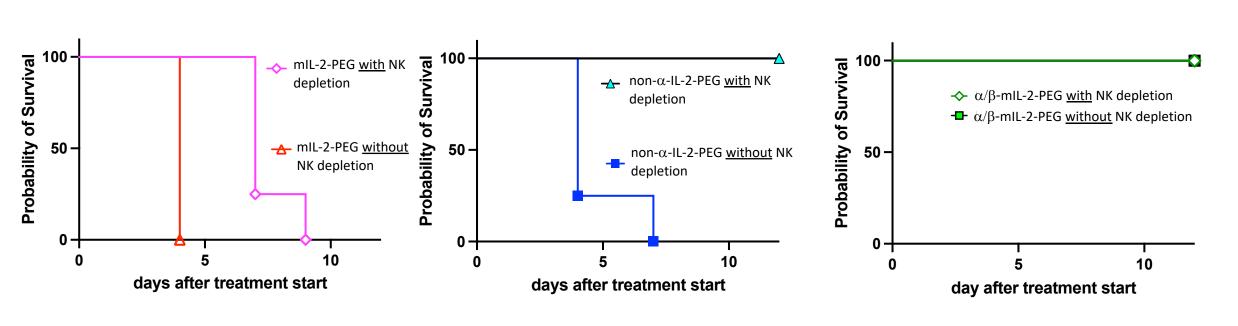

# CT244: A Phase 1a/1b study of STK-012, an $\alpha/\beta$ IL-2 receptor selective partial agonist as monotherapy and in combination with pembrolizumab in advanced solid tumors (NCT05098132)

David Spigel<sup>1</sup>, Alexander Spira<sup>2</sup>, Dmitriy Zamarin<sup>3</sup>, David F. McDermott<sup>4</sup>, Jason Luke<sup>5</sup>, Rebecca Previs<sup>6</sup>, Ryan Sullivan<sup>7</sup>, Kartik Sehgal<sup>8</sup>, Alex Azrilevich<sup>9</sup>, Naiyer Rizvi<sup>9</sup>, Martin Oft<sup>9</sup>, Natalie Busby<sup>9</sup>, Benjamin Izar <sup>10</sup>
1 Sara Cannon Research Institute, Nashville, TN, 2 Virginia Cancer Specialists, Fairfax, VA, 3 Memorial Sloan Kettering Cancer Center, New York, NY, 4 Beth Israel Deaconess Medical Center, Boston, MA, 5 University of Pittsburgh Medical Center, Pittsburgh, PA, 6 Duke Cancer Institute, Durham, NC, 7 Massachusetts General Hospital, Boston, MA, 8 Dana Farber Cancer Institute, Boston, MA, 8 Synthekine, Menlo Park, CA, 10 Columbia University Irving Medical Center, New York, NY



#### **BACKGROUND**


- High dose intravenous (IV) interleukin-2 (IL-2) induces complete responses in certain cancers, but its use is limited due to toxicities including severe hypotension and capillary leak syndrome (CLS), and the requirement for inpatient administration.
- Recent approaches to develop IL-2 therapies with an expanded therapeutic index have targeted the dimeric form ( $\beta/\gamma$ ) of the IL-2 receptor, which is predominantly expressed on naïve T cells and NK cells, rather than the high affinity trimeric form ( $\alpha/\beta/\gamma$ ), which is highly expressed on antigen activated T cells and constitutively expressed on Tregs.
- STK-012 is a pegylated,  $\alpha/\beta$  IL-2R selective partial agonist engineered to preferentially stimulate antigen-activated T cells and avoid systemic NK and naïve T cell activation.

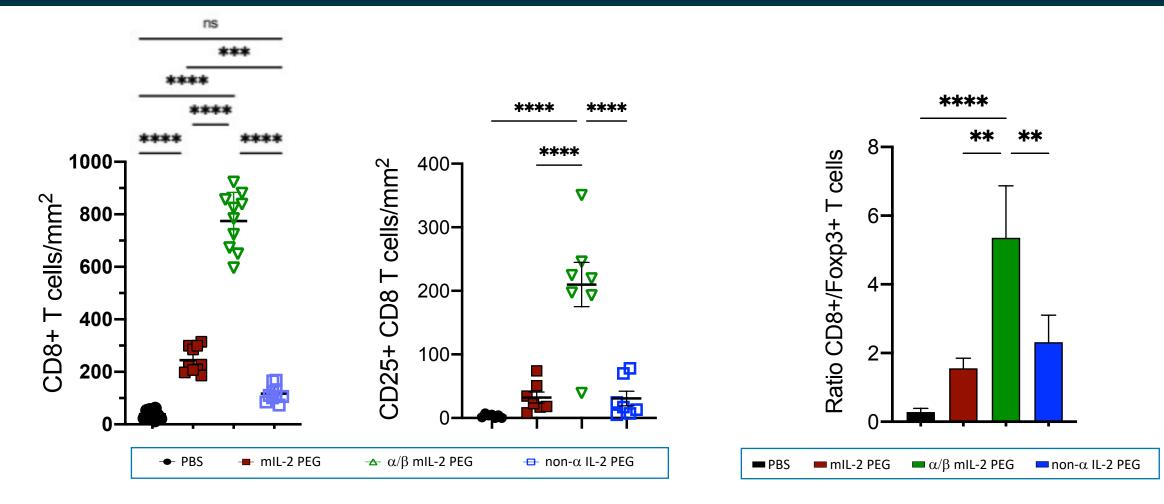


## **Pre-Clinical Rationale**

- In syngeneic tumor models, subcutaneously (SQ) injected STK-012 mouse surrogate ( $\alpha/\beta$ -mIL2 PEG) demonstrated reduced toxicities and improved efficacy relative to mouse mIL-2 PEG and non- $\alpha$  IL-2 PEG (Figures 1 & 2). <sup>1</sup>
- In cynomolgus monkeys, acute lung inflammation was induced by aldesleukin and non- $\alpha$ -IL-2, but not by STK-012.  $^1$
- STK-012 mouse surrogate induced a greater CD8 expansion and higher CD8/Foxp3 ratio relative to mIL-2 PEG and non- $\alpha$  IL-2 PEG in MC38 colon cancer model (Figure 3)

## Figure 1: IL-2 induced acute toxicity model




- To confirm that IL-2 toxicity is driven by NK cell stimulation, mice were depleted of NK cells (using anti-NK1.1) and treated with  $\alpha/\beta$ -mIL-2-PEG (20µg), non- $\alpha$ -IL-2-PEG (3µg) or mIL-2-PEG (10µg).
- NK cell depletion prevented or reduced IL-2 mediated lethality in mIL-2-PEG or non- $\alpha$ -IL-2-PEG.
- Mice treated with  $\alpha/\beta$ -mIL-2-PEG had no lethality.

## Figure 2: Efficacy in mouse models



- Dosing: wt-mIL-2 PEG, non- $\alpha$ -IL-2 and non- $\alpha$ -IL-2 PEG were dosed at MTD (qd: daily; qod: every other day; qw: weekly)
- Tumor volumes plotted post tumor inoculation

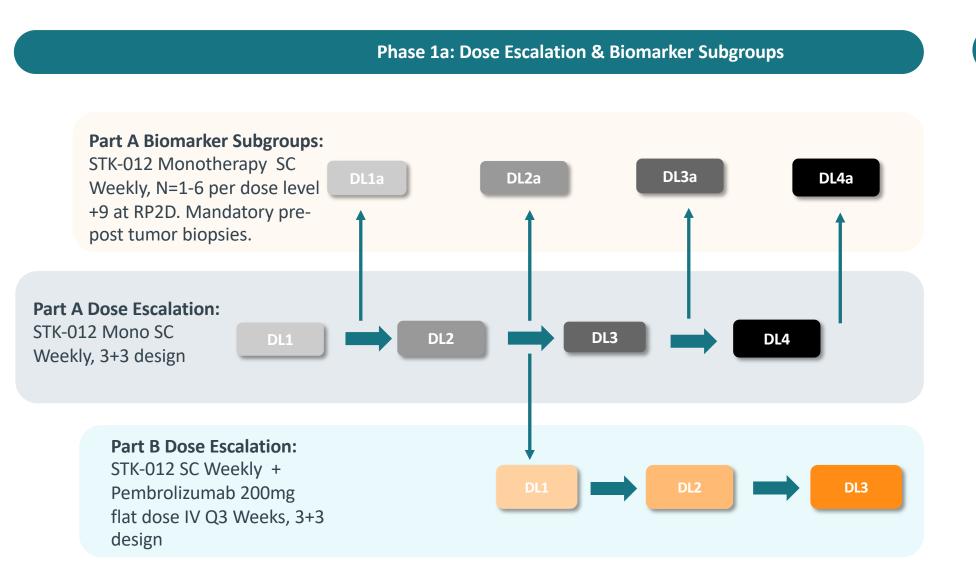
#### Figure 3: Pharmacodynamics in MC38 colon cancer model

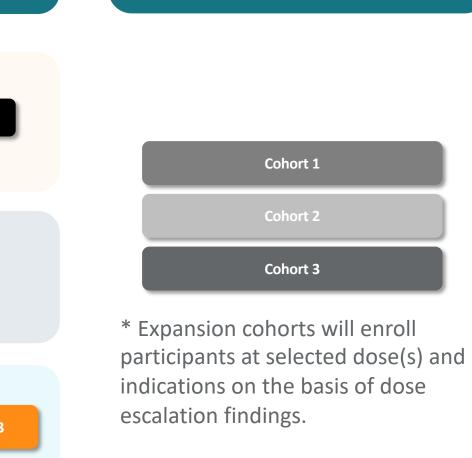


• Dosing: mIL-2-PEG (2.5 $\mu$ g every other day), non- $\alpha$ -IL-2-PEG (3 $\mu$ g weekly),  $\alpha/\beta$ -mIL-2-PEG (10 $\mu$ g every other day).

#### **STK-012-101 FIH STUDY**

- This is a first-in-human, open-label, dose escalation and expansion study in adults with advanced solid tumors.
- The objectives of this study are to evaluate the safety, pharmacokinetics, immunogenicity, preliminary efficacy, and pharmacodynamics of STK-012 as monotherapy and in combination with pembrolizumab.
- Dose escalation will follow a standard 3+3 design for STK-012 monotherapy and in combination with pembrolizumab. STK-012 will be dosed SQ weekly, and pembrolizumab will be dosed IV every 3 weeks.


## Eligibility


### Eligible Tumor Types

Patients who are relapsed/ refractory to, intolerant to, or refuse standard of care treatment for the below tumor types:

- Metastatic Melanoma
- Squamous Cell Carcinoma of the Head and Neck
- Non-Small Cell Lung Cancer
- Renal Cell Carcinoma
- Ovarian Cancer
- Cervical Cancer
- MSI-H/dMMR (microsatellite instability-high or mismatch repair deficient) cancers

#### Study Schema





Phase 1b Dose Expansions\*

| Phase      | Primary Objective                     | Primary Endpoint                                                                                                        |
|------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| <b>1</b> a | , ,                                   | Including but not limited to DLTs TEAEs, SAEs, deaths, and clinical laboratory abnormalities per NCI CTCAE v5.0         |
| 1b         | · · · · · · · · · · · · · · · · · · · | Including but not limited to DLTs TEAEs, SAEs, deaths, and clinical laboratory abnormalities per NCI CTCAE v5.0 at RP2D |

- Preliminary efficacy will be assessed as a secondary endpoint include assessments of tumor response according to RECIST v1.1.
- Exploratory biomarker assessments will include peripheral and tumor measures of immune cell populations and relevant gene/protein expression.

#### **Study Information**

- Enrollment in STK-012 monotherapy dose escalation has been initiated
- The trial is registered with Clinicaltrials.gov, NCT05098132

#### References

1. Emmerich J, et al. STK-012, an alpha/beta selective IL-2 mutein for the activation of antigen-activated T cells in solid tumors. Poster # 1744, Presented at American Association of Clinical Research, 2021