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Second-generation sequencing technologies, starting with 454 pyro-
sequencing1 in 2004, Illumina sequencing-by-synthesis2 in 2007 and 
others, have revolutionized DNA sequencing by reducing cost and 
increasing throughput exponentially over first-generation Sanger3 
sequencing. Despite the great gains provided by second-generation 
instruments, they have several drawbacks. First, they require ampli-
fication of source DNA before sequencing, leading to amplification 
artifacts4 and biased coverage of the genome related to the chemical- 
physical properties of the DNA5. Second, current technologies pro-
duce relatively short reads, with median lengths of 100 bp for Illumina 
(max. 150 bp) and ~700 bp for 454 (max. 1,000 bp). Short reads make 
assembly and related analyses difficult, with theoretical modeling sug-
gesting that decreasing read lengths from 1,000 bp to 100 bp can lead 
to a sixfold or more decrease in continuity6.

Pacific Biosciences recently released their first commercial ‘third-
generation’ sequencing instrument, the PacBio RS: a real-time, single-
molecule sequencer. It aims to address the problems outlined above by 
requiring no amplification and reducing compositional bias7,8, pro-
ducing long sequences (e.g., median = 2,246, maximum = 23,000 bp  
using the latest PacBio chemistry)9 and supporting a short turn-
around time (24 h, sample to sequence)8,10. The long read lengths 
would be beneficial for de novo genome and transcriptome assembly 
as they have the potential to resolve complex repeats and span entire 
gene transcripts. However, the instrument generates reads that aver-
age only 82.1% (ref. 8)–84.6% (ref. 9) nucleotide accuracy, with uni-
formly distributed errors dominated by point insertions and deletions 
(Supplementary Fig. 1). This high error rate obscures the alignments 

between reads and complicates analysis because the pairwise differ-
ences between two reads is approximately twice their individual error 
rate, and is far beyond the 5–10% error rate1,11,12 that most genome 
assemblers can tolerate; simply increasing the alignment sensitivity of 
traditional assemblers is computationally infeasible (Supplementary 
Table 1 and Supplementary Figs. 2 and 3). Additionally, the PacBio 
technology utilizes hairpin adaptors for sequencing double-stranded 
DNA, which can result in chimeric reads if the sequencing reac-
tion processes both strands of the DNA (first in the forward and 
then reverse direction). Although it is possible to generate accurate 
sequences on the PacBio RS by reading a circularized molecule mul-
tiple times (circular consensus or CCS), this approach reduces read 
length by a factor equal to the number of times the molecule is tra-
versed, resulting in much shorter reads (e.g., median = 423 bp, max. =  
1,915 bp). Thus, there is a great potential advantage to the long, single-
pass reads if the error rate can be algorithmically managed.

To overcome the limitations of single-molecule sequencing data 
and unlock its full potential for de novo assembly, we developed an 
approach that utilizes short, high-accuracy sequences to correct the 
error inherent in long, single-molecule sequences (Fig. 1). Our PBcR 
(PacBio corrected Reads) algorithm, implemented as part of the Celera 
Assembler11, trims and corrects individual long-read sequences by 
first mapping short-read sequences to them and computing a highly 
accurate hybrid consensus sequence: improving read accuracy from 
as low as 80% to over 99.9%. The corrected, ‘hybrid’ PBcR reads may 
then be de novo assembled alone, in combination with other data, or 
exported for other applications. As demonstrated below for several  
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important genomes, including the previously unsequenced 1.2-Gbp 
genome of the parrot Melopsittacus undulatus, incorporation of 
PacBio data using this method leads to greatly improved assembly 
quality versus either first- or second-generation sequencing, indicat-
ing the promise of ‘third-generation’ sequencing and assembly.

ReSulTS
De novo assembly of long reads
Genome assembly is the computational problem of reconstructing 
a genome from sequencing reads13,14. It and the closely related pro-
blem of de novo transcriptome assembly are critical tools of geno-
mics, required to make order from a myriad of short fragments. The 
assembly problem is typically formulated as finding a traversal of a 
graph derived from sequencing reads using either the overlap-layout- 
consensus (OLC or string graph) paradigm, where the graph is con-
structed from overlapping sequencing reads, or the de Bruijn graph 
formulation, where the graph is constructed from substrings of a given 
length k derived from the reads. The complexity of the assembly graph 
is determined by both sequencing error and repeats, but repeats are the 
single biggest impediment to all assembly algorithms and sequencing 
technologies15. Under a de Bruijn graph formulation, repeats longer 
than k base pairs form branching nodes that must be resolved by 
threading reads through the graph or by applying other constraints, 
such as mate-pair relationships16. In contrast, only repeats longer than 
l = r – 2 × o (where r is the read length and o is the minimum accept-
able overlap length) cause unresolved branches in a string graph. For 
short-read sequences, k and l are very similar, so the corresponding 
graphs are nearly equivalent. However, for long reads, l may be sub-
stantially longer than feasible values of k. Therefore, long sequences 
have great potential to simplify the OLC assembly problem. In the 
extreme case, if all repeats are spanned by reads of greater length, OLC 
assembly of a genome into its constituent chromosomes and/or plas-
mids would be trivial. In practice, longer reads increase the probability 
of spanning repeats and detecting overlaps17, and thus produce better 
assemblies at lower sequencing coverage than short reads.

As a simple test, we evaluated the performance of multiple assem-
blers after correcting errors in lambda phage PacBio RS sequences with 
high-accuracy short-read sequencing technology (Supplementary 
Table 1); only the OLC assembler produced a single contig. To test 
the benefits of increasing read lengths, we simulated error-free data 
of varying length from the Saccharomyces cerevisiae S228c genome 
and compared the resulting N50 contig size (N such that 50% of the 

genome is contained in contigs ≥N, Fig. 2). OLC assembly becomes 
progressively more powerful for longer reads, displaying a nearly lin-
ear increase in contig size as read lengths grow. In contrast, the de 
Bruijn assemblies plateau and cannot effectively utilize the long reads 
without increasing k beyond practical values, owing to the inherent 
limitations of the graph construction and the complexity of the read-
threading problem16,18. Therefore, we developed an algorithm to cor-
rect and assemble PacBio RS sequences using an OLC approach.

Correction accuracy and performance
We evaluated the PBcR correction and assembly algorithm on mul-
tiple short- and long-read data sets generated by Illumina, 454 and 
PacBio sequencing instruments, including three data sets with avail-
able reference sequences: Lambda NEB3011, Escherichia coli K12 and  
S. cerevisiae S228c (Supplementary Table 2). The correction accu-
racy and assembly continuity show diminishing returns after 50× of 
high-identity sequence; we recommend this coverage as a compromise 
between performance and accuracy (Supplementary Figs. 4 and 5). 
Using 50× of Illumina data to correct PacBio reads for each reference 
organism, the accuracy of the long reads improved from ~85% to >99.9%, 
and chimeric and improperly trimmed reads measured <2.5% and <1%, 
respectively (Table 1 and Supplementary Fig. 6). The concurrence 
of the corrected reads with their references is testament to the auto-
mated trimming process, which is necessary for the removal of adaptor 
sequences that can otherwise be difficult to identify (Online Methods).  
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Figure 1 The PBcR single-molecule read correction and assembly 
method. (a) Errors, indicated by black vertical bars, in single-pass PacBio 
RS reads (pink rectangles) make it difficult to determine whether reads 
overlap. (b) Aligning high-fidelity short reads to error-prone long reads. 
Accurate alignments can be computed because the error between a short, 
high-accuracy sequence (~99% identical to the truth) and a PacBio RS 
sequence is half the error between two PacBio RS sequences. In this 
example, black bars in the short-reads indicate ‘mapping errors’ that are 
a combination of the sequencing error in both the long and short reads. In 
addition, a two-copy inexact repeat is present (outlined in gray) leading to 
pile-ups of reads at each copy. To avoid mapping reads to the wrong repeat 
copy, the algorithm selects a cutoff, C, and only the top C hits for each 
short read are used. The spurious mappings (in white) are discarded.  
(c) The remaining alignments are used to generate a new consensus 
sequence (purple), trimming and splitting long reads whenever there is a 
gap in the short-read tiling. Sequencing errors, indicated in black, may 
propagate to the PBcR read in rare cases where sequencing error  
co-occurs. (d) After correction, overlaps between long PBcR sequences 
can be easily detected. (e) The resulting assembly is able to span repeats 
that are unresolvable using only the short reads.
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As a result, the corrected reads are slightly shorter than the originals, 
but length is not drastically affected (e.g., median 848 before correc-
tion versus 767 after correction for E. coli K12). During correction, 
reads may also be discarded because of unusually low quality or short 
length, and the percentage of reads that are successfully corrected is 
termed throughput. The observed throughput is generally around 60%, 
but varies widely depending on the quality of the individual runs. For 
example, throughput for the S. cerevisiae S228c reads appears unusually 
low, and that is likely because much of this sequencing was done using a 
pre-release PacBio RS instrument during testing at Cold Spring Harbor 
Laboratory. Nevertheless, in all cases the correction algorithm success-
fully identifies the usable data and outputs highly accurate long reads.

Hybrid de novo assembly
We evaluated the impact of PBcR reads on whole-genome assembly, 
either alone or in combination with the complementary reads. In addi-
tion to Celera Assembler, two other assemblers are reported to support 
PacBio reads: ALLPATHS-LG19 and ALLORA9. However, neither pro-
gram performs correction of or de novo assembly from uncorrected 
reads. Instead, ALLPATHS-LG uses the raw reads to assist in scaffold-
ing and gap closure of short-read de Bruijn assemblies. The downsides 
of this approach are that errors introduced in the short-read contigs 
may go uncorrected, and owing to computational limitations, this 
function is available only for genomes <10 Mbp with both an Illumina 
paired-end library <200 bp and a long-range Illumina jump library. 
Only the parrot genome presented here includes this required com-
bination of Illumina and PacBio reads, but it is larger than the size 
limit and could not be evaluated. ALLORA, a long-read assembler 
based on AMOS20–22, is computationally limited to small genomes 
and requires high-accuracy PacBio sequences, such as CCS, to oper-
ate. Inspired by our initial results, other researchers manually cor-
rected low-accuracy PacBio sequences from the 2011 German E. coli  
outbreak using our consensus module and assembled it iteratively 
using ALLORA9. We have now evaluated our automated correction 

and assembly method on the same E. coli C227-11 genome, and have 
found it outperformed the previously published assembly (Table 2).

In all cases, from bacterial to eukaryotic, the incorporation of 
PBcR data produced substantially better assemblies than any other 
sequencing strategy tested—in the best cases, more than tripling the 
N50 contig size for equivalent depths of coverage (Table 2). These 
improvements also came without introducing additional assembly 
error, as measured against the three available reference genomes. The 
degree of improvement correlates with the median length of the cor-
rected reads, with the newer, longer reads seeing bigger gains than the 
shorter reads of the older technology (Table 2 and Supplementary 
Fig. 7). The observed gains are striking because they were entirely 
a result of resolving repeat structure rather than closing so-called 
sequencing gaps in the short-read coverage (Online Methods). This 
was due to the PBcR reads’ unique ability to close difficult gaps left by 
second-generation technologies, such as interspersed, inverted and 
complex tandem repeats (e.g., VNTRs and STRs), that can be difficult 
to assemble even with paired ends (Supplementary Fig. 8).

Figure 3 summarizes the N50 results for various technologies 
and coverage for the E. coli genome. The three ‘short-read’ alterna-
tives of 50× 454, 50× PacBio CCS and 100× Illumina paired-ends 
all produced similar assemblies. However, substituting half of the 
454 coverage with corrected PacBio reads increased the N50 contig 
by threefold (e.g., 25× 454 + 25× PBcR); matching 50× short-read 
CCS coverage with 50× of PBcR reads resulted in a fivefold increase. 
Because PacBio sequencing can be completed in just hours, this pure 
PacBio example provides a promising method for rapid genotyping 
and sequencing in situations where time is critical, such as for an 
emerging disease outbreak.

An assembly of PacBio and CCS reads also outperformed an assem-
bly of simulated Illumina short and long pairs by 44%, with an N50 
of 527,198 versus 364,181 (Supplementary Table 3). In addition,  
the combination of PacBio reads and Illumina short-range paired 
data produces an assembly nearly identical to the idealized Illumina 

Figure 2 Long-reads yield assembly improvements, even at low coverage. 
(a) Effect of PacBio corrected read (PBcR) length on contig size is 
measured for the OLC assembler Celera Assembler11 and the de Brujin 
assembler SOAPdenovo49. Contig size, after breaking contigs at structural 
assembly errors, is measured using the N50 metric. The baseline 
SOAPdenovo assembly (purple star) represents an assembly of 50× of real 
76-bp Illumina paired-end (300 bp) reads from S. cerevisiae S228c.  
The effect of increasing PBcR read length was tested using 10× of 
simulated, error-free reads sampled from the S. cerevisiae genome. 
Read length was randomly sampled from actual length distributions of 
PBcR reads (from other genomes) to represent: the pre-release PacBio 
instrument (Q1, 2011), the first publicly available instrument (Q2, 2011), 
and the latest “C2” chemistry upgrade (Q1, 2012). (b) Effect of PBcR 
coverage is measured for E. coli, sequenced with a combination of PacBio 
and second-generation sequencing. The benefit of the PBcR sequences is visible even below 5×, which leads to a 50–100% increase in N50. Maximum 
contig N50 is reached by ~10×, where adding 10× of PBcR increases the N50 by as much as 3.5-fold (250%). The larger gain for the 454 hybrid 
assembly is due to the longer PBcR sequences available for E. coli JM221. The variation in N50 is due to random subsampling of sequencing data.

Table 1 PacBio correction results
Organism TP (%) Idy (Reads) (%) Idy (%) (Assembly) Cov (%) Chimer (%) Trim (%) Time (s) Mem (GB)

Lambda NEB3011 74.03 99.90 100.00 100.00 1.82 0.10 121 0.12
E. coli K12 57.46 99.99 99.99 99.92 2.02 0.34 1,580 2.10
S. cerevisiae S228c 21.86 99.90 99.97 99.93 1.46 0.33 4,357 5.90

Corrected (PBcR) read accuracy as compared to reference sequence. Reads were mapped using Nucmer 3.23 (ref. 50). For all statistics, only reads >500 bp were included.  
%TP (throughput), the percentage of raw uncorrected bases that are in nonchimeric, correctly trimmed sequences after correction; %Idy (identity), average identity of good  
corrected reads to the reference; %Cov (coverage), average coverage of good corrected reads by a single match to the reference; %Chimer, the percentage of corrected bases within 
reads with a split mapping to the reference; %Trim, the percentage of corrected bases within reads with a single match to the reference over less than 99.5% of their length.  
The corrected sequences remain above 99% identity and 99% trim within the repetitive regions of the genome (Supplementary Table 6).
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long-range libraries (Supplementary Table 3). As Illumina short-
range libraries double the sequencing time, and long-range libraries 
are difficult to construct, these results suggest that long, single- 
molecule sequencing is a practical alternative to both. This compari-
son is based on the second-generation PacBio chemistry, with an 
uncorrected median read length of ~2 Kbp. As read lengths increase, 
our simulations predict that given adequate coverage of reads longer 
than around 5.5 Kbp (the size of the largest repeat), our algorithm 
will assemble the E. coli K12 chromosome into a single closed contig, 
without the need for paired reads (Supplementary Note 1).

Impact of long-read coverage on assembly 
Long reads are capable of producing better assemblies, even at 
greatly reduced coverage. A comparison of the literature shows that a  

10–20× Sanger assembly is better than a 100× Illumina assembly, 
albeit with prohibitively greater sequencing costs using the older 
technology19,23. We found that for S. cerevisiae S228c, an assembly 
using 13× of PBcR data (corrected by 50× Illumina) was comparable 
to an assembly of 100× of paired-end Illumina data (Table 2). This 
is true despite the fact that sequencing was done using a pre-release 
instrument. The corrected PacBio sequences also generated a more 
accurate assembly; whereas the 100× of Illumina produced a slightly 
longer raw N50, after splitting contigs at assembly errors, the N50 
was larger for the PBcR assembly. Another striking example was  
E. coli JM221, for which the 25× PBcR assembly tripled the N50 of 
the 50× 454 assembly.

Given the evident ability of PBcR reads to improve assemblies, 
the added benefit of supplementing second-generation data was 

Table 2 PacBio assembly continuity
Organism Technology Reference bp Assembly bp No. of Contigs Max. contig length  N50

Lambda  
NEB3011

Illumina 100× 200 bp 48,502 48,492 1 48,492 / 48,492 48,492 / 48,492
(100%)a

48,444 / 48,440
 (100%)a

100,338 / 83,037  
(82.76%)a

71,479 / 68,309  
(95.57%)a

93,048 / 89,431  
(96.11%)a

73,871 / 49,254  
(66.68%)a

62,898 / 54,633  
(86.86%)a

82,543 / 59,792  
(72.44%)a

92,580 
98,774

227,302 
376,443

527,198 
402,041

74,940 
143,307 
180,932

106,034 
314,500 
314,500

47,383

75,178

93,069

99,573

(median: 727  
max: 3,280)

PacBio PBcR 25× 48,440 1 48,444 / 48,444

E. coli K12 Illumina 100×  
500 bp

4,639,675 4,462,836 61 221,615 / 221,553

(median: 747 max:  
3,068)

PacBio PBcR 18× 4,465,533 77 239,058 / 238,224

PacBio PBcR 18× + Illumina  
50× 500 bp

4,574,029 63 238,272 / 238,224

S. cerevisiae  
S228c

Illumina 100× 300 bp 12,157,105 11,034,156 192 266,528 / 227,714

(median: 674 max:  
5,994)

PacBio PBcR 13× 11,110,420 224 224,478 / 217,704

PacBio PBcR 13× + Illumina  
50× 300 bp

11,286,832 177 262,846 / 260,794

E. coli C227-11 PacBio CCS 50× 5,504,407 4,917,717 76 249,515
(median: 1,217 max: 14,901) PacBio PBcR 25× (corrected by 

25× CCS)
5,207,946 80 357,234

PacBio PBcR 25× + CCS 25× 5,269,158 39 647,362
PacBio PBcR 50× (corrected by 
50× CCS)

5,445,466 35 1,076,027

PacBio PBcR 50× + CCS 25× 5,453,458 33 1,167,060
Manually corrected ALLORA  
Assembly9

5,452,251 23 653,382

E. coli 17-2 Illumina 100× 300 bp 5,000,000 4,787,888 88 232,371
(median: 886 max: 10,069) PacBio PBcR 50× 4,981,368 58 318,969

PacBio PBcR 50× + Illumina  
50× 300 bp

5,022,503 55 367,911

E. coli JM221 454 50× 5,000,000 4,714,344 66 308,063
(median: 1,216 max: 12,552) PacBio PBcR 25× 5,005,429 30 631,386

PacBio PBcR 25× + 454 25× 5,008,824 30 633,667

Melopsittacus undulatus Illumina 194× (220/500/800 
paired-end 2/5/10 Kb mate-pairs)

1.23 Gbp 1,023,532,850 24,181 1,050,202

454 15.4X (FLX + FLX Plus + 
3/8/20 Kbp paired-ends)

999,168,029 16,574 751,729

(median: 1,182 max: 14,596) 454 15.4X + PacBio PBcR 3.83× 
(corrected by 15.4× 454)

1,066,348,480 15,328 871,294

(median: 997 max: 13,079) 454 15.4X + PacBio PBcR 3.75X 
(corrected by 54× Illumina)

1,071,356,415 15,081 1,238,843

The median and maximum lengths of corrected PacBio sequences (PBcR) are given in parentheses. The corrected length is shorter than original PacBio RS sequences due to 
trimming and splitting chimeric sequences. Supplementary Table 2 reports the original PacBio RS sequence lengths before correction. The three reference data sets (Lambda 
NEB3011, E. coli K12 and S. cerevisiae S228c) were generated using the prerelease PacBio RS, resulting in shorter read lengths. Pair separation (if applicable) is listed immedi-
ately after the coverage. Organism, the genome being assembled; technology, the read data used for assembly; reference bp, the assumed genome size used for the N50 calcula-
tion; assembly bp, the total number of base pairs in all contigs (only contigs ≥ 10,000 bp are included in all results); no. contigs, the number of contigs comprising the assembly; 
max. contig length, the maximum contig length. Assemblies for next-generation (Illumina/454) were generated by Celera Assembler11,, SOAPdenovo49 and ALLPATHS-LG19 (where 
possible). Only the best assembly (based on continuity) in each case was reported.
aFor genomes with an available reference, the max. and N50 contig was measured both before and after breaking contigs at structural assembly errors. The percentages in parenthesis indicate 
the ratio between corrected and original N50. A higher ratio indicates a more correct assembly. Full assembly quality statistics are listed in Supplementary Table 7, following the GAGE assembly 
evaluation methodology12.
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 measured using E. coli. Between 1× to 50× of corrected PacBio data 
was added to the short-read data for an existing assembly (Fig. 2). 
The large and rapid gains after the addition of long-read sequencing 
were readily apparent. At just 10× coverage, nearly the maximum 
N50 was reached for the second-generation/PBcR assembly. The N50 
measured a 2.5- and 3.5-fold improvement over the Illumina and 
454 assemblies, respectively. These results demonstrate considerable 
improvements in continuity without the need for paired libraries and 
at relatively minor coverage. Thus, one might expect roughly double 
the N50 contig size with the addition of just 20× raw PacBio sequenc-
ing (assuming a throughput of >50% during correction).

Assembling the parrot genome
To demonstrate the applicability of the PBcR approach to vertebrate 
genomes, we used it to assemble the Melopsittacus undulatus genome. 
A total of 5.5× PacBio reads were corrected using 15.4× of 454 reads, 
producing 3.83× of sequences for a throughput of 69.62%. For com-
parison, the same PacBio RS sequences were corrected using 54× of 
Illumina, producing 3.75× of sequence. For the highest coverage data 
set, the correction took 6.8 d (20K CPU h) to complete. For refer-
ence, an ALLPATHS-LG Illumina assembly and a Celera Assembler 
454 assembly each took over 1 week to complete, with the Celera 
Assembler using the same number of cores as PBcR. Thus, the correc-
tion represents an approximate doubling of the total assembly time.

Because the parrot genome had not been sequenced before and there-
fore did not have an available reference, correction accuracy was esti-
mated by mapping PBcR reads to all parrot assemblies (except our own) 
submitted for the Assemblathon 2 (http://assemblathon.org/)24. For this 
diploid genome, each assembly is a mosaic of the two haplotypes, so 
only the best mapping for each PBcR read was considered. Using this 
method, we found that 99.9% of the 454-corrected PBcR reads had at 
least one mapping, and 97.0% mapped end-to-end with an average 
identity of 99.6%. Of the 3.0% of reads with fragmented mappings, 1.4% 
had breakpoints internal to a contig, which provides a rough estimate of 
chimerism. The remaining 1.6% mapped to contig boundaries and their 
accuracy could not be determined. In contrast, the Illumina-corrected 
reads showed a slightly increased rate of chimerism but maintained a 
similar identity (Supplementary Note 2). Considering likely haplotype 
switching in the reference assemblies, these slight increases in esti-
mated error are not unexpected, but are likely amplified for the shorter 
Illumina reads, which are more difficult to uniquely map during correc-
tion. Nevertheless, in both cases the PBcR reads show good congruence 
with the independent assemblies, indicating that the correction algo-
rithm succeeded for this difficult genome and can correct errors using 
both 454 or Illumina reads for complex vertebrate genomes, including 
human (Supplementary Fig. 9).

The PBcR reads were then co-assembled with 15.4× of 454 reads, 
which included 3-, 8- and 20-Kbp libraries to provide a diverse set of 
insert lengths, generating a PBcR-454 assembly and PBcR-454-Illumina 
assembly (where the Illumina data were used for correction only). For 
comparison, two additional assemblies were generated: one by running 
Celera Assembler with identical parameters but on the 454 data only, 

and a second by running ALLPATHS-LG on 194× of Illumina data, 
including 0.2-, 0.5-, 0.8-, 2-, 5- and 10-Kbp libraries. ALLPATHS-LG  
has been shown to be an effective short-read assembler for large 
genomes12,24, and serves as an appropriate benchmark for assembling 
this genome using only Illumina data. A hybrid assembly of the 454 
and Illumina data was not possible because Celera Assembler does 
not support high-coverage Illumina data and ALLPATHS-LG does 
not support 454. Interestingly, both the 454- and Illumina-corrected 
PBcR reads produced considerably better assemblies than the 454 data 
alone, demonstrating that the improvements were mostly attribut-
able to the PacBio reads resolving repeats. To illustrate the effect of 
adding PBcR reads to an existing genome, the 454-corrected PBcR 
assembly is discussed below. Full statistics for both PBcR assemblies 
are included in Supplementary Notes 3 and 4.

The 454-PBcR assembly, with an N50 contig size of 93 Kbp, was 
more continuous than the second-generation assemblies in Table 2  
and more than twice that of previous avian genome assemblies sequenced 
using the gold-standard Sanger method. The zebra finch (Taeniopygia 
guttata) was sequenced to 6× coverage using Sanger sequencing, gen-
erating a maximum contig length of 425 Kbp and an N50 of 39 Kbp 
(ref. 25). The chicken Gallus gallus was also sequenced using Sanger 
to 6.6×, resulting in a maximum contig of 442 Kbp and an N50 of  
36 Kbp (ref. 26). In contrast, for genomes assembled using only short-read 
sequencing, the N50 contig size rarely exceeds 30,000 bp (refs. 12,19,23).  
Much of the parrot genome continuity can be attributed to the long-
read 454 data, including a mix of library sizes and the latest 454 FLX+ 
chemistry, but the addition of just 3.83× 454-PBcR sequences results 
in a 24% increase in N50, whereas the Illumina-corrected PBcR reads 
led to an increase of 32% (Table 2). The increased continuity of the 
Illumina-assisted assembly was likely due to the complementary 
benefit of multiple technologies, with the Illumina reads correcting 
PacBio reads that fill coverage gaps in the 454 data.

In addition to improved continuity, the overall quality of the contigs 
remained high after the addition of the PBcR reads. Long-range accu-
racy was supported by satisfaction of both assembled 454 pairs and 
mapped Illumina mate pairs (Supplementary Note 3), which serve 
as an effective indicator of assembly quality15,27. The percentage of 
bases not covered by satisfied 10-Kbp Illumina mates was virtually 
unchanged, and mate-pair coverage across the gaps closed by PBcR 
reads showed no observable deterioration (Supplementary Fig. 10). 
Additionally, of the 33,881 scaffold gaps in the 454 assembly, the 16,251 
gaps closed by the 454-PBcR reads closely matched the corresponding 
gap size estimates from the 454 scaffolds (Supplementary Fig. 11).

Completeness and correctness of the 454-PBcR assembly was also 
supported by mapped zebra finch mRNA transcripts, which aligned 
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Figure 3 Contig sizes for various combinations of sequencing 
technologies. Assemblies are for E. coli C227-11 (assemblies including 
Illumina and PacBio CCS) and E. coli JM221 (assemblies including 
454). Both genomes have similar repeat content, PacBio read length  
and coverage. Assemblies of only second-generation data are 
comparable and average N50 ≈ 100 Kbp. By comparison, adding 25× or 
50× of PBcR to these data sets increases N50 as much as fivefold and 
results in a maximum contig size of greater than 1 Mbp (for the PBcR 
and CCS combination).
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to the PBcR assemblies with slightly higher coverage and fewer  
chimeras than the 454 assembly (chimeric mappings: 81 454-PBcR, 
86 454, 85 Illumina; mapped coding bases: 23.95 Mbp 454-PBcR, 
23.78 Mbp 454, 24.26 Mbp Illumina; Supplementary Note 4). Of 
the 15,275 finch mRNA sequences currently annotated in GenBank, 
~95% are partially mappable to the parrot assemblies using the gmap 
spliced aligner28. Despite its smaller contigs, ALLPATHS-LG appears 
very effective at assembling and scaffolding exons, with its scaffolds 
containing an additional 1–2% of the transcript bases compared to the 
other assemblies as a result of the high Illumina coverage. All assem-
blies also showed similar identity to the mapped transcripts (89.17% 
454-PBcR, 89.15% 454, 89.09% Illumina), but in terms of both exon 
coverage and identity, the PBcR assemblies were an improvement over 
the 454 assembly. For the 3,117 exons that were entirely contained in 
closed gaps, the average identity decreases slightly to 87.53%, and this 
1.64% reduction from the average could be explained by limitations 
in the PBcR sequence accuracy or lowered sequencing depth across 
these difficult-to-sequence regions (Supplementary Table 4).

However, despite similarity between all assemblies at the exon level, 
the PBcR assemblies excelled at reconstructing the often-repetitive 
noncoding sequence: in the case of 454 correction, splitting 22% and 
7% fewer transcripts across contigs than the Illumina and 454 assem-
blies, and covering a greater fraction of each transcript with a single 
contig (Supplementary Fig. 12 and Supplementary Table 5). For 
example, 92% of the 454-PBcR–closed gaps occurred entirely out-
side of mapped finch exons, either within introns (18%) or between 
gene models (74%), and were enriched for extreme GC content 
(Supplementary Table 4). Such sequences are of particular impor-
tance for studying the parrot genome because “~40% of [zebra finch] 
transcripts in the unstimulated auditory forebrain are noncoding and 
derive from intronic or intergenic loci”25.

Both the coding and noncoding sequences of genes with known rel-
evance to vocal learning in birds are improved by the addition of PBcR 
reads (Supplementary Note 5). One striking example is the language 
and song–associated FOXP2 gene29–34, which is highly fractured in all 
but the PBcR assemblies (Supplementary Fig. 13). Additional exam-
ples include the neurotransmitter glutamate receptors GRIK3 (ref. 35), 
GRIN 2A and GRIN 2B (ref. 36), which contain intronic gaps closed 
only by the PBcR assemblies. The NAV3 (ref. 37) and PLEXIN A4 
(ref. 38) axon guidance genes also showed improved reconstruction 
in the PBcR assemblies, with the full PLEXIN A4 transcript recovered 
by both PBcR assemblies and only 20.8% and 47.5% by the 454 and 
Illumina assemblies, respectively. Lastly, the published zebra finch and 
chicken assemblies both contain gaps ~700 bp upstream of ERG1, a 
major immediate-early gene that connects external stimuli to tran-
scription in neurons39,40. The Illumina, 454 and 454-PBcR assemblies 

all contained a gap in this GC-rich (>70% GC) promoter region as well,  
but the 454-PBcR-Illumina assembly included the full sequence.  
In this case, the combination of Illumina, 454 and PacBio succeeded 
where all independent assemblies failed (including Sanger). We note 
that there were other examples where the 454 and Illumina assemblies 
outperformed the PBcR assemblies (Supplementary Table 5), and 
future work remains to best harness the complementary advantage 
of these multiple technologies.

Single-molecule RNA-Seq correction
Because the length of the single-molecule PacBio reads (ranging from 
a few hundred bases to several kilobases) from RNA-Seq experiments 
is within the size distribution of most transcripts, we expect many 
PacBio reads will represent full-length or near full-length transcripts. 
These long reads can therefore greatly reduce the need for transcript 
assembly, which requires complex algorithms for short reads41, and 
confidently detect alternatively spliced isoforms. However, the pre-
dominance of indel errors makes analysis of the raw reads problem-
atic. For example, in this study we generated 50,130 PacBio reads 
with a median size of 817 bp from a Zea mays B73 seedling mRNA 
sample, but only 11.6% (15,173) of the reads aligned to the reference 
genome by BLAT42 at >90% sequence identity. In contrast, for the 
corrected PBcR sequences, the percentage of sequences that aligned 
at >90% identity increased dramatically to 99.1% (49,679 reads cor-
rected in 3.6 d using 17.8× of Illumina data). Consistent with the 
results reported above for genome assembly, the corrected RNA-Seq 
sequences had very low error rates, with only 0.06% insertion and 
0.02% deletion rates.

Many PacBio reads indeed represented close to full-length tran-
scripts. However, the exon structure was not evident before the error 
correction by PBcR (Fig. 4). The post-correction sequences have vir-
tually no errors and precisely identify splicing junctions. As a result, 
two of the isoforms at the displayed reference locus in the reference 
annotation were confirmed by PacBio RNA-Seq reads. To system-
atically test the ability of PacBio reads to validate annotated gene 
structure, we aligned the PacBio reads to the reference genome and 
looked for PacBio reads that matched the exon structure over the 
entire length of the annotated transcripts. Before correction, only  
41 (0.1%) of the PacBio reads exactly matched the annotated exon 
structure. This number rose sharply after correction to 12, 065 (24.1%), 
suggesting that PBcR can greatly increase the usefulness of the PacBio 
RNA-Seq reads for transcript structure annotation or validation.

DISCuSSION
Current de novo assemblers are unable to effectively use the long-read 
sequencing data generated by present single-molecule sequencing  

164,744 kb 164,746 kb
4 kbChr6

Before

After

Ref. annotation

Coverage:
0 – 36,203

Figure 4 Error correction of RNA-Seq data provides more accurate 
mapping of transcripts. A genome browser view of cDNA alignments 
using uncorrected (dark blue) and Illumina-corrected (green) PacBio 
reads generated from Zea mays B73 cDNAs. The splice-aware aligner, 
BLAT42, was used for aligning PacBio reads to the genome. Long 
gaps in the alignment correspond to introns in the PacBio reads but 
not the reference genome, and short gaps (only visible in the pre-
corrected PacBio reads) are putative indel errors. The read coverage 
of the Illumina reads used for correction is also shown, along with the 
current reference gene annotation for this locus. The corrected PBcR 
sequences match the reference annotations end to end and include two 
isoforms. The colored bars in read coverage are an artifact of the aligner, 
indicating reads that have overhangs across exon junctions. Genome 
coordinates for chr6 are shown from the RefGen v2 genome assembly 
(http://maizesequence.org/).

http://maizesequence.org/
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technologies primarily because of the considerable error rate.  
Our approach exploits this technology by complementing it with 
shorter, high-identity sequences resulting in long, accurate transcripts 
and improved assemblies. Because the average contig size produced 
by our approach correlates with read length, assembly results are 
expected to improve as the read lengths of the technology improve. 
This strategy also benefits from the complementarity of multiple tech-
nologies, which proved powerful when combining Sanger sequencing 
with second-generation data when the latter first became available43. 
The result of our hybrid approach is higher quality assemblies with 
fewer errors and gaps, which will drive down the expensive cost of 
genome finishing and enable more accurate downstream analyses.

High-quality assemblies are critical for all aspects of genomics, 
especially genome annotation and comparative genomics. For exam-
ple, many microbial genomic analyses depend on finished genomes44, 
but producing finished sequence remains prohibitive with the cost of 
finishing proportional to the number of gaps in the original assem-
bly. Eukaryotic genomics requires continuous assemblies to capture 
long, multi-exon genes and to determine genome organization and 
structural polymorphisms. In addition, recent work has suggested 
de novo assembly may be superior to read mapping approaches for 
discovering large structural variations, even when a reference genome 
is available45. This is especially significant for understanding the 
genetic variations of cancer genomes and other human diseases such 
as autism that frequently contain gene fusions, copy number varia-
tions and other large-scale structural variations46,47. It is clear that 
higher-quality assemblies, with long unbroken contigs, will have a 
positive impact on a wide range of disciplines.

Potential improvements to the PBcR algorithm include the addi-
tion of a gap-closure routine to fill sequencing gaps in the short-read 
data using the PacBio reads and incorporation of the single-molecule 
base calls during consensus calling. This is particularly important 
for GC-rich sequences that tend to be under-represented by second-
generation sequencers, and for metagenomic and amplified samples 
that have severe coverage fluctuations. Nonuniform coverage will 
also require modifications to the repeat separation algorithm, as the 
current heuristic assumes uniform long-read coverage and error. 
This could include better utilization of paired-end information or 
variant clustering, which could also be applied to the problem of 
haplotype separation.

We have demonstrated that high error rates need not be a barrier 
to assembly. High-error, long reads can be efficiently assembled in 
combination with complementary short-reads to produce assemblies 
not possible with any prior technology, bringing us one step closer to 
the goal of “one chromosome, one contig.” The rapid turnaround time 
possible with PacBio and other technologies, such as Ion Torrent48, 
will make it possible to produce high-quality genome assemblies at a 
fraction of the time once required. Future studies are needed to explore 
the relative costs and trade-offs of the available technologies, but from 
our results we anticipate future sequencing projects will consist of a 
combination of both long- and short-read sequencing. Today, short-
read insert libraries ≥9 Kbp are necessary for effective long-range scaf-
folding, for which the current PacBio reads provide limited assistance. 
However, if single-molecule technology continues to advance and 
reads begin to exceed the lengths of typical bacterial repeats (~6 Kbp) 
at reasonable cost and throughput, single-contig assemblies of some 
bacterial chromosomes will be possible without the need for expensive 
pair libraries. Additionally, we believe many long sought capabilities 
will be enabled, such as haplotype separation in eukaryotes, accurate 
transcriptome annotation and true comparative genomics that extends 
beyond an exon-centric view to include the whole genome.

MeTHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. SRA: Lambda, SRS344250; S. cerevisiae, SRS344297; 
Z. mays SRA053579.

Note: Supplementary information is available in the online version of the paper.
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ONlINe MeTHODS
Our strategy consists of two phases: a long-read correction phase and an 
assembly phase. Both are implemented as part of the Celera Assembler11, but 
the output of the correction phase can be used as input to any other analysis or 
assembler capable of utilizing long FastA sequences. The outline of the correc-
tion algorithm is as follows: (i) high-identity short-read sequences are simulta-
neously mapped to all long-read sequences, (ii) repeats are resolved by placing 
each short-read sequence in its highest identity repeat copy, (iii) chimera and 
trimming problems are detected and corrected within the long-read sequences, 
and (iv) a consensus sequence is computed for each long-read sequence based 
on a multiple alignment of the short-read sequences. This approach was 
inspired by the intuition that whereas overlaps between single-pass PacBio 
reads average 31.6% pairwise differences (~16.8% + 16.8%, Supplementary 
Fig. 3a), overlaps between long-read sequences and high-identity sequences 
would be lower and easier to detect. As most second-generation sequence over-
laps are found below 3% error (Supplementary Fig. 3a), the average overlap 
between PacBio reads and high-identity short-read sequences should be at 
most 17.5% (~16.8% + 1%) (Supplementary Fig. 3b).

The algorithm begins by computing all-versus-all overlaps between the low-
accuracy, single-pass, (PacBio) long-read sequences and high-identity short-
read sequences (Illumina, 454, PacBio CCS). The overlaps are computed only 
between fragments that have shared seed sequences of a pre-defined length 
(14 bp by default), and only short-read sequences aligned across their entire 
length to a long-read sequence are considered; support for partial overlaps 
to the ends of long reads is left for future versions. For efficiency, overlaps 
between reads of the same technology (e.g., short to short) are not computed 
during this phase.

Next, overlaps are converted into a tiling of short-read sequences along each 
long-read sequence. Each short-read sequence is permitted to map to more 
than one long-read sequence, as the long-read sequences are expected to cover 
the genome at more than 1× coverage. However, within a single long-read 
sequence, a short-read sequence is placed only in its highest identity location 
with ties broken randomly. In the case of repeats distributed across multiple 
long-read sequences, short-read sequences from all repeat copies will map 
to each copy of the repeat. To avoid tiling each repeat copy with the same set 
of reads, short-read sequences are separated into their appropriate copies by 
ranking their mappings by identity and permitting each short-read sequence 
to map only to its top C hits, where C is roughly defined to be the expected 
long-read sequencing depth. This effectively separates repeat copies when 
sequencing coverage and error is uniform. The value of C, a repeat threshold, 
is defined as follows:
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Where ni is the number of long-read sequences a short-read sequence i maps 
to ∀i. Theoretically, the histogram H has a peak equal to the long-read depth 
of coverage. It can be expected that a unique short-read sequence will map to, 
on average, this many long-read sequences. Thus, a short-read sequence from 
a two-copy repeat will map to roughly double this number. The chosen repeat 
threshold is the point in the curve past this peak that includes at least T % of the 
high-identity reads (Supplementary Fig. 14). In this way, each repeat copy will 
only be tiled by its best representative reads for correction. This approach can 
sometimes place reads in the wrong repeat copy. For instance, in cases where 
the error rate of two PacBio RS sequences from two separate repeat instances 
is significantly different, such that one is higher, Illumina sequences may pref-
erentially map to the lower-error PacBio read. This would increase the mapped 
coverage of the low-error read by including some reads from the alternate copy, 
while decreasing the coverage of the high-error read. However, this problem 
should be alleviated as overall PacBio coverage is increased because the read 
accuracy distribution in the different repeat copies will converge after a few-fold 
redundancy. As evidence, systematic misplacement of reads in repeats, leading 
to inaccurate correction, coverage fluctuations or decreased throughput, has not 
been observed in any of our experiments (e.g., Table 1, Supplementary Table 6 
and Supplementary Fig. 15).

Finally, from the multiple-alignment of the tiled short-read sequences, the 
correction algorithm generates a new consensus sequence for each long-read 
sequence using the AMOS consensus module20. In the consensus, if there is 
a gap in the layout between adjacent overlapping short reads, this is consid-
ered an irreconcilable discrepancy between the short and long-read sequences, 
especially as the reads are generated from the same biological sample and it is 
assumed there is sufficient coverage in the short sequences to tile each long-
read sequence. Therefore, any gap in coverage is indicative of either improper 
trimming of the long-read sequence or chimera formation, and the long-read 
sequence is broken at this point. If instead there is merely insufficient coverage 
leading to a true sequencing gap for the short-read sequences, this will result 
in an unnecessary split. However, the correction algorithm errs on the side of 
caution. Future work remains to resolve any unnecessary gaps caused by the 
conservative trimming, such as by recognizing and filling these gaps during 
scaffolding, using a consensus of multiple long-read sequences (Supplementary 
Fig. 16). The pipeline has been designed to run parallel either using a shared-
memory machine or a distributed grid supporting Sun Grid Engine (SGE) 
(Supplementary Note 6).

The corrected, now high-identity, long-read sequences are provided in 
FastA format and can be assembled alone or co-assembled with other read 
types using standard OLC assembly techniques. To support de novo assembly 
using Celera Assembler, we have increased the input size limitation to allow 
a maximum read length of 65,536 bp.

Availability. The latest version of the Celera Assembler (including PBcR) 
along with usage instructions is available at http://wgs-assembler.sourceforge.
net/. The software and data used for this manuscript are available at http://
www.cbcb.umd.edu/software/PBcR/. The source code used in this study is 
also available as Supplementary Datasets 1 and 2.

http://wgs-assembler.sourceforge.net/
http://wgs-assembler.sourceforge.net/
http://www.cbcb.umd.edu/software/PBcR/
http://www.cbcb.umd.edu/software/PBcR/
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