

### DELPHI



## Automated Correlation Wafer Management and Processing

June 14, 2006

Jeffrey Quinton, Delphi Electronics and Safety Steve Sato and F.B. Lynch, III, Electroglas, Inc.

Southwest Test Workshop 2006

# **Presentation Contents**

- Who is Delphi Electronics & Safety
- Current Correlation Wafer Process
  - Current Correlation Process Concerns
  - How Can The Process Be Improved
- What is Correlation Wafer Manager (CWM)
  - How CWM Functions
  - CWM Automated Map Manager
  - CWM Rule Setup Interface
  - Examples of CWM Maps
  - CWM Prober Messaging
- Conclusions
  - Benefits
  - ROI Return on Investment
  - ROI Data

# Who Is Delphi?

- Delphi is a world leader in mobile electronics and transportation components and systems technology
- Multi-national Delphi
  - Conducts its business operations through various subsidiaries and has headquarters in Troy, Mich., USA, Paris, Tokyo and São Paulo, Brazil.
- Delphi's two business sectors
  - Dynamics, Propulsion, Thermal, and Interior Sector
  - Electrical, Electronics, and Safety Sector
- Delphi has approximately 185,000 employees and operates 171 wholly owned manufacturing sites, 42 joint ventures, 53 customer centers and sales offices and 33 technical centers in 40 countries.

#### Delphi Electronics & Safety Breadth of Product

#### Body

Body Electronics Climate Controllers Head-up Displays Instrument Clusters

#### Powertrain

Standalone & Engine Management System Controllers

- Engine
- Machine and Heavy Duty
- Powertrain
- Transmission

#### Safety

Airbags •Frontal, Side, Curtain •Inflators, Cushions, Covers Antilock Brake Control Belt Tension Sensor Seat Belts Steering Wheels Suspension Electronic Control

#### Integrated Media Systems

Acoustic Systems Advanced Digital Audio

- Playback Devices
- Satellite Receivers
- Digital Receivers

Amplifiers Fuba® Advanced Antenna Systems

1dd05-16.0

Security Systems • Vehicle

Content

Power Modules Semiconductors Software

Forewarn® Collision Warning Systems

- Smart Cruise Control
- Back-up AidSide Alert
- Restraint Systems Electronics
- Crash Sensing
  Occupant Sensing
- Steering Electronic Control

Hands-free Connectivity Navigation Systems Premium Audio Systems Rear Seat Entertainment Systems Receivers Satellite Data Services and Communication Truck PC Wireless Networking







## Delphi Electronics & Safety Delphi Microelectronics Center



1dd05-Appendix 45.0

Key Semiconductor Technologies

### Dept 8436 - Wafer Test, Saw and Sort

#### 150 Products

- CMOS, Bipolar, Smart Power, IGBT, Micro Machine, and Sensors
- Flip Chip and Pad Devices
- 87 Test Cells
  - Teradyne A5xx, A3xx, J9xx, J750, Eagle 300 Sentry SZ M3020 -LTX 77, CP80, Synchro HT, Fusion HT, HF, CX
  - EG2001, EG4090 and TEL P8XL, WDF, WDP Probers
  - Offline Ink
- Test 1,000,000 Die Per Day
  - 3 Shifts, 5 Days/Week Operation
- Automatic Visual Inspect, Saw, and Sort
- Packaging and Final Test DIP, QUAD PAK, SOIC, BGA...

## **Current Correlation Wafer Process**

- Typical Correlation wafer uses:
  - Prior to Device / Product or hardware changeovers
  - After Corrective or Preventive Maintenance
  - Verify / validate test cell integrity anytime yield or test results are in question
- Current practice is to run an entire wafer to verify the test system setup based on the repeated yield of the correlation wafer.
  - Performed manually by an operator with simple pass/fail criteria.
    We use the good count +/-5% to determine a min and max number of good die.
  - The correlation wafer passes if the number of good die on subsequent runs falls within the min and max values.
  - This process is simple for the operator but it does not systematically indicate if the test system is performing optimally.

### **Current Correlation Process Concerns**

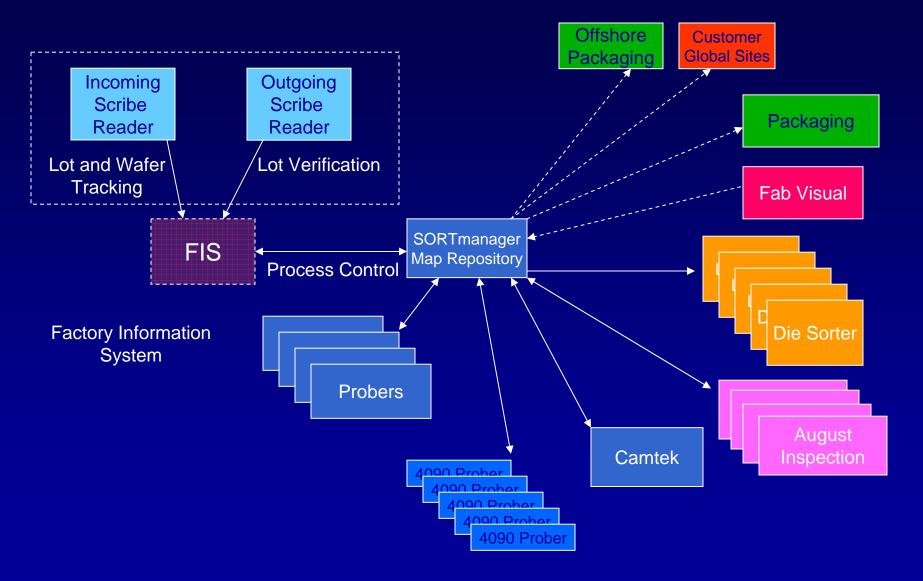
- Correlation result integrity
  - What if we get more good die than the max number?
  - Are we now calling bad die good?
  - What does it mean if we get less good die than the min?
- Correlation wafer integrity and lifespan
  - A correlation wafer can be run 5, 10, 20 times before it is "worn out" or scraped
  - Often, one cannot tell if a failure is due to some part of the test system or due to the correlation wafer integrity
- Throughput cost
  - Test times range between 15 min and 3.5 hours per wafer
    - 600 to 10,000 die per wafer
- Correlation wafer cost
  - Typically correlation wafers are scraped which impacts revenue

## How Can The Process Be Improved?

- Implement automate statistical correlation wafer result analysis to improve correlation integrity
  - Rule based bin analysis
  - Good die remain good and bad die remain bad
- Enhance correlation wafer integrity and lifespan
  - Control the number of die tested with each correlation run
  - Control the number of touchdowns per die
- Reduce Cost
  - Improve throughput
    - Not necessary to probe the entire correlation wafer for a valid assessment of the test cell setup
    - Reduce test time used in correlation process
  - Reduce Correlation Wafer Cost
    - Extend the life of correlation wafers
    - Controlled use of the wafers enables them to be sold as product for revenue

9

## What is Correlation Wafer Manager (CWM)


- CWM uses automated map management and rule based SPC to automate the correlation wafer process and provides substantial cost savings with increased production throughput
- CWM Features:
  - Identifies correlation wafer(s) from previously probed production wafers in the automated map manager
  - Manages correlation wafer usage
  - Creates correlation follow maps for the prober enabling the testing of a subset of the die on the correlation wafer
  - Analyzes the correlation results based on rules created for each product, or default rules
  - Messages the prober with correlation results
  - Provides simple solution for production with automated analysis and sends the prober a message indicating passage or failure, with failure details

# How CWM Functions

#### • The Core Technology

- Web-based
- Automated map manager
- Two-way prober communication
- Statistical and graphical reporting engine provides SPC
- CWM Setup
  - Correlation wafer is selected
  - Correlation rules setup
  - Product recipe created for prober

## CWM – Automated Map Manager Integration



# How Many Die To Test?

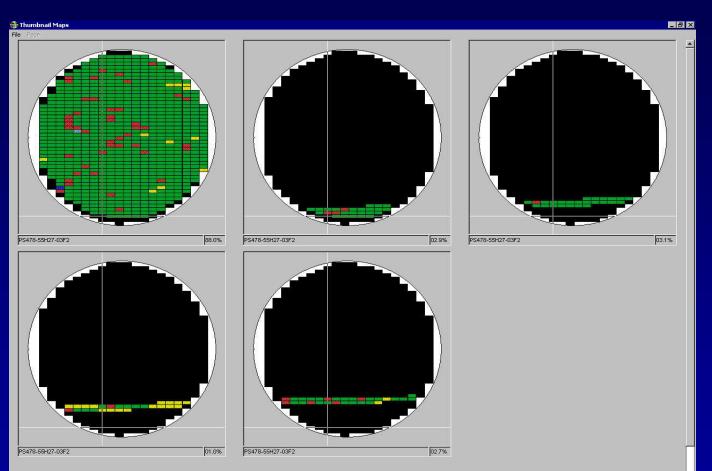
 There are many variables in determining the correlation sample size. We assumed around 90% yield for the device and that Alpha would be 0.1 (90% confidence) and Beta would be 0.2 (risk of missing something significant). Based on that we looked at the comparison of two proportions and got the following:

| 1% shift | 1,000 die |
|----------|-----------|
| 2% shift | 275 die   |
| 3% shift | 125 die   |
| 4% shift | 75 die    |
| 5% shift | 50 die    |
| 6% shift | 40 die    |
| 7% shift | 30 die    |
| 8% shift | 25 die    |
| 9% shift | 20 die    |

• The actual number is going to vary based on the individual device maturity and yield trend. Based on this testing 50 die will find a 5% shift while it will take over 100 to find a 3% shift. Looking for 1-2% shifts impacts the cost effectiveness and best utilized with immature devices.

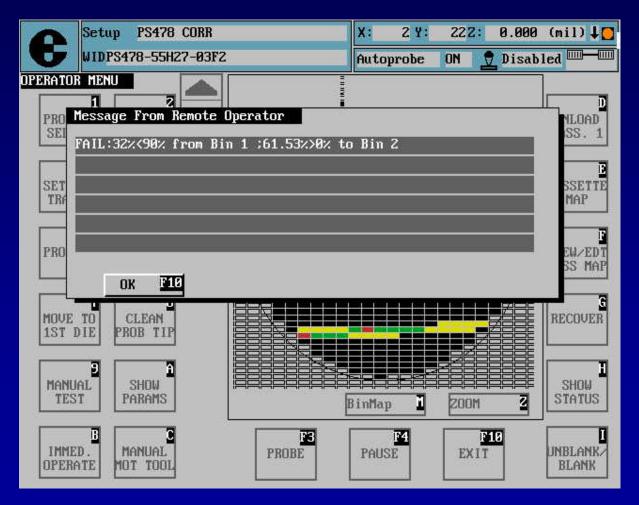
# **Correlation Rules Setup**

#### Web Interface for CWM Rule Setup


| Source(s): PS478 CORR.txt |                     |  |  |  |  |
|---------------------------|---------------------|--|--|--|--|
| 78 CORR.txt               | Continue            |  |  |  |  |
|                           | Back to Limits List |  |  |  |  |
|                           | 178 CORR.txt        |  |  |  |  |

If Bin is -1, the Bin Group is used. Bin Groups can contain wildcards. "Min # to Test" is the minimum number of die of this bin/bingroup to test. "Min % Match" is the minimum allowed % of die of this bin remaining this bin. "Max % Transition" is the maximum allowed % of die not of this bin to change to this bin.

|             |               | Bin | Bin Group | Min # To Test | Min % Match | Max % Transition |
|-------------|---------------|-----|-----------|---------------|-------------|------------------|
| Edit        | Delete        | 1   | *         | 25            | 90          | 100              |
| <u>Edit</u> | <u>Delete</u> | 2   | *         | 0             | 0           | 0                |
| Edit        | Delete        | 6   | *         | 0             | 0           | 0                |
| Edit        | Delete        | 7   | *         | 0             | 0           | 0                |
| Edit        | Delete        | 9   | *         | 0             | 0           | 0                |


# **CWM Map Examples**

- Initial correlation
  wafer
- (4) Individual correlation regions of the wafer used for correlation



## CWM Prober Message Example = Fail

#### The Correlation "Failed" the Bin 1 Transition Rule



# **Conclusions - Benefits**

- Correlation Analysis Integrity
  - Implement automate statistical correlation wafer result analysis to improve correlation integrity
    - Rule based bin analysis
    - Good die remain good and bad die remain bad.
    - Removed operator analysis portion (pass/fail) (subjective), making it a statistical rule based decision made by CWM
    - CWM is integrated one device at a time with the flexibility to easily change number of die to test, number of times to probe a wafer section and pass/fail criteria.

#### Correlation Wafer Management

- CWM provides a record of correlation wafer inventory and usage
- Enhanced correlation wafer integrity and lifespan
  - Control the number of die tested with each correlation run
  - Control the number of touchdowns per die
- Reduced Cost
  - Improve throughput
  - Extend the life of correlation wafers

## Conclusions -ROI (Return-on-Investment)

- Annual ROI = \$1,487,250
- Cost of Test Improvements
  - Savings
    - Test Time Reduction
      - Reduced tester time for correlations by 75%
    - Correlation Wafer Usage
      - Reduced annual number of correlation wafers by 80%
      - Extended life of correlation wafers used
  - Additional Revenue
    - Reduced correlation test time = 16 additional revenue lots per year
    - Shipping correlation wafers verses scrapping

# CWM ROI Data

| Testing a Portion of the Wafer Verses the Whole Wafer = Test Time Savings                        |                                                 |                                              |                                                                  |                                        |                                |                                         |                                          |                                            |                                                               |  |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------------------------------|----------------------------------------|--------------------------------|-----------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------------------------------|--|
|                                                                                                  | Number of Die<br>Used for<br>Correlation        | Correlation<br>Wafer Runs Per<br>Day         | Correlation<br>Time Per Wafer<br>(Minutes)                       | Correlation Time<br>Per Day<br>(Hours) | Annual<br>Production<br>(Days) | Annual<br>Correlation<br>Time<br>(Days) | Annual<br>Correlation<br>Time<br>(Hours) | Annual<br>Correlation<br>Time<br>(Seconds) | Annual<br>Correlation<br>Test Time Cost<br>(\$.09 Per Second) |  |
| Previous Method                                                                                  | Complete Wafer                                  | 7                                            | 60                                                               | 7                                      | 300                            | 88                                      | 2,100                                    | 7,560,000                                  | \$680,400                                                     |  |
| Using CWM                                                                                        | 50                                              | 7                                            | 15                                                               | 1.75                                   | 300                            | 22                                      | 525                                      | 1,890,000                                  | \$170,100                                                     |  |
| Savings                                                                                          | n/a                                             | n/a                                          | 45                                                               | 5.25                                   | n/a                            | 66                                      | 1,575                                    | 5,670,000                                  | \$510,300                                                     |  |
| 75% savings in time used fo                                                                      | r correlation                                   |                                              |                                                                  |                                        |                                |                                         |                                          |                                            |                                                               |  |
| Cost Savir                                                                                       | ngs Diue to Extende                             | ed Life of Corre                             | lation Wafer                                                     |                                        |                                |                                         |                                          |                                            |                                                               |  |
|                                                                                                  | Number of Runs<br>Per Wafer                     | Total<br>Correlation<br>Wafers Per<br>Year   | Correlation<br>Wafer Cost                                        | Annual<br>Correlation Wafer<br>Cost    |                                |                                         |                                          |                                            |                                                               |  |
| Previous                                                                                         | 15                                              | 324                                          | \$1,000                                                          | \$324,000                              |                                |                                         |                                          |                                            |                                                               |  |
| New Method<br>(80% less wafers næded)                                                            | 75                                              | 64.8                                         | \$1,000                                                          | \$64,800                               |                                |                                         |                                          |                                            |                                                               |  |
|                                                                                                  |                                                 | 259.2                                        | Savings                                                          | \$259,200                              |                                |                                         |                                          |                                            |                                                               |  |
| Additional Test Time for Production Wafers & Revenue<br>(Average 15 Minutes Per Wafer Test Time) |                                                 |                                              |                                                                  |                                        |                                |                                         |                                          |                                            |                                                               |  |
| Additional Production time<br>Hours<br>1575                                                      | Additional<br>Production Wafers<br>393.75       | Additional<br>Production Lots<br>15.75       | ностопа<br>revenue at<br>\$1000 Per<br>Wafer<br><b>\$393,750</b> |                                        |                                |                                         |                                          |                                            |                                                               |  |
| Cost Savings 1                                                                                   | if We Decide to Sh                              | ip Correlation '                             | Wafers After U                                                   | se                                     |                                |                                         |                                          |                                            |                                                               |  |
| (there are several o                                                                             | juality of product i                            |                                              | der with this de                                                 | ecision)                               |                                |                                         |                                          |                                            |                                                               |  |
| Number Products / Devices                                                                        | Annual Correlation<br>Wafer Usage Per<br>Device | Total<br>Correlation<br>Wafers Per<br>vear   | Correlation<br>Wafer Cost                                        | Annual<br>Correlation Wafer<br>Cost    |                                |                                         |                                          |                                            |                                                               |  |
| 81                                                                                               | 4                                               | 324                                          | \$1,000                                                          | \$324,000                              |                                |                                         |                                          |                                            |                                                               |  |
|                                                                                                  |                                                 |                                              |                                                                  |                                        |                                | 1                                       |                                          |                                            |                                                               |  |
|                                                                                                  |                                                 |                                              | 1 Additional Rever                                               |                                        |                                |                                         |                                          |                                            |                                                               |  |
| Test Time Reduction                                                                              | \$510,300                                       |                                              | Increased Production                                             |                                        | \$393,750                      |                                         |                                          |                                            |                                                               |  |
| Extended Life of Corr Wafers                                                                     | \$259,200                                       |                                              | Shipping Corr Wafers                                             |                                        | \$324,000                      |                                         |                                          |                                            |                                                               |  |
| Total Savings                                                                                    | \$769,500                                       | J                                            | Additional Revenue                                               |                                        | \$717,750                      |                                         |                                          |                                            |                                                               |  |
|                                                                                                  | CWM Savings<br>CWM Revenue<br>Combined          | \$769,500<br>\$717,750<br><b>\$1,487,250</b> |                                                                  |                                        |                                |                                         |                                          |                                            |                                                               |  |