

The Quasi-Linear Convective System

Jessica Chace Senior Meteorologist NWS Huntsville

What is a QLCS?

- A subclassification of mesoscale convective systems
 - Mesoscale indicating that the system is on the order of 2000 km or less.
- A "family" of storms moving together as one line.
- Also known as a squall line, which is what we'll call them for the rest of this presentation.
- Can form a bowing segment, known as a bow echo.
- Happen anytime of year, but by different processes.

How Do They Form? - Poll Question 1

- What ingredients are needed for any thunderstorm to form?
 - 1. Moisture
 - 2. Lift
 - 3. Instability

How Do They Form?

- What ingredients are needed for any thunderstorm to form?
 - Moisture
 - Lift
 - Instability

Squall lines will often develop as individual storms along a boundary and then merge into one line, but this can happen relatively quickly.

How Do They Form? - Poll Question 2

- What about the severity of the storms? Is there something else that is needed?
 - YES! Wind shear or the change in wind speed/direction as you move up in the atmosphere.

Mid Level Pattern

Summer

- Generally characterized by high pressure over the southeastern CONUS and weak shortwave troughs over the northern Great Lakes.
- Flow aloft is very weak.

- Dynamic systems, with strong troughs and ridges.
- Winds can be on the order of 100 kts or more.
- Negative tilt vs positive tilt vs neutral.

Low Level Pattern

Summer

- Weak flow continues through the vertical column.
- Presence of convergence in the lower levels can enhance the squall line potential.

- Strong southerly winds present, which helps with shear.
- The higher winds aloft present a greater chance for those to be transferred to the surface.

Surface Pattern

Summer

- Stalled frontal boundary, usually oriented west-east.
- Warm, moist air helps with increased instability.

- Strong cold front separates cooler air mass from warm, moist air mass.
- The presence of a warm front can increase tornado potential.

Instability and Wind Shear

Summer

- Ample heating during the day and higher dewpoints lead to greater instability.
- The weaker flow aloft and lack of a jet reduces the amount of shear.

- Strong low level jet, on the order of 45+ kts leads to high shear.
- Shear is typically unidirectional.
- Less heating and lower dewpoints leads to less instability.

The Cold Pool - Why is it Important?

- A cold pool is simply the cooler air that descends from the downdraft, like a mini cold front on the leading edge of the squall line.
- Think of a squall line as an intricate machine that has to remain balanced in order for it to continue.
- The cold pool is essential for this balance and provides lift for the squall line to maintain its organization and strength.

Squall Line Characteristics

Hazards

Straight-line Winds

Tornadoes

Hazards - Winds

Hazards - Tornadoes

Squall Lines on Radar

The Derecho

- A widespread, long-lived wind storm
- Damage swath > 250 miles
- Wind gusts at least 58 mph along most of the length, with gusts at least 75 mph within portions of the line.

Questions or Comments?

- Email: jessica.chace@noaa.gov
- Please, send me an email with the number of people in attendance at your computer, if more than one
- To download this presentation:
 https://www.weather.gov/ohx/weather101presentations

