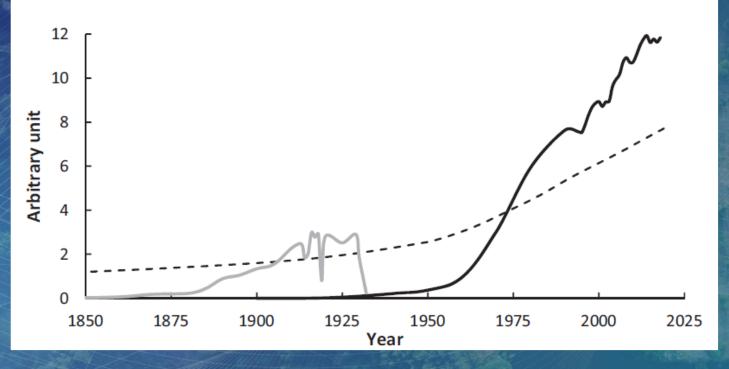


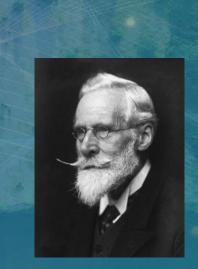
Ammonia as Energy Vector: Challenges and Opportunities

Dr. Mauricio Isaacs C.

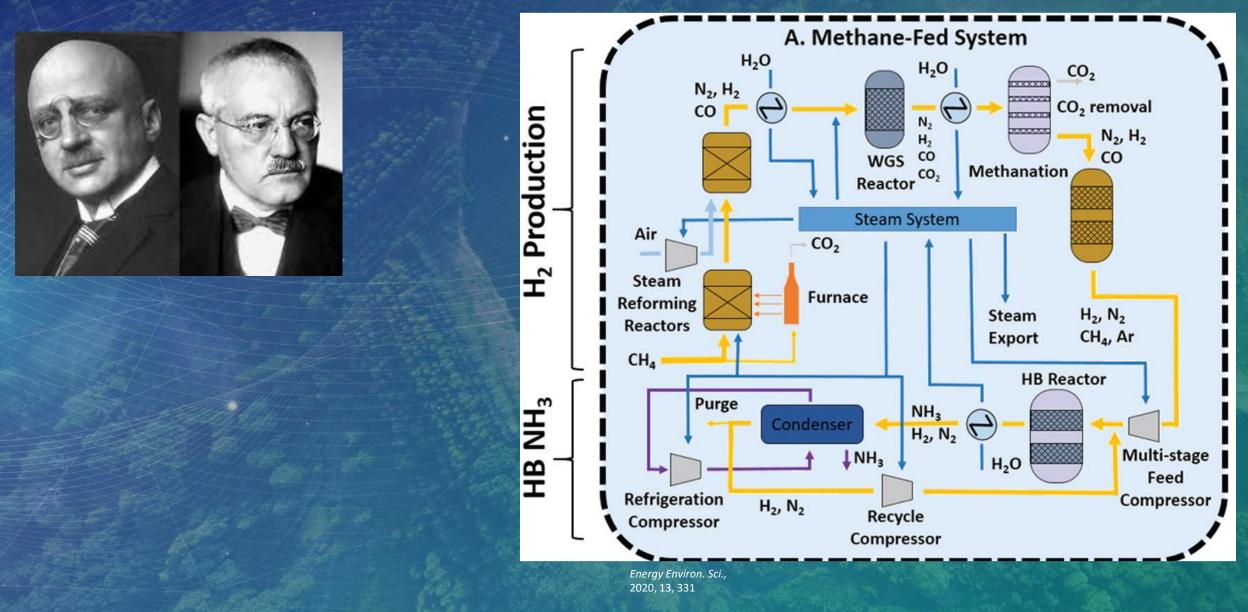

Millenium institute on green ammonia as energy vector Pontificia Universidad Católica de Chile Facultad de Química y de Farmacia

December, 12, 2023 Santiago.Chile

www.greenammoniainstitute.cl


• Why green ammonia?

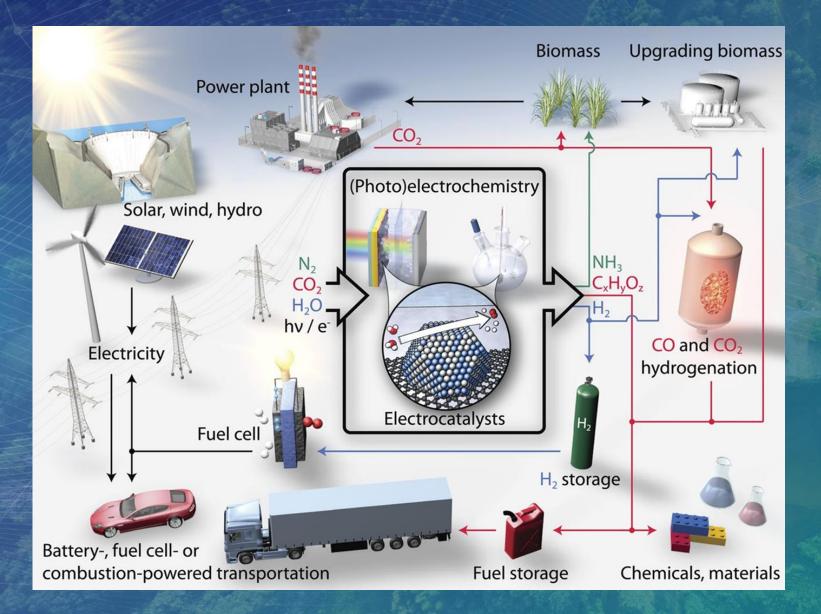
The dependence of the human population on the Haber-Bosch process. Dotted black line: World population (107). Gray line: Annual export of Chilean nitrate (103 kt/a). Black line: Ammonia Production by the HabereBosch process (107 t-N/a).


Techno-Economic Challenges of Green Ammonia as an Energy Vector. 2021

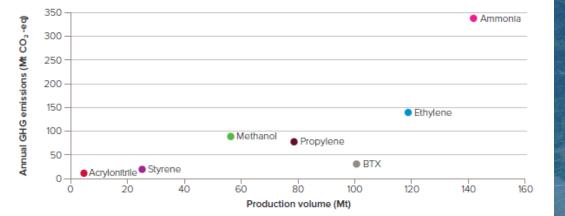
Thomas R. Malthus 1798 publishes essay on population increase and finite resources of the planet

Sir William Crookes in 1898 gave a landmark speech at the British Association for the Advancement of Science in Bristol, in which he argued that the world's population would starve by 1921 due to the depletion of natural nitrate fertilizer located in deposits in Chile. Crookes called on scientists around the world to develop a synthetic process for nitrogen fixation and many heeded the call.

• Why green ammonia?



• Why green ammonia?

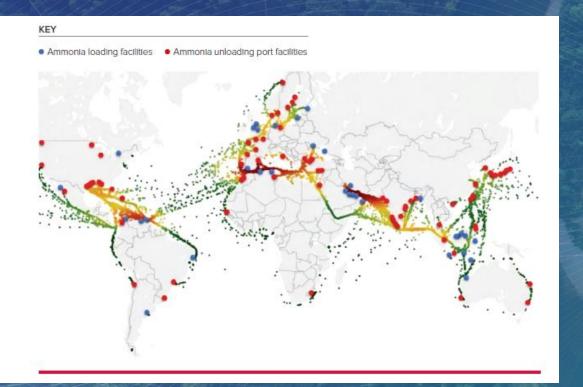


Based on the Haber-Bosch process, generates twice as much CO_2 due to the impacts of NH3 ~ 2% energy consumption

•Why green ammonia?

Greenhouse gas emissions for selected high production volume chemicals for 2010⁴.

BTX – Benzene, Toluene, Xylene (aromatic chemicals). These 2010 numbers are the most recent published figures. Note: Ammonia production in 2018 was 176Mt and generated around 500 million tonnes of carbon dioxide (per annum).

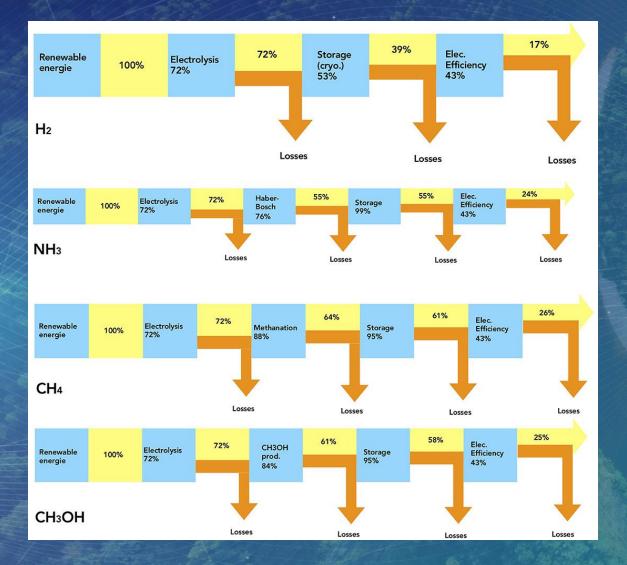

Greenhouse gas emissions for chemicals


KEY Diesel Petrol (octane) Carbon-based fuels Liquefled Petroleum Gas Zero-carbon fuels Ethanol Liquefled Natural Gas Methanol Ammonia (liquid, -35°C) Ammonia (liquid, 25°C) Hydrogen (liquid) Hydrogen (700bar) Hydrogen (350bar) LI-battery (NMC) Energy density (kWh/l)

The volumetric energy density of a range of fuel options.

Volumetric energy density of a range of fuel options

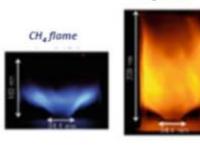
*Ammonia: zero-carbon fertiliser, fuel and energy store*Issued: February 2020 DES5711 ISBN: 978-1-78252-448-9 © The Royal Society



Ammonia transport networks around the world

Estimated costs of transporting energy vectors

*Ammonia: zero-carbon fertiliser, fuel and energy store*Issued: February 2020 DES5711 ISBN: 978-1-78252-448-9 © The Royal Society



	Alkaline	PEM	SOEC
Electrolyte	Electrolyte potassium hydroxide (KOH) of typically 25–35% w/w ^a	Thin (0.2 mm) polymer, such as perfluorosulfonic acid (PFSA) polymers ^a	ZrO2 doped with 8 mol% of Y2O3 (YSZ)
Maturity	Mature ^b	Early phase of commercialization ^b	Development ^b
Operation parameters			
Cell temperature (°C)	80-140 ^a	20-80 ^a	650–1,000 ^a
	40–90 ^b	20-100 ^b	600-1,000 ^b
	60-90°	50-80°	700-900°
Pressure (bar)	35 ^a	10–30 ^a	10 ^a
	<30 ^b	<100 ^b	-
	10-30°	20–50°	1–15°
Current density (A/cm ²)	0.2-0.4 ^b	1–2 ^b	12
	0.25-0.45°	1–2°	0.3–1°
Flexibility			
Load Flexibility (% of nominal load)	20-100°	0-100°	-100/+100°
Cold start-up time	20 min ^b	5 min ^b	
	1–2 h°	5–10 min°	Hours ^c
Warm start-up time	1–5 min ^c	<10 s ^c	15 min ^c
Efficiency			
Nominal sta ck efficiency (LHV) %	63–71°	60–68°	100°
Nominal system efficiency (LHV) %	62-82 ^b	67–82 ^b	-
	51-60°	46-60°	76–81°
	67–70 ^d	67–74 ^d	
Electricity-to-hydrogen efficiency (%)	65–74°	62–79°	77–81°
Available capacity			
Max. nominal power per stack (MW)	6°	2°	<0.01°
H2 production per stack (NM ³ /h)	1,400°	400°	<10°
Cell area (m ³)	<3.6 ^c	<0.13°	<0.06°
Durability			
Life time (kh)	55-120°	60-100°	(8–20) ^c
Efficiency degradation (%/y)	0.25-1.5°	0.5–2.5°	3–50°
Economic Parameter			
Investment costs (€/kW)	800-1,500°	1,400–2,100°	(>2,000)°
	1,000 ^d	2,000 ^d	_
	600–2,600°	1,900–3,700°	-
Maintenance costs (% of inve stment	2–3°	3–5°	n.a.c
costs per year)	2–5 ^e	2-5 ^e	2-3°

Elucidation of NH₃ combustion mechanism

By the scientific research on NH₃ combustion mechanism, it was confirmed that:

- stable combustion of NH3 is possible;
- formation of NO_X can be controlled and emission of other air pollutants, such as N₂O and NH₃ can be contained by adjusting combustion conditions.

NH, flame

Developed and in a commercialization stage Developed and in a commercialization stage Under development Under development

Developed and in a commercialization stage Under development Plan to implement in 2025-26

Demonstrated. Verified applicability of the mixed combustion. Combustion projects developed in Japan

Development of 100% NH₃ or Coal-NH₃, CH₄-NH₃ mixed combustion equipment (Gas turbine)

(NH₃ 100% fuel) :

(20% NH₃ mixed combustion): (~70% NH₃ mixed combustion):

(20% NH₃ mixed combustion):

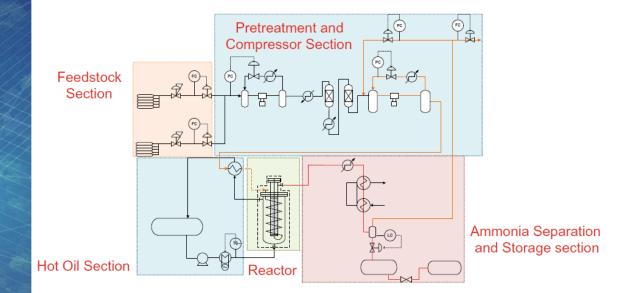
(20% NH₃ - Coal mixed combustion):

(30% NH₃- CH₄ mixed combustion):

(NH₃ used as H₂ carrier):

- Micro (50-300kW) gas turbine
- MW class gas turbine

- 500-600 MW class gas turbine (Coal fired boiler)

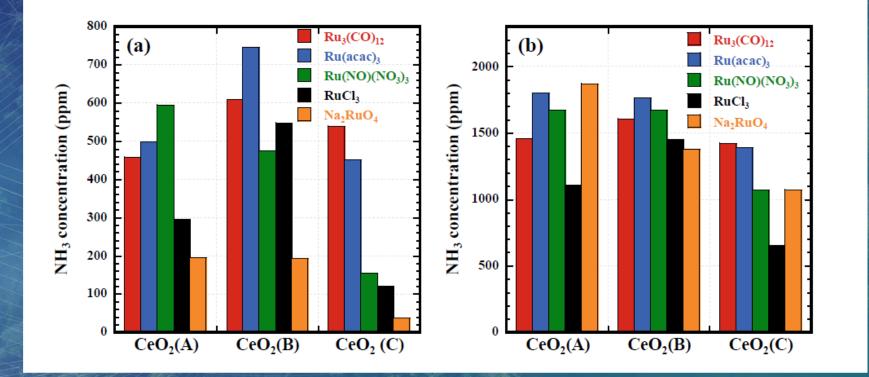

- 10 MW pulverized coal fired boiler (20% NH₃ mixed combustion): (~60% NH₃ mixed combustion):
- 1 GW pulverized coal fired boiler (Industrial furnace)
- 100 kW furnace:
- Degreasing furnace:

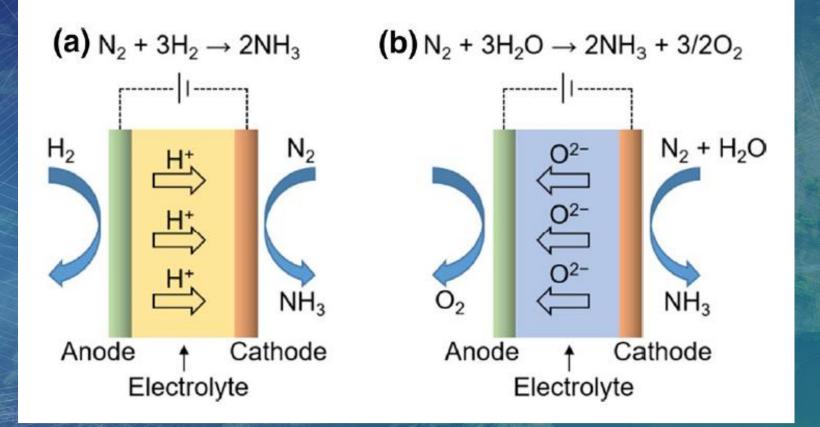
NH₃ fueled SOFC (Solid oxide fuel cell)

- 1 kW NH₃ fueled solid oxide fuel cell system:
- 300 kW NH₃ fueled solid oxide fuel cell system:

Developed. Under development

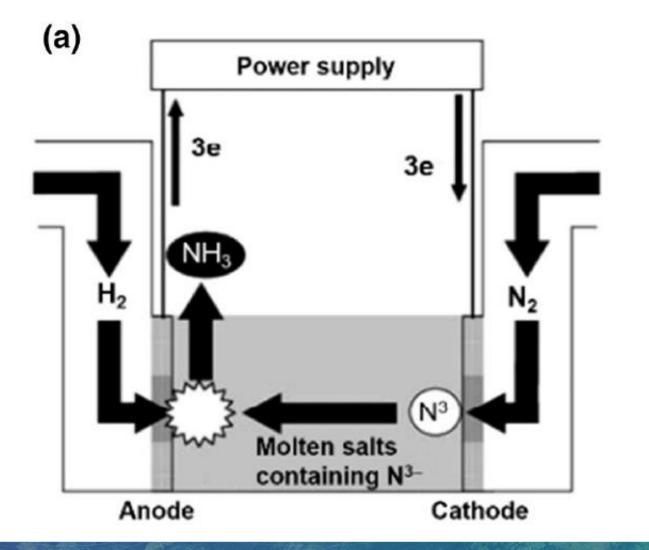
ISBN 978-981-19-4766-7 ISBN 978-981-19-4767-4 (eBook) https://doi.org/10.1007/978-981-19-4767-4



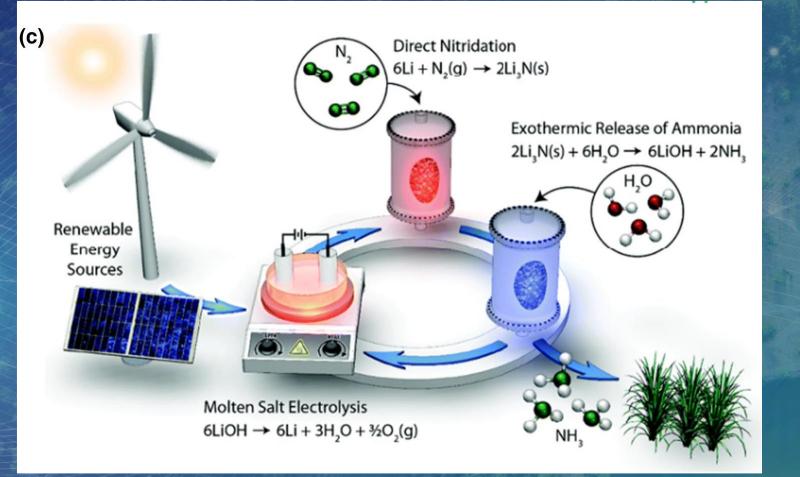

Schematic process flow diagram of the demonstration plant in AIST FREA

Photograph of the demonstration plant in AIST FREA (courtesy of AIST)

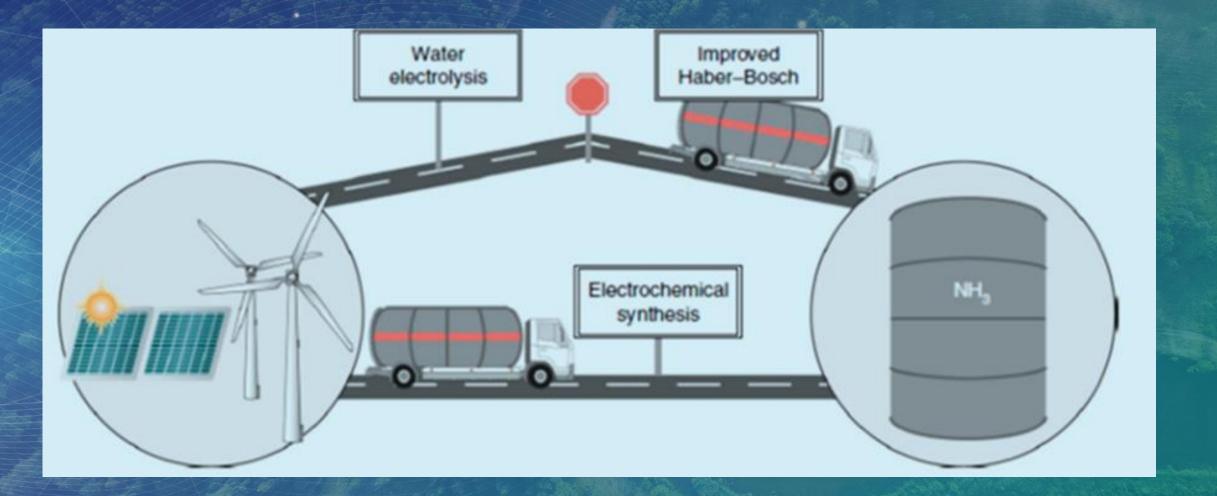
ISBN 978-981-19-4766-7 ISBN 978-981-19-4767-4 (eBook) https://doi.org/10.1007/978-981-19-4767-4

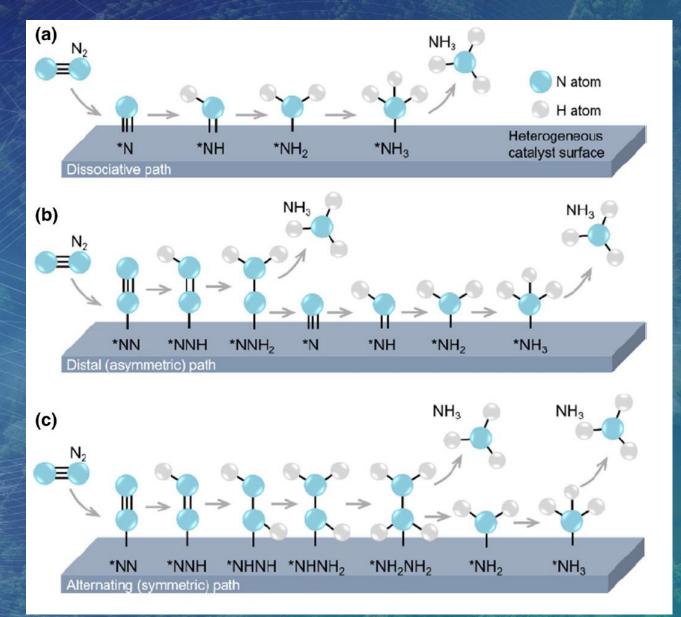


 NH_3 synthesis activity of various 1 wt% Ru/CeO₂ catalysts prepared using the indi-cated catalyst and support precursors. a NH3 concentration in the effluent gas. b Maximum NH3 concentration. Catalyst weight: 0.2 g, flow rate: 80 mL/min (H2/N2 = 3), ambient pressure, 325 °C

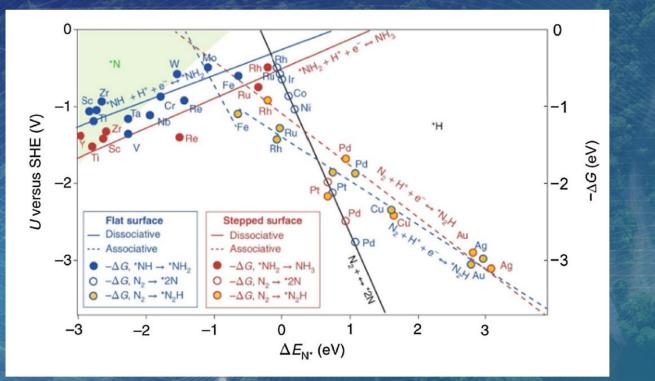


Solid state processes

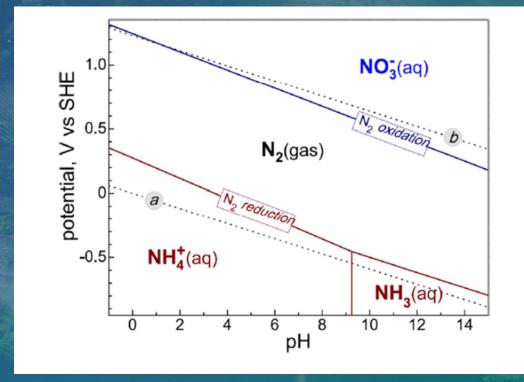

Schematic of SSAS systems using A) solid-state proton-conducting electrolyte and B) solid-state oxygen anion-conducting electrolyte. The inert carrier gas is omitted.



Electrochemical synthesis of NH3 in molten electrolytes. Scheme of the principle of electrolytic synthesis of NH₃ from N₂ and H₂ in molten salts of LiCl–KCl– CsCl containing N₃–.



C) Scheme of a lithiummediated step-by-step cycle process for sustainable production of NH3 from N2 and H2O driven by renewable energy sources



Nitrogen reduction pathways in heterogeneous CAT dissociative pathway where the N≡N bond is broken before hydrogenation. Association pathways that include B) distal or asymmetric hydrogenation and C) alternating or symmetrical hydrogenation.

Combined volcano diagrams evaluating the onset potential (U) on different transition metals. Solid lines represent dissociative mechanisms and dashed lines represent associative mechanisms.

Transactions of Tianjin University (2020) 26:67–91 https://doi.org/10.1007/s12209-020-00243-x

Partial Pourbaix diagram for the N2–H2O system. The red line represents the reduction of N2 to NH4 + or NH3, while the blue line denotes oxidation of N2 oxidation to NO3 –. Dashed lines a and b represent reduction of H2O to H2 and oxidation to O2, respectively.

G 🔄 🖻 🏠 🔲 M (Actualizar 🗄

GLOBAL LEADERS IN GREEN AMMONIA

C jupiterionics.com/our-technology/

A breakthrough cell

Developed by world-leading researchers at Monash University, Jupiter Ionics' breakthrough electrolytic cell* uses a unique, high-performance design that optimises efficiency, durability and ammonia production. Our team of talented scientists and engineers continues to push the boundaries of technology in search of ever greater performance.

The MacFarlane Simonov Ammonia Cell is the first of its kind to demonstrate ammonia generation with 100% selectivity, and has shown good stability in lab tests.


G 🔄 🖻 🕁

🔲 M (Actualizar 🚦

The MacFarlane Simonov Ammonia Cell

*A cell comprises two separated electrodes in a conductive liquid or gel electrolyte. Battery cells use chemical reactions to generate electrical energy. Conversely, electrolytic cells like

Home	Team	Technology	Collaboration	Grants and Awards	News	Careers		
nonia.com/te	echnology/						G	G T

Atmonia is developing a Nitrogen Electrolyser that applies our novel catalyst in an electrochemical cell to reduce atmospheric nitrogen and split water to form ammonia – in a single step process. The ammonia can be collected either as the traditional pressurized anhydrous ammonia or as aqueous ammonia for direct use as fertilizer.

This breakthrough technology enables a major disruption of the ammonia market.

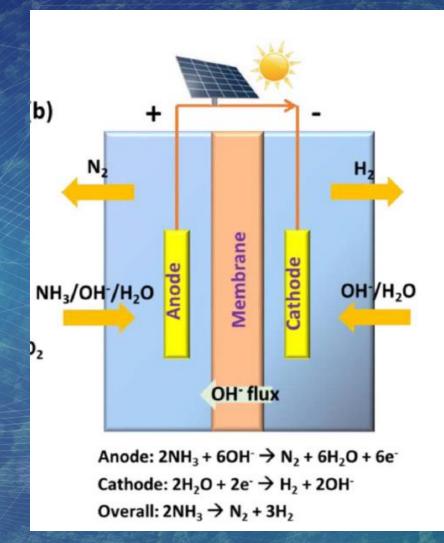
N_{2(g)} electrolyser

Table 1 Summary of representative developments in electrochemical NH₃ synthesis

Electrolyte type	Reactants	Electrode/catalyst	Conditions ^a	NH ₃ yield [mol/(cm ² s)] ^b	Current effi- ciency (%)	Applied potential ^c	References
Solid	N ₂ /H ₂	Porous Pd	SrCe _{0.95} Yb _{0.05} O ₃ , 570 °C	4.5×10^{-9}	78.00	N.A. ^d	[37]
	N ₂ /H ₂	Ag–Pd	$\begin{array}{c} \text{BaCe}_{0.80}\text{Gd}_{0.10}\text{Sm}_{0.10}\text{O}_{3-\delta},\\ 620\ ^{\circ}\text{C}\end{array}$	5.82×10^{-9}	N.A.	0.6 V	[44]
	N ₂ /H ₂	Ag-Pd	Се _{0.8} Sm _{0.2} O _{2-б} , 650 °С	8.2×10^{-9}	N.A.	0.6 V	[47]
	N_2/H_2	SmFe _{0.7} Cu _{0.3-x} Ni _x O ₃	Nafion, 80 °C	1.13×10^{-8}	90.40	2 V	[48]
Molten	N ₂ /H ₂	Porous Ni	Molten LiCl-KCl-CsCl with 0.5 mol% Li ₃ N, 400 °C	3.33×10^{-8}	72.00	0.7 V versus Li ⁺ /Li	[60]
	N ₂ /H ₂ O	Ni electrode, nano-Fe ₂ O ₃ catalyst	Molten NaOH/KOH, 200 °C	1.0×10^{-8}	35.00	1.2 V	[36]
Aqueous	N ₂ /H ₂ O	Au film	0.1 mol/L KOH	3.84×10^{-12}	0.12	-0.5 V versus RHE	[81]
	N ₂ /H ₂ O	Au nanoclusters	0.1 mol/L HCl	1.12×10^{-10}	8.11	-0.2 V versus RHE	[84]
	N2/H2O	Pd NP	0.1 mol/L PBS	1.7×10^{-11}	8.20	0.1 V versus RHE	[86]
	N ₂ /H ₂ O	Bi nanocrystals	0.5 mol/L K2SO4, pH 3.5	1.44×10^{-8}	66.00	-0.6 V versus RHE	[87]
	N ₂ /H ₂ O	Bi ₄ V ₂ O ₁₁ /CeO ₂	0.1 mol/L HCl	7.6×10^{-10}	10.16	-0.2 V versus RHE	[93]
	N ₂ /H ₂ O	Ru/MoS ₂	0.01 mol/L HCl, 50 °C	1.14×10^{-10}	17.60	-0.15 V versus RHE	[97]
	N ₂ /H ₂ O	VN NP	0.05 mol/L H2SO4	3.3×10^{-10}	6.00	-0.1 V versus RHE	[104]
Nonaqueous liquid	N ₂ /H ₂ O	Nanostructured Fe	[P _{6,6,6,14}][eFAP]	2.1×10^{-11}	60.00	-0.8 V versus RHE	[117]
	N ₂ /H ₂ O	Ag-Au@ZIF	LiCF ₃ SO ₃ (0.2 mol/L) in THF/ ethanol (99:1 V/V)	9.5×10^{-12}	18.00	2.9 V	[119]

^aConditions indicate electrolyte, temperature, and pressure. Unless otherwise specified, the experiments were conducted under RT and ambient pressure

^bFrom given or calculated data based on reference data in the literature. Normalized based on the geometric areas of the electrodes


^cThe potentials without a reference refer to the cell potentials

^dN.A. stands for not applicable

Ammonia Electrolysis (Hydrogen production)

The ammonia electro-oxidation reaction (AOR) is discussed as a means for energy application either by electrochemical decomposition for in situ hydrogen generation or by direct employment of ammonia as fuel in a direct ammonia fuel cell. The development of a robust and stable AOR catalyst is critical for both applications, along with the development of high-performance HER and ORR catalysts.

Ammonia Electrolysis (Hydrogen production)

Anode:	$2\mathrm{NH_3} + 6\mathrm{OH^-} \rightarrow$	$N_2 + 6 H_2 O + 6 e^-$	
$E^{\circ} = -$	0.77 V vs. SHE		[4a]
Cathode: 6 H ₂ O	$+6e^- \rightarrow 3H_2 + 6OH$	$I^- E^\circ = -0.83 V$	vs. SHE [4b]
Overall:	$2NH_3 \rightarrow N_2 + 3H_2$	$E_{\text{cell}}=0.06V$	[4c]

Ammonia fuel cells can be divided into external decomposition and direct utilization according to the working gas.

External decomposition breaks ammonia into nitrogen and hydrogen using additional apparatus, adding complexity and cost to the system. In contrast, the direct ammonia fuel cell does not require external gas reforming, leading to a simplified system and better cost effectiveness. Direct ammonia fuel cells are divided into two main types, namely, alkaline electrolyte types (alkaline solution, molten hydroxide, alkaline membrane) and soli<u>d electrolyte types.</u>

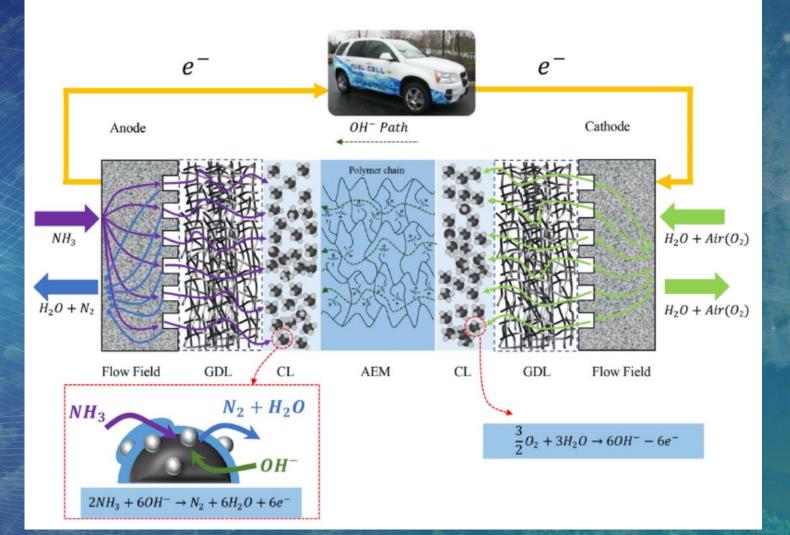
are summarized in the following Table

Direct ammonia SOFC-H

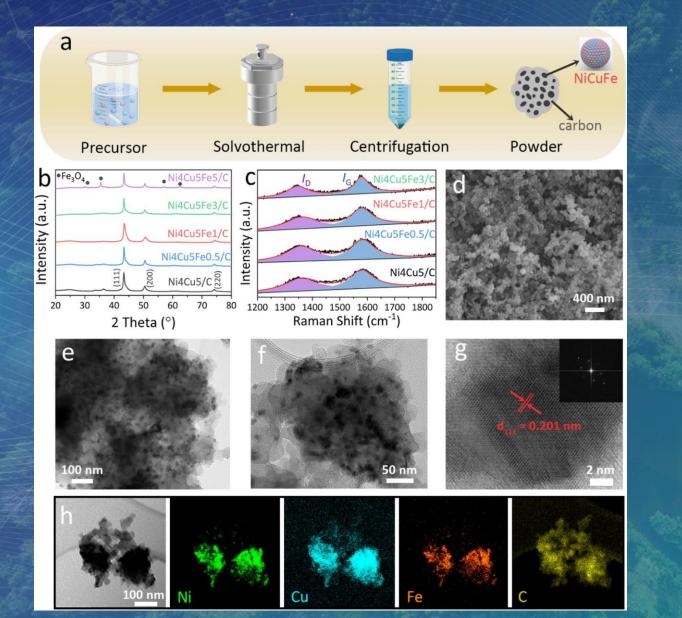
Anode:	$2 \operatorname{NH}_3 \rightarrow 3 \operatorname{H}_2 + \operatorname{N}_2$
	$H_2 \rightarrow 2H^+ + 2e^-$

Cathode: $1/_2 O_2 + 2 H^+ + 2 e^- \rightarrow H_2 O$

Direct ammonia SOFC-O

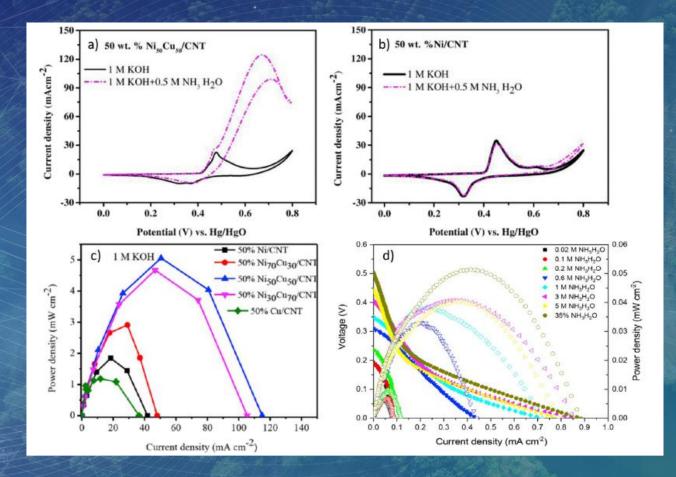

Anode:	$2 \text{ NH}_3 \rightarrow 3 \text{H}_2 + \text{N}_2$
	$H_2 + O^{2-} \rightarrow H_2O + 2e^-$

Cathode: $\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-}$

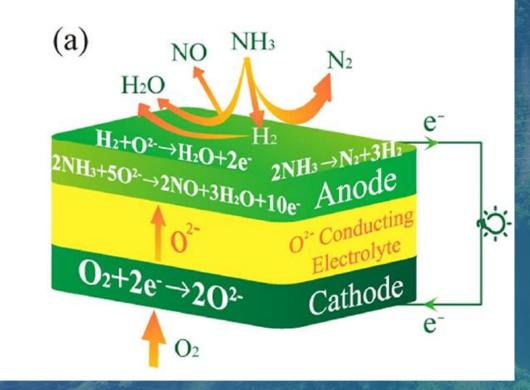

Table 5

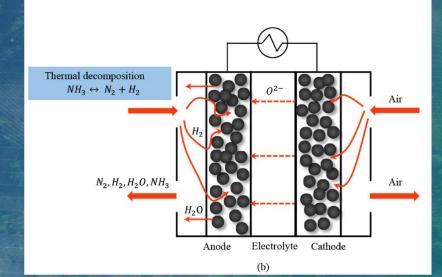
Comparison of different direct ammonia fuel cells [7].

Electrolyte types	Temperature (°C)	Electrolyte transported ions	Advantages	Disadvantages
Alkaline electrolyte	25–100	OH-	 Low operating temperature. No ammonia decomposition process; low cost. 	 Slow oxidation at low temperatures; low power density. Degradation of membrane electrolytes. Ammonia crossover.
Solid electrolyte	500-1000	0 ²⁻ /H ⁺	• High power density.	 Incomplete decomposition of ammonia at low temperature. Catalyst deactivation and long-term stability.

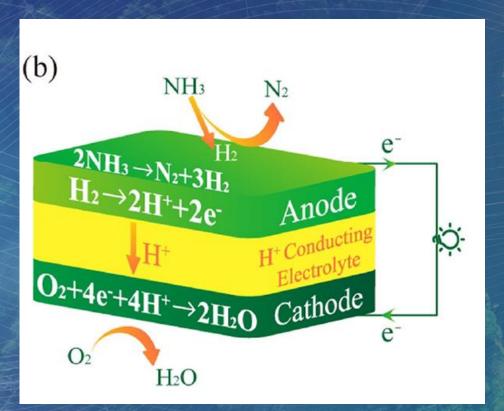


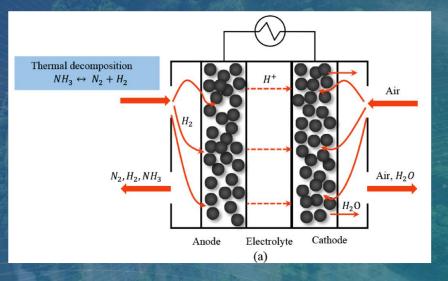
Journal of Power Sources 476 (2020) 228454

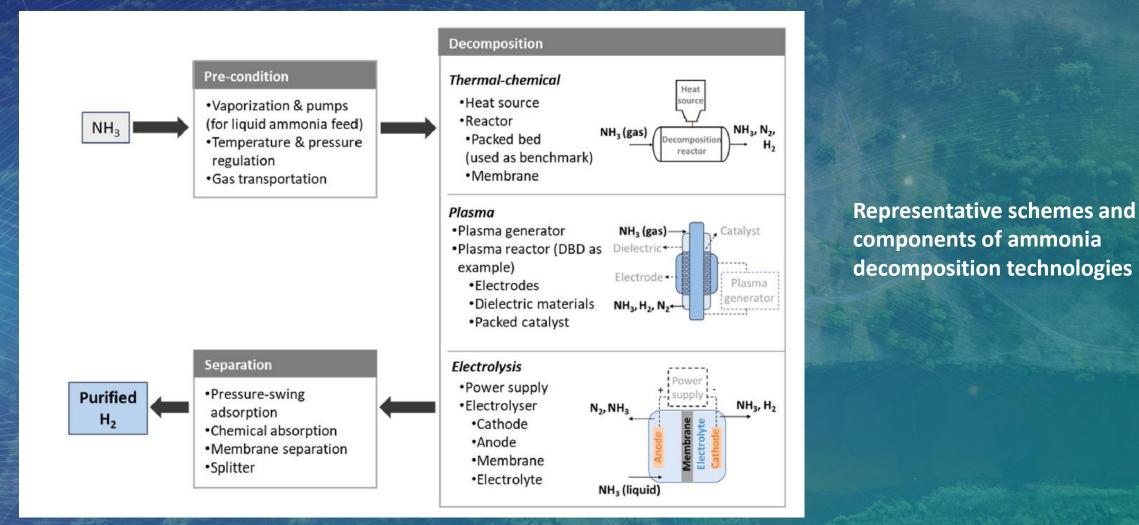



Synthesis and characterization. (a) Schematic illustration of the preparation process of ternary NiCuFe alloy by solvothermal synthesis. (b) XRD patterns of Ni4Cu5/C, Ni4Cu5Fe0.5/C, Ni4Cu5Fe1/C, Ni4Cu5Fe3/C and Ni4Cu5Fe5/C. (c) Raman spectra of Ni4Cu5/C, Ni4Cu5Fe0.5/C, Ni4Cu5Fe1/C and Ni4Cu5Fe3/C. (d) SEM image, (e and f) TEM images and (g) HRTEM image (inset: FFT pattern of the corresponding nanoparticle) of Ni4Cu5Fe1/C sample. (h) HAAD-STEM image and corresponding EDS elemental mappings of Ni, Cu, Fe and C.

J. Mater. Chem. A, 2022, 10, 18701




(a) The current density of 50 wt% Ni50Cu50/CNT; (b) The current density of 50 wt% Ni/CNT; (c) Comparison of power density between various catalysts for AOR; (d) The maximum power density for the ammonia fuel cell made with NiCu/C and single-phase perovskite oxide



Fuel Processing Technology 235 (2022) 107380

Fuel Processing Technology 235 (2022) 107380

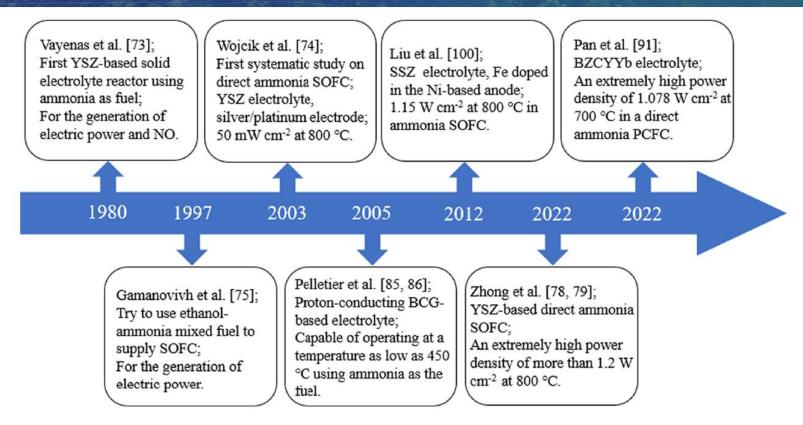
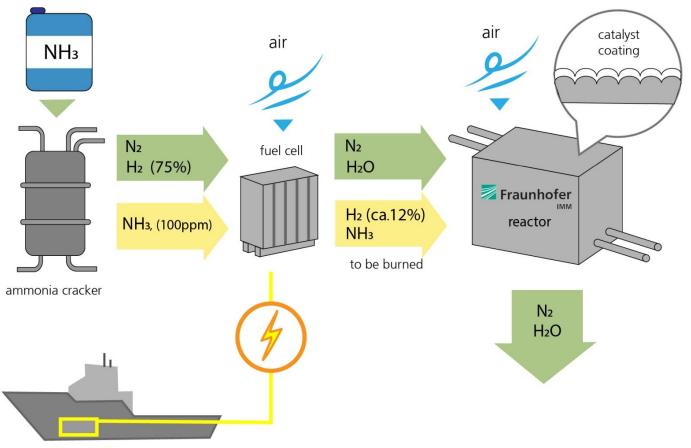



Fig. 7. Development History of Direct Ammonia SOFC/PCFC [73-75,78,79,85,86,91,100].

Type	Electrolyte	Electrode (anode//cathode)	Temperature (°C)	Peak power density (mW/cm ²)	Ref.
SOFC/Anode support	YSZ	Ni-YSZ//SYO (0.1)-60YSZ	600	240	[79]-20
			800	1210	
SOFC/Anode support	YSZ	NiO-YSZ//PZO	800	1220	[78]-20
SOFC/Anode support	YSZ	Ni-YSZ//	800 (1 atm)	1078	[80]-20
		LSC-GDC	850 (1 atm)	1174	
			800 (3 atm)	1148	
			850 (3 atm)	1202	
SOFC/Anode support	YSZ	Ni-YSZ//GDC-LSCF	700	325	[77]-2
SOFC/Anode support	YSZ	Ni-YSZ//LSM-YSZ	900	88	[96]-2
SOFC/Anode support	YSZ	NiO-YSZ//LSM-YSZ	850	526	[76]-2
SOFC/Anode support	YSZ	Ni-YSZ//LSM-YSZ	800	200	[97]-2
SOFC/Anode support	SDC/NCAL	Ni-NCAL//Ni-NCAL	550	755	[84]-2
SOFC/Electrolyte support	SDC	LSTNC-SDC//BSCF	800	361	[83]-2
		LSTN-SDC//BSCF	800	161	
		LSTC-SDC//BSCF	800	98	
		Ni-SDC//BSCF	800	314	
SOFC/Anode support	SDC	Ni-SDC//BSCF	650	1190	[82]-2
SOFC/Anode support	SDC	Ni-SDC//SSC-SDC	700	253	[81]-2
SOFC/Electrolyte support	LSGM	Ni (97.5) Mo (2.5)-SDC//SSC	900	416	[98]-2
		Ni (97) Ta (3)-SDC//SSC	900	322	
		Ni (97) W (3)-SDC//SSC	900	313	
SOFC/Electrolyte support	LSGM	Ni-SDC//Pt	900	120	[99]-2
		Fe-SDC//Pt	900	242	
		Co-SDC//Pt	900	85	
		Ni (40) Fe (60)-SDC//SSC	900	360	
		Ni-SDC//SSC	900	253	
SOFC/Anode support	SSZ	Ni-YSZ/Ni-SSZ//LSM-SSZ	800	1028	[100]-
		Ni (97.5) Fe (2.5)-YSZ/Ni-SSZ//LSM-SSZ	800	1150	
PCFC/Anode support	BCY10	Ni-BCY25//SSC	650	216	[101]-
PCFC/Anode support	BZCY	Pd//LSCF	600	580	[90]-2
PCFC/Anode support	BZCY	NiO-BZCY//BSCF	750	390	[89]-2
PCFC/Anode support	BCGP ¹	NiO-BCE//Pt	600	28	[85]-2
PCFC/Electrolyte support	BCG	Pt//Pt	700	25	[86]-2
	BCGP ²	Pt//Pt	700	35	
PCFC/Anode support	BCGO	Ni-CGO//BSCFO-CGO	600	147	[87]-2
PCFC/Anode support	BCGO	Ni-BCGO//LSCO-BCGO	700	355	[88]-2
PCFC/Anode support	BCNO	NiO-BCNO//LSCO	700	315	[102]-
PCFC/Anode support	BZCYYb	Ni-BZCYYb//BCCY	650	383	[93]-2
	BZCYYbN	Ni-BZCYYbN//BCCY	650	523	
PCFC/Anode support	BZCYYb	Ni-BZCYYb//PBSCF	700	1078	[91]-2
PCFC/Anode support	BZCYYb	Ni-BZCYYb//BCFZY	650	450	[92]-2
		Ni-BZCYYbPd//BCFZY	650	600	
	BZCYYbPd	Ni-BZCYYbPd//BCFZY	650	724	

Note: YSZ: Yttria Stabilized Zirconia; SYO (0.1): $Sr_{1+x}Y_{2-x}O_{4+\delta}$ (x = 0.10); PZO: $Pr_2Zr_2O_7$; LSC: $La_{0.\delta}Sr_{0.4}CO_3$; GDC: Gd-doped Ceria; LSCF: $La_{0.\delta}Sr_{0.4}CO_3$ -Fe_{0.0}O₃₋₆; LSM: $La_{1-s}F_xMnO_3$; GDC: Sm-Doped Ceria; NCAL: $LiN_{0.015}Go_{0.15}Al_{0.35}O_2$; LSTNC: $L_{a_{0.55}}Sr_{0.22}Ti_{0.94}Ni_{0.03}O_{3-6}$; LSTN: $La_{0.52}Sr_{0.22}Ti_{0.94}Ni_{0.06}O_{3-6}$; LSC: $La_{0.55}Sr_{0.22}Ti_{0.94}Ni_{0.05}O_{3-6}$; LSCN: $La_{0.52}Sr_{0.22}Ti_{0.94}Ni_{0.06}O_{3-6}$; LSCN: $La_{0.52}Sr_{0.22}Ti_{0.94}O_{3-6}$; LSCN: $La_{0.52}Sr_{0.22}O_{1.09}O_{3-6}$; LSCN: $La_{0.52}Sr_{0.22}O_{3-6}$; LSCN: $La_{0.52}Sr_{0.22}O_{3-6}$; LSCN: $La_{0.52}Sr_{0.22}O_{3-6}$; LSCN: $La_{0.52}Sr_{0.5}CO_{3-6}$; BCGP³; BACe_{0.3}Gd_{0.19}Pr_{0.01}O_{3-6}; BCGO: BACe_{0.3}Gd_{0.2}O_{3-6}; BSCPO: $Ba_{0.5}Sr_{0.5}Co_{0.2}Fe_{0.2}O_{3-6}$; LSCO: $La_{0.5}Sr_{0.5}Co_{3-6}$; BCCN: BACe_{0.9}Nd_{0.1}O_{3-6}; BZCYYbV: Ba($Zr_{0.1}Ce_{0.7}Y_{0.1}Yb_{0.1})_{0.95}Ni_{0.05}O_{3-6}$; PBSCF: $PrBa_{0.5}Sr_{0.5}Co_{1.5}Fe_{0.5}O_{5+6}$; BZCYYbVPd: Ba ($Zr_{0.1}Ce_{0.7}Y_{0.1}Yb_{0.1})_{0.95}Ni_{0.05}O_{3-6}$; BSCPO₃₋₆; BCCYYbPd: Ba ($Zr_{0.1}Ce_{0.7}Y_{0.1}Yb_{0.1})_{0.95}Pd_{0.5}O_{3-6}$; BCCYYbPd: Ba ($Zr_{0.1}Ce_{0.7}Y_{0.1}Yb_{0.1})_{0.95}Pd_{0.5}O_{3-6}$; BCCYYbPd: Ba ($Zr_{0.1}Ce_{0.7}Y_{0.1}Yb_{0.1})_{0.95}Pd_{0.5}O_{3-6}$; BCCYYbPd: Ba ($Zr_{0.2}Ce_{0.7}Y_{0.1}Yb_{0.1})_{0.95}Pd_{0.5}O_{3-6}$; BCCYYbPd: Ba ($Zr_{0.2}Ce_{0.7}Y_{0$

🟠 / Our Research / Projects / Ammonia Fuel Cells Project

Ammonia Fuel Cells Project

Why we are doing this?

The storage and transport of Renewable Energy (RE) is by far the biggest hurdle preventing deeper penetration of RE technologies into the energy market. Ammonia has emerged as a potential candidate as technologies and standards for ammonia storage, handling and transportation are already available. There are commercial initiatives in this space, one of notables is Asian Renewable Energy Hub (AREH) in Western Australia, which is a 26 GW wind-solar power generation plant facilitating export of RE in form of green ammonia.

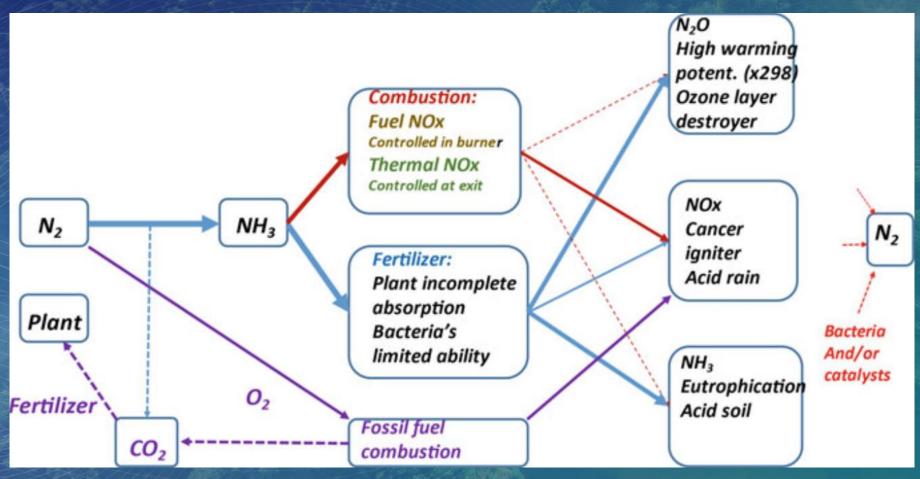
The project proposes use of ammonia-fed low to intermediate temperature solid-oxide fuel cells (SOFCs) to convert ammonia into electricity in a single step without a need for external ammonia cracking. The technology offers the highest round-trip electric and thermal efficiency (> 50%) amongst all known technologies for ammonia utilisation. Despite efficiency advantages, low to intermediate temperature

Projects

Hydrogen and NH3 from organics

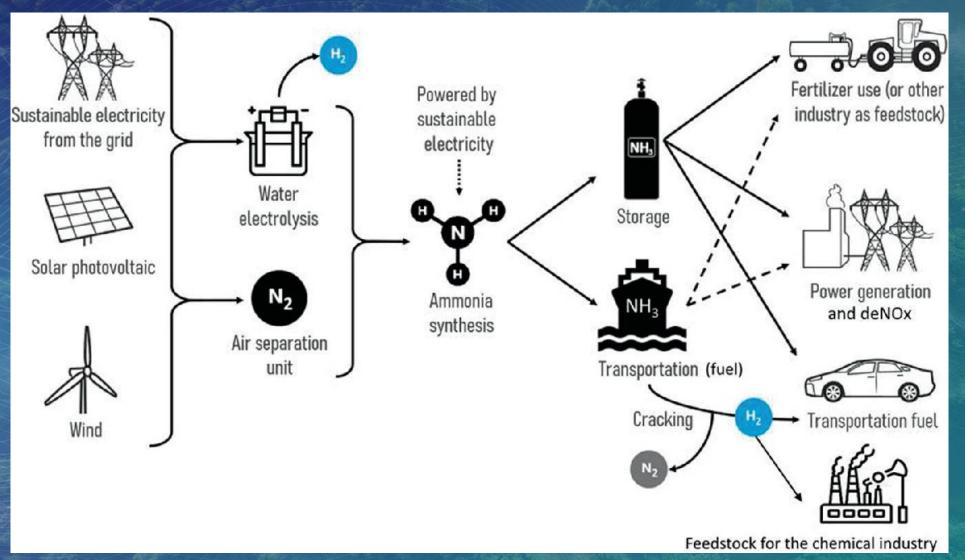
Impact of Hydrogen on underground reservoir properties: Laboratory characterisation @ reservoir conditions

Metal hybrides composites


Ammonia Cracking using Catalytic Static Mixers (CSM)

Ammonia Fuel Cells Project

CO2 to Methanol Project


Environmental Impact

Formation and transformation of reactive nitrogen and impact on the environment: effect of ammonia fuel on ammonia fertilizer

ISBN 978-981-19-4766-7 ISBN 978-981-19-4767-4 (eBook) https://doi.org/10.1007/978-981-19-4767-4

Techno-economic aspects

ISBN 978-981-19-4766-7 ISBN 978-981-19-4767-4 (eBook) https://doi.org/10.1007/978-981-19-4767-4

Health, safety, and security

Ammonia gas cloud in Seward, Illinois. Cause: ruptured hose

explosions and cylinder damage, respectively.

Techno-Economic Challenges of Green Ammonia as an Energy Vector. 2021

Millennium Institute on Green Ammonia as an Energy Vector -MIGA MIGA's goal is to provide the framework to produce green ammonia using a less energy-intensive process than Haber-Bosch (H-B) for Power-to-X applications.

This challenge is addressed with an interdisciplinary approach, which narrows the current technological gaps, to advance in knowledge and technology, generating interdisciplinary training in the area for new generations of researchers for Chile and the international community.

Agencia Nacional de Investigación y Desarrollo

Ministerio de Ciencia, Tecnología, Conocimiento e Innovación

Gobierno de Chile

MILLENNIUM INSTITUTE ON GREEN AMMONIA

www.greenammoniainstitute.cl