
This paper is included in the Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the
2017 USENIX Annual Technical Conference

is sponsored by USENIX.

Protego: Cloud-Scale Multitenant IPsec Gateway
Jeongseok Son, KAIST, Microsoft Research; Yongqiang Xiong, Microsoft Research;

Kun Tan, Huawei; Paul Wang and Ze Gan, Microsoft Research; Sue Moon, KAIST

https://www.usenix.org/conference/atc17/technical-sessions/presentation/son

Protego: Cloud-Scale Multitenant IPsec Gateway

Jeongseok Son†?, Yongqiang Xiong?, Kun Tan‡, Paul Wang?, Ze Gan?, Sue Moon†

?Microsoft Research, †KAIST, ‡Huawei

Abstract
Virtual cloud network services let users have their own
private networks in the public cloud. IPsec gateways are
growing in importance accordingly as they provide VPN
connections for customers to remotely access these pri-
vate networks. Major cloud providers offer IPsec gate-
way functions to tenants using virtual machines (VMs)
running a software IPsec gateway inside. However, ded-
icating individual IPsec gateway VMs to each tenant re-
sults in significant resource waste due to the strong iso-
lation mechanism of VMs.

In this paper, we design Protego, a distributed IPsec
gateway service designed for multitenancy. By sepa-
rating the control plane and the data plane of an IPsec
gateway, Protego achieves high availability with active
redundancy. Furthermore, Protego elastically scales in
and out by seamlessly migrating IPsec tunnels between
the data nodes without compromising their throughput.
Our evaluation and simulation based on production data
show that Protego together with a simple resource provi-
sioning algorithm saves more than 80% of the resources
compared with allocating independent VMs.

1 Introduction
Major cloud providers offer virtual networks as a ser-
vice to customers so that they can setup their own private
network topology in the cloud [1, 8, 4]. Tenants create
virtual networks and connect applications running inside
virtual machines (VMs) to operate their own distributed
services. The ease of management, flexibility and elas-
ticity of a virtual network has driven enterprise customers
to extend their existing networks using cloud service in
lieu of physical network [29].

To seamlessly incorporate remote virtual networks
into existing on-premises networks, tenants establish
site-to-site VPN connections between the gateways. For
site-to-site VPN connections, IPsec is typically used to
have secure communication between on-premises and
cloud networks. Hence, cloud providers provide tenants
with IPsec gateways in addition to the virtual network
service. IPsec gateways in on-premise networks peer
with them to initiate IPsec tunnels [9].

It is thus crucial for cloud providers to have a flexible
and scalable way to provide IPsec gateway functional-
ity to tenants. The current state of the art is shipping

software IPsec gateway to tenants using VMs following
the trend of Network Function Virtualization (NFV) [29].
Once a tenant makes a request to create an IPsec gate-
way, an IPsec gateway VM is dedicated to the tenant. It
is a natural approach as VMs are basic resource alloca-
tion blocks in cloud environments and provide inherent
isolation mechanism.

However, dedicating IPsec gateway VMs to tenants
results in significant waste of resource for two reasons.
First, VMs exclusively occupy a fixed amount of re-
source. Hence, cloud providers should over-provision
the VMs for peak VPN traffic demand. If a tenant does
not utilize all the allocated resource of VMs, the unused
portion of it is just wasted. Second, each independent
gateway VM needs a high availability (HA) setup, which
requires additional redundancy. Since VM startup takes
several minutes in the cloud due to resource allocation
and data copy [38], a passive standby node is typically
introduced for fast failover [6]. If every IPsec gateway
requires HA, they capture twice as much resource as they
actually need.

These limitations have led us to devise a new IPsec
gateway architecture to serve multiple tenants with
shared resources. To this end, we propose Protego, a
cloud-scale software IPsec gateway. We design Protego
with the following properties: (1) multitenancy to serve
multiple tenants without violating the bandwidth require-
ment of each tenant, (2) elasticity to seamlessly scale in
and out according to the aggregated traffic demand across
tenants, and (3) high availability to provide reliable ser-
vice to users without reserving a passive standby for ev-
ery active VM.

To achieve both high availability and elasticity, Pro-
tego separates the control plane from the data plane. For
high availability, the relatively long-lived control plane
states are saved to a centralized control node. On the
other hand, the data plane state is costly to preserve in
the same way since it changes every packet sent and re-
ceived. Hence, Protego saves it locally in data nodes and
quickly reconstruct it via the alive control node in case
of failure. Protego migrates tunnels between the data
nodes without tearing down an old tunnel through rekey-
ing process. This enables Protego to elastically allocate
and de-allocate VMs according to varying IPsec traffic
of tenants.

USENIX Association 2017 USENIX Annual Technical Conference 473

Our evaluation using the prototype implementation
presents that Protego can migrate IPsec tunnels even
without a transient bandwidth degradation. Based on this
seamless tunnel migration, we design a provisioning al-
gorithm to autonomously adjust the amount of resource
it subscribes. We show that it is possible to save more
than 80% of the resources compared with allocating in-
dependent VMs to tenants while meeting the bandwidth
guarantee to tenants.

To summarize, we make the following contributions:
(1) We present a new architecture of distributed IPsec
gateway for the cloud which enables high availability
with active redundancy. (2) We devise an IPsec tunnel
migration scheme that does not compromise the band-
width of a tunnel during the migration for elastic re-
source provisioning. (3) We demonstrate Protego with
a simple provisioning algorithm indeed saves significant
resources through our evaluation and simulation based
on production data.

2 Background and Motivation
We first describe why and how IPsec gateways are de-
ployed in cloud environments. Then we identify the ne-
cessity of cloud-scale IPsec gateway by showing the re-
source usage of the IPsec gateways deployed in our data
centers. We finally enumerate the requirements of an
IPsec gateway for the cloud and challenges of accom-
plishing it.

2.1 Virtual network and site-to-site VPN
The majority of users who purchase the virtual cloud net-
works are enterprise customers [29]. They use the virtual
network services to extend their on-premises network
into the cloud. Since virtual networks provide customers
with private IP address space, they can seamlessly move
their corporate network to the cloud to take advantage of
the flexibility of cloud environments.

To connect a virtual network in the cloud to an existing
on-premises network, site-to-site VPN is typically used.
Site-to-site VPN remotely connects the entire networks
from one another over the public Internet. The VPN
connection is established between two VPN gateways.
Then they encapsulate outbound traffic and decapsulate
inbound traffic rather than individual hosts do so.

2.2 IPsec gateway
IPsec is a de-facto standard for site-to-site VPN connec-
tions. IPsec ensures secure communication between the
peers by authenticating and encrypting IP packets. For
site-to-site VPN, an IPsec gateway encapsulates the en-
tire packet to create a virtual hop, an IPsec tunnel, be-
tween the peer gateways.

IPsec primarily consists of two protocols: Internet
Key Exchange (IKE) and Encapsulating Security Pay-

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

C
D

F

Normalized peak IPsec throughput

Figure 1: CDF of the peak IPsec throughput of data cen-
ters

load (ESP)1. The main purpose of IKE is to authenticate
the peer and setup the shared attributes between the peers
for secure communication. A set of those attributes is
called a security association (SA). IKE protocol is used
to settle those SAs. ESP protocol encrypts packets to
provide confidentiality, integrity and data origin authen-
ticity using negotiated symmetric keys.

When an IPsec tunnel is established, initial message
exchanges first generate an IKE SA for the peers, which
contains a shared key and a cipher suite used to encrypt
bidirectional IKE traffic. The shared attributes for ESP
encryption and decryption, called CHILD SA, are ne-
gotiated securely via further IKE message exchanges.
CHILD SAs are unidirectional so the inbound and out-
bound ESP traffic are encrypted with a different SA.

2.3 Motivation: Inefficient resource usage
of IPsec gateway VMs

A prevalent way for cloud providers to deploy IPsec gate-
ways is using VMs running the software implementation
of it inside [29]. VMs let them make the best use of
their existing commodity server resources and VM man-
agement system without installing additional hardware
middleboxes. VMs also provide isolated performance for
each tenant and can easily scale by dynamically creating
or destroying instances.

However, we found that VMs allocated per tunnel un-
derutilizes resources significantly for the following two
reasons.

Exclusive resource allocation. Once a VM is allocated
to a tenant, the resources of the VM becomes exclusively
dedicated to the tenant. Thus, even when a tenant does
not fully utilize the capacity of an IPsec gateway, the re-
maining resources of it cannot be used for serving other
tenants’ demand.

Figure 1 shows the cumulative distribution of the peak
aggregated throughput of all IPsec gateways in each of
our data centers. The actual bandwidth values are nor-
malized by the maximum bandwidth that a single IPsec
gateway supports. In each data center, there are as many

1Authentication Header (AH) is an alternative protocol, but ESP is
dominantly used for VPN because only ESP provides confidentiality.

474 2017 USENIX Annual Technical Conference USENIX Association

IPsec gateway VMs as there are IPsec tunnels established
by tenants. However, the daily peak IPsec bandwidth is
less than a single gateway VM capacity in approximately
90% of the data centers. It indicates that most IPsec gate-
ways handle far less traffic than its maximum capacity
most of the time.

Even though IPsec gateway VMs have considerable
amount of idle resources, there is no easy way to take
away the unused resources of VMs for other use. Over-
subscribing physical machines with VM consolidation
and live migration has been studied as a solution [47,
16, 51]. However, live migration consumes high net-
work bandwidth and easily takes tens of seconds since
the whole memory of a VM is iteratively transferred via
network [19]. These drawbacks prevent cloud providers
from using live migration frequently for flexible resource
reallocation.

Passive standby for high availability. IPsec gateways
should be highly available since the failure directly re-
sults in the downtime of the entire virtual network ser-
vice. High availability (HA) is generally achieved by us-
ing more than one nodes to form a cluster. When one
node fails, another node in the cluster quickly takes the
role of the failed one. Existing hardware and software
IPsec gateways form an active/passive cluster, or 1 + 1
redundancy for HA [12, 2]. The cluster synchronizes the
IKE state of an active node with a passive node so that
the passive node can keep doing stateful processing after
failover.

Although adding a passive standby is a straightforward
way to achieve HA, passive backups do not participate
in processing IPsec traffic. The resources allocated to
passive backups are thus just wasted for HA. In the worse
case, 50% of resources is devoted for high availability if
every gateway VM has a redundant passive standby.

2.4 Requirements
To overcome the limitations brought up above, Protego
should have the following features:

Elastic and scalable capacity adjustment. Protego
should be able to save resources without compromising
the quality of service of IPsec traffic. It should adjust
its capacity by dynamically capturing and releasing re-
sources according to the varying demand of tenants.

High availability with active redundancy. High avail-
ability is an essential characteristic to meet service level
agreement (SLA). For better resource utilization, Protego
should achieve HA with active nodes which process the
online traffic rather than with passive standby nodes.

Tunnel performance isolation and guarantee. To
make tenants share a single IPsec gateway service, Pro-
tego needs to isolate the performance of each IPsec tun-
nel of tenants so that aggressive users cannot affect the

other ones.

2.5 Challenges
A straightforward approach for elasticity and active re-
dundancy is to form a cluster of nodes. Instead of dedi-
cating individual gateway to a tenant, a cloud provider
may install the cluster which consists of software or
hardware IPsec gateways behind a load balancer and let
it process IPsec traffic of multiple tenants. However, the
stateful processing of IPsec gateways raises challenges
of meeting the requirements in § 2.4 using existing IPsec
gateways.
Migrating tunnels without throughput degradation.
To elastically adjust the cluster size, a cloud provider
should have a means to move the workload between the
gateways. A strawman approach is to simply tearing
down an existing IPsec tunnel and establish a new one
in another gateway. However, this approach leads to sig-
nificant throughput degradation since the gateways can-
not process traffic during the tunnel setup, which requires
several sequential round trips of packets. To avoid or al-
leviate this issue, we should determine how to migrate
or share state associated with a tunnel between gateways
and when to redirect the packets belong to a tunnel.
Deciding on the right amount of resources to reserve.
We need to carefully decide on the amount of resources
to reserve due to the latency of spinning up new VMs,
which takes several minutes in the major cloud ser-
vices [38]. Protego would easily violate the performance
guarantee until new VMs are added, if it reserves too lit-
tle resources to save them. On the other hand, it would
waste resources if it subscribes too much. Therefore, we
should devise a way to determine the proper amount of
resources to subscribe in order to save resources while
meeting the bandwidth requirement of tenants.
Optimizing the packet processing performance.
IPsec packet processing is computationally intensive
since it involves encryption and decryption of the pay-
load. To maximize the throughput of Protego, it is cru-
cial to parallelize packet processing using multiple cores.
However, IPsec gateways maintain ESP packet counters
to include a sequence number in ESP packets for the anti-
replay feature [33]. In order to ensure that the sequence
number is not reused, a simple method is to make packet
processing threads share a global packet counter for each
tunnel and update it every packet sent. This approach re-
quires locking, however, which decreases parallelism in
packet processing significantly. Hence, it is unsuitable to
achieve multiple Gbps per-tunnel throughput we aim to
offer.

3 Protego Core Ideas
Protego meets the requirements of a cloud-scale IPsec
gateway described in the previous section based on the

USENIX Association 2017 USENIX Annual Technical Conference 475

following key ideas.

3.1 Separation of control and data planes
In traditional software IPsec gateway implementations,
IKE, ESP modules and pertinent state are consolidated
into a single node. Each member of IPsec gateway clus-
ter thus has separate IKE module and state.

We propose a separate control node which incorpo-
rates the signaling plane of gateways into a single node.
The control node deals with traffic steering and dynamic
provisioning of the data plane. The data plane of Pro-
tego consists of a cluster of VMs and focus on packet
encryption and decryption process. By this separation,
each plane manages its state to deal with different access
patterns and focuses on ensuring different properties.

Keeping control plane state in a central node. Re-
covering IKE state is costly since re-negotiating an IKE
SA takes several sequential round trip of messages [32].
On the other hand, it is updated infrequently, every tens
of seconds or every couple of minutes, when it receives
heartbeat messages from a peer gateway.

Protego saves control plane state to a centralized con-
trol node exploiting this relaxed update frequency. By
saving the state to a centralized store every time it is up-
dated, Protego achieves tunnel migration without stop-
ping processing traffic.

Quick recovery of data plane state. ESP data nodes
handle data packets to encrypt and decrypt them. An ESP
packet counter is updated per-packet basis, which makes
it infeasible to store ESP state separately as Protego does
for IKE state. However, ESP SA can be initiated in 1
RTT if the IKE SA is alive. Hence, The Protego control
plane just re-negotiates the ESP state during failover.

3.2 Seamless tunnel migration by rekeying
The key enabler of elasticity is seamless migration of
workload. Protego is able to migrate existing IPsec
tunnels from one ESP node to another one leveraging
rekeying process of IPsec [32] without impairing their
throughput.

IPsec gateways use keys for a limited amount of time.
Before a SA expires, a gateway negotiates a new key with
its peer. This process is referred to as rekeying. Rekey-
ing is done in parallel without collapsing the old SA. Be-
cause Protego has a global signaling plane, it can insert a
new key to any data node which will receive a migrated
tunnel. Protego seamlessly steers the traffic using soft-
ware load balancers tailored to IPsec protocol.

3.3 Elastic provisioning algorithm
VM live migration requires operators to apply complex
modeling and prediction techniques [36, 15, 50, 17, 49]
to minimize the high overhead of live migration. In con-
trast, we devise a straightforward resource provisioning

GMN
(Standby)

Gateway
Ingress
Node

Gateway
Processing

Node

Gateway
Management

Node

Control Plane
Data Plane

Inbound
IPsec traffic

State save
& restore

IK
E

 tr
af

fic

ESP
traffic

Key distribution
Resource
Manager

Request/Return
VMs

Tr
af

fic
 s

te
er

in
g

Inbound IP traffic

Gateway
Egress
Node Outbound

IP traffic
Outbound ESP traffic

Figure 2: Protego architecture and data flow overview

algorithm leveraging the light-weight and instant migra-
tion scheme of Protego. We model the IPsec tunnel
placement as a one-dimensional bin packing problem.
Solving this problem is not sufficient, however, since
we still have to consider the long latency of spinning up
VMs. To precisely estimate the amount of resources to
subscribe in advance, Protego keeps track of the resource
usage distribution of IPsec tunnels and calculate the con-
volution of these distributions. We will describe those
algorithms together in detail in § 5.

4 System Design
We present how we design Protego with the core ideas in
§ 3 to satisfy the requirements enumerated in § 2.4

4.1 Architecture Overview
Protego has separate control plane and data plane. The
control plane consists of Gateway Management Node
(GMN), a controller which handles IKE traffic and de-
cides the amount of resources to reserve. It also steers
ESP traffic by inserting forwarding rules. The data plane
consists of a set of Gateway Processing Node (GPN)
which processes ESP packets. Gateway Ingress Node
(GIN) or Gateway Egress Node (GEN), which are soft-
ware load balancers tailored for Protego, exposes exter-
nal virtual IP addresses (VIP) and forward the traffic des-
tined to VIPs to an appropriate node. It also limits the
bandwidth of each tunnel for performance isolation. Fig-
ure 2 shows the overall architecture of Protego.

4.2 Control Plane: Gateway Management
Node

IKE packet processing. GMN processes the IKE traf-
fic of IPsec tunnels. As we discussed above, the main
role of IKE is to negotiate SAs that include a cipher suite,
and materials to generate symmetric keys with its peer
gateway. We do not elaborate on the protocol details,
which can be found at RFC5996 [32].

Once a shared symmetric key for ESP encryption is
created, GMN distributes this key to one of the nodes
in the data plane. Then it adds a rewrite rule to a
GIN(Gateway Ingress Node) and GEN(Gateway Egress

476 2017 USENIX Annual Technical Conference USENIX Association

Node) to steer the corresponding ESP traffic to a GPN.
Whenever GMN processes a packet, it saves updated

IKE SAs to the standby GMN. In case of failure, the
standby node takes over the role of the active GMN node.
GIN is responsible for detecting the failure of GMN by
monitoring heartbeat messages and steering IKE packets
to the standby node after a failover.

Resource management. Another important role of
GMN is adjusting the number of GPNs in the data plane.
When the traffic increases, GMN adds more VMs to the
ESP node pool and move some existing tunnels to the
new ESP node and vice versa. GMN monitors the CPU
utilization of every GPN periodically. When a GPN
sends a tunnel migration request to balance the load,
GMN selects an appropriate node which can receive the
tunnels. If there is no nodes that can receive the tunnels,
GMN requests additional VMs to the resource manager
of a cloud provider. All request and response packets
for the resource management are sent and received using
TCP for reliable transmission.

Traffic steering. When an IPsec tunnel is migrated,
GMN inserts appropriate forwarding rules to a GEN and
a GIN. This process includes the selection of a GPN
which receives an IPsec tunnel to be migrated.

4.3 Gateway Ingress and Egress Node
GIN and GEN are analogous to software load balancers,
but provide additional features necessary to Protego. We
added the following functionalities to Ananta [42], which
is a scalable software load balancer with high availabil-
ity.

Traffic forwarding. The major role of GIN and GEN
in Protego is directing packets. They rewrite the destina-
tion address to the address of a GPN which is selected to
process the traffic. GIN exposes an external VIP which
the inbound traffic is destined to. For the inbound traf-
fic, GIN should be able to distinguish different tunnel
traffic destined to the same IP in order to distribute ESP
packets across different GPNs. GIN matches the Secu-
rity Parameter Index (SPI) of ESP packets for this. For
the outbound traffic, GEN simply uses the traffic selec-
tor, an ACL (Access Control List)-like filter exchanged
when GMN negotiates CHILD SAs.

Rate limiting. Another important role of GINs and
GENs is limiting the bandwidth of tunnels. One of the
requirements of Protego is enforcing per-tunnel perfor-
mance isolation. Protego achieves this by limiting the
rate of tunnels to the maximum bandwidth that cloud
provider promise to support to tenants.

GPN failure detection. As long as GMN is alive,
a peer gateway cannot detect the failure of GPN since
GMN keeps transmitting IKE heartbeat messages. GIN
and GEN are responsible for detecting the failures. In-

 RSS
Processor

RSS
Processor

RSS
Processor

Dispatcher

Worker

Worker

Worker &
Sender

Task Queue

Send Queue

Task {
 Pointer to pkt;
 ESP seq num;
}

Kernel User

5-tuple Tunnel
... ...

Figure 3: GPN design and packet processing flow

troducing heartbeat messages is a common technique for
this. However, the heartbeat messages with a tiny inter-
val overload the internal network and the detector as the
number of nodes grow. Instead of the fixed interval, we
want the heartbeat interval of GPNs with higher through-
put to be shorter to detect failure more quickly. To do so,
GIN/GEN uniformly sample and tag packets to trigger
heartbeat messages from GPNs. We describe this pro-
cess in more detail in § 6.

4.4 Data Plane: Gateway Processing Node
GPNs handle encryption and decryption of all tunnels.
GMN decides on the mapping between tunnels and
GPNs, and inserts forwarding rules to GIN/GEN accord-
ingly. Each GPN also monitors and reports its resource
utilization (CPU, bandwidth, etc.) to GMN periodically.
When the utilization exceeds a certain threshold, it sends
a tunnel migration request to GMN to change the map-
ping for load balancing.

To optimize the performance of Protego while guar-
anteeing the uniqueness of sequence number, we avoid
using locks with the design depicted in Figure 3. We pin
a worker thread to each core for all packet processing
tasks and make those worker threads run independently
from one another. One special worker thread, dispatcher,
enforces packet ordering within a tunnel and distributes
packet processing tasks across multiple cores. Another
special type of worker thread, sender, is responsible for
sending processed packets in batch.

Note that the dispatcher and sender are also worker
threads. They are not completely dedicated to the task
dispatching and sending. When all the task queue of
other workers are full, the dispatcher puts the task to
its own queue and performs encryption or decryption.
A worker thread becomes a sender only when its send
queue has some enqueued send requests. This de-
sign choice is for maximizing encryption and decryption
performance by fully utilizing CPU cores under heavy
workloads.

4.5 Tunnel migration
IPsec tunnel migration is an essential operation for elas-
ticity. Protego leverages rekeying process of IKE to mi-

USENIX Association 2017 USENIX Annual Technical Conference 477

GIN
GPN

GMN

GPNInbound
ESP packets

CRETE_CHILD_SA 2

1
3

3

4
5

GEN

Outbound
ESP packets

Figure 4: Tunnel migration process

grate a tunnel from one GPN to another one. Following is
the detailed tunnel migration steps depicted in Figure 4.

1. GMN sends the CREATE CHILD SA request with
a new Diffie-Hellman (DH) value2 and a nonce.

2. GMN receives the CREATE CHILD SA response
which include the DH value and the nonce of a
responder. GPN generates two new child SAs us-
ing those information for the inbound and outbound
tunnels.

3. GMN hands the new SAs over to a GPN which
would receive the tunnel to migrate. GMN also
adds a corresponding steering rule to GIN and GEN
using the SPI and the traffic selector of new SAs
known by the CREATE CHILD SA exchange.

4. GPN starts to use the new outbound SA. Once the
peer gateway receives this traffic of new inbound
SA, it starts to use its new outbound SA.

5. GIN steers the ESP packets destined to new inbound
SA of Protego to the new GPN. The old inbound SA
is no longer used.

The old SAs are not destructed during the migration pro-
cess, so Protego can seamlessly migrate tunnels without
affecting the performance.

5 Elastic Resource Provisioning
We present an algorithm to dynamically provision and
de-provision the data plane.

5.1 Objectives
Our algorithm has two conflicting goals. One is to min-
imize the resource usage for better efficiency, and the
other one is satisfying the throughput requirement of ten-
ants.

Therefore, it is critical for Protego to gauge the mini-
mum amount of resources, or the number of VMs needed
to reserve to ensure the per-tunnel performance to ten-
ants. We precisely model the resource requirements and
use a bin packing algorithm to figure it out.

2The Diffie-Hellman value can be excluded complying with the
IKEv2 specification. We added it just for stronger guarantees of for-
ward secrecy.

Notation Explanation
σi Maximum CPU usage of a tunnel i
αi Current CPU usage of a tunnel i
β j Current CPU utilization of a node j
Ui Probability distribution of the CPU uti-

lization of a tunnel i
ε Throughput guarantee violation toler-

ance
Y Probability distribution of aggregated

tunnel CPU utilization
C Number of VMs reserved for Protego
TH CPU utilization threshold for hotspot

detection

Table 1: Variables used in the algorithm description

5.2 Model

Hierarchy of virtual machine. VM states are classi-
fied into roughly three categories in the cloud. Active
VMs are booted VMs actively used by a service. Shut-
down VMs are not yet booted and not under control of
any one. In addition to those typical states, Inactive
VMs [45] are booted and under control of a service but
reserved for scaling out the service capacity. By intro-
ducing the inactive state, cloud providers are allowed to
reduce the resources allocated for those inactive VMs.

Each VM group has a different latency to be added to
the ESP node pool. Normally, active and inactive VMs
are added almost instantly since they are controlled by
a service, but shutdown VMs take at least several min-
utes to be active. If the service does not reserve enough
active and inactive VMs, tenants may experience severe
performance issue.

Node capacity. In IPsec gateways, the CPU resource
of nodes is the bottleneck that determines the through-
put of IPsec tunnels. We assume that every node has the
same CPU resource, and regard all nodes have normal-
ized CPU capacity 1.

Maximum resource usage. The maximum CPU usage
of tunnels is bounded in our case since we limit the band-
width of tunnels. We express the maximum limit of the
tunnel CPU utilization as a real number σi. (0 < σi < 1)

Current resource usage of a tunnel and utilization of
a node. The CPU usage of a tunnel is periodically cal-
culated with the interval of τ . Let αi is the current CPU
usage of a tunnel at specific times. Then the CPU uti-

lization of a node is defined as β j =
k
∑

i=1
αi, where k is the

number of tunnels in the node.

Resource usage distribution of a tunnel. The CPU
usage of a tunnel varies over time. The usage distribution
of a tunnel Ui takes this into account. Ui(x)(0< x<αi) is
the probability density function of the CPU usage, which

478 2017 USENIX Annual Technical Conference USENIX Association

shows the likelihood of how much CPU resource a tunnel
would consume at a certain time.
Violation tolerance. The violation tolerance ε ex-
presses how tolerable the system is on the throughput
guarantee violation. If the traffic of a tunnel during a cer-
tain time interval is not fully served due to the insufficient
resources of a GPN, the tunnel fails to achieve demanded
throughput of a tenant as packets get dropped. The sum
of the time intervals of such time should account for less
than ε of the total available time of Protego.

5.3 Minimum number of VMs for per-
tunnel throughput guarantee

Based on the model described in § 5.2, we figure out the
minimum number of VMs that Protego should reserve to
satisfy the IPsec tunnel throughput guarantee to tenants.

Aggregated traffic distribution. Let Y =
n
∑

i=1
Ui, where

n is the number of all tunnels. Y denotes the probability
distribution of aggregated CPU usage of all tunnels in the
system. Since U is a discrete probability distribution, we
can calculate the convolution of any two resource usage
distributions using the following formula.

Y (z) =
1
∑

k=0
U(k)U(z− k)

We use the formula to sum up n resource usage distri-
butions inductively to the Y . We assume that the tunnel
resource usage distributions are independent from one
another.
Minimum number of VMs for the throughput guar-
antee. The throughput guarantee constraint is formally
expressed with Y and ε:

Pr(Y >C)≤ ε

where C is the total resource of the system. In our case,
C is the number of active and inactive VMs because all
VMs have the normalized CPU capacity 1. ε is a given
constant and Y is derived from Ui. Hence, we can figure
out C, the number of VMs that Protego needs to reserve
to guarantee the throughput.

Protego should keep its number of active and inactive
VMs above C so that the probability of the violation is
maintained below ε . In a real deployment, however, we
need to take the TH into account since it incurs a small
resource waste. Thus, the number of VMs it reserves
should be higher than C/TH . We assume the degree of
external fragmentation of the capacity of GPNs is negli-
gible here.

5.4 Load balancing and tunnel consolida-
tion

Protego detects nodes which the demand of assigned tun-
nels exceeds its capacity and balance the workload by

migrating the tunnels to other relatively idle nodes. At
the same time, Protego periodically consolidates tunnels
to minimize the number of active VMs.

Hotspot node detection. GMN should detect nodes of
which the demand of tunnels exceeds its capacity. We
set a CPU utilization threshold TH > max αi and regard
a node as hotspot if β j > TH . TH should be large enough
to ensure high utilization of nodes.

Tunnel migration. Once the hotspot node is detected,
a subset of the tunnels in the node should be migrated
to lower β j below TH . To minimize the number of mi-
gration, the tunnels are sorted in decreasing order of αi,

and largest k tunnels where
k
∑

i=1
αi > β j−TH are chosen

and migrated in that order. The same Best Fit algorithm
is used to choose a node to place each tunnel. The sys-
tem adds an inactive VM to the active pool if none of the
nodes are not able to receive the tunnel.

Tunnel consolidation. Protego periodically decides
new tunnel allocation based on Best Fit Decreasing
(BFD) algorithm, which guarantees to use no more than
11/9 bins of the optimal solution [25]. Protego periodi-
cally sorts all tunnels in decreasing order of αi, and use
BFD to figure out a new placement of the tunnels. After
every consolidation, Protego makes empty active VMs
inactive to minimize the number of active VMs.

6 Implementation
6.1 GIN & GEN
GIN and GEN are both based on our packet filtering
driver based on Windows NDIS Lightweight filter (LWS)
driver. The main task of GIN and GEN are modifying
the destination IP address of the packets to forward them
to a right GPN which possesses the shared keys for the
inbound and outbound traffic of a tunnel that packets be-
long to. For this purpose, GIN and GEN maintain the
mappings between SPI and GPN IP addresses, and traf-
fic selectors and GPN IP addresses.

Another important role of GIN and GEN is detecting
the failure of GPNs. GIN and GEN manipulate the last
bit of TOS field in outer IP header of ESP packets for
tagging. They sample a part of packets and set the last
bit of TOS to 1. Once a GPN detects the bit is set, it
mirrors the packet with the reversed source and destina-
tion addresses and empty payload back to GIN/GEN as a
heartbeat. When there is no reply within a certain period,
the packet is regarded as dropped. After three consecu-
tive drops, GIN or GEN concludes that a corresponding
GPN fails.

6.2 GMN
We implement GMN based on the existing IPsec ser-
vice module in the Routing and Remote Access Service

USENIX Association 2017 USENIX Annual Technical Conference 479

(RRAS) [14]. We add the state backup and recovery
logic to the implementation of Remote Access service in
Windows Server 2012 R2. Our modified RRAS captures
state modification by wrapping global variables with set-
ter functions. Also, public interface is added to expose
states and save the changed ones to an external IKE
module of the passive GMN. These interfaces are imple-
mented based on asynchronous RPC (Remote Procedure
Call) already implemented in Windows Server [10].

6.3 GPN
We implement our own filter driver to catch packet re-
ceive notifications from NIC and return the address of
a free buffer in the Free Buffer Queue. NIC copies re-
ceived packet data to the buffer, then the filter driver
pushes the pointer to the receive queue exposed to user
space.

Dispatcher thread maintains an array of buffers to hold
the encrypted or decrypted packets to be sent in a batch.
It pushes the request to one of the Task Queue of worker
threads and a worker encrypts or decrypts the packet data
in turn. The worker writes back the process packet to the
array of buffer at the assigned index, and increases the
processing counter. Once the processing counter reaches
the total size of the array size, the sender thread starts
to send out the whole buffer. Upon receiving the send
completion notification, the buffers are returned to Free
Buffer Queue maintained by our filter driver so that it can
be reused.

Note that GIN, GEN, GMN and GPN can be imple-
mented independently on top of different platforms al-
though we implemented all of them in Windows servers
in our local test bed. They can be built and combined
on public clouds by third-party as well if an enterprise
tenant wants to deploy their own VPN service.

7 Evaluation
The test bed has the same networking and configura-
tion as our real production IPsec gateway environment.
The experimental setup consists of 32 servers with 16-
core Intel Xeon E5-2650 v2 CPU working at 2.6Ghz and
Mellanox Connect-3 Pro 40Gbps NIC. We use Windows
Server 2012 R2 and Hyper-V.

Figure 5 shows the topology of the experiment. We
use a WAN emulator to emulate latency and packet loss.

7.1 Failover
To evaluate the impact of failures in Protego, we es-
tablish an IPsec tunnel between Protego and the IPsec
gateway in the user network in our experimental topol-
ogy. The client sends 300 Mbps of TCP traffic to the
server machine. While the client is sending the traffic,
we power off GPN and GMN one by one and monitor
the throughput at the server side. We set the sampling

IPSEC-GW1

Clients

GPN-1

Servers

GPN-2

GMN

Cloud
Network

User
Network

GEN
GIN

IPSEC-GW1

Clients

GPN-1

Servers

GPN-2

GMN

Cloud
Network

User
Network

GEN
GINWAN Emulator

Figure 5: Experiment topology

rate of GIN and GPN for failure detection to 1/1000 and
the minimum sampling interval to 10 ms.

We powered off GPN at around 18 second. In Fig-
ure 6, the throughput drops slightly as some packets are
dropped during the failover period. Once a new ESP key
is negotiated and inserted to a new GPN, the through-
put recovers to the original value after the TCP slow-
start phase. In the GMN failure case, the throughput of
the tunnel is not degraded as shown in Figure 6, since
CHILD SAs are alive and used for ESP packet process-
ing, and GMN is restored almost instantly.

Figure 8 shows the latency of failover and IKE state
update, which we measured running the operations 20
times. It takes 0.28 seconds in total for the failover. The
round trip time between peer gateways for re-negotiating
a new CHILD SA accounts for 68% of the total failover
time. The latency of updating an IKE SA in a passive
GMN is 89 ms, which is quick enough to handle IKE
heartbeat messages sent every few seconds.

7.2 Tunnel migration overhead
We created two GPNs as described in Figure 5 to see
the throughput change of an IPsec tunnel during migra-
tion. We measured the throughput of a TCP stream in the
server.

Figure 7 shows the throughput of the IPsec tunnel over
time. We exposed the tunnel migration API to manually
initiate the process via command line of GMN. The mi-
gration process is started at approximately 18 seconds.
The tunnel performance is maintained during the migra-
tion process according to the figure. The time it takes
to migrate a tunnel is the same as the sum of the rekey
and ESP state insertion time mentioned in the failover
section.

7.3 GPN performance

Multi-core throughput. In order to measure the per-
formance and multi-core scalability of GPN, we estab-
lish a single IPsec tunnel between the IPsec gateway in
the user network and one of the GPNs of Protego. To
measure the encapsulation performance, the server sends

480 2017 USENIX Annual Technical Conference USENIX Association

0

50

100

150

200

250

300

0 5 10 15 20 25 30

B
a

n
d

w
id

th
(M

b
p

s)

Time (s)

Tunnel Migration

0

50

100

150

200

250

300

0 5 10 15 20 25 30

B
a

n
d

w
id

th
(M

b
p

s)

Time (s)

GPN Failure

GMN Failure

Figure 6: Impact of failure on tunnel throughput

0

50

100

150

200

250

300

0 5 10 15 20 25 30

B
a

n
d

w
id

th
(M

b
p

s)

Time (s)

Tunnel Migration

0

50

100

150

200

250

300

0 5 10 15 20 25 30

B
a

n
d

w
id

th
(M

b
p

s)

Time (s)

GPN Failure

GMN Failure

Figure 7: Impact of migration on tunnel throughput

0

50

100

150

200

GPN

Failover

T
im

e
(m

s)

Failure Detection
CHILD SA Rekey
ESP State Insertion

0

200

400

GMN

Update

IKE SA Update
IKE SA Create

0

50

100

150

200

GPN

Failover

T
im

e
(m

s)

Failure Detection
CHILD SA Rekey
ESP State Insertion

0

200

400

GMN

Update

IKE SA Update
IKE SA Create

Figure 8: Failover and state update la-
tency breakdown

0

3

6

9

12

15

18

0 2 4 6 8 10 12 14

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

of CPU cores

AES256

-SHA1
AES256

-SHA2

Figure 9: Single node throughput

0

0.2

0.4

0.6

0.8

1

0 300 600 900 1200

C
D

F

Latency (us)

Plain

Encrypted

Figure 10: CDF of latency per packet

TCP traffic to a client. The TCP packet length is 1400
bytes. We used a number of TCP connections to fully
saturate the CPU resource of the GPN.

Figure 9 shows the throughput of an IPsec tunnel mea-
sured in the server using the aggregated TCP throughput.
As the number of CPU cores increases, the throughput
of a single tunnel performance of a single GPN increases
linearly. Protego can provide 10 Gbps of the throughput
with 8 cores when AES256-CBC is used for encryption
and SHA1 is used for integrity. When SHA2 is used for
integrity, more than 12 cores is required to achieve 10
Gbps in our evaluation setup.
Packet processing latency. We also measured latency
added by GPN node. To quantify the latency incurred by
a GPN node, we measure the latency of packets which
only pass through GIN and skip GPN, and then that
of packets processed by a GPN to encrypt them with
AES256CBC-SHA1. A client sends 1400 bytes TCP
packets of which payload contains timestamp value. A
server which receives the packet prints out the latency
based on the embedded timestamp. We turned off WAN
emulator in this evaluation and place all VMs in the same
rack.

We sampled 1,000 packets to draw CDF graph in Fig-
ure 10. The deviation of latency distribution is quite
small as they are connected by a single ToR. The me-
dian value of the case when GPN is not involved is 61
us, and is 1094 us when GPN is involved. The latency
overhead of Protego is around 1 ms. It is negligible com-
pared with RTT of WAN, which is tens or hundreds of

ms in general.

7.4 Resource provisioning simulation
We evaluate the algorithm elaborated in § 5 by doing a
large-scale simulation. We use the throughput data of
IPsec tunnels in our data centers to figure out how much
resource is saved by Protego compared with the existing
VM allocation based system. We collected the hourly
average throughput of IPsec tunnels for 24 hours. We di-
vide the actual tunnel throughput values by the maximum
capacity of deployed IPsec gateways. Then we multi-
ply the resulting ratio by an arbitrary maximum tunnel
throughput we choose for simulation.

Resource saving. We collected the 1-day through-
put data of IPsec gateways in one of our data centers.
The average throughput of the tunnels is measured every
minute. We assume that all GPNs have the same pro-
cessing capacity, and all ESP packets with the same size
consume the same amount of CPU resource when pro-
cessed.

The throughput trace of 170 tunnels was collected and
used in our simulation. We normalized the maximum
tunnel throughput to 1.5 Gbps, which is the maximum
tunnel throughput supported by major cloud providers [3,
5]. The GPN capacity is set to 5 Gbps. (σi = 0.3) The
hotspot threshold TH = 0.90 and the throughput measure-
ment interval is 1 minute. Also, the violation tolerance
ε = 0.95.

Figure 11 displays illustrates the aggregated IPsec
throughput of all tunnels and the total capacity of active

USENIX Association 2017 USENIX Annual Technical Conference 481

0

40

80

120

0 50 100 150

C
a

p
a

ci
ty

(G
b

p
s)

Time (m)

Tunnel bandwidth Active capacity (10m)
Reserved capacity Active Capacity (30m)

Figure 11: Resource provisioning efficiency

VMs used as GPNs. The reserved capacity represents
the total resource of all VMs that Protego reserves by
figuring out the minimum number of VMs it needs for
bandwidth guarantee based on the formula explained in
§ 5.3. In this simulation, the reserved capacity is 110
Gbps since Protego subscribes 22 VMs.

The consolidation interval is set to 10 minutes and 30
minutes respectively. The number of active VMs grows
between the consolidation points since Protego balances
the IPsec workload by migrating the tunnels as their
throughput are fluctuating. The number of active VMs
shrinks every consolidation interval.

It is trivial from the figure that the smaller the consol-
idation interval is, the less active VMs the Protego uti-
lizes. The average provisioned capacity of active VMs
is 65.38, 74.75 Gbps, and 88.17 Gbps for the 5-minute,
10-minute, and 30-minute consolidation intervals respec-
tively. The average total throughput of the tunnels is
57.49 Gbps. The trade off of finer consolidation inter-
val is investigated using the result in the next subsection.

Throughput guarantee. Another important require-
ment of a resource provisioning algorithm is to meet
the throughput guarantee. We introduce daily bandwidth
guarantee to measure how much time Protego actually
provisions enough resources in a similar way as avail-
ability SLAs are defined.

DailyBandwidthGuarantee(%)

=
TotalAvailableMinutes−MinutesO fViolation

TotalAvailableMinutes

The violation happens when the sum of the demand
bandwidths of IPsec tunnels, which are rate limited, ex-
ceeds the capacity of a GPN. We assume that the packet
scheduler of GPNs is completely fair so the bandwidth
guarantee is violated only when its bandwidth demand is
larger than its fair share. In public clouds, only the avail-
ability of VPN services are guaranteed [7, 13]. Cloud
providers seldom guarantee the bandwidth in the SLA in
any form [39]. We suggest the bandwidth guarantee to
briefly show the trade-off between the utilization and the
QoS with different consolidation intervals. We do not
determine the optimal parameters of our algorithm here,

Consolidation
Intervals 3 min 5 min 10 min 30 min 60 min

Active VM
Capacity (Gbps) 61.23 66.17 73.97 88.34 93.22

99th-percentile
Guarantee (%) 90.21 93.07 96.84 98.24 98.63

Resource
Saving (%) 88.00 87.03 85.50 82.68 81.72

Table 2: Bandwidth guarantee and resource saving
achieved with different consolidation intervals

which will be different depending on the internal perfor-
mance indicators of each cloud provider.

Table 2 contains the detailed numbers we get from the
simulation. The resource saving is calculated by divid-
ing the capacity of active VMs by the total capacity of
VM assuming that one VM is dedicated to each tunnel.
Since there are 170 tunnels of which maximum band-
width is 1.5 Gbps, the total capacity is 255 Gbps to pro-
vision for peak demands. Moreover, the high availabil-
ity requirement doubles the number of necessary VMs.
Therefore we figure out the total capacity required for
the old system is 510 Gbps. When the consolidation in-
terval is 10 minutes, Protego can save around 85.50% of
VM resource while meeting the bandwidth guarantee of
99 % of the tunnels for 96.84 % of the total available
time of Protego.

8 Discussion
Security implication. One may argue that the secu-
rity of the overall system is weakened due to the risk
of placing secret keys in a shared VM, GMN. However,
the VMs of Protego are not leased to tenants but are un-
der control of cloud providers. They can block external
network access to those control nodes as they normally
do for their internal servers. Note that Protego performs
complete IPsec protocol as it is. Rekeying process for
migration may incur some overhead but does not com-
promise security.
Keeping occasionally changed state in a centralized
node. We make Protego keep the IKE state in a central-
ized node. Likewise, the same approach could be applied
to other NFs to make the data plane stateless. For exam-
ple, asset monitoring systems such as PRADS [11] em-
ploy fingerprints to identify clients. Since they are rarely
changed, storing them in a centralized node would be a
good way to build a scalable monitoring system.

9 Related Work
Software NFs for the cloud. Flexible and easy to man-
age software NFs are becoming more prevalent in data
centers these days [42, 21, 23, 24, 22]. Especially, soft-
ware load balancers are deployed and replacing hardware
ones. Ananta [42] is the first software load balancer spe-
cially designed for cloud environments. Ananta has a

482 2017 USENIX Annual Technical Conference USENIX Association

separate control plane and data plane. Yoda [23] de-
couples the flow state from load balancers and stores it
in a persistent storage for high availability. Ananta and
Yoda have influenced the design of Protego. Maglev [21]
is a software load balancer, further optimized for the
throughput of a single machine. Maglev employs a for-
warder thread which calculates the 5-tuple hash of the
packets and put them into the receiving queue of a ded-
icated packet rewriter thread. The dispatcher thread of
Protego plays a similar role to the forwarder and steering
thread. However, the data plane design of Protego is dif-
ferent from Maglev and other packet processing frame-
works [20, 30, 34, 35, 28] in that it is specially designed
for IPsec. Protego takes the state dependency between
ESP packets into account and enables even the pack-
ets belong to the same tunnel distributed across multiple
worker threads.

NFV Frameworks for scalability and availability.
OpenNF [27] controller manages both the forwarding
rules of SDN controller and the internal state of NFs to
migrate flows from one NF instance to another. OpenNF
controller buffers the packets of the flow in migration
until the corresponding per-flow state is moved, which
adds hundreds of milliseconds of per-packet latency.
U-HAUL [37] selectively apply the OpenNF migration
scheme to elephant flows to optimize the migration per-
formance. Unlike these controllers, Protego achieves
loss-free migration without migrating the per-tunnel state
by leveraging the rekeying feature of IKE protocol.

E2 [40], Stratos [26], and OpenBox [18] are frame-
works that provide high-level means of developing, plac-
ing and scaling NFs by introducing an NF-agnostic con-
troller. We want to point out that employing an NF-
specific controller is often necessary and efficient as we
have shown. StatelessNF [31] uses a low-latency data
store to make NFs stateless for scalability and high avail-
ability. Protego has a similarity to StatelessNF in that it
stores state in a centralized node, but Protego maintains
the frequently changing state locally. NetBricks [41] is a
framework built on Rust to ensure safe memory isolation
in user-level for NFs without VMs. Unlike NetBricks,
we still use VMs for cloud providers to leverage exist-
ing resource allocation and management system based on
virtualization platforms. FTMB [44] and Pico Replica-
tion [43] leverage VM checkpoint or snapshot to ensure
high availability of middleboxes. We avoid checkpoint-
based approaches since VM restore time in the cloud eas-
ily takes several minutes [38], which is too long to meet
the tight availability SLA of cloud providers.

We want to emphasize that the efficiency improvement
has been achieved by taking multitenancy into account
when designing our system. The NFs for cloud environ-
ments should have a means to seamlessly and quickly
migrate workloads and resource allocation/deallocation

policy to elastically adapt to varying demand of tenants.

Resource provisioning in shared environment. De-
ciding the right amount of resources to provision in a
shared environment has been a long-standing problem.
Urgaonkar et al. [46] shows the gain of oversubscribing
the resource in a shared hosting platform. They profile
the resource usage of applications offline with realistic
workloads. Based on those resource usage distributions,
the system decides the capacity of resources. We have
adopted the resource usage model of them to decide the
minimum number of VMs to reserve.

In the context of cloud computing, VM placement and
migration is one of the most widely studied areas. Sand-
piper [49] leverages VM live migration to balance the
workload of overloaded physical machines. Bobroff et
al. [17] takes SLA into account and design a forecasting
technique to minimize SLA violation. Verma et al. [47]
considers dynamic VM resizing to efficiently consolidate
VMs with less frequent migration. Though there has
been a large volume of literature along this line, the high
network bandwidth consumption of live migration and
long migration time of hotspot VMs [48] hinder the wide
deployment of it. Protego provides a migration scheme
which is far more lightweight and quicker than VM live
migration. In addition, it provides the finer granularity of
load balancing by migrating tunnels instead of an entire
VM. Therefore, it has a better potential for real produc-
tion use.

10 Conclusion
We have described Protego, a software IPsec gateway
specifically designed for cloud environments. Protego
serves multiple tenants using shared resources for statis-
tical multiplexing. It separates the control plane from
existing IPsec gateways and preserves its state for high
availability. We leverage IKE rekeying feature to seam-
lessly migrate tunnels without impairing their through-
put. We devise a resource provisioning algorithm and
demonstrate that Protego can save more than 80% of the
resources comparing with existing approach, while guar-
anteeing the IPsec throughput for higher than 90% of up-
time.

Acknowledgements
We thank our shepherd Ittay Eyal and the anonymous re-
viewers for their helpful feedback. We are also grateful
to Shinae Woo and Bojie Li for their thoughtful com-
ments on the drafts, and Joongi Kim for providing his
figure templates. This work was supported in part by
the MISP (Ministry of Science, ICT & Future Planning),
Korea, under the National Program for Excellence in
SW (2016-0-00018) supervised by the IITP (Institute for
Information & communications Technology Promotion)
(2016-0-00018).

USENIX Association 2017 USENIX Annual Technical Conference 483

References
[1] Amazon Web Service - Virtual Private Cloud

(VPC). https://aws.amazon.com/vpc/.

[2] Cisco - IPSec Stateful Failover (VPN High Avail-
ability) Feature Module. http://www.cisco.

com/c/en/us/td/docs/ios/12_2/12_2y/12_

2yx11/feature/guide/ft_vpnha.html.

[3] Google - VPN throughput. https://cloud.

google.com/compute/docs/vpn/advanced.

[4] Google Cloud Platform - Virtual Network. https:
//cloud.google.com/virtual-network/.

[5] Microsoft Azure - About VPN Gate-
way. https://docs.microsoft.

com/en-us/azure/vpn-gateway/

vpn-gateway-about-vpngateways.

[6] Microsoft Azure - Planning and design for
VPN Gateway. https://azure.microsoft.

com/en-us/documentation/articles/

vpn-gateway-plan-design/.

[7] Microsoft Azure - SLA for VPN Gateway.
https://azure.microsoft.com/en-us/

support/legal/sla/vpn-gateway/.

[8] Microsoft Azure - Virtual Network. https:

//azure.microsoft.com/en-us/services/

virtual-network.

[9] Microsoft Azure - VPN Gateway. https:

//azure.microsoft.com/en-us/services/

vpn-gateway/.

[10] Microsoft Remote Procedure Call. https:

//msdn.microsoft.com/en-us/library/

windows/desktop/aa378651(v=vs.85).aspx.

[11] PRADS - Passive Real-time Asset Detection Sys-
tem.

[12] strongSwan - High Availability. https:

//wiki.strongswan.org/projects/

strongswan/wiki/HighAvailability.

[13] VPN Service Level Agreement (SLA). https://

cloud.google.com/vpn/sla.

[14] Windows Remote Access Service. https:

//technet.microsoft.com/en-us/library/

dn636119(v=ws.11).aspx.

[15] S. Akoush, R. Sohan, A. Rice, A. W. Moore, and
A. Hopper. Predicting the Performance of Virtual
Machine Migration. In MASCOTS, 2010. IEEE.

[16] S. A. Baset, L. Wang, and C. Tang. Towards an Un-
derstanding of Oversubscription in Cloud. In Hot-
ICE, 2012. USENIX.

[17] N. Bobroff, A. Kochut, and K. Beaty. Dynamic
Placement of Virtual Machines for Managing SLA
Violations. In INM, 2007. IEEE.

[18] A. Bremler-Barr, Y. Harchol, and D. Hay. Open-
Box: A Software-Defined Framework for Develop-
ing, Deploying, and Managing Network Functions.
In SIGCOMM, 2016. ACM.

[19] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migra-
tion of Virtual Machines. In NSDI, 2005. USENIX.

[20] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun,
K. Fall, G. Iannaccone, A. Knies, M. Manesh, and
S. Ratnasamy. RouteBricks: Exploiting Parallelism
to Scale Software Routers. In SOSP, 2009. ACM.

[21] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith,
R. Kononov, E. Mann-Hielscher, A. Cilingiroglu,
B. Cheyney, W. Shang, and J. D. Hosein. Maglev:
A Fast and Reliable Software Network Load Bal-
ancer. In NSDI, 2016. USENIX.

[22] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey.
Bohatei: Flexible and Elastic DDoS Defense. In
USENIX Security, 2015. USENIX.

[23] R. Gandhi, Y. C. Hu, and M. Zhang. Yoda: A
Highly Available Layer-7 Load Balancer. In Eu-
roSys, 2016. ACM.

[24] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye,
L. Yuan, and M. Zhang. Duet: Cloud Scale Load
Balancing with Hardware and Software. In SIG-
COMM, 2014. ACM.

[25] M. R. Garey, R. L. Graham, and J. D. Ullman.
Worst-case Analysis of Memory Allocation Algo-
rithms. In STOC, 1972. ACM.

[26] A. Gember, A. Krishnamurthy, S. S. John,
R. Grandl, X. Gao, A. Anand, T. Benson, A. Akella,
and V. Sekar. Stratos: A Network-Aware Orchestra-
tion Layer for Middleboxes in the Cloud. In CoRR,
2013.

[27] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella.
OpenNF: Enabling Innovation in Network Function
Control. In SIGCOMM, 2014. ACM.

[28] Y. Go, M. A. Jamshed, Y. Moon, C. Hwang, and
K. Park. APUNet: Revitalizing GPU as Packet Pro-
cessing Accelerator. In NSDI, 2017. USENIX.

484 2017 USENIX Annual Technical Conference USENIX Association

[29] A. Greenberg. Windows Azure: Scaling SDN in the
Public Cloud. Open Networking Summit (ONS)
2014.

[30] S. Han, K. Jang, K. Park, and S. Moon. Packet-
Shader: A GPU-accelerated Software Router. In
SIGCOMM, 2010. ACM.

[31] M. Kablan, A. Alsudais, E. Keller, and F. Le. State-
less network functions: Breaking the tight coupling
of state and processing. In NSDI, 2017. USENIX.

[32] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen. In-
ternet Key Exchange Protocol Version 2 (IKEv2).
RFC 5996, RFC Editor, 2010.

[33] S. Kent. IP Encapsulating Security Payload (ESP).
RFC 4303, RFC Editor, 2005. http://www.

rfc-editor.org/rfc/rfc4303.txt.

[34] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and
S. Moon. NBA (Network Balancing Act): A
High-performance Packet Processing Framework
for Heterogeneous Processors. In EuroSys, 2015.
ACM.

[35] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu,
Y. Xiong, P. Cheng, and E. Chen. ClickNP: Highly
Flexible and High Performance Network Process-
ing with Reconfigurable Hardware. In SIGCOMM,
2016. ACM.

[36] H. Liu, C.-Z. Xu, H. Jin, J. Gong, and X. Liao. Per-
formance and Energy Modeling for Live Migration
of Virtual Machines. In HPDC, 2011. ACM.

[37] L. Liu, H. Xu, Z. Niu, P. Wang, and D. Han. U-
HAUL: Efficient State Migration in NFV. In AP-
Sys, 2016. ACM.

[38] M. Mao and M. Humphrey. A Performance Study
on the VM Startup Time in the Cloud. In CLOUD,
2012. IEEE.

[39] J. C. Mogul and L. Popa. What We Talk About
when We Talk About Cloud Network Performance.
In SIGCOMM CCR, 2012. ACM.

[40] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Rat-
nasamy, L. Rizzo, and S. Shenker. E2: A Frame-
work for NFV Applications. In SOSP, 2015. ACM.

[41] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy,
and S. Shenker. NetBricks: Taking the V out of
NFV. In OSDI, 2016. USENIX.

[42] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Green-
berg, D. A. Maltz, R. Kern, H. Kumar, M. Zikos,
H. Wu, C. Kim, and N. Karri. Ananta: Cloud Scale
Load Balancing. In SIGCOMM, 2013. ACM.

[43] S. Rajagopalan, D. Williams, and H. Jamjoom. Pico
Replication: A High Availability Framework for
Middleboxes. In SoCC, 2013. ACM.

[44] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krish-
namurthy, C. Maciocco, M. Manesh, J. a. Martins,
S. Ratnasamy, L. Rizzo, and S. Shenker. Rollback-
Recovery for Middleboxes. In SIGCOMM, 2015.
ACM.

[45] R. P. Singh, T. Brecht, and S. Keshav. Towards VM
Consolidation Using a Hierarchy of Idle States. In
VEE, 2015. ACM.

[46] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource
Overbooking and Application Profiling in Shared
Hosting Platforms. In OSDI, 2002. USENIX.

[47] A. Verma, J. Bagrodia, and V. Jaiswal. Virtual Ma-
chine Consolidation in the Wild. In Middleware,
2014. ACM.

[48] W. Voorsluys, J. Broberg, S. Venugopal, and
R. Buyya. Cost of Virtual Machine Live Migration
in Clouds: A Performance Evaluation. In Cloud-
Com, 2009. Springer-Verlag.

[49] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S.
Yousif. Black-box and Gray-box Strategies for Vir-
tual Machine Migration. In NSDI, 2007. USENIX.

[50] K. Ye, X. Jiang, D. Huang, J. Chen, and B. Wang.
Live Migration of Multiple Virtual Machines with
Resource Reservation in Cloud Computing Envi-
ronments. In CLOUD, 2011. IEEE.

[51] X. Zhang, Z.-Y. Shae, S. Zheng, and H. Jamjoom.
Virtual Machine Migration in an Over-committed
Cloud. In NOMS, 2012. IEEE.

USENIX Association 2017 USENIX Annual Technical Conference 485

