H03D

DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER (masers, lasers H01S; circuits capable of acting both as modulator and demodulator H03C; details applicable to both modulators and frequency-changers H03C; demodulating pulses H03K9/00; transforming types of pulse modulation H03K11/00; coding, decoding or code conversion, in general H03M; repeater stations H04B7/14; demodulators adapted for ac systems of digital information transmission H04L27/00; synchronous demodulators adapted for colour television H04N9/66)

Definition statement

This subclass/group covers:

Demodulation or transference of signals modulated on a sinusoidal carrier or on electromagnetic waves.

Relationship between large subject matter areas

The modulation and demodulation of pulse trains, for example in Pulse Width Modulation circuits, is covered in subclass <u>H03K</u>.

System aspects of modulation by digital signals of the frequency, phase or amplitude of a sinusoidal carrier, or carriers, for example in quadrature (I-Q) modulation systems, and the demodulation thereof, is covered in subclass H04L.

Analogue quadrature modulation used in the NTSC and PAL colour television systems (where the I and Q signals representing colour difference values are substantially continuously variable), and the demodulation of these signals, is covered in H04N.

The modulation of sinusoidal signals, for example in AM and FM broadcasting, is covered in sub class <u>H03C</u>.

References relevant to classification in this subclass

Masers, lasers	<u>H01S</u>
Circuits capable of acting both as modulator and demodulator;balanced modulators	<u>H03C</u>
Details applicable to both modulators and frequency changers	<u>H03C</u>

Demodulating pulses which have been modulated with a continuously variable signal	H03K 9/00
Transforming types of pulse modulation	H03K 11/00
Relay systems, e.g. repeater stations	<u>H04B 7/14</u>
Demodulators adapted for digitally modulated-carrier systems	H04L 27/00
Synchronous demodulators adapted for colour television	H04N 9/66
Phase locked loops; phase comparators therein	H03L 7/08 toH03L 7/097

Informative references

Attention is drawn to the following places, which may be of interest for search:

Coding, decoding or code conversion, in general	<u>H03M</u>
Further details of receivers within transmission systems	H04B 1/06
Further circuits for superheterodyne receivers within transmission systems	H04B 1/26

Glossary of terms

In this subclass/group, the following terms (or expressions) are used with the meaning indicated:

receiver	A receiver in which the local oscillator (LO) frequency is set to the same frequency as the received RF carrier frequency resulting in direct conversion of the received signal to a baseband (or zero IF) frequency for
	information recovery. In a near-zero IF receiver, the LO frequency is set

	very close to the carrier frequency of the RF signal.
Superheterodyne receiver	A receiver in which a received RF signal is converted to an intermediate frequency (IF) by at least one stage of frequency conversion (e.g. a 'mixer' stage which forms the product of the RF signal and a local oscillator signal)

Synonyms and Keywords

In patent documents the following abbreviations are often used:

Superhet	A superheterodyne receiver
Double (multiple) superhet	A double-conversion receiver using two intermediate frequencies, i.e. a superhet receiver in which a received RF signal passes through two (or more) successive stages of frequency conversion to different intermediate frequencies, one of which may be zero-IF or baseband.

H03D 1/00

Demodulation of amplitude-modulated oscillations (H03D5/00, H03D9/00, H03D11/00 take precedence)

Definition statement

This subclass/group covers:

Demodulation of signals being amplitude-modulated on a sinusoidal carrier.

References relevant to classification in this main group

Circuits for demodulating amplitude-modulated or angle-modulated oscillations at will	H03D 5/00
Demodulation or transference of modulation of modulated	H03D 9/00

electromagnetic waves	
Super-regenerative demodulator circuits	H03D 11/00
Amplitude demodulators adapted for digitally modulated-carrier systems, e.g. using on-off keying; Single sideband orvestigial sideband modulation	H04L 27/06

Informative references

Attention is drawn to the following places, which may be of interest for search:

Homodyne or synchrodyne single	H04B 1/302
sideband receivers	

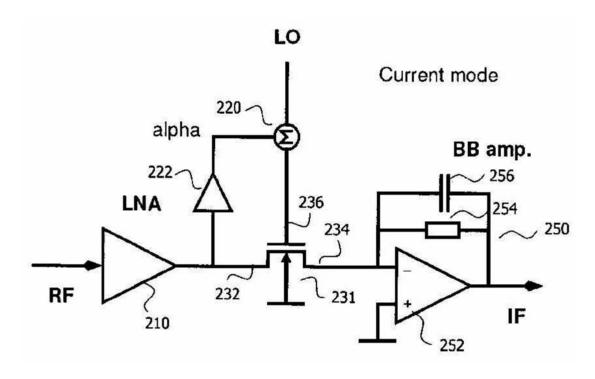
Special rules of classification within this main group

Documents should in general be classified in all subgroups which apply, e.g. a single sideband modulator may, in addition to <u>H03C 1/60</u>, be classified in <u>H03C 1/36</u>, if it is a transistor type.

Glossary of terms

In this subclass/group, the following terms (or expressions) are used with the meaning indicated:

IP2	Second Order Intercept Point
IM2	Second order intermodulation product


H03D 1/04

Modifications of demodulators to reduce interference by undesired signals

Definition statement

This subclass/group covers:

Example:

WO2011047703

IM2 reduction e.g. by summing RF signal to LO

H03D 1/08

by means of non-linear two-pole elements (H03D1/22, H03D1/26, H03D1/28 take precedence

References relevant to classification in this subgroup

This subclass/group does not cover:

Homodyne or synchrodyne circuits	H03D 1/22
Demodulation of amplitude-modulated oscillations by means of transit-time tubes	H03D 1/26
Demodulation of amplitude-modulated oscillations by deflecting an electron beam in a discharge tube	H03D 1/28

H03D 1/14

by means of non-linear elements having more than two poles

(H03D1/22, H03D1/26, H03D1/28 take precedence)

References relevant to classification in this subgroup

This subclass/group does not cover:

Homodyne or synchrodyne circuits	H03D 1/22
Demodulation of amplitude-modulated oscillations by means of transit-time tubes	H03D 1/26
Demodulation of amplitude-modulated oscillations by deflecting an electron beam in a discharge tube	H03D 1/28

H03D 1/18

of semiconductor devices

Definition statement

This subclass/group covers:

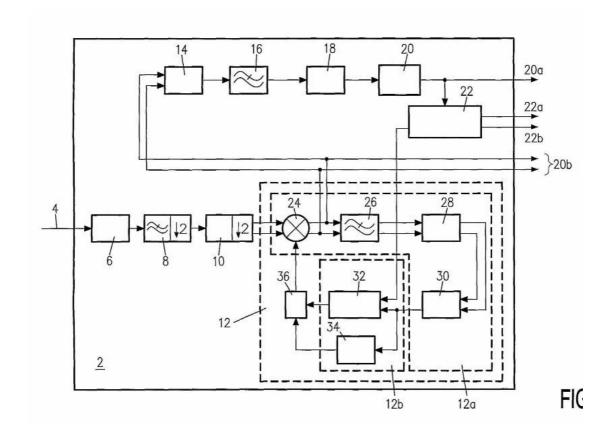
Example:

Output

US2009015295

Intput -

Amplitude demodulation using e.g. MOS transistors


H03D 1/22

Homodyne or synchrodyne circuits [N: (receiver circuits H04B1/30)]

Definition statement

This subclass/group covers:

Example:

EP2315350

Demodulation using two quadrature channels (20b) and a PLL (12) in a synchronous circuit. (Analog/digital converter 6, decimation filter 8, Hilbert filter 10; elements 14, 16, 18, 20, 22 are not relevant for the demodulation principle)

Informative references

Attention is drawn to the following places, which may be of interest for search:

Homodyne or synchrodyne receiver circuits	H04B 1/30
Circuits	

H03D 1/2227

[N: using switches for the decoding (diodes used as switches H03D1/2218)]

Informative references

Attention is drawn to the following places, which may be of interest for search:

Diodes used as switches	H03D 1/2218

H03D 1/2245

[N: using two quadrature channels (H03D1/2209 takes precedence)]

References relevant to classification in this subgroup

This subclass/group does not cover:

Decoders for simultaneous	H03D 1/2209
demodulation and decoding of signals	
composed of a sum-signal and a	
suppressed carrier, amplitude	
modulated by a difference signal	

H03D 1/2254

[N: and a phase locked loop]

Informative references

Attention is drawn to the following places, which may be of interest for search:

Mean frequency regulation of modulators using a phase locked loop	H03C 3/0908

H03D 1/2272

[N: using FET`s (H03D1/2209, H03D1/2245 and H03D1/2281 take precedence)]

References relevant to classification in this subgroup

Decoders for simultaneous demodulation and decoding of signals composed of a sum-signal and a suppressed carrier, amplitude modulated by a difference signal	H03D 1/2209
Using two quadrature channels	H03D 1/2245
Using a phase locked loop	H03D 1/2281

H03D 1/24

for demodulation of signals wherein one sideband or the carrier has been wholly or partially suppressed [N: (receiver circuits H04B1/302)]

Informative references

Attention is drawn to the following places, which may be of interest for search:

Receiver circuits	H04B 1/302

H03D 1/28

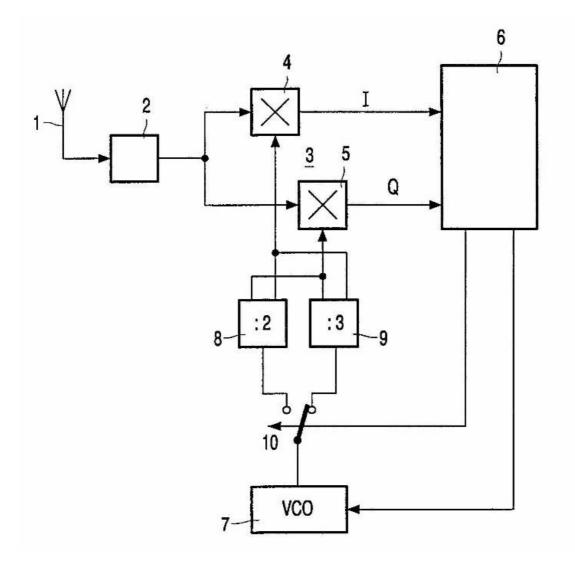
by deflecting an electron beam in a discharge tube (H03D1/26 takes precedence)

References relevant to classification in this subgroup

This subclass/group does not cover:

Demodulation of	H03D 1/26
amplitude-modulated oscillations by	
means of transit-time tubes	

H03D 3/00


Demodulation of angle-,[N: frequency-or phase-] modulated oscillations (H03D5/00, H03D9/00, H03D11/00 take precedence)

Definition statement

This subclass/group covers:

Demodulation of angle-, frequency- or phase- modulated oscillations.

Example:

EP1163719

FM demodulation by conversion into two quadrature related signals

References relevant to classification in this main group

Circuits for demodulating amplitude-modulated or angle-modulated oscillations at will	H03D 5/00
Demodulation or transference of modulation of modulated electromagnetic waves	H03D 9/00
Super-regenerative demodulator circuits	H03D 11/00
Frequency demodulators adapted for	<u>H04L 27/14</u>

digitally modulated-carrier systems, i.e. using frequency-shift keying	
Phase demodulators adapted for digitally modulated-carrier systems, i.e. using phase-shift keying	H04L 27/22

Informative references

Attention is drawn to the following places, which may be of interest for search:

Arrangements for measuring frequencies; Arrangements for analyzing frequency spectra	G01R 23/00
Automatic bandwidth control	<u>H03G</u>
Muting in frequency-modulation receivers	H03G 3/28
Arrangements for limiting amplitude	H03G 11/00
Automatic frequency regulation in receivers	<u>H03J</u>
Automatic frequency control	<u>H03L</u> , <u>H03J 7/02</u>
Phase-locked loops in general	H03L 7/00
Phase-locked loops including two phase detectors in general	H03L 7/87
Phase-locked loops using a controlled phase shifter in general	H03L 7/081
Multiple phase locked loops in general	H03L 7/07, H03L 7/22

Glossary of terms

In this subclass/group, the following terms (or expressions) are used with the meaning indicated:

I/Q	in-phase, quadrature
	12

H03D 3/001

[N: Details of arrangements applicable to more than one type of frequency demodulator (H03D3/28 takes precedence)]

References relevant to classification in this subgroup

This subclass/group does not cover:

Modifications of demodulators to	H03D 3/28
reduce effects of temperature	
variations	

H03D 3/002

[N: Modifications of demodulators to reduce interference by undesired signals (H03D3/248 takes precedence)]

References relevant to classification in this subgroup

This subclass/group does not cover:

Angle demodulation by detecting phase difference between two signals obtained from input signal including locked-in oscillation circuits to reject or remove amplitude variations with means for eliminating interfering signals, e.g. by multiple phase locked loops	H03D 3/248

H03D 3/003

[N: Arrangements for reducing frequency deviation, e.g. by negative frequency feedback (combined with a phase locked loop demodulator H03D3/242; changing frequency deviation for modulators H03C3/06)]

Informative references

Attention is drawn to the following places, which may be of interest for search:

Changing frequency deviation for	H03C 3/06
modulators	
	13

Angle demodulation by detecting phase difference between two signals obtained from input signal including locked-in oscillation circuits to reject or remove amplitude variations combined with a phase locked loop demodulator	H03D 3/242

H03D 3/005

[N: wherein the demodulated signal is used for controlling a bandpass filter (automatic bandwidth control H03G; automatic frequency control H03J7/02)]

Informative references

Attention is drawn to the following places, which may be of interest for search:

Automatic bandwidth control	<u>H03G</u>
Automatic frequency control	H03J 7/02

H03D 3/006

[N: by sampling the oscillations and further processing the samples, e.g. by computing techniques (H03D3/007 takes precedence)]

References relevant to classification in this subgroup

This subclass/group does not cover:

Angle demodulation by converting the	H03D 3/007
oscillations into two quadrature	
related signals	

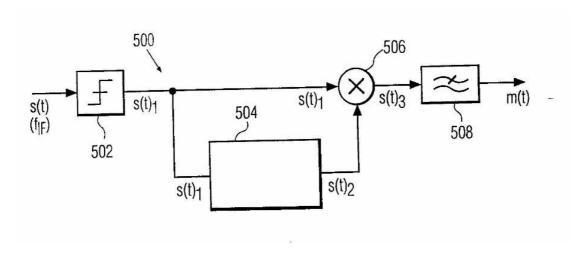
H03D 3/007

[N: by converting the oscillations into two quadrature related signals (H03D3/245 takes precedence)]

References relevant to classification in this subgroup

This subclass/group does not cover:

Angle demodulation by detecting phase difference between two signals obtained from input signal including ocked-in oscillation circuits to reject or remove amplitude variations using at least two phase detectors in the poop	H03D 3/245
---	------------


H03D 3/02

by detecting phase difference between two signals obtained from input signal (H03D3/28 to H03D3/32 take precedence; [N: muting in frequency-modulation receivers H03G3/28]; limiting arrangements H03G11/00)

Definition statement

This subclass/group covers:

Example:

EP1040565

Phase demodulation by mixing of two signals obtained from input signal. A phase shifter network (504) provides a phase shift of 90° at the center frequency.

References relevant to classification in this subgroup

Modifications of demodulators to	H03D 3/28
reduce effects of temperature	
variations	
	15

Angle demodulation by means of transit-time tubes	H03D 3/30
Angle demodulation by deflecting an electron beam in a discharge tube	H03D 3/32

Informative references

Attention is drawn to the following places, which may be of interest for search:

Muting in frequency-modulation receivers	H03G 3/28
Limiting arrangements	H03G 11/00

H03D 3/04

by counting or integrating cycles of oscillations [N: arrangements for measuring frequencies G01R23/10]

Informative references

Attention is drawn to the following places, which may be of interest for search:

Arrangements for measuring frequencies	G01R 23/10
·	

H03D 3/245

[N: using at least two phase detectors in the loop (H03D3/244 takes precedence; in general H03L7/087)]

References relevant to classification in this subgroup

This subclass/group does not cover:

Angle demodulation by detecting phase difference between two signals obtained from input signal including locked-in oscillation circuits to reject or remove amplitude variations combined with means for obtaining automatic gain control	H03D 3/244
--	------------

16

Informative references

Attention is drawn to the following places, which may be of interest for search:

PLLs using at least two phase detectors in the loop in general	H03L 7/087

H03D 3/247

[N: using a controlled phase shifter (in general H03L7/081)]

Informative references

Attention is drawn to the following places, which may be of interest for search:

PLLs provided with an additional	H03L 7/081
controlled phase shifter in general	

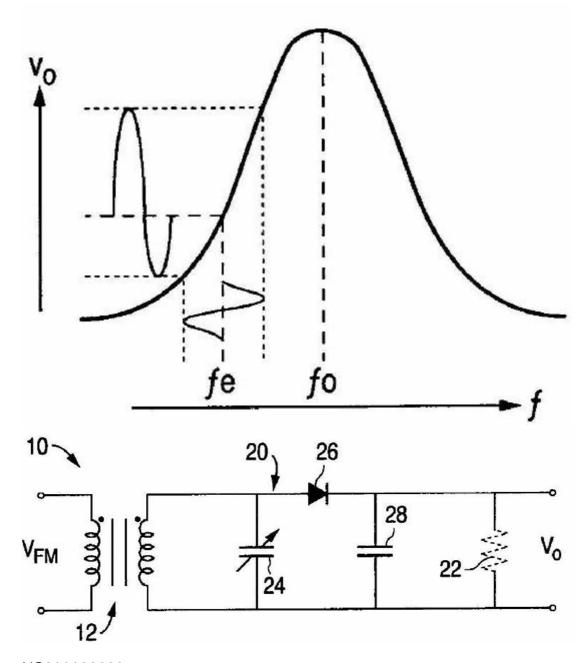
H03D 3/248

[N: with means for eliminating interfering signals, e.g. by multiple phase locked loops (multiple loops in general H03L7/07, H03L7/22)]

Informative references

Attention is drawn to the following places, which may be of interest for search:

PLLs with multiple loops in general	H03L 7/07, H03L 7/22


H03D 3/26

by means of sloping amplitude/frequency characteristic of tuned or reactive circuit (H03D3/28 to H03D3/32 takes precedence)

Definition statement

This subclass/group covers:

Example:

US2006226897

FM demodulation by is conversion to an amplitude modulated output signal (VO)

References relevant to classification in this subgroup

Modifications of demodulators to reduce effects of temperature variations	H03D 3/28
Angle demodulation by means of transit-time tubes	H03D 3/30 18

Angle demodulation by deflecting an electron beam in a discharge tube	H03D 3/32

H03D 3/28

Modifications of demodulators to reduce effects of temperature variations ([N: automatic frequency regulation in receivers H03J]; automatic frequency control H03L)

Informative references

Attention is drawn to the following places, which may be of interest for search:

Automatic frequency regulation in receivers	<u>H03J</u>
Automatic frequency control	<u>H03L</u>

H03D 3/32

by deflecting an electron beam in a discharge tube (H03D3/30 takes precedence)

References relevant to classification in this subgroup

This subclass/group does not cover:

Demodulation of angle-modulated	H03D 3/30
oscillations by means of transit-time	
tubes	

H03D 3/34

by means of electromechanical devices (H03D3/16 takes precedence)

Definition statement

This subclass/group covers:

FM Demodulation by means of electromechanical devices such as FBARs or piezoelectric resonators.

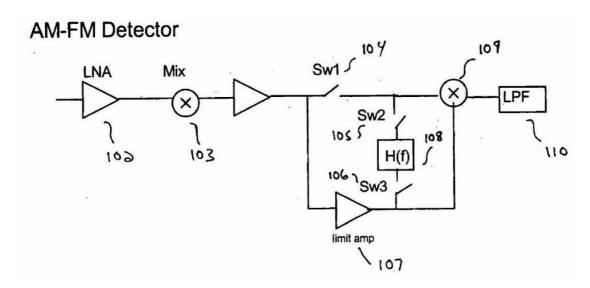
References relevant to classification in this subgroup

This subclass/group does not cover:

oscillations by detecting phase difference between two signals	H03D 3/16
obtained from input signal by combining signals additively or in product demodulators by means of	
electromechanical resonators	

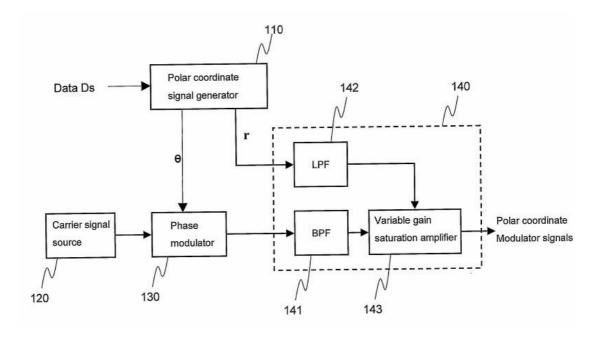
H03D 5/00

Circuits for demodulating amplitude-modulated or angle-modulated oscillations at will (H03D9/00, H03D11/00 take precedence)


Definition statement

This subclass/group covers:

Circuits selectable between FM and AM demodulation


Polar or phase-amplitude demodulation

Example:

US2007178866

Demodulator switchable between AM demodulation

WO2007005139

Phase-amplitude-phase demodulation

References relevant to classification in this main group

This subclass/group does not cover:

Demodulation or transference of modulation of modulatedelectromagnetic waves	H03D 9/00
Super-regenerative demodulator circuits	H03D 11/00
Demodulators adapted for digitally modulated-carrier systems characterised by combinations of amplitude and angle modulation, e.g. quadrature-amplitude modulated carrier systems	H04L 27/38

Informative references

Attention is drawn to the following places, which may be of interest for search:

Polar or phase-amplitude modulation	H03C 5/00

H03D 7/00

Transference of modulation from one carrier to another, e.g. frequency-changing (H03D9/00, H03D11/00 take precedence; dielectric amplifiers, magnetic amplifiers, parametric amplifiers used as a frequency-changers H03F)

Definition statement

This subclass/group covers:

Mixer circuits in general, applicable to both transmitters or receivers.

References relevant to classification in this main group

This subclass/group does not cover:

Demodulation or transference of modulation of modulated electromagnetic waves	H03D 9/00
Super-regenerative demodulator circuits	H03D 11/00
Dielectric amplifiers, magnetic amplifiers, parametric amplifiers used as a frequency-changers H03F	<u>H03F</u>

Informative references

Attention is drawn to the following places, which may be of interest for search:

Arrangements for performing	<u>G06G 7/16</u>
computing operations, multiplication	
or division	

H03D 7/02

by means of diodes (H03D7/14 to H03D7/22 take precedence)

References relevant to classification in this subgroup

Balanced arrangements	H03D 7/14

Multiple-frequency-changing	H03D 7/16
Modifications of frequency-changers for eliminating image frequencies	H03D 7/18
By means of transit-time tubes	H03D 7/20
By deflecting an electron beam in a discharge tube	H03D 7/22

H03D 7/06

by means of discharge tubes having more than two electrodes (H03D7/14 to H03D7/22 take precedence)

References relevant to classification in this group

This subclass/group does not cover:

Balanced arrangements	H03D 7/14
Multiple-frequency-changing	H03D 7/16
Modifications of frequency-changers for eliminating image frequencies	H03D 7/18
By means of transit-time tubes	H03D 7/20
By deflecting an electron beam in a discharge tube	H03D 7/22

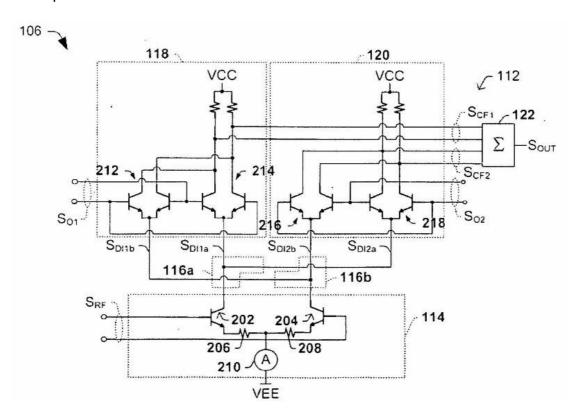
H03D 7/12

by means of semiconductor devices having more than two electrodes (H03D7/14 to H03D7/22 take precedence)

References relevant to classification in this subgroup

Balanced arrangements	H03D 7/14
Multiple-frequency-changing	<u>H03D 7/16</u>

Modifications of frequency-changers for eliminating image frequencies	H03D 7/18
By means of transit-time tubes	H03D 7/20
By deflecting an electron beam in a discharge tube	H03D 7/22


H03D 7/14

Balanced arrangements

Definition statement

This subclass/group covers:

Example:

DE102010002575

Balanced active mixer arrangement (Gilbert type)

H03D 7/1425

[N: using bipolar transistors (H03D7/14E takes precedence)]

References relevant to classification in this subgroup

This subclass/group does not cover:

Balanced arrangements using a	H03D 7/14E
combination of bipolar transistors and	
field-effect transistors	

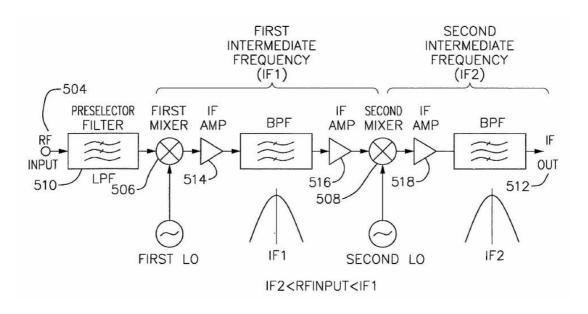
H03D 7/14D

[N: using field-effect transistors (H03D7/14E takes precedence)]

References relevant to classification in this subgroup

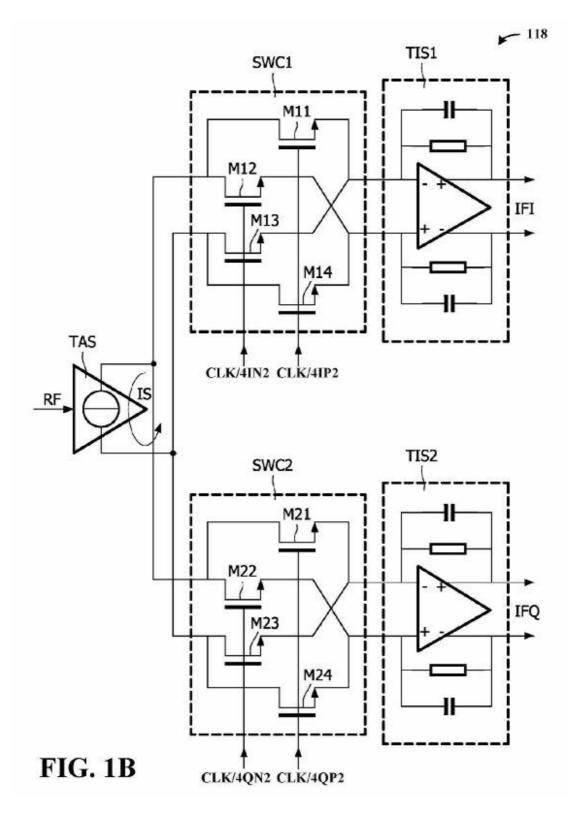
This subclass/group does not cover:

Balanced arrangements using a	H03D 7/14E
combination of bipolar transistors and	
field-effect transistors	


H03D 7/16

Multiple-frequency-changing

Definition statement


This subclass/group covers:

Examples:

US2001007151

Dual conversion receiver using two frequency changers being connected in cascade

EP2363952

Balanced passive mixer arrangement with two frequency changers located in different paths

References relevant to classification in this subgroup

This subclass/group does not cover:

Circuits for superheterodyne receivers on system level	H04B 1/26

Glossary of terms

In this subclass/group, the following terms (or expressions) are used with the meaning indicated:

Q/I	quadrature / in-phase

H03D 7/165

[N: at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature (combined with amplitude demodulation H03D1/2245, combined with angle demodulation H03D3/007; N-path filters H03H19/002)]

Informative references

Attention is drawn to the following places, which may be of interest for search:

Homodyne or synchrodyne circuits for amplitude demodulation using two quadrature channels	H03D 1/2245
Angle demodulation by converting the oscillations into two quadrature related signals	H03D 3/007
N-path filters	H03H 19/002

H03D 7/18

Modifications of frequency-changers for eliminating image frequencies [N: (H03D7/16 takes precedence)

References relevant to classification in this subgroup

This subclass/group does not cover:

Multiple-frequency-changing	H03D 7/16

H03D 7/22

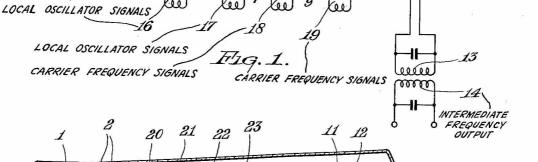
by deflecting an electron beam in a discharge tube (H03D7/20 takes precedence)

Definition statement

This subclass/group covers:

Example:

ELECTRON EMITTING


Dec. 23, 1952

G. DIEMER ET AL

MIXING OR DETECTOR CIRCUIT

Filed April 29, 1949

2,623,167

US2623167:

Mixing of a signal ("carrier") frequency with a local oscillator frequency to obtain intermediate frequency by means of a discharge tube.

References relevant to classification in this subgroup

This subclass/group does not cover:

Transference of modulation by means	H03D 7/20
of transit-time tubes	

H03D 9/00

Demodulation or transference of modulation of modulated electromagnetic waves (demodulating light, transferring modulation in light waves G02F2/00)

Definition statement

This subclass/group covers:

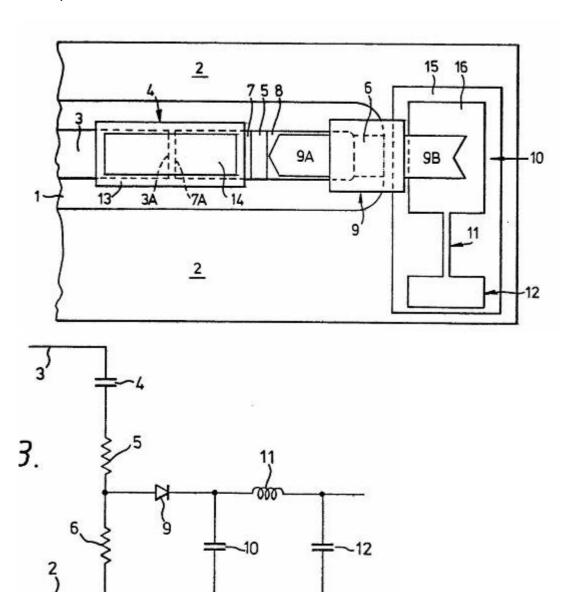
- Demodulation using distributed inductance and capacitance <u>H03D 9/02</u>
- Transference of modulation using distributed inductance and capacitance <u>H03D 9/06</u>

References relevant to classification in this subgroup

This subclass/group does not cover:

Devices or arrangements for	G02F 2/00
demodulating light transferring the	
modulation of modulated light or for	
changing the frequency of light	

Further classification information:


H03D 9/02

Demodulation using distributed inductance and capacitance, e.g. in feeder lines

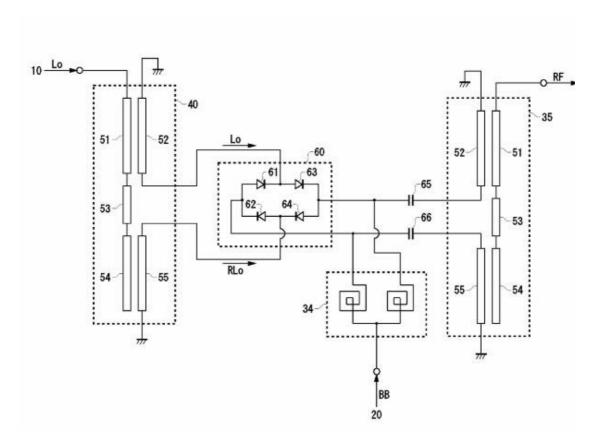
Definition statement

This subclass/group covers:

Example:

GB2128827

Demodulation using a microwave detector including a transmission line (11) as distributed inductance


H03D 9/06

Transference of modulation using distributed inductance and capacitance

Definition statement

This subclass/group covers:

Example:

WO2009054095

Transference of modulation using a mixer based on diodes and microstrip lines (51, 54) as distributed inductances

H03D 9/0616

[N: mounted in a hollow waveguide (H03D9/0641 takes precedence)]

References relevant to classification in this subgroup

This subclass/group does not cover:

Diodes mounted on a stripline circuit located in a hollow waveguide	H03D 9/0641

H03D 9/0666

[N: using bipolar transistors (H03D9/0683 takes precedence)]

References relevant to classification in this subgroup

Using a combination of bipolar transistors and field effect transistors	H03D 9/0683

H03D 9/0675

[N: using field effect transistors (H03D9/0683 takes precedence)]

References relevant to classification in this subgroup

This subclass/group does not cover:

Using a combination of bipolar	H03D 9/0683
transistors and field effect transistors	

H03D 11/00

Super-regenerative demodulator circuits [N: applications in responders G01S]

Definition statement

This subclass/group covers:

Super-regenerative demodulator circuits for amplitude modulation <u>H03D 11/02</u>

Super-regenerative demodulator circuits for angle modulation <u>H03D 11/06</u>

Informative references

Attention is drawn to the following places, which may be of interest for search:

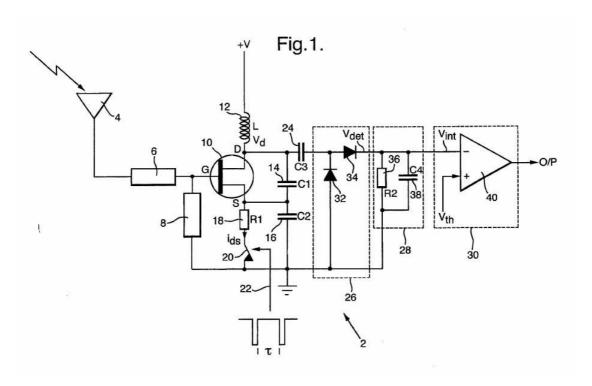
Applications in responders	<u>G01S</u>

Glossary of terms

In this subclass/group, the following terms (or expressions) are used with the meaning indicated:

Regenerative receiver; Super-regenerative receiver	A regenerative receiver is a receiver that uses feedback around an active device in a bandpass circuit, causing it to operate on the verge of oscillation. The active device may
	then provide high amplification of an

RF signal in a receiver circuit that needs few components. In a super-regenerative receiver, the oscillation grows at the desired RF frequency and a lower frequency oscillation (within the same stage or from a second oscillator stage) periodically interrupts or "quenches" the main RF oscillation. This may occur at an ultrasonic rate.


H03D 11/04

Super-regenerative demodulator circuits by means of semiconductor devices having more than two electrodes

Definition statement

This subclass/group covers:

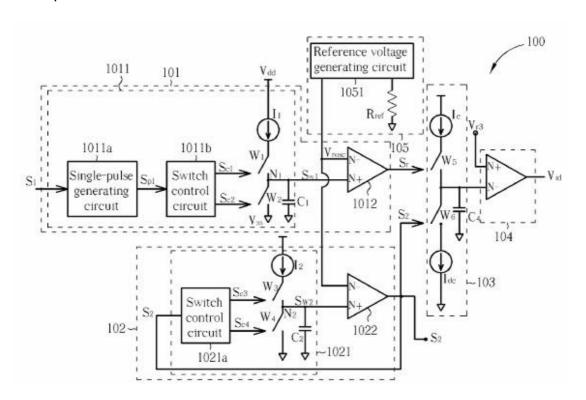
Example:

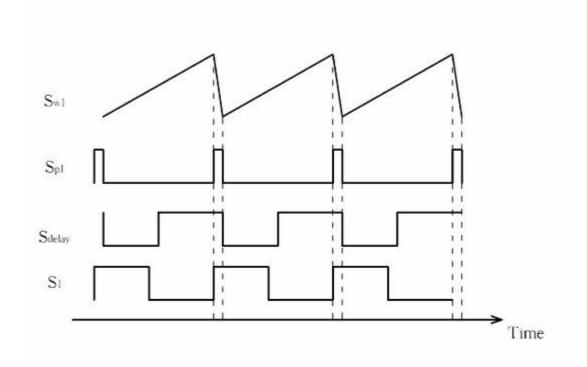
GB2343571

Super regenerative demodulator

H03D 13/00

Circuits for comparing the phase or frequency of two mutually-independent oscillations [N: (measuring phase G01R25/00; phase-discriminators with yes/no output G01R25/005)]


Definition statement


This subclass/group covers:

Phase or frequency comparators

- in which a pulse counter is used followed by a conversion into an analog signal <u>H03D 13/001</u>
- in which both oscillations are converted by logic means into pulses which
- are applied to filtering or integrating means H03D 13/003
- in which one of the oscillations is, or is converted into, a signal having a special waveform, e.g. triangular <u>H03D 13/005</u>
- by analog multiplication of the oscillations or by performing a similar analog operation on the oscillations <u>H03D 13/007</u>

Example:

US2008122491

Frequency comparator in which one signal (S1) is converted into a triangular waveform (Sw1) and compared with an internal oscillation (S2)

References relevant to classification in this main group

This subclass/group does not cover:

Arrangements for measuring phase angle between a voltage and a current or between voltages or currents	G01R 25/00
Phase-discriminators with yes/no output	G01R 25/005

Informative references

Attention is drawn to the following places, which may be of interest for search:

Phase locked loops; frequency or	H03L 7/08-H03L 7/097
phase detectors or comparators	
therein	

H03D 99/00

Subject matter not provided for in other groups of this subclass

Definition statement

This subclass/group covers:

Demodulation or transference of signals modulated on a sinusoidal carrier or on electromagnetic waves that does not comply with other groups of this subclass.

H03D 99/00

References relevant to classification in this main group

<u> </u>	
Demodulation of amplitude-modulated oscillations	H03D 1/00
Demodulation of angle-, frequency-or phase- modulated oscillations	H03D 3/00
Circuits for demodulating amplitude-modulated or angle-modulated oscillations at will	H03D 5/00
Transference of modulation from one carrier to another, e.g. frequency-changing	H03D 7/00
Demodulation or transference of modulation of modulated electromagnetic waves	H03D 9/00
Super-regenerative demodulator circuits by means of semiconductor devices having more than two electrodes	H03D 11/00
Circuits for comparing the phase or frequency of two mutually-independent oscillations	H03D 13/00

Details of demodulators and demodulation methods applicable to all groups in this subclass

Definition statement

This subclass/group covers:

Particular circuit elements of demodulators H03D 200/01

Functional aspects of demodulators <u>H03D 200/02</u>

H03D 2200/0082

Quadrature arrangements

References relevant to classification in this group

Homodyne or synchrodyne circuits for amplitude demodulation using quadrature channels	H03D 1/2245
Angle demodulation by converting the oscillations into two quadrature related signals	H03D 3/007
Multiple frequency changing with at least two frequency changers being located in different paths	H03D 7/165