VIAVI Solutions

Data Sheet

VIAVI ONT-600 400G CFP8 Modules

Introduction

400G technology is already being deployed under the emerging IEEE standard P802.3bs. With this innovation, test and measurement needs arise – from module development and validation, through hardware and IP integration to service deployment. The ONT 400G addresses all of these and provides a complete, scalable test solution for the whole 400G ecosystem which includes new modules, rates and technologies. This leading-edge instrument is ready for the 400G challenges today and future needs such as FlexO, FlexE and future OTN.

The ONT 400G is based on the very latest IEEE 802.3 standards and industry MSA.

Solution Highlights

- Complete and comprehensive application coverage for troubleshooting physical layer & signal integrity issues through PCS/FEC to full Ethernet traffic. Real-world traffic applications allow full component validation in true application cases. No more limited and misleading unframed testing.
- Helps quickly identify the root cause of errors, especially in the physical layer, with novel applications including advanced error analysis. Quickly identify operating margin with real FEC characteristics, no more blind guessing based on eye diagrams and raw BER.
- Applications to cover complete IC and module validation from unframed SERDES performance validation and diagnostics through to comprehensive coverage of complex IP blocks like FEC/PCS, packet throughput and QoS.
- Integrated tools for complete CFP8 validation and turn up. Quickly validate operating margin and characteristics

 accelerate testing and vendor selection.
- Supports electrical access via 16 x NRZ Electrical Adapter, and PAM-4 via 8 x PAM-4 Electrical Adapter.
- Ready to support future form factors like QSFPdd, OSFP etc.
- Support for future flexible bandwidth needs such as FlexO and FlexE with the 5 x 100G QSFP28 ports dedicated to scalable bandwidth including bonding, subrating and channelization. Software options extend the applications addressed by ONT 400G, protecting your investment and help accelerate product development. Based on state-of-the art FPGA means quick updates to the latest test needs and standards.
- Novel tools and accessories help troubleshoot the challenging areas of PAM-4 and FEC, core technologies which underpin 400G and future high-speed telecom and datacomm interfaces. Test grade adapters and accessories are perfectly matched to the ONT application, no more worries if 3rd party interconnects impact test results.

Figure 1. ONT Pane

General Information

The ONT-600 400G CFP8 Module is a three-slot module and is compatible with the ONT-603, -606 and -612 mainframe products. The module is adequately powered and cooled by the mainframe.

Front Panel Interfaces

- Front panel interfaces include an MSA compliant CFP8 slot
- A range of electrical I/O to support comprehensive test capabilities.
- Five MSA compliant QSFP28 slots provide support for upcoming FlexE and FlexO applications.

Signal	Туре	Connector	Coupling	Impedance	Amplitude/ Sensitivity
Clock input	Unbalanced	SMA female	AC	50 ΄Ω	200 500 mVpp
Tx Clock output	Balanced	2xSMA female	AC	Ω 100	Bal.: 800 mVpp typ. Unbal.: 400 mVpp typ.
MCLK output	Unbalanced	2xSMA female	AC	100 Ώ	Bal.: 800 mVpp typ. Unbal.: 400 mVpp typ.
Fast AUX out	Unbalanced	SMA female	AC	50 Ώ	400 mVpp typ.

CFP8 Interface – Description & Capabilities

- CFP8 interface in accordance with CFP8 MSA, based on AUI-16 (16 lanes of 25G NRZ differential TX and RX)
- Indicator LEDs for 'Laser on' and LOS with respect to CFP8 transponder.
- Interface supports bit rates from 400 Gbps to 488 Gbps in 5 kbps steps (0.00125 ppm)
- Clocking source can be internal (mainframe reference) or external reference via front panel connector on the 400G blade.. A jitter filter can be switched in and out in certain modes to allow phase modulated signals as the clock source.

Supported clocking modes:

Clock source mode (Default: Internal)		Delta [ppm]		Jitter	Comment	
		Range	Resolution	filter	Comment	
Internal		+/- 500	0.01	N/A	—	
	From Rx		+/- 500	0.01	N/A	_
Clock input "Direct Ref. In"	Jitter Filter Mode (Default: Low bandwidth)	Low bandwidth (BW ≤ 100 Hz)	+/- 500	0.01	N/A	ONT 400G is clocked via jitter filter and synthesizer. Jitter Filter Modes: Low (< 100 Hz), High
		High bandwidth (BW ~1 MHz)	N/A	N/A	N/A	Clock direct to ONT 400G. This setting allows for jitter modulation. Lowest intrinsic jitter. Limitations: • No delta ppm possible. • User bit rate not supported.

Direct Clock Reference Input and Physical Layer Capabilities

Clock accuracy is directly linked to reference oscillator on mainframe or any user supplied clocking source.

Module power class – modules of up to 16 W can be powered and cooled in environments of up to 40° C ambient temperature. Modules up to 20 W can be supported if the airflow into the mainframe is unobstructed and temperature no more than 23° C ambient. The application GUI reports the current and power drawn by the module.

The user has control over aspects of TX and RX parameters including equalizer settings and voltage swing. The default settings are carefully matched to the needs of normal CFP8 modules. The user can vary the TX swing

Fig 2. Analog TX and RX Settings

and pre-emphasis and address the RX equalizer DFE (Decision Feedback Equalizer) and CTLE (Continuous Time Linear Equalizer) mode (CTLE only, or CTLE + DFE). The settings can be applied to all 16 AUI lanes together or independently as required. Each individual AUI-16 lane can be independently inverted at both the RX and TX side.

- Module power supply voltage default is 3.3V as per MSA
- The ONT reports all core CFP8 parameters including both TX / RX clock offset and optical power (if supported by the CFP transponder & MDIO)
- Module supports transponder reference clocks of /40 and /160 rates with the default set to /160.
- For every clocking mode TX LTI (loss of timing information) clock status is provided.
- Module supports transponder TX output clocks of /40 and /160 rates with the default set to /40.
- TX and RX MCLK is supported in accordance with the CFP8 MSA.
- RX clock recovery is supported on all AUI-16 lanes default is the lowest number lane with a valid clock content, user can manually select any desired lane.

RX offset range and measurement

Parameter	Range / value
Dy offset repair	Normal range: +/- 500 ppm
KX Offset lange	Note – within this range measurements will be accurate and stable.
Rx offset measurement range	Normal range: +/- 500 ppm
Rx offset out-of-range threshold	+/- 200 ppm
Rx offset out-of-range threshold	Electrical lane speed /40 Unbalanced
Offset measurement resolution	0.01 ppm
Offset measurement accuracy	+/- 0.005 ppm ¹

1. Not taking timebase error into account.

Viavi Solutions -	ONT-606 DA-020	00 10.49.74.11 - Slot 1-3.1 400G Mod	lule OFC-01 - myb-VPLS			_
File Applications	<u>R</u> esults <u>T</u> ools <u>H</u> e	elp			Clock	Overview
VIAVI	ONT-600 400G M	odule OFC-01 Port 1	Location: ONT-606 DA Application: myb-VPLS	A-0200 Slot 1-3.1 10.49.74. S	11 Module Time Disk: 4,4GB	e: 10:47 MESZ 3 of 7,2GB free
R× Port: CFP8 Interface LOS Freq. Rng. Total Opt. Power: 425.000.001 kHz Frequency: 425.000.001 kHz Frequency: 425.000.001 kHz Frequency: 9 Part Los Frequency: 9 Part Los Frequency: 9 Part Los Frequency: 9 Part Los Frequency:	PHYS Config. Status Overview Rx Optical Power Px Errors/ Alarms Rx BER Estimation Tx Errors/ Alarms Tx Lane Skew Tx Freq. Variation Rx Bit Capture Rx Error Analysis Stress Test Help	Interface Clocks / Trig. Bitrate: 425 Gb/s Interface: TX Total Opt. Power: -13 V Ene Frequency Offset 0,00 Clock Source: Internal fr LTI Internal fr	CDAUI-16 Patt. CDAUI-1 (400GigE) CFP8 [71] (400GigE) (FP8 [71] (FP8 [71] (FP8 [71]) (FP8 [71]) (F	L6 Sett. Lambda Grou User Bitrate: MDIO Bitrate: Total Opt. Power: LOS Frequency Offset: Prequency: Timing Lane:	ps CFP8 Gb/s Gb/s CFP8 CF	+17 tent +500
🗲 Insertion	🗈 🔺 Lase	rJ	C	Elapsed: 00d 00h 00r	n 00s of Continuous	▼ Start

Fig 3. TX/RX Physical Parameters

MDIO functions

	Normal (bus runs at set speeds and supports auto-increment read/write)
MDIO modes	Relaxed (bus timing is gentler, every read/write is addressed and timing between commands is extended to support modules with limited capabilities)
	Off (MDIO bus off – no MDIO commands; read, write, module RX and TX optical power reporting etc. not supported).
MDIO bus speed	Default 4 MHz, "hardware validation" option supports 0.5, 0.8, 1.0, 1.333, 2.0, 2.29, 2.66, 3.2 and 4.0 MHz bus clocking

Unframed Testing

- Interface: AUI-16 NRZ
- Pattern modes: same pattern on all 16 lanes, user settable pattern per lane, pattern offset
- Patterns: PRBS31, PRBS23, PRBS15, PRBS13, PRBS9, PRBS7 and inverted, 8 Byte DW, SSPR Stress Pattern
- TX/RX lane modes: mute, invert, free lambda group lane mapping
- BER Estimation: per virtual lane, per lambda group
- Error Stress Test: Automatic test through all available test patterns / offset / skew values

Dynamic Skew Generation (Option 3076/97.32)

The optional dynamic skew application allows individual lanes to be skewed backward and forward. The dynamic skem generation is supported in higher layer applications including PCS/FEC and Ethernet.

Skew variation is supported for all Tx clocking modes.

Parameter	Range / value
Range	+/- 512 bit with respect to unskewed 'reference' lanes
Resolution	10 mUI
Slope	10 10 000 mUI/s

Viavi Solutions - ON	T-606 DA-0200	0 10.49.74.11 - Slot 1-3.1 400G	Module OFC-01	- myb-VPLS			X
File Applications Resu	ilts <u>T</u> ools <u>H</u> ei	p				CI	ock Overview
VIAVI	00000000000000000000000000000000000000	dule OFC-01 Port	11	Location: ONT-606 DA-0200 Slo Application: myb-VPLS	1-3.1 10.49.74.11	Module T Disk: 4,4	ime: 10:52 MESZ 4GB of 7,2GB free
	PHYS Config.	Skew Variation					
49 y	Status Overview	Enable	Initializing Ready	No valid Clock	Select Lane	Delay	CDAUI-16
R.x. Port: CFP8	Rx Optical Power	Selectianes before enabling	skew generation.	Only selected lanes are skewed.			* #1
Freq. Rng.	Tx Optical Power	At least one lane should be so Positive skew value => Lane i Negative skew value => Lane	elected. slate with respect is early with respe	to reference ct to reference		- <u>_</u>	#3
Total Opt. Power: 11,3 dBm	Alarms						► #4 ► #5
Frequency: 425.000.001 kHz	Estimation Tx Errors/	Mode: Man	iual				#6
0,00 ppm	Alarms Tx Lane Skow	Skew: 100	0	mUI		- <u>_</u>	#8
	Tx Freq. Variation	Step Size: 100		mUI		- <u>_</u>	▶ #9 ▶ #10
	Rx Bit Capture	Slope: +/- 100		mUI/s			▶ #11 ▶ #12
	Rx Error Analysis	Current Skew:	*** mUI	Skewing	<u> </u>		► #13 #14
	Stress Test	G Skew (All selected lanes	:)			- <u>_</u>	► #15
Payload 🗸	Help			Default			
Errored Zero Errored One				Denidit			
🖉 Insertion 🗖	🔺 Laser	j.		C Elapse	d: 00d 00h 00m 00s of 0	Continuous	▼ Start

Fig 4. Dynamic Skew Variation on selected lane(s)

400GE Ethernet Testing

Fig 5. MAC/IP Traffic Generation

PCS Layer Specifications

Each lane is clocked from common clock	
TX ignore link faults	On/off
FEC Bypass Correction and Indication	On/off
Lambda Groups assignment	
TX/ alignment marker and RX reference alignment marker	Fully editable
RX Status Overview	LOAMPS indication per lane, PCS Lane#, Lane Swap alarm, FEC correctable/uncorrectable, ITB, Errored Block, Link Down, L/R Fault
Fully flexible lane mapping	
RX errors and alarms	LOAMPS, LOA, Lane Swap, SER, Link down, FEC corr./uncorr. ones and zeroes
Full view of received alignment markers	
Bit Error Rate Estimation for given confid	ence level (aggregate and per lane)
TX Alarm/Error insertion	LOAMPS, SER, LF/RF
RX Block and FEC Error Statistics	table and graphic format
Lane Skew static	static up to 64,000 bits
Lane Skew dynamic (option)	up to +/- 512 UI in 30 mUI steps

Fig 6. PCS overview screen gives an at a glance overview of the key functional blocks including lane lock, deskew & reorder, FEC decode, transcoding, 64B/66B and reconciliation.

MAC/IP Layer Specifications

Up to 256 flows , one user defined traffic profile, with IP and/or MPLS				
Traffic profile	Constant load, bursty, ramp, IMIX; bandwidth 0.1 400,000,000 Mb/s, back to back frames			
VLAN tags	up to 2, VLAN tags user defined			
MPLS labels	up to 5, user defined			
User defined payload up to 64 bytes, user defined preamble and SFD				
Service Disruption measurement	Resolution	frame		
	Result display	number of frames, nanoseconds		
Transfer Delay measurement with calibration capability	Resolution	0.1 ns		
Throughput measurement and frame statistics				
Alarm/Error insertion and analysis	FCS, runt, oversized, invalid SFD, IP header error in single, burst and rate modes, per flow			
TX Test Frame Errors	Frame loss, mis-insertion, swap, duplication			
Capture Modes	direct, filtered; buffer size: 128 KByte; offline analysis with Wireshark			
Auto Test Modes	Preamble transparency, throughput			

400G Ethernet FEC Validation (Option 3076/93.41)

FEC Validation application gives comprehensive overview of the errored symbols in a given codeword, a good indicator of link margin and module performance.

The FEC stress test has wide ranging applications including validation and verification of FEC receiver functionality. It also has novel applications for verifying power supply stability of ASIC and FPGA FEC implementations. Every correctable error utilizes deep layers of XOR based logic, and the fast switch of this logic can cause fast changes in power draw inside the ASIC/FPGA. The ONT FEC Stress application allows aggressive patterns to be generated that can maximally stress the power supply dynamics.

The capabilities of the FEC Validation application range from simple injection of individual 256B/257B Block Errors and errors in a symbol within a FEC codework though to complex walking patterns that can generate the maximum spread of potential correctable errors within a codeword.

NT-603 AA-0319 10.49.1	0.17.66 - Slot 1-3.1 400G CFP8 PHY Module 307692620A0051 - New-Applic	zation 🗖 🗉 💌
<u>File Applications Results Tools H</u>	Help	Clock Overview
VIAVI 0NT-600 400G C	CFP8 PHY Module 307692620A0051 Port 1 Application: New-Applicat	19 Slot 1-3.1 10.49.17.66 Module Time: 15:33 MESZ ion Disk: 4,0GB of 7,2GB free
All Layers OK Prev. Layer Prev. Layer CSL and Loan SPS Loan SPS Restination PAD Bit Silp PAD BIT	64B / 66B FEC Statistics FEC Error Statistics Table View Histogram View RX Symbol Errors per Codeword Percentage 0 166 / 13 166 / 25 / 0007996 99 901692 1 13 331 570 0,0007996 2 34 4181 0,000021 4 22 0,000000 4 22 0,000000 6 0 * 9 0 * 10 0 * 12 0 * 14 0 * 15 0 *	r of symbol errors per codeword. tage is with respect to all codewords.
🖉 Insertion 🚺 🛕 Las	aser C Elapsed: 000	1 00h 35m 34s of Continuous Stop

Fig 7. FEC error statistics reports number of symbols in error per codeword as a count and as a percentage of the total errors

CFP8 Hardware Validation (Option 3076/97.30)

- User selectable bit rate within the range of 400 ... 488 Gbps
- Module voltage: from 2.5V to 3.7V in 50 mV steps
- MDIO clock/data voltage swing: 1.0 to 1.4V in 50mV steps
- Advanced CFP8 MDIO debug functions: power supply variation, MDIO R/W, MDIO dump, HW control, remote and local loopback (if supported by CFP8)

Dynamic Skew Generation (Option 3076/97.32)

Unique feature to test signal integrity in the presence of phase variations between AUI-16 lanes, as they can occur in the network as a function of slight speed variations over temperature or other parameters.

This option allows to dynamically skew a selected AUI-16 NRZ lane over a wide range:

TX Dynamic Lane Skew	
Maximum dynamic lane skew	+/- 512 UI
Resolution	10 mUI
Slope	10 10 000 mUI per second
Skew mode	manual, triangle

Dynamic Skew is not supported for AUI-8 PAM4 signals

Advanced Error Analysis (Option BN 3076/97.31)

In-depth error analysis	Error capture per lane, burst size and error pattern analysis, error distance and bit slip analysis
Bit capture	capture all 16 AUI lanes
Memory depth	512 kb per lane
Bit capture trigger	bit error, pattern, external

Fig 8. Capture function on the physical layer

CFP8 16 x 25G Electrical Adapter (Option 3076/96.43)

The CFP8 16 x 25G NRZ adapter allows access to the electrical AUI-16 interface.

Poles

NRZ lanes	2 x differential; Impedance: 100 Ohms; Coupling: AC
TX swing	200 1000 mV (typical)
TX Pre-emphasis	Normal, high, user-defined
RX Equalizer	CTLE only, DLE + DFE
Termination impedance	100 Ohms typical, +/- 25 Ohms
Connector type	8 x 1 (manufacturer H+S), 2.92 mm

Fig 9. CFP8 16x25G NRZ adapter

For the connection between the 16 x 25 NRZ adapter and the customer DUT, VIAVI recommends using appropriate electrical cables from the H+S MXP50 series. These are not supplied by VIAVI since they must match the electrical connectors of the customers' evaluation boards.

Fig 10. Advanced settings for 16 x NRZ TX lane pre-emphasis

CFP8 8x50G PAM-4 Electrical Adapter (Option 3076/96.44)

The PAM-4 Electrical Adapter is ready to provide in-depth evaluation of early 400G PAM-4 components. These are typically accessed via evaluation boards. Other applications include host and module compliance tests.

PAM-4 lanes	AUI-8 differential lanes; Impedance: 100 Ohms; Coupling: AC; swing 2001000 mV (typical)				
Voltage swing	200 1000 mV (typical)				
Impedance	Four (8 x 1) connectors (Manufacturer H+S)				
Connector type	AC				
Accessories	2 short loopback cables (Manufacturer H+S) are delivered together with the PAM-4 Adapter. These are used for the internal automatic de-skew calibration process, they are not meant to be connected to a customer DUT.				

Fig 12. Analogue settings for the PAM-4 adapter TX and RX

Fig 11. CFP8 - 8 x 50G PAM-4 electrical adapter and calibration cables

Fig 12. (8 x 1) connector by H+S

Fig 13. Detailed view of TX pre-emphasis settings (per lane or "all lanes")

PAM-4 TX Characteristics

The TX signal can be set to a standard default value that covers most practical cases. In addition, GUI allows access to advanced pre-emphasis values via the above dialogue. Output voltage will be in the range of 200 1000 mVpp typical, depending on settings.

PAM-4 RX Characteristics

Supports the following DSP Modes: FFE (feed forward equalizer), LDEQ (level-dependent equalizer), RC (reflection cancellation), DFE (distributed feedback equalizer)

Supported applications via PAM-4 adapter

Full range of available ONT 400G applications, including unframed patterns, PCS/FEC layer, MAC/IP traffic, and future OTN traffic

Fig 14. Screen: PAM-4 Vertical Eye Scan to quickly identifies issues with PAM-4 RX and TX setups

Advanced Error Analysis (Option 3076/97.31) can be used together with the PAM-4 adapter to quickly identify issues with areas like error burst length, critical for PAM-4 based interfaces with FEC:

Fig 15. Screen: PAM-4 Vertical Eye Scan to quickly identifies issues with PAM-4 RX and TX setups

Ordering Information:					
400G Modules					
3076/92.62	400G CFP8 Phy Module – CFP8 slot, 5 x QSFP28 slots, full physical layer test capabilities, 400G Ethernet SW				
3076/92.64	400G CFP8 Data Module – CFP8 slot, 5 x QSFP28 slots, 400G Ethernet SW				
3076/92.65	CFP8 QFlex Data Module – CFP8 slot, 5 x QSFP28 slots, to be combined with at least one SW option out of 3076/97.50 or 97.60 (under preparation)				
3076/92.63	QFlex Data Module – 5 * QSFP28 slots, to be combined with at least one SW option out of FlexE or FlexO				
Options and accessories					
Options available on CFP8	QFlex Data Module and CFP8 Phy Module				
3076/97.30	CFP8 Hardware Validation SW				
3076/97.41	400G Ethernet FEC Validation SW				
3076/96.43	CFP8 16x25G Electrical Adapter (limited functionality on Data Module)				
Options available on CFP8	PHY Module only				
3076/97.31	CFP8 Advanced Error Analysis SW				
3076/97.32	CFP8 Dynamic Skew Generation SW				
3076/96.43	CFP8 16x25G Electrical Adapter				
3076/96.44	CFP8 8x50G PAM-4 Electrical Adapter				
3076/96.45	CFP8 to QSFP-DD 8x50G PAM-4 Adapter (in preparation)				
3076/96.46	CFP8 to OSFP 8x50G PAM-4 Adapter (in preparation)				
3076/97.50	FlexE 100GBase-R SW with clients up to 100GE (in preparation)				
3076/97.60	OTN FlexO OTUCn Bulk SW (in preparation)				

VIAVI Care Support Plans

Increase your productivity for up to 5 years with optional VIAVI Care Support Plans:

- Maximize your time with on-demand training, priority technical application support and rapid service.
- Maintain your equipment for peak performance at a low, predictable cost.

For more Information: go to viavisolutions.com/viavicareplan

Features

reatures							*5-year plans only
Plan	Objective	Technical Assistance	Factory Repair	Priority Service	Self-paced Training	5 Year Battery and Bag Coverage	Factory Calibration
BronzeCare	Technician Efficiency	Premium	\checkmark	\checkmark	\checkmark		
SilverCare	Maintenance & Measurement Accuracy	Premium	\checkmark	\checkmark	\checkmark	\checkmark^{\star}	\checkmark

+1 844 GO VIAVI Contact Us (+1 844 468 4284)

To reach the VIAVI office nearest you, visit viavisolutions.com/contacts.

© 2020 VIAVI Solutions Inc. Product specifications and descriptions in this document are subject to change without notice. 400g-ds-opt-tm-ae 30186280 901 0520