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Abstract

This PhD thesis provides some advances to two open problems in the mathemat-

ical �eld. These are the problem of algebraic integrability of polynomial foliations

on the complex a�ne plane, and the bounded negativity conjecture. The �rst one

is part of the study of di�erential equations while the second belongs to that of al-

gebraic surfaces. Our approaching uses techniques of algebraic geometry, and the

objects studied in the �rst problem will be useful in our treatment of the second.

After a chapter containing some preliminaries that help to develop the rest of

our PhD thesis, in Chapter 2 we show how to extend a polynomial foliation FC2
on

the complex (a�ne) plane to the projective plane or to a Hirzebruch surface, both

also complex. The foliations we study are singular, and the process of reducing their

singularities (particularly the dicritical ones) determines a smooth algebraic surface

T , whose geometry is key in our study. Then, we give several algorithms that, under

certain assumptions, allow us to decide on the existence of a rational �rst integral of

FC2
and calculate it if it exists. Among other cases, we show algorithms which run

whenever the cone of curves of T is polyhedral or when the genus g ≠ 1 of the rational

�rst integral is known. In the latter case, in some speci�c situations the algorithm

may not provide an output, but it always does if we are looking for a polynomial

�rst integral.

To conclude, Chapter 3 solves some problems related to the bounded negativity

conjecture. The bounded negativity conjecture states that there exists a lower bound

for the self-intersection of any reduced and irreducible curve H on a smooth complex

surface S and that this bound depends only on S.

Let S0 be either the projective plane or a Hirzebruch surface. Assume that S is

a surface obtained by a sequence of blowups at proper or in�nitely near points of

S0. In the case when S0 is the projective plane, we provide a common lower bound

on the quotients H2

(H ⋅L∗)2
, L∗ being the total transform of a general line on S0 and

H running over the set of non-exceptional reduced and irreducible curves on S; this

bound is valid, not only for complex surfaces, but also when S is a surface over an

algebraically closed �eld. Finally, when S is complex and we consider any surface

S0, we obtain a common lower bound on the values H2

H ⋅D , where D is a speci�c nef

divisor on S and H runs over the set of reduced and irreducible curves on S such

that D ⋅H > 0.
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Resumen

Esta tesis ofrece algunos avances a dos problemas del campo matemático que

siguen abiertos en la actualidad. El primero de ellos es el problema de integrabilidad

algebraica de foliaciones polinómicas sobre el plano afín complejo. Y el segundo,

la conjetura de la negatividad acotada. El primer problema se enmarca dentro del

estudio de las ecuaciones diferenciales mientras que el segundo pertenece al estudio

de las super�cies algebraicas. Ambos se abordan con técnicas de geometría algebraica

y los objetos estudiados en el primer problema serán útiles en nuestro tratamiento

del segundo.

Después de un capítulo que contiene algunos preliminares que ayudan a desa-

rrollar el resto de la tesis, en el Capítulo 2 se muestra cómo extender una foliación

polinómica FC2
sobre el plano (afín) complejo al plano proyectivo o a una super�cie

de Hirzebruch, ambos complejos. Las foliaciones que estudiamos son singulares y el

proceso de reducción de sus singularidades (en particular las dicríticas) determina

una super�cie algebraica regular T cuya geometría es la que sustenta nuestro estudio.

Gracias a este estudio, en este capítulo proporcionamos una serie de algoritmos que

bajo algunas premisas permiten decidir sobre la existencia de una integral primera

racional de FC2
y calcularla si esta existe. Entre las premisas está que el cono de

curvas de T sea poliédrico o que se conozca el género g ≠ 1 de la integral primera

racional. En este último caso, en alguna situación que podemos determinar el al-

goritmo puede no dar salida, pero siempre la da si buscamos una integral primera

polinómica.

Para concluir, el Capítulo 3 resuelve algunos problemas relacionados con la con-

jetura de la negatividad acotada. La conjetura de la negatividad acotada a�rma que

existe una cota inferior para la autointersección de cualquier curva H reducida e

irreducible de una super�cie compleja lisa S.

Sea S0 el plano proyectivo o una super�cie de Hirzebruch. Supongamos que S es

una super�cie obtenida por una secuencia de explosiones en puntos propios o in�ni-

tamente próximos de S0. En el caso en que S0 es el plano proyectivo, proporcionamos

una cota inferior común de los cocientes H2

(H ⋅L∗)2
, siendo L∗ la transformada total de

una recta general en S0 y H recorriendo el conjunto de curvas reducidas e irreduci-

bles no excepcionales en S. Esta cota es válida no sólo para super�cies complejas,
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x Resumen

sino también cuando S es una super�cie sobre un cuerpo algebraicamente cerrado.

Finalmente, cuando S es compleja y consideramos cualquier super�cie S0, obtenemos

una cota inferior común para los valores H2

H ⋅D donde D es un divisor nef especí�co en

S y H recorre el conjunto de curvas reducidas e irreducibles en S tales que D ⋅H > 0.
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Introduction

In this work we address two old mathematical problems with the aim of producing

some advances on them.

The �rst one is the planar algebraic integrability problem. It asks for deciding

whether a foliation on the complex plane has a rational �rst integral and computing

it in the a�rmative case. In a more classical language, this problem arose at the

end of the nineteenth century within the study of the algebraic solutions of ordinary

di�erential equations. Darboux [32], Poincaré [79, 80, 81, 82, 83], Painlevé [76] and

Autonne [2] were very important contributors. Despite many e�orts during more

than a century, this problem is still open.

In the �rst part of this memoir, we introduce a new technique consisting in con-

sidering extensions of the foliations on the a�ne plane C2 to foliations on Hirzebruch

surfaces. We will present some new contributions based on the study of the dicritical

resolution of the foliation on the Hirzebruch surface. In a moment, we are going to

give a little more information about the state of the art and later, on our contri-

butions. This problem essentially belongs to the �elds of di�erential equations and

dynamical systems but we treat it with tools of algebraic geometry.

The second problem we address belongs to algebraic geometry and it is the

bounded negativity conjecture. Given a smooth surface S, the conjecture states that

there exists a non-negative integer b, which depends only on S, such that −b is a lower
bound for the self-intersection of any reduced and irreducible curve of S. Certain

advances related to this conjecture will be described in this work and some of them

will use foliations as a tool, giving a link between the problems we study.

The algebraic integrability problem of a foliation FC2
on the complex plane has

attracted the interest of many authors. Some papers related with this problem are

[65, 87, 91, 18, 22, 37, 47, 43, 48, 42, 24, 44, 49, 58, 40, 9, 41]. An important technique

used in many of them consists of considering the complex projective plane P2 as a

compacti�cation of the a�ne complex plane and an extended foliation FP2
on P2 of

FC2
such that, on an a�ne open set of P2, the local form of FP2

is isomorphic to FC2
.

Here, we follow this idea and also propose a new approach by considering any complex

Hirzebruch surface Fδ, δ being a non-negative integer, as another compacti�cation

of C2 and an extended foliation Fδ on Fδ.
Foliations on P2 or Fδ have the advantage that they can be easily introduced. A

1



2 Introduction

(holomorphic) foliation on P2 (respectively, Fδ) can be given by means of a 1-form

Ω ∶= AdX +BdY +CdZ (respectively, Ωδ ∶= Aδ,0dX0 +Aδ,1dX1 +Bδ,0dY0 +Bδ,1dY1),

where A,B,C ∈ C[X,Y,Z] (respectively, Aδ,0,Aδ,1,Bδ,0,Bδ,1 ∈ C[X0,X1, Y0, Y1]) are
homogeneous (respectively, bihomogeneous) polynomials of certain degrees (respec-

tively, bidegrees) satisfying the Euler's condition AX+BY +CZ = 0 (respectively, the

Euler's conditions Aδ,0X0 +Aδ,1X1 − δBδ,1 = 0 and Bδ,0Y0 +Bδ,1Y1 = 0). We explain

how this representation works in Subsection 1.5.1 (respectively, Subsection 1.5.2).

A foliation on C2, P2 or Fδ, de�ned by a 1-form Ω, is said to be algebraically

integrable if it admits a rational �rst integral, that is, a non-constant rational function

R on C2, P2 or Fδ such that Ω∧ dR = 0. Notice that this is the case if and only if all

the invariant curves of the foliation are algebraic.

Darboux, in [32], proved that if a foliation FP2
on P2 has enough invariant al-

gebraic curves (that is, FP2
has (r+1

2
) + 1 invariant curves, r being the degree of the

foliation), then it has a Darboux �rst integral. Jouanolou (in [65]) proved the same

result for rational �rst integrals assuming the existence of (r+1
2
) + 2 invariant curves.

In the same setting, Poincaré observed [82] that to decide about algebraic inte-

grability of a foliation it is enough to give an upper bound of the degree of the �rst

integral. This observation gave rise to one of the most studied problems in the �eld

of planar foliations, the so-called Poincaré problem. Nowadays, it asks for a bound

on the degrees of the reduced and irreducible invariant curves regardless of whether

the foliation is, or not, algebraically integrable. Another classical problem, proposed

by Painlevé (in [76]), asks if it is possible to know the genus of a general invariant

curve of an algebraically integrable foliation FC2
.

Carnicer in [18] solved the Poincaré problem in the non-dicritical case. Given

a holomorphic foliation FP2
on the complex projective plane having no dicritical

singularity, the degree of any reduced and irreducible algebraic invariant by FP2
curve

is bounded by degFP2+2. Cerveau and Lins-Neto, in [21], proved the same inequality

when all the singularities are nodal. In general, Poincaré and Painlevé problems

have a negative answer, as Lins-Neto showed in [72] by giving suitable examples of

algebraically integrable uniparametric families of foliations. However, both problems

remain interesting under some additional assumptions. Some contributions in the

Poincaré problem are [56, 15, 21, 57, 77, 37, 20, 78].

Our contribution to the algebraic integrability problem consists of several algo-

rithms for deciding about the existence of a rational �rst integral of a foliation F
de�ned either on the complex projective plane or on a complex Hirzebruch surface.

These algorithms also compute the rational �rst integral whenever the output is af-

�rmative. At the end of this introduction we will summarize our results in this line

and those related to the bounded negativity conjecture.

The Bounded Negativity conjecture (BNc) is an old folklore conjecture (see, for

instance, [62, 45, 3, 4, 5, 90, 85, 70]). It remains open and we recall that its statement

is the following:
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Conjecture A (Bounded Negativity conjecture). For each smooth complex projec-

tive surface S there exists a non-negative integer b(S), depending only on S, such

that

C2 ≥ −b(S),

for any reduced and irreducible curve C on S.

This conjecture can also be stated by replacing reduced and irreducible curves by

arbitrary reduced divisors [4]. It is worth to add that the conjecture, if true, gives

a partial answer to a question by Demailly [35, Question 6.9]. We say that S has

bounded negativity if S satis�es Conjecture A.

The origin of the BNc is unclear, but it has a long oral tradition and it was

mentioned by important mathematicians as Michael Artin or Federigo Enriques.

We mean by negative curve a reduced and irreducible curve with negative self-

intersection. There are algebraic surfaces with in�nitely many negative curves; the

simplest examples are the projective plane blown up in the base locus of a general

elliptic pencil (where all negative curves have self-intersection −1), or certain elliptic

K3 surfaces (where all negative curves have self-intersection −2) [69]. Moreover, a

surface S has bounded negativity if −mKS ∈ NE(S) for some m ∈ Z>0 [62, Corollary

I.2.3], or if NE(S) is �nitely generated, NE(S) being the cone of curves of S.

A somewhat related conjecture states that if S is the surface obtained after blow-

ing up P2 at ten or more very general points, then any reduced and irreducible curve

C ⊂ S satis�es C2 ≥ −1. This conjecture implies the Nagata conjecture and is implied

by the Segre�Harbourne�Gimigliano�Hirschowitz conjecture (SHGH conjecture) [29].

A weak bounded negativity conjecture was proposed in [3, 4] and proved in [61].

It states that, for each smooth complex projective surface S and any integer g,

there exists a non-negative integer b(S, g), depending only on S and g, such that

C2 ≥ −b(S, g) for any reduced curve C on S whose irreducible components have

geometric genus less than or equal to g.

In positive characteristic there exist surfaces containing a sequence of irreducible

curves with self-intersection tending to −∞ ([64, Chapter V, Exercise 1.10]). Curves

as before can be obtained by taking iterative images of a negative curve under a

surjective endomorphism of the surface [4]. Moreover, also in [4], it was proved that,

in characteristic zero, it is not possible to construct such a sequence of curves using

endomorphisms. In fact a stronger result was showed in [4, Proposition 2.1]. It

states that if a smooth complex projective surface S admits a non-trivial surjective

endomorphism (i.e., di�erent from an isomorphism), then S has bounded negativity.

Let S̃ be a surface obtained from successive blowups from a surface S. Then,

taking curves on S̃ giving very singular images in S is a way for obtaining very

negative curves on S̃. To this end several authors have considered reduced divisors

whose components are smooth and intersect pairwise transversally (see [5, 86, 90,

85]).



4 Introduction

In this PhD thesis we take a di�erent approach. We force the appearance of

singularities by considering con�gurations of in�nitely near points over P2 or Fδ
and their proximity relations (Section 1.2). Section 3.1 studies the case when the

con�guration is formed by the sequence of centers of a divisorial valuation ν on P2,

and Section 3.2 the general case.

Since no general lower bound on the self-intersection of negative curves is known,

Harbourne in [62, Section I.3] proposes to consider a nef divisor D and to look for

a bound on the values C2

(D⋅C)2
, where C runs over the integral curves on S such

that D ⋅ C > 0. Harbourne denominates this procedure an asymptotic approach to

bounded negativity. The case when S is obtained by blowing up r > 0 proper points

on P2, D = L∗, the total transform of a general line L of P2 on S, and C is reduced

and irreducible is considered in [62, Corollary I.3.6]. This corollary gives a bound

depending on the so-called multipoint Seshadri constant (see [28, 35, 71] for some

information about Seshadri constants).

Motivated by this result, in Section 3.1 we provide a lower bound on C2

(D⋅C)2
for

surfaces S obtained from P2 by a �nite sequence of point blowing-ups and D = L∗.
Although there exists a trivial bound in this case, given by 1 − n, where n is the

number of blown-up points, generally speaking we improve very much this bound.

In sum, we give a step in the asymptotic approach for the divisor L∗. It is worth to

add that all the results of this section work when the ground �eld is any algebraically

closed �eld of arbitrary characteristic (not only over C).
Section 3.2 gives an even better advance, since in this subsection we are able to

get a bound on C2

D⋅C for rational surfaces and some interesting divisors D.

This work is structured as follows. After a �rst chapter where we introduce

concepts and results we will need, Chapter 2 focuses on the study of the algebraic

integrability of foliations on the complex plane de�ned by polynomials (polynomial

foliations on C2). We achieve three goals:

1. Given a polynomial foliation FC2
on C2, we determine a foliation Fδ on any

Hirzebruch surface Fδ such that its restriction to a speci�c Zariski open set is

FC2
. Fδ is called the extended foliation of FC2

to Fδ.

2. We give new necessary conditions for algebraic integrability of a polynomial

foliation on C2 from the study of the above mentioned family of extended

foliations.

3. We provide several algorithms which allow us to know (under well-established

conditions) whether a holomorphic foliation de�ned on the surfaces P2 or Fδ is
algebraically integrable and, in the a�rmative case, to obtain a rational �rst

integral of this foliation. This gives rise to algorithms for obtaining rational

�rst integrals of polynomial foliations on C2.
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Our last chapter, Chapter 3, provides some advances related to the bounded

negativity conjecture. Our goals are:

1. To give a lower bound on H2

(L∗⋅H)2
, H being a non-exceptional integral curve

of a rational surface S obtained by successive blowups at proper or in�nitely

near points of the projective plane P2
k (over an algebraically closed �eld k with

arbitrary characteristic) and L∗ the total transform on S of a general line L of

P2
k.

2. To give a lower bound on H2

D⋅H , H being a non-exceptional integral curve of

a rational complex surface S and D = L∗ (respectively, D = F ∗ +M∗) if S

is obtained by successive blowups at proper or in�nitely near points of the

complex projective plane (respectively, the δth complex Hirzebruch surface),

where L∗ (respectively, F ∗ and M∗) is the total transform of a general line L

(respectively, are the total transforms of a general �ber and a general section

of self-intersection δ) of P2 (respectively, Fδ) on S.

Notice that, if S is a rational complex surface and π ∶ S ⇢ P2 (respectively,

π ∶ S ⇢ Fδ, δ ∈ Z≥0) is a birational map, obtained by composition of blowups as

above, giving rise to S, our second result provides a bound for the self-intersection

of any integral curve H on S which is linear on the degree (respectively, components

of the bidegree) of π∗H.

Some of the main results of this PhD thesis are stated and proved in the following

papers jointly carried out with my advisors and C.-J. Moreno-Ávila:

[52] C. Galindo, F. Monserrat, C.-J. Moreno-Ávila and E. Pérez-Callejo. On the

degree of curves with prescribed multiplicities and bounded negativity. Inter-

national Mathematics Research Notices, 2023(16):13757-13779, 2023.

[55] C. Galindo, F. Monserrat and E. Pérez-Callejo. Algebraic integrability of pla-

nar polynomial vector �elds by extension to Hirzebruch surfaces. Qualitative

Theory of Dynamical Systems, 21(126), 2022.

We �nish this introduction with a summary of the main contents of this work.

For us, an S0-tuple is any 3-tuple (S,S0,C), where S0 is the projective plane

or a Hirzebruch surface and π ∶ S ⇢ S0 the sequence of blowups at the points of a

con�guration of in�nitely near points C giving rise to S.

Chapter 1 makes an overview of the concepts and results which we will use in

the rest of the work. It is specially focused on Hirzebruch surfaces and foliations on

smooth surfaces. We also �x the notation to be used in the main chapters of this

PhD thesis. We mainly consider complex surfaces although a considerable number

of concepts and results also hold over any algebraically closed �eld k.

We highlight Sections 1.6, 1.7 and 1.8. Section 1.6 recalls the concept of rational

�rst integral and some related properties, while Section 1.7 describes the procedure
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of reduction of the singularities of a foliation on a surface (see [92] and [12]). This

procedure is especially important in this memoir, in particular it allows us to obtain

the dicritical con�guration BF of the foliation F which is constituted by the set of

dicritical points. These are the singularities of the foliation (and its strict transforms)

through which in�nitely many invariant curves pass. Plane valuations are used in

Chapter 3 and, for this reason, Section 1.8 recalls this concept, introducing also

that of non-positive at in�nity valuation. Non-positive at in�nity valuations are

valuations of the fraction �eld of the local ring at a point of the projective plane or

a Hirzebruch surface which give rise to algebraic surfaces with very nice geometric

properties (Theorems 1.8.7 and 1.8.8).

Chapter 2 studies the algebraic integrability problem for planar foliations on the

complex plane through extensions to the projective plane or Hirzebruch surfaces S0.

Section 2.1 considers algebraically integrable foliations F on S0 and introduces

the concept of characteristic divisor of F , DF . Let π ∶ SF → S0 be the map de�ned

by composition of the blowups at the points in BF . DF is a divisor on SF , it encodes

the data needed to compute a rational �rst integral of F and it is a crucial object

in most results in this work to decide about the existence and computation of such

a �rst integral.

Given a foliation F on S0, Section 2.2 studies invariant by F curves. The divisor

DF is only de�ned when F admits a rational �rst integral and an important property

of DF is that DF ⋅C = 0 for any curve on SF which is invariant by the strict transform

F̃ of F on SF . This section introduces the concept of set of independent algebraic

solutions (see De�nition 2.2.3). It is formed by a suitable choice of invariant curves.

Let d be the number of terminal dicritical singularities (those that produce non-

invariant exceptional divisors). A set of independent algebraic solutions of a foliation

on P2 (respectively, Fδ) is complete when its cardinality is d − 1 (respectively, d).

When one has a complete set, the so-called minimal characteristic divisor, GF , can

be computed. If the foliation F is algebraically integrable, GF has the property

that DF is a positive multiple of GF and it is the minimum integer multiple such

that the (projective) dimension of the associated linear system is positive (Theorem

2.2.7). With input a foliation F on S0, a complete set as above and under suitable

conditions for GF , Algorithm 2.5.2 decides whether F has a rational �rst integral

and computes it (whenever it exists). When the cone of curves of the surface SF is

(�nite) polyhedral, Algorithm 2.2.11 provides a complete set of independent algebraic

solutions and the divisorGF satis�es the conditions to run Algorithm 2.5.2 and decide

about algebraic integrability.

The algebraic integrability problem is posed for foliations FC2
on the complex

plane. Many of our results take advantage of extending those foliations to foliations

Fδ on Hirzebruch surfaces, Fδ. Algorithm 2.3.1 in Section 2.3 shows how this can be

performed (see Proposition 2.3.3).

Subsection 2.3.2 considers extensions Fδ to Hirzebruch surfaces of algebraically
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integrable foliations FC2
and shows the existence of a non-negative integer δ1 that

forces dicriticity of the points (0,1; 1,0) and (0,1; 0,1) in each Fδ according to the

position of δ with respect to δ1 (Theorem 2.3.6). This gives rise to a new necessary

condition for algebraic integrability (Corollary 2.3.10).

In Subsection 2.4.1 (respectively, Subsection 2.4.3), within Section 2.4, assuming

that F is an algebraically integrable foliation on Fδ (respectively, P2), we introduce

a new Q-divisor on SF (which is a normalization of DF ) which we name the char-

acteristic Q-divisor of F , TF (see De�nition 2.4.2 (respectively, equation (2.26))).

In absence of a complete set of independent algebraic solutions, we introduce new

results which allows us to use non-necessarily complete sets Σ of this type. An in-

teresting property is that the class [TF ] in the Néron-Severi space NS(SF) belongs
to the intersection V (Σ)⊥ ∩ [G]=1, where V (Σ) is the set de�ned in (2.2), V (Σ)⊥

denotes the set of divisors which are orthogonal to all the elements of V (Σ) and

[G]=1 ∶= {x ∈ NS(SF) ∣ [G] ⋅ x = 1}. Here, G = F ∗ (respectively, G = L∗) denotes the
total transform on SF of a general �ber of the natural projection Fδ → P1 (respec-

tively, a line on P2). Divisors whose classes are in the above mentioned intersection

have an expression Tα depending on an R-valued vector α as in (2.23) (respectively,

(2.27)). The map α ↦ T 2
α admits a unique absolute maximum at αΣ

Fδ
which has ratio-

nal coordinates. This fact and the divisor TαΣ
F

will be crucial in our Algorithms 2.5.7

and 2.5.14 to decide about algebraic integrability. Setting σ = #(Σ) and ` = d − σ
(respectively, ` = d − σ − 1), the speci�c result is the following one:

Theorem B.

(a) If T 2
αΣ
F

< 0, then F is not algebraically integrable.

(b) If T 2
αΣ
F

= 0 and F is algebraically integrable, then TF = TαΣ
F

and αΣ
F ∈ (Q>0)`,

Q>0 = {x ∈ Q ∣x > 0}.

Theorem B provides a necessary condition for the algebraic integrability of F .
Section 2.5 in this chapter makes use of our previous sections and states our main

results consisting of several algorithms which compute a rational �rst integral of a

given foliation F on P2 or Fδ provided that one knows:

1. The degree (respectively, bidegree) of a rational �rst integral: Algorithm 2.5.1.

2. A complete set of independent algebraic solutions whenever at least one of three

additional conditions hold: Algorithm 2.5.2. Those conditions are presented

in the input of the algorithm. In particular, the algorithm runs if the cone of

curves NE(SF) is polyhedral.

3. The fact that the inequality T 2
αΣ
F

< 0 holds: Algorithm 2.5.7.

4. The number

e(TαΣ
F

) = min{a ∈ Z>0 ∣aTαΣ
F

is a divisor and dim ∣aTαΣ
F

∣ ≥ 1}
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and the trueness of the equality T 2
αΣ
F

= 0: Algorithms 2.5.7 and 2.5.14. Notice

that the value e(TαΣ
F

) can be deduced from the genus (if it is not 1) of the

rational �rst integral.

5. The genus g ≠ 1 of the rational �rst integral, the trueness of the inequality

T 2
αΣ
F

> 0, and of an additional condition. It depends on the values

pinf ∶= inf{KF ⋅ Tα ∣ α ∈ ∆} and psup ∶= sup{KF ⋅ Tα ∣ α ∈ ∆},

∆ ∶= {α ∈ (Q≥0)` ∣ T 2
α = 0}, KF being the canonical divisor of the foliation:

Algorithm 2.5.14.

Our algorithms allow us to decide about algebraic integrability and the compu-

tation of rational �rst integrals in many unknown cases.

To conclude Chapter 2, and to facilitate its understanding, Subsection 2.5.2,

provides a summary of the di�erent scenarios and the algorithms we propose.

Chapter 3 deals with two problems related with the bounded negativity conjec-

ture. Indeed, we make progress in an asymptotic approach to bounded negativity

(see [62, Problem I.3.2]) by providing lower bounds on the self-intersection of curves

on rational surfaces S. Roughly speaking, our �rst bound is for non-exceptional

curves on surfaces having P2 as relatively minimal model, and depends on the square

of the degree of the blown-down curve. The second bound overcomes the asymptotic

approach and gives a lower bound on the self-intersection of a non-exceptional curve

on any rational surface linearly depending on the degree, or the components of the

bi-degree, of the blown-down curve, according to the chosen relatively minimal model

of S be P2 or Fδ.
Being more speci�c, in Section 3.1 we consider any rational surface S having P2

as a relatively minimal model, i.e., there exists a P2-tuple, (S,P2,C), where P2 is the

projective plane and C = ∪Ni=1Cνi , Cνi being the con�guration of in�nitely near points

given by a suitable chosen divisorial valuation νi. We bound from below the number

λL∗(S) ∶= inf { H2

(L∗ ⋅H)2
∣H is an integral curve on S such that L∗ ⋅H > 0} ,

where L∗ is the total transform of a general line L of P2 on S. Our main result in

this section is the following one.

Theorem C (Corollary 3.1.4).

λL∗(S) ≥ min{1 − µ,−
N

∑
i=1

δ0(νi) − 2N + 1} ,

where µ denotes the maximum cardinality of a subset of aligned points in the con�g-

uration C and, for each valuation νi,

δ0(νi) ∶= ⌈vol(νi)−1 − 2β̄0(νi)t(νi)
t(νi)2

⌉
+

.
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In the above expression ⌈x⌉+ is the ceiling of a rational number x if x ≥ 0, and 0

otherwise. Moreover, vol(νi) stands for the volume of the valuation νi, β̄0(νi) is the

�rst maximal contact value of νi and t(νi) the image by νi of the germ at the center

of νi on P2 of the tangent line of νi.

We point out that the results of this section remain valid when the ground �eld is

an arbitrary algebraically closed �eld (independently of its characteristic).

Our Section 3.2 considers any complex rational smooth surface S. If S comes

from a P2-tuple (S,P2,C), we de�ne

νL∗(S) ∶= inf { H2

L∗ ⋅H ∣H is an integral curve on S such that L∗ ⋅H > 0} .

Otherwise, when S comes from a Fδ-tuple (S,Fδ,C) and F ∗ andM∗ are as introduced
in page 5, we consider the value

νF ∗+M∗(S) ∶= inf { H2

(F ∗ +M∗) ⋅H ∣H is an integral curve on S such that (F ∗ +M∗) ⋅H > 0} .

Then, our main result consists of bounding from below the above numbers. To con-

clude our introduction we state the mentioned result which can be found in Corol-

laries 3.2.7 and 3.2.12.

Theorem D. Let S be a rational smooth surface. Assume that S comes from a

P2-tuple (S,P2,C). Then

νL∗(S) ≥ min{−(2d − 3) , d(1 − n)} ,

where n is the cardinality of S and d is a positive integer that can be computed from

the dual graph of the con�guration C. Otherwise, when S comes from (S,Fδ,C), it
holds that

νF ∗+M∗(S) ≥ min{−2 (d − 1) − δ,−n − δ,−(δ + 2)dn} ,

where n and d are de�ned as above.





Chapter 1

Preliminaries

Our �rst chapter introduces the basic objects and some facts we will use through-

out this work. Speci�cally, Section 1.1 introduces some concepts of algebraic geome-

try, while the following sections de�ne and give some properties of the main concepts

that support our work or will be studied. The main references we have used are

[64, 33, 6, 88, 56, 19, 11, 74, 47, 30, 10, 73, 54, 75].

1.1. A bit of algebraic geometry

We start by recalling some basic concepts and speci�c notions of algebraic geom-

etry. We have mainly followed [64] and, to a lesser extent, [89, 46, 6, 94, 71].

1.1.1. Basic concepts

Throughout this memory, C denotes the �eld of complex numbers and C∗ ∶=
C ∖ {0}. We denote by C[X0,X1, . . . ,Xn] the polynomial ring in n + 1 variables

with coe�cients in C and by Pn the n-dimensional complex projective space. A

(complex) algebraic variety X is an integral separated scheme of �nite type over C.
If dim(X) = 2, we say that X is a surface.

Let X and Y be two projective algebraic varieties. A rational map φ ∶ X ⇢ Y

is an equivalence class of pairs (U,φU), where U is a non-empty open subset of X

(for the Zariski topology), φU ∶ U → Y is a morphism of U to Y , and where (U,φU)
and (V,φV ) are said to be equivalent if φU and φV agree on U ∩ V . A rational map

φ ∶ X ⇢ Y is dominant if for some (and hence, every) pair (U,φU), the image of φU
is dense in Y .

De�nition 1.1.1. Let X, Y be as above. A birational map f ∶ X ⇢ Y is a rational

map that admits an inverse rational, namely, a rational map g ∶ Y ⇢ X such that

f ○ g = idY and g ○ f = idX as rational maps. If there exists a birational map from X

to Y , we say that X and Y are birationally equivalent, or simply birational.

11
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Let S be a projective surface and denote by OS its structural sheaf. If p is a

closed point in S, OS,p represents the local ring of S at p, i.e., the ring of germs

of functions on S near p. When no confusion on the taken surface arises we simply

denote the local ring at p by Op. Set K(S) the function �eld of S. If OS,p is a regular
ring then p is said a smooth point of the surface; otherwise p is named a singular

point or a singularity. The surface S is smooth, non-singular or regular whenever all

its points are smooth. Otherwise, S is singular.

De�nition 1.1.2. A surface is said to be ruled if it is birationally equivalent to

C × P1, where C is a smooth curve. If C = P1, S is said to be rational.

This work only considers smooth projective rational surfaces, abusing the nota-

tion, we call them simply surfaces. For the rest of the chapter, S denotes a surface.

Unless otherwise stated, throughout all the work, the points we consider on surfaces

are assumed to be closed.

A prime divisor on S is a one-dimensional closed integral subscheme P of S. Let

P be a prime divisor and q ∈ P its generic point. We denote byM the maximal ideal

of OS,q. Since the local ring OS,q is a unique factorization domain, M is principal

[64, Chapter I, Proposition 1.12A]. Let f = f1

f2
∈ K(S), f1, f2 ∈ OS,q; for i = 1,2,

we de�ne the order of fi along P , ordP (fi), as the non-negative integer t such that

fi ∈ Mt and fi ∉ Mt+1 and the order of f along P as ordP (f) = ordP (f1)−ordP (f2).
If ordP (f) = k > 0, then we say that f has a zero of order k along P ; if k < 0, we say

that f has a pole of order −k along P . By [64, Chapter II, Lemma 6.1], there is only

a �nite number of prime divisors P such that ordP (f) ≠ 0.

De�nition 1.1.3. A Weil divisor D on S is an element of the free abelian group

DivW (S) generated by the prime divisors on S. Then

D =
N

∑
i=1

niPi,

where N is a positive integer, Pi a prime divisor, and ni an integer for i = 1, . . . ,N .

We say that D is an e�ective divisor or a curve if ni ≥ 0, for all i, and ni > 0 for

some i. We de�ne the support of D, Supp(D), as the union ⋃i ∣ni≠0 Pi.

Let C be a curve on S passing through a point p ∈ S. The germ of C at p is

denoted by ϕC,p (or ϕC if no confusion arises).

For any f ∈K(S), the divisor of f , denoted by div(f), is the Weil divisor

div(f) = ∑
P

ordP (f) ⋅ P,

where the sum runs over all prime divisors P on S. As above mentioned, this sum

is �nite, hence div(f) is a divisor. If a Weil divisor D is equal to div(f), for some

rational function f , then we say that D is principal. Furthermore, two Weil divisors
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D and D′ are linearly equivalent, denoted D ∼D′, if D−D′ is a principal Weil divisor.

The quotient group Cl(S) = DivW (S)/ ∼, is called the divisor class group of S.

Set KS the sheaf of rational functions on S and K∗S the subsheaf of invertible

elements in KS . Denote by OS (O∗S , respectively) the sheaf of regular functions on
S (subsheaf of invertible elements in OS , respectively).

De�nition 1.1.4. A Cartier divisor on S is a global section of the sheaf K∗S/O∗S .

The Cartier divisors on S form an abelian group under multiplication, denoted

DivC(S). We use the language of additive groups when speaking of Cartier divisors,

to preserve the analogy with Weil divisors.

A Cartier divisor is called principal if it is induced by a global section of K∗S . As
for Weil divisors, two Cartier divisors are linearly equivalent if their di�erence (i.e.,

their quotient) is a principal Cartier divisor.

The quotient group of global sections CaCl(S) = H0(S,K∗S/O∗S)/H0(S,K∗S), the
group of Cartier divisor classes modulo principal divisors, is called the group of

Cartier divisor classes. Thinking about the properties of quotient sheaves, an element

of DivC(S) =H0(K∗S/O∗S) can be given by a open covering {Ui}i∈I of S and elements

in K∗S(Ui) represented by rational functions ψi such that
ψi
ψj

are in O∗S(Ui ∩ Uj)
for all i, j ∈ I. As Cartier divisors are locally rational functions modulo nowhere-

zero regular functions, intuitively they are the loci of the zeros and poles of rational

functions together with their multiplicities. Set D a Cartier divisor on S de�ned

by {(Ui, ψi)}i∈I . We de�ne the sheaf associated to D, denoted OS(D), to be the

sub-OS-module of KS generated by ψ−1
i on Ui. This is well-de�ned because ψi/ψj is

invertible in Ui ∩Uj , so ψ−1
i and ψ−1

j generate the same OS-module.

An invertible sheaf on S is a locally freeOS-module of rank 1. By [64, Proposition

6.12], given two invertible sheaves L andM on S, the tensor product L⊗M is also

an invertible sheaf. Moreover, there exists an invertible sheaf L−1 on S such that

L⊗L−1 ≅ OS ([64, Chapter II, Proposition 6.12]).

De�nition 1.1.5. The Picard group of S, Pic(S), is the group of isomorphism

classes of invertible sheaves on S, under the tensor operation product. It is isomorphic

to the cohomology group H1(S,O∗S) (see [64, Chapter III, Exercise 4.5]).

All the surfaces we are going to consider are locally factorial integral separated

noetherian schemes. Then, the group of (principal) Weil divisors is isomorphic to

the group of (principal) Cartier divisors by [64, Chapter II, Proposition 6.11]. In

the future, we will simply write (principal) divisors. Moreover, by [64, Chapter II,

Proposition 6.15 and Corollary 6.16] the following group isomorphisms hold: Pic(S) ≅
Cl(S) ≅ CaCl(S). We will denote by [D] the element in Pic(S) de�ned by a divisor

D on S.
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1.1.2. Speci�c notions

In this subsection we introduce some concepts which will be important tools along

the work. We start with the notions of intersection multiplicity and intersection

number.

Let C1 and C2 be two distinct irreducible curves on S, p ∈ C1 ∩ C2 and OS,p
the local ring of S at p. We denote by ϕC1 (respectively, ϕC2) the germ at p of C1

(respectively, C2). The intersection multiplicity of (the germ of) C1 and C2 at p is

de�ned to be

(ϕC1 , ϕC2)p ∶= dimCOS,p/⟨ϕC1 , ϕC2⟩.

Note that this value is �nite since OS,p/⟨ϕC1 , ϕC2⟩ is a �nite-dimensional vector space

over C. The intersection multiplicity (ϕC1 , ϕC2)p equals 1 if and only if ϕC1 and ϕC2

generate mp, the maximal ideal of OS,p. In this case, C1 and C2 are said to be

transverse at p or that they meet transversally at p.

De�nition 1.1.6. Let C1 and C2 be two curves as above. The intersection number

(C1,C2) is de�ned by

(C1,C2) ∶= ∑
p∈C1∩C2

(ϕC1 , ϕC2)p = dimH0(S,OC1∩C2),

where OC1∩C2 = OS/(OS(−C1) + OS(−C2)) and the invertible sheaf OS(−C) is the

ideal sheaf de�ning C (see [6, Chapter I] for further information).

Theorem 1.1.7 ([6, Theorem I.4 and Lemma I.6]). For L1, L2 ∈ Pic(S), de�ne

(L1,L2) ∶= χ(OS) − χ(L−1
1 ) − χ(L−1

2 ) + χ(L−1
1 ⊗L−1

2 ),

where χ(L) = ∑i(−1)ihi(S,L) denotes the Euler-Poincaré characteristic of an ele-

ment L ∈ Pic(S). It is a symmetric Z-bilinear form on Pic(S). In particular, if C1

and C2 are two distinct irreducible curves on S,

(OS(C1),OS(C2)) = (C1,C2),

and, if C is a smooth irreducible curve on S, for all L ∈ Pic(S), it holds that

(OS(C),L) = deg(L∣C).

Let D1 and D2 be two divisors on S, we stand D1 ⋅D2 for (OS(D1),OS(D2)).
Notice that we can calculate this product by replacing D1 (or D2 or both) by linearly

equivalent divisors. D1⋅D2 is called the intersection number ofD1 andD2. It depends

only on linear equivalence classes, it is additive and, if D1 and D2 are smooth curves

that meet transversely, it is the number of closed points of D1 ∩D2 ([64, Chapter V,

Theorem 1.1]).

A divisor D on S is numerically equivalent to zero, D ≡ 0, if D ⋅C = 0 for every

curve C on S. Two divisors D and D′ are numerically equivalent if D −D′ ≡ 0, i.e.,
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D ⋅C =D′ ⋅C for every curve C on S. It is well-known that linear equivalence implies

numerical equivalence. Moreover, in our case, which only considers rational surfaces,

it is a known fact that two divisors are linearly equivalent if and only if they are

numerically equivalent. Therefore, from now on, we will simply say that two divisors

are equivalent.

The intersection number of two classes [D1] and [D2] in Pic(S) is de�ned as the

intersection number D1 ⋅D2 of any two representatives of the mentioned classes.

De�nition 1.1.8. LetD1 andD2 be two divisors on S. We say thatD1 (respectively,

[D1]) is orthogonal to D2 (respectively, [D2]) whenever D1 ⋅ D2 = 0. The set of

divisors (respectively, classes of divisors) on S which are orthogonal to a divisor D

(respectively, [D]) is denoted by D⊥ (respectively, [D]⊥).

Denote by PicQ(S) (respectively, PicR(S)) the vector space over Q (respectively,

R), Pic(S)⊗ZQ (respectively, Pic(S)⊗ZR). An element D in PicQ(S) (respectively,
PicR(S)) is called a Q-divisor (respectively, an R-divisor). It can be expressed as

D = ∑ni=1 aiPi, where Pi ∈ Pic(S) and ai ∈ Q (respectively, ai ∈ R) for all i. A Q-
divisor (respectively, R-divisor) is said to be e�ective if, for i = 1, . . . , n, Pi is e�ective

and ai ≥ 0.

The intersection theory provides a Z-bilinear form: Pic(S) × Pic(S) → Z which

induces a non-degenerate bilinear form over Q (respectively, R): PicQ(S)×PicQ(S) →
Q (respectively, PicR(S) × PicR(S) → R). PicR(S) is called the Néron-Severi space

of the surface S and denoted by NS(S). Its dimension as a real vector space is

called the Picard number of S, often denoted by ρ(S). Abusing the notation, for any
divisor D on S, we also denote by [D] the image of D in NS(S).

Let [D] ∈ NS(S), we de�ne the ray spanned by [D] as the following subset of

NS(S):
R≥0[D] ∶= {αD ∣α ∈ R≥0}. (1.1)

A divisor (respectively, Q-divisor, R-divisor) D on S is said to be nef if D ⋅C ≥ 0,

for every irreducible curve C on S.

De�nition 1.1.9. The cone of curves (respectively, nef cone) of a surface S, which

we denote by NE(S) (respectively, P(S) or Nef(S)), is de�ned to be the convex

cone of NS(S) generated by the images of the e�ective (respectively, nef) classes in

Pic(S).

Given a convex cone C (see [89, Part 1, Section 2]) in NS(S), its dual cone is

de�ned to be

C∨ ∶= {x ∈ NS(S)∣x ⋅ y ≥ 0 for all y ∈ C}.

A face of C is a subcone D ⊆ C such that, for all pair of elements a, b ∈ C, a + b ∈ D
implies that a, b ∈ D. The 1-dimensional faces of C are also called extremal rays of

C. By [89, Farkas' theorem and Theorem 14.1], if C is a polyhedral cone, C∨ is also
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polyhedral and C∨∨ = C. In addition, the faces of a cone are cones and, moreover,

a polyhedral cone has a �nite number of faces, all of them also polyhedral (see, for

instance, [75, Proposition 1.4.4]). Notice that P(S) is the dual cone of NE(S) and

also of NE(S), the topological closure of NE(S) in NS(S) for the usual topology.
We consider the diagonal morphism ∆ ∶ S → S ×S [64, Chapter II, Section 4]. ∆

induces an isomorphism of S onto its image ∆(S), which is a closed subscheme of

an open subset U of S × S. Let I be the sheaf of ideals of ∆(S) in U . Then, we are
ready to state our next de�nition:

De�nition 1.1.10. [64, Chapter II, Section 8]

The sheaf of di�erentials of the surface S is the sheaf ΩS ∶= ∆∗(I/I2) on S.

The tangent sheaf of S is ΘS ∶= HomS(ΩS ,OS).

The canonical sheaf of S is KS ∶= ⋀2 ΩS , and it is an invertible sheaf on S.

A canonical divisor of S, KS , is any divisor in the linear equivalence class of KS .
We recall that the arithmetic genus of a variety X of dimension r over C is

pa(X) = (−1)r(PX(0) − 1),

where PX denotes the Hilbert polynomial of X (see [64, Chapter I, Exercise 7.2]).

In addition, the geometric genus of X is de�ned to be the non-negative integer

pg(X) = dimCH
0(X,KX), (1.2)

where KX is the canonical sheaf of X ([64, Chapter II, before 8.18.2]).

Proposition 1.1.11 ([64, Chapter IV, Proposition 1.1]). If C is a smooth curve,

then

pa(C) = pg(C) = dimCH
1(C,OC).

For curves C as mentioned, this value is simply called the genus of C and denoted

by g(C).

The genus of a smooth curve C on a surface S can be computed by the so-called

adjunction formula [64, Chapter V, Proposition 1.5]:

g(C) = 1 + 1

2
(C2 +KS ⋅C), (1.3)

where KS is a canonical divisor on S.

We �nish this section by giving some more notions.

De�nition 1.1.12.
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Given a divisor D on a surface S, a complete linear system ∣D∣ is the set

(which may be empty) of e�ective divisors linearly equivalent to D. ∣D∣ has
the structure of a set of points of a projective space given by the one-to-one

correspondence

H0 (S,OS(D)) ∖ {0}/C∗ Ð→ ∣D∣
s ↦ div(s)0,

where div(s)0 is the divisor of zeros of s (see [64, Chapter II, Section 7.7]).

A linear system d (on a surface S) is a linear subspace of a complete linear

system ∣D∣. d corresponds to the vector subspace of H0(S,OS(D))

V = {s ∈H0(S,OS(D)) ∣div(s)0 ∈ d} ∪ {0}.

The dimension of d is its dimension as a linear projective space.

A base point of a linear system d is a point p ∈ S such that p ∈ Supp(D) for all
D ∈ d. A linear system is called base-point-free if it has no base point.

1.2. Blowups and proximity graph

In this section we consider the concept of blowup, a well-known tool in algebraic

geometry, and the main tool in our work. We recall some of its properties that will

be applied in later chapters. We have mainly followed [64, 33, 6, 19, 11, 74]. We

keep the notation of the above section.

Let S be a surface and p ∈ S. Then there exist a surface S̃ and a morphism

π ∶ S̃ → S, which are unique up to isomorphism, such that

the restriction of π to π−1(S ∖ {p}) is an isomorphism onto S ∖ {p} and,

Ep ∶= π−1(p) is isomorphic to P1.

When no confusion arises, Ep will be denoted by E. The morphism π is usually

known as the blowup of S at p and E as the exceptional divisor of π [6, Chapter

II, Section II.1]. Let us present a rough description of the blowing-up process. For

this purpose, for simplicity, we consider S with its underlying structure of analytic

manifold and we take an open neighbourhood U of p with local coordinates x and y.

We de�ne Ũ ⊆ U × P1 by the equation xY − yX = 0, where X, Y are homogeneous

coordinates on P1. Then, the projection π∣Ũ ∶ Ũ → U is an isomorphism over U ∖{p},
while π−1(p) = {p} × P1. We get S̃ by considering π as an isomorphism over S ∖ {p}
and π−1(p) = {p} × P1.

In the literature, the concept of blowup is also referred as monoidal transfor-

mation (see [64, Chapter V, Section 3]) in order to distinguish it from other more

general transformations, and the surface S̃ is denoted by Blp(S).
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Let C be a curve on S passing through a point p. The closure C̃ of π−1(C ∖{p})
is the strict transform of C. The total transform C∗ of C is the pull-back π∗C. We

use the same notation for the strict and total transform of a divisor D, D̃ and D∗,

which are well-de�ned by linearity. Moreover, multp(ϕD) denotes the multiplicity at

p of the strict transform of an e�ective divisor D.

Proposition 1.2.1 ([6, Lemma II.2 and Proposition II.3]). Let S be a surface,

π ∶ S̃ → S the blowup of S at p and E ⊂ S̃ the exceptional divisor. Then:

1. D∗ = D̃ +multp(ϕD)E, for any e�ective divisor D on S.

2. There is a group isomorphism Pic(S) ⊕ Z ∼→ Pic(S̃) de�ned by ([D], n) ↦
[D∗ + nE].

3. Let D and D′ be divisors on S, then D∗ ⋅D′∗ =D ⋅D′, D ⋅E = 0 and E2 = −1.

4. The canonical divisors satisfy KS̃ ∼K∗
S +E, where ∼ means linear equivalence.

Now we are going to introduce some other notions that will be used later on. Let

Sn
πnÐ→ Sn−1

πn−1Ð→ ⋯ π2Ð→ S1
π1Ð→ S0 = S, (1.4)

be a �nite sequence of (point) blowups, where πi is the blowup of the surface Si−1 at

a point pi ∈ Si−1, 1 ≤ i ≤ n. Let π = π1 ○ π2 ○ ⋯ ○ πn.
We denote by Ei (or Epi) the exceptional divisor obtained after blowing-up at

the point pi, which is also called the �rst in�nitesimal neighbourhood of pi. Abusing

the notation, denote by Ẽi and E∗
i (or Ẽpi and E

∗
pi) the strict and total transforms

of Ei on Sj , for j > i, respectively. Let D be a divisor on Si, the strict (respectively,

total) transform of D on Sj , for j > i, is denoted by D̃ (respectively, D∗). Moreover,

we stand Ei for Ẽi when no confusion arises. We use induction to de�ne the kth

in�nitesimal neighbourhood of a point pi as the �rst in�nitesimal neighbourhood of

some point in the (k − 1)th in�nitesimal neighbourhood of pi. A point pj belonging

to some kth in�nitesimal neighbourhood of pi is said to be in�nitely near pi. If pj
belongs to the strict transform of Ei on Sj , then we say that pj is proximate to pi,

and it is denoted by pj → pi. If a point is proximate to two points, we call it satellite

and otherwise it is called free. The points which are in�nitely near some point in

S are called in�nitely near S. The points in S are often called proper in order to

distinguish them from the in�nitely near ones.

De�nition 1.2.2.

The set of centers C = {pi}ni=1 of the blowups of a sequence as in (1.4) is said

to be a con�guration (of in�nitely near points) over S. The composition π

(respectively, the surface Sn) is also denoted by πC (respectively, SC).

We identify two con�gurations C and C′ over S if there exists an isomorphism

σ ∶ SC → SC′ such that πC′ ○ σ = πC .
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If C = {pi}ni=1 is a con�guration over S, the surface Sn obtained by blowing-up

the points in C is called the sky of C and S is called the �oor of C.

We say that p is an origin of C if p ∈ C is a proper point of S. The set of origins
of C is denoted by OC . Moreover, (C)p stands for the set of points of C which

are equal or in�nitely near p. Thus we can write

C = ⋃
p∈OC

(C)p.

A point p ∈ C is said to be an end of C if C contains no proximate to p point.

We denote by EC the set of ends of C.

The level of p ∈ C, l(p), is the minimum number of blowups one needs to obtain

the surface containing p. We can rede�ne the origins as the points of level 0.

We can represent a con�guration C by a labelled graph, named the proximity

graph of C, and denoted by ΓC . Their vertices correspond to (and are labelled with)

the points in C. Two vertices p and q are joined by an edge whenever either p→ q or

q → p. For a better readability, we omit those edges that can be deduced from others.

When representing the graph, we arrange the vertices in ascending order according

to their levels.

Example 1.2.3. Figure 1.1 shows the proximity graph of a con�guration C = {pi}10
i=1,

where p1 and p9 (respectively, p4, p5, p6, p8 and p10) are the origins (respectively,

ends) of C. The level of p2 and p10 (respectively, p3 and p7; p4, p5, p6 and p8) is 1

(respectively 2; 3). In addition, p1, p2, p3, p4, p5, p6, p9 and p10 are free points while

p7 and p8 are satellite.

p1

p2

p7p3

p4 p5 p6 p8

p9

p10

Figure 1.1: Proximity graph of a con�guration

The Enriques diagram (see [19, Section 3.9]) or the dual graph (described in

Section 1.8) are alternative and equivalent representations for the proximity graph

of a con�guration.

Let p, q ∈ C, we say that p precedes q, p < q if q is in�nitely near p. We write p ≤ q
if p equals or precedes q. This relation ≤ is a partial ordering on the set C and l(p)
is the number of proper and in�nitely near points which precede p.
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A con�guration C is a chain if ≤ is a total ordering. For any point p ∈ C, the
complete chain associated to p is the set

(C)p ∶= {q ∈ C∣q ≤ p}.

Notice that

C = ⋃
p∈OC

(C)p = ⋃
q∈EC

(C)q.

Also, for any pair of points p, q ∈ C, with p ≤ q, the set

(C)qp ∶= {r ∈ C∣p ≤ r ≤ q} (1.5)

is called the chain from p to q.

A total ordering ⪯ on C is called admissible if p ≤ q implies p ⪯ q.

Example 1.2.4. The total ordering pi ⪯ pj de�ned by

pi ⪯ pj ⇔ i ≤ j

in the con�guration C of Example 1.2.3 is an admissible total ordering.

The sky and the proximity graph of a con�guration are independent (up to iso-

morphism) of the chosen admissible ordering (see [19, Proposition 4.3.2], [74, Propo-

sition 1.2.4] or [75, Proposition 1.2.2]). Let us �x an admissible ordering ⪯ and

reassign indices to the points pi according to that ordering. The proximity matrix of

C (for ⪯) is a square matrix of orderm = #C (where # means cardinality), PC = (pij),
whose entries are

pij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if i=j

−1 if pi → pj

0 otherwise.

(1.6)

Example 1.2.5. Let C = {pi}10
i=1 be the con�guration given in Example 1.2.3. Con-

sider the admissible ordering de�ned in Example 1.2.4 (pi ⪯ pj ⇔ i ≤ j). Then the

proximity matrix of C is the following one:

PC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0

0 −1 1 0 0 0 0 0 0 0

0 0 −1 1 0 0 0 0 0 0

0 0 −1 0 1 0 0 0 0 0

0 0 −1 0 0 1 0 0 0 0

−1 −1 0 0 0 0 1 0 0 0

−1 0 0 0 0 0 −1 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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Now we are ready to present our next result, whose items (1) to (4) extend the

corresponding ones given in Proposition 1.2.1.

Proposition 1.2.6 ([1, Proposition 1.1.26]). Let S be a surface,

Sn
πnÐ→ Sn−1

πn−1Ð→ ⋯ π2Ð→ S1
π1Ð→ S0 = S,

a �nite sequence of blowups and C = {pi}ni=1 its corresponding con�guration. Keeping

the above notation and considering total and strict transforms on Sn, the following

statements hold:

(1) D∗ = D̃ +∑ni=1 multpi(ϕD)E∗
i , D being an e�ective divisor on S.

(2) Let D and D′ be two divisors on S. Then D∗ ⋅D′∗ = D ⋅D′,D ⋅ E∗
i = 0 and

D∗ ⋅Ei = 0, for 1 ≤ i ≤ n.

(3) KSn ∼K∗
S +∑ni=1E

∗
i .

(4) There exists a group isomorphism between Pic(S) ⊕Zn and Pic(Sn) given by

([D],m1, . . . ,mn) ↦ [D∗ +
n

∑
i=1

miE
∗].

(5) For all i, j ∈ {1, . . . , n},

Ei ⋅Ej =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−ri − 1 if i = j,
1 if i ≠ j and Ei ∩Ej ≠ ∅,
0 otherwise,

where ri is the number of points in C that are proximate to pi.

(6) For all i, j ∈ {1, . . . , n},

E∗
i ⋅E∗

j =
⎧⎪⎪⎨⎪⎪⎩

−1 if i = j,
0 otherwise.

(7) For all i, j ∈ {1, . . . , n},

Ei ⋅E∗
j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 if i = j,
1 if pj → pi,

0 otherwise.

(8) If D is a divisor on S and D′ is a divisor on Sn, then D∗ ⋅D′ =D ⋅π∗D′, where

π∗D
′ is the direct image of the divisor D′ on S induced by π.

By Proposition 1.2.6 (1), Ei = E∗
i − ∑pj→pi E∗

j . Thus {Ei}ni=1 is a basis of the

free Z-module ⊕n
i=1 ZE∗

i . Moreover, the proximity matrix of C can be seen as the

change-of-basis matrix from {Ei}ni=1 to {E∗
i }ni=1.
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1.3. Germs of curves and C0-su�ciency

Let p be a point in S and consider a (non-necessarily �nite) sequence of point

blowups

π ∶ ⋯ Ð→ Sn
πnÐ→ Sn−1 Ð→ ⋯Ð→ S1

π1Ð→ S0 = S.

Assume that each blowup πi is centered at a point p′i, i ≥ 1 being p′1 = p. Let ξ be a
germ of curve at p. We say that ξ goes through p′i if the strict transform of ξ at p′i is

not empty, that is, if multp′i(ξ) > 0, where multp′i(ξ) denotes the multiplicity (of the

strict transform) of ξ at p′i. If multp′i(ξ) > 1 (respectively, multp′i(ξ) = 1) we say that

p′i is a multiple (respectively, simple) point of ξ.

Let N(ξ) = {pi}i≥1, p1 = p, be the set of all (equal to or in�nitely near p) points

through which ξ goes.

Theorem 3.7.1 of [19] proves that, if ξ is a reduced germ, ξ has �nitely many

multiple points. Moreover, [19, Corollary 3.7.7] states that N(ξ) contains �nitely

many satellite points.

De�nition 1.3.1. (see [19, Section 3.8]) Let ξ and N(ξ) be as above. A point

pi ∈ N(ξ) is a singular point of ξ if it satis�es one of the following conditions:

1. pi is a multiple point of ξ.

2. pi is a satellite point of N(ξ).

3. pi precedes a satellite point of N(ξ).

Otherwise, p is a non-singular point of ξ.

Notice that if the strict transform of ξ is smooth at pi, then the same is true at any

pk equal to or in�nitely near pi (see [19, Corollary 3.2.9]). Moreover, it follows from

[19, Corollary 2.2.6 and Theorem 3.2.2] that if ξ is an analytically irreducible germ

at p, there is a single point through which ξ goes in each in�nitesimal neighbourhood

of p. In particular, the set N(ξ) is an in�nite chain naturally ordered.

Let ξ be a non-empty reduced germ de�ned on a surface S. Notice that a proper

point of S is a singular point of ξ if and only if it is a multiple point of ξ. Since there

are �nitely many multiple and satellite points, a germ has also �nitely many singular

points. Let ξ1, . . . , ξs be the branches of ξ, i.e., ξ = ξ1 +⋯+ ξs is the decomposition of

ξ in reduced and analytically irreducible germs, and for i = 1, . . . , s, denote by qi the

�rst point of ξi which is a non-singular point of ξ. In particular, this implies that all

points in�nitely near to qi are simple and free.

The con�guration of ξ is de�ned as the �nite set

C(ξ) = (C)q1 ∪⋯ ∪ (C)qs , (1.7)

i.e., the subset of N(ξ) containing all singular points of ξ and also the �rst non-

singular point of ξ belonging to each one of its branches. C(ξ) satis�es that the
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strict transforms of ξ on the surfaces containing these points are non-empty germs,

the strict transform of ξ on the sky of the con�guration is smooth and the local

equations of its analytically irreducible components are part of a regular system of

parameters at qi, for all i = 1, . . . , s (i.e., its related divisor is a normal crossing

divisor, [19]).

Two germs of curve ξ and ζ are equisingular if both are reduced and non-empty

and there exists a bijection ψ ∶ C(ξ) → C(ζ) such that ψ and ψ−1 preserve the

proximity matrix of the con�gurations, i.e., for any p, q ∈ C(ξ), p ≤ q (respectively,

p→ q) if and only if ψ(p) ≤ ψ(q) (respectively, ψ(p) → ψ(q)).

De�nition 1.3.2. The singular con�guration of a non-empty reduced germ ξ, K(ξ),
is the subset of C(ξ) of all singular points, i.e.,

K(ξ) = C(ξ) ∖ EC(ξ),

where EC(ξ) is the set of ends of C(ξ) (see De�nition 1.2.2).

Let C = ∪p∈EC(C)p be a con�guration. Set n = #C. Fix an admissible ordering

⪯ over C and write C = {pi}ni=1 as explained before (1.6). We de�ne the vector of

multiplicities of C (for ⪯), as the column vector mC = (mC,1, . . . ,mC,n)t, where

mC,i ∶=
⎧⎪⎪⎨⎪⎪⎩

1 if pi ∈ EC
∑pj→pimC,j otherwise

. (1.8)

Set Op ≅ C2 the local ring of a surface S at a point p ∈ S and mp its maximal

ideal. Let ξ ∶ f = 0 be a non-empty and reduced germ of curve in Op.

De�nition 1.3.3. A positive integer n is said to be C0-su�cient for ξ if all the

elements of the form f + mn
p are non-zero and de�ne an equisingular to ξ reduced

germ.

It is clear that the above de�nition does not depend on a particular equation f

of ξ. The integer n is C0-su�cient for ξ if and only if the equisingularity class of ξ is

determined by the class modulo mn
p of an equation f of ξ. Thus, if f = ∑∞

i+j=0 fijx
iyj ,

where {x, y} is a regular system of parameters of mp, then the polynomial f0 ∶=
∑n−1
i+j=0 fijx

iyj de�nes an equisingular to ξ germ. In addition, the fact that n is

C0-su�cient for ξ implies that any m > n is also C0-su�cient for ξ.

De�nition 1.3.4. The C0-su�cient degree of a reduced germ ξ is de�ned to be the

minimum n such that n is C0-su�cient for ξ.

The next result provides an upper bound for the C0-su�cient degree of a non-

empty and reduced germ of curve ξ at a point p of a surface S. It is a consequence

of [19, Theorem 7.5.1].
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Lemma 1.3.5. Let ξ ∶ f = 0 be a reduced germ of curve on S at p and K = K(ξ) =
{pi}ni=1, p1 = p, its singular con�guration. Fix an admissible ordering on K. Let PK
be the proximity matrix of K as de�ned in (1.6) and mK its n-dimensional vector

of multiplicities as de�ned in (1.8). Let vd = (vi) be the vector de�ned by vd =
P−1
K (d1p −mK) where 1p is the n-dimensional column vector whose �rst component

is 1 and the remaining ones are 0. Then,

1. The least positive integer d such that vi > 0 for all i ∈ {1, . . . , n} is C0-su�cient

for ξ.

2. For any g ∈ md
p, f + g ≠ 0 and the germ of curves ζ ∶ f + g = 0 goes through K.

Moreover its vector of multiplicities (respectively, its singular con�guration) is

mC(ζ) =mK (respectively, K(ζ) = K).

Notice that the integer d of Lemma 1.3.5 does not need to be the C0-su�cient

degree of ξ.

We �nish this section by recalling the so-called proximity equalities [19, Theorem

3.5.3]. Let ξ be a germ of curve at a point p ∈ S. Then, for all q ∈ N(ξ), the following
equality

multq(ξ) = ∑
r→q

multr(ξ) (1.9)

holds.

1.4. Rational surfaces

In Section 1.1 we have de�ned rational surfaces as those surfaces which are bi-

rationally equivalent to P1 × P1. In this section we give some additional information

about them.

In Subsection 1.4.1 (respectively, 1.4.2) we give a brief description of the projec-

tive plane (respectively, the Hirzebruch surfaces), recalling some important properties

and related objects that we will use throughout this memoir. In Subsection 1.4.3 we

explain that rational surfaces come from blowing-up a (possibly empty) con�guration

of points over the projective plane or a Hirzebruch surface.

1.4.1. The projective plane

The projective plane P2 (over C) can be regarded as the quotient (C3∖{(0,0,0)})/ ∼,
where (X,Y,Z) ∼ (λX,λY,λZ) for all λ ∈ C∗. The homogeneous coordinate ring of

P2 is C[X,Y,Z] where the variables are graded on Z≥0, all of them with value 1.

The Picard group of P2, Pic(P2), is isomorphic to Z and it is generated by the

divisor class of a line, [L]. Moreover, [L]2 = 1.

The canonical sheaf of P2 is KP2 = OP2(−3) and hence, a canonical divisor of P2

is KP2 = −3L, where L stands for the divisor of a line.
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The projective plane can be covered by three a�ne open sets, UX , UY and UZ ,

de�ned by UX = {(X ∶ Y ∶ Z) ∈ P2 ∣X ≠ 0}, UY = {(X ∶ Y ∶ Z) ∈ P2 ∣Y ≠ 0} and

UZ = {(X ∶ Y ∶ Z) ∈ P2 ∣Z ≠ 0}. We can identify each one of these a�ne open sets

with C2. For example, in UZ , (X ∶ Y ∶ Z) = (X/Z ∶ Y /Z ∶ 1) so we can identify UZ
with C2 by means of the isomorphism (X ∶ Y ∶ Z) ↦ (xZ , yZ), where xZ ∶=X/Z and

yZ ∶= Y /Z. We can do the same for UX and UY . There is a well-de�ned coordinate

change map in each overlap.

Throughout this memoir, whenever we use the projective plane, we consider �xed

homogeneous coordinates (X ∶ Y ∶ Z), as above, without mentioning it explicitly.

1.4.2. Hirzebruch surfaces

Let C be a smooth curve. A geometrically ruled surface over C is a surface S,

together with a morphism S → C whose �bres are isomorphic to P1.

De�nition 1.4.1. Let δ ∈ Z≥0 (that is, a non-negative integer). The δth Hirzebruch

surface is the projective space

Fδ ∶= PP1(OP1 ⊕OP1(δ)).

The Hirzebruch surfaces are geometrically ruled surfaces over P1, with a morphism

π ∶ Fδ → P1.

Let S be a geometrically ruled surface over P1, then, by [6, Proposition III.15

(i)], S is isomorphic to one of the Hirzebruch surfaces. As a consequence and by [6,

Theorem III.4], Hirzebruch surfaces are rational surfaces.

We recall that Pic(Fδ) denotes the Picard group of Fδ and [D] denotes the linear
equivalence class of a divisor D. Let M be a section whose self-intersection is δ and

F a �ber both of π. Then, we have the next result.

Proposition 1.4.2 ([6, Proposition IV.1]). The following statements hold:

Pic(Fδ) ≅ Z⊕Z, and it is generated by the divisor classes [M] and [F ].

[M]2 = δ, [F ]2 = 0 and [M] ⋅ [F ] = 1.

When δ ≠ 0, there is a unique irreducible curve M0 on Fδ with negative self-

intersection. Moreover, [M0] = −δ[F ] + [M] and [M0]2 = −δ.

Fδ and Fδ′ are not isomorphic unless δ = δ′. Fδ is relatively minimal for δ ≠ 1

and F1 is isomorphic to the blowup of P2 at a point.

M0 is usually called the special section of Fδ and a special point is a point p ∈M0.

It follows from [64, Chapter V, Proposition 2.20] that, for an irreducible curve

C ≠M0, the class [C] satis�es [C] = a[F ] + b[M] with a ≥ 0 and b > 0.
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Fδ also has the structure of a toric variety, i.e., it can be regarded as the quotient

of (C2 ∖ {(0,0)}) × (C2 ∖ {(0,0)}) by an action on the algebraic torus C∗ × C∗.

Considering coordinates (X0,X1;Y0, Y1) in (C2 ∖ {(0,0)}) × (C2 ∖ {(0,0)}), for each
(λ,µ) ∈ C∗ ×C∗, the action is de�ned by

(λ,µ) ∶ (X0,X1;Y0, Y1) → (λX0, λX1;µY0, λ
−δµY1).

In particular, it holds that F0 ≅ P1 × P1. The homogeneous coordinate ring of

Fδ is the polynomial ring in four variables C[X0,X1, Y0, Y1], where the variables are
graded on Z ×Z≥0 as follows:

deg(X0) = deg(X1) = (1,0), deg(Y0) = (0,1) and deg(Y1) = (−δ,1).

We say that a polynomial in C[X0,X1, Y0, Y1] is bihomogeneous of bidegree (d1, d2) ∈
Z × Z≥0 if it is a sum of terms αXa1

0 Xa2
1 Y b1

0 Y b2
1 with a1 + a2 − δb2 = d1, b1 + b2 = d2

and α ∈ C∗. We also say that a curve C on Fδ has bidegree (d1, d2) ∈ Z × Z≥0, if

it is de�ned by a bihomogeneous polynomial of bidegree (d1, d2). Bihomogeneous

polynomials of bidegree (d1, d2) correspond to divisors of the form d1F +d2M , where

d1 + δd2 ≥ 0 and d2 ≥ 0. Those divisors are exactly the e�ective divisors of Fδ.
The action de�ned above preserves the ratio (X0 ∶X1), so the morphism π ∶ Fδ →

P1 is just the projection onto the �rst factor. Then:

Proposition 1.4.3. The following statements hold:

The equation of a �ber F of π is of the form a0X0+a1X1 = 0, for some (a0, a1) ∈
C∖{(0,0)}. F is an irreducible curve of bidegree (1,0), and π(F ) = (−a1 ∶ a0).

The equation of M0 is Y1 = 0 and M0 corresponds to the unique homogeneous

polynomial of bidegree (−δ,1).

The equation of a section linearly equivalent to M is of the form

Y0 +
δ

∑
i=0

biX
δ−i
0 Xi

1Y1 = 0,

for some values bi ∈ C, that is, it is an irreducible curve of bidegree (0,1).

For any point p ∉ M0, there is a (δ + 1)-dimensional family of sections passing

through it. If p ∈M0, then p is called a special point.

Throughout the thesis, for each pair (a, b) ∈ Z2, OFδ(a, b) will denote the invert-
ible sheaf OFδ(aF + bM).

The canonical sheaf of the Hirzebruch surface Fδ is KFδ = OFδ(δ − 2,−2), see [59,
Lemma 1.3] and [64], so KFδ = (δ − 2)F − 2M is a canonical divisor of Fδ.

We �nish this subsection with an overview of the local structure of the Hirzebruch

surfaces. Fix δ ∈ Z≥0; the surface Fδ is covered by four a�ne open sets Uij , i, j ∈ {0,1},
de�ned as

Uij ∶= {(X0,X1;Y0, Y1) ∈ Fδ ∣Xi ≠ 0, Yj ≠ 0}.
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The fact that (X0,X1;Y0, Y1) = (1,X1/X0; 1,Xδ
0Y1/Y0) on U00, allows us to identify

U00 with C2 by means of the isomorphism (X0,X1;Y0, Y1) ↦ (x00, y00) where x00 ∶=
X1/X0 and y00 ∶= Xδ

0Y1/Y0. Similarly, we can identify U01 with C2 by means of the

isomorphism (X0,X1;Y0, Y1) ↦ (x01, y01) where x01 = X1/X0 and y01 = Y0/(Xδ
0Y1).

The coordinate-change map in U00 ∩U01 is given by

ψ01
00 ∶ U00 ∩U01 ⊆ U00 → U00 ∩U01 ⊆ U01

(x00, y00) ↦ (x00,1/y00) = (x01, y01).

Analogously, for each i, j ∈ {0,1}, we can obtain a�ne coordinates (xij , yij) for

the a�ne open set Uij , identify it with C2 and provide a coordinate change map in

each overlap.

As in the projective plane, throughout this memoir, whenever we use Hirzebruch

surfaces, we will consider �xed homogeneous coordinates (X0,X1;Y0, Y1), as above,
without mentioning it explicitly.

1.4.3. How to get a rational surface

Let S and S′ be two rational surfaces. If f ∶ S ⇢ S′ is a birational map of surfaces,

then f factorizes into a �nite sequence of blowups at single points and their inverses

([64, Chapter V, Theorem 5.5]). We know that if E is the exceptional divisor of a

blowup of a surface at a point, then E ≅ P1 and E2 = −1. A curve C on a surface

S such that C ≅ P1 and C2 = −1 is called a (−1)-curve or an exceptional curve of

the �rst kind. The following result, called the Castelnouvo contractibility criterion,

states that any (−1)-curve is the exceptional divisor of some blowup.

Theorem 1.4.4 ([64, Chapter V, Theorem 5.7]). If C is a curve on a surface S such

that C ≅ P1 and C2 = −1, then there exists a morphism π ∶ S → S0 to a surface S0

and a point p ∈ S0 such that S is isomorphic, via π, to the blowup of S0 with center

at p, and C is its exceptional divisor.

A surface S is relatively minimal if every birational morphism π ∶ S ⇢ S′ to

another surface S′ needs to be an isomorphism. As a consequence of the Castelnuovo

contractibility criterion, a surface is relatively minimal if and only if it contains no

(−1)-curve. By [64, Chapter V, Theorem 5.8], every surface admits a birational

morphism to a relatively minimal model.

Moreover, we have the following result ([63], [6, Theorem V.10]):

Theorem 1.4.5. S is a relatively minimal rational surface if and only if S is iso-

morphic to P2 or Fδ, for δ ≠ 1 .

De�nition 1.4.6. Let S0 be either the projective plane P2 or a Hirzebruch surface

Fδ. In this work, an S0-tuple is any 3-tuple (S,S0,C) such that C = {pi}ni=1 is
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a con�guration over S0 and S the rational surface obtained from the sequence of

blowups given by C. We denote by π this sequence

π ∶ S = Sn
πnÐ→ Sn−1

πn−1Ð→ ⋯ π1Ð→ S0,

where πi is the blowup of the surface Si−1 at pi for all 1 ≤ i ≤ n. Abusing the notation
π is also the composition π1 ○ ⋯ ○ πn.

Consequently, any rational surface can be seen as the surface S given by an S0-

tuple (S,S0,C), where S0 is either the projective plane P2 or a Hirzebruch surface

Fδ, δ ≠ 1.

1.5. Holomorphic foliations

In this section we introduce the concept of foliation on a surface S. We mainly

follow [10] and [73]. Some other useful references are [92], [12] and [14].

Let OanS be the sheaf of holomorphic functions on S. We start with a de�nition

of holomorphic foliation on a (complex) surface:

De�nition 1.5.1. Let S be a smooth complex surface. A (singular) holomorphic

foliation F on S can be de�ned by a family of pairs {(Ui, vi)}i∈I , where {Ui}i∈I is

an open covering of S and vi is a non-vanishing holomorphic vector �eld on Ui for

all i ∈ I. In addition, on the overlap of Ui and Uj , the vector �elds vi and vj must

coincide up to multiplication by a nowhere vanishing holomorphic function, i.e., the

following equalities must hold for any i, j ∈ I:

vi = gijvj on Ui ∩Uj , for some element gij ∈ OanS (Ui ∩Uj)∗.

Alternatively, a foliation F on a smooth complex surface S can also be de�ned by

using 1-forms. Indeed, it is given by a family of pairs {(Ui, ωi)}i∈I , where {Ui}i∈I is,
as above, a open covering of S, and for all i ∈ I, ωi is a non-zero regular di�erential

1-form such that, for any i, j ∈ I:

ωi = fijωj on Ui ∩Uj , for some element fij ∈ OanS (Ui ∩Uj).

We de�ne the singular set Sing(F) of a foliation F as the set of points in S which

are zeroes of the vector �elds vi, i.e. Sing(F) = ⋃i∈I{p ∈ Ui∣vi(p) = 0}. We say that

a foliation F has isolated singularities if Sing(F) is a discrete subset.

The functions gij ∈ OanS (Ui ∩ Uj)∗ form a multiplicative cocycle and, thus, they

give rise to a holomorphic line bundle on S intrinsically de�ned by the foliation (see

[10]). Following [54], let us denote by L∗ this line bundle, called the canonical (or

cotangent) bundle of F , and by L∗ its corresponding invertible sheaf, i.e., the canon-
ical sheaf of F . The dual of L∗ is called the tangent bundle of F , it is represented
by the inverse cocycle {g−1

ij } and denoted by L; its associated invertible sheaf is L,



1.5. Holomorphic foliations 29

the dual of L∗. A divisor KF such that L∗ = OanS (KF) is called a canonical divisor

of the foliation.

The notions just de�ned allow us to give another de�nition of foliation by thinking

the relations vi = gijvj on Ui ∩ Uj as de�ning relations of a global holomorphic

section s ∈H0(S,ΘS ⊗L∗) (or in H0(S,HomOanS (L,ΘS))), where ΘS is the tangent

sheaf of S. Two sections de�ne the same foliation if and only if one is a non-zero

scalar multiple of the other. Hence, the space of foliations F with tangent sheaf

L, Fol(L, S), is an open subset of the projective space PH0(S,ΘS ⊗ L∗). We can

consider a foliation F with cotangent sheaf L∗ as the class [s] ∈ PH0(S,ΘS ⊗L∗) of
a global section of ΘS ⊗L∗.

In the next subsections 1.5.1 and 1.5.2, we are going to show that a holomorphic

foliation on the projective plane or on a Hirzebruch surface is always de�ned by

polynomials. Not all holomorphic foliations on the complex a�ne plane are de�ned

by polynomials, but along this work, we only consider planar complex foliations

de�ned in this way.

Let P (x, y) and Q(x, y) be two coprime bivariate complex polynomials. Consider

the planar polynomial di�erential system

ẋ = P (x, y), ẏ = Q(x, y), (1.10)

or, equivalently, the planar vector �eld

X = P (x, y) ∂
∂x

+Q(x, y) ∂
∂y
.

This planar vector �eld can also be determined by the di�erential 1-form

ω = ωX ∶= Q(x, y)dx − P (x, y)dy.

X (and ω) de�ne a foliation on the plane C2 which we call a planar polynomial

foliation and, usually, will be denoted by FC2
(or FC2

X ).

Let F be a holomorphic foliation on a smooth complex surface S (note that

we also admit that S = C2, in which case F is assumed to be polynomial) de�ned

by a family of pairs {(Ui, ωi)}i∈I (respectively, {(Ui, vi)}i∈I), where {Ui}i∈I is an

open covering of S and ωi (respectively, vi) is a non-zero regular di�erential 1-form

(respectively, a non-vanishing holomorphic vector �eld) on Ui. Let C be a curve on

S. For all i ∈ I, set fCi = 0 an equation of the curve C on Ui.

De�nition 1.5.2. Let F be a foliation on S as above. An invariant (by F) curve
is a curve C ⊂ S such that, for all i ∈ I

ωi ∧ dfCi = fCi ⋅ µi (respectively, vi(fCi ) = hi(fCi )),

for some di�erential 2-form µi (respectively, regular function hi) on Ui where dfCi is

the di�erential of fCi . The function hi is called the cofactor of fCi .
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Invariant curves by a foliation F are also named solutions or integral curves of

F . To avoid confusion we only use the term invariant curve, since, for us, integral

curve will mean irreducible and reduced curve.

The aim of the next subsection is to show that a foliation on the projective plane

can always be represented either by a homogeneous vector �eld or by a homogeneous

1-form.

Later on, we will do the same for foliations on Hirzebruch surfaces instead of on

the projective plane.

1.5.1. Foliations on P2

In this subsection we explain how to get an easy representation of a foliation on

the complex projective plane (see [17] for instance). Let O = OP2 , the structural

sheaf of P2.

A holomorphic foliation FP2
on P2 is given by a global section of ΘP2 ⊗O(r − 1)

for some non-negative integer r. We say that r is the degree of FP2
. This means that

the tangent sheaf of FP2
is L = O(−r + 1). By de�nition the canonical sheaf of FP2

is L∗ = O(r − 1) and a canonical divisor of FP2
is given by K

FP2 = (r − 1)L, L being

the divisor of a line.

Consider the generalized Euler's sequence (see [31], [30, Section 3]):

0→ O → O(1)⊕3 → ΘP2 → 0. (1.11)

Taking tensor product with L∗ = O(r − 1) in the above sequence, we get

0→ O(r − 1) → O(r)⊕3 → ΘFδ(r − 1) → 0.

The above exact sequence helps to prove the following result (see [60] and [17]).

Theorem 1.5.3. A foliation on P2 of degree r is uniquely determined by a polynomial

vector �eld of the form

X P2 = U ∂

∂X
+ V ∂

∂Y
+W ∂

∂Z
,

where U,V and W are homogeneous polynomials of degree r in C[X,Y,Z] without

common factors. It is unique up to the addition of a multiple of the radial vector �eld

R ∶=X ∂

∂X
+ Y ∂

∂Y
+Z ∂

∂Z
.

There is an equivalent way to de�ne a foliation FP2
of degree r. It uses a reduced

1-form in the variables X, Y and Z.

Theorem 1.5.4. [17] A foliation FP2
on P2 of degree r is uniquely determined by a

homogeneous 1-form

ΩP2 ∶= AdX +BdY +CdZ,
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where A, B and C are homogeneous polynomials of degree r+1 in C[X,Y,Z] without
common factors and such that they satisfy the so-called Euler's condition:

AX +BY +CZ = 0.

Let FP2
be a foliation on P2 given by the vector �eld X P2 ∶= U ∂

∂X +V ∂
∂Y +W ∂

∂Z .

Then by [17], the 1-form ΩP2 = AdX + BdY + CdZ, given in Theorem 1.5.4 and

de�ning FP2
, can be obtained as follows:

ΩP2 =

RRRRRRRRRRRRRRRRR

dX dY dZ

X Y Z

U V W

RRRRRRRRRRRRRRRRR

.

Remark 1.5.5. The isomorphisms UJ → C2, J = X,Y,Z, de�ned in Subsection

1.4.1, allow us to handle the foliation in local terms. For example, let ΩP2 = AdX +
BdY + CdZ be the 1-form de�ning a foliation FP2

on P2. Taking the coordinates

x = xZ = X/Z and y = yZ = Y /Z (at UZ = {(X ∶ Y ∶ Z) ∈ P2∣Z ≠ 0}), FP2
is locally

de�ned by the 1-form (respectively, vector �eld)

ωUZ ∶= A(x, y,1)dx +B(x, y,1)dy

(respectively XUZ = −B(x, y,1) ∂
∂x

+A(x, y,1) ∂
∂y

) .

Assume that ω = a(x, y)dx + b(x, y)dy is a 1-form de�ning a foliation FC2
on

C2, where a(x, y), b(x, y) are coprime (in the sense that they do not have a non-

constant common factor). Then by [73, Proposition 2.6 and Theorem 2.4] there

exists a foliation FP2
in P2 such that its restriction to UZ is the foliation FC2

. The

following algorithm and lemma show how we can construct it. We call FP2
the

extended foliation of FC2
to P2. For ease of the reader, we start with an example.

Example 1.5.6. Let

ω = a(x, y)dx + b(x, y)dy = (2x + 5xy2 + 10y5)dx + (3 − x3y4)dy

be the 1-form de�ning a polynomial foliation on C2 which can be regarded as the local

form of a foliation FP2
on UZ , where x = xZ and y = yZ . Consider the homogeneous

polynomials of degree 8 in C[X,Y,Z]:

A = A(X,Y,Z) = Z8a(X/Z,Y /Z) = Z8 (2
X

Z
+ 5

XY 2

Z3
+ 10

Y 5

Z5
)

= 2XZ7 + 5XY 2Z5 + 10Y 5Z3,

B = B(X,Y,Z) = Z8b(X/Z,Y /Z) = Z8 (3 − X
3Y 4

Z7
) = 3Z8 −X3Y 4Z and

C = C(X,Y,Z) = −AX −BY
Z

= −2X2Z7 − 5X2Y 2Z5 − 10XY 5Z3 − 3Y Z8 +X3Y 5Z

Z

= −2X2Z6 − 5X2Y 2Z4 − 10XY 5Z2 − 3Y Z7 +X3Y 5.
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Then, ΩP2 = AdX + BdY + CdZ is a homogeneous 1-form satisfying the Euler's

condition, whose restriction to UZ is ω.

Consider a planar polynomial foliation on C2, FC2
, given by a 1-form ω ∶=

a(x, y)dx + b(x, y)dy. The following algorithm provides three homogeneous poly-

nomials A, B and C such that the homogeneous 1-form ΩP2 = AdX +BdY + CdZ
satis�es the Euler's condition in Theorem 1.5.4, and, thus, it de�nes a foliation FP2

on P2 such that ω = ωUZ , the local form of ΩP2
at UZ .

Algorithm 1.5.7.

Input: ω = adx + bdy (a = a(x, y), b = b(x, y) ∈ C[x, y] coprime) de�ning FC2
.

Output: A,B,C ∈ C[X,Y,Z] homogeneous and coprime polynomials de�ning

ΩP2 = AdX +BdY +CdZ, whose local form at UZ is ω.

(1) Write the rational functions a (XZ ,
Y
Z
) and b (XZ ,

Y
Z
) as rational fractions A

Zα and
B
Zα , where α ≥ 0 is the minimum integer such that A and B are homogeneous

polynomials in C[X,Y,Z] (of degree α).

(2) De�ne β ∶= 0 if Z divides −XA − Y B and β ∶= 1 otherwise. Set A ∶= ZβA and

B ∶= ZβB.

(3) Set C ∶= −XA−Y B
Z .

(4) Return A, B, C.

Let us see that our algorithm gives rise to suitable homogeneous polynomials.

Lemma 1.5.8. Let ω = a(x, y)dx + b(x, y)dy be a di�erential 1-form de�ning a

foliation on C2, and let A, B and C be the polynomials of C[X,Y,Z] obtained as

the output of Algorithm 1.5.7 from the input ω. Then A, B and C are homogeneous

polynomials of the same degree. Moreover they satisfy the equality

XA + Y B +ZC = 0, (1.12)

and have no non-constant common factor.

Proof. The polynomials A and B obtained in Step (1) of Algorithm 1.5.7 have no

non-constant common factor and have degree α. Therefore, the degree of these two

output polynomials is r = α + β.
Let A and B be the polynomials obtained after Step (2), then the polynomial

Z divides −XA − Y B. Therefore, the rational function C de�ned in Step (3) is a

polynomial of degree r. Note that Equality (1.12) is trivially satis�ed.

To conclude, let us prove that the output polynomials are coprime (in the sense

that they have no non-constant common factor). Notice that their only possible

common factor is Z. For a start, at most one of the polynomials A and B obtained

in Step (1) has Z as a factor. If β = 0 in Step (2), then Z remains not-dividing A or
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B. If β = 1, then Z divides −XA−Y B (but it is clear that Z2 does not); then, after

Step (3), Z does not divide C.

1.5.2. Foliations on Fδ

Let Fδ be a foliation on Fδ. It is given by the class of a global section [s] ∈
PH0(Fδ,ΘFδ ⊗ L∗), L∗ being its canonical sheaf. Every invertible sheaf on Fδ has
the form OFδ(−d1,−d2) for some d1, d2 ∈ Z. Let L = OFδ(−d1,−d2) be the tangent

sheaf of F , then we say that Fδ has bidegree (d1, d2). Moreover, if Fδ has isolated
singularities, d2 ≥ 0 and d1 ≥ 0 (respectively, d1 ≥ −1) if δ = 0 (respectively, δ ≠ 0)

(see [59] or [54]). Thus, the canonical sheaf of Fδ is L∗ = OFδ(d1, d2) and then a

canonical divisor of Fδ is given by KFδ = d1F +d2M , where F andM are the divisors

de�ned in Subsection 1.4.2. Let us denote by O = OFδ the structural sheaf of Fδ.
The generalized Euler's sequence in this case is

0→ O⊕2 → O(1,0)⊕2 ⊕O(0,1) ⊕O(−δ,1) → ΘFδ → 0. (1.13)

Tensorizing the Euler's sequence by L∗ = O(d1, d2), we obtain the exact sequence:

0→ O(d1, d2)⊕2 → O(d1+1, d2)⊕2⊕O(d1, d2+1)⊕O(d1−δ, d2+1) → ΘFδ(d1, d2) → 0. (1.14)

Since a holomorphic foliation Fδ of bidegree (d1, d2) is de�ned by a global section

of ΘFδ ⊗O(d1, d2), the long exact sequence related to sequence (1.14) helps to prove

the following result (see [54, Section 3]):

Theorem 1.5.9. A foliation on Fδ of bidegree (d1, d2) can be given by a polynomial

vector �eld in bihomogeneous coordinates of the form

X δ = Vδ,0
∂

∂X0
+ Vδ,1

∂

∂X1
+Wδ,0

∂

∂Y0
+Wδ,1

∂

∂Y1
,

where

Vδ,0, Vδ,1 ∈H0(Fδ,O(d1 + 1, d2)),
Wδ,0 ∈H0(Fδ,O(d1, d2 + 1))

and Wδ,1 ∈H0(Fδ,O(d1− δ, d2+1)), modulo addition of multiples of the radial vector

�elds

R1 ∶=X0
∂

∂X0
+X1

∂

∂X1
− δY1

∂

∂Y1
and R2 ∶= Y0

∂

∂Y0
+ Y1

∂

∂Y1
.

Let us show that there is an equivalent way to de�ne a foliation Fδ of degree

(d1, d2) by means of a reduced homogeneous 1-form.
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Theorem 1.5.10. [54, Proposition 3.2] A foliation on Fδ of bidegree (d1, d2) is

uniquely determined by a 1-form:

Ωδ ∶= Aδ,0dX0 +Aδ,1dX1 +Bδ,0dY0 +Bδ,1dY1,

where Aδ,0, Aδ,1, Bδ,0 and Bδ,1 are bihomogeneous polynomials (not all of them equal

to 0) without non-constant common factors,

Aδ,0,Aδ,1 ∈H0 (Fδ,OFδ((d1 − δ + 1)F + (d2 + 2)M)) ,

Bδ,0 ∈H0 (Fδ,OFδ((d1 − δ + 2)F + (d2 + 1)M))

and Bδ,1 ∈H0 (Fδ,OFδ((d1 + 2)F + (d2 + 1)M)), which satisfy the following two con-

ditions, called Euler's conditions:

Aδ,0X0 +Aδ,1X1 − δBδ,1Y1 = 0 and

Bδ,0Y0 +Bδ,1Y1 = 0.

Proof. We summarize here the proof given in [54].

Let L = O(−d1,−d2) with d1, d2 ∈ Z as before. Recall that ΩFδ is the sheaf of

di�erentials of Fδ and KFδ = O(δ − 2,−2) its canonical sheaf. Applying [64, Chapter

II, Exercise 5.16(b)], the evaluation map

b ∶ ΘFδ ×
2

⋀ΩFδ → ΩFδ , b(F,ω) = ω(F ),

induces an isomorphism

ΘFδ ⊗KFδ = ΘFδ ⊗
2

⋀ΩFδ
b→ ΩFδ ,

which gives rise to an isomorphism ΘFδ ≅ ΩFδ ⊗K∗Fδ = ΩFδ(−δ + 2,2).
Then, ΘFδ ⊗L∗ = ΘFδ(d1, d2) ≅ ΩFδ(d1 − δ + 2, d2 + 2), and we get that

Hq(Fδ,ΘFδ(d1, d2)) ≅Hq(Fδ,ΩFδ(d1 − δ + 2, d2 + 2))

for q = 0,1,2. In order to obtain the bihomogeneous polynomials which de�ne the

section of this space for q = 0, we take the dual of the Euler's exact sequence (1.13):

0→ ΩFδ → O(−1,0)⊕2 ⊕O(0,−1) ⊕O(δ,−1) → O⊕2 → 0.

Twisting this sequence by O(d1 − δ + 2, d2 + 2), we obtain

0→ ΩFδ(d1 − δ + 2, d2 + 2) → H → O(d1 − δ + 2, d2 + 2)⊕2 → 0,

where

H = O(d1 − δ + 1, d2 + 2)⊕2 ⊕O(d1 − δ + 2, d2 + 1) ⊕O(d1 + 2, d2 + 1).

Finally, the proof follows by considering the long exact sequence associated to

the above exact sequence.
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Let X δ ∶= Vδ,0 ∂
∂X0

+Vδ,1 ∂
∂X1

+Wδ,0
∂
∂Y0

+Wδ,1
∂
∂Y1

be a vector �eld de�ning a foliation

Fδ on Fδ. Then, the following expression:

Ωδ =

RRRRRRRRRRRRRRRRRRRRRRR

dX0 dX1 dY0 dY1

X0 X1 Y0 Y1

0 0 Y0 Y1

V0 V1 W0 W1

RRRRRRRRRRRRRRRRRRRRRRR
gives a representation of Fδ by means of a bihomogeneous 1-form.

Remark 1.5.11. The isomorphisms Uij → C2, 0 ≤ i, j ≤ 1, de�ned in Subsec-

tion 1.4.2 allow us to handle a foliation Fδ in local terms. For example, let Ωδ =
Aδ,0dX0 +Aδ,1dX1 +Bδ,0dY0 +Bδ,1dY1 be the 1-form de�ning a foliation Fδ on Fδ.
Take coordinates at U00, x00 = X1/X0, y00 = Xδ

0Y1/Y0, then Fδ is locally de�ned by

the 1-form (respectively, vector �eld)

ωU00 ∶= Aδ,1(1, x00,1, y00)dx00 +Bδ,1 (1, x00,1, y00)dy00

(respectively, XU00 ∶= −Bδ,1(1, x00,1, y00)
∂

∂x00
+Aδ,1(1, x00,1, y00)

∂

∂y00
) .

Similarly, given a local form ωUij on an a�ne open set Uij ⊂ Fδ as above, the

Euler's conditions allow us to recover Ωδ. We will prove it in the forthcoming Propo-

sition 2.3.3 by means of Algorithm 2.3.1. Although we will show the procedure in

Chapter 2, we give an example below for ease of reading.

Example 1.5.12. Let

ω = a(x, y)dx + b(x, y)dy = (2x + 5xy2 + 10y5)dx + (3 − x3y4)dy

be the 1-form of Example 1.5.6 which now de�nes the local form of a foliation Fδ on
U00. Consider the homogeneous polynomials in C[X0,X1, Y0, Y1]:

Aδ,1 = Aδ,1(X0,X1, Y0, Y1) =X2
0Y

6
0 a(X1/X0,X

δ
0Y1/Y0) =X2

0Y
6
0 (2

X1

X0
+ 5

X2δ
0 X1Y

2
1

X0Y 2
0

+ 10
X5δ

0 Y 5
1

Y 5
0

)

= 2X0X1Y
6
0 + 5X2δ+1

0 X1Y
4
0 Y

2
1 + 10X5δ+2

0 Y0Y
5
1 ,

Bδ,1 = Bδ,1(X0,X1, Y0, Y1) =Xδ+3
0 Y 5

0 b(X1/X0,X
δ
0Y1/Y0) =Xδ+3

0 Y 5
0 (3 − X

4δ
0 X3

1Y
4
1

X3
0Y

4
0

)

= 3Xδ+3
0 Y 5

0 −X5δ
0 X3

1Y0Y
4
1 ,

Aδ,0 = Aδ,0(X0,X1, Y0, Y1) =
δBδ,1Y1 −Aδ,1X1

X0
= −2X2

1Y
6
0 − 5X2δ

0 X2
1Y

4
0 Y

2
1 − 10X5δ+1

0 X1Y0Y
5
1

+ δ (3Xδ+2
0 Y 5

0 Y1 −X5δ−1
0 X3

1Y0Y
5
1 ) and

Bδ,0 = Bδ,0(X0,X1, Y0, Y1) =
−Bδ,1Y1
Y0

= −3Xδ+3
0 Y 4

0 Y1 +X5δ
0 X3

1Y
5
1 .

The homogeneous 1-form Ωδ = Aδ,0dX0 +Aδ,1dX1 +Bδ,0dY0 +Bδ,1dY1 is well-de�ned

for every δ. It satis�es the (bidegree and Euler) conditions of Theorem 1.5.10 and

its restriction to U00 equals ω.

A foliation Fδ on Fδ obtained as explained from a foliation FC2
on C2 is called

the extended foliation of FC2
to Fδ.
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1.6. Rational �rst integrals of foliations

Keep the above notation. Throughout this section, S0 denotes either the complex

projective plane or a complex Hirzebruch surface and S denotes a (complex rational)

surface. Let K(S) be the function �eld of S.

Notice that a rational function R on C2 (respectively, P2; Fδ) is given by the

quotient F /G of two polynomials (respectively, homogeneous polynomials of the same

degree; bihomogeneus polynomials of the same bidegree) F and G ≠ 0. If R = F
G is a

rational function on P2 (respectively, Fδ), we de�ne its degree (respectively, bidegree)

as deg(R) = deg(F ) (respectively, (deg1(R),deg2(R)) = (deg1(F ),deg2(F ))).
Following the same notation as in [9], a rational function R = F

G ∈K(C2) is said to
be reduced when F and G are coprime. Moreover we say that R ∈K(C2) is composite

if it can be written as R = u ○R′, where R′ ∈ K(C2) ∖ C and u = u1(t)
u2(t)

∈ C(t) with

deg(u) ∶= deg(u1) − deg(u2) ≥ 2. Otherwise R is said to be non-composite.

Let F a foliation on C2, P2 or Fδ (which is assumed to be polynomial if it is

de�ned on C2) de�ned by the 1-form Ω (or, equivalently, the vector �eld X ).

De�nition 1.6.1. A rational �rst integral of F is a non-constant rational function

R = F
G such that Ω ∧ dR = 0 (or, equivalently, X(R) = 0).

We say that F is algebraically integrable if it admits a rational �rst integral R.

If a planar polynomial foliation FC2
on C2 is algebraically integrable, then there

is a non-composite and reduced rational �rst integral r of FC2
. Any rational function

r′ = u○r, u ∈ C(t)∖C, is also a rational �rst integral of FC2
; moreover, all the reduced

rational �rst integrals of FC2
are of this form (see [9, Theorem 10] for a proof). Non-

composite and reduced rational �rst integrals coincide with rational �rst integrals of

minimal degree and they are called primitive rational �rst integrals.

If r = f(x,y)
g(x,y) is a rational �rst integral of a polynomial foliation FC2

on C2 and

δ ∈ Z≥0, then there exist two coprime homogeneous polynomials FP2 ,GP2 ∈ C[X,Y,Z]
of the same degree, and two coprime bihomogeneous polynomials

FFδ ,GFδ ∈ C[X0,X1, Y0, Y1]

of the same bidegree, such that the following equalities of rational functions hold:

r(X/Z,Y /Z) = FP2

GP2

, r(X1/X0,X
δ
0Y1/Y0) =

FFδ
GFδ

.

Notice that we are identifying C2 with the above introduced open set UZ (respec-

tively, U00) when looking for rational functions on P2 (respectively, Fδ). By [73,

Proposition 1.6], r is a rational �rst integral of FC2
if and only if the functions

FP2/GP2 and FFδ/GFδ are rational �rst integrals of their respective extensions FP2

and Fδ to the surfaces P2 and Fδ. Let FC2
be an algebraically integrable foliation

on C2 and r a primitive rational �rst integral of FC2
. Let FP2

(respectively, Fδ)
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be its extension to P2 (respectively, Fδ). We say that r(X/Z,Y /Z) (respectively,

r(X1/X0,X
δ
0Y1/Y0)) is a primitive rational �rst integral of FP2

(respectively, Fδ).
The next result is proved in [65, Chapter 2, Theorem 3.3] for foliations on the

projective plane. Considering the extension of a polynomial foliation on C2 to the

projective plane, and the restriction of a foliation on a Hirzebruch surface to the

a�ne open subset U00, it also holds for foliations on S0.

Proposition 1.6.2. Let F be a foliation on either C2 or S0. The existence of

a primitive rational �rst integral R = F
G of F is an equivalent fact to any of the

following ones:

1. F has in�nitely many invariant algebraic curves.

2. All the local invariant (by F) curves are algebraic.

3. There exists a unique irreducible pencil of curves on S0 with equations λF+µG =
0, (λ ∶ µ) ∈ P1, such that all the reduced and irreducible invariant by F curves

are exactly the irreducible components of this pencil. This pencil is denoted by

PF = ⟨F,G⟩.

In our previous Statement 3, irreducible pencil means that its general element is

a reduced and irreducible curve. However, for a �nite number of values (λi ∶ µi) ∈ P1,

the corresponding curve in PF could be reducible or non-reduced (see, for instance,

[65, Theorem 3.4.6]). Those values (λi ∶ µi) are called remarkable values.

Later, we will look for primitive rational �rst integrals.

Let F be an algebraically integrable foliation on S0 with primitive rational �rst

integral R = F
G . We call genus of R the geometric genus (1.2) of a non-singular model

of a general curve of PF = ⟨F,G⟩.
Our future Chapter 2 is devoted to provide results and techniques which allow

us to obtain rational �rst integrals of foliations FC2
on C2. The existence of a

rational �rst integral of a foliation FC2
and that of a rational �rst integral of any

of its extended foliations FP2
or Fδ are equivalent facts. Hence, our strategy in

the following chapter will be to study the algebraic integrability of FC2
through its

extension to P2 (Algorithm 1.5.7) or Fδ (Algorithm 2.3.1).

Let FC2
be a foliation on C2 de�ned by the 1-form ω. A Darboux �rst integral is

a multivalued function

H ∶=
p

∏
i=1

fλii

q

∏
j=1

exp(hj
gj

)
µj

,

where fi, hj , gj ∈ C[x, y], p, q ∈ Z≥0 and λi, µj ∈ C for all i = 1, . . . , p, j = 1, . . . , q such

that ω ∧ dH = 0. Darboux in [32] proved that if a polynomial foliation of degree r

FC2
on C2 has, at least, (r+1

2
)+1 invariant algebraic curves, then it has a (Darboux)

�rst integral, which can be computed from these curves. In [65], Jouanolou proved

that if the number of invariant by FC2
algebraic curves is at least (r+1

2
)+ 2, then the
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foliation has a rational �rst integral. One can see some improvement of these results

in [26, 23, 27, 25]. The next result (Darboux's theorem) can be consulted in [41,

Theorem 5.1]. We show an adapted to our purposes version.

Theorem 1.6.3. Let FC2
be a planar polynomial foliation of degree r admitting t ir-

reducible invariant algebraic curves fi(x, y) = 0 with respective cofactors ki(x, y), 1 ≤
i ≤ t. Then,

(1) There exist complex numbers λi, 1 ≤ i ≤ t, not all zero, such that

t

∑
i=1

λiki(x, y) = 0

if and only if

H = fλ1
1 ⋯fλtt

is a (Darboux) �rst integral of Fδ.

(2) If t = (r+1
2
)+1, then there exist complex numbers λi, 1 ≤ i ≤ t, not all zero, such

that ∑ti=1 λiki(x, y) = 0.

(3) If t ≥ (r+1
2
) + 2, FC2

has a rational �rst integral.

1.7. Reduction of singularities of a foliation

Let S be a rational surface and F a foliation on S. We think of S under its

structure of complex manifold. The restriction (or the local form) of F at a conve-

nient neighbourhood of a point p ∈ S is denoted by Fp and a 1-form representing Fp
is denoted by ωp. When no confusion arises, we simply write ω. In this section we

study the behaviour of a foliation under a sequence of blowups. We mainly follow

[33, Chapter II] and [12]. Keep the notation as in Section 1.2.

Let p ∈ S. Take local coordinates (x, y) in a neighbourhood Up of p and consider

ω = a(x, y)dx + b(x, y)dy a 1-form de�ning Fp. By convenience set a = a(x, y) and

b = b(x, y). When gcd(a, b) = 1, we say that ω is reduced.

Let S′
π→ S be the blowup of S at a point p ∈ S. It induces the morphism

ΩS
π∗Ð→ ΩS′ .

Let E be the exceptional divisor of π and consider q ∈ E ⊂ S′. We study π∗q (ω), the
(local form of the) pull-back of ω centered at q. Taking local coordinates (x′, y′) in

a neighbourhood Uq of q, the blowup π is locally de�ned by the following change of

coordinates:
⎧⎪⎪⎨⎪⎪⎩

x = x′

y = x′(y′ + k)
⎛
⎝
or

⎧⎪⎪⎨⎪⎪⎩

x = x′y′

y = y′
⎞
⎠
, where k ∈ C.
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Therefore,

π∗q (ω) = π∗(a)dx′ + π∗(b)d (x′(y′ + k))
= (a (x′, x′(y′ + k)) + (y′ + k)b (x′, x′(y′ + k)))dx′ + x′b (x′, x′(y′ + k))dy′

(or π∗q (ω) = π∗(a)d(x′y′)+π∗(b)dy′ = y′a(x′y′, y′)dx′+(x′a(x′y′, y′) + b(x′y′, y′))dy′).
In general the form π∗q (ω) is not reduced because there are usually copies of the

exceptional divisor. Then π∗q (ω) = x′tωq, for some t ∈ Z≥0, where ωq is a reduced

1-form that is called the strict transform of ω centered at q ∈ E.
If we take local coordinates (x′, y′) in a neighbourhood Ur of a point r ∈ S′ ∖E,

the pullback is de�ned by

π∗r (ω) = a(x′, y′)dx′ + b(x′, y′)dy′

and it is a reduced 1-form. We write ωr = π∗r (ω) whenever r ∈ S′ ∖E.
Formally speaking, the 1-forms {ωq}q∈S′ glue together (see, for instance, the de-

scription given in [40, Section 4] and the references therein) and, therefore, we can

de�ne the strict transform of F , denoted by F̃ , as the foliation on S′ determined by

the pairs {(Uq, ωq)}q∈S′ .
Keep the notation as in Section 1.2. Denote by S0 either P2 or Fδ and let (S,S0,C)

be an S0-tuple. Moreover, if C = {pi}ni=1, consider the sequence of blowups centered

at the points in C

πC ∶ S = Sn
πnÐ→ Sn−1

πn−1←→ ⋯ π2Ð→ S1
π1Ð→ S0.

Denote by F̃ the foliation on S obtained from a foliation F on S0 by iterating the

above described process. F̃ is called the strict transform of F on S.

De�nition 1.7.1. Let S be a rational surface and F a foliation on S. Let p a point

in S and Fp the restriction of F to a convenient neighbourhood of p, Up. Taking local

coordinates (x, y) in Up, consider a reduced 1-form ω = a(x, y)dx + b(x, y)dy = ∑ωi
representing Fp, where ωi is the homogeneous component of degree i of ω, i ≥ 0.

Then,

p is a regular point of F if ω0 ≠ 0.

p is a simple point of F if ω0 = 0 and, setting ω1 = (a10x + a01y)dx + (b10x+
b01y)dy, the eigenvalues v1 and v2 of the matrix

⎛
⎝
b10 b01

−a10 −a01

⎞
⎠

satisfy one of the following conditions:

1. v1v2 ≠ 0 and v1

v2
≠ Q>0.
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2. v1v2 = 0 and v2
1 + v2

2 ≠ 0.

p is an ordinary point of F whenever p is neither regular nor simple.

Let F be a foliation on S0. Let q be an in�nitely near S0 point and (S,S0,C) an
S0-tuple such that q ∈ S. Abusing the notation, q is said to be a regular (respectively,

simple, ordinary) point of F if it is a regular (respectively, simple, ordinary) point of

F̃ , F̃ being the strict transform of F on S. A point p is a singularity (or a singular

point) of F if it is not a regular point of F .
Notice that the singular set Sing(F), de�ned after De�nition 1.5.1, coincides with

the set of proper singular points of F . Seidenberg in [92] proved that the ordinary

singularities are not a stable set by blowing-up and they can be reduced:

Theorem 1.7.2 ([92], [10, Theorem 1.1]). Let F be a foliation on S0 (i.e., on P2 or

Fδ). Then, there exists a (minimal) sequence of point blowups

π ∶ S̃ = Sn
πnÐ→ Sn−1

πn−1Ð→ ⋯ π1Ð→ S0

such that the strict transform F̃ of F on the surface S̃ has only simple and regular

points.

Let F be a foliation on a (rational) surface S. If we blowup S at a regular

point (respectively, a simple singularity) p, then F̃ , the strict transform of F , has,
at the exceptional divisor Ep, only one (respectively, two) simple singularities. The

centers of the blowups considered in Theorem 1.7.2 are ordinary singularities and,

after �nitely many steps, one eliminates these singularities giving rise only to regular

and simple points. The sequence π is called the reduction of singularities of F and

the con�guration of π over S0 is the singular con�guration of F . It is denoted by CF .
Notice that CF is the set of ordinary singularities of F (both proper and in�nitely

near S0).

Let p be a point in S. Let ωp = ap(x, y)dx+ bp(x, y)dy be the 1-form de�ning Fp.
Let ωp = ∑i≥0 ωp,i be the decomposition of ωp in homogeneous components, where

ωp,i = ap,i(x, y)dx + bp,i(x, y)dy and ap,i(x, y) and bp,i(x, y) are the homogeneous

components of degree i of ap(x, y) and bp(x, y), respectively. We de�ne the algebraic

multiplicity of F at p as the non-negative integer ν = νp(F) corresponding to the

�rst non-vanishing jet ωp,ν of ωp. Notice that p is a singularity of F if and only if

ν ≥ 1. In particular, if (but not only if) ν > 1, then p is an ordinary singularity.

Let p ∈ S be a singular point of the foliation F and ωp a 1-form de�ning Fp. A
separatrix of F at p is a holomorphic irreducible and invariant by F curve C de�ned

on a neighbourhood of p which passes through p. This means that any vector �eld

de�ning Fp is tangent to C (at p), or that the pullback of ωp to C is identically

0. Camacho and Sad, in [13], show that there exists at least one separatrix going

through each singular point of a foliation. The singularity p is called dicritical if

there are in�nitely many separatrices passing through it.
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This notion can be extended to any singularity q ∈ CF . Indeed, q is called dicritical
if q is a dicritical singularity of the strict transform of F in the surface containing q.

De�nition 1.7.3. With the above notation, let ωp = a(x, y)dx + b(x, y)dy be a 1-

form de�ning the restriction of a foliation F on S at a singular point p. Let Ep be the

exceptional divisor obtained after blowing-up at p and ν the algebraic multiplicity

of F at p. Consider the following polynomial:

dp(x, y) ∶= ap,ν(x, y)x + bp,ν(x, y)y.

We say that Ep is a dicritical exceptional divisor when dp is the zero polynomial.

If dp /≡ 0, we say that Ep is non-dicritical.

The non-dicritical exceptional divisors are those invariant by the strict transform

of the foliation on the surface where they appear (see [10]). This gives us another

way to compute dicritical and non-dicritical divisors:

Proposition 1.7.4. Let F be a foliation on a surface S, p ∈ CF and ωp a 1-form

representing Fp. Consider the blowup of S at p. If f = 0 is the equation of the

exceptional divisor Ep, and ω̃p the strict transform of ωp, then Ep is non-dicritical if

and only if f divides df ⋀ ω̃p.

Let p ∈ CF . If Ep is a dicritical exceptional divisor, then we say that p is a

terminal dicritical point (or a terminal dicritical singularity). The next result is a

consequence of [10, Proposition 1.1]:

Proposition 1.7.5. The dicritical points (or dicritical singularities) of F are the

points q ∈ CF such that q ≤ p (p is in�nitely near or equal to q) where p ∈ CF is a

terminal dicritical point.

De�nition 1.7.6. Let F be a foliation on S0. Then:

The sequence of blowups at the dicritical points in CF is called the dicritical

resolution of F .

The set of dicritical points in CF is denoted by BF and it is called the dicritical

con�guration of F .

The set of dicritical points whose exceptional divisor is non-dicritical (respec-

tively, dicritical), i.e., the set of non-terminal (respectively, terminal) dicritical

points in BF , is denoted by NF (respectively DF ).

Following the notation of Section 1.2, it holds that

BF = ⋃
p∈DF

(C)p.
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Let us denote by SF the sky of the dicritical con�guration of a foliation F on

the surface S and F̃ the strict transform on SF of F . By Proposition 1.2.6, the

canonical divisor of SF is KSF = K∗
S + ∑p∈BF E

∗
p . We also denote by K

F̃
a divisor

such that OSF (KF̃) is the canonical sheaf of the strict transform of F by its dicritical

resolution.

Proposition 1.7.7 ([16, Proposition 1.1]). Let F be a foliation on S0 and F̃ the

strict transform of F on SF . Then,

K
F̃
=KF − ∑

p∈BF

(νp(F) + εp(F) − 1)E∗
p , (1.15)

where εp ∶= 1 if p is a terminal dicritical point and 0 otherwise.

1.8. Plane valuations

We conclude this chapter by recalling the notion of plane valuation and some

related objects. The main references we have followed are [97], [95], [34] and [75].

Keep the notation as in the previous sections.

Let S be any (smooth) complex surface and p a point in S. Let K be the

quotient �eld of the local ring R ∶= (OS,p,m), where m is the maximal ideal of OS,p.
Set K∗ =K ∖ {0}.

De�nition 1.8.1. A (plane) valuation of K is a surjective map ν ∶ K∗ → G, where

G is a totally ordered abelian group, that satis�es

ν(f + g) ≥ min{ν(f), ν(g)} and ν(fg) = ν(f) + ν(g), for f, g ∈K∗.

This de�nition can be extended to any other regular local ring of dimension 2.

The valuation ring of ν is the local regular ring Rν ∶= {f ∈ K∗∣ ν(f) ≥ 0} ∪ {0}
and its maximal ideal is mν ∶= {f ∈ K∗∣ ν(f) > 0} ∪ {0}. We say that a valuation ν

is centered at m when R ∩mν = m.

Chain con�gurations (de�ned in Section 1.2) where we allow in�nitely many

centers give rise to sequences (of point blowups) called simple. There is a one-to-one

correspondence between plane valuations (De�nition 1.8.1) and simple sequences of

point blowups of Spec(R). We say that a plane valuation is a divisorial valuation if

it de�nes (and is de�ned) by a �nite simple sequence. In this case G ≅ Z. We denote

by Cν the con�guration (of centers) of ν, that is, the con�guration associated to a

valuation ν.

In Section 1.2 we de�ned the proximity graph of a con�guration and we spoke

about the existence of other graphs, such as the dual graph, which provide the same

information. Since the dual graph will be used in relation with valuations, next we

give its de�nition and some related facts.
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Keep the notation for chains introduced in Section 1.2. Let ν be a divisorial

valuation and Cν = {pi}ni=1 its con�guration of centers such that pi ≤ pj for all 1 ≤ i ≤
j ≤ n. Consider the set of points p`0 , . . . , p`g+1 ∈ Cν such that

1. `0 = 1 and `g+1 = n.

2. g = 0 when all the points in Cν are free.

3. `k < `h for all k < h < g and lg ≤ lg+1.

4. The centers p`k+1 are the �rst free points after a block of satellite points for

1 < `k < n.

Then, Cν can be written as

Cν = (C)`1`0 ∪ (C)`2`1⋯∪ (C)`g`g−1
∪ (C)`g+1

`g
.

For k ≤ g, the chain (C)`k`k−1
can be written as

(C)`k`k−1
= {p`k−1

} ∪ C′k ∪ C′′k , (1.16)

where C′k = (C)rk`k−1+1 (respectively, C
′′
k = (C)`krk+1

) is a non-empty chain containing only

free (respectively, satellite) points. The last chain (C)`g+1

`g
consists of the point p`g

and a sequence (empty if n = `g) of free points.
The dual graph of Cν is a tree whose vertices match one-to-one with the excep-

tional divisors obtained by blowing up the points in Cν , and two vertices are joined

by an edge when their corresponding exceptional divisors intersect. We label with a

symbol i the vertex corresponding to the divisor Ei. The dual graph of any of the

above chains (C)`k`k−1
, 1 ≤ k ≤ g, is usually represented as an inverted L-shaped graph

H|, where the corner vertex has the label `k. The dual graph of (C)`g+1

`g
consists of

a straight-line sequence (of one point if n = `g). Thus, if g > 0, the graph of Cν is

obtained by gluing the individual graphs of each chain (C)`k`k−1
, 1 ≤ k ≤ g, (see Figure

1.2) together with the line-shaped graph corresponding to (C)`g+1

`g
at the points `k,

1 ≤ k ≤ g as Figure 1.3 shows.

. . .

⋮

rk

`k`k−1

Figure 1.2: Dual graph of (C)`k`k−1
, k ≤ g

. . .

⋮

r1

`11
. . .

⋮

`k

rk

. . .

⋮

`g

rg

. . .
`g+1

Figure 1.3: Dual graph of Cν , g > 0

For convenience of the reader, we compare the proximity graph (de�ned in Section

1.2) and the dual graph associated to a chain of in�nitely near points.
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Example 1.8.2. Let C = {pi}9
i=1 be a con�guration of (in�nitely near) points such

that pi+1 → pi for all 1 ≤ i ≤ 8. Assume also that p3, p4 → p1, p5, p6 → p3 and p8 → p6.

The following Figure 1.4 shows the proximity (at the left) and dual (at the right)

graph of C.

p1

p2

p3

p4

p5

p6

p7

p8

p9

3

2

7

1 4 5 6 8 9

Figure 1.4: Proximity and dual graphs of C

Let S be a surface. If p is a closed point of S, and ν is a divisorial valuation of

the function �eld of S, centered at the maximal ideal m of OS,p, the triple (ν,S, p) is
called a divisorial valuation of S centered at p, although most of the times we simply

say that ν is a divisorial valuation of S.

Let ν be a divisorial valuation of S. Set Cν = {pi}ni=1 the con�guration of centers

of ν and

π ∶ Sn
πnÐ→ Sn−1

πn−1Ð→ ⋯ π1Ð→ S0 = S

the corresponding sequence of point blowups. Let mi, 1 ≤ i ≤ n, be the maximal ideal

of the local ring OSi−1,pi . The sequence of values of ν is the set {ν(mi)}ni=1, de�ned

by

ν(mi) ∶= min{ν(f) ∣ f ∈ mi ∖ {0}}.

By [95, Section 9] and [38, Chapter 6, Section 6, Subsection 1], for each 1 ≤ i ≤ n
there exists an analytically irreducible germ of curve on S, ϕi, passing through p = p1

such that its strict transform on Si is transversal to Ei at a general point. We say

that ϕi is a curvette through pi. Then, it holds that ν(mi) = multpi(ϕn) and thus,

the sequence of values of ν satis�es the proximity equalities (1.9) (see [19, Theorem

8.1.7]):

ν(mi) = ∑
pj→pi

ν(mj), i = 1, . . . , n.

Theorem 1.8.3 (Noether's formula for valuations [19, Theorem 8.1.6]). Let p be

a point in a surface S, ν a divisorial valuation of S and Cν = {pi}ni=1, p = p1, its

con�guration. Let C be a curve on S passing through p and ϕC the germ of C at p.
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Then,

ν(ϕC) =
n

∑
i=1

ν(mi) ⋅multpi(ϕC).

One consequence of the Noether's formula is that for divisorial valuations, ν(ϕC) =
(ϕn, ϕC)p. Now we introduce a useful invariant of divisorial valuations.

De�ne r0 ∶= 1 and rg+1 ∶= n and let ri be the indices de�ned after (1.16) for

1 ≤ i ≤ g.

De�nition 1.8.4. The sequence of maximal contact values of ν is the set of values

{β̄i(ν)}g+1
i=0 obtained as follows.

β̄i(ν) = ν(ϕri) = (ϕri , ϕn)p, (1.17)

for 0 ≤ i ≤ g + 1.

Particularly, β̄0 = ν(m) and

β̄g+1(ν) = ν(ϕ′n) = (ϕ′n, ϕn)p =
n

∑
i=1

ν(mi)2, (1.18)

where ϕ′n is a curvette through pn di�erent from ϕn.

De�nition 1.8.5. Let ν be a (plane) divisorial valuation of a surface S whose �rst

center is p = p1.

The volume of ν (see [36]) is de�ned as

vol(ν) ∶= lim sup
m→∞

2 length(R/Pm)
m2

,

where R = OS,p and Pm ∶= {h ∈ R ∣ ν(h) ≥m} ∪ {0}.

It holds that vol(ν) = 1
β̄g+1(ν)

(see [19, Section 4.7] and [53] for more details).

The normalized valuation of ν, νN , is the map given by

νN ∶= 1

β̄0(ν)
ν.

The normalized volume of ν is the following value:

volN(ν) ∶= vol(νN) = β̄0(ν)2

β̄g+1(ν)
.

Let ν be a divisorial valuation of P2 (respectively, Fδ) centered at a point p and

Cν = {pi}ni=1 , p1 = p, its con�guration of centers. Assume that n ≥ 2. Set L the

projective line (called the line at in�nity) containing p (respectively, M and F the

section and �ber containing p). The valuation ν is said to be non-positive at in�nity

(NPI) when ν(h) ≤ 0 for all h ∈ OP2(P2 ∖L) (respectively, h ∈ OFδ(Fδ ∖ (F ∪M))).
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We �nish this section by giving some results related to divisorial valuations of

Hirzebruch surfaces, mainly following [50]. Keep the notation as in Subsection 1.4.2

and �x a point p ∈ Fδ, δ ∈ Z≥0, and let ν be a divisorial valuation of Fδ centered at p.

As explained, the valuation ν determines a unique sequence of blowups and a unique

rational surface Sν :

π ∶ Sν ∶= Sn
πnÐ→ Sn−1

πn−1Ð→ ⋯ π2Ð→ S1
π1Ð→ S0 = Fδ.

In [50, De�nition 3.1 and 3.5] the following concept was introduced (see also [51]):

De�nition 1.8.6. A valuation ν of Fδ (centered at a point p) is said to be special

(with respect to p) if it satis�es one of the following conditions:

1. δ = 0.

2. δ > 0 and p is a special point.

3. δ > 0, p is not a special point and there is no integral curve in the complete

linear system ∣M ∣, where M is a general section of Fδ, whose strict transform
on Sν has negative self-intersection.

We conclude by stating some results which characterize non-positive at in�nity

valuations of Hirzebruch surfaces.

Theorem 1.8.7 ([50, Theorem 3.6]). Let ν be a special divisorial valuation of Fδ
centered at a point p. Let Sν be the sky of the con�guration Cν = {pi}ni=1 of ν. Denote

by Fp the �ber of Fδ passing through p and by M0 either the special section (if δ ≥ 1),

or the section of degree (0,1) passing through p (otherwise).

Consider the following divisor on Sν :

Λ ∶= ν(ϕM0)F ∗ + ν(ϕF1)M∗ −
n

∑
i=1

multpi(ϕn)E∗
i .

Then, the following conditions are equivalent:

1. ν is non-positive at in�nity.

2. Λ is a nef divisor.

3. 2ν(ϕM0)ν(ϕFp) + δν(ϕF1)2 ≥ [vol(ν)]−1.

4. The cone of curves NE(Sν) of the surface Sν is generated by the set classes

[F̃p], [M̃0] and {[Ẽi]}ni=1.

Theorem 1.8.8 ([50, Theorem 4.8]). Let ν be a non-special divisorial valuation of

Fδ centered at a point p. Let Sν be the sky of the con�guration Cν = {pi}ni=1 of

ν. Denote by Fp the �ber of Fδ passing through p and by M1 the unique irreducible
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section that is linearly equivalent to M and whose strict transform on Sν has negative

self-intersection.

Consider the following divisor on Sν :

∆ ∶= (−δν(ϕF1) + ν(ϕM1))F ∗ + ν(ϕF1)M∗ −
n

∑
i=1

multpi(ϕn)E∗
i .

Then, the following conditions are equivalent:

1. ν is non-positive at in�nity.

2. ∆ is a nef divisor.

3. 2ν(ϕM1)ν(ϕFp) − δ2ν(ϕF1)2 ≥ [vol(ν)]−1.

4. The cone of curves NE(Sν) of the surface Sν is generated by the set classes

[F̃p], [M̃0], [M̃1] and {[Ẽi]}ni=1.
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Chapter 2

Algebraic integrability of planar

foliations

In this chapter we present some results on algebraic integrability of complex

planar polynomial foliations. Our proofs use compacti�cations of the complex a�ne

plane as the complex projective plane P2 or Hirzebruch surfaces Fδ, δ ≥ 0, and the

extension of the initial foliation to these surfaces.

Let S0 be either P2 or Fδ. Let F be a foliation on S0. Denote by SF the sky

of the dicritical resolution given by the con�guration BF of the foliation F . SF is a

rational surface such that (SF , S0,BF) is an S0-tuple (De�nition 1.4.6).

We start by introducing, in Section 2.1, a divisor on SF attached to any alge-

braically integrable foliation F on S0, which will be an essential tool in our develop-

ment.

Section 2.2 studies invariant curves since its knowledge will be useful to check

algebraic integrability and to calculate a rational �rst integral when it exists.

In Section 2.3 we study complex planar polynomial foliations through their exten-

sions to Fδ with the aim of obtaining necessary conditions for algebraic integrability.

Section 2.4 introduces another divisor on SF . It plays a crucial role in new

algorithms we will give for algebraic integrability. They are supported again on

necessary conditions for the algebraic integrability of foliations of P2 or Fδ.

Finally, Section 2.5 presents several above mentioned algorithms that decide on

the existence of a rational �rst integral of a foliation de�ned on S0, and calculate it

in the a�rmative case.

For the reader convenience and mainly using the algorithms in Section 2.5, we

give several examples where a rational �rst integral of a planar polynomial foliation

is obtained.

49
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2.1. Characteristic divisor

Let FC2
be an algebraically integrable (polynomial) foliation on C2 and set F its

extended foliation to the surface S0, which could be either P2 or Fδ, δ ≥ 0. We keep

the notation as in Section 1.6, in particular BF denotes the dicritical con�guration

of F . Next, we introduce the so-called characteristic divisor of F and its relation

with the pencil PF given by F , and the invariant curves by the strict transform of

F with respect to BF .
Consider a primitive rational �rst integral of F given by R = F

G , where F and

G are coprime polynomials in the homogeneous coordinate ring of S0. Then, the

pencil PF introduced in Section 1.6 is generated by the curves on S0 with equations

F = 0 and G = 0, and the assignment p ↦ (F (p) ∶ G(p)) gives rise to a rational

map φ ∶ S0 ⇢ P1 whose indeterminacy locus is supported at the set of base points

of PF (which is �nite since F and G have no non-constant common factor). By [6,

Theorem II.7], there exists a sequence of point blowups:

S′m
π′mÐ→ S′m−1

π′m−1Ð→ ⋯
π′2Ð→ S′1

π′1Ð→ S0, (2.1)

and a morphism ψ ∶ S′m → P1 that eliminates the indeterminacies of φ, that is, if

πF = π′1 ○ ⋯ ○ π′m−1 ○ π′m, it holds that ψ = φ ○ πF . The sequence of blowups (2.1)

can be obtained as follows (see the proof of [6, Theorem II.7]). If ∣D∣ is the complete

linear system on S0 containing PF , p1 is a base point of PF and π′1 ∶ S′1 → S0

is the blowup centered at p1 then there exists a positive integer k1 such that the

linear system P1 ⊆ ∣π∗1D − k1Ep1 ∣, obtained by subtracting k1E from each element of

(π′1)∗PF , has no �xed component. Therefore, it de�nes a rational map φ1 ∶ S′1 ⇢ P1

which coincides with φ ○ π1. If φ1 is a morphism then the procedure is �nished by

considering ψ = φ1. Otherwise P1 has base points and, repeating the process, it is

obtained, by induction, a sequence of blowups π′l ∶ S′l → Sl−1 (centered at pl), positive

integers kl, divisors Dl on Sl, linear systems Pl ⊆ ∣Dl−klEpl ∣ on S′l and rational maps

φl ∶ S′l ⇢ P1, l = 1,2, . . . ,m, such that the linear system Pm has no base point and, as

a consequence, ψ ∶= φm is a morphism. Following [19, Section 7.2], the con�guration

of centers of πF will be called the con�guration of base points of PF and denoted by

BP (PF).
The next result is deduced from [33]. It is proved in [40, Corollary 2] for foliations

on the projective plane but, since its proof is local, it can be easily adapted for

foliations on Fδ.

Proposition 2.1.1. Let F be a foliation on S0 having a rational �rst integral R = F
G

and set PF = ⟨F,G⟩. Then, the con�guration of base points BP (PF) coincides with

the dicritical con�guration BF of F (see De�nition 1.7.6).

Let F be a foliation on S0 having a rational �rst integral and let

SF = Sn Ð→ ⋯Ð→ S1 Ð→ S0
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be the sequence of morphisms de�ned by blowing-up at BF = {pi}ni=1. Notice that, by

the above proposition, SF = S′m and thus m = n (see (2.1)). Let F /G be a primitive

rational �rst integral of F and PF = ⟨F,G⟩. When S0 = P2 (respectively, S0 = Fδ),
let d (respectively, (a, b)) be the degree (respectively, bidegree) of the curves in PF .
For i = 1, . . . , n, let mi be the multiplicity at pi of the strict transform of a general

curve of PF , that is, the multiplicity at pi of the strict transform of all curves of PF
except a �nite number of them, called special curves.

De�nition 2.1.2. We de�ne the characteristic divisor of F (or PF or F /G), DF ,
to be:

dL∗ −
n

∑
i=1

miE
∗
i , if S0 = P2,

aF ∗ + bM∗ −
n

∑
i=1

miE
∗
i , if S0 = Fδ.

The above de�ned morphism ψ coincides with the morphism φ∣DF ∣ induced by

the complete linear system ∣DF ∣.
Notice that the divisor class of the image on Pic(SF) of the strict transform of

a general curve of PF coincides with the class [DF ] and that DF is a nef divisor on

SF . As a consequence, if S0 = P2 (respectively, S0 = Fδ), d > 0 (respectively, a ≥ 0

and b ≥ 0) (see [64]).

Lemma 2.1.3. With the notation and assumptions as above, let F̃ be the strict

transform of F on SF and C a curve on SF . Then, the following conditions are

equivalent:

(a) C is invariant by F̃ .

(b) The integral components of C are either strict transforms of integral components

of invariant by F curves or strict transforms of exceptional divisors Ep such

that the point p is not a terminal dicritical singularity of F (de�ned in Section

1.7).

(c) DF ⋅C = 0.

Proof. To prove the equivalence between (a) and (b) it su�ces to show that Ẽp is

invariant by F̃ if and only if p is not a terminal dicritical singularity of F . This fact
is proved in [40, Proposition 1] for S0 = P2, but the same arguments are valid for

S0 = Fδ.
Let us show the equivalence between (b) and (c), which concludes the proof. We

can assume without loss of generality that C is an integral curve on SF . On the one

hand, if C is the strict transform of a curve C ′ on S0, then C is invariant by F̃ if and

only if C ′ is invariant by F . This happens if and only if C is a component of a �ber

of the morphism ψ ∶ SF → S0 that eliminates the indeterminacies of the rational map



52 2. Algebraic integrability

S0 ⇢ P1 provided by the pencil PF . This is equivalent to say that C is contracted

by ψ, that is, DF ⋅ C = 0. On the other hand, applying [40, Proposition 2] (whose

proof is also valid within our framework), if C = Ẽi for some pi ∈ BF , then pi is not
a terminal dicritical singularity if and only if mi −∑pj→pimj = 0, that is, if and only

if DF ⋅ Ẽi = 0.

Remark 2.1.4. By [93, Lemma 1.1] (see also [49, page 3621]) the divisor K
F̃
−KSF

is linearly equivalent to a linear combination of invariant (by F̃) curves. Therefore,
as a consequence of Lemma 2.1.3, one gets

DF ⋅ (KF̃ −KSF ) = 0.

Lemma 2.1.5. Keeping the above notation and assumptions, the following equalities

hold:

1. D2
F = 0.

2. (πF)∗∣DF ∣ = PF .

Proof. Part 1 is straightforward because ∣DF ∣ is a base-point-free complete linear

system and then, two general elements of ∣DF ∣ do not meet.

To prove 2, notice that the inclusion PF ⊆ (πF)∗∣DF ∣ holds because, for any

curve C ∈ PF , either C̃ ∈ ∣DF ∣ or there exists an e�ective divisor E with exceptional

support such that C̃ + E ∈ ∣DF ∣ (see the proof of [6, Theorem II.7]). To prove the

equality, we reason by contradiction assuming that (πF)∗∣DF ∣ ∖ PF is not empty.

Then, since both are projective spaces, the set (πF)∗∣DF ∣ ∖ PF is in�nite.

Let us prove that any integral component of a curve H ∈ (πF)∗∣DF ∣ ∖ PF is a

component of a special curve of the pencil PF . Indeed, if H1 is such a component

then DF ⋅ H̃1 = 0 (as a consequence of Part 1 and the fact that DF is a nef divisor).

By Lemma 2.1.3 there exists a curve G ∈ PF such that H1 is an integral component

of G. Finally, notice that G is a special curve of PF because, otherwise, G̃ would be

an element of the complete linear system ∣DF ∣ and, therefore, G would be equal to

H (which is a contradiction because H ∉ PF ).
To conclude, since there are �nitely many special curves in PF , there are �nitely

many possible curves H as above, which is a contradiction with the fact that the set

(πF)∗∣DF ∣ ∖ PF is in�nite.

By Lemma 2.1.5, the knowledge of the dicritical resolution πF and the charac-

teristic divisor DF of an algebraically integrable foliation F allow us to compute

PF = ⟨F,G⟩ = (πF)∗∣DF ∣, and therefore, a rational �rst integral of F . Our forth-

coming Section 2.5 presents di�erent algorithms to compute DF if F is algebraically

integrable under certain assumptions.
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2.2. Invariant curves

Let F be a foliation on S0 (P2 or Fδ). The knowledge of invariant curves is very
useful to decide about the algebraic integrability of F and, in the a�rmative case,

to compute a rational �rst integral (see for example Theorem 1.6.3). Most of the

results presented in this section extend previous results by Galindo and Monserrat

in [47]. These results are stated in [47] for foliations on P2 and their proofs can be

easily adapted to foliations on Fδ, therefore we omit them.

Theorem 2.2.1 ([47, Theorem 1]). Let F be a foliation on S0 (P2 or Fδ) having

a rational �rst integral. If C is a curve on the surface SF (the sky of BF , de�ned
in Section 1.7) whose class belongs to NE(SF) ∩ [DF ]⊥, DF being the characteristic

divisor of F (see De�nition 2.1.2), then C2 ⩽ 0. Moreover, C2 = 0 if and only if C

is linearly equivalent to rDF for some positive rational number r.

Remark 2.2.2. Let F be a foliation on S0. As a consequence of the previous

theorem, any of the following conditions allows us to discard the existence of a

rational �rst integral of F :

1. There exists an invariant by F curve C such that C̃2 > 0.

2. There exist two invariant by F curves C1 and C2 such that C̃2
1 = 0 and C̃1 ⋅C̃2 ≠

0.

Note that in the above statements D̃ means strict transform on SF of a curve D

on S0.

We keep the notation of the previous sections. In particular, we suppose that BF =
{p1, . . . , pn} and there are d terminal dicritical singularities. Recall that NS(SF),
the Néron-Severi space (de�ned before De�nition 1.1.9), is a real vector space of

dimension ρ(SF). If F is a foliation on P2 (respectively, on Fδ) then ρ(SF) = n + 1

(respectively, ρ(SF) = n+2). For each divisor D on SF , we will identify its class [D]
in Pic(SF) with its image in NS(SF).

Given a �nite set Σ of integral curves on S0, we denote by V (Σ) the following

subset of NS(SF):

V (Σ) ∶= {[C]∣C ∈ Σ} ∪ {[K
F̃
−KSF ]} ∪ {[Ẽi]∣Ei is non-dicritical}. (2.2)

De�nition 2.2.3. A set of independent algebraic solutions of a foliation F of length

σ ≥ 0 is a set Σ of σ invariant by F integral curves on S0 such that V (Σ) is a free

set of vectors.

Remark 2.2.4. Notice that, in the above situation, there are n − d non-dicritical

exceptional divisors and, therefore, when S0 = P2 (respectively, Fδ), the length σ

of a set of independent algebraic solutions is, at most, d (respectively, d + 1); this

is because the Picard number of SF is n + 1 (respectively, n + 2). However, if F is
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algebraically integrable, an upper bound for σ is d − 1 (respectively, d) because the

codimension of the linear span of V (Σ) is, at least, 1; indeed, in this case, V (Σ) is

contained in an hyperplane of NS(SF) ≅ Rn+1 (respectively, Rn+2).

Therefore, if S0 = P2 (respectively, Fδ), the existence of a set of independent

algebraic solutions of length greater than d − 1 (respectively, d) implies that the

foliation is not algebraically integrable.

Throughout the rest of this work we will assume that all considered sets of inde-

pendent algebraic solutions Σ have length less than or equal to d − 1 (respectively,

d), without mentioning it explicitly. When this length is maximum, it is denoted by

σmax and then we say that Σ is a complete set of independent algebraic solutions of

F .
Assume now that a foliation F on S0 admits a complete set of independent

algebraic solutions Σ = {C1, . . . ,Cσmax}. Set BF = {q1, . . . , qn} and NF = {qi1 , . . . , qil}
the sets de�ned in De�nition 1.7.6 and stand

ci ∶=
⎧⎪⎪⎨⎪⎪⎩

(di,−ai1, . . . ,−ain) if S0 = P2,

(di1, di2,−ai1, . . . ,−ain) if S0 = Fδ

⎛
⎝
respectively, eqik ∶=

⎧⎪⎪⎨⎪⎪⎩

(0, bk1, . . . , bkn) if S0 = P2,

(0,0, bk1, . . . , bkn) if S0 = Fδ

⎞
⎠

for the coordinates of the classes of the strict transforms on SF , [C̃i] (respectively,
[Ẽqik ]) of the curves Ci, 1 ⩽ i ⩽ σmax (respectively, non-dicritical exceptional divisors

Eqik , 1 ⩽ k ⩽ l), in the basis of NS(SF) given by {[L∗], [E∗
q1], [E

∗
q2], . . . , [E

∗
qn]}

(respectively, {[F ∗], [M∗], [E∗
q1], [E

∗
q2], . . . , [E

∗
qn]}) if S0 = P2 (respectively, S0 = Fδ).

Notice that di (respectively, (di1, di2)) is the degree (respectively, bidegree) of

Ci, aij the multiplicity of the strict transform of Ci by πF at qj , and bkj equals 1 if

j = ik, −1 if qj is proximate to qik and 0 otherwise.

Let m = n if S0 = P2 and m = n+ 1 if S0 = Fδ. Denote by GF ,Σ the divisor on SF :

δ0L
∗ −∑mj=1 δjE

∗
j , if S = P2,

δ0F
∗ + δ1M

∗ −∑mj=2 δjE
∗
j−1, if S = Fδ.

(2.3)

where δj ∶= δ′j/gcd(δ′0, δ′1, . . . , δ′m), 0 ≤ j ≤ m, δ′j being the absolute value of the

determinant of the matrix obtained by removing the jth column of the (ρ(SF) − 1)×
ρ(SF)-matrix de�ned by the rows c1, . . . , cσmax , eqi1 , . . . , eqil . The class [GF ,Σ] is

orthogonal to the classes of the curves in Σ and to the classes of the strict transforms

of the non-dicritical divisors.

For each Q-divisor D on NS(SF), we de�ne the following set

R(D) ∶= {a ∈ Z>0∣aD is a divisor}. (2.4)

Moreover, we de�ne the integer e(D) as e(D) ∶= 0 if dim ∣aD∣ < 1 for every a ∈ R(D)
and, otherwise,

e(D) ∶= min{a ∈ R(D)∣ dim ∣aD∣ ≥ 1}, (2.5)
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where dim stands for projective dimension.

When the foliation F has a rational �rst integral, the set V (Σ) spans the hyper-
plane [DF ]⊥ on NS(SF) given by the characteristic divisor DF of F and, therefore,

∑mi=0 δixi = 0 is an equation of [DF ]⊥, whenever (x0, . . . , xm) are coordinates in

NS(SF) with respect to the basis {[L∗]}∪{[E∗
q ]}q∈BF if S0 = P2 and {[F ∗], [M∗]}∪

{[E∗
q ]}q∈BF in case S0 = Fδ. Hence, the divisor DF is a positive multiple of GF ,Σ

(i.e., DF = aGF ,Σ for some a ∈ R(GF ,Σ))). In fact, [GF ,Σ] is the primitive element

of the ray in NS(SF) spanned by [DF ] (see (1.1)) in the sense that every divisor

class belonging to this ray is the product of [GF ,Σ] by a positive integer. Therefore

the divisor GF ,Σ does not depend on the choice of the complete set of independent

algebraic solutions Σ, what allows us to denote it by GF .

De�nition 2.2.5. Let F be an algebraically integrable foliation on S0, F /G a prim-

itive rational �rst integral of F , PF = ⟨F,G⟩ and DF the characteristic divisor of F
as introduced in De�nition 2.1.2.

1. The divisor GF de�ned in (2.3) is said to be the minimal characteristic divisor

of F (or PF or F /G).

2. The ray in NS(SF) spanned by [GF ] (and hence by [DF ]) is called the char-

acteristic ray of F (or PF or F /G).

The following result relates some of the previously used objects when F is alge-

braically integrable.

Proposition 2.2.6 ([47, Lemma 2]). Let F be a foliation on S0 (P2 or Fδ) having a
rational �rst integral and such that it admits a complete set of independent algebraic

solutions Σ. Then, NE(SF) ∩ [DF ]⊥ is a simplicial cone (i.e., generated by linearly

independent vectors) if the decomposition of the class [GF ] as a linear combination

of the elements in the set

A(Σ) ∶= V (Σ) ∖ {[K
F̃
−KSF ]} = {[C]∣C ∈ Σ} ∪ {[Ẽi]∣Ei is non-dicritical}

contains every class in A(Σ) and all its coe�cients are strictly positive.

The following result shows how to obtain the divisorDF from a set of independent

algebraic solutions. It is an extension of [47, Theorem 2], which follows by [66].

Theorem 2.2.7. Let F be an algebraically integrable foliation on S0. Assume that

F admits a complete set of independent algebraic solutions Σ = {Ci}σmax
i=1 and set

[GF ] =
σmax

∑
i=1

αi[C̃i] + ∑
q∈NF

βq[Ẽq] (2.6)

the decomposition of [GF ] as a linear combination of the classes in the set A(Σ) ∶=
V (Σ)∖{[K

F̃
−KSF ]}. Let e(GF) be the integer de�ned in (2.5). Then, the following

properties hold:
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(a) The characteristic divisor DF (see De�nition 2.1.2) satis�es DF = e(GF)GF .

(b) Assume that the coe�cients αi (1 ⩽ i ⩽ σmax) and βq (q ∈ NF) of the decompo-

sition 2.6 are positive. Let r be the minimum positive integer such that rαi ∈ Z
for i = 1, . . . , σmax. Then, e(GF) is equal to either

r (deg(F) + 2 −∑σmax
i=1 deg(Ci))

gcd (∑σmax
i=1 rαi deg(Ci),deg(F) + 2 −∑σmax

i=1 deg(Ci))
if S0 = P2, or

r (deg2(F) + 2 −∑σmax
i=1 deg2(Ci))

gcd (∑σmax
i=1 rαi deg2(Ci),deg2(F) + 2 −∑σmax

i=1 deg2(Ci))
if S0 = Fδ,

where deg(F) (respectively, deg2(F)) denotes the degree (respectively, the sec-

ond coordinate of the bidegree) of the foliation F and deg(Ci) (respectively,

deg2(Ci)) denotes the degree (respectively, the second coordinate of the bide-

gree) of the curve Ci, 1 ⩽ i ⩽ σmax, when S0 = P2 (respectively, S0 = Fδ).

Let KSF be a canonical divisor on SF . The following result follows from Bertini's

theorem (see [7, 8]) and the adjunction formula (given in 1.3), and it shows that the

condition KSF ⋅GF < 0 makes easy to check whether F has or not has a rational �rst

integral, and to compute it (using Lemma 2.1.5).

Proposition 2.2.8. Let F be a foliation on S0 admitting a complete set of indepen-

dent algebraic solutions Σ. Assume that KSF ⋅GF < 0 and F is algebraically integrable.

Then, the general elements of the pencil PF are rational curves and DF = GF .

However, not all foliation on S0 with a rational �rst integral admits a complete

set of independent algebraic solutions.

The following result will help us to state an algorithm, for foliations F whose

cone NE(SF) is polyhedral (see [89, Section 19]), that either computes a complete

set of independent algebraic solutions or discards that F has a rational �rst integral.

In the sequel, for each subset W of NS(SF), con(W ) will denote the convex cone of

NS(SF) spanned by W . Corollary 1.21 in [68] allows us to prove the next result.

Proposition 2.2.9 ([47, Proposition 3]). Let F be a foliation on S0 (P2 or Fδ) having
a rational �rst integral and such that NE(SF) is polyhedral. Let Σ′ be a non-empty

�nite set of integral curves on S0 and denote by W the subset

W = {[Q̃] ∈ NS(SF) ∣ Q ∈ Σ′} ∪ {[Ẽq]}q∈BF .

Assume that x2 ⩾ 0 for each element x in the dual cone con(W )∨. Then, F admits

a complete set of independent algebraic solutions Σ such that Σ ⊆ Σ′.

The following result is a consequence of the above proposition.
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Corollary 2.2.10 ([47, Corollary 1]). Let F be a foliation on S0 having a rational

�rst integral and such that the cone of curves NE(SF) is polyhedral. Then, F admits

a complete set of independent algebraic solutions Σ. Moreover, Σ can be taken such

that C̃2 < 0 for all C ∈ Σ.

Now we state the announced algorithm, where F is a foliation on S0 (= P2 or Fδ)
such that the cone NE(SF) is polyhedral.

Algorithm 2.2.11.

Input: A projective 1-form Ω de�ning F and the sets BF and NF introduced in

De�nition 1.7.6.

Output: Either a complete set of independent algebraic solutions of F , or 0 if

there is no rational �rst integral of F .

1. De�ne V ∶= con({[Ẽq]}q∈BF ) and let Γ be the set of divisors

C =
⎧⎪⎪⎨⎪⎪⎩

dL∗ −∑q∈BF eqE
∗
q if S0 = P2,

d1F
∗ + d2M

∗ −∑q∈BF eqE
∗
q if S0 = Fδ.

satisfying the following conditions:

(a) d > 0 if S0 = P2, d1 + d2 > 0 if S0 = Fδ.

(b) Ẽq ⋅C ≥ 0 for all q ∈ BF .

(c) Either C2 =KSF ⋅C = −1, or C2 < 0, KSF ⋅C ≥ 0 and C2 +KSF ≥ −2.

2. Set Σ = ∅.

3. While #Σ < σmax (see Remark 2.2.4) and there exists x ∈ V ∨ such that x2 < 0:

(a) PickD ∈ Γ such that, if S0 = P2 (respectively, S0 = Fδ), L∗ ⋅D (respectively,

(F ∗ +M∗) ⋅D) is minimal.

(b) If D satis�es the conditions

(a) [D] ∉ V ,
(b) h0 (S0, πF∗OSF (D)) = 1 and

(c) [D] = [Q̃], where Q is the divisor of zeros of a global section of

πF∗OSF (D).

then

Set V ∶= con(V ∪ {[D]}).
If, in addition, Q is an invariant by F curve, no curve in Σ is a

component of Q and {[R̃] ∣ R ∈ Σ}∪{[D]}∪{[Ẽq]}q∈NF is a R-linearly
independent system of NS(SF), then set Σ ∶= Σ ∪ {Q}.

(c) Set Γ ∶= Γ ∖ {D}.

4. If #Σ < σmax then return 0. Else, return Σ.
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This algorithm was presented in [47] for foliations on P2. In this section we have

extended its supporting results in such a way that it has been enlarged to be also

used for foliations on Hirzebruch surfaces. The justi�cation of the algorithm using

these results is a straightforward adaptation of the one given in [47] and, then, we

omit it.

Remark 2.2.12. By [89, Theorem 19.1], the polyhedrality of NE(SF) implies that

the set Γ de�ned in Step 1 of Algorithm 2.2.11 is �nite. It guarantees that Algo-

rithm 2.2.11 always terminates. However, the algorithm can be run without that

assumption and, if it stops after a �nite number of steps, we also get a complete

set of independent algebraic solutions of F ; however, we cannot be sure that it will
stop. Nevertheless, if we stop the algorithm at some speci�c run time, then we get a

non-complete set of independent algebraic solutions.

2.3. Conditions for algebraic integrability, I

Let FC2
be a foliation on C2 and Fδ its extended foliation to a Hirzebruch surface

Fδ. This section is devoted to study these extended foliations on Fδ, with the aim of

obtaining results on algebraic integrability of Fδ (and therefore of FC2
).

Subsection 2.3.1 shows a procedure to obtain an extended foliation Fδ to Fδ from
a polynomial foliation FC2

on C2. We identify FC2
with the restriction of Fδ to the

open set U00 (de�ned in Subsection 1.4.2) and study the invariance of the curves

with equations X0 = 0 and Y0 = 0.

In Subsection 2.3.2 we obtain a necessary condition for the algebraic integrability

on a polynomial foliation FC2
on C2 by considering the family of foliations {Fδ}δ≥0.

Finally, in Subsection 2.3.3, we study and provide a region of R2
≥0 which con-

tains valuable information concerning the rational �rst integral of an algebraically

integrable foliation.

2.3.1. The extension to Fδ of a planar polynomial foliation

At the end of Subsection 1.5.2 we de�ned the concept of extended foliation Fδ of
a planar polynomial foliation FC2

. Let us see how to compute it. Assume that FC2

is given by the 1-form ω = a(x, y)dx + b(x, y)dy. Our following algorithm provides a

foliation Fδ on the Hirzebruch surface Fδ such that ω = ωU00 , the local form of Ωδ at

the open set U00.

Algorithm 2.3.1 ([55]).

Input: A pair (δ, ω), where δ ∈ Z≥0 and ω = a(x, y)dx+b(x, y)dy (a(x, y), b(x, y) ∈
C[x, y] and are coprime) de�ning FC2

.

Output: Aδ,0,Aδ,1,Bδ,0,Bδ,1 ∈ C[X0,X1, Y0, Y1], bihomogeneous and having no

non-constant common factor, giving rise to a 1-form Ωδ = Aδ,0dX0 + Aδ,1dX1 +
Bδ,0dY0 +Bδ,1dY1, which de�nes a foliation on Fδ, whose local form at U00 is ω.
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(1) Write the rational functions a(X1

X0
,
Xδ

0Y1

Y0
) and b(X1

X0
,
Xδ

0Y1

Y0
) as reduced rational

fractions
X
α0
0 Aδ,1

X
α1
0 Y

α2
0

and
X
β0
0 Bδ,1

X
β1
0 Y

β2
0

, respectively, where (α0, α1, α2), (β0, β1, β2) ∈ Z3
≥0

and Aδ,1 and Bδ,1 are bihomogeneous polynomials (for the graduation de�ned in

Subsection 1.4.2) in C[X0,X1, Y0, Y1] of respective bidegrees (λ1, λ2) ∶= (α1 −
α0, α2) and (µ1, µ2) ∶= (β1 − β0, β2), and such that Aδ,1, Bδ,1 and X0Y0 are

pairwise coprime.

(2) If Aδ,1 ⋅ Bδ,1 ≠ 0, let m1 ∶= λ1 − µ1 + 1 + δ. If m1 > 0, then Bδ,1 ∶= Xm1
0 Bδ,1;

otherwise, Aδ,1 ∶=X−m1
0 Aδ,1.

(3) If Aδ,1 ⋅Bδ,1 ≠ 0, let m2 ∶= λ2−µ2−1. If m2 > 0, then Bδ,1 ∶= Y m2
0 Bδ,1; otherwise,

Aδ,1 ∶= Y −m2
0 Aδ,1.

(4) Let γ2 ∶= 0 if Y0 divides Bδ,1, and γ2 ∶= 1 otherwise. Set Bδ,1 ∶= Y γ2

0 Bδ,1 and

Aδ,1 ∶= Y γ2

0 Aδ,1.

(5) Let γ1 ∶= 0 if X0 divides δY1Bδ,1 −X1Aδ,1 and γ1 ∶= 1 otherwise. Set Aδ,1 ∶=
Xγ1

0 Aδ,1 and Bδ,1 ∶=Xγ1

0 Bδ,1.

(6) Set Aδ,0 ∶= δY1Bδ,1−X1Aδ,1
X0

and Bδ,0 ∶= −Y1Bδ,1
Y0

.

(7) Return Aδ,0, Aδ,1, Bδ,0 and Bδ,1.

The next lemma and proposition explain why Algorithm 2.3.1 does the announced

work.

Lemma 2.3.2. Fix δ ∈ Z≥0. Let ω = a(x, y)dx + b(x, y)dy be a di�erential 1-form

de�ning a planar polynomial foliation on C2, and let Aδ,0,Aδ,1,Bδ,0 and Bδ,1 be the

polynomials in C[X0,X1, Y0, Y1] obtained as the output of Algorithm 2.3.1 from the

input given by the pair (δ, ω). Then, Aδ,0,Aδ,1,Bδ,0 and Bδ,1 are bihomogeneous

polynomials (not all of them equal to zero), such that

Aδ,0,Aδ,1 ∈H0 (Fδ,OFδ((d1 − δ + 1)F + (d2 + 2)M)) ,

Bδ,0 ∈H0 (Fδ,OFδ((d1 − δ + 2)F + (d2 + 1)M))

and Bδ,1 ∈ H0 (Fδ,OFδ((d1 + 2)F + (d2 + 1)M)) for some integers d1, d2. Moreover,

they satisfy the equalities

X0Aδ,0 +X1Aδ,1 − δY1Bδ,1 = 0 and Y0Bδ,0 + Y1Bδ,1 = 0, (2.7)

and have no non-constant common factor.

Proof. Notice that the polynomials Aδ,1 and Bδ,1 obtained in Step (1) of Algorithm

2.3.1 are coprime (in the sense that they do not have a non-constant common factor)

and have respective bidegrees (λ1, λ2) and (µ1, µ2).



60 2. Algebraic integrability

If Aδ,1 = 0 (respectively, Bδ,1 = 0), we can assume Bδ,1 = 1 (respectively, Aδ,1 = 1)

and the output polynomials are Aδ,0 = δY0Y1, Aδ,1 = 0, Bδ,0 = −X0Y1 and Bδ,1 =
X0Y0 (respectively, Aδ,0 = −X1, Aδ,1 = X0, Bδ,0 = 0 and Bδ,1 = 0) which satisfy the

conditions of the statement for (d1, d2) = (−1,0) (respectively (d1, d2) = (δ,−2)).
Assume now Aδ,1Bδ,1 ≠ 0.

The following table describes the di�erent possibilities that may appear in Al-

gorithm 2.3.1, and it shows the existence of integers d1, d2 such that the bidegree

of the output polynomial Aδ,1 is (d1 − δ + 1, d2 + 2) and the bidegree of the output

polynomial Bδ,1 is (d1 + 2, d2 + 1):
Step (2) Step (3) Bidegrees Aδ,1 and Bδ,1 (d1, d2)

m1 > 0

m2 > 0
(λ1 + γ1, λ2 + γ2) and (λ1 + δ + γ1 − 1, λ2 + γ2 − 2)

(λ1 + δ + γ1 + 1, λ2 + γ2 − 1)

m2 ≤ 0
(λ1 + γ1, µ2 + γ2 + 1) and

(λ1 + δ + γ1 − 1, µ2 + γ2 − 1)
(λ1 + δ + γ1 + 1, µ2 + γ2)

m1 ≤ 0

m2 > 0
(µ1 − δ + γ2 − 1, λ2 + γ2) (µ1 + γ1 − 2, λ2 + γ2 − 2)
and (µ1 + γ1, λ2 + γ2 − 1)

m2 ≤ 0
(µ1 − δ + γ1 − 1, µ2 + γ2 + 1)

(µ1 + γ1 − 2, µ2 + γ2 − 1)
and (µ1 + γ1, µ2 + γ2)

The polynomials Aδ,1 and Bδ,1 obtained after applying the steps from (1) to

(5) satisfy that X0 (respectively, Y0) divides δY1Bδ,1 − X1Aδ,1 (respectively, Bδ,1).

Therefore the rational functions Aδ,0 and Bδ,0 de�ned in Step (6) are polynomials

and their bidegrees coincide with those given in the statement. In addition, Equalities

(2.7) hold trivially.

It is derived from the algorithm that the only two possible common factors of

the output polynomials are X0 and Y0. Let us see that none of them can be such

a common factor. The polynomials Aδ,1 and Bδ,1 obtained in Step (1) do not share

factors with X0Y0. After Steps (2) and (3), at most one of them (Aδ,1 or Bδ,1) has

X0 (respectively, Y0) as a factor. On the one hand, in Step (4) we ensure that either

Y0 does not divide Aδ,1, or Y0 divides Bδ,1 but Y 2
0 does not (what implies that Y0

does not divide Bδ,0 after Step (6)). On the other hand, in Step (5) we force X0 to

divide δY1Bδ,1 −X1Aδ,1 (but X2
0 does not); then, after Step (6), X0 does not divide

Aδ,0.

The following result states that, as in the case of the projective plane, we can ex-

tend a foliation on C2 to a foliation on a Hirzebruch surface. Consider a non-negative

integer δ and identify C2 with the open subset U00 ⊂ Fδ. Then, as a consequence of

Lemma 2.3.2, one gets the following result.

Proposition 2.3.3 ([55, Proposition 3.4]). Let δ be a non-negative integer and ω =
a(x, y)dx + b(x, y)dy a di�erential 1-form de�ning a complex planar (polynomial)
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foliation FC2
on C2. Let

Aδ,0,Aδ,1,Bδ,0,Bδ,1 ∈ C[X0,X1, Y0, Y1]

be the output of Algorithm 2.3.1 when its input is the pair (δ, ω). Then, the a�ne

di�erential 1-form

Ωδ ∶= Aδ,0dX0 +Aδ,1dX1 +Bδ,0dY0 +Bδ,1dY1

de�nes a foliation on the complex Hirzebruch surface Fδ, with isolated singularities,

whose restriction to the open set U00 gives the 1-form in two variables that determines

the complex planar foliation FC2
.

Recall that the foliation Fδ on Fδ obtained from the foliation FC2
on C2 is named

the extended foliation of FC2
to Fδ.

Consider coordinates (X0,X1;Y0, Y1) in Fδ and denote by CX0 (respectively, CY0)

the curve on Fδ with equationX0 = 0 (respectively, Y0 = 0). The following proposition

studies when these curves are invariant by Fδ.

Proposition 2.3.4. Let FC2
be a foliation on C2 de�ned by the 1-form ω = a(x, y)dx+

b(x, y)dy and let Fδ be its extension to Fδ. Then:

(a) For all δ ∈ Z≥0, except at most one value, CX0 is an invariant (by Fδ) curve.

(b) Assume that b(x, y) ≠ 0, then CY0 is an invariant (by Fδ) curve if and only if

degy a(x, y) ⩽ degy b(x, y) + 1.

Proof. Let Ωδ = Aδ,0dX0 + Aδ,1dX1 + Bδ,0dY0 + Bδ,1dY1 be the 1-form de�ning Fδ,
where Aδ,0, Aδ,1, Bδ,0, Bδ,1 are the output of Algorithm 2.3.1. CX0 is invariant if

and only if X0 is a factor of Aδ,1, Bδ,0 and Bδ,1.

If γ1 = 1 in Step (5) of Algorithm 2.3.1, thenX0 divides Aδ,1 and Bδ,1, and by Step

(6), also divides Bδ,0. If γ1 = 0 in Step (5), it means that X0 divides δY1Bδ,1−X1Aδ,1.

If X0 does not divide Bδ,1 nor Aδ,1, it divides δY1Bδ,1−X1Aδ,1 for, at most, one value

of δ. This proves Part (a).

To prove Part (b), notice that CY0 is invariant if and only if Y0 is a factor of

Aδ,0, Aδ,1 and Bδ,1.

If a(x, y) = 0, we can assume b(x, y) = 1 (degy a(x, y) = degyb(x, y)) and the

output polynomials are Aδ,0 = δY0Y1, Aδ,1 = 0, Bδ,0 = −X0Y1 and Bδ,1 = X0Y0. Then

CY0 is an invariant curve.

Assume now a(x, y) ≠ 0. If, in Step (3), m2 ≤ 0, then, at the beginning of Step

(4), Y0 divides Aδ,1 and it does not divide Bδ,1. It means that γ2 = 1 in Step (4) and
then Y0 = 0 is invariant. If m2 > 0 in Step (3), Y0 does not divide Aδ,1 because γ2 = 0

in Step (4). As degy a(x, y) − degy b(x, y) − 1 = m2 in Step (3), the proof becomes

complete.



62 2. Algebraic integrability

2.3.2. A necessary condition for algebraic integrability

Keep the notation as above. Again we consider the extension of a planar poly-

nomial foliation FC2
on C2 to a foliation Fδ on a complex Hirzebruch surface. Our

aim is to use these extensions to give a necessary condition for algebraic integrability

of Fδ.
The next Theorem 2.3.6 will show, under the assumption of algebraic integrabil-

ity, the existence of a non-negative integer δ1, such that the point with coordinates

(0,1; 0,1) (respectively, (0,1; 1,0)) in each surface Fδ is a dicritical singularity of Fδ

whenever δ > δ1 (respectively, δ < δ1). This result can be reformulated in terms of

vector �elds on C2 depending on a non-negative integer and it gives rise to a new

technique for discarding the existence of a rational �rst integral of FC2
(see the future

Corollary 2.3.9).

The contents of this subsection were published in [55]. There, they are expressed

in terms of vector �elds but, for consistency, we use here the language of foliations.

We start with a lemma which we will use in the proof of the announced Theorem

2.3.6.

Let FC2
be a foliation on C2 with rational �rst integral f = f1

f2
. Abusing the nota-

tion, the expression αf1(x, y) + βf2(x, y) regarded as a polynomial in C(α,β)[x, y],
where α,β are also considered variables, will be named the generic curve of P

FC2 or

the generic invariant curve of FC2
.

Lemma 2.3.5 ([55, Lemma 4.1]). Let FC2
be an algebraically integrable complex

planar polynomial foliation de�ned by a 1-form ω = a(x, y)dx + b(x, y)dy. Let f =
f1(x,y)
f2(x,y)

be a primitive rational �rst integral of FC2
and g(x, y) = αf1(x, y)+βf2(x, y) ∈

C(α,β)[x, y] the generic invariant curve of FC2
(see Section 1.6). Then ω ≠ cdx

(with c ∈ C ∖ {0}) if and only if g(x, y) /∈ C(α,β)[x].

Proof. If FC2
is determined by the 1-form ω ∶= dx, the function x is a �rst integral,

that is, f1(x, y) and f2(x, y) are polynomials in C[x] of degree ≤ 1. This is equivalent

to say that g(x, y) ∈ C(α,β)[x] because the polynomial of C[x, y] obtained after

replacing, in g(x, y), α and β by general complex numbers, must be irreducible.

Theorem 2.3.6 ([55, Theorem 4.2]). Let FC2
be an algebraically integrable complex

planar polynomial foliation de�ned by the 1-form ω ≠ cdx, c ∈ C ∖ {0}. For each

δ ∈ Z≥0, consider Fδ, the extended foliation of FC2
to the Hirzebruch surface Fδ (see

Proposition 2.3.3). Let CX0 be the curve on Fδ with equation X0 = 0. Then, there

exists a non-negative integer δ1 satisfying the following conditions:

(i) For all integers δ such that δ > δ1, the point (0,1; 0,1) ∈ Fδ is the unique

dicritical singularity of Fδ belonging to CX0.
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(ii) For all non-negative integer δ such that δ < δ1, the point (0,1; 1,0) ∈ Fδ is a

dicritical singularity of Fδ.

(iii) The point (0,1; 1,0) ∈ Fδ1 is not a dicritical singularity of Fδ1.

Proof. Let f = f1(x,y)
f2(x,y)

be a primitive rational �rst integral of FC2
. Then, the associ-

ated generic invariant curve of FC2
is g(x, y) = αf1(x, y) + βf2(x, y) ∈ C(α,β)[x, y].

Let us write g(x, y) = ∑ gijxiyj , where the coe�cients gij are homogeneous linear

polynomials in α,β. Let dx (respectively, dy) be the degree in the variable x (respec-

tively, y) of g(x, y), that is, the degree of g when it is regarded as a polynomial in x

(respectively, y) with coe�cients in C(α,β, y) (respectively, C(α,β, x)). Denote by
d0
x (respectively, d0

y) the degree of g(x,0) (respectively, g(y,0)). Notice that dy > 0

by Lemma 2.3.5.

We can write g(x, y) as the sum of four polynomials A,B,C andD (with variables

x, y and coe�cients in C(α,β)) as showed in the following displayed formula:

g(x, y) =
d0
x

∑
i=0

gi0x
i

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
=A

+
d0
y

∑
j=1

g0jy
j

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=B

+ ∑
1 ≤ i ≤ d0x

d′y

∑
j=1

gijx
iyj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=C

+ ∑
i > d0x

d′′y

∑
j=1

gijx
iyj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=D

. (2.8)

Denote by Coeff(h) the set of non-zero coe�cients hij of a polynomial

h(x, y) = ∑hijx
iyj ∈ C(α,β)[x, y].

Also, consider the following set of non-negative rational numbers:

Γ = { i − d
0
x

j
∣ j > 0 and gij ∈ Coeff(g)} ∩Q≥0. (2.9)

Let δ be an arbitrary non-negative integer. Consider the Hirzebruch surface Fδ
and identify C2 with the open set U00 of Fδ as showed in Subsection 1.4.2. Then,

replacing in Equation (2.8), x by X1/X0 and y by Xδ
0Y1/Y0, and multiplying by

suitable powers Xa
0 and Y b

0 , we obtain an irreducible bihomogeneous polynomial

Gδ(X0,X1;Y0, Y1) ∈ C(α,β)[X0,X1, Y0, Y1] of bidegree (a, b).

Gδ(X0,X1;Y0, Y1) ∶=

Xa
0Y

b
0 ⋅

⎛
⎜
⎝
g00 +

d0
x

∑
i=1

gi0
Xi

1

Xi
0

+
d0
y

∑
j=1

g0j
Xδj

0 Y
j

1

Y j
0

+ ∑
1 ≤ i ≤ d0x

d′y

∑
j=1

gij
Xδj−i

0 Xi
1Y

j
1

Y j
0

+ ∑
i > d0x

d′′y

∑
j=1

gij
Xδj−i

0 Xi
1Y

j
1

Y j
0

⎞
⎠
.

The polynomial Gδ is not divisible by neither X0 nor Y0, b = dy = max{d0
y, d

′
y, d

′′
y} > 0



64 2. Algebraic integrability

and a = a′ + d0
x, with a

′ ∈ Z≥0. Therefore,

Gδ(X0,X1;Y0, Y1) =

Xa′

0 ⋅
⎛
⎜
⎝
g00X

d0
x

0 Y
dy

0 +
d0
x

∑
i=1

gi0X
d0
x−i

0 Xi
1Y

dy
0 +

d0
y

∑
j=1

g0jX
δj+d0

x
0 Y

dy−j
0 Y j

1

+ ∑
1 ≤ i ≤ d0x

d′y

∑
j=1

gijX
δj+d0

x−i
0 Xi

1Y
dy−j

0 Y j
1 + ∑

i > d0x

d′′y

∑
j=1

gijX
δj+d0

x−i
0 Xi

1Y
dy−j

0 Y j
1

⎞
⎠
.

Notice that, in the above expression between parentheses, negative exponents may

only appear in the last block of summations.

Firstly let us assume that Γ = ∅. This implies that i < d0
x for all gij ∈ Coeff(g);

thus D = 0. Then a′ = 0 and

Gδ(X0,X1;Y0, Y1) = g00X
d0
x

0 Y
dy

0 +
d0
x

∑
i=1

gi0X
d0
x−i

0 Xi
1Y

dy
0 +

d0
y

∑
j=1

g0jX
δj+d0

x
0 Y

dy−j
0 Y j

1

+ ∑
i < d0x

d′y

∑
j=1

gijX
δj+d0

x−i
0 Xi

1Y
dy−j

0 Y j
1 .

Notice that d0
x > 0 because otherwise B = 0 and C = 0, what implies that g(x, y) =

g00 (a contradiction because, by Lemma 2.3.5, dy > 0). Therefore gd0
x0 ≠ 0. This

shows that the point (0,1; 0,1) is the unique point belonging to the intersection of

the curves on Fδ de�ned by the equations X0 = 0 and Gδ(X0,X1;Y0, Y1) = 0 or,

equivalently, (0,1; 0,1) is the unique dicritical singularity of Fδ belonging to CX0

(independently of the value of δ). In this case, δ1 = 0 is the integer satisfying the

conditions given in the statement.

Let us assume now that Γ ≠ ∅. Under this assumption let us de�ne

k ∶= max(Γ)

and distinguish the following three cases, depending on the value of δ.

Case 1: The set

∆ ∶= {gij ∈ Coeff(Gδ) ∣ j > 0 and δj + d0
x − i < 0} (2.10)

is not empty.

The above condition shows that ∆ ⊆ Coeff(D) and δ < k. Moreover,

a′ = −min{δj + d0
x − i ∣ gij ∈ ∆}.

Hence the points in Fδ where the curves de�ned by the equations X0 = 0 and

Gδ(X0,X1;Y0, Y1) = 0 meet are the points (0,1; y0, y1) satisfying the following con-

dition
d′′y

∑
j=1

gδj+a′+d0
x,j
y
dy−j
0 yj1 = 0.
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In particular (0,1; 1,0) belongs to that intersection and, as a consequence, (0,1; 1,0)
is a dicritical singularity of Fδ.

Case 2: The set ∆ in (2.10) is empty and there exists glm ∈ Coeff(Gδ) such that

m > 0 and δm + d0
x − l = 0.

In this case, since ∆ is empty, a′ = 0 and δ ≥ k; moreover, since δ = l−d0
x

m ∈ Γ, we

conclude that δ = k. If d0
x = 0, then C = 0 and g00 ≠ 0; hence Gδ(0,1; 1,0) ≠ 0, that

is, (0,1; 1,0) ∈ Fk is not a dicritical singularity of Fk. When d0
x ≠ 0, the same thing

happens because gd0
x0 ≠ 0.

Case 3: δj + d0
x − i > 0 for all gij ∈ Coeff(Gδ) such that j > 0.

Then a′ = 0 and δ > k, and we distinguish the following subcases:

(3.1) If d0
x > 0, then gd0

x0 ≠ 0 and (0,1; 0,1) is the unique point where the curves with
equations Gδ(X0,X1;Y0, Y1) = 0 and X0 = 0 meet. This means that (0,1; 0,1)
is a dicritical singularity of Fδ and the unique one belonging to CX0 .

(3.2) If d0
x = 0, then Gδ has the following shape:

Gδ(X0,X1;Y0, Y1) = g00Y
dy

0 +
d0
y

∑
j=1

g0jX
δj
0 Y

dy−j
0 Y j

1 +X0H,

where H ∈ C(α,β)[X0,X1, Y0, Y1]. Since δ > k ≥ 0, it is clear that g00 ≠ 0

(because, otherwise, X0 would divide Gδ) and then (0,1; 0,1) is the unique

dicritical singularity of Fδ belonging to CX0 .

Notice that Cases 1, 2 and 3 correspond to the following situations: δ < k, δ = k
and δ > k.

Finally, de�ne δ1 ∶= ⌈k⌉ and let us see that this integer satis�es Conditions (i),
(ii) and (iii) of the statement.

If k is an integer, then Cases 1 and 3 show that Conditions (i) and (ii) are

satis�ed for δ1 = k. Hence, it only remains to show that (0,1; 1,0) ∈ Fk is not a

dicritical singularity of Fk; but the value δ = k corresponds to Case 2 and then

(0,1; 1,0) is not a dicritical singularity of Fδ.
If k is not an integer, then any δ ∈ Z≥0 satis�es either Case 1 or Case 3; this fact

shows that Conditions (i), (ii) and (iii) hold.

Remark 2.3.7. Let FC2
be a complex planar polynomial foliation satisfying the

conditions of Theorem 2.3.6. Then, the value δ1 provided by that theorem is the

minimum non-negative integer δ such that the point (0,1; 1,0) ∈ Fδ is not a dicritical
singularity of Fδ.
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Proposition 2.3.8. Let FC2
be a foliation on C2 and Fδ its extended foliation to

Fδ. Let δ1 be the integer number above introduced. If FC2
is algebraically integrable,

δ > δ1 , DFδ = aF ∗ + bM∗ − ∑ni=1miE
∗
i and i0 is the index in {1, . . . , n} such that

pi0 = (0,1; 0,1), then mi0 = b and [CX0] = [F ∗ −E∗
i0
].

Proof. By Theorem 2.3.6, if FC2
has a rational �rst integral and δ > δ1, pi0 =

(0,1; 0,1) is the only dicritical point in CX0 . Locally, its equation at the open set

U11 is x = 0, which becomes 1 after blowing-up. Then, we have [CX0] = [F ∗ −E∗
i0
].

As CX0 is invariant, DFδ ⋅CX0 = b −mi0 = 0, and the proof becomes complete.

For each δ ∈ Z≥0, the point (0,1; 0,1) ∈ Fδ (respectively, (0,1; 1,0)) belongs to
the a�ne chart U11 (respectively, U10) de�ned in Subsection 1.4.2, and the curve of

Fδ with equation X0 = 0 does not meet neither U00 nor U01. These facts allow us to

write Theorem 2.3.6 in terms of the planar vector �elds induced by the restriction of

Fδ to the charts U10 and U11. Therefore, Theorem 2.3.6 can be reformulated without

any reference to Hirzebruch surfaces as follows:

Corollary 2.3.9 ([55, Corollary 4.4]). Let FC2
be an algebraically integrable complex

planar polynomial foliation de�ned by the 1-form ω ≠ cdx for all c ∈ C∖{0}. For each
δ ∈ Z≥0, let Aδ,0,Aδ,1,Bδ,0 and Bδ,1 be the polynomials in C[X0,X1, Y0, Y1] obtained
as the output of Algorithm 2.3.1 from the input given by the pair (δ, ω). Consider

the planar foliations Fδ10 and Fδ11 de�ned, respectively, by the following di�erential

1-forms:

ωδ10 ∶= Aδ,0(x,1,1, y)dx +Bδ,1(x,1,1, y)dy, and

ωδ11 ∶= Aδ,0(x,1, y,1)dx +Bδ,0(x,1, y,1)dy.

Let δ1 be the minimum non-negative integer such that the origin (0,0) is not a di-

critical singularity of Fδ110 . Then, for all δ > δ1:

(a) the origin (0,0) is the unique dicritical singularity of Fδ11 in the line de�ned by

x = 0, and

(b) the foliation Fδ10 has no dicritical singularity in the line de�ned by x = 0.

As a consequence of the above result we state the following corollary, which gives

conditions forcing a planar vector �eld to be non-algebraically integrable.

Corollary 2.3.10 ([55, Corollary 4.5]). Let FC2
be a complex planar polynomial

foliation de�ned by the 1-form ω ≠ cdx for all c ∈ C∖{0}. For every δ ∈ Z≥0, consider

the planar foliations Fδ10 and Fδ11 de�ned in Corollary 2.3.9. Let N be the set of

non-negative integers δ such that origin (0,0) is not a dicritical singularity of Fδ10.

When N ≠ ∅, set δ1 ∶= min N. Then, FC2
is not algebraically integrable if at least

one of the following conditions is satis�ed:
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(a) N is empty.

(b) N is not empty and there exists a positive integer δ > δ1 such that either the ori-

gin (0,0) is not a dicritical singularity of Fδ11, or (0,0) is a dicritical singularity
of Fδ11 but not the unique one in the line de�ned by the equation x = 0.

(c) N is not empty and there exists a positive integer δ > δ1 such that Fδ10 has a

dicritical singularity in the line de�ned by x = 0.

In the following example we apply Corollary 2.3.10 to deduce the non-algebraic

integrability of a given planar foliation on C2.

Example 2.3.11. Let FC2
be the planar foliation de�ned by the di�erential 1-form

ω = (xy + y2 + 5x3y)dx + (−x2 − xy + y3)dy.

We run Algorithm 2.3.1 using as input the pair (δ, ω). The output is

Aδ,0 = −X2
0X

2
1Y

4
0 Y1 − 5X4

1Y
4

0 Y1 −Xδ+3
0 X1Y

3
0 Y

2
1 − δX2

0X
2
1Y

4
0 Y1 − δXδ+3

0 X1Y
3

0 Y
2

1

+ δX3δ+4
0 Y0Y

4
1 ,

Aδ,1 =X3
0X1Y

4
0 Y1 + 5X0X

3
1Y

4
0 Y1 +Xδ+4

0 Y 3
0 Y

2
1 ,

Bδ,0 =X3
0X

2
1Y

3
0 Y1 +Xδ+4

0 X1Y
2

0 Y
2

1 −X3δ+5
0 Y 4

1 , and

Bδ,1 = −X3
0X

2
1Y

4
0 −Xδ+4

0 X1Y
3

0 Y1 +X3δ+5
0 Y0Y

3
1 .

The 1-form Ωδ = Aδ,0dX0 +Aδ,1dX1 +Bδ,0dY0 +Bδ,1dY1 de�nes a foliation Fδ on Fδ.
The foliation Fδ10 introduced in Corollary 2.3.9 is given by the di�erential 1-form

ωδ10 = (−5y − (1 + δ)x2y − (1 + δ)xδ+3y2 + δx3δ+4y4)dx + (−x3 − xδ+4y + x3δ+5y3)dy.

On the one hand, the origin is a simple singularity of Fδ10 for all δ ∈ Z≥0 and then we

deduce that δ1 = 0. On the other hand, the foliation F1
11 is de�ned by the di�erential

1-form

ω1
11 = (−5y4 − 2x2y4 − 2x4y3 + x7y)dx + (x3y3 + x5y2 − x8)dy.

Now, if we reduce the singularity (0,0) of ω1
11 by successive blowups to get at most

simple singularities (see Section 1.7), we see that the origin is not a dicritical singu-

larity of F1
11. Indeed, to reduce the singularity (0,0) we have to blow up 17 in�nitely

near points {pi}17
i=1 which constitute a chain, where p2 is proximate to p1; p3, p4 and

p5 are proximate to p2, and pi is proximate to pi−1 for 6 ≤ i ≤ 17. No point pi is

terminal dicritical, therefore (0,0) is not dicritical.
Even though the reduction of the singularities of the foliations FC2

and Fδ is far
from being easily calculable, by Part (b) of Corollary 2.3.10, FC2

(and therefore Fδ)
is not algebraically integrable.
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Remark 2.3.12. Corollary 2.3.10 allows us to discard the existence of a rational �rst

integral for certain complex planar vector �elds. Necessary conditions for algebraic

integrability are given in [58, Corollary 5] but they can only be applied to di�erential

forms A(x, y)dx+B(x, y)dy, where A(x, y) and B(x, y) have the same degree n and

their homogeneous components of degree n are coprime. The 1-form ω in Example

2.3.11 does not satisfy those conditions, proving that the necessary conditions for

algebraic integrability given in Corollary 2.3.9 are di�erent from those in [58].

The conditions for algebraic integrability given in Theorem 2.3.6 (and Corollary

2.3.9) are necessary, but not su�cient, as the following example shows.

Example 2.3.13. Let FC2
be the complex planar foliation de�ned by the di�erential

1-form

ω = (y + xy)dx + (1 + xy2 + x2)dy.

The output of Algorithm 2.3.1 when the input is the pair (1, ω) is

A1,0 =X0Y
3

0 Y1 −X1Y
3

0 Y1 +X2
0X1Y0Y

3
1 ,

A1,1 =X0Y
3

0 Y1 +X1Y
3

0 Y1,

B1,0 = −X2
0Y

2
0 Y1 −X2

1Y
2

0 Y1 −X3
0X1Y

3
1 and

B1,1 =X2
0Y

3
0 +X2

1Y
3

0 +X3
0X1Y0Y

2
1 .

and when the input is (δ ≠ 1, ω), it is

Aδ,0 = −X0X1Y
3

0 Y1 −X2
1Y

3
0 Y1 + δX2

0Y
3

0 Y1 + δX2
1Y

3
0 Y1 + δX2δ+1

0 X1Y0Y
3

1 ,

Aδ,1 =X2
0Y

3
0 Y1 +X0X1Y

3
0 Y1,

Bδ,0 = −X3
0Y

2
0 Y1 −X0X

2
1Y

2
0 Y1 −X2δ+2

0 X1Y
3

1 and

Bδ,1 =X3
0Y

3
0 +X0X

2
1Y

3
0 +X2δ+2

0 X1Y0Y
2

1 .

These outputs de�ne the foliations Fδ, δ ≥ 0.

For a start, (0,1; 1,0) ∈ F0 is a terminal dicritical singularity of F0 but (0,1; 1,0) ∈
F1 is not a singularity of F1.

Assume now that δ > 1. The point (0,1; 0,1) ∈ Fδ is the unique ordinary sin-

gularity of Fδ belonging to the curve with equation X0 = 0. Let us see that it

is a dicritical singularity. Indeed, the restriction of Fδ to the open set U11 of Fδ
determines a foliation which is given by the di�erential 1-form:

ωδ ∶= (−xy3 + (δ − 1)y3 + δx2y3 + δx2δ+1y)dx − (x3y2 + xy2 + x2δ+2)dy.

The origin is a singularity of ωδ. To reduce this singularity we have to blow up ωδ and

its strict transforms using changes of local coordinates of the type (x = x′, y = x′y′);
the strict transform of ωδ after n ≤ δ − 2 blowups is

ω̃δ(n) ∶= (−xy3 + (δ − n − 1)y3 + (δ − n)x2y3 + (δ − n)x2(δ−n)+1y)dx
− (x3y2 + xy2 + x2(δ−n)+2)dy.
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In particular,

xaδ3(n) + ybδ3(n) = (δ − n − 2)xy3,

where ω̃δ3(n) = aδ3(n)dx+ bδ3(n)dy = (δ −n− 1)y3dx− xy2dy is the �rst non-vanishing

jet of ω̃δ(n). Therefore, after n = δ−2 blowups, the origin becomes terminal dicritical

and thus (0,1; 0,1) is a dicritical singularity of Fδ.
Thus, we have just proved that the conditions given in the statement of Theorem

2.3.6 hold for δ1 = 1. However FC2
is not algebraically integrable, as we are going to

prove.
Indeed, consider the extended foliation FP2

to the complex projective plane given
by the the output of Algorithm 1.5.7 with imput ω, i.e.,

ΩP2

= (−X3Z −X2Y Z − 2XY 2Z −Y Z3)dX + (X3Z +X2Y Z)dY + (X4 +X2Y 2 +XY Z2)dZ.

Its canonical sheaf is K
FP2 = OP2(2) and its dicritical con�guration B

FP2 (whose

proximity graph is shown in Figure 2.1) consists of 6 points, p1, . . . , p6, such that

p1 ∈ P2, p2 and p6 belong to the �rst in�nitesimal neighbourhood of p1 and, for i ∈
{3,4,5}, pi is a free point of the �rst in�nitesimal neighbourhood of pi−1. Moreover,

the terminal dicritical singularities are p5 and p6. Following the notation as in Section

2.2, d = 2 and σmax = d − 1 = 1.

p1

p2 p6

p3

p4

p5

Figure 2.1: Proximity graph of B
FP2

Denote by Cf the curve with equation f = 0. From the proximity relations among

the points of B
FP2 and the equalities

[K
F̃P2 −KS

FP2 ] =5[L∗] − 2[E∗
1 ] − 2[E∗

2 ] − [E∗
3 ] − [E∗

4 ] − 2[E∗
5 ] − 2[E∗

6 ],

[C̃X] =[L∗] − [E∗
1 ] − [E∗

2 ], and
[C̃Z] =[L∗] − [E∗

1 ] − [E∗
6 ],

it can be checked that Σ = {CX ,CZ} is a set of independent algebraic solutions of

FP2
of length σ = 2 > σmax. Therefore, by Remark 2.2.4, FP2

(and hence, FC2
and

Fδ) is not algebraically integrable.
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2.3.3. The Newton polytope of the generic invariant curve

De�nition 2.3.14. Given a polynomial f(x, y) = ∑aijxiyj ∈ k[x, y] (where k is a

�eld), the Newton polytope of f , denoted by Newt(f), is the convex hull of the set

{(i, j) ∣ aij ≠ 0} ⊆ R2.

In this subsection, F = FC2
denotes an algebraically integrable complex pla-

nar polynomial foliation. Then, the Newton polytope Newt(g) of the generic curve

g(x, y), associated to the pencil generated by a primitive rational �rst integral f of

F , does not depend on the choice of f . Therefore, the following de�nition makes

sense.

De�nition 2.3.15. The Newton polytope Newt(F) of an algebraically integrable

complex planar polynomial foliation F is de�ned as Newt(g), where g(x, y) is the

generic curve associated to the pencil generated by any primitive rational �rst integral

of F .

The following result studies the Newton polytope of a foliation as above.

Theorem 2.3.16 ([55, Theorem 5.2]). Let ω = a(x, y)dx + b(x, y)dy be an 1-form

de�ning an algebraically integrable complex planar polynomial foliation such that ω ≠
cdx and ω ≠ cdy for all c ∈ C ∖ {0}. Consider the foliation F ′ de�ned by the 1-form

ω′ obtained from ω by swapping the variables x and y, that is,

ω′ = b(y, x)dx + a(y, x)dy.

Let δ1 (respectively, δ′1) be the non-negative integer introduced in Theorem 2.3.6 for

the foliation F (respectively, F ′). Then, with notation as in the proof of Theorem

2.3.6, Newt(F) is contained in the following region:

{(u, v) ∈ R2
≥0 ∣ u ≤ d0

x + δ1v and v ≤ d0
y + δ′1u} ,

where R2
≥0 denotes the set of points of R2 with non-negative coordinates.

Proof. Let f = f1(x,y)
f2(x,y)

be a primitive rational �rst integral of F and set

g(x, y) ∶= αf1(x, y) + βf2(x, y) = ∑
ij

gijx
iyj ∈ C(α,β)[x, y]

the associated generic invariant curve of F as expressed in (2.8).

Keep the notation as in the proof of Theorem 2.3.6. If the set Γ de�ned in (2.9) is

empty, then δ1 = 0 and i ≤ d0
x for any non-zero coe�cient gij of the generic invariant

curve (see the proof of Theorem 2.3.6); therefore the inequality i ≤ d0
x + δ1j holds

trivially.

Assume now that Γ is not empty and let k be the maximum of Γ (notice that

δ1 = ⌈k⌉). Pick gij ∈ Coeff(g). If j > 0 and i−d0
x

j ≥ 0 then i−d0
x

j ∈ Γ and therefore

i ≤ kj + d0
x ≤ d0

x + δ1j.
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If j > 0 and i−d0
x

j < 0 then i < d0
x ≤ d0

x + δ1j. Finally, if j = 0, i ≤ d0
x by the de�nition

of d0
x.

Reasoning analogously with the foliation F ′ and since it is algebraically integrable
with generic invariant curve g(y, x), it holds that j ≤ d0

y + δ′1i for all (i, j) such that

gij ∈ Coeff(g). This concludes the proof.

As a consequence of Theorem 2.3.16, the next result gives, under certain assump-

tions, a bound on the degree of a primitive rational �rst integral of an algebraically

integrable planar foliation that depends only on the values δ1, δ′1, d
0
x and d0

y.

Corollary 2.3.17 ([55, Corollary 5.3]). With assumptions and notation as given

in Theorem 2.3.16, suppose that δ1 = 0 (respectively, δ′1 = 0). Then, the degree of a

primitive rational �rst integral of F is bounded from above by the value (1+δ′1)d0
x+d0

y

(respectively, (1 + δ1)d0
y + d0

x).

Remark 2.3.18. Let F be an algebraically integrable complex planar polynomial

foliation. Then the value d0
x (respectively, d0

y) coincides with the total intersection

number between the associated generic integral algebraic invariant curve of F and

the line y = 0 (respectively, x = 0).

We conclude this subsection with a result about complex planar polynomial foli-

ations F having a rational �rst integral of a speci�c type. Firstly notice that F has

a primitive rational �rst integral of the form

a + xyH1(x, y)
b + xyH2(x, y)

, (2.11)

with H1,H2 ∈ C[x, y] and (a, b) ∈ C2 ∖ {(0,0)}, if and only if d0
x = d0

y = 0.

Corollary 2.3.19 ([55, Corollary 5.5]). Let F be a complex planar polynomial foli-

ation and keep the notation as given in Theorem 2.3.16.

(a) If F has a primitive rational �rst integral of type (2.11), then the Newton

polytope of F , Newt(F), is contained in the convex cone

ΨF ∶= {(u, v) ∈ R2
≥0 ∣ u ≤ δ1v and v ≤ δ′1u} ,

which can be computed only from F .

(b) If δ1 = 0 or δ′1 = 0, then F has no primitive rational �rst integral of type (2.11).

Proof. Part (a) is straightforward from Theorem 2.3.16. Part (b) follows because, if
F had a rational �rst integral of the form (2.11) and either δ1 = 0 or δ′1 = 0, then, by

Part (a), the set ΨF would be {(0,0)}, which is a contradiction.
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2.4. Conditions for algebraic integrability, II

Let FC2
be a foliation on C2 and F its extended foliation to S0, S0 being either

a Hirzebruch surface Fδ or the complex projective plane. In this section we continue

with the study of extended foliations as F with the aim of obtaining results on their

algebraic integrability (and therefore of FC2
).

In the �rst two subsections (Subsections 2.4.1 and 2.4.2), we consider foliations

Fδ on Hirzebruch surfaces Fδ, while in Subsection 2.4.3 we show that our de�nitions

and results are easily adapted to extended foliations FP2
on the projective plane.

Being more speci�c, Subsection 2.4.1 introduces the concepts of characteristic

Q-divisor TFδ and restricted set of independent algebraic solutions Σ. TFδ is an

important divisor that exists when Fδ is algebraically integrable and Lemma 2.4.8

proves that in this case, [TFδ] belongs yo an a�ne subspace of NS(SF) that depends
on sets Σ as above.

Subsection 2.4.2 provides a necessary condition for algebraic integrability (The-

orem 2.4.13). It is supported on a set Σ as before and a family of R-divisors Tα,
α ∈ R`, and a map α ↦ T 2

α, which determines a candidate TαΣ
F

to be TFδ when Fδ

has a rational �rst integral.

2.4.1. Characteristic Q-divisor

Recall that, with the notation as in Section 2.1, if Fδ is algebraically integrable,

the characteristic divisor of Fδ (De�nition 2.1.2) is

DFδ ∶= aF ∗ + bM∗ −
n

∑
i=1

miE
∗
i . (2.12)

With respect to the algebraic integrability problem of foliations on Fδ, the fol-

lowing result shows that, without loss of generality, we can assume that the dicritical

con�guration of Fδ is not empty.

Proposition 2.4.1. Let Fδ be an algebraically integrable foliation and assume that

its dicritical con�guration BFδ (see De�nition 1.7.6) is empty. Then, either Fδ

is the foliation de�ned by the �bers of the ruling Fδ → P1 given by the projection

(X0,X1;Y0, Y1) ↦ (X0,X1), or δ = 0 and F0 is de�ned by the �bers of the ruling

F0 ≅ P1 × P1 → P1 given by the projection (X0,X1;Y0, Y1) ↦ (Y0, Y1). Finally, if

BFδ ≠ ∅, then b must be di�erent from 0 in the expression (2.12).

Proof. Firstly, assume that BFδ is empty and, hence, the surface SFδ de�ned below

De�nition 1.7.6 is Fδ. Let DFδ = aF + bM , with a, b ∈ Z. Then, by Lemma 2.1.5,

0 =D2
Fδ

= 2ab + b2δ and, therefore, either b = 0 or a = −bδ/2.
In the �rst case, considering the map πFδ de�ned before Proposition 2.1.1, as the

projective dimension of (πFδ)∗∣DFδ ∣ = PFδ equals 1, one has that a = 1 and then,

PFδ is the pencil of curves with equations αX0 + βX1 = 0, where (α ∶ β) ∈ P1. This
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means that the (algebraic) invariant by Fδ curves are the �bers of the natural ruling
Fδ → P1.

In the second case, a = −bδ/2, and then δ must vanish because, otherwise, DFδ ⋅
M0 < 0, which is a contradiction because the linear system ∣DFδ ∣ has no base point.

Then DFδ = bM and reasoning as in the above paragraph one gets b = 1 and then

the (algebraic) invariant by Fδ curves are exactly the �bers of the projection de�ned

by (X0,X1, Y0, Y1) ↦ (Y0, Y1).
The last assertion of the statement is true because, BFδ ≠ ∅ and b = 0 imply

D2
Fδ

< 0, which is a contradiction by Lemma 2.1.5.

Let us introduce more notation to be used. Recall that we assume that Fδ is

algebraically integrable. If the dicritical con�guration BFδ of Fδ is not empty then,

by Proposition 2.4.1, the coe�cient b of M∗ in (2.12) is di�erent from zero and it

allows us to de�ne what we call the characteristic Q-divisor of Fδ.

De�nition 2.4.2. Fix a non-negative integer δ and let Fδ be an algebraically inte-

grable foliation on Fδ such that BFδ ≠ ∅, F /G is a primitive rational �rst integral

of Fδ, PFδ = ⟨F,G⟩ and DFδ = aF ∗ + bM∗ − ∑ni=1miE
∗
i is the characteristic divisor

of Fδ. We de�ne the characteristic Q-divisor of Fδ (or of PFδ or of F /G) as the
normalized Q-divisor on SFδ :

TFδ ∶=
1

b
DFδ = hF ∗ +M∗ −

n

∑
i=1

siE
∗
i ,

where h ∶= a/b ∈ Q and si ∶=mi/b ∈ Q>0 for all i. It is clear that [TFδ] belongs to the

characteristic ray of Fδ (De�nition 2.2.5).

Remark 2.4.3. Notice that if {Fδ}δ∈Z≥0 is the family of extended foliations of a

planar polynomial foliation FC2
then, for all δ (except, at most on value δ = δ1),

BFδ is not empty because, by Theorem 2.3.6, if δ < δ1 (respectively, δ > δ1) then

(0,1; 1,0) ∈ BFδ (respectively, (0,1; 0,1) ∈ BFδ).
For a Q-divisor D on SFδ , let R(D) (respectively, e(D)) be the set (respectively,

integer) de�ned in (2.4) (respectively, (2.5)). Then, the following straightforward

result holds.

Proposition 2.4.4. Let Fδ be an algebraically integrable foliation on a Hirzebruch

surface Fδ. Let GFδ be the minimal characteristic divisor of Fδ (De�nition 2.2.5),

DFδ the characteristic divisor of Fδ (De�nition 2.1.2) and TFδ the characteristic

Q-divisor of Fδ. Then, their classes in NS(SFδ), [GFδ], [DFδ] and [TFδ], belong
to the same ray. Moreover,

GFδ = min{a ∣a ∈ R(TFδ)}TFδ

and then, by Theorem 2.2.7,

DFδ = e(GFδ)GFδ = e(TFδ)TFδ .
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As above indicated, from now on, we assume that the dicritical con�guration BFδ
is not empty (notice that Proposition 2.4.1 describes the rational �rst integrals of Fδ

when BFδ = ∅). Denote by d the number of terminal dicritical singularities of Fδ.
Keep the notation as above, in particular, suppose that BFδ = {p1, . . . , pn}. Recall

that, for each Q-divisorD on SFδ , we identify its class [D] in Pic(SFδ) with its image

in NS(SFδ).
Recall also that OB

Fδ
denotes the set of origins of the con�guration BFδ (see

De�nition 1.2.2). For each i ∈ {1, . . . , n}, let qi ∈ OB
Fδ

be the unique point in Fδ
such that pi ∈ (BFδ)qi . Let us consider the following divisor on SFδ with exceptional

support:

Êr ∶=
n

∑
i=1

multpi(ϕr)E∗
i ,

where, for all r ∈ {1, . . . , n}, ϕr denotes a curvette through qr, i.e., an analytically

irreducible germ of curve in OFδ,qr whose strict transform is transversal to the divisor

Er at a general point, and multpi(ϕr) is the multiplicity of its strict transform at pi.

Notice that multpi(ϕr) = 0 if pi /∈ (BFδ)pr , multpi(ϕr) = 1 if i = r and multpi(ϕr) =
∑p`→pi multp`(ϕr) for all i such that pi ∈ (BFδ)pr ∖ {pr}.

The set {Ê1, . . . , Ên} is a basis of the free Z-module ⊕n
i=1 ZE∗

i and satis�es that

Êi ⋅ Ẽ` = −δi`, where δi`, 1 ≤ ` ≤ n, is the Kronecker delta. Moreover, [19, Lemma

8.4.5] shows that
n

∑
i=1

miE
∗
i =

d

∑
j=1

ρtj Êtj , (2.13)

where pt1 , . . . , ptd denote the terminal dicritical singularities of Fδ and ρtj ∶= mtj −
∑p`→ptj m` for all j = 1, . . . , d. Notice that ρtj > 0 for all j by Lemma 2.1.3 (because

Ẽtj is not invariant by Fδ and DFδ is a nef divisor). Hence, we can write the

Q-divisor TFδ in the following form:

TFδ = hF ∗ +M∗ −
d

∑
j=1

βjÊtj , (2.14)

where βj ∶= ρtj/b. To simplify notation, for all j = 1, . . . , d, we can rewrite

Êtj =
n

∑
i=1

λijE
∗
i (2.15)

where λij ∶= multpi(ϕtj) and then

TFδ = hF ∗ +M∗ −
n

∑
i=1

(
d

∑
j=1

λijβj)E∗
i . (2.16)

Remark 2.4.5. Notice that the values λij given in (2.15) can be computed directly

from the proximity graph of BFδ , and are de�ned independently of the algebraic

integrability of Fδ.

For ease of reading, we illustrate the previous tools with an example.
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Example 2.4.6. Assume that BFδ = {pi}20
i=1 are the points in the dicritical con�gu-

ration of a certain foliation Fδ on Fδ. Suppose also that the proximity graph of BFδ
is that depicted in Figure 2.2.

p1

p2

p3

p4

p5

p6

p7 p10

p8

p9

p11

p12

p13

p14

p15

p16

p17

p18

p19

p20

Figure 2.2: Proximity graph of BFδ

We also assume that the points p9, p16 and p20 are the only terminal dicritical
points of BFδ . That is d = 3, t1 = 9, t2 = 16 and t3 = 20. Following the notation as
above,

Êt1 = Ê9 =
20

∑
i=1

multpi(ϕ9)E∗
i = 7

4

∑
i=1
E∗
i + 3

6

∑
i=5
E∗
i +

9

∑
i=7
E∗
i ,

Êt2 = Ê16 =
20

∑
i=1

multpi(ϕ16)E∗
i = 14

4

∑
i=1
E∗
i + 7

6

∑
i=5
E∗
i + 7

11

∑
i=10

E∗
i + 5E∗

12 + 2
14

∑
i=13

E∗
i

+
16

∑
i=15

E∗
i ,

Êt3 = Ê20 =
20

∑
i=1

multpi(ϕ20)E∗
i = 12

4

∑
i=1
E∗
i + 6

6

∑
i=5
E∗
i + 6

11

∑
i=10

E∗
i +

13

∑
i=12

E∗
i +

20

∑
i=17

E∗
i .

The values λij given in (2.15) are given by the matrix λ = (λij):

λ =
⎛
⎜⎜
⎝

7 7 7 7 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0

14 14 14 14 7 7 0 0 0 7 7 5 2 2 1 1 0 0 0 0

12 12 12 12 6 6 0 0 0 6 6 1 1 0 0 0 1 1 1 1

⎞
⎟⎟
⎠

t

.

As said in Remark 2.4.5, those values can be de�ned regardless of the algebraic

integrability of Fδ.
Assume now that Fδ is algebraically integrable. IfDFδ = aF ∗+bM∗−∑20

i=1miE
∗
i is

the characteristic divisor of Fδ, then the characteristic Q-divisor of Fδ, by De�nition
2.4.2, is

TFδ =
1

b
DFδ = hF ∗ +M∗ −

20

∑
i=1

siE
∗
i ,
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where h = a/b and si =mi/b for i = 1, . . . ,20. As ptj ∈ EB
Fδ
, for j = 1,2,3, (the set of

ends of BFδ , see De�nition 1.2.2) the values ρtj and βj given in (2.13) and (2.14) are

ρtj =mtj and βj = stj for 1 ≤ j ≤ 3.
Therefore, the divisor TFδ will be of the following form (2.16):

TFδ =hF ∗ +M∗ −
n

∑
i=1

(
3

∑
j=1

λijβj)E∗
i

=hF ∗ +M∗ −
4

∑
i=1

(7β1 + 14β2 + 12β3)E∗
i −

6

∑
i=5

(3β1 + 7β2 + 6β3)E∗
i −

9

∑
i=7
β1E

∗
i

−
11

∑
i=10

(7β2 + 6β3)E∗
i − (5β2 + β3)E∗

12 − (2β2 + β3)E∗
13 − 2β2E

∗
14 −

16

∑
i=15

β2E
∗
15

−
20

∑
i=17

β3E
∗
i ,

where β1, β2 and β3 depend on the multiplicity of a general curve of the pencil at

the dicritical points.

From now on, let FC2
be a polynomial foliation on C2 (it needs not to be alge-

braically integrable), �x a non-negative integer δ and consider its extended foliation

Fδ to the Hirzebruch surface Fδ. Let KFδ = OFδ(d1, d2) be its canonical sheaf.
Notice that OFδ(δ − 2,−2) is the canonical sheaf of Fδ [64] and, therefore, the

canonical sheaf of the surface SFδ (the sky of the dicritical con�guration, as intro-

duced at the begining of the chapter) is OS
Fδ

(KS
Fδ

), where KS
Fδ

∶= (δ − 2)F ∗ −
2M∗ +∑ni=1E

∗
i . In addition K

F̃δ
= OS

Fδ
(K
F̃δ

), where

K
F̃δ

∶= d1F
∗ + d2M

∗ −
n

∑
i=1

(νpi(Fδ) + εpi(Fδ) − 1)E∗
i ,

νpi(Fδ) being the multiplicity at pi of the strict transform of Fδ on the surface

containing pi, and (as de�ned in (1.15)) εpi(Fδ) equals 1 (respectively, 0) if pi is a

terminal dicritical singularity (respectively, otherwise).

Keep the notation as in Subsection 1.1.2. Also, given a divisor D on SFδ , [D]=1

will denote the a�ne hyperplane of NS(SFδ)

[D]=1 ∶= {x ∈ NS(SFδ) ∣ [D] ⋅ x = 1}.

The following de�nition will be useful in the remaining of this chapter. Let F be the

divisor corresponding to a �ber of Fδ.

De�nition 2.4.7. Let Fδ be a foliation on a Hirzebruch surface Fδ, d the number of
terminal dicritical singularities of Fδ and Σ a set of independent algebraic solutions

of Fδ of length σ. Set ` ∶= d−σ, d being the number of terminal dicritical singularities

of Fδ. We say that Σ is a restricted set of independent algebraic solutions of Fδ if
[F ∗] does not belong to the linear span of the set

V (Σ) = {[C]∣C ∈ Σ} ∪ {[KF̃ δ −KS
Fδ

]} ∪ {[Ẽi]∣Ei is non-dicritical},

introduced in (2.2).
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Lemma 2.4.8. Let Fδ be the extension to Fδ of a polynomial foliation on C2.

Consider a set Σ = {C1, . . . ,Cσ} of independent algebraic solutions of Fδ and set

` ∶= d − σ, d being the number of terminal dicritical singularities of Fδ. Then the

following statements hold:

(a) dimR V (Σ)⊥ = ` + 1.

(b) If Σ is a restricted set of independent algebraic solutions, then V (Σ)⊥ ∩ [F ∗]=1

is an a�ne subspace of dimension `.

(c) Σ = ∅ is a restricted set of independent algebraic solutions of Fδ.

(d) If Fδ is algebraically integrable, then Σ is a restricted set of independent alge-

braic solutions of Fδ and the class of the divisor TFδ introduced in De�nition

2.4.2 satis�es

[TFδ] ∈ V (Σ)⊥ ∩ [F ∗]=1 .

Proof. From its de�nition, it holds that #V (Σ) = σ +1+n−d. Since the elements in

V (Σ) are free, σ + 1+n− d is the rank of the matrix whose rows are the coordinates

(in the basis {F ∗,M∗} ∪ {E∗
i }1≤i≤n) of the vectors in V (Σ). Then, considering the

system of linear equations

a ⋅ x = 0, a ∈ V (Σ), (2.17)

one gets dimR V (Σ)⊥ = n + 2 −#V (Σ) = ` + 1, which proves Part (a).

Part (b) follows from the fact that, if Σ is a restricted set of independent algebraic

solutions, then the system of linear equations that results from adding the equation

[F ∗]⋅x = 1 to the equations (2.17) is consistent (notice that the rows of the associated

coe�cient matrix are linearly independent).

From now on, assume that {Ekj}n−dj=1 is the set of non-dicritical divisors. Notice

that

K
F̃δ

−KS
Fδ

= (d1 − δ + 2)F ∗ + (d2 + 2)M∗ −
n

∑
i=1

(νpi(Fδ) + εpi(Fδ))E∗
i .

To prove Part (c), we are going to show that [F ∗] is not a linear combina-

tion of the elements in V (∅) = {[KF̃ δ −KS
Fδ

]} ∪ {[Ẽkj ]}n−dj=1 . Indeed, reasoning by

contradiction, assume that [F ∗] = γ0[KF̃δ −KS
Fδ

] + ∑n−dj=1 γj[Ẽkj ], with γj ∈ R for

j = 0, . . . , n − d. Then, taking intersection product with [F ∗] at both sides of the

equality, one gets that 0 = γ0(d2 + 2); therefore γ0 = 0 because d2 + 2 > 0 [54, Propo-

sition 3.2]. Now, taking intersection product with [Êj], we conclude that γj = 0 for

j = 1, . . . , n − d leading to a contradiction.

Let us prove Part (d). Assume that Fδ is algebraically integrable and let DFδ =
aF ∗ + bM∗ −∑ni=1miE

∗
i be the characteristic divisor of Fδ.

Let us show that [F ∗] is not a linear combination of the elements in V (Σ). In

fact, reasoning by contradiction, suppose that [F ∗] = γ0[KF̃δ−KS
Fδ

]+∑n−dj=1 γj[Ẽkj ]+
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∑σr=1 γ
′
r[C̃r], with γj , γ′r ∈ R for all j = 0, . . . , n−d, r = 1, . . . , σ. Then, taking intersec-

tion product with [DFδ] at both sides of the equality, one has that b = 0 (by Lemma

2.1.3 and Remark 2.1.4), leading, by Proposition 2.4.1, to a contradiction.

The above paragraph shows that Σ is a restricted set of independent algebraic

solutions of Fδ. Finally, by Lemma 2.1.3, DFδ ⋅ Ẽi = 0 (respectively, DFδ ⋅ C̃ = 0)

if Ei is non-dicritical (respectively, C ∈ Σ). Moreover, DFδ ⋅ (KF̃δ −KS
Fδ

) = 0 (see

Remark 2.1.4), and therefore [TFδ] ∈ V (Σ)⊥. The fact that TFδ ⋅ F ∗ = 1 concludes

the proof.

Let us de�ne the following values attached to Fδ:

h0 ∶= −
d1 − δ + 2

d2 + 2
− δ and hj ∶=

∑ni=1(νpi(Fδ) + εpi(Fδ))λij
d2 + 2

,1 ≤ j ≤ d. (2.18)

Notice that h0, . . . , hd can be computed from the dicritical resolution of Fδ and the

above introduced values λij which can be computed from the proximity graph of BFδ
(see Remark 2.4.5). Also note that d2 > −2 [54, Proposition 3.2.].

Lemma 2.4.9. An element x ∈ NS(SFδ) belongs to V (∅)⊥ ∩ [F ∗]=1 if and only if

there exists α = (α1, . . . , αd) ∈ Rd such that

x = v(α) ∶=
⎛
⎝
h0 +

d

∑
j=1

hjαj
⎞
⎠
[F ∗] + [M∗] −

n

∑
i=1

⎛
⎝
d

∑
j=1

λijαj
⎞
⎠
[E∗

i ]. (2.19)

Proof. Let W be the a�ne subspace of NS(SFδ) given by the set {v(α) ∣ α ∈ Rd}.
On the one hand, straightforward computations show that W ⊆ V (∅)⊥ ∩ [F ∗]=1. On

the other hand, a similar reasoning to that of the proof of Lemma 2.4.8 proves that

the dimension of the a�ne subspace V (∅)⊥ ∩ [F ∗]=1 is equal to d. Hence we have

the equality W = V (∅)⊥ ∩ [F ∗]=1.

By Lemma 2.4.9, and using the introduced notation, if one considers a restricted

set of independent algebraic solutions Σ = {C1, . . . ,Cσ} of Fδ, then:

V (Σ)⊥ ∩ [F ∗]=1 = {v(α) ∣α ∈ Rd,v(α) ⋅ [C̃r] = 0 for all r = 1, . . . , σ}. (2.20)

This shows that x ∈ V (Σ)⊥ ∩ [F ∗]=1 if and only if x = v(α), where α = (α1, . . . , αd)
is a solution of the system of σ linear equations with unknowns θ1, . . . , θd provided

by the equalities v(θ) ⋅ [C̃r] = 0, r = 1, . . . , σ, where θ = (θ1, . . . , θd). The dimension

of V (Σ)⊥ ∩ [F ∗]=1 (as an a�ne subspace) is ` ∶= d − σ by Lemma 2.4.8. Hence,

using Gauss-Jordan elimination (and, possibly, reordering the terminal dicritical sin-

gularities pt1 , . . . , ptd), we conclude the existence of rational numbers µk,s, 0 ≤ k ≤ `,
` + 1 ≤ s ≤ d, such that the solution set of the mentioned system is

⎧⎪⎪⎨⎪⎪⎩
(α1, . . . , α`, µ0,`+1 +

`

∑
k=1

µk,`+1αk, . . . , µ0,d +
`

∑
k=1

µk,dαk)
RRRRRRRRRRR
α1, . . . , α` ∈ R

⎫⎪⎪⎬⎪⎪⎭
,
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which we denote by ∆. Hence, we have deduced that

V (Σ)⊥ ∩ [F ∗]=1 = {v(α) ∣ α ∈ ∆}. (2.21)

Let us consider the following notation:

Λi0 ∶=
d

∑
s=`+1

λisµ0,s, for 1 ≤ i ≤ n,

Λik ∶= λik +
d

∑
s=`+1

λisµk,s, for 1 ≤ i ≤ n, 1 ≤ k ≤ `,

H0 ∶= h0 +
d

∑
s=`+1

hsµ0,s, and

Hk ∶= hk +
d

∑
s=`+1

hsµk,s, for 1 ≤ k ≤ `.

Proposition 2.4.10. Let Σ be a restricted set of independent algebraic solutions of

Fδ and keep the above notation. An element x ∈ NS(SFδ) belongs to V (Σ)⊥∩[F ∗]=1

if and only if there exist α1, . . . , α` ∈ R such that

x = (H0 +
`

∑
k=1

Hkαk) [F ∗] + [M∗] −
n

∑
i=1

(Λi0 +
`

∑
k=1

Λikαk) [E∗
i ]. (2.22)

Proof. Assume Σ has length σ. Notice that V (∅)⊥ ∩ [F ∗]=1 ⊇ V (Σ)⊥ ∩ [F ∗]=1. By

Lemma 2.4.9, an element x in NS(SFδ) belongs to V (∅)⊥ ∩ [F ∗]=1 if and only if

x = v(α) ∶=
⎛
⎝
h0 +

d

∑
j=1

hjαj
⎞
⎠
[F ∗] + [M∗] −

n

∑
i=1

⎛
⎝
d

∑
j=1

λijαj
⎞
⎠
[E∗

kj
],

where h0 and hj (respectively, λij) are de�ned as in (2.18) (respectively, (2.15)), for

1 ≤ j ≤ d, (respectively, for 1 ≤ i ≤ n, 1 ≤ j ≤ d). By (2.21), x ∈ V (Σ)⊥ ∩ [F ∗]=1 if and

only if

αs = µ0,s +
`

∑
k=1

µk,sαk, for all ` + 1 ≤ s ≤ d.

Then, it is clear that

h0 +
d

∑
j=1

hjαj = h0 +
`

∑
k=1

hkαk +
d

∑
s=`+1

hs (µ0,s +
`

∑
k=1

µk,sαk) =H0 +
`

∑
k=1

Hkαk

and that

d

∑
j=1

λijαj =
`

∑
k=1

λikαk +
d

∑
s=`+1

λis (µ0,s +
`

∑
k=1

µk,sαk) = Λi0 +
`

∑
k=1

Λikαk,

which concludes the proof.
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2.4.2. A new necessary condition for algebraic integrability of foli-

ations on Hirzebruch surfaces

In this subsection we provide a necessary condition for the algebraic integrability

of Fδ and we introduce some tools to be used in the forthcoming Algorithms 2.5.7

and 2.5.14, which allow us to decide about the exitence of rational �rst integrals.

With the notation as at the end of the previous subsection, for each

α = (α1, . . . , α`) ∈ R`,

let us de�ne the following R-divisor on SFδ :

Tα ∶= (H0 +
`

∑
k=1

Hkαk)F ∗ +M∗ −
n

∑
i=1

(Λi0 +
`

∑
k=1

Λikαk)E∗
i . (2.23)

Divisors Tα are used in the following theorem which provides a description of the class

of the Q-divisor TFδ introduced in De�nition 2.4.2 and associated to an algebraically

integrable foliation Fδ. Algorithm 2.5.7 will also use this family of divisors.

Theorem 2.4.11. Assume that the foliation Fδ is algebraically integrable. Let Σ be

a restricted set of independent algebraic solutions of Fδ and keep the above notation.

Then:

(a) There exists an `-tuple α = (α1, . . . , α`) ∈ R` such that αk > 0 for all k = 1, . . . , `

and TFδ = Tα.

(b) Moreover,

T 2
α = −

`

∑
k,k′=1

(
n

∑
i=1

ΛikΛik′)αkαk′ +
`

∑
k=1

(2Hk − 2(
n

∑
i=1

Λi0Λik))αk + 2H0 −
n

∑
i=1

Λ2
i0 + δ = 0.

Proof. By Lemma 2.4.9, there exist α1, . . . , αd ∈ R such that TFδ = v(α1, . . . , αd)
(as de�ned in (2.19)). Notice that these values α1, . . . , αd coincide with the val-

ues β1, . . . , βd in Equality (2.16) and, therefore, they are strictly positive rational

numbers. Now, Proposition 2.4.10 (and its proof) shows that, after reordering (if

necessary) the in�nitely near dicritical singularities (and, consequently, the values

α1, . . . , αd), one has that TFδ = Tα, where α = (α1, . . . , αl). This proves Part (a).
Part (b) follows by computing the self-intersection at (2.23) and Lemma 2.1.5.

Consider a foliation Fδ and a restricted set Σ of independent algebraic solutions.

They allow us to compute the values Λi0, Λik, H0 and Hk, 1 ≤ i ≤ n, 1 ≤ k ≤ `, giving
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rise to the following system of linear equations (with unknowns θ1, . . . , θ`):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

`

∑
k=1

(
n

∑
i=1

Λi1Λik) θk =H1 − (
n

∑
i=1

Λi0Λi1)
`

∑
k=1

(
n

∑
i=1

Λi2Λik) θk =H2 − (
n

∑
i=1

Λi0Λi2)

⋮
`

∑
k=1

(
n

∑
i=1

Λi`Λik) θk =H` − (
n

∑
i=1

Λi0Λi`)

. (2.24)

The coe�cient matrix of this system is the Gram matrix G of the set of vectors

{(Λ1k, . . . ,Λnk)}`k=1 ⊆ R` with respect to the Euclidean inner product. These vectors

are linearly independent and, therefore, G is a positive de�nite matrix. In particular,

System (2.24) has a unique solution. Let us denote this solution by αΣ
Fδ
.

Also, let us consider the map h ∶ R` → R de�ned by

θ = (θ1, . . . , θ`)
↧

T 2
θ = −

`

∑
k,k′=1

(
n

∑
i=1

ΛikΛik′) θkθk′ +
`

∑
k=1

(2Hk − 2(
n

∑
i=1

Λi0Λik)) θk + 2H0 −
n

∑
i=1

Λ2
i0 + δ.

(2.25)

Then, one has the following result.

Lemma 2.4.12. The map h has an absolute maximum, which is only reached at

αΣ
Fδ
.

Proof. Since the map h is the sum of an a�ne map and a negative de�nite quadratic

form (whose associated matrix is −2G, where G is the above Gram matrix), it has,

at least, an absolute maximum. The Jacobian vector of h is

Jf = −2 ⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

`

∑
k=1

(
n

∑
i=1

Λi1Λik) θk − (H1 − (
n

∑
i=1

Λi0Λi1))
`

∑
k=1

(
n

∑
i=1

Λi2Λik) θk − (H2 − (
n

∑
i=1

Λi0Λi2))

⋮
`

∑
k=1

(
n

∑
i=1

Λi`Λik) θk − (H` − (
n

∑
i=1

Λi0Λi`))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The critical points of h are the solutions of the linear system given in (2.24). Hence,

αΣ
Fδ

is the unique critical point of h. To �nish the proof, it su�ces to show that it is

a local maximum of h (and hence, the absolute one), which follows from the fact that

the Hessian matrix of h is −2G, which is a negative de�nite matrix. This concludes

the proof.

Finally, we state our main result in this subsection, which gives a necessary

condition for algebraic integrability of a foliation on Fδ.
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Theorem 2.4.13. Let Σ be a restricted set of independent algebraic solutions of Fδ

and keep the above notation. Then, the following statements hold:

(a) If T 2
αΣ
Fδ

< 0, then Fδ is not algebraically integrable.

(b) If T 2
αΣ
Fδ

= 0 and Fδ is algebraically integrable, then TFδ = TαΣ
Fδ

and αΣ
Fδ

∈

(Q>0)`, where Q>0 = {x ∈ Q ∣x > 0}.

Proof. Item (a) follows by Lemma 2.4.12 and Theorem 2.4.11. To prove (b), notice

that by Lemma 2.4.12, T 2
α = 0 if and only if α = αΣ

Fδ
, and then the result follows by

Theorem 2.4.11.

2.4.3. The projective plane case

The results of Subsections 2.4.1 and 2.4.2 were stated for foliations on Hirzebruch

surfaces. With minor modi�cations, close results hold for foliations on the complex

projective plane P2. The arguments supporting this case are adaptations of those

given in the previous sections. Therefore, in this subsection, we only state the key

facts and we omit the proofs in order to avoid unnecessary repetitions.

With the above notation, if FP2
is an algebraically integrable foliation on P2

then the dicritical con�guration B
FP2 = {p1, . . . , pn} is not empty (by Bézout The-

orem) and, therefore, we can assume without loss of generality that the dicritical

con�guration of every foliation considered in this section is not empty. Also, if the

characteristic divisor of FP2
is D

FP2 = dL∗ −∑ni=1miE
∗
i (where L denotes a general

line on P2), we can de�ne the characteristic Q-divisor of FP2
as

T
FP2 ∶= L∗ −

n

∑
i=1

siEi, (2.26)

where si ∶= mi
d ∈ Q>0 for all i = 1, . . . , n.

Proposition 2.4.4 remains valid within the current framework just replacing Fδ

by FP2
. Also, the de�nitions and reasoning after this proposition can be similarly

reproduced (with the same notations) giving rise to the following expression of the

characteristic Q-divisor of FP2
:

T
FP2 = L∗ −

n

∑
i=1

⎛
⎝
d

∑
j=1

λijβj
⎞
⎠
E∗
i ,

with a clear resemblance to (2.16).

De�nition 2.4.7 and Lemma 2.4.8 are easily adapted to the P2 case by setting

` ∶= d − σ − 1, replacing Fδ and F by FP2
and L, respectively, and considering the

divisors K
FP2 , KS

FP2 and D
FP2 .
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Lemma 2.4.9 remains true if one simply replaces Fδ (respectively, F , V (∅)) by
FP2

(respectively, L, V (∅) ∖ {[K
F̃P2 −KS

FP2 ]}), and Equation (2.19) by

x = v(α) ∶= [L∗] −
n

∑
i=1

⎛
⎝
d

∑
j=1

λijαj
⎞
⎠
[E∗

i ] .

As a consequence of this new version of Lemma 2.4.9, for any restricted set

of independent algebraic solutions Σ = {C1, . . . ,Cσ} of FP2
, it holds the following

equality (which substitutes Equality (2.20)):

V (Σ)⊥ ∩ [L∗]=1 ={v(α) ∣α ∈ Rd,v(α) ⋅ [K
F̃P2 −KS

FP2 ] = 0

and v(α) ⋅ [C̃r] = 0 for all r = 1, . . . , σ}.

In this context, we add a new equation v(α) ⋅ [K
F̃P2 −KS

FP2 ] = 0 which allows us to

express the set V (Σ)⊥ ∩ [L∗]=1 in terms of σ + 1 linear equations (while (2.20) only

uses σ equations).

Reasoning as we did after Equality (2.20), one obtains a result like Proposition

2.4.10 but in our context. To state it, it su�ces to replace Fδ by FP2
, F by L and

Equality (2.22) by

x = [L∗] −
n

∑
i=1

(Λi0 +
`

∑
k=1

Λikαk) [E∗
i ].

Notice that, in our current setting, we do not need the values Hk, 0 ≤ k ≤ ` and
the de�nition of the divisor Tα in Equation (2.23) becomes

Tα ∶= L∗ −
n

∑
i=1

(Λi0 +
`

∑
k=1

Λikαk)E∗
i . (2.27)

Then the adaptation of Theorem 2.4.11 consists of replacing Fδ by FP2
and the

displayed equality by

T 2
α = −

`

∑
k,k′=1

(
n

∑
i=1

ΛikΛik′)αkαk′ − 2
`

∑
k=1

(
n

∑
i=1

Λi0Λik)αk + 1 −
n

∑
i=1

Λ2
i0 = 0.

Finally, the unique changes to make in System (2.24), Lemma 2.4.12 and Theorem

2.4.13 are the substitutions of Fδ by FP2
and Hk by 0 for all k = 1, . . . , `, taking into

account that the map h de�ned in (2.25) becomes

θ = (θ1, . . . , θ`)
↧

T 2
θ = −

`

∑
k,k′=1

(
n

∑
i=1

ΛikΛik′) θkθk′ − 2
`

∑
k=1

(
n

∑
i=1

Λi0Λik) θk + 1 −
n

∑
i=1

Λ2
i0.

(2.28)

2.5. Algorithms for algebraic integrability

This section provides several algorithms to decide whether a foliation F on a sur-

face S0 (which can be either the complex projective plane P2 or a complex Hirzebruch
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surface Fδ, δ ∈ Z≥0) is algebraically integrable (under certain assumptions) and to

compute a rational �rst integral in the a�rmative case. Some of our algorithms ex-

tend to foliations on Hirzebruch surfaces previous algorithms from [47] for foliations

on the complex projective plane.

Our �rst algorithm (Algorithm 2.5.1) decides whether F has a rational �rst in-

tegral of a pre�xed degree. In the a�rmative case, it computes the �rst integral.

If the degree of the rational �rst integral is unknown but one knows σmax invariant

by F curves, we also give an algorithm (Algorithm 2.5.2) that decides whether F
has a rational �rst integral and computes it in the a�rmative case. We are able to

get these curves and run Algorithm 2.5.2 whenever the cone of curves of SF is poly-

hedral (see Remark 2.2.12). Moreover, our Algorithm 2.5.7 proposes an alternative

to Algorithm 2.5.2 when we do know less that σmax invariant by F curves. Finally,

Algorithm 2.5.14 decides about the existence of a rational �rst integral of pre�xed

genus g ≠ 1.

Subsection 2.5.1 states our algorithms together with some examples showing their

usefulness, while Subsection 2.5.2 summarises the algorithms in order to make easier

their application.

2.5.1. Algorithms

Let F be an algebraically integrable foliation on S0 = P2 or Fδ. By Lemma 2.1.3

and Theorem 2.2.1, the divisor DF (introduced in De�nition 2.1.2) satis�es D2
F = 0

and DF ⋅ Ẽq = 0 (respectively, DF ⋅ Ẽq > 0) for all q ∈ NF (respectively, q ∈ BF ∖NF ).
Recall that BF (respectively, NF ) is the dicritical con�guration (respectively, the set

of dicritical singularities p ∈ BF such that Ẽp is non-dicritical) of F . Both sets are

introduced in De�nition 1.7.6. These facts and Lemma 2.1.5 support the following

algorithm for the problem of deciding whether an arbitrary foliation F on S0 has a

rational �rst integral either of a �xed degree d when S0 = P2 or of a �xed bidegree

(d1, d2) when S0 = Fδ. Moreover, it allows to compute it in the a�rmative case.

Algorithm 2.5.1.

Input: d (respectively, (d1, d2)) if S0 = P2 (respectively, Fδ), a projective 1-form

Ω de�ning F , BF and NF .
Output: Either a rational �rst integral of F of degree d (respectively, bidegree

(d1, d2)) if S0 = P2 (respectively, Fδ), or 0 if there is no such a �rst integral.

1. Consider the �nite set Γ of divisors

D =
⎧⎪⎪⎨⎪⎪⎩

dL∗ −∑q∈BF eqE
∗
q if S0 = P2

d1F
∗ + d2M

∗ −∑q∈BF eqE
∗
q if S0 = Fδ

,

such that

(a) D2 = 0.
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(b) D ⋅ Ẽq = 0 for all q ∈ NF .

(c) D ⋅ Ẽq > 0 for all q ∈ BF ∖NF .

2. Set R = 0

3. While Γ is not empty and R = 0:

(a) Pick D ∈ Γ.

(b) If the dimension of the C-vector spaceH0 (S0, πF∗OSF (D)) is 2, then take

a basis {F,G} and check the condition d(F /G) ∧Ω = 0. If it is satis�ed,

then R = F /G.

(c) Set Γ ∶= Γ ∖ {D}.

4. Return R.

Now, we write a new algorithm that decides, under certain conditions, whether

an arbitrary foliation F on S0 = P2 or Fδ has a rational �rst integral (of arbitrary

degree or bidegree). As above, the algorithm computes it in the a�rmative case.

Algorithm 2.5.2.

Input: A projective 1-form Ω de�ning a foliation F on S0, a complete set of

independent algebraic solutions Σ and the divisor GF ,Σ (de�ned in (2.3)) satisfying

at least one of the following conditions:

(1) G2
F ,Σ /= 0.

(2) The decomposition of the class [GF ,Σ] as a linear combination of those in the

set V (Σ) introduced in (2.2) contains all the classes in V (Σ) with positive

coe�cients.

(3) The value e(GF ,Σ) introduced in (2.5) satis�es e(GF ,Σ) > 0.

Output: Either a rational �rst integral of F , or 0 if there is no such �rst integral.

1. If (1) holds return 0.

2. If either (2) or (3) is satis�ed, then take γ = e(GF ,Σ) (Theorem 2.2.7 gives the

value of e(GF ,Σ) when (2) holds).

3. If dim ∣e(GF ,Σ)GF ,Σ∣ ≠ 1 (where dim stands for projective dimension) return 0.

4. Take a basis {F,G} of (πF)∗∣e(GF ,Σ)GF ,Σ∣ and check the condition d(F /G) ∧
Ω = 0. If it is satis�ed, then return R = F /G. Else, return 0.

Justi�cation of Algorithm 2.5.2. Step (1) is justi�ed by the fact that, if F is alge-

braically integrable, D2
F = 0 (Lemma 2.1.5) and DF = aGF ,Σ for some a ∈ R(GF ,Σ).

Steps (2), (3) and (4) are justi�ed by Theorem 2.2.7.
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To decide whether a complete set of independent algebraic solutions satis�es one

of the above mentioned Conditions (1) or (2) is simple, but this is not the case for

Condition (3). However, when KSF ⋅GF ,Σ < 0, we should not be concerned about

these conditions since, by Proposition 2.2.8, there is no need to take all the steps in

Algorithm 2.5.2. Indeed, it su�ces to check whether dim ∣e(GF ,Σ)GF ,Σ∣ = 1; in the

a�rmative case, we will go to step 4 and, otherwise, F has no rational �rst integral.

The next proposition, originally stated in [47] for foliations on P2, can easily

be extended to Hirzebruch surfaces. The proof is similar to that given in [47] and,

therefore, we omit it.

Proposition 2.5.3. Let F be a foliation on S0 = P2 or Fδ such that the cone of curves
NE(SF) is polyhedral. Let Σ be a complete set of independent algebraic solutions

obtained by calling Algorithm 2.2.11. Then, Σ satis�es one of the Conditions (1),

(2) or (3) described before Algorithm 2.5.2.

Remark 2.5.4. If Σ is a complete set of independent algebraic solutions for a fo-

liation F such that NE(SF) is not a polyhedral cone, then Σ does not necessarily

satisfy any of the conditions needed for Algorithm 2.5.2. However, if it satis�es one

of them, by running Algorithm 2.5.2 (or by applying Proposition 2.2.8 or Remark

2.2.2), we can also decide whether, or not, F admits a rational �rst integral and to

compute it in the a�rmative case.

The following result allows us to decide about algebraic integrability of foliations

F on S0 = P2 or Fδ; the case of foliations on P2 was proved in [47, Theorem 3] and

the proof for foliations on Fδ is a simple adaptation of the P2 case.

Theorem 2.5.5. Let F be a foliation on S0 such that NE(SF) is a polyhedral cone.

Then, calling Algorithms 2.2.11 and 2.5.2, one can decide whether F has a rational

�rst integral and, in the a�rmative case, to compute it. The unique data we need are

the following ones: a projective 1-form Ω de�ning F , the con�guration of dicritical

points BF and the subset NF of BF .

Remark 2.5.6. Darboux's theorem (Theorem 1.6.3) allow us to compute a rational

�rst integral of a polynomial foliation FC2
on C2 of degree r. It requires the knowl-

edge of (r+1
2
) + 2 irreducible invariant by FC2

curves. The number of irreducible

invariant curves required by our result does not depend of the degree of the folia-

tion, but on the number of terminal dicritical points in the dicritical resolution of its

extended foliation. We are not able to give a comparing result, but in our examples,

our procedure usually requires far fewer curves.

Assuming that we do not know a complete set of independent algebraic solutions

of F , we are able to decide about algebraic integrability under alternative suitable
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conditions (and to compute a rational �rst integral if F is algebraically integrable).

Let us describe our algorithm.

Let S0 = P2 (respectively, S0 = Fδ) and αΣ
F ∈ R` be the absolute maximum of the

map h de�ned in (2.28) (respectively, (2.25)). Consider the Q-divisor TαΣ
F

de�ned in

(2.27) (respectively, (2.23), by taking α = αΣ
F ∈ R`.

Algorithm 2.5.7.

Input: A di�erential 1-form Ω de�ning a foliation F on S0, a restricted set of

independent algebraic solutions Σ, the dicritical con�guration of F , BF (see De�ni-

tion 1.7.6), the vector αΣ
F ∈ R` and the Q-divisor TαΣ

F

, satisfying at least one of the

following conditions:

(a) T 2
αΣ
F

< 0.

(b) T 2
αΣ
F

= 0 and αΣ
F /∈ (Q>0)`.

(c) T 2
αΣ
F

= 0 and KSF ⋅ TαΣ
F

< 0.

(d) T 2
αΣ
F

= 0 and e(TαΣ
F

) > 0.

(e) e(TαΣ
F

) = 0.

where e(D) is de�ned in (2.5) for any Q-divisor D.

Output: Either a rational �rst integral of F or 0 if there is no such a �rst

integral.

(1) If Conditions (a), (b) or (e) are satis�ed, then return 0.

(2) Let R(TαΣ
F

) be the set de�ned in (2.4). If Condition (c) is satis�ed and

−2/(KSF ⋅ TαΣ
F

) ∈ R(TαΣ
F

) then let γ ∶= −2/(KSF ⋅ TαΣ
F

). Otherwise (that is,

Condition (d) holds) let γ ∶= e(TαΣ
F

).

(3) Compute the linear system ∣γTαΣ
Fδ

∣. If it is not base point free or its (projective)
dimension is not 1, then return 0. Otherwise, compute the equations of two

curves on S0, F = 0 and G = 0, corresponding to a basis of (πF)∗∣γTαΣ
F

∣ and
compute Ω ∧ (FdG −GdF ). If the last result is 0, then return F /G; otherwise
return 0.

Remark 2.5.8. Notice that Conditions (a), (b) and (c) are easily veri�able (once

the dicritical resolution of singularities has been computed). However, we do not

know a general e�ective characterization for Condition (e) and the second part of

Condition (d).

Remark 2.5.9. If Condition (c) holds and F is algebraically integrable, then the

genus of a rational �rst integral is 0 (see the forthcoming justi�cation).
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Justi�cation of Algorithm 2.5.7. Step (1) is justi�ed by Theorem 2.4.13 and Propo-

sition 2.4.4.

Assume that Condition (c) holds. If F is algebraically integrable, then, by Part

(b) of Theorem 2.4.13 (or its analogous result described in Subsection 2.4.3), the Q-
divisor TF must coincide with TαΣ

F

. Moreover, by Proposition 2.4.4 (or its analogous

result described in Subsection 2.4.3) DF = e(TF)TF . Bertini's Theorem (see [7, 8],

[67, Theorem 3.2] or [64, Chapter II, Theorem 8.18]) states that the general elements

of the linear system ∣DF ∣ are non-singular. Therefore, by Part (a) of Lemma 2.1.5

and the adjunction formula (1.3), one has that 1 + e(TF)
2 KSF ⋅ TF = g, where g is the

genus of the rational �rst integral. Since KSF ⋅ TF < 0 we conclude that g = 0 and

e(TFδ) ∶= −2/(KSF ⋅ TF). This fact explains the choice of the value γ to look for a

rational �rst integral.

Finally, Step (3) is justi�ed by Proposition 2.4.4 (or its analogous result described

in Subsection 2.4.3).

Examples 2.5.10 and 2.5.11 show how Algorithm 2.5.7 discards or con�rms the

existence of a rational �rst integral of a polynomial foliation on C2, and computes it

in the a�rmative case. Let Cf denote the curve on S0 de�ned by the equation f = 0.

Example 2.5.10. Consider the following 1-form ω de�ning a polynomial foliation

FC2
on C2:

ω ∶= (−8y + 9x2y + 3y3 − 3x2y3)dx + (8x − 3x3 − 9xy2 + 3x3y2 − 2y3)dy.

Set F1 its extended foliation to the Hirzebruch surface F1, which is given by Ω1 =
A10dX0 + A11dX1 + B10dY0 + B11dY1, the output of Algorithm 2.3.1 for the input

(1, ω), where

A10 = A10(X0,X1, Y0, Y1) = 16X2
0X1Y

4
0 Y1 − 12X3

1Y
4

0 Y1 − 12X4
0X1Y

2
0 Y

3
1

+ 6X2
0X

3
1Y

2
0 Y

3
1 − 2X6

0Y0Y
4

1 ,

A11 = A11(X0,X1, Y0, Y1) = −8X3
0Y

4
0 Y1 + 9X0X

2
1Y

4
0 Y1 + 3X5

0Y
2

0 Y
3

1 − 3X3
0X

2
1Y

2
0 Y

3
1 ,

B10 = B10(X0,X1, Y0, Y1) = −8X3
0X1Y

3
0 Y1 + 3X0X

3
1Y

3
0 Y1 + 9X5

0X1Y0Y
3

1

− 3X3
0X

3
1Y0Y

3
1 + 2X7

0Y
4

1 and

B11 = B11(X0,X1, Y0, Y1) = 8X3
0X1Y

4
0 − 3X0X

3
1Y

4
0 − 9X5

0X1Y
2

0 Y
2

1 + 3X3
0X

3
1Y

2
0 Y

2
1

− 2X7
0Y0Y

3
1 .

Its canonical sheaf is KF1 = OFδ(2,3) and its dicritical con�guration BF1 consists of

5 points p1, . . . , p5, such that p1, p3, p4, p5 ∈ F1 and p2 is in�nitely near p1. Moreover

p2, p3, p4 and p5 are the terminal dicritical singularities. The proximity graph of BF1

is depicted in Figure 2.3.
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p1

p2

p3 p4 p5

Figure 2.3: Proximity graph of BF1

Keeping the notation as after Proposition 2.4.4, n = 5, d = 4 and we ordering the

terminal dicritical points as follows: t1 = 3, t2 = 4, t3 = 5 and t4 = 2. Moreover,

Êt1 = Ê3 =
5

∑
i=1

multpi(ϕ3)E∗
i E

∗
3 ,

Êt2 = Ê4 =
5

∑
i=1

multpi(ϕ4)E∗
i = E∗

4 ,

Êt3 = Ê4 =
5

∑
i=1

multpi(ϕ5)E∗
i = E∗

5 and

Êt4 = Ê2 =
5

∑
i=1

multpi(ϕ2)E∗
i = E∗

1 +E∗
2 .

If F1 were algebraically integrable, as ptj ∈ EBF1 , for j = 1,2,3, (the set of ends

of BF1 , see De�nition 1.2.2) the values ρtj and βj given in (2.13) and (2.14) must

be determined by ρtj = mtj and βj = stj for 1 ≤ j ≤ 4, where mi (respectively,

si) is the integer de�ned before De�nition 2.1.2 (respectively, in De�nition 2.4.2)

for i = 1, . . . ,5. The values λij given in (2.15) are given in the following matrix

λ = (λij), 1 ≤ i ≤ n, 1 ≤ j ≤ d:

λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 1

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Moreover, the values h0, hj for 1 ≤ j ≤ d introduced in 2.18 are as follows:

h0 ∶= −
8

5
, h1 ∶=

2

5
, h2 ∶=

2

5
and h3 ∶=

2

5
, h4 ∶=

7

5
.

It can be easily checked that Σ′ = {CX0 ,CY0 ,CY1} is a set of invariant by F1

curves. From the proximity relations among the points of BF1 and the equalities

[K
F̃1 −KS

F1 ] = 3[F ∗] + 5[M∗] − 4[E∗
1 ] − 3[E∗

2 ] − 2[E∗
3 ] − 2[E∗

4 ] − 2[E∗
5 ],

[C̃X0] = [F ∗] − [E∗
1 ], [C̃Y0] = [M∗] −

2

∑
i=1

[E∗
i ] and

[C̃Y1] = −[F ∗] + [M∗] −
5

∑
i=3

[E∗
i ],
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it can be checked that Σ = {CX0 ,CY0} ⊂ Σ′ is a restricted set of independent algebraic

solutions of F1 (see De�nition 2.4.7) of length σ = 2. However, Σ′ is not a set of

independent algebraic solutions. That is, ` = d − σ = 2.

Considering a parameter αj associated to the terminal dicritical singularity ptj
(see before Proposition 2.4.10), for j = 1, . . . ,4, we can express α3 = 3 − α1 − α2 and

α4 = 1 in terms of of α1 and α2, which means, with notation as before Proposition

2.4.10, that µ0,3 = 3, µ1,3 = µ2,3 = −1, µ0,4 = 1 and µ1,4 = µ2,4 = 0. Hence, the values

Λij are as follows:

Λ10 = 1, Λ11 = 0, Λ12 = 0,

Λ20 = 1, Λ21 = 0, Λ22 = 0,

Λ30 = 0, Λ31 = 1, Λ32 = 0,

Λ40 = 0, Λ41 = 0, Λ42 = 1,

Λ50 = 3, Λ51 = −1, Λ52 = −1,

while the H values are H0 = 1, H1 = 0 and H2 = 0. One gets that αΣ
F1 = (1,1) (the

maximum of the map (2.25)) and

TαΣ
F1

= [F ∗] + [M∗] − [E∗
1 ] − [E∗

2 ] − [E∗
3 ] − [E∗

4 ] − [E∗
5 ].

Since T 2
αS
F1

= −2 < 0, applying Algorithm 2.5.7 we conclude that F1 (and hence,

FC2
) is not algebraically integrable.

Example 2.5.11. Let FC2
be a polynomial foliation on C2 de�ned by the 1-form

ω ∶= (x4 − x3y + x4y3 + 5x3y4 + 9x2y5 + 7xy6 + 2y7)dx+
(2x4 − 3x5y2 − 13x4y3 − 21x3y4 − 15x2y5 − 4xy6)dy.

Consider the extended foliation F2 to F2 given by the output of Algorithm 2.3.1 for

the input (2, ω).

p1

p2

p3

p8p4

p5 p6 p7 p9

p10

p11

Figure 2.4: Proximity graph of BF2
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The proximity graph of the dicritical con�guration of the foliation F2 is depicted

in Figure 2.4. The points p5, p6, p7, p9 and p11 are the terminal dicritical singular-

ities. The canonical sheaf of F2 is KF2 = OF2(6,6). From the proximity relations

among the points of BF2 and the equalities

[K
F̃2 −KS

F2 ] =6[F ∗] + 8[M∗] − 8[E∗
1 ] − 8[E∗

2 ] − 5[E∗
3 ] − 4[E∗

4 ] − 2
7

∑
i=5

[E∗
i ]

− [E8] − 2[E9] − 4[E∗
10] − 5[E∗

11],
[C̃X0] =[F ∗] − [E∗

1 ], [C̃X1] = [F ∗] − [E∗
10] − [E∗

11] and
[C̃Y0] =[M∗] − [E∗

1 ] − [E∗
2 ] − [E∗

3 ],

it can be checked that Σ = {CX0 ,CX1 ,CY0} is a restricted set of independent algebraic
solutions of F2.

Considering parameters α1, α2, α3, α4 and α5 associated, respectively, to the ter-

minal dicritical singularities p5, p6, p7, p9 and p11 and expressing α3, α4 and α5 in

terms of α1 and α2 (as explained before Proposition 2.4.10 and showed in the previ-

ous example) and keeping the notation of Proposition 2.4.10, one gets that

Tα =
2

3
F ∗ +M∗ −E∗

1 −E∗
2 −

2

3
E∗

3 −
1

2
E∗

4 − α1E
∗
5 − α2E

∗
6 − (1

2
− α1 − α2)E∗

7

− 1

6
E∗

8 −
1

6
E∗

9 −
1

2
E∗

10 −
1

2
E∗

11

and αΣ
F2 = (1

6 ,
1
6). Then T

2
αΣ
F2

= 0 and KS
F2 ⋅ TαΣ

F2
= −1

3 . This shows that Condition

(c) of Algorithm 2.5.7 holds. Running this algorithm, γ = 6 in Step (2) and the

algorithm returns a rational �rst integral of F2 (of genus 0):

X4
1Y

6
0 + 2X3

0X
3
1Y

5
0 Y1 +X6

0X
2
1Y

4
0 Y

2
1

X0X3
1Y

6
0 +X7

0X
3
1Y

3
0 Y

3
1 + 3X10

0 X2
1Y

2
0 Y

4
1 + 3X13

0 X1Y0Y 5
1 +X16

0 Y 6
1

,

which provides a rational �rst integral of FC2
,

f

g
= x4 + 2x3y + x2y2

x3 + x3y3 + 3x2y4 + 3xy5 + y6
.

Notice that min{a ∣a ∈ R(TαΣ
F2

)} = e(TαΣ
F2

) = 6, beingR(TαΣ
F2

) (respectively, e(TαΣ
F2

))
the set (respectively, integer) de�ned in (2.4) (respectively, (2.5)). Moreover, as the

foliation is algebraically integrable, by Theorem 2.4.13, the characteristic Q-divisor
(see De�nition 2.4.2) is TF2 = TαΣ

F2
. Then, the minimal characteristic divisor of F2

(see De�nition 2.2.5), GF2 , and the characteristic divisor of F2 (see De�nition 2.1.2),

DF2 , coincide and are as follows:

6TF2 = 4F ∗ + 6M∗ − 6E∗
1 − 6E∗

2 − 4E∗
3 − 3E∗

4 −
9

∑
i=5

E∗
i − 3E∗

10 − 3E∗
11.

Algorithm 2.5.7 returns a rational �rst integral of an algebraically integrable

foliation on S0 whenever the class [DF ] belongs to the linear span of V (Σ), Σ being
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a restricted set of independent algebraic solutions of F . Let us state and justify this

fact.

Proposition 2.5.12. Let F be an algebraically integrable foliation on S0. Assume

that F admits a restricted set Σ of independent algebraic solutions such that the class

[DF ] belongs to the linear span of V (Σ). Then, Condition (d) in Algorithm 2.5.7

holds, and therefore, this algorithm returns a rational �rst integral of F .

Proof. Let S = Fδ (respectively, S0 = P2). By Proposition 2.4.10 and Lemma 2.4.12

(respectively, their analogous results described in Subsection 2.4.3), with the notation

as in these results, the self-intersection T 2
αΣ
F

is the maximum of the set R ∶= {x2 ∣ x ∈
V (Σ)⊥ ∩ [H]=1}, where H = F ∗ (respectively, H = L∗).

Now, V (Σ)⊥ ⊆ [DF ]⊥ since [DF ] belongs to the linear span of V (Σ). Moreover,

any element of the hyperplane [DF ]⊥ has non-positive self-intersection (because DF
is a nef divisor). Finally, [TF ] ∈ V (Σ)⊥ ∩ [H]=1 and T 2

F = 0 (by Lemma 2.1.5). As

a consequence, 0 belongs to R and therefore T 2
αΣ
F

= 0. This equality and the fact

that, by Proposition 2.4.4 (respectively, its analogous result described in Subsection

2.4.3), e(TαΣ
F

) > 0, concludes the proof.

The following result shows that the computation of the integral components of a

�ber of the pencil PF introduced in Proposition 1.6.2 leads us to obtain a rational

�rst integral.

Corollary 2.5.13. Assume that F is algebraically integrable and let Σ′ be a �nite

set of integral invariant (by F) curves containing all the integral components of a

curve of the pencil PF . Then

(a) If Σ ⊆ Σ′ is such that V (Σ) is a basis of the linear span of V (Σ′), then Σ is

a restricted set of independent algebraic solutions (of F) and [DF ] belongs to
the linear span of V (Σ).

(b) For any subset Σ ⊆ Σ′ satisfying the condition given in (a), Algorithm 2.5.7

(applied to F , BF and Σ) returns a rational �rst integral of F .

Proof. Let n = #BF . Firstly we prove Part (a). Σ is clearly a restricted set of inde-

pendent algebraic solutions. The curve of the pencil PF whose integral components

are in Σ′ corresponds to a �ber G of the morphism ϕ ∶ SF → P1 induced by the

complete linear system ∣DF ∣ and, then, G has the form

∑
C∈Σ′

aCC +∑
i

biẼi,

where the indices i of the second summand run over the set of natural numbers

i ∈ {1, . . . , n} such that the exceptional divisor Ei is non-dicritical, and aC , bi ≥ 0 for
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all C ∈ Σ′ and for all index i. Since DF and G are linearly equivalent, it holds that

[DF ] belongs to the linear span of V (Σ).
Part (b) follows from Part (a) and Proposition 2.5.12.

Our previous algorithms run under certain conditions. Next, we are going to

show the existence of a new algorithm which works when those conditions do not

happen. That is, it works when we are unable to obtain a complete set of independent

algebraic solutions of F and no condition in Algorithm 2.5.7 is satis�ed. However,

an additional condition must hold.

This new algorithm decides whether a foliation F on S0 (P2 or Fδ) has a rational
�rst integral of genus g ≠ 1 (under a certain new condition) and computes it in the

a�rmative case. This condition holds whenever certain inequality psup ⋅ pinf > 0 is

true (where psup and pinf are de�ned in the algorithm). It is worthwhile to add that

the mentioned inequality is always true when one is looking for some speci�c types

of rational �rst integrals (see the forthcoming Remarks 2.5.17 and 2.5.18).

Let R(D) be the set de�ned in (2.4) for any Q-divisor D. Let S0 = P2 (respec-

tively, S0 = Fδ), αΣ
F ∈ R` be the absolute maximum of the map h de�ned in (2.28)

(respectively, (2.25)) and TαΣ
F

the Q-divisor de�ned in (2.27) (respectively, (2.23)

with respect to the parameter αΣ
F ∈ R`.

Algorithm 2.5.14.

Input: A di�erential 1-form Ω de�ning a foliation F on S0, a restricted set of

independent algebraic solutions Σ, the dicritical con�guration BF , the Q-divisor TαΣ
F

and a non-negative integer g ≠ 1.

Output: Either a rational �rst integral of genus g of F , 0 (what means that F
has no rational �rst integral of genus g), or −1 (what means that neither the existence

of rational �rst integral of genus g nor the contrary can be concluded).

(1) If T 2
αΣ
F

< 0, then return 0.

(2) If T 2
αΣ
F

= 0 and KSF ⋅TαΣ
F

= 0, then return 0. This condition is equivalent to the

fact that, in the case of algebraic integrability of Fδ, the genus of a rational

�rst integral of Fδ is 1.

(3) If T 2
αΣ
F

= 0 and KSF ⋅ TαΣ
F

≠ 0, then compute γ ∶= 2(g − 1)/(KSF ⋅ TαΣ
F

) and

perform the following steps:

(3.1) If γ /∈ R(TαΣ
F

) then return 0.

(3.2) If the linear system ∣γTαΣ
F

∣ has (projective) dimension di�erent from 1 or it

is not base point free, then return 0. Otherwise, compute the equations of

two curves on S0, F = 0 and G = 0, corresponding to a basis of (πF)∗∣γTαΣ
F

∣
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and compute Ω ∧ (FdG −GdF ). If the last result is 0, then return F /G;
otherwise return 0.

(4) If T 2
αΣ
F

> 0, then consider the set of `-tuples

∆ ∶= {α ∈ (Q≥0)` ∣ T 2
α = 0} (2.29)

and compute the values pinf ∶= inf{KF ⋅ Tα ∣ α ∈ ∆} and psup ∶= sup{KF ⋅ Tα ∣
α ∈ ∆}. If pinf ⋅ psup ≤ 0 then return −1. Otherwise:

(4.1) If (psup < 0 and g ≠ 0) or (pinf > 0 and g = 0), then return 0.

(4.2) If psup < 0, then consider the set of integers V ∶= [ −2
pinf

, −2
psup

] ∩Z.

(4.3) If pinf > 0, then consider the set of integers V ∶= [2(g−1)
psup

,
2(g−1)
pinf

] ∩Z.

(4.4) If V = ∅, then return 0. Otherwise, let prk ∶ (Q≥0)` → Q≥0 be the projec-

tion map onto the kth coordinate, 1 ≤ k ≤ l, and compute two non-negative

rational numbers α−k and α+k such that

prk(∆) ⊆ [α−k , α+k].

Also consider, for all b ∈ V , the �nite set

Ab ∶=
`

⋂
k=1

pr−1
k ([bα−k , bα+k] ∩Z).

(4.5) For each b ∈ V and for each s ∈ Ab check whether:

(4.5.1) bTs/b is a divisor on SFδ , T
2
s/b = 0 and ∣bTs/b∣ is a base point free linear

system of (projective) dimension 1 and, in the a�rmative case, com-

pute the equations F = 0 and G = 0 of two curves on S0 corresponding

to a basis of (πF)∗∣bTs/b∣ and verify whether Ω ∧ (FdG −GdF ) van-

ishes. In the a�rmative case, return F /G.

(4.6) Return 0.

Justi�cation of Algorithm 2.5.14. Step (1) is justi�ed by Part (a) of Theorem 2.4.13

(or its analogous result described in Subsection 2.4.3) while Step (2) is justi�ed by

Part (b) of the same theorem and the adjunction formula (since g ≠ 1). Moreover,

Part (b) of Theorem 2.4.13, Proposition 2.4.4 (or their analogous results described

in Subsection 2.4.3) and Lemma 2.1.5 justify Step (3).

In order to justify Step (4), assume that T 2
αΣ
F

> 0. We �rstly prove that the set ∆

is non-empty and bounded and, therefore, pinf and psup are well-de�ned (notice that

there are available methods to compute them).

Assume that αΣ
F = (αΣ

F ,1, . . . , α
Σ
F ,`). For all 1 ≤ k ≤ ` and β ∈ R, let us consider

the element γβ,k = (γβ,k1 , . . . , γβ,k` ) ∈ R`, where γβ,kj = αΣ
F ,j for all j ≠ k and γβ,kk = β.
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The map bk ∶ R→ R de�ned by

β ↦ T 2
γβ,k = − (

n

∑
i=1

Λ2
ik)β2 − 2(

n

∑
i=1

Λi0Λik)β

−
`

∑
m,m′=1
m,m′≠k

(
n

∑
i=1

ΛikΛik′)αΣ
F ,mα

Σ
F ,m′ − 2

`

∑
m=1
m≠k

(
n

∑
i=1

Λi0Λik)αΣ
F ,m + 1 −

n

∑
i=1

Λ2
i0,

is continuous (for 1 ≤ k ≤ `), bk(αΣ
F ,k) > 0 and limβ→+∞ bk(β) = −∞. This proves

(applying Bolzano's theorem) that ∆ ≠ ∅. The fact that ∆ is bounded follows from

the fact that T 2
α = 0 (see (2.25)) is, up to a linear change of coordinates, the equation

of an (` − 1)-sphere.
One possibility consists of using Lagrange multipliers to compute the extrema of

the function f ∶ R` → R de�ned by f(α1, . . . , α`) ∶=KF ⋅Tα2 subject to the constraint

T 2
α2 = 0, where α ∶= (α1, . . . , α`) and α2 ∶= (α2

1, . . . , α
2
`).

To adapt the function f to our speci�c requirements, we have introduced a slight

modi�cation by considering α2 instead of α, as would be natural. This adaptation

is motivated by our interest in obtaining solutions within the domain of positive

numbers. While Lagrange multipliers are conventionally used for real-valued func-

tions, working with α2 ∶= (α2
1, . . . , α

2
`) allows us to ensure that the restriction remains

applicable to positive values.

By adopting this approach, we can e�ciently compute a su�ciently accurate

approximation of pinf and psup (lower and upper bounds, respectively) using the

available methods for computing extrema with Lagrange multipliers; notice that, for

our purposes, it su�ces to compute an accurate enough approximation of pinf and

psup.

Assume now that F has a rational �rst integral of genus g. Let β ∈ (Q≥0)` such
that TF = Tβ and let b = e(Tβ) the integer de�ned in (2.5), that is, [DF ] = [bTβ].
Since β ∈ ∆, the adjunction formula (1.3) gives rise to the following inequalities

b pinf ≤ 2g − 2 ≤ b psup. (2.30)

Then, if psup < 0 (respectively, pinf > 0), g = 0 (respectively, g ≠ 0). This justi�es

Step (4.1).

If psup < 0 and g = 0 (respectively, pinf > 0 and g ≠ 0), it is straightforward from

(2.30) that b ∈ V , where the set V is [ −2
pinf

, −2
psup

]∩Z (respectively, [2(g−1)
psup

,
2(g−1)
pinf

]∩Z).
Moreover it is clear that bβ belongs to the set Ab de�ned in the algorithm. Therefore,

the characteristic divisor DFδ (introduced in De�nition 2.1.2) equals bTs/b for some

s ∈ Ab. These facts and Lemma 2.1.5 show that Step (4) works. It is convenient

to add that the bounds α−k and α+k (k = 1, . . . , `) can be computed with the help of

similar procedures to those used to compute psup and pinf .
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Remark 2.5.15. With the above notation, assume that pinf ⋅ psup ≤ 0. Then, the

inequalities in (2.30) provide two lower bounds for b; let us denote by bmax the largest

one. Then, it means that b ∈ [bmax,∞)∩Z, which is not a �nite set and the algorithm

may never terminates. This is the reason why it returns −1.

Below we show an example where Algorithm 2.5.14 is applied.

Example 2.5.16. Let FC2
be a polynomial foliation on C2 de�ned by the 1-form

ω ∶= (−4x5y − y6 − 5x4y6)dx + (x2 + x6 + 6xy5 + 6x5y5)dy.

Consider its extended foliation FP2
to P2 given by the output of Algorithm 1.5.7

with input ω. Its canonical sheaf is K
FP2 = OP2(9) and its dicritical con�guration,

B
FP2 = {pi}36

i=1, consists of 36 free points, where p1, p7 and pi, i ≥ 13, belong to

P2 and {pi}6
i=1 and {pi}12

i=7 are chains (that is, pj belongs to the �rst in�nitesimal

neighborhood of pj−1 for all j ∈ {2, . . . ,6} (respectively, j ∈ {8, . . . ,12}). The set of

terminal dicritical singularities (of cardinality d = 26) is {p6} ∪ {pi}36
i=12.

From the proximity relations among the points of B
FP2 and the equalities

[K
F̃P2 −KS

FP2 ] = 12[L∗] − 2
6

∑
i=1

[E∗
i ] − 5[E∗

7 ] − 2[E∗
8 ] −

11

∑
i=9

[E∗
i ] − 2

36

∑
i=12

[E∗
i ],

[C̃X] = [L∗] −
6

∑
i=1

[E∗
i ],

[C̃Y ] = [L∗] − [E∗
1 ] − [E∗

7 ] −
36

∑
i=33

[E∗
i ] and

[C̃Z] = [L∗] −
12

∑
i=7

[E∗
i ],

it can be checked that Σ = {CX ,CY ,CZ} is a restricted set of independent algebraic

solutions of FP2
of length σ = 3. Following the notation as in the adaptation of

Lemma 2.4.8 showed in Subsection 2.4.3, ` = d − σ − 1 = 22. Considering param-

eters α1, . . . , α26 associated, respectively, with the terminal dicritical singularities

p14, p15, . . . , p36, p6, p12, p13 and expressing α23, . . . , α26 in terms of α1, . . . , α22 (as ex-

plained before Proposition 2.4.10 for foliations on Hirzebruch surfaces and adapted

to P2 in Subsection 2.4.3), one gets that αΣ
FP2 = (1

6 , . . . ,
1
6) ∈ R

22 and

TαΣ

FP2
= L∗ − 1

6

36

∑
i=1

E∗
i .

Notice that T 2
αΣ

FP2
= 0. Running Algorithm 2.5.14, for FP2

, Σ and g = 10, one obtains

that
XY Z4 + Y 6

XZ5 +X5Z

is a rational �rst integral of FP2
of genus 10 (whose algebraic invariant curves are

given by the pencil (π
FP2 )∗∣6TαΣ

FP2
∣). This provides a rational �rst integral of FC2

,
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which is
xy + y6

x + x5
.

Remark 2.5.17. Let f1, . . . , fr be irreducible polynomials in C[x, y]. We are inter-

ested in determining whether a polynomial foliation FC2
of C2 has a rational �rst

integral of genus g ≠ 1 of the form

f(x, y)
f1(x, y)a1⋯fr(x, y)ar

, (2.31)

where f ∈ C[x, y] and ai ∈ Z>0 for all i = 1, . . . , r. We are going to slightly modify

Algorithm 2.5.14 to solve this problem.

With the notation as at the end of Subsection 1.4.1 (respectively, Subsection

1.4.2), let Ci, 1 ≤ i ≤ r, be the closure of the image of the a�ne curve with equation

fi(x, y) = 0 by the inclusion UZ → P2 (respectively, U00 → Fδ), after identifying

the a�ne plane with UZ (respectively, U00), and let Σ be a maximal (with respect

to the inclusion) restricted set of independent algebraic solutions of F contained in

{[C1], . . . , [Cr]} (respectively, {[C1], . . . , [Cr], [CX0], [CY0]}). Notice that, if Σ = ∅,
then F has no rational �rst integral of the speci�ed type.

We modify Algorithm 2.5.14 by replacing Step (4) by

(4') If T 2
αΣ
F

> 0, then return 0.

Applying this modi�ed algorithm to a di�erential 1-form Ω de�ning F , the set Σ,

the dicritical con�guration BF and a non-negative integer g ≠ 1, one gets an output

that either will be a rational �rst integral of F of genus g, or 0 (that means that F
has no rational �rst integral of genus g and Type (2.31)).

Indeed, assume that F has a rational �rst integral of Type (2.31). This implies,

by Part (a) of Corollary 2.5.13, that [DF ] belongs to the linear span of V (S). Hence,
by Proposition 2.5.12, T 2

αΣ
F

= 0.

Remark 2.5.18. An interesting problem consists of deciding whether a (polynomial)

foliation FC2
on C2 has a polynomial �rst integral of given genus g ≠ 1 and compute

it in the a�rmative case. This is a particular case of that described in Remark

2.5.17, where one looks for a rational �rst integral of genus g ≠ 1 and Type (2.31) for

r = 1 and f1(x, y) = 1. Notice that, in this case, the dicritical con�guration of the

polynomial foliation FC2
must be, necessarily, empty.

Our next example �ts in the particular case described in Remark 2.5.18, where

the polynomial foliation on C2 has a polynomial �rst integral of genus g = 5.

Example 2.5.19. Let FC2
be a polynomial foliation on C2 de�ned by the 1-form

ω ∶= (2x + 4x3y3)dx + (3y2 + 3x4y2)dy.
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Keep the above notation and consider the extended foliation F2 to F2 given by the

output of Algorithm 2.3.1 for the input (2, ω). Its canonical sheaf is KF2 = OFδ(3,2)
and its dicritical con�guration BF2 = {pi}22

i=1 has 22 points where p1, p11, p14, p17

and p20 belong to the support of the divisor CX0 ∪ CY0 , {pi}10
i=1, {pi}13

i=11, {pi}16
i=14,

{pi}19
i=17 and {pi}22

i=20 are chains (see (1.5)) and the unique satellite points are p3

and p4 (which are both proximate to p1). The terminal dicritical singularities are

p10, p13, p16, p19 and p22.

Σ′ = {CX0 ,CY0} is a set of invariant by F2 curves and, from the proximity rela-

tions among the points of BF2 and the equalities

[K
F̃2 −KS

F2 ] =3[F ∗] + 4[M∗] − 4[E∗
1 ] − 2

4

∑
i=2

[E∗
i ] −

9

∑
i=5

[E∗
i ] − 2[E∗

10] − [E∗
11]

− [E∗
12] − 2[E∗

13] − [E∗
14] − [E∗

15] − 2[E∗
16] − [E∗

17] − [E∗
18] − 2[E∗

19]
− [E∗

20] − [E∗
21] − 2[E∗

22],
[C̃X0] =[F ∗] − [E∗

1 ] and
[C̃Y0] =[F ∗] − [E∗

1 ] − [E∗
2 ] − [E∗

11] − [E∗
14] − [E∗

17] − [E∗
20],

it can be checked that Σ = {CX0} ⊂ Σ′ is a restricted set of independent algebraic

solutions of F2 (Σ′ is not). Considering parameters α1, . . . , α5 associated, respec-

tively, with the terminal dicritical singularities p13, p16, p19 p22 and p10 and express-

ing α5 in terms of α1, . . . , α4 (as explained before Proposition 2.4.10) one gets that

αΣ
F2 = (1

3 ,
1
3 ,

1
3 ,

1
3) and

TαΣ
F2

= 2

3
F ∗ +M∗ −E∗

1 −
1

3

22

∑
i=2

E∗
i .

Since T 2
αΣ
F2

= 0, running Algorithm 2.5.14 for g = 5, one obtains that

X2
1Y

3
0 +X8

0Y
3

1 +X4
0X

4
1Y

3
1

X2
0Y

3
0

is a rational �rst integral of F2 of genus 5 (whose algebraic invariant curves are given

by the pencil (πF2)∗∣3TαΣ
F2

∣). This provides a polynomial �rst integral of FC2
:

x2 + y3 + x4y3.

This chapter proposes extensions of foliations on the complex plane FC2
both to

the projective plane FP2
and to the Hirzebruch surfaces Fδ. Our next result shows

that �xed FC2
, dicritical con�gurations of FP2

and Fδ could be quite di�erent.

Thus, our algorithms for algebraic integrability are di�erent and they could give

better results according the extension.

Remark 2.5.20. Let FC2
be a polynomial foliation on C2 de�ned by the 1-form

ω ∶= (2y2 − y3 + y4)dx + (5 − 6y + 4xy − y2 − xy2)dy.
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Notice that (3 + y + xy2)/(5 + y2 + xy2) is a rational �rst integral of FC2
. Anyway,

we calculate the dicritical con�gurations of the extended foliations FP2
and Fδ, for

δ = 0,1,2, of FC2
, and we will see that they are di�erent.

The dicritical con�guration of the extended foliation FP2
to P2, B

FP2 = {pi}6
i=1,

consists of 6 points, where p1, p4, p5 and p6 belongs to P2 and the proximity rela-

tionships p2 → p1, p3 → p2 and p3 → p1 are satis�ed. The set of terminal dicritical

singularities, of cardinality 4, is {p3, . . . , p6}. Figure 2.5 shows its proximity graph.

p1

p2

p3

p4 p5 p6

Figure 2.5: Proximity graph of B
FP2

Assuming we do not know any invariant curve, the Q-divisor Tα (see (2.27))

depends on `P2 = 4 − 1 = 3 variables.

In contrast, the cardinal of the dicritical con�guration BFδ of the extended foli-

ation Fδ of FC2
to Fδ, for 0 ≤ δ ≤ 2 is 4, 4 and 5, respectively. The proximity graphs

are depicted in Figure 2.6. The number of terminal dicritical singularities is 3 in all

the cases, and they coincides with the ends of BFδ (see De�nition 1.2.2).

q0,1

q0,2

q0,3 q0,4 q1,1

q1,2

q1,3 q1,4 q2,1

q2,2

q2,3

q2,4 q2,5

Figure 2.6: Proximity graph of BFδ , δ = 0, 1, 2

By Proposition 2.3.4, for all δ ∈ {0,1,2} but at most one value, the curve on Fδ
with equation X0 = 0 is invariant by Fδ; therefore, there exists at least two values

δ ∈ {0,1,2} such that Tα (see (2.23)) depends only on `Fδ = 3− 1 = 2 variables, which

improves the starting point of Algorithms 2.5.7 and 2.5.14 because the dimension of

the vector space where the vector αΣ
Fδ

is located is smaller than that corresponding

to the extension FP2
to P2.

We conclude this subsection with a last remark.

Remark 2.5.21. Algorithm 2.5.14 could fail to decide about algebraic integrability

of F in the case when T 2
αΣ
F

> 0 (if the inequality pinf ⋅ psup ≤ 0 holds). However, we
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are not able to �nd any foliation on P2 or Fδ satisfying T 2
αΣ
F

> 0 (and such that its

related rational �rst integral had genus g ≠ 1), where Algorithm 2.5.14 could fail.

Consider the polynomial foliation FC2
on C2 de�ned by the 1-form

ω ∶= (3xy − x3 + 2y3)dx + (−2y + x2 − xy2)dy,

introduced in [72, Section 2.3] as the foliation F3
∞. Then, the dicritical con�guration

of the extended foliation FP2
to P2, B

FP2 = {pi}11
i=1, consists of 11 points, where

p1, p3, p5, p7, p9, p10 and p11 belong to P2 and the proximity relationships p2 → p1,

p4 → p3, p6 → p5 and p8 → p7 are satis�ed. The set of terminal dicritical singularities

is {p2, p4, p6, p8, p9, p10, p11}. Figure 2.7 shows its proximity graph.

p1

p2

p3

p4

p5

p6

p7

p8

p9 p10 p11

Figure 2.7: Proximity graph of B
FP2

Following the above notation, Σ = {CZ} is a restricted set of independent alge-

braic solutions of FP2
and ` = 7−1−1 = 5. If α1, . . . , α5 denotes the multiplicity of the

terminal dicritical points p6, p8, p9, p10 and p11 respectively, αΣ
FP2 = ( 7

34 ,
7
34 ,

14
51 ,

14
51 ,

14
51)

and one gets T 2
αΣ

FP2
= 1

51 . However, in this case, we know that g = 1 and has no sense

to run Algorithm 2.5.14.

To conclude the chapter and to help the reader, we present a brief overview of the

di�erent scenarios that arise in our study of the algebraic integrability of a foliation

F on P2 or Fδ and the algorithms we propose to decide about algebraic integrability

and compute a rational �rst integral in the positive case.

2.5.2. Summary

The algorithms presented in this PhD thesis have some common (sometimes

implicit) inputs and some speci�c inputs (that depend on the situation where each

algorithm is applied). The common inputs are the following:

(1) A 1-form de�ning a foliation F .

(2) The dicritical con�guration of F , BF .

(3) The set NF of points q of the dicritical con�guration whose associated excep-

tional divisors Eq are nondicritical.

In order to get Input (2), one needs to perform the process of reduction of sin-

gularities of the foliation F by means of blowups (see Section 1.7). Then one must



2.5. Algorithms for algebraic integrability 101

locate, among the set of centers of these blowups (which are the ordinary singular-

ities of F), the terminal dicritical singularities (by checking the condition given in

De�nition 1.7.3) and consider the con�guration BF consisting of these singularities

and the centers of the reduction procedure preceding them.

To obtain Input (3), it su�ces to take the points in BF which do not satisfy the

condition given in De�nition 1.7.3.

As before, S0 denotes either the projective plane of a Hirzebruch surface, F a

foliation on S0 and Ω a 1-form de�ning F . The common rough idea of our algo-

rithms consists of �nding a suitable candidate for being the characteristic divisor

DF on SF (the surface obtained by blowing-up S0 at the con�guration BF ) and,

then, checking algebraic integrability by applying Lemma 2.1.5. This lemma states

that, if F is algebraically integrable, then D2
F = 0, the complete linear system ∣DF ∣

has (projective) dimension 1 and its direct image to S0 coincides with the pencil

PF . Then, one can verify whether the obtained candidate to be DF satis�es these

conditions and, in the a�rmative case, compute a basis {F,G} of the pencil PF .
Finally, it su�ces to check whether, or not, F /G is a rational �rst integral of F
(that is, whether Ω∧ d(F /G) = 0). For convenience, this checking process (to decide

whether a divisor D on SF is the characteristic divisor of F) can be performed by

the following sub-algorithm (which we will use throughout this summary to simplify

the exposition):

CheckCandidate (Ω,D):

Input: A 1-form Ω de�ning a foliation F on S0 and a divisor D on SF .

Output: Either a rational �rst integral of F or 0 if D is not a characteristic divisor

of F .

If dim ∣D∣ is 1 (where dim stands for projective dimension), take a basis {F,G}
of π∗∣D∣ where π is the dicritical resolution of F . If d(F /G) ∧ Ω = 0, return F /G.
Otherwise, return 0.

Let us see the scenarios where we are able to determine the algebraic integrability

of a foliation F as before (and compute a rational �rst integral in the a�rmative

case). We show the main ideas supporting the algorithms and the speci�c inputs

that they need.

Algorithms 2.5.1 and 2.5.2 extend previous algorithms, stated for foliations on

P2 in [47], to foliations on Hirzebruch surfaces.

Algorithm 2.5.1 determines whether a foliation F on S0 has a rational �rst integral

of �xed degree (or bidegree). This degree (or bidegree) is an additional input. Its

justi�cation relies on the fact that the characteristic divisor DF of F must belong to

the set of divisors Γ de�ned in the algorithm. Since Γ is a �nite set, one can apply

CheckCandidate(Ω,D) to every divisor D of Γ.
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Algorithm 2.5.2 requires, as an additional input, a complete set of independent

algebraic solutions Σ of F (see Remark 2.2.4). Also, it asks for the computation of

the divisor GF ,Σ (de�ned in (2.3)), which can be calculated from BF and NF (see

Section 2.2). In the case when F has a rational �rst integral, GF ,Σ is the minimal

characteristic divisor of F (De�nition 2.2.5), its class in the Néron-Severi space is

the �minimal integer class� in the ray R≥0[DF ], and DF is linearly equivalent to

e(GF ,Σ)GF ,Σ, where e(GF ,Σ) is the integer de�ned in (2.5) (by Theorem 2.2.7 (a)).

In particular, its self-intersection vanishes. If it is not the case, the algorithm returns

0 (which means that F is not algebraically integrable). Otherwise, we consider the

divisor D = e(GF ,Σ)GF ,Σ which is the unique candidate to be the characteristic

divisor of F . Running CheckCandidate(Ω,D) the algorithm �nished.

Algorithms 2.5.7 and 2.5.14 run when we have a foliation F on S0 = Fδ (re-

spectively, S0 = P2) and require to know a restricted set of independent algebraic

solutions Σ (non-necessarily complete, even empty). They use the fact that, in case

of algebraic integrability, the characteristic divisor DF is an (integer) multiple of the

characteristic Q-divisor TF , introduced in De�nition 2.4.2 (respectively, in (2.26)).

TF must be orthogonal to the classes in V (Σ) (see (2.2)). Set l = d−σ (respectively,

l = d−σ−1), d being the number of terminal dicritical points and σ the cardinality of

Σ. Imposing these conditions to a general divisor of the form β0F
∗ +M∗ −∑p βpE∗

p

(respectively, L∗ − ∑p βpE∗
p ), where p runs over the set BF and β0, βp ≥ 0 for all p,

one gets that, in case of algebraic integrability, TF must be one of the divisors Tα
de�ned in (2.23) (respectively, (2.27)), where α ∈ (Q>0)l. In other words, we have

a set {Tα} of candidates for TF depending on l parameters. In addition, since the

self-intersection of TF is zero, we can restrict this set of candidates to these satisfy-

ing the additional condition T 2
α = 0. Lemma 2.4.12 (respectively, the adaptation of

Lemma 2.4.12 made in Subsection 2.4.3) proves that the map α ↦ T 2
α (where α runs

over Rl) has exactly one absolute maximum, which is reached when α = αΣ
F (which is

the solution of the system of linear equations (2.24) (respectively, its analogous sys-

tem described in Subsection 2.4.3)). As a consequence, necessary conditions for the

existence of a candidate among the divisors Tα are that αΣ
F has positive coordinates

and T 2
αΣ
F

≥ 0.

To run Algorithm 2.5.7 one needs a restricted set of independent algebraic solu-

tions Σ of a foliation F on S0. It computes a rational �rst integral (in case of algebraic

integrability) or returns 0, otherwise. The speci�c inputs are the real vector αΣ
F and

the Q-divisor TαΣ
F

(both computed from BF and NF , as explained above). Moreover,

Algorithm 2.5.7 assumes that some of its conditions (a), (b), (c), (d) or (e) are sat-

is�ed. If Conditions (a) and (b) hold, the algorithm returns 0 because they violate

the necessary conditions on αΣ
F and TαΣ

F

given in the paragraph above. Condition

(e) contradicts algebraic integrability by Proposition 2.4.4 (or its analogue in Sub-

section 2.4.3) and, hence, the algorithm also returns 0 under this condition. Finally,
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Conditions (c) and (d) allow us to compute a unique candidate D = e(TαΣ
F

)TαΣ
F

for

characteristic divisor of F . Applying CheckCandidate (Ω,D) the algorithm �nishes.

Notice that Conditions (a), (b) and (c) are easily veri�able, but we do not know an

e�ective characterization for Condition (e) and the second part of Condition (d).

It is worth mentioning that, as a consequence of Corollary 2.5.13, Algorithm 2.5.7

computes a rational �rst integral of an algebraically integrable foliation F on S0 if

one knows the integral components of one of the curves of the pencil PF .

Finally, our Algorithm 2.5.14 decides whether F admits a rational �rst integral

of pre�xed genus g ≠ 1. In the a�rmative case, it returns a rational �rst integral

and the output 0 means that the foliation is not algebraically integrable. When

running, one could be forced to decide if certain inequality is true; if it is not true

then the algorithm returns −1 (which means that nothing can be said). To apply the

algorithm, we consider the divisor TαΣ
F

and its self-intersection T 2
αΣ
F

.

If T 2
αΣ
F

is negative then the foliation is not algebraically integrable and, then,

the algorithm returns 0.

If T 2
αΣ
F

= 0 and KSF ⋅ TαΣ
F

= 0 then, in case of algebraic integrability, the genus

of a primitive rational �rst integral should be 1 (by the adjunction formula);

then the algorithm returns 0.

If T 2
αΣ
F

= 0 and KSF ⋅TαΣ
F

≠ 0 then, by the adjunction formula, one can compute

a unique candidate D for characteristic divisor of F . The algorithm �nishes

by applying CheckCandidate(Ω,D).

If T 2
αΣ
F

> 0 and the mentioned inequality is true (otherwise the algorithm returns

−1), then any candidate D for characteristic divisor of F must belong to a �nite

set A. Applying CheckCandidate(Ω,D) to each one of these candidates

D ∈ A, the algorithm �nishes.

We conclude by noticing that we are unable of �nd examples where T 2
αΣ
F

> 0 with

the exception of an algebraically integrable foliation whose rational �rst integral has

genus g = 1.
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Chapter 3

Bounded negativity

The Bounded Negativity conjecture (BNc) (Conjecture A in the introduction)

is an old conjecture which states that, if S is a smooth complex projective surface,

then there exists a non-negative integer b(S) depending only on the surface such that
C2 ≥ −b(S) for every integral curve C on S. The BNc has been very studied (see, for

instance [62, 3, 84, 90]) and it holds for K3, Enriques and abelian surfaces, however

in the general case it is still open.

In this chapter we propose to approach bounded negativity on rational surfaces.

In our �rst section, we follow the asymptotic approach proposed by Harbourne in

[62] of considering some nef divisor D on S and giving a bound on the values C2/(D ⋅
C)2, where C runs over the integral curves on S such that D ⋅ C > 0. Our second

section strengthens the proposal by bounding C2/(D ⋅C) instead of C2/(D ⋅C)2.

Being more speci�c, in Section 3.1, we consider a rational surface S given by a

P2-tuple (S,P2,C) (see De�nition 1.4.6) and we give a lower bound on the values

C2/(L∗ ⋅C)2, where C runs over the integral curves on S such that L∗ ⋅C > 0. Here

L∗ stands for the total transform on S of a general line L of P2. For simplicity, the

results of this section are proved for complex rational surfaces S, but we point out

that all the proofs and reasoning are also valid when the ground �eld is any algebraic

closed �eld (of arbitrary characteristic).

In our last section, Section 3.2, we propose and solve a new problem (in the

same line of [70, Theorem 3.1]), also related to the BNc: To give a bound for the

values C2/(L∗ ⋅C) (respectively, C2/((F ∗ +M∗) ⋅C)), where C is a non-exceptional

integral curve on a rational surface S given by a P2-tuple (respectively, Fδ-tuple), L
a general line of P2 (respectively, F and M a general �ber and a general section of

self-intersection δ on Fδ).

3.1. Asymptotic approach by using valuations

Keep the notation as in Chapter 1. Throughout this section we denote by Sν the

sky of the con�guration Cν given by a divisorial valuation ν on the projective plane,

105
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i.e., by a P2-tuple of the form (Sν ,P2,Cν) (see De�nition 1.4.6).

The results we present in this section were published in [52, Section 4] (considering

the projective plane over an algebraically closed �eld of arbitrary characteristic).

We give a lower bound for the following value:

λL∗(S) ∶= inf { H2

(L∗ ⋅H)2
∣H is an integral curve on S such that L∗ ⋅H > 0}

= inf { C̃2

deg(C)2
∣ C is an integral curve of P2} ,

where C̃ denotes the strict transform of C on S (see forthcoming Corollary 3.1.4

stated in [52, Corollary 4.3]).

The following lemma, which generalizes [52, Lemma 3.4], will be useful.

Let f(x, y) ∈ C[x, y], we denote by degx(f) (respectively, degy(f)) the degree

of f regarded as a polynomial on x (respectively, y), i.e., f ∈ k(y)[x] (respectively,
f ∈ k(x)[y]).

Lemma 3.1.1. Let p be a point in S0 ∶= P2 (respectively, S0 ∶= Fδ, for some

δ ∈ Z≥0). Consider an open a�ne subset U ∈ {UX , UY , UZ} (respectively, U ∈
{U00, U01, U10, U11}) such that p ∈ U and take a�ne coordinates (x, y) ∈ U as de�ned

at the end of Subsection 1.4.1 (respectively, Subsection 1.4.2). Let f(x, y) = 0 be

the equation of a curve B on U , passing through p, where f(x, y) = ∑di+j=0 fijx
iyj ∈

C[x, y] is a polynomial of total degree d. Then, the closure of B in P2 (respec-

tively, Fδ), denoted by D, is linearly equivalent to d(f)L (respectively, d1(δ, f)F +
d2(δ, f)M), where

d(f) = deg(f),
(respectively, d1(δ, f) ≤ degx(f) ≤ deg(f) and d2(δ, f) = degy(f) ≤ deg(f)).

Moreover, assume S0 = Fδ and fd0 ⋅ f0d ≠ 0, then:

If U = U00, U = U10 or δ = 0,

d1(δ, f) = deg(f) and d2(δ, f) = deg(f).

Otherwise (i.e., δ ≠ 0 and U = U01 or U = U11),

d1(δ, f) = 0 and d2(δ, f) = deg(f).

Proof. P2 can be regarded as the quotient (C3 ∖ {(0,0,0)})/ ∼, where (X,Y,Z) ∼
(λX,λY,λZ), for all λ ∈ C∗. Similarly, for δ ≥ 0, Fδ can be viewed as the quotient

(C2 ∖ {(0,0)}) × (C2 ∖ {(0,0)})/ ∼ where

(X0,X1;Y0, Y1) ∼ (λX0, λX1;µY0, λ
−δµY1)
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for all (λ,µ) ∈ C∗ ×C∗.

We start with the case where p = (p1 ∶ p2 ∶ p3) ∈ P2. Let G(X,Y,Z) = 0 be an

homogeneous equation of D.

Assume, without loss of generality, that p = (0 ∶ 0 ∶ 1) ∈ UZ (the other cases work

similarly). Then,

G(X,Y,Z) = Zdf (x, y) ,

where x ∶= X
Z and y ∶= Y

Z and it is clear that = deg(G) = d.
Suppose now that p ∈ Fδ, for δ ≥ 0. Let G(X0,X1, Y0, Y1) be a bihomogeneous

polynomial such that G(X0,X1, Y0, Y1) = 0 is an equation of D. Consider the setM
of monomials Xα0

0 Xα1
1 Y β0

0 Y β1

1 appearing in the expression of G(X0,X1, Y0, Y1) with
non-zero coe�cient. Then two cases can occur:

1. If U = U00 (respectively, U = U10), then p = (1, a; 1, b) (respectively, p =
(a,1; 1, b)) for some a, b ∈ C and

G(X0,X1, Y0, Y1) =Xr1
0 Y

r2
0 f(x, y)

(respectively, G(X0,X1, Y0, Y1) =Xr1
1 Y

r2
0 f(x, y)),

where x ∶= X1

X0
and y ∶= Xδ

0Y1

Y0
(respectively, x ∶= X0

X1
and y ∶= Xδ

1Y1

Y0
) are a�ne

coordinates in U00 (respectively, U10) and r1, r2 ∈ Z≥0. We can assume, without

loss of generality (performing a suitable change of variable if necessary), that

p = (1,0; 1,0) (respectively, p = (0,1; 1,0)) and, therefore, the a�ne coordinates

of p on U are (0,0). Then,

f(x, y) =
d

∑
i+j=0

fijx
iyj =

d

∑
i+j=0

fij (
X1

X0
)
i

(X
δ
0Y1

Y0
)
j

⎛
⎝
respectively, f(x, y) =

d

∑
i+j=0

fijx
iyj =

d

∑
i+j=0

fij (
X0

X1
)
i

(X
δ
1Y1

Y0
)
j ⎞
⎠
.

Since neither X0 (respectively, X1) nor Y0 divide G, there exists a monomial

Xα0
0 Xα1

1 Y β0

0 Y β1

1 in M with α0 = 0 (respectively, α1 = 0) and another one

with β0 = 0. Hence, as α0 = r1 − i + δj (respectively, α1 = r1 − i + δj) and

β0 = r2 − j in the monomial with coe�cient fij , it holds that r1 ≤ degx(f) and
r2 = degy(f)). Moreover, if fd0 ⋅ f0d ≠ 0, r1 = degx(f) = d, r2 = d and then,

(d1(δ, f), d2(δ, f)) = (d, d).

2. If U = U01 (respectively, U = U11), then p = (1, a; b,1) (respectively, p =
(a,1; b,1)) for some a, b ∈ C and

G(X0,X1, Y0, Y1) =Xr1
0 Y

r2
1 f(x, y)

(respectively, G(X0,X1, Y0, Y1) =Xr1
1 Y

r2
1 f(x, y)),
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where x ∶= X1

X0
and y ∶= Y0

Xδ
0Y1

(respectively, x ∶= X0

X1
and y ∶= Y0

Xδ
1Y1

) are a�ne

coordinates in U01 (respectively, U11) and r1, r2 ∈ Z≥0. As before, we can

assume, without loss of generality (performing a suitable change of variable if

necessary), that p = (1,0; 0,1) (respectively, p = (0,1; 0,1)) and, therefore, the
a�ne coordinates of p on U are (0,0). Then,

f(x, y) =
d

∑
i+j=0

fijx
iyj =

d

∑
i+j=0

fij (
X1

X0
)
i

( Y0

Xδ
0Y1

)
j

⎛
⎝
respectively, f(x, y) =

d

∑
i+j=0

fijx
iyj =

d

∑
i+j=0

fij (
X0

X1
)
i

( Y0

Xδ
1Y1

)
j ⎞
⎠
.

Since neither X0 (respectively, X1) nor Y1 divide G, there exists a monomial

Xα0
0 Xα1

1 Y β0

0 Y β1

1 inM with α0 = 0 (respectively, α1 = 0) and another one with

β1 = 0. Hence, as α0 = r1 − i − δj (respectively, α1 = r1 − i − δj) and β1 = r2 − j
in the monomial with coe�cient fij , it holds that r1 ≤ degx(f) + δ degy(f)
and r2 = degy(f). Moreover, if fd0 ⋅ f0d ≠ 0, r1 = max{d, δd}, r2 = d and

therefore, if δ = 0 (respectively, δ ≠ 0) (d1(δ, f), d2(δ, f)) = (d, d) (respectively,

(d1(δ, f), d2(δ, f)) = (0, d)).

In both cases, d1(δ, f) ≤ degx(f) ≤ deg(f) and d2(δ, f) = degy(f) ≤ deg(f), which
ends the proof.

Let p be a point in P2 and C a curve in P2. Keeping the notation as in Chapter

1, ϕC stands for an element of the local ring OP2,p giving rise to a local equation of

C. Let ν be a divisorial valuation of P2 (introduced after Example 1.8.2) centered

at p, {β̄i(ν)}g+1
i=0 its sequence of maximal contact values (see De�nition 1.8.4) and

vol(ν) the volume of ν (see De�nition 1.8.5).

Notice that ν is the m-adic valuation (where m denotes the maximal ideal of

OP2,p) if and only if #Cν = 1. Otherwise there exists a unique projective line H,

which we call the tangent line of ν, such that ν(ϕH) > β̄0 (i.e., H passes through the

�rst two points of Cν).
We de�ne t(ν) ∶= 1 and δ0(ν) ∶= −1 if ν is the m-adic valuation and, otherwise,

t(ν) ∶= ν(ϕH), H being the tangent line of ν. We also set

δ0(ν) ∶= ⌈vol(ν)−1 − 2β̄0(ν)t(ν)
t(ν)2

⌉
+

,

where ⌈x⌉+ is de�ned as the ceiling of a rational number x if x ≥ 0, and 0 otherwise.

Our �rst result is the following one:

Theorem 3.1.2 ([52, Theorem 4.1]). Let ν be a divisorial valuation of P2 and set Sν
the sky (De�nition 1.2.2) of its associated con�guration. Let C be an integral curve
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on P2 di�erent from the tangent line of ν (if it exists, i.e., if ν is not the m-adic

valuation). Then
C̃2

deg(C)2
≥ −(1 + δ0(ν)),

where C̃ is the strict transform of C on Sν .

Proof. Suppose that ν is centered at p ∈ P2. We can assume without loss of generality

that ν is not the m-adic valuation, m being the maximal ideal of OP2,p (because

otherwise the bound holds trivially). Set Cν = {p1, . . . , pn} the con�guration of centers
of ν and notice that C̃ is linearly equivalent to the divisor

deg(C)L∗ −
n

∑
i=1

miE
∗
i ,

where mi = multpi(C), 1 ≤ i ≤ n.
Consider the a�ne open set UX of P2 (de�ned in Subsection 1.4.1) and take a�ne

coordinates (u, v) ∈ UX (where u = Y
X and v = Z

X ). Let f(u, v) = 0 be an equation of

the restriction B of C to UX . Without loss of generality, we can assume the following

three conditions:

1. p is the point (1 ∶ 0 ∶ 0) ∈ UX .

2. Using the isomorphism described in Subsection 1.4.1, C[u, v](u,v) is identi�ed
with OP2,p.

3. The local equation of the tangent line H of ν at p is u = 0.

Consider, for δ ∈ Z≥0, the Hirzebruch surface Fδ and homogeneous coordinates

(X0,X1;Y0, Y1) as de�ned in Subsection 1.4.2. The a�ne plane C2 can be iden-

ti�ed with the open subset U00 ∶= {(X0,X1;Y0, Y1) ∈ Fδ ∣X0 ≠ 0, Y0 ≠ 0} via the

isomorphism de�ned by

u↦ X1

X0
v ↦ Xδ

0Y1

Y0
.

Then, the previous valuation ν of P2 can also be regarded as a valuation of Fδ
centered at the point with homogeneous coordinates q = (1,0; 1,0) and its con�gu-

ration of centers Cν becomes a con�guration of in�nitely near points over Fδ. There-
fore, f(u, v) = 0 can be viewed as the equation of an a�ne irreducible curve in the

a�ne open set U00 of an integral curve on Fδ that is linearly equivalent to a divisor

D = d1(δ, f)F + d2(δ, f)M , where d1(δ, f), d2(δ, f) are non-negative integers which

depend on δ and f . In addition, u = 0 (respectively, v = 0) is the a�ne equation of

the �ber F1 that contains p (respectively, the special sectionM0). By Theorem 1.8.7,

the valuation ν is a non-positive at in�nity (special) valuation of Fδ if and only if

2ν(ϕM0)ν(ϕFp) + δν(ϕF1)2 ≥ [vol(ν)]−1. (3.1)
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Observe that

ν(ϕM0) = β̄0(ν) and ν(ϕF1) = ν(u) = t(ν)

and if δ coincides with the value δ0(ν) de�ned in the statement, then Inequality (3.1)

holds.

From now, let us assume that δ = δ0(ν). Let

π ∶ Sν ∶= Sn
πnÐ→ Sn−1 Ð→ ⋯Ð→ S1 Ð→ S0 = Fδ0(ν)

be the sequence of blowups determined by ν. The strict transform D̃ of D on the

surface Sν is linearly equivalent to the divisor

d1(δ0(ν), f)F ∗ + d2(δ0(ν), f)M∗ −
n

∑
i=1

miE
∗
i .

Now we distinguish two cases:

Case 1: D̃2 < 0. Then, since D̃ is integral and non-exceptional, by Theorem

1.8.7 it holds that either D̃ = F̃p or D̃ = M̃0 (recall that Fp is the �ber of the

projection morphism Fδ0(ν) → P1 that goes through p and M0 is the special

section of Fδ0(ν)), which implies that C has degree 1. If we are under the �rst

supposition, we get a contradiction since C is di�erent from the tangent line of

ν. Otherwise, the strict transform of C passes through p = p1 but not through

p2; hence C̃2 = 0 and the inequality given in the statement is true.

Case 2: D̃2 ≥ 0. Then

2 degu(f)degv(f) + [degv(f)]2 δ0(ν) −
n

∑
i=1

m2
i ≥ 0

by Lemma 3.1.1, where degu(f) (respectively, degv(f)) denotes the degree in
u (respectively, v) of f . As a consequence,

(δ0(ν) + 2)deg(C)2 ≥ 2 degu(f)degv(f) + [degv(f)]2δ0(ν) ≥
n

∑
i=1

m2
i

and, therefore,

C̃2 = deg(C)2 −
n

∑
i=1

m2
i ≥ −(δ0(ν) + 1)deg(C)2.

Next, instead of a unique divisorial valuation, we consider an arbitrary �nite set

V = {ν1, . . . , νN} of divisorial valuations of P2. Each valuation νi is equipped with a

morphism πi ∶ Sνi → P2 given by the composition of the blowups at its con�guration

of centers Cνi . Set CV ∶= ∪Ni=1Cνi , and denote by SV the surface obtained by the

composition of the blowups centered at the points of CV (after a suitable identi�cation

of points). Notice that any rational surface having P2 as a relatively minimal model

is isomorphic to SV for some set V as above.
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Corollary 3.1.3. Let V = {ν1, . . . , νN} be a �nite set of divisorial valuations of P2

and consider the surface SV . If C is an integral curve on P2 that is not the tangent

line of νi (whenever it exists) for all i = 1, . . . ,N , then

C̃2

deg(C)2
≥ −

N

∑
i=1

δ0(νi) − 2N + 1,

where C̃ denotes the strict transform of C on SV and the number δ0(νi) is de�ned

as before Theorem 3.1.2.

Proof. Notice that

C̃2

deg(C)2
= 1 − 1

deg(C)2 ∑
p∈CV

multp(C)2.

Hence

C̃2

deg(C)2
≥
N

∑
i=1

⎛
⎝

1 − 1

deg(C)2 ∑
p∈Cνi

multp(C)2⎞
⎠
− (N − 1) =

N

∑
i=1

C̃2
i

deg(C)2
− (N − 1),

where C̃i denotes the strict transform of C on Sνi . Then the result follows by Theorem

3.1.2.

Given a �nite family V = {ν1, . . . , νN} of N ≥ 1 divisorial valuations of P2, we say

that the points of a subset D ⊂ CV = ∪ni=1Cνi are aligned if there exists a line on P2

whose strict transforms pass through the points in D.

Corollary 3.1.4. Let V = {ν1, . . . , νN} be any �nite set of N ≥ 1 divisorial valuations

of P2 and consider the surface SV . Then, the value λL∗(SV ) de�ned before Lemma

3.1.1 satis�es

λL∗(SV ) ≥ min{1 − µ,−
N

∑
i=1

δ0(νi) − 2N + 1} ,

where µ denotes the maximum cardinality of a subset of aligned points in CV , and
δ0(νi) is de�ned as before Theorem 3.1.2.

Proof. Let C be an integral curve on P2. If C is a line on P2, then its strict transform

C̃ on SV satis�es C̃2 ≥ 1−µ. Otherwise C̃2

deg(C)2
≥ −∑Ni=1 δ0(νi) − 2N + 1 by Corollary

3.1.3.

We give an example showing the asymptotic sharpness of our bound in some

cases.

Example 3.1.5. Fix a non-negative integer e. For any integer a ≥ 3, let Ca be the

unicuspidal curve in P2 whose equation in the homogeneous coordinates (X ∶ Y ∶ Z)
is given by

(f1Y + bXa+1)a − fa+1
1

Xa−1
= 0,
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where f1 = Xa−1Z + Y a and b ≠ 0. Notice that Ca is a Tono curve of Type I with

n = a − 1 and s = 2 (see [96, 39]) whose degree is a2 + 1.

Consider the con�guration of in�nitely near points C = {pi}ni=1 such that the

composition π ∶ Y → P2 of the sequence of point blowups centered at C gives rise to
a minimal embedded resolution of the singularity of Ca. Now consider a sequence

q1, . . . , qs of s ∶= (e + 1)a4 − 2a3 − 2a2 − a free in�nitely near points belonging to the

successive strict transforms of Ca and such that q1 (respectively, qi) is proximate to

pn (respectively, qi−1 for i = 2, . . . , n). Set νa the divisorial valuation whose associated

con�guration is Cνa = C ∪ {qi}si=1. The sequence of maximal contact values of νa is

β̄0(νa) = a2−a, β̄1(νa) = a2, β̄2(νa) = a3+2a2+1 and β̄3(νa) = (e+2)a4−2a3. Hence,

δ0(νa) = ⌈vol(νa)−1 − 2β̄0(νa)t(νa)
t(νa)2

⌉
+

= ⌈ β̄3(νa) − 2β̄0(νa)β̄1(νa)
β̄1(νa)2

⌉
+

= e.

If C̃a denotes the strict transform of the curve Ca in Sν , then

C̃2
a

deg(Ca)2
= (a2 + 1)2 − (e + 2)a4 + 2a3

(a2 + 1)2
.

Hence −(e+ 1) ≤ λL∗(Sν) ≤ (a
2+1)2−(e+2)a4+2a3

(a2+1)2
because −(e+ 1) is the lower bound of

λL∗(Sν) (for all a ≥ 3) provided by Corollary 3.1.4. This implies that

lim
a→+∞

λL∗(Sν) = −(e + 1).

Our next result allows us to determine, for any divisorial valuation ν of P2, a

bound for the value λL∗(Sν) depending only on purely combinatorial information

given by the dual graph of ν.

Corollary 3.1.6. Let ν be a divisorial valuation of P2 with associated con�guration

Cν = {pi}ni=1 admitting a tangent line (i.e. n ≥ 2).

(a) If n ≥ 3 and p3 is satellite (that is, p3 → p2 and p3 → p1), then

λL∗(Sν) ≥ −1 −
⎡⎢⎢⎢⎢⎢
( β̄0(ν)
β̄1(ν)

)
2

[volN(ν)]−1 − 2
β̄0(ν)
β̄1(ν)

⎤⎥⎥⎥⎥⎥

+

.

(b) Otherwise,

λL∗(Sν) ≥ min{1 − ⌈ β̄1(ν)
β̄0(ν)

⌉ ,−1 − ⌈1

4
[volN(ν)]−1 − 2

β̄0(ν)
β̄1(ν)

⌉
+

} ,

where ⌈ ⌉ denotes the ceil function and ⌈ ⌉+ is de�ned as before Theorem 3.1.2.

Proof. Keep the notation as in Corollary 3.1.4 and let H be the tangent line of ν.

To prove (a), we have to assume that n ≥ 3 and p3 is satellite. From this second

condition, we deduce that the value N introduced in Corollary 3.1.4 for V = {ν}



3.1. Asymptotic approach by using valuations 113

satis�es µ = 2 and ν(ϕH) = β̄1(ν). Thus, by Corollary 3.1.4, λL∗(Sν) ≥ −1 − δ0(ν).
The fact that

δ0(ν) = ⌈vol(ν)−1 − 2β̄0(ν)β̄1(ν)
β̄1(ν)2

⌉
+

=
⎡⎢⎢⎢⎢⎢
( β̄0(ν)
β̄1(ν)

)
2

[volN(ν)]−1 − 2
β̄0(ν)
β̄1(ν)

⎤⎥⎥⎥⎥⎥

+

�nishes the proof in this case.

To prove (b), assume that either n = 2 or p3 is free. This implies that 2β̄0(ν) ≤
ν(ϕH) ≤ β̄1(ν). Then

δ0(ν) ≤ ⌈1

4
[volN(ν)]−1 − 2

β̄0(ν)
β̄1(ν)

⌉
+

.

This inequality, together with Corollary 3.1.4 and the fact that µ ≤ ⌈β̄1(ν)/β̄0(ν)⌉,
proves (b).

Remark 3.1.7. Let ν be a divisorial valuation of P2 di�erent from the m-adic val-

uation and Cν = {pi}ni=1 its related con�guration (notice that n ≥ 2). The bound

on λL∗(Sν) provided in Corollary 3.1.6 is not less than 1 − ⌈[volN(ν)]−1⌉. Since

β̄g+1(ν) = ∑ni=1 ν(mi)2 (1.18), it holds that

⌈[volN(ν)]−1⌉ = ⌈ β̄g+1

β̄2
0

⌉ =
⎡⎢⎢⎢⎢⎢

n

∑
i=1

(ν(mi)
β̄0

)
2⎤⎥⎥⎥⎥⎥

≤ n,

and the mentioned bound is not worse than the trivial bound λL∗(Sν) ≥ 1 − n.
Taking into account that, for any real number α > 1, the set

{#Cν ∣ ν is a divisorial valuation of P2 such that ⌈[volN(ν)]−1⌉ ≤ α }

is unbounded, one can �nd valuations where our bound improves the trivial one as

much as one desires. By a similar reasoning one could give a similar statement for

the more general bound given in Corollary 3.1.4.

To conclude this section we show the existence of families of in�nitely many

rational surfaces SV , obtained from the projective plane by sequences of blowups,

with arbitrarily big Picard number, sharing the same bound for λL∗(SV ).

Corollary 3.1.8. Let V = {ν1, . . . , νN} be any �nite family of divisorial valuations

of P2. Assume that ν1, . . . , νk (with 1 ≤ k ≤ N) admit a tangent line and that, for

all i = 1, . . . , k, the last point pni of Cνi = {p1, . . . , pni} is free. For each i = 1, . . . , k,

consider any set of in�nitely near points Dνi = {pj}mij=ni+1 such that, pni+1 → pni ,

pni+1 → pni−1 and, for all j = ni + 2, . . . ,mi, pj is satellite and pj → pj−1. For

1 ≤ i ≤ k, denote by ν′i the divisorial valuation of P2 whose associated con�guration

is Cνi ∪Dνi and set

V ′ = {ν′1, . . . , ν′k, νk+1, . . . , νN}.



114 3. Bounded negativity

Then λL∗(SV ′) is not lower than the bound of λL∗(SV ) provided by Corollary

3.1.4, that is,

λL∗(SV ′) ≥ min{1 − µ,−
N

∑
i=1

δ0(νi) − 2N + 1} ,

where µ denotes the maximum cardinality of a subset of aligned points in ⋃Ni=1 Cνi
and δ0(νi) is de�ned as before Theorem 3.1.2.

Proof. Pick i ∈ {1, . . . , k} and set {β̄j(νi)}gj=0 the sequence of maximal contact values

of the valuation νi. Since we add satellite points, the sequence of maximal contact

values of the valuation ν′i, {β̄j(ν′i)}
g+1
j=0 , has g + 2 elements. In addition, de�ning

eg−1(ν′i) ∶= gcd(β̄0(ν′i), β̄1(ν′i), . . . , β̄g−1(ν′i)), by De�nition 1.8.4, [34, Lemma 1.8]

and [75, Corollary 1.3.6], it holds that

β̄j(ν′i) = eg−1(ν′i)β̄j(νi), 0 ≤ j ≤ g − 1,

β̄g(ν′i) = eg−1(ν′i)β̄g(νi) − a, where a < eg−1(ν′i)

and

β̄g+1(ν′i) = eg−1(ν′i) (eg−1(ν′i)β̄g(νi) − a) .

Also, if Hi denotes the tangent line of νi (and therefore of ν′i), then, ν
′
i(ϕHi) =

eg−1(ν′i)νi(ϕHi). Therefore, one get the following chain of equalities and inequality:

δ0(ν′i) =
vol(ν′)−1 − 2β̄0(ν′i)ν′i(ϕH)

(ν′i(ϕH))2
= β̄g+1(ν′i) − 2β̄0(ν′i)ν′i(ϕH)

(ν′i(ϕH))2
=

eg−1(ν′i) (eg−1(ν′i)β̄g+1(νi) − a) − 2(eg−1(ν′i))2β̄0(νi)νi(ϕH)
(eg−1(ν′i))2νi(ϕH))2

=

δ0(νi) −
a

eg−1(ν′i)νi(ϕH))2
≤ δ0(νi).

Finally, by considering Corollary 3.1.4, the proof is concluded.

3.2. Approach by using foliations

Throughout this section, S0 denotes P2 or Fδ, δ ≥ 0, and we consider a rational

surface S such that (S,S0,C) is an S0-tuple (see De�nition 1.4.6). Recall that it

means that S is obtained from a sequence of blowups at the closed points in C of the
form

π ∶ S = Sn
πnÐ→ Sn−1

πn−1Ð→ ⋯ π1Ð→ S0

where n = #C (see De�nition 1.4.6). Let H be an integral non-exceptional curve on

S.

We are going to provide a bound for

H2

D ⋅H
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depending only on S, D being the total transform of L (respectively, F +M), if

S0 = P2 (respectively, S0 = Fδ). As before, L (respectively, F and M) is a general

line on P2 (respectively, are a �ber and an irreducible section of self-intersection δ

on Fδ as de�ned in Subsection 1.4.2). Notice that the fact that H is not exceptional

is equivalent to the inequality D ⋅H > 0 because L (respectively, F +M) is an ample

divisor.
More speci�cally, we bound from below the following number νD(S), de�ned as

νL∗(S) ∶= inf { H2

L∗ ⋅H ∣H is an integral curve on S such that L∗ ⋅H > 0}

= inf { C̃2

deg(C) ∣ C is an integral curve on P2} , when S0 = P2,

νF ∗+M∗(S) ∶= inf { H2

(F ∗ +M∗) ⋅H ∣H is an integral curve on S such that (F ∗ +M∗) ⋅H > 0}

= inf { C̃2

deg1(C) + (δ + 1)deg2(C) ∣ C is an integral curve on Fδ} , when S0 = Fδ,

where C̃ denotes the strict transform of C on S and degi denotes the ith coordinate

of the bidegree of a curve on Fδ.
Foliations on surfaces are an important tool in this section. Keep the notation as

in Chapter 1. Let X be a smooth complex projective surface and F a singular holo-

morphic foliation onX. Recall that F can be de�ned by a family of pairs {(Ui, vi)}i∈I ,
where {Ui}i∈I is an open covering of X and vi a non-vanishing holomorphic vector

�eld on Ui, i ∈ I (see De�nition 1.5.1).

Let G be a reduced curve on X such that its irreducible components are non-

invariant by F . For any point p ∈ G, let fp = 0 be a local equation of G around p

and vp a local holomorphic vector �eld generating Fp (the restriction of F , de�ned
at the beginning of Section 1.7). Following [10, Chapter 2, Section 2], we de�ne the

tangency order of F to G at p as

tang(F ,G, p) ∶= dimCOX,p/⟨fp, vp(fp)⟩.

Notice that, since G is non-invariant by F , vp(fp) ∉ ⟨fp⟩ and then OX,p/⟨fp, vp(fp)⟩
is a �nite-dimensional linear space over C and tang(F ,G, p) < ∞. Moreover, if F is

transverse to G at a point p (it means that every local invariant curve of the foliation

and G meet transversely), tang(F ,G, p) = 0. As the irreducible components of G are

non-invariant by F , there are �nitely many points where F is not transverse to G.

Hence we can de�ne

tang(F ,G) ∶= ∑
p∈C

tang(F ,G, p).

The following lemma (which will help us to give our bound) follows from the fact

that tang(F ,G) ≥ 0 and [10, Proposition 2.2], which states that

G2 = −KF ⋅G + tang(F ,G),

where KF is the canonical divisor of F as de�ned in Section 1.5.
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Lemma 3.2.1. Let F be a foliation de�ned on a smooth projective surface X. If G

is a reduced non-invariant (by F) curve on X, then

G2 ≥ −KF ⋅G. (3.2)

Subsection 3.2.1 shows the existence a foliation F on S0 such that every point

p ∈ C is an ordinary singular point of F .
In Subsection 3.2.2 (respectively, 3.2.3) we give, for each P2-tuple (respectively,

Fδ-tuple) (S,P2,C) (respectively, (S,Fδ,C)), a lower bound of νL∗(S) (respectively,

νF ∗+M∗(S)) by using Lemma 3.2.1 and the results in Subsection 3.2.1 (respectively,

Subsection 3.2.3), depending only on S0 and C.

3.2.1. Attached to S0-tuples foliations

Keep the notation as above, where S0 denotes either the projective plane P2 or

a Hirzebruch surface Fδ.
Let C be a con�guration over an open subset U of S0 with a unique proper point

p (that is, OC = {p}). Let EC = {q1, . . . , qs} the set of ends of the con�guration C (see
De�nition 1.2.2) and let W be the subset of free points in EC . For any qj ∈W , set q′j
the only satellite point in the exceptional divisor given by blowing-up qj . Consider

the con�guration

Ĉ ∶=
⎛
⎝ ⋃qj/∈W

(C)qj
⎞
⎠
∪
⎛
⎝ ⋃qj∈W

((C)qj ∪ {q′j})
⎞
⎠
.

Set Ĉ = {p1 = p, . . . , pn} and, attached to C, let us de�ne the following positive integer:

dC ∶= min{d ∈ Z>0 ∣ P−1
Ĉ

(d1
Ĉ
−m

Ĉ
) > 0}, (3.3)

where P
Ĉ
(respectively, m

Ĉ
) is the proximity matrix (1.6) (respectively, the vector

of multiplicities (1.8)) of Ĉ and 1
Ĉ
the #Ĉ-dimensional column vector whose �rst

coordinate is 1 and any other coordinate is 0.

The following result will help us to prove our forthcoming Theorem 3.2.3.

Lemma 3.2.2. Let p be a point in S0 ∶= P2 (respectively, S0 ∶= Fδ for some δ ∈ Z≥0).

Consider an a�ne open subset U ∈ {UX , UY , UZ} (respectively, U ∈ {U00, U01, U10,

U11}) such that p ∈ U and take the a�ne coordinates (x, y) ∈ U as de�ned at the

end of Subsection 1.4.1 (respectively, Subsection 1.4.2). Consider a (possibly empty)

�nite set of points Q ⊆ S0 such that p /∈ Q and let C be a con�guration over U ≅ C2

such that OC = {p}. Let dC be the positive integer given in (3.3). Then, there exist

a polynomial f ∈ C[x, y] of degree less than or equal to dC − 1 and a polynomial

g(x, y) ∶= λ1x
dC +λ2y

dC + s(x, y), with λ1, λ2 ∈ C∖{0}, s(x, y) ∈ C[x, y] and deg(s) <
dC, satisfying the following conditions:

(a) f(p) = g(p) = 0.
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(b) No point q ∈ Q belongs to the closure in S0 of the a�ne curve in U with equation

g(x, y) = 0.

(c) f and g have no non-constant common factor.

(d) The pencil P of a�ne plane curves given by the equations αf(x, y)+βg(x, y) = 0

(where (α ∶ β) runs over P1) satis�es that C ⊆ BP (P).

Proof. Set Ĉ = {p1 = p, . . . , pn} as introduced before the statement. Suppose that the

coordinates of p in U are (a, b) and let us de�ne x′ ∶= x − a and y′ ∶= y − b in such

a way that p, in the a�ne coordinates (x′, y′), becomes the origin. For each s ∈ E
Ĉ
,

let ξs be an analytically irreducible germ of curve at p such that its strict transform

ξ̃s on the surface containing the exceptional divisor Es is smooth and transversal

to Es at a general point. Also, identify (x′, y′) with their images in the local ring

OanC2,p = C{x′, y′}, and pick a convergent power series hs(x′, y′) ∈ C{x′, y′} de�ning

ξs. Let us consider the germ ξ at p de�ned by the power series

∏
s∈E

Ĉ

hs(x′, y′) =
∞

∑
i+j=1

cij(x′)i(y′)j , cij ∈ C for all i, j.

By Part 1 of Lemma 1.3.5, the positive integer dC de�ned in (3.3) is C0-su�cient

for ξ. Consider the polynomial f ′(x′, y′) ∶= ∑dC−1
i+j=1 cij(x′)i(y′)j ∈ C[x′, y′]. Fix two

general non-zero complex numbers λ1 and λ2 and let us de�ne g′(x′, y′) ∶= λ1(x′)dC +
λ2(y′)dC . Notice that f ′(x′, y′) and λ1(x′)dC + λ2(y′)dC do not have non-constant

common factors (because λ1 and λ2 are chosen to be general).

Let η be the germ at (0,0) of a general curve of the pencil of a�ne curves with

equations αf ′(x′, y′) + βg′(x′, y′) = 0, with (α ∶ β) ∈ P1. Let K(η) be the singular

con�guration of η (see De�nition 1.3.2). By de�nition, dC is C0-su�cient for η.

Moreover, by Part 2 of Lemma 1.3.5, K(η) = K(ξ) = Ĉ and, therefore, C ⊆ K(η).
Notice that K(η) is contained into the con�guration of base points of the pencil by

Bertini's Theorem (see [64, Chapter III, Corollary 10.9]).

The result follows by considering the pencil P of a�ne curves de�ned by the

equations

αf(x, y) + βg(x, y) = 0, (α ∶ β) ∈ P1,

where f(x, y) ∶= f ′(x − a, y − b) and g(x, y) ∶= g′(x − a, y − b), and by noticing that

Conditions (a), (c) and (d) of the statement are satis�ed (by the construction of P)
and that, if λ1, λ2 are chosen to be general enough, Condition (b) holds as well.

The main result of the subsection is the following one.

Theorem 3.2.3. Let (S,S0,C) be an S0-tuple, where S0 = P2 (respectively, S0 = Fδ).
Then, there exists an algebraically integrable foliation F on S0 such that C ⊆ BF and
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the degree r (respectively, bidegree (d1, d2)) of F is bounded as follows:

r ≤ 2d − 2 (respectively, d1 ≤ 2d + δ − 2 and d2 ≤ 2d − 2),

where d ∶= ∑p∈OC d(C)p, d(C)p being as de�ned in (3.3).

Moreover, there exists a rational �rst integral of F of degree (respectively, bide-

gree) d (respectively, (a, b) with a ≤ d, b = d).

Proof. Assume S0 = P2 (respectively, S0 = Fδ). For every point p ∈ OC consider,

following the notation in Subsection 1.4.1 (respectively, Subsection 1.4.2), an open

subset Up ∈ {UX , UY , UZ} (respectively, Up ∈ {U00, U01, U10, U11}) such that p ∈ Up,
and let Pp be the irreducible pencil of a�ne curves on Up provided by Lemma 3.2.2

(considering Q as the set OC ∖ {p}). It satis�es

(C)p ⊆ BP (Pp). (3.4)

Let Fp(X,Y,Z) = 0 and Gp(X,Y,Z) = 0 (respectively, Fp(X0,X1, Y0, Y1) = 0 and

Gp(X0,X1, Y0, Y1) = 0) be the equations of the closures on P2 (respectively, Fδ) of
two general enough curves of the pencil Pp. Then the polynomials

F ∶= ∏
p∈OC

Fp and G ∶= ∏
p∈OC

Gp

have no non-constant common factor. If S0 = P2, then it is clear that F and G are

polynomials of degree d and, if S0 = Fδ, as a consequence of Lemma 3.1.1, F and

G are polynomials of the same bidegree (a, b) such that a ≤ d and b = d (notice

that Lemma 3.2.2 shows that, for all p ∈ OC , the polynomials in C[x, y] de�ning the

restrictions to Up of the curves with equations Fp = 0 and Gp = 0 have monomials

xdC and ydC with non-zero coe�cients). Therefore we can consider the irreducible

pencil PS0 of curves on S0 de�ned by the equations αF + βG = 0, where (α ∶ β) runs
over P1.

Notice that Condition (b) of Lemma 3.2.2 guarantees that, for all p ∈ OC , the
germs at p of the curves in PS0 coincide with those of the curves in Pp. Therefore

∪p∈OCBP (Pp) ⊆ BP (PS0) and, by (3.4), since C = ∪p∈OC(C)p, one has that C ⊆
BP (PS0).

The homogeneous (or bihomogeneous) 1-form FdG −GdF can be factorized as

FdG −GdF = HΩ, where Ω is a reduced homogeneous (or bihomogeneous) 1-form

and H is a homogeneous (or bihomogeneous) polynomial. Let F be the foliation on

S0 de�ned by Ω. Notice that PF = PS0 and hence, F /G is a rational �rst integral

of F of degree d (respectively, bidegree (a, d), with a ≤ d) if S0 = P2 (respectively,

S0 = Fδ). Moreover, since BF = BP (PF) (by Proposition 2.1.1), C ⊆ BF holds.

If S0 = P2 (respectively, S0 = Fδ) and

Ω = AdX +BdY +CdZ, A,B,C ∈ C[X,Y,Z], (respectively,
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Ω = Aδ,0dX0 +Aδ,1dX1 +Bδ,0dY0 +Bδ,1dY1, Aδ,0, Aδ,1, Bδ,0, Bδ,1 ∈ C[X0,X1, Y0, Y1]),

by Theorem 1.5.4 (respectively, Theorem 1.5.10), the degree (respectively, bidegree)

of F is deg(A)−1 (respectively, (deg1(Aδ,0)+δ−1,deg2(Aδ,0)−2)). As Ω = FdG−GdF
H

and the degree (respectively bidegree) of F and G is d (respectively, (a, b)), then
the degree (respectively, bidegree) of F is, at most, 2d−2 (respectively, (d1, d2) such
that d1 ≤ 2d + δ − 2 and d2 ≤ 2d − 2).

The following concept will be useful in the rest of this chapter.

De�nition 3.2.4. Let (S,S0,C) be an S0-tuple, where S0 is either P2 or Fδ. An

attached to (S,S0,C) foliation is any foliation satisfying the conditions given in the

statement of Theorem 3.2.3.

3.2.2. Approaching bounded negativity for rational surfaces over

the projective plane

Keep the notation as above. Let (S,P2,C) be a P2-tuple (see De�nition 1.4.6) and

F an attached to (S,P2,C) foliation on P2. The next result determines a linear (on

the degree of π∗H) lower bound on the self-intersection of the non-invariant (by F̃)
integral curves H on S which are not exceptional, where π denotes the composition

of the sequence of blowups centered at the points of C.

Theorem 3.2.5. Let (S,P2,C) be a P2-tuple. Let F be an attached to (S,P2,C)
foliation and F̃ the strict transform of F on S. Then, each non-invariant (by F̃)
non-exceptional integral curve H on S satis�es

H2 ≥ −
⎛
⎝

2 ∑
p∈OC

d(C)p − 3
⎞
⎠
(L∗ ⋅H),

where d(C)p is the integer de�ned in (3.3).

Proof. A canonical divisor K
F̃
of the strict transform F̃ of F on S is linearly equiv-

alent to

(r − 1)L∗ −
n

∑
i=1

(νpi(F) + εpi(F) − 1)E∗
i ,

where C = {pi}ni=1, r is the degree of F , νpi(F) the multiplicity at pi of the strict

transform of F on the surface containing pi and εpi is 1 if pi is a terminal dicritical

point and 0 otherwise (see (1.15)).

By Lemma 3.2.1

H2 ≥ −K
F̃
⋅H = −(r − 1)deg(π∗H) +

n

∑
i=1

(νpi(F) + εpi(F) − 1)multpi(ϕπ∗H).

Moreover, as pi is a singular point of F for all i, νpi(F) ≥ 1 and hence

H2 ≥ −(r − 1)deg(π∗H).
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Now, F is an attached to (S,P2,C) foliation on P2, i.e., an algebraically integrable

foliation such that C ⊆ BF , whose degree r satis�es

r ≤ 2 ∑
p∈OC

d(C)p − 2.

This bound and the fact that deg(π∗H) = L∗ ⋅H complete the proof.

Now we study the case where H is an invariant by F̃ curve.

Proposition 3.2.6. Let (S,P2,C) be a P2-tuple. Let F be an attached to (S,P2,C)
foliation and F̃ the strict transform of F on S. If H is an invariant (by F̃) integral
curve such that L∗ ⋅H > 0, then it holds that

H2

L∗ ⋅H ≥ d(1 − n),

where n = #C and d = ∑p∈OC d(C)p, d(C)p being the integer de�ned in (3.3).

Proof. Assume that C = {pi}ni=1. We start by noticing that n ≥ 1 because, otherwise,

F would not be algebraically integrable by Bezout's theorem, which states that two

curves in P2 intersect at least at a point.

Let F /G be a rational �rst integral of F and BF its dicritical con�guration (see

De�nition 1.7.6). Notice that C ⊆ BF . Consider the characteristic divisor DF =
dL∗ −∑ni=1miE

∗
i (2.12).

Let H be an invariant (by F̃) integral curve on S such that L∗ ⋅H > 0 (recall that

this condition implies that H is not exceptional). By Lemma 2.1.3, H is an integral

component of the strict transform of an invariant by F curve C.

Then, H is linearly equivalent to a divisor of the form h0L
∗ − ∑ni=1 hiE

∗
i , hi ≥ 0

for all i, and it satis�es:

1. DF ⋅H = 0, that is, dh0 = ∑ni=1mihi.

2. h0 ≤ d (the equality holds if and only if C is integral).

3. hi ≥ ∑pj→pi hj and hi ≤ h0 for all i.

As a consequence, there is a �nite number of linear equivalence classes of such

curves H. Moreover, H2 = h2
0 −∑ni=1 h

2
i , and then

H2

L∗ ⋅H = h
2
0 − h2

1

h0
≥ h0 − h1 ≥ 0

if n = 1, and otherwise

H2

L∗ ⋅H = h
2
0 −∑ni=1 h

2
i

h0
≥ h0 −

n

∑
i=1

hi ≥ h0(1 − n) ≥ d(1 − n).

This concludes the proof.
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At the begining of Subsection 3.2, we de�ned

νL∗(S) ∶= inf { H2

L∗ ⋅H ∣H is an integral curve on S such that L∗ ⋅H > 0} ,

which allows us to state the main result in this subsection. It is a direct consequence

of Theorem 3.2.5 and Proposition 3.2.6.

Corollary 3.2.7. Keep the notation as before Theorem 3.2.5. Let (S,P2,C) be a

P2-tuple (see De�nition 1.4.6). Then,

νL∗(S) ≥ min{−(2d − 3) , d(1 − n)} ,

where n = #C and d = ∑p∈OC d(C)p, d(C)p being the integer de�ned in (3.3).

3.2.3. Approaching bounded negativity for rational surfaces over

Hirzebruch surfaces

Let Fδ be any δth Hirzebruch surface, δ ≥ 0, and keep the notation as above. Let

(S,Fδ,C) be an Fδ-tuple (De�nition 1.4.6) and F an attached to (S,Fδ,C) foliation
on Fδ (De�nition 3.2.4). Our next result provides a bound on the self-intersection of

the non-invariant (by F̃) and non-exceptional integral curves H on S. This bound

is linear in the coordinates of the bidegree of π∗H, where π denotes the composition

of the sequence of blowups centered at the points in C.

Theorem 3.2.8. Let (S,Fδ,C) be an Fδ-tuple. Let F be an attached to (S,Fδ,C)
foliation and F̃ the strict transform of F on S. Then, each non-invariant (by F̃)
integral curve H ∈ S that is not exceptional satis�es

H2 ≥ −2(d − 1)deg1(π∗H) − (2d − 2 − δ + 2dδ)deg2(π∗H),

where d = ∑p∈OC d(C)p, d(C)p being the integer de�ned in (3.3).

Proof. Any canonical divisor K
F̃

of the strict transform F̃ of F on S is linearly

equivalent to the divisor

d1F
∗ + d2M

∗ −
n

∑
i=1

(νpi(F) + εpi(F) − 1)E∗
i ,

where C = {pi}ni=1, (d1, d2) is the bi-degree of F , νpi(F) the multiplicity at pi of the

strict transform of F on the surface containing pi and εpi is 1 if pi is a terminal

dicritical point and 0 otherwise (see (1.15)).

By Lemma 3.2.1

H2 ≥ −K
F̃
⋅H = −d2 deg1(π∗H)− (d1 + δd2)deg2(π∗H)+

n

∑
i=1

(νi + εi − 1)multpi(ϕπ∗H).

Moreover, as pi is a singular point of F for all i, νpi(F) ≥ 1 and hence

H2 ≥ −d2 deg1(π∗H) − (d1 + δd2)deg2(π∗H).
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F is an attached to (S,Fδ,C) foliation F on Fδ and then it satis�es the condition in

Theorem 3.2.3, therefore the bidegree (d1, d2) is bounded by

d1 ≤ 2d − 2 + δ, d2 ≤ 2d − 2,

which concludes the proof.

Corollary 3.2.9. Let (S,Fδ,C) be an Fδ-tuple. Let F be an attached to (S,Fδ,C)
foliation and F̃ the strict transform of F on S. Let H be a non-invariant (by F̃)
integral curve on S such that (F ∗ +M∗) ⋅H > 0. Then

H2

(F ∗ +M∗) ⋅H ≥ −2(d − 1) − δ,

where d = ∑p∈OC d(C)p , d(C)p being the integer de�ned in (3.3).

Proof. Recall that the condition (F ∗ +M∗) ⋅H > 0 means that H is not exceptional.

The proof follows from Theorem 3.2.8 and the following calculations:

H2 ≥ −2(d − 1)deg1(π∗H) − (2d − 2 − δ + 2dδ)deg2(π∗H)
= −2(d − 1) (deg1(π∗H) + δ deg2(π∗H)) − (2d − 2 + δ)deg2(π∗H)
= −2(d − 1) (M∗ ⋅H) − (2d − 2 + δ)(F ∗ ⋅H)
= −2(d − 1) ((F ∗ +M∗) ⋅H) − δ(F ∗ ⋅H),

which allows us to conclude that

H2

(F ∗ +M∗) ⋅H ≥ −2(d − 1) − δ (F ∗ ⋅H)
(F ∗ +M∗) ⋅H ≥ −2(d − 1) − δ.

To �nish this section, we study the case where H is an invariant by F̃ curve. We

start with a lemma that will be used in the proof.

Lemma 3.2.10. Let (S,Fδ,C) be an Fδ-tuple where C = {pi}ni=1. Consider a curve

C on Fδ and suppose that the strict transform C̃ of C on S is linearly equivalent to

the divisor αF ∗ + βM∗ −∑ni=1 hpiE
∗
i . Then

hpi ≤ α + β + δβ, for all 1 ≤ i ≤ n.

Proof. Let

F (X0,X1, Y0, Y1) = ∑ fa0,a1,b0,b1X
a0
0 Xa1

1 Y b0
0 Y b1

1 = 0

be a homogeneous equation of C and consider the setM of monomialsXa0
0 Xa1

1 Y b0
0 Y b1

1

appearing in the expression of F such that fa0,a1,b0,b1 ≠ 0. Notice that

a0 + a1 − δb1 = α, b0 + b1 = β, (3.5)
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for all monomial inM. Write C = ∪q∈OC(C)q, where OC is the set of origins of C (see
De�nition 1.2.2). For all p ∈ (C)q, it is clear that hp ≤ hq.

Let us see that hq ≤ α + β + δβ for all q ∈ OC . Consider an a�ne open subset

Ujk ∈ {U00, U01, U10, U11} such that q ∈ Ujk and take the a�ne coordinates (x, y) ∈ Ujk
as de�ned at the end of Subsection 1.4.2. A local equation of C at Ujk is given by

∑ fa0,a1,b0,b1x
ajybk = 0. Hence,

hq ≤ aj + bk ≤ a0 + a1 − δb1 + δb1 + δb0 + b0 + b1 ≤ α + β + δβ,

where the last inequality is a consequence of (3.5).

Proposition 3.2.11. Keep the notation as before Theorem 3.2.8. Let (S,Fδ,C) be

an Fδ-tuple, F an attached to (S,Fδ,C) foliation and F̃ the strict transform of F on

S. If H is an invariant (by F̃) integral curve such that (F ∗ +M∗) ⋅H > 0, then it

holds that
H2

(F ∗ +M∗) ⋅H ≥ min{−n − δ,−(δ + 2)dn},

where n = #C and d = ∑p∈OC d(C)p, d(C)p being the integer de�ned in (3.3).

Proof. Assume that C = {pi}ni=1. Let F /G be a rational �rst integral of F , DF =
aF ∗+bM∗−∑miE

∗
i its characteristic divisor (2.12) and BF its dicritical con�guration

(notice that C ⊆ BF ). By De�nition 3.2.4 and recalling Theorem 3.2.3, we can assume

that a ≤ d and b = d.
Suppose that H is an invariant (by F̃) integral curve on S which is linearly

equivalent to αF ∗ + βM∗ − ∑ni=1 hiE
∗
i and such that (F ∗ +M∗) ⋅H > 0 and hi ≥ 0

for all i. H is not exceptional (because F +M is an ample divisor on Fδ) and

(F ∗+M∗) ⋅H = α+β+δβ. By Lemma 2.1.3, H is an integral component of the strict

transform of an invariant (by F) curve C.
It follows from [64, Chapter V, Proposition 2.20] that either C is linearly equiv-

alent either to F or M0, or [C] = α[F ] + β[M] with α ≥ 0 and β > 0. Thus, it holds

some of the following three cases:

(a) H is linearly equivalent to F ∗ −∑ni=1 hiE
∗
i , i.e., α = 1, β = 0 and 0 ≤ hi ≤ 1 for

all i. Then,
H2

(F ∗ +M∗) ⋅H = 0 −
n

∑
i=1

h2
i ≥ −n.

(b) H is linearly equivalent to −δF ∗ +M∗ − ∑ni=1 hiE
∗
i , i.e., α = −δ, β = 1 and

0 ≤ hi ≤ 1 for all i. Then,

H2

(F ∗ +M∗) ⋅H = −δ −
n

∑
i=1

h2
i ≥ −δ − n.

(c) H is linearly equivalent to αF ∗ + βM∗ − ∑ni=1 hiE
∗
i , α ≥ 0, β > 0. Then H

satis�es:
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(1) DF ⋅H = 0, that is, aβ + bα + bβδ = ∑ni=1mihi.

(2) α ≤ a and β ≤ b (both equalities hold if and only if C is integral).

(3) hi ≥ ∑pj→pi hj and, by Lemma 3.2.10, 0 ≤ hi ≤ α + β + δβ.

As a consequence, there are �nitely many linear equivalence classes for such curves

H. Moreover, H2 = 2αβ + δβ2 −∑ni=1 h
2
i and thus

H2

(F ∗ +M∗) ⋅H =2αβ + δβ2 −∑ni=1 h
2
i

α + β + δβ ≥ 2αβ + δβ2 − n(α + β + δβ)2

α + β + δβ
≥ − n(α + β + δβ) ≥ −n(a + b + δb) ≥ −(δ + 2)dn,

where the last inequality is consequence of Theorem 3.2.3. This concludes the proof.

At the begining of Subsection 3.2, we considered the value

νF ∗+M∗(S) ∶= inf { H2

(F ∗ +M∗) ⋅H ∣H is an integral curve on S such that (F ∗ +M∗) ⋅H > 0} .

The main result in this subsection is to give a lower bound for this last number

depending only of C. It is a direct consequence of Corollary 3.2.9 and Proposition

3.2.11.

Corollary 3.2.12. Keep the notation as before Theorem 3.2.8. Let (S,Fδ,C) be an

Fδ-tuple (see De�nition 1.4.6). Then,

νF ∗+M∗(S) ≥ min{−2 (d − 1) − δ,−n − δ,−(δ + 2)dn} ,

where n = #C and d = ∑p∈OC d(C)p , d(C)p being the integer de�ned in (3.3).



Conclusions

Let S0 be the projective plane P2 or a Hirzebruch surface Fδ, where δ is a non-

negative integer, both complex. We say that the tuple (S,S0,C) is an S0-tuple if C
is a con�guration of proper or in�nitely near points of S0 (see De�nition 1.2.2), and

S is a rational surface obtained by the sequence of blowups of S0 centered at the

points of C.
In Chapter 2 we show necessary conditions for the algebraic integrability of a

foliation FC2
de�ned by bivariate polynomials. For this purpose, we use an extended

foliation F from FC2
to S0. Theorem 2.3.6 presents a necessary condition for al-

gebraic integrability over FC2
, and Theorems 2.4.11 and 2.4.13 provide necessary

conditions on the foliation F to have a rational �rst integral when S0 = Fδ, which
are extended in Subsection 2.4.3 for the case of S0 = P2.

The above results allow us to delimit the Newton polytope (see De�nition 2.3.15)

of an algebraically integrable foliation FC2
. Theorem 2.3.16, and Corollaries 2.3.17

and 2.3.19 study this polytope.

Furthermore, under certain premises, we are able to solve the problem of algebraic

integrability of a foliation on S0 or C2 and, if it has a rational �rst integral, to compute

it. This is achieved by applying Algorithms 2.5.1, 2.5.2, 2.5.7, and 2.5.14 presented

in Section 2.5.

To conclude, in Chapter 3, we consider some problems related to the Bounded

Negativity conjecture of a smooth rational surface.

Speci�cally, we take a P2-tuple (S,P2,C), de�ne the number

λL∗(S) ∶= inf { H2

(L∗ ⋅H)2
∣H is an integral curve in S such that L∗ ⋅H > 0}

and obtain a much better bound than the trivial one when S is the sky of a divisorial

valuation (Theorem 3.1.2). This allows us to bound this value for any rational

surface S obtained by a sequence of blowups at proper or in�nitely near points of

the projective plane, as shown in Corollaries 3.1.3, 3.1.4, and 3.1.6. Additionally, in

Corollary 3.1.8, we prove the existence of in�nite families of rational surfaces that

share the same bound for λL∗(S).
Finally, if S is a complex rational surface such that (S,S0,C) is an S0-tuple, we
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de�ne the number νD(S) as

νD(S) ∶= inf { H2

D ⋅H ∣H is an integral curve in S such that D ⋅H > 0} ,

where D = L∗ (respectively, D = F ∗ +M∗) if S0 = P2 (respectively, S0 = Fδ).
Corollaries 3.2.7 and 3.2.12 determine a bound for this value. Theorems 3.2.3,

3.2.5 and 3.2.8 involve foliations and are crucial in the proofs of the aforementioned

corollaries.



Conclusiones

Sea S0 el plano proyectivo P2 o una super�cie de Hirzebruch Fδ, siendo δ un

entero no negativo, ambos complejos. Se dice que la tupla (S,S0,C) es una S0-tupla

si C es una con�guración de puntos propios o in�nitamente próximos (ver De�nición

1.2.2) y S es una super�cie racional obtenida por la secuencia de explosiones de S0

centrada en los puntos de C.
En el Capítulo 2 mostramos condiciones necesarias para la integrabilidad algebrai-

ca de una foliación FC2
de�nida por polinomios en dos variables. Para ello, usamos

la foliación extendida F de FC2
a S0. El Teorema 2.3.6 presenta una condición ne-

cesaria para la integrabilidad algebraica de FC2
y los Teoremas 2.4.11 y 2.4.13 dan

condiciones necesarias para que la foliación F tenga integral primera racional cuando

S0 = Fδ, que se extienden en la Subsección 2.4.3 al caso S0 = P2.

Los resultados anteriores permiten delimitar el polítopo de Newton (véase De�-

nición 2.3.15) de una foliación FC2
algebraicamente integrable. El Teorema 2.3.16 y

los Corolarios 2.3.17 y 2.3.19 estudian este polítopo.

Además, suponiendo ciertas premisas, somos capaces de resolver el problema de

integrabilidad algebraica de una foliación en S0 o C2 y, en caso de tener integral

primera racional, calcularla. Eso se consigue aplicando los Algoritmos 2.5.1, 2.5.2,

2.5.7 y 2.5.14 presentados en la Sección 2.5.

Para acabar, en el Capítulo 3 consideramos problemas relacionados con la conje-

tura de la Negatividad Acotada de una super�cie lisa racional.

En primer lugar tomamos una P2-tupla (S,P2,C), de�nimos el número

λL∗(S) ∶= ı́nf { H2

(L∗ ⋅H)2
∣H es una curva integral en S tal que L∗ ⋅H > 0}

y obtenemos una cota mucho mejor que la trivial cuando S es el cielo de una va-

loración divisorial (Teorema 3.1.2). Eso nos permite acotar ese valor para cualquier

super�cie racional obtenida por una serie de explosiones en puntos propios o in�ni-

tamente próximos del plano proyectivo como muestran los Corolarios 3.1.3, 3.1.4 y

3.1.6. Y en el Corolario 3.1.8 probamos además la existencia de familias in�nitas de

super�cies raciones que comparten la misma cota para λL∗(S).
Finalmente, si S es una super�cie racional compleja tal que (S,S0,C) es una
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S0-tupla, de�nimos el número νD(S) como

νD(S) ∶= ı́nf { H2

D ⋅H ∣H es una curva integral en S tal que D ⋅H > 0} ,

donde D = L∗ (respectivamente, D = F ∗+M∗) si S0 = P2 (respectivamente, S0 = Fδ).
Los Corolarios 3.2.7 y 3.2.12 determinan una cota de ese valor. Los Teoremas

3.2.3, 3.2.5 y 3.2.8 involucran foliaciones y son determinantes en las pruebas de los

corolarios que hemos mencionado.
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