2023
 Catalogue.

CATV AMPLIFIERS
CATV HEAD ENDS
CATV ACCESORIES
01618187649
07563148128

DVB-T COFDM
 TV MODULATORS ULTRA HIGH DEF TV MODULATORS

MPEG 2 ENCODERS
MPEG 4 ENCODERS VIDEO IP STREAMERS

F connectors
for RG6, CT100 Etc 2.9 pence each
(100 pieces) page 72

F connectors

for RG11, CT167 Etc
25 pence each
(100 pieces) page 72

700MHz Low Pass Filter For UK 700 MHz Clearance Page 34B Only £3.49

> 4 way VHF/UHF High quality splitter $£ 2.29$ Page 68

We can help you with system design for Sat (inc Sky Q) and Terrestrial CATV No Charge for technical support

Amplifiers UHF/VHF 6-14
Active Channel Filter levelers for adjacent channels 37-40
Analogue TV Modulators 38-42
Attenuators F type and IEC (Belling) 72
Channel Converters 38-42 \& 47-52
Channel Filter Levelers \& Combiners for CATV 35-36
Digital TV Modulators, RF and IP out 38-57
F Connectors RG6 CT100, RG11 CT167 72
F Connector adapter for quick push on use 72
F Connector Coupler 72
Fibre Optic CATV, Cable and Satellite 15-34
Grounding Blocks 72
LNB Quatro 61
MPEG 2 \& 4 Encoders 38-57
Satellite dish 60 cm alloy 61
Satellite Distribution Amplifiers 62-66
Satellite IF processors 59\&60
Satellite Switches 63-67
Satellite TV Receiver RF and IP out 38-57
Splitters \& Taps 68-70
Stereo Radio Modulators 38-39 \& 56
Technical Info 74-75

Prices and specifications are subject to change without notice. Our catalogue is updated on a regular basis.
Please check our website for updates .
Shipping, unless stated otherwise on most items $£ 4.50$.
Next day shipping available for in stock items by UPS at small extra cost.

Prices listed in catalogue exclude VAT

TX Systems Manchester Ltd
01618187649
www.txsystems.co.uk
Old web site address
www.taylorbros.co.uk
Sales
sue@txsystems.co.uk

Technical Support m.rea@btinternet.com

Amplifiers UHF,DAB and Band 2 Inputs

■ For indoor mounting
■ Metal housing with plastic side brackets

- High input selection

■ F-Connectors

Ideal for Seperate

Inputs FM,DAB,UHF

If connecting directly to a UHF antenna for Freeview, it is advisable to use a ch filter leveller to avoid unwanted out of area programs and interference from other transmissions in the UHF band

22dB Gain 108dBuV output*

Shipping 3 days $£ 3.90$
Prices Ex VAT

Type		TSC2248
Inputs		3
Frequency range	MHz	$\begin{gathered} 87-108 \quad 174-230 \\ 470-862 \end{gathered}$
Gain	d日	22
Ouput level		
$60 \mathrm{dE} \mathrm{IMA3}$	dEf $\mathrm{V}^{\text {V }}$	108
60 dB IMA2	$\mathrm{dB} \mu \mathrm{V}$	105
Noise figure	dB	65
Operating voltage	$V A C$	230
Power consumption	VA	45
Connectors		F female
Dimensions	min	$192 \times 125 \times 50$
Weight	kg	045

Line amplifiers with return path options for distributing cable tv.

Type	Frequency	Gain	Att dB	Reverse Channel	Reverse Channel Gain	Max Output 60 dB 1 MAA 3 DIN 45004B	Noise	Power AC	Price
TSC2054/65	85.862 MHz	0.20 dB	0-20	5.65 MHz	16dB	115 dBLV	$\leq 5 \mathrm{~dB}$	230 V 4.5 W	£49.32
TSC3054/65	85.862 MHz	10-30dB	$0-20$	5.65 MHz	25 dB	115 dBLV	$\leq 5 \mathrm{~dB}$	230 V 4.5 W	£49.32

TXS

Multiband amplifiers for head ends

Return path				
Gain dB Active passive via jumper	$20 \mathrm{~dB} /-2 \mathrm{~dB}$	$20 \mathrm{~dB} /-2 \mathrm{~dB}$	-2dB	-2dB
Adjustable attenuator dB	-18	-18	-	-
Output Level EN 50083-5-3	112 dBuV	112 dBuV	-	-
Passive return path MHz	4-65	4-65	4-30	4-30
Active return path MHz	4-65	4-65	-	-
Operating Tempreture				-20 deg $C+55$ deg C *
Dimensions W xHxD				$163 \times 90 \times 47 \mathrm{~mm}$
Voltage				230 V 3.5 W
Price	Discontinued	Discontinued	£36.65	$£ 45.70$

MTBF failures worsen running at high temperature. All electronic equipment benefit from operating in moderate temperatures

High Output ,Head End or Line Amplifiers, with active and passive return path options, very flat frequency response.

40-20 dB of gain ,adjustable.
High output capability 127dBuv**
Large channel capacity**
Ideal for distribution from a cable TV feed
20 dB Variable gain control, 20 dB variable slope control

Broadband ADSL Cable modems can be used on the network via optinal return path.
**DIN 45004B

Return path now function included

Specifications

Derating for number of channels DIN45004B

Number of distributed channels, allow additional margin for digital muxes

Links to route line power via input or output or through

Derating for cascading of amplifiers

0 dB .

0 dB .

6 dB .

6 dB .

10 dB

16 dB

Attenuation and slope control for forward and return path via switch control.
This now makes it simpler to set when calculating coax cable losses

High Power Repeater Amplifiers For Networks with Return Path

Return-path modules
Active: VMR 24
Passive:VMR 0

Equalizer modules
$\begin{array}{ll}\text { Fixed equalizer: } & \text { VM } \ldots \\ \text { Variable equalizer: } & \text { VM } \ldots \text {... }\end{array}$

Interstage modules
$\begin{array}{lr}\text { Variable attenuator: } & \text { VMD } \ldots \\ \text { Fixed equalizer: } & \text { VM ... } \\ \text { Variable equalizer: } & \text { VM } \ldots \text { R } \ldots\end{array}$

Return-path equalizer
Fixed equalizer: VMR ...
Variable equalizer: VMR ... R ...

Return-path filter
for 30 / 55 / 65 MHz VMF ...

Modules for line-out port
Splitter: VMV 4
Tap: VMA ...

Input test socket

Remote power
4 switches or plug in fuses to determine the power passing ports

Splitter: VMV 4
Tap: VMA ...
Test port: VMM 20

Output test socket Up to 128 dB
Din 4500 B (68 dBmV)

SYSTEMS

Currently CATV networks are being extended to "Full Service Networks" (FSN). apart from distributing TV and radio programmes, these networks carry interactive services like fast Internet access, cable telephony, and other bidirectional applications. Therefore the return-path is becoming more and more important to transmit subscriber messages back to the headend of the network. Passive return paths have the advantage of being bi-directional and reliable

Return-path of your choice

Depending on the requirements of the cable operator, the upper return-path frequency may be chosen between 30, 55 and 65 MHz . Optional passive or active modules may be inserted. A separate slot is provided for the return-path equalizer.

Customize to suit

With only a few different modules a wide range of configurations can be covered by using the optional modules, without need for a large stock. Each amplifier is supplied with one variable attenuator module and through links apart from the return path filter.

Housings meet highest demands

The new aluminum die-cast housings meet protection class IP66 requirements. This means that the amplifier is dust-proof and water-protected which yields constant electrical features and long product life.
To change the configuration of the amplifier it can be opened by loosening 2 screws and unclasp the lid by 180 degrees where it will lock in position until all changes are done.

The depth from wall to lid was limited to 90 mm to make the amplifier fit into common installation boxes.

Easy installation

The amplifier is held by a mounting bracket. Upon fixing the bracket firmly to its support by means of two screws, the amplifier may be slid on the bracket and arrested with only one screw.

Massive Power

High Power Repeater Amplifiers Up to 128 dBuV (68 dBmV) DIN4500B $4-862 \mathrm{MHZ}$

Type	Frequency	Gain dB	Reverse Channel	Max output **						
				Variable Attenuator dB	Noise	60 dB 1 MA 3 DIN 4500 B	60dB 1MA 2 DIN 4500A1	Return Loss	Power AC	Price
THV 40126	47-73-86-862MHz*	32/40	$4-30-55-65 \mathrm{MHz}^{*}$	20 Forward Path	$\leq 7.0 \mathrm{~dB}$	126-128dBuV	118-119dBuV	20 dB to 40 MHz	180-255V14W	£312.68
THV40126LP	47-73-86-862MHz*	32/40	4-30-55-65MHz*	20 Forward Path	$\leq 7.0 \mathrm{~dB}$	126-128dBuV	118-119dBuV	20 dB to 40 MHz	24-70V 14W	£312.68

Frequency Response Flatness $\pm .75 \mathrm{~dB}$ Power Through 2.5A Hum Modulation $\geq 65 \mathrm{~dB}$
*Depending on which return path filter (VMF)is used Specifications subject to change
**Output levels quoted are at $862 \mathrm{MHz} \& 600 \mathrm{MHz}$
Connectors F

Because of the frequency response flatness and line power through current handling, use these amplifiers for long trunk lines The gain of the amplifiers can be selected 20-40dB.

Type	Frequency	Max output **								
		Gain dB	Reverse Channel	Variable Attenuator dB	Noise	60 dB 1MA 3 DIN4500B	60 dB 1 MA 2 DIN4500A1	Return Loss	Power AC	Price
TCV40126	47-73-86-862MHz*	41	$4-30-55-65 \mathrm{MHz}^{*}$	20 Forward Path	$\leq 6.5 \mathrm{~dB}$	126-128dBuV	118-119dBuV	20 dB to 40 MHz	180-255V 14 W	$£ 368.80$
TCV40126LP	47-73-86-862MHz*	28/36	4-30-55-65MHz*	20 Forward Path	$\leq 6.5 \mathrm{~dB}$	126-128dBuV	118-119dBuV	20 dB to 40 MHz	24-70V 14W	£368.80

Frequency Response Flatness $\pm .5 \mathrm{~dB}$ Power Through 2.5A Hum Modulation $\geq 65 \mathrm{~dB}$
*Depending on which return path filter (VMF)is used
**Output levels quoted are at $862 \mathrm{MHz} \& 600 \mathrm{MHz}$
Connectors PG11 see connector page for PG11 Adaptors

Plug in modules

Super Broadband Amplifiers

Discontinued

$4-2400 \mathrm{MHZ}$ mclumg efuven path

For amplification of CATV and SAT-IF signals

- For line and distribution networks up to 2400 MHz
- Configuration on site for forward path as well as return path with plug-in modules
\square Return path with frequency edge of 30,55 or 65 MHz , available as active or passive versions
\square Minimal noise figure through equalization and attenuation after pre-amplifier stage
- Test ports for input and output signals
- LED operating indication
\square Aluminum die-cast housing with excellent heat dissipation (IP 66)
- PG11 for different connector standards

Select F or IEC Connector

TF1 £7.35
IEC

TIEC $1 £ 10.03$

Type	Frequency	Gain Return Path	Gain 47860 MHz	$\begin{aligned} & \text { Gain 950- } \\ & 2400 \mathrm{MHz} \end{aligned}$	Reverse Channel	Noise Return path with active module	$\begin{aligned} & \text { Noise } \\ & 47- \\ & 860 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { Noise } \\ & 950- \\ & 2400 \mathrm{MHz} \end{aligned}$	Max output 60dB 1MR3 (DIN 45004B)	Max output 60 dB 1MR 2 (DIN 4500A1)	Max output 35dB 1MR 3 /2150MHZ	Power AC	Price	5+
TSVV 34122	47-73-862MHz * 950-2400MHz	Choose Module	36dB	37 dB	4-30MHz	$\leq 6.5 \mathrm{~dB}$	$\leq 7 \mathrm{~dB}$	$\leq 9 \mathrm{~dB}$	123 dBuV	115dBuV	120dBuV	180-255V 16W	$£ 464.06$	$£ 433.12$
TSVV 34122 LP 4A Through	47-73-862MHz * 950-2400MHz	Choose Module	36 dB	40 dB	4-65MHz	56.5dB	57dB	59dB	123 dBuV	115dBuV	120dBuV	24-70V 16 W	£470.50	$£ 439.04$

[^0]Systems for Large Buildings or Large Cities, easily distribute more than 1000 TV Channels ,down a single fibre, then local distribution via a single coax . (Simplex mode)

Modules shown fitted into rack , are not included in price.

Basic Unit LX 52 Rack housing for 2 modules $£ 400.90$ (psu required see below)

Modules shown fitted into rack , are not included in price.

Technical data

Switch/Controller
Protocolls
IPv4, SNMPv1/v2c, DHCP, HTTP
Connections
Module slots
14 pcs.
RJ45
4 pcs. (Ethernet 10/100 Base-T)
SFP socket
1 pcs. (Ethernet 1000 Base-X)
For redundant power supply use two PSU's

LXPS 0230	230V PSU	180...265 V AC	$£ 286.36$
LXPS 0048	48V PSU	$45-75$ V DC	$£ 400.90$

LXPS power supply, choose voltage type to suite

General data
Power input
Dimensions (width x height x depth)
Environmental parameters

Fibre Transmitter Modules

LX 11 S
Output Powers
6-13dBm
Wavelength $1310 \mathrm{~nm}(\pm 10 \mathrm{~nm})$
Fibre Connections SC/APC
Optical HFC transmitter for use in LX 50
Adjustable OMI
Automatic level control (ALC)
Electronic predistortion
Fullband transmitter 10...1006 MHz
SBS suppression
Direct modulated fullband transmitter with
1310 nm for use in HFC networks

LX 11 S 100 range

Output power, $10 \mathrm{dBm}(10 \mathrm{~mW})$

Wavelengths

$1,1330.46-1,1325.78 \mathrm{~nm}(\pm 0,05 \mathrm{~nm})$
Fibre Connections SC/APC
Optical HFC transmitter for use in LX 50
Adjustable OMI
Automatic level control (ALC)
Electronic predistortion
Fullband transmitter 10... 1006 MHz
SBS suppression
O-Band wavelength
Direct modulated fullband transmitter with one O-Band wavelength for use in HFC network cluster splitting applications

O-Band Transmitter

LX 11 S 1001	Wavelength 1,1330.46 nm ($\pm 0,05 \mathrm{~nm}$)
	£1,706.73
LX 11 S 1002	Wavelength 1,1327.25 nm ($\pm 0,05 \mathrm{~nm}$)
	£1,706.73
LX 11 S 1003	Wavelength 1,1329.22 nm ($\pm 0,05 \mathrm{~nm}$)
	£1,706.73
LX 11 S 1004	Wavelength $1,1325.78 \mathrm{~nm}(\pm 0,05 \mathrm{~nm})$
	£1,706.73
O-Band Transmitter	
Technical data	
Downstream	
Laser type	Temperature stabilized DFB laser
Optical output power	10 dBm (10 mW)
Frequency range	10... 1006 MHz
Optical return loss	>40 dB
Input level broadcast	$78 \mathrm{~dB} \mu \mathrm{~V}$ (PAL-Level)
Input level Narrowcast	$84 \mathrm{~dB} \mu \mathrm{~V}$ (QAM-Level, 4 dB back off)
Narrowcast gain/level adjustment	$\pm 2 \mathrm{~dB}$ (adjustable)
Inputs AGC	$\pm 5 \mathrm{~dB}$
Decoupling NC BC	$\geq 50 \mathrm{~dB}$
Electrical reflection loss	$\geq 20 \mathrm{~dB}$ (-1 dB /oct., min. 17 dB)
Ripple	$\leq \pm 0,5 \mathrm{~dB}$
Relative Intensity Noise 1	$<-155 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$
CSO	$\geq 63 \mathrm{dBc}$ (42 channels CENELEC)
CTB	$\geq 65 \mathrm{dBc}$ (42 channels CENELEC)
Input measurement socket	-20 dB (BC-Input level)
Connections	
F-socket	1 pcs.
General data	
Power input	$\leq 7 \mathrm{~W}$
Dimensions (width x height x depth)	$30 \times 133 \times 320 \mathrm{~mm}$
environmental parameters	$-5 \ldots+45{ }^{\circ} \mathrm{C}$ (ETSI EN 300 019-1-3 Class 3.2)

Fibre Transmitter Modules

LX 12 S Range
 Output powers $2 \times$,3-6 dBm
 Wavelength 1310 nm ($\pm 10 \mathrm{~nm}$)
 Fibre Connections SC/APC

Dual optical HFC transmitter for use in LX 50
Adjustable OMI
Automatic level control (ALC)
Fullband transmitter 10... 1006 MHz
Adjustable Narrowcast-Input

Dual direct modulated fullband transmitter with $2 x 1310$ nm for use in HFC networks

LX 12 S $0300 \quad$ Optical output power, $3 \mathrm{dBm}(2 \mathrm{~mW})$
£1,174.10

LX $12 \mathrm{~S} 0600 \quad$ Optical output power, $6 \mathrm{dBm}(4 \mathrm{~mW})$

£1,757.13
2x 1310 nm transmitter
Technical data
Downstream
Laser type
Wavelength transmitter 1
Frequency range
Optical return loss
Input level broadcast
Input level Narrowcast
Narrowcast gain/level adjustment
Inputs AGC
Decoupling NC BC
Electrical reflection loss
Ripple
Relative Intensity Noise 1
CSO
CTB
Input measurement socket
Connections
F-socket
Uncooled isolated DFB laser
$1310 \mathrm{~nm}(\pm 10 \mathrm{~nm})$
10... 1006 MHz
$>40 \mathrm{~dB}$
$78 \mathrm{~dB} \mu \mathrm{~V}$ (PAL-Level)
$84 \mathrm{~dB} \mu \mathrm{~V}$ (QAM-Level, 4 dB back off)
$\pm 2 \mathrm{~dB}$ (adjustable)
$\pm 5 \mathrm{~dB}$
$\geq 50 \mathrm{~dB}$
$\geq 20 \mathrm{~dB}$ (-1 dB /oct., min. 17 dB)
$\leq \pm 0,75 \mathrm{~dB}$
$<-150 \mathrm{~dB} \sqrt{\mathrm{~Hz}}$
$\geq 60 \mathrm{dBc}$ (42 channels CENELEC)
$\geq 65 \mathrm{dBc}$ (42 channels CENELEC)
-20 dB (BC-Input level)

General data
Power input
Dimensions (width x height x depth)
environmental parameters
1 pcs.
≤ 12 W
$30 \times 133 \times 320 \mathrm{~mm}$
$-5 \ldots+45{ }^{\circ} \mathrm{C}$ (ETSI EN 300 019-1-3 Class 3.2)

LX 13 S Range
 CWDM Up Stream Transmitter

Output Powers

$2 \times 3-5 d B m$
 Wavelength 1511/1531 nm \& 1471/1491 nm Fibre Connections SC/APC

CWDM Up Stream Transmitter
High Density Dual CWDM-Transmitter Two CWDM transmitter in one module Highest performance with dual-stage isolator Adjustable OMI
Dual CWDM upstream transmitter with two adjacent CWDM wavelengths for use in return path applications in HFC networks.

LX 13 S 0512	Optical output power, $5 \mathrm{dBm}(3,16 \mathrm{~mW})$
Wavelength 1471/1491 nm	£1.626.55
LX 13 S 0534	Optical output power, $2 \times 5 \mathrm{dBm}(3,16 \mathrm{~mW})$
Wavelength 1511/1531 nm	£1,626.55
LX 13 S 0556	Optical output power, $2 \times 5 \mathrm{dBm}(3,16 \mathrm{~mW})$
Wavelength 1551/1571 nm	£1,626.55
LX 13 S 0578	Optical output power, $2 \times 5 \mathrm{dBm}(3,16 \mathrm{~mW})$
Wavelength 1591/1611 nm	
CWDM Up Stream Transmitter	
Technical data	
Downstream	
Laser type	Uncooled isolated DFB laser
Wavelength transmitter 1	1511/1531 nm
Frequency range	$5 \ldots .500 \mathrm{MHz}$
Optical return loss	$>40 \mathrm{~dB}$
Input level broadcast	$78 \mathrm{~dB} \mathrm{\mu} \mathrm{~V}$ (Low-Level-Input)
Input level Narrowcast	$88 \mathrm{~dB} \mu \mathrm{~V}$ (High-Level-Input)
Narrowcast gain/level adjustment	$\pm 2 \mathrm{~dB}$ (adjustable)
Inputs AGC	$\pm 5 \mathrm{~dB}$
Decoupling NC BC	$\geq 50 \mathrm{~dB}$
Electrical reflection loss	$\geq 20 \mathrm{~dB}$
Ripple	$\leq \pm 0,75 \mathrm{~dB}$
Relative Intensity Noise 1	$<-145 \mathrm{~dB}$ VHz
Input measurement socket	-20/-30 dB (Low-Level-/High-Level-Input)
OMI setting range	3..10 \%
Dynamic range by 40 dB NPR	$\geq 10 \mathrm{~dB}$
Connections	
F-socket	1 pcs.
General data	
Power input	s $10,5 \mathrm{~W}$
Dimensions (width x height x depth)	$30 \times 133 \times 320 \mathrm{~mm}$
Environmental parameters	$-5 . .+45{ }^{\circ} \mathrm{C}$ (ETSI EN 300 019-1-3 Class 3.2)

LX 15 S Range

Output Powers

$1 \times 10 \mathrm{dBm}(10 \mathrm{~mW})$
Wavelength 1555 nm ($\pm 10 \mathrm{~nm}$)
SBS suppression, $16 \mathrm{dBm} \& 21 \mathrm{dBm}$

Fibre Connections SC/APC

Optical transmitter for use in Chassis LX50
Adjustable OMI
Automatic level control (ALC)
Electronic predistortion
SBS suppression
Dispersion compensation
The LX 15 is part of the Optopus product portfolio. LX 15 is a direct modulated fullband transmitter with 1550 nm for use in

RF Overlay and RFoG networks.

LX 15 S 1000	SBS suppression, 16 dBm	
LX 15 S 1001	SBS suppression, 21 dBm	$£ 2,755.96$

1550 nm BC-transmitter

Technical data

Downstream

Laser type
Wavelength transmitter 1
Optical output power
Frequency range
Optical return loss
Input level broadcast
Input level Narrowcast
Narrowcast gain/level adjustment Inputs AGC
Decoupling NC BC
Electrical reflection loss
Ripple
Relative Intensity Noise 1
CSO
CTB
transmission length
Input measurement socket
Connections
F-socket
General data
Power input
Dimensions (width x height x depth)
Environmental parameters

Temperature stabilized DFB laser
$1555 \mathrm{~nm}(\pm 10 \mathrm{~nm})$
$10 \mathrm{dBm}(10 \mathrm{~mW})$
$10 . . .1006 \mathrm{MHz}$
$>40 \mathrm{~dB}$
$78 \mathrm{~dB} \mu \mathrm{~V}$ (PAL-Level)
$84 \mathrm{~dB} \mu \mathrm{~V}$ (QAM-Level, 4 dB back off)
$\pm 2 \mathrm{~dB}$ (adjustable)
$\pm 5 \mathrm{~dB}$
$\geq 50 \mathrm{~dB}$
$\geq 20 \mathrm{~dB}$ (-1 dB /oct., min. 17 dB)
$\leq \pm 0,5 \mathrm{~dB}$
$<-155 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$
$\geq 60 \mathrm{dBc}$ (42 channels CENELEC)
$\geq 65 \mathrm{dBc}$ (42 channels CENELEC)
25 km
-20 dB (BC-Input level)
1 pcs.
$\leq 7 \mathrm{~W}$
$30 \times 133 \times 320 \mathrm{~mm}$
$-5 \ldots+45{ }^{\circ} \mathrm{C}$ (ETSI EN 300 019-1-3 Class 3.2)

LX 17 S Range
Output Power
$1 \times 10 \mathrm{dBm}(10 \mathrm{~mW})$
DWDM Transmitter, ITU-channels
Fibre Connections SC/APC

Optical transmitter for use in Chassis LX50
Adjustable OMI/Auto OMI
Electronic predistortion
SBS suppression
Dispersion compensation
LX 17 is a DWDM transmitter with an
ITU-specific wavelength for use in HFC
broadcast/narrowcast applications.

LX 17 S 1030 Wavelength transmitter 1553.33 nm (ITU-Kanal: 30	
	£1,969.04
LX 17 S 1031 Wavelength transmitter 1552.52 nm (ITU-Kanal: 31)	
$£ 1,969.04$	
LX 17 S 1032 Wavelength transmitter 1551.72 nm (ITU-Kanal: 32)	
$£ 1,969.04$	
LX 17 S 1033 Wavelength transmitter 1550.92 nm (ITU-Kanal: 33)	
£1,969.04	
LX 17 S 1034 Wavelength transmitter 1550.12 nm (ITU-Kanal: 34)	
£1,969.04	
LX 17 S 1035 Wavelength transmitter 1549.32 nm (ITU-Kanal: 35)	
	£1,969.04
LX 17 S 1036 Wavelength transmitter 1548.32 nm (ITU-Kanal: 36)	
£1,969.04	
LX 17 S 1037 Wavelength transmitter 1547.72 nm (ITU-Kanal: 37)	
DWDM Transmitter, ITU-channels Technical data $£ 1,969.04$	
Downstream	
Laser type	Temperature stabilized DFB laser
Optical output power	$10 \mathrm{dBm}(10 \mathrm{~mW})$
Frequency range	$10 . . .1006 \mathrm{MHz}$
Optical return loss	$>40 \mathrm{~dB}$
Input level broadcast	$78 \mathrm{~dB} \mu \mathrm{~V}$ (PAL-Level)
Input level Narrowcast	$84 \mathrm{~dB} \mu \mathrm{~V}$ (QAM-Level, 4 dB back off)
Decoupling NC BC	$\geq 50 \mathrm{~dB}$
Electrical reflection loss	$\geq 20 \mathrm{~dB}$ (-1 dB /oct., min. 17 dB)
Relative Intensity Noise 1	$<-155 \mathrm{dBV} \mathrm{Hz}$
Input measurement socket	-20/-30 dB (Low-Level-/High-Level-Input)
OMI setting range	4... 12 \%
Dynamic range by 40 dB NPR	$\geq 10 \mathrm{~dB}$
MER	$\geq 44 \mathrm{~dB}$
BER	$\leq 10-9$
Connections	
F-socket	1 pcs.
General data	
Power input	$\leq 7 \mathrm{~W}$
Dimensions (width x height x depth)	$30 \times 133 \times 320 \mathrm{~mm}$
Environmental parameters	$-5 . . .+45^{\circ} \mathrm{C}$ (ETSI EN $300019-1-3$ Class 3.2)

LX 30 Range

Optical amplifier ,1530-1565 nm, can be used as a repeater and split and amplify. to extend system reach to very large systems
Fibre Connections SC/APC

Amplification of optical signls in the C-band
Optical amplifier for use in Chassis LX 50
Up to four output ports with adjustable output power Optical test port for the output signal
Wide input power range enables application as booster or inline-amplifier
Low electrical power consumption

LX 30 S 1401	Optical output power, $1 \times 14 \mathrm{dBm}$
	£2,703.27
LX 30 S 1402	Optical output power, $2 \times 14 \mathrm{dBm}$
	£2,988.49
LX 30 S 1701	Optical output power, $1 \times 17 \mathrm{dBm}$
	£2,749.09
LX 30 S 1702	Optical output power, $2 \times 17 \mathrm{dBm}$
	£3642.55
LX 30 S 1704	Optical output power, $4 \times 17 \mathrm{dBm}$
	$£ 5,383.64$
LX 30 S 2101	Optical output power, $1 \times 21 \mathrm{dBm}$
	£3,545.18
LX 30 S 2102	Optical output power, $2 \times 21 \mathrm{dBm}$
	£4,999.90

Technical data

Amplifier inputs
Optical input power
Output level tolerance
Output level variation
Wave length
Setting range amplifier
Noise fugure
Return loss
Decoupling
Optical test point output
Connections
SC/APC socket
General data
Power input
Dimensions (width x height x depth)
environmental parameters

1 pcs.
$-2 \ldots+10 \mathrm{dBm}$
polarization, wavelength range and
$\pm 0,5 \mathrm{~dB}$
1530... 1565 nm
$5 \mathrm{~dB}(0,1 \mathrm{~dB}$-steps)
output power and signal wave length 1550
$\geq 45 \mathrm{~dB}$ (input - output)
$\geq 40 \mathrm{~dB}$ (output - input)
-2.5 dB (in relation to EDFA-output power)
1 pcs.
typ. 5 W , max. 10 W
$30 \times 133 \times 320 \mathrm{~mm}$
$-5 \ldots+45{ }^{\circ} \mathrm{C}$ (ETSI EN 300 019-1-3 Class 3.

LR26A Fiber Optic Receiver,Local Distribution

Downstream 47-862 MHz

LR 26A

Downstream	
Wavelength	1290nm - 1600nm
Optical return loss	> 40 dB
Fiber	Single Mode
Optical connector	SC/APC
Output impedance	75 ohm
Output return loss	$\geq 18 \mathrm{~dB}(-1,5 \mathrm{~dB} /$
Transmission bandwidth	47-862 MHz
Optical input level for controlled electrical output level	-7 ...+0 dBm
Controlled output level ($\mathrm{ALC}=$ on, $\mathrm{OMI}=5 \%$)	115 dBuV
Distorsion products for (42 ch, CENELEC, flat)	109 dBuV
CTB,CSO	> 60 dB
Output level $42 \mathrm{ch}, \mathrm{CENELEC}, 9 \mathrm{~dB}$ slope. Flat input OdBm	m 115 dBuV
Output level $42 \mathrm{ch}, \mathrm{CENELEC}, 0 \mathrm{~dB}$ slope. Flat input 0 dBm	- 111 dBuV
CTB,CSO	> 60 dB
Attenuator adjustable	0-15 dB
Steps	0.5 dB
Equalizer adjustable	0-15 dB
Steps	0.5 dB
Sensitivity	$<5.5 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
RF test point at output	- 20 dB RF test

OK 41A
Programming Unit

£51. ${ }^{55}$

Handset functions using OK41/41A

Attenuation	$0-15 \mathrm{~dB}$
Equalizer	$0-15 \mathrm{~dB}$
AGC control	on / manual
AGC offset	$-3 \ldots+3 \mathrm{~dB}$

Monitoring

Optical input level
Attenuator settings
Equalizer settings
AGC status

General

Operating voltage	$180-265 \mathrm{~V} \mathrm{AC}$
Power consumption	$<15 \mathrm{~W}$
Connectors	PG11
Protection class	IP 24
Operating temperature	$-20^{\circ} \mathrm{C} . .+55^{\circ} \mathrm{C}$
EMC	EN $50083-2$
Dimensions	$232 \times 145 \times 86 \mathrm{~m}$
Price	$£ 197.02$

Select F or IEC Connector

F

IEC

TIEC $1 £ 10.03$

Fiber Optic Micro Transmitters Receivers

	LR91
Downstream	$1260-1630 \mathrm{~nm}$
Wavelength	$>40 \mathrm{~dB}$
Opt. Return Loss	Single Mode
Fiber	SC/APC
Optical Connector	75 Ohms
Output Impedance	$85-1006 \mathrm{MHz}$
Frequency Range	$97-1006 \mathrm{MHz}$
Output Level with input at -8 dBm	1 dBmodBuV
Optical Input Level	$4 \mathrm{pA} / \mathrm{V}$ Hz
Typical noise input	$\geq 50 \mathrm{~dB}$
Signal to noise at -5 dBm	$98-100 \mathrm{dBuV}$
Max RF out $, \mathrm{CSO} \geq 60 \mathrm{~d}, \mathrm{CTB} \geq 60 \mathrm{~dB},-4 \mathrm{~dB}$ slope	

Low Cost ,High Quality
Very cost effective for CATV distribution,fibre cables are mutch cheaper than coax.

Fibre Optic Micro Receivers \& Transmitter 1100-1600 nm

Transmitter $40-1000 \mathrm{MHz}$
Complete with PSU

Using Fibrer Optics for TV distribution ,is cost effective. Fibre cables can be located near high voltage mains cables. See page 34 for very low cost splicer

1 mW	TXF	1	$£ 95.00$
3 mW	TXF	3	$£ 95.00$
5 mW	TXF	5	$£ 95.00$

Prices ex VAT
$5 \mathrm{~mW}=54 \mathrm{dBuV}$
Loss at 1600 nm on $\mathbf{1 k m}$ fibre
cable is typically . 0.21 dB

Loss on 100 m CT167 coax at
860 MHz is -12 dB

Receivers. F conector output for direct connection to RF didtribution amplifier

Connection Types				
RF out connector	75Ω F-"Female" connector			
Optical Connector In	SC/APC			
Optical Info				
Input Optical Power		$0 \sim-18 \mathrm{dBm}$	$0 \mathrm{dBm}=$ 47 dBmV	$.-18 \mathrm{dBm}=$
Optical Return Loss		$>45 \mathrm{~dB}$		
Optical Receiver Wavelength		$1100 \sim 1600 \mathrm{~nm}$		
Optical Fiber Type		Single Mode		
RF Parameter		$40-1000 \mathrm{MHZ}$		
Frequency Range		$\pm 0.5 \mathrm{~dB}$		
Flatness				
Output Level	70 dBuV	0 dbm optical input power		
Output Impedance	75Ω			
C/N	52 dbc	0 dbm optical input power		
Other Parameter				
Power Input Voltage		N/A MA		
Power Consumption		$49 * 16 * 12 \mathrm{~mm}$		
Dimensions		0.01 Kg		
Net weight				

RX3FL £1.95
Great for DVB-T

SC/APC In. F connector out

AFP F connector MaleMale AdaptorPrice $£ 0.64$

LNB Full band fiber and RF output

TCG15 FDF G1-O Price $£ 99.95$

Quad band LNB with fiber optic output.

DC power via
F connector
FC/PC fiber connector

Converts 4 bands H/V High/Low
Into a single mode fiber $950 \mathrm{MHz}-5.45 \mathrm{GHz} 7 \mathrm{dBm} *$ at 1310 nm .
This provides typically $20 \mathrm{~dB}^{+1-2 \mathrm{~dB}}$ of reach.
The typical noise figure at $25^{\operatorname{deg} \mathrm{C}}$ is 0.5 dB .
Gain flatness0.95-5.45GHz 5 dB
LO stability $\quad \pm 1 \mathrm{MHz}$
Ageing $\quad 10$ years $\pm 4 \mathrm{MHz}$
Optical output is via a FC/PC connector.
In band intermodulation products. $\mathrm{dBc}-23 \mathrm{~dB}$
The power requirement $12 \mathrm{~V}<450 \mathrm{~mA}$.
Power supply included DC routed with via F connector fitted to PSU.

TCG15 HB G1-O Price $£ 85.98$
Quad band LNB with wholeband RF output option.

Converts 4 bands H/V High/Low
Into a single coaxial output
$.95-5.45 \mathrm{GHz} 50 \Omega$
This enables large fiber sat systems as it can feed several fiber transmitters .Normally with a direct fiber output from the LNB there is a limit to how many ways the fibre cable can be split. Using a whole,band LNB many fiber transmitters can be added, to enable very much larger systems to be constructed.

Use very low loss feeder from the LNB to the fiber transmitters if the cable run is long to the head end.

The power requirement is 12VDC power typically 450 ma via a N connector 50Ω.
Fits standard dishes with 40 mm clamp.

LNB fiber optic output with C120 flange option.

C120 Feed horn TADF 120
Price $£ 33.48$

TCG15 FDF G1-O C120 3dB higher output than standard LNB,doubles the number of ways the fibre cable can be split compared to ,TCG15 FDF G1-O.

Price $£ 90.15$

Four way splitter .95-5.45cHz.

TD4-8-5G

4 way active splitter .95-5.45GHz
Connectors N Type 50 ohm
Price £39.0
Power supply TD4-8-5G
PSU 12V 1A £7.95

Lead to connect PSU jack to
F connector.
FWSL $£ 1.45$

TCX 78 7/8" 50 ohm feeder
May be required if a longer coax lead is needed to connect from whole band LNB.
Excessive oax cable losses at the top of the band can be reduced if a lower loss feeder is used from the LNB to the laser transmitter. See transmitter section for connectors and similar cables that have low loss at 5 GHz .

Frequency Attenuation Attenuation MHz dB/100 ft dB/100 m

1000	1.25	4.12
2300	2.02	6.63
5000	3.23	10.6

The above type of feeder may be a solution for wholeband LNB downleads if the downlead is not very short. RG214 a cable similar to CT167 in size (10.8mm OD) Has a loss of 23 dB at 900 MHz and 72 dB at 5000 MHz 100m.

7/8" feeder
$1 / 2^{\prime \prime}$ feeder
30 m of $7 / 8$ feeder equals typically a 6 dB slope $960-5000 \mathrm{MHz}$ and approx. 2.0dB across one band
30 m of $1 / 2^{\prime \prime}$ feeder equals typically a $3-4 \mathrm{~dB}$ slope across one band If there is a 3 dB slope across one of the four band between .95 to 5.65 Ghz the system will only feed 50% of the fiber nodes that it otherwise could if there were no or little slope.
So fitting a very good quality downlead from the LNB is very important. Because of the OD of a $7 / 8$ feeder 50 mm and its bending radius a jumper cable will be needed at both ends to reduce the cable size to a manageable size to connect into the LNB and the fiber transmitter or splitter RG214 is suitable for this.

Fiber receivers

TYG1QUAD TA
 Price £79.05

Optical input is via a
FC/PC connector .

Connect directly to sat receivers .
Powered via DC voltage from sat receiver or with a separate PSU, see below, comes with fixing bracket

Converts optical input to 4 switched outputs $\mathrm{H} /$ Highband $\mathrm{H} /$ Lowband $1.1 \mathrm{GHz}-2.10 \mathrm{GHz}$. V/Highband V/Lowband $0.95 \mathrm{GHz}-2.10 \mathrm{GHz}$.

The minimum input level is -13 dBm and the maximum input 0 dBm . Nominal output 70dBuv, this can vary depending on noise floor and variable input levels on different multiplexes.

Fiber receivers quad band output.

TYG1QUAT A Price £69.07

Connects to sat multi switches.
Powered via DC voltage from switch or with a separate PSU ,see below, comes with fixing bracket.

Optical Input is via a FC/PC connector
Used for switch systems
Converts optical input to 4 outputs bands consisting of. $\mathrm{H} / \mathrm{Highb}$ and $\mathrm{H} /$ Lowband $1.1 \mathrm{GHz}-2.10 \mathrm{GHz}$.

V/Highband V/Lowband $0.95 \mathrm{GHz}-2.10 \mathrm{GHz}$.
Also one terrestrial output.
The minimum input level is -13 dBm and the maximum input 0 dBm . Allowance has to be made in the different levels of each carrier transmitted within each band and frequency response errors in the sat dish which will limit the length of fiber used and /or how many splitters are in the network.
If the system reach for example is normally 20 dB with the input levels all similar ,then if the difference in input carrier levels are poor and vary by 10 dB then the system reach is reduced by 10dB. This would also apply in a non fiber network.
There is some allowance for this, approx 3dB for a single fiber output driving 32 points.
It is more critical to ensure the front end levels are correct on a fiber network as adding additional in-line fiber optic amplifiers in the chain is a more expensive option than ensuring the levels are correct at the input.
Power supply $£ 10.95$

Sky Q adaptor
Compatible with most traditional multiswitches.

Supplied with a 20 volt power supply.

TYGQ 100A2 Price £59.03

RF Specification	
Parameter	Min \quad Max
Nominal impedance	75Ω
Return loss	10 dB
Gain variation across band	6 dB
Nominal output level	$80 \mathrm{dBu} V$

Sky Q Sat receivers enables recordings to be made on up to 6 programs at once as well as providing UHD TV reception. To do this frequencies up to 5.4 GHz are used on the inputs to the Sky Q receiver to avoid too many input coax cables. Also a facility is provided to input terrestrial broadcasts. A typical home can then have several TV sets fed from a single Sky Q receiver with Sky satellite TV and Terrestrial TV and radio via Wi Fi radiated in the home from the Sky box.

	Min	
Max		
Input 1 RF frequency range (MHz)	88	1950
Input 2 RF frequency range $(\mathrm{MHz}$	950	1950
Input 3 RF frequency range $(\mathrm{MHz}$	1100	2150
Input 4 RF frequency range $(\mathrm{MHz}$	1100	2150
Impedance		75Ω
Nominal input level		$75 \mathrm{~dB} \mathrm{~V} V$

Inputs

Sat distribution systems can be configured for Sky Q and standard Sky HD /Freesat
Contact tech support on mgrea@bellsouth.net.

Optical cabling

Fibre type	Single mode
Standard	Gl - approved G657a

Dimensions	
Size $(\mathrm{W} \times \mathrm{H} \times \mathrm{D})$	$127 \mathrm{~mm} \times 118 \mathrm{~mm} \times 38 \mathrm{~mm}$
Weight	302 g

Fibre Integrated Reception System

- Converts 4 IF polarities to a single optical output
- Outputs Fibre signal for distribution through 1×64 nodes
- Colour coded inputs for polarity matching
- Distributes DTT , FM and DAB
- PSU included

£874.00 Ex VAT

The Fibre TQB-F4 has been designed to combine 4 satellite polarities, DTT, FM and DAB onto a single optical output for distribution through a Passive Optical Network of 64 node points. The unit is used to combine all 4 polarities from 1 satellite, or a mixture of 4 polarities from any 4 satellites .

Technical Specifications

Optical specification

Parameter	Min	Typ	Max	Units
Laser 1 wavelength		1550	nm	
Laser 2 wavelength		1530	nm	
Total optical output power	7	8	$\mathrm{dBm} \quad$ Combined 1530nm and 1550nm	

Satellite band RF specification

Input RF frequency	950	2150	MHz	SAT1, SAT2, SAT3 and SAT4 inputs
Input impedance			Ohm	
Number of inputs				
Input return loss			dB	
Total input power		97	$d B \mu \mathrm{~V}$	
Maximum input power per transponder		82	$\mathrm{dB} \mu \mathrm{V}$	For 32 transponders
Output RF frequency		and 3)	MHz	Stacked frequency bands
Terrestrial band RF specification				
RF frequency band	174	862	MHz	
Input impedance			Ohm	
Input return loss			dB	
Maximum input power	(black triangle)			
Noise figure	10			

DC specifications

Power supply voltage	122021 V		
Current consumption	$\leq 500 \mathrm{~mA}$	For 20V power supply (not including LNB)	
LNB voltage	Available on each input	All inputs short circuit protected	
Connectors		Environmental specifica	
Output	Fibre optic FC/PC	Operating Temperature	-30 to $60^{\circ} \mathrm{C}$
Satellite inputs	F	Storage Temperature	-10 to $50^{\circ} \mathrm{C}$
DC connector	2.1 mm socket		
Dimensions		Optical Cabeling	
Size	$140 \times 145 \times 33 \mathrm{~mm}$	Fibre Type	Single mode
Weight	300 g	Standard	GI - Approved G657a

System examples, 384 Twin sat,Terrestrial outputs.

Fiber Optical Splitters \& Accessories

Splitters for fusion splicing.FC/PC and SC/APC connectors
Fusion spliced splitters are more robust and have a lower optical loss compared to mechanical connectors. Losses of $<0.02 \mathrm{~dB}$ can be achieved on a fusion connection.

Mechanical connections have losses which are typically 0.3dB a con- FC/PC type nection, so this has to be allowed for in network design. These losses do not seem much ,but when you compare a connection loss of 0.3 dB it is equal to the attenuation of approx 1 kM of fiber cable a consideration of these losses has to be made..
Fusion splicing is recommended where the integrity and reliability of the network is extremely important.
Mechanical connectors are a good alternative for non critical applications such as CATV networks.
An alternative to purchasing a fusion splicer is to employ an experienced subcontractor. Costs as low as $£ 3.00$ a splice are possible if there are about 100 splices on a project that can be done on one visit.
Design must, as much as possible,limit the amount of cascaded mechanical connections, as MTBF figures increase exponentially the more mechanical connectors are cascaded.
Most new installations can be designed with just a few connections cascaded, typically four to five so reliability is built in the design of the network..

FC/PC connectors are more robust mechanically.
SC/APC connectors have an angled fiber connection and provide slightly better mating between surfaces and consequently lower losses than FC/PC connectors.
FC/PC connectors are better in outdoor and harsh environments used with suitable sealing tapes. So allowances have to be made for the optical loss of the different types of connection used if several are used in a chain.

SC/APC type coupler,for joining two pre terminated fiber cables together.

FC/PC
Terminator
TILFBT
£2.86

FC/PC type Attenuator FC/PC FIBATT-5dB 5 dB FC/PC FIBATT-10dB 10dB FC/PC FIBATT-15dB 15dB FC/PC FIBATT-20dB 20dB £6.55

Pigtails with single mode fiber available with SC/APC or FC/PC connector to fusion splice to an incoming fiber

Patch with SC/APC type on one end and a FC/PC type on the other end .See list of leads with fiber connectors

SC/APC type connector

Fiber items Large reduction in prices contact sales

Splitters with SC/APC and FC/PC connectors 1310-1550nm Polarization stability 0.1 dB
Typical variation in insertion /side loss 0.1 dB Operating temperature -30 to +70 deg

Type	Description	Side loss	Through loss	Connector	Price
TD2-3.2FBR	Two way equal splitter	3.2 dB	3.2 dB	None	£12.92
TA2-3.8-2.9FBR	Two way unequal splitter(tap)	3.8 dB	2.9 dB	None	£21.00
TA2-4.3-2.5FBR	Two way unequal splitter(tap)	4.3 dB	2.5 dB	None	£21.00
TA2-5.6-1.8FBR	Two way unequal splitter(tap)	5.6 dB	1.8 dB	None	£21.00
TA2-6.4-1.45FBR	Two way unequal splitter(tap)	6.4 dB	1.45 dB	None	£21.00
TA2-7.4-1.15FBR	Two way unequal splitter(tap)	7.4 dB	1.15 dB	None	£21.00
TA2-8.7-0.9FBR	Two way unequal splitter(tap)	8.7 dB	0.9 dB	None	£21.00
TA2-10.6-0.6FBR	Two way unequal splitter(tap)	10.05 dB	0.6 dB	None	£21.00
TA2-13.7-0.35FBR	Two way unequal splitter(tap)	13.7 dB	0.35 dB	None	£21.00
TA2-21-0.15FBR	Two way unequal splitter(tap)	21 dB	0.15 dB	None	£21.00
TD2-3.2FBR SC/APC	Two way equal splitter	3.2 dB	3.2 dB	SC/APC	£13.80
TA2-3.8-2.9FBR SC/APC	Two way unequal splitter(tap)	3.8 dB	2.9 dB	SC/APC	£21.00
TA2-4.3-2.5FBR SC/APC	Two way unequal splitter(tap)	4.3 dB	2.5 dB	SC/APC	£21.00
TA2-5.6-1.8FBR SC/APC	Two way unequal splitter(tap)	5.6 dB	1.8 dB	SC/APC	£21.00
TA2-6.4-1.45FBR SC/APC	Two way unequal splitter(tap)	6.4 dB	1.45 dB	SC/APC	£21.00
TA2-7.4-1.15FBR SC/APC	Two way unequal splitter(tap)	7.4 dB	1.15 dB	SC/APC	£21.00
TA2-8.7-0.9FBR SC/APC	Two way unequal splitter(tap)	8.7 dB	0.9 dB	SC/APC	£21.00
TA2-10.6-0.6FBR SC/APC	Two way unequal splitter(tap)	10.05 dB	0.6 dB	SC/APC	£21.00
TA2-13.7-0.35FBR SC/APC	Two way unequal splitter(tap)	13.7 dB	0.35 dB	SC/APC	£21.00
TA2-21-0.15FBR SC/APC	Two way unequal splitter(tap)	21 dB	0.15 dB	SC/APC	£21.00
TD2-3.2FBR FC/PC	Two way equal splitter	3.2 dB	3.2 dB	FC/PC	£14.92
TA2-3.8-2.9FBR FC/PC	Two way unequal splitter(tap)	3.8 dB	2.9 dB	FC/PC	£21.00
TA2-4.3-2.5FBR FC/PC	Two way unequal splitter(tap)	4.3 dB	2.5 dB	FC/PC	£21.00
TA2-5.6-1.8FBR FC/PC	Two way unequal splitter(tap)	5.6 dB	1.8 dB	FC/PC	£21.00
TA2-6.4-1.45FBR FC/PC	Two way unequal splitter(tap)	6.4 dB	1.45 dB	FC/PC	£21.00
TA2-7.4-1.15FBR FC/PC	Two way unequal splitter(tap)	7.4 dB	1.15 dB	FC/PC	£21.00
TA2-8.7-0.9FBR FC/PC	Two way unequal splitter(tap)	8.7 dB	0.9 dB	FC/PC	£21.00
TA2-10.6-0.6FBR FC/PC	Two way unequal splitter(tap)	10.05 dB	0.6 dB	FC/PC	£21.00
TA2-13.7-0.35FBR FC/PC	Two way unequal splitter(tap)	13.7 dB	0.35 dB	FC/PC	£21.00
TA2-21-0.15FBR FC/PC	Two way unequal splitter(tap)	21 dB	0.15 dB	FC/PC	£21.00
TD3-5.7FBR	Three way splitter	$3 \times 5.7 \mathrm{~dB}$		None	$£ 15.15$
TD4-6.6FBR	Four way splitter	4x 6.6dB		None	£19.70
TD8-10.7FBR	Eight way splitter	$8 \times 10.7 \mathrm{~dB}$		None	£41.00
TD16-13.7FBR	Sixteen way splitter	16x 13.7dB		None	£88.00
TD32-16.7FBR	Thirty two way splitter	32 x 16.7 dB		None	£182.00
TD3-5.7FBR SC/APC	Three way splitter	$3 \times 5.7 \mathrm{~dB}$		SC/APC	£15.65
TD4-6.6FBR SC/APC	Four way splitter	4 x 6.6 dB		SC/APC	£20.50
TD8-10.7FBR SC/APC	Eight way splitter	$8 \times 10.7 \mathrm{~dB}$		SC/APC	£42.00
TD16-13.7FBR SC/APC	Sixteen way splitter	16x 13.7 dB		SC/APC	£90.00
TD32-16.7FBR SC/APC	Thirty two way splitter	32 x 16.7 dB		SC/APC	£187.00
TD3-5.7FBR FC/PC	Three way splitter	$3 \times 5.7 \mathrm{~dB}$		FC/PC	£25.26
TD4-6.6FBR FC/PC	Four way splitter	4x 6.6dB		FC/PC	£35.71
TD8-10.7FBR FC/PC	Eight way splitter	$8 \times 10.7 \mathrm{~dB}$		FC/PC	$£ 78.70$

- $\sum_{\text {systems }}^{\text {Fiber }}$
 Fiber Cables Large reduction in prices contact sales

Pre terminated Single Mode leads/reels		Connector	Price	
TLP-FC/PC1M	1 meter lead	FC/PC	£3.10	
TLP-FC/PC3M	3 meter lead	FC/PC	£3.40	
TLP-FC/PC5M	5 meter lead	FC/PC	£4.30	
TLP-FC/PC10M	10 meter lead	FC/PC	£6.10	
TLP-FC/PC15M	15 meter lead	FC/PC	£10.46	
TLP-FC/PC20M	20 meter lead	FC/PC	£13.25	
TLP-FC/PC30M	30 meter lead	FC/PC	£17.85	
TLP-FC/PC40M	40 meter lead	FC/PC	£22.45	
TLP-FC/PC50M	50 meter lead	FC/PC	£29.99	
TLP-FC/PC75M	75 meter lead	FC/PC	£43.65	
TLP-FC/PC100M	100 meter reel	FC/PC	£59.11	
TLP-FC/PC150M	150 meter reel	FC/PC	£90.02	
TLP-FC/PC200M	200 meter reel	FC/PC	£116.95	
TLP-FC/PC500M	500 meter reel	FC/PC	£286.24	
TLP-FC/PC-PIG	2.5 m FC/PC pigtail	FC/PC	£4.50	
TLP-SC/APC0.5M	0.5 meter lead	SC/APC	£3.28	
TLP-SC/APC2M	2 meter lead	SC/APC	£3.60	
TLP-SC/APC5M	5 meter lead	SC/APC	£4.60	
TLP-SC/APC-PIG	2.5 m SC/APC pigtail	SC/APC	£3.90	
				$50+$
TLP-SC/APC-FC/PC0.5M	0.5 meter lead	SC/APC to FC/PC	$£ 9.63$	£3.28
TLP-SC/APC-FC/PC2M	2 meter lead	SC/APC to FC/PC	£10.35	£3.60
TLP-SC/APC-FC/PC5M	5 meter lead	SC/APC to FC/PC	£10.93	£4.60
TLP-SC/APC-SC/PC0.5M	0.5 meter lead	SC/APC to SC/PC		£3.98
TLP-SC/APC-SC/PC2M	2 meter lead	SC/APC to SC/PC	£10.35	£4.60
TLP-SC/APC-SC/PC5M	5 meter lead	SC/APC to SC/PC	£10.39	$£ 5.50$

$50+$

Pre terminated Single Mode leads/reels		Connector	Price	
TLP-FC/PC1M	1 meter lead	FC/PC	£3.10	
TLP-FC/PC3M	3 meter lead	FC/PC	£3.40	
TLP-FC/PC5M	5 meter lead	FC/PC	£4.30	
TLP-FC/PC10M	10 meter lead	FC/PC	£6.10	
TLP-FC/PC15M	15 meter lead	FC/PC	£10.46	
TLP-FC/PC20M	20 meter lead	FC/PC	£13.25	
TLP-FC/PC30M	30 meter lead	FC/PC	$£ 17.85$	
TLP-FC/PC40M	40 meter lead	FC/PC	£22.45	
TLP-FC/PC50M	50 meter lead	FC/PC	£29.99	
TLP-FC/PC75M	75 meter lead	FC/PC	£43.65	
TLP-FC/PC100M	100 meter reel	FC/PC	£59.11	
TLP-FC/PC150M	150 meter reel	FC/PC	£90.02	
TLP-FC/PC200M	200 meter reel	FC/PC	£116.95	
TLP-FC/PC500M	500 meter reel	FC/PC	£286.24	
TLP-FC/PC-PIG	2.5 m FC/PC pigtail	FC/PC	£4.50	
TLP-SC/APC0.5M	0.5 meter lead	SC/APC	£3.28	
TLP-SC/APC2M	2 meter lead	SC/APC	£3.60	
TLP-SC/APC5M	5 meter lead	SC/APC	£4.60	
TLP-SC/APC-PIG	2.5 m SC/APC pigtail	SC/APC	£3.90	
				$50+$
TLP-SC/APC-FC/PC0.5M	0.5 meter lead	SC/APC to FC/PC	£9.63	£3.28
TLP-SC/APC-FC/PC2M	2 meter lead	SC/APC to FC/PC	£10.35	$£ 3.60$
TLP-SC/APC-FC/PC5M	5 meter lead	SC/APC to FC/PC	£10.93	£4.60
TLP-SC/APC-SC/PC0.5M	0.5 meter lead	SC/APC to SC/PC		£3.98
TLP-SC/APC-SC/PC2M	2 meter lead	SC/APC to SC/PC	£10.35	£4.60
TLP-SC/APC-SC/PC5M	5 meter lead	SC/APC to SC/PC	£10.39	$£ 5.50$

Fiber pre terminated leads

Armoured single fiber cable. Single mode PVC sheath.

PVC sheath.

3 mm O/D

3 mm O/D

PVC sheath.

PVC sheath.

3 mm O/D

PVC sheath.

3 mm O/D

PVC sheath.

Unterminated Single Mode leads

TLP-UT 200M	200 meter reel	unterminated	$£ 110.86$
TLP-UT500M	500 meter reel	unterminated	$£ 280.87$

$5.9 \mathrm{~mm} \mathrm{O} / \mathrm{D}$

Polyethylene sheath.

Fiber Cables single mode

Universal . Indoor Outdoor
Attenuation 1310 nm 0.32 dBkm average, $\max 0.4 \mathrm{dBkm}, 1550 \mathrm{~nm} 0.21 \mathrm{dBkm}$ average, max 0.3 dBkm FRNC/LSNH Material Orange

Number of Fibers	Weight kg km	Pulling Tension N	Outside Diameter $m m$	Minimum Bend Radius mm	Part Number		*Reel size m		
2	19	800	4.67	54	TSMF802	500 m	$£ 187.78$	2100	$£ 1,124.93$
4	24	860	5.08	59	TSMF804	500 m	$£ 267.84$	2100	$£ 1,346.59$
6	28	1200	5.59	59	TSMF806	500 m	$£ 320.62$	2100	$£ 1,692.60$
8	43	1200	5.97	60	TSMF808	500 m	$£ 403.00$	2100	$£ 1,878.46$
12	40	1330	6.48	76	TSMF812	500 m	$£ 447.25$	2100	$£ 1,878.46$

Single mode fiber cable PVC sheath.

Attenuation 1310 nm 0.32 dBkm average, $\max 0.4 \mathrm{dBkm}, 1550 \mathrm{~nm} 0.21 \mathrm{dBkm}$ average, max 0.03 dBkm Sheath Material PE Black

Number of Fibers	Weight kg km	Pulling Tension N	Outside Diameter mm	Minimum Bend Radius mm	Part Number		*Reel size m		
4	149.00	3500	5.80	58	TSMFPE804	500 m	$£ 161.46$	2100	$£ 616.50$
6	151.70	3500	5.80	58	TSMFPE806	500 m	$£ 185.33$	2100	$£ 707.64$
8	151.70	3500	8.70	58	TSMFPE808	500 m	$£ 228.21$	2100	$£ 871.36$
12	151.70	3500	8.70	58	TSMFPE812	500 m	$£ 256.69$	2100	$£ 980.08$
24	207.00	3500	8.70	87	TSMFPE824	500 m	$£ 530.85$	2100	$£ 2,026.89$
36	406.00	3500	12.20	183	TSMFPE836	500 m	$£ 810.90$	2100	$£ 3,096.16$
48	420.00	3500	12.20	183	TSMFPE848	500 m	$£ 942.10$	2100	$£ 3,597.10$

[^1]

Fibre Light Source

TLS - 106
Visible Light Fault Locater, Ideal for testing fibre networks \& terminaPrice $£ 66.39$

TFS1 - Fibre Stripper, for use with 3.0 mm fibre, designed to remove outer jacket and both buffer coverings.
Price $£ 19.28$
TFC1 - Fibre Cleaver, Professional cleaving tool for use with 3.0 mm fiibre and Field termination kit. Price $£ 418.93$

TKS1 Kevlar Scissors, specifically designed for cutting the Kevlar strands within the 3 mm fiber cable .Price $£ 14.73$

TCC2 Cleaning Cube, the cleaning cube is the perfect cleaning solution for terminated fibre connections, use dry or solvent wet, on the bench or in

TFSC1 Fiberscope allows the installer to check fibre terminations,ideal for use in the field. Price £81.11
TCC1 CleanCore, the CleanCore cassette is supplied with a removable cartridge containing the cleaning fabric. The cartridge supports 400 cleaning cycles.

Price $£$.

TSP1 Solvent Pen, powerful universal cleaning solvent in a convenient pen, compact, portable and most importantly effective cleaning solvent for fibre connections. Price $£ 4.55$

the field. Price $£ 12.68$

TFR1 Fibre Rods, 6 flexible rods (varying flex), $2 \times \mathrm{FC} / \mathrm{PC}$ adaptor + wire pulling sock. Aids the installer with pre \& un-terminated fibre cablerouting.
Compatible with Super Rod products.
Price $£ 31.50$

TFS1 Fibre swabs 2.5 mm Fibre Swabs,the 2.5 mm foam swabs are the most versatile and cost effective way to clean your female fibre end ports.
Price $£ 3.97$

TSOPM 1 Optiscan Satellite IF \&

Optical Power Meter, for use with fiber optic LNB and accurate alignment and network testing.
In dBuV \& dBm.

Specification

Full band 950 to 2150 MHz scan or down to 160 MHz at full zoom.
Measuring Range:
RF Input level range 40 dBuV to 90 dBuV
Optical range +10 to -25 dBm
Accuracy:
Typically $+/-1 \mathrm{~dB}$.
MER:
(SNR) Pass 8dB or more. Marginal 6-7 dB fail less
than 5 dB

BER:
Pass must be greater than 1E-3 on Pre Viterbi.
Input: RF 75 ohm BNC. BNC to F adaptor
supplied.
Optical type FC/PC.
DiSEqC:
Version 1.2 compatible. Full control of motorised
dishes, any DiSEqC command can be generated.
On screen battery indicator:
Battery life 5 hours when powering typical
LNB.
Charge time:
12 hours,
Accessories supplied:
Mains charger, car charger lead and BNC to F

Discontinued

TFOFS 1 Fiber optic fusion splice

Price $£ 494.83$

Fiber cleaved length:16mm
Specifications
Average splicing loss. $\quad 0.01 \mathrm{~dB}$ MM $/ 0.02 \mathrm{~dB}$ SM
Return loss $>60 \mathrm{~dB}$
Typical splicing time 8 seconds.
Typical heating time 40seconds.
Data Transmission
RS-232.
Work mode
Program/Splicing/Heating: Automation or manual optionally
General Specifications
Power : $100-240 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz} 12 \mathrm{~V} 25 \mathrm{~W}$
(optional)Inner Li-ion battery charger and AC adaptor
Battery Life Support 80 splice and heater operating on one charge.
$\begin{array}{lc}\text { Weight } & 3.3 \mathrm{~kg} \\ \text { Dimensions }(\mathrm{L} \times \mathrm{W} \times \mathrm{H}) & 170 \times 170 \times 140 \mathrm{~mm}\end{array}$

Price $£ 825.00$

TXPB 700

Low Pass Filter for 700 MHz Clearance $>50 \mathrm{~dB}$ rejection.

Shortly the UK will have cleared all the spectrum from 700 MHz to 860 MHz curently used for TV broadcast. This will be used in the future for 4 G \& 5 G mobile phones. Because of the risk of interference to wideband amplifiers, masthead or distribution, and in extreme cases on the TV tuner, if the interference is excessive it will simply wipe out or pixalate digital TV reception. Fitting a filter on all installations that are capable of receiving signals above 700 MHz is absolutely essential as the interference that may result will be difficult to diagnose due to the intermittent transmissions from mobile phones and cell towers.

DC Through for masthead preamps

Specification TXPB 700 Low pass filter

Features	Bandwidth	Specifications
	$5-640 \mathrm{MHz}$	0.5 dB (typ)/1.0dB (max)
	$640-690 \mathrm{MHz}$	1.0 dB (typ)/2.5dB (max)
Insertion loss	$690-694 \mathrm{MHz}$	2.5 dB (typ)/3.5dB (max)
Return loss	$5-40 \mathrm{MHz}$	20 dB (typ)/18(min)
	$40-694 \mathrm{MHz}$	16dB(typ)/14(min)
Rejection band loss	$714-718 \mathrm{MHz}$	35 dB (typ)/30dB (min)
	$718-725 \mathrm{MHz}$	45 dB (typ)/40dB (min)
	$725-1000 \mathrm{MHz}$	55dB(typ)/50dB (min)
DC Power Pass		30V/1A
Impedance		75 ohm
F Connector Type	Male	e (3/8inch-32UNEF)
Dimensions		58mm
Weight		33 g

Rejection of notch typically $>40 \mathrm{~dB}$ if both notches are tuned to same frequency

START 580MHz STOP 860MHz

CHANNEL FILTER LEVELLERS
\& COMBINERS
VERY LOW INSERTION LOSS

CENTRE 529.5 MHz

TCFL4 with one attenuator -10 dB

Type	Number of Channels	Inputs 75Ω	Outputs 75Ω	Price
TCFL4	4	See Input Options	1	$£ 89.00$
TCFL5	5	See Input Options	1	$£ 99.00$
TCFL6	6	See Input Options	1	$£ 109.00$

Input Options

TCFL5

If adjacent channels need to be combined they have to be clustered in one filter cavity if they are not the same level and adjustment is needed, processors such as the TSMP , range TSMP-TV-TVDTQ have to be used as shown in the following pages.

These use SAW filters to provide the very sharp filtering that may be needed if one of the two multiplexes that are adjacent channel needs levels adjusting.

$$
\begin{aligned}
& 2 \mathrm{CH}=16 \mathrm{MHz} \\
& 1 \mathrm{CH}=8 \mathrm{MHz}
\end{aligned}
$$

Adjustment range is less

$$
\text { with } 1 \mathrm{CH} \text { spacing }
$$

FJ-CP

F to Male Belling Lee type adaptor see connectors

Typical insertion loss -3.5 dB with 16 MHz or greater spacing
 between channels

When ordering ,please specify input option and channels required

To avoid errors confirmation by email is required.

Leveling DVB-T/T2 terrestrial signals

Using passive or active filter leveler's ?

Below indicates one of a common problem with digital TV broadcasts and the configuration and levelling of multiplexes.
The two pairs of multiplexes can be passed through a passive filter leveller, so 6 pairs of multiplexes would use a 6 ch filter leveller such as a TCFL6, 6 cavity filter

However you can see in this example two local TV stations adjacent ch to the main multiplexes, one is -12 dB and the other is 28 dB , in this example they are local TV stations. If the local stations are needed for distribution they may need levelling, a passive filter cannot adjust the adjacent individual multiplexes as in this example.
If the modulation type is QPSK for a local TV station instead of 64 or 256QAM a slightly lower signal level could be tolerated.
However in the Manchester example the radiation patterns of the broadcast antennas are different so coverage can severely com-promised if the difference in levels cannot be accommodated in a CATV system.In this instant both local signal levels get worse at $+/-35$ deg as the radiation pattern can be very narrow ,such as in the example of Ch M
The solution is to use a active filters for head ends if the level is too low to distribute, this processes the multiplexes ,converts them down to IF and passes them through a very sharp SAW filter and converts them back up again to the desired frequency This then provides individual level control on each multiplex.

This may not be needed on small systems as using a larger amplifier could accommodate the different levels without overloading ,but on medium to large systems or fibre networks ,levelling is very important. .

Below is the equipment that can be used to level the DVB-T/T2 multiplexes that are adjacent channel

Twin processor convertor .

See pages 37/38

Twin processor convertor .
See page 39/41

TXS
TSMP range of analogue digital modulators receivers and re-modulators

DVB-T Digital modulators, HDMI in UHF-VHF analogue modulators with stereo options. Digital sat receivers for free to air Digital sat receivers with conditional access modules FM radio tuner remodulator modules Agile channel convert VHF/UHF DVB-T/T2 Freeview COFDM receiver to PAL Video Sat , re mux to DVB-T

TSMP-MMTQ

Twin analogue modulator

Remote programming \& monitoring via internet ipm option

DVB-T modulator
MPEG4 encoding
4x HDMI inputs

TSMP-H4TCT Specification

Video Encoding	MPEG-4 AVC / H. 264
Input	HDMI
Encoding 1920x1080_60P ; 1920x1080_50P ; 1920x1080_60i ; 1920x1080_50iFull HD 1280x720_60P ; 1280x720_50P - HD ready	
Audio Encoding	MPEG1 Layer II / AAC/LC
Sampling Rate / Sample rate	48 KHz
Output	DVB-C or DVB-T
Bandwidth	7, 8 MHz
Modulation	16 QPSK, 16 QAM, 64 QAM
MER	$\geq 38 \mathrm{~dB}$
Frequency	$112-862 \mathrm{MHz}$
RF output level	$80 \mathrm{~dB} \mu \mathrm{~V}$
Power consumption	15 W
Operation temp.	$0 . .45{ }^{\circ} \mathrm{C}$

Please note ,some older or non HD TV sets may need MPEG2 encoding .
For MPEG 2 Encoding see page 40 , 44, 47-49

DTL 1
Link lead between receiver and analogue mor

TSMP-200 for two single modules

TCLP2.9 12VDC3A
Switch mode psu
For TSMP $200 £ 16.35$

DTL 2
Link lead between twin sat receiver and analogue modulators
£14.75

Type	Description	Price
TSMP-2000ipm	4 U 19" Rack base unit (177 mm deep) and programmer. With remote monitoring and programming via the internet. PSU 180-265 AC > Includes combiner for ten modules, 20dB test socket. 180-265VAC , max power consumption $115 \mathrm{~W}, 50 / 60 \mathrm{~Hz}$. Power available for LNB's 18 VDC 500 mA per LNB total 1A.	£487.00
TSMP-200T	Base unit and programme for two twin modules. Requires 12 V PSU , 2.5A max	£210.00
TSMP-H4TCT	DVB-T Modulator , 4 HDMI Inputs, modules can be fitted into a TSMP2000 4 U rack, that s 24 , TV programs into digital TV format.Max six modules in TSMP 2000ip	£1,418.48
TSMP-UTCT	Converts 2 sat DVBS/S2 or 2 terrestrial digital DVB-T/2 multiplexes into, 2 DVB-T multiplexes ,Functions include editing LCN,NIT,and TSP, Via LAN connection using a PC.	£491.74
TSMP-UTCT-CI	As above (TSMP-UTCT) but with $2 \times$ CAM slots.	£590.01
TSMP-MMQ	TV Modulator module Video in $1 \mathrm{Vpk}-1 \mathrm{~dB} 75 \%$. Audio $500 \mathrm{mV} \mathrm{rms} 10 \mathrm{~K} \%$, adjustable -6 dB . Frequency agile, adjacent channel performance, $47-860 \mathrm{MHz}$. Multistandard $\mathrm{B} / \mathrm{G}, \mathrm{D} / \mathrm{K}, \mathrm{I}, \mathrm{M}$ and N . Diff gain typ 5%, Diff phase typ 5 deg. Variable attenuator 10 dB . Output level when fitted into base unit 100 dBuV . AV in via 15 pin D socket	£113.74
TSMP-MMTQ	Twin TV Modulator module. Video in $1 \mathrm{~V} \mathrm{pk}-1 \mathrm{~dB} 75 \%$. Audio $500 \mathrm{mV} \mathrm{rms} 10 \mathrm{~K} \%$, adjustable -6 dB . Frequency agile, adjacent channel performance, $47-860 \mathrm{MHz}$. Multistandard $\mathrm{B} / \mathrm{G}, \mathrm{D} / \mathrm{K}, \mathrm{I}, \mathrm{M}$ and N . Diff gain typ 5%, Diff phase typ 5 deg . Variable attenuator 10 dB . Output level when fitted into base unit 100 dBuV . AV in via 15 pin D socket	£180.41
TSMP-MSTQ	Twin TV Stereo Modulator module for B/G Video in 1 V pk $-1 \mathrm{~dB} 75 \%$. Audio 500 mV rms $10 \mathrm{~K} \%$, adjustable -6dB . Frequency agile, adjacent channel performance, $47-860 \mathrm{MHz}$, PAL B/G, Diff gain typ 5%, Diff phase typ 5 deg. Variable attenuator 10dB . Output level when fitted into base unit 100 dBuV . AV in via 15 pin d socket	£248.18
TSMP-MSTQ	Twin TV Stereo Modulator module for B/G Video in 1 V pk - $1 \mathrm{~dB} 75 \%$. Audio 500 mV rms $10 \mathrm{~K} \%$, adjustable -6dB. Frequency agile, adjacent channel performance, $47-860 \mathrm{MHz}$, PAL B/G, Diff gain typ 5%, Diff phase typ 5 deg. Variable attenuator 10 dB . Output level when fitted into base unit 100 dBuV . AV in via 15 pin d socket	£248.18
TSMP-PSTI	QPSK Twin Digital Sat Receiver for free to air broadcasts.Sky and Free sat . AV output. . Requires modulator .LNB control 14-18V , 22kHz ,DISEqC. With CAM module .Two tuners ,select any programs from any multiplex.	$£ 367.64$
TSMP-S2T Discontinued see above TSMP-UTCT TSMP-UTCT-CI	QPSK Digital Sat receiver demodulator LNB control $14-18 \mathrm{~V}, 22 \mathrm{kHz}$, DISEqC. With demodulation and remodulation to DVB-T COFDM. Output 90 dB uV adjustable. Intergrated CAM slot. Up to 10 TV programs, selected from a sat multipexes depending on the compression and bandwidth of each TV program and can be processed and modulated on to 8 MHz COFDM UHF or VHF channels. Check out FTA programs available on each sat multi[plex. Power consumption 12W . Max six modules in TSMP 2000ip.	$£ 591.82$
TSMP-TV-TVDTQ	Twin frequency agile UHF/NHF channel convertor with AGC. Freq range input and output 47-862MHz. Input 65-85dBuV, F connector. TV standards B/G, D/K I, M, N COFDM digital. Very low phase noise synthesizers,improves MER.	$£ 380.86$
TSMP-PT	Freeview DVB-T COFDM receiver $147-230 \mathrm{mHz} / 470-862 \mathrm{mHz}$.COFDM $2 \mathrm{k}, 8 \mathrm{k}$ Video out 1 vpk -pk,audio-6 to +6 dB . Output connector 15 pin D socket	£225.11
TSMP-PTT	Twin Freeview DVB-T COFDM receiver $147-230 \mathrm{mHz} / 470-862 \mathrm{mHz}$.COFDM $2 \mathrm{k}, 8 \mathrm{k}$ Video out 1 vpk -pk,audio- 6 to+6dB. Output connector via two 15 pin D sockets. One tuner ,select any two programs from one multiplex.	£251.61
TSMP-T2C-AVT	Twin Freeview DVBT/T2 COFDM receiver $147-230 \mathrm{mHz} / 470-862 \mathrm{mHz}$.COFDM $2 \mathrm{k}, 8 \mathrm{k}$ Video out 1 vpk - pk,audio- 6 to +6 dB . Output connector both channels via one 15 pin D socket.Use this on new installations!	$£ 428.59$
TSMP-PTTI	Twin Freeview DVB-T COFDM receiver $147-230 \mathrm{mHz} / 470-862 \mathrm{mHz}$.COFDM $2 \mathrm{k}, 8 \mathrm{k}$ Video out 1 vpk -pk,audio- 6 to+6dB. Output connectors two 15 pin D sockets. Two tuners, select any two programs from any multiplex.	£309.84

TSMP DBP 2m D plug to AV Phono lead TSMP DB $2 m$ D plug to BNC Video Phono audio lead
TSMP DS $2 m \mathrm{D}$ plug to scart lead TSMP DBPS 2m D plug to AV stereo Phono lead
£7.65
$£ 7.65$ for 5 m leads add $£ 1.90$
£7.65
$£ 8.90$
*Rack mounted head end that can be customized and .monitored and controlled via the internet.
*Composite Video Audio modulated to PAL B/G D/K I,L
*DVB-S free to air MPEG 2\&4 to PAL B/G D/K I,L M,N with Cl interface *DVB-S /S2 free to air MPEG 2\&4 to PAL B/G D/K I,L M,N with CI interface *DVB-T/C free to air MPEG 2\&4 to PAL B/G D/K I,L M,N with Cl interface *DVB-S /S2 free to air MPEG 2\&4 to COFDM with Cl interface *DVB-T/C free to air MPEG 2\&4 to COFDM with CI interface *DVB-S /S2 free to air MPEG 2\&4 to COFDM with CI interface *DVB-S /S2 free to air MPEG 2\&4 to QAM with CI interface
*Composite Video Audio and SDI ,modulated to QAM and COFDM

OH51 Remote

Reception of a DVB-S signal and processing to an analog-TV-channel Demultiplexing and decoding of MPEG-2 signals

* Built-in Cl interface
* Input frequency range $950-2150 \mathrm{MHz}$
* Output frequency range $45-862 \mathrm{MHz}$ * Frequency agile vsb modulator

OH 76 DVE	DVB-S to Analogue UHFNHF
With Cl	
Input frequency range	$950-2150 \mathrm{MHz}$
Input frequency steps	1 MHz
Input level range	47-70 dB_V
Modulation scheme	QPSK
Frequency steps	1 MHz
Symbol rate	1-45 MS/s
FEC outer code	RS $(204,16)$
FEC inner code	Conv. (1/2, 2/3, 3/4, 5/6, 7/8)
Output frequency range	$45-862 \mathrm{MHz}$
Frequency steps	250 kHz
Stability of output frequency	cy $\pm 30 \mathrm{kHz}$
Output channel bandwidth	h $7 / 8 \mathrm{MHz}$
Output level (1dB steps)	95-105 dB_V
TV standards	B/G, D/K, I, L, M, N
Video standard	PAL, SECAM, NTSC
Video format	4:3, 16:9, 4:3-Zoom
Video decoder	MPEG-2 (ML @ MP)
Audio decoder	MPEG-2 (L1/L2)
Audio format	Mono, Stereo, Dual
S / N video	(CCIR-rec. 567-1) $\geq 58 \mathrm{~dB}$
S / N audio	(color test pattern) $>50 \mathrm{~dB}$
Stability of output level	$\pm 1 \mathrm{~dB}$
Spurious inside TV channel	nel $>55 \mathrm{~dB}$
Spurious outside TV channel	anel $>55 \mathrm{~dB}$
Connectors RF input/output	put F-connector
Current consumption	ca. 0.80 A
Power consumption	< 10 W
LNB power*	$12 \mathrm{~V} / 0.5 \mathrm{~A}$ max.
Operating temperature range	ange $\quad-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
* with $22 \mathrm{kHz} / \mathrm{DiSEqC}$ modulator to control multiswitches	

* Reception of a DVB-T/C signal and processing
to an analog-TV-channel per module
* Demultiplexing and decoding of MPEG-2
and MPEG-4 signals
* Built-in CI interface
* NICAM audio processing
* Input frequency range $110-858 \mathrm{MHz}$
* Output frequency range $45-862 \mathrm{MHz}$
* Vestigial sideband modulator

OH79D DVB-T	DVB-T/C to Analogue UHF/VHF
with CI (MPEG-4)	
Input frequency range	$110-858 \mathrm{MHz}$
Input frequency steps	250 kHz
Input level range	47-90 dB_V
Channel bandwidth	$7 / 8 \mathrm{MHz}$
COFDM spectral	2 k and 8k FFT
COFDM modulation scheme	me QPSK, 16QAM, 64QAM
COFDM guard interval	1/32, 1/16, 1/8, 1/4
COFDM FEC inner code Conv.,	Conv., K=7, G=1/2, 2/3, 3/4,4/5, 5/6, 7/8
QAM modulation scheme 16-, 32-, 64-, 128-, 256 QAM	
QAM symbol rate	1-7 MBaud
Output frequency range	$45-862 \mathrm{MHz}$
Frequency steps	250 kHz
Stability of output frequency	ncy $\pm 30 \mathrm{kHz}$
Output channel bandwidth	h $7 / 8 \mathrm{MHz}$
Output level (1dB steps)	95-105 dB_V
Spurious inside TV channel	nel $>55 \mathrm{~dB}$
Spurious outside a TV channel	, $>55 \mathrm{~dB}$
TV standards	B/G, D/K, I, L, M, N
Video standard	PAL, SECAM, NTSC
Video format	4:3, 16:9, 4:3-Zoom
Video decoder MPEG-2	MPEG-2 (ML@MP)H. 264 (MPEG-4)
Audio decoder	MPEG-2 (L1/L2), AAC
Audio format	Mono, Stereo, Dual, NICAM
S / N video	(CCIR-rec. 567-1) > 58 dB
S / N audio	(color test pattern) $>50 \mathrm{~dB}$
Stability of output level	$\pm 1 \mathrm{~dB}$
Connectors RF input/output	put F-connector
Current consumption	ca. 0.80 A
Power consumption	< 10 W
LNB power* $12 \mathrm{~V} / 0.5 \mathrm{~A}$ max.	max.
Operating temperature range $-20^{\circ} \mathrm{C}$ to $+40{ }^{\circ} \mathrm{C}$	

*Reception of a DVB-S/S2 signal and processing to an analog-TV-channe * Demultiplexing and decoding of MPEG-2 and MPEG-4 signals Built-in CI interface

* NICAM audio processing
* Input frequency range $950-2150 \mathrm{MHz}$
* Input frequency range $950-2150 \mathrm{MHz}$
* Vestigial sideband modulator

OH77 DVB-S/S2 to Analogue UHFNHF

 with CI (MPEG-4)$\begin{array}{ll}\text { Input frequency range } & 950-2150 \mathrm{MHz} \\ \text { Input frequency steps } & 1 \mathrm{MHz}\end{array}$
$\begin{array}{lr}\text { Input frequency steps } & 1 \mathrm{MHz} \\ \text { Input level range } & 47-70 \mathrm{~dB} \mathrm{~V}\end{array}$
$\begin{array}{lr}\text { Input level range } & 47-70 \mathrm{~dB}-\mathrm{V} \\ \text { AFC } & \pm 10 \mathrm{MHz}\end{array}$
Modulation scheme $\quad \pm 10 \mathrm{MHz}$
Symbol rate $\quad 10-30 \mathrm{MS} / \mathrm{s}$
FEC inner code LDPC (1/2, 3/5, 2/3, 3/4, 4/5 5/6, 8/9, 9/10)
Spectral inversion X C-Band/KU-Band
Output frequency range $\quad 45-862 \mathrm{MHz}$

Frequency steps
Stability of output frequency
Output channel bandwidth
Output level (1dB steps) $95-105 \mathrm{~dB} _$
Spurious inside TV channel $>55 \mathrm{~dB}$
Spurious outside a TV channel B/G, D/K, I, L, M, N
Video standard PAL, SECAM, NTSC
Video format 4PEG-2 4 , 16:9, 4:3-Zoom

Video decoder	APEG-2 (ML@MP) H. 264 (MPEG-4)
Audio decoder	MPEG-2 (L1/L2), AAC

Audio format Mono, Stereo, Dual, NICAM
S/N video (CCIR-rec. 567-1)
S/N audio (color test pattern) $\quad>50 \mathrm{~dB}$
Stability of output level $\pm 1 \mathrm{~dB}$

Connectors RF input/output
Current consumption
F-connector
Power consumption
$\mathrm{V} / 0.5 \mathrm{~A}$ max
Operating temperature range $\quad-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

* Modulation of 2 AV or SDI signals to 2 QAM or COFDM TV channels
* Video rsolution adjustable from $15-9 \mathrm{Mb} / \mathrm{s}$
* Connectors for audio/video with BNC/3.5mm jack
* Connectors for SDI with BNC/ $3.5 \mathrm{~mm} / \mathrm{jack}$
* SDI ,audio input ,embedded or $2 \times 3.5 \mathrm{~mm}$ Jack OH66 TwinAV/SDI,MPEG 2 to QAM,COFDM.

Composite video Input level $1 \mathrm{Vss}(\pm 0,4 \mathrm{~V})$,
Frequency range 20 Hz ... 5 MHz
MPEG 2 Video processing ,ISO/IEC 13818-2, MP@ML (4:2:2)
Bit rate ,CBR \& VBR $1,5-9 \mathrm{Mb} / \mathrm{s}$ in $1,5 \mathrm{Mb} / \mathrm{s}$ steps;
Picture size 720 pixel horizontal, 576 pixel vertical
Teletext extraction from analogue video signal
Picture format support for 4:3 and 16:9
automatic detection by WSS
PID setting automatic;
PSIISI
NIT setting with LCN Optional with CS77
NIT setting w
Input audio Input format Analogue (leftright) or als
Input format Analogue (left/right) or digital
(SDI with embedded audio)
(SDI with embedded audio)
Frequency range $40 \mathrm{~Hz} \ldots 15 \mathrm{kHz}$
Audio processing
Sampling frequency $32 / 44,1 / 48 \mathrm{khz}$
Encoding standard MPEG 1 L1/L2 ISO/IEC 13818-3
Bit rate up to $192 \mathrm{kbit} / \mathrm{s}$
Mode stereo, joint stereo, dual, mono
Output
QAM or COFDM* modulation can be selected by the control
software
Output frequency range $47-862 \mathrm{MHz}$
Spurious outside TV channel $\geq 50 \mathrm{~dB}$
QAM-Mode
Modulation scheme 16-, $32-$, $64-$, $128-$, $256-$ QAM
Output frequency steps 500 kHz
Output channel bandwidth 8 MHz
Output level 88-103 dB $\mu \mathrm{V}$
MER $\geq 40 \mathrm{~dB}$
Symbolrate $3.45-6.9 \mathrm{MS} / \mathrm{s}$
Bit stuffing yes
PCR correction yes
COFDM-Mode*
Modulation scheme COFDM
Output frequency steps 250 kHz
Output channel bandwidth $7 / 8 \mathrm{MHz}$
Output level 82-97 dB $\mu \mathrm{V}$
MER $\geq 37 \mathrm{~dB}$
Modulation of single carriers QPSK, 16-, 64-QAM
FEC $1 / 2,2 / 3,3 / 4,5 / 6,7 / 8$
Guard interval $1 / 4,1 / 8,1 / 16,1 / 32$
FFT Mode $2 \mathrm{k}, 8 \mathrm{k}$
General data
Connectors
Video- / Audio-input per channel $1 \times \mathrm{BNC} /$
$1 \times$ stereo jack socket 3.5 mm
RF-output F-connector
Operating temperature range $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

* Modulation of 2 AV signals to 2 analog

TV channels

* Multi standard operation
* Stereo capable vestigial sideband
modulator, independently adjustable in
250 kHz steps
* Interface for audio/video with BNC/Phono(RCA)
* Output frequency range $45-862 \mathrm{MHz}$
OH38 Twin AV-Analogue Modulator

Video input level	$1 \mathrm{~V} \pm 0,4 \mathrm{~V}$
Video input bandwidth	$20 \mathrm{~Hz}-5 \mathrm{MHz}$
Audio input impedance	600 / 10 k Ohm
Audio input level (for nom. deviatic	- $4 \mathrm{dBm} / 1 \mathrm{kHz}$
Audio level range -	$9 \mathrm{~dB} . . .+5 \mathrm{~dB}$
Audio input bandwidth	$40-15000 \mathrm{~Hz}$
Output impedance	75 Ohm
Output frequency range	$45-862 \mathrm{MHz}$
Frequency steps	250 kHz
Stability of output frequency	$\pm 30 \mathrm{kHz}$
Output channel bandwidth	$7 / 8 \mathrm{MHz}$
Output level (1 dB steps)	$\pm 1 \mathrm{~dB}$
TV standards	B/G, D/K, I, L
Audio format	Mono, Stereo, Dual(not Nicam)
S/N video (CCIR-rec. 567-1)	$>58 \mathrm{~dB}$
S / N audio (color test pattern)	$>50 \mathrm{~dB}$
Stability of output level	$\pm 1 \mathrm{~dB}$
Spurious inside TV channel	$>55 \mathrm{~dB}$
Spurious outside TV channel	$>55 \mathrm{~dB}$
Power consumption	< 8 W
Operating temperatur range	$-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

OH51A.

Remote Monitoring

 module. Two OH50 units can be monitored and config-ured via the internet.

OH45
DVB-T/T2 ch convertor
Useful for changing to lower frequencies and consequently lower cable lossess

$1 \times \mathrm{OH} 50$
$4 \times \mathrm{OH} 88 \mathrm{H}$ Dual units

$8 \times$ Freeview DVB-T muxes out using 4 modules ,add more modules for more multiplexes

OH 50	Basic unit for 14 modules; FM amplifier, power supply; USB interface	$£ 499.19$
OH 51A	Management module, Web browser, SNMP	$£ 113.40$
OH 38	Dual AV modulator, no channel bonding	$£ 262.30$
OH 45	Terrestrial DVB-T/T2 channel converter 45-862 MHz, internal SAW filter.7/8 MHz	$£ 251.43$
OH 66	Twin AV or SDI input MPEG 2 encoder to QAM or COFDM. 82- 97 dBuV,	$£ 715.90$
	$47-862 M H z$	$£ 222.56$
OH 76	DVB-S to PAL/Secam/NTSC	$£ 39.75$
OH 77	DVB-S/DVB-S2/MPEG2/MPEG4 to PAL/Secam/NTSC	$£ 467.92$
OH 79D	DVB-S2/MPEG4 to PAL/Secam/NTSC	$£ 479.95$
		$£ 589.80$
OH 85H	Dual DVB-S/DBV-S2 to QAM transmodulator; HD, 2 CI, bit stuffing,	$£ 647.18$

USB Interface Updates:
Received via internet can be transferred
to the Headend by USB stick without PC.
Preprogramming:
Can be done in office and transferred
To the Headend for quick installation.

High definition DVB-T
COFDM modulator encoder. 50-860MHZ

MPX-HDMI-DVBT

HDMI Encoding Section			
Video	Encoding	H.264 MP@L 3.0/3.1/4.0	
		Input	Output
		480@59.94/60p	$480 @ 60 \mathrm{p}$
		480@59.94/60i	480@30p
		576@50i	576@25p
	Resolution	720@50/59.94/60p	720@50/59.94/60p
		1080@50i	1080@25p
		1080@59.94/60i	1080@30p
		1080@59.94/60p	1080@30p
	Aspect Ratio	16:9, 4:3	
	Bit rate	1.000~18.000 Mbps	
Audio	Encoding	MPEGI Iayer 2	
	Sample rate	48 KHz	
	Bit rate	$64,96,128,192,256$,	, 320kbps

DVB-T Modulator Section	
Standard	DVB-T COFDM
Bandwidth	$6 \mathrm{M}, 7 \mathrm{M}, 8 \mathrm{M}$
Constellation	QPSK, $16 \mathrm{QAM}, 64 \mathrm{QAM}$
Code rate	$1 / 2,2 / 3,3 / 4,5 / 6,7 / 8$
Guard Interval	$1 / 32,1 / 16,1 / 8,1 / 4$
Transmission Mode:	$2 \mathrm{~K}, 8 \mathrm{~K}$
MER	$\geq 31 \mathrm{~dB}$
RF frequency	$150 \sim 950 \mathrm{MHz}, 0.1 \mathrm{KHz}$ step
RF output level	$-47 \sim 0 \mathrm{dBm}(60 \sim 107 \mathrm{dbu}), 1 \mathrm{db}$ step
System	10 dB
RF mixin ATT	Local LCD + control buttons
Management	USB
Upgrade	
General	DC12V
Power supply	$183^{*} 110 * 50 \mathrm{~mm}$
Dimensions	$<1 \mathrm{~kg}$
Weight	

For MPEG 2 Encoding see page 40 , 44, 47-49 *

HDMI sources sometimes have HDCP
(High bandwidth digital protection) that sometimes restricts use.OK with most set top boxes

HDMI video, can also can be unstable if impulse electrical noise gets into the HDMI lead, common problem with set top boxes, TV screens and DVR,s.
Also satellite receiver software updates, sometimes require a re boot! \quad A $\& Q$ for about £10.00,

Control via front panel or PC connected to modulator

Video and Audio MPEG 4 and 2 encoders to IP.
DVB-T COFDM version includes both DVB-T and IP out

Composite Audio Video (PAL).

Into MPEG4 or 2 enoder` and ten` odulated` into DVB-T
. RF loop through

* MPEG2/4 AVC H.262.H264 encoding available
* LCN Function
* Modulation QPSK, 16QAM, 64QAM COFDM
* FFT mode 2K or 8K
* Channel bandwidth 7-8MHz
* Output level 97dBuV
* Level adjustment 15dB
* Audio Encoding MPEG1 Layer (1*Stereo or 2*mono)
* MER typ $\geq 42 \mathrm{~dB}$
* Guard intervals $1 / 4,1 / 8,1 / 16,1 / 32$
* Code rate 1/2,2/3,3/4,5/6,7/8
* IP out
* ASI out
* LCD + control buttons
* Remote management Web NMS
* Mains power 100-240V AC
* Operation temperature 0-35 Deg C

Please note, some older or non HD TV sets may need MPEG2 encoding.
All DVB-T modulators on this page also have IP out so as well as distributing on a CATV system for TV sets ,the IP out can be connected to a computer network and PC,s or tablets used to receive video and audio. The local area network needs to have the capacity in bandwidth to accommodate the number of TV programmes distributed.

MPX AV4 DVB-T AV R	MPEG 4. Quad Encoder, \quad COFDM modulator,rack mounted	$4 \times$ AV input,PAL/NTSC stereo audio	$£ 829.84$
MPX AV8 DVB-T AV R	MPEG 4. Eightfold Encoder, COFDM modulator,rack mounted	$8 \times$ AV input,PAL/NTSC stereo audio	$£ 1,185.97$

DVB-T COFDM version includes both DVB-T and IP out, systems can be configured to provide all modulated programmes, distributed via coax and via a local area network at the same time.

Embeded Audio Encoding MPEG1 Layer II(1x Stereo or $2 \times$ mono)

Example of MPEG 2 and 4 encoding

MPEG4 or MPEG2 can be configured, then modulated into DVB-T.
DVB-T2 available on request at an additional cost.
DVB-T2 is not normally needed on CATV systems due to available bandwidth. A modulator above with 4 HD inputs has the capacity to modulate up to 16 mgbits per HD TV program.

Very low latency when using MPEG 2 encoding, mode1. Example, 1080i@50, Encoding , typical latency utilising maximum available bandwidth (mgbits) 0.17 seconds, $720 \mathrm{p} @ 50$, 0.086 seconds. This is typical latency using a good quality set top box or TV. MPEG4 encoding can have latency at approximatly double of MPEG2. Very usefull for time critical applications

Specifications

Encoding section
Video
Encoding MPEG2 or MPEG4 H.264, see options below
Input HDMI $\times 4 \& \times 8$ or SDI $\times 4$

Resolution 1920*1080_60i, 1920*1080_50i, 1280*720_60p, 1280*720_50P 720*480_60i, 720*576_50i
Option on request 1920*1080_60P, 1920*1080_50P,MPEG4 AVC/H. 264 only, not recommended uses excessive bandwidth in mux, no noticeable difference compared to 1080 i , not normaly used for broadcasting or CATV networks Low delay Normal, mode 1 mode 2
Symbol rate $\quad 5.000^{\sim 9.000 M s p s ~ a d j u s t a b l e ~}$

83A
Constellation 16/32/64/128/256QAM
bandwidth 8 M
Constellation 64QAM/256QAM
bandwidth 6M
J 83 C
Constellation 64QAM/256QAM
bandwidth 6M
Modulation options
DVB-T
Standard EN300744
Bandwidth $6 \mathrm{M}, 7 \mathrm{M}, 8 \mathrm{M}$
Constellation QPSK, 16QAM, 64QAM,
Code rate $\quad 1 / 2,2 / 3,3 / 4,5 / 6,7 / 8$
Guard Interval $\quad 1 / 32,1 / 16,1 / 8,1 / 4$
Transmission Mode: $\quad 2 \mathrm{~K}, 8 \mathrm{~K}$
MER
RF frequency
RF Out
RF output leve
30 to $960 \mathrm{MHz}, 1 \mathrm{KHz}$ step
COFDM DVB-T out
77 to $97 \mathrm{db} \mu \mathrm{V}$ Adjustable
DVB-C
Standard
MER
RF frequency
RF output level
$\geq 42 \mathrm{~dB}$
30 to $960 \mathrm{MHz}, 1 \mathrm{KHz}$ steps
77 to 97 dbuV Adjustable

MPX-HD/SDI 2DVBT,R HDMI 2/4 MPEG 4/2 Dual Encoder, COFDM modulator,rack mounted MPX-HD/SDI 4DVBT,R HDMI $2 / 4$ MPEG 4/2 Quad Encoder, COFDM modulator,rack mounted

MPX-HD/SDI 2DVBT,R SDI 2/4 MPEG 4/2 Dual Encoder,COFDM modulator,rack mounted MPX-HD/SDI 4DVBT,R SDI $2 / 4$ MPEG 4/2 Quad Encoder,COFDM modulator,rack mounted
$2 \times \mathrm{HDMI}$ inputs
£2,151.94
$4 \times \mathrm{HDMI}$ inputs
$2 \times$ SDI inputs, embedded audio $£ 2,835.88$
$4 \times$ SDI inputs, embedded audio $£ 3,290.88$

All DVB-T COFDM modulators on this page also come with IP out unless otherwise stated.

MPEG 4 (H264) HDMI DVB-T Modulators Up to 24 HDMI inputs in one, 1 U rack
High definition or Standard definition encoder. DVB-T COFDM modulator. $30-860 \mathrm{MHZ}$
Output Includes IP, into standard local area network.
Costs as less than $£ 130.00$ per HD/SD TV programme

16 x DVB-T T2, Inputs to IP out

Input
Bandwidth
Constellation
Output
$16 \times$ DVB-T $60-890 \mathrm{MHz}$
$6 / 7 / 8 \mathrm{MHz}$
16/32/64/128/256 QAM

16 MPTS IP output (for Tuner/ASI passthrough) over UDP and RTP/RTSP
protocol through GE1 and GE2 port, Unicast and Multicast

Web based management

Power requirements $100 \sim 240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
Power consumption 20W

Web Management
$16 \times$ DVB-T inputs

Exceptional Quality
Great Price $£ 1,913.60$ Ex VAT

46B

UHD Digital modulator.

DVB-T or C output

One HDMI input + redundancy. Price Ex VAT
H.265/HEVC and H.264/AVC, multiplexing and modulating functions
in one standard 1 U case.
£9,648.64

Logo, Caption, QR code insertion

Video Input	Resolution			Chroma	
	$\begin{aligned} & 3840 \times 2160 _60 \mathrm{P}, 3840 \times 2160 _59.94 \mathrm{P}, \\ & 3840 \times 2160 _50 \mathrm{P}, 3840 \times 2160 _30 \mathrm{P}, \\ & 3840 \times 2160 _29.96 \mathrm{P}, 3840 \times 2160 _25 \mathrm{P}, \\ & 3840 \times 2160 _24 \mathrm{P}, 1920 \times 1080 _60 \mathrm{P}, \\ & 1920 \times 1080 _59.94 \mathrm{P}, 1920 \times 1080 _50 \mathrm{P}, \\ & 1920 \times 1080 _30 \mathrm{P}, 1920 \times 1080 _25 \mathrm{P} \\ & 1920 \times 1080 _24 \mathrm{P}, \end{aligned}$			RGB, YCbCr 4:4:4, YCbCr 4:2:2, YCbCr 4:2:0 (2160P_50/60Hz only)	
Video Encoding	Encoding \quad H.265/HEVC, H.264/AVC		H.265/HEVC, H.264/AVC		
	Chroma $4: 2$		4:2:2, 4:2:0		
	Bit-rate		1Mbps~23Mbps		
	Rate Control		CBR		
Audio Encoding	Encoding		MPEG-1 Layer 2, LC-AAC		
	Sampling rate 48		48 KHz		
	Bit-rate		$64 \mathrm{Kbps} \sim 256 \mathrm{Kbps}$ each channel		
Multiplexing	2 ASI input multiplexed with local 1 channel of TS				
	PID remapping (automatically or manually)				
	Accurate PCR adjusting				
	Generate PSI/SI table automatically				
Modulator Section	DVB-C	Standard	J.83A, J.83B		
		MER ≥ 4	$\geq 43 \mathrm{~dB}$		
		RF frequency 50 RF	$50 \sim 960 \mathrm{MHz}, 1 \mathrm{KHz}$ step		
		RF output level -25.0 Symbol rate 5.0			
				5.0-7.0 Msps	
			J.83A		J.83B
		Constellation	16/32/64/128/ 256 QAM		64/ 256 QAM
		Bandwidth	8M		6M
		RF out	1*RF DVB-C out		
		Standard	EN300744		
		FFT mode	2K/4K/8K		
		Bandwidth	6M, 7M, 8M		
		Constellation	QPSK, 16QAM, 64QAM		
		Guard Interval	1/4, 1/8, 1/16, 1/32		
		Code rate	1/2, 2/3, 3/4, 5/6, 7/8		
		MER	$\geq 42 \mathrm{~dB}$		
		RF frequency	50~960MHz, 1KHz step		
		RF output level	-30 to-3dbm, 79-106dBuV 0.1db step		
		RF out	1*RF DVB-T out		
Stream output	1*ASI output through 4 BNC interfaces				
	1 MPTS over UDP/RTP, 1000M/100M Base-T Ethernet interface (unicast/ multicast)				

Specification and prices subject to change without notice.

Professional Head End

Standard modules with a comprehensive range of functions

One rack can re mux 20 DVBS/S2 muxes to 20 COFDM DVB-T muxes with only ten modules

Typical Cost for processing one Digital Free Sat TV program to one Digital DVB-T program is $£ 136.00$ per TV program. Based on five TV programs per multiplex .

CHAMELEON

Base Units

Wall mounting accomidates 2 modules

Discontinued,
see alternative options below

For Head Ends accomidates 2 modules

GN20R With Redundant PSU

For Head Ends accomidates 10 modules

$£ 657.39$

For IP Systems , accomidates 10 modules

Part Number

GN 20 B GN20 R (Dual redundant power supply supply)

Technical data

Basic unit, 19", 1U Rack unit, for 2 modules Integrated power supply system
Built-in power supply and fan.
The GN 20W can be used individually
or in conjunction with an existing installation to include additional modules.
Voltage AC
100... 240 V (50/60 Hz) 18W

Dimensions 1 U high rack
Gross Weight shipping unit 3.3 kg

Part Number
GN 40 W 0230
Technical data
Basic unit, 19", 4U Rack unit, for 10 modules
Output Switch/Controller Category Multicast Protocolls
Redundancy control Connections
Power supply
1pc
Voltage AC 180... $265 \mathrm{~V}(47 \ldots 63 \mathrm{~Hz})$ Power input <245
Dimensions 4 U rack unit (width x height $x 443 \times 176 \times 270 \mathrm{r}$
Gross Weight shipping unit $\quad 6.46 \mathrm{~kg}$

Part Number
GN 50 W 0230
Technical data
Basic unit, 230 V AC, 19", Rack 3U unit for 10 modules
Output Switch/Controller

Streaming-Ports	$4 \mathrm{pcs} .(1 \mathrm{Gbit} / \mathrm{s})$
Control-Ports	$1 \mathrm{pcs} .(100 \mathrm{Mbit} / \mathrm{s})$ Category
Multicast Protocolls	
Redundancy control Connections	
Module slots	10 pcs.
RJ45	5 pcs.
Power supplys	1 pcs.

AC voltage 180... $265 \mathrm{~V}(47 \ldots 63 \mathrm{~Hz})<245 \mathrm{~W}$
Dimensions (width \times height $\times 443 \times 132 \times 475 \mathrm{~mm}$
Gross Weight shipping unit 12.44 kg

Modules and Licence options

Universal module
GN HWUW2

MPEG 4 Encoder
module $2 \times$ SDI
GN HWENCW

£1,709.22

MPEG $2 / 4$ Encoder
$4 \times \mathrm{HDMI}$
GNHWENC2H

GN HWENCW C	Chameleon MPEG 4 HD Encoder module 2xSDI inputs	£1,709.22
GN HWUW2 C	Chameleon universal tuner, modulator module.	£842.56
GNHWENC2H C	Chameleon MPEG 4\&2 HD Encoder module 4x HDMI inputs	£2,136.00
RFinput		
GN S2	License for one DVB-S/S2 tuner	$£ 109.57$
GN T	License for one DVB-T tuner	£109.57
GN T2	License for one DVB-T2 tuner	£164.35
GN C	License for one DVB-C tuner	£109.57
GN DS2	License for two DVB-S/S2 tuners	£158.87
GN DT	License for two DVB-T tuners	£158.87
GN DT2	License for two DVB-T2 tuners	£268.43
GN DC	License for two DVB-C tuners	£158.87
	Type of RF output	
GN CMOD	License for one QAM output	£120.52
GN DCMOD	License for two QAM outputs	£175.30
GN TCMOD	License for three QAM outputs	£262.96
GN QCMOD	License for four QAM outputs	£350.61
GN TMOD	License for one COFDM output	£98.61
GN DTMOD	License for two COFDM outputs	£175.30
GN DMOD	License for one DTMB output	£175.30
GN VMOD	License for one VSB output (Analogue TV) GN	$£ 120.52$
DVMOD Lice	License for two VSB outputs (Analogue TV) GN T2MOD	£109.57
License for one T	T2 output Not yet available ,	£147.91
GN OCTFM	License for 8 FM Radio outputs	£350.61
	BNC Connector	
GN ASI	ASI in/out License on BNC	£98.61
GN SSDI	License for SD SDI decoder on BNC	£169.83
GN HSDI	License for HD SDI decoder on BNC	£246.52
GN DASI	License for two ASI interfaces on BNC	£197.22
GN DSDI	License for two SD, SDI outputs on BNC IP	£339.65
	Streaming	
GN STR	License for IP streaming	£219.13
GN STREC	License for IP streaming with FEC for IP in.	£383.48

CHAMELEON

Licence options ,continued

Audio Codec		
GN DOL	License for Dolby Audio decoding.	£164.35
Common Interface		
GN CI	License for one Cl slot	$£ 61.36$
GN DCI	License for two Cl slots	£98.61
Overall System mamagment		
GN SYSMG	2 License for system management. Requires GN50 rack	£27.39
Tranport Stream Processing		
GN MUX	License for multiplexer incl. automatic SI/PSI computation independent of other modules.	£241.04
GN SYMUX	License for multiplexer incl. system SI/PSI tables computation for interconnected multiplexers of this network.	£306.78
Encryption		
GN SCR	License for simulcrypt scrambler for 64 PIDs per outgoing QAM , COFDM or ASI Transport Stream.	£657.39
Redundancy		
GN RED	License for IP input signal redundancy	£104.09
Special Package		
GN ALL	4 Includes GNDS2, GNDT, GNDT2, GNDC, GNQCMOD, GNDTMOD, GNDVMOD, GNOCTFM, GNDASI, GNDSDI, GNHSDI, GNDCI, GNSCR, GNRED, GNSTR, GNMUX, GNSYMUX, No Dolby	£1,972.13
GN M1	(SSC) Software Service/Support Charge, 1 Year	£60.00
GN M3	(SSC) Software Service/Support Charge, 3 Year	$£ 120.00$

Specifications of Chameleon modules

DVB-S/S2 Satellite Receivers	
Input frequency	$925-2175 \mathrm{MHz}$
Input level	-65 to -25 dBm , 44 to 84 dB -V
Symbol rates	$1.0-45 \mathrm{Mbaud}$ (max $100 \mathrm{Mbit} / \mathrm{s}$)
Spectral inversion	Yes, selectable
LNB voltage	Auto, Off or $13 / 18 \mathrm{~V}$, programmable
LNB current	Max 800 mA total
22 kHz to LNB	Auto, On or Off, programmable
DVB compliance	DVB-S (EN 300 421)
DVB-S2	(EN 302 307)
DiSEqC	Supporting control of up to 4 sat sources
IPTV Input / Output	
Input bit rate	Max $110 \mathrm{Mbit/s}$ per IPTS, max $200 \mathrm{Mbit/s}$ total
Output bit rate Max	$100 \mathrm{Mbit/s}$ per IPTS, max $200 \mathrm{Mbit} / \mathrm{s}$ total
Connectors	RJ45, or backplane GigE connector in GN50
Input/output protocol	UDP/RTP Multicast/Unicast
IPTS input format/capacity	CBR, max 20 SPTS / MPTS 1) VBR (analogue out only)
IPTS output format/capacity	VBR/CBR, max 20 SPTS/MPTS 1)
Time stamp \& de-jitter	Yes
1) Number of IPTS (i.e. SPTS and/or MPTS) will depend on Operation Mode	
DVB-T/T2 Terrestrial receivers	
Input frequency	$43-1002 \mathrm{MHz}$
Input level (DVB-T)	39 to 79 dB_V, -70 to -30 dBm 1 1)
Input level (DVB-T2)	39 to 79 dB - V, -70 to -30 dBm 2)
Bandwidth (DVB-T)	$6 / 7 / 8 \mathrm{MHz}$
Bandwidth (DVB-T2) 1	.7/5/6/7/8 MHz and extended bandwidth
DVB compliance	DVB-T (EN 300 744) DVB-T2 (ETSI EN 302 755)
1) QEF reception with test signal: $8 \mathrm{k}, 64$ QAM, _guard interval, $2 / 3$ FEC 2) QEF reception with test signal: $32 \mathrm{~K}, 256$-R QAM, $1 / 16$ guard interval, 64k lpdc, code rate $2 / 3$, PP4, BW-8MHz, SISO	

Specifications of Chameleon module $4 \times$ HDMI in, GNHWENC2H

Technical data	
HDMI-Input	
HDMI number of ports	4 pcs. (HDMI)
Input format HDMI	$\begin{aligned} & \text { 1080i50/60/59.94, } \\ & \text { 720p50/60/59.94, 576p50, } \\ & \text { 480p60/59.94, 576i50, } \\ & 480 i 60 / 59.94 \end{aligned}$
Input format Audio	PCM (Pulse code modulation)
Compliance	HDMI 1.4a (no scaling)
HDCP Support	No
Video Encoding	
Encoding capacity	4x HD/SD MPEG-2/MPEG-4
Video system	MPEG-2 HD/SD and MPEG-4 HD/ SD (H.264/AVC)
Picture size	$\begin{aligned} & \text { 1080i50/60/59.94, } \\ & \text { 720p50/60/59.94, } 576 p 50, \\ & \text { 480p60/59.94, 576i50, } \\ & \text { 480i60/59.94 } \end{aligned}$
Profile MPEG-4	Baseline, Main, High
Bit rate	MPEG-2 10-19Mbps, MPEG-4 6-13Mbps @ 1080i50/60/59.94, 720p50/60/59.94; MPEG-2 4-12Mbps, MPEG-4 2-6Mbps @ 576p50, 480p60/59.94; MPEG-2 2-8Mbps, MPEG-4 1-4Mbps @ 576i50, 480i60/59.94
Chroma sample	4:2:0
Aspect ratio	16:9 for HD; 4:3 for SD
Subtitle DVB Support	No
Subtitle OP47 Support	No
Picture size conversion	Downscaling yes, Upscaling no
Frame rate conversion	No
Test pattern	No
Audio Encoding	
Audio-system	ISO 11173-3 (MPEG-1 L2), MPEG-2 AAC (LC)
Number of audio channels	1 per video input @ 4x HD/SD MPEG-2/MPEG-4;2 per video input @ 2x HD/SD MPEG-2/MPEG-4
Sampling frequency	$44.1,48 \mathrm{kHz}$
Bit rate	64... 288 Kbps (max. MPEG1 L2/ AAC)
Audio modes	Stereo
Sampling rate conversion	No
Streaming-In-/Output	
IP-Inputs	0 or 32 pcs. (32 with GNSTR software option)
IP-Outputs	4 or 32 pcs. (32 with GNSTR software option)
IP-Compliance	ISO/IEC 13818
IP-Input bitrate	Max. 425 Mbit/s per IPTS, Max. $850 \mathrm{Mbit} / \mathrm{s}$ total
IP-Output bitrate	Max. 425 Mbit/s per IPTS, Max. $850 \mathrm{Mbit} / \mathrm{s}$ total
\|P-Input protocol	UDP/RTP/RTP+FEC Unicast and Multicast, IGMP v2 and v3
\|P-Output protocol	UDP/RTP/RTP+FEC Unicast and Multicast, IGMP v2 and v3
IP-TS-Input format	SPTS CBRNVBR, MPTS CBR

GNHWENC2H HDMI Encoderr

Technical data	
IP-TS-Output format	SPTS CBRVVBR, MPTS CBR
IP-FEC inputs	0 or 32 pcs. (with GNSTREC software option)
IP-FEC Outputs	4 or 32 pcs. (with GNSTREC software option)
IP-FEC compliance	SMPTE 2022-1, SMPTE 2022-2
IP-Packet format	MPEG over UDP/P and RTP/P
IP-Packet size	188 Byte
IP-PCR restamping	Yes
Processing	
Service remultiplexing	Yes (GNSYMUX functionality is included)
PID filtering and remapping	Yes
PCR correction and de-jitter	Yes
Advanced PSI/SI regeneration	Yes
NIT generation	No
Compliance	ETSI EN 300468
Processing bitrate	Max. 1200 Mbps total
Number of PIDs	Max. 2000 PIDs total
Connectors	
RJ45	2 pcs. (1x Management, 1x Streaming)
F-socket RF- output	1 pcs. (not in operation, only for mounting in GN40 base unit)
HDMI input	4 pcs. (for type A connector)
GigE/Control/Power supply (Backplane)	CompactPCI Type C (SGMII)

General data

Power consumption	max. $\leq 18 \mathrm{~W}$
Operating temperature range	$-5^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}, 23^{\circ} \mathrm{F} \ldots .113^{\circ} \mathrm{F}$, , (ETSI
EN 300 019-1-3 Class 3.1)	

Specifications of Chameleon modules

FMModulation		Analogue modulator	
Number of modulators	Up to 8 FM modulators	Number of modulators	Up to 2 analogue modulators
Audio decoder	MPEG-1 Layer I/II	Standards	PAL B/G, D/K, I, SECAM D/K, B/G, L
Sound	Mono, stereo, joint stereo	Group delay pre-correction	B/G general, D/K GOST20532-75, M FCC, none
Modulation	FM, ref ITU-R BS.450-3	Sound Mono,	NICAM stereo, A2 stereo
FM deviation limiter	Yes	Modulation audio Audio	FM or AM
RDS insertion	Yes, dynamic \& static. Ref EN50067	Modulation video	VSB AM, neg. or pos.
Output frequency	$87.5-108 \mathrm{MHz}, 100 \mathrm{kHz}$ step size	Video bandwidth	$4.2,5.0,6.0 \mathrm{MHz}$
Output level per FM ch	Max 92 dB_V	Output frequency	$48-855 \mathrm{MHz}$
S/N	$>60 \mathrm{~dB}$ (mono), $>55 \mathrm{~dB}$ (stereo)	Output level max	Max 111 dB -V (1 channel), max 108 dB - V (2 channels
C/N, broadband	Typical 65 dB	Video S/N	(weighted) $>65 \mathrm{~dB}$
Spurious suppression	Typical 60 dBc (FM band 87.5-108 MHz)	C/N, broadband	$>70 \mathrm{~dB}$ (65 dB typical at adjacent channel)
	$>50 \mathrm{dBc}$ (outside FM band)	NICAM standards	NICAM 728 (EN 300 163)
		Spurious suppression	Typical 60 dBc
DTMB Modulation		Channel bonding	All outputs within 40 MHz
Number of modulators	1 DTMB mux		
Code rate	0.6		
Carrier mode	$C=3780$ (multi-carrier)	SDI output	
Header length	PN420 / PN945 symbols	Output video	SDI, audio embedded
Interleaving length	$\mathrm{M}=240, \mathrm{M}=720$	Output audio	Stereo, Mono or Dual Sound
MER	$>38 \mathrm{~dB}$	Connector	BNC
Modulation	4QAM, 16QAM, 64QAM	Compliance	SDI-SD SMPTE 259M-C, SMPTE 272M-DEF
Output frequency	$40-860 \mathrm{MHz}$		
Output level Max	101 dB_V		
Spurious suppression	> 60 dBc	MPEG Decoder - Audio / Video	
Compliance	GB 20600-2006	Supported formats video	MPEG2 MP@ML, MPEG2 MP@HL, up to MPEG4 H. 264 AVC, HiP, level 4
		Supported formats audio	MPEG 1 layer II, AAC HE Dolby Digital AC-3 (requires specific HW)
		Aspect Ratio	Letterbox,Pan/Scan, or conversion combined (14:9) programmable, WS
DVB_CSA scrambler / Simulcrypt interface		Teletext Subtitling	Teletext or DVB subtitling
Interface	IP		
Number of encrypted	PIDs 64 PIDs per output		
Number of SCG	64 SCG per output (64 CWG per output)	ASI input/ output	
Scramblable outputs	DVB-C, DVB-T, ASI	Number of ports	2 BNC ports, configurable for in/out via UI
Interface protocol version support	ECMG $<\gg$ SCG: V2 and V3	Max payload bitrate IN	Typical $200 \mathrm{Mbit} / \mathrm{s}$
	EMMG/PDG $<=>$ MUX: V2 and V3	Max payload bitrate OUT	Typical $200 \mathrm{Mbit} / \mathrm{s}$
DVB compliance	DVB-SimulCrypt (ETSI TS 103 197)	PCR restamping	Yes
		Packet size	188 byte
		Compliance	EN 50083-9:2002, ASI-C

	Rack Enclousures and Accessories	
GN 01 W2	Two-module mounting Box including fans and 2 PS	£141.34
GN 50W 0230	19" 3HU professional subrack with GigE sw. + fan + 1PS 230VAC , prepared for redundancy	£1,698.26
GN 50W 0048	19" 3HU professional subrack with GigE sw. + fan + 1PS 48VDC , prepared for redundancy	£1,807.83
GN 40W 0230	19" 3HU Subrack + 1HU fan + 1PS + DC harness	£657.39
GN 20W	19" 1HU Subrack with PSU. Fans	£327.60
GN20 R	(Dual redundant power supply supply)	£333.00
GN 55W 0230	Redun. 230 VAC PS for GN 50	£322.32
GN 55W 0048	Redun. 48 VDC PS for GN 50	$£ 432.78$
DS 350035	Patchcord F-quick - F-quick, 35 cm	$£ 4.99$
DS 350050	Patchcord F-quick - F-quick, 50cm	£4.99
GN 110025	ASI cable, 25cm	£9.86

GN 55W 0230 Redundant PSU

Tangram
High Density Digital TV Head End processing

The Wisi Tangram video platform is a high density digital TV head end,for terrestrial sat-

 tellite,Ethernet in to Coaxial RF UHF/VHF/ and DVB-IP Gateway out.This enables systems to be constructed and customised distributing TV and radio programs via coaxial , and Ethernet networks. With DVB and Radio stream editing and processing in a compact 1 U rack unit. Individual TV programs can be removed or time scheduled. Ideal for systems that require programme control ,such as schools ,hotels or any network requiring individual program control.

Tangram equiped with GT111 \& GT12 switch modules

Tangram has 6 module slots on the rear. For example ,this equals a 48 COFDM RF TV multiplex capability t, or a mixture of analogue and or digital TV and FM radio.from a single 1 U rack unit.

Defining and editing input streams

Status information

SYSTEMS

Digital TV via IP Networks and end to end IPTV solutions such as On Demand TV, Connected TV and OTT (Over The Top) Web TV. The platform is highly customizable and offers advanced DVB stream processing in a small footprint.
The TANGRAM platform can be used in a central or distributed,headend architecture and provides the following processing functions in a central location.

DVB-IP Gateway for DVB-S/S2, -C, -T, -T2, Descrambling.
Remultiplexing, Scrambling, PSI/SI-Processing and Modulation.
In a decentralized architecture with regional Hubs, the modulation.is done in the hub site and the aggregated digital TV streams are transported via an IP and or coaxial networks.

Note: Most settings can be left with the default settings for most applications.
 splitter combiner type TD8-12 See taps and splitters in the catalogue.

Passivebackplane
All RF plugs on the back
Single function modules (SFM) are hot swappable from the back without service interruption on the remaining modules.

Output

Switch/Controller
Streaming-Ports
Control-Ports
Category
Multicast
Protocolls RTP, UDP, http, ICMP, SNMPv2
Redundancy control
RTP, UDP, http, ICMP, SNMPv2
Slots for $\mathrm{n}+1$

Optional redundant power supply units
GT 55 W 0048 48V DC
£599.75
GT 55 W 0230 230V AC
£519.75

GT 21 W
6 x VSB analogue modulator board
Gigabit EthernetMPEG-TS to analogue PAL/SECAM Decoder
Up to 6 PAL channels on 2 RF outputs
MPEG-2 \& MPEG-4 H. 264 decoding (SD \& HD)
Test ports for the output signal
Outstanding signal parameters by direct digital modulation \& adapted output filter
User friendly configuration via standard web browser
Low power consumption
Temperature and Output level monitoring
UDP/RTP over IP protocol, auto-detected
Options can be activated via license key
£2,892.75

GT 22C

$8 \times$ FM modulator board
Gigabit Ethernet MPEG-TS to analogue FM Decoder
Up to 8 FM channels on 1 RF output
Total of max. 48 FM channels in $1 R \mathrm{~V}$
Outstanding signal parameters by direct digital modulation
Digital FM modulation \& RDS insertion
User friendly configuration via standard web browser

Low power consumption
Test ports for the output signal
UDP/RTP over IP protocol, auto-detected
Extraction of RDS data
£1,149.75

GT 24W

$8 \times$ COFDM modulator board
$4 \times$ mutiplexes in $8 \mathrm{~K}, 8 \times$ multiplexes in 2 K mode

The GT 24 W module is part of the Tangram product portfolio. The GT 24 W module allows you to add up to 8 channels in COFDM (DVB-T) format per module to your network.
Tangram is a very high density and highly flexible solution for all kinds of networks. The Tangram chassis uses a fully redundant concept ($n+1,1+1$).

Gigabit Ethernet MPEG-TS to COFDM
Up to 8 COFDM channels on 2 RF outputs
Total of max. 48 COFDM channels in 1 RU
Outstanding signal parameters by direct digital modulation \& adapted output filter
User friendly configuration via standard web browser
Lowpower consumption
Multi channel processor for up to 2×4 (2k-Mode)
Test ports for the output signal
COFDM channels individually switchable on/off
PCR correction
£1,884.75

GT 23W

$8 \times$ QAM modulator board

The GT 23 W module is part of the Tangram product portfolio. This module allows you to add up to 8 services in QAM (DVB-C) format per module to your network. Tangram is a very high density and highly flexible solution for all kinds of networks. The Tangram chassis uses a fully redundant concept ($\mathrm{n}+1,1+1$).
Gigabit Ethernet MPEG-TS to QAM Modulator
Up to 8 QAM channels on 2 RF outputs
Total of max. 48 QAM channels in $1 R \mathrm{U}$
Outstanding signal parameters by direct digital modulation \& adapted output filter
User friendly configuration via standard web browser
Low power consumption
Multi channel processor for up to 2×4 QAM channels
Test ports for the output signal
QAM channels individually switchable on/off
PCR correction
£1,737.75

SYSTEMS

GT 31W

4x Universal DVB to IP module with DVB-S/S2/T/T2/C frontend

The GT 31 W module is part of the Tangram product portfolio. This module allows you to add up to 4 DVB- transport streams per module to your network.
Multi transport stream reception for DVB signals
$4 \times$ DVB-S /-S2 /-T/T2 /-C input
Gigabit Ethernetoutput for MPTS and SPTS signals
Redundancy for video streaming output
UDP \& RTP over IP protocol, ProMPEG FEC (optional)
Demultiplex MPEG-2/MPEG-4 signals for SPTS transmission
Handling of teletextand EPG data
Configuration via Ethernetinterface
Separate FastEthernetportfor management(optional)
DiSEqC (optional
£808.50

GT 42W

$4 \times \mathrm{Cl}$ module
The GT 42 module is part of the Tangram product portfolio. The GT 42 WCI module is designed as descrambler to be optionally combined with other Tangram modules. All Common Interfaces can be cascaded to reduce costs by using standard CAMs.
Tangram is a very high density and highly flexible solution for all kinds of networks. The chassis uses a fully redundant concept ($\mathrm{n}+1,1+1$)
Descrambling + MUX function
Multi channel decryption support (MCD) for payload
loop-through to descramble multiple transport streams
and different scrambling systems with standard CAMs.
Up to 4 CA modules
$20 \times$ MPTS or SPTS outputs
Modification of PSII/SI tables
Block PID, PID remapping
User friendly configuration via standard web browser
Low power consumption

£355.95

Module GT 32W

\times ASI input/ output module
£1,354.50
GT12W
SFP extension board
$£ 672.00$
GT32W
$4 \times$ ASI input / output module
£1,354.50
GTM1
1 year maintenance support
£103.95
GTM3
3 years maintenance support
£204.75

GTMUX

License for multiplexer for GT31, GT32, GT42, GT23, GT24. SI/PSI table generation only from data within this module.
£199.50

GTPSISI
License for sharing SI/PSI data over several modules (for mux and for transmodulation)
$£ 42.00$

GTSYMUX
License for multiplexer for GT31, GT32, GT42, GT23, GT24. SI/PSI table generation including sharing data with interconnected multiplexers in this network.
£231.00

GTSCR

SW option for scrambling for GT23 and GT24 $£ 786.45$

GTRED

SW option for input redundancy per GT module
£204.75

GTNRED

SW option for $\mathrm{n}+1$ redundancy per chassis
£519.75

GTFEC

IP streaming in FEC per module
£157.50

GT55W0230

Redundant power supply 230 VAC
£519.75

GT99

Supportbrackets
£57.75

DVB-S \& DVB-T via IP

TIPM 6 and TIPM 11 IP head ends.
Discontinued see pages 43 to 44C

The new modular IPTV headend series contains two different base units.
For wall mounting TIPM 6 for six modules and for rack mounting TIPM 11 for eleven modules
They can be combined to provide multiple outputs .

Two receiver modules area avialable . TIPM-SR for conversion of a DVB-S signal into an IP data stream and TIPM-TR for conversion of a DVB-T signal into an IP data stream.

All connectors at the front, programming of the headends is done with a PC.

[^2]Each module converts a complete multiplex into a IP stream.

Rack mounting

Prices
$\begin{array}{ll}\text { TPM-6 Wall mounting frame } & £ 447.61 \\ \text { TPM-11 Rack mounting frame } & £ 483.42 \\ \text { TPM-SR Sat receiver to IP } & £ 1,047.40 \\ \text { TPM-TR Terrestrial receiver to IP } & £ 1,047.40\end{array}$

S790,S791 SATELLITE PROCESSORS

S790 Ten module unit
S791 Individual single or twin modules with capacity for 12 single or twin converters

Technical Description

The S790/91 satellite processor converts an individual satellite channel using state of the art phase lock loop oscillators controlled by a microprocessor. To improve the threshold performance of the front end there is a tracking frequency agile bandpass ter in the first stage of each converter
The individual channel, after amplification, is converted to an intermediate frequency ,passed through a SAW filter giving excellent selectivity,before being converted to the output frequency. Each channel has 15 dB of AGC , essential to compensate for levels varying due to rain attenuation. The output level of each channel can be adjusted over a range of 10 dB , this will maximize the performance of the head end amplifier as tilt cand be applied and minor frequency response errors in the head end configura the channels distributed. In addition, the whole system performance is improved if all cope with the full bandwidth of the noise power from the LNB and unwanted channels

Sky digital channels, can only be distributed if the multiplex frequencies are not changed, due to the Sky digibox software, so if a single wire system is used for sky there could be some limitations on what programs can be distributed.

The processors are particularly useful on very large five wire switch systems distribut ing sky, it gives level control on each digital carrier,and also enables other satellite carriers to be fitted into frequencies not being used by sky or into frequencies occupied by sky programmes that are not required by the customer. Also fibre systems to maximize reach will beneifit from individual level control of each sat multiplex.

Individual Single, Twin or Ten module Input Frequency range $950-2150 \mathrm{MHz}$
Frequency steps 1 MHz
AGC range 55-70 dBuV
Input level AGC range
IF frequency bandwidth 36 MHz
Output frequency range $1015-2150 \mathrm{MHz}$
Flatness $\pm 3 \mathrm{~dB}$
Frequency steps 1 MHz
Attenuator adjustment per channel -10 dB Connectors F
Operating Ambient temperature $0-30^{\circ} \mathrm{C}$
Recommended Ambient temperature $17{ }^{\circ} \mathrm{C}$ Power $190-260 \mathrm{~V}$ AC $50-60 \mathrm{~Hz} \leq 60 \mathrm{~W}$

 be included due to data essential for the digibox embeded in a multiplex transport stream.

		Price
S790	Ten IF module unit complete with ten module	$£ 784.40$
S791	Base unit	$£ 355.72$
S791 IF	Single plug in module	$£ 123.03$
S791 IF T	Twin plug in module	$£ 768.30$
S791 TMF	Low pass active filter to allow pass through of unconverted freq between 1100-1690MHz	
Copy key	Removable memory card that stores settings	$£ 26.27$

Typical large sat system using a single coax

Above is a typical system distributing analogue or digital satellite channels plus terrestrial VHF and UHF.

For large systems this is the only optional way of distributing satellite if the running multiple underground trunk cables is prohibitive.

Systems of over a thousand points can be constructed using coax or tens of thousands of points using a hybrid fibre/coax system The limitations to the size of system are the same as existing cable networks except greater care has to be taken in calculating frequency response errors at higher frequencies.

The limitations of using a single cable for distribution of satellite is bandwidth, and the software in sky digiboxes being unable to locate transponders, that have been relocated in the IF spectrum.
There are various partial solutions to this software problem, see our website ,but at the moment no complete solution unless Sky update the receiver software in the future.

As more channels are allocated various options can be used to optimize the available bandwidth .

For example, using satellite demodulators and remodulating, programmes that are broadcast clear in the UHF or VHF band, makes more capacity available in the one to two GHz spectrum for subscription programmes.

Digital broadcast make more efficient use of bandwidth and as broadcasters move over to digital more channels can be distributed in the available bandwidth .
If the most efficient current technology is used a single coax system can carry fourteen hundred and seventy channels.

Quatro LNB

Shipping for one dish and LNB £9.90 Ex Vat

Astra 2B and 2D
have the smallest footprints out of all the Astra transponders beamed towards the UK and Europe.
It can be seen from the illustrated footprint that a 60 cm dish provides good reception in the whole of the UK and Ireland.

TCG15AD Quatro LNB

Gain.
.60 dB
Noise Low band................................ 6 dB
Noise High Band 1.2 dB

Output Frequency...........950-2050MHz
Switching ...N/A
Power Consumption................... 250mA

TCG15 AD Quatro $£ 14 . .^{90}$

Circuit of a TCG15 AD

Dish Specification
OA36G 60CM
Gain.
Elevation Adjustment.
Clamp size for masts
Wind load up to 20 m
mounting height.
.N280
Weight.
.1.6Kg
Price £39. ${ }^{50}$
WB 1 220mm Wall Bracket
£25. ${ }^{98}$

WB 2
£29. ${ }^{76}$

Double LNB Mount

Receive from two satellites with 2 LNB'S and one dish.
Eutelsat (13 ${ }^{\text {deg }}$ East)
Astra19.2 ${ }^{\text {des }}$ East
480 mm Wall Bracket

$958-2.4 \mathrm{GHz}$
TS3059SF

VS 93B

VS 93B	87-862/950-2400	13-18dB	27 dB	35 dB	115 dBuV	$\leq 7 \mathrm{~dB}$	18 V 300 mA	220/240VAC 14VA	$£ 96.43$
TS3059SF	40-860/950-2150	28 dB	22dB	28 dB	116 dBuV	$\leq 7 \mathrm{~dB}$	12 V 400 mA	220/240VAC 5VA	£153.23

TDY 40 Satellite Multiswitch Amplifier

Adjustable gain controls and slope equalization Gain adjustable to 30dB

DV25
Isolated terminator
£1.49

The TDY40 amplifier is only required to compensate for long cable runs or larger systems.
Switches illustrated below and on following page have internal amplification

Technical Info	
Frequency range	$950-2150 \mathrm{MHz}$
Gain	$10 . . .30 \mathrm{~dB}$
Output level	115 dBuV
(3.order EN50083-3, 35 dB)	
Adjustable attenuation	0... 20 dB
Slope	0,4,8, 12 dB
Isolation trunk	40 dB typ.
Connectors F-socket	
DC supply voltage	Via F-socket
Operating voltage DC	13... 18
Current consumption	200 mA
DC bypass	Yes
Screening factor	Class A, EN 50083-2
Dimensions (width \times height \times depth)	$129 \times 86 \times 32 \mathrm{~mm}$
Operating temperature range	$-20 . .+50^{\circ} \mathrm{C}$
Weight	0,290 g

Terrestrial amplifier

DV49A Quick coupler £1.00

CLP STA $£ 45.89$

DV49A

Quad band LNB and terrestrial inputs. 8 outputs for 4 sat receivers, cascadable for multiple outputs.

More versatile ,high specs, lower cost, same very high quality

Quad band LNB and terrestrial inputs.
16 outputs for 8 sat receivers,cascadable for multiple outputs.

Technical data

Operating voltage	
Power consumption max.	$13 \ldots 18 \mathrm{VDC}$
Impedance	75Ω

Frequency Satellite
Control signal

Current consumption from receiver	70 mA
Through loss Satellite	$1 \ldots 3 \mathrm{~dB}$
Insertion loss to subscriber , Satellite	$2 \ldots-2 \mathrm{~dB}$
Trunk Inputs Satellite	8
Trunk Outputs Satellite	8
Isolation, Satellite -Satellite	40 dB typ.
Return loss Satellite	$>10 \mathrm{~dB}$
Max. output level subscriber Satellite	101 dB VV
Frequency range Terrestrial	$5 \ldots 862 \mathrm{MHz}$
Through loss Terrestrial	$3,5 \ldots 4,2 \mathrm{~dB}$
Insertion loss to subscriber ,Terrestrial	$24 \mathrm{~dB}(\pm 2 \mathrm{~dB})$
Trunk Inputs Terrestrial	1
Trunk Outputs Terrestrial	1
Return loss Terrestrial	$>10 \mathrm{~dB}$
Max. output level subscriber Terrestrial	$50 \ldots 10 \mathrm{~dB} \mathrm{~V}$ (passive)

Connectors
DC supply voltage via
Colour-coding
Power indicator

Power indicator
Screening factor
LED

Operating temperature range
lass A, EN 50083-2
$-20 \ldots+50{ }^{\circ} \mathrm{C}$

F-socket
F-socket
VL = black;
$H=$ green;
VH = red;
$\mathrm{HH}=$ yellow

Note
All satellite and terrestrial signal levels, may need to be adjust-
ed to operate the sat switch correctly ,please ensure they are
within the correct operating range
Additional attenuators and or levelling may be needed.

Incredible Satellite Switches

Except for powering the LNB these active switches use 43ma of power (Normal LNB takes 250 mA) from the set top box to power the amplification. The amplification eliminates the normal tap side loss so less front end amplification is often not needed on many smaller systems.

Systems then can be deployed without the need for providing several power supplies around the network.

See page 26B for Sky Q Systems

DV49
Coupler to link switches. £1.00

[^3]
Amplifier for Satellite Switches

Create large systems using these amplifiers, can be used to drive 100 meters + of CT167 (-23dB attenuation at $2,400 \mathrm{MHz}$)

Input frequencies	
Sat	$950-2400 \quad 18-862 \mathrm{MHz}$
Terrestrial	4 SAT, 1 TERR
Inputs	4 SAT, 1 TERR
Outputs	4 SAT, 1 TERR

Isolation Terr. / SAT	30 dB typ.
Isolation H/V	30 dB typ.
Return loss	10 dB typ
Input level	
SAT	$92 \mathrm{~dB} \mu \mathrm{~V}$ max.
Terr.	$90 \mathrm{~dB} \mu \mathrm{~V}$ max.
Gain $950 \ldots . .2150 \mathrm{MHz}$	$20 \ldots 24 \mathrm{~dB}$
Gain $18 . . .862 \mathrm{MHz}$	20 dB
Gain adjustment	15 dB
Slope	$\mathrm{TERR} / \mathrm{SAT} 4 \mathrm{~dB}$
SAT output level	$116 \mathrm{~dB} \mathrm{\mu V}$ max. (IMA3 60 dB$)$
Terr. output level	$110 \mathrm{~dB} \mathrm{\mu V}$ max. (IMA3 60 dB$)$
Current consumption	$420 \mathrm{~mA} @ 12 \ldots . .18 \mathrm{VDC}$
Operation temperature	$-20+70^{\circ} \mathrm{C}$
Operating voltage	$12-18 \mathrm{VDC}$
LNB supply current	2000 mA
Dimensions (WxHxD)	$140 \times 110 \times 63 \mathrm{~mm}$
Price	$£ 82.09$

TXPOV-F
Voltage Surge
protector $£ 3.10$
www.taylorbros.co.uk www.txsystems.co.uk

F Connector 1.5 amp power injector. 5 MHZ - $2.25 \mathrm{GHz} £ 3.50$

PSU to power LNB and switches TCLP STA £45.89

- NS Satellite Switches

Simple to install, simple to commision

High gain alloy 60 cm dish $£ 19.50$

Low noise high gain Quatro LNB £16.90

Example of a Satellite and Terrestrial TV distribution system.
192 twin feed outlets
(DAB and FM Radio easily added)
5×8 Way wideband splitters Type TD8-12FS
Insertion loss $12-18 \mathrm{~dB}$ $£ 7.90$ each

Up to 100 m or more with suitable coax

WIDEBAND SPLITTERS

10-2400MHz

Very High Quality

Type	Way	Insertion loss	Insertion loss	Insertion loss	Return Loss	Price
		400 MHz	700 MHz	2000 MHz		
TD2-4SF	2	4 dB	4 dB	5.6 dB	$>18 \mathrm{~dB}$	$£ 2.57$
TD3-6SF	3	6 dB	6 dB	8 dB	$>18 \mathrm{~dB}$	$£ 3.41$
TD4-8SF	4	7 dB	8 dB	10 dB	$>18 \mathrm{~dB}$	$£ 3.91$
TD6-10SF	6	9 dB	10 dB	12.5 dB	$>18 \mathrm{~dB}$	$£ 5.45$
TD8-12SF	8	12 dB	12 dB	14 dB	$>18 \mathrm{~dB}$	$£ 6.23$

WIDEBAND SPLITTERS UP TO 860MHz

Type	Way	Insertion loss	Insertion loss	Insertion loss	Return Loss	Price
		5 MHz	700 MHz	860 MHz		
TD2-4F	2	3.2 dB	3.7 dB	4 dB	$>18 \mathrm{~dB}$	$£ 1.21$
TD3-6F	3	5.2 dB	5.5 dB	6 dB	$>18 \mathrm{~dB}$	$£ 1.76$
TD4-8F	4	7 dB	7.4 dB	7.4 dB	$>18 \mathrm{~dB}$	$£ 2.29$
TD6-10F	6	9 dB	9 dB	9.5 dB	$>18 \mathrm{~dB}$	$£ 3.63$
TD8-12F	8	10.5 dB	11 dB	11.5 dB	$>18 \mathrm{~dB}$	$£ 4.85$

FCN F connector 100+£0.029 each Shipping 100
pieces $£ 2.493$ day No aditional shipping cost when included with other orders

Next day delivery available Via UPS.

Lower cost shipping (3 days under 2kgs)
via Post Office.
WIDEBAND TAPS 10-2400MHz

Type	Taps	Tap Loss dB	Through Loss*	Reverse Isolation dB (Tap Out)	Return Loss dB	Price	Note Sky Q Use frequencies up to 2.4 GHz . These taps work up to 2.4 GHz But were manufactured
TA1-12FS	1	12	2.7	>19	>14	$£ 2.71$	
TA1-15FS	1	15	2	>19	>14	£2.71	
TA1-20FS	1	20	1.8	>19	>14	£2.71	
TA1-25FS	1	25	1.8	>19	>14	$£ 2.71$	
TA2-12FS	2	12	4.3	>19	>14	$£ 2.84$	
TA2-15FS	2	15	3.8	>19	>14	£2.84	
TA2-20FS	2	20	3.4	>19	>14	$£ 2.84$	
TA2-25FS	2	25	3.4	>19	>14	$£ 2.84$	
TA4-12FS	4	12-13	6.5	>19	>14	£5.16	
TA4-15FS	4	14-16	5.5	>19	>14	£5.16	
TA4-20FS	4	20-22.5	4.5	>19	>14	$£ 5.16$	
TA4-25FS	4	26-28	3.5	>19	>14	$£ 5.16$	

All above require FCT 75 ohm load if through line out not connected

Internet can be routed via a standard TV distribution VHF/UHF system and provides very high bandwidth. Ideal for streaming TV channels and Box sets Bandwidth usually ten times better than a standard phone line. See return path amplifiers in the front of the catalogue. Over a thousand channels plus internet can be didtributed via this very low cost system.

TXS

96 point distribution system $5-860 \mathrm{MHz}$

96 point distribution system for Freeview terrestrial and will also distribute via the coax high speed internet. Distributing the internet via coax provides higher quality and higher speed than standard bhone line connection. Good for on line ,BBC I player, Netflix, Sky, Amazon Prime,Boxset , etc,etc.

69B

WISI SPLITTERS
$5-1000 \mathrm{MHz}$

Type	Way	Insertion loss	Return loss	Price
		$5-1000 \mathrm{MHz}$		
DM 02 B	2	3.7 dB	$>18 \mathrm{~dB}$	$£ 3.10$
DM 03 B	3	7.5 dB	$>18 \mathrm{~dB}$	$£ 5.00$
DM 04 B	4	8.5 dB	$>18 \mathrm{~dB}$	$£ 5.50$
DM 06 B	6	10 dB	$>18 \mathrm{~dB}$	$£ 7.47$
DM 08 B	8	12 dB	$>18 \mathrm{~dB}$	$£ 8.74$

WISI SPLITTERS
5-2400MHz

Type	Taps	Tap Loss dB	Through Loss dB	Reverse Isolation dB	Return Loss Tap	Price
DM 21 C	1	8	≤ 1.8	>25	>20	$£ 2.71$
DM 22 C	1	12	≤ 1	>25	>20	$£ 2.71$
DM 24 C	1	16	≤ 0.8	>28	>20	$£ 2.71$
DM 25 C	1	20	≤ 0.8	>28	>20	$£ 2.71$
DM 31 C	2	10	≤ 3	>25	>20	$£ 3.94$
DM 32 C	2	12	≤ 2	>25	>20	$£ 3.94$
DM 34 C	2	16	≤ 1.2	>28	>20	$£ 3.94$
DM 35 C	2	20	≤ 1	>34	>20	$£ 3.94$
DM 36 A 4012	4	12	≤ 3.5	>28	>20	$£ 9.59$
DM 36 A4016	4	16	≤ 2	>28	>20	$£ 9.59$
DM 36 A4020	4	20	≤ 1	>28	>20	$£ 9.59$
DM 36 A 4024	4	24	≤ 0.8	>28	>20	$£ 9.59$
DM 37 B 6013	6	$13-17.5$	≤ 6	>24	>20	$£ 10.94$
DM 38 B 8013	8	$13-20$	≤ 8	>32	>20	$£ 14.63$

All above require FCT 75 ohm load if through line out not connected

Type	Taps	Tap Loss dB	Through Loss dB	Reverse Isolation dB	Return Loss Tap	Price
DM 51 1010	1	11	≤ 2.5	>22	>20	$£ 3.11$
DM 51 1015	1	15	≤ 2	>25	>20	$£ 3.11$
DM 51 1020	1	20	≤ 1.8	>28	>20	$£ 3.11$
DM 52 2010	2	11	≤ 4	>20	>20	$£ 3.94$
DM 52 2015	2	15	≤ 3.8	>20	>20	$£ 3.94$
DM 52 2020	2	20	≤ 3.5	>20	>20	$£ 3.94$
DM 54 A 4010	4	$12.5-14$	≤ 5.5	>21	>20	$£ 4.37$
DM 54 A 4015	4	15	≤ 2.5	>21	>20	$£ 4.37$
DM 54 A 4020	4	20	≤ 2.4	>21	>20	$£ 4.37$
DM 54 A 4025	4	25	≤ 2.4	>25	>20	$£ 4.37$

OUTLET SOCKETS

TXAO1 Single coax output $0-860 \mathrm{MHz}$

Dab \& FM Radio

Screened twin F connector outle. 2 in 2 out use this socket for Sky or Freesat

Can also connect to TV,s or Freeview set top boxes using a splitter, with power through one port only.

On current installations outlet sockets are not isolated as in the past (BS415) due to voltages from the TV or set top box needing to feed LNB's or Sat switches so a CATV system needs earth bonding.

Earth bonding points are usually located on taps, splitters and amplifiers.

However in the event of coax cables being installed on long runs close to high voltage cables, mains etc from a tap or splitter to the outlet plate use an in line ground block as high voltages can be induced into the coax cable.

See connector page in our catalogue.

Coaxial connectors

FPSCC

F Connector, push on crimp for RG6 (CT100) (crimp tool needed DZ85)
Price $£ 0.65$
100+ £0.32

AFPSCC

Angle F Connector, push on crimp for RG6 (CT100) (crimp tool needed)
Price $£ 1.65$
$100+£ 1.40$

FPCC

F Connector for ,crimp RG6 (CT100) (crimp tool needed DZ85)
Price $£ 0.35$
100+ £0.29

FPCC11

F Connector for ,crimp RG11 (CT167)
(crimp tool needed)
Price $£ 6.95$
25+ £5.86

FCN 11

F compression connector For cable type RG11 CT167
Requires CP1 crimp Tool
Price $£ 0.25$
100+ £0.20

EX6+

High performance compression
F connector for CT100.
Compression tool required CAT
AS EX.
1-10 £0.30 11-99 £0.22
100+ £0.20 1000+£0.19
$5000+£ 0.18$

EX60D

High performance outdoor compression F connector with weatherproof boot for CT100 .Compression tool required CAT AS EX.
1-10 £0.30 11-99 £0.22
$100+£ 0.151000+£ 0.13$

FCN
Screw on F connector for cable 75Ω RG6 etc.

Price each $£ 0.04$ 100+ £0.029 Each $1000+£ 0.025$

FCQCN

F connector adaptor enables quick plug on
Price each £0.65

DV54

Screw on F connector for coax cables
11 mm outside diameter.CT167/RG11 etc.
Price $£ 1.55$
25+ £1.11

FJ-CP
Coaxial IEC Male to F-Female adaptor Price $£ 0.35$

SFT-CP

Coaxial IEC M14 Male to F-Female

F connector Female-Male Angle
Adaptor
Price $£ 0.38$

AFP

F connector Male-Male Adaptor Price $£ 0.64$

AFPM

F connector Female-Female Adaptor Price $£ 0.88$

TRPK-FS
F Connector
1.5 amp line power injector
5 MHZ - 2.15 GHz

Price $£ 3.50$

SCP

Coaxial screw-on plug.
Type IEC M14 75 7 .
Accepts coax cables up to 9 mm outside diameter Price $£ \mathbf{£ 7} \mathbf{7 3}$

SAC

Coaxial male to female screw-on angle connector Type IEC M14 75 2 . Price $£ 7.07$

SFCP

Coaxial female to female screw-on panel connector Type IEC M14 75 Ω.
Price $£ 4.00$

RAP-SC
Screened coaxial male right angled quality connector.
Accepts cables up to 8 mm outside diameter
Price $£ 1.02$

RAP-FSCA

Screened coaxial female right angled quality connector. Accepts cables up to 7.5 mm outside diameter. $0-2400 \mathrm{MHz}$
Screening 75dB
Price $£ 1.02$

SCPP

Screened coaxial screw-on plug. With plastic outer body. Type IEC M14 75Ω Accepts coax cables up to 8 mm outside diameter Price £1.07 Dis ued

MFLK35 (35cm)
MFLK50 (50cm)
Moulded coaxial lead, screw on IEC connectors
Price
MFLK35 £2.67 Discontinued
MFLK0 £2.86 Discontinued

Specifications subject to change

Accessories

GROUNDING

FCGB2
F Connector
grounding
block. for two connectors

NB 02
Grounding block for 8 cables. Grounds via cable clamp to braid Price $£ 5.99$

ATTENUATORS

TILF3 3dB Attenuator TILF6 6dB

F Connector 75Ω DC 2050 MHz Price $£ 2.95$

F connector 75Ω with DC power through ,max $30 v$ DC 1A $5-2050 \mathrm{MHz}$ Price $£ 4.05$

TILF6 DC 6dB
TILF10 DC 10dB
TILF15 DC 15 dB

TR20F-LP

Variable F Attenuator
$.5-18 \mathrm{~dB} 40-2150 \mathrm{MHz}$ Line Power
Through Max 24V 1A Price $£ 9.90$

LOADS/TERMINATORS

SCP 75

75Ω IEC Terminator DC-2300MHz Price $£ 4.95$

FCT

75Ω F Terminator DC-2300MHz
Price £0.18
DV25

75Ω DC Isolated
F Terminator . 01 -2300MHz
Price $£ 1.49$

Isolators							
Type	Max Voltage	Isolation	Freq	Price	KTG120K	1000	Centre+screen
:---	:---:	:---:	$4-2300 \mathrm{MHz}$ £61.22				

DC100K
IEC Connector Voltage Isolator

Centre and screen Isolators are essential for systems where high voltage potentials are created . Line power installations typically have these problems ,causing hum modulation. Long coax runs are susceptible to induced high voltages .

Modern head ends with microprocessor circuitry are more vulnerable to damage to voltage surges. The cost of an isolator is small in comparison to the possible saving by protecting valuable equipment from voltage spikes.

Centre conductor Isolators are typically used for blocking line power voltage ,LNB power etc.

PG11 Connectors for Cable Amplifiers

0-2300MHz 3A
F, TF1 $£ 7.35$

Cable prep tools

DDT £9.95

Cable stripper
for cables RG59,CT100,CT167
$0-2300 \mathrm{MHz}$ 10A IEC,
TIEC $1 £ 10.03$

CAT AS EX
Compression
Tool for EX6

DZ14

Crimp tool for FCN 11
F Connector
Price $£ 29.90$
$£ 69.72$

Compression tool for FPCC11 RG11 Connector

DZ 85
Comnression tool for FPCC1 RG 58-RG6
 tor $£ 39.72$

VT200
Compression tool for EX6/EX6XL EX7/EX11
$£ 59.72$

Technical Information

Derating for number of Analogue TV Channels DIN45004B

dB	Ch
0	2
3	4
6	8
9	16
12	32
15	64

Derating for number of Digital TV Multiplexes ref,to DIN45004B

$d B$	Ch
6	2
9	4
12	8
15	16
18	32
21	64

Derating for number of cascading amplifiers

dB	Amplifiers
0	0
3	2
6	4
9	8
12	16
15	32

dBuV to dBmV

dBuV	dBmV		
0	-60	dBm	
3	-57	-10	10 mW
6	-54	0	1 mW
9	-51	10	10 mW
12	-48	20	100 mW
15	-45	30	1 W
18	-42	40	10W
21	-39	50	100W
24	-36	60	1 kW
27	-33	70	10kW

$\mathrm{dBuV}, \mathrm{dBmV}$ to $\mathbf{u V}$ and mV

dBuV	$\mathbf{d B m} \mathbf{V}$	$\mathbf{u V}$	$\mathbf{m V}$
0	-60	1	0.001
20	-40	10	0.010
40	-20	100	0.100
60	0	1,000	1
80	20	10,000	10
100	40	100,000	100
120	60	$1,000,000$	1,000
140	80	$10,000,000$	10,000
160	100	$100,000,000$	100,000
180	120	$1,000,000,000$	$1,000,000$

Recomended minimum signal levels at outlet

Analogue TV UHF	60dBuV
Digital TV UHF DVB-T/T2 64QAM \& 256QAM (10dB margin at 47dBuV)	47dBuV
Band 2 FM Radio (some modern FM radio tuners will work as low as 20dBuV)	47dBuV

UK DVB-T/T2 Frequencies	
Channel	MHz
21	474
22	482
23	490
24	498
25	506
26	514
27	522
28	530
29	538
30	546
31	554
32	562
33	570
34	578
35	586
36	594
37	602
38	610
39	618
40	626
41	634
42	642
43	650
44	658
45	666
46	674
47	682
48	690
49	698
50	706
51	714
52	722
53	730
54	738
55	746
56	754
57	762
58	770
59	778
60	786
61	794
62	802
63	810
64	818
65	826
66	834
67	842
68	850

Not now used for terrestrial broadcast ,risk of interference from mobile phones,if Inw pass filter not ted on antenna put.
ee page 34B
art number TXB 700
an be used for DVB-T ıodulators if filter fitted

Analogue UHF TV Frequencies, terrestrial discontinued		
Channel	MHz Vision	MHz Sound
21	471.25	477.25
22	479.25	485.25
23	487.25	493.25
24	495.25	501.25
25	503.25	509.25
26	511.25	517.25
27	519.25	525.25
28	527.25	533.25
29	535.25	541.25
30	543.25	549.25
31	551.25	557.25
32	559.25	565.25
33	567.25	573.25
34	575.25	581.25
35	583.25	589.25
36	591.25	597.25
37	599.25	605.25
38	607.25	613.25
39	615.25	621.25
40	623.25	629.25
41	631.25	637.25
42	639.25	645.25
43	647.25	653.25
44	655.25	661.25
45	663.25	669.25
46	671.25	677.25
47	679.25	685.25
48	687.25	693.25
49	695.25	701.25
50	703.25	709.25
51	711.25	717.25
52	719.25	725.25
53	727.25	733.25
54	735.25	741.25
55	743.25	749.25
56	751.25	757.25
57	759.25	765.25
58	767.25	773.25
59	775.25	781.25
60	783.25	789.25
61	791.25	797.25
62	799.25	805.25
63	807.25	813.25
64	815.25	821.25
65	823.25	829.25
66	831.25	837.25
67	839.25	845.25
68	847.25	853.25

[^0]: Frequency response $47-862 \pm 0.5 \mathrm{~dB} 950-2400 \mathrm{MHz} \pm 1.5 \mathrm{~dB}$

 * Depending which return path module is used

 Amplifier comes with $4 \times$ PG11 threads , please choose F or IEC connector if PG11 connectors are not to be used

[^1]: Prices and specifications are subject to change. please ask for a quotation with a fixed price period.

[^2]: Input
 TIPM-TR DVB-T terrestrial receiver 174-239, 470-862 MHz
 TIPM-SR DVB-S satellite receiver $950-2150 \mathrm{MHz}$
 Input frequency steps $1 \mathrm{MHz}-166,7 \mathrm{kHz}$
 AFC $+/-3 \mathrm{MHz}$ -
 $2 \mathrm{~K}+1-285 \mathrm{kHz}$
 $8 \mathrm{~K}+/-142 \mathrm{kHz}$
 Loop-through loss $<1,5 \mathrm{~dB}<1,5 \mathrm{~dB}$
 Input level $40-84 \mathrm{~dB} \mu \mathrm{~V} 30-80 \mathrm{~dB} \mu \mathrm{~V}$
 Return loss 10 dB /
 DiSEqC 1.01
 Demodulation ETS 300421 ETS 300744
 Symbol rate $1-40 \mathrm{MS} / \mathrm{sec}$ -
 FEC $1 / 2,2 / 3,4 / 5,5 / 6,7 / 8$, auto $1 / 2,2 / 3,4 / 5,5 / 6,7 / 8$, auto
 Carrier - $2 \mathrm{~K}, 8 \mathrm{~K}$
 Modulation QPSK, 16 QAM, 64 QAM
 Connectors F

 ## Output

 Connectors RJ 45 Ethernet LAN RJ 45 Ethernet LAN
 Encoding standard ETSI TS102034 ETSI TS102034
 Type of streaming IPv4 Multicast IPv4 Multicast
 General characteristics
 Power supply $220-240 \sim \mathrm{~V}, 50-60 \mathrm{~Hz} 220-240 \sim \mathrm{~V}, 50-60 \mathrm{~Hz}$
 Power consumption 11 W 4 W
 Dimensions $35 \times 130 \times 240 \mathrm{~mm} 35 \times 130 \times 240 \mathrm{~mm}$
 Operating temperature $(-5)-45^{\circ} \mathrm{C}(-5)-45^{\circ} \mathrm{C}$
 TIPM 11 mounting frame for 11 modules TIPM 6 mounting frame for 6 modules
 Operating voltage $220-240 \mathrm{~V} \sim, 50-60 \mathrm{~Hz}$
 Power consumption 100W max.
 Operating temperature $-5^{\circ} \mathrm{C} \ldots 45^{\circ} \mathrm{C}$
 Dimensions $(W \times H \times D) 48,3 \times 13,3 \times 28,8 \mathrm{~cm} 31,4 \times 13,3 \times 29,8 \mathrm{~cm}$

[^3]: Note. What has a major effect on system design is the number of Digital Sat and Terrestrial channels distributed, the difference in input levels, variations in amplifier gain and system attenuation at differen
 distribution \square
 being used. using coaxial
 cable for the network as ordinary CT100 (RG6) and CT167 for longer main feed runs
 Use coaxial cable for the network such as CT100 (RG6) and CT167 for longer main feed runs. CT100 (RG6) has a loss of more than 10dB greater per 100m at 2400 MHz than at UHF 860 MHz , however terrestrial digital TV channels needs about 30 dB less than analogue at the receiver so if you add a design margin of 10 dB there is a 20 dB advantage using terrestrial digital and the higher frequencies used for satellite are offset even more due to the much lower signal levels needed for sat reception, due to the type of robust modulation employed in DVB-S and DVB-S2 (QPSK 8QPSK). If technical advise is needed in configuring your system design, please do not hesitate to call on our main phone number and ask for technical support.

