9300 JSDE series

AC Servo SystemInstruction Manual

■Warning and Alert:

Warning

- · Do not proceed to the assembly of the line while electrifying.
- Circuit & change components between entering shutting down the power supply and stopping showing CHARGE LED light of the Servo driver.
- The output of Servo drive [U, V, W] must NOT touch the AC power.

Alert

- Install the fan if the temperature around is too high while the Servo driver is installed in the Control Board.
- Do not proceed to the Anti-Pressure-Test to the Servo driver.
- Confirm the quick stop function is available before operate servo drive.
- Matching up machine to change the user parameter setting before machine performs. If there is no according correct setting number, it could lead to out of control or breakdown.
- Before start operate this servo drive check the servo motor Cn030 setting, it will lead to error when CN30 without setting correctly.

Safety proceeding:

Check the covering letter detail before installing, running, maintaining and examining. Furthermore, only the profession-qualified people can proceed to the line-assembly.

Safety proceeding in the covering letter discriminate between "Warning" & "Alert".

Indicating the possibility dangerous situation. It could cause the death or serious damage if being ignored.

Indicating the possibility dangerous situation. It could cause smaller or lighter human injured and damage of equipment.

Read this covering letter detail before using Servo driver.

First of all, thank you for using TECO Servo Driver JSDE Series ("JSDE" for short) and Servo Motors. JSDE can be controlled by digital board or PC, and provide excellent performance for a wide range of applications and different requirement from customers.

Read this covering letter before using JSDE. Contents of the letter comprises:

- · Servo System checking, installing and procedure of assembly line.
- Controller procedure for digital board, status displaying, unusual alarm and strategy explanation.
- Servo System control function, running testing and procedures adjusted.
- Explanation for all parameter of Servo Driver.
- Standard specification of JSDE Series.

In order to daily examine, maintain and understand the reason of unusual situation and handle strategy, please put this covering letter in safe place to read it anytime.

P.S: The end user should own this covering letter, in order to make the Servo Driver bring the best performance.

Contents

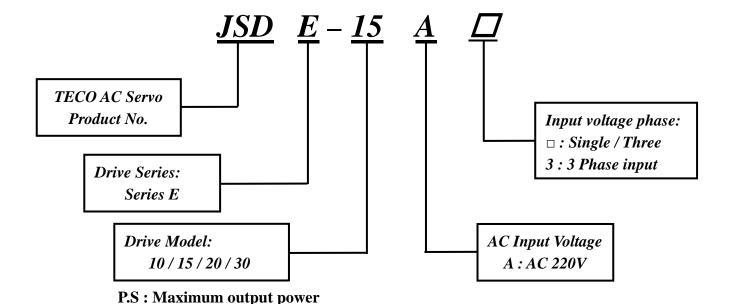
Chapte	1 Checking and Installing	
1-1 Chec	king Products	1-1
1-1-1	Confirming with Servo Drives	1-1
1-1-2	Confirming with Servomotors	1-2
1-1-3	Servo Motor Model Code Display	1-2
1-2 Surfa	ace and Panel Board	1-4
1-3 A Bri	ef Introduction of Operation for Drives	1-5
1-4 Cond	litions for Installation of Drives	1-6
1-4-1	Environmental Conditions	1-6
1-4-2	Direction and Distance	1-6
1-5 Cond	litions for Installation of Servomotors	1-7
1-5-1	Environmental Conditions	1-7
1-5-2	Method of Installation	1-7
1-5-3	Notice for in stall motor	1-8
•	· 2 Wiring	
	c Wiring for Servo System	
	Wiring for Main Circuit and Peripheral Devices	
2-1-2	Wiring for Servo Drives	
2-1-3	5	
2-1-4		
2-1-5	Typical Wiring for Motor and Main Circuit	2-6
2-1-6	TB Terminal	2-7
	Wiring for Mechanical Brake	
2-2 I/O T	erminal	2-8
2-2-1	CN1 Input and Output terminals	2-9
2-2-2	Encoder Connector (CN2) Terminal Layout	2-20
2-2-3	Encoder Connector (CN3/CN4) Terminal Layout	2-22
2-3 Typic	cal Circuit Wiring Examples	2-23
2-3-1	Position Control Mode (Pe Mode) (Line Driver)	2-23
2-3-2	Position Control Mode (Pe Mode) (Open Collector)	2-24
2-3-3	Position Control Mode (Pi Mode)	2-25
2-3-4	Speed Control Mode (S Mode)	2-26
2-3-5	Torque Control Mode (T Mode)	2-27
Chaptei	3 Panel Operator / Digital Operator	
3-1 Pane	el Operator on the Drives	3-1
3-2 Sign	al Display	3-8
3-2-1	Status Display	3-8
3-2-2	Diagnostic function	3-9
Chaptei	⁻ 4 Trial Operation	
4-1 Trial	Operation Servo motor without Load	4-2

4-2 Trial	Operation for Servomotor without Load from Host Reference	4-5
4-3 Trial	Operation with the Servomotor Connected to the Machine	4-8
•	5 Control Functions	
	rol Mode Selection	
•	ue Mode	
	Analog Torque command Ratio	
	Adjusting the analog torque command Offset	
5-2-3	Torque command linear acceleration and deceleration	
5-2-4	4.00	
	Internal Torque Limit	
	Limiting Servomotor Speed during Torque Control	
	Additional Torque Control Functions	
•	d Mode	
	Selection for speed command	
5-3-2	Analog speed command Ratio	5-12
5-3-3	Adjusting the analog reference offset	5-12
5-3-4	Analog reference for speed command limit	5-13
5-3-5	Encoder Signal Output	5-13
5-3-6	Smoothing the speed command	5-15
5-3-7	Setting rotation direction	5-18
5-3-8	Speed Loop Gain	5-19
5-3-9	Notch Filter	5-20
5-3-10	Torque Limit of speed control mode	5-22
5-3-11	Gain Switched	5-23
5-3-12	Other Functions	5-30
5-4 Posit	ion Mode	5-32
5-4-1	External Pulse Command	5-33
5-4-2	Internal Position Command	5-35
5-4-3	Electronic Gear	5-38
5-4-4	Smooth Acceleration	5-42
5-4-5	Definition of Direction	5-43
5-4-6	Gain Adjustment	5-43
5-4-7	Clear the Pulse Offset	5-44
5-4-8	Original Home	5-45
	Other Position Function	
5-5 Gain	Adjustment	5-54
	Automatic Adjusting	
	Manual Adjusting	
	Improving Resonance	
	r Functions	
5-6-1	Programmable I/O Functions	
	Switching for the Control Mode	
	Auxiliary Functions	

5-6-4	Brake Mode	5-65					
5-6-5	Timing Diagram of Mechanical Brake	5-65					
5-6-6	CW/CCW Drive Inhibit Function						
5-6-7	7 Selecting for External Regeneration Resistor						
5-6-8	Fan Setting	5-71					
5-6-9	Factory setting parameter	5-71					
Chapte	r 6 Parameter						
6-1 Expl	lanation of Parameter Groups	6-1					
6-2 Para	meter Display Table	6-1					
Chapte	r 7 Communications Function						
7-1 Com	nmunications function (RS232 & RS485)	7-1					
7-1-1	Communication wiring	7-1					
7-1-2	RS232, RS-485 communication parameter	7-3					
7-1-3	Rs-232 communication protocol and format	7-5					
7-1-4	Modbus communication protocol for RS-485	7-8					
7-2 Com	nmunication Address table	7-19					
Chapte	r 8 Troubleshooting						
8-1 Aları	m Functions	8-1					
8-2 Trou	ıbleshooting of Alarm and Warning	8-3					
Chapte	r 9 Specifications						
9-1 Spec	cifications and Dimension for Servo Drives	9-1					
9-2 Spec	cifications and Dimension for Servomotors	9-6					
Annond	div A - Parinharal for Sarva motors	Ann 1					

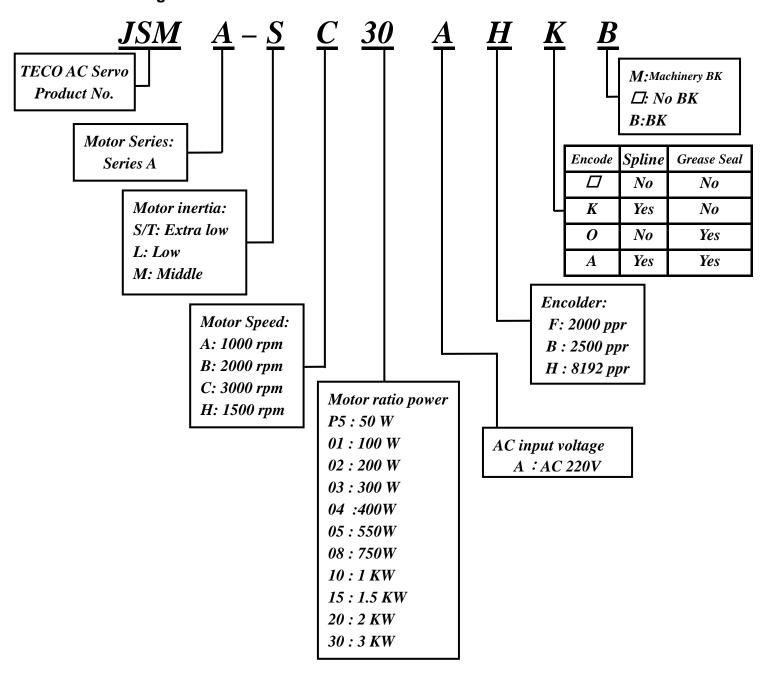
Chapter 1 Checking and Installing

1-1 Checking Products

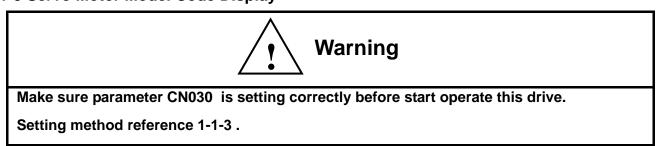

Our Servo Pack have already completely been functionally examined before leaving the factory. In order to protect the products from the damage during transportation, please check the items below before sealing off the pack:

- Check if the models of servo driver and motor are the same with the models of ordering. (About the model explanation, please check the chapters below)
- Check if there are damage or scrape out side of the servo driver and motor.

 (If there is any damage during transportation, do not power ON)
- Check if there are any bad assembly or slipped component in the Servo Drive and Motor
- Check if the Motor's rotor and shaft can be rotated smoothly by hand (The Servo Motor with Mechanical-Brake can not be rotated directly)
- There must be the "QC"-seal in each servo drive, if not, please do not proceed Power ON.


If there is any bug or irregular under the situation above, please contact TECO's Local sales representative or distributor instantly.

1-1-1 Confirming with Servo Drives

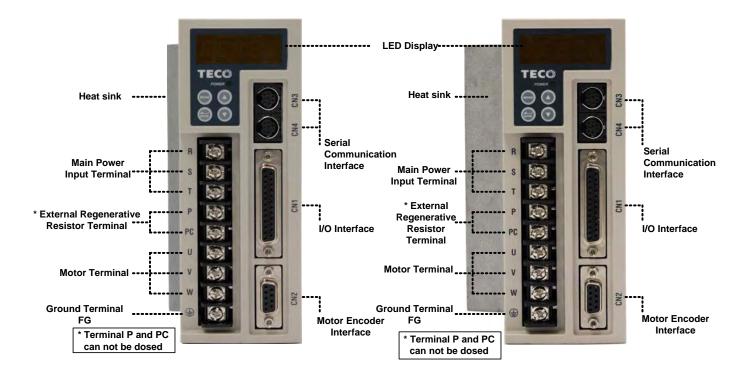


10:200 W 20:750 KW 15:400 W 30:1 KW

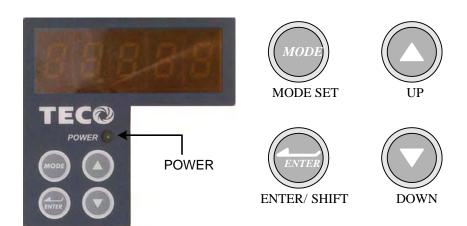
1-1-2 Confirming with Servo Motors

1-1-3 Servo Motor Model Code Display

Use dn-08 to display servo motor code and check the servo drive and motor compatibility according to the table below. If the dn08 preset is not according to the list below then contact your supplier.


The motor model code is stored in parameter Cn30.

dn-08 Display			Motor Standards		Encoder
Cn030 Setting	Drive Model	Motor Model	Watt (W)	Speed (rpm)	Specification
H1011		JSMA-SCP5AB	50	3000	2500
H1021	ICDE 40	JSMA-SC01AB	100	3000	2500
H0030	JSDE-10	JSMA-SC02AF	200		2000
H1043		JSMA-TC02AB	200	3000	2500
H0121		JSMA-LC03AB	300	3000	2500
H0130		JSMA-SC02AF	200	2000	2000
H1133	ISDE 15	JSMA-TC02AB	200	3000	2500
H0140	JSDE-15	JSMA-SC04AF		3000	2000
H1141		JSMA-SC04AB	400		2500
H1143		JSMA-TC04AB			2500
H0211		JSMA-LC08AB	750	3000	2500
H0220		JSMA-SC04AF	400	3000	2000
H1221		JSMA-SC04AB			2500
H1223	JSDE-20	JSMA-TC04AB			2500
H0230	J3DE-20	JSMA-SC08AF	750	3000	2000
H1233		JSMA-TC08AB	750		2500
H0241		JSMA-MA05AB	- 550	1000	2500
H0251		JSMA-MH05AB	330	1500	2500
H0310		JSMA-SC08AF	750	3000	2000
H1313		JSMA-TC08AB	- 750		2500
H0321	JSDE-30	JSMA-MA10AB	1000	1000	2500
H0331		JSMA-MB10AB		2000	2500
H0341		JSMA-MH10AB		1500	2500
H0351		JSMA-MC10AB		3000	2500


1-2 Surface and Panel Board

JSDE-10 / JSDE-15

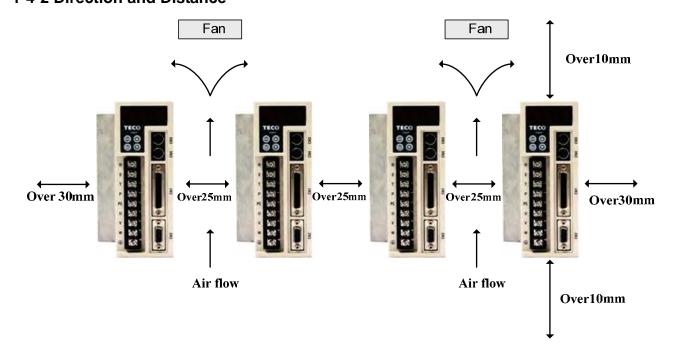
JSDE-20 / JSDE-30

Key Board

1-3 A Brief Introduction of Operation for Drives

There are many kinds of control-mode. The detail modes display as fellow:

	Name		Name		Explanation
	Position Mode (External Pulse Command)	Pe	Position control for the servo motor is achieved via an external pulse command. Position command is input from CN1.		
	Position Mode		Position control for the servo motor is achieved via by 16		
	(Internal Position	Pi	commands stored within the servo controller. Execution of the		
Cim ala	Command)		16 positions is via Digital Input signals.		
Single Mode	Speed Mode	S	Speed control for the servo motor can be achieved via parameters set within the controller or from an external analog -10 ~ +10 Vdc command. Control of the internal speed parameters is via the Digital Inputs. A maximum of three steps speed can be stored internally.		
	Torque Mode	Т	Torque control for the servo motor can be achieved via parameters set or from an external analog -10 ~ +10 Vdc command.		
			Pe and S can be switched by digital-input-contact-point.		
Multiple Mode		Pe-T	Pe and T can be switched by digital-input-contact-point.		
		S-T	S and T can be switched by digital-input-contact-point.		

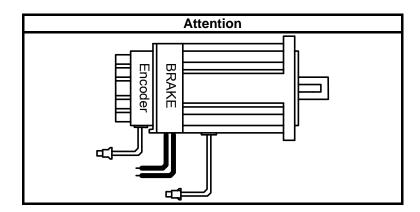

1-4 Conditions for Installation of Drives

1-4-1 Environmental Conditions

The product should be kept in the shipping carton before installation. In order to retain the warranty coverage, the AC drive should be stored properly when it is not to be used for an extended period of time. Some storage suggestions are:

- Ambient Temperature: 0 ~ + 55 deg C. Ambient Humidity: Under 85% RH (Under the condition of no frost).
- Stored Temperature: 20 ~ + 85 deg C. Stored Humidity: Under 85%RH (Under the condition of no frost).
- Vibrating: Under 0.5 G.
- Do not mount the servo drive or motor in a location where temperatures and humidity will exceed specification.
- To avoid the insolation.
- To avoid the erosion of grease and salt.
- To avoid the corrosive gases and liquids.
- To avoid the invading of airborne dust or metallic particles.
- When over 1 Drives are installed in control panel, enough space have to be kept to get enough air to prevent the heat, the fan also must be installed, to keep the ambient temperature under 55 deg C.
- Please Install the drive in a vertical position, face to the front, in order to prevent the heat.
- To avoid the metal parts or other unnecessary things falling into the drive when installing.
- The drive must be stable by M5 screws.
- When there were the vibrating items nearby, please using vibration-absorber or installing anti-vibration-rubber, if the vibration can not be avoided.
- When there is any big-size magnetic switch, welding machines or other source of interference. Please install the filter. When the filter is installed, we must install the insulation transformer.

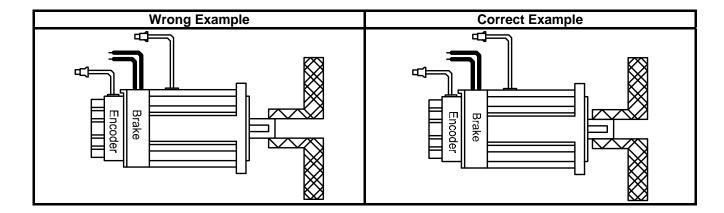
1-4-2 Direction and Distance

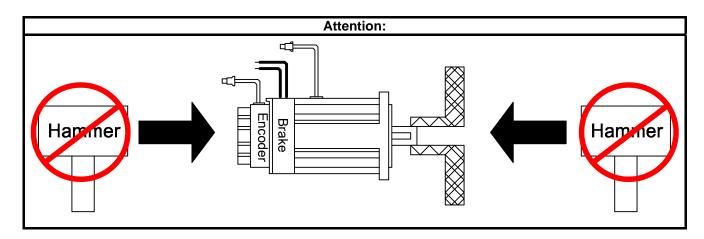

1-5 Conditions for Installation of Servo Motors

1-5-1 Environmental Conditions

- Ambient Temperature: 0 ~ + 40 deg C. Ambient humidity: Under 90% RH (No Frost).
- Storage Temperature: 20 ~ + 60 deg C. Storage temperature: Under 90%RH (No Frost).
- Vibration: Under 2.5 G.
- In a well-ventilated and low humidity and dust location.
- Do not store in a place subjected to corrosive gases, liquids, or airborne dust or metallic particles.
- Do not mount the servo motor in a location where temperatures and humidity will exceed specification.
- Do not mount the motor in a location where it will be subjected to high levels of electromagnetic radiation.

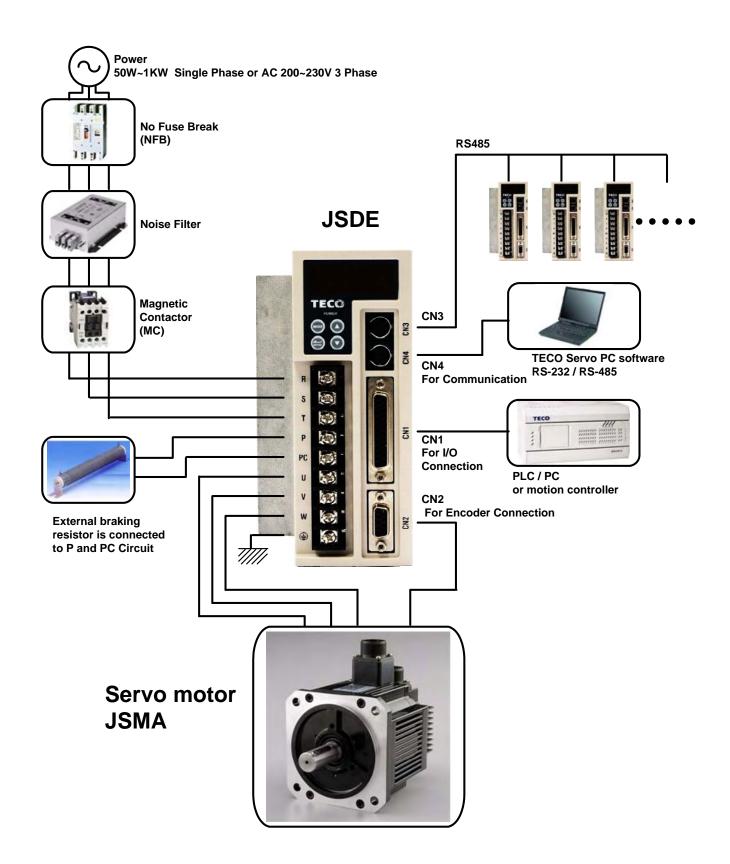
1-5-2 Method of Installation


1. Horizontal Install: Please let the cable-cavity downside to prevent the water or oil or other liquid flow into the servo motor.


2. Vertical Install: If the motor shaft is side-up installed and mounted to a gear box, please pay attention to and avoid the oil leakage from the gear box.

1-5-3 Notice for install motor

- 1. Please using oil-seal-motor to avoid the oil from reduction gear flowing into the motor through the motor shaft.
- 2. The cable need to be kept dry.
- 3. Please fixing the wiring cable certainly, to avoid the cable ablating or breaking.
- 4. The extending length of the shaft shall be enough, otherwise there will be the vibration from motor operating.


5. Please do not beat the motor when installing or taking it apart. Otherwise the shaft and the encoder of backside will be damaged.

Chapter 2 Wiring

2-1 Basic Wiring for Servo System

2-1-1 Wiring for Main Circuit and Peripheral Devices

2-1-2 Wiring for Servo Drives

- The wire material must go by "Wiring Specifications."
- Wiring Length: Command Input Wire: Less than 3m.

Encoder Input Wire: Less than 20m.

The Wiring goes by the shortest length.

- Please wire according to the standard wiring schema. Don't connect if no using.
- Motor output terminal (U,V,W) must be connected correctly. Otherwise the servo motor will abnormally function.
- Shielded cable must be connected to FG terminal.
- Don't install the capacitor or Noise Filter at the output terminal of servo drive.
- At the control-output-signal relay, the direction of surge absorb diode must be correctly connected, otherwise it can not output signal, and cause the protect loop of emergency-stop abnormal.
- Please do these below to avoid the wrong operation from noise:

Please install devices such as the insulated transformer and noise filter at the input power.

Keep more than 30 cm between Power wire (power cable or motor cable...etc.) and signal cable, do not install them in the same conduit.

- Please set "emergency-stop switch" to prevent abnormal operation.
- After wiring, check the connection-situation of each joint (ex: loose soldering, soldering point short, terminal order incorrect...etc.). Tighten the joints to confirm if surly connected to the servo drive, if the screw is tight. There can not be the situations such as cable break, cable pulled and dragged, or be heavily pressed.
 - * Especially pay attention to the polarity between servo motor wiring and encoder.
- There is no necessary to add extra regeneration resistance under general situation. If there is any need or problem, please connect to distributor or manufacturer.

2-1-3 Specifications of Wiring

	Connecti	ion Terminal	Servo Drives and Wire Specifications			
Connection Terminal	Mark (Sign) Name of Connect Terminal		JSDE-10	JSDE-15	JSDE-20	JSDE-30
	R, S, T	Main Power Terminal	2.0mm ² A.W.G.14	2.0mm ² A.W.G.14	2.0mm ² A.W.G.14	2.0mm ² A.W.G.14
ТВ	U, V, W	Motor Terminal	2.0mm ² A.W.G.14	2.0mm ² A.W.G.14	2.0mm ² A.W.G.14	2.0mm ² A.W.G.14
Terminal	P, Pc	Regeneration Resistor Terminal	2.0mm ² A.W.G.14	2.0mm ² A.W.G.14	2.0mm ² A.W.G.14	2.0mm ² A.W.G.14
	 	Ground	2.0mm ² A.W.G.14	2.0mm ² A.W.G.14	2.0mm ² A.W.G.14	2.0mm ² A.W.G.14
Connect Terminal	Connect Point No.	Connect Point Name	JSDE-10	JSDE-15	JSDE-20	JSDE-30
	12,25	Analog command input (SIN, PIC)	0.2mm ² or 0.3mm ² , Twisted-pair-cable connecting			
	13	Analog Ground Terminal(AG)	to the Analog Grounding wire (including shield cable			
	1~3 14~16	Digital input Terminal(DI)				
CNIA	18~20	Digital output terminal(DO)				
CN1 Joint Control Signal	8	Output 24V (IP24)	0.2mm ² or 0.3mm ² , Twisted-pair-cable connecting to the I/O Grounding wire (including shield cable)			
Signal	17	Input 24V (DICOM)	Input 24V (DICOM)			
	24	Digital Ground terminal(IG24)				
	4~7	Position Command Input (Pulse, Sign)	Sign) 0.2mm ² or 0.3mm ² , Twisted-pair-cable (inclu		e (including	
	9~11 21~23	Encoder Signal Output (PA, /PA, PB, /PB, PZ, /PZ)	shield cable)			
	5	Output 5V (+5E)	r 0.2mm ² or 0.3mm ² , Twisted-pair-cable (including shield cable)			
CN2 Joint of encoder	4	Output Grounding wire of power supply(GND)				
	1~3 7~9	Encoder Signal Input (A, /A, B, /B, Z, /Z)				
CN3 Joint of Communication	5,7	RS-485 Communication				
	1,4	RS-232 Communication	0.2mm ² or 0.3mm ² , Twisted-pair-cable (including shield cable)			
CN4 Joint of Communication	3	Communication grounding				
	5,7	RS-485 Communication				

P.S.: 1. Select a proper capacity for NFB and noise filter when several Servo drives is connected.

^{2.} CN1 is 25 Pins D-SUB connector, CN2 is 9 Pins D-SUB connector

^{3.} CN3, CN4 are 8 Pins MINI DIN JACK.

2-1-4 Motor Terminal Layout

A Table of Motor-Terminal Wiring

(1) General Joint:

Terminal Symbol	Cable Color	Signal
1	Red	U
2	White	V
3	Black	W
4	Green	FG
Brake control wire	Fine red	DC +24V
brake control wire	Fine yellow	0V

(2) Military Specifications Joint (No Brake):

Terminal	Cable Color	Signal
А	Red	U
В	White	V
С	Black	W
D	Green	FG

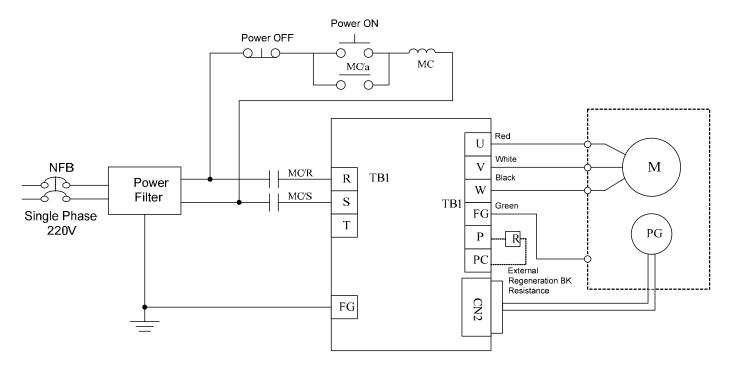
(3) Military Specifications Joint(Brake):

Terminal	Cable Color	Signal		
В	Red	U		F A
G	White	V		
E	Black	W		
С	Green	FG		
А	Fine red	PK control wire	DC +24V	D C
F	Fine yellow	BK control wire	0V	

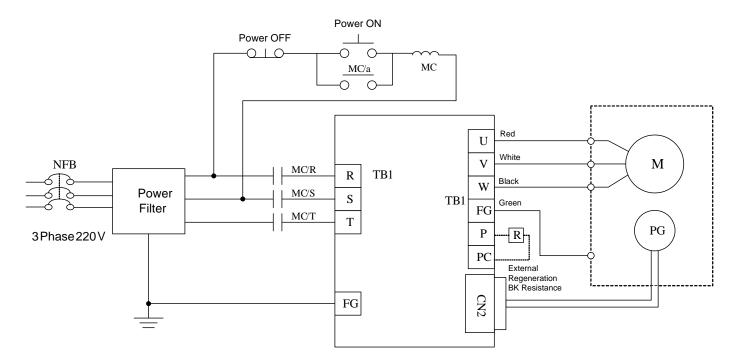
P.S.: The military joint with BK of servo motor has 9 Pins; and the encoder joint has also 9 Pins. Please confirm before wiring.

Table of Motor-Encoder Wiring

(1)General Joint:


Terminal Symbol	Cable Color	Signal
1	White	+5V
2	Black	0V
3	Green	А
4	Blue	/A
5	Red	В
6	Purple	/B
7	Yellow	Z
8	Orange	/Z
9	Shield	FG

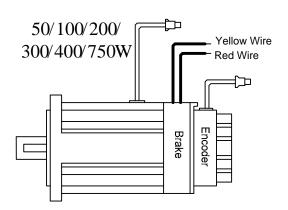
(2) Military Specifications Joint

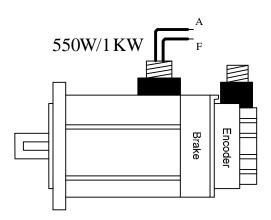

Terminal Symbol	Cable Color	Signal
В	White	+5V
I	Black	0V
А	Green	А
С	Blue	/A
Н	Red	В
D	Purple	/B
G	Yellow	Z
E	Orange	/Z
F	Shield	FG

2-1-5 Typical Wiring for Motor and Main Circuit

* The Wiring Example of Single Phase Main Power (Less than 1KW)

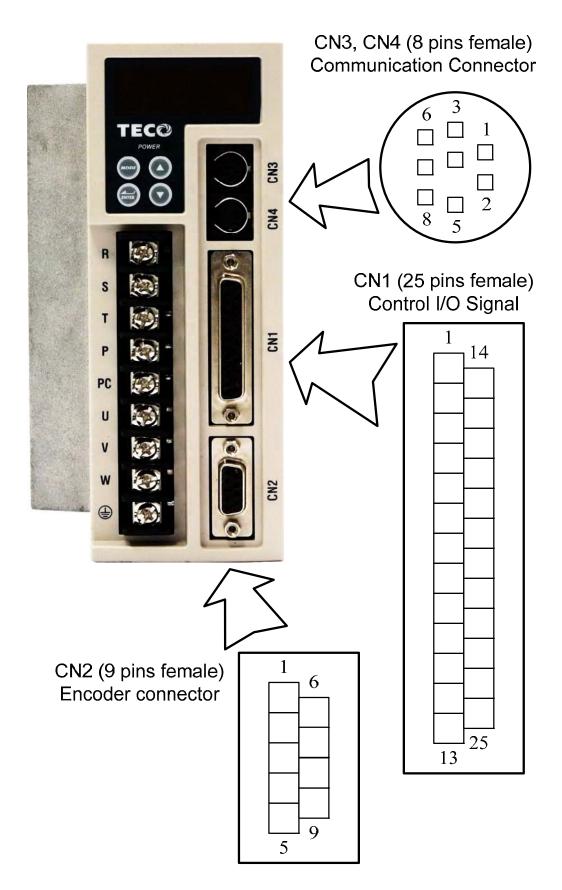
* The Wiring Example of 3 Phase Main Power (More than 1KW)

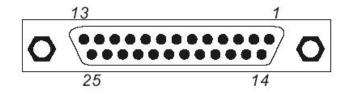

2-1-6 TB Terminal


Name	Terminal Sign	Detail		
	R			
Main circuit power input terminal	S	Connecting to external AC Power. Single / 3 Phase 200~230VAC +10 ~ -15% 50/60Hz ±5%		
	Т			
External regeneration	Р	When using external regeneration, set the resistance power in Cn012.		
resistance terminal	PC	Please refer to manual to see resistance value		
	U	Motor terminal wire is red		
Motor-power output terminal	V	Motor terminal wire is white		
	W	Motor terminal wire is black		
Motor-case grounding terminal	<u></u>	Motor terminal wire is green or yellow-green.		

2-1-7 Wiring for Mechanical Brake

Uninstall BRAKE:


- 50/100/200/300/400/750W series: Use Red wire and yellow wire connecting to DC +24V voltage(No polarity)
- 550/1KW series: BK outputs from A & F of **Motor Power Joint**, servo motor can operate normally after uninstalling.


2-2 I/O Terminal

There are 4 groups of terminal, which contain CN3 and CN4 communication terminal, CN1 control I/O signal terminal and CN2 encoder terminal. The diagram below displays all positions for the terminal.

2-2-1 CN1 Input and Output terminals

(1) CN1 Terminal Layout:

Pin No.	Name	Function	Pin	Name	Function
1	DI-1	Digital Input Terminal 1	No.	- Traine	- unotion
			14	DI-2	Digital Input Terminal 2
2	DI-3	Digital Input Terminal 3	15	DI-4	Digital Input Terminal 4
3	DI-5	Digital Input Terminal 5			g
4	Pulse	Dulas Commond Invest(1)	16	DI-6	Digital Input Terminal 6
4	Pulse	Pulse Command Input (+)	17	DICOM	Digital input common
5	/Pulse	Pulse Command Input (-)			
6	Sign	Position Symbol Command	18	DO-1	Digital output Terminal 1
	3.9	Input (+)	19	DO-2	Digital output Terminal 2
7	/Sign	Position Symbol Command Input (-)	20	DO 3	Digital autout Tagain al. 2
8	IP24	+24V Power Output	20	DO-3	Digital output Terminal 3
			21	PA	Encoder output A Phase
9	/PA	Encoder output /A Phase	22	PB	Encoder output B Phase
10	/PB	Encoder output /B Phase			Emodel output 5 Filade
44	(0.7	Facilities to 1. 17 Physics	23	PZ	Encoder output Z Phase
11	/PZ	Encoder output /Z Phase	24	IG24	+24V PW ground terminal
12	SIN	Speed or Torque analog command input			Torque command speed
13	AG	Analog Signal Ground	25	PIC	limited
13	AG	Analog Signal Ground			

P.S.

- 1. Digital input and Digital output is programmable, setting method refer to parameter Hn501 ~ Hn 509.
- 2. Digital input and Digital output shield signal should connect to FG $\stackrel{\perp}{=}$ terminal.

(2) CN1 Signal Name and Explanation:

(a) General I/O Signal:

Explanation of General I/O Signal Function

Signal Name	Function Symbol	Pin No.	Wired Mode	
Position Pulse Command Input	Pulse	4		
Position Puise Command input	/Pulse	5	IO3	
Position Symbol Command	Sign	6	103	
Input	/Sign	7		
Speed / Torque Analog Command Input	SIN	12	IO5	
Speed / Torque Analog / Limit Command Input	PIC	25	105	
Encoder Output A Phase	PA	21		
Encoder Output /A Phase	/PA	9		
Encoder Output B Phase	РВ	22	104	
Encoder Output /B Phase	/PB	10	104	
Encoder Output Z Phase	PZ	23		
Encoder Output /Z Phase	/PZ	11		
Home Signal Output	PZ	11	IO2	
Digital input COM	DICOM	17		
Analog Signal Ground Terminal	AG	13		
+24V PW Output	IP24	8		
+24VPW Ground Terminal	IG24	24		

Explanation of General I/O Signal Function

Signal Name	Function Symbol	Mode	I/O Operation and Function	Chapter
Position Pulse Command Input	Pulse /Pulse	Pe	The Driver can receive 3 kinds of Command below: . (Pulse)+ (Sign)	5-4-1
Position Sign	Sign	16	. (CCW)/ (CW)Pulse	3-4-1
Command Input	/Sign		. AB Phase pulse	
Speed Analog command Input	SIN	S	In Speed Mode, when external speed command is operated at SPD1=0, SPD2=0, input the voltage range: -10V~+10V, Sn216 can be set input voltage: ±10V's Motor output speed.	
Torque Analog Command Input		Т	In Torque Mode, input the voltage range -10~+10V, Tn103 can be set input voltage ±10V's motor output torque.	5-2-1 5-2-2
Torque Control Speed Limit Command		Т	In Torque Mode, when external speed limit is operated at input connect point SPD1=0 & SDP2=0(P.S), input voltage range: 0~+10V, 10V's speed limit stands for motor's ratio speed.	5-2-6
Position/Speed Torque Limit Command	PIC	Pi Pe S	In Speed Mode, when external torque limit is be used at input connect point TLMT=1(P.S.) , input voltage range: 0~+10V , to input 10V will limit the motor CCW torque is 300% of rate torque.	5-3-10
Encoder Output A Phase	PA			
Encoder Output / A Phase	/PA		Outputting the Motor Encoder Signal through pulse per rotation	
Encoder Output B Phase	РВ	ALL	handle. The pulse quantity of every rotating can be set in Cn005 .	
Encoder Output / B Phase	/PB	ALL	When "1" is set in Cn004 , it is CCW rotation from the motor load terminal direction, and A Phase gets 90 degree ahead B Phase.	
Encoder Output Z Phase	PZ		Signal Output is Line Driver.	
Encoder Output / Z Phase	/PZ			
Analog Signal Ground Terminal	AG	ALL	Analog signal grounding: CN1 - > Pin 12, 25.	
Digital input COM Terminal	DICOM	ALL	Digital input power supplement common terminal.	
+24V PW Output	IP24	ALL	+24V power output terminal(Max. 0.2A).	_
+24V PW Ground Terminal	IG24	ALL	+24V power grounding terminal	_

P.S.: "1" stands for "close loop with **IG24**"; "0" stands for "open loop with **IG24**". PW is abbreviation of Power

(b) Digital I/O Signal:

For many kinds of application, the digital input/output terminal layout of all operation mode are accordingly different. In order to provide more functions, our drives can provide multi terminal layout settings. Users can set these functions for application.

Digital input terminal layout provides 6 (**Pin1~13**, **14~16**) programmable terminal; digital output terminal provides 4 (**Pin18~20**) programmable terminals. The diagram below shows the default digital input/output terminal placement and functions. Please refer to 5-6-1 to check related parameters setting.

Default Digital Input Terminal placement Functions and Wired Mode

Signal	Terminal Layout	Default Function	Pin No.	Wired Mode
Servo ON	DI-1	SON	1	
Alarm reset	DI-2	ALRS	14	
PI/P Switch	DI-3	PCNT	2	101
Servo Lock	DI-4	LOK	15	101
Internal speed command 1	DI-5	SPD1	3	
External Torque Limit	DI-6	TLMT	16	1

Default Digital Input Terminal Layout Functions and Wired Mode

Signal	Terminal Layout	Default Function	Pin No.	Wired Mode
Servo ready	DO-1	RDY	18	
Alarm	DO-2	ALM	19	IO1
Zero speed	DO-3	ZS	20	

Digital Input Function

(Except CCWL and CWL are high electric potential, other terminal layout are low electric potential. Please refer to 5-6-1 to see related parameters)

Signal Name	Function Sign	Mode	I/O Function						
Servo On	SON	ALL	Servo OFF. At SON (servo or	ttention: n) can n	Before power on, to be operated to a		5-6-3 5-6-4		
Abnormal Reset	ALRS	ALL	abnormality. B	ALRS and IG24 close loop: Relieving the stop-situation from of abnormality. But the abnormality of encoder or memory will cause the same alarm again. Please reset power after the abnormality is eliminated.					
PI/P switch	PCNT	Pi/Pe/S	PCNT and IG24	close l		speed loop control gration control.	5-3-11		
CCW Operation limit	CCWL	ALL			ravel detector: CC\ CCW over travel	W L and IG24 close loop; operates.	5-4-8 5-6-3 5-6-4		
CW Operation limit	CWL	ALL			vel detector: CWL CW over travel ope	and IG24 close loop; erates.	5-4-8 5-6-3 5-6-4		
External torque limit	TLMT	Pi/Pe/S	to stay in the co	mmand	oop will cause the r -voltage range of rout (PIC、NIC).	notor-output-torque-limit	5-3-10		
Pulse error amount delete	CLR	Pi/Pe	When CLR and	When CLR and IG24 close loop, delete the pulse amount in the Position Error Counter.					
Servo lock	LOK	S	When LOK and IG24 close loop will transform speed control mode into position control mode in order to lock the motor at the last position.						
Emergency stop	EMC	ALL	When EMC and IG24 close loop: Emergency stop -> Servo Off and exit the rotating statue, and Cn008 will decide if the dynamic Brake operates.						
Internal speed command / limit			SPD2	SPD1	Speed Command (Speed Mode) External	Speed Limit Command (Torque Mode) External limit(PIC)			
select 1 Internal speed	SPD1 SPD2	S/T			command(SIN)	. ,	5-2-6 5-3-1		
command / limit select 2			0	1	Sn201	Tn105			
301001 2			1	0	Sn202	Tn106			
			Internal speed s "1": Close loop v "0": Open loop v	with IG2	<u>.</u> 4	Tn107			

Digital Input Function Explanation

(Except CCWL and CWL are the high electric potential, other terminal layout are the low electric potential, please refer to 5-6-1 to check related parameters setting)

Signal Name	Function Symbol	Mode	I/O Function				
Control Mode Switch	MDC	Pe/S/T	When MDC and IG24 close loop, current control mode will transform into default control mode, please refer to Cn001 .	5-1 5-6-2			
Position Command Limit	INH	Pe	When INH and IG24 close loop, position command input does not operate (do not accept external pulse command).	5-4-1			
Speed Command Counter Wise	SPDINV	S	When SPDINV and IG24 close loop in speed mode, setting rotating speed will become counter-wise rotating speed.	5-3-7			
Gain Select	G-SEL	Pi/Pe/S	When G-SEL and IG24 close loop, first stage control gain switch to the second control gain.	5-3-11			
Electric Gear ratio Numerator 1~2	GN1 GN2	Pi/Pe	Electric gear ratio: select explanation: GN2 GN1 Electric Gear ratio Numerator 0 0 Pn302 0 1 Pn303 1 0 Pn304 1 1 Pn305 "1": Close loop with IG24 "0": Open loop withIG24				
Internal Position Command Trigger	PTRG	Pi	When PTRG and IG24 close loop (positively-triggered), the motor will select related position command to operate in accordance with the terminal layout POS1~POS4 .	5-4-8			
Internal Position Command Hold	PHOLD	Pi	When PHOLD and IG24 close loop(positively-triggered), the motor will stay holding.				
Home	SHOME	Pi/Pe	When SHOME and IG24 close loop(positively-triggered), HOME function operates				
External Origin	ORG	Pi	When ORG and IG24 close loop(positively-triggered), server will use this as external reference point for home position returning.				

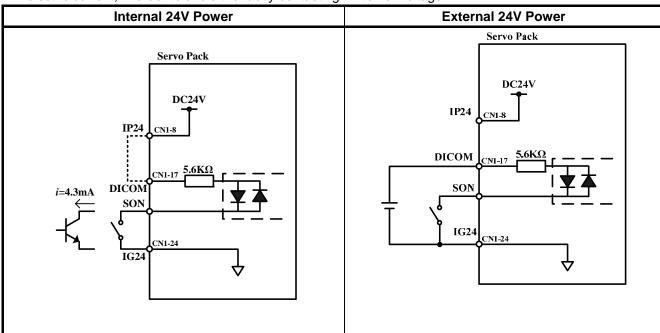
Digital Input Function Explanation

(Except CCWL and CWL are the high electric potential, other terminal layout are the low electric potential, please refer to 5-6-1 to check related parameters setting)

Signal Name	Function Symbol	Mode			1/	O Functi	on	Chapter
Internal Position Command select 1~4	POS1 POS2 POS3 POS4	Pi	POS4	POS3 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 without the position coop with	POS2 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0	POS1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1	Internal Position Command select Pn317, Pn318 Pn320, Pn321 Pn323, Pn324 Pn326, Pn327 Pn329, Pn330 Pn332, Pn333 Pn335, Pn336 Pn338, Pn339 Pn341, Pn342 Pn344, Pn345 Pn347, Pn348 Pn350, Pn351 Pn353, Pn354 Pn356, Pn357 Pn359, Pn360 Pn362, Pn363	5-4-2
Torque Command Reverse	TRQINV	Т	When TRQINV and IG24 close loop in torque mode, torque command become a reverse direction.				5-2-4	

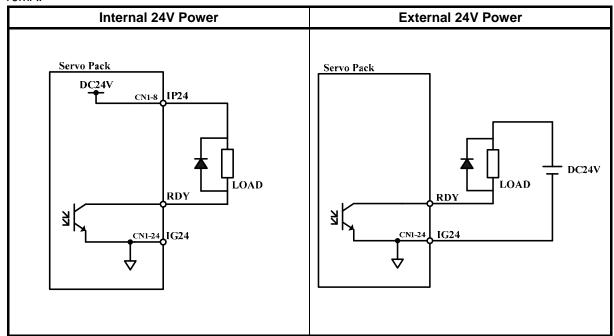
Digital Output Function Explanation

(The terminal layout here from this explanation are all the low electric potential, please refer to 5-6-1 to check parameter settings)

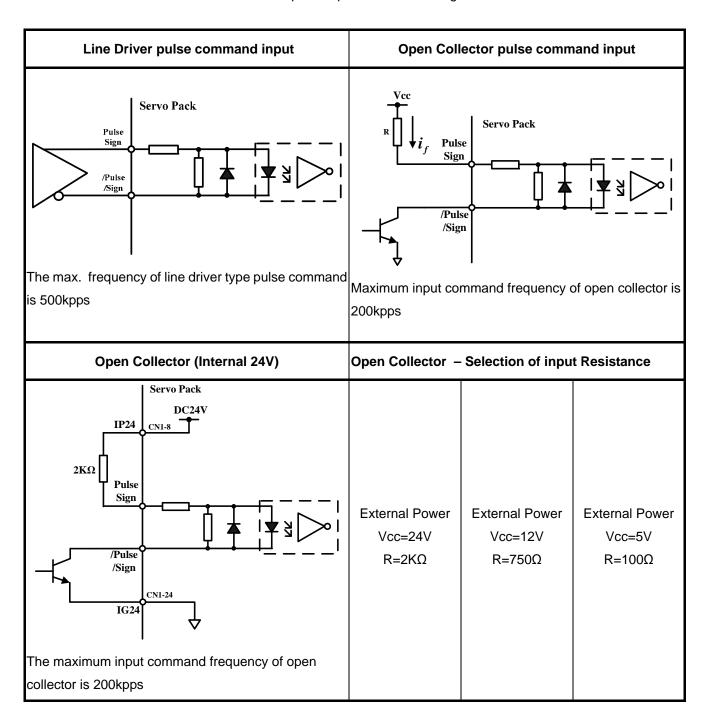

rameter settings,	•			
Signal Name	Function Symbol	Mode	I/O Function	
Servo Ready	RDY	ALL	Main power and control power input are normal. Under the situation of no alarm, terminal layouts RDY and IG24 close loop.	_
Alarm	ALM	ALL	If normally operates, the terminal layouts ALM and IG24 open loop. When alarm occurs, protection-function operates, the terminal and IG24 close loop.	_
Zero Speed	zs	S	When the motor speed is less than the speed from Sn215 , the terminal layout ZS and IG24 close loop.	5-3-12
BK Signal	ВІ	ALL	When Cn008 is set "1" or "3" and the servo on, the terminal layout BI and IG24 close loop; when servo off, terminal layout and IG24 open loop. (When this terminal layout is generally applied, it is the Brake relay, which is connected to control motor).	5-6-4 5-6-5
In Speed	INS	S	When the motor speed has achieved the setting speed from Cn007 , INS and IG24 close loop.	5-3-12
In Position	INP	Pi/Pe	When the amount of position error counter is less than the amount range which is set in Pn307 , INP and IG24 close loop.	5-4-9
Home	HOME	Pi/Pe	When HOME is accomplished, HOME and IG24 close.	5-4-8
In Torque	INT	ALL	When the output torque reach setting value of Tn108, INT and IG24 became a close loop.	

(3) CN1 Interface Circuit and Wire Mode:

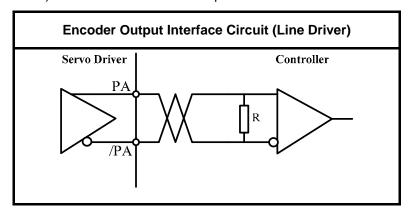
The diagram below introduces all interface circuit of CN1 and wire-method of host controller.


(a) Digital input interface circuit (IO1):

Digital input interface circuit can be operated by relay or collector transistor circuit. The relay should be the low electric current, in order to avoid the faulty contacting. External voltage: 24V.

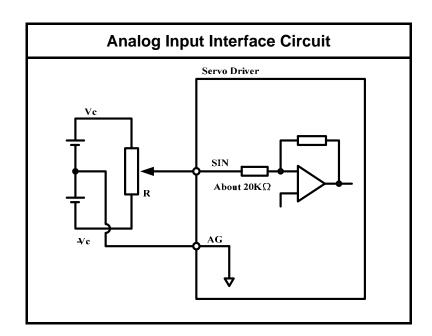

(b) Digital Output Interface Circuit (IO2):

When using external power, please attention to the power polarity. Adverse polarity will case circuit damage. Digital output is "Open Collector". The maximum of external voltage is 24V, and the maximum electric current is 10mA.

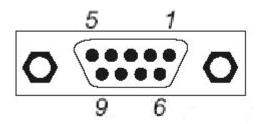

(C) Pulse Command Input Interface Circuit (IO3):

Suggesting to use the input method of Line Driver to send the pulse command. The maximum input command frequency is 500kpps. Using the input method of Open Collector will cause the decrease of input command frequency, the maximum input command frequency is 200kpps. The servo provides only 24V power, and other power should be prepared. Adverse polarity of power will cause the servo damage. The maximum of External power (Vcc) is 24V limited. Input current is about 8~15mA. Please refer to the examples below to select resistance. Please refer to 5-4-1 to check pulse input command timing.

(d) Encoder Output Interface Circuit (IO4):


Encoder output interface circuit is the output method of Line Driver, please let end terminal resistance($R=200\sim330\Omega$) connect to Line Receiver input terminal.

(e) Analog Input Interface Circuit (IO5):


There is sometimes ripple inside the servo internal power. Adverse external power polarity will cause severe damage. Maximum external power voltage (Vc) should be less than 12V; terminal input voltage should not more than 10V. Over voltage will cause damage. When using internal power of server, user need to choose the resistance (suggestion: more than $3K\Omega$), which maximum current is less than 10mA.

SIN Input impedance: $15K\Omega$ PIC Input impedance: $40K\Omega$ NIC Input impedance: $20K\Omega$

2-2-2 Encoder Connector (CN2) Terminal Layout

(1) Diagram of CN2 Terminal:

Pin	Name	Function				
No.	IVAIIIE	i diletion	Pin	Name	Function	
1	В	Encoder B Phase Input	No.	Name	Tunction	
'		Elicodel B Fliase Iliput	6			
2	/A	Encoder /A Phase	J			
	// \	Input	7	/Z	Encoder /Z Phase	
3	A	Encoder A Phase Input		,,_	Input	
	, ,	Ellouder AT hase input	8	Z	Encoder Z Phase Input	
4	GND	+5V PW Ground			Enough En nace input	
		Terminal	9	/B	Encoder /B Phase Input	
5	+5E	+5V PW Output Terminal		,,,	2.100 dol 78 1 11doo niput	
		- C				

P.S.: Do not wire to the terminal, which is un-operated.

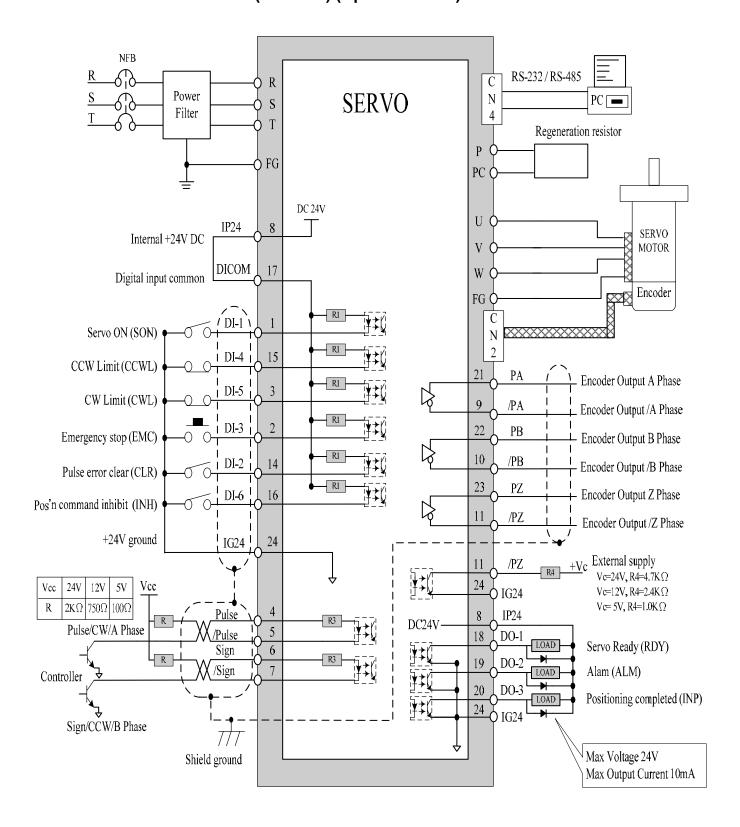
(2) Name and Explanation of I/O Signal:

	Pin Signal Name Cod		Encode No. and	r Output d Color	
Pin No.	Signal Name	Code	General Joint	Plug-in Joint	Terminal Layout Function
			9 wires (fewer wiring)	Output No.	
5	Power output + Terminal	+5V	white	В	5V Power for encoder (provided from driver). When the cable is more than 20m, user should separately use 2 cables to avoid decreasing
4	Power output - Terminal	0V	Black	I	voltage of encoder. When the cable is more than 30m, please contact to the distributorship.
3	A Phase encoder	Α	Green	Α	Encoder A Phase: From motor terminal to the
2	input A	/A	Blue	С	driver.
1	B Phase encoder	В	Red	Н	Encoder B Phase: From motor terminal to the
9	input	/B	Pink	D	driver.
8	Z Phase encoder	Z	Yellow	G	Encoder Z Phase: From motor terminal to the
7	input	/Z	Orange	E	driver.
6	No operated		-		Do not wire.

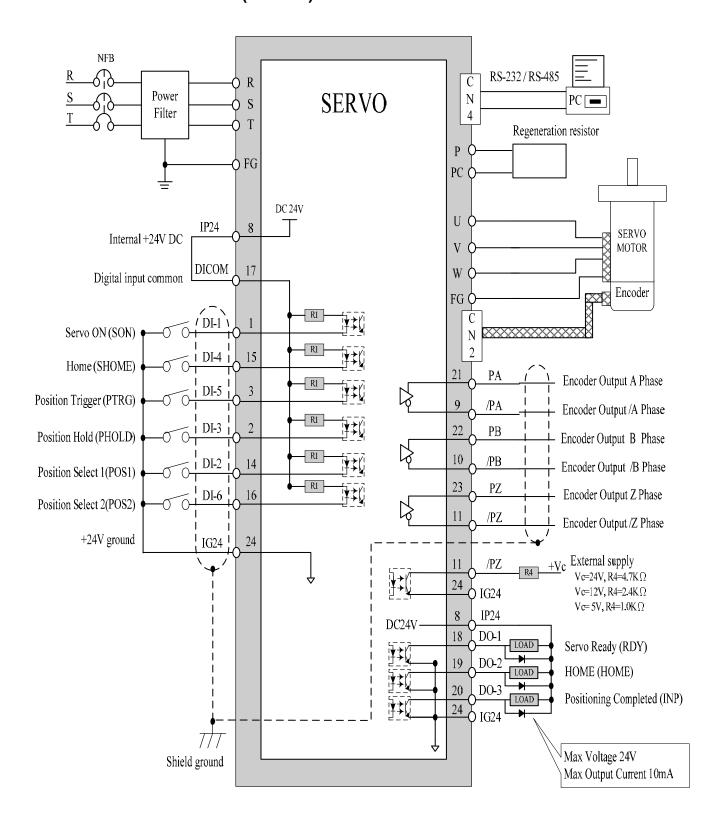
2-2-3 Encoder Connector (CN3/CN4) Terminal Layout

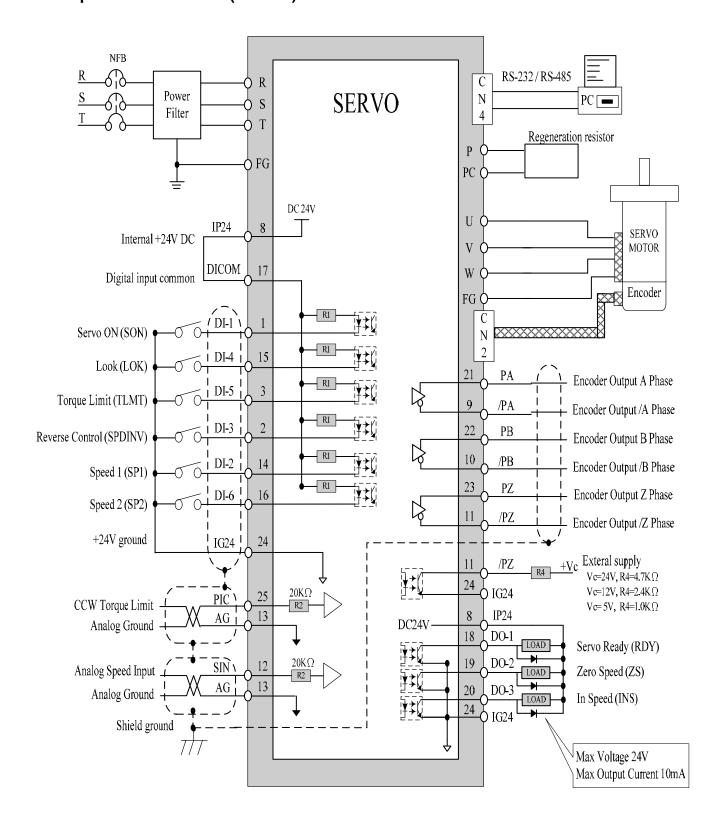
Diagram of CN3/CN4 Terminal:

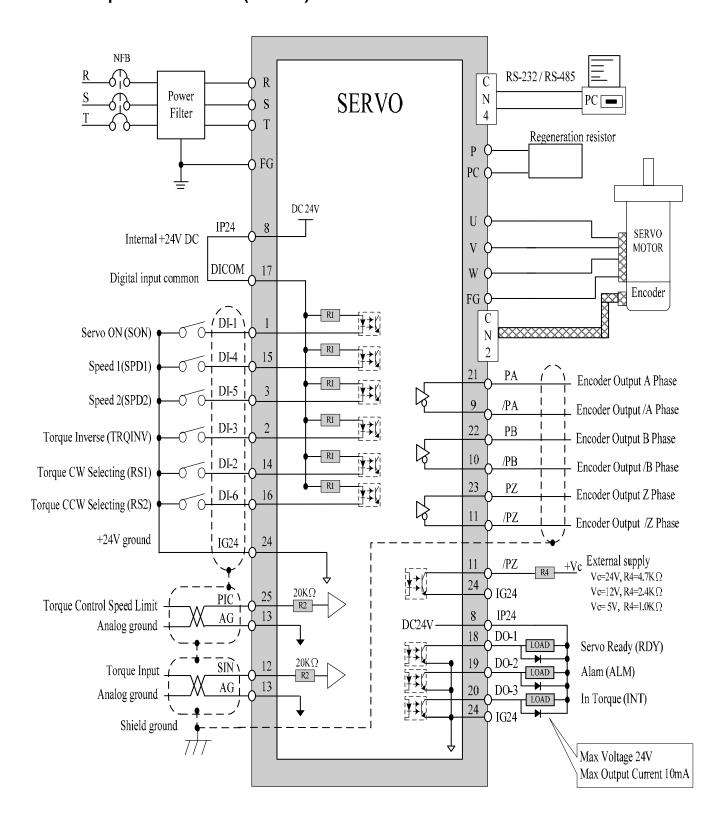
	CN3	3 for RS-485	С	CN4 for RS232 and RS-485			
Pin NO.	Name	Function	Pin NO.	Name	Function		
1			1	RxD	RS-232 Serial data receive		
2			2	_			
3			3	GND	RS-232 Signal Ground		
4			4	TxD	RS-232 Serial data transmit		
5	Data+	RS-485 Serial data communication (+)	5	Data+	RS-485 Serial data communication (+)		
6			6				
7	Data-	RS-485 Serial data communication (-)	7	Data-	RS-485 Serial data communication (-)		
8			8				


P.S: Do not wire to the terminal, which is un-operated.

2-3 Typical Circuit Wiring Examples

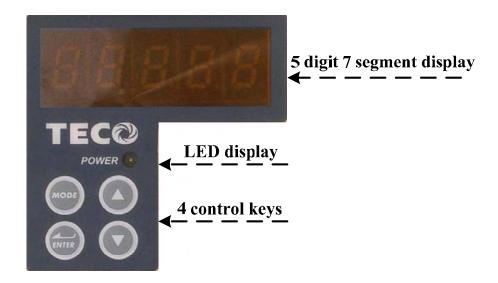

2-3-1 Position Control Mode (Pe Mode) (Line Driver)


2-3-2 Position Control Mode (Pe Mode) (Open Collector)


2-3-3 Position Control Mode (Pi Mode)

2-3-4 Speed Control Mode (S Mode)

2-3-5 Torque Control Mode (T Mode)



Chapter 3 Panel Operator / Digital Operator

3-1 Panel Operator on the Drives

The operator keypad & display contains a 5 digit 7 segment display, 4 control keys and one Power status LED (Green) is lit when the power is applied to the unit.

Power on to light up charge LED and gradually dark when internal main circuit discharge accomplished.

Key	Name	Function Keys Description
MODE	MODE/SET	 To select a basic mode, such as the status display mode, utility function mode, parameter setting mode, or monitor mode. Returning back to parameter selection from data-setting screen.
	INCREMENT	Parameter Selection. To increase or decrease the set value.
	DECREMENT	3. Press and at the same time to RESET ALARM .
ENTER	DATA SETTING & DATA ENTER	 To confirm data and parameter item. To shift to the next digit on the left. To enter the data setting (press 2 sec.)

After power on, MODE button can be used to select 9 groups of parameter.

By pressing the Mode key repeatedly once at a time you can scroll trough the displays below.

Step	Key	LED Display after Operation	Description
1	Power on		Drive status parameters.
2	MODE		Diagnostic parameters.
3	MODE		Alarm parameters.
4	MODE		System Control parameters.
5	MODE		Torque Control parameters.
6	MODE		Speed Control parameters.
7	MODE		Position Control parameters.
8	MODE		Quick set up parameters.
9	MODE		Multi function I/O (programmable Inputs/Outputs) Parameters.
10	MODE	HUZDÍ	Return to Drive status parameters.
11	MODE	-	Drive status parameters again.

Once the first parameter in a parameter group is displayed use **Increment** or **Decrement** keys to select the required parameter then use **Enter** key in order to view and alter the parameter setting, once this is done then press **Enter** key again to save the change.

Notes: On each parameter display the first digit will be flashing, the enter key can be used to move between digits.

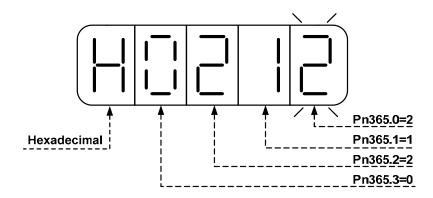
Example procedures are shown below: -

Ex: Setting Speed Parameter Sn203 to 100rpm.

Step	Key	LED Display after Operation	Description
1	Power On	- - - - - - - - - - - - -	Display status of servo drive
2	MODE		Press MODE-Key 6 times to select Sn 201
3			Press INCRMENT- Key twice Sn203 is displayed.
4	ENTER		To view the Sn203 preset value by press ENTER-Key for 2 seconds
5	ENTER		Shift to the second digit by press ENTER- Key once

Step	Key	LED Display after Operation	Description
6	ENTER		Shift to next Digit by press ENTER-Key once again
7			Change the digit preset value by press the DECREMET-Key twice
8	ENTER		To save the altered preset value, Press the ENTER- Key for 2 seconds until " SET "is displayed briefly and then display is returned to parameter Sn203

Following example shows the sequence where a parameter preset value is displayed When no change is made and it is skip back to the original parameter by pressing the Mode-Key.


Step	Key	LED Display after Operation	Description
1	Power ON	-	When power on drive status parameter will display
2	MODE		Pressing MODE-Key 6 times, Sn 201 will be displayed.
3			Pressing INCRMENT- Key twice Sn203 is displayed.
4	ENTER		To view the Sn203 preset press ENTER-Key for 2 seconds.
5	MODE		No change is made and LED display return to last select parameter Sn203, press MODE-Key once skip

Some of the data entry in this drive are in the format shown below, for these data the Most significant digit will be shown by the Capital letter "H" as shown below.

Ex: Home search function in position mode **Pn365 = 0212.** Each digit of this preset for Pn365 parameter defines a selection for a specific function.

Bit0 corresponds to a selection for parameter Pn 365.0 and bit1 setting for Pn 365.1 ... etc.

Parameter Pn 365 Format for the 5 digits data value is shown below:

Display of Positive and Negative values:

Description of Positive/Negative Display	Display of Positive	Display of Negative
For negative numbers with 4 digits or less, the negative sign is	3000	-3000
displayed In the most significant digit as shown. Ex: Sn201 (Internal Speed Command 1).		
For negative numbers with 4 digits the negative sign is indicated by	30000	-30000
displaying all the 5 decimal points on the display. Ex: Pn317 (Internal Position Command 1- Rotation number)		

Setting a negative value.

(1) If the negative value has 4 digits or less follow the steps in the example below:

Ex: Sn201(Internal speed command 1)= preset speed of 100 to -100 rpm.

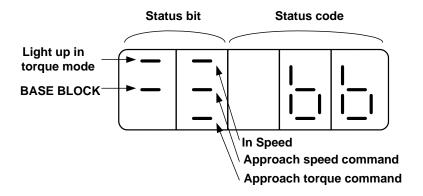
Step	Key	LED Display after Operation	Description
1	Power ON		On" power on " Drive Status parameter is displayed.
2	MODE		Pressing MODE-Key 5 times, Sn 201 will be displayed.
3	ENTER		To view the Sn201 preset press ENTER-Key for 2 seconds.
4	ENTER		To move to the most significant digit press the ENTER-Key 4 times.
5	or 🔻		Use INCREMENT Or DECREMENT key until the minus sign (_) is displayed. You can toggle between – and + by this key.
6	ENTER		To save the altered preset value, Press the ENTER- Key for 2 seconds until " SET "is displayed briefly and then display is returned to parameter Sn201.

If the negative value has 5 digits follow the steps in the example below:

Ex: Pn317 (internal position preset command 1) set to a negative value -10000 revolutions.

Step	Control Keys	LED Display after Operation	Description
1	Power On		On" power on " Drive Status parameter is displayed.
2	MODE		Pressing MODE-Key 6 times, position parameter Pn 301 will be displayed.
3			Use INCREMENT- Key to display Pn317.
4	ENTER		To view the Pn317 preset press ENTER-Key for 2 seconds.
5	ENTER		To move to the most significant digit press the ENTER-Key 4 times.
6	•		Press DECREMENT-Key once to set the most significant digit To 1. And press the DECREMENT-Key once again. All 5 decimal points will light up to indicate a negative number.
7	ENTER		To save the altered preset value, Press the ENTER-Key for 2 seconds until " SET "is displayed briefly and then display is returned to parameter Pn 317.

Alarm Reset from the Keypad.

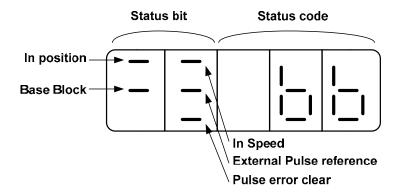

All alarm displays can be cleared from the keypad without a need for an external Alarm clear (Reset) signal.

Ex. Under voltage Alarm AL-01.

Step	Control Key	LED Display after Opertion	Description
1	Alarm		Under voltage Alarm AL-01 is displayed.
2			To clear Alarm:- Remove input contact SON (Servo On). Then press INCREMENT-Key and DECREMENT-Key at the same time. The display will show RESET briefly and then returns back to parameter display.

After Servo drive is power on, user can monitor status bit and status code on the display. LED display for speed / torque control mode and position control mode has the different definition, refer to following pages for detail.

(1) Speed and Torque Control Mode



Status code and status bit contents:

Status code	Status bit display and description		
Status Code	Indicator On	Indicator Off	
BASE BLOCK	Servo Off status	Servo On status	
In Speed (INS)	When motor speed greater than the value of Cn007 (Speed reached preset)	When motor speed less than the value of Cn007 (Speed reached preset)	
Approach Speed command	When speed command greater than the value of Cn007 (Speed reached preset)	When speed command less than the value of Cn007 (Speed reached preset)	
Approach Torque command	When torque command greater than 10% of the rate torque.	When torque command less than 10% of the rate torque.	

Status code	Description	
	BASE BLOCK	
	Servo OFF status(when motor excitation is invalid)	
	The servo is under operation status.	
<u> </u>	Servo ON status(when motor excitation is valid)	
	CCW Operation limit	
	CCWL limit switch is active.	
	CW Operation limit	
<u> </u>	CWL limit switch is active.	

(2) Position Control Mode:

Status code and status bit contents:

Status code	Status bit display and description		
Status Code	Indicator On	Indicator Off	
BASE BLOCK	Servo Off status	Servo On status	
In Position(INP)	When Position pulse error value less than the value of Pn307 (Position complete value)	When Position pulse error value greater than the value of Pn307 (Position complete value)	
In Speed (INS)	When speed command greater than the value of Cn007 (Speed reached preset)	When speed command less than the value of Cn007 (Speed reached preset)	
External Pulse Reference Input	When pulse input is exist.	No external puluse input.	
Pulse error amount clear Input contact CLR is active the pulse error value will be clear.		Input contact CLR is not active.	

Status code	Description	
	BASE BLOCK	
	Servo OFF status(when motor excitation is invalid)	
	The servo is under operation status. (Run)	
<u> </u>	Servo ON status(when motor excitation is valid)	
	CCW Operation limit	
	CCWL limit switch is active.	
CW Operation limit		
CWL limit switch is active.		

3-2 Signal Display

3-2-1 Status Display

Following parameters can be used to display drive and motor Status.

Parameter Signal	Displayed	Unit	Description
Un-01	Actual motor speed		Actual Motor Speed is displayed in rpm.
Un-02	Actual motor torque		It displays the torque as a percentage of the rated torue. Ex: 20 are displayed. It means that the motor torque output is 20% of rated torque.
Un-03	Regenerative load ratio	%	Value for the processable regenerative power as 100%.
Un-04	Accumulated load ratio	%	Value for the rated torque as 100%.
Un-05	Max load rate	%	Max value appeared on accumulated load rate
Un-06	Speed command	rpm	Speed command is displayed in rpm.
Un-07	Position error counter value	pulse	Error between position command value and the actual position feedback.
Un-08	Position feedback pulse counter	pulse	The accumulated number of pulses from the motor encoder.
Un-09	External voltage command	V	External analog voltage command value in volts.
Un-10	Main circuit Vdc Bus Voltage	V	DC Bus voltage in Volts.
Un-11	External speed limit command value		Display external speed limit command value in rpm.
Un-12	External CCW Torque limit command value	%	Ex: Display 100. Means current external CCW torque limit command is set to 100 %.
Un-13	External CW Torque limit command value		Ex: Display 100. Means current external CW toque limit command is set to 100%.
Un-14	Motor feed back – Rotation value (absolute value)		After power on, it displays motor rotation number as an absolute value.
Un-15	Motor feed back – Less then 1 rotation pulse value(absolute value)	pulse	After power on, it displays the pulse number for less than a revolution of the motor as an absolute value.
Un-16	Pulse command – rotation value(absolute value)	rev	After power on, it displays pulse command input rotation number in absolute value.
Un-17	Pulse command – Less then 1 rotation pulse value(absolute value)	pulse	After power on, it displays pulse command input for less than a rotation. pulse value is an absolute value.
Un-18	Torque command		It displays the torque command as a percentage of the rated torque. Ex: Display. 50.Means current motor torque command is 50% of rated torque.
Un-19	Load inertia	x0.1	When Cn002.2=0(Auto gain adjust disabled), it displays the current preset load inertia ratio from parameter Cn025. When Cn002.2=1(Auto gain adjust enabled), it displays the current estimated load inertia ratio.

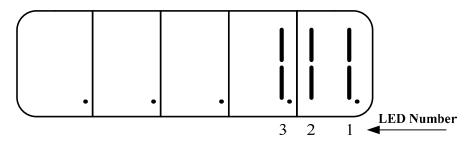
3-2-2 Diagnostic function

Following diagnostics parameters are available:

Parameter Signal	Name and Function	
dn-01	Control mode display	
dn-02	Output terminal status	
dn-03	Input terminal status	
dn-04	Software version (CPU version)	
dn-05	JOG mode operation	
dn-06	Reserve function	
dn-07	Auto offset adjustment of external analog command voltage	
dn-08	Servo model code	
dn-09	ASIC software version display	

dn-01 (Control Mode Display)

Access dn-01 to display the selected control mode.


Control mode display description is listed in the table below:

Control Mode	dn-01 (Control mode display)
Torque control - T	
Speed control - S	
Position control	
(External pulse command) - Pe	
Position/Speed control switch - Pe/S	PE-S
Speed/Torque control switch - S/T	
Position/Torque control switch - Pe/T	
Position control	
(Internal position command) - Pi	

dn-02 (Output terminal status)

Use dn-02 to check the status of output terminals.

Output status display is described below:

When output terminal signal has a low logic level (close loop with IG24),

the corresponding LED will be on.

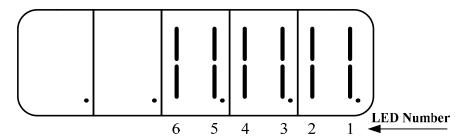
When output terminal signal has a high logic level (open loop with IG24),

the corresponding LED will be off.

Table below shows the functions of the digital outputs.

Default settings are shown below.

For programmable digital output list see section 5-6-1.


LED No.	Output terminal number	Default function
1	DO-1	RDY
2	DO-2	ALM
3	DO-3	ZS

Note: To set the logic state (High or Low) of for programmable digital outputs refer to section 5-6-1.

dn-03 (Input terminals status)

Use dn-03 to check the status of Input terminals.

Digital Input status display is described below:

When Input terminal signal has a low logic level (close loop with IG24), the corresponding LED will be on.

When Input terminal signal has a high logic level (open loop with IG24), the corresponding LED will be off.

Table below shows the functions of the digital input.

Default settings are shown below.

For programmable function list see section 5-6-1.

LED Number	Input terminal number	Default function
1	DI-1	SON
2	DI -2	ALRS
3	DI -3	PCNT
4	DI -4	LOK
5	DI -5	SPD1
6	DI -6	TLMT

dn-04 (Version of Software)

Use dn-04 to view the current software version of the Servo drive.

Software version can be checked as below:

Step	Keys	LED Display	Description
1	Power On		On" power on Drive Status is displayed.
2	MODE		Press MODE-Key twice to view diagnostics parameter dn-01.
3			Press INCREMENT-Key 3 times to display dn-04.
4	ENTER		Press ENTER-Key for 2 seconds to view the software version. (Software version: 2.30)
5	MODE		Press MODE-Key once to return to dn-04 and parameter selection.

dn-05 (JOG Operation)

Use dn-05 to JOG the motor. Jog is activated by following the steps below:

Note: JOG speed is in accordance with setting of Sn201(internal speed command 1).

Ensure that the required speed is set in Sn201 before executing this function.

Warning: Motor will be agitated run as soon as JOG command is activated.

without the need for SON input (Servo On signal).

Step	Key	LED display	Description
1	Power on		On" power on Drive Status is displayed.
2	MODE		Press MODE-Key once to view diagnostics parameter dn-01.
3			Press INCREMENT-Key 4 times to display dn-5.
4	ENTER		Press ENTER-Key for 2 seconds to enter JOG MODE . Motor will power on immediately.
5			Press INCREMENT-Key , motor will run in the pre-defined positive direction.
6			Press DECREMENT-Key , motor will run in the pre-defined negative direction.
7	MODE		Press MODE-Key once to return to dn-05 and parameter selection. Motor stoped the excitation immediately.

dn-07 (Auto offset adjustment of external analog command voltage)

If the external torque or speed analog command is set to 0V and the motor is rotating slowly, this is due to analog input zero offset, use **dn-07** to auto adjust this offset and stop the motor rotating. Follow the steps below:

Step	Key	LED Display	Description
1		between analog comma	and terminal SIN(CN1-26) and Analog Ground terminal
2	Power on		On" power on " Drive Status is displayed.
3	MODE		Press MODE-Key twice into diagnostics parameter dn-01.
4			Press INCREMENT-Key 6 times to display dn-7.
5	ENTER		Press ENTER-Key for 2 seconds to enter dn-07
6			Press INCREMENT-Key once to set to 1 (Enable auto offset adjustment).
7	ENTER		To save the altered preset value and activate auto offset adjust, Press the ENTER- Key for 2 seconds until " SET "is displayed briefly and then display is returned to parameter dn-07. To save this offset value, please select parameters Tn104 or Sn217 as required and press the ENTER-Key. Tn107 for analog torque command. Sn217 for analog speed command.

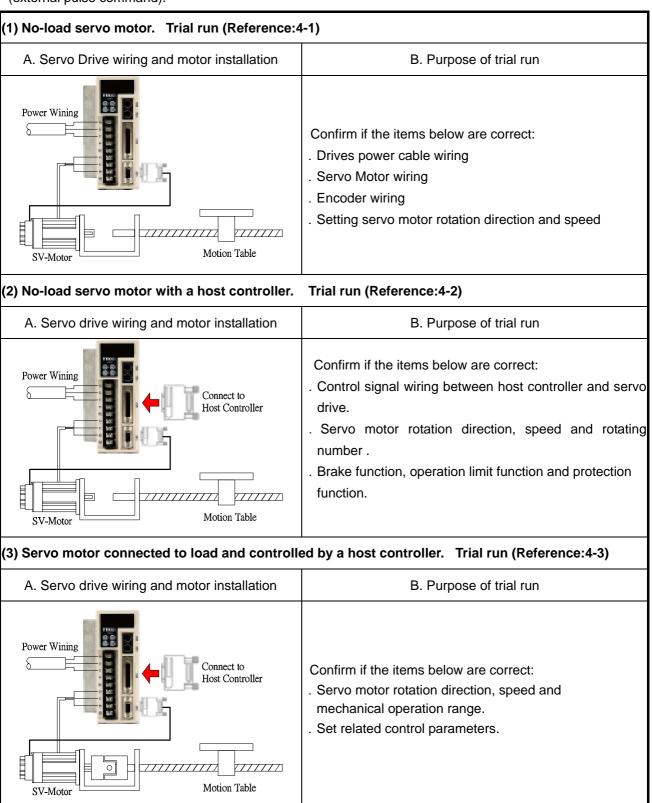
Before bias adjusting Input Voltage (V) Bias Voltage Torque Command (%) or Speed Command (rpm) After bias adjusting Bias Voltage Adjusting Value Torque Command (%) or Speed Command (rpm)

dn-08 (Servo motor Model Code display)

Use **dn-08** to display servo motor code and check the servo drive and motor compatibility according to the table below.

If the dn08 preset is not according to the list below then contact your supplier.

The motor model code is stored in parameter Cn30.


dn-08 Display	code is stored in par		Motor Standards		
Cn030 Setting	Drive Model	Motor Model	Watt (W)	Speed (rpm)	Encoder Specification
H1011		JSMA-SCP5AB	50	3000	2500
H1021	JSDE-10	JSMA-SC01AB	100	3000	2500
H0030	33DL-10	JSMA-SC02AF	200	3000	2000
H1043		JSMA-TC02AB	200		2500
H0121		JSMA-LC03AB	300	3000	2500
H0130		JSMA-SC02AF	200	3000	2000
H1133	JSDE-15	JSMA-TC02AB	200	3000	2500
H0140	33DL-13	JSMA-SC04AF			2000
H1141		JSMA-SC04AB	400	3000	2500
H1143		JSMA-TC04AB			2500
H0211		JSMA-LC08AB	750	3000	2500
H0220		JSMA-SC04AF		3000	2000
H1221		JSMA-SC04AB	400		2500
H1223	JSDE-20	JSMA-TC04AB			2500
H0230	J3DE-20	JSMA-SC08AF	750	3000	2000
H1233		JSMA-TC08AB	750		2500
H0241		JSMA-MA05AB	550	1000	2500
H0251		JSMA-MH05AB	330	1500	2500
H0310		JSMA-SC08AF	750	3000	2000
H1313		JSMA-TC08AB	730	3000	2500
H0321	JSDE-30	JSMA-MA10AB		1000	2500
H0331	33DE-30	JSMA-MB10AB	1000	2000	2500
H0341		JSMA-MH10AB	1000	1500	2500
H0351		JSMA-MC10AB		3000	2500

Chapter 4 Trial Operation

Before proceeding with trial run, please ensure that all the wiring is correct.

Trial run description below covers the operation from keypad and also from an external controller such as a PLC.

Trial run with external controller speed control loop (analog voltage command) and position control loop (external pulse command).

4-1 Trial Operation Servo motor without Load

To carry out a successful trial run follow the steps below and ensure that drive wiring is correct and as specified.

Warning!

In order to prevent potential damage, prior to trial run ensure that the driven mechanism, couplings and belts etc are disconnected from the motor.

1. Installation of servo motor.

Ensure that the motor is installed securely so that there is no movement and vibration during trial run.

2. Wiring.

Check servo drive, motor power connections and motor encoder connection.

No control signal wiring is required of this stage thus remove connector (CN1) from the servo drive.

3. Servo drive power.

Apply power to servo drive. If the display shows any Alarm message such as graph below then refer to Alarm contents of chapter 8 to identify the cause.

AL-14 is caused by Input terminals **CCWL** (Counter clockwise Limit) and **CWL** (Clockwise Limit) being activated at the same time.

See (the default setting of high or low input logic state according to the description in section 5-6-1). Because of the alarm, the servo can not operate normally.

Set the parameter Cn002.1=1 to disable the drive limit function temporarily during trial run period.

Steps for setting parameter Cn002.1 (CCWL &CWL Rotation limit selection).

Setp	Keys	LED Display	Description
1	Power on	- 1	On" power on " Drive Status is displayed.
2	MODE		Press MODE-Key 4 times to display Cn001.
3			Press INCREMENT-Key once to display Cn002.
4	ENTER	HUUUÜ	Press ENTER-Key for 2 secs to display the preset value of Cn002. Note: Cn 002 includes 4 digits corresponding to Cn002.0,Cn002.1,Cn002.2 & Cn002.3.
5	ENTER		Press ENTER-Key once to move to the 2 nd digit for (Cn 002.1).
6		HIII	Press INCREMENT- Key once to adjust the 2 nd digit to 1. Disable the function of external limits CCWL and CWL.
7	ENTER		To save the setting value by Press the ENTER- Key for 2 seconds until " SET "is displayed briefly and then display is returned to parameter Cn-002.

After accomplish these steps, reset the power. If there are any other alarms then refer to section **8-2 (Clearing Alarms)**. Once there is no alarms then operate the drive again. If any of the alarms can not be cleared, please contact your local supplier for assistance.

4. Mechanical Brake Release.

When a brake type servo motor is used then must release the brake before starting trial run by applying 24vdc voltage to brake terminals.

5. Keypad Trial run (JOG function).

Jog function can be used to check if motor speed and rotation direction is correct.

Parameters Sn 201(internal speed command 1) and Cn004 (motor rotation direction selection)

Can be used to set the required speed and direction.

Warning!

Set the required JOG speed before the trial run otherwise the motor will run at the default speed set in parameter Sn201(internal speed command 1).

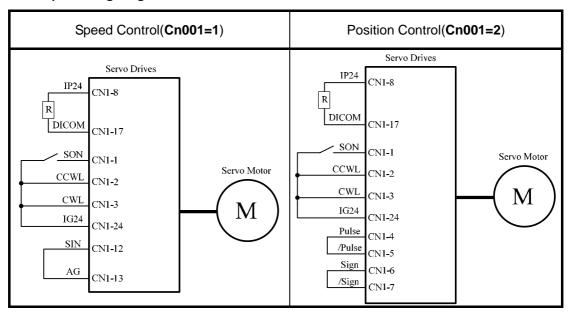
Warning!

Regardless of external SON (servo on) is active of not, Servo motor will get excitation as soon as JOG is activated.

Steps for setting JOG function:

Step	Keys	LED Display	Description
1	Power on		On" power on " Drive Status is displayed.
2	MODE		Press MODE-Key twice to view diagnostics parameter dn-01.
3			Press INCREMENT-Key 4 times to display dn-5.
4	ENTER		Press ENTER-Key for 2 seconds to enter JOG MODE . Motor will power on immediately.
5			Press INCREMENT-Key , motor will run in the pre-defined positive direction.
6			Press DECREMENT-Key, motor will run in the pre-defined negative direction.
7	MODE		Press MODE-Key once to return to dn-05 and parameter selection. Motor power will be turned off immediately.

4-2 Trial Operation for Servo motor without Load from Host Reference


Check and ensure that all power connections to the drive and motor and control signal connection between the host controller and the drive are correct. Motor must be mechanically disconnected from the load.

Following section describes the trial run when using a host controller such as a PLC.

Two trial runs have been discussed. Speed control mode (Section B) and Position control mode (Section C). Section A shows the connections and SON signal (servo on) requirements for both trial runs.

A. Launching Servo motor

Example wiring diagram:

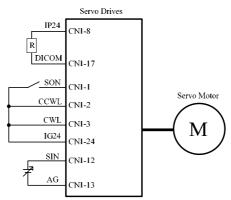
a. Disable Analog Input command terminals.

Speed control mode: Link analog input terminal SIN to 0V terminal (AG).

Position control mode: Link external pulse command terminals "Pulse" to "/Pulse" and "Sign" to "/Sign".

b. Enable Servo ON Signal

Connect **SON** terminal to IG 24 (0V) terminal (Digital Ground).


On drive power up servo will be turned on. Now check for any Alarms. If any alarms then refer to Chapter 8-2 for how to reset the Alarms.

B. Trial run in Speed control mode(Cn001=1).

1. Wiring check:

Check and ensure that all power cable and control signal connections are correct as shown below.

To be able to adjust the speed for test connect a potentiometer between terminals SIN (analog input voltage) and AG (Analog Ground). Set the analog input voltage to 0V. (No speed reference).

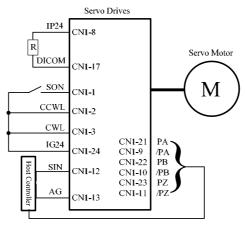
2. Apply Servo on.

Apply power to the drive and activate (**SON**) signal by switching SON terminal to IG24 (input digital Ground). If the motor rotates slowly, while the speed analog input voltage is 0 volts

then use dn-07 function to auto offset adjustment for the analog input value. (refer to section 3-2-2).

3. Check the relationship between motor speed and the analog input speed command.

Increase the analog speed input voltage gradually (by potentiometer) and monitor the actual motor speed by parameter **Un0-01**.


Check if motor rotation direction is correct and if necessary set it by parameter Cn004.

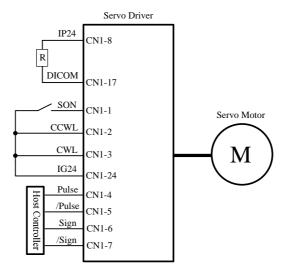
Check for correctness of analog speed command ratio in relation to the preset in parameter (Sn216) and analog speed command limit as set in parameter (Sn218).

Finally, switch off **SON signal** (turn off the servo motor).

4. Connection with a host controller.

Check and ensure that the wiring for the servo drive and host controller, speed analog signal input (SIN), and encoder output (PA, /PA, PB, /PB, PZ, /PZ) are all correct and according to the diagram below:

5. Confirm the rotation number and encoder output of Servo Motor.


Use parameter Un-14 to check if the Motor feed back (number of revolutions) per minute is correct and the same as number of revolutions sent by the host controller.

If there is any difference then check and make sure that parameter Cn005 (Encoder ppr) is set correctly. Once this is complete remove SON signal to switch off power to the motor.

C. Position control mode trial run (Cn001=2).

1. Wiring:

Check and ensure that all power connections to the drive and motor and control signal connections are correct as diagram below.

2. Setting electronic gear ratio.

Set electronic gear ratio parameters Pn302~Pn306 as required for the positioning application. (refer to section 5-4-3).

Note: Electronic gear ratio parameter can be used to scale the command output pulse.

This would be useful in transmission applications where move distance per move command pulse has to be scaled due to mechanical requirements.

3. Apply Servo on.

Apply power to the drive and activate (SON) signal by switching SON terminal to IG24 (input digital Ground).

4. Confirm motor speed, direction and number of revolutions.

Apply a low-speed pulse command from the host controller to the servo drive so that the servo motor operates at low-speed.

- Compare the number of pulses per revolution from parameters Un-15 (motor feed back pulse ppr) and Un-17 (Input command ppr) these should be the same.
- Compare the number of revolutions using parameters Un-14 (motor feed back rotation number) and Un-16 (pulse command rotation number) these should be the same.

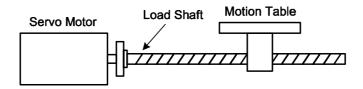
If there are differences then adjust electronic gear ratio parameters **Pn302~Pn306** as required and test again until the result is satisfactory.

If the direction of motor rotation is incorrect then check and if necessary set parameter Pn 301.0 (position pulse command types).

Also check and if necessary set parameter Pn314 (Position command direction selection).

Once the test result is correct then remove SON signal. (Power to the motor is switched off).

4-3 Trial Operation with the Servo motor Connected to the Machine



Servo drive parameters must be set correctly otherwise damage to machinery and potential injury may result.

Do not close to the machine after temporary power loss, the machine may restart unexpected.

Please take the measures highlighted in the section below before trial run with load.

- Consider the Mechanical system requirements and set the parameters appropriate for control by the host controller.
- Ensure that the rotation direction and speed are suitable for the Mechanical system.

Steps required for Trial run.

- 1. Ensure that the ServoDrive Power is off.
- 2. Connect the servo motor to the load shaft.

Refer to Chapter 1-5 to check the installation guidelines for the servo motor.

3. Gain adjustment for the servo control loop.

Refer to Chapter 5-5 for details.

4. Trial run with a host controller.

Run command is to be signaled by the host controller.

Refer to Chapter 4-2 to choose the required trial run mode (Speed control or position control modes) according to the application and set and adjust the parameters if necessary for the application.

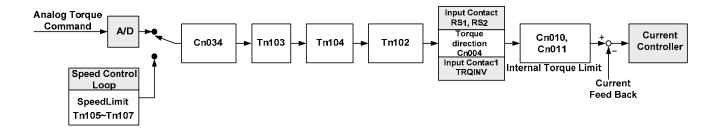
5. Repeat adjusting and record the set parameter values.

Repeat steps 3 and 4 until the mechanical system is operating satisfactorily then record the Gain value and the parameters changes for the future use.

Chapter 5 Control Functions

5-1 Control Mode Selection

There are three control modes in the servo drive, torque, speed and position modes can be selected individually or as a combination according to the selection table below:


Parameter	Setting	Description	Default	Unit	Setting Range	Control Mode
		Torque control				
	0	To use one analog voltage command signal to control				
		torque. Please refer to 5-2.				
		Speed control				
	1	Input contacts SPD1 and SPD2 can be used to select 4				
		-steps of speed. Please refer to section 5-3-1 .			0 	ALL
		Position control (External pulse command)				
	2	Four separate selectable pulse command types are				
		possible to control position. Please refer to section				
		5-4-1.				
	3	Position / Speed control switch				
★ Cn001		Input contact MDC can be used to switch between		Х		
		position & speed control. Please refer to section 5-6-2 .				
		Speed / Torque control switch				
	4	Input contact MDC can be used to switch between speed				
		& torque control. Please refer to section 5-6-2 .				
		Position / Torque control switch				
	5	Input contact MDC can be used to switch between				
ļ		position & torque control. Please refer to section 5-6-2 .				
		Position control (internal position command)				
	6	Input contacts POS 1~POS 4 can be used to select 16				
		programmable preset position commands to control				
		position. Please refer to 5-4-2 .				

New setting will become effective after re-cycling the power.

5-2 Torque mode

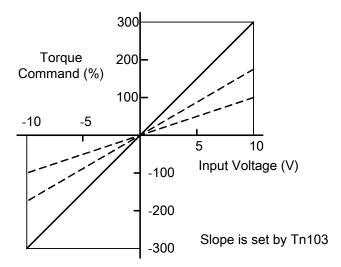
Torque mode is used in applications such as printing machines, coil wiring machines, injection molding machines and specific application that requiring torque control.

Diagram below shows the torque control process diagram.

Analog voltage torque command is applied to the drive input terminals as shown below:

Caution!

Care should be taken in selection of required torque direction CW/CCW. Please refer to Chapter 5-2-4.

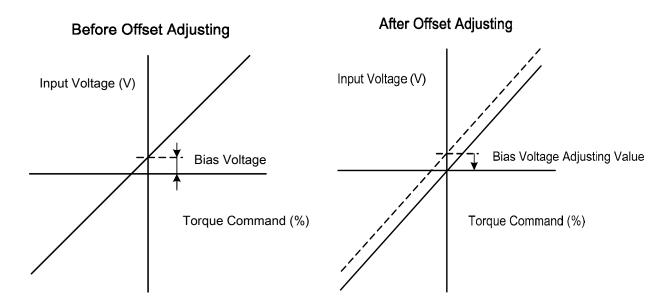

5-2-1 Analog Torque command Ratio.

Analog torque command ratio can be used to adjust the relationship between Input voltage torque command and actual torque command.

Parameter	Name	Default	Unit	Setting range	Control Mode
	Analog torque command ratio Slope of voltage command / Torque command can	300	%/10V	0~300	Т
	be adjusted.				

Setting example: refer to the following diagram.

- 1. With Tn103 set to 300, a torque command input voltage of 10V, corresponds to 300% of rated torque. For input voltage of 5V, actual torque command will be 150% of rated torque.
- 2. With Tn03 set to 200, a torque command input voltage of 10V, corresponds to 200% of rated torque. For input voltage of 5V, actual torque command will be 100%.


5-2-2 Adjusting the analog torque command offset

For a torque command of 0V, motor could possibly be rotating slowly.

To rectify this effect by adjust offset value in parameter **Tn104** or use auto offset adjust feature. (Please refer to section **3-2-2**).

Note: To check and set the offset to zero, insert a link between analog torque command contact SIN(CN1-26) and analog ground contact AG (CN1-29).

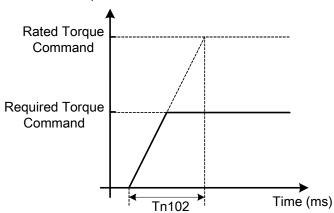
Parameter	Name	Default	Unit	Setting range	Control mode
Tn104	Analog torque command offset				
	The offset amount can be adjusted by this	0	mV	-10000~10000	Т
	parameter.				

5-2-3 Torque command linear acceleration and deceleration

An smooth torque command can be achieved by enabling acceleration/Deceleration parameter Tn101.

Parameter		Name	Default	Unit	Setting Range	Control mode
	Linear	acceleration/ deceleration method			0	
★ Tn101	Setting	Explanation	0	Χ	Ĭ	Т
× 111101	0	Disabled.			1	
	1	Enabled.				

Torque command acceleration/deceleration time,


is the time taken for the torque to rise from zero to the required level by Tn102.

As per diagram below:-

Parameter	Name	Default	Unit	Setting Range	Control mode
	Linear acceleration /deceleration time period				
★ Tn102	Time taken for the torque-command to linearly accelerate to the rated torque level or Decelerate to zero torque.	1	msec	1~50000	Т

New setting will become effective after re-cycling the power.

Torque Command

Setting examples:

(1) To achieve 50% of rated torque output in 10msec:

$$Tn102 = 10(msec) \times \frac{100\%}{50\%} = 20(msec)$$

(2) To achieve 75% of rated torque output in 10msec:

$$Tn102 = 10 (msec) \times \frac{100\%}{75\%} = 13 (msec)$$

5-2-4 Definition of torque direction

In torque mode, torque direction can be defined by one of the following three methods.

- (1) Input contacts RS1, RS2. (torque command CW/CCW selectable by programmable input)
- (2) Parameter Cn004. (motor rotation direction)
- (3) Input contact **TRQINV.** (reverse torque command)

Caution!

All 3 methods can be active at the same time.

User must ensure that correct selections are made for these three selections.

Input C	Contact	Description	
RS2	2 RS1		mode
0	0	Zero torque	
0	1	Rotation in the current torque command direction	Т
1	0	Reverse the current torque command direction	
1	1	Zero torque	

Note: RS2 and RS1 contact status "1" (ON) and "0" (OFF).

Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) .

Parameter		Name		Default	Unit	Setting Range	Control mode
	When Tor	CCW	at from the load side) To with the load side)				
	Setting	Ехр	lanation				
		Explanation	Explanation				
Cn004	0	Counter ClockWise(CCW)	Counter ClockWise (CCW)	0	Х	0 3	S T
	1	ClockWise (CW)	Counter ClockWise (CCW)				
	2	Counter ClockWise (CCW)	ClockWise(CW)				
	3	ClockWise (CW)	ClockWise (CW)				

Input contact TRQINV	Description	Control mode
0	Rotation in current torque command direction	т
1	Reverse torque command direction	'

Note: Input contacts status "1" (ON) and "0" (OFF).

Please refer to 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

5-2-5 Internal Torque Limit

In torque Control mode, user can set internal torque limit values as required.

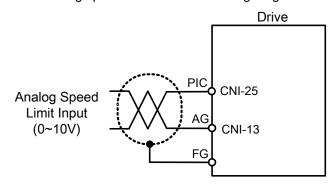
Set as helow:-

Parameter	Name	Default	Unit	Setting range	Control mode
	CCW Torque command limit Ex: For a torque limit in CCW direction which is twice the rated torque, set Cn10=200.	300	%	0~300	ALL
	CW Torque command limit Ex: For a torque limit in CW direction which is twice the rated torque, set Cn11=-200.	-300	%	-300~0	ALL

5-2-6 Limiting Servomotor Speed during Torque Control

In torque control, input contacts SPD1 and SPD2 can be used for selecting one of the two methods below for setting speed limits.

- (1) External Analog command (Default) Signal is applied to terminals PIC & AG (pins 27& 29 on CN1)
- (2) Selection of Three presentable Limits (Tn105~Tn107) according to the table below.


Caution! For achieving smooth speed response please refer to section 5-3-6.

Input contact SPD2	Input contact SPD1	Speed limit command	Control mode
0	0	External analog command PIC(CN1-25)	
0	1	Internal speed limit1 Tn105	Т
1	0	Internal speed limit2 Tn106	
1	1	Internal speed limit3 Tn107	

Note: Input contacts status "1" (ON) and "0" (OFF).

Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

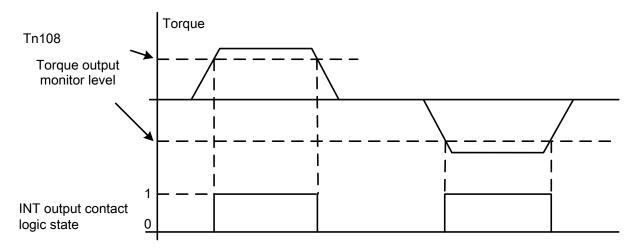
Below is the external analog speed limit command wiring diagram:

Internal presentable speed limit parameters for torque control mode are listed below:

These preset limits apply to both CW & CCW directions.

Parameter	Name	Default	Unit	Setting range	Control mode
	Preset Speed Limit 1 In Torque control, input contacts SPD1 and SPD2 can be used to select Preset speed limit 1. As follows:			0~3000	
Tn105	Input Contact SPD2 Input Contact SPD1 0 1	100	rpm		Т
	Note: Input contacts status "1" (ON) and "0" (OFF). Refer to 5-6-1 to set high or low input logic levels.				
Tn106	Preset Speed Limit 2 In Torque control, input contacts SPD1 and SPD2 can be used to select Preset speed limit 2. As follows: Input Contact SPD2 Input Contact SPD1 0 Note: Input contacts status "1" (ON) and "0" (OFF) Refer to 5-6-1 to set high or low input logic levels.	200	rpm	0~3000	Т
Tn107	Preset Speed Limit 3 In Torque control, input contacts SPD1 and SPD2 can be used to select Preset speed limit 3. As follows: Input Contact SPD2 Input Contact SPD1 1 1 Note: Input contacts status "1" (ON) and "0" (OFF) Refer to 5-6-1 to set high or low input logic levels.	300	rpm	0~3000	Т

P.S also refer to page 6-11 for detail.


5-2-7 Additional torque control functions

Torque Output Monitor

When the torque level in CW or CCW directions becomes greater than the value set in

Tn108 (torque level monitor value), the output contact INT is active.

Parameter	Name	Default	Unit	Setting range	Control mode
	Torque output monitor value When the torque level in CW or CCW direction become greater then this value setting, the output contact INT is active.	100	%	0~300	ALL

Note: Input contacts status "1" (ON) and "0" (OFF).

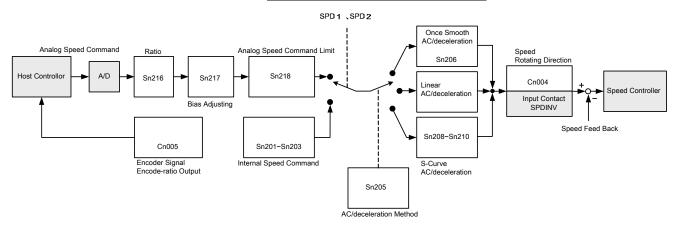
Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

Torque Smoothing Filter

Torque vibration can be diminution by setting an appropriate value in Cn034 (Torque command smoothing filter), In the other hand, this will cause a delay in the response time of the torque loop.

Parameter	Name	Default	Unit	Setting range	Control mode
	Torque command smoothing filter	0	Hz	0~1000	ALL
	Restrain sharp vibration noise by the setting and this filter delay the time of servo response.				

5-3 Speed Mode


Cn032

Speed Feed Back

Speed Mode is necessary for applications that require precisely speed control, such as weaving, drilling and CNC type machines. Diagrams below shows the speed control system in two parts.

First stage shows **Speed processing and conditioning** and the second stage shows the **Speed controller** With PI/P control modes, and controller1&2 selection and interface with torque control stage.

Speed Command Processor

Analog Torque Limit A/D Speed Controller Analog Torque Limit Sn211, Sn212 Resonance filter Speed Command Torque Control From Speed Cn013, Cn014 Loop Processor Internal Torque Speed Controller 2 Limit Speed Sn213, Sn214 Cn010, Cn011 Feed Back Smooth Filter

Input Contact TLMT

Speed Controller

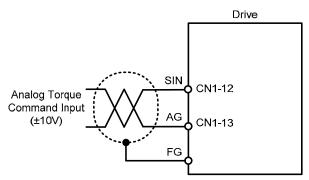
Sain switch method

Cn015~Cn024

nput Contact PCNT G-SEL

5-3-1 Selection for speed command

In Speed control, input contacts SPD1 and SPD2 can be used for selecting one of the two methods below for setting speed limits.


- (1) External Analog command (Default): Analog signal is input from terminals SIN & AG (pins 12& 13 on CN1)
- (2) Internal speed command: Selection of Three presentable Limits according to the table below.

Input Contact SPD2	Input Contact SPD1	Speed Command	Control Mode
0	0	External analog command SIN(CN1-12)	
0	1	Internal speed command 1 Sn201	S
1	0	Internal speed command 2 Sn202	3
1	1	Internal speed command 3 Sn203	

Note: Input contacts status "1" (ON) and "0" (OFF).

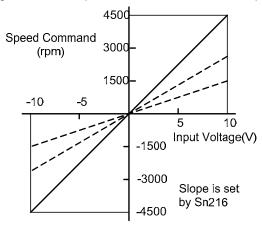
Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

Diagram below shows the external analog speed command wiring:

Internal presetable speed limit parameters for speed command mode are listed below:

These preset limits apply to both CW & CCW directions.

Parameter	Name	Default	Unit	Setting range	Control mode
Sn201	Internal speed command 1	100		-3000~3 000 S	
Sn202	Internal speed command 2	200	rpm		S
Sn203	Internal speed command 3	300		000	


5-3-2 Analog speed command Ratio

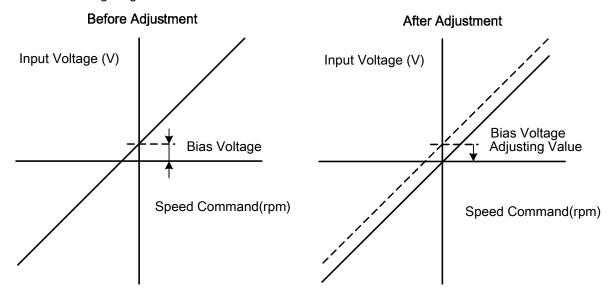
Analog speed command ratio can be used to adjust the relationship between Input voltage speed command and actual speed command.

Parameter	Name	Default	Unit	Setting range	Control mode
	Analog speed command ratio				
	Slope of voltage command / Speed command can be adjusted.	3000	rpm/10V	100~4500	S

Setting Example:

- (1) With **Sn216 set to** 3000, a speed command input voltage of 10V, corresponds to 3000rpm; for an input voltage of 5V speed command will be 1500rpm.
- (2) With **Sn216** set to 2000, a speed command input voltage of 10V, corresponds to 2000rpm, for an input voltage of 5 volts speed command will be 1000rpm.

5-3-3 Adjusting the analog reference offset

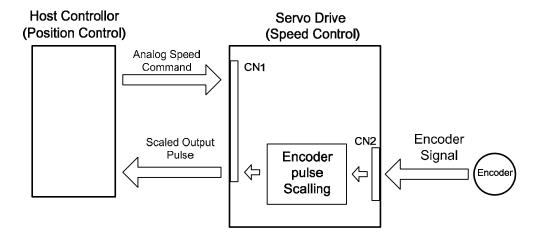

For a speed command of 0V, motor could possibly be rotating slowly.

To rectify this effect by adjust offset value manually in parameter Sn217 or use auto offset adjust feature. (Please refer to section 3-2-2).

Note: To check and set the offset to zero, insert a link between analog torque command contact SIN(CN1-12) and analog ground contact AG (CN1-13).

Parameter	Name	Default	Unit	Setting range	Control mode		
	Analog speed command offset adjust					-10000~	_
Sn217	The offset amount can be adjusted by this parameter.	0	mV	10000	S		

Refer to the following diagrams:


5-3-4 Analog reference for speed command limit

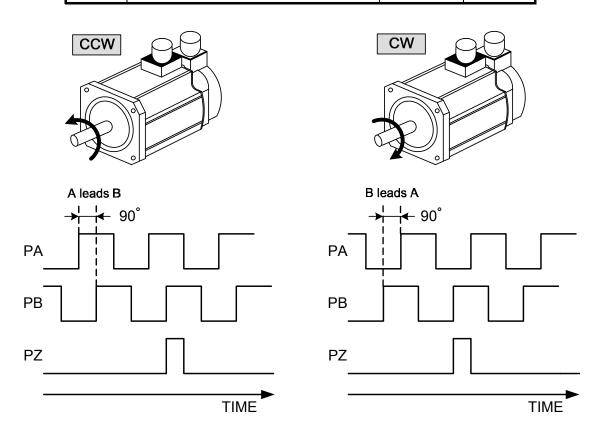
A maximum limit for analog speed can be set by Sn218.

Parameter	Name	Default	Unit	Setting range	Control mode
	Analog speed command limit	Rate rpm			
	Setting Sn218 for limit the highest speed command of analog input.	x 1.02	rpm	100~4500	S

5-3-5 Encoder Signal Output

Servo motor encoder pulse signal can be output to a host controller to establish an external control loop.

Set the required encoder Pulse Per Revolution (PPR) in parameter Cn005.


Default output value is the actual encoder PPR.

Parameter	Name	Default	Unit	Setting range	Contro I mode
★ Cn005	Encoder pulse output scale For default set to the rated encoder number of pulses per revolution, such as 2500ppr. Encoder ppr can be scaled by setting a ppr in the range of 1 to the rated ppr of the encoder for scaling purpose. PPR = Pulse per revolution.	1	Х	1 	ALL
	Ex:encorder rated precision is 2000 ppr, If you setting Cn005 =2, the output is 1000ppr.				

New setting will become effective after re-cycling the power.

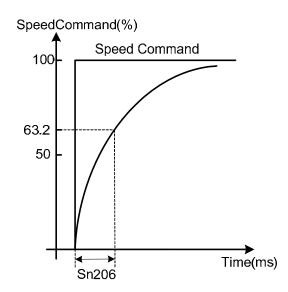
Encoder pulse output terminal description:

Pin	Name	Pin NO. of CN1	Control mode
PA	Encoder pulse output A Phase signal	CN1-21	
/PA	Encoder pulse output /A Phase signal	CN1-09	
PB	Encoder pulse output B Phase signal	CN1-22	ALL
/PB	Encoder pulse output /B Phase signal	CN1-10	ALL
PZ	Encoder pulse output Z Phase signal	CN1-23	
/PZ	Encoder pulse output /Z Phase signal	CN1-11	

5-3-6 Smoothing the speed command

Sn205 can be used to eliminate speed overshoot and motor vibration by selecting one of the acceleration /deceleration methods which is suitable for the application from the table below.

Parameter		Name		Unit	Setting Range	Control mode
	Speed co	mmand accel/decel smooth method.				
	Setting	Explanation			0 3	S
	0	Disable this function.		X		
Sn205	1	Smooth Acceleration/deceleration according to the curve defined by Sn206.				
	2	Linear accel/decel time constant .Defined by Sn207				
	3	S curve for Acceleration/deceleration. Defined by Sn208.				


Above three methods of Acceleration/deceleration are described below.

(1)Speed command smooth ac/deceleration:

Set **Sn205=1** to enable the use of speed command smooth acceleration/deceleration function.

Parameter	Name	Default	Unit	Setting range	Control mode
	Speed command smooth accel/decel time Constant				
	Set Sn205 =1 to enable this function then set the time period for the speed to rise to 63.2% of the full speed.	1	msec	1~10000	S

Smooth acceleration/deceleration time corresponds to the time in which the speed command increases from 0 to 63.2% as shown in diagram below.

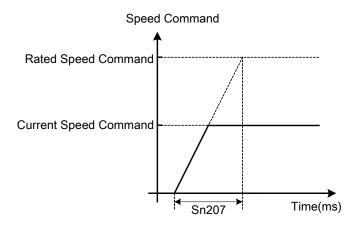
Setting example:

(1) To achieve 95% of speed command output in 30msec:

Set
$$Sn206 = \frac{30(msec)}{-\ln(1-95\%)} = 10(msec)$$

(2) To achieve 75% of speed command output in 30msec:

Set
$$Sn206 = \frac{30(msec)}{-\ln(1-75\%)} = 22(msec)$$


In= Natural log

(2)Speed command linear acceleration/deceleration function:

Set Sn205=2 to enable the use of speed command linear acceleration/deceleration function.

Parameter	Name	Default	Unit	Setting range	Control mode
	Speed command linear accel/decel time constant				
Onzor	Set Sn205 =2 to enable this function then set the time period for the speed to rise linearly to full speed.	1	msec	1~50000	S

Linear acceleration/deceleration time corresponds to the time in which the speed increases (linearly) from zero to the rated speed. As shown in the diagram below.

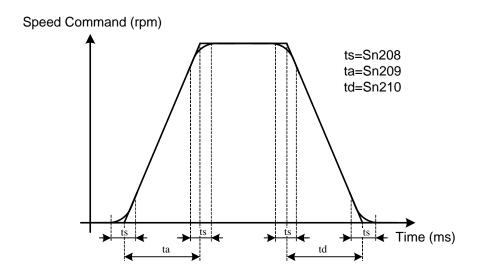
Setting examples:

(1) To achieve 50% of rated speed output in 10msec:

Set Sn207 =
$$10(\text{msec}) \times \frac{100\%}{50\%} = 20(\text{msec})$$

(2) To achieve 75% of rated speed output in 10msec:

Set Sn207 =
$$10 \text{(msec)} \times \frac{100\%}{75\%} = 13 \text{(msec)}$$


S-Curve Speed Command Acceleration/Deceleration:

Set **Sn205=3** to enable the use of S-Curve speed command ac/deceleration function.

Parameter	Name		Unit	Setting range	Control mode
Sn208	S-Curve speed command accel/decel time setting Set Sn205=3 to enable this function. In the period of Accel. and Decel. , drastic speed changing might cause vibration of machine. S curve speed command Accel. and Decel. time setting has the effect to smooth Accel. and Decel. curve. Rule for the setting : $\frac{t_a}{2} > t_s$, $\frac{t_d}{2} > t_s$	1	msec	1~1000	S
Sn209	S-Curve speed command acceleration time setting Refer Sn208	200	msec	0~5000	S
Sn210	S-Curve speed command deceleration time setting Refer Sn208	200	msec	0~5000	S

In applications where normal acceleration/deceleration on ramp up or ramp down bring in vibration of the mechanical

system. S- curve acceleration/deceleration parameters could help to reduce vibration as diagram below:

Caution! Setting Rule: $\frac{t_a}{2} > t_s$, $\frac{t_d}{2} > t_s$

5-3-7 Setting rotation direction

Motor rotation direction in speed mode can be set by parameter **Cn004 (Motor rotation direction)** and input contact **SPDINV** according to the tables below.

Caution!

Both methods can be operated at the same time.

Ensure that these parameters are set correctly for the required direction.

Parameter		Name	Default	Unit	Setting Range	Control mode	
	М	otor rotation direction (obser	vation from load side).				
		CCW CW S					
	setting	Expla	nation			0	
Cn004	Journa	Torque control	Speed control	0	Х	lĭ	S/T
	0	Counter Colckwise (CCW)	Counter Colckwise (CCW)			3	
	1	Colckwise (CW)	Counter Colckwise (CCW)				
	2	Counter Colckwise (CCW)	Colckwise (CW)				
	3	Colckwise (CW)	Colckwise (CW)				

Input contact SPDINV	Description	Control mode
0	Rotation by speed command direction.	S
1	Rotation by reverse speed command direction.	3

Note: Input contacts status "1" (ON) and "0" (OFF).

Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

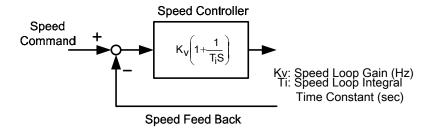
5-3-8 Speed Loop Gain

In speed mode there are two speed controller loops,

with separate Gain (P) and Integral (I) functions.

Speed controllers 1 or 2 can be selected by setting one of the multi-function input terminals,

to selection G-SEL or by setting one of the parameters Cn20-Cn24 as required.


Please refer to section 5-3-11 section B for more details.

Parameter	Name	Default	Unit	Setting range	Control mode
Sn211	Speed loop gain 1 Speed loop gain has a direct effect on the frequency response bandwidth of the Speed-control loop. Without causing vibration or noise Speed-loop-gain can be increased to obtain a faster speed response. If Cn025 (load Inertia ratio) is set correctly, the speed-loop-bandwidth will equal to speed-loop-gain.	40	Hz	10~450	Pi Pe S
Sn212	Speed loop integral time 1 Speed loop integral element can eliminate the steady speed error and quick response for speed variations. Decreasing Integral time can improve system rigidity. The formula below shows the relationship between Integral time and Speed loop Gain. $SpeedLoopIntegrationTimeCons \tan t \ge 5 \times \frac{1}{2\pi \times SpeedLoopGain}$	100	x0.2 ms	1~500	Pi Pe S
Sn213	Speed loop gain 2 Refer to Sn211	40	Hz	10~450	Pi Pe S
Sn214	Speed loop integral time constant 2 Refer to Sn212	100	x0.2 ms	1~500	Pi Pe S

Diagram below shows the speed controller.

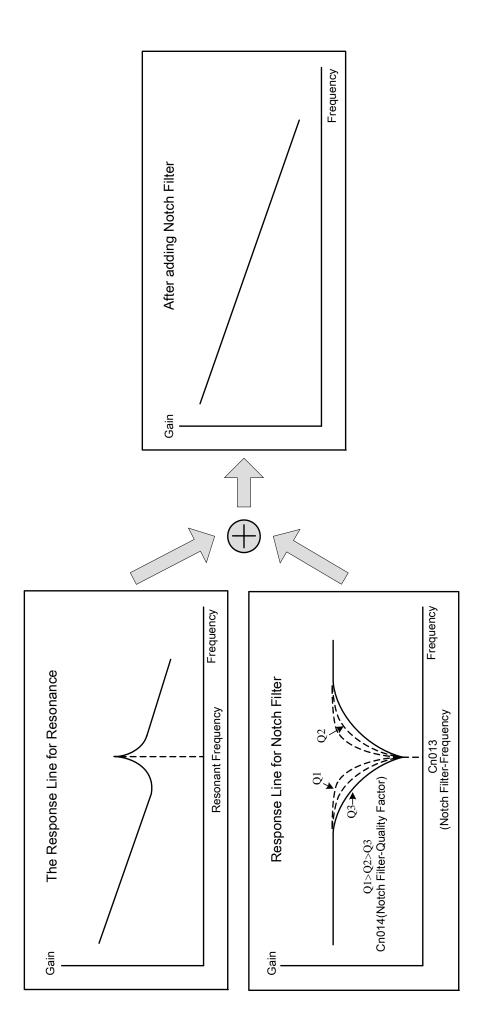
Setting a high speed loop gain or a lower speed loop integral time provides a faster speed control response time.

For more details refer to section 5-5.

5-3-9 Notch Filter

The function of the Notch filter is to suppress mechanical system resonance.

Resonance occurs due to low mechanical system rigidity (high springiness) of transmission systems used with servo motors such as couplings, bearings, lead screws, etc.


Enter the mechanical system vibration (resonance frequency) in parameter Cn013 (Notch Filter frequency) and adjust Cn014 to set the filter bandwidth scaling factor.

Lower the setting of Cn014 value, wider is the notch filter frequency bandwidth. The adjustment required depends on the application.

Caution!

If Cn013 is set to "0" the Notch filter is disabled.

Parameter	Name	Default	Unit	Setting range	Control mode
Cn013	Frequency of resonance Filter (Notch Filter).	_		0~1000	
	Enter the vibration frequency in Cn013, to eliminate system mechanical vibration.	0	Hz		Pi/Pe/S
	Band Width of the Resonance Filter.				
Cn014	Adjusting the band width of the frequency, lower the band width value in Cn014 , restrain frequency Band width will be wider.	7	Х	1~100	Pi/Pe/S

5-3-10 Torque limit of speed control mode

In speed mode, the motor torque limit input contact **TLMT** could be used to select one of the two methods below:

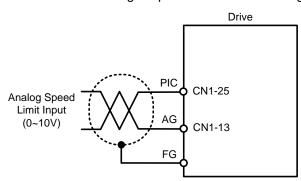
- (1) Internal toque limit: Using default **Cn010** (CCW Torque command limit) and **Cn011**(CW Torque command limit).
- (2) External analog command: Using two separate analog voltage command signals at input terminals **PIC(CN1-27)** to limit CCW torque and **NIC(CN1-28)** to limit CW torque.

As shown in the table below:

Input contact TLMT	CCW torque command limit source	CW torque command limit source	Control mode
0	Cn010	Cn011	ALL
1	External analog command PIC(CN1-25)	External analog command PIC(CN1-25)	Pi/Pe/S

Note: Input contacts status "1" (ON) and "0" (OFF).

Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.


Caution!

To use external analog torque command limit, If analog torque command limit is greater than internal torque command limit, the internal torque command limit has the priority over external analog torque command limit.

Internal Torque command limit is set as below.

Parameter	Name	Default	Unit	Setting range	Control mode
Cn010	CCW torque command limit Ex: For a torque limit in CCW direction which is twice the rated torque, set Cn10=200.	300	%	0~300	ALL
	CW torque command limit Ex: For a torque limit in CW direction which is twice the rated torque, set Cn11=-200.	-300	%	-300~0	ALL

The diagram below shows the external analog torque limit command wiring:

5-3-11 Gain Switched

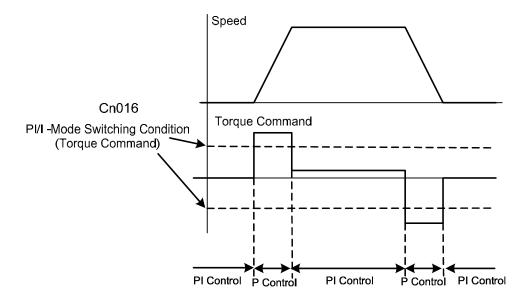
PI/P control mode selection (Section A)

Automatic gain 1& 2 switch (Section B)

The selection of **PI/P control mode switch** and **Automatic gain 1 & 2 switch** by parameters or from input terminals can be used in following conditions.

- (1) In speed control, to restrain acceleration/deceleration overshooting.
- (2) In position control, to restrain oscillations and decrease the adjusting time.
- (3) To decrease the possible noise caused by using Servo Lock function.

(A) Switching between PI/P Control modes

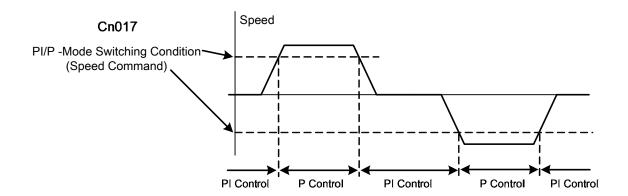

Switch over from PI to P mode is determined by setting of parameter Cn015.0 and according to the selection options below:

Parameter		Name	Default	Unit	Setting Range	Control mode
	PI/P cont	rol switch mode.				
	Setting	Description				
	0	Switch from PI to P if the <i>torque</i> command is greater than Cn016	<u> </u> 			
Cn015.0	1	Switch from PI to P if the speed command is greater than Cn017		Х	0	Pi/Pe/S
	2	Switch from PI to P if the <i>acceleration</i> command is greater than Cn018			4	
	3	Switch from PI to P if the position error is greater than Cn019				
	4	Switch from PI to P by the input contact PCNT . Set one of the multi function terminals to option 03.				

Parameter	Name	Default	Unit	Setting range	Control mode
	PI/P control mode switch by(torque command				
Cn016	Set the Cn015.0=0 first. If Torque Command is less than Cn016 PI control is selected. If Torque Command is greater than Cn016 P control is	200	%	0~399	Pi/Pe/S
	selected.				
	PI/P control mode switch by speed command				
Cn017	Set the Cn015.0=1 first. If Speed Command is less than Cn017 PI control is selected. If Speed Command is greater than Cn017 P control is selected.	0	rpm	0~4500	Pi/Pe/S
	PI/P control mode switch by acceleration				
Cn018	Set the Cn015.0=2 first. If Acceleration is less than Cn018 PI control is selected. If Acceleration is greater than Cn018 P control is selected.	0	rps/s	0~18750	Pi/Pe/S
	PI/P control mode switch by position error value				
Cn019	Set the Cn015.0=3 first. If Position error value is less than Cn019 PI control is selected. If Position error value is greater than Cn019 P control is selected.	0	pulse	0~50000	Pi/Pe/S

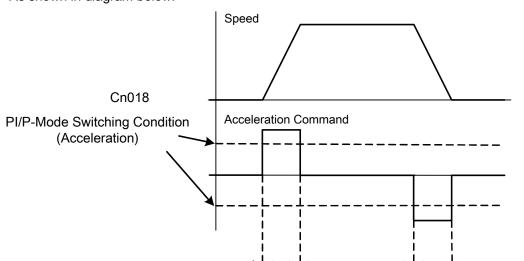
(1) PI to P mode switch over by comparing Torque command.

When the *Torque command* is less than **Cn016** PI control is selected. When the *Torque command* is greater than **Cn016** P control is selected. As shown in diagram below:



(2) PI to P mode switch over by comparing Speed command.

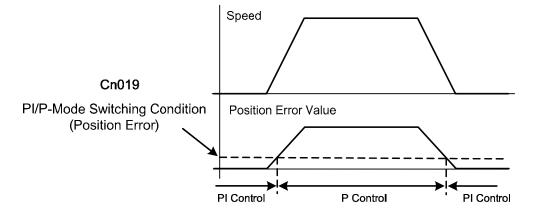
When the **Speed command** is **less** than **Cn017** PI control is selected.


When the **Speed command** is **greater** than **Cn017** P control is selected.

As shown in diagram below:

(3) PI to P mode switch over by comparing Acceleration command.

When the *Acceleration command* is **less** than **Cn018** PI control is selected. When the *Acceleration command* is **greater** than **Cn018** P control is selected. As shown in diagram below:

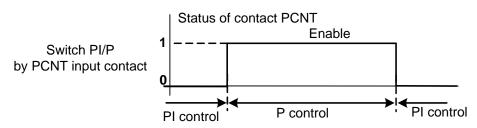

Pl Control

P Control Pl Control

(4) PI to P mode switch over by comparing Position Error value.

When the *Position Error value* is less than Cn019 PI control is selected. When the *Position Error value* is greater than Cn019 P control is selected. As shown in diagram below:

Pi Control


(5) PI to P mode switch over by PCNT input contact.

When the **PCNT input contact** is open PI control is selected.

When the **PCNT input contact** is closed P control is selected.

Note: Input contacts status "1" (ON) and "0" (OFF).

Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

(B) Automatic gain 1& 2 switching

Selection of Automatic gain 1& 2 switch with different P&I Gains is possible by setting

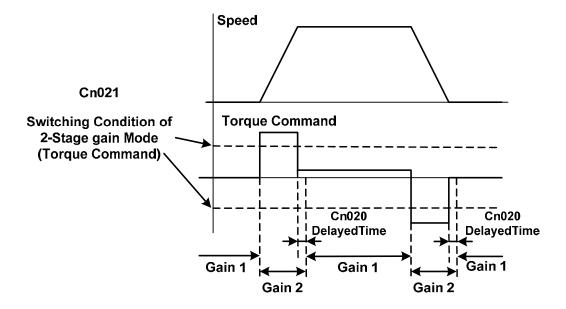
Parameter Cn 015.1 to one of the selections listed in the table below.

Parameter Cn 020 can be use for setting a switch delay time between different gains. (Gain 1 and 2)

Parameter		Name	Default	Unit	Setting Range	Control Mode
	Automatic gain 1& 2 switch					
	Setting					
	0	Switch from gain 1 to 2 if <i>torque</i> command is greater than Cn021 .				
Cn015.1	1	Switch from gain 1 to 2 if speed command is greater than Cn022 .	4	X	0	Pi/Pe/S
	2	Switch from gain 1 to 2 if <i>acceleration</i> command is greater than Cn023 .	4	^	4	F1/F6/3
	3	Switch from gain 1to2 if position error value is greater than Cn024 .				
	4	Switch from gain 1 to 2 by input contact G-SEL. Set one of the multi function terminals to option 15 of Hn501.				
	Automa	tic gain 1& 2 switch delay time.				
Cn020		oop 2 to speed loop 1, Change over delay, vo control speed loops (P&I gains 1 & 2) are used.	0	x0.2 msec	0~10000	Pi/Pe/S
		tic gain 1& 2 switch condition(torque command)				
Cn021	Set Cno When to When selected less th	O15.1=0 first. Orque command is less than Cn021, Gain 1 is selected. torque command is greater than Cn021, Gain 2 is ed When Gain 2 is active and torque command becomes an Cn021 setting value, system will automatically switch to Gain 1 switch time delay can be set by Cn020.	200	%	0~399	Pi/Pe/S
Cn022	Set the When s When selected less th	chic gain 1& 2 switch condition (speed command) Cn015.1=1 first. Speed command is less than Cn022 Gain 1 is selected. Speed command is greater than Cn022 Gain 2 is sed. When Gain 2 is active and speed command becomes an Cn022 setting value, system will automatically switch to Gain 1 the switch time delay can be set by Cn020.	0	rpm	0~4500	Pi/Pe/S
Cn023	Automa Set Cnt When a selecte Gain 2 comma	tic gain 1& 2 switch condition (acceleration command) 015.1=2 first. 1. In the condition (acceleration command) 1. In the condition (acceleration command) 2. In the condition (acceleration command) 2. In the condition (acceleration command) 3. In the condition (acceleration command) 4. In the condition (acceleration command) 5. In the condition (acceleration command) 6. In the condition (acceleration command) 6. In the condition (acceleration command) 6. In the condition (acceleration command) 7. In the condition (acceleration command) 8. In the condition (acceleration command) 9. In the condition (acceleration comma	0	rps/s	0~18750	Pi/Pe/S
Cn024	Set Cnt When p When selected becom	tic gain 1& 2 switch condition (position error value) 015.1=3 first. Position error value is less than Cn024 Gain 1 is selected. Position error value is greater than Cn024 Gain 2 is led. When Gain 2 is active and position error value less less than Cn024 system will automatically switch back in 1 and the switch time delay can be set by Cn020.	0	pulse	0~50000	Pi/Pe/S

Note: Gain 1: is consisted of Pn310 (position loop gain 1), Sn211 (speed loop gain 1) and Sn212 (Speed loop integral time 1).

Gain 2: is consisted of **Pn311** (position loop gain 2), **Sn213** (speed loop gain 2) and **Sn214** (Speed loop integral time 2).

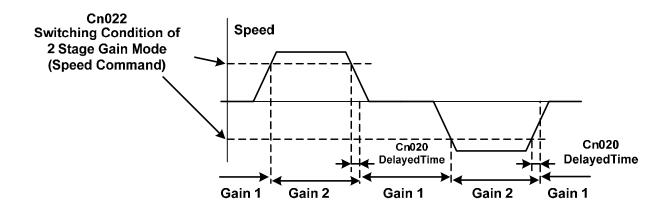

(1) Automatic gain 1&2 switch condition (by torque command).

When torque command is less than Cn021, Gain 1 is selected.

When torque command is greater than Cn021, Gain 2 is selected

When **Gain 2** is active and torque command becomes less than **Cn021** system will automatically switch back to **Gain 1** the switch time delay can be set by Cn020.

As show in the diagram below:

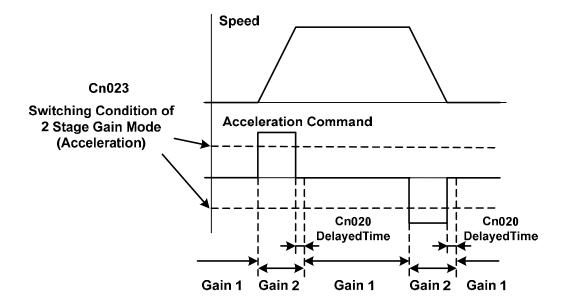

(2) Automatic gain 1&2 switch condition (by Speed command).

When speed command is less than Cn022 Gain 1 is selected.

When speed command is greater than Cn022 Gain 2 is selected.

When **Gain 2** is active and speed command becomes less than **Cn022** system will automatically switch back to **Gain 1** the switch time delay can be set by Cn020.

As show in the diagram below:

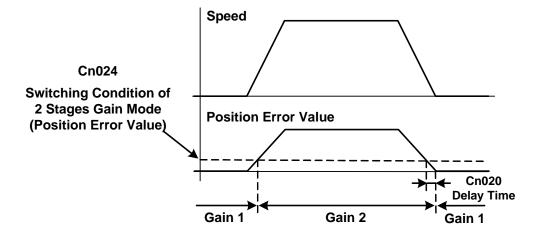

(3) Automatic gain 1&2 switch condition (by Acceleration command).

When acceleration command is less than Cn023 Gain 1 is selected.

When acceleration command is greater than Cn023 Gain 2 is selected.

When **Gain 2** is active and acceleration command becomes less than **Cn023** system will automatically switch back to **Gain 1** the switch time delay can be set by Cn020.

As show in the diagram below:

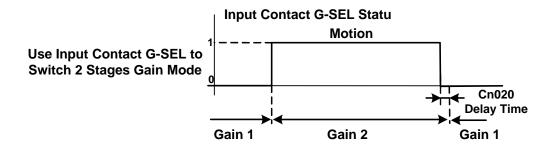

(4) Automatic gain 1&2 switch condition (by Position error value).

When position error value is less than Cn024 Gain 1 is selected.

When position error value is greater than Cn024 Gain 2 is selected.

When **Gain 2** is active and position error value becomes less than **Cn024** system will automatically switch back to **Gain 1** and the switch time delay can be set by Cn020.

As show in the diagram below:



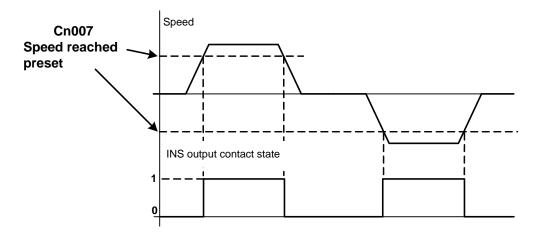
(5) Automatic gain 1&2 switch condition by G-SEL input contact.

When the G-SEL input contact is open Gain 1 is selected.

When G-SEL input contact is closed Gain 2 is selected.

When G-SEL input contact opens again then Gain 1 is selected and switch delay time can be set by Cn20. As show in the diagram below:

Note: Input contacts status "1" (ON) and "0" (OFF).

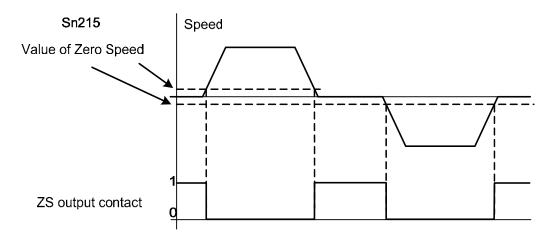

Please refer to 5-6-1 for setting required high /Low signal levels (PNP/NPN) selection.

5-3-12 Other Functions

When the speed level in CW or CCW directions becomes greater than the value set in **Cn007** (Speed reached preset), the output contact **INS** operates.

Speed reached preset

Parameter Signal	Name	Default	Unit	Setting Range	Control Mode
	Speed reached preset Speed preset level for CW or CCW rotation. When the speed is greater then preset level in Cn007 the Speed reached output signal INS will be activated	Rated rpm × 1/3	rpm	0~4500	S/T

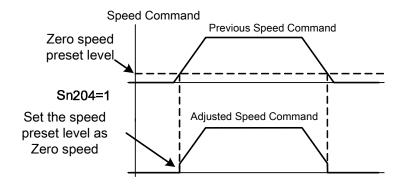

Note: Input contacts status "1" (ON) and "0" (OFF).

Please check section 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

Zero Speed preset

When the speed is less than the speed set in Sn215 (Value of ZS), the output contact **ZS** operates.

Parameter Signal	Name	Default	Unit	Setting Range	Control Mode
Sn215	Value of zero speed Set the zero speed range in Sn215 When the actual speed is lower than Sn215 value, Output contact ZS is activated.	50	rpm	0~4500	S



Note: Input contacts status "1" (ON) and "0" (OFF)

Please check section 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

To Zero the speed command according to preset level in Sn215 set Sn204 to selection 1.

Parameter Signal		Name	Default	Unit	Setting Range	Control Mode
	Zero Spee	d selection Enable	0 X			
C=204	Setting	Description		V	0 1	
Sn204	0	No action		^		S
	1	Set the preset value in Sn215 as zero speed.				

Servo Lock

In speed mode: the Servo Lock is used to lock servo motor when input voltage command is not at 0V. When input contact **LOK** operates: The control mode changes to internal position control mode, it temporarily stop motor rotation. Please refer to section **5-6-1** for setting input contact **LOK** function.

Speed Feed Back Smooth Filter

When there is system abnormal vibration or noise, Set **Cn032** (speed feed back smoothing filter) to restrain vibration or noise. Addition of this filter will delay the speed response of servo system.

Parameter Signal	Name	Default	Unit	Setting Range	Control Mode
	Speed feed back smoothing filter			1~1000	Pe/Pi/S
Cn032	Restrain sharp vibration noise by the setting and this filter	500	Hz		
	also delay the time of servo response.				

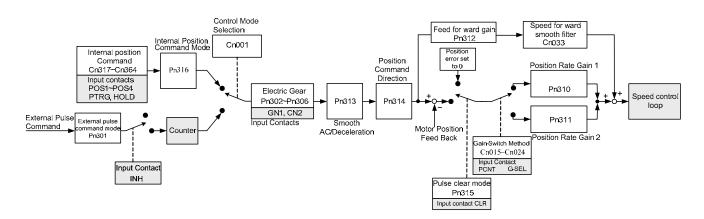
5-4 Position mode

Position control mode is used for high-precision applications on machinery such as machine tools.

The Position control mode offers two methods of control.

- External pulse input position command
- Internal position command.

In external pulse command input mode, the positioning command is signaled to the drive by a host Controller to achieve a fixed position.


In internal position command mode, 16 preset position commands can be set by parameters (Pn317~Pn364), and can be activated by use of input contacts POS1 ~ POS4.

Set parameter Cn001 (control mode selection) as required according to the table below.

Parameter Signal	Name		Default	Unit	Setting Range	Control Mode
	Control mode selection					
	Setting	Description				
		Position control (External pulse command)			0	
★ Cn001	2	Using one pulse command signal to control position. Please refer to 5-4-3.	2	Х	 6	ALL
	6	Position control (Internal pulse command)				
		Use input contacts to select 16 programmable preset position commands. Please refer to 5-4-2.	_			

New setting will become effective after re-cycling the power.

The diagram below shows the position loop control. Detailed functions are described in the following chapters.

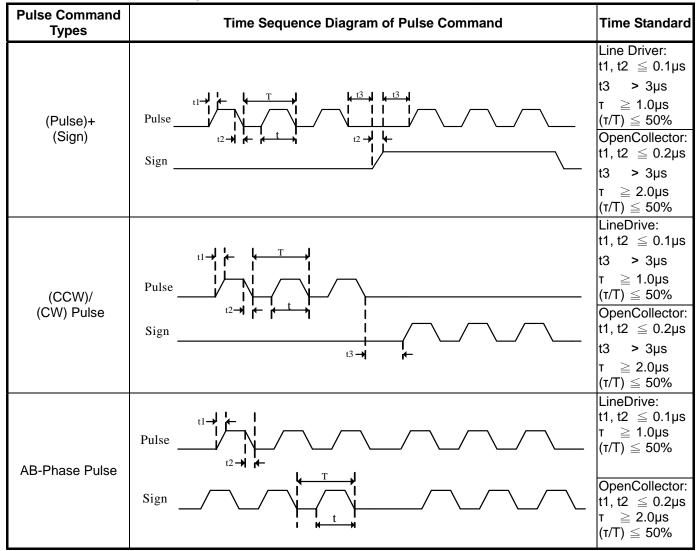
5-4-1 External Pulse Command

Four types of external position pulse command signals can be interfaced,

These can be selected from the list below.

Position pulse signal logic can be selected Positive or negative as required.

Parameter Signal		Name	Default	Unit	Setting Range	Control Mode
		Position pulse command selection				
	Setting	Description				
★Pn301.0	0	(Pulse)+(Sign)	0 X		0 3	Pe
	1	(CCW)and (CW) pulse				
	2	AB-Phase Pulsex2				
	3	AB-Phase Pulsex4				
	Position pulse command logic selection				0 1	
★Pn301.1	Setting	Setting Description		X		Do
	0	0 Positive Logic				Pe
	1	Negative Logic				


New setting will become effective after re-cycling the power.

Position pulse	Positive	Logic	Negative Logic		
command types	CCW Command	CW Command	CCW Command	CW Command	
(Pulse)+	Pulse /Pulse		Pulse /Pulse		
`(Sign)	Sign L /Sign	Н	Sign H /Sign	L	
(CCW)/	Pulse //Pulse	L	Pulse //Pulse	Н	
(CW) Pulse	Sign L /Sign —		Sign — H /Sign		
AB-Phase Pulse	Pulse //Pulse		Pulse /Pulse		
	Sign /Sign		Sign /Sign		

Two types of pulse command can be connected, (Open collector) and (Line driver).

Please refer to **section 2-2-1** for the pulse wiring method.

Pulse command timing should be in accordance with the time sequence standard below.

Position command can be disabled (Inhibited) by extrernal input contact INH.

Input Contact INH	Description	Control Mode
0	Position Pulse command enabled	Pe
1	Position Pulse command disabled	гe

Note: Input contacts status "1" (ON) and "0" (OFF)

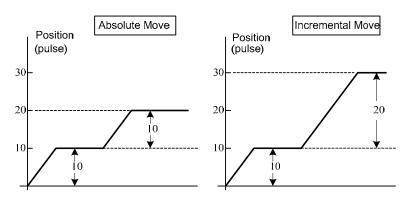
Please check section 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

5-4-2 Internal Position Command

In internal position command mode, 16 preset position commands can be set by parameters (Pn317~Pn364), and can be activated by use of input contacts POS1 ~ POS4.

Preset positions are programmable and can be selected according to the table below:

Position Command	POS4	POS3	POS2	POS1	Position Comma	Position Speed Parameter		
P1	0	0	0	0	Rotation Number	Pn317	Pn319	
	U	U	U	U	Pulse Number	Pn318	FIISTS	
P2	0	0	0	4	Rotation Number	Pn320	D=200	
P2	0	0	0	1	Pulse Number	Pn321	- Pn322	
P3	0	0	4	0	Rotation Number	Pn323	Dagge	
P3	U	U	1	U	Pulse Number	Pn324	- Pn325	
P4	0	0	1	1	Rotation Number	Pn326	Dn220	
P4	0	U	ı	ı	Pulse Number	Pn327	- Pn328	
P5	0	1	0	0	Rotation Number	Pn329	Dn224	
Po	U	ı	U	U	Pulse Number	Pn330	- Pn331	
P6	0	1	0	1	Rotation Number	Pn332	Dn224	
Po	0	ı	U	ı	Pulse Number	Pn333	- Pn334	
P7	0	1	4	0	Rotation Number	Pn335	D=227	
P/	0	I	1	0	Pulse Number	Pn336	- Pn337	
P8	0	1	1	1	Rotation Number	Pn338	- Pn340	
РО	U	'	'	'	Pulse Number	Pn339	F11340	
P9	1	0	0	0	Rotation Number	Pn341	- Pn343	
P9	ı	U	U	U	Pulse Number	Pn342	F11343	
P10	1	0	0	1	Rotation Number	Pn344	Pn346	
PIU	ı	U	U	ı	Pulse Number	Pn345	F11340	
P11	1	0	1	0	Rotation Number	Pn347	Pn349	
"	ı	U	ı	U	Pulse Number	Pn348	F11349	
P12	1	0	1	1	Rotation Number	Pn350	Pn352	
F 12	ı	U	'	'	Pulse Number	Pn351	F11332	
P13	1	1	0	0	Rotation Number	Pn353	Pn355	
FIS	ı	'	U	U	Pulse Number	Pn354	- 11333	
P14	1	1	0	1	Rotation Number	Pn356	- Pn358	
F 14	ı	'	U	ı	Pulse Number	Pn357		
P15	1	1	1	0	Rotation Number	Pn359	- Pn361	
1 13	'	'	'	0	Pulse Number	Pn360		
P16	1	1	1	1	Rotation Number	Pn362	Pn364	
	'		'	'	Pulse Number	Pn363	1 1100 1	

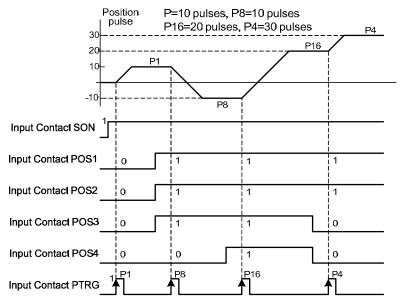

For internal positioning mode there are two types of moves incremental move or absolute move, selectable byparameter **Pn316** as below.

Parameter Signal	Name		Default	Unit	Setting Range	Control Mode
	Internal posetting	nternal position command mode selection Setting Description		V	0	ć
★ Pn316.0	0	Absolute Position	0	Х		Pi
	1	Incremental Position			•	

New setting will become effective after re-cycling the power.

Example below shows the difference between absolute and incremental moves.

For two pulse commands of 10 pulse position pulse command and followed with another 20 pulse, the traveled positions will be different.



PTRG. (Position Trigger).

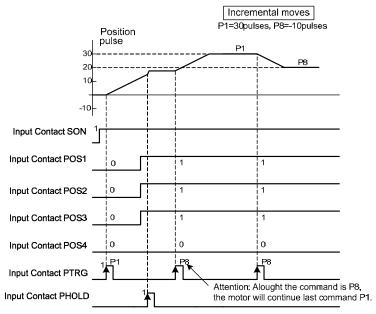
Once any preset position is selected by input contacts **POS1~POS4** then require a trigger signal **(PTRG)** from the input contact, enable **PTRG to** start operation.

Diagram below shows an example for 4 different absolute encoders.

Absolute moves

Note: Input contacts status "1" (ON) and "0" (OFF)

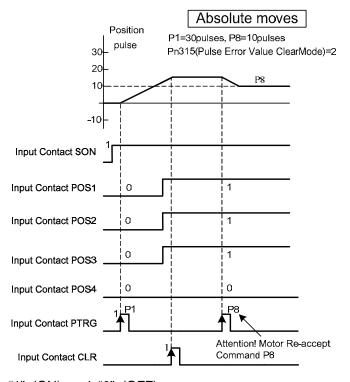
Please check section 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.


PHOLD. (Position Hold)

The Position command can be inhibited (Held) at any time by input contact signal PHOLD.

Once PHOLD is initiated the motor will decelerate and stop.

As soon as the input contact PTRG is triggered again the original position command will be Completed.


Diagram below shows PHOLD function with incremental encoder.

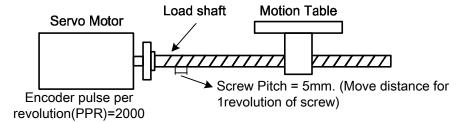
CLR (Clear position command).

If the CLR input is activated when a position command is in process then the motor will stop immediately and the remaining positioning pulses will be cleared. Parameter Pn315 must be set to 1 or 2 as required (refer to section 5-4-7).

Once the PTRG input contact is activated again then a new position command will be started according to the selection of input contacts POS1~POS4.

Note: Input contacts status "1" (ON) and "0" (OFF)

Please check section 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.


5-4-3 Electronic Gear

Electronic gear ratio parameter can be used to scale the command output pulse.

This would be useful in transmission applications where move distance per move command pulse has to be scaled due to mechanical requirements.

Diagram and notes below describe the electronic gear ratio effect.

Example of a transmission device and calculations that show the required number of pulses from a host controller to move the table by 10mm.

Calculations without Electronic Gear Natio	Call
1. One rotation of ball screw = Table move distance of	For Calculat
5mm.	Setting of El

 If the table is required to move 10mm, then Ball screw needs to rotate by (10mm ÷ 5 mm/rev)= 2 Revs

Calculations without Electronic Goar Patio

- 3. Command pulses required to cause one revolution:-
 - = Encoder ppr x (Internal multiplication factor).
 - = 2000 ppr x 4 = 8000 pulses.
- So the Command pulses required to move 10mm (2 revs):-
 - = 8000 pulses x 2 (revs) = 16000 Pulses.

Number of command pulses for an specific move distance can be calculated according to the formula below:

= Number of Ball Screw Revs x (Encoder ppr x 4).

Calculations with Electronic Gear Ratio

For Calculating the number of pulses command required, Setting of Electronic gear ratio see next chapter.

Electronic gear ratio can be set according to the required move distance per move command pulse.

For example:

- 1. One Pulse command = Move distance of 1µm.
- 2. If the Motion Table needs to move 10mm,

Then the required command pulses from a Host Controller

= $10mm \div 1\mu m$ / Pulse.= 10000 Pulses.

Once the move distance per pulse and the Electronic gear ratio is known then the required number of pulse command can be calculated.

Electronic Gear Ratio Calculation

Follow the Steps below:

1. Define the requirements of the positioning system

Establish the following:

- Move distance per one revolution of load shaft.
- Servo motor Encoder ppr (Pulse Per Revolution). (please refer to section 1-1-2 Servo Motor Standards).
- Motor / load Shaft deceleration ratio.

2. Move distance per one move command pulse.

Define the move distance caused by the transmission system as a result of, one move command pulse from the host controller.

Ex: When 1 Pulse Command move = 1µm

If the Host Controller gives a move command of 2000 pulses, the transmission device will move by: $2000pulse \times 1um/pulse = 2mm \ \, \text{(The Electronic Gear Ratio must be set correctly)}.$

3. Calculate the Electronic Gear Ratio

Calculate the Electronic Gear Ratio according to the formula below:-

If the deceleration ratio between motor and load shaft is $\frac{n}{m}$

(m = Motor Rotating number, n= Load Shaft Rotating Value), Then the formula for Electronic Gear Ratio is:

Warning!

The calculated Electronic Gear Ratio must be according to the conditions below, otherwise the servo drive and motor will not function correctly.

$$\frac{1}{200} \le ElectroniceGearRatio \le 200$$

4. Parameter Setting for Electronic Gear Ratio

Setting gear ratio Numerator and denominator parameters:

Numerator and denominator values of the calculated electronic gear ratio must be entered in the required parameters.

These two values have to be integer and with a value within the specified range in the table below.

Parameter Signal	Name	Default	Unit	Setting Range	Control Mode
Pn302	Numerator of Electronic Gear Ratio 1				
Pn303	Numerator of Electronic Gear Ratio 2				
Pn304	Numerator of Electronic Gear Ratio 3	1	Χ	1~50000	Pi/Pe
Pn305	Numerator of Electronic Gear Ratio 4				
★ Pn306	Denominator of Electronic Gear Ratio				

New setting will become effective after re-cycling the power.

This device provides 4 selections of Numerator for Electronic Gear Ratio.

Input contacts **GN1** and **GN2** can be used to select the required Numerator for the Electronic Gear Ratio According to the table below.

Input Contact GN2	Input Contact GN1	Numerator of Electronic Gear Ratio	Control Mode
0	0	Numerator of Electronic Gear Ratio 1 Pn302	
0	1	Numerator of Electronic Gear Ratio 2 Pn303	Pi/Pe
1	0	Numerator of Electronic Gear Ratio 3 Pn304	
1	1	Numerator of Electronic Gear Ratio 4 Pn305	

Note: Input contacts status "1" (ON) and "0" (OFF)

Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

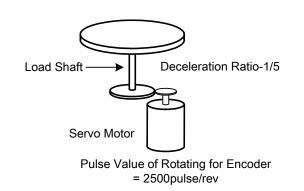
Electronic Gear Ratio setting examples

Ball Screw Servo Motor Load shaft Motion Table Pulse Value of 1 Rotating for Encoder=2000pulse/rev Distance of 1 Rotating for Screw = 5mm

Setting Process 1. Main positioning specifications:

- a) Load Shaft(Ball Screw) pitch
 move distance per revolution= 5mm
- b) Motor Encoder ppr (Pulse per revolution) = 2000pulses
- 2. Move distance per one pulse of move Command.

 Moving Distance of 1 Pulse Command =1µm
- 3. Calculation of the Electronic Gear Ratio:


ElectronicGear Ration =
$$\frac{2000 pulse/rev \times 4}{5mm/rev \div lum/pulse} = \frac{8000}{5000}$$

4. Set the parameter of Electronic Gear Ratio:

Numerator of Electronic Gear Ratio = 8000

Denominator of Electronic Gear Ratio = 5000

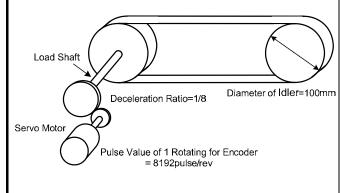
Mechanical Disc

- 1. Main positioning specifications:
- a) Deceleration Ratio=1/5
- b) Load Shaft(Mechanical Disc)Move Value per one revolution=360 °

Motor Encoder ppr (Pulse per revolution)= 2500 pulses

2. Move distance per one pulse of move Command.

Distance for 1Pulse Command =0.1°


3. Calculation of the Electronic Gear Ratio:

Electronic Gear Ratio =
$$\frac{2500 \, pulse / \, rev \times 4}{360^{\circ} \div 0.1^{\circ} / \, pulse} \times \frac{5}{1} = \frac{50000}{3600}$$

4. Set the parameter of Electronic Gear Ratio: Numerator of Electronic Gear Ratio = 5000

Numerator of Electronic Gear Ratio = 50000 Denominator of Electronic Gear Ratio = 3600

Transmission Belt

- 1. Main positioning specifications:
 - a) Deceleration Ratio=1/8
 - b) Load Shaft (Idler) Move Value per revolution. $= 3.14 \times 100 \text{mm} = 314 \text{mm}$
 - c) Motor encoder ppr (Pulse Per Revolution) = 8192pulse
- 2. Move distance per pulse of move Command.

 Distance for 1Pulse Command =10um
- 3. Calculation the Electronic Gear Ratio:

Electronic Gear Ratio =
$$\frac{8192 \, pulse / \, rev \times 4}{314 mm \div 10 um / \, pulse} \times \frac{8}{1} = \frac{262144}{31400}$$

4. Set the parameter of Electronic Gear Ratio:

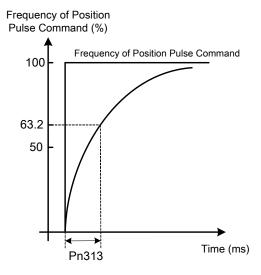
Reduction of the fraction to make the Numerator and Denominator less than 50000.

Numerator of Electronic Gear Ratio 32768

Denominator of Electronic Gear Ratio 3925

5-4-4 Smooth Acceleration

Using the One Time Smooth Acceleration/Deceleration of Position Command"


It smoothes the position pulse command frequency.

Parameter Signal	Name	Default	Unit	Setting Range	Control Mode
★ Pn313	Position command Accel/Decel Time Constant	0	msec	0~10000	Pi/Pe

New setting will become effective after re-cycling the power.

Time Constant of One Time Smooth Acceleration/Deceleration of Position Command:

The Time in which The Position Pulse Frequency increases (one time) from zero to 63.2% of Position Pulse Command Frequency.

Setting Examples:

(1) To achieve 95% of Position Pulse Command Frequency Output in 30msec:

$$Pn313 = \frac{30(msec)}{-\ln(1-95\%)} = 10(msec)$$

(2) To achieve 75% of Position Pulse Command Frequency Output in 30msec:

$$Pn313 = \frac{30(msec)}{-\ln(1-75\%)} = 22(msec)$$

Note: Above curve is a logarithmic

In = Natural log.

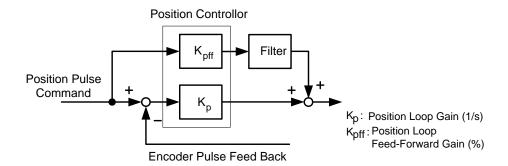
5-4-5 Definition of Direction

In position mode, user can use Pn314 (Position Command Direction Definition) to define motor rotation direction. The setting is showed as follow:

Parameter Signal		Name	Default	Unit	Setting Range	Control Mode
★ Pn314	load end)	of position command direction (from motor	1	X	0 1	Pi Pe
	Setting	Description				
	0	Clockwise (CW)				
	1	Counter Clockwise (CCW)				

New setting will become effective after re-cycling the power.

5-4-6 Gain Adjustment


The table below shows the parameters for adjusting the position loop.

Two position loop gains can be selected from input contact terminals according to table below.

For selection methods refer to section. 5-3-11.

Parameter Signal	Name	Default	Unit	Setting Range	Control Mode
	Position Loop Gain1				
Pn310	Without causing vibration or noise on the mechanical system the position loop gain value can be increased to increase system response and shorten the positioning time. Generally, the position loop bandwidth should not be higher then speed loop bandwidth. The relationship is according to the formula below:		1/s	1~450	Pe/Pi
	$PositionLoopGain \leq 2\pi \times \frac{SpeedLoopGain}{5}$				
Pn311	Position Loop Gain 2	40	1/s	1~450	Pe/Pi
1 11011	Refer to Pn310		1/3	11-430	F C /F1
Pn312	Position Feed-Forward Gain t can be used to reduce the track error of position control and speed up the response. If the feed forward gain is too large, it might cause speed overshoot and INP contact repeatedly switch ON/OFF. INP ("In Position" output signal).	0	%	0~100	Pe/Pi
Cn033	Speed Feed-Forward Smooth Filter	40	Hz	0~100	Pe/Pi
011000	Smooth the speed feed-forward command.	- 0			,

Diagram below shows the position controller. Adjust a higher gain value can reduse response time. Position Feed-Forward Gain can also be used to shorten the positioning time. refer to section 5-5 for Position Loop Gain Adjustment methods.

5-4-7 Clear the Pulse Offset

In position control mode, **parameter Pn315** (Pulse Error clear mode) has three modes can be select. **CLR** input contact is used to clear the pulse error as required according to the list below.

Parameter		Name	Default	Unit	Setting Range	Control Mode
Pn315	Pulse Error Clear Mode					
	Setting	Description				Pe
	0	When Input CLR contact, clears the pulse error value.	0	X	0 2	
	1	When Input CLR contact to cancels the position command, Stops the motor rotating, the pulse error value is cleared and mechanical Home signal is reset.				Pi Pe
	2	When Input CLR contact to cancels the position command, stops the motor rotating and the pulse error value is cleared.				Pi

Note: Input contacts status "1" (ON) and "0" (OFF)

Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

5-4-8 Original Home

Home routine is used to find and set a reference point for correct positioning.

To set a HOME reference position, one of input contacts ORG (external sensor input), CCWL, or CWL can be used.

An encoder Z phase (marker pulse) can also be used as home reference and can be search by CW or CCW direction. Following Home routine selections are available for setting parameter Pn 365.0.

Parameter	Name	Setting	Description	Control Mode		
Pn365.0	On activation of Home input contact, It sets the search direction and Home reference. (Setting for home routine)	0	Once the home routine is activated, motor will search for Home Position switch in 1 st preset speed in CCW direction. Input contacts CCWL or CWL can be used as the Home Reference Switch. Once Home reference switch is detected and complete, input contacts CCWL and CWL will act as limits input contact again. Note: When using this function, 1 or 2 setting of Pn365.1 is not allowable. Cn002.1 (CCWL & CWL Input terminal function) must to set as 0.			
		1	Once the home routine is activated, motor will search for Home Position switch in 1 st preset speed in CW direction . Input contacts CCWL or CWL can be used as the Home Reference Switch. Once Home reference switch is detected and complete, input contacts CCWL and CWL will act as limits input contact again. Note: When using this function, 1 or 2 setting of Pn365.1 is not allowable. Cn002.1 (CCWL & CWL Input terminal function) must to set as 0.	t Pi/Pe		
		2	Once the home routine is activated, motor will search for Home Position switch in 1 st preset speed in CCW direction and sets the input contact ORG (external sensor input) as a Home reference when ORG contact is activated. If Pn365.1=2 , it will directly find the closest Rising-Edge of ORG to be the Home position (without a need for Home reference),then it stops in accordance with Pn365.3 setting.			
		3	Once the home routine is activated, motor will search for Home Position switch in 1 st preset speed in CW direction and sets the input contact ORG (external sensor input) as a Home reference when ORG contact is activated. If Pn365.1=2 , it will directly find the closest Rising-Edge of ORG to be the Home position (without a need for Home reference),then it			
		4	stops in accordance with Pn365.3 setting. Once the home routine is activated, motor will search for Home position in 1st preset speed in CCW direction and sets the Home reference Servo drive start to find the Home position of the nearest Z phase. (No need for Home reference) When using this function, set Pn365.1=2 . After finished setting of Z Phase to the Home position, for the stop method refer to the setting of Pn365.3 .			
		5	Once the home routine is activated, motor will search for Home position in 1st preset speed in CW direction and sets the Home reference Servo drive start to find the Home position of the nearest Z phase. (No need for Home reference) When using this function, set Pn365.1=2 . After finished setting of Z Phase to the Home position, for the stop method refer to the setting of Pn365.3 .			

Parameter	Name	Setting	Description	Control Mode	
Once Reference Home switch or		0	Once the Home Reference switch or signal is detected, motor reverses direction in 2 nd speed to find the nearest Z Phase pulse and sets this as the Home position, then stops in accordance with Pn365.3 setting method.		
Pn365.1	Signal, is found set search method for the Home	Once the Home Reference switch or signal is detected, motor Continues in its direction in 2 nd speed to find the nearest Z Phase pulse and sets this as the Home position, then stops in accordance with Pn365 3 setting method		Pi/Pe	
	position.	2	When Pn365.0=2 or 3 , it finds the rising edge of ORG to be the Home position, then stops in accordance with Pn365.3 ; When Pn365.0=4 or 5 , it finds Z Phase pulse to be the Home, then stops in accordance with Pn365.3 .		
		0	Homing routine is Disabled.		
Pn365.2	Setting of Home Routine Start method	1	On power up and activation of Servo on the home routine is started automatically.		
		2	Use SHOME input contact to start a home routine. In position mode, SHOME can be used to start a home routine at any moment.		
Pn365.3	Stopping mode after finding	0	After detecting the Home signal, it sets this position to be the Home reference (Un-14 encoder feed back rotating number and Un-15 encoder feed back pulse number are all 0), motor decelerates and stops. Then it reverses direction in 2 nd speed to detect the Home Position again then it decelerates and stops.	Pi/Pe	
	Home signal.	1	After detecting the Home signal, it sets this position to be the Home reference (Un-14 encoder feed back rotating number and Un-15 encoder feed back pulse number are all 0), motor decelerates and stops.		

Home Mode selection table

Pn365.0 pn 365.1 selections can be made for each application as required according to the table below:-

Pn365.0 Pn365.1	0	1	2	3	4	5
0	•	•	•	•	×	×
1	×	×	•	•	×	×
2	×	×	•	•	•	•

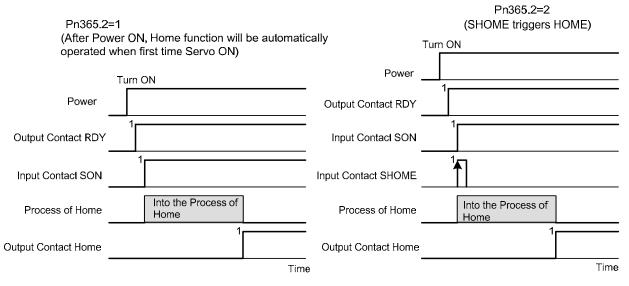
[●] HOME routine available ➤ HOME routine not available.

Additional Home routine parameters

Home search speed parameters 1st (Fast) and 2nd (Slow) speeds are set according to table below:

Parameter Signal	Name	Default	Unit	Setting Range	Control Mode
Pn366	1 st preset high speed of HOME	100	rpm	0~2000	Pi/Pe
Pn367	2 nd preset low speed of HOME	50	rpm	0~500	Pi/Pe

Parameters Pn368 and Pn 369 provide Home position offset feature for applications where the machine mechanical home position is a different position to the detected home position.


This offset can be achieved by setting the two parameters below.

Once the detected home position is found in accordance with **Pn365** (Home routine mode), then it will search by number of revolutions and pulses set in Pn368 and Pn 369 to find the new off set Home position.

Parameter Signal	Name	Default	Unit	Setting Range	Control Mode
Pn368	HOME Position Offset. (No of Revolutions)	0	rev	-30000~30000	Pi/Pe
Pn369	HOME position Bias Pulse value (No of pulses)	0	pulse	-32767~32767	Pi/Pe

Home routine Timing Chart

During the Home routine if the SON (Servo On) is not activated or any alarm happens, Home routine is stopped and Home Complete output contact is reset (Cleared).

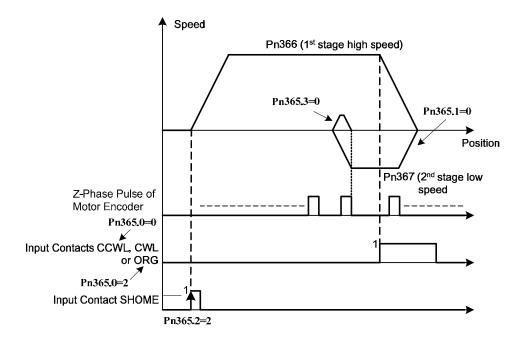
Note: Input contacts status "1" (ON) and "0" (OFF)

Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

Home Routine Speed /Position Timing Charts

Following Sections Show the Speed/Position Timing charts according to Pn 365.0 and Pn365.1 selections.

Pn365.0 Pn365.1	0	1	2	3	4	5
0	(1)	(2)	(1)	(2)	×	×
1	×	×	(3)	(4)	×	×
2	×	×	(5)	(6)	(7)	(8)

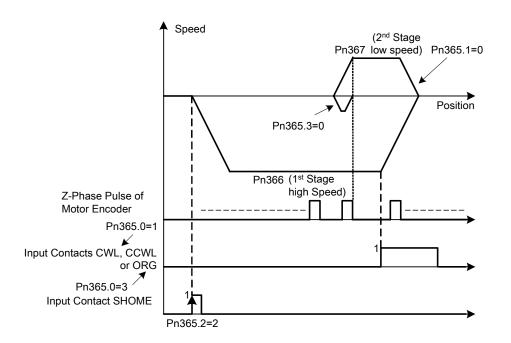

X No Home routine

(1)

Pn365.0=0 or **2** (After starting HOME routine, run **CCW** in 1st preset high speed for HOME Reference (**CCWL**, **CWL** or **ORG**).

Pn365.1=0(After finding HOME Reference, **reverse direction** in 2nd preset low speed to search for the nearest **Z** Phase pulse to be set as the HOME position).

Pn365.2=2(Input Contact SHOME to Start Home routine).

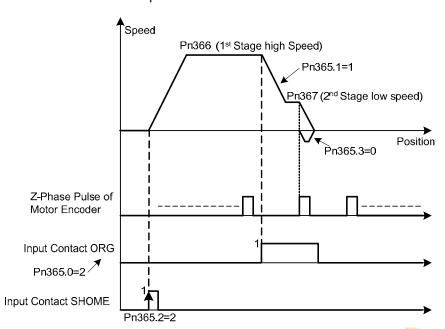

(2)

Pn365.0=1or **3** After starting the HOME routine, run **CW** in 1st preset high speed to search for HOME Reference (**CWL**, **CCWL** or **ORG**).

Pn365.1=0 After finding HOME Reference, **reverse direction** in 2nd preset low speed to search for the nearest **Z** Phase pulse to be set as the HOME position.

Pn365.2=2 Input Contact SHOME Starts the Home routine.

Pn365.3=0 Reverse search for HOME position.

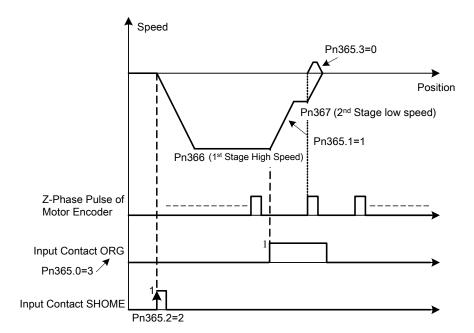


(3)

Pn365.0=2 After starting HOME routine, **run CCW** in 1st preset high speed to search for HOME Reference (**ORG**).

Pn365.1=1 After finding HOME Reference, **continues in the same direction** in 2nd preset low speed to find the nearest **Z** Phase to be set as the HOME position.

Pn365.2=2 Input Contact SHOME Starts the HOME routine.

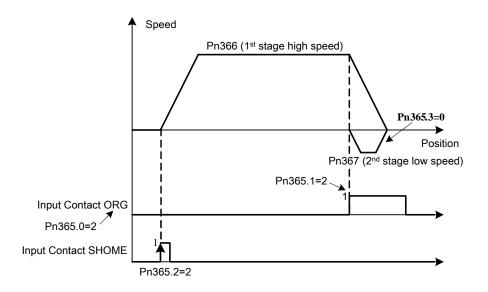


(4)

Pn365.0=3 (After Starting HOME routine, run **CW** in 1st preset high speed to search for HOME Reference.(**ORG**)

Pn365.1=1 After finding HOME Reference, **continues in the same direction** in 2nd preset low speed to find the nearest **Z** Phase to be set as the HOME position.

Pn365.2=2 Input Contact SHOME Starts the HOME routine.

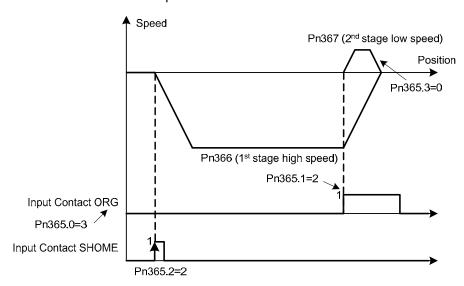

(5)

Pn365.0=2 After Starting HOME routine, run C**CW** in 1st preset high speed to search for HOME Reference.(**ORG**).

Pn365.1=2 After Finding the HOME Reference, the Rising Edge of ORG sets the HOME Position.

Pn365.2=2 Input Contact SHOME Starts the HOME routine.

Pn365.3=0 Reverse search for HOME position

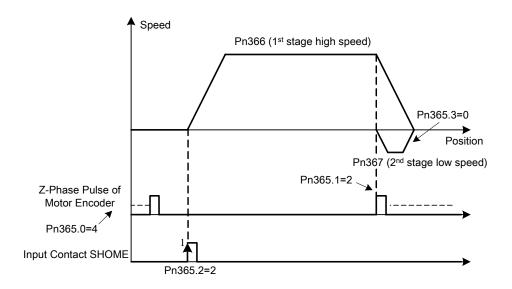


(6)

Pn365.0=3 After Starting HOME routine, run **CW** in 1st preset high speed to search for HOME Reference.(**ORG**).

Pn365.1=2 After Finding the HOME Reference, the Rising Edge of ORG sets the HOME Position.

Pn365.2=2 Input Contact SHOME Starts the HOME routine.

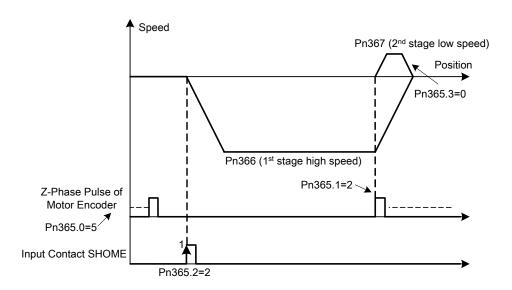

(7)

Pn365.0=4 After Starting HOME routine, run **CCW** in 1st preset high speed to search for the nearest *Z* phase pulse.

Pn365.1=2 After Finding the Z phase pulse, set this position as the HOME position.

Pn365.2=2 Input Contact SHOME Starts the HOME routine.

Pn365.3=0 Reverse search for HOME position

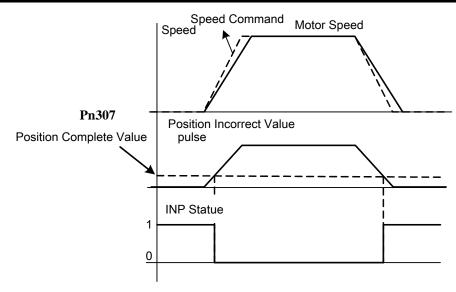


(8)

Pn365.0=5 After Starting HOME routine, run **CW** in 1st preset high speed to search for the nearest *Z* phase pulse.

Pn365.1=2 After Finding the Z phase pulse, set this position as the HOME position.

Pn365.2=2 Input Contact SHOME Starts the HOME routine.


5-4-9 Other Position Function

In position (Position Complete)

As long as the position $\ensuremath{\textbf{error}}$ value (counts) is less than the pulse counts set in

Pn307 (Position Complete value) then INP output contact will be activated.

Parameter	Name	Default	Unit	Setting Range	Control Mode
	Position Complete value				
Pn307	Set a value for In position output signal. When the Position pulse error value is less then Pn307 output-contact INP (In position output signal) will be activated.	10	pulse	0~50000	Pi/Pe

Note: Input contacts status "1" (ON) and "0" (OFF)

Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

Position error alarm

When the Position error value is greater than the preset pulse value of **Pn308** (Positive position error level) or **Pn309** (Negative position error level) this will generate **AL-11** (**Position error**) signal.

Parameter	Name	Default	Unit	Setting Range	Control Mode
	Positive position error level				
Pn308	When the Position error value is higher then number of pulses set in Pn308 , an Alarm message AL-11 (Position error value alarm) will be displayed.	50000	pulse	0~50000	Pi/Pe
Pn309	Negative position error level When the Position error value is lower then number of pulses set in Pn309, an Alarm message AL-11(Position error value alarm) will be displayed.	50000	pulse	0~50000	Pi/Pe

5-5 Gain Adjustment

The Servo controller provides 3 control loops as diagram shown below:

Control methods are: Current Control, Speed Control and Position Control.

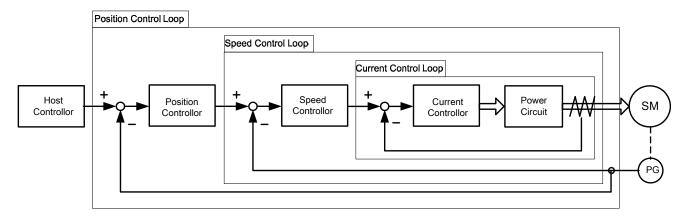


Diagram above shows the three control loops.

Current (Inner loop), Speed (middle loop) and position (outer loop).

Theoretically, the bandwidth of inner control loop must be higher than the bandwidth of the outer control loop, otherwise, the whole control system will become unstable, and cause vibration or abnormal response.

The relationship between the **band width** for these three control loops is as follows:

Current Loop (Inner) > Speed Loop (Middle) > Position Loop (outer).

The **default current control bandwidth** has already been set for optimum response, So **Only speed an doposition control loop gains** may be adjusted.

Table below shows the Gain adjustment parameters for the three control loops.

Parameter	Name	Default	Unit	Setting Range	Control Mode
Sn211	Speed Loop Gain 1	40	Hz	10~450	Pe/Pi/S
Sn212	Speed Loop Integration Time Constant 1	100	x0.2 msec	1~500	Pe/Pi/S
Sn213	Speed Loop Gain 2	40	Hz	10~450	Pe/Pi/S
Sn214	Speed Loop Integration Time Constant 2	100	x0.2 msec	1~500	Pe/Pi/S
Pn310	Position Loop Gain 1	40	1/s	1~450	Pe/Pi
Pn311	Position Loop Gain 2	40	1/s	1~450	Pe/Pi
Pn312	Position Loop Feed-Forward Gain	0	%	0~100	Pe/Pi
Cn025	Load Inertia Ratio	40	x0.1	0~1000	Pe/Pi/S

Speed Loop Gain

Speed Loop Gain has a direct effect on the response Bandwidth of Speed Control Loop.

Under the condition of no vibration or noise, when higher is the Speed Loop Gain Value is setting speed response is becoming faster.

If Cn025 (Load Inertia Ratio) is correctly set then,

Speed Loop Bandwidth = Sn211 (Speed Loop Gain1) or Sn213 (Speed Loop Gain2).

Load Inertia Ratio Formula is as below:

Speed Loop Integration Time Constant

Integral element in Speed Control Loop eliminates the steady state error.

Under the condition of no vibration or noise, reducing the speed loop Integral Time Constant can enhance system rigidity. If the Load Inertia Ratio is very high or the system has vibration factors, ensure that the Speed Loop Integral Time Constant is also high enough, otherwise the mechanical system would produce resonance easily.

Integral Time Constant for Speed Loop can be set using the formula below:

Sn212(Integral Time constant 1 of Speed Loop)
$$\geq 5 \times \frac{1}{2\pi \times \text{Sn211}(\text{Speed Loop Gain 1})}$$

Setting Example:

Assume: **Cn025** (Load Inertia Ratio) is correctly set, If target Speed Loop Bandwidth 100Hz, set **Sn211**(Speed Loop Gain 1)=100(Hz) then

Sn212(Integral Time Constant 1 of Speed Loop)
$$\geq 5 \times \frac{1}{2\pi \times 100} = 40 (\times 0.2 \text{msec})$$

Position Loop Gain

Position Loop Gain has a direct effect on the response speed of Position Loop.

Under the condition that there is no vibration or noise from servo motor, increasing the Position Loop Gain Value can enhance the response speed and hence reduce the positioning time.

Position Loop Feed-Forward Gain

Using Position Loop Feed-Forward Gain can enhance the response speed.

If the Feed-Forward Gain value is setting too high, overshooting could occur and cause the **INP** (In Position) output contact to switch ON and OFF repeatedly.

SO monitor Speed Curve and **INP** (In Position Signal) at the same time then increase Feed-Forward Value slowly.

If Position Loop Gain is too high, Feed-Forward function will be insignificant.

Quick Parameters for Gain adjustment

Quick Gain adjust parameters are available for setting manually.

The related Gain Adjust parameters are listed in the Quick-Parameter leaflet for convenient reference.

Quick adjust parameters once altered are saved and become effective immediately,

without pressing the Enter-Key. The table below shows the Gain Adjust Quick-Parameters.

Parameter	Name	Default	Unit	Setting Range	Control Mode
♦ qn401	Speed Loop Gain 1	40	Hz	10~450	Pe/Pi/S
◆qn402	Integral Time Constant 1 of Speed Loop	100	x0.2 msec	1~500	Pe/Pi/S
♦ qn403	Speed Loop Gain 2	40	Hz	10~450	Pe/Pi/S
◆qn404	Integral Time Constant 2 of Speed Loop	100	x0.2 msec	1~500	Pe/Pi/S
♦ qn405	Position Loop Gain 1	40	1/s	1~450	Pe/Pi
♦ qn406	Position Loop Gain 2	40	1/s	1~450	Pe/Pi
♦ qn407	Position Loop Feed-Forward Gain	0	%	0~100	Pe/Pi

Become effective immediately without pressing Enter-Key

5-5-1 Automatic Adjusting

This device provides ON-LINE Auto tuning, which can quickly and precisely measure Load Inertia and adjust the Gain automatically. Setting is according to the table below:

Parameter	Name	Setting	Description	Default	Unit	Setting Range	Control Mode
Cn002.2	Auto tuning	0	Auto tuning Disabled	0	V	0	Pe/Pi/S
	Auto turning	1	Enable Auto tuning	U	^	1	F6/F1/3

When Cn002.2 is set to 0 (Auto tuning Disabled), following Gain adjust parameters must be set.

Parameter Signal	Name
Cn025	Load-Inertia ratio
Sn211	Speed Loop Gain 1
Sn212	Speed-loop Integral time constant 1
Sn213	Speed loop Gain 2
Sn214	Speed loop Integral time constant 2
Pn310	Position Loop Gain 1
Pn311	Position Loop Gain 2
Pn312	Position Loop Feed-Forward Gain

When **Cn002.2** is set to 1 auto tuning is enabled and the Servo controller will adjust the Servo Gain in accordance with **Cn026** (Rigidity Setting) and the measured Load Inertia Ratio by monitor parameter Un-19 (Load Inertia Ratio), when the Load Inertia Ratio is becomes stable,

Then set **0** in **Cn002.2** to cancel Auto tuning. At this moment, servo controller will record the measured Load Inertia Ratio into **Cn025** (Load Inertia Ratio).

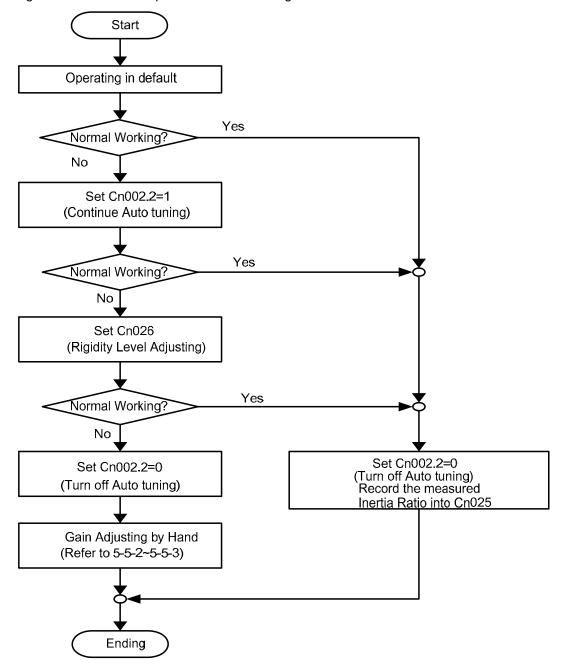
If servo drive is used in a applications where there is no significant load variations, then monitor **Un-19** (Load Inertia Ratio) if this is stable then it is recommended that Auto tuning is not used.

Apply conditions of Auto tuning

The Servo drive provides Auto tuning and uses an advanced control technique "ON-LINE" to measure the Load Inertia Ratio to control the system to achieve default speed or Position Response Bandwidth.

System must comply with the conditions below, so that the Auto tuning can operate normally.

- (1) The timing from stop to 2000rpm needs be less than 1 second.
- (2) Motor speed is larger than 200rpm.
- (3) Load Inertia needs be 100 times less than the inertia of the motor.
- (4) External force or the variation of inertia ratio can not be excessive.


Rigidity Setting

When Auto tuning is used, set the Rigidity Level depending on the various Gain settings for applications such as those listed below:

Rigidity Setting Cn026	Position Loop Gain Pn310 [1/s]	Speed Loop Gain Sn211 [Hz]	Speed-loop Integral time constant 1 Sn212 [x0.2msec]	Mechanical Rigidity	Application	
1	15	15	300	Low	Machines driven by timing	
2	20	20	225		Belt, Chain or Gear: Large	
3	30	30	150		Moving Table, Conveyor Belt.	
4	40	40	100	NA" 1 11 -	The machines driven by Ballscrew through	
5	60	60	75	Middle	decelerator: Ordinary	
6	85	85	50		machines, Mechanics arms, robot arms, conveyor.	
7	120	120	40		The machines driven by	
8	160	160	30		Ballscrew: High precision Machines, Metal engraving	
9	200	200	25	High	Machine, Insertion Machine	
Α	250	250	20	111911	and IC inspection Machine.	

Process for Auto tuning

The Diagram below show the process for Auto tuning.

Note: After Auto tuning is complete Set 0 in Cn002.2, otherwise it will not record the present measured Load Inertia Ratio.

If the power is cut off during Auto tuning then when the power is established, Servo controller will use the previously recorded setting of Load Inertia Ratio which is stored in parameter Cn025.

5-5-2 Manual Adjusting

Manual Gain adjustment is made available for applications when auto tune is not providing a good and stable system response, Or a system where there is no significant load variations and the auto tune is not used.

Manual Gain Adjustment in Speed control Mode

- Step 1: Set Rigidity level in parameter Cn 26 (See section 5-5-1 for the selection table) and Cn25.
- **Step 2:** If the Servo system includes a host controller which is used for positioning control, then it's **position loop Gain** should be set lower, relative to the servo drive Gain.

Step 3: Adjusting Speed Loop Gain 1 (Sn211):

- a) Increase Sn212 (Integral Time Constant 1of Speed Loop). Set a higher value than default or the set value when auto tune was unsuccessful.
- b) Increase the Speed Loop Gain (Sn211) until there is no vibration or noise.
- c) Then decrease the Speed Loop Gain (Sn211) slowly and increase Position Loop Gain of Host Controller until there is no vibration or noise.

Step 4: Adjusting Speed Loop Integral Time Constant 1 (Sn212):

Set the Integral Time Constant of Speed Loop for minimum time setting that without causing mechanical vibration.

Step 5: Finally, Slowly adjust the Speed Loop Gain, Position Loop Gain of Host Controller and Integral Time Constant of Speed Loop until the servo system provides the best response.

Manual Gain Adjustment in Position Control mode

- Step 1: Set Rigidity level in parameter Cn 26 (See section 5-5-1 for the selection table) for the correct Load Inertia Ratio.
- Step 2: Decrease Position Loop Gain 1 (Pn 310).

Set a lower value than default or the set value when auto tune was unsuccessful.

Set a relatively higher value in Sn212 (Integral Time Constant 1 of Speed Loop).

Step 3: Adjust Speed Loop Gain 1(Sn211).

Increase the Speed Loop Gain until there is no vibration or noise.

Step 4: Adjusting Position Loop Gain 1 (Pn310).

Slowly decrease the Speed Loop Gain again, then increase the Position Loop Gain until there is no vibration or noise.

Step 5: Adjusting Speed Loop Integral Time Constant 1 (Sn212).

Set the Integral Time Constant of Speed Loop for a minimum time without causing mechanical vibration.

Step 6: Finally, slowly adjusting the Speed Loop Gain, Position Loop Gain and the Integral Time Constant of Speed Loop until the servo system provides the best response.

5-5-3 Improving Resonance

The Servo drive provides the function of Gain Switching and Position Loop Feed-Forward Gain to improve system response.

Note: Both of these features must be used correctly to improve system response, otherwise the response will become worse. Refer to the description below:

Gain Switch

Following Gain Switching features are provided:-

- a) Speed Loop Gain PI/P Switching
- b) 2-stage Gain Switching.

Purposes list:

- (1) To restrict overshoot during acceleration/deceleration in speed control.
- (2) Reducing the in position oscillations and providing shorter settling time in position control.
- (3) Decrease the noise caused when using Servo Lock.

For further details refer to section 5-3-11.

Position Loop Feed-Forward Gain

Position Loop Feed-Forward Gain can be used to reduce the error result from position control and improve the response speed.

Position loop Feed forward gain and position loop gain should be matched with. If adjusting to higher position loop gain, the feed fordward gain can be ignored. Oppositly, if the loop gain value is setting for a relatively low level, adjust position loop feed forward gain will improve system response time obviously.

The adjustment steps are as follows:

- Step 1: Refer to the procedures in sections 5-5-1~5-2 to adjust Speed and Position Gain.
- **Step 2:** Increase **Pn312**(Position Feed-Forward Gain) slowly, and observe the **INP** (Output Signal of In Position) at the same time and INP output should be activated faster.

Note: The Position Loop Feed-Forward Gain can not be set too high, otherwise it will cause speed overshooting and **INP** (In Position output signal) will be switching On/Off repeatedly.

5-6 Other Functions

5-6-1 Programmable I/O Functions

Digital Inputs.

There are 6 DI (Digital Inputs) contacts and 3 DO (Digital Outputs) contacts which are programmable as listed below:-

Parameter			Name	Default	Unit	Setting Range	Control Mode
	DI-1 Digit	al Input 1 p	orogrammable Functions				
	Setting						
		Signal	Contactor Function				
	01	SON	Servo On				
	02	ALRS	Alarm Reset				
	03	PCNT	PI/P Switching				
	04	CCWL	CCW Limit				
	05	CWL	CW Limit				
	06	TLMT	External Torque Limit				
	07	CLR	Clear Pulse Error Value				
	08	LOK	Servo Lock				
	09	EMC	Emergency Stop				
	0A	SPD1	Speed 1			01 1C	
	0B	SPD2	Speed 2				
★Hn501.0	0C	MDC	Control Mode Switch	01 X			
★Hn501.1	0D	INH	Position Command Inhibit		Х		
	0E	SPDINV	Speed Inverse			(115)()	
	0F	G-SEL	Gain Select			(HEX)	ALL
	10	GN1	Electronic Gear Ratio Numerator 1				
	11	GN2	Electronic Gear Ratio Numerator 2				
	12	PTRG	Position Trigger				
	13	PHOLD	Position Hold				
	14		Start Home				
	15	ORG	Home Position Reference (Origin)				
	16	POS1	Internal Position select 1				
	17	1	Internal Position select 2				
	18	POS3	Internal Position select 3				
	19	POS4	Internal Position select 4				
	1A		Torque Inverse				
	1B	RS1	Torque CW Selecting				
	1C	RS2	Torque CCW Selecting				
		c State No	O/NC Selection				
	Setting		Description				
★Hn501.2	0		tact state. NO (Normally Open). ng (IG24) to inputs, enables the unction.	0	Х	0 1	
	1	Disconne	tact state. NC (Normally Closed). cting (IG24) from inputs, enables ed function.				

New setting will become effective after re-cycling the power.

Digital Inputs 2 to 6 (Hn 502 to Hn 506). Are programmable and the logic state NO/NC can also be selected same as that shown for digital input 1. See Hn501.

Parameter		Na	me & Function	Default	Unit	Setting Range	Control Mode
	DI-2 Pro	ogrammable	Digital input Selection			001	
★ Hn502	Please	refer to Hn5 0)1	002	Х	 11C	ALL
	DI-3 Pro	ogrammable	Digital input Selection			001	
★ Hn503	Please	lease refer to Hn501			Х	 11C	ALL
	DI-4 Pro	I-4 Programmable Digital input Selection				001	
★ Hn504		refer to Hn50	•	008	Χ	 11C	ALL
	DI-5 Pro	ogrammable	Digital input Selection			001	
★ Hn505		refer to Hn50		00A	Х	 11C	ALL
	DI-6 Pro	ogrammable	Digital input Selection			001	
★ Hn506	Please	refer to Hn50)1	006	Х	 11C	ALL
	DO-1 Programmable Digital Output Selection			007	Х	001	
	Setting	etting Explanation				 11C	ALL
		Signal	Functions				
	01	RDY	Servo Ready				
★Hn507.0 ★Hn507.1	02	ALM	Alarm	 - 		01 08	
\ X /	03	ZS	Zero Speed		х		
HODOO	04	BI	Brake Signal	01			
	05	INS	In Speed				
	06	INP	In Position				ALL
	07	HOME	HOME				
	08	INT	In Torque				
4 UnE07 2		igital Outpu	t Logic State.			0	
★Hn507.2	Setting		Explanation	0	Х	Ĭ	
<u> </u>	_	O Close, when the output is activated.				 1	
	1		the output is activated.			004	
★ Hn508	DO-2 Programmable Digital Output Selection			002	Х	001 	ALL
A1111300	Please refer to Hn507			002	^	108	ALL
A LIMEGO	DO-3 P	rogrammab	le Digital Output Selection			001	
★ Hn509	Please	refer to Hn50	07	003	Х	 108	ALL

Warning!

- 1. If any of programmable Inputs of DI-1 \sim DI-6 are set for the same type of function then the logic state selection (NO or NC selection) for these inputs must be the same type.
 - Otherwise an Alarm will be displayed. AL-07 (Multi-function contact setting error).
- 2. When programmable DO-1 ~ DO-3 are set for the same type of function alarm will be displayed. AL-07 (Multi-function contact setting error).

5-6-2 Switch for the Control Mode

Set one of the programmable input terminals to MDC (Control mode) selection.

The input then will select the preset control mode, which is set by Parameter Cn001.

Selections are listed below:

Parameter	Name	Setting	Descri	Control Mode	
			MDC Input off	MDC Input On	
A C=004	Control Mode Selection	- 3	Position Control (External Pulse Command)	Speed Control	ALL
★ Cn001		4	Speed Control	Torque Control	ALL
				Position Control (External Pulse Command)	Torque Control

New setting will become effective after re-cycling the power.

Please check 5-6-1 to setting the input contact required high /Low signal levels (PNP/NPN selection).

5-6-3 Auxiliary Functions

Function of Input Contacts SON, CCWL and CWL can be set according to the list below:-

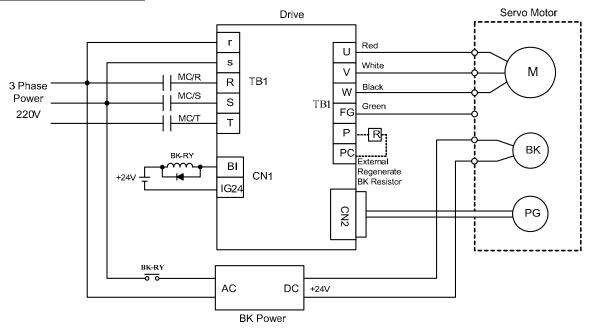
Parameter	Name	Setting	Description	Control Mode
★Cn002.0	SON	0	Use input contact SON to switch Servo On.	ALL
	(Servo ON)	1	Servo on with Power on. SON input contact not required.	
Cn002.1	CCWL and CWL (Counter Clockwise	0	CCWL and CWL(external limits) are effective. CCW and CW rotation is inhibited by CCWL&CWL.	
	& Clockwise Limits)	1	CCWL and CWL(external limits) are ineffective. CCW&CW rotation is not limited by CCWL&CWL.	ALL

New setting will become effective after re-cycling the power.

5-6-4 Brake Mode

Brake function for servo motor and the external mechanical brake if it is used can be set according to the table below. Set the brake mode as required for Servo off, Emergency Stop and CCW/CW rotation inhibit functions.

Parameter		Name				Setting Range	Control Mode
	Brake M	ode					
		ole Brake modes for Se V drive inhibit.	0	X	0	ALL	
Cn008	Setting	Expla					
		Dynamic brakes	Mechanical brakes			1	
	0	No	No				
	1	No	Yes				


5-6-5 Timing Diagram of Mechanical Brake

In applications with vertical loading, if the power is turned off, to prevent the load from falling due to gravity, a servo motor with electro-mechanical brake can be used.

This servo drive provides a brake output (BI) which can be used for controlling the external brake.

Timing of brake output signal can be set by parameter Cn003 (Output Time for electro-mechanical Brake).

Typical Circuit Diagram

Timing for Brake output signal

Set the required time for the operation of brake output signal (BI) according to the following. BI output can be used to control the function of an external electro-mechanical brake.

Parameter	Name	Default	Default	Setting Range	Control Mode
Cn003	Output time setting for Mechanical Brake Signal	0	msec	-2000~2000	ALL

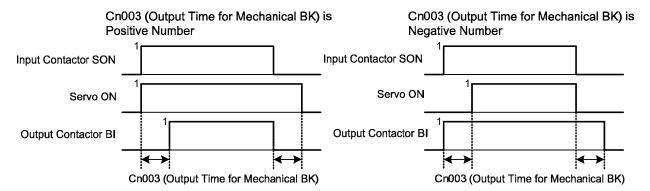
Note!

To use brake output signal set Cn008 (Brake mode) to selections 1 as required.

When the servo system has vertical loading, please set Cn003 to a **Positive** Number. For definition of a time value with a positive or a negative sign refer to the following notes and timing diagrams.

(1) Cn003 set to a time value with a Positive sign.

AS soon as the input contact SON is switched on, Servo on is activated at the same time, then after a time delay set by parameter Cn003,Output Contact BI is switched on. (Signal to release the brake).


When SON input contact is switched off, BI output contact is also switched off (Signal to operate the brake).

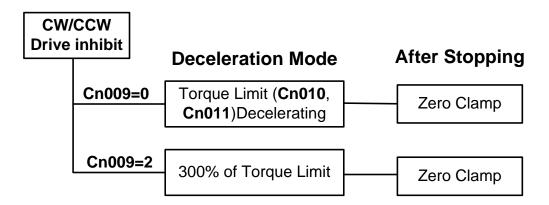
Then after a time delay set by parameter Cn003, Servo ON is de-activated.

(2) Cn003 set to a time value with a Negative sign.

AS soon as the input contact SON is switched on, Output Contact BI is switched on at the same time. (Signal to release the brake). then after a time delay set by parameter Cn003, Servo on is activated.

When SON input contact is switched off, Servo ON is de-activated at the same time. then after a time delay set by parameter Cn003, Output Contact BI is switched off. (Signal to operate the brake).

Note: Input contacts status of above time sequence diagram "1" (ON) and "0" (OFF).


Please check 5-6-1 to set the required high /Low signal levels (PNP/NPN) selection.

5-6-6 CW/CCW Drive Inhibit Function

Stopping method of the servo motor as a result of **CW/CCW Inhibit** function can be selected according to the list below:

Parameter		Name	Default	Unit	Setting Range	Control Mode
	CW/CC	W drive inhibit mode				
	Setting	Explanation			0	ALL
★ Cn009	0	When torque limit reached the setting value of (Cn010, Cn011), servo motor deceleration to stop in the zero clamp condition.	, 0 X			
	1	Reserve parameter			2	
	2	Once max torque limit (± 300%) is detected then deceleration to stop, zero clamp is applied when stop.				

New setting will become effective after re-cycling the power.

5-6-7 Selecting for External Regeneration Resistor

In applications where a high inertia load is stopped rapidly, motor will generate an energy, which is regenerate power back to the servo drive (Regeneration energy)

- (1) Short deceleration time with heavy loads.
- (2) In vertical load applications.
- (3) High inertia rotary load applied to the motor shaft.

Part of the regeneration power will be absorbed by the drive main smoothing capacitors

If there is too much regeneration power which can not be totally absorbed by the capacitor then regeneration resistors can be used to absorb the excess power.

Install a regeneration resistor for the repid deceleration and vertical motion control when the main circuit DC link voltage is high.

Install a external regeneration resistor then make sure the resistance equip externally and built-in regeneration resistor has the same resistance.

In order to prevent servo drive possible error, external or built-in regeneration resistance value should greater than following table.

Built-in Regeneration Resistor specification is as below table.

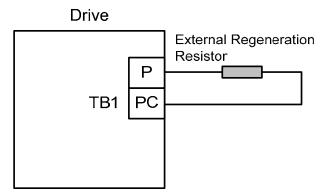
Drive Mode	Minimum allowed Resistance Value (Ω)
JSDE-10	23
JSDE-15	23
JSDE-20	23
JSDE-30	23

Setting for the Power of External Regeneration Resistor

When using external regeneration resistor, the power value (Watts) must be set in parameter Cn012.

Parameter	Name	Default	Unit	Setting Range	Control Mode
	Power setting for External Regeneration Resistor			0	
	Refer to section 5-6-7 to choose external Regeneration resister and set its power specification in Watts of Cn012.	0	W	Ĭ 10000	ALL

Wiring for External Regeneration Resistor

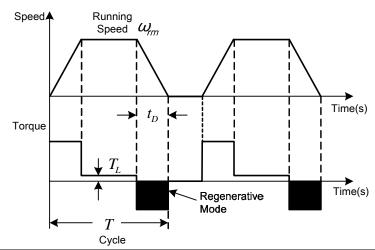

When external Regeneration Resistor is used, must remove the link between PC and P1 on TB1 Terminal.

Then the resistor should be installed between terminals **P** and **PC**.

For safety, use of resistors with thermal protection is recommended.

The thermal switch contact can then be interlocked to disable drive or remove power if necessary.

Refer to connection diagram below:



When installing Regeneration Resistors care must be taken as the resistor absorbs the regeneration power, and it is possible to generate the high temperatures above 100°C.

Provide the necessary cooling and use appropriate high temperature wires and ensure there has enough space between regeneration resistor and other materials.

Calculation of the external regeneration resistor power (Watts).

Calculate the resistor watts according to the information and formulas below: (Energy consumed by the motor internally is ignored).

Step	Item	Formula	Description
1	Calculate the working Energy of the servo system.	$E_M = J_T \omega_{rm}^2 / 182$	$E_{\scriptscriptstyle M}$: Working Energy of Servo system (J) $J_{\scriptscriptstyle T}$: Inertia applied to the motor shaft $(kg \bullet m^2)$
			ω_{rm} : Motor running Speed(rpm)
2	Calculate the Energy consumption by the load during deceleration.	$E_L = (\pi/60)\omega_{rm}T_L t_D$	E_L : The Energy during deceleration (J) T_L : Loading Torque(Nm) t_D : The Time from deceleration to stopping(s)
3	Calculate the Energy absorbed by internal main capacitor.	$E_{\it C}$ Check the diagram above	$E_{\it C}$: The Energy absorbed by the main capacitor (J)
4	Calculate the Energy which regeneration resistor consumes	$E_R = E_M - (E_L + E_C)$	$E_{\it R}$: The Energy which Regeneration Resistor consumes (J)
5	Calculate the Power for regeneration resistor	$P_R = (E_R/T)/0.4$	P_R : Regeneration Resistor Power(W) T : Operating cycle for servo system(s)

Note 1: 0.4 in the formula for $P_{\scriptscriptstyle R}$ corresponds to 40% regeneration duty cycle.

Note 2: If the $\,E_L\,$ can not be calculated, then let $\,E_L=0$, then calculate ER .

In applications with regenerative loads, which cause reverse torque, a large amount of energy will flow back to the driver.

In such applications, calculate ER and hence regeneration resistor power according to the formula below.

ltem	Formula	Description for Symbols
Calculate the working Energy during the continuous regenerative period.	$E_G = (\pi/60)\omega_{rm,G}T_Gt_G$	$E_G \text{: Working Energy during the regenerative} \\ \text{period. (J)} \\ \omega_{\mathit{rm},G} \text{: Motor running speed during the} \\ \text{regenerative period . (rpm)} \\ T_G \text{: Loading Torque during the regenerative} \\ \text{period (Nm)} \\ t_G \text{: Regenerative Time. (s)} \\$

The formula for step 4 in the previous table will be: $E_{\it R}=E_{\it M}$ - $(E_{\it L}+E_{\it C})$ + $E_{\it G}$

5-6-8 Fan Setting

Availabel models that equipped with the fan.

Parameter		Name			Setting Range	Control Mode
	Cooling fan running modes (Only available for the model which equip with fan.)				1	ALL
Cn031	Setting	ng Explanation		X		
Cilosi	1	Run when Servo ON.	l I	^		ALL
	2	Always Running.			3	
	3	Disabled.				

5-6-9 Factory setting parameter

This parameter can reset all parameter settings to default value (factory reset).

Parameter		Name	Default	Unit	Setting Range	Control Mode
★ Cn029			<	0 1		
	Setting	Setting Description			ALL	
	0 Disabled		0			X
	1	Reset all Parameters to default (Factory setting)				

New setting will become effective after re-cycling the power.

Chapter 6 Parameter

6-1 Explanation of Parameter groups.

There are 9 groups of parameters as listed below.

Symbol	Description
Un-xx	Status Display Parameters.
dn-xx	Diagnostics Parameters.
AL-xx	Alarm Parameters
Cn-xx	System Parameters
Tn1xx	Torque Control Parameters
Sn2xx	Speed Control Parameters
Pn3xx	Position Control Parameters
qn4xx	Quick Set-up Parameters
Hn5xx	Multi-function I/O parameters

Control Mode Code

Signal	Control Mode
ALL	All Control Mode
Pi	Position Control Mode(Internal Positional Command)
Pe	Position Control Mode(External Pulse Command)
S	Speed Control Mode
Т	Torque Control Mode

Definition of Symbols.

Symbol	Explanation						
*	Parameter becomes effective after recycling the power.						
•	Parameter is Effective without pressing the Enter key.						

6-2 Parameter Display Table

Diagnosis Parameter

Parameter	Name & Function
dn-01	Control mode display
dn-02	Output terminal signal status.
dn-03	Input terminal signal status.
dn-04	Software version (CPU version)
dn-05	JOG mode operation
dn-06	Hold position.
dn-07	Auto offset adjustment of external analog command voltage.
dn-08	Servo model code.
dn-09	ASIC software version display

Display Parameter

Parameter	Display	Unit	Explanation
Un-01	Actual Motor Speed	rpm	Motor Speed is displayed in rpm.
Un-02	Actual Motor Torque	%	It displays the torque as a percentage of the rated torue. Ex: 20 are displayed. It means that the motor torque output is 20% of rated torque.
Un-03	Regenerative load rate	%	Value for the processable regenerative power as 100%. Displays regenerative power consumption in 10-s cycle.
Un-04	Accumulated load rate	%	Value for the rated torque as 100%. Displays effective torque in 10-s cyle.
Un-05	Max load rate	%	Max value of accumulated load rate
Un-06	Speed Command	rpm	Speed command is displayed in rpm.
Un-07	Position Error Value	pulse	Error between position command value and the actual position feedback.
Un-08	Position Feed-back Value	pulse	The accumulated number of pulses from the encoder.
Un-09	ExternalVoltage Command	V	External analog voltage command value in volts.
Un-10	(Vdc Bus)Main Loop Voltage	V	DC Bus voltage in Volts.
Un-11	External Spped Limit Command Value	rpm	External speed limit value in rpm.
Un-12	External CCW Torque Limit Command Value	%	Ex: Display 100. Means current external CCW torque limit command is set to 100 %.
Un-13	External CW Torque LimitCommand Value	%	Ex: Display 100. Means current external CW toque limit command is set to 100%.
Un-14	Motor feed back – Rotation value (absolute value)	rev	After power on, it displays motor rotation number as an absolute value.
Un-15	Motor feed back – Less then 1 rotation pulse value(absolute value)	pulse	After power on, it displays the number of pulses for an incomplete revolution of the motor as an absolute value.
Un-16	Pulse command – rotation value(absolute value)	rev	After power on, it displays pulse command input rotation number in absolute value.
Un-17	Pulse command – Less then 1 rotation pulse value(absolute value)	pulse	After power on, it displays pulse command input for an incomplete rotation. pulse value is an absolute value.
Un-18	Torque command	%	It displays the torque command as a percentage of the rated torque. Ex: Display. 50.Means current motor torque command is 50% of rated torque.
Un-19	Load inertia	x0.1	When Cn002.2=0(Auto gain adjust disabled), it displays the current preset load inertia ratio from parameter Cn025. When Cn002.2=1(Auto gain adjust enabled), it displays the current estimated load inertia ratio.

System Parameters

Parameter		Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
	Contro	Mode selection			J		
	Setting	Explanation					
	0	Torque Control					5-1
	1	Speed Control					
	2	Position Control (external pulse Command)	_	.,	0		
★ Cn001	3	Position/Speed Control Switching	2	Х	 6	ALL	
	4	Speed/Torque Control Switching			0		
	5	Position/Torque Control Switching					5-6-2
	6	Position Control (internal position					
	0	Command)					
	SON (S	Servo On) Input contact function					
★Cn002.0	Setting	Explanation		Х	Ò		
<u>rananiá</u>	0	Input Contact, Enables SON (Servo On).	0		ļ		
(1-1-1-1-)	1	Input Contact has no function.			1		
	-	(SON is enabled when Power on).					
		& CWL Input contact function.				ALL	5-6-3
	Setting	'			0		
Cn002.1	0	CCWL and CWL input contacts are able to control the drive inhibit of CCW and CW.	1	Х	Ĭ		
HODÍO	1	CCWL & CWL input contacts are not able to			1		
		control CCW and CW drive inhibit. CCW and					
		CW drive inhibit is disable.					
Cn002.2	Auto Tu			X	0	Pi Pe S	5-5-1
	Setting	Explanation	0				
	0	Continuously Auto Tuning is Disable	-				
	1	Continuously Auto Tuning is Enabled.					
		set mode selection					
	Setting	Explanation Reset EMC signal is only available in Servo					
		Off condition (SON contact is open) and					
	0	reset AL-09 by ALRS signal.					
		P.S.) It is NOT allow to reset when SON is					
★ Cn002.3		applied.			0		
		When EMC status is released, AL-09 can be	0	Χ		ALL	
		reset on both Servo ON and Servo OFF			1		
		conditions.					
	1	Attention!					
		Ensure that the speed command are					
		removed before the alarm is reset to avoid					
		motor unexpected start.					

Parameter		Name &	Function	Default	Unit	Setting Range	Control Mode	Chapter
Cn003	Brake Sig Input Co Output Input Co So Output of Implement output sig sequence Note: Sigri	ne setting for Mechanica nal Timing Sequence: Cn003 (machinery brake signated sequence) Servo ON Contacts BI Cn003 (machinery brake signated sequence)	0	msec	-2000 2000	ALL	5-6-5	
Cn004	When Tor	que or Speed Command Motor retation direction Expla Torque Control Counter ClockWise(CCW) ClockWise (CW) Counter ClockWise (CCW) ClockWise (CCW)	0	X	0 — 3	S T	5-2-4 5-3-7	

Parameter	Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
★Cn005	Encoder pulse output scale (Dividend) For default set to the rated encoder number of pulses per revolution, such as 2500ppr. Encoder ppr can be scaled by setting a ppr in the range of 1 to the rated ppr of the encoder for scaling purpose PPR = Pulse per revolution. Ex:encorder rated precision is 2000 ppr, If you setting Cn005 = 2, the output is 1000ppr.		X	1 	ALL	5-3-5
Cn006	Reserve parameter	_	_	_	_	_
Cn007	Speed reached preset. Speed preset level for CW or CCW rotation. When the speed is greater then preset level in Cn007 the Speed reached output signal INS will be activated.	Rated rpm × 1/3	rpm	0 4500	S T	5-3-12
Cn008	Brake Mode Selectable Brake modes for Servo off, EMC and CCW/CW drive inhibit. Setting Explanation Dynamic brakes Mechanical brakes No No No No Yes	0	Х	0 1	ALL	5-6-4
★ Cn009	Setting Explanation When torque limit reached the setting value or (Cn010,Cn011), servo motor deceleration to stop in the zero clamp condition. Reserve parameter Once max torque limit (± 300%) is detected then deceleration to stop, zero clamp is applied when stop.	0	Х	0 2	ALL	5-6-6
Cn010	Ex: For a torque limit in CCW direction which is twice the rated torque, set Cn10=200.	300	%	0 300	ALL	5-2-5 5-3-10
Cn011	CW Torque command Limit. Ex: For a torque limit in CW direction which is twice the rated torque, set Cn11=-200.	-300	%	-300 0	ALL	5-2-5 5-3-10
Cn012	Power setting for External Regeneration Resistor Refer to section 5-6-7 to choose external Regeneration resister and set its power specification in Watts of Cn012.	0	W	0 10000	ALL	5-6-7
Cn013	Frequency of resonance Filter (Notch Filter). Enter the vibration frequency in Cn013, to eliminate system mechanical vibration.	0	Hz	0 1000	Pi Pe S	5-3-9
Cn014	Band Width of the Resonance Filter. Adjusting the band width of the frequency, lower the band width value in Cn014, restrain frequency Band width will be wider.	7	Х	1 100	Pi Pe S	5-3-9

Parameter		Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
	PI/P contro	ol switch mode.					
	Setting	Explanation					
		greater than Chu16.					
Cn015.0		Switch from PL to P if the sneed command is			O		
	2 gre	vitch from PI to P if the acceleration rate is eater than Cn018 .	4	Х	 		
	3 gre	vitch from PI to P if the position error is eater than Cn019 .					
	4 Se	vitch from PI to P be the input contact PCNT . It one of the multi function terminals to tive.				Pi Pe	5-3-11
	Automatic	gain 1& 2 switch				S	3 3 11
	Setting	Explanation					
	_O Sw	vitch from gain 1 to 2 if torque command is eater than Cn021 .			0 4		
Cn015.1		vitch from gain 1 to 2 if speed command is eater than Cn022.	4	Х			
	2 cor	vitch from gain 1 to 2 if acceleration mmand is greater than Cn023.					
		vitch from gain 1 to 2 if position error value greater than Cn024.					
	4 G-	vitch from gain 1 to 2 by input contact SEL.					
		ol mode switch by Torque Command					
	If Torque C selected.	015.0=0 first. Command is less than Cn016 PI control is Command is greater than Cn016 P control is	200	%	0 399	Pi Pe S	5-3-11
	PI/P contro	ol mode switch by Speed Command					
Cn017	Set the Cn015.0=1 first. If Speed Command is less than Cn017 PI control is selected. If Speed Command is greater than Cn017 P control is selected.		0	rpm	0 4500	Pi Pe S	5-3-11
	PI/P contro	ol mode switch by accelerate Command					
Cn018	Set the Cn015.0=2 first. If Acceleration is less than Cn018 PI control is selected. If Acceleration is greater than Cn018 P control is selected.			rps/s	0 18750	Pi Pe S	5-3-11
	PI/P contro	ol mode switch by position error number					
Cn019	If Position of selected.	015.0=3 first. error value is less than Cn019 PI control is error value is greater than Cn019 P control is	0	pulse	0 50000	Pi Pe S	5-3-11

Parameter	Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
Cn020	Automatic gain 1& 2 switch delay time. Speed loop 2 to speed loop 1, Change over delay, when two control speed loops (P&I gains 1 & 2) are used.	0	x02 msec	0 10000	Pi Pe S	5-3-11
Cn021	Automatic gain 1& 2 switch condition (Torque command) Set Cn015.1=0 first. When torque command is less than Cn021, Gain 1 is selected. When torque command is greater than Cn021, Gain 2 is selected When Gain 2 is active and torque command becomes less than Cn021 setting value, system will automatically switch back to Gain 1 switch time delay can be set by Cn020.	200	%	0 399	Pi Pe S	5-3-11
Cn022	Automatic gain 1& 2 switch condition (Speed Command) Set the Cn015.1=1 first. When speed command is less than Cn022 Gain 1 is selected. When speed command is greater than Cn022 Gain 2 is selected. When Gain 2 is active and speed command becomes less than Cn022 setting value, system will automatically switch back to Gain 1 the switch time delay can be set by Cn020.	0	rpm	0 4500	Pi Pe S	5-3-11
Cn023	Automatic gain 1& 2 switch condition (Acceleration Command) Set Cn015.1=2 first. When acceleration command is less than Cn023 Gain 1 is selected. When acceleration command is greater than Cn023 Gain 2 is selected. When Gain 2 is active and acceleration command becomes less than Cn023 system will automatically switch back to Gain 1 the switch time delay can be set by Cn020.	0	rps/s	0 18750	Pi Pe S	5-3-11
Cn024	Automatic gain 1& 2 switch condition (Position error value) Set Cn015.1=3 first. When position error value is less than Cn024 Gain 1 is selected. When position error value is greater than Cn024 Gain 2 is selected. When Gain 2 is active and position error value becomes less than Cn024 system will automatically switch back to Gain 1 and the switch time delay can be set by Cn020.	0	pulse	0 50000	Pi Pe S	5-3-11

Parameter		Nan	ne & Function	ı	Default	Unit	Setting Range	Control Mode	Chapter
	Load-Inertia ratio						0	Pi	
Cn025	LoadIne	$LoadInertiaRatio = \frac{LoadInertiaToMotor(J_{L})}{MotorRotorInertia(J_{M})} \times 100\%$				x0.1	 1000	Pe S	5-5
	Rigidity	/ Setting		141					
	When Auto tuning is used, set the Rigidity Level depending on the various Gain settings for applications such as those listed below: Explanation Speed Loop Setting Position Loop Speed Loop Integral-Time								
Cn026		Gain Pn310 [1/s]	Gain Sn211 [Hz]	Constant Sn212 [x0.2msec]			1	Pi	
	1	15	15	300	4	Χ		Pe	5-5-1
	2	20	20	225			Α	S	
	3	30	30	150					
	4	40	40	100					
	5	60	60	75					
	6	85	85	50					
	7	120	120	40					
	8	160	160	30					
	9	200	200	25					
	Α	250	250	20					
Cn027	Reserv	e parameter			_	_	_	_	_
Cn028	Reserv	e parameter			_	_	_	_	_
	Reset p	Reset parameters.							
	Setting		Explanatio	n			0		
★ Cn029	0	Disabled			0 X			ALL	5-6-10
	1 Reset all Parameters to default (Factory setting)						1		
★Cn030	Servo motor model code Servo model code can be display and checked with parameter dn-08, refer 3-2-2 dn-08 table for more information. (refer to chapter 1-1-3) Attention: Before operate your servo motor, check this parameter setting is compatible for servo drive and motor. If there has any incompatible problem contact supplier for more information.				Default	х	Х	ALL	3-2-2
Cn031	Supplier for more information. Cooling fan running modes (Only available for the model which equip with fan.) Setting Explanation 1 Run when Servo ON. 2 Always Running. 3 Disabled.				1	X	1 — 3	ALL	5-6-8

Parameter		Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
Cn032	Restrair	eed back smoothing filter a sharp vibration noise by the setting and this odelay the time of servo response.	500	Hz	1 1000	Pe Pi S	5-3-12
Cn033	Speed Feed-forward smoothing filter		40	Hz	1	Pe Pi	5-4-6
	Smooth the speed feed-forward command. Torque command smoothing filter				100 0	ГІ	
Cn034	Restrain sharp vibration noise by the setting and this filter delay the time of servo response.		0	Hz	 	ALL	5-2-7
	Panel display content selection						
	Select display content for LED panel for power on status.						
	Setting				0		0.4
Cn035	0	Display data set and drive status parameter. Refer 3-1		 19	ALL	3-1 3-2-1	
	1 19	Display Un-01 ~ Un-19 content. Refer 3-2-1 for more information. Ex:Set Cn035=1, when power on it display the actual speed of motor. (content of Un-01)					
		D number			0		
Cn036	When using Modbus for communication, each servo units has to setting a ID number. When two or more		1	Х	254	ALL	7
		overlap will lead to communication fail.					
	Setting	s RS-485 braud rate setting Explanation					
	0	4800					
Cn037.0	1	9600	1 bp:		os 0 5	ALL	7
	2	19200		pps			
	3	38400			5		
	4	57600					
	5	115200		<u> </u>			
		ware RS-232 braud rate setting					
Cn037.1	Setting 0	Explanation 4800	1	bps	0 	ALL	7
		9600					
CH-H-H-H-	2	19200					
	3	38400					
	Communication protocol						
	Setting	Explanation					
Cn038	0	7, N, 2 (Modbus, ASCII)					
	1	7, E, 1 (Modbus, ASCII)					
	2	7, O, 1 (Modbus, ASCII)	0	Х	0	ALL	7
	3	8, N, 2 (Modbus, ASCII)					
	4	8, E, 1 (Modbus, ASCII)			8		
	5	8, O, 1 (Modbus, ASCII)					
	6	8 , N , 2 (Modbus , RTU)					
	7	8 , E , 1 (Modbus , RTU)					
	8	8 , O , 1 (Modbus , RTU)					

Parameter	Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
Cn039	Communication time-out dection		sec	0 20	ALL	7
	Setting non-zero value to enable this function, communication Time should be in the setting period otherwise alarm message of communication time-out will show. Setting a zero value to disable this function.	0				
Cn040	Communication response delay time Delay Servo drive communication response time to master control unit.	0	0.5 msec	0 255	ALL	7

Torque-Control Parameter

Parameter	Name & Function		Unit	Setting Range	Control Mode	Chapter
★ Tn101	Linear acceleration/deceleration method Setting Explanation 0 Disabled. 1 Enabled.	0	X	0 1	Т	5-2-3
★ Tn102	Linear accel/decel time period. Time taken for the torque-command to linearly accelerate to the rated torque level or Decelerate to zero torque. Torque Command Rate Torque Command Torque Command Setting Time(ms))	1	msec	1 50000	Т	5-2-3
Tn103	Analog Torque Command Ratio Slope of voltage command / Torque command can be adjusted. Torque Command (%) 200 Torque Command (%) 200 -100 -5 -100 Voltage (V) Slope set by Tn103	300	% 10V	0 300	Т	5-2-1

Parameter	Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
Tn104	Torque Command, analog input voltage offset The offset amount can be adjusted by this parameter. Before Offset Adjustment Input Voltage (V) Offset Voltage Torque Command (%) Torque Command (%)	0	mV	-10000 10000	Т	5-2-2
Tn105	Preset Speed Limit 1. (Torque control mode) In Torque control, input contacts SPD1 and SPD2 can be used to select Preset speed limit 1. As follows: Input Contact SPD2 Input Contact SPD1 0 1 Note: Input contacts status "1" (ON) and "0" (OFF). Refer to 5-6-1 to set high or low input logic levels.	100	rpm	0 3000	Т	5-2-6
Tn106	Preset Speed Limit 2. (Torque control mode) In Torque control, input contacts SPD1 and SPD2 can be used to select Preset speed limit 2. As follows: Input Contact SPD2 Input Contact SPD1 0	200	rpm	0 3000	Т	5-2-6
Tn107	Preset Speed Limit 3. (Torque control mode) In Torque control, input contacts SPD1 and SPD2 can be used to select Preset speed limit 3. As follows: Input Contact SPD2 Input Contact SPD1 1 1 Note: Input contacts status "1" (ON) and "0" (OFF) Refer to 5-6-1 to set high or low input logic levels.	300	rpm	3000	Т	5-2-6
Tn108	Torque output monitor value When the torque level in CW or CCW direction become greater then this value setting, the output contact INT is active.		%	0 300	ALL	5-2-7

Speed-Control Parameter

Parameter	Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
Sn201	Internal Speed Command 1 In Speed control, input contacts SPD1 and SPD2 can be used to select 3 sets of internal speed command, select for speed command 1 contact status shows below: Input Contact SPD2 Input Contact SPD1 0 1	100	rpm	-3000 3000	S	5-3-1
Sn202	Internal Speed Command 2 In Speed control, input contacts SPD1 and SPD2 can be used to select 3 sets of internal speed command, select for speed command 2 contact status shows below: Input Contact SPD2 Input Contact SPD1 0 Note: Input contacts status "1" (ON) and "0" (OFF) Refer to 5-6-1 to set high or low input logic levels.	200	rpm	-3000 3000	S	5-3-1
Sn203	Internal Speed Command 3 In Speed control, input contacts SPD1 and SPD2 can be used to select 3 sets of internal speed command, select for speed command 3 contact status shows below: Input Contact SPD2 Input Contact SPD1 1 1 Note: Input contacts status "1" (ON) and "0" (OFF). Refer to 5-6-1 to set high or low input logic levels.	300	rpm	-3000 3000	S	5-3-1
Sn204	Zero Speed selection Enable or Disable the zero speed preset parameter Sn215. Setting Explanation No Action. (Sn215 zero preset is not effective). Set the preset value in Sn215 as zero speed.	0	Х	0	S	5-3-12
Sn205	Speed command accel/decel smooth method. Setting Explanation 0	0	X	0 3	S	5-3-6

Parameter	Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
Sn206	Speed command smooth accel/decel time Constant. Set Sn205=1 to enable this function then set the time period for the speed to rise to 63.2% of the full speed. Speed Command (%) Speed Command Speed Command Time (ms)	1	msec	1 10000	Ø	5-3-6
Sn207	Speed command linear accel/decel time constant. Set Sn205=2 to enable this function then set the time period for the speed to rise linearly to full speed. Speed Command (%) Rate Speed Speed Command Time (ms)	1	msec	1 50000	S	5-3-6

Parameter	Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
Sn208	S curve speed command acceleration and deceleration time setting. Set Sn205=3 to enable this function. In the period of Accel. and Decel. , drastic speed changing might cause vibration of machine. S curve speed command Accel. and Decel. time setting has the effect to smooth Accel. and Decel. curve. Speed Command (rpm)	1	msec	1 1000	S	5-3-6
Sn209	S curve speed command acceleration time setting. Refer Sn208	200	msec	0 — 5000	S	5-3-6
Sn210	S curve speed command deceleration time setting. Refer Sn208	200	msec	0 5000	S	5-3-6
Sn211	Speed loop Gain 1 Speed loop gain has a direct effect on the frequency response bandwidth of the Speed-control loop. Without causing vibration or noise Speed-loop-gain can be increased to obtain a faster speed response. If Cn025 (load Inertia ratio) is set correctly, the speed-loop-bandwidth will equal to speed-loop-gain.	40	Hz	10 450	Pi Pe S	5-3-8 5-5
Sn212	Speed-loop Integral time 1 Speed loop integral element can eliminate the steady speed error and quick response for speed variations. Decreasing Integral time can improve system rigidity. The formula below shows the relationship between Integral time and Speed loop Gain. $SpeedLoopIntegrationTimeCons \tan t \ge 5 \times \frac{1}{2\pi \times SpeedLoopGain}$	100	x0.2 ms	1 500	Pi Pe S	5-3-8 5-5

Parameter	Name & Functions	Default	Unit	Setting Range	Control Mode	Chapter
Sn213	Speed loop Gain 2 Refer to Sn211	40	Hz	10 	Pi Pe	5-3-8 5-5
Sn214	Speed loop Integral time 2 Refer to Sn212	100	x0.2 msec	450 1 500	S Pi Pe S	5-3-8 5-5
Sn215	Value of zero speed Set the zero speed range in Sn215 When the actual speed is lower than Sn215 value, Output contact ZS is activated.	50	rpm	0 4500	S	5-3-12
Sn216	Analog Speed Command Ratio Slope of voltage command / Speed command can be adjusted. Speed Command (rpm) 3000 -10 -5 5 10 Input Voltage (V) -3000 Slope set by -4500 Sn216	Rate rpm	rpm /10V	100 4500	S	5-3-2
Sn217	Analog Speed Command offset adjust The offset amount can be adjusted by this parameter. Before Offset Adjustment Input Voltage (V) Offset Voltage Speed Command (rpm) Speed Command (rpm) Speed Command (rpm)	0	mV	-10000 10000	S	5-3-3
Sn218	Analog speed command upper limited Setting Sn218 for limit the highest speed command of analog input.	Rate rpm x 1.02	rpm	100 4500	S	5-3-4

Position Control Parameter

Parameter	Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
★Pn301.0	Position pulse command selection Setting Explanation 0 (Pulse)+(Sign) 1 (CCW)/(CW) Pulse 2 AB-Phase pulse x 2 3 AB-Phase pulse x 4	0	х	0 3	Pe	5-4-1
★Pn301.1	Position- Pulse Command Logic	0	Х	0 1		
★Pn301.2	Selection for command receive of drive inhibit mode Setting Explanation When drive inhibit occurs, record value of position command input coherently. When drive inhibit occurs, ignore the value of position command.	0	х	0	Pi Pe	5-4-1
Pn302	Use input contacts GN1 & GN2 to select one of four electronic Gear Ratio Numerators. To select Numerator 1, the statue of the input-contacts GN1 & GN2 should be as follows: Input Contact GN2 Input Contact GN1	1	X	1 50000	Pi Pe	5-4-3
Pn303	Use input contacts GN1 & GN2 to select one of four electronic Gear Ratio Numerators. To select Numerator 2, the statue of the input-contacts GN1 & GN2 should be as follows: Input Contact GN2 Input Contact GN1 0	1	х	1 50000	Pi Pe	5-4-3
Pn304	Electronic Gear Ratio Numerator 3 Use input contacts GN1 & GN2 to select one of four electronic Gear Ratio Numerators. To select Numerator 3, the statue of the input-contacts GN1 & GN2 should be as follows: Input Contact GN2 Input Contact GN1 1 0 Note: Input contacts status "1" (ON) and "0" (OFF). Refer to 5-6-1 to set high or low input logic levels.	1	Х	1 50000	Pi Pe	5-4-3

Parameter	Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
Pn305	Use input contacts GN1 & GN2 to select one of four electronic Gear Ratio Numerators. To select Numerator 4, the statue of the input-contacts GN1 & GN2 should be as follows: Input Contact GN2 Input Contact GN1 1 1 Note: Input contacts status "1" (ON) and "0" (OFF). Refer to 5-6-1 to set high or low input logic levels.	1	X	1 50000	Pi Pe	5-4-3
★ Pn306	Electronic Gear Ratio Denominator Set the calculated Electronic Gear Ratio Denominator in Pn 306. (Refer to section 5-4-3). Electronic Gear Ratio should comply with the formula below. $\frac{1}{200} \leq Electronic Gear Ratio \leq 200$	the calculated Electronic Gear Ratio Denominator on 306. (Refer to section 5-4-3). ctronic Gear Ratio should comply with the formula ow. $\frac{1}{-1} \le Electronic Gear Ratio \le 200$		Pi Pe	5-4-3	
Pn307	Position complete value Set a value for In position output signal. When the Position pulse error value is less then Pn307 output-contact INP (In position output signal) will be activated.	10	pulse	0 50000	Pi Pe	5-4-9
Pn308	"Incorrect position" Error band Upper limit. When the Position error value is higher then number of pulses set in Pn308, an Alarm message AL-11(Position error value alarm) will be displayed.	50000	pulse	0 50000	Pi Pe	5-4-9
Pn309	"Incorrect position" Error band lower limit. When the Position error value is lower then number of pulses set in Pn309, an Alarm message AL-11(Position error value alarm) will be displayed.	50000	pulse	0 50000	Pi Pe	5-4-9
Pn310	Position Loop Gain 1 Without causing vibration or noise on the mechanical system the position loop gain value can be increased to increase system response and shorten the positioning time. Generally, the position loop bandwidth should not be higher then speed loop bandwidth. The relationship is according to the formula below: $PositionLoopGain \leq 2\pi \times \frac{SpeedLoopGain}{5}$		1/s	1 450	Pi Pe	5-4-6 5-5
Pn311	Position Loop Gain 2 Refer to Pn310	40	1/s	1 450	Pi Pe	5-4-6 5-5
Pn312	Position Loop Feed Forward Gain It can be used to reduce the track error of position control and speed up the response. If the feed forward gain is too large, it might cause speed overshoot and INP contact repeatedly switch ON/OFF. INP("In Position" output signal).	0	%	0 100	Pi Pe	5-4-6 5-5

Parameter		Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
★ Pn313	Accele Set the	ration/Deceleration Time Constant time period for the Position command pulse to to rise from 0 to 63.2%. Position Pulse Command Frequency (%) Position Pulse Command Frequency France Frequency Time (ms)	0	msec	0 10000	Pi Pe	5-4-4
★ Pn314	Setting 0	(CW) .Clockwise	1	x	0 1	★ Pi Pe	5-4-5
	1 Pulse E	(CCW). Counter Clockwise Error Clear Modes.					
	Setting 0	Explanation Once CLR signal is activated, it eliminates, the Pulse error amount.]			Pe	
Pn315	1	Once CLR signal is activated, following takes place: The position command is cancelled. Motor rotation is interrupted Pulse error amount is cleared. Machine home reference is reset	0	X	0 2	Pi Pe	5-4-7
	2	Once CLR signal is activated, following takes place: The position command is cancelled Motor rotation is interrupted Pulse error amount is cleared.				Pi	

Parameter	Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
★Pn316.0	Internal Position Command Mode Setting Explanation 0 Absolute Position 1 Incremental Position	0	х	0 1	Pi	5-4-2
★Pn316.1	Internal Position Command Hold (PHOLD) program select Setting Explanation When PHOLD is active then received PTRG signal. servomotor will be proceed internal position command from PHOLD position. When PHOLD is active then received PTRG signal. Servomotor will operate internal position command of current selection.	0	x	0 1	Pi	5-4-2
Pn317	Internal Position Command 1 – Rotation Number Set the Rotation number of the internal Position Command 1 Use input contacts POS1~POS4 to select Refer to 5-4-2.	0	rev	-30000 30000	Pi	5-4-2
Pn318	Internal Position Command 1 - Pulse Number Set the rotation pulse number of internal position Command 1 Internal Position Command 1 = Pn317(Rotation Number) x Pulse number of One Rotate x 4 + Pn318(Pulse number)	0	pulse	-32767 32767	Pi	5-4-2
Pn319	Internal Position Command 1 - Move Speed Setting the Move Speed of internal Position Command 1	0	rpm	0 3000	Pi	5-4-2
Pn320	Internal Position Command 2-Rotation Number Please refer to Pn317	0	rev	-30000 30000	Pi	5-4-2
Pn321	Internal Position Command 2-Pulse Number Please refer to Pn318	0	pulse	-32767 32767	Pi	5-4-2
Pn322	Internal Position Command 2-Move Speed Please refer to Pn319	0	rpm	0 3000	Pi	5-4-2
Pn323	Internal Position Command 3-Rotation Number Please refer to Pn317	0	rev	-30000 30000	Pi	5-4-2
Pn324	Internal Position Command 3-Pulse Number Please refer to Pn318	0	pulse	-32767 32767	Pi	5-4-2
Pn325	Internal Position Command 3-Move Speed Please refer to Pn319	0	rpm	0 3000	Pi	5-4-2
Pn326	Internal Position Command 4 -Rotation Number Please refer to Pn317	0	rev	-30000 30000	Pi	5-4-2
Pn327	Internal Position Command 4-Pulse Number Please refer to Pn318	0	pulse	-32767 32767	Pi	5-4-2
Pn328	Internal Position Command 4-Move Speed Please refer to Pn319	0	rpm	0 3000	Pi	5-4-2

Parameter	Name & Function	Default	Unit	Settin g Range	Control Mode	Chapter		
	Internal Position Command 5 -Rotation Number			-30000				
Pn329	Please refer to Pn317	0	rev	30000	Pi	5-4-2		
	Internal Position Command 5-Pulse Number			-32767				
Pn330	Please refer to Pn318	0	pulse	 32767	Pi	5-4-2		
D004	Internal Position Command 5-Move Speed			0_	D:	5.4.0		
Pn331	Please refer to Pn319	0	rpm	1 3000	Pi	5-4-2		
D., 222	Internal Position Command 6 -Rotation Number			-30000	D:	5.4.0		
Pn332	Please refer to Pn317	0	rev	30000	Pi	5-4-2		
Pn333	Internal Position Command 6-Pulse Number	0	pulse	-32767	Pi	5-4-2		
Piloso	Please refer to Pn318	0	puise	1 32767	PI	3-4-2		
D:: 00.4	Internal Position Command 6-Move Speed	0		0_	D:	5.4.0		
Pn334	Please refer to Pn319		rpm	3000	Pi	5-4-2		
Pn335	Internal Position Command 7 -Rotation Number		0 rev		-30000	Di	E 4 2	
Piloso	Please refer to Pn317	U		30000	Pi	5-4-2		
Pn336	Internal Position Command 7-Pulse Number	0	pulse	-32767	Pi	5-4-2		
FII330	Please refer to Pn318		puise	32767		5-4-2		
D 007	Internal Position Command 7-Move Speed	0	rnm	0-	Pi	5-4-2		
Pn337	Please refer to Pn319	U	rpm	3000	ГІ	5-4-2		
Pn338	Internal Position Command 8 -Rotation Number	0	rev	-30000	Pi	5-4-2		
1 11330	Please refer to Pn317		164	30000		J-4-2		
Pn339	Internal Position Command 8-Pulse Number	0	pulse	-32767 I	Pi	5-4-2		
1 11333	Please refer to Pn318	Ů	puisc	32767	PI	J + Z		
Pn340	Internal Position Command 8-Move Speed	0	rpm	0 	Pi	5-4-2		
	Please refer to Pn319		.ρ	3000		0.2		
Pn341	Internal Position Command 9 -Rotation Number	-	0	0 rev	0 rev	-30000 	Pi	5-4-2
	Please refer to Pn317			30000				
Pn342	Internal Position Command 9-Pulse Number	0	pulse	-32767 	Pi	5-4-2		
_	Please refer to Pn318		•	32767	1 1			
Pn343	Internal Position Command 9-Move Speed Please refer to Pn319	0	rpm	0	Pi	5-4-2		
			·	3000				
Pn344	Internal Position Command 10 -Rotation Number	0	rev	-30000	Pi	5-4-2		
	Please refer to Pn317			30000				
Pn345	Internal Position Command 10-Pulse Number	0	pulse	-32767 	Pi	5-4-2		
	Please refer to Pn318		12 2.100	32767		. .		

Parameter	Name & Function	Default	Unit	Setting Range	Control Mode	Chapter	
Pn346	Internal Position Command 10-Move Speed	0	rpm	0	Pi	5-4-2	
1 110-10	Please refer to Pn319	Ü	трии	3000			
Pn347	Internal Position Command 11 -Rotation Number	0	rev	-30000 	Pi	5-4-2	
	Please refer to Pn317	•		30000		0.2	
Pn348	Internal Position Command 11-Pulse Number	0	pulse	-32767 	Pi	5-4-2	
	Please refer to Pn318		<u>'</u>	32767			
Pn349	Internal Position Command 11-Move Speed Please refer to Pn319	0	rpm	0	Pi	5-4-2	
	Internal Position Command 12-Rotation Number			3000 -30000			
Pn350	Please refer to Pn317	0	rev		Pi	5-4-2	
	Internal Position Command 12-Pulse Number			30000 -32767			
Pn351	Please refer to Pn318	0	pulse		Pi	5-4-2	
	Internal Position Command 12-Move Speed			32767 0			
Pn352	Please refer to Pn319	0	rpm] 3000	Pi	5-4-2	
Pn353	Internal Position Command 13 -Rotation Number			-30000			
	Please refer to Pn317	0	rev	 30000	Pi	5-4-2	
	Internal Position Command 13-Pulse Number	0 pulse	0 nulsa	-32767	D:	5.4.0	
Pn354	Please refer to Pn318		puise	ا 32767	Pi	5-4-2	
Pn355	Internal Position Command 13-Move Speed	0	0 rpm	0	Pi	F 4 2	
FII355	Please refer to Pn319	0 Ipili		o Ipini	3000	PI	5-4-2
Pn356	Internal Position Command 14 -Rotation Number	0	rev	-30000 I	Pi	5-4-2	
F11330	Please refer to Pn317	0	160	 30000	Г	3-4-2	
Pn357	Internal Position Command 14-Pulse Number	0	pulse	-32767 	Pi	5-4-2	
	Please refer to Pn318		paido	pulse	32767		
Pn358	Internal Position Command 14-Move Speed Please refer to Pn319	0	rpm	0	Pi	5-4-2	
	Internal Position Command 15 -Rotation Number			3000 -30000			
Pn359	Please refer to Pn317	0	rev		Pi	5-4-2	
	Internal Position Command 15-Pulse Number			30000 -32767			
Pn360	Please refer to Pn318	0	pulse	 32767	Pi	5-4-2	
D 001	Internal Position Command 15-Move Speed	_		0	5.	5.4 0	
Pn361	Please refer to Pn319	0	rpm	3000	Pi	5-4-2	
Dn262	Internal Position Command 16 -Rotation Number	0	rev	-30000	Pi	5-4-2	
Pn362	Please refer to Pn317	U	rev	30000		ე-4-∠	

Parameter		Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
	Interna	Position Command 16-Pulse Number	0		-32767		
Pn363		Please refer to Pn318		pulse	 32767	Pi	5-4-2
	Internal Position Command 16-Move Speed		0	rpm	Ō		
Pn364		Please refer to Pn319			3000	Pi	5-4-2
		for HOME routine.					
	Setting Explanation						
Pn365.0	0	Once the home routine is activated, motor will search for Home Position switch in 1 st speed in CCW direction. Input contacts CCWL or CWL can be used as the Home Reference Switch. Once Home reference switch is detected, then input Contacts CCWL and CWL will act as normal Max limits again. Note: When using this function, Pn365.1 can not be set to 1 or 2. Cn002.1 (selection for CCWL and CWL) must be set to 0. Once the home routine is activated, motor will search for Home position switch in 1 st speed in CW direction. Input contacts CCWL or CWL can be used as the Home Reference Switch.					
	1 c n n N V s S C n n	Once Home position is detected, then input contacts CCWL and CWL will act as normal max. limits again. Note: When using this function, Pn365.1 can not be set to 1 or 2. Cn002.1 (selection for CCWL and CWL) must be set to 0.		х	0 5	Pi Pe	5-4-8
	2	Once the home routine is activated, motor will search for Home position switch in 1 st speed in CCW direction and sets the Home reference position as soon as the input contact ORG is activated . If Pn365.1=2 , it will directly find the closest Rising-Edge of ORG to be the Home position (without a need for Home Reference), then it stops in accordance with Pn365.3 setting.					
	3	Once the home routine is activated, motor will search for Home position switch in 1 st speed in CW direction and sets the reference Home position as soon as the input contact ORG is activated. If Pn365.1=2 , it will directly find the closest rising -Edge of ORG to be the Home position (without a need for Home reference), then it stops in accordance with Pn365.3 setting.					

Parameter		Name & Functions	Default	Unit	Setting Range	Control Mode	Chapter
Pn365.0	4	Once the home routine is activated, motor will search for Home position in 1 st speed in CCW direction and sets the Home reference position as soon as the nearest Z (marker pulse) is detected. When using this function, set Pn365.1=2 . After setting the Z Phase to be the Home, it stops in accordance with the setting of Pn365.3 .	0		0	Pi	5.4.0
(H000)	5	Once the home routine is activated, motor will search for Home position in 1 st speed in CW direction and sets the Home reference position as soon as the nearest Z (marker pulse) is detected. When using this function, set Pn365.1=2 . After setting the Z Phase to be the Home, it stops in accordance with the setting of Pn365.3 .	it of	5	Pe	5-4-8	
		eference Home switch or Signal, is found it search method for the Home position.					
	Setting	Explanation					
Pn365.1	0	Once the Home Reference switch or signal is detected, motor reverses direction in 2 nd speed to find the nearest Z . Phase pulse and sets this as the Home position, then stops in accordance with Pn365.3 setting method. Once the Home Reference switch or signal is detected, motor Continues in its direction in 2 nd speed to find the nearest Z Phase pulse and sets this as the Home position, then stops	0	X	0 		
	2	in accordance with Pn365.3 setting method. When Pn365.0=2 or 3, it finds the rising edge of ORG to be the Home position, then stops in accordance with Pn365.3. When Pn365.0=4 or 5, it finds Z Phase pulse to be the Home, then stops in accordance with Pn365.3.				Pi Pe	5-4-8
_	Setting	of Home Routine Start method					
	Setting	Explanation					
Pn365.2	1 2	Homing routine is Disabled. On power up and activation of Servo on the home routine is started automatically. This method is useful for applications that do not require repeated home routines. No external home reference switch is required. Use SHOME input contact to start a home routine.		Х	0 		
	-	In position mode, SHOME can be used to start a home routine at any moment.					

Parameter	Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
Pn365.3	Setting of stopping mode after finding Horsignal. Setting Explanation After detecting the Home signal, it sets the position to be the Home reference (Unencoder feed back rotating number at Un-15 encoder feed back pulse number at all 0), motor decelerates and stops. Then it reverses direction in 2 nd speed to detect the Home Position again then it decelerates and stops. After detecting the Home signal, it sets the position to be the Home reference (Un-14 encoder feed back rotating number and	nis 14 nd re 0	X	0 1	Pi Pe	5-4-8
Pn366	Un-15 encoder feed back pulse number a all 0), motor decelerates and stops. Machine Home reference search speed. 1 st spee (Fast)		rpm	0	Pi Pe	5-4-8
Pn367	HOME Refeence search speed . Speed 1. Machine Home position search speed. 2 nd Speed (Slow) Home position search speed . Speed 2.	ed 50	rpm	2000 0 500	Pi Pe	5-4-8
Pn368	Home position offset . Number of revolutions. Once the searched home position is found in accordance with Pn365 (Home routine mode), then i will search by a number of revolutions and pulses set parameters Pn368 and Pn 369 to find the new (off set Home position.	in	rev	-30000 30000	Pi Pe	5-4-8
Pn369	Home position offset . Number of Pulses. Home Offset position = Pn368(Rotate Number) x Number of Encoder Pulse per Rotation x 4 + Pn369(Pulse Number)	0	pulse	-32767 32767	Pi Pe	5-4-8

Quick Set-up Parameters

Parameter	Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
♦ qn401	Speed Loop Gain 1. (Same function as Sn211) Speed loop gain has a direct effect on the frequency response bandwidth of the Speed-control loop. Without causing vibration or noise Speed-loop-gain can be increased to obtain a faster speed response. If Cn025 (load Inertia ratio) is correctly set, the speed-loop-bandwidth will equal to speed-loop-gain.	40	Hz	10 450	Pi Pe S	5-3-8 5-5
♦ qn402	Speed-loop Integral time 1. (Same function as Sn212) Speed loop integral element can eliminate the steady speed error and react to even slight speed variations. Decreasing Integral time can improve system rigidity. The formula below shows the relationship between Integral time and Speed loop Gain. $SpeedLoopIntegrationTimeCons \tan t \ge 5 \times \frac{1}{2\pi \times SpeedLoopGain}$	100	x0.2 ms	1 500	Pi Pe S	5-3-8 5-5
♦ qn403	Speed Loop Gain 2. (Same function as Sn213) Refer to qn401	40	Hz	10 450	Pi Pe S	5-3-8 5-5
♦ qn404	Speed Loop Integration Time Constant 2. (Same function as Sn214) Refer to qn402	100	x0.2 ms	1 500	Pi Pe S	5-3-8 5-5
♦ qn405	Position Loop Gain 1. (Same function as Pn310) Without causing vibration or noise on the mechanical system the position loop gain value can be increased to speed up response and shorten the positioning time. Generally, the position loop bandwidth should not be higher then speed loop bandwidth. The relationship is according to the formula below: $PositionLoopGain \leq 2\pi \times \frac{SpeedLoopGain}{5}$	40	1/s	1 	Pi Pe	5-4-6 5-5
♦ qn406	Position Loop Gain 2 (Same function as Pn311) Please refer to qn405	40	1/s	1 450	Pi Pe	5-4-6 5-5
♦ qn407	Position Loop Feed Forward Gain It can be used to reduce the follow up error of position control and speed up the response. If the feed forward gain is too large, it might cause speed Overshoot and in position oscillations which result in the repeated ON/OFF operation of the output contact INP("In Position" output signal).	0	%	0 100	Pi Pe	5-4-6 5-5

Multi-Function Input Parameters

Parameter		N	ame & Function	Default	Unit	Setting Range	Control Mode	Chapter
		ogrammak	ole Digital input Selection					
	Seting		Explanation					
	Signal		Functions					
	01	SON	Servo On					
	02	ALRS	Alarm Reset					
	03		PI/P Switching					
	04	CCWL	CCW Limit	1 !				
	05	CWL	CW Limit					
	06	TLMT	External Torque Limit					
	07	CLR	Clear Pulse Error Value					
	08	LOK	Servo Lock					
	09	EMC	Emergency Stop					
	0A	SPD1	Speed 1					
	0B	SPD2	Speed 2					
	0C	MDC	Control Mode Switch			04		
★Hn501.0	0D	INH	Position Command Inhibit			01		
★ Hn501.1	0E		Speed Inverse	01	Х	 1C		
	0F	G-SEL	Gain Select	UI	_ ^	10		
	10	GN1	Electronic Gear Ratio Numerator			(HEX)		
	11	GN2	Electronic Gear Ratio Numerator 2				ALL	5-6-1
	12	PTRG	Position Trigger					
	13		Position Hold					
	14		Start Home					
	15	ORG	Home Position Reference (Origin)					
	16	POS1	Internal Position select 1					
	17	POS2	Internal Position select 2					
	18		Internal Position select 3					
	19	POS4	Internal Position select 4					
	1A	TRQINV	Torque Inverse					
	1B	RS1	Torque CW Selecting					
	1C	RS2	Torque CCW Selecting					
	DI-1 L	ogic State	. NO/NC Selection					
	Setting		Explanation					
★ Hn501.2	0		act state. NO (Normally Open). g (IG24) to inputs, enables the unction.	0	Х	0		
=1-1-1-1	1	Input conto	act state. NC (Normally Closed). cting (IG24) from inputs, enables and function.			1		

[★] New setting will become effective after re-cycling the power.

Warning! If any of programmable Inputs of DI-1 ~ DI-6 are set for the same type of function then the logic state selection (NO or NC selection) for these inputs must be the same type. Otherwise an Alarm will be displayed. AL-07 (Abnormal DI/DO programming).

Parameter			me & Function	Default	Unit	Setting Range	Control Mode	Chapter
	DI-2 Programmable Digital input Selection					001		
★Hn502	Please i	efer to Hn50)1	002	Х	 11C	ALL	5-6-1
	DI-3 Pro	ogrammable	Digital input Selection			001		
★Hn503	Please i	efer to Hn5 0)1	003	Х	 11C	ALL	5-6-1
	DI-4 Pro	grammable	Digital input Selection			001		
★Hn504		efer to Hn50		008	Х	 11C	ALL	5-6-1
	DI-5 Pro	ogrammable	Digital input Selection			001		
★Hn505	Please i	efer to Hn5 0)1	00A	Х	 11C	ALL	5-6-1
	DI-6 Pro			001		5-6-1		
★ Hn506	Please refer to Hn501		006	Х	 11C		ALL	
	DO-1 Pi			001				
	Setting		Explanation	007	Х	 11C	ALL	5-6-1
		Signal	Functions			01 08	ALL	
★Hn507.0	01	RDY	Servo Ready					
★Hn507.1	02	ALM	Alarm		X			
	03	ZS	Zero Speed					
(-11-11-11-1)	04	BI	Brake Signal	01				
	05	INS	In Speed	_				
	06	INP	In Position	4				5-6-1
	07	HOME INT	HOME In Torque	_				
	08							
★Hn507.2	Setting	igitai Outpu	t Logic State. Explanation	-		0		
	0	Close wher		0	Х			
	0 Close, when the output is activated.1 Open, when the output is activated.			-		1		
			le Digital Output Selection			001		
★ Hn508		efer to Hn5 0		002	Х	108	ALL	5-6-1
	DO-3 Pi	rogrammab	le Digital Output Selection			001	†	
★ Hn509		efer to Hn50		003	Х	108	ALL	5-6-1

★ New setting will become effective after re-cycling the power.

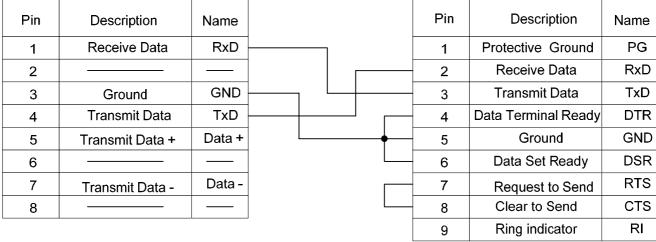
Warning! If any of programmable Inputs of DO-1 ~ DO-3 are set for the same type of function then the logic state selection (NO or NC selection) for these inputs must be the same type. Otherwise an Alarm will be displayed. AL-07 (Abnormal DI/DO programming).

Parameter	Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
★ Hn510	Digital input control method selection. Select digital input (6 pins) control method by external terminal or communication. Convert Binary code to Hex code for setting this parameter. DI and binary bits table as below. Binary code representation: →" 0 " Digital input control by external terminal. →" 1 " Digital input control by communication. Set H0000 for Hn510 represent DI-1,DI-3, DI-6 are controlled by external terminal and set H0003F represent all terminal is controlled by communication. The corresponding binary code is:[10 0101] convert to Hex code is: [H 0025]for entering parameter. For the setting Bit0 (DI-1) is control by communication and Bit1 (DI-2) is control by external terminaletc	H0000	X	H0000 H003F (HEX)	ALL	5-6-1 7
★ Hn511	Setting digital input status in communication mode Change Hn511 Hex code for setting digital input status of communication control mode; Setting method refer Hn510. Binary code representation: "0": digital input contact OFF "1": digital input contact ON Set H0000 for Hn510 represent H0000 are controlled by external terminal and set H0003F represent all terminal is controlled by communication. P.S.)This parameter should co-operate with Hn510.	H0000	X	H0000 H003F (HEX)	ALL	5-6-1 7

Chapter 7 Communications function

7-1 Communications function (RS-232 & RS-485)

The Servo drive provides RS232 communication. The description below shows the communication wiring and communication protocol.

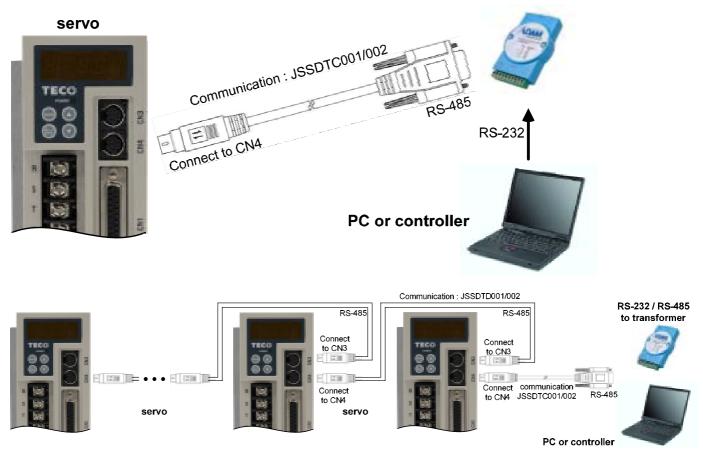

7-1-1 Communication wiring

RS-232

Servo Communication: JSSDTC001/002 Connect to CN4 RS-232

Driver terminal MD-Type 8Pins

PC terminal D-Type 9Pins(female)



^{*} Pin 4 and Pin 6 is a close loop

^{*} Pin 7 and Pin 8 is a close loop

RS-485

RS-232 / RS-485 to transformer

Driver terminal MD-Type 8Pins

RS-232 / RS-485 to converter

Pin	Description	Name	Description	Name
1	Receive Data	RxD	- Transmit Data +	Data +
2			Transmit Data -	Data -
3	Ground	GND	Power input +	+VS
4	Transmit Data	TxD	Power input -	GND
5	Transmit Data +	Data +		
6				1
7	Transmit Data -	Data -	Power supply	
8				

7-1-2 RS-232, RS-485 communication parameter

Parameter		Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
Cn036	When units ha	D number using Modbus for communication, each servo as to setting a ID number. When two or more overlap will lead to communication fail.	1	Х	0 254	ALL	7
Cn037.0	Setting 0 1 2 3 4 5	4800 9600 19200 38400 57600 115200	1	bps	0 5	ALL	7
Cn037.1	PC Soft Setting 0 1 2 3	Explanation 4800 9600 19200 38400	1	bps	0 3	ALL	
Cn038	Setting 0 1 2 3 4 5 6 7	Explanation 7, N, 2 (Modbus, ASCII) 7, E, 1 (Modbus, ASCII) 7, O, 1 (Modbus, ASCII) 8, N, 2 (Modbus, ASCII) 8, E, 1 (Modbus, ASCII) 8, O, 1 (Modbus, ASCII) 8, N, 2 (Modbus, ASCII) 8, O, 1 (Modbus, RTU) 8, E, 1 (Modbus, RTU) 8, O, 1 (Modbus, RTU)	0	X	0 8	ALL	7
Cn039	Communication time-out dection Setting non-zero value to enable this function, communication Time should be in the setting period otherwise alarm message of communication time-out will show. Setting a zero value to disable this function.		0	sec	0 20	ALL	7
Cn040	Commu Delay	unication response delay time Servo drive communication response time to control unit.	0	0.5 msec	0 255	ALL	7

Parameter	Name & Function	Default	Unit	Setting Range	Control Mode	Chapter
Hn510	Digital input control method selection. Select digital input (6 pins) control method by external terminal or communication. Convert Binary code to Hex code for setting this parameter. DI and binary bits table as below. Binary code representation: →" 0 " Digital input control by external terminal. →" 1 " Digital input control by communication. Set H0000 for Hn510 represent DI-1,DI-3, DI-6 are controlled by external terminal and set H0003F represent all terminal is controlled by communication. The corresponding binary code is :[10 0101] convert to Hex code is : [H 0025]for entering parameter. For the setting Bit0 (DI-1) is control by communication and Bit1 (DI-2) is control by external terminaletc	H0000	X	H0000 H003F (HEX)	ALL	5-6-1 7
Hn511	Setting digital input status in communication mode Change Hn511 Hex code for setting digital input status of communication control mode; Setting method refer Hn510. Binary code representation: "0" : digital input contact OFF "1" : digital input contact ON Set H0000 for Hn510 represent H0000 are controlled by external terminal and set H0003F represent all terminal is controlled by communication. P.S.)This parameter should co-operate with Hn510.		X	H0000 H003F (HEX)	ALL	5-6-1 7

7-1-3 RS-232 Communication protocol and format

Baud rate	9600bps (Selection by Cn037.1)
Parity	No
Data bit	8
Stop bit	1

Symbol H in folling sentence is for Hex representation.

(1) Read a word from servo drive → Function code format: R5XxSs

Xx: A request to read register "Xx" from slave device(Unit:Byte, Hex representation)

Ss: Check Sum Ss ='R'+'5'+'X'+'x' (Unit:Byte, Hex representation)

Ex1: Read register address 30H and

(Convert FR530 into ASCII codes)

Check Sum=52H+35H+33H+30H=EA H

→ R 5 3 0

Obtain Function code for read register address 30H: FR530EA a

Servo drive response: %XxYySs

Ss is Check Sum, Ss='%'+'X'+'x'+'Y'+'y'

Response message of example 1:

0008H is the data store in register address 30H:

Check Sum=25H+30H+30H+30H+38H=EDH

% 0 0 0 8

Drive response message: [₹]%0008ED₄

* When function code incorrect , drive response : $^{\mathbb{F}}!_{\mathbb{Z}}$ (ASCII code: 21H)

Nn : A request to read register " Nn " from slave device (Unit :Byte, Hex representation)
Ss: Check Sum, Ss ='L'+'5'+'N'+'n' (Unit: Byte, Hex representation)
Ex2: Read data from register address 60H and
(Convert 『L560』 into ASCII codes)
Check Sum=4CH+35H+36H+30H=E7
L 5 6 0
Obtain Function code for read register address 60H: FL560E7 a
Servo drive response: %XxYyAaBbSs
Ss is Check Sum , Ss='%'+'X'+'x'+'Y'+'y' +'A'+'a'+'B'+'b'
XxYy is the data store in register address Nn+1,
AaBb is the data store in register address Nn
Response message of example 2:
0001 000AH is the data store in register 60H
Check Sum=25H+30H+30H+30H+31H+30H+30H +30H+41H=1B7H
% 0 0 0 1 0 0 0 A
Drive response message: [₽] %0001000AB7 [』]
* When function code incorrect, drive response: 『!』 (ASCII code: 21H)

(2) Read consecutive 2 words from drive → Function code format: <u>L5NnSs</u>

(3) Write a word to drive → Function code format: W5XxYyZzSs
Xx : Address for write data (Unit :Byte、 Hex representation)
YyZz: Writes the data contents (Unit:word, Hex representation)
$Ss: Check\ Sum\ ,\ Ss='W'+'5'+'X'+'X'+'Y'+'y'+'Z'+'z'\ (\ Unit: Byte,\ Hex\ representation)$
Ex3: Write data 0008H to register 30H
(Convert ®W5300008 a into ASCII codes)
Check Sum=57H+35H+33H+30H+30H+30H+38H=1B7H
W 5 3 0 0 0 8
Obtain Function code for write data 0008H to register 30H: "W5300008B7."
Drive response message : 『%』 (ASCII code :25H)
* When function code incorrect , drive response : 『!』 (ASCII code: 21H)
(4) Write consecutive 2 words to drive → Function code format: M5NnXxYyAaBbSs
Nn : Address for write data(Unit :Byte、 Hex representation)
XxYy: Writes the data contents of address Nn+1 (Unit:Word, Hex representation)
AaBb: Writes the data contents of address Nn (Unit: Word, Hex representation)
Ss: Check Sum, Ss='M'+'5'+'N'+'n'+'X'+'x'+'Y'+'y'+'A'+'a'+'B'+'b' (Unit:Byte、Hex representation)
Ex4: Write data 0002 000BH to register 60H
(Convert 『M5600002000B』 into ASCII codes)
Check Sum=4DH+35H+36H+30H+30H+30H+30H+30H+30H+30H+42H =27CH
M 5 6 0 0 0 2 0 0 B
Obtain Function code for write data 0002000BH to register 60H: M5600002000B7C
Drive response message: 『%』 (ASCII code :25H)
* When function code incorrect , drive response : 『!』 (ASCII code: 21H)

7-1-4 Modbus communication protocol for RS-485

The MODBUS protocol allows an easy communication within types of network architectures, before start to communication with slave device, set the ID number (**Cn036**) for Servo drive respectively, server distinguish ID number for controlling specific client station.

Standard Modbus networks combine two transmission modes: ASCII or RTU: ASCII(American Standard Code for information interchange) Mode and RTU (Remote Terminal Unit) Mode, Use **Cn038 to** select ASCII or RTU mode.

Coding method

ASCII Mode

8-bits Data consist of two ASCII code.

Ex: Data 26H 1-byte , the '26' convert to ASCII code is include character '2' \rightarrow <32H> and '6' \rightarrow <36H> ASCII Chart (0 ~ 9 and A ~ F):

Character	'0'	'1'	'2'	'3'	'4'	' 5'	'6'	'7'
ASCII code(Hex)	30H	31H	32H	33H	34H	35H	36H	37H
Character	'8'	'9'	'A'	'B'	,C,	'D'	'E'	'F'
ASCII code(Hex)	38H	39H	41H	42H	43H	44H	45H	46H

RTU Mode

Each 8bits is consist of 2 Hex number (4-bits per Hex number).

Ex.: Data 26H, the data length is 1-byte.

ASCII Mode Framing

10 bits Frame (7-bits Data)

7N2	Start bit	0	1	2	3	4	5	6	Stop bit	Stop bit	
		← ·		Da	ta:7	bits		- →			
	←		- (Chara	cter	Fram	ne : 1	0 bits	s	→	
	Ct a set	l	 :				 ;		E. con	Ot a re	
7E1	Start bit	0	1	2	3	4	5	6	Even parity	Stop bit	
		← ·		Da	ta:7	bits		- →			
	←			Cha	racte	er Fra	ame:1	10 bit	S	→	
-	•			·	,	·	·	·	-		1
701	Start bit	0	1	2	3	4	5	6	Odd parity	Stop bit	
·		← ·		Da	ta:7	bits		- →			
	← Character Frame:10 bits →										

11 bits Frame (8-bits Data)

8N2	Start bit	0 1 2 3 4 5 6 7	Stop bit	Stop bit	
		← Data:8 bits →			
	←	Character Frame:11 bit	s	→	
		hiiiii			· I
8E1	Start bit	0 1 2 3 4 5 6 7	Even parity	Stop bit	
		← Data:8 bits →			
	←	Character Frame:11 bit	s	→	
					ı
801	Start bit	0 1 2 3 4 5 6 7	Odd parity	Stop bit	
		← Data:8 bits →			
← Character Frame:11 bits →					

ASCII Mode Framing

Symbol	Name	Description
STX	Comm. start	3AH, Char ':'
		Include 2 ASCII code within 1-byte
ADR	01 11	Comm. add : 1 ~ 254 convert to Hex representation ;
ADK	Slave address	Ex. Servo drive ADR is No.20 convert to 14H;
		ADR = '1' , '4' → '1' = 31H , '4' = 34H
		Include 2 ASCII code within 1-byte
CMD	Function code	Function codes: 03H: Read the register contents,
CIVID		06H: Write Single Register, 08H: Diagnostic function,
		10H: Write Multipile Registers
DATA(n-1)		n-word = 2n-byte (ASCII numbers : 4n), n 30
	Data	
DATA(0)		The format of data is depend on Function code
LRC	Check code	Include 2 ASCII code within 1-byte
END 1	END 1 (CR)	0DH, Char '\r'
END 0	END 0 (LF)	0AH, Char '\n '

Symbol	Name	Description	
STX	Comm. start	Excess comm. loss time setting 10ms	
ADR	Slave address	1-byte Comm. address: 1 ~ 254, convert to Hex representation; Ex. Comm. address = 20 convert representation to 14 Hex, ADR = '14H'	
CMD	Function code	1-byte Function codes: 03H: Read the register contents, 06H: Write Single Register, 08H: Diagnostic function, 10H: Write Multipile Registers	
DATA(n-1) DATA(0)	Data	n-word = 2n-byte, n 30 The format of data is depend on Function code	
CRC-Low	Checking code-LO	1-byte	
CRC-High	Checking code-HI	1-byte	
END 0	End 0	Excess comm. loss time setting 10ms	

Common function codes

03H: Read the register contents

Continuous read N words. * Largest number of N is 29 (1DH)

Ex.: Read two words (register 0200H and 0201H) from Slave address 01H.

ASCII Mode

Query PC → Servo

ST	٠.,	
	' 0 '	
AD	PR	'1'
O.V.	ın.	' 0 '
CM	טו	' 3 '
	/LI:\	' 0 '
Register	(Hi)	' 2 '
ADD.	(Lo)	' 0 '
		' 0 '
		' 0 '
Data le	ength	' 0 '
(wo	rd)	' 0 '
		' 2 '
LR	C	' F '
LK	' 8 '	
END1	(0DH)	
END0	(LF)	(0AH)

Response Servo → PC OK)

STX		
ADD		
JK.	'1'	
4D	' 0 '	
טוא	' 3 '	
ength	' 0 '	
rte)	' 4 '	
/LI:\	' 0 '	
(ПІ)	' 0 '	
(Lo)	'В'	
	'1'	
(1.1:)	'1'	
(1 11)	' F '	
(1.5)	' 4 '	
(LO)	' 0 '	
LRC		
) (LF)	(0AH)	
	PR AID ength tte) (Hi) (Lo) (Hi)	

Servo → PC (ERROR)

STX	,
ADR	' 0 '
ADK	'1'
CMD	'8'
CIVID	' 3 '
Exception	' 0 '
code	' 2 '
LRC	'7'
LRC	' A '
END1 (CR)	(0DH)
END0 (LF)	(0AH)

Query PC → Servo

ADR	01H	
Function	03H	
Register	Register (Hi)	
ADD	(Lo)	00H
Data ler	00H	
(word	02H	
CRC(L	04H	
CRC(H	Hi)	07H

Response Servo → PC (OK)

Servo → PC (ERROR)

ADR	01H
Function Code	83H
Exception	02H
CRC(Lo)	C0H
CRC(Hi)	F1H

06H: Write Single Register

Write a word into register.

Ex: Write data (0064H) into register address 0200H and slave ADR= 01

ASCII Mode

Query PC → Servo

ST	· : ·		
AD	' 0 '		
AD	K	'1'	
CM	ID	' 0 '	
Civ	ID .	'6'	
	/LI:\	' 0 '	
Register	(Hi)	'2'	
ADD	(1.0)	' 0 '	
	(Lo)	' 0 '	
		' 0 '	
Write	data	' 0 '	
(wo	rd)	'6'	
		' 4 '	
I D	C	' 9 '	
LR	'3'		
END1	END1 (CR)		
END0	(LF)	(0AH)	

Response Servo→PC (OK)

STX		' : '
ADB		' 0 '
ADR		'1'
CMD		' 0 '
Civ	יטוי	'6'
	/LI:\	' 0 '
Register	(Hi)	'2'
ADD.	(Lo)	' 0 '
		' 0 '
Write data (word)		' 0 '
		' 0 '
		'6'
		' 4 '
LRC		' 9 '
		'3'
END1 (CR)		(0DH)
END0 (LF)		(0AH)

Servo → PC (ERROR)

STX	·: '
ADR	' 0 '
ADK	'1'
CMD	'8'
CIVID	' 6 '
Exception	' 0 '
code	'3'
LRC	'7'
LKC	'6'
END1 (CR)	(0DH)
END0 (LF)	(0AH)

Query PC → Servo

ADR		01H
CMD		06H
Register	(Hi)	02H
ADD	(Lo)	00H
Write data		00H
(word)		64H
CRC(Lo)		89H
CRC(Hi)		99H

Response Servo →PC (OK)

ADR		01H
CM	CMD	
Register ADD.	(Hi)	02H
ADD.	(Lo)	00H
Write data		00H
(word)		64H
CRC(Lo)		89H
CRC(Hi)		99H

Servo → PC (ERROR)

ADR	01H
CMD	86H
Exception	03H
code	ОЗП
CRC(Lo)	02H
CRC(Hi)	61H

08H: Diagnostic function

The sub-function code 0000H is able to check communication signal between Master and Slaver. Data content is random value.

Ex: Use the diagnostic function for ID=01H

ASCII Mode

Query PC → Servo

STX		·: ·
ADD		' 0 '
ADR		'1'
CMD		' 0 '
Civ	ID .	'8'
Cub	/UI\	' 0 '
Sub-	(HI)	' 0 '
Function	(1.0)	' 0 '
	(Lo)	' 0 '
		' A '
Data		' 5 '
(word)		' 3 '
		'7'
LDC		'1'
LRC		' B '
END1 (CR)		(0DH)
END0 (LF)		(0AH)

Response Servo → PC (OK)

STX		,
ADD		' 0 '
ADR		'1'
CMD		' 0 '
Ci	VID	'8'
Cub	/⊔۱\	' 0 '
Sub- Function	(HI)	' 0 '
Function	(1.0)	' 0 '
	(Lo)	' 0 '
Data (word)		' A '
		' 5 '
		'3'
		'7'
LDC		'1'
LRC		'В'
END1 (CR)		(0DH)
END0 (LF)		(0AH)

Servo → PC (ERROR)

STX	":"
ADR	' 0 '
ADK	'1'
CMD	'8'
CIVID	'8'
Exception	' 0 '
code	' 3 '
LRC	'7'
LKC	' 4 '
END1 (CR)	(0DH)
END0 (LF)	(0AH)

Query PC → Servo

ADR		01H
CMD		08H
Sub-	(HI)	00H
Function	(Lo)	00H
Data		A5H
(word)		37H
CRC(Lo)		DAH
CRC(Hi)		8DH

Response Servo →PC (OK)

•		
ADR		01H
CMD		08H
Sub-	(HI)	00H
Function	(Lo)	00H
Data		A5H
(word)		37H
CRC(Lo)		DAH
CRC(Hi)		8DH

Servo → PC (ERROR)

ADR	01H
CMD	88H
Exception	03H
code	
CRC(Lo)	06H
CRC(Hi)	01H

10H: Write Multipile Registers

Continuously write N words to register. * Largest number of N is 27 (1BH)

Ex.: Write data (0064H) and (012CH) into register address 100H and 101H respectively.

ASCII Mode

Query PC → Servo

Query PC → Servo		
STX		
ADB		
ADR		
0145		
טו	' 0 '	
4.10		
(ПІ)	'1'	
(1.5)	' 0 '	
(LO)	' 0 '	
	' 0 '	
ength	' 0 '	
rd)	' 0 '	
, ,		
Byte counters		
(byte)		
O. (HI)	' 0 '	
	' 0 '	
	' 6 '	
(LO)	' 4 '	
(1.11)	' 0 '	
(HI)	'1'	
(1.5)	, С ,	
(LO)	'2'	
LBC		
LRC		
END1 (CR)		
END0 (LF)		
	(HI) (Lo) (HI) (Lo) (HI) (Lo) (CC) (CR)	

Response Servo →PC (OK)

response delve 71 d (div)		
STX		":"
ADD		' 0 '
ADR		'1'
CMD		'1'
		' 0 '
Register ADD	(HI)	' 0 '
		'1'
	(Lo)	' 0 '
		' 0 '
Data length (word)		' 0 '
		' 0 '
		' 0 '
		'2'
LRC		' E '
		'С'
END1 (CR)		(0DH)
END0 (LF)		(0AH)

Servo → PC (ERROR)

STX	· : '
ADR	' 0 '
ADK	'1'
CMD	' 9 '
CIVID	' 0 '
Exception	' 0 '
code	'2'
LRC	'6'
LKC	' D '
END1 (CR)	(0DH)
END0 (LF)	(0AH)

RTU Mode

Query PC → Servo

ADR		01H
CMD		10H
Register	(HI)	01H
ADD	(Lo)	00H
Data length		00H
(word)		02H
Byte counters		04H
Data	(HI)	00H
0100H	(Lo)	64H
Data	(HI)	01H
0101H	(Lo)	2CH
CRC(Lo)		BFH
CRC(Hi)		ADH

Response Servo → PC (OK)

ADR		01H
CMD		10H
Register ADD	(HI)	01H
	(Lo)	00H
Data length		00H
(word)		02H
CRC(Lo)		40H
CRC(Hi)		34H

Servo → PC (ERROR)

ADR	01H
CMD	90H
Exception 02H	
code	0211
CRC(Lo)	CDH
CRC(Hi)	C1H

LRC (ASCII Mode) and CRC (RTU Mode) Check methods LRC Checking:

ASCII Mode LRC (Longitudinal Redundancy Check) checking method

The LRC is calculated by adding together successive 8-bit bytes of the message, discarding any carries.

Ex. add ADR, Function code, register address and data contents together, if it get the sum 19DH then discard carrier "1" and find two's complement for 9DH to obtain LRC code.

Ex: Execute diagnostic function for Servo drive ID =01H

STX		':'
ADD		' 0 '
ADR		'1'
CMD		' 0 '
		'8'
Sub-function	(HI)	' 0 '
		' 0 '
	(1.0)	' 0 '
	(Lo)	' 0 '

Data (word)	' A '
	' 5 '
	'3'
	'7'
LRC	'1'
	'В'
END1 (CR)	(0DH)
END0 (LF)	(0AH)

01H+08H+00H+00H+A5H+37H = E5H

Two's complement for E5H is 1BH; derive LRC code: '1', 'B'

CRC Checking:

CRC check code is from Slave Address to end of the data. The calculation method is illustrated as follow:

- (1) Load a 16-bit register with FFFF hex (all1's). Call this the CRC register.
- (2) Exclusive OR the first 8-bit byte of the message with the low-order byte of the 16-bit CRC register, putting the result in the CRC register.
- (3) Shift the CRC register one bit to the right (toward the LSB), Zero-filling the MSB, Extract and examines the LSB.
- (4) (If the LSB was 0): Repeat Steps (3) (another shift) (If the LSB was 1): Exclusive OR the CRC register with the polynomial value A001 hex (1010 0000 0000 0001).
- (5) Repeat Steps (3) and (4) until 8 shifts been performed. When this is done, a complete 8-bit byte will be processed.
- (6) Repeat Steps (2) through (5) for next 8-bit byte of the message, Continue doing this until all bytes have been processed. The final content of the CRC register is the CRC value. Placing the CRC into the message:

When the 16-bit CRC (2 8-bit bytes) is transmitted in the message, the low-order byte will be transmitted first, followed by the high-order byte, For example, if the CRC value is 1241 hex, the CRC-16 (Low) put the 41h, the CRC-16 (Hi) put the 12h.

Example:

An example of a C language function performing CRC generation is shown on the following pages. All of the possible CRC values are preloaded into two arrays, which are simply indexed as the function increments through the message buffer. One array contains all of the 256 possible CRC values for the high byte of the 16-bit CRC field, and the other array contains all of the values for the low byte.

Indexing the CRC in this way provides faster execution than would be achieved by calculating a new CRC value with each new character from the message buffer.

Note

This function performs the swapping of the high/low CRC bytes internally. The bytes are already swapped in the CRC value that is returned from the function.

Therefore the CRC value returned from the function can be directly placed into the message for transmission.

The function takes two arguments:

unsigned char *puchMsg; A pointer to the message buffer containing binary data

to be used for generating the CRC

unsigned short usDataLen; The quantity of bytes in the message buffer.

The function returns the CRC as a type unsigned short.

CRC Generation Function

0x40 };

```
unsigned short CRC16(puchMsg, usDataLen)
unsigned char *puchMsg:
                                                       /* message to calculate CRC upon*/
unsigned short usDataLen;
                                                       /* quantity of bytes in message*/
unsigned char uchCRCHi = 0xFF;
                                                  /* high byte of CRC initialized*/
unsigned char uchCRCLo = 0xFF;
                                                  /* low byte of CRC initialized*/
unsigned uIndex;
                                                      /* will index into CRC lookup table*/
while (usDataLen--)
                                                 /* pass through message buffer
                                                 /* calculate the CRC*/
uIndex = uchCRCHi ^ *puchMsgg++;
uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex};
uchCRCLo = auchCRCLo[uIndex];
}
return (uchCRCHi << 8 | uchCRCLo);
}
High-Order Byte Table
/* Table of CRC values for high-order byte */
static unsigned char auchCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
```

Low-Order Byte Table

/* Table of CRC values for low-order byte */

```
static char auchCRCLo[] = {
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,
0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,
0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,
0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,
0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,
0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB9, 0xB9, 0x79, 0xBB,
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91,
0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88,
0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80,
0x40
};
```

Exception Codes

When communication error occur, servo drive is returned with an error code and Function code+80H return to the ModBus host controller.

Code	Name	Description
01 ILLEC	ILLEGAL FUNCTION	The function code received in the query is not an allowable action
	ILLEGAL FUNCTION	for the server (or slave).
02	ILLEGAL DATA ADD.	The data address received in the query is not an allowable
02	02 ILLEGAL DATA ADD.	address for the server (or slave).
03	03 ILLEGAL DATA VALUE	A value contained in the query data field is not an allowable value
US ILLEGAL DA	ILLEGAL DATA VALUE	for server (or slave).
04	SLAVE DEVICE	An unrecoverable error occurred while the server (or slave) was
	FAILURE	attempting to perform the requested action.
05	RTU CHECK FAILURE	RTU mode: CRC check error
06	ASCII CHECK	ASCII mode: LRC check error or no end code(CRLF)
	FAILURE	ASON Mode. LING GHECK ENDI OF NO END CODE(CREF)

7-2 Communication address table

All parameters allow to write data by communication excluding display parameters.

System parameters

Add	ress		
RS485	RS232	Parameter	Name of parameter
0001	510H	Cn001	Control Mode
0002	51DH	Cn002	DI Contacts function and Auto tunning
0003	511H	Cn003	Output time setting for Mechanical Brake Signal
0004	512H	Cn004	Motor rotation direction
0005	513H	Cn005	Encoder pulse output scale
0006	514H	Cn006	Reserve parameter
0007	515H	Cn007	Value for Speed reached
8000	516H	Cn008	Brake Modes
0009	517H	Cn009	CW/CCW Drive inhibit
000A	518H	Cn010	CCW Torque command limit
000B	519H	Cn011	CW Torque command limit
000C	51AH	Cn012	Power setting for external Re-generation resistor
000D	5DEH	Cn013	Frequency of Notch Filter (Resonance Filter)
000E	5DFH	Cn014	Band Width of the Resonance Filter.
000F	58FH	Cn015	Gain selection.
0010	5F8H	Cn016	PI/P control switch Mode (Torque Command)
0011	5F9H	Cn017	PI/P control switch Mode (Speed Command)
0012	5FAH	Cn018	Switch-condition in PI/P mode (accelerate Command)
0013	5FBH	Cn019	PI/P control switch Mode (position error number)
0014	53CH	Cn020	Automatic Gain 1 & 2 switch delay time
0015	53DH	Cn021	Automatic Gain 1 & 2 switch condition (Torque command)
0016	53EH	Cn022	Automatic Gain 1 & 2 switch condition (Speed Command)
0017	53FH	Cn023	Automatic Gain 1 & 2 switch condition (Acceleration Command)
0018	540H	Cn024	Automatic Gain 1 & 2 switch condition (Position error value)
0019	587H	Cn025	Load-Inertia ratio
001A	5D0H	Cn026	Rigidity Setting
001B	58BH	Cn027	Reserve parameter
001C	58CH	Cn028	Reserve parameter
001D	5FDH	Cn029	Reset Parameter
001E	50BH	Cn030	Servo motor model code
001F	50EH	Cn031	Cooling fan running mode
0020	546H	Cn032	Speed feed-back smoothing filter
0021	51EH	Cn033	Speed Feed-forward smoothing filter
0022	5B8H	Cn034	Torque command smoothing filter
0023	541H	Cn035	Panel display content selection

Address		Parameter	Name of parameter
RS485	RS232	raiailletei	Name of parameter
0024	51BH	Cn036	Servo ID number
0025	544H	Cn037	Braud rate setting for (Modbus RS-485 / PC Software RS-232)
0026	545H	Cn038	Communication protocol selection
0027	567H	Cn039	Communication time-out dection time
0028	579H	Cn040	Communication response delay time

Torque control parameters

Address		Parameter	Name of parameter
RS485	RS232	Farameter	Name of parameter
0101	520H	Tn101	Linear acceleration/deceleration method selection
0102	523H	Tn102	Linear acceleration/deceleration time period
0103	521H	Tn103	Analog Torque Command Ratio
0104	522H	Tn104	Analog torque command offset
0105	526H	Tn105	Internal Speed Limit 1
0106	527H	Tn106	Internal Speed Limit 2
0107	528H	Tn107	Internal Speed Limit 3
0108	5CDH	Tn108	Torque output monitor value

Speed control parameters

Add	Address		Name of parameter
RS485	RS232	Parameter	Name of parameter
0201	536H	Sn201	Internal Speed Command 1
0202	537H	Sn202	Internal Speed Command 2
0203	538H	Sn203	Internal Speed Command 3
0204	529H	Sn204	Zero Speed preset selection
0205	52AH	Sn205	Speed command acceleration / deceleration methods
0206	52BH	Sn206	Speed command Smooth acceleration/deceleration-time
0200	32BH	311200	constant
0207	52CH	Sn207	Speed command Linear acceleration/deceleration time
0207	32011	311207	constant
0208	52DH	Sn208	S curve speed command acceleration and deceleration time
0200	0206 32DH	311200	setting
0209	52EH	Sn209	S curve speed command acceleration time setting
020A	52FH	Sn210	S curve speed command deceleration time setting
020B	530H	Sn211	Speed loop Gain 1
020C	531H	Sn212	Speed-loop Integral time constant 1
020D	53AH	Sn213	Speed loop Gain 2
020E	53BH	Sn214	Speed loop Integral time constant 2
020F	532H	Sn215	Value of zero speed

Address		Doromotor	Name of parameter
RS485	RS232	Parameter	Name of parameter
0210	533H	Sn216	Analog Speed Command Ratio
0211	534H	Sn217	Analog Speed Command offset adjust
0212	599H	Sn218	Analog Speed Command Limit

Position control parameters

Ad	Address		Name of a second
RS485	RS232	Parameter	Name of parameter
0301H	550H	Pn301	Position command selection (for pulse type、logic and drive inhizibit)
0302H	560H	Pn302	Electronic Gear Ratio Numerator 1
0303H	561H	Pn303	Electronic Gear Ratio Numerator 2
0304H	562H	Pn304	Electronic Gear Ratio Numerator 3
0305H	563H	Pn305	Electronic Gear Ratio Numerator 4
0306H	554H	Pn306	Electronic Gear Ratio Denominator
0307H	552H,553H	Pn307	Position complete value
0308H	556H,557H	Pn308	Position error band upper limit
0309H	558H,559H	Pn309	Position error band lower limit
030AH	55AH	Pn310	Position Loop Gain 1
030BH	551H	Pn311	Position Loop Gain 2
030CH	55BH	Pn312	Position Loop Feed Forward Gain
030DH	55CH	Pn313	Position command Smooth Accel/Decel time constant
030EH	55DH	Pn314	Position Command Direction definition
030FH	51FH	Pn315	Position Pulse error clear mode
0310H	50DH	Pn316	Internal Position Command Mode
0311H	568H	Pn317	Internal Position Command 1-Rotation Number
0312H	569H	Pn318	Internal Position Command 1-Pulse Number
0313H	56AH	Pn319	Internal Position Command 1-Move Speed
0314H	56BH	Pn320	Internal Position Command 2-Rotation number
0315H	56CH	Pn321	Internal Position Command 2-Pulse Number
0316H	56DH	Pn322	Internal Position Command 2-Move Speed
0317H	56EH	Pn323	Internal Position Command 3-Rotation number
0318H	56FH	Pn324	Internal Position Command 3-Pulse Number
0319H	575H	Pn325	Internal Position Command 3-Moving Speed
031AH	576H	Pn326	Internal Position Command 4-Rotation number
031BH	577H	Pn327	Internal Position Command 4-Pulse Number
031CH	578H	Pn328	Internal Position Command 4-Move Speed
031DH	59CH	Pn329	Internal Position Command 5-Rotation Number
031EH	59DH	Pn330	Internal Position Command 5-Pulse Number

Add	ress		
RS485	RS232	Parameter	Name of parameter
031FH	59EH	Pn331	Internal Position Command 5- Move Speed
0320	59FH	Pn332	Internal Position Command 6-Rotation Number
0321	5A0H	Pn333	Internal Position Command 6-Pulse Number
0322	5A1H	Pn334	Internal Position Command 6- Move Speed
0323	5A2H	Pn335	Internal Position Command 7-Rotation Number
0324	5A3H	Pn336	Internal Position Command 7-Pulse Number
0325	5A4H	Pn337	Internal Position Command 7- Move Speed
0326	5A5H	Pn338	Internal Position Command 8-Rotation Number
0327	5A6H	Pn339	Internal Position Command 8-Pulse Number
0328	5A7H	Pn340	Internal Position Command 8- Move Speed
0329	5A8H	Pn341	Internal Position Command 9-Rotation Number
032A	5A9H	Pn342	Internal Position Command 9-Pulse Number
032B	5AAH	Pn343	Internal Position Command 9- Move Speed
032C	5ABH	Pn344	Internal Position Command 10-Rotation Number
032D	5ACH	Pn345	Internal Position Command 10-Pulse Number
032E	5ADH	Pn346	Internal Position Command 10-Move Speed
032F	5AEH	Pn347	Internal Position Command 11-Rotation Number
0330	5AFH	Pn348	Internal Position Command 11-Pulse Number
0331	5B3H	Pn349	Internal Position Command 11-Move Speed
0332	5E0H	Pn350	Internal Position Command 12-Rotation Number
0333	5E1H	Pn351	Internal Position Command 12-Pulse Number
0334	5E3H	Pn352	Internal Position Command 12-Move Speed
0335	5E4H	Pn353	Internal Position Command 13-Rotation Number
0336	5E5H	Pn354	Internal Position Command 13- Pulse Number
0337	5E6H	Pn355	Internal Position Command 13- Move Speed
0338	5E7H	Pn356	Internal Position Command 14-Rotation Number
0339	5E8H	Pn357	Internal Position Command 14- Pulse Number
033A	5E9H	Pn358	Internal Position Command 14- Move Speed
033B	5EAH	Pn359	Internal Position Command 15-Rotation Number
033C	5EBH	Pn360	Internal Position Command 15- Pulse Number
033D	5ECH	Pn361	Internal Position Command 15- Move Speed
033E	5EDH	Pn362	Internal Position Command 16- Rotation Number
033F	5EEH	Pn363	Internal Position Command 16- Pulse Number
0340	5EFH	Pn364	Internal Position Command 16-Move Speed
0341	54AH	Pn365	Setting for HOME routine
0342	54BH	Pn366	1 st preset speed of HOME (high speed)
0343	54CH	Pn367	2 nd preset speed of HOME (low speed)
0344	54DH	Pn368	HOME Position Offset. (No of Revolutions)
0345	54EH	Pn369	HOME – Bias Pulse value (No of pulses)

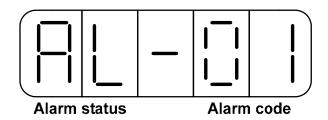
Quick Setup parameters

Add	Address		Name of parameter
RS485	RS232	Parameter	Name of parameter
0401	530H	qn401	Speed Loop Gain 1
0402	531H	qn402	Integral Time constant for Speed Loop 1
0403	53AH	qn403	Speed Loop Gain 2
0404	53BH	qn404	Integral Time constant for Speed Loop 2
0405	55AH	qn405	Position Loop Gain 1
0406	551H	qn406	Position Loop Gain 2
0407	55BH	qn407	Position Loop Feed-Forward Gain

Multi-function programmable contact parameter

Add	Address		Name of parameter
RS485	RS232	Parameter	Name of parameter
0501	5C0H	Hn501	DI-1 Pragrammable digital inupt Selection
0502	5C1H	Hn502	DI-2 Pragrammable digital inupt Selection
0503	5C2H	Hn503	DI-3 Pragrammable digital inupt Selection
0504	5C3H	Hn504	DI-4 Pragrammable digital inupt Selection
0505	5C4H	Hn505	DI-5 Pragrammable digital inupt Selection
0506	5C5H	Hn506	DI-6 Pragrammable digital inupt Selection
0507	5C6H	Hn507	DO-1 Programmable Digital Output Selection
0508	5C7H	Hn508	DO-2 Programmable Digital Output Selection
0509	5C8H	Hn509	DO-3 Programmable Digital Output Selection
050A	5C9H	Hn510	Digital input control method selection
050B	5CAH	Hn511	Setting digital input status in communication mode

Display parameters


Ado	Address		
RS485	RS232	Parameter	Name of parameter
0601	6E4H	Un-01	Actual Motor Speed
0602	9B6H	Un-02	Actual Motor Torque
0603	691H	Un-03	Regenerative load rate
0604	693H	Un-04	Accumulated load rate
0605	694H	Un-05	Max load rate
0606	678H	Un-06	Speed Command
0607	65CH	Un-07	Position Error Value
0608	688H	Un-08	Position Feed-back Value
0609	632H	Un-09	ExternalVoltage Command
060A	6B7H	Un-10	(Vdc Bus) Main Loop Voltage
060B	695H	Un-11	External Spped Limit Command Value
060C	6C0H	Un-12	External CCW Torque Limit Command Value
060D	6C1H	Un-13	External CW Torque Limit Command Value
060E	8BBH	Un-14	Motor feed back – Rotation value (absolute value)
060F	8BAH	Un-15	Motor feed back – Less then one rotation pulse
UOUF			value(absolute value)
0610	8C5H	Un-16	Pulse command – rotation value(absolute value)
0611	8C4H	Un-17	Pulse Command-Pulse value less than one rotation(Absolute value)
0612	67EH	Un-18	Torque command
0613	844H	Un-19	Load inertia ratio

Chapter 8 Troubleshooting

8-1 Alarm functions

The Alarm codes are displayed in a format such as that shown below. For any Alarm messages, refer to this section for identify the cause and dispel the error. to reset the Alarm message by following pages description. If this is not possible for any reason then contact your local supplier for assistance.

Alarm Status Display:

For Alarm List refer to the section 8-2. In the example above AL-01 indicate (Under Voltage) There is also an Alarm history which can record ten entry of alarm record. History record is listed as alarm history record table shows.

Alarm History Record

Display	Explanation
AL –xx	The Latest Alarm.
A1 – xx	Previous First Alarm.
A2 – xx	Previous Second. Alarm.
A3 – xx	Previous Third Alarm.
A4 – xx	Previous Fourth Alarm.
A5 – xx	Previous Fifth Alarm.
A6 – xx	Previous Sixth Alarm.
A7 – xx	Previous Seventh Alarm.
A8 – xx	Previous Eighth Alarm.
A9 – xx	Previous Ninth Alarm.

Note: xx is denotation of the Alarm Codes.

Example:

Following table are procedures to access the alarm history record parameter.

Steps	Key	LED Display	Procedures
1	Turn On the Power		On" power on " Drive Status parameter is displayed.
2	MODE		Press MODE key to enter the Alarm History record.
3			Press (Key to view the Alarm 1 message that previously happened and the alarm code is "03" (Overload)
4		AS-01	Press (Key again to view Alarm 2 message and repeat this to see entire alarm history list. In this example Alarm code is 01. (Under voltage)
5	MODE		Press MODE key once to view System Parameters. Repeat this to select all other available parameters.

8-2 Troubleshooting of Alarm and Warning

Alarm Code	Alarm Name and Description	Corrective Actions	Reset Method
00	Normal	_	
01	Under-voltage The main circuit voltage is below its minimum specified value. (190Vac)	Use multi-meter to check whether the input voltage is within the specified limit. If it can not be solved, there may be failure inside the Drive.	Turn ALRS(DI) ON
02	Over-voltage (Regeneration error) 1. The main circuit voltage is exceeded maximum allowable value. (410V) 2. Regeneration voltage is too high.	 Use multi-meter to check whether the input voltage is within the specified limit. Check the Parameter Cn012 if it is setting correctly. If this alarm appears during operation. Extend ac/deceleration time or reduce load ratio in the permitted range. Otherwise, an external regeneration resistor is needed. (Please contact your supplier for assistance.) 	Turn ALRS(DI) ON
03	the loading is equal to 2 times of		Turn ALRS(DI) ON
04	Drive Over-current Transistor error Drive main circuit Over current or Transistor error.	 Check connection of the motor cable (U,V,W) and encoder. Check power cable connection. Refer to the diagram in Chapter 2. Turn off the power, and turn on again after 30 min. If the alarm still exists, there may be power module malfunction or noise consider the drive for test and repair. 	Reset Power Supply
05	Encoder ABZ phase signal error Motor's encoder failure or encoder connection problem.	 Check the motor's encoder connections. Check the encoder if short circuit, poor solder joints or break. Check the encoder signal terminals CN2-4 and CN2-5 (power cable 5V) 	Reset Power Supply
06	Communication error Communication protocol setting error or Communication time-out is detected.	 Check parameter setting of communication function. Check wire connection between drive and controller. Set a correct value for parameter Cn039 communication time-out or set "0" to disable communication time-out function. 	Reset Power Supply
07	Multi-function contact setting error Input/output contacts function setting error.	 Check parameters Hn501~Hn506 trigger level selected by 2nd digit of Hn 501 to 506should be the same for all inputs DI-1~DI-6 Check parameters setting of Hn507~Hn509 should NOT be the same for outputs contact DO-1~DO-3 	Reset Power
08	Memory Error Parameter write-in error	Disconnect all command cable then re-cycle the power. If alarm still occurs, it means the Drive was failure.	Reset Power Supply

Alarm Code	Alarm Name and Description	Corrective Actions	Reset Method
09	Emergency Stop When the input contact point EMC is activated. Alarm 09 appears.	Disable Emergency stop signal input. Internal mal-function. Ensure that all connection are correct, refer to Chapter 2 Power and motor circuit diagrams connection. Control wiring diagrams.	Turn ALRS(DI) ON
10	Motor over-current Motor current is 4 times greater than rated current.	 Check if the motor wiring U,V,W)and encoder wiring correct or not. Internal interference and mal-function. Ensure that all connection are correct ,refer to Chapter 2 Power and motor circuit diagrams. 	Turn ALRS(DI) ON
11	Position error The deviation between Pulse command and encoder feed back (position error) is greater than the setting of Pn308 or Pn309.	 Increase the position loop gain (Pn310 and Pn311) setting value. Increase in position tolerance value by (Pn312 for a better motor response. Extend the time of ac/deceleration or reduce load inertia in the permitted range. Check if the motor wiring (U,V,W) is correct. 	Turn ALRS (DI) ON
12	Motor over speed Motor's speed is 1.5 times more then motor's rated speed.	 Reduce the speed command. Electronic gear ratio is incorrect check and set correctly. Adjust speed loop gains (Sn211 & Sn213) for a better motor response. 	Turn ALRS (DI) ON
13	CPU Error Control system Mal-function.	Turn off the power. Turn on again after 30 min. If error alarm still exists, this may be due to external interference. Refer to the chapter 2 Motor, power cable and control signals connections.	Reset Power Supply
14	Drive disable When input contacts CCWL & CWL are operated at the same time this alarm occurs.	Remove input contact signal CCWL or CWL. Check all input wiring for correct connections.	Turn ALRS (DI) ON
15	Drive overheat Power transistor temperature exceed 90°C.	Over-load for a long duration will cause driver overheat, check and reset operation system.	Turn ALRS (DI) ON

Alarm Reset Methods

- 1. carry out the suggestions below to reset Alarm.
 - (a) Reset by input signal: Once the cause of Alarm is rectified,

disable **SON** signal (Switch off Servo ON), then activate input signal **ALRS**.

Alarm condition should be cleared and the drive will be ready for operation.

Reference 5-6-1 for setting SON and Alarm signal.

(b) Reset from Keypad: Once the cause of Alarm is rectified,

disable **SON** signal (Switch off Servo ON), then press the buttons and at the same time to reset Alarm and the drive will be ready for operation.

Power reset: Once the cause of Alarm is rectified, disable SON signal (Switch off Servo ON) and re-cycling power.

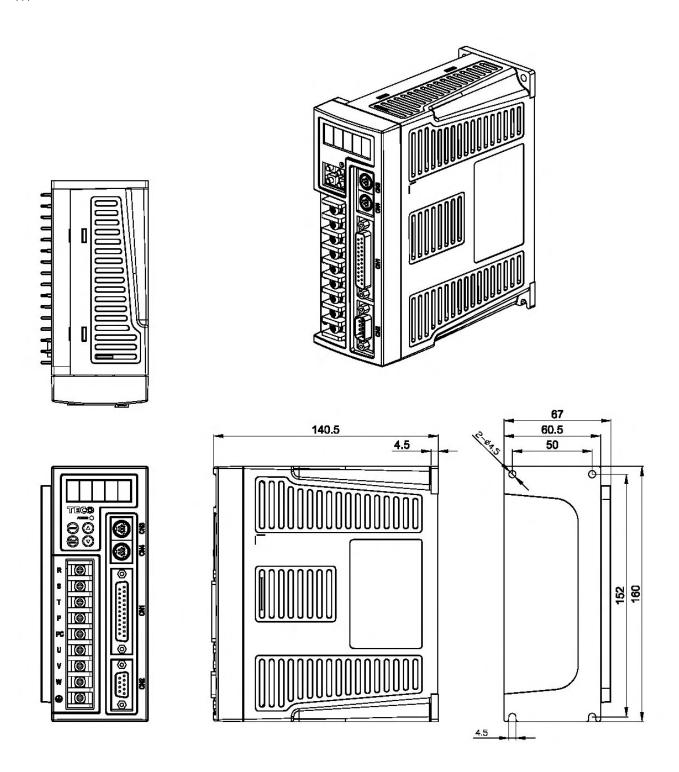
Alarm condition can be reset and the drive will be ready for operation.

Waning!

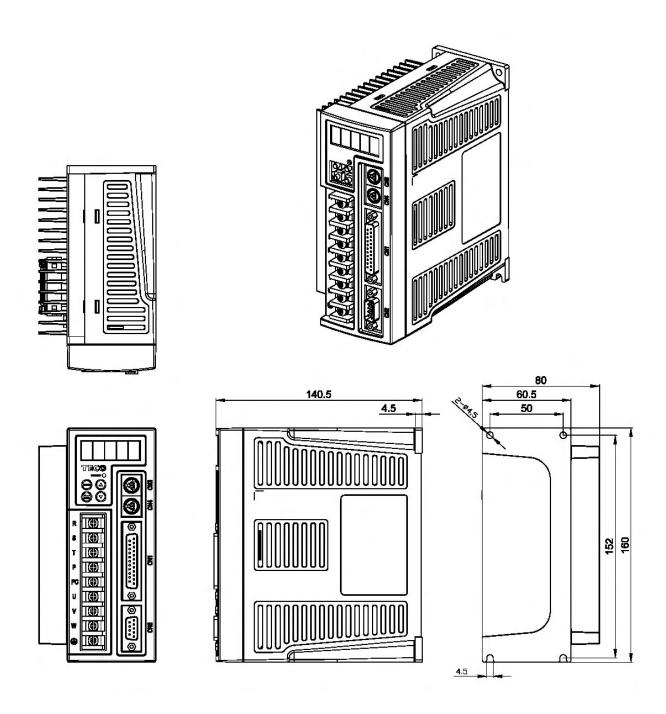
- 1) Before applying power rest, ensure that SON is off (SON signal is removed first) to prevent danger.
- 2) Ensure that the speed commands are removed before the alarm is reset, otherwise the motor may run abruptly once the alarm signal is reset.

Chapter 9 Specifications

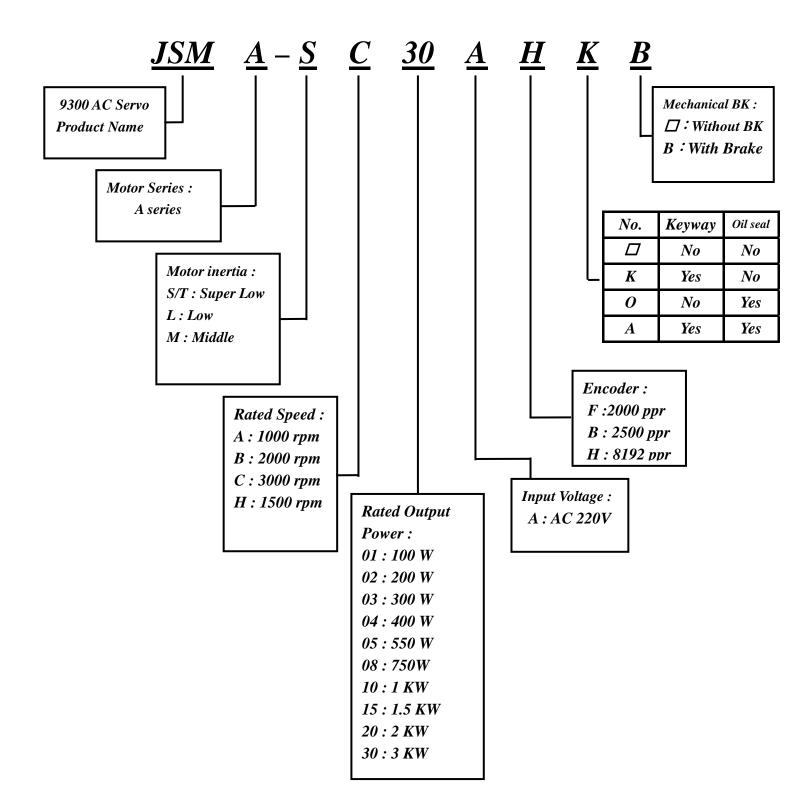
9-1 Specifications and Dimension for Servo Drives


opecifications a	aria Diiiioliol	011 101 001 10	D11100						
Servo motor fo	r JSDE-0000	10A	15A	20A	30A				
		SCP5	SC04*	SC04	SC08				
		SC01	TC04*	SC08*	TC08				
Available Se		_	LC03	TC04	MA10				
(Applicable Mo JSMA-	ŕ	_	_	LC08	MB10				
JOINA	.0000	_	_	MA05	MC10				
		_	_	MH05	MH10				
Servo motor capa	acity [KW] Max.	0.2	0.4	0.8	1.0				
Continuou current	•	1.8	3.5	4.4	5.16				
Max. output cu	rrent [A rms]	5.4	10.5	13.2	15.50				
Input Power	Main Circuit	Single/Three Phase 170 ~ 253Vac							
Supply	R/S/T		50/60H	Iz ±5%					
Cooling S	System	Natural A	Natural Air Cooling Fan Cooling						
Control of M	ain Circuit	Three-phase full-wave rectification IGBT- SVPWM Control							
Resolut Encoder F		Incremental type	e: 2000ppr / 2500	Oppr					
Panel and op	eration key	5 digital seven-s	egment display	; four function ke	ey.				
Control	Mode	Position(Pulse input), Position (Internal control), Speed, Torque, Position/Speed, Speed/Torque, Position/Torque,							
Regenerati	on Brake	Builted-in (brake	Transistor and	brake resistor)					
		Undervoltage, C	over Voltage, Over	erload, Overcurr	ent, decoder				
Protection	Function	abnormal, Multi-	function contact	setting error, Me	emory				
FIOLECTION	i unction	abnormal, Emergency Stop, Position error, Overspeed, CPU							
		Error, Drive disable, Drive Overheat							
Communication	on interface	RS-232 / RS- 48	35 (Modbus prote	ocol)					

	Comi	mand Source	External Pulse Control / 16-Stage internal register control						
		Туре	Positive/Negative Edge Trigger Type : CW/CCW, CLK+DIR, A Phase + B Phase						
	Input Pulse	Waveform	Line Driver(+5V), Open Collector						
	i uise	Max. Frequency	500 KHz(Line Driver) / 200 KHz(Open Collector)						
Position	Elec	tronice Gear	1/200≦ A/B ≦200 (A=1~50000, B=1~50000)						
Control Mode	(on Smoothing Constant Ripple Filtering)	Ripple Time Constant 0~10sec (Time Constant 0~10 sec)						
	Т	nal Position Tolerance In Position)	-50000 Pulse						
	Torque	Limit Operation	0 ~ 100 %						
		ed Forward mpensation	Set by Parameters						
	Command Source		External Analog Command / 3-Stage internal Parameters						
	Analog voltage input range		±10Vdc / 0~ Rated Speed						
	Input Impedance		Approx.10k ohm						
	Speed	Control Range	1 : 5000(Internal speed control) / 1 : 2000(External analog voltage control)						
Speed Control Mode	Speed	fluctuation Rate	-0.03% or less at Load fluctuation 0 to 100% (at Rated Speed) 0.2% or less at power fluctuation ±10% (at Rated Speed) 0.5% or less at ambient temperature fluctuation 0 deg C to 50 deg C (at Rated Speed)						
	Zero Sp	eed Command	Set by Parameters 0~3000rpm						
	Limit o	of Speed up or down	Line and speed up or down, time constant 0~50sec, smoothing time constant 0~10sec						
	Spe	ed Reached	Set by Parameters 0~3000rpm						
	То	rque Limit	External Analog Command /Set by Parameters						
	-	ency Response aracteristic	Max. 300Hz (when JL=JM)						


	Voltage	Command	0~±10Vdc / 0~±300%						
	Input In	npedance	10K ohm						
Torque Control Mode		ue Time nstant	Time Constant 0~50sec						
	Spee	ed limit	ternal Analog Command / Set by Parameters						
	•	Reached nmand	300% (Set by Parameters)						
	Position	Output Type	A, B, Z Line Drive Output/ Phase Z Open Collector						
	Output	Encoder Ratio	1 ~ 63 Encoder Ratio (Set by Parameters)						
Digital	DI[NPN/ PNP] Input	Optional Input To 6 ports	Servo ON, P/PI switching, inhibit forward/reverse drive, error pulse clear, servo lock, Emergency stop, internal speed choice, run mode switching, inhibit position command, gain switching, electronic gear ratio setting, internal position command choice, internal position command trigger, internal position command pause, original point positioning, return to original point, external torque limit, control model switching, forward/reverse switching, internal speedsetting, inhibit pulse command						
	DO Output	Optional Input to 3 ports	Servo Motor Warning, Servo Ready, Zero Speed, Positioning Completed, Speed Reach, Brake interlock, Home Completed						
	Alt	itude	Sea level 1000m below						
Environ-	Install	Location	Indoor (avoiding direct sunshine) no erosion air (avoiding oil gases, inflammable gas and dust)						
ment	Temp	erature	Operating Temperature 0~ 55 ^{o}C , storage Temperature: -20 ~ +85 ^{o}C						
	Hur	midity	Operating, storage below 90% RH						
	Vib	ration	10 ~ 57Hz : 20m/s2, 57 ~ 150Hz : 2G						

^{*}Momentary Max. torque is 240% of rate torque for JSDE series.


※ Dimension for JSDE-10 and JSDE-15

※ Dimension for JSDE-20 and JSDE-30

9-2 Specifications and Dimension for Servomotors Description for Servo Motor Type Number

※ Standard Specifications for Low Inertia and Super Low Inertia

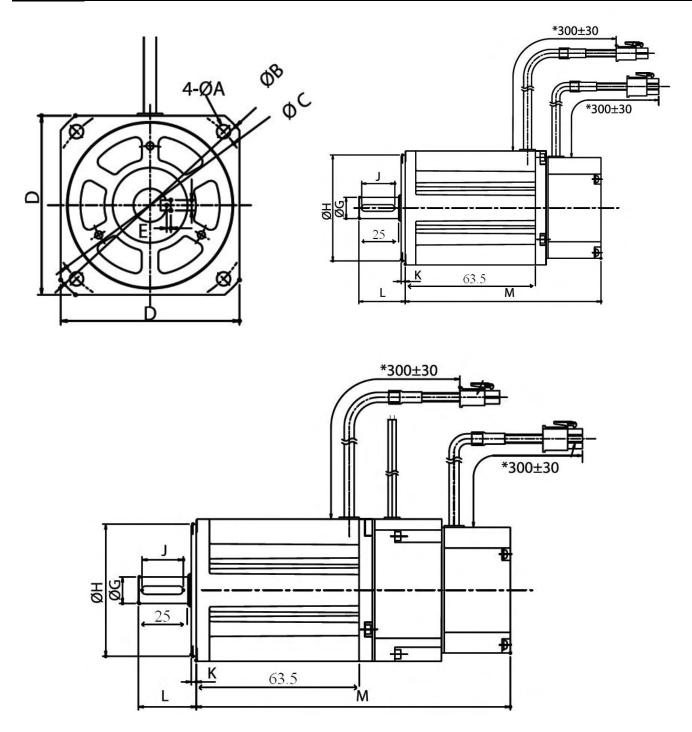
	Motor Mode	Symbol	Unit		JSMA-			
	Wotor Wode	Syllibol	Onit	SCP5	SC01	SC02	SC04	SC08
	Drive Mode			10A	10A/15A	10A/15A	15A/20A	20A/30A
	Rate Output	P _R	W	50	100	200	400	750
Rate	ed Line Voltage(rms)	V _T	٧	109	92.23	88.34	82.2	117.74
	Rated Torque	T _R	N · m	0.16	0.32	0.637	1.274	2.386
	Rated Current	I _R	Α	0.47	0.94	1.8	3.5	4.4
	Rated Speed	N _R	rpm	3000	3000	3000	3000	3000
	Max. Torque	T _{max}	N · m	0.48	0.95	1.911	3.822	7.159
Ma	x. Armature Current	I _{max}	Α	1.41	2.82	5.4	10.5	13.2
	Torque Constant	K _T	N·m/A	0.391	0.391	0.4	0.386	0.604
Indu	ced Voltage Constant	K _E	V/k rpm	40.4	39.45	42.4	40.4	63.3
Rot	or Moment of Inertia	J _M	Kg ⋅ cm²	0.029	0.029 0.036 0.164		0.277	0.907
Ва	ck EMF(@1800rpm)	V _{EMF}	Volts	42	41	44.06	42	65.8
Ar	mature Resistance	Ra	Ω	77.7	25	4.74	1.96	1.4
Ar	mature Inductance	La	mH	39.8	7.6	9.6	3.8	2.2
Mech	nanical Time Constant	Tm	ms	-	_	0.712	0.48	0.428
Elec	trical Time Constant	Te	ms	0.51	0.3	2.025	1.94	1.57
1	Weight (standard)	W	kgw	0.48	0.48 0.7 0.9 1.		1.44	2.5
	Insulation Grade		_	Class B (130 deg C)	Class	s F (155 deç	g C)
e)	Rated Voltage		V		٧	DC 24V±109	%	
3ra	Static Friction Torque		N·m	ı	_	1.3	1.3	3.25
Sal	Rotor Moment of		kg · cm2			0.0254	0.0254	0.22
Mechanical Brake	Inertia		kg * ciliz	ı	_	0.0254	0.0254	0.22
ech	Current Dissipation		Α	1	_	0.25	0.25	0.5
≥ Weight		W	kgw	-	_	0.55	0.55	0.75
Ope	Operating Ambient Temp.		${\mathbb C}$			0 ~ 40		
Opera	ting Ambient Humidity	RH	%	<	:80		<90	
	Storage Temp.	Т	${\mathbb C}$			-20 ~ 60		
	Storage Humidity	RH	%	<	:80		<90	

※ Standard Specifications for Low Inertia and Super Low Inertia

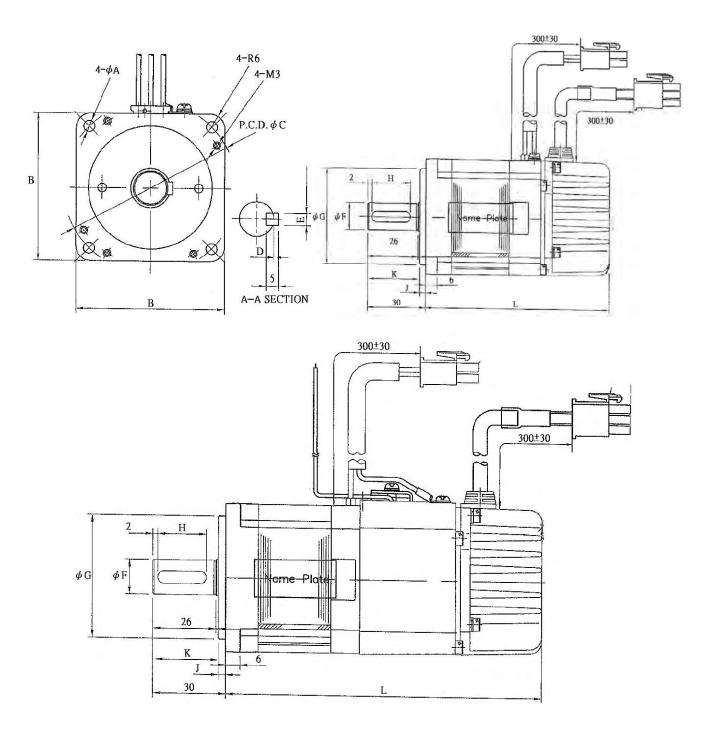

	Matan Mada	Comple al	11:4		JSMA-					
Motor Mode		Symbol	Unit	TC02	TC04	TC08	LC03	LC08		
	Drive Mode			10A/15A	15A/20A	30A	15A	20A		
	Rate Output	P _R	W	200W	400W	750W	300	750		
Ra	ted Line Voltage(rms)	V _T	V	86.55	98.31	98.37	109.2	150.52		
	Rated Torque	T _R	N · m	0.64	1.27	2.391	0.95	2.391		
	Rated Current	I _R	Α	1.7	3.3	5	2.0	3.4		
	Rated Speed	N _R	rpm	3000	3000	3000	3000	3000		
	Max. Torque	T _{max}	N · m							
M	ax. Armature Current	I _{max}	Α	1.91 3.82 7.164 2.861 7.7 5 9.7 14.5 6.0 10						
	Torque Constant	K _T	N·m/A							
Ind	uced Voltage Constant	K _E	V/k rpm	41	50.3	52.2	54.9	81.4		
Ro	otor Moment of Inertia	J _M	Kg ⋅ cm²	0.18	0.39	1.06	0.6773	2.459		
В	ack EMF(@1800rpm)	V_{EMF}	Volts	42.61	43.23	54.25	57	84.6		
Δ	Armature Resistance	Ra	Ω	5	1.93	0.87	5.58	2.18		
Δ	Armature Inductance	La	mH	16	7.33	4.2	11.6	6.8		
	Mechanical Time Constant	Tm	ms	1.3	0.7	0.9	1.978	1.036		
Ele	ectrical Time Constant	Те	ms	3.2	3.8	4.8	2.05	3.12		
	Weight (standard)	W	kgw	0.98	1.38	2.66	1.588	3.05		
	Insulation Grade	_	_		С	lass F (155°	C)			
é	Rated Voltage		٧		٧	DC 24V±10	%			
3ra	Static Friction Torque		Ν·m	1.27	1.27	2.39	1.176	2.352		
echanical Brake	Rotor Moment of Inertia		kg · cm2	0.098						
Current Dissipation			Α	0.33	0.33	0.33	0.45	0.44		
Š	Weight	W	kgw	_	_	_	0.68	1.94		
Ope	erating Ambient Temp.	T	$^{\circ}$			0 ~ 40				
	Operating Ambient Humidity	RH	%			<90				
	Storage Temp.	T	${\mathbb C}$			-20 ~ 60				
	Storage Humidity	RH	%			<90				

※ Standard Specifications for Middle Inertia

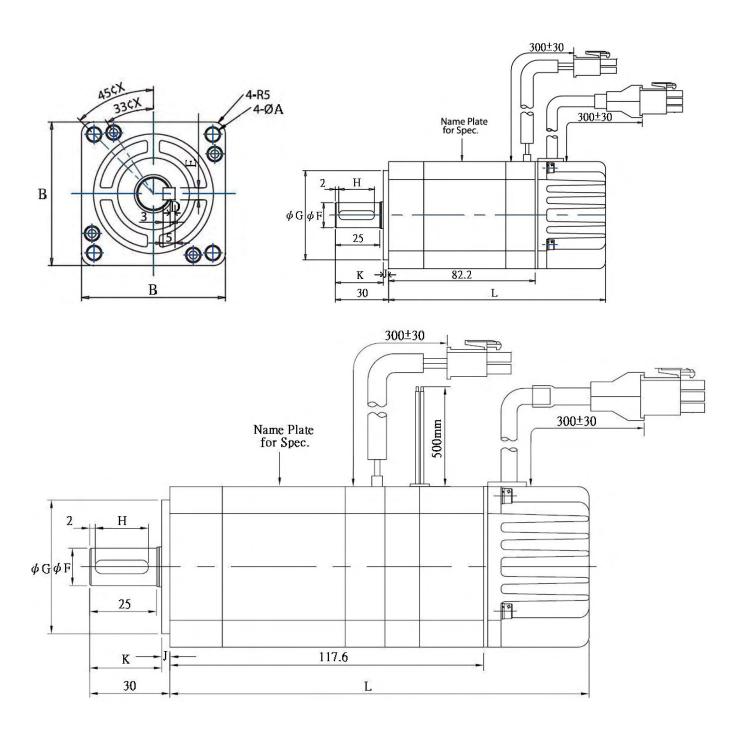
						JSMA-□					
	Motor Mode	Symbol	Unit	MA05	MH05	MA10	MB10	MC10	MH10		
	Drive Mode			20A	20A	30A	30A	30A	30A		
	Rate Output	P _R	W	550	550	1000	1000	1000	1000		
Ra	ted Line Voltage(rms)	V _T	V	116.1	161.86	134.8	134.2	133.23	134.67		
	Rated Torque	T _R	N · m	5.252	3.502	9.545	4.782	3.2	6.403		
	Rated Current	I _R	Α	3.43	2.98	5.16	5.16	4.96	5		
	Rated Speed	N _R	rpm	1000 1500 1000 2000 3000							
	Max. Torque	T _{max}	N · m	15.758 10.507 28.645 14.327 9.6 19.3							
M	ax. Armature Current	I _{max}	Α	10.3 8.94 15.5 15.5 14.88 15							
	Torque Constant	K _T	N·m/A	1.679 1.294 2.039 1.019 0.715 1.41							
Ind	uced Voltage Constant	t K _E V/k rpm 175.9 135.55 213.6 106.8 74.58							147.57		
Ro	tor Moment of Inertia	J _M	Kg ⋅ cm²	6.26	6.26	12.14	6.26	4.6	12.14		
В	ack EMF(@1800rpm)	V_{EMF}	Volts	182.8	140.87	222	111	80.91	153.36		
Δ	rmature Resistance	Ra	Ω	3.58	2.31	1.853	1.22	1.02	0.946		
Δ	rmature Inductance	La	mH	18.33	10.8	12.14	6.7	5.06	8.781		
	Mechanical Time Constant	Tm	ms	1.19	1.19	0.81	1.09	_	0.82		
Ele	ctrical Time Constant	Те	ms	5.12	5.12	6.55	5.52	4.96	9.282		
	Weight (standard)	W	kgw	6.47	6.47	10.18	6.47	5.29	10.18		
	Insulation Grade	1	_			Class B ((130℃)				
é	Rated Voltage		V			VDC 24\	/±10%				
Bra	Static Friction Torque		N·m	15	15	15	15	15	15		
echanical Brake	Rotor Moment of Inertia		kg · cm2	0.675 0.675 0.675 0.675 0.675 0.675							
ech	Current Dissipation		Α	0.58	0.58	0.58	0.58	0.58	0.58		
Ž	Weight	W	kgw	1.2	1.2	1.2	1.2	1.2	1.2		
Ope	erating Ambient Temp.	Т	${\mathbb C}$			0 ~ 4	40				
	Operating Ambient Humidity	RH	%			<90)				
	Storage Temp.	Т	${\mathbb C}$			-20 ~	60				
	Storage Humidity	RH	%			<90)				


%Standard Specifications for Middle Inertia motor

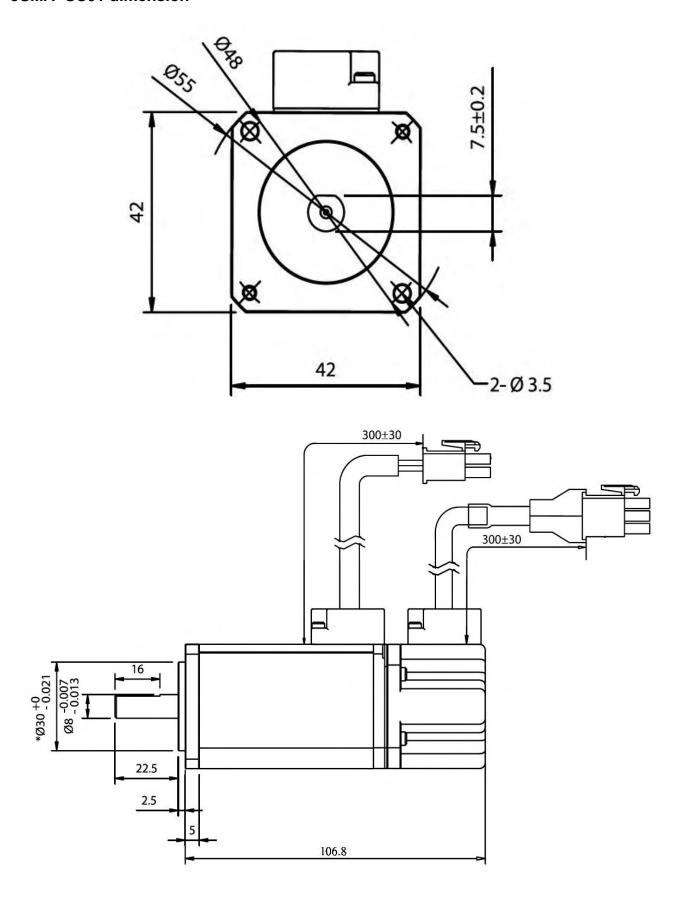
	Matar Mada	Cumbal	11:4:4			JSMA	-0000]				
	Motor Mode	Symbol	Unit	MA15	MB15	MC15	MB20	MC20	MB30	MC30		
	Drive Mode			30A/50A3	30A/50A3	30A/50A3	50A3	50A3	75A3	75A3		
	Rate Output	W	1500	1500	1500	2000	2000	3000	3000			
Rat	ted Line Voltage(rms)	V _T	٧	138.24	141.56	142.43	143.71	140.81	141.7	139.68		
	Rated Torque	T _R	N · m	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
	Rated Current	I _R	Α	7.45 7.57 7.06 9.18 9.5 14 14								
	Rated Speed	N_R	rpm	1000 2000 3000 2000 3000 2000 3000								
	Max. Torque	T_{max}	N·m	42.963	21.492	14.327	28.645	19.11	42.963	28.645		
Ma	ax. Armature Current	I _{max}	Α	22.35 22.71 21.2 27.5 28.5 42 42								
	Torque Constant	K _T	N·m/A	2.108 1.06 0.74 1.14 0.74 1.13 0.75								
Indu	iced Voltage Constant	K _E	V/k rpm									
Ro	tor Moment of Inertia	J_{M}	Kg ⋅ cm²	² 17.92 8.882 6.26 12.14 8.882 17.92 12. ⁻								
Ва	ack EMF(@1800rpm)	V_{EMF}	Volts	s 229.5 113.2 80.54 124 80.44 122.94								
Α	rmature Resistance	Ra	Ω	1.19	0.79	0.653	0.58	0.4	0.333	0.247		
Α	rmature Inductance	La	mH	8.44	4.74	3.58	3.78	2.4	2.124	1.62		
Me	chanical Time Constant	Tm	ms	-	1.14	1.12	0.8	_	0.71	0.81		
Ele	ectrical Time Constant	Te	ms	7.09	6	5.48	6.59	6	7.08	6.57		
	Weight (standard)	W	kgw	13.87	8.08	6.47	10.18	8.08	13.87	10.18		
	Insulation Grade	-	1			Class	B (130 ℃))				
Mechanical Brake	Rated Voltage		V			VDC 2	24V±10%					
B B	Static Friction Torque		Ν·m	15	15	15	15	15	15	15		
nica	Rotor Moment of Inertia		kg ⋅ cm2	0.725	0.725	0.725	0.725	0.725	0.725	0.725		
chai	Current Dissipation		Α	0.59 0.59 0.59 0.59 0.59 0.59								
Me	Weight	W	kgw	1.7	1.7	1.7	1.7	1.7	1.7	1.7		
Ope	erating Ambient Temp.	T	${\mathbb C}$			0	~ 40					
(Operating Ambient	%	<90									
	Humidity											
	Storage Temp.	Т	${\mathbb C}$	-20 ~ 60								
Storage Humidity RH % <90												


JSMA-L dimension diagram

	Туре	Α	В	С	D	E	F	G	Н	J	K	L	M
With	LC03	φ5.5	φ100	φ90	76	2	5	φ14	φ70	20	3	30	147.8
Brake	LC08	φ6.5	φ112	φ100	86	2	5	φ16	φ80	25	3	35	183.2
Diake	LC08-0C	φ6.5	φ112	φ100	86	2	5	φ19	φ80	25	3	35	183.2
VA/:414	LC03	φ5.5	φ100	φ90	76	2	5	φ14	φ70	20	3	30	113.4
Without	LC08	φ6.5	φ112	φ100	86	2	5	φ16	φ80	25	3	35	148
Brake	LC08-0C	φ6.5	φ112	φ100	86	2	5	φ19	φ80	25	3	35	148

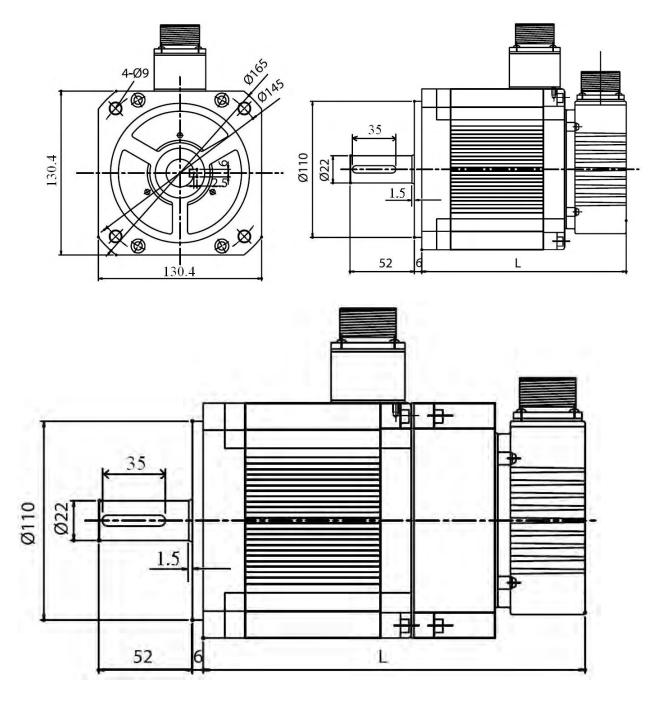

JSMA-S dimension diagram(1)

	Туре	Α	В	С	D	Е	F	G	Н	J	K	L
With	SC02	φ4.5	60	φ70	2	5	φ14	φ50	20	3	27	154.5
Brake	SC04AF	φ5.5	60	φ70	2	5	φ14	φ50	20	3	27	130.5
Diake	SC08	φ5.5	80	φ90	2.5	6	φ19	φ70	30	3	37	137
VAI:41- a4	SC02	φ4.5	60	φ70	2	5	φ14	φ50	20	3	27	80.5
Without	SC04AF	φ5.5	60	φ70	2	5	φ14	φ50	20	3	27	95.5
Brake	SC08	φ5.5	80	φ90	2.5	6	φ19	φ70	30	3	37	102



JSMA-S dimension diagram(2)

	Туре	Α	В	С	D	E	F	G	Н	J	K	L
With Brake	SC04AB/H	φ5.5	60	φ70	2	5	φ14	φ50	20	3	27	157.1
Without Brake	SC04AB/H	φ5.5	60	φ70	2	5	φ14	φ50	20	3	27	121.7



JSMA- SC01 dimension

JSMA -M middle inertia motor dimension

	With Brake	Without Brake		With Brake	Without Brake
Туре	L (mm)	L (mm)	Туре	L (mm)	L (mm)
MA05	219.8	164.8	MA15	319.8	264.8
MH05	219.8	164.8	MB15	239.8	184.8
MA10	269.8	214.8	MC15	219.8	164.8
MB10	219.8	164.8	MB20	269.8	214.8
MC10	204.8	149.8	MC20	239.8	184.8
MH10	269.8	214.8	MB30	319.8	264.8
			MC30	269.8	214.8

Appendix A: Peripheral for Servo motors

Part No.	Description	Model	
JSSECN09P	3D-SUB 9pin		
JSSECN25P	3D-SUB 25pin		
JSSCNM04	JSMA-S/L Power Connector (AMP 4pin)		
JSSCNP09	JSMA-S/L Encoder Connector (AMP 9pin)		
JSSCNML04	JSMA-M L-type Power Connector (MS 4pin)		
JSSCNPL09	JSMA-M L-type Power Connector (with brake) / Encoder Connector (MS 9pin)		
JSSCNMS04	JSMA-M S-type Power Connector (MS 4pin)		
JSSCNPS09	JSMA-M S-type Power Connector (with brake) / Encoder Connector (MS 9 pin)		
JSSLM001	JSMA-S/L 1M Power Cable (AMP)		
JSSLM003	JSMA-S/L 3M Power Cable (AMP)		
JSSLM005	JSMA-S/L 5M Power Cable (AMP)		
JSSLM010	JSMA-S/L 10M Power Cable (AMP)		
JSSELP001	JSMA-S/L 1M Encoder Cable (AMP+D-SUB)		
JSSELP003	JSMA-S/L 3M Encoder Cable (AMP+D-SUB)		
JSSELP005	JSMA-S/L 5M Encoder Cable (AMP+D-SUB)		
JSSELP010	JSMA-S/L 10M Encoder Cable (AMP+ D-SUB)		

Part No.	Description	Model.
JSSMLM001	JSMA-M 1M L-type Power Cable (MSL)	
JSSMLM003	JSMA-M 3M L-type Power Cable (MSL)	
JSSMLM005	JSMA-M 5M L-type Power Cable (MSL)	
JSSMLM010	JSMA-M 10M L-type Power Cable (MSL)	
JSSEMLP001	JSMA-M 1M L-type Encoder Cable (MSL+D-SUB)	
JSSEMLP003	JSMA-M 3M L-type Encoder Cable (MSL+D-SUB)	
JSSEMLP005	JSMA-M 5M L-type Encoder Cable (MSL+ D-SUB)	
JSSEMLP010	JSMA-M 10M L-type Encoder Cable (MSL+ D-SUB)	
JSSMSM001	JSMA-M 1M S-type Power Cable (MSS)	
JSSMSM003	JSMA-M 3M S-type Power Cable (MSS)	
JSSMSM005	JSMA-M 5M S-type Power Cable (MSS)	
JSSMSM010	JSMA-M 10M S-type Power Cable (MSS)	
JSSEMSP001	JSMA-M 1M S-type Encoder Cable (MSS+D-SUB)	
JSSEMSP003	JSMA-M 3M S-type Encoder Cable (MSS+D-SUB)	
JSSEMSP005	JSMA-M 5M S-type Encoder Cable (MSS+D-SUB)	
JSSEMSP010	JSMA-M 10M S-type Encoder Cable (MSS+D-SUB)	

TECO Electric & Machinery Co., Ltd.

10F., No.3-1, Yuancyu St., Nangang District,

Taipei City 115, Taiwan Tel:+886-2-6615-9111

Fax: +886-2-6615-0933

http://www.teco.com.tw

Distributor

Ver.01 2009.01

This manual may be modified when necessary because of improvement of the product, modification, or changes in specifications, This manual is subject to change without notice.