse risk estimate for physical activity and melanoma (RR = 0.85 [95% CI = 0.63–1.14]).	LOW ^d
Benke 2019 <i>(9)</i> Moderate	48 prospective cohort studies, 24 case-control studies (N=151,748 cases)	No serious risk of bias	Serious inconsistency	No serious indirectness	Serious imprecision	Possibl e publica tion bias	Evaluation of the association between physical activity and risk of prostate cancer. Mean age was 61 years and all studies used self-reported PA. There was no significant association between PA and total prostate cancer incidence when comparing the highest level of PA to the lowest (RR=0.99 [95% CI, 0.94 to 1.04], 50 studies). There was no difference in effects when stratifying by study design (cohort vs. case-control). The corresponding RRs for advanced and non-advanced prostate cancer incidence were 0.92 (95% CI, 0.80 to 1.06) and 0.95 (95% CI, 0.85 to 1.07), respectively.	VERY LOW ^e
Liu 2019 <i>(39)</i> Moderate	20 prospective cohort studies	No serious risk of bias	Serious inconsistency	No serious indirectness	No serious imprecision	Possibl e publica tion bias	There was a significant inverse relationship found between PA and lung cancer when comparing higher to lower levels of PA. Compared with low levels of PA, the pooled RR was 0.83 [95% Cl, 0.77 to 0.90]). Smokers with a high level of PA were associated with a 10% lower risk for lung cancer (RR = 0.90 [95% Cl: 0.84, 0.97], while the association	VERY LOW ^f

(N=31,807			was not significant among non-smokers	(RR= 0.95	[95% CI: 0.88,	
cases)			1.03].			

Abbreviations: CI = confidence interval; HR = hazards ratio; MET = metabolic equivalents of task; PA = physical activity; RR = risk ratio

* Serious indirectness indicates measurement of intermediate/indirect outcomes or heterogeneity in exposures and comparisons assessed; certainty of evidence was not always downgraded for indirectness if it was not judged to impact the certainty in the findings for the outcome evaluated in the review

^a Certainty of evidence not upgraded given serious inconsistency (direction and magnitude of effects of individual studies and I2>60%)

^b With the exception of one case-control study, none of the studies controlled for sun sensitivity or sun exposure on an individual level, in addition to other sources of potential bias

^cNo serious imprecision evident for cohort studies; serious imprecision for estimate of effect among case-control studies

^d Certainty of evidence not upgraded given serious risk of bias

e Certainty of evidence downgraded given serious inconsistency (direction and magnitude of effects and I2>70%), serious imprecision, and possible publication bias

^f Certainty of evidence downgraded given serious inconsistency (direction and magnitude of effects and I²>70%) and possible publication bias

	No. of	Quality A	ssessment					
Systematic review evidence Review credibility	Studies/ Study design No. of participants	Risk of bias	Inconsistency	Indirectness†	Imprecision	Other	Description of evidence Summary of findings	Certainty
Boyer 2019 <i>(12)</i> Low	27 prospective cohort studies N=1,150, 574	No serious risk of bias	Serious inconsistency	Serious indirectness	Serious imprecision	None	Studies examined the relationship between PA and type 2 diabetes in specific racial/ethnicity groups. Duration of follow-up ranged from 2 to 28 years. Method of diabetes ascertainment ranged considerably including medical records, reports of medication or insulin use, OGT tests, FBG, or self-report. A reduced risk of developing diabetes was found when comparing the highest vs. lowest levels of PA among non-Hispanic whites (RR = 0.71 [95% CI 0.60 to 0.85], 8 studies, n=238,719), Asians (RR = 0.74 [95% CI 0.64 to 0.84], 3 studies, n=10,817), and American Indians (RR = 0.73 [95% CI 0.60 to 0.88], 4 studies, n=7,022). The effect among non-Hispanic blacks was not statistically significant (RR = 0.91 [95% CI 0.76 to 1.08], 5 studies, n=30,452).	VERY LOW ^a
Dinu 2019 <i>(19)</i> Low	4 prospective cohort studies N=102,077	Serious risk of bias	Serious inconsistency	Serious indirectness	No serious imprecision	None	All studies evaluated the effects of mixed mode (cycling and/or walking) active commuting on health outcomes. Exposure levels of active commuting were variably reported as minutes spent walking or cycling for transportation per day, as dichotomized variables (yes or no), or as METs with the reference category as no active commuting in most studies. Follow-up ranged from 4 to 25 years. There was no significant association between active commuting and diabetes incidence compared with those participating in no active commuting (RR = 0.0.78 [95% CI 0.60 to 1.03], 4 studies).	VERY LOW ^b
Paudel 2019 <i>(54)</i> Low	3 cross sectional studies N=14,902	Serious risk of bias	No serious inconsistency	Serious indirectness	Serious imprecision	None	Examination of the association between PA and incidence of T2D among South Asian adults. All 3 studies found no association between total PA and T2D.	VERY LOW ^c

 Table B.1.e. Type 2 diabetes incidence: Association between physical activity and Type 2 diabetes incidence among adults

<u>See the Supplementary materials</u> for description of evidence and conclusions of US PAGAC by outcome

Abbreviations: CI = confidence interval; FBG = fasting blood glucose; OGT = oral glucose tolerance; PA = physical activity; NR = not reported; RR = risk ratio; T2D = type 2 diabetes

* Serious indirectness indicates measurement of intermediate/indirect outcomes or heterogeneity in exposures and comparisons assessed; certainty of evidence was not always downgraded for indirectness if it was not judged to impact the certainty in the findings for the outcome evaluated in the review

^a Certainty of evidence downgraded given serious inconsistency in direction of effects, serious indirectness in comparisons, and serious imprecision in pooled estimates of effects

^b Certainty of evidence downgraded given serious risk of bias (not appropriately adjusting for confounding), serious inconsistency in effects between studies and statistical heterogeneity and indirectness in comparisons of exposures

^c Certainty of evidence rated as very low according to authors given serious risk of bias and serious imprecision. Serious indirectness is also present given variability in comparisons

Table B.1.e. Adiposity-related outcomes: Association between physical activity and measures of adiposity among adults, by comparison and author

See the Supplementary materials for description of evidence and conclusions of US PAGAC by outcome

	No. of	Quality A	Assessment					
Systematic review evidence Review credibility	studies/ Study design No. of participants	Risk of bias	Inconsistency	Indirectness †	Imprecision	Other	Description of evidence Summary of findings	Certainty
Walking								
Paudel 2019 <i>(54)</i> Low	3 cross sectional studies N=435	Serious risk of bias	No serious inconsistency	Serious indirectness	Serious imprecision	None	Examination of the association between PA and measures of adiposity among South Asian adults. One study reported a protective association with walking and BF% , FMI , and FFMI , one study reported no association between walking with BMI, WC and FMI but found significant associations between cycling and BMI, BW, WC, and fat mass, and the last study found no association between increasing levels of walking and BMI or WC.	VERY LOW ^a
Light-intensity PA								
Amagasa 2018 <i>(2)</i> Low	14 cross- sectional studies 1 cohort study N=20,552	No serious risk of bias	Serious inconsistency	No serious indirectness	Serious imprecision	None	LIPA was found to have a favourable association with WC in 8/12 cross-sectional studies and an inconsistent association with BMI in 4/10 cross-sectional studies. One cohort study found that women in the highest tertiles of LIPA time had lower fat mass, BF%, and central fat at 1 year compared with women in lowest and middle tertiles of LPA; no significant effects were found in fat-free mass, BW, BMI, and WC.	VERY LOW ^b
Chastin 2019 <i>(14)</i> Moderate	4 RCTs or CCTs 17 cross- sectional studies 1 prospective cohort N=NR	No serious risk of bias	No serious inconsistency	Serious indirectness	No serious imprecision	None	Studies evaluated the association between LIPA (as defined by each study, and inconsistent between studies) and adiposity measures. 2/4 trials reported significant effects on measures of fat mass or BF% . Cross-sectional studies showed "consistent reports across studies on the association between time spent in LIPA and adiposity markers; but the reported effect sizes were small and consistently stronger with increased absolute intensity of LIPA." One cohort study showed a small decrease in BW to be associated with increased time spent in LIPA.	VERY LOW ^c

	No. of	Quality A	Assessment					
Systematic review evidence Review credibility	studies/ Study design No. of participants	Risk of bias	Inconsistency	Indirectness †	Imprecision	Other	Description of evidence Summary of findings	Certainty
High-intensity interval training								
Andreato 2019 <i>(4)^d</i> Moderate	48 RCTs or pre-post studies N=1,222	Serious risk of bias	No serious inconsistency	Serious indirectness	No serious imprecision	Dose- respo nse relati onshi p ^e	Studies evaluated the association between <u>HIIT vs. MICT vs. controls</u> on anthropometric variables among adults with overweight or obesity. Mean follow-up was 10 weeks (range 2 to 24 weeks). In most studies, HIIT was performed 3 times per week; 30 studies evaluated cycling and 18 evaluation running/walking. Compared with no exercise control groups, HIIT was significantly associated with decreased body mass (MD = -1.45 kg [95% CI -1.85 to -1.05 k], n=1,168), BMI (MD = -0.44 kg/m ² [95% CI -0.59 to -0.30], n=990), WC (MD = -2.3 cm [95% CI, -3.1 to -1.4], n=671), and BF% (MD = -1.29% [95% CI -1.70 to -0.87], n=833). When comparing HIIT vs. MICT protocols that had similar energy expenditures or workloads, HIIT was associated with greater reduction in body mass than MICT (MD = -0.41 kg [95% CI -0.79 to -0.023); but there were no other differences between HIIT and MICT with similar protocols on BMI , WC, or BF% .	LOW ^f
Sultana 2019 <i>(70)</i> Low	21 RCTs N=NR	Serious risk of bias	Serious inconsistency	Serious indirectness	Serious imprecision	None	Studies evaluated the association between <u>low-volume HIIT</u> (<500 MET-min/week) performed for at least 4 weeks for a minimum of 2 days/week vs. a non-exercising control or MICT and measures of body composition. Most studies recruited adults with overweight or obesity, mean age ranged from 19 to 70 years. Exercise interventions ranged from 4 to 16 weeks, with most taking place for 12 weeks with exercise sessions performed 2 to 5 days/week. No significant association was found between low-volume HIIT vs. non-exercising control groups for measures of total body fat mass (ES = -0.129 [95% Cl, -0.468 to 0.210], 6 studies), BF% (ES = -0.063 [95% Cl, -0.383 to 0.257], 7 studies), and lean body mass (ES = 0.050 [95% Cl, -0.250 to 0.351], 8 studies) or between low-volume HIIT vs. MICT on total body fat mass (ES = 0.021 [95% Cl, -0.272 to 0.231], 6 studies), BF% (ES = 0.030 [95% Cl, -0.167 to 0.304], 7 studies).	VERY LOW ^g

Abbreviations: ARD = absolute rate difference; BF% = percent body fat; BMI = body mass index; BW = body weight; CCT = controlled clinical trial; CI = confidence interval; cm = centimeters; DXA = dual-energy X-ray absorptiometry; ES = effect size; FMI = fat mass index; FFMI = fat-free mass index; HIIT = high-intensity interval training; HR = hazards ratio; kg = kilograms; LIPA = light-intensity physical activity; m = meters; MET = metabolic equivalent of task; MetS = metabolic syndrome; MICT = moderate-intensity continuous training; min = minutes; MVPA = moderate-to-vigorous intensity PA; NAFLD = non-alcoholic fatty liver disease; NR = not reported; PCOS = polycystic ovary syndrome; RCT = randomized controlled trial; RR = risk ratio; SB = sedentary behaviour; SIT = sprint interval training; WC = waist circumference

* Serious indirectness indicates measurement of intermediate/indirect outcomes or heterogeneity in exposures and comparisons assessed; certainty of evidence was not always downgraded for indirectness if it was not judged to impact the certainty in the findings for the outcome evaluated in the review

^a Certainty of evidence rated as very low according to authors given serious risk of bias and serious imprecision. Serious indirectness is also present given variability in comparisons

^bCertainty of evidence not upgraded

^c Certainty of evidence not upgraded given serious indirectness in comparisons of exposures and lack of detailed results, with most evidence from cross-sectional studies and inconsistency across RCTs and nonrandomized intervention studies

^d Review by Wewege 2017 (74) included overlapping evidence and found consistent effects of HIIT vs. MICT on measures of adiposity among adults with overweight or obesity.

^e A significant association was found between number of sessions and greater reductions in body mass

^f Certainty of evidence downgraded given serious risk of bias of all included studies, including lack of control for participants' diets and total PA and serious indirectness given variability of exercise protocols and comparisons; review did not report results of RCTs separately (10 studies were 'adequately randomized')

^g Certainty of evidence downgraded given serious risk of bias of all included studies, serious indirectness given variability of exercise protocols and comparisons, and serious imprecision in estimates of effect within individual studies and pooled effect sizes

Table B.1.f. Mental health outcomes: Association between physical activity and measures of mental health among adults, by comparison and author

See the Supplementary materials for description of evidence and conclusions of US PAGAC by outcome

	No. of	Quality A	ssessment					
Systematic review evidence Review credibility	studies/ Study design No. of participants	Risk of bias	Inconsistency	Indirectness †	Imprecision	Other	Description of evidence Summary of findings	Certainty
Higher vs. lower or no	PA			•	•			
Amagasa 2018 <i>(2)</i> Low	1 cross- sectional study 1 cohort study N=2,254	No serious risk of bias	No serious inconsistency	Serious indirectness	No serious imprecision	None	One cross-sectional study found that <u>higher vs. lower LPA</u> was associated with a lower risk of psychological distress . One cohort study for older adults in Taiwan showed that higher vs. lower LPA was associated with three dimensions of well-being : psychological, learning and growth, and social well-being.	VERY LOW ^a
Martinez-Dominguez 2018 <i>(47)</i> Moderate	10 RCTs N=1,463	No serious risk of bias	No serious inconsistency	No serious indirectness	Serious imprecision	None	Studies evaluated the effects of <u>exercise interventions that were at</u> <u>least 6 weeks in duration</u> vs. no exercise control groups reporting symptoms of anxiety among middle-aged and older women (mean age range, 54 to 78 years). Exercise interventions lasting 12 weeks to 4 months were associated with reduced symptoms of anxiety vs. no exercise control groups among women (SMD = -0.42 [95% Cl, -0.81 to -0.02], 8 RCTs); however, no significant association was seen between exercise interventions lasting 6 to 14 months) and symptoms of anxiety among women (SMD = -0.03 [95% Cl, -0.18 to 0.13], 7 RCTs).	MODERATE ^b
Perez-Lopez 2017 (55) Moderate	11 RCTs N=1,943	No serious risk of bias	No serious inconsistency	No serious indirectness	No serious imprecision	None	Studies evaluated the effects of <u>exercise interventions that were at</u> <u>least 6 weeks in duration</u> vs. no exercise control groups reporting symptoms of depression among middle-aged and older women (mean age range, 44 to 66 years). Exercise interventions lasting 12 weeks to 4 months were associated with reduced symptoms of depression vs. no exercise control groups among women (SMD = -0.44 [95% CI, -0.69 to -0.18], 5 RCTs) as were exercise interventions lasting 6 to 14 months (SMD = -0.29 [95% CI, - 0.49 to -0.09], 6 RCTs).	HIGH ^c

	No. of	Quality A	ssessment	-	-			
Systematic review evidence Review credibility	studies/ Study design No. of participants	Risk of bias	Inconsistency	Indirectness †	Imprecision	Other	Description of evidence Summary of findings	Certainty
Schuch 2018 <i>(61)</i> High	49 prospective cohort studies N=266,939	No serious risk of bias	No serious inconsistency	No serious indirectness	No serious imprecision	Possib le public ation bias	Studies examined the prospective relationship between <u>PA</u> and incident depression. All but one study relied on self-reported PA. Average follow-up was 7.4 years. Compared with those with low levels of PA, adults with high levels of PA had lower odds of developing depression (adjusted OR = 0.78 [95% CI, 0.70 to 0.87] as did older adults with high levels of PA (adjusted OR = 0.79 [95% CI, 0.72 to 0.86]).	MODERATE
Schuch 2019 <i>(60)</i> Moderate	13 prospective cohort studies N=75,831	No serious risk of bias	No serious inconsistency	No serious indirectness	No serious imprecision	Possib le public ation bias	Studies examined the prospective relationship between <u>PA</u> and incident depression. All studies relied on self-reported PA. Average follow-up was 3.5 years. Compared with those with low levels of PA, adults with high levels of PA had lower odds of developing anxiety (adjusted OR = 0.81 [95% CI, 0.69 to 0.95].	MODERATEd
Resistance training		1	1	I				1
Gordon 2017 <i>(26)</i> Low	16 RCTs N=922	No serious risk of bias	Serious inconsistency	No serious indirectness	Serious imprecision	None	 Studies evaluated the effect of <u>resistance training</u> vs. a non-active control group on measures of symptoms of anxiety. Participants were mean age 43 years. Anxiety symptoms were the primary outcomes in 9/16 studies; most frequently reported measure of anxiety was the State-Trait Anxiety Inventory. Mean intervention length was 11 weeks and intervention frequency ranged from 2 to 5 days/week. Resistance training was found to be associated with significantly reduce symptoms of anxiety vs. non-active control groups (ES = 0.31 [95% CI, 0.17 to 0.44]); larger effects were seen among studies of healthy samples (ES = 0.50 [95% CI, 0.22 to 0.78]) vs. those with a physical or mental illness (ES = 0.19 [95% CI, 0.06 to 0.31]), although confidence intervals overlapped between groups. Effect sizes did not significantly vary according to other population, intervention, or study characteristics. No significant difference was found between studies examining resistance training vs. aerobic exercise training. 	LOW ^e
Gordon 2018 <i>(25)</i> Low	33 RCTs N=1,877	No serious risk of bias ^f	Serious inconsistency	No serious indirectness	Serious imprecision	Possib le public ation bias	Studies evaluated the effect of <u>resistance training</u> vs. a non-active control group on measures of symptoms of depression. Participants were mean age 52 years. Depressive symptoms were the primary outcomes in 18/33 studies; most frequently reported measure of anxiety was the Beck Depression Inventory. Mean intervention length	VERY LOW ^g

			was 16 weeks and intervention frequency ranged from 2 to 7 days/week with 3 days/week the most common intensity.	
			Resistance training was found to be associated with significantly reduce symptoms of depression vs. non-active control groups (ES = 0.66 [95% CI, 0.48 to 0.83]). No significant difference was found between studies examining resistance training vs. aerobic exercise	
			training.	

Abbreviations: CI = confidence interval; ES = effect size; OR = odds ratio; PA = physical activity; RCT = randomized controlled trial; SMD = standardized mean difference

[†] Serious indirectness indicates measurement of intermediate/indirect outcomes or heterogeneity in exposures and comparisons assessed; certainty of evidence was not always downgraded for indirectness if it was not judged to impact the certainty in the findings for the outcome evaluated in the review

^a Certainty of evidence not upgraded

^b Certainty of evidence downgraded given serious imprecision in study-specific and pooled estimates of effects

^c Certainty of evidence downgraded given some evidence of inconsistency and indirectness in outcome measures

^d Certainty of evidence upgraded given no major limitations in body of evidence; possible small studies effect not judged to warrant downgrading

^e Certainty of evidence downgraded given serious inconsistency in direction of effects and serious imprecision in effect estimates. Furthermore, pooled estimates include multiple estimates per study for different measures

^f Effects were significantly smaller when outcome assessment was blinded compared with when outcome assessment was not blinded

^g Certainty of evidence downgraded given serious inconsistency in direction of effects, serious imprecision in effect estimates, and presence of small studies effect. Furthermore, pooled estimates include multiple estimates per study for different measures

BHH

Table B.1.g. Cognitive function outcomes: Association between physical activity and measures of cognitive function among adultsSee the Supplementary materials for description of evidence and conclusions of US PAGAC by outcome

	No. of	Quality A	ssessment					
Systematic review evidence Review credibility	studies/ Study design No. of participants	Risk of bias	Inconsistency	Indirectness †	Imprecision	Other	Description of evidence Summary of findings	Certainty
Amagasa 2018 <i>(2)</i> Low	2 cross- sectional studies N=435	No serious risk of bias	Serious inconsistency	Serious indirectness	No serious imprecision	None	Two cross-sectional studies among older adults (mean age 64 and 65 years) that studied objectively measured LPA (as a continuous measure or vs. replacing 30 min of SB with LPA. One study found that LPA was significantly associated with higher cognitive functioning whereas the other study found no associations between LPA and spatial working memory and task switching .	VERY LOW ^a
Brasure 2018 <i>(13)</i> High	14 RCTs N=2,824	No serious risk of bias ^b	Serious inconsistency	Serious indirectness	Serious imprecision	None	Multicomponent physical activity interventions (including flexibility, strength, balance, endurance, and aerobic training) were tested in 4 trials (n=1,885). All trials included older adults aged >60 years without cognitive impairment and represented mostly white women. A wide range of neuropsychological tests were used to assess cognitive function; only 3/25 comparisons showed a statistically significant benefits with multicomponent PA interventions compared with attention controls, including one trial that report no difference in the incidence of MCI or dementia between groups at 2 years. Six trials (n=531) tested <u>aerobic training</u> vs. attention controls in healthy older adults. One study found that older adults in the aerobic exercise group were significantly less likely to receive a dementia diagnosis at 18 months; 11/35 comparisons showed statistically significant benefit on measures of cognitive function whereas 24/35 showed no statistically significant difference between groups. Three trials <u>examined</u> resistance training vs. usual care among frail, older adults. No trial reported diagnostic outcomes; less than a third of comparisons favored the interventions on measures of executive function, attention and processing speed, and memory. One small trial tested tai chi vs. attention control in older adults aged 60-79 years; 1/2 outcomes for executive function, attention, and processing speed showed a significant benefit.	LOW ^c

	No. of	Quality Assessment						
Systematic review evidence Review credibility	studies/ Study design No. of participants	Risk of bias	Inconsistency	Indirectness †	Imprecision	Other	Description of evidence Summary of findings	Certainty
Engeroff 2018 <i>(21)</i> Moderate	9 cross- sectional studies 14 longitudinal N=11,707	No serious risk of bias	Serious inconsistency	Serious indirectness	Serious imprecision	None	Most PA was self-reported using questionnaires not previously validated, and all measures of PA were different between studies. All studies measured cognitive function among older adults aged ≥60 years. There was an inconsistent association between <u>MVPA</u> and global cognitive function; 3/4 longitudinal studies showed no association between lifetime PA and MMSE scores whereas 1/4 longitudinal study found showed a beneficial association between levels of PA at age 74 years and MMSE scores at age 84 years. Most cross-sectional studies found no association between PA and measures of global cognitive function. There was mixed evidence on the relationship between PA and the specific cognitive domains of executive function and memory, but no evidence of an association with attention or working memory.	VERY LOW ^d
Northey 2018 <i>(50)</i> Moderate	39 RCTs N=NR	Serious risk of bias	Serious inconsistency	Serious indirectness	No serious imprecision	None	 Studies evaluated relationship between PA interventions of at least 4 weeks and cognitive function measures among adults aged 50 years and older. Interventions included aerobic exercise (18 studies), resistance training (13 studies), multicomponent training (10 studies), tai chi (4 studies) and yoga (2 studies). A multi-level analysis combining multiple measures of cognitive per study (333 dependent effect sizes in 36 studies) found a significant effect of physical activity interventions vs. no PA on measures of cognition (SMD = 0.29 [95% CI 0.17 to 0.41]). 	MODERATE®
Rathrore 2017 <i>(57)</i> Low	15 RCTs N=1,315	No serious risk of bias	No serious inconsistency	Serious indirectness	Serious imprecision	None	 Highly heterogenous studies including sample populations (7 studies among youth 5-17-years, 3 studies among adults 18-64 years, and 5 studies among older adults ≥65 years. Seven studies evaluated acute PA (1 session) whereas eight studies evaluated chronic PA (more than 1 PA sessions from 4 weeks to 6 months). Review was limited to working memory performance. 10/15 studies reported a statistically significant improvement in working memory performance among those in a physical activity intervention vs. no PA. Chronic PA interventions (ES = 0.27 [95% CI, 0.12 to 0.42], 8 RCTS, n=1,139) were significantly associated with improvements in working memory performance in pooled analysis compared with no exercise. There was no association between acute 	LOW ^f

						PA interventions vs. no PA on working memory (ES = -0.15 [95% Cl, -	
						0.33 to -0.63], 7 RCTs, n=1,098).	
						140	
						<u>v</u> .	
					5	2	
				C	\sim		
				- c \	.		
				\checkmark γ	,		
			- X /	J			
		$\mathcal{I}\mathcal{I}$					
	> > > > > > > > > > > > >						

	No. of studies/ Study design No. of participants	Quality A	ssessment							
Systematic review evidence Review credibility		Risk of bias	Inconsistency	Indirectness †	Imprecision	Other	Description of evidence Summary of findings	Certainty		
Stanmore 2017 <i>(66)</i> Low	17 RCTs N=926	Serious risk of bias	Serious inconsistency	Serious indirectness	Serious imprecision	None	Mean age 69 years (range = 17-85 years), six studies were among clinical samples among patients with Parkinson's , MCI, sub-acute stroke, or schizophrenia and one study was among healthy adolescents. All interventions used active video games/exergames that lasted an average of 10 weeks (range = 4-24 weeks) with an average of 3.2 sessions per week for 15-60 min of exercise per session. <u>Exergames</u> were significantly associated with improved global cognitive function vs. no exergame control conditions in pooled analysis (ES = 0.436 [95% CI 0.18 to 0.69], 17 RCTs, n=926). Results were consistent when stratified by type of control group (attention controls only, PA intervention controls), population (clinical, non- clinical, and older adults only), and length of intervention (<12 weeks, ≥12 weeks). Statistically significant effects were also seen for individual domains of cognitive function including executive function, task- switching, inhibitory control, and attentional processing speed; but were not found for working memory, reasoning, verbal learning and memory. spatial learning and memory. and language.	VERY LOW ^g		

Abbreviations: CI = confidence interval; ES = effect size; LPA = light physical activity; MCI = mild cognitive impairment; MMSE = mini-mental state exam; NR = not reported; PA = physical activity; RCT = randomized clinical trial; SB = sedentary behaviour

[†]Serious indirectness indicates measurement of intermediate/indirect outcomes or heterogeneity in exposures and comparisons assessed; certainty of evidence was not always downgraded for indirectness if it was not judged to impact the certainty in the findings for the outcome evaluated in the review

^a Certainty of evidence not upgraded

^b Review was limited to studies with low to moderate risk of bias, although review authors notes a medium rating for study limitations

^c Strength of evidence rated as Low by review authors for multicomponent physical activity interventions given indirectness in outcome measures, unknown consistency, and imprecision. All other interventions were rated as having Insufficient strength of evidence given limited data.

^d Certainty of evidence downgraded given serious inconsistency in measures of effects within and between studies and across domain-specific measures of cognition, serious indirectness in measures of physical activity and cognitive function, and serious imprecision

^e Certainty of evidence assigned by review authors as Moderate owing to the level of uncertainty across each domain of the risk of bias tool

^f Certainty of evidence related to chronic (>1 session) PA interventions; downgraded due to serious indirectness in outcome measures and serious imprecision of effects in individual trials and pooled effect ^g Certainty of evidence downgraded given serious risk of bias in included evidence, serious inconsistency (I²>60% in all pooled analysis), serious indirectness (heterogeneous comparisons and outcome measures), and serious imprecision in effect estimates

Table B.1.h. Sleep outcomes: Association between physical activity and sleep outcomes among adultsSee the Supplementary materialsfor description of evidence and conclusions of US PAGAC by outcome

	No. of	Quality Assessment						
Systematic review evidence Review credibility	studies/ Study design No. of participants	Risk of bias	Inconsistency	Indirectness †	Imprecision	Other	Description of evidence Summary of findings	Certainty
Kovacevic 2018 <i>(36)</i> Moderate	10 RCTS N=NR	Serious risk of bias	Serious inconsistency	Serious indirectness	No serious imprecision	None	Studies evaluated the effects of <u>resistance training</u> vs. no intervention or other exercise intervention on sleep outcomes. Seven studies compared resistance training with a non-exercise control group and 3 studies compared the effects of aerobic exercise plus resistance training vs. aerobic exercise alone. Variability in study populations included those with mental health symptoms or diagnoses, older adults, nursing home residents, and adults with co-morbid health conditions (fibromyalgia, heart failure and sleep apnoea, breast cancer), mean age was 58 years. 1/3 studies found a significant effect of resistance training vs. no exercise on subjective measures of sleep quantity ; 5/7 studies reported significant improvement in subjective measures of sleep quality . In studies comparing aerobic exercise plus resistance training vs. aerobic exercise alone, 1/1 study found no effect on sleep quality whereas 1/1 study found a significant effect on subjective measures of sleep quality .	LOWª
Perez-Lopez 2017 (55) Moderate	3 RCTs N=469	No serious risk of bias	Serious inconsistency	Serious indirectness	Serious imprecision	None	Studies evaluated the effects of <u>exercise interventions that were at</u> <u>least 6 weeks in duration</u> vs. no exercise control groups reporting symptoms of insomnia among middle-aged and older women. Exercise interventions were associated with reduced symptoms of insomnia vs. no exercise control groups among women (SMD = -0.52 [95% Cl, -1.02 to -0.02], 3 RCTs).	LOW ^b
Robbins 2019 <i>(58)</i> Low	5 pre-post studies N=NR	Serious risk of bias	No serious inconsistency	Serious indirectness	No serious imprecision	None	Studies evaluated the effects of <u>any workplace intervention</u> , including PA or yoga, on measures of sleep. 1/5 studies found a significant improvement in self-reported sleep quality following a yoga intervention; no studies reported significant improvement in self-reported sleep quantity following the intervention.	VERY LOW ^c
Stutz 2019 <i>(68)</i> Moderate	23 crossover studies N=275	Serious risk of bias	Serious inconsistency	Serious indirectness	Serious imprecision	None	Studies evaluated the effects of <u>one single session of exercise close to</u> <u>usual bedtime</u> (less than 4 hours before usual bedtime) on various measures of sleep. All studies enrolled healthy or good sleepers, except one study that enrolled adults with self-reported sleep difficulties. Adults included sedentary individuals as well as trained	VERY LOW ^d

	athletes. Most interventions were cycling or running, with an average
	duration of 87 minutes.
	Compared with no-exercise, one session of PA ending 12 minutes to 4
	compared with no-exercise, one session of PA ending 12 minutes to 4
	hours before bedtime significantly increased REM latency and slow-
	wave sleep, and decreased stage 1 sleep. No effects were found for
	SOL, TST, SE, WASO, stage 2, 3, and 4 sleep, REM sleep, or subjective
	sleep quality.

Abbreviations: CI = confidence interval; NR = not reported PA = physical activity; RCT = randomized controlled trial; REM = rapid eye movement; SE = sleep efficiency; SMD = standardized mean difference; SOL = sleep onset latency; TST = total sleep time; WASO = wake after sleep onset

* Serious indirectness indicates measurement of intermediate/indirect outcomes or heterogeneity in exposures and comparisons assessed; certainty of evidence was not always downgraded for indirectness if it was not judged to impact the certainty in the findings for the outcome evaluated in the review

^a Certainty of evidence downgraded given serious risk of bias, serious inconsistency of effects, and serious indirectness in measures, interventions, and variability in populations

^b Certainty of evidence downgraded given serious inconsistency (I²=81%), serious indirectness in outcome measure, and imprecision in estimate of effect

^cCertainty of evidence downgraded given serious risk of bias and serious indirectness in measures of sleep as well as interventions

^d Certainty of evidence downgraded given serious risk of bias, serious inconsistency within and between studies in measures of sleep, serious indirectness in measures of sleep as well as interventions, and serious imprecision in estimates of effects

Table B.1.i. Incidence of hypertension: Association between physical activity and incidence of hypertension among adults

<u>See the Supplementary materials</u> for description of evidence and conclusions of US PAGAC by outcome

	No. of	Quality Assessment						
Systematic review evidence Review credibility	studies/ Study design No. of participants	Risk of bias	Inconsistency	Indirectness†	Imprecision	Other	Description of evidence Summary of findings	Certainty
Paudel 2019 <i>(54)</i> Low	5 cross sectional studies N=10,344	Serious risk of bias	No serious inconsistency	Serious indirectness	Serious imprecision	None	Examination of the association between <u>PA</u> and incident hypertension among South Asian adults. Two studies found lower odds of hypertension among those with mild or moderate levels of PA compared with a sedentary group and higher (≥30 hrs/week) vs. lower (<10 hrs/week) of walking. One study found the prevalence of hypertension was lower among persons with moderate levels of occupational PA whereas another study found no association between levels of occupational PA and hypertension. One study saw higher prevalence of hypertension among those with low vs. high levels of total PA.	VERY LOW ^a

Abbreviations: hrs = hours; PA = physical activity

* Serious indirectness indicates measurement of intermediate/indirect outcomes or heterogeneity in exposures and comparisons assessed; certainty of evidence was not always downgraded for indirectness if it was not judged to impact the certainty in the findings for the outcome evaluated in the review

^a Certainty of evidence rated as very low according to authors given serious risk of bias and serious imprecision. Serious indirectness is also present given variability in comparisons
DRAFT Evidence profile - FOR CONSULTATION ONLY

Table B.1.j. Health-related quality of life: Association between physical activity and measures of HRQOL among adults

See the Supplementary materials for description of evidence and conclusions of US PAGAC by outcome

	No. of	Quality A	ssessment					
Systematic review evidence Review credibility	studies/ Study design No. of participants	Risk of bias	Inconsistency	Indirectness †	Imprecision	Other	Description of evidence Summary of findings	Certainty
Perez-Lopez 2017 (55) Moderate	3 RCTs N=189	No serious risk of bias	Serious inconsistency	Serious indirectness	Serious imprecision	None	Studies evaluated the effects of <u>exercise interventions that were at</u> <u>least 6 weeks in duration</u> vs. no exercise control groups reporting symptoms of depression among middle-aged and older women. Exercise interventions was not associated with reduced measures of quality of life vs. no exercise control groups among women (SMD = - 0.27 [95% Cl, -1.08 to 0.54], 3 RCTs).	LOW ^a
Wang 2017 Low	4 RCTs N=314	No serious risk of bias	No serious inconsistency	Serious indirectness	No serious imprecision	None	Evaluation of Tai Chi exercise in perimenopausal women on measures of the SF-36. Studies represented women aged 45 and older; most with low bone mass or osteopenia. There was no consistent effect of Tai Chi vs. no Tai Chi across all 8 subscales on the SF-36.	MODERATE ^b

Abbreviations: CI = confidence interval; RCT = randomized clinical trial; SF-36 = short-form 36 quality-of-life instrument; SMD = standardized mean difference

* Serious indirectness indicates measurement of intermediate/indirect outcomes or heterogeneity in exposures and comparisons assessed; certainty of evidence was not always downgraded for indirectness if it was not judged to impact the certainty in the findings for the outcome evaluated in the review

^a Certainty of evidence downgraded given serious inconsistency (l²=85%), serious indirectness in outcome measure, and imprecision in estimate of effect ^b Certainty of evidence downgraded given serious indirectness in measures of effect (subscales vs. domain-specific measures of SF-36)

DRAFT Evidence profile - FOR CONSULTATION ONLY

APPENDIX 2. DATA EXTRACTIONS OF INCLUDED EVIDENCE (IN ALPHABETICAL ORDER BY AUTHOR)

SR/MA			
Citation: Amagasa, S., Machida, M., Fukushima, N., Kikuchi, H., Takamiya, T., Odagiri, Y., & Inoue, S. (2018).			
Is objectively measured light-intensity physical activity associated with health outcomes after adjustment			
for moderate-to-vigorous physical activity in adults? A systematic review. International Journal of			
Behavioral Nutrition	and Physical Activity, 15(1), 65.		
Purpose: to	Abstract:		
systematically	Background: An increasing number of studies have demonstrated that light-intensity		
examine	physical activity (LPA) confers health benefits after adjustment for moderate-to-		
associations of	vigorous physical activity (MVPA). The purpose of this systematic review was to		
objectively	summarize existing epidemiological evidence on associations of objectively measured		
assessed LPA and	LPA with health outcomes in adults.		
health outcomes	Methods: This review was conducted in accordance with the Preferred Reporting		
after adjustment	Items for Systematic Reviews and Meta-Analyses guidelines. We searched on		
for MVPA in adults	PubMed, Web of Science, CINAL, and Cochrane Library for articles analysing the		
Timeframe:	association between objectively determined LPA and health outcomes that were		
inception to	published up to January 2017. Data were extracted regarding authors, publication		
February 2, 2017	year, country of survey, study setting, number of participants, study design, physical		
Total # studies	activity (PA) assessment (type of accelerometer and intensity), health outcomes,		
included: 30	confounders, and results (summary measures and association). A coding system was		
Other details (e.g.	used to summarize the results.		
definitions used,	Results: Of the 3254 studies identified, 24 cross-sectional and 6 longitudinal studies		
exclusions etc)	were included in this review. Most of the studies targeted the Western population.		
objectively	LPA was inversely associated with all-cause mortality risk and associated favorably		
measured LPA	with some cardiometabolic risk factors including waist circumference, triglyceride		
Outcomes	levels, insulin, and presence of metabolic syndrome. Only a small amount of data		
addressed: health	were available on mental health and cognitive function.		
outcomes & ACM	Conclusions: LPA appears to be beneficially associated with important health		
	outcomes after adjustment for MVPA in the adult population. Although current		
	global PA guidelines recommend only MVPA, promoting LPA may confer additional		
	health benefits.		

SR/MA				
Citation: Andreato LV, Esteves JV, Coimbra DR, Moraes AJ, de Carvalho T. The influence of high-intensity				
interval training on anthropometric variables of adults with overweight or obesity: a systematic review and				
network meta-analysis. Obesity reviews. 2019 Jan;20(1):142-55; https://doi-				
org.ezproxy1.library.u	usyd.edu.au/10.1111/obr.12766			
Purpose: to	Abstract:			
evaluate the	Objective			
influence of HIIT on	The goal of this study was to evaluate the influence of high-intensity interval training			
anthropometric	(HIIT) on anthropometric variables in adults afflicted with overweight or obesity and			
variables of adults	to compare the effects with those of moderate-intensity continuous training.			
afflicted with	Methods			
overweight or	A computer literature search was performed for HIIT intervention studies that			
obesity	evaluated anthropometric variables in adults afflicted with overweight or obesity.			
Timeframe:	Results			
inception to May	Of the 857 articles retrieved in the electronic search, 48 met the inclusion criteria.			
2018	The analyses demonstrated that HIIT was effective in decreasing body mass (-1.45 kg			
Total # studies	[95% CI: -1.85 to -1.05 kg]), body mass index (-0.44 kg m-2 [95% CI: -0.59 to -0.30			
included: 48	kg m−2]), waist circumference (−2.3 cm [95% CI: −3.1 to −1.4 cm]), waist/hip ratio			
intervention study	(−0.01 [95% CI: −0.02 to −0.00]), body fat percentage (−1.29% [95% CI: −1.70% to			
(10 RCT, 38 n-RCT)	-0.87%]) and abdominal visceral fat area (-6.83 cm2 [95% Cl: -11.95 to -1.71 cm2]).			
Other details (e.g.	When considering equalization between the two methods (energy expenditure or			
definitions used,	workload matched), no differences were found in any measure except body mass (for			
exclusions etc) also	which HIIT was superior).			
compared with	Conclusions			
moderate-intensity	High-intensity interval training and moderate-intensity continuous training results			
continuous training	were similar, particularly when equalization between the two methods was			
Outcomes	considered. Thus, HIIT can be used as a secondary method for the treatment of			
addressed: body	obesity in adults.			
mass, BMI, waist				
circumference,				
waist/hip ratio or				
body composition				

SR/MA			
Citation: Baumeister SE, Leitzmann MF, Linseisen J, Schlesinger S. Physical Activity and the Risk of Liver			
Cancer: A Systematic Review and Meta-Analysis of Prospective Studies and a Bias Analysis. JNCI J Natl			
Cancer Inst (2019) 11	1(11): djz111.		
Purpose: The aim	Abstract: Background: Physical inactivity is an established risk factor for several		
of this study was to	cancers of the digestive system and female reproductive organs, but the evidence for		
synthesize	liver cancers is less conclusive. Methods: The aim of this study was to synthesize		
prospective	prospective observational studies on the association of physical activity and liver		
observational	cancer risk by means of a systematic review and meta-analysis. We searched		
studies on the	Medline, Embase, and Scopus from inception to January 2019 for prospective studies		
association of	investigating the association of physical activity and liver cancer risk. We calculated		
physical activity	mean hazard ratios (HRs) and 95% confidence intervals (CIs) using a random-effects		
and liver cancer risk	model. We quantified the extent to which an unmeasured confounder or an		
by means of a	unaccounted selection variable could shift the mean hazard ratio to the null.		
systematic review	Results: Fourteen prospective studies, including 2738 liver cancers, were included in		
and meta-analysis.	the systematic review and meta-analysis. The mean hazard ratio for high compared		
Timeframe:	with low physical activity was 0.75 (95% CI=0.63 to 0.89; 95% prediction interval=0.52		
Inception to Jan 23	to 1.07; I2=64.2%).We estimated that 67.6% (95% CI=56.6% to 78.5%) of all true		
2019	effect estimates would have a hazard ratio less than 0.8. Bias analysis suggested than		
Total # studies	an unobserved confounder would have to be associated with a 1.99-fold increase in		
included: 14 cohort	the risk of physical activity or liver cancer to explain away the observed mean hazard		
studies	ratio. An unaccounted for selection variable would have to be related to exposure		
Other details (e.g.	and endpoint with a relative risk of 1.58 to explain away the mean hazard ratio.		
definitions used,	Conclusions: Physical activity is inversely related to the risk of liver cancer. Further		
exclusions etc)	studies with objectively measured physical activity and quasi-experimental designs		
Self-reported PA by	addressing confounding are needed.		
type			
Outcomes			
addressed: Liver			
Populations	Author-Stated Funding Source: No funding received for this paper.		
Analyzed: Adults			

SR/MA				
Citation: Behrens G, Niedermaier T, Berneburg M, Schmid D, Leitzmann MF. Physical activity,				
cardiorespiratory fitness and risk of cutaneous malignant melanoma: Systematic review and meta analysis.				
PLoS ONE 2018; 13(10): e0206087. <u>https://doi</u> . org/10.1371/journal.pone.0206087				
Purpose:	Abstract:			
Timeframe:	Background			
Inception to March	Numerous epidemiologic studies have examined the relation of physical activity or			
29, 2018	cardiorespiratory fitness to risk of cutaneous melanoma but the available evidence			
Total # studies	has not yet been quantified in a systematic review and meta-analysis.			
included: 21 cohort	Methods			
studies	Following the preferred reporting items for systematic reviews and meta-analyses			
Other details (e.g.	(PRISMA), we identified 3 cohort studies (N = 12,605 cases) and 5 case-control			
definitions used,	studies (N = 1,295 cases) of physical activity and melanoma incidence, and one			
exclusions etc)	cohort study (N = 49 cases) of cardiorespiratory fitness and melanoma risk.			
Self-reported PA by	Results			
type	Cohort studies revealed a statistically significant positive association between high			
Outcomes	versus low physical activity and melanoma risk (RR = 1.27, 95% CI = 1.16–1.40). In			
addressed:	contrast, case control studies yielded a statistically non-significant inverse risk			
Melanoma	estimate for physical activity and melanoma (RR = 0.85, 95% CI = 0.63–1.14; P-			
	difference = 0.02). The only available cohort study of cardiorespiratory fitness and			
	melanoma risk reported a positive but statistically not significant association			
	between the two (RR = 2.19, 95% CI = 0.99–4.96). Potential confounding by			
	ultraviolet (UV) radiation-related risk factors was a major concern in cohort but not			
	case-control studies.			
	Conclusions			
	It appears plausible that the positive relation of physical activity and ardiorespiratory			
	fitness to melanoma observed in cohort studies is due to residual confounding by UV			
	radiation related risk factors.			
Populations	Author-Stated Funding Source: No funding received for this paper.			
Analyzed: Adults				

SR/MA				
Citation: Benke IN, Leitzmann MF, Behrens, G, Schmid D. Physical activity in relation to risk of prostate				
cancer: a systematic review and meta-analysis. Annals of Oncology 2018; 29: 1154–1179,				
doi:10.1093/annonc/mdy073				
Purpose: This study	Abstract:			
aims to	Background: Prostate cancer (PCa) is one of the most common cancers among men,			
quantitatively	yet little is known about its modifiable risk and protective factors. This study aims to			
summarize	quantitatively summarize observational studies relating physical activity (PA) to PCa			
observational	incidence and mortality.			
studies relating	Materials and methods: Published articles pertaining to PA and PCa incidence and			
physical activity	mortality were retrieved in July 2017 using the Medline and EMBASE databases. The			
(PA) to PCa	literature review yielded 48 cohort studies and 24 case–control studies with a total of			
incidence and	151 748 PCa cases. The mean age of the study participants at baseline was 61 years.			
mortality.	Results: In random-effects models, comparing the highest versus the lowest level of			
Timeframe:	overall PA showed a summary relative risk (RR) estimate for total PCa incidence close			
Inception to July	to the null [RR=0.99, 95% confidence interval (CI)=0.94–1.04]. The corresponding RRs			
2017	for advanced and non-advanced PCa were 0.92 (95% CI=0.80–1.06) and 0.95 (95%			
Total # studies	CI=0.85–1.07), respectively. We noted a			
included: 48 cohort	statistically significant inverse association between long-term occupational activity			
studies and 24	and total PCa (RR=0.83, 95% Cl=0.71–0.98, n studies=13), although that finding			
case-control	became statistically non-significant when individual studies were removed from the			
studies	analysis. When evaluated by cancer subtype, an inverse association with long-term			
Other details (e.g.	occupational activity was noted for nonadvanced/			
definitions used,	non-aggressive PCa (RR=0.51, 95% CI=0.37–0.71, n studies=2) and regular			
exclusions etc)	recreational activity was inversely related to advanced/aggressive PCa (RR=0.75, 95%			
Self-reported PA by	CI=0.60–0.95, n studies=2), although these observations are based on a low number			
type, timing and	of studies. Moreover, PA after diagnosis was related to reduced risk of PCa mortality			
dose	among survivors of PCa (summary RR based on four studies=0.69, 95% CI=0.55–0.85).			
Outcomes	Conclusions: Whether PA protects against PCa remains elusive. Further investigation			
addressed:	taking into account the complex clinical and pathologic nature of PCa is needed to			
Prostate cancer	clarify the PA and PCa incidence relation. Moreover, future studies are needed to			
	confirm whether PA after diagnosis reduces risk of PCa mortality.			
Populations	Author-Stated Funding Source: No funding received for this paper.			
Analyzed: Adults				

RAN

SR/MA					
Citation: Blond K, Brinkløv CF, Ried-Larsen M, Crippa A, Grøntved A. Association of high amounts of physical					
activity with mortality risk: a systematic review and meta-analysis. British journal of sports medicine.					
2019;bjsports-2018.	2019;bjsports-2018.				
Purpose: To clarify	Abstract: Objectives To systematically review and analyse studies of high amounts of				
if there is a greater	physical activity and mortality risk in the general population. Eligibility criteria				
all cause and cause	Inclusion criteria related to follow-up (minimum 2 years), outcome (mortality from all				
specific mortality	causes, cancer, cardiovascular disease (CVD) or coronary heart disease), exposure				
risk associated with	(eg, a category of >1000 metabolic equivalent of task (MET) min/week), study design				
high levels of	(prospective cohort, nested case control or case-cohort) and reports of cases and				
physical activity	person years of exposure categories. Information sources Systematic searches were				
above the	conducted in Embase and Pubmed from database inception to 2 March 2019. Risk of				
recommended	bias The quality of the studies was assessed with the Newcastle–Ottawa scale.				
amounts.	Included studies From 31 368 studies identified, 48 were included. Two authors				
Timeframe:	independently extracted outcome estimates and assessed study quality. Synthesis of				
inception to 2	results We estimated hazard ratios (HRs) using random effect restricted cubic spline				
March 2019	dose-response meta-analyses. Compared with the recommended level of physical				
Total # studies	activity (750 MET min/ week), mortality risk was lower at physical activity levels				
included: 48	exceeding the recommendations, at least until 5000 MET min/week for all cause				
Other details (e.g.	mortality (HR=0.86, 95%Cl 0.78 to 0.94) and for CVD mortality (HR=0.73, 95%Cl 0.56				
definitions used,	to 0.95). Strengths and limitations of evidence The strengths of this study include the				
exclusions etc)	detailed dose- response analyses, inclusion of 48 studies and examination of sources				
MET min/week	of heterogeneity. The limitations include the observational nature of the included				
Outcomes	studies and the inaccurate estimations of amount of physical activity. Interpretation				
addressed:	Compared with the recommended level, mortality risk was lower at physical activity				
mortality from all	levels well above the recommended target range. Further, there was no threshold				
causes and	beyond which lifespan was compromised. Registration PROSPERO CRD42017055727				
cardiovascular					
disease (CVD)					

Meta-analysis			
Citation: Boyer W.R., Churilla J.R., Ehrlich S.F., Crouter S.E., Hornbuckle L.M., Fitzhugh E.C. Protective role			
of physical activity on type 2 diabetes: Analysis of effect modification by race-ethnicity, Journal of Diabetes;			
2018, 10166–178			
Purpose: to compile the	Abstract:		
evidence from prospective	Background: It is well known physical activity (PA) plays a role in the prevention		
cohort studies on	of type 2 diabetes (T2D). However, the extent to which PA may affect		
potential effect	T2D risk among different race-ethnic groups is unknown. Therefore, the aim of		
modification of the	the present study was to systematically examine the effect modification of		
aerobic PA and T2D risk	race-ethnicity on PA and T2D.		
relationship by race-			
ethnic groups; a second	Methods: The PubMed and Embase databases were systematically searched		
analysis was conducted to	through June 2016. Study assessment for inclusion was conducted in three		
assess the overall effect	phases: title review (n = 13 022), abstract review (n = 2200), and full text review		
of meeting the 2008 DHHS	(n = 265). In all, 27 studies met the inclusion criteria and were used in the		
moderate-intensity	analysis. Relative risks (RRs) and 95% confidence intervals (CIs) were extracted		
aerobic PA recommend-	and analyzed using Comprehensive Meta-Analysis software. All analyses used a		
ation on T2D risk.	random-effects model.		
Timeframe: Inception			
through June 2016	Results: A significant protective summary RR, comparing the most active		
Total # studies included:	group with the least active PA group, was found for non-Hispanic White (RR		
27	0.71, 95% CI 0.60–0.85), Asians (RR 0.76, 95% CI 0.67–0.85), Hispanics (RR		
Other details (e.g.	0.75, 95% CI 0.64–0.89), and American Indians (RR 0.73, 95% CI 0.60–0.88).		
definitions used,	The summary effect for non-Hispanic Blacks (RR 0.91, 95% Cl 0.76–1.08) was		
exclusions etc): assessed	not significant.		
aerobic based PA;			
published or available in	Conclusions: The results of the present study indicate that PA (comparing most		
English; prospective	to least active groups) provides significant protection from T2D, with the		
cohort studies; assessed	exception of non-Hispanic Blacks. The results also indicate a need for race-		
and reported the race-	ethnicity-specific reporting of RRs in prospective cohort studies that		
ethnicity specific relative	incorporate multiethnic samples.		
risks (RR) for T2D;			
adjusted risk estimates for			
age; and allowed for the			
determination of a most			
versus least physically			
active group			
Outcomes addressed:			
Race-ethnicity specific			
relative risks (RR) for T2D;			
Population analysed:	Author-Stated Funding Source: None declared.		
Adults (age ≥18 years) at			
the time of follow-up			

Systematic review

Citation: Brasure M, Desai P, Davila H, Nelson VA, Calvert C, Jutkowitz E, et al. Physical activity interventions in preventing cognitive decline and alzheimer-type dementia a systematic review. Ann Intern Med. 2018;168(1):30–8.

Purpose: To assess the	Abstract:
effectiveness of physical activity	BACKGROUND: The prevalence of cognitive impairment and
interventions in slowing cognitive	dementia is expected to increase dramatically as the population
decline and delaying the onset of	ages, creating burdens on families and health care systems.
cognitive impairment and dementia	PURPOSE: To assess the effectiveness of physical activity
in adults without diagnosed	interventions in slowing cognitive decline and delaying the onset of
cognitive impairments	cognitive impairment and dementia in adults without diagnosed
Timeframe: January 2009 – July	cognitive impairments.
2017	DATA SOURCES: Several electronic databases from January 2009 to
Total # studies included: 32	July 2017 and bibliographies of systematic reviews.
Author-stated inclusion criteria:	STUDY SELECTION: Trials published in English that lasted 6 months or
We included randomized controlled	longer, enrolled adults without clinically diagnosed cognitive
trials of physical activity	impairments, and compared cognitive and dementia outcomes
interventions with any sample size	between physical activity interventions and inactive controls.
and large (n > 500) prospective	DATA EXTRACTION: Extraction by 1 reviewer and confirmed by a
quasi-experimental cohort studies	second; dual-reviewer assessment of risk of bias; consensus
with comparator groups if they	determination of strength of evidence.
enrolled adults without diagnosed	DATA SYNTHESIS: Of 32 eligible trials, 16 with low to moderate risk of
cognitive impairments, had follow-	bias compared a physical activity intervention with an inactive
up of at least 6 months, were	control. Most trials had 6-month follow-up; a few had 1- or 2-year
published in English, and reported 1	follow-up. Evidence was insufficient to draw conclusions about the
of our preselected primary or	effectiveness of aerobic training, resistance training, or tai chi for
intermediate outcomes. We	improving cognition. Low-strength evidence showed that
excluded trials enrolling pure	multicomponent physical activity interventions had no effect on
subgroups of patients with major	cognitive function. Low-strength evidence showed that a
medical conditions or conditions	multidomain intervention comprising physical activity, diet, and
that may explain changes in	cognitive training improved several cognitive outcomes. Evidence
cognitive function (namely stroke,	regarding effects on dementia prevention was insufficient for all
Parkinson disease, cancer, and	physical activity interventions.
traumatic brain injury).	LIMITATION: Heterogeneous interventions and cognitive test
Outcomes addressed:	measures, small and underpowered studies, and inability to assess
Main: Mild cognitive impairment or	the clinical significance of cognitive test outcomes.
dementia	CONCLUSION: Evidence that short-term, single-component physical
Other: cognitive function	activity interventions promote cognitive runction and prevent
(executive function, attention,	cognitive decline or dementia in older adults is largely insufficient. A
processing speed and memory	strength ovidence)
Deputations enclosed, adults	Strength evidence).
without diagnocod cognitivo	National Institute on Aging and AHBO. These agonsies and members
impairments	of the National Academics Committee on Proventing Domentia and
Inipainitents	Cognitive Impairment helped refine the scope and reviewed a draft
	report of findings. The authors are sololy responsible for the content
	preparation writing of the manuscript, and decision to submit the
	preparation, writing of the manuscript, and decision to submit the
	manuscript for publication.

Citation: Chastin, S. F., De Craemer, M., De Cocker, K., Powell, L., Van Cauwenberg, J., Dall, P., &Stamatakis, E. (2019). How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies. <i>Br J SportsMed</i> , 53(6), 370-376. Purpose: to synthesise evidence from observational and experimental and experimental studies and to quantify the effect of LPA on acute and long-term and long-term and long-term studies and physical activity (-Sametic studies and physical activity (-Sametabolic health meta-analysis.Timeframe: from inception to Results Seventy-two studies were eligible including 27 experimental studies (and 45 observational studies). Mechanistic experimental studies for terver variance meta-analysis.Total # studies included: 31 (8 for ACM)ACM)Other details (e.g., definitions used, equivalents)Outcomes addressed: cardiometabolic health outcomes or all-cause mortality (pooled HR 0.71; 95% CI -31.8 to -18.3) reduced risk of all-cause mortality (pooled HR 0.71; 95% CI -0.83).Outcomes addressed: cardiometabolic health outcomes or adleexes. Six out of eight prospective observational studies (intervertion studies (n ranging from 12 to 58) reduced adiposity, improved blood pressure and lipidaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective obser	SR/MA			
Stamatakis, E. (2019). How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies. Br J Sports Med, 53(6), 370-376.Purpose: to synthesise evidence from observational and experimental and experimental and experimental and experimental and experimental of LIPA on acute and long-term cardiometabolic health through bealth through inception to February 2018Abstract: Aim To assess the relationship between time spent in light physical activity and cardiometabolic health and mortality in adults. Design Systematic review and meta-analysis.Timeframe: from inception to February 2018Data sources Searches in Medline, Embase, PsycInfo, CINAHL and three rounds of hand searches. Eligibility criteria for selecting studies Experimental (including acute mechanistic studies and physical activity intervention programme) and observational studies (excluding case and case-control studies) conducted in adults (aged ≥18 years) published in English before February 2018 and reporting on the relationship between light physical activity (<3 meta-analysis.Timeframe: from inception to February 2018with QUALSYST tool and random effects inverse variance meta-analysis.Results Seventy-two studies were eligible including 27 experimental studies (and 45 frequent bouts of light-intensity activity throughout the day reduced postprandial glucose (-17.5%; 95% Cl -26.2 to -8.7) and insulin (-25.1%; 95% Cl -31.8 to -18.3) levels compared with continuous sitting, but there was very limited evidence for it affecting other cardiometabolic markers. Three light physical activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were <br< td=""><td colspan="4">Citation: Chastin, S. F., De Craemer, M., De Cocker, K., Powell, L., Van Cauwenberg, J., Dall, P., &</td></br<>	Citation: Chastin, S. F., De Craemer, M., De Cocker, K., Powell, L., Van Cauwenberg, J., Dall, P., &			
and mortality? Systematic review with meta-analysis of experimental and observational studies. Br J Sports Med, 53(6), 370-376. Purpose: to Synthesise evidence from observational and experimental studies and to quantify the effect of LIPA on acute and long-term cardiometabolic cardiometabolic of LIPA on acute and long-term cardiometabolic cardiometabolic health through between light physical activity (rateria for selecting studies Experimental (including acute mechanistic studies and physical activity intervention programme) and observational studies (excluding case and case-control studies) conducted in adults (aged ≥18 years) published in English before February 2018 and reporting on the relationship between light physical activity (<3 metabolic equivalents) and cardiometabolic health meta-analysis. Timeframe: from inception to Results Seventy-two studies were eligible including 27 experimental studies (and 45 observational studies). Mechanistic experimental studies showed that short but frequent bouts of light-intensity activity throughout the day reduced postprandial glucose (-17.5%; 95% CI -26.2 to -8.7) and insulin (-25.1%; 95% CI -31.8 to -18.3) levels compared with continuous sitting, but there was very limited evidence for it affecting other cardiometabolic markers. Three light physical activity programme intervention studies (n ranging from 12 to 58) redu	Stamatakis, E. (2019). How does light-intensity physical activity associate with adult cardiometabolic health			
Med, 53(6), 370-376.Purpose: to synthesise evidence from observational and experimental studies and to quantify the effect of LIPA on acute and long-term cardiometabolic health throughAbstract: Aim To assess the relationship between time spent in light physical activity and cardiometabolic health and mortality in adults. Data sources Searches in Medline, Embase, PsycInfo, CINAHL and three rounds of hand searches. Eligibility criteria for selecting studies Experimental (including acute mechanistic studies and physical activity intervention programme) and observational studies (excluding case and case-control studies) conducted in adults (aged ≥18 years) published in English before February 2018 and reporting on the relationship between light physical activity (<3 metabolic equivalents) and cardiometabolic health outcomes or all-cause mortality. Study appraisal and synthesis Study quality appraisal minception to February 2018Total # studies included: 31 (8 for exclusions etc) light physical activity (<3 metabolic exclusions etc) light physical activity (<3 metabolic equivalents)Results Seventy-two studies were eligible including 27 experimental studies (and 45 observational studies). Mechanistic experimental studies showed that short but frequent bouts of light-intensity activity throughout the day reduced postprandial glucose (-17.5%; 95% Cl -26.2 to -8.7) and insulin (-25.1%, 95% Cl -31.8 to -18.3) levels compared with continuous sitting, but there was very limited evidence for it affecting other cardiometabolic markers. Three light physical activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in dially light activity 	and mortality? Systematic review with meta-analysis of experimental and observational studies. Br J Sports			
Purpose: to synthesise evidence from observational and experimental studies and to quantify the effect of LIPA on acute and long-term term term bealth through bealth through inception to February 2018Abstract: Aim To assess the relationship between time spent in light physical activity and cardiometabolic health and mortality in adults. Data sources Searches in Medline, Embase, PsycInfo, CINAHL and three rounds of hand searches. Eligibility criteria for selecting studies Experimental (including acute mechanistic studies and physical activity intervention programme) and observational studies (excluding case and case-control studies) conducted in adults (aged ≥18 years) published in English before February 2018 and reporting on the relationship between light physical activity (<3 metabolic equivalents) and cardiometabolic health outcomes or all-cause mortality. Study appraisal and synthesis Study quality appraisal outsomes or all-cause mortality. Study appraisal and synthesis Study quality appraisal inception to February 2018Total # studies included: 31 (8 for physical activity (<3 metabolic equivalents)Results Seventy-two studies were eligible including 27 experimental studies (and 45 glucose (-17.5%; 95% CI -26.2 to -8.7) and insulin (-25.1%; 95% CI -31.8 to -18.3) levels compared with continuous sitting, but there was very limited evidence for it affecting other cardiometabolic markers. Three light physical activity programme intervention studies, in anging from 12 to 58) reduced adiposity, improved blood pressure and lipidaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in dially light activity reduced risk of all-cause mortality (sourced adiposity, improv	Med, 53(6), 370-376.			
synthesise evidence from observational and experimentalAim To assess the relationship between time spent in light physical activity and cardiometabolic health and mortality in adults.and experimental studies and to quantify the effect of LIPA on acute and long-term cardiometabolicData sources Searches in Medline, Embase, PsycInfo, CINAHL and three rounds of hand searches. Eligibility criteria for selecting studies Experimental (including acute mechanistic studies and physical activity intervention programme) and observational studies (excluding case and case-control studies) conducted in adults (aged ≥18 years) published in English before February 2018 and reporting on the relationship between light physical activity (<3 metabolic equivalents) and cardiometabolic health meta-analysis.Timeframe: from inception to February 2018with QUALSYST tool and random effects inverse variance meta-analysis.Total # studies included: 31 (8 for definitions used, exclusions etc) light physical activity (<3 metabolic exclusions etc) light physical activity (<3 metabolic equivalents)levels compared with continuous sitting, but there was very limited evidence for it affecting other cardiometabolic markers. Three light physical activity programme intervention studies (in ranging from 12 to 58) reduced adiposity, improved blood pressure and lighdaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in daily light activity reduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83).Outcomes addressed: cardiometabolic health outcomes or all-cause mortality endied evidence of the prospective epidemiological evid	Purpose: to	Abstract:		
from observational and experimentalcardiometabolic health and mortality in adults.studies and to quantify the effect of LIPA on acute and long-termData sources Searches in Medline, Embase, PsycInfo, CINAHL and three rounds of hand searches. Eligibility criteria for selecting studies Experimental (including acute mechanistic studies and physical activity intervention programme) and observational studies (excluding case and case-control studies) conducted in adults (aged >18 years) published in English before February 2018 and reporting on the relationship between light physical activity (<3 metabolic equivalents) and cardiometabolic health meta-analysis.Timeframe: from inception to February 2018with QUALSYST tool and random effects inverse variance meta-analysis.Total # studies included: 31 (8 for definitions used, exclusion stel)glucose (-17.5%; 95% Cl -26.2 to -8.7) and insulin (-25.1%; 95% Cl -31.8 to -18.3) levels compared with continuous sitting, but there was very limited evidence for it affecting other cardiometabolic markers. Three light physical activity programme intervention studies (n ranging from 12 to 58) reduced adiposity, improved blood pressure and lipidaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in daily light activity reduced risk of all-cause mortality (pooled HR 0.71; 95% Cl 0.62 to 0.83).Outcomes addressed: cardiometabolic health outcomes or all-cause mortality physical activity could play a role in improving adult cardiometabolic health and reducing mortality risk. Frequent short bouts of light activity improve glycaemic control. Nevertheless, the moderate consistency between observational and lab	synthesise evidence	Aim To assess the relationship between time spent in light physical activity and		
and experimental studies and to quartify the effect of LIPA on acute and long-term cardiometabolic health through meta-analysis.Design Systematic review and meta-analysis. Data sources Searches in Medline, Embase, PsycInfo, CINAHL and three rounds of hand searches. Eligibility criteria for selecting studies Experimental (including acute mechanistic studies and physical activity intervention programme) and observational studies (excluding case and case-control studies) conducted in adults (aged ≥18 years) published in English before February 2018 and reporting on the relationship between light physical activity (<3 metabolic equivalents) and cardiometabolic health outcomes or all-cause mortality. Study appraisal and synthesis Study quality appraisal with QUALSYST tool and random effects inverse variance meta-analysis. Results Seventy-two studies were eligible including 27 experimental studies (and 45 observational studies). Mechanistic experimental studies showed that short but frequent bouts of light-intensity activity throughout the day reduced postprandial glucose (-17.5%; 95% CI -26.2 to -8.7) and insulin (-25.1%; 95% CI -31.8 to -18.3) levels compared with continuous sitting, but there was very limited evidence for it affecting other cardiometabolic markers. Three light physical activity programme intervention studies (n ranging from 12 to 58) reduced adiposity, improved blood pressure and lipidaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in daily light activity reduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83).Outcomes addressed: cardiometabolic health and reducing mortality risk. Frequent short bouts of light activity improve glycaemic control. Nevertheless, the moderat	from observational	cardiometabolic health and mortality in adults.		
studies and to quantify the effect of LIPA on acute and long-term cardiometabolic health through meta-analysis.Data sources Searches in Medline, Embase, PsycInfo, CINAHL and three rounds of hand searches. Eligibility criteria for selecting studies Experimental (including acute mechanistic studies and physical activity intervention programme) and observational studies (excluding case and case-control studies) conducted in adults (aged ≥18 years) published in English before February 2018 and reporting on the relationship between light physical activity (<3 metabolic equivalents) and cardiometabolic health outcomes or all-cause mortality. Study appraisal and synthesis Study quality appraisal with QUALSYST tool and random effects inverse variance meta-analysis.Timeframe: from inception to February 2018With QUALSYST tool and random effects inverse variance meta-analysis.Total # studies included: 31 (8 for AcCM)Generative section of the physical activity (source of the cardiometabolic markers. Three light physical activity programme intervention studies (n ranging from 12 to 58) reduced adiposity, improved blood pressure and lipidaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in daily light activity reduced risk of all-cause mortality (pooled HR 0.71; 95% Cl 0.62 to 0.83).Outcomes addressed: cardiometabolic health outcomes or all-cause mortalityConclusions Light-intensity activity conclusions, the modest volume of the prospective eightemiological evidence base and the moderate consistency between observational and laboratory evidence inhibits definitive conclusions.	and experimental	Design Systematic review and meta-analysis.		
quantify the effect of LIPA on acute and long-term cardiometabolic health throughhand searches. Eligibility criteria for selecting studies Experimental (including acute mechanistic studies and physical activity intervention programme) and observational studies (excluding case and case-control studies) conducted in adults (aged ≥18 years) published in English before February 2018 and reporting on the relationship between light physical activity (<3 metabolic equivalents) and cardiometabolic health outcomes or all-cause mortality. Study appraisal and synthesis Study quality appraisal with QUALSYST tool and random effects inverse variance meta-analysis.Timeframe: from inception to February 2018with QUALSYST tool and random effects inverse variance meta-analysis.Total # studies included: 31 (8 for ACM)Results Seventy-two studies were eligible including 27 experimental studies (and 45 glucose (-17.5%; 95% CI -26.2 to -8.7) and insulin (-25.1%; 95% CI -31.8 to -18.3) levels compared with continuous sitting, but there was very limited evidence for it affecting other cardiometabolic markers. Three light physical activity programme intervention studies (n ranging from 12 to 58) reduced adiposity, improved blood pressure and lipidaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in daily light activity reduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83).Outcomes addressed: cardiometabolic health and reducing mortality risk. Frequent short bouts of light activity improve glycaemic control. Nevertheless, the moderate consistency between observational and laboratory evidence base and the moderate consistency between observational and laboratory evid	studies and to	Data sources Searches in Medline, Embase, PsycInfo, CINAHL and three rounds of		
of LIPA on acutemechanistic studies and physical activity intervention programme) and observationaland long-termstudies (excluding case and case-control studies) conducted in adults (aged ≥18cardiometabolicyears) published in English before February 2018 and reporting on the relationshiphealth throughbetween light physical activity (<3 metabolic equivalents) and cardiometabolic health	quantify the effect	hand searches. Eligibility criteria for selecting studies Experimental (including acute		
and long-termstudies (excluding case and case-control studies) conducted in adults (aged ≥18cardiometabolicyears) published in English before February 2018 and reporting on the relationshiphealth throughbetween light physical activity (<3 metabolic equivalents) and cardiometabolic health	of LIPA on acute	mechanistic studies and physical activity intervention programme) and observational		
cardiometabolic health through meta-analysis.years) published in English before February 2018 and reporting on the relationship between light physical activity (<3 metabolic equivalents) and cardiometabolic health outcomes or all-cause mortality. Study appraisal and synthesis Study quality appraisalTimeframe: from inception to February 2018with QUALSYST tool and random effects inverse variance meta-analysis.Total # studies included: 31 (8 for definitions used, exclusions etc) lightfrequent bouts of light-intensity activity throughout the day reduced postprandial glucose (-17.5%; 95% Cl -26.2 to -8.7) and insulin (-25.1%; 95% Cl -31.8 to -18.3)Other details (e.g. definitions used, entabolicaffecting other cardiometabolic markers. Three light physical activity programme intervention studies (n ranging from 12 to 58) reduced adiposity, improved blood pressure and lipidaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in daily light activity reduced risk of all-cause mortality (pooled HR 0.71; 95% Cl 0.62 to 0.83).Outcomes addressed: cardiometabolic health outcomes or all-cause mortality improve glycaemic control. Nevertheless, the modest volume of the prospective epidemiological evidence base and the moderate consistency between observational and laboratory evidence inhibits definitive conclusions.	and long-term	studies (excluding case and case–control studies) conducted in adults (aged ≥18		
health through meta-analysis.between light physical activity (<3 metabolic equivalents) and cardiometabolic health outcomes or all-cause mortality. Study appraisal and synthesis Study quality appraisalTimeframe: from inception towith QUALSYST tool and random effects inverse variance meta-analysis.February 2018observational studies). Mechanistic experimental studies showed that short but frequent bouts of light-intensity activity throughout the day reduced postprandial glucose (-17.5%; 95% Cl -26.2 to -8.7) and insulin (-25.1%; 95% Cl -31.8 to -18.3)ACM)levels compared with continuous sitting, but there was very limited evidence for it affecting other cardiometabolic markers. Three light physical activity programme intervention studies (n ranging from 12 to 58) reduced adiposity, improved blood pressure and lipidaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in daily light activity reduced risk of all-cause mortality (pooled HR 0.71; 95% Cl 0.62 to 0.83).Outcomes addressed: cardiometabolic health and reducing mortality risk. Frequent short bouts of light activity improve glycaemic control. Nevertheless, the modest volume of the prospective epidemiological evidence base and the moderate consistency between all-cause mortality	cardiometabolic	years) published in English before February 2018 and reporting on the relationship		
meta-analysis.outcomes or all-cause mortality. Study appraisal and synthesis Study quality appraisalTimeframe: fromwith QUALSYST tool and random effects inverse variance meta-analysis.inception toResults Seventy-two studies were eligible including 27 experimental studies (and 45February 2018observational studies). Mechanistic experimental studies showed that short butTotal # studiesfrequent bouts of light-intensity activity throughout the day reduced postprandialincluded: 31 (8 forglucose (-17.5%; 95% CI -26.2 to -8.7) and insulin (-25.1%; 95% CI -31.8 to -18.3)ACM)levels compared with continuous sitting, but there was very limited evidence for itother details (e.g.affecting other cardiometabolic markers. Three light physical activity programmeintervention studies (n ranging from 12 to 58) reduced adiposity, improved bloodpressure and lipidaemia; the programmes consisted of activity of >150 min/week forat least 12 weeks. Six out of eight prospective observational studies that wereentered in the meta-analysis reported that more time spent in daily light activityequivalents)Conclusions Light-intensity physical activity could play a role in improving adultaddressed:cardiometabolic health and reducing mortality risk. Frequent short bouts of lightactivity improve glycaemic control. Nevertheless, the moderate consistency betweenobservational and laboratory evidence inhibits definitive conclusions.	health through	between light physical activity (<3 metabolic equivalents) and cardiometabolic health		
Timeframe: fromwith QUALSYST tool and random effects inverse variance meta-analysis.inception toResults Seventy-two studies were eligible including 27 experimental studies (and 45February 2018observational studies). Mechanistic experimental studies showed that short butTotal # studiesfrequent bouts of light-intensity activity throughout the day reduced postprandialincluded: 31 (8 forglucose (-17.5%; 95% CI -26.2 to -8.7) and insulin (-25.1%; 95% CI -31.8 to -18.3)ACM)levels compared with continuous sitting, but there was very limited evidence for itother details (e.g.affecting other cardiometabolic markers. Three light physical activity programmeintervention studies (n ranging from 12 to 58) reduced adiposity, improved bloodpressure and lipidaemia; the programmes consisted of activity of >150 min/week forat least 12 weeks. Six out of eight prospective observational studies that wereentered in the meta-analysis reported that more time spent in daily light activityreduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83).Outcomesaddressed:cardiometaboliccardiometabolichealth outcomes orall-cause mortalityobservational and laboratory evidence inhibits definitive conclusions.	meta-analysis.	outcomes or all-cause mortality. Study appraisal and synthesis Study quality appraisal		
inception toResults Seventy-two studies were eligible including 27 experimental studies (and 45February 2018observational studies). Mechanistic experimental studies showed that short butTotal # studiesfrequent bouts of light-intensity activity throughout the day reduced postprandialincluded: 31 (8 forglucose (-17.5%; 95% Cl -26.2 to -8.7) and insulin (-25.1%; 95% Cl -31.8 to -18.3)ACM)levels compared with continuous sitting, but there was very limited evidence for itother details (e.g.affecting other cardiometabolic markers. Three light physical activity programmeintervention studies (n ranging from 12 to 58) reduced adiposity, improved bloodpressure and lipidaemia; the programmes consisted of activity of >150 min/week forat least 12 weeks. Six out of eight prospective observational studies that wereentered in the meta-analysis reported that more time spent in daily light activityreduced risk of all-cause mortality (pooled HR 0.71; 95% Cl 0.62 to 0.83).Outcomesaddressed:cardiometabolichealth outcomes orall-cause mortalityobservational and laboratory evidence inhibits definitive conclusions.	Timeframe: from	with QUALSYST tool and random effects inverse variance meta-analysis.		
February 2018observational studies). Mechanistic experimental studies showed that short butTotal # studiesfrequent bouts of light-intensity activity throughout the day reduced postprandialincluded: 31 (8 for ACM)glucose (-17.5%; 95% CI -26.2 to -8.7) and insulin (-25.1%; 95% CI -31.8 to -18.3)Other details (e.g. definitions used, exclusions etc) lightaffecting other cardiometabolic markers. Three light physical activity programme intervention studies (n ranging from 12 to 58) reduced adiposity, improved blood pressure and lipidaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in daily light activity reduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83).Outcomes addressed: cardiometabolic health outcomes or all-cause mortalityConclusions Light-intensity physical activity risk. Frequent short bouts of light activity improve glycaemic control. Nevertheless, the moderate consistency between observational and laboratory evidence inhibits definitive conclusions.	inception to	Results Seventy-two studies were eligible including 27 experimental studies (and 45		
Total # studiesfrequent bouts of light-intensity activity throughout the day reduced postprandialincluded: 31 (8 for ACM)glucose (-17.5%; 95% CI -26.2 to -8.7) and insulin (-25.1%; 95% CI -31.8 to -18.3)Other details (e.g. definitions used, exclusions etc) lightaffecting other cardiometabolic markers. Three light physical activity programme intervention studies (n ranging from 12 to 58) reduced adiposity, improved blood pressure and lipidaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in daily light activity reduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83).Outcomes addressed: cardiometabolic health outcomes or all-cause mortalityConclusions Light-intensity physical activity risk. Frequent short bouts of light activity improve glycaemic control. Nevertheless, the moderate consistency between observational and laboratory evidence inhibits definitive conclusions.	February 2018	observational studies). Mechanistic experimental studies showed that short but		
included: 31 (8 for ACM)glucose (-17.5%; 95% CI -26.2 to -8.7) and insulin (-25.1%; 95% CI -31.8 to -18.3) levels compared with continuous sitting, but there was very limited evidence for it affecting other cardiometabolic markers. Three light physical activity programme intervention studies (n ranging from 12 to 58) reduced adiposity, improved blood pressure and lipidaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in daily light activity reduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83).Outcomes addressed: cardiometabolic health outcomes or all-cause mortalityConclusions Light-intensity physical activity risk. Frequent short bouts of light activity improve glycaemic control. Nevertheless, the moderate consistency between observational and laboratory evidence inhibits definitive conclusions.	Total # studies	frequent bouts of light-intensity activity throughout the day reduced postprandial		
ACM)levels compared with continuous sitting, but there was very limited evidence for it affecting other cardiometabolic markers. Three light physical activity programme intervention studies (n ranging from 12 to 58) reduced adiposity, improved blood pressure and lipidaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in daily light activity reduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83).Outcomes addressed: cardiometabolic health outcomes or all-cause mortalityConclusions Light-intensity physical activity risk. Frequent short bouts of light activity improve glycaemic control. Nevertheless, the moderate consistency between observational and laboratory evidence inhibits definitive conclusions.	included: 31 (8 for	glucose (–17.5%; 95% Cl –26.2 to –8.7) and insulin (–25.1%; 95% Cl –31.8 to –18.3)		
Other details (e.g. definitions used, exclusions etc) lightaffecting other cardiometabolic markers. Three light physical activity programme intervention studies (n ranging from 12 to 58) reduced adiposity, improved blood pressure and lipidaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in daily light activity reduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83).Outcomes addressed: cardiometabolic health outcomes or all-cause mortalityConclusions Light-intensity physical activity could play a role in improving adult activity improve glycaemic control. Nevertheless, the modest volume of the prospective epidemiological evidence base and the moderate consistency between observational and laboratory evidence inhibits definitive conclusions.	ACM)	levels compared with continuous sitting, but there was very limited evidence for it		
definitions used,intervention studies (n ranging from 12 to 58) reduced adiposity, improved bloodexclusions etc) lightpressure and lipidaemia; the programmes consisted of activity of >150 min/week forphysical activity (<3at least 12 weeks. Six out of eight prospective observational studies that wereequivalents)reduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83).OutcomesConclusions Light-intensity physical activity could play a role in improving adultaddressed:cardiometabolic health and reducing mortality risk. Frequent short bouts of lightcardiometabolicprospective epidemiological evidence base and the moderate consistency betweenall-cause mortalityobservational and laboratory evidence inhibits definitive conclusions.	Other details (e.g.	affecting other cardiometabolic markers. Three light physical activity programme		
exclusions etc) lightpressure and lipidaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in daily light activity reduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83).Outcomes addressed: cardiometabolic health outcomes or all-cause mortalityConclusions Light-intensity physical activity rould play a role in improving adult activity improve glycaemic control. Nevertheless, the modest volume of the prospective epidemiological evidence base and the moderate consistency between observational and laboratory evidence inhibits definitive conclusions.	definitions used,	intervention studies (n ranging from 12 to 58) reduced adiposity, improved blood		
physical activity (<3at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in daily light activity reduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83).OutcomesConclusions Light-intensity physical activity could play a role in improving adult cardiometabolic health and reducing mortality risk. Frequent short bouts of light activity improve glycaemic control. Nevertheless, the modest volume of the prospective epidemiological evidence base and the moderate consistency between observational and laboratory evidence inhibits definitive conclusions.	exclusions etc) light	pressure and lipidaemia; the programmes consisted of activity of >150 min/week for		
metabolicentered in the meta-analysis reported that more time spent in daily light activityequivalents)reduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83).OutcomesConclusions Light-intensity physical activity could play a role in improving adultaddressed:cardiometabolic health and reducing mortality risk. Frequent short bouts of lightcardiometabolicactivity improve glycaemic control. Nevertheless, the modest volume of thehealth outcomes orprospective epidemiological evidence base and the moderate consistency betweenall-cause mortalityobservational and laboratory evidence inhibits definitive conclusions.	physical activity (<3	at least 12 weeks. Six out of eight prospective observational studies that were		
equivalents)reduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83).OutcomesConclusions Light-intensity physical activity could play a role in improving adult cardiometabolic health and reducing mortality risk. Frequent short bouts of light activity improve glycaemic control. Nevertheless, the modest volume of the prospective epidemiological evidence base and the moderate consistency between all-cause mortalityequivalents)observational and laboratory evidence inhibits definitive conclusions.	metabolic	entered in the meta-analysis reported that more time spent in daily light activity		
OutcomesConclusions Light-intensity physical activity could play a role in improving adultaddressed:cardiometabolic health and reducing mortality risk. Frequent short bouts of lightcardiometabolicactivity improve glycaemic control. Nevertheless, the modest volume of thehealth outcomes orprospective epidemiological evidence base and the moderate consistency betweenall-cause mortalityobservational and laboratory evidence inhibits definitive conclusions.	equivalents)	reduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83).		
addressed:cardiometabolic health and reducing mortality risk. Frequent short bouts of lightcardiometabolicactivity improve glycaemic control. Nevertheless, the modest volume of thehealth outcomes orprospective epidemiological evidence base and the moderate consistency betweenall-cause mortalityobservational and laboratory evidence inhibits definitive conclusions.	Outcomes	Conclusions Light-intensity physical activity could play a role in improving adult		
cardiometabolicactivity improve glycaemic control. Nevertheless, the modest volume of thehealth outcomes orprospective epidemiological evidence base and the moderate consistency betweenall-cause mortalityobservational and laboratory evidence inhibits definitive conclusions.	addressed:	cardiometabolic health and reducing mortality risk. Frequent short bouts of light		
health outcomes or all-cause mortalityprospective epidemiological evidence base and the moderate consistency between observational and laboratory evidence inhibits definitive conclusions.	cardiometabolic	activity improve glycaemic control. Nevertheless, the modest volume of the		
all-cause mortality observational and laboratory evidence inhibits definitive conclusions.	health outcomes or	prospective epidemiological evidence base and the moderate consistency between		
	all-cause mortality	observational and laboratory evidence inhibits definitive conclusions.		

SR/MA			
Citation: Dinu, M., Pagliai, G., Macchi, C., & Sofi, F. (2019). Active commuting and multiple health outcomes:			
a systematic review and meta-analysis. Sports Medicine, 49(3), 437-452.			
Purpose: To	Abstract:		
evaluate the	Background Active commuting is associated with greater physical activity, but there is		
relationship	no consensus on the actual beneficial effects of this type of physical activity on health		
between active	outcomes.		
commuting and all-	Objective To examine the association between active commuting and risk of all-cause		
cause mortality,	mortality, incidence and mortality from cardiovascular diseases, cancer and diabetes		
cardiovascular	through meta-analysis.		
disease, cancer and	Methods A comprehensive search of MEDLINE, Embase, Google Scholar, Web of		
diabetes.	Science, The Cochrane Library, Transport Research International Documentation		
Timeframe:	database, and reference lists of included articles was conducted. Only prospective		
MEDLINE (source:	cohort studies were included.		
PubMed, 1966 to	Results Twenty-three prospective studies including 531,333 participants were		
February 2018),	included. Participants who engaged in active commuting had a significantly lower risk		
Embase (1980 to	of all-cause mortality [relative risk (RR) 0.92, 95% CI 0.85–0.98] and cardiovascular		
February	disease incidence (RR 0.91; 95% CI 0.83–0.99). There was no association between		
2018)	active commuting and cardiovascular disease mortality and cancer. Participants who		
Total # studies	engaged in active commuting had a 30% reduced risk of diabetes (RR 0.70; 95% CI		
included: 23	0.61–0.80) in three studies after removal of an outlying study that affected the		
Other details (e.g.	heterogeneity of the results. Subgroup analyses suggested a significant risk reduction		
definitions used,	(- 24%) of all-cause mortality (RR 0.76; 95% Cl 0.63–0.94) and cancer mortality (-		
exclusions etc) only	25%; RR 0.75; 95% CI 0.59–0.895) among cycling commuters.		
prospective cohort	Conclusion People who engaged in active commuting had a significantly reduced risk		
studies included	of all-cause mortality, cardiovascular		
Outcomes	disease incidence and diabetes.		
addressed: all-			
cause mortality,			
cardiovascular			
disease, cancer and			
diabetes			

SR/MA				
Citation: Ekelund, U., Tarp, J., Steene-Johannessen, J., Hansen, B. H., Jefferis, B., Fagerland, M. W., &				
Larson, M. G. (2019). Dose-response associations between accelerometry measured physical activity and				
sedentary time and a	Il cause mortality: systematic review and harmonised meta-analysis. bmj, 366, 14570.			
Purpose: to	Abstract:			
examine the	Objective To examine the dose-response associations between accelerometer			
association	assessed total physical activity, different intensities of physical activity, and sedentary			
between	time and all cause mortality. Design Systematic review and harmonised meta-			
accelerometer	analysis. Data sources PubMed, PsycINFO, Embase, Web of Science, Sport Discus			
measured physical	from inception to 31 July 2018. Eligibility criteria Prospective cohort studies assessing			
activity and	physical activity and sedentary time by accelerometry and associations with all cause			
sedentary time and	mortality and reported effect estimates as hazard ratios, odds ratios, or relative risks			
all cause mortality	with 95% confidence intervals. Data extraction and analysis Guidelines for meta-			
Timeframe: from	analyses and systematic reviews for observational studies and PRISMA guidelines			
inception to 31 July	were followed. Two authors independently screened the titles and abstracts. One			
2018	author performed a full text review and another extracted the data. Two authors			
Total # studies	independently assessed the risk of bias. Individual level participant data were			
included: 8	harmonised and analysed at study level. Data on physical activity were categorised by			
Other details (e.g.	quarters at study level, and study specific associations with all cause mortality were			
definitions used,	analysed using Cox proportional nazards regression analyses. Study specific results			
exclusions etc)	were summarised using random effects meta-analysis. Main outcome measure All			
prospective cohort	cause mortality. Results 39 studies were retrieved for full text review; 10 were			
studies that	eligible for inclusion, three were excluded owing to harmonisation challenges (eg,			
assessed sedentary	additional studios with unpublished mortality data were also included. Thus			
time and physical	individual lovel data from eight studies (n=26282; mean age 62.6 years; 72.8%			
activity by	(1-50565, 11ean age 02.0 years, 72.6%)			
accelerometry	deaths were analysed. Any physical activity regardless of intensity, was associated			
Outcomos	with lower risk of mortality, with a non-linear dose-response. Hazards ratios for			
addrossed: all	mortality were 1.00 (referent) in the first quarter (least active), 0.48 (95% confidence			
cause mortality	interval 0.43 to 0.54) in the second guarter, 0.34 (0.26 to 0.45) in the third guarter.			
cause mortanty	and $0.27 (0.23 \text{ to } 0.32)$ in the fourth quarter (most active). Corresponding hazards			
	ratios for light physical activity were 1.00, 0.60 (0.54 to 0.68), 0.44 (0.38 to 0.51), and			
	0.38 (0.28 to 0.51), and for moderate-to-vigorous physical activity were 1.00, 0.64			
	(0.55 to 0.74), 0.55 (0.40 to 0.74), and 0.52 (0.43 to 0.61). For sedentary time.			
	hazards ratios were 1.00 (referent: least sedentary), 1.28 (1.09 to 1.51), 1.71 (1.36 to			
	2.15), and 2.63 (1.94 to 3.56). Co nclusion Higher levels of total physical activity, at			
	any intensity, and less time spent sedentary, are associated with substantially			
	reduced risk for premature mortality, with evidence of a non-linear dose-response			
	pattern in middle aged and older adults.			

Systematic review

Citation: Engeroff T, Ingmann T, Banzer W. Physical Activity Throughout the Adult Life Span and Domain-Specific Cognitive Function in Old Age: A Systematic Review of Cross-Sectional and Longitudinal Data. Sport Med. 2018;48(6):1405–36.

Purpose: To study associations between	Abstract:
adherence to leisure PA during adulthood	BACKGROUND: A growing body of literature suggests that
and domain-specific cognitive function in	physical activity might alleviate the age-related
old age.	neurodegeneration and decline of cognitive function.
Timeframe: Inception – November 2017	However, most of this evidence is based on data investigating
Total # studies included: 23	the association of exercise interventions or current physical
Author-stated inclusion criteria:	activity behavior with cognitive function in elderly subjects.
To be included in our analysis, studies had	OBJECTIVE: We performed a systematic review and
to assess (1) leisure PA during a time point	hypothesize that physical activity during the adult life span is
or time span of adulthood (age 18? years),	connected with maintained domain-specific cognitive
and (2) cognitive function during a time	functions during late adulthood defined as age 60+ years.
point or time span of old age, defined as a	METHODS: We performed a systematic literature search up to
sample mean age of 60?years (either in	November 2017 in PubMed, Web of Science, and Google
the overall sample or a subsample	Scholar without language limitations for studies analyzing the
analysis). To define long-term effects, C 10	association of leisure physical activity during the adult life span
years should separate at least one time	(age 18+ years) and domain-specific cognitive functions in
point of leisure PA behavior and cognitive	older adults (age 60+ years).
function assessment. Participants (either	RESULTS: The literature review yielded 14,294 articles and
the overall sample or a subsample that	after applying inclusion and exclusion criteria, nine cross-
was analyzed separately) should have no	sectional and 14 longitudinal studies were included.
cognitive impairments or mental illnesses.	Moderate- and vigorous-intensity leisure physical activity was
Author-stated leisure time physical	associated with global cognitive function and specific cognitive
activity definition:	domains including executive functions and memory but not
Leisure PA included all activities that	attention or working memory. Most studies assessed mid- to
people participated in during their free	late-adulthood physical activity, thus information concerning
time and that were not work related and	the influence of young adult life-span physical activity is
did not involve life maintenance tasks	currently lacking.
such as housecleaning.	CONCLUSIONS: Observational evidence that moderate- and
Outcomes addressed:	vigorous-intensity leisure physical activity is beneficially
Cognitive function was defined as an	associated with maintained cognitive functions during old age
assessment/ outcome that indicates the	is accumulating. Further studies are necessary to confirm a
performance or decline in (1) a definable	causal link by assessing objective physical activity data and the
cognitive domain, or (2) multiple cognitive	decline of cognitive functions at multiple time points during
domains, or (3) overall/global cognitive	old age.
function.	
Populations analysed: adults without	Author-stated funding source: No sources of funding were
diagnosed cognitive impairments	used to assist in the preparation of this article.

Meta-analysis		
Citation: Gordon B., McDowell C., Lyons M., Herring M., The Effects of Resistance Exercise Training on		
Anxiety: A Meta-Analysis and Meta-Regression Analysis of Randomized Controlled Trials. Sports Med. 2017);		
47:2521–2532.		
Purpose: To estimate the	Abstract:	
population effect size for		
resistance exercise	Background: The salutary effects of resistance exercise training (RET) are well	
training (RET) effects on	established, including increased strength and function; however, less is known	
anxiety	regarding the effects of RET on mental health outcomes. Aerobic exercise has	
Timeframe: From	well-documented positive effects on anxiety, but a quantitative synthesis of RET	
inception to February 20	effects on anxiety is needed. Objectives: To estimate the population effect size	
Total # studies included:	for resistance exercise training (RET) effects on anxiety and to determine	
16	whether variables of logical, theoretical, and/or prior empirical relation to	
Other details (e.g.	anxiety moderate the overall effect. Methods: Thirty-one effects were derived	
definitions used,	from 16 articles published before February 2017, located using Google Scholar,	
exclusions etc): RCTs to	MEDLINE, PsycINFO, PubMed, and Web of Science. Trials involved 922	
either a RET intervention	participants (mean age = 43 ± 21 years, 68% female/ 32% male) and included	
or a non-active control	both randomization to RET ($n = 486$) or a non-active control condition ($n =$	
condition, and an	436), and a validated anxiety outcome measured at baseline, mid-, and/or post-	
anxiety outcome	intervention. Hedges' d effect sizes were computed and random effects models	
measured at baseline and	were used for all analyses. Meta-regression quantified the extent to which	
at mid- and/or post-	participant and trial characteristics moderated the mean effect. Results: RET	
intervention	significantly reduced anxiety symptoms (Δ = 0.31, 95% Cl 0.17-0.44; z = 4.43;	
Outcomes addressed:	p < 0.001). Significant heterogeneity was not indicated (Q (30) = 40.5, p > 0.09;	
Anxiety measured using:	I = 28.3%, 95% CI 10.17-42.81); sampling error accounted for 77.7% of observed	
Profile of mood states-	variance. Larger effects were found among healthy participants (Δ = 0.50, 95%	
tension, Hopkins symptom	CI 0.22-0.78) compared to participants with a physical or mental illness (Δ =	
checklist, State-Trait	0.19, 95% CI 0.06-0.31, z = 2.16, p < 0.04). Effect sizes did not significantly vary	
Anxiety Inventory,	according to sex (β = -0.31), age (β = -0.10), control condition (β = 0.08),	
Mental Health	program length (β = 0.07), session duration (β = 0.08), frequency (β = -0.10),	
Functioning Index-Anxiety,	intensity ($\beta = -0.18$), anxiety recall time frame ($\beta = 0.21$), or whether strength	
Hospital Anxiety and	significantly improved (β = 0.19) (all p ≥ 0.06). Conclusions: RET significantly	
Depression Scales,	improves anxiety symptoms among both healthy participants and	
Depression, Anxiety and	participants with a physical or mental illness. Improvements were not	
Stress Scale-21, Brunel	moderated by sex, or based on features of RET. Future trials should compare	
Mood Scale-Tension,	RET to other empirically-supported therapies for anxiety.	
Generalized Anxiety		
Disorder		
Population analysed: All	Author-Stated Funding Source: No sources of funding were used to assist in	
ages, including children	the conduct of this analysis or the preparation of this article.	
and adolescents, patient		
groups, older adults and		
some with mental health		
concerns.		

Meta-analysis

Citation: Gordon B.R., McDowell C.P., Hallgren M., Meyer M., Lyon M., Herring M.P. Association of Efficacy of Resistance Exercise Training With Depressive Symptoms: Meta-analysis and Meta-regression Analysis of Randomized Clinical Trials. *JAMA Psychiatry*. 2018;75(6):566-576.

Purpose: To estimate the Abstract: association of efficacy of resistive exercise training (RET) with depressive symptoms. Timeframe: Published before August 2017 Total # studies included: 33 Other details (e.g. definitions used, exclusions etc): Peerreviewed publication, clinical trials. randomized allocation to either an RET intervention or a nonactive control condition, and a validated self-report or clinician-rated measure of depressive symptoms assessed at baseline and at mid-intervention and/or postintervention. No multi-component studies included. Interventions ranged between 6 and 52 weeks. **Outcomes addressed:** Measures of depressive symptoms using: Beck Depression Inventory; Brunel Mood Scale Cardiac Depression Scale; Center for Epidemiologic Studies Depression Scale, **Depression Adjective** Checklist, Depression, Anxiety and Stress Scale; GDS, Geriatric Depression Scale, Hospital Anxiety and Depression Scale, Hamilton Rating Scale for Depression, Major Depression Inventory,

Mental HealthFunctioning Index, Profile of Mood States, Hopkins Symptom

Population analysed:

Adults what were either

Checklist

Importance: The physical benefits of resistance exercise training (RET) are well documented, but less is known regarding the association of RET with mental health outcomes. To date, no quantitative synthesis of the antidepressant effects of RET has been conducted. Objectives: To estimate the association of efficacy of RET with depressive symptoms and determine the extent to which logical, theoretical, and/or prior empirical variables are associated with depressive symptoms and whether the association of efficacy of RET with depressive symptoms accounts for variability in the overall effect size. Data Sources: Articles published before August 2017, located using Google Scholar, MEDLINE, PsycINFO, PubMed, and Web of Science. Study Selection: Randomized clinical trials included randomization to RET (n = 947) or a nonactive control condition (n = 930). Data Extraction and Synthesis: Hedges d effect sizes were computed and random-effects models were used for all analyses. Meta-regression was conducted to quantify the potential moderating influence of participant and trial characteristics. Main Outcomes and Measures: Randomized clinical trials used validated measures of depressive symptoms assessed at baseline and mid-intervention and/or postintervention. Four primary moderators were selected a priori to provide focused research hypotheses about variation in effect size: total volume of prescribed RET, whether participants were healthy or physically or mentally ill, whether or not allocation and/or assessment were blinded, and whether or not the RET intervention resulted in a significant improvement in strength. Results: Fifty-four effects were derived from 33 randomized clinical trials involving 1877 participants. Resistance exercise training was associated with a significant reduction in depressive symptoms with a moderate-sized mean effect of 0.66 (95% Cl, 0.48-0.83; z = 7.35; P < .001). Significant heterogeneity was indicated (total Q = 216.92, df = 53; P < .001; I2 = 76.0% [95% CI, 72.7%-79.0%]), and sampling error accounted for 32.9% of observed variance. The number needed to treat was 4. Total volume of prescribed RET, participant health status, and strength improvements were not significantly associated with the antidepressant effect of RET. However, smaller reductions in depressive symptoms were derived from randomized clinical trials with blinded allocation and/or assessment. Conclusions and Relevance: Resistance exercise training significantly reduced depressive symptoms among adults regardless of health status, total prescribed volume of RET, or significant improvements in strength. Better-quality randomized clinical trials blinding both allocation and assessment and comparing RET with other empirically supported treatments for depressive symptoms are needed.

Author-Stated Funding Source: None reported.

older, or were overweight
or obese, or may have had
some or other medical
condition (T2DM, Cancer,
Fibromyalgia etc), and one
study with law
enforcement officers and
one study with
participants with major
depressive disorder

SR/MA	
Citation: Hidayat K, Zhou H-J, Shi B-M. Influence of physical activity at a young age and lifetime physical	
activity on the risks o	f 3 obesity-related cancers: systematic review and meta-analysis of observational
studies. Nutrition Rev	riews 2019 doi: 10.1093/nutrit/nuz024
Purpose: The	Abstract: Context: Excess weight has been linked to increased risks of 13 types of
present systematic	cancers. Physical activity is a non-nutritional modifiable lifestyle factor that is not
review and meta-	only crucial for weight control but is also known to regulate hormones and metabolic
analysis of	pathways that may contribute to carcinogenesis. There is solid evidence that being
observational	physically active during middle and late adulthood lowers the risks of 3 obesity-
studies was	related cancers, namely breast cancer, colon cancer, and endometrial cancer.
performed in	However, the associations between physical activity at a young age (childhood,
accordance with	adolescence, and young adulthood; age 5 to _30 yr) and lifetime physical activity and
the MOOSE	the risks of breast cancer, colon cancer, and endometrial cancer are less defined.
guidelines to	Objective: The present systematic review and meta-analysis of observational studies
determine whether	was performed in accordance with the MOOSE guidelines to determine whether
physical activity at	physical activity at a young age and lifetime physical activity may lower the risks of
a young age and	breast cancer, colon cancer, and endometrial cancer. Data sources: The PubMed and
lifetime physical	Web of Science databases were searched for relevant observational studies
activity may lower	published from inception to July 2018. Study selection: Observational studies
the risks of breast	(prospective cohort, case cohort, nested case-control, historical cohort, and case-
cancer, colon	control) were considered relevant if they investigated the association between
cancer, and	physical activity at a young age or lifetime physical activity and the risks of developing
endometrial	selected cancers. Data extraction: A random-effects meta-analysis was performed to
cancer.	generate the summary relative risk (RR) with 95%CI for the highest vs the lowest
Timeframe:	category of physical activity of any type. Results: Eighty publications were included in
Inception to July	the present meta-analysis. Higher physical activity at a young age was associated
2019	with lower risks of breast cancer (RR 0.81, 95%CI 0.76, 0.87) and colon cancer (RR
Total # studies	0.67, 95%CI 0.50, 0.88). Similarly, lifetime physical activity was inversely associated
included: 80	with the risks of breast cancer (RR 0.79, 95%CI 0.72, 0.86) and colon cancer (RR 0.75,
Other details (e.g.	95%CI 0.69, 0.82). For breast cancer, menopausal status did not appear to modify the
definitions used,	observed inverse association. The benefit with respect to endometrial cancer risk
exclusions etc)	reduction was only observed with higher lifetime physical activity (RR 0.77, 95%Cl
Self-reported PA by	0.67, 0.88), not with higher physical activity at a young age (RR 0.89, 95%Cl 0.73,
type	1.07). Conclusions: Being physically active over a lifetime, starting from early
Outcomes	childhood, may lower the risks of developing breast cancer, colon cancer, and
addressed: Breast,	endometrial cancer.
colon, endometrial	
cancer	
Populations	Author-Stated Funding Source: This study was supported by grants
Analyzed: Adults	from Suzhou Science and Technology Bureau (No. SYS201741).

	SR/MA	
	Citation: Kovacevic A	, Mavros Y, Heisz JJ, Singh MA. The effect of resistance exercise on sleep: a systematic
	review of randomized	controlled trials. Sleep medicine reviews. 2018 Jun 1;39:52-68. https://doi-
	org.ezproxy1.library.u	usyd.edu.au/10.1016/j.smrv.2017.07.002
	Purpose: to review	Abstract:
	the effects of acute	Impaired sleep quality and quantity are associated with future morbidity and
	and chronic	mortality. Exercise may be an effective non-pharmacological intervention to improve
	resistance exercise	sleep, however, little is known on the effect of resistance exercise. Thus, we
	on sleep quantity	performed a systematic review of the literature to determine the acute and chronic
	and quality.	effects of resistance exercise on sleep quantity and quality. Thirteen studies were
	Timeframe:	included. Chronic resistance exercise improves all aspects of sleep, with the greatest
	inception to 20	benefit for sleep quality. These benefits of isolated resistance exercise are attenuated
	June 2016	when resistance exercise is combined with aerobic exercise and compared to aerobic
	Total # studies	exercise alone. However, the acute effects of resistance exercise on sleep remain
	included: 13	poorly studied and inconsistent. In addition to the sleep benefits, resistance exercise
	Other details (e.g.	training improves anxiety and depression. These results suggest that resistance
	definitions used,	exercise may be an effective intervention to improve sleep quality. Further research
	exclusions etc) RCT	is needed to better understand the effects of acute resistance exercise on sleep, the
	or randomized	physiological mechanisms underlying changes in sleep, the changes in sleep
	crossover trial.	architecture with chronic resistance exercise, as well its efficacy in clinical cohorts
	Outcomes	who commonly experience sleep disturbance. Future studies should also examine
	addressed: sleep,	time-of-day and dose–response effects to determine the optimal exercise
	wakefulness,	prescription for sleep benefits.
	daytime	
	drowsiness,	
l	use of sleep	
	remedies	

SR/MA		
Citation: Liu Y, Li Y, Bai Y-P, Fan X-X. Association Between Physical Activity and Lower Risk of Lung Cancer: A		
Meta-Analysis of Coh	ort Studies. Front. Oncol. 2019; 9:5. doi: 10.3389/fonc.2019.00005	
Purpose: We aimed	Abstract: Background: Epidemiological evidences regarding the association between	
to investigate the	physical activity and the risk of lung cancer are still controversial.	
relationship	Objectives: We aimed to investigate the relationship between physical activity and	
between physical	risk of lung cancer in men and women, as well as other high-risk populations such as	
activity and risk of	cigarette smokers.	
lung cancer in men	Methods: We conducted a meta-analysis of cohort studies to evaluate the	
and women, as well	association between physical activity and risk of lung cancer. Relevant studies were	
as other high-risk	identified by searching PubMed and Web of Knowledge through August 2018. Study-	
populations such as	specific relative risk (RR) with 95% confidence interval (CI) were pooled using random	
cigarette smokers.	effect model when significant heterogeneity was detected.	
Timeframe:	Results: Twenty cohort studies with a total of 2,965,811 participants and 31,807 lung	
Inception to August	cancer cases were included. There was an inverse association between the physical	
2018	activity and risk of lung cancer. Compared with the low level of physical activity, the	
Total # studies	pooled RR was 0.83 (95%CI: 0.77, 0.90), with significant heterogeneity (12 = 62.6%, P	
included: 21 cohort	heterogeneity < 0.001). The corresponding pooled RRs were 0.90 (95%CI: 0.82, 0.99)	
studies	for women and 0.81 (95%CI: 0.73, 0.90) for men. Smokers with a high level of	
Other details (e.g.	physical activity were associated with a 10% lower risk for lung cancer (RR = 0.90,	
definitions used,	95% CI: 0.84, 0.97), while the association was not significant among non-smokers (RR	
exclusions etc)	= 0.95, 95% CI: 0.88, 1.03). Subgroups analysis stratified by whether the studies	
Self-reported PA by	adjusted for smoking intensity and durations yielded the same magnitude of RR.	
type	However, the RR for subgroups without adjustment for dietary factors was 0.74	
Outcomes	(95%CI: 0.71, 0.77), which was significantly lower than that with dietary factors	
addressed: Lung	adjusted (RR = 0.89, 95%Cl: 0.84, 0.95).	
	Conclusions: Increased physical activity might be associated with lower risk of	
	lung cancer. Such inverse association was identified among smokers rather than non-	
	smokers. Large interventional studies are expected to further verify these findings.	
Populations	Author-Stated Funding Source: No funding received for this paper.	
Analyzed: Adults		

RH

Meta-analysis		
Citation: S. J. Martínez-Dom	Citation: S. J. Martínez-Domínguez, H. Lajusticia, P. Chedraui, F. R. Pérez-López & for the Health Outcomes	
and Systematic Analyses (HOUSSAY) Project (2018) The effect of programmed exercise over anxiety	
symptoms in midlife and of	der women: a meta-analysis of randomized controlled trials, Climacteric, 21:2,	
123-131,		
Purpose: To evaluate the	We aimed to perform a systematic review and meta-analysis in order to clarify	
effect of programmed	the effect of programmed exercise over mild-to-moderate anxiety symptoms	
exercise, for at least 6	(ASs) in midlife and older women. A structured search of PubMed, Medline,	
weeks, as compared to no	Web of Science, Scopus, Embase, Cochrane Library, Scielo, and the US, UK and	
intervention over mild	Australian Clinical Trials databases (from inception through July 27, 2017) was	
or low to moderate	performed, with no language restriction using the following terms: 'anxiety',	
anxiety symptoms on	'anxiety symptoms', 'exercise', 'physical activity', 'menopause', and	
anxiety symptoms (AS) in	'randomized controlled trial' (RCTs) in mid-aged and older women. We assessed	
mid-aged and older	RCTs that compared the effect of exercise for at least 6 weeks versus no	
women.	intervention over ASs as outcome (as defined by trial authors). Exercise was	
Timeframe: From	classified according to duration as 'mid-term exercise intervention' (MTEI; for	
inception through July 27,	12 weeks to 4 months), and 'long-term exercise intervention' (LTEI; for 6-14	
2017	months). Mean +/- standard deviations of changes for ASs, as assessed with	
Total # studies included:	different questionnaires, were extracted to calculate Hedges' g and then used	
10	as effect size for meta-analyses. Standardized mean differences (SMDs) of ASs	
Other details (e.g.	after intervention were pooled using a random-effects model. Ten publications	
definitions used,	were included for analysis related to 1463 midlife and older women (minimum	
exclusions etc): RCTs only;	age 54.2 +/- 3.5 and maximum age 77.6 +/- 5.4 years). Eight MTEIs were	
Programmed exercise was	associated with a significant reduction of ASs (SMD = -0.42; 95% CI -0.81 to -	
classified according to	0.02) as compared to controls. There was no reduction of ASs in seven LTEIs	
duration as 'midterm	(SMD = -0.03; 95% CI -0.18 to 0.13). It can be concluded that MTEIs of low-to-	
exercise intervention'	moderate intensity seem to improve mild-moderate ASs in midlife and older	
(MTEI; from 12 weeks to 4	women.	
months) or 'long-term		
exercise intervention'	(*Low intensity more effective than moderate intensity)	
(LTEI; from 6 to 14		
months). Exercise intensity		
was classified as low		
(walking, yoga, and		
progressive exercise) or		
moderate (aerobic		
exercise and		
cardiovascular training).		
Outcomes addressed: AS		
measured with standard		
instrument including: Beck		
Depression Inventory.		
State-Trait Anxiety		
Inventory, Brief Symptom		
Inventory, Women's		
Health Questionnaire,		
Hospital Anxiety and		
Depression Scale,		
Generalized Anxiety		
Disorder Questionnaire,		
Depression, Anxiety and		
Stress Scale.		
Population analysed:	Author-Stated Funding Source: None	
Otherwise healthy women		
aged 40 or more		

Meta-analy	vsis
inicia anal	

Citation: Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B. Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-Analysis. Br J Sports Med. 2018;52(3):154–60.

effective in improving cognitive function in BACKGROUND: Physical exercise is seen as a promising
middle to older adults. intervention to prevent or delay cognitive decline in
Timeframe: Inception – November 2016individuals aged 50 years and older, yet the evidence from
Total # studies included: 43reviews is not conclusive.
Author-stated inclusion criteria: OBJECTIVES: To determine if physical exercise is effective in
Studies were included from the initial search improving cognitive function in this population.
if they strictly met the following criteria: (1) DESIGN: Systematic review with multilevel meta-analysis.
studies of community dwelling men or DATA SOURCES: Electronic databases Medline (PubMed),
women aged 50 years or older. Because EMBASE (Scopus), PsychINFO and CENTRAL (Cochrane)
criteria for diagnosing cognitive ability (eg, from inception to November 2016.
the presence of mild cognitive impairment ELIGIBILITY CRITERIA: Randomised controlled trials of
(MCI)) differ between studies and prior physical exercise interventions in community-dwelling
reviews,8 there were no limitations on adults older than 50 years, with an outcome measure of
baseline cognitive status. However, studies cognitive function.
which included clinical samples with other RESULTS: The search returned 12 820 records, of which 39
neurological (eg, stroke) or mental illnesses studies were included in the systematic review. Analysis of
(eg, depression) were excluded. (2) A 333 dependent effect sizes from 36 studies showed that
structured exercise programme of any mode, physical exercise improved cognitive function (0.29; 95% CI
duration, frequency or intensity. Exercise 0.17 to 0.41; p<0.01). Interventions of aerobic exercise,
programmes that were not explicitly stated as resistance training, multicomponent training and tai chi, all
fully supervised, or of <4 weeks, were had significant point estimates. When exercise prescription
excluded. Studies must have allowed the was examined, a duration of 45-60 min per session and at
isolated effects of exercise to be measured. least moderate intensity, were associated with benefits to
(3) A control group could include no contact, cognition. The results of the meta-analysis were consistent
waiting list, attention control, sham exercise and independent of the cognitive domain tested or the
or alternative active treatment. (4) At least cognitive status of the participants.
one outcome measure of cognition, CONCLUSIONS: Physical exercise improved cognitive
measured at baseline and follow-up by any function in the over 50s, regardless of the cognitive status
validated neuropsychological test of of participants. To improve cognitive function, this meta-
cognition. (5) The study design was strictly analysis provides clinicians with evidence to recommend
limited to RCTs. (6) A trial must have been that patients obtain both aerobic and resistance exercise of
published in a peer-reviewed journal. at least moderate intensity on as many days of the week as
Outcomes addressed: feasible, in line with current exercise guidelines.
Cognition
Populations analysed: middle to older adults Author-stated funding source: No funding source stated.
(>50 years)

SR/MA		
Citation: O'Donovan, G., Stensel, D., Hamer, M., & Stamatakis, E. (2017). The association between leisure-		
time physical activity	time physical activity, low HDL-cholesterol and mortality in a pooled analysis of nine population-based	
cohorts. European jo	urnal of epidemiology, 32(7), 559-566.	
Purpose: to	Abstract:	
investigate	The objective of this study was to investigate associations between leisure-time	
associations	physical activity, low high-density lipoprotein cholesterol (HDL-C) and mortality. Self-	
between leisure-	reported leisure-time physical activity, HDL-C concentration, and mortality were	
time physical	assessed in 37,059 adults in Health Survey for England and Scottish Health Survey.	
activity, low HDL-C	Meeting physical activity guidelines was defined as C150 min wk-1 of moderate-	
and mortality in a	intensity activity, C75 min wk-1 of vigorous-intensity activity, or equivalent	
pooled analysis of	combinations. Low HDL-C was defined as \1.03 mmol L-1 . Cox proportional hazard	
nine population-	models were adjusted for age, sex, smoking, total cholesterol, systolic blood	
based cohorts in	pressure, body mass index, longstanding illness, and socioeconomic status. There	
Britain.	were 2250 deaths during 326,016 person-years of follow-up. Compared with those	
Timeframe: -	who met physical activity guidelines and whose HDL-C was normal (reference group),	
Total # studies	all-cause mortality risk was not elevated in those who met physical activity guidelines	
included: 9	and whose HDL-C concentration was low (hazard ratio: 1.07; 95% confidence interval:	
Other details (e.g.	0.75, 1.53). Compared with the reference group, all-cause mortality risk was elevated	
definitions used,	in those who did not meet physical activity guidelines and whose HDL-C was normal	
exclusions etc)	(1.37; 1.16, 1.61), and in those who did not meet physical activity guidelines and	
frequency and	whose HDL-C was low (1.65; 1.37, 1.98). Cardiovascular disease mortality hazard	
duration of	ratios were similar, although confidence intervals were wider. There was no	
participation in	statistically significant evidence of biological interaction between physical inactivity	
domestic physical	and low HDL-C. This novel study supports the notion that leisure-time physical	
activity (light and	activity be recommended in those with low HDL-C concentration who may be	
heavy housework.	resistant to the HDL-raising effect of exercise training	
gardening, and do-		
it-vourself tasks):		
frequency, duration		
and pace of walking		
(slow, average,		
brisk, or fast); and		
participation in		
sports and	XV	
exercises using a		
prompt card		
showing 10 main		
groups, including		
cycling, swimming,		
running, football,		
rugby, tennis, and		
squash.		
Outcomes		
addressed: HDL-		
cholesterol, ACM,		
CVD mortality		

SR/MA	
Citation: Paudel S, Ov	wen AJ, Owusu-Addo E, Smith BJ. Physical activity participation and the risk of chronic
diseases among Sout	h Asian adults: a systematic review and meta-analysis. Scientific reports.
2019;9(1):9771.	
Purpose: To	Abstract: South Asia specifc reviews on the role of physical activity (PA) domains on
systematically	chronic disease prevention are lacking. This study aimed to systematically review
review published,	published literature to identify the association between PA domains and chronic
peer-reviewed	diseases and to provide summary estimates of the strength of association. Nine
literature to	electronic databases were searched using the predefned inclusion criteria which
identify the	included population (South Asian adults 40 years or older), exposure (PA or sedentary
association	behaviour) and outcome (type 2 diabetes mellitus, breast cancer, colorectal cancer,
between PA	coronary heart disease, stroke, vascular disease and musculoskeletal diseases and
domains (total,	their markers). A random-efects metaanalysis was carried out for cardiometabolic
transport,	outcomes whereas narrative synthesis was completed for other outcome variables.
household,	Inactive or less active South Asian adults were at 31% higher risk of being
occupational and	hypertensive. Likewise, the risk of cardiometabolic outcomes was 1.34 times higher
leisure) and	among inactive adults. Household PA was found to have a protective efect on breast
selected chronic	cancer risk. Total and leisure time PA had a protective efect on osteoporosis among
diseases and their	males and females respectively. Contemporary studies with a longitudinal design,
markers and	representative samples, valid and reliable assessment of diferent domains are
provide summary	needed to establish the role of PA in chronic disease prevention in the region.
estimates of the	
strength of	
associations among	
South Asian adults	
40 years or older.	
Timeframe:	
between January	
2000 and March	
2018	
Total # studies	
included: 9	
Other details (e.g.	
definitions used,	
exclusions etc)	
Routine PA	
Outcomes	
addressed: Chronic	
diseases,	
musculoskeletal	
diseases	
A C	

Meta-analysis	Meta-analysis		
Citation: Perez-Lopez F.R., N	lartinez-Dominguez S.J., Lajusticia H., Chedraui P.Effects of programmed exercise		
on depressive symptoms in	midlife and older women: A meta-analysis of randomized controlled trials.		
Maturitas. 2017; 106; 38–47	7.		
Purpose: To determine	Abstract:		
the effect of programmed			
exercise, for at least 6	Objective : To perform a systematic review and meta-analysis to clarify the		
weeks, as compared to no	effect of programmed exercise on depressive symptoms (DSs) in midlife and		
intervention over mild to	older women.		
moderate depressive			
symptoms in midaged	Methods: We carried out a structured search of PubMed-Medline, Web of		
and older women (> 40	Science, Scopus, Embase, Cochrane Library and Scielo, from database inception		
years).	through June 29, 2017, without language restriction. The search included the		
Timeframe: From	following terms: depression", "depressive symptoms", "exercise", "physical		
inception through June 29,	activity", "menopause", and "randomized controlled trial" (RCTs) in midlife and		
2017,	older women. The US, UK and Australian Clinical Trials databases were also		
Total # studies included:	searched. We assessed randomized controlled trials (RCTs) that compared the		
11	effect of exercise for at least 6 weeks versus no intervention on DSs as the		
Other details (e.g.	outcome (as defined by trial authors). Exercise was classified according to		
definitions used,	duration as "mid-term exercise intervention" (MTEI; lasting for 12 weeks to 4		
exclusions etc): RCTs	months), and "long-term exercise intervention" (LTEI; lasting for 6-12 months).		
in otherwise healthy	Mean changes (+/-standard deviations) in DSs, as assessed with different		
women (>40 yrs); no	questionnaires, were extracted to calculate Hedges' g and then used as the		
significant differences	effect size for meta-analysis. Standardized mean differences (SMDs) of DSs after		
regarding rate of anxiety	intervention were pooled using a random-effects model.		
or severity at baseline			
between intervention and	Results : Eleven publications were included for analysis related to 1943 midlife		
control groups; program	and older women (age range 44-55 years minimum to 65.5+/-4.0 maximum),		
of exercise for at least 6	none of whom was using a hormone therapy. Seven MTEIs were associated		
weeks; controls defined as	with a significant reduction in DSs (SMD=-0.44; 95% CI -0.69, -0.18; p=0.0008)		
women who did not	compared with controls. The reduction in DSs was also significant in six LTEIs		
participate in the exercise	(SMD=- 0.29; 95% CI -0.49; -0.09; p=0.005). Heterogeneity of effects among		
program.	studies was moderate to high. Less perceived stress and insomnia (after		
Outcomes addressed:	exercise) were also found as secondary outcomes.		
Depression measured			
with any of the following	Conclusion: Exercise of low to moderate intensity reduces depressive		
surveys: Beck Depression	symptoms in midlife and older women.		
Inventory, Patient Health			
Questionnaire, Women's			
Health Questionnaire,			
Brief Symptom Inventory,			
Geriatric Depressed Scale.			
Population analysed:	Author-Stated Funding Source: No funding was received.		
Otherwise healthy women			
aged 40 or more			

Meta-analysis	
Citation: Rathore A. I om B. The effects of chron	ic and acute physical activity on working memory performance in
healthy participants: A systematic review with m	neta-analysis of randomized controlled trials. Syst Rev. 2017;6(1):1–16.
Purpose: to evaluate and synthesize	Abstract:
randomized controlled trial studies that	BACKGROUND: Understanding how physical activity (PA) influences
investigated the effects of both chronic and	cognitive function in populations with cognitive impairments, such as
acute PA on working memory performance	dementia, is an increasingly studied topic vielding numerous
(WMP) in physically and cognitively healthy	published systematic reviews. In contrast, however, there appears to
individuals.	be less interest in examining associations between PA and cognition in
Timeframe: August 2009 – December 2016	cognitively healthy individuals. Therefore, the objective of this review
Total # studies included: 8	was to evaluate and synthesize randomized controlled trial (RCT)
Author-stated inclusion criteria:	studies that investigated the effects of both chronic and acute PA on
1- Population: the sample population was	working memory performance (WMP) in physically and cognitively
identified as cognitively and physically	healthy individuals.
healthy via validated diagnostic tools.	METHODS: Following the preferred reporting items for systematic
2- Intervention: PA defined as "any bodily	review and meta-analysis (PRISMA) guidelines, a systematic review of
movement produced by skeletal muscles	studies published between August 2009 and December 2016 was
that result in energy expenditure" [40].	performed on RCTs investigating the effects of chronic and acute PA
Acute PA interventions were identified as	on WMP with healthy participants as the sample populations.
those with a single PA session while chronic	Searches were conducted in Annual Reviews, ProQuest,
PA interventions were defined as those	PsycARTICLES, PsycINFO, PubMed, and Web of Science. Main
with more than one PA session.	inclusion criteria stipulated (1) healthy sample populations, (2) PA
Furthermore, PA was the purposefully	interventions, (3) WMP as an outcome, and (4) RCT designs.
selected term as it incorporates a broader	Descriptive statistics included cohort and intervention characteristics
spectrum of interventions that otherwise	and a risk of bias assessment. Analytical statistics included meta-
could be excluded under the term	analyses and moderation analyses.
"exercise." Thus, "physical activity" was	RESULTS: From 7345 non-duplicates, 15 studies (eight chronic PA and
expected to capture conventional forms of	seven acute PA studies) met the inclusion criteria and were evaluated.
activity, such as cardiovascular exercise and	Overall, there was noticeable variance between both cohort and
resistance training, but also less	intervention characteristics. Sample populations ranged from primary
conventional forms, such as yoga. Finally,	school children to retirement community members with PA ranging
no limitations were imposed based upon	from cycling to yoga. The majority of studies were characterized by
modality, dose, intensity, or supervision,	"low" or "unclear" risk of selection, performance, detection, attrition,
but dual-task interventions or self-reported	reporting, or other biases. Meta-analysis of chronic PA revealed a
interven- tions were excluded due to	significant, small effect size while analysis of acute PA revealed a non-
confounding factors noted in previous	significant, trivial result. Age and intensity were significant
research [33].	moderators while allocation concealment, blinding, and intervention
3- Comparator: any kind of control group was	length were not.
eligible, including no treatment, waitlist,	CONCLUSIONS: Chronic PA can significantly improve WMP while acute
health education, sham exercise, or	PA cannot. The limiting factors for acute PA studies point to the
sedentary treatment.	diversity of working memory instruments utilized, unequal sample
4- Outcome: validated WMP cognitive	sizes between studies, and the sample age groups. Large-scale, high-
assessment tools, according to a specific	quality KCTS are needed in order to provide generalizable and more
categorization described below.	powerful analysis between PA and whip in a systematic approach.
5- Study design: randomized controlled trials,	
including cluster-KCIs, crossover-KCIs that	
are full-length studies published in peer-	
reviewed, English language journals.	
Uutcomes addressed:	
Populations analyzed, Logithy adults	Author stated funding sources This work was not supported by
ropulations analyseu: Healthy adults	specific funding
JR/ IVIA	

Citation: Robbins R, Jackson CL, Underwood P, Vieira D, Jean-Louis G, Buxton OM. Employee Sleep and Workplace Health Promotion: A Systematic Review. American Journal of Health Promotion. 2019 Apr 7:0890117119841407. https://doi-org.ezproxy1.library.usyd.edu.au/10.1177/0890117119841407

Purpose: to	Abstract:
examine	Objective:
workplace-based	Workplace-based employee health promotion programs often target weight loss or
employee health	physical activity, yet there is growing attention to sleep as it affects employee health
interventions that	and performance. The goal of this review is to systematically examine workplace-
measure sleep	based employee health interventions that measure sleep duration as an outcome.
duration as an	Data Source:
outcome.	We conducted systematic searches in PubMed, Web of Knowledge, EMBASE, Scopus,
Timeframe:	and PsycINFO (n = 6177 records).
inception to 1 Sep	Study Inclusion and Exclusion Criteria:
2018	To be included in this systematic review, studies must include (1) individuals aged
Total # studies	>18 years, (2) a worker health-related intervention, (3) an employee population, and
included: 20	(4) sleep duration as a primary or secondary outcome.
Other details (e.g.	Results:
definitions used,	Twenty studies met criteria. Mean health promotion program duration was 2.0
exclusions etc) any	months (standard deviation [SD] = 1.3), and mean follow-up was 5.6 months (SD =
intervention	6.5). The mean sample size of 395 employees (SD = 700.8) had a mean age of 41.5
studies, adult	years (SD = 5.2). Measures of sleep duration included self-report from a general
employees	questionnaire (n = 12, 66.6%), self-report based on Pittsburgh Sleep Quality Index (n
Outcomes	= 4, 22.2%), and self-report and actigraphy combined (n = 5, 27.7%). Studies most
addressed: sleep	commonly included sleep hygiene (35.0%), yoga (25.0%), physical activity (10.0%),
duration, PSQI	and cognitive-behavioral therapy for insomnia (10.0%) interventions. Across the
	interventions, 9 different behavior change techniques (BCTs) were utilized; the
	majority of interventions used 3 or fewer BCTs, while 1 intervention utilized 4 BCTs.
	Study quality, on average, was 68.9% (SD = 11.1). Half of the studies found
	workplace-based health promotion program exposure was associated with a desired
	increase in mean nightly sleep duration (n = 10, 50.0%).
	Conclusions:
	Our study findings suggest health promotion programs may be helpful for increasing
	employee sleep duration and subsequent daytime performance.

Meta-analysis	
Citation: Schuch F.B., Vanc	ampfort D., Firth J., Rosenbaum S., Ward P.B., Silva E.S., Hallgren M., Ponce De
Leon A., Dunn A.L., Deslan	des A.C., Fleck M.P., Carvalho A.F., Stubbs B. Physical Activity and Incident
Depression: A Meta-Analysis	of Prospective Cohort Studies. Am J Psychiatry, 2018; 175:631–648.
Purpose: To determine	Abstract:
the prospective	
relationship	Objective: The authors examined the prospective relationship between
between physical activity	physical activity and incident depression and explored potential moderators.
and incident depression	
and	Method: Prospective cohort studies evaluating incident depression were
explored potential	searched from database inception through Oct. 18, 2017, on PubMed,
moderators	PsycINFO, Embase, and SPORTDiscus. Demographic and clinical data, data on
Timeframe: From	physical activity and depression assessments, and odds ratios, relative risks, and
inception through Oct. 18,	hazard ratios with 95% confidence intervals were extracted. Random-effects
2017,	meta-analyses were conducted, and the potential sources of heterogeneity
Total # studies included:	were explored. Methodological quality was assessed using the Newcastle-
49	Ottawa Scale.
Other details (e.g.	
definitions used.	Results: A total of 49 unique prospective studies (N=266,939; median
exclusions etc):	proportion of males across studies, 47%) were followed up for 1,837,794
P rospective design with at	person-years. Compared with people with low levels of physical activity, those
least 1 year of	with high levels had lower odds of developing depression (adjusted odds
follow-up: physical activity	ratio=0.83, 95% CI=0.79, 0.88; I(2)=0.00). Furthermore, physical activity had a
was measured with a self-	protective effect against the emergence of depression in youths (adjusted
report questionnaire.	odds ratio=0.90, 95% CI=0.83, 0.98), in adults (adjusted odds ratio=0.78, 95%
such as the International	CI=0.70, 0.87), and in elderly persons (adjusted odds ratio=0.79, 95% CI=0.72,
Physical Activity	0.86). Protective effects against depression were found across geographical
Questionnaire (IPAQ) or	regions, with adjusted odds ratios ranging from 0.65 to 0.84 in Asia, Europe,
objective physical activity	North America, and Oceania, and against increased incidence of positive screen
measures (e.g.,	for depressive symptoms (adjusted odds ratio=0.84, 95% CI=0.79, 0.89) or
accelerometers). Physical	major depression diagnosis (adjusted odds ratio=0.86, 95% CI=0.75, 0.98). No
activity was defined as any	moderators were identified. Results were consistent for unadjusted odds ratios
bodily movement	and for adjusted and unadjusted relative risks/hazard ratios. Overall study
produced by skeletal	quality was moderate to high (Newcastle-Ottawa Scale score, 6.3). Although
muscles and requiring	significant publication bias was found, adjusting for this did not change the
energy expenditure	magnitude of the associations.
Outcomes addressed:	
Depression measured with	Conclusions : Available evidence supports the notion that physical activity can
standardised instruments	confer protection against the emergence of depression regardless of age and
or through diagnostic	geographical region.
interview or physician	
diagnosis	
Population analysed:	Author-Stated Funding Source: None reported
Adults any age who were	Autor stated running sourcer none reported.
free of depression or	
depressive symptoms at	
haseline	

Meta-analysis	
Citation: Schuch F.B., Stubbs B., Mey	er J., Heissel A., Zech P., Vancampfort D., Rosenbaum S., Deenik J., Firth J., Ward
P.B., Carvalho A.F., Hiles S.A., Physica	al activity protects from incident anxiety: A meta-analysis of prospective cohort
studies. Depress Anxiety. 2019;1-13.	
Purpose: To examine the	Abstract:
prospective relationship between	
PA and incident anxiety and explore	Background: Prospective cohorts have suggested that physical activity (PA) can
potential moderators.	decrease the risk of incident anxiety. However, no meta-analysis has been
Timeframe: From inception to	conducted. AIMS: To examine the prospective relationship between PA and
October 10, 2018	incident anxiety and explore potential moderators.
Total # studies included: 13	
Other details (e.g. definitions used,	Methods: Searches were conducted on major databases from inception to
exclusions etc):	October 10, 2018 for prospective studies (at least 1 year of follow-up) that
Measured PA with a self-report	calculated the odds ratio (OR) of incident anxiety in people with high PA against
questionnaire such as the IPAQ or	people with low PA. Methodological quality was assessed using the Newcastle-
any objective PA measures (e.g.,	Ottawa Scale (NOS). A random-effects meta-analysis was conducted and
pedometers and accelerometers).	heterogeneity was explored using subgroup and meta-regression analysis.
Only evaluations of high versus low	
PA, using any criterion, were	Results : Across 14 cohorts of 13 unique prospective studies (N = 75,831, median
eligible; used a prospective cohort	males = 50.1%) followed for 357,424 person-years, people with high self-
study design with a follow-up	reported PA (versus low PA) were at reduced odds of developing anxiety
period of 1 year or longer.	(adjusted odds ratio [AOR] = 0.74; 95% confidence level [95% CI] = 0.62, 0.88;
Outcomes addressed: Incident	crude OR = 0.80; 95% CI = 0.69, 0.92). High self-reported PA was protective
(new cases from baseline to follow-	against the emergence of agoraphobia (AOR = 0.42 ; 95% CI = 0.18 , 0.98) and
up) anxiety as the outcome, namely	posttraumatic stress disorder (AOR = 0.57; 95% CI = 0.39, 0.85). The protective
increased anxiety symptoms	effects for anxiety were evident in Asia (AOR = 0.31 ; 95% CI = 0.10 , 0.96) and
identified via established anxiety	Europe (AOR = 0.82 ; 95% CI = 0.69 , 0.97); for children/adolescents (AOR = 0.52 ;
screening instruments (e.g.,	95% CI = 0.29 , 0.90) and adults (AOR = 0.81 ; 95% CI = 0.69 , 0.95). Results
Hospital Anxiety and Depression	remained robust when adjusting for confounding factors. Overall study quality
Scale and Beck Anxiety Scale; Beck,	was moderate to high (mean NOS = 6.7 out of 9).
Ward or anxiety disorders,	Conclusions Dideters were to the notion that solf an and all DA and soufer
diagnosed using structured or semi-	Conclusion: Evidence supports the notion that self-reported PA can conter
structured diagnostic interviews	protection against the emergence of anxiety regardless of demographic factors.
(e.g. instruments using Diagnostic	in particular, higher PA levels protects from agoraphobia and positraumatic
and Statistical Manual (DSM) for	disorder.
Mental Disorders or	
International Classification of	
Disease criteria, including PISD).	
Population analysed: Participants	Author-Stated Funding Source: Health Education England and the National
of any age, free from anxiety at	Institute for Health Research HEE NIHR ICA Program Clinical Lectureship,
baseline	Grant/Award Number: ICA-CL-2017-03-001; Maudsley Charity; the National
	Institute for Health Research (NIHR) Collaboration for Leadership in Applied
	Health Research and Care South London at King's College Hospital NHS
	Foundation Trust; Astrazeneca grant; Blackmores Institute Fellowship

SR/MA	
Citation: Siahpush, N	I., Levan, T. D., Nguyen, M. N., Grimm, B. L., Ramos, A. K., Michaud, T. L., & Johansson,
P. L. (2019). The Asso	ciation of Physical Activity and Mortality Risk Reduction Among Smokers: Results From
1998–2009 National I	Health Interview Surveys–National Death Index Linkage. Journal of Physical Activity and
Health, 16(10), 865-8	71.
Purpose: to	Abstract:
investigate this	Background: The mortality benefits of meeting the US federal guidelines for physical
association in	activity, which includes recommendations for both aerobic and muscle-strengthening
relation to all-	activities, have never been examined among smokers. Our aim was to investigate the
cause,	association between reporting to meet the guidelines and all-cause, cancer,
cardiovascular	cardiovascular disease, and respiratory disease mortality among smokers. Methods:
disease, cancer,	We pooled data from the 1998–2009 National Health Interview Survey, which were
and respiratory	linked to records in the National Death Index (n = 68,706). Hazard ratios (HR) were
disease mortality in	computed to estimate the effect of meeting the physical activity guidelines on
the United States	mortality. Results: Smokers who reported meeting the guidelines for physical activity
using data from the	had 29% lower risk of all-cause mortality (HR: 0.71; 95% confidence interval [CI],
1998-2009	0.62–0.81), 46% lower risk of mortality from cardiovascular disease (HR: 0.54; 95% CI,
National Health	0.39–0.76), and 26% lower risk of mortality from cancer (HR: 0.74; 95% CI, 0.59–
Interview Survey	0.93), compared with those who reported meeting neither the aerobic nor the
(NHIS), which have	muscle-strengthening recommendations of the guidelines. Meeting the aerobic
been linked to the	recommendation of the guidelines was associated with a 42% decline in that risk (HR:
National Death	0.58; 95% CI, 0.44–0.77). Conclusion: Smokers who adhere to physical activity
Index (NDI).	guidelines show a significant reduction in mortality
Timeframe: 1998–	
2009	
Total # studies	
included: 12	
Other details (e.g.	
definitions used,	
exclusions etc) the	
length of time of	
moderate or	
vigorous aerobic	
physical activity in	
minutes per week	
Outcomes	
addressed: ACM,	
CVD mortality, ca	
mortality,	
respiratory	
diseases mortality	

SR/MA

Citation: Stamatakis, E., Lee, I. M., Bennie, J., Freeston, J., Hamer, M., O'Donovan, G., ... & Mavros, Y. (2017). Does strength-promoting exercise confer unique health benefits? A pooled analysis of data on 11 population cohorts with all-cause, cancer, and cardiovascular mortality endpoints. American journal of epidemiology, 187(5), 1102-1112.

Purpose: to examine the associations between SPE and allcause, CVD, and cancer mortality and to compare the SPE and aerobic activity guidelines in terms of their associations with mortality outcomes.

Timeframe: -

Total # studies included: The Health Survey for England and the Scottish Health Survey Other details (e.g. definitions used, exclusions etc) Physical activity was assessed using a questionnaire that inquired about participation in sports and exercises during the 4 weeks prior to the interview. Participants were shown a card (see the Web with 10 exercise groupings, including working out at a gym/weight training/exercise biking, which we labeled "gym-based" SPE, and exercises such as press-ups and sit-ups, which we labeled "ownbody-weight" SPE.

Outcomes addressed: all-cause mortality, cardiovascular disease mortality, and cancer mortality

Abstract:

Public health guidance includes recommendations to engage in strength-promoting exercise (SPE), but there is little evidence on its links with mortality. Using data from the Health Survey for England and the Scottish Health Survey from 1994–2008, we examined the associations between SPE (gym-based and own-body-weight strength activities) and all-cause, cancer, and cardiovascular disease mortality. Multivariableadjusted Cox regression was used to examine the associations between SPE (any, low-/high-volume, and adherence to the SPE guideline (≥ 2 sessions/ week)) and mortality. The core sample comprised 80,306 adults aged ≥30 years, corresponding to 5,763 any-cause deaths (736,463 person-years). Following exclusions for prevalent disease/events occurring in the first 24 months, participation in any SPE was favorably associated with all-cause (hazard ratio (HR) = 0.77, 95% confidence interval (CI): 0.69, 0.87) and cancer (HR = 0.69, 95% CI: 0.56, 0.86) mortality. Adhering only to the SPE guideline was associated with all-cause (HR = 0.79, 95% CI: 0.66, 0.94) and cancer (HR = 0.66, 95% CI: 0.48, 0.92) mortality; adhering only to the aerobic activity guideline (equivalent to 150 minutes/week of moderate-intensity activity) was associated with all-cause (HR = 0.84, 95% CI: 0.78, 0.90) and cardiovascular disease (HR = 0.78, 95% CI: 0.68, 0.90) mortality. Adherence to both guidelines was associated with all-cause (HR = 0.71, 95% CI: 0.57, 0.87) and cancer (HR = 0.70, 95% CI: 0.50, 0.98) mortality. Our results support promoting adherence to the strength exercise guidelines over and above the generic physical activity targets.

Meta-analysis

Citation: Stanmore E, Stubbs B, Vancampfort D, de Bruin ED, Firth J. The effect of active video games on cognitive functioning in clinical and non-clinical populations: A meta-analysis of randomized controlled trials. Neurosci Biobehav Rev [Internet]. 2017;78(March):34–43.

	17.54-45.
Purpose: to establish effects of exergames on overall	Abstract:
cognition and specific cognitive domains in clinical	Physically-active video games ('exergames') have
and non-clinical populations.	recently gained popularity for leisure and
Timeframe: Inception – January 2017	entertainment purposes. Using exergames to
Total # studies included: 17	combine physical activity and cognitively-
Author-stated inclusion criteria: Only English-language research articles published in peer-reviewed journals were included. No restrictions were placed on populations studied or sample type. Eligible studies were randomized controlled trials (RCTs) which compared the effects of exergame interventions to non-exergame control conditions on performance in untrained cognitive tasks (i.e. performance in cognitive tasks which varied from those directly practiced within the exergame itself).	demanding tasks may offer a novel strategy to improve cognitive functioning. Therefore, this systematic review and meta-analysis was performed to establish effects of exergames on overall cognition and specific cognitive domains in clinical and non-clinical populations. We identified 17 eligible RCTs with cognitive outcome data for 926 participants. Random-effects meta-analyses found exergames significantly improved global cognition (g=0.436, 95% CI=0.18-0.69, p=0.001). Significant effects still existed when excluding
This includes clinically-validated measures of global cognition, or specific tests of individual domains of cognitive functioning. Studies which combined exergaming with other therapeutic aspects were also eligible for inclusion, provided that (a) the exergame was identified as a primary component of a multi- modal intervention, and (b) the intervention dedicated as much/more time to the exergame component as any other aspect of the intervention. Single-session studies which examined acute effects of exergames on cognitive functioning were excluded from this review. Author-stated exergame definition: exergames were defined as any video game for which required upper- or lower-body physical activity for user interaction. Outcomes addressed: Cognitive functioning	waitlist-only controlled studies, and when comparing to physical activity interventions. Furthermore, benefits of exergames where observed for both healthy older adults and clinical populations with conditions associated with neurocognitive impairments (all p<0.05). Domain- specific analyses found exergames improved executive functions, attentional processing and visuospatial skills. The findings present the first meta-analytic evidence for effects of exergames on cognition. Future research must establish which patient/treatment factors influence efficacy of exergames, and explore neurobiological mechanisms of action.
Populations analysed: No criteria on populations	Author-stated funding source: No funding source
(clinical and non-clinical).	stated.

SR/MA	
Citation: Stutz J, Eiho	Izer R, Spengler CM. Effects of evening exercise on sleep in healthy participants: A
systematic review and	d meta-analysis. Sports Medicine. 2019 Feb 14;49(2):269-87. https://doi-
org.ezproxy1.library.u	usyd.edu.au/10.1007/s40279-018-1015-0
Purpose: to	Abstract:
investigate the	Background
extent to which	Current recommendations advise against exercising in the evening because of
evening exercise	potential adverse effects on sleep.
affects sleep and	Objectives
whether variables	The aim of this systematic review was to investigate the extent to which evening
such as exercise	exercise affects sleep and whether variables such as exercise intensity or duration
intensity or	modify the response.
duration modify	Methods
the response.	A systematic search was performed in PubMed, Cochrane, EMBASE, PsycINFO, and
Timeframe:	CINAHL databases. Studies evaluating sleep after a single session of evening physical
inception to 8 Aug	exercise compared to a no-exercise control in healthy adults were included. All
2018	analyses are based on random effect models.
Total # studies	Results
included: 23	The search yielded 11,717 references, of which 23 were included. Compared to
Other details (e.g.	control, evening exercise significantly increased rapid eye movement latency (+ 7.7
definitions used,	min; p = 0.032) and slow-wave sleep (+ 1.3 percentage points [pp]; p = 0.041), while it
exclusions etc) any	decreased stage 1 sleep (– 0.9 pp; p = 0.001). Moderator analyses revealed that a
language, healthy	higher temperature at bedtime was associated with lower sleep efficiency (SE)
adult, any study	(b = – 11.6 pp; p = 0.020) and more wake after sleep onset (WASO; b = + 37.6 min;
with non-exercise	p = 0.0495). A higher level of physical stress (exercise intensity relative to baseline
control group.	physical activity) was associated with lower SE (- 3.2 pp; p = 0.036) and more WASO
Outcomes	(+ 21.9 min; p = 0.044). Compared to cycling, running was associated with less WASO
addressed: sleep	(- 12.7 min; p = 0.037). All significant moderating effects disappeared after removal
onset latency, rem	of one study.
latency, total sleep	Conclusion
time, sleep	Overall, the studies reviewed here do not support the hypothesis that evening
efficiency, time	exercise negatively affects sleep, in fact rather the opposite. However, sleep-onset
awake after sleep	latency, total sleep time, and SE might be impaired after vigorous exercise ending ≤ 1
onset, awakenings,	h before bedtime.
stage 1–4 sleep,	
slow-wave sleep,	
rem sleep,	
fragmentation	
index, subjective	
score of sleep	
quality	

Meta-analysis	
Citation: Sultana RN, Sabag	A, Keating SE, Johnson NA. The Effect of Low-Volume High-Intensity Interval
Training (HIIT) on Body Com	position and Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis.
Sports Med. 2019 Nov;49(11):1687-1721.
Purpose: to examine the	Abstract:
effect of low-volume HIIT	
versus a non-exercising	Background: Evidence for the efficacy of low-volume high-intensity interval
control & mod intensity	training (HIIT) for the modulation of body composition is unclear. Objectives:
continuous training (MICT)	We examined the effect of low-volume HIIT versus a non-exercising control and
on body composition and	moderate-intensity continuous training (MICT) on body composition and
cardio-respiratory fitness	cardiorespiratory fitness in normal weight, overweight and obese adults. We
in normal weight,	evaluated the impact of low-volume HIIT (HIIT interventions where the total
overweight and obese	amount of exercise performed during training was ≤ 500 metabolic equivalent
adults	minutes per week [MET-min/week]) compared to a non-exercising control and
Timeframe: from	MICT. Methods: A database search was conducted in PubMed (MEDLINE),
inception to June 2019	EMBASE, CINAHL, Web of Science, SPORTDiscus and Scopus from the earliest
Total # studies included:	record to June 2019 for studies (randomised controlled trials and non-
47	randomised controlled trials) with exercise training interventions with a
Other details (e.g.	minimum 4-week duration. Meta-analyses were conducted for between-group
definitions used.	(low-volume HIIT vs. non-exercising control and low-volume HIIT vs. MICT)
exclusions etc): Regular	comparisons for change in total body fat mass (kg), body fat percentage (%),
exercise training	lean body mass (kg) and cardiorespiratory fitness. Results: From 11,485
intervention (\geq 4 weeks), a	relevant records, 47 studies were included. No difference was found between
minimum of 2 days/week.	low-volume HIIT and a non-exercising control on total body fat mass (kg) (effect
Training needed to involve	size [ES]: - 0.129, 95% confidence interval [CI] - 0.468 to 0.210; p = 0.455), body
a low-volume HIIT or SIT	fat (%) (ES: - 0.063, 95% CI - 0.383 to 0.257; p = 0.700) and lean body mass (kg)
protocol and a non-	(ES: 0.050, 95% Cl - 0.250 to 0.351; p = 0.744), or between low-volume HIIT and
exercising control, or MICT	MICT on total body fat mass (kg) (ES: - 0.021, 95% CI- 0.272 to 0.231; p = 0.872),
intervention	body fat (%) (ES: 0.005, 95% CI - 0.294 to 0.304;p = 0.974) and lean body mass
Outcomes addressed:	(kg) (ES: 0.030, 95% CI - 0.167 to 0.266;p = 0.768). However, low-volume HIIT
change in adiposity as fat	significantly improved cardiorespiratory fitness compared with a non-exercising
mass (kg) or body fat (%).	control (p < 0.001) and MICT (p = 0.017). Conclusion: These data suggest that
change in lean body mass	low-volume HIIT is inefficient for the modulation of total body fat mass or
(kg) or cardiorespiratory	total body fat percentage in comparison with a non-exercise control and
fitness measured as	MICT. A novel finding of our meta-analysis was that there appears to be no
maximal or peak oxygen	significant effect of low-volume HIIT on lean body mass when compared with a
uptake (L/min or	non-exercising control, and while most studies tended to favour improvement
mL/kg/min). Only studies	in lean body mass with low-volume HIIT versus MICT, this was not significant.
that used DXA, BIA or ADP	However, despite its lower training volume, low-volume HIIT induces greater
to measure compositon	improvements in cardiorespiratory fitness than a non-exercising control and
were included.	MICT in normal weight, overweight and obese adults. Low-volume HIIT,
\circ	therefore, appears to be a time-efficient treatment for increasing fitness, but
	not for the improvement of body composition.
Population analysed:	Author-Stated Funding Source: No funding source
Normal-weight,	
overweight and/or	
obese adult participants	
(18 years or older), who	
were physically active and	
inactive, and of any health	
status	

Meta-analysis

Citation: Wang Y., Shan W., Li Q., Yang N., Shan W. Tai Chi Exercise for the Quality of Life in a Perimenopausal Women Organization: A Systematic Review. *Worldviews on Evidence-Based Nursing*, 2017; 14:4, 294–305.

Purpose: This systematic review and	Abstract:
meta-analysis	
almed to summarize and analyze the	Background: Improvement of the quality of life in perimenopausal women has
effectiveness of NW interventions on the	recently become an important global nealth issue. Extensive research reports
physical fitness, the body composition,	provide evidence of Tai Chi for the quality of life, but no systematic review has
and the quality of me in the elderly	notividually investigated fai Chi as a main intervention on the quality of life in
Timeframe: from incontion to before	perimenopausai women.
Innerrane: from inception to before	Objective: To assess clinical ovidence of Tai Chi for the quality of life in
January 4, 2015	nerimenonausal women
Other details (e.g. definitions used	
oversions atc)	Methods: Studies related to the effect of Tai Chi on the quality of life in
PCTs in English or Chinoso comparing Tai	nerimenonausal women in the databases of China and abroad were searched
Chi	RevMan version 5.2 software was used, and the Medical Outcomes Study 36-
with controls were included, whether	item short form health survey (SF-36) and bone mineral density (BMD) were
they entailed allocation	selected as evaluation indices.
concealment or blinding or not.	
Outcomes addressed: Medical	Results: Five trials were included. The results of this study showed that Tai Chi
Outcomes Study 36-item short form	had a significant effect on bodily pain, general health, vitality, mental health
health survey (SF-36) was used to assess	of SF-36, and the spine dimension of BMD, as supported by the following data:
overall health-related quality of life. It	bodily pain (Standard Mean Difference [SMD] = -3.63 ; 95% confidence interval
consists of eight dimensions of health:	[CI] [-0.02, -0.04]; p = .02]; general health (SMD=-5.08; 95% CI [-7.00, -2.50]; n < 0.001); with lity (CMD=-5.67; 05% CI [-8.64, -2.91] n = .0001); montal health
physical function, bodily pain, general	p < .0001, Mainty (SMD = -3.07, 95% CI [-6.34, -2.61], $p = .0001$, mental heating (SMD = -2.51: 95% CI [-4.82, -0.20], $n = .02$); and spine dimension of RMD
nealth, vitality, mental nealth,	(SMD = -0.06, 95% (1 [-0.10], -0.01]; n = .01) However Tai Chi had no effect on
social function, role-physical, and	hysical function emotional health social function role-physical of SE-36 and
emotional nealth	the hin dimension of BMD, as supported by the following data: physical of 51 50, and
	(SMD = -1.79; 95% CL [-5.15, 1.57]; n = .30); emotional health (SMD=-2.90; 95%)
	Cl [-7.23, 1.43], p = .19]; social function (SMD=-2.23, 95% Cl [-5.08, 0.61], p =
	0.12: role-physical (SMD = -1.18 : 95% CI [-4.84 , 2.47], p = .53; and hip
	dimension of BMD (SMD = -0.01 : 95% CI [-0.03 . 0.01]; p = .31).
	Linking Evidence to Action: This systematic review found significant evidence
	for Tai Chi improving bodily pain, general health, vitality, mental health of SF-
X ()	36 , and the spine dimension of BMD in patients with perimenopausal
	syndrome. Findings suggest that Tai Chi might be recommended as effective
	and safe adjuvant treatment for patients with perimenopausal syndrome. More
	high-quality randomized controlled trials are urgently needed to confirm these
	results.
Population analysed: Women meeting	Author-Stated Funding Source: None stated.
diagnostic criteria of perimenopausal	
syndrome who (a) did not have any	
uncontrolled medical conditions or	
physical conditions that would preclude	
them from participating in an exercise	
program and (b) had not received HRT in	
the previous 3 months.	

REFERENCES

- Al Tunaiji H, Davis JC, Mansournia MA, Khan KM. Population attributable fraction of leading noncommunicable cardiovascular diseases due to leisure-time physical inactivity: A systematic review. BMJ open sport & exercise medicine. 2019/06/14 ed2019. p. e000512.
- 2. Amagasa S, Machida M, Fukushima N, Kikuchi H, Takamiya T, Odagiri Y, et al. Is objectively measured light-intensity physical activity associated with health outcomes after adjustment for moderate-to-vigorous physical activity in adults? A systematic review. The international journal of behavioral nutrition and physical activity. 2018;15(1):65.
- 3. Amirfaiz S, Shahril MR. Objectively measured physical activity, sedentary behavior, and metabolic syndrome in adults: Systematic review of observational evidence. Metabolic syndrome and related disorders. 2018/10/03 ed2019. p. 1-21.
- 4. Andreato LV, Esteves JV, Coimbra DR, Moraes AJP, de Carvalho T. The influence of high-intensity interval training on anthropometric variables of adults with overweight or obesity: A systematic review and network meta-analysis. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2019;20(1):142-55.
- 5. Banno M, Harada Y, Taniguchi M, Tobita R, Tsujimoto H, Tsujimoto Y, et al. Exercise can improve sleep quality: A systematic review and meta-analysis. PeerJ. 2018;6:e5172.
- 6. Barredo RB, C.; Hardy, C.; Moore, B.; Phillips, J. The effect of Tai Chi on quality of life: A review of research evidence. J Natl Soc Allied Hlth2017. p. 36-42.
- 7. Baumeister SE, Leitzmann MF, Linseisen J, Schlesinger S. Physical Activity and the Risk of Liver Cancer: A Systematic Review and Meta-Analysis of Prospective Studies and a Bias Analysis. Journal of the National Cancer Institute. 2019;111(11):1142-51.
- 8. Behrens G, Niedermaier T, Berneburg M, Schmid D, Leitzmann MF. Physical activity, cardiorespiratory fitness and risk of cutaneous malignant melanoma: Systematic review and meta-analysis. PloS one. 2018;13(10):e0206087.
- 9. Benke IN, Leitzmann MF, Behrens G, Schmid D. Physical activity in relation to risk of prostate cancer: a systematic review and meta-analysis. Ann Oncol. 2018;29(5):1154-79.
- 10. Binkley HM, Rudd LE. Head-out aquatic exercise for generally healthy postmenopausal women: A systematic review. Journal of physical activity & health. 2018/12/07 ed2018. p. 1-22.
- 11. Blond K, Brinklov CF, Ried-Larsen M, Crippa A, Grontved A. Association of high amounts of physical activity with mortality risk: A systematic review and meta-analysis. British journal of sports medicine. 2019.
- 12. Boyer WR, Churilla JR, Ehrlich SF, Crouter SE, Hornbuckle LM, Fitzhugh EC. Protective role of physical activity on type 2 diabetes: Analysis of effect modification by race-ethnicity. Journal of diabetes. 2018;10(2):166-78.
- 13. Brasure M, Desai P, Davila H, Nelson VA, Calvert C, Jutkowitz E, et al. Physical activity interventions in preventing cognitive decline and alzheimer-type dementia: A systematic review. Annals of internal medicine. 2018;168(1):30-8.
- Chastin SFM, De Craemer M, De Cocker K, Powell L, Van Cauwenberg J, Dall P, et al. How does lightintensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies. British journal of sports medicine. 2019;53(6):370-6.
- 15. Cocchiara RA, Peruzzo M, Mannocci A, Ottolenghi L, Villari P, Polimeni A, et al. The use of yoga to manage stress and burnout in healthcare workers: A systematic review. Journal of clinical medicine. 2019;8(3).
- 16. Coenen P, Huysmans MA, Holtermann A, Krause N, van Mechelen W, Straker LM, et al. Do highly physically active workers die early? A systematic review with meta-analysis of data from 193,696 participants. British journal of sports medicine. 2018;52(20):1320-6.
- 17. Colpani V, Baena CP, Jaspers L, van Dijk GM, Farajzadegan Z, Dhana K, et al. Lifestyle factors, cardiovascular disease and all-cause mortality in middle-aged and elderly women: A systematic review and meta-analysis. European journal of epidemiology. 2018;33(9):831-45.
- del Pozo-Cruz J, Garcia-Hermoso A, Alfonso-Rosa RM, Alvarez-Barbosa F, Owen N, Chastin S, et al. Replacing sedentary time: Meta-analysis of objective-assessment studies. American journal of preventive medicine. 2018;55(3):395-402.
- 19. Dinu M, Pagliai G, Macchi C, Sofi F. Active commuting and multiple health outcomes: A systematic review and meta-analysis. Sports medicine (Auckland, NZ). 2019;49(3):437-52.
- 20. Ekelund U, Tarp J, Steene-Johannessen J, Hansen BH, Jefferis B, Fagerland MW, et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: Systematic review and harmonised meta-analysis. BMJ. 2019;366:I4570.
- 21. Engeroff T, Ingmann T, Banzer W. Physical activity throughout the adult life span and domain-specific cognitive function in old age: A systematic review of cross-sectional and longitudinal data. Sports medicine (Auckland, NZ). 2018;48(6):1405-36.
- 22. Fernandes RM, Correa MG, Dos Santos MAR, Almeida A, Fagundes NCF, Maia LC, et al. The effects of moderate physical exercise on adult cognition: A systematic review. Frontiers in physiology. 2018;9:667.
- 23. Flahr H, Brown WJ, Kolbe-Alexander TL. A systematic review of physical activity-based interventions in shift workers. Preventive medicine reports. 2018/06/06 ed2018. p. 323-31.
- 24. Fuzeki E, Engeroff T, Banzer W. Health benefits of light-intensity physical activity: A systematic review of accelerometer data of the National Health and Nutrition Examination Survey (NHANES). Sports medicine (Auckland, NZ). 2017;47(9):1769-93.
- Gordon BR, McDowell CP, Hallgren M, Meyer JD, Lyons M, Herring MP. Association of efficacy of resistance exercise training with depressive symptoms: Meta-analysis and meta-regression analysis of randomized clinical trials. JAMA psychiatry. 2018;75(6):566-76.
- 26. Gordon BR, McDowell CP, Lyons M, Herring MP. The effects of resistance exercise training on anxiety: A meta-analysis and meta-regression analysis of randomized controlled trials. Sports medicine (Auckland, NZ). 2017;47(12):2521-32.
- 27. Guo L, Zhang S. Association between ideal cardiovascular health metrics and risk of cardiovascular events or mortality: A meta-analysis of prospective studies. Clinical cardiology. 2017;40(12):1339-46.
- Halloway S, Wilbur J, Schoeny ME, Arfanakis K. Effects of endurance-focused physical activity interventions on brain health: A systematic review. Biological research for nursing. 2016/07/31 ed2017. p. 53-64.
- 29. Hart PD, Buck DJ. The effect of resistance training on health-related quality of life in older adults: Systematic review and meta-analysis. Health promotion perspectives. 2019/02/23 ed2019. p. 1-12.
- Herold F, Torpel A, Schega L, Muller NG. Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements - a systematic review. European review of aging and physical activity : official journal of the European Group for Research into Elderly and Physical Activity. 2019;16:10.
- 31. Hidayat K, Zhou HJ, Shi BM. Influence of physical activity at a young age and lifetime physical activity on the risks of 3 obesity-related cancers: systematic review and meta-analysis of observational studies. Nutrition reviews. 2020;78(1):1-18.
- Hussenoeder FS, Riedel-Heller SG. Primary prevention of dementia: from modifiable risk factors to a public brain health agenda? Social psychiatry and psychiatric epidemiology. 2018/09/27 ed2018. p. 1289-301.
- 33. Igarashi Y, Akazawa N, Maeda S. Regular aerobic exercise and blood pressure in East Asians: A metaanalysis of randomized controlled trials. Clinical and experimental hypertension (New York, NY : 1993). 2018;40(4):378-89.
- 34. Igarashi Y, Akazawa N, Maeda S. The required step count for a reduction in blood pressure: A systematic review and meta-analysis. Journal of human hypertension. 2018;32(12):814-24.
- 35. Jiang YH, Tan C, Yuan S. Baduanjin exercise for insomnia: A systematic review and meta-analysis. Behavioral sleep medicine. 2017:1-13.
- 36. Kovacevic A, Mavros Y, Heisz JJ, Fiatarone Singh MA. The effect of resistance exercise on sleep: A systematic review of randomized controlled trials. Sleep medicine reviews. 2018;39:52-68.
- Lewis P, Korf HW, Kuffer L, Gross JV, Erren TC. Exercise time cues (zeitgebers) for human circadian systems can foster health and improve performance: A systematic review. BMJ open sport & exercise medicine. 2018;4(1):e000443.
- Lipnicki DM, Makkar SR, Crawford JD, Thalamuthu A, Kochan NA, Lima-Costa MF, et al. Determinants of cognitive performance and decline in 20 diverse ethno-regional groups: A COSMIC collaboration cohort study. PLoS medicine. 2019;16(7):e1002853.
- 39. Liu Y, Li Y, Bai YP, Fan XX. Association Between Physical Activity and Lower Risk of Lung Cancer: A Meta-Analysis of Cohort Studies. Front Oncol. 2019/02/07 ed2019. p. 5.
- 40. Liu Y, Shu XO, Wen W, Saito E, Rahman MS, Tsugane S, et al. Association of leisure-time physical activity with total and cause-specific mortality: A pooled analysis of nearly a half million adults in the Asia Cohort Consortium. International journal of epidemiology. 2018.

- 41. Lopez-Valenciano A, Ruiz-Perez I, Ayala F, Sanchez-Meca J, Vera-Garcia FJ. Updated systematic review and meta-analysis on the role of isometric resistance training for resting blood pressure management in adults. Journal of hypertension. 2019;37(7):1320-33.
- 42. Loprinzi PD, Edwards MK. Exercise and implicit memory: A brief systematic review. Psychological reports. 2018;121(6):1072-85.
- 43. Loprinzi PD, Frith E, Edwards MK. Resistance exercise and episodic memory function: A systematic review. Clinical physiology and functional imaging. 2018.
- 44. Loprinzi PD, Frith E, Edwards MK, Sng E, Ashpole N. The Effects of Exercise on Memory Function Among Young to Middle-Aged Adults: Systematic Review and Recommendations for Future Research. American journal of health promotion : AJHP. 2018;32(3):691-704.
- 45. Lowe H, Haddock G, Mulligan LD, Gregg L, Fuzellier-Hart A, Carter LA, et al. Does exercise improve sleep for adults with insomnia? A systematic review with quality appraisal. Clinical psychology review. 2019;68:1-12.
- 46. Maillard F, Pereira B, Boisseau N. Effect of high-intensity interval training on total, abdominal and visceral fat mass: A meta-analysis. Sports medicine (Auckland, NZ). 2018;48(2):269-88.
- 47. Martinez-Dominguez SJ, Lajusticia H, Chedraui P, Perez-Lopez FR. The effect of programmed exercise over anxiety symptoms in midlife and older women: A meta-analysis of randomized controlled trials. Climacteric : the journal of the International Menopause Society. 2018;21(2):123-31.
- 48. Murphy MH, Lahart I, Carlin A, Murtagh E. The effects of continuous compared to accumulated exercise on health: A meta-analytic review. Sports medicine (Auckland, NZ). 2019;49(10):1585-607.
- 49. Nordengen S, Andersen LB, Solbraa AK, Riiser A. Cycling and cardiovascular disease risk factors including body composition, blood lipids and cardiorespiratory fitness analysed as continuous variables: Part 2-systematic review with meta-analysis. British journal of sports medicine. 2019;53(14):879-85.
- Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B. Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. British journal of sports medicine. 2018;52(3):154-60.
- 51. O'Donovan G, Stensel D, Hamer M, Stamatakis E. The association between leisure-time physical activity, low HDL-cholesterol and mortality in a pooled analysis of nine population-based cohorts. European journal of epidemiology. 2017;32(7):559-66.
- 52. Oja P, Kelly P, Murtagh EM, Murphy MH, Foster C, Titze S. Effects of frequency, intensity, duration and volume of walking interventions on CVD risk factors: A systematic review and meta-regression analysis of randomised controlled trials among inactive healthy adults. British journal of sports medicine. 2018;52(12):769-75.
- 53. Origua Rios S, Marks J, Estevan I, Barnett LM. Health benefits of hard martial arts in adults: A systematic review. Journal of sports sciences. 2018;36(14):1614-22.
- 54. Paudel S, Owen AJ, Owusu-Addo E, Smith BJ. Physical activity participation and the risk of chronic diseases among South Asian adults: A systematic review and meta-analysis. Scientific reports. 2019;9(1):9771.
- 55. Perez-Lopez FR, Martinez-Dominguez SJ, Lajusticia H, Chedraui P. Effects of programmed exercise on depressive symptoms in midlife and older women: A meta-analysis of randomized controlled trials. Maturitas. 2017;106:38-47.
- 56. Prince SA, Elliott CG, Scott K, Visintini S, Reed JL. Device-measured physical activity, sedentary behaviour and cardiometabolic health and fitness across occupational groups: A systematic review and meta-analysis. The international journal of behavioral nutrition and physical activity. 2019;16(1):30.
- 57. Rathore A, Lom B. The effects of chronic and acute physical activity on working memory performance in healthy participants: A systematic review with meta-analysis of randomized controlled trials. Systematic reviews. 2017;6(1):124.
- Robbins R, Jackson CL, Underwood P, Vieira D, Jean-Louis G, Buxton OM. Employee sleep and workplace health promotion: A systematic review. American journal of health promotion : AJHP. 2019;33(7):1009-19.
- 59. Saeidifard F, Medina-Inojosa JR, West CP, Olson TP, Somers VK, Bonikowske AR, et al. The association of resistance training with mortality: A systematic review and meta-analysis. European journal of preventive cardiology. 2019;26(15):1647-65.
- Schuch FB, Stubbs B, Meyer J, Heissel A, Zech P, Vancampfort D, et al. Physical activity protects from incident anxiety: A meta-analysis of prospective cohort studies. Depression and anxiety. 2019;36(9):846-58.

- 61. Schuch FB, Vancampfort D, Firth J, Rosenbaum S, Ward PB, Silva ES, et al. Physical activity and incident depression: A meta-analysis of prospective cohort studies. The American journal of psychiatry. 2018;175(7):631-48.
- 62. Shepherd-Banigan M, Goldstein KM, Coeytaux RR, McDuffie JR, Goode AP, Kosinski AS, et al. Improving vasomotor symptoms; psychological symptoms; and health-related quality of life in peri- or postmenopausal women through yoga: An umbrella systematic review and meta-analysis. Complementary therapies in medicine. 2017;34:156-64.
- 63. Siahpush M, Levan TD, Nguyen MN, Grimm BL, Ramos AK, Michaud TL, et al. The association of physical activity and mortality risk reduction among smokers: Results From 1998-2009 National Health Interview Surveys-National Death Index Linkage. Journal of physical activity & health. 2019/08/07 ed2019. p. 1-7.
- Smart NA, Way D, Carlson D, Millar P, McGowan C, Swaine I, et al. Effects of isometric resistance training on resting blood pressure: Individual participant data meta-analysis. Journal of hypertension. 2019;37(10):1927-38.
- 65. Stamatakis E, Lee IM, Bennie J, Freeston J, Hamer M, O'Donovan G, et al. Does strength-promoting exercise confer unique health benefits? A pooled analysis of data on 11 population cohorts with all-cause, cancer, and cardiovascular mortality endpoints. American journal of epidemiology. 2018;187(5):1102-12.
- 66. Stanmore E, Stubbs B, Vancampfort D, de Bruin ED, Firth J. The effect of active video games on cognitive functioning in clinical and non-clinical populations: A meta-analysis of randomized controlled trials. Neuroscience and biobehavioral reviews. 2017;78:34-43.
- 67. Stringhini S, Carmeli C, Jokela M, Avendano M, Muennig P, Guida F, et al. Socioeconomic status and the 25 x 25 risk factors as determinants of premature mortality: A multicohort study and meta-analysis of 1.7 million men and women. Lancet (London, England). 2017;389(10075):1229-37.
- 68. Stutz J, Eiholzer R, Spengler CM. Effects of evening exercise on sleep in healthy participants: A systematic review and meta-analysis. Sports medicine (Auckland, NZ). 2019;49(2):269-87.
- 69. Su L, Fu J, Sun S, Zhao G, Cheng W, Dou C, et al. Effects of HIIT and MICT on cardiovascular risk factors in adults with overweight and/or obesity: A meta-analysis. PloS one. 2019;14(1):e0210644.
- 70. Sultana RN, Sabag A, Keating SE, Johnson NA. The effect of low-volume high-intensity interval training on body composition and cardiorespiratory fitness: A systematic review and meta-analysis. Sports medicine (Auckland, NZ). 2019;49(11):1687-721.
- 71. Viana RB, Naves JPA, Coswig VS, de Lira CAB, Steele J, Fisher JP, et al. Is interval training the magic bullet for fat loss? A systematic review and meta-analysis comparing moderate-intensity continuous training with high-intensity interval training (HIIT). British journal of sports medicine. 2019;53(10):655-64.
- 72. Wang X, Li P, Pan C, Dai L, Wu Y, Deng Y. The effect of mind-body therapies on insomnia: A systematic review and meta-analysis. Evidence-based complementary and alternative medicine : eCAM. 2019;2019:9359807.
- 73. Wang Y, Shan W, Li Q, Yang N, Shan W. Tai Chi exercise for the quality of life in a perimenopausal women organization: A systematic review. Worldviews on evidence-based nursing. 2017;14(4):294-305.
- 74. Wewege M, van den Berg R, Ward RE, Keech A. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: A systematic review and meta-analysis. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2017;18(6):635-46.
- 75. Zhang Y, Xu L, Zhang X, Yao Y, Sun Y, Qi L. Effects of different durations of aerobic exercise on the cardiovascular health in untrained women: A meta-analysis and meta-regression. The Journal of sports medicine and physical fitness. 2018;58(10):1525-36.
- 76. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008.
- 77. Wells G, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses Accessed: December 3: 2013. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.