Probabilistic Multi-Class Segmentation
for the Amazon Picking Challenge

Rico Jonschkowski Clemens Eppner*

Abstract— We present a method for multi-class segmentation
from RGB-D data in a realistic warehouse picking setting. The
method computes pixel-wise probabilities and combines them to
find a coherent object segmentation. It reliably segments objects
in cluttered scenarios, even when objects are translucent, reflec-
tive, highly deformable, have fuzzy surfaces, or consist of loosely
coupled components. The robust performance results from the
exploitation of problem structure inherent to the warehouse
setting. The proposed method proved its capabilities as part of
our winning entry to the 2015 Amazon Picking Challenge. We
present a detailed experimental analysis of the contribution of
different information sources, compare our method to standard
segmentation techniques, and assess possible extensions that
further enhance the algorithm’s capabilities. We release our
software and data sets as open source.

I. INTRODUCTION

The multi-class segmentation approach we present in this
paper is a key component of our winning entry [1] to the
2015 Amazon Picking Challenge (APC) [2]. This ware-
house logistics challenge required robots to fulfill an order
by autonomously recognizing and picking twelve objects
from the bins of a warchouse shelf (see Fig. [I). Each bin
contained between one and four objects, selected from a
set of 25 known objects. To localize the target object, our
system performs object segmentation and classification on an
RGB-D image (see Fig. [Ic). During the APC, our method
segmented and identified all of the twelve objects correctly
(Fig. 3), enabling the robot to successfully pick ten of them,
outperforming all 25 other teams. A detailed description of
the complete system can be found in our systems paper [1].

Prior to the competition, our tests of off-the-shelf libraries
for object recognition, segmentation, and pose estimation
revealed substantial shortcomings in the APC setting. These
findings are confirmed in a poll of all APC teams after
the competition: the teams considered perception to be
the most difficult aspect of the APC [3]. This difficulty
stands in contrast to the availability of excellent open source
libraries, such as PCL and OpenCV, and occurred for a
seemingly simple perception problem. More detailed tests of
LINEMOD, a standard object detection and pose estimation
algorithm, showed only 32% accuracy when applied to the
APC setting [4]. Even after tailoring the method to the APC
setting, it only achieves 60% accuracy.

We gratefully acknowledge the funding provided by the Alexan-
der von Humboldt foundation and the Federal Ministry of Educa-
tion and Research (BMBF), the European Commission (SOMA project,
H2020-ICT-645599) and the German Research Foundation (Exploration
Challenge, BR 2248/3-1).

All authors are with the Robotics and Biology Laboratory, Technische
Universitidt Berlin, Germany

* Authors contributed equally to this work.

Sebastian Hofer*

Oliver Brock

Roberto Martin-Martin*

Fig. 1. Our trial in the Amazon Picking Challenge: (a) the robot looks for
an object in the shelf; it observes the scene from an RGB-D camera that
is mounted on its forearm; (b) view from the RGB-D camera; (c) result of
the segmentation of the target object (duck toy)

If strong research teams from academia and industry
cannot leverage the achievements of decades of computer
vision research in the context of the APC, we must question
our assumptions. Can we achieve generic and task-agnostic
perception for robotics? In our APC solution, we deviated
from the trajectory of solving perception problems in their
most general form. Instead, we were successful with a simple
perception method that exploits knowledge about the task at
hand. Our system probabilistically combines a number of
simple color and depth features, designed to take advantage
of the characteristics of the warehouse setup.

Of course, the resulting perception system is task-specific
and tailored to the APC. However, we propose that a path
towards robust and more general robot perception could
follow a series of such task-specific systems of increasing
generality. Only by taking this path, we can identify crucial
components for general robot perception. Towards this goal,
we perform an extensive post-hoc evaluation of our method
which provides some surprising findings, e.g. how simple
image processing can outperform probabilistic inference. We
believe that these findings provide valuable insight not only
for building robots for warehouse scenarios, but also for more
robust robot perceptual systems.

Our contribution is threefold: (i) we describe our object
segmentation method that was key to winning the APC; (ii)
we present a thorough experimental evaluation beyond the
challenge requirements; and (iii) we derive more general
lessons of how to build perception systems for specific tasks.

II. RELATED WORK

The perception problem in the APC is an instance of the
general object detection and segmentation problem, which is
actively researched in computer vision. Results of popular vi-
sion competitions such as PASCAL VOC [3]] or ImageNet [6]]
show that solutions related to our problem currently receive
significant attention and winning entries steadily reduce error
metrics over the years. A common theme among those entries
are sliding-window approaches using deformable parts mod-
els [7] or deep neural networks in combination with large-
scale datasets [8]. They give as output bounding boxes with
highly likely object locations, which contain many pixels that
are not part of the object. This renders these representations
difficult to use in a robotic manipulation context, where
accurate, or at least conservative, shape estimates are crucial
to decide on appropriate actions.

Multi-class segmentation addresses this problem by iden-
tifying for each pixel in an image to which object class it be-
longs. A popular approach to multi-class image segmentation
are conditional random fields (CRFs, [9]). They encode local
(per-pixel or region) and pairwise statistical preferences,
and define an energy whose minimum corresponds to the
most likely segmentation. CRFs provide a principled way
to integrate different sources of information (e.g. color,
texture, shape, location, and depth) and can easily incor-
porate smoothness constraints [10, [11]. Similar to CRFs,
our approach combines different sources of information in a
probabilistic fashion. A comparison between a generic CRF
and our method is shown in Sec.

A more classical yet effective approach to object seg-
mentation is histogram backprojection [12]]. Given the color
histogram of the target object, the method backprojects the
histogram into the image by replacing each pixel color with
the respective bin count of the histogram. Areas with high
bin counts are then assumed to be the target object. In this
paper, we extend histogram backprojection to a probabilistic
version and also incorporate additional non-color features.

In the context of robotic manipulation, approaches to
object detection usually aim at estimating the full 6D object
pose, and therefore rely more heavily on depth data. Detec-
tion and pose estimation can be based on CAD models [13],
feature point histograms [[14} [15]], local keypoint descriptors
like SIFT and SURF [16], or edge and normal information
to address textureless objects as done in LINEMOD [17].
These approaches are based on table top assumptions and
do not scale well when confronted with the limited visi-
bility and clutter imposed by the APC setup. For example,
LINEMOD [17] shows already significant translational error
with only two items per bin [4]. Although we do not estimate
the 6D pose of objects, our results show that the information
contained in the segmentation is sufficient for our system to
pick successfully.

III. PROBLEM ANALYSIS

In order to create an multi-class segmentation method for
the APC setting, we analyze the problem to identify how to
address its challenges by leveraging useful problem structure.

A. Challenges in the APC Setting

No single discriminative property for all objects: The
25 APC objects were chosen to reflect the large variety
present in a warehouse scenario. No single perceptual fea-
ture suffices for identification: some objects have distinctive
shapes, others are deformable; some objects have distinc-
tive colors, others have similar color histograms, or view-
dependent variations; some objects have surfaces amenable
to our RGB-D sensor, others are wrapped in plastic bags.
We address this problem by combining a variety of features.

Limited object visibility: Camera-based perception can
only obtain a partial view of an object in the shelf from a
particular camera position. Nearby objects sometimes par-
tially occlude others. We address this challenge by training
on perceptual data of objects in different poses.

Uncontrolled lighting: Visual perception is sensitive to
lighting conditions. At the challenge venue, the lighting was
directly from above and extremely bright, relative to the am-
bient light. In these conditions, images were nearly saturated
in bright regions and appeared black in the remaining ones.
To alleviate this problem we transform the RGB image to
HSV color space and include features based on depth.

Partial 3D measurements: Kinect-like sensors do not
provide reliable 3D measurements for reflective or translu-
cent materials, such as the plastic-wrapped objects or the
metal shelf of the APC. We turn this problem into a source
of information by using missing depth values as a feature
for segmentation.

B. Useful Problem Structure in the APC Setting

Small number of known objects: Since the complete
set of objects was available and known beforehand, it was
possible to collect training data of these objects in different
orientations and bin locations.

Few objects per bin: Since bins contained at most
four known objects, we can ignore all other objects dur-
ing segmentation. Our method automatically uses the most
discriminative features for the particular subset of objects
present in a bin.

Known shelf: Since the objects are placed in a known
shelf that can be tracked by the robot, we can use shelf-
related features, such as the height of a pixel in the bin or
the distance to the tracked shelf model. These features help
to discriminate objects of different sizes and to differentiate
between objects and the shelf.

IV. MULTI-CLASS SEGMENTATION METHOD

Our multi-class segmentation method (video link:
https://youtu.be/TsVUQtRNIts) consists of the
following steps: using a variety of features, we compute
for each pixel and each object the probability of the pixel
belonging to the object. We then propagate probabilities
between nearby pixels using Gaussian smoothing, assign the
most likely object label to each pixel, and select the most
probable segment per object. In a last step, we make the size
of the segment consistent with our expectation and greedily
segment objects in sequence, eliminating already segmented
objects. We will now explain all steps in detail.

https://youtu.be/TsVUQtRNIts

A. Features

Based on the analysis from Sec. [[II, we describe each pixel
by six features that jointly discriminate between the objects:

Color: A discrete value in the range 0 — 182 based on
the hue-saturation-value (HSV) color representation, which
is relatively invariant to lighting conditions. We project the
HSV color space to a single dimension by thresholding
appropriately: we set the feature to H (ranging from 0 — 179)
for pixels with distinctive color (S > 90 and V > 20), and
otherwise to 180 for white (V > 200), to 181 for gray (200
> V > 50), and to 182 for black pixels (50 > V).

Edge: A binary feature that describes whether the pixel is
in the vicinity of a visual edge. We compute this feature by
applying Canny edge detection to the image and dilating it
with a small elliptical kernel (with a diameter of 11 pixels).

Missing 3D: A binary value representing whether a pixel
contains valid depth and therefore 3D information.

Distance to shelf: A continuous value (in mm) that denotes
the distance of a pixel to the closest point on the shelf.
We estimate this value by tracking the shelf in the RGB-
D image. For this we start with an estimate based on the
localization and forward kinematics of the robot and refine it
using the iterative closest point (ICP) method. Pixels without
valid depth information are ignored.

Height (3D): A continuous value (in mm) that denotes the
shortest distance of a pixel to the ground plane of the bin,
computed similarly to the distance-to-shelf feature. Pixels
without valid depth information are again ignored.

Height (2D): A continuous value (in mm) that describes
the height of the pixel projected onto the (open) front plane
of the shelf bin. This feature approximates 3D height and is
only used for pixels without valid depth information.

B. Learning Phase

Given a 6D feature vector per pixel, we now explain how
to learn the likelihood of the features for the APC objects.

1) Data Collection: During the preparation of the APC, a
dataset was made available that included RGB-D images of
all objects from multiple views together with estimated 3D
models of the objects However, we found that differences
in the cameras, viewing angle, and lighting conditions made
it difficult to transfer models from this dataset to our robot.
Moreover, in this dataset the objects are not inside the APC
shelf. Therefore, the likelihood of some shelf dependent
features as well as a model for the shelf itself could not
be learned from this dataset.

We therefore generated a dataset which closely resembled
the competition scenario. We placed the objects in the shelf
in different poses and collected RGB-D images and the
estimated shelf pose. Finally, we manually segmented the
images until we had a sufficient number examples for each
object to cover their possible poses (161 samples in total, on
average 6 samples per object).

Unttp://r1] berkeley.edu/amazon_picking_challenge/

2) Computing Feature Likelihoods: Based on our dataset,
we generate feature likelihoods for each object o € O. For
each feature f (e.g., color, height), we compute a histogram
from the pixels that belong to the hand-labeled object
segments and normalize this histogram to get a likelihood
P(X)|0 = 0) over the possible values x\/) € X\/). To be
robust against small changes in feature values, we smooth
non-binary likelihood functions with a Gaussian kernel
(standard deviations for the smoothing kernel: Gcolor, 79 =
3, Ocolorigy_152 = |» Odist to shelf = 7.5mm, Oheight(3D) = 3mm,
Oheight(2p) = 6mm). For robustness to large changes in feature
values, we mix the likelihoods with uniform distributions,
P(X|0 = 0) + puni, Puni (X)) + (1 = puni,)P(X V[0 = 0),
where we use the following parameters for the different
features: (Puniy, = 0-2, Punigiy o st = 009> Puni, dge = 0.4,
Punipissp = 0-2, Punipeignapy = 0.4, Punipeigniopy = 0.8). Thus,
even feature values that have never been observed for an
object have non-zero probability and do not entirely rule
out certain objects. The parameters 6y and pyp; £ define how
much we trust feature f.

C. Multi-Class Segmentation Phase

The learned feature likelihoods are the base of our multi-
class segmentation phase, which is illustrated in Figure [2]

1) Cropping and Feature Extraction: In the first step of
the multi-class segmentation phase, we crop the RGB-D
image to only contain the bin with the target object. This step
removes clutter and distracting objects from other bins. We
then compute the 6D feature vector described in Section [V-Al
for each pixel in the cropped image (see Fig. 2). Note that
estimating the cropping mask and some of the features (e.g.
height) relies on tracking the pose of the shelf.

2) Backprojection and Bayes’ Rule: In this step, we
compute for each object o in the bin and every pixel i
the probability that this pixel belongs to the object given
its feature vector X;, P(O; = 0|X;). This results in one
posterior image per object (see Fig. [2). To compute them,
we iterate over all features f and backproject their likeli-
hoods PEX (o) into the image, i.e., we replace the feature
values x/) with their likelihood P(x"|0), similar to [T2].
Assuming conditional independence between the features,
we multiply their likelihoods for each pixel: P(X|o) =
P(X(c0lor)| o) p(x (height3D))|) | Then, we apply Bayes’ rule
by multiplying P(X]|o) with an object prior P(0) and normal-
izing each pixel. We use a flat prior across all objects except
the shelf, which we set to be three times as high such that the
method assigns uncertain pixels to the shelf segment rather
than to the wrong object.

3) Pixel-Labeling and Post-Processing: Nearby pixels of-
ten display the same object and should therefore have similar
object probabilities assigned to them. To incorporate such
spatial information, we smooth each object’s posterior image
with a Gaussian kernel (¢ = 4 pixels). This step is related to
locating an object by convolving its backprojected histogram
with a disk [12]] and to pairwise potentials in CRFs. The
smoothing step evens out single pixels or small regions of
much higher or much lower probability than the surrounding

http://rll.berkeley.edu/amazon_picking_challenge/

color height (2D)

[%
A\
| & .A

)
1
H
102 distance to shelf height (3D)
229 3 ™
' -] ;T
o &
£% ! »
&) l— - - -
g edges 3D missing

backprojection

p(duck_toy|x)
L

p(stir_sticks|x)

2 ;m 0.7 ~ .g
: s
3 "" 0.5 g g
2 p(oreos|x) 0.3 it
2

Fig. 2. Overview of the multi-class segmentation phase of our approach

area, which makes the segmentation more robust. Here we
implicitly exploit that the APC objects are compact and
occupy a significant area of the image.

Based on this smoothed posterior image, we label each
pixel i as belonging to the object o with the highest posterior
P(0|X;) and extract connected regions that are assigned to
the same object. In case of having multiple disconnected
segments for an object, we select the one that includes the
maximum in the smoothed posterior image for that object.

As a post-processing step, we make the segment convex.
This step incorporates missing object parts and reflects the
convexity of most APC objects. Additionally, we look at the
size of the segment (number of pixels) and compare it to
segment sizes for this object in our dataset. If the segment
is considered too large to be correct (larger than 1.2 times
its maximum size in our dataset), we reduce its posterior
image (by subtracting 0.05) and reassign the object labels.
We repeat this until the segment shrinks to a plausible size.

The last post-processing step is a greedy re-labeling based
on the following idea: If we are confident about the segmen-
tation of one object, we do not have to consider this object
for the rest of the image. We exploit this by sequentially
segmenting the objects, greedily starting with the object that
we are most certain about, where we measure certainty by
segment size. If the segment size is consistent with our
dataset, we assume that we have found the correct segment of
this object with high probability, reduce its posterior outside
of the segment accordingly (by multiplying it with 0.2) and
re-normalize. We proceed in the same way with the next
most certain object and continue until the target object has
been processed.

V. EXPERIMENTS

We evaluated our method on a dataset containing 346 man-
ually segmented RGB-D images. The training set includes
161 samples (six per object) recorded in our lab in Berlin.
Our test set consists of three parts: a) three runs (66 samples)
recorded in our lab, b) five runs (107 samples) recorded in the
challenge venue in Seattle, and c¢) the actual APC run (12
samples). Unless indicated otherwise, all of the following
experiments use (b) as test set. Both our implementation and
the dataset are publicly availableﬂ

Zhttps://gitlab.tubit.tu-berlin.de/rbo-lab/rbo-apc-object-segmentation,

(d) (O]

() (k))

Fig. 3. Segmentation results during the APC run; the green line outlines the
segments returned by our method; all segments lie on the correct objects;
mean precision: 91%, mean recall: 73%, Fy s score: 0.864

A. Performance Evaluations

1) Performance at Amazon Picking Challenge: Fig. [3]
shows the result of applying our method in the actual com-
petition run of the 2015 APC at ICRA in Seattle (video link:
https://youtu.be/DuFtwpxQnFI). Based on the 3D
point cloud of the estimated segment, the robot computed
a bounding box of the target object, chose the side from
which to pick the object, moved its end-effector towards the
center of the bounding box until contact, and picked up the
object with a vacuum gripper [1]. Our system outperformed
the other 25 teams by successfully picking ten out of the
twelve objects. The robot only failed in two cases. In bin F
it accidentally picked the plush eggs instead of the spark
plug due to an inaccurate picking motion. In bin K the robot
could not remove the big cheezit box because it got stuck.

 https://gitlab.tubit.tu-berlin.de/rbo-lab/rbo-apc-object-segmentation
https://youtu.be/DuFtwpxQnFI

1.0, 1.0
é! 0.9
0.9} safety_glasses -
® eoutlet_plugs 0.8
duck_toy ® frog_to
7. trmiotBa 10.7
L . >_| ck_note
0.8 strawicupe o bottle_brush 1e
stanley_66e Py o spark_plug {0.6
_§ mark_twain_book® . ieriril @ oz g
207 bath_duck 1 {05 @
o : P
= « highlighters o« Pencil_cup loa ue
0.6
0.3
aper_mate
o Paper_| 102
0.5} E
e index_cards io'l
0.4 0.0
0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

Fig. 4. Performance by object (black) and number of objects in bin (white)

() (b) (©)

Fig. 5. Typical failure cases (green line outlines segments found by our
method); from left to right: segment detected on the wrong object, segment
spanning over several objects, reflections considered as part of an object

2) Performance by Object: Fig.[d] shows the performance
of our method across different objects and numbers of objects
per bin. Our method had most problems with flat objects that
are dominated by white color, e.g., the index cards (Fig. [3]
(d) to the right), the paper mate (Fig. E| (c) to the right), and
the highlighters (Fig. 3] (e) to the right). Our method most
reliably segmented large objects with distinct colors, e.g., the
stir sticks (Fig. [3] (c) to the left), the cheezits (Fig. 3] (k)),
and the plush eggs (Fig. 3] (f) to the right). These results are
consistent with our findings in Sec. [V-C.I] which show that
color is in fact the most important feature.

The number of objects per bin also has a strong impact
on the performance of our method (see Fig. @) because with
more objects in the bin, the features we are using like color
or height become much less discriminative.

Fig. 5] shows typical failure cases: (a) part of an object
with similar features is mistaken for the target object, (b)
close objects with similar features lead to inaccurate object
boundaries, (c) reflections are included in the target object.

3) Increasing the Number of Objects per Bin: Our method
can be easily scaled to thousands of possible objects as
long as there is only a small number of known objects in
every bin. As Fig. [] suggests, the performance degrades
with increasing numbers of candidate objects in the bin. We
explicitly augment the list of candidate objects in the bin with
objects that were not present. The results in Fig. [6] show a
decrease in recall whereas precision remains relatively stable.

B. Comparison to CRF

We compared our method against a widely used generic
approach to multi-class segmentation: a CRF based on RGB-
D input that uses a learned classifier to estimate the pixel-
wise probabilities and a predefined pairwise probability

r| — Recall
0.2r| — Precision
0.1r| — F,score
0.0
5 10 15 20

added candidate objects

Fig. 6. Performance trend when the assumption about known objects
is reduced (increasing the candidate objects); recall decreases quickly but
precision stays relatively stable

0.8
0.7t
0.6
g 0.5
O
" 041~ | CRF (RGB-D), regularization:
“o.3f 0.00 mmm 0.02
05 0.005 mmm 0.04
2r ||| mmm 001
01r |mmm Our method

Training (Berlin) Test (Berlin) Test (Seattle) APC (Seattle)

Fig. 7. Comparison to a generic conditional random field (CRF) with
different amounts of regularization; the unary potentials are obtained from
a random forest

(0.99) for neighbouring pixels to have the same label. We
used a random forest [18] as the classifier and regularized it
by setting a minimum size of leafs to a fraction of the total
number of samples (see Fig. [7).

This experiment shows that the baseline works for the
data that it was trained on, but does not generalize well
to unseen data. Generic regularization does not solve this
problem. Compare this to the performance of our method
which stays almost constant when going from training to
test set and even when going to data collected in Seattle
under very different lighting conditions.

C. Variants of our Method

The next experiments evaluate the contribution of the
different parts of our algorithm to the final result.

1) Features: In this experiment we evaluate the impor-
tance of each feature to the overall performance of the
algorithm (see Fig. [8). First, we evaluated the performance
of our algorithm using only one of the features. We can
observe that none of the features alone reaches a performance
comparable to using all of them together. However, color
is a powerful feature by itself, because it is sufficient to
discriminate well between many objects. Using only the
distance to shelf or the height (3D) also obtains relatively
good scores because these features discriminate very well
between objects and the shelf, which already solves single
object bins. The features edge, missing 3D, and height (2D)
alone were not able to produce any segmentation. In the
second experiment, we deactivated one of the features and
measured the performance drop. Again color is the most
crucial feature. We observe that the missing 3D feature,
which could not produce any segmentation when used alone,

. all

color
I edge
I miss3D
I height2D
I height3D
I dist to shelf

: ‘_D—DD

Test (Berlin Test (Seattle)

Fig. 8.
gray bar indicates our performance using all features; the filled bars show
the performance based on a single feature alone; the empty bars show the
change in performance if the corresponding feature is removed and the
remaining features are used in the model; in both cases, the size of the bars
correspond to the usefulness of the features

Contribution of different features to the overall performance; the

contributes substantially to the performance. Interestingly,
the height (2D) features seems unnecessary and the edge
feature even hurts performance.

2) Pixel Labeling and Selection: For this experiment, we
divide the multi-class segmentation process into two steps:
pixel labeling and selection. The pixel labeling step assigns
an object label to each pixel, which creates image regions
of the same label, possibly disconnected. The second step
selects one of these regions as the final segment.

We now compare different methods for these two steps.
First, we compare four variants of the pixel labeling step.
(i) Max: assigning to each pixel the label of the most likely
object. (ii) Max smooth: the same as max, but smoothing the
probability image first. (iii) Simple graph cut: formulating
the labeling in terms of energy minimization: pixel proba-
bilities are turned into potentials and connected to their four
neighbors with a high probability (0.99) of having the same
label. Then, we apply graph-cut to find the optimal partition
of the graph into labeled segments. (iv) Graph cut using
depth edges: similar to simple graph cut, but we adapt the
pairwise probabilities depending on depth differences: very
high (0.997) for neighbors with similar depth, high (0.95) if
there is no depth information, and low (0.5) for neighbors
that cross depth edges. Second, we compare three variants
for the selection step: (i) a naive approach of selecting
all segments, (ii) selecting the largest segment, and (iii)
selecting the segment that includes the maximum in the
smoothed probability image.

The results show that, surprisingly, the selection method
has a much larger impact on the performance than the pixel
labeling method (see Fig.[9a). The simple Max pixel labeling
is defeated by all other methods, especially in combina-
tion with the select-all method. All other pixel labeling
methods are comparable. Selecting all segments naturally
leads to the highest recall but lowest precision. Selecting
the largest segment (which is common practice) trades recall
for precision. The Max smooth selection, however, does this
more efficiently. The intuition behind this difference is the
following: in most cases the largest segment is also the
segment that includes the maximum probability. In these
cases both method perform equally well. But in some cases
they are not the same and then it seems to be much better

0.8

0.80

o
S
[J
L]
o

.75 0

Precision

4
Pixel labeling method
B max 0.70
Bl max smooth
[| M graph cut simple

Precision

o
o

B graph cut depth edges ON OFF
Selection method 0000 / Jkink convex
A all A 0.651 | dro@%k / OOYIY shrinking
o | t
* ;;gxezmooth wkeO / okevr greedy
03 0.5 0.6 0.60 0.65 0.70
Recall Recall

(a) (b)

Fig. 9. Combinations of different methods for (a) pixel labeling and
selection and (b) re-labeling and post-processing.

to trust in the most probable point instead of the size of
the segment. The best combination of methods is using
Max smooth for segmentation and selection, which is the
combination we used in the APC.

3) Re-labeling and Post-processing: Our method includes
three re-labeling and post-processing steps: making the seg-
ment convex, shrinking it if it is too large, and greedily
segmenting the image starting with the largest segment.
In this experiment, we tested all combinations of these
steps. The results (Fig. Ob) show that greedy re-labeling
(golden color) substantially increases the recall irrespective
of which other steps are used. Convexity (hexagon symbol)
and shrinking (filled symbol), work best together: Making
the segment convex increases the recall and shrinking it
if necessary improves precision. The best performance is
achieved when all three steps are combined.

4) Random Forest for Pixel Probability Estimation: In
this experiment we extend our method to use a random
forest classifier [18]] to estimate the posterior images instead
of using likelihood backprojection and Bayes’ rule. For the
given set of objects in the bin, we trained a random forest to
discriminate just these objects and then use the probability
estimates from the random forest as posterior image in our
method. Apart from this, we retained all other steps and used
the same features, except that the color feature is replaced
by the original HSV values to allow the random forest to
deviate from the thresholds we had set manually.

Our hypothesis was that this hybrid method would suf-
fer from overfitting and not reach the performance of our
original method. Surprisingly, the random forest classifier
improved our method (see Fig. [I0). On the one hand, this
classifier did introduce a higher variance in performance
between training set and test set compared to using likelihood
backprojection. This is because it is less restricted, e.g., it
does not assume feature independence and can represent
highly complex functions. The likelihood estimation, on the
other hand, includes many manually tuned parameters, e.g.,
parameters for smoothing the feature likelihoods or weights
for mixing them with uniform distributions, which introduces
a bias. Contrary to our hypothesis, the bias we introduced is
larger than the variance of the random forest classifier.

0.9~

0.8f
0.7}
0.6
Q
o 0.5t
3
? 0.4} Random forest, regularization:
ue 03l m 0.00 mmm 0.02
' I 0.005 mmm 0.04
0.2+ s 0.01
0.1 mm Our method
]
Training (Berlin) Test (Berlin) Test (Seattle) APC (Seattle)
Fig. 10. Performance with incorporating a random forest classifier into
our method

VI. DISCUSSION: PATH TO GENERALITY

Our evaluation shows how much the various components
of our perception system for the APC contribute to the
overall performance. We argue that these findings force us to
question certain assumptions made by generic state-of-the-art
robotics perception systems: (i) Machine learning approaches
can replace large parts of the hand tuned-parameters and
even learn from very limited amounts of data, but only if
used correctly. This insight is reflected by the fact that using
random forests with our features and post-processing outper-
forms the hand-tuned pixel probability estimation component
(Sec. [V-C4), whereas applying it to RGB-D data directly
does not (Sec. [V-B). This finding is backed up by decades
of applied machine learning research, but it still has not
become common practice in all areas of robot perception. (ii)
We must tightly connect segmentation and classification of
objects, and explictly reason about the environment, not only
about the target object. This finding is clearly supported by
our analysis of the influence of known objects (Sec. [V-A.3)
and the contribution of the distance-to-shelf feature (Sec. [V
[CI). However, it stands in contrast to many state-of-the art
approaches to robotic perception that solve subproblems fully
independently, and do not use contextual information. (iii)
Missing information is an important source of information,
as indicated by the contribution of the missing-3D-points
feature (Sec. [V-C.I). Although computing and using this
information is cheap, few methods in robot perception exploit
it. (iv) Our results show that simple visual post-processing
can outperform complex reasoning, as exemplified by the
fact that Gaussian smoothing on probability images is as
effective as optimizing pairwise potentials based on depth-
edges (Sec.[V-C.3). We believe that this finding has practical
implications: the theoretically best method does not neces-
sarily give large — if any — improvement over approximate
heuristics. Thus, the decision of choosing a method for a
particular problem should be supported by empirical data,
and not only be based on theoretical soundness.

VII. CONCLUSION

We presented and evaluated our approach to multi-class
segmentation in the APC setting. This work simplified per-
ception by leveraging information about the specific scenario,
e.g. by using tailored features from multiple modalities, re-
stricting the possible results based on the scenario conditions,
and by probabilistically integrating many different sources

of information. While the resulting method is tailored to
one specific domain, we discussed how our approach reveals
insights for building more general robot perception systems.
We hope that this paper helps to build successful object
perception systems for warehouse scenarios, and, more im-
portantly, triggers research towards object recognition that
leverages structural constraints that are common across a
broader range of robotic tasks.

REFERENCES

[1] C. Eppner, S. Hofer, R. Jonschkowski, R. Martin-Martin, A. Siev-
erling, V. Wall, and O. Brock, “Lessons from the Amazon Picking
Challenge: Four Aspects of Building Robotic Systems,” in Proceedings
of Robotics: Science and Systems, 2016.

[2] Amazon Inc., “Amazon Picking Challenge -
/lamazonpickingchallenge.org/, May 2015.

[3] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser,
K. Okada, A. Rodriguez, J. M. Romano, and P. R. Wurman, “Lessons
from the Amazon Picking Challenge,” ArXiv e-prints, Jan. 2016.

[4] C. Rennie, R. Shome, K. E. Bekris, and A. F. De Souza, “A Dataset
for Improved RGBD-based Object Detection and Pose Estimation for
‘Warehouse Pick-and-Place,” ArXiv e-prints, Sep. 2015.

[5] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn,
and A. Zisserman, “The pascal visual object classes challenge: A
retrospective,” International Journal of Computer Vision, vol. 111,
no. 1, pp. 98-136, 2014, 00046.

[6] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision, pp. 1-42, Apr. 2015, 00215.

[7]1 P. E. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 32, no. 9, pp. 1627-1645, 2010, 03227.

[8] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object
detection,” in Advances in Neural Information Processing Systems,
2013, pp. 2553-2561, 00072.

[9] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional ran-
dom fields: Probabilistic models for segmenting and labeling sequence
data,” pp. 282-289, 2001.

[10] J. Shotton, J. Winn, C. Rother, and A. Criminisi, ‘“Textonboost:
Joint appearance, shape and context modeling for multi-class object
recognition and segmentation,” in Computer VisionECCV 2006, 2006,
pp. 1-15, 00829.

[11] A. C. Miiller and S. Behnke, “Learning depth-sensitive conditional
random fields for semantic segmentation of rgb-d images,” in Robotics
and Automation (ICRA), 2014 IEEE International Conference on.
IEEE, 2014, pp. 6232-6237, 00011.

[12] M.J. Swain and D. H. Ballard, “Color indexing,” International journal
of computer vision, vol. 7, no. 1, pp. 11-32, 1991.

[13] U. Klank, D. Pangercic, R. B. Rusu, and M. Beetz, “Real-time cad
model matching for mobile manipulation and grasping,” in Humanoid
Robots, 2009. Humanoids 2009. 9th IEEE-RAS International Confer-
ence on. 1EEE, 2009, pp. 290-296, 00043.

[14] R. B. Rusu, N. Blodow, and B. Michael, “Fast Point Feature His-
tograms (FPFH) for 3d Registration,” in Robotics and Automation,
2009. ICRA °09. IEEE International Conference on, May 2009, pp.
3212-3217, 00491.

[15] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recognition
and pose using the viewpoint feature histogram,” in Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Conference on.
IEEE, 2010, pp. 2155-2162.

[16] A. Collet, M. Martinez, and S. S. Srinivasa, “The MOPED frame-
work: Object recognition and pose estimation for manipulation,” The
International Journal of Robotics Research, vol. 30, no. 10, pp. 1284
-1306, 2011.

[17] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and
V. Lepetit, “Gradient response maps for real-time detection of texture-
less objects,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2012.

[18] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5-32, 2001.

2015, http:

http://amazonpickingchallenge.org/
http://amazonpickingchallenge.org/

	Introduction
	Related Work
	Problem Analysis
	Challenges in the APC Setting
	Useful Problem Structure in the APC Setting

	Multi-Class Segmentation Method
	Features
	Learning Phase
	Data Collection
	Computing Feature Likelihoods

	Multi-Class Segmentation Phase
	Cropping and Feature Extraction
	Backprojection and Bayes' Rule
	Pixel-Labeling and Post-Processing

	Experiments
	Performance Evaluations
	Performance at Amazon Picking Challenge
	Performance by Object
	Increasing the Number of Objects per Bin

	Comparison to CRF
	Variants of our Method
	Features
	Pixel Labeling and Selection
	Re-labeling and Post-processing
	Random Forest for Pixel Probability Estimation

	Discussion: Path to Generality
	Conclusion

