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Abstract

This PhD thesis provides some advances to two open problems in the mathemat-
ical field. These are the problem of algebraic integrability of polynomial foliations
on the complex affine plane, and the bounded negativity conjecture. The first one
is part of the study of differential equations while the second belongs to that of al-
gebraic surfaces. Our approaching uses techniques of algebraic geometry, and the
objects studied in the first problem will be useful in our treatment of the second.

After a chapter containing some preliminaries that help to develop the rest of
our PhD thesis, in Chapter 2 we show how to extend a polynomial foliation F T on
the complex (affine) plane to the projective plane or to a Hirzebruch surface, both
also complex. The foliations we study are singular, and the process of reducing their
singularities (particularly the dicritical ones) determines a smooth algebraic surface
T, whose geometry is key in our study. Then, we give several algorithms that, under
certain assumptions, allow us to decide on the existence of a rational first integral of
FC and calculate it if it exists. Among other cases, we show algorithms which run
whenever the cone of curves of T' is polyhedral or when the genus g # 1 of the rational
first integral is known. In the latter case, in some specific situations the algorithm
may not provide an output, but it always does if we are looking for a polynomial
first integral.

To conclude, Chapter 3 solves some problems related to the bounded negativity
conjecture. The bounded negativity conjecture states that there exists a lower bound
for the self-intersection of any reduced and irreducible curve H on a smooth complex
surface S and that this bound depends only on S.

Let Sy be either the projective plane or a Hirzebruch surface. Assume that S is
a surface obtained by a sequence of blowups at proper or infinitely near points of
So. In the case when Sy is the projective plane, we provide a common lower bound
on the quotients % , L™ being the total transform of a general line on Sy and
H running over the set of non-exceptional reduced and irreducible curves on .S; this
bound is valid, not only for complex surfaces, but also when S is a surface over an
algebraically closed field. Finally, when S is complex and we consider any surface
So, we obtain a common lower bound on the values HH—;), where D is a specific nef
divisor on S and H runs over the set of reduced and irreducible curves on S such
that D-H > 0.

VII






Resumen

Esta tesis ofrece algunos avances a dos problemas del campo matemético que
siguen abiertos en la actualidad. El primero de ellos es el problema de integrabilidad
algebraica de foliaciones polinémicas sobre el plano afin complejo. Y el segundo,
la conjetura de la negatividad acotada. El primer problema se enmarca dentro del
estudio de las ecuaciones diferenciales mientras que el segundo pertenece al estudio
de las superficies algebraicas. Ambos se abordan con técnicas de geometria algebraica
v los objetos estudiados en el primer problema seran tutiles en nuestro tratamiento

del segundo.

Después de un capitulo que contiene algunos preliminares que ayudan a desa-
rrollar el resto de la tesis, en el Capitulo 2 se muestra cémo extender una foliacién
polinémica FC sobre el plano (afin) complejo al plano proyectivo o a una superficie
de Hirzebruch, ambos complejos. Las foliaciones que estudiamos son singulares y el
proceso de reduccion de sus singularidades (en particular las dicriticas) determina
una superficie algebraica regular T' cuya geometria es la que sustenta nuestro estudio.
Gracias a este estudio, en este capitulo proporcionamos una serie de algoritmos que
bajo algunas premisas permiten decidir sobre la existencia de una integral primera
racional de FC v calcularla si esta existe. Entre las premisas estd que el cono de
curvas de T sea poliédrico o que se conozca el género g # 1 de la integral primera
racional. En este dltimo caso, en alguna situaciéon que podemos determinar el al-
goritmo puede no dar salida, pero siempre la da si buscamos una integral primera

polinémica.

Para concluir, el Capitulo 3 resuelve algunos problemas relacionados con la con-
jetura de la negatividad acotada. La conjetura de la negatividad acotada afirma que
existe una cota inferior para la autointerseccién de cualquier curva H reducida e
irreducible de una superficie compleja lisa S.

Sea Sy el plano proyectivo o una superficie de Hirzebruch. Supongamos que S es
una superficie obtenida por una secuencia de explosiones en puntos propios o infini-
tamente proximos de Sy. En el caso en que S es el plano proyectivo, proporcionamos
una cota inferior comin de los cocientes %, siendo L* la transformada total de
una recta general en Sy y H recorriendo el conjunto de curvas reducidas e irreduci-

bles no excepcionales en S. Esta cota es vilida no sélo para superficies complejas,

IX



X Resumen

sino también cuando S es una superficie sobre un cuerpo algebraicamente cerrado.

Finalmente, cuando S es compleja y consideramos cualquier superficie Sp, obtenemos
e ) 2 . )

una cota inferior comun para los valores % donde D es un divisor nef especifico en

Sy H recorre el conjunto de curvas reducidas e irreducibles en S tales que D-H > 0.
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Introduction

In this work we address two old mathematical problems with the aim of producing
some advances on them.

The first one is the planar algebraic integrability problem. It asks for deciding
whether a foliation on the complex plane has a rational first integral and computing
it in the affirmative case. In a more classical language, this problem arose at the
end of the nineteenth century within the study of the algebraic solutions of ordinary
differential equations. Darboux [32], Poincaré |79, 80, 81, 82, 83|, Painlevé [76] and
Autonne [2] were very important contributors. Despite many efforts during more
than a century, this problem is still open.

In the first part of this memoir, we introduce a new technique consisting in con-
sidering extensions of the foliations on the affine plane C? to foliations on Hirzebruch
surfaces. We will present some new contributions based on the study of the dicritical
resolution of the foliation on the Hirzebruch surface. In a moment, we are going to
give a little more information about the state of the art and later, on our contri-
butions. This problem essentially belongs to the fields of differential equations and
dynamical systems but we treat it with tools of algebraic geometry.

The second problem we address belongs to algebraic geometry and it is the
bounded negativity conjecture. Given a smooth surface S, the conjecture states that
there exists a non-negative integer b, which depends only on S, such that —b is a lower
bound for the self-intersection of any reduced and irreducible curve of S. Certain
advances related to this conjecture will be described in this work and some of them
will use foliations as a tool, giving a link between the problems we study.

The algebraic integrability problem of a foliation FC on the complex plane has
attracted the interest of many authors. Some papers related with this problem are
[65, 87,91, 18,22, 37,47, 43,48, 42,24 44 49 58 40,9, 41]. An important technique
used in many of them consists of considering the complex projective plane P? as a
compactification of the affine complex plane and an eztended foliation FP* on P2 of
F such that, on an affine open set of P2, the local form of F P g isomorphic to F c*
Here, we follow this idea and also propose a new approach by considering any complex
Hirzebruch surface Fg, § being a non-negative integer, as another compactification
of C? and an extended foliation F° on Fy.

Foliations on P? or Fs have the advantage that they can be easily introduced. A



2 Introduction

(holomorphic) foliation on P? (respectively, F5) can be given by means of a 1-form
Q= AdX + BdY + CdZ (respectively, Qs = As0dXo + As1d X1 + BsodYo + Bs1dY7),
where A, B,C € C[X,Y, Z] (respectively, A5, As1,Bs0,Bs1 € C[Xo, X1,Y0,Y1]) are
homogeneous (respectively, bihomogeneous) polynomials of certain degrees (respec-
tively, bidegrees) satisfying the Euler’s condition AX + BY +CZ = 0 (respectively, the
Euler’s conditions AsoXo + As51X1 —0Bs1 =0 and Bs oYy + Bs1Y1 = 0). We explain
how this representation works in Subsection 1.5.1 (respectively, Subsection 1.5.2).

A foliation on C2, P? or Fs, defined by a 1-form €, is said to be algebraically
integrable if it admits a rational first integral, that is; a non-constant rational function
R on C?, P2 or F; such that Q AdR = 0. Notice that this is the case if and only if all
the invariant curves of the foliation are algebraic.

Darboux, in [32], proved that if a foliation F¥* on P? has enough invariant al-
gebraic curves (that is, F* has (Tgl) + 1 invariant curves, r being the degree of the
foliation), then it has a Darboux first integral. Jouanolou (in [65]) proved the same
result for rational first integrals assuming the existence of (7”2’1) + 2 invariant curves.

In the same setting, Poincaré observed [82] that to decide about algebraic inte-
grability of a foliation it is enough to give an upper bound of the degree of the first
integral. This observation gave rise to one of the most studied problems in the field
of planar foliations, the so-called Poincaré problem. Nowadays, it asks for a bound
on the degrees of the reduced and irreducible invariant curves regardless of whether
the foliation is, or not, algebraically integrable. Another classical problem, proposed
by Painlevé (in [76]), asks if it is possible to know the genus of a general invariant
curve of an algebraically integrable foliation s

Carnicer in 18] solved the Poincaré problem in the non-dicritical case. Given
a holomorphic foliation F* on the complex projective plane having no dicritical
singularity, the degree of any reduced and irreducible algebraic invariant by F P2 curve
is bounded by deg F P? 12, Cerveau and Lins-Neto, in [21], proved the same inequality
when all the singularities are nodal. In general, Poincaré and Painlevé problems
have a negative answer, as Lins-Neto showed in |[72] by giving suitable examples of
algebraically integrable uniparametric families of foliations. However, both problems
remain interesting under some additional assumptions. Some contributions in the
Poincaré problem are |56, 15, 21, 57, 77, 37, 20, 78].

Our contribution to the algebraic integrability problem consists of several algo-
rithms for deciding about the existence of a rational first integral of a foliation F
defined either on the complex projective plane or on a complex Hirzebruch surface.
These algorithms also compute the rational first integral whenever the output is af-
firmative. At the end of this introduction we will summarize our results in this line
and those related to the bounded negativity conjecture.

The Bounded Negativity conjecture (BNc) is an old folklore conjecture (see, for
instance, [62, 45, 3,4, 5, 90, 85, 70]). It remains open and we recall that its statement

is the following;:
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Conjecture A (Bounded Negativity conjecture). For each smooth complex projec-
tive surface S there exists a non-negative integer b(S), depending only on S, such
that

C% > -b(S),

for any reduced and irreducible curve C on S.

This conjecture can also be stated by replacing reduced and irreducible curves by
arbitrary reduced divisors [4]. It is worth to add that the conjecture, if true, gives
a partial answer to a question by Demailly [35, Question 6.9]. We say that S has
bounded negativity if S satisfies Conjecture A.

The origin of the BNc¢ is unclear, but it has a long oral tradition and it was
mentioned by important mathematicians as Michael Artin or Federigo Enriques.
We mean by negative curve a reduced and irreducible curve with negative self-
intersection. There are algebraic surfaces with infinitely many negative curves; the
simplest examples are the projective plane blown up in the base locus of a general
elliptic pencil (where all negative curves have self-intersection —1), or certain elliptic
K3 surfaces (where all negative curves have self-intersection —2) [69]. Moreover, a
surface S has bounded negativity if -mKg € NE(S) for some m € Z.q |62, Corollary
1.2.3], or if NE(S) is finitely generated, NE(S) being the cone of curves of S.

A somewhat related conjecture states that if S is the surface obtained after blow-
ing up P? at ten or more very general points, then any reduced and irreducible curve
C c S satisfies C? > —1. This conjecture implies the Nagata conjecture and is implied
by the Segre-Harbourne-Gimigliano-Hirschowitz conjecture (SHGH conjecture) [29].

A weak bounded negativity conjecture was proposed in [3, 1] and proved in [61].
It states that, for each smooth complex projective surface S and any integer g,
there exists a non-negative integer b(.S, g), depending only on S and g, such that
C? > -b(8,g) for any reduced curve C on S whose irreducible components have
geometric genus less than or equal to g.

In positive characteristic there exist surfaces containing a sequence of irreducible
curves with self-intersection tending to —oo (|64, Chapter V, Exercise 1.10]). Curves
as before can be obtained by taking iterative images of a negative curve under a
surjective endomorphism of the surface [4]. Moreover, also in [4], it was proved that,
in characteristic zero, it is not possible to construct such a sequence of curves using
endomorphisms. In fact a stronger result was showed in [4, Proposition 2.1]. Tt
states that if a smooth complex projective surface S admits a non-trivial surjective
endomorphism (i.e., different from an isomorphism), then S has bounded negativity.

Let S be a surface obtained from successive blowups from a surface S. Then,
taking curves on S giving very singular images in S is a way for obtaining very
negative curves on S. To this end several authors have considered reduced divisors

whose components are smooth and intersect pairwise transversally (see [5, 86, 90,

D-
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In this PhD thesis we take a different approach. We force the appearance of
singularities by considering configurations of infinitely near points over P? or F;
and their proximity relations (Section 1.2). Section 3.1 studies the case when the
configuration is formed by the sequence of centers of a divisorial valuation v on P2,
and Section 3.2 the general case.

Since no general lower bound on the self-intersection of negative curves is known,
Harbourne in [62, Section 1.3] proposes to consider a nef divisor D and to look for
a bound on the values %, where C' runs over the integral curves on S such
that D-C > 0. Harbourne denominates this procedure an asymptotic approach to
bounded negativity. The case when S is obtained by blowing up r > 0 proper points
on P2, D = L*, the total transform of a general line L of P? on S, and C is reduced
and irreducible is considered in [62, Corollary 1.3.6]. This corollary gives a bound
depending on the so-called multipoint Seshadri constant (see [28, 35, 71] for some
information about Seshadri constants).

Motivated by this result, in Section 3.1 we provide a lower bound on % for
surfaces S obtained from P? by a finite sequence of point blowing-ups and D = L*.
Although there exists a trivial bound in this case, given by 1 —n, where n is the
number of blown-up points, generally speaking we improve very much this bound.
In sum, we give a step in the asymptotic approach for the divisor L*. It is worth to
add that all the results of this section work when the ground field is any algebraically
closed field of arbitrary characteristic (not only over C).

Section 3.2 gives an even better advance, since in this subsection we are able to

CQ
D-C

This work is structured as follows. After a first chapter where we introduce

get a bound on for rational surfaces and some interesting divisors D.
concepts and results we will need, Chapter 2 focuses on the study of the algebraic
integrability of foliations on the complex plane defined by polynomials (polynomial

foliations on C?). We achieve three goals:

1. Given a polynomial foliation F on C2, we determine a foliation F° on any
Hirzebruch surface Fs such that its restriction to a specific Zariski open set is
FC. F%is called the estended foliation of FC o Fs.

2. We give new necessary conditions for algebraic integrability of a polynomial
foliation on C? from the study of the above mentioned family of extended

foliations.

3. We provide several algorithms which allow us to know (under well-established
conditions) whether a holomorphic foliation defined on the surfaces P? or Fy is
algebraically integrable and, in the affirmative case, to obtain a rational first
integral of this foliation. This gives rise to algorithms for obtaining rational

first integrals of polynomial foliations on C2.
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Our last chapter, Chapter 3, provides some advances related to the bounded

negativity conjecture. Our goals are:

1. To give a lower bound on %, H being a non-exceptional integral curve
of a rational surface S obtained by successive blowups at proper or infinitely
near points of the projective plane ]P’z (over an algebraically closed field k with
arbitrary characteristic) and L* the total transform on S of a general line L of

2
Py
H2
DH’
a rational complex surface S and D = L* (respectively, D = F* + M*) if S

2. To give a lower bound on H being a non-exceptional integral curve of
is obtained by successive blowups at proper or infinitely near points of the
complex projective plane (respectively, the dth complex Hirzebruch surface),
where L* (respectively, F* and M*) is the total transform of a general line L
(respectively, are the total transforms of a general fiber and a general section

of self-intersection &) of P? (respectively, Fs) on S.

Notice that, if S is a rational complex surface and 7 : S -> P? (respectively,
m: S ->Fs, § € Zsp) is a birational map, obtained by composition of blowups as
above, giving rise to S, our second result provides a bound for the self-intersection
of any integral curve H on S which is linear on the degree (respectively, components
of the bidegree) of 7. H.

Some of the main results of this PhD thesis are stated and proved in the following

papers jointly carried out with my advisors and C.-J. Moreno-Avila:

[52] C. Galindo, F. Monserrat, C.-J. Moreno-Avila and E. Pérez-Callejo. On the
degree of curves with prescribed multiplicities and bounded negativity. Inter-
national Mathematics Research Notices, 2023(16):13757-13779, 2023.

[55] C. Galindo, F. Monserrat and E. Pérez-Callejo. Algebraic integrability of pla-
nar polynomial vector fields by extension to Hirzebruch surfaces. Qualitative
Theory of Dynamical Systems, 21(126), 2022.

We finish this introduction with a summary of the main contents of this work.

For us, an Sp-tuple is any 3-tuple (5,Sy,C), where Sy is the projective plane
or a Hirzebruch surface and 7 : S -» Sy the sequence of blowups at the points of a
configuration of infinitely near points C giving rise to S.

Chapter 1 makes an overview of the concepts and results which we will use in
the rest of the work. It is specially focused on Hirzebruch surfaces and foliations on
smooth surfaces. We also fix the notation to be used in the main chapters of this
PhD thesis. We mainly consider complex surfaces although a considerable number
of concepts and results also hold over any algebraically closed field k.

We highlight Sections 1.6, 1.7 and 1.8. Section 1.6 recalls the concept of rational

first integral and some related properties, while Section 1.7 describes the procedure
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of reduction of the singularities of a foliation on a surface (see [92] and [12]). This
procedure is especially important in this memoir, in particular it allows us to obtain
the dicritical configuration Bx of the foliation F which is constituted by the set of
dicritical points. These are the singularities of the foliation (and its strict transforms)
through which infinitely many invariant curves pass. Plane valuations are used in
Chapter 3 and, for this reason, Section 1.8 recalls this concept, introducing also
that of non-positive at infinity valuation. Non-positive at infinity valuations are
valuations of the fraction field of the local ring at a point of the projective plane or
a Hirzebruch surface which give rise to algebraic surfaces with very nice geometric
properties (Theorems 1.8.7 and 1.8.8).

Chapter 2 studies the algebraic integrability problem for planar foliations on the
complex plane through extensions to the projective plane or Hirzebruch surfaces Sj.

Section 2.1 considers algebraically integrable foliations F on Sy and introduces
the concept of characteristic divisor of F, Dr. Let w: Sy — Sy be the map defined
by composition of the blowups at the points in B. D is a divisor on Sg, it encodes
the data needed to compute a rational first integral of F and it is a crucial object
in most results in this work to decide about the existence and computation of such
a first integral.

Given a foliation F on Sy, Section 2.2 studies invariant by F curves. The divisor
D is only defined when F admits a rational first integral and an important property
of Dr is that Dx-C =0 for any curve on S which is invariant by the strict transform
F of F on Sr. This section introduces the concept of set of independent algebraic
solutions (see Definition 2.2.3). Tt is formed by a suitable choice of invariant curves.
Let d be the number of terminal dicritical singularities (those that produce non-
invariant exceptional divisors). A set of independent algebraic solutions of a foliation
on P? (respectively, Fs) is complete when its cardinality is d — 1 (respectively, d).
When one has a complete set, the so-called minimal characteristic divisor, G, can
be computed. If the foliation F is algebraically integrable, Gx has the property
that Dgr is a positive multiple of G and it is the minimum integer multiple such
that the (projective) dimension of the associated linear system is positive (Theorem
2.2.7). With input a foliation F on Sp, a complete set as above and under suitable
conditions for G, Algorithm 2.5.2 decides whether F has a rational first integral
and computes it (whenever it exists). When the cone of curves of the surface Sr is
(finite) polyhedral, Algorithm 2.2.11 provides a complete set of independent algebraic
solutions and the divisor G satisfies the conditions to run Algorithm 2.5.2 and decide
about algebraic integrability.

The algebraic integrability problem is posed for foliations FC on the complex
plane. Many of our results take advantage of extending those foliations to foliations
F? on Hirzebruch surfaces, Fs. Algorithm 2.3.1 in Section 2.3 shows how this can be
performed (see Proposition 2.3.3).

Subsection 2.3.2 considers extensions F° to Hirzebruch surfaces of algebraically
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integrable foliations FC and shows the existence of a non-negative integer 0; that
forces dicriticity of the points (0,1;1,0) and (0,1;0,1) in each Fs according to the
position of § with respect to §; (Theorem 2.3.6). This gives rise to a new necessary
condition for algebraic integrability (Corollary 2.3.10).

In Subsection 2.4.1 (respectively, Subsection 2.4.3), within Section 2.4, assuming
that F is an algebraically integrable foliation on Fs (respectively, P?), we introduce
a new Q-divisor on Sz (which is a normalization of D) which we name the char-
acteristic Q-divisor of F, Tr (see Definition 2.1.2 (respectively, equation (2.26))).
In absence of a complete set of independent algebraic solutions, we introduce new
results which allows us to use non-necessarily complete sets ¥ of this type. An in-
teresting property is that the class [Tz] in the Néron-Severi space NS(Sx) belongs
to the intersection V(X)* n [G]-1, where V(X)) is the set defined in (2.2), V(2)*
denotes the set of divisors which are orthogonal to all the elements of V(X) and
[Gle1 :={x e NS(S£)|[G] -z =1}. Here, G = F* (respectively, G = L*) denotes the
total transform on Sz of a general fiber of the natural projection Fs — P! (respec-
tively, a line on P?). Divisors whose classes are in the above mentioned intersection
have an expression T, depending on an R-valued vector « as in (2.23) (respectively,
(2.27)). The map a + T2 admits a unique absolute maximum at a]E_.5 which has ratio-
nal coordinates. This fact and the divisor TaJET will be crucial in our Algorithms 2.5.7
and 2.5.11 to decide about algebraic integrability. Setting o = #(X) and £ =d -0

(respectively, £ = d — o — 1), the specific result is the following one:
Theorem B.
(a) If sz <0, then F is not algebraically integrable.
F
(b) If TQQE =0 and F is algebraically integrable, then Tx = Tajzr and a?_— e (Qs0)",
f
Qs0={z€Q|z>0}.

Theorem B provides a necessary condition for the algebraic integrability of F.
Section 2.5 in this chapter makes use of our previous sections and states our main
results consisting of several algorithms which compute a rational first integral of a

given foliation F on P? or Fs provided that one knows:

1. The degree (respectively, bidegree) of a rational first integral: Algorithm 2.5.1.

2. A complete set of independent algebraic solutions whenever at least one of three
additional conditions hold: Algorithm 2.5.2. Those conditions are presented
in the input of the algorithm. In particular, the algorithm runs if the cone of

curves NE(Sx) is polyhedral.
3. The fact that the inequality Tjg < 0 holds: Algorithm 2.5.7.
F
4. The number

e(Ta]zt) =min{a € Zso| aT,s is a divisor and dim|aTa§_| >1}
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and the trueness of the equality sz =0: Algorithms 2.5.7 and 2.5.14. Notice
F
that the value e(Tag) can be deduced from the genus (if it is not 1) of the

rational first integral.

5. The genus g # 1 of the rational first integral, the trueness of the inequality

Tzz >0, and of an additional condition. It depends on the values
.’F

Pint == If{Kr Ty | a e A} and psyp = sup{Kr - T, |« € A},

A = {a € (Qs)’ | T? = 0}, K being the canonical divisor of the foliation:
Algorithm 2.5.14.

Our algorithms allow us to decide about algebraic integrability and the compu-
tation of rational first integrals in many unknown cases.

To conclude Chapter 2, and to facilitate its understanding, Subsection 2.5.2,
provides a summary of the different scenarios and the algorithms we propose.

Chapter 3 deals with two problems related with the bounded negativity conjec-
ture. Indeed, we make progress in an asymptotic approach to bounded negativity
(see |62, Problem 1.3.2]) by providing lower bounds on the self-intersection of curves
on rational surfaces S. Roughly speaking, our first bound is for non-exceptional
curves on surfaces having P? as relatively minimal model, and depends on the square
of the degree of the blown-down curve. The second bound overcomes the asymptotic
approach and gives a lower bound on the self-intersection of a non-exceptional curve
on any rational surface linearly depending on the degree, or the components of the
bi-degree, of the blown-down curve, according to the chosen relatively minimal model
of S be P? or F;.

Being more specific, in Section 3.1 we consider any rational surface S having P2
as a relatively minimal model, i.e., there exists a P2-tuple, (S,P?,C), where P? is the
projective plane and C = Uﬁ\:f 1Cu,;, Cy, being the configuration of infinitely near points
given by a suitable chosen divisorial valuation v;. We bound from below the number

2

)‘L*(S) = lnf{m

| H is an integral curve on S such that L*- H > 0} ,

where L* is the total transform of a general line L of P? on S. Our main result in

this section is the following one.

Theorem C (Corollary 3.1.4).
N
)\L*(S) 2 min{l _Ma_Z(SO(Vi) -2N + 1},
i=1
where p denotes the mazimum cardinality of a subset of aligned points in the config-

uration C and, for each valuation v;,

vol(v;) ™! = 280 ()t (v;) ]+ _

do(vi) = [ )2
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In the above expression [x|* is the ceiling of a rational number x if x > 0, and 0
otherwise. Moreover, vol(v;) stands for the volume of the valuation v;, By(v;) is the
first mazimal contact value of v; and t(v;) the image by v; of the germ at the center

of v; on P? of the tangent line of v;.

We point out that the results of this section remain valid when the ground field is
an arbitrary algebraically closed field (independently of its characteristic).

Our Section 3.2 considers any complex rational smooth surface S. If S comes
from a P2-tuple (S,P?,C), we define
2

L*-H

v+ (S) ::inf{ | H is an integral curve on S such that L*- H > O}.

Otherwise, when S comes from a Fg-tuple (S,Fs,C) and F* and M* are as introduced
in page 5, we consider the value

H2

oy (S) =inf{ —————
Vp ]LI() m {(F*‘FM*)H

| H is an integral curve on S such that (F* + M™)-H > 0}.

Then, our main result consists of bounding from below the above numbers. To con-
clude our introduction we state the mentioned result which can be found in Corol-
laries 3.2.7 and 3.2.12.

Theorem D. Let S be a rational smooth surface. Assume that S comes from a

P2-tuple (S,IP%,C). Then
vr<(S) 2min{-(2d-3),d(1-n)},

where n is the cardinality of S and d is a positive integer that can be computed from
the dual graph of the configuration C. Otherwise, when S comes from (S,Fs,C), it
holds that

vpspn(S) 2min{-2(d-1) = 6,-n - §,—(5 + 2)dn},

where n and d are defined as above.






Chapter 1

Preliminaries

Our first chapter introduces the basic objects and some facts we will use through-
out this work. Specifically, Section 1.1 introduces some concepts of algebraic geome-
try, while the following sections define and give some properties of the main concepts

that support our work or will be studied. The main references we have used are

[ ? ? ? ? 7 7 ) 7 ? ? 7 7 ) ]

1.1. A bit of algebraic geometry

We start by recalling some basic concepts and specific notions of algebraic geom-

etry. We have mainly followed [64] and, to a lesser extent, [89, 416, 6, 94, 71].

1.1.1. Basic concepts

Throughout this memory, C denotes the field of complex numbers and C* :=
C ~ {0}. We denote by C[Xy, X1,...,X,] the polynomial ring in n + 1 variables
with coefficients in C and by P" the n-dimensional complex projective space. A
(complex) algebraic variety X is an integral separated scheme of finite type over C.
If dim(X) = 2, we say that X is a surface.

Let X and Y be two projective algebraic varieties. A rational map ¢ : X -> Y
is an equivalence class of pairs (U, ¢y ), where U is a non-empty open subset of X
(for the Zariski topology), ¢y : U = Y is a morphism of U to Y, and where (U, ¢y)
and (V, ¢y ) are said to be equivalent if ¢y and ¢y agree on U NnV. A rational map
¢: X ->Y is dominant if for some (and hence, every) pair (U, ¢r), the image of ¢y

isdensein Y.

Definition 1.1.1. Let X, Y be as above. A birational map f: X ->Y is a rational
map that admits an inverse rational, namely, a rational map g : Y -> X such that
fog=1dy and go f =idx as rational maps. If there exists a birational map from X

to Y, we say that X and Y are birationally equivalent, or simply birational.

11
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Let S be a projective surface and denote by Og its structural sheaf. If p is a
closed point in S, Og, represents the local ring of S at p, i.e., the ring of germs
of functions on S near p. When no confusion on the taken surface arises we simply
denote the local ring at p by O,. Set K(S) the function field of S. If Og,, is a regular
ring then p is said a smooth point of the surface; otherwise p is named a singular
point or a singularity. The surface S is smooth, non-singular or regular whenever all

its points are smooth. Otherwise, S is singular.

Definition 1.1.2. A surface is said to be ruled if it is birationally equivalent to

C x P!, where C is a smooth curve. If C' = P!, S is said to be rational.

This work only considers smooth projective rational surfaces, abusing the nota-
tion, we call them simply surfaces. For the rest of the chapter, S denotes a surface.
Unless otherwise stated, throughout all the work, the points we consider on surfaces
are assumed to be closed.

A prime divisor on S is a one-dimensional closed integral subscheme P of S. Let
P be a prime divisor and g € P its generic point. We denote by M the maximal ideal
of Og4. Since the local ring Og, is a unique factorization domain, M is principal
[64, Chapter I, Proposition 1.12A]. Let f = % e K(S), fi1,f2 € Osy; for i = 1,2,
we define the order of f; along P, ordp(f;), as the non-negative integer ¢ such that
fie Mt and f; ¢ M and the order of f along P as ordp(f) = ordp(f1) —ordp(f2).
If ordp(f) = k >0, then we say that f has a zero of order k along P; if k <0, we say
that f has a pole of order —k along P. By |64, Chapter 11, Lemma 6.1], there is only
a finite number of prime divisors P such that ordp(f) # 0.

Definition 1.1.3. A Weil divisor D on S is an element of the free abelian group
Divyy (S) generated by the prime divisors on S. Then

D= niPia

L=

where N is a positive integer, P; a prime divisor, and n; an integer for ¢ =1,..., N.
We say that D is an effective divisor or a curve if n; > 0, for all 7, and n; > 0 for

some i. We define the support of D, Supp(D), as the union U;|y,+0 F;-

Let C' be a curve on S passing through a point p € S. The germ of C at p is
denoted by ¢c, (or ¢ if no confusion arises).
For any f e K(S), the divisor of f, denoted by div(f), is the Weil divisor

div(f) = ;Ordp(f)'P,

where the sum runs over all prime divisors P on S. As above mentioned, this sum
is finite, hence div(f) is a divisor. If a Weil divisor D is equal to div(f), for some

rational function f, then we say that D is principal. Furthermore, two Weil divisors
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D and D' are linearly equivalent, denoted D ~ D', if D—D’ is a principal Weil divisor.
The quotient group CI(S) = Divyy (S)/ ~, is called the divisor class group of S.

Set Kg the sheaf of rational functions on S and Kg the subsheaf of invertible
elements in Kg. Denote by Og (OF, respectively) the sheaf of regular functions on

S (subsheaf of invertible elements in Og, respectively).
Definition 1.1.4. A Cartier divisor on S is a global section of the sheaf K£5/Og.

The Cartier divisors on S form an abelian group under multiplication, denoted
Dive(S). We use the language of additive groups when speaking of Cartier divisors,
to preserve the analogy with Weil divisors.

A Cartier divisor is called principal if it is induced by a global section of Kg. As
for Weil divisors, two Cartier divisors are linearly equivalent if their difference (i.e.,
their quotient) is a principal Cartier divisor.

The quotient group of global sections CaCl(S) = HO(S,K%/0%)/H®(S,K%), the
group of Cartier divisor classes modulo principal divisors, is called the group of
Cartier divisor classes. Thinking about the properties of quotient sheaves, an element
of Dive(S) = HY(K%/O%) can be given by a open covering {U; }ier of S and elements
in Kg(U;) represented by rational functions 1); such that % are in Og(U; n Uy)

for all ¢, € I. As Cartier divisors are locally rational functi]ons modulo nowhere-
zero regular functions, intuitively they are the loci of the zeros and poles of rational
functions together with their multiplicities. Set D a Cartier divisor on S defined
by {(Ui, ;) }ier- We define the sheaf associated to D, denoted Og(D), to be the
sub-Og-module of g generated by 1/1;1 on U;. This is well-defined because ;/v; is
invertible in U; nUj, so w;l and w]fl generate the same Og-module.

An invertible sheaf on S is a locally free Og-module of rank 1. By [64, Proposition
6.12], given two invertible sheaves £ and M on S, the tensor product £ ® M is also
an invertible sheaf. Moreover, there exists an invertible sheaf £7! on S such that
L® L1~ Og (|64, Chapter II, Proposition 6.12]).

Definition 1.1.5. The Picard group of S, Pic(S), is the group of isomorphism
classes of invertible sheaves on S, under the tensor operation product. It is isomorphic
to the cohomology group H'(S,0%) (see [64, Chapter 11, Exercise 4.5]).

All the surfaces we are going to consider are locally factorial integral separated
noetherian schemes. Then, the group of (principal) Weil divisors is isomorphic to
the group of (principal) Cartier divisors by [64, Chapter II, Proposition 6.11]. In
the future, we will simply write (principal) divisors. Moreover, by [64, Chapter II,
Proposition 6.15 and Corollary 6.16] the following group isomorphisms hold: Pic(S) 2
C1(S) = CaCl(S). We will denote by [D] the element in Pic(S) defined by a divisor
Don S.
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1.1.2. Specific notions

In this subsection we introduce some concepts which will be important tools along
the work. We start with the notions of intersection multiplicity and intersection
number.

Let Cq and C3 be two distinct irreducible curves on S, p € C1 nCy and Og),
the local ring of S at p. We denote by ¢, (respectively, ¢c,) the germ at p of C}
(respectively, Cy). The intersection multiplicity of (the germ of) C; and Cy at p is
defined to be

(SDCH y PCy )p := dimc OS,p/<QDC1 » PO )
Note that this value is finite since Og /(¢ , @c,) is a finite-dimensional vector space
over C. The intersection multiplicity (¢c,, ¢, )p equals 1 if and only if ¢, and ¢c,
generate m,, the maximal ideal of Og,. In this case, C; and (3 are said to be

transverse at p or that they meet transversally at p.

Definition 1.1.6. Let C; and C5 be two curves as above. The intersection number
(C1,C9) is defined by

(Cla02) = Z (SOCUSDCQ)P:dimHO(Sa 001002)7
pGClﬂCQ

where O¢,nc, = Og/(Os(-C1) + Os(-C2)) and the invertible sheaf Og(-C) is the
ideal sheaf defining C' (see [(, Chapter I] for further information).

Theorem 1.1.7 (|6, Theorem 1.4 and Lemma 1.6]). For L1, Lo € Pic(S), define
(L1,£2) = x(0s) = X(L1") = x (L") + x(£1' ® L31),

where x(L£) = ¥;(=1)°h*(S, L) denotes the Euler-Poincaré characteristic of an ele-
ment L € Pic(S). It is a symmetric Z-bilinear form on Pic(S). In particular, if Cq

and Cy are two distinct irreducible curves on S,
(0s(C1),05(C2)) = (C1,Cr),
and, if C is a smooth irreducible curve on S, for all L € Pic(S), it holds that
(0s(C), L) =deg(Lc)-

Let Dy and D5 be two divisors on S, we stand D; - Dy for (Og(D1),Os(D2)).
Notice that we can calculate this product by replacing D; (or Do or both) by linearly
equivalent divisors. D1-Ds is called the intersection number of D1 and Ds. It depends
only on linear equivalence classes, it is additive and, if Dy and D5 are smooth curves
that meet transversely, it is the number of closed points of D1 n Dy (|61, Chapter V,
Theorem 1.1]).

A divisor D on S is numerically equivalent to zero, D =0, if D-C =0 for every

curve C on S. Two divisors D and D’ are numerically equivalent if D — D' =0, i.e.,



1.1. A bit of algebraic geometry 15

D-C =D'-C for every curve C on S. It is well-known that linear equivalence implies
numerical equivalence. Moreover, in our case, which only considers rational surfaces,
it is a known fact that two divisors are linearly equivalent if and only if they are
numerically equivalent. Therefore, from now on, we will simply say that two divisors
are equivalent.

The intersection number of two classes [D;] and [D2] in Pic(S) is defined as the

intersection number Dj - Do of any two representatives of the mentioned classes.

Definition 1.1.8. Let Dy and D5 be two divisors on S. We say that Dy (respectively,
[D1]) is orthogonal to Do (respectively, [Dz]) whenever Dj - Dy = 0. The set of
divisors (respectively, classes of divisors) on S which are orthogonal to a divisor D
(respectively, [D]) is denoted by D* (respectively, [D]*').

Denote by Picg(S) (respectively, Picg(S)) the vector space over Q (respectively,
R), Pic(S) ®7Q (respectively, Pic(S) ®zR). An element D in Picg(.S) (respectively,
Picg(S9)) is called a Q-divisor (respectively, an R-divisor). It can be expressed as
D =Y, a;P;, where P; € Pic(S) and a; € Q (respectively, a; € R) for all i. A Q-
divisor (respectively, R-divisor) is said to be effective if, for i = 1,...,n, P; is effective
and a; > 0.

The intersection theory provides a Z-bilinear form: Pic(.S) x Pic(S) - Z which
induces a non-degenerate bilinear form over Q (respectively, R): Picg(S)xPicg(S) —
Q (respectively, Picg(S) x Picg(S) — R). Picg(S) is called the Néron-Severi space
of the surface S and denoted by NS(S). Its dimension as a real vector space is
called the Picard number of S, often denoted by p(.S). Abusing the notation, for any
divisor D on S, we also denote by [D] the image of D in NS(S).

Let [D] € NS(S), we define the ray spanned by [D] as the following subset of
NS(S):

Ryo[D] :={aD|aeRyp}. (1.1)

A divisor (respectively, Q-divisor, R-divisor) D on S is said to be nef if D-C > 0,

for every irreducible curve C' on S.

Definition 1.1.9. The cone of curves (respectively, nef cone) of a surface S, which
we denote by NE(S) (respectively, P(S) or Nef(S)), is defined to be the convex
cone of NS(S) generated by the images of the effective (respectively, nef) classes in
Pic(S).

Given a convex cone C (see [39, Part 1, Section 2|) in NS(S), its dual cone is
defined to be
CV:={xe NS(S)|z-y>0foral yeC}.

A face of C'is a subcone D ¢ C such that, for all pair of elements a,be C, a+be D
implies that a,b € D. The 1-dimensional faces of C' are also called eztremal rays of

C'. By [89, Farkas’ theorem and Theorem 14.1|, if C'is a polyhedral cone, C" is also
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polyhedral and CVY = C. In addition, the faces of a cone are cones and, moreover,
a polyhedral cone has a finite number of faces, all of them also polyhedral (see, for
instance, |75, Proposition 1.4.4]). Notice that P(S) is the dual cone of NE(S) and
also of NE(S), the topological closure of NE(S) in NS(S) for the usual topology.
We consider the diagonal morphism A : S — S x S [64, Chapter I, Section 4]. A
induces an isomorphism of S onto its image A(S), which is a closed subscheme of
an open subset U of S x S. Let Z be the sheaf of ideals of A(S) in U. Then, we are

ready to state our next definition:

Definition 1.1.10. [64, Chapter II, Section 8]
= The sheaf of differentials of the surface S is the sheaf Qg := A*(Z/Z?) on S.
» The tangent sheaf of S is Og := Homg(Qg, Og).
= The canonical sheaf of S is ICg:= A2Qg, and it is an invertible sheaf on S.

A canonical divisor of S, Kg, is any divisor in the linear equivalence class of Kg.

We recall that the arithmetic genus of a variety X of dimension r over C is

Pa(X) = (-1)"(Px(0) - 1),

where Px denotes the Hilbert polynomial of X (see [64, Chapter I, Exercise 7.2]).

In addition, the geometric genus of X is defined to be the non-negative integer
pe(X) = dime H*(X, Kx), (1.2)
where Kx is the canonical sheaf of X ([64, Chapter II, before 8.18.2]).

Proposition 1.1.11 (|64, Chapter IV, Proposition 1.1]). If C is a smooth curve,
then

pa(C) = py(C) = dime H*(C, O¢).

For curves C as mentioned, this value is simply called the genus of C' and denoted

by g(C).

The genus of a smooth curve C on a surface S can be computed by the so-called

adjunction formula |61, Chapter V, Proposition 1.5]:
1
g(C)=1+§(CZ+KS-C), (1.3)

where Kg is a canonical divisor on S.

We finish this section by giving some more notions.

Definition 1.1.12.
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» Given a divisor D on a surface S, a complete linear system |D| is the set
(which may be empty) of effective divisors linearly equivalent to D. |D| has

the structure of a set of points of a projective space given by the one-to-one

correspondence
H°(S,05(D))~{0}/C* — |D|
s —  div(s)o,
where div(s)o is the divisor of zeros of s (see [64, Chapter II, Section 7.7]).

» A linear system 0 (on a surface S) is a linear subspace of a complete linear
system |D|. ® corresponds to the vector subspace of HY(S,0g(D))

V ={se H(S,0g(D))|div(s)g €0} u{0}.
The dimension of 0 is its dimension as a linear projective space.

» A base point of a linear system 0 is a point p € S such that p € Supp(D) for all

D €0. A linear system is called base-point-free if it has no base point.

1.2. Blowups and proximity graph

In this section we consider the concept of blowup, a well-known tool in algebraic
geometry, and the main tool in our work. We recall some of its properties that will
be applied in later chapters. We have mainly followed [64, 33, 6, 19, 11, 74]. We
keep the notation of the above section.

Let S be a surface and p € S. Then there exist a surface S and a morphism

7:5->8 , which are unique up to isomorphism, such that
= the restriction of 7 to 771(S \ {p}) is an isomorphism onto S \ {p} and,
» E,:=71(p) is isomorphic to P'.

When no confusion arises, £, will be denoted by E. The morphism 7 is usually
known as the blowup of S at p and E as the exceptional divisor of 7 |6, Chapter
II, Section II.1|. Let us present a rough description of the blowing-up process. For
this purpose, for simplicity, we consider S with its underlying structure of analytic
manifold and we take an open neighbourhood U of p with local coordinates x and y.
We define U ¢ U x P! by the equation Y —yX =0, where X, Y are homogeneous
coordinates on P'. Then, the projection 7|5 : U — U is an isomorphism over U\ {p},
while 771 (p) = {p} x P'. We get S by considering 7 as an isomorphism over S \ {p}
and 7 1(p) = {p} x PL.

In the literature, the concept of blowup is also referred as monoidal transfor-
mation (see [64, Chapter V, Section 3]) in order to distinguish it from other more

general transformations, and the surface S is denoted by BL,(S).
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Let C be a curve on S passing through a point p. The closure C of 7 1(C'~ {r})
is the strict transform of C. The total transform C* of C is the pull-back 7*C. We
use the same notation for the strict and total transform of a divisor D, D and D*,
which are well-defined by linearity. Moreover, mult,(¢p) denotes the multiplicity at

p of the strict transform of an effective divisor D.

Proposition 1.2.1 (|6, Lemma II.2 and Proposition I1.3]). Let S be a surface,
7:S > S the blowup of S at p and E c S the exceptional divisor. Then:

1. D*=D+ mult,(¢p)E, for any effective divisor D on S.

2. There is a group isomorphism Pic(S) @ Z > Pic(S) defined by ([D],n) ~
[D* +nE].

3. Let D and D' be divisors on S, then D*-D'*=D-D', D-E =0 and E? = -1.
4. The canonical divisors satisfy Kg ~ Kg+ E, where ~ means linear equivalence.

Now we are going to introduce some other notions that will be used later on. Let

Sp T Sy M T2 60 T Gy = S, (1.4)

be a finite sequence of (point) blowups, where 7; is the blowup of the surface S;_1 at
a point p; € S;_1, 1 <i<n. Let mr=m omg0---0m,.

We denote by E; (or E,,) the exceptional divisor obtained after blowing-up at
the point p;, which is also called the first infinitesimal neighbourhood of p;. Abusing
the notation, denote by E; and E} (or E,, and E;.) the strict and total transforms
of E; on S}, for j > i, respectively. Let D be a divisor on S, the strict (respectively,
total) transform of D on S}, for j > i, is denoted by D (respectively, D*). Moreover,
we stand E; for Ei when no confusion arises. We use induction to define the kih
mnfinitesimal neighbourhood of a point p; as the first infinitesimal neighbourhood of
some point in the (k - 1)th infinitesimal neighbourhood of p;. A point p; belonging
to some kth infinitesimal neighbourhood of p; is said to be infinitely near p;. If p;
belongs to the strict transform of E; on Sj;, then we say that p; is prozimate to p;,
and it is denoted by p; — p;. If a point is proximate to two points, we call it satellite
and otherwise it is called free. The points which are infinitely near some point in
S are called infinitely near S. The points in S are often called proper in order to

distinguish them from the infinitely near ones.
Definition 1.2.2.

» The set of centers C = {p;};, of the blowups of a sequence as in (1.4) is said
to be a configuration (of infinitely near points) over S. The composition 7

(respectively, the surface S),) is also denoted by me (respectively, Se).

We identify two configurations C and C’ over S if there exists an isomorphism

oS¢ = Ser such that mer oo = 7.
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» If C = {p;}}" is a configuration over S, the surface S,, obtained by blowing-up
the points in C is called the sky of C and S is called the floor of C.

= We say that p is an origin of C if p € C is a proper point of S. The set of origins
of C is denoted by O¢. Moreover, (C), stands for the set of points of C which
are equal or infinitely near p. Thus we can write
c=U O
peO¢
= A point p € C is said to be an end of C if C contains no proximate to p point.
We denote by & the set of ends of C.

s The level of p € C, I(p), is the minimum number of blowups one needs to obtain

the surface containing p. We can redefine the origins as the points of level 0.

We can represent a configuration C by a labelled graph, named the prozimity
graph of C, and denoted by I'c. Their vertices correspond to (and are labelled with)
the points in C. Two vertices p and ¢ are joined by an edge whenever either p — ¢ or
q — p. For a better readability, we omit those edges that can be deduced from others.
When representing the graph, we arrange the vertices in ascending order according

to their levels.

Example 1.2.3. Figure 1.1 shows the proximity graph of a configuration C = {p; }31,
where p; and pg (respectively, pa4,ps,pe,ps and pig) are the origins (respectively,
ends) of C. The level of py and p1g (respectively, ps and pr; p4, ps, pg and pg) is 1
(respectively 2; 3). In addition, p1, pe, p3, P4, P5, P6, P9 and pio are free points while
p7 and pg are satellite.

P4 P5 P6 P8
p3 b7
P2 P1o
P1 P9

Figure 1.1: Proximity graph of a configuration

The Enriques diagram (see [19, Section 3.9]) or the dual graph (described in
Section 1.8) are alternative and equivalent representations for the proximity graph
of a configuration.

Let p,q € C, we say that p precedes q, p < q if ¢ is infinitely near p. We write p <q
if p equals or precedes ¢. This relation < is a partial ordering on the set C and I(p)

is the number of proper and infinitely near points which precede p.
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A configuration C is a chain if < is a total ordering. For any point p € C, the

complete chain associated to p is the set

(C)? = {q eClg < p}.

Notice that

c= U @,= U@

peO¢ qe€e

Also, for any pair of points p, q € C, with p < g, the set

(C)f={reClp<r<q} (1.5)

is called the chain from p to q.
A total ordering < on C is called admissible if p < q implies p < q.

Example 1.2.4. The total ordering p; < p; defined by
pi<p;=i<]
in the configuration C of Example 1.2.3 is an admissible total ordering.

The sky and the proximity graph of a configuration are independent (up to iso-
morphism) of the chosen admissible ordering (see |19, Proposition 4.3.2], [74, Propo-
sition 1.2.4] or [75, Proposition 1.2.2]). Let us fix an admissible ordering < and
reassign indices to the points p; according to that ordering. The proximity matriz of
C (for <) is a square matrix of order m = #C (where # means cardinality), Pc = (pi;),
whose entries are

1 ifi=j
pij =y -1 ipi—>p; (1.6)
0  otherwise.

Example 1.2.5. Let C = {p; 1131 be the configuration given in Example 1.2.3. Con-
sider the admissible ordering defined in Example 1.2.4 (p; < p; < i < j). Then the

proximity matrix of C is the following one:

10 0 00O O O O O
-11 0 000 0 0 0 O
0 -1 1. 000 0 0 0 O
0 0 -11 00 0 0O 0 O
P - 0 0 -1 010 0 O O O .
0 0 -1 001 0 O O O
-1 -1 0 000 1 0 0 O
-1 0 0 00O0O-1 1 0 O
0O 0 0 00O O O 1T O
0 0 0 00O 0O 0O -11
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Now we are ready to present our next result, whose items (1) to (4) extend the

corresponding ones given in Proposition 1.2.1.

Proposition 1.2.6 (|1, Proposition 1.1.26]). Let S be a surface,

T Tn—-1 ) T
Sn_n’Snfl L’"'_’Sl_’ka:S?

a finite sequence of blowups and C = {p;}I, its corresponding configuration. Keeping
the above notation and considering total and strict transforms on Sy, the following

statements hold:
(1) D* =D+ Y%, multy,(¢p)E}, D being an effective divisor on S.

(2) Let D and D' be two divisors on S. Then D*-D" = D-D'D-E} =0 and
D*-E;=0, for 1 <i<n.

(4) There ezists a group isomorphism between Pic(S) & Z™ and Pic(S,) given by

n
([D]ﬁmla"wmn)'_)[D*"'ZmiE*].
i=1
(5) Foralli,je{l,...,n},
-ri—1 ifi=7,
L Ej= 1 ifi#jand E;nE;+ @,
0 otherwise,

where r; is the number of points in C that are prozimate to p;.

(6) Foralli,je{l,...,n},

E* E* _ _1 ZfZ = j)
! J 0 otherwise.

(7) For alli,je{l,...,n},
-1 ifi=j,

0 otherwise.

(8) If D is a divisor on S and D' is a divisor on Sy, then D*-D' = D-7, D', where
. D' is the direct image of the divisor D' on S induced by .

By Proposition 1.2.6 (1), E; = Ef - ¥, ., E7. Thus {E;}]; is a basis of the
free Z-module @1, ZE;. Moreover, the proximity matrix of C can be seen as the

change-of-basis matrix from {E;}!", to {E/}} .
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1.3. Germs of curves and C'-sufficiency

Let p be a point in S and consider a (non-necessarily finite) sequence of point
blowups

s T
7r:---—>Sni>Sn,1—>---—>Sl—>SO:S.

Assume that each blowup ; is centered at a point pf, i > 1 being p] = p. Let { be a
germ of curve at p. We say that £ goes through p] if the strict transform of £ at p) is
not empty, that is, if mult,/ () > 0, where mult,, (§) denotes the multiplicity (of the
strict transform) of £ at p;. If mult,/ () > 1 (vespectively, mult,/(£) = 1) we say that
p; is a multiple (respectively, simple) point of &.

Let N (&) = {pi}is1, p1 = p, be the set of all (equal to or infinitely near p) points
through which £ goes.

Theorem 3.7.1 of [19] proves that, if £ is a reduced germ, ¢ has finitely many
multiple points. Moreover, [19, Corollary 3.7.7] states that A (£) contains finitely

many satellite points.

Definition 1.3.1. (see [19, Section 3.8]) Let & and N (&) be as above. A point

pi € N(€) is a singular point of £ if it satisfies one of the following conditions:
1. p; is a multiple point of &.
2. p; is a satellite point of N ().
3. p; precedes a satellite point of N (&).

Otherwise, p is a non-singular point of £.

Notice that if the strict transform of € is smooth at p;, then the same is true at any
pr equal to or infinitely near p; (see [19, Corollary 3.2.9]). Moreover, it follows from
[19, Corollary 2.2.6 and Theorem 3.2.2| that if ¢ is an analytically irreducible germ
at p, there is a single point through which £ goes in each infinitesimal neighbourhood
of p. In particular, the set N'(€) is an infinite chain naturally ordered.

Let &€ be a non-empty reduced germ defined on a surface S. Notice that a proper
point of S is a singular point of £ if and only if it is a multiple point of £. Since there
are finitely many multiple and satellite points, a germ has also finitely many singular
points. Let &1,...,&s be the branches of £, i.e., £ = & +---+ & is the decomposition of
¢ in reduced and analytically irreducible germs, and for ¢ = 1,..., s, denote by ¢; the
first point of &; which is a non-singular point of £. In particular, this implies that all
points infinitely near to ¢; are simple and free.

The configuration of € is defined as the finite set

C(&) = ()" u--u(C)”, (1.7)

i.e., the subset of N (&) containing all singular points of ¢ and also the first non-

singular point of ¢ belonging to each one of its branches. C(&) satisfies that the
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strict transforms of £ on the surfaces containing these points are non-empty germs,
the strict transform of £ on the sky of the configuration is smooth and the local
equations of its analytically irreducible components are part of a regular system of
parameters at ¢;, for all i = 1,...,s (i.e., its related divisor is a normal crossing
divisor, [19]).

Two germs of curve £ and ( are equisingular if both are reduced and non-empty
and there exists a bijection ¢ : C(¢) - C(¢) such that 1 and ¢! preserve the

proximity matrix of the configurations, i.e., for any p,q € C(§), p < ¢ (respectively,
p — q) if and only if 1(p) <(q) (respectively, ¢ (p) = 1(q))-

Definition 1.3.2. The singular configuration of a non-empty reduced germ &, K(£),
is the subset of C(£) of all singular points, i.e.,

K(€) =C(&) ~ ey
where ¢ (¢ is the set of ends of C(§) (see Definition 1.2.2).

Let C = Upeg,(C)P be a configuration. Set n = #C. Fix an admissible ordering

n

< over C and write C = {p;}I*, as explained before (1.6). We define the vector of

multiplicities of C (for <), as the column vector m¢ = (mc 1,...,me,)", where
1 if p;e&
mei = pi=oe (1.8)
ij Sp; Mc,; Otherwise

Set O, = C? the local ring of a surface S at a point p € S and m,, its maximal

ideal. Let £: f =0 be a non-empty and reduced germ of curve in O,

Definition 1.3.3. A positive integer n is said to be CY-sufficient for ¢ if all the
elements of the form f +m; are non-zero and define an equisingular to § reduced

germ.

It is clear that the above definition does not depend on a particular equation f
of £. The integer n is CY-sufficient for ¢ if and only if the equisingularity class of £ is
determined by the class modulo my; of an equation f of . Thus, if f =377, f,-ja:iyj,
where {z,y} is a regular system of parameters of m,, then the polynomial f :=
Z?J:jl:o fijxiyj defines an equisingular to & germ. In addition, the fact that n is

CY-sufficient for ¢ implies that any m > n is also C°-sufficient for &.

Definition 1.3.4. The CC-sufficient degree of a reduced germ € is defined to be the

minimum n such that n is C%-sufficient for ¢.

The next result provides an upper bound for the C-sufficient degree of a non-
empty and reduced germ of curve ¢ at a point p of a surface S. It is a consequence
of [19, Theorem 7.5.1].
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Lemma 1.3.5. Let &: f =0 be a reduced germ of curve on S at p and K = K(§) =
{pi}i1, p1 = p, its singular configuration. Fiz an admissible ordering on K. Let Px
be the proximity matriz of K as defined in (1.0) and my its n-dimensional vector
of multiplicities as defined in (1.8). Let vq = (v;) be the vector defined by vq =
P,_Cl(d 1, - mg) where 1, is the n-dimensional column vector whose first component

15 1 and the remaining ones are 0. Then,

1. The least positive integer d such that v; >0 for alli e {1,...,n} is C°-sufficient
for €.

2. For any g € mg, f+9#0 and the germ of curves  : f + g =0 goes through K.
Moreover its vector of multiplicities (respectively, its singular configuration) is

me ) = my (respectively, K(C) =K).

Notice that the integer d of Lemma 1.3.5 does not need to be the Cy-sufficient
degree of &.

We finish this section by recalling the so-called proximity equalities [19, Theorem
3.5.3]. Let & be a germ of curve at a point p € S. Then, for all ¢ € N (&), the following
equality

multy(€) = ) mult, (&) (1.9)

r—q

holds.

1.4. Rational surfaces

In Section 1.1 we have defined rational surfaces as those surfaces which are bi-
rationally equivalent to P! x P!. In this section we give some additional information
about them.

In Subsection 1.4.1 (respectively, 1.4.2) we give a brief description of the projec-
tive plane (respectively, the Hirzebruch surfaces), recalling some important properties
and related objects that we will use throughout this memoir. In Subsection 1.4.3 we
explain that rational surfaces come from blowing-up a (possibly empty) configuration

of points over the projective plane or a Hirzebruch surface.

1.4.1. The projective plane

The projective plane P? (over C) can be regarded as the quotient (C3~{(0,0,0)})/ ~,
where (X,Y,Z) ~ (AX,\Y,\Z) for all A € C*. The homogeneous coordinate ring of
P? is C[X,Y, Z] where the variables are graded on Zsg, all of them with value 1.

The Picard group of P?, Pic(IP?), is isomorphic to Z and it is generated by the
divisor class of a line, [L]. Moreover, [L]? = 1.

The canonical sheaf of P? is Kp2 = Op2(~3) and hence, a canonical divisor of P?

is Kp2 = —=3L, where L stands for the divisor of a line.
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The projective plane can be covered by three affine open sets, Ux, Uy and Ug,
defined by Uy = {(X : Y : Z) e P2|X # 0}, Uy = {(X : Y : Z) e P?|Y # 0} and
Uz ={(X:Y:2Z)eP?|Z +0}). We can identify each one of these affine open sets
with C2. For example, in Uy, (X :Y :Z)=(X/Z:Y/Z:1) so we can identify Uy
with C? by means of the isomorphism (X :Y : Z) + (2z,yz), where 7 := X/Z and
yz =Y |Z. We can do the same for Uy and Uy. There is a well-defined coordinate
change map in each overlap.

Throughout this memoir, whenever we use the projective plane, we consider fixed

homogeneous coordinates (X : Y : Z), as above, without mentioning it explicitly.

1.4.2. Hirzebruch surfaces

Let C be a smooth curve. A geometrically ruled surface over C is a surface S,

together with a morphism S — C whose fibres are isomorphic to P!.

Definition 1.4.1. Let 0 € Zy( (that is, a non-negative integer). The dth Hirzebruch

surface is the projective space
Fs:= PPI(OPI @ Opl(é))

The Hirzebruch surfaces are geometrically ruled surfaces over P!, with a morphism
7 :Fs > P

Let S be a geometrically ruled surface over P!, then, by [6, Proposition IIL.15
()], S is isomorphic to one of the Hirzebruch surfaces. As a consequence and by [0,
Theorem II1.4], Hirzebruch surfaces are rational surfaces.

We recall that Pic(Fs) denotes the Picard group of Fs and [ D] denotes the linear
equivalence class of a divisor D. Let M be a section whose self-intersection is § and
F a fiber both of w. Then, we have the next result.

Proposition 1.4.2 ([0, Proposition IV.1]). The following statements hold:
» Pic(Fs) 2 Z @ Z, and it is generated by the divisor classes [M] and [F].
» [M]?=6, [F]*=0 and [M]-[F]=1.

» When § # 0, there is a unique irreducible curve My on Fs with negative self-

intersection. Moreover, [My] = —6[F] +[M] and [My]? = -4.

s Fs and Fg are not isomorphic unless § = 8. Fs is relatively minimal for § # 1

and F1 is isomorphic to the blowup of P? at a point.

My is usually called the special section of Fs and a special point is a point p € M.

It follows from [64, Chapter V, Proposition 2.20] that, for an irreducible curve
C # My, the class [C] satisfies [C'] = a[F'] + b[M] with a > 0 and b> 0.
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Fs also has the structure of a toric variety, i.e., it can be regarded as the quotient
of (C?~ {(0,0)}) x (C%2~ {(0,0)}) by an action on the algebraic torus C* x C*.
Considering coordinates (Xo, X1; Yo, Y1) in (C2\ {(0,0)}) x (C*>~ {(0,0)}), for each
(A, ) € C* x C*, the action is defined by

(A1) (Xo, X13 Y0, Y1) — (AXo, AX1; ¥, A~ pih).

In particular, it holds that Fg = P! x P!. The homogeneous coordinate ring of
Fs is the polynomial ring in four variables C[ Xy, X1, Yy, Y1], where the variables are

graded on Z x Zsq as follows:
deg(Xop) =deg(X7) = (1,0), deg(Yp) = (0,1) and deg(Y7) = (-6,1).

We say that a polynomial in C[ Xy, X1, Yo, Y1] is bihomogeneous of bidegree (dy,ds) €
Z x Ly if it is a sum of terms a X0' XYY with ay + ag — dby = dy, by + by = da
and « € C*. We also say that a curve C on Fs has bidegree (dy,ds) € Z x Zsq, if
it is defined by a bihomogeneous polynomial of bidegree (di,d2). Bihomogeneous
polynomials of bidegree (dy,ds) correspond to divisors of the form dy F'+dy M, where
di +ddo > 0 and dg > 0. Those divisors are exactly the effective divisors of Fy.

The action defined above preserves the ratio (Xo : X7), so the morphism 7 : Fs —

P! is just the projection onto the first factor. Then:
Proposition 1.4.3. The following statements hold:

» The equation of a fiber F' of 7 is of the form agXo+a1 X1 =0, for some (ag,a1) €
C~A{(0,0)}. F is an irreducible curve of bidegree (1,0), and w(F') = (-a;y : agp).

= The equation of My is Y1 =0 and My corresponds to the unique homogeneous
polynomial of bidegree (=4,1).

» The equation of a section linearly equivalent to M is of the form

6 . .
Yo+ > bi X0 Xy =0,
i=0

for some values b; € C, that is, it is an irreducible curve of bidegree (0,1).

For any point p ¢ My, there is a (J + 1)-dimensional family of sections passing
through it. If p € My, then p is called a special point.

Throughout the thesis, for each pair (a,b) € Z*, Op,(a,b) will denote the invert-
ible sheaf Op;(aF +bM).

The canonical sheaf of the Hirzebruch surface Fs is Kg, = O, (d -2, -2), see [59,
Lemma 1.3] and [64], so KF, = (6 —2)F —2M is a canonical divisor of F;.

We finish this subsection with an overview of the local structure of the Hirzebruch
surfaces. Fix 0 € Zyo; the surface Fs is covered by four affine open sets Uy, 7,5 € {0, 1},
defined as

Uij = {(Xo, X1; Yo, V1) € F5|X; 20,Y; 2 0}.
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The fact that (Xo, X1; Yo, Y1) = (1, X1/ Xo; l,Xng/YO) on Uy, allows us to identify
Ugo with C? by means of the isomorphism (Xo, X1;Y0, Y1) = (200, %00) where 2qg :=
X1/Xo and yoo = Xng/YO. Similarly, we can identify Up; with C? by means of the
isomorphism (Xo, X1; Yy, Y1) = (201, y01) where xo1 = X1/Xo and yo1 = YO/(Xng).
The coordinate-change map in Ugg N Up; is given by

01 .
00 : UoonUo1 € Upg — UgonUop1 € Upy

(z00,y00) = (2o00,1/yo0) = (zo1,Y01)-

Analogously, for each 4,5 € {0,1}, we can obtain affine coordinates (z;j,y;;) for
the affine open set U;;, identify it with C? and provide a coordinate change map in
each overlap.

As in the projective plane, throughout this memoir, whenever we use Hirzebruch
surfaces, we will consider fixed homogeneous coordinates (Xo, X1;Yp, Y1), as above,

without mentioning it explicitly.

1.4.3. How to get a rational surface

Let S and S’ be two rational surfaces. If f : S -» S’ is a birational map of surfaces,
then f factorizes into a finite sequence of blowups at single points and their inverses
([64, Chapter V, Theorem 5.5]). We know that if E is the exceptional divisor of a
blowup of a surface at a point, then E = P! and E? = -1. A curve C on a surface
S such that C = P! and C? = -1 is called a (~1)-curve or an exceptional curve of
the first kind. The following result, called the Castelnouvo contractibility criterion,

states that any (—1)-curve is the exceptional divisor of some blowup.

Theorem 1.4.4 (|64, Chapter V, Theorem 5.7|). If C is a curve on a surface S such
that C = P! and C? = -1, then there exists a morphism m: S — Sy to a surface Sy
and a point p € So such that S is isomorphic, via 7, to the blowup of So with center

at p, and C' s its exceptional divisor.

A surface S is relatively minimal if every birational morphism 7 : S -» S’ to
another surface S’ needs to be an isomorphism. As a consequence of the Castelnuovo
contractibility criterion, a surface is relatively minimal if and only if it contains no
(=1)-curve. By [61, Chapter V, Theorem 5.8|, every surface admits a birational
morphism to a relatively minimal model.

Moreover, we have the following result ([63], |6, Theorem V.10]):

Theorem 1.4.5. S is a relatively minimal rational surface if and only if S is iso-

morphic to P? or Fs, for 6 #1 .

Definition 1.4.6. Let Sy be either the projective plane P? or a Hirzebruch surface
Fs. In this work, an Sp-tuple is any 3-tuple (S,Sp,C) such that C = {p;}} is
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a configuration over Sy and S the rational surface obtained from the sequence of

blowups given by C. We denote by 7 this sequence

7T:5=Snﬂ>Sn_1“—’3-~£>So,
where m; is the blowup of the surface S;_1 at p; for all 1 <7 <n. Abusing the notation

7 is also the composition m o -+ o my,.

Consequently, any rational surface can be seen as the surface S given by an Sp-
tuple (S, Sy,C), where S is either the projective plane P? or a Hirzebruch surface
Fs, 0 # 1.

1.5. Holomorphic foliations

In this section we introduce the concept of foliation on a surface S. We mainly
follow [10] and |73]. Some other useful references are [92], [12] and [14].
Let O¢" be the sheaf of holomorphic functions on S. We start with a definition

of holomorphic foliation on a (complex) surface:

Definition 1.5.1. Let S be a smooth complex surface. A (singular) holomorphic
foliation F on S can be defined by a family of pairs {(U;,v;) }ier, where {U;}ier is
an open covering of S and v; is a non-vanishing holomorphic vector field on U; for
all ¢ € I. In addition, on the overlap of U; and Uj;, the vector fields v; and v; must
coincide up to multiplication by a nowhere vanishing holomorphic function, i.e., the

following equalities must hold for any i, 5 € I:
Vi = gijV; On Uz n Uj, for some element gij € O%H(UZ N Uj)*.

Alternatively, a foliation F on a smooth complex surface S can also be defined by
using 1-forms. Indeed, it is given by a family of pairs {(U;,w;) }ier, where {U; }ier is,
as above, a open covering of S, and for all ¢ € I, w; is a non-zero regular differential

1-form such that, for any 4,5 € I:
w; = fijwj on U; nUj, for some element f;; € OF"(U; nUj).

We define the singular set Sing(F) of a foliation F as the set of points in S which
are zeroes of the vector fields v;, i.e. Sing(F) = Ujer{p € Uilvi(p) = 0}. We say that
a foliation F has isolated singularities if Sing(F) is a discrete subset.

The functions g;; € OF"(U; nU;)* form a multiplicative cocycle and, thus, they
give rise to a holomorphic line bundle on S intrinsically defined by the foliation (see
[10]). Following [54], let us denote by L* this line bundle, called the canonical (or
cotangent) bundle of F, and by L* its corresponding invertible sheaf, i.e., the canon-
ical sheaf of F. The dual of L* is called the tangent bundle of F, it is represented
by the inverse cocycle {gi_jl} and denoted by L; its associated invertible sheaf is £,
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the dual of £*. A divisor Kz such that £L* = O"(Kr) is called a canonical divisor
of the foliation.

The notions just defined allow us to give another definition of foliation by thinking
the relations v; = g;;v; on U; nU; as defining relations of a global holomorphic
section s € H(S,05® L*) (or in H(S, Hompan (£,©5))), where Og is the tangent
sheaf of S. Two sections define the same foliation if and only if one is a non-zero
scalar multiple of the other. Hence, the space of foliations F with tangent sheaf
L, Fol(L,S), is an open subset of the projective space PHY(S,0¢5 ® £L*). We can
consider a foliation F with cotangent sheaf £* as the class [s] e PHY(S,05 ® L*) of
a global section of Og ® L*.

In the next subsections 1.5.1 and 1.5.2, we are going to show that a holomorphic
foliation on the projective plane or on a Hirzebruch surface is always defined by
polynomials. Not all holomorphic foliations on the complex affine plane are defined
by polynomials, but along this work, we only consider planar complex foliations
defined in this way.

Let P(x,y) and Q(x,y) be two coprime bivariate complex polynomials. Consider

the planar polynomial differential system

j::P(xvy)? y:Q(l',y)7 (110)

or, equivalently, the planar vector field

0 0
X=P — —.
(.05 + Q-
This planar vector field can also be determined by the differential 1-form

W=wy = Q(IL‘,y)de‘ - P(:an)dy

X (and w) define a foliation on the plane C? which we call a planar polynomial
foliation and, usually, will be denoted by FC (or fgz).

Let F be a holomorphic foliation on a smooth complex surface S (note that
we also admit that S = C?, in which case F is assumed to be polynomial) defined
by a family of pairs {(Uj,w;)}ier (respectively, {(Ui,v;)}ier), where {U;}ier is an
open covering of S and w; (respectively, v;) is a non-zero regular differential 1-form
(respectively, a non-vanishing holomorphic vector field) on U;. Let C be a curve on

S. For all i € I, set ff =0 an equation of the curve C on Uj;.

Definition 1.5.2. Let F be a foliation on S as above. An invariant (by F) curve

is a curve C' c S such that, for all i e [

wi A dfzc = fZC M (respectively, Ul(fzc) = hl(fzc))a

for some differential 2-form p; (respectively, regular function h;) on U; where dfic is
the differential of fC. The function h; is called the cofactor of fC.
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Invariant curves by a foliation F are also named solutions or integral curves of
F. To avoid confusion we only use the term invariant curve, since, for us, integral
curve will mean irreducible and reduced curve.

The aim of the next subsection is to show that a foliation on the projective plane
can always be represented either by a homogeneous vector field or by a homogeneous
1-form.

Later on, we will do the same for foliations on Hirzebruch surfaces instead of on

the projective plane.

1.5.1. Foliations on P?

In this subsection we explain how to get an easy representation of a foliation on
the complex projective plane (see [17]| for instance). Let O = Op2, the structural
sheaf of P2.

A holomorphic foliation FP on P? is given by a global section of Op2 ® O(r - 1)
for some non-negative integer r. We say that r is the degree of F¥ . This means that
the tangent sheaf of FP s L = O(-r+1). By definition the canonical sheaf of FP
is £L*=O(r-1) and a canonical divisor of F¥ s given by K 52 = (r-1)L, L being
the divisor of a line.

Consider the generalized Euler’s sequence (see [31], [30, Section 3|):
0> 0—->0(1)% - Op2 » 0. (1.11)
Taking tensor product with £* = O(r — 1) in the above sequence, we get
0-0(r-1) - 0(r)® - O, (r-1) > 0.
The above exact sequence helps to prove the following result (see [60] and [17]).

Theorem 1.5.3. A foliation on P? of degree r is uniquely determined by a polynomial
vector field of the form

B_py 9 0 9
X _U8X+V8Y+W62’

where U,V and W are homogeneous polynomials of degree r in C[X,Y, Z] without

common factors. It is unique up to the addition of a multiple of the radial vector field

0 0 0
R=X—+Y—+7—.
0X Yy 07
There is an equivalent way to define a foliation FP of degree r. It uses a reduced

1-form in the variables X, Y and Z.

Theorem 1.5.4. [17] A foliation F¥ on P2 of degree r is uniquely determined by a
homogeneous 1-form

OF .= AdX + BdY +CdZ,
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where A, B and C' are homogeneous polynomials of degree r+1 in C[X,Y, Z] without

common factors and such that they satisfy the so-called Euler’s condition:

AX+BY +CZ=0.

Let FF* be a foliation on P2 given by the vector field XP o Uaix + Vaiy + W%.
Then by [17], the 1-form OF = AdX + BdY + CdZ, given in Theorem 1.5.4 and

defining ]—'PQ, can be obtained as follows:

dX dy dZ
o -|lx v z|
U v ow

Remark 1.5.5. The isomorphisms U; — C2, J = X,Y, Z, defined in Subsection
1.4.1, allow us to handle the foliation in local terms. For example, let OF = AdX +
BdY + CdZ be the 1-form defining a foliation F* on P2, Taking the coordinates
r=2z=X/Zandy=yz=Y/Z (at Uz = {(X :Y : Z) e P?|Z % 0}), F* is locally
defined by the 1-form (respectively, vector field)

WUy = A(:U>y7 1)d$ + B(.I‘,y, 1)dy

(respectively Xy, =-B(z,y, 1)82 + Az, y, 1);) .
T Y

Assume that w = a(z,y)dz + b(z,y)dy is a 1-form defining a foliation F on
C?, where a(z,y),b(x,y) are coprime (in the sense that they do not have a non-
constant common factor). Then by [73, Proposition 2.6 and Theorem 2.4] there
exists a foliation ¥~ in P2 such that its restriction to Uy is the foliation FC. The
following algorithm and lemma show how we can construct it. We call F* * the

extended foliation of FC* to P2. For ease of the reader, we start with an example.
Example 1.5.6. Let

w = a(z,y)dz + b(x,y)dy = (2 + 5zy? + 10y°)dx + (3 - 23y dy
be the 1-form defining a polynomial foliation on C? which can be regarded as the local
form of a foliation ¥~ on Uz, where x = xz and y = yz. Consider the homogeneous
polynomials of degree 8 in C[X,Y, Z]:

X _XY? ys
73 75

A=AX,Y,Z)=2%(X]2,Y|Z) =28 (27 +5——+10

=2XZ" +5XY?Z5 +10Y° 23,

X3y+
B=B(X,Y,2)=2%(X|2,Y|Z)=Z? (3 -7 ) =328 - X3Y*Z and
-AX -BY -2X2%277_5X2Y275_-10XY°Z3-3YZ8+ X3Y5Z
C=C(X.Y.7) - _ _ 5 OZ 3 +

= 92X%27% _5X2Y27* ~10XY°Z%2 -3y Z" + X3YP.
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Then, QF = AdX + BdY + CdZ is a homogeneous 1-form satisfying the Euler’s

condition, whose restriction to Uy is w.

Consider a planar polynomial foliation on C2, .7-"@2, given by a 1-form w :=
a(x,y)dr + b(x,y)dy. The following algorithm provides three homogeneous poly-
nomials A, B and C such that the homogeneous 1-form OF = AdX + BdY +CdZ
satisfies the Euler’s condition in Theorem 1.5.4, and, thus, it defines a foliation FP

on P? such that w = wy,, the local form of OF at Ug.

Algorithm 1.5.7.
Input: w=adz +bdy (a=a(xz,y),b=0b(x,y) € C[z,y] coprime) defining s
Output: A, B,C € C[X,Y, Z] homogeneous and coprime polynomials defining
OF = AdX + BdY + CdZ, whose local form at Uy is w.

1) Write the rational functions a (%, £ ) and b (2, L) as rational fractions -2 and
AN Z'Z Z

%, where « > 0 is the minimum integer such that A and B are homogeneous
polynomials in C[X,Y, Z] (of degree «).

(2) Define 8 := 0 if Z divides ~-X A -Y B and § := 1 otherwise. Set A:= Z°A and
B:=7"B.

._ - XA-YB
(3) Set C':= =XAYB

(4) Return A, B, C.
Let us see that our algorithm gives rise to suitable homogeneous polynomials.

Lemma 1.5.8. Let w = a(x,y)dr + b(x,y)dy be a differential 1-form defining a
foliation on C2%, and let A, B and C be the polynomials of C[X,Y,Z] obtained as
the output of Algorithm 1.5.7 from the input w. Then A, B and C are homogeneous
polynomaals of the same degree. Moreover they satisfy the equality

XA+YB+ZC =0, (1.12)

and have no non-constant common factor.

Proof. The polynomials A and B obtained in Step (1) of Algorithm 1.5.7 have no
non-constant common factor and have degree a. Therefore, the degree of these two
output polynomials is r = a + 5.

Let A and B be the polynomials obtained after Step (2), then the polynomial
Z divides -X A - Y B. Therefore, the rational function C' defined in Step (3) is a
polynomial of degree r. Note that Equality (1.12) is trivially satisfied.

To conclude, let us prove that the output polynomials are coprime (in the sense
that they have no non-constant common factor). Notice that their only possible
common factor is Z. For a start, at most one of the polynomials A and B obtained
in Step (1) has Z as a factor. If 8 =0 in Step (2), then Z remains not-dividing A or
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B. If =1, then Z divides ~-XA-Y B (but it is clear that Z? does not); then, after
Step (3), Z does not divide C'.
O

1.5.2. Foliations on F;

Let F° be a foliation on Fs. It is given by the class of a global section [s] €
PHO(Fs, Or, ® L*), L being its canonical sheaf. Every invertible sheaf on F; has
the form Of,(—dy,-d2) for some dy,dy € Z. Let £ = Op,;(-di,—dz) be the tangent
sheaf of F, then we say that F° has bidegree (dy,ds). Moreover, if F° has isolated
singularities, do > 0 and dy > 0 (respectively, dy > —1) if § = 0 (respectively, 0 # 0)
(see [59] or [54]). Thus, the canonical sheaf of F° is £* = O, (d1,d2) and then a
canonical divisor of F° is given by Kys = diF+dyM, where F' and M are the divisors
defined in Subsection 1.4.2. Let us denote by O = Op, the structural sheaf of F;.

The generalized Euler’s sequence in this case is
0- 0% - 01,0022 8 0(0,1) ® O(-5,1) - O, — 0. (1.13)
Tensorizing the Euler’s sequence by £* = O(dy,d3), we obtain the exact sequence:

0 - O(dy,d2)®?* - O(dy +1,d2)**@O(dy, dy+1)®O(d1 -6, dy +1) — O, (dy,dy) — 0. (1.14)

Since a holomorphic foliation F° of bidegree (dy, ds) is defined by a global section
of O, ® O(dy,dy), the long exact sequence related to sequence (1.14) helps to prove

the following result (see [54, Section 3]):

Theorem 1.5.9. A foliation on Fy of bidegree (dy,d2) can be given by a polynomial

vector field in bihomogeneous coordinates of the form

9 ) ) B
X0 = Vsg—— Vi1 —— + Wsg—— + Wi ——
0ax, T ax, 0y, T gy

where

Vs, Vsi € H (Fs,O(dy + 1,dz)),
Wi € H(Fs,O(dy,dy + 1))

and Ws1 € H*(Fs,0(dy - 6,ds + 1)), modulo addition of multiples of the radial vector
fields

0 0 0 0 0
R =Xo—+X1— - V1— d Ry=Yy—+Y1—.
PEAOX, T ex, ey MM T %y, T o,
Let us show that there is an equivalent way to define a foliation F? of degree

(dy,d2) by means of a reduced homogeneous 1-form.
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Theorem 1.5.10. [5/, Proposition 3.2] A foliation on Fs of bidegree (di,d3) is

uniquely determined by a 1-form:
Q0 := As0dXo + As1d X, + BsdYy + Bs1d Yy,

where As, As1, Bso and Bs are bihomogeneous polynomials (not all of them equal

to 0) without non-constant common factors,
A&O, A571 € HO (Fg, O]F(;((dl -0+ 1)F + (dg + Q)M)) s

Bso e H (Fs,Or,((di — 6 +2)F + (dp + 1) M))
and Bsy € H (F5, Op,((dy +2)F + (dy + 1)M)), which satisfy the following two con-

ditions, called Fuler’s conditions:

A5’0X0 + A5,1X1 - 53571}/1 =0 and
BsoYo + Bs1Y1 = 0.

Proof. We summarize here the proof given in [54].

Let £ = O(—dy,-dg) with di,dy € Z as before. Recall that Qp, is the sheaf of
differentials of Fs and Kr; = O(0 - 2,-2) its canonical sheaf. Applying [64, Chapter
11, Exercise 5.16(b)|, the evaluation map

2
b:('_)]Fax/\Q[Fé—)QF&, b(F,w)=w(F),

induces an isomorphism

2
b
G)ch ®IC]F(5 = @F(S ® /\QF5 - Q]F57

which gives rise to an isomorphism O, = Qp; ® K, = Qr; (=60 +2,2).
Then, O, ® L* = O, (d1,d2) = Qp,(d1 — 6 +2,dz +2), and we get that

Hq(F(;, @F5(d1,d2)) = Hq(F(;,QF(;(dl -0+ 2,d2 + 2))

for ¢ = 0,1,2. In order to obtain the bihomogeneous polynomials which define the

section of this space for ¢ = 0, we take the dual of the Euler’s exact sequence (1.13):
0 Qp, » 0(-1,0)**@ 0(0,-1) ® O(5,-1) - 0% - 0.
Twisting this sequence by O(d; — d + 2,ds + 2), we obtain
0 Qp,(dy =8 +2,d2+2) = H > O(dy - +2,da +2)%% - 0,
where
H=0(d-6+1,dy+2)*? @ O(dy -6+ 2,do + 1) ® O(dy +2,dy + 1).

Finally, the proof follows by considering the long exact sequence associated to
the above exact sequence.
O
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Let X9 := V(;,O% +Vs1 % +W570%+W571% be a vector field defining a foliation
F9 on Fs. Then, the following expression:

dXo dX; dYy dY;
Xo X1 Yo ©
0 0 Yo Y’
Vo W Wy W

QO =

gives a representation of F° by means of a bihomogeneous 1-form.

Remark 1.5.11. The isomorphisms U;; — C2, 0 < 4,j < 1, defined in Subsec-
tion 1.1.2 allow us to handle a foliation F° in local terms. For example, let Q° =
As0dXo + A5 1d Xy + BsodYo + Bs 1dY7 be the 1-form defining a foliation FJ on Fs.
Take coordinates at Upg, xoo = X1/Xo, Yoo = Xng/YO, then F° is locally defined by
the 1-form (respectively, vector field)

Wi = As.1(1, 200, 1, y00)dxoo + Bs1 (1, 0o, 1, y00) dyoo
(respectively, Xy, = —B571(1, 00, 1,y00)i + A(gvl(l, 00, 1, yoo)i) .
dz0p Yoo
Similarly, given a local form wy,; on an affine open set U;; c Fs as above, the
Euler’s conditions allow us to recover Q°. We will prove it in the forthcoming Propo-
sition 2.3.3 by means of Algorithm 2.3.1. Although we will show the procedure in

Chapter 2, we give an example below for ease of reading.
Example 1.5.12. Let
w = a(z,y)dx +b(z,y)dy = (2z + 5xy* + 10y°)dx + (3 - 23y™)dy

be the 1-form of Example 1.5.6 which now defines the local form of a foliation F° on
Upo. Consider the homogeneous polynomials in C[ Xy, X1, Yy, Y1]:

X X25X Y2 X56y5
— _ 2v/6 4 _ 2v-6 1 0 111 0“1
Asy = As1(Xo, X1,Y0, Y1) = XZYSa( X1/ X0, XY1/Y0) = X2V (2X0 +5 oy +10 % )
= 2X0 X, YL + 5X P X VY2 + 10X 507 2Y, Y,
0+3v/5 é 6+3v5 Xg‘SXfol
Bs1 = Bsi1(Xo, X1, Y0, Y1) = X{PBYPb(X1 /X0, X{Y1/Y0) = X{T3Y, (3 - XSYO‘*)
=3X0MYY - X XYoL,
0Bs Y1 — As 1 X
As = Aso(Xo, X1, Y, Vp) = —21 1X0 DI _ aX2YE - 5X2OX2VIVE - 10X X, Yo P
+6 (3X0PYPY: - X3 XTYoYY) and
-B; 1Y,

Bs, = Bso(Xo, X1,Y, Y1) = = 3XBYY + X0 X3YP.

Yo
The homogeneous 1-form Qo = A5 0dXo+ As1d X1+ BsodYo + Bs1dY7 is well-defined
for every 0. It satisfies the (bidegree and Euler) conditions of Theorem 1.5.10 and

its restriction to Uyy equals w.

A foliation F? on Fs obtained as explained from a foliation F C* on €2 is called
the extended foliation of F to Fs.
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1.6. Rational first integrals of foliations

Keep the above notation. Throughout this section, Sy denotes either the complex
projective plane or a complex Hirzebruch surface and S denotes a (complex rational)
surface. Let K (.S) be the function field of S.

Notice that a rational function R on C? (respectively, P?; Fs) is given by the
quotient F'/G of two polynomials (respectively, homogeneous polynomials of the same
degree; bihomogeneus polynomials of the same bidegree) F and G # 0. If R = g is a
rational function on P? (respectively, Fs), we define its degree (respectively, bidegree)
as deg(R) = deg(F") (respectively, (deg;(R),degy(R)) = (deg;(F'),degy(F))).

Following the same notation as in |9], a rational function R = g € K(C?) is said to
be reduced when F and G are coprime. Moreover we say that R € K (C2) is composite
if it can be written as R = w o R', where R’ € K(C?)\C and u = wlt) ¢ C(t) with

uz(t)
deg(u) = deg(ui) — deg(uz) > 2. Otherwise R is said to be non-composite.

Let F a foliation on C2, P? or F; (which is assumed to be polynomial if it is
defined on C?) defined by the 1-form Q (or, equivalently, the vector field X).

Definition 1.6.1. A rational first integral of F is a non-constant rational function
R-= g such that Q AdR =0 (or, equivalently, X(R) = 0).

We say that F s algebraically integrable if it admits a rational first integral R.

If a planar polynomial foliation FC on C2 is algebraically integrable, then there
is a non-composite and reduced rational first integral r of F 2 Any rational function
r" =wor, u e C(t)\C, is also a rational first integral of .7-'@2; moreover, all the reduced
rational first integrals of F C* are of this form (see |9, Theorem 10| for a proof). Non-
composite and reduced rational first integrals coincide with rational first integrals of

minimal degree and they are called primitive rational first integrals.
If r = f(xvy)
9(z,y)

d € Zs, then there exist two coprime homogeneous polynomials Fpz, Gpz2 € C[ X, Y, 7]

is a rational first integral of a polynomial foliation FC on C? and

of the same degree, and two coprime bihomogeneous polynomials
FIFga GF5 € C[X07X1a }/07 }/1]

of the same bidegree, such that the following equalities of rational functions hold:

Fpe
Gz’

Fr;
Gy

r(X/2,Y]Z) = r(X1/Xo, XgV1/Y0) =
Notice that we are identifying C? with the above introduced open set Uy (respec-
tively, Upg) when looking for rational functions on P? (respectively, Fs). By [73,
Proposition 1.6], r is a rational first integral of FC if and only if the functions
Fp2/Gp2 and Fy, /G, are rational first integrals of their respective extensions FP
and F° to the surfaces P? and Fs. Let F% be an algebraically integrable foliation
on C? and r a primitive rational first integral of FC Let FP° (respectively, F°)
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be its extension to P? (respectively, Fs). We say that 7(X/Z,Y/Z) (respectively,
r(X1/Xo, XJY1/Y0)) is a primitive rational first integral of 7P (respectively, F°).
The next result is proved in [65, Chapter 2, Theorem 3.3] for foliations on the
projective plane. Considering the extension of a polynomial foliation on C? to the
projective plane, and the restriction of a foliation on a Hirzebruch surface to the

affine open subset Uyg, it also holds for foliations on Sj.

Proposition 1.6.2. Let F be a foliation on either C* or Sy. The existence of
a primitive rational first integral R = é of F is an equivalent fact to any of the

following ones:
1. F has infinitely many invariant algebraic curves.
2. All the local invariant (by F) curves are algebraic.

3. There exists a unique irreducible pencil of curves on Sy with equations \F+uG =
0, (A:p) € P, such that all the reduced and irreducible invariant by F curves
are exactly the irreducible components of this pencil. This pencil is denoted by
Pr=(F,G).

In our previous Statement 3, irreductble pencil means that its general element is
a reduced and irreducible curve. However, for a finite number of values (\; : ;) € P*,
the corresponding curve in P could be reducible or non-reduced (see, for instance,
[65, Theorem 3.4.6]). Those values (\; : p;) are called remarkable values.

Later, we will look for primitive rational first integrals.

Let F be an algebraically integrable foliation on Sy with primitive rational first
integral R = % We call genus of R the geometric genus (1.2) of a non-singular model
of a general curve of Pr = (F,G).

Our future Chapter 2 is devoted to provide results and techniques which allow
us to obtain rational first integrals of foliations FC on C2. The existence of a
rational first integral of a foliation FC and that of a rational first integral of any
of its extended foliations FF* or 9 are equivalent facts. Hence, our strategy in
the following chapter will be to study the algebraic integrability of F through its
extension to P? (Algorithm 1.5.7) or Fs (Algorithm 2.3.1).

Let 7 be a foliation on C? defined by the 1-form w. A Darboux first integral is
a multivalued function

p q h \M
H=T]f" Hexp(—ﬂ) :
i=1 j=1 9j
where f;,hj,g; € Clz,y], p,q € Zso and A\j,uj e Cforalli=1,...,p, j=1,...,q such
that w A dH = 0. Darboux in [32] proved that if a polynomial foliation of degree r
F€ on C2 has, at least, (7;1) +1 invariant algebraic curves, then it has a (Darboux)
first integral, which can be computed from these curves. In [65], Jouanolou proved

that if the number of invariant by F c algebraic curves is at least (Tgl) +2, then the
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foliation has a rational first integral. One can see some improvement of these results
in |26, 23, 27, 25|. The next result (Darboux’s theorem) can be consulted in |41,

Theorem 5.1]. We show an adapted to our purposes version.

Theorem 1.6.3. Let FC~ be a planar polynomial foliation of degree r admitting t ir-
reducible invariant algebraic curves f;(x,y) = 0 with respective cofactors k;(x,y), 1 <
i1 <t. Then,

(1) There exist complex numbers A\;, 1 <i <t, not all zero, such that

t
i=1

if and only if
H = fl/\l... tAt

is a (Darbouz) first integral of F°.

(2) Ift= (7«;1) +1, then there exist complex numbers A\;, 1 <t <t, not all zero, such

that Yt_ Niki(x,y) = 0.

(3) If t> (Tgl) +2, F€ has a rational first integral.

1.7. Reduction of singularities of a foliation

Let S be a rational surface and F a foliation on S. We think of S under its
structure of complex manifold. The restriction (or the local form) of F at a conve-
nient neighbourhood of a point p € S is denoted by F,, and a 1-form representing F,
is denoted by w,. When no confusion arises, we simply write w. In this section we
study the behaviour of a foliation under a sequence of blowups. We mainly follow
[33, Chapter II] and [12]. Keep the notation as in Section 1.2.

Let p e S. Take local coordinates (x,y) in a neighbourhood U, of p and consider
w = a(z,y)dz + b(x,y)dy a 1-form defining F,. By convenience set a = a(z,y) and
b="b(x,y). When ged(a,b) =1, we say that w is reduced.

Let S’ 5 S be the blowup of S at a point p € S. It induces the morphism

7r>4r
QS e QSI.

Let E be the exceptional divisor of m and consider ¢ € ¢ S". We study 7, (w), the
(local form of the) pull-back of w centered at q. Taking local coordinates (z’,3') in

a neighbourhood Uy of ¢, the blowup 7 is locally defined by the following change of

— _ o
v 1:, , or . x,y , where k € C.
y=a'(y' +k) y=vy

coordinates:



1.7. Reduction of singularities of a foliation 39

Therefore,

7, (w) = 7" (a)dz" + 7" (b)d (2'(y + k))
= (a (ar', 2 (y + k)) +(y' + k)b (:c', 2 (y + k))) de’ +2'b (m', 2 (y + k)) dy’

(or my (w) = 7*(a)d(z"y")+7* (b)dy" = y'a(z"y’,y")da"+(2'a(z"y’, y") + b(2"y', y")) dy').
In general the form 7 (w) is not reduced because there are usually copies of the
exceptional divisor. Then W;(w) = x'twq, for some t € Zsg, where w, is a reduced
1-form that is called the strict transform of w centered at q € E.
If we take local coordinates (z’,%") in a neighbourhood U, of a point r € S’ \ E,
the pullback is defined by

T (w) = a(a’,y")dz' + b(z', y")dy’

and it is a reduced 1-form. We write w, = 7 (w) whenever r € S’ \ E.

Formally speaking, the 1-forms {wg}qes glue together (see, for instance, the de-
scription given in [10, Section 4] and the references therein) and, therefore, we can
define the strict transform of F, denoted by F, as the foliation on S’ determined by
the pairs {(Ug, wq) }ges’-

Keep the notation as in Section 1.2. Denote by Sy either P? or Fs and let (S, Sp,C)
be an Sp-tuple. Moreover, if C = {p;}I", consider the sequence of blowups centered

at the points in C

by Tn—-1 uw) s
WCISZSn—n>Sn_1 <L>"'—>Sl—>5().

Denote by F the foliation on S obtained from a foliation F on Sy by iterating the

above described process. F is called the strict transform of F on S.

Definition 1.7.1. Let S be a rational surface and F a foliation on S. Let p a point
in S and F), the restriction of F to a convenient neighbourhood of p, U,. Taking local
coordinates (x,y) in Up, consider a reduced 1-form w = a(z,y)dx + b(z,y)dy = Y w;
representing F,, where w; is the homogeneous component of degree ¢ of w, 7 > 0.
Then,

= p s a reqular point of F if wg # 0.

» pis a simple point of F if wy = 0 and, setting wy = (a10z + ag1y) dz + (broz+

bo1y)dy, the eigenvalues v1 and vy of the matrix

bio b
—aip —ao1
satisfy one of the following conditions:

1. vyve £0 and z—; * Q>0.
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2. vivg =0 and v} +v3 # 0.
= p is an ordinary point of F whenever p is neither regular nor simple.

Let F be a foliation on Sp. Let ¢ be an infinitely near Sy point and (S, Sp,C) an
So-tuple such that ¢ € S. Abusing the notation, ¢ is said to be a regular (respectively,
simple, ordinary) point of F if it is a regular (respectively, simple, ordinary) point of
F, F being the strict transform of F on S. A point p is a singularity (or a singular
point) of F if it is not a regular point of F.

Notice that the singular set Sing(F), defined after Definition 1.5.1, coincides with
the set of proper singular points of F. Seidenberg in [92] proved that the ordinary

singularities are not a stable set by blowing-up and they can be reduced:

Theorem 1.7.2 ([92], [10, Theorem 1.1]). Let F be a foliation on Sy (i.e., on P? or

Fs). Then, there ezists a (minimal) sequence of point blowups

7:8=8, % 8,1 =3 ... 5 5,
such that the strict transform F of F on the surface S has only simple and reqular

points.

Let F be a foliation on a (rational) surface S. If we blowup S at a regular
point (respectively, a simple singularity) p, then F, the strict transform of F, has,
at the exceptional divisor Ej,, only one (respectively, two) simple singularities. The
centers of the blowups considered in Theorem 1.7.2 are ordinary singularities and,
after finitely many steps, one eliminates these singularities giving rise only to regular
and simple points. The sequence 7 is called the reduction of singularities of F and
the configuration of m over Sy is the singular configuration of F. It is denoted by Cr.
Notice that Cx is the set of ordinary singularities of F (both proper and infinitely
near Sp).

Let p be a point in S. Let w), = a,(z,y)dz +b,(z,y)dy be the 1-form defining F,,.
Let wp = Y;sowp,; be the decomposition of w;, in homogeneous components, where
wpi = api(x,y)dz + by i(x,y)dy and a,;(x,y) and by;(z,y) are the homogeneous
components of degree i of ap(x,y) and by(x,y), respectively. We define the algebraic
multiplicity of F at p as the non-negative integer v = v,(F) corresponding to the
first non-vanishing jet w,, of wy,. Notice that p is a singularity of F if and only if
v > 1. In particular, if (but not only if) v > 1, then p is an ordinary singularity.

Let p € S be a singular point of the foliation F and w, a 1-form defining F,. A
separatriz of F at p is a holomorphic irreducible and invariant by F curve C' defined
on a neighbourhood of p which passes through p. This means that any vector field
defining F, is tangent to C' (at p), or that the pullback of w, to C is identically
0. Camacho and Sad, in [13], show that there exists at least one separatrix going
through each singular point of a foliation. The singularity p is called dicritical if

there are infinitely many separatrices passing through it.
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This notion can be extended to any singularity ¢ € Cr. Indeed, q is called dicritical

if ¢ is a dicritical singularity of the strict transform of F in the surface containing q.

Definition 1.7.3. With the above notation, let w, = a(z,y)dz + b(z,y)dy be a 1-
form defining the restriction of a foliation F on S at a singular point p. Let F, be the
exceptional divisor obtained after blowing-up at p and v the algebraic multiplicity

of F at p. Consider the following polynomial:

dp(xv y) = ap,l/(xv y)l‘ + bp,V(J:? y)y

We say that F, is a dicritical exceptional divisor when d,, is the zero polynomial.

If d, # 0, we say that E, is non-dicritical.

The non-dicritical exceptional divisors are those invariant by the strict transform
of the foliation on the surface where they appear (see [10]). This gives us another

way to compute dicritical and non-dicritical divisors:

Proposition 1.7.4. Let F be a foliation on a surface S, p € Cr and w, a 1-form
representing JFp,. Consider the blowup of S at p. If f =0 is the equation of the
exceptional divisor Ey,, and @, the strict transform of wy, then E, is non-dicritical if
and only if f divides df \w,.

Let p € Cr. If E, is a dicritical exceptional divisor, then we say that p is a
terminal dicritical point (or a terminal dicritical singularity). The next result is a

consequence of |10, Proposition 1.1]:

Proposition 1.7.5. The dicritical points (or dicritical singularities) of F are the
points q € Cx such that q < p (p is infinitely near or equal to q) where p € Cr is a

terminal dicritical point.
Definition 1.7.6. Let F be a foliation on Sp. Then:

= The sequence of blowups at the dicritical points in Cx is called the dicritical

resolution of F.

= The set of dicritical points in Cr is denoted by B and it is called the dicritical

configuration of F.

» The set of dicritical points whose exceptional divisor is non-dicritical (respec-
tively, dicritical), i.e., the set of non-terminal (respectively, terminal) dicritical

points in Bz, is denoted by N (respectively Dg).

Following the notation of Section 1.2, it holds that

Br=J (C).

peDr
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Let us denote by Sr the sky of the dicritical configuration of a foliation F on
the surface S and F the strict transform on Sz of F. By Proposition 1.2.6, the

*
peBr “p-

such that Og,. (K #) is the canonical sheaf of the strict transform of F by its dicritical

canonical divisor of Sr is Kg, = Kg+ 3, We also denote by Kz a divisor

resolution.

Proposition 1.7.7 (|16, Proposition 1.1|). Let F be a foliation on Sy and F the
strict transform of F on Sy. Then,

Kz=Kr- Z (up(]-")+ep(]-")—1)E;, (1.15)

peBr

where €, =1 if p is a terminal dicritical point and 0 otherwise.

1.8. Plane valuations

We conclude this chapter by recalling the notion of plane valuation and some
related objects. The main references we have followed are [97], [95], [34] and [75].
Keep the notation as in the previous sections.

Let S be any (smooth) complex surface and p a point in S. Let K be the
quotient field of the local ring R = (Og,, m), where m is the maximal ideal of Og).
Set K* = K~ {0}.

Definition 1.8.1. A (plane) valuation of K is a surjective map v : K* - G, where

G is a totally ordered abelian group, that satisfies

v(f+g) 2min{v(f),v(9)} and v(fg) = v(f) +v(g), for f,ge K~.

This definition can be extended to any other regular local ring of dimension 2.

The waluation ring of v is the local regular ring R, := {f ¢ K*| v(f) >0} u {0}
and its maximal ideal is m, := {f € K*|v(f) >0} u{0}. We say that a valuation v
is centered at m when Rnm, =m.

Chain configurations (defined in Section 1.2) where we allow infinitely many
centers give rise to sequences (of point blowups) called simple. There is a one-to-one
correspondence between plane valuations (Definition 1.8.1) and simple sequences of
point blowups of Spec(R). We say that a plane valuation is a divisorial valuation if
it defines (and is defined) by a finite simple sequence. In this case G 2 Z. We denote
by C, the configuration (of centers) of v, that is, the configuration associated to a
valuation v.

In Section 1.2 we defined the proximity graph of a configuration and we spoke
about the existence of other graphs, such as the dual graph, which provide the same
information. Since the dual graph will be used in relation with valuations, next we

give its definition and some related facts.
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Keep the notation for chains introduced in Section 1.2. Let v be a divisorial
valuation and C, = {p;}}-, its configuration of centers such that p; < p; for all 1 <4<

J <n. Consider the set of points py,, ..., pe,,, €Cy such that
1. lp=1and {41 =n.
2. g =0 when all the points in C, are free.
3. fy <ty forall k<h<gandly<lg.

4. The centers py, ,1 are the first free points after a block of satellite points for
1</, <n.

Then, C, can be written as
¢ Cor
Co= (€t U ()2 U (C) v (O
For k < g, the chain (C)ﬁzil can be written as
€k, ={pe,_ Y uCrucy, (1.16)

L1

L,
Tk+1

where C;, = (C )2:—1 . (respectively, C;/ = (C);% ) is a non-empty chain containing only
free (respectively, satellite) points. The last chain (C)ﬁj+1 consists of the point py,
and a sequence (empty if n = ¢,) of free points.

The dual graph of C, is a tree whose vertices match one-to-one with the excep-
tional divisors obtained by blowing up the points in C,, and two vertices are joined
by an edge when their corresponding exceptional divisors intersect. We label with a
symbol i the vertex corresponding to the divisor E;. The dual graph of any of the
above chains (C )g:_l, 1<k < g, is usually represented as an inverted L-shaped graph
| where the corner vertex has the label £;. The dual graph of (C)EZ+1 consists of
a straight-line sequence (of one point if n = £;). Thus, if g > 0, the graph of C, is
obtained by gluing the individual graphs of each chain (C )g:il, 1<k <g, (see Figure

g+1

1.2) together with the line-shaped graph corresponding to (C)ﬁ at the points ¢y,

g
1<k < g as Figure 1.3 shows.

lr—1 Oy, 1 0 Ly

L, L. Lo L

Figure 1.2: Dual graph of (C)ﬁi_l, k<g Figure 1.3: Dual graph of C,,, g >0

g

For convenience of the reader, we compare the proximity graph (defined in Section

1.2) and the dual graph associated to a chain of infinitely near points.
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Example 1.8.2. Let C = {p;}_; be a configuration of (infinitely near) points such
that p;+1 — p; for all 1 <4< 8. Assume also that ps,ps — p1, p5, s = p3 and pg = pe.
The following Figure 1.1 shows the proximity (at the left) and dual (at the right)
graph of C.

P9
P8
p7
6
ps 1456 89
D4
D3 {317
D2 2
p1

Figure 1.4: Proximity and dual graphs of C

Let S be a surface. If p is a closed point of S, and v is a divisorial valuation of
the function field of S, centered at the maximal ideal m of Og,, the triple (v, S,p) is
called a divisorial valuation of S centered at p, although most of the times we simply
say that v is a divisorial valuation of S.

Let v be a divisorial valuation of S. Set C, = {p;}I, the configuration of centers
of v and

T: Sy = Spog =5 e T S = 8
the corresponding sequence of point blowups. Let m;, 1 <7 <n, be the maximal ideal
of the local ring Og, , »,. The sequence of values of v is the set {v(m;)}7,, defined
by

v(m;) = min{v(f) | f €m; ~ {0}}.

By [95, Section 9] and [38, Chapter 6, Section 6, Subsection 1], for each 1 <i<n
there exists an analytically irreducible germ of curve on .S, ;, passing through p = p;
such that its strict transform on S; is transversal to F; at a general point. We say
that ¢; is a curvette through p;. Then, it holds that v(m;) = mult,, (¢,) and thus,
the sequence of values of v satisfies the proximity equalities (1.9) (see [19, Theorem
8.1.7]):

V(ml) = Z V(mj), 1= 1, NN R
Pj—=pi
Theorem 1.8.3 (Noether’s formula for valuations [19, Theorem 8.1.6]). Let p be
a point in a surface S, v a divisorial valuation of S and C, = {p;}-y, p = p1, its

configuration. Let C' be a curve on S passing through p and pc the germ of C' at p.
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Then,

v(pc) = ), v(m;) -multy, (¢c).

n
i=1
One consequence of the Noether’s formula is that for divisorial valuations, v(¢¢) =
(¢n,¢c)p- Now we introduce a useful invariant of divisorial valuations.
Define r¢ := 1 and 7441 := n and let r; be the indices defined after (1.16) for

1<i<yg.

Definition 1.8.4. The sequence of mazrimal contact values of v is the set of values
{Bi(l/)}f;ol obtained as follows.

Bz(y) = V(Sori) = (907"1'7 (pn)pv (1'17)

for0<i<g+1.

Particularly, By = v(m) and

Bg+1(V) :V(QO:“L) = (Spgwﬁpn)p: Zy(mi)2v (1'18)
i=1
where ¢! is a curvette through p,, different from ¢;,.

Definition 1.8.5. Let v be a (plane) divisorial valuation of a surface S whose first

center is p = p1.
» The volume of v (see [36]) is defined as

vol(v) := lim s.up2 length(R/Pm)

m—>o0 m2

i

where R = Og,, and Py, := {h € R|v(h) >m} u{0}.

It holds that vol(v) = 3 i( ) (see [19, Section 4.7| and [53] for more details).
g+1(V

= The normalized valuation of v, vV, is the map given by

N 1

- BO(V)V.

= The normalized volume of v is the following value:

volV (v) = vol (V) = 760(1/)2 .

5g+1(’/)

Let v be a divisorial valuation of P? (respectively, Fs) centered at a point p and
Cv = {pi}l~, , p1 = p, its configuration of centers. Assume that n > 2. Set L the
projective line (called the line at infinity) containing p (respectively, M and F' the
section and fiber containing p). The valuation v is said to be non-positive at infinity
(NPI) when v(h) <0 for all h e Op2(P? \ L) (respectively, h € Op, (Fs \ (F'uM))).
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We finish this section by giving some results related to divisorial valuations of
Hirzebruch surfaces, mainly following [50]. Keep the notation as in Subsection 1.4.2
and fix a point p € Fs, § € Zsg, and let v be a divisorial valuation of Fs centered at p.
As explained, the valuation v determines a unique sequence of blowups and a unique
rational surface S,:

Tn Tn-1 2

T8y = Sy = Spoy = T Sy T Sy = .
In |50, Definition 3.1 and 3.5| the following concept was introduced (see also |71]):

Definition 1.8.6. A valuation v of Fs (centered at a point p) is said to be special

(with respect to p) if it satisfies one of the following conditions:
1. 6=0.
2. § >0 and p is a special point.

3. § >0, p is not a special point and there is no integral curve in the complete
linear system |M|, where M is a general section of Fy, whose strict transform

on S, has negative self-intersection.

We conclude by stating some results which characterize non-positive at infinity

valuations of Hirzebruch surfaces.

Theorem 1.8.7 (|50, Theorem 3.6]). Let v be a special divisorial valuation of Fs
centered at a point p. Let S, be the sky of the configuration C, = {p;}i-, of v. Denote
by F), the fiber of F5 passing through p and by My either the special section (if 6 > 1),
or the section of degree (0,1) passing through p (otherwise).

Consider the following divisor on S,:

A= v(pr ) F* +v(pp )M* = multy, (on) E; .
=1

Then, the following conditions are equivalent:
1. v is non-positive at infinity.
2. A is a nef divisor.
3. 2(pa)v(¢r,) + 0v(er)? > [vol(v)] .

4. The cone of curves NE(S,) of the surface S, is generated by the set classes
[Fp], [Mo] and {[Ei]}i,.

Theorem 1.8.8 (|50, Theorem 4.8]). Let v be a non-special divisorial valuation of
Fs centered at a point p. Let S, be the sky of the configuration C, = {p;}-; of
v. Denote by F), the fiber of Fs passing through p and by M the unique irreducible
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section that is linearly equivalent to M and whose strict transform on S, has negative
self-intersection.

Consider the following divisor on S,:
A= (=0v(pr) + v(oa)) F* +v(pp)M™ = 3 multy, (¢n) E; .
i-1

Then, the following conditions are equivalent:
1. v is non-positive at infinity.
2. A is a nef divisor.
3. Ww(pa )W(r,) - Pulon)? 2 [vol(v)] L.

4. The cone of curves NE(S,) of the surface S, is generated by the set classes
[Fp], [Mo], [M1] and {[E;]},.
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Chapter 2

Algebraic integrability of planar

foliations

In this chapter we present some results on algebraic integrability of complex
planar polynomial foliations. Our proofs use compactifications of the complex affine
plane as the complex projective plane P? or Hirzebruch surfaces Fs, § > 0, and the

extension of the initial foliation to these surfaces.

Let Sy be either P? or F5. Let F be a foliation on Sy. Denote by Sz the sky
of the dicritical resolution given by the configuration Br of the foliation F. Sr is a
rational surface such that (Sx, So, Br) is an Sp-tuple (Definition 1.4.6).

We start by introducing, in Section 2.1, a divisor on Sr attached to any alge-
braically integrable foliation F on Sy, which will be an essential tool in our develop-

ment.

Section 2.2 studies invariant curves since its knowledge will be useful to check

algebraic integrability and to calculate a rational first integral when it exists.

In Section 2.3 we study complex planar polynomial foliations through their exten-

sions to Fs with the aim of obtaining necessary conditions for algebraic integrability.

Section 2.1 introduces another divisor on Sr. It plays a crucial role in new
algorithms we will give for algebraic integrability. They are supported again on

necessary conditions for the algebraic integrability of foliations of P? or Fs.

Finally, Section 2.5 presents several above mentioned algorithms that decide on
the existence of a rational first integral of a foliation defined on Sy, and calculate it

in the aflirmative case.

For the reader convenience and mainly using the algorithms in Section 2.5, we
give several examples where a rational first integral of a planar polynomial foliation

is obtained.

49
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2.1. Characteristic divisor

Let F€° be an algebraically integrable (polynomial) foliation on C? and set F its
extended foliation to the surface Sp, which could be either P? or Fs, § > 0. We keep
the notation as in Section 1.6, in particular Bx denotes the dicritical configuration
of F. Next, we introduce the so-called characteristic divisor of F and its relation
with the pencil Pr given by F, and the invariant curves by the strict transform of
F with respect to Br.

Consider a primitive rational first integral of F given by R = 1_(4;7 where F' and
G are coprime polynomials in the homogeneous coordinate ring of Sg. Then, the
pencil Pr introduced in Section 1.6 is generated by the curves on Sy with equations
F =0 and G = 0, and the assignment p — (F(p) : G(p)) gives rise to a rational
map ¢ : Sy -> P! whose indeterminacy locus is supported at the set of base points
of Pr (which is finite since F' and G have no non-constant common factor). By [0,

Theorem I1.7], there exists a sequence of point blowups:

! ! !
s Ust

LI A SR N T LNY 7 (2.1)
and a morphism 1 : S/, — P! that eliminates the indeterminacies of ¢, that is, if
it holds that 1) = ¢ o mr. The sequence of blowups (2.1)
can be obtained as follows (see the proof of |6, Theorem I1.7|). If |D| is the complete

/

!
m-1°T

ﬂ'f:ﬂ':,lo...oﬂ' ms

linear system on Sp containing Pz, p; is a base point of Pz and 7] : S| - Sp
is the blowup centered at p; then there exists a positive integer k; such that the
linear system Py € |7} D — k1 E), |, obtained by subtracting ki E from each element of
(7})*P#, has no fixed component. Therefore, it defines a rational map ¢ : S] -» P
which coincides with ¢ o 1. If ¢ is a morphism then the procedure is finished by
considering ¢ = ¢1. Otherwise P; has base points and, repeating the process, it is
obtained, by induction, a sequence of blowups 7} : S} - S;_; (centered at p;), positive
integers k;, divisors D; on Sy, linear systems P; € |D; —k; Ep,| on S and rational maps
¢: 8] -> P!, 1=1,2,...,m, such that the linear system P,, has no base point and, as
a consequence, ¥ := ¢y, is a morphism. Following [19, Section 7.2], the configuration
of centers of mx will be called the configuration of base points of Pr and denoted by
BP(Pr).

The next result is deduced from [33]. It is proved in |10, Corollary 2] for foliations
on the projective plane but, since its proof is local, it can be easily adapted for

foliations on Fj.

Proposition 2.1.1. Let F be a foliation on Sy having a rational first integral R = g
and set Pr = (F,G). Then, the configuration of base points BP(Px) coincides with
the dicritical configuration Br of F (see Definition 1.7.6).

Let F be a foliation on Sy having a rational first integral and let

SF =8y — - — 51— S
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be the sequence of morphisms defined by blowing-up at Br = {p;},. Notice that, by
the above proposition, Sz =.S], and thus m =n (see (2.1)). Let F/G be a primitive
rational first integral of 7 and Px = (F,G). When Sy = P? (respectively, Sy = Fs),
let d (respectively, (a,b)) be the degree (respectively, bidegree) of the curves in Pgr.
For ¢ =1,...,n, let m; be the multiplicity at p; of the strict transform of a general
curve of Pr, that is, the multiplicity at p; of the strict transform of all curves of Pr

except a finite number of them, called special curves.

Definition 2.1.2. We define the characteristic divisor of F (or Pr or F|/G), D,
to be:

dL* = > m;E}, if Sy =P?,
i=1

aF" +bM™* - Zn:miEi* if So =TFs.
i=1

The above defined morphism 1t coincides with the morphism ¢|p,| induced by
the complete linear system |Dx|.

Notice that the divisor class of the image on Pic(Sx) of the strict transform of
a general curve of Pr coincides with the class [Dz] and that Dz is a nef divisor on
Sr. As a consequence, if Sy = P? (respectively, Sy = Fs), d > 0 (respectively, a > 0
and b > 0) (see [61]).

Lemma 2.1.3. With the notation and assumptions as above, let F be the strict
transform of F on Sy and C a curve on Sg. Then, the following conditions are

equivalent:
(a) C is invariant by F.

(b) The integral components of C are either strict transforms of integral components
of invariant by F curves or strict transforms of exceptional divisors E, such
that the point p is not a terminal dicritical singularity of F (defined in Section
1.7).

(C) D]:'C=O.

Proof. To prove the equivalence between (a) and (b) it suffices to show that E, is
invariant by F if and only if p is not a terminal dicritical singularity of F. This fact
is proved in [40, Proposition 1] for Sy = P?, but the same arguments are valid for
So =Fs.

Let us show the equivalence between (b) and (c), which concludes the proof. We
can assume without loss of generality that C is an integral curve on Sz. On the one
hand, if C' is the strict transform of a curve C’ on Sp, then C' is invariant by F if and
only if C” is invariant by F. This happens if and only if C' is a component of a fiber

of the morphism v : Sg — Sy that eliminates the indeterminacies of the rational map
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So -> P! provided by the pencil Pz. This is equivalent to say that C' is contracted
by v, that is, Dz -C = 0. On the other hand, applying [10, Proposition 2| (whose
proof is also valid within our framework), if C' = E; for some p; € Bz, then p; is not
a terminal dicritical singularity if and only if m; — 2p;—p; Mj = 0, that is, if and only
if Dgp-FE;=0.

O

Remark 2.1.4. By [93, Lemma 1.1] (see also [19, page 3621]) the divisor Kz - Kg,
is linearly equivalent to a linear combination of invariant (by F ) curves. Therefore,

as a consequence of Lemma 2.1.3, one gets
D (Kz - Ks,) = 0.

Lemma 2.1.5. Keeping the above notation and assumptions, the following equalities
hold:

1. D% =0.
2. (77)+|DF| = Pr.

Proof. Part 1 is straightforward because |Dz| is a base-point-free complete linear
system and then, two general elements of |Dx| do not meet.

To prove 2, notice that the inclusion Pz € (7x).|Dg| holds because, for any
curve C € Pr, either C ¢ |D x| or there exists an effective divisor E with exceptional
support such that C' + E € |Dg| (see the proof of [6, Theorem I1.7]). To prove the
equality, we reason by contradiction assuming that (7x).|Dg| \ Pz is not empty.
Then, since both are projective spaces, the set (7x).|Dx|\ Pz is infinite.

Let us prove that any integral component of a curve H € (wx).|Dg| \ Pr is a
component of a special curve of the pencil Pr. Indeed, if Hy is such a component
then Dx- H; =0 (as a consequence of Part 1 and the fact that D is a nef divisor).
By Lemma 2.1.3 there exists a curve G € P such that H; is an integral component
of G. Finally, notice that G is a special curve of Pr because, otherwise, G would be
an element of the complete linear system |Dz| and, therefore, G would be equal to
H (which is a contradiction because H ¢ Px).

To conclude, since there are finitely many special curves in Px, there are finitely
many possible curves H as above, which is a contradiction with the fact that the set
(m£)«|Dx| N Pr is infinite.

O

By Lemma 2.1.5, the knowledge of the dicritical resolution mx and the charac-
teristic divisor Dz of an algebraically integrable foliation F allow us to compute
Pr = (F,G) = (mx)«|Dg|, and therefore, a rational first integral of F. Our forth-
coming Section 2.5 presents different algorithms to compute D if F is algebraically

integrable under certain assumptions.
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2.2. Invariant curves

Let F be a foliation on Sy (P? or Fs). The knowledge of invariant curves is very
useful to decide about the algebraic integrability of F and, in the affirmative case,
to compute a rational first integral (see for example Theorem 1.6.3). Most of the
results presented in this section extend previous results by Galindo and Monserrat
in [47]. These results are stated in [47] for foliations on P? and their proofs can be

easily adapted to foliations on Fg, therefore we omit them.

Theorem 2.2.1 ([47, Theorem 1]). Let F be a foliation on Sy (P? or Fs) having
a rational first integral. If C' is a curve on the surface Sz (the sky of Br, defined
in Section 1.7) whose class belongs to NE(Sx)n[Dx]*, Dx being the characteristic
divisor of F (see Definition 2.1.2), then C? < 0. Moreover, C? = 0 if and only if C

1s linearly equivalent to rDx for some positive rational number r.

Remark 2.2.2. Let F be a foliation on Sp. As a consequence of the previous
theorem, any of the following conditions allows us to discard the existence of a

rational first integral of JF:
1. There exists an invariant by F curve C such that C? > 0.

2. There exist two invariant by F curves C7 and C5 such that 512 =0 and 51 ~52 #
0.

Note that in the above statements D means strict transform on Sz of a curve D
on 5.

We keep the notation of the previous sections. In particular, we suppose that Br =
{p1,...,pn} and there are d terminal dicritical singularities. Recall that NS(Sr),
the Néron-Severi space (defined before Definition 1.1.9), is a real vector space of
dimension p(Sz). If F is a foliation on P? (respectively, on Fs) then p(SF) =n+1
(respectively, p(Sz) =n+2). For each divisor D on Sz, we will identify its class [ D]
in Pic(Sx) with its image in NS(Sr).

Given a finite set ¥ of integral curves on Sy, we denote by V(X) the following
subset of NS(Sx):

V(E)={[C]|IC e} u{[Kz - Ks,]} u{[E;]|E; is non-dicritical}. (2.2)

Definition 2.2.3. A set of independent algebraic solutions of a foliation F of length
o >0is aset ¥ of o invariant by F integral curves on Sy such that V(X) is a free

set of vectors.

Remark 2.2.4. Notice that, in the above situation, there are n — d non-dicritical
exceptional divisors and, therefore, when Sy = P? (respectively, Fs), the length o
of a set of independent algebraic solutions is, at most, d (respectively, d + 1); this

is because the Picard number of Sr is n + 1 (respectively, n +2). However, if F is
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algebraically integrable, an upper bound for ¢ is d — 1 (respectively, d) because the
codimension of the linear span of V(X)) is, at least, 1; indeed, in this case, V(X) is
contained in an hyperplane of NS(Sx) = R™*! (respectively, R"*2).

Therefore, if Sy = P? (respectively, Fs), the existence of a set of independent
algebraic solutions of length greater than d — 1 (respectively, d) implies that the
foliation is not algebraically integrable.

Throughout the rest of this work we will assume that all considered sets of inde-
pendent algebraic solutions ¥ have length less than or equal to d — 1 (respectively,
d), without mentioning it explicitly. When this length is maximum, it is denoted by
omax and then we say that X is a complete set of independent algebraic solutions of

F.

Assume now that a foliation F on Sy admits a complete set of independent
algebraic solutions ¥ = {C1,...,Co,.. }. Set Br={q1,...,qn} and Nr = {qi,, ..., ¢, }
the sets defined in Definition 1.7.6 and stand

(dij—ail,...,—am) lf SOZPQ,
C; =
' (dﬂ,dig,—aﬂ,...,—am) if S() ZF(;

AU (RPN B T
respectively, eq, = (0,0,b1,...,bgn)  if So=TFs

for the coordinates of the classes of the strict transforms on Sz, [@] (respectively,
[EQik ]) of the curves Cj, 1 <i < opax (respectively, non-dicritical exceptional divisors
Eq, . 1 <k <), in the basis of NS(Sx) given by {[L"],[Eq ],[Eg,].-...[E],1}
(respectively, {[F*],[M*],[E; 1. [EL .- ... [E; 1}) if So = P? (respectively, So = Fy).

Notice that d; (respectively, (d;1,d;2)) is the degree (respectively, bidegree) of
C;, a;; the multiplicity of the strict transform of C; by mx at g;, and by; equals 1 if
J =1k, —1if g; is proximate to ¢;, and 0 otherwise.

Let m =n if Sg=P? and m =n+1if Sy = Fs. Denote by Gy the divisor on Sr:

SoL* — X 6B, if §=P2,

, (2.3)
SoF* + 6, M* — X, 6, B2, if S =T

where d; := 07/ged(dg,01,-..,0;,), 0 < j < m, 7 being the absolute value of the
determinant of the matrix obtained by removing the jth column of the (p(Sx) - 1) x
p(SF)-matrix defined by the rows ci,...,Copper €q,y - -1 €q,,- The class [Grs] is
orthogonal to the classes of the curves in ¥ and to the classes of the strict transforms
of the non-dicritical divisors.

For each Q-divisor D on NS(Sx), we define the following set

R(D) :={a € Zso|aD is a divisor}. (2.4)

Moreover, we define the integer e(D) as e(D) := 0 if dim |aD| < 1 for every a € R(D)
and, otherwise,
e(D) :=min{a € R(D)| dim|aD| > 1}, (2.5)
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where dim stands for projective dimension.

When the foliation F has a rational first integral, the set V' (X) spans the hyper-
plane [D£]* on NS(S#) given by the characteristic divisor Dx of F and, therefore,
Ymo0iz; = 0 is an equation of [Dg]*, whenever (xg,...,x,,) are coordinates in
NS(S7) with respect to the basis {[L*]} U{[E;]}qen, if So = P* and {[F*],[M*]}u
{[E]}¢eBs in case So = Fs. Hence, the divisor Dg is a positive multiple of Gr 5
(i.e., DF = aGry for some a € R(Gryx))). In fact, [GFx] is the primitive element
of the ray in NS(Sx) spanned by [Dz£] (see (1.1)) in the sense that every divisor
class belonging to this ray is the product of [G£ x] by a positive integer. Therefore
the divisor Gz 5. does not depend on the choice of the complete set of independent

algebraic solutions X, what allows us to denote it by G£.

Definition 2.2.5. Let F be an algebraically integrable foliation on Sy, F'/G a prim-
itive rational first integral of F, Pz = (F,G) and Dy the characteristic divisor of F

as introduced in Definition 2.1.2.

1. The divisor G defined in (2.3) is said to be the minimal characteristic divisor
of F (or Pg or F|G).

2. The ray in NS(Sx) spanned by [G#] (and hence by [Dx]) is called the char-
acteristic ray of F (or Pr or F/G).

The following result relates some of the previously used objects when F is alge-

braically integrable.

Proposition 2.2.6 ([17, Lemma 2|). Let F be a foliation on Sy (P? or Fs) having a
rational first integral and such that it admits a complete set of independent algebraic
solutions ¥.. Then, NE(Sx) n[Dg]* is a simplicial cone (i.e., generated by linearly
independent vectors) if the decomposition of the class [Gx] as a linear combination

of the elements in the set

AX) =V(E)N[Kz - Ks:]} = {[C]|C e ¥} u{[E;]|E; is non-dicritical}
contains every class in A(X) and all its coefficients are strictly positive.

The following result shows how to obtain the divisor D from a set of independent

algebraic solutions. It is an extension of [47, Theorem 2|, which follows by [66].

Theorem 2.2.7. Let F be an algebraically integrable foliation on Sy. Assume that

F admits a complete set of independent algebraic solutions ¥ = {C;}7™* and set

Omax

[GFrl= > alCil+ Y. By[Eq] (2.6)

i=1 qe./\f]:

the decomposition of [Gx] as a linear combination of the classes in the set A(X) :=
V(E)N{[Kz-Ks,]}. Let e(Gr) be the integer defined in (2.5). Then, the following
properties hold:
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(a) The characteristic divisor Dr (see Definition 2.1.2) satisfies Dr = e(Gr)Gr.

(b) Assume that the coefficients o (1 <1< 0omax) and By (q € Nx) of the decompo-

sition 2.0 are positive. Let r be the minimum positive integer such that ro; € Z

fori=1,... 0max. Then, e(Gx) is equal to either
deg(F) + 2 — S 9max 4, C;
i r(deg(F) +2 - 75 deg( U)) if S0 = P2, or
ged (E752 roy deg(Ch), deg(F) + 2 — 75 deg(C;))
degy(F) +2 - 7 degy (C
r (degy(F) +2 - L7 degy(Ci)) if o= Fs.

ged (X7 ra; degy (C), degy (F) +2 = X7 degy (C))

where deg(F) (respectively, degy(F)) denotes the degree (respectively, the sec-
ond coordinate of the bidegree) of the foliation F and deg(C;) (respectively,
degy(C;)) denotes the degree (respectively, the second coordinate of the bide-
gree) of the curve Ci, 1 <i < Omax, when Sy =P? (respectively, Sy = Fs).

Let Kg, be a canonical divisor on Sz. The following result follows from Bertini’s
theorem (see |7, 8]) and the adjunction formula (given in 1.3), and it shows that the
condition Kg, -G F < 0 makes easy to check whether F has or not has a rational first

integral, and to compute it (using Lemma 2.1.5).

Proposition 2.2.8. Let F be a foliation on Sy admitting a complete set of indepen-
dent algebraic solutions . Assume that Kg,.-Gr <0 and F is algebraically integrable.

Then, the general elements of the pencil Pr are rational curves and Dy = G .

However, not all foliation on Sy with a rational first integral admits a complete
set of independent algebraic solutions.

The following result will help us to state an algorithm, for foliations F whose
cone NE(Sr) is polyhedral (see |89, Section 19]), that either computes a complete
set of independent algebraic solutions or discards that F has a rational first integral.
In the sequel, for each subset W of NS(Sx), con(W) will denote the convex cone of
NS(Sr) spanned by W. Corollary 1.21 in [68] allows us to prove the next result.

Proposition 2.2.9 ([17, Proposition 3]). Let F be a foliation on Sy (P? or Fs) having
a rational first integral and such that NE(SFx) is polyhedral. Let X' be a non-empty
finite set of integral curves on Sy and denote by W the subset

W ={[Q1 e NS(S7) | Q € X'} U{[Eq]}getsr-

Assume that x> > 0 for each element x in the dual cone con(W)V. Then, F admits

a complete set of independent algebraic solutions ¥ such that X ¢ X',

The following result is a consequence of the above proposition.
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Corollary 2.2.10 ([47, Corollary 1]). Let F be a foliation on Sy having a rational
first integral and such that the cone of curves NE(Sx) is polyhedral. Then, F admits

a complete set of independent algebraic solutions 3. Moreover, 3 can be taken such
that C% <0 for all C' € X.

Now we state the announced algorithm, where F is a foliation on Sy (= P? or Fy)
such that the cone NE(Sx) is polyhedral.

Algorithm 2.2.11.

Input: A projective 1-form  defining F and the sets B and N introduced in
Definition 1.7.6.

Output: Either a complete set of independent algebraic solutions of F, or 0 if
there is no rational first integral of F.

1. Define V := con({[Ey]}qeB,) and let ' be the set of divisors

oo | AL = Soess e if So = P?,
le>€ +d2M*_quB}- qu; if SO :F5-

satisfying the following conditions:

(a) d>0if Sg=P? dy +dy>0if Sy =TFs.
(b) E,-C >0 for all g€ Br.
(¢) Either C?=Kg,-C=-1,0r C?<0, Kg,-C>0and C? + Kg, > -2.
2. Set X=g.
3. While #X < omax (see Remark 2.2.4) and there exists 2 € V'V such that z? < 0:
(a) Pick D €T such that, if Sy = P? (respectively, Sy = Fs), L*-D (respectively,
(F* + M*)- D) is minimal.
(b) If D satisfies the conditions
(a) [D]¢V,
(b) 1 (S0, mr.Os, (D)) =1 and
(¢) [D] = [Q], where Q is the divisor of zeros of a global section of
77+ Os, (D).
then
» Set V :=con(V u{[D]}).
= If, in addition, @ is an invariant by F curve, no curve in X is a

component of Q and {[R] | R € S}u{[D]}u{[E,]}sen, is a R-linearly
independent system of NS(Sz), then set ¥ :=Xu{Q}.

(c) Set T':=T~{D}.

4. If #3 < opax then return 0. Else, return X.
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This algorithm was presented in [47] for foliations on P?. In this section we have
extended its supporting results in such a way that it has been enlarged to be also
used for foliations on Hirzebruch surfaces. The justification of the algorithm using
these results is a straightforward adaptation of the one given in [17] and, then, we
omit it.

Remark 2.2.12. By [89, Theorem 19.1|, the polyhedrality of NE(Sx) implies that
the set I' defined in Step 1 of Algorithm 2.2.11 is finite. It guarantees that Algo-
rithm 2.2.11 always terminates. However, the algorithm can be run without that
assumption and, if it stops after a finite number of steps, we also get a complete
set of independent algebraic solutions of F; however, we cannot be sure that it will
stop. Nevertheless, if we stop the algorithm at some specific run time, then we get a

non-complete set of independent algebraic solutions.

2.3. Conditions for algebraic integrability, I

Let F€ be a foliation on C2 and F? its extended foliation to a Hirzebruch surface
Fs. This section is devoted to study these extended foliations on Fy, with the aim of
obtaining results on algebraic integrability of F° (and therefore of F (C2).

Subsection 2.3.1 shows a procedure to obtain an extended foliation F° to Fs from
a polynomial foliation F on C2. We identify FC* with the restriction of 7% to the
open set Uy (defined in Subsection 1.4.2) and study the invariance of the curves
with equations Xg =0 and Y, =0.

In Subsection 2.3.2 we obtain a necessary condition for the algebraic integrability
on a polynomial foliation FC on C2 by considering the family of foliations {F°}sso.

Finally, in Subsection 2.3.3, we study and provide a region of ]Rio which con-
taing valuable information concerning the rational first integral of an algebraically

integrable foliation.

2.3.1. The extension to F; of a planar polynomial foliation

At the end of Subsection 1.5.2 we defined the concept of extended foliation F° of
a planar polynomial foliation FC. Let us see how to compute it. Assume that FC
is given by the 1-form w = a(x,y)dx + b(x,y)dy. Our following algorithm provides a
foliation F° on the Hirzebruch surface Fg such that w = Wiy, the local form of Q9 at
the open set Uyg.

Algorithm 2.3.1 ([55]).

Input: A pair (§,w), where § € Zsp and w = a(z,y)dx+b(z,y)dy (a(zx,y),b(z,y) €
C[x,y] and are coprime) defining 7.

Output: Asg, As1, Bso, Bs,1 € C[Xo, X1, Yo, Y1], bihomogeneous and having no
non-constant common factor, giving rise to a 1-form Q7 = AsodXo + Asd Xy +

BsodYy + Bs1dY7, which defines a foliation on Fs, whose local form at U is w.
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& é
(1) Write the rational functions a (%, Xi‘}—z/l) and b (%, X}O,—s/l) as reduced rational

o1

. X004 xPop :
fractions X%lY(?; and X%ly‘;’zl , respectively, where (g, a1, a2), (80, B1, B2) € Z3,
0 0

and A;; and Bj are bihomogeneous polynomials (for the graduation defined in
Subsection 1.4.2) in C[Xy, X1, Yy, Y1] of respective bidegrees (A1, A2) := (a1 —
ag, ) and (p1, p2) = (B1 - Bo,B2), and such that Asi, Bsyp and XoYp are

pairwise coprime.

(2) If A(;,l : B§71 F 0, let mq = )\1 = u1 + 1+6. If my > O, then B(S,l = XgnlBal;
otherwise, A5 := X" As 1.

(3) If As1-Bsa # 0, let mo := Adg—pa—1. If ma > 0, then Bj = Y Bs 1; otherwise,
As1 =Yy " As .

(4) Let 2 := 0 if Y divides By, and 72 := 1 otherwise. Set Bs; := Y Bj1 and
A6,1 = YB\/QA(SJ.

(5) Let v := 0 if Xg divides 0Y1Bs1 — X1A451 and v; = 1 otherwise. Set As; =
XglA(;,l and Bg’l = Xngg’l.

0Y1Bs1-X145,1

-Y1Bs,1
Xo )

(6) Set A(g’o = Yo

and Bjg =
(7) Return Ag,g, A571, B&O and 3571.

The next lemma and proposition explain why Algorithm 2.3.1 does the announced

work.

Lemma 2.3.2. Fiz § € Zsy. Let w = a(x,y)dx + b(x,y)dy be a differential 1-form
defining a planar polynomial foliation on C?, and let As0,As5.1,Bso and Bsy be the
polynomials in C[ X, X1,Y0,Y1] obtained as the output of Algorithm 2.5.1 from the
input given by the pair (6,w). Then, Aso,As1,Bso and Bsy are bihomogeneous

polynomials (not all of them equal to zero), such that
As, A € HY (Fs, Oy ((dy =8 + 1)F + (dz +2)M))

Bsg € H° (Fs5, Op,((d1 — 8 +2)F + (do + 1) M)

and Bs1 € H® (Fs,Op, ((d1 +2)F + (d2 + 1)M)) for some integers dy,ds. Moreover,
they satisfy the equalities

X0A570 + X1A571 - (5Y13571 =0 and }/(]B&O + YiB&l =0, (27)
and have no non-constant common factor.

Proof. Notice that the polynomials As; and Bs; obtained in Step (1) of Algorithm
2.3.1 are coprime (in the sense that they do not have a non-constant common factor)

and have respective bidegrees (A1, A2) and (p1, p2).
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If As1 =0 (respectively, Bs1 = 0), we can assume Bj; = 1 (respectively, A5 =1)
and the output polynomials are Asg = 0YoY1, As1 = 0, Bsg = —XoY7 and Bs; =
XoYo (respectively, Asg = —-X1, As1 = Xo, Bso =0 and Bs; = 0) which satisfy the
conditions of the statement for (di,d2) = (-1,0) (respectively (di,d2) = (9,-2)).
Assume now As; Bs # 0.

The following table describes the different possibilities that may appear in Al-
gorithm 2.3.1, and it shows the existence of integers di,ds such that the bidegree
of the output polynomial As; is (di — 9 + 1,d2 + 2) and the bidegree of the output
polynomial By is (di +2,dy +1):

Step (2) | Step (3) Bidegrees A;; and B; (dy,d2)
(A1 + 71, A2 +92) and

>0 AMAo+y1—1LA+y -2
2 ()\1+5+71+1,A2+72—1) (1 m 2+ )

my >0 (\ 1) and
+1, 2 +v2 + 1) an
mo <0 LTI Rz T2 (M+d+y1-1pua+v2-1)
(M+0+m+1,u2+72)
(1 =0 +72 -1, 0 +72)
ma >0 (1 +71 -2, +72-2)
and (1 +71, A2 +72—1)
mp <0

(p1-0+71 -1 puo+y2+1)
mo <0 (p1+v1 =2, 2 +72 = 1)
and (p1 + 71, to +72)

The polynomials As; and Bs; obtained after applying the steps from (1) to
(5) satisfy that X (respectively, Yp) divides dY1B51 — X1As1 (respectively, Bs ).
Therefore the rational functions Aso and Bs defined in Step (6) are polynomials
and their bidegrees coincide with those given in the statement. In addition, Equalities
(2.7) hold trivially.

It is derived from the algorithm that the only two possible common factors of
the output polynomials are Xy and Yy. Let us see that none of them can be such
a common factor. The polynomials As; and Bs; obtained in Step (1) do not share
factors with XoYp. After Steps (2) and (3), at most one of them (As; or Bs;) has
Xy (respectively, Yp) as a factor. On the one hand, in Step (4) we ensure that either
Yy does not divide As;, or Yp divides B;s; but YO2 does not (what implies that Yj
does not divide B after Step (6)). On the other hand, in Step (5) we force Xy to
divide 8Y1B;51 — X145 (but X2 does not); then, after Step (6), Xo does not divide
Asp.

O

The following result states that, as in the case of the projective plane, we can ex-
tend a foliation on C? to a foliation on a Hirzebruch surface. Consider a non-negative
integer ¢ and identify C? with the open subset Uy c F5. Then, as a consequence of

Lemma 2.3.2, one gets the following result.

Proposition 2.3.3 (|55, Proposition 3.4]). Let 0 be a non-negative integer and w =

a(z,y)dz + b(x,y)dy a differential 1-form defining a complex planar (polynomial)
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foliation FC on C2. Let
Asp,As1, Bsp, Bs € C[Xo, X1, Y0, Y1]

be the output of Algorithm 2.5.1 when its input is the pair (0,w). Then, the affine
differential 1-form

Q= AspdXo + As1d Xy + BsodYy + B 1dY;

defines a foliation on the complex Hirzebruch surface Fs, with isolated singularities,
whose restriction to the open set Ugg gives the 1-form in two variables that determines

the complex planar foliation FC.

Recall that the foliation F° on Fj obtained from the foliation F€ on C2 is named
the extended foliation of FC~ to Fs.

Consider coordinates (Xo, X1; Yo, Y1) in Fs and denote by Cx, (respectively, Cy;)
the curve on Fy with equation X = 0 (respectively, Yy = 0). The following proposition

studies when these curves are invariant by F?.

Proposition 2.3.4. Let FC be a foliation on C? defined by the 1-form w = a(x,y)dx+
b(z,y)dy and let FO be its extension to Fs. Then:

(a) For all 6 € Zsq, except at most one value, Cx, is an invariant (by F°) curve.

(b) Assume that b(z,y) # 0, then Cy, is an invariant (by F9) curve if and only if
deg, a(r,y) < deg, b(z,y) + 1.

Proof. Let Qs = AsodXo + As1dX1 + BsodYy + Bs1dY; be the 1-form defining F?,
where Ao, As1, Bso, Bs are the output of Algorithm 2.3.1. Cx, is invariant if
and only if X is a factor of As 1, Bso and Bs .

If y1 = 1in Step (5) of Algorithm 2.3.1, then X divides As; and By 1, and by Step
(6), also divides Bsg. If v = 0in Step (5), it means that X divides Y1 B;51-X145,1.
If Xy does not divide Bs 1 nor As 1, it divides 6Y7 Bs 1 — X1 A5 for, at most, one value
of §. This proves Part (a).

To prove Part (b), notice that Cly, is invariant if and only if Yj is a factor of
Ag’o, A571 and B(571.

If a(x,y) = 0, we can assume b(z,y) = 1 (deg, a(z,y) = degyb(z,y)) and the
output polynomials are Asg = 0YoY7, As1 =0, Bso=-XoY1 and Bs; = XoYy. Then
Cy, is an invariant curve.

Assume now a(x,y) # 0. If, in Step (3), mg < 0, then, at the beginning of Step
(4), Yy divides As; and it does not divide Bj . It means that v = 1 in Step (4) and
then Yy = 0 is invariant. If mo > 0 in Step (3), Yy does not divide As; because v2 =0
in Step (4). As deg, a(z,y) - deg, b(x,y) — 1 = ma in Step (3), the proof becomes
complete.

L]
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2.3.2. A necessary condition for algebraic integrability

Keep the notation as above. Again we consider the extension of a planar poly-
nomial foliation F€* on C2 to a foliation F° on a complex Hirzebruch surface. Our
aim is to use these extensions to give a necessary condition for algebraic integrability
of F?.

The next Theorem 2.3.6 will show, under the assumption of algebraic integrabil-
ity, the existence of a non-negative integer &1, such that the point with coordinates
(0,1;0,1) (respectively, (0,1;1,0)) in each surface Fs is a dicritical singularity of F?
whenever § > §; (respectively, 6 < 7). This result can be reformulated in terms of
vector fields on C? depending on a non-negative integer and it gives rise to a new
technique for discarding the existence of a rational first integral of F c (see the future
Corollary 2.3.9).

The contents of this subsection were published in [55]. There, they are expressed
in terms of vector fields but, for consistency, we use here the language of foliations.
We start with a lemma which we will use in the proof of the announced Theorem
2.3.6.

Let € be a foliation on C2 with rational first integral f = % Abusing the nota-
tion, the expression afi(z,y) + Bf2(z,y) regarded as a polynomial in C(«, 5)[z,y],
where «, 8 are also considered variables, will be named the generic curve of Pyc2 or

. . . 2
the generic invariant curve of FC .

Lemma 2.3.5 ([55, Lemma 4.1]). Let F be an algebraically integrable complex
planar polynomial foliation defined by a 1-form w = a(x,y)dz + b(xz,y)dy. Let f =
% be a primitive rational first integral 0f.7-"(c2 and g(x,y) = afi(z,y)+Bf2(x,y) €
C(a, B)[x,y] the generic invariant curve of FC (see Section 1.6). Then w # cdx

(with ¢ € C\{0}) if and only if g(x,y) ¢ C(a, B)[z].

Proof. It F C* is determined by the 1-form w := dx, the function z is a first integral,
that is, f1(x,y) and f2(x,y) are polynomials in C[x] of degree < 1. This is equivalent
to say that g(z,y) € C(a, 8)[x] because the polynomial of C[z,y] obtained after
replacing, in g(z,y), a and 8 by general complex numbers, must be irreducible.

O

Theorem 2.3.6 (|55, Theorem 4.2|). Let FC be an algebraically integrable complex
planar polynomial foliation defined by the 1-form w # cdx, ¢ € C\{0}. For each
8 € Zso, consider F°, the extended foliation of FC to the Hirzebruch surface Fy (see
Proposition 2.3.3). Let Cx, be the curve on Fs with equation Xo = 0. Then, there

exists a nmon-negative integer 81 satisfying the following conditions:

(i) For all integers & such that 6 > &1, the point (0,1;0,1) € Fs is the unique
dicritical singularity of F° belonging to Cx,-
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(ii) For all non-negative integer & such that 6 < 1, the point (0,1;1,0) € Fs is a
dicritical singularity of F°.

(iii) The point (0,1;1,0) € Fs, is not a dicritical singularity of F°'.

Proof. Let f = % be a primitive rational first integral of F c*, Then, the associ-

ated generic invariant curve of FC is g(x,y) = afi(z,y) + Bf2(x,y) € Cla, B)[z,y].
Let us write g(x,y) = Zgijxiyj, where the coefficients g;; are homogeneous linear
polynomials in «, 3. Let d, (respectively, d,) be the degree in the variable x (respec-
tively, y) of g(x,y), that is, the degree of g when it is regarded as a polynomial in x
(respectively, y) with coefficients in C(«, 3,y) (respectively, C(«, 8,2)). Denote by
d (respectively, dg) the degree of g(x,0) (respectively, g(y,0)). Notice that d, >0
by Lemma 2.3.5.

We can write g(z,y) as the sum of four polynomials A, B, C' and D (with variables
x,y and coefficients in C(a, 3)) as showed in the following displayed formula:

d//

o dy
9(z,y) = > g + > g’ + Y. Zgwx Y+ oy Zgww y (2.8)
=0

1<7,<d0 = z>d0 =

=A =B =C =D

Denote by Coeff(h) the set of non-zero coefficients h;; of a polynomial

h(z,y) = Y hija'y’ € Ca, B)[z,y).

Also, consider the following set of non-negative rational numbers:

I= {l —~ |j>0and g;; € Coeff(g)} N Q0. (2.9)
J

Let 0 be an arbitrary non-negative integer. Consider the Hirzebruch surface Fs
and identify C? with the open set Uy of Fs as showed in Subsection 1.4.2. Then,
replacing in Equation (2.8), = by X1/Xo and y by XJY1/Yp, and multiplying by
suitable powers X§ and YO, we obtain an irreducible bihomogeneous polynomial
Gs(Xo, X1;Y0, Y1) € Ca, B)[ X0, X1, Yo, Y1] of bidegree (a,b).

Gs(Xo,X1;Y0, Y1) 1=
do . dO 6] ]
X X Y
X§v9- 900+Zgz0 ZQOJ
X5 = I<iedd o1 Yy
dy ) ng—iXiYIj)

. J
i>d0 j=1 YO

The polynomial G is not divisible by neither Xy nor Yy, b=d, = max{do dy, dy} >0
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and a = a’ + d°, with o’ € Zso. Therefore,

Gs5(Xo, X1;Y0, Y1) =
O dO
X¢ | g0 Xy, y+zgzoX Xy, +Z g0 XYY
Jj=

dl d//
R T ARSI A M WP e v “”)

1<i<d) j=1 i>d2 j=1
Notice that, in the above expression between parentheses, negative exponents may

only appear in the last block of summations.

Firstly let us assume that I' = @. This implies that i < d2 for all g;; € Coeff(g);
thus D =0. Then o’ =0 and

0 dO
y @ x?° d%~ -d,
Gs5(Xo, X1; Y0, Y1) = goo X, “”Y dy | ZQZOX X1 vy Zgoj J+ ry Jyj
i=1 j=1
dl
+ Z Z Z]X‘SJer X Ydy Jyj
z<d0 j=

Notice that dg > 0 because otherwise B = 0 and C =0, what implies that g(z,y) =
goo (a contradiction because, by Lemma 2.3.5, dy, > 0). Therefore ggoq # 0. This
shows that the point (0,1;0,1) is the unique point belonging to the intersection of
the curves on Fs defined by the equations Xy = 0 and Gg(Xo, X1;Yp,Y1) = 0 or,
equivalently, (0,1;0,1) is the unique dicritical singularity of F° belonging to Cx,
(independently of the value of §). In this case, §; = 0 is the integer satisfying the
conditions given in the statement.

Let us assume now that I' #+ @. Under this assumption let us define
k := max(T")

and distinguish the following three cases, depending on the value of J.

Case 1: The set
A= {g;; € Coeff(Gs) | j >0 and &5 +d2 —i <0} (2.10)

is not empty.
The above condition shows that A ¢ Coeff(D) and § < k. Moreover,

a' = —min{dj +d> —i| gi; € A}.

Hence the points in Fs where the curves defined by the equations Xg = 0 and
Gs(Xo, X1;Yp, Y1) = 0 meet are the points (0, 1;yg,y1) satisfying the following con-
dition

d” .

z;g&yra +dg,jy0 y{ =0.

=
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In particular (0,1;1,0) belongs to that intersection and, as a consequence, (0,1;1,0)

is a dicritical singularity of F?.

Case 2: The set A in (2.10) is empty and there exists g, € Coeff(Gs) such that
m >0 and dm +d0 —1=0.

In this case, since A is empty, a’ =0 and § > k; moreover, since ¢ = e, we
conclude that 6 = k. If d2 = 0, then C = 0 and ggo # 0; hence G4(0,1;1,0) # 0, that
is, (0,1;1,0) € Fy, 4s not a dicritical singularity of F*. When d2 # 0, the same thing
happens because gqo # 0.

1-d°

Case 3: §j +d% —i> 0 for all g;; € Coeff(Gs) such that j > 0.

Then a’ =0 and ¢ > k, and we distinguish the following subcases:

(3.1) If d2 > 0, then gaoo * 0 and (0,150, 1) is the unique point where the curves with
equations Gs(Xo, X1;Yp,Y1) =0 and Xy = 0 meet. This means that (0,1;0,1)

is a dicritical singularity of F° and the unique one belonging to Cx,.

(3.2) If @ = 0, then G has the following shape:
d, , o
G5(Xo, X15Y0, Y1) = goo¥g” + Y 90 X0 Yo /Y7 + XoH,
j=1
where H ¢ C(a, 8)[ X0, X1,Y0,Y1]. Since § > k > 0, it is clear that ggp # 0
(because, otherwise, Xy would divide Gs) and then (0,1;0,1) is the unique
dicritical singularity of F° belonging to Cx,-

Notice that Cases 1, 2 and 3 correspond to the following situations: d <k, d = k
and 6 > k.

Finally, define d; := [k] and let us see that this integer satisfies Conditions (i),
(i7) and (ii3) of the statement.

If £ is an integer, then Cases 1 and 3 show that Conditions (i) and (i¢) are
satisfied for ; = k. Hence, it only remains to show that (0,1;1,0) € Fy is not a
dicritical singularity of F¥; but the value § = k corresponds to Case 2 and then
(0,1;1,0) is not a dicritical singularity of F°.

If k is not an integer, then any § € Zso satisfies either Case 1 or Case 3; this fact
shows that Conditions (), (i7) and (4i7) hold.

O

Remark 2.3.7. Let < be a complex planar polynomial foliation satisfying the
conditions of Theorem 2.3.6. Then, the value §; provided by that theorem is the
minimum non-negative integer ¢ such that the point (0,1;1,0) € Fy is not a dicritical

singularity of F9.
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Proposition 2.3.8. Let F be a foliation on C? and F° its extended foliation to
Fs. Let 81 be the integer number above introduced. If FC s algebraically integrable,
d>61, Dps = aF* +bM* =YLy mE and i is the index in {1,...,n} such that
pip = (0,1;0,1), then m;, =b and [Cx,] = [F* - E} |.

Proof. By Theorem 2.3.6, if FC has a rational first integral and 6 > 41, pi, =
(0,1;0,1) is the only dicritical point in Cx,. Locally, its equation at the open set
Ur1 is @ = 0, which becomes 1 after blowing-up. Then, we have [Cx,] = [F* - E} ].
As Cx, is invariant, Dzs - Cx, = b—m;, =0, and the proof becomes complete.

O

For each 0 € Zsg, the point (0,1;0,1) € Fs (respectively, (0,1;1,0)) belongs to
the affine chart Uj; (respectively, Ujg) defined in Subsection 1.4.2; and the curve of
Fs with equation X = 0 does not meet neither Uyg nor Uyy. These facts allow us to
write Theorem 2.3.6 in terms of the planar vector fields induced by the restriction of
F? to the charts Uy and Uy. Therefore, Theorem 2.3.6 can be reformulated without

any reference to Hirzebruch surfaces as follows:

Corollary 2.3.9 ([55, Corollary 4.4]). Let FC be an algebraically integrable complex
planar polynomial foliation defined by the 1-form w # cdx for all ce C~{0}. For each
d € Zso, let Aso, Asq1,Bso and Bsy be the polynomials in C[Xo, X1,Y,Y1] obtained
as the output of Algorithm 2.3.1 from the input given by the pair (§,w). Consider
the planar foliations ffo and f{sl defined, respectively, by the following differential
1-forms:

w‘fo = Aso(x,1,1,y)dx + Bs1(x,1,1,y)dy, and

wiy = Aso(x,1,y,1)dx + Bso(x, 1,y,1)dy.

Let 01 be the minimum non-negative integer such that the origin (0,0) is not a di-

critical singularity of .7-'{5(1]. Then, for all 6 > d1:

(a) the origin (0,0) is the unique dicritical singularity of F?, in the line defined by

x =0, and
(b) the foliation }'fo has no dicritical singularity in the line defined by x = 0.

As a consequence of the above result we state the following corollary, which gives

conditions forcing a planar vector field to be non-algebraically integrable.

Corollary 2.3.10 (|55, Corollary 4.5]). Let FC be a complex planar polynomial
foliation defined by the 1-form w # cdx for all c € C~{0}. For every § € Zsq, consider
the planar foliations FJ, and F3, defined in Corollary 2.5.9. Let M be the set of
non-negative integers 0 such that origin (0,0) is not a dicritical singularity of ,7:{50.
When 2 + &, set 61 := min . Then, FC is not algebraically integrable if at least

one of the following conditions is satisfied:
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(a) N is empty.

(b) DN is not empty and there exists a positive integer § > 01 such that either the ori-
gin (0,0) is not a dicritical singularity of F2,, or (0,0) is a dicritical singularity
of -7:{;1 but not the unique one in the line defined by the equation x = 0.

(c) N is not empty and there exists a positive integer 6 > &1 such that _7:150 has a
dicritical singularity in the line defined by x = 0.

In the following example we apply Corollary 2.3.10 to deduce the non-algebraic

integrability of a given planar foliation on C2.
Example 2.3.11. Let F C* be the planar foliation defined by the differential 1-form
w = (zy +y? +523y)dx + (~2° — zy + y*)dy.
We run Algorithm 2.3.1 using as input the pair (J,w). The output is

Aso = XXV - 5 X1V - XS X YPYE - 0 XEXEY YL - 6 X33 XYY
+ 5X36+4)/E)}/14,

As1 = X3X0 YY1 +5X0 X3V v + XHYPYE,

Bso = XoX3Y3vy + X9M X YEYE - X305y, and

Bs1 = -XgX7Yg - X3 X1 YPYh + X300y v.

The 1-form Q° = As0dXo + As1d X1 + BsodYy + Bs1dY; defines a foliation F° on F.
The foliation }'fo introduced in Corollary 2.3.9 is given by the differential 1-form

wiso =(-by—-(1+ 5):1:23/ -(1+ 5)x6+3y2 + 5m36+4y4)d$ + (—:c3 - :U5+4y + x35+5y3)dy.

On the one hand, the origin is a simple singularity of .7-'{50 for all § € Zsg and then we
deduce that §; = 0. On the other hand, the foliation JF7; is defined by the differential

1-form
1

wii = (=5y* = 222yt — 22%y3 + 2Ty)da + (239 + 25y - 2B)dy.
Now, if we reduce the singularity (0,0) of wi; by successive blowups to get at most
simple singularities (see Section 1.7), we see that the origin is not a dicritical singu-
larity of Ff;. Indeed, to reduce the singularity (0,0) we have to blow up 17 infinitely
near points {p; 11:71 which constitute a chain, where ps is proximate to pi; ps, ps and
ps are proximate to po, and p; is proximate to p;_1 for 6 < ¢ < 17. No point p; is
terminal dicritical, therefore (0,0) is not dicritical.

Even though the reduction of the singularities of the foliations FC and 7 is far
from being easily calculable, by Part (b) of Corollary 2.3.10, F c (and therefore F°)

is not algebraically integrable.



68 2. Algebraic integrability

Remark 2.3.12. Corollary 2.3.10 allows us to discard the existence of a rational first
integral for certain complex planar vector fields. Necessary conditions for algebraic
integrability are given in [58, Corollary 5| but they can only be applied to differential
forms A(z,y)dx+ B(x,y)dy, where A(z,y) and B(z,y) have the same degree n and
their homogeneous components of degree n are coprime. The 1-form w in Example
2.3.11 does not satisfy those conditions, proving that the necessary conditions for

algebraic integrability given in Corollary 2.3.9 are different from those in [58].
The conditions for algebraic integrability given in Theorem 2.3.6 (and Corollary

2.3.9) are necessary, but not sufficient, as the following example shows.

Example 2.3.13. Let F be the complex planar foliation defined by the differential
1-form

w = (y +zy)de + (1 +zy* + 2%)dy.
The output of Algorithm 2.3.1 when the input is the pair (1,w) is

Ao = XoYgVi - X1Yg'Y1 + X X1YoY?,
A1 = XoY5Y1 + X Y5V,
Bio=-X5YyY1 - X1Y5Y, - X3 XYy and
Big = X2Y$ + XHY$ + X3X VoYL

and when the input is (¢ # 1,w), it is

Aso = -XoX1Y3Y1 - XIYPYL + 6X2YEY1 + 0XYEYL + 6 X271 X, Y Yy,
As1 = X3YPY1 + Xo X1 Y5 Y1,
Bso = ~ XYY - Xo XPYEY) - X272 XY} and
Bsi = X33 + Xo X7V + X2 X1 Yo Y.
These outputs define the foliations F°, § > 0.
For a start, (0,1;1,0) € Fy is a terminal dicritical singularity of F° but (0,1;1,0) €
IF; is not a singularity of F?.
Assume now that 6 > 1. The point (0,1;0,1) € Fs is the unique ordinary sin-
gularity of F? belonging to the curve with equation Xy = 0. Let us see that it

is a dicritical singularity. Indeed, the restriction of F° to the open set Uj; of Fj

determines a foliation which is given by the differential 1-form:
W i= (—zy® + (6 - 1)y® + 622y> + 6224y )dw - (23 + zy? + 2242)dy.

The origin is a singularity of w®. To reduce this singularity we have to blow up w® and
its strict transforms using changes of local coordinates of the type (z = ',y = z'y’);

the strict transform of w? after n < § — 2 blowups is

B (n) = (—zy® + (6 -n-1)y’ + (6 - n)x?y® + (6 - n) 2?1y da

_ (3:3y2 +$y2 +.’I,'2(5_n)+2)dy.
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In particular,
za3(n) + yb3(n) = (5 - n - 2)zy’,

where &3 (n) = ad(n)dz + b3 (n)dy = (§ —n - 1)y*dx — xy*dy is the first non-vanishing
jet of @°(n). Therefore, after n = §—2 blowups, the origin becomes terminal dicritical
and thus (0,1;0,1) is a dicritical singularity of F?.

Thus, we have just proved that the conditions given in the statement of Theorem
2.3.6 hold for é; = 1. However F €% is not algebraically integrable, as we are going to

prove.
Indeed, consider the extended foliation F P* to the complex projective plane given
by the the output of Algorithm 1.5.7 with imput w, i.e.,

OF = (-X3Z - X2YZ-2XY2Z-YZ%)dX +(X*Z + X2Y Z)dY + (X* + X2Y? + XY Z2)dZ.

Its canonical sheaf is K Op2(2) and its dicritical configuration Bz (whose

FPE =
proximity graph is shown in Figure 2.1) consists of 6 points, pi,...,ps, such that

p1 € P2, py and pg belong to the first infinitesimal neighbourhood of p; and, for i €
{3,4,5}, p; is a free point of the first infinitesimal neighbourhood of p;_1. Moreover,
the terminal dicritical singularities are ps and pg. Following the notation as in Section
22, d=2and opax =d-1=1.

ps5
P4
p3
P2 Pe

p1

Figure 2.1: Proximity graph of B 2

Denote by Ct the curve with equation f = 0. From the proximity relations among
the points of B2 and the equalities
1=5[L"] - 2[E7] - 2[Ey] - [E5] - [Ey] - 2[E5] - 2[Eg ],
[Cx]=[27]- [F] - [F3), and

it can be checked that X = {Cx,Cyz} is a set of independent algebraic solutions of
FP of length 0 = 2 > gpax. Therefore, by Remark 2.2.4, FP (and hence, FC and
F?) is not algebraically integrable.
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2.3.3. The Newton polytope of the generic invariant curve

Definition 2.3.14. Given a polynomial f(x,y) = ¥ a;jz'y’ € k[z,y] (where k is a
field), the Newton polytope of f, denoted by Newt(f), is the convex hull of the set
{(i,5) | aij # 0} < R?.

In this subsection, F = FC denotes an algebraically integrable complex pla-
nar polynomial foliation. Then, the Newton polytope Newt(g) of the generic curve
g(x,y), associated to the pencil generated by a primitive rational first integral f of
F, does not depend on the choice of f. Therefore, the following definition makes

sense.

Definition 2.3.15. The Newton polytope Newt(F) of an algebraically integrable
complex planar polynomial foliation F is defined as Newt(g), where g(x,y) is the
generic curve associated to the pencil generated by any primitive rational first integral
of F.

The following result studies the Newton polytope of a foliation as above.

Theorem 2.3.16 ([55, Theorem 5.2|). Let w = a(x,y)dx + b(z,y)dy be an 1-form
defining an algebraically integrable complex planar polynomial foliation such that w #
cdr and w # cdy for all ce C\ {0}. Consider the foliation F' defined by the 1-form

w' obtained from w by swapping the variables x and y, that s,
W' = by, z)dx + a(y, x)dy.

Let &1 (respectively, §1) be the non-negative integer introduced in Theorem 2.3.0 for
the foliation F (respectively, F'). Then, with notation as in the proof of Theorem

2.9.6, Newt(F) is contained in the following region:
{(u,v) eRZy |u < dj +61v and v < dy + fu},
where Rgo denotes the set of points of R? with non-negative coordinates.

Proof. Let f = % be a primitive rational first integral of F and set
g9(,y) = afi(z,y) + Bfa(z,y) = 3 gija'y’ € C(a, B)[z,y]
]

the associated generic invariant curve of F as expressed in (2.8).

Keep the notation as in the proof of Theorem 2.3.6. If the set I" defined in (2.9) is
empty, then §; =0 and i < d for any non-zero coefficient gij of the generic invariant
curve (see the proof of Theorem 2.3.6); therefore the inequality i < dO + 6,5 holds
trivially.

Assume now that T' is not empty and let & be the maximum of T' (notice that

0
x

01 = [k]). Pick gi; € Coeff(g). If j >0 and i_;lg >0 then i_]‘.i €I and therefore

i<kj+do<d+6y].
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If 5 >0 and ‘Tdo <0 then i < d? <d® +61j. Finally, if j =0, i < d® by the definition
of dY.

Reasoning analogously with the foliation F’ and since it is algebraically integrable
with generic invariant curve g(y,z), it holds that j < dg + 011 for all (i,7) such that
gi;j € Coeff(g). This concludes the proof.

O]

As a consequence of Theorem 2.3.16, the next result gives, under certain assump-
tions, a bound on the degree of a primitive rational first integral of an algebraically

integrable planar foliation that depends only on the values 1, 07, d® and dg.

Corollary 2.3.17 (|55, Corollary 5.3|). With assumptions and notation as given
in Theorem 2.5.10, suppose that 61 = 0 (respectively, 6] = 0). Then, the degree of a
primitive rational first integral of F is bounded from above by the value (1+(5{)dg+d2
(respectively, (1 + (51)d2 +d0).

Remark 2.3.18. Let F be an algebraically integrable complex planar polynomial
foliation. Then the value d (respectively, dg) coincides with the total intersection
number between the associated generic integral algebraic invariant curve of F and

the line y = 0 (respectively, z = 0).

We conclude this subsection with a result about complex planar polynomial foli-
ations F having a rational first integral of a specific type. Firstly notice that F has

a primitive rational first integral of the form

a+zyHi(z,y)

2.11
b+xyHa(z,y)’ 21
with Hy, Hy € C[x,y] and (a,b) € C*\ {(0,0)}, if and only if d = dg =0.

Corollary 2.3.19 (|55, Corollary 5.5]|). Let F be a complex planar polynomial foli-

ation and keep the notation as given in Theorem 2.5.10.

(a) If F has a primitive rational first integral of type (2.11), then the Newton
polytope of F, Newt(F), is contained in the convex cone

Ur = {(u,v) eRZ, | u<divandv < 5{u},
which can be computed only from F.
(b) If 5 =0 or 6] = 0, then F has no primitive rational first integral of type (2.11).

Proof. Part (a) is straightforward from Theorem 2.3.16. Part (b) follows because, if
F had a rational first integral of the form (2.11) and either §; = 0 or 6] = 0, then, by
Part (a), the set ¥ would be {(0,0)}, which is a contradiction.

0
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2.4. Conditions for algebraic integrability, II

Let FC* be a foliation on C2 and F its extended foliation to So, So being either
a Hirzebruch surface Fs or the complex projective plane. In this section we continue
with the study of extended foliations as F with the aim of obtaining results on their
algebraic integrability (and therefore of F (CQ).

In the first two subsections (Subsections 2.4.1 and 2.4.2), we consider foliations
F9 on Hirzebruch surfaces Fs, while in Subsection 2.4.3 we show that our definitions
and results are easily adapted to extended foliations F* on the projective plane.

Being more specific, Subsection 2.4.1 introduces the concepts of characteristic
Q-divisor T'rs and restricted set of independent algebraic solutions ¥. Txs is an
important divisor that exists when F? is algebraically integrable and Lemma 2.4.8
proves that in this case, [T'zs ] belongs yo an affine subspace of NS(S#) that depends
on sets X as above.

Subsection 2.4.2 provides a necessary condition for algebraic integrability (The-
orem 2.4.13). It is supported on a set ¥ as before and a family of R-divisors Ty,

a €Rf and a map a — T2

=, which determines a candidate Ta}% to be T'zs when Fo

has a rational first integral.

2.4.1. Characteristic Q-divisor

Recall that, with the notation as in Section 2.1, if F? is algebraically integrable,
the characteristic divisor of F° (Definition 2.1.2) is

n
Dygs :=aF* +bM* =Y m;E;. (2.12)
i=1

With respect to the algebraic integrability problem of foliations on Fy, the fol-
lowing result shows that, without loss of generality, we can assume that the dicritical

configuration of F? is not empty.

Proposition 2.4.1. Let F° be an algebraically integrable foliation and assume that
its dicritical configuration Bgs (see Definition 1.7.0) is empty. Then, either Fo
is the foliation defined by the fibers of the ruling Fs — P! given by the projection
(X0, X1;Y0,Y1) = (X0,X1), or 6 =0 and F° is defined by the fibers of the ruling
Fo = P! x P! - P! given by the projection (Xo, X1;Yy, Y1) v (Yo,Y1). Finally, if
Brs + @, then b must be different from 0 in the expression (2.12).

Proof. Firstly, assume that Bys is empty and, hence, the surface Szs defined below
Definition 1.7.6 is F5. Let Dgs = aF' + bM, with a,b € Z. Then, by Lemma 2.1.5,
0= DQFs = 2ab + b?¢ and, therefore, either b=0 or a = —b§/2.

In the first case, considering the map 7 s defined before Proposition 2.1.1, as the
projective dimension of (7rs)«|Drs| = Prs equals 1, one has that a = 1 and then,

Pgs is the pencil of curves with equations aXo + 8X; = 0, where (a: ) € PL. This
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means that the (algebraic) invariant by F° curves are the fibers of the natural ruling
Fs - P

In the second case, a = —bd/2, and then ¢ must vanish because, otherwise, D zs -
My < 0, which is a contradiction because the linear system |D ;| has no base point.
Then Dzs = bM and reasoning as in the above paragraph one gets b = 1 and then
the (algebraic) invariant by F % curves are exactly the fibers of the projection defined
by (Xo, X1, Y0, Y1) = (Yo, Y1).

The last assertion of the statement is true because, Brs # @ and b = 0 imply
D;(; < 0, which is a contradiction by Lemma 2.1.5.

O

Let us introduce more notation to be used. Recall that we assume that F? is
algebraically integrable. If the dicritical configuration Bzs of F % is not empty then,
by Proposition 2.4.1, the coefficient b of M* in (2.12) is different from zero and it

allows us to define what we call the characteristic Q-divisor of F?.

Definition 2.4.2. Fix a non-negative integer ¢ and let F° be an algebraically inte-
grable foliation on Fs such that Brs # @, F'//G is a primitive rational first integral
of F°, Prs = (F,G) and Dgs = aF* + bM* - X", m; E; is the characteristic divisor
of F0. We define the characteristic Q-divisor of F° (or of Pgs or of F/G) as the
normalized Q-divisor on Szs:
1 n
Tys = ED]_-s =hF* +M" —;siEi*,

where h:=a/beQ and s; :=m;/be Qs for all 4. It is clear that [Tz ] belongs to the
characteristic ray of F° (Definition 2.2.5).

Remark 2.4.3. Notice that if {F°}scz., is the family of extended foliations of a
planar polynomial foliation FC then, for all 6 (except, at most on value § = d7),
Brs is not empty because, by Theorem 2.3.6, if 0 < §; (respectively, § > 01) then
(0,1;1,0) € Bxs (respectively, (0,1;0,1) € Bys).

For a Q-divisor D on S5, let R(D) (respectively, e(D)) be the set (respectively,
integer) defined in (2.4) (respectively, (2.5)). Then, the following straightforward
result holds.

Proposition 2.4.4. Let F° be an algebraically integrable foliation on a Hirzebruch
surface Fs. Let G s be the minimal characteristic divisor of FO (Definition 2.2.5),
Dygs the characteristic divisor of F° (Definition 2.1.2) and Tgs the characteristic
Q-divisor of F°. Then, their classes in NS(Szs), [Ggs], [Dys] and [Txs), belong
to the same ray. Moreover,

Grs =min{a|a € R(Txs)} T'rs

and then, by Theorem 2.2.7,

Df& = B(Gfd)Gfé = G(T]_‘é)T]:B.
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As above indicated, from now on, we assume that the dicritical configuration Brs
is not empty (notice that Proposition 2.4.1 describes the rational first integrals of Fo
when Bzs = @). Denote by d the number of terminal dicritical singularities of F 0.

Keep the notation as above, in particular, suppose that Bzs = {p1,...,pn}. Recall
that, for each Q-divisor D on Szs, we identify its class [ D] in Pic(Szs) with its image
in NS(Szs).

Recall also that OBF; denotes the set of origins of the configuration Brs (see
Definition 1.2.2). For each i € {1,...,n}, let ¢; € OB, be the unique point in Fj

such that p; € (Bgs),,- Let us consider the following divisor on Szs with exceptional

support:
n
E, = multy, (o) E;,
i=1
where, for all r € {1,...,n}, ¢, denotes a curvette through ¢, i.e., an analytically

irreducible germ of curve in O, 4. whose strict transform is transversal to the divisor
E, at a general point, and multy, (¢, ) is the multiplicity of its strict transform at p;.
Notice that mult,, (¢,) = 0 if p; ¢ (Bgs )P, multy, (¢r) = 1 if ¢ = 7 and mult,, (¢, ) =
Y ppop; Multy, () for all ¢ such that p; € (Bzs)P ~ {p,}.

The set {El, e E’n} is a basis of the free Z-module @] ZE; and satisfies that
E;-Ey = —di¢, where 0;0, 1 < £ < n, is the Kronecker delta. Moreover, [19, Lemma
8.4.5] shows that

n d
ZmZEZ* = Z ptjEtj7 (213)
i=1 j=1

where py,,...,p;, denote the terminal dicritical singularities of F? and pt; =My, —

Zpﬁptj my for all j =1,...,d. Notice that pt; >0 for all j by Lemma 2.1.3 (because
E¢; is not invariant by F9 and D s is a nef divisor). Hence, we can write the

Q-divisor T'zs in the following form:

d
Trs =hF*+M* =) BiE; (2.14)
j=1
where 3; := p;, [b. To simplify notation, for all j =1,...,d, we can rewrite
" n
By, =Y NjE] (2.15)
i-1

where \;; := mult,, (¢¢,) and then
n d
Trs =hF* + M* = > (> NijBj)E;. (2.16)
i=1 j=1

Remark 2.4.5. Notice that the values A;; given in (2.15) can be computed directly
from the proximity graph of Brs, and are defined independently of the algebraic
integrability of F?.

For ease of reading, we illustrate the previous tools with an example.
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Example 2.4.6. Assume that Bys = {pi}?fl are the points in the dicritical configu-
ration of a certain foliation F° on Fs. Suppose also that the proximity graph of Bys
is that depicted in Figure 2.2.

Figure 2.2: Proximity graph of Bzs

We also assume that the points pg, p1g and poy are the only terminal dicritical
points of Bgs. That is d = 3, t1 =9, t2 = 16 and t3 = 20. Following the notation as
above,

B, EJ—Zmult (o) E*—?ZE*+3ZE*+ZE§,
i=1 i=1 =5 =7

B, = Em—Zmult (@10)E*_14ZE*+7ZE*+7 Z E} +5E7, +2 Z E}
i=1 i=1 =5 =10 =13

+ZE;‘,

=15
11 13 20
E EQO—Zmult (@QO)E*—12ZE*+6ZE*+GZE*+ZE*+ZE*
i=1 i=1 =10 =12 =17

The values \;; given in (2.15) are given by the matrix A = (\;):

vy 7 v 7 33111000O0O0O0O0O0O0O0O0
A=| 14 14 14 14 7 7 0 0 0 7 7 5 22110000
12 12 12 12 6 6 0 0 0 6 6 1 1 0 0 0O 1 1 1 1

As said in Remark 2.4.5, those values can be defined regardless of the algebraic
integrability of F?.

Assume now that F° is algebraically integrable. If D g5 = aF* +bM*~Y2 m; B is
the characteristic divisor of F°, then the characteristic Q-divisor of F?, by Definition
2.4.2, is

1 20
Tf& = EDJF_(S :hF* +M* —ZSZ‘E,L
i=1
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where h = a/b and s; = m;/bfor i =1,...,20. As p;, € B4, for j=1,2,3, (the set of
ends of Bys, see Definition 1.2.2) the values p;; and §; given in (2.13) and (2.14) are
pt; =my; and B = s, for 1<j<3.
Therefore, the divisor T'rs will be of the following form (2.16):
n 3
T]:ri =hF* + M* - Z(Z )\Z]/BJ)EL*

iljl

9
=hF* + M - Z(7ﬁ1 +14ﬁ2+12ﬁ3 E* Z(?)ﬁl +752+653)E* ZﬁlE:
=7

11 16
= > (7B +683)E; — (582 + B3)Ely — (282 + B3) B3 — 202 B4 = ), B2ESs

i=10 i=15
20
- Z 53E;7
i=17
where (31, f2 and 3 depend on the multiplicity of a general curve of the pencil at

the dicritical points.

From now on, let FC be a polynomial foliation on C2 (it needs not to be alge-
braically integrable), fix a non-negative integer § and consider its extended foliation
F? to the Hirzebruch surface Fs. Let Krs = Or,(d1,dz2) be its canonical sheaf.

Notice that O, (0 —2,-2) is the canonical sheaf of Fs [64] and, therefore, the
canonical sheaf of the surface Szs (the sky of the dicritical configuration, as intro-
duced at the begining of the chapter) is Og_;(Ks_;), where Kg_; = (6 = 2)F" -

M* + %, Ef. In addition Kz, = Osﬂ (K #s), where

Kgs=d F* +dyM* ~ z(upi(ﬂ)ﬂpi(ﬂ)-nE;,
=1

Vpi(]:(s) being the multiplicity at p; of the strict transform of F° on the surface
containing p;, and (as defined in (1.15)) ¢, (F?) equals 1 (respectively, 0) if p; is a
terminal dicritical singularity (respectively, otherwise).

Keep the notation as in Subsection 1.1.2. Also, given a divisor D on Sgs, [D]=1
will denote the affine hyperplane of N.S(Szs)

[D]1 = {x € NS(Szs)|[D] x = 1}.

The following definition will be useful in the remaining of this chapter. Let F' be the

divisor corresponding to a fiber of Fy.

Definition 2.4.7. Let F° be a foliation on a Hirzebruch surface Fy, d the number of
terminal dicritical singularities of 7 and ¥ a set of independent algebraic solutions
of F? of length o. Set £ := d—o, d being the number of terminal dicritical singularities
of F0. We say that X is a restricted set of independent algebraic solutions of F° if

[F*] does not belong to the linear span of the set
V() ={[C]ICeZ} u{[Kfs - Ks ]} U {[E;]|E; is non-dicritical},

introduced in (2.2).
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Lemma 2.4.8. Let F° be the extension to Fs of a polynomial foliation on C2.
Consider a set ¥ = {C1,...,Cy} of independent algebraic solutions of FO and set
0 = d - o,d being the number of terminal dicritical singularities of F°. Then the

following statements hold:
(a) dimp V(X)* =0 +1.

(b) If ¥ is a restricted set of independent algebraic solutions, then V(X)) n[F*]_,

is an affine subspace of dimension (.
(c) ¥ =3 is a restricted set of independent algebraic solutions of Fo.

(d) If FO is algebraically integrable, then X is a restricted set of independent alge-
braic solutions of F° and the class of the divisor T'rs introduced in Definition
2.4.2 satisfies

[Trs]eV(E) n[F*],.

Proof. From its definition, it holds that #V (X) = o+ 1+n—d. Since the elements in
V(X) are free, 0 + 1+ n—d is the rank of the matrix whose rows are the coordinates
(in the basis {F*, M*} U{E} }i<i<n) of the vectors in V(). Then, considering the
system of linear equations

a-x=0,acV(Y), (2.17)

one gets dimg V(X)* =n+2—-#V(X) =+ 1, which proves Part (a).

Part (b) follows from the fact that, if ¥ is a restricted set of independent algebraic
solutions, then the system of linear equations that results from adding the equation
[F*]-x =1 to the equations (2.17) is consistent (notice that the rows of the associated
coefficient matrix are linearly independent).

From now on, assume that {FEj; };L:‘ld is the set of non-dicritical divisors. Notice
that

n
K —Kg_; = (di = 6+2)F" + (dy +2)M* - ;(upi(ﬂ) +ep, (FO))E}.
iz

To prove Part (c), we are going to show that [F*] is not a linear combina-
tion of the elements in V(@) = {[Kps - Ks_,]} U {[Ek]]}?z_ld Indeed, reasoning by
contradiction, assume that [F*] = yo[Kz - Kg ;] + Z;‘:—fl yj[Ekj], with ~; € R for
j=0,...,n—d. Then, taking intersection product with [F*] at both sides of the
equality, one gets that 0 = vp(dz + 2); therefore v = 0 because dy +2 >0 [54, Propo-
sition 3.2|. Now, taking intersection product with [E]—], we conclude that v; = 0 for
7=1,...,n—dleading to a contradiction.

Let us prove Part (d). Assume that F 9 is algebraically integrable and let Dys =
aF* +bM* - Y7y m; E} be the characteristic divisor of Fo.

Let us show that [F*] is not a linear combination of the elements in V(X). In

fact, reasoning by contradiction, suppose that [F"*] = [ Kz - Ks ;] +Z§L;1d ’yj[Ek]. ]+
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Yo7 [Cr], with v;,v, e Rforall j=0,...,n—-d, r=1,...,0. Then, taking intersec-
tion product with [Dzs] at both sides of the equality, one has that b = 0 (by Lemma
2.1.3 and Remark 2.1.1), leading, by Proposition 2.1.1, to a contradiction.

The above paragraph shows that X is a restricted set of independent algebraic
solutions of F?. Finally, by Lemma 2.1.3, D rs "E;=0 (respectively, Dzs - C = 0)
if F; is non-dicritical (respectively, C € ¥). Moreover, D s - (K zs — Kgfé) =0 (see
Remark 2.1.1), and therefore [T)zs] € V(X)*. The fact that T - F* = 1 concludes
the proof.

O

Let us define the following values attached to F?:

di—0+2 S (Ups (F2) + €, (FO))Nij )
hg:=—————— -9 and h, := - - 1<j<d. 2.18
0 d2 +2 att J d2 +2 ’ J ( )
Notice that hq, ..., hq can be computed from the dicritical resolution of F° and the

above introduced values \;; which can be computed from the proximity graph of Bzs
(see Remark 2.4.5). Also note that da > -2 [54, Proposition 3.2.].

Lemma 2.4.9. An element x € NS(Szs) belongs to V(@) n[F*]-1 if and only if
there exists o= (auq, ..., aq) € R such that

d n (d
x=v(a):= (ho +y hjozj) [F*]+[M*]-) (E )\ijaj) [E]]. (2.19)

j=1 i=1 \j=1
Proof. Let W be the affine subspace of NS(Szs) given by the set {v(a) | a e R%}.
On the one hand, straightforward computations show that W ¢ V(@)* n[F*].;. On
the other hand, a similar reasoning to that of the proof of Lemma 2.1.8 proves that
the dimension of the affine subspace V(@) n[F*]-; is equal to d. Hence we have

the equality W =V (@) n[F*].;.

O

By Lemma 2.4.9, and using the introduced notation, if one considers a restricted
set of independent algebraic solutions ¥ = {C1,...,Cs} of FI, then:

V(E) n[F* o = {v(a)|aeR: v(a) - [Cr]=0 forall7=1,...,0}. (2.20)

This shows that x € V(X)* n[F*]-; if and only if x = v(«a), where a = (aq,...,aq)
is a solution of the system of o linear equations with unknowns 61,..., 6, provided
by the equalities v(0) - [(77«] =0,r=1,...,0, where 6 = (#1,...,603). The dimension
of V() n[F*]-.1 (as an affine subspace) is £ := d — o by Lemma 2.4.8. Hence,
using Gauss-Jordan elimination (and, possibly, reordering the terminal dicritical sin-
gularities py,,...,pr,), we conclude the existence of rational numbers p 5, 0 <k <4,

£+ 1< s<d, such that the solution set of the mentioned system is

¢ ¢
{(al, <oy Oy o g1t Z ME 0+1CQ% s -+« 5 MO d T Z Mk,dak)
k=1 k=1

al,...,ozgeR},
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which we denote by A. Hence, we have deduced that
V() n[F*]e1 ={v(a) |aecA}. (2.21)

Let us consider the following notation:

d
AiO = Z Aisﬂo,& for 1<i< n,
s=0+1
d
N = N, + Z Nishi,s, for 1<i<n, 1<k </,
s=0+1

d
HO = h0+ Z hsu075, and
s=0+1

d
Hy:=hy + Z hspig s, for 1<k < 4.
s=0+1

Proposition 2.4.10. Let 3 be a restricted set of independent algebraic solutions of
F° and keep the above notation. An element x € NS(Szs) belongs to V(X)) n[F*]-1
if and only if there exist aq,...,ap € R such that

4 n 4

X = (Ho +y Hkak) [F*]+[M*]-3 (Aio + Aikak) [Ef]. (2.22)
k=1 i=1 k=1

Proof. Assume ¥ has length 0. Notice that V(@) n[F*].1 2 V(X)* n[F*].1. By

Lemma 2.4.9, an element x in NS(Szs) belongs to V(@)* n[F*]-; if and ouly if

d

d n
x =v(a):= (h[) +y) hjaj) [F*]+[M*] - ;( lAijaj) [EX, ],

J=1 Jj=

where hg and h; (respectively, \;;) are defined as in (2.18) (respectively, (2.15)), for
1<j<d, (respectively, for 1<i<n,1<j<d). By (221), xe V(X)* n[F*]-; if and
only if

4
Qs = [lo,s + Z pk,s0, forall £+1<s<d.
k=1

Then, it is clear that
d 4 d 4 4
h0+ Zhjaj =h0+ thak+ Z hs (M0,5+ Z,uk,sak) :H[)+ ZHkak
j=1 k=1 s=0+1 k=1 k=1

and that

d ¢ d ¢ ¢
YXijoy = > Npok + Y Nis (,uo,s + Y, Mk,sak) = Nio + Y, Aoy,
= k=1 s=l+1 k=1 k=1

which concludes the proof. O



80 2. Algebraic integrability

2.4.2. A new necessary condition for algebraic integrability of foli-
ations on Hirzebruch surfaces

In this subsection we provide a necessary condition for the algebraic integrability
of F° and we introduce some tools to be used in the forthcoming Algorithms 2.5.7

and 2.5.14, which allow us to decide about the exitence of rational first integrals.

With the notation as at the end of the previous subsection, for each
_ ‘
a=(ay,...,ap) € R,

let us define the following R-divisor on Szs:

l n 14
Ta = (H0+ ZHk’ak) F*+M*—Z(AZ’0+ ZAzkak)E; (223)
k=1 i=1 k=1
Divisors T, are used in the following theorem which provides a description of the class
of the Q-divisor T'zs introduced in Definition 2.4.2 and associated to an algebraically

integrable foliation F?. Algorithm 2.5.7 will also use this family of divisors.

Theorem 2.4.11. Assume that the foliation F° is algebraically integrable. Let S be
a restricted set of independent algebraic solutions of F° and keep the above notation.
Then:

(a) There ezists an (-tuple o = (a1, ..., ay) € R such that a, >0 for allk=1,....¢
and T'rs = T,.

(b) Moreover,

4 n 4 n n
Ta2 = - z (Z AzkAzk’) O + Z (2Hk -2 (Z A’LOA’Lk})) oy + 2H0 - ZAZQO +6=0.
k=1

k,k'=1 \i=1 i=1 i1

Proof. By Lemma 2.4.9, there exist aq,...,aq € R such that Tz = v(aq,...,aq)
(as defined in (2.19)). Notice that these values ay,...,aq coincide with the val-
ues f1,...,0q in Equality (2.16) and, therefore, they are strictly positive rational
numbers. Now, Proposition 2.4.10 (and its proof) shows that, after reordering (if
necessary) the infinitely near dicritical singularities (and, consequently, the values
ai,...,aq), one has that Tzs = Ty, where o = (a1, ..., ). This proves Part (a).
Part (b) follows by computing the self-intersection at (2.23) and Lemma 2.1.5.
]

Consider a foliation F? and a restricted set X of independent algebraic solutions.

They allow us to compute the values Ao, Aji, Ho and Hg, 1 <i<n, 1<k < /¥, giving
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rise to the following system of linear equations (with unknowns 61, ...,60,):
J4 n n
> ( Ay Ny | O = Hy - ZAiOAil)
k;l i=1 i=1
Aig Ny | Ok = Ha - AiOAiQ)
kz=:1 (izl ; (2.24)
{ n n
> ( NipNig |01 = Hp — ZAiko)
k=1 \i=1 i=1

The coefficient matrix of this system is the Gram matrix G of the set of vectors

{(A1g,- - -

are linearly independent and, therefore, G is a positive definite matrix. In particular,

7Ank)}£:1 c R? with respect to the Euclidean inner product. These vectors

System (2.21) has a unique solution. Let us denote this solution by a%.
Also, let us consider the map h: R® - R defined by

0=(01,...,60)
!
4 n 4 n n
Tj = _k;1 (}_1 Az’kAik’) OO + kzl (2Hk -2 (; AiOAz’k)) O +2Ho - ;A?o +0.

(2.25)

Then, one has the following result.

Lemma 2.4.12. The map h has an absolute mazximum, which is only reached at
b

afé .

Proof. Since the map h is the sum of an affine map and a negative definite quadratic

form (whose associated matrix is —2G, where G is the above Gram matrix), it has,

at least, an absolute maximum. The Jacobian vector of h is

(o - ()

=t Nisl i1
> ( AiQAik) O — (H2 - (Z AiOAiQ))
Jp=-2-1 (3 \id i=1

n

4 n
> (ZAiZAik) Ok — (He - (Z AiOAiZ))
k=1 \i=1 i=1

The critical points of h are the solutions of the linear system given in (2.24). Hence,

P
F

a local maximum of A (and hence, the absolute one), which follows from the fact that

s is the unique critical point of h. To finish the proof, it suffices to show that it is
the Hessian matrix of A is —2G, which is a negative definite matrix. This concludes
the proof.

O

Finally, we state our main result in this subsection, which gives a necessary

condition for algebraic integrability of a foliation on Fs.
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Theorem 2.4.13. Let X be a restricted set of independent algebraic solutions of F°

and keep the above notation. Then, the following statements hold:

(a) If TjE <0, then F° is not algebraically integrable.
Fo

(b) If Tjg = 0 and F° is algebraically integrable, then Tys = Ta26 and oz?_& €
Fo F
(Q>O)€; where Q50 = {l’ € Q|ZL’ > O}.

Proof. Ttem (a) follows by Lemma 2.4.12 and Theorem 2.4.11. To prove (b), notice
that by Lemma 2.4.12, T2 = 0 if and only if a = a%, and then the result follows by
Theorem 2.4.11.

O

2.4.3. The projective plane case

The results of Subsections 2.4.1 and 2.1.2 were stated for foliations on Hirzebruch
surfaces. With minor modifications, close results hold for foliations on the complex
projective plane P2. The arguments supporting this case are adaptations of those
given in the previous sections. Therefore, in this subsection, we only state the key
facts and we omit the proofs in order to avoid unnecessary repetitions.

With the above notation, if F# is an algebraically integrable foliation on P2
then the dicritical configuration B2 = {p1,...,pn} is not empty (by Bézout The-
orem) and, therefore, we can assume without loss of generality that the dicritical
configuration of every foliation considered in this section is not empty. Also, if the

characteristic divisor of % is D dL* - Yy m;E} (where L denotes a general

FP T
line on P?), we can define the characteristic Q-divisor of FP as

Tppo :=L" - i siFy, (2.26)
i=1
where s; := 7 € Qso for all i =1,...,n.
Proposition 2.4.4 remains valid within the current framework just replacing F°
by FE Also, the definitions and reasoning after this proposition can be similarly
reproduced (with the same notations) giving rise to the following expression of the

characteristic Q-divisor of FP.

n d
Tppo = L™ - Z ( )\ijﬁj) E;,
i=1 \j=1
with a clear resemblance to (2.16).
Definition 2.4.7 and Lemma 2.4.8 are easily adapted to the P? case by setting
{:=d-o -1, replacing F% and F by F and L, respectively, and considering the

divisors K

2, K S g2 and D 2.
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Lemma 2.4.9 remains true if one simply replaces F° (respectively, F, V(2)) b

F¥ (respectively, L, V(@) {[K o2 stuﬂ]})’ and Equation (2.19) by

x=v(a):= 2(2 )\Ua])

As a consequence of this new version of Lemma 2.4.9, for any restricted set
of independent algebraic solutions ¥ = {C4,...,Cy} of FP it holds the following
equality (which substitutes Equality (2.20)):

V(E) n[L*], ={v(a)|aeRY v(a) [K Ksﬂﬁ] =0

Fr2 T
and v(a)-[C,]=0forallr=1,...,0}.

In this context, we add a new equation v(a) - [K g2 - K S;nﬁ] =0 which allows us to
express the set V(X)* n[L*]_; in terms of o + 1 linear equations (while (2.20) only
uses o equations).

Reasoning as we did after Equality (2.20), one obtains a result like Proposition
2.4.10 but in our context. To state it, it suffices to replace F° by .7-'P2, F by L and
Equality (2.22) by

n ‘
x=[L"]- Z (AiO + Z Aikak) [E]].
i=1 k=1
Notice that, in our current setting, we do not need the values Hy, 0 < k < ¢ and

the definition of the divisor T, in Equation (2.23) becomes
n 4
Ta =L" - Z (Al() + Z Azkak) E;. (2.27)
i=1 k=1

Then the adaptation of Theorem 2.4.11 consists of replacing F° by F¥ and the
displayed equality by

4
th = z (Z AzkAzk’) QO — 2 Z (ZAZOAZ]C) Qg + 1- Z A'LO -
k,k'=1 \i=1 k=1 \i=1 i=1

Finally, the unique changes to make in System (2.21), Lemma 2.4.12 and Theorem
2.4.13 are the substitutions of F° by FP and Hy by Oforall k=1,...,¢ taking into
account that the map h defined in (2.25) becomes

0=(01,...,00)
K { (2.28)
Ti=- Y (ZAzkAzk,)Hkaf—QZ (ZAzoAm)Owl ZA
k,k'=1 \i=1 k=1 \i=1

2.5. Algorithms for algebraic integrability

This section provides several algorithms to decide whether a foliation F on a sur-

face Sy (which can be either the complex projective plane P? or a complex Hirzebruch
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surface Fys, 0 € Zsp) is algebraically integrable (under certain assumptions) and to
compute a rational first integral in the affirmative case. Some of our algorithms ex-
tend to foliations on Hirzebruch surfaces previous algorithms from [17] for foliations
on the complex projective plane.

Our first algorithm (Algorithm 2.5.1) decides whether F has a rational first in-
tegral of a prefixed degree. In the affirmative case, it computes the first integral.
If the degree of the rational first integral is unknown but one knows opax invariant
by F curves, we also give an algorithm (Algorithm 2.5.2) that decides whether F
has a rational first integral and computes it in the affirmative case. We are able to
get these curves and run Algorithm 2.5.2 whenever the cone of curves of Sz is poly-
hedral (see Remark 2.2.12). Moreover, our Algorithm 2.5.7 proposes an alternative
to Algorithm 2.5.2 when we do know less that oyax invariant by F curves. Finally,
Algorithm 2.5.14 decides about the existence of a rational first integral of prefixed
genus g # 1.

Subsection 2.5.1 states our algorithms together with some examples showing their
usefulness, while Subsection 2.5.2 summarises the algorithms in order to make easier

their application.

2.5.1. Algorithms

Let F be an algebraically integrable foliation on Sy = P? or F5. By Lemma 2.1.3
and Theorem 2.2.1, the divisor D (introduced in Definition 2.1.2) satisfies D% =0
and D - E, = 0 (vespectively, Dz - E, > 0) for all ¢ € N (respectively, ¢ € Bx ~ Nr).
Recall that B (respectively, Nx) is the dicritical configuration (respectively, the set
of dicritical singularities p € Bx such that Ep is non-dicritical) of F. Both sets are
introduced in Definition 1.7.6. These facts and Lemma 2.1.5 support the following
algorithm for the problem of deciding whether an arbitrary foliation F on Sy has a
rational first integral either of a fixed degree d when Sy = P? or of a fixed bidegree

(dq,d2) when Sy = Fs. Moreover, it allows to compute it in the affirmative case.

Algorithm 2.5.1.

Input: d (respectively, (di,d)) if Sp = P? (respectively, Fs), a projective 1-form
Q defining F, Br and Nr.

Output: Either a rational first integral of F of degree d (respectively, bidegree
(d1,ds)) if So = P? (respectively, Fs), or 0 if there is no such a first integral.

1. Consider the finite set I' of divisors

Dol AL = Yaen, By if Sp =P
A F* +doM* =Y e, eqBr if So=Fs

such that

(a) D*=0.



2.5. Algorithms for algebraic integrability 85

(b) D-E, =0 for all g e Nr.
(c) D-E, >0 for all g e Br \ Nr.

2. Set R=0
3. While T is not empty and R = 0:

(a) Pick DeT.

(b) If the dimension of the C-vector space H® (So, m£.Og, (D)) is 2, then take
a basis {F,G} and check the condition d(F/G) A =0. If it is satisfied,
then R =F/G.

(c) Set I':=T~{D}.
4. Return R.

Now, we write a new algorithm that decides, under certain conditions, whether
an arbitrary foliation F on Sy = P? or Fs has a rational first integral (of arbitrary

degree or bidegree). As above, the algorithm computes it in the affirmative case.

Algorithm 2.5.2.
Input: A projective 1-form 2 defining a foliation F on Sy, a complete set of
independent algebraic solutions ¥ and the divisor Gz . (defined in (2.3)) satisfying

at least one of the following conditions:

(1) GEx#0.

(2) The decomposition of the class [G£x] as a linear combination of those in the
set V(X) introduced in (2.2) contains all the classes in V(X) with positive

coefficients.
(3) The value e(Gr ) introduced in (2.5) satisfies e(Gxx) > 0.
Output: Either a rational first integral of F, or 0 if there is no such first integral.
1. If (1) holds return 0.

2. If either (2) or (3) is satisfied, then take v = e(G£x) (Theorem 2.2.7 gives the
value of e(G# ) when (2) holds).

3. If dim|e(Gxx)Gx x| # 1 (where dim stands for projective dimension) return 0.

4. Take a basis {F,G} of (1r).|le(Grx)Gr x| and check the condition d(F/G) A
Q =0. If it is satisfied, then return R = F/G. Else, return 0.

Justification of Algorithm 2.5.2. Step (1) is justified by the fact that, if F is alge-
braically integrable, D% = 0 (Lemma 2.1.5) and Dr = aGrx, for some a € R(Gryx).
Steps (2), (3) and (4) are justified by Theorem 2.2.7.
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O

To decide whether a complete set of independent algebraic solutions satisfies one
of the above mentioned Conditions (1) or (2) is simple, but this is not the case for
Condition (3). However, when Kg, -Gryx <0, we should not be concerned about
these conditions since, by Proposition 2.2.8, there is no need to take all the steps in
Algorithm 2.5.2. Indeed, it suffices to check whether dim|e(Gr )Gz x| =1; in the
affirmative case, we will go to step 4 and, otherwise, F has no rational first integral.

The next proposition, originally stated in [17] for foliations on P?, can easily
be extended to Hirzebruch surfaces. The proof is similar to that given in [17] and,

therefore, we omit it.

Proposition 2.5.3. Let F be a foliation on Sy = P? or Fs such that the cone of curves
NE(Sx) is polyhedral. Let ¥ be a complete set of independent algebraic solutions
obtained by calling Algorithm 2.2.11. Then, ¥ satisfies one of the Conditions (1),
(2) or (3) described before Algorithm 2.5.2.

Remark 2.5.4. If ¥ is a complete set of independent algebraic solutions for a fo-
liation F such that NE(Sz) is not a polyhedral cone, then ¥ does not necessarily
satisfy any of the conditions needed for Algorithm 2.5.2. However, if it satisfies one
of them, by running Algorithm 2.5.2 (or by applying Proposition 2.2.8 or Remark
2.2.2), we can also decide whether, or not, F admits a rational first integral and to

compute it in the affirmative case.

The following result allows us to decide about algebraic integrability of foliations
F on Sy = P? or Fy; the case of foliations on P? was proved in [17, Theorem 3] and

the proof for foliations on Fj is a simple adaptation of the P? case.

Theorem 2.5.5. Let F be a foliation on Sy such that NE(Sr) is a polyhedral cone.
Then, calling Algorithms 2.2.11 and 2.5.2, one can decide whether F has a rational
first integral and, in the affirmative case, to compute it. The unique data we need are
the following ones: a projective 1-form Q defining F, the configuration of dicritical

points By and the subset Nr of Br.

Remark 2.5.6. Darboux’s theorem (Theorem 1.6.3) allow us to compute a rational
first integral of a polynomial foliation FC on C2? of degree r. It requires the knowl-
edge of (Tgl) + 2 irreducible invariant by FC curves. The number of irreducible
invariant curves required by our result does not depend of the degree of the folia-
tion, but on the number of terminal dicritical points in the dicritical resolution of its
extended foliation. We are not able to give a comparing result, but in our examples,

our procedure usually requires far fewer curves.

Assuming that we do not know a complete set of independent algebraic solutions

of F, we are able to decide about algebraic integrability under alternative suitable
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conditions (and to compute a rational first integral if F is algebraically integrable).

Let us describe our algorithim.

Let S = P? (respectively, Sy = F;) and o> € R’ be the absolute maximum of the
map h defined in (2.28) (respectively, (2.25)). Consider the Q-divisor Ta]% defined in
(2.27) (respectively, (2.23), by taking a = o’ e R%.

Algorithm 2.5.7.

Input: A differential 1-form ) defining a foliation F on Sy, a restricted set of
independent algebraic solutions ¥, the dicritical configuration of F, B (see Defini-
tion 1.7.6), the vector a?_ € R? and the Q-divisor T%zr, satisfying at least one of the
following conditions:

(a) T2, <0.

aF
(b) ng =0 and o ¢ (Qs0)".

(¢) T2, =0 and Kg, T,z <0.

F

(d) T2, =0 and e(T,s) > 0.
a]__ F

(©) elT,3) =0.

where e(D) is defined in (2.5) for any Q-divisor D.
Output: Either a rational first integral of F or 0 if there is no such a first

integral.
(1) If Conditions (a), (b) or (e) are satisfied, then return 0.

(2) Let R(Tag) be the set defined in (2.4). If Condition (c) is satisfied and
-2/(Ks, - Ta?_.) € R(Ta]zr) then let v := -2/(Kg, - Tag). Otherwise (that is,
Condition (d) holds) let ~ := e(Ta]%)-

(3) Compute the linear system hTaié |. If it is not base point free or its (projective)
dimension is not 1, then return 0. Otherwise, compute the equations of two
curves on Sy, F' =0 and G = 0, corresponding to a basis of (7'[']-‘)*|’}/Ta§| and
compute QA (FdG — GdF). If the last result is 0, then return F'/G; otherwise

return 0.

Remark 2.5.8. Notice that Conditions (a), (b) and (c) are easily verifiable (once
the dicritical resolution of singularities has been computed). However, we do not
know a general effective characterization for Condition (e) and the second part of
Condition (d).

Remark 2.5.9. If Condition (c) holds and F is algebraically integrable, then the

genus of a rational first integral is 0 (see the forthcoming justification).
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Justification of Algorithm 2.5.7. Step (1) is justified by Theorem 2.4.13 and Propo-
sition 2.4.4.

Assume that Condition (c¢) holds. If F is algebraically integrable, then, by Part
(b) of Theorem 2.4.13 (or its analogous result described in Subsection 2.4.3), the Q-
divisor T’ must coincide with To@ . Moreover, by Proposition 2.4.4 (or its analogous
result described in Subsection 2.4.3) Dy = e(Tr) Tx. Bertini’s Theorem (see |7, 8],
[67, Theorem 3.2] or |61, Chapter II, Theorem 8.18]) states that the general elements
of the linear system |Dx| are non-singular. Therefore, by Part (a) of Lemma 2.1.5
e(gf)Kgf -TF = g, where g is the
genus of the rational first integral. Since Kg, -T'r < 0 we conclude that g = 0 and
e(T'rs) :== =2/(Ks, - Tr). This fact explains the choice of the value v to look for a

rational first integral.

and the adjunction formula (1.3), one has that 1+

Finally, Step (3) is justified by Proposition 2.4.4 (or its analogous result described
in Subsection 2.4.3).

O]

Examples 2.5.10 and 2.5.11 show how Algorithm 2.5.7 discards or confirms the
existence of a rational first integral of a polynomial foliation on C?, and computes it

in the affirmative case. Let C'y denote the curve on Sy defined by the equation f = 0.

Example 2.5.10. Consider the following 1-form w defining a polynomial foliation

7€ on C2:
w = (=8y + 9z%y + 3y° - 32%y3)dx + (8x - 32 - 9xy® + 3x3y® - 2°)dy.

Set F! its extended foliation to the Hirzebruch surface Fy, which is given by Q' =
AqpdXg + A11d X1 + ByodYy + B11dY1, the output of AlgOI‘ithm 2.3.1 for the input

(1,w), where

Aqg = A1o(Xo, X1, Y0, Y1) = 16X5 X1 YY) - 12XV Y, - 12X X, Y2V
+6XAXIYVEYE - 2X8YoYY,

Apy = A1 (Xo, X1, Y0, Y1) = -8X0Y,'Y1 + 9X0 X7Y,'Y1 + 3XYRYS - 3X0 XYY,

Bio = Bio(Xo, X1,Y0,Y1) = -8X X1Y5'Y1 + 3X0 X7 Y5 Y1 + 9X( X1 Yo Y
- 3X3X3YoYP + 22XV, and

Bi1 = Bi1(Xo, X1, Y0, Y1) = 8X3 X Yy - 3Xo X3 Yy - 9X0 XYY + 3X5 XYy
— 22XV, Y.

Its canonical sheaf is Cr1 = Op,(2,3) and its dicritical configuration Br: consists of
5 points p1,...,ps, such that pi,ps, ps, ps € F' and py is infinitely near p;. Moreover
D2, D3, p4 and ps are the terminal dicritical singularities. The proximity graph of Bz
is depicted in Figure 2.3.
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p2

p1 pP3e 2y J pse

Figure 2.3: Proximity graph of Bz

Keeping the notation as after Proposition 2.4.4, n =5, d =4 and we ordering the

terminal dicritical points as follows: ¢; =3, t2 =4, t3 =5 and t4 = 2. Moreover,

5
Et1 = E3 = Zmultpz (903)E1*E§7
=1

5
Et? =Ly = ZmultPi (904)E7* = EZ7
=1

5
Ey, = By =) multy, (¢5)E; = E; and
i=1

5
E,, =F5= Zmultpi(cpg)E; = FE; + EJ.
i=1

If F! were algebraically integrable, as pt; € 68_7:17 for j = 1,2,3, (the set of ends
of Br1, see Definition 1.2.2) the values p;; and j3; given in (2.13) and (2.14) must

be determined by py; = my; and B; = s, for 1 < j < 4, where m; (respectively,

J
s;) is the integer defined before Definition 2.1.2 (respectively, in Definition 2.4.2)
for ¢ = 1,...,5. The values \;; given in (2.15) are given in the following matrix

A=), 1<i<n, 1<j<d:

>

I
o o~ o o
o = o o o
— O O ©o o
i e

Moreover, the values hg, h; for 1 < j < d introduced in 2.18 are as follows:

8
ho =—=,
0775

2 2 2 7
hi:=—=.ho:=—and hsy:=—, hg:= —.
1 57 2 5 all 3 57 4 5

It can be easily checked that ¥' = {C,,Cy,,Cy,} is a set of invariant by F!

curves. From the proximity relations among the points of Br1 and the equalities

[Kz - Ks,, ] = 3[F"] +5[M™] - 4[ By ] - 3[ By ] - 2[ B3] - 2[ By ] - 2[ E5 ],

2
[Cxo] = [F*]-[E7], [Cy] = [M7] - ;[EZ] and

)
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it can be checked that ¥ = {Cx,, Cy, } ¢ X' is a restricted set of independent algebraic
solutions of F! (see Definition 2.4.7) of length o = 2. However, ¥’ is not a set of
independent algebraic solutions. That is, £ =d -0 = 2.

Considering a parameter a; associated to the terminal dicritical singularity py,
(see before Proposition 2.4.10), for j =1,...,4, we can express a3 = 3 — a1 — ag and
a4 =1 in terms of of oy and «g, which means, with notation as before Proposition
2.4.10, that ppg =3, p1,3 = p2,3 = -1, po,a =1 and p14 = p24 = 0. Hence, the values
A;j are as follows:

Ap=1, A1 =0, App=0,
Agp=1, A21=0, Ag=0,
As0=0, Az1=1, Az=0,
Agy=0, Ag1=0, Agp=1,
Aso=3, As1=-1, Asp=-1,

while the H values are Hy =1, H; =0 and Hy = 0. One gets that 0@1 =(1,1) (the

maximum of the map (2.25)) and

T, =[P+ [M*]-[Ef]- B3] - [B5] - [Ef] - [EX].

a]__l

Since T§S = -2 <0, applying Algorithm 2.5.7 we conclude that F! (and hence,

Fl

,7:@2) is not algebraically integrable.

Example 2.5.11. Let F be a polynomial foliation on C2? defined by the 1-form

w = (zt = 23y + 2ty + 5Pyt + 92295 + TayS + 2y ) da+

(22" — 32592 — 13243 - 2123y — 1522%° — 4295)dy.

Consider the extended foliation F?2 to F? given by the output of Algorithm 2.3.1 for
the input (2,w).

b5 P6 P7 P9

P4 p8

p3
p2 Ipn
P1 P10

Figure 2.4: Proximity graph of Bz
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The proximity graph of the dicritical configuration of the foliation F? is depicted
in Figure 2.4. The points ps, ps, p7, po and p11 are the terminal dicritical singular-
ities. The canonical sheaf of F? is K2 = Op2(6,6). From the proximity relations
among the points of Br2 and the equalities

7
(K - Ks,, ] =6[F"] + 8[M"] - 8[ EY] - 8[ E5 ] - 5[ E3 ] - 4[ Ey] - 2 ;)[EZ]

- [Eg] - 2[Ey] - 4[Eqp] - 5[ B ],
[Cxo] =[F*] - [E1],[Cx, ] = [F*] - [Ei] - [Ey] and
[Cv,] =[M"] - [E7] - [E3] - [E3],

it can be checked that ¥ = {Cx,, Cx,, Cy, } is a restricted set of independent algebraic
solutions of F?2.

Considering parameters aq, o, 3, a4 and as associated, respectively, to the ter-
minal dicritical singularities ps, pg, p7,p9 and p1; and expressing as, oy and as in
terms of ay and as (as explained before Proposition 2.4.10 and showed in the previ-

ous example) and keeping the notation of Proposition 2.1.10, one gets that

2 2 1 1
Ta:gF*+M*—Ef—E;—gEg—§EZ—alEg—agEg—(§—a1—a2)E§
1, 1., 1., 1.,
B 2 e S R S

and ajzn = (%, %) Then Tji2 =0 and Kg_, -Ta% = —%. This shows that Condition
(c) of Algorithm 2.5.7 holds. Running this algorithm, v = 6 in Step (2) and the
algorithm returns a rational first integral of F2 (of genus 0):
XS+ 2X3X3YPY + XSX2Y Y2
XoX3VS + XT X3PV + 3XOX2V2YF + 3X X, YY) + X16v S’

which provides a rational first integral of ]:C2,

f zt + 223y + 2%y?

g a3+ %P+ a2yt + 3wy + b

Notice that min{a|a € R(Ta]zr2 )} = e(Taig) =6, being R(Ta§:2) (respectively, e(Tai2 )
the set (respectively, integer) defined in (2.4) (respectively, (2.5)). Moreover, as the
foliation is algebraically integrable, by Theorem 2.4.13, the characteristic Q-divisor
(see Definition 2.4.2) is T'r2 = TO@Q. Then, the minimal characteristic divisor of F2
(see Definition 2.2.5), Gz2, and the characteristic divisor of F? (see Definition 2.1.2),

D g2, coincide and are as follows:

9
6T = AF* + 6M* - 6E; - 6E; - 4E} - 3E; - . Ef —3Ej, - 3E};.
=5

Algorithm 2.5.7 returns a rational first integral of an algebraically integrable

foliation on Sp whenever the class [ D] belongs to the linear span of V(X), ¥ being
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a restricted set of independent algebraic solutions of F. Let us state and justify this
fact.

Proposition 2.5.12. Let F be an algebraically integrable foliation on Sy. Assume
that F admits a restricted set 3 of independent algebraic solutions such that the class
[Dg£] belongs to the linear span of V(X). Then, Condition (d) in Algorithm 2.5.7

holds, and therefore, this algorithm returns a rational first integral of F.

Proof. Let S = Fs (respectively, So = P?). By Proposition 2.4.10 and Lemma 2.4.12
(respectively, their analogous results described in Subsection 2.1.3), with the notation
as in these results, the self-intersection ng is the maximum of the set R:= {x?|x ¢
V(X)) n[H]=1}, where H = F* (respectively, H = L*).

Now, V(X)* ¢ [D£]* since [Dr] belongs to the linear span of V(X). Moreover,
any element of the hyperplane [Dz]* has non-positive self-intersection (because Dz
is a nef divisor). Finally, [Tr] € V(2)* n[H]-1 and T% = 0 (by Lemma 2.1.5). As
a consequence, 0 belongs to R and therefore Tijzr = 0. This equality and the fact
that, by Proposition 2.4.4 (respectively, its analogous result described in Subsection
2.4.3), e(T%:E) > 0, concludes the proof.

O

The following result shows that the computation of the integral components of a
fiber of the pencil Px introduced in Proposition 1.6.2 leads us to obtain a rational

first integral.

Corollary 2.5.13. Assume that F is algebraically integrable and let X' be a finite
set of integral invariant (by F) curves containing all the integral components of a

curve of the pencil Pr. Then

(a) If ¥ ¢ X' is such that V(X) is a basis of the linear span of V(X'), then X is
a restricted set of independent algebraic solutions (of F) and [Dg] belongs to
the linear span of V(X).

(b) For any subset ¥ ¢ X' satisfying the condition given in (a), Algorithm 2.5.7
(applied to F, Bx and X) returns a rational first integral of F.

Proof. Let n = #Bg. Firstly we prove Part (a). X is clearly a restricted set of inde-
pendent algebraic solutions. The curve of the pencil Pz whose integral components
are in ¥’ corresponds to a fiber G of the morphism ¢ : Sy — P! induced by the
complete linear system |Dx| and, then, G has the form

Z acC + Z bZEZ,

Cexy i

where the indices ¢ of the second summand run over the set of natural numbers

i€{l,...,n} such that the exceptional divisor FE; is non-dicritical, and ac,b; > 0 for
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all C € ¥’ and for all index i. Since D and G are linearly equivalent, it holds that
[D#] belongs to the linear span of V(X).
Part (b) follows from Part (a) and Proposition 2.5.12.
[

Our previous algorithms run under certain conditions. Next, we are going to
show the existence of a new algorithm which works when those conditions do not
happen. That is, it works when we are unable to obtain a complete set of independent
algebraic solutions of F and no condition in Algorithm 2.5.7 is satisfied. However,
an additional condition must hold.

This new algorithm decides whether a foliation F on Sy (P? or Fs) has a rational
first integral of genus g # 1 (under a certain new condition) and computes it in the
affirmative case. This condition holds whenever certain inequality psup - ping > 0 is
true (where pg,p and pins are defined in the algorithm). It is worthwhile to add that
the mentioned inequality is always true when one is looking for some specific types

of rational first integrals (see the forthcoming Remarks 2.5.17 and 2.5.18).

Let R(D) be the set defined in (2.1) for any Q-divisor D. Let Sy = P? (respec-
tively, So = Fs), a7 € R’ be the absolute maximum of the map h defined in (2.28)
(respectively, (2.25)) and Ta? the Q-divisor defined in (2.27) (respectively, (2.23)
with respect to the parameter 042 e R

Algorithm 2.5.14.

Input: A differential 1-form € defining a foliation F on Sy, a restricted set of
independent algebraic solutions X3, the dicritical configuration Br, the Q-divisor Tag
and a non-negative integer g # 1.

Output: Either a rational first integral of genus g of F, 0 (what means that F
has no rational first integral of genus g), or —1 (what means that neither the existence

of rational first integral of genus g nor the contrary can be concluded).
(1) If T2 <0, then return 0.
aF

(2) If ng =0and Kg, ’Tc@ =0, then return 0. This condition is equivalent to the

fact that, in the case of algebraic integrability of F°, the genus of a rational
first integral of F0 is 1.

(3) If TazE =0 and Kg, 'Tc@ # 0, then compute v := 2(9 - 1)/(Ks, -Tag) and

F
perform the following steps:

(3.1) If ~ ¢ R(T%zr) then return 0.

(3.2) If the linear system |yT, o | has (projective) dimension different from 1 or it
is not base point free, then return 0. Otherwise, compute the equations of

two curves on Sp, F' =0 and G = 0, corresponding to a basis of (Wf)*|’YTa§:|
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and compute Q A (FdG — GdF'). If the last result is 0, then return F'/G;

otherwise return 0.

(4) If TO(QE >0, then consider the set of /-tuples
F
A={ae(Qu)" | T2 =0} (2.29)

and compute the values piys := inf{Kz Ty | @ € A} and pgup = sup{Kr - T |
a € A}, If ping - psup < 0 then return —1. Otherwise:

1) If (psup <0 and g # 0) or (pins > 0 and g = 0), then return 0.

pmf Psup

2(g-1) 2(g- D]mZ

Psup ’ Pinf

3
4

(4.

(4.2) Tf peup < 0, then consider the set of integers V := [=2, —2]nZ.
(4.3) If pins > 0, then consider the set of integers V := [Z5—

(4

)
) If V = @, then return 0. Otherwise, let pry : (Qs0)* = Qso be the projec-

tion map onto the kth coordinate, 1 < k <[, and compute two non-negative

rational numbers o and a;; such that

prk(A) < [O‘I;’ a;c—]

Also consider, for all b€ V, the finite set

l
Ay = () pry’ ([bag,baj] N 7Z).
k=1

(4.5) For each be V and for each s € A check whether:

(4.5.1) 0T,y is a divisor on Sgs, T, / =0 and [bT}| is a base point free linear
system of (projective) dimension 1 and, in the affirmative case, com-
pute the equations F' = 0 and G = 0 of two curves on Sy corresponding
to a basis of (77).[bT/| and verify whether Q A (FdG —~ GdF) van-

ishes. In the affirmative case, return F'/G.

(4.6) Return 0.

Justification of Algorithm 2.5.1/. Step (1) is justified by Part (a) of Theorem 2.4.13
(or its analogous result described in Subsection 2.1.3) while Step (2) is justified by
Part (b) of the same theorem and the adjunction formula (since g # 1). Moreover,
Part (b) of Theorem 2.4.13, Proposition 2.4.4 (or their analogous results described
in Subsection 2.4.3) and Lemma 2.1.5 justify Step (3).

In order to justify Step (4), assume that TOQ[2 > 0. We firstly prove that the set A
is non-empty and bounded and, therefore, pin¢ and pgup are well-defined (notice that
there are available methods to compute them).

Assume that ozjzE = (ozjzrl, . afé) For all 1 <k </ and B € R, let us consider
the element 2% = (71’8’k, . ,712 ) € RY, where ’y = a?_-,j for all j # k and vf’k =p.
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The map by : R - R defined by

B T = - (iA?k)ﬁz —2(iAiOAik)5
=1
J4

i=1
n . . 4 n . n 9
- Z E AzkAzk’ aﬁma}—,m, -2 Z Z AzOAzk 04]:7m +1- Z AiO?
m,m’=1 \i=1 m=1 \i=1 i=1
m,m'+k mik

is continuous (for 1 < k < /), bk(a?k) > 0 and limg_, ;o by(8) = —oo. This proves
(applying Bolzano’s theorem) that A # @. The fact that A is bounded follows from
the fact that 72 = 0 (see (2.25)) is, up to a linear change of coordinates, the equation
of an (¢ - 1)-sphere.

One possibility consists of using Lagrange multipliers to compute the extrema of
the function f: R’ - R defined by f(ay,...,ap) := Kr-T.,2 subject to the constraint
TO[Q2 =0, where a := (aq,...,q7) and o? := (af,...,a?).

To adapt the function f to our specific requirements, we have introduced a slight
modification by considering o instead of a, as would be natural. This adaptation
is motivated by our interest in obtaining solutions within the domain of positive
numbers. While Lagrange multipliers are conventionally used for real-valued func-
tions, working with o? := (oz%, ey a?) allows us to ensure that the restriction remains
applicable to positive values.

By adopting this approach, we can efficiently compute a sufficiently accurate
approximation of piys and peyp (lower and upper bounds, respectively) using the
available methods for computing extrema with Lagrange multipliers; notice that, for
our purposes, it suffices to compute an accurate enough approximation of p;,¢ and
Psup-

Assume now that F has a rational first integral of genus g. Let 3 € (Qs)" such
that T'r = T and let b = e(T}) the integer defined in (2.5), that is, [Dg] = [bT}3].

Since 8 € A, the adjunction formula (1.3) gives rise to the following inequalities
bpinf <29-2< bpsup- (2'30)

Then, if psyp < 0 (respectively, ping > 0), g = 0 (respectively, g # 0). This justifies
Step (4.1).

If psup < 0 and g = 0 (respectively, ping > 0 and g # 0), it is straightforward from
(2.30) that b e V, where the set V' is [p_i—i, pjp] NZ (respectively, [Q;Z—‘::), %] nZ).
Moreover it is clear that b3 belongs to the set A, defined in the algorithm. Therefore,

the characteristic divisor Dzs (introduced in Definition 2.1.2) equals b7, for some
s € Ap. These facts and Lemma 2.1.5 show that Step (4) works. It is convenient
to add that the bounds o) and o) (k=1,...,¢) can be computed with the help of

similar procedures to those used to compute pgyp and pins.



96 2. Algebraic integrability

Remark 2.5.15. With the above notation, assume that pinf - psup < 0. Then, the
inequalities in (2.30) provide two lower bounds for b; let us denote by byax the largest
one. Then, it means that b € [byax, 00)NZ, which is not a finite set and the algorithm

may never terminates. This is the reason why it returns —-1.

Below we show an example where Algorithm 2.5.14 is applied.

Example 2.5.16. Let F be a polynomial foliation on C2? defined by the 1-form
w = (—4ady — b - 521y0)da + (2? + 2 + 629° + 6257 dy.

Consider its extended foliation F%* to P2 given by the output of Algorithm 1.5.7
with input w. Its canonical sheaf is K2 = Op2(9) and its dicritical configuration,
Bs: = {pi}?fl, consists of 36 free points, where p1,p7 and p;, ¢ > 13, belong to
P? and {p;}{, and {p;}}2, are chains (that is, p; belongs to the first infinitesimal
neighborhood of p;_; for all j € {2,...,6} (respectively, j € {8,...,12}). The set of
terminal dicritical singularities (of cardinality d = 26) is {pe} U {p;i}3%,.

From the proximity relations among the points of B2 and the equalities

Kz - K, 0] = 120L7) -2 B -5{B5) - 20551 - D[] -2 3 7,
(O3] - 114~ Y5
(O]~ [ [B] - (B3] - 3, (B7) and
(€)= 12°]- ED)

it can be checked that ¥ = {Cx,Cy,Cz} is a restricted set of independent algebraic
solutions of FF* of length ¢ = 3. Following the notation as in the adaptation of

Lemma 2.4.8 showed in Subsection 2.4.3, £ = d -0 -1 = 22. Considering param-

eters aq,...,aos associated, respectively, with the terminal dicritical singularities
D14, D15, - - - , P36, D6, P12, P13 and expressing aws, . .., aog in terms of aq, ..., ago (as ex-
plained before Proposition 2.4.10 for foliations on Hirzebruch surfaces and adapted
to P? in Subsection 2.4.3), one gets that aiﬂﬁ = (%, cee %) e R?2 and
1 36
T, =L"--) E;.
_7:]P>2 6 i=1

Notice that sz = 0. Running Algorithm 2.5.14, for .’FPQ, > and g = 10, one obtains
P2
that ”
XyZz4+Y$

X7+ X7
is a rational first integral of FF of genus 10 (whose algebraic invariant curves are

given by the pencil (7 p2).[67,s , ). This provides a rational first integral of FC,
FP
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which is
zy + 4P

T+axd

Remark 2.5.17. Let f1,..., f; be irreducible polynomials in C[z,y]. We are inter-
ested in determining whether o polynomial foliation FC of C? has a rational first

integral of genus g # 1 of the form

f(=z,y)
fl(xay)al'”fT(:L‘ay)ar 7

where f € Clz,y] and a; € Zsgy for all i = 1,...,r. We are going to slightly modify

(2.31)

Algorithm 2.5.14 to solve this problem.

With the notation as at the end of Subsection 1.4.1 (respectively, Subsection
1.4.2), 1et C;, 1 < i <r, be the closure of the image of the affine curve with equation
fi(z,y) = 0 by the inclusion Uz — P? (respectively, Uypy — Fs), after identifying
the affine plane with Uz (respectively, Uy), and let ¥ be a maximal (with respect
to the inclusion) restricted set of independent algebraic solutions of F contained in
{[C1],...,[Cr]} (respectively, {[C1],...,[Cr],[Cx,],[Cy,]})- Notice that, if ¥ = &,
then F has no rational first integral of the specified type.

We modify Algorithm 2.5.14 by replacing Step (4) by

(4) If Ta22 >0, then return 0.
F

Applying this modified algorithm to a differential 1-form 2 defining F, the set X,
the dicritical configuration Br and a non-negative integer g # 1, one gets an output
that either will be a rational first integral of F of genus g, or 0 (that means that F
has no rational first integral of genus g and Type (2.31)).

Indeed, assume that F has a rational first integral of Type (2.31). This implies,
by Part (a) of Corollary 2.5.13, that [ D] belongs to the linear span of V(S). Hence,
by Proposition 2.5.12, Tjé =0.

Remark 2.5.18. An interesting problem consists of deciding whether a (polynomial)
foliation FC* on C? has a polynomaial first integral of given genus g # 1 and compute
it in the affirmative case. This is a particular case of that described in Remark
2.5.17, where one looks for a rational first integral of genus g # 1 and Type (2.31) for
r =1 and fi(x,y) = 1. Notice that, in this case, the dicritical configuration of the

polynomial foliation F C* must be, necessarily, empty.

Our next example fits in the particular case described in Remark 2.5.18, where

the polynomial foliation on C? has a polynomial first integral of genus g = 5.
Example 2.5.19. Let F be a polynomial foliation on C? defined by the 1-form

w = (2 + 423y%)dx + (3y* + 32y dy.
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Keep the above notation and consider the extended foliation F? to Fy given by the
output of Algorithm 2.3.1 for the input (2,w). Its canonical sheaf is Kr2 = Op,(3,2)
and its dicritical configuration B2 = {pi}22 has 22 points where pq, p11, P14, p17
and pgo belong to the support of the divisor Cx, U Cy,, {pi}i%, {pi}i21i, {pi}iS4,
{pi}l2,, and {p;}?%, are chains (see (1.5)) and the unique satellite points are ps
and py (which are both proximate to p;). The terminal dicritical singularities are
P10, P13; P16, P19 and poo.

= {Cx,,Cy,} is a set of invariant by F? curves and, from the proximity rela-
tions among the points of B2 and the equalities

9

(K - K, ] =3[F"]+4[M"] 22 2;) i 1= 2[E] - [B]

Eia] = 2[ B3] - [Eiy] - [Ei5] - 2[Eie] - [Evr] - [Ers] - 2[ B ]
Ey] - [Exn]-2[Ex],

- [E3 ] - [EN] - [Eid - [Bir] - [El,

it can be checked that ¥ = {Cx,} c X' is a restricted set of independent algebraic
solutions of F? (X’ is not). Considering parameters ari,..., s associated, respec-

tively, with the terminal dicritical singularities p13, P16, p19 p22 and pip and express-

ing a5 in terms of aq,...,a4 (as explained before Proposition 2.4.10) one gets that
a_z'].:ﬁ = (%7 %7 %7 %) and
1 22
T.s, —§F +M* - E} ——ZE
]._

Since zj =0, running Algorithm 2.5.14 for g = 5, one obtains that
F2

X33+ X§YE + XXy
X5Yy

is a rational first integral of F2 of genus 5 (whose algebraic invariant curves are given

by the pencil (7rf2),e\3Taz2 |). This provides a polynomial first integral of FE
f
a? 4+ + a2ty

This chapter proposes extensions of foliations on the complex plane F C* both to
the projective plane FP* and to the Hirzebruch surfaces F°. Our next result shows
that fixed ]:Cz, dicritical configurations of FP and F9 could be quite different.
Thus, our algorithms for algebraic integrability are different and they could give

better results according the extension.

Remark 2.5.20. Let < be a polynomial foliation on C? defined by the 1-form

w = (2y2 - y3 + y4)dx + (5 -6y +4dxy — y2 - a;yQ)dy.
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Notice that (3 +y + 2y?)/(5 + 4 + xy?) is a rational first integral of FC, Anyway,
we calculate the dicritical configurations of the extended foliations F* and F 9 for
6=0,1,2, of .’F(CZ, and we will see that they are different.

The dicritical configuration of the extended foliation F¥ 1o P?, Bz = {pi}ey,
consists of 6 points, where p1, ps, ps and pg belongs to P? and the proximity rela-

tionships p2 — p1, p3 — p2 and p3 — p; are satisfied. The set of terminal dicritical

singularities, of cardinality 4, is {ps,...,ps}. Figure 2.5 shows its proximity graph.
P3
P2
p1 yy Ps@ Pce®

Figure 2.5: Proximity graph of Bz

Assuming we do not know any invariant curve, the Q-divisor 7, (see (2.27))
depends on fp2 =4 — 1 = 3 variables.

In contrast, the cardinal of the dicritical configuration Bzs of the extended foli-
ation 79 of FC* to Fs, for 0<d <2is 4, 4 and 5, respectively. The proximity graphs
are depicted in Figure 2.6. The number of terminal dicritical singularities is 3 in all

the cases, and they coincides with the ends of Bzs (see Definition 1.2.2).

92,3

q0 2] q1 2] q2,2
q0,1 q0,3@ do,4@ q1,1 q1,3@ 41,4 q2,1 92,4 425@

Figure 2.6: Proximity graph of Bzs, 6 =0, 1, 2

By Proposition 2.3.4, for all 6 € {0,1,2} but at most one value, the curve on Fs
with equation Xy = 0 is invariant by FI: therefore, there exists at least two values
d €{0,1,2} such that T,, (see (2.23)) depends only on ¢, = 3 -1 = 2 variables, which

improves the starting point of Algorithms 2.5.7 and 2.5.14 because the dimension of

%

the vector space where the vector

to the extension fp2 to P2,

s 18 located is smaller than that corresponding

We conclude this subsection with a last remark.

Remark 2.5.21. Algorithm 2.5.14 could fail to decide about algebraic integrability
of F in the case when T§E > 0 (if the inequality pinf - psup < 0 holds). However, we
‘7_‘
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are not able to find any foliation on P? or Fj satisfying TC%E > 0 (and such that its
_F
related rational first integral had genus g # 1), where Algorithm 2.5.14 could fail.
Consider the polynomial foliation F C* on C2? defined by the 1-form

w = By — 2 + 23 dx + (-2y + 2° — 2y?)dy,

introduced in [72, Section 2.3] as the foliation F3,. Then, the dicritical configuration
of the extended foliation FE° to P2, B = {pz-}}zll, consists of 11 points, where
D1, D3, P5, D7, D9, Pio and pi1 belong to P? and the proximity relationships ps — p1,
D4 = P3, Pe = D5 and pg — py are satisfied. The set of terminal dicritical singularities

is {p2, P4, D6, P8, P9, P10, P11} Figure 2.7 shows its proximity graph.
P2 P4 P6 s
Pl] P3] Ps] P7] Poe DPiloe® Pile
Figure 2.7: Proximity graph of B 2

Following the above notation, ¥ = {Cz} is a restricted set of independent alge-
braic solutions of F¥* and £ =7-1-1=5. If a1, ...,a5 denotes the multiplicity of the

. i : : Y 7 7 14 14 14
terminal dicritical points pg, ps, P9, p1o and p11 respectively, a2 = (32> 305 510 510 51
and one gets sz = % However, in this case, we know that g = 1 and has no sense

FP?

to run Algorithm 2.5.14.

To conclude the chapter and to help the reader, we present a brief overview of the
different scenarios that arise in our study of the algebraic integrability of a foliation
F on P? or Fs and the algorithms we propose to decide about algebraic integrability

and compute a rational first integral in the positive case.

2.5.2. Summary

The algorithms presented in this PhD thesis have some common (sometimes
implicit) inputs and some specific inputs (that depend on the situation where each

algorithm is applied). The common inputs are the following:
(1) A 1-form defining a foliation F.
(2) The dicritical configuration of F, Br.

(3) The set N of points g of the dicritical configuration whose associated excep-

tional divisors E; are nondicritical.

In order to get Input (2), one needs to perform the process of reduction of sin-

gularities of the foliation F by means of blowups (see Section 1.7). Then one must
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locate, among the set of centers of these blowups (which are the ordinary singular-
ities of F), the terminal dicritical singularities (by checking the condition given in
Definition 1.7.3) and consider the configuration Bx consisting of these singularities

and the centers of the reduction procedure preceding them.

To obtain Input (3), it suffices to take the points in B which do not satisfy the

condition given in Definition 1.7.3.

As before, Sy denotes either the projective plane of a Hirzebruch surface, F a
foliation on Sy and Q a 1-form defining F. The common rough idea of our algo-
rithms consists of finding a suitable candidate for being the characteristic divisor
Dz on Sg (the surface obtained by blowing-up Sy at the configuration Bx) and,
then, checking algebraic integrability by applying Lemma 2.1.5. This lemma states
that, if  is algebraically integrable, then D% = 0, the complete linear system |D |
has (projective) dimension 1 and its direct image to Sy coincides with the pencil
Pr. Then, one can verify whether the obtained candidate to be D satisfies these
conditions and, in the affirmative case, compute a basis {F,G} of the pencil Pg.
Finally, it suffices to check whether, or not, F'/G is a rational first integral of F
(that is, whether Q Ad(F/G) = 0). For convenience, this checking process (to decide
whether a divisor D on Sz is the characteristic divisor of F) can be performed by
the following sub-algorithm (which we will use throughout this summary to simplify

the exposition):
CheckCandidate (2, D):

Input: A 1-form  defining a foliation F on Sy and a divisor D on Sx.
Output: Either a rational first integral of F or 0 if D is not a characteristic divisor
of F.

If dim|D] is 1 (where dim stands for projective dimension), take a basis {F,G}
of m4|D| where 7 is the dicritical resolution of F. If d(F/G) A Q = 0, return F/G.

Otherwise, return 0.

Let us see the scenarios where we are able to determine the algebraic integrability
of a foliation F as before (and compute a rational first integral in the affirmative
case). We show the main ideas supporting the algorithms and the specific inputs
that they need.

Algorithms 2.5.1 and 2.5.2 extend previous algorithms, stated for foliations on

P2 in [47], to foliations on Hirzebruch surfaces.

Algorithm 2.5.1 determines whether a foliation F on Sy has a rational first integral
of fixed degree (or bidegree). This degree (or bidegree) is an additional input. Its
justification relies on the fact that the characteristic divisor Dz of F must belong to
the set of divisors I' defined in the algorithm. Since I' is a finite set, one can apply
CheckCandidate(2, D) to every divisor D of T'.
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Algorithm 2.5.2 requires, as an additional input, a complete set of independent
algebraic solutions ¥ of F (see Remark 2.2.4). Also, it asks for the computation of
the divisor Gy (defined in (2.3)), which can be calculated from Br and Nz (see
Section 2.2). In the case when F has a rational first integral, Gz is the minimal
characteristic divisor of F (Definition 2.2.5), its class in the Néron-Severi space is
the “minimal integer class” in the ray Ryo[Ds], and Dx is linearly equivalent to
e(Grx)Grx, where e(Gry) is the integer defined in (2.5) (by Theorem 2.2.7 (a)).
In particular, its self-intersection vanishes. If it is not the case, the algorithm returns
0 (which means that F is not algebraically integrable). Otherwise, we consider the
divisor D = e(Grx)Gry which is the unique candidate to be the characteristic
divisor of F. Running CheckCandidate((2, D) the algorithm finished.

Algorithms 2.5.7 and 2.5.14 run when we have a foliation F on Sy = Fs (re-
spectively, Sy = P?) and require to know a restricted set of independent algebraic
solutions ¥ (non-necessarily complete, even empty). They use the fact that, in case
of algebraic integrability, the characteristic divisor D is an (integer) multiple of the
characteristic Q-divisor Tz, introduced in Definition 2.4.2 (respectively, in (2.26)).
T must be orthogonal to the classes in V(X) (see (2.2)). Set [ = d— o (respectively,
[ =d-o-1), d being the number of terminal dicritical points and o the cardinality of
Y. Imposing these conditions to a general divisor of the form So /™ + M* -}, B, E;
(respectively, L* - ¥, B,E,), where p runs over the set B and By, 8, > 0 for all p,
one gets that, in case of algebraic integrability, T’ must be one of the divisors T,
defined in (2.23) (respectively, (2.27)), where a € (Qs0)!. In other words, we have
a set {T,} of candidates for Tr depending on [ parameters. In addition, since the
self-intersection of T'r is zero, we can restrict this set of candidates to these satisfy-
ing the additional condition T2 = 0. Lemma 2.4.12 (respectively, the adaptation of
Lemma 2.4.12 made in Subsection 2.1.3) proves that the map o ~ T2 (where o runs
over RY) has exactly one absolute maximum, which is reached when a = a?_ (which is
the solution of the system of linear equations (2.24) (respectively, its analogous sys-
tem described in Subsection 2.4.3)). As a consequence, necessary conditions for the
existence of a candidate among the divisors T, are that ajzr has positive coordinates
and ng > 0.

To run Algorithm 2.5.7 one needs a restricted set of independent algebraic solu-
tions X of a foliation F on Sy. It computes a rational first integral (in case of algebraic
integrability) or returns 0, otherwise. The specific inputs are the real vector a? and
the Q-divisor Tajzr (both computed from B and Nz, as explained above). Moreover,
Algorithm 2.5.7 assumes that some of its conditions (a), (b), (c), (d) or (e) are sat-
isfied. If Conditions (a) and (b) hold, the algorithm returns 0 because they violate
the necessary conditions on aJET and Tag given in the paragraph above. Condition
(e) contradicts algebraic integrability by Proposition 2.4.4 (or its analogue in Sub-

section 2.4.3) and, hence, the algorithm also returns 0 under this condition. Finally,
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Conditions (c) and (d) allow us to compute a unique candidate D = e(Tajzr)Tajzr for
characteristic divisor of F. Applying CheckCandidate (2, D) the algorithm finishes.
Notice that Conditions (a), (b) and (c) are easily verifiable, but we do not know an
effective characterization for Condition (e) and the second part of Condition (d).

It is worth mentioning that, as a consequence of Corollary 2.5.13, Algorithm 2.5.7
computes a rational first integral of an algebraically integrable foliation F on Sy if

one knows the integral components of one of the curves of the pencil Pr.

Finally, our Algorithm 2.5.14 decides whether F admits a rational first integral
of prefixed genus g # 1. In the affirmative case, it returns a rational first integral
and the output 0 means that the foliation is not algebraically integrable. When
running, one could be forced to decide if certain inequality is true; if it is not true
then the algorithm returns —1 (which means that nothing can be said). To apply the

algorithm, we consider the divisor TO% and its self-intersection TO%E.
F

w If T2E is negative then the foliation is not algebraically integrable and, then,

the algonthm returns 0.

w IfT 22 =0 and Kg, 'Ta}% =0 then, in case of algebraic integrability, the genus
_’F
of a primitive rational first integral should be 1 (by the adjunction formula);

then the algorithm returns 0.

n If TjE =0and Kg, 'To@_ # 0 then, by the adjunction formula, one can compute
F
a unique candidate D for characteristic divisor of F. The algorithm finishes
by applying CheckCandidate({2, D).

w If ng > 0 and the mentioned inequality is true (otherwise the algorithm returns
—1), then any candidate D for characteristic divisor of F must belong to a finite
set A. Applying CheckCandidate(f2, D) to each one of these candidates
D € A, the algorithm finishes.

We conclude by noticing that we are unable of find examples where T22 > 0 with
the exception of an algebraically integrable foliation whose rational first mtegral has

genus g = 1.
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Chapter 3
Bounded negativity

The Bounded Negativity conjecture (BNc) (Conjecture A in the introduction)
is an old conjecture which states that, if S is a smooth complex projective surface,
then there exists a non-negative integer b(S5) depending only on the surface such that
C? > -b(9) for every integral curve C on S. The BNc has been very studied (see, for
instance [62, 3, 84, 90]) and it holds for K3, Enriques and abelian surfaces, however
in the general case it is still open.

In this chapter we propose to approach bounded negativity on rational surfaces.

In our first section, we follow the asymptotic approach proposed by Harbourne in
[62] of considering some nef divisor D on S and giving a bound on the values C*/(D-
C)?%, where C runs over the integral curves on S such that D-C > 0. Our second
section strengthens the proposal by bounding C?/(D - C) instead of C2/(D-C)2.

Being more specific, in Section 3.1, we consider a rational surface S given by a
P2-tuple (S,P?,C) (see Definition 1.4.6) and we give a lower bound on the values
C%/(L*-C)?%, where C runs over the integral curves on S such that L*-C > 0. Here
L* stands for the total transform on S of a general line L of P2. For simplicity, the
results of this section are proved for complex rational surfaces S, but we point out
that all the proofs and reasoning are also valid when the ground field is any algebraic
closed field (of arbitrary characteristic).

In our last section, Section 3.2, we propose and solve a new problem (in the
same line of [70, Theorem 3.1]), also related to the BNc: To give a bound for the
values C?/(L* - C) (respectively, C?/((F* + M*)-C)), where C is a non-exceptional
integral curve on a rational surface S given by a P2-tuple (respectively, Fs-tuple), L
a general line of P? (respectively, F' and M a general fiber and a general section of

self-intersection § on Fy).

3.1. Asymptotic approach by using valuations

Keep the notation as in Chapter 1. Throughout this section we denote by S, the

sky of the configuration C, given by a divisorial valuation v on the projective plane,

105
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i.e., by a P2-tuple of the form (S,,P%,C,) (see Definition 1.4.6).
The results we present in this section were published in [52, Section 4] (considering
the projective plane over an algebraically closed field of arbitrary characteristic).

We give a lower bound for the following value:

2

A+ (.9) :=inf{ 5 | H is an integral curve on S such that L™ - H > 0}

(L*-H)

/2
=inf {ﬁ | C is an integral curve of Pz} ,

where C' denotes the strict transform of C' on S (see forthcoming Corollary 3.1.1
stated in |52, Corollary 4.3|).

The following lemma, which generalizes [52, Lemma 3.4], will be useful.

Let f(x,y) € Clz,y], we denote by deg,(f) (vespectively, deg,(f)) the degree
of f regarded as a polynomial on x (respectively, y), i.e., f € k(y)[x] (respectively,

fek(x)yl)-

Lemma 3.1.1. Let p be a point in Sy := P? (respectively, Sy := Fj, for some
d € Zsy). Consider an open affine subset U € {Ux, Uy, Uz} (respectively, U e
{Uo0, Uo1,Ur0,U11}) such that p € U and take affine coordinates (x,y) € U as defined
at the end of Subsection 1./.1 (respectively, Subsection 1./.2). Let f(x,y) =0 be
the equation of a curve B on U, passing through p, where f(z,y) = Z;‘i+j:0 fijxiyj €
Clz,y] is a polynomial of total degree d. Then, the closure of B in P? (respec-
twely, Fs), denoted by D, is linearly equivalent to d(f)L (respectively, di (0, f)F +
do(6, fYM ), where

d(f) = deg(f),
(respectively, d1(0, ) < deg, (f) < deg(f) and da(6, f) = deg, (f) < deg(f)).

Moreover, assume Sg =Fg and fqo - foq 0, then:

w JfU =Upy, U=Uig or § =0,
di(0, f) = deg(f) and da(9, f) = deg(f).
» Otherwise (i.e., 0 #0 and U = Upy or U = U1,
d1(6, f) =0 and da(9, f) = deg(f).

Proof. P? can be regarded as the quotient (C3\ {(0,0,0)})/ ~, where (X,Y,Z) ~
(AX,A\Y, A7), for all A € C*. Similarly, for § > 0, F5 can be viewed as the quotient
(C*~ {(0,0)}) x (C*~ {(0,0)})/ ~ where

(Xo, X1; Yo, Y1) ~ (A X0, AX1; 1Yo, A\ Y1)



3.1. Asymptotic approach by using valuations 107

for all (A, u) € C* x C*.
We start with the case where p = (py : p2 : p3) € P2, Let G(X,Y,Z) = 0 be an
homogeneous equation of D.
Assume, without loss of generality, that p=(0:0:1) € Uz (the other cases work
similarly). Then,
G(X,Y,Z)=2f (x,y),

where x := % and y := % and it is clear that = deg(G) = d.

Suppose now that p € Fg, for 6 > 0. Let G(Xy, X1, Yp, Y1) be a bihomogeneous
polynomial such that G(Xo, X1, Y0,Y1) =0 is an equation of D. Consider the set M
of monomials XS‘Och”YOﬁOYfl appearing in the expression of G(Xy, X1, Yp, Y1) with

non-zero coeflicient. Then two cases can occur:

1. If U = Uy (respectively, U = Ujp), then p = (1,a;1,b) (respectively, p =
(a,1;1,b)) for some a,b e C and
G(X()aXla}/baYl) = Xgll/ng(w’y)
(respectively, G(Xo, X1, Yo, V1) = XI'Y{* f(2,1) ),

9 5
.~ Xi . XN ; .- Xo _ X
where z := £1 and y := = (respectively, x := % and y = =~ ) are affine

coordinates in Uy (respectively, Uyg) and r1,79 € Zso. We can assume, without
loss of generality (performing a suitable change of variable if necessary), that
p=(1,0;1,0) (respectively, p = (0,1;1,0)) and, therefore, the affine coordinates
of pon U are (0,0). Then,

d o od X\ XY\
flxy)= ) fiya'y’ = Zfij (y(l)) ( }0,01)

i+5=0 i+5=0

d d i [ vov \J
i X X7Y
(respeCtively’ fy)= ) fuya'y' = E:fij(x(l)) ( 11’01) )

i+5=0 i+5=0

Since neither X (respectively, X1) nor Y; divide G, there exists a monomial
Xg‘oXlo‘lYoﬁoYIB1 in M with ag = 0 (respectively, oy = 0) and another one
with By = 0. Hence, as ag = r1 — i + 0 (respectively, ay = r1 —i + dj) and
Bo =72 — j in the monomial with coefficient f;;, it holds that 1 < deg,(f) and
r2 = deg,(f)). Moreover, if fqo - foa # 0, 71 = deg,(f) = d, r2 = d and then,
(di(6, f),d2(6, f)) = (d,d).

2. If U = Uy (respectively, U = Ujy), then p = (1,a;b,1) (respectively, p =
(a,1;b,1)) for some a,b e C and

G(X()aXla}/baYl) = X51Y1T2f($7y)
(respectively, G(X()leaYb’Yl) = X{1Y1T2f($7y)>7
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X3

where x := e and y : Y

Yo
- Xni X
coordinates in Uy (respectively, Ui1) and 71,79 € Zso. As before, we can

respectively, z := 20 and y := are affine
X1

assume, without loss of generality (performing a suitable change of variable if
necessary), that p = (1,0;0,1) (respectively, p = (0,1;0,1)) and, therefore, the
affine coordinates of p on U are (0,0). Then,

j
fla,y) = Z figa'y’ = wa( 1) (Xl‘?Yl)

i+5=0 i+5=0

i
(respecmvely’ f(z,y) = Z fija'y’ = wa(Xo) (X}(?w) )

i+5=0 i+5=0

Since neither X (respectively, X7) nor Y; divide G, there exists a monomial
X(‘))“)Xf‘lYoﬁoYl'B1 in M with g =0 (respectively, a; = 0) and another one with
B1 =0. Hence, as oy =71 —i —dj (respectively, a; =71 —i—07) and 51 =13 —j
in the monomial with coefficient f;;, it holds that rq < deg,(f) + ddeg,(f)
and ro = deg,(f). Moreover, if fqo - foa # 0, r1 = max{d,dd}, 2 = d and
therefore, if 6 = 0 (respectively, 6 # 0) (d1(0, f),d2(9, f)) = (d,d) (respectively,
(d1(6, f),d2(9, f)) = (0,d)).

In both cases, di(6, f) < deg,(f) < deg(f) and d2(9, ) = deg, (f) < deg(f), which
ends the proof. O

Let p be a point in P2 and C a curve in P?2. Keeping the notation as in Chapter
1, p¢ stands for an element of the local ring Op2 , giving rise to a local equation of
C. Let v be a divisorial valuation of P? (introduced after Example 1.8.2) centered
at p, {BZ(V)} "y its sequence of maximal contact values (see Definition 1.8.4) and
vol(v) the volume of v (see Definition 1.8.5).

Notice that v is the m-adic valuation (where m denotes the maximal ideal of
Op2 ) if and only if #C, = 1. Otherwise there exists a unique projective line H,
which we call the tangent line of v, such that v(¢g) > Bo (i.e., H passes through the
first two points of C,).

We define ¢(v) := 1 and do(v) := -1 if v is the m-adic valuation and, otherwise,
t(v):=v(pm), H being the tangent line of v. We also set

vol(v) ™t =28y (v)t(v i
5()(]/) - 1( ) t(f)go( )t( ) ’

where [z]* is defined as the ceiling of a rational number z if z > 0, and 0 otherwise.

Our first result is the following one:

Theorem 3.1.2 ([52, Theorem 4.1]). Let v be a divisorial valuation of P? and set S,
the sky (Definition 1.2.2) of its associated configuration. Let C' be an integral curve
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on P? different from the tangent line of v (if it exists, i.e., if v is not the m-adic
valuation). Then
672

des(C)? >—(1+0d0(v)),

where C is the strict transform of C on S,,.

Proof. Suppose that v is centered at p € P?. We can assume without loss of generality
that v is not the m-adic valuation, m being the maximal ideal of Op2, (because
otherwise the bound holds trivially). Set C, = {p1,...,pn} the configuration of centers

of v and notice that C is linearly equivalent to the divisor

n
deg(C)L* - > m;E;,
i=1
where m; = mult,, (C), 1 <i<n.
Consider the affine open set Ux of P? (defined in Subsection 1.4.1) and take affine
coordinates (u,v) € Ux (where u = % and v = %) Let f(u,v) =0 be an equation of
the restriction B of C to Ux. Without loss of generality, we can assume the following

three conditions:
1. pis the point (1:0:0) € Ux.

2. Using the isomorphism described in Subsection 1.4.1, Cu,v](,,,) is identified
with OHDQ’p.

3. The local equation of the tangent line H of v at p is u = 0.

Consider, for § € Zsg, the Hirzebruch surface Fs and homogeneous coordinates
(X0, X1;Y0,Y1) as defined in Subsection 1.4.2. The affine plane C? can be iden-
tified with the open subset Uyy := {(Xo, X1;Y0,Y1) € Fs|Xo # 0,Yy # 0} via the
isomorphism defined by

X, X
(Od .

Then, the previous valuation v of P? can also be regarded as a valuation of Fs
centered at the point with homogeneous coordinates ¢ = (1,0;1,0) and its configu-
ration of centers C, becomes a configuration of infinitely near points over Fs. There-
fore, f(u,v) =0 can be viewed as the equation of an affine irreducible curve in the
affine open set Uyg of an integral curve on Fs that is linearly equivalent to a divisor
D =di(0, f)F +da(9, f)M, where dy(6, f), d2(0, f) are non-negative integers which
depend on ¢ and f. In addition, u = 0 (respectively, v = 0) is the affine equation of
the fiber Fy that contains p (respectively, the special section My). By Theorem 1.8.7,

the valuation v is a non-positive at infinity (special) valuation of Fs if and only if

20(p )V (F,) + 0v( R ) 2 [vol(v)] ™. (3.1)
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Observe that

I/(SOMO) = /BO(V) and V(SOFI) = V(u) - t(l/)
and if § coincides with the value dy(v) defined in the statement, then Inequality (3.1)
holds.

From now, let us assume that § = dg(v). Let
T8y =Sy = Spoy —> - —> S1 —> So = Fs ()

be the sequence of blowups determined by v. The strict transform D of D on the

surface S, is linearly equivalent to the divisor
n
dy(do(v), [)F" +da(do(v), FYM™ = 5 mi B

Now we distinguish two cases:

» Case 1: D? < 0. Then, since D is integral and non-exceptional, by Theorem
1.8.7 it holds that either D = fp or D = My (recall that F, is the fiber of the
projection morphism Fs () — P! that goes through p and My is the special
section of Fy,(,)), which implies that C' has degree 1. If we are under the first
supposition, we get a contradiction since C'is different from the tangent line of
v. Otherwise, the strict transform of C' passes through p = p; but not through

p2; hence C? = 0 and the inequality given in the statement is true.

« Case 2: D?>0. Then

3

2deg, (f) deg, () + [deg,(£)]*6o(v) - > m?

i=1

by Lemma 3.1.1, where deg, (f) (respectively, deg,(f)) denotes the degree in

u (respectively, v) of f. As a consequence,

(G0(v) +2) deg(C)? 2 2deg, (F) deg, (£) + [degy (F)]%00(v) 2 3 m?

i=1

and, therefore,

C? = deg(0)? - Zm —(60(v) + 1) deg(C)%

O

Next, instead of a unique divisorial valuation, we consider an arbitrary finite set
V ={v1,...,vn} of divisorial valuations of P?. Each valuation v; is equipped with a
morphism 7; : S, - P2 given by the composition of the blowups at its configuration
of centers C,,. Set Cy := UN C,., and denote by Sy the surface obtained by the
composition of the blowups centered at the points of Cy (after a suitable identification
of points). Notice that any rational surface having P? as a relatively minimal model

is isomorphic to Sy for some set V' as above.
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Corollary 3.1.3. Let V = {v1,...,un} be a finite set of divisorial valuations of P>
and consider the surface Sy. If C is an integral curve on P? that is not the tangent

line of v; (whenever it exists) for all i=1,..., N, then

672
oo(v; 2N +1,
deg(C)2 = Zl 0(vi) =2N +

where C denotes the strict transform of C' on Sy and the number do(v;) is defined
as before Theorem 3.1.2.

Proof. Notice that
672

deg(C)? - deg(C)2 p;v mult, (C)*.
Hence
52 N 1 N CQ
deg(C)? ZZ;( deg(C)? Z multp(C)Q) (N-1)= Zd 2(C)? - (N -1),

where @ denotes the strict transform of C on S,,. Then the result follows by Theorem
3.1.2.
O

Given a finite family V = {v1,...,vny} of N > 1 divisorial valuations of P?, we say
that the points of a subset D c Cy = Ul ,C,, are aligned if there exists a line on P?

whose strict transforms pass through the points in D.

Corollary 3.1.4. Let V = {vy,...,un} be any finite set of N > 1 divisorial valuations
of P? and consider the surface Sy. Then, the value \r+(Sy) defined before Lemma
3.1.1 satisfies

N

Ar+(Sy) > min{l —p,— Y. 6o(vi) — 2N + 1},

i=1
where | denotes the mazimum cardinality of o subset of aligned points in Cy, and
do(v;) 1is defined as before Theorem 5.1.2.

Proof. Let C be an integral curve on P2, If C is a line on P?, then its strict transform
C on Sy satisfies C? > 1 — . Otherwise YN, 60(v;) = 2N +1 by Corollary
3.1.3.

52
Jea(C)Z 2~
0

We give an example showing the asymptotic sharpness of our bound in some

cases.

Example 3.1.5. Fix a non-negative integer e. For any integer a > 3, let C, be the
unicuspidal curve in P? whose equation in the homogeneous coordinates (X : Y : Z)

is given b
&IV Y (f1Y+bXa+1)a—ff+1
Xa—l

=0,
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where f; = X% 'Z +Y® and b # 0. Notice that C, is a Tono curve of Type I with
n=a-1and s=2 (see [96, 39]) whose degree is a? + 1.

Consider the configuration of infinitely near points C = {p;}I"; such that the
composition 7 : Y — P? of the sequence of point blowups centered at C gives rise to
a minimal embedded resolution of the singularity of C,. Now consider a sequence

2 _ q free infinitely near points belonging to the

qi,...,qs of s:= (e + 1)a* = 2a® - 2a
successive strict transforms of C, and such that ¢; (respectively, ¢;) is proximate to
pn (respectively, g;—1 fori=2,...,n). Set v, the divisorial valuation whose associated
configuration is C,, = C U {g;};_;. The sequence of maximal contact values of v is

Bo(va) = a®—a, B1(va) = a2, Pa(va) = a® +2a® +1 and $3(v,) = (e +2)a* —2a®. Hence,

VOI(Va)_l - 2BO(Va)t(Va)“+ _ ’rBB(Va) - QBO(Va)Bl(Va) " — e

50(Va) = t(l/a)2 Bl(l/a)2

If C, denotes the strict transform of the curve C, in S,, then

C?2 (a®+1)%-(e+2)a* + 24
deg(Ca)? (a®+1)?

Hence —(e+1) < Ap+(Sy)) < (“2+1)i;§i§§“4+2‘13 because —(e+ 1) is the lower bound of

Ar+(Sy) (for all @ > 3) provided by Corollary 3.1.4. This implies that
lim Az«(S,) =-(e+1).
a—+00

Our next result allows us to determine, for any divisorial valuation v of P2, a
bound for the value Ap«(S,) depending only on purely combinatorial information

given by the dual graph of v.

Corollary 3.1.6. Let v be a divisorial valuation of P? with associated configuration

C, =A{pi}}-, admitting a tangent line (i.e. n>2).

(a) If n >3 and ps3 is satellite (that is, ps > p2 and ps — p1), then

(B0 vt B ]
)\L*(SV)Z 1 [(61(”)) [ 1 ( )] 2/31(1/)“ ’

(b) Otherwise,

N 1-100) B ETNORE R YO
)\L*(SV)Zmln{l BO(V)‘L 1 ’74[ 1V ()] 25_1(1/)} },

where [ ] denotes the ceil function and [ |* is defined as before Theorem 3.1.2.

Proof. Keep the notation as in Corollary 3.1.4 and let H be the tangent line of v.
To prove (a), we have to assume that n > 3 and pj3 is satellite. From this second
condition, we deduce that the value N introduced in Corollary 3.1.4 for V = {v}
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satisfies u = 2 and v(ppy) = B1(v). Thus, by Corollary 3.1.4, Ap«(S,) > -1 - &o(v).
The fact that

_ = = + ~ 2 _ +
(1) = [vol(u) 1_ 250(V)51(1/)} _ {(%) [volN(u)]_l B 2&@)1

Bi(v)? Pi(v)

finishes the proof in this case.
To prove (b), assume that either n = 2 or p3 is free. This implies that 25q(v) <
v(eog) < B1(v). Then

do(v) < Lll [VOIN(V)T1 - QBO(V)T .

Bi(v)

This inequality, together with Corollary 3.1.4 and the fact that u < [B1(v)/Bo(V)],
proves (b).

O

Remark 3.1.7. Let v be a divisorial valuation of P? different from the m-adic val-
uation and C, = {p;}I, its related configuration (notice that n > 2). The bound
on Ar«(S,) provided in Corollary 3.1.6 is not less than 1 - HVO]N(V)]&]. Since
Bgr1(v) = ¥ v(m;)? (1.18), it holds that

|- ]- B (5 |

i=1

and the mentioned bound is not worse than the trivial bound Az-(S,) > 1-n.

Taking into account that, for any real number a > 1, the set
{#CV | v is a divisorial valuation of P? such that HVOIN(V)]_l] <a }

is unbounded, one can find valuations where our bound improves the trivial one as
much as one desires. By a similar reasoning one could give a similar statement for

the more general bound given in Corollary 3.1.4.

To conclude this section we show the existence of families of infinitely many
rational surfaces Sy, obtained from the projective plane by sequences of blowups,

with arbitrarily big Picard number, sharing the same bound for Az« (Sy ).

Corollary 3.1.8. Let V = {v1,...,un} be any finite family of divisorial valuations
of P2. Assume that vy,...,vp (with 1 <k < N) admil a tangent line and that, for
alli=1,...,k, the last point p,, of Cy, = {p1,...,pn,} s free. For eachi=1,... k,
consider any set of infinitely near points D,, = {pj}jnzlﬁiﬂ such that, pp,«1 = Pn,,
Pnj+1 = Pni—1 and, for all j = n; +2,...,m;, p; is satellite and p; - pj_1. For
1 <i <k, denote by v} the divisorial valuation of P? whose associated configuration
15 Cy, UD,, and set

! ! !
Vi={vi, ...,V Vi1, -, UN}
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Then Ap+(Sy) is not lower than the bound of Ap+(Sy) provided by Corollary
3.1.4, that s,
N
Ap+(Syr) 2 min{l — = Y. 60(v;) = 2N + 1} ,
i=1
where 1 denotes the mazimum cardinality of o subset of aligned points in Uﬁl Cy,
and 60(v;) 1is defined as before Theorem 3.1.2.

Proof. Pick i€ {1,...,k} and set {Bj(’/i)}?:o the sequence of maximal contact values
of the valuation v;. Since we add satellite points, the sequence of maximal contact
values of the valuation v/, {B](y{)}fiol,
eg-1(v)) = ged(Bo(v)), B1(v)), ..., Bg-1(v])), by Definition 1.8.4, [34, Lemma 1.8]

and |75, Corollary 1.3.6], it holds that

has g + 2 elements. In addition, defining

Bj(l/i,) = eg—l(yz{)/éj(yi)v 0<j<g-1,

By (Vi) = eg-1(v])By(vi) — a, where a < eg_1(1;)
and
Bgu1 () = eg-1(v]) (eg-1 (1) By (vi) — ).
Also, if H; denotes the tangent line of v; (and therefore of v)), then, v)(¢pm,) =

eg-1(V])vi(wm,;). Therefore, one get the following chain of equalities and inequality:

vol() ! = 280 ()i (pm) _ Byt (V) = 2Bo(v)vi(om) _
(vi(pm))? (vi(pm))?
eg-1(7;) (eg—l(yz{)BgH(Vi) - G) ~2(eg-1(¥]))?Po(vi)vi(pm) B
(eg-1(v))?vi(pn))? )
< do(vi)-

do(v}) =

a

eg-1(V))vi(pn))?

do(vs) -

Finally, by considering Corollary 3.1.4, the proof is concluded.

3.2. Approach by using foliations

Throughout this section, Sy denotes P2 or Fs, § > 0, and we consider a rational
surface S such that (.59,5,C) is an Sp-tuple (see Definition 1.4.6). Recall that it
means that S is obtained from a sequence of blowups at the closed points in C of the
form

™ Tn-1 ™
7TZS=Sn—n>Sn,1L>"'—>SO

where n = #C (see Definition 1.4.6). Let H be an integral non-exceptional curve on
S.

We are going to provide a bound for

H2
D-H
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depending only on S, D being the total transform of L (respectively, F' + M), if
So = P? (respectively, So = Fs5). As before, L (respectively, F' and M) is a general
line on P? (respectively, are a fiber and an irreducible section of self-intersection §
on s as defined in Subsection 1.4.2). Notice that the fact that H is not exceptional
is equivalent to the inequality D - H > 0 because L (respectively, F'+ M) is an ample

divisor.
More specifically, we bound from below the following number vp(S), defined as
2

L*-H

v« (S) = inf{

| H is an integral curve on S such that L* - H > 0}

52
=inf {deg(C) | C is an integral curve on IP’2}, when S; = P?,

H2
vps g+ (S) = inf{w | H is an integral curve on S such that (F*+ M*)- H > O}
52
:inf{degl(c) {0+ 1) degy (O) | C is an integral curve on F5}, when Sy = Fs,

where C' denotes the strict transform of C' on S and deg; denotes the ith coordinate
of the bidegree of a curve on Fs.

Foliations on surfaces are an important tool in this section. Keep the notation as
in Chapter 1. Let X be a smooth complex projective surface and F a singular holo-
morphic foliation on X. Recall that F can be defined by a family of pairs {(U;, v;) }ier,
where {U,;}ier is an open covering of X and v; a non-vanishing holomorphic vector
field on U;, i € I (see Definition 1.5.1).

Let G be a reduced curve on X such that its irreducible components are non-
invariant by F. For any point p € G, let f, = 0 be a local equation of G around p
and v, a local holomorphic vector field generating F,, (the restriction of F, defined
at the beginning of Section 1.7). Following [10, Chapter 2, Section 2|, we define the
tangency order of F to G at p as

tang(]:, G,p) = dimc OX,p/(fpv”p(fp))'

Notice that, since G is non-invariant by F, v,(fp) ¢ (fp) and then Ox ,/( fp, vp(fp))
is a finite-dimensional linear space over C and tang(F,G,p) < co. Moreover, if F is
transverse to G at a point p (it means that every local invariant curve of the foliation
and G meet transversely), tang(F,G,p) = 0. As the irreducible components of G are
non-invariant by JF, there are finitely many points where F is not transverse to G.

Hence we can define

tang(F,G) := Y tang(F,G,p).
peC

The following lemma (which will help us to give our bound) follows from the fact
that tang(F,G) > 0 and [10, Proposition 2.2|, which states that

G? = -Kr-G +tang(F,G),

where K r is the canonical divisor of F as defined in Section 1.5.
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Lemma 3.2.1. Let F be a foliation defined on a smooth projective surface X. If G

is a reduced non-invariant (by F) curve on X, then
G?>-Kr-G. (3.2)

Subsection 3.2.1 shows the existence a foliation F on Sy such that every point
p € C is an ordinary singular point of F.

In Subsection 3.2.2 (respectively, 3.2.3) we give, for each P2-tuple (respectively,
Fs-tuple) (S,P2,C) (respectively, (S,Fs,C)), a lower bound of vz«(S) (respectively,
v+ (S)) by using Lemma 3.2.1 and the results in Subsection 3.2.1 (respectively,
Subsection 3.2.3), depending only on Sy and C.

3.2.1. Attached to Sy-tuples foliations

Keep the notation as above, where Sy denotes either the projective plane P? or
a Hirzebruch surface Fy.

Let C be a configuration over an open subset U of Sy with a unique proper point
p (that is, O¢ = {p}). Let ¢ ={q1,...,qs} the set of ends of the configuration C (see
Definition 1.2.2) and let W be the subset of free points in . For any ¢; € W, set q;-
the only satellite point in the exceptional divisor given by blowing-up ¢;. Consider

the configuration

C( U <c>%’)u( U ((C)%u{qg})).

W 4w
Set C = {p1=p,...,pn} and, attached to C, let us define the following positive integer:
de == min{d € Zso | P;' (d1; - m;) > 0}, (3.3)

where P (respectively, m;) is the proximity matrix (1.6) (respectively, the vector
of multiplicities (1.8)) of € and 1; the #C-dimensional column vector whose first
coordinate is 1 and any other coordinate is 0.

The following result will help us to prove our forthcoming Theorem 3.2.3.

Lemma 3.2.2. Let p be a point in Sy := P? (respectively, So := Fs for some § € Zsg).
Consider an affine open subset U € {Ux, Uy, Uz} (respectively, U € {Uyo, Uo1, Uno,
Ui1}) such that p € U and take the affine coordinates (x,y) € U as defined at the
end of Subsection 1./.1 (respectively, Subsection 1./.2). Consider a (possibly empty)
finite set of points Q € Sy such that p ¢ Q and let C be a configuration over U = C?
such that Oc = {p}. Let d¢ be the positive integer given in (3.5). Then, there exist
a polynomial f € Clxz,y] of degree less than or equal to d¢c — 1 and a polynomial
g(z,y) = \ade + Aoy + s(x,y), with A1, As € C~ {0}, s(z,y) € C[z,y] and deg(s) <
de, satisfying the following conditions:

(a) f(p)=9(p)=0.
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(b) No point q € Q belongs to the closure in Sy of the affine curve in U with equation
9(z,y) =0.

(¢c) f and g have no non-constant common factor.

(d) The pencil P of affine plane curves given by the equations af (z,y)+8g(x,y) =0
(where (o: B) runs over P1) satisfies that C ¢ BP(P).

Proof. Set C= {p1=p,...,pn} as introduced before the statement. Suppose that the
coordinates of p in U are (a,b) and let us define 2’ := x — a and 3 := y — b in such
a way that p, in the affine coordinates (z’,%"), becomes the origin. For each s € Es
let &5 be an analytically irreducible germ of curve at p such that its strict transform
és on the surface containing the exceptional divisor Es is smooth and transversal
to Es at a general point. Also, identify («’,y") with their images in the local ring

e, = C{«',y'}, and pick a convergent power series hs(z',y") € C{z',y'} defining
&s. Let us consider the germ £ at p defined by the power series

H hs(x,7y,) = Z cij(‘r,)i(y,)j7 Cij € C for all i, J.
seés =1

By Part 1 of Lemma 1.3.5, the positive integer d¢ defined in (3.3) is C-sufficient
for . Consider the polynomial f/(z',y") := foj_:ll cij(z))'(y')? € C[a',y']. Fix two
general non-zero complex numbers A\; and Ay and let us define ¢/(z',y’) := Ay (z')% +
X2 (y')%. Notice that f'(z',3') and A (z')% + \a(y')% do not have non-constant
common factors (because A\; and Ay are chosen to be general).

Let 7 be the germ at (0,0) of a general curve of the pencil of affine curves with
equations af’(z',y") + Bg’(z',y’) = 0, with (a : B) € PL. Let K(n) be the singular
configuration of 7 (see Definition 1.3.2). By definition, d¢ is C%-sufficient for 7.
Moreover, by Part 2 of Lemma 1.3.5, K(n) = K(€) = C and, therefore, C € K(n).
Notice that /() is contained into the configuration of base points of the pencil by
Bertini’s Theorem (see [64, Chapter III, Corollary 10.9]).

The result follows by considering the pencil P of affine curves defined by the

equations

af(z,y) +Bg(z,y) =0, (a:pB)eP
where f(x,y) == f'(z —a,y - b) and g(z,y) := ¢'(x — a,y - b), and by noticing that
Conditions (a), (c) and (d) of the statement are satisfied (by the construction of P)

and that, if A1, Ay are chosen to be general enough, Condition (b) holds as well.
O

The main result of the subsection is the following one.

Theorem 3.2.3. Let (S, Sy,C) be an So-tuple, where Sy = P? (respectively, Sy = Fs).
Then, there exists an algebraically integrable foliation F on Sy such that C € Bx and
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the degree r (respectively, bidegree (dy,d2)) of F is bounded as follows:
r<2d -2 (respectively, di <2d+ -2 and d2 <2d-2),

where d =Y .0, d(c),, d(c), being as defined in (5.5).
Moreover, there ezists a rational first integral of F of degree (respectively, bide-
gree) d (respectively, (a,b) with a<d, b=d).

Proof. Assume Sy = P? (respectively, So = Fs). For every point p € O¢ consider,
following the notation in Subsection 1.4.1 (respectively, Subsection 1.4.2); an open
subset U, € {Ux,Uy,Uz} (respectively, U, € {Upo,Uo1,Uio,U11}) such that p € U,
and let P, be the irreducible pencil of affine curves on U, provided by Lemma 3.2.2
(considering @ as the set O¢ \ {p}). It satisfies

(C), < BP(P,). (3.4)

Let Fp(X,Y,Z) = 0 and G,(X,Y,Z) = 0 (respectively, Fp,(Xo,X1,Y,Y1) =0 and
Gp(Xo,X1,Y0,Y1) = 0) be the equations of the closures on P? (respectively, Fs) of

two general enough curves of the pencil P,. Then the polynomials

F:= ][] F, and G:= [] G,

peOc peOc
have no non-constant common factor. If Sy = P2, then it is clear that F and G are
polynomials of degree d and, if Sy = Fy, as a consequence of Lemma 3.1.1, F' and
G are polynomials of the same bidegree (a,b) such that a < d and b = d (notice
that Lemma 3.2.2 shows that, for all p € O¢, the polynomials in C[x,y] defining the
restrictions to U, of the curves with equations F}, = 0 and G}, = 0 have monomials
z% and y? with non-zero coefficients). Therefore we can consider the irreducible
pencil Pg, of curves on Sy defined by the equations aF' + G = 0, where («: ) runs
over P!

Notice that Condition (b) of Lemma 3.2.2 guarantees that, for all p € O¢, the
germs at p of the curves in Pg, coincide with those of the curves in P,. Therefore
Upcoc. BP(Pp) € BP(Ps,) and, by (3.1), since C = Upeo.(C)p, one has that C ¢
BP(Ps,).

The homogeneous (or bihomogeneous) 1-form FdG — GdF can be factorized as
FdG - GdF = HS), where ) is a reduced homogeneous (or bihomogeneous) 1-form
and H is a homogeneous (or bihomogeneous) polynomial. Let F be the foliation on
So defined by €. Notice that Px = Pg, and hence, F//G is a rational first integral
of F of degree d (respectively, bidegree (a,d), with a < d) if Sy = P? (respectively,
So = F5). Moreover, since Bx = BP(Pr) (by Proposition 2.1.1), C ¢ B holds.

If So = P? (respectively, Sy = F5) and

Q= AdX + BdY +CdZ, A,B,C € C[X,Y, Z], (respectively,
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Q= A50dXo+ As1d X1+ Bs0dYo + Bs1dY1, Asp, As1, Bso, Bs1 € C[Xo, X1,Y0,Y1]),

by Theorem 1.5.4 (respectively, Theorem 1.5.10), the degree (respectively, bidegree)
of F is deg(A) -1 (respectively, (deg;(As0)+d—1,degy(As50)-2)). As Q= LHGCIF
and the degree (respectively bidegree) of F' and G is d (respectively, (a,b)), then
the degree (respectively, bidegree) of F is, at most, 2d -2 (respectively, (d;,ds) such
that dy <2d+ -2 and ds < 2d - 2).

O

The following concept will be useful in the rest of this chapter.

Definition 3.2.4. Let (S, So,C) be an Sy-tuple, where Sy is either P? or F5. An
attached to (S, Sy,C) foliation is any foliation satisfying the conditions given in the

statement of Theorem 3.2.3.

3.2.2. Approaching bounded negativity for rational surfaces over
the projective plane

Keep the notation as above. Let (S, P?,C) be a P?-tuple (see Definition 1.4.6) and
F an attached to (S,P?,C) foliation on P2. The next result determines a linear (on
the degree of 7, H) lower bound on the self-intersection of the non-invariant (by F)
integral curves H on .S which are not exceptional, where 7 denotes the composition

of the sequence of blowups centered at the points of C.

Theorem 3.2.5. Let (S,P2.C) be a P*-tuple. Let F be an attached to (S,P?,C)
foliation and F the strict transform of F on S. Then, each non-invariant (by f}

non-exceptional integral curve H on S satisfies
H?>-|2 % dey, -3|(L" H),
peO¢
where dcy, is the integer defined in (5.5).

Proof. A canonical divisor Kz of the strict transform F of F on S is linearly equiv-

alent to .
(r-=1)L" - Z (Vp; (F) + €p,(F) - 1) B,
i=1

where C = {p;}I,, r is the degree of F, vp,(F) the multiplicity at p; of the strict
transform of F on the surface containing p; and €, is 1 if p; is a terminal dicritical
point and 0 otherwise (see (1.15)).

By Lemma 3.2.1

H2 2 _Kf “H = —(’I” - 1) deg(ﬂ—*H) + il (sz(]:) + 6Pi(*¢) - 1) multm(@mH)'

Moreover, as p; is a singular point of F for all ¢, vp,(F) > 1 and hence

H?> —(r-1)deg(m.H).
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Now, F is an attached to (S,PP?,C) foliation on P2, i.e., an algebraically integrable
foliation such that C ¢ Br, whose degree r satisfies

r<2 Yy diy, -2
peOc

This bound and the fact that deg(w.H) = L* - H complete the proof.

Now we study the case where H is an invariant by F curve.

Proposition 3.2.6. Let (S,P2,C) be a P?-tuple. Let F be an attached to (S,P?,C)
foliation and F the strict transform of F on S. If H is an invariant (by f} integral
curve such that L* - H >0, then it holds that

2

>d(1-
o > (1),

where n =#C and d = Y0, d(c),, d(c), being the integer defined in (5.3).

Proof. Assume that C = {p;}],. We start by noticing that n > 1 because, otherwise,
F would not be algebraically integrable by Bezout’s theorem, which states that two
curves in P? intersect at least at a point.

Let F/G be a rational first integral of F and B its dicritical configuration (see
Definition 1.7.6). Notice that C ¢ Bx. Consider the characteristic divisor Dz =
dL* -y m;Ef (2.12).

Let H be an invariant (by F) integral curve on S such that L*-H > 0 (recall that
this condition implies that H is not exceptional). By Lemma 2.1.3, H is an integral
component of the strict transform of an invariant by F curve C.

Then, H is linearly equivalent to a divisor of the form hoL* - Yi"y hES, hi 20

for all 7, and it satisfies:
1. Dy-H =0, that is, dhg = Y"1 m;h;.
2. hg < d (the equality holds if and only if C is integral).
3. h;> ij—’Pi hj and h; < hg for all i.

As a consequence, there is a finite number of linear equivalence classes of such
curves H. Moreover, H? = h — ¥, h?  and then

H2 R2-R2
= >hg—h; 20
L*-H  ho o
if n =1, and otherwise
H R3-SR "
= ==L >hog-» h; >ho(1-n)>d(1-n).
L H hO = 140 ; O( n) ( ’I’l)

This concludes the proof.
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At the begining of Subsection 3.2, we defined

H2
v« (S) ::inf{L* i | H is an integral curve on S such that L* - H > 0},

which allows us to state the main result in this subsection. It is a direct consequence

of Theorem 3.2.5 and Proposition 3.2.6.

Corollary 3.2.7. Keep the notation as before Theorem 3.2.5. Let (S,P?,C) be a
P2-tuple (see Definition 1./.6). Then,

vr+(S) 2 min {~(2d - 3),d(1-n)},

where n =#C and d = Y0, d(c),, d(c), being the integer defined in (3.5).

3.2.3. Approaching bounded negativity for rational surfaces over
Hirzebruch surfaces

Let Fs be any dth Hirzebruch surface, § > 0, and keep the notation as above. Let
(S,Fs,C) be an Fs-tuple (Definition 1.4.6) and F an attached to (5,Fs,C) foliation
on Fs (Definition 3.2.4). Our next result provides a bound on the self-intersection of
the non-invariant (by F) and non-exceptional integral curves H on S. This bound
is linear in the coordinates of the bidegree of 7, H, where m denotes the composition

of the sequence of blowups centered at the points in C.

Theorem 3.2.8. Let (S,Fs,C) be an Fs-tuple. Let F be an attached to (S,Fg,C)
foliation and F the strict transform of F on S. Then, each non-invariant (by f}

integral curve H € S that is not exceptional satisfies
H?>-2(d-1)deg,(m H) - (2d -2 - § + 2d6) deg, (7. H),
where d = Y.pc0. d(cy, d(c), being the integer defined in (5.5).

Proof. Any canonical divisor Kz of the strict transform F of F on S is linearly

equivalent to the divisor

n
"+ dy M = (v, (F) + ey, (F) - D E],
i=1
where C = {p;}i,, (d1,d2) is the bi-degree of F, vp,(F) the multiplicity at p; of the
strict transform of F on the surface containing p; and €, is 1 if p; is a terminal
dicritical point and 0 otherwise (see (1.153)).
By Lemma 3.2.1

H?>-Kz H =-dydeg (. H) — (d1 + d2) degy(m. H) + > (v + & — L) multy, (or, 1)
=1

Moreover, as p; is a singular point of F for all 4, vp,(F) > 1 and hence

H? > —dydeg, (7. H) - (dy + 6ds) degy (7, H).
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F is an attached to (S,Fs,C) foliation F on Fs and then it satisfies the condition in
Theorem 3.2.3, therefore the bidegree (di,ds) is bounded by

di £2d -2+ 6, do <2d -2,

which concludes the proof.
O

Corollary 3.2.9. Let (S,Fs,C) be an Fs-tuple. Let F be an attached to (S,Fs,C)
foliation and F the strict transform of F on S. Let H be a non-invariant (by .75)
integral curve on S such that (F*+M*)-H >0. Then

H2
———>-2(d-1) -,
(F*+M*)-H
where d =Y .0, d(cy,, d(c), being the integer defined in (3.5).
Proof. Recall that the condition (F*+ M*)-H >0 means that H is not exceptional.
The proof follows from Theorem 3.2.8 and the following calculations:
H? > -2(d-1)deg (m. H) - (2d -2 - § + 2d6) degy (m, H)
=-2(d-1) (deg; (7« H) + ddegy(m H)) — (2d — 2+ 0) degy (7. H)
=-2(d-1)(M*-H)-(2d-2+06)(F*-H)
==2d-1)((F*+M*)-H)-0(F"-H),

which allows us to conclude that

2 .
Mmz—%d—l)%%z&(d—l)—d

O

To finish this section, we study the case where H is an invariant by F curve. We

start with a lemma that will be used in the proof.

Lemma 3.2.10. Let (S,Fs5,C) be an Fs-tuple where C = {p;}1,. Consider a curve
C on Fy and suppose that the strict transform C of C' on S is linearly equivalent to
the divisor oF™* + fM* = Y7 hy, ES. Then

hp, <a+[B+6B3, forall1<i<n.

Proof. Let
F(X()yXl)}/val) = Zfao,al,bo,legoXill}/ObO}/lbl =0

be a homogeneous equation of C' and consider the set M of monomials X§°X leObO Ylb1

appearing in the expression of F' such that fo, 4, p05, # 0. Notice that

a0+a1—5blza, b0+b1:5, (35)
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for all monomial in M. Write C = Ugeo,(C)q, where O is the set of origins of C (see
Definition 1.2.2). For all p € (C)g, it is clear that h, < hy.

Let us see that hy < a+ 3+ 93 for all ¢ € O¢. Consider an affine open subset
Uji € {Uoo, Uo1, Uro, Ur1} such that ¢ € Uj;, and take the affine coordinates (z,y) € Ujg
as defined at the end of Subsection 1.4.2. A local equation of C' at Uy, is given by

Z fao,al,bo,bl xaj ybk =0. Hel’lce,
hqgaj + by, <ag+ay —0by + by + by + by + by Sa-}-ﬁ-{-éﬁ,

where the last inequality is a consequence of (3.5). O

Proposition 3.2.11. Keep the notation as before Theorem 3.2.8. Let (S,Fs,C) be
an Fs-tuple, F an attached to (S,F5,C) foliation and F the strict transform of F on
S. If H is an invariant (by F) integral curve such that (F* + M*)-H > 0, then it

holds that
HQ
(F*+M~*)-H
where n = #C and d = ¥ ,c0. d(c),, dc), being the integer defined in (5.3).

>min{-n-9J,-( +2)dn},

Proof. Assume that C = {p;}!",. Let F//G be a rational first integral of F, D =
aF*+bM* -y m;E; its characteristic divisor (2.12) and Bz its dicritical configuration
(notice that C € Bx). By Definition 3.2.4 and recalling Theorem 3.2.3, we can assume
that a <d and b =d.

Suppose that H is an invariant (by F) integral curve on S which is linearly
equivalent to aF™* + BM* - Yi'y h;E] and such that (F*+ M*)-H >0 and h; >0
for all i. H is not exceptional (because F + M is an ample divisor on Fs) and
(F*+M*)-H =a+£+08. By Lemma 2.1.3, H is an integral component of the strict
transform of an invariant (by F) curve C.

It follows from [64, Chapter V, Proposition 2.20] that either C' is linearly equiv-
alent either to F' or My, or [C] = o[ F] + S[M] with a >0 and 8 > 0. Thus, it holds

some of the following three cases:

(a) H is linearly equivalent to F* - Y1 hE, e, =1, 8=0and 0< h; <1 for
all 4. Then,
H2 n
S R % T
(F*+M*)-H i1
(b) H is linearly equivalent to —0F* + M* - ¥ h;E}
0< h; <1 for all 4. Then,
H2 n
N T ay &
(F*+M*)-H ; !

(c) H is linearly equivalent to aF* + SM™* - Y0  ES, a > 0,5 > 0. Then H

satisfies:



124 3. Bounded negativity

(1) Dr-H =0, that is, af + ba + bBd = 3iv; m;h,;.
(2) a<aand S <b (both equalities hold if and only if C' is integral).
(3) hi> Yp,~p; Ity and, by Lemma 3.2.10, 0 < h; <+ B+ /3.

As a consequence, there are finitely many linear equivalence classes for such curves
H. Moreover, H? = 2a3+ 6% — Y1 h? and thus

H? 2aB+0B% - ¥ h? N 203 + 032 —n(a+ B +63)?
(F*+M~*)-H a+B+683 - a+pB+08
>—n(a+B+d8)>-n(a+b+06b) >—(0+2)dn,

where the last inequality is consequence of Theorem 3.2.3. This concludes the proof.
O

At the begining of Subsection 3.2, we considered the value

H2

o+ (S) =inf{ ————
vieen(S) =i {(F*+M*).H

| H is an integral curve on S such that (F*+ M™)-H > 0}.

The main result in this subsection is to give a lower bound for this last number
depending only of C. It is a direct consequence of Corollary 3.2.9 and Proposition
3.2.11.

Corollary 3.2.12. Keep the notation as before Theorem 5.2.8. Let (S,Fs,C) be an
Fs-tuple (see Definition 1./.06). Then,

Ve (S) 2min{-2(d—-1) - 9,-n - 3,—(d +2)dn},

where n =#C and d = ¥ 0, d(c),, d(c), being the integer defined in (3.5).
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Let Sy be the projective plane P? or a Hirzebruch surface Fj, where § is a non-
negative integer, both complex. We say that the tuple (S,Sy,C) is an Sp-tuple if C
is a configuration of proper or infinitely near points of Sy (see Definition 1.2.2), and
S is a rational surface obtained by the sequence of blowups of Sy centered at the
points of C.

In Chapter 2 we show necessary conditions for the algebraic integrability of a
foliation FC* defined by bivariate polynomials. For this purpose, we use an extended
foliation F from FC to So. Theorem 2.3.6 presents a necessary condition for al-
gebraic integrability over ]-'CQ, and Theorems 2.4.11 and 2.4.13 provide necessary
conditions on the foliation F to have a rational first integral when Sy = Fs, which
are extended in Subsection 2.4.3 for the case of Sy = P2.

The above results allow us to delimit the Newton polytope (see Definition 2.3.15)
of an algebraically integrable foliation F. Theorem 2.3.16, and Corollaries 2.3.17
and 2.3.19 study this polytope.

Furthermore, under certain premises, we are able to solve the problem of algebraic
integrability of a foliation on Sy or C? and, if it has a rational first integral, to compute
it. This is achieved by applying Algorithms 2.5.1, 2.5.2, 2.5.7, and 2.5.141 presented
in Section 2.5.

To conclude, in Chapter 3, we consider some problems related to the Bounded

Negativity conjecture of a smooth rational surface.

Specifically, we take a P2-tuple (S,P?,C), define the number

2

)\L*(S) = lnf{m

| H is an integral curve in S such that L™ - H > O}

and obtain a much better bound than the trivial one when S is the sky of a divisorial
valuation (Theorem 3.1.2). This allows us to bound this value for any rational
surface S obtained by a sequence of blowups at proper or infinitely near points of
the projective plane, as shown in Corollaries 3.1.3, 3.1.4, and 3.1.6. Additionally, in
Corollary 3.1.8, we prove the existence of infinite families of rational surfaces that
share the same bound for Ap«(.5).

Finally, if S is a complex rational surface such that (.S, Sp,C) is an Sp-tuple, we
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define the number vp(S) as

H2
vp(S) := inf{D i | H is an integral curve in S such that D- H > 0},
where D = L* (respectively, D = F* + M*) if Sy = P? (respectively, So = Fs).
Corollaries 3.2.7 and 3.2.12 determine a bound for this value. Theorems 3.2.3,
3.2.5 and 3.2.8 involve foliations and are crucial in the proofs of the aforementioned

corollaries.



Conclusiones

Sea Sy el plano proyectivo P? o una superficie de Hirzebruch Fj, siendo ¢ un
entero no negativo, ambos complejos. Se dice que la tupla (.S, Sy, C) es una Sp-tupla
si C es una configuracion de puntos propios o infinitamente proximos (ver Definicion
1.2.2) y S es una superficie racional obtenida por la secuencia de explosiones de Sy
centrada en los puntos de C.

En el Capitulo 2 mostramos condiciones necesarias para la integrabilidad algebrai-
ca de una foliacion FC” definida por polinomios en dos variables. Para ello, usamos
la foliacion extendida F de FC° a So. El Teorema 2.3.6 presenta una condicién ne-
cesaria para la integrabilidad algebraica de FC v los Teoremas 2.4.11 y 2.4.13 dan
condiciones necesarias para que la foliacién F tenga integral primera racional cuando
So = F5, que se extienden en la Subseccion 2.4.3 al caso Sy = P2.

Los resultados anteriores permiten delimitar el politopo de Newton (véase Defi-
nicion 2.3.15) de una foliacion F' c algebraicamente integrable. El Teorema 2.3.16 y
los Corolarios 2.3.17 y 2.3.19 estudian este politopo.

Ademas, suponiendo ciertas premisas, somos capaces de resolver el problema de
integrabilidad algebraica de una foliacién en Sy o C? y, en caso de tener integral
primera racional, calcularla. Eso se consigue aplicando los Algoritmos 2.5.1, 2.5.2,
2.5.7y 2.5.14 presentados en la Secciéon 2.5.

Para acabar, en el Capitulo 3 consideramos problemas relacionados con la conje-

tura de la Negatividad Acotada de una superficie lisa racional.

En primer lugar tomamos una P2-tupla (S,P?,C), definimos el ntimero

2

)\L*(S) = fnf{m

| H es una curva integral en S tal que L* - H > O}

y obtenemos una cota mucho mejor que la trivial cuando S es el cielo de una va-
loracion divisorial (Teorema 3.1.2). Eso nos permite acotar ese valor para cualquier
superficie racional obtenida por una serie de explosiones en puntos propios o infini-
tamente préoximos del plano proyectivo como muestran los Corolarios 3.1.3, 3.1.1 y
3.1.6. Y en el Corolario 3.1.8 probamos ademas la existencia de familias infinitas de

superficies raciones que comparten la misma cota para Ap-(.5).

Finalmente, si S es una superficie racional compleja tal que (S,Sp,C) es una
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So-tupla, definimos el namero vp(S) como

2

H

vp(S) := inf{D i | H es una curva integral en S tal que D- H > O},
donde D = L* (respectivamente, D = F* + M*) si Sy = P? (respectivamente, Sy = Fs).
Los Corolarios 3.2.7 y 3.2.12 determinan una cota de ese valor. Los Teoremas
3.2.3, 3.2.5 y 3.2.8 involucran foliaciones y son determinantes en las pruebas de los

corolarios que hemos mencionado.
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