

GESTRA Technical Information

Steam Traps and Valves for Energy Industries · Electronic Controls · Automation Special Equipment and Vessels for Heat Recovery

Screwind Non-Return Valves DISCO Non-Return Valves DISCO Swing Check Valves DISCO Non-Return Valves Safety Valves Return Temperature Control Valves Safety Valves Self-Acting Pressure and Temperature Controllers Safety Valves Disco Non-Return Valves Safety Valves Statuers Statuers Control Valves Statuers Statuers Statuers System solutions - General Level SPECTORcompact, SPECTORmod Conductivity, continuous boiler blowdown SPECTORcompact, SPECTORmod Diag distance transmission and parameterization of operating data Open and dised loop control SPECTORcompact, SPECTORcom, SPECTORcompact, SPECTORcompact, SPECTORcompact, SPECTORcom, SPECTORcompact, SPECTORcom, SPECTORcompact, SPECTORcom, SPECTORcompact, SPECTORcom, SPECTORcompact, SPECTORcom, SPECTORcompact, SPECTORcom, SPECTORcompact, SPECTORcompact, SPECTORcompact, SPECTORcompact, SPECTORcompact, SPECTORcompact, SPECTORcompact, SPECTORcompact, SPECTORcompact, SPECTORcom, SPECTORcom, SPECTORcom, SPECTORcompact, SPECTORcompact, SPECTORcompact, SP			
Screwed Non-Return Valves DISCO Swing Check Valves DISCO Non-Return Valves DISCO Swing Check Valves Return Temperature Control Valves Safety Valves Self-Acting Pressure and Temperature Controllers Safety Valves Industrial Electronics General Basics, type code System solutions - Level Basics, type code Level The SPCTOR family SPECTORcompact, SPECTOR.mod Conductivity, continuous boiler blowdown SPECTORCompact, SPECTOR.mod Intermitterity, continuous boiler blowdown SPECTORCompact, SPECTOR.mod Conductivity, continuous boiler blowdown SPECTORCompact, SPECTOR.mod Conductivity, continuous boiler blowdown SPECTORCompact, SPECTOR.mod Special Equipment and Vessels Condensate Recovery and Vessels for Heat Recovery Desuperheating Plants Seetware Desearating Plants Steam Repore rations Steam Repore rations Steam Diers and Purifiers Vessels Vessels Vessels Tor Heat Recovery Training Seminars Technical Literature Technical Documentation	-	Trap Testing Equipment	
Self-Acting Pressure and Temperature Controllers Strainers Industrial Electronics General Basics, type code - System solutions - General Basics, type code Level The SPECTOR family SPECTOR family Conductivity, continuous boiler blowdown The SPECTOR family SPECTOR.compact, SPECTOR.mod Special Equipment Conductivity, continuous boiler blowdown SPECTOR.compact, SPECTOR.com, sPECTOR.		Screwed Non-Return Valves	DISCOCHECK Dual-Plate Check Valves DISCO Swing Check Valves
- System solutions - Schematic layout of steam boiler Old/new equipment at a glance The SPECTOR family SPECTOR compact, SPECTOR mod - Level Conductivity, continuous boiler blowdown Intermittent boiler blowdown, temperature Oil and turbidity detection Long-distance transmission and parameterization of operating data Open and closed loop control SPECTOR compact, SPECTOR com,		Self-Acting Pressure and Temperature Controllers	Strainers
Intermittent boiler blowdown, temperature Oil and turbidity detection Long-distance transmission and parameterization of operating data Open and closed loop controlSPECTOR <i>bus</i> Conventional SPECTOR <i>bus</i> , SPECTOR <i>com</i> , SPECTOR <i>control</i> Special Equipment and Vessels for Heat Recovery Desuperheating Plants Steam Regenerators Heat-Transfer InstallationsCondensate Recovery and VesselsFeedwater Deaerating Plants Mixing Cooler (Blowdown Receive Condensate Dampening Pots Steam Driers and Purifiers VesselsGESTRA Academy Training SeminarsTraining SeminarsTechnical Literature Technical Documentation			Schematic layout of steam boiler Old/new equipment at a glance Type approvals at a glance
and Vessels for Heat Recovery Vessels for Heat Recovery Desuperheating Plants Steam Regenerators Heat-Transfer Installations Mixing Cooler (Blowdown Receive Condensate Dampening Pots Steam Driers and Purifiers Vessels GESTRA Academy Training Seminars Technical Literature Technical Documentation		Intermittent boiler blowdown, temperature Oil and turbidity detection Long-distance transmission and parameterization of operating data	Conventional SPECTOR <i>bus,</i> SPECTOR <i>com,</i>
Technical Documentation	and Vessels	Vessels for Heat Recovery Desuperheating Plants Steam Regenerators	Mixing Cooler (Blowdown Receiver) Condensate Dampening Pots Steam Driers and Purifiers
THUS THE LASING FOUNDARS	-	Training Seminars	
Users & Operators Programs & sizing software, 2D and 3D CAD drawings Design of GESTRA Valves	-		Material Reference Chart, Steam Tables Design of GESTRA Valves
General Information Information on ATEX Directive Information on Pressure Equipment Directive (PED) Index by Product Name and Code Technical Information	General Information		Index by Product Name and Code at Back of Technical Information

GESTRA Steam Traps and Steam Trap Monitoring Equipment

Page

Steam Trap Selection	5
Thermostatic Steam Trap BK with Duo S.S. (Bimetallic) Regulator	
Thermostatic Steam Trap MK with Membrane Regulator	
Ball Float Trap UNA, UNA Special	10 – 15
Stainless Steel Traps MK, UNA	see MK, UNA
Thermodynamic Steam Trap DK	
Steam Traps for Sterile and Aseptic (SIP) Applications SMK	
Steam Traps for Special Applications Condensate Drain Valves AK Steam Trap with Adjustable Discharge Temperature UBK Steam Trap for Low-Pressure Steam Heating Plants MK Steam Traps for Large Condensate Flowrates TK, GK	
Steam Traps for Air-Venting BK, MK	see BK, MK
Steam Trap Units for UNIVERSAL (Swivel) Connectors	22
UNIVERSAL (Swivel) Connector Units	23 – 24
Compressed-Air Draining Condensate Ball-Float Traps for Draining Condensate from Compressed-Air and Other Gas Lines UNA	25
Pump Steam Trap, Compact Condensate Lifter UNA	26
Why Testing Steam Traps	27
Steam Trap Monitoring Equipment VK, VKE, VKP	28 – 29
Drain Module QuickEM, QuickEM Control	
Questionnaire for preparing offers for GESTRA Steam Traps	

The Next Generation of Ball Float Steam Traps: UNA 45, UNA 46 and UNA 46A - PN 40, CL 300 Reliability with increased flexibility

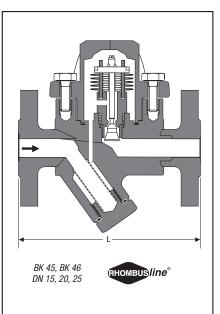
GESTRA's new ball float steam trap features the proven rolling ball valve mechanism for smooth operation and tight shut-off in conjunction with a large number of different connections now up to DN 65 (2 1/2") and a new and leaner compact-type design. By repositioning the centrally located control unit it is easy to convert the UNA 4 at any time from horizontal to vertical flow and to change the flow direction from "left to right" to "right to left" in order to suit the pipework layout. The various possibilities of installation of the UNA 4 make this ball float steam trap so flexible that it suits a wide range of applications. Other innovative new optional features that make the UNA 4 even more versatile are: an adjustable inner bypass, a strainer and the option to install electrodes directly inside the cover in order to monitor the performance of the steam trap and detect steam loss or banking-up of condensate.

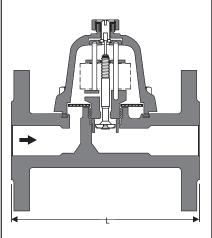
The sleeve located at the outlet of the float trap is designed to center the control unit. The new design and the modified flow pattern downstream of the orifice bring about a considerable reduction of the flow velocity and, as a consequence, better protection of the valve body.

Gestra

Available versions:

- Control unit Simplex or Duplex with mono membrane regulating capsule 5N2
- Also available: special design for large condensate flowrates (orifice 4/8/13/22/32 MAX)
- Vent hole and drain hole
- D Manual vent valve and drain hole (Simplex design)
- Directions of flow: horizontal, left to right or right to left vertical (conversion required)


Optional accessories:


- Manual float lifting lever D
- Adjustable inner bypass
- Sightglass cover
- Cover with electrodes b
- Strainer

Steam Trap Selection

Not all steam trap types are equally suitable for a given application. Depending on the operating conditions and service in question, one or more systems will be particularly well suited. The following table contains 15 criteria for steam trap selection based on the operation of the plant and the specific requirements on the part of the plant owner.

Ratings:					Stear	n trap tyj	pes	
1 = Excellent 2 = Good 3 = Fair or con - = Not recom	ditional mended, unsuitable	lian type BK	l'an the fully	Thermoot	Ball float tranic	Ball float to the UNA	Pump stee	Please note:
Criteria		ti da		1 2 2 A	Ball	Ball		Please note:
1. Operation with	Condensate from steam	1	1	1	1	1	1	Tor bold bollabilitation of bollabilitation with a
different	Condensate from compressed air	-	-	-	-	1	1	saturation curve deviating from that of water
condensates	Condensate, distillate from chemical products	-	-	-	-	1	3*)	only float traps featuring Simplex control (without thermal venting) can be used.
2. Different modes of operation	Continuous operation: Constant formation of condensate; flowrate and pressure vary	2	1	1	1	1	1	
	Discontinuous operation: Intermittent formation of condensate; flowrate and pressure vary strongly	2	1	2	1	3*)	1	*) e.g. air venting difficulties
	Any operation: Heat exchanger may be controlled on the steam side	3**)	2	2*)	1	3*)	1	*) Air venting difficulties, **) With partial load (reduced differential pressure) flowrate possibly not sufficient
3. Operation with	Up to approx. 30 % of upstream pressure	1	1	1	1	1	1	
back pressure	From 30 % to 60 % of upstream pressure	3*)	1	1	1	1	1	*) Possibly readjustment required
	> 60 % of upstream pressure	3*)	1	3	1	1	1	*) Possibly readjustment required
	> 100 % of upstream pressure	-	-	-	-	-	1	
4. Sensitivity to dirt	Very dirty condensate	1	1	1	1	1	1	
5. Air-venting	Automatic	1	1	2	1	3*)	3	*) Manual air-venting
 Condensate discharge at definite temperatures 	Condensate temperature nearly boiling temperature	2*)	2**)	1	1	1	1	This may apply to small heat exchangers (e. g. laboratory equipment) *) Possibly readjustment required **) Might require special membrane regulator
	Condensate undercooling approx. 30 K (required)	1*)	1**)	-	-	-	-	*) with U-type regulator or by readjustment **) with U-type capsule
	Condensate undercooling adjustable	2*)	-	_	-	-	-	*) By a corresponding readjustment reduction in flowrate; if possible use steam trap with adjustable discharge temperature UBK
7. Frost resistance		1	1	1	1*)	3*)	3	*) Only ensured with V-type design
8. Condensate	Intermittent condensate formation	1	1	2	1	1	1	
discharge without	Reduced condensate formation (< 10 kg/h)	1	1	2	1	1	1	
loss of live steam	Continuous condensate formation (> 10 kg/h)	1	1	1	1	1	1	
9. Resistance to waterhammer		1	1*)	1	3*)	3*)	1	*) Built-in non-return valve = 1
10. Non-return valve action		1	1*)	-	-*)	-*)	1	*) Built-in non-return valve = 1
11. Application in vacuum		3	2	2	1	1	1	
12. Installation in any pos	ition	1	1	1	-*)	-*)	-	*) UNA 1 can be converted
13. Ease of maintenance		1	1	1	1	1	1	
14. Service life of control		1	2	2	1	1	1	
15. Application with super	rheated steam	1	3	2	1/3*)	1	1	*) UNA 1x, 2x, 4x

BK 15, DN 40, 50

Features of the BK series

- Robust regulator for roughest operating conditions (unaffected by waterhammer and frost)
- Suitable for superheated steam applications
- Automatic air-venting (steam trap can be used for thermal air-venting in steam systems)
- Installation in any position (horizontal and vertical lines)
- · Stage nozzle acts as non-return valve

Application

For open-loop controlled heating processes. Draining of

- saturated steam lines
- superheated steam lines
- steam tracers

Can also be used for thermal air-venting

Air-venting

Stainless steel internals

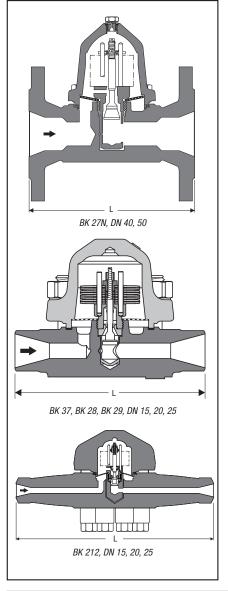
- Repairable in-line
- Base bushing ensures positive metal-to-metal sealing between body and regulator.
- Up to ∆p 275 bar g
- Optional extra: Integrated steam trap monitoring for BK 45 (temperature or steam loss)

Steam trap for thermostatic air-venting with bimetallic regulator The thermostatic steam traps with corrosion-resistant Duo S.S. (bimetallic) regulator of the BK series can also be used for air-venting.

Application

Thermostatic steam trap for automatic air-venting and discharge of non-condensable gases and steam/air mixtures from steam lines and heat exchangers. Special adjustment might be required.

Pressure/Temperature Ratings

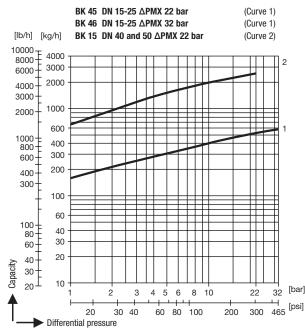

Туре	PN / Class	∆ PMX	Ма	nterial	N	lax. Pres	sure / Temp. R	ating ¹)
			EN	ASTM	PMA	TMA		/Τ
		[bar]			[bar]	[°C]	[bar	/°C]
BK 45, BK 45U ³)	PN 40	22	1.0460	A105	40.0	450	27.6 / 300	13.1 / 450
BK 45, BK 45U ³)	Class 300	22	1.0460	A105	51.1	425	39.8 / 300	28.8 / 425
BK 45-LT	Class 300	22	-	SA350 LF2	51.1	425	51.1 / -464)	28.8 / 425 ⁴)
BK 15 DN 40, 50	PN 40	22	1.0460	A105	40.0	450	27.6 / 300	13.1 / 450
BK 15 DN 40, 50	Class 300	22	1.0460	A105	51.1	425	39.8 / 300	28.8 / 425
BK 46	PN 40	32	1.5415	A182-F1 ²)	40.0	450	39.0 / 250	27.6 / 450
BK 46	Class 300	32	1.5415	A182-F1 ²)	51.7	450	41.1 / 250	29.8 / 450
BK 37	PN 63/100	45	1.5415	A182-F1 ²)	100.0	530 ⁴)	100.0 / 450 ⁴)	30.9 / 530 ⁴)
BK 27N DN 40, 50	PN 63	45	1.5415	A182-F1 ²)	63.0	530	54.0 / 300	13.0 / 530
BK 28	PN 100	85	1.5415	A182-F12)	181.04)	530 ⁴)	100.0 / 450 ⁴)	30.9 / 5304)
BK 29	PN 160	110	1.7335	A182-F12	201.04)	540 ⁴)	131.5 / 450 ⁴)	44.5 / 5404)
BK 212	PN 630	275	1.7383	A182-F22	630.0 ⁴)	540 ⁴)	447.0 / 5004)	261.0 / 5404)
BK 212-F91	-	275	1.4903	A182-F91	775.04)	580 ⁴)	607.0 / 5004)	205.0 / 5804)
BK 212-S	PN 630	275	1.7383	A182-F22	630	580	289.0 / 5404)	163.0 / 580 ⁴)
BK 212-F91-S	-	275	1.4903	A182-F91	775	625	473.0 / 5754)	255.0 / 6254)
BK 212-1.4901	-	275	1.4901	A182-F92 ²)	800	650	418.0 / 600 ⁴)	207.0 / 6504)
BK 37-ASME	Class 400/600	45	-	A182-F12	103.44)	500 ⁴)	85.7 / 3004)	42.8 / 5004)
BK 28-ASME	Class 600	85	-	A182-F12	103.44)	500 ⁴)	85.7 / 3004)	50.6 / 5004)
BK 29-ASME	Class 900	110	-	A182-F12	155.04)	540 ⁴)	101.4 / 4504)	43.6 / 5404)
BK 212-ASME	Class 2500	275	-	A182-F22	430.9 ⁴)	593 ⁴)	235.0 / 500 ⁴)	63.0 / 593 ⁴)

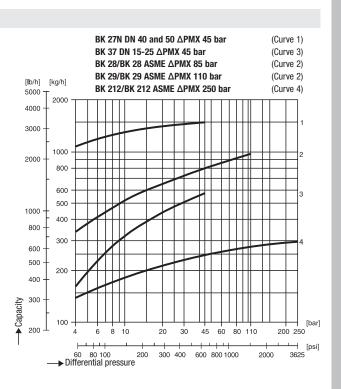
1) Limits for body/cover. Functional requirements may restrict the use to below the limits quoted.

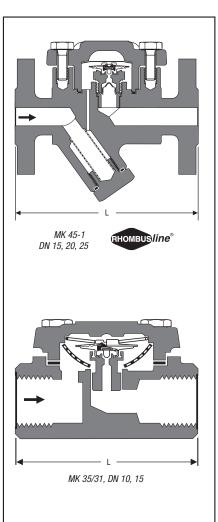
For full details on limiting conditions depending on end connection and type of regulator see data sheet. 2) Material complies with EN and ASTM requirements.

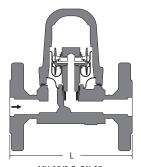
³) Opening undercooling approx. 30 K.

⁴) Only applicable for traps with butt-weld (BW) or socket-weld (SW) ends DN 25. Note that limits will be lower for traps with other dimensions or flanged end connections.

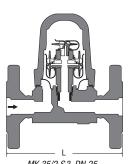



Туре	Connection	DN 15 [¹ /2"]	DN 20 [³ /4"]	DN 25 [1"]	DN 40 [1 ¹ /2"]	DN 50 [2"]
BK 45	Flanged EN PN 40	150	150	160	230	230
RHOMBUS/line®	Flanged ASME 150 ¹)	150	150	160	230	230
DN 15 – 25	Flanged ASME 300 ¹)	150	150	160	230	230
BK 15	Screwed sockets	95	95	95	130	230
DN 40, 50	Socket-weld (SW)	95	95	95	130	230
	Butt-weld (BW)	200	200	200	250	250
BK 46	Flanged EN PN 40	150	150	160	-	-
RHOMBUS/ine®	Flanged ASME 300	150	150	160	-	-
•	Screwed sockets	95	95	95	-	-
	Socket-weld (SW)	95	95	95	-	-
BK 27N	Flanged EN PN 40	-	-	-	230	230
DN 40,50	Flanged EN PN 63	-	-	-	260	300
	Flanged ASME 400/600	-	-	-	241	292
	Socket-weld (SW)	-	-	-	180	180
	Butt-weld (BW)	-	-	-	180	180
BK 37	Flanged EN PN 63/100	210	230	230	-	_
BK 28	Socket-weld (SW)	160	160	160	-	-
	Butt-weld (BW)	160	160	160	-	-
BK 29	Flanged EN PN 160	210	_	230	-	-
	Socket-weld (SW)	160	160	160	-	-
	Butt-weld (BW)	160	160	160	-	-
BK 212	Butt-weld (BW)	330	330	330	-	-
Series	Socket-weld (SW)	330	330	330	-	-
BK 37-ASME	Flanged ASME 400/600	230	230	230	-	-
	Socket-weld (SW)	160	160	160	-	-
	Butt-weld (BW)	160	160	160	-	
BK 28-ASME	Flanged ASME 400/600	230	230	230	-	-
	Socket-weld (SW)	160	160	160	-	-
	Butt-weld (BW)	160	160	160	-	-
BK 29-ASME	Flanged ASME 900/1500	230	230	254	_	-
	Socket-weld (SW)	200	200	200	-	-
	Butt-weld (BW)	200	200	200	-	-


Available End Connections and Overall Lengths in mm


Capacity Charts

The charts show the maximum hot condensate capacities.



MK 35/2 S, DN 25

MK 35/2 S3, DN 25

Features of the MK series

- · Very sensitive response characteristic
- Function is not impaired by high back pressure
- Automatic air-venting (trap can be used for thermal air-venting in steam systems)
- Installation in any position (horizontal and vertical lines)
- High hot-water capacities even with low differential pressures

Gestra

- With tandem seat (double sealing) for low condensate flowrates
- Built-in non-return valve (only MK 45)
- Stainless steel internals (corrugated membrane of Hastelloy)
- Design "U" with undercooling capsule: utilization of a certain amount of sensible heat by banking-up of condensate, decreasing the amount of flash steam
- Optional extra: Integrated condensate monitoring for MK 45 (temperature or steam loss)

Application

Туре	
MK 45-1 (HOMBUS/ine* MK 35/31 ¹)	With tandem seat (double sealing) For low condensate flowrates, steam-tracing, steam-line drainage, air-venting
MK 45-2 (HOMBUS/line* MK 35/32 ¹)	With single seat For medium condensate flowrates, steam-tracing, drainage of heat exchangers, air-venting
MK 25/2 ¹) MK 25/2 S ¹) MK 35/2 S ¹) MK 35/2 S3 ¹)	With single seat For large condensate flowrates, drainage of heat exchangers
MK 36/51 ¹) MK 36/52 ¹) STANILESS	With tandem seat (double sealing) – with flat gasket For small/large condensate flowrates, steam tracing, steam-line drainage, venting and vacuum-breaking. Also suitable for food, biological and pharmaceutical applications.
MK 45 A-1 MK 45 A-2 eHOMBUS/line*	For small and large condensate flowrates; steam-tracing, steam-line drainage, air-venting

¹) Can also be used for vacuum breaking (aerating).

Air Venting

Steam Trap for Thermostatic Air-Venting with Membrane Regulator

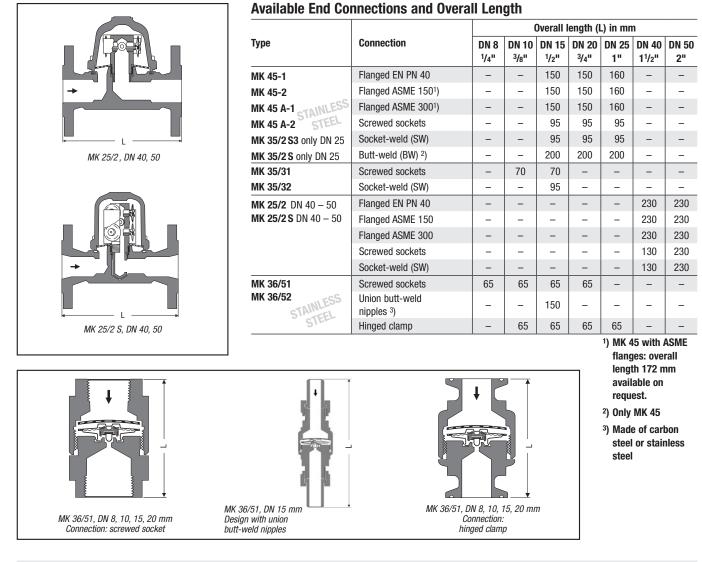
The thermostatic steam traps with membrane regulators of the MK series can also be used for air-venting.

Application

Thermostatic steam trap for automatic air-venting and discharge of non-condensable gases and steam/air mixtures from steam lines and heat exchangers. A special type of membrane regulator capsule might be required.

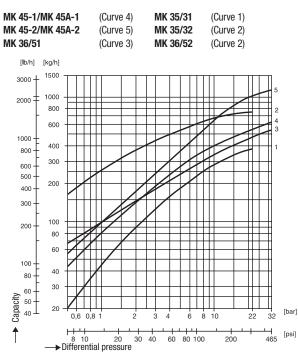
Pressure/Temperature Ratings

Туре	PN / Class	Δ PMX	Ма	terial	Max. Pressure/Temp. Rating ¹)				
			EN	ASTM	PMA	TMA	p.	/Т	
		[bar]			[bar]	[°C]	[bar	:/°C]	
MK 35/31, MK 35/32	PN 25	21	1.0460	A105	25.0	400	18.6 / 225	14.4 / 400	
MK 45-1, MK 45-2	PN 40	32	1.0460	A105	40.0	450	27.6 / 300	13.1 / 450	
MK 45-1, MK 45-2	Class 300	32	1.0460	A105	51.1	425	39.8 / 300	28.8 / 425	
MK 35/2 S, DN 25 MK 35/2 S3, DN 25	PN 40	32	1.0460	A105	40.0	450	27.6 / 300	13.1 / 450	
MK 25/2, MK 25/2 S, DN 40, 50	PN 40	32	1.0460/ 1.0619	A105/ A216-WCB	40.0	450	27.6 / 300	13.1 / 450	
MK 36/51, MK 36/52 MK 45 A-1, MK 45 A-2	-	32	1.4301 ²)	A479-F304	49.0	400	32.0 / 250	28.0 / 400	
MK 45 A-1,5 ¹¹ 51 MK 45 A-2	PN 40	32	1.4404	A182-F316L	40.0	400	27.6 / 300	25.7 / 400 ³)	
MK 45 A-1,5 45 MK 45 A-2 MK 45 A-1, 5 MK 45 A-2	Class 300	32	1.4404	A182-F316L	41.4	400	26.1 / 300	24.3 / 400 ³)	

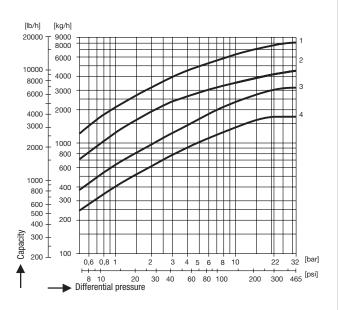

1) Limits for body/cover. Functional requirements may restrict the use to below the limits quoted.

For full details on limiting conditions depending on end connection and type of regulator see data sheet.

²) EN material comparable to ASTM material.

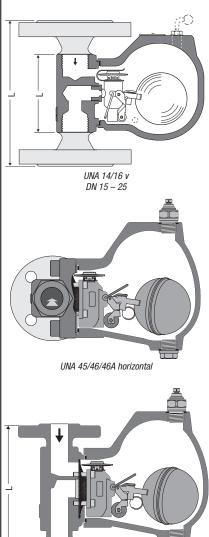

3) If the operating temperatures exceed 300 °C intercrystalline corrosion may occur. Do not subject the equipment to operating temperatures higher than 300 °C unless intercrystalline corrosion can be ruled out.

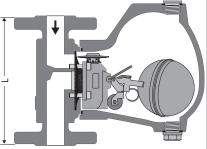
A1



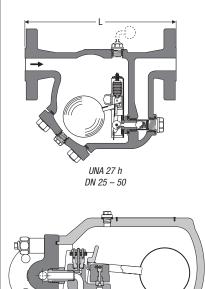
Capacity Charts

The charts show the maximum hot condensate capacities.


MK 25/2 S, DN 40, 50	(Curve 1)	MK 35/2 S3, DN 25
MK 25/2, DN 40, 50	(Curve 2)	MK 35/2S, DN 25



9


(Curve 3)

(Curve 4)

UNA 45/46/46A vertical

(Duplex design)

•

•

٠

Ideal for discharging cold condensates, distillates and condensates derived from chemical products (Simplex design)

Features of the UNA series

temperature

· Unaffected by dirt

water seal at the seat

· Unaffected by back pressure and condensate

No loss of live steam due to continuous

No banking-up of condensate even with

extreme load and pressure fluctuations

· Particularly well suited for heat exchangers controlled from the steam side

Automatic thermostatic air-venting

Application

Condensate discharge without banking-up, even at varying operating conditions and back pressure. Automatic air-venting (Duplex design). Also for the discharge of cold condensates and distillates, and for draining gas and compressed air systems (Simplex design).

Pressure/Temperature Ratings and Designs

•	Repairable	in-line
---	------------	---------

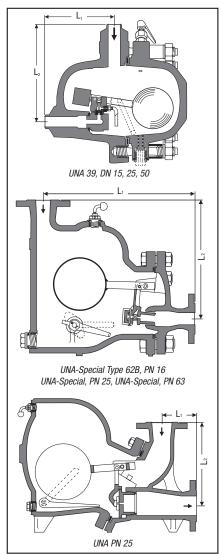
· Thanks to the rolling ball valve only reduced operating forces and small control units are required (compact, lightweight design for large flowrates)

Gestra

- · Internals made from corrosion-resistant stainless steels
- UNA 14, 16, 45, 46, 38: Body can be easily repositioned to convert the flow direction from left to right or vice versa or to change to vertical flow.
- UNA 45, 46 DN 40-65 optionally available • with MAX controller for very large flowrates (conversion standard -> MAX controller not possible).

	[
Туре	PN / Class	∆PMX	Mat	terial	Ма	x. Pressu	ıre / Temp. R	ating ¹)
			EN	ASTM	PMA	TMA	p,	/ T
		[bar]			[bar]	[°C]	[bar	:/°C]
UNA 14	PN 25	13	5.3103	-	25.0	350	19.4 / 200	15.0 / 350
UNA 16	PN 40	22	1.0460 / 1.0619	A105 / A216-WCB	40.0	400	25.8 / 300	23.1 / 400
UNA 45	PN 40 / CL300	32	1.0460 / 5.3103	A105 / (A395)	40 / 51.1	350 / 345	33.3 / 200 43.8 / 200	25.7 / 350 37.8 / 345
UNA 46	PN 40 / CL300	32	1.0460 / 1.0619	A105 / A216WCB	40 / 51.1	450 / 425	27.6 / 300 39.8 / 300	13.1 / 450 28.8 / 425
UNA 27h ³)	PN 63	45	1.5419	A217-WC1 ²)	63.0	450	54.0 / 300	43.5 / 450
UNA 38	PN 100	80	1.5415/ 1.7357	A182-F1 / A217-WC6 ²)	100.0	530	69.0 / 450	22.3 / 530
UNA 38 High-temperature	PN 100	80	1.7335/ 1.7357	A182-F12 / A217-WC6 ²)	100.0	530	83.7 / 450	32.4 / 530
UNA 39	PN 160	140	1.7335	A182-F12	160.0	550	104.3 / 500	37.3 / 550
UNA-Special Type 62B	PN 16	16	1.0425	A516Gr-60 ²)	16.0	300	11.3 / 250	10.2 / 300
UNA-Special	PN 25	22	1.0619	A216-WCB	25.0	400	22.0 / 200	14.8 / 400
UNA	PN 25	22	1.0619	A216-WCB	25.0	400	22.0 / 200	14.8 / 400
UNA-Special	PN 63	45	1.5419	A217-WC1 ²)	63.0	400	35.0 / 300	29.8 / 400
UNA 16A STIEEL	PN 40	22	1.4404 / 1.4408	A182-316L / A351-CF8M	40.0	300	29.3 / 200	25.8 / 300
UNA 46A UIVITIS	PN 40 / CL300	32	1.4404 / 1.4408	F316L / CF8M	40 / 41.4	450 / 425	27.6 / 300 26.1 / 300	25.0 / 450 ⁴) 23.9 / 425 ⁴)

1) Limits for body/cover. Functional requirements may restrict the use to below the limits quoted.


For full details on limiting conditions depending on end connection and type of regulator see data sheet.

2) ASTM nearest equivalent is stated for guidance. Physical and chemical properties comply with EN.

³) These types/materials are only available for design h for installation in horizontal lines.

4) If the operating temperatures exceed 300 °C intercrystalline corrosion may occur. Do not subject the equipment to operating temperatures higher than 300 °C unless intercrystalline corrosion can be ruled out.

UNA 38h, DN 15 - 50

			0v0	erall leng	th (L) in i	mm	
Туре	Connection	DN 15 1/2"	DN 20 3/4"	DN 25 1"	DN 40 1 ¹ /2"	DN 50 2"	DN 65 2 ¹ /2"
UNA 14h,	Flanged EN PN 25	150	150	160	-	-	-
14v	Screwed sockets	95	95	95	-	-	-
UNA 16h,	Flanged EN PN 40	150	150	160	-	-	-
16v,	Flanged ASME 150 RF	150	150	160	-	-	-
UNA 16Ah.	Screwed sockets	95	95	95	-	-	-
16Av	Socket-weld (SW)	95	95	95	-	-	-
	Butt-weld (BW)	200	200	200	-	-	-
UNA 45	Flanged EN PN40	150	150	160	230	230	290
UNA 46	Flanged ASME CI150	150	150	160	241	267	292
UNA 46A	Flanged ASME CI300	150	150	160	241	267	292
	Screwed ISO-G	95	95	95	165	165	-
	Screwed socket NPT	95	95	95	165	165	-
	Socket-weld end (SW) EN/ASME	95	95	95	165	-	-
	SW via transition piece EN/ASME	-	-	-	-	267	-
	SW via transition piece EN	-	-	-	-	-	292
	SW via transition piece ASME	-	-	-	-	-	292
	Butt-weld end via transition piece EN	200	200	200	241	267	292
	Butt-weld end via transition piece ASME	200	200	200	241	267	292
UNA 27 h ¹)	Flanged EN PN 63/PN 100	300	300	300	420	416	-
and	Flanged ASME 600 RF	300	300	300	421	427	-
UNA 38	Socket-weld / SW via transition pieces	300	300	300	420 ²)	420 ²)	-
	Butt-weld / BW via transition pieces	300	300	300	420 ²)	420 ²)	-
UNA 39		L ₁ /L ₂		L ₁ /L ₂		L ₁ /L ₂	
0111 00	Flanged EN PN 160	215/285	-	230/300	-	245/315	-
	Flanged ASME 900 RF	240/310	-	250/320	-	280/350	-
	Butt-weld (BW)	170/240	_	170/240	-	170/240	_

Available End Connections and Overall Length

1) not available as DN 15 + DN 20 2) UNA 38 socket-weld (SW) ends and butt-weld (BW) ends DN 40 + DN 50: 300 mm, SW and BW via transition pieces: 420 mm

	Type Connection			Length L ₁ /L ₂ in mm						
	Туре	Connection		DN 50	DN 65	DN 80	DN 100			
				2"	2 ¹ /2"	3"	4"			
	UNA-Special	Flanged EN PN 16	L1	-	470	490	700			
	Type 62B, PN 16		L2	-	395	420	595			
	UNA-Special	Flanged EN PN 25	L1	445	470	-	-			
UNA PN 25	PN 25		L2	345	395	-	-			
UNA PN 25	UNA PN 25	Flanged EN PN 25	L1	-	-	140	140			
Float control (without thermostatic bellows)		L2	-	-	335	400			
Flow control + automatic air-venting	UNA-Special	Flanged EN PN 63	L1	-	565	690	700			
Float control + inner vent pipe	PN 63		L2	-	400	435	450			

Available Designs

Simplex:

Duplex:

Simplex-R:

Tumo	End connection options			Orifice (AO) for more differential processor	Control unit		
Туре	horizontal	vertical	angle pattern	Orifice (AO) for max. differential pressure	Simplex	Duplex	Simplex-R
UNA 14	X ¹)	x1)		A0 4, 13	Х	Х	Х
UNA 16, 16A	x ¹)	x ¹)		A0 4, 13, 22	Х	х	х
UNA 45, UNA 46, UNA 46A	X ¹)	X1)		AO 2, 4, 8, 13, 22, 32, 4 MAX*), 8 MAX*), 13 MAX*), 22 MAX*), 32 MAX*)	х	х	
UNA 27h	х			A0 16, 28, 45	х	Х	
UNA 38	x ¹)	X ¹)		AO 50, (64), 80, 80 MAX	х	Х	
UNA 39			Х	AO 80, 110, 140, 140 MAX	Х		
UNA-Special Type 62B, PN 16			Х	AO 2 ³), 3.5 ⁴), 5, 10, 16	X ⁶)	x ²) ⁷)	
UNA-Special PN 25			Х	A0 2 ⁵), 3.5 ⁴), 5, 10, 16, 22	X6)	X7)	
UNA PN 25			Х	A0 2, 3.5, 5, 8, 12, 16, 22	X ⁶)		
UNA-Special PN 63			Х	A0 16, 22, 32, 40, 45	X ⁶)		

¹) Connection orientation can be changed on site, trap body for horizontal-right available

²) This design is not available for DN 100 mm

³) This design is not available for DN 80 mm

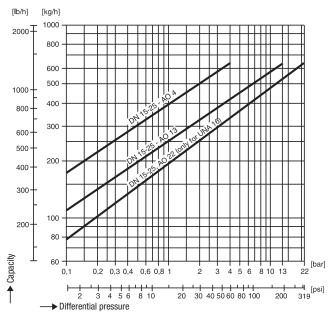
4) This design is not available for DN 65 mm

5) This design is not available for DN 50 mm

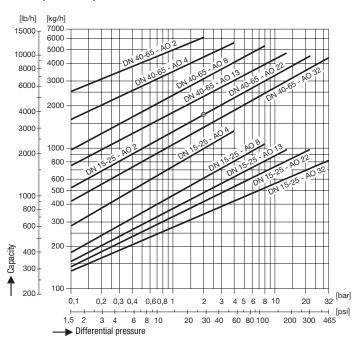
6) Simplex: Flow control + hand vent valve + float lifting lever

- 7) Duplex: Flow control + automatic air-venting
- *) DN 40, DN 50, 65

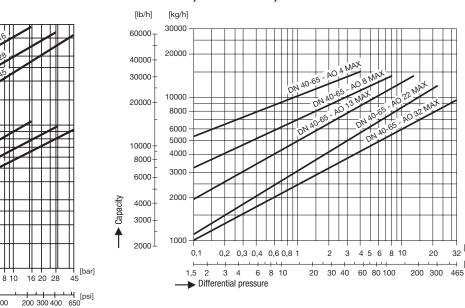
Optional Items for Ball-Float Traps


Item	Туре
Sightglass cover	UNA 45
Cover for installing electrodes	UNA 45
Float lifting lever with gasket	UNA 45, 46, 46 A, 27 h, 38
Vent valve with gasket (for Duplex design)	UNA 45, 46, 46 A, 27 h, 38
Inner bypass (adjustable)	UNA 45, 46, 46 A

Gestra


Capacity Charts

The charts show the maximum hot condensate capacities for the range of float-controlled orifices (AO) and sizes available.


UNA 14, UNA 16, UNA 16A

UNA 45, UNA 46, UNA 46A

UNA 45 MAX, UNA 46 MAX, UNA 46A MAX

[bar]

⊣ [psi]

32

[**l**b/h]

10000 ∓

8000

6000

4000

3000

2000

1000

800

600 500

400

300

200

[kg/h]

5000

4000

3000

2000

1000

800

600

500

400

300

200

100

0,1

ż

0,2 0,3 0,4 0,6 0,8 1

6 8 10

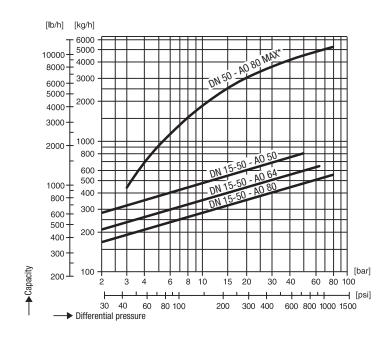
3 4

► Differential pressure

3

20 30 40 60 80100

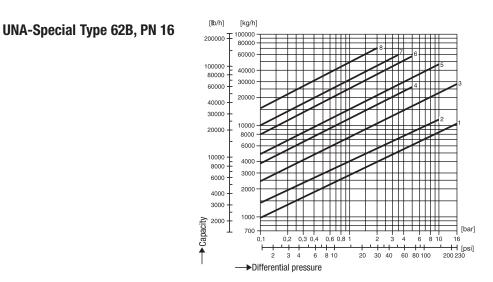
56


2

Capacity Charts

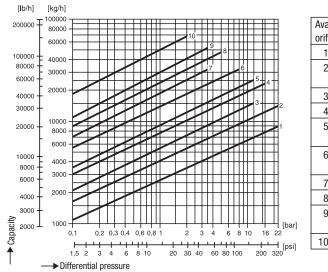
The charts show the maximum hot condensate capacities for the range of float-controlled orifices (A0) and sizes available.

UNA 38



[**l**b/h] [kg/h] 6000 MAX* 5000 10000 24 4000 8000 0A DN 50 3000 6000 5000 2000 4000 3000 1000 2000 800 600 500 1000-AO 80 400 800 -50 - A0 11 300 DN 600-.50 500 DN 1 AO 140 200 400 TDN 300 · 100 200 80 T Capacity 60 8 10 15 20 30 40 60 - [psi] 2030 . 30 . 40 60 80 100 200 300 400 600 800 1000 Differential pressure

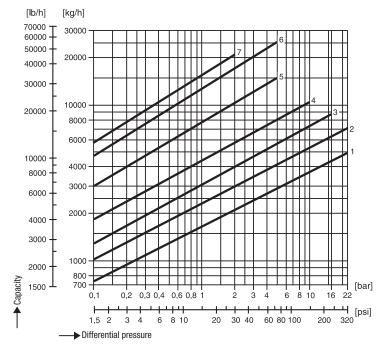
Traps with small end connection sizes do not reach the flowrates indicated in this chart.


Capacity Charts

The charts show the maximum hot condensate capacities for the range of orifices (A0) and sizes available.

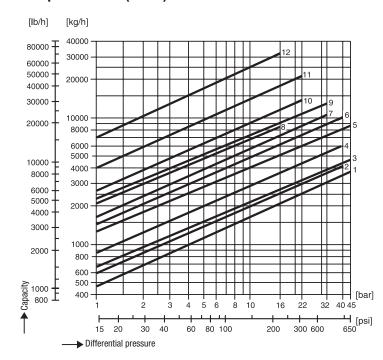
Avai	Available						
orific	ces (AO)						
1	DN 80	AO 16					
2	DN 80	AO 10					
3	DN 100	AO 16					
4	DN 80	AO 5					
5	DN 80	AO 3.5					
	DN 100	AO 10					
6	DN 100	AO 5					
7	DN 100	AO 3.5					
8	DN 100	A0 2					

UNA PN 25, DN 80 and 100

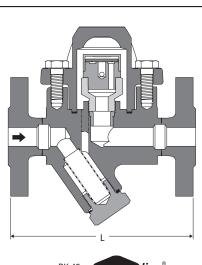


Available						
orific	ces (AO)					
1	DN 80	A0 22				
2	DN 80	AO 16				
	DN 100	A0 22				
3	DN 80	A0 12				
4	DN 100	AO 16				
5	DN 80	AO 8				
	DN 100	A0 12				
6	DN 80	AO 5				
	DN 100	AO 8				
7	DN 80	AO 3.5				
8	DN 100	A0 5				
9	DN 80	A0 2				
	DN 100	AO 3.5				
10	DN 100	A0 2				

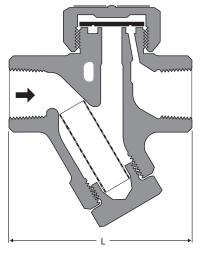
Capacity Charts

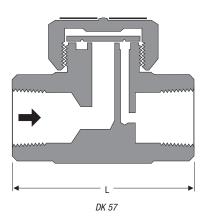

The charts show the maximum hot condensate capacities for the range of orifices (A0) and sizes available.

UNA-Special PN 25, DN 50 and 65



Av	Available							
ori	fic	es (AO)						
1		DN 50	A0 22					
2	2	DN 50	A0 16					
		DN 65	A0 22					
3	3	DN 50	A0 10					
		DN 65	AO 16					
4	ŀ	DN 65	AO 10					
5	5	DN 50	A0 5					
6	6	DN 50	A0 3.5					
		DN 65	A0 5					
7	7	DN 65	A0 2					
	_							


UNA-Special PN 63 (PN 40)


Available orifices (A0) 1 DN 65 A0 45 2 DN 65 A0 40 3 DN 80 A0 45 4 DN 65 A0 32 DN 80 A0 40 5 DN 100 A0 45 6 DN 65 A0 22 DN 100 A0 40 7 DN 80 A0 32 8 DN 65 A0 16 9 DN 100 A0 22 10 DN 80 A0 22 11 DN 80 A0 16 DN 100 A0 22							
1 DN 65 A0 45 2 DN 65 A0 40 3 DN 80 A0 45 4 DN 65 A0 32 DN 80 A0 40 5 DN 80 A0 40 5 DN 100 A0 45 6 DN 65 A0 22 DN 100 A0 40 7 DN 80 A0 32 8 DN 65 A0 16 9 DN 100 A0 22 11 DN 80 A0 16 DN 100 A0 22	Available						
2 DN 65 A0 40 3 DN 80 A0 45 4 DN 65 A0 32 DN 80 A0 40 5 DN 80 A0 40 5 DN 100 A0 45 6 DN 65 A0 22 DN 100 A0 40 7 DN 80 A0 32 8 DN 65 A0 16 9 DN 100 A0 22 11 DN 80 A0 16 DN 100 A0 22	orific	es (AO)					
3 DN 80 A0 45 4 DN 65 A0 32 DN 80 A0 40 5 DN 100 A0 45 6 DN 65 A0 22 DN 100 A0 40 7 DN 80 A0 32 8 DN 65 A0 16 9 DN 100 A0 32 10 DN 80 A0 22 11 DN 80 A0 16 DN 100 A0 22	1	DN 65	A0 45				
A DN 65 AO 32 DN 80 AO 40 5 DN 100 AO 45 6 DN 65 AO 22 DN 100 AO 40 7 DN 80 AO 32 8 DN 65 AO 32 10 DN 80 AO 32 10 DN 80 AO 22 11 DN 80 AO 16 DN 100 AO 22	2	DN 65	A0 40				
DN 80 A0 40 5 DN 100 A0 45 6 DN 65 A0 22 DN 100 A0 40 7 DN 80 A0 32 8 DN 65 A0 16 9 DN 100 A0 32 10 DN 80 A0 22 11 DN 80 A0 16 DN 100 A0 22	3	DN 80	AO 45				
5 DN 100 A0 45 6 DN 65 A0 22 DN 100 A0 40 7 DN 80 A0 32 8 DN 65 A0 16 9 DN 100 A0 32 10 DN 80 A0 32 11 DN 80 A0 16 DN 100 A0 22	4	DN 65	A0 32				
6 DN 65 A0 22 DN 100 A0 40 7 DN 80 A0 32 8 DN 65 A0 16 9 DN 100 A0 32 10 DN 80 A0 22 11 DN 80 A0 16 DN 100 A0 22		DN 80	A0 40				
DN 100 A0 40 7 DN 80 A0 32 8 DN 65 A0 16 9 DN 100 A0 32 10 DN 80 A0 22 11 DN 80 A0 16 DN 100 A0 22	5	DN 100	AO 45				
7 DN 80 A0 32 8 DN 65 A0 16 9 DN 100 A0 32 10 DN 80 A0 22 11 DN 80 A0 16 DN 100 A0 22	6	DN 65	A0 22				
N 80 N 80 N 80 8 DN 65 A0 16 9 DN 100 A0 32 10 DN 80 A0 22 11 DN 80 A0 16 DN 100 A0 22		DN 100	A0 40				
9 DN 100 A0 32 10 DN 80 A0 22 11 DN 80 A0 16 DN 100 A0 22	7	DN 80	A0 32				
10 DN 80 A0 22 11 DN 80 A0 16 DN 100 A0 22	8	DN 65	AO 16				
11 DN 80 AO 16 DN 100 AO 22	9	DN 100	AO 32				
DN 100 A0 22	10	DN 80	A0 22				
	11	DN 80	AO 16				
		DN 100	A0 22				
12 DN 100 AO 16	12	DN 100	AO 16				

DK 47

Features of the DK series

- Discharge with virtually no banking-up
- Robust, insensitive regulator
- Installation in any position
- · Max. admissible back pressure 80 % of the upstream pressure

Application

Туре		
DK 45	(RHOMBUS)line®	Rhombusline body with enclosed, weather-resistant regulator for discharging steam lines and tracing systems without banking-up of condensate
DK 47-L DK 57-L		Compact steam trap for small condensate flowrates for discharging steam lines and tracing systems without banking-up of condensate
DK 47-H DK 57-H		Compact steam trap for large condensate flowrates for discharging steam lines and tracing systems without banking-up of condensate

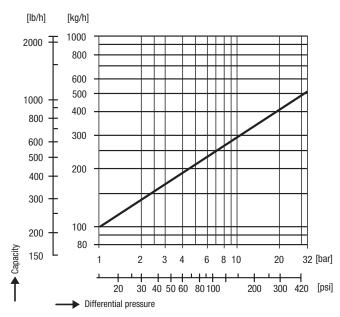
Pressure/Temperature Ratings

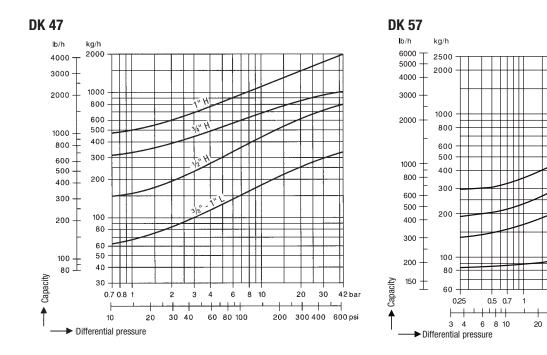
Туре	PN / Class	∆ PMX	Ма	iterial		Pressur	e/Temp. Ratir	lg ¹)
			EN ASTM		PMA	TMA	p/T	
		[bar]			[bar]	[°C]	[bar	/°C]
DK 45	PN 40	32	1.0460	A105	40.0	450	27.6 / 300	13.1 / 450
DK 47	PN 63 / Class 600	42	1.40272)	A743-CA40	63.0	400	50.0 / 300	42.0 / 400
DK 57	PN 63 / Class 600	42	1.4021 ²)	AISI420	63.0	400	50.0 / 300	42.0 / 400

¹) Limits for body/cover. Functional requirements may restrict the use to below the limits quoted.

For full details on limiting conditions depending on end connection and type of regulator see data sheet. 2) ASTM nearest equivalent is stated for guidance. Physical and chemical properties comply with EN.

Available End Connections and Overall Length


		Overall length (L) in mm					
Туре	Connections	DN 10 3/8"	DN 15 1/2"	DN 20 3/4"	DN 25 1"		
DK 45	Flanged EN PN 40	-	150	150	160		
	Flanged ASME 150 ¹)	-	150	150	160		
	Flanged ASME 300 ¹)	-	150	150	160		
	Screwed sockets	-	95	95	95		
	Socket-weld (SW)	-	95	95	95		
	Butt-weld (BW)	-	200	200	200		
DK 47-L	Screwed sockets	78	78	90	95		
DK 47-H	Screwed sockets	-	78	90	95		
DK 57-L	Screwed sockets	55	65	80	-		
DK 57-H	Screwed sockets	-	70	80	90		


¹) DK 45 with flanged ASME: Overall length 172 mm on request.

Capacity Charts

The charts show the maximum hot condensate capacities.

DK 45

Gestra

A1

20

30 42 bar

200 300 400 600 psi

6 8 10

30 40 60 80 100

2 3

STERI*line*

STER line

SMK 22, DN 15

SMK 22-51

Application Туре SMK 22 Virtually pocket-free For small and medium condensate flowrates. Internal surface roughness Ra \leq 0.8 μm STER)/ine® machine faced, optionally up to Ra \leq 0.4 μm electropolished. SMK 22-51 Virtually pocket-free For small and medium condensate flowrates. Internal surface roughness Ra \leq 0.8 μ m STER)/ine° machine faced, optionally Ra \leq 0.6 μ m plasma polished. SMK 22-81 Virtually pocket-free For small and medium condensate flowrates. Functional unit easy to exchange. Internal STER]*line*° surface roughness Ra \leq 0.8 μ m machine faced, optionally Ra \leq 0.6 μ m plasma polished. SMK 22-82 Virtually pocket-free For medium and large condensate flowrates. Functional unit easy to exchange. Internal STER]line® surface roughness Ra \leq 0.8 μm machine faced, optionally Ra \leq 0.6 μm plasma polished. **Functional unit** Virtually pocket-free SMK 22-81 For small and medium condensate flowrates. Internal surface roughness Ra \leq 0.8 μm machine faced, optionally Ra \leq 0.6 μ m plasma polished. STER)*line*° Connection via socket for mounting between clamps DIN 32676-DN 40. **Functional unit** Virtually pocket-free SMK 22-82 For medium and large condensate flowrates. Internal surface roughness Ra $\leq 0.8~\mu\text{m}$ machine faced, optionally Ra \leq 0.6 μ m plasma polished. STER]*line*°

Gestra

Connection via socket for mounting between clamps DIN 32676-DN 40.
Virtually pocket-free

Non-return valve for liquids, gases and steam.

Connection via socket for mounting between clamps DIN 32676.

Pressure/Temperature Ratings

SRK 22A

Туре	PN / Class	Δ PMX	Mat		Pressure	e/Temp. Ratir	ng¹)	
			EN	EN ASTM		TMA	p	/Т
		[bar]			[bar]	[°C]	[bai	r/°C]
SMK 22	PN 10	6	1.4435	A276 316L ²)	10.0	185 ³)	10.0 / 20	6.0 / 185 ³)
SMK 22-51	PN 10	6	1.4404	A182 316L2)	10.0	185 ³)	10.0 / 20	6.0 / 185 ³)
SMK 22-81 SMK 22-82	PN 10	6	1.4404	A182-316L ²)	10.0	185 ³)	10.0 / 20	6.0 / 185 ³)
Functional unit SMK 22-81 SMK 22-82	PN 10	6	1.4404	A182-316L ²)	10.0	185 ³)	10.0 / 20	6.0 / 185 ³)
SRK 22A	PN 10	-	1.4408 / 1.4571	A351 CF8M / AISI316Ti	10.0	185 ³)	10.0 / 20	6.0 / 185 ³)

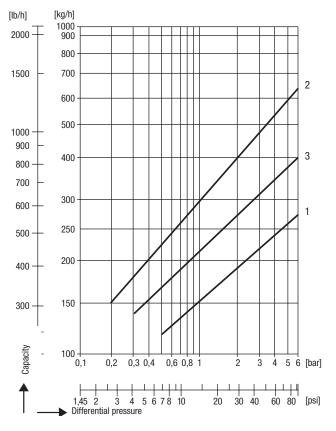
1) Limits for body/cover. Functional requirements may restrict the use to below the limits quoted.

For full details on limiting conditions depending on end connection and type of regulator see data sheet. 2) ASTM nearest equivalent is stated for guidance. Physical and chemical properties comply with EN.

³) 185 °C with PTFE gasket, 150 °C with EPDM gasket.

Available End Connections and Overall Length

		Overall length (L) in mm							
Туре	Connections	DN 10 ³ /8"	DN 15 1/2"	DN 20 ³ /4"	DN 25 1"	DN 32 1 ¹ /4"	DN 40 1 ¹ /2"	DN 50 2"	
SMK 22	Butt-weld ends Clamp	83 65	83 65	83 65	83 65	_	-	-	
SMK 22-51	Butt-weld ends Clamp	90 65	90 65	90 65	90 65	_	-	_	
SMK 22-81	Butt-weld ends	96	96	96	96	-	-	-	
Functional unit SMK 22-81 SMK 22-82	Socket for mounting between clamps DIN 32676-DN 40 L1 standard	-	_	_	35	_	_	_	
SRK 22A	Socket for mounting between clamps DIN 32676	-	23	29.5	33.5	38	43	54	



Functional unit SMK 22-82 STERI line

SMK 22-81, SMK 22-82 STERIJine®

A1

Capacity Charts

SMK 22, SMK 22-51, SMK 22-81, SMK 22-82

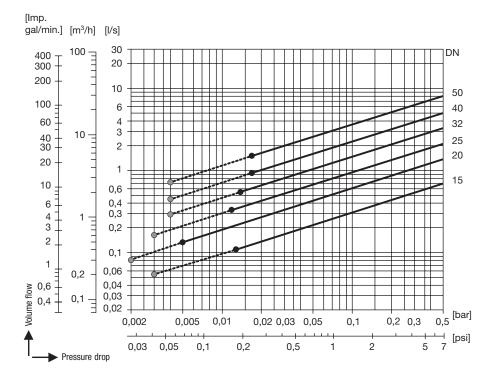
The chart shows the maximum capacities for hot and cold condensate.

Curve 1 SMK 22, SMK 22-51, SMK 22-81

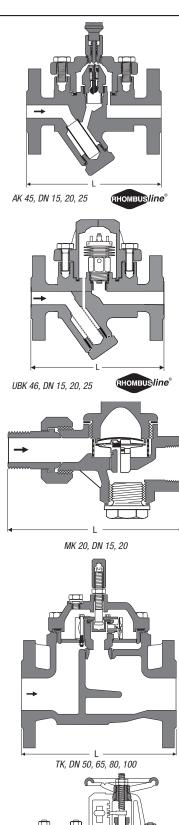
This curve indicates the max. capacity of hot condensate that the steam trap with regulating membrane Steri*line* can discharge with virtually no banking-up.

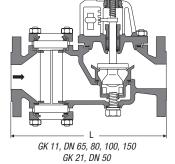
Curve 2 SMK 22, SMK 22-51, SMK 22-81, SMK 22-82

This curve shows the max. capacity of cold condensate that the steam trap can discharge (20 °C at start-up).


Curve 3 SMK 22-82

This curve indicates the max. capacity of hot condensate that the steam trap with regulating membrane Steri*line* can discharge with virtually no banking-up.


Other steam traps and non-return valves for sterile and aseptic applications:


MK 45A-1 and MK 45A-2	see pages 8 – 9
MK 36/51 and MK 36/52	see pages 8 – 9
UNA 16A	see pages 10 - 12
UNA 26A	see pages 10 – 12
VKE stainless steel	see pages 28 – 29
RK 86A	see pages 42 – 43
RK 16A	see pages 44 – 45
RK 26A	see pages 44 – 45

SRK 22A

19

Application

Туре	
AK 45 RHOMBUB/line [®]	Condensate drain valve for discharging condensate from steam systems during start-up and draining residual condensate at shut-down, with integral Y-type strainer and hand purging knob. Factory-set closing pressure 0.8 bar.
UBK 46	Steam trap with adjustable condensate discharge temperature, thereby suppressing the formation of flash steam. With Y-type strainer.
MK 20	Steam trap for low-pressure steam-heating installations.
TK 23, TK 24	Steam trap with thermostatic pilot control using thermostatic capsules for the discharge of very large condensate flowrates with relatively continuous condensate formation.
GK 11 ¹)	Thermodynamic steam trap with stage nozzle for the discharge of very large condensate flowrates. With integral Vaposcope (sightglass) for optimum trap adjustment.

Gestra

1) DN 50 mm: GK 21

Pressure/Temperature Ratings

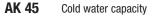
Туре	PN / Class	ΔPMX	Mat	Material		Max. Pressure/Temperature Rating ¹)				
			EN	ASTM	PMA	TMA	p,	/Т		
		[bar]			[bar]	[°C]	[bar	/°C]		
AK 45	PN 40	-	1.0460	A105	40.0	450	27.6 / 300	13.1 / 450		
UBK 46	PN 40	32	1.0460	A105	40.0	450	27.6 / 300	13.1 / 425		
MK 20	PN 6	4.5	5.4202	-	6.0	300	4.5 / 250	3.6 / 300		
TK 23	PN 16	5/10	5.1301	A126 CI.B ²)	16.0	300	16.0 / 120	10.0 / 300		
TK 24	PN 25	5/14	1.0619	A216 WCB	25.0	400	19.4 / 200	14.2 / 400		
GK 11, GK 21	PN 10/16	6	5.1301	A126 CI.B ²)	16.0 ³)	300	16.0 / 120 ³)	13.0 / 300 ³)		

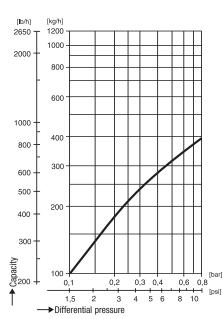
1) Limits for body/cover. Functional requirements may restrict the use to below the limits quoted. For full details on limiting conditions depending on end connection and type of regulator see data sheet.

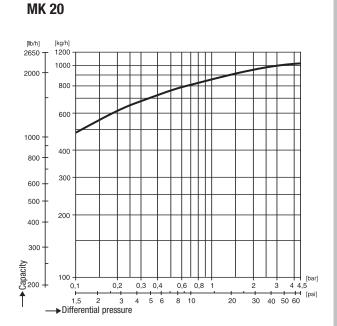
²) ASTM nearest equivalent is stated for guidance. Physical and chemical properties comply with EN.

³) GK 11, DN 100/150, PN 10, max. 10 bar

Available End Connections and Overall Lengths

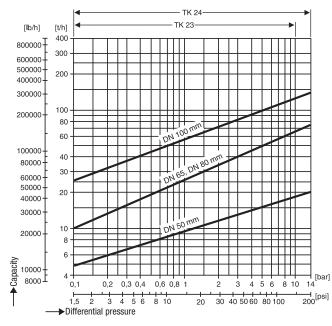

			Overall length (L) in mm									
Туре	Connection	DN 10 ^{3/8} "	DN 15 1/2"	DN 20 ^{3/4} "	DN 25 1"	DN 50 2"	DN 65 2 ¹ /2"	DN 80 3"	DN 100 4"	DN 150 6"		
AK 45	Flanged EN PN 40	-	150	150	160	-	-	-	-	-		
	Flanged ASME 150	-	150	150	160	-	-	-	-	-		
	Flanged ASME 300	-	150	150	160	-	-	-	-	-		
	Screwed sockets	-	95	95	95	-	-	-	-	-		
UBK 46	Flanged EN PN 40	-	150	150	160	-	-	-	-	-		
	Flanged ASME 150	-	150	150	160	-	-	-	-	-		
	Flanged ASME 300	-	150	150	160	-	-	-	-	-		
	Screwed sockets	-	95	95	95	-	-	-	-	-		
	Socket-weld (SW)	-	95	95	95	-	-	-	-	-		
MK 201)	Male/female thread	-	120	125	-	-	-	-	-	-		
TK 23	Flanged EN PN 16	-	-	-	-	230	290	310	350	-		
TK 24	Flanged EN PN 25	-	-	_	-	230	290	310	350	-		
GK 112)	Flanged EN PN 10/16	-	-	-	-	320	420	420	620	900		


¹) Straight-through or angle design (see representation)

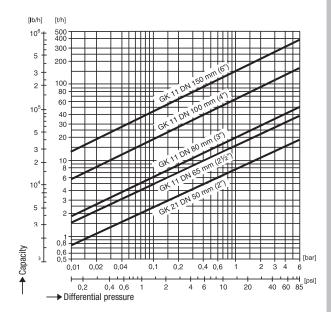

²) DN 50 mm: GK 21

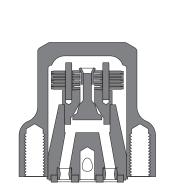
Capacity Charts

The charts show the maximum hot condensate capacities. (Exception: AK 45 - cold water capacity.)

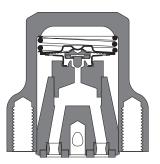


Capacities, opening temperatures UBK 46

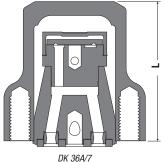

Service pressure	[barg]	1	2	4	8	12	16	20	26	32
Factory-set opening temperature	[°C]	60	64	72	84	93	102	110	118	128
Capacity at t 10 K below opening temperature	[kg/h]	30	60	90	120	130	140	150	160	170
Cold water capacity at 20 °C (start-up capacity)	[kg/h]	250	320	480	760	1020	1280	1500	1780	2040


TK 23, TK 24

For differential pressures < 1 bar use capsule "OH2" (max. service pressure 5 bar).



GK 11, GK 21



BK 36A/7

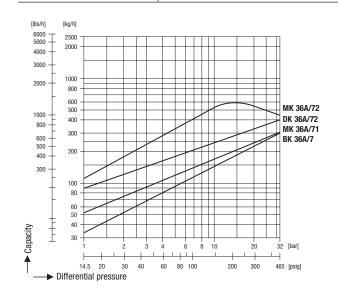
MK 36A/71

Features

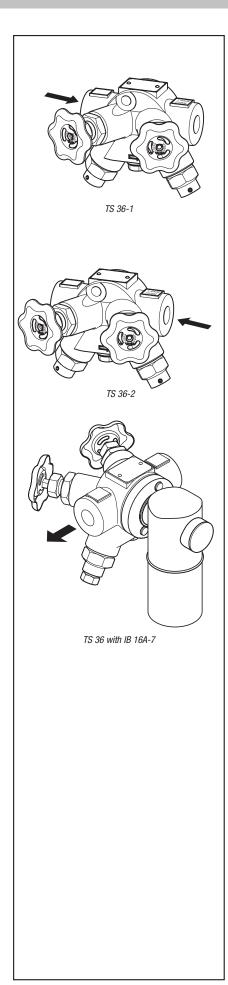
- Maintenance-free, ultra-compact steam traps made from stainless steel, suitable for all • UNIVERSAL (Swivel) connectors
- · Installation in any position
- · Integrated spiral wound gasket for connector
- · Only two screws make for a quick and easy installation
- · All steam trap units are optionally available with a UNIVERSAL connector (not fitted), e.g. UC 36, UCY 36 or TS 36.

Application

Туре	
BK 36A/7	"Thermostatic/thermodynamic bimetallic" trap unit with corrosion-resistant Duo S.S. regulator unaffected by waterhammer, for condensate with virtually no banking-up and automatic air-venting of steam lines and tracing systems.
MK 36A/71 MK 36A/72	"Thermostatic capsule" trap unit with corrosion-resistant membrane regulator 5N1 unaffected by waterhammer, for condensate discharge with virtually no banking-up and automatic air-venting of steam lines and tracing systems.
DK 36A/7	"Thermodynamic" trap unit for condensate discharge with virtually no banking-up.
IB 16A-7	"Inverted bucket" trap unit for condensate discharge with no banking-up


Specification

Туре	PN / Class	Δ PMX	Material		Pressure /Temperature ¹)			
			EN	ASTM	PMA	TMA	p,	/Т
		[bar]			[bar]	[°C]	[bar	:/°C]
BK 36A/7	Class 300	32	1.4408	A351-CF8M	49.6	400	31.6 / 300	29.4 / 400
MK 36A/71, MK 36A/72	Class 300	32	1.4408	A351-CF8M	49.6	400	31.6 / 300	29.4 / 400
DK 36A/7	Class 300	32	1.4408	A351-CF8M	49.6	400	31.6 / 300	29.4 / 400
IB 16A-7	-	27.6	1.4306	A240-304L	-	425	-	28.0 / 425


1) Limits for body/cover. Functional requirements may restrict the use to below the limits quoted. For full details on limiting conditions depending on end connection and type of regulator see data sheet.

Available Connections and Lengths

Tuno	Connection	Length L				
Туре	Connection	1/2"	3/4"	1"		
BK 36A/7; MK 36A/71; MK 36/A72; DK 36A/7	Universal connector	65	65	65		
IB 16A-7	Universal connector	178	178	178		

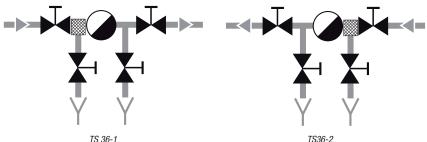
The chart shows the discharge capacity of hot condensate

The compact-type Trap Station TS 36 features additional test and shut-off functions and is a more convenient alternative to the simpler connector units UC 36 and UCY 36.

When installed with a suitable steam trap with UNIVERSAL (Swivel) connector (sold separately) the equipment can discharge condensate from steam systems.

The two in-built **isolating valves** are designed to completely shut off the condensate inlet and outlet independently from each other.

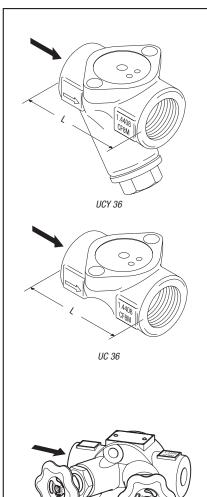
The integral **blowdown valve** provides a means for cleaning the strainer and the **test valve** enables the steam trap operation to be checked.


The steam traps can be easily attached to and removed from the TS 36 by means of only two screws.

The following GESTRA connector steam traps can be used:

- Bimetallic steam trap BK 36A/7
- Steam trap with membrane capsule MK 36A/71
- Steam trap with membrane capsule MK 36A/72
- Thermodynamic steam trap DK 36A/7
- Inverted bucket steam trap IB 16A-7

Non-GESTRA swivel connector steam traps can also be fitted to the TS 36.


Schematic diagram

TS 36-1 Flow direction from left to right

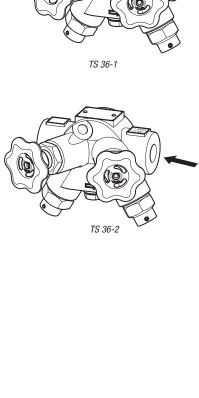
TS36-2 Flow direction from right to left

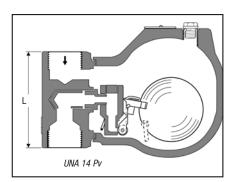
Features

- · Body / internals made from corrosion-resistant stainless steels
- UNIVERSAL (Swivel) connector for steam trap
- Connector unit can remain in pipeline during maintenance work
- · Steam trap unit is easy to install and remove by means of only two screws

Application

Туре	
UC 36	Universal connector
UCY 36	Universal connector with integrated strainer
TS 36-1	Compact-type connector unit with 2 isolating valves, test valve and strainer with blow- down valve. Coloured handwheels indicate inlet and outlet and assist in the correct installation. Flow direction from left to right.
TS 36-2	Compact-type connector unit with 2 isolating valves, test valve and strainer with blow- down valve. Coloured handwheels indicate inlet and outlet and assist in the correct installation. Flow direction from right to left.


Pressure/Temperature Ratings


Type UC 36, UCY 36, TS 36		ASM	NE B 16.5 Class	s 300 (PN 50) N	Aaterial Group	2.2)	
p (pressure)	[bar]	49.6	42.2	35.7	31.6	29.4	
T (temperature)	[°C]	38 100 200 300 400					
PMO (max. service pressure)		33.7 bar at 242 °C					

Based on ASME B 16.5, ASME B 16.34

Available Connections and Lengths

Туре	Connection	Length L				
Туре	Connection	1/2"	3/4"	1"		
UC 36, UCY 36	Screwed sockets NPT Screwed sockets G	75	75	75		
TS 36-1, TS 36-2	Socket-weld ends	120	120	on request		

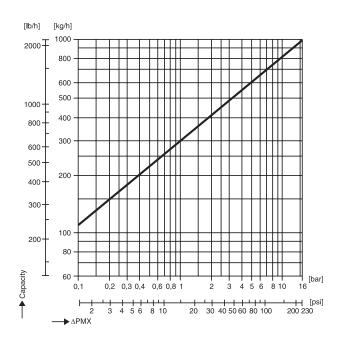
Features

- Liquid drainer for compressed air and gases with ball float and rolling ball valve
- The trap is suitable for draining gas and compressed air systems
- Purging device and connection for air-balance pipe included as standard
- Internals made from corrosion-resistant stainless steels
- Closing unit for temperatures up to 40 °C with rolling ball made from Perbunan, up to 120 °C with rolling ball made from stainless steel
- Body convertible for horizontal / vertical flow and left to right / right to left.

Туре	PN / Class	Δ PMX	Mat	Material Pressure /Temperature ¹)				
			EN	ASTM	PMA	TMA	p,	/т
		[bar]			[bar]	[°C]	[bar	/°C]
UNA 14Ph, UNA 14Pv with S.S. valve ball	PN 25	16	5.3103	-	25.0	120	25.0 / 20	25.0 / 120
UNA 14Ph, UNA 14Pv with Perbunan valve ball	PN 25	16	5.3103	-	25.0	40	25.0 / 20	25.0 / 40

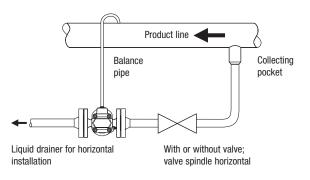
1) Limits for body/cover. Functional requirements may restrict the use to below the limits quoted.

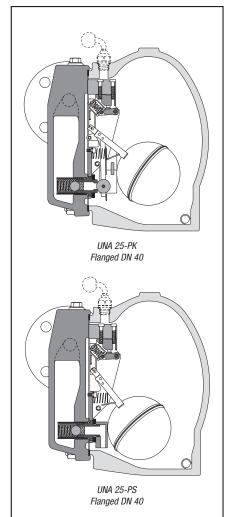
For full details on limiting conditions depending on end connection and type of regulator see data sheet.


Available End Connections and Overall Length

Туре	0 anneation	Overall length L in mm						
	Connection	DN 15 1/2"	DN 20 3/4"	DN 25				
UNA 14 Ph	Screwed sockets ³)	95	95	95				
	Flanged EN PN 25	150	150	160				
UNA 14 Pv	Screwed sockets ³)	95	95	95				
	Flanged EN PN 25	150	150	160				

3) Screwed sockets BSP to EN ISO 228-1 or screwed sockets NPT


Capacity Chart


UNA 14P

Hints on Installation

The condensate/distillate must be free to fall towards the trap. Isolating valves in horizontal lines lead to the formation of water pockets. In this case an air-balance pipe is required (see drawing).

Description

UNA 25-PK:

Ball-float operated steam trap with pumping function. The equipment works primarily as a steam trap. The integral automatic pump function ensures efficient condensate discharge even if the steam pressure is low or the back pressure high.

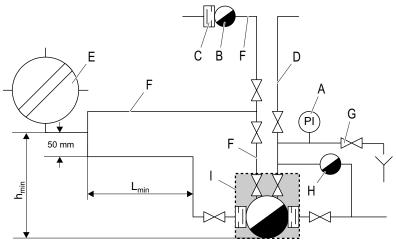
UNA 25-PS:

Float-operated condensate lifter, designed for effective return of condensate. Steam is used as motive power to displace condendate out of the body.

Features

- Integrated inlet and outlet check valves.
- Rolling ball valve (UNA 25-PK) for tight shut-off even with low condensate flowrates.
- Float-controlled compact changeover unit for controlling motive steam and deaeration.

Specification


Туре	PN / Class	Mater		Pressure/Temperature ¹)								
		EN	ASTM ²)	PMA	TMA	PMO	PMOB	p/	/Т			
				[bar]	[°C]	[bar]	[bar]	[bar	/°C]			
UNA 25-PK	PN 40	5.3103	-	40.0	350	6.0 / 13.0	3.0 / 5.0	31.6 / 250	25.0 /350			
UNA 25-PK	Class 150	5.3103	A 395	17.2	350	6.0/13.0	3.0 / 5.0	12.1 / 250	6.6 / 350			
UNA 25-PS	PN 40	5.3103	-	40.0	350	13.0	5.0	31.6 / 250	25.0 / 350			
UNA 25-PS	Class 150	5.3103	A 395	17.2	350	13.0	5.0	12.1 / 250	6.6 / 350			

1) Limits for body/cover. Functional requirements may restrict the use to below the limits quoted. For full details on limiting conditions depending on end connection and type of regulator see data sheet.

²) ASTM nearest equivalent is stated for guidance. Physical and chemical properties comply with EN.

Available Connections and Lengths

Туре	Connection	Length L in mm DN 40 [1½"]
	Flanged EN PN 40	230
UNA 25-PK UNA 25-PS	Flanged ASME 150	227
0.0.120.10	Screwed G or NPT	227

Key

- A Pressure gauge
- B Thermostatic steam trap for air venting, e. g. MK
- C Optional non-return valve in order to prevent air from entering if a vacuum is formed.
- D Motive steam line (drained, DN 15)
- E Heat exchanger
- F Vent line, DN 15
- G Pressure compensation valve
- H Thermostatic steam trap for draining motive steam line, e.g. BK
- I UNA 25-PK/UNA 25-PS
- Lmin 2.5 m, DN 40
- hmin 0.5 m

Important Notes

The equipment must be hooked up to the pipes as shown in the graphical representation. Please take the following items into consideration:

- A motive steam line must be available and connected (connection: female thread, G½)
- A vent line must be available and connected (connection: female thread, G½)
- Minimum filling head required between condensate outlet of the heat exchanger and the bottom of the equipment: 0.5 m.
- An inlet line (min. length 2.5 m) or buffer reservoir (volume: 3 l) is required.
- Maximum motive steam pressure, depending on design, is 6 or 13 barg.

Like any other industrial valve steam traps are subject to wear and their correct functioning can be impaired by precipitated solids and dirt deposits.

To assess the performance of a steam trap the following questions have to be answered:

- Does the steam trap work properly?
- If not, does the faulty trap cause loss of steam (leakage) or banking-up of condensate (obstructed discharge passage)?

Faulty steam traps are a major source of waste in a steam distribution system. A trap that is blowing live steam is the worst offender, but traps that are plugged or stuck closed can also be costly.

The decreased plant efficiency due to loss of energy and additional make-up water results in lost production. Furthermore, an increase of pressure is liable to arise in condensate systems which will lead to difficulties at all locations where condensate is discharged. The magnitude of such a steam loss depends on the cross-sectional area of the leak and, at the same time, the amount of discharged condensate. Locations where only small amounts of condensate are formed and discharged, e. g. drainage points in steam lines and tracing systems, are particularly problematical. On the other hand, locations where relatively large amounts of condensate are discharged will not give rise to considerable loss of live steam because of the presence of a large volume of liquid.

Steam traps which are **obstructed or stuck closed** do not cause loss of energy and/or water but reduce – to a greater or lesser extent – the efficiency of heat-transfer equipment and steam users. And waterhammer caused by condensate banking-up leads to considerable physical damage in steam and condensate systems.

Experience shows that installations where no regular trap testing and servicing takes place have a failure rate of defective steam traps in the order of 15 - 25 %. Regular maintenance and trap testing, which should be carried out at least once a year, can strongly reduce the failure rate to 5 %.

Test Systems

Steam traps can be tested during operation by using **sightglasses**, **ultrasonic listening devices** or **level meters**.

Sightglasses (Vaposcopes Type VK 14, VK 16) provide an effective means of observing the flow of liquids in pipework. They are installed upstream of the traps, and allow the assessment of the traps by making their operation visible.

Level meters use conductivity readings to monitor steam trap performance. A test chamber with an integral level electrode is installed upstream of the trap to detect any defective steam trap. The corresponding output signal is displayed by the **Remote Test Unit NRA 1-3x** (remote monitoring).

The system **VKE** can monitor all types and makes of steam traps to detect loss of live steam. The correct operation of RHOMBUS*line* steam traps type BK 45/46, MK 45, UBK 46 can be verified by using the compact-type level probes NRG 16-19, NRG 16-27 and NRG 16-28. The test station NRA 1-3x will evalute the data coming from the system VKE.

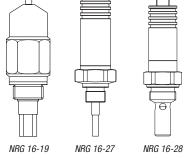
Another way to test traps is to use an **ultrasonic listening device** which detects the sound produced by steam flowing through the traps. Depending on the test system used the sound sensed by the device is either graphically represented in the form of a curve (**VKP 40**) or indicated by the deflection on the scale of a meter (**VKP 10**). When using the VKP 10, the field data specialist has to assess the indicator deflection and, consequently, the operation of the steam trap. The VKP 40, however, can directly track leaks associated with faulty steam traps and provides comprehensive reporting and a complete trap survey history.

Annual costs caused by steam loss / potential savings

	Number of steam traps installed		
	Annual failure rate (Empirical value with first check approx. 15 – 25 %)	
A	Number of defective steam traps		
В	Steam loss per steam trap (kg/h)		
C	Annual operating hours		
D	Annual steam loss (kg)	A x B x C =	
E	Cost of steam per ton		
F	Annual loss in EURO	D/1000 x E =	
G	CO2 saved per year (kg)	D x 0,16*) =	

*) Results may vary as a function of the fuel used for generating steam and condensate return.

Example


A	Number of defective steam traps	20
В	Steam loss per steam trap	3 kg/h
C	Annual operating hours	8000 h
D	Annual steam loss	480,000 kg
Ε	Cost of steam per ton	30.00 Euro/t
F	Annual loss	14,400.– Euro
G	CO2 saved per year	76,800 kg

By the way:

A new steam trap costs – depending on the end connection

- only approx. \in 150 to \in 200.

VK 14 VK 16 Ī Т Electrode connection either on the Test chamber VKE 16-1 left or on the right side. VKE 26 with NRG 16-19

Application

Type	
Vaposkope VK 14, VK 16	Sightglass with borosilicate glass for checking heat exchangers and steam traps (installation upstream of traps). Visual supervision of flow conditions in condensate lines.
VKE 16-1, VKE 16A	Test chamber for measuring electrode for monitoring steam traps (installed upstream of the steam trap) to detect steam loss or banking-up of condensate (VKE 26). For installation in horizontal lines or mounting at steam traps (VKE 26).
Vapophone VKP 10	Ultasonic detector for detecting steam leakage in steam systems; for monitoring steam traps and stop valves.
TRAP <i>test</i> VKP 40 <i>plus/</i> VKP 40 <i>plus</i> Ex	Computer-based monitoring, recording and evaluation system for steam traps of all types and makes to detect loss of steam and condensate banking up.
NRG 16-19 NRG 16-27 NRG 16-28	Measuring electrode for installation in the test chamber VKE or in the body of Rhombusline steam traps. Designed for detecting loss of live steam/banking-up of condensate (used in conjunction with test unit NRA 1-3 or teststation NRA 1-3 CANbus). Response sensitivity 1.0 μS/cm.

Gestra

Vaposcope VK

The Vaposcope can be installed in horizontal and vertical lines (without conversion). Installation in **flow direction upstream of steam trap.** The application of the VK 14 is limited to fluids with pH 9. The VK 16 is fitted with mica disks as standard for applications up to pH 10.

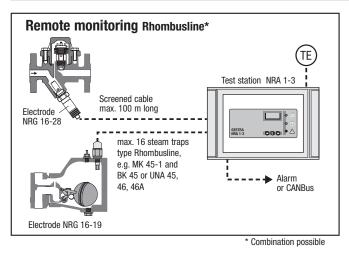
Test Set VKE

Consisting of: test chamber VKE 16-1 / VKE 16A or VKE 26 with integrated measuring electrode NRG 16-19 or NRG 16-27 for all condensate discharge systems and types. Test station NRA 1-3 or teststation NRA 1-3 CANbus for remote monitoring. Simultaneous and continuous

Test station NRA 1-3 or teststation NRA 1-3 CANbus for remote monitoring. Simultaneous and continuous monitoring of up to 16 steam traps to detect steam loss or banking-up of condensate. VKE 26: use in conjunction with float ball steam traps.

Pressure/Temperature Ratings

Туре	PN / Class	Mat	erial		Pressure	/Temperatu	re ¹)
		EN	ASTM	PMA	TMA	p/	/Т
				[bar]	[°C]	[bar	/°C]
VK 14	PN 16	5.1301	A126 CI.B ²)	16.0	280	12.8 / 200	9.6 / 280
VK 16	PN 40	1.0460	A 105	40.0	300	30.4 / 250	27.6 / 300
VKE 16-1	PN 40	1.0619	A216 WCB	40.0	400	28.4 / 250	23.1 / 400
VKE 16A STAINLESS STEEL	PN 40	1.4571	TP 316 Ti ²)	40.0	250	31.6 / 250	25.0 / 350
VKE 26	PN 40	1.0460	A105 ²)	40.0	400	28.4 / 250	23.1 / 400
NRG 16-19, NRG 16-27, NRG 16-28	PN 40	1.4571	AISI 316 Ti	40.0	238	40.0 / 20	32.0 / 238

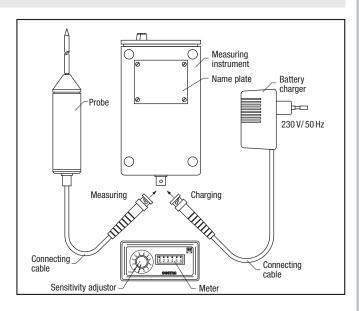

1) Limits for body/cover. Functional requirements may restrict the use to below the limits quoted.

For full details on limiting conditions depending on end connection and type of regulator see data sheet. ²) ASTM nearest equivalent is stated for guidance. Physical and chemical properties comply with EN.

Available Connections and Overall Lengths

			Overall length L in mm							
Туре	Connection	DN 15 1/2"	DN 20 3/4"	DN 25 1"	DN 40 11/2"	DN 50 2"				
VK 14	Flanged EN PN 16	130	150	160	200	230				
VK 16	Flanged EN PN 40	150	150	160	230	230				
	Flanged ASME 150	150	150	160	230	230				
	Flanged ASME 300	150	150	160	230	230				
	Screwed sockets	95	95	95	130	230				
	Socket-weld	95	95	95	130	230				
VKE 16-1	Flanged EN PN 40	150	150	160	-	-				
	Flanged ASME 150	150	150	160	-	-				
	Flanged ASME 300	150	150	160	-	-				
	Screwed sockets	95	95	95	-	-				
	Socket-weld	200	200	200	-	-				
VKE 16 A	Flanged EN PN 40	160	160	160	200	230				
VKE 26	External/internal thread 3/8" BSP									
NRG 16-19	External thread ³ /8" BSP	Nominal le	ength = 31	mm						
NRG 16-27	External tilleau 98 BSP	with integ	rated Pt 10	00 thermoc	ouple					
NRG 16-28	External thread M 24 x 1.5 for instal steam traps with integrated Pt 1000			hombusline						

System VKE


Remote monitoring with Universal Test Chamber*

Vapophone VKP 10

The VKP 10 is used to detect sound in the ultrasonic range as caused by steam flowing through a steam trap.

The ultrasonic vibrations are detected by a probe and converted into electric signals which are indicated on the meter of a measuring instrument.

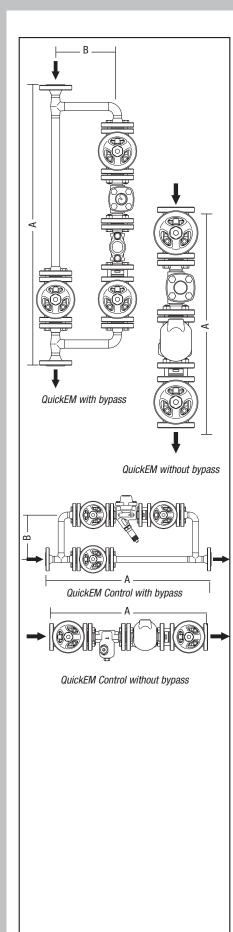
Protection: IP 41

TRAPtest VKP 40plus / VKP 40plus Ex

Monitoring, Recording and Evaluation System for

steam traps of all types and makes

With the aid of the VKP 40 plus Ex (explosion proof) – intrinsically safe version for hazardous locations – or the VKP 40 plus, steam traps can be checked for loss of live steam and banking-up of condensate, thus evaluating their performance.


The PC software enables:

- Recording and organising steam trap data
- Storage and evaluation of all test results
- Simple and easy steam loss calculation for failed steam traps
- Printing out repair job lists

Features:

- Hand-held terminal with user-friendly interface for ease of operation
- Wireless data transfer between data collector, COM box and measuring probe
 Illuminated display for showing the recorded sound emissions as curves
- (visual indication of steam losses)
- Data exchange between PC and hand-held terminal at the click of the mouse
- PC software works with windows versions from other countries
 Protection: IP 64
- Protection: IP 64
 VKP 40*plus* Ex ap
 - VKP 40*plus* Ex approval BVS 03 ATEX E 149 CE 0158 II 2G Ex ib II C T4

Description

GESTRA Drain Modules QuickEM are completely interconnected units for horizontal or vertical installation with or without bypass. They come with valves and steam traps, non-return valves, sightglass and shut-off valves as well as all necessary pipes, fittings, flanges, gaskets and screws. Note that counterflanges, bolts and seals are not part of the supply. GESTRA Drain Modules QuickEM Control are used for monitoring steam traps and an electrode is directly fitted into the steam trap or a test chamber.

Pressure & Temperature Limits / End Connections

QuickEM with and without bypass, flanges PN 16, EN 1092-1

Service pressure p	[barg]	16.0	14.4	12.8	11.2	9.6		
Inlet temperature T	[°C]	20 100 200 250 280						
pH value		≤ 9						
Δ PMX / Δ P (admissible differential pressure)	[bar]	see data sheets for steam traps						

QuickEM with and without bypass, flanges PN 40, EN 1092-1

	. ,						
Service pressure p	[barg]	40.0	37.1	33.3	30.4	27.6	
Inlet temperature T	[°C]	20	100	200	250	300	
pH value		≤ 10					
Δ PMX / Δ P (admissible differential pre-	ssure) [bar]	see data sheets for steam traps					

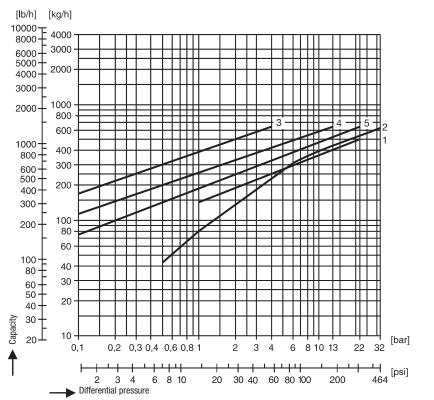
QuickEM Control with and without bypass, flanges PN 16, EN 1092-1

Laion							
Service pressure p	[barg]	16.0	14.4	12.8	11.2	9.6	
Inlet temperature T	[°C]	20	100	200	238	238	
Δ PMX / Δ P (admissible differential pressure)	[bar]	see data sheets for steam traps					

QuickEM Control with and without bypass, flanges PN 40, EN 1092-1

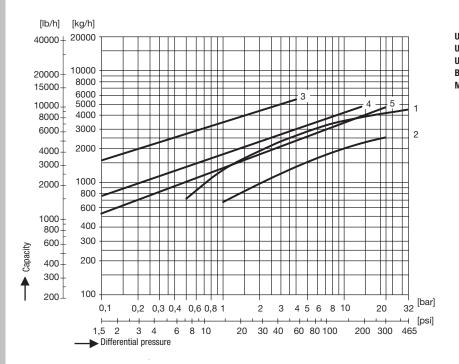
Service pressure p	[barg]	40.0	37.1	33.3	30.4	27.6	
Inlet temperature T	[°C]	20	100	200	238	238	
Δ PMX / Δ P (admissible differential pressure)) [bar]	see data sheets for steam traps					

Dimensions and Weights


	- <u>J</u>	DN								-	05				40			-	50	
		DN 1	15			DN	20			DN	25			DN	40				50	
QuickEM with bypass	Dimen: [mr		Weigh		Dimen [mr	n]	Weight		Dimen [mi	m]	Weigh		Dimen [mi	m]	Weigh		Dimer [m	m]	Weigh	
	A*)	В	PN 16	PN 40	Α	В	PN 16	PN 40	Α	В	PN 16	PN 40	Α	В	PN 16	PN 40	Α	В	PN 16	PN 40
QuickEM BK ¹)	821/841	200	21	25	908	200	27	31	988	200	45	49	1290	300	83	82	1452	300	102	101
QuickEM MK ¹)	821/841	200	21	25	908	200	27	31	988	200	45	49	1290	300	83	82	1452	300	103	102
QuickEM UNA 14	821/841	200	26	-	908	200	33	-	988	200	51	-	-	-	-	-	-	-	-	-
QuickEM UNA 16	821/841	200	-	27	908	200	-	34	988	200	-	53	-	-	-	-	-	-	-	-
QuickEM UNA 45 ¹)	-	-	-	-	-	-	-	-	-	-	-	-	1290	300	97	-	1452	300	115	-
QuickEM UNA 46	-	-	-	-	-	-	-	-	-	-	-	-	1290	300	-	96	1452	300	-	114
	·				1								· · ·				1			
			N 15				1 20				25				40				50	
QuickEM Control with bypass		ensions mm]	weig	ht [kg]	[n	nsions 1m]		ht [kg]	[n	nsions 1m]		ht [kg]	[m	nsions 1m]		ht [kg]	[m	nsions m]	Weigh	
	A	В		6 PN 40		В		PN 40	A	В		6 PN 40	A	В		PN 40		В		PN 40
QuickEM Control BK ¹)	689			21	756	250	27	27	826	300	45	45	1320	400	81	80	1452	400	100	99
QuickEM Control MK ¹)	689			21	756	250	27	27	826	300	45	45	1320	400	81	80	1452	400	101	100
QuickEM Control UNA 14	841			-	908	200	33	-	988	200	51	-	-	-	-	-	-	-	-	-
QuickEM Control UNA 16	841	200) –	27	908	200	-	33	988	200	-	51	-	-	-	-	-	-	-	-
QuickEM Control UNA 451)	-	-	-	-	-	-	-	-	-	-	-	-	1090	400	88	-	1222	22 400 103 -		
QuickEM Control UNA 46	-	-	-	-	-	-	-	-	-	-	-	-	1090	400	-	87	1222	400	-	102
		DN 1	15			DN	20			DN	25			DN	40			DN	50	
QuickEM	Dimen		Weigh	t [kg]	Dimen [mr		Weight	t [kg]	Dimen [mi		Weigh	nt [kg]	Dimensions [mm] Weight [kg]			Dimer [m		Weigh	nt [kg]	
without bypass	[mr	nj			F								ĭ				[L			
without bypass	[mr A*)	nj B	PN 16	PN 40	A	В	PN 16	PN 40	Α	В	PN 16	PN 40	Α	В	PN 16	PN 40	A	B	PN 16	PN 40
without bypass QuickEM BK ¹)		<u> </u>		PN 40 14	<u> </u>	B -	PN 16 14	PN 40 17	A 670	B -	PN 16 16	PN 40 20	A 870	B _	PN 16 50	PN 40 49	<u> </u>		PN 16 59	PN 40 58
	A*)	B	PN 16		A												A	В		
QuickEM BK ¹)	A*) 564/584	B -	PN 16 11	14	A 627	-	14	17	670	-	16	20	870	-	50	49	A 968	B _	59	58
QuickEM BK ¹) QuickEM MK ¹)	A*) 564/584 564/584	B - -	PN 16 11 11	14 14	A 627 627	-	14 14	17 17	670 670	-	16 16	20	870 870	-	50 50	49	A 968 968	B - -	59 59	58 58
QuickEM BK ¹) QuickEM MK ¹) QuickEM UNA 14	A*) 564/584 564/584 564/584	B - - -	PN 16 11 11 16	14 14 -	A 627 627 627		14 14 20	17 17 -	670 670 670	- - -	16 16 23	20 20 -	870 870 -	-	50 50 -	49 49 -	A 968 968 –	B - - -	59 59 -	58 58 –
QuickEM BK ¹) QuickEM MK ¹) QuickEM UNA 14 QuickEM UNA 16	A*) 564/584 564/584 564/584 564/584	B - - -	PN 16 11 11 16 -	14 14 - 17	A 627 627 627 627 627	- - -	14 14 20 -	17 17 -	670 670 670 670	- - -	16 16 23	20 20 -	870 870 - -		50 50 - -	49 49 - -	A 968 968 - -	B - - -	59 59 - -	58 58 - -
QuickEM BK ¹) QuickEM MK ¹) QuickEM UNA 14 QuickEM UNA 16 QuickEM UNA 45 ¹)	A*) 564/584 564/584 564/584 564/584 -	B 	PN 16 11 11 16 - -	14 14 - 17 -	A 627 627 627 627 627 -	 	14 14 20 -	17 17 -	670 670 670 670 -		16 16 23	20 20 - 23 -	870 870 - - 870		50 50 - - 64	49 49 - - -	A 968 968 - - 968	B 	59 59 - - 73	58 58 - -
QuickEM BK ¹) QuickEM MK ¹) QuickEM UNA 14 QuickEM UNA 16 QuickEM UNA 45 ¹)	A*) 564/584 564/584 564/584 564/584 Dim	B 	PN 16 11 16 - - N 15	14 14 - 17 -	A 627 627 627 627 - - - Dime	 	14 14 20 - - - N 20	17 17 -	670 670 670 670 - - Dime		16 16 23 - - -	20 20 - 23 -	870 870 870 870 Dime		50 50 - 64 -	49 49 - - -	A 968 968 - 968 968 968	B 	59 59 - 73 -	58 58 - - 72
QuickEM BK ¹) QuickEM MK ¹) QuickEM UNA 14 QuickEM UNA 16 QuickEM UNA 45 ¹) QuickEM UNA 46	A*) 564/584 564/584 564/584 564/584 Dim	B D ensions	PN 16 11 16 - - N 15 ³ Weiç	14 14 - 17 - -	A 627 627 627 627 - - Dime [n		14 14 20 - - - N 20 Weig	17 17 - 21 - -	670 670 670 670 - - Dime		16 16 23 - - - V 25 Weig	20 20 - 23 - -	870 870 870 870 Dime	 DN nsions	50 50 - 64 -	49 49 - - 63	A 968 968 – - 968 968 968	B DN nsions	59 59 - 73 - 50 Weigh	58 58 - - 72 1t [kg]
QuickEM BK ¹) QuickEM MK ¹) QuickEM UNA 14 QuickEM UNA 16 QuickEM UNA 45 ¹) QuickEM UNA 46	A*) 564/584 564/584 564/584 564/584 - - Dim	B ensions mm] B	PN 16 11 16 - - N 15 ³ Weiç	14 14 - 17 - -	A 627 627 627 627 - - Dime [n	- - - - Df nsions m]	14 14 20 - - - N 20 Weig	17 17 - 21 - ht [kg]	670 670 670 670 – – Dime		16 16 23 - - - V 25 Weig	20 20 - 23 - -	870 870 870 870 Dimen [m		50 50 - 64 -	49 49 - 63	A 968 968 – - 968 968 968	B - - - - DN nsions m]	59 59 - 73 - 50 Weigh	58 58 - - 72 1t [kg]
QuickEM BK ¹) QuickEM MK ¹) QuickEM UNA 14 QuickEM UNA 16 QuickEM UNA 45 ¹) QuickEM UNA 46 QuickEM-Control without bypass	A*) 564/584 564/584 564/584 564/584 - - Dim I A	B 	PN 16 11 16 - - N 15 ³ Weig PN 10	14 14 17 - - ht [kg]	A 627 627 627 627 – – Dime [n 0 A		14 14 20 - - - N 20 Weigl PN 16	17 17 - 21 - - ht [kg]	670 670 670 670 – – Dime [n A		16 16 23 - - - V 25 Weig PN 16	20 20 - 23 - - ht [kg]	870 870 - 870 870 Dimee [m A		50 50 - 64 - 1 40 Weig PN 16	49 49 - 63 ht [kg]	A 968 968 - 968 968 968 Dimen [m A	B DN nsions m] B	59 59 - 73 - 50 Weigh PN 16	58 58 - - 72 nt [kg]
QuickEM BK ¹) QuickEM MK ¹) QuickEM UNA 14 QuickEM UNA 16 QuickEM UNA 45 ¹) QuickEM UNA 46 QuickEM-Control without bypass	A*) 564/584 564/584 564/584 564/584 - - Dim I A A 432	B D ensions mm] B 2 2 	PN 16 11 16 - - - N 15 ³ Weig PN 10 11	14 14 - 17 - - ht [kg] PN 40 11	A 627 627 627 627 627 627 - - - Dime [n 0 A 475	- - - - - Di nsions nm] B B	14 14 20 - - - N 20 Weigl PN 16 14	17 17 - 21 - - ht [kg] PN 40 14	670 670 670 670 - - Dime [n A 508		16 16 23 - - - - V 25 Weig PN 16 16	20 20 - 23 - - ht [kg] PN 40 16	870 870 - 870 870 Dimer [m A 900		50 50 - 64 - V40 Weig PN 16 46	49 49 - 63 ht [kg] PN 40 46	A 968 968 - 968 968 968 Dimen [m A 968	B DN nsions m] B 	59 59 - 73 - 50 Weigh PN 16 55	58 58 - 72 72 nt [kg] PN 40 55
QuickEM BK ¹) QuickEM MK ¹) QuickEM UNA 14 QuickEM UNA 16 QuickEM UNA 45 ¹) QuickEM UNA 46 QuickEM-Control without bypass QuickEM Control BK ¹) QuickEM Control MK ¹)	A*) 564/584 564/584 564/584 564/584 - - Dim I A 432 432	B 	PN 16 11 16 - - - - - - - - - - - - - - - -	14 14 - 17 - - ht [kg] 5 PN 40 11 11	A 627 627 627 - - Dime [n 0 A 475 475		14 14 20 - - - N 20 Weig PN 16 14 14	17 17 - 21 - - ht [kg] PN 40 14 14	670 670 670 - - Dime [n A 508 508		16 16 23 - - - V 25 Weig PN 16 16	20 20 - 23 - - ht [kg] PN 40 16 16	870 870 870 870 870 Dimer [m A 900 900	- - - - - - - - - - - - - - - - - - -	50 50 - 64 - Weig PN 16 46 47	49 49 - - 63 ht [kg] PN 40 46 47	A 968 968 - 968 968 968 Dimer [m A 968 968	B DN nsions m] B 	59 59 - 73 - 50 Weigh PN 16 55 56	58 58 - - 72 nt [kg] PN 40 55 56
QuickEM BK ¹) QuickEM MK ¹) QuickEM UNA 14 QuickEM UNA 16 QuickEM UNA 45 ¹) QuickEM UNA 46 QuickEM-Control without bypass QuickEM Control BK ¹) QuickEM Control MK ¹) QuickEM Control UNA 14	A*) 564/584 564/584 564/584 - - Dim I A 432 432 584	B 	PN 16 11 16 - - - - W 15 Weig PN 10 11 11 11	14 14 − 17 − ht [kg] PN 40 11 11 −	A 627 627 627 627 - - - Dime [n 0 A 475 475 627		14 14 20 - - - N 20 Weig PN 16 14 14 20	17 17 - 21 - - ht [kg] PN 40 14 14 -	670 670 670 – – Dime [n A 508 508 508	 nsions m] B 	16 16 23 - - - V 25 Weig PN 16 16 16 16 22	20 20 - 23 - - ht [kg] PN 40 16 16 16 -	870 870 870 870 Dimen [m 4 900 900 -		50 50 - 64 - V40 Weig PN 16 46 47 -	49 49 - - 63 ht [kg] PN 40 46 47 -	A 968 968 968 968 968 Dimet [m A 968 968 968 -	B DN nsions m] B 	59 59 - 73 - 50 Weigh PN 16 55 56 -	58 58 - - 72 nt [kg] PN 40 55 56 -
QuickEM BK ¹) QuickEM MK ¹) QuickEM UNA 14 QuickEM UNA 16 QuickEM UNA 45 ¹) QuickEM UNA 46 QuickEM Control WK ¹) QuickEM Control BK ¹) QuickEM Control UNA 14 QuickEM Control UNA 16	A*) 564/584 564/584 564/584 564/584 - - - Dim I A 432 432 584 584	B 	PN 16 11 16 - - - - W 15 Weig PN 10 11 11 11	14 14 - 17 - - ht [kg] PN 40 11 11 - 17 17	A 627 627 627 627 - - - Dime [n 9 A 475 475 627 627 627	 	14 14 20 - - - Weig Weig PN 16 14 14 20 -	17 - 21 - - ht [kg] PN 40 14 14 - 20	670 670 670 - - Dime [n A 508 508 670 670	 	16 16 23 - - - V 25 Weig PN 16 16 16 22 -	20 20 - 23 - - ht [kg] PN 40 16 16 - 22	870 870 870 870 Dimee [m A 900 900 -		50 50 - 64 - Weig PN 16 46 47 - -	49 63 ht [kg] PN 40 46 47 -	A 968 968 968 968 968 Dimer [m A 968 968 968 -	B 	59 59 - 73 - 50 Veigh PN 16 55 56 - - -	58 58 - - 72 72 nt [kg] PN 40 55 56 - - - -

*) PN 16 / PN 40 1) Not for QuickEM made from stainless steel. Other sizes available on request.

Capacity Chart


The charts show the maximum hot condensate capacities.

QuickEM, QuickEM-Control DN 15 - DN 25

UNA 14 DN 15-25 AO 4	(Curve 3)
UNA 14 / UNA 16 DN 15-25 AO 13	(Curve 4)
UNA 16 DN 15-25 AO 22	(Curve 5)
BK 45	(Curve 1)
MK 45-1	(Curve 2)

QuickEM, QuickEM-Control DN 40 - DN 50

UNA 45 / UNA 46 DN 40-50 AO 4	(Curve 3)
UNA 45 / UNA 46 DN 40-50 AO 13	(Curve 4)
UNA 46 DN 40-50 AO 22	(Curve 5)
BK 15	(Curve 2)
MK 25-2	(Curve 1)

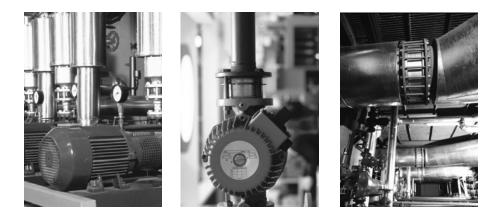
E-mail: info@de.gestra.com · Fax: (04 21) 35 03-149

Online: www.gestra.com/Service & Support/Questionnaire for preparing offers

Steam pressure / p_1	bar	P
Steam temperature / T_1	°C	1 p_1
Backpressure / p_2	_bar	
Product outlet temperature / T_A(only for draining heat exchangers)	_∘c _	
Condensate flowrate to be discharged	_kg/h	p_2
Fluid 🛄 Plant steam 🛄		
Nominal size Pressure rating		
End connection End connection	Screwed sockets G	Screwed sockets NPT
Application		
Draining pipes Draining a heat exchanger		
Required inspections/approvals:		

Your details:

Company	
Name / job title	
Telephone	
Fax	
E-mail	
Date	


Gestra Series UNA 25-PK Pump Traps

UNA 25 PK is the first pump trap that combines the standard steam trap length to ISO 6554 and EN 558 with a high discharge capacity for hot condensate. Its straight-through body is designed for installation in horizontal lines and easy to integrate into steam and condensate systems.

In installations with highly fluctuating operating conditions it makes sense to replace conventional ball-float steam traps with our simpleto-install pump traps with standard overall length.

Our pump traps come with flanged or screwed end connections and have a condensate discharge capacity of over 3000 kg/h when working as a normal float trap and a capacity of more than 600 kg/h when in pumping mode.

GESTRA Gravity Circulation Checks, DISCO Non-Return Valves and DISCO Swing Check Valves

DISCO Non-Return Valves and DISCO Swing Check Valves

Gravity Circulation Checks and DISCO Non-Return Valves for sanitation applications and hvac systems.

Type SBO 11, Typ SBO 21, Typ SBO 31	
Туре МВ 14	
Type RK 70, Typ RK 71	
Type RK 41, Typ RK 44	40 – 41
DISCO Non-Return Valves and DISCO Swing Check Valves for industrial applications.	

Type RK 76	40 – 41
Type RK 86, Typ RK 86 A	
Туре ВВС, Тур ВВС, Тур ВВА	
Туре СВ 14, Тур СВ 26, Тур СВ 26А	
Type WB 26, Typ WB 26 A	

DISCO Non-Return Valves and DISCO Swing Check Valves for special applications.

Type RK 16 A, Typ RK 16 C	5
Type RK 26 A	
Type RK 49	7
Type RK 29 A	9
Type BBGK	
Type NAF-Check	

DISCO Non-Return Valves and DISCO Swing Check Valves for marine applications

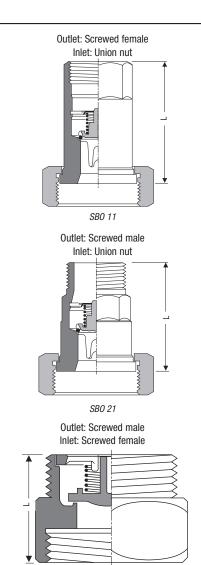
Type RK 44S 40 - 4 Type BBGS 53 - 6 Type CB 24S 55 - 6 Type WB 24S 57 - 6	54 56
Questionnaire for preparing offers	51

The New Lift Restriction for GESTRA Non-Return Valves

More efficient pumps and the requirement to minimize pressure loss in the installation often lead to oversized non-return valves.

As a consequence, the valve does not open completely, resulting in increased wear and, more often than not, annoying valve clattering.

Up till now the required volume flow of these nonreturn valves could only be adjusted in certain cases by selecting a different size or changing the place of installation.


The lift restriction for GESTRA valves provides stable low-noise operation even with small flowrates.

For users who do not want to change their pipe layout or use smaller sizes but require a more stable operating mode we now offer a retrofitting set consisting of a stroke limiter and a spring cap. This mechanism reduces the volume flow for the necessary full opening as a function of the valve size by approx. 40 %.

The lift restriction is available for non-return valves RK 41, RK 44, RK 86 and RK 86A in sizes DN 15 up to DN 100.

Application and Features

1	Гуре	PN	Application	Features
ę	SB0	PN 6	Installed downstream of circulating pumps in heating and hot water installations in order to avoid gravity circulation	Plastic valve cone with advanced flow characterisc

Pressure/Temperature Ratings / Material

Max. service	Max. service	Materials		
pressure [bar]	temperature [°C]	Body	Valve cone	
6	130¹)	Brass	PPO	

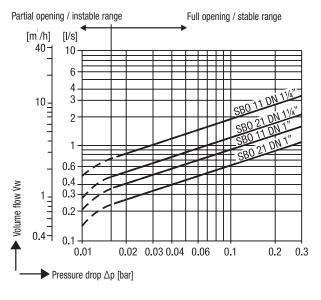
¹) Max. service temperature at atmospheric pressure

Dimensions

Туре			SBC) 11	SB0 21		SB0 31		
Size	DN		1"	1 ¹ /4"	1"	1 ¹ /4"	3/4"	1"	1 ¹ /4"
	L	[mm]	66	82	57	70	39	40	45
Connections	Inlet ²)		G 11/2	G 2	G 1 1/2	G 2	0.11/.	0.11/2	<u> </u>
(BSP thread)	Outlet		G 1	G 11/4	R 1	R 11/4	G 1 ¹ /4	G 11/2	G 2

²) SBO 11 and SBO 21: Thread of union nut

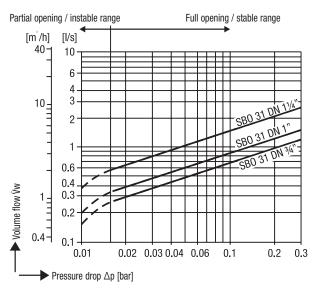
Opening Pressures


Differential pressures at zero volume flow.

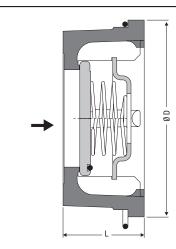
Туре	DN	Opening pressure [mbar]				
		Direction of flow				
		with- out with spring spring			ing I	
			1	\rightarrow	↓	
SB0 11	1" 1¼"	1	7	6	6	
SB0 21	1" 1¼"	1	7	6	5	
SB0 31	3/4" 1"	2	9	7	5	
	1 ¹ /4"					

Pressure Drop Charts

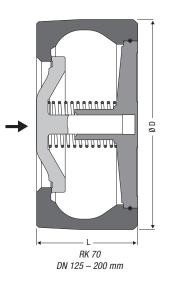
SBO 31

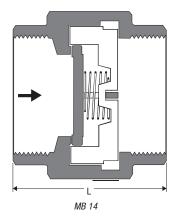

SB0 11, SB0 21

Curve 1: SBO 21 DN 1" Curve 2: SBO 11 DN 1"


Curve 3: SBO 21 DN 11/4" Curve 4: SBO 11 DN 11/4"

SB0 31




Curve 1: SBO 31 DN 3/4" Curve 2: SBO 31 DN 1"

Curve 3: SBO 31 DN 11/4"

RK 70 (lower part) /RK 71 (upper part) DN 15 – 100 mm

Application and Features

Туре	PN	Application for liquids, gases and vapours	Features
RK 70	PN 6		Centric cone and spring guide, unaffected by dirt (DN 125-200)
RK 71	PN 16	suitable for heating and hot-water installations	Spiral centering ring for easy alignment between flanges
MB 14	PN 16		Screwed socket end connection

Body Material

Туре		Nominal sizes DN	EN reference	ASTM equivalent ¹)	
RK 70	Body	15 – 100 mm	Brass (CW617N)	Brass	
	Valve disk		Plastic PPE	-	
	Body	125 – 200 mm	Grey cast iron (5.1301)	A126 Class A	
	Plug		Plastic Polyamid 6	-	
RK 71	Body	15 – 100 mm	Brass (CW617N)	Brass	
	Valve disk		1.4571	AISI 316 Ti	
MB 14	Body	15 – 50 mm	Brass (CW614N)	Brass	
	Valve disk		1.4571	AISI 316 Ti	

¹) ASTM material similar to EN material.

Observe different physical and chemical properties!

Dimensions

	DN	[mm]	15	20	25	32	40	50	65	80	100	125	150	200
		[in]	1/2	3/4	1	1 ¹ /4	11/2	2	2 ¹ / ₂	3	4	5	6	8
	L	[mm]	16	19	22	28	31.5	40	46	50	60	90	106	140
RK 70	D	[mm]	40	47	56	72	82	95	115	132	152	184	209	264
RK 71	D	[mm]	40	47	56	72	82	95	115	132	152	-	-	-
	L	[mm]	49	49	61	61	72	72	-	-	-	-	-	-
MB 14	D	[mm]	42	42	62	62	83	83	-	-	-	-	-	-
	A.F.	[mm]	30	30	46	46	65	65	-	-	-	-	-	-

Pressure/Temperature Ratings

Туре	PN	DN	N p / T / [bar] / [°C]		
RK 70	PN 6	15 – 100	6 / -10	1.5 / 100	0.5 / 130
	PN 6	125 – 200	6 / -10	1.5 / 100	0.5 / 130
RK 71	PN 16	15 – 100	16 / -10	16 / 150	13.5 / 200
MB 14	PN 16	G 1/2 – G 2	16 / -60	14 / 200	13 / 250

RK Designs

Туре	e Seat Spring								
	metal-to metal	EPDM	FPM	PTFE	without spring	special spring	Nimonic spring	Earthing connection	
RK 70	(Plastic)	-	_	_	_	_	-	Use RK 86	
RK 71	Х	Use I	RK 41	Use RK 86	Use RI	< 41 —			
MB 14	Х	-	-	-	-	-	-	-	

X : standard

- : not available

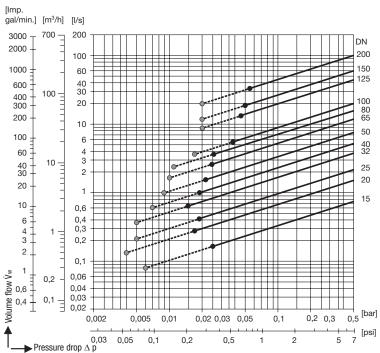
Pressure Drop Charts

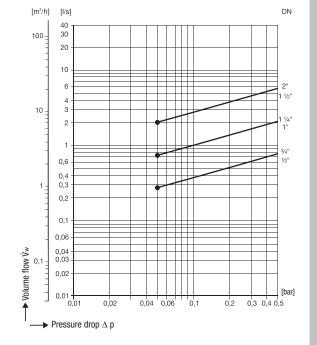
The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph Vw.

The values indicated in the chart are applicable for spring-assisted valves with horizontal flow and to valves without spring installed in vertical pipes with upward flow.

$$\dot{V}_W = \dot{V} \cdot \sqrt{\frac{\rho}{1000}}$$

Ýw = Equivalent water volume flow in [l/s] or [m3/h]


= Density of fluid ρ (operating condition) in [kg/m3]

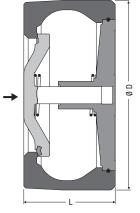

RK 71*) DN **Opening pressures [mbar]** Direction of flow without with spring spring 1 1 \rightarrow 15 2.5 10 7.5 5 20 7.5 5 2.5 10 25 2.5 10 7.5 5 32 12 8.5 5 3.5 40 4.0 13 9 5 5 50 9.5 4.5 14 65 5.0 15 10 5 80 5.5 16 10.5 5 100 6.5 18 11.5 5 *) RK 70, 71 are not available with

special spring or without spring

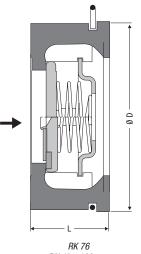
RK 70*)	RK 70*)							
DN	Opening pressures [mbar]							
		Direction	n of flow					
	without	'	with spring	J				
	spring							
	1	1	\rightarrow	↓				
15	0.4	5.8	5.4	5				
20	0.4	5.8	5.4	5				
25	0.4	5.8	5.4	5				
32	0.5	6.0	5.5	5				
40	0.5	6.0	5.5	5				
50	0.6	6.2	5.6	5				
65	0.7	6.4	5.7	5				
80	0.8	6.6	5.8	5				
100	0.9	6.8	5.9	5				
125	2.0	9.0	7.0	5				
150	2.5	10.0	7.5	5				
200	2.5	10.0	7.5	5				

RK 70, RK 71

Required minimum volume flow \dot{V}_W for equipment without spring installed in vertical pipes with upward flow (only RK 70, RK 71).


Required minimum volume flow \dot{V}_W for equipment with standard spring and horizontal flow.

Opening Pressures Differential pressures at zero volume flow.


MB 14

→ → K 41/RK 44/RK 44S

RK 41/RK 44/RK 44S DN 125 – 200 mm

DN 15 – 100 mm

Application and Features

<u> </u>					
Туре	PN	Application	Features		
		for liquids, gases and vapours			
RK 41	PN 16	particularly suitable for heating and hot-water installations	4 guide ribs for low-wear operation		
RK 44	PN 16 for fresh water applications		of the valve plate, approved by		
RK 44S	PN 16	for sea water applications	Germanischer Lloyd		
RK 76	PN 40 Class 300	for industrial applications	specially designed spring cap provides centrally aligned spring support		

Gestra

Body Material

Туре		Nominal sizes (DN)	EN reference	ASTM equivalent ¹)
RK 41	Body	15 – 100 mm	Special brass (CW710R)	Special Brass
	Valve disk		1.4571	AISI 316 Ti
	Body	125 – 200 mm	Grey cast iron (5.1301)	A126 Class B
	Plug		1.4006	A182 F6
RK 44	Body	15 – 100 mm	Bronze (CC480 K-GS)	B584 C90500
	Valve disk		1.4571	AISI 316 Ti
	Body	125 – 200 mm	Grey cast iron (5.1301)	A126 Class B
	Plug		Bronze (CC480 K-GS)	B584 C90500
RK 44S	Body	15 – 100 mm	Bronze (CC480 K-GS)	B584 C90500
	Valve disk		Bronze (CC483 K-GS)	B505 C90700
	Body	125 – 200 mm	Bronze (CC483 K-GC)	B505 C90700
	Plug		Bronze (CC480 K-GS)	B584 C90500
RK 76	Body	15 – 100 mm	1.4107	A217-CA15
	Valve disk		1.4571	AISI 316 Ti

1) ASTM material similar to EN material.

Observe different physical and chemical properties!

Dimensions

	DN	[mm]	15	20	25	32	40	50	65	80	100	125	150	200
		[in]	1/2	3/4	1	1 ¹ /4	1 ¹ /2	2	2 ¹ / ₂	3	4	5	6	8
	L	[mm]	16	19	22	28	31,5	40	46	50	60	90	106	140
RK 41	D	[mm]	40	47	56	72	82	95	115	132	152	184	209	264
RK 44	D	[mm]	42	49	58	74	84	97	117	132	152	184	209	264
RK 44S	D	[mm]	42	49	58	74	84	97	117	132	152	184	209	264
RK 76	D	[mm]	45	55	65	75	85	98	118	134	154	-	Ι	-

Pressure/Temperature Ratings with metal-to-metal seat

Туре	PN / Class	DN	p / T / [ba	ar] / [°C]	
RK 41	PN 16	15 – 100	16 / -10	16 / 150	13.5 / 200
NK 41	PN 16	125 – 200	16/ -10	12.8 / 200	9.6 / 300
RK 44	PN 16	15 – 100	16 / -200	13.5 / 200	8 / 250
1111 44	PN 16	125 – 200	16 / -10	12.8 / 200	9.6 / 250
RK 44S	PN 16	15 – 200	16 / -200	13.5 / 200 ²)	8 / 250 ²)
RK 76	PN 40 / Class 300	15 – 100	49.6 / -10	35.7 / 200	31.6 / 300

²) If temperatures exceed 90 °C use valve <u>without</u> spring.

Designs

Туре		Sea	t					
	metal-to- metal	EPDM (–40 up to 150 °C)²)	FPM (–25 up to 200 °C)²)	PTFE (–190 up to 250 °C)²)	without spring	special spring	Nimonic spring	Earthing connection
RK 41	Х	0	0	-	0	0	-	
RK 44	Х	0	0	-	0	0	-	Use
RK 44S	Х	0	0	_	0	-	-	RK 86
RK 76	Х	0	0	0	0	0	0	1

²) Observe pressure/temp. ratings of the equipment X: standard 0: optional -: not available

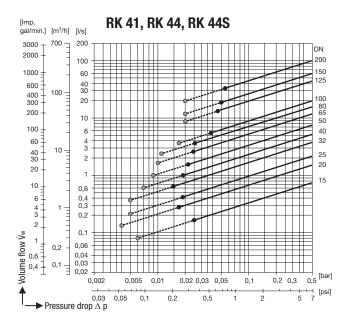
Pressure Drop Charts

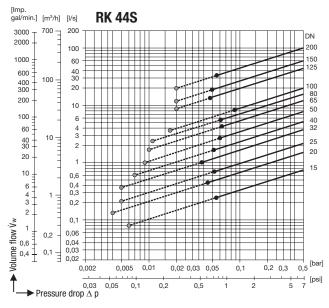
The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph \dot{V}_w .

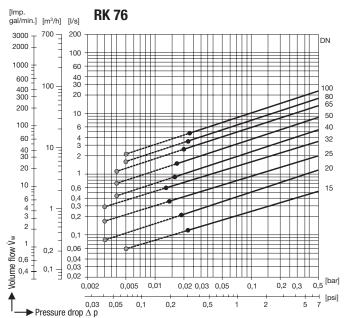
The values indicated in the chart are applicable for spring-assisted valves with horizontal flow and to valves without spring installed in vertical pipes with upward flow.

$$\dot{V}_W = \dot{V} \cdot \sqrt{\frac{\rho}{1000}}$$

 \dot{V}_W = Equivalent water volume flow in [l/s] or [m³/h]

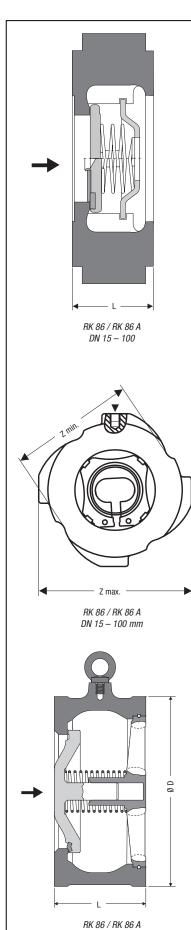

 $\rho \quad = \mbox{ Density of fluid} \\ \mbox{ (operating condition) in [kg/m^3]}$


V = Volume of fluid (operating condition) in [l/s] or [m³/h]


Opening Pressures Differential pressures at zero volume flow.

RK 41,	RK 44,	RK 76 ¹))		RK 44S	;			
DN	Opening	pressures	[mbar]		DN	Opening	pressures	[mbar]	
		Directio	n of flow			Direction of flow			
	without		with spring	J		without		with spring	J
	spring					spring			
	↑	1	\rightarrow	$ \downarrow$		↑	↑	$ \rightarrow$	↓
15	2.5	10	7.5	5	15	2.5	25	22.5	20
20	2.5	10	7.5	5	20	2.5	25	22.5	20
25	2.5	10	7.5	5	25	2.5	25	22.5	20
32	3.5	12	8.5	5	32	3.5	27	23.5	20
40	4.0	13	9	5	40	4.0	28	24.0	20
50	4.5	14	9.5	5	50	4.5	29	24.5	20
65	5.0	15	10	5	65	5.0	30	25.0	20
80	5.5	16	10.5	5	80	5.5	31	25.5	20
100	6.5	18	11.5	5	100	6.5	33	26.5	20
125	12.5	35	22.5	10	125	12.5	35	22.5	10
150	14.0	38	24.0	10	150	14.0	38	24.0	10
200	13.5	37	23.5	10	200	13.5	37	23.5	10

1) only DN 15-100



- Required minimum volume flow W for equipment without spring installed in vertical pipes with upward flow.
- Required minimum volume flow V_W for equipment with standard spring and horizontal flow.

DN 125 – 200 mm

RK 86 and RK 86 A - Our Robust All-Rounder

Application and Features

Туре	PN	Application for liquids, gases and vapours	Features			
RK 86	DN 40	for industrial applications	patented fixed centering lugs for easy alignmen between flanges and optimum quidance of valv			
RK 86A	PN 40 Class 300	particularly suitable for low temperatures, aggressive fluids, boiler feedwater lines	disk, earthing connection as standard, broad sealing surfaces, RK 86A approved by Bureau Veritas			

Body Material

Туре		Nominal sizes DN	EN reference	ASTM equivalent ¹)	
RK 86	Body	15 – 100 mm	Chromium steel, 1.4317	A 743-CA6-NM	
	Valve disk		1.4571	AISI 316 Ti	
	Body	125 – 200 mm	GP240GH (1.0619)	A 216 WCB	
	Plug		1.4006	A182 F6 A	
RK 86A	Body	15 – 100 mm	1.4408	A351 CF 8M	
	Valve disk		1.4571	AISI 316 Ti	
	Body	125 – 200 mm	1.4408	A351 CF 8M	
	Plug		1.4404	A182 F316 L	

¹) ASTM material similar to EN material.

Observe different physical and chemical properties!

Deimensions and Weights

	DN	[mm]	15	20	25	32	40	50	65	80	100	125	150	200
		[inch]	1/2	3/4	1	1 1/4	11/2	2	2 ¹ / ₂	3	4	5	6	8
	L	[mm]	16	19	22	28	31.5	40	46	50	60	90	106	140
	Z min.	[mm]	44	53	64	73	83	96	110	128	151	-	-	-
	Z max.	[mm]	67	76	82	93	104	118	136	158	186	-	-	-
PN 10/16	D	[mm]	-	-	-	-	-	-	-	-	-	194	220	275
PN 25	D	[mm]	-	-	-	-	-	-	-	-	-	194	226	286
PN 40	D	[mm]	-	-	-	-	-	-	-	-	-	194	226	293
Class 125/150	D	[mm]	-	-	-	-	-	-	-	-	-	194	220	275
Class 300	D	[mm]	-	-	-	-	-	-	-	-	-	216	251	308
	Weight	[kg]	0.27	0.38	0.52	0.8	1.12	1.78	2.43	3.37	5.34	11	14	25

Pressure/Temperature Ratings with metal-to-metal seat

Тур	PN/Class	DN			
RK 86	PN 40/Class 300	15 – 200	51.1 / -10	43.8 / 200	36.9 / 350 ²)
RK 86 A	PN 40/Class 300	15 – 200	49.6 / -200	35.7 / 200	24.9 / 550 ²)

2) If the operating temperatures exceed 300 °C intercrystalline corrosion may occur. Do not subject the equipment to operating temperatures higher than 300 °C unless intercrystalline corrosion can be ruled out.

Designs

Туре	Seat					Springs				
	metal-to- metal	EPDM (–40 up to 150°C) ³)	FPM (–25 up to 200°C) ³)	PTFE 3)4)	without spring	special spring	Nimonic spring ⁵)	Earthing connection		
RK 86	Х	0	0	0	0	0	0	Х		
RK 86A	Х	0	0	0	0	0	0	Х		

³) Observe pressure/temp. ratings of the equipment

⁴) DN 15-100 –190 °C up to 250 °C; DN 125-200 –60 up to 200 °C

5) Required for temperatures above 300 °C

X : standard

0 : optional

Pressure Drop Charts

The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph Vw.

The values indicated in the chart are applicable for spring-assisted valves with horizontal flow and to valves without spring installed in vertical pipes with upward flow.

$$\dot{V}_W = \dot{V} \cdot \sqrt{-\frac{\rho}{1000}}$$

 \dot{V}_W = Equivalent water volume flow in [l/s] or [m³/h]

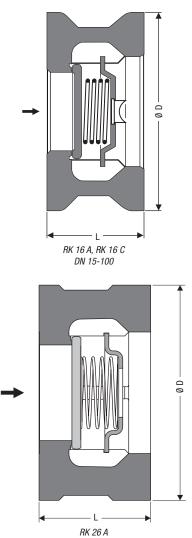
 $\rho \quad = \mbox{Density of fluid} \\ \mbox{(operating condition) in [kg/m^3]}$

 \dot{V} = Volume of fluid (operating condition) in [l/s] or [m³/h]


Opening Pressures

Differential pressures at zero volume flow.

RK 86, RK 86 A


DN	Ope	ening pres	Opening pressures [mbar]						
		n of flow							
	without spring		with spring	I					
		1	\rightarrow	↓					
15	2.5	10	7.5	5					
20	2.5	10	7.5	5					
25	2.5	10	7.5	5					
32	3.5	12	8.5	5					
40	4.0	13	9	5					
50	4.5	14	9.5	5					
65	5.0	15	10	5					
80	5.5	16	10.5	5					
100	6.5	18	11.5	5					
125	12.5	35	22.5	10					
150	14.0	38	24.0	10					
200	13.5	37	23.5	10					

RK 86, 86 A

 Required minimum volume flow W for equipment without spring installed in vertical pipes with upward flow.

 Required minimum volume flow W for equipment with standard spring and horizontal flow.

RK 26 A DN 15-100

Application and Features

Typr PN		Application for liquids, gases and vapours	Features
RK 16C		for more aggressive fluids such as hydrochloric acid	
RK 16A	PN 40 Class 300	particularly suitable for low temperatures, aggressive fluids,	short overall length to DIN 558-2, series 52, high- quality forged material (RK 16A / RK 16 C) materials suitable for petrochemical industry
RK 26A		boiler feedwater lines and industrial applications	

Body Material

Туре		Nominal sizes DN	EN reference	ASTM equivalent ¹)	
RK 16A	Body	15 – 100 mm	1.4571	AISI 316 Ti	
	Valve disk		1.4571	AISI 316 Ti	
RK 16C	Body	15 – 100 mm	2.4610	Hastelloy C	
	Valve disk		2.4610	Hastelloy C	
RK 26A	Body	15 – 100 mm	1.4408	A351 CF8M	
	Valve disk		1.4571	AISI 316 Ti	

1) ASTM material similar to EN material.

Observe different physical and chemical properties!

Dimensions

	DN	[mm]	15	20	25	32	40	50	65	80	100
		[inch]	1/2	3/4	1	1 1/4	11/2	2	2 ¹ / ₂	3	4
	L	[mm]	25	31.5	35.5	40	45	56	63	71	80
RK 16 A	D	[mm]	52	63	72	81	93	108	128	143	163 ²)
		[mm]	52	03	12	01	93	100	120	143	169 ³)
RK 16 C	D	[mm]	52	63	72	81	93	108	128	143	163 ²)
NK IO C	D	[mm]	52	03	12	01	93	100	120	143	169 ³)
RK 26 A	D	[mm]	52	63	72	81	93	108	128	143	163 ²)
NK 20 A		[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[52	03	12	υI	33	100	120	143	169 ³)
2) DN 10/10		40									

²) PN 10/16 ³) PN 25/40

Pressure/Temperature Ratings with metal-to-metal seat

Туре	PN/Class	Nominal sizes DN	p / T / [bar] / [°C]		
RK 16 A	PN 40/Class 300	15 – 100 mm	50.4 / -200	38.4 / 200	24.9 / 5504)
RK 16 C	PN 40/Class 300	15 – 100 mm	40 / -200	36 / 200	32 / 4004)
RK 26 A	PN 40/Class 300	15 – 100 mm	49.6 / -200	35.7 / 200	24.9 / 550 ⁴)

4) If the operating temperatures exceed 300 °C intercrystalline corrosion may occur. Do not subject the equipment to operating temperatures higher than 300 °C unless intercrystalline corrosion can be ruled out.

Designs

		Seat				Spring		
Туре	meta-to- metal	EPDM (–40 up to 150 °C)5)	FPM (–25 up to 200°C) ⁵)	PTFE (–190 up to 250 °C)5)	without spring	special spring	Nimonic spring ⁶)	Earthing connection
RK 16 A	Х	0	0	0	0	0	0	0
RK 16 C	Х	-	-	-	0	-	-	0
RK 26 A	Х	0	0	0	0	0	0	0

5) Observe pressure/temp. ratings of the equipment

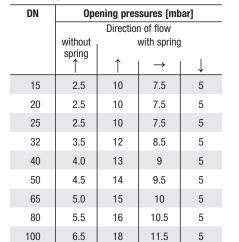
⁶) Required for temperatures above 300 °C.

X : standard 0 : optional

- : not available

Pressure Drop Charts

The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph \dot{V}_w .


The values indicated in the chart are applicable for spring-assisted valves with horizontal flow and to valves without spring installed in vertical pipes with upward flow.

$$\dot{V}_W = \dot{V} \cdot \sqrt{-\frac{\rho}{1000}}$$

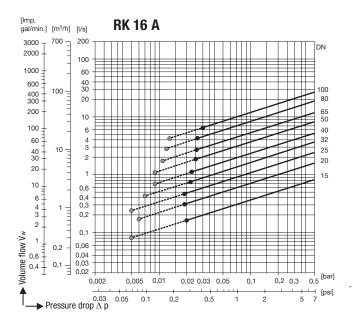
 \dot{V}_W = Equivalent water volume flow in [l/s] or [m³/h]

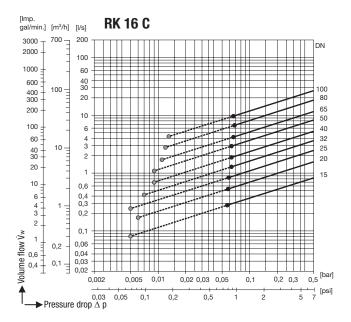
 $\rho = \text{Density of fluid} \\ \text{(operating condition) in [kg/m^3]}$

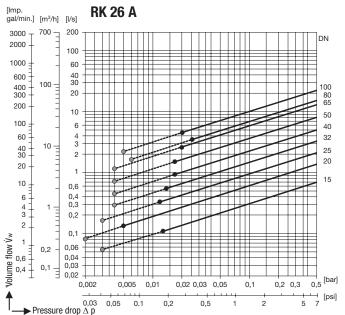
V = Volume of fluid (operating condition) in [l/s] or [m³/h]

Opening Pressures

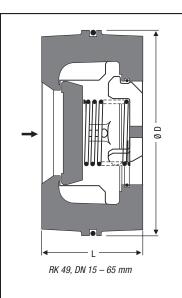
RK 16 A, RK 26 A

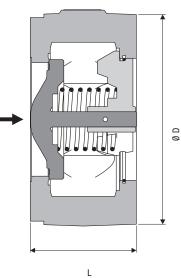

Differential pressures at zero volume flow.


Opening Pressures


Differential pressures at zero volume flow.

RK 16 C


DN	Ope	ening pres	sures [mb	oar]					
		Direction	Direction of flow						
	without	I .	with spring	I					
	spring ↑	1	\rightarrow	↓					
15	2.5	25	22.5	20					
20	2.5	25	22.5	20					
25	2.5	25	22.5	20					
32	3.5	27	23.5	20					
40	4.0	28	24.0	20					
50	4.5	29	24.5	20					
65	5.0	30	25.0	20					
80	5.5	31	25.5	20					
100	6.5	33	26.5	20					



- Required minimum volume flow W for equipment without spring installed in vertical pipes with upward flow.
- Required minimum volume flow V_W for equipment with standard spring and horizontal flow.

RK 49, DN 80 – 200 mm

Application and Features

Туре	PN	Application	Features
		for liquids, gases and vapours	
RK 49	PN 63 – 160 Class 400 – 900	suitable for high pressures and temperatures	double centric spring guidance (DN 15-65), centric cone & spring guide unaffected by dirt (DN 80, 100), installation in any position, spring made of Nimonic

Body Material

Туре		Nominal sizes DN	EN reference	ASTM equivalent ¹)	
RK 49 Body		15 – 65 mm	1.4581	A351 CF8	
	Valve disk		1.4986	-	
	Body	80 – 100 mm	1.7357	A217 WC6	
	Plug		1.4923	_	

¹) ASTM material similar to EN material.

Observe different physical and chemical properties!

Dimensions

RK 49	DN	[mm]	15	20	25	32	40	50	65	80	100
		[in]	1/2	3/4	1	11/4	11/2	2	21/2	3	4
	L	[mm]	25	31.5	35.5	40	45	56	63	71	80
	D	[mm]	54	63	74	84	95	110	130	147	173
W	/eight	[kg]	0.43	0.7	1.0	1.4	2	3	4.7	7.1	12.1

Pressure/Temperature Ratings with metal-to-metal seat

Туре	PN / Class	DN	p / T / [bar] / [°C]		
RK 49	PN 63 - 160	15 – 65	160 / -10	130 / 300	93,2 / 550 ²)
	Class 400 - 900	80 – 100	160 / -10	160 / 300	45 / 550 ²)

2) If the operating temperatures exceed 300 °C intercrystalline corrosion may occur. Do not subject the equipment to operating temperatures higher than 300 °C unless intercrystalline corrosion can be ruled out.

Seat tightness acc. to DIN EN 12266-1, leakrate C

For additional information on chemical resistance see GESTRA Information "Chemical Resistance"

Machining of seating faces acc. to EN 1092-1, form B2,

ASME B 16.5 RF (optional: ring joint facing)

Designs

	Seat				Springs			Earthing	
Туре	metal-to- metal	EPDM	FPM	PTFE	without spring	special spring	Nimonic spring ³)	connection	
RK 49	Х	-	-	-	0	-	Х	0	

3) Required for temperatures above 300 °C.

X : standard O : optional

- : not available

Pressure Drop Charts

The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph \dot{V}_w .

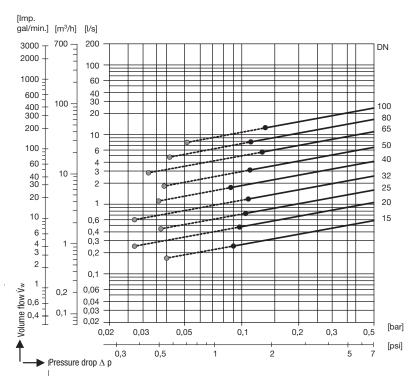
The values indicated in the chart are applicable for spring-assisted valves with horizontal flow and to valves without spring installed in vertical pipes with upward flow.

$$\dot{V}_W = \dot{V} \cdot \sqrt{-\frac{\rho}{1000}}$$

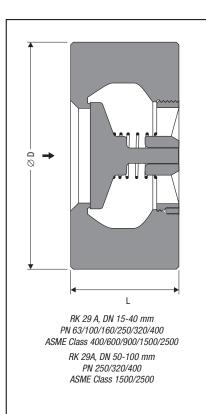
 \dot{V}_W = Equivalent water volume flow in [l/s] or [m³/h]

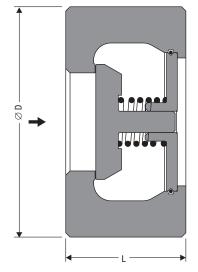
$$\rho = \text{Density of fluid} \\ (\text{operating condition}) \text{ in [kg/m^3]}$$

 \dot{V} = Volume of fluid (operating condition) in [I/s] or [m³/h]


Opening Pressures

Differential pressures at zero volume flow.


RK 49


DN	Ope	ening pres	sures [mb	oar]
	without spring		n of flow with spring	
	spring	1	\rightarrow	↓
15	16.5	73	56.5	40
20	17.5	74	57.0	40
25	18.0	76	58.0	40
32	18.0	76	58.0	40
40	19.5	79	59.5	40
50	22.0	84	62.0	40
65	23.0	87	63.0	40
80	17.5	75	57.5	40
100	20.0	80	60.0	40

RK 49

- Required minimum volume flow V_W for equipment without spring installed in vertical pipes with upward flow.
- Required minimum volume flow V_W for equipment with standard spring and horizontal flow.

RK 29A, DN 50-200 mm PN 63/100/160 ASME Class 400/600/900

Application and Features

Туре	PN	Application	Features		
		for liquids, gases and vapours			
RK 29 A	PN 63 – 400 Class 400 – 2500	for high pressure ratings and special tasks	for pressure ratings up to ON 400 / Class 2500, centric cone guide unaffected by dirt,adjusted diameter ensures optimum body centering,material suitable for petrochemical applications		

Materials

Туре		Nominal sizes DN	EN reference	ASTM equivalent ¹)
RK 29A	Body	15 – 200 mm	1.4571	AISI 316 Ti
	Plug		1.4571	AISI 316 Ti

1) ASTM material similar to EN material. Observe different physical and chemical properties!

Dimensions

	DN	[mm]	15	25	40	50	80	100	150	200
		[inch]	1/2	1	11/2	2	3	4	6	8
	L	[mm]	35	40	56	56	71	80	125	160
PN 63	D	[mm]	63	84	105	115	149	176	250	312
PN 100	D	[mm]	63	84	105	121	156	183	260	327
PN 160	D	[mm]	63	84	105	121	156	183	260	327
PN 250	D	[mm]	74	84	111	126	173	205	-	-
PN 320	D	[mm]	74	95	121	136	193	232	-	-
PN 400	D	[mm]	80	106	138	153	210	259	-	-
Class 400	D	[mm]	54	73	95	111	149	176	247.5	304.5
Class 600	D	[mm]	54	73	95	111	149	193.5	266.5	320.5
Class 900	D	[mm]	63	79	98	142.5	168	205	288.5	358.5
Class 1500	D	[mm]	63	79	98	142.5	173	209.5	-	-
Class 2500	D	[mm]	69.5	84	117	146	196.5	234.5	-	-

Pressure/Temperature Ratings

Туре	PN / Class	DN		p / T / [bar] / [°C]	
RK 29 A	PN 63	15 – 200	63 / -200	56.4 / 200	36.7 / 550 ²)
	PN 100	15 – 200	100 /200	89.6 / 200	58.2 / 550 ²)
	PN 160	15 – 200	160 /200	143.4 / 200	93.2 / 550 ²)
	PN 250	15 – 100	250 /200	224.1 / 200	145.6 / 550 ²)
	PN 320	15 – 100	320 /200	286.8 / 200	186.4 / 550 ²)
	PN 400	15 – 100	400 /200	358.5 / 200	238.9 / 550 ²)
	Class 400	15 – 200	66.2 /218	56.2 / 200	33.2 / 550 ²)
	Class 600	15 – 200	99.3 /218	70.8 / 200	49,9 / 550²)
	Class 900	15 – 200	148.9 /218	115.2 / 200	74.8 / 550 ²)
	Class 1500	15 – 100	248.2 / –218	192 / 200	124.7 / 550 ²)
	Class 2500	15 – 100	413.7 /218	320 / 200	207.9 / 550 ²)

2) If the operating temperatures exceed 300 °C intercrystalline corrosion may occur. Do not subject the equipment to operating temperatures higher than 300 °C unless intercrystalline corrosion can be ruled out.

Tightness of seat in accordance with DIN EN 12266-1, leakage rate D.

For information on chemical resistance go to www.gestra.de, click on "Service & Support" and then on "Chemical Resistance"

Sealing surfaces machined according to EN 1092-1, form B2, ASME B 16.5 RF smooth finish (63-125 $\mu\text{in}).$ Other designs available on request.

Designs

Туре		Se	at		Springs			
	metal-to- metal	EPDM (–40 up to 150°C) ³)	FPM (–25 up to 200 °C) ³)	PTFE (–190 up to 250 °C) ³)	without spring	special spring	Nimonic spring ⁴)	Earthing connection
RK 29A	Х	-	-	-	0	-	Х	0

3) Observe pressure/temp. ratings of the equipment

⁴) Required for temperatures above 300 °C.

X : standard

0 : optional

- : not available

Pressure Drop Charts

The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph Vw.

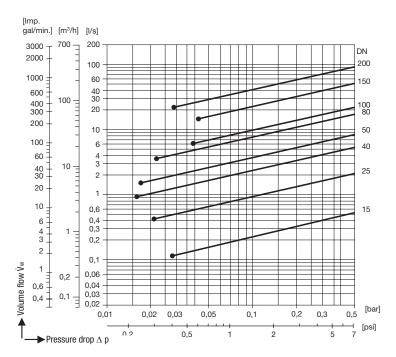
The values indicated in the chart are applicable to spring-assisted valves with horizontal flow.

$$\dot{V}_W = \dot{V} \cdot \sqrt{-\frac{\rho}{1000}}$$

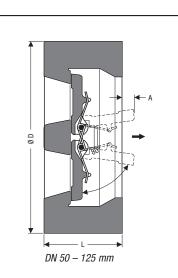
 $\dot{V}_W = Equivalent \mbox{ water volume flow} \\ \mbox{ in [l/s] or [m^3/h]}$

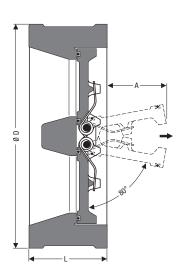
 $\rho \quad = \mbox{ Density of fluid} \\ \mbox{ (operating condition) in [kg/m^3]}$

 \dot{V} = Volume of fluid (operating condition) in [l/s] or [m³/h]


Opening Pressures

Differential pressures at zero volume flow.


RK 29 A


DN		Opening pressures [mbar]												
		Direction of flow												
	withou	t spring	with s	spring	with s	spring	with s	spring						
	↑			1		\rightarrow		l						
	– PN 160	– PN 400	– PN 160	– PN 400	– PN 160	– PN 400	– PN 160	- PN 400						
	– CI 900	– CI 2500	– CI 900	– CI 2500	– CI 900	– CI 2500	– CL 900	– CI 2500						
15	6	6	22	22	16	16	10	10						
25	8	8	26	26	18	18	10	10						
40	10	10	30	30	20	20	10	10						
50	10	10	30	30	20	20	10	10						
80	11	13	32	36	21	23	10	10						
100	12	24	34	58	22	34	10	10						
150	18	-	46	-	28	-	10	-						
200	21	_	52	_	31	_	10	_						

RK 29A

 Required minimum volume flow V_W for equipment with standard spring and horizontal flow.

DN 150 – 500 mm (larger sizes on request)

Application and Features

Туре	PN	Application for liquids, gases and vapours	Features
BB EN BB ASME	PN 10 – 40 Class 150 – 300	suitable for heating, air-conditio- ning, water supply and cooling installations,for applications where minimum pressure loss is	top quality, minimum pressure loss, for horizontal and vertical installations, stable operation when partly open (horizontal), downward flow (special spring), 2 hinge pins, 4 springs to close, disc plates with individually suspended stop lugs, swing stop for stable opening position, angle when fully open: 80°, coated or with with closing damper

Materials

Design	Part designation	Nominal size DN	EN reference	ASTM equivalent ¹)	
Grey cast iron	Body	150 – 500	5.1301	A 126 Class A	
(BB G)	Dual plate	150 – 500	5.3106	A 536 60-40-18	
Carbon steel (BB C)	Body	100 + 125	1.0460	A 105	
	Body	150 – 500	1.0619	A 216 WCB	
	Dual plate	100 – 500	1.0619	A 216 WCB	
Stainless steel	Body	50 – 125	1.4404	A 182 F 316 L	
(BB A)	Body	150 – 500	1.4408	A 351 CF 8 M	
	Dual plate	50 - 80	1.4404	A 182 F 316 L	
	Dual plate	100 — 500	1.4408	A 351 CF 8 M	

¹) Physical and chemical properties comply with EN grade.

Pressure/Temperature Ratings with metal-to-metal seat

EN series	Туре		PN	Max. service	pressure [bar] at temperat	ure [°C] ²)
EN Series			PN	20	300	400	550
Grey cast iron	BB	11G / 21G	PN 6	6	3.6	-	-
down to -10 °C at		12G / 22G	PN 10	10	6.0	-	-
nominal pressure		14G / 24G	PN 16	16	9.6	-	-
	BB	12C / 22C	PN 10	10	7.0	6.0	-
Carbon steel down to –10 °C at		14C / 24C	PN 16	16	11.1	9.6	-
nominal pressure		15C / 25C	PN 25	25	17.4	15.6	-
		16C / 26C	PN 40	40	27.8	24	-
	BB	12A / 22A	PN 10	10	6.4	5.9	5.2
Stainless steel ³) down to -200 °C at		14A / 24A	PN 16	16	10.3	9.4	8.3
nominal pressure		15A / 25A	PN 25	25	16.1	14.7	12.9
		16A / 26A	PN 40	40	25.8	23.5	20.7

BB 12A-16A DN 50 - 125 applicable up to max. 500 °C.

ASME	Туре	Class	Max.	service press	sure [bar] at t	emperature [° C] ²)
series			20	300	425	450	538
Carbon steel down	DN 150 - DN 500						
to –29 °C	BB 15C/BB 25C	150	19.6	10.2	5.5	-	-
at nominal pressure	BB 16C/BB 26C	300	51.1	39.8	28.8	-	-
Stainless	DN 50 - DN 125						
steel ³)	BB 15A	150	15.9	10.0	5.5	4.6	-
down to	BB 16A	300	41.4	26.1	23.9	23.4	-
–200 °C at	DN 150 - DN 500						
nomial	BB 15A	150	19.0	10.2	5.5	4.6	1.4
pressure	BB 16A	300	49.6	31.6	29.1	28.8	25.2

²) For temperatures above + 300 °C special springs of Inconel X 750 are required.

 If the operating temperatures exceed 300 °C intercrystalline corrosion may occur. Do not subject the equipment to operating temperatures higher than 300 °C unless intercrystalline corrosion can be ruled out.

Seat gasket	Temperature [C°]	Seat gasket	Temperature [C°]
EPDM	-40 up to +150	FPM (FKM)	-25 up to +200
NBR	-30 up to +110	PTFE / FPM	-25 up to +200 (from DN 150)

Minimum volume flow [m³/h]

Flow direction	1	-	→	-	→
Spring type	without spring	with spr	ing 7 WA	with spr	ing 2 WA
DN	fully open	stable partial opening*)	fully open	stable partial opening*)	fully open
50	12	4	9	3	7
65	18	5	17	3,5	12
80	30	6	25	4	18
100	65	7	58	5	38
125	105	10	70	6	40
150	130	12	70	9	44
200	320	30	230	20	170
250	480	50	300	30	200
350	750	78	500	42	360
350	950	140	600	80	380
400	1300	200	800	110	460
450	1800	250	900	130	550
500	2300	280	1200	160	650

Values based on water at 20 °C

*) Provide stabilizing leg (at least 5 times DN upstream and twice DN downstream of the equipment).

If the flowrate is below the minimum volume flow (instable area) increased wear and noise are to be expected.

Pressure Drop Chart

The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph Vw.

The values indicated in the chart are applicable to valves equipped with standard spring 7 mbar and horizontal flow as well as valves with special spring 2 mbar and horizontal flow.

$$\dot{V}_W = \dot{V} \cdot \sqrt{\frac{\rho}{1000}}$$

- \dot{V}_W = Equivalent water volume flow in [l/s] or [m³/h]
- $\rho \quad = \mbox{ Density of fluid} \\ \mbox{ (operating condition) in [kg/m^3]}$
- V = Volume of fluid (operating condition) in [l/s] or [m³/h]

[Imp. gal/min.] [m³/h] [l/s] DN 20000 40000 10000 1000 900 800 700 10000 6000 20000 4000 6000 600 500 450 400 3000 10000 4000 3000 2000 6000 2000 4000 3000 350 1000 300 1000 600 2000 250 400 300 600 1000 400 300 200 200 600 150 200 400 300 100 125 100 60 200 100 40 30 60 80 100 40 30 65 20 60 50 20 40 30 10 10 6 20 6 4 3 4 3 10 2 6 2 4 - 3 -1 Volume flow Ù_∿ Ħ 1 0,6 2 0,6 0,4 1 – 0,3 0,4] [bar] 0.001 0.002 0.005 0.01 0.02 0.03 0.05 0.2 0.3 0.5 0.1 ⊣ 7 [psi] 0,01 0,02 , 0,05 0,1 0,2 0,5 2 5 1 Pressure drop Δ p

- $\bullet\,$ Required minimum volume flow \dot{V}_W for valves with special spring 2 WA and horizontal flow.
- Required minimum volume flow V_W for valves with standard spring 7 WA and horizontal flow.

Opening Pressures

Differential pressures at zero volume flow.

Flow		•		1	
direction			\rightarrow	\downarrow	
Spring type	without spring	7 WA	7 WA1)	5 VO	
DN	0p	ening pres	sures (mb	ar]	
50	6	13	7	5	
65	6	13	7	5	
80	7	14	7	5	
100	7	14	7	5	
125	10	17	7	5	
150	11	18	7	5	
200	12	19	7	5	
250	14	21	7	5	
300	15	22	7	5	
350	17	24	7	5	
400	19	26	7	5	
450	22	29	7	5	
500	23	30	7	5	

1) 2WA spring, opening pressure 2 mbar

Dimensions and Weights EN Series

DN	PN	Dim	ensions [mm]	Weight ¹)		DN	PN	Dim	ensions [mm]	Weight ¹)
		D	L -	Ā	[kg]				D	L ⁻	Ā	[kg]
	10	109			2.5			6	319			33
	16	109			2.5			10	330			35
50²)	25	109	43	8	2.5		250	16	330	114	87	35
	40	109			2.5			25	343			38
	10	129			4			40	355			41
	16	129			4			6	375			44
65²)	25	129	46	11	4			10	380			45
	40	129			4		300	16	386	114	110	47
	10	144			6			25	403			51
	16	144			6			40	420			55
80²)	25	144	64	12	6			6	425			62.5
	40	144			6		350	10	440			67
	10	164			7			16	446	127	120	69
	16	164		10	7			25	460			73
100	25	171	64	19	7.5			40	477			79
	40	171			7.5			6	475			80.5
	10	194			12		400	10	491	140	142	86
105	16	194			12			16	498			88
125	25	196	70	28	12			25	517			95
	40	196			12			40	549			107
	6	209			12			6	530			125
	10	220			13.5			10	541			130
150	16	220	76	40	13.5		450	16	558	152	163	138
	25	226			14			40	574			143
	40	226			14			6	580			144
	6	264			18.5			10	596			152
	10	275			20		500	16	620	152	181	164
200	16	275	89	64	20			25	627			168
	25	286			22			40	631			170
	40	293			23							

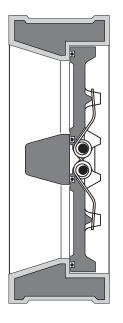
Dimensions and Weights ASME Series

DN	Class	Dime D	ensions L	mm] A	Weight [kg]	
	150	105	60*)	0	3.0	
2/50	300	111	60*)	0	3.5	
0.5/05	150	124	67*)	0	5.0	
2,5/65	300	130	67*)	0	6.0	
2/20	150	137	73*)	5	5.0	
3/80	300	149	73*)	5	6.5	
4/100	150	175	73*)	10	9.0	
4/100	300	181	73*)	10	9.5	
5/125	150	197	86 ¹)	12	11.0	
5/125	300	216	86¹)	12	15.0	
6/150	150	222	76	36	14.0	
0/130	300	251	76	36	14.0	
8/200	150	279	89	70	22,0	
0/200	300	308	89	70	23.0	
10/250	150	340	114	88	38.0	
10/230	300	362	114	88	41.0	
12/300	150	410	114	109	51.0	
12/300	300	422	114	109	55.0	
14/350	150	451	127	113	73.0	
14/330	300	486	127	113	79.0	
16/400	150	514	140	140	96.0	
10/400	300	540	140	140	107.0	
18/450	150	549	152	163	138.0	
10/100	300	597	152	163	152.0	
20/500	150	606	152	181	170.0	
_0,000	300	654	152	181	223.0	

¹) Overall length not standardized

*) DN 50 – DN 100 overall length to API 594

¹) Weights rated for cast steel grade GP 240 GH (GS-C 25).


²) DN 50, 65 and 80 only available as BB ... "A" (stainless steel).

Other sizes on request

BB with lining from DN 150

Hard-rubber lining

Plastic lining

Dual plates, hinge pins and springs are not lined. Dual plates standard with O-rings of EPDM.

BB with Lining

Application and Features

Туре	PN	Application for liquids, gases and vapours	Features		
BBGS		for salty fluids such as sea water	hard rubber coating for protection against abrasive media, thickness of coating 3 - 5 mm		
BBGK	PN 10 - 16	for salty fluids such as sea water and for drinking water installations	plastic coating incl. inside and outside lining of the valve body, coating meets requirements of plastics for drinking water and is approved by DVGW (German Technical Association for Gas and Water), more features specified under BB EN / ASME		

Materials

Made from grey cast iron (BB.. GS, GK)

Component	EN number	ASME ¹)
Body	EN-JL 1040	A126B
Dual plates for equipment with lining and internals made from austenitic steel	1.4408	A351CF8M
Support and hinge pin	1.4571	A316Ti
Springs	1.4571	A316Ti
Dual plates for equipment with lining and internals made from bronze	CC332G	2)
Support and hinge pin	CW453K	C51900
Springs	CW452K	C52100

Equipment made from grey cast iron that complies with ASME specification is not available. The equivalent
material specifications are stated for guidance only. Physical and chemical properties of the materials can
therefore differ from the materials in accordance with ASME specification. For more details please contact the
manufacturer.

2) There is no ASME equivalent for the EN material.

Lining materials for BB.. GS

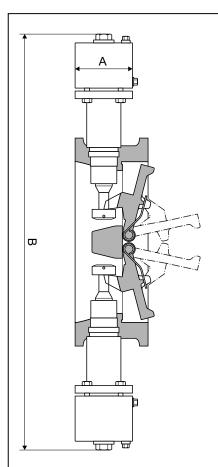
Hard rubber based on isoprene rubber (IR), shore D hardness 75±5, max. thickness of layer 3-5 mm.

Lining materials for BB.. GK

Vestosint is a polyamide 12 based powder for fluidized bed sintering, shore D hardness 75 \pm 5, max. thickness of layer \ge 0.4 mm.

Rilsan is a polyamide 11 based powder for fluidized bed sintering and a coating powder extracted from a purely plant based source, which means that a natural, environmentally friendly and renewable raw material is used. Approvals/certificates acc. to KTW (recommendations for plastics in contact with drinking water) and DVGW

(= German Technical Association for Gas and Water)


Shore D hardness 75±5, min. thickness of layer $\geq 0.4~\text{mm}$

Other linings available on request.

Temperature Limits

Hard rubber lining -10 °C up to 90 °C

Plastic lining -10 °C up to 90 °C

BB with patented adjustable dampers, DN 200 – 500.

BB with Dampers *)

Application and Features

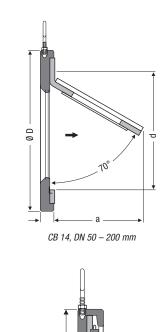
Туре	PN	Application for liquids	Features
BB EN	PN 10 -	e. g. for water supply and cooling installations, if waterhammer occurs in pipes conducting	slows down the closing process of the non-return valve, reduces the speed of
BB ASME	40 Class 150 – 300	liquids, for preventing damage to the plant. To evaluate potential waterhammer problems please aks for our questionnaire.	return flow, damper does not change the overall length of the equipment, dampe- ning cylindre made of rustproof material

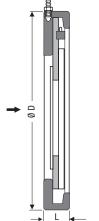
Materials

Component	EN	ASME ¹)
Hinge pin	1.4122	-
Guide bush, flange, cover	1.4104	AISI430F
Gasket	1.4571	AISI316Ti
0 ring, inside	NBR	-

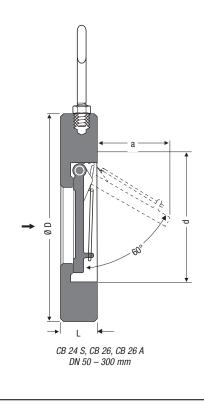
¹) The equivalent material specifications are stated for guidance only. Physical and chemical properties of the materials can therefore differ from the materials in accordance with ASME specification.

*) Not suitable for BB with coating


Dimensions and Weights of Equipment with Closing Dampers


DN	200	250	300	350	400	500
NPS	8	10	12	14	16	20
A [mm]		9	120			
B [mm] ¹)	600	665	715	755	900	995
Weight [kg] ¹)	33	48	60	82	121	197

1) The indicated values are based on equipment PN 16. Specifications for other equipment types available on request.


Pressure/Temperature Ratings

Size DN	[mm]	200	250	300	350	400	500
SIZE DN	[inch]	8	10	12	14	16	20
Max. service pressure	[bar]	16	16	13	9	13	9
Max. service temperature	[°C]	110					
Max. admissible pressure at line leading to the valve (pump switched off)	[bar]	0.5					

CB 14, DN 250 - 300 mm

Application and Features

Туре	PN	Application for liquids, gases and vapours	Features
CB 14	PN 16	particulaly suitable for water and compressed air	rubber-elastic hinge, low weight
CB 24S	PN 16	for salty fluids such as sea water	compact design, 2 bow springs, flap disc
CB 26	PN 40	for industrial applications	with stop for pipe protection, approved by Germanischer Lloyd, CB 24S also approved
CB 26A	PN 40	for low temperatures and aggressive fluids	by Bureau Veritas

Materials

Туре	Part designation	bit 50 - 300 mm 1.0460 galvanized p 50 - 300 mm NBR dy 50 - 100 mm Bronze (CC 483K-GS) 125 - 300 mm Bronze (CC 332G) p 50 - 300 mm Bronze (CC 332G)		ASTM ¹) equivalent
CB 14	Body	50 – 300 mm		A 105 galvanized
	Flap	Jesignation DN EN refer 50 – 300 mm 1.046 galvani 50 – 300 mm NBF 50 – 100 mm Bronze (CC 4 125 – 300 mm 125 – 300 mm Bronze (CC 4 250 – 300 mm 50 – 200 mm Bronze (CC 4 1.046 50 – 200 mm 1.046 250 – 300 mm 1.046 50 – 150 mm 1.046 50 – 150 mm 1.456 300 mm 1.457 300 mm 1.458	NBR	NBR
CB 24 S	Body Flap 24 S Body Flap 26 Body Flap 26 Flap	50 – 100 mm	Bronze (CC 483K-GS)	B 505 C 90 700
		125 – 300 mm	Bronze (CC 332G)	B 148 Alloy 952
	Flap	50 – 300 mm	Bronze (CC 332G)	B 148 Alloy 952
- CB 26 -	Body	50 – 200 mm	1.0460	A 105
		250 – 300 mm	1.0460	A 105
	Flap	50 – 150 mm	1.4581	A 351 CF 8 MC
		200 – 300 mm	5.3103	-
CB 26 A	Body	50 – 250 mm	1.4571	AISI 316 TI
		300 mm	1.4581	A 351 CF 8 MC
	Flap	50 – 300 mm 1.4581		A 351 CF 8 MC

1) Physical and chemical properties comply with EN grade.

Pressure/Temperature Ratings

Nominal sizes DN	PN	p / T / [bar] / [°C]				
50 - 300	PN 16	16 / -10	6.0 / 60	4.0 / 80		
50 - 300	PN 16	16 / -200	16.0 / 90	15.6 / 250²)		
50 - 150	PN 40	40 / -10	33.6 / 200	25.9 / 350 ²)		
200 - 300	PN 40	40 / -10	33.3 / 200	27.6 / 300		
50 - 300	PN 40	40 / -10	35.8 / 200	28.0 / 450 ²) ³)		
	50 - 300 50 - 300 50 - 150 200 - 300	50 - 300 PN 16 50 - 300 PN 16 50 - 150 PN 40 200 - 300 PN 40	50 - 300 PN 16 16 / -10 50 - 300 PN 16 16 / -200 50 - 150 PN 40 40 / -10 200 - 300 PN 40 40 / -10	50 - 300 PN 16 16 / -10 6.0 / 60 50 - 300 PN 16 16 / -200 16.0 / 90 50 - 150 PN 40 40 / -10 33.6 / 200 200 - 300 PN 40 40 / -10 33.3 / 200		

²) Max. pressure/temperature rating for CB without springs.

3) If the operating temperatures exceed 300 °C intercrystalline corrosion may occur. Do not subject the equipment to operating temperatures higher than 300 °C unless intercrystalline corrosion can be ruled out.

CB Designs

Тур			Springs				
	metal-to-metal	NBR (–30 up to 110°C)4)	EPDM (–40 up to 150 °C)4)	FPM (–25 up to 200 °C)4)	PTFE ⁶) (–25 up to 200 °C) ⁴)	without spring	special spring
CB 14	-	X6)	-	-	-	Х	-
CB 24S	0	Х	0	0	-	0	-
CB 26	0	-	Х	0	0	0	-
CB 26A	0	-	Х	0	0	0	-
4) Observe pressure / temp. ratings of the equipment			5) Cover FPN	I ring with PTFE	X : standard		

4) Observe pressure / temp. ratings of the equipment 5) Cover FPM ring with PTFE 6) Flap made from NBR (Perbunan) Temp. range: -10 °C up to 80 °C

0 : optional - : not available

Weights and Dimensions

Nomina	l size		Dimensions [mm]							Weight [kg]		
DN	l		CB	14		CB 2	24 S, CB	26, CB 2	6 A	CB14 CB 24 S		CB 26
[mm]	[[in]	D	L	а	d7)	D	L	а	d7)	0014	0D 24 3	CB 26 A
50	2	98	14	45	47	98	17	40	50	0.7	0.9	0.9
65	2 ¹ / ₂	118	14	60	64	118	20	50	64	1.0	1.4	1.4
80	3	132	14	70	75	132	24	58	75	1.4	2.0	2.0
100	4	154	14	90	98	154	27	72	99	1.5	3.1	3.1
125	5	184	16	115	124	184	32	88	125	2.5	5.2	5.3
150	6	209	16	145	148	209	32	112	144	3.3	6.7	6.9
200	8	264	18	185	196	264	42	150	198	5.5	13.7	14.1
250	10	319	35	220	242	319	47	182	244	11.2	22.9	23.6
300	12	375	43	270	288	375	52	216	292	14.0	32.8	33.8

⁷) Minimum flange bore and inside pipe diameter.

Pressure Drop Charts

The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph \dot{V}_w .

The values indicated in the chart are applicable for springassisted valves with horizontal flow and to valves without spring installed in vertical pipes with upward flow.

Opening Pressures

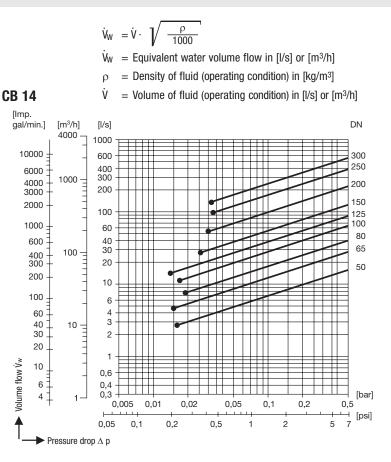
Differential pressures at zero volume flow.

Туре	DN [mm]		ning pres [mbar] rection of	
		↑	\rightarrow	↓
CB 14	50 – 150	8	0	1)
	200 – 300	15	0	,

Туре	DN [mm]	Opening pressures [mbar] Direction of flow				
		without spring ↑	w w	ith sprir	ng 	
CB 24 S	50 – 150	5	12	7	+	
	200 - 300	8	15	7		
CB 26/	50 - 80	5	12	7	1)	
CB 26 A	100 – 150	11	18	7		
	200 - 300	18	25	7		

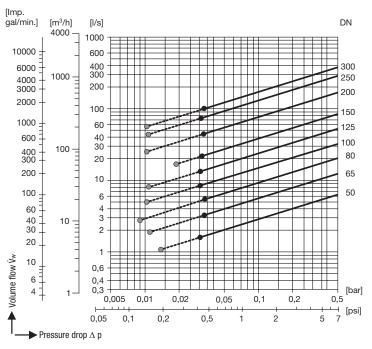
 Valves should not be used for downward flow applications, since the spring will not close the valve flap.

Minimum volume flow CB 14


DN	Minimum volume flows [m ³]				
2	for full opening				
	1	$ \rightarrow$			
50	12	10			
65	18	17			
80	29	28			
100	42	41			
125	55	51			
150	140	100			
200	260	190			
250	460	360			
300	610	500			

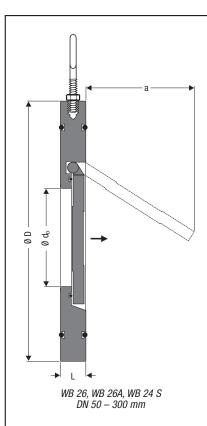
Values refer to water at 20°C

Minimum volume flow CB 24 S, 26, 26 A


DN	Minimum volume flows [m ³] for full opening			
	without spring	with s	spring	
	↑	1	\rightarrow	
50	4	6	6	
65	7	10	12	
80	10	20	20	
100	18	30	30	
125	30	40	48	
150	60	70	80	
200	90	150	160	
250	160	220	260	
300	200	300	360	

Values refer to water at 20°C.

• Required minimum volume flow \dot{V}_W for equipment installed in horizontal pipes.


CB 24 S, CB 26, CB 26 A

 Required minimum volume flow V_W for equipment without spring installed in vertical pipes with upward flow.

 Required minimum volume flow V_W for equipment with standard spring and horizontal flow.

Swing Check Valves WB PN 10/16, DN 50 - 300 mm

Application and Features

Туре	PN	Application for liquids, gases and vapours	Features
WB 24S	PN 16	for salty fluids such as sea water	without spring, eye bolt for easy installation,
WB 26	PN 16	for industrial applications	O-ring of NBR for flange sealing, short overall
WB 26A	PN 16	for aggressive fluids	length

Materials

Туре		ASTM reference	EN ¹) equivalent	
WB 26	Body and flap	AISI 420 galvanized	1.4034 galvanized	
	Flap DN 50 – 100	AISI 316	1.4401	
WB 26 A	Body	AISI 316L	1.4404	
	Flap	AISI 316L	1.4404	
WB 24 S	Body and flap	Aluminium bronze	Aluminium bronze	
0-rings		NBR as sta	indard	

0-rings

¹) Physical and chemical properties comply with ASTM grade.

Weights and Dimensions

Nominal	size DN		Dimensions [mm]			
[mm]	[in]	L	ØD	а	$arnothing d_o$	[kg]
50	2	14	109	35	32	0.95
65	21/2	14	129	48	40	1.2
80	3	14	144	60	54	1.6
100	4	18	164	78	70	2.5
125	5	18	195	98	92	3.5
150	6	20	220	116.5	112	4.7
200	8	22	275	160	154	7.6
250	10	26	330	200	200	13.2
300	12	32	380	235	240	20.5

⁵) The weight ratings apply for WB 26 and WB 26 A. WB 24 S reduced by approx. 5 %.

Pressure/Temperature Ratings

Nominal pressure	PN	PN 16
Design with O-rings ²)		NBR
Max. service pressure	[bar]	16
Related temperature	[°C]	110
Min. temperature ³)	[°C]	-10

²) O-rings in flap and valve faces made of NBR as standard.

³) Minimum temperature for nominal pressure rating.

WB Design

			Seat			Springs		
	metal-to- metal	NBR (-30 up to 110°C) ⁴)	EPDM (–40 up to 150 °C) ⁴)	FPM (–25 up to 200 °C) ⁴)	PTFE (–25 up to 200 °C) ⁴)	without spring	special spring	
WB 24S	0	Х	Use CB 26	0	-	Х	-	
WB 26	0	Х	Use CB 26	0	Use CB 26	Х	-	
WB 26A	0	Х	Use CB 26A	0	Use CB 26A	Х	-	

4) Observe pressure/temp. ratings

: standard

X 0 : optional

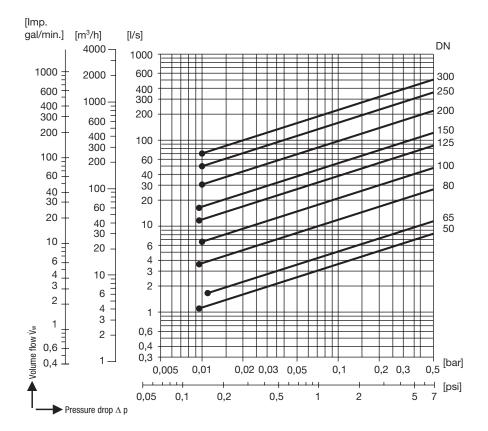
: not available _

Pressure Drop Chart

The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph \dot{V}_w .

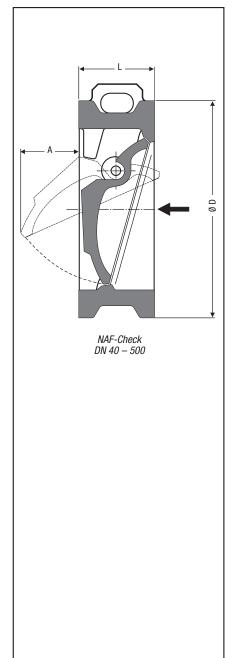
The values indicated in the chart are applicable to equipment installed in horizontal pipes.

$$\dot{V}_W = \dot{V} \cdot \sqrt{\frac{\rho}{1000}}$$


 $\dot{V}_W = Equivalent \mbox{ water volume flow} \\ \mbox{ in [l/s] or [m^3/h]}$

 $\rho = \text{Density of fluid} \\ \text{(operating condition) in [kg/m³]}$

 \dot{V} = Volume of fluid (operating condition) in [l/s] or [m³/h]


Opening Pressures

Opening pressure zero when valve is installed in horizontal line.

Required minimum volume flow W for equipment installed in horizontal pipes.

Application and Features

Туре	PN	Application	Features
		for liquids, gases and vapours	
NAF-Check	PN 10 - 40	particularly suitable for fibrous media, e. g. in paper industry	excellent hydrodynamic properties, excentric flap suspension, low resistance coefficient

Materials

Design	Part designation	Nominal size DN [mm]	EN / ASME	Equivalent	
Steel		40 - 50	1.4404	A316 L	
	Dody	65 – 200	1.4308	A351 CF8	
	Body	250	1.4408	A351 CF8M	
		300 - 500	1.0619	ASTM A 216 WCB	
	Flap	40 + 50	ASTM A487 Gr CA6NM	EN 1.4313	
		65 - 500	1.4317	ASTM A743	
	Dody	40 - 50	1.4406	ASTM A316 L	
Stainless steel	Body	65 - 500	1.4408	ASTM A351 CF8M	
	Flap	40 - 500	1.4470	ASTM A890	

Weight and Dimensions

T	DN	DN		Dimensions [mm]	Weight
Туре	PN	[mm]	D	L	A	Weight [kg] 1.2 1.7 3 5 7 9 16 28 41
		40	84	33	15	1.2
		50	92	43	5	1.7
		65	108	46	12	1.7
526 620 ¹)		80	128	64	16	3
526 630 ²) 528 620 ¹)	PN 10 – 40	100	158	64	26	5
528 630 ²)		125	180	70	36	7
		150	203	76	51	9
		200	263	89	71	16
		250	315	114	90	28
		300	370	114	125	41
526 520 ¹)		350	432	127	146	48
528 530 ²) 528 520 ¹)	PN 10 – 25	400	480	140	175	65
528 530 ²)		450	530	152	188	94
		500	592	152	228	115

DN 600 – DN 1000 on request

¹) without spring ²) with spring

______ -) with s

Pressure/Temperature Ratings

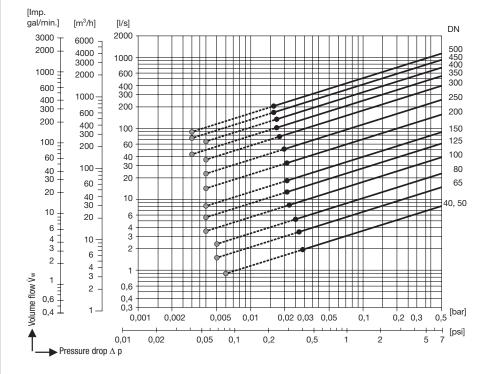
Design	Type PN DN [mm] Max. service pressure [bar] / related temperatures						s [°C] ³)							
Design	Туре	PN	נווווון אים	20	100	150	200	250	300	350	400	450	500	525
Steel down to –10 °C at	526 620/30	PN 40	40 – 250	40.0	36.3	32.7	26.9	27.6	25.7	24.5	23.8	-	-	-
nominal pressure	526 520/30	PN 25	300 - 500	25.0	23.2	22.0	20.8	19.0	17.2	16	14.8	-	-	-
Stainless steel ⁴)	528 620/30	PN 40	40 – 250	40.0	40.0	36.3	33.7	31.8	-	-	-	-	-	-
down to –30 °C at nominal pressure	528 520/30	PN 25	300 - 500	25.0	25.0	22.7	21.0	19.8	-	-	-	-	-	-

³) Max. temperature rating for design with spring: + 300 °C.

4) If the operating temperatures exceed 300 °C intercrystalline corrosion may occur. Do not subject the equipment to operating temperatures higher than 300 °C unless intercrystalline corrosion can be ruled out.

Pressure Drop Chart

The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph \dot{V}_w .


The values indicated in the chart are applicable for spring-assisted valves with horizontal flow and to valves without spring installed in vertical pipes with upward flow.

$$\dot{V}_W = \dot{V} \cdot \sqrt{\frac{\rho}{1000}}$$

 \dot{V}_W = Equivalent water volume flow in [l/s] or [m³/h]

 $\rho \quad = \mbox{ Density of fluid} \\ \mbox{ (operating condition) in [kg/m^3]}$

V = Volume of fluid (operating condition) in [l/s] or [m³/h]

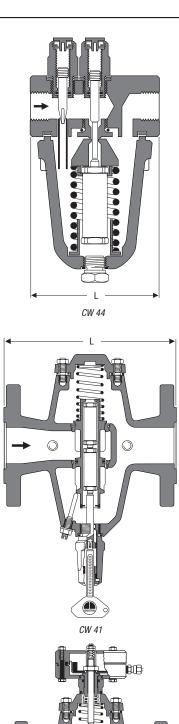
• Required minimum volume flow \dot{V}_W for equipment without spring installed in vertical pipes with upward flow.

 Required minimum volume flow W for equipment with standard spring and horizontal flow.

E-mail: info@ de.gestra.com · Fax: (0421) 3503-149

Online: www.gestra.com/Service & Support/Questionnaire for preparing offers

Type of fluid*)		*) If the fluid is not water a detailed
Density of fluid	kg/m ³	analysis (concentration, solid matter, pH value etc.) is required.
Service pressure	bar	
Service temperature	۵۵- ۲۵۰	
Volume flow	Nm³/h 🛄 m³/h	
Maximum admissible pressure drop	mbar	
Nominal size Pressure rating		
For installation between EN flanges ASME flanges Type of non-return / check valves Non-return valve Swing check valve Installed in horizontal pipeline vertical pipeline with upward flow vertical pipeline with downward flow	Dual-plate check valve	
Required inspections / approvals:		


Your details:

Company	ompany
Name / job title	ame / job title
Telephone	elephone
Fax	ax
E-mail	-mail
Date	ate

- A4 Return-Temperature Control Valves
- A4 Self-Acting Pressure and Temperature Controllers
- A4 Control Valves
- A6 Safety Valves
- **A7** Strainers
- **A8 Stop Valves**

Pag	e
Return-Temperature Control Valves	
Cooling-Water Control Valves CW GESTRAMAT	35
Return-Temperature Control Valves BW KALORIMAT	38
Self-Acting Pressure and Temperature Controllers	
Pressure-Reducing Valves 5801 6	
Pressure-Maintaining Valves 5610 7	70
Self-Acting Temperature Controllers	73
Control Valves	
Single-Seat Control Valves with Electric	
or Pneumatic Actuator	
Control Valves ZK with Radial Stage Nozzle 75 – 7	
Questionnaire for sizing ZK valves with radial stage nozzle	79
Safety Valves GSV	30
Strainers GSF, SZ	32
Stop Valves GAV	34

- Direct acting proportional controller for regulating the cooling-water return temperature.
- Reduced capital costs (for new plants) coolant and energy consumption due to higher discharge temperatues
- The valve prevents short-circuiting and automatically balances large systems.
- Straight-through body with solid-state expansion thermostat and setting device.
- Standard valve type CW 41 with pressure gauge (0-6 bar) and thermometer (-30 to +100 °C).
- MCW 41 = CW 41 with diaphragm actuator. (Retro-fitting of diaphragm actuator possible).

Application

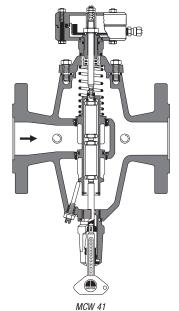
CW 41	for industrial appling water				
CW 44	for industrial cooling water				
CW 41/4	for saline fluids, ammoniacal cooling water and chlorinated hydrocarbons				
CW 44 k	(wetted internal parts made from stainless steel)				
MCW 41	for heavily contaminated cooling systems				

Specification*)

		ΔΡ	Mat	erial	Pressure/Temperature			
Туре	PN	[bar]	EN	ASTM	PS [bar]	TS ²) ³) [°C]	p / T ²) ³) [bar / °C]	
CW 41	16	6	5.3103	A 3951)	16	- 32 / 110	16 / 110	
CW 41/4	16	6	5.3103	A 3951)	16	- 32 / 110	16 / 110	
CW 44	25	16	1.0460	A 105 ¹)	25	- 2 / 110	25 / 110	
CW 44 K	25	16	1.0460	A 1051)	25	- 37 / 85	25 / 85	

 ASTM nearest equivalent grade is stated for guidance only. Physical and chemical properties comply with EN.

2) Temperature only admissible for a short time


3) Admissible temperature depends on type of thermostat:

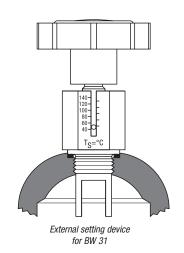
type n (standard) 110 °C, type w (wax) 100 °C, type k (brine) 85 °C

*) For more information on pressure/temperature ratings and end connections see data sheets.

Temperature Ratings

Туре	Thermostat/cone combination	Adjustment range		
CW 41	wr or ws	20 °C – 60 °C		
CW 41/4	nr or ns	3 °C – 100 °C		
	kr or ks	−32 °C − 74 °C		
CW 44	n	−2 °C − 106 °C		
CW 44 K	k	−37 °C − 71 °C		
	w = wax thermostatr = reduced cone forn = standard thermostatsmall flowratesk = thermostat for brines = standard cone for large flowrates			


End Connections and Overall Lengths


		Overall length L [mm]								
Туре	End connection	DN 10	DN 15	DN 20	DN 25	DN 40	DN 50	DN 80	DN 100	
		3/8"	1/2"	3/4"	1"	1 ¹ /2"	2"	3"	4"	
CW 41	Flanged EN PN 16	-	-	-	160	200	230	310	350	
CW 41/4	Flanged EN PN 16	-	-	-	160	200	230	310	350	
CW 44	Screwed sockets	95	95	95	95	-	-	-	-	
CW 44 K	Screwed sockets	95	95	95	95	-	-	-	-	

Flowrates (k_v values)

Туре	Cone		DN 25	DN 40, DN 50	DN 80, DN 100
CW 41	r	K _{VS} value [m³/h]	2.1	6.5	20
CW 41/4		K _{VO} (Preset bleed flow) [m ³ /h]	0.12	0.31	1.0
		K _{VS} value [m³/h]	10.5	31	98
s	5	K _{VO} (Preset bleed flow) [m ³ /h]	0.55	1.5	5.0

			G ³ /8	G ¹ / ₂	G ³ /4	G 1
CW 44	-	K _{VS} value [m ³ /h]	0.66	0.66	1.37	1.37
CW 44 K	-	K _{VO} (Preset bleed flow) [m ³ /h]]	0.04	0.04	0.04	0.04

External setting device for BW 31A

Features of the BW series

- Direct acting proportional controller for maintaining constant return temperatures.
- Used for regulating large heating systems and tracing systems, or for the temperature control of individual heat exchangers (washing baths, chemical and galvanic baths).
- Also suitable for a supply system tailored to the needs of consumers that are installed in parallel.
- Straight-through valve with balanced valve sleeve. Closing temperature set at our works.
- Valves with external setting device available on request.

Application

BW 31	for hot water
BW 31 A	for thermal oils

Specification*)

		PN			ΔΡ	Mat	erial	Pressure / Temperature			
Туре	DN		[bar]	EN	ASTM	PS [bar]	тs [°C]	p / T [bar / °C]			
BW 31	15-25	40	6	1.0460	A 105 ¹)	40	400	23.1 / 400			
BW 31	40	25	6	1.0460	A 1051)	25	400	14.4 / 400			
BW 31A	15-25	40	6	1.0460	A 1051)	40	400	23.1 / 400			
BW 31A	40	25	6	1.0460	A 1051)	25	400	14.4 / 400			

1) ASTM nearest equivalent is stated for guidance only. Physical and chemical properties comply with EN.

*) For more information on pressure/temperature ratings and end connections see data sheet.

End Connections and Overall Lengths L

			Overall ler	igth L [mm]	
Туре	Connections	DN 15	DN 20	DN 25	DN 40
туре		1/2"	3/4"	1"	1 ¹ /2"
BW 31	Flanged EN PN 25	150	150	160	200
	Flanged ASME 150	150	150	160	215
	Screwed sockets	95	95	95	130
BW 31A	Flanged EN PN 25	150	150	160	200
	Flanged ASME 150	150	150	160	216
	Screwed sockets	95	95	95	130

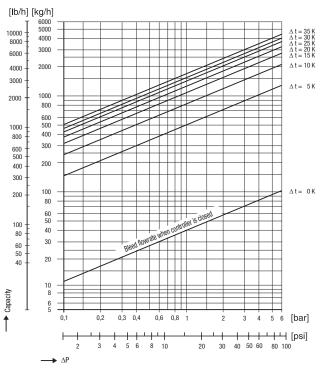
Closing temperatures (without external setting device)¹)

Adjus r	table ange	DN 15 mm	DN 20 mm	DN 25 mm	DN 40 mm		
Туре		¹ /2"	³ /4"	1"	1 ¹ /2"		
BW 31	2	0°C - 130°C	20 °C - 115 °C	20 °C - 115 °C	20 °C - 110 °C		
BW 31A	12	0 °C - 270 °C	100 °C - 280 °C	100 °C - 280 °C	100 °C - 270 °C		

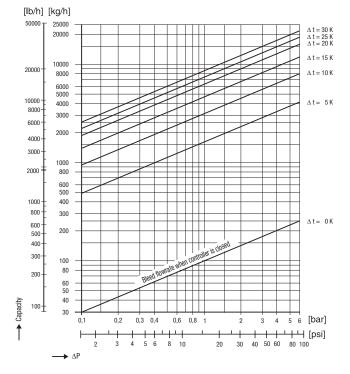
 $^{1})$ A fixed closing temperature can only be adjusted within the indicated adjustment range in steps of 5 °C.

Adjustable closing temperatures (with standard external setting device)

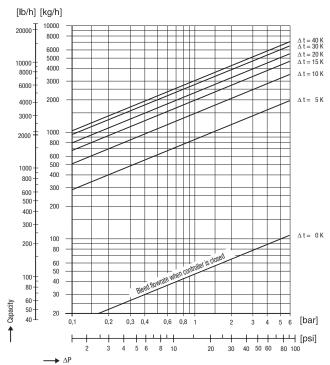
BW 31	60 °C – 130 °C	40 °C – 115 °C	40 °C – 115 °C	50 °C – 110 °C
BW 31A	90 °C – 270 °C	70 °C – 270 °C	70 °C – 270 °C	70 °C – 270 °C


Adjustable closing temperatures (with special external setting device)

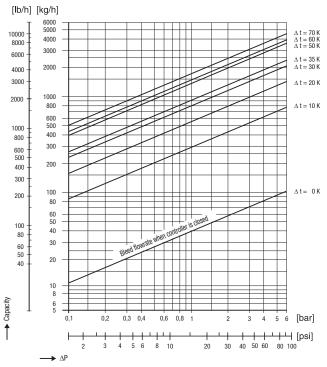
BW 31	20 °C – 110 °C	20 °C – 90 °C	20 °C – 90 °C	20 °C – 75 °C
BW 31A	60 °C - 160 °C	30 °C - 170 °C	30 °C - 170 °C	25 °C – 85 °C


Capacity Charts

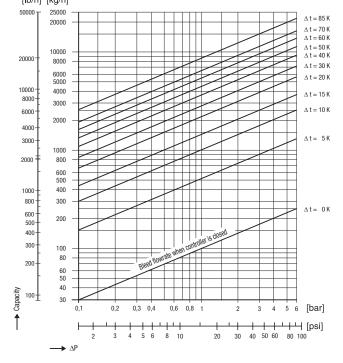
 $\Delta t =$ temperature difference in Kelvin [K] between closing temperature (temperature at which the valve is closed) and return temperature.


BW 31, DN 15

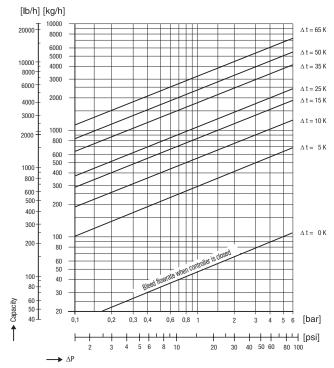
BW 31, DN 40

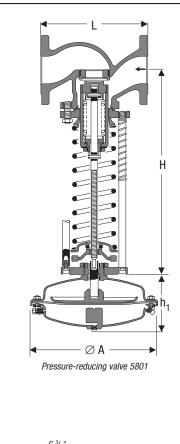

BW 31, DN 20 and 25

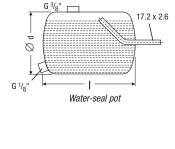
Capacity Charts

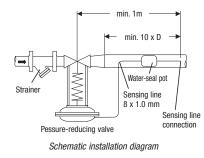

 $\Delta t =$ temperature difference in Kelvin [K] between closing temperature (temperature at which the valve is closed) and return temperature.

BW 31A, DN 15




BW 31A, DN 40


[lb/h] [kg/h]



BW 31A, DN 20 and 25

Application

 Type 5801
 Pressure-reducing valve for use with steam and other fluids.

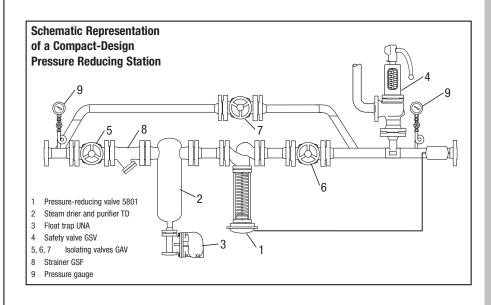
 In all energy and process systems.

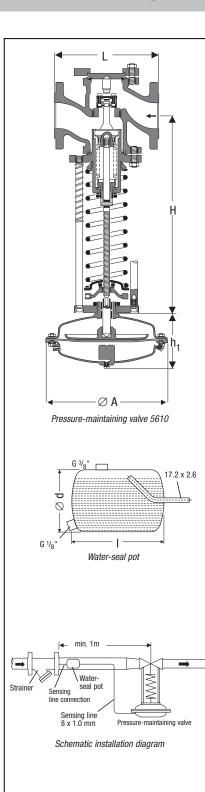
Design

The pressure-reducing valve is a balanced single-seat proportional controller operating without auxiliary energy.

The pressure-reducing valve consists of a body with internals, bellows, spring, handwheel and actuator. For steam and liquids at temperatures above 100 °C a water-seal pot is required to protect the actuator diaphragm.

Dimensions [mm] and Weights [kg] of Valve Body


			-				-					
DN	15	20	25	32	40	50	65	80	100	125	150	200
L	130	150	160	180	200	230	290	310	350	400	480	600
н	390	390	390	408	425	500	505	590	590	705	725	760
Weight 0.7043	7	8	9	12	14	18	26	40	50	77	112	170
Weight 1.0619 Weight 1.4581	7	8	9	12	14	19	27	40	54	82	115	176


Dimensions [mm] and Weights [kg] of Actuator

Actuator	A11	A2	A3	A4	A51	A61	B11	B2
ØA	150	160	195	270	355	510	150	160
h ₁	90	100	100	120	165	200	90	110
Approx. weight	2.8	4.5	6.0	4.5	10	27.5	3.5	5.5

Dimensions [mm] and Weights [kg] of Water Pot Seal

Size	I	d	Size DN	Weight		
1	206	88.9	15 - 65	1.7		
2	172	152.4	80 - 100	3.5		
3	250	152.4	125 – 200	4.9		

Application

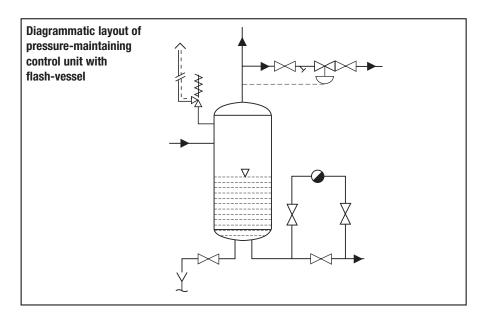
Type 5610Pressure-maintaining valve for maintaining upstream pressures independent of
downstream pressures for use with steam, gases and liquids.

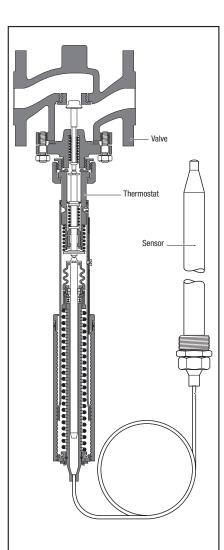
Design

The pressure-maintaining valve is a self-acting proportional controller with single-seat and balanced valve.

The pressure-maintaining valve consists of a body with internals, bellows, spring, handwheel and actuator. For steam and liquids at temperatures above 100 °C a water-seal pot is required to protect the actuator diaphragm.

Dimensions [mm] and Weights [kg] of Valve Body


DN	15	20	25	32	40	50	65	80	100
L	130	150	160	180	200	230	290	310	350
н	405	405	405	410	425	495	500	590	590
Approx. weight	10	11	12	14	18	23	35	48	70


Dimensions [mm] and Weights [kg] of Actuator

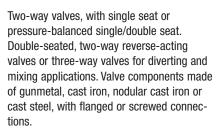
Actuator	A11	A2	A3	A4	A51	B11	B2
ØA	150	160	195	270	355	150	160
h ₁	90	100	100	120	165	90	110
Approx. weight	2.8	4.5	6.0	4.5	10	3.5	5.5

Dimensions [mm] and Weights [kg] of Water-Seal Pot

Size	I	d	Size DN	Weight		
1	206	88.9	15 - 65	1.7		
2	172	152.4	80 - 100	4.9		

Application

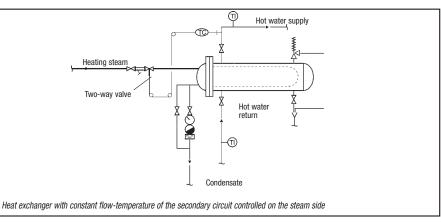
Temperature control in heating and cooling processes in industrial plants, for h.v.a.c services and marine engineering. For liquids, gases, vapours.

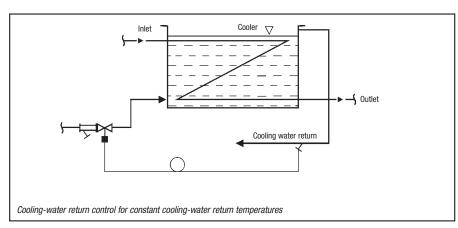

Design

The self-acting temperature controller consists of a valve featuring a thermostat and a sensor. According to the service conditions the controller is optionally equipped with a cooling unit or a sensor pocket. The temperature sensed by the sensor changes the volume of the measuring liquid in the capillary tube. The resulting pressure acts directly on the actuating piston which, in turn, operates the valve spindle. As the temperature rises, the regulating valve is held in closed positon (heating process) or open position (cooling process) until the pre-set release temperature is reached. When the temperature drops again, a builtin return spring resets the valve to original

Valves

position.


Examples of Industrial Process Applications



Thermostat

The thermostat is firmly attached to the sensor capillary tube. The rod-, spiral- or airduct-type sensors are made of copper or high-alloy stainless steel. The capillary tube is available in different lengths, made of copper or high-alloy stainless steel.

A4-A8

Dimensions [mm] and Weights [kg] for Valves and Thermostats

		J							-							
Valve typ	De		DN		15	20	2		32	40	50	65	80	100	125	150
			G		/2	3⁄4	1		1¼	1½	2					
M1F	L		L	1	30	150	160	0	180	200	230					
G1F			H ₁		80	85	9	5	105	110	125					
H1F			H_2		60	65	70	D	75	85	95					
	ſ₽₽₽₽	M1F/G1F	kg	3	.1	4.2	5.5	5	8.1	9.7	14.7					
	G1	H1F	kg	3	.4	4.6	6.1		9.0	10.8	15.5					
M1FBN	. L		L	1	30	150	160)	180	200	230	290	310			
G1 FBN			Н	1	01	107	112	2	122	125	140	154	164			
H1 FBN			H ₁	8	30	85	70	D	75	85	95	110	115			
	╵╤╤╹╵╴	M1FBN	kg		4	5	6.0)	9.0	13.0	16.0	23.0	38.0			
		G1FBN	kg		4	5	6.0)	9.0	13.0	16.0	23.0	38.0			
	G1	H1FBN	kg		4	5	6.0)	9.0	13.0	16.0	23.0	38.0			
L1S	L		L		85	95										
Ŧ			Н		65	67										
т	ן שע		H ₁		20	32										
Ŧ			kg		.7	0.8										
L 2 S	k		L			90	100	5	113	129	153					
			Н			82	80		82	118	122					
			H ₁			48	53		58	68	71					
	_⊢ =		kg			1	1		1.6	2.9	3.8					
L2SR			L		75	87	9		113	129	153					
22011			H		43	45	50		55	65	70					
			H ₁		80	80	8		80	90	94					
	╚╋╤╌╝┊ᆍ		kg		.0	1.0	1.0		1.5	3.0	4.0					
M2FR	G1		L		.0	150	160		1.5	200	230	290	310	350	400	400
G2FR									75							
H2FR			H ₁			63	70			85	95	110	155	145	160	180
112111	╜╘═╤╛╙│═╴		H ₂			112	117		151	155	163	180	195	240	260	293
	, L		kg			5.0	6.5)	9.0	11.0	16.0	21.0	35.0	39.0	75.0	77.0
									1				1		1	-
Thermosta	ats			Туре	V 2.05	ד ה	ype V 4	1.03	Туре	e V 4.05	Туре	e V 4.10	Туре	V 8.09	Туре	V 8.18
K = sensor	r of copper			К	N			Ν	к	N	к	N	к	N	к	N
N = sensor	r of high alloy S.S.					_				_	_	_				
Adjusting	cylinder	5 '	A	305	30			385	385	385	385	385	560	560		560
			В	405	40			525	525	525	525	525	740	740		740
Rod- and			C	210	19			190	390	380	490	515	710	745		800
	spiral-type						- 1	170	235	250	325	325	425	435	1	810
	th BSP connection		D	235	17			170								
	th BSP connection	▶ F +	E	235 22		_	22	22	22	22	28	25	28	25		34
	th BSP connection	▶ F +			2	2 2					28	25 49				
	th BSP connection	HANNA +	E	22	2	2 2 9 4	22 19	22	22	22	28		28	25		34 49 2
	th BSP connection → EI ← _	+ + + HAAAAAAAAAA	E F	22 49	2 4	2 2 9 2 4 1	22 19	22 49	22 49	22 49	28 49	49	28 49	25 49		34 49
	th BSP connection → EI ← _	+ +	E F G	22 49 ^{3/} 4	2 4 3/2	2 2 9 2 4 1 ' 2	22 19 '''	22 49 1	22 49 1	22 49 1	28 49 1	49	28 49 2	25 49 2		34 49 2

Closing Pressure Ratings for Valves and Sensors

Single-seated regulating valves with flanged ends and rod-type copper sensor with copper capillary tube (3 m)

	DN [mm]	15/6	15/9	15/12	15	20	25	32	40	50	65	80
	k _{vs} value	0.45	0.95	1.7	2.75	5	7.5	12.5	20	30	50	80
Δp_{max} for sensor type	2.05	20	13	9.3	5.3	1.9	0.9	-	-	-		
Fluid: saturated steam	4.05	40	38	24	15	6.7	-	-	-	-		
Type M1F, G1F, H1F	4.10	-	-	-	-	-	4.1	1.9	0.8	-		
	8.09	-	-	-	-	16	10	5.8	3.3	2.3		

Balanced, single-seated regulating valves with flanged ends and rod-type copper sensor with copper capillary tube (3 m)

		•							,		
	DN			15	20	25	32	40	50	65	80
	k _{vs} value			4	6.3	10	16	25	35	58	80
$\Delta \mathbf{p}_{max}$ for sensor type	4.05			16	16	16	16	9	8	6	4
Fluid: saturated steam	4.10			16	16	16	16	9	8	6	4
Type M1FBN, G1FBN, H1FBN	8.09			16	16	16	16	16	16	16	16
	8.18			16	16	16	16	16	16	16	16

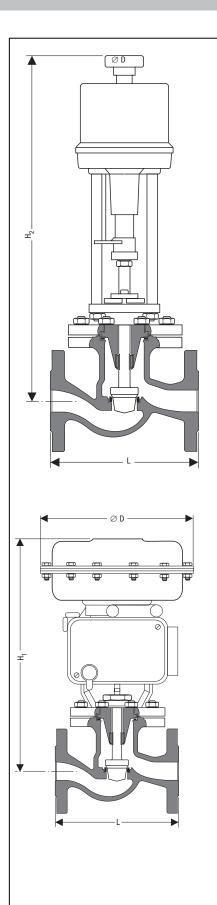
Single-seated regulating valves with screwed end connection and rod-type copper sensor capillary tube (3 m)

	BSP	¹ / ₂ / 6	¹ / ₂ /9	¹ / ₂ / 12	1/2	³ /4			
	k _{vs} value	0.45	0.95	1.7	2.75	5			
Δp_{max} for sensor type	2.05	16	16	-	6	2.9			
Fluid: saturated steam	4.05	16	16	-	16	9			
Type L 1S	4.10	16	16	-	16	9			

Double-seated regulating valves with screwed connection and rod-type copper sensor with copper capillary tube (3 m)

		BSP	1/2/6	1/ ₂ /9	¹ / ₂ /12	1/2	³ /4	1	1 ¹ / ₄	1 ¹ /2	2	
		k _{vs} value	0.45	0.95	1.7	2.75	5	7.5	12.5	20	30	
$\Delta \mathbf{p}_{max}$ for sensor type		2.05	-	-	-	-	-	-	7.8	-	-	
Fluid: water < 120 °C	Type L 2S	4.10	-	-	-	-	40	40	25	21	14	

Double-seated reverse-acting valve with screwed connection and rod-type copper sensor with copper capillary tube (3 m)


	BSP	1/ ₂	³ /4	1	1 ¹ / ₄	1 ¹ /2	2
	k _{vs} value	2.75	5	7.5	12.5	20	30
Δp_{max} for sensor type	2.05	15	11	7.1	4.6	-	-
Fluid: water < 120 °C	4.05	15	11	7.1	4.6	-	-
Type L2SR	4.10	-	-	-	-	2.7	1.8

Double-seated reverse-acting valve with flanged ends and rod-type copper sensor with copper capillary tube (3 m)

	DN [mm]	20	25	32	40	50	65	80	100	125	150
	k _{vs} value	5	7.5	12.5	20	30	50	80	125	215	310
Δp_{max} for sensor type	2.05	8.3	8	-	-	-	-	-	-	-	-
Fluid: water < 120 °C	4.05	8.3	8	7	-	-	-	-	-	-	-
Tye M2FR, G2FR, H2FR	4.10	-	-	-	6.6	5.3	5.8	6.7	-	-	-
	8.09	-	-	-	-	-	-	-	12.1	-	-
	8.10	-	-	-	-	-	-	-	12.1	9	7.5

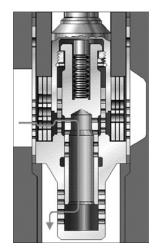
Three-way valves available on request.

Applications

Type V 701Control of liquids, gases and steam up to 250 °C.Ultra-compact pneumatic design thanks to directly
attached positioner.

Max. Differential Pressure Ratings [bar] for Actuator Sizing

k	DN	Lift	Pneu	matic act	uator		Elec	ctric actu	ator	
k _{vs} (m³/h)	[mm]	[mm]	IG 253 FS ¹)	IG 503 FS ¹)	IG 701 FS ¹)	AG 202.1	AG 204	AG 208	AG 210	AG 214
0.4			40			40	40			
0.63			40			40	40			
1	15, 20, 25		40			40	40			
1.6	13, 20, 23		40			40	40			
2.5			40			40	40			
4			40			40	40			
5.6	15		40			40	40			
6.3	20, 25		40			40	40			
8	20	20	40			40	40			
10	25, 32, 40		40			40	40			
14	25		40			24	40			
16	32, 40, 50		40			18	40			
22.4	32		40			8	36	40		
25	40, 50		40			8	36	40		
31.5	40		29	40		5	25	40		
40	50		26	40		4	22	40		
47.5	50		17	40		2	15	33	40	
40	65, 80			40			21	40		
63	65, 80, 100			37	40		12	28	37	40
80	65			22	34		7	17	22	34
100	80, 100	40		22	34		7	17	22	34
125	80			15	23		4	11	15	23
160	100			14	21		4	10	14	21
180	100			9	14		2	7	9	14
100	125, 150				33					33
160	125, 150	60			21					21
250	125, 150				13					13
355	150				8					8


Pneumatic actuators with spring range 2.0 – 4.8 bar. ¹) Spring to close

Dimensions [mm] and Weights [kg]

		DN	15	20	25	32	40	50	65	80	100	125	150
		arnothing D	Lift 20 mm					Li	ft 40 m	m	Lift 60 mm		
Length L			130	150	160	180	200	230	290	310	350	400	480
H ₁	IG 253	265	445	445	445	475	475	480	-	-	-	-	-
	IG 503	352	-	-	-	-	-	-	665	665	670	-	-
	IG 701	390	-	-	-	-	-	-	710	710	715	805	805
H ₂	AG 202.1	219	567	567	567	597	597	602	-	-	-	-	-
	AG 204	219	567	567	567	597	597	602	667	667	672	-	-
	AG 208	236	-	-	-	720	720	725	790	790	795	-	-
	AG 210	236	-	-	-	720	720	725	790	790	795	-	-
	AG 214	250	-	-	-	-	-	-	900	900	905	995	995
Weights	IG 253		16.5	17.5	18	23	24	29	-	-	-	-	-
	IG 503		-	-	-	-	-	-	56	60	76	-	-
	IG 701		-	-	-	-	-	-	68	72	88	111	143
	AG 102		12	13	13.5	18.5	19.5	24.5	-	-	-	-	-
	AG 204		17.5	18.5	19	24	25	30	46	50	66	-	-
	AG 208		-	-	-	27.5	28.5	33.5	49.5	53.5	69.5	-	-
	AG 210		-	-	-	28	29	34	50	54	70	-	-
	AG 214		-	-	-	-	-	-	58	62	78	102	134

ZK 29/14 DN 50 with lift restriction (optional extra)

Radial stage nozzle with tandem shut-off for ZK 213

Application

For the decrease of high pressure drops in industrial plants and power stations as:

- Level control valve
- Warm-up valve
- Level control valve
- Injection cooling valve
- Feedwater control valve
- Leak-off valve
- Start-up pot drain valve
- And more applications

Materials

Features

- Extremely wear resistant
- Excellent sealing and control characteristic (EN 12266-1 leakage rate A)

Gestra

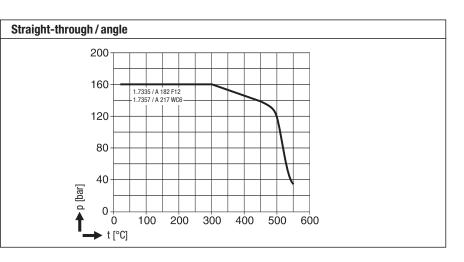
- Variable valve characteristics (linear and equal-percentage)
- Easy assembly and inspection of nozzle insert
- Tandem shut-off for ZK 313 and ZK 213
- Low sound level
- Different actuators available

Туре	Body 1)							
ZK 29, DN 25, 50	13 CrMo 4 4	(1.7335) / A182 F12						
ZK 29, DN 80, 100, 150	GS-17 CrMo 5 5	(1.7357) / A 217 WC6						
ZK 210	13 CrMo 4 4	(1.7335) / A 182 F12						
ZK 313	16 Mo 3	(1.5415)						
	C 22.8	(1.0460) / A 105						
	10 CrMo 9 10	(1.7383) / A182 F22						
	X 10 CrMo VNb 9 1	(1.4903) / A182 F91						
ZK 213	16 Mo 3	(1.5415)						
	WB 36	(1.6368)						
ZK 610 / 613	16 Mo 3	(1.5415)						
	10 CrMO 9 10	(1.7383)						

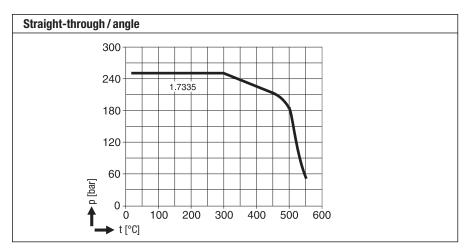
¹) Butt-weld ends of other material by welding of pipe ends possible.

Actuators

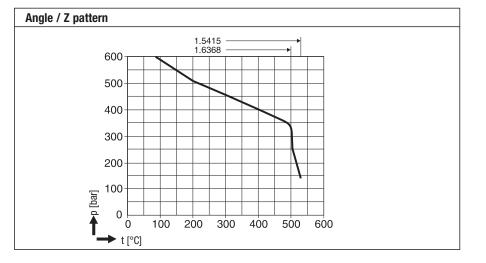
Туре	ZK 29	ZK 210	ZK 313	ZK 213	ZK 610 ZK 613
Handwheel	•		•	-	-
Electric rotary actuator	•	•	•	•	•
Electric linear actuator	•	•	•	•	•
Electro-hydraulic linear actuator	-	-	•	•	•
Pneumatic actuator	•	•	•	•	•
Part-turn actuator		-	•	•	•


Controls

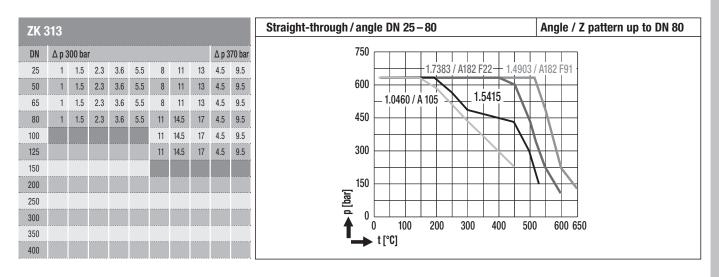
Complete PLC-based controls for applications such as injection cooler, leak-off valve etc. designed and manufactured according to customers' specifications.

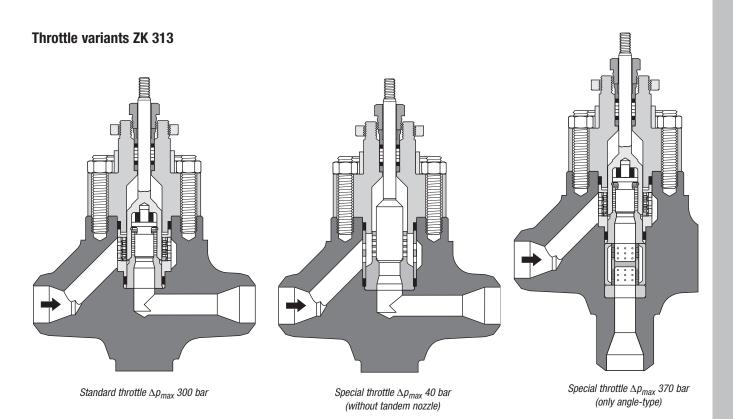

Technical Data

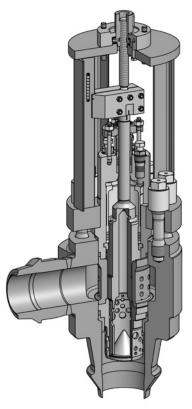
 K_{vs} -values [m³/h] (linear characteristics), design, pressure/temperature ratings


ZK 2	9			
DN	Q	Øp 100	bar	
25	0.7	1.4	2.1	
50	3	6	9	
65				
80	14	21	28	
100	20	33	46	
125				
150	70	100	130	
200				
250				
300				
350				
400				

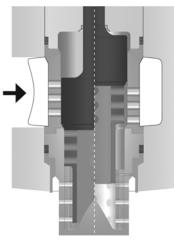
ZK 2	ZK 210											
DN	Q	Øp 100	bar	Øp 180 bar								
25	0.8	1.5	2.3	0.5								
50	3.3	6.5	10	2								
65												
80	9.5	18	28	5								
100												
125												
150												
200												
250												
300												
350												
400												


ZK	21	3 siz	es 1-	5						
DN	9	Øp 3	300 I	bar		Ø	⁰ p 56	60 ba	ar	
Bg.	1	2	3	4	5	1	2	3	4	5
25										
50										
65										
80	13					10				
100	13	26				10	20			
125	13	26	39			10	20	30		
150		26	39	60			20	30	46	
200			39	60	90			30	46	70
250				60	90				46	70
300					90					70
350										
400										




Adaptation of nominal sizes is possible

Technical Data


 K_{vs} -values [m³/h] (linear characteristics), design, pressure/temperature ratings

3-stage expansion with balanced pressure for ZK 613

Throttling unit A1/A2 with 4-stage expansion

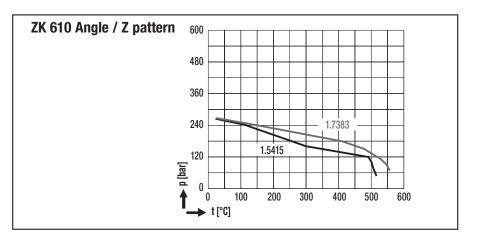
Application

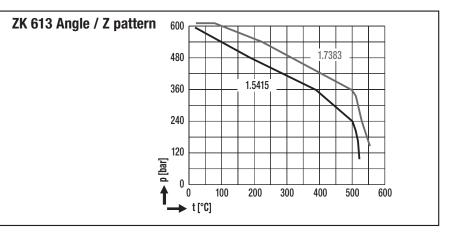
For large flowrates; used as

- Feedwater control valve
- Heating steam valve
- Start-up vessel drain valve

Features

 Excellent sealing and control characteristics

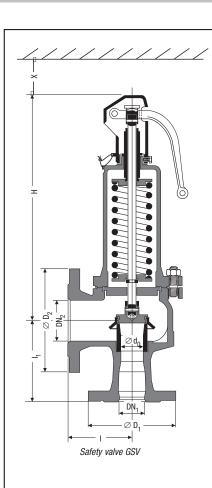

- Gestra
- Extremely wear resistant
- Valve designed on modular assembly principle
- Low sound level
- Easy assembly and inspection of nozzle insert
- Variable valve characteristics (linear and equal-percentage)
- k_{vs} range from 18 to 969 m³/h
- Leakage-free pressure-balanced design


Technical Data

Max. Kvs values [m3/h], designs, pressure/temperature ratings

ZK 610/ZK 613 Angle / Z pattern

$\Delta \mathbf{p}$ (bar)	40	80	120	150	>150
DN	1-stage	2-stage	3-stage	4-stage	5-stage
100	44 - 98	38 – 54	33 – 47	14 – 19	13 – 18
125	71 – 154	61 – 85	51 – 74	22 – 31	20 – 29
150	112 – 243	95 – 134	81 – 117	35 – 48	32 - 46
200	177 – 385	150 – 212	128 – 185	55 – 76	50 - 73
250	281 – 611	238 - 336	216 – 294	86 – 121	78 – 116
300	446 - 969	378 – 533	322 – 465	137 – 191	125 – 184



E-mail: info@ de.gestra.com · Fax: (04 21) 35 03-128

Online: www.gestra.com/Service & Support/Questionnaire for preparing offers

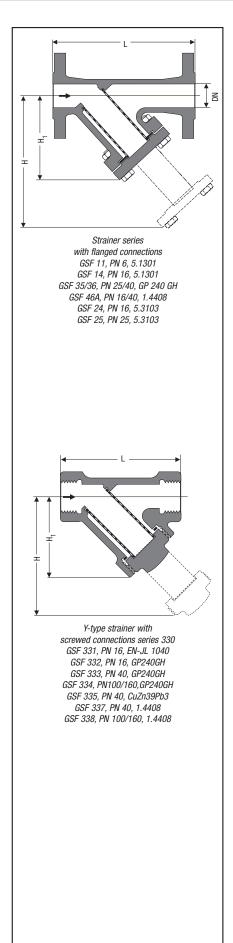
Application							On / Off
Fluid							Regulation
Design pressure [l	barg		Design tempera	ure	[°C]		PN/CL
Operating data		Load	1		2		3
Loading Flowrate		m [t/h] V [m ³ /h]					
Upstream pressure		p1 [bara]					
Downstream press							
Temperature		t1 [°C]					
			³ /h] manufacturer / type				
Pipeline size		valve inlet					
		valve outlet					
	_						
Valve Data		DIN		_			Characteristic 🖵 linear 🖵 equal-percentage
Body		Straight through	Angle		Z-form		Material
InletDN		FL	BWx		SW		Material
OutletDN		FL	BWX		SW		Material
Material inspection		EN 10204-3.1	EN 10204-3.2		Other		
Final inspection		EN 10204-3.1	EN 10204-3.2		Other		
Actuator data		Handwheel	Handwheel convertible to ele	ctric	rotary actuator		
		Electric rotary actuat	or manufacturer / type				
	Con	inection	B1-F10 (F14) EN ISO 5210		Other		
		Three phase current	Other: Voltage / Requency		V /	Hz: _	Time [sek.]
		Standard: 2 torque-, 2	position switches, 4-20 mA feedbac	k sig	nal		Positioner input signal 4-20 mA
Other							
		Pneumatic actuator	Fail safe		Spring to close		Spring to open
		Air supply[ba	arg] 🔲 Handwheel	_	Positioner 4-20 mA		Other
		3/2-way solenoid valve	e voltage / frequencyV /		Hz		
Accessories							
Your details:							Electric linear actuator manufacturer / type
Company							
Name / job title							🖵 Other
Telephone							
Fax							
E-mail							
Date							

Application

For use with steam, liquids, and non-corrosive gases and vapours.

Dimensions [mm] and Weights [kg]

$\text{DN}_1 \times \text{DN}_2$	20 x 32	25 x 40	32 x 50	40 x 65	50 x 80	65 x 100	80 x 125	100 x 150	125x200	150 x 250
d ₀	18	23	29	37	46	60	74	92	98	125
I	95	100	110	115	120	140	160	180	200	225
I ₁	85	105	115	140	150	170	195	220	250	285
H 1)	215	233	325	366	413	526	603	660	660	735
H ²)	-	234	331	372	419	529	606	663	663	735
Х	150	150	200	250	300	350	400	450	450	450
Weight	9	9	12	16	22	32	56	75	85	131


¹) 4421, 4425, 4422 ²) 4414

Discharge Capacities for Saturated Steam [kg/h]

Set pressure [bar]	DN 20	DN 25	DN 32	DN 40	DN 50	DN 65	DN 80	DN 100	DN 125	DN 150
0.2	85	139	222	361	558	949	1444	2232	2532	4120
0.5	134	219	348	566	875	1489	2265	3502	3973	6464
1.0	198	324	515	839	1296	2205	3355	5185	5883	9572
2.0	317	517	822	1339	2069	3520	5355	8277	9392	15280
3.0	427	697	1108	1804	2788	4744	7216	11153	12655	20589
4.0	533	870	1382	2250	3478	5918	9002	13913	15787	25685
5.0	638	1041	1656	2695	4165	7087	10780	16662	18906	30758
6.0	743	1213	1928	3138	4850	8252	12552	19401	22014	35815
7.0	845	1380	2193	3570	5518	9388	14281	22073	25046	40748
8.0	949	1550	2464	4010	6198	10545	16041	24794	28133	45770
9.0	1053	1719	2733	4450	6878	11701	17799	27510	31216	50786
10.0	1157	1889	3003	4889	7556	12856	19555	30225	34296	55797
12.0	1365	2228	3542	5766	8913	15163	23065	35650	40452	65812
14.0	1568	2560	4070	6625	10241	17423	26502	40962	46479	75619
16.0	1775	2898	4608	7501	11594	19725	30004	46376	52622	85612
18.0	1983	3237	5147	8378	12949	22030	33510	51795	58772	95617
20.0	2191	3577	5686	9256	14306	24339	37023	57224	64932	105639
22.0	2392	3906	6209	10107	15623	26579	40430	62491	70907	115361
24.0	2600	4246	6750	10987	16982	28892	43948	67928	77078	125399
26.0	2809	4586	7291	11869	18345	31211	47475	73380	-	-
28.0	3018	4928	7835	12753	19712	33537	51013	78848	-	-
30.0	3228	5271	8379	13640	21083	35869	54561	84333	-	-
32.0	3439	5615	8926	14530	22459	38210	58121	89835	-	-

Calculation according to DIN 3320 and AD Bulletin A2, TRD 421.

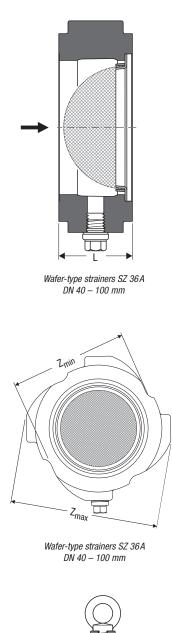
For discharge capacities for other set pressure ratings or fluids see data sheet.

Application

In piping systems upstream of equipment that is sensitive to dirt. For liquids, gases, steam and aggressive fluids.

Dimensions [mm] and Weights [kg] for Y-Type Strainers with Flanged Connections PN 6 - 40

IOI I-Type 3	anner 3	WIL		ung	cu u		1000	1011	511	•••	40					
Nominal size			15	20	25	32	40	50	65	80	100	125	150	200	250	300
Overall length		L	130	150	160	180	200	230	290	310	350	400	480	600	730	850
Overall height	GSF 11, 14	Н	135	160	180	215	240	250	285	330	395	455	525	650	870	1110
Overall height	GSF 11, 14	H1	90	100	115	135	150	160	180	215	240	280	330	405	540	680
Overall height	GSF 24, 25	Н	115	115	135	135	170	190	220	265	340	410	475	580	680	820
Overall height	GSF 24, 25	H1	75	75	90	90	110	120	140	165	220	260	300	360	470	560
Overall height	GSF 35	Н												587	718	829
Overall height	GSF 35	H1												380	445	511
Overall height	GSF 36	Н	121	121	145	146	200	201	287	292	335	415	485			
Overall height	GSF 36	H1	88	87	100	101	134	135	191	195	224	268	309			
Overall height	GSF 46A	Н	155	165	180	195	210	225	250	290	340	430	480	590	750	940
Overall height	GSF 46A	H1	100	110	120	125	150	165	185	190	200	280	310	390	455	665
Mesh size	GSF 11, 14	mm	1	1	1	1	1	1	1.25	1.25	1.6	1.6	1.6	1.6	1.6	1.6
Mesh size	GSF 24, 25	mm	1.25	1.25	1.25	1.25	1.25	1.25	2	2	2	2	2	2	2	2
Mesh size	GSF 35	mm												2	2	2
Mesh size	GSF 36	mm	1.25	1.25	1.25	1.25	1.25	1.25	2	2	2	2	2			
Mesh size	GSF 46A	mm	0.5	0.5	0.5	0.5	0.8	0.8	0.8	0.8	0.8	1.0	1.0	1.0	2.1	2.1
Plug	GSF 11, 14	G	3/8	3/8	³ /8	³ /8	3/8	³ /8	1/2	1/2	1/2	1/2	1/2	1⁄2	1/2	1/2
Plug	GSF 24, 25	G	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1	1	1	1	1	1
Plug	GSF 35	G												2	2	2
Plug	GSF 36	G	3/8	3/8	³ /8	³ /8	11⁄4	1¼	11⁄4	11⁄4	1½	1½	1½			
Plug	GSF 46A	М	10	10	10	10	12	12	14	14	14	16	16/20 ¹)	18	20	22
Weight	GSF 11	kg	2.5	3	4.5	5.5	7	9	13	19	26	38	54	110		
Weight	GSF 14	kg	3	4	5	7	9	12	16	21	30	43	61	121	154	255
Weight	GSF 24	kg	3.5	4	5.5	7	9	12	16	21	28	41	58	121	154	255
Weight	GSF 25	kg	3.5	4	5.5	7	9	12	16	21	32	47	64	133		
Weight	GSF 35	kg												120.6	184.9	269
Weight	GSF 36	kg	3	3.5	4.4	5.8	8.4	11.2	19.4	21.6	32.4	48.2	70			
Weight PN40	GSF 46A	kg	5	6	7.5	9	10.5	14	24	28	43	71	99	148	266	499
Weight PN16	GSF 46A	kg							20	24	29	53	75	125	239	408


1) PN 40: M20

Application

In piping systems upstream of equipment that is sensitive to dirt. For liquids, gases, steam and aggressive fluids.

Dimensions [mm] and Weights [kg] of Y-Type Strainers with Screwed Connections

Nominal size		G	³ /8	1/2	³ /4	1	11/4	11/2	2
Overall length	GSF 331	L	80	80	95	100	120	140	180
Overall length	GSF 332, 333, 335, 337	L	65	65	75	90	110	120	150
Overall length	GSF 334, 338	L	100	100	135	135	150	150	200
Overall height	GSF 331	H ₁	50	50	63	66	73	86	97
Overall height	GSF 331	Н	75	75	93	111	118	141	157
Overall height	GSF 332, 333, 335, 337	H ₁	48	48	56	64	76	84	102
Overall height	GSF 332, 333, 335, 337	Н	78	78	95	112	130	140	165
Overall height	GSF 334, 338	H ₁	60	60	85	85	95	95	115
Overall height	GSF 334, 338	Н	95	95	140	140	155	155	175
Mesh size			0.5	0.5	0.5	0.5	0.5	0.5	0.5
Weight	GSF 331		0.45	0.45	0.6	1.1	1.4	2.1	3.5
Weight	GSF 332, 333, 335, 337		0.35	0.35	0.5	0.8	1.2	1.4	2.5
Weight	GSF 334, 338		0.95	0.95	2.2	2.15	3.6	3.15	6.45

Wafer-type strainers SZ 36A DN 125 - 200 mm

Features

- Cylindrical body with drain plug
- Robust, hemispherical screen
- Body and strainer made from corrosion-resistant stainless steel
- Minimum pressure loss

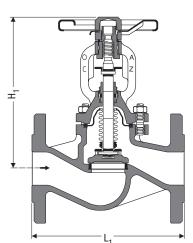
Application

In piping systems upstream of equipment that is sensitive to dirt. For liquids, gases, steam and aggressive fluids.

Dimensions and Weights for Wafer-Type Strainers

Types SZ 36A

Naminal size	[mm]	40	50	65	80	100	125	150	200
Nominal size	[Inch]	11/2	2	21/2	3	4	5	6	8
Overall length	L	31,5	40	46	50	60	90	106	140
•	Ø Zmin	83	96	110	128	151	-	-	-
[mm]	Ø Z _{max}	104	118	136	158	186	-	-	-
	Class 125/150	-	-	-	-	-	194	220	275
	PN 10/16	-	-	-	-	-	194	220	275
arnothing D	PN 25	-	-	-	-	-	194	226	286
	PN 40	-	-	-	-	-	194	226	293
	Class 300	-	-	-	-	-	216	251	308
Weight	[kg]	1	1.6	2.1	2.9	4.7	10	14	26


Pressure/Temperature Ratings *)

T		Mate	erial	Pressure / temperature						
Туре	PN/Class		ASTM	p / T [bar] / [°C]						
SZ 36 A	PN 40 / Class 300	1.4408	A351 CF8M	49.6 /200	35.8 / 200	24 / 550				

*) For more detailled pressure/temperature specifications as a function of the end connection refer to the data sheet.

Design

DN	40 – 100:	Body with centering cams suitable for sandwiching between flanges PN 6-40 and 100 class 150 / 300. Standard strainer, mesh size 1.25 mm
DN	125 – 200:	Cylindrical body Standard strainer, mesh size 1.6 mm
optio	nal	
DN	40 – 200:	Fine screen mesh size 0.25 mm

Bellows-sealed stop valve GAV...F with safety stuffing box

Description

Straight-through **bellows-sealed** stop valve with flanges to EN 1092. The valve is designed for shutting off and throttling neutral gases, vapours and liquids in all sectors of industry.

Material

Туре	DN	PN	EN	ASTM*)
GAV 54F	15 - 300	16	GJL-250	A48-40B
GAV 24F	15 - 300	16	GJS-400-18-LT	A536-60-40-18
GAV 25F	15 – 150	25	GJS-400-18-LT	A536-60-40-18
GAV 36F	15 – 40	40	P250GH	A216WCB
GAV 36F	50 - 300	40	GP240GH+N	A216WCB
GAV 46AF	15 – 200	40	1.4408	A351CF8M

*) Observe different physical and chemical properties to DIN material.

Specification

Туре	PN	Material	Temperature p / T (barg / °C)							
			20	200	250	300	350	400	450	
GAV 54F	16	GJL-250	16.0	12.8	11.2	9.6	-	-	-	
GAV 24F	16	GJS-400-18-LT	16.0	14.7	13.9	12.8	11.2	-	-	
GAV 25F	25	GJS-400-18-LT	25.0	23.0	21.8	20.0	17.5	-	-	
GAV 36F DN 250/300	40	GP240GH+N	40.0	22.0	21.0	19.0	18.0	17.0	13.0	
GAV 36F	40	P250GH/GP240GH+N	40.0	33.3	30.4	27.6	25.7	23.8	13.1	
GAV 46AF	40	1.4408	40.0	33.7	31.8	29.7	28.5	27.4	-	

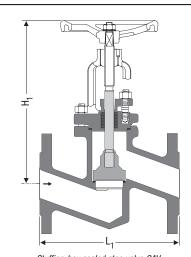
*) Observe different physical and chemical properties to DIN material.

Dimensions [mm]

PN 16-40 flanged ends	DN	15	20	25	32	40	50	65	80	100	125	150	200	250	300
Overall length	L	130	150	160	180	200	230	290	310	350	400	480	600	730	850
GAV 54F	H	175	178	184	205	210	235	246	282	304	390	408	570	606	660
GAV 24F, GAV 25F	H	211	214	220	238	243	266	290	324	348	460	479	570	606	660
GAV 36F	H	140	165	165	190	200	220	270	305	345	395	430	500	705	785
GAV 46AF	H	191	191	197	200	218	230	250	270	340	360	390	450	-	-

Weights [kg]

PN 16–40 flanged ends	DN	15	20	25	32	40	50	65	80	100	125	150	200	250	300
GAV 54F		3.1	4	4.7	7.3	7.7	10.2	17	22	32	54	70.5	130	230	328
GAV 24F		3.1	4.1	4.7	8.1	8.5	11	17	21	31	51	68.5	139	239	343
GAV 25F		3.1	4.1	4.7	8.2	8.5	11	17	28.9	400	65	89	-	-	-
GAV 36F		3.8	4.6	5.2	9.4	10.6	13.6	22	33	46	67	98	175	300	430
GAV 46AF		4	4.7	6.3	7.9	10	14	24	28	42	62	102	166	-	-


If the following differential pressures are exceeded in valves with standard plug, a pressure balance plug is required.

Pressure balance plug

	DN	65	80	100	125	150	200	250	300
GAV 54F, GAV 24F	Δp bar	-	-	-	-	-	12	9	6
GAV 25F	∆p bar	-	-	-	-	21	12	9	6
GAV 36F, GAV 46AF	Δp bar	-	-	-	33	21	14	9	6

Kvs Values [m³/h] of valves with throttling plug

10															
	DN	15	20	25	32	40	50	65	80	100	125	150	200	250	300
GAV 54F, GAV 24F, GAV 25F	PN 16, 25	4.8	8.3	11.9	19.9	27.1	43	75	117	172.3	171	204	457	714	1028
GAV 36F	PN 40	2.9	4.9	7.8	15	25	39	61	78	105	130	210	350	570	860
GAV 46AF	PN 40	7	9	13	21	27	34	60	85	112	212	305	435	-	-

Stuffing-box sealed stop valve GAV ...

Description

Straight-through **stuffing-box sealed** stop valve with flanges to EN 1092 or butt-weld ends (BW) to EN 12627. The valve is designed for shutting off and throttling neutral gases, vapours and liquids in all sectors of industry.

Material

Туре	DN	PN	EN	ASTM*)
GAV 36	15 - 40	40	P250GH	A105
GAV 36	50 - 150	40	GP240GH+N	A216WCB
GAV 126	50 - 200	63	GP240GH+N	A216WCB
GAV 130	50 - 200	100	GP240GH+N	A216WCB
GAV 136	15 - 25	160	P250GH	A105
GAV 136	32 - 200	160	GP240GH+N	A216WCB
GAV 136SE	15 - 50	160	16M03	A182F1
GAV 136SE	65 - 200	160	GP240GH+N	A216WCB
Up to 550 °C	<u>`</u>	·		
GAV 126	50 - 200	63	G17CrMo5-5	A217WC6
GAV 130	50 - 200	100	G17CrMo5-5	A217WC6
GAV 136	15 - 25	160	13CrMo4-5	A182F11
GAV 136	50 - 200	160	G17CrMo5-5	A217WC6
GAV 136SE	15 - 50	160	13CrMo4-5	A182F11
GAV 136SE	65 - 200	160	G17CrMo5-5	A217WC6

*) ASTM nearest equivalent is stated for guidance only. Physical and chemical properties comply with EN.

Specification

Tumo	PN	Material	Servi	ce press	ure p /	Inlet ten	nperatu	re T (bai	rg/°C)
Туре	FN	Widteria	20	300	400	450	500	530	550
GAV 36	40	P250GH/GP240GH+N	40.0	27.6	29.8	19.1	-	-	_
GAV 126	63	GP240GH+N	63	44	38	21	-	-	-
GAV 130	100	GP240GH+N	100	69	60	33	-	-	-
GAV 136, GAV 136SE	160	P250GH/GP240GH+N	160	110	95	53	-	-	-
GAV 136SE	160	16M03	160	137	120	110	71	36	-
GAV 126	63	G17Cro5-5	63	63	57	53	41	23	15
GAV 130	100	G17Cro5-5	100	100	90	84	65	37	23
GAV 136, GAV 136SE	160	13CrMo4-5/G17Cro5-5	160	160	144	135	104	59	37

Dimensions [mm]

DN	15	20	25	32	40	50	65	80	100	125	150	200
L	130	150	160	180	200	230	290	310	350	400	480	-
H	220	230	230	280	285	300	348	405	457	515	540	-
DŇ	15	20	25	32	40	50	65	80	100	125	150	200
L	210	230	230	260	260	300	340	380	430	500	550	650
H	230	230	230	310	310	315	415	500	550	620	625	855
DŇ	15	20	25	32	40	50	65	80	100	125	150	200
L	150	150	160	180	210	250	420	460	510	600	650	750
H	230	230	230	310	310	315	415	500	550	620	625	855
DN	15	20	25	32	40	50	65	80	100	125	150	200
	4.3	5.5	6.2	9.6	10.5	13.5	21.3	33.3	46	68	95	175
	-	-	-	-	-	25	40	55	85	125	150	260
	-	-	-	-	-	26	45	58	88	135	170	285
	9.5	11	12.5	16.5	20.5	26	45	60	90	135	175	320
DN	15	20	25	32	40	50	65	80	100	125	150	200
	6.5	7.5	8.5	11	13.5	17	30	45	72	110	165	215
	L ₁ H ₁ DN L ₁ H ₁ L ₁ H ₁ DN	L ₁ 130 H ₁ 220 DN 15 L ₁ 210 H ₁ 230 DN 15 L ₁ 150 H ₁ 230 DN 15 L ₁ 150 H ₁ 230 DN 15 S DN 15 L ₁ 150 H ₁ 230 DN 15 L ₁ 150 H ₁ 230 H ₁ 25 H ₁	L₁ 130 150 H₁ 220 230 DN 15 20 L₁ 210 230 H₁ 230 230 DN 15 20 L₁ 210 230 DN 15 20 L₁ 230 230 DN 15 20 L₁ 230 230 BN 15 20 JN 15 20	L 130 150 160 H ₁ 220 230 230 DN 15 20 25 L ₁ 210 230 230 DN 15 20 25 L ₁ 230 230 230 DN 15 20 25 L ₁ 150 150 160 H ₁ 230 230 230 DN 15 20 25 L ₁ 55 6.2 - - - - - 9.5 11 12.5 DN DN 15 20 25	L₁ 130 150 160 180 H₁ 220 230 230 280 DN 15 20 25 32 L₁ 210 230 230 230 H₁ 230 230 230 310 DN 15 20 25 32 L₁ 150 150 160 180 H₁ 230 230 230 310 DN 15 20 25 32 L₁ 150 150 160 180 H₁ 230 230 230 310 DN 15 20 25 32 L₁ 150 150 6.2 9.6 - - - - - J - - - - J 5.5 6.2 9.6 - - - - J	L₁ 130 150 160 180 200 H₁ 220 230 230 280 285 DN 15 20 25 32 40 L₁ 210 230 230 260 260 H₁ 230 230 230 230 310 310 DN 15 20 25 32 40 L₁ 230 230 230 310 310 DN 15 20 25 32 40 L₁ 150 160 180 210 H₁ 230 230 230 310 310 DN 15 20 25 32 40 4.3 5.5 6.2 9.6 10.5 - - - - - - - - - - - - - - - -	L₁ 130 150 160 180 200 230 H₁ 220 230 230 280 285 300 DN 15 20 25 32 40 50 L₁ 210 230 230 230 260 260 300 L₁ 210 230 230 230 230 260 260 300 L₁ 230 230 230 230 310 310 315 DN 15 20 25 32 40 50 L₁ 150 150 160 180 210 250 L₁ 230 230 230 230 310 315 DN 15 20 25 32 40 50 L₁ 230 230 230 230 310 310 315 DN 15 20 25 32 40	L₁ 130 150 160 180 200 230 290 L₁ 220 230 230 230 280 285 300 348 DN 15 20 25 32 40 50 65 L₁ 210 230 230 230 260 260 300 348 DN 15 20 25 32 40 50 65 L₁ 210 230 230 230 310 315 415 DN 15 20 25 32 40 50 65 L₁ 150 150 160 180 210 250 420 H₁ 230 230 230 310 310 315 415 DN 15 20 25 32 40 50 65 4.3 5.5 6.2 9.6 10.5 13.5 21.3	L₁ 130 150 160 180 200 230 290 310 L₁ 220 230 230 230 280 285 300 348 405 DN 15 20 25 32 40 50 65 80 L₁ 210 230 230 230 260 260 300 348 405 DN 15 20 25 32 40 50 65 80 L₁ 210 230 230 230 310 315 415 500 DN 15 20 25 32 40 50 65 80 L₁ 150 150 160 180 210 250 420 460 L₁ 230 230 230 310 310 315 415 500 DN 15 20 25 32 40 50 6	L1 130 150 160 180 200 230 290 310 350 L1 130 150 160 180 200 230 290 310 350 DN 15 20 230 230 280 285 300 348 405 457 DN 15 20 25 32 40 50 65 80 100 L1 210 230 230 260 260 300 344 405 457 DN 15 20 25 32 40 50 65 80 100 L1 230 230 230 310 310 315 415 500 550 DN 15 20 25 32 40 50 65 80 100 L4 230 230 230 310 310 315 415 500 550 </th <th>L1 130 150 160 180 200 230 290 310 350 400 H1 220 230 230 280 285 300 348 405 457 515 DN 15 20 25 32 40 50 65 80 100 125 L1 210 230 230 260 260 300 340 380 430 500 L1 230 230 230 310 310 315 415 500 550 620 DN 15 20 25 32 40 50 65 80 100 125 L1 150 160 180 210 250 420 460 510 600 H1 230 230 310 310 315 415 500 550 620 DN 15 20 25 32</th> <th>L1 130 150 160 180 200 230 290 310 350 400 480 H1 220 230 230 280 285 300 348 405 457 515 540 DN 15 20 25 32 40 50 65 80 100 125 150 L1 210 230 230 260 260 300 340 380 430 500 550 L1 230 230 230 310 310 315 415 500 550 620 625 DN 15 20 25 32 40 50 65 80 100 125 150 L1 150 160 180 210 250 420 460 510 600 650 L1 120 25 32 40 50 65 80 100</th>	L1 130 150 160 180 200 230 290 310 350 400 H1 220 230 230 280 285 300 348 405 457 515 DN 15 20 25 32 40 50 65 80 100 125 L1 210 230 230 260 260 300 340 380 430 500 L1 230 230 230 310 310 315 415 500 550 620 DN 15 20 25 32 40 50 65 80 100 125 L1 150 160 180 210 250 420 460 510 600 H1 230 230 310 310 315 415 500 550 620 DN 15 20 25 32	L1 130 150 160 180 200 230 290 310 350 400 480 H1 220 230 230 280 285 300 348 405 457 515 540 DN 15 20 25 32 40 50 65 80 100 125 150 L1 210 230 230 260 260 300 340 380 430 500 550 L1 230 230 230 310 310 315 415 500 550 620 625 DN 15 20 25 32 40 50 65 80 100 125 150 L1 150 160 180 210 250 420 460 510 600 650 L1 120 25 32 40 50 65 80 100

If the following differential pressures are exceeded in valves with standard plug, a pressure balance plug is required.

Pressure balance plug

	DN	65	80	100	125	150	200
GAV 36	A m how	-	-	-	33	21	-
GAV 126, GAV 130, GAV 136, GAV 136SE	Δp bar	110	70	44	33	21	14

Kvs Values [m³/h]

	DN	15	20	25	32	40	50	65	80	100	125	150	200
GAV 36	PN 40	3.4	5.6	8.5	18	28	44	65	95	150	220	280	-
GAV 126, GAV 130, GAV 136	PN 63, 100, 160	2.7	4	5	16	17	26	50	80	125	200	280	580

Page

As Europe's largest provider of boiler equipment, GESTRA meets all the needs of today's market: a broad spectrum of products, faster time-to-market for new products, more performance for less money and customized solutions and services. This unique market position is based on extensive experience acquired over more than 50 years in the design and manufacture of high-quality safetyoriented control equipment. To compete in a truly global market, GESTRA is continuing to consolidate the domestic market and, simultaneously, stepping up its efforts to deepen international activities outside Europe in order to optimize and extend its network of sales and marketing organizations all over the world. GESTRA technology is tailored to your needs, offering you the right solution – be it conventional or bus-based – for your land or marine applications. Hight-tech for enhanced safety and reliability!

Industrial Electronics

Overview	86
The benefits of SPECTOR <i>bus</i> GESTRA Steam boiler equipment with BUS technology	
The benefits of SPECTOR <i>module</i> / SPECTOR <i>module</i> Touch	
GESTRA Condensate monitoring	
How to read type codes	92 – 93
GESTRA Boiler equipment	
Type approval nos. at a glance	
Equipment for steam & hot water boilers	
Level control, monitoring and limitation	
Basics of SPECTORbus.	
Level limitation (low and high level alarms) SPECTORbus	
Level control SPECTORbus	
Control & visual display system SPECTOR control	106 – 107
Basics of SPECTOR <i>module</i>	
Self-monitoring low/high-level alarms SPECTORmodule	110 – 111
High level limiters SPECTOR module	112 – 113
Modulating level control SPECTOR module	114 – 115
Level control SPECTOR compact	116 – 117
Accessories for liquid-level alarms fitted in external level control pots	
Level control for very high pressure/temperature ranges	
Level electrodes and controls for marine applications	

Safety, reliability, availability and economy have always enjoyed top priority in boiler operation. To an increasing extent, another aspect is being added for the plant operators: process automation and visualization.

To meet these stringent requirements, GESTRA AG has – for more than five decades now – been working exclusively with electrode systems that are low in maintenance and wear; in contrast to other systems, they function entirely without moving parts, which leads to high service lifetimes and very low failure rates.

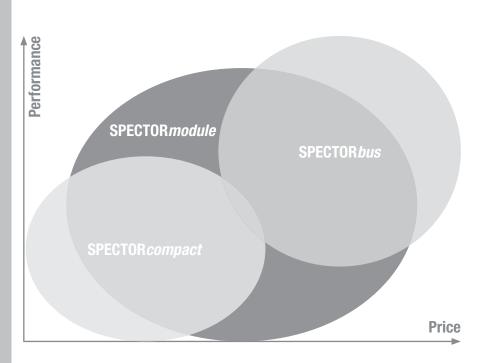
By now, these GESTRA electrode systems are being applied in many different areas of the energy supply centre. In addition to the boiler equipment itself, these units are also used in condensate tanks, pump-driven return installations, steam regenerators etc. With a low response sensitivity of $> 0.5 \ \mu$ S/cm, even operation with demineralization equipment does not pose a problem. In general, the entire energy supply centre is only as effective as its weakest element. Many plant operators, designers and manufacturers are therefore no longer prepared to enter into any compromises in this area.

Nothing is as cost-intensive as a production outage.

Over and above these aspects, the requirements for the equipment of an energy supply centre tend to differ greatly. The requirements can no longer be met with one and the same system, as was perhaps the case only 10 to 15 years ago. The wishes expressed by the customers have always been the driving force behind GESTRA's innovative developments, and this is still the case today.

There is no longer a "one size fits all" system for customer requirements!

Another step forward was taken for the GESTRA equipment components through the introduction of the SPECTOR family, which focuses on meeting the customer's specific needs. The family now consists of SPECTOR*compact*, SPECTORbus and SPECTOR*module*.


SPECTORcompact

SPECTOR*compact* comprises systems that facilitate the easy replacement of existing self-acting systems. Measurement values are transferred as standard 4–20 mA signals or can be incorporated into existing controllers via integrated volt-free relay contacts without any need for additional electronic control units. If necessary, controllers are of course also available for implementing the entire controlled systems.

SPECTOR bus

SPECTOR*bus* offers easy integration into automation concepts by means of remote data transmission and parameter setting.

Thanks to many technical innovations, the design, erection and commissioning of plants is simplified considerably. This is a system that has been tried and tested over more than 10 years and has set new standards in boiler equipment. Now, with SPECTORbus, a large amount of process-relevant data can be transmitted for the first time. Further information is given in the separate brochure "Equipment for Energy Supply Centres – SPECTOR*bus*"

SPECTOR module

The SPECTORmodule line represents a systematic advancement of the proven GESTRA technology. Using the most modern electronic components and constituting the state of the art, these systems were designed with a focus on ease of handling, reducing the installation expense, and providing cost-effective solutions.

New units were developed as demand-oriented solutions for boiler automation. The scope of the parameterization was limited to the most essential functions to ensure intuitive operating of the controllers.

Depending on the task at hand, the customer can choose between the system variants SPECTOR*module* and SPECTOR*module* Touch.

SPECTOR*module* concentrates on the key functions, and the parameters are set by means of a rotary pushbutton.

SPECTOR module Touch

The SPECTOR*module* Touch version focuses on the essentials: the main functions and a clear, intuitive user interface.

With this series, the controller was separated from the operating unit, which means that the laborious wiring for sensors, feedback, limits, valve actuation etc in the control cabinet door is no longer required.

Universal controllers generally entail a large number of parameter settings, making the operating workflow and the setting of parameters more difficult.

In the development of the SPECTOR*module* Touch series, clear and easily understandable operating was a top priority.

Thanks to the intuitive user interface, the operator can enter the parameters rapidly and reliably. The colour touch display leads directly to the parameterization level. A virtual numerical keypad is shown, so that values can be changed or functions selected.

Care was taken to ensure that the various controllers always have the same clear, uniform operating structure.

To give customers and plant operators greater convenience, we design our systems with a focus on

- optimized system interfaces
- minimized maintenance

GESTRA SPECTORbus

1. No risk of overheating:

- Patented thermal barrier in cylindrical body above electrode flange
- Electronic temperature protection in the terminal box
- Patented connection arrangement
- Minimization of thermal effects

2. Easy installation and maintenance:

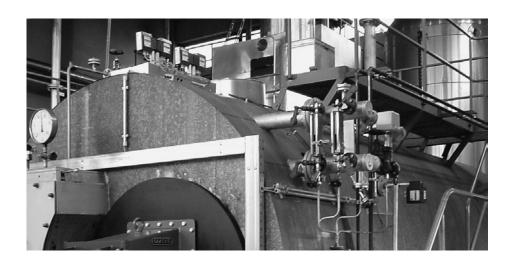
- Freely accessible connecting terminals at the control units
- Large terminal box makes for easy installation

3. Reduced cost:

- Minimized inventory and spares levels
- Only a single cable needed between boiler and control cabinet

- Low installation and material costs
- Reduced cost for control cabinets
- Cabling connection male/female, readymade cables
- Only five input terminals
- Only one cable in the control cabinet for all sensing units
- Optimum system integration without additional cable installations

4. Increased safety:


- Active cable monitoring with more than twice the previous maximum cable length
- Easy to integrate into visual display and auto mation systems

Gestra

Less is more!

From little acorns big oaks grow. With the BUS technology by GESTRA, a new era has begun in the measurement and control of boiler systems:

- Less cabling
 - (preconfigured cable connection)
- Less installation work
- Less space needed in control cabinets
- Fewer control units
- Less wear and tear
- Less maintenance
- Fewer production outages
- Lower costs
- More control
- Better process overview
- Higher availability
- Enhanced reliability
- Greater plant efficiency
- Better utilization of energyLonger plant operation times

GESTRA Steam Boiler Equipment with BUS Technology e. g. for operation without constant supervision (72 hrs) as per EN 12953

Gestra 3 5 11 26 27 24 25

9

GESTRA Steam Boilder Equipment SPECTORbus

- "SMART" level electrode NRG 16-40 for 1 low-water level limiting, level switch NRS 1-40, SIL 2. NRS 1-40.1
- 2 Separate "SMART" level electrode NRG 16-41 for high level alarm, level switch NRS 1-41, SIL 2
- 3 Water level control with high level alarm, remote indication of water level: level electrode NRG 26-40, level controller NRR 2-40, operating unit URB 2 and control valve V 701
- 4 Direct water level indicator
- 5 Conductivity control & indication, conductivity limit switch and continuous blowdown control: conductivity electrode LRG 16-4., continuous blowdown controller LRR 1-40, continuous blowdown valve BAE 46.1
- 6 Sample cooler

- 7 Flash vessel
- Blowdown cooler
- Automatic intermittent blowdown: intermittent blowdown valve MPA, pilot valve
- 10 Blowdown receiver
- Pressure limiter DSF
- Pressure transducer DRT
- 13 Pressure indication
- Safety valve GSV
- Safety temperature monitor/limiter, 15 resistance thermometer TRG 5, temperature switch TRS 5-40, SIL 2, level switch NRS 1-40.1
- 16 Thermometer

- 17 Strainer
- 18 Vent valve
- Shut-off valve and bypass valve
- operated control valve V 701
- 22 Feedwater pump
- monitoring
- 24 Burner control
- 25 Burner
- 26 Superheater
- 27 Economiser

7 13

- 20 Non-return valve
- 21 Electrically/pneumatically
- 23 Feedwater/condensate

SPECTOR*module*

- Compact design
- Easily accessible connection terminals
- Supply voltage 24 VDC, i. e. independent of national supply voltages
- Supply via reliable networks possible without additional components (inverters)
- Intuitive operating using rotary pushbutton
- Indication by 7-segment digital display

SPECTOR module Touch

- Separation of power components and operating level, i. e. no elaborate wiring needed in the control cabinet door.
- Use of a colour touch display for intuitive, clear operating that is language-neutral
 - Level: Intuitive operating through touch display incl. visualization of the actual, set and control values
 - Trend plot
 - PI control response
 - Actual-value output 4-20 mA
 - Conductivity: D Intuitive operating through touch display incl. visualization of the actual, set and control values
 - Type approval as per "WÜ 100" (VdTÜV bulletin on water monitoring facilities)
 - Integrated purging pulse
 - Integrated program-controlled intermittent blowdown
 - Interlocking input to prevent simultaneous operation of two or more intermittent blowdown valves at one blowdown receiver

The 24 VDC version offers the following advantages:

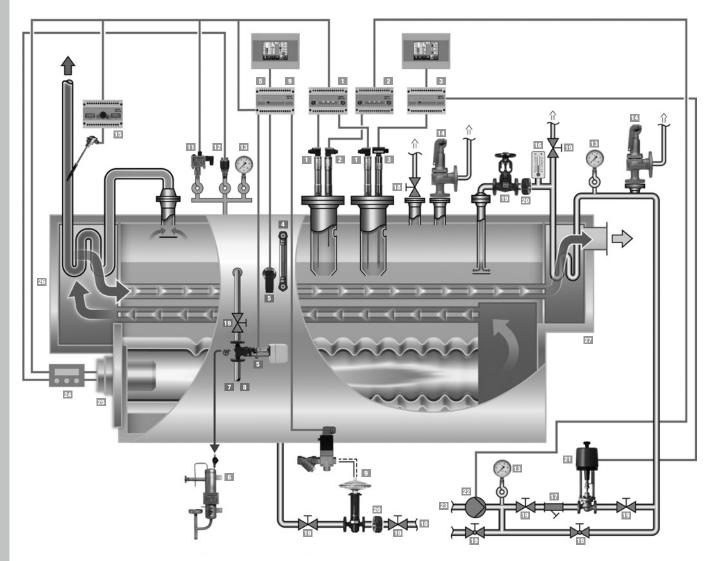
- Uniform DC power supply for sensors and electronic control units alike
- Through that, improved EMC control
- Independence from different national mains voltages
- Avoidance of the need for uncommon (and costly) device variants
- Easily adaptable operation with reliable voltage supplies

Only 230 VAC available as the supply voltage? No problem, we have tailormade power supply units to bridge the gap.

Total power consumption of connected equipment

< 12 W	[3]][€] < 60 W	< 120 W
< 12 W	< 60 W	< 120 W

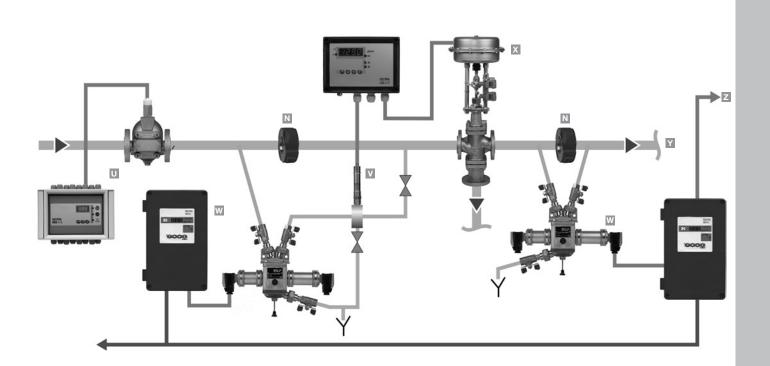
The total power output of the connected equipment determines which power supply unit is used and/ or whether the existing 24 V DC supply system can accept the additional load.


The 24 V DC versions of the sensing units LRGT and NRGT have established themselves and facilitate a standardized voltage supply arrangement.

Sample calculation for a 24 V power supply unit:

Unit	Power	Qty	Total consumption
NRS 1-50, 1E/2E	7 W	1	7 W
NRS 1-51	7 W	1	7 W
NRGT 26-1	5 W	1	5 W
NRR 2-52 with	5 W	1	5 W
URB 50	8 W	1	8 W
LRGT 16-1	3 W	1	3 W
LRR 1-52 with	5 W	1	5 W
URB 50	8 W	1	8 W
MV 340c	8 W	1	8 W
			Sum 56 W

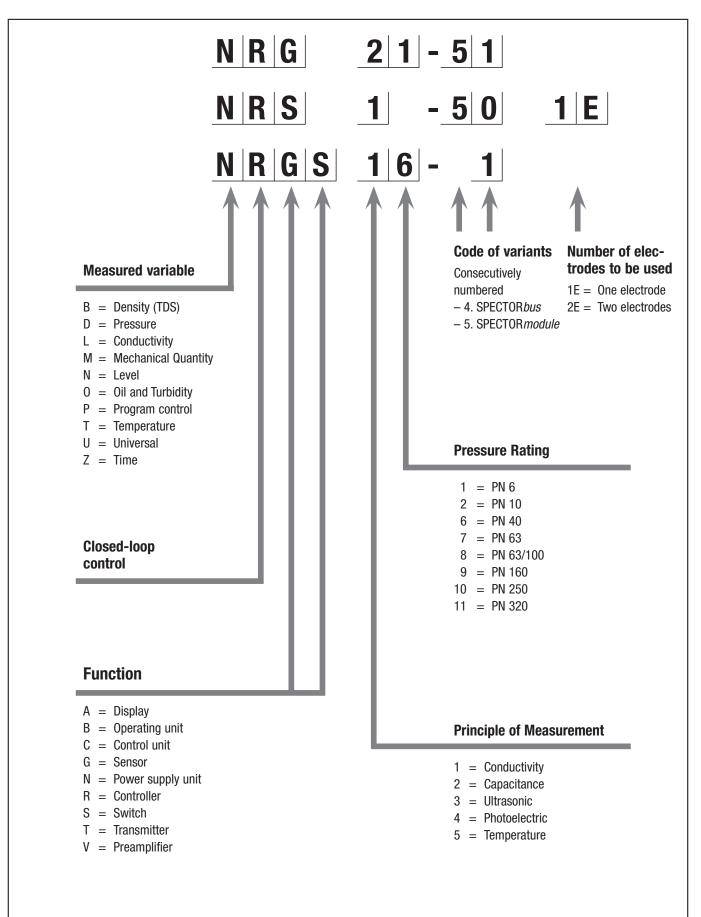
m

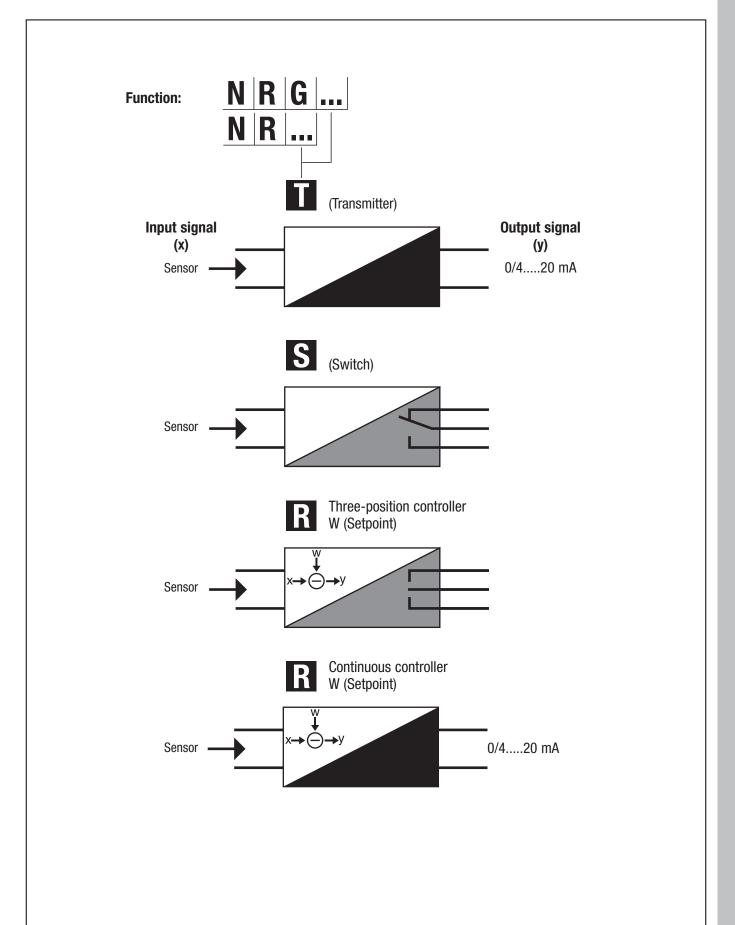


GESTRA Steam Boilder Equipment SPECTOR module

- SMART" level electrode NRG 16-50 for low-water level limiting, level switch NRS 1-50, SIL 3
- Separate "SMART" level electrode NRG 16-51 for high level alarm, level switch NRS 1-51, SIL 3
- Water level control with high level alarm, remote indication of water level: level electrode NRG 26-21, level controller NRR 2-52 and control valve V 701
- Direct water level indicator
- Conductivity control & indication, conductivity limit switch and continuous blowdown control: conductivity electrode LRGT 16-2, continuous blowdown controller LRR 1-53, continuous blowdown valve BAE
- 6 Sample cooler

- 7 Flash vessel
- Blowdown cooler
- Automatic intermittent blowdown: intermittent blowdown valve MPA, pilot valve
- 10 Blowdown receiver
- Pressure limiter DSF
- 12 Pressure transducer DRT
- 13 Pressure indication
- Safety valve GSV
- Is Safety temperature monitor/limiter, resistance thermometer TRG, temperature switch TRS 5-50, SIL 3
- 16 Thermometer


- 17 Strainer
- 18 Vent valve
- 19 Shut-off valve and bypass valve
- 20 Non-return valve
- 21 Electrically/pneumatically operated control valve V 701
- 22 Feedwater pump
- Feedwater/condensate monitoring
- 24 Burner control
- 25 Burner
- 26 Superheater
- 27 Economiser


Steam and Condensate System

- Non-return valve RK 86 with special spring 20 mbar
- Steam trap with trap monitoring equipment, test chamber VKE, electrode NRG 16-19, test station NRA 1-3 for up to 16 steam traps
- Contamination detectors (ingress of acids, alkalis, etc.): Conductivity electrode LRG 16-9, Conductivity switch LRS 1-7a
- Monitoring for the ingress of foreign substances such as oil, grease etc.: Oil and turbidity detector OR 52/5
- Pneumatic three-way control valve for the discharge of contaminated condensate
- Condensate receiver tank
- Z Safety circuit

GESTRA Type Designations for Boiler Controls

GESTRA Type Designations for Boiler Controls

Ω

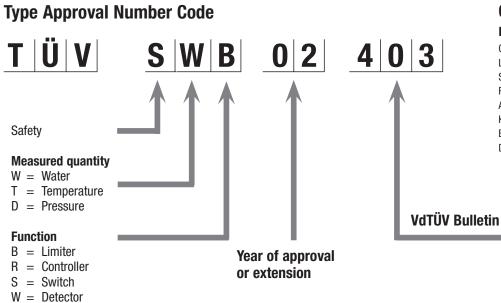
GESTRA Boiler Equipment acc. to EN 12953-6 (D)

Gestra

Function	Required	Recommended	Section	Equipment type	Type approval no.
		SPECTOR			
Water level limiters, two	yes	bus	HPSB 4.3 5.6.1	NRG 16-40 / NRS 1-40 "SMART" equipment ("high integrity design") with periodic self-testing routine (loss of redundancy, relay contacts)	EG BAF-MUC-13-07-103881-002 TÜV SWB/SHWS 12-403 SIL 2
		module	HPHWI 6.5.1	NRG 16-50 / NRS 1-50 "SMART" equipment ("high integrity design") with periodic self-testing routine (loss of redundancy) and positive-action safety relay	EG IS-TAF-MUC-0908-103881-005 TÜV SWB 14-422 SIL 3
Water level limiter / High level alarm in BUS system	yes	bus	HPSB 4.3 5.6.1 5.5.2	NRG 16-40 / NRS 1-40 NRG 16-41 / NRS 1-41 "SMART" equipment ("high integrity design") with periodic self-testing routine (loss of redundancy, relay contacts)	EG BAF-MUC-13-07-103881-002 TÜV SWB/SHWS 12-403 SIL 2
Water level limiter / High level alarm / Temperature limiter in BUS system	yes	bus	HPSB 4.3 5.6.1 5.5.2 5.6.3	NRG 16-40 / NRG 16-41.1 / NRS 1-40.1 TRG 5-6. / TRV 5-40 / NRS 1-40.2 "SMART" equipment ("high integrity design") with periodic self-testing routine (loss of redundancy, relay contacts)	EG BAF-MUC-13-07-103881-004 TÜV SWB/SHWS STW (STB) 13-413 SIL 2
Water level limiter with closed loop control and high level alarm	yes	module	HPSB 4.3 5.6.1 5.5.1 5.5.2	NRG 16-36 / NRS 1-50 / NRS 1-54 "SMART" limiter ("high integrity design") with periodic self-testing routine (loss of redundancy) and positive-action safety relay	EG IS-TAF-MUC-09-08-103881-005 TÜV SWB 14-422 SIL 3 TÜV WR 15-424 (Regler)
On-off water level limiter with high level	yes	compact	HPSB 5.5.1	NRGS 16-1 On-off control	TÜV WRB 11-388
alarm		bus	5.5.2	NRG 16-42 / NRS 1-42 Fixed switchpoints	TÜV WR 13-399
		module		NRG 16-52 / NRS 1-54 Fixed switchpoints	TÜV WR 15-424
		bus		NRG 26-40 / NRS 2-40 Variable switchpoints	TÜV WR 13-399
		module		NRG 26-1 / NRS 2-50 // -51 Variable switchpoints	TÜV WR 12-425
Continuous water level limiter with high level	yes	compact	HPSB 5.5.1	NRGT 26-1 with continuous monitoring Current output 420 mA	TÜV WR 12-391
alarm		bus	5.5.2	NRG 26-40 / NRR 2-40 / URB	TÜV WR 13-399
		module	1	NRG. 26-1 / NRR 2-50 // -51	TÜV WR 12-425
				NRG. 26-1 / NRR 2-52 // -53	TÜV WR 12-427
Separate high level alrm		bus	Not required acc. to EN.	NRG 16-41 / NRS 1-41 "SMART" equipment ("high integrity design") with periodic self-testing routine (loss of redundancy, relay contacts)	EG BAF-MUC-13-07-103881-002 TÜV-SHWS-13-423 SIL 2
		module	Required for instal- lations to TRD 72h	NRG 16-51 / NRS 1-51 "SMART" equipment ("high integrity design") with periodic self-testing routine (loss of redundancy) and positive-action safety relay	EG IS-TAF- MUC-09-08-103881-006 TÜV SHWS 14-423 SIL 3
				NRG 16-4 / NRS 1-52 "Conventional design"	TÜV WR 15-424
Safety temperature limiter	yes	bus	HPSB 4.3 5.6.3 HPHWI	TRG 5-6. / TRV 5-40 / NRS 1-40.1 "SMART" equipment ("high integrity design") with periodic self-testing routine (loss of redundancy, relay contacts)	EG BAF-MUC-13-07-103881-004 TÜV SWB/SHWS STW (STB) 13-413 DIN CERTO STW/STB 1179-13 SIL 2
		module	6.5.2.2	TRG 5-6. / TRS 5-50 "SMART" equipment ("high integrity design") with periodic self-testing routine (loss of redundancy) and positive-action safety relay	EG Z-IS-TAF-MUC-12-10-103881-009 DIN CERTO STW/STB 1230-12 SIL 3

 $\mathsf{HDD} = \mathsf{High}\mathsf{-}\mathsf{pressure}$ steam boiler, $\mathsf{HDHW} = \mathsf{High}\mathsf{-}\mathsf{pressure}$ hot water installation

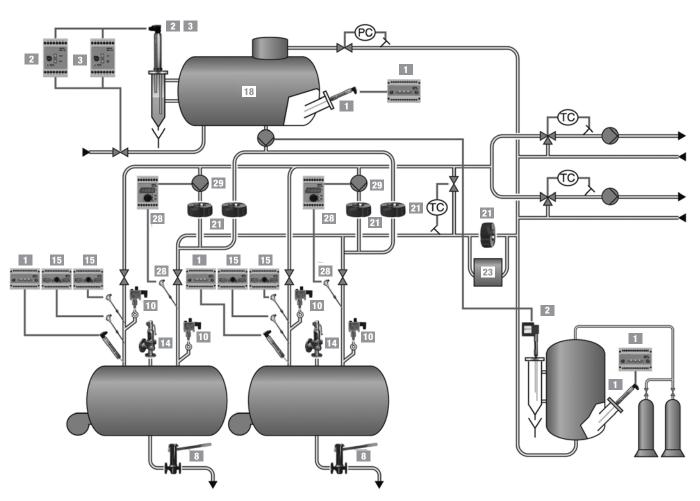
GESTRA Boiler Equipment acc. to EN 12953-6 (D)


Function	Required	Recommended	Section	Equipment type	Type approval no.
		SPECTOR			
Raising the return temperature	yes	bus	HPHWI 6.1.4	TRG 5-6. / TRV 5-40 / TRS 5-40	TÜV STW 1182-12 DIN CERTO TR/TW 1182-12
		module	6.5.2.3	TRG 5-6. / TRS 5-52	DIN CERTO TR/TW 1230-12
Safety pressure limiter	yes		HPSB 4.3 5.6.2 HPHWI	DSFF 001 High integrity design	www.tuev.com 0000006024
			6.5.2.1		
Conductivity limit detector for boiler	yes	module	HPSB 4.8.1	LRG 16-4 / LRS 1-50 LRG 16-9	EG Z-IS-TAF-MUC-12-08-103881-007 TÜV WÜL 12-018
water *)				LRG 16-4 / LRG 16-9 / LRGT 1 / LRR 1-50 / LRR 1-51 / LRR 1-52 / LRR 1-53	TÜV WÜL 12-017 EG Z-IS-TAF-MUC-12-08-103881-008
Automatic conti- nuous boiler blow-	yes	compact	HPSB 4.8.1	LRGT 1 / KS 90	EG BAF-MUC-11-04-105620-001 TÜV WÜL 16-003
down with limit signaling *)		bus		LRG 16-40 / LRG 16-41 / LRR 1-40 / URB 2 LRG 17-40	EG BAF-MUC-11-04-105620-001 TÜV WÜL 12-007
		module		LRG 16-4 / TRG 5-6. / LRR 1-52 LRGT 1 / LRR 1-53	EG Z-IS-TAF-MUC-12-08-103881-008 TÜV WÜL 12-017
				LRG 16-4 / TRG 5-6. / LRR 1-50 LRGT 1 / LRR 1-51	EG Z-IS-TAF-MUC-12-08-103881-008 TÜV WÜL 12-017
Automatic inter-	yes	compact	HPSB	TA 7	
mittent boiler blowdown		bus	4.6	LRR 1-40	
DIOWGOWII		module	1	LRR 1-52 / LRR 1-53	
Conductivity limit detector for salt- free make-up water *)		module	HPSB 4.8.4 HPHWI	LRG 16-4 / LRG 16-9 / LRS 1-50 / LRG 16-9 / LRS 1-7	TÜV WÜL 12-018 TÜV WÜL 14-014
Detecting residual hardness of saline feedwater *)			4.8.4		
Condensate moni- toring for ingress of oil, fat, grease, acids, alkalis etc.	yes	module	HPSB 4.8.2 HPHWI 4.8.3	OR 52-5 / OR 52-6 LRG 16-9 / LRS 1-7 LRG 16-4 / LRS 1-50	TÜV WÜF 12-009 TÜV WÜL 14-014 TÜV WÜL 12-018

*) Limits and reference values acc. to EN 12952-12 and EN 12953-10

HPSB = High-pressure steam boiler

HPHWI = High-pressure hot water installation


Classification societies for marine applications

GL	Germanischer Lloyd
LR	Lloyd's Register
See BG	See-Berufsgenossenschaft
RINA	Registro Italiano Navale
ABS	American Bureau of Shipping
KR	Korean Register of Shipping
BV	Bureau Veritas
DNV	Det Norske veritas

WÜL = Water monitoring for conductivity (acids, alkalis, raw water etc.)

WÜF = Water monitoring for ingress of foreign matter (oils, fats, grease, etc.)

Function	Equipment	Type Approval Number
Water level controller with high level alarm	NRGS 16-1S Compact system with on-off control	GL99250-96 HH
	NRGT 26-1S Compact system with continuous level monitoring/ Current output 4-20 mA On-off control NRS 2-51 Continuous control KS 92-1 NRR 2-50	GL 99249-12 HH LR 98/20074 BV 10617/C0 BV RINA ELE324114CS DNV A-13857 CCS HBT 04721062-1
"SMART" water level limiter ("high integrity design") with periodic self-testing routine (loss of redundancy)	NRG 16-50S NRS 1-50. 15 sec. In addition with positive-action safety relay and certified to SIL 3	GL 94277-10 HH LR 01/20076 DNV A-13857 NKK 11A001 BV 25802/AO BV CCS HB12T00017-02
Combination electrode	NRG 16-38S	GL 40601-01 HH
Water level controller	NRS 1-50, 1E, 15 sec.	LR 01/20026
Output 4-20 mA with 1 "SMART" water lever limiter with periodic self-testing routine (loss of redundancy)	In addition with positive-action safety relay and certified to SIL 3	DNV A-13857 KR HMB06190-MS001 NKK TA11017M
Combination electrode	NRG 16-39S	CCS HBT 04721062-3
Water level controller	NRS 1-50, 1E, 15 sec.	
Output 4-20 mA with 2 "SMART" water lever limiters with periodic self-testing routine (loss of redundancy)	In addition with positive-action safety relay and certified to SIL 3	
"SMART" Safety temperature limiter ("high integrity design") with periodic self-testing routine (loss of redundancy)	TRS 5-6 / TRS 5-50	GL 47399-12 HH
Conductivity monitoring with automatic temperature	LRGT 16-1	GL 33254-06 HH
compensation – feedwater –	LRG 16-9 LRS 1-7	GL 60444-09 HH
Cooling water monitoring	ORGS	GL 17106-00 HH
Cooling water monitoring – closed cvcle –	Compact system	LR 07/20031
- נוטפבע ניינוב -		BV 17515/B0 BV
Condensate / feedwater monitoring	OR 52-5	GL 94855-94 HH

ltem	Function	Measuring point	EN 12953	TRD 604
1	"SMART" Low level limiter ("high integrity design") level electrode NRG 16-50, level switch NRS 1-50, SIL 3	LSZA–	•	•
2, 3	Water level control with high level alarm, remote water level indication, level electrode NRG 16-52, level controller NRS 1-54, NRS 1-52 (HW)	LICSA+	•	•
8	Intermittent blowdown valve PA for manual boiler blowdown	QC	•	•
10	Pressure limiter DSH (+), DSL (-)	PSZA+ (–)	•	•
14	Safety valve GSV	PSV		
15	Safety temperature monitor / (limiter) Resistance thermometer TRG, temperature switch TRS 5-50, SIL 3	TSZA+	•	•
18	Feedwater tank			
21	Non-return valve			
23	Monitoring of condensate return	QISZA+	•	•
28	Raising of return temperature, resistance thermo- meter TRG, temperature switch TRS 5-52	TC-	•	•
29	Mixing pump			

Principles of Measurement

Conductivity measurement

The water level is detected between the electrode tips and the vessel wall (or reference electrode) and evaluated for control or limitation purposes. In this case it is essential that the medium is electrically conductive. The high-integrity self-monitoring design of the level alarms ensures constant supervision of the insulating seal and electrode entry, immediately recognizing malfunctions in the system and failure of the electrode or supply cables. In addition, the equipment features periodic self-checking of the electronic control unit and the corresponding output contacts. Self-monitoring equipment with periodic selfchecking is required for boilers with temperature/pressure ratings > 1 bar and > 120 °C and a volume > 50 l.

Before installation, the length of the conductivity electrode rods must be cut to the required switching levels.

Capacitance measurement

Electrode rod and vessel wall (or reference electrode) form a capacitor; air and the fluid to be controlled act as dielectric. Due to the different dielectric constants of air and boiler water the capacitance value between the electrode and the vessel wall changes concurrently with level changes.

The switchpoints can be continuously adjusted during operation and multiplied by connecting in parallel several electronic control units.

Types of Controls

Water level limiters

(High-level/low-level alarms) As soon as the water level exceeds or falls below the adjusted switchpoints the burner protection circuit is interrupted (low level) or the feed pump is switched off (high level).

On-off level control

The water level is controlled between two fixed or adjustable switchpoints. The signals are directly transmitted to the feed pump or valve.

Modulating level control

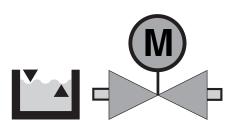
The water level is continuously monitored and the actual value is compared with the adjusted set point by the associated controller. If a deviation between the two values is detected, a signal will be sent to the control valve to re-adjust the flowrate accordingly, thereby enabling a more economic and efficient steam plant operation.

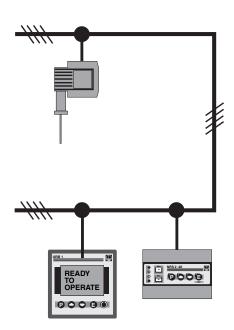
Field Bus System

Digital Data Exchange

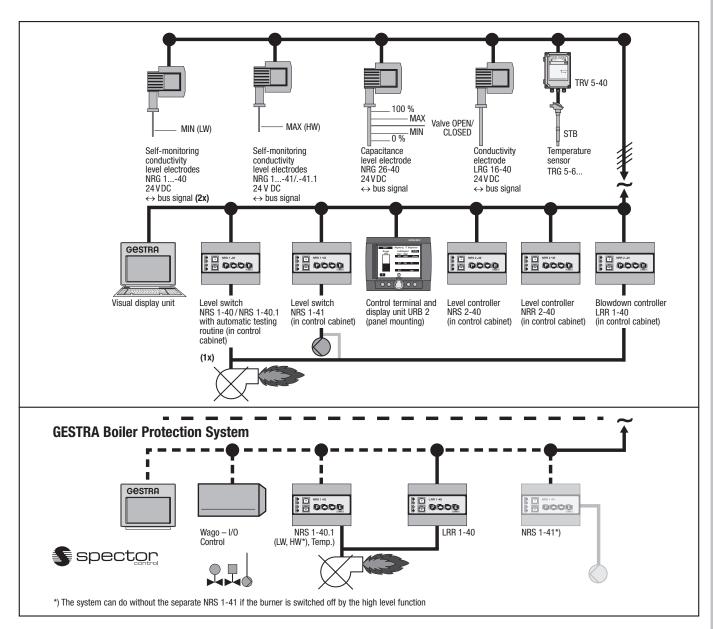
SPECTORbus

The SPECTOR*bus* system transfers the digitized measurement data acquired by the level probe to the electronic control unit located in the control cabinet. The centerpiece of this system is the stable and sophisticated CAN bus (Controller Area Network). Several sensors and switches can be interconnected via one bus line.


Apart from active cable monitoring a CAN bus system offers a host of benefits, such as increased design flexibility, reduced installation effort, optimized open and closed loop control, centralized operation and remote monitoring.


The standardised network opens up highly flexible possibilities for configuration. The CANopen protocol is used nowadays in medical equipment, electronic devices for marine applications, public means of transport and in burner and boiler controls of power plants.

Thanks to the many CANbus applications a great number of equipment and interface components are widely available, providing an ideal addition to our product range.



Basics of SPECTOR*bus*

Gestra

SPECTOR bus

With these systems, proven technology in the design of electrodes has been alloyed with innovative new level detection and evaluation techniques: All level electrodes feature now special electronic sensor units which, via a bus interface, can exchange data automatically with level controllers or higher-level control systems.

The next era in liquid level monitoring and control has dawned.

Features and Benefits of SPECTORbus

- Patented thermal barrier in cylindrical body above electrode flange
- Terminal box equipped with excess temperature fuse (85 °C)
- Freely accessible connecting terminals
- Large terminal box makes for easy installation ■ Standardized response sensitivity $\ge 0.5 \ \mu$ S/cm
- simplifies stocking and spare part inventories Optimum system adaptation/extension without any
- additional wiring
 Reduced installation effort and material costs, since only a single four-core cable is required between boiler and control cabinet

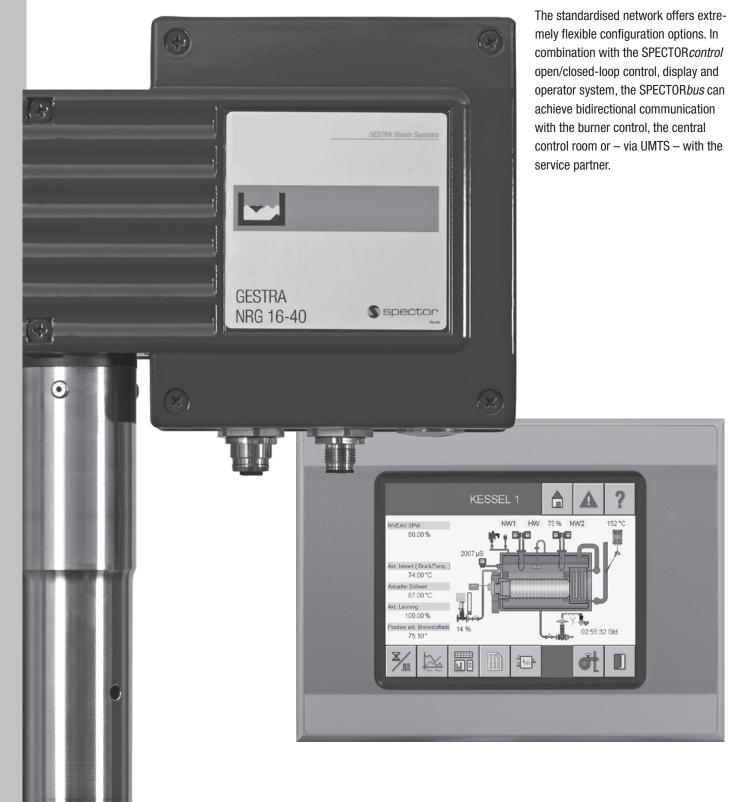
- Reduced cost of control cabinet
 - only one PG thread
 - only five input terminals
 - only one cable in control cabinet for all sensing units
- Active cable monitoring through message identification for error detection and prioritisation of messages in the event of low-level alarm
- Length of cable between sensor and controller
 125 m; max. cable length 1000 m
- Easy to integrate in visual display and automation systems
- Thanks to increased functionality of controllers less component parts required

Limiter

- Two electrodes but only one controller
- Switch-selectable one/two-electrode system (emergency operation)
- Instantaneous indication of low level by separate, flashing diode as soon as the liquid falls below low level (simplifies routine testing)
- After time delay has elapsed, the LEDs stop flashing and are permanently illuminated
 Separate, instantaneous signal output for low
- water level – Self-test routine **combined with** automatic self-
- Self-test routine combined with automatic selfchecking of respective output relay contacts

GESTRA Boiler Protection System

 up to 4 limiters for one control unit (2 x LW, HW, safety temp. limiter – in any combination).


Controller

- Less time-consuming calibration of measuring range; 100 % can be adjusted at level 50 %.
- No additional time relays required for system optimization. Built-in time delays individually adjustable between 1...25 sec. for **each** contact and position.
- Reduced wiring effort for control cabinet: Only a single four-core cable is required for wiring the panel-mounted control terminal and display unit, since all switchgear controls remain on the mounting panel where their functions are required.
- One operating and control terminal for all connected bus nodes.
- The control terminal features permanent level and conductivity indication according to TRD 401 (second water-level indication) and draft of rules concerning conductivity limiters.
- Easy parameterization of controls on control terminal or PC.

GESTRA SPECTOR*bus* boiler equipment:

The SPECTOR*bus* system digitally transmits measurement data from the probe to the electronic control unit in the control cabinet. It does this by means of a stable, sophisticated CAN (Controller Area Network) bus.

Several sensors and amplifiers can be interconnected by means of a CAN bus line. In addition to the active cable monitoring achieved in this way, the system offers numerous advantages for the planning, installation, display and optimisation of open-loop and closed-loop control systems, and enables problem-free link-up with other open bus systems.

NRG 16-50

238°C (460°F)

.4571

(158 °F)

D-28215 Bren

NRG 16-50

4571

(158 °F

D-28215 Br

3

5 6

e.

Gestra

The reliability of water level limiters made by GESTRA exceeds the requirement of the EN directives for SIL 2 safety chains. The system consists of two electrodes and one level switch. This solution has already proven its worth in our bus-based equipment.

The system is self-monitoring and features positive-action safety relays, extensive fault analysis for rapid detection of malfunctions and separate error messaging for both limiters.

The system is SIL 3 certified.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

8

10 11 12 13 14 15

GESTRA NRS 1-50

Level Limitation

Low-Level Limiter

Control unit NRS 1-40 in conjunction with **one** level electrode type NRG 16-40, 17-40, 19-40 or 111-40 constitutes a high-integrity self-monitoring low-level limiter with periodic self-checking and automatic routine testing of output relay contacts. Function:

Low-level alarm with **one** switchpoint.

The equipment detects min. water level (low-level alarm).

Application in steam and pressurized hotwater boilers according to EN 12952/..53 and TRD 604. Control unit NRS 1-40 in conjunction with **two** level electrodes type NRG 16-40, 17-40, 19-40 or 111-40 constitutes a high-integrity self-monitoring low-level limiting **system** with periodic self-checking. The control unit features the following function:

■ Low-level alarm with **two** switchpoints.

The equipment combination detects lowwater level (low-level alarm **system).**

Application in steam and pressurized hotwater boilers according to EN 12952/..53 and TRD 604. The electric device complies with the regulations for safety circuits to DIN EN 50156.

The liquid level data are transferred from the electrode NRG 1...-40 to the control unit via CAN bus, using the CANopen protocol.

The safety temperature limiter type TRG 5-6./ TRV 5-40 can be added to the system; for more information refer to pages 124 - 125.

High-Level-Alarm

Control unit NRS 1-41 in conjunction with **one** level electrode type NRG 16-41, 17-41 or 19-41 constitutes a high-integrity self-monitoring high-level alarm system with periodic self-checking and automatic routine testing of output relay contacts. Function:

High-level alarm

The equipment detects the max. water level.

Application in steam and pressurized hotwater boilers according to EN 12952/..53 and TRD 604.

The electric device complies with the regulations for safety circuits to DIN EN 50156. The liquid level data are transferred from the electrode NRG 1...-41 to the control unit via CAN bus, using the CAN open protocol.

Boiler Protection System

Description

The control unit NRS 1-40.1 in combination with **two** level electrodes NRG 1.-40, the temperature sensor TRG 5-6../TRV 5-40 and, if required, the level electrode NRG 1.-41.1 constitutes a self-monitoring boiler protection system with periodic self-testing and continuous monitoring of the output relays. The control unit features the following functions: Low-level alarm with two switchpoints

The equipment combination detects the min. water level (low-level limiting **system**).

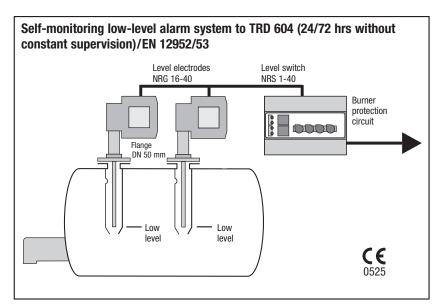
Safety temperature limiter

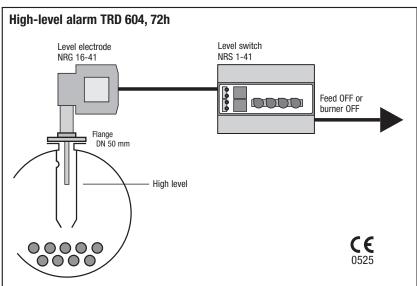
The equipment combination detects the max. allowable temperature.

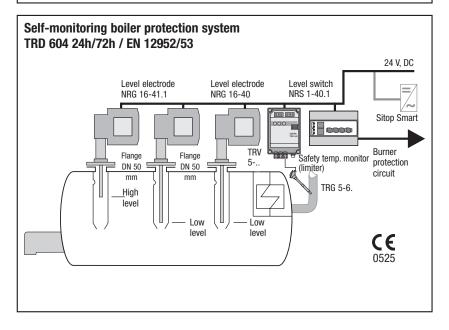
High-level alarm

The equipment combination detects the max. water level.

Or other customized combination.


If more than four limiters are required, the control unit NRS 1-40.2 can also be integrated in the system. Application in steam and (pressurised) hotwater plants in accordance with EN 12952/..53 bzw TRD 604.


The electrical equipment meets the requirements of the regulations for safety circuits according to DIN EN 50156.


The data of the sensors are transferred to the control unit via CANbus, using the CANopen protocol.

Technical Data

Туре	Pressure rating	End connection	Service pressure [bar] / Saturated steam temperature	Lengths supplied [mm]	Ambient temperature [°C]
NRG 16-40	PN 40	3⁄4"	32 / 238	500 - 3000	70
NRG 17-40	PN 63	3⁄4"	60 / 275	500 - 3000	70
NRG 19-40	PN 160	3⁄4"	100 / 311	500 - 3000	70
NRG 111-40	PN 320	1"	183 / 357	500 - 3000	70
NRG 16-41(.1)	PN 40	3⁄4"	32 / 238	500 - 1500	70
NRG 17-41(.1)	PN 63	3⁄4"	46 / 260	500 - 1500	70
NRG 19-41(.1)	PN 160	3⁄4"	100 / 311	500 - 1500	70

Туре		PN	Stock code
NRG 16-40	1000 mm	40	3514042
NRS 1-40	230 V		3222541
NRG 17-40	1000 mm	63	3544042
NRS 1-40	230 V		3222541
NRG 19-40	1000 mm	160	3574042
NRS 1-40	230 V		3222541
NRG 111-40 NRS 1-40	1000 mm 230 V	320	3574142

Type approval

TÜV SWB/SHWS 12-403

BAF-MUC 13 07 103881 002 EG

SIL 2

If supervision is limited, the system can be operated with one electrode.

(UL)LISTED

Туре		PN	Stock code
NRG 16-41	500 mm	40	3524041
NRS 1-41	230 V		3222741
NRG 17-41	500 mm	63	3551241
NRS 1-41	230 V		3222741
NRG 19-41	500 mm	160	3594041
NRS 1-41	230 V		3222741

Type approval

TÜV SWB/SHWS 12-403 EG BAF-MUC 13 07 103881 002 SIL 2

ULISTED

Optional: NRS 1-4. special voltage: 115 V, 50..60 HZ

For flanges see Price List

Туре		PN	Stock code
NRG 16-40	1000 mm		3514042
TRG 5-65			2671611
TRV 5-40		40	2691040
NRG 16-41.1	500 mm		3524141
NRS 1-40.1	230 V		3222841
NRG 17-40	1000 mm		3544042
TRG 5-65			2671611
TRV 5-40		63	2691040
NRG 17-41.1	500 mm		3551341
NRS 1-40.1	230 V		3222841
NRG 19-40	1000 mm		3574042
TRG 5-65			2671611
TRV 5-40		160	2691040
NRG 19-41.1	500 mm		3594141
NRS 1-40.1	230 V		3222841
Optional: NRS	1-40.2, 230 V		3222941

Type approval

TÜV SWB/SHWS STW (STB) 13-413 EG BAF-MUC 13 07 103881 004 SIL 2

TRG 5-6... / TRV see pages 124 - 125

Description

1. Conductivity Measurement NRG 16-42

The level electrode type NRG 16-42 works according to the conductivity measurement principle. With the NRG 16-42 a maximum of four levels can be signalled in conductive liquids:

- \blacksquare Four levels with one switchpoint each
- High-level alarm, first low-level alarm, pump oN, pump OFF, with one switchpoint each

Use level electrode NRG 16-42 in combination with level switch type NRS 1-42 or other system components. The level data are transferred to the level switch or any other system component via a CAN data bus.

NRS 1-42

Use level switch type NRS 1-42 in combination with level electrode type NRG 16-42 for level monitoring.

The level switch has the following functions:

- Four levels with one switchpoint each
- High-level alarm, first low-level alarm, pump on, pump off, with one switchpoint each

The level data are transferred from the electrode NRG 16-42 to the level switch via a CAN bus.

2. Capacitance Measurement

NRG 26-40

The level electrode NRG 26-40 works according to the capacitance measurement principle. The NRG 26-40 is used for detecting and signalling different levels in conductive and non-conductive liquids:

Level always within defined measuring range of electrode.

Use level electrode NRG 26-40 in combination with level switch type NRS 2-40 or further system components.

The level data are transferred to the level switch or any other system component via the CAN data bus.

NRS 2-40

Use level switch type NRS 2-40 in combination with level electrode type NRG 26-40 for level control and monitoring. The level switch has the following functions:

- Four liquid levels with one switchpoint each
- High-level alarm, first low-level alarm, pump on, pump off, with one switchpoint each

The level switch NRS 2-40 can be optionally equipped with an actual value output for standard signal 4-20 mA.

The level data are transmitted from the electrode NRG 26-40 to the level switch via a CAN data bus.

If you want to connect a second NRS 2-40 in order to establish additional switchpoints please indicate this when ordering.

NRR 2-40

Use level controller NRR 2-40 in combination with level electrode type NRG 26-40 for level control and monitoring. The level controller has the following functions:

- Two limit values with one switchpoint each (high-level alarm and first low-level alarm)
- Three-position or modulating control within a predefined proportional band
- All contacts feature time delays adjustable between 1 25 sec.
- Continuous level monitoring within defined measuring range of the electrode.

The NRR 2-40 features an optional output for standard signal 4-20 mA, which can be used for actual value and/or modulating control. The level data are transferred from the electrode NRG 26-40 to the level controller via a CAN data bus.

URB 1 / 2

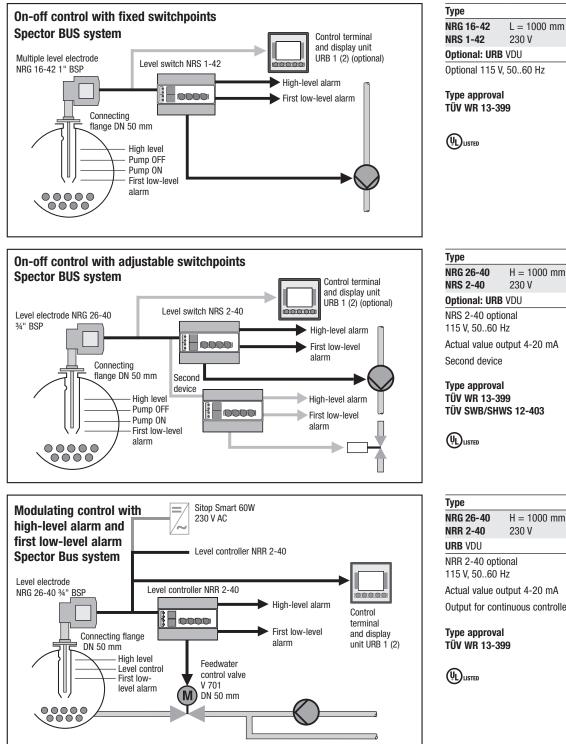
The URB is a user-friendly control terminal and display unit for use with GESTRA CAN bus systems. With the URB all standard functions of the CAN bus system can be easily called up and adjusted. Furthermore, the URB makes the parameterization of the controller very convenient: The switchpoints and the proportional band can be adjusted by means of the keypad regardless of the actual level. The energizing and de-energizing times of the relays can be customized for the individual switchpoints.

The LCD of the URB displays the following:

- Current liquid level (second water level) (TRD 401, EN 12952, ...53)
- Current conductivity value (TSD control)
- Proportional band of controller (NRR 2-40), (LRR 1-40)
- Switchpoints
- Position and value of switchpoint LOW LEVEL
- Position and value of switchpoint HIGH LEVEL
- Position of set point (NRR 2-40), (LRR 1-40)
- Deviation
- Valve position
- Manual/automatic operation
- Current CAN bus address
- Indication of high/low level alarm
- Temperature (URB 2)
- Pressure (URB 2)

Differences between URB 1 and URB 2

Function	UR	B 1	UR	B 2
Display		: display I, 58 x 40 mm	¼ VGA, m 320 x 240 pixe	
Colour display	N	lo	Opti	onal
Basic window	Bar chart	Numerical	Bar chart	Numerical
	Level Conductivity	Level Conductivity	Level	Level Conductivity Pressure Temperature
Operation	Via pus	h-button	Via cont	rol knob
Navigation in the menu	Via pus	h-button	Via cont	rol knob
Password protection (to avoid operating errors)	N	lo	Ye	es
Software update	N	lo	Yes,	Flash
System freely expandable	N	lo	Yes, softwa	are update
Connection for camera (e. g. local water level indicator)	N	lo	Yes, coloi	ur display


Gestra

PN

40

Stock code

3534248

NRS 1-42	230 V		3222241
ptional: URE	B VDU		3381043
Optional 115	V, 5060 Hz		
Type approva TÜV WR 13-3			
Туре		PN	Stock code
NRG 26-40	H = 1000 mm 230 V	PN 40	Stock code 3484047 3223041
NRG 26-40 NRS 2-40	230 V		3484047
Type NRG 26-40 NRS 2-40 Optional: URI NRS 2-40 opt 115 V, 5060	230 V 3 VDU ional		3484047 3223041
NRG 26-40 NRS 2-40 Optional: URI NRS 2-40 opt 115 V, 5060	230 V 3 VDU ional		3484047 3223041

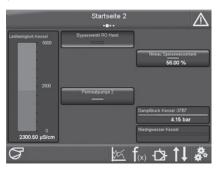
TÜV SWB/SHWS 12-403

Туре		PN	Stock code
NRG 26-40 NRR 2-40	H = 1000 mm 230 V	40	3484047 3225041
URB VDU			3381043
NRR 2-40 opt 115 V, 5060			
115 V, 5060			.57

For flanges see Price List

SPECTOR control // - The open/closed-loop control, display and operator unit

System description


- 10.4" infrared TFT touchscreen (IP 65)
- with the following interfaces
 - 2* Ethernet for Intranet / OPC / Modbus TCP communication
 - CANopen
 - Modbus RTU RS232 for a specific burner connection
 - USB interface for backup / upload function
 - BACnet (optional)
 - Profibus DP (optional)
- Bus terminals for mounting on a support rail for a maxiumum of:
 - 40 digital inputs 24 V
 - 40 digital inputs for relay / volt-free
 - 20 analog inputs (4..20 mA, 10R..1K2, 0..10V, PT 100)
 - 20 analog inputs (4..20 mA, 0..10V)

Function

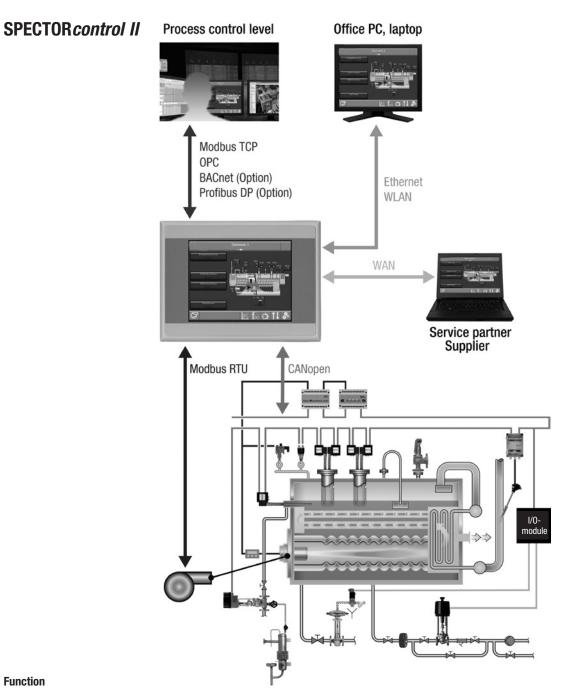
The SPECTOR*control* (SC) is an open/closedloop control, display and operating unit for a variety of uses in the control of technical equipment. All parameters, e.g. for a flowrate measurement, a steam calculator or regulator, can be set via the touchscreen with no programming knowledge.

Use of the SC means that open and closedloop control and operator functions are all integrated in the unit. As a result, there is no need for the usual regulators from the SPECTOR*bus* family, such as the NRR 2-40, NRS 1-42 or URB. Additional signals are processed via an IO terminal.

The system allows the processing of digital and analogue signals, and the setting of alarm and switching thresholds. These signals can be switched directly on the regulator or further processed by the logic and calculation functions, for example. Next, they are transmitted once again via a digital or analogue output (IPO model).

A great variety of switch-specific tasks can therefore be accomplished with these signals. This reduces the control cabinet layout to a minimum. The interfaces also provide the option of retrieving data from various burner controls (Lamtec, Siemens/Landis & Staefa) and incorporating these in the open/closedloop control and display functions.

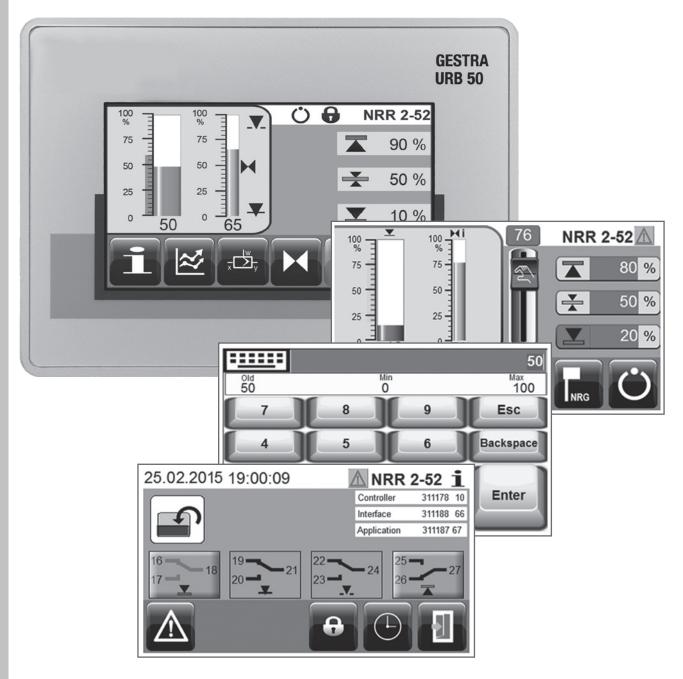
Likewise, there is the option of forwarding all operating data via Ethernet to service partners for remote support or to central control systems, or to configure them from here. ISO 50001.....


Example regulators

- Continuous regulators
- Continuous pump regulators (FU)
- 3-position stepping regulators
- 2-position valve/pump regulators
- 3-component regulators
- Automatic intermittent blowdown control with pulse repetition
- Metering regulators

Depending on the control loop, regulators can feature the following:

- P, PI or PID characteristic
- Deadzone
- Soft start
- Automatic runtime-dependent pump switchover
- Preset operating positions


Function

Resistive touchscreen display (IP65)	10,4"
Swipe to change screens/use scrolling lists	Х
Operating data display for four pages	Х
Individual start screens with individual flowcharts	4
Option of individual variable positioning for start screens 3 and 4	22x
Switches/set points set directly from start screens	Х
Burner control operating data display via Modbus RTU for Lamtec or Landis & Staefa	Х
Operating data display for second burner control via Modbus RTU	х
Dynamic set point input and fuel switchover	Х
Trend logs 5 x 4 (10 days)	Х
Steam flowrate measurement (with pressure/temperature compensation)	5
Flowrate measurement (pulse/analogue)	10
Timer (weekly)	5
Maintenance logs (runtime/switching frequency)	5

Calculations (e.g. for set points)	
Logic operations (e.g. for enabling the regulator)	
Step sequences (e.g. for burner soft start)	
Control loops	
Trend-based regulator optimisation ($12 \times 4 > $ actual, set point, positioning value, position)	
Digital inputs/outputs	
Analogue inputs/outputs	
CAN sensors	
Fault log incl. freely configurable collective fault signal and initial value signal	
Alarm history	
Communication via Modbus TCP, OPC, Profibus (optional), BACnet (optional)	
SC II mutual data exchange via Modbus TCP master/slave	
Option of remote control via standard PC, Android or IOS Remote Client	
	L

The SPECTORmodule Touch series is based on extensive experience gained over more than 30 years and designed for evaluating and optimizing established systems and their integral components.

The level controller NRR 2-5 offers a wide range of standard applications and features some additional extras that allow design engineers and operators to find the optimum system that meets their specific requirements.

Newly developed equipment

The name **SPECTOR***module* stands for advanced and future-oriented system solutions, tailored to the needs and requirements of our customers. This innovative new product family combines modularity with exceptional functionality and sets new standards in various areas and sectors.

In addition to the self-monitoring and routine testing ("SMART") MIN/MAX water level limiters with EC and TÜV approval and certified functional safety SIL 3 we can now offer a safety temperature monitor/limiter that provides the same safety level.

When it comes to safety don't take any changes.

As you can see in the following table, there are two versions of the SPECTORmodule product family:

- SPECTOR module offers all essential functions and provides significant benefits over the old conventional equipment.
- SPECTORmodule Touch boasts user-friendly functions which are based on the highly advanced features of the field-proven SPECTORbus product range. This system offers a host of benefits and sets the trend for technological progress.

Many of the advantages offered by the new product family are listed as follows. On the next page you will also find a synopsis of the old/new equipment and their respective functions and benefits.

SPECTOR module

- Compact design
- Easily accessible connecting terminals
- Supply voltage 24 V DC, which means that the equipment works independently of the national supply network
- Electrical energy is provided by reliable supply network, avoiding the need for supplementary devices such as power inverters
- Easy to use thanks to rotary button with integrated pushbutton
- Four-digit seven-segment display unit for digital readout and value indication

SPECTOR module Touch

- Operator control level separated from power switchgear, which means that no elaborate wiring in control cabinet is required
- User-friendly and language-independent operation thanks to intuitive colour touch screen
- Level:
 - Intuitive operation via touch screen operator panel with visual display of actual value, setpoint and value of manipulated variable
 - Trend display
 - PI control action
 - Optional:
 - O Three-component control
 - Actual value output 4 20 mA
 - □ Conductivity:
 - Intuitive operation via touch screen operator panel with visual display of actual value, setpoint and value of manipulated variable
 - Prototype approval in acc. with WÜ 100 (VDTÜV Bulletin "Water Monitoring Equipment 100")
 - Integrated purging pulse
 - Integrated programme-controller intermittent blowdown
 - Interlocking input for preventing the simultaneous operation of two or more intermittent blowdown valves connected to one blowdown receiver

This new product family supersedes all old analogue control equipment.

When designing the new **SPECTOR***module* product range we made sure that the new equipment will also work with existing sensors.

Description

Functional Safety

Since the international standards IEC 61508 and IEC 61511 for functional safety came into effect there has been an ever-increasing demand for analyzing equipment and process instruments that meet the requirements according to the SIL (Safety Integrity Level) classification. The European directives EN 12952 and 12953 demand that a hazard analysis shall be carried out for each limiting device function and appropriate levels of functional safety be implemented.

Note 1 states: "Typical Safety Integrity Level (SIL) requirements for boiler protective systems are not less than 2".

Functional safety is part of the overall safety of a system that depends on the correct functioning of safety-related (sub)systems and external equipment for risk reduction.

This means that functional safety covers only one aspect of the overall safety. Other issues such as electrical safety, fire and radiation protection etc. do not fall within the scope of functional safety.

In modern systems electronic and, in particular, programmable systems perform safety functions to an ever increasing extent. As a consequence it is of utmost importance to assure the correct functioning of complex programmable systems. It is therefore essential to establish suitable methods for preventing systematic faults (usually due to human error committed during the specification and implementation phase) and for controlling failures, abnormalities and loss of function (usually physical phenomena). In this context the term "safety integrity of the protective or safety function" is used.

The European standard IEC 61508 "Functional safety of electrical/electronic/ programmable electronic safety-related systems" defines procedures, techniques, measures etc. for the functional safety of E/E/PE systems.

Water-level limiter NRG 16-50 / NRS 1-50 b

Application and Purpose

The level electrode NRG 16-50 in conjunction with level switch NRS 1-50 is designed as self-monitoring water level limiter with routine testing ("SMART") acc. to the European Standards EN 12952 and EN 12953. The equipment combination detects the minimum admissible level and serves as low level limiter in steam boilers and (pressurized) hot-water installations. According to the EN body of rules two SMART water level limiters are required. The system is **SIL 3** certified in accordance with IEC 61508. The level electrode NRG 16-50 can be com-

bined with the following GESTRA systems:

- NRG 26 / NRGT 26 / NRR 2-52 / -53 (modulating level control)
- NRG 26 / NRGT 26 / NRR 2-50 / -51 (modulating level control)
- NRG 26 / NRGT 26 // NRS 2-50 (on-off level control)
- NRG 16-52 / NRS 1-54 (on-off level control)
- NRG 16-4 / NRS 1-52 (high-level limiter)
- NRG 16-51 / NRS 1-51 (self-monitoring high-level limiter)

The level electrode NRG 17-50 can be combined with the following GESTRA systems:

NRG 17-51/NRS 1-51 (high-level limiter)

The level electrode NRG 19-50 can be combined with the following GESTRA systems:

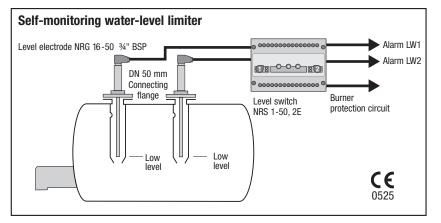
■ NRG 19-51/NRS 1-51 (high-level limiter)

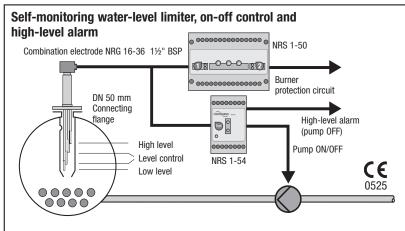
Combination of water-level limiter and controller NRG 16-36 / NRS 1-50 / NRS 1-54 Application and Purpose

The level electrode NRG 16-36 is a combination of a water level controller and a selfmonitoring water level limiter with routine testing ("SMART") acc. to the European Standards EN 12952 and EN 12953. In conjunction with the on-off level controller NRS 1-54 the equipment detects the maximum water level ("High level limiter") and controls the level in the boiler. In conjunction with the level switch NRS 1-50 the equipment detects and limits the minimum water level. The equipment combination is used in steam boilers and (pressurized) hot-water installations.

Design NRS 1-50

Plastic case with freely accessible terminals, for installation in control cabinets. The equipment can be snapped onto a 35 mm support rail. Field enclosure for one or more units available on request.


The system is certified to SIL 3.


Design NRS 1-54

Plastic case for installation in control cabinet. The equipment can be snapped onto a 35 mm support rail. Field enclosure for one or more units available on request.

Technical Data

Туре	Pressure rating	End connection	Service pressure [bar g] / Saturated steam temperature	Lengths supplied [mm]	Ambient temperature [°C]
NRG 16-50	PN 40	3⁄4"	32 / 238	500 - 3000	70
NRG 16-36	PN 40	1½"	32 / 238	1000 – 1500	70
NRG 17-50	PN 63	3⁄4''	60 / 275	500 - 3000	70
NRG 19-50	PN 160	3⁄4''	100 / 311	500 - 3000	70
NRG 111-50	PN 320	1"	183 / 357	500 - 3000	70

Туре		PN	Stock code
NRG 16-50,	L = 1000 mm	40	3131642
NRS 1-50, 2E	24 V DC		3101241
NRG 17-50,	L = 1000 mm	63	3131942
NRS 1-50, 2E	24 V DC		3101241
NRG 19-50,	L = 1000 mm	160	3132042
NRS 1-50, 2E	24 V DC		3101241
NRG 111-50,	L = 1000 mm	320	3132142
NRS 1-50, 2E	24 V DC		3101241

Type approval TÜV SWB 14-422

EG IS-TAF-MUC 0908 103 881 005 SIL 3 Optional: NRS 1-50 Special voltage: 100..240 +10%/.15% V, 47..62 HZ

Туре		PN	Stock code
NRG 16-36,	L = 1000 mm		3581047
NRS 1-50, 1E	24 V DC	40	3101141
NRS 1-54	24 V DC		3011441

Type approval NRS 1-50 TÜV SWB 14-422 EG IS-TAF-MUC 0908 103 881 005 SIL 3 NRS 1-54 TÜV WR 10-302 Optional: NRS 1-50

Special voltage:100..240 V, 47..62 HZ

Ω

High-Level Alarms

Description "Conventional Design" NRG 16-4 / NRS 1-52

Application and Purpose

Use in combination with level switch NRS 1-52 for water-level limiting (high-level alarm) in electrically conductive liquids. The austenitic version is particularly suited for aggressive fluids. For vessels and steam boilers up to PN 40 with level switch in accordance with TRD 604 (boiler operation without constant supervision). Sensing unit for high-level alarm.

Design

The level electrode NRG 16-4 is available with screwed connection 3/8"

Material: 1.4571

The electrodes are supplied in different lengths. For switching levels between these dimensions the electrode tip can be cut to length as required. Wiring to the electrode is effected by a four-pole connector.

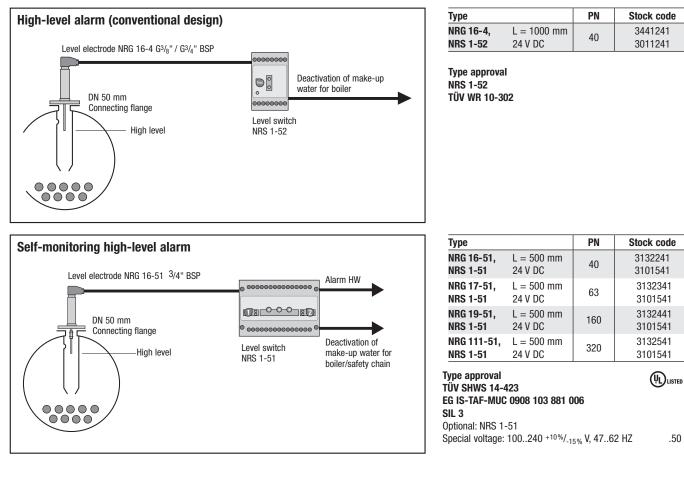
"Self-Monitoring" NRG 16-51 / NRS 1-51

Application and Purpose

Use in combination with level switch NRS 1-51 as self-monitoring high-level alarm with periodic self-checking according to TRD 604 sheet 1 and 2 for high-water level detection/limiting (high-level alarm) in steam and pressurized hot-water boilers.

Design

The high-level limiting system comprises level electrode NRG 16-51, NRG 17-51 or NRG 19-51 and level switch NRS 1-51. The system is certified to SIL 3.


The level electrodes NRG 16-51, NRG 17-51 and NRG 19-51 consist of a measuring electrode fitted in a body. The electrode is insulated by special insulating seals.

The pressure-tight connection of the electrode is effected coaxially with a contact ring and a stud. A system of compression springs in the electrode body ensures sufficient sealing forces at the insulating seals, even if temperatures vary. The stud is insulated by a PTFE foil. Contact ring and body are connected to the four-pole connector base by PTFE insulated wires. The level electrode is available in various lengths up to 1500 mm. Observe mounting instructions (see examples of installation). The system (electrode + level switch) complies with the regulations concerning safety circuits in accordance with DIN EN 50156-1 / VDE 0116.

Technical Data

Туре	Pressure rating	End connection	Service pressure [bar g] / Saturated steam temperature	Lengths supplied [mm]	Ambient temperature [°C]
NRG 16-4	PN 40	3/8" / 3/4"	32 / 238	500 – 1500	70
NRG 16-51	PN 40	3⁄4''	32 / 238	500 - 1500	70
NRG 17-51	PN 63	3⁄4''	46 / 260	500 - 1500	70
NRG 19-51	PN 160	3⁄4''	100 / 311	500 - 1500	70
NRG 111-51	PN 320	1"	183 / 357	500 – 1500	70

High-Level Alarms – Conventional Design

.50

Description

Level control NRG 26-21/NRGT 26-1 / NRR 2-52 / -53

This modulating level control system comprises the level electrode NRG 26-.../ NRGT 26-1 with universal operating unit (URB 50) and the level controller NRR 2-52 / -53.

The level-dependent actual value sensed by the electrode is continuously compared by the controller with the adjusted setpoint. Any deviation is immediately detected and a signal is transferred to the motorized feedwater control valve in order to regulate the flowrate accordingly.

The level controller is a PI controller with manual control. The equipment features additional functions such as high level alarm, first low level alarm ("LoLo") and an optional actual value output for remote indication of the water level.

The switchpoints are adjustable within the whole measuring range of the level electrode.

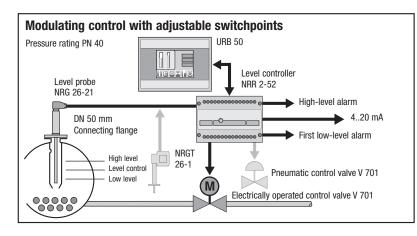
The NRR 2-52 works as three-position stepping controller, the NRR 2-53 as continuous controller.

Level control NRG 26-21/NRGT 26-1 / NRS 2-51

This water level controller is a combination of a level electrode NRGT 26-... and a level switch NRS 2-51.

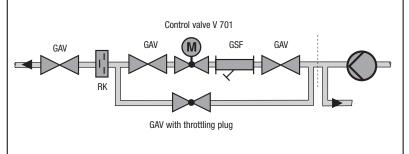
The equipment can also detect and signal high level and first low level.

Remote indication of the water level is possible if the 4-20 mA output and the LED bargraph display are used.


The advantage of this switching controller lies in customized switchpoints which can be adjusted during operation and the simultaneous use of several control units.

Level control 705 / NRR 2-52 / -53

Used in conjunction with controller type NRR for modulating water level control (pressure range > PN 40).


Can also be used as combination electrode together with limiters. The 705 is a radarbased level transducer. The reflexion time is a function of the level and will be transformed into a 4...20 mA standard output signal by the measuring transducer.

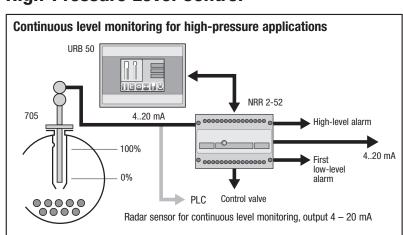
Gestra

Control valve with isolating bypass valve, strainer, non-return valve and feedback potentiometer

Pressure rating PN 40

On-off control with adjustable switchpoints Pressure rating PN 6 Level probe High-level alarm NRG 21-11 4..20 mA 0075 DN 50 mm NRGT *0 O "Running dry" alarn Connecting flange 26-1 000000 NRS 2-50 High level Pump OFF Pump 0FF Pump ON 0015

First low-level alarm


*** O

NRS 2-50

Pump ON

High-Pressure Level Control

00000

PN	Design	Measuring range
100	DN 50	600
	DIN 2696	800
	Form E	1000
160	DN 50	600
	DIN	800
	Form E	1000
	100	100 DN 50 DIN 2696 Form E 160 DN 50 DIN 200 DIN 50 DIN DIN

Gestra

Туре		PN	Stock code
NRG 26-21	L = 1000 mm	40	3452147
NRGT 26-21	24 V DC, 4-20 mA L = 1000 mm	40	348104757
NRR 2-52	24 V DC, 4-20 mA, 3-posit. stepping, MIN, MAX	URB 50	3031241
NRR 2-53	24 V DC, 4-20 mA, continuous, MIN, MAX	URB 50	3031341

Type approval

TÜV WR 12-427

Option: 3-element control (level, steam & water flowrate)

Equipment combination	Boiler capacity t/h	DN
4 x GAV 36, Control valve V 701,	< 2.5	20
	< 8.0	40
GSF, RK	< 16.0	50
230 V, 50 Hz	< 28.0	65

Equipment combinati	Stock code	
NRG 21-11	H = 1000 mm	3421247
NRS 2-50, 4-20 mA	24 V DC	302104157
LED analogue display		1504196

Type approval TÜV WR 12-425 .30

SPECTOR compact

Where formerly two devices were required, all you need now is just a single Spector*compact*. As a combined level electrode and controller, it presents the economical alternative for monitoring liquid levels in small installations and steam boilers.

Since the entire electronic control unit is located within the terminal box, the transmission path is short and reliability is higher than with comparable systems.

System Description NRGS 1...-1

The compact system NRGS 11-1 or NRGS 16-1 works according to the conductivity measurement principle. With the NRGS 1...-1 a maximum of **four** levels can be signalled in conductive liquids:

■ High-level alarm, first low-level alarm, pump oN, pump OFF, with one switchpoint each.

The NRGS 1...-1 has a level switch integrated in the electrode case for the control of all functions. An external switching device is **not** required.

Features and Benefits SPECTOR*compact*

- Patented temperature barrier in cylindrical body above electrode flange
- Terminal box equipped with excess temperature fuse (102 °C)
- \blacksquare Level electrode and controller in one unit
- Optimum system adaptation thanks to modular design
- No mounting of component parts in control cabinet
 - No space requirements
 - No installation
 - No wiring
 - Easy planning
- No special cable required for wiring sensing unit to control cabinet

Pump Control Units

Standard features	NRSP 1-51	NRSP 1-52	NRSP 2-51	NRSP 2-52
Pump protection against running dry	•	•	•	•
Pump protection against running dry and high-level alarm			•	•
Time-dependent pump switching device		•		•
Switching-on of stand-by pump				•
Single malfunction alarm			•	•
Collective malfunction alarm (visible)	٠	•	•	•
Volt-free contacts	٠	•	•	•
Actual value output 4-20 mA			•	•
Required sensor	NRG 152	NRG 152	NRG 21	NRG 21

NRGS 1.-11 / NRSP 1-5. = fixed switchpoints

NRG 2.-.1 / NRSP 2-5. = variably adjustable switchpoints

Individual control systems

for steam regenerators, desuperheaters, etc. conventional system or freely programmable (on request)

Simplified logistics

- Only one item of equipment has to be ordered and checked upon receipt
- Reduced inventory requirements and simplified stocking
- No onerous assignment procedures of individual component parts to mechanical engineering dept. (boiler) and measurement and control engineering dept. (control cabinet)
- Interchanges with old float-operated systems since they have their output contacts also integrated in the terminal box.

System Description NRGS 1...-2

The compact system NRGS 11-2, NRGS 16-2 works according to the conductivity measurement principle. With the NRGS 1...-2 a maximum of **three** levels can be signalled in conductive liquids:

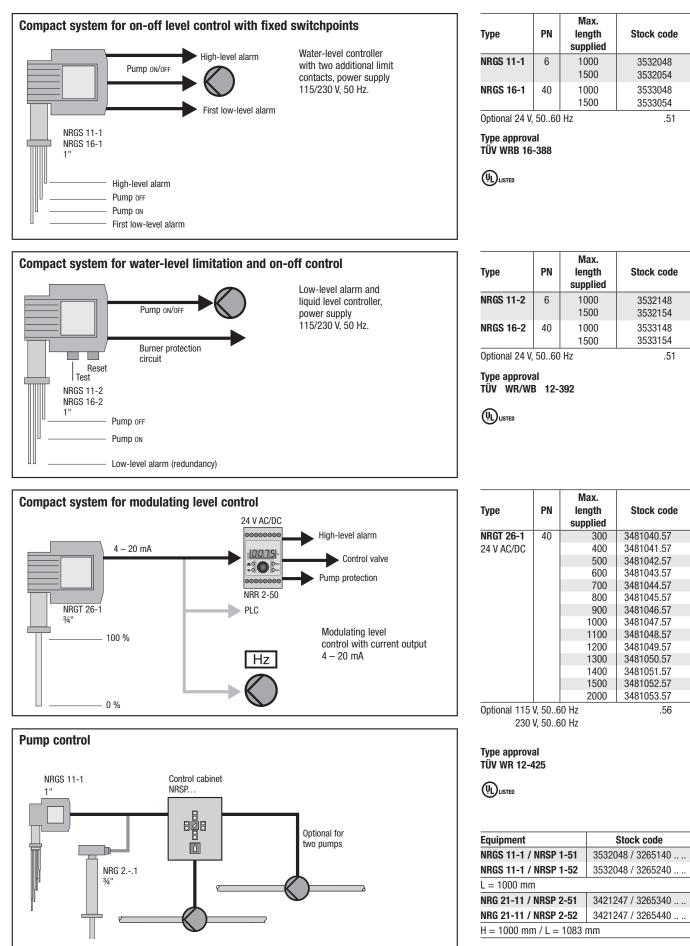
■ Low-level alarm, pump ON, pump OFF, with one normally open contact.

The NRGS 1...-2 has a level switch integrated in the electrode case for the control of all functions. An external switching device is **not** required.

The NRGS 1...-2 has two electrode tips for the detection of low-water level. The low-level alarm is signalled via two separate switching channels.

System Description NRGT 26-1

The compact system NRGT 26-1 works according to the capacitance measurement principle. The NRGT 26-1 is used for signalling different levels in conductive and insulating liquids.


Modulating control ensures that the liquid level is always within the predefined measuring range of the electrode.

The NRGT 26-1 has a level transmitter integrated in the electrode case which produces a standard analogue output of 4 - 20 mA. An external switching device is **not** required.

.51

.51

For flanges see Price List

.56

Description

Level pot for external installation of level electrodes

Stop Valve GAV

Purpose

For isolating and throttling non-corrosive and aggressive gases, steam and liquids, e. g. air, steam, gas, oil etc. in all industries.

GAV Features

- With stuffing box
- Detachable locking device for all sizes
- Optional limit switch(es)
- Y-type drain valve 17/213

Additional equipment for the external installation of liquid level alarms

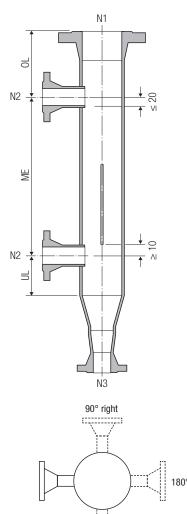
SRL 6-50

Purpose

In combination with external low-level alarms for monitoring the periodic purging of level pots or, generally, as timer for monitoring any periodic function.

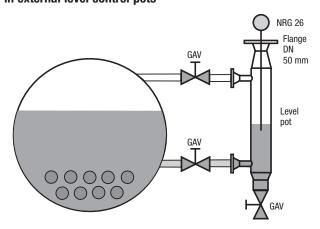
Particularly suitable for steam plant operation to TRD 602/604.

Design

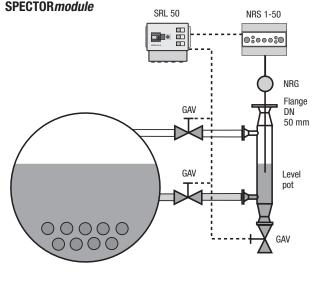

All-electronic logic unit **SRL-50** for continuous monitoring, with three LEDs (stand-by, purging, switching off) with case for mounting on walls.

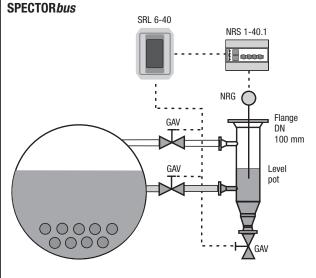
Operation

The monitoring equipment with Mini-PLC periodically activates a memory for a defined period of time. During this period the memory registers all functional operations, e. g. purging of the level pot. If this signal is not received within the fixed period, the plant is shut down. The plant is also shut down if the purging process lasts for more than five minutes.


Type code of level pots

Feature	Value	Designation	MF 206-1STT 118P / 214P/312G >
Component	Level pot	MF —	
Design: (side connection)	1 Side connection 2 Side connection 90°r 4 Side connection 90°l 4 Side connection 180° 6 Side connection 90°R+90°L	10 20 40 41 42 60	
Nominal pressure	PN 16 PN 40 PN 63 PN 160	4 6 7 9	
Size	88.9 114.3	1	
Material	Steel type ST 35.8 High-temperature steel 15 M0 3 Austenitic	S — W A	
In accordance with	AD-Bulletin TRD Others	A T — S	
Approved by	TÜV Works inspector Others	T W S	
Connection (N 1)	3/4" BSP 1" BSP 11/4" BSP 11/2" BSP DN 50 mm DN 80 mm DN 100 mm	114 G 115 G 116 G 117 G 118 P 120 P 121 P	
Boiler connection (N 2)	DN 15 mm DN 20 mm DN 25 mm DN 50 mm	212P 214P	
Drain connection (N 3)	^{1/} 2" BSP DN 20 mm DN 25 mm	312G — 314P 315P	
Side connection 3 + 4 (N 4)	DN 20 mm DN 25 mm	414 P 415 P	not required in this example
Side connection 5 + 6 (N 5)	DN 20 mm DN 25 mm	514 P 515 P	not required in this example
Centre distance Length (top) Length (bottom)	≤ 1500	ME 1500 Spec. > Spec. >	Additional specificationCentre distance ME = 1500 mmLength (top) \varnothing 88.9 \ge 190 mm \varnothing 114.3 \ge 230 mmLength (bottom) \ge 50 mm




Accessories for liquid level alarms fitted in external level control pots

Accessories for high-integrity level controls fitted
in an external level control pot

Accessories for high-integrity level controls fitted in an external level control pot

Туре		Pressure/		Temp. Ratings	
		PN	P _{max}	t _{max}	
MF 2061 STT GAV 36, DN 20 17/213, ¹ / ₂ " BSP	1)	40	32 bar	238°C	
MF 2071 STT GAV 136, DN 25	2)	63	60 bar	275°C	
MF 2091 STT GAV 136, DN 25	2)	160	75 bar	290°C	
MF 2091 WTT GAV 136, DN 25	2)	160	100 bar 96 bar	311°C 300°C	

¹) Approval acc. to PED 2014/68/EU, module A1

²) Approval acc. to PED 2014/68/EU

Туре		DN / PN	Pressure/Temp. Ratings		
			P _{max}	τ _{max}	
MF 2061 STT GAV 36-II GAV 36-I SRL 6-50	1)	20 / 40	32 bar	238°C	
MF 2071 STT GAV 136-II GAV 136-I SRL 6-50	2)	25 / 63	60 bar	275°C	
MF 2091 STT GAV 136-II GAV 136-I SRL 6-50	2)	25 / 160	75 bar	290°C	
MF 2091 WTT GAV 136-II GAV 136-I SRL 6-50	2)	25 / 160	100 bar 96 bar 96 bar	311°C 300°C 300°C	

¹) Approval acc. to PED 2014/68/EU, module A1 ²) Approval acc. to PED 2014/68/EU

Туре		PN / PN	Pressure/Temp. Ratings P _{max} t _{max}		
MF 2062 STT GAV 36-II GAV 36-I SRL 6-40	1)	20 / 40	32 bar	238°C	
MF 2072 STT GAV 136-II GAV 136-I SRL 6-40	2)	25 / 63	60 bar	275°C	
MF 2092 STT GAV 136-II GAV 136-I SRL 6-40	2)	25 / 160	75 bar	290°C	
MF 2092 WTT GAV 136-II GAV 136-I SRL 6-40	2)	25 / 160	100 bar 96 bar 96 bar	311°C 300°C 300°C	

Approval acc. to PED 2014/68/EU, module A1
 Approval acc. to PED 2014/68/EU
 Optional SRL:
 Voltage 115 V, 24 V, 50..60 Hz

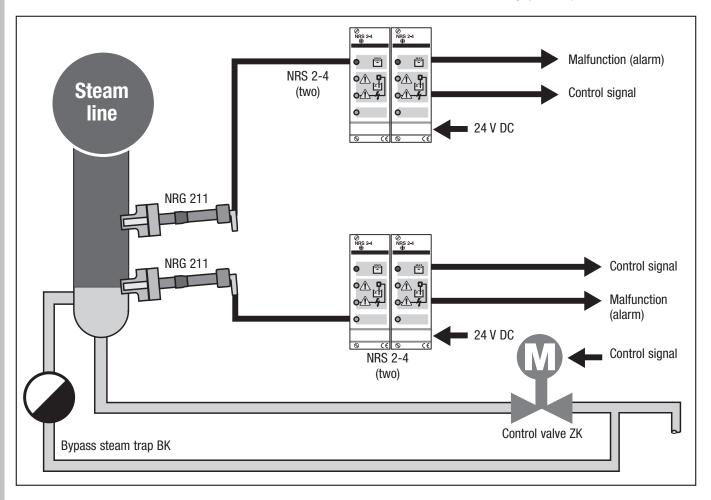
More measuring pots see page 137

Design

The probe works without any moving parts. The probe rod, which is insulated by a ceramic tube, is inserted through a hole in the probe flange such that pressure-tight sealing is ensured. The ceramic tube is closed at the lower end and covered by a protection tube. The electronic control unit is housed in the terminal box. The wiring is effected via a 6 pole connector with crimp connection.

Operation

The principle of capacitance measurement is used to sense liquid levels. The probe rod and the protection tube form a capacitor, with air or the particular liquid being the dielectric. In electrically conductive liquids the probe insulation serves as dielectric. As the level rises or falls, the capacitance of this assembly changes, is converted in the integral measuring transducer into a signal, and is then fed to the associated electronic control unit.

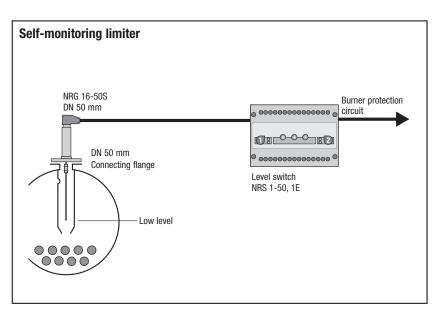

NRG 211

In combination with level switch NRS 2-4 for indicating high-water level at very high pressures and temperatures (up to PN 320, 550 °C). Application in draining systems of conventional power stations and highpressure steam boilers.

NRS 2-4

The level switch NRS 2-4 is an analogue electronic amplifier for the capacitance electrode type NRG 211.

In combination with this level electrode the unit can detect high water level. In addition, the level switch evaluates possible malfunction signals coming from the electrode and monitors the electrode supply cable and can therefore be used as part of a controlled draining system in power stations.

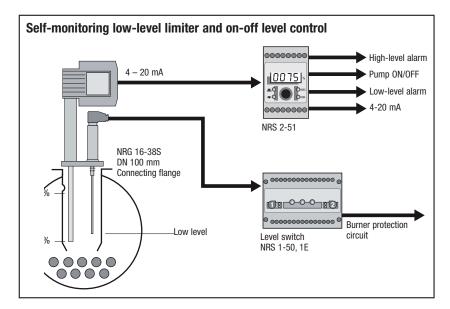

Туре	Material	PN		Stock code
NRG 211 *)	1.5415	320	200 bar at 450 °C 320 bar at 120 °C	350100130 ≤ DN 100 350100140 > DN 100
	1.7380		200 bar at 500 °C 320 bar at 120 °C	350100231 ≤ DN 100 350100241 > DN 100
	1.4922		230 bar at 550 °C 320 bar at 120 °C	350100332 ≤ DN 100 350100342 > DN 100
NRS 2-4	HW			3233142

*) with welding connection, nuts, bolts and seals for pipes \varnothing > DN 100 or < DN 100

Description

Steam boiler equipment for marine applications has to comply with the same requirements as those placed on land installations. In addition to that further demands regarding environmental conditions such as climate, vibrations etc. have to be met. The acceptance certificates are to be issued by the classification society responsible for the ship's acceptance inspection.

For marine applications see page 96.



Туре		PN	Stock code
NRG 16-50S	L = 1000 mm		31317742
NRS 1-50, 1E	24 V DC, 15s	40	31011415053
NRS 1-50, 2E	24 V DC, 15s		31012415053

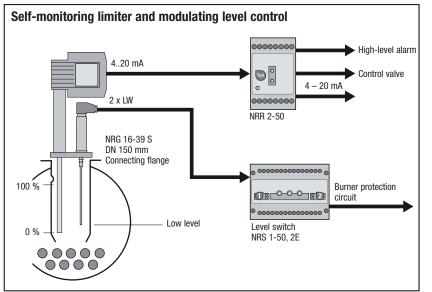
 Optional 100 – 240 V AC

 NRS 1-50, for 1 electrode
 31011415053

 NRS 1-50, for 2 electrodes
 31012415053

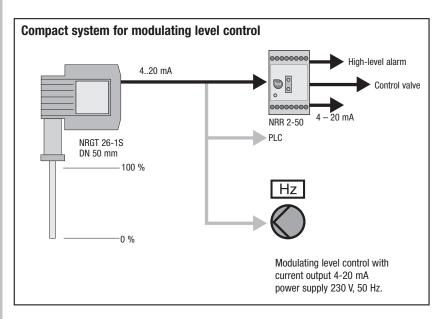
Туре	PN	max. length supplied	Stock code
NRG 16-38S		779	3582044.57
24 V AC/DC		884	3582045.57
	40	989	3582046.57
		1095	3582047.57
		1513	3582051.57
NRS 1-50, 1E, 24 V [)C		310114153
NRS 2-51, 24 V DC			3021141

Optional


NRG 16-38s, 115 V 50-60 HZ

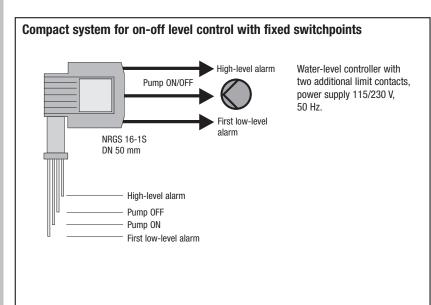
NRG 16-38s, 230 V 50-60 HZ

Ξ


.56

e.g. 3582044.

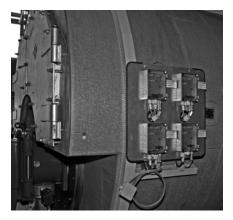
Туре	PN		Stock code	
NRG 16-39 S	40	779	3584044.57	
24 V AC/DC		884	3584045.57	
		989	3584046.57	
		1199	3584047.57	
		1513	3584051.57	
NRS 1-50, 2E, 24 V [310124153			
NRR 2-50, 24 V DC	3031041			


Optional	
NRG 16-39s, 115 V 50-60 HZ	.56
NRG 16-39s, 230 V, 50-60 HZ	e.g. 3584044.
NRS 1-50, 230 V, 50-60 HZ	.50.53

Туре	PN	max. length supplied	Stock code
NRGT 26-1S	40	316	3211452.53
24 V AC/DC		420	3211453.53
		526	3211454.53
		631	3211455.53
		737	3211456.53
		842	3211457.53
		947	3211458.53
		1053	3211459.53
		1579	3211460.53
NRR 2-50, 24 V DC			3031041

Optional NRGT 26-1S, 115 V 50-60 HZ NRGT 26-1S, 230 V, 50-60 HZ e.g

.52 e.g. 3211452.



Туре	PN	max. length supplied	Stock code	
NRGS 16-1S	40	938	3534053	
230 V, 50-60 Hz		1438	3534056	

Optional 24 V AC

.51

Industrial Electronics

Page
Temperature detection and control SPECTOR bus 124 - 125 126 - 127 127 127 128 - 127 128 - 127 128 - 127 128 - 127 128 - 127 128 - 127 128 - 127 128 - 127 128 - 127 128 - 127 128 - 127 128 - 127 128 - 127 128 - 127 128 - 127 128 - 127 128 - 127 128 - 127 128 - 127 <
Conductivity Monitoring
Basic principles · application
Technical specification
Conductivity monitoring SPECTOR bus/compact130
Conductivity monitoring SPECTOR bus/compact with automatic temperature compensation131
Conductivity control with manual or automatic temperature compensation
SPECTOR <i>module</i>
Conductivity monitoring with manual or automatic temperature compensation
LRG / LRR 1- 5/6
Conductivity monitoring with automatic temperature compensation LRG / LRS 1-7
Lnu / Lno 1-7
Ancillaries
Level pots and portable measuring instruments VRM
Tee pieces, level pots and portable measuring instruments VRM
Continuous blowdown valves
December of all differences of the second seco
Programme-controlled blowdown systems
Rapid-action intermittent blowdown valves
Contamination detectors for condensate and process liquids
Detecting ingress of oil in condensate systems and marine installations
Ingress of oil in cooling water systems digital indicator
Flowmeters for steam, gases and liquids147

NRS 1-40.1

Self-monitoring temperature switch with periodic self-checking feature to be used in conjunction with a resistance thermometer type TRG 5-6.. and pre-amplifier TRV 5-40. The equipment operates as a safety temperature controller, or in conjunction with an external lock-out in accordance with DIN EN 50156 as a safety temperature limiter. An alarm is given as soon as the temperature exceeds a preset limit value. The TRV 5-40 features digital indicators for the actual temperature and switching-off temperature.

Examples of Installation

- Superheaters for steam boiler plants operating without constant supervision (TRD 604).
- Superheater cascades with up to 4 steps
- In pressurized hot-water plants as temperature limiter for the secondary circuit in accordance with TRD 604 or 12952/..53.
- Furnaces in accordance with DIN 30 683 up to 800 °C.
- Control systems for product heating or cooling

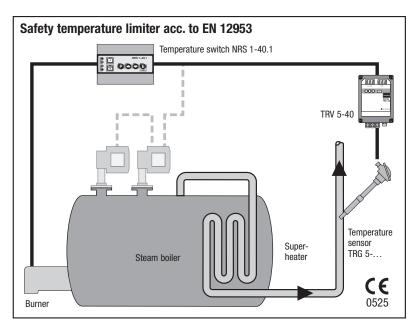
TRS 5-40

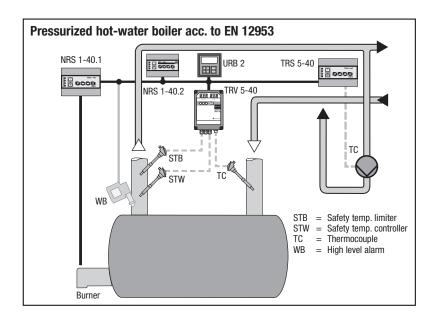
The MIN/MAX temperature switch TRS 5-40 in combination with temperature sensor TRG 5-63 and pre-amplifier TRV 5-40 serves as temperature controller.

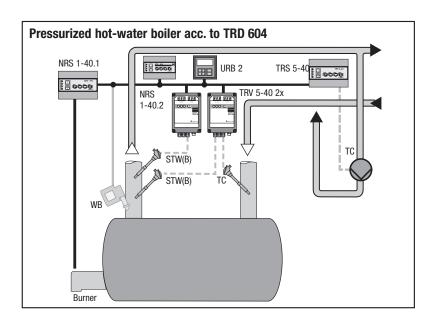
Application in steam boilers, pressurized hot-water plants operating without constant supervision (TRD 604) as well as any other type of heat generator. The equipment raises an alarm when the preset MIN/MAX limit value is attained.

Technical	Data	of	Temperature	Sensor
reconnical	σαια	U	Tomporature	0011301

Туре Р	DN	PN			Pt 100	Max.	Ambient	Lengths avail-		
Туре	FN	Screwed	TRV	Welding stub	Pt 100	temperature	temperature	able L [mm]		
TRG 5-63	40	1⁄2"	5-40	-	1	400 °C	100 °C	100 to 400		
TRG 5-64	40	1⁄2"	5-40	-	2	400 °C	100 °C	100 to 400		
Accuracy class A	Accuracy class A									
							1			
TRG 5-65	160	-	5-40	form 4	1	540 °C	100 °C	115		
TRG 5-66	160	-	5-40	form 4	1	540 °C	100 °C	140		
TRG 5-67	160	-	5-40	form 4	1	600 °C	100 °C	200		
TRG 5-68	160	-	5-40	form 4	1	600 °C	100 °C	200		


Accuracy class A/B


Technical Data of Temperature Pre-Amplifier


Туре	Output	Adjustment range	Auxiliary power	Version	Performance test	TÜV	EC
TRV 5-40	CANopen	650 °C	24 V, DC	а	annual	•	•

Technical Data of Temperature Switches / Controllers / Indicators

Tuno	Outputs		Control characteristic		Mains supply	Version			Performance test in	TÜV	EC	
Туре	Switchpoint	0/4-20 mA	MIN	MAX	ΔT	Standard	b	C	е	acc. with DIN 3440	approval	EU
NRS 1-40.1	1	-	-	-	-	230 V	•	-	-	annual	•	•
NRS 1-40.2	1	-	-	-	-	230 V	٠	-	-	-	•	•
TRS 5-40	4	-	•	•	-	230 V	•	-	-	-	•	

Safety temperature limiter

Combination		PN	Stock code
PT 100	T < 650 °C		
TRG 5-67	L = 200 mm	160	2671822
TRG 5-68	L = 200 mm	160	2671923
TRV 5-40	24 V, DC	-	2691040
NRS 1-40.1	230 V, 50-60 Hz	-	3222841
Combination		PN	Stock code
PT 100	T < 540 °C		
TRG 5-65	L = 115 mm	160	2671611
	1 110	100	2671712
TRG 5-66	L = 140 mm	160	20/1/12
TRG 5-66 TRV 5-40	L = 140 mm 24 V, DC	-	2691040

Type approval

TÜV SWB/SHWS/STW (STB) 13-413 EG MUC 03 07 103881 004 DIN CERTO STW (STB) 117906 SIL 2

Pressurized hot-water boiler

Combination		PN	Stock code
PT 100	T < 400 °C		
TRG 5-63	L = 100 mm 3x	40	2671110
TRV 5-40	24 V, DC 1x	-	2691040
NRG 16-40		40	3514041
NRS 1-40.1		-	3222841
NRS 1-40.2		-	3228941
TRS 5-40	230 V, 50-60 Hz	-	2554041
URB 2		-	3382043

TÜV STW 1182 06 DIN CERTO TR/TW 118206 SIL 2

For other PT 100 see Price List.

Pressurized hot-water boiler

Combination		PN	Stock code
PT 100	T < 400 °C		
TRG 5-63	L = 100 mm 3x	40	2671110
TRV 5-40	24 V, DC 2x	-	2691040
NRG 16-40		40	3514041
NRS 1-40.1		-	3222841
NRS 1-40.2		-	3228941
TRS 5-40	230 V, 50-60 Hz	-	2554041
URB 2		-	3382043

Ξ

TRS 5-50

Self-monitoring temperature switch with periodic self-checking feature to be used in conjunction with a resistance thermometer type TRG 5-....

The equipment operates as a safety temperature controller, or in conjunction with an external lock-out in accordance with EN 14597 as a safety temperature limiter. An alarm is given as soon as the temperature exceeds a preset limit value. Via the optional current output the temperature can be indicated externally at the same time. The system is **SIL 3** certified.

Examples of Installation

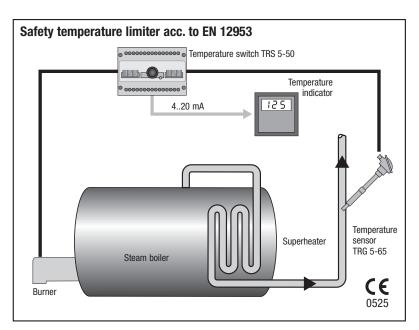
- Superheaters for steam boiler plants operating without constant supervision (TRD 604).
- In pressurized hot-water plants as temperature limiter for the secondary circuit in accordance with TRD 604 or EN 12952/..53.
- Furnaces in accordance with DIN 30 683 up to 650 °C.
- Return-temperature control acc. to TRD 604.
- Control systems for product heating or cooling.

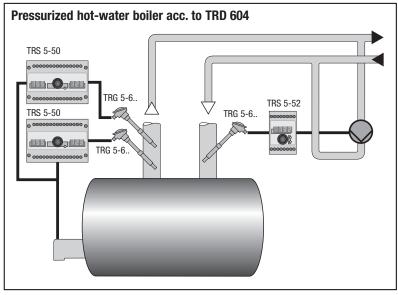
TRS 5-52

The min./max. temperature switch TRS 5-52 in combination with temperature sensor TRG 5-63, TRG 5-64, TRG 5-65, TRG 5-66, TRG 5-67 and TRG 5-68 serves as temperature controller according to EN 14597. Application in steam boilers, pressurized hot-water plants operating without constant supervision (TRD 604) as well as any other type of heat generator. The equipment raises an alarm when the preset MIN/MAX limit value is attained. Optional current output 4-20 mA for actual value indication.

Technical Data of Temperature Sensor

Туре	PN		Connections		Pt 100	Max.	Ambient	Lengths avail-	
		Screwed	TRS	Welding stub	FLIUU	temperature	temperature	able L [mm]	
TRG 5-63	40	1⁄2"	5-50/52	-	1	400 °C	100 °C	100 - 400	
TRG 5-64	40	1⁄2"	5-50/52	-	2	400 °C	100 °C	100 – 400	


Accuracy class A


TRG 5-65	160	-	5-50/52	form 4	1	540 °C	100 °C	115
TRG 5-66	160	-	5-50/52	form 4	1	540 °C	100 °C	140
TRG 5-67	160	-	5-50/52	form 4	1	600 °C	100 °C	200
TRG 5-68	160	-	5-50/52	form 4	1	600 °C	100 °C	200

Accuracy class A/B

Technical Data of Temperature Switches / Controllers / Indicators

Tuno Outr		outs	Control characteristic		Mains supply	Version		1	Performance test in	Adjustable	Approved		
Туре	Switchpoint	0/4-20 mA	MIN	MAX	ΔT	Standard	b	C	е	acc. with DIN 3440	temp. range	TÜV	EC
TRS 5-50	1	(optional)	-	•	-	24 V DC	•	-	-	annual	0 °C - 650 °C	•	•
TRS 5-52	2	0/4-20 mA	•	•	-	24 V DC		-	-	-	0 °C – 650 °C	•	

Safety temperature limiter

Equipment	combination	PN	Stock code
PT 100	T < 540 °C		
TRG 5-66	L = 140 mm	160	2671712
TRS 5-50	24 V DC	-	3061141

Type approval

DIN CERTO STW/STB 1230 EG Z-IS-TAF-MUC-12-10-103881-009 SIL 3 Optional: 100-240 VAC 4-20 mA (0...650 °C)

Return-temperature controller

Equipment	combination	PN	Stock code		
PT 100	T < 400 °C				
TRG 5-63	L = 160 mm	40	2671113		
TRS 5-50	24 V DC	-	3061141		
TRS 5-52	24 V DC		3061241		

Type approval

DIN CERTO TW 1232 Optional: TRS 5-50, 100-240 VAC 4-20 mA (0...650 °C)

.50 .57

.50

.57

For other PT see Price List.

Ξ

Function

All boiler water contains some dissolved solids. These impurities are constantly concentrated due to the evaporation process, i. e. the total dissolved solids (TDS) level increases. If the TDS level were to exceed the permissible maximum stipulated by the boiler manufacturer, foaming and carry-over would take place, leading to contamination of the steam distribution system. As a result, the operational reliability of the plant will be impaired, and the boiler and steam system can be badly damaged.

Effective blowdown can be provided by use of blowdown controller in conjunction with conductivity electrode and continuous blowdown valve BAE 46-211/ball valve 510. Deposits of fine suspended solids forming scale on the heating surfaces and settling at the bottom of the boiler are the result of residual hardness or an excessive phosphate content within the boiler water. These scale formations form a heat insulating layer, which means that the heat transfer surfaces are now subject to design pressure, but at elevated temperature, which in turn can cause deformation and even an explosion. The answer to this problem is the use of continuous blowdown timer TA 5 / 7, solenoid valve 340 and intermittent blowdown valve MPA 46 / MPA 47 / MPA 110.

Application

Steam boilers	Boiler water, feedwater and condensate monitoring acc. to TRD
District-heating plants	Condensate monitoring
Paper industry	Condensate monitoring
Pulp industry	Condensate monitoring
Catering kitchens	Condensate monitoring
Water-treatment plants	Conductivity monitoring
Dyeworks	Dyebath monitoring
Filling/bottling plants	Detection of different products
Electric boilers	Maintaining defined conductivity
Cooling towers	Continuous blowdown control
Pickling baths	Quality monitoring

Basics

Which water values must be adhered to and where can I find a specification of the demands made on boiler water monitoring through continuous and intermittent blowdown?

The requirements made on make-up, boiler and heating water are stipulated in the European Standards

EN 12952-12 (water-tube boilers) and EN 12953-10 (fire-tube boilers).

For more information refer to: VdTÜV/AGFW Bulletins

- ▶ TCh 1452: Quick-steaming unit
- ▶ TCh 1453: Steam generator \leq 68 bar
- TCh 1466: Hot-water generator

VGB Guideline

VGB-R450L: Water-tube boiler

Where can I find more information on boiler water monitoring? The European Standards EN 12952-7 and EN 12953-6 (Equipment) as well as the Ordinance of Industrial Safety ("BetrSichV") and the associated Regulations for Industrial Safety TRBS 2141, part 2 will help.

Principles of Measurement

Conductivity measurement, 2-electrode system

An alternating voltage is applied to two electrode tips (polarization). The current flow is directly proportional to the specific conductivity of the fluid.

Particularly suitable for pure fluids applications up to 500 μ S/cm (e.g. steam regenerators, condensate/feedwater tanks, steam generating units > PN 40 etc.).

Conductivity measurement, 4-electrode system

The 4-electrode method is used in order to improve the quality of the measuring result and to avoid polarisation. This measuring method separates the current-carrying from the voltage-carrying measuring electrodes, which means that the measurement is performed without current and therefore free of polarisation and that dirt deposits can be compensated to a large extent. Particularly well suited for boiler water with high conductivities (e.g. industrial steam boilers up to PN 40).

Temperature compensation (T° Comp)

In plants with temperatures above 25 °C the influence of temperatures on conductivity is an important factor to be considered. Due to electrolytic dissociation (desintegration of a compound in a solution) conductivity increases considerably:

Degree of dissociation $\alpha \approx 3-5$ %/°C.

Manual temperature compensation is suitable for plants with steady service temperatures. The actual conductivity is obtained by carrying out a comparison measurement (calibration) to offset thermal errors.

Automatic temperature compensation (ATC) is ideal for plants with varying service temperatures in order to make conductivity values independent of changes in ambient temperatures. The measured and the indicated values always refer to 25 °C and are constantly compensated for changes in pressure and temperature.

Technical Data of Conductivity Electrodes

Туре	PN	Connection	Max. service pressure [bar]/ saturation temperature	Integrated temp. sensor	Max. admissible ambient temp. at terminal box	Lengths supplied [mm]	TÜV approval	EC
LRGT 16-1	40	1"	32 / 238 °C	•	70 °C	200 - 1000	•	٠
LRGT 16-2	40	1"	32 / 238 °C	•	70 °C	180 - 1000	•	•
LRGT 17-1	63	1"	60 / 275 °C	•	70 °C	200 - 1000	•	•
LRG 16-40	40	1"	32 / 238 °C	•	70 °C	200 - 1000	•	•
LRG 16-41	40	1"	32 / 238 °C	•	70 °C	180 - 1000	•	•
LRG 17-40	63	1"	60 / 275 °C	•	70 °C	200 - 1000	•	•
LRG 16-4	40	3/8"	32 / 238 °C	-	70 °C	100 - 1200	•	-
LRG 16-9	40	1/2"	32 / 238 °C	•	70 °C	_	•	-

Designs

a=Field case

b = Plug-in unit in plastic case

c = 19" slide-in unit

e = Case for panel mounting

Technical Data of Electronic Control Units

Tumo	Out	puts	Main supply	Protection		Des	sign		Measuring range	TÜV	EC
Туре	switchpoints	0/4 – 20 mA	Standard	Protection	а	b	С	e	(recommended)	approval	EU
SPECTOR <i>bus</i>											
LRR 1-40 / LRG 16-40 / LRG 17-40	3	1	230 V	IP 40	-	•	-	-	0.5 to 10000 μS/cm (0.5 to 500 μS/cm)	•	•
LRR 1-40 / LRG 16-41	3	1	230 V	IP 40	-	•	-	-	100 to 10000 µS/cm	•	٠
SPECTOR <i>module</i>											
LRS 1-50 / LRG 16-4 / LRG 16-9	2	1	24 VDC	IP 40	-	•	_	-	0.5 to 10000 µS/cm	•	•
LRR 1-50 / LRG 16-4 / LRG 16-9	3	1	24 VDC	IP 40	-	•	-	-	0.5 to 10000 µS/cm	•	•
LRR 1-51 / LRGT 16-1 / LRGT 17-1	3	1	24 VDC	IP 40	-	•	-	-	0.5 to 10000 µS/cm (0.5 to 500 µS/cm)	•	•
LRR 1-51 / LRGT 16-2	3	1	24 VDC	IP 40	-	•	-	-	100 to 10000 µS/cm	•	٠
LRR 1-52 / URB 50 / LRG 16-4 / LRG 16-9	4	1	24 VDC	LRR IP 40 URB 50 IP 65	-	•	-	•	0.5 to 10000 µS/cm	•	•
LRR 1-53 / URB 50/ LRGT 16-1 / LRGT 17-1	4	1	24 VDC	LRR IP 40 URB 50 IP 65	-	•	-	•	0.5 to 10000 μS/cm (0.5 to 500 μS/cm)	•	•
LRR 1-53 / URB 50 / LRGT 16-2	4	1	24 VDC	LRR IP 40 URB 50 IP 65	-	•	-	•	100 to 10000 µS/cm	•	•
SPECTOR compact											
LRGT 16-1	-	1	24 VDC	IP 65	_	_	_	_	0.5 to 10000 µS/cm (0.5 to 500 µS/cm)	•	•
LRGT 16-2	-	1	24 VDC	IP 65	-	-	-	-	100 to 10000 µS/cm	•	٠
LRGT 17-1	-	1	24 VDC	IP 65	-	-	-	-	0.5 to 10000 μS/cm (0.5 to 500 μS/cm)	•	•

Ξ

LRG 16-40 / 17-40

The conductivity electrode LRG 16-40 / 17-40 works acc. to the conductivity measurement principle.

LRG 16-41

The conductivity electrode LRG 16-41 features 4 electrodes working according to the conductivity measurement principle.

The LRG 16-4x / 17-40 is designed for signalling the TDS value (conductivity) in electrically conductive liquids:

Conductivity permanently within predefined control range of the electrode.

The LRG 16-4x / 17-40 is to be used in conjunction with the conductivity controller LRR 1-40 or further system components. The conductivity data are transferred to the conductivity controller or other system components via CAN data bus.

LRR 1-40

The conductivity controller LRR 1-40 is used in conjunction with conductivity electrode LRG 16-40 / 17-40 for conductivity monitoring and control. The conductivity controller has the following functions:

- Two limits with one switchpoint each (highlevel alarm, low-level alarm) or high-level alarm and intermittent blowdown program control.
- Three-position control with predefined proportional band.
- Conductivity maintained within the control band defined by preset limits.

The LRR 1-40 features an output for a standard signal 4-20 mA. The conductivity data are transferred from the electrode LRG 16-40/ LRG 17-40 to the conductivity controller via CAN data bus.

URB see page 104

LRGT 16-1 / LRGT 17-1

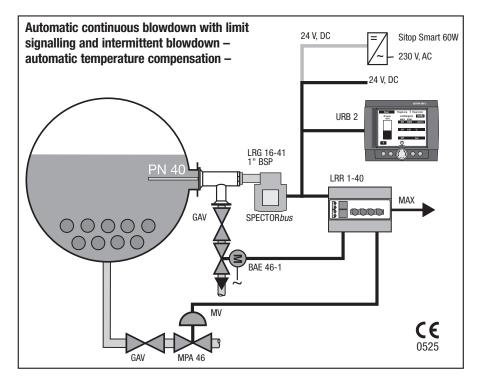
The compact system LRGT 16-1 / 17-1 features 2 electrodes working acc. to the conductivity measurement principle.

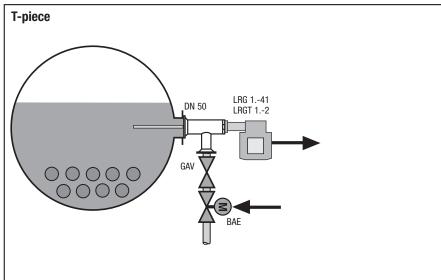
LRGT 16-2

The compact system LRGT 16-2 features 4 electrodes working acc. to the conductivity measurement principle.

The LRGT 16-x / 17-1 is designed for signalling the TDS value (conductivity) in electrically conductive liquids:

Conductivity permanently within predefined control range of the electrode.


The LRGT 16-x / 17-1 has a conductivity transmitter integrated in the terminal box for producing a standard signal 4-20 mA.


KS 90-.

The industrial controller KS 90 comes with a self-optimising feature as standard. In addition to the controller output it has also an integrated max. limit value so as to fulfill the requirements of TRD 604 for 72 hrs operation. The setpoint and the actual value are indicated by a LED display.

Sitop

Power supply unit Sitop PSU/Smart serves as a 24 V DC power supply unit for the compact system LRGT 16-1 / 17-1.

Spector Bus	PN	Stock code
LRG 16-41, 600 mm	40	3772946
Tee piece 50/251)	40	3761502
LRR 1-40		3802241
URB 2		3382043
BAE 46-1		
< DN 15 mm	40	3891201
< DN 20 mm	40	3891401
< DN 25 mm	40	3891501
< DN 40 mm	40	3891701
< DN 50 mm	40	3891801
MPA 46		
< 6 t/h DN 25 mm	40	3661500
< 28 t/h DN 40 mm	40	3661700
Solenoid valve 340C 1/4" BSP		
Strainer GSF 335 ½" BSP	40	440267
Reducer ½" BSP – ¼" BSP		
LRG 17-40, 600 mm	63	3772846
Tee piece 50/251)		1502890
LRR 1-40		3802241
URB 2		3382043
BAE 47-1		
< DN 25 mm	63	3901501
< DN 40 mm	63	3901701
< DN 50 mm	63	3901801
MPA 47		
< 6 t/h DN 25 mm	63	3671500
< 28 t/h DN 40 mm	63	3671700
Solenoid valve 340C ¼" BSP Strainer GSF 335 ½" BSP Reducer ½" BSP – ¼" BSP		440267

1) Approval in acc. with PED 2014/68/EU, module A

Type approval: TÜV WÜL 12-007 EG BAF-MUC-12 05 103881 003

Spector Compact	PN	Stock code
LRGT 16-2, 380 mm	40	3773145
Safety power supply unit PSU 100 C		3373141
LRGT 17-1, 400 mm	63	3772645
Safety power supply unit PSU 100 C		3373141
BAE 46-3 and BAE 210 see Price	Liet	

BAE 46-3 and BAE 210 see Price List

Type approval: TÜV WÜL 16-003 EG BAF-MUC-11 04 105620 001 TÜV and EC type approval only in combination with LRR 1-5.

For flanges see Price List

T-piece connector Approved in acc. with PED 2014/68/EU PN 40 Approved in acc. with PED 2014/68/EU PN 63

Manual Compensation

LRG 16-4

Application and Purpose

The LRG 16-4 in conjunction with conductivity switch LRS or conductivity controller LRR detects the electrical conductivity of process or boiler water.

Automatic Compensation

TRG 5-6.

Application and Purpose

The TRG 5-6.. continuously detects the temperature and compensates for any temperature influence on the conductivity reading.

LRG 16-9

Application and Purpose

The LRG 16-9 detects the electrical conductivity and, by means of the integrated resistance thermometer Pt 100, the temperature of feedwater, condensate, process and boiler water.

LRS 1-50

Application and Purpose

The LRS 1-50 is a compact-design limit switch for signaling MIN and MAX limits and for on/off continuous blowdown control (valve OPEN/CLOSED) with MAX limit contact for automatic boiler blowdown in steam boilers, evaporators, pure steam generators etc. A separate resistance thermometer Pt 100 can be connected to the equipment to provide automatic temperature compensation.

LRR 1-50

Application and Purpose

The LRR 1-50 is a compact-design continuous blowdown controller for automatic 3-position continuous blowdown control (valve OPEN/OPERATION/CLOSED) with a MAX limit contact for automatic boiler blowdown in steam boilers, evaporators, pure steam generators etc. A separate resistance thermometer Pt 100 can be connected to the equipment to provide automatic temperature compensation.

Design of LRS 1-50 / LRR 1-50/51 Plastic enclosure for installation in control cabinet, with removable terminal strip. Installation via 35 mm standard rail.

LRR 1-52

Application and Purpose

The LRR 1-52 is a continuous blowdown controller for automatic 3-position continuous blowdown control (valve OPEN/OPERATION/ CLOSED) with MIN and MAX limit contacts for automatic boiler blowdown in steam boilers, evaporators, pure steam generators etc. The associated operating & display unit URB is mounted in the front panel and is used for setting the parameters in the controller and viewing numerical indication and bar graphs of actual value, setpoint, value of manipulated variable and trend graphs.

Design

The continuous blowdown controller LRR is inside a plastic enclosure for installation in control cabinet and provided with a removable terminal strip. Installation via 35 mm standard rail. The operating & display unit URB is mounted in the front panel of the control cabinet.

Automatic temperature compensation

LRGT 16-1 / 17-1

Application and Purpose

The compact system LRGT 16-1 / 17-1 works according to the conductometric measuring method using two measuring electrodes and features an in-built resistance thermometer Pt 1000.

LRGT 16-2

Application and Purpose

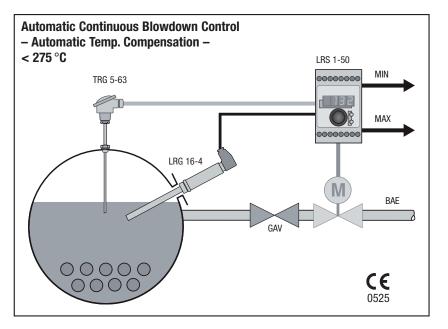
The compact system LRGT 16-2 works according to the conductometric measuring method using four measuring electrodes. Any effects caused by polarisation or contamination are almost entirely compensated for. In addition, the equipment features an integrated resistance thermometer Pt 1000.

Both systems LRGT 1.-1 and LRGT 16-2 have an in-built conductivity transmitter that generates a standardized signal 4 - 20 mA.

LRR 1-51

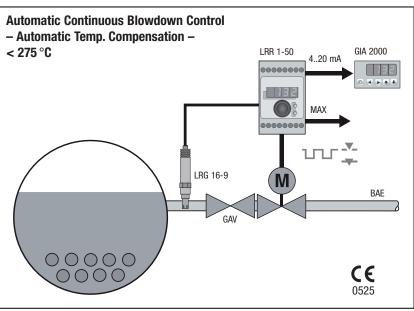
Application and Purpose

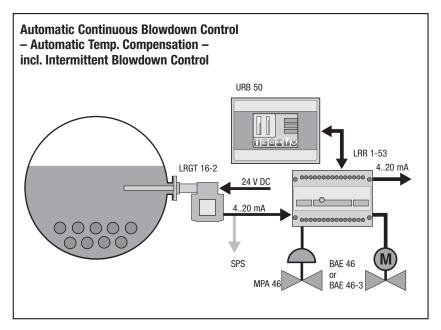
The LRR 1-51 is a compact-design continuous blowdown controller for automatic 3-position blowdown control (valve OPEN/ OPERATION/CLOSED) with MIN and MAX limit contacts for automatic boiler blowdown in steam boilers, evaporators, pure steam generators etc. The compact system LRGT 16-1/2 or LRGT 17-1 provides automatic temperature compensation.


LRR 1-53

Application and Purpose

The LRR 1-53 is a continuous blowdown controller for automatic 3-position blowdown control (valve OPEN/OPERATION/CLOSED) with MIN and MAX limit contacts for automatic boiler blowdown in steam boilers, evaporators, pure steam generators etc. The associated operating & display unit URB is mounted in the front panel and used for setting the parameters in the controller and viewing the numerical values and bar graphs of actual value, setpoint, value of manipulated variable and trend graphs.


Design


The continuous blowdown controller LRR is inside a plastic enclosure for installation in control cabinet and provided with a removable terminal strip. Installation via 35 mm standard rail. The operating & display unit URB is mounted in the front panel of the control cabinet.

System components		PN	Stock code
LRG 16-4	400 mm, ³ / ₈ "	40	3772245
TRG 5-63	160 mm, ½"	40	2671113
LRS 1-50	24 V DC		3041041
BAE 46-3	DN 20, 230 V AC	40	3891403

Type approval: TÜV WÜL 12-018 EG Z-IS-TAF-MUC 12 08 103881 007

System con	nponents	PN	Stock code
LRG 16-4	400 mm, ³ / ₈ "	40	3772245
TRG 5-63	160 mm, ½"	40	2671113
LRG 16-9	incl. Pt100	40	3771839
Connecting Jack/pin	cable 30 m		1502565
LRR 1-50	24 V DC		3041541
BAE 46-3	DN 20, 230 V AC	40	3891403
BAE 46-3	DN 20, 230 V AC	40	3891403
System con	nponents	PN	Stock code
LRGT 16-1	400 mm, 1"	40	3772545
LRGT 17-1	400 mm, 1"	63	3772645
LRGT 16-2	380 mm, 1"	40	3773145
LRR 1-51	24 V DC		3042141
BAE 46-3	DN 20, 230 V AC	40	3891403
BAE 47	DN 25, 230 V AC	63	3901500

Type approval: TÜV WÜL 12-017 EG Z-IS-TAF-MUC 12 08 103881 008

System con	rstem components PN Stoc		Stock code				
LRG 16-4	400 mm, ³ /8"	40	3772245				
TRG 5-63	160 mm, ½"	40	2671113				
LRR 1-52	24 V DC		3042241				
BAE 46-3	DN 20, 230 V AC	40	3891403				
BAE 46	DN 40, 230 V AC	40	3891700				
System con	nponents	PN	Stock code				
LRGT 16-1	400 mm, 1"	40	3772545				
LRGT 17-1	400 mm, 1"	63	3772645				
LRGT 16-2	380 mm, 1"	40	3773145				
LRR 1-53	24 V DC		3042341				
BAE 46-3	DN 20, 230 V AC	40	3891403				
BAE 46	DN 40, 230 V AC	40	3891700				
BAE 47	DN 25, 230 V AC	63	3901500				

Type approval: TÜV WÜL 12-017 EG Z-IS-TAF-MUC 12 08 103881 008

If an independent valve position indicator is required, please choose a BAE actuator with feedback potentiometer and add suffix -1 to the type designation.

Automatic Temp. Compensation

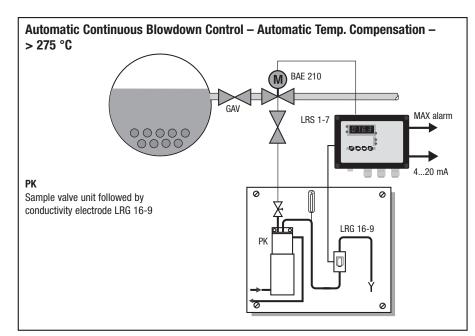
LRG 16-9

Purpose and Application

The LRG 16-9 in conjunction with LRS 1-7a monitors the electrical conductivity as well as the temperature of process, condensate, boiler and feed water thanks to the integrated resistance thermometer. The system is used for limit monitoring and/or automatic continuous boiler blowdown.

Design

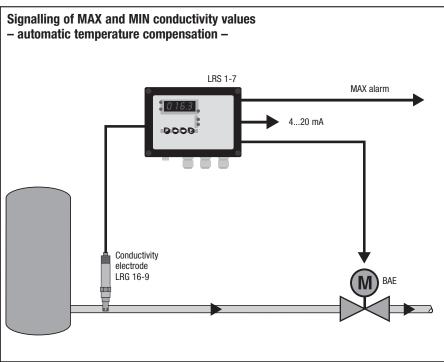
The conductivity electrode LRG 16-9 works with 2 electrodes and uses the electrical conductivity of water for measurement. The integrated PT 100 measures the temperature, thereby enabling automatic temperature compensation.


LRS 1-7

Purpose and Application

Used in conjunction with conductivity electrode LRG 16-9 for automatically controlled continuous boiler blowdown and/or limit monitoring in order to increase the economic viability and safety of the plant. Controlled boiler blowdown with temperature compensated indication of the electrical conductivity (TDS control). Application in steam boilers, evaporators, steam regenerators, condensate liners etc.

Design


Plastic casing for wall mounting with indicators and adjustors behind clear lid.

Sample valve unit > 275 °		Stock code
LRG 16-9		3771839
Connecting cable male / female	5 m	1502563
PK-250 PE2A		
LRS 1-7		3781640
BAE 210 DN 25 Fl.		393150001
CAV	0.4	

GAV see page 83 - 84

Type approval: TÜV WÜL 14-014

- Automatic temperature compensation

Equipment	PN	Stock code
LRG 16-9	40	3771839
Connecting cable male / female 5 m		1502563
LRS 1-7		3781640

Type approval: TÜV WÜL 14-014

Optional LRS 1-7a	
Special voltage 24 V AC	

.51

VRM 2

The service case VRM 2 contains the conductivity meter GMH 3431. The GMH 3431 is equipped with a built-in measuring cell which measures the conductivity of water.

Function

The GMH 3431 is suitable for conductivities within a range from 0 to 200 mS/cm.

Design

VRM 2

Plastic case with foamed plastics insert. Conductivity measuring instrument GMH 3431 with built-in measuring cell.

VRM 3

The service case VRM 3 contains the conductivity meter GMH 3431 and the pH measuring device GMH 3530.

The GMH 3431 is equipped with a built-in measuring cell which measures the conductivity of water.

The GMH 3530 is equipped with pH electrode type GE 100 BNC and Pt 100 temperature probe type GTF 401. The electrode and the probe are plugged into the equipment.

The service case contains also the handling and calibration set GAK 1400, consisting of:

- 5 orange capsules for the calibration solution pH 4.01 and a plastic bottle
- 5 green capsules for the calibration solution pH 7.01 and a plastic bottle
- 5 blue capsules for the calibration solution pH 10.01 and a plastic bottle
- 1 bottle 3mol KCL-solution
- 1 bottle pepsin cleaning agent

Function

The GMH 3431 is suitable for conductivities within a range from 0 to 200 mS/cm.

The GMH 3530 together with the pH electrode GE 100 BNC can measure pH values from 0.00 to 14.00.

The temperature probe measures temperatures between -50 °C and +250 °C.

For pH measuring the temperature range is limited to 10 $^{\circ}\mathrm{C}$ to 50 $^{\circ}\mathrm{C}.$

Design

VRM 3

Plastic case with foamed plastics insert. Conductivity measuring instrument GMH 3431 with built-in measuring cell.

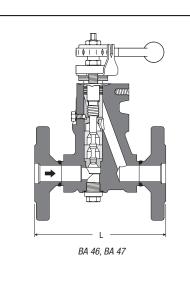
pH meas. device GMH 3530 with pH electrode GE 100 BNC and temperature probe GTF 401. Calibration set GAK 1400.

Tee Pieces for Conductivity Electrodes

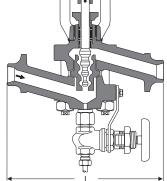
		Connections DN ²)	Length L approx.	Stock code
DN 15 – 40 mm		15 / 15	118	1506435
Boiler	To suit electrode LRG 16-4	20 / 20	128	1506436
DN 15 – 40 mm	Material: C 22.8 / St 35.8 Pressure rating: PN 40	25 / 25	137	1506441
BAE		401) / 40	180	1506442
DN 50 mm	To suit conductivity electrodes LRGT 16-1 / LRG 16-40/41 Material: C 22.8 / St 35.8	15	197	1506426
Boiler		20		1506427
N 15 – 40 mm		25		1506428
BAE	Pressure rating: PN 40	40		1506429
DN 50 mm Boiler 1" 3)	To suit conductivity electrodes LRGT 17-1 / LRG 17-40 Material: C 22.8 / St 35.8	25	244	1506497
DN 25 mm	Pressure rating: PN 63 351			

Level Pots for Conductivity Electrodes

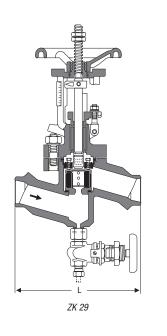
		Connections DN ²)	Length L approx.	Stock code
DN 15 – 40 mm	MF 1161 STT	15	351	1506467
	For installing level electrodes outside the	20	353	1506468
DN 15-40 mm L 1"	boiler LRGT 16-1 / LRG 16-40 Material: C 22.8 / St 35.8 / Ø 60.3	25	353	1506469
	Pressure rating: PN 40	40 1)	358	1506470
DN 15-40 mm	MF 1162 STT	15		1506454
	For installing level electrodes outside the	20	414	1506455
DN 15-40 mm	boiler LRGT 16-2 / LRG 16-41 Material: C 22.8 / St 35.8 / Ø 139.7	25	414	1506456
	Pressure rating: PN 40	40 1)		1506457
DN 25 mm Boiler connection L 1"	MF 1171 STT To suit electrode type LRGT 17-1, LRG 17-40 Material: C 22.8 / St 35.8 / Ø 60.3 Pressure rating: PN 63	25	500	1506656
DN 25 mm DN 25 mm BAE DN 50 mm ³) Boiler connection Connection	3MF 88.9 To suit electrode type LRG 17-1/LRG 19-1	PN 63 25	418	1500987
	For continuous blowdown valve BAE (automatic continuous blowdown control)	PN 160 25	415	1500988


¹) Approval acc. to PED 2014/68/EU module A1

²) Please state nominal size (DN) when ordering.


3) Approved in acc. with PED 2014/68/EU module 6

Portable Measuring Instruments for Conductivity + pH Value


THE REAL PROPERTY OF	Туре		Stock code
	VRM 2	Conductivity	3821040
	VRM 3	Conductivity, temperature and pH value	3821141

BA 46, BA 47

BA 210, BA 211

Application

BA 46, BA 47, BA 210, BA 211, ZK 29	Valve with adjustable stage nozzle and sample valve for continuous blowdown of steam boilers and evaporators.
BAE 46, BAE 47, BAE 210, BAE 211, ZKE 29	Valve with adjustable stage nozzle, sample valve, and electric actuator for auto- matically controlled continuous blowdown. Especially suited for boilers operating without constant supervision (TRD 604).

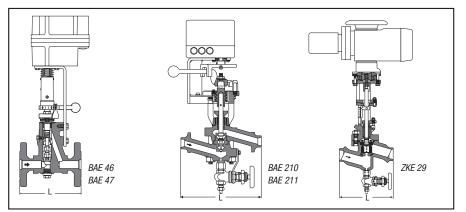
Pressure/Temperature Rating According to EN 1092-1 (2013) for: 1.0460 in accordance with PED and AD 2000 or A105 according to Pressure Equipment Directive (PED).

Туре	Ratings according to		max. pressure [bar] at boiling temperature [°C] = ts/p max
BA 46 / BAE 46	PN 40 1.0460	EN 1092-1	238/31
	PN 40 A105	EN 1092-1	238/31
	Class 150 A105	ASME B16.34	198/14
	Class 300 A105	ASME B16.34	254/42
BA 47 / BAE 47	PN 63 1.0460	EN 1092-1	261/47
	PN 63 A105	EN 1092-1	261/47
	Class 600 A105	ASME B16.34	271/55
BA 210 / BAE 210	PN 250 1.0460	DIN 2401	337/142
BA 211 / BAE 211	PN 320 1.7335	DIN 2401	374/221
ZK 29 / ZKE 29	PN 160 1.7335	EN 1092-1	336/138

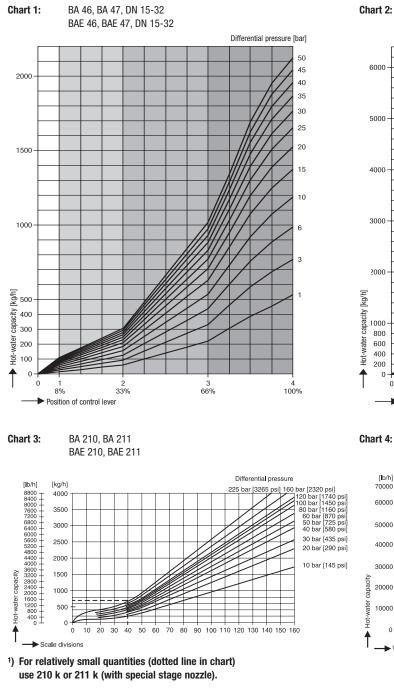
End connections

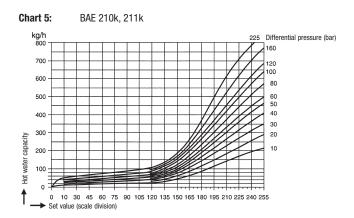
Туре	Flanged DIN	Flanged ANSI	Socket-weld	Butt-weld
BA 46 / BAE 46	•	•	•	-
BA 47 / BAE 47	•	•	•	-

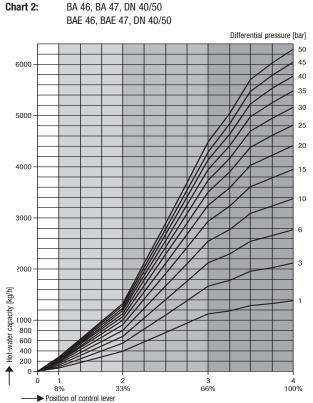
Dimensions BA 46, BAE 46 [mm]

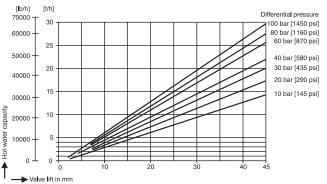

Connections	DN	15	20	25	32	40	50
Flanged DIN	L	150	150	160	180	200	230
Flanged ANSI Class 150	L	150	150	160	180	230	230
Flanged ANSI Class 130	L	150	150	160	180	230	230
Socket-weld	L	200	200	200	200	250	250

Dimensions BA 47, BAE 47 [mm]


Connections	DN	15	20	25	32	40	50
Flanged DIN	L	-	-	190	-	220	250
Flanged ANSI Class 600	L	-	-	216	-	216	250
Socket-weld	L	-	-	200	-	250	250


Dimensions BA 210, BAE 210, BA 211, BAE 211 [mm]


Connections	DN	15	20	25	32	40	50
Flanged DIN	L	-	-	410	-	-	-
Flanged ANSI Class 600	L	-	-	410	-	-	-
Flanged ANSI Class 900 / 1500	L	-	-	440	-	-	-
Socket-weld	L	-	-	300	-	-	-


Capacity Charts

Description

A short boiler blowdown is performed by quickly opening the blowdown valve. This creates a short-term low-pressure area around the blowoff opening at the bottom of the boiler, causing a suction effect that removes accumulated sludge and sediments that have settled out in the lower part of the boiler.

The suction effect of an intermittent blowdown is only effective at the moment when the valve is being opened. For this reason the valve should only be opened for approx. 2 seconds. Longer opening periods waste boiler water.

For the closing process the design of the valve is of great importance. The closing force of the spring of the intermittent blowdown valves (M)PA is increased by the boiler pressure, which means that the valve is in a good condition for breaking up any dirt particles settled on the valve seat/plug, thus ensuring a positive shutoff.

The service life of the valve seat/plug is further increased by the pressure reduction that takes place in the radial stage nozzle installed downstream of the valve. The time interval between bottom blow-down processes can only be calculated indirectly by taking the boiler efficiency, the feedwater quality and the admissible boiler water quality into account.

Application

In steam boiler plants operating without constant supervision. Automation of intermittent blowdown by generating electric pulses to initiate a blowdown cycle via the GESTRA rapid-action intermittent blowdown valve MPA.

If space underneath the boilder is of concern, (M)PAs that can be tilted by 45° are available on request.

Controls

Tumo	Design	Interval time	Pulse duration	Mains		Version	
Туре	Design	intervar time	sec	voltage	а	b	f
SPECTOR bus							
LRR 1-40	Continuous/intermittent blowdown controller for installation in control cabinet, with strainer and solenoid valve	1 h – 120 h	1 – 60	230 V / 50 Hz	-	•	-
SPECTOR <i>mod</i>	lule						
LRR 1-52 LRR 1-53	Continuous/intermittent blowdown controller for installation in control cabinet, with strainer and solenoid valve	1 h – 200 h	1 – 10	24 V DC	-	•	-
SPECTOR con	npact		-				
TA 7	Cycling timer PRS 8 integrated in solenoid valve plug, strainer, solenoid valve	30 min – 10 h	0,5 – 10	230 V / 50 Hz 24 V DC	-	-	•

Three-Way Solenoid Valve

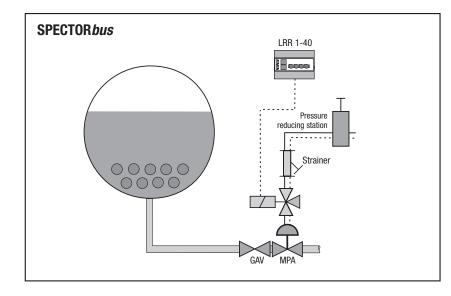
Max. service pressure [bar]	Min. differential pressure [bar]	Connection	Protection
16 ¹)	min. 0.5	1⁄4" BSP	IP 65

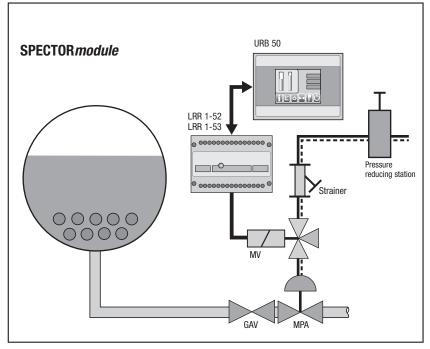
1) Max. admissible pressure for diaphragm actuator: 6 bar

Strainer

Material		Connection	Mesh size [mm]	
Body	Filter	Connection		
Gun metal Rg 5	1.4571	1⁄2" BSP	0.5	

Version

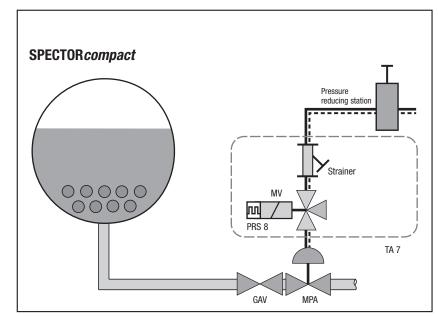

a = Field case


b = Plug-in unit in plastic case

c = 19'' slide-in unit

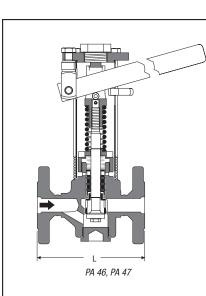
- e = Case for panel mounting
- f = Integrated in solenoid

valve plug

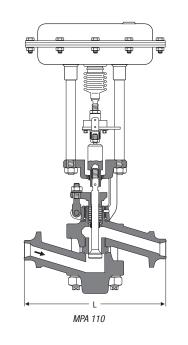


Controlled by LRR 1-40:

Туре		DN	PN	Stock code
Pressure reduc station	ng 1⁄4"			147545
Strainer GSF 335	1⁄2"			4301241
Reducer ½"	- 1⁄4"			3401145
Solenoid valv 1/4",	e 340 C 230 V AC			050334


Controlled by LRR 1-52/-53:

Туре	DN	PN	Stock code
Pressure reducing station ½"			147545
Strainer GSF 335			4301241
Reducer 1/2" - 1/4"			3401145
Solenoid valve 340 C 1/4", 24 V DC			146247
MPA 46 < 6 t/h < 24 t/h	25 40	40	3661500 3661700
MPA 47 < 6 t/h < 24 t/h	25 40	63	3671500 3671700



Controlled by TA 7:

Туре		DN	PN	Stock code
TA 7	24 V DC			360224252
Pressure rec	ducing station			147545
MPA 46				
< 6 t/h		25	40	3661500
< 24 t/h		40		3661700
MPA 47				
< 6 t/h		25	63	3671500
< 24 t/h		40		3671700

MPA 46, MPA 47

Application

PA 46, PA 47, PA 110	Manual intermittent blowdown of steam boilers and pressurized hot-water boilers.
MPA 46, MPA 47, MPA 110	Automatic, programme-controlled intermittent blowdown of steam boilers and waste-heat boilers. Especially suited for boilers operating without constant supervision (TRD 604).

Pressure/Temperature Rating According to EN 1092-1 (2013) for: 1.0460 in accordance with PED and AD 2000 or A105 according to Pressure Equipment Directive (PED).

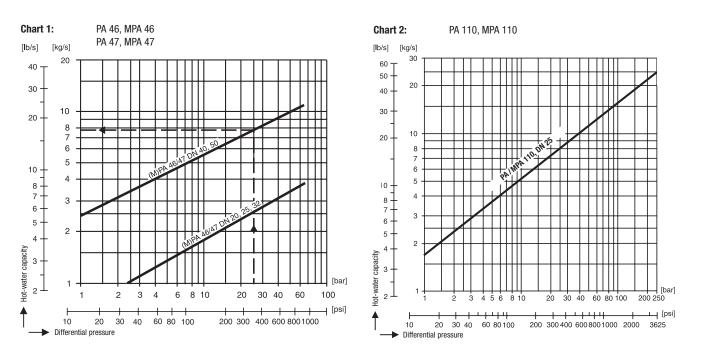
Туре	Ratings accord	ling to	max. pressure [bar] at boiling temperature [°C] = ts/p max	Control fluid MPA	Max. control pressure MPA	
PA 46	PN 40 1.0460	EN 1092-1	238/31			
MPA 46	PN 40 A105	EN 1092-1	238/31			
	46 PN 40 1.0460 E A 46 PN 40 A105 E Class 150 A105 AS Class 300 A105 AS Class 300 A105 AS Class 300 A105 AS Class 400/600 A105 AS 110 PN 250 1.7335 E A 110 PN 250 A182-F12 E		198/14	Water or		
	Class 300 A105	ASME B16.34	254/41	compressed	8 bar	
PA 47	PN 63 1.0460	EN 1092-1	261/47	air		
MPA 47	PN 63 A105	EN 1092-1	261/47			
	Class 400/600 A105	ASME B16.34	271/55			
PA 110	PN 250 1.7335	EN 1092-1	369/206			
MPA 110	PN 250 A182-F12	EN 1092-1	374/221			
	Class 400/600 A182-F12	ASME B16.34	300/85	Compressed air	6 bar	
	Class 900 A182-F12	ASME B16.34	326/124			
	Class 1500 A182-F12	ASME B16.34	363/196			

End Connections

Туре	Flanged DIN	Flanged ANSI	Socket-weld	Butt-weld
PA 46, MPA 46	•	•	•	-
PA 47, MPA 47	•	•	•	_
PA 110, MPA 110	•	•	-	•

Dimensions PA 46, MPA 46 [mm]

Connection	DN	20	25	32	40	50
Flanged DIN	L	150	160	180	200	230
Flanged ANSI Class 150	L	150	160	180	230	230
Flanged ANSI Class 300	L	150	160	180	230	230
Socket-weld	L	200	200	200	250	250


Dimensions PA 47, MPA 47 [mm]

Connection	DN	20	25	32	40	50
Flanged DIN	L	-	190	-	220	250
Flanged ANSI CI 600	L	-	216	-	216	250
Socket-weld	L	-	200	-	250	250

Dimensions PA 110, MPA 110 [mm]

Connection	DN	20	25	32	40	50
Flanged DIN	L	-	410	-	-	-
Flanged ANSI CI 600	L	-	410	-	-	-
Flanged ANSI CI 900 / 1500	L	-	440	-	-	-
Socket-weld	L	-	300	_	-	-

Capacity Charts

The Benefits of the New GESTRA Intermittent Blowdown Valves

- Improved blowdown effectiveness through integrated pressure chamber in the outlet section of the body
- Greater tightness through additional wiper rings between the packing seals
- Longer service life and availability through radial stage nozzle downstream of the valve seat
- Insensitive to waterhammer through absence of large body cover
- Reduced wear through new arrangement of the seals on the lowpressure side
- Consistent implementation of the work safety regulations through novel distance tube
- Quick and easy installation thanks to multifunction parts
- Reduced maintenance and service effort through additional cup springs acting on the compression spring and through the possibility of tensioning the seals from outside
- Better checking functionally through relief vent for leak detection from outside
- Greater convenience through innovative clip fastening of the hand lever PA 46/47

Liquid Monitoring – Detecting Ingress of Oil in Condensate Systems and Marine Installations

Application

TRD 604, EN 12952/..53.

zone 1(on request).

Purpose

Continuous monitoring of transparent liquids to detect any ingress of insoluble foreign matter causing turbidity, such as emulsified oils and greases. Measuring of turbidity and signal evaluation for indication, recording and control. Tripping of alarms, control valves etc.

The oil turbidity detector OR 52/. consists of a measuring sensor ORG 12/ORG 22 and the ORT 6.

Technical Data

Туре

Measuring transducer ORT 6 Wall-mounting case, measuring range 0-25 ppm Sensor PN Connection Material 2 alarm relay outputs (instantaneous/delayed)

Hot-water monitoring in district heating plants.

Filter and cooling-water monitoring on ships.

					LED bar chart display 4–20 mA current output
OR 52/5	ORG 12	10	3/8"	GG 25	•
OR 52/6	ORG 22	10	3/8"	1.4580	•
OR 52/5 EX	ORG 12	10	3/8"	GG 25	•
OR 52/6 EX	ORG 22	10	3/8"	1.4580	•

Liquid Monitoring – Detecting Ingress of Acids, Alkalis, Raw Water, Dyes, etc.

Purpose

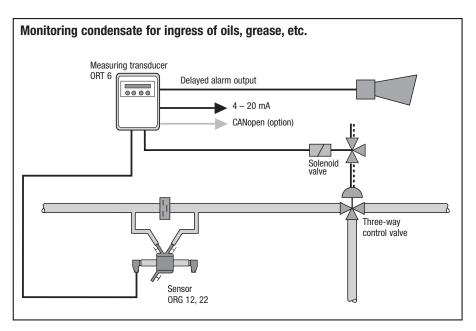
Monitoring conductive liquids for contamination by foreign matter that increases the TDS concentration; conductivity monitoring (TDS control), signalling and display.

Application

For condensate and feedwater monitoring in steam and (pressurised) hot water plants to detect ingress of acids, alkalis, raw water, dyes, etc.

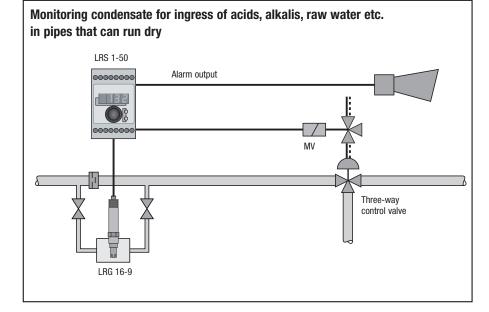
Condensate monitoring in steam boilers to detect any ingress of oils and greases in accordance with

Monitoring of cooling water, drinking water, condensate and beverages for turbidity in hazardous areas -


Monitoring of cooling water, drinking water, condensate and beverages for turbidity.

Technical Data of Conductivity Electrodes

Туре	PN	Connec- tion Service pressure [bar] saturated steam temp.				Lengths supplied [mm]	TÜV	GL
LRG 16-9	40	1⁄2"	32 / 238 °C	•	70 °C	43	•	•
LRGT 16-1	40	1"	32 / 238 °C	•	70 °C	200 / 300 / 400	•	•


Technical Data of Electronic Control Unit/Controller

Туре	Outputs		Mains voltage	Protection		Des	ign		Macouring rongo	TÜV	CI
	switching	4 – 20 mA	Standard	Protection	a	b	C	e	Measuring range	104	GL
LRS 1-7a	•	•	230 V/AC	IP 65	•	-	-	-	0.5 – 10,000 µS/cm	•	•
LRS 1-50	•	-	24 V/DC	IP 20	-	٠	-	-	0.5 – 10,000 µS/cm	•	-

Туре	Stock code
OR 52/5	4003040
OR 52/6	4003140
Pneumatic three-way control valve PN 16, DN 50 with pilot valve	1503407
Non-return valve DISCO RK 86a, SF 20 mbar PN 40, DN 50	121180182
Optional CANopen interface	.60
Non-return valve see pages 38 -	- 49
Type approval: TÜV WÜF 12-009	

Monitoring condensate for ingress of acids, alkalis, raw water, etc. LRS 1-7 Alarm output 4 - 20 mA LRG 16-9 Solenoid valve Three-way control valve

Туре		Stock code
LRG 16-9		3771839
Connecting cable male / female	5 m	1502563
LRS 1-7		3781640
Pneumatic three-way control valve PN 16, DN 50 with pilot valve		1503407

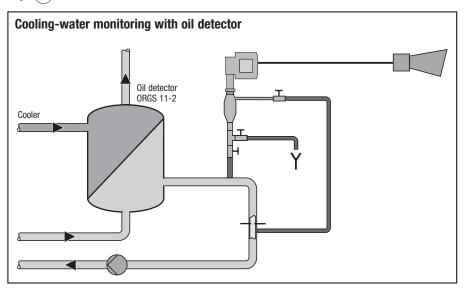
Type approval: TÜV WÜL 14-014

ULISTED

Optional Special voltage 24 V AC .51

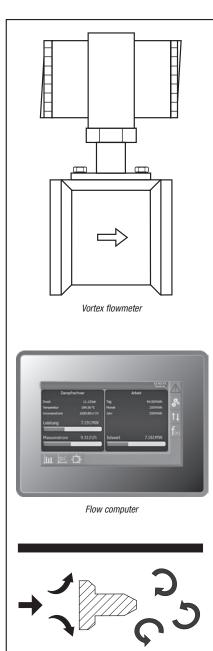
Туре	Stock code
LRG 16-9 with measuring chamber, G½	377183930
LRS 1-50 24 V DC	3041041
DISCO Non-return valve RK 86a, SF 20 mbar PN 40, DN 50	121180182

Type approval: TÜV WÜL 12-018 EG Z-IS-TAF-MUC-12-08-103881-007


Purpose and Application of Oil Detector

The oil detector ORGS 11-2 is used for monitoring cooling water to detect any ingress of oil. An alarm and control unit installed downstream of the detector will dump contaminated cooling water, thereby preventing oil contamination of the installation to be cooled. The equipment detects all low-density matter that is insoluble in water, not emulsified, and has a lower electrical conductivity than water. Antirust oils, which emulsify in cooling water, do not trigger an alarm.

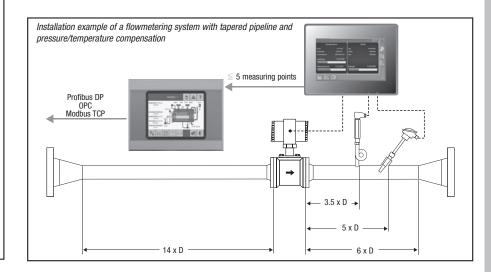
The output contact relays of the contamination detector are self-monitoring and of the normally closed type, and will therefore trigger an alarm in the event of a malfunction. Tested and approved by Germanischer Lloyd (GL).


Technical Data

Туре	PN	Connection	Material
ORGS 11-2	6	Inlet E0-15-L	C 22.8
		Outlet E0-12-L/S	
		Drain E0-15-L	

Туре	Stock code	
ORGS 11-2	4041140	
Type approval for marine applications		

Type approval for marine applica see page 96


Principle of Measurement

The design is based on the Kármán vortex street principle using a body installed perpendicular to the axis of the pipe. The vortices generated in the flow stream produce pressure oscillations which are converted into electrical signals by a sensor. The output signal is then evaluated and processed in the flow computer.

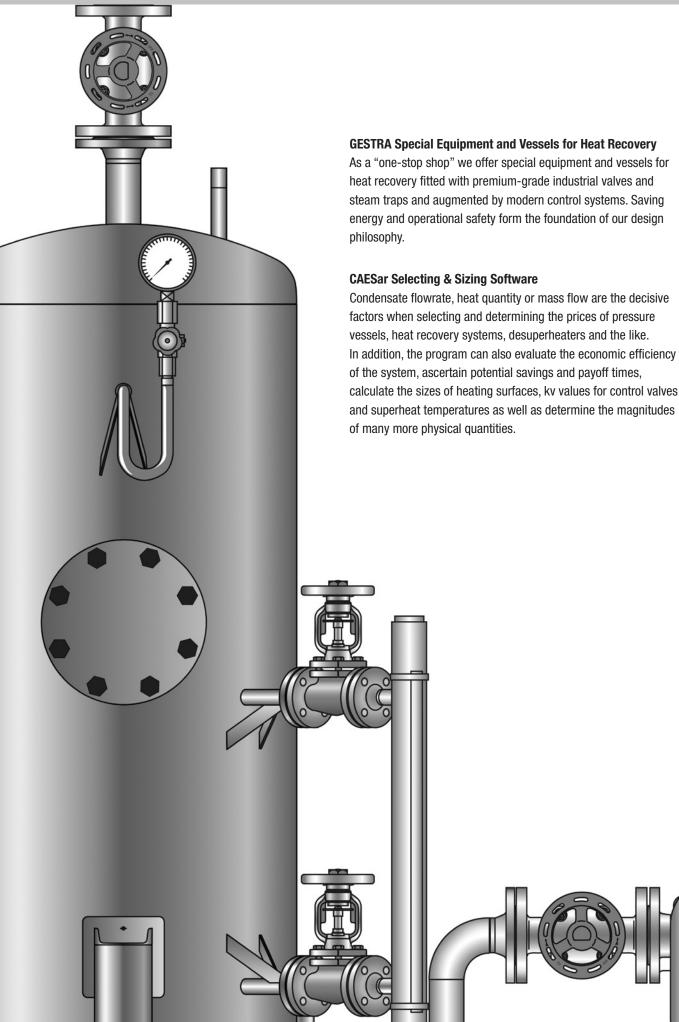
Recommended steam flowrate m in [kg/h] for Vortex flowmeter 83*)

Absolute DN 20 DN 25 DN 40 DN 50 DN 80 DN 100 DN 150 DN 200 DN 250 DN 300 pressure [bar] 1.0 1.4 1.6 1.8 2.0 2.5 3.0 4.0 5.0 6.0 9.0 11.0 14.0 21.0 31.0

*) For minimum and maximum flowrates see data sheet.

Steam-flow measurement system for constant saturated steam pressure

Specially shaped vortex shedder


consisting of: Vortex flowmeter type 84 W-U and flow computer type SPECTOR*control* Flow system for fluctuating saturated steam pressure (temperature compensated) consisting of: Vortex flowmeter type 84 W-U, flow computer type SPECTOR*control* Flow and temperature sensor TRG 5-63, L = 160 mm

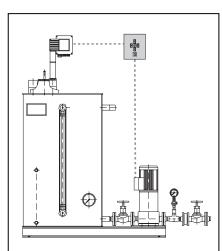
Steam-flow measurement

Steam-flow measurement system for fluctuating saturated steam pressure

(pressure compensated) consisting of: Vortex flowmeter type 84 W-U, flow computer type SPECTOR*control* Flow and pressure transmitter DRT with syphon and pressure gauge. Steam-flow measurement system for superheated steam (temperature and pressure compensated) consisting of: Vortex flowmeter type 84 W-U, flow computer type SPECTOR*control* Flow, temperature sensor TRG 5-63 and pressure transmitter DRT with syphon and pressure gauge

For up to 5 measuring points SPECTOR*control* II (a visual display & control system for viewing, calculating, monitoring and controlling) can be used.

Page


GESTRA pressure equipment is designed, constructed and tested to PED¹) 2014/68/EU and AD Bulletin 2000. Pressure equipment of category I, II, III and IV bears the CE marking. The Declaration of Conformity certifies that the equipment satisfies the applicable safety requirements of the PED.

Pressure equipment that falls within the scope of article 4 section 3 of the PED 2014/68/EU is designed and manufactured in accordance with what is recognised as sound engineering practice. This equipment will not be CE marked but must be accompanied by a Declaration of Manufacturer.

¹) PED = Pressure Equipment Directive

Special Equipment and Vessels for Heat Recovery

	i ugo
Condensate Recovery and Return System SDR A	150
Open-Type Condensate Recovery and Return Tank SDL 100	151
Closed-Type Condensate Recovery and Return Tank SDL 130	152
Steam-Powered Condensate Return Unit KH	153
Steam-Powered Condensate Return Unit FPS	154
Desuperheaters EK, KD	155
Steam Regenerators GRDE	156
Heat exchanger unit PWT-XPS	157
Feedwater Deaerating Plants NDR, SW	158
Flash Vessels VD	159
Blowdown Receiver (Mixing Cooler) VDM	160
Condensate Dampening Pot ED	161
Air/Steam Driers and Purifiers TD/TP (Steam Separators)	162
Questionnaire for preparing offers1	63 – 170

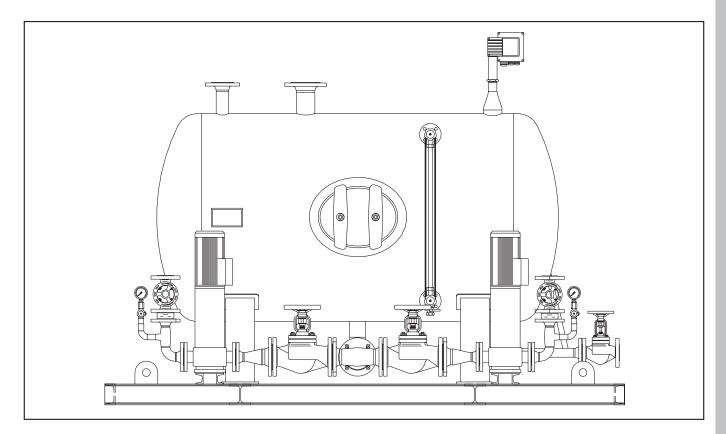
Condensate tank of rectangular design type SDR A with high-pressure centrifugal pump(s) installed next to the tank

Application

Condensate tanks are used to collect the condensate coming from steam users or flash vessels. From the tank the condensate is pumped into the feedwater tank by a level-controlled pump, in most cases via a deaerator.

Rectangular condensate tank type SDR A

The standard range of rectangular condensate tanks is designed for condensate flowrates of up to 8 t/h and a max. service pressure of 0.1 bar g.


Tank made of steel type S235JRG2, inside: untreated, outside: anti-corrosion coating **with two condensate pumps and accessories installed next to the tank, e. g.** bimetal dial thermometer, water-level indicator, GESTRA level electrode and control for automatic pump operation, non-return valves, shut-off valves, high-pressure centrifugal pump(s) and pressure gauge. Completely assembled and interconnected, control cabinet supplied but not mounted.

Size	Volume [l]	Pumping capacity [m ³ /h]
1	340	1
2	550	2
3	750	3
4	1000	4
5	1500	6
6	2000	8

Vessels in compliance with

Conformity Assessment Section 4, Paragraph 3

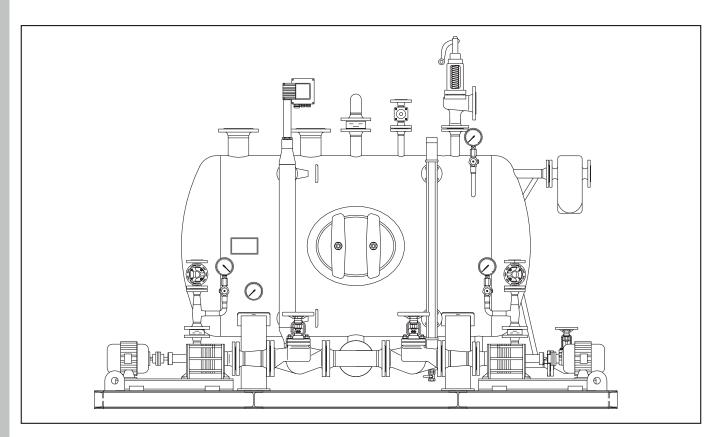
Tanks and valves made of other materials available on request. Other pumping capacities and discharge heads on request.

Condensate receiver tank of cylindrical design type SD L (S) with high-pressure centrifugal pump(s) installed next to the tank L = horizontal design; S = vertical design

Size	Volume [l]	Pumping capacity [m ³ /h]
I	250	1
II	390	2
Ш	850	4
IV	1370	6
V	2100	9
VI	2900	12
VII	3800	16
VIII	4500	20
IX	5900	25
Х	6900	30

Max. condensate temperature 90 °C

Application


Condensate tanks are used to collect the condensate coming from steam users or flash vessels. From the tank the condensate is pumped into the deaerator by level-controlled pumps.

Gestra

Open condensate tank of cylindrical design type SD L (S)

The standard range of cylindrical condensate tanks is designed for condensate flowrates of up to 30 t/h and a max. service pressure of 0.5 bar. Condensate tanks for larger flowrates available on request.

Tanks available as horizontal or vertical design, made of steel S235JRG2, inside: untreated, outside: anti-corrosion coating. **Two high-pressure pumps and associated valves and accessories installed next to the tank: e.g.** bimetal dial thermometer, pressure gauge unit, water-level indicator, GESTRA level control and level electrode for automatic pump operation and non-return valves are part of the installation.

Condensate receiver tank of cylindrical design type SD L (S) with horizontal-type centrifugal pump(s) installed next to the tank L = horizontal design; S = vertical design

Size	Volume [l]	Pumping capacity [m ³ /h]
I	250	1
II	390	2
III	850	4
IV	1370	6
V	2100	9
VI	2900	12
VII	3800	16
VIII	4500	20
IX	5900	25
Х	6900	30

Application

Condensate tanks are used to collect the condensate coming from steam users or flash vessels. From the tank the condensate is pumped into the deaerator by level-controlled pumps.

Closed condensate tanks of cylindrical design type SD L (S)

The standard range of cylindrical condensate tanks is designed for condensate flowrates of up to 30 t/h and a max. service pressure of 4 bar. Condensate tanks for larger flowrates available on request.

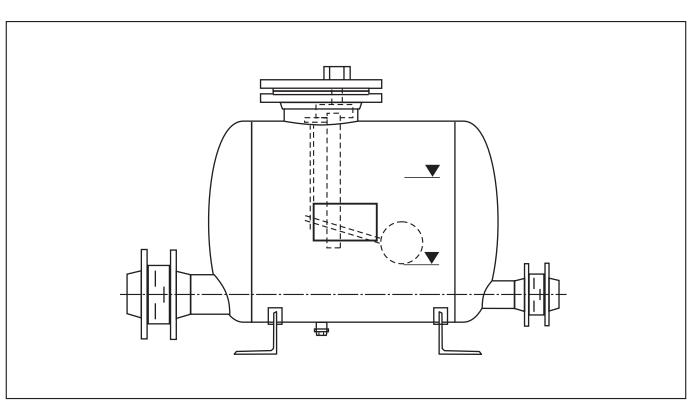
Tanks available as horizontal or vertical design, made of steel boiler plate type P265GH, inside: untreated, outside: anticorrosion coating. **Two horizontal-type centrifugal pumps and associated valves and accessories installed next to the tank: e. g.** bimetal dial thermometer, pressure gauge assembly, magnetically operated liquid level gauge, level electrode and control for automatic pump operation, safety device, overflow, air vent, vacuum breaker, shut-off valves and nonreturn valves are part of the installation.

Other valve and tank materials available on request. Other pumping capacities and discharge heads on request.

Application

Condensate tanks are used to collect the condensate from steam processors or flash vessels. From the tank the condensate is returned to the main condensate tank or deaerator with the aid of level-controlled booster steam.

Steam-powered condensate return unit KH...


The standard version is suitable for condensate flowrates of up to 10 t/h and a max. service pressure of 12 barg.

The condensate return tank is made from steel type P265GH. Outside: anti-corrosion coating. Inside: untreated.

Associated valves and equipment such as pressure gauge assembly, solenoid valve, level electrode and control for automatic booster steam supply, non-return valves are completely assembled and interconnected.

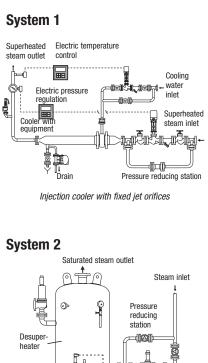
Size	Volume [l]	Pumping capacity [m ³ /h]	Booster steam pressure	Pump capacity [bar]
KH 13-2	50	2	12	8.4
KH 13-3	75	3	12	8.4
KH 13-5	100	5	12	8.4
KH 13-10	390	10	13	8.4

Other tank and valve materials available on request.

Size	Volume [l]	Booster steam pressure [barg]	Pumping capacity
FPS 11-13	45	10	up to 1000 kg/h
FPS 23-13	75	10	up to 2300 kg/h
FPS 14-13	100	10	up to 5000 kg/h

UNA 25-PS and UNA 25-PK are also available for flowrates of approx. up to 600 kg/h. For more details on the equipment see page 26 and the Price List.

Application


Condensate tanks are used to collect the condensate from steam processors or flash vessels. From the tank the condensate is returned to the main condensate tank or deaerator with the aid of float-controlled booster steam.

Gestra

Steam-powered condensate return unit type FPS 14...

The condensate is returned to the main condensate tank with the aid of booster steam, without electric power. The standard version of the FPS 14 is suitable for condensate flowrates of 5 t/h and a max. service pressure of 12 bar g.

The discharge capacity decreases with rising back pressure. The tank is made of steel type S235JRG2 or of P265GH. Outside: anticorrosion coating. Inside: untreated. The nonreturn valves are completely assembled and interconnected, inclusive of counter-flanges, bolts and gaskets.

Water level control

Water-bath desuperheater

Application

Heating installations in all industries

Heating of drying calenders in the paper industry

Heating of boiling pans in the foodstuff industry

Heating of cable presses

Radiant panels for hardware production in the electrical industry

Steam moistening plants in the textile industry

System Description

System1 Injection cooler with fixed jet orifices

The cooling water is injected through special jet orifice into the steam flow. The amount is adjusted by a control valve upstream of the desuperheater and controlled by the high differential pressure. The type and number of nozzles are dictated by the operating data. The internals of the pipe installed downstream of the equipment prevent temperature shocks at the external pipe.

System 2 Water-bath desuperheater

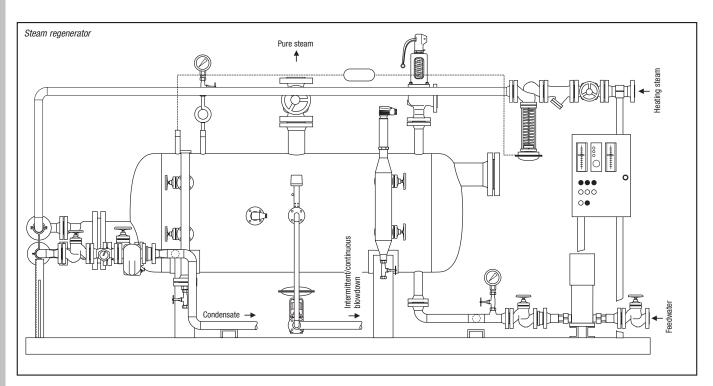
The heat of the superheated steam causes the cooling water/condensate to evaporate, thereby cooling the superheated steam. The steam produced is conducted through steam separating units and has a steam content of more than 98 % (i.e. less than 2 % residual moisture).

Criteria for System Selection

- 1. What is the ratio between minimum and maximum steam quantity in the control range?
- 2. What is the pressure and the temperature of the available cooling water?
- 3. How close must the temperature of the desuperheated steam be to that of saturated steam?

Technical Data

		System 1	System 2
Pressure rating	[bar]	28	28
Maximum temperature	[°C]	450	380
Cooling water pressure above steam pressure	[bar]	5 – 9	1
Steam flowrate	[t/h]	100	15
Steam flow ratio		1:5	1 : 100
Set point above saturation temperature	[K]	5	_


Higher pressures, temperatures and steam flowrates available on request.

Questions concerning System Design

1. Maximum steam flow at inlet?

Gestra

- 2. Minimum steam flow at inlet?
- 3. Maximum service pressure?
- 4. Maximum temperature at inlet?
- 5. Standard temperature at inlet?
- 6. Temperature at outlet?
- 7. Saturated-steam temperature?
- 8. Temperature of injected cooling water?
- 9. Injected cooling-water flow?
- 10. Cooling-water pressure at cooler?
- 11. Pump pressure?
- 12. Design pressure?
- 13. Design temperature?
- 14. Length of installation?

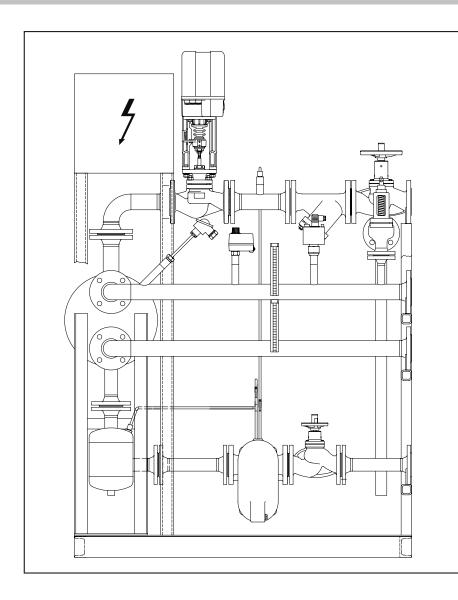
Application

Steam regenerators are used to produce saturated steam for a secondary system from steam or pressurized hot water.

Pure steam, without any contaminants that might be detrimental to health such as hydrazine, is produced. Steam regenerators are therefore especially suited for sterilizing equipment in hospitals, steaming and drying chambers in the foodstuff industry, and for the production of distillates.

Technical Data (standard)

Service pressure	primary	[bar]	28
Service temperature	primary	[°C]	250
Service pressure	secondary	[bar]	12
Service temperature	secondary	[°C]	200
Capacity range		[kW]	5000
Feedwater quality		[µS/cm]	< = 5
Boiler water quality		[µS/cm]	< = 100


Steam regenerators for higher pressure/temperature ratings and larger capacities on request.

Standard Installation

Steam regenerators with self-acting, electric or electropneumatic heating-steam control

Compact system with manual intermittent / continuous boiler blowdown and the required basic equipment of a feedwater supply control system Limiting conditions: Quality of feedwater $\leq 5 \ \mu$ S/cm, pressure of heating steam: 6 barg, pressure of pure steam: 4 barg

Туре	Pure steam flowrate [kg/h]	Ø [mm]	Overall length approx. [mm]	Max. design pressure/ temperature primary [bar/°C]	Max. design pressure/ temperature secondary [bar/°C]
GRDE 5	300	450	3300	12/200	6/200
GRDE 6	600	500	3800	12/200	6/200
GRDE 7	1000	600	3500	12/200	6/200
GRDE 8	1200	700	4000	12/200	6/200

GESTRA Heat exchanger unit type PWT-XPS

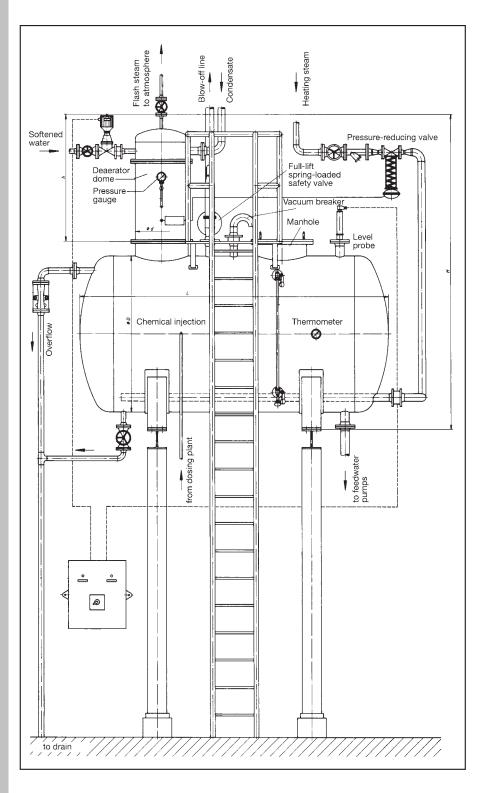
consists of: plate-type heat exchanger, completely welded, in shell & plate design

equipped with:

on steam side:

shut-off valve, strainer and electrically operated control valve with safety resetting device

on condensate side: pump steam trap, non-return valve, shut-off valve


measuring & control equipment: safety temperature limiter, safety pressure limiter, temperature sensor, temperature controller, thermometer, pressure gauge, safety valve

The unit is completely assembled and interconnected and mounted on a stable base frame.

Auxiliary energy: 230 V, 50 Hz

Type PWT-XPS	Capacity kW	Saturated steam barg	Water °C	Capacity kW	Saturated steam barg	Water °C	Capacity kW	Saturated steam barg	Water °C
50-24 H11	40	1	70/90	80	3	70/90	130	6	70/90
50-32 H11	160	1	70/90	300	3	70/90	500	6	70/90
50-44 H11	380	1	70/90	675	3	70/90	700	6	70/90
50-72 H11	700	1	70/90	1100	3	70/90	1400	6	70/90

Larger capacities available on request.

Application

To avoid corrosion damage to steam boiler plants, the content of aggressive gases, such as oxygen and carbon dioxide, in the feedwater must be as low as possible. The German Technical Supervisory Association (VdTÜV) has issued directives concerning boiler feedwater quality which are applied by German boiler manufacturers when giving a warranty on their boilers.

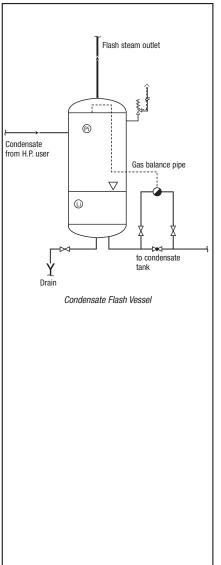
Thermal deaeration in addition to chemical deaeration is very important for maintaining the required feedwater quality.

Recommendation:

For quality of soft water: Concentration of chloride approx. 50 mg/l Conductivity approx. 250 µS/cm

Deaerating dome NDR

Туре	Capacity m³/h	Ø mm	Height approx. mm
250	0.5 – 1.6	250	1050
350	1.7 – 3.0	350	1260
450	3.1 – 5.0	450	1280
550	5.1 – 8.0	555	1300
650	8.1 – 11.0	650	1820
800	11.1 – 15.0	800	1850
900	15.1 – 19.0	900	1870
1000	19.1 – 24.0	1000	1880


Feedwater tank SW

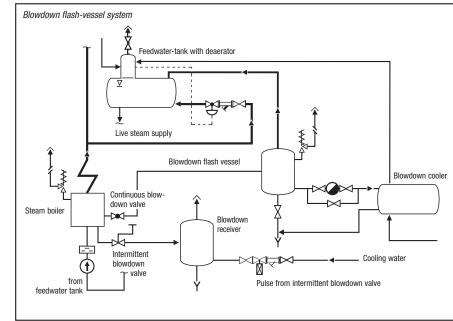
Size	Ø	Length	Volume of tank
	mm	approx. mm	I
I	800	2360	1000
П	1000	2940	2000
Ш	1200	3050	3000
IV	1200	3550	4000
V	1600	3680	6000
VI	1600	4680	8000
VII	1600	5680	10000
VIII	2000	5000	16000
IX	2000	7850	22000
Х	2500	7050	30000

Technical Data (Standard)

Max. service pressure	Max. service temperature	Capacity range	Materials (DIN reference)	Residual oxygen
0.5 bar	111 °C	0.5 – 24 m³/h	S235JRG2	< 0.02 mg/l
0.5 Dai		0.5 – 24 m³/n	1.4571	< 0.02 mg/i

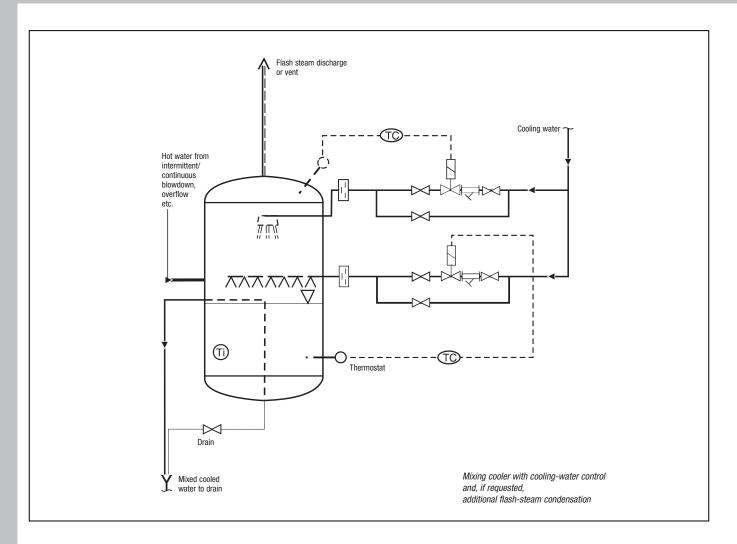
Higher capacities and pressures on request

Application


Condensate flash vessel

Condensate flash vessels can be used in all steam plants where condensate from steam consumers is reduced to a lower pressure. This pressure drop constitutes a change of the energy content that causes some of the condensate to revaporize and form flash steam.

In the flash vessel the flash steam is separated from the water, and then fed into a low-pressure steam system. The condensate remaining in the flash vessel is discharged into a condensate tank.


Blowdown flash vessel

Blowdown flash vessels are used if the flash steam formed downstream of continuous blowdown valves is to be utilized.

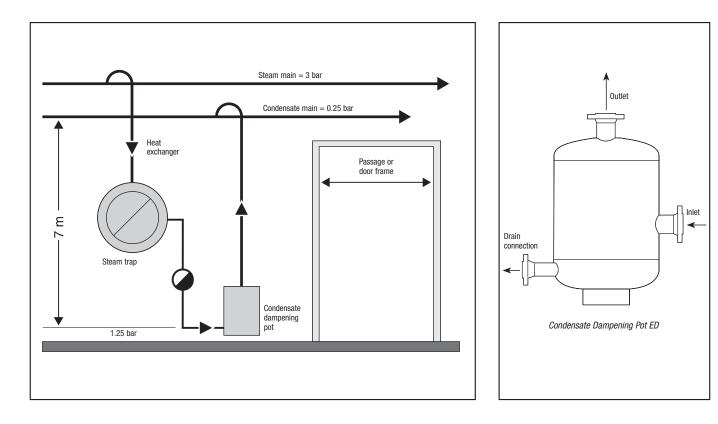
Technical Data

Туре	Service pressure [bar]	Service temperature [°C]	Condensate flowrate [t/h]	Volume [1]	Material (DIN reference)
VD	0.5 – 12	111 – 250	1.2 – 40	50 – 1400	S235JRG2 P265GH
VD 45	28	250	0.2 – 1.2	15	P265GH GGG-40.3

Technical Data

Max. service pressure	Max. temperature	Capacity range	Material
	111°C	up to 15 t/h	S235JRG2 (RSt 37-2)
0 E bor			P265GH (H II)
0.5 bar			1.4541
			1.4571

Description


Mixing coolers are blowdown receivers that cool hot waste water that can no longer be used for heat recovery and therefore is discharged into pits, drains or sewage systems.

Application

Process plants where contaminated, hot waste water is being formed.

Steam boiler plants where the blowdown is cooled with untreated water.

Mixing coolers for vapours.

Technical Data

Service pressure	Related temperature	Capacity range	Material	Volume [l]
18 bar	250°C	up to 15 t/h	S235JRG2 / P265GH	4 to 50

Description

The condensate dampening pot provides a cushioning effect to neutralize waterhammer. The condensate is discharged without noise.

Application

Steam and condensate systems.

Description

Steam separators are used to remove condensate and dirty water carry-over from steam. By this means trouble-free operation and a long service life of the heat exchanger and steam consumer is obtained.

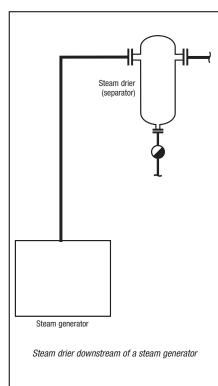
Application

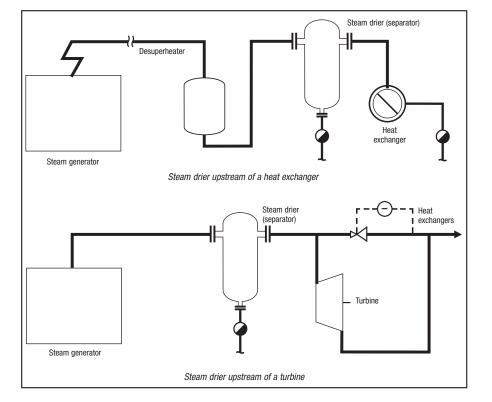
Downstream of steam boilers and steamgenerating units.

Between boiler and superheater.

In steamlines ahead of steam manifolds.

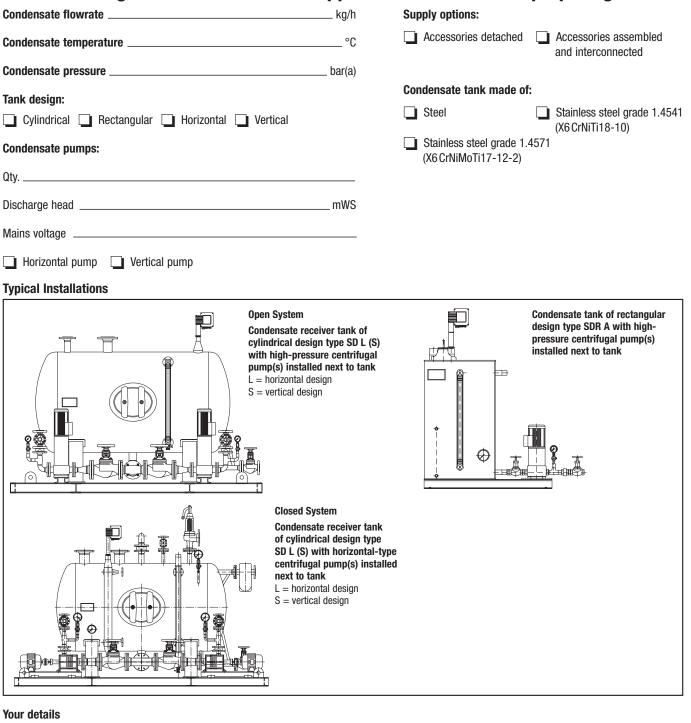
In district-heating lines and flash steam lines.


Upstream of turbines, steam engines, steam tools.


For direct heating with steam.

In spray-vapour humidifier systems for airconditioning plants.

Technical Data


Pressure rating	Nominal sizes DN	Materials
	PN 16 PN 40	St 37.0 / St 35.8
PN 16		S235JRG2
		P265GH
PN 63 PN 100	15 to 500 mm	16 Mo 3
PN 160		1.4541
		1.4571

E-mail: info@de.gestra.com · Fax: (04 21) 35 03-149

Online: www.gestra.com/Service & Support/Questionnaire for preparing offers

Name/Title
Company Name
Telephone
Fax
E-mail
Date

ပ

E-mail: info@de.gestra.com · Fax: (04 21) 35 03-149

Online: www.gestra.com/Service & Support/Questionnaire for preparing offers

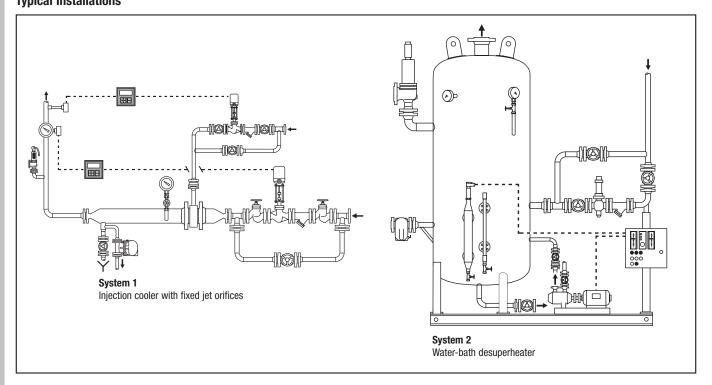
Reducing of steam pressure 🗋 yes 🛄 no Self-acting control If yes, Electric Electro-pneumatic Steam flowrate . Steam pressure: P_1 ____ bar/psi upstream of pressure reducing station P2 _____ bar/psi downstream of pressure reducing station or when no more pressure reduction takes place _____ bar/psi downstream of cooling station

t1 or t2 _____°C upstream of pressure reducing station or

____°C downstream of cooling station

when no more pressure reduction takes place

Cooling fluid:	
P ₄ bar/psi upstream of cooler	t_4 °C upstream of cooler
if not fitted	with pump 🔲 yes 🛄 no
Water-bath desuperheater	$\Box t_3 = t_s$
Injection cooler	\Box $t_3 = t_s + > 5^\circ$ controllable
Supply options for water-bath desup	erheater:
Accessories detached	Accessories assembled
Optional equipment:	
High-temperature alarm	Excess temperature protection


Low-water level alarm

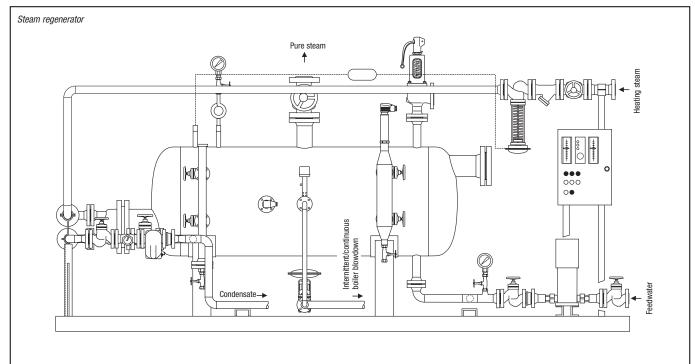
Typical Installations

Steam temperature:

P₃

t₃ ____

Your details


Name/Title
Company Name
Telephone
Fax
E-mail
Date

E-mail: info@de.gestra.com · Fax: (04 21) 35 03-149

Online: www.gestra.com/Service & Support/Questionnaire for preparing offers

Thermal output	t				
Service data (p	orimary)				
	Medium:	🔲 Steam	Hot water	Thermal oil	
	Pressure	bar/psi	Temperature On °C	Flowrate	kg/h
			Temperature Off °C		
Services data ((secondary)				
	Medium:	🔲 Steam	Feedwater		
	Pressure	_bar/psi	Temperature°C	Flowrate	kg/h
Control (pressu	ıre side)	Self-acting	Electric	Pneumatic	
Feedwater con	trol	Solenoid valve or	motorized valve	Feedwater pump	
Application					

Typical Installation

Your details

Name/Title
Company Name
Telephone
Fax
E-mail
Date

ပ

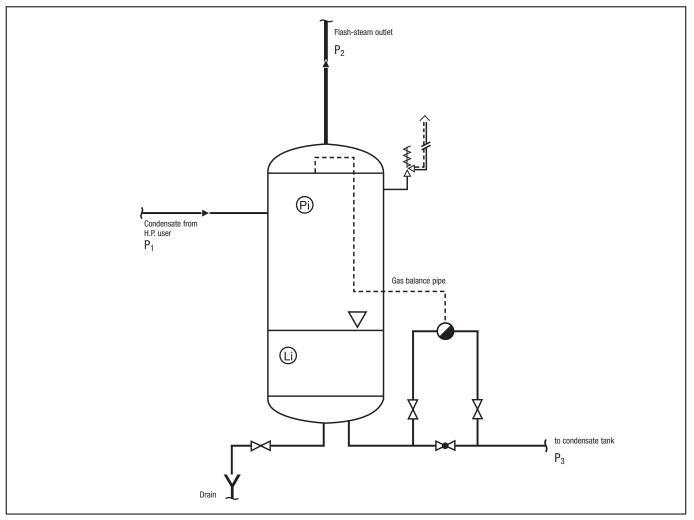
E-mail: info@de.gestra.com · Fax: (04 21) 35 03-149

Online: www.gestra.com/Service & Support/Questionnaire for preparing offers

Your details

Name/Title
Company Name
Telephone
Fax
E-mail
Date

E-mail: info@de.gestra.com · Fax: (04 21) 35 03-149

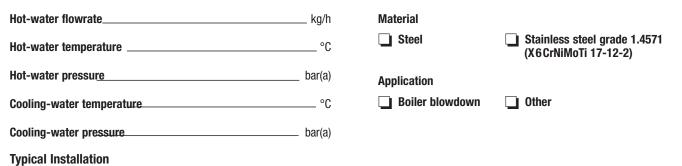

Online: www.gestra.com/Service & Support/Questionnaire for preparing offers

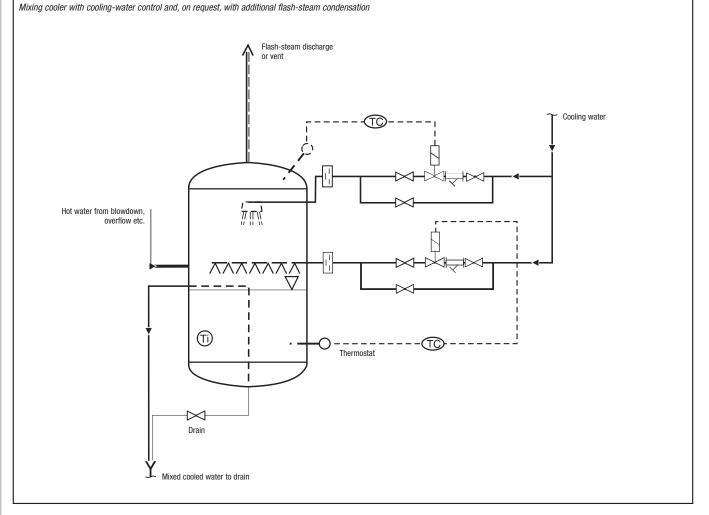
P ₁ =	₋ bar(a)/psi(a)
P ₂ =	_ bar(a)/psi(a)
P ₃ =	_ bar(a)/psi(a)
m =	_ kg/h
	$P_1 =$

Flash vessel material für die Entspanneranlage

Please state all pressure specifications in bara or psia!

Typical Installation


Your details


Name/Title
Company Name
Telephone
Fax
E-mail
Date

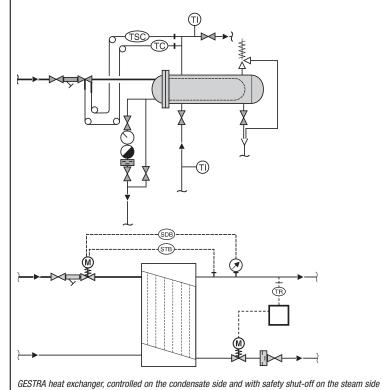
C

E-mail: info@de.gestra.com · Fax: (04 21) 35 03-149

Online: www.gestra.com/Service & Support/Questionnaire for preparing offers

Your details

Name/Title
Company Name
Telephone
Fax
E-mail
Date


E-mail: info@de.gestra.com · Fax: (04 21) 35 03-149

Online: www.gestra.com/Service & Support/Questionnaire for preparing offers

Thermal outp	out			Control 🔲 Self-acting 🛄 Electric
Service data	(primary)			Pneumatic
Medium:	🔲 Steam	Hot water	🔲 Thermal oil	Controlled from the condensate side
Pressure	_ bar/psi	Temperature (in)°C Temperature (out)°C	Flowrate kg/h	Design in horizontal tube bundle heat exchanger
Material:	Steel	Stainless steel gr (X6CrNiMoTi 17-		 GESTRA heat exchanger unit type PWT-XPS
Service data	(secondary)			
Medium:	🔲 Steam	Hot water	Thermal oil	
Pressure	_bar/psi	Temperature (in)°C	Flowratekg/h	
		Temperature (out)°C		
Material:	L Steel	Stainless steel gr		
Typical Insta	allation	(X6CrNiMoTi 17-	12-2)	

Typical Installation

GESTRA Heat Exchanger controlled from the steam side with constant temperature of the secondary circuit

Your details

Name / Title
Company Name
Telephone
Fax
E-mail
Date

C

E-mail: info@de.gestra.com · Fax: (04 21) 35 03-149

Online: www.gestra.com/Service & Support/Questionnaire for preparing offers

Medium:	Saturated steam	Superheated steam	🗋 Air 🛄	Gas	
Flowrate:	ṁ = kg	/h		Nm³/h	
Service pressure:	p = ba	ra/psia			
Service temperature:	t =°C				
Approved pressure:	p = ba	rg/psig			
Approved temperature:	t =°C				
Inspection and certification:					
Connections:	Inlet/Outlet:	DN/PN			
	Condensate outlet:	DN/PN			
Material:	S235JRG2 (RSt 37-2)	P265GH (H II)	🔲 16 Mo 3		
	(V2A)	(V4A)	_		
Connection arrangements:					

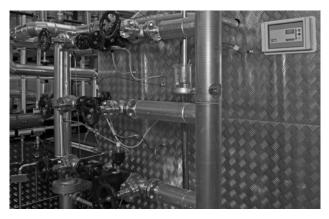
Your details

Name/Title
Company Name
Telephone
Fax
E-mail
Date

Academy	Page
Mobile Testing Station, See-Through Demo Facility.	
Tools for Design Engineers, Users & Operators	Page
Programs & Sizing Software	
GESTRA Steam Traps & Valves Library (2D and 3D CAD drawings)	
Technical Literature	
Documentation and Reference Literature	Page
Technical References Guide and Condensate Manual	
Brochures and Leaflets	
Technical Infos	174
General Information	Page
Useful Information / Conversions	
Useful Conversions	
Information on ATEX Directive 94/9/EC	
Information on Pressure Equipment Directive (PED)	178 – 181
Combined Imperial and S. I. Steam Tables	182 – 183
DIN Material Reference Chart	184
Design of GESTRA Valves	
Product Index	

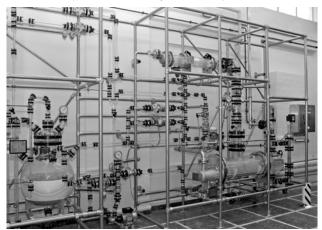
Our GESTRA Academy offers a broad portfolio of in-depth vocational training seminars for design engineers, consultants, manufacturers and operators. As part of the workshops there will be practical hands-on demonstrations at our stateof-the-art simulation facilities on site. Evaluating and understanding what is going on in a steam system helps preventing costly malfunctions and downtime.

Mobile Testing Station


Our mobile testing station is a testing, demonstration and training facility on wheels. We would be happy to send our mobile testing station together with our experienced support engineers to you in order to solve your operating problems directly on site and conduct training seminars on your premises. You provide steam, water and electricity and, by means of our mobile testing station, we provide a comprehensive and personalized workshop tailored to your specific requirements and focusing on steam and condensate systems.

Steam Trap Test Benches

Demonstration of up-to-date electronic monitoring equipment for steam traps up to 20 bar service pressure. The installation clearly illustrates the operational mode of the various systems.


Steam Boiler Demonstration Facility

This simulation facility provides the opportunity to demonstrate the newest and most effective boiler equipment. Design engineers, manufacturers and operators can observe different operating modes and simulations of in-service failures. Thanks to these demonstration sessions individuals gain the knowledge needed to prevent expensive failures and downtime.

See-Through Demo Facility

Our custom-built see-through demo facility makes thermodynamic processes in steam and condensate systems visible. The whole installation is completely made from glass and allows the spectators to see effects and properties otherwise hidden from the human eyes. This facility illustrates in a practical manner some of the more abstract concepts discussed during the workshops and seminars.

Please call us so that we can schedule a demonstration with our mobile testing station at your facility. Telephone: 0049 (0) 421 - 35 03 - 311

Sizing & Selection Software and Useful Tools for Steam Practitioners

For the following software tools go to www.gestra.com/Service & Support

CAESar Steam trap selecting & sizing software (multilingual) www.gestra.com

Select by application or by type. Filter criteria: functional type, nominal pressure, end connection and material. Output with specification text and ordering details.

GESTRA CALCUquick

A software tool to help designers and steam practitioners calculate valve sizes and flow velocities and determine steam, condensate and pipe parameters.

GESTRA CALCUquick-App

Download for Android or IOS

CAESar selecting software for special equipment and vessels for heat recovery

Parameters such as heat content, mass flow or condensate flowrate are used for selecting and sizing pressure vessels, heat recovery installations, desuperheaters etc. and for price quotations. Furthermore the program can carry out an economic analysis, indicate potential savings and calculate payoff periods and, in addition, it can also compute the size of heating surfaces, kvs values for control valves and superheat temperatures.

To use the selection & sizing software please register your name under "Partner Login" on our website *www.gestra.com.*

GESTRA Steam Traps & Valves Library

To help you design and plan an installation we offer you our extensive library with 2- and 3-dimensional drawings.

2D drawings available in the following formats:

DWG and DXF for AutoCAD 14 and AutoCAD 2000

3D drawings available in the following formats:

IGS, IPT, SAT and STEP

Technical Documentation

To view and download datasheets, installation & operating manuals, GESTRA Technical References Guide, Gestra Condensate Manual, and our brochures, leaflets and other technical literature go to *www.gestra.com* and click on "Documents / Brochures".

GESTRA Technical References Guide

Important reference work used in the field of steam and condensate technology. Essential formulae and charts & tables specifying materials, units, standards, inspection requirements, European standards EN, ASME, and useful conversation tables are just some of the issues covered by this useful technical guide.

GESTRA Condensate Manual

This handbook is intended for operators and users and illustrates typical applications encountered in steam and condensate systems, shows examples of installation and describes processes and equipment.

Brochures & Leaflets

For more detailed information on products, properties, designs, function and application.

Technical Infos

Answers are given to frequently asked questions regarding condensate lines, steam, boiler equipment, non-return valves and many more topics.

Useful Information

Abbreviations used throughout this catalogue:

- DN Dimension, nominal. The nominal size of a pipe or fitting in mm or inch, if stated.
- PN Pressure, nominal. The nominal pressure rating (Maximum cold working pressure) in bar.
- ΔPMX Maximum differential pressure (inlet pressure minus outlet pressure)
- PMA Maximum allowable working pressure
- PMO Maximum operating pressure
- TMA Maximum allowable working temperature
- PAMAX Maximum service pressure
- BSP British Standard Pipe (DIN ISO 228)
- NPT American Standard Taper Pipe Thread (National Pipe Tapered)

Conversions

In this catalogue the International System of Units (SI) is applied. The following conversions into the Imperial System for the units used in this catalogue might be useful:

SI Units	Imperial Units	Convers	ion
bar	psi	1 bar	= 14.504 psi
°C	°F	1°F	= °C x 9/5 + 32
kg/h	lb/h	1 kg/h	= 2.204 lb/h
l/s	gpm	1 l/s	= 13.22 igpm
			= 15.85 usgpm
kv	Cv	Cv	= 1.13 kv (usgpm)

Pressure-Temperature Ratings

It is not possible to give direct conversions between DIN and ANSI ratings, and space does not permit a detailed comparison. When selecting valves against specific duties, all service data must be

fully considered. The following table is provided to guide the reader

who may not be familiar with the general relationship between DIN and ASME ratings.

DIN Ra	ting		ASI	/IE Class	Equivalent nominal sizes		
PN	10				DN 8 mm = $1/4$ " DN 300 mm	=	12"
		ŀ		125 lb	10 mm = 3/8" 350 mm	=	14"
PN	16				$15 \text{ mm} = \frac{1}{2}$ " 400 mm	=	16"
PN	05	t t		150 lb	$20 \text{ mm} = \frac{3}{4}$ " 450 mm	=	18"
PN	25 40				25 mm = 1" 500 mm	=	20"
FIN	40			300 lb	$32 \text{ mm} = 1^{1}/4^{11}$ 600 mm	=	24"
PN	63			000 15	$40 \text{ mm} = 1^{1/2}$ 700 mm	=	28"
PN	100			600 lb	50 mm = 2" 750 mm	=	30"
		ŀ		900 lb	$65 \text{ mm} = 2^{1/2}$ " 800 mm	=	32"
PN	160				80 mm = 3" 900 mm	=	36"
PN	250			1500 lb	100 mm = 4" 1000 mm	=	40"
PN PN	320 400				125 mm = 5" 1050 mm	=	42"
FIN	400			2500 lb	150 mm = 6" 1200 mm	=	48"
PN	630			2000 10	200 mm = 8"		

Btu/s

MASS			PRESSURE		
1 kilogramme, kg	=	2.204 pound, lb	1 bar	=	14.504 pound-force/sq. inch, lbf/in ²
1 metric ton, tonne	=	1000 kilogramme, kg		=	100 kilonewton/sq. metre, kN/m ²
LENGTH				=	1.020 kilogramme-force/square centimetre, kgf/cm ²
1 foot, ft	=	0.3048 metre, m	1 foot of water	=	0.4332 pound-force/sq. inch, lbf/in ²
1 inch, in	=	25.4 millimetre, mm		=	0.8824 inch of mercury, in Hg
1 metre, m	=	3.28 foot, ft		=	29.87 millibar, mbar
	=	39.37 inch, in	1 kilogramme-force/sq.	=	14.223 pound-force/sq. inch, lbf/in ²
			centimetre, kgf/cm ²	=	98.07 kilonewton/sq. metre, kN/m ²
AREA				=	0.9807 bar
1 square inch, in ²	=	645.2 square millimetre, mm ²	1 kilonewton/sq.metre,	=	0.145 pound-force/sq. inch, lbf/in ²
1 square metre, m ²	=	10.76 square foot, ft ²	kN/m², (kilopascal, kPa)	=	0.0102 kilogramme-force/square
	=	1550 square inch, in ² 1.196 square yard, yd ²			centimetre, kgf/cm ²
	=	1.190 Squale yalu, yu-		=	0.01 bar
			1 pound-force/sq.inch,	=	6.895 kilonewton/sq. metre, kN/m ²
VOLUME			lbf/in² (psi)	=	0.0703 kilogramme-force/square
1 cubic inch, in ³	=	16387 cubic millimetre, mm ³			centimetre, kgf/cm ²
1 cubic foot, ft ³	=	0.0283 cubic metre, m ³		=	0.0689 bar
	=	6.24 imperial gallon, gal	1 standard	=	14.696 pound-force/sq. inch, lbf/in ²
	=	28.32 litre, l	atmosphere, atm	=	1.013 bar
1 U.S. gallon, US gal	=	0.833 imperial gallon, gal	1 torr	=	1 millimetre of mercury, mm Hg
				=	0.0193 pound-force/sq. inch, lbf/in ²
				=	1.333 millibar, mbar
FOR WATER					
1 cubic foot of water w			FLOWRATE		
1 imperial gallon of wa			1 cubic foot/minute,	=	1.698 cubic metre/hour, m ³ /h
1 cubic metre of water 1 litre of water weighs	-	-	ft ³ /min		
	i kiloy	rannie	1 litre/second, l/s	=	13.22 imperial gallon/minute, gal/min
				=	793 imperial gallon/hour, gal/h
PREFIXES			For Gases		
Symbo	nl	Factor	1 standard cubic	=	1.605 normal cubic metre/hour,
,	JI		foot/min, SCFM		Nm ³ /h (measured at 1 atm, 0°C)
tera T		10 ¹²	(measured at		
giga G mega M		10 ⁹ 10 ⁶	1 atm, 60°F)		
mega M kilo k		10 ³			
hecto*) h		10 ²	DENSITY		
deca*) da		10	1 kilogramme/cubic		1 grommo/litro g/l
deci*) d		10 ⁻¹	metre, kg/m ³	=	1 gramme/litre, g/l 0.0624 pound/cubic foot, lb/ft ³
centi*) c		10-2	-		•
milli m		10 ⁻³	1 pound/cubic foot,	=	16.018 kilogramme/cubic metre, kg/m ³
micro u		10 ⁻⁶	lb/ft ³		
nano n		10 ⁻⁹			
pico p		10-12	ENERGY & POWER		
femto f		10 ⁻¹⁵	1 British thermal	=	1.055 kilojoule, kJ
atto a		10 ⁻¹⁸	unit, Btu	_	
			1 therm	=	10 ⁵ British thermal unit, Btu
			1 British thermal unit/ pound, Btu/lb	=	2.326 kilojoule/kilogramme, kJ/kg
			1 kilocalorie, kcal	=	4.187 kilojoule, kJ
			1 kilowatt, kW	=	1 kilojoule/second, kJ/s
*) These prefixes are n	ot recor	nmended for scientific or		=	1.341 horsepower, hp 0.948 British thermal unit/second, Ptu/o

*) These prefixes are not recommended for scientific or engineering use.

Europen Directive 2014/34/EU (ATEX) governs the requirements for equipment that is operated in potentially explosive atmospheres. Here, the potentially explosive atmosphere is the surrounding atmosphere. As of 20 April 2016, this European Directive has applied to the operation of electrical and non-electrical equipment in the EU member states.

The items of equipment named below have been inspected as regards their suitability for use in potentially explosive atmospheres (gas) in accordance with the above-mentioned Directive.

The equipment does not have its own potential ignition source, in accordance with Annex II, section 1.3. Therefore, on the basis of Art. 2, section (1), the Directive does not apply. According to Article 5, these items of equipment must not be labelled with the CE mark in relation to Directive 2014/34/EU. Neither do these items require a Declaration of Conformity as per 2014/34/EU.

When used for their intended purpose - described in the relevant GESTRA data sheets and Installation & Operating Manuals - and as they do not have their potential ignition source, the items of equipment named below may be used in potentially explosive atmospheres.

The GESTRA items of equipment mentioned below, in the version without electrical or pneumatic attachments, are suitable for operation in the following zones: Zone 0, 1, 2 (gas).

Steam traps, steam trap accessories:

Type AK, BK, DK, GK, IB, MK, SMK, TK, TS, UBK, UC, UNA, VK, VKE.

Check valves: Type BB, CB, MB, RK, SBO.

Mechanical control valves:

Type BA, BW, CW, PA, ZK.

Strainers:

Type SZ.

Special equipment and vessels for heat recovery:

Type TD.

Note:

Some electrical and non-electrical items of equipment marketed by GESTRA and not mentioned here can be used in certain potentially explosive atmospheres. If you have any questions about using this equipment in potentially explosive atmospheres for your particular application, please contact us. Please note that certain items of GESTRA equipment have a Declaration of Conformity with other Europen directives, and therefore bear the CE mark. If necessary, you can find details in the relevant data sheets, Installation & Operating Manuals and Declarations of Conformity.

1. V. Bordes

Kerstin Borchers ATEX Officer

Cher

Manon Scholz Product Development Manager

CE Mark for GESTRA Series Equipment

				poisonous, flan ices, e.g. water,			Pressure CL	acc. t	o nar	ne p	olate																			
CE		uid	abotai			Tune ne	DN/CI											;	Size	(DN)									
marking yes	Module	Gr. 1	Gr. 2	valve	/ Туре	Type no.	PN/CL	10/15	20	25	32	40	50	65	80	100	125	150	200	250	300	350	400	450	500 6	600 7	00 8	00 90	0 10	00 12
A1 – Stea	ım Trap	S																												
			Х	AK	45 ¹)	845	40	4 (3)	4 (3) 4	(3)																				
X	H		X	BK	15	716	40		_																\rightarrow		+	_	_	_
X	н		X X	BK BK	15 15	716	CL300 CL150	\vdash	\rightarrow	┥		CE ((3) 4			_										\rightarrow	_	+	_	+	+-
X	Н		X	BK	27N ¹)	710	40	4 (3)	4 (3) 4	(3)		CE													\rightarrow		+		+	+
х	н		х	ВК	27N	712	63	4 (3)		Í	(CE	CE																╈	
			X	BK	(incl. Fl. CL400/600) 28	713.870				· · ·					_										\rightarrow	_	+	_	+	_
			X	BK	29	714,871			+ (3) 4 4 (3) 4	(3)		+	+		_										+		+	+	+	+
			X	BK		,		4 (3)			BK	36/	A/7	in c	onju	incti	ion v	vith	UC/	UCY							+		+	+
			х	BK	37	719, 717	63-100/	4 (3)	4 (3) 4	(3)																			Τ	
			Х	BK	45	708	CL400/600 40/CL300	4 (3)		_		+	+		_										\rightarrow		+		+	+
			X	BK	46	700	40/CL300	4 (3)				+	┥		_												+		+	+
			X	BK	212		630/CL2500	4 (3)																					T	
			Х	DK	36A/7 (Swivel)	846	CL300	4 (3)																						
			X	DK	45	877	40	4 (3)			in c	oni		tion	wit	h IIC	2/110	v							_		_	_	_	
X	Н		X X	DK GK	47,57 11	878,879 750	63/CL600 10/16	4 (3)	+ (3) 4	(3)									*1	ΠN	100	+ 1	50 -	PN	10		+		+	+
~			X	GK	21	750	16					4	4 (3)	UL	UL	UL	0L				100	τD			10	+	+	+	+	+
			X	MK	20	720	6	4 (3)	4 (3) 4	(3)																				
X	H		X	MK	25/2	729	40					CE (\square	-	\square	\square			
X	Н		X	MK	25/2	729 729	CL300					CE (_										-+	-+	+	_	_	_
(X)	н		XX	MK	25/2 25/2S	729	CL150 40		1	(3)		(3) 4 CE			_					-					+	+	+		+	+
(X)	H		X	MK	25/28	734	CL300			(3)		CE			_			_	_							+	+		╈	+
			X	MK	25/2S	734	CL150			(3)		(3) 4																	T	
			Χ	MK	36A/7 (Swivel)	846	CL300	4 (3)																						
			X	MK	35/2S	735 736	40/CL300			(3)	in (conj	junc	_	_	th U	_		_			0.4			_				+	
			X X	MK	35/2S3 35/3	736	40/CL300 25	4 (3)		(3)		+	\dashv	<u> </u>		ces l ces l					<u> </u>				-	-	-		+	+
			X	MK	36/51	749	-	4 (3)	4 (3)	╡		+	╡		μιαι			.J/ Z	33		J (1	40)					+		╈	
			Χ	MK	37/1	881	63	4 (3)	4 (3) 4				Ì																	
			X	MK	45/45A ¹)	725	40	4 (3)	4 (3) 4	(3)			\dashv												_				_	
			X	NRG SMK	16-19, -27, -28 22	053 885	40	4 (3) 4 (3)	1 (2) 1	(2)		-	\dashv		_										-+		+		+	_
(X)	н		X	TK	23	742	16	4 (3)	+ (3) 4	(3)		4	1 (3)	CE	CE	CE											-		+	+
X	H		X	TK	24	743	25							CE																
	Н		Х	TS	36	849	CL300	4 (3)																						
			X		46 ¹)	886 847	40 CL300		4 (3) 4			_	\dashv		_														+	_
			X	UC, UCY UNA	Universal Connector 14 (inkl. CL150)		25	4 (3) 4 (3)	4 (3) 4 4 (3) 4	(3)		+	\dashv		_										-	-	-		+	-
			X	UNA	· /	853, 854	-	4 (3)	4 (3) 4	(3)		+	╡		_			_											╈	+
		Х	Х	UNA	16	855, 856	40/CL150	4 (3)	4 (3) 4	(3)																				
		X	X			857, 858		4 (3)	4 (3) 4	(3)		(0)													_					
X	Н		X X		25-PK, 25-PS 25-PK, 25-PS	794, 795 794, 975	CL150 40				4	(3) CE	\dashv		_					<u> </u>					+	+	+		+	+
					25-PK, 25-PS 27h					(0)			05		_					-					+	+	+	+	+	+
(X)	H	X	X	UNA	(incl. Fl. CL400/600)	820	63			(3)		CE (
(X)	H	X	X		27h	820	CL300	4 (0)	4	(3)		CE (_										-+	-+	+	_	+	_
(X)	H	X X	X X	UNA UNA		791, 792 814	100 160	4 (3) 4 (3)	4	(3) (3)			CE CE		_					-					+	+	+	+	+	+
(X) (X)	H	x	X		39 (incl. Fl. CL600)	814	100	4 (3)	4	(3)			CE							-					+	+	+	+	+	+
(X)	Н		Х	UNA	45, 45 MAX	823, 824	16/CL150	4 (3)	4 (3) 4	(3)	4	(3) 4	1 (3)	CE																
(X)	H		X		45, 45 MAX	823, 824		4 (3)	4 (3) 4	(3)	(CE (CE	CE																
(X) (X)	H	X X	X X		46, 46 MAX 46, 46 MAX	825, 826 825, 826	40/CL300 CL150	4 (3) 4 (3)	4 (3) 4 1 (2) 4	(3)	(CE (UE 1 (2)	CE CE	_					<u> </u>					+	-+	+	_	+	+
(X) (X)	H	X	X		46, 46 MAX 46 A, 46 A MAX	827,828		4 (3)	4 (3) 4	(3)	4	CE (CE	CE	_					-					+	+	+	+	+	+
(X)	H	X	X	UNA	46 A, 46 A MAX	827, 828	CL150	4 (3)				(3) 4	1 (3)	CE											_†					
Х	H		Х	UNA	Special Typ 62	800	16							CE	CE	CE														
X	H	X	X		Special	801	25						CE		0E	0E									-+	-+	+	_	+	+
X X	H	X X	X X		PN 25 Special	801 804	25 63					-		CE	UE CE	CE									+	+	+	+	+	+
X	H	X	X		Special	804	40					-		CE	CE	CE				-					+	+	+		+	+
			X	VK	14	041	16	4 (3)			4	(3) 4	4 (3)														╧			
(X)	Н		Х	VK	16 ¹)	042	40	4 (3)	4 (3) 4	(3)		CE (CE																	
			X	VK		042	CL150	4 (3)	4 (3) 4	(3)	4	(3) 4	1 (3)		_										$ \rightarrow$		+	_		_
																														1
(X)	Н		X X	VKE	16-1,26	048	40	4 (3) 4 (3)	4 (3) 4	(3)		CE	ΩE.		_										-+	+	+	_	+	+

1) incl. Fl. CL300

CE Mark for GESTRA Series Equipment

Gestra

				poisonous, flam nces, e.g. water,			Pressure CL	acc.	to n	ame	plate																			
CE	F	luid		Value	/ Turno	Turna na	PN/CL											Si	ze (D	N)										
marking yes	Module	Gr. 1	Gr. 2	valve	/ Туре	Type no.	FIN/GL	10/15	20	25	32	40	50	65	80	100	125	150	200	250	300	350	400	450	500	600	700	800	900	1000
A2 – Che	ck Valv	es		1	ľ	1			1				_	_	_	_	_	_	_	_		_	_	_						
X	Н	X	X	BB	12A / 22A	149	10						CE	CE	CE	CE	CE	CE	CE	CE	CE	CE	CE			\square			Ш	<u> </u>
X	H	X	X	BB	14A / 24A	149	16						CE	CE	CE	CE	CE	CE	CE	CE	CE	CE	CE	CE		\square				-
X	H	X	X	BB	15A / 25A	149	25/CL150						CE	CE	CE	-	CE	CE	CE	CE	CE	CE	CE		CE				\square	
X	H	X	X	BB	16A / 26A	149	40/CL300						CE	CE	CE	CE	CE		CE	CE	CE	CE	CE	CE		\square				-
X	H	X	X	BB	17A	149	63								L_	CE	CE	CE	CE	CE	CE	CE	CE		CE	\square				-
X	H	X	X	BB	18A	149	100/CL600			3B DI DN 80				10 "		CE	CE	CE	CE	CE	CE	CE	CE		CE					<u> </u>
X	H	X	X	BB	19A	149	160/CL900			DN 7								CE	CE	CE	CE									┣
X	H	X	X	BB	12C / 22C	143	10									CE	CE		CE	CE	CE				CE					┣
X	H	X	X	BB	14C / 24C	143	16									CE	CE	CE	CE	CE	CE	CE	CE	CE		\square				
X	Н	X	X	BB	15C / 25C	143	25/CL150									CE	CE	CE	CE	CE	CE	CE	CE		CE	\square		\square		
X	H	X	X	BB	16C / 26C	143	40/CL300									CE	CE	CE	CE	CE	CE	CE	CE	CE				\square		
X	Н	X	X	BB	17C	143	63									CE	CE		CE	CE	CE				CE	\square				—
X	H	X	X	BB	18C	143	100/CL600									CE	CE	CE	CE	CE	CE	CE	CE		CE	\square		\square		
X	H	X	X	BB	19C	143	160/CL900											CE	CE	CE	CE									
(X)	H	<u> </u>	X	BB	11G / 21G	140	6											4 (3)	CE	CE	CE	CE	CE						CE	
X	H	<u> </u>	X	BB	12G / 22G	140	10											CE	CE	CE	CE	CE	_						CE	
X	H		X	BB	14G / 24G	140	16											CE	CE	CE	CE	CE	CE	CE	CE	CE	CE	CE	CE	CE
(X)	H		X	CB	14	138	16						4 (3)	CE	CE	CE	CE	CE	CE	CE	CE									
(X)	H		X	CB	24S	132	16						4 (3)	CE	CE	CE	CE	CE	CE	CE	CE									
X	H	X	X	CB	26	133	40						CE	CE	CE	CE	CE	CE	CE	CE	CE									
X	Н	X	X	CB	26a	134	40						CE	CE	CE	CE	CE	CE	CE	CE	CE									<u> </u>
			X	MB	14	091	16	4 (3)	4 (3	6) 4 (3)	4 (3)	4 (3)	4 (3)																	L
х	н	x	x	NAF-Check	526520/530 528520/530	448	25														CE	CE	CE	CE	CE					
Х	Н	X	X	NAF-Check	526620/630	448	40					CE	CE	CE	CE	CE	CE	CE	CE	CE										
Х	Н	X	X	NAF-Check	526822/832	448	100							CE	CE	CE	CE	CE	CE	CE	CE	CE	CE							
(X)	Н	X	X	RK	16a	118	40/CL300	4 (3)	4 (3	6) 4 (3)	CE	CE	CE	CE	CE	CE														
(X)	Н	X	X	RK	16b	124	40	4 (3)	4 (3	6) 4 (3)	CE	CE	CE	CE	CE	CE														
(X)	Н	X	X	RK	16c	117	40	4 (3)	4 (3	6) 4 (3)	CE	CE	CE	CE	CE	CE														
(X)	Н	X	X	RK	16t	125	40			6) 4 (3)			CE		CE															
(X)	Н	X	X	RK	26a	114	40			6) 4 (3)																				
(X)	Н	X	X	RK	29a	109	160/CL			6) 4 (3)				_			CE	CE	CE											
(X)	Н		X	RK		102	16			6) 4 (3)							CE		CE											
(X)	Н	X	X	RK		103	16			6) 4 (3)																				I
(X)	Н		X	RK		110	16			6) 4 (3)	-	_			_		CE	CE	CE											
(X)	Н	X	X	RK		107	160			6) 4 (3)																				I
(X)	Н		X	RK		095	6			6) 4 (3)							4 (3)	4 (3)	CE											I
(X)	Н		X	RK	71	100	16	_		6) 4 (3)	_																			
(X)	Н	X	X	RK	76	120	40			6) 4 (3)																				
(X)	Н	X	X	RK	86	101	40/CL300			6) 4 (3)																				
(X)	Н	X	X	RK		121	40/CL300	4 (3)	4 (3	6) 4 (3)	CE	CE	CE	CE	CE	CE	CE	CE	CE											
			x	SBO	11, 21, 31	086, 088, 090	6			4 (3)	4 (3)																			

Ω

CE Mark for GESTRA Series Equipment

Pressure CL acc. to name plate

luid group 1: luid group 2:	hazardou non-haza	s substa rdous s	ances, ubstan	poisonous, flan ces, e.g. water	nmable , steam, air		Pressure CL	acc.	to n	ame	plate)																		
CE marking	F	luid			/ Type	Type no.	PN/CL			1					1				Size	÷										
yes	Module							10/15	20	25	32	40	50	65	80	100	125	150	200	250	300	350	400	450	500	600	700	800	900	1000 12
	-	Temp	_		ssure Controller	070	10	4 (2)	4 (0)	4 (2)	4 (2)	4 (0)	4 (0)	OF	ОГ	OF	ОГ	ОГ	OF				1	_				_	_	_
(X)	H		X	5801		270	16	4 (3) 4 (3)									CE CE		CE CE				-			_		_	\neg	-+
(X)	H H		X X	5801 5801		270 272	25 40							_		CE							-					_	\neg	-+
(X)	Н		X	5801		272	40									CE			CE					┢		_		-	\neg	+
(X) (X)	H		X	5610		273	16								CE	-	UE	UE	UE					⊢		_		-	\neg	+
(X) (X)	Н		X	5610		274	25									CE	┝							⊢		_			\neg	+
(X)	H		X	5610		274	40								CE		⊢							-				_	\neg	_
(^)	п		^ X	BW	31	032	-	4 (3) 4 (3)				4 (3)							Ļ			<u> </u>		-		_			\neg	+
(X)	н	X	X	BW	31A	032	25+40+0L130 25+40	4 (3) 4 (3)				4 (3) CE							s fro s fro					-				_	\neg	+
(X)	н	X	X	BW	31A	033	CL150	4 (3)				CE		-			F		F					<u> </u>		_			\neg	+
(^)			л Х ¹)	CW	41	035	16	т (J)	т (J)	4 (3)	-	4 (3)	4 (3)		4 (3)	4 (3)	\vdash	-					-	-				+	\dashv	+
		X1)	Λ·) X ¹)	CW	41/4	035	16	-		4 (3)	-	4 (3)				4 (3)		-	-	$\left - \right $			-	-		\neg		+	\rightarrow	+
		<i>x j</i>	<u>х</u> ,	CW	44	036	25	4 (3)	4 (3)			T (0)	1 (0)	_	+ (0)	+ (0)	\vdash							-					\neg	+
		x	X	CW	44k	036	25	4 (3)						-			⊢							-				+	\neg	+
			X	Clorius	L1S	235	16	4 (3)						-	-								-	+				+	\dashv	+
			X	Clorius	L2S	235	16			4 (3)	4 (3)	4 (3)	4 (3)	-										+				+	\rightarrow	+
			X	Clorius	L2SR, L3S	235, 239	16	4 (3)																+						+
(X)			X	Clorius	L3F	239	10	- (-)	. (-)	. (-)	- (-)	. (•)		4 (3)	4 (3)	4 (3)	CE													
(-)			X	Clorius	M1F	236	16	4 (3)	4 (3)	4 (3)	4 (3)	4 (3)	_	. (-)	. (-)	. (-)														
(X)			х	Clorius	M1FBN	236	16	1-7	1-7			<u> </u>	4 (3)	CE	CE									\vdash						+
(X)			х	Clorius	M2F	236	16		4 (3)						CE	CE	CE	CE						-						+
(X)			х	Clorius	M2FR	236	16									_								\vdash				\neg		
(X)			Х	Clorius	M3F	239	16			4 (3)	-		4 (3)	_		CE		CE						<u> </u>						+
(X)			Х	Clorius	M3F/M3FM	239	10						.,	_		4 (3)	CE	CE												
(X)			Х	Clorius	H1F	237	40	4 (3)	4 (3)	4 (3)	4 (3)	CE	CE																	
(X)			х	Clorius	H1FBN	237	40				_		CE	CE	CE									1						
(X)			х	Clorius	H2F	237	40				_					CE	CE	CE												
(X)			Х	Clorius	H2FR	237	40								CE															
(X)			Х	Clorius	H3F	239	40				4 (3)		CE																	
(X)			Х	Clorius	G1F	238	25	4 (3)	4 (3)	4 (3)	4 (3)	4 (3)	CE																	
(X)			X	Clorius	G1FBN	238	25						CE																	
(X)			X	Clorius	G2F	238	25		4 (3)	4 (3)																				
(X)			X	Clorius	G2FR	238	25						CE																	
(X)			X	Clorius	G3F	239	25			4 (3)	4 (3)	4 (3)	CE																	
			x	Clorius	2.05, 4.03, 4.05, 4.10, 8.09, 8.18	245				4 (3)	4 (3)	4 (3)																		
A4 – Cont	trol Val	ves																												
(X)	Н	X	X	V701		201–204	40	4 (3)	4 (3)																					
(X)*	A1, H		X		29	754	40 - 160							_		CE		CE												
(X)	A1, H		X		210	013, 393	250			4 (3)	4 (3)		CE																	\perp
(X)	A1, H		X				-												CE	CE	CE									\perp
(X)*	A1, H		X			757	-						CE	CE		CE	CE													
(X)	A1, H		X			758	-			4 (3)	4 (3)				CE	_														
(X)	A1, H		X	ZK	513	759	-												CE											
(X)	A1, H		Х	ZK	610, 613		-						CE	CE	CE	CE	CE	CE	CE	CE	CE	CE	CE							

1) for liquid fluids only

CE Mark for GESTRA Series Equipment

				poisonous, flamn ces, e.g. water, s			Pressure CL	. acc	:. to 1	name	e pla	te																			
CE		luid		,g, -				Г											Size	(DN)										_
marking yes	Module	. i	Gr. 2	Valve	/ Туре	Type no.	PN/CL	10/15	20	25	32	40	50	65	80	100	125			•	_	350	400	450	500	600	700	800	900	1000 12	.00
A6 – Safe	ty Valv	es								1																					
х	B+D		Х	GSV	4421	300		CE	CE	CE	CE	CE	CE	CE	CE	CE	CE	CE	CE							Г	\Box			T	٦
Х	B+D	Х	х	GSV	4425	300		CE	CE	CE	CE	CE	CE	CE	CE	CE	CE	CE	CE							\square	1	\square			
Х	B+D	Х	х	GSV	4422	300		CE	CE	CE	CE	CE	CE	CE	CE	CE	CE	CE	CE							\square	1	\square			
Х	B+D	Х	Х	GSV	4414	300		CE	CE	CE	CE	CE	CE	CE	CE	CE	CE	CE	CE									\square			
A7 – Stra	iner																								,						
(X)	Α		X*)	GSF	11, 14	431	6 - 16*	4 (3)	4 (3)	4 (3)	4 (3)	4 (3)	4 (3)	CE	CE	CE	CE	CE	CE	CE	CE	*) lic	Juid	s m	ax.	10 b	ar			٦
(X)	Н	Х	X	GSF	24, 25, 35, 36, 46A	431	16 - 40	4 (3)	4 (3)	4 (3)	CE	CE	CE	CE	CE	CE	CE	CE	CE												٦
(X)	Н	Х	Х	GSF	332 - 334, 336 - 338	430	16 - 160	4 (3)	4 (3)	4 (3)	CE	CE	CE																		
(X)	Н	X	X	GSF	341 - 348	430	6 - 25	4 (3)	4 (3)	4 (3)	4 (3)	4 (3)	4 (3)	CE	CE	CE	CE	CE	CE	CE	CE										
(X)	Η	Х	Х	SZ	36A	437	40/CL300	4 (3)	4 (3)	4 (3)	4 (3)	CE	CE	CE	CE	CE	CE	CE	CE												
A8 – Stop	Valves	, Sigl	ht Gl	asses																											
(X)	н	x	x	GAV	36, 36F	413	40/25	4 (3)	4 (3)	4 (3)	CE	CE	CE	CE	CE	CE	CE	CE	CE*	CE*	CE*	*1	= 0	λV	35	355	F PN	25			
						415													OE.	OE.	OE.		- 0				- M	╧╝		\perp	
(X)	Н	X	X	GAV	24F, 25F	413	16 - 25		-						CE											\vdash	\vdash	\square		\perp	
(X)	Н	Х	X	GAV	54F	416	16								4 (3)	4 (3)	4 (3)	4 (3)	4 (3)	CE	CE					\downarrow	\downarrow	\square		\perp	
(X)	Н	X	X	GSG	405, 406	453			-	4 (3)		-														\vdash	\vdash	\square		\perp	
(X)	Н	X	X	GSG	424	443				4 (3)	_	CE	CE	L																	
			_		own Valves – BA, I	Bae, Mpa		_	-			_	_	_	_			_	_	_	_			-	-	_	_				
(X)	Н	X	X	Vortex	84 W-U	-	110	4 (3)	4 (3)	4 (3)		CE	CE	-	CE	CE		CE	CE	CE						\vdash	\perp		$ \square $	\perp	
			X	LD	144	-	63-160				L		4 (3)													\vdash	\perp			\perp	
(X)	Н		X	BA / BAE	46	017,389	40			4 (3)	-	CE														\vdash	\perp			\perp	
(X)	Н		X	BA / BAE	47	018,390				4 (3)		CE														\vdash	\perp			\square	
			X	BA / BAE	46	017,389	CL150	4 (3)	4 (3)	4 (3)		4 (3)														\vdash	\perp		\square	\square	
			X	BA / BAE	210	013, 393	250			4 (3)																\vdash	⊢			\square	_
			X	BA / BAE	211	394	302			4 (3)	_			L												\vdash	⊢			\square	_
(X)	Н		X	PA / MPA	46	005, 366	40			4 (3)			_													\vdash	⊢	$\left \right $	$ \rightarrow$	\rightarrow	_
			X	PA / MPA	46	005, 366	CL150		4 (3)	4 (3)	4 (3)	4 (3)	4 (3)													\vdash	\perp			\square	_
(X)	н		X	PA / MPA	47 (inkl. Fl. CL400)	006, 367	63		4 (3)	4 (3)	4 (3)	CE	CE																		
(X)	Н		Х	PA / MPA	47	006, 367	CL600		4 (3)	4 (3)	4 (3)	CE	CE																		
			Х	PA / MPA	110	002, 365	250			4 (3)																Γ					٦
х	B+D	-	-	NRG	1x-40/41 + NRS 1-40/41	351/352 + 322	40-160		CE																						
v				TDO	5-6x +	265/267 +		05	05															1		\vdash	+			+	-
Х	B+D	-	-	TRG	TRS 5-50	255		CE	CE				L																		
х	B+D	-	-	LRGT	1x-1/16-2 + KS90-1/ LRR 1-5x, 16-4/ LRG 16-9 + LRx 1-5x	377 + 266	40			CE																					
х	B+D	-	-	NRG	1x-50 + NRS 1-50, 1x-51 + NRS 1-51	351/357 + 323	40-160			CE																					
Х	B+D	-	-	NRG	16-36 + NRS 1-50	358 + 323	40			CE																					
Х	B+D	-	-	LRG	16-40 + LRR 1-40 + URB	377 + 380 + 338	40			CE																					
Х	Н		X	NRG	211	350	320						CE																		
Х	Н		X	LRG	17-1	377	63						CE																		
Х	Н		X	LRG	19-1	377	160						CE																		
C – Heat			_	ns & Vessel	S																										
Х	A1, G	(X)	X	١	/essels		Х	Fo	r m	ore	info	rma	tion	see	e Pri	ce L	.ist]
4 (3) Not	PED rel	evan	t or i	must not be	CE-marked		CE	on	rea	uest																		uipn		·	-
. ,				product range			(X)			rkin		pen	dino	l on	size		-											ry to anied		certai	n
	clared co						.,			uest	•	r 011			0													anie bear			
			hord	types			1.7		- 1								narl					-		1			-				
Based on G	ieo i KA	รเสท(udiQ	types.																											

Ω

	uge		olute		ration		Specific	Enthalpy			cific
Pres	sure	Pres	sure	-	erature s	Water Sensible	Evaporation Latent	Water Sensible	Evaporation Latent		e Steam
bar g	psi g	bar a	psi a	°C	°F	heat (h _f) KJ/kg	heat (h _{fg}) kJ/kg	heat (h _f) Btu/lb	heat (h _{fg}) Btu/lb	m ³ /kg	ft ³ /lb
- 0.96 - 0.91 - 0.86	28.4 27.0 25.5	0.05 0.1 0.15	0.725 1.45 2.18	32.9 45.8 54.0	91 114 129	138 192 226	2423 2392 2373 2358 2346	59 82 97	1042 1029 1020	28.2 14.7 10.0	452 236 160
- 0.81 - 0.76 - 0.71	24.0 22.5 W 21.1	0.2 0.25 0.3	2.90 3.63 4.35	60.1 65.0 69.1	140 149 156	251 272 289	2358 2346 2336	108 117 124	1014 1009 1004	7.65 6.20 5.23	123 99.3 83.8
- 0.66 - 0.61 - 0.56	19.6 ج	0.35 0.4 0.45	5.08 5.80 6.53	72.7 75.9 78.7	163 169 174	304 318 330	2327 2319 2312	131 137 142	1000 997 994	4.53 3.99 3.58	72.6 63.9 57.3
Mn - 0.51 - 0.46 - 0.41	X 18.1 16.6 15.1 15.1 13.7 12.2 10.7	0.5 0.55 0.6	7.25 7.98 8.70	81.3 83.7 85.9	178 183 187	341 351 360	2305 2299 2294	147 151 155	991 988 986	3.24 2.96 2.73	51.9 47.4 43.7
- 0.36 - 0.31 - 0.26	9.24 9.77	0.65 0.7 0.75	9.43 10.2 10.9	88.0 90.0 91.8	190 194 197	369 377 384	2288 2283 2279	159 162 165	984 982 980	2.54 2.37 2.22	40.7 38.0 35.6
- 0.21 - 0.16 - 0.11	əs 6.29 əsə 4.81 IL 3.34	0.8 0.85 0.9	11.6 12.3 13.1	93.5 95.1 96.7	200 203 206	392 399 405	2274 2270 2266	169 172 174	978 976 974	2.09 1.97 1.87	33.5 31.6 30.1
- 0.06 - 0.01 0	1.86 0.38 0	0.95 1.0 1.013	13.8 14.5 14.696	98.2 99.6 100	209 211 212	411 418 419	2262 2258 2257	177 179 180	972 971 970	1.78 1.69 1.67	28.5 27.1 26.8
0.1 0.2 0.3	1.45 2.90 4.35	1.11 1.21 1.31	16.1 17.5 19.0	103 105 107	217 221 225	430 441 450	2250 2243 2237	185 190 194	967 964 962	1.53 1.41 1.31	24.5 22.6 21.0
0.4 0.5 0.6	5.80 7.25 8.70	1.41 1.51 1.61	20.5 21.9 23.4	110 112 114	230 234 237	460 468 476	2231 2226 2220	198 201 205	959 957 954	1.23 1.15 1.08	19.7 18.4 17.3
0.0 0.7 0.8 0.9	10.2 11.6 13.1	1.71 1.81 1.91	24.8 26.3 27.7	115 117 119	239 243 246	484 492 499	2215 2211 2206	203 208 212 215	952 951 948	1.00 1.02 0.971 0.923	16.3 15.6 14.8
1.0 1.1 1.2	14.5 16.0 17.4	2.01 2.11 2.21	29.2 30.6 32.1	120 122 123	248 252 253	506 512 519	2201 2197 2193	218 220 223	946 945 943	0.881 0.841 0.806	14.1 13.5 12.9
1.2 1.3 1.4 1.5	17.4 18.9 20.3 21.8	2.21 2.31 2.41 2.51	33.5 35.0 36.4	125 125 126 128	253 257 259 262	525 531 536	2185 2189 2185 2181	226 228 230	943 941 939 938	0.773 0.743 0.714	12.9 12.4 11.9 11.4
1.6 1.7 1.8	23.2 24.7 26.1	2.61 2.71 2.81	37.9 39.3 40.8	129 130 131	264 266 268	542 547 552	2177 2174 2170	233 235 237	936 935 933	0.689 0.665 0.643	11.0 10.7 10.3
1.9 2.0 2.2	27.6 29.0 31.9	2.91 3.01 3.21	42.2 43.7 46.6	133 134 136	271 273 277	557 562 572	2167 2163 2157	240 242 246	932 930 927	0.622 0.603 0.568	9.96 9.66 9.10
2.4 2.6 2.8	34.8 37.7 40.6	3.41 3.61 3.81	49.5 52.4 55.3	138 140 142	280 284 288	581 589 597	2151 2145 2139	250 253 257	925 922 920	0.536 0.509 0.483	8.59 8.15 7.74
3.0 3.2 3.4	43.5 46.4 49.3	4.01 4.21 4.41	58.2 61.1 64.0	144 146 147	289 293 297	605 613 620	2133 2128 2123	260 264 267	917 915 913	0.461 0.440 0.422	7.38 7.05 6.76
3.6 3.8 4.0	52.2 55.1 58.0	4.61 4.81 5.01	66.9 69.8 72.7	149 150 152	298 302 304	627 634 641	2118 2113 2108	270 273 276	911 908 906	0.405 0.389 0.374	6.49 6.23 5.99
4.2 4.4 4.6 4.8	60.9 63.8 66.7 69.6	5.21 5.41 5.61 5.81	75.6 78.5 81.4 84.3	153 155 156 158	307 309 313 315 316	647 653 659 665	2104 2099 2095 2090 2086	278 281 283 286 289	905 902 901 899	0.361 0.348 0.336 0.325 0.315	5.78 5.57 5.38 5.21 5.01
5.0 5.5	72.5 79.8	6.01 6.51	84.3 87.2 94.4	159 162 165	316 324	671 685	2086 2076	289 295 300	897 893	0.315	5.01 4.68
6.0 6.5 7.0 7.5	87.0 94.3 102 109	7.01 7.51 8.01 8.51	102 109 116 123	165 168 171 173	324 329 333 338 343	698 710 721 733	2076 2066 2057 2048 2039	305 310 315	888 884 880 877	0.292 0.272 0.255 0.240 0.227	4.68 4.36 4.09 3.84 3.64
8.0 8.5	116 123	9.01 9.51	131 138	175 178	347 351	743 753	2039 2031 2023 2015	319 324	873 870	0.215	3.44 3.27
9.0 9.5 10.0	131 138 145	10.0 10.5 11.0	145 152 160	180 182 184	354 360 363	763 773 782	2031 2023 2015 2008 2000	328 332 336	866 863 860	0.194 0.185 0.177	3.44 3.27 3.11 2.96 2.84
10.5 11.0 11.5 12.0	152 160 167 174	11.5 12.0 12.5 13.0	167 174 181 189	186 188 190 192	367 370 374 376	790 798 807 815	1993 1986 1979 1973 1966	340 344 347 350	857 854 851 848	0.171 0.163 0.157 0.151	2.74 2.61 2.51 2.42 2.34
12.5 13.0 13.5	181 189 196	13.5	196 203 210	192 193 195 197	379	823	1966 1960 1953	350 354 357 360	845 843 840	0.146 0.141 0.136 0.132	2.34 2.26 2.18
14.0 14.5 15.0	203 210 218	14.0 14.5 15.0 15.5 16.0	218 225 232	198 200 202	383 385 388 392 394	830 838 845 852 859	1960 1953 1947 1941 1935	357 360 363 366 369	837 834 832	0.128	2.26 2.18 2.11 2.05 1.99
15.5 16.0 16.5	225 232 239	16.5 17.0 17.5	239 247	203	397 399 401	866 872 879	1929 1923 1918	372 375 378	829 827 824	0.120 0.117 0.114	1.92 1.87 1.83 1.76 1.73
16.0	239 247 254	17.0	247 254 261 268	204 205 207 209	399 401 405 408	872	1929 1923 1918 1912 1907	375	827	0.117	-

14.5 psi = 1 bar

Gau		Abso			ration		-	Enthalpy		Specific Volume Steam			
Pres	sure	Pres	sure	-	erature	Water Sensible	Evaporation Latent	Water Sensible	Evaporation Latent	Volume			
bar g	psi g	bar a	psi a	°C	's I °F	heat (h _f) KJ/kg	heat (h _{fg}) kJ/kg	heat (h _f) Btu/lb	heat (h _{fg}) Btu/lb	m ³ /kg	ft³/lb		
18.0	261	19.0	276	210	410	897	1901	386	817	0.105	1.68		
18.5	268	19.5	283	211	412	903 909	1896	388	815	0.103	1.65		
19.0 19.5	276 283	20.0 20.5	290 297	213 214	415 417	915	1890 1885	391 393	813 810	0.100 0.0972	1.60 1.56		
20.0	290	21.0	305	215	419	920	1880	396	808	0.0949	1.52		
21.0 22.0	305 319	22.0 23.0	319 334	217 220	423 428	931 942	1870 1860	400 405	804 800	0.0906 0.0868	1.45 1.39		
23.0	334	24.0	348	222	432	952	1850	409	795	0.0832	1.33		
24.0 25.0	348 363	25.0 26.0	363 377	224 226	435 439	962 972	1841 1831	414 418	792 787	0.0797 0.0768	1.28 1.23		
26.0	377	27.0	392	228	442	982	1822	422	783	0.0740	1.19		
27.0 28.0	392 406	28.0 29.0	406 421	230 232	446 450	991 1000	1813 1804	426 430	779 776	0.0714 0.0689	1.14 1.10		
29.0	421	30.0	435	234	453	1009	1796	434	772	0.0666	1.07		
30.0 31.0	435 450	31.0 32.0	450 464	236 238	457 460	1017 1026	1787 1779	437 441	768 765	0.0645 0.0625	1.03 1.00		
32.0	464	33.0	479	239	462	1034	1770	445	761	0.0605	0.97		
33.0 34.0	479 493	34.0 35.0	493 508	241 243	466 469	1042 1050	1762 1754	448 451	758 754	0.0587 0.0571	0.94 0.915		
35.0	508	36.0	522	244	471	1058	1746	455	751	0.0554	0.887		
36.0 37.0	522 537	37.0 38.0	537 551	246 247	475 477	1066 1073	1737 1730	458 461	747 744	0.0539 0.0524	0.863 0.839		
38.0	551	39.0	566	249	480	1080	1722	464	740	0.0510	0.817		
39.0 40.0	566 580	40.0 41.0	580 595	250 252	482 486	1087 1095	1714 1706	467 471	737 733	0.0498 0.0485	0.798 0.777		
41.0	595	42.0	609	253	487	1102	1699	474	730	0.0473	0.758		
42.0 43.0	609 624	43.0 44.0	624 638	255 256	491 493	1108 1115	1691 1684	476 479	727 724	0.0461 0.0451	0.738 0.722		
44.0	638	45.0	653	258	496	1122	1676	482	721	0.0441	0.706		
45.0 46.0	653 667	46.0 47.0	667 682	259 260	498 500	1129 1135	1669 1662	485 488	718 715	0.0431 0.0421	0.690		
47.0	682	48.0	696	261	502	1142	1654	491	711	0.0412	0.660		
48.0 49.0	696 711	49.0 50.0	711 725	263 264	505 507	1148 1155	1647 1640	494 497	708 705	0.0403 0.0395	0.646 0.633		
50.0	725	51.0	740	265	509	1161	1633	499	702	0.0386	0.618		
52.0 54.0	754 783	53.0 55.0	769 798	268 270	514 518	1173 1185	1619 1605	504 509	696 690	0.0371 0.0356	0.594 0.570		
56.0	812	57.0	827	272	522	1197	1591	515	684	0.0343	0.549		
58.0 60.0	841 870	59.0 61.0	856 885	274 277	525 531	1208 1219	1577 1564	519 524	678 672	0.0330 0.0319	0.529 0.511		
62.0	899	63.0	914	279	534	1230	1551	529	667	0.0308	0.493		
64.0 66.0	928 957	65.0 67.0	943 972	281 283	538 541	1241 1251	1538 1525	534 538	661 656	0.0297 0.0288	0.476 0.461		
68.0	986	69.0	1001	285	545	1262	1512	543	650	0.0278	0.445		
70.0 72.0	1015 1044	71.0 73.0	1030 1059	287 289	549 552	1272 1283	1499 1486	547 552	644 639	0.0270 0.0261	0.432 0.418		
74.0	1073	75.0	1088	291	556	1293	1473	556	633	0.0253	0.405		
76.0 78.0	1102 1131	77.0 79.0	1117 1146	292 294	559 561	1303 1312	1460 1447	560 564	628 622	0.0246 0.0239	0.394 0.383		
80.0	1160	81.0	1175	296	565	1322	1435	568	617	0.0232	0.372		
82.0 84.0	1189 1218	83.0 85.0	1204 1233	298 299	568 570	1331 1341	1422 1410	572 576	611 606	0.0226 0.0219	0.362 0.351		
86.0	1247	87.0	1262	301	574	1350	1398	580	601	0.0213	0.341		
88.0 90.0	1276 1305	89.0 91.0	1291 1320	302 304	576 579	1359 1368	1385 1368	584 588	595 590	0.0208 0.0202	0.333 0.324		
92.0 94.0	1334 1363	93.0 95.0	1349 1378	305 307	581 585	1377 1386	1360	592 596	585 580	0.0197 0.0192	0.316 0.308		
96.0	1392	97.0	1407	309	588	1395	1348 1336	600	574	0.0187	0.300		
98.0 100.0	1421 1450	99.0 101.0	1436 1465	310 312	590 594	1404 1412	1323 1311	604 607	569 564	0.0183 0.0178	0.293 0.285		
105.0	1523	106.0	1537	315	599	1433	1280	616	550 537	0.0168	0.269		
110.0 115.0	1595 1668	111.0 116.0	1610 1683	319 322	606 612	1454 1475	1280 1249 1218	625 634	537 524	0.0158 0.0149	0.269 0.253 0.239		
120.0	1741	121.0	1755	325	617	1495	1188	643	511	0.0141	0.226		
125.0 130.0	1813 1886	126.0 131.0	1828 1900	328 331	622 628	1515 1535	1157 1125	651 660	497 484	0.0133 0.0126	0.213		
135.0	1958	136.0	1973	334	633	1555	1125 1093	668	470	0.0120	0.202		
140.0 145.0	2031 2103	141.0 146.0	2045 2118	337 340	639 644	1575 1595 1614	1060 1027	677 686	456 442	0.0114 0.0108	0.183		
150.0	2176	151.0	2190	343	649		1027 994	694	427	0.0102	0.163		
155.0 160.0	2248 2321	156.0 161.0	2263 2335	345 348	653 658	1634 1654	960 925	702 711	413 398	0.00972 0.00922	0.156 0.148		
165.0	2393	166.0	2408	350	662	1674	925 888	720	382	0.00875	0.140		
170.0 175.0	2466 2538	171.0 176.0	2480 2553	353 355	667 671	1694 1715	850 811	728 737	365 349	0.00829 0.00785	0.133		
180.0	2611 2683	181.0	2625 2698	357 360	675	1736 1759	769	746	331 312	0.00743	0.119 0.112		
185.0 190.0	2683 2756	186.0 191.0	2698 2770	360 362	680 684	1759 1782	726 679	756 766	312 292	0.00701 0.00660	0.112 0.106		
195.0 200.0	2828 2901	196.0	2843	364	687	1806	628	776	292 270	0.00619 0.00577	0.106 0.099 0.092		
	Z901	201.0	2915	366	691	1833	562	788	242	i u.uua//	0.092		

Ω

EN Material D	esignation	Old Mat	erial Designation (DIN)	ASTM	
Number	Symbol	Number	Symbol	equivalent ¹)	Material
1.0038	235JRG2	1.0038	RSt 37-2	A284-B	Constructional steel
1.0315	P235G2TH	1.0315	ST 37.8	-	Constructional steel
1.0345	P235GH	1.0345	ST 35.8 (HI)	A285-CA	High-quality steel (structural steel)
1.0460	P250GH	1.0460	C22.8	A105	Forged steel, unalloyed (carbon steel)
1.0619	GP240GH	1.0619	GS-C 25	A216-WCB	Cast steel (carbon steel)
1.4006	X12Cr13	1.4006	X10 Cr 13	A182-F6A	Chromium steel
1.4008	GX7CrNiMo12-1	1.4008	G-X 8 CrNi 13	-	Cast stainless steel
1.4021	X20Cr13	1.4021	X20 Cr 13	AISI 420	Chromium steel
1.4027	GX20Cr14	1.4027	G-X 20 Cr 14	-	(Cast) chromium steel
1.4107	GX8CrNi12	1.4107	G-X 8 CrNi 12	A217-CA15	Chromium steel
1.4301	X5CrNi18-10	1.4301	X5 CrNi 18 10	A182-F304	Forged stainless steel, austenitic
1.4308	GX5CrNi19-10	1.4308	G-X 6CrNi 18 9	A351-CF8	Cast stainless steel, austenitic
1.4317	GX4CrNi13-4	-	-	A743 CA6NM	Cast stainless steel
1.4404	X2CrNiMo17-12-2	1.4404	X2CrNiMo17132	A182 F316L	Forged stainless steel, austenitic
1.4408	GX5CrNiMo19-11-2	1.4408	G-X 6CrNiMo 18 10	A351-CF8M	Cast stainless steel, austenitic
1.4435	X2CrNiMo18-14-3	1.4435	X2 CrNiMo 18 14 3	AISI 316L	Stainless steel, forged, austenitic
1.4541	X6CrNiTi18-10	1.4541	X6 CrNiTi 18 10	-	Forged stainless steel, austenitic
1.4550	X6CrNiNb18-10	1.4550	X6 CrNiNb 18 10	A182-F347	Forged stainless steel, austenitic
1.4552	GX5CrNiNb19-11	1.4552	G-X 5 CrNiNb 18 9	A351-CF8C	Cast stainless steel, austenitic
1.4571	X6CrNiMoTi17-12-2	1.4571	X6 CrNiMoTi 17 12 2	AISI 316Ti	Forged stainless steel, austenitic
1.4581	GX5CrNiMoNb19-11-2	1.4581	G-X 5 CrNiMoNb 18 10	_	Cast stainless steel, austenitic
1.4901	X10CrWoMoVNb9-2	_	_	A182-F92	Forged steel, highly heat resistant
1.4903	X10CrMoVNb9-1	1.4903	X10 CrMoVNb 91	A182-F91	Forged steel, highly heat resistant
1.4922	X20 CrMo V11-1	1.4922	X20 CrMo V12 1		Forged steel, heat resistant
1.4923	X20 CrMo V11-1	1.4923	X22 CrMo V12 1	_	Forged steel, heat resistant
1.4920	X6NiCrTiMoVB25-15-2	1.4920	X5NiCrTi 26 15	_	Forged steel, heat resistant
1.4496	X7 CrNiMo BNb 16-16	1.4986	X8 CrNiMo BNb 16 16	_	Forged steel, heat resistant
1.5415	16Mo3	1.5415	15 Mo 3	A182-F1	Forged steel, heat resistant
1.5419	G20Mo5	1.5419	GS-22 Mo 4	A102-11	Cast steel, heat resistant
1.7225	42CrMo4	1.7225	42CrMo4	A193-B7	Forged steel, heat resistant
1.7335	13CrMo4-5	1.7335	13 CrMo 4 4	A182-F12-2	Forged steel, heat resistant
1.7357	G17CrMo5-5	1.7357	GS-17 CrMo 5 5	A102-112-2 A217-WC6	
		1.7357			Cast steel, heat resistant
1.7380	10CrMo9-10	1.7300	10 CrMo 9 10	A182 F22-3	Forged steel, heat resistant
1.7383	11CrMo9-10	1 7700	- 010rMoV 5 7	A182 F22-3	Forged steel, heat resistant
1.7709	21CrMoV 5-7	1.7709	21CrMoV 5 7		Forged steel, heat resistent
2.4600	Hastelloy B-3	2.4600	NiMo 29Cr	B335/564	Hastelloy B
2.4610	NiMo 16Cr 16Ti	2.4610	NiMo 16Cr 16Ti	B574	Hastelloy C
2.4632	Nimonic 90	2.4632	NiCr20 Co18Ti		Nimonic 90
2.4669	Inconel X750	2.4669	NiCr15 Fe7 TiAL	B637, NACE MR-01-75	Inconel X750
3.7035	Ti 2	3.7035	-	B348/381	Titan
.1301 (EN-JL 1040)	EN-GJL-250	0.6025	GG-25	A126-B	Grey cast iron
.3103 (EN-JS 1025)	EN-GJS-400-18-LT	0.7043	GGG-40.3	A395	S. G. (ductile) iron
.3106 (EN-JS 1030)	EN-GJS-400-15	0.7040	GGG-40	A536 60-40-18	S. G. (ductile) iron to AD 2000 A4/W3/2
4202 (EN-JM 1030)	EN-GJMW-400-5	0.8040	GTW-40	-	S. G. (ductile) iron
(EN-JS 1049) ²)	(EN-GJS-400-18-U-LT)	0.7043	GGG-40.3	A395	Whiteheart malleable cast iron
CW608N	CuZn 38 Pb 2	2.0371	CuZN 38 Pb 1.5 (MS60)	-	Hot-pressed brass
CW614N	CuZn 39 Pb 3	2.0401	CuZn 39 Pb 3	-	Brass
CW617N	Cu Zn 40 Pb 2	2.0402	CuZn 40 Pb 2	-	Brass
CW710R	CuZn 35 Ni3Mn2Al Pb	2.0540	CuZn 35 Ni 2	-	Special brass
CW718R	CuZn 39 Mn1Al Pb Si	2.0561	CuZn 40 Al 1	-	Special brass
CC332G	CuAl10Ni3Fe2-C	2.0970.01	G-CuAl 9 Ni	-	Bronze
CC480K-GS	CuSn10-Cu	2.1050.01	G-CuSn 10	-	Bronze
CC483K-GS	CuSn12-C	2.1052.04	GC-CuSn 12	-	Bronze

1) Physical and chemical properties comply with DIN grade. ASTM nearest equivalent grade is stated for guidance only.

²) Replaced by 5.3103

	Raised Fac	es at a glance	– Com	parison Flange St	andard DIN wi	th EN 1092-1
	old (DIN)			new (EN 1092	2-1)	
Raised face	Designation	Admissible tolerance for roughness	Raised face	Designation	Admissible tolerance for roughness	Remark
С	Standard up to PN 40	N11/N10	./.			Form C (old) is replaced by form B1 (new)
D		N9/N8	B1	Standard up to PN 40	N10/N8	Like form D but with def. groove
Е	Standard up to PN 63	N8/N7	B2	Standard up to PN 63	N8/N6	Different tolerance for roughness
F	Tongue	N9/N8	С	Tongue	N8/N6	Tongue heights do not match!
Ν	Groove	N9/N8	D	Groove	N8/N6	Groove depths do not match!
V	Male face	N11/N10	E	Male face	N10/N8	Heights of male faces do not match!
R	Female face	N11/N10	F	Female face	N10/N8	Heights of female faces do not match!
V14	Male face with turned groove	N11/N10	н	0-ring groove	N8/N6	Dimensions identical
R14	Female face to V14	N11/N10	G	0-ring for male face	N8/N6	Dimensions identical
L	Turned groove with convex seal	N6	./.			
М	Bevel with welded diaphragm seal	N8/N7	./.			

Since some flange faces are not interchangeable with the associated DIN versions please state the standard and the form of the face.

Example: BK 45 DN 20 PN 40 flanged to DIN 2635 form D [standard flat face, roughness $Ra = 3.2 - 6.3 \mu m$ (N8/N9)]

or: RK 16A DN 65 PN 40 for flange to EN 1092-1 form D (groove/groove face)

Roughness Characteristics Rz Rt CLA µ" Roughness Ra class (old) [µm] [µm] [µm] [µin] N1 0.025 0.22 - 0.30 0.24 - 0.40 1 N2 0.05 0.45 - 0.60 0.49 - 0.80 2 4 Ν3 0.1 0.8 - 1.1 0.85 - 1.45 N4 0.2 1.0 - 1.8 1.10 - 2.40 8 N5 0.4 1.6 - 2.8 1.75 - 3.60 16 32 N6 0.8 3.0 - 4.8 3.2 - 6.0 N7 1.6 5.9 - 8.0 6.3 - 10 63 12.0 - 16.0 13.0 - 19.5 125 N8 3.2 250 N9 6.3 23 - 32 25 - 38 N10 12.5 46 - 57 48 - 68 500 N11 25 90 - 110 95 - 130 1000 N12 50 160 - 220 190 - 250 2000

Definition of frequently used abbreviations for valves & steam traps

PN, Class	Pressure class acc. to EN, ASME body of rules
PMA	Maximum allowable pressure that the valve / trap body can withstand
TMA	Maximum allowable temperature that the valve / trap body can withstand
p/T	Maximum pressure as a function of temperature that the valve / trap body can withstand
ΔΡ	Operating differential pressure
ΔΡΜΧ	Maximum differential pressure (difference between operating pressure and operating back pressure)
ТМО	Maximum operating temperature for which the operation of the equipment is guaranteed
PM0	Maximum operating pressure for which the operation of the equipment is guaranteed
PMOB	Maximum operating backpressure for which the operation of the equipment is guaranteed
P0	Operating pressure, measured at the valve / trap inlet
то	Operating temperature, measured at the valve / trap inlet
PS	Maximum service pressure
TS	Maximum service temperature

Product	Туре	Product-Range	Page
Academy GESTRA	-	D	172
Air vent	BK, MK	A1	6 - 9
ATEX Directive 94/9/EC	-	D	177
Ball float trap, float steam trap	UNA	A1	10 – 15
Blowdown receiver, mixing cooler	VDM	С	160
Blowdown system, programme-controlled	TA	В	140 - 141
Blowdown valve, continuous (with electric actuator)	BAE	В	138 – 139
Blowdown valve, continuous (without actuator)	ВА	В	138 – 139
Blowdown valve, intermittent (with pneumatic actuator)	MPA	В	142 – 143
Blowdown valve, intermittent (without actuator)	PA	В	142 – 143
C apsule trap	МК	A1	8 - 9
Check valve	NAF-Check	A2	59 - 60
Check valve, dual-plate	BB	A2	50 - 54
Combined imperial and S.I. steam tables	_	D	182 – 183
Condensate dampening pot	ED	С	161
Condensate drain valve	AK	A1	20 – 21
Condensate lifter	UNA 25 PS	A1	26
Condensate recovery and return systems, horizontal	SDS	C	151 – 152
Condensate recovery and return systems, vertical	SDL	C	151 – 152
Condensate return units, steam-powered	KH, FPS	C	153 – 154
Conductivity control unit	LRR	B	130 - 133
Conductivity controller / limiter	KS 90	B	130
Conductivity electrode	LRG	B	130 – 135
Conductivity switch	LRS	B	132 – 135
Connector for electrode	LRG	B	130 - 135
Continuous blowdown valve, with electric actuator	BAE	B	138 – 139
Continuous blowdown valve, with obcarlo datator	BA	B	138 – 139
Control unit, conductivity	LRR	B	130 - 133
Control valve	V 701, ZK	A4	74
Control valve, High-pressure control valve	ZK	A4 A4	75 – 78
Controller, level	NRR	B	104 - 105, 114 - 115
Conversions	-	D	175 – 176
Cooling water control valve, GESTRAMAT	CW	A4	64 - 65
Design of GESTRA Valves		D	185
Desuperheater, water bath	– KD	C	155
		В	135
Detector, oil	ORGS OR		
Detector, oil & turbidity		B	144 - 145
DISCO non-return valve	RK CB	A2	38 - 49
DISCO swing check valve		A2	55 - 56
DISCOCHECK dual-plate check valve	BB SDECTOR control	A2	50 - 54
Display unit for process data	SPECTORcontrol	B	106 - 107
Documentation and Reference Literature	-	D	174
Drain valve	AK	A1	20 - 21
Draining module	QuickEM, QuickEM-Control	A1	32 - 33
Dual-plate check valve	BB	A2	50 - 54
Electrode, conductivity	LRG	B	130 – 135
Feedwater tank	SW	C	158
Flash vessel systems	VD	C	159

Float steam trap, ball float trap Flow computer, flowmeter Flowmeter, Vortex GESTRAMAT, cooling water control valve Gravity circulation check	UNA SPECTOR <i>conrol</i> Flow, 84 W-U	A1	10 – 15
Flowmeter, Vortex GESTRAMAT, cooling water control valve	SPECTOR conrol Flow, 84 W-U	-	
GESTRAMAT, cooling water control valve		В	147
_	84 W-U	В	147
Gravity circulation check	CW	A4	64 - 65
	SBO	A2	37
Heat Exchanger Unit	PWT-XPS	С	157
High-capacity steam trap	TK 23, TK 24	A1	20 - 21
High-level alarm	NRS	В	104 – 105, 114 – 115
High-pressure control valve, control valve	ZK	A4	75 - 78
Indicator, digital	URB	В	104 – 105
Injection cooler	ЕК	С	155
Intermittent blowdown valve, with pneumatic actuator	MPA	В	142 - 143
Intermittent blowdown valve, without actuator	РА	В	142 - 143
Kalorimat, return temperature control valve	BW	A4	66 - 68
Level controller	NRG	В	102 - 105
Level controller	NRR	В	104 – 105, 114 – 115
Level electrode	NRG	В	102 - 105
Level limiter	NRG	В	102 - 105
Level monitoring	NRG, NRGS, NRGT	В	102 – 117
Level pot for electrodes	MF	В	118 – 119, 137
Level switch	NRS	В	104 – 105, 114 – 115
Lift restriction	Lift restriction RK	A1	36
Limiter, temperature	TRS 5-50	В	126 – 127
Low-level alarm	NRS	В	104 – 105, 114 – 115
Low-pressure trap	MK 20	A1	20 - 21
Material reference chart, DIN	-	D	184
Measuring pot for level electrodes	MF	В	118 – 119, 137
Mixing cooler, blowdown receiver	VDM	С	160
Monitoring equipment for steam traps	VK, VKE, VKP 10, VKP 40 <i>plus</i> , VKP 40 <i>plus</i> Ex	A1	28 - 29
Monitoring unit	SRL	В	118 – 119
NAF check valvw	NAF-Check	A2	59 - 60
Non-return valve	RK	A2	38 - 49
Non-return valve, screwed	MB	A2	38 - 39
Oil & turbidity detector	OR	В	144 – 145
Oil detector	ORGS	В	146
PED	-	D	178 – 181
Pressure Equipment Directive (PED)	-	D	178 – 181
Pressure-maintaining valve	5610	A4	70
Pressure-reducing valve	5801	A4	69
Programme-controlled blowdown system	ТА	В	140 – 141
Programs & Sizing Software	-	D	173
Pump control	NRSP	В	116 – 117
Pump steam trap	UNA 25 PK	A1	26
Radar probe	705 MS	В	114 – 115
Remote data transfer	SPECTORcom	В	107
Resistance thermometer, temperature sensor	TRG	В	124 – 127
Return temperature control valve, Kalorimat	BW	A4	66 - 68
Rhombusline steam trap	_	A1	6 - 9, 16 - 17

Ω

Product	Туре	Product-Range	Page
Roughness caracteristics	-	D	185
Safety valve	GSV	A6	80
Screwed non-return valve	МВ	A2	38 – 39
Self-acting pressure controller, pressure-maintaining valve	5610	A4	70
Self-acting pressure controller, pressure-reducing valve	5801	A4	69
Self-acting temperature controller	Clorius	A4	71 –73
Service case	VRM	В	136 – 137
Sightglass, Vaposcope	VK	A1	28
SIL (Safety Integrity Level)	NRG 16-50, NRS 1-50	В	110 – 111
SPECTORbus	_	В	99 – 105
SPECTORcom	-	В	107
SPECTOR <i>control</i>	-	В	106 – 107
SPECTOR <i>module</i>	-	В	89 - 90, 108 - 114
Stainless steel, Material reference chart	-	D	184
Steam drier/purifier, steam separator	TD, TP	С	162
Steam regenerator	GRDE	С	156
Steam separator, steam drier/purifier	TD, TP	С	162
Steam tables	_	D	182 - 183
Steam trap for large condensate flowrates	GK 11/21, TK 23/24	A1	21 – 22
Steam trap for large-scale installations	DK	A1	16 – 17
Steam trap for SIP applications, Steriline	SMK	A1	18 – 19
Steam trap monitoring equipment	VK, VKE, VKP 10, VKP 40 <i>plus</i> , VKP 40 <i>plus</i> Ex	A1	28 – 29
Steam trap testing unit	NRA	A1	28 - 29
Steam trap units for UNIVERSAL (Swivel) connectors	BK 36A/7, MK 36A/7, DK 36A/7	A1	22
Steam trap with adjustable discharge temperature	UBK	A1	21 – 22
Steam trap with Duo S.S. (Bimetallic) regulator	BK	A1	6-7
Steam trap with membrane regulator	МК	A1	8 - 9
Steam Traps & Valves Library (2D and 3D CAD drawings)	_	D	173
Steam-powered condensate return units	KH, FPS	C	153 – 154
Steriline	SMK	A1	18 – 19
Stop valve	GAV	A8	83 - 84
Strainer	GSF, SZ	A7	81 - 82
Stroke limiter	Stroke limiter RK	A1	36
Swing check valve	CB, WB	A2	55 – 56
Switch, conductivity	LRS	B	132 – 135
Switch, level	NRS	B	104 - 105, 114 - 115
Switch, TDS	LRS	B	132 - 135
Switch, temperature	TRS 5-50	B	126 – 127
Tank for feedwater	SW	C	158
Technical Infos	5	D	174
Technical literature		D	174
Temperature control valve	BW	A4	66 - 68
Temperature controllers, self-acting	Clorius	A4 A4	71 – 73
	TRS 5-50	B A4	
Temperature limiter, temperature switch		B	126 - 127
Temperature monitor	TDV	B	126 - 127
Temperature preamplifier	TRV		124 – 127
Temperature sensor, resistance thermometer	TRG	B	124 - 127
Temperature switch, temperature limiter	TRS 5-50	В	126 – 127

Product	Туре	Product-Range	Page
Test set, steam trap monitoring	VKE	A1	28 – 29
Testing unit for steam traps	NRA	A1	29
Thermodynamic steam trap	DK	A1	16 – 17
Thermostatic steam trap	BK, MK, SMK, TK	A1	6 – 9, 18 - 21
Thermostatic/Thermodynamic steam trap	ВК	A1	6 – 7
Tools for design engineers, users & operators	-	D	174
Trap for draining compressed air and gases	UNA	A1	25
Trap testing unit	NRA	A1	28
Traptest, steam trap monitoring	VK, VKE, VKP 10, VKP 40 plus, VKP 40 plus Ex	A1	28 – 29
Useful information, Conversions	-	D	176 – 177
Vapophone	VKP 10	A1	28
Vaposcope, sightglass	VK	A1	28
Vortex flowmeter	84 W-U	В	147
Wafer-type non-return valve	RK	A2	38 – 49
Water bath, desuperheater	KD	С	155

Туре	Product	Product-Range	Page
AK	Condensate drain valve	A1	20 – 21
BA	Continuous blowdown valve, without actuator	В	138 – 139
BAE	Continuous blowdown valve, with electric actuator	В	138 – 139
BB	Dual-plate check valve	A2	50 - 54
BK	Air vent	A1	6 - 7
BK	Steam trap with Duo S. S. (Bimetallic) regulator	A1	6 - 7
BK 36A/7	Steam trap for universal connector	A1	22
BW	Return temperature control valve, Kalorimat	A4	66 - 68
CB	Swing check valve	A2	55 - 56
Clorius	Self-acting temperature controllers	A4	71 – 73
CW	Cooling water control valve, GESTRAMAT	A4	64 - 65
DK	Thermodynamic steam trap	A1	16 – 17
ED	Condensate dampening pot	С	161
 EK	Injection cooler	С	155
FPS	Steam-powered condensate return units	С	154
GAV	Stop valve	A8	83 - 84
GK 11/21	Steam trap for large condensate flowrates	A1	20 - 21
GRDE	Steam regenerator	C	156
GSF	Strainer	A7	81
GSV	Safety valve	A6	80
KD	Desuperheater, water bath	C	155
КН	Steam-powered condensate return units	C	153
KS 90	Conductivity controller / limiter	B	130
Lift restriction RK	Lift restriction	A1	36
	Conductivity electrode	B	130 – 135
LRR	Conductivity control unit	B	130 - 133
LRS	Conductivity switch	B	132 – 135
MB	Screwed non-return valve	A2	38 - 39
MF	Level pot for electrodes	B	118 – 119, 137
MK	Air vent	A1	8-9
MK	Steam trap with membrane regulator	A1	8-9
MK 20	Low-pressure trap	A1	20 – 21
MK 36A/7	Steam trap for universal connector	A1	20 - 21
MPA	Intermittent blowdown valve, with pneumatic actuator	B	142 - 143
NAF-Check	Check valve	A2	59 - 60
NRA	Trap testing unit	A1	29
NRG	Level limiter	В	102 - 105
NRG	Level controller	B	102 - 105
NRR	Level controller	B	102 - 105
NRS	Level switch	B	105 - 105, 114 - 115
NRSP			
	Pump control Oil & turbidity datactor	B	116 - 117
OR	Oil & turbidity detector		144 - 145
ORGS	Oil detector	B	146
PA	Intermittent blowdown valve, without actuator	В	142 - 143
PWT-XPS	Heat Exchanger Unit	C	157
QuickEM, QuickEM-Control	Draining module	A1	32 - 33
RK	Non-return valve	A2	38 - 49
SBO	Gravity circulation check	A2	37

Туре	Product	Product-Range	Page
SDL	Condensate recovery and return systems, vertical	C	151 – 152
SDS	Condensate recovery and return systems, horizontal	С	151 – 152
SMK	Steam trap for SIP applications, Steriline	A1	18 – 19
SPECTORbus	-	В	99 – 105
SPECTOR <i>com</i>	Remote data transfer	В	107
SPECTOR <i>control</i>	Display unit for process data	В	106 - 107
SPECTOR control Flow	Flow computer, flowmeter	В	147
SPECTOR <i>module</i>	-	В	89 - 90, 108 - 114
SRL	Monitoring unit	В	118 – 119
Stroke limiter RK	Stroke limiter	A1	36
SW	Feedwater tank	С	158
Swivel	Steam trap for UNIVERSAL connectors	A1	22
SZ	Strainer	A7	82
TA	Blowdown system, programme-controlled	В	140 – 141
TD	Steam separator, steam drier/purifier	С	162
FK 23, TK 24	High-capacity steam trap	A1	20 – 21
TP	Steam drier/purifier	C	162
ſRG	Temperature sensor, resistance thermometer	В	124 – 127
rrv	Temperature preamplifier	В	124 – 127
JBK	Steam trap with adjustable discharge temperature	A1	20 – 21
JNA	Trap for draining compressed air and gases	A1	25
JNA	Float steam trap, ball float trap	A1	10 – 15
JNA 25 PK	Pump steam trap	A1	26
JNA 25 PS	Condensate lifter	A1	26
JRB	Indicator, digital	В	104 – 105
/ 701	Control valve	A4	74
/D	Flash vessel systems	С	159
/DM	Mixing cooler, blowdown receiver	C	160
/K	Vaposcope, sightglass	A1	28
/KE	Test set, steam trap monitoring	A1	28 – 29
/KP 10	Steam trap monitoring system	A1	29
/KP 40 <i>plus</i>	Traptest, steam trap monitoring	A1	29
/KP 40 <i>plus</i> Ex	Traptest, steam trap monitoring	A1	29
/RM	Service case	В	136 – 137
NB	Swing check valve	A2	57 – 58
ZK	High-pressure control valve, control valve	A4	75 – 78
5610	Pressure-maintaining valve	A4	70
5801	Pressure-reducing valve	A4	69
705 MS	Radar probe	В	114 – 115
84 W-U	Vortex flowmeter	В	147

Note: Responsible care has been taken in preparing this illustrated catalogue. GESTRA reserves the right to make corrections and changes. Illustrations in our printed literature are liable to alteration and are not intended to be binding. We also reserve the unrestricted property and copyright in all estimates, drawings or related documents, which must not be made available to third parties.

GESTRA AG

Münchener Straße 77 28215 Bremen Germany Telefon +49 421 3503-0 Telefax +49 421 3503-393 E-mail info@de.gestra.com Web www.gestra.de

810564-14/02-2017 · © 2017 · GESTRA AG · Bremen · Printed in Germany

With Energy into the Future