
The Ch Language Environment
Version 8.0

User’s Guide

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10

B
es

se
l f

un
ct

io
ns

t

j0(t)
j1(t)
j2(t)
j3(t)

How to Contact SoftIntegration
Mail SoftIntegration, Inc.

216 F Street, #68
Davis, CA 95616

Phone + 1 530 297 7398
Fax + 1 530 297 7392
Web http://www.softintegration.com
Email info@softintegration.com

Copyright c©2016 by SoftIntegration, Inc. All rights reserved.
Revision 8.0, November 2016

Permission is granted for registered users to make one copy for their own personal use. Further reproduction,
or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited.

SoftIntegration, Inc. is the holder of the copyright to the Ch language environment described in this docu-
ment, including without limitation such aspects of the system as its code, structure, sequence, organization,
programming language, header files, function and command files, object modules, static and dynamic loaded
libraries of object modules, compilation of command and library names, interface with other languages and
object modules of static and dynamic libraries. Use of the system unless pursuant to the terms of a license
granted by SoftIntegration or as otherwise authorized by law is an infringement of the copyright.

SoftIntegration, Inc. makes no representations, expressed or implied, with respect to this documenta-
tion, or the software it describes, including without limitations, any implied warranty merchantability
or fitness for a particular purpose, all of which are expressly disclaimed. Users should be aware that
included in the terms and conditions under which SoftIntegration is willing to license the Ch lan-
guage environment as a provision that SoftIntegration, and their distribution licensees, distributors
and dealers shall in no event be liable for any indirect, incidental or consequential damages in con-
nection with, or arising out of, the furnishing, performance, or use of the Ch language environment,
and that liability for direct damages shall be limited to the amount of purchase price paid for the Ch
language environment.

In addition to the foregoing, users should recognize that all complex software systems and their doc-
umentation contain errors and omissions. SoftIntegration shall not be responsible under any circum-
stances for providing information on or corrections to errors and omissions discovered at any time in
this documentation or the software it describes, even if SoftIntegration has been advised of the errors
or omissions. The Ch language environment is not designed or licensed for use in the on-line control
of aircraft, air traffic, or navigation or aircraft communications; or for use in the design, construction,
operation or maintenance of any nuclear facility.

Ch, ChIDE, SoftIntegration, and One Language for All are either registered trademarks or trademarks of
SoftIntegration, Inc. in the United States and/or other countries. Microsoft, MS-DOS, Windows, Windows
2000, Windows XP, Windows Vista, and Windows 7 are trademarks of Microsoft Corporation. Solaris and
Sun are trademarks of Sun Microsystems, Inc. Unix is a trademark of the Open Group. HP-UX is either a
registered trademark or a trademark of Hewlett-Packard Co. Linux is a trademark of Linus Torvalds. Mac
OS X and Darwin are trademarks of Apple Computers, Inc. QNX is a trademark of QNX Software Systems.
AIX is a trademark of IBM. All other trademarks belong to their respective holders.

i

Preface

Ch (pronounced C H) is an embeddable C/C++ interpreter. The Ch language environment was originally
designed and implemented by Dr. Harry H. Cheng for teaching introductory computer programming in C
for engineering applications and his research projects in mechatronics and computational kinematics. As
the user’s base increases, Ch has been evolved from a special-application program to a general-purpose
language environment with wide applicability. Similar to using a natural language, it was intended to use
One Language for All programming purposes.

The C language was selected for its compact syntax, expressive power, and wide availability. But, for
many applications, an interpreter is more desirable. As a result, a C interpreter has been developed over
the years. To distinguish it from many existing C compilers, this C interpreter is called Ch. But, Ch was
never meant to be a new language. Conforming to the C standard is its prevailing design goal for Ch. We
believe that Ch is the most complete C interpreter in existence. As a complete C interpreter, Ch supports all
features of the ISO C90 standard ratified in 1990. Ch supports some major features in C++ for object-based
programming. C was originally designed for system programming. It has many deficiencies for applications
in engineering and science. Ch extends C for very high-level numerical computing and graphical plotting,
shell programming, and embedded scripting.

Our work on extending C for numerical computing overlapped with the ASNI C Standard Committee’s
effort in revising the C standard. Ch has greatly benefited from our participation in ANSI X3J11 and ISO
S22/WG14 C Standard Committees since 1993. Many new features such as complex numbers, variable-
length arrays (VLA), binary constants, and function name __func__ first implemented in Ch had been
added in the latest C standard called C99. In its current implementation, Ch supports more new features
added in the ISO C99 than most existing C compilers. C programmers are encouraged to use these new fea-
tures such as complex numbers, variable length arrays (VLA), IEEE floating-point arithmetic, type generic
mathematical functions described in this manuscript because they significantly simplify many programming
tasks. In addition to these numerical features in C99, Ch also supports computational arrays as first-class
objects as in Fortran 90 and MATLAB for linear algebra and matrix computations.

A proposal was submitted to the C Standard Committee to add classes in C++ to the C99 standard. Due
to the time constraint and other reasons, the proposal was not adopted in C99. Nevertheless, Ch added classes
in C++ mainly based on this proposal. In addition, Ch supports reference type in C++ for convenience of
passing values by reference to functions as in Fortran.

Different from many other software packages, Ch bridges the gap between low-level languages and very
high-level languages. As a superset of C, Ch retains low-level features of C such as accessing memory for
hardware interface. However, Ch is a very high-level language (VHLL) environment. Ch supports shell
programming with a built-in string type. Some problems, which might take thousands of lines of C code,
can be easily solved with only a few lines of Ch code. Ch enables programmers to increase their productivity
significantly.

Furthermore, Ch is designed to be platform-independent. It can run in an heterogeneous computing
environment with different computer hardware and operating systems including Windows, Linux, Mac OS
X, and Unix. A program developed in one platform can run in any other platforms.

ii

This manuscript is written to help readers learn how to program in C/Ch with new features in C99.
Although prior knowledge of programming language is not required, it will be helpful to understand the
basics of Ch. The emphasis of this manuscript is on extensions of C99 over C90. Extensions to C in Ch are
highlighted. Features not explained in this manuscript follow the interpretation of the ISO C99 standard.
The examples include many testing codes used during the development of Ch. Whether you are a novice
computer user or experienced professional programmer, we hope that Ch will make your programming tasks
more enjoyable and that you will like Ch.

This user’s guide is prepared for different editions of Ch. There are Standard, Professional, and Stu-
dent Editions for Ch. All features in this manual are available for both Professional and Student Editions.
Features described in chapters 16, 23, and 24 on computational array, plotting, and numerical analysis,
respectively, are not available for Ch Standard Edition.

If you are one of those impatient C/C++ programmers, you may jump to Appendices B and C which
highlight the differences between Ch and C/C++ with an overview of new features in Ch extended over
C/C++. After that, you can start programming in Ch quickly without lengthy compile/link/execute/debug
cycles. You can just run your C/C++ programs in a Ch command shell by typing program names such
as hello.c or hello.cpp. You can also run C/C++ programs in Ch from an Integrated Development
Environment (IDE).

Typographical Conventions

The following list defines and illustrates typographical conventions used as visual cues for specific elements
of the text throughout this document.

• Interface components are window titles, button and icon names, menu names and selections, and
other options that appear on the monitor screen or display. They are presented in boldface. A sequence
of pointing and clicking with the mouse is presented by a sequence of boldface words.

Example: Click OK

Example: The sequence Start->Programs->Ch7.0->Ch indicates that you first select Start. Then
select submenu Programs by pointing the mouse on Programs, followed by Ch7.0. Finally, select
Ch.

• Keycaps, the labeling that appears on the keys of a keyboard, are enclosed in angle brackets. The label
of a keycap is presented in typewriter-like typeface.

Example: Press <Enter>

• Key combination is a series of keys to be pressed simultaneously (unless otherwise indicated) to
perform a single function. The label of the keycaps is presented in typewriter-like typeface.

Example: Press <Ctrl><Alt><Enter>

• Commands presented in lowercase boldface are for reference only and are not intended to be typed
at that particular point in the discussion.

Example: “Use the install command to install...”

In contrast, commands presented in the typewriter-like typeface are intended to be typed as part of an
instruction.

Example: “Type install to install the software in the current directory.”

iii

• Command Syntax lines consist of a command and all its possible parameters. Commands are dis-
played in lowercase bold; variable parameters (those for which you substitute a value) are displayed
in lowercase italics; constant parameters are displayed in lowercase bold. The brackets indicate items
that are optional.

Example: ls [-aAbcCdfFgilLmnopqrRstux1] [file ...]

• Command lines consist of a command and may include one or more of the command’s possible
parameters. Command lines are presented in the typewriter-like typeface.

Example: ls /home/username

• Screen text is a text that appears on the screen of your display or external monitor. It can be a system
message, for example, or it can be a text that you are instructed to type as part of a command (referred
to as a command line). Screen text is presented in the typewriter-like typeface.

Example: The following message appears on your screen

usage: rm [-fiRr] file ...

ls [-aAbcCdfFgilLmnopqrRstux1] [file ...]

• Function prototype consists of return type, function name, and arguments with data type and param-
eters. Keywords of the Ch language, typedefed names, and function names are presented in boldface.
Parameters of the function arguments are presented in italic. The brackets indicate items that are
optional.

Example: double derivative(double (*func)(double), double x, ... [double *err, double h]);

• Source code of programs is presented in the typewriter-like typeface.

Example: The program hello.ch with code

int main() {
printf("Hello, world!\n");

}

will produce the output Hello, world! on the screen.

• Variables are symbols for which you substitute a value. They are presented in italics.

Example: module n (where n represents the memory module number)

• System Variables and System Filenames are presented in boldface.

Example: startup file /home/username/.chrc or .chrc in directory /home/username in Unix and
C:\ > chrc or chrc in directory C:\ > in Windows.

• Identifiers declared in a program are presented in typewriter-like typeface when they are used inside
a text.

Example: variable var is declared in the program.

• Directories are presented in typewriter-like typeface when they are used inside a text.

Example: Ch is installed in the directory /usr/local/ch in Unix and C:/Ch in Windows.

iv

• Environment Variables are the system level variables. They are presented in boldface.

Example: Environment variable PATH contains the directory /usr/ch.

Other Relevant Documentations

The core Ch documentation set consists of the following titles. These documentation come with the CD and
are installed in CHHOME/docs, where CHHOME is the Ch home directory.

• The Ch Language Environment — Installation and System Administration Guide, version 8.0, SoftIn-
tegration, Inc., 2016.

This document covers system installation and configuration, as well as setup of Ch for Web servers.

• The Ch Language Environment, — User’s Guide, version 8.0, SoftIntegration, Inc., 2016.

This document presents language features of Ch for various applications.

• The Ch Language Environment, — Reference Guide, version 8.0, SoftIntegration, Inc., 2016.

This document gives detailed references of functions, classes and commands along with sample source
code.

• The Ch Language Environment, — SDK User’s Guide, version 8.0, SoftIntegration, Inc., 2016.

This document presents Software Development Kit for interfacing with C/C++ functions in static or
dynamical libraries.

• The Ch Language Environment CGI Toolkit User’s Guide, version 3.5, SoftIntegration, Inc., 2016.

This document describes Common Gateway Interface in CGI classes with detailed references for each
member function of the classes.

v

Table of Contents

Preface i

Ch Graphics Gallery xvii

Introduction 1

I The Language Features 5

1 Getting Started 6
1.1 Startup . 6

1.1.1 Startup in Unix . 6
1.1.2 Startup in Windows . 7

1.2 Command Mode . 8
1.3 Program Mode . 10

1.3.1 Command Files . 10
1.3.2 Script Files . 11
1.3.3 Function Files . 12

1.4 Complex Numbers . 12
1.5 Computational Arrays . 13
1.6 Plotting . 16

2 Lexical Elements 18
2.1 Character Set . 18

2.1.1 Trigraphs . 18
2.2 Keywords . 19

2.2.1 Keywords . 19
2.2.2 Reserved Symbols . 20

2.3 Identifiers . 21
2.3.1 Predefined Identifiers . 21

2.4 Punctuators . 26
2.5 Comments . 26

3 Program Structure 27
3.1 Directories and Files in the Ch Home Directory . 27
3.2 Startup . 27

3.2.1 Sample Startup Files . 29
3.2.2 Command Line Options . 31

vi

3.3 Ch Programs . 32
3.3.1 Command Files . 32
3.3.2 Script Files . 34
3.3.3 Function Files . 34

3.4 Program Execution . 36
3.4.1 Execution of Programming Statements in Command Mode 37
3.4.2 Program Startup . 37
3.4.3 Program Termination . 38
3.4.4 Search Order . 39
3.4.5 Running Programs with Multiple Files . 39
3.4.6 Debug Programs . 42

3.5 Scope Rules . 44
3.5.1 Scopes of Identifiers . 44
3.5.2 Linkages of Identifiers . 44
3.5.3 Name Spaces of Identifiers . 45
3.5.4 Storage Duration of Objects . 45

4 Portable Interactive Command Shell and Shell Programming 47
4.1 Shell Prompts . 47
4.2 Interactive Execution of Commands . 48

4.2.1 Current Shell . 49
4.2.2 Background Job . 50

4.3 Interactive Execution of Programming Statements . 50
4.4 Built-in Commands . 53

4.4.1 Commands For Interactive Shell Only . 54
4.5 Repeating Commands at Prompt . 56

4.5.1 History Substitution . 56
4.5.2 Quick Substitution . 58
4.5.3 File Completion . 59
4.5.4 Command Completion . 60

4.6 Aliases . 61
4.7 Variable Substitution . 64

4.7.1 Expression Substitution . 65
4.7.2 Command Name Substitution . 66

4.8 Filename Substitution . 67
4.9 Command Substitution . 69
4.10 Input/Output Redirection . 70
4.11 Pipeline . 73
4.12 Running Commands in Background . 74
4.13 Run-Time Expression Evaluation . 75
4.14 Handling Environment Variables . 76
4.15 General-Purpose Ch Programs . 78
4.16 Shell Programming . 80

4.16.1 Use Shell Commands in Programs . 80
4.16.2 Passing Values to Shell Commands . 83

vii

5 Preprocessing Directives 87
5.1 Conditional Inclusion . 87
5.2 Source File Inclusion . 88
5.3 Macro Replacement . 89
5.4 Converting Tokens to Strings . 91
5.5 Token Merging in Macro Expansions . 91
5.6 Line Control . 92
5.7 Error Directive . 93
5.8 NULL Directive . 93
5.9 Pragma Directive . 93
5.10 Predefined Macros . 96

6 Types and Declarations 98
6.1 Data Types . 98

6.1.1 Integral Data Types . 98
6.1.2 Floating-Point Types . 101
6.1.3 Aggregate Floating-Point Types . 103
6.1.4 Pointer Data Types . 104
6.1.5 Array Types . 104
6.1.6 Structure Types . 106
6.1.7 Class Types . 106
6.1.8 Bit Field . 107
6.1.9 Union Types . 107
6.1.10 Enum Types . 108
6.1.11 Void Type . 108
6.1.12 Reference Type . 108
6.1.13 String Type . 109
6.1.14 Function Types . 110

6.2 Type Qualifiers . 112
6.2.1 Computational Arrays . 112
6.2.2 Restricted Function . 112

6.3 Constants . 112
6.3.1 Character Constants . 113
6.3.2 String Literals . 116
6.3.3 Integer Constants . 116
6.3.4 Floating-Point Constants . 118

6.4 Initialization . 119

7 Operators and Expressions 122
7.1 Arithmetic Operators . 125
7.2 Relational Operators . 125
7.3 Logical Operators . 128
7.4 Bitwise Operators . 128
7.5 Assignment Operators . 128
7.6 Conditional Operator . 129
7.7 Cast Operators . 131

7.7.1 Cast Operators . 131
7.7.2 Functional Type Cast Operators . 131

viii

7.8 Comma Operator . 132
7.9 Unary Operators . 133

7.9.1 Address and Indirection Operators . 133
7.9.2 Increment and Decrement Operators . 134
7.9.3 Command Substitution Operator . 135

7.10 Member Operators . 135

8 Statements and Control Flow 136
8.1 Simple and Compound Statements . 136
8.2 Expression and Null Statements . 136
8.3 Selection Statements . 137

8.3.1 If Statements . 137
8.3.2 If-Else Statements . 138
8.3.3 Else-If Statements . 138
8.3.4 Switch Statements . 138

8.4 Iteration Statements . 140
8.4.1 While Loop . 140
8.4.2 Do-While Loop . 140
8.4.3 For Loop . 141
8.4.4 Foreach Loop . 142

8.5 Jump Statements . 142
8.5.1 Break Statements . 143
8.5.2 Continue Statements . 143
8.5.3 Return Statements . 144
8.5.4 Goto Statements . 144

8.6 Labeled Statements . 145

9 Pointers 147
9.1 Pointer Arithmetic . 147
9.2 Dynamic Allocation of Memory . 149
9.3 Arrays of Pointers . 151
9.4 Pointers to Pointers . 153

10 Functions 156
10.1 Call-by-Value versus Call-by-Reference . 156
10.2 Function Definitions . 157
10.3 Function Prototypes . 160
10.4 Recursive Functions . 165
10.5 Nested Functions . 165

10.5.1 Scopes and Lexical Levels of Nested Functions . 167
10.5.2 Prototypes of Nested Functions . 170
10.5.3 Nested Recursive Functions . 171

10.6 Using Pointers to Pass Arguments of Function by Reference 179
10.7 Variable Number Arguments in Functions . 179
10.8 Pointer to Functions . 186
10.9 Communication between Functions . 188
10.10The main() Function and Command-Line Arguments . 190
10.11Function Files . 196

ix

10.12Generic Functions . 198

11 Reference Type 200
11.1 References in Statements . 201
11.2 Passing Arguments of Function by References . 203
11.3 Passing Variables of Different Data Types to the Same Reference 206

12 Scientific Computing Using Generic Mathematical Functions 210
12.1 Generic Mathematical Functions in the Entire Domain . 211
12.2 Programming Examples . 215

12.2.1 Computation of Extreme Values of Floating-Point Numbers 215
12.2.2 Programming with Metanumbers . 218

13 Programming with Complex Numbers 221
13.1 Complex Numbers . 221

13.1.1 Complex Constants and Complex Variables . 221
13.2 Complex Planes and Complex Metanumbers . 222

13.2.1 Data Conversion Rules . 224
13.3 I/O for Complex Numbers . 226
13.4 Complex Operations . 227

13.4.1 Complex Operations with Regular Complex Numbers 227
13.4.2 Complex Operations with Complex Metanumbers 228

13.5 Complex Functions . 230
13.5.1 Results of Complex Functions with Regular Complex Numbers 230
13.5.2 Results of Complex Functions With Complex Metanumbers 233

13.6 Lvalues Related to Complex Numbers . 234
13.7 Creation of User’s Complex Functions . 237

14 Pointers and Arrays 239
14.1 Accessing Array Elements Through Pointers . 239
14.2 Dynamic Allocation of Arrays . 240

14.2.1 Dynamic Allocation of One-Dimensional Arrays 240
14.2.2 Dynamic Allocation of Two-Dimensional Arrays 241

14.3 Passing One and Multi-Dimensional Arrays of Fixed Length 244
14.3.1 One-Dimensional Arrays . 244
14.3.2 Multi-Dimensional Arrays of Fixed Length . 245

15 Variable Length Arrays 249
15.1 Storage Duration and Declaration of Arrays . 250

15.1.1 Storage Duration of Objects . 250
15.1.2 Declaration of Arrays . 250

15.2 Deferred-Shape Arrays . 252
15.2.1 Constraints and Semantics . 252
15.2.2 Deferred-Shape Arrays Related to Switch Statement 255
15.2.3 Deferred-Shape Arrays Related to Goto Statement 255
15.2.4 Deferred-Shape Arrays as Members of Structures and Unions 257
15.2.5 Sizeof . 258
15.2.6 Typedef . 259

x

15.2.7 Other Data Types and Pointer Arithmetic . 260
15.3 Assumed-Shape Arrays . 260

15.3.1 Constraints and Semantics . 260
15.3.2 Sizeof . 263
15.3.3 Other Data Types and Pointer Arithmetic . 264

15.4 Pointers to Array of Assumed-Shape . 265
15.4.1 Declaration . 265
15.4.2 Constraints and Semantics . 266
15.4.3 Function Prototype Scope . 267
15.4.4 Typedef . 268
15.4.5 Arrays Allocated by Dynamic Memory Allocation Functions 268
15.4.6 Similarities between Pointers to Fixed-Length Array and Pointers to Assumed-Shape Array269

15.5 Arrays with Explicit Lower and Upper Bounds . 271
15.5.1 Arrays of Fixed Subscript Range . 272
15.5.2 Arrays of Variable Subscript Range . 275

15.6 Passing Arrays with Explicit Lower and Upper Bounds to Functions 277
15.6.1 Passing Arrays of Fixed Subscript Range . 277
15.6.2 Passing Arrays of Variable Subscript Range Using Pointers to Assumed-Shape Array 279

16 Computational Arrays and Matrix Computations 283
16.1 Declaration and Initialization of Computational Arrays . 283
16.2 Array Reference . 285

16.2.1 Whole Arrays . 285
16.2.2 Array Elements . 285

16.3 Formatted Input and Output for Computational Arrays . 287
16.4 Implicit Data Type Conversion for Computational Arrays 289
16.5 Array Operations . 290

16.5.1 Arithmetic Operations . 290
16.5.2 Assignment Operations . 292
16.5.3 Increment and Decrement Operations . 293
16.5.4 Relational Operations . 294
16.5.5 Logic Operations . 294
16.5.6 Conditional Operation . 296
16.5.7 Address Operations . 296
16.5.8 Cast Operations . 297

16.6 Promotion of Scalars to Computational Arrays in Operations 297
16.7 Passing Computational Arrays to Functions . 298

16.7.1 Fully-Specified-Shape Arrays . 299
16.7.2 Assumed-Shape Arrays . 299
16.7.3 Deferred-Shape Arrays . 302
16.7.4 Arrays in Variable Number Arguments . 304
16.7.5 Arrays of Reference . 304

16.8 Computational Arrays with Value NULL . 312
16.9 Functions Return Computational Arrays . 313

16.9.1 Functions Return Computational Arrays of Fixed Length 313
16.9.2 Functions Return Computational Arrays of Variable Length 313

16.10Type Generic Array Functions . 315
16.11Some Commonly Used Array Functions . 318

xi

16.12Pointer to Computational Arrays . 320
16.12.1 Pointer to Computational Arrays of Fixed Length 320
16.12.2 Pointer to Computational Arrays of Assumed Shape 327
16.12.3 Using Pointer to Computational Arrays to Pass Arrays to Functions 328

16.13Relationship between Computational Arrays and C Arrays 329

17 Characters and Strings 330
17.1 Using Functions in string.h Header File . 330

17.1.1 Copying Functions . 331
17.1.2 Concatenation Functions . 331
17.1.3 Comparison Functions . 332
17.1.4 Search Functions . 332
17.1.5 Miscellaneous Functions . 334
17.1.6 String Functions Supported by Ch, but not in C Standard Library 334

17.2 String Type string t . 335
17.3 Handling String Tokens Using foreach Loop . 337
17.4 Wide Characters . 338
17.5 Wide Strings . 339

18 Structures, Unions, Bit Fields, and Enumerations 340
18.1 Structures . 340
18.2 Unions . 341
18.3 Bit-fields . 341
18.4 Enumerations . 342

19 Classes and Object-Based Programming 344
19.1 Class Definition and Objects . 344
19.2 Member Functions of Class . 344
19.3 Public and Private Members of Class . 346
19.4 Constructors and Destructors in Class . 346
19.5 The new and delete Operators . 347
19.6 Static Member of Class . 348
19.7 Scope Resolution Operator :: . 351
19.8 The Implicit this Pointer . 352
19.9 Polymorphism . 352

19.9.1 Polymorphic Generic Mathematical Functions . 353
19.9.2 Functions with Parameter Type of Array of Reference 353
19.9.3 Polymorphic Functions . 354
19.9.4 Polymorphic Member Functions of Class . 359

19.10Nested Classes . 362
19.11Classes inside Member Function . 363
19.12Passing Member Functions to Arguments of Functions . 363
19.13Predefined Identifiers class and class func . 368

20 Input and Output 370
20.1 Streams . 370
20.2 Buffered and Unbuffered I/O . 370
20.3 I/O Formats . 372

xii

20.3.1 Output Format for fprintf Family of Output Function 372
20.3.2 Input Format for fscanf Family of Input Function 377

20.4 Default I/O Formats . 381
20.4.1 Default Format for fprintf Family of Output Functions 381
20.4.2 Default Format for fscanf Family of Input Functions 382
20.4.3 I/O Using cout, cin, cerr, and endl . 383

20.5 I/O for Metanumbers . 384
20.6 I/O Formats for Aggregate Data Types . 386
20.7 Verbatim Output Blocks Using fprintf . 386
20.8 File Manipulation . 390

20.8.1 Opening and Closing a File . 390
20.8.2 Reading and Writing a File . 392
20.8.3 Random Access . 394

20.9 Directory Manipulation . 395
20.9.1 Opening and Closing a Directory . 395
20.9.2 Reading a Directory . 397

21 Safe Ch 401
21.1 Safe Ch Shell . 401

21.1.1 Startup in Windows . 401
21.2 Features Disabled in a Sandbox . 401
21.3 Restricted Functions . 403
21.4 Safe Ch Programs . 403
21.5 Applets and Network Computing . 404

22 Library, Toolkit, and Package 405
22.1 Library . 405
22.2 Toolkit . 409
22.3 Package . 410

II The Library for Scientific Computing 413

23 Two and Three-Dimensional Plotting 414
23.1 A Class for Plotting . 414

23.1.1 Data for Plotting . 414
23.1.2 Annotations . 422
23.1.3 Multiple Data Sets and Legends . 425
23.1.4 Using Predefined Geometric Primitives . 432
23.1.5 Subplots . 433
23.1.6 Export and Zoom Plots . 434
23.1.7 Print Plots . 434

23.2 2D Plotting . 437
23.2.1 Plot Types, Line Styles, and Markers . 437
23.2.2 Polar Plot . 443
23.2.3 2D Plotting Functions . 447

23.3 3D Plotting . 451
23.3.1 Plot Types . 451

xiii

23.3.2 Plotting in Different Coordinate Systems . 452
23.3.3 3D Plotting Functions . 455

23.4 Dynamic Web Plotting . 458

24 Numerical Analysis 462
24.1 Mathematical Functions . 463

24.1.1 Cross Product . 463
24.1.2 Dot Product . 463
24.1.3 Uniform Random Numbers . 467
24.1.4 Sign Function . 467
24.1.5 Greatest Common Divisor . 468
24.1.6 Least Common Multiple . 468
24.1.7 Complex Equation . 468

24.2 Data Analysis and Statistics . 470
24.2.1 Get Numbers from Console . 470
24.2.2 Assign Data to Arrays . 470
24.2.3 Minimum and Maximum . 471
24.2.4 Sum . 472
24.2.5 Product . 473
24.2.6 Mean . 474
24.2.7 Median . 474
24.2.8 Standard Deviation . 474
24.2.9 Covariance and Correlation Coefficients . 475
24.2.10 Norm . 477
24.2.11 Factorial . 477
24.2.12 Combination . 478
24.2.13 Sort Data . 478
24.2.14 Unwrap . 479
24.2.15 Functions Applied to Elements of Arrays . 480
24.2.16 Histogram . 481

24.3 Data Interpolation and Curve Fitting . 482
24.3.1 One-Dimensional Interpolation . 482
24.3.2 Two-Dimensional Interpolation . 484
24.3.3 General Curve Fitting . 484
24.3.4 Curve Fitting Using Polynomial Functions . 487

24.4 Minimization or Maximization of Functions . 487
24.4.1 Minimization of Function with One Variable . 488
24.4.2 Minimization of Function with Multiple Variables 489

24.5 Polynomials . 490
24.5.1 Evaluation of Polynomials . 491
24.5.2 Derivative of Polynomials . 492
24.5.3 Find Roots of Polynomials . 493
24.5.4 Find Coefficients of Polynomials . 494
24.5.5 Residues for Factorization of Polynomials . 495
24.5.6 Characteristic Polynomials of Matrices . 497

24.6 Nonlinear Equations . 498
24.6.1 Solve a Nonlinear Equation . 498
24.6.2 Solve System of Nonlinear Equations . 498

xiv

24.7 Derivatives and Ordinary Differential Equations . 499
24.7.1 Difference . 499
24.7.2 Derivatives . 499

24.8 Solve Ordinary Differential Equations . 500
24.9 Numerical Integration . 503

24.9.1 One-Dimensional Integration . 503
24.9.2 Two-Dimensional Integration . 503
24.9.3 Three-Dimensional Integration . 504

24.10Matrix Functions . 505
24.10.1 Characteristics of Matrices . 506
24.10.2 Manipulation of Matrices . 508
24.10.3 Special Matrices . 509
24.10.4 Matrix Analysis . 513

24.11Matrix Decomposition . 515
24.11.1 LU Decomposition . 515
24.11.2 Singular Value Decomposition . 516
24.11.3 Cholesky Decomposition . 517
24.11.4 QR Decomposition . 518
24.11.5 Hessenberg Decomposition . 520
24.11.6 Schur Decomposition . 521

24.12Linear Equations . 521
24.12.1 Linear System of Equations . 521
24.12.2 Over-Determined or Under-Determined Linear System of Equations 522
24.12.3 Inverse and Pseudo Inverse Matrices . 524
24.12.4 Linear Spaces . 525

24.13Eigenvalues and Eigenvectors . 526
24.14Fast Fourier Transforms . 528
24.15Convolution and Filtering . 530
24.16Cross Correlation . 537

25 Bibliography 539

A Known Problems and Platform Specific Features 541
A.1 Platform Specific Features . 541

A.1.1 Solaris . 541
A.1.2 Windows NT/2000/XP/Vista/Windows 7 . 541

A.2 Functions Not Supported in Specific Platforms . 541

B Comparison with C and Implementation-Defined Behaviors 543
B.1 New C99 Features Supported in Ch . 543
B.2 Summary of Extensions to C . 544
B.3 Implementation Notes . 546

B.3.1 Unlimited Properties . 546
B.3.2 Defined Properties . 547
B.3.3 Temporarily Features . 548
B.3.4 Incompatibility between Ch and C . 550

B.4 Tips for Porting C to Ch . 551

xv

C Comparison with C++ 554
C.0.1 Features in Both C++ and Ch . 554
C.0.2 Extensions to C++ Classes in Ch . 555
C.0.3 C++ Features not Supported in Ch . 555
C.0.4 Differences Between C++ and Ch . 557

D Comparison with C Shell 558
D.1 Syntax . 558
D.2 Control Flow . 561

E Comparison with MATLAB 562
E.1 Operators . 563
E.2 Functions and Constants . 565
E.3 Control Flow . 574

F Comparison with Fortran 575
F.1 Reference in Ch versus Equivalence in FORTRAN . 575
F.2 Call-by-Reference in Ch and in FORTRAN . 576

G Summary of Commonly Used Portable Shell Commands in Ch 579
G.1 File Systems . 579
G.2 Binary Files . 580
G.3 Text Files . 580
G.4 Comparing Files . 581
G.5 Shell Utilities . 581
G.6 Archiving Files . 581

H Summary of vi Text Editor 582

I Porting Code to the Latest Version 585
I.1 Porting Code to Ch Version 6.0.0.13581 . 585
I.2 Porting Code to Ch Version 6.0.0.13581 . 585

Index 587

xvi

Ch Graphics Gallery

Plotting

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10

B
es

se
l f

un
ct

io
ns

t

Line

j0
j1
j2
j3

1

0.5

0

0.5

1

1 0.5 0 0.5 1

y

x

Polar

0
200

400-1

0

1
-1

0

1

z

3D curve

x
y

z

 0
 1
 2
 3
 4
 5
 6
 7

-4 -2 0 2 4-4
-2

0
2

4
0
2
4
6
8

Cylindrical

-10 -5 0 5 10-10
-5

0
5

10
-0.4

0
0.4
0.8
1.2

3D Mesh

-3
-1

1
3-4

-2
0

2
4-8

-4

0

4

8

3D Mesh

xvii

Graphical User Interface

Graphics and Animation

xviii

Introduction

What is Ch?

Ch is C+. Ch is an embeddable C/C++ interpreter. It is an interpretive implementation of C with salient
features from C++, other languages and software packages for scripting, rapid application development,
deployment, and integration with legacy systems. Ch is designed for both experienced C/C++ programmers
and new comers. Leveraging their C language skills, programmers can learn C once, and use it anywhere
for any programming purpose.

Ch is embeddable. Unlike C/C++ compilers, Ch can be embedded as a scripting engine in C/C++ appli-
cations and hardware. It can relieve users from developing and maintaining a macro language or interpreter
for many applications.

Ch is for 2D/3D graphical plotting and numerical computing. It is especially designed for applications
in engineering and science. Ch has built-in graphical support, generic mathematic functions and computa-
tional arrays for linear algebra and matrix computations, 2D/3D graphic plotting, and advanced high-level
numerical functions for linear systems, differential equation solving, integration, non-linear equations, curve
fitting, Fourier analysis, etc. For example, linear system equation b = A ∗ x can be written verbatim in Ch.
The user does not need to worry about the underlying optimization with fast and accurate numerical al-
gorithms. Ch is the only computing environment in existence that can perform numerical computing with
consistent numerical results under the IEEE floating-point arithmetic in the entire real domain and complex
domain using an extended complex plane for a Riemman sphere. The extensions to C makes Ch an ideal
choice for numerical computing in C/C++ domain.

Ch is for shell programming. Ch is a C-compatible shell whereas the so-called C-shell csh is a C-like
shell. Ch is a very high-level language (VHLL) environment. Ch in Windows supports frequently used
Unix utilities and commands such as vi, ls, awk, sed, mv,rm, cp, find, grep, etc. for cross platform shell
programming. It can be used to automate repetitive tasks. Some complicated problems, which might take
thousand of lines of C code, can be solved in a few lines of Ch code. The interactive Ch command shell is
especially suitable for rapid prototyping, teaching, and learning.

Ch has borrowed features and ideas from many other languages and software packages. Ch owes its
most to C/C++. The following is a short list of other languages and software packages which in one way or
another have influenced the development of Ch.

• Like C shell, Ch can be used as a login shell and for shell programming. But, as a superset of C, Ch
is a genuine C shell.

• Like Basic, Ch is designed for and has been used by beginners with limited computer experience.
• Like Perl, Ch can be used for common gateway interface (CGI) in a Web server.
• Like Java, Ch can be used for internet computing. A Ch applet can be executed across a network on

different computer platforms on the fly.
• Like JavaScript, Ch scripts can be embedded in HTML files such as active server pages (ASP).
• Like Fortran 77/90, Ch can be used for scientific computing.
• Like MATLAB/Mathematica, Ch can be used for rapid prototyping.

1

Figure 1: Relation of Ch with some other languages and software packages.

The relation of Ch with some of these languages and software packages is shown in Figure 1.

Major Features

Ch supports all features in the ISO 1990 C standard (C90), wide characters in Addendum 1 for C90, major
new features in the latest ISO 1999 C standard (C99) including complex numbers, variable length arrays
(VLAs), IEEE 754 floating-point arithmetic, generic functions. Ch supports classes, objects, and encapsu-
lation in C++ for object-based programming, as well as many computer industry standards such as POSIX
and socket/Winsock, Windows, X11/Motif, OpenGL, ODBC, GTK+. Ch has many extensions to C. Major
features of Ch are summarized as follows:

• No Learning Curve Every C programmer can start to use Ch by executing C code in a Ch virtual
machine without learning a new language. One can use the features of the C language to complete all
tasks. It minimizes the hassles of learning and memorizing many different language syntaxes.

• Interpretive C programs can be executed in Ch without tedious compile/link/execute/debug cycles.

• Interactive One can run the C code interactively, entering the code line by line. Thus, it is very
intuitive for beginners to learn C. It is a very effective tool to teach and learn programming in C with
the latest C99 features. Also, one can easily test new functions. It is an ideal environment for real-time
interactive computing.

2

• Numerical Computing In addition to supporting all C types such as char, int, float, double, and the new
type complex and variable length array (VLA) as introduced in ISO C99, Ch treats a computational ar-
ray as a first-class object. Many high-level numerical functions, such as differential equation solving,
integration, Fourier analysis, along with 2D/3D plotting make Ch a very powerful language environ-
ment for solving problems in engineering and science. Programs using 2D/3D plotting features can
also be compiled in C++ compilers using SoftIntegration Graphical Library in C++.

• Very High-Level Language Ch bridges the gap between low-level languages and very high-level lan-
guages (VHLL). As a superset of C, Ch retains low-level features of C such as accessing memory for
hardware interface. As a command shell, Ch is a very high-level language. Some problems, which
might take thousands of lines of C code, can be easily solved with only a few lines of Ch code.

• Object-Based Ch supports classes, objects, and encapsulation in C++ for object-based programming
with data abstraction and information hiding, as well as simplified I/O handling. For example, only
a single control class is used to implement Ch Control System Toolkit for high-level control system
design and analysis. To keep Ch simple, complicated features in C++ are excluded in Ch.

• Text Handling Ch has advanced text handling features such as built-in string data type and foreach-
loop. These features are specially useful for system administration, shell programming, and Web-
based applications.

• Cross platform Shell Ch provides a universal shell for the convenience of users. It can be used as a
login command shell similar to C-Shell, Bourne shell, Bash, tcsh, or Korn shell in Unix, as well as
MS-DOS shell in windows. Ch has more built-in enhanced features for shell programming to auto-
mate repetitive tasks, rapid prototyping, regression test, and system administration across different
platforms.

• Safe Network Computing Safe Ch is designed from scratch with different secure layers, such as sand-
box, programmer/administrative control, suppressed pointers, restricted functions, automatic memory
management for string type, and auto array bound checking effectively address security problems for
network computing.

• Portable C standard-conforming programs are portable. But the compilation process is platform-
dependent. A Ch program can run across different platforms including Windows and Unix. A pro-
grammer can develop and maintain programs in one machine, deploy them in all platforms supported
by Ch.

• Libraries All existing C libraries and modules can be part of the Ch libraries. Therefore, the potential
of Ch libraries is almost unlimited. For example, Ch supports POSIX, TCP/IP socket, Winsock,
Win32, X11/Motif, GTK+, OpenGL, ODBC, LAPACK, XML, NAG statistics library, Intel OpenCV
for computer vision and image processing, National Instruments’ NI-DAQ and NI-Motion, PCRE for
regular expression, etc.

• Interface with Binary Modules Using Ch SDK, Ch can interface binary objects without restarting a
new process. It can seamlessly integrate different components. A Ch program can call functions in a
static or dynamic library for integration with legacy systems and existing C/C++ code. Vice versa, a
function in a binary object can call a Ch function.

• Web Enabled With development modules, such as classes for Common Gateway Interface (CGI) for
Web servers, Ch allows rapid development and deployment of Web-based applications and services.

3

• Embeddable Ch is embeddable. Embedded Ch can be embedded in other application programs, hard-
ware and handheld devices. This will relieve users from developing and maintaining proprietary
scripting languages across different platforms.

Organization of this Documentation

Ch contains all features of C. Chapter 1 gives a brief overview of Ch and on how to run C/C++ programs in
the Ch language environment. Chapters 2, 5-10, 14, 17-18, 20 describe features in C. Chapters 12, 13, and
15 present new features added in C99 with IEEE floating-point arithmetic and type generic mathematical
functions, complex numbers, and variable length arrays (VLA), respectively. Chapters 11 and 19 present
features of reference types and classes available in C++, respectively. Like any C compiler, Ch also contains
some unique features with different setup and configuration. Features described in Chapters 3 and 24 are
related to setup and configuration of Ch as an interpreter. Two and three dimensional plotting capabilities
described in Chapter 23 are available in both Ch and C++. Computational arrays described in Chapter 16
and safe Ch in Chapter 21 are available in Ch only. Based on computational arrays, advanced numerical
functions in Chapter 24 are convenient for many applications in engineering and science.

Appendix A lists known problems and platform specific features. Appendix B lists implementation
defined behaviors and highlights the extension of Ch over C. Appendix C compares the differences between
Ch and C++. Ch is a portable command shell. Appendices D, E, and F, compare Ch with C shell, MATLAB,
and Fortran, respectively. Appendix G lists commonly used commands for portable shell programming in
Ch across different platforms.

4

Part I

The Language Features

5

Chapter 1

Getting Started

This chapter gives an overview of the Ch language environment.

1.1 Startup

1.1.1 Startup in Unix

You can type the command ch in any command shell to go into the Ch command shell.

Startup in Mac OS X x86

Once you have downloaded and installed the software, you can click the icon Ch on the dashboard on in the
Application folder to get into the Ch command shell.

For Ch Professional or Student Edition, you can also click the icon for ChIDE on the dashboard on in
the Application folder to luanch ChIDE. You can then click the icon Ch in the ChIDE to get into the Ch
command shell.

Startup in Linux

In Linux, you can launch Ch by clicking the icon Ch under the entry System Tools in the startup menu.
You can also click Run Program in the startup menu. Then, enter ch and check Run in terminal to
lanch Ch.

For Ch Professional or Student Edition, you can also click the icon for ChIDE under the entry
Programming Tools in the startup menu. You can then click the icon Ch in the ChIDE to get into
the Ch command shell.

The command

ch -d

will create an icon for Ch on the desktop. If Ch is installed with a ChIDE, an icon for ChIDE will also be
created on the d esktop.

Startup in Unix as a Login Shell

You can login to a Unix computer system through a terminal that may be directly wired to the system, or
through a modem to the internet or a local area network. To log into the system, type your user name at
the system login prompt, which will begin the execution of program login. The program displays the string

6

1.1. STARTUP CHAPTER 1. GETTING STARTED

password: at the terminal and waits for you to type the password. Once you have typed your password,
the program proceeds to verify your login name against the corresponding entry in the file /etc/passwd.
Similarly, your password will be checked. The file /etc/passwd contains one line for each user of the system.
The information in this line specifies, among other things, the login name, home directory, and the program
to be executed when the user logs in. The program that will start up after the login process is specified in
the entry after the last colon. If nothing follows the last colon, by default, the system will use the Bourne
shell /bin/sh. For example, if file /etc/passwd contains the following three lines for three users of the system:
harry, john, and marry.

harry:x:121:15::/home/harry:/bin/ch
john:x:125:20::/home/john:/bin/csh
marry:x:130:25::/usr/data:/usr/data/bin/word_processor

The home directory for user harry is /home/harry. When harry logs in the system, the Ch shell will start
execution. The home directory for user john is /home/john, john will get C shell when he logs in. When
marry logs in the system, the program word processor that may be a special-purpose word processing
software package will be invoked.

You can remotely login to another workstation which acts as a client. However, your local workstation
may refuse connection to the client; the remote client fails and displays an error message. A proper commu-
nication has to be established so that the client will be able to determine which server receives the output of
the client. At the same time, your workstation’s X server will allow the remote system to send the output.
This is accomplished by setting the environment variable DISPLAY on the client and adding the client to
the name list of remote systems on your workstation’s X server by the command xhost. For example, if you
login to the remote machine mouse from the local machine cat and want the output of mouse to be sent to
cat, you should execute the command

cat> xhost mouse
on the local machine cat and execute the command

mouse> putenv("DISPLAY=cat:0.0")
on the remote machine mouse. If the machine mouse is often used remotely, you may want to put the com-

mand putenv("DISPLAY=cat:0.0") in the startup file .chrc in your home directory of the machine
mouse and set the following alias in the startup file of the local machine cat

alias("mouse", "xhost mouse; rsh mouse");
Then, the command mouse will add the remote machine mouse to the list of the remote systems of the local
X server and start the remote login process. The name of the host machine can be obtained by the command
hostname.

If Ch is the login shell, you can readily use the Ch language environment. If not, you can type command
ch at a terminal prompt to launch the Ch language environment.

If the user resizes a Window under xterm command shell in the X-Window system by dragging the
window borders using a mouse, the command resize can be used to set terminal settings to the current xterm
window size. Because the command resize does not recognize Ch as a command shell, the user may type
function resize() in a Ch shell to set the environment variables COLUMNS and LINES to the current
xterm window sizes.

1.1.2 Startup in Windows

Once you have downloaded and installed the software, there are four ways to get into the Ch language
environment. For example, to start Ch Standard Edition 6.3,

1. Click the icon Ch Standard on the Desktop screen to get into the regular Ch shell, similar to MS-
DOS.

7

1.2. COMMAND MODE CHAPTER 1. GETTING STARTED

2. Click Start->Programs->SoftIntegration Ch 6.3 Standard->Ch 6.3.

3. Click Start, followed by Run, then type ch.exe.

4. Go to the MS-DOS prompt, and type ch.

For Ch Professional or Student Edition, you can click the icon for ChIDE on the Desktop screen to
launch ChIDE.

1.2 Command Mode

When Ch is launched or a Ch program is executed, by default, it will execute the startup file .chrc in Unix or
chrc in Windows in the user’s home directory if it exists. This startup file typically sets up search paths for

commands, functions, header files, etc. In Windows, a startup file chrc with default setup is created in the
user’s home directory during installation of Ch. However, there is no startup file in a user’s home directory in
Unix by default. The system administrator may add such a startup file in a user’s home directory. However,
the user can execute Ch with the option -d as follows

> ch -d

to copy a sample startup file from the directory CHHOME/config to the user’s home directory if there is no
startup file in the home directory yet. Note that CHHOME is not the string “CHHOME”, instead it uses the
file system path under which Ch is installed. In Linux, the above command will also create an icon for Ch
on the desktop. If Ch is installed with a ChIDE, an icon for ChIDE will also be created on the desktop.

The Ch language environment can be introduced with a famous programming output statement

hello, world

that was popularized by Kernighan and Ritchie (1978). The level of difficulty in printing this statement along
with other criteria is often used to judge the simplicity and friendliness of a language. Users with previous C
or FORTRAN experience may remember that, to print this statement, one has to first go through compilation
and link processes to get the executable object code, and then run the program to get the output. For a large
program, the make utility may have to be used to maintain the program’s integrity. No compilation and link
processes are necessary for running a Ch program. Ch can be used interactively and provides a quick system
response. As a specific example, the prompt of the screen in C-shell is shown below:

%

The output from the system, as shown in this system prompt, is displayed in italics. To invoke the Ch
language environment, one types ch on the terminal keyboard. The screen will become:

>

This prompt indicates that the system is in the Ch language environment and is ready to accept the user’s
terminal keyboard input. Ch can also be set as the default shell in the file /etc/passwd so that, whenever
the user logs in, the Ch programming environment will be invoked automatically as shown in the previous
section.

Any syntactically correct terminal input entered at the Ch command prompt will be executed. Following
successful completion of the command(s), the Ch prompt > will be printed. If a command fails, an error
message shall be printed.

At the Ch prompt >, any Unix commands such as cd, ls, and pwd can be executed. In this scenario,
Ch is used as a Unix shell in the same manner as Bourne-shell, C-shell, or Korn-shell. For example, to print
the current working directory, one can type pwd. Then, the screen may appear as follows:

8

1.2. COMMAND MODE CHAPTER 1. GETTING STARTED

> pwd
/usr/local/ch
>

where the input typed in from the terminal is in the typewriter font. In Ch, if there is any output from the
system resulting from executing a command, it will be printed out. In this case, assume /usr/local/ch
is the current working directory, it becomes the output from execution of the command pwd,

Because Ch is a superset of ISO C, it is more powerful than the conventional Unix shells. If an expression
is typed in, it will be evaluated by Ch and the result will be printed out immediately. For example, if the
expression 1+3*2 is typed in, the output will be 7. If the input is 8, the output will also be 8. Any valid Ch
expressions can be evaluated in this command mode. Therefore, Ch can be used as a calculator by novice
users. Command help can help new users of Ch getting started with some illustrative examples.

> help
(display messages ...)
>

The first lesson that a C programmer learns may be to use the standard I/O function printf() to get the
output hello, world. Because Ch is a superset of C, the output can be obtained by the I/O function
printf() as follows:

> printf("hello, world")
hello, world
>

All variables including system variables such as path can be printed out using function printf() in C or
cout in C++ syntax. In interactive command mode, one can just type a variable name to display the value of
the variable. For example,

> int i
> i = 10
> i*i
100
> printf("\%d", i)
10
> cout << 2*i
20
>

The following four functions in Ch can be used to handle environment variables. The function putenv()
can add an environment variable to the system. The function getenv() returns the value of a given envi-
ronment variable. The function remenv() can remove an environment variable. The function isenv() can
test if a symbol is an environmental variable. The interactive command execution below demonstrates their
application.

> putenv("ENVVAR=value")
> getenv("ENVVAR")
value
> isenv("ENVVAR")

9

1.3. PROGRAM MODE CHAPTER 1. GETTING STARTED

1
> remenv("ENVVAR")
> isenv("ENVVAR")
0
>

There are hundreds of commands along with their online documentation in the system. No one knows all
of them. Every computer wizard has a small set of working tools that are used all the time, plus a vague idea
of what else is out there. Appendix G gives a list of common commands grouped by their functions. Details
about these commands as well as command line options can be found using the command man followed by
the command in query.

1.3 Program Mode

1.3.1 Command Files

A C program can be executed without compilation in the Ch language environment. The command-line
argument interface in Ch is C compatible. C programs are called command files or simply commands in
Ch. A command file shall have both read and execute permissions. In Ch, a command file can be executed
without compilation. For example, one can create a command file named hello.c using a text editor. If
the program hello.c is as follows:

/* A simple program */
#include <stdio.h>
int main() {

printf("hello, world\n");
return 0;

}

One can type the command hello.c to get the output of hello, world as follows.

> hello.c
hello, world
>

In order to use a file as a command in Unix, it has to be executable. To make the program hello.c
executable, the following command may need to be executed.

chmod +x hello.c

To run a command file in command mode, the file name must be a valid identifier in Ch or start with a
relative or absolute directory path such as ‘./’, ‘../’, ‘˜/’, and ‘/’. For example, if we change the above
file name from hello.ch to 20, it becomes a number rather than an identifier.

> mv hello.ch 20
> 20
20
> ./20
hello, world
>

Many Integrated Development Environments (IDE) support Ch. For example, ChIDE can be used to
edit, run, or debug a program as shown in Figure 1.1. The user interface of ChIDE can be displayed in over
30 different local languages such as German, French, Chinese, and Japanese.

10

1.3. PROGRAM MODE CHAPTER 1. GETTING STARTED

Figure 1.1: Edit and run a program using ChIDE.

1.3.2 Script Files

A program that can run in Ch, but cannot be compiled using a C or C++ compiler, is called a script. For
example, a program without function main() or starting with #!/bin/ch is a script. Statements, functions,
and commands can be grouped as a script file or script in Ch. Like a command file, a script file shall have
both read and execute permissions. For example, if the script file prog contains the following statements:

#!/bin/ch
int i = 90;
/* copy hello.c to hello.ch */
cp hello.c hello.ch
printf("i is equal to %d from the script file\n", i);

it can be executed interactively as follows:

> prog
i is equal to 90 from the script file
>

Or, it can be executed in two separate steps as follows:

> chparse prog
> chrun
i is equal to 90 from the script file
>

where the command chparse prog parses the script file prog first, and the built-in command chrun
then executes the parsed program. After execution of the script file prog, the file hello.c will be copied

11

1.4. COMPLEX NUMBERS CHAPTER 1. GETTING STARTED

to a Ch program named hello.ch by the statement cp hello.c hello.ch. With the file exten-
sion .ch, the program hello.ch can be executed in the Ch language environment as command hello.
Program prog can be invoked by other scripting languages such as C-shell or Korn shell.

1.3.3 Function Files

A Ch program can be divided into many separate files. Each file can include many related functions at the
top level that are accessible to any part of the program. A file that contains more than one function is usually
suffixed with .ch to identify itself as part of a Ch program. Besides command files and script files, there are
function files in Ch. A function file in Ch is a program that contains only one function definition. A function
file shall be readable. By default, the extension of a function file is .chf. The names of the function file and
function definition inside the function file shall be the same. The functions defined using function files are
treated as if they were the system built-in functions in a Ch programming environment. For example, if the
program addition.chf contains the following statements:

int addition(int a, int b) {
int c;
c = a + b;
return c;

}

it can be invoked automatically to add two integers as shown in the following interactive execution session:

> int i = 9
> i = addition(3, i)
12
>

Integer value 3 and integer variable i with the value of 9 are added together by the function addition()
first, the result is then assigned to variable i. In this case, the function addition() is treated as if it was a
built-in function like sin() or cos().

1.4 Complex Numbers

A second order polynomial equation
ax2 + bx+ c = 0

can be solved by the formula

x =
−b±√b2 − 4ac

2a
. (1.1)

According to the formula (1.1), two real solutions (x1 = 2) and (x2 = 3) for equation

x2 − 5x+ 6 = 0

They can be obtained by Program 1.1.
Program 1.1 gives the following output:

x1 = 3.000000
x2 = 2.000000

12

1.5. COMPUTATIONAL ARRAYS CHAPTER 1. GETTING STARTED

#include <stdio.h>
#include <math.h>

int main() {
double a = 1, b = -5, c = 6, x1, x2;
x1 = (-b +sqrt(b*b-4*a*c))/(2*a);
x2 = (-b -sqrt(b*b-4*a*c))/(2*a);
printf("x1 = %f\n", x1);
printf("x2 = %f\n", x2);

}

Program 1.1: The solution for x2 − 5x+ 6 = 0.

For equation
x2 − 4x+ 13 = 0,

two complex solutions (x1 = 2+i3) and (x2 = 2−i3) exist. These complex numbers cannot be represented
in the double data type. Attempting to solve the equation in the real domain will result in invalid results. Ch
reports the invalid results as NaN that stands for Not-a-Number. Refer to Program 1.2 and its corresponding
output.

#include <stdio.h>
#include <math.h>

int main() {
double a = 1, b = -4, c = 13, x1, x2;
x1 = (-b +sqrt(b*b-4*a*c))/(2*a);
x2 = (-b -sqrt(b*b-4*a*c))/(2*a);
printf("x1 = %f\n", x1);
printf("x2 = %f\n", x2);

}

Program 1.2: The solution for x2 − 4x+ 13 = 0 in the real domain.

Program 1.2 gives the following output:

x1 = NaN
x2 = NaN

Using complex numbers, equation
x2 − 4x+ 13 = 0

with two complex solutions of x1 = 2 + i3 and x2 = 2− i3 can be solved by Program 1.3.
Program 1.3. gives the following output.

x1 = complex(2.000000,3.000000)
x2 = complex(2.000000,-3.000000)

1.5 Computational Arrays

Arrays in Ch are ISO C compatible. They are intimately tied with pointers. For numerical computing and
data analysis, computational arrays are introduced in Ch, available in Ch Professional and Student Edition.

13

1.5. COMPUTATIONAL ARRAYS CHAPTER 1. GETTING STARTED

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main() {
double complex a = 1, b = -4, c = 13, x1, x2;
x1 = (-b +sqrt(b*b-4*a*c))/(2*a);
x2 = (-b -sqrt(b*b-4*a*c))/(2*a);
printf("x1 = %f\n", x1);
printf("x2 = %f\n", x2);

}

Program 1.3: The solution for x2 − 4x+ 13 = 0 in the complex domain.

Computational arrays can be handled as a first-class object in Ch. For example, the following array formula

x = Ab+ 3b (1.2)

with

A =

⎡
⎢⎣ 1 2 2

4 4 6
7 8 9

⎤
⎥⎦ and b =

⎡
⎢⎣ 5

6
8

⎤
⎥⎦

can be calculated by Program 1.4. The array expression Ab+3b is computed using three different methods.
Execution of Program 1.4 gives the following output.

x = 48.000 110.000 179.000
x = 48.000 110.000 179.000
x = 48.000 110.000 179.000

In Program 1.4, arrays A, b and x are declared as computational arrays of double data type. The macro
array of type qualifier for computational arrays is defined in header file array.h. The program includes this
header file to use computational arrays. The values for arrays A and b are initialized at declaration. The value
for array x is first calculated in the function main(). Next, it is calculated in function arrayexp1() and
with the result passed back to the main program through a function argument. Finally, it is calculated by
function arrayexp()which returns a computational array of double data type with three elements. Ch can
also handle variable length arrays (VLAs) of C arrays and computational arrays very conveniently. Details
about VLAs will be described in later chapters.

For example, the following linear system of equations

Ax = b (1.3)

with

A =

⎡
⎢⎣ 1 2 2

4 4 6
7 8 9

⎤
⎥⎦ and b =

⎡
⎢⎣ 5

6
8

⎤
⎥⎦

can be solved by Program 1.5. In Program 1.5, function inverse() returns a computational array. The
program gives the following output.

x = -5.000 2.000 3.000

14

1.5. COMPUTATIONAL ARRAYS CHAPTER 1. GETTING STARTED

#include <stdio.h>
#include <array.h>
void arrayexp1(array double A[3][3], array double b[3], array double x[3]) {

x = A*b+3*b;
}

array double arrayexp2(array double A[3][3], array double b[3])[3] {
array double x[3];
x = A*b+3*b;
return x;

}

int main() {
array double A[3][3] = {{1,2,2},

{4,4,6},
{7,8,9}};

array double b[3] = {5,6,8}, x[3];
x = A*b+3*b;
printf("x = %.3f", x);

arrayexp1(A, b, x);
printf("x = %.3f", x);

x = arrayexp2(A, b);
printf("x = %.3f", x);

}

Program 1.4: Calculation of array expression Ab+3b.

#include <stdio.h>
#include <numeric.h>

int main() {
array double A[3][3] = {{1,2,2},

{4,4,6},
{7,8,9}};

array double b[3] = {5,6,8}, x[3];
linsolve(x, A, b);
// or x = inverse(A)*b;
printf("x = %.3f\n", x);

}

Program 1.5: Solution for Ax=b.

15

1.6. PLOTTING CHAPTER 1. GETTING STARTED

#include <math.h>
#include <chplot.h>

int main() {
array double x[100], y[100]; // Use 100 data points
char *title="sine wave", // Define labels

*xlabel="radian",

*ylabel="amplitude";

lindata(-M_PI, M_PI, x); // X-axis data
y = sin(x); // Y-axis data
plotxy(x,y,title,xlabel,ylabel); // Call plotting function

}

Program 1.6: Plot function sin(x) with −π < x < π.

1.6 Plotting

A convenient plotting library is available in Ch Professional and Student Edition. Program 1.6 plots function
sin(x) with x in the range of −π < x < π. The output from Program 1.6 is shown in Figure 1.2.

16

1.6. PLOTTING CHAPTER 1. GETTING STARTED

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4

am
pl

itu
de

radian

sine wave

Figure 1.2: Plot for function sin(x) with −π < x < π.

17

Chapter 2

Lexical Elements

A Ch source file is a sequence of characters selected from a character set. A token is the minimal lexical
element of the language. The categories of tokens are: keywords, identifiers, constants, string literals, and
punctuators. Constants and string literals are described in Chapter 6.

2.1 Character Set

The character set used in Ch includes the following members: the 26 uppercase letters of the Latin alphabet

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

the 26 lowercase letters of the Latin alphabet

a b c d e f g h i j k l m
n o p q r s t u v w x y z

the 10 decimal digits

0 1 2 3 4 5 6 7 8 9

the following 31 graphic characters

! " # % & ’ () * + , - . / :
; < = > ? [\] ˆ _ { | } ˜ $ ‘

the space character, and control characters representing horizontal tab, vertical tab, and form feed, as well
as control characters representing alert, backspace, carriage return, and new line. The graphic characters $
(dollar sign) and ‘ (accent grave or back quotation marks) are not part of the C standard. The dollar sign
$ is used as an event designator in command mode, and variable substitution in both command mode and
programs. The accent grave ‘ is used for command substitution.

2.1.1 Trigraphs

In Ch, all occurrences in a source file of the following sequences of three characters (called trigraph se-
quences)), which all begin with two consecutive question mark characters, are replaced with the correspond-
ing single character shown below, so that the users of Ch can write Ch programs using the ISO 646-1083
Invariant Code Set.

18

2.2. KEYWORDS CHAPTER 2. LEXICAL ELEMENTS

??= # ??)] ??! |
??([??’ ˆ ??> }
??/ \ ??< { ??- ˜

No other trigraph sequences exist. Each ? that does not begin one of the trigraphs listed above is not
changed.

To prevent interpretation of the sequence of three characters listed above to its replaced character, use
the character escape code ’\?’. For example,

> printf("??!")
|
> printf("?\?!")
??!
>

the string "?\?!", which includes the character escape code ’\?’, can be used to represent the string
"??!", whereas the trigraph form "??!" represents the character |. Escape codes are described in sec-
tion 6.3.1.

2.2 Keywords

2.2.1 Keywords

Following symbols are default keywords in Ch. Their semantics in a program follow the interpretation of
the C standard and Unix/C convention.

Language Syntax Keywords

ComplexInf ComplexNaN Inf NaN NULL auto break const complex char case continue class double
default delete do else enum extern float for foreach fprintf goto if inline int long new operator printf
private public register restrict return scanf static struct short signed sizeof string t switch this union
unsigned volatile void while

Keywords from C++ The semantics of the following keywords are the same as those in C++.
class delete new private public this

Keywords not in C/C++ The following additional keywords have been added in Ch.
ComplexInf ComplexNaN Inf NaN NULL foreach fprintf printf scanf string t
The symbol NaN stands for Not-a-Number. Inf represents the mathematical value∞ of infinity. Com-

plex Not-a-Number and complex infinity under a Riemman sphere are represented by ComplexNaN and
ComplexInf, respectively. The keyword NULL in Ch resolves the problem of inconsistent use of macro
NULL for pointer value (void *)0 and integral value of 0 in C. NULL in Ch has the value of (void*)0
when it is is used as pointer type and the value of 0 when it is used as an integral type.

The semantics for the standard functions fprintf, printf, and scanf defined in header file stdio.h in C
are retained in Ch. But fprintf, printf, and scanf are extended in Ch as described in Chapter 20.

The new built-in data type string t of the first-class object is added to solve memory problems related
to strings of characters in C. The keyword foreach is added for foreach-loop construction. It is mainly
used to handle loops with an index of string type. More information about these two keywords is given in
Chapter 17.

19

2.2. KEYWORDS CHAPTER 2. LEXICAL ELEMENTS

Generic Functions

The generic functions available in Ch are listed below.

abs access acos acosh alias asin asinh atan atan2 atanh atexit ceil clock conj cos cosh dlerror dlopen
dlrunfun dlsym exp elementtype fgets floor fmod fprintf fread free frexp fscanf getenv gets imag ioctl
ldexp log log10 max memcpy memmove memset min modf open polar pow printf read real scanf
setrlimit shape sin sinh sprintf sqrt sscanf stradd strcat strchr strcmp strcoll strcpy strerror streval
strlen strncat strncpy strparse strtod strtok strtol strtoul strxfrm tan tanh transpose umask vprintf
vfprintf vsprintf

A generic function is a built-in system function. It is an extension of the standard C function. Most
generic functions are polymorphic. For example, the function call sin(x) uses the built-in system function
so that argument x can be any valid data type for function sin(). For example, the following code is valid.

#include <array.h> // for the macro array

int i;
float f;
double df;
complex z;
double complex dz;
array double a[2][3];
array double complex az[2][3];
...
f = sin(i);
f = sin(f);
df = sin(df);
z = sin(z);
dz = sin(dz);
a = sin(a);
az = sin(az);

Note that the return type in function call of sin(i) is different from the argument type. Details about
generic functions are further described in section 10.12.

The function iskey() defined in header file chshell.h can be used to determine if a name is a keyword in
Ch. If the argument is not a keyword, 0 is returned; if the argument is the name of a generic function, 1 is
returned; and if the argument is a keyword or a reserved symbol, 2 is returned. For example

> iskey("abcde")
0
> iskey("abs")
1
> iskey("while")
2
>

2.2.2 Reserved Symbols

The following symbols are reserved for possible future extension for features of inheritance and exception
handling in C++.

20

2.3. IDENTIFIERS CHAPTER 2. LEXICAL ELEMENTS

virtual protected try catch
The following symbols are reserved for possible future extension of multi-tasking.

event t recvevent sendevent beginparalleltask endparalleltask

2.3 Identifiers

An identifier is a sequence of characters that forms the name of a variable, class, type, function, etc. An
identifier can consist of the underscore character, the lower case and upper case Latin letters, numerical
characters and other characters. The dollar sign character ’$’ cannot be used in an identifier. Lower case
and upper case letters are distinct. The first character must not be a number. The maximum length of an
identifier is 5119. When preprocessing tokens are converted to tokens, if a preprocessing token could be
converted to either a keyword or an identifier, it is converted to a keyword.

2.3.1 Predefined Identifiers

The identifiers listed in Table 2.1 are predefined in Ch. The default values of these predefined identifiers are
given in Table 2.2. The major constraints are listed below.

• The delimiters for entries in ipath, fpath, and lpath path, are ";:" for Unix and ";" for
Windows, respectively. A space can be used as part of a directory path in both Unix and Windows.
Details about these system variables will be described in the next chapter.

• When system variables cwd, cwdn, home, lang, lc all, lc collate, lc ctype, lc monetary,
lc numeric, lc time, logname, path, shell, term, tz, user are updated, the corresponding en-

vironment variables HOME, LANG, LC ALL, LC COLLATE, LC CTYPE, LC MONETARY,
LC NUMERIC, LC TIME, LOGNAME, PATH, PWD, SHELL, TERM, TZ, USER will also be
updated.

• CHHOME in the path names is not the string “CHHOME”, instead it represents the file system path
under which Ch is installed. For instance, use C:\Ch for CHHOME in Windows and /usr/local/ch
for CHHOME in Unix. Similarly, WINDIR and SYSTEMDIR in path names are the values of sys-
tem variables WINDIR and SYSTEMDIR, respectively.

21

2.3. IDENTIFIERS CHAPTER 2. LEXICAL ELEMENTS

Table 2.1: Predefined identifiers.

Identifier Data Type Description
argc int Equivalent to argc in main(int argc, char**argv).
argv char** Equivalent to argv in main(int argc, char*argv[]).
class char [] the class name inside a member function.
class func char [] the class and function names inside a member function.

cwd string t Current working directory.
cwdn string t Current working directory name.
environ char** An array of pointers to C strings. Each array entry points to an environment

string.
errno int System call error number.
formatf string t the default output format for float.
formatd string t the default output format for double.
fpath string t Path for function files.
fpathext string t Function file name extension.
func char [] the function name inside a function.

histnum string t History number of a command saved.
histsize int Size of history of commands saved.
home string t Home directory.
host string t Host name of the computer.
ignoreeof int If it is true, the shell ignores EOF from terminals. This protects against

accidentally killing a Ch shell by typing a Ctrl-d.
ignoretrigraph int If it is true, the shell ignores trigraphs.
ipath string t Path for header files with the preprocessing directive #included.
lang string t The name of the locale to use for locale categories when both lc all and

the corresponding system variable (beginning with “ lc ”) do not specify
a locale.

lc all string t The name of the locale to be used to override any values for locale
categories specified by the setting of lang or any system variable
beginning with “ lc ”.

lc collate string t The name of the locale for collation information.
lc ctype string t The name of the locale for character information.
lc monetary string t The name of the locale containing monetary-related numeric editing

information.
lc numeric string t The name of the locale containing numeric editing (i.e., radix character)

information.
lc time string t The name of the locale for date/time formatting information.
logname string t The name of the initial working directory of the user from the user database.
lpath string t Path for searching dynamically loaded lib used in function

dlopen(const char *pathname, int mode)). If pathname does not contain an
embedded /, path in lpath will be searched first. Then, follow the search
order of the native function call. For example, the environment variable
LD LIBRARY PATH will be search in SunOS.

new handler void (*)() Pointer to user defined handler function for operator new.

22

2.3. IDENTIFIERS CHAPTER 2. LEXICAL ELEMENTS

Table 2.1: Predefined identifiers (Contd.).

Identifier Data Type Description
path string t Path for commands.
pathext string t Command name extension.
ppath string t Path for adding paths for fpath, ipath, ipath used in #pragma package

<packagename>
prompt string t Prompt for interactive Ch shell.
setlocale int If it is true, function setlocale(CL ALL, "") will be called

to handle multi-byte functions in header files wchar.h and wctype.h.
shell string t Name of the shell in use.
status int Exit value indicating the status of the executed command. 0 for successful

execution, non-zero for failure.
term string t Terminal type.
tz string t Time zone information.
user string t User account name.
warning int 3 with all warning messages.

2 most warning messages.
1 serious warning messages only.
0 no warning message.

23

2.3. IDENTIFIERS CHAPTER 2. LEXICAL ELEMENTS

Table 2.2: Default values of predefined identifiers.

Identifier Data Type Default Values
argc int Command dependent
argv char*[] Command dependent
class static const char [] “ ”
class func static const char [] “ ”

cwd string t Current working directory, if cwd is not available, cwd uses the value
of home

cwdn string t Current working directory name
environ char** An array of pointers to C strings. Each array entry points to an

environment string
errno int 0
formatf string t ".2f"
formatd string t ".4lf"
fpathext string t “chf”
fpath string t "CHHOME/lib/libc;CHHOME/lib/libch;"

"CHHOME/lib/libopt;CHHOME/lib/libch/numeric;"
for regular Ch;
"CHHOME/lib/libc;CHHOME/lib/libch;"
"CHHOME/lib/libch/numeric;" for safe Ch

func static const char [] “ ”
histnum string t “0” (changed internally as commands are processed)
histsize int 128
home string t value of environment variable HOME, if it is set. Otherwise, home

directory for Unix and current drive:/ or C:/ for Windows
host string t Host name of the computer
ignoreeof int 0
ignoretrigraph int 0
ipath string t "CHHOME/include;CHHOME/toolkit/include;"

lang string t “C”
lc all string t NULL
lc collate string t NULL
lc ctype string t NULL
lc monetary string t NULL
lc numeric string t NULL
lc time string t NULL
logname string t Name of the initial working directory
lpath string t "CHHOME/lib/dl;CHHOME/toolkit/dl;"
new handler void (*)() NULL

24

2.3. IDENTIFIERS CHAPTER 2. LEXICAL ELEMENTS

Table 2.2: Default values of predefined identifiers (Contd.).

Identifier Data Type Default Values
path string t in regular Ch

"CHHOME/bin/;CHHOME/sbin;
CHHOME/toolkit/bin;CHHOME/toolkit/sbin;
/bin;/usr/bin;/sbin;" for Unix;
"CHHOME/bin/;CHHOME/sbin;
CHHOME/toolkit/bin;CHHOME/toolkit/sbin;
/bin;/usr/bin;/sbin;/usr/openwin/bin;" for SunOS/Solaris;
"CHHOME/bin;CHHOME/sbin;
CHHOME/toolkit/bin;CHHOME/toolkit/sbin;
WINDIR;WINDIR/COMMAND;
WINDIR/SYSTEMDIR;" for Windows 95/98/ME;
"CHHOME/bin;CHHOME/sbin;
CHHOME/toolkit/bin;CHHOME/toolkit/sbin;
WINDIR; WINDIR/SYSTEMDIR;" for Windows NT/2000/XP;
in safe Ch
"CHHOME/sbin;CHHOME/toolkit/sbin;
for all diff OS.

pathext string t “” in Unix and “.com;.exe;.bat;.cmd” in Windows
ppath string t "CHHOME/package;"
prompt string t stradd(cwdn,"> ") for regular user, stradd(cwdn,"# ") for

superuser
setlocale int 0
shell string t Name of the shell in use
status int 0
term string t The value of the environment variable TERM
tz string t Local time zone
user string t User account name
warning int 1

25

2.4. PUNCTUATORS CHAPTER 2. LEXICAL ELEMENTS

2.4 Punctuators

A punctuator is a symbol that has independent syntactic and semantic significance. Depending on context, it
may specify an operation to be performed in which case it is known as an operator. An operand is an entity
on which an operator acts. The following punctuators are valid in Ch:

! != # ## $ % %= & && &= * *= + ++ += - -- -=
-> . .* ./ / /= < << <<= <= = == > >= >> >>= ?
ˆ ˆ= ˆˆ " ’ ‘ { | |= || } ˜

2.5 Comments

There are two forms of comments in Ch. Comments of a Ch program can be enclosed within a pair of
delimiters /* and */. These two comment delimiters cannot be nested. Except within a character constant,
a string literal, or a comment, the characters /* introduce a comment. The contents of a comment are exam-
ined only to identify multibyte characters and to find the characters */ that terminate it.

The symbol // in Ch will comment out a subsequent text terminated at the end of a line. A // can be used
to comment out /* or */ and /* */ can be used to comment out //. Except within a character constant,
a string literal, or a comment, the characters // introduce a comment that includes all multibyte characters
up to, but not including, the next new-line character. The contents of such a comment are examined only to
identify multibyte characters and to find the terminating new-line character. For example,

"a//b" // four-character string literal
// */ // comment, not syntax error
f = g/**//h; // equivalent to f = g / h;
//\
i(); // part of a two-line comment
/\
/ j(); // part of a two-line comment
/*//*/ l(); // equivalent to l();
m = n//**/o

+ p; // equivalent to m = n + p;

These two companion methods provide a convenient mechanism to comment out a section of code
that contains comments. When a comment does not start at the beginning of a line, the use of // is rec-
ommended. A combined use of preprocessor directives #if, #elif, #else, and #endif can also
comment out a large section of code.

Comments cannot be used in the place of argument of command statements. For example,

> int i=2 // comment ok
> i*4 /* comment ok */
8
> ls // comment bad
> cmd /* comment bad */

In the above example, comments cannot be applied to command statements ls and cmd.

26

Chapter 3

Program Structure

3.1 Directories and Files in the Ch Home Directory

Directories and files in the Ch home directory are shown in Table 3.1. The information about the latest
release is kept in file CHHOME/release/release Ch, where CHHOME is the home directory for Ch. Note
that CHHOME is the file system path under which Ch is installed, instead of the string “CHHOME”. For
instance, C:\Ch is used for CHHOME in Windows and /usr/local/ch for CHHOME in Unix.

Table 3.1: Directories and files in the Ch home directory.

Directory Name Contents
README Important information
bin Executable binary files
config Configuration files
demos Demo programs
dl Dynamically loaded libraries
docs Documentation
extern Interface with other languages and binary objects
include Header files used in Ch
lib Libraries
license License information
package Ch packages
sbin Commands for safe Ch
toolkit Toolkits
www Web related programs

3.2 Startup

The user can get into the Ch language environment by clicking the Ch icon on the desktop in Windows to
start a Ch command window, or typing commands below

ch -------- for regular shell
ch -S -------- for safe shell (the same as chs)
chs -------- for safe shell

27

3.2. STARTUP CHAPTER 3. PROGRAM STRUCTURE

Table 3.2: Ch startup files.

Startup files in Windows Descriptions
˜/ chrc Included by CHHOME/config/chrc.
˜/ chsrc Included by CHHOME/config/chsrc.
˜/ chlogin Included by CHHOME/config/chlogin.
˜/ chslogin Included by CHHOME/config/chslogin.
˜/ chlogout Read by login shells at logout.
Startup files in Unix Descriptions
˜/.chrc Included by CHHOME/config/chrc. Read at the beginning of

execution by regular shell.
˜/.chsrc Included by CHHOME/config/chsrc. Read at beginning of execution

by safe shell.
CHHOME/config/chlogin Read by lgoin shells after execution of chrc at login for regular shells.
˜/.chlogin Included by CHHOME/config/chlogin.
CHHOME/config/chslogin Read by safe ch login shells after execution of chsrc login for safe

shells.
˜ /.chslogin Incldued by CHHOME/config/chslogin.
˜ /.chlogout Read by login shells at logout.

in a command window of Windows or command shell of Unix. Assume the environment variable CHHOME
is the top directory where Ch is installed. It can be /usr/ch in Unix or C:\Ch in Windows. Startup files
in Table 3.2 are executed when the Ch language environment is invoked.

When first started, the Ch shell normally performs commands from CHHOME/config/chrc which in-
cludes the .chrc file in your home directory, provided that it is readable. If the shell is invoked with a name
that starts with ‘-’, as when started by the login program in Unix, the shell runs as a login shell. In this
case, after executing commands from CHHOME/config/chrc which includes the .chrc file in your home
directory, the shell executes commands from the .chlogin file in your home directory; the same permission
checks as those for .chrc are applied to this file. Typically, the .chlogin file contains commands to specify
the terminal type and environment.

As a login shell terminates, it performs commands from the .chlogout file in your home directory; the
same permission checks as those for .chrc are applied to this file.

When Ch is started with -d option, it first checks if file .chrc exists in your home directory. If not, Ch
will copy CHHOME/config/.chrc to your home directory.

When Ch is started with option -f for fast startup, files CHHOME/config/chrc and ˜/.chrc are not
executed.

The startup procedure for safe Ch shell is the same as that for regular shell. But, startup files chsrc,
.chsrc, .chslogin, and chslogout, instead of chrc, .chrc, .chlogin, and chlogout, are used.

In Windows, startup files chrc and chsrc, instead of .chrc and .chsrc, for regular and safe Ch in your
home directory will be used, respectively.

By default, the value for system variable fpath for the paths of function files is “CHHOME/lib/libc;
CHHOME/lib/libch;CHHOME/lib/libopt;CHHOME/lib/libch/numeric” for regular Ch and
“CHHOME/lib/libc;CHHOME/lib/libch;CHHOME/lib/libch/numeric” for safe Ch, respec-
tively. Functions defined in function files not located in the above default directories cannot be used in
startup files .chrc, .chsrc, chrc, and chsrc. But, generic functions can be used in the startup files.

28

3.2. STARTUP CHAPTER 3. PROGRAM STRUCTURE

umask(0022);
_warning = 3; // print all warning. default is 1 with serious warning message only
_format = 8; // output format for double "%.’format’lf" and float "%.’format-2’f"
_ignoreeof = 1; // ignore EOF. defalut is 0
_path = stradd(_path, ".;");
//_ppath = stradd(_ppath, "/my/package/path;");
//_fpath = stradd(_fpath, "/my/function/path;");
//_ipath = stradd(_ipath, "/my/headerfile/path;");
//_lpath = stradd(_ipath, "/my/dynloadlib/path;");
//_pathext = stradd(_pathext, ";.ch");

#define RLIMIT_CORE 4
struct rlimit {int rlim_cur, rlim_max;} rl={0,0};
setrlimit(RLIMIT_CORE, &rl); /* no core dump */

if(_prompt != NULL) { // change the default prompt "cwdn> "
_prompt = stradd(_user, "@", _host, ":", _cwd, _histnum, "> ");

}
putenv("TERM=xterm");
alias("rm", "rm -i");
alias("mv", "mv -i");
alias("cp", "cp -i");
alias("ls", "ls -F");
alias("go", "cd /very/long/dir");
alias("opentgz", "gzip -cd _argv[1] | tar -xvf -");

Program 3.1: Example of the startup file .chrc.

3.2.1 Sample Startup Files

Samples of startup files can be found in the directory CHHOME/config. After installation of Ch, the
system administrator can modify these startup files according to different system configurations. Users can
customize their individual startup files in the home directories. For the convenience of users, a sample of the
startup file will be copied from the directory CHHOME/config to the user’s home directory by command
ch -d.

Program 3.1 is an example of the startup file .chrc the user’s home directory in Unix. In this example,
function umask(0lmn) allows the user to specify permission settings for new files or directories. The first
digit ‘0’ in the parameter indicates an octal number. The subsequent three digits lmn represent a three-
number octal code used as summing access code for each access group. The most left number l is for the
owner, the second number m for the group, and n for everyone else. Read access is 4, write access is 2,
execute or search access is 1. The function umask() is used to disable the unwanted access. The function
call

umask(0022);

removes the write access for the group and others. The system variable warning indicates how the shell
displays the warning messages. The meanings of different values of warning are defined in Table 2.1.

The statement

_warning = 3;

changed its value from 1, the default value, to 3 to display all warning messages.
The default output format for values of float and double are ".2f" and ".4lf", respectively. These

default formats can be changed by resetting the system variables formatf and formatd. The statements

29

3.2. STARTUP CHAPTER 3. PROGRAM STRUCTURE

_formatf = ".6f";
_formatd = ".6lf";

change the default output format for values of float and double to ".6f" and ".6lf", respectively.
The statement

_ignoreeof = 1;

sets the system variable ignoreeof to true. Therefore, the shell ignores EOF from terminals. This protects
against accidentally killing a Ch shell by typing a Ctrl-d. The statement

_path = stradd(_path, ".;");

adds the current working directory into the system variable path, so that Ch will search it for commands.
By default, the above statement has been commented out in the startup file for Unix. To make files in the
current directory executable from the command shell, the above statement shall be uncommented. Similarly,
the subsequent commands in this example for the system variables of fpath, lpath, ipath, and ppath
add directories to these variables. The system variable pathext of string type contains file extension of
commands. To invoke a Ch command, such as prog.ch without typing the file extension .ch explicitly,
one may add the file extension .ch to the system variable pathext. The meanings and default values of
these system variables can be found in Table 2.1.

The C function setrlimit() can be used to control maximum resource consumption. The first argument
of this function represents the resource to be controlled. For example, the resource RLIMIT CORE indicates
the maximum size of a core file in bytes. The second argument is the rlimit structure which represents the
resource limits. The rlim cur member of rlimit specifies the current or soft limit and the rlim max member
specifies the maximum or hard limit. Soft limits may be changed by a process to any value that is less than
or equal to the hard limit. A process may lower its hard limit to any value that is greater than or equal to the
soft limit. The code below

#define RLIMIT_CORE 4
struct rlimit {int rlim_cur, rlim_max;} rl={0,0};
setrlimit(RLIMIT_CORE, &rl)

changes both of the soft and hard limits of maximum size of a core file to 0 to prevent the creation of
it. The system variable prompt contains the symbol of the prompt for the interactive Ch shell. For the
regular user, its default value is the result of command stradd(cwdn, "> "), i.e. the current working
directory name and the symbol ‘>’. The statement

_prompt = stradd(_user, "@", _host, ":", _cwd, _histnum, "> ");

in Program 3.1 changes the default prompt to the string including the username, the symbol ‘@’, the ma-
chine name, the current working directory, the command history number, and the symbol ‘>’, for example,
“user@machine:/path/dir#> ”.

The environment variables maintain the special information of the user’s environment. The functions
putenv() and getenv() can put and get the environment information. The statement

putenv("TERM=xterm");

changes the environment variable TERM to xterm, where TERM is an environment variable that indicates
the type of terminal. Some applications, such as vi, use this variable to determine what type of terminal the
user is using. The last part of this example is about the alias command. The allias command makes an
abbreviation for a frequently used command or series of commands. For example, the command

30

3.2. STARTUP CHAPTER 3. PROGRAM STRUCTURE

alias("rm", "rm -i");

makes the command rm equilvalent to rm -i. Most commonly used Unix commands such as rm, mv, cp,
ls are available in Ch for Windows. Ch also contains all MS-DOS commands. Because different commands
are used in different operating systems, the startup files for Windows can be slightly different. For example,
command alias("del", "del /P") can be setup for MS-DOS command del in Ch for Windows.

The alias

alias("go", "cd /very/long/dir");

allows the user to only type the command go for changing the current working directory to
/very/long/dir. The alias

alias("opentgz", "gzip -cd _argv[1] | tar -xvf -");

can be used to decompress and untar an archive file with file extension .tgz or .tar.gz. The formal
argument argv[1]will be replaced by the actual argument in the typed command. For example, with this
alias, the command

opentgz file.tar.gz

is equivalent to

gzip -cd file.tar.gz |tar -xvf -

More information about alias can be found in section 4.6.
If Ch is used as a login shell, the command stty in the startup file .chlogin in the user’s home directory

sets the terminal characteristics, such as the erase character making a backspace, kill character can-
celling the current command line, intr character interrupting the current command, and susp character
suspending the current command. In this example, the command

stty intr ’ˆC’ erase ’ˆ?’ kill ’ˆU’ susp ’ˆZ’

changes the interrupt character to Ctrl-C, the erase character to Ctrl-H, the kill character to Ctrl-U
, and the suspend character to Ctrl-Z. The user can use the command stty -a to display all current
settings.

3.2.2 Command Line Options

A non-interactive Ch shell can execute a command supplied as an argument on its command line with the
syntax as follows:

ch [-Sacdfghinruw] [argument...]

Except for the following command line options, the remaining words from the command line are passed as
arguments to the invoked command.

- S Safe shell. Many functions, such as system(), are not available for safe shell. Many generic functions
are disabled after the execution of CHHOME/config/chsrc and CHHOME/config/chlogin in the
case of the login shell. See Chapter 21 for more details.

- a Portable code such as applets. Platform-dependent functions in CHHOME/lib/libopt cannot be
used.

31

3.3. CH PROGRAMS CHAPTER 3. PROGRAM STRUCTURE

- c Read commands from the first filename argument (which must be present and readable). Remaining
arguments are passed as arguments to argv. If the program is a Ch command with function main(int
argc, char *argv[]), arguments will also be passed to argv of function main().

- d When ch is started, it first checks if file .chrc exists in the user’s home directory. If not, Ch will copy
CHHOME/config/.chrc to the user’s home directory. When chs is started, it first checks if file .chsrc
exists in the user’s home directory. If not, Ch will copy CHHOME/config/.chsrc to the user’s home
directory. In Windows, startup files chrc and chsrc instead of .chrc and .chsrc, will be used for
regular Ch and safe Ch, respectively.

- f Fast start. Read neither the chrc and .chrc files, nor the chlogin and .chlogin files (if a login shell) upon
startup.

- g For CGI script debug. It turns the Web browser into a text shell.

- h Display Ch usage message for help.

- i Reserved for forced interactive shell (ignored).

- n Parse (interpret), but do not execute commands. This option can be used to check Ch shell scripts for
syntax errors. The warning flag for system variable warning will be set to the highest level. All
warning messages will be printed out. Start up files will be parsed only without execution.

- r Redirect stderr stream to stdout. This option is useful for debugging programs running in Windows
operating systems. For example, command ch -r chcmd > junkfilewill send error messages
from stderr stream in program chcmd to file junkfile.

- u Unbuffer the stdout stream mainly for handling I/O in IDE.

- v Print out Ch edition and version number in the stdout stream.

- w The warning flag for system variable warning will be set to the highest level for both parsing and
execution of the program. All warning messages will be printed out.

Option -a can be used to test if a Ch program is portable across different platforms. For example, the
command below will test if program cmd.ch is portable.

ch -a cmd.ch

Option -g is very useful for debugging CGI code. If a CGI script starting with the first line of

#!/bin/ch -g

the Web browser is turned into a text shell. All output including error messages from executing the CGI
script will be displayed inside a Web browser.

3.3 Ch Programs

3.3.1 Command Files

A C program can be executed without compilation in a Ch language environment. The command-line
argument interface in Ch is C compatible. C programs are called command files or simply commands in Ch.
A file is identified as a Ch program if it has read/execute permission and starts with one of the following
tokens:

32

3.3. CH PROGRAMS CHAPTER 3. PROGRAM STRUCTURE

1. Comment symbols /* or //

2. A type specifier, type qualifier, or storage-class specifier.

3. Symbol # followed by a preprocessor directive.

4. Symbol # followed by !/bin/ch or !/bin/sch

5. Identifier main.

6. Function name printf.

7. Dot ’.’, which is used for execution of the program in the current shell, when it is entered in a Ch shel
prompt.

In a Ch programming environment, a command file can be executed without compilation. The system
variable pathext of string type contains file extension of commands. The default value of variable pathext
is "" in Unix and ".com;.exe;.bat;.cmd" in Windows. To invoke a Ch command with file extension
.ch, such as hello.ch without typing the file extension .ch explicitly, one may add the file extension
.ch to the system variable pathext in the startup file .chrc in Unix or chrc in Windows in the user’s home
directory. For example, if the hello-world program is saved in a file hello.ch and pathext contains
.ch, it can be executed as follows.

> hello
hello, world
>

A Ch program shall have both read and execute permissions for the user to execute it. The permission
of a program can be changed by command chmod. For example, command

chmod 755 program.ch

will change program program.ch with read/write/execute permission for the owner of the program and
read/execute permission for the group and others.

If a command name is preceded with a relative or absolute path, Ch will search for it in the specified
path. Otherwise, Ch will search the paths specified in the system variable path, one after another. The
default value of path is listed in Table 2.2. Generic function stradd() can be used to add paths into path.
For example, the command below adds the path /home/mydir/bin to the end of path.

> _path = stradd(_path, "/home/mydir/bin;")
/usr/ch/bin/;/usr/ch/sbin;/usr/ch/toolkit/bin;
/usr/ch/toolkit/sbin;/bin;/usr/bin;/sbin;/home/mydir/bin;
>

If this path is to be automatically added each time when Ch is started, the command below

_path = stradd(_path, "/home/mydir/bin;")

should be added in the startup file, such as .chrc in Unix or chrc in Window in the user’s home directory.
More information about how to customize the startup files can be found in section 3.2.

In both Unix and Windows, a path name in system variable path may contain blank spaces, for example,
C:/Program Files/package. The paths for dynamically loaded libraries with file extension .dll
in Windows may also be added to path.

Function system() can handle programs with file extension .ch just like they are included in pathext.
For example,

33

3.3. CH PROGRAMS CHAPTER 3. PROGRAM STRUCTURE

system("help.ch")

or

system("/usr/ch/bin/help.ch")

3.3.2 Script Files

The Ch language environment can recognize other shell scripts and programs. To be recognized by other
shells and programs such as for WWW Common Gateway Interface, a Ch program shall start with

#!/bin/ch

followed by command line options such as -S for safe shell, and -f for fast start up. Although not
recommended, the use of spaces before the sign # and after the sign ! are allowed. A program that can
run in Ch, but cannot be compiled using a C or C++ compiler, is called a script. For example, a program
without function main() or starting with #!/bin/ch is a script. It is treated in the same manner as a
command. Inside a script , system variables argc and argv can be used for command line interface. These
two command line interface variables are available even for a command file.

3.3.3 Function Files

A Ch program can be divided into many separate files. Each file consists of many related functions at the
top level that are accessible to any part of a program. A file that contains more than one function is usually
suffixed with .ch to identify itself as part of a Ch program. Besides command files and script files, there are
function files in Ch. A function file in Ch is a program started with a function definition. A function file shall
be readable. The extension of a function file is specified by the system variable fpathext of string type.
The default value of the system variable fpathext is ".chf". The names of the function file and function
definition inside the function file shall be the same. The functions defined using function files are treated
as if they were the system built-in functions in Ch. For example, if program addition.chf contains the
following statements,

/**** function file for adding two integers ****/
int addition(int a, int b) {
int c;
c = a + b;
return c;

}

Function addition() can be invoked automatically to add two integers. It is suggested that, inside a
function file, there is only one function definition which may nest many local functions. A program that
invokes the function addition() from a function file can be prototyped as

extern int addition(int a, int b);

This prototype for a function from a function file is optional in the program.
The preprocessing directive #endif described in Chapter 5 shall not fall after the closing parenthesis

for the arguments of the function in a function file. For example, the following code is invalid.

34

3.3. CH PROGRAMS CHAPTER 3. PROGRAM STRUCTURE

int fun(int arg1,
#ifdef NeedWidePrototypes
int arg2,
double arg3) {
#else
char arg2,
float arg3) {
#endif

/* ... */
}

Instead, it should be written as

int fun(int arg1,
#ifdef NeedWidePrototypes
int arg2,
double arg3
#else
char arg2,
float arg3
#endif
) {

/* ... */
}

The included file before the function definition inside a function file will be processed first, before the
function definition is parsed. For example, the following code is valid.

#include<stdio.h>
FILE *fopen(const char *filename, const char *type) {
return _fopen(filename, type);

}

The preprocessing directives before the function definition of a function are ignored, when the function
file is used as a function prototype for a program. These directives will be parsed when the function is
processed at the end of the program. If a function in a function file is invoked in command mode at prompt,
all directives except #include will be processed and the included header file will be parsed before the
function prototype in the function file is used. Therefore, conditional preprocessing directives inside a
function file are valid before the function definition, only when the function is used inside a program.
Function func() defined in the following function file can be used in a program, but not in command
mode at prompt.

#ifdef HEADER1
#include<header1.h>
#else
#include<header2.h>
#endif
int func() {
...

}

35

3.4. PROGRAM EXECUTION CHAPTER 3. PROGRAM STRUCTURE

The function can be used in both program and command mode, if the above code is changed to

#include<header.h> // include hearer1.h and hearder2.h conditionally
int func() {
...

}

Ch will search for function files in the the paths specified in the system variable fpath, one after another.
The default value of fpath is listed in Table 2.2. Additional paths for function files can be added to the
system variable fpath. For example, the command below adds the path /home/mydir/lib to the end
of fpath.

> _fpath = stradd(_fpath, "/home/mydir/lib;")
/usr/ch/lib/libc;/usr/ch/lib/libch;/usr/ch/lib/libopt;
/usr/ch/lib/libch/numeric;/home/mydir/lib;
>

If the system variable fpath is modified in command mode, it will be effective only for functions invoked
in the current shell interactively. The function search paths in the current shell will not be used and inherited
in subshells. To make function files in this path available to the current Ch shell and all Ch programs, the
command below

_fpath = stradd(_fpath, "/home/mydir/lib;")

should be added in the startup file chrc in Windows or .chrc in Unix at the user’s home directory. If the
search paths for function files have not been properly setup, a warning message such as

WARNING: function ’addition()’ not defined

will be displayed, when the function addition() is called.
When a function is called in command mode, the function file will be loaded. If you modify a function

file after the function has been called, the subsequent calls in command mode will still use the old version
of the function definition that had been loaded. To invoke the modified version of the new function file, you
can either remove the function definition, say addition, in the system by command

> remvar addition

or start a new Ch shell.
A .chf file can contain multiple function and class definitions. A .chf file with multiple function and class

definitions should not be treated as a function file. Rather, it should be loaded explicitly using a pragma
directive. For example, the code below

#pragma importf <myfunc.chf>
#pragma importf <myclass.chf>

will load files myfunc.chf and myclass.chf with multiple function and class definitions located in a
directory specified by the system variable fpath. This pragma directive can be placed in a header file that
may typically be included in applications.

3.4 Program Execution

The program startup occurs when a designated Ch program is invoked by the execution environment. The
program is parsed to form an internal data structure first, then it is executed. All objects in static storage are
initialized (set to their initial values) before program execution. Program termination returns control to the
execution environment.

36

3.4. PROGRAM EXECUTION CHAPTER 3. PROGRAM STRUCTURE

3.4.1 Execution of Programming Statements in Command Mode

At a Ch shell prompt, all expressions, programming statements and functions parsed and executed immedi-
ately. For example,

> int i
> for (i = 0; i < 3; i++) printf("i = %d\n", i)
i = 0
i = 1
i = 2
> int func1(int i){int j; j = i+i; return j;}
> i = func1(10)
20
> int func2(int i){int j; j = i*i;\
return j;}
> i = func2(i)+func1(1)
402
> 2*i
804
>

In the example above, the for-loop and definitions of functions func1() and func2() are typed at a
shell prompt. The ending semicolons are not necessary at prompt. All programming statements have to
be completed in one command line which may consist of multiple lines separated with a line continuation
symbol ‘\’ immediately followed by a carriage return character as shown for the definition of function
func2(). Otherwise, Ch gives error messages. For example, if the for-loop in the previous example is
broken into two lines, the result is wrong. If the definition of function is broken into more than one line, Ch
treats it as a syntax error.

> int i
> for (i = 0; i < 3; i++) // break the for-loop into two lines
> printf("i = %d", i) // and the result is unexpected
i = 3
> int fun1(int i){int j; // the definition of fun1() is broken
ERROR: missing ’}’
WARNING: missing return statement for function fun1() and
default zero is used
>

3.4.2 Program Startup

A Ch program is normally executed according to the following sequences. First, a startup file
CHHOME/config/chrc is executed. All values for global and system variables inside the startup file are
retained for use in the current executed program. The program including all modules from so-called prepro-
cess directives are then parsed to form an internal program tree. Each executable statement in the internal
program tree is then executed. Finally, either function main() or WinMain() is executed, if it has been
declared.

Function main() shall be defined with a return type of int and in one of the following forms, with no
parameters:

37

3.4. PROGRAM EXECUTION CHAPTER 3. PROGRAM STRUCTURE

int main(void) { /* ... */ }

or with two parameters referred to here as argc and argv, though any names may be used, as they are
local to the function in which they are declared:

int main(int argc, char *argv[]) { /* ... */ }

or

int main(int argc, char **argv[]) { /* ... */ }

Or with three parameters

int main(int argc, char *argv[], char **environ) { /* ... */ }

Function WinMain() in Windows shall be defined according to the Windows API as

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
PSTR szCmdLine, int iCmdShow)

{ /* ... */}

If they are declared, the parameters to function main() will obey the following constraints:

• The value of argc is nonnegative.

• argv[argc] is a null pointer.

• If the value of argc is greater than zero, the array members argv[0] through argv[argc-1]
inclusively contain pointers to strings.

• If the value of argc is greater than zero, the string pointed to by argv[0] represents the pro-
gram name. If the value of argc is greater than one, the strings pointed to by argv[1] through
argv[argc-1] represent the program parameters.

• The parameters argc and argv and the strings pointed to by the argv array shall be modifiable by
the program, and retain their last-stored values between program startup and program termination.

• The parameter environ is a pointer to the table of environmental variables.

More information about these functions can be found in section 10.10. The constraints and values for system
variables argc and argv are the same as parameters argc and argv, respectively. More information about
these two system variables argc and argv are available in section 4.16.

3.4.3 Program Termination

The return type of function main() shall be a type compatible with int. A return from the initial call to
function main() is equivalent to calling the exit function with the value returned by function main() as its
argument. The status value is stored in system variable status.

38

3.4. PROGRAM EXECUTION CHAPTER 3. PROGRAM STRUCTURE

3.4.4 Search Order

Order of Things in a Program

For a given identifier, the Ch language environment will interpret it according to the following search se-
quence:

• Check if it is a defined macro.

• Check if it is a keyword.

• Check if it is a defined variable including variable of a function.

• Check if it is followed by an open parenthesis ’(’. If it is followed by an open parenthesis, attach the
name with a file extension from a list of extensions in the system variable fpathext. For each file
extension, search each directory specified by the system variable fpath for a function file until it is
found.

• Check if it is a command in each directory specified by the system variable path. Then, attach
the name with a file extension from a list of extensions in the system variable pathext. For each
file extension, search each directory specified by the system variable path for the executable and
readable command until it is found.

Order of Things at Prompt

When an identifier is given in interactive mode at the prompt. It is first tested against the list of aliases.
Then, follow the search sequence described in the previous section.

The Ch program which described in Chapter 4 can be used to tell how a given identifier is interpreted.

3.4.5 Running Programs with Multiple Files

In this section, running programs with mulitple files will be described. Handling of packages in Ch will be
presented in section 22.3.

The file name of a Ch program is the command name. The extension of a command can be specified
by the system variable pathext. A program, consisting of multiple files, can be organized using import
and importf following preprocessor directive pragma described in section 5.9. Unlike included header
files which search the directory specified in system variable ipath, the directories specified in system vari-
ables path and fpath are searched for the program following import and importf, respectively. In
addition, a string can follow import and importf. In this case, the file will be searched in the cur-
rent directory first. If the file pointed to by the string expression does not exist, the pragma statement
shall be ignored. For example, assume command command consists of four separate files command.c,
module1.c, module2.c, module3.c, then program command.c can be written as follows.

/* Program command.c */
#include <stdio.h>
int main() {
int i =90;
printf("main() program \n");
/* ... main program goes here */

}
#pragma importf "module1.c" /* search for module1.c in current

39

3.4. PROGRAM EXECUTION CHAPTER 3. PROGRAM STRUCTURE

directory first then directories specified in _fpath */
#pragma import "module2.c" /* search for module2.c in current

directory first then directories specified in _path */
#pragma importf <module3.c> /* search for module3.c in directories

specified in _fpath only */

Static variables in files module1.c,module2.c, and module3.c have file scope. Notice the difference
between import and importf in this example. File module1.c is searched in the current working
directory first, then in the directories specified in fpath. File module2.c is searched in the current
working directory first, then in the directories specified in path, not in fpath. File module3.c is searched
only in the directories specified in fpath. Command file command.c shall have read/execute permission,
whereas files module1.c, module2.c, module3.c shall have read permission.

Alternatively, one can add a Ch command called command.ch without touching files command.c,
module1.c, module2.c, and module3.c of the original C code.

#!/bin/ch
/* command.ch */
#pragma import "command.c"
#pragma importf "module1.c"
#pragma import "module2.c"
#pragma importf <module3.c>

It is recommended that for a command with multiple files, create a directory to hold other files used
by the command. For example, for command xxx, create directory xxx ch to hold files invoked by the
command xxx. Therefore, for command command, one can create a directory command chwith its parent
directory being part of search path in system variable path. The command can be written as follows:

/* Program command.c */
#include <stdio.h>
int main() {
int i =90;
printf("main() program \n");
/* ... main program goes here */

}
#pragma import <command_ch/module1.c> /* search for module1.c in

directories specified in _path only */
#pragma import <command_ch/module2.c>
#pragma import <command_ch/module3.c>

File command can then be used as an executable Ch command.
A static variable in a file included by pragma has file scope. This works fine in most cases. However,

sometime in a C program, a static variable is declared in a header file which is included by different modules.
Each module is compiled separately. This means a static variable needs to be accessed by all modules in the
corresponding Ch program. For such cases, directive include can be used. The previous sample program
can be written as follows.

/* Program command.c */
#include <stdio.h>
int main() {
int i =90;

40

3.4. PROGRAM EXECUTION CHAPTER 3. PROGRAM STRUCTURE

printf("main() program \n");
/* ... main program goes here */

}
#ifdef _CH_
#include "module1.c" /* search for module1.c in current directory

first then directories specified in _ipath */
#include "module2.c" /* search for module2.c in current directory

first then directories specified in _ipath */
#include <module3.c> /* search for module3.c in directories

specified in _ipath only */
#endif

Similarly, one can add a Ch command called command.chwithout touching files command.c,module1.c,
module2.c, and module3.c of the original C code.

#!/bin/ch
/* command.ch */
#include "module1.c"
#include "module2.c"
#include <module3.c>

A program, consisting of multiple files, can also be organized using a dot command which runs in the
current shell. Unlike included header files, the directory specified in system variable path is searched for
the program following the dot. Similar to including files using preprocessing directive include, a static
variable in a doc command is visible to all modules in the program. Using dot commands, the above sample
program command.c can be written as follows.

/* Program command.c */
#include <stdio.h>
#ifdef _CH_
. "module1.c" /* search for module1.c in current directory first

then directories specified in _ipath */
. "module2.c" /* search for module2.c in current directory first

then directories specified in _ipath */
. <module3.c> /* search for module3.c in directories

specified in _ipath only */
#endif
int main() {
int i =90;
printf("main() program \n");
/* ... main program goes here */

}

If all these files are located in a directory, say, /my/package/dir, command command can be executed
at different directories by changing the line

#ifdef _CH_

in the above code to

#ifdef _CH_ && strcat(_ipath,"/my/package/dir;") \
&& strcat(_path,"/my/package/dir;")

41

3.4. PROGRAM EXECUTION CHAPTER 3. PROGRAM STRUCTURE

Similarly, one can add a Ch command called command.chwithout touching files command.c,module1.c,
module2.c, and module3.c of the original C code.

#!/bin/ch
/* command.ch */
. "module1.c"
. "module2.c"
. <module3.c>

Chapter 22 describes the details on how to create library and software packages to run in Ch.

3.4.6 Debug Programs

To parse a Ch program without execution for checking the syntax error of the program, the shell command
chparse followed by the file name can be used. After parsing, the program can be executed by typing shell
command chrun. For example,

> chparse program.c
> chrun
>

If the program hello.c is as follows,

int main() {
printf("hello, world\n";

}

the error of the program can be diagnosed by the command chparse as follows:

> chparse hello.c
ERROR: missing)
ERROR: Syntax error at line 2
>

where the missing parenthesis for the function printf() at line 2 is detected.
An entire program can be parsed first. Then it can be executed step by step interactively using the shell

command chdebug. In the example below, program.c is listed by command more first. Then, run by
command chdebug.

> more program.c
int main() {

int i, *p;
i = 10;
p = &i;

}
> chdebug program.c

You are debugging file ’program.c’

Type (1) expression for evaluation
(2) ’run’ to continue

42

3.4. PROGRAM EXECUTION CHAPTER 3. PROGRAM STRUCTURE

(3) hit return key to step to next line
1: int main() {

2: int i, *p;

3: i = 10;

4: p = &i;
i
=> 10
i*i
=> 100
&i
=> 1c21a0

5: }
p
=> 1c21a0

*p
=> 10

1: int main() {

>

In the debug mode, the user has three options: evaluating an expression, executing the program non-stop,
or step-by-step execution of the program. In a step-by-step execution, the source code including the line
number will be displayed before it is executed. When the user types in an expression for evaluation, the
result of the expression will be displayed following the symbol =>. In this example, it shows that i*i is
100 and the address of variable i is the same as the value for pointer p. Details about pointers are described
in Chapter 9.

Using commands chparse-chrun and chdebug, the program runs in the current shell. A program can
be parsed to just check for syntax errors without being executed using option -n as shown below.

> ch -n program.c
>

In this case, the program runs in a subshell.
The macro assert() defined in header file assert.h can also be used to debug a program. One can

setup a break point in a program by set adding the debugging function _stop("Your debug message\n")
inside the program. The program will stop at this statement to wait for the user’s input at the execution phase.
The value of a variable or expression can be printed out by typing the name of variable or expression at the
point where the program stops. At run time, the implicit pointer ‘this‘ can also be used to access members
of a class in member functions of the class when the program is executed in debugging mode.

In Windows, because the stderr stream is handled differently, one should use command line option
-r to debug a Ch program. For example, command

ch -r program.c > junkfile

will send error messages from stderr stream to file junkfile.

43

3.5. SCOPE RULES CHAPTER 3. PROGRAM STRUCTURE

3.5 Scope Rules

3.5.1 Scopes of Identifiers

An identifier can denote an object; a function; a tag or a member of a class, structure, union, or enumeration;
a typedef name; a label name; a macro name; or a macro parameter. The same identifier can denote different
entities at different points in the program. A member of an enumeration is called an enumeration constant.
The macro names in the source file are replaced by the preprocessing token sequences that constitute their
macro definitions during the passing phase.

For each different entity that an identifier designates, the identifier is visible (i.e., can be used) only
within a region of program text called its scope. Different entities designated by the same identifier either
have different scopes, or are in different name spaces. There are five kinds of scopes: function, file, block,
and function prototype, program, system. A function prototype is a declaration of a function that declares
the types of its parameters.

A label name is the only kind of identifier that has function scope. It can be used in a goto statement
anywhere in the function in which it appears, and is declared implicitly by its syntactic appearance followed
by a : and a statement.

Every other identifier has scope determined by the placement of its declaration (in a declarator or type
specifier). If the declarator or type specifier that declares the identifier appears outside of any block, the iden-
tifier has program scope. If the identifier is declared outside of any block with storage-class qualifier static
as a static variable, the identifier has file scope. If the identifier is declared with declspec(global),
the identifier has system scope in the current Ch shell. An identifier in system scope can be accessed by mul-
tiple programs. If the declarator or type specifier that declares the identifier appears inside a block or within
the list of parameter declarations in a function definition, the identifier has block scope, which terminates at
the end of the associated block. If the declarator or type specifier that declares the identifier appears within
the list of parameter declarations in a function prototype (not part of a function definition), the identifier has
function prototype scope, which terminates at the end of the function declarator. If an identifier designates
two different entities in the same name space, the scopes might overlap. If so, the scope of one entity (the
inner scope) will be a strict subset of the scope of the other entity (the outer scope). Within the inner scope,
the identifier designates the entity declared in the inner scope; the entity declared in the outer scope is hid-
den (and not visible) within the inner scope. Two identifiers have the same scope if and only if their scopes
terminate at the same point.

Unless explicitly stated otherwise, where this manuscript uses the term identifier to refer to some entity
(as opposed to the syntactic construct), it refers to the entity in the relevant name space whose declaration is
visible at the point the identifier occurs.

Class, structure, union, and enumeration tags have scope that begin just after the appearance of the tag
in a type specifier that declares the tag. Each enumeration constant has scope that begins just after the
appearance of its defining enumerator in an enumerator list. Any other identifier has a scope that begins just
after the completion of its declarator.

3.5.2 Linkages of Identifiers

An identifier declared in different scopes or in the same scope more than once can be made to refer to
the same object or function by a process called linkage. There are four kinds of linkage: global, external,
internal, and none.

In the set of source files that constitutes an entire program, each declaration of a particular identifier with
external linkage denotes the same object or function. Within a source file, each declaration of an identifier
with internal linkage denotes the same object or function. Each declaration of an identifier with no linkage

44

3.5. SCOPE RULES CHAPTER 3. PROGRAM STRUCTURE

denotes a unique entity.
If the declaration of a file scope identifier for an object or a function contains declspec(global),

the identifier has global linkage.
If the declaration of a file scope identifier for an object or a function contains the storage-class specifier

static, the identifier has internal linkage.
For an identifier declared with the storage-class specifier extern in a scope in which a prior declaration

of that identifier is visible, if the prior declaration specifies internal or external linkage, the linkage of the
identifier at the later declaration is the same as the linkage specified at the prior declaration. If no prior
declaration is visible, or if the prior declaration specifies no linkage, then the identifier has external linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage is determined
exactly as if it were declared with the storage-class specifier extern. If the declaration of an identifier for an
object has file scope and no storage-class specifier, its linkage is external.

The following identifiers have no linkage: an identifier declared to be a function parameter; a block
scope identifier for an object declared without the storage-class specifiers extern.

It is a syntax error, if the same identifier appears with both internal and external linkage.

3.5.3 Name Spaces of Identifiers

If more than one declaration of a particular identifier is visible at any point in a program, the syntactic
context disambiguates uses that refer to different entities. The separate name spaces categorized for various
identifiers are given as follows:

- macro names the macros defined by the preprocessing directive #define.

- label names (disambiguated by the syntax of the label declaration and use);

- the tags of classes, structures, unions, and enumerations (disambiguated by following any of the keywords
class, struct, union, or enum);

- the members of classes, structures or unions; each class, structure or union has a separate name space for
its members (disambiguated by the type of the expression used to access the member via the . or ->
operator);

- all other identifiers, called ordinary identifiers (declared in ordinary declarators or as enumeration con-
stants).

3.5.4 Storage Duration of Objects

The valid storage-class specifiers are given in Table 3.3.
An object has a storage duration that determines its lifetime. There are three storage durations: static,

automatic, and allocated.
Variables qualified by declspec(global) can cross different programs when they are executed

in the current shell using dot command. A variable qualified by declspec(global) should be only
declared once and used by multiple programs in the current shell. Such a global variable is typically declared
in the system startup file chrc or the user’s startup file chrc in Windows or .chrc in Unix. Variables of
functions and class/struct/union cannot be declared as global variables.

An object whose identifier is declared with external or internal linkage, or with the storage-class specifier
static has static storage duration. For such an object, storage is reserved and its stored value is initialized
only once, prior to program startup. The object exists, has a constant address, and retains its last-stored
value throughout the execution of the entire program.

45

3.5. SCOPE RULES CHAPTER 3. PROGRAM STRUCTURE

Table 3.3: Storage-class Specifiers.

Specifier Function
auto local automatic variable
extern external variable

declspec(global) system-wide global variable
declspec(local) nested local function

register (ignored)
static static variable

An object whose identifier is declared with no linkage and without the storage-class specifier static has
automatic storage duration. For such an object that does not have a variable length array type, storage
is guaranteed to be reserved for a new instance of the object on each entry into the block with which it
is associated; the initial value of the object is zero. If an initialization is specified for the object, it is
performed each time the declaration is reached in the execution of the block; otherwise, the value becomes
indeterminate each time the declaration is reached. Storage for the object is no longer guaranteed to be
reserved when execution of the block ends in any way. (Entering an enclosed block or calling a function
suspends, but does not end, execution of the current block.)

For such an object that does have a variable length array type, storage is guaranteed to be reserved for a
new instance of the object each time the declaration is reached in the execution of the program. The initial
value of the object is zero. Storage for the object is no longer guaranteed to be reserved when the execution
of the program leaves the scope of the declaration.

If an object is referred to when storage is not reserved for it, the behavior is undefined. The value of a
pointer that referred to an object whose storage is no longer reserved is indeterminate. During the time that
its storage is reserved, an object has a constant address.

The storage can be allocated dynamically at run time by the functions calloc(), malloc(), and realloc();
and subsequently freed by the function free(). The storage can also be dynamically allocated and deallocated
by operators new and delete, respectively. Details about memory allocation and pointers will be described
in Chapter 9.

46

Chapter 4

Portable Interactive Command Shell and
Shell Programming

This chapter describes how Ch can be used interactively in the command mode as a command shell. Like
other shells, Ch shell is a command interpreter that reads command lines typed by the user at a prompt
and figures out what to do. All operators and functions as well as most commands are available for both
interactive shell and shell programs in Ch. Detailed information about operators and functions can be found
in Chapters 7 and 10, respectively. From a semantic point of view, Ch shell is similar to C shell. Ch is a
superset of C whereas the so-called C shell is quite different from C. Some selected syntax comparisons
between C shell and Ch are listed in Appendix D.

4.1 Shell Prompts

Each shell has its own shell prompt. By default, the prompt for a regular Ch shell is ‘cwd> ’ where cwd is
the current working directory. It tells the user that the regular Ch shell is ready to process the input from the
command line. By default, the prompt for a safe Ch shell is ‘safech> ’. For more information about safe
Ch, refer to Chapter 21. For a superuser in Unix or an administrator in Windows, shell prompts are ‘#’ and
‘safech#’ for regular and safe Ch shells, respectively.

Table 4.1 is the comparison of default shell prompts between Ch and other popular shells. The user
can change the default symbol for the Ch shell prompt, or add information such as hostname and current
working directory to the shell prompt by setting system variable prompt. For example, in the interactive
command shell below

> _prompt = "$ "

Table 4.1: Comparison of shell prompts.

Shell General User Prompt Superuser Prompt
Ch shell in Windows > #
Ch shell in Unix > #
Safe Ch shell in Windows safech> safech#
Safe Ch shell in Unix safech> safech#
C shell % #
Bourne, Korn, and BASH shells prompt $ #

47

4.2. INTERACTIVE EXECUTION OF COMMANDS
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

$
$ _prompt = "% "
%
% _prompt = stradd(_cwd,"> ")
/usr/ch>

we set the Ch shell prompt to symbols ‘$’ and ‘%’ first, then set it to the current working directory end-
ing with the symbol ‘>’ by calling function stradd(). In this example, the current working directory is
/usr/ch. By setting the value of prompt, the user can choose any character as the shell prompt. Typi-
cally, system variable prompt is set in the startup file .chrc in Unix or chrc in Windows in the user’s home
directory.

4.2 Interactive Execution of Commands

In the command line mode of Ch shell, the user can type commands at a shell prompt. The commands
include compiled binary executable files, shell scripts, C and Ch programs, etc. For example,

> pwd
/home/myname
> mkdir subdir1
> cd subdir1
> pwd
/home/myname/subdir1
> which ls
ls is aliased to ls -F
>

In the above example, program pwd displayed the current working directory /home/myname. A new di-
rectory subdir1 is created by command mkdir. The current directory is changed by the built-in command
cd. The shell program which indicates that ls is an alias, which will be described in section 4.6.

To run a command file in command mode, the file name shall be a valid identifier in Ch or starts with a
relative or absolute directory path such as ‘./’, ‘../’, ‘˜/’, and ‘/’. For example, numerical values such
as 20 or 20.e1 are not valid identifiers. A command can be enclosed in a pair of double quotation marks.
The option for the command shall not be included inside the quotation marks. The quotation marks can be
used to avoid the conflict of a command and a variable identifier in a program. It can also be used in the
case that the command is located in a directory with white space. For example,

> int ls = 10
> ls*2
20
> "ls" -1
(display files in the current directory in a single column)
> "C:/Program Files/Windows NT/Accessories/wordpad.exe"
(launch wordpad program)

The user can type two or more commands in the same command line by putting semicolons between
them. For example, the compound command

> cp filename1 filename2; vi filename2
>

copies file filename1 to file filename2, and then calls the command vi to edit the latter.

48

4.2. INTERACTIVE EXECUTION OF COMMANDS
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

4.2.1 Current Shell

The principle and syntax of running a program in the current shell in Ch is the same as those in sh, bash,
and ksh shells. By default, a program in Ch shell is executed in a subshell. The built-in dot command

. filename

executes program filename in the current shell, instead of a subshell. When a command is typed in the
prompt, either with or without ’.’, the search paths specified by the system variable path are used to find
the directory containing the command. Assume program cmd has two statements of

int x = 3;
double y = 4;

In the example below, this program is executed in a subshell first and then in the current shell.

> cmd // run cmd in a subshell
> x // print the value of variable x in current shell
ERROR: variable ’x’ not defined
ERROR: command ’x’ not found
> . cmd // run cmd in the current shell
> x
3
> x*y
12.0000
> showvar

x 3
y 4.0000

The first execution of program cmd (without symbol ‘.’) is in a subshell. So, when the program quits,
the variable x which hasn’t been defined yet in the current shell is not available. The second execution of
program cmd (with symbol ‘.’) is in the current shell. When the program quits, the variable x has the value
of 3, assigned to x within the program cmd, in the current shell. Because variables in the current shell can
be used interactively at the prompt, sometime, one may place variables to be used interactively at the prompt
in a command and execute it in the current shell as a dot command. All variables and their values can be
displayed using the shell command showvar. The shell command stackvar is obsolete and replaced by the
command showvar.

Ch will search for a command such as cmd in the directories specified by the system variable path. If
the program cmd is not located in one of directories specified by the system variable path, an error message
will be displayed. If cmd has been used as a variable in the current shell, the command can be used with a
preceding absolute or relative path as shown below.

> /dir1/dir2/cmd // run cmd in the directory /dir1/dir2
> ./cmd // run cmd in the current working directory
> ../cmd // run cmd in the parent directory
> ˜/cmd // run cmd in the home directory

These commands execute the command file cmd located in the directory /dir1/dir2, current working
directory, parent directory and home directory, respectively.

Pathnames for a command can be separated using an ’/’ in both Unix and Windows. However, the sep-
arator ’\’ can also be used in Windows. For example, the program notepad can be launched in Windows
in one of the following forms.

49

4.3. INTERACTIVE EXECUTION OF PROGRAMMING STATEMENTS
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

> notepad
> C:/Windows/notepad
> /Windows/notepad
> "/Windows/notepad"
> C:\Windows\notepad
> \Windows\notepad

4.2.2 Background Job

In MS-DOS command shell in Windows, all Win32 programs run as background jobs. Ch is consistent in
handling commands in both Unix and Windows. A command can be started in the background using the &
metacharacter. so that it will not block the shell to accept new commands. For example, the command

> notepad &

will launch the program �notepad in background.

4.3 Interactive Execution of Programming Statements

As it is mentioned before, besides executable binary files and shell scripts, the Ch shell can also exe-
cute C/Ch programs directly without compilation. Interactive execution of C programs without lengthy
compile/link/execute/debug cycles is especially appealing for rapid application development and deploy-
ment. For example, assume file hello.c contains the following statements.

#include <stdio.h>
int main(void) {
printf("Hello, world!\n");
return 0;

}

It can be executed in a Ch shell without compilation as follows.

> hello.c // execute hello.c program without compilation
Hello, world!
>

Source files as well as programming statements can be executed in Ch shell directly and interactively.
In the interactive command line mode, semicolons at the end of programming statements are not required.
For example,

> int i
> i = 10
10
> i * 2
20
> printf("i = %d", i)
i = 10
> printf("i in hexadecimal number = %x", i)
i in hexadecimal number = a
>

50

4.3. INTERACTIVE EXECUTION OF PROGRAMMING STATEMENTS
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

Ch also supports C extensions, such as computational arrays in Ch Professional and Student Editions, in
the command line mode as shown below.

> array int a[2][3] = {1, 2, 3, 4, 5, 6}
> a
1 2 3
4 5 6
> 2 * transpose(a)
2 8
4 10
6 12
>

where a is a 2X3 computational array which is treated as a single object. Generic function transpose()
returns the transpose of the argument of a one-dimension vector or a 2-dimension matrix. Computational ar-
rays are useful for numerical computing in engineering and science. More information about computational
arrays can be found in Chapter 16.

To use macros and defined types by typedef in a header file at a shell prompt, the user can load the header
file by using commands chparse and chrun mentioned in section 3.4.6. For example, in the commands
below

> chparse /usr/local/ch/include/stdlib.h
> chrun
> size_t i
> i = 90
90
>

the header file stdlib.h, where the type size t is typedefed, is loaded before size t is used as a type declarator
for variable i. In this case, the header file stdlib.h runs in the current shell.

If an invalid statement is typed at a shell prompt, Ch will give error messages for debugging purposes.

> blah
ERROR: variable ’blah’ not defined
ERROR: command ’blah’ not found
>

When a function is called in the command mode, the search paths specified by the system variable
fpath are used to find the directory containing the function definition. To call functions in a program

from the command prompt of a Ch shell, the program has to be loaded first. Once a program is loaded by
command chparse, the program can be executed by command chrun as described in section 3.4.6. At the
same time, functions in the program can also be called at the prompt. On the other hand, a program can be
executed in the current shell first and then functions in the program can be used interactively. For example,
in the interactive execution of program currentshell.cpp in Program 4.1 below,

> . currentshell.cpp
func(5) = 10
15
> func(10)
20

51

4.3. INTERACTIVE EXECUTION OF PROGRAMMING STATEMENTS
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

#include <stdio.h>
#include <iostream.h>

int func(int i) {
return 2*i;

}

class tag {
private:
int m_i;

public:
tag();
int memfunc(int);

};
tag::tag() {
m_i=10;

}
int tag::memfunc(int i) {

cout << m_i+i << endl;
return m_i+i;

}

int main() {
class tag c1;

printf("func(5) = %d\n", func(5));
c1.memfunc(5);

}

Program 4.1: a C++ program currentshell.cpp executed in the current shell.

52

4.4. BUILT-IN COMMANDS
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

Table 4.2: Built-in shell commands in Ch.

Command Description
X: change to the directory in drive X in Windows
cd change to the home directory
cd - change to the previous directory
cd -- change to the directory before the previous one
cd --- change to the directory before the previous two
cd dir change to the directory dir
cd dir name change to the directory dir name with space
chdir change to the home directory
chdir - change to the previous directory
chdir -- change to the directory before the previous one
chdir --- change to the directory before the previous two
chdir dir change to the directory dir
chdir dir name change to the directory dir name with space
. filename dot command. Read and execute command filename

in the current shell, instead of a subshell.
exec command execute command in place of the current shell.

> class tag c
> c.memfunc(10)
20
>

the dot command . currentshell.cpp loads and executes a C++ program currentshell.cpp in the
current shell with output of.

func(5) = 10
15

Command func(10) in the command prompt calls the function func() in the program loaded in the
current shell. Declaration statement class tag c instantiates an object c of class tag. When the
member function tt tag::memfunc() is invoked interactively by function call c.memfunc(10), the result
of value 20 will be displayed. Details about using class for object-based programming will be described
in Chapter 19. Note that when a program running in the current shell crashes, the current shell will be
terminated. For the debugging purpose, it is recommended to run such a program in a new Ch shell so that
when the current shell is terminated, the Ch shell running in the background will be still available as shown
below.

> ch
> . currentshell.cpp

4.4 Built-in Commands

The built-in commands of Ch are listed in Table 4.2. The directory in which the user is working is called the
current working directory or cwd. To check the current working directory, type the command pwd at a shell
prompt.

53

4.4. BUILT-IN COMMANDS
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

There are three kinds of directory names or pathnames in Ch : simple, absolute and relative. The simple
pathnames are file or directory names which don’t include any information about the position within the file
system hierarchy. The simple pathnames are used to go to subdirectories of the current working directory.
Absolute pathnames indicate the absolute position of a directory within the file system hierarchy. They begin
with character ‘/’ which represents the root directory. In Windows, they can also begin with a letter standing
for a drive such as X:/. For example, the pathname /usr/ch indicates the absolute position of directory ch
from the root directory. The relative pathnames trace the path from the working directory, instead of the root,
to the desired file or directory. For example, the pathname ../ch indicates the relative position of directory
from the current working directory. In relative pathnames, the symbols . and .. indicate the current working
directory and the parent directory, respectively.

In Ch shell, built-in commands cd and chdir can be used to change the user’s current working directory
to a desired directory. The command cd or chdir, without a directory name, change the current working
directory to the home directory indicated by the system variable home. The command cd dir or chdir dir
switches the current working directory to the directory dir. The command cd - or chdir - switches the
current working directory to the previous directory. Similarly, cd -- or chdir -- switches to the directory
before the previous one; cd --- or chdir --- switches to the directory before the previous two. For
example,

> pwd
/home
> cd /usr/ch
> pwd
/usr/ch
> chdir -
> pwd
/home
> cd myname
> pwd
/home/myname
> cd ../../usr/ch
> pwd
/usr/ch
>

where /usr/ch is an absolute pathname, myname is a simple pathname, and ../../usr/ch is a relative
pathname.

Examples about execution of programs in the current shell using dot commands are given in sections 4.2
and 4.3

The built-in command exec executes other command in place of the current shell, which terminates.

4.4.1 Commands For Interactive Shell Only

All operators, functions and built-in commands are available for both interactive shell and shell programs
in Ch. But, not all commands that are valid in the command line mode can be used in shell programs. The
commands which are valid only when Ch is invoked as an interactive shell are called interactive commands.
They are not valid inside a Ch program. All interactive commands are shown in Table 4.3.
In the interactive command line mode of the Ch shell, a variable, including a variable of function type, can
be removed by the remvar command. In the following example,

54

4.4. BUILT-IN COMMANDS
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

Table 4.3: Interactive commands valid only in the interactive shell.

Command Description
! repeat the previous executed command.
chdebug filename debug program filename.
chparse [-S] filename parse program filename only to check syntax. Option -S for safe shell.
chrun execute the parsed program.
exit exit Ch shell.
history show the command history.
remvar remove a variable.
remkey remove a keyword .
showvar display variables and their values in all stacks.

> int i // define variable i
> i = 90
90
> remvar i // remove variable i
> i
ERROR: variable ’i’ not defined
ERROR: command ’i’ not found
>

command int i declared variable i in Ch shell, and command remvar i removes variable i. The com-
mand remvar is an interactive command which is invalid inside Ch programs. If the user wants to remove a
variable, say var, inside a shell program, the preprocessing directive
#pragma remvar(var) should be used.

Similarly, a keyword can be removed by the remkey command as shown below.

> remkey(sin) // generic function sin is removed as a keyword
> float sin
> sin =10.0

Inside a program, the preprocessing directive #pragma remkey(key) should be used to remove the
generic function sin().

The command showvar can be used to display all global variables and their values in the current shell.
The default format will be used to display the value for a variable. Tag names for sruct/class/enum types,
function prototypes without function definition, and typedefed variables are not displayed. Members of a
structure type and arrays are displayed without indentation. For example,

> int x = 3;
> double d = 10.1234
> double a[2][3] = {1,2,3,4,5,6};
> array double b[2][3] = {1,2,3,4,5,6};
> struct tag {int i, int j;} s = {10, 20};
> showvar

x 3
d 10.1234
a [C array]

55

4.5. REPEATING COMMANDS AT PROMPT
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

1 2 3
4 5 6

b [Ch array]
1 2 3
4 5 6

s
.i = 10
.j = 20

The command showvar can also be used to display all variables and their values in a command executed in
the current shell as shown in section 4.2.1.

More information about the event designator ! and command history can be found in section 4.5 below.
More information about commands chdebug, chparse and chrun can be found in section 3.4.6. Generic
function alias() is typically used inside the system startup file chrc and the user’s startup file .chrc in Unix
or chrc in Windows. Commands alias and unalias, which will be described in section 4.6, can be used in
the command mode.

4.5 Repeating Commands at Prompt

The features described in this section are valid only at the command line mode in Ch shell. The history and
quick substitutions for repeating commands at prompt will be described in this section.

The most convenient way to repeat commands at prompt is to use arrow keys. The previously typed
commands can be retrieved easily by the upper ’↑’ and down ’↓’ arrow keys on the keyboard for commands
typed before and after the current command, respectively. The retrieved command can be modified by first
moving the cursor to the location using the left ’←’ or right ’→’ arrow keys on the keyword. Then, use delete
or backspace key to delete characters or type any graphical characters to insert characters for command line
editing like in Emacs text editor.

4.5.1 History Substitution

History substitution allows the user to use words from previously typed commands at a shell prompt. This
simplifies spelling corrections and the repetition of complicated commands or arguments. Command lines
are saved in the history list, the size of which is controlled by the system variable histsize. The history
can be displayed by shell command history. The most recent commands are retained. A history sub-
stitution starting with a ! sign may occur only at the beginning of the command line; history substitutions
cannot be nested. For example, commands

> _histsize // print the current value of _histsize
20
> _histsize = 4 // change the current value of _histsize to 4
4
> pwd
/usr/ch
> history // print the history list of commands
123 _histsize // print the current value of _histsize
124 _histsize = 4 // change the current value of _histsize to 4
125 pwd
126 history // print the history list of commands
>

56

4.5. REPEATING COMMANDS AT PROMPT
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

Table 4.4: Event designators.

Command Description
! Refer to the previous command. By itself, this substitution repeats the previous command.
!! the same as !.
!n Refer to command line n.
!-n Refer to the current command line minus n.
!str Refer to the most recent command starting with str.

print the current value of histsize first, and then change this value to 4. After another command pwd, the
command history prints the most recent 4 commands including comments in the history list. The number
displayed at the front of each command is the command line number. History substitution allows users to
repeat previous command lines which are in the history list by using event designators.

An event designator is a reference to a command line entry in the history list. Different event designators
listed in Table 4.4 make it more convenient to repeat execution of a long command line in the history list.
The most commonly used event designator is !. The ! repeats the last command line entered by a user. For
example, if a user uses the command more to view a file, and misses the part of the file he wants, he can
repeat more just by typing !. The shell types out the command line repeated by ! first, and then executes
it, so that the user can make sure it is the right one. The ! is the basis for a number of more sophisticated
timesaving event designators which are listed in Table 4.4. Command !n repeats the command with the
number n in the command history list. Command !-n repeats the command with the number of m-n, where
m is assumed to be the number of the current command. It means the command !-1 is equivalent to the
command !. Command !str is also a commonly used command for command repetition. If a user wants
to edit the most current file again, he doesn’t need to remember the number of the previous vi command, all
he has to do is to type !vi.
The following example illustrates how these event designators can be used to repeat a command in the
history list.

> _histsize = 5
5
> pwd
/usr/local//ch
> !
pwd
/usr/local/ch
> strlen("abc")
3
> history
136 _histsize = 5
137 pwd
138 pwd
139 strlen("abc")
140 history
> !137
pwd
/usr/local/ch

57

4.5. REPEATING COMMANDS AT PROMPT
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

> !h
history
138 pwd
139 strlen("abc")
140 history
141 pwd
142 history
> !-4
strlen("abc")
3
>

4.5.2 Quick Substitution

The quick substitution allows users to make a change on the previous command and at the same time execute
the changed command. It is useful to correct typos in commands or to repeat similar commands. Commands
ˆoldˆnew and ˆoldˆnewˆ can substitute string old in the previous command with string new. For example,

> mkkdir mydir
ERROR: variable ’mkkdir’ not defined
ERROR: command ’mkkdir’ not found
> ˆkkˆk
> history
11 mkkdir mydir
12 mkdir mydir
13 history
>

To correct the typo mkkdir, use the command ˆkkˆk. In the following example, quick substitution com-
mands are used for a repetitive task of creating five directories for five different months.

> mkdir Jan
> ˆJanˆFeb
> ˆFebˆMarch
> ˆMarchˆApril
> ˆAprilˆMay
> history
31 mkdir Jan
32 mkdir Feb
33 mkdir March
34 mkdir April
35 mkdir May
36 history
>

Quick substitution command ˆold and ˆoldˆ can be used to delete string old in the previous command.
For example,

> cp file file1.c
> ˆ1

58

4.5. REPEATING COMMANDS AT PROMPT
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

Table 4.5: Quick substitution.

Command Description
ˆoldˆnew substitute string old in the previous command with string new.
ˆoldˆnewˆ the same as ˆoldˆnew.
ˆold delete string old in the previous command.
ˆoldˆ the same as ˆold.

> history
56 cp file file1.c
57 cp file file.c
58 history
>

4.5.3 File Completion

Ch shell is able to complete words when given a unique abbreviation. Type part of a word (for ex-
ample ‘ls /usr/local/ch/de’) and hit the tab key, The shell completes the file name ‘/usr/local/ch/de’ to
‘/usr/local/ch/demos/’, replacing the incomplete word with the complete word in the input buffer. Note
the terminal ‘/’; completion adds a ‘/’ to the end of completed directories and a space to the end of other
completed words, to speed typing and provide a visual indicator of successful completion.

If no match is found (perhaps ‘/usr/local/ch/demos’ doesn’t exist), the terminal bell rings. If the word is
already complete (perhaps there is a ‘/usr/local/ch/de’ on your system, or perhaps you were thinking too far
ahead and typed the whole thing) a ‘/’ or space is added to the end if it isn’t already there.

File completion works only at the end of the input buffer.
If there are multiple choices, the shell lists the possible completions using the command ls -F and

reprints the prompt and unfinished command line, for example:

> ls /usr/local/ch/d[ˆD]
dl/ demos/ docs/
> ls /usr/local/ch/d

If the choices are more than 100, it will ask the user to confirm whether all the choices shall be displayed:

> ls fil[tab]
Display all 102 choices? (y or n)

Ch shell completes on the shortest possible unique match, even if more typing might result in a longer
match:

> ls
fodder foo food foonly
> rm fo[tab]

just beeps, because ‘fo’ could expand to ‘fod’ or ‘foo’, but if we type another ‘o’,

> rm foo[tab]
foo food foonly
> rm foo

59

4.5. REPEATING COMMANDS AT PROMPT
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

the completion completes on ‘foo’, even though ‘food’ and ‘foonly’ also match.
If the first command is ”cd”, the completion shows only the choices of directory only:

> ls dir[tab]
dir1/ dir2/ dir3/ dir4@ dirf1 dirf2 dirf3@
> cd dir[tab]
dir1/ dir2/ dir3/ dir4@

For a symbolic link to a file or directory, the symbol ’@’ is attached.
The shell treats ’\ ’ as a space and ’\$’ as ’$’ in the file completion:

> ls test\ t[tab]
ls "juck tmp"

The shell adds double quotes to enclosing the directory that contains space(s) in file completion as shown
above.

For built-in command cd, the backslash can be omitted for a directory contains spaces in file completion.

> cd aa b[tab]
> cd "aa bb"/

A directory or file in Windows often contains a space. The shell can complete the file or directory in this
case.

> cd Prog[tab]
> cd "Program Files"/

4.5.4 Command Completion

If a tab key is hit before the end of the first token, Ch shell handles the token with command completion.
The shell searches files in the directories specified in the environment variable PATH which has the same
value as in the system variable path. in both windows and Unix. Only executable files will be selected for
command completion in Unix. In Windows, only files with extensions .com, .exe, .bat, .cmd,
or .ch will be selected.

If there is only one matched command, the shell replaces the incomplete command with the complete
command in the input buffer. The shell adds a space to the end of other completed command to speed typing
and provide a visual indicator of successful completion. For example,

> lps[tab]
> lpstat

Similar to file completion, if there are multiple choices, the shell lists the possible completions using the
command ls -F and reprints the prompt and unfinished command line. If the chioces are more than 100,
it will ask the user to confirm whether all the choices shall be displayed.

> lp[tab]
lp lpstat
> lp

If no command match is found in the directories specified in the environment variable PATH, the shell
searches the current directory for possible matches of directory. If there is only one matched directory, the
shell replaces the incomplete command with the complete directory in the input buffer. The shell adds ’/’

60

4.6. ALIASES
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

to the end of the completed directory to speed typing. If there are multiple choices of directory, the shell
lists the possible completions using the command ls -F and reprints the prompt and unfinished command
line. If the chioces are more than 100, it will also ask the user to confirm whether all the choices shall be
displayed.

If no match is found at all, the terminal bell rings.
To search commands only in the current directory for command completion, the user shall type the

command starting with the current directory ./. For example,

> cd /bin
> ./log[tab]
logger login logname
> ./log

Type tab directly in command line, the shell will be able to show all the commands.

> [tab]
Display all 1296 choices? (y or n)

4.6 Aliases

In interactive command mode, the Ch shell maintains a list of aliases that one can create, display, and modify
using commands alias and unalias. The shell checks the first word in each command to see if it matches
the name of an existing alias. If it does, the command is reprocessed with the alias definition replacing its
name.

Aliases are typically created using the generic function alias() in the system startup file chrc and the
startup file .chrc in Unix or chrc in Windows in the user’s home directory. The generic function alias() is
overloaded with the following prototypes.

int alias(string_t name, string_t alius);
string_t alias(string_t name);
int alias(void);

The different arguments with corresponding return values are listed in Table 4.6. Function call alias(name,
alius) will make symbol name an alias to command alius. If name is a valid identifier, the function
returns 0. If name is already an alias, the function returns 1. If the value of name is NULL, it returns -1.
If the second argument alius is NULL, the function will unalias symbol name from command alius.
Function call alias(name) will return the alias for the symbol name as a string. If the symbol name is not
an alias, the function returns NULL. Function call alias() will print out all the names as well as their aliases
in the standard output; and return the number of aliases. The return values of this generic function are shown
below in an interactive execution session. The function alias() can be called both in command mode and
shell programs. Follow the C convention, characters ’\’ and ’"’ can be passed in an alias using escape
character ’\’ as ’\\’ and ’\"’, respectively. The commands below demonstrates various features of
function alias().

> alias("ls", "ls -a")
0
> alias("ls", "ls -agl")
1
> alias("cp", "cp -i")

61

4.6. ALIASES
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

Table 4.6: Function call alias().

Function Call Return Value
alias("name1", "alius") 0
alias("name1", "alius") 1
alias("name2", "") 0
alias("name2", NULL) 0
alias("name3", NULL) 1
alias(NULL, "alius") -1
alias(NULL, NULL) -1
alias("name1") alius
alias("name3") NULL
alias(NULL) NULL

Table 4.7: Formal arguments in alias().

Formal argument Description
argv[0] The first input word (command).
argv[n] The nth argument.
argv[#] The entire command line.
argv[$] The last argument.
argv[*] All the arguments, or a null value

if there is just one word in the command.

0
> alias()
cp cp -i
ls ls -alg
2
> alias("ls", NULL)
0
> alias()
cp cp -i
1
> alias("cp")
cp -i
>

The argument substitution is available in aliases. The formal arguments shown in Table 4.7 inside a
definition of an alias will be replaced with actual command line arguments when the alias is used. If no
argument substitution is called for, the arguments remain unchanged. For example,

> echo abc xyz
abc xyz
> alias("myecho1", "echo _argv[1]")

62

4.6. ALIASES
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

Table 4.8: Commands alias and unalias.

Command Description
alias name alius make alias
alias name "string with space" make alias
alias name display alias for name
alias display all aliases
unalias name unalias name

> myecho1 abc xyz
abc
> alias("myecho2", "echo _argv[$]")
> myecho1 abc xyz
xyz

In the above example, only the first argument of command myecho1 abc xyz is used in the alias. The
last argument is used in alias myecho2. As another example, to search a file in the current directory and its
subdirectories and then print it out, the alias find below can be used to replace the system command find
as follows.

> alias("find", "find . -name _argv[1] -print")
> find filename
(display files with name ’filename’)

For the current process, commands alias and unalias shown in Table 4.8 can be more conveniently used
in an interactive command shell. These two commands are valid only in command mode. For example,

> alias ls "ls -agl"
> alias cp "cp -i"
> alias
cp cp -i
ls ls -alg
> unalias ls
> alias
cp cp -i
> alias cp
cp -i
>

Aliases can be nested. That is, an alias definition can contain the name of another alias. This is useful in
pipelines such as

> alias("ls", "ls -agl")
> alias("lm", "ls * | more")

When command lm is invoked, actually the expanded command

> ls -agl * | more

63

4.7. VARIABLE SUBSTITUTION
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

Table 4.9: Variable substitution.

Command Description
$var replaced by the value of variable var.
${var} replaced by the value of variable var.
$(var) replaced by the value of variable var.

is invoked instead. The output of ls is piped through program more. As another example, the command
alias opentgz below can be used portably to extract a compressed archival file such as file.tar.gz or
file.tgz.

> alias("opentgz", "gzip -cd _argv[1] | tar -xvf -")
> opentgz file.tar.gz
(display extracted files from file.tar.gz)

The command use a pipeline described in section 4.11.
Nested aliases are expanded before any argument substitution is applied. For example,

> alias("t1", "t2 _argv[1] A")
> alias("t2", "echo a b c")
> t1 x y z
a b c x A
> alias("p1", "p2 a b c")
> alias("p2", "echo _argv[1] A")
> p1 x y z
a A

4.7 Variable Substitution

A variable name can be replaced by its value through variable substitution. Three syntaxes of variable sub-
stitution $var, $(var), and ${var} are shown in Table 4.9. The variable name or symbol to be expanded may
be enclosed in parentheses or braces, which are optional but serve to protect the variable to be expanded from
characters immediately following it which could be interpreted as part of the name. Variable substitution
makes code more portable and flexible, because a variable can have different values for different situations.
For example, an installation program with variable substitutions can allow users to specify different target
directories instead of the default directory. The user may choose to install the software in a directory of his
choice.

Variable substitution takes place after the input command line is analyzed and aliases are resolved. It
is valid only for interactive command mode, command statements in programs, and command substitution
operations described in section 4.9.

The variable in a variable substitution could be a predefined identifier described in section 2.3.1; a
user-defined variable of string, pointer to char, or integral data type; an environment variable described in
section 4.14; or undefined symbol. For a variable substitution, the Ch shell will first search the Ch name
space for the variable name according to its scope rule. If the variable is not defined, then it searches the
environment variables of the current process. If no variable with the specified name is found either in Ch
space or environment space, no substitution will take place and the variable is ignored.

64

4.7. VARIABLE SUBSTITUTION
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

The variable substitution can be prevented by preceding the ‘$’ with a ‘\’ except within ‘‘’s for com-
mand substitution where it always occurs, and within ‘’’s where it never occurs. A ‘$’ is passed unchanged
if followed by a blank, tab, or end-of-line. For example, assume myname is the user’s account name, the
following commands

> _home // _home is a predefined identifier
/home/myname
> cd $_home
> pwd
/home/myname
> _fpathext // _fpathext is a predefined identifier
.chf
> // copy file1 to file1.ch
> cp file1 file1$_pathext
> cd $CHHOME // CHHOME is an environment variable
> pwd
/usr/ch
> echo $ CHHOME \$10.5 ${_home}/tmp
$ CHHOME $10.5 /home/myname/tmp

are examples of variable substitution using $var and ${var}. The variables home and fpathext are pre-
defined identifiers in Ch. The variable home contains the home directory of the current user. For different
users, values of home are different. In a shell program, the command cd $ home is more flexible than
command cd /home/myname. Similarly, the environment variable CHHOME contains the home direc-
tory of Ch, which might be different in different machines. Obviously, a shell program using the command
cd $CHHOME are more portable than the program using command cd /usr/ch. To display ’$’ immedi-
ately followed by a digit, it has to be preceded by an ’\’.

Furthermore, suppose that the user is working with files in a directory with a very long name
/home/myname/project1/subproject2/plan1. This pathname can be abbreviated as a string
mydir. Then, when this directory is used in commands, $mydir instead of
/home/myname/project1/subproject2/plan1 can be used on the command line. For example,

> string_t mydir = "/home/myname/project1/subproject2/plan1"
> cd $mydir
> pwd
/home/myname/project1/subproject2/plan1
>

4.7.1 Expression Substitution

Expression substitution allows the evaluation of a Ch expression and the substitution of the result. The
format for expression substitution is:

$(expression)

or

${expression}

The expression shall be an expression of string, pointer to char, or integral data type. It can be a constant,
variable, function call, mathematical expression, and other valid expression.

65

4.7. VARIABLE SUBSTITUTION
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

A single variable can be treated as an expression. While variable substitution can be used to obtain the
values of a single variable, expression substitution is typically reserved for more complicated expressions.
For an environment variable or undefined symbol, variable substitution should be used. In the example
below, the environment variables used in commands are obtained by an expression calling the function
getenv().

For example,

> getenv("CHHOME") // CHHOME is an environment variable
/usr/local/ch
> cd $(getenv("CHHOME"))
> pwd
/usr/local/ch
> ls $CHHOME/include
... (list of /usr/local/ch/include)
> ls ${CHHOME}/include
... (list of /usr/local/ch/include)
> ls $(getenv("CHHOME"))/include
... (list of /usr/local/ch/include)
> ls $(stradd(getenv("CHHOME"),"/include"))
... (list of /usr/local/ch/include)
>

where commands ls $CHHOME/include, ls ${CHHOME}/include,
ls $(getenv("CHHOME"))/include, and ls $(stradd(getenv("CHHOME"),"/include"))
are equivalent to the command ls /usr/local/ch/include. But, the commands including CHHOME
are more portable. Because the character ’/’ is not a valid character for an identifier, the braces for variable
substitution of variable CHHOME is optional.

4.7.2 Command Name Substitution

A command name substitution is useful for execution of a command. The command to be executed is
obtained dynamically at run time. The syntax for command name substitution is the same as those for
variable name substitution and expression substitution. In this case, the $ shall appears at the beginning of a
syntax statement. The data type of the variable or expression following the $ sign shall be string, pointer to
char, or pointer to unsigned char. For example,

string_t cmd = "/Ch/bin/echo.exe option";
$cmd more options
string_t cmd2 = "\"C:/Program Files/ch/bin/echo.exe\"";
$cmd2 option2
char *cmd3 = "ls";
$cmd2 -agl

The string cmd contains both the command /Ch/bin/echo.exe and its option. To use a command
with white space, the command has to be placed inside a pair of double quotation marks as shown in the
string cmd2 above for the command C:/Program Files/ch/bin/echo.exe. A string cmd3 in the
form of a pointer to char contains the command ls.

66

4.8. FILENAME SUBSTITUTION
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

4.8 Filename Substitution

Using certain special characters called wild card characters, users can abbreviate filenames and directory
names by filename substitution. Valid wild card characters in Ch are shown in Table 4.10. Symbol ‘?’ is
the wild character representing a one-character value; * represents an arbitrary number of characters. For
example, to list all the files in the current working directory, type

> // list all files in current directory with *
> ls *
abc1.ch abc2.ch abc3.ch abc12.c efc1.c
>

To list all the files with extension of .ch, type

> ls *.ch
abc1.ch abc2.ch abc3.ch
>

To list files whose names contain the string c1, type

> ls *c1*
abc1.ch abc12.c efc1.c

To list files whose names start with the string abc, end with the string .ch, and have only one character
between these two strings, type

> ls abc?.ch
abc1.ch abc2.ch abc3.ch
>

The user can specify the home directory as the tilde character ˜. For example, regardless of the current
working directory, the ˜ abbreviation can be used to list the files in the home directory. Substituting ˜ in
place of the home directory pathname requires less typing and does not change the current working directory.
For example, assume that the user’s account name is myname,

> // print the current user name
> echo $_user
myname
> // list files in home directory of current user
> ls ˜
... (list files in home directory of myname)> pwd
>

The user can specify the current working directory name as ./. This substitution is useful in a variety of
situations. For instance, when the user wants to copy a file from a distant directory into the working directory,
the command cp followed by the pathname of the file and the current working directory abbreviation ./ can
be used. For example, the following commands

> pwd
/home/myname/project2
> cp /home/myname/project1/subproject2/plan1/* .
>

67

4.8. FILENAME SUBSTITUTION
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

Table 4.10: Filename substitution.

wild card character Description
* Match any (zero or more) characters.
? Match any single character.
˜ The home directory, as indicated by the value of the

variable home, or that of user, as indicated by the password entry for user.
./ current working directory.
../ the parent directory of the current working directory.

will copy all files in the directory /home/myname/project1/subproject2/plan1 into the current
working directory. Another use of the current working directory abbreviation ./ is to make sure a program
in the current directory is running. A commonly used file name, such as test, could be used by more than
one program in different directories. If the current directory is not included in the search paths specified by
the variable path, or it has a lower priority than other directory which has a file called test too, typing
the file name test will execute program test in another directory instead of the program in the current
directory. The command ./test.cwill ensure that the execution of the program is in the current directory.
The command which -a test can be used to list all programs named test in order of search paths. In
the following example, the current directory is not included in the search paths.

> pwd
/home/myname/project1/subproject2/plan1
> which -a test
/bin/test
/usr/bin/test
/usr/local/gnu/bin/test
/pkg/gnu/bin/test
> test // execute /bin/test
> ./test // execute /home/myname/project1/subproject2/plan1/test

The user can specify the parent directory of the current working directory as ... The most common use
of the parent directory abbreviation is to switch the current working directory into the parent directory or its
subdirectories.

> // print current working directory
> pwd
/home/myname/project1/subproject2/plan2
> // go to directory plan1 of the parent directory
> cd ../plan1
> pwd
/home/myname/project1/subproject2/plan1
>

In the example, the command cd ../plan1 changes the current working directory to the subdirectory
plan1 of the parent directory /home/myname/project1/subproject2.

68

4.9. COMMAND SUBSTITUTION
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

4.9 Command Substitution

Command substitution pipes the output of one command into a variable inside a program or the command
shell. This is accomplished by enclosing the embedded command in a pair of accent grave marks ‘, which
are sometimes called back quotation marks. For example,

> string_t s = ‘date‘
Wed Jul 25 10:11:18 PDT 2001
> s
Wed Jul 25 10:11:18 PDT 2001
> char *s1 = ‘date‘
> s1
Wed Jul 25 10:12:15 PDT 2001
> s1[0]
W
> free(s1) // the memory should be freed
>

Commands string t s = ‘date‘ and char *s1 = ‘date‘ pipe the output of command date to
variables s and s1, respectively. Unlike aliases of commands, variables s and s1 are not equivalent to the
command date. They only store the output of the command date. It means that the contents of s and s1
won’t change as time changes, whereas the output from execution command date will change as the time
changes. Note that the memory allocated for variable s1 should be freed later. It is recommended to use
the type string t instead of the type char * to implement command substitution. More information about
string t can be found in section 17.2. Another example for command substitution is that the Unix command

vi ‘grep -l "str1 str2" * ‘

can be used to edit all files that contain the string str1 str2 in the current directory using the vi text editor.
The variable substitution described in section 4.7 can be used inside a command substitution. The

variable can be name in Ch space or environment space. A valid Ch expression can also be used for variable
substitution. For example,

> string_t s1 = "/bin", s2;
> s2 = ‘ls $s1‘;
... (list of /bin)
> echo ‘ls $s1‘;
... (list of /bin)

Note that variable substitution can be prevented by preceding the ‘$’ with a ‘\’ except within ‘‘’s for com-
mand substitution where it always occurs, and within ‘’’s where it never occurs. A ‘$’ is passed unchanged
if followed by a blank, tab, or end-of-line. For example, if the variables f1 and f2 have values of file1
and file2, respectively, the expression

‘echo $f1 \$f2 |sed ’s/endofline$/converted/’‘

is equivalent to

‘echo file1 \file2 |sed ’s/endofline$/converted/’‘

69

4.10. INPUT/OUTPUT REDIRECTION
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

To make it easier for the user to refer to each item from the word list of a command substitution indi-
vidually, the output from a command embedded in a pair of accent grace marks ‘ is postprocessed. The
consecutive blank space characters, characters for form feed, new line, carriage return, horizontal and verti-
cal tabs are replaced by single blank space characters. This is consistent with the C shell.

The output from a command embedded in a pair of double accent grave marks ‘‘ are intact. For
example, the extra blank from the output of the command date is retained by the command substitution
‘‘date‘‘.

> string_t s = ‘‘date‘‘
> s
Mon Aug 6 11:44:16 PDT 2001
> s = ‘date‘
Mon Aug 6 11:44:24 PDT 2001
>

The two blank space characters after word Aug from output of the command ‘‘date‘‘ are retained. They
are replaced by a single blank space in command ‘date‘.

4.10 Input/Output Redirection

In Ch, a command’s input and output may be redirected using a special notation interpreted by the shell
following the convention of Bourne shell. The redirection notations listed in Table 4.11 may appear in a
typed-in command in an interactive shell or command line in a Ch program.

Through output redirection, the command cmd > output followed by the quotation can be used to
create the file output in the command mode. By typing the ‘>’ symbol, we redirected the output from the
cmd command into the file output. The system took what the command cmd would have printed out to
the screen and put it into the file output instead.

By using the symbol ‘>’, when the user redirects output into a file that already exists, the output redi-
rection will remove the current contents of that file and replace them with the output of the command. The
user can avoid overwriting the contents of a file by using another redirection symbol ‘>>’ which is called
the append redirection symbol. It adds the data to the end of a file, rather than replacing the file. If the user
appends output to a file which doesn’t exist, the symbol ‘>>’ acts like ‘>’, creating the file and redirecting
the output of a command into it.

A process associates a number with each opened file. This number is called file descriptor. When Ch is
launched in Unix, it is connected to three files, standard input which has file descriptor 0, standard output
which has file descriptor 1, standard error which has file descriptor 2. The standard error is not available
in Windows. The user can redirect any file descriptor from 0 through 9 by specifying the file descriptor
number before the symbols ‘>’, ‘<’, and ‘>>’. For instance, to redirect standard error, use 2>. The user
can redirect the output from standard output and standard error to the same file output by command
cmd > output 2> output. The user can also specify that the file descriptor n be redirected to the
same file as another file descriptor m by symbol ‘n>&m’. For instance, command cmd > output 2>&1
redirects the output of command cmd to file output, and then redirects standard error there.

The following commands illustrate how input/output redirection in Ch shell works.

> cat datefile
old content
> date > datefile
> cat datefile

70

4.10. INPUT/OUTPUT REDIRECTION
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

Table 4.11: Input/Output redirection.

Notation Description
cmd < word Use file word as standard input (file descriptor 0).
cmd > word Use file word as standard output (file descriptor 1).

If the file does not exist, it is created; otherwise, it is truncated to zero length.
cmd > word 2>&1 Redirect the standard output and standard error (diagnostic output) to file word (for Unix).
cmd 1 > word 2>&1 Redirect the standard output and standard error (diagnostic output) to file word (for Windows).
ch -r cmd > word Redirect the standard output and standard error (diagnostic output) to file word

(for both Unix and Windows).
If the file does not exist, it is created; otherwise, it is truncated to zero length.

cmd >> word Use file word as standard output. If the file exists, output is appended
to it (by first seeking to the EOF); otherwise, the file is created.

cmd >> word 2>&1 Redirect the standard output and standard error (diagnostic output) to file word.
If the file exists, output is appended to it (by first seeking to the EOF);
otherwise, the file is created (for Unix).

cmd 1 >> word 2>&1 Redirect the standard output and standard error (diagnostic output) to file word.
If the file exists, output is appended to it (by first seeking to the EOF);
otherwise, the file is created (for Windows).

cmd << word After parameter and command substitution is done on word, the shell input is read
cmd << word After parameter and command substitution is done on word, the shell input is read

up to the first line that literally matches the resulting word, or to an EOF.

71

4.10. INPUT/OUTPUT REDIRECTION
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

Wed Jul 25 17:10:40 PDT 2001
>
> date >> datefile
> cat datefile
Wed Jul 25 17:10:40 PDT 2001
Wed Jul 25 17:11:45 PDT 2001
>
> cat > p1.c
int i, j
(To complete the file and quit from the command cat,
use Ctrl-D in Unix or Ctrl-Z in Windows)
> p1.c > result_p1 2>&1
> cat result_p1
ERROR: missing ’;’
ERROR: syntax error before or at line 2 in file p1.c
==>:
BUG: <== ???
WARNING: cannot execute command ’p1.c’
>
> cat > input_p2
10
(To complete the file and quit from the command cat,
use Ctrl-D in Unix or Ctrl-Z in Windows)
> cat > p2.c
int i;
scanf("%d", i);
printf("%d\n", i);
(To complete the file and quit from the command cat,
use Ctrl-D in Unix or Ctrl-Z in Windows)
> p2.c < input_p2
10
>

In this example, output of command date is redirected to file datefile by symbol ‘>’ first. The content
in datefile is overwritten. Then the second output of command date is redirected to file datefile by
symbol ‘>>’. It is appended to the end of file datefile, rather than overwriting it. The error messages of
the execution of file p2.c are redirected into the file result p1 by the command p1.c > result_p1 2>&1.
Using the symbol ‘<’, interactive execution of file p2.c gets the input from file input p2 instead of key-
board which is the default standard input device.

Note that the syntax

cmd >& word

for redirecting both standard output and standard error to file word works in C shell, but not in Ch and
Bourne shells. Use

ch cmd > word 2>&1

in Ch and Bourne shells in Unix.
There is a command option -r in Ch, which can be conveniently used to redirect the standard error

stderr to the standard output stdout. The command below

72

4.11. PIPELINE
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

ch -r cmd > word

will redirect both standard output and standard error to the file word. This syntax works in both Unix and
Windows.

In Unix, the function system() can be used to redirect the stdout of a command, say cmd, to file word1
and the stderr to file word2 as shown below.

system("(cmd > word1) 2> word2");

4.11 Pipeline

A pipeline is a sequence of one or more commands separated by the symbol | . The standard output of
each command except the last one is connected by a pipe to the standard input of the next command. Each
command runs as a separate process; the shell waits for the last command to terminate. The exit status of
a pipeline is the exit status of the last command in the pipeline. Users can regard it as running the first
command with its output redirected to a temporary file, then running the second command with its input
redirected from the temporary file, and so on.

The common use of a pipeline is preprocessing or postprocessing the output of a command by connecting
one or more filters together. A command that reads from the standard input and writes to the standard output
is called a filter. For example, the command grep which displays the lines in one or more files that contain
a specified string. If the user wants to look for the definition of typedefed type time t in the header file
directory /usr/ch/include, the commands below with a pipeline can be used,

> pwd
/usr/ch/include
> grep time_t *.h | grep typedef
time.h:typedef int time_t;
>

The output of command grep time t *.h is piped to grep typedef. It means the pipeline grep
time t *.h | grep typedef lists all lines which include both strings time t and typedef in
header files in the directory /usr/ch/include. It is more effective than only using grep time_t *.h
or grep typedef *.hwhich may give the user many useless output. The command below only displays
the status of processes whose owner is myname and command is vi.

> ps -elf | grep myname | grep vi
1 S myname 20851 20850 0 156 20 19d0500 115 1086564 23:36:47
ttyp5 0:01 /bin/vi example.txt
>

The command ps -elf lists all processes status in detail. Its output is piped to command grep myname
as input. Then the command grep myname lists lines including string myname. These lines are piped to
command grep vi as input. The pipelined command lists all processes status lines which include both
strings myname and vi.

As another example, a compressed archival file file.tar.gz can be retrieved by the command below

gzip -cd file.tar.gz |tar -xvf -

The command gzip unzips the file file.tar.gz first. The uncompressed file is then piped as the stan-
dard ouput for command tar to extract files. To copy files in the directory /home/from to directory
/home/new/from without changing the permission mode and access time, the following command can
be used.

73

4.12. RUNNING COMMANDS IN BACKGROUND
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

tar cf - /home/from | (cd /home/new; tar xf -)

Function popen() and pclose() can also be used to pipe output from one program to other one. For
example, the ed command in the following Bourne shell program

#!/bin/sh
ed testfile <<END
a
input from the console command line
abcd
123456
.
w
q
END

will edit the file testfile using the subsequent lines, up to the first occurrence of delimiter line END, as
input. The user doesn’t have to use “END” as the delimiter, any word will do. The editor ed will append the
file with the three text lines shown below.

input from the console command line
abcd
123456

ed is a line-oriented text editor. a, ‘.’, w and q in the Bourne shell program are commands of ed. The
command a (“append”) tells ed to start collecting text; the ‘.’ is a command to signal the end of the text; the
command w (“write”) stores the information into file testfile; the command q (“quit”) leaves the editor.

The result of the previous bourne shell program can be achieved using a Ch program by piping data to a
process as follows:

#!/bin/ch
#include <stdio.h>
FILE *fp;
string_t command_args="a\ninput from the console command line\
\nabcd\n123456\n.\nw\nq";
fp = popen("ed testfile", "w");
fwrite(command_args, strlen(command_args), sizeof(char), fp);
pclose(fp);

where the command and input lines for editor ed in previous Bourne shell program are replaced by a variable
of type string t, command args. In the string of the variable command args, these command and input
lines are put together and separated by new line characters ‘\n’. Functions popen() and pclose() are used to
initiate and close the piped I/O to the process for command ed testfile, respectively. The first argument
of function popen() is a string containing the shell command line ed testfile; the second argument of
w is the I/O mode indicating the operation is writing data to the process through the pipe. Function fwrite()
sends the data to a stream pointed to by the stream fp for the process of shell command ed testfile.

4.12 Running Commands in Background

By default, Ch shell in command mode waits for a command to finish execution before the next prompt
is displayed. The command for which Ch shell waits is called a foreground command. A background

74

4.13. RUN-TIME EXPRESSION EVALUATION
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

command is a process that is started asynchronously within a Ch shell. Before the background command
is completed, the Ch shell will display the next prompt and readily accept the input from the command
line. In program mode, the control flow of the program will go to the next statement immediately before
the background command finishes execution. A command or pipeline ending with an & will be treated as a
background command. If the output of a background command is not redirected, it will be displayed at the
terminal.

A background command is useful for handling commands that take a long time to execute. It is also
useful to start a command with event-driven graphical user interface. For example, command notepad in
Windows can be started as a background command as shown below.

> notepad &

4.13 Run-Time Expression Evaluation

The generic function streval() can be used to evaluate an expression expressed in string at run time. The
expression may invoke functions located in function files specified by the function file path fpath. This
function is polymorphic and can only be used as an rvalue. For example,

> int i = 1
> float f = 10.1
> string_t s
> char a[10], *p
> i = streval("i*2") /* i becomes 2 */
2
> s = "f*i"
f*i
> f = streval(s) /* f becomes 20.20 */
20.20
> strcpy(a, s)
f*i
> strcat(a, "+5")
f*i+5
> f = streval(a) /* f becomes 45.40 */
45.40
> p = a
f*i+5
> f = streval(p) /* f becomes 95.80 */
95.80
> streval("23unknown")
Invalid argument for streval()

The generic function strparse() returns 0, if the expression can be converted to a numerical value at
runtime. Otherwise, it returns non-zero as illustrated below.

int i =90, status;
status = strparse("i*2");
if(!status) {

i = streval("i*2");
printf("i = %d\n", i);

}

75

4.14. HANDLING ENVIRONMENT VARIABLES
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

In some applications, the string value for an argument of streval() is passed through the command
interface. For example, program command may obtain strings x and 10 , or x+sin(90)*9 and 10. The
parentheses may need to be escaped as shown below.

command x 10
command x+sin\(90\)*9 10

4.14 Handling Environment Variables

The environment variables in Ch are similar to the environment variables in other Unix shells and MS-DOS
shell. There are four environment variable handling functions in Ch. Function putenv() can add an environ-
ment variable to the system. This function is commonly used in the system startup file CHHOME/config/chrc
and individual user’s startup file .chrc in Unix and chrc in Windows in the user’s home directory. Given an
environment variable, function getenv() can get its corresponding value. Function remenv() can remove
an environment variable. Function isenv() can test if a symbol is an environment variable. The interactive
command execution below demonstrates their application.

> putenv("ENVVAR=value")
0
> getenv("ENVVAR")
value
> isenv("ENVVAR")
1
> remenv("ENVVAR")
> isenv("ENVVAR")
0
>

In this example, the value value has been set to the environment variable ENVVAR by using command
putenv("ENVVAR=value"). Note that in C there shouldn’t be blanks space adjacent to the equal sign
‘=’. After that, the command getenv("ENVVAR") obtains value, the value of the environment variable
ENVVAR. Because ENVVAR is an environment variable, the function call isenv("ENVVAR") returns 1.
After invoking function remenv() to remove ENVVAR from environment variables, the the function call
isenv("ENVVAR") returns 0.

As an example of application, the environment variable DISPLAY can be set in the remote machine to
the name of a local machine local.domain.com so that the remote machine remote.domain.com
can send graphic output to the machine local.domain.com through the network via X-window. On the
local machine local.domain.com, the command

> xhost server.domain.com
server.domain.com being added to access control list
>

should be used to add the remote machine into the access control list. On the remote machine
remote.domain.com, the command

> putenv("DISPLAY=local.domain.com:0.0")
>

76

4.14. HANDLING ENVIRONMENT VARIABLES
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

sets the environment variable DISPLAY to make the server send graphic output to local.domain.com.
Programs described in section 10.10 can be used to print out all environment variables and their corre-

sponding values. In Unix, a system command env can also be used to display all environment variables.
Environment variables are passed to all commands and programs running from within the current shell.

A Ch subshell inherits a copy of the environment from its parent shell. On the other hand, changes to the
values of environment variables in a subshell will not affect its parent shell. For example,

> putenv("ENVVAR=value")
0
> getenv("ENVVAR")
value
> cat > changeenv.ch
#!/bin/ch
printf("%s\n", getenv("ENVVAR"));
putenv("ENVVAR=value2");
printf("%s\n", getenv("ENVVAR"));

(To complete the file and quit from the command cat,
use Ctrl-D in Unix or Ctrl-Z in Windows)
> changeenv.ch
value
value2
> getenv("ENVVAR")
value
>

In this example, program changeenv.ch runs in a subshell which has a copy of all environment variables
including ENVVAR from its parent shell. After changing the value of the copy of ENVVAR in the subshell
to value2, the value of ENVVAR in the parent shell is still value. As it is described in section 4.4,
a program can be executed in the current shell using dot command. In the example below, command .
changeenv.ch, changes the environment variable ENVVAR in the current shell.

> getenv("ENVVAR")
value
> . changeenv.ch
value
value2
> getenv("ENVVAR")
value2
>

The values of environment variables at the command line in the interactive Ch shell, and command
statements in a program can be obtained by variable substitution described in section 4.7. The value of
environment variable ENVVAR can be obtained by either $ENVVAR or $(getenv(ENVVAR)) as shown
below.

> getenv("ENVVAR")
value
> echo $ENVVAR
value
> echo $(getenv("ENVVAR"))

77

4.15. GENERAL-PURPOSE CH PROGRAMS
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

Table 4.12: General-Purpose Ch Programs.

Command Description
ch Ch shell
dirs List directories in the dir stack, C shell compatible
help Getting started in Ch
popd Pop the first directory from the dir stack, and switch to that directory, C shell compatible
popd +n Pop the nth directory from the dir stack, and switch to that directory, C shell compatible
pushd Switch to the second directory in the stack, C shell compatible
pushd dirname Push directory dirname onto the dir stack, and switch to that directory, C shell compatible
pushd +n Switch to the nth directory in the stack, C shell compatible
chs Safe Ch shell
which [-a] Similar to which in C shell. Used to show the location of a token

value
>

As illustrated in Appendix D, an environment variable can be setup in C shell using its shell command
setenv. In sh, bash, ksh shells, it can be setup by the shell command export. As an example, the
command

putenv("DISPLAY=local.domain.com:0.0")

in Ch shall be handled in C shell as

setenv DISPLAY local.domain.com:0.0

In sh, bash, and ksh shells, it can be setup as

DISPLAY=local.domain.com:0.0
export DISPLAY

4.15 General-Purpose Ch Programs

The commands listed in Table 4.12 are general-purpose Ch programs. Command ch or chs is used to start
a new regular Ch or safe Ch, respectively. Command which is used to tell where a specified executable
program is found. Commands dirs, pushd and popd, borrowed from C shell, can maintain a directory stack
which allows the users to conveniently switch among several working directories. The user can use these
in place of cd for changing directories. Command pushd is used to travel between two directories on the
top of the stack. Command pushd dirname pushes the dirname into the stack, and switches the current
working directory there. Command pushd +n changes the current working directory to the nth directory
on the stack. Command popd removes the top directory from the stack. Command popd+n removes the
nth directory from the stack. Command help can help new users of Ch get started with some illustrative
examples.

The following commands illustrate how these general-purpose programs can be used in Ch shell.

78

4.15. GENERAL-PURPOSE CH PROGRAMS
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

> which ch
/usr/ch/bin/ch
> which ch ls
/usr/ch/bin/ch
ls is aliased to ls -F
> which -a ls stdio TERM
ls is aliased to ls -F
/bin/ls
/usr/bin/ls
/usr/ucb/ls
/usr/ch/include/stdio.h
dtterm
> pwd
/usr/ch
> pushd /usr/ch
0 /usr/ch
> pwd
/usr/ch
> pushd /home/myname
0 /home/myname
1 /usr/ch
> pwd
/home/myname
> pushd
0 /usr/ch
1 /home/myname
> pwd
/usr/ch
> pushd
0 /home/myname
1 /usr/ch
> pwd
/home/myname
> dirs
0 /home/myname
1 /usr/ch
> popd
0 /usr/ch
> dirs
0 /usr/ch
>

In this example, the which command first tells where the executable program of the ch command is found.
It can handle multiple commands as shown with commands ch and ls. In this case, ls is an alias. If the option
-a is used, all aliases, executable programs in the paths specified by predefined identifier path, function
files in the paths pointed by fpath, environment variable, and header files in the paths pointed by ipath
are displayed. Without option -a, only the first available command, function file, and header file, or the
value of an environment variable are displayed. With option -v, if commands cannot be found, all paths

79

4.16. SHELL PROGRAMMING
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

Table 4.13: The first line of shell programs for different shells.

Shell The first line
Ch shell #!/bin/ch
C shell #!/bin/csh
Bourne shell #!/bin/sh
Korn shell #!/bin/ksh
BASH #!/bin/bash

in path will be displayed. In the above example, besides an alias for ls, all possible executable commands
in the paths are listed. Symbol stdio is a header file stdio.h with file extension .h. The value for
environment variable TERM is dtterm. After pushing two working directories into the stack, the command
pushd is used to switch between these two directories.

Commands listed in Table 4.12 are accessible by regular Ch shell only, not by safe Ch shell. However,
Ch shell can also be invoked by safe Ch shell

4.16 Shell Programming

4.16.1 Use Shell Commands in Programs

Unlike C shell, the syntax and control flow of Ch are C compatible. C programs can readily run in a Ch
shell. However, if the execution speed of a program is not a major concern, it is often more convenient to
use shell commands in a Ch program. Based on the existing commands, sometimes, a task which needs
thousands of lines of C code can be accomplished with only a few lines of Ch code. Appendix G in gives a
list of commands commonly used for shell programming portable across different platforms in Ch.

A Ch shell script typically does not contain function main() or WinMain() in Windows. In Ch shell,
a file with the name extension specified in the system variable pathext will be treated as a Ch script file,
regardless of its content. Otherwise, Ch will analyze the content. Typically, the shell for which a script file
is written is indicated by the first line of the file. They are shown in Table 4.13 for popular Unix shells. If the
first line of a program contains the statement #!/bin/ch, it will be treated as a Ch shell script. Ch scripts
can be executed even in other shells such as C shell or Bourne shell. If the file extension of a shell script is
included in the system variable pathext, the script will be treated as a Ch shell script even if the first line
indicates that it is not a Ch program. In this case, the program may not run successfully as a Ch program.

If the file extension of a program is not contained in the system variable pathext, and the program does
not start with the statement #!/bin/ch or other tokens described in section 3.3, Ch will invoke other shell
to execute it.

A command invoked inside a Ch program is called a command statement. The constraints for a command
statement, say cmd, are as follows.

• It shall be a valid identifier or an identifier with file extension, such as cmd.ext.

• It shall not be a declared variable within the scope, except that it is preceded with an absolute or
relative path as shown below for command cmd.

/path/cmd
./cmd

80

4.16. SHELL PROGRAMMING
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

../cmd
˜/cmd

• If the command name is also a declared variable within the scope, the command can be enclosed
inside a pair of double quotation marks. The option for the command shall not be included inside the
quotation marks. It can also be used in the case that the command is located in a directory with white
space. For example,

int ls = 10;
"ls" -1
"/ch/bin/echo" option $PATH
"C:/Program Files/Windows NT/Accessories/wordpad.exe"

• A command can be obtained dynamically at run time by command name substitution. The data type
of the variable or expression following the $ sign for command name substitution. shall be string,
pointer to char, or pointer to unsigned char. For example,

string_t s = "cmd";
$s option

In the case, the symbol cmd can also be used as a variable name independent of the command name.

• It shall be enclosed with a pair of double quotation marks following a dot ‘.’ such as

. "cmd"

In this case, the command cmd is executed in the current shell as if it is included by the preprocessing
directive include, except that the system variable path, instead of ipath, is searched for the
program. It is similar to

#pragma import "cmd"

In Windows, if a Ch shell script, say cmd.ch, is used in other programs, such as in a Makefile, it may
need to be invoked by Ch as follows.

ch cmd.ch

or

ch cmd

These two formats of command execution start Ch shells explicitly to execute the script file cmd.ch.
The variable substitution described in section 4.7 can be applied to variables used in command state-

ments. The ending semicolon for other programming statements is not required for command statements.
For example, assume the shell script cpfile1.ch contains the following statements

#!/bin/ch
cp /dir/source/*.ch /dir/dest/

There is no ending semicolon for the command statement starting with Unix command cp, which copies
files specified by the first argument to the directory specified by the second argument. Execution of the
above shell script

81

4.16. SHELL PROGRAMMING
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

#!/bin/ch
#include <stdio.h>
#include <unistd.h>
string_t file, files = ‘ls ./‘;
string_t newfile="newfile";
string_t allfiles= stradd(_home, "/allfiles");
int i;

if (access(newfile, F_OK) == 0) // clear up first
remove(newfile);

foreach(file; files) {
if (access(file, R_OK) == 0) {

i++;
echo $i $file >> $newfile
echo $i $file >> $allfiles

}
}

Program 4.2: Handle I/O use shell scripts.

> cpfile1.ch
>

copies all files with extensions .ch from directory /dir/source to directory /dir/dest.
The foreach loop described in section 8.4.4 is very useful for shell programming. For example, the

program below will print names of all files in the current directory. File names in the current directory are
obtained by command ls and sorted by a foreach-loop.

#!/bin/ch
string_t file, files = ‘ls ./‘;
foreach(file; files) {
printf("file = %s\n", file);

}

Although the output from a program can be handled by a family of I/O functions fopen(), fclose(),
fprintf(), etc. described in Chapter 20, it is often time more convenient to use shell commands to send
output from a program to files. For example, in Program 4.2, file names with read permission in the current
directory are saved in file newfile. If the file newfile already exists, it will be deleted first by the
function remove(). Whether file exists or not is tested by the function call of access(file, F_OK).

The function access(), which is defined in the header file unistd.h, checks the accessibility of the file
named by the pathname pointed to by the first argument. The real user ID in place of the effective user ID
and the real group ID in place of the effective group ID are used to allows a setuid process to verify that
the user running it would have had permission to access this file. The value of the second argument, which
is of type int, is either the bitwise inclusive OR of the access permissions to be checked (R OK, W OK,
and X OK) or the existence test (F OK). These symbolic constants are described in Table 4.14. If the
requested access is permitted, zero shall be returned. Otherwise, -1 shall be returned and errno shall be
set to indicate the error.

In Program 4.2, whether file is readable or not is checked by function call of access(file, R_OK).
File names are also appended in file allfiles located in the user’s home directory by command echo with

82

4.16. SHELL PROGRAMMING
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

Table 4.14: Symbolic Constants for the function access().

Constant Description
R OK Test for read permission.
W OK Test for write permission.
X OK Test for execute or search permission.
F OK Test for existence of file.

#!/bin/ch
string_t result1;
char result2[50];

grep "test" myfile.txt;
if (_status == 0) {

printf("’test’ is found in myfile.txt\n");
}
else {

printf("Cannot find ’test’ in myfile.txt\n");
}
result1=‘wc -l /etc/passwd‘;
echo $result1;
strcpy(result2, ‘wc -l /etc/passwd‘);
printf("%s\n", result2);

Program 4.3: Combination of shell commands with C code.

output redirection. A file name is preceded with a sequential number. For example, if the current directory
contains files file1, file2, file3. the output from executing Program 4.2

1 file1
2 file2
3 file3

will be redirected to file newfile in the current directory and at the same time appended in file allfiles
in the user’s home directory.

For shell programming, section 20.9 uses function stat() and directory handling functions to obtain
detailed information such as the size, access time, user id, etc. of files in a directory and its subdirectories
recursively.

Executable programs can be used directly from a Ch script. Shell commands such as sed, awk, wc, grep,
etc. can be combined with C code to run in Ch as shown in Program 4.3 The output for tnum1 and tnum2
in Program 4.3 is the same.

4.16.2 Passing Values to Shell Commands

This section describes how values from command line arguments can be passed to Ch shell programs. In
a Ch shell program, two predefined identifiers argc and argv are used to handle arguments from the
command line. They are defined internally with types of int and char ** as follows,

83

4.16. SHELL PROGRAMMING
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

int _argc;
char* _argv[];

Identifier argc contains the number of the arguments on the command line which includes the command
name itself. Identifier argv maintains the argument list on the command line. The shell stores the command
name in argv[0], the first argument in argv[1], and so on. For example, assume file argtest.ch has
the following statements.

#!/bin/ch
echo $_argc
echo $(_argv[0])
echo $(_argv[1])
printf("%s\n", _argv[2]);
printf("%s\n", _argv[3]);

The execution of argtest.ch is shown below.

> argtest.ch -option arg2
3
argtest.ch
-option
arg2
(null)
>

In this example, the value of argc is 3, which includes file name argtest.c and two arguments arg1 and
arg2. The filename is stored in the variable argv[0]; the first argument arg1 is in argv[1]; the second
argument arg2 in argv[2]. Comparison of C shell and Ch for accessing arguments in the command line
are listed in Appendix D.

Program 4.4 is an example for handling command-line arguments with argc and argv. It can be used
to implement the which command. Here, the variables a option and v option indicate that the valid
options -a and -v are on or not. Their values are false by default. If there is no command-line argument,
the program will print out the error message, because the command which at least has one argument, i.e. the
name to be searched for. The while-loop in this program handles all arguments which begin with the minus
sign -, and the for-loop analyzes these arguments character by character. The statement

c = _argv[i][j++];

makes variable c equal the jth character in the argument argv[i]. If the characters ‘a’ and ‘v’ are found
in these arguments, the variables a option and v option are set to true, respectively. If other characters
are found, the error messages will be printed out. At the end of Program 4.4, options and the remaining
command-line arguments are printed out. Assume that the file name of Program 4.4 is commandline.ch,
the results from executing Program 4.4 with different options are shown below.

> commandline.ch -a -v arg1
option -a is on
option -v is on
arg1
> commandline.ch -av arg1
option -a is on
option -v is on

84

4.16. SHELL PROGRAMMING
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

#include <stdio.h>
#include <stdbool.h>

int main() {
int i = 0; // for index of arguments
int j = 0; // for index of characters in arguments
char c;
int a_option = false; // default, no -a option
int v_option = false; // default, no -v option

if(_argc == 1){ // no argument
fprintf(stderr, "Usage: which [-av] names \n");
exit(1);

}

_argc--; i++; j = 0;
while(_argc > 0 && _argv[i][j++] == ’-’) {

// for every argument beginning with -
// empty space is not valid option
for(c = _argv[i][j++]; c&&c!=’ ’; c = _argv[i][j++]) { // for -av

switch(c)
{

case ’a’:
a_option = true; // get all possible matches
break;

case ’v’:
v_option = true; // print message
break;

default:
fprintf(stderr,"Warning: invalid option %c\n", c);
fprintf(stderr, "Usage: which [-av] names \n");
break;

}
}
_argc--; i++; j = 0;

}

if(a_option)
printf("option -a is on\n");

if(v_option)
printf("option -v is on\n");

while(_argc > 0) { // print out the remaining arguments
printf("%s\n", _argv[i]);
_argc--; i++;

}
return 0;

}

Program 4.4: Handle command-line arguments with argc and argv.

85

4.16. SHELL PROGRAMMING
CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING

arg1
> commandline.ch -v arg1 arg2
option -v is on
arg1
arg2

The similar program which handles command-line arguments with pointers to pointers is discussed in sec-
tion 10.10.

Assume program cpfile2.ch contains the following statements.

#!/bin/ch
cp /dir/source/$(_argv[1]) /dir/dest/

Program cpfile2.ch can be used to copy files located at directory /dir/source to directory
/dir/dest conveniently. For example, the commands below

> cpfile2 file1
> cpfile2 file2
>

will copy files file1 and file2 from /dir/source to directory /dir/dest.

86

Chapter 5

Preprocessing Directives

At its current implementation, Ch is interpretive. It has no separate translation stage such as preprocessing.
But, the syntaxes of preprocessing directives in C are supported in Ch. For the sake of convenience, we also
call them preprocessing directives in Ch. A preprocessing directive consists of a sequence of preprocessing
tokens that begins with a # preprocessing token. The preprocessing directives are listed in Table 5.1. The
details about these directives will be described in this chapter.

Table 5.1: Preprocessing directives.
Directive Description
#define Define a preprocessor macro.
#elif Alternatively include some text based on the value of another expression,

if the previous #if, #ifdef, #ifndef, or #elif test failed.
#else Alternatively include some text, if the previous

#if, #ifdef, #ifndef, or #elif test failed.
#endif Terminate conditional text.
#error Produce a compile-time error with a designated message.
#if Conditionally include text, based on the value of an expression.
#ifdef Conditionally include text, based on whether a macro name is defined
#ifndef Conditionally include text, based on if a name is not defined macro
#include Insert text from another source file.
#line Give a line number for message.
#pragma Ch specific features, not in C standard.
#undef Remove a preprocessor macro definition.
Replace a maco parameter with a string constant containing the parameter’s value
Create a single token out of two adjacent tokens.
Null directive.
defined Preprocessing operator that yields 1 if a name is defined as

a preprocessing macro and 0 otherwise; used in #if and #elif.

5.1 Conditional Inclusion

Preprocessing directives of the forms

if expr1
elif expr2

87

5.2. SOURCE FILE INCLUSION CHAPTER 5. PREPROCESSING DIRECTIVES

check whether the controlling expression evaluates to nonzero. The expression that controls conditional
inclusion shall be an integer expression except that it shall not contain declared identifiers. It may contain
preprocessing operation

defined (identifier)

which evaluates to 1 if the identifier is currently defined as a macro name (that is, if it is predefined or if
it has been the subject of a #define preprocessing directive without an intervening #undef directive with
the same subject identifier), 0 if it is not. Ch has extensions to C in preprocessing directives. All operators
and generic functions such as strcat(), and strcmp(), access() can be used in arguments of
preprocessing directives #if and #elif in Ch. For example,

#if defined(_HPUX_)
printf("I am using HP-UX\n");

#elif !strcmp(‘uname‘, "Linux")
printf("I am using Linux\n");

#endif

Preprocessing directives of the forms

ifdef identifier
ifndef identifier

check whether the identifier is or is not currently defined as a macro name. Their conditions are equivalent
to #if defined (identifier) and #if !defined (identifier), respectively.

Each directive’s condition is checked in order. If it evaluates to false (zero), then the group that it
controls is skipped: directives are processed only through the name that determines the directive in order to
keep track of the level of nested conditionals; the rest of the directives’ preprocessing tokens are ignored, as
are the other preprocessing tokens in the group. Only the first group whose control condition evaluates to
true (nonzero) is processed. If none of the conditions evaluates to true, and there is a #else directive, then the
group controlled by the #else is processed; if lacking a #else directive, then all the groups until the #endif
are skipped.

5.2 Source File Inclusion

A #include directive identifies a header or source file that can be processed by the Ch interpreter. A prepro-
cessing directive of the form

#include <h-char-sequence>

searches for a header identified uniquely by the specified sequence between the < and > delimiters, and
causes the replacement of that directive by the entire contents of the header. The header is searched accord-
ing to the paths specified in predefined identifier ipath of string type. Each path is delimited by a semicolon.
By default, the variable ipath contains string "CHHOME/include;CHHOME/toolkit/include;"
where CHHOME is the home directory of the Ch software. The variable ipath for the search path is
typically setup in a startup file .chrc in Unix and chrc in Windows in the user’s home directory.

A preprocessing directive of the form

#include "q-char-sequence"

88

5.3. MACRO REPLACEMENT CHAPTER 5. PREPROCESSING DIRECTIVES

causes the replacement of that directive by the entire contents of the source file identified by the specified
sequence between the " delimiters. The named source file is searched for in the current directory first, then
in the directory specified in the system variable ipath.

A preprocessing directive of the form

#include pp-tokens

that does not match one of the two previous forms is permitted. The preprocessing tokens after include
in the directive are processed just as in normal text. Each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens. The directive resulting after all replacements shall
match one of the two previous forms. A #include preprocessing directive may appear in a source file that
has been read because of a #include directive in another file. There is no limit to the nesting level of the
#include directives.

The most common uses of #include preprocessing directives are given as follows:

#include <stdio.h>
#include "myprog.h"

The following code fragment illustrates macro-replaced #include directives:

#if VERSION == 3
#define INCFILE <version3.h>

#elif VERSION == 2
#define INCFILE <version2.h>

#else
#define INCFILE <version1.h>

#endif
#include INCFILE

5.3 Macro Replacement

A preprocessing directive of the form

#define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name to be replaced by the
replacement list of preprocessing tokens that constitute the remainder of the directive. The new-line is a
character that terminates the #define preprocessing directive.

The identifier immediately following the #define is called the macro name. The macro name is followed
by a sequence of tokens called replacement list. Two replacement lists are identical if and only if the
preprocessing tokens in both have the same number, ordering, spelling, and white-space separation, where
all white-space separations are considered identical.

The simple form of macro is particularly useful for introducing named constants into a program, so
that some numbers such as the length of a table may be written in exactly one place and then referred to
elsewhere by name. This makes it easier to change the number later. For example, given the following
macro

#define BLOCK_SIZE 0x100

we can write

89

5.3. MACRO REPLACEMENT CHAPTER 5. PREPROCESSING DIRECTIVES

int size = BLOCK_SIZE;

instead of

int size = 0x100;

A preprocessing directive of the form

#define identifier(identifier-list-opt) replacement-list new-line

defines a function-like macro with arguments, similar syntactically to a function call. The parameters are
specified by the optional list of identifiers, whose scope extends from their declaration in the identifier list
until the new-line character that terminates the #define preprocessing directive. Each subsequent instance of
the function-like macro name followed by an open parenthesis ’(’ as the next preprocessing token introduces
the sequence of preprocessing tokens that is replaced by the replacement list in the definition (an invoca-
tion of the macro). The replaced sequence of preprocessing tokens is terminated by the matching closing
parenthesis ’)’ preprocessing token, skipping intervening matched pairs of left and right parenthesis prepro-
cessing tokens. Within the sequence of preprocessing tokens making up an invocation of a function-like
macro, new-line is considered a normal white-space character.

For example, if a macro mul with two arguments is defined by

#define mul(x,y) ((x)*(y))

then the source program line

result = mul(5, a+b);

is replaced with

result = ((5)*(a+b));

Note that the parentheses are important in the macro definition. If the macro mul()was defined without
parentheses as

#define mul(x,y) x*y

the statement

result = mul(5, a+b);

would become

result = 5*a+b;

A variable argument list macro uses the ellipsis notation in the arguments. An identifier VA ARGS
that occurs in the replacement list is treated as if it were a parameter, and the variable arguments form the
preprocessing tokens used to replace it. For example, the code fragment

#define debug(...) printf(__VA_ARGS__)
#define debug2(fp, ...) fprintf(fp, __VA_ARGS__)
debug("x = %d\n", x);
debug2(stderr, "x = %d\n", x);

results in

printf("x = %d\n", x);
fprintf(stderr, "x = %d\n", x);

90

5.4. CONVERTING TOKENS TO STRINGS CHAPTER 5. PREPROCESSING DIRECTIVES

5.4 Converting Tokens to Strings

The # token appearing within a macro definition is recognized as a unary stringization operator. If, in the
replacement list, a parameter is immediately preceded by a # preprocessing token, both are replaced by
a single character string literal preprocessing token that contains the spelling of the preprocessing token
sequence for the corresponding argument. For example,

> #define TEST(a) #a
> printf("%s",TEST(abcd))
abcd
>

The macro parameter abcd has been converted to the string constant “abcd”.
Each occurrence of white space between the argument’s preprocessing tokens becomes a single space

character in the character string literal. White space before the first preprocessing token and after the last
preprocessing token composing the argument is deleted. Otherwise, the original spelling of each prepro-
cessing token in the argument is retained in the character string literal. The spelling of string literals and
character constants: a \ character is inserted before each " and \ character of a character constant or string
literal (including the delimiting " characters), is specially handled. For example,

> #define TEST(a) #a
> printf("1%s2",TEST(a b))
1a b2
> printf("1%s2\n", TEST(a\\b))
1a\b2
> printf("1%s2\n", TEST(" a \\ b "))
1" a \\ b "2
>

Here the argument is turned into the string constant “a b”. The white spaces before a and after b are
deleted, and the sequence of white spaces between a and b is replaced by a single character.

5.5 Token Merging in Macro Expansions

Merging of tokens to form new tokens in Ch is controlled by the presence of the merging operator ## in
macro definitions. For both object-like and function-like macro invocations, before the replacement list is re-
examined for more macro names to replace, each instance of a ## preprocessing token in the replacement list
(not from an argument) is deleted and the preceding preprocessing token is concatenated with the following
preprocessing token. The new token might be the name of a function, variable or type, or a keyword; it might
even be the name of another macro, in which case it will be expanded. The common use of concatenation
is concatenating two names into a longer name. It is also possible to concatenate two numbers, or a number
and a name, such as ‘1.5’ and ‘e3’, into a number. In addition, multi-character operators such as ‘+=’ can
be formed by concatenation. For example,

> #define CONC2(a, b) a ## b
> #define CONC3(a, b, c) a ## b ## c
> CONC2(1, 2)
12
> CONC3(3, +, 4)

91

5.6. LINE CONTROL CHAPTER 5. PREPROCESSING DIRECTIVES

7
>

The macro CONC2(1, 2) concatenates two numbers, 1 and 2, into 12, and CONC2(3, +, 4) concate-
nates these three arguments into 3+4, which generates 7 in Ch command line.

Ch converts comments to white spaces before macros are even considered. Any “/* comment sequence */”
sequence will be interpreted as a number of blank spaces. The user can use comments next to a ”##” in
a macro definition, or in actual arguments that will be concatenated because the comments will be initially
converted to blank spaces that will later be discarded by the contatenation operation. For example,

> #define CONC2(a, b) a ## b
> CONC2(1, /*this is a comment */2)
12
>

The comment in the second argument is discarded in concatenation.
A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either

form of macro definition.

5.6 Line Control

The #line directive can be used to alter the line numbers assigned to the source code. This directive gives a
new line number to the following line, which is then incremented to derive the line number for subsequent
lines. The directive can also specify a new file specification for the program source file. This is useful for
referring to original source files that are preprocessed into Ch code by other programs.

A preprocessing directive of the form

#line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source
line that has a line number as specified by the digit sequence (interpreted as a decimal integer). The digit
sequence shall not specify zero, nor a number greater than 2147483647. The line number is stored in the
predefined macro LINE internally.

A preprocessing directive of the form

#line digit-sequence "s-char-sequence-opt" new-line

sets the presumed line number similarly and changes the presumed name of the source file to be the contents
of the character string literal. The name of the source file is stored in the predefined macro FILE
internally.

For example, the following program with file name pre line.c.

int main () {
printf("before line directive, line number is %d \n", __LINE__);
printf("the FILE predefined macro = %s\n", __FILE__);
#line 200 "newname"
printf("after line directive, line number is %d \n", __LINE__);
printf("the FILE predefined macro = %s\n", __FILE__);
return 0;

}

92

5.7. ERROR DIRECTIVE CHAPTER 5. PREPROCESSING DIRECTIVES

will print out

before line directive, line number is 2
the FILE predefined macro = pre_line.c
after line directive, line number is 200
the FILE predefined macro = newname

5.7 Error Directive

A preprocessing directive of the form

#error pp-tokens-opt new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of prepro-
cessing tokens and the interpretation to cease.

For example, when the program pre err.c below is executed in Ch,

int main () {
#error from preprocessing error directive

printf("after error directive\n");
return 0;

}

it will print out

ERROR: #error: from preprocessing error directive
ERROR: syntax error before or at line 2 in file pre_err.c
==>: #error from preprocessing error directive
BUG: #error from preprocessing error directive <== ???

WARNING: cannot execute command ’pre_err.c’

5.8 NULL Directive

A preprocessing directive of the form

#new-line

has no effect on the program. The line is ignored.

5.9 Pragma Directive

A preprocessing directive of the form

pragma pp-tokens-opt new-line

is called a pragma directive. The C standard defines #pragma as a means to implement platform depen-
dent functionality. According to the C standard, if the preprocessing token STDC does not immediately
follow pragma in the directive prior to any macro replacement (#pragma STDC), implementation-defined
features can be added. Ch defines several #progma statements to implement special functionality. The

93

5.9. PRAGMA DIRECTIVE CHAPTER 5. PREPROCESSING DIRECTIVES

Table 5.2: Valid pragmas.

Pragma name Value of argument
exec expr Execute an expression when it is parsed.
remvar(arg) Remove a global or top level variable arg.
remkey(arg) Remove a kwyword arg.
import "filename" Include the file filename. It searches for the file in the current directory

first. Then, the directories specified by path.
import <filename> Include the file filename. It searches for the file in only directories

specified by path.
importf "filename" Include the file filename. It searches for the file in the current directory

first. Then, the directories specified by fpath.
importf <filename> Include the file filename. It searches for the file in only directories

specified by fpath.
pack() Automatic alignment of structure fields.
pack(pop) Automatic alignment of structure fields.
pack(push, n) Turn n byte packing of structures on.
pack(n) Turn n byte packing of structures on.
package <pname> Add $(ppath)/pname/bin to path, $(ppath)/pname/lib

to fpath, $(ppath)/pname/include to ipath,
$(ppath)/pname/dl to lpath.

package "/u/dir/pname" Add /u/dir/pname/bin to path, /u/dir/pname/lib
to fpath, /u/dir/pname/include to ipath,
/u/dir/pname/dl to lpath.

package _fpath <path> Add $(ppath)/path to fpath.
package _fpath "/u/dir/path" Add /u/dir/path to fpath.
package _ipath <path> Add $(ppath)/path to ipath.
package _ipath "/u/dir/path" Add /u/dir/path to ipath.
package _lpath <path> Add $(ppath)/path to lpath.
package _lpath "/u/dir/path" Add /u/dir/path to lpath.
package _path <path> Add $(ppath)/path to path.
package _path "/u/dir/path" Add /u/dir/path to path.
_fpath <path> Add CHHOME/toolkit/lib/path to fpath.
_fpath "/u/dir/path" Add /u/dir/path to fpath.
_ipath <path> Add CHHOME/toolkit/include/path to ipath.
_ipath "/u/dir/path" Add /u/dir/path to ipath.
_lpath "/u/dir/path" Add /u/dir/path to lpath.
_path "/u/dir/path" Add /u/dir/path to path.

94

5.9. PRAGMA DIRECTIVE CHAPTER 5. PREPROCESSING DIRECTIVES

preprocessing token names for the pragma directive defined in Ch, conforming to the C standard, are listed
in Table 5.2.

In the example below, variables var1 and var2 are first declared as int. Later, they are removed and
re-declared as float in different scopes.

int var1;
int var2;
..
#pragma remvar(var1)
float var1;
int main(){

#pragma remvar(var2)
float var2;
...

}

In the example below, keyword int is removed from the system and later used as a variable identifier.

#pragma remkey(int)
float int;
int = 10;

The expression expr in the directive #pragma exec expr is evaluated when a program is parsed.
It may contain generic functions, but not functions located in function files. For example, assume the home
directory obtained by the generic function getenv() is /home/myname, the directive below

#pragma exec _fpath=stradd(_fpath, getenv("HOME"), "/chfunc;");

adds the directory /home/myname/chfunc in the system variable fpath for function files at both pars-
ing and runtime. As another example, the CPU time in the unit of seconds for parsing a header file and code
in a block can be obtained calling the generic function clock() at the parsing time as follows.

#include <time.h>
#pragma exec clock();
#include <headerfiles.h>
/* other code */
#pragma exec printf("CPU: %f\n", (double)clock()/CLOCKS_PER_SEC);

The pack in the directive specifies packing alignment for structure, union, and class members. Either
one of the following statements

#pragma pack()
#pragma pack(pop)

sets the alignment automatically. Either one of the following statements

#pragma pack(push, n)
#pragma pack(n)

specifies the value, in bytes, to be used for packing. Valid values are 1, 2, 4, 8, and 16. The alignment
of a member will be on a boundary that is either a multiple of n or a multiple of the size of the member,
whichever is smaller.

95

5.10. PREDEFINED MACROS CHAPTER 5. PREPROCESSING DIRECTIVES

Table 5.3: Macros defined in both C and Ch.

Macro name Description
LINE The line number of the current source program line which is expressed as a decimal

integral constant,
FILE The name of the current source file which is expressed as a string constant.
DATE The calendar date of the translation which is expressed as a string constant form

"Mmm dd yyyy". Mmm is as produced by asctime().
TIME The current time which is expressed as a string constant of the form "hh:mm:ss", as

returned by asctime().
STDC The decimal constant 1.
STDC VERSION The decimal constant 199901L.

Table 5.4: Macros defined in Ch.

Macro name Description
CH The decimal constant 1.
CHDLL The decimal constant 1 if dynamic link libraries are supported. Otherwise, not defined.
GLOBALDEF The decimal constant 1 when defined macros are in program scope. Undefine it when

defined macros in a program, dot files, and function files are unrelated to each other.
By default, it is defined as 1.

M64 The decimal constant 1, defined only for 64-bit machines.
SCH The decimal constant 1, when Ch is invoked as safe shell. Otherwise, it is not defined.
I The mathematical constant for the imaginary number of i.
M PI The mathematical constant for the value of π (3.1415926...).
M E The mathematical constant for the value of e (2.71828...).
FILE The file type for FILE, the same as FILE in the header file math.h.

5.10 Predefined Macros

The macro names predefined in both C and Ch are listed in Table 5.3, the macro names predefined only in Ch
are listed in Table 5.4, and the platform-independent macro are listed in Table 5.5. The platform-independent
macros _HPUX_, _LINUX_, _LINUXPPC_, _SOLARIS_, _WIN32_, _DARWIN_, _FREEBSD,
QNX, _AIX_ are defined primarily for use in start-up and header files. The user shall avoid using them
in portable Ch application programs.

96

5.10. PREDEFINED MACROS CHAPTER 5. PREPROCESSING DIRECTIVES

Table 5.5: Platform-dependent macros defined in Ch.

Macro name Description
ppc The decimal constant 1, when PowerPC in Mac OS X in Darwin is used.

Otherwise, it is not defined.
i386 The decimal constant 1 for Intel x86 32 bit machine. Otherwise, it is not defined.
x86 x64 The decimal constant 1 for Intel x86 64 bit machine. Otherwise, it is not defined.
BIG ENDIAN The decimal constant 1, when the big endian machine in Mac OS X in Darwin

or Sparc in Solaris is used. Otherwise, it is not defined.
LITTLEENDIAN The decimal constant 1, when the little endian machine in QNX

is used. Otherwise, it is not defined.
AIX The decimal constant 1, when AIX is used. Otherwise, it is not defined.
DARWIN The decimal constant 1, when Mac OS X in Darwin is used.

Otherwise, it is not defined.
FREEBSD The decimal constant 1, when FreeBSD OS is used. Otherwise, it is not defined.
HPUX The decimal constant 1, when HP-UX OS is used. Otherwise, it is not defined.
LINUX The decimal constant 1, when Linux OS is used. Otherwise, it is not defined.
LINUXPPC The decimal constant 1, when Linux OS for PowerPC is used. Otherwise, it is not defined.
QNX The decimal constant 1, when QNX OS is used. Otherwise, it is not defined.
SOLARIS The decimal constant 1, when Solaris OS is used. Otherwise, it is not defined.
WIN32 The decimal constant 1, when Windows OS is used. Otherwise, it is not defined.
X86 The decimal constant 1, when Intel x86 processor is used in Windows and Mac OS X x86. Otherw

For some programs in Solaris, the macro __STDC__ may need to be redefined with value 0 by

#define __STDC__ 0

97

Chapter 6

Types and Declarations

Ch is a loosely typed language with a rich set of data types. Unlike languages such as Pascal which pro-
hibits automatic type conversion, one data type in Ch can be automatically converted to another data type
if it makes sense in context. The meaning of a value stored in an object or returned by a function is deter-
mined by the type of the expression used to access it. An identifier declared to be an object is the simplest
expression; the type is specified in the declaration of the identifier. Types are partitioned into object types
that describe objects, function types that describe functions, and incomplete types that describe objects but
lack the information needed to determine their sizes. The format of a value stored in computer memory
depends on the machine architecture in use. How identifiers of different types are declared, and their values
internally represented in a computer system for manipulation inside Ch, will be illustrated in this chapter.
The discussion is based on the architecture of the RISC processor for SUN Sparc workstations.

6.1 Data Types

6.1.1 Integral Data Types

Integer is a basic data type for any computer language. An integer in Ch can be represented in one of below
data types

char
signed char
unsigned char
short
signed short
unsigned short
int
signed int
unsigned int
long
long int
signed long
signed long int
unsigned long
unsigned long int
long long
long long int

98

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

signed long long
signed long long int
unsigned long long
unsigned long long int

Numerical manipulations of char and int data in Ch follow the rules defined in C.

Char Data Representation

The char data are used to store characters such as letters and punctuation. An array of char can be used to
store a string. A character is actually stored as an integer according to a certain numerical code such as the
ASCII code. Under this code, certain integers represent certain characters. The standard ASCII code ranges
from 0 to 127, which need only 7 bits to represent. In Ch, the char variable is a signed integer ranging from
CHAR MIN to CHAR MAX. The macros CHAR MIN and CHAR MAX, defined in the C standard header
limits.h, are system constants in Ch. Typically, a char constant or variable occupies 1-byte of unit memory.
Bit 8 is a sign bit. The maximum positive integer for a signed 1-byte representation is 127 or 01111111
in the binary form. A negative number is stored as the binary complement form. To generate the two’s
complement of a number, all the binary bits (8 bits for a char) are inverted and the result is incremented by
one. For example, the decimal value 2 is represented in binary with 8 bit char integer as 00000010. The
decimal value of −2 is represented by the binary value of 11111110 in a 1-byte two’s complement form as
follows.

(−2)10 = complement(00000010)2 + (1)2

= (11111101)2 + (1)2

= (11111110)2

where the subscripts 2 and 10 indicate the base of the associated number. The minimum integer values for a
signed char is −128 or 10000000 in the binary form. The range of integers for a char is thus −128 to +127.

Unsigned Char Data Representation

In Ch, the unsigned char variable is equivalent to an unsigned int ranging from 0 to UCHAR MAX. The
macro UCHAR MAX defined in the C standard header limits.h, is a system constant in Ch. Typically, an un-
signed char variable occupies 1-byte unit memory without the sign bit, so that the parameter UCHAR MAX
is 255 or 11111111 in the binary form.

Short Data Representation

The short variable ranges from SHRT MIN to SHRT MAX. The macros SHRT MIN and SHRT MAX
defined in the C standard header limits.h, are system constants in Ch. A short data uses 2 bytes (16 bits)
for storage with 1 bit for the sign in Ch. Negative numbers are stored in 2-byte two’s complement form.
Therefore, the parameters SHRT MIN and SHRT MAX are −32768(215) and 32767(215 - 1), respectively.

Unsigned Short Data Representation

The unsigned short variable ranges from 0 to USHRT MAX. The macro USHRT MAX defined in the C
standard header limits.h, is a system constant in Ch. An unsigned short variable occupies 2-byte unit
memory without the sign bit in Ch, so that the parameter USHRT MAX is 65535(216-1).

99

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

Int Data Representation

An int data is a signed integer in Ch. An int number is a whole number that can be negative, positive, or
zero. The int ranges from INT MIN to INT MAX. The macros INT MIN and INT MAX, defined in the
C standard header limits.h, are precalculated system constants in Ch. Unlike some C implementations, in
which an int data may occupy only 2 bytes, an int data uses 4 bytes (32 bits) for storage with 1 bit for the
sign in Ch. Negative numbers are stored in 4-byte two’s complement form. The values of INT MIN and
INT MAX then become −2147483648 (231) and 2147483647, respectively. For example, the following
statements are valid in Ch.

> char c[2][3], *cptr;
> int i, *iptr;
> c[0][1] = ’a’; // c[0][1] becomes ’a’
a
> i = c[0] [1]; // i becomes 97, ASCII number for ’a’
97
> c[1][2] = i+1 // c[1][2] becomes ‘b’, ASCII number for ‘b’ is 98
b
> i += c[1][2]; // i becomes 195 = 97 + 98
195
> iptr = &i; // iptr points to address of i
4005ec50
> *iptr /= 2; // i becomes 97 = 195/2
97
>

Note that arrays in Ch can be declared and accessed by c[i][j]. White spaces and tab characters, such
as the ones in the statement i = c[0] [1], will be ignored in the Ch program, except when they are
characters within a string such as "ab cd".

Unsigned Int Data Representation

The unsigned int variable ranges from 0 to UINT MAX. The macro UINT MAX defined in the C standard
header limits.h, is a system constant in Ch. An unsigned int variable occupies 4-byte unit memory without
the sign bit in Ch, so that the parameter UINT MAX is 4294967295 (232 - 1).

Long Data Representation

In Ch, data of long and long int have the same representation as that in C. For example, in 32-bit machine,
long is typically the same as int. For 64-bit machines, long is the same as long long in Linux 64-bit and the
same as int in Windows 64-bit.

Long Long Data Representation

In Ch, data of long long and unsigned long long integral types contain 64 bits. They have the similar
representation as the data types of int and unsigned int. For example,

> long long l
> l = 10LL
> printf("l = %lld", l);

100

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

l = 10
> sizeof(l)
8
> scanf("%lld", &l);
11
> printf("l = %lld", l);
l = 11
>
> unsigned long long ul
> ul = 10ULL
> printf("ul = %llu", ul);
ul = 10
>

6.1.2 Floating-Point Types

The integer data type serves well for some software development projects, especially for system program-
ming. However, for scientific computing, floating-point numbers are used extensively. Floating-point num-
bers correspond to real numbers that include the numbers between integers. These numbers are defined in
Ch as float or double, which are equivalent to real and double precision in Fortran, respectively. Floating-
point numbers are analogous to the representations of numbers in scientific notion. Floating-point arithmetic
is complicated, compared with the integer arithmetic.

The most common implementation of floating-point arithmetic is based upon the IEEE 754 standard. In
this standard, a float or double is represented in the form of

(−1)sign2exponent−bias1.f (6.1)

where 1.f is the significand. The 1 is implicit and f represents the fractional bits of the normalised number.
This normalized floating-point number contains a “hidden” bit ‘1’. Therefore, this representation has one
more bit of precision than would otherwise be the case.

Float Data Representation

The float data type uses 32 bits for its storage. The result of a float data is formulated as

(−1)sign2exponent−1271.f (6.2)

Bit 31 is a sign bit; it is 1 for negative numbers. Bits 23 to 30 are the exponent bits. The exponent is offset by
127 to allow a range of numbers spanning 1. Cases when all the exponent bits are 0’s and all the exponent bits
are 1’s are reserved for the metanumbers Inf,−Inf, NaN shown in Table 6.1. Bits 0 to 22 define the fractional
component of the significand. The leading integer of the normalised significand is always 1 so doesn’t
need to be stored. In binary fractions, the most significant bit represents 0.5, the next bits representing
0.25, 0.125, etc. Table 6.1. shows the hexadecimal representation of some float numbers. For example,
according to Equation (6.2), float numbers 1.0 and −2.0 can be obtained by (−1)02127−1271.0 = 1.0 and
(−1)12128−1271.0 = 2.0, respectively. Remember that the fraction of the normalized significand is stored
in a binary fraction. The float number 3.0 can be calculated by (−1)02128−127(1.1)2 = 2 ∗ (1.1)2 =
2 ∗ (1.5)10 = (3.0)10 where subscripts indicate the base of the floating-point number. Note that the IEEE
754 standard distinguishes +0.0 from −0.0 for floating-point numbers.

The macro FLT MAX, defined as the maximum representable finite floating-point number in the float
data type in the C standard header float.h, is a precalculated system constant in Ch. If a number is greater

101

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

Table 6.1: Hexadecimal representations of selected real numbers
value float double

0.0 00000000 0000000000000000
−0.0 80000000 8000000000000000

1.0 3F800000 3FF0000000000000
−1.0 BF800000 BFF0000000000000

2.0 40000000 4000000000000000
−2.0 C0000000 C000000000000000

3.0 40400000 4080000000000000
−3.0 C0400000 C080000000000000

Inf 7F800000 7FF0000000000000
−Inf FF800000 FFF0000000000000
NaN 7FFFFFFF 7FFFFFFFFFFFFFFF

FLT MAX 7F7FFFFF
DBL MAX 7FEFFFFFFFFFFFFF

FLT MIN 007FFFFF
DBL MIN 000FFFFFFFFFFFFF

FLT MINIMUM 00000001
DBL MINIMUM 0000000000000001

than FLT MAX, it is called an overflow. Any number greater than FLT MAX has all 8 exponent bits set to
1’s. This shall be represented by the metanumber Inf, which corresponds to the mathematical infinity symbol
∞. This is the result of many operations such as division of a finite number by zero although an inexact
exception may be raised in an IEEE machine. Any number less than −FLT MAX shall be represented by
the metanumber −Inf which corresponds to the mathematical negative infinity symbol −∞.

The value of the parameter FLT MIN is defined in the C standard library header float.h as a minimum
normalized positive floating-point float number. If a number is less than FLT MIN, it is called an underflow.
The IEEE 754 standard provides a gradual underflow. When a number is too small for a normalized rep-
resentation, leading zeros are placed in the significand to produce a denormalized representation. A denor-
malized number is a nonzero number that is not normalized and whose exponent is the minimum exponent
for the storage type. The maximum representable positive denormalized float is defined as FLT MINIMUM
in Ch as shown in Table 6.1. There is only one unit in the last place for FLT MINIMUM so that it is com-
monly referred to as ulp. Almost all floating-point implementations substitute the value zero for a value
that is smaller than FLT MINIMUM for IEEE machines, and FLT MIN for non-IEEE machines. However,
in the arithmetic operations and mathematical functions defined in Ch, there is a qualitative difference be-
tween FLT MINIMUM which is smaller than FLT MIN and zero. In this documentation, by the value of 0.0
means that it is a zero, not a small number. The Ch expressions of 0., 0.00, and .0 are the same as 0.0. In the
same token, the following Ch floating-point constant expressions −0.0,−0.,−0.00, and −.0 are equivalent.
Mathematically, divisions of zero by zero of 0.0/0.0 and infinity by infinity of∞/∞ are indeterminate. The
results of these operations are represented by the symbol of NaN, which stands for Not-a-Number. It should
be mentioned that the IEEE 754 standard distinguishes quiet NaN from signaling NaN. The signaling NaN
should generate a signal or raise an exception. In Ch, all NaNs are treated as quiet NaNs. Furthermore, the
IEEE 754 standard does not interpret the sign of NaN. No −NaN will be produced as a result of arithmetic
and functions in Ch although it can be created by manipulating the bit pattern of the memory location of
a float variable. The expression −NaN is interpreted as NaN in Ch. The metanumbers are treated just as

102

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

regular floating-point numbers. The internal hexadecimal representations of the metanumbers for the float
type are also given in Table 6.1.

Double Data Representation

For a large range of representable floating-point numbers, a double data can be used in Ch. The double data
type uses 64 bits as its storage. The result of the double data is formulated as

(−1)sign2exponent−10231.f (6.3)

Bit 63 is a sign bit; it is 1 if the number is negative. Eleven-bit exponent of bits 52 to 62 are biased by
1023; values of all zeros and all ones are reserved for metanumbers. Bits 0 to 51 are fractional components
of normalized significand. Like float, the integral value 1 of the normalized significand is hidden. The
hexadecimal representation of some typical double numbers are also given in Table 6.1. Note that the
width and bias value of the exponent of double is different from those of float. Therefore, a float cannot
be converted into a double just by padding zeros in its fraction. On the other hand, when a double data is
cast into a float, the result cannot be obtained just by ignoring the values in bits 0 to 31. Note that there
is no external distinction between float Inf and double Inf, although their internal representations differ.
This is also true for metanumbers −Inf and NaN. Similar to float, parameters DBL MAX, DBL MIN,
and DBL MINIMUM are system constants in Ch. The internal memory representations of these special
finite double floating-point numbers are also given in Table 6.1. Note that due to the finite precision of the
floating-point number representation, the exact values of irrational numbers such as π are not representable
in a computer system whether they are represented in float or double.

6.1.3 Aggregate Floating-Point Types

The complex number, an extension of real number, has wide applications in science and engineering. The
variables of complex type can be declared by two type specifiers, complex and double complex.
After the declaration, the complex number can be created in Ch by the complex constructor complex(x, y),
where x is its real part and y is its imaginary part. For example,

> complex z1; // a double complex variable
> double complex z; // a double complex variable
> float complex z2; // a float complex variable
> z1 = complex(1, 2); // z1 becomes 1 + i2
complex(1.00,2.00)
>

One can declare not only a simple complex variable, but also a pointer to complex, array of complex,
and array of pointer to complex, etc. Declarations of these complex variables are similar to the declarations
of other data types. For example,

> complex *zptr1;
> complex z2[2], z3[2][3]; // declared as pointer to complex variable
> complex *zptr[2][4]; // array of pointer to complex
> zptr1 = &z1; // zptr1 point to the address of z1
4005e748
> *zptr1 = complex(2, 3); // z1 becomes 2 + i3
complex(2.00,3.00)
> z1

103

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

complex(2.00,3.00)
>

Chapter 13 describes details of complex numbers, including input/output operations, data conversion
rules, functions, etc.

6.1.4 Pointer Data Types

Pointer is defined as a variable which contains the address of another variable or dynamically allocated
memory. Ch uses pointers explicitly for arrays, structures, functions, classes and simple data types. With
operator ’*’ in front of the variable names, the variables of pointer type can be declared similar to variables
of other data types. The unary operator ’&’ gives the “address of a variable”. For example, the code below

int i, *p1, **p2;
p1 = &i;
p2 = &p1;

declares two pointers p1 and p2. p1 stores the address of the integer i, and p2 stores the address of
p1. More information about pointers can be found in Chapter 9. In addition to pointer to simple data
types, pointer to arrays and functions are also available in Ch. More information about pointer to arrays and
functions can be found in Chapter 14 and section 10.8, respectively.

6.1.5 Array Types

The number of dimensions in an array is called the rank of the array. The number of elements in a dimension
is called the extent of the array in that dimension. The shape of an array is a vector where each element of
the vector is the extent in the corresponding dimension.

Computational array in Ch is a first-class object. The type qualifier array for computational arrays,
available in Ch Professional and Student Editions, is defined as a macro in the header file array.h. The
declaration of an array is shown below.

#include <array.h>
int a1[3][4]; // array of integer
int *a2[3][4]; // array of pointer
array int a3[3][4]; // computational array

where a1 is declared as an array of integer, a2 is an array of pointer to integer, and a3 is a computational
array. Type qualifier array in the declaration will make a3 a computational array, which can be treated as
a first-class object for linear algebra and matrix computation. Arrays of variable length including deferred-
shape arrays, assumed-shape arrays, pointer to assumed-shape arrays, and arrays of reference are supported.
The following example will clarify the concepts of these various array definitions.

void funct(int a[:][:], (*b)[:], c[], d[&], n, m){
/* a: assumed-shape array */
/* b: pointer to array of assumed-shape */
/* c: incomplete array completed by function call */
/* d: array of reference */
/* n, m: integers */
int e[4][5]; // fixed-length array
int f[n][m]; // deferred-shape array

104

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

int (*g)[:]; // pointer to array of assumed-shape
extern int h[]; // incomplete array completed by external linkage
int i[] = {1,2}; // incomplete array completed by initialization
f[1][2] = a[2][3];

}
int A[3][4], B[5][6], C[3], D[4];
funct(A, B, C, D, 10, 20);
funct(B, A, C, D, 85, 85);

The argument a is declared as an assumed-shape array to which the arrays with different extents can be
passed, the argument b is declared as a pointer to array of assumed-shape, c is declared as an incomplete
array which will be completed by the function call, d is an array of reference which can handle arrays of
different data types.

In the for-loop below, when the array a with different sizes is redeclared, its memory will be reallocated
by function realloc() internally.

int i;
for (i = 0; i<10; i++) {
int a[i];
...

}

The range of subscripts for an index of an array can be adjusted. For example,

int a[1:10], b[-5:5], c[0:10][1:10], d[10][1:10];
int e[n:m], f[n1:m1][1:m2];
extern int a[1:], b[-5:], c[0:][1:10];
int funct(int a[1:], int b[1:10], int c[1:][3], int d[1:10][0:20]);
a[10] = a[1]+2; /* OK */
a[0] = 90; /* Error: index out of range */

where the subscript of a ranges from 1 to 10; b from -5 to 5; the first dimension of c ranges from 0 to 10,
the second from 1 to 10; the first dimension of d from 0 to 9 and the second from 1 to 10.

Arrays of different shape and data type can be passed to arrays of reference. For example,

float a[3][4];
double b[5][6];
void func(double a[&][&]);
func(a);
func(b);

where the argument a of the function func is declared as an array of reference, so that arrays with different
extents and data types can be passed to it.

Members of struct/union can be pointers to assumed-shape arrays. For example,

int a[4][5], b[7][8];
struct tag_t {
int n;
int (*A)[:];

} s;
s.A = a; /* s.A[i][j] == a[i][j] */
...
s.A = b; /* s.A[i][j] == b[i][j] */

105

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

where the member A of struct s is declared as a pointer to assumed-shape arrays to which the arrays with
different extents can be assigned.

More information about the relation between pointer and array can be found in Chapter 14, and infor-
mation about computational arrays can be found in section 6.2.1 and Chapter 16.

6.1.6 Structure Types

The structure types in Ch are similar to those in C++. They are collections of members that can have different
types. For example,

struct tag_t {
data_type1 field1;
data_type2 field2;

} name1;
tag_t name2, *name3;
struct tag_t name4;
name3 = &name2;

where the struct with the tag name of tag t has two members, field1 and field2. Three objects of
struct tag t, name1, name2 and name4, are declared by three different ways. name1 is declared directly
after the definition of the struct, name2 is declared only by the tag name, while the name4 is declared with
the optional keyword struct. The variable name3 is declared as a pointer to struct, and is assigned the
address of name2.

There are two namespaces for struct in C, one for struct tags and one for member variables. But there
are one and a half namespaces for struct in C++, one for struct tags and an half for member variables. Struct
in Ch are handled the same as those in C++, and tag is implicitly treated as a typedefed name in Ch. Struct
tags and struct variables in Ch share the same namespace. Once a tag name is used as a variable explicitly,
this implication will be disabled. For example,

struct tag1_t{
struct tag2_t {
....
};

...
};
tag1_t s; /* OK */
int tag1_t; /* OK, tag name is used */
struct tag1_t s2; /* OK */
tag1_t s3; /* Not valid in Ch and C++ */

Like C++, members of a structure in Ch can be functions. More information about structures can be found
in Chapter 18.

6.1.7 Class Types

Classes in Ch or C++ are a natural evolution of the structure. Like C++, both class and struct in Ch can have
members of functions. By default, members of a class are private whereas members of a struct are public.

The following is an example of the definition of class.

106

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

class Student {
int id;
char *name;

public:
void setName(char *n);

}

void Student::setName(char *n) {
...

}

The class Student has three members, two private members id and name, and a public member function
setName(). Assume id holds the ID number of a student, name is the name of the student and the
function setName() is used to set a student name. After defining a class, it can be used in a program
shown below.

int main() {
class Student s1;
s1.setName("Bob");
...

}

where s1 is called an object or an instance of class Student. More information about class types can be
found in Chapter 19.

6.1.8 Bit Field

Like C, Ch offers the bit-field which has the capability of defining and accessing within a word directly. In
the following code fragment,

struct tag{
data_type1 a:4;
data_type2 b:4;

} name1 {1,1};
struct tag name2 = {1,1};
name2.a = 2;

two members of tag, a and b, only take 8 bits of memory, 4 bits for each. More information about bit field
can be found in Chapter 18.

6.1.9 Union Types

A union type describes an overlapping non-empty set of member objects. a union can only hold one of its
members at a time. The members are conceptually overlaid in the same memory. Each member of a union is
located at the beginning of the union. For example, the code below shows how a union type can be defined.

union tag{
data_type1 fields1;
data_type2 fields2;

} name1;
tag name2, *name3;

107

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

union tag name4;
name3 = &name2;

The members fields1 and fields2 share the same memory. Only one member can be used at a time.
Like C++, tag is put into typedefed namespace by default. More information about union types can be found
in Chapter 18.

6.1.10 Enum Types

An enumerated type is a set of integer values represented by enumeration constants. For example, the code
below

enum tag_t{bad, good=1, ugly} x;
enum tag_t y;
x = good;
y = x;

defines a new enumerated type indicated by the tag name tag t. The variables of tag t, such as x and y,
can be assigned three enumeration constants bad, good and ugly. More information about enum types
can be found in Chapter 18.

6.1.11 Void Type

The void type is used mainly for pointers to void, void argument lists and void return values of functions.
A pointer can be pointed to the type of void. Any pointer of other types may be assigned to and from

pointers to void, and may be compared with them. Furthermore, the pointer to any object can be converted
to type of void without loss of information. But, in order to access the object pointed to by the original
pointer properly, the converted pointer has to be converted back to the original pointer type.

The keyword void, which appears in front of the function name when it is defined, indicates that the
function has no return value. For example, the function funct1() defined below has no return value.

void funct1(int i) {int i; ...; }; /* no return value */

The keyword void which appears in the argument list of a function indicates that the function has no
argument. For example, the function funct2() defined below has no argument.

int funct2(void){int i; ...; return i;} /* no argument */

6.1.12 Reference Type

In Ch, a reference declared with symbol ‘&’ is an alternative name for an object just as in C++. They have
the same syntax. For example, the declarations shown below

> int i
> int &j = i
> i = 5
5
> j
5
>

108

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

indicate that variable j is a reference of i. They share the same memory space inside the system and,
therefore, can be used interchangeably. Any change to the value of i will affect the value of j. Not only
reference for simple data types, including char, short, int, float, double, as well as data types qualified
by signed, unsigned, long, and complex can be declared in Ch, but also reference for pointer type can be
declared.

Although arguments are passed by the way of call-by-value to functions in Ch by default, they can be
passed by call-by-reference by using the symbol ‘&’. For example, in the prototype of function swap shown
below

void swap(int &n, int &m); /* the same as in C++ */

arguments n and m are declared as references to int. This means that any change to n and m inside the called
function swap() will affect their original values in the calling function. More information about reference
types can be found in Chapter 11.

6.1.13 String Type

String is a first class object in Ch with type specifier string_t. An argument of pointer to char in a
function can be replaced by an argument of string. String or array of chars, instead of pointer to char, should
be used for safe network computing. The memory allocation and deallocation variables of string type are
handled by Ch automatically.

string_t s1, s2, s, a[3];
s1 = "Hello, ";
s2 = "world!";
s = s2;
int i = strlen(s1);
strcat(s1,s2); /* s1 becomes "Hello, world!" */
strcpy(a[0],s1); /* a[0] becomes "Hello, world!" */

String of reference is supported in Ch as shown in the program below.

string_t stringcat(string_t &s1, s2)
{
string_t s;
s = strcat(s1, s2);
/* s = stradd(s1, s2); */
s1 = s;
return s1;

}
string_t s1 = "string1", s2 = "string2";
stringcat(s1, s2);
printf("%s\n", s1); // print out string1 and string2

Function stringcat() adds string s2 to the end of string s1. It is equivalent to the standard function
strcat() in C.

Pointer to string can also be declared as shown in the code below.

string_t stringcat2(string_t *s1, s2) {

*s1 = strcat(*s1, s2);
return *s1;

109

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

}
string_t s1 = "string1", s2 = "string2";
stringcat2(&s1, s2);
printf("%s\n", s1); // print out string1 and string2

Function stringcat2() is similar to function stringcat().
The string type can be used to obtain a string with space through the input function scanf() as shown

below.

> string_t str;
> scanf("%s", &str);
abcd 1234
> str
abcd 1234

The relational operators ==, !=, <, and > can be used for comparison of two strings with one of
two operands is the built-in string type string t, the other operand can be string t, string literal “someting”,
pointer to char, pointer to unsigned char. If the contents of the two strings are the same, the operation ==
gives 1 and the operation != gives 0. Otherwise, the operation == gives 0 and the operation != gives 1.

The results of > and < are similar to 1 and −1 from the function strcmp(). The operations > and <
compares two strings byte-by-byte, according to the ordering of your machine’s character set. The operation
s1>s2 gives 1 if the string s1 is greater than the string s2 between the values of the first pair of bytes that
differ in the strings being compared. Otherwise, it gives 0. The operation s1<s2 gives 1 if the string s1 is
less than the string s2 between the values of the first pair of bytes that differ in the strings being compared.
Otherwise, it gives 0.

The operator ’+’ is overloaded for adding two strings of operands as a single string. Two operants need
to be type string t or string literal. For example,

> string_t s
> s = "abc" + "123"
> s
"abc123"
> s = s + "ABC"
> s
"abc123ABC"

An expression can be cast into a string by string t(expression). For example,

> double d = 12.34
> string_t s
> s = "abc" + string_t(d+2);
> s
abc14.34

6.1.14 Function Types

Regular functions in Ch follow the C standard. In the spirit of C, the function definition with nested functions
in Ch takes the following forms

return_type function_name(argument declaration)

110

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

{
statements
function_definitions

}

or

return_type function_name(argument declaration)
{
function_definitions
statements

}

where statements can be any valid Ch statements and local functions can be defined inside other local
functions. There is no restriction on the number of function nesting in Ch. For example,

int func1() {
int func2() {
int func3() { ...}

}
/* ... */
func2();

}

The definition of a local function can be placed anywhere inside a function. If a local function is invoked
prior to its definition, a local function prototype shall be used as shown in Program 6.1.

void funct1()
{
__declspec(local) float funct2(); // local function prototype
funct2();
float funct2() // definition of the local function,
{

return 9;
}

}

Program 6.1: Declaration declspec(local) qualifies funct2() as a local function.

In Program 6.1, because the function funct2() is used before it is defined, a function prototype is needed.
Since it is a local function, the type qualifier declspec(local) is used to distinguish a local function
from the top level regular C functions.

In a function definition, parameters in the argument list can be ignored if they are not used inside func-
tions. For example,

int func(int i, int /* not_used */, int /* no_used */) {
return i*i;

}
func(10, 20, 30);

111

6.2. TYPE QUALIFIERS CHAPTER 6. TYPES AND DECLARATIONS

Table 6.2: Type qualifiers.

Qualifier Function
array computational array
const (ignored for now, will be fixed later)
inline (ignored)
operator (reserved for possible operator overloading)
restrict restricted function, ignored if appears inside argument lists
virtual (ignored for now, reserved for virtual function in C++)
volatile (ignored)

6.2 Type Qualifiers

Type qualifiers in Ch are listed in Table 6.2. The type qualifiers array and restrict are used for
computational arrays and restricted functions, respectively.

6.2.1 Computational Arrays

An array qualified by type qualifier array is called a computational array, available in Ch Professional
and Student Editions. This type qualifier is defined as a macro in the header file array.h. A computational
array is treated as a first-class object. For example,

array float a[10][10], b[10][10];
a += b+inverse(a)*transpose(a);

for a = a + b + a−1 ∗ aT . Computational arrays can be arguments of a function. A regular complete
C array can be passed to an argument of a computational array, and vise versa. More information about
computational arrays can be found in Chapter 16.

6.2.2 Restricted Function

In Ch, if type qualifier restrict appears in a function definition or before the declaration for the return
type, the function is treated as a restricted function. For the sake of security, restricted functions cannot be
called by Safe Ch programs. For example, the user can declare a restricted function
restricted function() as follows to prevent it from execution in Safe Ch.

restrict int restricted_function(int i);

Some functions, such as fopen(), in the C Standard library are defined as restricted functions in Ch. If the
type qualifier restrict appears in the argument lists of functions, it is ignored. More information about
Safe Ch can be found in Chapter 21.

6.3 Constants

In this section, we will describe the external representations of data types discussed in the previous sec-
tion. Besides declared variables and system defined parameters, different data types in Ch can have their
corresponding constants at the programmer’s disposal. The constants in Ch include four different kinds:
characters, strings, integers, and floating-point numbers.

112

6.3. CONSTANTS CHAPTER 6. TYPES AND DECLARATIONS

6.3.1 Character Constants

A character constant, stored as an integer, can be written as one character within a pair of single quotes like
’x’. A character constant can be assigned to the variable of type char. For example,

> char c = ’x’
> c
x
>

Character constants containing more than a single character or escape character are called multibyte
characters. Ch also allows the wide character constant which is preceded by the letter L. The apostrophe,
backslash, and some characters that might not be easily readable in the source program, such as newline
characters shall be included in character constants by using escape characters described later. More infor-
mation about characters can be found in Chapter 17.

Wide Characters and Multibyte Characters

Ch can handle extended character sets which include locale-specific characters. These characters are always
too large to be represented within a single object of type char whose size is a byte. To accommodate these
characters, Ch supports both wide characters and multibyte characters. The “wide character” is an internal
representation scheme which makes an extended character code fit in an object of the integral type wchar t,
which is defined in the header file stddef.h. Strings of extended characters can be represented as objects of
type wchar t[] or pointers of type wchar t *. For example, the code below declares a wide character wc in
Ch.

wchar_t wc = L’a’;

The L before the character a indicates that character a is a wide character. On the other hand, “multibyte
character”, which contains more than a single character or escape, is the external representation scheme
supported by Ch. A multibyte character is a sequence of normal characters which correspond to a wide
character. The maximum number of bytes used in representing a multibyte character in the current locale
is indicated by macro MB CUR MAX defined in header file stddef.h. A wide character string can be
represented externally by a multibyte character string. Multibyte characters may appear in comments, string,
and character constants.

A multibyte character set may have a state-dependent encoding, wherein each sequence of multibyte
characters begins in an initial shift state and enters other locale-specific shift states when specific multibyte
characters are encountered in the sequence. While in the initial shift state, all single-byte characters retain
their usual interpretation and do not alter the shift state. The interpretation for subsequent bytes in the
sequence is a function of the current shift state.

Ch also supports the facilities defined in C to implement conversion between multibyte character and
wide character. For example, the function mbtowc() declared in the file stdlib.h converts a multibyte char-
acter to a wide character, and the function wctomb() does it contrarily.

Escape Characters

Some special characters, and particular behaviors of the output device are impossible to be typed in a source
program directly. Ch supports escape characters, which are escape codes beginning with the back slash
character ‘\’, to represent these characters and behaviors. Escape codes could be character escape code
which are characters listed in Table 6.3, and numeric escape code which are up to three octal digits or any
number of hexadecimal digits.

113

6.3. CONSTANTS CHAPTER 6. TYPES AND DECLARATIONS

Typically the character escape code \a produces a beep from the speaker as the alert. The active position
is the location on a display device where the next character output by the function fputc() or fputwc() would
appear. The intent of writing a printing character (as defined by the isprint() or iswprint() function) to a
display device is to display a graphic representation of that character at the active position and then advance
the active position to the next position on the current line. The code \b moves the active position to the
previous position on the current line. The code \f represents a form feed which moves the active position to
the initial position at the start of the next logical page. The code \n is the most commonly used escape code
which moves the active position to the initial position of the next line, whereas \r moves the active position
to the initial position of the current line. The codes \t and \vmove the active position to the next horizontal
tabulation position and the next vertical tabulation position, respectively. The code \\ represents a backslash
which is not the preceding character of an escape code. The single quote appearing in a character constant
might be mistaken as the ending apostrophe of the character constant. If this is the case, the code \’ can be
used to represent a single quote in a character constant. Similarly, the code \" can represent a double quote
in a string constant, which is described in section 6.3.2. The code \? can be used to produce a question
mark in the circumstances in which it might be mistaken as part of a trigraph described in section 2.1.1. The
codes shown below shows how the character escapes can be used.

> printf("abcdefd");
abcdefd
> printf("abcd\befd"); // backspace
abcefd
> printf("abcd\tefd"); // horizontal tab
abcd efd
> printf("abcd\"efd"); // double quote
abcd"efd
> printf("%c", ’\’’); // single quote
’
> printf("??!") // trigraph
|
> printf("?\?!") // question mark
??!
>

The numeric escape codes come in two varieties, octal escape codes and hexadecimal escape codes. An
octal escape code consists of up to 3 octal digits following the backslash character \. For example, under
the ASCII encodings, the character ’a’ may be written as ’\141’; the null character, used to terminate
strings, can be written as ’\0’. A hexadecimal escape code consists of any number of hexadecimal digits
following characters ’\x’. For example, the character ’a’ can be written in hexadecimal escape code as
’\x61’.

Each of these escape sequences produces a unique value which can be stored in a single char object.
An octal escape code terminates when the first character that is not an octal digit is encountered or when
three octal digits have been used. Therefore, the string "\1111" represents two characters, ’\111’ and
’1’, and the string "\182" represents three characters, ’\1’, ’8’ and ’2’. Since a hexadecimal escape
sequences can be of any length and terminated only by a non-hexadecimal character, to stop a hexadecimal
escape in a string, break the string into pieces. For example, the codes ’\x61’ and ’a’ are two characters;
however, the hexadecimal escape code ’\x61a’ contains only one character, rather than two characters of
’a’.

114

6.3. CONSTANTS CHAPTER 6. TYPES AND DECLARATIONS

Table 6.3: Character escape code.

Escape Code Translation
\a (alert) Produces an audible or visible alert. The active position shall not be changed.
\b (backspace) Moves the active position to the previous position on the current line. If the

active position is at the initial position of a line, the behavior is unspecified.
\f (form feed) Moves the active position to the initial position at the start of the next logical

page.
\n (new line) Moves the active position to the initial position of the next line.
\r (carriage return) Moves the active position to the initial position of the current line.
\t (horizontal tab) Moves the active position to the next horizontal tabulation position on

the current line. If the active position is at or past the last defined horizontal tabulation
position, the behavior is unspecified.

\v (vertical tab) Moves the active position to the initial position of the next vertical
tabulation position. If the active position is at or past the last defined vertical
tabulation position the behavior is unspecified.

\\ (backslash) Produces a backslash character \, the active position is moved to the next.
\’ (single quote) Produces a single quote character ’, the active position is moved to the

next.
\" (double quote) Produces a double quote character ", the active position is moved to the

next.
\? (question mark) Produces a question mark character ?, the active position is moved to

the next.

115

6.3. CONSTANTS CHAPTER 6. TYPES AND DECLARATIONS

6.3.2 String Literals

A character string literal is a sequence of zero or more multibyte characters enclosed in double-quotes, as
in "xyz". The same considerations apply to each element of the sequence in a character string literal or a
wide string literal as if it were in an integer character constant or a wide character constant, except that the
single-quote ’ is representable either by itself or by the escape sequence \’, but the double-quote ” shall be
represented by the escape sequence \”.

The multibyte character sequences specified by any sequence of adjacent character and wide string literal
tokens are concatenated into a single multibyte character sequence. If any of the tokens are wide string literal
tokens, the resulting multibyte character sequence is treated as a wide string literal; otherwise, it is treated
as a character string literal.

A byte, or code of value zero, is appended to each multibyte character sequence that results from a
string literal or literals. The multibyte character sequence is then used to initialize an array of static storage
duration and length just sufficient to contain the sequence. For character string literals, the array elements
have type char, and are initialized with the individual bytes of the multibyte character sequence. These
arrays of static storage duration are distinct. For example, the pair of adjacent character string literals

"A" "3"

produces a single character string literal containing the two characters whose values are ’A’ and ’3’ .
More information about strings can be found in Chapter 17.

Wide Strings

A wide string literal is a sequence of zero or more multibyte characters enclosed in double-quotes and
prefixed by the letter L, such as L"xyz".

For wide string literals, the array elements have type wchar t, and are initialized with the sequence
of wide characters. A wide character string can be represented externally by a multibyte character string.
Multibyte characters may appear in comments, string and character constants. Like in strings of normal
characters, the single null character, ‘\0’, acts as a terminator in strings of multibyte characters. A byte
with all bits zero shall be interpreted as a null character, it does not occur in the second or subsequent bytes
of a multibyte character. The function mbstowcs() converts a multibyte string to a wide-character string, and
the function wcstombs() does it contrarily. More information about wide strings can be found in Chapter 17.

6.3.3 Integer Constants

A decimal integer constant like 12345 is an int. An integer can also be specified in binary, octal or hex-
adecimal instead of decimal. A leading 0 (zero) on an integer constant indicates an octal integer whereas
a leading 0x or 0X means hexadecimal. Ch and C99 also support binary constants with leading 0b or 0B.
For example, decimal 30 can be written as 036 in octal, 0X1e or 0x1E in hexadecimal, and 0b11110 or
0B11110 in binary. Note that expressions like 029 and 0b211 are illegal, which can be detected by Ch.

The value of 0 in Ch means that it is an integer zero. Unlike real numbers, there is no 0− in int. Therefore,
the integer value of −0 equals 0 in Ch. The domain [−FLT MAX, FLT MAX] of real numbers is larger
than the domain [−INT MIN, INT MAX] of integer numbers. When a real number smaller than INT MIN,
including −Inf, is converted to an integer, the result is INT MIN. For a real number larger than INT MAX,
including Inf, the converted integral value is INT MAX. When NaN is assigned to an integral variable, the
system will print a warning message, and the resultant integral value becomes INT MAX whose memory
map is the same as that of NaN.

116

6.3. CONSTANTS CHAPTER 6. TYPES AND DECLARATIONS

In addition to decimal, octal, hexadecimal integral constants, binary integral constants and binary format
specifier for I/O are supported. A binary constant is started with the prefix 0b or 0B. The format specifier is
%b. For example,

/* Bit-map using binary constants */
#include<stdio.h>
int H[] = {

0b00000000000000000000000000000000,
0b00000000000000000000000000000000,
0b00011111100000000000011111100000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000111111111111111111110000000,
0b00000111111111111111111110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00011111100000000000011111100000,
0b00000000000000000000000000000000,
0b00000000000000000000000000000000

}
int main() {
int i, size;
int I=0b00000110000000000000000110000000;

size = sizeof(H)/sizeof(int);

for (i=0; i<size; i++) {
printf("H[%2d] = 0X%8x\n", i, H[i]);

}
/* H becomes II */
H[10] = I;
H[11] = I;
for (i=0; i<22; i++) {
printf("%32b\n", H[i]);

}
return 0;

}

117

6.3. CONSTANTS CHAPTER 6. TYPES AND DECLARATIONS

6.3.4 Floating-Point Constants

Constants of Real Numbers

In K&R C, all floats in expressions are converted into doubles before evaluation. As a result, any operations
involving floating-point operands, even with two float operands, will produce a double result. This is not
applicable to many scientific computations in which speed and memory of a program are critical. Because
of the indiscriminate conversion rules in the early design of C, every floating point constant like 3.5 and
3e7 is taken as double. This default double mode for floating-point constants has been carried over to the C
standard and supported in Ch. All floating-point constants such as 2.4, 2e + 3,−2.E − 3, and +2.1e3 are
double constants by default. However, C has provided a mechanism to specify a float constant. The suffix F
or f indicates a float constant, D or d for double. For example, constants 3.4e3F, 3E − 3f , and 3e+ 3F are
floats whereas constants 3.4e3D, 3E − 3d, and 3e + 3D are doubles. However, the constant metanumbers
±Inf, and NaN are always taken as floats unless they are values of double variables. These features are
supported in Ch as well. According to this design, the range of representable floating-point numbers can be
expanded automatically. For example, the values of FLT MAX and DBL MAX for SUN SPARCStations
are 3.4e38 and 1.8e308, respectively. The following Ch program

printf("pow(10.0F, 39) < Inf is %d \n", pow(10.0F, 39) < Inf);
printf("pow(10.0, 39) < Inf is %d \n", pow(10.0, 39) < Inf);

will print out
pow(10.0F, 39) < Inf is 0
pow(10.0, 39) < Inf is 1
In the first statement of the program, the value of 1039 calculated by pow(10.0F, 39) has overflowed as Inf
because it is larger than FLT MAX. The value of 1039 calculated by pow(10.0, 39) in double data is still
within the representable range of −DBL MAX < pow(10.0, 39) < DBL MAX. In the second case, the
metanumber Inf is expanded as a double infinity larger than DBL MAX.

Hexadecimal Floating-Point Constants

The hexadecimal floating-point constants in C99 are supported in Ch. For example,

> 0X2P3
16.0000
> 0x1.1p0
1.0625
> 0x1.1p1F
2.12

Constants of Complex Numbers

A complex constant can be formed by the complex number constructor complex(x, y), where x and y are
real and imaginary parts of the complex number, respectively. If both arguments of function complex() are
float or integer type, the resulting complex number is of float complex. If one or two of arguments is double
type, the resulting complex number is a double complex. For example

complex z = complex(1, 3); // complex(1, 3) is float complex
double complex z = complex(1.0, 3);// complex(1.0, 3) is

// double a complex

118

6.4. INITIALIZATION CHAPTER 6. TYPES AND DECLARATIONS

In addition, complex metanumbers ComplexInf and ComplexNaN corresponding to the complex
infinity and the complex Not-a-Number are available in Ch.

Constants of Pointers

The constants 0 and NULL can be assigned to a pointer. In Ch, the constant NULL is a built-in dual purpose
symbol which can be assigned to variables of both integer and pointer types. It is used in place of zero. For
example, the code below

> int i, *p
> p = &i
4005e758
> p = NULL
00000000
>

assign the address of the integer i to the pointer p first, and then assign the constant NULL to it.

6.4 Initialization

The declaration of a variable may be accompanied by an initializer that specifies the value of the variable
should have at the beginning of its lifetime. All rules for initialization in C can be applied to Ch, except that
arrays of more than three dimensions cannot be initialized in Ch.

If an object that has either automatic or static storage duration, which is not initialized explicitly, then:

• if it has pointer type, it is initialized to a null pointer;

• if it has arithmetic type, it is initialized to (positive or unsigned) zero;

• if it is an aggregate, every member is initialized (recursively) according to these rules;

• if it is a union, the first named member is initialized (recursively) according to these rules.

The difference between Ch and C is that if an object that has automatic storage duration not initialized
explicitly, its value is indeterminate in C, whereas Ch will apply the above initialization rules. The initializer
for a scalar shall be a single expression, optionally enclosed in braces. The initial value of the object is that
of the expression (after conversion); the same type constraints and conversions as for simple assignment
apply, taking the type of the scalar to be the unqualified version of its declared type. For example,

> int i = 3.0/2
> i
1
>

The variable i is initialized by the result of the expression 3.0/2whose type has been converted from float
to int.

An array of character type may be initialized by a character string literal, optionally enclosed in braces.
Successive characters of the character string literal (including the terminating null character if there is room
or if the array is of unknown size) initialize the elements of the array. Similarly, an array with element
type compatible with wchar t may be initialized by a wide string literal, optionally enclosed in braces. For
example, the array str1 with size of 80 bytes is initialized by a string literal "this is a string"

119

6.4. INITIALIZATION CHAPTER 6. TYPES AND DECLARATIONS

> char str1[80] = "this is a string"
> str1
this is a string
>

If an array of unknown size is initialized, its size is determined by the largest indexed element with an
explicit initializer. At the end of its initializer list, the array no longer has incomplete type. For example,

> char str2[] = "this is a string"
> str2
this is a string
>

The size of the array of char as the same as the length of string “this is a string” plus 1, which is
for the terminating null.

The initializer for an object that has aggregate or union type shall be a brace-enclosed list of initializers
for the elements or named members. For example, The variable s1, which is an object of struct, is initialized
by the brace-enclosed list {1 ,2}. The member s1.a is set to 1, and s2.b to 2.

> struct {int a, b;} s1 = {1, 2};
> s1
.a = 1
.b = 2
>

The initialization shall occur in initializer list order, each initializer provided for a particular subobject
overriding any previously listed initializer for the same subobject; all subobjects that are not initialized
explicitly shall be initialized implicitly.

If the aggregate or union contains elements or members that are aggregates or unions, these rules apply
recursively to the subaggregates or contained unions. If the initializer of a subaggregate or contained union
begins with a left brace, the initializers enclosed by that brace and its matching right brace initialize the
elements or members of the subaggregate or the contained union. Otherwise, only enough initializers from
the list are taken to account for the elements or members of the subaggregate or the first member of the
contained union; any remaining initializers are left to initialize the next element or member of the aggregate
of which the current subaggregate or contained union is a part. For example, the declaration

int y[3][3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

};

is a definition with a fully bracketed initialization. 1, 3, and 5 initialize the first row of y, i.e. the array object
y[0]. Likewise the next two lines initialize y[1] and y[2]. In the declaration below

int y[3][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

};

The initializer for y[0] does not begin with a left brace, so three items from the list are used. Likewise the
next three are take successively for y[1] and y[2]. It has the same effect as the previous fully bracketed
initialization. In the following commands

120

6.4. INITIALIZATION CHAPTER 6. TYPES AND DECLARATIONS

> struct {int a[3], b;} s2[] = {{1}, 2}
> s2[0]
.a = 1 0 0
.b = 0
> s2[1]
.a = 2 0 0
.b = 0
>

the declaration is a definition with an inconsistently bracketed initialization. It defines an array with two
element structures, s2[0].a[0] is 1 and s[1].a[0] is 2; all the other elements are zero.

If there are fewer initializers in a brace-enclosed list than there are elements or members of an aggregate,
or fewer characters in a string literal used to initialize an array of known size than there are elements in the
array, the remainder of the aggregate shall be initialized implicitly the same as objects that have static storage
duration.

> struct {int a, b;} s3 = {1}
> s3
.a = 1
.b = 0
>

The first member is initialized as 1, and the others are initialized implicitly as 0.
In Ch, non-constant expressions, generic functions, and functions defined in function files can be used

as initializers for objects of both static and dynamic duration, with one exception. A function defined in a
function file cannot be used as an initializer for static variables the function or block scope as illustrated in
code below. Function hypot() defined in function file hypot.chf cannot be used for initialization of
identifier d1 which is a static variable in the function scope.

#include <math.h>
int main () {

static double d = hypot(3,4); // Error: hypot is not generic function
}

121

Chapter 7

Operators and Expressions

The operators used in Ch are summarized in Table 7.1. An operator has higher precedence than operators at
the lower level. Operators at the same level have the same precedence. Operators with the same precedence
will associate the operands according to their associativities. Unary operators, ternary conditional operator
and comma operator are right associative; all others are left associative.

Table 7.1: Precedence and associativity of operators

Operations Associativity
::
() [] left to right
function name() right to left
. -> left to right
` ! ˜ ++ -- + - * & (type) right to left
* / % .* ./ left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
ˆ left to right
| left to right
&& left to right
ˆˆ left to right
|| left to right
?: right to left
= += -= *= /= %= &= |= <<= >>= right to left
, left to right

The operation precedence for different operators in Ch is in full compliance with the C standard. The
exclusive-or operator ˆˆ, command substitution operator `, array multiplication operator ’.*’, and array di-
vision operator ’./’ are introduced in Ch. Following the C standard, the algorithms and resultant data types
of operations for floating-point numbers will depend on the data types of operands in Ch. The conversion
rules for char, int, float, and double in Ch follow the type conversion rules defined in the C standard. A data

122

CHAPTER 7. OPERATORS AND EXPRESSIONS

Table 7.2: Negation results
Negation −

operand −Inf −x1 −0.0 0.0 x2 Inf NaN
result Inf x1 0.0 −0.0 −x2 −Inf NaN

Table 7.3: Addition results
Addition +

left operand right operand
−Inf −x1 −0.0 0.0 x2 Inf NaN

Inf NaN Inf Inf Inf Inf Inf NaN
y2 −Inf y2−x1 y2 y2 y2+x2 Inf NaN
0.0 −Inf −x1 0.0 0.0 x2 Inf NaN
−0.0 −Inf −x1 −0.0 0.0 x2 Inf NaN
−y1 −Inf −y1−x1 −y1 −y1 −y1+x2 Inf NaN
−Inf −Inf −Inf −Inf −Inf −Inf NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN

type that occupies less memory can be converted to a data type that occupies more memory space without
loss of any information. For example, a char integer can be cast into int or float without problem. However,
a reverse conversion may result in loss of information. The order of real numbers in Ch ranges from char,
int, float, to double. The char data type is the lowest and double the highest. Like C, the algorithms and
resultant data types of the operations depend on the data types of operands in Ch. For binary operations,
such as addition, subtraction, multiplication, and division, the resultant data type will take the higher order
data type of two operands. For example, the addition of two float numbers will result in a float number
whereas the addition of a float number and a double number will become a double number.

The operation rules for regular real numbers and metanumbers in Ch are presented in Tables 7.2 to 7.12.
In Tables 7.2 to 7.12, x, x1, and x2 are regular positive normalized floating-point numbers in float or double;
metanumbers 0.0, −0.0, Inf, −Inf, and NaN are constants or the values of float or double variables. By
default, the constant metanumbers are float constants.

Table 7.4: Subtraction results.
Subtraction −

left operand right operand
−Inf −x1 −0.0 0.0 x2 Inf NaN

Inf Inf Inf Inf Inf Inf NaN NaN
y2 Inf y2+x1 y2 y2 y2−x2 −Inf NaN
0.0 Inf x1 0.0 0.0 −x2 −Inf NaN
−0.0 Inf x1 0.0 −0.0 −x2 −Inf NaN
−y1 Inf −y1+x1 −y1 −y1 −y1−x2 −Inf NaN
−Inf NaN −Inf −Inf −Inf −Inf −Inf NaN
NaN NaN NaN NaN NaN NaN NaN NaN

123

CHAPTER 7. OPERATORS AND EXPRESSIONS

Table 7.5: Multiplication results
Multiplication ∗

left operand right operand
−Inf −x1 −0.0 0.0 x2 Inf NaN

Inf −Inf −Inf NaN NaN Inf Inf NaN
y2 −Inf −y2∗x1 −0.0 0.0 y2∗x2 Inf NaN
0.0 NaN −0.0 −0.0 0.0 0.0 NaN NaN
−0.0 NaN 0.0 0.0 −0.0 −0.0 NaN NaN
−y1 Inf y1∗x1 0.0 −0.0 −y1∗x2 −Inf NaN
−Inf Inf Inf NaN NaN −Inf −Inf NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Table 7.6: Division results
Division /

left operand right operand
−Inf −x1 −0.0 0.0 x2 Inf NaN

Inf NaN −Inf NaN NaN Inf NaN NaN
y2 −0.0 −y2/x1 −Inf Inf y2/x2 0.0 NaN
0.0 −0.0 −0.0 NaN NaN 0.0 0.0 NaN
−0.0 0.0 0.0 NaN NaN −0.0 −0.0 NaN
−y1 0.0 y1/x1 Inf −Inf −y1/x2 −0.0 NaN
−Inf NaN Inf Inf −Inf −Inf NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN

124

7.1. ARITHMETIC OPERATORS CHAPTER 7. OPERATORS AND EXPRESSIONS

7.1 Arithmetic Operators

For the negation operation shown in Table 7.2, the data type of the result is the same as the data type of the
operand, and a real number will change its sign by the negation operation. There is no −NaN in Ch. The
leading plus sign ‘+’, a unary plus operator, in an expression such as +57864− x will be ignored. It should
be pointed out that the negation of a positive integer zero is still a positive zero. Based on two’s complement
representation of negative integer numbers discussed before, we cannot represent Inf and NaN in the int data
type.

According to the IEEE 754 standard, some operations depend on the rounding mode. For example, in
case of rounding toward zero, overflow will deliver FLT MAX rather than Inf with the appropriate sign. This
rounding mode is necessary for Fortran implementation and for machines that lack infinity. If the rounding
mode is rounded toward −∞, both −0.0 + 0.0 and 0.0 − 0.0 deliver −0.0 rather than 0.0. For scientific
programming, consistency and determinacy are essential. Ch is currently implemented using the default
rounding mode of round to nearest so that overflow will result in Inf, and both −0.0 + 0.0 and 0.0 − 0.0
deliver 0.0 as shown in Tables 7.3 and 7.4. Note that the modulus operator % in Ch is C compatible.

For addition, subtraction, multiplication, and division operations shown in Tables 7.3 to 7.6, the resul-
tant data type will be double if any one of two operands is double; otherwise, the result is a float. The
mathematically indeterminate expressions such as∞−∞,∞∗0.0,∞/∞, and 0.0/0.0 will result in NaNs.
The values of ±0.0 play important roles in the multiplication and division operations. For example, a finite
positive value of x2 divided by 0.0 results in a positive infinity +∞ whereas division by −0.0 will create a
negative infinity −∞. If any one of the operands of binary arithmetic operations is NaN, the result is NaN.

Element-wise multiplication and division of two computational arrays can be performed using array
multiplication operator ’.*’ and array division operator ’./’, respectively. Details about array multiplica-
tion operator ’.*’ and array division operator ’./’ for operands of computational array are described in
Chapter 16.

7.2 Relational Operators

For relational operations given in Tables 7.7-7.12, the result is always an integer with a logical value of 1
or 0 corresponding to TRUE or FALSE, which are predefined system constants. According to the IEEE
754 standard, there is a distinction between +0.0 and −0.0 for floating-point numbers. In Ch, the value
of 0.0 means that the value approaches zero from positive numbers along the real line and it is a zero;
the value of −0.0 means that the value approaches zero from negative numbers along the real line and it is
infinitely smaller than 0.0 in many cases. Signed zeros +0.0 and−0.0 in a Ch program behave like correctly
signed infinitesimal quantities 0+ and 0−, respectively. Although there is a distinction between −0.0 and
0.0 for floating-point numbers in many operations, according to the IEEE 754 standard, the comparison shall
ignore the sign of zeros so that −0.0 equals 0.0 in relational operations. Functions such as signbit(x)
and copysign(x,y) can be used to handle signs of expressions. The value of −0.0 could be regarded
different from 0.0 for comparison operations in Ch. For the convenience of porting C code to Ch, zero is
unsigned in comparison operations. The equality for metanumbers has different implications in Ch. Two
identical metanumbers are considered to be equal to each other. As a result, comparing two Infs or two
NaNs will get logical TRUE. This is just for the convenience of programming because, mathematically,
the infinity of∞ and not-a-number of NaN are undefined values that cannot be compared with each other.
Metanumbers of Inf, −Inf, and NaN in Ch are treated as regular floating-point numbers consistently in
arithmetic, relational, and logical operations.

The relational operators ==, !=, <, and > for comparison of two strings with one of two operands
is the built-in string type string t are described in section 6.1.13.

125

7.2. RELATIONAL OPERATORS CHAPTER 7. OPERATORS AND EXPRESSIONS

Table 7.7: Less than comparison results
Less than comparison <

left operand right operand
−Inf −x1 −0.0 0.0 x2 Inf NaN

Inf 0 0 0 0 0 0 0
y2 0 0 0 0 y2 < x2 1 0
0.0 0 0 0 0 1 1 0
−0.0 0 0 0 0 1 1 0
−y1 0 −y1 < −x1 1 1 1 1 0
−Inf 0 1 1 1 1 1 0
NaN 0 0 0 0 0 0 0

Table 7.8: Less than or equal comparison results
Less or equal comparison <=

left operand right operand
−Inf −x1 −0.0 0.0 x2 Inf NaN

Inf 0 0 0 0 0 1 0
y2 0 0 0 0 y2 <= x2 1 0
0.0 0 0 1 1 1 1 0
−0.0 0 0 1 1 1 1 0
−y1 0 −y1 <= −x1 1 1 1 1 0
−Inf 1 1 1 1 1 1 0
NaN 0 0 0 0 0 0 0

Table 7.9: Equal comparison results
Equal comparison ==

left operand right operand
−Inf −x1 −0.0 0.0 x2 Inf NaN

Inf 0 0 0 0 0 1 0
y2 0 0 0 0 y2 == x2 0 0
0.0 0 0 1 1 0 0 0
−0.0 0 0 1 1 0 0 0
−y1 0 −y1 == −x1 0 0 0 0 0
−Inf 1 0 0 0 0 0 0
NaN 0 0 0 0 0 0 0

126

7.2. RELATIONAL OPERATORS CHAPTER 7. OPERATORS AND EXPRESSIONS

Table 7.10: Greater than or equal comparison results
Greater or equal comparison >=

left operand right operand
−Inf −x1 −0.0 0.0 x2 Inf NaN

Inf 1 1 1 1 1 1 0
y2 1 1 1 1 y2 >= x2 0 0
0.0 1 1 1 1 0 0 0
−0.0 1 1 1 1 0 0 0
−y1 1 −y1 >= −x1 0 0 0 0 0
−Inf 1 0 0 0 0 0 0
NaN 0 0 0 0 0 0 0

Table 7.11: Greater than comparison results
Greater than comparison >

left operand right operand
−Inf −x1 −0.0 0.0 x2 Inf NaN

Inf 1 1 1 1 1 0 0
y2 1 1 1 1 y2 > x2 0 0
0.0 1 1 0 0 0 0 0
−0.0 1 1 0 0 0 0 0
−y1 1 −y1 > −x1 0 0 0 0 0
−Inf 0 0 0 0 0 0 0
NaN 0 0 0 0 0 0 0

Table 7.12: Not equal comparison results
Not equal comparison !=

left operand right operand
−Inf −x1 −0.0 0.0 x2 Inf NaN

Inf 1 1 1 1 1 0 1
y2 1 1 1 1 y2 != x2 1 1
0.0 1 1 0 0 1 1 1
−0.0 1 1 0 0 1 1 1
−y1 1 −y1 != −x1 1 1 1 1 1
−Inf 0 1 1 1 1 1 1
NaN 1 1 1 1 1 1 1

127

7.3. LOGICAL OPERATORS CHAPTER 7. OPERATORS AND EXPRESSIONS

7.3 Logical Operators

In Ch, there are four logical operators !, &&, ||, and ˆˆ corresponding to logical operations not,
and, inclusive or, and exclusive or, respectively. The operations of !, ||, && in Ch
comply with the C standard. The operator ˆˆ is introduced in Ch due to the consideration of programming
convenience so that logical and bitwise exclusive-or operators are orthogonal. Note that, like C, Ch will
evaluate the right operand of both the && and || operations will be evaluated only if the left operand
evaluates to TRUE and FALSE, respectively. This “short circuit” behavior for the ˆˆ operator does not
exist because, for either TRUE or FALSE of the first operand, an exclusive-or operation can return TRUE,
depending on the second operand. The precedence of operator ˆˆ is higher than operator ||, but lower than
&&. This operation precedence is similar to that for bitwise operators &, |, and ˆ, which will be discussed
in the next section. Because there are only two values of either TRUE or FALSE for logical operations, the
values of ±0.0 are treated as logical FALSE while the metanumbers −Inf, Inf, and NaN are considered as
logical TRUE. For example, evaluations of !(−0.0) and !NaN will get the values of 1 and 0, respectively.

7.4 Bitwise Operators

In Ch, there are six bitwise operators &, |, ˆ, <<, >>, and ˜, corresponding to bitwise and,
inclusive or, exclusive or, left shift, right shift, and one’s complement,
respectively. These operators in Ch are in full compliance with the C standard. They can only be applied
to integral data that are char and int at its current implementation of Ch. The returned data type depends on
the data types of operands. The result of the unary operator ˜ keeps the data type of its operand. Results of
binary operators &, |, and ˆ will have the higher data type of two operands. The binary operators << and
>> return the data type of the left operand.

However, some undefined behaviors in C are defined in Ch. For operators << and >>, the right operand
can be any data type so long as it can be converted into int internally whereas the right operand must be a
positive integral value in C. In Ch, if the right operand is a negative integral value that may be converted
from a floating-point data, the shifting direction will be reversed. For example, the expression of 7 <<−2.0
is equivalent to 7 >> 2.0 in Ch. Therefore, only one of these two shift operators is needed in Ch. The use
of operator << is recommended for Ch programming. A program with dual shift directions for one operator
can be cleaner as compared with unidirectional shifts of two operators.

7.5 Assignment Operators

Besides the regular assignment statement, there are nine assignment operators of +=, -=, *=, =, &=,
|=, ˆ=, <<=, and >>=. These assignment operators are C compatible. An lvalue is any object that
occurs on the left hand side of an assignment statement. The lvalue refers to a memory such as a vari-
able or pointer, not a function or constant. The Ch expression of lvalue op= rvalue is defined
as lvalue = lvalue op rvalue where lvalue is any valid lvalue including complex numbers
and it is only evaluated once. For example, i += 3 is equivalent to i = i+3, and real(c) *= 2
is the same as real(c) = real(c)*2. But, statement *ptr++ += 2 is different from statement
*ptr++ = *ptr++ +2 because lvalue *ptr++ contains an increment operation. The operation rules

for operators of +, -, *, /, &, |, ˆ, <<, and >> have been discussed in the previous sections.

128

7.6. CONDITIONAL OPERATOR CHAPTER 7. OPERATORS AND EXPRESSIONS

7.6 Conditional Operator

The conditional operator ’?:’ introduces a conditional expression in Ch. The following conditional expres-
sion

r = op1 ? op2 : op3;

is equivalent to

if(op1 != 0)
r = op2;

else
r = op3;

In a conditional expression, the first and second operands are separated by a question mark ’?’ and the
second and third operands separated by a colon ’:’. The execution of a conditional expression proceeds as
follows:

1. The first operand is evaluated.
2. The second operand is evaluated only if the first does not evaluate to 0. The third operand is evaluated

only if the first evaluates to 0.
3. The result is the value of the second or third operand, whichever is evaluated.

The first operand of a conditional expression shall have scalar type. For the second and third operands, one
of the following shall hold.

1. Both operands have arithmetic type. The result type is determined by the usual arithmetic conversions.

2. Both operands have compatible class, structure or union types. The result is the class, structure or
union type.

3. Both operands have void type. The result has void type.
4. Both operands are pointers to compatible types. The result is a pointer to the composite type.
5. One operand is a pointer and the other is NULL. The result has the type of the operand which is not

NULL.
6. One operand is a pointer to an object or incomplete type and the other is a pointer to void. The result

is a pointer to void.
7. Both operands are computational arrays of the same shape. The result is a computational array with

the higher order data type of the two operands.

Conditional expressions are right-associative. For example,

op1 ? op2 : op3 ? op4 : op5 ? op6: op7

is handled as

op1 ? op2 : (op3 ? op4 : (op5 ? op6: op7))

The following commands are examples of conditional expressions with operands of computational array
type.

129

7.6. CONDITIONAL OPERATOR CHAPTER 7. OPERATORS AND EXPRESSIONS

> 5 ? 1 : 2
1
> 0 ? 1 : 0 ? 3 : 4 // right-association
4
> 0 ? 1.0 : 2 // data type conversion
2.0000
> 1 ? (array float [2][3])1 : (array int [2][3])2
1.00 1.00 1.00
1.00 1.00 1.00
> 0 ? (array float [2][3])1 : (array int [2][3])2
2.00 2.00 2.00
2.00 2.00 2.00

In Program 7.1, the function func() is called in the main function where the argument passed is the
result of a conditional expression. Pointers p1 and p2 are used as operands in conditional expression

p1 = (p1)? p1 : p2;

Then structs s1 and s2 are used as operands in conditional expression

i = (1 ? s1 : s2).ii;

The output of Program 7.1 is displayed in Program 7.2.

struct tag {
int ii;
int *pp;

} s1, s2, *ps1, *ps2;

int func(int i) {
printf("i = %d\n", i);
return 0;

}

int main() {
int i = 1;
int *p1 = NULL, *p2 = &i;

func(i? 5 : 8); // passed as argument of function

p1 = (p1)? p1 : p2; // oparands is pointers
printf("p1 = %p\n", p1);

ps1 = &s1;
ps2 = &s2;
s1.ii = 10;
s2.pp = &s1.ii;
i = (1 ? s1 : s2).ii; // operands of structure
p1 = (0 ? ps1 : ps2)->pp;
printf("i = %d\n", i);
printf("*p1 = %d\n", *p1);

}

Program 7.1: Example of conditional expression with operands of different data type.

130

7.7. CAST OPERATORS CHAPTER 7. OPERATORS AND EXPRESSIONS

i = 5
p1 = 40063528
i = 10

*p1 = 10

Program 7.2: Output of Program 7.1.

7.7 Cast Operators

7.7.1 Cast Operators

In Ch, the explicit type conversion is not necessary in many cases when C needs it. For example,
aptr[3] = malloc(90) is valid in Ch. However, sometimes it is necessary to convert a value of
one type explicitly to a value of another type. This can be achieved by the traditional C cast operation
(type)exprwhere expr is a Ch expression and type is a data type of a single object such as char, int,
float, double or any pointer declaration identifiers such as char *, double *, complex *, etc. For
example, (int)9.3, (float)ptr, (double)9, (float∗)&i, and (complex∗)iptr are valid Ch expressions.

The sizeof() function can also use a type identifier. For example,
ptr = malloc(5+sizeof(int*)+sizeof((int)2.3) + sizeof((int)float(90)+7))
is a valid Ch statement.

One important feature of C is its capability for hardware interface by accessing a specific memory
location in a computer. This is achieved by pointing a pointer to a specific memory location or register. This
hardware interface capability is retained in Ch. For example, the following statements will assign the integer
value at the memory location (68FFE)16 to variable i and set the byte at the memory address (FF000)16 to
(01101001)2 ;

char *cptr;
int i, *iptr, j;
iptr = (int *)0X68FFE; // point to the memory location at 0X68FFE
i = *iptr; // i equals the value at 0X68FFE;
cptr = (char *)0XFF000; // point to the memory location at 0XFF000

*cptr = 0B01101001; // 0B01101001 is assigned to 0XFF000
cptr = (float *)cptr + 1;// cptr points to 0XFF004, not 0XFF001.

// note: (float *)cptr++ is (float *)(cptr++)
j = int(cptr); // j becomes 0XFF004

Note that an integral value cannot be assigned to a pointer variable without an explicit type cast, and vice
versa. The lower segment of the memory in a computer is usually reserved for the operating system and
system programs. An application program will be terminated with exception handling if these protected
segments of memory are messed up by pointers.

7.7.2 Functional Type Cast Operators

There is an additional functional type casting operation in Ch in the form of type(expr) for data types of
single object or type(expr1, expr2, ...) for data types of aggregate such as complex. In this func-
tional type casting operation, type shall not be a pointer data type. For example, int(9.3), complex(float(3),
2), and complex(double(3), 2) are valid Ch expressions. Operation float() is the same as real() if they are

131

7.8. COMMA OPERATOR CHAPTER 7. OPERATORS AND EXPRESSIONS

used as operands. However, function real() can be used as an lvalue whereas float() cannot. More infor-
mation about function real() can be found in section 13.6. Examples of functional type cast operations are
shown below.

char char(double)
char char(complex)
char char(pointer_type)
complex complex(float, float)
double complex complex(double, float)
double complex complex(float, double)
double complex complex(double, double)
double double(double)
double double(complex)
double double(pointer_type)
float float(double)
float float(complex)
float float(pointer_type)
int int(double)
int int(complex)
int int(pointer_type)
long long(double)
long long(complex)
long long(pointer_type)
short short(double)
short short(complex)
short short(pointer_type)
signed signed(double)
signed signed(complex)
signed signed(pointer_type)
unsigned unsigned(double)
unsigned unsigned(complex)
unsigned unsigned(pointer_type)

7.8 Comma Operator

The comma operator ’,’ introduces comma expression in Ch. The comma expression consists of two ex-
pressions separated by a comma. For example,

a = 1, ++a;

The comma operator is syntactically left-associative. The following expression

a = 1, ++a, a + 10;

is equivalent to

((a = 1), ++a), a + 10;

The left operand of a comma operator is evaluated as a void expression first. Then the right operand is
evaluated; the result has its type and value. For example,

132

7.9. UNARY OPERATORS CHAPTER 7. OPERATORS AND EXPRESSIONS

> a = 1, ++a, a + 10
12

The comma operator cannot appear in contexts where a comma is used as a separate item such as the
argument list of a function. In these cases, it can be used within parenthesis. For example,

int func(int i1, int i2);
int t;
...
func((t = 1, t + 2), 2);

7.9 Unary Operators

7.9.1 Address and Indirection Operators

The unary operator & gives the address of an object. The operator &, which is C compatible, can only be
applied to a valid lvalue.

When a unary indirection operator * is applied to a pointer, it accesses the object to which the pointer
points. A pointer and an integer can be added or subtracted. For example, for variables ptr, ptr1,
and ptr2 of pointer type and n of integral value, the expression ptr+n gives the address of the nth
object beyond the one ptr currently points to. The memory locations of pointers ptr+n and ptr are
n*sizeof(*ptr) bytes apart, that is, n is scaled to n*sizeof(*ptr) bytes according to declaration
of pointer variable ptr. Pointer subtraction for pointers with the same data type is permitted. If ptr1 >
ptr2, ptr1 − ptr2 gives the number of objects between ptr2 and ptr1. An array of pointers can
also be declared. When a pointer is declared, it is initialized to zero. The symbolic constant NULL, instead
of zero, can be used in the program. If ptr is NULL, the operand *ptr in an expression is evaluated as
zero. When *ptr, with ptr equal to NULL, is used as an lvalue, a memory of sizeof(*ptr) will be allocated
automatically for pointer ptr. In both cases, the system will print out warning messages. The automatic
memory allocation for a pointer that does not point to a valid location can avoid a system crash.

Two pointers and constant NULL can be used in the relational operations <, <=, ==, >=, >, and
!=. In assignment and relational operations, pointers with different data types can work together without
explicit type conversions. For example, the following is a valid Ch program.

int *iptr;
float *fptr;
iptr = (int *)malloc(90);
fptr = malloc(80); // fptr = (float *)malloc(80)
if(iptr != NULL && iptr != fptr)
free(iptr);

iptr = fptr;

In Ch, not only are all the variables initialized to zero when they are declared, but also the memory allocated
by either function malloc(), calloc() or realloc() , is initialized to zero. This can avoid some unexpected
errors. In C, the content for the memory allocated by functions malloc() and realloc() will be random values.
Furthermore, the casting operation for three memory allocation functions malloc(), calloc(), and realloc()
can be omitted in Ch. If no memory is available, these functions will return NULL and the system will print
out error messages. The function free(ptr) will deallocate the memory allocated by these three functions and
set pointer ptr to NULL. In C, ptr is not set to NULL when the memory it points to is deallocated. This
dangling memory makes the debugging of the C program very difficult because the problem will not surface

133

7.9. UNARY OPERATORS CHAPTER 7. OPERATORS AND EXPRESSIONS

until this deallocated memory is claimed again by other parts of the program. Other related functions such
as memcpy() in Ch for memory manipulations are C compatible.

As described before, there are several system defined parameters such as NaN, Inf, FLT MAX, INT MIN,
FLT EPSILON, etc.. These parameters cannot be used as lvalues so that an accidental change of values of
these parameters can be avoided. However, if really necessary, the values of these parameters can be modi-
fied by accessing their memory locations through pointers. For example, a numerical algorithm may depend
on the parameters FLT EPSILON and Inf. One can change the values of FLT EPSILON to 10−4 and Inf to
FLT MAX by the following Ch code

float *fptr;
fptr = & FLT_EPSILON; *fptr = 1e-4;
fptr = &Inf; *fptr = FLT_MAX;

which may, in effect, change the underlying numerical algorithm.

7.9.2 Increment and Decrement Operators

C is well-known for the succinctness of its syntax. The increment operator ++ and decrement operator --
are unique to C. These two operators in Ch are compatible with C. The increment operator ++ adds 1 to
its operand whereas the decrement operator -- subtracts 1. If ++ or -- is used as a prefix operator, the
expression increments or decrements the operand before its value is used, respectively. If it is used as a
postfix operator, the operation will be performed after its value has been used.

A single + is treated as an addition or unary plus operator depending on the context. Likewise, a single
− can be a subtraction or unary negation operator. For example, the following is valid Ch code.

i = +(-9); // unary plus and negation operators
i++; // i = i+1
j = ++i--; // i = i+1; j = i; i = i-1;
j = ++i; // i = i+1; j = i;
j = i--; // j = i; i = i-1;
i = (*ptr++)++; // ptr = ptr + 1; i = *ptr; *ptr = *ptr + 1;

By definition, ++lvaluemeans lvalue = lvalue + 1 and expression lvalue + 1, and lvalue--
is equivalent to expression lvalue - 1 and lvalue = lvalue - 1. The ++ and -- operators can
be applied to any valid lvalues, not just integral variables, so long as the lvalue can add or subtract an integer
value of 1 according to internal data conversion rules. The following is the valid Ch code.

int i, a[4], *aptr[5];
complex z, *zptr; // declare complex variable and complex pointer
z = z++; // z = z + 1; z is a complex variable
zptr = (complex *)malloc(sizeof(complex)*90);
aptr[3] = malloc(90); // aptr[3] = (int *)malloc(90);
/* imag(z)=complex(0.0, 4.0); zptr=zptr+1; *aptr[3]=1; i=i-1 */
imag(z) = ++real(+++*(zptr+++2*(int)real(++*aptr[3+i--])));
real(z)++; // real(z) = real(z) + 1;
--imag(*zptr); // imag(*zptr) = imag(*zptr) - 1;
a[--i] = a[2]++; // i = i - 1; a[i] = a[2]; a[2] = a[2] + 1;

Details about complex numbers and functions real() and imag() in Ch are described in section 13.6. Note
that the memory allocated by function malloc() is initialized to zero.

134

7.10. MEMBER OPERATORS CHAPTER 7. OPERATORS AND EXPRESSIONS

7.9.3 Command Substitution Operator

Command substitution operator ` returns the output from a command as a string. For example,
string t s;

s = `ls`;
When two command substitution operators are used together, character of formfeed, newline, carriage

return, horizontal tab, and vertical tab from the output of the command is replaced by a blank space character.
For example,

string t s;
s = ``ls``;

7.10 Member Operators

Operators . and -> are called member operators. A member of class, structure, or union is referred to by
these two member operators. The first operand of the . operator shall have a class, structure or union type,
and the second operand shall name a member of that type.
The first operand of the -> operator shall have type “pointer to class”, “pointer to structure”, or “pointer to
union”, and the second operand shall name a member of the type pointed to.
For example,

struct tag {
int i;
double d;

} s, *p;
s = &p;
s.i = 10;
p->i += s.i;

135

Chapter 8

Statements and Control Flow

A statement specifies an action to be performed. Except as indicated, statements are executed in sequence.
A full expression is an expression that is not part of another expression or declarator. Each of the following
is a full expression: an initializer; the expression in an expression statement; the controlling expression
of a selection statement (if or switch); the controlling expression of a while or do statement; each of the
(optional) expressions of a for statement; the (optional) expression in a return statement. The end of a full
expression is a sequence point.

8.1 Simple and Compound Statements

A compound statement is a block enclosed with a pair of braces. A block allows a set of declarations and
statements to be grouped into one syntactic unit. The initializers of objects that have automatic storage
duration, and the variable length array declarators of ordinary identifiers with block scope, are evaluated
and the values are stored in the objects (including storing an indeterminate value in objects without an
initializer) each time the declaration is reached in the order of execution, as if it were a statement, and
within each declaration in the order that declarators appear. For example.

int i; // simple statement
{ // compound statement
int i;
i =90;
...

}

8.2 Expression and Null Statements

An expression statement contains an expression only. The expression is evaluated as a void expression for
its side effects. A null statement consisting of just a semicolon performs no operation.

If a function call is evaluated as an expression statement for its side effects only, the discarding of its
value may be made explicit by converting the expression to a void expression by means of a cast as shown
below:

int p(int);
/* ... */
(void)p(0);

136

8.3. SELECTION STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

A null statement can be used to supply an empty loop body to the iteration statement as shown in the
program fragment below:

char *s;
/* ... */
while(*s++ != ’\0’)

;

A null statement may also be used to carry a label just before the closing } of a compound statement.

while(loop1) {
/* ... */
do {
/* ... */
if(want_out)

goto end_loop1;
/* ... */

} while (loop2);
/* ... */
end_loop1: ;

}

8.3 Selection Statements

A selection statement selects among a set of statements depending on the value of a controlling expression.
A selection statement is a block whose scope is a strict subset of the scope of its enclosing block. Each
associated substatement is also a block whose scope is a strict subset of the scope of the selection statement.

8.3.1 If Statements

The syntax of an if-statement is as follows:

if(expression)
statement

The controlling expression of an if statement shall have scalar type. The statement is executed if the expres-
sion compares unequal to 0.

Ch supports the header file stdbool.h added in C99. the Boolean type bool is defined. Macros true and
false are defined to handle Boolean numbers. The macro true is defined as 1, and macro false is defined
as 0. The code fragment below illustrates how bool type can be used in conditional expressions.

#include <stdbool.h>
bool i = true;
/* ... */
if (i) {
i = false;

}

137

8.3. SELECTION STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

8.3.2 If-Else Statements

The syntax of an if-else statement is as follows:

if(expression)
statement1

else
statement2

The controlling expression of an if statement shall have scalar type. The first substatement is executed if the
expression compares unequal to 0. The second substatement is executed if the expression compares equal
to 0. If the first substatement is reached via a label, then the second substatement is not executed.

8.3.3 Else-If Statements

The syntax of the else-if statement is as follows:

if(expression1)
statement1

else if (expression2)
statement2

else if (expression3)
statement3

else
statement4

Semantically, the syntax of else-if statement is an extention of the previous if-else statement. An else is
associated with the lexically nearest preceding if that is allowed by the syntax. The above statement can be
rearranged as

if(expression1)
statement1

else
if (expression2)

statement2
else

if (expression3)
statement3

else
statement4

8.3.4 Switch Statements

The syntax of a switch statement is as follows:

switch(expression) {
case const-expr1:

statement1
break;

case const-expr2:
statement2

138

8.3. SELECTION STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

break;
default:

statement
break;

}

The controlling expression of a switch statement shall have integer or string type. The expression of
each case label shall be an integer constant expression or string and no two of the case constant expressions
in the same switch statement shall have the same value after conversion. There may be at most one default
label in a switch statement. A switch statement causes control to jump to, into, or past the statement that is
the switch body, depending on the value of a controlling expression, and on the presence of a default label
and the values of any case labels on or in the switch body. A case or default label is accessible only within
the closest enclosing switch statement. The number of case values in a switch statement is not limited.

The integer promotions are performed on the controlling expression. The constant expression in each
case label is converted to the promoted type of the controlling expression. If a converted value matches that
of the promoted controlling expression, control jumps to the statement following the matched case label.
Otherwise, if there is a default label, control jumps to the labeled statement. If no converted case constant
expression matches and there is no default label, no part of the switch body is executed.

In the code fragment below,

switch (expr) {
int i = 10;
f(i);

case 0:
i = 20;
/* falls through into default code */

default:
printf("%d\n", i);

}

the object whose identifier i exists with automatic storage duration within the block, but is never initial-
ized. Thus, if the controlling expression has a nonzero value, the call to the printf function will access an
indeterminate value. Similarly, the call to the function f cannot be reached.

The controlling expression of a switch statement can be string, instead of integer, as shown in the exam-
ple below. Accordingly, all case constant expressions for such a switch statement shall also be string.

string_t str;
str = ‘hostname‘; // get host name from command ’hostname’
char *s="host2";
switch (str) { // or switch (s)

case "host1":
printf("s = host1\n");
break;

case "host2":
printf("s = host2\n");
break;

default:
break;

}

139

8.4. ITERATION STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

8.4 Iteration Statements

An iteration statement causes a statement called the loop body to be executed repeatedly until the controlling
expression compares equal to 0. The loop body of an iteration statement is a block.

8.4.1 While Loop

The syntax of a while statement is as follows:

while(expression)
statement

The evaluation of the controlling expression takes place before each execution of the loop body.
The loop body is executed repeatedly until the controlling expression compares equal to 0.

For example, the following code fragment

int i =0;
while(i<5) {

printf("%d ", i);
i++;

}

will output

0 1 2 3 4

8.4.2 Do-While Loop

The syntax of a do-while statement is as follows:

do
statement

while(expression);

The evaluation of the controlling expression takes place after each execution of the loop body. The loop
body is executed repeatedly until the controlling expression compares equal to 0.

For example, the following code fragment

int i =0;
do {

printf("i = %d\n", i);
i++;

} while(i<5);

will output

0 1 2 3 4

The following code fragment

int i = 10;
do {

printf("i = %d\n", i++);
} while(i<5);

140

8.4. ITERATION STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

will output

10

As shown in this example, the loop body is executed before the controlling expression is evaluated. The
following code fragment with a while-loop will have no output, because the controlling expression of the
while statement is evaluated first with a value of 0.

int i =10;
while(i<5)

printf("%d ", i++);

8.4.3 For Loop

The syntax of a for statement is as follows:

for(expression1; expression2; expression3)
statement

The expression expression1 is evaluated as a void expression before the first evaluation of the controlling
expression. The expression expression2 is the controlling expression that is evaluated before each execution
of the loop body. The expression expression3 is evaluated as a void expression after each execution of the
loop body. Both expression1 and expression3 can be omitted. An omitted expression2 is replaced by a
nonzero constant.

The for-loop is semantically equivalent to the following while-loop

expression1;
while(expression2) {
statement
expression3;

}

For example, the following code fragment

int i;
for(i=0; i<5; i++)
printf("%d \n", i);

will produce the same output of

0 1 2 3 4

as in a while-loop of

int i =0;
while(i<5) {

printf("%d ", i);
i++;

}

More complicated expressions can be used in a for-loop statement as shown below.

int i, j=10;
for(i=0, j=10; i<10&&j>0; i++, j--) {

printf("i=%d\n", i);
printf("j=%d\n", j);

}

141

8.5. JUMP STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

8.4.4 Foreach Loop

The syntax of a foreach statement is as follows:

foreach(token; expr1; expr2; expr3)
statement

foreach(token; expr1; expr2)
statement

foreach(token; expr1)
statement

The foreach loop is used to handle iterations based on the condition of string type or pointer to char. The
expressions expr1, expr2, and expr3 shall have string type or pointer to char. The identifier token also shall
have string type or pointer to char. In each iteration, the variable token takes a token from the original
expression expr1 separated by the delimiter expr3. The loop body is executed repeatedly until token
is a NULL pointer or the same as expr2. This is achieved by comparing the controlling expression
(token==NULL || expr2!=NULL && !strcmp(token,expr2)) to 0. The omitted expr2 and
expr3 are replaced by NULL and ” ;”, respectively.

As an example, the following code

char *token, *str="ab:12 cd ef", *cond="cd", *delimit=" :";
foreach(token; str; cond; delimit)

printf("token= %s\n", token);
printf("after foreach token = %s\n", token);
printf("after foreach cond = %s\n", cond);
printf("after foreach delimi= %s\n", delimit);

gives the output of

token= ab
token= 12
after foreach token = cd
after foreach cond = cd
after foreach delimi= :

In this example, the delimiters for token are characters of blank space and colon as shown in the value for
the variable delimit in the program. The code below will create three directories dir1, dir2, and dir3 in
the current directory.

string_t token, str="dir1 dir2 dir3";
foreach(token; str) {

mkdir $token
}

8.5 Jump Statements

A jump statement causes an unconditional jump to another place. To jump from one function to other
function, functions setjmp() and longjmp() in header file setjmp.h should be used.

142

8.5. JUMP STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

8.5.1 Break Statements

The break statement provides an early exit from for, while, do-while, foreach loops and
switch. A break causes the innermost enclosing loop or switch to be exited immediately. A break
statement shall appear only in a switch body or loop body. For example, the following code fragment

int i;
for(i=0; i<5; i++) {

if(i == 3) {
break;

}
printf("%d \n", i);

}

will produce the output of

0 1 2

8.5.2 Continue Statements

The continue statement causes the next iteration of the enclosing for, while, do-while, foreach
loop to begin. A continue statement shall appear only in or as a loop body. In each of the statements

while (/* ... */) { do {
/* ... */ /* ... */
continue; continue;
/* ... */ /* ... */
contin: ; contin: ;

} } while (/* ... */);

for(/* ... */) { foreach (/* ... */)
/* ... */ /* ... */
continue; continue;
/* ... */ /* ... */
contin: ; contin: ;

} }

unless the continue statement shown is in an enclosed iteration statement in which case it is interpreted
within that statement, it is equivalent to goto contin;.

For example, the following code fragment

int i;
for(i=0; i<5; i++) {

if(i == 3) {
continue;

}
printf("%d \n", i);

}

will produce the output of

0 1 2 4

143

8.5. JUMP STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

8.5.3 Return Statements

A return statement terminates execution of the current function and returns control to its caller. A function
may have any number of return statements. If a return statement with an expression is executed, the value
of the expression is returned to the caller as the value of the function call expression. If the expression
has a type different from the return type of the function in which it appears, the value is converted as if by
assignment to an object having the return type of the function. A return statement with an expression shall
not appear in a function whose return type is void. A return statement without an expression shall only
appear in a function whose return type is void.

8.5.4 Goto Statements

A goto statement causes an unconditional jump to the statement prefixed by the named label in the enclosing
function. A goto statement can transfer control either forward or backward within a function. For example,

for (/* ... */)
for(/* ... */) {
/* ... */
if(emergency)

goto hospital;
}
/* ... */
hospital:

emergenceaction();

void funt1(int j)
{
int funt2(int j)
{
if(j>10)
goto label1;

j = 10;
}
funct2(j)
label1: exit(1);

}

In a nested function, the flow of control can jump from an inner function to the enclosing outer function,
where the label is defined. But, it cannot jump from an enclosing outer function to an inner function. For
example,

int task() {
int task1() {
/* ... */
if(student)
goto school;

/* ... */
}
int task2() {

144

8.6. LABELED STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

/* ... */
if(tolean)
goto school;

/* ... */
}
school:
study();

}

void funt1(int j)
{
if(j>10)

goto label1; // Error: going INTO scope of inner function
j = 10;
int funt2(int j)
{
label1:
/* ... */

}
funct2(j)

}

A goto statement shall not jump from outside the scope of an identifier having a variably modified type
to inside the scope of that identifier. A jump within the scope, however, is permitted.

goto lab3; // Error: going INTO scope of VLA
{

double a[n];
a[j] = 4.4;

lab3:
a[j] = 3.3;
goto lab4; // OK, going WITHIN scope of VLA
a[j] = 5.5;

lab4:
a[j] = 6.6;

}
goto lab4; // Error: going INTO scope of VLA

8.6 Labeled Statements

The syntax for labeled statements is as follows:

labeled-statement:
identifier : statement
case constant-integral expr : statement
case string-expr: statement
default : statement

145

8.6. LABELED STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

A case or default label shall appear only in a switch statement. Label names shall be unique within a
function. Any statement may be preceded by a prefix that declares an identifier as a label name. Labels in
themselves do not alter the flow of control. Label names have function scope.

146

Chapter 9

Pointers

Pointer is defined as a variable which contains the address of another variable or dynamically allocated
memory. If we have a pointer variable of type pointer to int, it might point to an int variable, or to
an element of an array of int type. Pointer is essential for programming in C and Ch. It is also useful for
interfacing with hardware.

Pointers in Ch are C compatible. Ch uses pointers explicitly for arrays, structures, functions, classes and
simple data types. There are two basic operators for pointer. They are the indirection operator ‘*’ and the
address operator ‘&’. They are used in the following context.

1. To declare a pointer, add the operator ‘*’ in front of its name.
2. To obtain the address of a variable, add the operator ‘&’ in front of its name.
3. To obtain the value of a variable, add the operator ‘*’ in front of a pointer’s name.
Variables of pointer type can be declared similar to variables of other data types. For example,

int *p, i;

declares p as a pointer to int and i as an int. The expression *p is the type int. We can have a pointer to any
variable type. Note that a pointer must be associated to a particular type. There is one exception: a “pointer
to void” is used to hold any type of pointer but cannot be dereferenced itself.

The unary operator ‘&’ gives the “address of a variable”. The expression &i means the address of
variable i. The dereference operator ‘*’ gives the “contents of an object pointed to by a pointer”. The
expression *p represents the value stored in the location pointed to by variable p. It is different from the
multiplication operator and is also different from its use in declaration of variables of pointer type.

Therefore, the programming statement

p = &i;

will set the pointer p to the address of i. After that, the equality *p == i holds.

9.1 Pointer Arithmetic

As mentioned above, pointers do not have to point to a simple variable of scalar type. They can also point
to an element of an array. For example, we can write

int *p;
int a[10];
p = &a[3];

147

9.1. POINTER ARITHMETIC CHAPTER 9. POINTERS

and we would end up with p pointing at the fourth element of the array a. Note that by default the array
index starts at 0, instead of 1. The situation is illustrated below

a[0] a[1] a[2] a[3] a[4] ... a[9]
|
p

The pointer p can be used just like the one in the previous section. The expression *p gives what p points
to, which in this case is the value of a[3].

Once we have a pointer pointing at an element of an array or dynamic allocated memory, we can perform
pointer arithmetic. Given that p is a pointer to a[3], we can add 1 to p,

p + 1

In Ch and C, adding one gives a pointer to the next cell. The following code assigns this new pointer to
another pointer variable p2.

int *p2;
p2 = p + 1;

Now the relation of pointers and array becomes

a[0] a[1] a[2] a[3] a[4] ... a[9]
| |
p p2

The programming statement

*p2 = 4;

will set a[4] to 4. We can compute a new pointer value and use it immediately as shown below.

*(p + 1) = 5;

In this example, we have changed a[4] again, setting it to 5. The parentheses are needed because the unary
operator * has higher precedence than the addition operator. If we wrote *p + 1, without the parentheses,
we would be fetching the value pointed to by p, and adding 1 to that value.

Besides adding one, any number can be added to or subtracted from a pointer. If p still points to a[3],
then

*(p + 5) = 7;

sets a[8] to 7, and

*(p - 2) = 4;

sets a[1] to 4.
The increment operator ‘++’ and decrement operator ‘--’ make it easy to do two things at once. The

expression like *p++ accesses what p points to, while simultaneously incrementing p so that it points to the
next element. The preincrement form *++p increments p, then accesses what it points to. Note that (*p)++
increments what p points to.

Pointer to characters is commonly used. A string can be defined in Ch as shown below.

char * str1;
string_t str2;

148

9.2. DYNAMIC ALLOCATION OF MEMORY CHAPTER 9. POINTERS

The following example illustrates how pointers can be used to handle strings.

char dest[100], src[100];
char *dp = dest, *sp = src;

strcpy(src, "abcd");
/* copy src to dest */
while(*sp != ’\0’)

*dp++ = *sp++;

*dp = ’\0’;

In the above example, pointers to char are used to copy a string in array src.
When pointer arithmetic is performed, make sure it is within the valid range. For example, if the array

a has 10 elements, you can’t access a[10] or a[-1], because by default the valid subscript for a 10-element
array ranges from 0 to 9.

Besides through an explicit pointer, the elements of an array can be accessed through the array name
itself. It is because the array’s name is a pointer to the first element in the array in C and Ch. Therefore, the
statement

p = a;

is equivalent to

p = &a[0];

Both of these two statements make the pointer p point to the first element of array a. Furthermore, the third
element of array a can be accessed as follows

int aa2 = *(a+2); // obtain the value of the third element

*(a+2) = 5; // assign 5 to the third element of a

9.2 Dynamic Allocation of Memory

A problem using fixed-size array is that either it is too small to handle special cases, or it is too big and
the resource is wasted. Without using variable length arrays, this problem can be solved by dynamically
allocated memory using the standard functions malloc(), calloc(), or realloc() as well as the operator new.
The order and contiguity of storage allocated by successive calls to the functions calloc(), malloc(), and

realloc() is unspecified. The pointer returned if the allocation succeeds is suitably aligned so that it may be
assigned to a pointer to any type of object and then used to access such an object or an array of such objects
in the space allocated (until the space is explicitly freed or reallocated). Each such allocation shall yield
a pointer to an object disjoint from any other object. The pointer returned points to the start (lowest byte
address) of the allocated space. If the space cannot be allocated, a null pointer is returned. If the size of the
space requested is zero, the behavior is platform-dependent: either a null pointer is returned, or the behavior
is as if the size were some nonzero value, except that the returned pointer shall not be used to access an
object. The value of a pointer that refers to freed space is indeterminate.

As an example, we can allocate a piece of memory and copy a string into it with the function strcpy()
as shown below.

char *str = "abcd", *copy;
...

149

9.2. DYNAMIC ALLOCATION OF MEMORY CHAPTER 9. POINTERS

/* +1 for NULL terminator */
copy = (char *)malloc(strlen(str) + 1);
strcpy(copy, str);

Remember that all strings have a terminating ‘\0’ character which is not included by strlen(). The number
of bytes for string str is strlen(str)+1, not strlen(str).

Ch has a sizeof operator which computes the size, in bytes, of a variable or type. It’s useful to allocate
memory for variables whose sizes are unknown to the users. To allocate space for 100 ints, we could use

int *p = (int *)malloc(100 * sizeof(int));

Obviously, no computer has an infinite amount of memory available. If we call malloc(1000000000),
or if we call malloc(10) 100,000,000 times, the system is probably going to run out of memory. When
the function malloc() is unable to allocate the requested memory, it returns a NULL pointer. Therefore,
whenever you call malloc(), it is important to check the returned value before using it. A call to function
malloc() with an error check is shown below.

int *p = (int *)malloc(100 * sizeof(int));
if(p == NULL)
{

printf("out of memory\n");
exit(1);

}

If function malloc() returns NULL, the code should return to its caller, or exit from the program entirely
after printing the error message. It cannot proceed with the code that would have used the memory pointed
to by p. A good application example of dynamic allocation of memory is to create a linked list which will
be described in Chapter 18.

Unlike automatic-duration variables, dynamically allocated memory does not automatically disappear
when a function returns. Just as you can use function malloc() to control exactly when and how much
memory you allocate, you can also control exactly when you deallocate it. In fact, many programs use
memory on a transient basis. They allocate some memory, use it for a while, but then reach a point where
they don’t need that particular piece any more. Because memory is not inexhaustible, it’s a good idea to
deallocate (that is, release or free) memory you are no longer using.

Dynamically allocated memory is deallocated with the function free(). Dynamically allocated memory
using operator new can be deallocated by operator delete, which will be described in Chapter 19. If p
contains a pointer previously returned by function malloc(), you can call function

free(p);

to release the memory dynamically allocated. After calling free(p), it is most likely the case that p still
points at the same memory in C. However, p will be set to NULL in Ch after it is deallocated. So long as
we check to see if p is non-NULL before using it again, we won’t misuse any memory via the pointer p.

Ch supports functions which return pointers. This is useful for allocating memory within functions.
Below is a simple example of a function returning a pointer to int.

int *fn1() {
int *p = (int *)malloc(sizeof(int));
.....

*p = 5;

150

9.3. ARRAYS OF POINTERS CHAPTER 9. POINTERS

...

return p;
}

The memory which is dynamically allocated by function malloc(), inside function fn1(), can be freed in
the calling function.

Note that the code below is invalid.

int *fn2() {
int k;
...

k = 5;
...

/* return address of k*/
return &k;

}

The function fn2() tries to return the address of local variable k. When the function fn2() returns, the
memory for variable k will be deallocated automatically.

9.3 Arrays of Pointers

Like C, Ch supports arrays of pointers since pointers are variables themselves, such as

int (*p1)[3], a1[2][3], a2[3][3];
p1 = a1; // p1[i][j]<=>a1[i][j]
...
p1 = a2; // p1[i][j]<=>a2[i][j]
int *p2[3]; // declares an array of 3 pointers to ints.

Arrays of pointers are very useful in some cases. Consider the following code fragment.

char m1[7][10] = {"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"};

char *m2[7] = {"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"};

Variable m1 is a two-dimension array of char whereas m2 is an array of pointer to char. The memory layout
for m1 and m2 are shown in Figures 9.1 and 9.2, respectively.

151

9.3. ARRAYS OF POINTERS CHAPTER 9. POINTERS

m1
.

7
Thursday\0
Wednesday\0
Tuesday\0
Monday\0

Friday\0

Sunday\0

Saturday\0

10

Figure 9.1: 2D array.

.

7

Sunday\0

7m2[0]
m2[1]

Saturday\0

9m2[6]

Monday\0

Figure 9.2: Array of pointers.

The advantage of using m2 is that each pointer can point to arrays with different length rather than the fixed
length of 10 bytes. This can be illustrated by the code below.

/* three text lines */
char *p[3] = {"ABC", "HIJKL", "EF"};
char *tmp;
...
tmp = p[1];
p[1] = p[2];
p[2] = tmp;

This example demonstrates how an array of pointers can be used to eliminate complicated storage manage-
ment and overheads of moving lines. In this example, the original strings of different lengths pointed to by
pointers p[0], p[1] and p[2] are shown in Figures 9.3. Without moving and copying characters in these
strings, the contents pointed to by pointers p[1] and p[2] are swapped by swapping values of pointers as
shown in Figures 9.4.

152

9.4. POINTERS TO POINTERS CHAPTER 9. POINTERS

ABC\0

HIJKL\0

EF\0P[2]

P[1]

P[0]

Figure 9.3: Before swapping texts.

ABC\0

HIJKL\0

EF\0P[2]

P[1]

P[0]

Figure 9.4: After Swapping texts.

9.4 Pointers to Pointers

Because a pointer of different type is a variable itself, Ch can handle a pointer to a pointer of any type.
Consider the following code

char ch; // a character
char *p = &ch; // a pointer to ch
char **pp = &p; // a pointer to p

It is visualized in Figure 9.5. Here **pp refers to memory address of *p which refers to the memory
address of the variable ch.

’a’

chppp

Figure 9.5: Pointer to pointer.

Because char * is used to refer to a NULL terminated string in Ch, one common, and convenient, notion
is to declare a pointer to pointer to char. For example, the code below

char *p = "ab"; // a string
char **pp = &p; // a pointer to p

declares p as a pointer and pp as a pointer to pointer to char as is illustrated in Figure 9.6.

153

9.4. POINTERS TO POINTERS CHAPTER 9. POINTERS

pp p

’a’ ’b’ ’\0’

Figure 9.6: Pointer to string.

Furthermore Ch supports several strings being pointed to by a double pointer as shown in the commands
below.

> char **pp;
> pp = (char**)malloc(3*sizeof(char*));
4006c8d0
> pp[0] = "ab";
ab
> pp[1] = "py";
py
> pp[2] = NULL;
00000000

The memory layout for the above code is illustrated by Figure 9.7

pp

NULL

’a’ ’b’ ’\0’

’\0’’y’’p’

Figure 9.7: Pointer to strings.

We can refer to individual strings by pp[0] and pp[1]. Semantically this is identical to the declaration
of char *pp[]. The double pointer is useful for command line argument handling of function main().

Pointers to pointers are also useful for dynamic allocation of memory. For the program below,

void fn3(int **p) {

*p = (int *)malloc(sizeof(int));

**p = 5;
}
int main() {

int *p;
....

fn3(&p);
....

154

9.4. POINTERS TO POINTERS CHAPTER 9. POINTERS

}

the memory for pointer p in calling function main() is allocated by function fn3().
Interactive Ch shell is especially useful for understanding how pointer works as shown in the following

interactive execution of programming statements with pointer and double pointer.

> int i, *p
> p = &i // assign address of i tp p
1c4228
> *p = 90
90
> printf("i = %d\n", i);
i = 90
> int **p2
> p2 = &p
1c3c38
> printf("**p2 = %d\n", **p2)

**p2 = 90
> i**p // i * (*p)
8100
>

155

Chapter 10

Functions

A Ch program is generally formed by a set of functions, which subsequently consist of many programming
statements. Using functions, a large computing task can be broken into smaller ones; a user can develop
application programs based upon what others have done instead starting from scratch. The performance and
user friendly interface of functions are critical to a programming language. In Ch, it is guaranteed that all
function calls to a function are governed by a prototype, that all the prototypes for the same function are
compatible, and that all the prototypes match the function definition even for a program that is divided into
many separate files.

All functions, including the main function main(), in C are at the same level; functions cannot be
defined inside other functions. In other words, there are no internal procedures in C. Ch extends C with
nested functions. Functions in Ch not only can be recursive, but also nested, which means that a function
can call itself as well as can define other functions inside the function. With nested functions, details of
one functional module can be hidden from the other modules that do not need to know about them. Each
module can be studied independent of others. Software maintenance is the major cost of a program. People
who were not involved in the original design often do the most program maintenance. Nested functions
modularize a program, thus clarifying the whole program and easing the pain of making changes to modules
written by others. Nested functions are very useful for information hiding and modular programming.

Although adding nested functions to C is a conservative enhancement to the language, addition of any
new feature into the standard needs a careful examination of its potential impact on the language as a whole.
The new feature should be a natural extension to C, namely, in the so-called spirit of C; it must not break
all currently existing codes. With nested functions, local functions can be defined inside other functions. In
the spirit of C, functions in Ch can not only be nested, but also recursive. In other words, a function can call
itself either directly or indirectly. This is especially important for writing function files. Functions defined
inside function files are treated as if they were the system built-in functions in a Ch language environment.
This chapter, therefore, first describes how functions are handled in the C standard-conforming manner, then
presents new linguistic features of nested functions as they are currently implemented in Ch in the spirit of
C.

10.1 Call-by-Value versus Call-by-Reference

In general, arguments can be passed to functions in one of two models: call-by-value and call-by-reference.
In the call-by-value model, the values of the actual parameters are copied into formal parameters local to
the called function. When a formal parameter is used as an lvalue (the object that can occur at the left side
of an assignment statement), only the local copy of the parameter will be altered. In the call-by-reference
method, however, the address of an argument is copied into the formal parameter of a function. Inside the

156

10.2. FUNCTION DEFINITIONS
CHAPTER 10. FUNCTIONS

called function, the address is used to access the actual argument used in the calling function. This means
that when the formal parameter is used as an lvalue, the parameter will affect the variable used to call the
function. FORTRAN uses the call-by-reference model, whereas the convention in C is call-by-value. If it is
desired that the called function alter its actual parameters in the calling function in C, the addresses of the
parameters shall be passed explicitly. However, in C++ and Ch, arguments can be passed by reference with
reference type described in next Chapter.

10.2 Function Definitions

A function can be defined in the form of

return_type function_name(argument declaration)
{
statements

}

Parts of the above function definition may be absent. The return type can be any valid type specifier.
The function definition in Ch must begin with a type specifier even for functions that return int.

The traditional function definition, known as K&R C, is also supported in Ch. Although obsolescent, in
this notation, parameter identifiers in a function definition are separated by the declaration list.

Declaration statements can be mixed with executable statements. For example, in the code fragment

int funct(int i)
{
i = 3;
int j;
return i;

}

the variable j is declared after the execution statement i = 3. The lexical level of parameter variables for
arguments of a function is lower than that of local variables defined inside the function. When an identifier
is used as both parameter variable of the function and its local variable, the variable will be treated as the
argument of the function before the declaration statement that declares it as a local variable. After the
declaration statement, the variable becomes the local variable within the function. Therefore, unlike in C,
one may use the same identifier as both the argument of the function and its local variable as shown in the
following example.

int funct(int i, j)
{
printf("i = %d \n", i);// use i as the argument parameter
int j=1, i=1; // i and j are initialized to 1
j = i +8 +j; // use i and j as local variables
return j; // return the local variable j with 10

}

In Ch, variables are guaranteed to be initialized to zeros when they are declared. In the above function
funct(), the identifier i that contains the value of the argument parameter is printed out by the output
function printf(). The identifier i then becomes a local variable after the declaration statement int j, i.

157

10.2. FUNCTION DEFINITIONS
CHAPTER 10. FUNCTIONS

The name j is used as both an argument and a local variable of the function. The variable j is declared as a
local variable before it is invoked inside the function. The value passed from the calling function will never
be used inside the function. In other words, the local variable hides the argument parameter of the function.

It should be pointed out that, in C, the function funct() in the above example has to be defined as
int funct(int i, int j). The type declarators for the subsequent arguments can be omitted in Ch
if they have the same type as the previous one. However, if the identifier in the argument list is also a typedef
name, the type declarator cannot be omitted as shown below.

typedef int INT;
int funct(int i, int INT) // int funct(int i, INT) is an error
{
INT =90;
/* ... */

}

The return statement can be used to return a value from the called function to the calling function as
in

return expression;

Any expression can follow return, parentheses around the expression are optional. The expression will
be converted to the return type of the function if necessary. But if the expression cannot be converted to the
return type of the function according to the built-in data type conversion rules implicitly, it is a syntax error.
For example,

int funct()
{
int *p;
return p; // ERROR: wrong return data type
return (int)p; // OK: C type conversion
return int(p); // OK: functional type conversion

}

If the return type is not void, a return statement is necessary at the end of the function; otherwise, the default
zero will be used as the return value and a warning message will be produced by the system. For example,

> int funct(){}
WARNING: missing return statement for function funct() and \
default zero is used

In other words, the function will be handled as if a return statement with a return value of zero was present
before the closing right brace. Here, the value of zero is used in a general sense. For example, zero of int is
0, zero of float is 0.0, zero of a pointer is NULL, and zero of complex is complexZero. Furthermore, if the
return type is not void, the expression following return is necessary; otherwise, the default zero will be used
as the return value and a warning message will be produced. For example,

int funct()
{
return; // WARNING: missing return expression and use default zero

}

158

10.2. FUNCTION DEFINITIONS
CHAPTER 10. FUNCTIONS

However, the calling function can freely ignore the returned value. For example,

int funct(int i)
{
return i+1; // the same as ’return (i+1);’

}
funct(5); // ignore the return value

If a function is defined without returning anything, the return data type should be void. It is an error to
call the function with the return type of void in a context that requires a value. For example,

void funct(int i){}
int k;
k = funct(3); // ERROR: lvalue and rvalue are not compatible

If the return type is void, the return statement is optional. But, if there is an expression following return,
it is a syntax error. For example,

void funct (int i)
{
if(i == 3)
{

printf("i is equal to 3 \n");
return i; // ERROR: return int

}
else if(i > 3)
{

printf("i is not equal to 3 \n");
return; // OK

}
i = -1;

}
funct(2);

If the number of the arguments passed to the called function by the calling function is less than that in the
function definition, it is a syntax error. For example,

int funct(int i, j){return i}
funct(8) // ERROR: fewer parameters are passed to funct(),

On the other hand, if the number of actual arguments is more than the number of the formal definitions, it is
also a syntax error. For example,

int funct(int i){return i}
funct(8, 9) // ERROR: number of arguments is 2, need 1 argument

Both system built-in and user-defined functions can be used as arguments of functions in Ch. System
built-in functions will be handled polymorphically. Furthermore, a function itself can be used as an argument
of the function. For example, in Program 10.1, the arguments of the function call funct2(abs(-6),

159

10.3. FUNCTION PROTOTYPES
CHAPTER 10. FUNCTIONS

funct1(funct1(2)), funct2(1,2,3))are the system built-in function abs(), user-defined func-
tion funct1() which uses itself as the argument, and the function funct2() itself.

#include <stdio.h>

int funct1(int j) {
return 2*j;

}
int funct2(int j1, j2, j3) {

return j1+j2+j3;
}
int main () {

int i;
i = funct2(abs(-6), funct1(funct1(2)), funct2(1,2,3));
printf("i = %d \n", i); // output: i = 20

}

Program 10.1: Using functions as arguments of a function

10.3 Function Prototypes

The type checking for the return value and arguments of functions in Ch is more rigorous and consistent
than in C, which can help users detect some hidden bugs in a program. In C, when a program is divided into
many source files, the compiler is not required to check that

• all calls to a function are governed by a prototype,

• all the prototypes for the same function are compatible,

• or all the prototypes match the function definition.

But, Ch can check all these even for a program that is divided into many separate files. In Ch, the data type
of an actual argument of the calling function can be different from that of the formal argument of the called
function so long as they are compatible. The value of an actual argument will be converted to the data type
of its formal definition according to the built-in data conversion rules implicitly at the function interface
stage. However, the data types for the same argument in different function prototypes for the same function
must be the same even in different files. Likewise, the return types of different function prototypes for the
same function must also be the same. For example,

int funct1(int i); // return and argument types are int
int funct1(float f); // ERROR: change data type of argument
int funct1(void v); // ERROR: change data type of argument
int funct1(int &i); // ERROR: change data type of argument
float funct1(int i); // ERROR: change return type of function
void funct1(int i); // ERROR: change return type of function
funct1(5); // Ok
funct1(5.0); // OK, 5.0 converted to 5

160

10.3. FUNCTION PROTOTYPES
CHAPTER 10. FUNCTIONS

int funct2(int i)
{
int funct3(int j); // return and argument types are int

}
int funct3(int i)
{ }
int funct3(int *p); // ERROR: change data type of argument

There can only be one function definition at a given lexical level in a program. For example,

int funct1(int i){};
int funct1(int i){}; // ERROR: redefine funct1()

The variable and function names cannot be the same at the same lexical level. For example,

int funct2;
int funct2(int i){}; // ERROR: redefine funct2
int funct3;
int funct4(int i)
{
int funct3(int i); // ERROR: redefine funct3

}

where names funct2 and funct3 have been defined as simple variables before they are to be defined as
functions.

Parameter names must appear in function definitions, but the parameter names for arguments of func-
tion prototypes may not be included although they can help in documenting functions and improving the
readability of the program. For example, the following two function prototypes are the same

int funct(int);
int funct(int i);

Functions that have more than one argument can be prototyped in the same manner. For example

int funct1(int, int);
int funct2(int, float);

Arguments of pointer types can also be prototyped without parameter names. For example,

void funct(int *, float *, complex **);
void funct(int *ip, float *fp, complex **zp){ }

If the subsequent arguments have the same basic data type, the type specifier in function prototypes can be
omitted after the first argument. For example,

void funct1(int *ip, *jp, **ip2);
void funct1(int *, *, **);
void funct2(int, ,);
void funct2(int, int, int);
void funct2(int i, j, int k);

161

10.3. FUNCTION PROTOTYPES
CHAPTER 10. FUNCTIONS

Parameters with names and parameters without names can be mixed in function prototypes. For example,

void funct(int, *, float f)
void funct(int i, *p, float);

Functions requiring no argument can be prototyped with the single type specifier void or void followed
by a dummy parameter name. For example,

void funct(void);
void funct(void){ }

Arguments of arrays and arrays of pointers can also be prototyped without parameter names. For example,

void funct(int *[], *[3], [][3], char []);
int *ap[10], *bp[3], a[10][20], ca[3];
funct(ap, bp, a, ca);
void funct(int *ap[], *bp[3], a[][3], char c[]){ }

Similarly, pointer to arrays and arrays of assumed-shape in function arguments can be prototyped without
parameter names. For example,

int a[10][10];
void funct(int (*)[3], [:][:]);
void funct(int (*a)[3], b[:][:]){ }
funct(a, a);

References to basic data types and references to pointers can be handled in the same manner. For example,

int i, *p1, **p2;
void funct1(int &, &, &*, &**);
funct1(i, i, p1, p2);
void funct1(int &i, &j, &*p1, &**p2){ };

If no argument in a function prototype. the argument type compatibility checking will be turned off in
Ch. But the return type of the function will still be checked. Both ISO C and K&R C function prototypes
can be mixed in a program, but for prototypes in C style, both return type and arguments will be checked.
The first C function prototype or the function definition determines the number and data types of the argu-
ments of the function. For example, in Program 10.2, the argument of the first C function prototype in int
funct1(int i) will be used to check other C function prototypes and function calls prior to the defini-
tion of the function funct1(). Note that the function funct5() requires no argument and its function
definition in Program 10.2 is the same as void funct5(void){ }. It should be pointed out that the
K&R C function prototypes are error-prone. The K&R C function prototype should not be used for writing
new code.

Functions can occur in any order in a Ch program. If the function is called before it is defined, int is
assumed to be the return type of the function. The number of arguments and their data types will be decided
by the first C function prototype or the function definition. In other words, when the function funct() has
not been defined before it is invoked, it will act as if it had been prototyped by int funct(). This can
be illustrated by various programming examples in Program 10.3. After the function definition, the number
of arguments and their data types in the definition of the function, rather than those in a function prototype,
will be checked against actual arguments in subsequent function calls. The function prototypes can be used
multiple times so long as they are compatible each time. But, if the return value of a function is not int, a
function prototype must be used before the function can be called as shown in Program 10.4.

162

10.3. FUNCTION PROTOTYPES
CHAPTER 10. FUNCTIONS

int funct1(); // return type is int, ignore arguments
int funct1(int i); // argument is an int
int funct1(int i, j); // ERROR: change number of argument
int funct1(int *p); // ERROR: change data type of argument
int funct1(); // OK to repeat the same function prototype
int funct1(int i){ } // function definition

complex funct2(int i){ } // return type is complex,
// argument is an int

int funct2(); // ERROR: change return type of function
int funct2(int i); // ERROR: change return type of function
complex funct2(int i); // OK:

int funct3(int i)
{
int funct4();
int funct4(int i); // argument is an int
int funct4(int i, j); // ERROR: change number of argument

}
int funct4(int i)
{ }

void funct5();
void funct5(void);
void funct5(void v);
void funct5(); // OK
void funct(int); // ERROR: change data type of argument
void funct5(){ } // function definition

Program 10.2: K&R and ISO C function prototypes.

163

10.3. FUNCTION PROTOTYPES
CHAPTER 10. FUNCTIONS

funct1(3); // by default, funct1() return int;
void funct1(int i) { } // ERROR: change return type of function

int i;
funct3(3); // by default, funct3() return int;
int funct3(int i) { }// WARNING: missing return statement and default zero is returned

int i;
funct4(3); // by default, funct4() return int;
int funct4(int i)
{ return; } // WARNING: missing return expression, use default zero

funct5(8) // WARNING: fewer parameters are passed to funct(),
// default zeros are used for missing ones

int funct5(int i, j){return i}

funct6(8);
int funct6(int i){return 3} // OK

funct7(8)
int funct7(int i){} // WARNING: missing return statement, use default zero

funct8(8)
void funct8(int i){} // ERROR: change return type of function

funct9(8)
int funct9(float f){return (int)f} // OK

funct10(8) // ERROR: non ptr value passed to ptr
int funct10(int *p){return 3} // OK

Program 10.3: Sample programs using default prototypes.

void funct1(int i) { }
int funct(int i)
{
void funct1(int i); // redundant prototype OK
void funct2(int i); // must have prototype
int funct3(int i); // can be omitted by default
funct1(i);
funct2(i);
funct3(i);

}
void funct2(int i) { }
int funct3(int i) { }

Program 10.4: Examples where prototypes are optional or required.

164

10.4. RECURSIVE FUNCTIONS
CHAPTER 10. FUNCTIONS

int main() { // level 1 for main
funct(1);

}
int funct(int j) // level 2 for funct and level 2 for j
{
if(j <= 3)
{

printf ("recursively call funct() j = %d \n", j);
j++;
j = funct(j);

}
else

printf ("exit funct() j = %d \n", j);
return j;

}

Program 10.5: Direct recursive functions

10.4 Recursive Functions

Functions can be used recursively. In other words, a function can call itself directly as shown in Pro-
gram 10.5. The output of Program 10.5 is as follows:
recursively call funct() j = 1
recursively call funct() j = 2
recursively call funct() j = 3
exit funct() j = 4
When a function calls itself recursively, each function call will have a new set of local variables. Inside
a recursive function, conditional statements, such as if-else, are normally needed in order to exit the
function and return the control flow of a program to the calling function. A function may also call itself in-
directly as shown in Program 10.6. In Program 10.6, functions funct1() and funct2() call themselves
indirectly, the function funct2() calls the function funct2() whereas funct2() calls funct1().
The output of Program 10.6 is displayed in Figure 10.1.

10.5 Nested Functions

In the spirit of C, the function definition with nested functions in Ch takes the form of

return_type function_name(argument declaration)
{
statements
function_definitions

}

or

return_type function_name(argument declaration)

165

10.5. NESTED FUNCTIONS
CHAPTER 10. FUNCTIONS

int main() {
funct1(1);

}
int funct1(int i)
{
i = funct2(i);
printf ("exit funct1() i = %d \n", i);
return i;

}
int funct2(int j)
{
if(j <= 3)
{

printf ("recursively call funct2() j = %d \n", j);
j++;
j = funct1(j);

}
else
{

printf ("exit funct2() j = %d \n", j);
j++;

}
return j;

}

Program 10.6: Indirect recursive functions

recursively call funct2() j = 1
recursively call funct2() j = 2
recursively call funct2() j = 3
exit funct2() j = 4
exit funct1() i = 5
exit funct1() i = 5
exit funct1() i = 5
exit funct1() i = 5

Figure 10.1: Output of Program 10.6.

166

10.5. NESTED FUNCTIONS
CHAPTER 10. FUNCTIONS

int i; // level 1
void funct1(int i) // level 2 for i, level 1 for funct1
{
int i; // level 3
void funct2(int i) // level 4 for i, level 3 for funct2
{

int k;
k = i; // use i at level 4
int i=6; // level 5
i = 30; // use i at level 5
printf("k = %d \n", k);

}
i = 10+i; // use i at level 3
funct2(i); // use i at level 3

}
i = 5; // use i at level 1
funct1(i); // output: 10

Program 10.7: Lexical levels in Ch.

{
function_definitions
statements

}

where statements can be any valid Ch statements and local functions can be defined inside other local
functions. There is no restriction on the number of function nesting in Ch. In this section, the linguistic
features of nested functions will be described.

10.5.1 Scopes and Lexical Levels of Nested Functions

Variable and function names in Ch are associated with their scopes. The scope of a variable or function name
is a part of the program within which the variable can be used. The scope of the function arguments is the
body of the function. The scope of the variables defined inside a function begins right after its declaration
and ends at the closing right brace for the function definition. Local variables of the same name in different
functions are not related to each other. The same is true for parameters of functions. The scope of a local
function is the function within which the local function is defined. The scope of a top level function in Ch
is the entire program, but the function may have to be prototyped if it is invoked prior to its definition. Note
that, in C, although the scope of all functions is the entire program, consistent function prototypes must be
provided. The inconsistency of function prototypes for the same function in different files cannot be detected
by C compilers, but it can be detected in Ch. The programs in Ch can be much less error-prone.

The lexical level of a variable or function name is the place where it is declared. If we treat the top level
of a program as the first lexical level, the arguments of the top level function are at level 2; the local variables
declared inside the function are at level 3; the argument parameters in a nested function are at level 4; the
local variables defined inside the nested function are at level 5, and so forth. The lexical level i is higher
than the lexical level i + 1. These different lexical levels of variables in nested functions are illustrated in
Program 10.7. In Program 10.7, the function funct2() is not visible outside the function funct1().
The same name can be used for variables and functions at different lexical levels. The part of a program at a

167

10.5. NESTED FUNCTIONS
CHAPTER 10. FUNCTIONS

void funct1() { // level 1
void funct2() { // level 2

void funct3() // level 3
{ }

}
funct3(); // Error: funct3() is at lower level

}

Program 10.8: The part of the program at the higher lexical level cannot call functions at the lower level.

void funct1()
{
void funct2(int i) // level 4
{

int k; // level 5
}
void funct22(int i); // level 4
{

int k; // level 5
}

}

Program 10.9: Arguments and local variables at different local functions are unrelated.
.

lower lexical level can access variables and functions at a higher lexical level in nested functions so long as
the variables and functions are within their scopes. But the part of a program at a higher lexical level cannot
access variables and functions at a lower lexical level. For example, the function funct3() defined at the
lexical level 3 cannot be invoked at the lexical level 2 in Program 10.8. Arguments and local variables with
the same name in different functions at the same lexical level are unrelated. For example, arguments i and
local variables k of different local functions funct2() and funct22() in Program 10.9 are unrelated.
The modification of the variable k inside the function funct2() will not affect the variable k inside the
function funct22().

Functions can be defined inside other local functions as shown in Program 10.10 where the function
funct3() is defined inside the local function funct2(). The number of function nesting is not limited
in Ch. Not only can the name of variables at different lexical levels be the same, but also the name of
functions. If there are several variables with the same name at different lexical levels, the variable with the
lowest lexical level will be used within the scope of all variables. It is also true for functions. For example,
there are three functions with the same name at three different lexical levels in Program 10.11.

All syntax rules for regular functions, such as initialization of local variables, passing arrays of assumed-
shape, and passing arguments by reference, can be applied to nested functions as well. For example, the
variable A1 in the local function funct2() is initialized as a 3x3 complex array in Program 10.12. The
first dimension of A1 is determined by the number of rows as the array is initialized at the declaration stage.
The float array F is passed to the argument A of the function funct2(); the shape of array A, assumed
from F, is 4x4. The second argument z of the function funct2() is passed by reference. The output of
Program 10.12 printed by the last statement of the function funct1() is

168

10.5. NESTED FUNCTIONS
CHAPTER 10. FUNCTIONS

void funct1(complex z1) { // definition of the function
int i;
complex funct2(complex z2) { // define local funct before it is used

complex z;
complex funct3(complex z3) { // double nested function
return z3;

}
z = funct3(z2);
return z;

}
i = funct2(complex(1,2));

}

Program 10.10: Double nested functions in Ch.

void funct() { // level 1
void funct() { // level 2

void funct() // level 3
{ }

}
funct(); // invoke funct() at level 2

}

Program 10.11: Different functions with the same name at different lexical levels.

void funct1(int i)
{
void funct2(complex A[:][:], &z)
{

complex A1[][3]={
{ComplexInf, ComplexNaN, Inf},
{-Inf, complex(-3,-1), complex(-7,2)},
{complex(-4,-3), complex(6,3), complex(2,1)}

};
z += A[1][2] + A1[1][2];

}
float F[4][4];
complex z = complex(-3,2);
F[1][2] = -i;
funct2(F, z);
printf("z = %f \n", z);

}
funct1(10); // output: z = complex(-20.000000,4.000000)

Program 10.12: Initialization, arrays of assumed-shape, and references in nested functions in Ch.

169

10.5. NESTED FUNCTIONS
CHAPTER 10. FUNCTIONS

void funct1() // level 1
{
__declspec(local) float funct2(); // local function prototype
funct2();
float funct2() // definition of the local function,
{

return 9;
}

}

Program 10.13: The type qualifier declspec(local) qualifies funct2() as a local function.

void funct1() // level 1
{
__declspec(local) float funct2(); // required ’local’
__declspec(local) int i; // optional ’local’
funct2();
__declspec(local) float funct2() //optional ’local’
{

__declspec(local) int j; // optional ’local’
return 9;

}
}

Program 10.14: Optional type qualifier in Ch.

z = complex(-20.000000,4.000000)

10.5.2 Prototypes of Nested Functions

All local functions in the program examples discussed so far have been defined before they are invoked
inside nested functions. The definition of a local function, however, can be placed at any places inside a
function. If a local function is invoked prior to its definition, a local function prototype must be used as
shown in Program 10.13. In Program 10.13, because the function funct2() is used before it is defined, a
function prototype is needed. Since it is a local function, the type qualifier __declspec(local) is used
to distinguish a local function from the top level regular C functions. The type qualifier for local functions
can also be placed before the type specifier for declarations of local variables and function definitions inside
a function, but it is optional as shown in Program 10.14.

If a function prototype inside a function is not qualified as a local function by the type qualifier local,
it is assumed as a top level function. This will guarantee that all existing C code will not break when
nested functions are added to the language. For example, there are two functions named funct2() in
Program 10.15. One is defined inside the main routine main() and the other is a top level function.
Inside the function funct1(), the prototype void funct2(int i) informs the compiler that the
name funct2 is a function name with the return data type of void and one argument of int. Because there
is no type qualifier preceding the function prototype, the function funct2() is a top level function by
default. Therefore, the subsequent function call of funct2(i)will use the function funct2() at the top
level. After the definition of the local function funct2(), the function call of funct2(100) inside the

170

10.5. NESTED FUNCTIONS
CHAPTER 10. FUNCTIONS

int main() // level 1
{
void funct1(int i) // level 2
{

void funct2(int i);
funct2(i); // use funct2() at level 1

}
void funct2(int i) // level 2
{

printf("i = %d \n", i+1);
}

funct1(100);
funct2(100); // use funct2() at level 2

}
void funct2(int i) // level 1, top level
{
printf("i = %d \n", i+5);

}

Program 10.15: Function prototypes with no type qualifier are at the top level.

main routine main() will use the local function. The output of Program 10.15 is as follows:
i = 105
i = 101

If a function is called before it is defined, it is assumed that the function is a top level function with the
return type of int. The number of arguments and their data types will be decided by the first occurrence of
the C function prototypes or the function definition. In other words, when the function funct() has not
been defined at the point where it is called, it will act as if it had been prototyped by int funct(), which
is C compatible. For example, the function funct3() in Program 10.16 is invoked before it is defined or
prototyped. By default, the function funct3() is a top level function that returns a value of int type.

For deeply nested functions, if a function that is defined neither at the top level nor at the same level is to
be invoked, a local function qualifier can be used to prototype the function at the beginning of the function
within which the prototyped function is defined. The function prototypes for this purpose are called the
auxiliary function prototype. In Program 10.17, the local function funct3() can be used by the nested
functions funct2() and funct4() due to the auxiliary function prototype of __declspec(local)
void funct3(). The scopes, lexical levels, and function prototypes in nested functions can be further
demonstrated by the four code fragments given in Program 10.18.

10.5.3 Nested Recursive Functions

In Ch, whether a function is defined as a local function or top level function has no significant effect on
the memory space and execution speed of a program even in recursive situations. Inside nested functions,
functions can call each other recursively so long as scope and lexical rules of function calls are not violated.
In Program 10.20, the function funct1() calls its local function funct2() as well as itself recursively.
But, the function funct2() only calls itself recursively. The output of Program 10.20 is as follows:

171

10.5. NESTED FUNCTIONS
CHAPTER 10. FUNCTIONS

void funct1(int i) { // level 1
void funct2(complex A[:][:]);// funct2(): default function at level 1
complex A1[3][3];
i = funct3()+4; // funct3(): default function at level 1 return int
funct2(A1);

}
void funct2(complex A[:][:]) { // level 1
A[1][2] =70;

}
int funct3() { // level 1
int i=90;
return i;

}

Program 10.16: Functions invoked prior to their definitions and prototypes are at the top level by default.

void funct1() { // level 1
__declspec(local) void funct3(); // auxiliary function prototype
void funct2() { // level 2

funct3(); // use funct3() at level 2
void funct4() {
funct3(); // use funct3() at level 2

}
funct3(); // use funct3() at level 2

}
void funct3() // level 2
{ }

}

Program 10.17: Using the type qualifier declspec(local) to invoke functions at different lexical
levels.

172

10.5. NESTED FUNCTIONS
CHAPTER 10. FUNCTIONS

/** EXAMPLE 1 **/
void funct1() { // level 1
void funct2() { // level 2

int i;
i = funct3(); // use funct3() at level 1

}
void funct3() // level 2
{ }
funct3(); // use funct3() at level 2

}
int funct3() // level 1
{ }

/** EXAMPLE 2 **/
void funct1() { // level 1
__declspec(local) void funct3();
void funct2() { // level 2

funct3(); // use funct3() at level 2
void funct3() { // level 3
__declspec(local) void funct3();
funct3(); // use funct3() at level 4
void funct3() // level 4
{ }

}
funct3(); // use funct3() at level 3

}
void funct3() // level 2
{ }
funct3(); // use funct3() at level 2

}

Program 10.18: Illustrative sample programs for scopes, lexical levels, and prototypes of nested functions.

173

10.5. NESTED FUNCTIONS
CHAPTER 10. FUNCTIONS

/** EXAMPLE 3 **/
void funct2() { // level 1
}
void funct1() { // level 1
funct2(); // invoke funct2() at level 1
void funct2() { // level 2

void funct3() // level 3
{ }

}
}

/** EXAMPLE 4 **/
void funct2() // level 1
{ }
void funct1() { // level 1
__declspec(local) void funct2();
funct2(); // invoke funct2() at level 2
void funct2() { // level 2

void funct3() // level 3
{ }

}
}

Program 10.19: Illustrative sample programs for scopes, lexical levels, and prototypes of nested functions
(continued).

174

10.5. NESTED FUNCTIONS
CHAPTER 10. FUNCTIONS

void funct1(int &i) // level 1
{
int funct2(int j) // level 2
{

if(j <= 3)
{
printf ("recursively call funct2() j = %d \n", j);
j++;
j = funct2(j);

}
else
{
printf ("exit funct2() j = %d \n", j);
j++;

}
return j;

}
i = funct2(i);
printf ("after call funct2() i = %d \n", i);

if(i < 6)
funct1(i);

}
funct1(1);

Program 10.20: Direct recursive functions.

175

10.5. NESTED FUNCTIONS
CHAPTER 10. FUNCTIONS

int funct1(int i) // level 1
{
int funct2(int j) // level 2
{

if(j <= 3)
{
printf ("recursively call funct2() j = %d \n", j);
j++;
j = funct1(j);

}
else
{
printf ("exit funct2() j = %d \n", j);
j++;

}
return j;

}
i = funct2(i);
printf ("after call funct2() i = %d \n", i);

if(i < 6)
i = funct2(i);

return i;
}
funct1(1);

Program 10.21: Indirect recursive functions.

recursively call funct2() j = 1
recursively call funct2() j = 2
recursively call funct2() j = 3
exit funct2() j = 4
after call funct2() i = 5
exit funct2() j = 5
after call funct2() i = 6

In Program 10.21, the function funct1() calls its local function funct2() and the local function
funct2() calls its upper level function funct1(). The output of Program 10.21 is as follows:
recursively call funct2() j = 1
recursively call funct2() j = 2
recursively call funct2() j = 3
exit funct2() j = 4
after call funct2() i = 5
exit funct2() j = 5
after call funct2() i = 6
after call funct2() i = 6

176

10.5. NESTED FUNCTIONS
CHAPTER 10. FUNCTIONS

int funct1(int i) // level 1
{
int funct2(int j) // level 2
{

if(j <= 3)
{
printf ("recursively call funct2() j = %d \n", j);
j++;
j = funct3(j);

}
else
{
printf ("exit funct2() j = %d \n", j);
j++;

}
return j;

}
i = funct2(i);
printf ("after call funct2() i = %d \n", i);
return i;

}
funct1(1);
int funct3(int i)
{
i = funct1(i);
return i;

}

Program 10.22: Indirect recursive functions via a top level function.

after call funct2() i = 6

In Programs 10.20 and 10.21, the recursive function calls are restricted within the nested functions only.
In Ch, any nested functions can call top level functions. The indirect recursive function calls with top
level functions can be illustrated by Program 10.22 where the function funct1() calls the local function
funct2(). The local function funct2() calls the top level function funct3()which calls the function
funct1(). Therefore, functions funct1(), funct2(), and funct3() form a closed loop. One
programming alternative for Program 10.22 is to handle both functions funct1() and funct2() at
the same lexical level so that the function funct3() can be removed as shown in Program 10.23. The
following output from Program 10.23 is the same as that from Program 10.22:
recursively call funct2() j = 1
recursively call funct2() j = 2
recursively call funct2() j = 3
exit funct2() j = 4
after call funct2() i = 5
after call funct2() i = 5
after call funct2() i = 5

177

10.5. NESTED FUNCTIONS
CHAPTER 10. FUNCTIONS

int main() {
__declspec(local) int funct2();
int funct1(int i)
{

i = funct2(i);
printf ("after call funct2() i = %d \n", i);
return i;

}
funct1(1);

int funct2(int j)
{

if(j <= 3)
{
printf ("recursively call funct2() j = %d \n", j);
j++;
j = funct1(j);

}
else
{
printf ("exit funct2() j = %d \n", j);
j++;

}
return j;

}
}

Program 10.23: Indirect recursive functions at the same lexical level

178

10.6. USING POINTERS TO PASS ARGUMENTS OF FUNCTION BY REFERENCE
CHAPTER 10. FUNCTIONS

after call funct2() i = 5

10.6 Using Pointers to Pass Arguments of Function by Reference

When Ch passes arguments to functions it passes them by value. However, in many cases we may want
to alter the passed argument in the function. Assume a sorting routine try to exchange two out-of-order
elements a and b with the function swap(), the following code will not work.

swap(a, b);

where the swap function is defined as

void swap(int x, int y) { // doesn’t work as expected
int temp;

temp = x;
x = y;
y = temp;

}

Because of call by value, swap() can’t affect the arguments a and b in the calling function. It only swaps
x and y, which are copies of a and b respectively, inside function swap().

Pointers can be used to pass the addresses of the variables to the functions and access variables through
their addresses indirectly. Using pointers explicitly, the function call in the program becomes

swap(&a, &b)

As mentioned above, the operator ’&’ gives the address of a variable, expression &a is a pointer to a. In this
case, the function swap() should use the addresses rather than the copies of values a and b.

void swap(int *pa, int *pb) {
int temp;

temp = *pa; // contents of pointer

*pa = *pb;

*pb = temp;
}

In the function definition for swap(), the parameters are declared as pointers pa and pb, and the variables
a and b in the calling function are accessed indirectly through pointers pa and pb .

10.7 Variable Number Arguments in Functions

Ch allows a variable number of arguments to be passed to a function. In some application, numbers of
arguments passed to a function are unknown in advance and could be different for different cases. With
this feature, one function could handle argument lists with different lengths for different cases. A typical
function which takes a variable number of arguments is defined as follows:

179

10.7. VARIABLE NUMBER ARGUMENTS IN FUNCTIONS
CHAPTER 10. FUNCTIONS

Table 10.1: Macros defined in header file stdarg.h for handling variable argument list.

Macro Description
VA NOARG Second argument for va start(), if no argument is passed to function
CH UNDEFINETYPE not an array.
CH CARRAYTYPE C array.
CH CARRAYPTRTYPE pointer to C array.
CH CARRAYVLATYPE C VLA array.
CH CHARRAYTYPE Ch array.
CH CHARRAYPTRTYPE pointer to Ch array.
CH CHARRAYVLATYPE Ch VLA array.
va arg Expands to an expression that has the specified type and the

value of the next argument in the calling function.
va arraytype Determine if the next argument is an array.
va arraydim Obtain the array dimension of the variable argument.
va arrayextent Obtain the number of elements in the array of variable argument.
va arraynum Obtain the number of elements in the array of variable argument.
va copy Makes a copy of the va list.
va count Obtain the number of variable arguments.
va datatype Obtain the data type of variable argument.
va end Facilitates a normal return from the function.
va start Initializes ap for subsequent use by other macros.
va tagname Obtain the tag name of struct/class/union type of a variable argument.

#include <stdarg.h>
type1 funcname (arg_list, type2 paramN, ...) {
va_list ap;
type3 v; // first unnamed argument
va_start(ap, paramN); // initialize the list
v = va_arg(ap, type3); // get 1st unnamed argument from the list
... // get the rest of the list
va_end(ap); // clean up the argument list
...

}

where arg list is the argument list of the named argument, paramN is the last named argument and v is
the first unnamed argument of type type3. The data type ChType t is defined in the header file stdarg.h
also. The standard header file stdarg.h also contains a set of macro definitions which define how to deal
with an argument list. Some of these macros for array types and functions are listed in Table 10.1.
Besides these macros, the type va list is also defined in header file stdarg.h. It is used to declare an ob-
ject that can hold information of the argument list and refer to each argument in turn. This object is re-
ferred to as ap according to the Ch notational convention. Macros VA NOARG, va count, va datatype,
va arraydim, va arrayextent, va arraynum, va arraytype, and va tagname are usefull for implementa-
tion of polymorphic functions. Depending on the array type of its argument, function va arraytype() returns
a value in one of the macros CH UNDEFINETYPE, CH CARRAYTYPE, CH CARRAYPTRTYPE ,
CH CARRAYVLATYPE , CH CHARRAYTYPE, CH CHARRAYPTRTYPE , CH CHARRAYVLATYPE

180

10.7. VARIABLE NUMBER ARGUMENTS IN FUNCTIONS
CHAPTER 10. FUNCTIONS

. Appliction these functions will be described in detail in section 19.9.
The macro va start initializes ap to point to the first unnamed argument. It shall be called once before

ap is used. The rightmost named parameter which plays a special role in accessing a variable argument list
is designated paramN here. It is used by va start to get started. After that, each call of va arg() returns one
unnamed argument and steps ap to the next one. The macro va arg takes a type name as an argument to
determine what type to return and where the next unnamed argument to get is. The data type can be a simple
data type, such as int, pointer, or an aggregate data type, such as class, computational array. Finally, after
all of the arguments have been read and before returning from the function, macro va end must be called
to clean up the argument list. For example, function f1() in Program 10.24 takes a variable number of
arguments. The number of arguments, which is specified by the last named argument, arg num, can range
from 1 to 6. The output of Program 10.24 is shown in Program 10.25.

In C, functions which take variable-length argument lists must have at least one named parameter prior
to the variable parameter list. In Ch, if there is no named argument prior to the variable parameter list,
macro VA NOARG is used by va start to get started. For example, function f2() in Program 10.26 takes
no named argument. In this case, VA NOARG can be used by va start. The number of arguments passed to
the function can be obtained by macro va count. The output of Program 10.26 is shown in Program 10.27.
Ini conjunction with other features, this is useful for function polymorphism.

As an object of va list, ap can be copied by macro va copy or passed as arguments to functions. In
Program 10.28, the object of va list ap2 is a copy of ap. The object ap2 has the same state as ap when it
is copied. It means that ap2 points to the same argument as ap points to when it is copied. In this example,
ap2 starts from the second argument in the variable-length arguments list. Each invocation of va copy
macros shall be matched by a corresponding invocation of the va end macro. Function funct2() takes
an argument of type va list. In Program 10.28, ap is passed to funct2() as an argument. The output of
Program 10.28 is shown in Program 10.29.

Using variable number arguments, arrays of different data types can be passed to the same argument of
a function. As an example, the source code for function lindata() with the function prototype

int lindata(double first, double last, ... /* type a[:]...[:] */);

defined in header file numeric.h is listed in Program 10.30. This function generates linearly spaced data
with initial and final values specified by input arguments first and last, respectively. Function lindata()
calls the va arraynum() function to determine the number of elements of the passed array a. It then uses
this information to generate a linearly space data set. The result is finally copied into array a in the third
passed argument using function arraycopy(). The total number of data points generated is passed as the
return value.

Function arraycopy() defined in header file stdarg.h has the prototype of

int arraycpoy(void *des, ChType_t destype,
void *src, ChType_t srctype, int n);

It can be used to pass results of arrays of different data types from a called function to the calling function
using a variable argument list. In Program 10.31, array a of int type and computational array b of double
type in the main() function are assigned with linear-spaced values using the function lindata() and
passed back to the calling function as the third argument. The output from Program 10.31 is shown in
Figure 10.2.

181

10.7. VARIABLE NUMBER ARGUMENTS IN FUNCTIONS
CHAPTER 10. FUNCTIONS

#include<stdarg.h>
struct tag {int i; float j;};

void f1(int arg_num, ...) {
va_list ap;
int i;
char *str;
struct tag s;
int *a;
int a1;

va_start(ap, arg_num);

if (arg_num <= 1)
return;

if (arg_num >= 2) {
i = va_arg(ap, int);
printf("\nthe 2nd argument is %d\n", i);

}
if (arg_num >= 3) {

str = va_arg(ap, char *);
printf("the 3rd argument is %s\n", str);

}
if (arg_num >= 4) {

s = va_arg(ap, struct tag);
printf("the 4th argument s.i is %d, s.j is %f\n", s.i, s.j);

}
if (arg_num >= 5) {

a = va_arg(ap, int *);
printf("the 5th argument a is %d, %d, %d\n", a[0], a[1], a[2]);

}
if (arg_num >= 6) {

a1 = va_arg(ap, int);
printf("the 6th argument a1 is %d\n", a1);

}

va_end(ap);
return;

}
int main(){
struct tag s = {1, 2.0};
int a[] = {1, 2, 3};
int arg_num = 3;
f1(arg_num, 3, "abc");
arg_num = 6;
f1(arg_num, 6, "def", s, a, a[1]);

return 0;
}

Program 10.24: Variable-length argument lists.

182

10.7. VARIABLE NUMBER ARGUMENTS IN FUNCTIONS
CHAPTER 10. FUNCTIONS

the 2nd argument is 3
the 3rd argument is abc

the 2nd argument is 6
the 3rd argument is def
the 4th argument s.i is 1, s.j is 2.000000
the 5th argument a is 1, 2, 3
the 6th argument a1 is 2

Program 10.25: Output of Program 10.24.

#include<stdarg.h>
#include<stdio.h>

void f2(...) {
va_list ap;
int vacount;
int i, num = 0;

va_start(ap, VA_NOARG);
vacount = va_count(ap);
printf("vacount = %d\n", vacount);

while(num++, vacount--) {
i = va_arg(ap, int);
printf("argument %d = %d, ", num, i);

}
printf("\n\n");
va_end(ap);
return;

}

int main(){
f2(1);
f2(1, 2, 3);
f2(1, 2, 3, 4, 5);

return 0;
}

Program 10.26: No named argument in argument lists.

vacount = 1
argument 1 = 1,

vacount = 3
argument 1 = 1, argument 2 = 2, argument 3 = 3,

vacount = 5
argument 1 = 1, argument 2 = 2, argument 3 = 3, argument 4 = 4, argument 5 = 5,

Program 10.27: Output of Program 10.26.

183

10.7. VARIABLE NUMBER ARGUMENTS IN FUNCTIONS
CHAPTER 10. FUNCTIONS

#include <stdarg.h>

int funct2(int num, va_list ap) {
int args;
while(num--) {

args = va_arg(ap, int);
printf("args in funct2() is %d\n", args);

}
}

void funct1(int arg_num, ...) {
va_list ap, ap2;
int args;
int num;

va_start(ap, arg_num);
printf("print with ap\n");
args= va_arg(ap, int); // ap points to the next
printf("args in funct1 is %d\n", args);
va_copy(ap2, ap); // ap2 starts from the second argument

num = arg_num - 1;
while(num--) {

args= va_arg(ap, int);
printf("args in funct1 is %d\n", args);

}
va_end(ap);

printf("\nprint with ap2\n");
num = arg_num - 1;
while(num--) {

args= va_arg(ap2, int);
printf("args in funct1 is %d\n", args);

}
va_end(ap2); // for va_copy()

/* pass ap as argument to functions */
printf("\npass ap to another function\n");
va_start(ap, arg_num); // restart
funct2(arg_num, ap);
va_end(ap);

}

int main(){
int arg_num = 3;
funct1(arg_num, 1, 2, 3);

}

Program 10.28: ap is copied and passed as arguments.

184

10.7. VARIABLE NUMBER ARGUMENTS IN FUNCTIONS
CHAPTER 10. FUNCTIONS

print with ap
args in funct1 is 1
args in funct1 is 2
args in funct1 is 3

print with ap2
args in funct1 is 2
args in funct1 is 3

pass ap to another function
args in funct2() is 1
args in funct2() is 2
args in funct2() is 3

Program 10.29: Output of Program 10.28.

/* File: lindata.chf */
#include <stdarg.h>
#include <stdio.h>
int lindata(double first, double last, ...){

va_list ap;
int i, n;
ChType_t dtype;
double step;
void *vptr;

va_start(ap, last);
if(!va_arraytype(ap)) {
fprintf(stderr, "Error: 3rd argument of %s() is not array\n", __func__);
return -1;

}

n = va_arraynum(ap);
double a[n];
step = (last - first)/(n-1);
for(i=0; i<n; i++) {

a[i]=first+i*step;
}

dtype = va_datatype(ap);
vptr = va_arg(ap, void*);
arraycopy(vptr, dtype, a, CH_DOUBLETYPE, n);
// or arraycopy(vptr, dtype, a, elementtype(double), n);
return n;

}

Program 10.30: The source code for function lindata().

185

10.8. POINTER TO FUNCTIONS
CHAPTER 10. FUNCTIONS

#include <numeric.h>

int main () {
int i, a[6], *p;
array double b[6];

lindata(2, 12, a);
printf("a = ");
for(i=0; i<6; i++) {
printf("%d ", a[i]);

}
p = &a[0];
lindata(20, 120, p, 6);
printf("\na = ");
for(i=0; i<6; i++) {
printf("%d ", a[i]);

}
printf("\nb = ");
lindata(2, 12, b);
printf("%g", b);

}

Program 10.31: Use function arraycopy() to copy an array passed as an argument in function lindata().

a = 2 4 6 8 10 12
a = 20 40 60 80 100 120
b = 2 4 6 8 10 12

Figure 10.2: Output of Program 10.31.

10.8 Pointer to Functions

In Ch, a pointer to function can be defined. Each function contains programming statements which are
located in memory. A function pointer is a variable containing the address of the function. A function’s
address is the entry pointer of the function. So, a function pointer can be used to call a function. Furthermore,
a function pointer can be assigned, placed in arrays, passed to functions, returned by functions, and so on.
The declarations of function pointers are shown below.

void (*f1) (void);
int (*f2) ();
int (*f3) (float f);
typedef int (*PF)(int i);
PF f4;

where f1 is declared as a pointer to function which has no return value or arguments; f2 is declared as
a pointer to function which returns an integer with or without arguments; f3 is declared as a pointer to
function which returns an integer and takes an argument of float type. Like other data types, pointer to
function can be defined as a user-defined data type. Data type PF is typedefed as pointer to function which
returns an integer and takes an argument of int. Therefore, f4 is a variable of type PF, i.e. a pointer to
function. Program 10.32 illustrates how a pointer to function is used. fun() is a regular function which

186

10.8. POINTER TO FUNCTIONS
CHAPTER 10. FUNCTIONS

int fun (float f) {
printf("f = %f\n", f);
return 0;

}

int main() {
int (*pf)(float f);

fun(10);

pf = fun; // no & before fun
pf(20); // call function fun by calling pf

return 0;
}

/* execution and output
f = 10.000000
f = 20.000000

*/

Program 10.32: Use pointer to function.

has the same prototype as the function pointed to by pf. After the declaration and assignment of pf, the
function fun can be called by using pf. The execution and output of Program 10.32 is attached at the end
of the program.

Note that, like an array name, a function name stands for the address of a function, The address operator
’&’ is ignored in both C and Ch. For example, statement

pf = &fun;

is treated as

pf = fun;

Two pointers to functions can be compared like other pointers. For example, given

int fun (float f) {
printf("f = %f\n", f);
return 0;

}
int (*pf1)(float f);
int (*pf2)(float f);

pf1 = fun;
pf2 = fun;

the equality pf1 == pf2 holds.
Pointers to functions can be placed in an array or struct. Array of pointers to functions is an effective

way to implement a menu. In Program 10.33, array options has three elements of pointers to functions. It
can be defined as int (*options[])(), an array of pointers to functions which return values of int. In
program 10.33, the declaration of array options is simplified by a new data type PF which is defined as

187

10.9. COMMUNICATION BETWEEN FUNCTIONS
CHAPTER 10. FUNCTIONS

typedef int (*PF)(), a pointer to function which returns a value of int. Function getChoice()
returns an integer which is used as the subscript of array options to call the corresponding function. The
interactive execution and output of Program 10.33 is attached at the end of the program. Pointers to functions
can be passed as arguments to functions, which is commonly used to set callback functions. Program 10.34
is an example of using pointers to functions as arguments of functions. Function f2 takes two arguments,
one is a function pointer pf and the other is an integer. Inside function f2, the argument of function pointer
is used to call the function which takes an argument of int. In the main function, the name of function f1()
is passed to f2() as a function pointer. The execution and output of Program 10.34 is attached at the end
of the program.

Like regular pointers, function pointers not only can be arguments of functions, but also be returned val-
ues of functions. Program 10.33 is rewritten in Program 10.35. Instead of the array of pointers to functions,
function processChoice() is used to process different options. The return data type PF of function
processChoice() is defined as a function pointer type. The function processChoice() can be
prototyped either by PF processChoice(int i); or by int (*processChoice(int))();
Another way to obtain a function pointer through a function is to pass the address of a function pointer
(pointer to pointer to function) to the function. In Program 10.36, function processChoice2() takes
two arguments, one is a pointer to pointer to function, and the other is an integer which is the option returned
by function getChoice(). In function main(), the address of function pointer pf is passed into function
processChoice2(), then the proper function pointer is assigned into the address of pf according to the
option i. After calling function processChoice2(), through pointer to function pf, one of functions
opt1(), opt2() and opt3() is called.

Pointers to nested functions are treated the same as pointers to regular functions as shown in Pro-
gram 10.37, where fp is a pointer to the nested function func(). The output from executing Program 10.37
is attached at the end of the program.

Pointers to functions can be used for registering callback functions. In Ch, when a local function is
registered as a callback function, it can only use local variables, arguments of the local function, or global
variables, but no intermediate variable in the enclosing block of nesting function is allowed.

10.9 Communication between Functions

Because of nested functions, more options are available for communication between functions in Ch than in
C. Methods for communication between functions in Ch can be summarized as follows.

Functions in Ch can communicate through return values, arguments, and variables at higher lexical
levels. The input to a function can be obtained from its arguments or using the variables at higher lexical
levels. The output of a function can be a return value, its arguments, and variables at higher lexical levels.
In order to pass results back to the calling function from the called function, one can use pointers for pass-
by-value or use references for pass-by-reference. If a function is used as an operand in expressions, the
result from the function should be implemented as a return value. If a large number of variables must be
shared among different functions, variables at higher lexical levels are more convenient than long argument
lists. Programs written using nested functions in Ch tend to be modular. For better readability, a function
shall not be defined across multiple files, hence, local variables inside a function are not visible outside the
file within which the function is defined. Variables at higher lexical levels are useful for communication
between local functions, especially if local functions must share some data yet neither calls the other. To
avoid too many data connections between functions, a function that is self-containing should communicate
with other functions with its arguments and return value.

188

10.9. COMMUNICATION BETWEEN FUNCTIONS
CHAPTER 10. FUNCTIONS

#include <stdio.h>
#include <stdlib.h>

int opt0() {
printf("to handle option 0\n");
return 0;

}

int opt1() {
printf("to handle option 1\n");
return 0;

}

int opt2() {
printf("to exit\n");
exit(0);

}

int getChoice() {
int i;
printf("input the choice (0,1,2): ");
scanf("%d", &i);
if (i > 2 || i < 0) i = 2;
return i;

}

typedef int (*PF)();
int main() {

// or int (*options[])() = {
PF options[] = {

opt0,
opt1,
opt2,

};

do {
options[getChoice()]();

}
while(1);

return 0;
}

/***** execution and output
input the choice (0,1,2): 0
to handle option 0
input the choice (0,1,2): 1
to handle option 1
input the choice (0,1,2): 2
to exit

******/

Program 10.33: Implement a menu using pointers to functions.

189

10.10. THE MAIN() FUNCTION AND COMMAND-LINE ARGUMENTS
CHAPTER 10. FUNCTIONS

#include<stdio.h>

int f1(int i) {
printf("i = %d\n", i);
return 0;

}

int f2(int (*pf)(), int i) {
pf(i);
return 0;

}

int main() {
f2(f1, 5);
return 0;

}

/* execution and output
i = 5

*/

Program 10.34: Example of passing function pointer as argument to function.

10.10 The main() Function and Command-Line Arguments

The main routine main() is a special function. Command-line arguments or parameters can be passed to a
program through the arguments of the function main() in two formats shown below.

int main(int argc, char *argv[], char **environ) {
...

}
int main(int argc, char *argv[]) {

...
}

The function main() can have up to three arguments. The first argument, conventionally called argc
for argument count, is the number of the command-line arguments; the second, called argv for argument
vector, is a pointer to an array of character strings of variable length. Each string contains one argument of
the command line. Therefore, the argument argv can also be considered as a pointer to pointer to char.
Then, the function main() can be written alternatively as

int main(int argc, char **argv) {
...

}

The third optional argument is a pointer to the table of environmental variables. When a program is invoked,
values for arguments argc and argv of the function main() are passed to the program by the Ch pro-
gramming environment. Following the C standard, argv[0] is the name of the program so that argc is
at least 1. If argc is 1, there are no command-line argument after the program name. In addition, the value
of argv[argc] is a null pointer. For example, Program 10.38 will echo its command-line arguments on a
single line, separated by blanks. Assume that the file name of Program 10.38 is echo, Program 10.38 can
be executed in Ch command line mode as follows,

190

10.10. THE MAIN() FUNCTION AND COMMAND-LINE ARGUMENTS
CHAPTER 10. FUNCTIONS

#include <stdio.h>
#include <stdlib.h>

typedef int (*PF)();

int opt0() {
printf("to handle option 0\n");
return 0;

}

int opt1() {
printf("to handle option 1\n");
return 0;

}

int opt2() {
printf("to exit\n");
exit(0);

}

int getChoice() {
int i;
printf("input the choice (0,1,2): ");
scanf("%d", &i);
if(i > 2 || i < 0)

i = 2;
return i;

}

// or int (*processChoice(int i))() {
PF processChoice(int i) {

switch(i) {
case 0:

return opt0;
case 1:

return opt1;
default:

return opt2;
}

}

int main() {
do {
// call function returned from processChoice()
processChoice(getChoice())();

}
while(1);
return 0;

}

Program 10.35: Example of returning a function pointer.

191

10.10. THE MAIN() FUNCTION AND COMMAND-LINE ARGUMENTS
CHAPTER 10. FUNCTIONS

#include <stdio.h>
#include <stdlib.h>

int opt0() {
printf("to handle option 0\n");
return 0;

}

int opt1() {
printf("to handle option 1\n");
return 0;

}

int opt2() {
printf("to exit\n");
exit(0);

}

int getChoice() {
int i;
printf("input the choice (0,1,2): ");
scanf("%d", &i);
if(i > 2 || i < 0)

i = 2;
return i;

}

void processChoice2(int(**pf)(), int i) {
switch(i) {
case 0:

*pf = opt0;
break;

case 1:

*pf = opt1;
break;

default:

*pf = opt2;
}
return;

}

int main() {
int(*pf)();
do {
processChoice2(&pf, getChoice());
pf();

}
while(1);
return 0;

}

Program 10.36: Example of passing address of function pointer as argument to function.

192

10.10. THE MAIN() FUNCTION AND COMMAND-LINE ARGUMENTS
CHAPTER 10. FUNCTIONS

int main() {
int func(int i) {

printf("i in func1() = %d\n", i);
return 2*i;

}
int j;
int (*fp)(int);

fp = func;
j = fp(10);
printf("j in main() = %d\n", j);

}
/* output
i in func1() = 10
j in main() = 20

*/

Program 10.37: Pointer to a nested function.

int main(int argc, char *argv[])
// or int main(int argc, char **argv)
{
int i;
for(i = 0; i < argc; i++)

printf("%s ", argv[i]);
/* or */
// do{
// printf("%s ", argv[i]);
// }while(argv[++i] != NULL);
printf("\n");

}

Program 10.38: Command line arguments in the main() routine.

193

10.10. THE MAIN() FUNCTION AND COMMAND-LINE ARGUMENTS
CHAPTER 10. FUNCTIONS

> echo testing example -a
echo testing example -a
>

where the command line echo testing example -a with four arguments is also the output of the
program.

One of the common conventions of programs on Unix systems is that the argument beginning with a
minus sign ‘-’ indicates an option. For example, the which.ch program in Ch can take two valid options,
-a and -v. The command which -a finds all commands, including environment variables and header
files. The command which -v sends out search messages if the name is not found. These two options can
be used at the same time, for example, which -a -v or which -va.

Program 10.39 is the code for handling command-line arguments, which is extracted from the program
which.ch. Here, the variables a option and v option indicate that the options -a and -v are on or not.
Their values are false by default. If there is no command-line argument, the program will print out the
error message, because the program which.ch at least has one argument, i.e. the name to be searched for.
The while-loop in this program handles all arguments which begin with the minus sign -. If the argument
which is pointed to by the pointer argv begins with the minus sign, the equality

**argv == ’-’

holds. The statement

s = argv[0]+1

makes s point to the second character of this argument. More information about pointers to pointers is avail-
able in section 9.4. If the characters ‘a’ and ‘v’ are found in these arguments, the variables a option and
v option are set to true, respectively. If other characters are found, the error messages will be printed out.
At the end of Program 10.39, options and the remaining command-line arguments are printed out. Assume
that the file name of Program 10.39 is commandline.ch, the results from executing Program 10.39 with
different options are shown below.

> commandline.ch -a -v arg1
option -a is on
option -v is on
arg1
> commandline.ch -av arg1
option -a is on
option -v is on
arg1
> commandline.ch -v arg1 arg2
option -v is on
arg1
arg2

The function function main() can also be used with three arguments. The third optional argument is a
pointer to the table of environmental variables. The program below can be used to print out all environment
variables and their corresponding values.

#include <stdio.h>
int main(int argc, char *argcv[], char **environ) {

int i;

194

10.10. THE MAIN() FUNCTION AND COMMAND-LINE ARGUMENTS
CHAPTER 10. FUNCTIONS

#include <stdio.h>
#include <stdbool.h>

int main(int argc, char **argv) {
char *s;
int a_option = false; // default, no -a option
int v_option = false; // default, no -v option

if(argc == 1){ // no argument
fprintf(stderr, "Usage: which [-av] names \n");
exit(1);

}

argc--; argv++; // for every argument beginning with -
while(argc > 0 && **argv == ’-’)
{

/* empty space is not valid option */
for(s = argv[0]+1; *s&&*s!=’ ’; s++) { // for -av

switch(*s)
{

case ’a’:
a_option = true; // get all possible matches
break;

case ’v’:
v_option = true; // print message
break;

default:
fprintf(stderr,"Warning: invalid option %c\n", *s);
fprintf(stderr, "Usage: which [-av] names \n");
break;

}
}
argc--; argv++;

}

if(a_option)
printf("option -a is on\n");

if(v_option)
printf("option -v is on\n");

while(argc > 0) { // print out the remaining arguments
printf("%s\n", *argv);
argc--; argv++;

}
return 0;

}

Program 10.39: Program commandline.ch for handling command-line arguments.

195

10.11. FUNCTION FILES
CHAPTER 10. FUNCTIONS

for(i=0; environ[i] != NULL; i++) {
printf("environ[%d] = %s\n", i, environ[i]);

}
}

Alternatively, using global variable environ defined in the header file stdlib.h, the following program
can also print out all environment variables and their corresponding values.

#include <stdlib.h>
#include <stdio.h>
int main() {

int i;
for(i=0; environ[i] != NULL; i++) {

printf("environ[%d] = %s\n", i, environ[i]);
}

}

10.11 Function Files

A Ch program can be divided into many separate files. Each file consists of many related functions, at the
top level, which are accessible to any part of a program. Each top-level function may subsequently contain
many local functions in the nested form as described in the previous sections. A file that contains more
than one function is usually suffixed with .ch to identify itself as part of a Ch program. One can create a
function file in a Ch programming environment. A function file in Ch is a file that contains only one function
definition. The name of a function file ends in .chf, such as qsort.chf. The names of the function file
and function definition inside the function file must be the same. The functions defined using function files
are treated as if they were the system built-in functions in a Ch programming environment. For example,
if a file named qsort.chf contains the program shown in Program 10.40, the function qsort() will
be treated as a system built-in function, which can be called to sort elements of a one-dimensional array
in an increasing order. In Program 10.40, the function qsort() is called recursively to sort elements of a
one-dimensional array in an increasing order. The function swap() is used only by the function qsort(),
where swap() is defined as a local function. Therefore, the function qsort() can be used as a stand-
alone system function, which is illustrated by Program 10.41. In Program 10.41, the function qsort()
is called without a function prototype in the main() function so that the function prototype defined inside
the function file qsort.chf will be invoked. Note that the return type of the function qsort() is void.
Without function files, the default return type for functions, which are invoked before they are prototyped or
defined, is int. The output of Program 10.41 is as follows
a[0] = 1 a[1] = 2 a[2] = 3 a[3] = 4 a[4] = 5 a[5] = 6

In Ch, local functions can be defined inside a function which can be called recursively as shown in
Program 10.40. The function in a function file may call other function files and even recursively call itself
indirectly. Like system built-in functions that can be replaced by changing keywords, the function defined
in a function file can be suppressed in a Ch program. If a function is defined in a program before it is
called, the user-defined function will be used in the program. Similarly, if a function is prototyped before
it is called, it is a user defined function. If the function is prototyped, the user must define it somewhere,
regardless of whether it has been defined in a function file or not. Although many functions can be defined
in a function file, it is a good practice to contain only one function and many local functions in a function
file. For example, if one wants to treat the function funct() as a top level system function, it is a bad
design to include other functions in the function file funct.chf as shown in Program 10.42.

196

10.11. FUNCTION FILES
CHAPTER 10. FUNCTIONS

/* qsort: sort v[left] .. v[right] into increasing order */
void qsort(int v[], int left, int right) {
int i, last;
/* interchange v[i] and v[j] */
void swap(int v[], int i, int j) // local function
{

int temp;
temp = v[i]; v[i] = v[j]; v[j] = temp;

}

if(left >= right)
return;

swap(v, left, (left + right)/2);
last = left;

for(i = left+1; i <= right; i++)
if(v[i] < v[left])
swap(v, ++last, i);

swap(v, left, last);
qsort(v, left, last-1);
qsort(v, last+1, right);

}

Program 10.40: The function file qsort.chf for the function qsort().

int main() {
int i, a[] = {2, 6, 5 , 3, 4, 1};

qsort(a, 0, 5);
for(i=0; i<=5; i++) {

printf("a[%d] = %d ", i, a[i]);
}
printf("\n");

}

Program 10.41: A program using the function file qsort.chf.

197

10.12. GENERIC FUNCTIONS
CHAPTER 10. FUNCTIONS

int funct()
{

void localfunct1() // OK
{ }
void localfunct2() // OK
{ }

}
int anotherfunct() // bad
{ }

Program 10.42: More than one top level function in the function file funct.chf.

As described in section 6.4, functions defined in function files cannot be used as initializers for identifiers
of static variables at the function or block scope.

10.12 Generic Functions

A generic function is a built-in system function. A list of generic functions in Ch is given in section 2.2.
Most generic functions are polymorphic. When a generic function such as sin() is explicitly called, the built-
in system function is used even if the user has redefined the function. In this case, the user defined function
will be ignored. For example, function call of sin(x) uses the built-in system function so that argument x can
be any valid data type for function sin().

However, there are no corresponding standard C functions for generic functions alias(), dlrunfun(),
elementtype(), polar(), max(), min(), and transpose(). The user shall not redefine these generic functions.
Execpt for function polar(), when one of these generic functions is redefined, a warning message will be
displayed.

When a generic function name is assigned to a pointer to function, the standard C function is used. For
example, in the following code fragment with symbol sin,

#include <math.h>
double func1(double (*fp)(double), double x) {
return fp(x);

}
int main() {
double (*fp)(double) = sin;
fp = sin;
double val;
val = fp(10.0); // same as val = sin(10.0);
func1(fp, 10);
func1(sin, 10);

}

the standard C function with the prototype of

double sin(double);

is used. The user can use a generic function name as an identifier of non-function type. For example, names
of generic functions max, min, and exp are declared as scalar variables below.

198

10.12. GENERIC FUNCTIONS
CHAPTER 10. FUNCTIONS

double max;
void func2() {

int min, exp;
...

}

Generic functions can be used in system startup files chrc, and .chrc in Unix and chrc in Windows in
the user’s home directory.

199

Chapter 11

Reference Type

This chapter presents linguistic features of references as they are currently implemented in Ch. A program
written in a procedural computer programming language is generally formed by a set of functions, which
subsequently consist of many programming statements. Using functions, a large computing task can be
broken into smaller ones, a user can develop application programs based on what others have done instead of
starting from scratch. The performance and user-friendly interface of functions are critical to a programming
language. The user may not need to know details inside functions that were developed by others. But, to
use the functions effectively, the user has to understand how to interface functions through their arguments
and return values. In general, arguments can be passed to functions in one of two ways: call-by-value and
call-by-reference. In the call-by-value model, when a function is called, the values of the actual parameters
are copied into formal parameters local to the called function. When a formal parameter is used as an lvalue
(the object that can occur at the left side of an assignment statement), only the local copy of the parameter
will be altered. If the user wants the called function to alter its actual parameters in the calling function, the
addresses of the parameters must be passed to the called function explicitly. In the call-by-reference method,
however, the address of an argument is copied into the formal parameter of a function. Inside the function,
the address is used to access the actual argument used in the calling function. This means that when the
formal parameter is used as an lvalue, the parameter will affect the variable used to call the function.

FORTRAN uses the call-by-reference model, whereas C uses the call-by-value. FORTRAN is one of the
oldest computer programming languages and it is still the primary language for scientific supercomputing.
There are numerous well-crafted FORTRAN programs. When a FORTRAN subroutine or function is ported
as a function in C, the formal arguments of the subroutine are generally treated as arguments of pointer type
in the function of C. All variables of arguments inside a subroutine then have to be modified accordingly,
which may degrade the clarity of the original algorithm and code readability. This is also a point where
beginners of C who have prior FORTRAN experience get confused. Ch is designed to be a superset of C, but
it encompasses all the programming capabilities of FORTRAN 77. To bridge the gap between FORTRAN
and C and to ease the pain of porting FORTRAN code to Ch, many programming features such as complex
type and arrays of assumed-shape have been designed and implemented in Ch. References are added to Ch
to further simplify the porting of subroutines and functions in FORTRAN to functions in Ch.

Adding references to C is not new. C++ has reference types. The primary use of references in C++ is in
specifying operations for user-defined types. The references in Ch not only ease the porting of FORTRAN
code to Ch and to make Ch more suitable for scientific programming and for novice users, it is also essential
for passing arguments to functions in a safe Ch program where pointers are restricted. References in Ch are
designed and implemented in the spirit of C, C++, and FORTRAN. We have extended the linguistic features
of references in C++ and FORTRAN for scientific programming. In Ch, both variables of basic data type,
and variables of pointer type can be used as references. In addition, variables of different data types can be

200

11.1. REFERENCES IN STATEMENTS
CHAPTER 11. REFERENCE TYPE

passed to arguments of functions by reference. Furthermore, references can be used as arguments and local
variables of nested and recursively nested functions.

11.1 References in Statements

A reference in Ch is an alternative name for an object just as in C++. The declaration statement

int i, &j = i;

indicates that the variable j is a reference to i of int data type. In other words, j is an alias to i. If the
variable that is declared and the variable that is referenced are the same data type, they can be considered to
be references to each other. Therefore, we may also say that i is a reference to j in the above example. Both
variables i and j share the same memory space inside the system. Once a linkage has been established for
two variables of the same type, they can be used interchangeably. For example,

int i, &j = i;
i++; // the same as ’j++’

In C++, only simple variables of basic data type can be treated as references. In Ch, not only can simple
variables of basic data type, be declared as references, but also variables of pointer type. For example,

int i, *p1 = &i, **p2 = &p1;
int &*pp1 = p1, &**pp2 = p2;

where pp1 is a reference to p1 of pointer to int and pp2 is a reference to p2 of pointer to pointer to int.
A reference must be initialized at the declaration stage. Once the reference relation has been established,

it cannot be changed. For example, the following code has syntax errors because the variables j and p of
reference are not initialized.

int &j; // ERROR: reference not initialized
int &*p; // ERROR: reference not initialized

More than two variables can refer to the same memory location. For example,

int i, &j = i, &k = i, &l = k;
int &m = i;

where variables i, j, k, l and m are referenced to each other. The modification of one variable will
affect all other variables.

To avoid the aliasing and to simplify implementation, only simple variables can be referenced to each
other at its current implementation of Ch. If the rvalue initialized to a reference is not a simple variable, the
reference will be treated as a simple variable and the initialization will be treated as the initialization for the
simple variable. For example, all references in the following declaration are effectively treated as simple
variables in the system.

int a[10];
float f, *fp = &f;
complex z;
int &i = 6; // int i = 6;
int &j =6+a[1]; // int j = 6+a[1];

201

11.1. REFERENCES IN STATEMENTS
CHAPTER 11. REFERENCE TYPE

int &*pp = &i+6; // int *pp = &i+6;
float &f1 = real(complex(1,2)); // float f1 = real(complex(1,2));
float &f2 = real(z); // float f2 = real(z);
float &f3 = a[1]; // float f3 = a[1];
float &f4 = *fp; // float f4 = *fp;
float &*p = &f; // float *p = &f;
f = 5; // the same as *fp = 5 or *p = 5;

real(z), a[1] and *ptr are lvalues in the above example, but they are not simple variables. Therefore,
they cannot be references. Note that the pointer p is pointed at the address of the variable f in the C
conforming manner.

Variables of different data types can also be considered as references so long as their data types are
compatible. For example, in the following code

int i = 30;
double &d = i;
printf("d = %lf \n", d); // output: d = 30.000000

The variable d of double data type is a reference to int of i. Both variables i and d refer to the same
memory space of an int which occupies four bytes. The data type of the variable d is double, therefore, the
results of abs(d) and d+3 are doubles. When d is used in an expression, the value of int will be converted
into double implicitly prior to the execution of the operation. In the same token, when d is used as an
lvalue in an assignment statement, the result of the rvalue will be cast into an int before it is assigned to
the memory which has only four bytes. Therefore, if the value is beyond the range for the integer value
of [INT_MIN, INT_MAX], the information may be lost because of the implicit data conversion. On the
other hand, if a variable of int is a reference to a variable of double, all information, except the fractional
part of the double variable, will be preserved. For example,

double d = 3.6;
int &i = d;
printf("i = %i \n", i); // output: i = 3
i = 7; // i = 7; d = 7.000000
d = 5.2; // i = 5; d = 5.2

where both variables i and d share the same memory space of a double datum which is eight bytes. Variables
of incompatible data type cannot become references. For example,

int i, *p = &i;
int &*ptr = i; // data types of ptr and i are incompatible
int &j = p; // data types of j and p are incompatible

The reference linkage can also be applied to variables at different lexical levels. Variables at a lower
lexical level can be declared and initialized to refer to a variable defined at a higher lexical level as shown in
the following sample code

int i = 8;
void funct()
{
int &j = i, &k =i; // j = 8; k = 8;

202

11.2. PASSING ARGUMENTS OF FUNCTION BY REFERENCES
CHAPTER 11. REFERENCE TYPE

printf("j = %d, ", j); // output: j = 8,
j =90;

}
funct(); // get output: j = 8
printf("i = %d \n", i); // output: i = 90

where both variables j and k share the same memory space with the variable i. The output of the above
program is as follows:
j = 8, i = 90

11.2 Passing Arguments of Function by References

In C, when a function is called, the actual arguments of the calling function are passed to arguments of the
called function by value. The values of the actual parameters are copied into formal parameters local to the
called function. When a formal parameter is used as an lvalue, only the local copy of the parameter will
be altered. Therefore, the function swap() below will not work correctly because x and y are passed by
value.

int a = 5, b = 6;
void swap(int x, y)
{
int temp;
temp = x; x = y; y = temp;

}
swap(a, b); // fails to swap a and b

In C, if the user wants the called function to alter its actual parameters in the calling function, the addresses
of the parameters must be passed to the called function explicitly. One correct version of the function
swap() is to use pointers to pass the addresses of variables in the calling function to the called function as
shown in the following code.

int a = 5, b = 6;
void swap(int *x, *y)
{
int temp;
temp = *x; *x = *y; *y = temp;

}
swap(&a, &b); // a = 6; b = 5;

where the indirection operations are used to change the values of variables in the calling function.
In the call-by-reference method as in FORTRAN, however, the address of an argument is copied into the

formal parameter of a function. Inside the function, the address is used to access the actual argument used
in the calling function. This means that when the formal parameter is used as an lvalue, the parameter will
affect the variable used to call the function. When references in Ch are used as arguments of functions, the
functions will be called by reference. The function swap() can be implemented using references in Ch as
follows:

203

11.2. PASSING ARGUMENTS OF FUNCTION BY REFERENCES
CHAPTER 11. REFERENCE TYPE

int i =5, *p1 = &i, **p2;
int &*pp1 = p1, &**pp2 = p2; // pp1 = &i

p2 = malloc(5*sizeof(int));
void funct1(int& *p)
{
p = malloc(9);
printf("In funct2() p = %p \n", p);

}
printf("Before funct1() pp1 = %p \n", pp1);
funct1(pp1);
printf("After funct1() pp1 = %p \n", pp1);

void funct2(int& **pp)
{
pp++;
printf("In funct2() pp = %p \n", pp);

}
printf("Before funct2() pp2 = %p \n", pp2);
funct2(pp2);
printf("After funct2() pp2 = %p \n", pp2);

Program 11.1: References to pointers in Ch.

int a = 5, b = 6;
void swap(int &x, &y)
{
int temp;
temp = x; x = y; y = temp;

}
swap(a, b); // a = 6; b = 5;

where no pointer indirection is involved.
In C, if a function needs to change the value of a variable of pointer type through an argument of the

function, a pointer to pointer, that is, a double pointer, has to be passed to the function. In Ch, not only simple
variables, but also pointers can be passed by reference as shown in Program 11.1. In Program 11.1, the
pointer variable pp1 points at the memory location for the variable i before the function funct1(pp1)
is called. The pointer pp1 points at the newly allocated memory space of 9 bytes through the function call
of funct1(pp1), which is achieved by the formal argument p of the function. Similarly, the variable of
double pointer pp2 is passed to the formal argument pp of the function funct2(). It is incremented by 4
bytes, the space for an int, by the address arithmetic inside the function. The output of Program 11.1 is as
follows:
Before funct1() pp1 = 11b578
In funct2() p = 11ea38
After funct1() pp1 = 11ea38

204

11.2. PASSING ARGUMENTS OF FUNCTION BY REFERENCES
CHAPTER 11. REFERENCE TYPE

void deallocate(void &* ptr)
{
free(ptr);
ptr = NULL;

}
void *p;
p = malloc(10);
deallocate(p); // free memory and reset p to NULL

Program 11.2: Function deallocate() free the memory and reset the pointer to NULL.

int i;
void funct(int &r1, &r2, r3)
{
r1 = 3; r2++; r3++;
printf("r1 = %d\n", r1); // output: r1 = 4

}
funct(i, i, i);
printf("i = %d\n", i); // output: i = 4

Program 11.3: A same variable passed to different references

Before funct2() pp2 = 11e930
In funct2() pp = 11e934
After funct2() pp2 = 11e934

In Ch, the function free(ptr) will deallocate the memory pointed at by the pointer ptr and reset
the pointer ptr to NULL. In C, ptr is not set to NULL when the memory it points to is deallocated. This
dangling memory makes the debugging of a C program very difficult because the problem will not surface
until this deallocated memory is claimed again by other parts of the program. Because the function free()
is implemented as an external function in C, there is no way to set the pointer ptr to NULL when it is
freed by the function call of free(ptr). But, if references were added to the C, we could implement
the function deallocate(ptr)which would free the memory, pointed to by the pointer ptr, and reset
ptr to NULL as shown in Program 11.2 in Ch. In Program 11.2, we assume that the function free() is a C
function which does not set its argument to NULL upon the completion of the function call.

In Ch, the same memory space of a variable can be passed to different references in the arguments of
a function. For example, in Program 11.3, both arguments r1 and r2 in the function funct() use the
same memory space of the variable i whereas r3 has its own local memory when the function is called by
funct(i, i, i).

In FORTRAN, when an argument of a function is used as an lvalue inside a subroutine, the actual
argument in the calling function must be a variable. Unlike in FORTRAN, a reference variable in Ch can
be used as an lvalue inside a function even if the actual argument is not an lvalue. If the actual argument of
a function, corresponding to a reference in the formal definition, is not a simple variable, the argument will
be passed by value. In Program 11.4, references r1 and r2 are used as lvalues in the function funct().
The function call of funct(i+8,6) passes expressions i+8 and 6 to references r1 and r2, respectively.
Note that the reference k, instead of the variable j, is passed to the reference r2 in the function call of
funct(i, k). In the function call of funct(abs(-3), funct(1,2)), the user-defined function

205

11.3. PASSING VARIABLES OF DIFFERENT DATA TYPES TO THE SAME REFERENCE
CHAPTER 11. REFERENCE TYPE

int i =50, j=0, &k = j;
int funct(int &r1, &r2)
{
r1 += 100;
r2 += r1+2;
printf("r1 = %d, r2 = %d\n", r1, r2);
return r1+r2;

}
funct(i+1,3); // output: r1 = 151, r2 = 156
funct(i,k); // output: r1 = 150, r2 = 152
funct(abs(-3), funct(1,2)); // output: r1 = 101, r2 = 105

// output: r1 = 103, r2 = 311
printf(i, " ", j, "\n"); // output: 150 152

Program 11.4: Using references as lvalues when actual arguments are expressions.

int i=5;
void funct(int j)
{
int &r = j;
printf("r = %d ", r);
r++;
printf("j = %d ", j);

}
funct(i);
printf("i = %d\n", i);

Program 11.5: Local variable is a reference to the argument of the function.

uses the system built-in function abs() and itself as arguments of the function.
Local variables inside functions can be references to the arguments of functions. For example, in Pro-

gram 11.5, the local variable r is a reference to the integer argument j of the function. The output of
Program 11.5 is as follows:
r = 5 j = 6 i = 5

11.3 Passing Variables of Different Data Types to the Same Reference

Like initializing a reference with a variable of different data type in a declaration statement, variables of
different data types can also be passed to references in the arguments of functions. The interface rules in
this case are similar to those described in section 11.1. For example, in Program 11.6, the variables r1 and
r2 inside the function funct() share the same memory spaces of the variables f and i in the function
call of funct(f, i), respectively. The interface of arguments is treated as if the values of variables f
and i were converted to int and complex types first and then copied to variables r1 and r2, respectively.
When the flow of program execution exits the function, the results of r1 and r2 were then converted to the
values of variables f and i, respectively. The ability to interface different data types in function arguments

206

11.3. PASSING VARIABLES OF DIFFERENT DATA TYPES TO THE SAME REFERENCE
CHAPTER 11. REFERENCE TYPE

float f = 90;
int i = -4;
void funct(int &r1, complex & r2)
{

printf("r1 = %d ", r1++);
printf("sqrt(r2) = %.3f \n", sqrt(r2--));

}
funct(f, i); // output: r1 = 90 sqrt(r2) = complex(0.000,2.000)
printf(f," ", i,"\n"); // output: 91.000 -5

Program 11.6: Passing actual arguments to references with different data types.

float f = 90;
int i = -4;
void funct(int *r1, complex * r2)
{

printf("r1 = %d ", (*r1)++);
printf("sqrt(r2) = %.3f \n", sqrt((*r2)--));

}
funct(&f, &i); // output: r1 = 1119092736 sqrt(r2) = complex(NaN,NaN)
printf(f," ", i,"\n"); // output: 90.000 -4

Program 11.7: Passing pointers of different type to arguments of pointer type in functions.

is a significant enhancement as there is no way to pass variables whose data types are different from their
definitions and get the correct results back in C. Note that the square root of an int datum returns a float in
Ch, therefore, sqrt(−4) is NaN. Program 11.6 is different from Program 11.7. In Program 11.7, when the
address of the variable f is passed to the argument r1 in the function call of funct(&f,&i), nothing but
the address is passed. Inside the function, the memory map of a float is used as a memory map for an int,
which may not be what the user intended to do. Similarly, the memory location for the variable i of int is
passed to the pointer to complex of the variable r2 in the function call.

If the actual argument of a reference of a function call is not a simple variable, the reference inside the
function will be treated as a simple variable. If the actual argument of a reference of a function call is not a
simple variable and its data type is different from its definition, the result will be converted to the data type
of the definition before it is assigned to the variable of the reference. For example,

void funct(float &r)
{

printf("r = %.3f \n", r);
}
funct(90.0); // output: r = 90.000
funct(90); // output: r = 90.000
funct(complex(90,0)); // output: r = 90.000
funct(complex(1,2)); // output: r = NaN

Note that the real number converted from a complex number whose imaginary part is not identically zero is
NaN.

207

11.3. PASSING VARIABLES OF DIFFERENT DATA TYPES TO THE SAME REFERENCE
CHAPTER 11. REFERENCE TYPE

When a simple variable whose data type is different from the formal definition of a reference argument
of a function is passed to the argument of the function, the Ch program will reconcile the value when it
is used as an lvalue or operand in expressions. However, if the argument of a function is a reference to
pointer data type, the system will treat the object passed into the function as the pointer type declared for the
reference. In other words, only the memory for the object is used and its original pointer type in the calling
function will be ignored inside the function. For example, in Program 11.8, variables p1 and p2 are pointers
to int and float, respectively. They have been passed to the function funct(int &*, float &*) by
the function calls of funct(p1, p2) and funct(p2, p1). When the reference of pointer type is
passed with different data type, the indirection operation will not be reconciled to deliver the correct result
in the function call of funct(p2, p1). The output of Program 11.8 is as follows:
before: *iptr = 4 *fptr = 5.000000
after: *iptr = 90 *fptr = 90.000000
*p1 = 90 *p2 = 90.000000
before: *iptr = 1084227584 *fptr = 0.000000
after: *iptr = 90 *fptr = 90.000000
*p1 = 1119092736 *p2 = 0.000000
However, a reference to a pointer can be used as a regular pointer inside the function when no indirection
operation is involved. For example, pointer p1 is allocated its memory by the function getmem(p1,
sizeof(int)) and is freed of its memory and reset to NULL by the function call deallocate(p1).
Note that the variable p1 is a pointer to int, but the data type of the corresponding argument of functions
getmem() and deallocate() are pointer to void.

208

11.3. PASSING VARIABLES OF DIFFERENT DATA TYPES TO THE SAME REFERENCE
CHAPTER 11. REFERENCE TYPE

void deallocate(void &* ptr)
{
free(ptr);
ptr = NULL;

}
void getmem(void &* ptr, int i)
{
ptr = malloc(i);

}
void funct(int &*iptr, float &*fptr)
{
printf("before: *iptr = %d *fptr = %f \n", *iptr, *fptr);

*iptr = 90;

*fptr = 90;
printf("after: *iptr = %d *fptr = %f \n", *iptr, *fptr);

}
int *p1;
float *p2;
getmem(p1, sizeof(int)); // p1 = malloc(sizeof(int))
p2 = malloc(sizeof(float));

*p1 = 4; *p2 = 5;
funct(p1, p2);
printf("*p1 = %d *p2 = %f \n", *p1, *p2);

*p1 = 4; *p2 = 5;
funct(p2, p1);
printf("*p1 = %d *p2 = %f \n", *p1, *p2);
deallocate(p1); // free memory and reset p1 to NULL
deallocate(p2); // free memory and reset p2 to NULL

Program 11.8: Passing pointers of different type to arguments of reference to pointer in functions.

209

Chapter 12

Scientific Computing Using Generic
Mathematical Functions

Ch is a language designed for both scientific and system programming. In this chapter, the scientific com-
puting aspect of the Ch language will be addressed. The ANSI/IEEE 754 standard for binary floating-point
arithmetic [11] is a significant milestone on the road to consistent floating-point arithmetic with respect to
real numbers. To make the power of the IEEE 754 standard easily available to the programmer, the floating-
point numbers of Inf, −Inf, and NaN, referred to as metanumbers, are introduced in Ch. These metanumbers
are transparent to the programmer. Signed zeros +0.0 and −0.0 in Ch behave like correctly signed infinites-
imal quantities 0+ and 0−, whereas symbols Inf and−Inf correspond to mathematical infinities∞ and−∞,
respectively. Although the application of symbols such as Inf and NaN can be found in some software pack-
ages, their handling of these special numbers has deficiency. For example, one can find ComplexInfinity in
the software package Mathematica, and Inf and NaN in MATLAB. In Mathematica, there is no distinction
between complex infinity and real infinities, nor between −0.0 and 0.0; therefore, many operations defined
in this chapter cannot be achieved in Mathematica. In MATLAB, there is no complex infinity.

A computer language with no mathematical functions is not suitable for scientific computing and many
other applications. The C language is a small language; it does not provide mathematical functions inter-
nally. The mathematical functions are provided in a standard library of mathematical functions. Because
C does not provide mathematical functions internally, like arithmetic operations in K&R C, the returned
value from a standard mathematical function is a double floating-point number regardless of the data types
of the input arguments. In some of C implementations, if the input arguments are not doubles, the mathe-
matical functions may return erroneous results without warning. Numerically oriented programmers have
little tolerance with respect to the implicit conversion of the data type from float to double for arithmetic
operations of a computer language. However, they generally accept the strongly typed implementation of
mathematical functions. If a different return data type is desired for a mathematical function, a new function
with a different name will be needed. For example, the function call of sin(1) appears right in C. Indeed,
most C programs will execute this operation calmly, but maybe with an erroneous result because the input
data type of integer is not what sin() function expected. As another example, the function abs() in C returns
an absolute int number whereas fabs() will result in a double number. To get a float absolute value, a new
function has to be created. As a result, one has to remember many arcane names for different functions. Ch
uses generic functions to resolve this problem.

The external functions of Ch can be created in the same manner as in C. The commonly used mathemat-
ical functions are built internally into Ch. The mathematical functions in Ch can handle different data types
of the arguments gracefully. The output data type of a function depends on the data types of the input argu-
ments, which is called polymorphism. Like arithmetic operators, the commonly used generic mathematical

210

12.1. GENERIC MATHEMATICAL FUNCTIONS IN THE ENTIRE DOMAIN
CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS

functions in Ch are polymorphic. For example, for the polymorphic function abs(), if the data type of the
input argument is int, it will return an int as the absolute value. If the input argument of abs() is a float or
double, the output will return the same data type of float or double, respectively. For a complex number
input, the result of abs() is a float with the value of the modulus of the input complex number. Similarly,
if the argument data type is lower than or equal to float, sin() will return a float result correctly. Function
sin() can also return double and complex results for double and complex input arguments, respectively. Be-
cause I/O functions are also built into Ch itself, different data types are reconciled inside Ch. For example,
printf("%f", x) in C can print x if x is a float. However, if x is changed to int in a program, the
printing statement must also be changed accordingly as printf("%d", x). Therefore, the change of
data type declaration of a variable will have to accompany the change of many other parts of the program.
The commands printf(x) and printf(sin(x)) in Ch are flexible and can handle different data types of x; x can
be char, int, float, double, or complex.

For portability, all mathematical functions included in the C header math.h have been implemented
polymorphically in Ch. The returned data type of a function depends on the data types of the input ar-
guments. This will simplify scientific numerical computing significantly. The names of these generic
mathematical functions of Ch described in this chapter are based upon the C header file math.h. These
mathematical functions are C compatible. If the arguments of these functions have the data types of the cor-
responding C mathematical functions, there is no difference between the C and Ch functions from a user’s
point of view.

12.1 Generic Mathematical Functions in the Entire Domain

In this section, the generic mathematical functions of Ch will be discussed. The input and output of the
functions involving the metanumbers will be highlighted. The results of the mathematical functions in-
volving metanumbers are given in Tables 12.1 to 12.4. In Tables 12.1 to 12.4, unless indicated otherwise,
x, x1, x2 are real numbers with 0 < x, x1, x2 < ∞; and k is an integral value. The value of pi is the finite
representation of the irrational number π in floating-point numbers. The returned data of a function is float
or double depending on the data type of the input arguments. In Table 12.1, if the order of the data type x is
less than or equal to float, the returned data type is float. The returned data type is double if x is of double
type. If the argument x of a function in Table 12.1 is NaN, the function will return NaN. In Tables 12.2 to
12.4, the returned data type will be the same as the higher order data type of two input arguments if any of
two arguments is float or double. Otherwise, the float is the default returned data type.

Functions defined in this section will return float or double, except for functions abs() and pow(). If
the argument of the function abs() is an integral value, the returned data type is int. If the argument of the
function fabs() is a simple data type including int and float, the returned data type is double. If the arguments
of the function pow() are integral values, the returned data type is double. For example, pow(2,16) will
return the value 65536 of double type.

The absolute function abs(x) will compute the absolute value of an integer or a floating-point number.
The absolute value of a negative infinity −∞ is a positive infinity∞.

The sqrt(x) function computes the nonnegative square root of x. If x is negative, the result is NaN,
except that sqrt(−0.0) = −0.0 according to the IEEE 754 standard. The square root of infinity sqrt(∞) is
infinity.

The exp(x) function computes the exponential function of x. The following results hold: e−∞ =
0.0; e∞ =∞; e±0.0 = 1.0.

The log(x) function computes the natural logarithm of x. If x is negative, the result is NaN. The value of
−0.0 is considered equal to 0.0 in this case. The following results hold: log(±0.0) = −∞; log(∞) =∞.
The log10(x) function computes the base-ten logarithm of x. If x is negative, the result is a NaN. Like the

211

12.1. GENERIC MATHEMATICAL FUNCTIONS IN THE ENTIRE DOMAIN
CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS

Table 12.1: Results of real functions for ±0.0,±∞, and NaN
function x value and results

−Inf −x1 −0.0 0.0 x2 Inf NaN
abs(x) Inf x1 0.0 0.0 x2 Inf NaN
fabs(x) Inf x1 0.0 0.0 x2 Inf NaN
sqrt(x) NaN NaN −0.0 0.0 sqrt(x) Inf NaN
exp(x) 0.0 e−x1 1.0 1.0 ex2 Inf NaN
log(x) NaN NaN −Inf −Inf log(x2) Inf NaN
log10(x) NaN NaN −Inf −Inf log10(x2) Inf NaN
sin(x) NaN −sin(x1) −0.0 0.0 sin(x2) NaN NaN
cos(x) NaN cos(x1) 1.0 1.0 cos(x2) NaN NaN
tan(x) NaN −tan(x1) −0.0 0.0 tan(x2) NaN NaN

Note: tan(±π/2 + 2 ∗ k ∗ π) = ±Inf
asin(x) NaN −asin(x1) −0.0 0.0 asin(x2) NaN NaN

Note: asin(x) = NaN, for |x| > 1.0
acos(x) NaN acos(x1) pi/2 pi/2 acos(x2) NaN NaN

Note: acos(x) = NaN, for |x| > 1.0
atan(x) −pi/2 −atan(x1) −0.0 0.0 atan(x2) pi/2 NaN
sinh(x) −Inf −sinh(x1) −0.0 0.0 sinh(x2) Inf NaN
cosh(x) Inf cosh(x1) 1.0 1.0 cosh(x2) Inf NaN
tanh(x) −1.0 −tanh(x1) −0.0 0.0 tanh(x2) 1.0 NaN
asinh(x) −Inf −asinh(x1) −0.0 0.0 asinh(x2) Inf NaN
acosh(x) NaN NaN NaN NaN acosh(x2) Inf NaN

Note: acosh(x) = NaN, for x < 1.0; acosh(1.0) = 0.0
atanh(x) NaN −atanh(x1) −0.0 0.0 atanh(x2) NaN NaN

Note: atanh(x) = NaN, for |x| > 1.0; atanh(±1.0) = ±Inf
ceil(x) −Inf ceil(−x1) −0.0 0.0 ceil(x2) Inf NaN
floor(x) −Inf floor(−x1) −0.0 0.0 floor(x2) Inf NaN
ldexp(x, k) −Inf ldexp(−x1, k) −0.0 0.0 ldexp(x2, k) Inf NaN
modf(x, &y) −0.0 modf(−x1,&y) −0.0 0.0 modf(x2,&y) 0.0 NaN
y −Inf y −0.0 0.0 y Inf NaN
frexp(x, &k) −Inf frexp(−x1,&k) −0.0 0.0 frexp(x2,&k) Inf NaN
k 0 k 0 0 k 0 0

212

12.1. GENERIC MATHEMATICAL FUNCTIONS IN THE ENTIRE DOMAIN
CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS

Table 12.2: Results of the function pow(y, x) for ±0.0,±∞, and NaN

pow(y, x)
y value x value

−Inf −x1 −2k − 1 −2k −0.0 0.0 2k 2k + 1 x2 Inf NaN
Inf 0.0 0.0 0.0 0.0 1.0 1.0 Inf Inf Inf Inf NaN

y2 > 1 0.0 y−x1
2 y−2k−1

2 y−2k
2 1.0 1.0 y2k2 y2k+1

2 yx2
2 Inf NaN

1.0 NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 NaN NaN
0 < y2 < 1 Inf y−x1

2 y−2k−1
2 y−2k

2 1.0 1.0 y2k2 y2k+1
2 yx2

2 0.0 NaN
0.0 Inf Inf Inf Inf 1.0 1.0 0.0 0.0 0.0 0.0 NaN
−0.0 Inf Inf −Inf Inf 1.0 1.0 0.0 −0.0 0.0 0.0 NaN
−y1 NaN NaN −y−2k−1

1 y−2k
1 1.0 1.0 y2k1 −y2k+1

1 NaN NaN NaN
−Inf NaN NaN −0.0 0.0 1.0 1.0 Inf −Inf NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

Table 12.3: Results of the function atan2(y, x) for ±0.0,±∞, and NaN
atan2(y, x)

y value x value
−Inf −x1 −0.0 0.0 x2 Inf NaN

Inf 3∗pi/4 pi/2 pi/2 pi/2 pi/2 pi/4 NaN
y2 pi atan2(y2,−x1) pi/2 pi/2 atan2(y2, x2) 0.0 NaN

0.0 pi pi pi 0.0 0.0 0.0 NaN
−0.0 −pi −pi −3∗pi/4 −pi/2 −0.0 −0.0 NaN
−y1 −pi atan2(−y1,−x1) −pi/2 −pi/2 atan2(−y1, x2) −0.0 NaN
−Inf −3∗pi/4 −pi/2 −pi/2 −pi/2 −pi/2 −pi/4 NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Table 12.4: Results of the function fmod(y, x) for ±0.0,±∞, and NaN
fmod(y, x)

y value x value
−Inf −x1 −0.0 0.0 x2 Inf NaN

Inf NaN NaN NaN NaN NaN NaN NaN
y2 y2 fmod(y2,−x1) NaN NaN fmod(y2, x2) y2 NaN

0.0 0.0 0.0 NaN NaN 0.0 0.0 NaN
−0.0 −0.0 −0.0 NaN NaN −0.0 −0.0 NaN
−y1 y1 fmod(−y1,−x1) NaN NaN fmod(−y1, x2) −y1 NaN
−Inf NaN NaN NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN

213

12.1. GENERIC MATHEMATICAL FUNCTIONS IN THE ENTIRE DOMAIN
CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS

function log(), the value of −0.0 is considered equal to 0.0. The following results hold: log10(±0.0) =
−∞; log10(∞) =∞.

The trigonometric functions sin(x), cos(x), and tan(x) compute sine, cosine, and tangent of x measured
in radians, respectively. The sine and tangent are odd functions so that sin(±0.0) = ±0.0 and tan(±0.0) =
±0.0. The cosine is an even function so that cos(±0.0) = 1.0. When the value of the argument is positive
or negative infinity, all these functions return NaNs. Theoretically, it is true that tan(±π/2 + 2 ∗ k ∗ π) =
±∞. But, in practice, because the irrational number π cannot be represented exactly in float or double
data, the tan(x) function will never return infinities of ±∞. The function tan() is not continuous at π/2,
tan(π/2− ε) =∞, and tan(π/2 + ε) = −∞, where ε is a very small number. Due to the finite precision
and round-off errors of floating-point numbers, one may get a wrong result near the value of π/2.

The properties of odd functions of sine and tangent are reflected in their inverse functions asin(x) and
atan(x). The asin(x) function computes the principal value of the arc sine of x. When the value of x is in
the range of [−1.0, 1.0], the asin(x) function returns the value in the range of [−π/2, π/2] radians. When
x is outside the range of [−1.0, 1.0], the arc sine is undefined and asin(x) returns NaN. The range of the
input value for the even function acos(x) of arc cosine is the same as that of asin(x). The acos(x) function
computes the principal value of the arc cosine of x. The range of the principal value of the arc cosine is
[0.0, π] radians. The atan(x) function computes the principal value of the arc tangent of x. The atan(x)
function returns the value in the range of [−π/2, π/2] radians. The following results hold: atan(±∞) =
±π/2.

Like trigonometric functions sin(x) and tan(x), the hyperbolic functions sinh(x) and tanh(x) are odd
functions. The sinh(x) and tanh(x) functions compute the hyperbolic sine and tangent of x, respectively.
The even function cosh(x) computes the hyperbolic cosine of x. The following results hold: sinh(±0.0) =
±0.0; cosh(±0.0) = 1.0; tanh(±0.0) = ±0.0; sinh(±∞) = ±∞; cosh(±∞) = ∞; tanh(±∞) =
±1.0;

The inverse hyperbolic functions are not defined by the C standard. In Ch, the inverse hyperbolic sine,
cosine, and tangent are defined as asinh(x), acosh(x), and atanh(x), respectively. For the acosh(x) function,
if the argument is less than 1.0, it is undefined and acosh(x) returns NaN. acosh(1.0) returns a positive
zero. The valid domain for function atanh(x) is [−1.0, 1.0]. The following results hold: asinh(±0.0) =
±0.0;asinh(±∞) = ±∞;acosh(∞) =∞;atanh(±0.0) = ±0.0;atanh(±1.0) = ±∞.

The ceil(x) function computes the smallest integral value not less than the value of x. The counterpart of
ceil(x) is the function floor(x) which computes the largest integral value not greater than the value of x. The
following results hold: ceil(±0.0) = ±0.0;floor(±0.0) = ±0.0; ceil(±∞) = ±∞;floor(±∞) = ±∞

The ldexp(x, k) function multiplies the value of the floating-point number x with the value of 2 raised
to the power of k. The returned value of x ∗ 2k keeps the sign of x.

The functions modf(x, xptr) and frexp(x, iptr) have two arguments. The first argument is the input data
and the second argument is a pointer which will store the resulted integral part of the function call. The
modf(x, xptr) function breaks the argument x into integral and fractional parts, each of which has the same
sign as the argument. The modf() function returns the fractional part and the integral part is stored to the
memory pointed to by the second argument. The basic data types of two arguments must be the same. For
example, if the first argument x is float, the second argument xptr must be a pointer to float. If the first
argument is a metanumber, the integral part will equal the metanumber whereas the fractional part becomes
zero with the sign of the first argument except for NaN. The frexp(x, iptr) function breaks a floating-point
number into a normalized fraction and an integral power of 2 in the form of x ∗ 2k. The frexp(x, iptr)
function returns the normalized fraction and the integral part is stored to the memory pointed to by the
second argument, which is a pointer to int. If the first argument is a metanumber, the fractional part will
equal the metanumber whereas the integral part becomes zero.

The mathematical functions pow(y, x), atan2(y,x), and fmod(y,x) have two input arguments. The results
of these three functions are given in Tables 12.2 to 12.4. The pow(y, x) function computes y raised to the

214

12.2. PROGRAMMING EXAMPLES
CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS

power of x, which is yx or ex log(y). If x is negative, yx becomes 1/y|x| with the defined division operation
given in Table 7.6. If y is less than zero and x is not an integral value including zero, the function is
undefined. The value of −0.0 is considered equal to 0.0 in the evaluation of log(−0.0) when the value of x
is not an integral number. When x is an odd integer number and y is negative, the result is negative. For a
positive value of y, the result depends on the value of y when x is infinity. If y is less than 1, y∞ is 0.0; 1.0∞

is indeterminate; if y is greater than 1, y∞ is infinity. If y is infinity and x is zero, (±∞)±0.0 are 1.0.
The atan2(y, x) function computes the principal value of the arc tangent of y/x using the signs of both

arguments to determine the returned value in the range of [−π, π] radians. Given the (x, y) coordinates of a
point in the X-Y plane, the atan2(y, x) function computes the angle of the radius from the origin to the point.
Any positive number that overflows is represented by Inf. The negative overflow is −Inf. The following
results hold: atan2(±Inf,−Inf) = ±3π/4; atan2(±Inf, Inf) = ±π/4; atan2(±Inf, x) = ±π/2;
atan2(±y, Inf) = ±0.0; and atan2(±y,−Inf) = ±π. When both values of y and x are zeros, the
function atan2(y, x) will return the results consistent with the manipulation of metanumbers discussed so
far. The value of−0.0 is considered as a negative number less than zero. Therefore, the following results are
defined for these special operations: atan2(0.0,−0.0) = π; atan2(0.0, 0.0) = 0.0; atan2(−0.0,−0.0) =
−3π/4; and atan2(−0.0, 0) = −π/2, which is consistent with the treatment of the metanumbers of±Inf in
atan2(−Inf, −Inf) =−3pi/4. In Ch, atan2(0.0, 0.0) is a specially defined value. These results are different
from those by the SUN’s C compiler, which is in conformance with 4.3 Berkeley Software Delivery (SUN,
1990a). According to 4.3BSD, the results for these special cases are atan2(±0.0,−0.0) = ±0.0 and
atan2(±0.0, 0.0) = ±π, which implies that the values of ±0.0 on the x-axis are different from those on
the y-axis.

The fmod(y,x) function computes the floating-point remainder of y/x. The fmod(y,x) function returns
the value of y − i ∗ x for some integer i. The magnitude of the returned value with the same sign of x is
less than the magnitude of x. If x is zero, the function is undefined and returns NaN. When y is infinity, the
result is also undefined. If x is infinity and y is a finite number, the result is the same as y.

12.2 Programming Examples

12.2.1 Computation of Extreme Values of Floating-Point Numbers

Due to different machine architectures for representation of floating-point numbers, the extreme values
such as the maximum representable floating-point value are different. For two machines with the same
representation of floating-point values, the same operations such as adding two values on each machine may
get different results, depending on the schemes for rounding a number that cannot be represented exactly.
To aid serious numerically oriented programmers in writing their programs, the C standard added the header
float.h as a companion to the existing header limits.h to deal with the machine-dependent integer
values only. In this section, we will show how parameters defined in the C standard library float.h can
be computed in Ch without knowing the intricate architecture of the computer. A program can depend less
on these parameters if a language can support metanumbers Inf and NaN. The use of metanumbers such as
Inf and NaN instead of parameters is recommended for Ch programming.

Minimum Floating-Point Numbers FLT MIN and FLT MINIMUM

The parameter FLT MIN is defined in the C standard library header float.h as a minimum normalized
positive floating-point float number. If a number is less than FLT MIN, it is called an underflow. Because
the IEEE 754 standard provides a gradual underflow, the minimum denormalized positive floating-point
float number is defined as FLT MINIMUM in Ch. Because of gradual underflow, the Ch expression x -
y == 0 is TRUE iff x = y, which is not true for systems that lack gradual underflow. This parameter is

215

12.2. PROGRAMMING EXAMPLES
CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS

very useful from a programming point of view. As an example, assume that values of FLT MINIMUM and
FLT MIN are 1.401298e-45 and 1.175494e-38, respectively. The following Ch code will illustrate subtleties
of these two parameters.

float f, *flt_minimum;
int minimum, i;
minimum = 1; // memory location becomes 00000001
flt_minimum = &minimum; // *flt_minimum becomes FLT_MINIMUM
i = *flt_minimum > 0.0; // i becomes 1
i = FLT_MIN > *flt_minimum; // i becomes 1
i = fabs(*flt_minimum) > 0.0; // i becomes 1
f = (*flt_minimum)/(*flt_minimum); // f becomes 1.0; note 0.0/0.0 = NaN
f = f/1.e-46 // f becomes Inf: 1.e-46 < FLT_MINIMUM

Applications of these two numbers in the handling of branch cuts of multiple-valued complex functions are
described in Chapter 13.

Machine Epsilon FLT EPSILON

The machine epsilon FLT EPSILON is the difference between 1 and the least value greater than 1 that
is representable in float. This parameter, defined in the C header float.h, is a system constant in Ch.
This parameter is very useful for scientific computing. For example, due to the finite precision of the
floating-point representation and alignment of addition operation, when a significantly small value and a
large number are added together, the small number may not have contribution to the summation. Using
FLT EPSILON, adding a small positive number x to a large positive number y can capture at least three
decimal digits of significance of y that can be tested by

if(x < y * FLT_EPSILON * 1000)

The following Ch code can calculate and print out the machine epsilon on the screen

float epsilon;
epsilon = 1.0;
while(epsilon+1 > 1)
epsilon /= 2;

epsilon *= 2;
printf("The machine epsilon FLT_EPSILON is %e", epsilon);

For SUN SPARCStations, the output from the execution of the above code is as follows:
The machine epsilon FLT EPSILON is 1.192093e-07
which matches the value of the parameter FLT EPSILON defined in the C header float.h. Although the
above computation of the parameter FLT EPSILON is simple in Ch which uses the default rounding mode
of round toward nearest, it may be vulnerable to other rounding modes. A more robust method (Plauger,
1992) to obtain this parameter is to manipulate the bit pattern of the memory of a float variable as shown in
Section 12.2.1.

Maximum Floating-Point Number FLT MAX

The parameter FLT MAX defined in the C header float.h is the maximum representable finite floating-
point number. Any value that is larger than FLT MAX will be represented as Inf and any value less than

216

12.2. PROGRAMMING EXAMPLES
CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS

−FLT MAX is represented by −Inf. If the value of FLT MAX is represented as fltmax ∗ 10e, then the
following two equations will be satisfied

(fltmax+ FLT EPSILON) ∗ 10e = Inf

(fltmax+ FLT EPSILON/2) ∗ 10e = FLT MAX

where the machine epsilon FLT EPSILON was defined in Section 12.2.1 and the exponential value e is
to be calculated. The following Ch program will calculate FLT MAX as well as FLT MAX 10 EXP and
FLT MAX EXP of the machine and print them on the screen. The value of FLT MAX 10 EXP is the maxi-
mum integer such that 10 raised to its power is in the range of the representable finite floating-point numbers.
The value of FLT MAX EXP is the maximum integer such that 2 raised to its power minus 1 is a representable
finite floating-point number. For the illustrative purpose, only the while-loop control structure is used in this
example.

float b, f, flt_max;
int e, i, flt_max_exp, flt_max_10_exp;
b = 10; e = 0; f = b;
/* calculate exponential number e, 38 in the example */
while(f != Inf)
{
e++; f*=b;

}
flt_max_10_exp = e;
/* calculate leading non-zero number, 3 in the example */
i = 0; f = 0.0;
while(f != Inf)
f = ++i * pow(b, e);

/* calculate numbers after decimal point, 40282347... in the example */
flt_max = i;
while(e != 0)
{
flt_max = --flt_max * b;
e--; i = 0; f = 0.0;
while(f != Inf && i < 10)
{

f = ++flt_max * pow(b, e);
i++;

}
}
f = frexp(flt_max, &flt_max_exp); // calculate FLT_MAX_EXP
printf("FLT_MAX = %.8e \n", flt_max);
printf("FLT_MAX (in binary format) = %b \n", flt_max);
printf("FLT_MAX_10_EXP = %d \n", flt_max_10_exp);
printf("FLT_MAX_EXP = %d \n", flt_max_exp);

The output of the above code on SUN SPARCStations is as follows:
FLT MAX = 3.40282347e+38
FLT MAX (in binary format) = 01111111011111111111111111111111

217

12.2. PROGRAMMING EXAMPLES
CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS

FLT MAX 10 EXP = 38
FLT MAX EXP = 128
The above values for FLT MAX, FLT MAX 10 EXP, and FLT MAX EXP are the same as the parameters
defined in the C header float.h. By just changing the declaration of the first statement from float to
double, the corresponding extreme values DBL MAX, DBL MAX 10 EXP, and DBL MAX EXP for double
can be obtained. In this case, the polymorphic arithmetic operators and mathematical functions pow() and
frexp() will return double data.

In the above calculation of the extreme floating-point values, the user does not need to know the in-
tricate machine representation of floating-point numbers. If one knows the machine representation of a
floating-point number, the calculation of the extreme values can be much simpler. For example, according
to Table 6.1, the value of FLT MAX is represented in a hexadecimal form as (7F7FFFFF)16. The following
Ch program can be used to obtain the maximum representable finite floating-point number FLT MAX.

int i; float *flt_max;
flt_max = &i; // flt_max points to the memory location of i
i = 0X7F7FFFFF; // *flt_max becomes FLT_MAX

The maximum float number FLT MAX can also be readily obtained by the I/O function scanf() with the
binary input format "%32b". For interested readers, can you think of any other method for computing the
maximum representable finite floating-point number FLT MAX by a C or Fortran program without knowing
the machine architecture? The major difficulty is that, due to the internal alignment for calculation of the
floating-point numbers, the significantly small number will be ignored when it is added to or subtracted
from a large number. For example, the execution of the command f = FLT_MAX + 3.0e30 will give
the variable f the value of FLT MAX although the value of 3.0 ∗ 1030 is not a small number, but it is
significantly smaller than FLT MAX and ignored in the above addition operation. The following two Ch
expressions will further demonstrate the difference between FLT MAX and Inf.

1/Inf ∗ FLT MAX = 0.0

,
1/FLT MAX ∗ FLT MAX = 1.0

.

12.2.2 Programming with Metanumbers

The Ch language distinguishes −0.0 from 0.0 for real numbers. The metanumbers 0.0,−0.0, Inf, −Inf, and
NaN are very useful for scientific computing. For example, the function f(x) = e

1
x is not continuous at the

origin as is shown in Figure 12.1, which was generated by Program 23.12 on page 433 described in Chpa-
ter 23. This discontinuity can be handled gracefully in Ch. The evaluation of the Ch expression exp(1/0.0)

will return Inf and exp(1/(−0.0)) gives 0.0, which corresponds to mathematical expressions e
1

0+ and e
1

0−

or limx→0+ e
1
x and limx→0− e

1
x , respectively. In addition, the evaluation of expressions exp(1.0/Inf) and

exp(1.0/(−Inf)) will get the value of 1.0. As another example, the function finite(x) recommended by
the IEEE 754 standard is equivalent to the Ch expression -Inf < x && x < Inf, where x can be a
float/double variable or expression. If x is a float, -Inf < x && x < Inf is equivalent to -FLT MAX
<= x && x <= FLT MAX; If x is a double, -Inf < x && x < Inf is equivalent to -DBL MAX <=
x && x <= DBL MAX. The mathematical statement “if − ∞ < value <= ∞, then y becomes ∞”
can be easily programmed in Ch as follows

if(-Inf < value && value <= Inf) y = Inf;

218

12.2. PROGRAMMING EXAMPLES
CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS

Figure 12.1: Function f(x) = e
1
x .

However, a computer can only evaluate an expression step by step. Although the metanumbers are limits
of the floating-point numbers, they cannot replace mathematical analysis. For example, the natural number
e equal to 2.718281828... is defined as the limit value of the expression

lim
x→∞

(
1 +

1

x

)x

= e.

However, the value of the expression pow(1.0 + 1.0/Inf, Inf) in Ch is NaN. The evaluation of this expression
is carried out as follows: (

1.0 +
1.0

Inf

)Inf

= (1.0 + 0.0)Inf = 1.0Inf = NaN

If the value FLT MAX instead of Inf is used in the above expression, the result is obtained by
(
1.0 +

1.0

FLT MAX

)FLT MAX

= (1.0 + 0.0)FLT MAX = 1.0FLT MAX = 1.0

Because metanumber NaN is unordered, a program involving relational operations should be handled
cautiously. For example, the expression x > y is not equivalent to !(x <= y) if either x or y is a NaN.
As another example, the following Ch code fragment

if(x > 0.0) function1();
else function2();

is different from the code fragment

219

12.2. PROGRAMMING EXAMPLES
CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS

if(x <= 0.0) function2();
else function1();

The second if-statement should be written as if(x <= 0.0 || isnan(x)) in order for these two
code fragments to have the same functionality.

220

Chapter 13

Programming with Complex Numbers

The complex number, an extension of real number, has wide applications in science and engineering. Owing
to its importance in scientific programming, numerically oriented programming languages and software
packages usually provide complex number support in one way or another. For example, Fortran a language
mainly for scientific computing, has provided complex data type since its earliest days. The early version
of C does not have complex as a basic data type because numerically oriented scientific computing was not
its original design goal. Complex data types have been added in C99. Ch supports all features mandated
by C99 with extensions. Generic mathematical functions are overloaded for handling complex numbers
with optional arguments for different branch cuts. Ch provides real metanumbers of Inf, −Inf, and NaN
and signed zeros 0.0 and −0.0, which makes the power of the IEEE 754 standard for binary floating-point
arithmetic easily available to the programmer. Ch extends the idea of metanumbers to complex numbers
not only for arithmetic, but also for commonly used mathematical functions in the spirit of the IEEE 754
standard. Ch treats floating-point real numbers with signed zeros and complex numbers with unsigned zeros
as well as Not-a-Number and infinities in an integrated consistent manner.

13.1 Complex Numbers

13.1.1 Complex Constants and Complex Variables

Complex numbers z ∈ C = {(x, y) | x, y ∈R} can be defined as ordered pairs

z = (x, y) (13.1)

with specific addition and multiplication rules [10][17]. The real numbers x and y are called the real and
imaginary parts of z. If we identify the pair of (x, 0.0) as the real numbers, the real number R is a subset of
C; that is, R = {(x, y) | x ∈R, y = 0.0} and R ⊂ C. If a real number is considered either as x or (x, 0.0)
and let i denote the pure imaginary number (0, 1) with i ∗ i = −1, complex numbers can be mathematically
represented as

z = x+ iy (13.2)

Both Equations (13.1) and (13.2) can be implemented for complex numbers in a computer language. General-
purpose computer programming languages such as Fortran, Ada, and Common Lisp tend to use Equa-
tion (13.1) whereas some mathematical software packages incline to Equation (13.2).

Following the lead of FORTRAN in scientific programming, a complex number can be created in Ch by
the complex constructor complex(x, y) with x, y ∈R. For example, a complex number with its real part of
3.0 and imaginary part of 4.0 can be constructed by complex(3.0, 4.0). The new type qualifier complex is a
keyword in Ch. Internally, a complex number consists of two floats at the current implementation. Therefore,

221

13.2. COMPLEX PLANES AND COMPLEX METANUMBERS
CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS

if arguments of a complex constructor are not floats, they will be cast to floats internally. All floating-
point constants in Ch are double by default. The float constants can be obtained by suffixing a floating-
point constant with F or f. The complex constructor returns complex or double complex polymorphically,
depending on the data types of the input arguments. For example, complex(3, 4.0), complex(3.0f, 4.0), and
complex(3.0, 4.0F) return a double complex number of complex(3.0, 4.0).

One can declare not only a simple complex variable, but also pointer to complex, array of complex, and
array of pointer to complex, etc. Declarations of these complex variables are similar to the declarations of
any other data types in C. The array and pointer of complex in Ch are manipulated in the same manner as
the floating-point float and double. The following code segment will illustrate how complex is declared and
manipulated in Ch:

double complex z; // declare z as double complex variable
float complex z1; // declare z1 as float complex variable
complex *zptr1; // declare zptr1 as pointer to complex variable
complex z2[2], z3[2,3];// declare z2 and z3 as arrays of complex
complex *zptr2[2][4]; // declare zptr2 as array of pointer to complex
zpt1r = &z1; // zptr1 point to the address of z1

*zptr1 = complex(1,2); // z1 becomes 1+i2

Complex numbers are supported in C99 and C++. In order to be compatible with both C99 and C++, Ch
defined one micro, two types, and some functions prototypes in both header files complex.h and complex.
The macro I is defined as complex(0.0, 1.0) to represent an imaginary number with the unit length.

13.2 Complex Planes and Complex Metanumbers

Mathematically, complex numbers can be represented in the extended complex plane shown in Figure 13.1
[10][17]. In Figure 13.1, there is a one-to-one correspondence between the points on the Riemann sphere
Γ and the points on the extended complex plane C. The point p on the surface of the sphere is determined
by the intersection of the line through the point z and the north pole N of the sphere. There is only one
complex infinity in the extended complex plane. The north pole N corresponds to the point at infinity.
Because of the finite representation of floating-point numbers, the extended finite complex plane shown in
Figure 13.2 is introduced in this chapter. Any complex values inside the ranges of |x| < FLT MAX
and |y| < FLT MAX are representable in finite floating-point numbers. Variable x is used to represent
the real part of a complex number and y the imaginary part; FLT MAX, a predefined system constant,
is the maximum representable finite floating-point number in the float data type. Outside this rectangular
area, a complex number is treated as a Complex-Infinity represented as ComplexInf or complex(Inf,Inf) in
Ch. The one-to-one correspondence between points on the Riemann sphere Γ and the extended complex
plane is no longer valid for the unit sphere Λ and the extended finite complex plane. All points on the
surface of the upper part Λ1 of the unit sphere correspond to the complex infinity. Points on the lower part
Λ2 of the sphere and points in the extended finite complex plane are in one-to-one correspondence. The
boundary between surfaces Λ1 and Λ2 corresponds to the threshold of overflow. For example, points p1 and
p2 on the unit sphere Λ correspond to points z1 = complex(FLT MAX, 0.0) and z2 = complex(FLT MAX,
FLT MAX), respectively, in the extended finite complex plane shown in Figure 13.2. The origin of the
extended finite complex plane is complex(0.0, 0.0), which stands for complex zero. In Ch, an undefined or
mathematically indeterminate complex number is denoted as complex(NaN, NaN) or ComplexNaN, which
stands for Complex-Not-a-Number. The special complex numbers of ComplexInf and and ComplexNaN
are referred to as complex metanumbers.

222

13.2. COMPLEX PLANES AND COMPLEX METANUMBERS
CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS

Figure 13.1: The Riemann sphere Γ and extended complex plane.

Figure 13.2: The unit sphere Λ and extended finite complex plane.

223

13.2. COMPLEX PLANES AND COMPLEX METANUMBERS
CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS

Because of the mathematical infinities of ±∞, it becomes necessary to distinguish a positive zero 0.0
from a negative zero −0.0 for real numbers. Unlike the real line, along which real numbers can approach
the origin through the positive or negative numbers, the origin of the complex plane can be reached in any
directions in terms of the limit value of limr→0 re

iθ where r is the modulus and θ is the phase of a complex
number. Therefore, complex operations and complex functions in Ch do not distinguish 0.0 from −0.0 for
real and imaginary parts of complex numbers. Because of these differences, some operations and functions
need to be handled differently for real and complex numbers, especially for real metanumbers and complex
metanumbers. For example, following the IEEE 754 standard, the addition of two real positive infinities is a
value of infinity in Ch. The addition of two complex infinities is indeterminate according to complex anal-
ysis, although the value of ComplexInf is represented internally as two positive infinities of Inf. As another
example, following the C standard, the mathematical function atan2(y, x) in Ch returns a value in the range
of [−π, π]. The value of the expression atan2(−0.0,−1) is−π. Using this result as the phase angle for com-
plex number −1.0 − i0.0, the square root of −1.0 − i0.0, expressed in Ch as sqrt(complex(−1.0,−0.0)),
becomes complex(0.0,−1.0), which is obtained by cos(−π/2) + i sin(−π/2) = 0.0 − i. In our definition,
this is the second branch of the square root function for the complex number of complex(−1.0,−0.0) ob-
tained by the expression sqrt(complex(−1.0,−0.0), 1) where the second argument of the function sqrt()
indicates the branch number with the default value of 0. As illustrated in this example, the mathematical
functions in Ch are polymorphic with a variable number of arguments so that the function sqrt() cannot
only be used to compute the square root of a real number, but also to calculate the different branches of the
square root of a complex number. Due to polymorphism and variable number of arguments for mathematical
functions, scientific computing with complex numbers in Ch is much simpler in comparison to Fortran and
other languages.

13.2.1 Data Conversion Rules

Ch is a loosely typed language. All arguments of calling functions will be checked for compatibility with
the data types of the called functions. The data types of operands for an operation will also be checked for
compatibility. If data types do not match, the system will signal an error and print out some informative
messages for the convenience of program debugging. However, unlike languages such as Pascal which
prohibits automatic type conversion, some data type conversion rules have been built into Ch so that they
can be invoked whenever necessary. This will save many explicit type conversion commands for a program.
The order of the data type in Ch is arranged as

data type order

double complex
complex
double
float
int
char

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

high

low

with char being the lowest data type and double complex the highest data type. The default conversion rules
will be briefly discussed in this section as follows:

1. Char, int, float, and double can be converted according to ISO C data conversion rules. The ASCII
value of a character will be used in conversion for a char data type. Demotion of data may cause loss
of the information.

224

13.2. COMPLEX PLANES AND COMPLEX METANUMBERS
CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS

2. Char, int, float, and double can be converted to complex with its imaginary part being zero. When
casting a real number into a complex number, the values of Inf and −Inf become ComplexInf; and
the value of NaN becomes ComplexNaN. Conversion from double to complex may lose the infor-
mation. A real number can be cast into a complex explicitly by the complex construction function
complex(x,y), which will be discussed in details in section 13.5.

3. When a complex is converted to char, int, float, and double, only its real part is used and the imaginary
part will be discarded if the imaginary part is zero. If the imaginary part is not equal to zero, the
converted real number becomes NaN. The real and imaginary components of a complex number can
be obtained explicitly by the functions real(z) and imag(z), which will be discussed in detail in
Section 13.5. When a complex number is converted to a real number either implicitly by assignment
statement such as f = z or explicitly by real(z), imag(z), float(z), double(z), (float)z, and (double)z;
the sign of a zero will not be carried over. Converting a complex number to an integral value such
as char and int is equivalent to conversion of real(z) to an integral value if the imaginary part is not
identically zero. For example, i = ComplexInf will make i equal to INT MAX. However, if
real() or imag() is used as an lvalue, the sign of zeros from rvalue will be preserved, which will allow
experimentation with signed zeros in computations of complex numbers. An lvalue is any object that
occurs on the left hand side of an assignment statement. The lvalue refers to a memory such as a
variable or pointer, not a function or constant. On the other hand, the rvalue refers to the value of
the expression on the right hand side of an assignment statement. Details about the lvalue will be
discussed in Section 13.6.

4. In binary operations such as addition, subtraction, multiplication, and division with mixed data types,
the result of the operation will carry the higher data type of two operands. For example, the result of
addition of an int and a double will result in a double. When one of the two binary operands is complex
and the data type of other operand is a real number, the real number will be cast into a complex before
the operation is carried out. This conversion rule is also valid for an assignment statement when data
types of the lvalue and rvalue are different.

5. In a pointer assignment statement, the pointer types of lvalue and rvalue can be different. They
will be reconciled internally. To comply with the ISO C standard, the data type of the rvalue can
also be explicitly cast into that of the lvalue in an assignment in Ch. For example, the statement
fp = (float∗)intptr will cast the integer pointer intptr to float pointer before its address is assigned
to float pointer fp. However, the contents pointed to by intptr will not be changed by this data type
casting operation. For example, if ∗intptr is 90, the value of ∗fp will not be equal to 90 because of
the difference in their internal representations for int and float. The memory of a complex variable
can be accessed by pointers. If the real or imaginary part of a complex variable is obtained by a float
pointer, the sign of a zero will be carried over, which will be discussed in Section 13.6.

The following code segment will illustrate how different data types are automatically converted in Ch.

char c;
int i;
float f;
double d;
complex z, *zptr;
c = ’a’; // c is ’a’
i = c; // i is 97, ASCII number of ’a’
f = i; // f is 97.0
d = i; // d is 97.0

225

13.3. I/O FOR COMPLEX NUMBERS
CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS

z = complex(c+1, f); // z is 98.0 + i 97.0
z = complex(Inf, Inf);// z is ComplexInf
z = Inf; // z is ComplexInf
z = -Inf; // z is ComplexInf
f = z; // f is NaN, since real(ComplexInf) is NaN
d = z; // d is NaN, since real(ComplexInf) is NaN
i = Inf; // i is 2147483647 = INT_MAX,
i = z; /* i is 2147483647, int of NaN is 2147483647

plus warning message */
z = complex(d+1, 3); // z is 98.0 + i 3.0
c = z; // c is the delete character, ASCII number is 127
i = z; // i is 2147483647, int of NaN
f = z; // f is NaN
d = z; // d is NaN
z = NaN; // z is ComplexNaN
zptr = &z; // zptr point to address of z
zptr++; // zptr point to memory z plus 8 bytes

13.3 I/O for Complex Numbers

Since complex is a basic data type in Ch, it is desired that the I/O for this data type is also handled in the
same manner as real numbers. Similar to Fortran, the real and imaginary parts of a complex number can be
treated as two individual floats by the functions real(z) and imag(z) as will be discussed in Sections 13.4
and 13.5. Then, all standard I/O functions such as printf() and scanf() for real numbers can be readily used.
In this section, how a complex number is treated as a single object by the standard I/O function will be
discussed. Due to the space limit, only the enhancement related to the function printf() will be explained in
the following discussions. However, the underlining principle can be applied to other I/O functions as well.
The format of function printf() in Ch is as follows

int printf(char *format, arg1, arg2, ...)
The function printf() prints output to the standard output device under the control of the string pointed to
by format and returns the number of characters printed. If the format string contains two types of objects
— ordinary characters and conversion specifications beginning with a character of % and ending with a
conversion character — the ISO C rules for printf() will be used. If the format string in printf() contains
only ordinary characters, the subsequent numerical constants or variables will be printed according to preset
default formats. For function printf(), a single conversion specification for a float will be used for both real
and imaginary parts of a complex number. The default format for complex is %.2f, which will be applied
to both real and imaginary parts of a complex number. The metanumbers ComplexInf and ComplexNaN
are treated as regular complex numbers in I/O functions. For debugging purposes, the default output for
ComplexInf and ComplexNaN are complex(Inf, Inf) and complex(NaN, NaN), respectively. The default
output for complex zero is complex(0.00,0.00). The format for real and imaginary parts can be controlled
by a format specifier. The following Ch program will illustrate how complex numbers are handled by the
I/O functions printf() and scanf().

complex z1;
double complex z2, *zptr;
zptr = &z2; /* zptr points to z2’s memory location */
printf("Please type in real and imaginary of two complex numbers \n");
scanf(&z1, zptr);

226

13.4. COMPLEX OPERATIONS
CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS

Table 13.1: The complex operations

Definition Ch Syntax Ch Semantics
negation −z −x− iy
addition z1 + z2 (x1 + x2) + i(y1 + y2)
subtraction z1 − z2 (x1 − x2) + i(y1 − y2)
multiplication z1 ∗ z2 (x1 ∗ x2 − y1 ∗ y2) + i(y1 ∗ x2 + x1 ∗ y2)
division z1 / z2 x1 ∗ x2 + y1 ∗ y2

x22 + y22
+ iy1 ∗ x2 − x1 ∗ y2

x22 + y22
equal z1 == z2 x1 == x2 and y1 == y2
not equal z1 != z2 x1!=x2 or y1 != y2

printf("The first complex is ", z1, "\n");
printf("The second complex is ", z2, "\n");
printf("The second complex is %f \n", z2);

The result of the interactive execution of the above program is shown as follows

Please type in real and imaginary of two complex numbers

1 2.0 3.0 4

The first complex is complex(1.0000,2.0000)
The second complex is complex(3.0000,4.0000)
The second complex is complex(3.000000,4.000000)

where the second line in italic is the input and the rest are the output of the program.

13.4 Complex Operations

The arithmetic and relational operations for complex numbers are treated in the same manner as those for
real numbers in Ch. This section will discuss how these operations are defined and handled by Ch.

13.4.1 Complex Operations with Regular Complex Numbers

The negation of a complex number, and arithmetic and comparison operations for two complex numbers
are defined in Table 13.1, where the complex numbers z, z1, and z2 are defined as x+ iy, x1 + iy1, and
x2 + iy2, respectively.

The negation of a complex number will change the sign of both real and imaginary parts of the complex
number. The addition of two complex numbers will add the real and imaginary components of two complex
numbers, separately. The subtraction of two complex numbers will subtract the real and imaginary parts of
the second complex number from the real and imaginary of the first complex number, respectively. Treating
the imaginary number i as a complex number of complex(0, 1), the multiplication and division for two
complex numbers are defined in Table 13.1. For binary operations with real and complex operands, the
regular real operand will be cast into a complex before the operation. Complex numbers are not ordered;
one cannot compare to see whether one complex number is larger or smaller than the other. But, two complex
numbers can be tested whether they are equal or not. Two complex numbers are equal to each other if and

227

13.4. COMPLEX OPERATIONS
CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS

Table 13.2: Complex negation results

Negation −
operand complex(0.0, 0.0) z ComplexInf ComplexNaN
result complex(0.0, 0.0) −z ComplexInf ComplexNaN

Table 13.3: Complex addition and subtraction results

Addition and Subtraction ±
left operand right operand

complex(0.0, 0.0) z2 ComplexInf ComplexNaN
complex(0.0, 0.0) complex(0.0, 0.0) ±z2 ComplexInf ComplexNaN

z1 z1 z1 ± z2 ComplexInf ComplexNaN
ComplexInf ComplexInf ComplexInf ComplexNaN ComplexNaN

ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN

only if both the real and imaginary parts of two complex numbers are equal to each other, separately. If the
real or imaginary parts of two complex numbers are not equal to each other, then the two complex numbers
are not equal.

13.4.2 Complex Operations with Complex Metanumbers

In the above definitions of complex operations, we assume that all operands are regular complex numbers.
The real and imaginary parts of a complex number are then treated as two regular floating-point floats.
If the values of operands involve complex metanumbers, the definitions defined in Table 13.1 may not be
valid. For example, ComplexInf is represented internally as complex(Inf, Inf). According to the complex
addition definition defined in Table 13.1 and addition rule for real numbers in Ch, the result of addition of
two ComplexInfs would be complex(Inf, Inf). But, addition of two complex infinities is mathematically
indeterminate. Therefore, the results for arithmetic and relational operations with both regular complex
numbers and complex metanumbers are defined in Tables 13.2 to 13.7.

From a programmer’s point of view, values of complex(±0.0,±0.0) are the same as complex(0.0, 0.0)
when they are used as operands or arguments in Ch. In the following discussions, the positive zero 0.0
and the negative zero −0.0 for real and imaginary components of a complex number are considered the
same. Therefore, although the negation of complex(0.0, 0.0) returns complex(−0.0,−0.0), the result listed
in Table 13.2 is complex(0.0, 0.0). Negation of a complex infinity is still a complex infinity. And of course,
negation of a complex not-a-number is ComplexNaN.

For binary operations in Tables 13.3 to 13.5, if any one of the operands is ComplexNaN, the result is
ComplexNaN. If one of two operands is ComplexInf and other is a finite complex number, the result of
addition and subtraction is ComplexInf. Unlike real numbers, addition and subtraction of two ComplexInfs
are ComplexNaNs. Multiplication of ComplexInf with complex(0.0, 0.0) is ComplexNaN; multiplication
of ComplexInf with a finite nonzero number is ComplexInf; multiplication of two ComplexInfs becomes
ComplexInf. Like real numbers, divisions of complex(0.0, 0.0) by complex(0.0, 0.0) and ComplexInf by
ComplexInf are ComplexNaNs. A finite number or infinity divided by complex(0.0, 0.0) becomes Complex-
Inf. The division of ComplexInf by a finite number gives ComplexInf. Theoretically, two complex infinities
cannot be compared with each other because they may or may not be equal to each other. In Ch, however,

228

13.4. COMPLEX OPERATIONS
CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS

Table 13.4: Complex multiplication results

Multiplication ∗
left operand right operand

complex(0.0, 0.0) z2 ComplexInf ComplexNaN
complex(0.0, 0.0) complex(0.0, 0.0) complex(0.0, 0.0) ComplexNaN ComplexNaN

z1 complex(0.0, 0.0) z1∗z2 ComplexInf ComplexNaN
ComplexInf ComplexNaN ComplexInf ComplexInf ComplexNaN

ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN

Table 13.5: Complex division results

Division /
left operand right operand

complex(0.0, 0.0) z2 ComplexInf ComplexNaN
complex(0.0, 0.0) ComplexNaN complex(0.0, 0.0) complex(0.0, 0.0) ComplexNaN

z1 ComplexInf z1/z2 complex(0.0, 0.0) ComplexNaN
ComplexInf ComplexInf ComplexInf ComplexNaN ComplexNaN

ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN

Table 13.6: Complex equal comparison results

Equal comparison ==

left operand right operand
complex(0.0, 0.0) z2 ComplexInf ComplexNaN

complex(0.0, 0.0) 1 0 0 0
z1 0 z1 == z2 0 0

ComplexInf 0 0 1 0
ComplexNaN 0 0 0 0

Table 13.7: Complex not equal comparison results

Not equal comparison !=
left operand right operand

complex(0.0, 0.0) z2 ComplexInf ComplexNaN
complex(0.0, 0.0) 0 1 1 0

z1 1 z1 != z2 1 0
ComplexInf 1 1 0 0

ComplexNaN 0 0 0 0

229

13.5. COMPLEX FUNCTIONS
CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS

two ComplexInfs are considered the same from the programming point of view as shown in Table 13.6. Like
NaN in real number, the comparison of two ComplexNaNs will get a logic false. This design consideration
is also reflected in the not equal relational operation shown in Table 13.7.

13.5 Complex Functions

Besides the polymorphism, the mathematical functions implemented in Ch can have a variable number
of arguments, which is very convenient for calculations of complex mathematical functions with multiple
branches. If a mathematical function, as a real function, has only one real argument, the additional second
argument will render the function to a complex function unless explained otherwise. The integral value
of the second argument will indicate the branch of the complex function. When this second argument is
present, the first argument will be cast into a complex number according to the previously discussed data
type conversion rules when the order of its data type is lower than complex. For a mathematical function
with two arguments as a real function, if either one of two input arguments is a complex, the mathematical
function becomes a complex function. If an additional third argument as a branch indicator is provided,
the function becomes a complex function if data types of the first two arguments are lower than or equal to
complex. If their data types are lower than complex, they will be cast into complex numbers.

13.5.1 Results of Complex Functions with Regular Complex Numbers

The built-in functions related to the complex numbers are listed in Table 13.8 along with their
definitions. The input arguments of these functions can be complex numbers, variables, or expressions. For
presentation purposes, the complex numbers z, z1, and z2 are defined as x + iy, x1 + iy1, and x2 + iy2,
respectively. The integer values of k, k1, and k2 are the branch numbers of complex functions. If arguments
for these branch numbers of the calling function are not integers, they will be cast into integers internally. For
mathematical expressions in the second column in Table 13.8, if the arguments of mathematical functions are
regular real numbers, the mathematical functions are real mathematical functions. The results of complex
functions involving complex metanumbers will be discussed in the next section. In Table 13.8, the principal
value Θ of the argument of a complex number is in the range of −π < Θ ≤ π. The definition of the
principal value Θ for various complex numbers is given in Table 13.9. Note that the trigonometric function
atan2(y,x) is in the range of −π ≤ atan2(y, x) ≤ π. Normally, through complex arithmetic and complex
functions, one shall not get a complex number with its real or imaginary part being the value of −Inf, Inf,
or NaN whereas the other part is a regular real number. This kind of result can be obtained only explicitly
by functions real(z) and imag(z), and float pointer variables through lvalues, which will be discussed in
Section 13.6.

The first four functions in Table 13.8 return real numbers. The sizeof() function returns, in bytes, an
integer of the variable, type specifier, or expression that it precedes. the returned data type is of type unsigned
int. If the argument is a complex, it will return the value of 8, which is the number of bytes required for
storing two floats of real and imaginary parts of a complex. The abs(z) function computes the modulus of a
complex number. Its returned data type is float if the input is float complex. Its returned data type is double
if the input is double complex. When the input type is complex type, the function fabs(z) behaves the same
as the function abs(z). The functions real(z) and imag(z) return the real and imaginary parts of a complex
number, respectively. The results of real(z) and imag(z) are always floats. If the data type of the argument
for real() is lower or equal to double, the input data will be cast into a float. If the data type of the argument
for imag() is lower than or equal to double, the value of zero will be returned. The sign of a zero will be
ignored in real(z) and imag(z) functions. For example, real(complex(−0.0,0.0)) will return 0.0.

A complex number can be created from two real numbers by the complex construction function com-

230

13.5. COMPLEX FUNCTIONS
CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS

Table 13.8: The syntax and semantics of built-in complex functions

Ch Syntax Ch Semantics
sizeof(z) 8
abs(z) sqrt(x2 + y2)
fabs(z) sqrt(x2 + y2)
real(z) x
imag(z) y
complex(x, y) x+ iy
conj(z) x− iy
carg(z) Θ; Θ = atan2(y, x)
polar(z) sqrt(x2 + y2) + iΘ; Θ = atan2(y, x)
polar(r, theta) r cos(theta) + ir sin(theta)

sqrt(z) sqrt(sqrt(x2 + y2))(cos Θ2 + i sin Θ
2); Θ = atan2(y, x)

sqrt(z, k) sqrt(sqrt(x2 + y2))(cos Θ + 2kπ
2 + i sin Θ + 2kπ

2); Θ = atan2(y, x)

exp(z) ex(cos y + i sin y)

log(z) log(
√
x2 + y2) + iΘ; Θ = atan2(y, x)

log(z, k) log(
√
x2 + y2) + i(Θ + 2kπ); Θ = atan2(y, x)

log10(z)
log(z)
log(10)

log10(z, k)
log(z, k)
log(10)

pow(z1, z2) z1
z2 = ez2lnz1 = exp(z2 ∗ log(z1))

pow(z1, z2, k) z1
z2 = ez2lnz1 = exp(z2 ∗ log(z1, k))

ceil(z) ceil(x) + i ceil(y)
floor(z) floor(x) + i floor(y)

fmod(z1, z2) z; z1
z2 = k + z

z2 , k ≥ 0

modf(z1,&z2) modf(x1,&x2) + i modf(y1,&y2)
frexp(z1,&z2) frexp(x1,&x2) + i frexp(y1,&y2)
ldexp(z1, z2) ldexp(x1, x2) + i ldexp(y1, y2)
sin(z) sinx cosh y + i cos x sinh y
cos(z) cos x cosh y − i sinx sinh y

tan(z) sin z
cos z

asin(z) −i log(iz + sqrt(1− z2))
asin(z, k) −i log(iz + sqrt(1− z2, k))
asin(z, k1, k2) −i log(iz + sqrt(1− z2, k1), k2)
acos(z) −i log(z + isqrt(1− z2))
acos(z, k) −i log(z + isqrt(1− z2, k))
acos(z, k1, k2) −i log(z + isqrt(1− z2, k1), k2)

atan(z) 1
2i log(

1 + iz
1− iz)

atan(z, k) 1
2i log(

1 + iz
1− iz , k)

atan2(z1, z2) 1
2i log(

1 + iz1/z2
1− iz1/z2

)

atan2(z1, z2, k) 1
2i log(

1 + iz1/z2
1− iz1/z2

, k)

sinh(z) sinhx cos y + i cosh x sin y
cosh(z) coshx cos y + i sinhx sin y

tanh(z) sinhx cos y + i cosh x sin y
coshx cos y + i sinhx sin y

continued on next page231

13.5. COMPLEX FUNCTIONS
CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS

Table 13.8: continued

Ch Syntax Ch Semantics
asinh(z) log(z + sqrt(z2 + 1))
asinh(z, k) log(z + sqrt(z2 + 1, k))
asinh(z, k1, k2) log(z + sqrt(z2 + 1, k1), k2)
acosh(z) log(z + sqrt(z + 1)sqrt(z − 1))
acosh(z, k) log(z + sqrt(z + 1, k)sqrt(z − 1, k))
acosh(z, k1, k2) log(z + sqrt(z + 1, k1)sqrt(z − 1, k1), k2)

atanh(z) 1
2 log(1 + z

1− z)

atanh(z, k) 1
2 log(1 + z

1− z , k)

Table 13.9: The principal value Θ (−π < Θ ≤ π) of the argument for complex(x,y)

Θ

y value x value
−x1 −0.0 0.0 x2 Inf NaN

y2 atan2(y2,−x1) pi/2 pi/2 atan2(y2, x2)
0.0 pi 0.0 0.0 0.0
−0.0 pi 0.0 0.0 0.0
−y1 atan2(−y1,−x1) −pi/2 −pi/2 atan2(−y1, x2)

Inf Inf
NaN NaN

232

13.5. COMPLEX FUNCTIONS
CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS

plex(x,y). If the input arguments are not floats, they will be cast into floats according to the internal data
conversion rules. The sign of a zero for x or y will be carried over to the complex number.

The conj(z) function returns the complex conjugate z of z. The complex number z represented by the
point (x,−y) is the reflection in the real axis of the point (x, y) representing z.

The function polar() is implemented mainly for the convenience of transformation between Cartesian
and polar representations of a complex number. If there is only one input argument, then a complex number
with its real and imaginary parts being the modulus and argument, respectively, of the input complex number
will be returned. If there are two input arguments, the complex number z in the polar form will be returned.
The first and second input arguments are the modulus and argument of z, respectively. According to the
definition reiθ for the polar function, negative values for r are valid.

For the square root function sqrt(), whenever there are two arguments, the first argument is treated as a
complex number. In case it is not a complex number and cannot be cast into a complex number, a syntax
error message will be reported by the system. If the second argument is not an integer, it will be cast into an
integral value according to internal data conversion rules. For the complex square root, there are only two
distinct branches because of the periodic natures of the sine and cosine functions. In general, for taking the
nth root, there are n distinct branches. If the function sqrt() is invoked with a single complex argument, the
default branch value of 0 will be used.

The exp(z) function will calculate the exponential function of the complex number z.
Like the square root function, the natural logarithmic function log() has multiple branches. The branch

number is provided by the second argument of the function. For convenience, the function log10() will
calculate the base-ten logarithmic function of a complex value.

The exponential function with a complex base can be calculated by the function pow(), which is accom-
plished by the exponential function and logarithmic function as is shown in Table 13.8. The branch of the
logarithmic function determines the branch of the function pow(). Unlike its corresponding real function,
the complex function pow() is always well defined. If any one of two arguments of pow(z1, z2) is complex,
the result is complex, which is obtained by the principal branch of the expression exp(z2∗log(z1)). The
result of the expression yx equals the real part of the expression pow(complex(y,0.0), complex(x,0.0)) with
its imaginary part being zero. For the function pow(z1, z2, k), z1 and z2 can be any data type lower than or
equal to complex, and k is an integer. Whenever there are three arguments for the function pow(), the first
and second arguments are treated as complex numbers. If z2 is an integer, all branches will have the same
result; thus, the solution is unique.

For functions ceil(z), floor(z), and ldexp(z1, z2), the real and imaginary parts are treated as if they were
two separate real functions. The functions modf(z1, &z2) and frexp(z1, &z2) are handled in the same
manner. For these two functions, when the data type of the first arguments is complex, the data type of the
second argument must be a pointer to complex. The fmod(z1,z2) function computes the complex remainder
of z1/z2.

The complex trigonometric functions sin(z), cos(z), and tan(z) and complex hyperbolic functions sinh(z),
cosh(z), and tanh(z) have unique values. However, the complex inverse trigonometric functions asin(z),
acos(z), and atan(z) and complex inverse hyperbolic functions asinh(z), acosh(z), and atanh(z) have mul-
tiple branches for a given input complex value. The second argument of these inverse functions indicates
the branch number. For functions asin(), acos(), asinh(), and acosh(), the second and third arguments spec-
ify the branches of the related square root and logarithmic functions, respectively. The function atan2() is
implemented similar to the function atan().

13.5.2 Results of Complex Functions With Complex Metanumbers

Like complex arithmetic operations, the definition for regular complex functions may not be valid when
the input arguments are complex metanumbers. The results of the built-in complex functions with complex

233

13.6. LVALUES RELATED TO COMPLEX NUMBERS
CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS

metanumbers as their input arguments are given in Table 13.10.
In Table 13.10, complex(±0.0,±0.0) in Ch is treated as complex(0.0, 0.0). When the input argument of

a function is ComplexNaN, the returned result is always ComplexNaN except for the function sizeof(). As
shown in Figure 13.2, a complex infinity is different from the real infinities of ±∞. When either the real or
imaginary part of a complex value is outside the range of the representable floating-point number, it becomes
ComplexInf. Therefore, the absolute value of ComplexInf is a real number of Inf. The real and imaginary
parts of ComplexInf are NaN. However, the conjugate of ComplexInf is still a complex infinity. The result of
polar(complex(0.0,0.0)) is defined as complex(0.0,0.0) because the principal value Θ for complex(0.0, 0.0)
equals 0.0 as defined in Table 13.9. The result of polar(ComplexInf) is defined as complex(Inf, Inf). There-
fore, if z equals complex(0.0,0.0) or ComplexInf, the equality of z = polar(real(polar(z)), imag(polar(z)))
will still be satisfied. Like a real function, the square root of ComplexInf is ComplexInf.

As a real function, exp(Inf) = Inf whereas exp(−Inf) = 0.0. However, both values of ±Inf become
ComplexInf if they are cast into complex numbers. Therefore, the complex exponential function exp(z) is
ComplexNaN when the input argument is ComplexInf. The complex logarithmic function log(z) with the
input argument of complex(0.0,0.0) or ComplexInf will return ComplexInf. With complex metanumbers
as their input arguments, the real and imaginary parts of functions ceil(z), floor(z), and ldexp(z1, z2) are
handled equivalent to two individual real functions. Like real functions, the complex trigonometric functions
sin(z), cos(z), and tan(z) are undefined when the input arguments are ComplexInfs. The irrational number
π is not representable in a computer program. If we had the value of π, the expression of tan(kπ + π/2)
would return ComplexInf. Unlike real functions, the complex inverse trigonometric functions asin(z) and
acos(z) return ComplexInfs when the input arguments are ComplexInfs. As an inverse function of tan(z),
the function atan(z,k) has different branches when the first input value is ComplexInf. According to the
definition, atan(±i) equals ComplexInf. The results of the complex hyperbolic functions sinh(z), cosh(z),
and tanh(z), and complex inverse hyperbolic functions asinh(z), acosh(z), and atanh(z) are implemented
similar to those of complex trigonometric functions and complex inverse trigonometric functions.

The results of the complex construction function complex(x,y) are given in Table 13.11. For con-
structing a complex number, if either its real or imaginary part is NaN, the result is a complex Not-a-
Number. Likewise, if either one is a value of ±∞, the result is ComplexInf. For the function polar(r,
theta) shown in Table 13.12, when the modulus is infinitely large, the resultant complex number is
ComplexInf even if the provided argument of a complex number is infinity, which is compatible with the
result of polar(ComplexInf) = complex(Inf, Inf). This also follows the rule that, through complex arith-
metic and complex functions, one shall not get a complex number, what is −Inf, Inf, or NaN for either the
real or imaginary part while the other part is a regular real number. Like the exponential function exp(z),
the function pow(z1,z2) is undefined when the second argument is ComplexInf as shown in Table 13.13.

When the imaginary part y2 of z2 is a finite value, the results of the function depend on the value
of its real part x2 when the value of z1 is complex(0.0, 0.0) or ComplexInf. Like the real function, the
following expressions pow(complex(0.0,0.0), complex(0.0,0.0)), pow(complex(0.0,0.0), complex(0.0,y2)),
pow(ComplexInf, complex(0.0,0.0)), and pow(ComplexInf, complex(0.0,y2)) are ComplexNaN. Because
pow(0.0, Inf) = 0.0 and pow(0.0, −Inf) = Inf, and both Inf and −Inf are considered as ComplexInf,
pow(complex(0.0,0.0),ComplexInf) is defined as ComplexNaN. The results of function fmod(z1,z2) for
complex metanumbers are given in Table 13.14.

13.6 Lvalues Related to Complex Numbers

As defined before, an lvalue is any object that occurs on the left hand side of an assignment statement.
The valid lvalues related to complex numbers are listed in Table 13.15. The assignment operations
+=, -=, *=, /=, as well as increment operation ++ and decrement operation -- can be applied to all

234

13.6. LVALUES RELATED TO COMPLEX NUMBERS
CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS

Table 13.10: Results of complex functions for complex(0.0, 0.0), ComplexInf, and ComplexNaN

function z value and results
complex(0.0, 0.0) ComplexInf ComplexNaN

sizeof(z) 8 8 8
abs(z) 0.0 Inf NaN
real(z) 0.0 NaN NaN
imag(z) 0.0 NaN NaN
conj(z) complex(0.0, 0.0) ComplexInf ComplexNaN
polar(z) complex(0.0, 0.0) ComplexInf ComplexNaN
sqrt(z) complex(0.0, 0.0) ComplexInf ComplexNaN
exp(z) complex(1.0, 0.0) ComplexNaN ComplexNaN
log(z) ComplexInf ComplexInf ComplexNaN
log10(z) ComplexInf ComplexInf ComplexNaN
ceil(z) complex(0.0, 0.0) ComplexInf ComplexNaN
floor(z) complex(0.0, 0.0) ComplexInf ComplexNaN
modf(z, &z2) complex(0.0, 0.0) complex(0.0, 0.0) ComplexNaN
z2 complex(0.0, 0.0) ComplexInf ComplexNaN
frexp(z, &z2) complex(0.0, 0.0) ComplexInf ComplexNaN
z2 complex(0.0, 0.0) complex(0.0, 0.0) ComplexNaN
ldexp(z, z2) complex(0.0, 0.0) ComplexInf ComplexNaN
sin(z) complex(0.0, 0.0) ComplexNaN ComplexNaN
cos(z) complex(1.0, 0.0) ComplexNaN ComplexNaN
tan(z) complex(0.0, 0.0) ComplexNaN ComplexNaN

Note: tan(complex(π/2 + k ∗ π, 0.0)) = ComplexInf
asin(z) complex(0.0, 0.0) ComplexInf ComplexNaN
acos(z) complex(pi/2, 0.0) ComplexInf ComplexNaN
atan(z) complex(0.0, 0.0) complex(pi/2, 0.0) ComplexNaN

Note: atan(complex(0.0,±1.0)) = ComplexInf;
atan(ComplexInf, k) = complex(pi/2 + k∗pi, 0.0)

sinh(z) complex(0.0, 0.0) ComplexNaN ComplexNaN
cosh(z) complex(1.0, 0.0) ComplexNaN ComplexNaN
tanh(z) complex(0.0, 0.0) ComplexNaN ComplexNaN

Note: tanh(complex(0.0, π/2 + k ∗ π)) = ComplexInf
asinh(z) complex(0.0, 0.0) ComplexInf ComplexNaN
acosh(z) complex(0.0, pi/2) ComplexInf ComplexNaN
atanh(z) complex(0.0, 0.0) complex(0.0, pi/2) ComplexNaN

Note: atanh(complex(±1.0, 0.0)) = ComplexInf;
atanh(ComplexInf, k) = complex(0.0, pi/2 + k∗pi)

235

13.6. LVALUES RELATED TO COMPLEX NUMBERS
CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS

Table 13.11: Results of the function complex(x, y) for 0.0,±∞, and NaN

complex(x, y)
x value y value

−Inf −y1 0.0 y2 Inf NaN
Inf ComplexInf ComplexInf ComplexInf ComplexInf ComplexInf ComplexNaN
x2 ComplexInf complex(x2, −y1) complex(x2, 0.0) complex(x2, y2) ComplexInf ComplexNaN
0.0 ComplexInf complex(0.0, −y1) complex(0.0, 0.0) complex(0.0, y2) ComplexInf ComplexNaN

−x1 ComplexInf complex(−x1, −y1) complex(−x1, 0.0) complex(−x1, y2) ComplexInf ComplexNaN
−Inf ComplexInf ComplexInf ComplexInf ComplexInf ComplexInf ComplexNaN
NaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN

Table 13.12: Results of the function polar(r, theta) for 0.0,±∞, and NaN

polar(r, theta)
r value theta value

−Inf −theta1 0.0 theta2 Inf NaN
Inf ComplexInf ComplexInf ComplexInf ComplexInf ComplexInf ComplexNaN
r2 ComplexNaN polar(r2, −theta1) complex(r2, 0.0) polar(r2, theta2) ComplexNaN ComplexNaN

0.0 ComplexNaN complex(0.0, 0.0) complex(0.0, 0.0) complex(0.0, 0.0) ComplexNaN ComplexNaN
−r1 ComplexNaN polar(−r1, −theta1) complex(−r1, 0.0) polar(−r1, theta2) ComplexNaN ComplexNaN
−Inf ComplexInf ComplexInf ComplexInf ComplexInf ComplexInf ComplexNaN
NaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN

Table 13.13: Results of the function pow(z1, z2) for complex(0.0, 0.0), ComplexInf, and ComplexNaN

pow(z1, z2)
z1 value z2 value

complex(0.0, 0.0) z2; (|y2| < ∞) ComplexInf ComplexNaN
−∞ < x2 < 0.0 x2 = 0.0 0 < x2 < ∞

complex(0.0, 0.0) ComplexNaN ComplexInf ComplexNaN complex(0.0, 0.0) ComplexNaN ComplexNaN
z1 complex(1.0, 0.0) zz21 zz21 zz21 ComplexNaN ComplexNaN

ComplexInf ComplexNaN complex(0.0, 0.0) ComplexNaN ComplexInf ComplexNaN ComplexNaN
ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN

Table 13.14: Results of the function fmod(z1, z2) for complex(0.0, 0.0), ComplexInf, and ComplexNaN

fmod(z1, z2)
z1 value z2 value

complex(0.0, 0.0) z2 ComplexInf ComplexNaN
complex(0.0, 0.0) ComplexNaN complex(0.0, 0.0) complex(0.0, 0.0) ComplexNaN

z1 ComplexNaN fmod(z1,z2) z1 ComplexNaN
ComplexInf ComplexNaN ComplexNaN ComplexNaN ComplexNaN

ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN

236

13.7. CREATION OF USER’S COMPLEX FUNCTIONS
CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS

Table 13.15: The valid lvalues related to complex numbers

Case Meaning of lvalue Example
1 simple variable z = complex(1.0, 2);
2 an element of a complex array zarray[i] = complex(1.0,2)+ComplexInf;
3 complex pointer variable zptr = malloc(sizeof(complex) * 3;

zptr = &z;
4 address pointed to by a complex variable *zptr = complex(1.0, 2) + z;
5 an element of a complex pointer array zarrayptr[i] = malloc(sizeof(complex)*3;

zarrayptr[i] = &z;
6 address pointed to by an element of *zarrayptr[i] = complex(1.0, 2);

a complex pointer array
7 real part of a complex variable real(z) = 3.4;

real part of a complex variable real(*zptr) = 3.4;
real part of a complex variable real(*(zptr+1)) = 3.4;
real part of a complex variable real(*zarrayptr[i]) = 3.4;

8 imaginary part of a complex variable imag(z) = complex(1.0, 2);
imaginary part of a complex variable imag(*zptr) = 3.4;
imaginary part of a complex variable imag(*(zptr+1)) = 3.4;
imaginary part of a complex variable imag(*zarrayptr[i]) = 3.4;

9 float pointer variable fptr = &z;
fptr = zptr;

pointer to real part of a complex variable *fptr = 1.0;
pointer to imaginary part of a complex variable *(fptr+1) = 2.0;

these lvalues. Besides the simple variable in case 1, an element of a complex array can be an lvalue, which
is case 2 in Table 13.15. In case 3, pointer to complex is used as an lvalue to get the memory or to point to
a memory of a complex object. In case 4, the memory pointed to by the pointer zptr is assigned the value
of the expression on the right hand side of an assignment statement. In addition to a single pointer variable,
one can have an array of complex pointers. Cases 5 and 6 show how an element of a complex pointer array
is used to access its memory. The function real() can not only be used as an rvalue or an operand, but it can
also be used as an lvalue to access the memory of its argument. In case 7, the argument of real() must be a
complex variable, or an address pointed to by a complex pointer or pointer expression. A constant complex
number or expression can be used as an input argument of the function real() only when it is an rvalue or an
operand. In case 8, the imaginary part of a complex is accessed by the function imag() in the same manner
as the function real(). Because a complex number occupies two floats internally, this memory storage can
be accessed not only by the functions real() and imag(), but also by a pointer to float as is shown in case
9 where the variable fptr is a pointer to float. For cases 7-9, a real number, including ±0.0,±Inf , and
NaN, on the right hand side will be assigned to an lvalue formally without filtering. Therefore, abnormal
complex numbers such as complex(Inf, NaN), complex(Inf,0.0), etc. may be created. For example, two Ch
commands real(z) = NaN and imag(z) = Inf make z equal to complex(NaN,Inf); and real(z) = −0.0 and
imag(z) = NZero gives z the value of complex(−0.0,−0.0).

13.7 Creation of User’s Complex Functions

User’s complex functions in Ch can be created in the spirit of ISO C, which will be demonstrated by the
computation of the following complex function f(z1, z2).

f(z1, z2) =
(4z1 + 3 + i5) ∗ sin(z1 ∗ z2) ∗ ei2.5

z1(z2 − 2− i2)
(13.3)

237

13.7. CREATION OF USER’S COMPLEX FUNCTIONS
CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS

The complex function f(z1, z2) can be easily programmed in Ch as follows.

complex f(complex z1, complex z2) {
complex z;
z = (4*z1+3+complex(0,5))*sin(z1*z2)*polar(1, 2.5))/

(z1*(z2-complex(2,2)));
return z;

}

Using the above-programmed external gamma function, the commands

printf("f(0, 0) = %f \n", f(0, 0));
printf("f(0, 1) = %f \n", f(0, 1));
printf("f(1, 1) = %f \n", f(1, 1));
printf("f(0, complex(2, 2)) = %f \n", f(0, complex(2,2)));
printf("f(1, complex(2, 2)) = %f \n", f(1, complex(2,2)));

will produce the following output.

f(0, 0) = ComplexNaN
f(0, 1) = ComplexNaN
f(1, 1) = complex(1.385598,-2.925680)
f(0, complex(2, 2)) = ComplexInf
f(1, complex(2, 2)) = ComplexInf

Note that the function f(z1, z2) gets ComplexInf at the singular point z2 = 2 + i2 and f(0, z2) becomes
division of complex zero by complex zero.

238

Chapter 14

Pointers and Arrays

Arrays are commonly used programming features. An array consists of elements that extend in one or
more dimensions to represent columns, planes, cubes, etc. The number of dimensions in an array is referred
to as the rank of the array, the number of elements in a dimension is called the extent of the array in
that dimension. The shape of an array is a vector where each element of the vector is the extent in the
corresponding dimension of the array. The size of an array is the number of bytes used to store the total
number of elements of the array.

This chapter will first illustrate how pointers can be used to access elements of arrays. Next, we will
describe how to allocate memory for one- and two-dimensional arrays. From a mathematical point of view,
these two kinds of arrays are very useful to represent vectors and matrices. Then mechanisms for passing
arrays to functions in C90 are described. It shows that passing multi-dimensional arrays of variable length
to functions in the C90 standard conforming manner is cumbersome and error-prone. Variable length arrays
described in the next chapter are recommended for applications.

14.1 Accessing Array Elements Through Pointers

Arrays and pointers are intimately tired. Not only a pointer can be used to access an array, but also the
variable name of an array itself can be treated as a pointer. Assume that A1 is a one-dimensional array of int
type with length of 10 and p is a pointer to int, elements of A1 can be accessed by three methods illustrated
in the interactive execution in a Ch shell as follows.

> int i
> int A1[10], *p
> A1[3]=3 // method 1
> for(i=0; i<10; i++) printf("%d ", A1[i])
0 0 0 3 0 0 0 0 0 0
> *(A1+4)=4 // <==> A1[4]=4, method 2
> for(i=0; i<10; i++) printf("%d ", A1[i])
0 0 0 3 4 0 0 0 0 0
> p = A1
> *(p+5)=5 // <==> A1[5]=5, method 3
> for(i=0; i<10; i++) printf("%d ", A1[i])
0 0 0 3 4 5 0 0 0 0
>

239

14.2. DYNAMIC ALLOCATION OF ARRAYS
CHAPTER 14. POINTERS AND ARRAYS

According to the pointer arithmetic described in Chapter 9, p+5 points to the sixth element of A1. The
variable name A1 in statement

*(A1+4)=4

is actually treated as a pointer to int.
For two- or multiple-dimensional arrays, the variable name of an array is treated as a pointer to array.

For example, if A2 is a two-dimensional array of int type with size (3× 4) and p is a pointer to int, methods
of accessing elements of A2 are shown below.

> int i, j
> int A2[3][4], *p;
> A2[1][1]=3 // method 1
> for(i=0; i<3; i++) for(j=0; j<4; j++) printf("%d ", A2[i][j])
0 0 0 0 0 3 0 0 0 0 0 0
> p = A2
> *(p+1*4+2)=4 // <==>A2[1][2]=4, method 2
> for(i=0; i<3; i++) for(j=0; j<4; j++) printf("%d ", A2[i][j])
0 0 0 0 0 3 4 0 0 0 0 0
> *(*(A2+1)+3)=5 // <==>A2[1][3]=5, method 3
> for(i=0; i<3; i++) for(j=0; j<4; j++) printf("%d ", A2[i][j])
0 0 0 0 0 3 4 5 0 0 0 0
>

The value of p+1*4+2 points to the address of the seventh element of array A2 at A2[1][2]. Variable
A2 is a pointer to array of 4 elements. The point expression (A2+1) gives the address at the fifth element
of array A2. Therefore, *(*(A2+1)+3) is equivalent to the array element A2[1][3].

14.2 Dynamic Allocation of Arrays

In many applications, especially in engineering and science, the size of an array or a matrix is known only
at the program execution. It will be more efficient to use dynamic allocation of arrays instead of declaring
arrays of large fixed size. In this section, we will describe how to implement dynamic allocation of one-
and two-dimensional arrays. The standard functions malloc(), calloc(), and realloc() described in Chapter 9
can be used to dynamically allocate memory for arrays. Function free() can be called to deallocate the
dynamically allocated memory when they are no longer needed.

14.2.1 Dynamic Allocation of One-Dimensional Arrays

A one-dimensional array is typically used to represent a vector. For example, a row vector is a (1 × n)
matrix, and a column vector is a (n × 1) matrix, where n is a positive integral value. Both of them can be
written in the form of one-dimensional array.

As an example, assume vector A1 is of double type and its length vectLen is determined at runtime.
The following code fragment shows how to allocate memory dynamically for A1 with function malloc().

double *A1;
/* ... source code to obtain vectLen at runtime */
A1 = (double *)malloc(vectLen*sizeof(double));
if(A1 == NULL) {

fprintf(stderr, "ERROR: %s(): no enough memory\n", __func__);

240

14.2. DYNAMIC ALLOCATION OF ARRAYS
CHAPTER 14. POINTERS AND ARRAYS

exit(1);
}
/* ... source code to handle vector A1 */
free(A1);
/* ... source code no longer use A1 */

Variable A1 is declared as a pointer to double. After obtaining the value for vectLen at run time, the
memory with vectLen * sizeof(double) bytes is allocated dynamically. A1 can be treated as a
one-dimensional array, and its elements can be accessed through its name A1.

> int i
> double *A1
> A1 = (double *)malloc(10*sizeof(double))
40070280
> A1[5] = 10 // method 1
> for(i=0; i<10; i++) printf("%1.1f ", A1[i])
0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0
> *(A1+6) = 20; // <==> A1[6]=20, method 2
0.0 0.0 0.0 0.0 0.0 10.0 20.0 0.0 0.0 0.0
> p = A1
40070280

Two different methods to access an element of the array are presented in the above example. For array A1
with vectLen number of elements, the subscript i in the form of A1[i] or *(A1+i) can go from 0
to vectLen-1. An attempt to access element A1[vectLen] is illegal, because it points to the memory
outside the boundary for array A1.

A one-dimensional array can also be used to represent a two-dimensional matrix. For example, pointer
p can allocate a memory for a two-dimensional array of size (n × m). The element (i, j) of matrix
(n ×m) can be accessed by pointer indirection operation *(p+i*m+j). In the example below, n is 3 and
m is 4.

> int i
> double *A1, *p
> A1 = (double *)malloc(3*4*sizeof(double))
40070280
> p = A1
40070280
> *(p+1*4+2) = 30; // assigned 30 to element (1,2)
>

14.2.2 Dynamic Allocation of Two-Dimensional Arrays

From a mathematical point of view, a matrix or an array of (m × n) is a set of numbers arranged in a
rectangular block of m horizontal rows and n vertical columns. From a programming point of view, it is
a block of memory with each row of the matrix lying in a contiguous block of memory. Two methods of
dynamical allocation of two-dimensional arrays will be presented in this section. In the first method, the
memory for the matrix allocated is in a single contiguous block, whereas in the second method, each row of
the matrix lies in a contiguous block of memory, but the whole matrix is not in a sequential memory block.

Assume A2 is a two-dimensional array of size (m × n). The values of m and n are determined at run
time. The following code fragment shows how to allocate a single contiguous memory dynamically for
array A2[m][n].

241

14.2. DYNAMIC ALLOCATION OF ARRAYS
CHAPTER 14. POINTERS AND ARRAYS

** A2

A2[1]

A2[0]

A2[2]

A2[0][0]

A2[1][0]

A2[2][0] A2[2][1]

A2[1][1]

A2[0][1] A2[0][2]

A2[1][2]

A2[2][2] A2[2][3]

A2[1][3]

A2[0][3]

Figure 14.1: Dynamic allocation of two-dimensional arrays (method 1).

int i;
double **A2;
/* ... source code to obtain m and n at runtime */
A2 = (double **)malloc(m * sizeof(double*));
if(A2 == NULL) {

fprintf(stderr, "ERROR: %s(): no enough memory\n", __func__);
exit(1);

}
A2[0] = (double *)malloc(m * n * sizeof(double));
if(A2[0] == NULL) {

fprintf(stderr, "ERROR: %s(): no enough memory\n", __func__);
exit(1);

}
for(i = 1; i < m; i++) {

A2[i] = A2[0] + i * n;
}
/* ... source code to handle vector A2 */
free(A2[0]);
free(A2);
/* ... source code no longer use A2 */

Frist, A2 is declared as a pointer to pointer to double. After obtaining the values of m and n, the memory for m
pointers to double is allocated for A2. So, A2 can be considered as a one-dimensional array of pointers with
m elements shown in Figure 14.1. Then a single contiguous memory with m * n * sizeof(double)
bytes for m * n elements is allocated. Each pointer A[i] points to a segment in this block. Therefore, A2
becomes a two-dimensional array. In the example below, elements of array of size (3 × 4) are accessed by
two different methods.

> int i, j
> double **A2
> A2 = (double **)malloc(3 * sizeof(double*)); // with size (3 X 4)
4006cdc0
> for(i=0; i<3; i++) printf("%p ", A2[i])
00000000 00000000 00000000
> A2[0] = (double *)malloc(3 * 4 * sizeof(double));

242

14.2. DYNAMIC ALLOCATION OF ARRAYS
CHAPTER 14. POINTERS AND ARRAYS

** A2

A2[1]

A2[0]

A2[2]

A2[0][0]

A2[1][0]

A2[2][0] A2[2][1]

A2[1][1]

A2[0][1] A2[0][2]

A2[1][2]

A2[2][2] A2[2][3]

A2[1][3]

A2[0][3]

Figure 14.2: Dynamic allocation of two-dimensional arrays (method 2).

> A2[1] = A2[0] + 4 // A2[i] = A2[0] + i * n
> A2[2] = A2[0] + 2*4 // A2[i] = A2[0] + i * n
> for(i=0; i<3; i++) printf("%p ", A2[i]) // 1-dimension of pointer
4007bee8 4007bf08 4007bf28
> for(i=0; i<3; i++) for(j=0; j<4; j++) printf("%1.1f ", A2[i][j])
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
> A2[1][1]=3 // method 1
> *(*(A2+1)+2)=4 // <==> A2[1][2]=4, method 2
> for(i=0; i<3; i++) for(j=0; j<4; j++) printf("%1.1f ", A2[i][j])
0.0 0.0 0.0 0.0 0.0 3.0 4.0 0.0 0.0 0.0 0.0 0.0
> pp = A2
4006cdc0

Once a memory block with m * n * sizeof(double) bytes is allocated for A2, the subscripts i and
j in the form of A2[i][j] or *(*(A2+i)+j) can go from 0 to m-1 and 0 to n-1, respectively. Any
attempt of access to A2[m][n] is illegal.

The following code fragment shows the second method for dynamic allocation of two-dimensional array
A2. Memory for each row of the matrix is allocated separately. Therefore, the memory block for different
rows may not be continguous. The memory layout for array A2 is shown in Figure 14.2.

int i;
double **A2;
/* ... source code to obtain m and n at runtime */
A2 = (double **)malloc(m * sizeof(double*));
if(A2 == NULL) {

fprintf(stderr, "ERROR: %s(): no enough memory\n", __func__);
exit(1);

}
for(i = 0; i < m; i++) {

A2[i] = (double *)malloc(n * sizeof(double));
if(A2[i] == NULL) {
fprintf(stderr, "ERROR: %s(): no enough memory\n", __func__);
exit(1);

}
}

243

14.3. PASSING ONE AND MULTI-DIMENSIONAL ARRAYS OF FIXED LENGTH
CHAPTER 14. POINTERS AND ARRAYS

int main() {
double d1[10], d2[10];
double d3[5], d4[5];
void oneDadd(double dd1[], double *dd2, int n);
oneDadd(d1, d2, 10);
oneDadd(d3, d4, 5);

}

void oneDadd(double dd1[], double *dd2, int n) {
int i;
for(i=0; i<=n-1; i++)

dd1[i] += dd2[i]; /* the same as *(dd1+i) += *(dd2+i) */
}

Program 14.1: Passing one-dimensional arrays of variable length to a function.

/* ... source code to handle vector A2 */
for(i = 0; i < m; i++)

free(A2[i]);
free(A2);
/* ... source code no longer use A2 */

The major difference between the two methods for dynamical allocation of two-dimensional arrays de-
scribed in this section is that function malloc() is called for each row of the matrix in the latter.

14.3 Passing One and Multi-Dimensional Arrays of Fixed Length

14.3.1 One-Dimensional Arrays

When an array is passed to a function, what is actually passed is only the address of the first element of
the array. In the called function, this argument is a local variable of pointer type. Program 14.1 adds
one-dimensional arrays d1 and d2, each 10 elements of double data type, and stores the result in array
d1 element-wise by the function oneDadd(). In the function definition of void oneDadd(double
dd1[], *dd2, int n) in Program 14.1, dd1 is defined as a variable of double array type whereas
dd2 is a variable of pointer to double. One-dimensional arrays of variable length can be passed to this
function as shown in the program. The extent of both arrays d1 and d2 is 10 whereas the extent of arrays
d3 and d4 is 5. In general, the size of an array is not available to the called function, the sizes of arrays in
the function oneDadd() are passed in by the parameter n in the program. However, a string is a special
case. Strings are zero-terminated so that their sizes can be computed easily by the function strlen(). The
expressions of dd1[-2] and dd2[20] are equivalent to *(dd1-2) and *(dd2+20), respectively. If
they were used inside the function oneDadd() in Program 14.1, they would refer to objects outside the
passed array bounds. Because no extents are specified in the declaration of formal arrays, the statement of
dd1[-2] += dd2[20+n] would be syntactically legal if they were in the function oneDadd(), even
if they may be problematic. It is not possible to generate any warning or error message for this kind of
statement. It is the programmer’s responsibility to make sure that each element of the formal array in the
called function is within the array bounds of actual arrays in the calling function.

However, if the extents of arrays to be passed in the calling functions are known, the formal array ar-
guments in the function can be declared with specified extents. For example, in Program 14.2, both dd1

244

14.3. PASSING ONE AND MULTI-DIMENSIONAL ARRAYS OF FIXED LENGTH
CHAPTER 14. POINTERS AND ARRAYS

int main() {
double d1[10], d2[10];
double d3[5], d4[5];
void oneDadd(double dd1[10], double dd2[10], int n);
oneDadd(d1, d2, 10); /* OK */
oneDadd(d3, d4, 5); /* WARNING: incompatible dimensions */

}

void oneDadd(double dd1[10], double dd2[10], int n) {
int i;
for(i = 0; i <=n-1; i++)

dd1[i] += dd2[i];
}

Program 14.2: Passing one-dimensional arrays of fixed length to a function.

and dd2 are defined as variables of array of 10 elements. When it is invoked by the function call of
oneDadd(d3, d4, 5), two warning messages may be produced by the system because the extents of
passed arrays d3 and d4 do not match with those of the formal definitions for dd1 and dd2. Furthermore,
because the extent has been specified in the formal argument, error messages would be generated in Ch at
the runtime due to the array boundary error if the statement of dd1[-2] += dd2[20] were used in the
function oneDadd(). To avoid a likely crash of the system, if an array index is smaller than zero, the lower
bound of zero will be used as the array index in Ch. Similarly, if an index is greater than the upper bound of
the formal array, the upper bound of the formal array will be used as the index. The assignment statement
dd1[-2] += dd2[20]would be, therefore, handled as the statement dd1[0] += dd2[9]. Although
dd1[10] and dd2[10] in the function definition oneDadd(double dd1[10], dd2[10], int n)
are declared with specific extents, what is passed to the called function are still only pointers.

14.3.2 Multi-Dimensional Arrays of Fixed Length

One-dimensional arrays can be passed to functions conveniently in C as described in the previous section.
In this section, we will describe how to pass multi-dimensional arrays of fixed shape to functions.

Let us examine the example of passing two-dimensional arrays to a function in Program 14.3 when the
function twoDadd() is used to add two two-dimensional arrays. If a two-dimensional array of fixed length
is to be passed to a function, the parameters of the array definition in the arguments of the function should
include the number of columns, the second dimension of the array. We illustrate three different formats for
formal array arguments of a function by using the following declaration in Program 14.3.

void twoDadd(double (*dd1)[5], double dd2[][5], double dd3[4][5],
int n, int m)

Although the declaration formats for dd1, dd2 and dd3 are different, all of them are defined as the pointer
to array of 5 elements of double data type. Unlike one-dimensional arrays, the internal data structures for
variables dd1 and dd2 are identical, they both ignore the number of rows of the actual arrays. However,
if the number of rows of the argument in the calling function corresponding to the variable dd3 is not
4, the system may generate a warning message. In general, in passing arrays to functions, the rank of
actual arrays shall match with the rank of the formal array argument in the function definition and function
prototypes. Otherwise, the system may produce a warning message. If the extent for a dimension of an

245

14.3. PASSING ONE AND MULTI-DIMENSIONAL ARRAYS OF FIXED LENGTH
CHAPTER 14. POINTERS AND ARRAYS

int main() {
double d1[4][5], d2[4][5], d3[4][5];
double d4[3][5], d5[3][5], d6[3][5];
double d7[4][6];
void twoDadd(double (*dd1)[5], double dd2[][5], double dd3[4][5],

int n, int m);
twoDadd(d1, d2, d3, 4, 5); /* OK */
twoDadd(d4, d5, d6, 3, 5); /* WARNING: incompatible first dimension

d6[3][5] != dd3[4][5] */
twoDadd(d7, d2, d3, 4, 5); /* WARNING: incompatible second dimension

d7[4][6] != (*dd1)[5] */
}

void twoDadd(double (*dd1)[5], double dd2[][5], double dd3[4][5],
int n, int m) {

/* dd1[n][m] = dd2[n][m] + dd3[n][m] */
int i, j;

for(i=0; i<=n-1; i++)
for(j=0; j<=m-1; j++)
dd1[i][j] = dd2[i][j]+dd3[i][j];

}

Program 14.3: Passing two-dimensional arrays of fixed length to a function.

246

14.3. PASSING ONE AND MULTI-DIMENSIONAL ARRAYS OF FIXED LENGTH
CHAPTER 14. POINTERS AND ARRAYS

int main() {
double d1[3][5][7], d2[3][5][7], d3[3][5][7];
void threeDadd(double (*dd1)[5][7], double dd2[][5][7],

double dd3[3][5][7], int n, int m, int r);
threeDadd(d1, d2, d3, 3, 5, 7); /* d1 = d2 + d3 */

}

void threeDadd(double (*dd1)[5][7], double dd2[][5][7],
double dd3[3][5][7], int n, int m, int r) {

/* dd1[n][m][r] = dd2[n][m][r] + dd3[n][m][r] */
int i, j, k;

for(i=0; i<=n-1; i++)
for(j=0; j<=m-1; j++)
for(k=0; k<=r-1; k++)
dd1[i][j][k] = dd2[i][j][k]+dd3[i][j][k];

}

Program 14.4: Passing three-dimensional arrays of fixed length to a function.

array is given in the function definition or function prototypes, the extent of the actual array shall match
with the corresponding extent of the array in the formal definition. Otherwise, the system may also produce
a warning message. The shapes of the array in the function definition and its function prototypes shall be the
same. Otherwise, it is a syntax error. The exception is declaring a one-dimensional array of variable length.
For example, the following two function prototypes

void funct(double *d);
void funct(double d[]);

are considered to be compatible. The function call of twoDadd(d4, d5, d6, 3, 5) in Program 14.3
may get a warning message for array d6[3][5] which has a different extent for the first row dimension
from the formal argument dd3. A warning message may also be generated for array d7[4][6] because
the number of columns is different from the formal definition. Arrays d1, d2, d4 and d5with different
numbers of rows can be passed to the function twoDadd() correctly without any warning message.

Multi-dimensional arrays higher than two-dimension can be handled in the same manner. In general,
only the size of the first dimension of an array can vary; all others shall be specified in the function def-
inition and function prototypes. Program 14.4 demonstrates how to pass three-dimensional arrays to a
function in three different syntactical forms for array arguments. In Program 14.4, the function call of
threeDadd(d1, d2, d3, 4, 5, 6) stores the sum of each elements of arrays d2 and d3 to the
corresponding element of array dd1.

Because an array parameter in a function is handled as a pointer to array, a pointer to array can also
be used as an actual argument of a function. This can be illustrated by Program 14.5. In Program 14.5,
the variable dp is a pointer to array of 7 elements and d[1] is an array of 5x7 elements. The assignment
statement dp = d[1] points dp at the starting address of the 5x7 array so that expressions dp[i][j] and
d[1][i][j]will refer to the same object. In Program 14.5, statement dp = d[1] can be substituted by
one of the following assignment statements

247

14.3. PASSING ONE AND MULTI-DIMENSIONAL ARRAYS OF FIXED LENGTH
CHAPTER 14. POINTERS AND ARRAYS

void funct(double dd[][7]){ }
int main() {
double d[3][5][7], (*dp)[7], (*dp2)[7];
dp = d[1]; /* dp = &d[1][0][0]; dp = d+1; dp = *(d+1); */
funct(dp); /* funct(&d[1][0][0]); funct(d[1]); */

/* funct(d+1); funct(*(d+1)); */
dp[2][3] = dp[3][5]+6; /* treat dp as an array */
dp2 = malloc(sizeof(double)*5*7);
funct(dp2);

}

Program 14.5: Using pointer and pointer to array as actual arguments in passing arrays to a function.

dp = &d[1][0][0];
dp = d+1;
dp = *(d+1);

where &d[1][0][0] is the address of the first element d[1][0][0] of array d, d+1 is a pointer to array
of 5x7 elements, and *(d+1) is an array of 5x7 elements from d[1][0][0] to d[1][4][6]. Similarly,
if the statement funct(dp) is replaced by any one of the following programming statements

funct(&d[1][0][0]);
funct(d[1]);
funct(d+1);
funct(*(d+1));

the result will be the same as long as the element dd[i][j] referenced inside function funct() is within
the valid range of array d in the main routine.

An array consists of a continuous segment of memory in C. The memory pointed at by a pointer to array
can be allocated dynamically by memory allocation functions malloc(), calloc(), and realloc(). Using the
indirection of pointers, a pointer to array of n dimensions can be treated as an array of (n+1) dimensions.
This can be illustrated by variable dp2 in Program 14.5. The variable dp2 is a pointer to array of 7 elements
of double data type. The memory for dp2 is allocated dynamically and it is passed to the function funct()
in the same manner as dp.

Similarly, arrays of different data type can be passed to functions. For example, the following code
fragment shows how arrays of pointers of different data type are passed to the function funct().

char *c[]={"strings", "with different", "length", ""};;
int **i[2][4];
float ***f[3][5][7];
int funct(char *cc[], int **ii[2][4], float ***ff[3][5][7]);
funct(c, i, f);

where c is an array of pointer to char, i is an array of double pointer to 2x4 int elements, and f is an array of
triple pointer to 3x5x7 float elements. Note that arrays of pointer to char are useful for system programming
because it can store strings of variable length.

248

Chapter 15

Variable Length Arrays

Arrays in C are intimately tied with pointers. Treating array variables as pointers in C is very elegant
for system programming; it is one of C’s major strengths. Because C was not designed for numerical
computing, handling multi-dimensional arrays in C is cumbersome in many situations. For example, in
contrary to the fame of C for its conciseness and clarity, passing arrays of variable length to functions
in C90 is neither intuitive nor easy to understand; it is very complicated. Arrays of variable length were
available in FORTRAN since its earlist days [1]. Scientific programmers with prior FORTRAN experiences
are often disappointed at C’s inability to handle arrays of variable length. Adding variable length arrays
(VLA) to C is a critical step in evolving C as a leading programming language for applications in science
and engineering. Arrays of variable length whose size is known only at program execution time are added
in C99 and Ch. Details about variable length arrays are described in this chapter.

Four different types of variable length arrays called deferred-shape arrays, assumed-shape arrays, pointer
to assumed-shape arrays, and array of reference in Ch can be illustrated by the following code fragment.

int funct(int a[&][&], int (*b)[:], int c[:][:], int n, int m) {
int (*d)[:] = a;
int e[n][m];

}

where a is an array of reference; b and c are assumed-shape array; d is a pointer to assumed-shape array;
and e is a deferred-shape array. Ch extends C with arrays of explicit lower and upper bounds for numerical
computing. Arrays of explicit lower and upper bounds can be illustrated by the following code fragment.

int funct(int a[1:5], int b[1:][1:], int n, int m) {
int c[3][1:3];
int d[n:m];

}

where a is a fixed-length array with the subscript range from 1 to 5, b is a pointer to two-dimensional
assumed-shape array with unit-offset. The subscript range of the first dimension of two-dimensional array c
with fixed subscript range is from 0 to 2 while the subscript range of the second dimension of array c is from
1 to 3. The variable d is an array with deferred subscript range and it is also a deferred-shape array. The
first element of an array in C starts with index zero such as a[0]. In contrast to C, the first element of an
array in FORTRAN 77 starts with index one such as a[1]. An array with explicit lower and upper bounds
allows an array element to start with any index number. Arrays with explicit lower and upper bounds have
many applications. For example, the coefficients ai of a polynomial a0 + a1x+ a2x

2 + . . . + anx
n can be

appropriately handled using a zero-offset array a[0:n] whereas a vector of N data points xi for i = 1 to
N calls for a unit-offset array x[1:N].

249

15.1. STORAGE DURATION AND DECLARATION OF ARRAYS
CHAPTER 15. VARIABLE LENGTH ARRAYS

15.1 Storage Duration and Declaration of Arrays

15.1.1 Storage Duration of Objects

Storage duration determines the lifetime of an object. An array declared with external or internal linkage,
or with the storage-class specifier static has static storage duration. For such an array, its storage is
reserved and its stored value for each element is initialized once only. Each element of the array exists and
retains its last-stored value throughout the execution of the entire program. The shape of the array with static
storage duration has to be resolved before the execution of the function main(). Therefore, each extent of
an array definition with static storage duration shall be an integral constant expression with a value greater
than zero as shown in the following sample program.

int n = 5;
int a[4][5], aa[3] = {1,2,3};
extern int b[6][7], c[8], d[][9], e[]; /* d and e are incomplete */
/* complete shape for d and e in the following definition */
int b[6][7], c[8], d[4][9], e[10], ee[2][3] = {1,2,3,4,5,6};
int main(){

static int s[4], ss[2+3] ={1,2,3,4,5};
extern int a[4][5];
extern int b[6][7], c[8], d[][9], e[];

}

An array declared with no linkage and without the storage class specifier static within a function or
nested function has automatic storage duration. Storage is guaranteed to be reserved for a new instance of
such an array on each normal entry into the block with which it is associated. If an initialization is specified
for the array with automatic storage duration, it is performed on each normal entry. Storage for the array
is no longer guaranteed to be reserved when execution of the enlosing block ends in any way including by
means of goto, continue, break, and return statements. For example, arrays in the following
code fragment have automatic storage duration.

int n = 5;
void funct1(){

int m = 6;
int a[4][5], aa[3] = {1,n,m}; /* n==5, m==6 */
void funct2(){
int s[4], ss[2+3] ={1,2,3,n,m}; /* n==5, m==6 */

}
}

In this sample code, the shape of an array is completely specified by constant integral expressions for each
extent. Since memory space for an array of automatic storage duration is allocated at execution time upon
the entry to the block within which it is declared, it is desirable that the length of the array can be different
when the block or function is invoked each time. An array whose size is determined at program execution
time is called a variable length array (VLA).

15.1.2 Declaration of Arrays

Variables can be declared in the form of

T D1 (15.1)

250

15.1. STORAGE DURATION AND DECLARATION OF ARRAYS
CHAPTER 15. VARIABLE LENGTH ARRAYS

where T contains the declaration specifiers that specify a type T such as int and D1 is a declarator that
contains an identifier ident. The delimiters [and] may delimit an expression or : for declaration of arrays.

If D1 has the form

D[expressionopt] (15.2)

and the type specified for identifier in the declaration “T D1” is “derived-declarator-type-list T,” then the
type specified for ident is “derived-declarator-type-list array of T.” If the size expression is not present, the
array type is an incomplete type. If delimiters [and] delimit an expression that specifies the size of an array,
it shall be an integral type. If it is a constant integral expression, it shall have a value greater than zero. If the
size expression of an array is not a constant expression, it is evaluated at program execution time and shall
evaluate to a value greater than zero. The array type is a deferred-shape array type. If the size expression is
an integral constant expression and the element type has a fixed size, the array type is a fixed-length array
type.

If D1 has the form

D[:] (15.3)

and the type specified for identifier in the declaration “T D1” is “derived-declarator-type-list T,” then the
type specified for ident is “derived-declarator-type-list assumed-shape array of T.” The array is called
assumed-shape array type. The shape of the array is assumed at program execution time.

An array with specified lower bounds shall be declared in one of the following two forms:

T D[lower:upper] (15.4)

T D[lower:] (15.5)

(15.6)

where T contains the declaration specifiers that specify a type such as int, D is a declarator that contains
an identifier ident, lower is the lower bound of the array, and upper is the upper bound. The expressions
lower and upper shall be of integral type.

A pointer to array of fixed-length shall be declared as

T (*D)[expr] (15.7)

where T contains the declaration specifiers that specify a type and D is a declarator that contains an identifier
ident. The expression expr shall be constant integral type. A pointer to array of assumed-shape shall be
declared in one of the following two forms:

T (*D)[:] (15.8)

T (*D)[lower:] (15.9)

The expression lower for the lower bound of the array shall be constant integral type.
Array of reference shall be declared in the form of

T D[&] (15.10)

Array of reference can be used to pass arrays of different data types to functions. It shall be declared at the
function parameter scope or in a typedef declaration only.

The variable length array type includes assumed-shape array, pointer to array of assumed-shape, deferred-
shape array, and array of reference. The following example will clarify the concepts of these various array
definitions.

251

15.2. DEFERRED-SHAPE ARRAYS
CHAPTER 15. VARIABLE LENGTH ARRAYS

void funct(int a[:][:], (*b)[:], c[&], d[], e[1:], n, m){
/* a: assumed-shape array */
/* b: pointer to array of assumed-shape */
/* c: array of reference */
/* d: incomplete array completed by function call */
/* e: assumed-shape array with explicit lower bound */
/* n, m: int */

int f[4][5]; // f: fixed-length array
int g[n][m]; // g: deferred-shape array
int (*h)[4]; // h: pointer to array of 4 elements.
int (*i)[:]; // i: pointer to array of assumed-shape
extern int j[]; // j: incomplete array completed by external linkage
int k[] = {1,2};// k: incomplete array completed by initialization

}

For two array types to be compatible, both shall have compatible element types. In addition, if both
size specifiers are present and they are integral constant expressions, then both size specifiers shall have the
same constant value. If either size specifier is variable, the two sizes shall evaluate to the same value at
program execution time. If the two array types are used in a context which requires them to be compatible,
the behavior is undefined if the two size specifiers evaluate to unequal values at execution time.

15.2 Deferred-Shape Arrays

15.2.1 Constraints and Semantics

The size of a deferred-shape array type is obtained at program execution time and the value of the size shall
be greater than zero. The size of a deferred-shape array type shall not change until the execution of the
block containing the declaration has ended. Therefore, at least one of the size expressions is a non-constant
integral expression for deferred-shape arrays. The variables used in the size expression must be declared
beforehand. For example, arrays a, b, c, d, and e in the following code fragment are valid declaration of
deferred-shape arrays whereas arrays f, g, and h are not.

int N1;
extern int N;
void funct1(int n, m){

int i = 8*n;
int j = 0, k = -9;
int a[i][4]; /* OK */
int b[3][m]; /* OK: mix fixed-extent with deferred-extent */
int c[n*m][n]; /* OK */
int d[funct2(n)][3*funct2(i)]; /* OK */
int e[N][N1*n]; /* OK */
int f[M]; /* ERROR: M has not been defined yet */
int g[j], gg[0]; /* ERROR: zero size */
int h[k], hh[-9]; /* ERROR: negative size */

}
int funct2(int i)
{ return i*i;}
int N, M; /* define N and M */

252

15.2. DEFERRED-SHAPE ARRAYS
CHAPTER 15. VARIABLE LENGTH ARRAYS

As an application example, a plot with different number of elements for deferred-shape arrays can be
generated as follows:

int n;
scanf("%d", &n);
double x[n], y[n];
...
plotxy(x, y, n, "title", "x", "y");

where the variable n contains the number of elements for the deferred-shale arrays x and y. The value for
the variable n is obtained from the user input.

Deferred-shape arrays shall be declared in block scope such as variables inside functions and nested
functions. Arrays declared with the static storage class specifier in block scope shall not be declared as
deferred-shape arrays. The behavior for declarations of deferred-shape arrays with file or program scope is
undefined. For example,

#include <stdio.h>
void funct1(int n, m){

int funct2(int n, i){
int a[n][i]; /* OK */
int b[n]; /* OK */
return n+m;

}
int b[funct2(n,m)][printf("%d\n",n)]; /* OK */

}
extern int n;
int a[n][n]; /* UNDEFINED: not block scope */
static int b[n][n]; /* UNDEFINED: not block scope */
extern int c[n][n]; /* UNDEFINED: not block scope */
int d[2+3][90]; /* OK */
void funct3(int i){

extern int a[n][n]; /* UNDEFINED: a has linkage */
static int b[n][n]; /* ERROR: b is static identifier */
int c[i+3][abs(i)]; /* OK */

}

The initializers of objects that have static storage duration are evaluated and the results are stored to ob-
jects at compilation time. But, the initializers of objects with automatic storage duration and size expression
of deferred-shape arrays are evaluated and values are stored in the object at program execution time. For
example,

#include <stdio.h>
int n = 4; /* compile time n==4 */
int main(){

int m = 5; /* runtime m == 5 */
int a[n++][n++]; /* order of evaluation is undefined */
int b[n++], c[n++]; /* order of evaluation is undefined */
int d[n++]; int e[n++];/* order of evaluation is defined */
printf("%d %d %d", n--, b[n--], c[n--]); /* order of evaluation

is undefined */
}

253

15.2. DEFERRED-SHAPE ARRAYS
CHAPTER 15. VARIABLE LENGTH ARRAYS

Since the size of a deferred-shape array is unknown until the execution time. The size of the deferred-
shape array often time is different at each invocation. Therefore, the deferred-shape array shall not be
initialized. For example,

void funct1(int n){
int a[3] = {1,2,3}; /* OK */
int b[] = {1,2,3}; /* OK */
int c[2][3] = {{1,2,3},{4,5,6}}; /* OK */
int d[][3] = {{1,2,3},{4,5,6}}; /* OK */
int e[n] = {1,2}; /* ERROR: initialization */
int f[n][n] = {1,2,4,5}; /* ERROR: initialization */

}

Pointers to deferred-shape array shall not be declared. For example,

void funct(int n){
int (*p1)[3]; /* OK: pointer to fixed-length array */
int (*p2)[n]; /* ERROR: pointer to deferred-shape array */
int (*p3)[n][3]; /* ERROR: pointer to deferred-shape array */
int (*p3)[3][n]; /* ERROR: pointer to deferred-shape array */

}

Deferred-shape arrays can be declared at the function prototype scope if its array index is also declared
at the same function prototype scope beforehand as an integral type. In function prototype, the array index
can be subsitituted by symbol *. For example,

void funct1(int n, a[n]); // OK
void funct1(int n, a[*]); // OK
void funct1(int n, a[n]){ } // OK
void funct2(double n, int a[n]); // ERROR: n is not integral
void funct3(int a[n], n); // ERROR: n in a[n] not declared

Deferred-shape shall not mix with the incomplete array type. For example,

int n;
int a[][n] = {{1,2},{3,4}}; /* ERROR: initialization */
void funct(int n, b[][n]); /* ERROR: function prototype scope */
extern c[][n]; /* ERROR: static storage duration */

For two array types to be compatible, both shall have compatible element types and the same shape. For
example,

void funct1(int (*p)[4]])
{int i = sizeof(p);} /* i == 4 */
void funct2(int p[3][4])
{int i = sizeof(p);} /* i == 4 */
void funct3(int p[][4])
{int i = sizeof(p);} /* i == 4 */
void funct4(int n)
{

int i = 3, j = 4;

254

15.2. DEFERRED-SHAPE ARRAYS
CHAPTER 15. VARIABLE LENGTH ARRAYS

int (*p)[4];
int a[i][j];
int b[j][j];
int c[i][i];
p = a; funct1(a); funct2(a); funct3(a); /* compatible */
p = b; funct1(b); funct2(b); funct3(b); /* compatible */
p = c; funct1(c); funct2(c); funct3(c); /* incompatible */

}

15.2.2 Deferred-Shape Arrays Related to Switch Statement

The controlling expression for a switch statement shall not cause a block to be entered by a jump from
outside the block to a statement that follows a case or default label in the block if it contains the
declaration of a deferred-shape array. Otherwise, the memory for the deferred-shape array within the block
will not be allocated. For example,

int i;
int main(){

int n = 10;
switch (n){
int a[n]; /* ERROR: bypass declaration of a[n] */
case 10:
a[0] = 1;
break;

case 20:
a[1] = 2;
break;

case 30:
{
int b[n]; /* OK */
b[1] = 90;

}
break;

}
}

15.2.3 Deferred-Shape Arrays Related to Goto Statement

Similarly, the identifier in a goto statement shall name a label located somewhere in the enclosing block
or its calling function. A goto statement shall not cause a block to be entered by a jump from outside the
block to a labeled statement in the block if it contains the declaration of a deferred-shape array. For example,

void funct(int n){
int i;

label1:
if(n>10)
goto label2; /* ERROR: bypass declaration of a[n] */

{
int a[n];

255

15.2. DEFERRED-SHAPE ARRAYS
CHAPTER 15. VARIABLE LENGTH ARRAYS

a[i] = 8;
label2:

a[i] = 9;
goto label1; /* OK */

label3:
a[i] = 10;
goto label2: /* OK */

}

void funct1(int m){
void funct2(int r){
if(r)
goto label4; /* OK */

else
goto label5; /* ERROR: bypass declaration of b[m] */

}
label4:

{
int b[m];

label5:
a[0] = 9;
goto label5; /* OK */

}
}

When a goto statement transfers the program execution flow from a nested function to its parent func-
tion, it shall terminate execution of the active function invocation. All dynamically allocated memory in-
cluding those for deferred-shape arrays shall be deallocated and the previous calling environment shall be
restored. The function that called the function containing the goto statement once again becomes the active
function. If the label named in the goto statement is not in the now-active function, the deactivation of the
current function and activation of its parent function continue. Eventually, the function containing the label
of the goto statement will be active, and control flow will be transferred to the statement with the proper
label. For example,

void funct1(int n){
local void funct2(int n);
local void funct3(int n);
int a[n];

label:
funct2(n);
void funct2(int n){
int b[n];
funct3(n);

}
void funct3(int n){
int c[n];
goto label; /* b[n] and c[n] will be deallocated*/

}
}

256

15.2. DEFERRED-SHAPE ARRAYS
CHAPTER 15. VARIABLE LENGTH ARRAYS

In this example, memory allocated for deferred-shape arrays b[n] and c[n] will be deallocated when the
control flow is transferred from function funct3() to function funct1() through function funct2().
If label and goto label statements in the above example were replaced by functions setjmp(buf) and
longjmp(buf), respectively, the memory of deferred-shape arrays may not be deallocated. With nested
functions, functions setjmp(buf) and longjmp(buf)may become good candidates for obsolete fea-
tures.

15.2.4 Deferred-Shape Arrays as Members of Structures and Unions

Not only ordinary identifiers, but also members of structures and unions, can be declared as deferred-shape
arrays. But, structures and unions with members of deferred-shape arrays shall be declared with automatic
storage duration. The behavior for declaring structures and unions with members of deferred-shape array at
file or program scope is undefined. Structures declared with the static storage specifier in block scope
shall not be declared with members of deferred-shape arrays.

Like sizeof, offsetof is also a built-in operator. If a structure has no member of deferred-shape
array, the operation offsetof(type, member-designator) evaluates to an integral constant value that has
type size t, the value of which is the offset in bytes, to the structure member (designated by member-
designator), from the beginning of the structure (designated by type). If the structure contains a member
of deferred-shape array, the result is not a constant expression and is computed at program execution time.
Because of the variable length of deferred-shape arrays, given

static type t;
the expression &(t.member-designator) will not evaluate to an address constant if the structure contains a
deferred-shape array.

Structures and unions shall not be defined at the function prototype scope. Structures and unions with
members of deferred-shape array can be declared at the function prototype scope of nested functions. For
example,

int n;
struct tag{

int m;
int a[n]; /* UNDEFINED: not block scope for tag1 */
int b[m]; /* UNDEFINED: not block scope for tag1 */

};
void funct1(int m){

int l;
static struct tag{
int m;
int a[n]; /* ERROR: static block scope for tag1 */
int b[m]; /* ERROR: static block scope for tag1 */

};
struct tag1{ /* structure shared by

funct1(), funct2(), and funct3() */
int r=2*m; /* initialization of member r */
int a[n][m][l]; /* OK */
int q=2+l, q2; /* initialization of member q */
int b[r][q]; /* OK */

};
void funct2(){

257

15.2. DEFERRED-SHAPE ARRAYS
CHAPTER 15. VARIABLE LENGTH ARRAYS

struct tag1 s1; /* OK */
int i;
i = offsetof(struct tag1, r); /* OK: runtime offsetof() */
i = offsetof(struct tag1, a); /* OK: runtime offsetof() */
i = offsetof(struct tag1, b); /* OK: runtime offsetof() */

}
/* structure with deferred-shape array as function arg */
void funct3(struct tag1 s){
int i, j;
struct tag1 s1; /* OK */
for(i=0; i<s.r; i++)
for(j=0; j<s.q; j++)
s1.b[i][j] = s.b[i][j];

}
struct tag2{
int a[2][3];
int b[4][5];

};
l = offsetof(struct tag1, r); /* OK: runtime offsetof() */
l = offsetof(struct tag1, a); /* OK: runtime offsetof() */
l = offsetof(struct tag1, b); /* OK: runtime offsetof() */
l = offsetof(struct tag2, a); /* OK: compile time offsetof() */
l = offsetof(struct tag2, b); /* OK: compile time offsetof() */

}

15.2.5 Sizeof

When the built-in sizeof operator is applied to an operand that has array type, the result is the total number
of bytes allocated for storing the elements of the array. For deferred-shape arrays, the result is not a constant
expression and is computed at program execution time. For example,

int funct(int n, m){
int i;
int a[3][4];
int b[n][m];
int c[sizeof(a)]; /* c is fixed-length array */
int d[sizeof(b)]; /* d is deferred-shape array */
i = sizeof(a); /* compile time sizeof(a) is 48 */
j = sizeof(b); /* runtime sizeof(b) is nxmx4 */
return j;

}

When the sizeof operand is applied to an operand that has structure or union type, the result is the
total number of bytes in such an object, including internal and trailing padding. If any member of a structure
or union is a deferred-shape array, the result is not a constant expression and it is computed at program
execution time. For example,

int n;
int funct1(int m){

258

15.2. DEFERRED-SHAPE ARRAYS
CHAPTER 15. VARIABLE LENGTH ARRAYS

int l;
struct tag1{
int a[2][3];

};
struct tag2{
int r;
int a[4][5];
int b[n][m][l][r];

};
int i;
struct tag1 s1;
struct tag2 s2;
void funct2(struct tag1 s1, struct tag2 s2){
int i;
i = sizeof(s1); /* compile time sizeof() */
i = sizeof(s1.a); /* compile time sizeof() */
i = sizeof(s2.a); /* compile time sizeof() */
i = sizeof(s2); /* runtime sizeof() */
i = sizeof(s2.b); /* runtime sizeof() */

}
i = sizeof(struct tag1); /* compile time sizeof() */
i = sizeof(s1); /* compile time sizeof() */
i = sizeof(s1.a); /* compile time sizeof() */
i = sizeof(s2.a); /* compile time sizeof() */
i = sizeof(struct tag2); /* runtime sizeof() */
i = sizeof(s2); /* runtime sizeof() */
i = sizeof(s2.b); /* runtime sizeof() */

}

15.2.6 Typedef

Typedef declarations that specify an aggregate type with a deferred-shape array shall have block scope.
The behavior for typedef declaration with deferred-shape arrays in file or program scope is undefined. The
deferred-shape of the array shall be evaluated whenever it is used as a type specifier in an actual declarator,
not when the type definition is declared. For example,

int n = 5;
typedef int A[n]; /* UNDEFINED: not block scope */
typedef struct tag{int aa[n]} TAG1;/* UNDEFINED: not block scope */
int main(){

int n;
typedef int B[n]; /* OK */
B bb; /* OK: int bb[n] */
B *cc; /* ERROR: int (*cc)[n] */

}
void funct(int m){

typedef int A[m]; /* m is not stored in A */
typedef struct tag {

259

15.3. ASSUMED-SHAPE ARRAYS
CHAPTER 15. VARIABLE LENGTH ARRAYS

int b[m]; /* store m in b[m] */
struct tag *prev;
struct tag *next;

} TAG1;
A d; /* store m in d */
m++; /* increment m */
{

A a; /* a[] has one more element than d[] */
TAG1 s; /* s.b[] has one more element than d[] */
int c[m]; /* c[] has one more element than d[] */

}
}
funct(6); /* ==> d[6], a[7], s.b[7], c[7] */

15.2.7 Other Data Types and Pointer Arithmetic

Deferred-shape arrays of different data type can be declared in the same manner as fixed-length arrays. For
example,

void funct(int n){
char c[n], *cp[n];
int *ip[n][n];
float f[n], **fp[n][n];
double d[n], *dp[n][n];
complex z[n], *zp[n][n];

}

The pointer arithmetic related to fixed-length arrays is still valid for deferred-shape arrays. For example,

void funct(int n, m){
int i=0, j=0;
int a[n][m];
a[i][j] = 90;

(a[i]+j) = 90; / a[i][j] = 90 */

((a+i)+j) = 90; /* a[i][j] = 90 */

*(&a[0][0]+i*m+j) = 90; /* a[i][j] = 90 */

*((int *)a[i]+j) = 90; /* a[i][j] = 90 */

*((int *)(a+i)+j) = 90; /* a[i][j] = 90 */

*((int *)a+i*m+j) = 90; /* a[i][j] = 90 */
i = a[n-1] - a[n-2]; /* i == m */

}

15.3 Assumed-Shape Arrays

15.3.1 Constraints and Semantics

Assumed-shape arrays shall be declared at the function prototype scope or in a typedef declaration. The
assumed-shape array is a formal argument that takes the shape of the actual argument passed to it. That is,
the arrays for actual and formal arguments have the same rank and the same extent in each dimension. The

260

15.3. ASSUMED-SHAPE ARRAYS
CHAPTER 15. VARIABLE LENGTH ARRAYS

void bxc(double aa[:][:], double bb[:][:], double cc[:][:], int n, int m, int r);
int main() {

int i, n = 2, m = 4, r =6;
double a[2][6], b[2][4], c[4][6]; // double a[n][r], b[n][m], c[m][r]
/* ... */
bxc(a,b,c,n,m,r);

}

void bxc(double aa[:][:], double bb[:][:], double cc[:][:], int n, int m, int r) {
/* array multiplication a = b[n][m]*c[m][r] */
int i, j, k;

for(i=0; i<=n-1; i++)
for(j=0; j<=r-1; j++) {
aa[i][j] = 0;
for(k=0; k<=m-1; k++)

aa[i][j] += bb[i][k]*cc[k][j];
}

}

Program 15.1: Passing two-dimensional arrays to a function using assumed-shape arrays.

shape of assumed-shape arrays cannot be determined until execution time. The rank of an assumed-shape
array is equal to the number of colons in the assumed-shape specification. For example,

void funct(int [:], [:][:]) // OK
void funct(int dummy1[:], dummy2[:][:]) // OK
void funct(int a[:], b[:][:]) // OK
int A[:]; // ERROR: not function prototype scope
static int B[:][:]; // ERROR: not function prototype scope
extern C[:][:]; // ERROR: not function prototype scope
void funct(int a[:], b[:][:]){ // OK

int c[:][:]; // ERROR: not function prototype scope
extern int A[:]; // ERROR: not function prototype scope
void funct2(int a[:], b[:][:]){// OK

int c[:][:]; // ERROR: not function prototype scope
}
funct2(a, b); // OK

}

Application of assumed-shape arrays can be illustrated by Program 15.1. In this program, the function
bxc()will multiply two two-dimensional arrays b and c. The product is passed back to the calling function
by argument a The dimensions of arrays in the calling function are passed to the function bxc() by three
parameters n, m and r.

Assumed-shape arrays may also appear in a typedef declaration. For example,

typedef int A[:];
A a; /* ERROR: not function prototype scope */
void funct(A a); /* OK */

Only variables of fixed-length, deferred-shape, or assumed-shape array type can be used as an actual
argument of a formal argument of assumed-shape array type in function parameters. A pointer or pointer

261

15.3. ASSUMED-SHAPE ARRAYS
CHAPTER 15. VARIABLE LENGTH ARRAYS

to array, which does not have the complete shape information, shall not be used as an actual argument of a
formal argument of assumed-shape array type. For example,

funct1(int a[:][:]){
int n=a[1][1], m = a[1][2];
int b[3][4];
int c[n][m];
int *p1, (*p2)[4], (*p3)[:];
void funct3(int a[:][:]);
void funct2(int a[:][:])
{ }
funct2(a); funct3(a); // OK a is assumed-shape array
funct2(b); funct3(b); // OK b is fixed-length array
funct2(c); funct3(c); // OK c is deferred-shape array
funct2(p1); funct3(p1);// ERROR: p1 is pointer
funct2(p2); funct3(p2);// ERROR: p2 is pointer to fixed-length array
funct2(p3); funct3(p3);// ERROR: p3 is pointer to assumed-shape array

}
void funct3(int a[:][:])
{ }

Although complete arrays can be extracted from a pointer to array, they shall not be used as actual
arguments of an assumed-shape array. For example,

void funct1(int a[3]);
void funct2(int a[5][7]);
void funct11(int a[:]);
void funct22(int a[:][:]);
void funct3(int p2[][5][7]){

int a[5][3];
int (*p1)[3];
p1 = a;
funct1(p1[0]); // OK: passed a[0][0], ..., a[0][2]
funct1(p1[1]); // OK: passed a[1][0], ..., a[1][2]
funct1(*(p1+1)); // OK: passed a[1][0], ..., a[1][2]
funct1(a[4]); // OK: passed a[4][0], ..., a[4][2]
funct1(p1+1); // OK: p1+1 is a pointer to array of 3 ints
funct2(p2[1]); // OK: passed p2[1][0][0], ..., p2[1][4][6]

funct11(p1[0]); // ERROR: passing array a[0][0], ..., a[0][2]
funct11(p1[1]); // ERROR: passing array a[1][0], ..., a[1][2]
funct11(*(p1+1));// ERROR: passing array a[1][0], ..., a[1][2]
funct11(a[4]); // ERROR: passing array a[4][0], ..., a[4][2]
funct11(p1+1); // ERROR: p1+1 is a pointer to array of 3 floats
funct22(p2[1]); // ERROR: passing array p2[1][0][0],...,p2[1][4][6]

}

where p1[0], p1[1], *(p1+1), and a[4] are arrays with size of 12 bytes, p2[1] is an array of 140
bytes, and p+1 is a pointer to array with size of 4 bytes.

Assumed-shape array shall not mix with fixed-length or incomplete array type. For example,

262

15.3. ASSUMED-SHAPE ARRAYS
CHAPTER 15. VARIABLE LENGTH ARRAYS

void funct(int a[:][3]);// ERROR: mix assumed-shape with fixed-length
void funct(int a[3][:]);// ERROR: mix assumed-shape with fixed-length
void funct(int a[n][:]);// ERROR: mix assumed-shape with deferred-shape
void funct(int a[:][n]);// ERROR: mix assumed-shape with deferred-shape
void funct(int a[][:]);// ERROR: mix assumed-shape with incomplete

If the operand of a polymorphic operation or function is an element of an assumed-shape array, the data
type of the result and operation depend on the data type of the formal argument. However, if the formal
and actual data types of an argument are different but compatible, the operand will be cast to an operand
with data type of the formal argument before operation takes place. If an element is used as an lvalue, the
rvalue is cast to the data type of the actual argument if they are different. In other words, elements of the
actual array are coerced to the data type of the assumed-shape array at program execution time when they
are fetched whereas they are coerced to data type of the actual argument when they are stored. For example,

float A[3] = {1, 2};
complex Z[3] = {complex(1,0), complex(2,0)};
void funct(float a[:], complex z[:]){

a[2] = a[0] + a[1]; /* addition of floats */
z[2] = z[0] + z[1]; /* addition of complexs */

}
funct(Z, A); /* A[2]==3.0, Z[2]=3.0+i0.0 */

If the formal argument is an assumed shape, the actual argument can also be an assumed-shape array.
For example,

void funct2(complex aa[:], b[:][:], (*c)[6], d[][6], e[4][6]){
aa[1] = b[1][2];

}
void funct1(complex a[:], b[:][:]){

if(real(a[1]) == 0)
funct2(a,b,b,b,b); /* a and b are assumed-shape arrays */

}
int main(){

complex A[2], B[4][6];
funct1(A,B); /* A and B are fixed-length arrays */

}

When the function funct2() is invoked by the function call of funct2(a,b,b,b,b), the memory
allocated for array A in the main routine is used by the assumed-shape array a in the function funct1(),
and subsequently it is passed to the assumed-shape array aa in the function funct2(). An assumed-shape
array can also be used as the actual argument of a pointer to fixed-length array in a function. In the above
example, the memory allocated for array B in the main routine is used as b in the function funct1() and
as b, c, d, e in the function funct2(). Different identifiers a and aa are used for the same array
object allocated at the declaration of array A. But, the same identifier b has been used in both functions
funct1() and funct2() for the array object B. This shows that the names of identifiers are irrelevant to
argument association of functions.

15.3.2 Sizeof

When the operand of sizeof() operation is an assumed-shape array type, the result is the total number of
bytes used to store elements of the array computed at program execution time. Furthermore, since arrays

263

15.3. ASSUMED-SHAPE ARRAYS
CHAPTER 15. VARIABLE LENGTH ARRAYS

of different data types can be passed to assumed-shape arrays, the size of an element of an assumed-shape
array will also be computed at program execution time. For example,

int funct(complex z[:]){
int i, numOfElement;
numOfElement = sizeof(z)/sizeof(z[0]);
return numOfElement; /* sizeof(z)=80, sizeof(z[0])=4 */

}
int main(){

int num;
float a[20];
num = funct(a); /* num == 20 */

}

15.3.3 Other Data Types and Pointer Arithmetic

Assumed-shape arrays of other data types are handled in the same manner as assumed-shape arrays of ints.
For example, the following statement declares that variables a, b, and c are assumed-shape complex arrays
of rank one, two, and three, respectively.

int funct(complex a[:], b[:][:], c[:][:][:]);

Assumed-shape arrays of different data types can be handled in the same manner. For example, in the
following code fragment

char *cc[10]; float **ff[2][4]; double ***dd[3][5][7];
int funct(char *c[:]; float **f[:][:], double ***d[:][:][:]);
funct(cc, ff, dd);

the function prototype

int funct(char *c[:], float **f[:][:], double ***d[:][:][:]);

defines variables c, f, and d as the rank-one assumed-shape array of pointer to char, rank-two assumed-
shape array of double pointer to float, and rank-three assumed-shape array of triple pointer to double, re-
spectively. Arrays cc, ff, and dd are passed to the formal assumed-shape arrays c, f, and d in the
function funct(), respectively. The assumed-shape arrays in a function are handled in the same manner
as fixed-length arrays. For example,

void funct(complex z1[:], z2[:][:]){
complex z, *zp, **zp2;
zptr = z1; /* the address of the array */
zptr = &z1[2]; /* the address of the third element */
/* z2[2][1] -= 1; z1[1] = z2[2][1] + z1[2]; z1[2] += 1; */
z1[1] = --z2[2][1]+z1[2]++;
z = *z1; /* z = z1[0] */
z = *(z1+5); /* z = z1[5] */
z = **z2; /* z = z2[0][0] */
zp = z2[2]; /* zp = &z2[2][0] */
zp2 = (complex **)z2;

264

15.4. POINTERS TO ARRAY OF ASSUMED-SHAPE
CHAPTER 15. VARIABLE LENGTH ARRAYS

/* z2[1][1] = z2[1][3] + z2[2][3] - z2[2][4]; */
zp2[1][1] = z2[1][3]+ *(*(z2+2)+3) - *(4+*(z2+2));
/* z2[2][3] = z2[1][3] + z2[2][3] */

((z2+2)+3) = z2[1][3]+ *(3+*(z2+2));
}

15.4 Pointers to Array of Assumed-Shape

15.4.1 Declaration

A pointer type may be derived from a function type, and object type, or an incomplete type, called the
reference type. A pointer type describes an object whose value provides a reference to an entity of the
reference type. A pointer type derived from the reference type T is sometimes called “pointer to T.” The
construction of a pointer type from a referenced type is called “pointer type construction.”

If, in the declaration “T D1” described in section 15.1.2, D1 has the form
* type-qualifier-listopt D

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T,” then the type
specified for ident is “derived-declarator-type-list pointer to T.” For each type qualifier in the list, ident is a
so-qualified pointer.

Pointers to array of fixed-length is declared as
T (*D)[assignment-expression]

where T contains the declaration specifiers that specify a type and the assignment expression is an integral
constant expression. For example,

int (*p1)[3]; /* p1 is pointer to array of 3 ints */
int *(*p2)[3]; /* p2 is pointer to array of 3 pointer to int */
int (*p3)[3][4]; /* p3 is pointer to 3x4 array of ints */
int *(*p4)[3][4]; /* p4 is pointer to 3x4 array of pointer to int */

Pointers to array of assumed-shape are declared as
T (*D)[:]

where T contains the declaration specifiers that specify a type. For example,

int (*p1)[:]; /* OK */
int (*p2)[:][:]; /* OK */
int *(*p3)[:][:]; /* OK */
int n = 8;
int (*p4)[3][:]; /* ERROR: mix fixed-length with assumed-shape */
int (*p5)[:][3]; /* ERROR: mix fixed-length with assumed-shape */
int (*p6)[n][:]; /* ERROR: mix deferred-shape with assumed-shape */
int (*p7)[:][n]; /* ERROR: mix deferred-shape with assumed-shape */
int (*p8)[][:]; /* ERROR: mix deferred-shape with incomplete type */

where p1 is pointer to array of assumed-shape of rank 1 with int type, p2 is pointer to array of assumed-
shape of rank 2 with int type, and p3 is pointer to array of assumed-shape of rank 2 with pointer to int
type.

The shape of the array pointed to by a pointer to assumed-shape array is determined at program execution
time. A pointer to assumed-shape array is sometimes called a fat pointer since it can store more information
than a pointer to object of scalar type or a pointer to array of fixed-length at program execution time.

265

15.4. POINTERS TO ARRAY OF ASSUMED-SHAPE
CHAPTER 15. VARIABLE LENGTH ARRAYS

15.4.2 Constraints and Semantics

Except for pointer to assumed-shape array type, a pointer to void may be converted to or from a pointer to
any incomplete or object type. A pointer to any incomplete or object type, except pointer to assumed-shape
array type, may be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

For any qualifier q, a pointer to non-q-qualified type may be converted to a pointer to the q-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

An integral constant expression with the value 0, or such an expression cast to type void *, is called
a null pointer. If a null pointer constant is assigned to or compared for equality to a pointer, the constant is
converted to a pointer of that type. Such a pointer, called a null pointer, is guaranteed to compare unequal
to a pointer to any object or function.

Two null pointers, converted through possibly different sequences of casts to pointer types, shall compare
equal.

When a null pointer is converted to a pointer to array of assumed-shape, a null pointer is installed at the
base pointer of the assumed-shape array and the bounds of the assumed-shape array are undefined.

An array, including fixed-length array, deferred-shape array, and assumed-shape array, may be converted
to a pointer to assumed-shape array. A pointer to array of fixed-length or pointer to array of assumed-shape
may also be converted to a pointer to assumed-shape array. The base pointer to array and all bounds are
stored in the pointer to assumed-shape array. All other pointer types that do not have the array shape
information shall not be converted to a pointer to array of assumed-shape. For example,

void funct(int a[:][:], p1[2][4], (*p2)[4], p3[][4], n, m){
int *p;
int b[3][4];
int c[n][m];
int (*p4)[4];
int (*p5)[:];
int (*p6)[:];
p6 = NULL;
p6 = a; /* OK: a is an assumed-shape array */
p6 = b; /* OK: b is a fixed-length array */
p6 = c; /* OK: c is a deferred-shape array */
p6 = p1; /* OK: p1 is a pointer to array of fixed-length */
p6 = p2; /* OK: p2 is a pointer to array of fixed-length */
p6 = p3; /* OK: p3 is a pointer to array of fixed-length */
p6 = p4; /* OK: p4 is a pointer to array of fixed-length */
p6 = p5; /* OK: p5 is a pointer to array of assumed-shape */
p4 = p; /* WARNING: array bounds do not match */
p6 = p; /* ERROR: p is not array type */

}

For two pointer types to be compatible, both shall be identically qualified and both shall be pointers to
compatible types. For two pointers to fixed-length array to be compatible, both shapes of array pointed to by
the pointer shall be the same. For two pointers to assumed-shape array to be compatible, both ranks of the
array pointed to by the pointer shall be the same and the shapes shall evaluate to the same value at program
execution time. For example,

void funct(int a[:], b[:][:][:], (*p1)[4][5], p2[3], n, m){

266

15.4. POINTERS TO ARRAY OF ASSUMED-SHAPE
CHAPTER 15. VARIABLE LENGTH ARRAYS

int c[3][4][5];
int d[n][m][m];
int (*p3)[4][5];
int (*p4)[:];
p4 = a; /* ERROR: incompatible, wrong rank */
p4 = b; /* ERROR: incompatible, wrong rank */
p4 = p1; /* ERROR: incompatible, wrong rank */
p4 = p2; /* ERROR: incompatible, wrong rank */
p4 = c; /* ERROR: incompatible, wrong rank */
p4 = d; /* ERROR: incompatible, wrong rank */
p3 = p4; /* WARNING: incompatible, wrong rank */

}

When a pointer to array of assumed-shape is converted to any other pointer to object or to a scalar value,
only the base pointer to assumed-shape array is used.

char c, *cp;
int i, *ip;
float f, *fp;
int (*ap)[4];
int (*p)[:];
c = (char) p; /* OK */
cp = (char *) p; /* OK */
i = (int) p; /* OK */
ip = (int*) p; /* OK */
ip = p; /* OK */
f = (float) p; /* OK */
fp = (float*) p; /* OK */
ap = p; /* OK */

15.4.3 Function Prototype Scope

A pointer to assumed-shape array can be used as an argument parameter of a function to pass arrays of
different size to the function. For example,

void funct(int (*)[:]);
void funct(int (*dummy)[:]);
void funct(int (*p)[:]);
int a[3][4], b[4][3];
int (*p1)[:];
funct(a,3,4); /* passing fixed-length array a[3][4] */
funct(b,3,4); /* passing fixed-length array b[4][3] */
p1 = a;
funct(p1,3,4); /* passing fixed-length array a[3][4] */
funct(NULL,0,0); /* passing NULL */
void funct(int (*p)[:], n, m){

int i, j;
int a[n][m];
if(p == NULL)

267

15.4. POINTERS TO ARRAY OF ASSUMED-SHAPE
CHAPTER 15. VARIABLE LENGTH ARRAYS

return;
for(i=0; i<n; i++)
for(i=0; i<m; i++)
a[i][j] = p[i][j];

}

Arrays of deferred-shape and assumed-shape can also be passed to a pointer to array of assumed-shape.
For example,

void funct1(int a[:][:], n, m){
int b[n][m];
void funct2(int (*p)[:])
{
int i, j;
int c[n][m];
if(p == NULL)
return;

for(i=0; i<n; i++)
for(i=0; i<m; i++)
c[i][j] = p[i][j];

}
funct2(a); /* a is an assumed-shape array */
funct2(b); /* b is a deferred-shape array */

}

15.4.4 Typedef

The assumed-shape array and pointer to assumed-shape array are handled in the same manner as the fixed-
length array and pointer to fixed-length array in typedef declarations. For example,

typedef int A[5];
typedef int B[:];
A a; // OK: int a[5]
A *ap; // OK: int (*ap)[5]
B b; // ERROR: not function prototype scope for ’int b[:]’
B *bp; // OK: int (*bp)[:]
/* void funct(int a[5], (*ap)[5], int b[:], (*bp)[:]); */
void funct(A a, *ap, B b, *bp); // OK

where a is an assumed-shape array and ap is a pointer to assumed-shape array.

15.4.5 Arrays Allocated by Dynamic Memory Allocation Functions

Arrays can be dynamically allocated as shown in the following example.

funct(int n, int m){
double a[n][m];
double (*p1)[:] = a; // OK p[i][j] = a[i][j]
double (*p2)[:] = (double [n][m])malloc(sizeof(double)*n*m);// OK
double (*p3)[:] = (double [][m])malloc(sizeof(double)*n*m);// OK

268

15.4. POINTERS TO ARRAY OF ASSUMED-SHAPE
CHAPTER 15. VARIABLE LENGTH ARRAYS

double (*p4)[:] = (double [][m])malloc(sizeof(double)*n*m); // OK
/* ERROR: pointer to deferred-shape array is not allowed */
double (*p5)[:] = (double(*)[m])malloc(sizeof(double)*n*m);// ERROR

}

where a is a deferred-shape array, and p1, p2, and p3 are pointers to assumed-shape array of double data
type. All memories pointed to by p1, p2, p3, and p4 are dynamically allocated. But, memories for
p2, p3, and p4 are obtained explicitly by the memory allocation function malloc().

15.4.6 Similarities between Pointers to Fixed-Length Array and Pointers to Assumed-Shape
Array

A pointer to array of assumed-shape behaves very much like a pointer to array of fixed-length. For example,
as a pointer, it should be pointed to an object before its elements can be referenced. Some other points that
may be not so straightforward at the first sight will be clarified in this section.

Static and Automatic Storage Duration

Unlike deferred-shape arrays, there is no restriction on the scope where a pointer to array of assumed-shape
can be declared. It can be declared with either static storage duration or automatic storage duration. For
example,

int (*p1)[:];
extern int (*p2)[:];
static int (*p3)[:];
int main(){

int (*p4)[:];
static (*p5)[:];
extern int (*p1)[:];

}

Initialization

A pointer to array of assumed-shape can be initialized at both compilation and program execution time. For
example,

int a[3][4];
int (*p1)[:] = NULL; /* runtime initialization */
extern int (*p2)[:];
static int (*p3)[:] = NULL; /* runtime initialization */
int main(){

int b[3][4];
int (*p4)[:] = NULL; /* compile time initialization */
int (*p5)[:] = b; /* compile time initialization */
int (*p6)[:] = p1; /* compile time initialization */
static (*p7)[:] = a; /* runtime initialization */
static (*p8)[:] = p1; /* runtime initialization */
static (*p8)[:] = b; /* ERROR: b is variable of auto class */

}

269

15.4. POINTERS TO ARRAY OF ASSUMED-SHAPE
CHAPTER 15. VARIABLE LENGTH ARRAYS

Members of Structures and Unions

Not only ordinary identifiers, but also members of classes, structures and unions, can be declared as pointer
to array of assumed-shape. For example,

struct tag1{
int (*p1)[3]; /* pointer to fixed-length array */
int (*p2)[:]; /* pointer to assumed-shape array */

};
int main(){

struct tag2{
int (*p1)[3]; /* pointer to fixed-length array */
int (*p2)[:]; /* pointer to assumed-shape array */

} s;
}

where the structure tag1 has static storage duration and structure tag2 has automatic storage duration. In
the interactive commands executed in a Ch shell below, member s.a first shares the same memory as array
a1, then shares the memory of array a2.

> struct tag{ int (*a)[:];} s
> int a1[2][3] = {1,2, 3, 4, 5, 6}, a2[3][4]
> s.a = a1; // s.a and a1 share the memory
> a1[1][1]
5
> s.a[1][1]
5
> s.a = a2; // s.a and a2 share the memory
s.a[1][1] = 10
> a2[1][1]
10
> a1[1][1]
5

Sizeof

The size of a pointer to array of assumed-shape is the same as the size of a pointer to array of fixed-length.
The size of a pointer to array of assumed-shape is the same as the size of the pointer to the data type of the
array, which is evaluated at compile time. For example,

int (*a)[5];
int (*p1)[:];
int main(){

int (*b)[5];
int (*p2)[:];
void funct(int (*p3)[:], (*p4)[:][:])
{
int i;
i = sizeof(a); /* i == 4 */
i = sizeof(b); /* i == 4 */

270

15.5. ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS
CHAPTER 15. VARIABLE LENGTH ARRAYS

i = sizeof(p1); /* i == 4 */
i = sizeof(p2); /* i == 4 */
i = sizeof(p3); /* i == 4 */
i = sizeof(p4); /* i == 4 */

}
}

Other Data Types and Pointer Arithmetic

Pointers to array of assumed-shape of different data type can be declared in the same manner as pointers to
array of assumed-shape of int. For example,

void funct(int n){
char (*cp1)[:], *(*cp2)[:], **(*cp3)[:];
int (*ip1)[:], *(*ip2)[:], **(*ip3)[:];
float (*fp1)[:], *(*fp2)[:], **(*fp3)[:];
double (*dp1)[:], *(*dp2)[:], **(*dp3)[:];
complex (*zp1)[:], *(*zp2)[:], **(*zp3)[:];

}

The pointer arithmetic related to pointers to array of fixed-length is still valid for pointers to array of
assumed-shape. For example,

int main(){
int i=2, j=3;
int n=4, m=5;
int a[4][5];
int (*p)[:]
p = a;
p[i][j] = 90; /* a[i][j] = 90 */

(p[i]+j) = 90; / a[i][j] = 90 */

((p+i)+j) = 90; /* a[i][j] = 90 */

*(&p[0][0]+i*m+j) = 90; /* a[i][j] = 90 */

*((int *)p[i]+j) = 90; /* a[i][j] = 90 */

*((int *)(p+i)+j) = 90; /* a[i][j] = 90 */

*((int *)p+i*m+j) = 90; /* a[i][j] = 90 */
i = p[n-1] - p[n-2]; /* i == m */

}

15.5 Arrays with Explicit Lower and Upper Bounds

As one can see from the previous sections, it is painful to handle arrays of variable subscript range in C, espe-
cially for high dimensional arrays. For arrays of different data type or different dimension, different memory
allocation and deallocation functions equivalent to mallocMatrix() and freeMatrix() have to be
used. Evidently, in order to evolve C as a major player in the numerical computing world, simple mech-
anisms must be designed to handle variable length arrays with variable subscript ranges. In this section,
such simple mechanisms for handling variable length arrays with explicit lower and upper bounds as they
are currently implemented in the Ch programming language will be described. It should be emphasized that
new features presented here will not break the C standard and existing C code.

271

15.5. ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS
CHAPTER 15. VARIABLE LENGTH ARRAYS

15.5.1 Arrays of Fixed Subscript Range

An array with specified lower bounds shall be declared in one of the following forms:

T D[lower:upper] (15.11)

T D[expr] (15.12)

T D[lower:] (15.13)

(15.14)

where T contains the declaration specifiers that specify a type such as int, D is a declarator that contains
an identifier ident, lower is the lower bound of the array, upper is the upper bound, and expr is the
number of the elements of the array. The expressions lower, upper and expr shall be of integral type.
For example,

int a[1:3], b[0:2][1:5], *c[1:3][1:4][0:5];

where the lower and upper bounds of array a are 1 and 3, respectively. Elements a[0] and a[4] are out
of the array boundary.

If the lower bound is not present in declaration (15.12), zero is used as the default value for the lower
bound of the array. The upper bound is the value inside delimiters [and] minus 1, which is expr-1. For
example,

int b[0:2][5]; /* equivalent to int b[0:2][0:4] */
int a[3]; /* equivalent to int a[0:2] */
int *c[1:3][4][0:5]; /* equivalent to int *c[1:3][0:3][0:5]; */

where the lower and upper bounds of array a are 0 and 2, respectively. Elements a[-1] and a[3] are out
of the array boundary.

Both lower and upper bounds may be negative integral values. For example,

int a[-5:5], b[-5:0], c[-10:-5];

For arrays of fixed subscript range, both lower and upper expressions are constant integral values. The upper
bound shall evaluate to a value greater than the lower bound. For example,

#define N 0
float ff = 5;
int a[5.0]; /* ERROR: expression double type*/
int b[ff]; /* ERROR: expression float type */
int c[0]; /* ERROR: lower and upper bounds are equal */
int d[N]; /* ERROR: lower and upper bounds are equal */
int e[5:5]; /* ERROR: lower and upper bounds are equal */
int f[5:0]; /* ERROR: upper is not greater than lower */
int g[5:-5]; /* ERROR: upper is not greater than lower */

When the upper bound is not present such as in declarations (15.13) the array type is an incomplete type.
If there is no expression inside delimiters [and], the lower bound is the default value 0. For example,

/* incomplete array completed by external linkage
same as extern int a[0:], b[0:][5]; */

272

15.5. ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS
CHAPTER 15. VARIABLE LENGTH ARRAYS

extern int a[], b[][5];
extern int c[1:], b[1:][1:5]; /* completed by external linkage */
void funct1(int e[]); /* completed by function call */
void funct2(int f[][5]); /* completed by function call */
void funct3(int g[1:]); /* completed by function call */
void funct4(int h[1:][1:5]); /* completed by function call */
void funct5(int i[1:][5]); /* completed by function call */
int j[] = {1,2,3}; /* completed by initialization */
int k[][2] = {{1,2}, {3,4}}; /* completed by initialization */
int l[1:] = {1,2,3}; /* completed by initialization */
int m[1:][2] = {{1,2}, {3,4}};/* completed by initialization */
int a[3], b[4][5]; /* external linkage */
int c[1:3], b[1:4][1:5]; /* external linkage */

Details about passing arrays with specified lower bounds in functions funct3(), funct4() and funct5()
will be described in the next section.

Arrays shall not be declared with an upper bound alone without a lower bound. For example,

int a[:5]; /* ERROR: without lower bound */
int funct(int b[:5]); /* ERROR: without lower bound */

There is a strong relation between pointers and arrays in C. The variable name of an array in an expres-
sion is also a pointer to the memory for the first element of the array. This strong tie between pointer and
array is retained. If the lower bound of an array is zero, all semantics about the array name as a pointer
remain the same. For example, a subscript is equivalent to an offset from a pointer.

int a[5], b[0:4], *p;
p = &b[0]; /* p = b */

*(a+0) = *(b+0); /* a[0] = b[0] */

*(a+4) = *(b+4); /* a[4] = b[4] */

*(p+1) = p[1]*2; /* b[1] = b[1]*2 */

But, when the lower bound of an array is not zero, there is a difference between the array subscripting and
pointer arithmetic. A subscript is equivalent to an offset from a pointer minus the lower bound of the array.
For example,

#define i 1
int b[i:5], *p, j=3;
p = &b[i]; /* p = b */

(b+j) = b[j]; / b[j+i] = *(b+j-i) */

(p+j) = b[j]; / p[j] = *(b+j-i) */

The same principle can be applied to multi-dimensional arrays, For example,

#define n 1
#define m 2
int a[n:8][m:9], i=3, j=4;
a[i][j] = 90;

(&a[i][j]) = 90; / a[i][j] = 90 */

273

15.5. ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS
CHAPTER 15. VARIABLE LENGTH ARRAYS

(a[i]+j-m) = 90; / a[i][j] = 90 */

((a+i-n)+j-m) = 90; /* a[i][j] = 90 */

*((int *)a[i]+j-m) = 90; /* a[i][j] = 90 */

*((int *)(a+i-n)+j-m) = 90; /* a[i][j] = 90 */

*((int *)a+(i-n)*(9-m+1)+j-m) = 90; /* a[i][j] = 90 */

(&a[n][m]+(i-n)(9-m+1)+j-m) = 90; /* a[i][j] = 90 */
i = a[i+1] - a[i]; /* i = 9-m+1 is 8 */

Pointers to array with explicit lower and upper bounds can be handled in the same manner. For example,

int a[3][1:5], b[0:5][1:5];
int (*p)[1:5];
p = a; /* p[i][j] = a[i][j] */
p = b; /* p[i][j] = b[i][j] */

where p is a pointer to array of 10 elements with lower bound 1. In the next section, we will describe how
to use a pointer to assumed-shape array so that elements p[i][j] and a[i][j] refer to the same object
when the pointer p points to array a. And elements p[i][j] and b[i][j] also refer to the same object
when the same pointer p points to array b.

Arrays with explicit lower and upper bounds can be used in casting operations. For example,

int a[3][1:5], b[1:5][2:6];
int (*p)[1:5];
p = (int (*)[1:5])a; /* p[i][j] == a[i][j] */
p = (int (*)[1:5])b; /* p[i][j] == b[i][j+1] */
p = (int (*)[1:5])malloc(3*5*sizeof(int)); free(p);
p = (int [][1:5])malloc(3*5*sizeof(int)); free(p);
p = (int [0:][1:5])malloc(3*5*sizeof(int));

Arrays with explicit lower and upper bounds can be used in typedef declaration. For example,

typedef int A[1:5];
A a; /* int a[1:5] */

For two array types to be compatible, both shall have compatible element types and the same shape. Only if
both lower and upper bounds of the subscript for each dimension of two arrays are the same, the shapes of
these two arrays are said to be the same. For example,

extern int a[3], c[0:2], b[1:5];
int a[0:2], c[3]; // OK
int b[5]; // ERROR
int funct(int aa[1:3]);
int funct(int aa[0:2]); // ERROR: change array bounds
int e[3][1:5], f[10][1:5], g[3][5], h[1:3][1:5], i[3][0:5];
int (*p)[1:5];
p = e; // OK: compatible
p = f; // OK: compatible
p = g; /* incompatible second dimension p[i][j+1] == g[i][j],

274

15.5. ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS
CHAPTER 15. VARIABLE LENGTH ARRAYS

no warning or error message */
p = h; /* incompatible first dimension p[i][j] == h[i+1][j],

no warning or error message */
p = i; // WARNING: incompatible second dimension p[i][j+1] != i[i][j]

Note that elements p[i][j+1] and g[i][j] refer to the same object because the extent of value 5 for
the second dimension of the arrays is the same. But, elements p[i][j+1] and i[i][j] do not refer to
the same object.

15.5.2 Arrays of Variable Subscript Range

Arrays of variable length whose size is known only at program execution time have been presented in the
previous sections. The variable length array type includes deferred-shape array, assumed-shape array, and
pointer to assumed-shape array. This variable length array type will be extended with explicit lower and
upper bounds in this section. All syntax and semantics of deferred-shape arrays and pointers to assumed-
shape arrays described in the previous sections are still valid. The semantics of assumed-shape arrays remain
the same whereas its syntax has been modified, which will be described in the next section.

Arrays of Deferred Subscript Range

If the lower or upper bound of the array subscript is a nonconstant integral expression, it is evaluated at
program execution time and the array type is array of deferred subscript range. For example,

int funct(int n, int m) {
int i = n;
int a[n:m], b[i:m], c[-n:2*m][i:n+m];
int d[1:n], e[n:10], f[1:5][0:n];

}

where a, b, c, d, e, and f are arrays of deferred subscript range. The upper bound of an array of
deferred subscript range shall evaluate to a value greater than the value of lower bound at runtime. For
example,

int funct(int n, int m) {
int a[n:m];

}
funct(1,5); // OK: int a[1:5]
funct(5,1); // ERROR: int a[5:1]
funct(5,5); // ERROR: int a[5:5]

Because arrays of deferred subscript range are also arrays of deferred-shape, all constraints and semantics
about deferred-shape arrays described in the previous sections can be applied to arrays of deferred subscript
range. For example, pointers to arrays of deferred subscript range shall not be declared.

/* ERROR: pointer to deferred-shape array */
int funct(int n, int m, int a[n:m], int (*b)[n:m]) {
int (*p1)[n:m]; // ERROR: pointer to deferred-shape array
int (*p2)[1:m]; // ERROR: pointer to deferred-shape array
int (*p3)[n][1:m]; // ERROR: pointer to deferred-shape array

}

275

15.5. ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS
CHAPTER 15. VARIABLE LENGTH ARRAYS

Arrays of deferred subscript range shall not mix with incomplete array type. For example,

int n=4, m=5;
int a[][n:m]={{1,2}, {3,4}}; // ERROR: initialization
int b[1:][n:m]={{1,2}, {3,4}}; // ERROR: initialization
int funct(int n, int m, c[][n:m]); // ERROR: func parameter scope
int funct(int n, int m, d[1:][n:m]);// ERROR: func parameter scope
int funct(int n, int m, e[n:][n:m]);// ERROR: func parameter scope
extern int f[][n:m]; // ERROR: static storage duration
extern int g[1:][n:m]; // ERROR: static storage duration

Pointers to Assumed-Shape Array

A pointer to array of fixed-length shall be declared as

T (*D)[expr] (15.15)

where T contains the declaration specifiers that specify a type and D is a declarator that contains an identifier
ident. The expression expr shall be constant integral type. A pointer to array of assumed-shape shall be
declared in one of the following two forms:

T (*D)[:] (15.16)

T (*D)[lower:] (15.17)

The expression lower for the lower bound of the array shall be constant integral type. For example,

int n=10;
int (*p1)[:]; /* OK */
int (*p2)[:][:]; /* OK */
int *(*p3)[:][:]; /* OK */
int (*p4)[3][:]; /* ERROR: mix with fixed-length */
int (*p5)[n][:]; /* ERROR: mix with deferred-shape */
int (*p5)[n:]; /* ERROR: mix with deferred-shape */
int (*p6)[][:]; /* ERROR: mix with incomplete */

When the shape of an array is assumed by a pointer to assumed-shape array, both lower and upper bounds
of the subscript of the assumed array will be assumed. For example,

int n=3, m=4;
int a[3][4], b[1:n][1:m], c[3][1:4];
int (*p)[:];
p = a; /* p[i][j] == a[i][j] */
p = b; /* p[i][j] == b[i][j] */
p = c; /* p[i][j] == c[i][j] */

The declaration (15.17) with a specified lower bound shall be used only at the function parameter scope, and
nowhere else. For example,

276

15.6. PASSING ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS TO FUNCTIONS
CHAPTER 15. VARIABLE LENGTH ARRAYS

int a[1:3][1:4];
int (*p1)[1:4]; /* OK: pointer to fixed-length array */
int (*p2)[1:]; /* ERROR: pointer to incomplete array

not at function parameter scope */
p1 = a; /* OK */
p2 = a; /* ERROR */

In this example, variable p1 is a pointer to array of 3 elements of int type with unit-offset. Declaration
of variable p2 is invalid. Since p2 were invalid, no consistent grammar can be composed for assignment
statement p2 = a for the lower bounds of the array. The problem is that, for a variable of pointer such
as p2, the lower bound for the subscript through an indirection operation of the pointer cannot be provided
explicitly in declaration of the variable according to its declaration specification. Therefore, for consistency,
no lower bound of the subscript shall be specified in a pointer to assumed-shape array except when a pointer
to assumed-shape array is declared at the function parameter scope, which will be described in the next
section. All other constraints and semantics about a pointer to assumed-shape array described in the previous
sections are still valid. For example, pointers to assumed-shape array can be used to access arrays allocated
dynamically.

int funct(int n, int m) {
double a[1:n][1:m];
/* OK */
double (*p1)[:] = a;
double (*p2)[:] = (double [1:n][1:m])a;
double (*p3)[:] = (double [1:n][1:m])malloc(n*m*sizeof(double));
double (*p4)[:] = (double [1:][1:m])malloc(n*m*sizeof(double));
double (*p5)[:] = (double [][1:m])malloc(n*m*sizeof(double));
/* ERROR */
double (*p6)[:] = (double (*)[1:m])malloc(n*m*sizeof(double));

}

In this example, the casting operation (double [][1:m]) is the same as (double [0][1:m]) or
(double [0:][1:m]). A pointer to deferred-shape array is erroneously used in the last programming
statement of funct().

15.6 Passing Arrays with Explicit Lower and Upper Bounds to Functions

In this section, we will describe the linguistic features of passing arrays with explicit lower and upper bounds
to functions. All syntax and semantics presented in this section will not break the C standard and existing C
code.

15.6.1 Passing Arrays of Fixed Subscript Range

When passing arrays of fixed subscript range to a function, the actual passed array argument in the called
function shall be compatible with the array argument declared at the function parameter scope. Both shall
have compatible element types and the same shape. For example,

int a[1:3][1:5], b[0:3][1:5], c[3][1:5], d[1:3][1:6], e[1:3];
float f[1:3][1:5];

277

15.6. PASSING ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS TO FUNCTIONS
CHAPTER 15. VARIABLE LENGTH ARRAYS

int funct(int aa[1:3][1:5]);
funct(a); /* OK */
funct(b); /* WARNING: incompatible first dimension */
funct(c); /* incompatible first dimension c[i][j] == aa[i+1][j]

no warning or error message */
funct(d); /* WARNING: incompatible second dimension */
funct(e); /* WARNING: incompatible shape */
funct(f); /* WARNING: incompatible data type */

When the lower bound of the subscript of an array is not present, the default value is 0. Although the first
dimension of the array is incompatible in the function call func(c), no warning message will be produced
because a meaningful relation between arrays in the calling function and called function can be established
if the extents of the associated arrays are the same. If the extents are different, a warning message will be
generated for incompatibility. For example,

int a[3][1:5], b[0:2][1:5], c[1:3][1:5];
int funct1(int aa[3][1:5]);
int funct2(int (*bb)[1:5]);
funct1(a); /* OK */
funct1(b); /* OK */
funct1(c); /* incompatible first dimension c[i+1][j] == aa[i][j]

no warning or error message */
funct2(a); /* OK */
funct2(b); /* OK */
funct2(c); /* incompatible first dimension c[i+1][j] == bb[i][j]

no warning or error message */

An array name in the declaration of a function parameter is treated as a pointer to the first element of the
array. However, an array name can be used to specify the lower bound of an array in the function parameter.
The incomplete array type can be used at the function parameter scope. The incomplete array will be
completed at the time of function call. For example,

int a[1:5], b[1:10], c[0:5], d[3];
int funct(int aa[1:]);
funct(a); /* OK */
funct(b); /* OK */
funct(c); /* Ok */
funct(d); /* OK */

It will be discussed in the next section that an incomplete one-dimensional array in the function parameter
scope is treated as a pointer to assumed-shape array. Therefore, it is compatible to pass arrays of differ-
ent subscript range to an incomplete one-dimensional array. The incomplete array type can be used for
multi-dimensional arrays as well. The extents of the first dimension of the associated incomplete multi-
dimensional arrays will not be checked for compatibility. For example,

int a[1:3][1:5], b[1:2][1:5], c[0:3][1:5], d[1:3][5], e[1:3][0:5];
int funct(int aa[1:][1:5]);
funct(a); /* OK */
funct(b); /* OK */

278

15.6. PASSING ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS TO FUNCTIONS
CHAPTER 15. VARIABLE LENGTH ARRAYS

funct(c); /* incompatible first dimension c[i][j] == aa[i+1][j]
no warning or error message */

funct(d); /* incompatible second dimension d[i][j] == aa[i][j+1]
no warning or error message */

funct(e); /* WARNING: incompatible second dimension */

When arrays of variable length are passed to arrays of fixed subscript range, the compatibility about shape
could be checked at runtime. For example,

int n = 3, m = 4;
int a[1:n][1:m], b[n][1:m], c[0:n][1:m], d[1:n][0:m], e[1:n][1:m+1];
int funct(int aa[1:3][1:4]);
funct(a); /* OK */
funct(b); /* incompatible first dimension b[i][j] == aa[i+1][j]

no warning or error message */
funct(c); /* WARNING: incompatible first dimension */
funct(d); /* WARNING: incompatible second dimension */
funct(e); /* WARNING: incompatible second dimension */

At the current implementation, the runtime checking is disabled. Therefore, the warning messages shown in
the above program will not be produced. Because the shape of a pointer to assumed-shape array is assumed
at execution time, the compatibility could also be checked at runtime. For the same reason, the warning
messages are suppressed in the following sample code.

int n = 3, m = 4;
int a[1:3][1:4], b[3][1:4], c[0:3][1:4], d[1:n][1:m], e[1:n][0:m];
int (*p)[:];
int funct(int aa[1:3][1:4]);
p = a;
funct(p); /* OK */
p = b;
funct(p); /* incompatible first dimension p[i][j] == aa[i+1][j]

no warning or error message */
p = b;
funct(p); /* WARNING: incompatible first dimension */
p = d;
funct(p); /* OK */
p = e;
funct(p); /* WARNING: incompatible second dimension */

15.6.2 Passing Arrays of Variable Subscript Range Using Pointers to Assumed-Shape Ar-
ray

In the previous section, array shapes passed to a function are fixed except for the upper bound of the first
dimension of the array passed to an incomplete array type. In this section, linkages for passing variable
length arrays with explicit lower and upper bounds will be described.

To pass variable length arrays with variable subscript range to a function, a pointer to assumed-shape
array can be used. At the function parameter scope, the following declaration, for a pointer to assumed-shape

279

15.6. PASSING ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS TO FUNCTIONS
CHAPTER 15. VARIABLE LENGTH ARRAYS

array can be used:

T (*D)[lower:] (15.18)

T (*D)[:] (15.19)

T D[lower:] (15.20)

T D[:] (15.21)

where T contains the declaration specifiers that specify a type, D is a declarator that contains an identifier
ident, and lower of constant integral type is the lower bound of the array. Declaration (15.20) allows
specification of the lower bound of the first dimension of the array parameter in the function argument. If
the lower bound is not present such as in declarations (15.19) and (15.21), the default value 0 is used. That
is, T (*D)[:] is equivalent to T (*D)[0:] and T D[:] is equivalent to T D[0:]. All linguistic
features about pointers to assumed-shape array described in the previous sections can be applied to pointers
to assumed-shape array with explicit array bounds as if the lower bound were zero. Therefore, we only
highlight new features related to explicit array bounds in the following presentation. An array name in the
declaration of a function parameter is treated as a pointer to the first element of the array. In declaration
(15.20), the lower bound of an array parameter of a function argument is specified. For example,

int funct1(int a[1:]); // OK: pointer to assume-shape (pass)
int funct2(int a[1:][1:]); // OK:
int funct3(int a[1:][:]); // OK: pass a[1:][0:]
int funct4(int a[:][1:]); // OK: pass a[0:][1:]
int funct5(int a[:][:]); // OK: pass a[0:][0:]
int funct6(int a[][:]); // OK: pass a[0:][0:]
int funct7(int a[][1:]); // OK: pass a[0:][1:]
int funct8(int (*a)[1:]); // OK: pass a[0:][1:]
int funct9(int (*a)[:]); // OK: pass a[0:][0:]
int funct11(int a[0:]); // OK:
int funct12(int a[]); // OK: incomplete array type as pass

// the same as int funct11(int a[0:]);
int funct13(int a[:][5]); // OK: incomplete array type a[0:][5]
int funct14(int a[1:][5]); // OK: incomplete array type
int funct15(int a[1:][1:5]); // OK: incomplete array type
int funct16(int a[1:][1:5]); // OK: incomplete array type
/* ERROR: fixed-length array no upper bound */
int funct17(int a[1:5][1:]);
int funct18(int a[5][1:]);
int funct19(int a[1:][1:][5]);
int funct20(int a[:5]); // ERROR: upper bound only
int funct21(int n, int m, int a[n:m]);// ERROR: deferred-shape array
int a[:], b[:][:]; // ERROR: not in function prototype scope

A one-dimensional incomplete array in a function parameter is treated as a pointer to assumed-shape array
internally as shown in funct12() in the above example. But, one-dimensional incomplete arrays in
external linkage and initialization are treated as fixed-length arrays.

Passing arrays of different lower bounds to a pointer to assumed-shape array is not considered to be
incompatible. The upper bound of a pointer to assumed-shape array inside a called function will be adjusted
at function call. The upper bound is the sum of the extent of the passed array and the lower bound of

280

15.6. PASSING ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS TO FUNCTIONS
CHAPTER 15. VARIABLE LENGTH ARRAYS

the declared pointer to assumed-shape array at the function parameter. For example, in the following code
fragment,

#define low 1
int n = 3, m = 5;
int a[n:m], b[n:2*m];
int funct(int aa[low:]);
funct(a); /* OK */
funct(b); /* OK */

the lower bound of array aa inside function funct() is 1 and the upper bound is 4, equal to low+m-n+1
for the function call of funct(a). For the function call of funct(b), the lower bound of array aa inside
function is still 1, but the upper bound becomes 9, equal to low+2*m-n+1.

The dynamic adjustment of the upper bound allows arrays of different subscript range to be passed to
a function, which is not feasible using arrays of fixed subscript range described in the previous section.
Using a pointer to assumed-shape array, only the upper bounds need to be explicitly passed to a function
as additional parameters. This dynamic feature is useful for numerical computing. For example, when a
FORTRAN function with arrays of unit-offset parameters are ported, the function can be called by passing
both traditional C arrays with zero-offset and FORTRAN-style arrays with unit-offset. For example,

int n=3, m=4;
int a[n][m], b[1:2*n][1:2*m];
int funct(int aa[1:][1:], int n, int m) {
int i, j;
for(i=1; i<=n; i++)
for(j=1; j<=m; j++)
aa[i][j] += 2;

}
funct(a, n, m); /* passing a[0:2][0:3] */
funct(b, 2*n, 2*m); /* passing b[1:6][1:8] */

Similarly, a function with parameters of zero-offset array can be called with arguments of unit-offset array.
For example,

int n=3, m=4;
int a[n][m], b[1:2*n][1:2*m];
int (*p)[:] = a;
int funct(int aa[:][:], int n, int m);
int funct(int [:][:], int, int); /* OK */
int funct(int bb[:][:], int l, int r); /* OK */
int funct(int aa[:][:], int n, int m) {
int i, j;
for(i=0; i<=n-1; i++)
for(j=0; j<=m-1; j++)
aa[i][j] += 2;

}
funct(a, n, m); /* passing a[0:2][0:3] */
funct(p, n, m); /* passing a[0:2][0:3] */
funct(b, 2*n, 2*m); /* passing b[1:6][1:8] */

281

15.6. PASSING ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS TO FUNCTIONS
CHAPTER 15. VARIABLE LENGTH ARRAYS

#include <stdio.h>
int main() {
int oldrlow = 0, oldrup = 3, oldclow = 0, oldcup = 5;
int newrlow = 1, newrup = 4, newclow = 1, newcup = 6, i, j;
double a[oldrlow:oldrup][oldclow:oldcup], (*pa)[:];
void funct(double aa[1:][1:], int rup, int cup);

pa = (double [newrlow:newrup][newclow:newcup])a;
for(i=oldrlow; i<=oldrup; i++)

for(j=oldclow; j<=oldcup; j++)
a[i][j] = 2;

funct(pa,newrup,newcup);
for(i=newrlow; i<=newrup; i++)

for(j=newclow; j<=newcup; j++)
printf("pa[i][j] = %f \n", pa[i][j]);

}

void funct(double aa[1:][1:], int rup, int cup) {
int i, j;

for(i=1; i<=rup; i++)
for(j=1; j<=cup; j++)
aa[i][j] += 2;

}

Program 15.2: Changing the array subscript ranges.

The above program also shows that variable length arrays such as deferred-shape arrays a and b and pointer
to assumed-shape array p can be passed to pointer to assumed-shape array aa in the function argument.
Different syntactic forms for function prototypes are used in the above example.

One common programming style in FORTRAN is to pass a segment of an array to a function by calling
the function with an element of the array as an actual argument through call by reference. This type of
FORTRAN code can be ported as shown in the following example.

int n=10;
double X[1:n];
void funct(double A[1:], int n);
funct(&X[5], n);

Elements pa[i+1][j+1] and a[i][j] refer to the same object in Program 15.2. The function call
of

funct(pa,newrup,newcup);

in Program 15.2 can be replaced by either

funct(a,newrup,newcup);

or

funct((int [newrlow:newrup][newclow:newcup])a,newrup,newcup);

282

Chapter 16

Computational Arrays and Matrix
Computations

Arrays in C are intimately tied with pointers. For the comparison purpose, these arrays are called C arrays.
For numerical computing and data analysis, computational arrays which are first-class objects with more
information are introduced in Ch. Many operators including arithmetic operators are overloaded to handle
computational arrays.

If A1 and A2 wto two arrays, in general, array expression A1/A2 is undefined mathematically in linear
algebra. However, A1/A2 is defined as an element-wise division in Fortran 90 whereas in MATLAB it is
defined as the product of A1 and the inverse matrix of A2, that is, A1/A2 is the same as A1A

−1
2 . This

kind of operator overloading for division is quite confusing for learners of linear algebra. This may lead
leaners to use the expression x = b/A as a solution to the system of linear equations Ax = b. To avoid
such a mistake, one of the guiding principles in designing Ch is to follow the mathematical conventions.
For example, the element-wise division of two matrices A1 and A2 with the same rank is programmed in
Ch as A1./A2 and the product of A1 and the inverse of matrix A2 is written as A1*inverse(A2). The
expression s = vTAv is translated into transpose(v)*A*v in Ch.

The notations used in this chapter are listed in Table 16.1. A digital number may follow a symbol for
multiple variables. For example, symbols V, V1 and V2 are used for vectors; symbols A, A1 and A2 stand
for vectors, matrices, or high-dimension arrays.

16.1 Declaration and Initialization of Computational Arrays

The extent and range of subscripts for each dimension are fully specified for a fully-specified-shape array.
The computational arrays are declared with type qualifier array. The computational arrays below are fully
specified.

array int a1[10]; // a1[0], ..., a1[9]
array int a2[0:9]; // a2[0], ..., a2[9]
array int a3[1:10]; // a3[1], ..., a3[10]
array double a4[10][10]; // a4[0:9][0:9]
array complex a5[1:10][1:10]; // a5[1:10][1:10]

where symbol ‘:’ is used to specify the range of the subscripts of arrays. By default, it is from 0 to n-1,
where n is the number in the operator [] to specify the size of the array.

283

16.1. DECLARATION AND INITIALIZATION OF COMPUTATIONAL ARRAYS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

Table 16.1: Shape and data type notations.

Symbol Meaning
Shape

A vector, matrix, or high-dimension arrays
of char, int, float, double, complex, or double complex

B vector, matrix, or high-dimension arrays of char, int, float, double
I vector, matrix, or high-dimension arrays with integral data types of char, int
M two-dimension matrix of char, int, float, double, complex, or double complex
V ond-dimension vector of char, int, float, double, complex, or double complex
a scalar of char, int, float, double, complex, or double complex

Data type
b bool
c char
s short
i int
f float
d double
z complex
p higher order data type of

operands in operations or arguments in functions
k the same data type of the original operand or argument
m the same data type of the original operand or argument,

double if the data type of the original operand or argument is char or int
Data type modifier

u unsigned
l long

284

16.2. ARRAY REFERENCE
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

If two computational arrays have the same number of elements in each dimension, the assignment oper-
ator ’=’ can be used to assign arrays element-wise as shown in the execution of the commands below.

> array double a[0:3]
> array int b[4] = { 0, 1, 2, 3}
> a = b
0.00 1.00 2.00 3.00
>

Computational arrays can be initialized when they are declared in the same manner as C arrays. By
default, computational arrays are initialized to zeros. For example,

array int a1[3] = {1, 2, 3};
array int a2[3]= { 2.3e3d, 2.2F, 3.D }; // a2 = {1,2,3}, data cast
array int a3[] = {0.0, -0.0, -0.0}; // a3 = {0.0, -0.0, -0.0}
array double a4[][3] = {{1, 2, 3}, {1, 2, 3}};
array double a5[3][3] = {1, 2, 3, 1, 2, 3};

16.2 Array Reference

16.2.1 Whole Arrays

The name of a computational array can be used to access a whole array. For example, the following code
fragment

array int a[20], b[20];
b = a+b;

adds each element of a to the corresponding element of b. Arrays a and b are treated as vectors, just like
in linear algebra. This feature makes programs much simpler compared to programs using normal C arrays.
As an example, Programs 16.1 and 16.2 perform the same task of adding array a element-wise and multiply
it by 3, and print out the results. Program 16.1 uses computational arrays whereas Program 16.2 doesn’t.
Clearly, Program 16.2 contains less lines of code and is more readable and easier to maintain. Note that
the array qualifier is defined as a macro in header file array.h. In order to use the computational array, the
program should include this header file. The output for these programs are the same and given below.

b =
2 4 6
8 10 12
b =
3 6 9
12 15 18

16.2.2 Array Elements

Similar to C arrays, the operator [n] can be used to access elements of computational arrays, where n is a
valid subscript. For example, the following code fragment

array int a[20], b[20];
b[1] = a[2]+b[2];

285

16.2. ARRAY REFERENCE
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

/* File: declare.ch */
#include <stdio.h>
#include <array.h>
#define N 2
#define M 3

int main() {
array int a[N][M] = {1,2,3,

4,5,6};
array int b[N][M];

b = a+a;
printf("b = \n%d", b);
b = 3*a;
printf("b = \n%d", b);
return 0;

}

Program 16.1: Declaring and using computational arrays.

/* File: declare.c */
#include <stdio.h>
#define N 2
#define M 3

int main() {
int a[N][M] = {1,2,3,

4,5,6};
int b[N][M];
int i, j;

printf("b = \n",);
for(i=0; i<N; i++) {

for(j=0; j<M; j++) {
b[i][j] = a[i][j]+a[i][j];
printf("%d ", b[i][j]);

}
printf("\n",);

}
printf("b = \n",);
for(i=0; i<N; i++) {

for(j=0; j<M; j++) {
b[i][j] = 3*a[i][j];
printf("%d ", b[i][j]);

}
printf("\n",);

}

return 0;
}

Program 16.2: Implementing program declare.ch in C.

286

16.3. FORMATTED INPUT AND OUTPUT FOR COMPUTATIONAL ARRAYS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

B[0][0] B[0][1] B[0][2]

B[1][2]B[1][1]B[1][0]

Figure 16.1: Computational array B.

0x10004

0x10000

0x10008

0x1000C

0x10010

0x10018

B[0][0]

B[0][1]

B[0][2]

B[1][0]

B[1][1]

B[1][2]

0x10014

Figure 16.2: Memory layout of two-dimension computational array B.

adds the third element of a to the third of b, and saves the result to the second element of b.
Like C arrays, computational arrays are also row-wise. For example, for computational array B declared

below,

array int B[2][3];

assume the address of computational array B of dimension 2x3 shown in Figure 16.1 is 0x10000, the
internal memory layout of array B is shown in Figure 16.2.

16.3 Formatted Input and Output for Computational Arrays

Like C arrays, the input of computational arrays can be handled by the function scanf() element by element.
For example,

> array int a[2]
> scanf("%d", &a[0])
10
> a
10 0

The computational array can also be conveniently handled by the function scanf() for the entire array.
If the data type of the array is not char or unsigned char type, input numbers can be separated by one or
multiple of white space, chararacters ’ ’ ’,’ ’;’ ’:’ or a newline character. For example,

287

16.3. FORMATTED INPUT AND OUTPUT FOR COMPUTATIONAL ARRAYS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

> array int b[6]
> scanf("%d", &b)
10 11, 12
13; 14: 15
> b
10 11 12 13 14 15

The family of output functions fprintf(), sprintf(), printf(), etc. can be used to print out all elements of a
computational array once. The format specifier will be applied to each element of the array. For example,

> array int a[3] = {1,2,3}
> array int b[2][3] = {1,2,3,4,5,6}
> printf("a = %d", a);
a = 1 2 3
> printf("b = \n%d", b);
b =
1 2 3
4 5 6

For computational arrays with large extents, 74 characters including elements of arrays and delimiting
spaces at each line will be printed out. For example, each element of array a below has the same value of
90. The output is wrapped in the subsequent line beyond 74 characters.

> array int a[2][50] = 90
> a
90 90
90 90
90 90
90 90
>

A multi-dimensional array will be printed out in multiple two-dimensional arrays with the rows and
columns of the last two extents of the array as shown below.

> array int a[2][2][3] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
> a
1 2 3
4 5 6

7 8 9
10 11 12

By default, a one-dimensional array is a column vector in Ch. For a one-dimensional array of a column or
row vector, the output will be printed out as a row vector even if it is a column vector. For example,

> array int a[3] = {1,2,3}
> a // column vector
1 2 3
> transpose(a) // row vector
1 2 3

The vector a is a column vector, the transpose of a, transpose(a) is a row vector. When they are printed
out, both are displayed as row vectors.

288

16.4. IMPLICIT DATA TYPE CONVERSION FOR COMPUTATIONAL ARRAYS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

Data Type Order

double complex
complex
double
float
unsigned long long int
long long int
unsigned long int
long int
unsigned int
int
unsigned short
short
unsigned char
char

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

high

low

Figure 16.3: Data type hierarchy.

16.4 Implicit Data Type Conversion for Computational Arrays

In computational array operations, the data types of operands will be checked for compatibility. If data
types do not match, Ch will signal an error and print out some informative messages for the convenience
of program debugging. However, some data type conversion rules have been built into Ch so that they can
be invoked whenever necessary. This will save many explicit type conversion commands for a program.
The order of the data type for computational array is arranged as shown in Figure 16.3 with char being the
lowest data type and double complex the highest data type. The default conversion rules are summerized as
follows.

1. Arrays of char, int, float, and double can be converted according to data conversion rules of the
corresponding scalar types.

2. Arrays of char, int, float, and double can be converted to arrays of complex with the imaginary part of
each element being zero. When casting an array of real number to an array of complex number, the
values of elements of Inf and −Inf become ComplexInf, and the values of elements of NaN become
ComplexNaN. Conversion from array of double to array of complex may lose information.

3. In binary operations such as addition, subtraction, multiplication, and division with arrays of mixed
data types, the result of the operation will carry the higher data type of two operands. For example,
the result of addition of an array of int and an array of double will result in an array of double.

The following code segment will illustrate how arrays with different data types are automatically con-
verted.

> array int i[2] = {1, 2}
> array float f[2]
> array double d [2]
> f = i // float = int
1.00 2.00

289

16.5. ARRAY OPERATIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

> d = f + i // double = float + int
2.0000 4.0000
>

For operation d = f + i, elements of arrays f and i of float and int types, respectively, are added
with the result of a computational array of float type. The resultant computational array of float type is then
cast to a computational array of double type and assigned to variable d of computational array of double
type. Data type conversion for various array operations are discussed in detail in Section 16.5.

16.5 Array Operations

16.5.1 Arithmetic Operations

The arithmetic operations for computational arrays are listed in Table 16.2. The symbol A/k in the third
column of Table 16.2 indicates that the results are arrays with the same shape and data type of the operand.
For the symbol A/p, the result is the same shape and higher order of data type of two operands. These
symbols are described in Table 16.1. The arithmetic operations include unary plus operator ‘+’, unary
minus operator ‘-’, addition operator ‘+’, subtraction operator ‘-’, multiplication operator ‘*’, division
operator ‘/’, array multiplication operator ‘.*’ and array division operator ‘./’. The operator ‘*’ is for
multiplication of two arrays of one-dimensional vectors or two-dimensional matrices. The multiplication of
two arrays follows the rule of linear algebra. For element-wise array multiplication operator ‘.*’ and array
division operator ‘./’, the operation is performed on each corresponding element of two array operands,
which shall be of the same shape (dimension and extent).

The data type of the result of the operation of unary plus operator or unary minus operator is the same
as that of the operand. The resulting data types of other operations in Table 16.2 will have the higher order
data type of the operands in operations. If one of the operands of addition or subtraction operator is a
scalar and the other is a computational array, the scalar will be promoted to a computational array for the
corresponding array operation. If the numerator of the array division operator ‘./’ is a scalar, it will be
promoted to a computational array.

Applications of these operations are illustrated in the commands below. For example,

> array int a1[2][2] = {1, 0, 2, 3}
> array int a2[2][2] = {0, 5, 2, 2}
> float s = 2.0
> a1 * a2
0 5
6 16
> a1 .* a2
0 0
4 6
> a1/s
0.50 0.00
1.00 1.50
> a1 +2
3 2
4 5

For multiplication of two arrays, the dimensions of the arrays have to follow the rule of linear algebra as
shown below.

290

16.5. ARRAY OPERATIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

Table 16.2: Array arithmetic operation.

Definition Operation Result
unary plus +A A/k
unary minus −A A/k
addition A1+A2 A/p
addition A+ [s] A/p
addition [s] +A A/p
subtraction A1−A2 A/p
subtraction A− [s] A/p
subtraction [s]−A A/p
multiplication A1 ∗A2 A/p or a/p
multiplication A ∗ s A/p
multiplication s ∗A A/p
division A/s A/p
array multiplication A1. ∗A2 A/p
array division A1./A2 A/p
array division [s]./A2 A/p

> array int a1[2][3] = {1, 2, 3, 4, 5, 6}
> array int a2[3][2] = {1, 2, 3, 4, 5, 6}
> array int b[3] = {1, 2, 3}
> a1*a2
22 28
49 64
> a1*b
14 32
> a1*a1
ERROR: array dimensions do not match for matrix operations

As a special case, the result from multiplication of two arrays is a scalar instead of an array, if the shapes
of A1 and A2 are (1× n) and (n× 1), where n is 1, 2, 3, ... For example,

> int i
> array int a[1] = {10}
> array int b[1] = {20}
> array int c[2] = {1, 2}
> i = a * b // (1x1) * (1x1), the result is a scalar
200
> b = a + b // it’s an array
30
> transpose(c) * c // (1x2) * (2x1), the result is a scalar
5
> c * transpose(c) // (2x1) * (1x2), the result is an array
1 2
2 4

291

16.5. ARRAY OPERATIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

-5

0

5

10

15

20

25

0 1 2 3 4 5 6 7

Figure 16.4: Function y(x) = 2/x+ sin(x2).

The result of a * b is an integer, so is transpose(c) * c. The one-dimensional array by default is
a column vector with the shape of (n × 1) at declaration and calculation. For example, c has the shape of
(2× 1) instead of (1× 2).

Array multiplication operator ‘.*’ and array division operator ‘./’ are useful to handle formulas with-
out loops such as for-loop and while-loop. For example, the plot of function y(x) = 2/x + sin(x2) in the
range of 0.1 ≤ x ≤ 6.2 with 100 points can be created as follows.

> array double x[100], y[100]
> lindata(0.1, 6.2, x)
> y = 2.0./x +sin(x.*x)
> plotxy(x, y)

The output of a plot is displayed in Figure 16.4. Function call of lindata(0.1, 6.2, x) assigns linearly spaced
values starting with 0.1 and ending with 6.2 for elements of array x. Details about function lindata() and
generic mathematical function sin() for handling arguments of array type will be described later. Note
that for computational array x, expression 2./x is interpreted as 2.0/x, not array operation 2 ./ x.
Therefore, 2./x is invalid because of unmatched array dimensions.

16.5.2 Assignment Operations

The assignment operations for computational arrays are listed in Table 16.3. They include simple assignment
‘=’ and compound assignments which include assign sum operator ‘+=’, assign difference operator ‘-=’,
assign product operator ‘*=’, and assign quotient operator ‘/=’. The data types of the results of operations
of these operators are the same as those of the left operands.

Applications of these operations are illustrated in the commands below.

> array int a1[4] = {1, 0, 2, 3}
> array int a2[4] = {0, 5, 2, 2}
> a1 += a2
1 5 4 5

292

16.5. ARRAY OPERATIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

Table 16.3: Array assignment operation.

Definition Operation Result
assignment A1=A2 A/k
assign A=[s] A/k
assign sum A1+=A2 A/k
assign difference A1-=A2 A/k
assign product A1*=A2 A/k
assign product A1*=s A/k
assign quotient A1/=s A/k

Table 16.4: Array increment and decrement operation.

Definition Operation Result
plus A++ A/k
plus ++A A/k
minus A-- A/k
minus --A A/k

16.5.3 Increment and Decrement Operations

The increment and decrement operations for computational arrays are listed in Table 16.4. They include
increment operator ‘++’ and decrement operator ‘--’, which add 1 to and subtract 1 from each element
of the array, respectively. The resulting data type of these operations are the same as those of the original
operands.

Applications of these operations are illustrated in the commands below.

> array int a1[4] = {1, 0, 2, 3}
> array int a2[4] = {0, 5, 2, 2}
> a1++
1 0 2 3
> a1
2 1 3 4
> --a2
-1 4 1 1

In most cases, a computational array has a rank of 1 or higher. In some situations, a computational array
can have value of NULL. Before it is allocated memory, a pointer to computational array has a value of
NULL. A value of NULL can also be passed to an argument of array of reference type in a function. A
computational array with value of NULL can be used as an operand of equal operator ‘==’ or not equal
operator ‘!=’. They cannot be used as an operand for other operations. If one of two operands for equal
operator ‘==’ or not equal operator ‘!=’ is pointer to computational array or array of reference, the other
operand can be NULL. The result of the operation in this case is a boolean type of either true or false. This
can be used to test if NULL has been passed to array of reference or if a pointer to computational array
points to a valid object. Details about pointer to computational array and computational array of reference
will described later.

293

16.5. ARRAY OPERATIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

In Programs 16.11, NULL is passed to the argument a of array of reference in function func(). In
Program 16.12, variable a of pointer to computational array has a default value of NULL before it is pointed
to an array. The output of these two programs are the same as shown below.

a==NULL is true
a!=NULL is false

16.5.4 Relational Operations

The relational operations for computational arrays are listed in Table 16.5. They include the less than
operator ‘<’, less than equal operator ‘<=’, equal operator ‘==’, greater than equal operator ‘>=’, greater
than operator ‘>’, and not equal operator ‘!=’. Using these operators results in an array of int type, with
values of either 0 or 1, depending on how each element of the array compares. For these binary operators,
if one of operands is a computational array and the other is a scalar, the scalar will be promoted to a
computational array with the shape of the array operand. Applications of these operations are illustrated in
the commands below.

> array int a1[4] = {1, 0, 2, 3}
> array int a2[4] = {0, 5, 2, 2}
> a1 < a2
0 1 0 0
> a1 >= a2
1 0 1 1

In most cases, a computational array has a rank of 1 or higher. In some situations, a computational array
can have value of NULL. Before it is allocated memory, a pointer to computational array has a value of
NULL. A value of NULL can also be passed to an argument of array of reference type in a function. A
computational array with value of NULL can be used as an operand of equal operator ‘==’ or not equal
operator ‘!=’. They cannot be used as an operand for other operations. If one of two operands for equal
operator ‘==’ or not equal operator ‘!=’ is pointer to computational array or array of reference, the other
operand can be NULL. The result of the operation in this case is a boolean type of either true or false, which
can be used as a controlling expression of if-statement to test if NULL has been passed to array of reference
or if a pointer to computational array points to a valid object. Details about pointer to computational array
and array of reference will be described later.

16.5.5 Logic Operations

The logic operations for computational arrays are listed in Table 16.6. They include the AND operator‘&&’,
XOR operator ‘ˆˆ’, OR operator ‘||’, and NOT operator ‘!’. The results of evaluating with these operators
are arrays of int type, with values of either 0 or 1. For these binary operators, if one of operands is a
computational array and the other is a scalar, the scalar will be promoted to a computational array with the
shape of the array operand.

Applications of these operations are illustrated in the commands below.

> array int a1[4] = {1, 0, 2, 3}
> array int a2[4] = {0, 5, 2, 2}
> a1 && a2
0 0 1 1
> a1 || a2
1 1 1 1

294

16.5. ARRAY OPERATIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

Table 16.5: Array relational operation.

Definition Operation Result
less than B1 < B2 I/i
less than B1 < [s] I/i
less than [s] < B2 I/i
less equal B1 <= B2 I/i
less equal B1 <= [s] I/i
less equal [s] <= B2 I/i
equal A1 == A2 I/i
equal A1 == [s] I/i
equal [s] == A2 I/i
equal NULL == A1 b
equal A1 == NULL b
greater equal B1 >= B2 I/i
greater equal B1 >= [s] I/i
greater equal [s] >= B2 I/i
greater than B1 > B2 I/i
greater than B1 > [s] I/i
greater than [s] > B2 I/i
not equal A1 != A2 I/i
not equal A1 != [s] I/i
not equal [s]!= A2 I/i
not equal A1 != NULL b
not equal NULL!= A1 b

Table 16.6: Array logic operation.

Definition Operation Result
AND A1 && A2 I/i
AND A1 && [s] I/i
AND [s]&& A2 I/i
XOR A1 ˆˆ A2 I/i
XOR A1 ˆˆ [s] I/i
XOR [s]ˆˆ A2 I/i
OR A1 || A2 I/i
OR A1 || [s] I/i
OR [s]|| A2 I/i
NOT !A I/i

295

16.5. ARRAY OPERATIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

16.5.6 Conditional Operation

The conditional operator ‘?:’ can be applied to computational arrays in Ch. If this is the case, the first
operand of a conditional expression shall have scalar type, and the other two operands are computational
array of the same shape. The result is a computational array with the higher order type of these two operands.

Applications of the conditional operation are illustrated in the commands below.

> array int a[2][3] = 1, b[2][3]=2
> array float f[2][3] = 3.0
> 1 ? a:b // operands of array
1 1 1
1 1 1
> 0 ? f:b // operands of array
3.00 3.00 3.00
3.00 3.00 3.00

In these two examples, both the second and third operands have the same shape, which are (2 × 3) and
(2× 2), respectively. The result of the latter example is a computational array of type float, since the type of
the second operand is float, which has higher order than int type of the third operand.

16.5.7 Address Operations

The address operator ‘&’ can also be used to get the address of a computational array or the address of an
element of a computational array. The commands below illustrate how the address operator works.

array int a[0:9], b[2][3];
int *ptr;
ptr = &a; // the address of a
ptr = &a[2] // the address of third element of a
ptr = &b; // the address of b
ptr = &b[1][2]; // the address of an element of b

The address operator ’&’ applied to a computational array gives the address of the first element of the
array. For the sample commands below, &a gives the address of a[0][0] and &b gives the address of
b[0][0]. So, if the memory for a pointer to computational array, which will be described later, has not
been allocated, the address operation gives NULL. Furthermore, the address operator ‘&’ before an element
of a computational array gives the address of this element. For example, &b[1][0][0] gives the address
of b[1][0][0] as shown below.

> array int a[2][2] = {1, 2, 3, 4}
> array int b[2][2][2] = {1, 2, 3, 4, 5, 6, 7, 8}
> &a
4005e3e0
> &a[0][0] // same as &a
4005e3e0
> &b
4005e4e0
> &b[0][0][0] // same as &b
4005e4e0
> &b[1][0][0]
4005e4f0

296

16.6. PROMOTION OF SCALARS TO COMPUTATIONAL ARRAYS IN OPERATIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

16.5.8 Cast Operations

Because Ch allows array operations of computational arrays with different types or even operations with
computational arrays and C arrays, the cast operation is sometimes important to prevent confusion.

Below are some examples of cast operations for computational arrays.

array double a[3][1], b[3], c[4][3];
array int d[3][1];
a = (array double [3][1])b; // cast [3] to [3][1]
b = (array double [3])a; // cast [3][1] to [3]
b = (array double [3])&c[1][0]; // cast 2nd row of c to vector b
b = (array double [3])&c[2][0]; // cast 3rd row of c to vector b
c = (array double [4][3])4; // cast scalar to array
d = (array int [3][1])a; // cast double to int

Through cast operations, the assignment operations can be performed for two computational arrays. For
example, the extent of the last dimension of array c is the same as array b. Although a has the different
extent in the last dimension, it also has the same amount of memory of array b. Note that scalars may be
cast as computational arrays. The statement c = (array double [4][3])4 above will set all the
elements of array c to 4. It is also possible to cast computational arrays of one data type to another, such as
in the last operation above.

If the number of array elements the cast operation is smaller than the number of array elements of the
operand, the extra elements of the operand are ignored. If the number of array elements the cast operation
is larger than the number of array elements of the operand, the remaining elements of the resulting array are
filled with 0’s. For example,

> array double a[3] = {1,2,3}
> (array int [2])a
1 2
> (array int [4])a
1 2 3 0

The casting operator preceding an array can give the address or value of the first element of the array. If
the type is a pointer, it gives the address of the first element of the array. Otherwise, it gives the value of the
first element. For example

> array int a[2][2] = {1, 2, 3, 4}
> (int *)a
4005ef10
> &a
4005ef10
> (int)a
1

16.6 Promotion of Scalars to Computational Arrays in Operations

A scalar value can be cast to a computational array explicitly. But, the scalar operand will be promoted to
a computational array implicitly for addition, subtraction, array division, assignment, logic and relational
operations, if the other operand is a computational array. An array promotion is used for operations with
two arrays operands, i.e. the operand of a scalar in the operation internally is treated as an array in which

297

16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

Table 16.7: Array promotions.

Definition Operation Promotion Result
assignment A = s A = [s] A/k
addition A + s A + [s] A/p
addition s + A [s] + A A/p
subtraction A − s A − [s] A/p
subtraction s − A [s] − A A/p
division s ./ A [s] ./ A A/p
less than B < s B < [s] I/i
less than s < B [s] < B I/i
less equal B <= s B <= [s] I/i
less equal s <= B [s] <= B I/i
equal A == s A == [s] I/i
equal s == A [s] == A I/i
greater equal B >= s B >= [s] I/i
greater equal s >= B [s] >= B I/i
greater than B > s B > [s] I/i
greater than s > B [s] > B I/i
not equal A != s A != [s] I/i
not equal s != A [s] != A I/i
XOR B ˆˆ s B ˆˆ [s] I/i
XOR s ˆˆ B [s] ˆˆ B I/i
OR B || s B || [s] I/i
OR s || B [s] || B I/i
AND B && s B && [s] I/i
AND s && B [s] && B I/i

the value of each element equals this scalar value. In some cases, array promotions make the programming
easier. Consider the following statements, where 2 is added to each element of computational array a with
a single statement. If a were a regular C array, the process would require some sort of loop.

> array int a[2][2] = {1, 0, 2, 3}
> a1 + 2 // 2 is promoted to array
3 2
4 5

Table 16.7 provides a list of operations with implicit array promotion.

16.7 Passing Computational Arrays to Functions

There are four different methods to passing computational arrays to functions. These methods are listed
in Table 16.8 along with brief descriptions about their characteristics. A fixed dimension means that only
arrays of a specified dimension may be passed into a function. For the sample codes shown in the table,
only two dimensional array arguments are allowed unless the fourth method, array of reference, is used.
Using this method, arrays of any dimensions may be passed to an argument of a function. The extent of an

298

16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

Table 16.8: Methods for passing computational arrays to functions.

Method Sample Code Dimension Extent Data Type
Fully-specified arrays array double a[2][3] fixed fixed fixed
Assumed-shape arrays array double a[:][:] fixed variable fixed
Variable number argument type1 func(type2 a, ...) variable variable variable
Array of reference of fixed dimension array double a[&][&] fixed variable variable
Array of reference array double &a variable variable variable

array argument refers to the number of elements in a dimension. Aside from the fully-specified arrays, all
other array argument types have variable extents. Thus the number of elements may vary for these types
of arguments. For fully-specified and assumed-shape arrays, the data types have to be fixed when passing
computational arrays to functions, whereas the other two does not.

16.7.1 Fully-Specified-Shape Arrays

Program 16.3 demonstrates how fully-specified-shape arrays are used as arguments of a function. In Pro-
gram 16.3, the function sum1() with arguments of fully-specified-shape arrays is called to calculate the
matrix expression of dimension 2x3

b = a+ 2 ∗ a, (16.1)

and returns the sum of values for each element of array a. If the argument of a function is defined as a
fully-specified-shape array, addresses of arrays are passed to this function. The output of Program 16.3 is
displayed in Figure 16.5

16.7.2 Assumed-Shape Arrays

The arguments of the function sum1() in the previous example are declared as fully-specified-shape arrays.
This is not flexible to handle arrays with different extents in each dimension. Ch provides assumed-shape
arrays to deal with arrays of variable length. If arguments are declared as assumed-shape arrays, they can
take arrays which have the same dimension but different number of elements in each dimension.

Assumed-shape arrays declared with a colon as array subscripts are shown below.

int funct1(array int a[:][:], b[:]);
int func2(array double c[:]);

We can rewrite Program 16.3 to use functions with arguments of assumed-shape arrays. In Program 16.4,
the function sum2() which takes two arguments of assumed-shape array is called to calculate the same
matrix expression

b = a+ 2 ∗ a, (16.2)

and also returns the sum of value for each element of array a. The output of Program 16.4 is displayed in
Figure 16.6

If the argument of a function is defined as as an assumed-shape array, not only addresses but also
boundaries of arrays are passed to this function. So, arrays with different numbers of elements in each
dimension can be passed to the same function. For example, in Program 16.4, arrays a1 and a2 have
the same dimension, but the extents are different. They can be passed to the same argument of function
sum2(). Similarly, arrays b1 and b2 of different extents are also passed to the same argument. The output

299

16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

/* File: sum1.ch */
#include <array.h>
#define N 2
#define M 3

double sum1(array double a[N][M], array double b[N][M]){
double sum = 0;
int i, j;

b = a + 2 * a; // b = 3*a
for(i=0; i<N; i++)
for(j=0; j<M; j++)

sum += a[i][j];
return sum;

}

double main() {
double sum;
array double b1[N][M], a1[N][M] = {1, 2, 3,

4, 5, 6};

sum = sum1(a1, b1);
printf("b1 = \n%g", b1);
printf("sum = %g\n", sum);
return 0;

}

Program 16.3: Passing computational arrays of fixed shape and data type.

b1 =
3 6 9
12 15 18
sum = 21

Figure 16.5: Output of Program 16.3.

300

16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

/* File: sum2.ch */
#include <array.h>

double sum2(array double a[:][:], array double b[:][:]){
int n = shape(a, 0), m = shape(a, 1);
/* or array int dim[2] = shape(a);

int n = dim[0], m = dim[1]; */
double sum = 0;
int i, j;

printf("n = %d, m = %d\n", n, m);
b = a + 2 * a; // b = 3*a
for(i=0; i<n; i++)

for(j=0; j<m; j++)
sum += a[i][j];

return sum;
}

double main() {
double sum;
array double b1[2][3], a1[2][3] = {1, 2, 3,

4, 5, 6};
array double b2[3][4], a2[3][4] = {1, 2, 3, 4,

5, 6, 7, 8,
9, 10, 11, 12};

sum = sum2(a1, b1);
printf("b1 = \n%g", b1);
printf("sum = %g\n\n", sum);
sum = sum2(a2, b2);
printf("b2 = \n%g", b2);
printf("sum = %g\n", sum);
return 0;

}

Program 16.4: Passing computational arrays of different shapes and fixed data type.

n = 2, m = 3
b1 =
3 6 9
12 15 18
sum = 21

n = 3, m = 4
b2 =
3 6 9 12
15 18 21 24
27 30 33 36
sum = 78

Figure 16.6: Output of Program 16.4.

301

16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

of Program 16.4 is displayed in Figure 16.6. The generic function shape() can be used to obtain the extent
of each dimension of the assumed-shape array. If a single argument of function shape() is of array type, it
returns its shape as a computational array of int type as if the function was prototype as

array int shape(array type [:]...[:])[:];

where type can be any valid type for computational array. If the argument of function shape() is a one-
dimensional array, the return value is a computational array of size 1x1. Thus the return value may be cast
to a scalar. Function shape() can also also be used to obtain the extent of a specified dimension for an array.
In this case, it acts as if the function was prototyped as

int shape(array type [:]...[:], int index);

For example,

> array int a[3][4], b[5]
> shape(a)
3 4
> shape(a, 0)
3
> shape(a, 1)
4
> shape(b)
5
> (int)shape(b) // cast 1x1 array to scalar
5
> (int)shape(shape(a))
2

Function call shape(b) in the above function returns a computational array of size 1x1. It can be cast
to a scalar by expression (int)shape(b). Similarly, a scalar value can be obtained from the expression
(int) shape(shape(a)).

16.7.3 Deferred-Shape Arrays

Ch supports deferred-shape computational arrays, which is another way to handle arrays with different
numbers of elements in each dimension at run time. For a deferred-shape array, the array subscript of
integral expression is evaluated at run time. Examples of declaration of deferred-shape arrays are shown
below,

array int A[n][m], B[m];
array double C[m];

where n and m are variables of int type.
Program 16.5 demonstrates how to use a deferred-shape array within a function. Array b in function

defshape() is deferred. The shape of array b is derived from the shape of array a. The output of
Program 16.5 is the same as that of Program 16.3 shown in Figure 16.5.

302

16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

/* File: defshape.ch */
#include <array.h>
#define N 2
#define M 3

double defshape(array double a[:][:], int n, int m) {
array double b[n][m]; // b is deferred-shape array
double sum = 0;
int i, j;

b = a + 2 * a; // b = 3*a
for(i=0; i<n; i++)
for(j=0; j<m; j++)

sum += a[i][j];
printf("b = \n%g", b);
return sum;

}

double main() {
double sum;
array double a1[N][M] = {1, 2, 3,

4, 5, 6};

sum = defshape(a1, N, M);
printf("sum = %g\n", sum);
return 0;

}

Program 16.5: Using computational arrays of deferred-shape.

303

16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

16.7.4 Arrays in Variable Number Arguments

Arrays of different shapes and types can be passed to a function using variable number arguments and
macros defined in header file stdarg. In section10.7 of Chapter 10, we illustrate how to change the arrays
of different types in a calling function illustrated by function lindata() in Program 10.30.

Program 16.6 with output in Figure 16.7 illustrates how arrays a and b of of different shapes and types
are passed to function func() through variable number arguments. The contents of these arrays are copied
into temporary arrays a and b inside function func() using function arraycopy(). The memory fo passed
arrays in a calling function can also be used inside the called function can also be used directly using pointer
to array. More information about handling of polymorphic functions using variable number arguments and
pointer to array can be found in section 19.9.3 in Chapter 19.

16.7.5 Arrays of Reference

It is recommended to pass arrays of different shapes and types using variable number arguments
described in section10.7 in Chapter 10 instead of using arrays of reference. Arrays of reference is
obsolete and will be phased out in the future.

We have described how assumed-shape arrays can be used to handle arrays of variable length. Arrays of
reference are introduced in Ch to deal with arrays of not only different length, but also different data type. It
can be used effectively for function overloading. Arrays of reference are declared with ampersand signs, ‘&,’
as array subscripts. Furthermore, an array of reference without the subscript can be used to handle arrays
of different dimension, different length, and different data type. For arrays of reference a, b and c declared
below,

int fun(array int a[&], array int b[&][&], array int &c);

a and b are arrays of reference with fixed dimension whereas c is an array of reference without constraint
of dimension. For arguments with reference type, a function shall be defined or prototyped with arguments
first before it is called.

If the argument of a function is defined as an array of reference, not only addresses and boundaries, but
also data types of arrays are passed to this function. So, arrays with different data type can be handled by the
same function. To use arrays of reference, an array with data type of the largest memory requirement and
highest order shall be declared in the function argument list. For example, to handle arrays of double, float,
and integral type, an array of reference with double type shall be declared. The values of the passed array
will be typically assigned to a temporary computational array of double type. This temporary array will be
used for computations inside the function. To pass the result back to the calling function, the temporary
array shall be assigned to the array variable declared in the function argument list.

Program 16.7 illustrates how an array of reference can be used to handle arrays of different data type. In
Program 16.7, the function sum3(), which takes two arguments of arrays of reference, is called to calculate
the same matrix expression

b = a+ 2 ∗ a, (16.3)

and returns the sum of value for each element of array a. To handle arrays of double, float, and integral
type, arrays a and b of reference type are declared as type double in Program 16.7. Arrays a1 and a2
in function main() have the same dimensions, but the extents and data types are different. They can be
passed to the same argument of function sum3(). Similarly, arrays b1 and b2 of different extents and data
types are also passed to the same argument. Array a in function sum3() is assigned to array aa first, so
that internally the addition of each element of the passed array is performed in double data type. The output
of Program 16.7 is the same as that of Program 16.4 shown in Figure 16.6.

304

16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

#include <stdarg.h>
#include <array.h>

void func(int k, ...) {
int i, m, n, vacount, num;
ChType_t dtype;
void *vptr;
va_list ap;

va_start(ap, k);
vacount = va_count(ap);
printf("va_count(ap) = %d\n", vacount);
for(i = 0; i<vacount; i++) {
if(va_arraytype(ap)==CH_CARRAYTYPE ||

va_arraytype(ap)==CH_CHARRAYTYPE) {
printf("va_arraydim(ap)= %d\n", va_arraydim(ap));
num = va_arraynum(ap);
printf("va_arraynum(ap)= %d\n", num);
m = va_arrayextent(ap, 0);
printf("va_arrayextent(ap, 0)= %d\n", m);
if(va_arraydim(ap) > 1) {

n = va_arrayextent(ap, 1);
printf("va_arrayextent(ap, 1)= %d\n", n);

}
if(va_datatype(ap) == CH_INTTYPE) {

int a[num], *p;
dtype = va_datatype(ap);
vptr = va_arg(ap, void *);
printf("array element is int\n");
p = vptr;
printf("p[0] = %d\n", p[0]);
arraycopy(a, CH_INTTYPE, vptr, dtype, num);
printf("a[0] = %d\n", a[0]);

}
else if(va_datatype(ap) == CH_DOUBLETYPE) {

array double b[m][n];
dtype = va_datatype(ap);
vptr = va_arg(ap, void *);
printf("array element is double\n");
arraycopy(&b[0][0], CH_DOUBLETYPE, vptr, dtype, num);
printf("b = \n%f", b);

}
}
else if(va_datatype(ap) == CH_INTPTRTYPE)

printf("data type is pointer to int\n");
}
va_end(ap);

}

int main() {
int i, a[4]={10, 20, 30}, *p;
array double b[2][3]={1, 2, 3, 4, 5, 6};

p = &i;
func(i, a);
func(i, b,a);
func(i, p);

}

Program 16.6: Pass arrays of different shapes and types to a function.
305

16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

va_count(ap) = 1
va_arraydim(ap)= 1
va_arraynum(ap)= 4
va_arrayextent(ap, 0)= 4
array element is int
p[0] = 10
a[0] = 10
va_count(ap) = 2
va_arraydim(ap)= 2
va_arraynum(ap)= 6
va_arrayextent(ap, 0)= 2
va_arrayextent(ap, 1)= 3
array element is double
b =
1.000000 2.000000 3.000000
4.000000 5.000000 6.000000
va_arraydim(ap)= 1
va_arraynum(ap)= 4
va_arrayextent(ap, 0)= 4
array element is int
p[0] = 10
a[0] = 10
va_count(ap) = 1
data type is pointer to int

Figure 16.7: Output of Program 16.6.

Program 16.8 illustrates how to handle arrays of different dimensions and data types using arrays of
reference. The function sum4() in Program 16.8 takes two arguments of arrays of reference and one
argument of int type for the number of elements of array a.

Arrays a1 and a2 of different dimension and type are passed to the same argument. Similarly, array b1
and b2 of different dimension and type are used to pass back the result of a matrix expression calculated
inside function sum4(). The output of Program 16.8 is displayed in Figure 16.8.

Elements of array of reference without subscripts can not be accessed directly with subscripts. For
example, elements of array of reference of a and b in function sum4() of Program 16.8 can not be followed
by subscripts such as a[2] or a[1][2].

In Program 16.8, the third argument of function sum4() contains the number of elements of the array
passed to the array a of the function. The number of dimensions, extends of each dimension, and total num-
ber of elements of of the array passed can be obtained by expression n = (int)shape(shape(a)),
dim = shape(a), totnum *= dim[i], respectively, inside the function as shown in Program 16.9.
The output of Program 16.9 is shown in in Figure 16.9. Should the printing statements for dimensions and
total number of elements in Program 16.9 be commented out, the ouput of Program 16.9 shall be the same
as that of Program 16.8.

The generic function elementtype() can be used to obtain the data type of its argument. The argument of
the function elementtype() can be a type declarator, C array, computational array, or an array of reference.
For example, given

array double a[3][4];
int b[3][4];

the following two equations hold.

elementtype(double) == elementtype(a);

306

16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

#include <array.h>

double sum3(array double a[&][&], array double b[&][&]){
int n = shape(a, 0), m = shape(a, 1);
double sum = 0;
int i, j;
array double aa[n][m];

printf("n = %d, m = %d\n", n, m);
b = a + 2 * a; // b = 3*a
aa = a;
for(i=0; i<n; i++)
for(j=0; j<m; j++)

sum += aa[i][j];
return sum;

}

int main() {
double sum;
array double b1[2][3], a1[2][3] = {1, 2, 3,

4, 5, 6};
array float b2[3][4], a2[3][4] = {1, 2, 3, 4,

5, 6, 7, 8,
9, 10, 11, 12};

sum = sum3(a1, b1);
printf("b1 = \n%g", b1);
printf("sum = %g\n\n", sum);
sum = sum3(a2, b2);
printf("b2 = \n%g", b2);
printf("sum = %g\n", sum);
return 0;

}

Program 16.7: Passing computational arrays of different shapes and data types.

307

16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

/* File: sum4.ch */
#include <array.h>
#define N 2
#define M 3

double sum4(array double &a, array double &b, int total_num){
int i;
double sum;
array double aa[total_num];

b = a + 2 * a; // b = 3*a
aa = a;
for(i=0; i<total_num; i++)
sum += aa[i];

return sum;
}

int main() {
double sum;
array double b1[N][M], a1[N][M] = {1, 2, 3,

4, 5, 6};
array float b2[M], a2[M] = {10, 20, 30};

sum = sum4(a1, b1, N*M);
printf("b1 = \n%g", b1);
printf("sum = %g\n\n", sum);
sum = sum4(a2, b2, M);
printf("b2 = \n%g", b2);
printf("sum = %g\n", sum);
return 0;

}

Program 16.8: Passing computational arrays of different ranks and data types.

b1 =
3 6 9
12 15 18
sum = 21

b2 =
30 60 90
sum = 60

Figure 16.8: Output of Program 16.8.

308

16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

/* File: sum5.ch */
#include <array.h>
#define N 2
#define M 3

double sum5(array double &a, array double &b){
int n, i, total_num;
double sum;

b = a + 2 * a; // b = 3*a
total_num = 1;
n = (int)shape(shape(a)); // number of dimensions
array int dim[n];

dim = shape(a); // extent of each dimension
printf("n = %d\n", n);
for(i = 0; i < n; i++) {

printf("dim[%d] = %d\n", i, dim[i]);
total_num *= dim[i]; // total number of elements

}
printf("total_num = %d\n", total_num);
array double aa[total_num];
aa = a;
for(i=0; i<total_num; i++)
sum += aa[i];

return sum;
}

int main() {
double sum;
array double b1[N][M], a1[N][M] = {1, 2, 3,

4, 5, 6};
array float b2[3], a2[3] = {10, 20, 30};

sum = sum5(a1, b1);
printf("b1 = \n%g", b1);
printf("sum = %g\n\n", sum);
sum = sum5(a2, b2);
printf("b2 = \n%g", b2);
printf("sum = %g\n", sum);
return 0;

}

Program 16.9: Passing computational arrays of different ranks and data types and using function shape().

309

16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

n = 2
dim[0] = 2
dim[1] = 3
total_num = 6
b1 =
3 6 9
12 15 18
sum = 21

n = 1
dim[0] = 3
total_num = 3
b2 =
30 60 90
sum = 60

Figure 16.9: Output of Program 16.9.

elementtype(int) == elementtype(b);

In most cases, mathematical algorithms for arrays of complex and arrays of real number are different. In
Program 16.10, function arrayfunc() can handle both arrays of complex and arrays of real number using
function elementtype(). Depending on the data type of array argument a, the real function realfunc()
or complex function complexfunc()will be called inside function arrayfunc() to calculate the array
expression a+ 2 sin(a). The output of Program 16.10 is displayed in Figure 16.10.

If the pointer NULL is passed into a function as an argument of array of reference, the argument is
also equal to NULL inside the function, and the function shape() returns an array of zero dimension. For
example, if functions func1() and func2() are defined below.

int func1(array double a[&]) {
if(((int)shape(a)) == 0) {
printf("shape is zero dimension\n");

}
if(a == NULL) {

printf("a is NULL \n");
}
return 0;

}

int func2(array double &a) {
if((int)shape(shape(a)) == 0) {
printf("shape is zero dimension\n");

}
if(a == NULL) {

printf("a is NULL \n");
}
return 0;

}

both function calls of func1(NULL) and func2(NULL)will print out

shape is zero dimension

310

16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

#include <array.h>

void complexfunc(array double complex a[:][:], array double complex b[:][:]){
b = a + 2 * sin(a);

}
void realfunc(array double a[:][:], array double b[:][:]){

b = a + 2 * sin(a);
}
void arrayfunc(array double complex a[&][&], array double complex b[&][&]){

int n = shape(a, 0), m = shape(a, 1);
// or array int dim[2] = shape(a);
// int n = dim[0], m = dim[1];

if(elementtype(a) == elementtype(complex) ||
elementtype(a) == elementtype(double complex)) {
array double complex aa[n][m], bb[n][m];
aa = (array double complex [n][m])a;
complexfunc(aa, bb);
b = bb;

}
else {

array double aa[n][m], bb[n][m];
aa = (array double [n][m])a;
realfunc(aa, bb);
b = bb;

}
}

int main() {
array double complex b1[3][4], a1[3][4] = {1, complex(1,2), 2, 5,

7, complex(3,4), 9, 3,
5, 7, 3, 2};

array double b2[2][3], a2[2][3] = {1, 5, 3,
5, 6, 7};

arrayfunc(a1, b1);
printf("b1 = \n%.1f", b1);
arrayfunc(a2, b2);
printf("\nb2 = \n%.1f", b2);
return 0;

}

Program 16.10: Passing arrays of different data type to a function.

b1 =
complex(2.7,0.0) complex(7.3,5.9) complex(3.8,0.0) complex(3.1,0.0)
complex(8.3,0.0) complex(10.7,-50.0) complex(9.8,0.0) complex(3.3,0.0)

complex(3.1,0.0) complex(8.3,0.0) complex(3.3,0.0) complex(3.8,0.0)

b2 =
2.7 3.1 3.3
3.1 5.4 8.3

Figure 16.10: Output of Program 16.10.

311

16.8. COMPUTATIONAL ARRAYS WITH VALUE NULL
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

/* File: arrayrefnull.ch */
#include <array.h>

void func(array double &a) {
if(a==NULL) {

printf("a==NULL is true\n");
}
else {

printf("a==NULL is false\n");
}
if(a!=NULL) {

printf("a!=NULL is true \n");
}
else {

printf("a!=NULL is false\n");
}

}

int main() {
func(NULL);
return 0;

}

Program 16.11: Passing NULL to computational array of reference.

a is NULL

16.8 Computational Arrays with Value NULL

In most cases, a computational array has a rank of 1 or higher. In some situations, a computational array can
have value of NULL. Before it is allocated memory, a pointer to computational array has a value of NULL. A
value of NULL can also be passed to an argument of array of reference type in a function. A computational
array with value of NULL can be used as an operand of equal operator ‘==’ or not equal operator ‘!=’ as
well as a controlling expression of if-statement and loops. They cannot be used as an operand for other
operations.

If one of two operands for equal operator ‘==’ or not equal operator ‘!=’ is pointer to computational
array or array of reference, the other operand can be NULL. The result of the operation in this case is a
boolean type of either true or false. This can be used to test if NULL has been passed to array of reference
or if a pointer to computational array points to a valid object.

A computational array can be used as a controlling expression for if-statement, while-loop, do-while-
loop, or for-statement. When an array of reference or a pointer to computational array with a value of NULL
is used as a controlling expression, it evaluates to false. Otherwise, the controlling expression evaluates to
true, even if all elements of the array are zero.

In Programs 16.11, NULL is passed to the argument a of array of reference in function func(). In
Program 16.12, variable a of pointer to computational array has a default value of NULL before it is pointed
to an array. The output of these two programs are the same as shown below.

a==NULL is true
a!=NULL is false

312

16.9. FUNCTIONS RETURN COMPUTATIONAL ARRAYS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

/* File: arrayptrnull.ch */
#include <array.h>

int main() {
array double *a;

if(a==NULL) {
printf("a==NULL is true\n");

}
else {

printf("a==NULL is false\n");
}
if(a!=NULL) {

printf("a!=NULL is true \n");
}
else {

printf("a!=NULL is false\n");
}
return 0;

}

Program 16.12: Pointer to computational array with value NULL.

16.9 Functions Return Computational Arrays

A function can return computational arrays as first-class objects. For a function that returns a computational
array, the rank of the returned array in the function definition and that of an array expression following a
return statement inside the function must be the same.

16.9.1 Functions Return Computational Arrays of Fixed Length

The prototype of functions returning computational arrays of fixed length is as follows.

array datatype funcname(argument_list) [n1]...[nm];

where n1 and nm are constant integers, such as 2 and 3, for the lengths of the corresponding dimensions.
The number of symbol [] following the closing parenthesis of the function argument list indicates the rank
of the returned computational array.

Program 16.13 is an example to demonstrate how a function returns a computational array to the calling
function. Function funct() of this program returns the result of matrix expression of dimension 2x3.

b = 2 ∗ a, (16.4)

which is shown in Figure 16.11.

16.9.2 Functions Return Computational Arrays of Variable Length

The prototype of functions returning computational arrays of variable length is as follows.

array datatype funcname(argument_list) [:]...[:]

The number of symbol [:] following the closing parenthesis of the function argument list indicates the
rank of the returned computational array.

313

16.9. FUNCTIONS RETURN COMPUTATIONAL ARRAYS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

/* File: retfix.ch */
#include <array.h>

int main() {
array int a[2][3] = {1, 2, 3, 4, 5, 6};
array int funct(array int a[2][3])[2][3];

a = funct(a);
printf("a[1][2] = %d\n", a[1][2]);
printf("a = \n%d", a);
return 0;

}

array int funct(array int a[2][3])[2][3] {
array int b[2][3];

b = 2*a;
return b;

}

Program 16.13: Function returning computational array of fixed length.

a[1][2] = 12
a =
2 4 6
8 10 12

Figure 16.11: Output of Program 16.13.

314

16.10. TYPE GENERIC ARRAY FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

/* File: retvla.ch */
#include<array.h>

array int func2(array int a[:])[:] {
int n = (int)shape(a);
array int x[n];

printf("n = %d\n", n);
x = 2*a;
return x;

}

int main() {
array int a[2] = {1, 2};
array int b[5] = {10, 20, 30, 40, 50};

a = func2(a);
printf("a = %d\n", a);
b = func2(b);
printf("b = %d", b);
return 0;

}

Program 16.14: Function returning computational array of variable length.

n = 2
a = 2 4

n = 5
b = 20 40 60 80 100

Figure 16.12: Output of Program 16.14.

Program 16.14 provides an example of a function that returns a computational array of variable length.
The dimensions of the returned arrays in function calls of func2(a) and func2(b) are different. The
output is shown in Figure 16.12.

16.10 Type Generic Array Functions

Function shape() presented in section 16.7.2 is a generic function related to arrays. In addition, commonly
used generic mathematical functions are overloaded to handle computational arrays. They are overloaded to
handle arguments of different dimensions, lengths, and data types.

For an argument of computational array type, function abs() returns an array with the absolute value for
each element. For an argument of complex type, each element contains the magnitude of the corresponding
complex number. The function is handled as if it was prototyped as

array int abs(array int a[:]...[:])[:]...[:]
array float abs(array float a[:]...[:])[:]...[:]
array float abs(array float complex a[:]...[:])[:]...[:]
array double abs(array double a[:]...[:])[:]...[:]

315

16.10. TYPE GENERIC ARRAY FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

array double abs(array double complex a[:]...[:])[:]...[:]

For example,

> array int a[2][3] = {-1, 2, 3, -4, -5, 6}
> abs(a)
1 2 3
4 5 6
> array complex b[3] = {complex(3, 4), 4, -5}
> abs(b)
5.0000 4.0000 5.0000

Mathematical functions acos, acosh, asin, asinh, atan, atanh, ceil, cos, cosh, exp, floor, log, log10,
sin, sinh, sqrt, tan, tanh have one argument only. They are overloaded to handle arguments of different
dimensions, lengths, and data types. If the data type of the input argument is an integral type, it will be
promoted to float for computation. For array arguments, they behave as if they were prototyped as

array float func(array float a[:]...[:])[:]...[:]
array double func(array double a[:]...[:])[:]...[:]
array float complex func(array float complex a[:]...[:])[:]...[:]
array double complex func(array double complex a[:]...[:])[:]...[:]

where func is one of the above mathematical functions. If the data type of the input argument is integral
type, it will be promoted to float for computation. For example,

> array int a[2][3] = {-1, 2, 3, -4, -5, 6}
> sin(a)
-0.84 0.91 0.14
0.76 0.96 -0.28
> array complex b[3] = {complex(3, 4), 4, -5}
> sin(b)
complex(3.8537,-27.0168) complex(-0.7568,-0.0000) complex(0.9589,0.0000)

For array arguments, function atan2() acts as if it was prototyped as

array float atan2(array float y[:]...[:],
array float x[:]...[:])[:]...[:]

array double atan2(array double y[:]...[:],
array double x[:]...[:])[:]...[:]

array float complex atan2(array float complex y[:]...[:],
array float complex x[:]...[:])[:]...[:]

array double complex atan2(array double complex y[:]...[:],
array double complex x[:]...[:])[:]...[:]

Function atan2() has two arguments. The data type of both computational arrays shall be the same. If data
types of both arguments are integral type, they will be promoted to float for computation. For example,

> array int y[4]={1,-2, 3, -4}
> array float x[4]={5, 6, -7, -8}
> atan2(y, x)
0.20 -0.32 2.74 -2.68

316

16.10. TYPE GENERIC ARRAY FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

If the first argument of function pow(a, x) is a computational array with shape of NxN and the second
is an integral type, it will return a computational array of the same type and dimension as the first argument
as if the function was prototyped as

array int pow(array int a[:][:], int x)[:][:]
array float pow(array float a[:][:], int x)[:][:]
array double pow(array double a[:][:], int x)[:][:]
array float complex pow(array float complex a[:][:], int x)[:][:]
array double complex pow(array double complex a[:][:], int x)[:][:]

In this case, array function pow(a, x) behaves like matrix multiplication. For example,

> array int a[2][2] = {-1, 2, 3, -4}
> pow(a, 2)
7 -10
-15 22
> a*a
7 -10
-15 22

If both arguments of array function pow() are computational array type, it will return an array with the value
of each element calculated by scalar function pow() with corresponding elements of the two input arrays. In
this case, data types of two input arrays shall be the same as if the function was prototyped as

array int pow(array int y[:]...[:],
array int x[:]...[:])[:]...[:]

array float pow(array float y[:]...[:],
array float x[:]...[:])[:]...[:]

array double pow(array double y[:]...[:],
array double x[:]...[:])[:]...[:]

array float complex pow(array float complex y[:]...[:],
array float complex x[:]...[:])[:]...[:]

array double complex pow(array double complex y[:]...[:],
array double complex x[:]...[:])[:]...[:]

For example,

> array int a[3] = {-1, 2, 3}
> pow(a, a)
-1 4 27

Functions real() and and imag() will give the real and imaginary parts of the input argument. For array
arguments, They behave as if they were prototyped as

array float func(array float a[:]...[:])[:]...[:]
array double func(array double a[:]...[:])[:]...[:]
array float func(array float complex a[:]...[:])[:]...[:]
array double func(array double complex a[:]...[:])[:]...[:]

where func is either real or imag. If the data type of the input argument is integral type, it will be promoted
to float for computation. For example,

317

16.11. SOME COMMONLY USED ARRAY FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

> array int a[3] = {-1, 2, 3}
> real(a)
-1.00 2.00 3.00
> array complex z[3] = {complex(1,2), complex(-3, -4), complex(0, -6)}
> real(z)
1.0000 -3.0000 0.0000
> imag(z)
2.0000 -4.0000 -6.0000

Array function transpose() returns a transpose of the input array of one or two dimensions. If the input
array is of size NxM, the size of the returned array is MxN. By default, a one-dimensional array is a column
vector. If the input array is a column vector of size Nx1, the return array is a row vector of 1xN, and vice
versa. The data type of the returned array is the same as the input array as if the function was prototyped as

array type transpose(array data_type a[:])[:]
array type transpose(array data_type a[:][:])[:][:]

where data type can be any valid type for computational array. For example,

> array float a[2][3]={1,2,3,4,5,6}
1.00 2.00 3.00
4.00 5.00 6.00
> transpose(a)
1.00 4.00
2.00 5.00
3.00 6.00
> array int b[3] = {1, 2, 3}
> a*b
14.00 32.00
> transpose(b)*b
14
> b*transpose(b)
1 2 3
2 4 6
3 6 9

16.11 Some Commonly Used Array Functions

Many advanced numerical functions are available in Ch. These functions are prototyped in header file
numeric.h. Some commonly used numerical functions are presented in this section.

Function lindata() introduced in section 10.7 is prototyped in header file numeric.h as follows.

int lindata(double first, double last, ... /* type a[:]...[:] */);

The lindata() function generates linearly spaced data with initial and final values specified by input argu-
ments first and last, respectively. The result is passed back to the calling function in the third argument
of array type with different data types.

Given a square matrix A and its inverse A−1, then A−1A = I and AA−1 = I where I is an identity
matrix. Function inverse() calculates the inverse of a square matrix, provided that it is not singular. Function
inverse() is prototyped in header file numeric.h as follows.

318

16.11. SOME COMMONLY USED ARRAY FUNCTIONS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

array double inverse(array double x[&][&], ... /* [int *status */)[:][:];

The dimension of the returned matrix of function inverse() is the same as the input argument of matrix. This
function can be used to solve a linear system of equations. For example, a linear system of equations below,

3x1 + 6x3 = 2

2x2 + x3 = 12

x1 + x3 = 25

or in the matrix form

⎡
⎢⎣ 3 0 6

0 2 1
1 0 1

⎤
⎥⎦
⎡
⎢⎣ x1

x2
x3

⎤
⎥⎦ =

⎡
⎢⎣ 2

12
25

⎤
⎥⎦

can be written in the form of
Ax = b.

The solution x = A−1b can be written in Ch as x = inverse(A)*b. The solutions for x1, x2, and x3
can be determined by the following statements.

> array double a[3][3]={3, 0, 6, 0, 2, 1, 1, 0, 1}
> array double ai[3][3], x[3], b[3]= {2, 13, 25}
> ai = inverse(a)
-0.3333 -0.0000 2.0000
-0.1667 0.5000 0.5000
0.3333 0.0000 -1.0000
> x = ai*b
49.3333 18.6667 -24.3333

As another example, consider the following two matrix equations

(A+ 5B−1)x+ 2a = (abT)b, (16.5)

(5AB)x+ABy = Bb, (16.6)

where

A =

⎡
⎢⎣ 1 2 2

4 4 6
7 8 9

⎤
⎥⎦ ,B =

⎡
⎢⎣ 7 8 9

1 2 2
4 4 6

⎤
⎥⎦ ,a =

⎡
⎢⎣ 1

4
7

⎤
⎥⎦ , and b =

⎡
⎢⎣ 5

6
8

⎤
⎥⎦ ,

The two unknown vectors x and y can be computed by the following equations

x = (A+ 5B−1)−1(abTb− 2a), (16.7)

y = (AB)−1(Bb− 5ABx), (16.8)

The vectors x and y can be calculated using Program 16.15. The output of Program 16.15 is as follows.

x = 51.048 15.170 37.020
y = -544.617 -70.723 13.777

319

16.12. POINTER TO COMPUTATIONAL ARRAYS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

/* File: matrixeq.ch */
#include <stdio.h>
#include <array.h> // for array qualifier
#include <numeric.h> // for inverse()

int main() {
array double A[3][3] = {{1,2,2},{4,4,6},{7,8,9}};
array double B[3][3] = {{7,8,9},{1,2,2},{4,4,6}};
array double a[3] = {1,4,7}, b[3] = {5,6,8}, x[3], y[3];

x = inverse(A+5*inverse(B))*(a*transpose(b)*b - 2*a);
y = inverse(A*B)*(B*b - 5*A*B*x);
printf(" x = %.3f y = %.3f \n", x, y);
return 0;

}

Program 16.15: A program solving a system of linear equations.

Function sum() defined in header file numeric.h calculates the sum of all the elements in an array. Its
prototype is as follow.

double sum(array double &a, ... /* [array double v[:]] */);

If the array is a two-dimensional matrix, the function can calculate the sum of each row with the result stored
in the optional second argument as a one-dimensional array. For example,

> double a[3] = {10, 2, 3}
> sum(a)
15.0000
> array double v[3], b[3][2] = {1, 2, 3, 4, 5, 6}
> sum(b, v)
21.0000
> v
3.0000 7.0000 11.0000

Some useful array functions can be implemented using function sum(). For example, the array func-
tions all(), any(), and count() in Program 16.16 are implemented using function sum() with array
promotions. For function all(), if all elements of the array argument are zero, it returns 1. Otherwise, it
returns 0. If all elements of the array argument a in function all() are zero, the resultant array of array
expression a!=0 will be of values of zeros for all its elements. The summary of all elements of this array
from the function sum() will be zero. If there is any element of zero value in the array argument of of
function any(), it returns 1. Otherwise, it returns 0. Function count() calculates the number of zero in
an array. The output of Program 16.16 is shown in Figure 16.13.

16.12 Pointer to Computational Arrays

16.12.1 Pointer to Computational Arrays of Fixed Length

In some applications, using pointers to computational arrays is more convenient than using multi-dimensional
arrays. The same variable of pointer to computational arrays can be used to access different computational
arrays. Pointer to computational arrays can be declared similar to pointer to C arrays as shown below.

320

16.12. POINTER TO COMPUTATIONAL ARRAYS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

/* promotion.ch */
#include<array.h>
#include<numeric.h>

array int a[2][3] = {1, 2, 3, 4, 5, 6};
array double b[2][3] = {1, 2, 0, 4, 5, 0};
array int c[2][3];

int all(array double &a) {
return (int)sum(a != 0) == 0;

}

int any(array double &a) {
return (int)sum(a == 0) > 0;

}

int count(array double &a) {
return (int)sum(a == 0);

}
int main () {

printf("%freturn value of all() is %d\n\n", b, all(b));
printf("%dreturn value of all() is %d\n\n", c, all(c));
printf("%dreturn value of any() is %d\n\n", a, any(a));
printf("%freturn value of any() is %d\n\n", b, any(b));
printf("%dreturn value of count() is %d\n\n", a, count(a));
printf("%freturn value of count() is %d\n", b, count(b));
return 0;

}

Program 16.16: Functions with array promotions.

1.000000 2.000000 0.000000
4.000000 5.000000 0.000000
return value of all() is 0

0 0 0
0 0 0
return value of all() is 1

1 2 3
4 5 6
return value of any() is 0

1.000000 2.000000 0.000000
4.000000 5.000000 0.000000
return value of any() is 1

1 2 3
4 5 6
return value of count() is 0

1.000000 2.000000 0.000000
4.000000 5.000000 0.000000
return value of count() is 2

Figure 16.13: Output of Program 16.16.

321

16.12. POINTER TO COMPUTATIONAL ARRAYS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

array double (*p)[10];

which declares p as a pointer to two-dimensional computational arrays with 10 columns of double data
type. The following code fragment shows how to use pointer to computational arrays to handle multiple
dimension computational arrays.

> array int (*p)[3], b1[2][3] ={1, 2, 3, 4, 5, 6}
> int b2[3][3] = {7, 8, 9, 1, 2, 3, 4, 5, 6}, *t
> p == NULL
1
> p = (array int [:][:])(array int [2][3])malloc(2*3*sizeof(int))
0 0 0
0 0 0
> p == NULL
0
> p[1][1] = 40
40
> p
0 0 0
0 40 0
> p = b1 // array assignment
1 2 3
4 5 6
> delete p // free memory
> p
NULL

> p = (array int [:][:])b1 // p and b1 share the same memory
1 2 3
4 5 6
> b1[0][1] = 30;
30
> b1
1 30 3
4 5 6
> p
1 30 3
4 5 6

> p = (array int [:][:])b2 // p and b2 share the same memory
7 8 9
1 2 3
4 5 6

> t = &b1[0][0]
> p = (array int [:][:])(array int [2][3])t
1 2 3
4 5 6

322

16.12. POINTER TO COMPUTATIONAL ARRAYS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

Before a pointer to computational arrays is used, it has to be allocated memory, or error messages will be
displayed. One it is allocated memory, it will be treated as a regular computational array. It can be used as an
operand in array operations and as an argument of functions. Using casting operator (array data type
[:]...[:]) or (array data type (*)[:]...[:]) the following two methods can be used to
allocate memory for a pointer to computational arrays, where data type is any valid type of computational
array.

1. Casting operator (array data_type [:]...[:])(array data_type [n1]...[ni])
followed by a pointer to memory. Or casting operator
(array data_type [:]...[:])new data_type [n1]...[ni];

2. Casting operator (array data_type [:]...[:]) followed by the name of a C array.

For the first method, if the memory is allocated by function malloc(), calloc(), or realloc(), the memory
allocated for the pointer to computational array can be released by the function free() or delete later. If the
memory is allocated by operator new, it shall be released by operator delete. In the previous example, the
statements

array int (*p)[3], b1[2][3] ={1, 2, 3, 4, 5, 6}
p = (array int [:][:])(array int [2][3])malloc(2*3*sizeof(int))

allocate memory for p using function malloc(). The memory can also be allocated by operator new and
deleted by delete as follows.

p = (array int [:][:])new int [2][3];
...
delete p;

Details about operators new and delete are described in chapter 19. Statement

t = &b1[0][0]
p = (array int [:][:])(array int [2][3])t

or

p = (array int [:][:])(array int [2][3])&b1[0][0]

or

p = (array int [:][:])(int [2][3])&b1[0][0]

enables computational array p to share the memory of array b1.
For the second method, both pointer to computational array and original array share the same memory.

In the previous example, the statement

p = (array int [:][:])b1

makes p point to computational array b1. Later, the statement

p = (array int [:][:])b2

will point p at the C array b2. Note that the extents of the second dimension for arrays p, b1 and b2 shall
be the same.

If p has been allocated memory, the assignment operation is allowed. For example, the statement

323

16.12. POINTER TO COMPUTATIONAL ARRAYS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

p = (array int [2][3])b1

assigns the value of each element of array b1 to the corresponding element of array b. The memory for
array p and b1 can be of different.

Pointer to one-dimension computational array is declared without array index as shown in the commands
below.

> array int *p, a[3] = {1, 2, 3}
> p = (array int [:])a // p and a share the memory
1 2 3
> p = (array int [:])(array int [4])malloc(4*sizeof(int))
0 0 0 0
>p = (array int [4])10
10 10 10 10
> delete (p)

The interactive execution of the code below illustrates how to using a pointer to one-dimensional com-
putational array to access rows of two-dimensional arrays.

> array int *p, b[2][3] = {1, 2, 3, 4, 5, 6}
> p = (array int [:])(int[3])&b[0][0]
1 2 3
> &p // same as &b and &b[0][0]
1e8650
> p = (array int [:])(int[3])(int*)b
1 2 3
> &p // same as &a and &a[0][0][0]
1e8650
> p = 10
10 10 10
> b
10 10 10
4 5 6
> p = (array int [:])(int[3])&b[1][0]
4 5 6
> &p // same as &b[1][0]
1e865c

As mentioned in section 16.5.8, the casting operator with a pointer type gives the address of the first element
of an array. Thus, the statement below

p = (array int [:])(int[3])(int*)b

is equivalent to

p = (array int [:])(int[3])&b[0][0]

The command above may be used to have p refer to the first row of a two-dimensional array b, whereas
command

p = (array int [:])(int [3])&b[1][0]

324

16.12. POINTER TO COMPUTATIONAL ARRAYS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

will have p point to the second row of the array b.
Note that pointers to computational arrays might be used incorrectly as illustrated below. Given the

following declarations,

array short h[2][3];
array int (*p)[3], a[2][3], b[3][2], c[6];
array float f[2][3];
array double d[2][3];
int e[2][3], g[3][2];
int *ptr;

the statement

p = a;

is incorrect because p has not been allocated memory yet. A pointer to computational array should be
allocated memory before it is used. The statement

p = (array int [:][:])(a+a); // bad

is also incorrect because p will point to some intermediate memory instead of a. Similarly, for the statement
below.

p = (array int [:][:])(array int [2][3])b; // bad

p will point to some intermediate memory instead of the array b. The statement below will point p to the
memory of array b.

p = (array int [:][:])(array int [2][3])&b[0][0]; // ok

A pointer to computational array can also point to regular C arrays as shown below.

p = (array int [:][:])e; // ok
p = (array int [:][:])(array int [2][3])g; // ok

The statement

p = (array int [:][3])a; // bad

is incorrect. It should use the casting operator (array int [:][:]) or (array int (*)[:]) to
make p share the memory with a. The statement

p = (int (*)[3])a; // bad

is missing the keyword array. Pointers of scalar types and pointers to computational arrays are incompati-
ble. The assignment operations below with incompatible lvalue and rvalue are not allowed.

p = ptr; // bad
ptr = p; // bad
p = (void *)malloc(100); // bad

In the statement

p = (array int [:][:]) c; // bad

the dimensions of p and c do not match. So, it will get an error message. In the statement

325

16.12. POINTER TO COMPUTATIONAL ARRAYS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

p = (array int [:][:])h; // bad

computational array h of short type does not have enough memory to share with p because p is of int type.
The statement

p = (array int [:][:])f;

is correct from the memory space point of view, because f is of float type and has enough memory to share
with p.

After the pointer is allocated memory, or shares the memory with an array, the address operator gives
the address of the memory, or the first element of the array. In the example below, the commands

> p = (array int [:][:])a
> &p

give the address of the first element of a.
A pointer to computational array can be used to obtain a subarray or ’slice’ of a multi-dimensional array

as shown below.

> array int a[2][2][2] = {1, 2, 3, 4, 5, 6, 7, 8}
> array int (*p)[2]
4005e3e0
> p = (array int [:][:])(int[2][2])&a[0][0][0]
1 2
3 4
> &p // same as &a and &a[0][0][0]
4005e4e0
> p = (array int [:][:])(int[2][2])(int*)a
1 2
3 4
> &p // same as &a and &a[0][0][0]
4005e4e0
> p = (array int [:][:])(int[2][2])&a[1][0][0]
5 6
7 8
> &p // same as &a[1][0][0]
4005e4f0

Similar to the one-dimensional array, the casting operator with a pointer type gives the address of the
first element of an array. Thus, the statement below

p = (array int [:][:])(int[2][2])(int*)a

is equivalent to

p = (array int [:][:])(int[2][2])&a[0][0][0]

The command above may be used to have p refer to one portion of the three dimensional array a, whereas
command

p = (array int [:][:])(int [2][2])&a[1][0][0]

will have p point to the other portion.

326

16.12. POINTER TO COMPUTATIONAL ARRAYS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

16.12.2 Pointer to Computational Arrays of Assumed Shape

Besides pointer to computational arrays, Ch also supports pointer to computational arrays of assumed shape.
Unlike pointer to computational arrays, pointer to computational array of assumed shape can be used to point
to arrays of variable length. So, users do not need to worry about the extents of the arrays to be pointed.
Pointers to computational array of assumed shape are declared with colon ’:’ as the array’s subscripts.
Before a pointer to computational arrays of assumed-shape is used, it also has to be allocated memory in the
same manner as a pointer to computational arrays of fixed length described in the previous section.

For example, statement below

array float (*fp)[:];

declares fp as a pointer to computational arrays of assumed shape with float type. It can be pointed to
two-dimensional arrays of variable length.

The following commands show how to use pointer to computational arrays of assumed shape to handle
multiple dimension arrays of different length.

> array int (*p)[:]
> array int b1[2][3] ={1, 2, 3, 4, 5, 6}
> array int b2[2][2] ={5, 6, 7, 8}
> p = (array int [:][:])b1
1 2 3
4 5 6
> p = (array int [:][:])b2
5 6
7 8

In the above commands, arrays b1 and b2 are of the same dimension. But the extents of the second
dimension for b1 and b2 are different. Unlike pointer to computational array of fixed length, p, a pointer to
computational array of assumed-shape, can be used to point at either b1 or b2.

Furthermore, a pointer to computational array can also be used to represent a subspace (or subarray) of
a multiple dimension array. For example,

> array int a[2][2][3] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
> array int b[3][2][2] = {12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}
> array int (*p)[:]
> a
1 2 3
4 5 6

7 8 9
10 11 12
> p = (array int [:][:])(int [2][3])&a[0][0][0]
1 2 3
4 5 6
> p = (array int [:][:])(int [2][3])&a[1][0][0]
7 8 9
10 11 12
> p = (array int [:][:])(int [2][2])&b[0][0][0]
12 11
10 9

327

16.12. POINTER TO COMPUTATIONAL ARRAYS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

where p is used to represent the first and second “slices” of the array a, as well the first “slice” of the array
b which has different dimensions. The address operator ‘&’ gets the addresses of these array elements.

Not only ordinary identifiers, but also members of classes, structures, and unions, can be declared as
pointer to computational array of assumed-shape. This means a member of class/struct/union can be a
computational array of variable length. In the interactive command execution below, member s.a first
shares the same memory with array a1, and then shares the memory with array a2.

> struct tag{ array int (*a)[:];} s
> array int a1[2][3] = {1, 2, 3, 4, 5, 6}, a2[3][4]
> s.a = (array int [:][:])a1; // s.a and a1 share the memory
> s.a
1 2 3
4 5 6
> s.a = (array int [:][:])a2; // s.a and a2 share the memory
s.a[1][1] = 10
> a2[1][1]
10
> a1[1][1]
5

16.12.3 Using Pointer to Computational Arrays to Pass Arrays to Functions

Pointer to one-dimension computational array can be used to handle arrays of variable length. Like assumed-
shape arrays, pointers to computational arrays can also be used as arguments of functions. For example,

> void func1(array int *p) {printf("%d", p);}
> int array a[2] = {1,2}
> int array b[3] = {3,4,5}
> func1(a)
1 2
> func1(b)
3 4 5

The function func1() takes an argument of pointer to computational array. It can handle arrays, such as
a and b, with different length. The function definition in the above example is equivalent to the function
definition below which takes an argument of assumed-shape array.

void func1(array int p[:]) { printf("%d", p); }

Like multi-dimensional assumed-shape arrays, pointers to arrays of assumed shape can also be used as
arguments of functions. For example,

> void func2(array int (*p2)[:]) { printf("%d", p2); }
> int array a2[2][2] = {1,2,3,4}
> int array b2[3][3] = {1,2,3,4,5,6,7,8,9}
> func2(a2)
1 2
3 4
> func2(b2)
1 2 3
4 5 6
7 8 9

328

16.13. RELATIONSHIP BETWEEN COMPUTATIONAL ARRAYS AND C ARRAYS
CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

The function func2() takes an argument of pointer to two-dimensional assumed-shape array. So, it can
handle two-dimensional computational arrays with different extents, such as a2 and b2. The definition of
function func2() in the above example is equivalent to the definition below, which takes an argument of
two-dimensional assumed-shape array.

void func2(array int p2[:][:]) { printf("%d", p2); }

16.13 Relationship between Computational Arrays and C Arrays

A C array is only an address or a pointer whereas a computational array in Ch is a first-class object that
contains more information. As mentioned before, a computational array is declared with the type qualifier
array. Computational arrays can support many operators while C arrays cannot. Given the same extents,
the value of each element of a C array can be assigned to a computational array. For example,

int a[3][4]; // C array, ’a’ represents an address or a pointer
int b[4][3]; // C array, ’b’ represents an address or a pointer
array int A[3][4]; // Ch computational array
array int (*p)[4]; // point to computational array
array int (*p2)[:];// point to computational array of assumed shape
A = (array int[3][4])a; // OK
p = (array int[:][:])a; // OK
p = (array int[:][:])(array int [3][4])b; // OK
p = (array int[:][:])(int [3][4])b; // OK
p2 = (array int[:][:])a;// OK
p2 = (array int[:][:])(array int [3][4])b;// OK
p2 = (array int[:][:])(int [3][4])b; // OK
A = a; // OK
a = A; // Error

In the above example, the memory of array b with dimension 4x3 is accessed by pointer to computational
arrays p and p2 as array of dimension 3x4. Because p2 is a pointer to computational array of assumed-
shape, it can point to array of different extent for its second dimension. For example, p2 can also point to
array b of dimension 4x3 as follows.

p2 = (array int[:][:])b; // OK

C arrays can be passed to functions that take computational arrays as arguments, and vice versa. For
example,

int f1(array int A[3][4]); // argument is computational array
int f2(int a[3][4]); // argument is C array
f1(a); // OK
f1(A); // OK
f2(a); // OK
f2(A); // OK

If the variable of a C array is used as an address of the memory for the array, the address of the computational
array shall be used for the equivalent code. Fro example,

int f3(int *a); // argument is a pointer
f3(a); // OK
f3(&A[0][0]); // OK

329

Chapter 17

Characters and Strings

Types char and wchar t are used to define variables of characters and wide characters in Ch as shown
below.

char ch = ’a’;
char ch2 = ’\0’; /* null character */
wchar_t wch = L’a’;

The value of a variable of type char is a single character or escape sequence which is enclosed in single-
quotes, as in ’x’. A character constant has type int in C. Like C++, a character constant has type char in
Ch.

The value of wide characters is the same, except prefixed by the letter L, such as L’x’. A wide character
has the type wchar t, an integer type defined in the stddef.h or stdlib.h header file. The value of a wide char-
acter containing a single multibyte character that maps to a member of the extended execution character set
is the wide character (code) corresponding to that multibyte character, as defined by the mbtowc function,
with a platform-dependent current locale.

In Ch, a string is a sequence of multibyte characters enclosed in double-quotes, as in "xyz". Like a C
compiler, Ch automatically supplies an extra null character after all strings. A wide string literal is the same,
except prefixed by the letter L.

Ch and C use array of character (or wide-character) to define a string (or wide-character string) variable.
For example,

char *str = "this is a string.";
char str2[] = "this is also a string.";
char str3[6] = "abcde"; /* the last one is ’\0’ */
wchar_t *wstr = L"this is a wide string.";

17.1 Using Functions in string.h Header File

The header string.h declares one type size t and several functions useful for manipulating arrays of char-
acter type and other objects treated as arrays of character type. Various methods can be used to determine
the lengths of the arrays, but in all cases a char * or void * argument points to the initial (lowest addressed)
character of the array. If an array is accessed beyond the end of an object, the value of the last element is
used. Commonly used functions declared in header file string.h are categorized in this section.

330

17.1. USING FUNCTIONS IN STRING.H HEADER FILE
CHAPTER 17. CHARACTERS AND STRINGS

17.1.1 Copying Functions

Function name Description
memcpy() copies characters from one object to another.
memmove() moves characters form one object to another.
strcpy() copies one string to another.
strncpy() copies specified number of characters of one string to another.

For example, in the code below

> char str1[80] = "abcdefghijk"
> strcpy(str1, "efghij")
efghij
> str1
efghij
> strncpy(str1, "klmnopqrs", 3)
klmhij
> str1
klmhij
> strncpy(str1, "tuv", 5)
tuv
> str1
tuv
>

the function call

strcpy(str1, "efghij")

copies the string “efghij” (including the terminating null character) into the array pointed to by str1.
This function does not allocate any storage. The caller must insure that the buffer pointed to by str1 is
long enough to hold string s2 and its terminating null character. Similarly, the function call

strncpy(str1, "klmnopqrs", 3)

copies up to 3 characters from the string “klmnopqrs” into the buffer pointed to by str1. Once strncpy()
has copied 3 characters to str1, it does not append a terminating null character. So, the result is “klmhij”,
rather than “klm”. The function call

strncpy(str1, "tuv", 5)

copies up to 5 characters, including the terminating null character, from the string “tuv” into the buffer
pointed to by str1. Because the length of the string “tuv” is less than 5, the terminating null is added.
The function strncpy() does not allocate any storage either. The caller must insure that the buffer pointed to
by str1 is long enough to hold the characters copied to it.

17.1.2 Concatenation Functions
Function name Description
strcat() appends a copy of a string to the end of another.
strncat() appends specified number of characters of a string to the end of another.

For example, in the code below

331

17.1. USING FUNCTIONS IN STRING.H HEADER FILE
CHAPTER 17. CHARACTERS AND STRINGS

> char str1[80] = "abcd"
> strcat(str1, "efg")
abcdefg
> str1
abcdefg
>

the function strcat() appends a copy of the string “efg” (including the terminating null character) to the
end of the string pointed to by str1, The initial character ‘e’ of the second argument overwrites the null
character at the end of str1. This function does not allocate any storage. The caller must insure that the
buffer pointed to by str1 is long enough for appending the second string and its terminating null character.

17.1.3 Comparison Functions

Function name Description
memcmp() compares n characters of the object to another.
strcmp() compares two strings.
strcoll() compares a string to another.
strncmp() compares a specified number of characters of a string to another.
strxfrm() transforms a string to another.

For example, in the code below

> char str1[80] = "abcd"
> strcmp(str1, "aacd")
1
> strcmp(str1, "abcd")
0
> strcmp(str1, "efg")
-1
>

the function strcmp() compares the string pointed to by str1 to the strings “aacd”, “abcd” and “efg”,
respectively. It returns 1, when the string str1 is lexically greater than string “aacd”; zero, when the
strings str1 and “abcd” are identical; and -1, when the string str1 is lexically less than “efg”.

17.1.4 Search Functions
Function name Description
memchr() locates the first occurrence of a character in the object.
strchr() locates the first occurrence of a character in a string.
strcspn() computes the length of the maximum initial segment of a string.
strpbrk() locates a string in another.
strrchr() locates the last occurrence of a character in a string.
strspn() computes the length of the maximum initial segment of a string.
strstr() locates the first occurrence of a string in another.
strtok() breaks the string into a sequence of tokens.

332

17.1. USING FUNCTIONS IN STRING.H HEADER FILE
CHAPTER 17. CHARACTERS AND STRINGS

For example, in the code below

> char str1[80] = "abcdefgdef"
> strchr(str1, ’d’)
defgdef
> strchr(str1, ’w’)
00000000
> strstr(str1, "def")
defgdef
> strstr(str1, "dev")
00000000
> strtok(str1, "efg")
> char *str2 = "abcd;1234 ABCD"
> char *delimiter=" ;", *token
> token = strtok(str2, delimiter)
abcd
> token = strtok(NULL, delimiter)
1234
> token = strtok(NULL, delimiter)
ABCD
> token = strtok(NULL, delimiter)
(null)
>

the function call

strchr(str1, ’d’)

locates the first occurrence of character ‘d’ in the string pointed to by str1, and returns a pointer to the
location. As the character ‘w’ does not occur in the string str1, the function call

strchr(str1, ’w’)

returns a null pointer. Similarly, the function call

strstr(str1, "def")

finds the first occurrence of substring “def” within string str1, exclusive of the terminating null character,
and returns a pointer to this substring. Since the substring “def” cannot be found in the string str1, the
function call

strstr(str1, "dev")

returns a null pointer. The function strtok() gets the next token from a string. The tokens are strings
separated by characters specified by the second argument. To get the first token from the string str2, the
function call

token = strtok(str2, delimiter)

use str2 as its first parameter. The subsequent function calls

token = strtok(NULL, delimiter)

with null pointers for the first parameters return all other tokens from str1 one after another. The second
argument is the string of delimiters which can differ from call to call. The section 17.3 introduces the fore-
ach loop to obtain tokens from a string.

333

17.1. USING FUNCTIONS IN STRING.H HEADER FILE
CHAPTER 17. CHARACTERS AND STRINGS

17.1.5 Miscellaneous Functions
Function name Description
memset() copies a value into each of the first specified number of characters of an object.
strerror() maps the number in the errnum to a message string.
strlen() computes the length of a string.

For example,

> strlen("abcde")
5
>

where the function strlen() returns the length of the string “abcde”. The terminating null of the string is
not counted by the function strlen(), so that the result is 5, instead of 6, in this case. If this function is used
to calculate the size of the dynamically allocated memory for a string, the return value should be added 1.

17.1.6 String Functions Supported by Ch, but not in C Standard Library

Function name Description
strcasecmp() compare two strings, ignoring case.
strconcat() concatenates strings.
strjoin() combines strings to a string separated by the specified delimiter string.
strncasecmp() compare part of two strings, ignoring case.

For example, in the code below,

> char *buffer
> char test[90] = "abcd"
> buffer = strconcat(test, "efgh", "ijk")
abcdefghijk
> free(buffer)
> buffer = strjoin("+", test, "efgh", "ijk")
abcd+efgh+ijk
> free(buffer)
>

assume the character array test has the value of string abcd, the function call

buffer = strconcat(test, "efgh", "ijk")

concatenates these three strings, and puts the result into the returned string with dynamically allocated
memory. The dynamically allocated memory need to be freed later by the user. The function call

buffer = strjoin("+", test, "efgh", "ijk")

also combines these three strings to the returned string with dynamically allocated memory. But, the returned
string is separated by a delimiter string “+” which is specified by the first argument of the function strjoin().

334

17.2. STRING TYPE STRING T
CHAPTER 17. CHARACTERS AND STRINGS

Table 17.1: Functions for type string t.

Function Name Description
str2ascii() get the ASCII value of a string.
str2mat() change strings to a matrix.
stradd() add the second string to the first one.
strgetc() get a character from a string.
strputc() put a character into a string.
strrep() replace a string within a string by another string.

17.2 String Type string t

C has no string data type. As mentioned above, arrays of characters are handled as strings in C. In Ch, a
string data type string t is added. It is seamlessly merged with pointer to char. All functions defined in the
standard C library header string.h are valid for both pointers to char and strings. String through the string
type string t is a first-class object in Ch. For example, the following code fragment

string_t s, a[3];
s = "great string"
s = stradd("greater ", s)
strcpy(a[0], s);
printf("a[0] = %s\n", a[0]);

will display greater great string. string t is a keyword in Ch and the function stradd() is a built-in
generic function. Format specifier "%s" can be used to obtain input to a variable of string type as shown in
the commands below.

> string_t s
> scanf("%s", &s)
123abc
> printf("%s", s)
123abc
>

For string functions strcpy(), strncpy(), strcat(), and strncat(), the memory will be automatically han-
dled if the first argument is of the type string t. For example,

> string_t s
> strcpy(s, "abcd")
abcd
> strcat(s, "ABCD")
abcdABCD
> s
abcdABCD
>

In Ch, the header file string.h delares some additional functions, which are listed in Table 17.1, for the
type string t specifically. They mainly include str2ascii(), str2mat(), strgetc(), strputc(), and strrep().
For example, in the code below

335

17.2. STRING TYPE STRING T
CHAPTER 17. CHARACTERS AND STRINGS

> str2ascii("a")
97
> str2ascii("b")
98
> str2ascii("ab")
195
> array char mat[3][10]
> str2mat(mat, "abcd", "0123456789")
0
> mat
a b c d
0 1 2 3 4 5 6 7 8 9
> str2mat(mat, "ABCD", "EFGH", "ab23456789", "too many strings")
-1
> mat
A B C D
E F G H
a b 2 3 4 5 6 7 8 9
> string_t s1 = "abcd"
> stradd(s1, "efg") // add "efg" to s1
abcdefg
> strgetc(s1, 0) // get the first character of s1
a
> strgetc(s1, 2) // get the third character of s1
c
> strputc(s1, 2, ’z’) // change the third character to ’z’
0
>
s1
> abzdefg
> strrep(s1, "def", "xyz") // replace "def" with "xyz" in s1
abzxyzg
>

the function call

str2ascii("ab")

calculates the ASCII value of the string “ab” by adding up the ASCII values of characters ‘a’ and ‘b’. The
function call

str2mat(mat, "abcd", "0123456789")

assigns two strings “abcd” and “0123456789” to the first two rows of array mat, and return 0 upon
successful completion. The rest rows of mat retain null. If strings in the argument list are more than the
rows in the array mat, such as

str2mat(mat, "ABCD", "EFGH", "ab23456789", "too many strings")

the function will return -1, and ignore the string “too many strings”. The function stradd() is a
generic function for adding a string to another. Ch will handle the memory for users. Assume the string s1
with value of “abcd” has type of string t, the function call

336

17.3. HANDLING STRING TOKENS USING FOREACH LOOP
CHAPTER 17. CHARACTERS AND STRINGS

stradd(s1, "efg")

adds the string “efg” to the end of s1, and then returns s1. The function calls

strgetc(s1, 0)
strgetc(s1, 2)

return the first and the third characters, i.e. ‘a’ and ‘c’, of the string, respectively. Functions strgetc() and
strputc() are particularly useful for manipulating characters inside a string. The function call

strputc(s1, 2, ’z’)

changes the third character in the string s1 to ‘z’. The function call

strrep(s1, "def", "xyz")

replaces the string “def” in s1 with the string “xyz, and return s1.
As it is mentioned above, one of the advantages of type string t is that Ch can handle the memory for

variables of type string t automatically. For every operations on these variables, Ch will figure out the size
of the memory required, and then allocate enough memory for the variables. At the end of the lifetimes
of these variables, Ch will free their memory automatically. For example, in the following program, the
memory of the variable s1 in the function fun() is freed upon exit of the function, and the memory of
variable s2 is freed at the return of function, or at the assignment of the variable s in the main() function.
On the other hand, the memory for s is allocated automatically at its assignment.

string_t fun() {
string_t s1;
string_t s2;
...
return s2;

}
int main() {
string_t s;
fun();
s = fun();
...

}

17.3 Handling String Tokens Using foreach Loop

Besides the while loop, do-while loop and for loop, the foreach loop presented in section 8.4.4 is especially
convenient for handling of strings. It causes one piece of text to be used repeatedly, each time with a different
substitution performed on it. This gives an easy way to handle strings or to iterate over arrays.

For example, the function strtok() or strtok r() can be used to retrieve tokens in a null-terminated
string. The following code fragment

char *s = "abcd;1234 ABCD;56;xyz";
char *delimiter=" ;", *token;
token = strtok(s, delimiter);
while(token) {

printf("token = %s\n", token);
token = strtok(NULL, delimiter);

}

337

17.4. WIDE CHARACTERS
CHAPTER 17. CHARACTERS AND STRINGS

will output

abcd
1234
ABCD
56
xyz

We can rewrite this example with a foreach loop as follows.

char *s = "abcd;1234 ABCD;56;xyz";
char *delimiter=" ;", *token;
foreach(token; s; NULL; delimiter)

printf("token = %s\n", token);

If we replace NULL in the above code with the string ”ABCD” as a value for cond of foreach loop,
the code fragment becomes

char *s = "abcd;1234 ABCD;56;xyz";
char *delimiter=" ;", *token;
foreach(token; s; "ABCD"; delimiter)

printf("token = %s\n", token);

The output of the above code is

abcd
1234

17.4 Wide Characters

A wide character constant has type wchar t, an integer type defined in the stddef.h header. It is a sequence
of one or more multibyte characters enclosed in single-quotes, as in ’x’ or ’ab’ prefixed by the letter L.
The value of a wide character constant containing a single multibyte character that maps to a member of the
extended execution character set is the wide character (code) corresponding to that multibyte character, as
defined by the mbtowc function, with platform-dependent current locale. The value of a wide character con-
stant containing more than one multibyte character, or containing a multibyte character or escape sequence
not represented in the extended execution character set, is platform-dependent.

For example, the definition of a wide character variable wc is shown below.

wchar_t wc = L’a’;

To effectively use wide characters and strings in Ch command shell for multi-byte languages such as
Simplified Chinese, Russian, Japanese, etc. To use functions in the header files wchar.h and wctype.h, add
the statements

#include <locale.h>
#pragma exec setlocale(LC_ALL, "Chinese-Simplified");

for a specific Unicode, or

#include <locale.h>
#pragma exec setlocale(LC_ALL, "");

338

17.5. WIDE STRINGS
CHAPTER 17. CHARACTERS AND STRINGS

for the default Unicode of the system at the beginning of a program. Or add the statement

setlocale(0, "Chinese-Simplified");

for a specific Unicode, or

_setlocale = 1;

or

setlocale(LC_ALL, "");

for the default Unicode of the system in the individual user’s startup file chrc in the user’s home directory
or in the system startup file CHHOME/config/chrc so that the setup will be effective for all programs.

17.5 Wide Strings

A wide-character string constant is a sequence of zero or more multibyte characters enclosed in double-
quotes prefixed by the letter L.

The following code

wchar_t *wstr = L"abcd";

defines a wide-character string wstr in Ch.
The function mbstowcs() declared in the file stdlib.h can convert a multibyte string to a wide-character

string and the function wcstombs() does it contrarily.
The header file wchar.h declares some data types, tags, macros, and functions for wide characters.

339

Chapter 18

Structures, Unions, Bit Fields, and
Enumerations

18.1 Structures

The structure types in Ch are similar to those in C++. They are collections of members that can have different
types. For example, the type of complex in Ch is equivalent to the following definition of structure.

struct Complex{
float r;
float m;

};

where two members r and m are used to hold the real and imaginary parts of a complex number. Complex
is called the tag of the structure.

The following code fragment can create an object of the type Complex.

Complex z;
z.r = 10;
z.m = 5;

where the selection operator “.” is used to access members of the structure. The member r is set to 10 and
m to 5. If the variable is defined as a pointer to a struct, the operator “->” is used to access its members. For
example,

Complex *pz = &z;
pz->r = 10;
pz->m = 5;

There are two namespaces for structures in C, one for structures’ tags and one for variables. But there
are one and an half namespaces for structures in C++, one for tags and a half for variables. Ch handles
structures the same way as the latter. Tags and variables share the same namespace. Once a tag name is used
as a variable explicitly, it will not be treated as a typed name implicitly in Ch. For example,

struct tag1_t {
struct tag2_t;
....

};

340

18.2. UNIONS
CHAPTER 18. STRUCTURES, UNIONS, BIT FIELDS, AND ENUMERATIONS

tag1_t s; // ok
int tag1_t; // ok
struct tag1_t s2; // ok
tag1_t s3; // error, tag1_t is a variable of int
struct tag2_t s4; // Not valid in Ch and C++, OK in C

18.2 Unions

A union type describes an overlapping non-empty set of member objects, each of which has an optionally
specified name and possibly distinct type. Like structures, unions can have some members. Unlike struc-
tures, a union can only hold one of its members at a time. The members are conceptually overlaid in the
same memory. Each member of a union is located at the beginning of the union.

For example, below is a union with three members.

union U1{
double d;
char c[12];
int i;

} obj, *P = &obj;

then the following equalities hold.

(union U1*)&(P->d) == (union U1*)(P->c) == (union U1*)&(P->i) == P

The size of an instance of a union is the amount of memory necessary to represent the largest member,
plus the padding that raises the length up to an appropriate alignment boundary. In the previous example,
the following equalities hold.

sizeof U1 == 16

although the largest member c occupies only 12 bytes memory.
Because a union only holds one member at a time, if two or more members are used without casting, the

result could be strange. For example, the following code fragment

obj.i = 10;
printf("obj.d = %f\n", obj.d);

will print out zero or a tiny value instead of 10, because of the differences in representations of int variables
and float variables.

There are one and half namespaces for union in Ch and C++, one for struct tags and half for variables.
Like C++, a union tag, such as U1, is put into typedefed namespace by default in Ch.

18.3 Bit-fields

Like C, Ch offers bit-fields which have the capability of defining and accessing within a word directly.
In the following code fragment,

341

18.4. ENUMERATIONS
CHAPTER 18. STRUCTURES, UNIONS, BIT FIELDS, AND ENUMERATIONS

struct Bf1 {
unsigned int a;
unsigned int b;
unsigned int c;

} bf1 = {1, 1, 1};

struct Bf2 {
unsigned int a : 4;
unsigned int b : 4;
unsigned int c : 4;

} bf2 = {1, 2, 3};

bf2.c = 4;
printf("sizeof Bf1 is %d\n", sizeof(struct Bf1));
printf("sizeof Bf2 is %d\n", sizeof(struct Bf2));

the size of Bf1 is 12 because there are three integers inside the structure. But, the size of Bf2 is 4 because
three members only take 12 bits memory, plus padding.

Consider the bit field below.

struct eeh_type {
uint16 u1: 10; /* 10 bits */
uint16 u2: 6; /* 6 bits */

};

This might actually be implemented as

<10-bits><6-bits>

or as

<6-bits><10-bits>

depending on the endian type of the machine and operating system.
The selection operator “.” can be used to access the members of a bit-field. For example, the following

equalities hold.

bf2.a == 1;
bf2.b == 2;
bf2.c == 4;

18.4 Enumerations

An enumerated type is a set of integer values represented by enumeration constants.
For example, the declaration

enum datatypes {
inttype, // 0
floattype, // 1
doubletype, // 2

} d1, d2;

342

18.4. ENUMERATIONS
CHAPTER 18. STRUCTURES, UNIONS, BIT FIELDS, AND ENUMERATIONS

creates a new enumerated type, enum datatypes, whose values are inttype,floattype and doubletype.
It also declares two variables of the enumerated type d1 and d2, which can be assigned enumeration con-
stants with the following assignment statement.

d1 = inttype;
d2 = doubletype;

The first enumeration constant receives the value 0 by default and the subsequent enumeration constants
receive an integer value one greater than the previous enumeration constant. The values of d1 and d2 will
be 0 and 2, respectively.

An explicit integer value can be associated with an enumeration constant in the definition. For example,
given the declaration,

enum datatypes {
inttype, // 0
floattype = 10, // 10
doubletype // 11

};

the value of inttype, floattype, doubletypewill be 0, 10 and 11, respectively.
Enumerated type can be used to replace the #define directive in some applications. The following code

fragment uses a variable of enum type in a switch statement.

enum datatypes {
inttype,
floattype,
doubletype

};
enum datatype dt1;

...

switch(dt1) {
case inttype:

...
break;

case floattype:
...
break;

case doubletype:
...
break;

}
...

343

Chapter 19

Classes and Object-Based Programming

19.1 Class Definition and Objects

The class in C++ and Ch is a natural evolution of the structure. Class can be used to create user-defined
types. Functions can be members of a class but not members of a structure in C. Like C++, both class and
struct in Ch can have member functions. By default, members of a class are private whereas members of a
struct are public.

The following is an example of the definition of a class.

class Student {
int id;
char *name;

};

The class Student has two members. Assume id holds the ID number of a student and name is the name
of the student. After defining a class, it can be used in the program as shown below.

int main() {
class Student s1;
....

}

where s1 is called an object or an instance of class Student.

19.2 Member Functions of Class

As it is mentioned above, function can be a member of a class. We can redefine the class of Student in a
header file student.h as follows.

/* Filename: student.h */
#ifndef STUDENT_H
#define STUDENT_H

class Student {
int id;
char *name;

public:

344

19.2. MEMBER FUNCTIONS OF CLASS
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

void setID(int i);
void setName(const char *n);
int getID();

};

#pragma importf <Student.cpp>

#endif

The member functions are defined in a separate file Student.cpp shown below. This file located in a
directory specified by the system variable fpath are loaded once by the statement.

#pragma importf <Student.cpp>

/* Filename: Student.chf */
#include <string.h> /* for strdup() */
#include "student.h"

void Student::setID(int i) {
id = i;

}

void Student::setName(const char *n) {
if(n)
name = strdup(n);

}

int Student::getID() {
return id;

}

In the definition of a member function, a function name is preceded by the class name and the scope resolu-
tion operator ‘::’, which will be explained later. The function setID() takes the ID number of a student
as the argument and then sets the class member id to it. The function setName() sets the member name
to a new name. The function getID() gets the ID of the student. The members setID(), setName(),
and getID() are called member functions or methods in Ch and C++. One can invoke a member function
by using the member operator ‘.’ which is just like accessing a member of a structure as shown in program
prog.cpp.

/* Filename: prog.cpp */
#include <iostream.h> /* for cout */
#include "student.h"

using namespace std; /* for cout */
int main() {

class Student s;
s.setID(1);
s.setName("Jason");
cout << "id is " << s.getID() << endl;

345

19.3. PUBLIC AND PRIVATE MEMBERS OF CLASS
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

return 0;
}

Private members of a class such as name and id are normally not accessible outside the class, which is
called information hiding. One of the main roles of member functions of a class is to provide a means to
access private members of the class.

19.3 Public and Private Members of Class

As it is pointed out before, the members id and name of class Student are not accessible outside the
class. The outside code has access to them only through some member functions of the class. This is
because they are private members and all of the member functions defined in the class Student are public
members. Ch has two member access specifiers public: and private:. They can appear multiple times and
in any order in a class definition. By default, members in class are private whereas members in struct are
public. We can write the definition of the class Student like

class Student {
public:
void setID(int i);
void setName(const char *n);

private:
int id;
char *name;

};

Normally the data members of a class are defined as private members and member functions are defined as
public members. The set of public member functions of a class is called the interface. But in certain
cases, we may need to define a public data member or a private member function. A public data member
is accessible outside the class by the member operator ‘.’ just like public member functions. On the other
hand, the private member functions can only be called by other member functions of the class.

19.4 Constructors and Destructors in Class

Data members of a class cannot be initialized in the class definition in Ch. Initializations can be done in
a constructor. The constructor and destructor are member functions, which have no return value specified.
The constructor has the same name as the class name. It is invoked automatically each time an object is
instantiated and performs some initializations. A constructor can take arguments for initializing its data
members while a destructor can not take any argument. For example, we can add constructor and destructor
for class Student as follows.

class Student {
public:
Student(int, const char *); // constructor
˜Student(); // destructor
void setID(int i);
void setName(const char *n);

private:
int id;

346

19.5. THE NEW AND DELETE OPERATORS
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

char *name;
};

Student::Student(int i, const char *n) {
id = i; /* initialize id */
name = strdup(n); /* initialize name */

}

Student::˜Student() {
/* release the memory allocated in constructor */
free(name);

}

where the constructor sets the data member id and name when the new object is created, and the destructor
frees the memory allocated in the constructor.

The declaration with initialization in the main function is shown below.

int main() {
class Student s1 = Student(1, "Jason");
class Student s2 = Student(2, "Bob");
....

}

After the constructors are called during the declarations, the data members of s1 and s2 have been set.
When the function main() terminates, the destructor will be called.

19.5 The new and delete Operators

In C, the dynamic memory allocation and deallocation are normally performed by the functions malloc()
and free(). In Ch and C++, the operator pair new and delete can do the same thing as malloc() and free()
and also provide other benifits.

The operator new can calculate automatically the proper size of the memory to be allocated while the
function malloc() must take an argument as the size of the memory. The operator new can return a pointer
of the correct type while the function malloc() only returns a pointer to void. The most important thing
is that the operator new can invoke the contructor of a class automatically and perform the initialization
if necessary while the function malloc() does not provide any initialization of the memory allocated. The
corresponding destructor will be called by the operator delete.

The following code fragment shows how the operators of new and delete are used.

int main() {
class Student *s1 = new Student (1, "Jason");
class Student *s2 = new Student (2, "Bob");
...

s1->setID((5); // change ID of s1 to 5
...

delete s1;
delete s2;

}

347

19.6. STATIC MEMBER OF CLASS
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

To users, this example does the same thing as the previous one including initializations, but it is more flexible
and useful in some cases.

If the attempt to allocate memory is successful, the operator new returns a pointer to the allocated
memory. Otherwise, it calls the handler function pointed to by new handler if new handler is not NULL,
and then returns a NULL pointer. A program may install different handler functions for new operator during
execution, by supplying a pointer to a function defined in the program or the library as an argument to the
function set new handler(). The function set new handler() is defined in header file new.h as follows.

void (*set_new_handler (void(*)()))();

It establishes the function designated by the argument for the current new handler, and returns NULL on
the first call, or the previous new handler on subsequent calls. Program 19.1 sets the function newhandle()
as the handler function for new operator, and then allocates memory for variables p and sp, respectively.
The system has enough memory for p, but not for sp. The function newhandler() is called when the
new operator fails to allocate memory for sp. The output from executing Program 19.1 is appended at the
end of the file.

For a variable of pointer to class, the operator ‘->’ shall be used to access a member of the class.
The new and delete operators can handle not only a single value, but also an array. For example, the

following code

class Employee {
char *name;

};
int main() {

class Employee *e = new Employee[10];
....

delete [10] e;
}

instantiates 10 new objects of the class Employee. At the end of the program, all of these 10 objects will
be deleted.

19.6 Static Member of Class

Typically each object of a class has its own copy of the data members in memory. But in certain cases,
different objects of a class need to use some “class-wide” information. That means they have to share the
same copy of a variable. A static class variable can provide this mechanism. The values of a static member
in all objects of a class are the same. The change of its value affects all objects. Even if no object of a
class exists, the static member is still there and can be manipulated. The declaration of a static member
begins with the keyword static. For example, a static member count can be added to the definition of class
Student as shown below,

class Student {
// number of objects instantiated
static int count;
int id;
char *name;

public:

348

19.6. STATIC MEMBER OF CLASS
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

#include <new.h>
#include <stdio.h>

struct tag{ int i; int j[900000];} s;
void newhandler(void);

int main() {
set_new_handler(newhandler);

int *p = new int[20];
if(p==NULL)

printf("not enough memory for p\n\n");
else

printf("enough memory for p\n\n");

tag *sp = new tag[90];
if(sp==NULL) {

printf("not enough memory for sp\n");
printf("sp = %p\n", sp);

}
else {

printf("enough memory for sp\n");
printf("sp = %p\n", sp);

}
}

void newhandler(void) {
printf("message from newhandler\n");

}

/**** result of the program
newhandler.ch
enough memory for p

message from newhandler
not enough memory for sp
sp = 00000000

****/

Program 19.1: Setting handler function for new operator.

349

19.6. STATIC MEMBER OF CLASS
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

Student(int, char *);
˜Student();
void setID(int i);
void setName(const char *n);

};

where the member count maintains the count of objects of class Student. The static data member can
be initialized with the following statement along with definitions of other member functions. A static data
member must be initialized once at file scope. For example,

int Student::count = 0;

The member count can be referenced through any member function of Student object. In this example,
the constructor will add 1 to count and the destructor will subtract 1 from it. We can rewrite the constructor
and destructor as follows,

Student::Student(int i, char *n) {
id = i; /* initialize id */
name = strdup(n); /* initialize name */
count++;

}

Student::˜Student() {
/* release the memory allocated in constructor */
free(name);
count--;

}

Like C++, Ch not only has static members of simple data types but also has static member functions such as
the member function getCount() defined below.

class Student {
// number of objects instantiated
static int count;
int id;
char *name;

public:
Student(int, char *);
˜Student();
void setID(int i);
void setName(const char *n);
static int getCount();

};

int Student::getCount() {
return count;

}

The function can be used to get the count of objects currently instantiated as shown below.

350

19.7. SCOPE RESOLUTION OPERATOR ::
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

int main() {
class Student s1 = Student(1, "Jason");
....

cout << "Number of student is "
<< s1.getCount() << endl;

....
}

The static member function can be called even though there is no object instantiated. In other words,
getCount() can be called using the following statement before s1 is instantiated. For example,

int main() {
....
cout << "Number of student is "

<< Student::getCount() << endl;
....

}

19.7 Scope Resolution Operator ::

Ch and C++ provides a unary scope resolution operator ‘::’ to access a global variable when a local variable
of the same name is in the scope. For example,

#include <stdlib.h>
int num;
int main() {
int num;
num = 10; // use local num
::num = ::num+2 // use global num

...

::exit(0); // use C function exit()
}

Furthermore, this operator is used very often with classes. We have already used the scope resolution
operator ‘::’ in the previous examples. It is mainly used in the following occasions.
1. Member function definition. When a member function is defined after the class definition, the function
name is preceded by the class name and the scope resolution operator ‘::’. Because different classes
can have members with the same name, the scope resolution can prevent the confusion. For example, the
member function getCount() in the previous examples is defined with the code fragment below.

... /* definition of the class Student */

int Student::getCount() {
return count;

}
...

351

19.8. THE IMPLICIT THIS POINTER
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

2. Accessing the static member. As mentioned above, if no object of a class exists, the static members of
that class are still accessible by adding the class name and the scope resolution operator ‘::’ in front of the
static data member name. For example, the code

int main() {
....
cout << "Number of student is "

<< Student::getCount() << endl;
....

}

can print out the number of the object of the class Student even when no object has been declared.

19.8 The Implicit this Pointer

In Ch and C++, every object has an implicit pointer called this to point to its own address. Although the
pointer this is not regarded as a part of the object, i.e., it is not reflected in the sizeof() operation, it is
actually implicitly used to reference the data members and member functions of an object. The following
definitions of member functions

void setID(int i) {
id = i;

}

void setName(const char *n) {
if(n)
name = strdup(n);

}

are equivalent to

void Student::setID(int i) {
this->id = i;

}

void Student::setName(const char *n) {
if(n)
this->name = strdup(n);

}

where this pointers are used explicitly. A static member function has no this pointer because it exists
independent of any object of a class.

19.9 Polymorphism

Although Ch does not support operator overloading at the user’s level. Commonly used mathematical oper-
ators are overloaded internally to handle operands of different data types. For example, operator ’+’ can be
used for addition of integral numbers, floating-point numbers, complex numbers, and computational arrays
of different data types.

352

19.9. POLYMORPHISM
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

Ch supports polymorphism — the ability for normal functions and member functions of classes to re-
spond differently to the same function calls, but with different argument numbers and types. Ch does not
support C++ function overloading at the user’s level, in which a function can be defined multiple times with
different data types and arguments. This is achieved by mangling function names internally inside a C++
compiler. This name mangling is not suitable for interpretive implementation with a single pass because of
its overhead. The polymorphism in Ch is implemented mainly by the function reloading. How polymorphic
functions are handled in Ch will be summarized in this section.

19.9.1 Polymorphic Generic Mathematical Functions

Commonly used generic mathematical functions such as sin() are polymorphic. They can handle arguments
of integral values, floating-point values, complex values, and computational arrays of different data types
and sizes. Generic mathematical functions for real numbers, complex numbers, and computational arrays of
different data types and sizes have been described in sections 12.1, 13.5, and 16.10, respectively. Below is
an example of calling generic mathematical function sin() with different arguments in a Ch shell.

> float f = 1.0
> sin(f) // call with a float
0.84
> double d = 1.0
> sin(d) // call with a double
0.8415
> complex float zf = 1
> sin(zf) // call with float complex
complex(0.84,0.00)
> complex double zd = 1
> sin(zd) // call with double complex
complex(0.8415,0.0000)
> array float af1[2] = {1.0, 2.0}
> sin(af1) // call with a one-dimensional array
0.84 0.91
> array float af2[2][3] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0}
> sin(af2) // call with a two-dimensional array
0.84 0.91 0.14
-0.76 -0.96 -0.28
> array double ad1[2] = {1.0, 2.0}
> sin(ad1) // call with a double array
0.8415 0.9093
> array complex double az1[2] = {1.0, 2.0}
> sin(az1) // call with a complex array
complex(0.8415,0.0000) complex(0.9093,-0.0000)
>

19.9.2 Functions with Parameter Type of Array of Reference

A function with parameters of array of reference can be used to handle array arguments of different dimen-
sions and data types. For example, the function func() with prototype

int func(double a[&][&], array double &b);

353

19.9. POLYMORPHISM
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

can take arguments of different dimensions and types as follows.

int func(double a[&][&], array double &b);
array double A1[2][3], B1[10];
array float A2[4][5], B2[3][4];
int func(A1, B1);
int func(A2, B2);

Details about using functions with parameter type of array of reference to pass arguments of different di-
mensions and data types are described in section 16.7.5.

19.9.3 Polymorphic Functions

Polymorphic generic mathematical functions are implemented as built-in functions in Ch. Using facilities in
the standard library defined in header file stdarg.h described in section 10.7, a user can write polymorphic
functions. Header file stdarg.h contains function prototypes and macros listed in Table 10.1 for handling
arguments of variable length. Through some sample code, this section will illustrate how to use macros
VA NOARG, va count, va datatype, va arraydim, va arrayextent, va arraynum, and va arraytype to
implement polymorphic functions in a user’s program.

Function func() in Program 19.2 will print out the values of the variable number arguments of different
data types. Inside function, the macro va count() returns the number of the remaining arguments in the
argument list. Thus the while-loop

while(va_count(ap)) {
...

}

can retrieve all of the arguments one by one. The output of Program 19.2 is shown in Figure 19.1.

354

19.9. POLYMORPHISM
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

#include<stdarg.h>

void func(...) {
va_list ap;
int arg_num = 0;
int i;
float f;
double d;

va_start(ap, VA_NOARG);
while(va_count(ap)) {

if(va_datatype(ap) == elementtype(int)) {
i = va_arg(ap, int);
printf("the %d argument is int %d\n", ++arg_num, i);

}
else if(va_datatype(ap) == elementtype(float)) {
f = va_arg(ap, float);
printf("the %d argument is float %f\n", ++arg_num, f);

}
else if(va_datatype(ap) == elementtype(double)) {
d = va_arg(ap, double);
printf("the %d argument is double %f\n", ++arg_num, d);

}
}
va_end(ap);
return;

}

int main(){
int i = 10;
float f = 2.0;
double d = 3.0;

func(i, f);
func(f, i, d); // different types and different order
return 0;

}

Program 19.2: A polymorphic function handling variable length arguments.

the 1 argument is int 10
the 2 argument is float 2.000000
the 1 argument is float 2.000000
the 2 argument is int 10
the 3 argument is double 3.000000

Figure 19.1: Output of Program 19.2.

In addition to regular data types, arrays of different data types can be passed as pointers in a variable-
length argument list. The macros va arraytype(), va datatype(), va arraydim(), va arrayextent() and
va arraynum() can be used to get the data type, dimension, extent, and number of elements of a compu-
tational array or C array. These macros must be called before the macro va arg is called. For example, in

355

19.9. POLYMORPHISM
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

function fun() of Program 19.3, the statements

if(va_arraytype(ap) == CH_UNDEFINETYPE) { // check if it is not an array
printf("the argument is not an array\n");
return -1;

}

give an error message if the argument is not an array. The statements

if(va_datatype(ap) == elementtype(int)) {
/* if(va_datatype(ap) == CH_INTTYPE) {
printf("elementtype = int\n");

}
else {
printf("elementtype = other types\n");

}

determine if the type of the argument is int by calling macro va datatype() and generic function element-
type(), and then print out the corresponding message. The generic function elementtype() gives the data
type defined in the header file stdarg.h. Because both char* and string t represent strings in Ch, the fol-
lowing statement could be used in some occasions to determine the string type.

if(va_datatype(ap)==elementtype(char*)
|| va_datatype(ap)==elementtype(string_t)) {
printf("element type is string\n");

}
else {
printf("element type is not string\n");

}

In this example, statements

dim = va_arraydim(ap);
num = va_arraynum(ap);

gets the dimension and number of elements of the array argument. The statement

m = va_arrayextent(ap, 0);

gets the number of elements in the first dimension of the array. If the array has one dimension, the statements

array int *p;
ptr = va_arg(ap, int*);
p = (array int [:])(int [m])ptr;

make p share the memory with one-dimension arrays, such as A3 in the main() function. If the array has
two dimensions, the statements

array int (*p)[:];
n = va_arrayextent(ap, 1);
ptr = va_arg(ap, int*);
p = (array int [:][:])(int [m][n])ptr;

356

19.9. POLYMORPHISM
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

make p share the memory with two-dimension arrays, such as A1 and A2 in the main() function. A1 is a
fully-specified-shape computational array and A2 is an assumed-shape computational array. Like A1, they
are passed into function fun() as pointers to int. More information about computational arrays can be
found in Chapter 16. The output of Program 19.3 is shown in Figure 19.2.

357

19.9. POLYMORPHISM
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

#include <array.h>
#include <stdarg.h>
int fun(...) {

int *ptr, count, dim,num, m, n;
va_list ap;

va_start(ap, noarg);
count = va_count(ap);
printf("count = %d\n", count);
if(count >= 1) {
if(va_arraytype(ap) == CH_UNDEFINETYPE) { // check if it is not an array

printf("the argument is not an array\n");
return -1;

}
dim = va_arraydim(ap); // get the dimension
printf("dim = %d\n",dim);
num = va_arraynum(ap); // get the number of element
printf("num= %d\n",num);
if(va_datatype(ap) == elementtype(int)) // get the type
// or if(va_datatype(ap) == CH_INTTYPE)

printf("elementtype = int\n");
else

printf("elementtype = other types\n");
m = va_arrayextent(ap, 0); // get the extent
if(dim == 1) {

printf("extent1 = %d\n",m);
array int *p;
ptr = va_arg(ap, int*);
p = (array int [:])(int [m])ptr;
printf("p =\n%d\n", p);

}
if(dim == 2) {

array int (*p)[:];
n = va_arrayextent(ap, 1);
printf("extent1 = %d, extent2 = %d\n", m, n);
ptr = va_arg(ap, int*);
p = (array int [:][:])(int [m][n])ptr;
printf("p =\n%d\n", p);

}
}
va_end(ap);
return 0;

}

int main() {
array int A1[2][3];
array int (*A2)[:];
array int A3[3] = {1, 2, 3};

A1 = (array int [2][3])50;
fun(A1);

A1 = (array int [2][3])80;
A2 = (array int [:][:])A1;
fun(A2);
fun(A3);

}

Program 19.3: Pass computational arrays to functions.
358

19.9. POLYMORPHISM
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

count = 1
dim = 2
num= 6
elementtype = int
extent1 = 2, extent2 = 3
p =
50 50 50
50 50 50

count = 1
dim = 2
num= 6
elementtype = int
extent1 = 2, extent2 = 3
p =
80 80 80
80 80 80

count = 1
dim = 1
num= 3
elementtype = int
extent1 = 3
p =
1 2 3

Figure 19.2: Output of Program 19.3.

One restriction of polymorphic functions in Ch is that functions cannot return values of different data
types. In case results of different data types are to be obtained from a function, it can be implemented
by passing a pointer as an argument to retrieve value of different types. For example, function func() in
Program 19.4 can retrieve values of int or float as the returned values through the first argument which is a
pointer. The output of Program 19.4 is shown in Figure 19.3.

19.9.4 Polymorphic Member Functions of Class

Not only functions, but also constructors and member functions of classes in Ch can be polymorphic using
facilities in header file stdarg.h for handling variable length arguments.

In Program 19.5, both constructor C1() and member function memfunc() of class C1 can take variable
number of arguments of int type. Objects c1 and c2 are instantiated by using the constructor with one and
two arguments, respectively. The output of Program 19.5 is shown in Figure 19.4.

359

19.9. POLYMORPHISM
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

#include<stdarg.h>

void func(...) {
va_list ap;
int *pi, flag;
float *pf;

va_start(ap, VA_NOARG);
if(va_count(ap) != 2) {

printf("need 2 arguments\n");
return;

}

if(va_datatype(ap) == elementtype(int *)) { // get the 1st argument
pi = va_arg(ap, int*);
flag = 1;

}
else if(va_datatype(ap) == elementtype(float *)) {

pf = va_arg(ap, float*);
flag = 2;

}

if(va_datatype(ap) == elementtype(int)) {// get the 2nd argument
if(flag == 1)

*pi = va_arg(ap, int);
}
else if(va_datatype(ap) == elementtype(float)) {

if(flag == 2)

*pf = va_arg(ap, float);
}
va_end(ap);
return;

}

int main(){
int ret_i, i = 10;
float ret_f, f = 1.0;

func(&ret_i, i);
printf("ret_i = %d\n", ret_i);
func(&ret_f, f);
printf("ret_f = %f\n", ret_f);
return 0;

}

Program 19.4: Polymophism of functions returning different data type.

ret_i = 10
ret_f = 1.000000

Figure 19.3: Output of Program 19.4.

360

19.9. POLYMORPHISM
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

#include<stdarg.h>
#include<stdio.h>

class C1 {
double m_d;

public:
C1(...); // constructor taking variable length arguments
void memfunc(...); // member function taking variable length arguments

};

C1::C1(...) {
va_list ap;
int vacount;

va_start(ap, VA_NOARG);
vacount = va_count(ap);
m_d = 0;
if(vacount == 1 || vacount == 2) { /* integral value for 1st arg */

if(va_datatype(ap) <= elementtype(int)) {
m_d += va_arg(ap, int);

}
else {
printf("Error: wrong data type\n");

}
}
else {

printf("Error: wrong number of arguments\n");
}

if(vacount == 2) { /* floating-point number for 2nd arg */
if(va_datatype(ap) == elementtype(float)) {
m_d += va_arg(ap, float);

}
else if(va_datatype(ap) == elementtype(double)) {
m_d += va_arg(ap, double);

}
else {
printf("Error: wrong data type\n");

}
}
va_end(ap);

}

Program 19.5: Member functions with variable-length argument lists.

361

19.10. NESTED CLASSES
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

void C1::memfunc(...) {
va_list ap;
int vacount;
int i, num = 0;

printf("m_d = %f\n", m_d);
va_start(ap, VA_NOARG);
vacount = va_count(ap);
printf("vacount = %d\n", vacount);
while(num++, vacount--) {

i = va_arg(ap, int);
printf("argument %d = %d, ", num, i);

}
printf("\n\n");
va_end(ap);
return;

}

int main() {
class C1 c1 = C1(3);
class C1 c2 = C1(3, 6.5);
c1.memfunc(1);
c2.memfunc(1, 2, 3);

return 0;
}

Program 19.5: Member functions with variable-length argument lists (Contd.).

m_d = 3.000000
vacount = 1
argument 1 = 1,

m_d = 9.500000
vacount = 3
argument 1 = 1, argument 2 = 2, argument 3 = 3,

Figure 19.4: Output of Program 19.5.

19.10 Nested Classes

Nested classes are classes that are defined within the scope of another class. Classes in which the nested
classes are defined are called surrounding classes or enclosing classes. Ch supports nested classes.

A class can be nested in every part of the surrounding class. A nested class is actually considered a
member of the enclosing class. So, the normal access and visibility rules in classes apply to nested classes.

If a class is nested in the public section of a class, it is visible outside the surrounding class. If it is
nested in the private section, it is only visible for the members of the surrounding class.

Although a nested class is considered a member of the enclosing class, its members are not members of
the enclosing class. So, member functions of the surrounding class have no special access to members of a

362

19.11. CLASSES INSIDE MEMBER FUNCTION
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

nested class. On the other hand, member functions of a nested class follow regular access rules too and have
no special access privileges to members of their enclosing classes.

The Program 19.6 shows how to define nested classes in the enclosing class Encl.
In this example, access to the members is defined as follows.

1. The public nested class nestPub is visible both outside and inside the enclosing class Encl.
2. The public member function getVar() of the class nestPub are also globally visible.
3. The private data member variable of the class nestPub is only accessible for the members of

the class nestPub.
4. The private class nestPrv is visible only inside the surrounding class Encl.
5. The public members of the class nestPrv can be used by the members of the public nested class

nestPub.
6. The public member function getVar() of the class nestPrv can only be accessed by the members

of the enclosing class Encl and the members of its nested classes.
7. The private data member variable of the class nestPrv() is only visible for the members of the

class nestPrv.
Besides the definition of the nested class, their member functions are also defined in Program 19.6.
The definitions of member functions of nested classes are similar to the definitions of the member func-

tions of normal classes. The function name is preceded by both the surrounding class name and the nested
class name. Two scope resolution operators ‘::’ are used because both nestPub and nestPrv have
member functions named getVar(). The scope resolution can prevent the confusion.

19.11 Classes inside Member Function

As an extension to C++, Ch provides classes inside member function. The classes which are defined in
member functions of other classes are called classes inside member functions in Ch.

The Program 19.7 shows how to define the class C2 in the member function C1::func().
In this example, access to the members is defined as follows.

1. A class inside a member function is only visible inside the member function in which it is defined,
regardless of whether the member function is public or private. In the example, declaration of a variable of
the type class C2 outside the member function C1::func() is a syntax error in Ch.

2. The member function C1::func() in which the class C2 is nested has no special access privileges
to members of C2.

3. The public members of C2 is accessible within C1::func().
4. The private members of C2 can only be accessed by its own members.

19.12 Passing Member Functions to Arguments of Functions

Passing member functions to functions as arguments of pointer to function is another feature which is sup-
ported by Ch but not supported by C++.

In Program 19.8, member functions C1::f5() and C2::f(), and regular function func() take an
argument which is a pointer to function.

363

19.12. PASSING MEMBER FUNCTIONS TO ARGUMENTS OF FUNCTIONS
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

/* Nested classes */

#include <iostream.h>

class Encl {
public:

Encl(int); /* constructor */
int getVar();

class nestPub {
public:

int getVar();
private:

int variable;
};

private:
class nestPrv{

public:
int getVar();

private:
int variable;

}nPr;
int variable;

};

Encl::Encl(int var) {
variable = var;

}

int Encl::getVar() {
return variable;

}

int Encl::nestPub::getVar() {
return variable;

}

int Encl::nestPrv::getVar() {
return variable;

}

int main() {
Encl e1 = Encl(5);
cout << "variable = " << e1.getVar() << endl;

return 0;
}

Program 19.6: Nested class.

364

19.12. PASSING MEMBER FUNCTIONS TO ARGUMENTS OF FUNCTIONS
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

/* Classes inside member functions */

#include <iostream.h>

int main () {
int t;

class C1 {
int v1;

public:
int func();

};

int C1::func() {
class C2 {

int v2;
public:

int func2();
int v3;

};
int C2::func2() {

class C1 c;
class C2 c2;
v2 = 10;
c.v1 = 20;
c2.v2 = 30;
return 10;

}
C2 c2;
/* c2.v2 = 30; is wrong */
c2.func2();
c2.v3 = 50;

v1 = 30;
return v1;

}

C1 s;
/* C2 s2; is wrong */
cout << s.func() << endl;

return 0;
}

Program 19.7: Classes inside member functions.

365

19.12. PASSING MEMBER FUNCTIONS TO ARGUMENTS OF FUNCTIONS
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

#include <stdio.h>
/* pass member function to a function */
/* normal function with argument of pointer to function */
int func(void (*fp)()) {

printf("func() called\n");
fp();
return 0;

}

class C1 {
int i;
void f1(); // private member function access i

public:
C1();
void f2(); // access member i
void f3(); // does not access any member
void f4(); // call func()
/* function with argument of pointer to function */
void f5(void (*fp)());

};
C1::C1() {

i = 5;
}
void C1::f1() { // private member function

printf("C1::f1() called, i = %d\n", i);
}
void C1::f2() {

printf("C1::f2() called, i = %d\n", i);
}
void C1::f3() {

printf("C1::f3() called\n");
}
/* member function with argument of pointer to function */
void C1::f4() {

func(f1); /* pass private function, ok in Ch and bad in C++ */
func(f2); /* pass public function, ok in Ch and bad in C++ */

}
/* member function with argument of pointer to function */
void C1::f5(void (*fp)()) {

printf("C1::f5() called \n");
fp(); /* function as argument */

}

class C2 {
int d;

public:
C2();
/* function with argument of pointer to function */
void f(void (*fp)());

};
C2::C2() {

d = 10;
}
/* member function with argument of pointer to function */
void C2::f(void (*fp)()) {

fp(); /* function as argument */
}

Program 19.8: Passing member functions to functions as arguments.

366

19.12. PASSING MEMBER FUNCTIONS TO ARGUMENTS OF FUNCTIONS
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

int main() {
class C1 s;
class C2 s2;

printf("(1) passed member func to regular func\n");
func(s.f2); // OK in Ch, bad in C++
func(s.f3); // OK in Ch, bad in C++
printf("(2) passed member func to regular func inside member func\n");
s.f4();
printf("(3) passed member func to member func of the same class \n");
s.f5(s.f2); // OK in Ch, bad in C++
s.f5(s.f3); // OK in Ch, bad in C++
printf("(4) passed member func, without accessing member field,\n");
printf(" to member func of a diff class.\n");
s2.f(s.f3); // Ok in Ch, bad in C++

printf("\n(5) Error: passed member func, with accessing member field,\n");
printf(" to member func of a diff class.\n");
s2.f(s.f2); // bad in Ch and C++
return 0;

}

Program 19.8: Passing member functions to functions as arguments (Contd.).

The output from executing Program 19.8 is as follows.

(1) passed member func to regular func
func() called
C1::f2() called, i = 5
func() called
C1::f3() called
(2) passed member func to regular func inside member func
func() called
C1::f1() called, i = 5
func() called
C1::f2() called, i = 5
(3) passed member func to member func of the same class
C1::f5() called
C1::f2() called, i = 5
C1::f5() called
C1::f3() called
(4) passed member func, without accessing member field,

to member func of a diff class.
C1::f3() called

(5) Error: passed member func, with accessing member field,
to member func of a diff class.

C1::f2() called, i = 10

Passing member functions to arguments of functions in Ch follows the normal rules of accessing class
members for private and public members. For example, the private member function can only be used as an
argument of a function by a member of the class. However, there are some additional constraints on passing

367

19.13. PREDEFINED IDENTIFIERS CLASS AND CLASS FUNC
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

member function as an argument of pointer to function as follow.

1. A member function can be passed as an argument to pointer to function of a regular function as shown
in the following statements in Program 19.8.

func(s.f2); // OK in Ch, bad in C++
func(s.f3); // OK in Ch, bad in C++

In this case, the passed member function, such as C1::f2(), can access its members.

2. A member function can be passed as an argument to pointer to function of a regular function inside
a member function. In this case, the passed member function can access its members as shown by
function call s.f4() in Program 19.8.

3. A member function can be passed as an argument to pointer to function of a member function of the
same instance of a class. In this case, the passed member function can access its members as shown
in the following statements in Program 19.8.

s.f5(s.f2); // OK in Ch, bad in C++
s.f5(s.f3); // OK in Ch, bad in C++

4. A member function can be passed as an argument to pointer to function of a member function of a
different class. In this case, the passed member function cannot access its members as shown in the
following statement in Program 19.8.

s2.f(s.f3); // Ok in Ch, bad in C++

The s and s2 are instances of different classes. However, since member function C1::f3() does
not access a member field, it can be passed as an argument to a member function of different class.

5. A member function, which access a member, cannot be passed as an argument to pointer to function
of a member function of a different class as shown in the following statement in Program 19.8.

s2.f(s.f2); // bad in Ch, bad in C++

The s and s2 are instances of different classes. Because member function C1::f2() access a
member field, it cannot be passed as an argument to a member function of different class. The memory
for s is bounded to the memory for s2 in this case.

19.13 Predefined Identifiers class and class func

Like predefined identifier func , the predefined identifiers class and class func can be used to
obtain the class name and both class and function names within a member function. The identifiers class
and class func are implicitly declared by as if, immediately following the opening brace of each member
function definition, the declaration

static const char __class__[] = "class-name";
static const char __class_func_[] = "class-name:function-name";

368

19.13. PREDEFINED IDENTIFIERS CLASS AND CLASS FUNC
CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING

/* Filename: classname.ch */
#include <iostream>
class tag{

public:
tag(int i1); /* only one argument */
˜tag();
void func(void);

private:
int m_i;

};

tag::tag(int i) {
cout << "__func__ in tag::tag() = " << __func__ << endl;
cout << "__class_ in tag::tag() = " << __class__ << endl;
cout << "__class_func__ in tag::tag() = " << __class_func__ << endl;
m_i = i;

}

tag::˜tag() {
cout << "__func__ in tag::˜tag() = " << __func__ << endl;
cout << "__class_ in tag::˜tag() = " << __class__ << endl;
cout << "__class_func__ in tag::˜tag() = " << __class_func__ << endl;

}

void tag::func(void) {
cout << "__func__ in tag::func() = " << __func__ << endl;
cout << "__class_ in tag::func() = " << __class__ << endl;
cout << "__class_func__ in tag::func() = " << __class_func__ << endl;

}

int main() {
struct tag s = tag(10);
s.func();
return 0;

}

Program 19.9: Using class and class func to get class and function names.

appeared, where class and function-name is the class name and name of the lexically enclosing member
function of a class. For example, Program 19.9 uses these predefined identifiers to print out the names of
class and member function with the output as follows.

__func__ in tag::tag() = tag
__class_ in tag::tag() = tag
__class_func__ in tag::tag() = tag::tag
__func__ in tag::func() = func
__class_ in tag::func() = tag
__class_func__ in tag::func() = tag::func
__func__ in tag::˜tag() = ˜tag
__class_ in tag::˜tag() = tag
__class_func__ in tag::˜tag() = tag::˜tag

369

Chapter 20

Input and Output

20.1 Streams

Input and output in Ch, whether to or from physical devices such as terminals and tape drives, or whether to
or from files supported on structured storage devices, are mapped into logical data streams, whose properties
are more uniform than their various inputs and outputs. Two forms of mapping are supported, mapping for
text streams and for binary streams. A text stream is an ordered sequence of characters composed into lines,
each line consisting of zero or more characters plus a terminating new-line character. A binary stream is an
ordered sequence of characters that can transparently record internal data.

Each stream has an orientation. After a stream is associated with an external file, but before any oper-
ations are performed on it, the stream is without orientation. Once a wide-character input/output function
has been applied to a stream without orientation, the stream becomes a wide-oriented stream. Similarly,
once a byte input/output function has been applied to a stream without orientation, the stream becomes a
byte-oriented stream. Only a call to function freopen() or function fwide() can otherwise alter the orienta-
tion of a stream. A successful call to freopen() removes any orientation. Byte input/output functions shall
not be applied to a wide-oriented stream, and wide-character input/output functions shall not be applied to a
byte-oriented stream. Each wide-oriented stream has an associated mbstate t object that stores the current
parse state of the stream. A successful call to fgetpos() stores a representation of the value of this mbstate t
object as part of the value of the fpos t object. A later successful call to fsetpos() using the same stored
fpos t value restores the value of the associated mbstate t object as well as the position within the controlled
stream.

When a Ch program begins execution, there are three text streams predefined and opened. The stream
stdin stands for standard input, stdout stands for standard output, and stderr stands for standard error. They
are defined in header file stdio.h

20.2 Buffered and Unbuffered I/O

A stream can be buffered or unbuffered in Ch. When a stream is unbuffered, characters are intended to
appear from the source or at the destination as soon as possible. Otherwise characters may be accumulated
and transmitted to or from the host environment as a block.

Furthermore, a buffered stream can be fully buffered or line buffered. When a stream is fully buffered,
characters are intended to be transmitted to or from the host environment as a block when a buffer is filled.
When a stream is line buffered, characters are intended to be transmitted to or from the host environment as
a block when a new-line character is encountered.

370

20.2. BUFFERED AND UNBUFFERED I/O CHAPTER 20. INPUT AND OUTPUT

By default, output to a terminal is line buffered and all other input/output is fully buffered in Ch, but the
stream stderr is unbuffered.

Functions setbuf() and setvbuf() can be used to assign buffering to a stream file. The prototypes of
these two functions are shown below.

void setbuf(FILE *stream, char *buf);
int setvbuf(FILE *stream, char *buf, int type, size_t size);

Function setbuf() can be used after a stream has been opened but before it is read or written. It causes
the buffer pointed to by buf to be used instead of an automatically allocated buffer. If buf is not NULL,
input/output will be fully buffered. Otherwise it will be completely unbuffered. The size of the buffer is
specified by the constant BUFSIZ which is defined in the stdio.h header file. In Ch, this value is platform
dependent. For example,

char buf[BUFSIZ];
FILE *ptf = fopen("example", "a+");
if(ptf)
setbuf(ptf, buf); // set user-defined buffer

Function setvbuf() provides more flexibility to assign buffering to a stream file. Like function setbuf(), it
may be used only after the stream pointed to by stream has been associated with an open file and before
any other operation is performed on the stream. Argument type determines how streamwill be buffered.
Legal values for type defined in stdio.h are described in Table 20.1:

Table 20.1: Buffering type for function setvbuf().

Type Description
IOFBF causes input/output to be fully buffered
IOLBF causes input/output to be line buffered
IONBF causes input/output to be unbuffered

The size of buffer pointed to by buf is specified by size instead of BUFSIZ. The setvbuf() function
returns zero on success, or nonzero if an invalid value is given for argument type or if the request cannot
be satisfied. The expression

setbuf(stream, buf);

is equivalent to the conditional expression

((buf == NULL) ?
(void) setvbuf(stream, NULL, _IONBF, 0) :
(void) setvbuf(stream, buf, _IOFBF, BUFSIZ))

Function fflush() can also be used to explicitly flush a buffer of a file stream. A file may be disassociated
from a controlling stream by closing the file. Output streams are flushed before the stream is disassociated
from the file. The value of a pointer to a file object becomes NULL after the associated file is closed.

371

20.3. I/O FORMATS CHAPTER 20. INPUT AND OUTPUT

20.3 I/O Formats

In C, the input of integers and floating-point numbers is obtained through the standard input functions
scanf(), fscanf(), etc.; the output is accomplished using the output functions fprintf(), printf(), etc. These
functions are also available in Ch and are in full compliance with the C standard. However, implementation
of some of these functions in Ch is different from traditional compiler-based C. In this section, the differ-
ences of these functions between Ch and C, and enhancements of these functions in Ch will be highlighted.

The major difference of these functions between Ch and C is that some of these functions are built-in
internal functions in Ch whereas they are external functions in C. Therefore, they can be reconciled inside
Ch so that they are more flexible and powerful. From an application point of view, a programmer will not
notice differences in these functions between Ch and C.

20.3.1 Output Format for fprintf Family of Output Function

In this section, the format for the fprintf() family of output functions will be described in detail. We will
highlight how Ch extends C in output format for fprintf(). The underlining principle can be applied to other
output functions as well. The format of function fprintf() in Ch is as follows

int fprintf(FILE *stream, char *format, arg1, arg2, ...);

The function fprintf() prints output to the stream pointed to by argument stream under the control of the
string pointed to by format, and returns the number of characters printed. If the format string contains
two types of objects, ordinary characters and conversion specifications beginning with the character ‘%’ and
ending with a conversion character, the following C rules for family of function fprintf() will be used. After
the %, the following appear in sequence:

– Zero or more flags (in any order) that modify the meaning of the conversion specification.

– An optional minimum field width. If the converted value has fewer characters than the field width,
it is padded with spaces (by default) on the left (or right, if the left adjustment flag, described later,
has been given) to the field width. The field width takes the form of an asterisk (described later) or a
decimal integer.

– An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x, and X
conversions, the number of digits to appear after the decimal-point character for a, A, e, E, f, and F
conversions, the maximum number of significant digits for the g and G conversions, or the maximum
number of characters to be written from a string in s conversions. The precision takes the form of a
period (.) followed either by an asterisk (described later) or by an optional decimal integer; if only
the period is specified, the precision is taken as zero. If a precision appears with any other conversion
specifier, the behavior is undefined.

– An optional length modifier that specifies the size of the argument.

– A conversion specifier character that specifies the type of conversion to be applied.

As noted above, a field width and/or precision, may be indicated by an asterisk. In this case, an int argument
supplies the field width or precision. The arguments specifying field width and/or precision, shall appear (in
that order) before the argument (if any) to be converted. A negative field width argument is taken as a - flag
followed by a positive field width. A negative precision argument is taken as if the precision were omitted.

The flag characters and their meanings are:

372

20.3. I/O FORMATS CHAPTER 20. INPUT AND OUTPUT

- The result of the conversion is left-justified within the field. (It is right-justified if this flag is not
specified).

+ The result of a signed conversion always begins with a plus or minus sign. (It begins with a sign only
when a negative value is converted if this flag is not specified).

space If the first character of a signed conversion is not a sign. Or, if a signed conversion results in
no characters, a space is prefixed to the result. If the space and + flags both appear, the space flag is
ignored.

The result is converted to an “alternative form”. For o conversion, it increases the precision, if and
only if necessary, to force the first digit of the result to be a zero (if the value and precision are both
0, a single 0 is printed). For x (or X) conversion, a nonzero result has 0x (or 0X) prefixed to it. For a,
A, e, E, f, F, g, and G conversions, the result of converting a floating-point number always contains
a decimal-point character, even if no digits follow it. (Normally, a decimal-point character appears in
the result of these conversions only if a digit follows it.) For g and G conversions, trailing zeros are
not removed from the result. For other conversions, the behavior is undefined.

0 For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, leading zeros (following any indication of sign
or base) are used to pad the field width rather than perform space padding, except when converting
an infinity or NaN. If the 0 and - flags both appear, the 0 flag is ignored. For d, i, o, u, x, and X
conversions, if a precision is specified, the 0 flag is ignored. For other conversions, the behavior is
undefined.

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed char or unsigned
char argument (the argument will have been promoted according to the integer promotions, but its
value shall be converted to signed char or unsigned char before printing), or that a following n
conversion specifier applies to a pointer to a signed char argument.

h Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short int or unsigned
short int argument (the argument will have been promoted according to the integer promotions, but
its value shall be converted to short int or unsigned short int before printing), or that a following n
conversion specifier applies to a pointer to a short int argument.

l Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long int or unsigned long
int argument; that a following n conversion specifier applies to a pointer to a long int argument; that a
following c conversion specifier applies to a wint t argument; that a following s conversion specifier
applies to a pointer to a wchar t argument; or has no effect on a following a, A, e, E, f, F, g, or G
conversion specifier.

ll Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long long int or unsigned
long long int argument; or that a following n conversion specifier applies to a pointer to a long long
int argument.

j Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax t or uintmax t
argument; or that a following n conversion specifier applies to a pointer to an intmax t argument.

z Specifies that a following d, i, o, u, x, or X conversion specifier applies to a size t or the corresponding
signed integer type argument; or that a following n conversion specifier applies to a pointer to a signed
integer type corresponding to size t argument.

373

20.3. I/O FORMATS CHAPTER 20. INPUT AND OUTPUT

t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff t or the cor-
responding unsigned integer type argument; or that a following n conversion specifier applies to a
pointer to a ptrdiff t argument.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a long double
argument.

If a length modifier appears with any conversion specifier other than as specified above, the behavior is
undefined.

The conversion specifiers and their meanings are:

d,i The int argument is converted to signed decimal in the style [-]dddd. The precision specifies the
minimum number of digits to appear; if the value being converted can be represented in fewer digits,
it is expanded with leading zeros. The default precision is 1. The result of converting a zero value
with a precision of zero is no characters.

o,u,x,X The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u), or un-
signed hexadecimal notation (x or X) in the style dddd; the letters abcdef are used for x conversion
and the letters ABCDEF for X conversion. The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in fewer digits, it is expanded with leading
zeros. The default precision is 1. The result of converting a zero value with a precision of zero is no
characters.

f,F A double argument representing a floating-point number is converted to decimal notation in the
style [-]ddd.ddd, where the number of digits after the decimal-point character is equal to the precision
specification. If the precision is missing, it is taken as 6; if the precision is zero and the # flag is not
specified, no decimal-point character appears. If a decimal-point character appears, at least one digit
appears before it. The value is rounded to the appropriate number of digits.
A double argument representing an infinity is converted in one of the styles [-]inf or [-]infinity –
which style is implementation-defined. A double argument representing a NaN is converted in one of
the styles [-]nan or [-]nan (n-char-sequence) – which style, and the meaning of any n-char- sequence,
is implementation-defined. The F conversion specifier produces INF, INFINITY, or NAN instead of
inf, infinity, or nan, respectively.

e,E A double argument representing a floating-point number is converted in the style [-]d.ddd e±dd,
where there is one digit (which is nonzero if the argument is nonzero) before the decimal-point char-
acter and the number of digits after it is equal to the precision; if the precision is missing, it is taken
as 6; if the precision is zero and the # flag is not specified, no decimal-point character appears. The
value is rounded to the appropriate number of digits. The E conversion specifier produces a number
with E instead of e introducing the exponent. The exponent always contains at least two digits, and
only as many more digits as necessary to represent the exponent. If the value is zero, the exponent is
zero.
A double argument representing an infinity or NaN is converted in the style of an f or F conversion
specifier.

g,G A double argument representing a floating-point number is converted in style f or e (or in style F
or E in the case of a G conversion specifier), with the precision specifying the number of significant
digits. If the precision is zero, it is taken as 1. The style used depends on the value converted; style e

374

20.3. I/O FORMATS CHAPTER 20. INPUT AND OUTPUT

(or E) is used only if the exponent resulting from such a conversion is less than -4 or greater than or
equal to the precision. Trailing zeros are removed from the fractional portion of the result unless the
flag is specified; a decimal-point character appears only if it is followed by a digit.
A double argument representing an infinity or NaN is converted in the style of an f or F conversion
specifier.

a,A A double argument representing a floating-point number is converted in the style [-]0xh.hhhhp±d,
where there is one hexadecimal digit (which is nonzero if the argument is a normalized floating-
point number and is otherwise unspecified) before the decimal-point character and the number of
hexadecimal digits after it is equal to the precision; if the precision is missing and FLT RADIX is
a power of 2, then the precision is sufficient for an exact representation of the value; if the precision
is missing and FLT RADIX is not a power of 2, then the precision is sufficient to distinguish values
of type double, except that trailing zeros may be omitted; if the precision is zero and the # flag is
not specified, no decimal- point character appears. The letters abcdef are used for a conversion and
the letters ABCDEF for A conversion. The A conversion specifier produces a number with X and P
instead of x and p. The exponent always contains at least one digit, and only as many more digits as
necessary to represent the decimal exponent of 2. If the value is zero, the exponent is zero.
A double argument representing an infinity or NaN is converted in the style of an f or F conversion
specifier.

c If no l length modifier is present, the int argument is converted to an unsigned char, and the resulting
character is written.
If an l length modifier is present, the wint t argument is converted as if by an ls conversion specifi-
cation with no precision and an argument that points to the initial element of a two-element array of
wchar t, the first element containing the wint t argument to the lc conversion specification and the
second a null wide character.

s If no l length modifier is present, the argument shall be a pointer to the initial element of an array of
character type. Characters from the array are written up to (but not including) the terminating null
character. If the precision is specified, no more than that many characters are written. If the precision
is not specified or is greater than the size of the array, the array shall contain a null character.
If an l length modifier is present, the argument shall be a pointer to the initial element of an array of
wchar t type. Wide characters from the array are converted to multibyte characters (each as if by a
call to the wcrtomb function, with the conversion state described by an mbstate t object initialized to
zero before the first wide character is converted) up to and including a terminating null wide character.
The resulting multibyte characters are written up to (but not including) the terminating null character
(byte). If no precision is specified, the array shall contain a null wide character. If a precision is
specified, no more than that many characters (bytes) are written (including shift sequences, if any).
Also, if the function needs to access a wide character one past the end of the array, the array shall
contain a null wide character to equal the multibyte character sequence length given by the precision.
In no case is a partial multibyte character written.

p The argument shall be a pointer to void. The value of the pointer is converted to a sequence of printing
characters, in an implementation-defined manner.

n The argument shall be a pointer to signed integer into which is written the number of characters written
to the output stream so far by this call to printf. No argument is converted, but one is consumed. If
the conversion specification includes any flags, a field width, or a precision, the behavior is undefined.

375

20.3. I/O FORMATS CHAPTER 20. INPUT AND OUTPUT

% A % character is written. No argument is converted. The complete conversion specification shall be
%%.

If a conversion specification is invalid, the behavior is undefined. If any argument is not the correct type
for the corresponding conversion specification, the behavior is undefined. In no case does a nonexistent or
small field width cause truncation of a field; if the result of a conversion is wider than the field width, the
field is expanded to contain the conversion result. For a and A conversions, if FLT RADIX is a power of 2,
the value is correctly rounded to a hexadecimal floating number with the given precision. If FLT RADIX
is not a power of 2, the result should be one of the two adjacent numbers in hexadecimal floating style
with the given precision, with the extra stipulation that the error should have a correct sign for the current
rounding direction. For e, E, f, F, g, and G conversions, if the number of significant decimal digits is at most
DECIMAL DIG, then the result should be correctly rounded. If the number of significant decimal digits
is more than DECIMAL DIG but the source value is exactly representable with DECIMAL DIG digits,
then the result should be an exact representation with trailing zeros. Otherwise, the source value is bounded
by two adjacent decimal strings L < U, both having DECIMAL DIG significant digits; the value of the
resultant decimal string D should satisfy L ≤ D ≤ U, with the extra stipulation that the error should have a
correct sign for the current rounding direction.

Following commands are examples using different formats for function printf.

> double d = 123.45678
> float f = 123.45678
> char *str = "123456789"
> printf("d = %1.3f", d)
d = 123.457
> printf("f = %5.10f", f)
f = 123.4567794800
> printf("%-15s", str)
123456789
> printf("%15s", str)

123456789

Besides the control characters specified by the C standard, Ch has one more conversion character ‘b’ that is
used to print real numbers in binary format. An integer number between the symbol % and the character ‘b’
specifies how many bits starting with bit 0 will be printed. If without an integer number between the symbol
% and the character ‘b’, the default format will print int data without leading zeros, float data in 32 bits, and
double data in 64 bits. This binary format is very convenient to examine the bit patterns of metanumbers.
For example,

> int i = 5
> float f = 1.234
> printf("binary of i = %b, f = %b", i, f)
binary of i = 101, f = 00111111100111011111001110110110

In Ch, if the format string in printf() is absent or contains only ordinary characters, the subsequent numerical
constants or variables will be printed according to preset default formats. The default format for int, float,
and double are %d, %.2f, and %.4lf, respectively. For example,

> float f = 1.234
> printf(f)
1.23

Default formats for the family of the fprintf() function will be described in detail in Section 20.4.

376

20.3. I/O FORMATS CHAPTER 20. INPUT AND OUTPUT

20.3.2 Input Format for fscanf Family of Input Function

In this section, the format for the fscanf() family of input functions scanf(), fscanf(), sscanf() will be
described in detail. The extension to C for input format for fscanf() in Ch will be highlighted. The format
of function fscanf() in Ch is as follows

int fscanf(FILE *stream, char *format, arg1, arg2, ...);

The function fscanf() reads input from the stream pointed to by argument stream under the control of the
string pointed to by format and returns the number of the input items on success. The format shall be
a multibyte character sequence, beginning and ending in its initial shift state. The format is composed of
zero or more directives: one or more white- space characters, an ordinary multibyte character (neither % nor
a white-space character), or a conversion specification. Each conversion specification is introduced by the
character %.
After the %, the following appear in sequence:

– An optional assignment-suppressing character *.

– An optional nonzero decimal integer that specifies the maximum field width (in characters).

– An optional length modifier that specifies the size of the receiving object.

– A conversion specifier character that specifies the type of conversion to be applied.

The fscanf function executes each directive of the format in turn. If a directive fails, as detailed below, the
function returns. Failures are described as input failures (due to the occurrence of an encoding error or the
unavailability of input characters), or matching failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the first non-white-
space character (which remains unread), or until no more characters can be read.

A directive that is an ordinary multibyte character is executed by reading the next characters of the stream.
If any of those characters differ from the ones composing the directive, the directive fails and the differing
and subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as described below
for each specifier. A conversion specification is executed in the following steps:

Input white-space characters (as specified by the isspace function) are skipped, unless the specification in-
cludes a [, c, or n specifier.

An input item is read from the stream, unless the specification includes an n specifier. An input item is
defined as the longest sequence of input characters which does not exceed any specified field width and
which is, or is a prefix of, a matching input sequence. The first character, if any, after the input item remains
unread. If the length of the input item is zero, the execution of the directive fails; this condition is a matching
failure unless end-of-file, an encoding error, or a read error prevented input from the stream, in which case
it is an input failure.

377

20.3. I/O FORMATS CHAPTER 20. INPUT AND OUTPUT

Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count of input
characters) is converted to a type appropriate to the conversion specifier. If the input item is not a match-
ing sequence, the execution of the directive fails: this condition is a matching failure. Unless assignment
suppression was indicated by a *, the result of the conversion is placed in the object pointed to by the first
argument following the format argument that has not already received a conversion result. If this object
does not have an appropriate type, or if the result of the conversion cannot be represented in the object, the
behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with type
pointer to signed char or unsigned char.

h Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with type
pointer to short int or unsigned short int.

l Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with type
pointer to long int or unsigned long int; that a following a, A, e, E, f, F, g, or G conversion specifier
applies to an argument with type pointer to double; or that a following c, s, or [conversion specifier
applies to an argument with type pointer to wchar t.

ll Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with type
pointer to long long int or unsigned long long int.

j Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with type
pointer to intmax t or uintmax t.

z Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with type
pointer to size t or the corresponding signed integer type.

t Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with type
pointer to ptrdiff t or the corresponding unsigned integer type.

L Specifies that a following a, A, e, E, f, F, g, or G converson specifier applies to an argument with
type pointer to long double.

If a length modifier appears with any conversion specifier other than as specified above, the behavior is
undefined.

The conversion specifiers and their meanings are:

d Matches an optionally signed decimal integer, whose format is the same as expected for the subject
sequence of the strtol function with the value 10 for the base argument. The corresponding argument
shall be a pointer to signed integer.

i Matches an optionally signed integer, whose format is the same as expected for the subject sequence
of the strtol function with the value 0 for the base argument. The corresponding argument shall be a
pointer to signed integer.

378

20.3. I/O FORMATS CHAPTER 20. INPUT AND OUTPUT

o Matches an optionally signed octal integer, whose format is the same as expected for the subject
sequence of the strtoul function with the value 8 for the base argument. The corresponding argument
shall be a pointer to unsigned integer.

u Matches an optionally signed decimal integer, whose format is the same as expected for the subject
sequence of the strtoul function with the value 10 for the base argument. The corresponding argument
shall be a pointer to unsigned integer.

x Matches an optionally signed hexadecimal integer, whose format is the same as expected for the
subject sequence of the strtoul function with the value 16 for the base argument. The corresponding
argument shall be a pointer to unsigned integer.

a,e,f,g Matches an optionally signed floating-point number, infinity, or NaN, whose format is the same
as expected for the subject sequence of the strtod function. The corresponding argument shall be a
pointer to floating.

c Matches a sequence of characters of exactly the number specified by the field width (1 if no field
width is present in the directive).
If no l length modifier is present, the corresponding argument shall be a pointer to the initial element
of a character array large enough to accept the sequence. No null character is added.
If an l length modifier is present, the input shall be a sequence of multibyte characters that begins
in the initial shift state. Each multibyte character in the sequence is converted to a wide character
as if by a call to the mbrtowc function, with the conversion state described by an mbstate t object
initialized to zero before the first multibyte character is converted. The corresponding argument shall
be a pointer to the initial element of an array of wchar t large enough to accept the resulting sequence
of wide characters. No null wide character is added.

s Matches a sequence of non-white-space characters.
If no l length modifier is present, the corresponding argument shall be a pointer to the initial element
of a character array large enough to accept the sequence and a terminating null character, which will
be added automatically.
If an l length modifier is present, the input shall be a sequence of multibyte characters that begins
in the initial shift state. Each multibyte character is converted to a wide character as if by a call to
the mbrtowc function, with the conversion state described by an mbstate t object initialized to zero
before the first multibyte character is converted. The corresponding argument shall be a pointer to the
initial element of an array of wchar t large enough to accept the sequence and the terminating null
wide character, which will be added automatically.

[Matches a nonempty sequence of characters from a set of expected characters (the scanset).
If no l length modifier is present, the corresponding argument shall be a pointer to the initial element
of a character array large enough to accept the sequence and a terminating null character, which will
be added automatically.
If an l length modifier is present, the input shall be a sequence of multibyte characters that begins
in the initial shift state. Each multibyte character is converted to a wide character as if by a call to
the mbrtowc function, with the conversion state described by an mbstate t object initialized to zero
before the first multibyte character is converted. The corresponding argument shall be a pointer to the
initial element of an array of wchar t large enough to accept the sequence and the terminating null
wide character, which will be added automatically.
The conversion specifier includes all subsequent characters in the format string, up to and including
the matching right bracket (]). The characters between the brackets (the scanlist) compose the scanset,

379

20.3. I/O FORMATS CHAPTER 20. INPUT AND OUTPUT

unless the character after the left bracket is a circumflex (ˆ), in which case the scanset contains all
characters that do not appear in the scanlist between the circumflex and the right bracket. If the
conversion specifier begins with [] or [ˆ], the right bracket character is in the scanlist and the next
following right bracket character is the matching right bracket that ends the specification; otherwise,
the first following right bracket character is the one that ends the specification. If a - character is in
the scanlist and is not the first, nor the second where the first character is a ˆ, nor the last character,
the behavior is implementation-defined.

p Matches an implementation-defined set of sequences, which should be the same as the set of se-
quences that may be produced by the %p conversion of the fprintf function. The corresponding
argument shall be a pointer to a pointer to void. The input item is converted to a pointer value in an
implementation-defined manner. If the input item is a value converted earlier during the same pro-
gram execution, the pointer that results shall be equal to that value; otherwise, the behavior of the %p
conversion is undefined.

n No input is consumed. The corresponding argument shall be a pointer to signed integer into which is to
be written the number of characters read from the input stream so far by this call to the fscanf function.
Execution of a %n directive does not increment the assignment count returned at the completion of
executing of the fscanf function. No argument is converted, but one is consumed. If the conversion
specification includes an assignment- suppressing character or a field width, the behavior is undefined.

% Matches a single % character; no conversion or assignment occurs. The complete conversion speci-
fication shall be %%.

If a conversion specification is invalid, the behavior is undefined. The conversion specifiers A, E, F, G,
and X are also valid and behave the same as, respectively, a, e, f, g, and x. If end-of-file is encountered
during input, conversion is terminated. If end-of-file occurs before any characters matching the current
directive have been read (other than leading white space, where permitted), execution of the current directive
terminates with an input failure; otherwise, unless execution of the current directive is terminated with a
matching failure, execution of the following directive (other than %n, if any) is terminated with an input
failure. Trailing white space (including new-line characters) is left unread unless matched by a directive.
The success of literal matches and suppressed assignments is not directly determinable other than via the
%n directive. If conversion terminates on a conflicting input character, the offending input character is left
unread in the input stream. The following commands are examples of using different formats for function
scanf().

> int i
> float x
> char name[50]
> scanf("%2d%f%*d %[01234567890]", &i, &x, name)
56789 0123 34a72
> i
56
> x
789.00
> name
34

In Ch, If the the format string in fscanf() function family is absent, preset default formats will be used,
such as %d for int, %f for float, and %lf for double. For example,

380

20.4. DEFAULT I/O FORMATS CHAPTER 20. INPUT AND OUTPUT

> float f;
> scanf(&f); // <==> scanf("%f", &f);
10
> f
10.00

Default formats for fscanf() will be discussed in detail in Section 20.4.

20.4 Default I/O Formats

20.4.1 Default Format for fprintf Family of Output Functions

In Ch, when the format for an output function is missing, the default format will be used. The default output
format for different data types for functions printf(), fprintf(), vprintf(), vfprintf(), and vsprintf() are
listed in Table 20.2.

Table 20.2: Default format for fprintf family of output functions.

Data Type Format
char "%c"
unsigned char "%c"
short "%hd"
unsigned short "%hu"
int "%d"
unsigned int "%u"
long "%ld"
unsigned long "%lu"
long long "%lld"
unsigned long long "%llu"
float "%.2f"
double "%.4lf"
char * "%s"
unsigned char * "%s"
string t "%s"
pointer type "%p"

For example,

> int i = 8
> float f = 8.0
> double d = 8.0
> printf(i) /* <==> printf("%d", i); */
8
> printf(f) /* <==> printf("%.2f", f); */
8.00
> printf(d) /* <==> printf("%.4f", d); */
8.0000

381

20.4. DEFAULT I/O FORMATS CHAPTER 20. INPUT AND OUTPUT

> f
8.00
> d
8.0000

The default format for pointer to char and pointer to unsigend char is %s, which displays the output as a
string. To display the address to which such a pointer points, the value can be cast to a pointer to void first
before it is printed out as illustrated below.

> char *p = "abc"
> p
abc
> (void*)p
004a3418

20.4.2 Default Format for fscanf Family of Input Functions

Similarly, there are default formats for input functions when the format for an input argument is missing.
The default input format for different data types for functions scanf(), fscanf(), and sscanf() are listed in
Table 20.3.

Table 20.3: Default format for fscanf family of input functions.

Data Type Format
char "%c"
unsigned char "%c"
short "%hd"
unsigned short "%hu"
int "%d"
unsigned int "%u"
long "%ld"
unsigned long "%lu"
long long "%lld"
unsigned long long "%llu"
float "%f"
double "%lf"
char * "%s"
unsigned char * "%s"
string t "%s"
pointer type "%p"

For example,

> int i;
> float f;
> scanf(&i); /* <==> scanf("%d", &i); */
10
> i

382

20.4. DEFAULT I/O FORMATS CHAPTER 20. INPUT AND OUTPUT

10
> scanf(&f); /* <==> scanf("%f", &f); */
10
> f
10.00

20.4.3 I/O Using cout, cin, cerr, and endl

Ch provides three C++ style streams for input and output of programs. They are the standard input stream
cin, which is normally connected to the keyboard; the standard output stream cout, which is normally
connected to the computer screen; and the standard error stream cerr, which is normally connected to the
screen. All these three streams can be assigned to other devices rather than the default devices.

Furthermore, Ch provides stream insertion operator “<<” which performs output to stream cout , stream
extraction operator “>>” which performs input from stream cin, and stream manipulator endl which issues
a newline character and flushes the output buffer. Operators “<<” and “>>” are associate from left to right,
and can be used in a cascaded form. For example,

> int i, j
> cin >> i // <==> scanf(&i)
10
> cout << i // <==> printf(i)
10
> cerr << i
10
> cin >> i >> j // <==> scanf(&i, &j)
20 30
> cout << i << j // <==> printf(i, j)
2030

Note that streams cout, cin and cerr are objects of classes istream and ostream in C++. In Ch, they are
shortcuts for functions printf(), scanf() and fprintf(stderr,), respectively. The default input/output formats
described in section 20.4 are used. They are defined as aliases in the system-wide startup file chrc, and
defined as macros in header file iostream.h. Therefore, to use streams cin, cout, and cerr in a Ch program,
it is necessary to include header file iostream.h as shown below.

#include <iostream.h> // for cout/cin/cerr/endl
int main() {
int i;

cout << "Type a number :" << endl;
cin >> i;
cout << "The input number is " << i << endl;

}

The stream manipulator endl is valid in both program and command modes.
To be compatible with the new C++ standard, the using directive for namespace in I/O stream is sup-

ported in the following format.

using std::cout;
using std::cin;

383

20.5. I/O FOR METANUMBERS CHAPTER 20. INPUT AND OUTPUT

using std::cerr;
using std::endl;
using std::ends;

or

using namespace std;

For example, the above program can be modified to conform to the C++ standard as follows.

#include <iostream.h> // for cout/cin/cerr/endl
using std::cout;
using std::cin;
using std::endl;
/* or using namespace std; */
int main() {
int i;

cout << "Type a number :" << endl;
cin >> i;
cout << "The input number is " << i << endl;

}

20.5 I/O for Metanumbers

The metanumbers Inf and NaN are treated as regular numbers in I/O functions. The default data types for
these numbers are float. The following Ch program illustrates how b-format and metanumbers are handled
by the I/O functions printf() and scanf().

float fInf, fNaN;
double dInf, dNaN;
printf("Please type ’Inf NaN Inf NaN’ \n");
scanf(&fInf, &fNaN, &dInf, &dNaN);
printf("The float Inf = %f\n", fInf);
printf("The float -Inf = ", -fInf, "\n");
printf("The float NaN = %f\n", fNaN);
printf("The float Inf = %b \n", fInf);
printf("The float -Inf = %b \n", -fInf);
printf("The float NaN = %b \n", fNaN);
printf("The double Inf = %lf\n", dInf);
printf("The double -Inf = ", -dInf, "\n");
printf("The double NaN = %lf\n", dNaN);
printf("The double Inf = %b \n", dInf);
printf("The double -Inf = %b \n", -dInf);
printf("The double NaN = %b \n", dNaN);
printf("The int 2 = %b \n", 2);
printf("The int 2 = %32b \n", 2);
printf("The int -2 = %b \n", -2);
printf("The float 0.0 = %b \n", 0.0);

384

20.5. I/O FOR METANUMBERS CHAPTER 20. INPUT AND OUTPUT

printf("The float -0.0 = %b \n", -0.0);
printf("The float 1.0 = %b \n", 1.0);
printf("The float -1.0 = %b \n", -1.0);
printf("The float 2.0 = %b \n", 2.0);
printf("The float -2.0 = %b \n", -2.0);

The first two lines of the program declare two float variables fInf and fNaN, and two double variables dInf
and dNaN. The function scanf() will get Inf and NaN for the declared variables from the standard input
device, which is the terminal keyboard in this example. These metanumbers will be printed in default
formats %.2f for float and %0.4lf for double. These numbers are also printed using the binary format %b.
For comparison, the memory storage for integers of ±2, and floats of ±0.0,±1.0,±2.0 are printed. The
result of the interactive execution of the above program is shown as follows

Please type ’Inf NaN Inf NaN’

Inf NaN Inf NaN

The float Inf = Inf
The float -Inf = -Inf
The float NaN = NaN
The float Inf = 01111111100000000000000000000000
The float -Inf = 11111111100000000000000000000000
The float NaN = 01111111111111111111111111111111
The double Inf = Inf
The double -Inf = -Inf
The double NaN = NaN
The double Inf = 01111111111100000000000000000000\

00000000000000000000000000000000
The double -Inf = 11111111111100000000000000000000\

00000000000000000000000000000000
The double NaN = 01111111111111111111111111111111\

11111111111111111111111111111111
The int 2 = 10
The int 2 = 00000000000000000000000000000010
The int -2 = 11111111111111111111111111111110
The float 0.0 = 00000000000000000000000000000000
The float -0.0 = 10000000000000000000000000000000
The float 1.0 = 00111111100000000000000000000000
The float -1.0 = 10111111100000000000000000000000
The float 2.0 = 01000000000000000000000000000000
The float -2.0 = 11000000000000000000000000000000

where the second line in italic is the input and the rest are the output of the program. As one can see that,
for metanumbers Inf, −Inf, and NaN, there is no difference between float and double types from the user’s
point of view.

It can be easily verified that the bit-mappings of all these numbers in memory match with data represen-
tations discussed in Section 6.1.

385

20.6. I/O FORMATS FOR AGGREGATE DATA TYPES CHAPTER 20. INPUT AND OUTPUT

20.6 I/O Formats for Aggregate Data Types

The input of aggregate data types such as complex numbers, computational arrays, structures, classes, and
unions shall be handled element by element in Ch. For example,

> array int A[2]
> scanf("%d", &A[0])
10
> A
10 0
>

Ch can use the family of output functions fprintf(), printf(), etc. to print out all elements of variables and
constants of aggregate date types once. For complex numbers and computational arrays, the output format
specifier will be applied to each element. For structures, classes, and unions, the default output format is
used for each member. For example,

> printf("%.2f", complex(1.0, 2.0))
complex(1.00,2.00)
> array int A[2][3], B[2][2] // array
> A[0][0] = 1; B[1][1] = 6
1
> printf("A = \n%d\nB = \n%d\n", A, B);
A =
1 0 0
0 0 0

B =
0 0
0 6

> struct tag1{int i; float f;} s //struct
> s.i = 10
10
> printf(s)
.i = 10
.f = 0.00
>

20.7 Verbatim Output Blocks Using fprintf

A block of the verbatim output can be achieved using the feature of function fprintf. The syntax for a block
of verbatim output is

fprintf stream << TERMINATOR
...
TERMINATOR

or
fprintf stream << “TERMINATOR”
...

386

20.7. VERBATIM OUTPUT BLOCKS USING FPRINTF CHAPTER 20. INPUT AND OUTPUT

TERMINATOR
where stream is a valid file stream and terminator TERMINATOR is a valid identifier that have not been used
as a keyword or variable name in the program. Macro names, such as “END”, can be used as the terminator,
since they are processed verbatim without macro expansion in this case. It is recommended that an identifier
of all capital letters is used. The verbatim block output using fprintf has the following constraints.

• White spaces and comments can follow the first terminator.

• White spaces can precede the second terminator.

• The second terminator shall be terminated with a new line character. No character, even a white space,
is allowed to appear after the second terminator.

• All characters, including white characters and comments, between the first and last lines are processed
verbatim.

• The first terminator can be enclosed in double-quotes, whereas the second shall not. If the first ter-
minator is enclosed in double-quotes, the dollar sign ‘$’ within the enclosing block will be treated
verbatim. Otherwise, the single dollar sign ‘$’ is used for variable or expression substitution. Two
syntaxes of

$var and ${var}
can be used for variable substitution. The variable name or symbol to be expanded may be enclosed
in braces, which are optional but serve to protect the variable to be expanded from characters imme-
diately following it which could be interpreted as part of the name.

The variable in a variable substitution could be a predefined identifier; a user-defined variable of string,
pointer to char, integral, floating-point, or complex data type; an environment variable; or undefined
symbol. For a variable substitution, the Ch shell will first search the Ch name space for the variable
name according to its scope rule. If the variable is not defined, then it searches the environment
variables of the current process. If no variable with the specified name is found either in Ch space or
environment space, no substitution will take place and the variable is ignored.

• Expression substitution in the form of

$(expression)

can be used to substitute the valid Ch expression with its result. The expression shall be an expression
of string, pointer to char, integral, floating-point, or complex data type.

• The variable or expression substitution can be prevented by preceding the ‘$’ with a ‘\’. A ‘$’ is
passed unchanged if followed by a blank, tab, or end-of-line.

• A value through variable substitution or expression substitution will be printed out using a default
format control string for its data type.

For example, if the program verbat.ch consists of the following programming statements,

#include <stdio.h>
int sum = 2
fprintf stdout << END /* This is a comment */
/* this is verbatim output */

387

20.7. VERBATIM OUTPUT BLOCKS USING FPRINTF CHAPTER 20. INPUT AND OUTPUT

sum = \$$sum
sum + 1 = \$$(sum+1)

END

The result from executing verb.ch is shown as follows.

> verbat.ch
/* this is verbatim output */
sum = $2
sum + 1 = $3

>

In command

sum = \$$sum

the escape character ‘\’ is used to print out as a single dollar sign, and the symbol $sum is substituted with
the value of sum, i.e. 2. In the next command

sum + 1 = \$$(sum+1)

the symbol $(sum+1) indicates an expression substitution. It is replaced by the result of the expression
sum+1, i.e. 3. The comment following the first terminator END and the white spaces preceding the second
END are ignored. But, the comment inside the block is printed out verbatim.

By default, a variable of double type is printed out with four digits after the decimal point whereas a
variable of float type is printed out with two digits after the decimal point. To print out a variable of double,
one may cast it to float before printing it out if the value is within the representable range of float type. For
example, $((float)d) can be printed out with two digits after decimal point, $((int)d) with integral part only.

Often time, a block of HTML code needs to be sent as a standard output stream in a CGI program. For
example, Program 20.1 will generate the code below,

Content-Type: text/html

<HTML>
<HEAD>
<Title> Hello, world </Title>
</Head><BODY>
<h4> Hello, world </h4>
</BODY>
</HTML>

which displays the text Hello, world in a web browser. According to the HTTP protocal, the line

Content-Type: text/html

must start without any white space, and there must be only an empty line without white space following it.
Using the verbatim output feature, the above Ch CGI program can be simplied as Program 20.2. Note that
the value of hello is retrieved by using the dollar sign $ inside the verbatim output block,

388

20.7. VERBATIM OUTPUT BLOCKS USING FPRINTF CHAPTER 20. INPUT AND OUTPUT

/* File: genereatehtml.c */
#include <stdio.h>
int main() {

char hello[] = "Hello, world";

printf("Content-Type: text/html\n\n");
printf("<HTML>\n");
printf("<HEAD>\n");
printf("<Title> Hello, world </Title>\n");
printf("</Head>");
printf("<BODY>\n");
printf("<h4> %s </h4>\n", hello);
printf("</BODY>\n");
printf("</HTML>\n");
return 0;

}

Program 20.1: Generating an html file.

#!/bin/ch
/* File: genereatehtml.ch */
#include <stdio.h>
int main() {

char hello[] = "Hello, world";

printf("Content-Type: text/html\n\n");
fprintf stdout << ENDPRINT

<HTML>
<HEAD>
<Title> Hello, world </Title>
</Head>
<BODY>
<h4> $hello </h4>
</BODY>
</HTML>

ENDPRINT
return 0;

}

Program 20.2: Using fprintf for a block output.

389

20.8. FILE MANIPULATION CHAPTER 20. INPUT AND OUTPUT

As another example, the function sendApplet() below generates a C program.

void sendApplet(char *x, char *y, char *expr) {
fprintf(stdout, "#include<stdio.h>\n");
fprintf(stdout, "int main() {\n");
fprintf(stdout, " double x = %s;\n", x);
fprintf(stdout, " double y = %s;\n", y);
fprintf(stdout, " printf(\"x = %%f, \", x);\n");
fprintf(stdout, " printf(\"y = %%f \\n\", y);\n");
fprintf(stdout, " printf(\"%s = %%f\\n\", %s);\n", expr, expr);
fprintf(stdout, "}\n");

}

This function sendApplet() can be rewritten in Ch as follows.

void sendApplet(char *x, char *y, char *expr) {
fprintf stdout << ENDFILE
#include<stdio.h>
int main() {
double x = $x;
double y = $y;
printf("x = %f", x);
printf("y = %f\n", y);
printf("$expr = %f\n", $expr);

}
ENDFILE

}

where the values of variables x, y and expr are obtained using operator $.

20.8 File Manipulation

20.8.1 Opening and Closing a File

File is the most common I/O facility which can be used as a stream in Ch. Data type FILE which is
defined in header file stdio.h maintains information about the stream. An object of type FILE *, created by
calling some functions such as fopen(), is used to access the file by other file manipulation functions such
as fscanf(). Function fopen() is a common function to open a file. Its prototype is

FILE *fopen(const char *filename, const char *mode);

It returns a pointer to the object controlling the stream on success. If the open operation fails, NULL is
returned. The name of the file which will be opened and associated with a stream is specified by the first
argument filename. Another argument mode specifies the meaning of opening a file. Its valid values are
described in Table 20.4.

390

20.8. FILE MANIPULATION CHAPTER 20. INPUT AND OUTPUT

Table 20.4: Opening modes for function fopen().

Mode Meaning
r open text file for reading
w truncate to zero length or create text file for writing
a append; open or create text file for writing at end-of-file

rb open binary file for reading
wb truncate to zero length or create binary file for writing
ab append; open or create binary file for writing at end-of-file
r+ open text file for update (reading and writing)
w+ truncate to zero length or create text file for update
a+ append; open or create text file for update, writing at-end of-file

r+b or rb+ open binary file for update (reading and writing)
w+b or wb+ truncate to zero length or create binary file for updating
a+b or ab+ append; open or create binary file for update, writing at end-of-file

Opening a file with read mode ‘r’ as the first character in the mode argument causes the file to be opened only
for read operations. Opening a file with write mode ‘w’ as the first character in the mode argument causes
the file to be opened only for write operations. Opening a file with append mode ‘a’ as the first character in
the mode argument causes all subsequent writes to the file to be forced to the then current end-of-file.

When a file is opened with update mode ‘+’ as the second or third character in the above list of mode
argument values, both input and output may be performed on the associated stream. However, output shall
not be directly followed by input without an intervening call to the function fflush() or to a file positioning
function (fseek, fsetpos, or rewind), and input shall not be directly followed by output without an inter-
vening call to a file positioning function, unless the input operation encounters end-of-file. Opening (or
creating) a text file with update mode may instead open (or create) a binary stream in some platforms.

When opened, a stream is fully buffered if and only if it can be determined not to refer to an interactive
device. The error and end-of-file indicators for the stream are cleared.

All files which are opened and associated with streams shall be closed before programs exit. The com-
mon used function to close a file is fclose(). Its prototype is

int fclose(FILE *stream);

The fclose() function returns zero if the stream was successfully closed, or the value of macro EOF if any
errors were detected. The fclose function causes the stream pointed to by stream to be flushed and the
associated file to be closed. Any unwritten buffered data for the stream is delivered to the host environment
to be written to the file; unread buffered data is discarded. The stream is disassociated from the file. If the
associated buffer was automatically allocated, it is deallocated.

The following code fragment illustrates how functions fopen() and fclose() are used.

FILE *fpt1, *fpt2;
/* create file named "testfile1" or append to it if exists */
if((fpt1 = fopen("testfile1","a+")) == NULL) {

printf("Cannot create or open the file\n");
exit(1);

}
/* create file named "testfile2 for both reading and writing,

starting at the beginning. */

391

20.8. FILE MANIPULATION CHAPTER 20. INPUT AND OUTPUT

if((fpt2 = fopen("testfile2","r+")) == NULL) {
printf("Cannot open the file\n");
exit(1);

}
...
fclose(fpt1);
fclose(fpt2);

20.8.2 Reading and Writing a File

After a file is opened and associated with a stream, it can perform read or write operations according to
the opening mode. The commonly used functions to read a file include functions getc() and fgetc() which
read the next character from the input stream; functions gets() and fgets() which reads the specified number
of characters from the input stream; function fscanf() which reads input from the stream under control of
certain format, which is discussed in Section 20.3; function fread() which is effective to read data block such
as some aggregate data type with the specified size. Because of a potential security flaw caused by buffer
overflow, function gets() is obsolete in C and shall not be used. The application of these input functions are
shown in the program below.

#include <stdio.h>

FILE *fpt;
char c;
char s[100];

if((fpt = fopen("testfile","r")) == NULL) {
printf("Cannot create or open the file\n");
exit(1);

}

/* read a character from file testfile */
if((c = fgetc(fpt)) != EOF)

printf("c = %c", c);

/* read up to 99 characters from file testfile
to string s which ends with \0 */

if(fgets(s, 100, fpt)
printf("s = %s", s);

fclose(fpt);

In Ch, files can be manipulated interactively in command mode as follows.

> FILE *fp
> fp = fopen("testfile", "w")
> fprintf(fp, "This is output to testfile\n");
> fclose(fp)
> more testfile
This is output to testfile
>

392

20.8. FILE MANIPULATION CHAPTER 20. INPUT AND OUTPUT

where command more can be used to display files on screen.
Each input function above used to read files has a corresponding output function used to write files. The

commonly used functions to write a file include functions putc() and fputc() which write a character to
the output stream; functions puts() and fputs() which write a string to the output stream; function fprintf()
which writes output to the stream under control of certain format, which is discussed in Section 20.3; func-
tion fwrite() which is effective to write data block such as some aggregate data type with the specified size.
For example,

#include <stdio.h>

FILE *fpt;

if((fpt = fopen("testfile","w")) == NULL) {
printf("Cannot create or open the file\n");
exit(1);

}

/* write a character ’a’ to file testfile */
fputc(’a’, fpt);
/* write a character ’b’ to file testfile */
putc(’b’, fpt);

/* write string "this is a test" to file testfile */
fputs("this is a test", fpt);

fclose(fpt);

The following program illustrates how functions fread() and fwrite() are used to read and write binary
files.

#include <stdio.h>

FILE *fpt;
struct tag {int i; float f;} s[2];
char buf[20*sizeof(tag)];

if((fpt = fopen("testfile","rb+")) == NULL) {
printf("Cannot create or open the file\n");
exit(1);

}

/* read 20 elements of struct tag to buf */
if(fread(buf, sizeof(tag), 20, fpt) != 10) {

if(feof(fpt))
printf("End of file.");

else
printf("File read error.");

}

393

20.8. FILE MANIPULATION CHAPTER 20. INPUT AND OUTPUT

/* write 2 elements of struct tag to file testfile */
s[0].i = 10; s[0].f = 1.2;
s[1].i = 20; s[1].f = 3.4;
fwrite(&s, sizeof(tag), 2, fpt);

fclose(fpt);

20.8.3 Random Access

Some files support random access, such as files on the hard drive, but some don’t, such as stdout and stdin
which are connected to the console. If a file supports random access, a file position indicator can be used
to determine the position to read or write the next item. By default, the file position indicator points to the
beginning of a file when it is opened. The reading or writing functions mentioned in the preceding section
read or write items from the position pointed by the file position indicator, and then increment the indicator
properly so that it points the next position to read or write. For example, if the item read or written is a
character, the indicator is incremented by 1.

Furthermore, for files supporting random access, the indicator can be set by function fseek(). Its proto-
type is

int fseek(FILE *stream, long int offset, int whence);

The function returns nonzero only for a request that cannot be satisfied. It sets the file position indicator for
the stream pointed to by argument stream. For a binary stream, the new position, measured in characters
from the beginning of the file, is obtained by adding offset to the position specified by whence. The
specified position is the beginning of the file if whence is SEEK SET, the current value of the file position
indicator if SEEK CUR, or end-of-file if SEEK END.

For a text stream, offset shall either be zero or a value returned by an earlier successful call to function
ftell() on a stream associated with the same file, and whence shall be SEEK SET.

After a successful fseek call, the next operation on an update stream may be either input or output.
For example, the following codes reads the 6th element of struct S1 in file testfile.

struct S1 {
int i;
float f;

} s;

FILE *ftp;
int num = 6; /* the 6th element */

if((fpt = fopen("testfile","rb")) == NULL) {
printf("Cannot create or open the file\n");
exit(1);

}

/* set the indicator to the 6th element */
fseek(fpt, (num-1) * sizeof(S1), SEEK_SET);

/* read 6th element of struct S1 from testfile */
if(fread(&s, sizeof(S1), 1, fpt) != 1) {

394

20.9. DIRECTORY MANIPULATION CHAPTER 20. INPUT AND OUTPUT

if(feof(fpt))
printf("End of file.");

else
printf("File read error.");

}

fclose(fpt);

Besides function fseek(), file positioning functions also include function fgetpos() which stores current
values of file position indicators; fsetpos() which sets the file position indicators according to the value of
an object of type fpos t; function ftell() which obtains the current value of the file position indicator for the
stream; and function rewind() which sets the file position indicator to the beginning of the file.

20.9 Directory Manipulation

Different operating systems have different file systems, the internal handling of a directory is system-
dependent. Ch provides a system-independent method to open, close, and read a directory of different
operating systems by functions opendir(), closedir(), readdir() and rewinddir() defined in the POSIX
standard. Prototypes of these functions shown below are defined in the header file dirent.h.

DIR *opendir (const char *dirname);
struct dirent *readdir (DIR *dirp);
void rewinddir(DIR *dirp);
int closedir (DIR *dirp);

Besides these functions, two structs, directory entry struct dirent and directory stream struct DIR, are also
defined in this header file. Struct dirent is used for storing the information of a directory entry, such as a
file or a subdirectory in the specified directory. The commonly used member in the struct dirent is d name,
which represents the name of the directory entry. The member d name is of type char array with size
MAXNAMLEN + 1 including the terminating null character. Macro MAXNAMLEN, which is a system-

dependent value, is defined in dirent.h. The struct DIR represents a directory stream, which is an ordered
sequence of all the directory entries in a particular directory.

20.9.1 Opening and Closing a Directory

The function call dirp = opendir(dirname) opens a directory stream corresponding to the directory named
by the argument of string dirname. It returns a directory stream dirp, which is a pointer to an object of type
DIR for directory stream. The directory stream is positioned at the first entry. Variable dirp can be used by
other functions, such as readdir(), to manipulate the directory. The function call closedir(dirp) closes the
directory stream referred to by dirp and returns zero if successful. The typical structure of a program using
functions opendir() and closedir() is as follows.

#include <stdio.h>
#include <dirent.h>
int main(void) {
DIR *dirp;

dirp = opendir("."); // open the current directory
... // manipulating current directory by dirp

395

20.9. DIRECTORY MANIPULATION CHAPTER 20. INPUT AND OUTPUT

closedir(dirp);
return 0;

}

Function stat() can be used to verify that the argument dirname of function opendir() is a directory
name before opening it. The first argument of function stat() is a file name and the second argument will
pass back all information about that file in an object of struct stat. Upon successful completion, a value of
zero shall be returned. Otherwise, a value of -1 shall be returned and errno shall be set to indicate the error.
The prototype of function stat() is defined in header file sys/stat.h as follows.

int stat(const char * name, struct stat *stbuf);

The structure describing the value passed in the second argument of function stat() is typically defined as
follow.

struct stat {
dev_t st_dev; /* block device inode is on */
ino_t st_ino; /* inode number */
mode_t st_mode; /* protection and file type */
nlink_t st_nlink; /* hard link count */
uid_t st_uid; /* user id */
gid_t st_gid; /* group id */
dev_t st_rdev; /* the device number for a special file */
off_t st_size; /* number of bytes in a file */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modify */
time_t st_ctime; /* time of last status change */

}

The meanings of these members of structure are explained by the comment fields. All typedefed types, such
as dev t and mode t, are defined in sys/types.h. With the macros shown below, the member st mode is
used to test whether a file is of the specified type.

S_ISDIR(m) // Test macro for a directory file.
S_ISCHR(m) // Test macro for a character special file.
S_ISBLK(m) // Test macro for a block special file.
S_ISREG(m) // Test macro for a regular file.
S_ISFIFO(m) // Test macro for a pipe or a FIFO special file.

The value m supplied to the macro is the value of st mode from the stat structure stbuf. The macro evaluates
to a nonzero value if the test is true, zero if the test is false. For example, the code

#include <dirent.h>
#include <sys/stat.h>
...

struct stat stbuf;
DIR *dirp;
char *dirname = "/home/myname";
...

396

20.9. DIRECTORY MANIPULATION CHAPTER 20. INPUT AND OUTPUT

#include <dirent.h>
#include <sys/stat.h>

int main() {
struct stat stbuf;
DIR *dirp;
struct dirent *direntp;
char *dirname = "."; /* current directory */

if(!stat(dirname, &stbuf) && S_ISDIR(stbuf.st_mode)) {
dirp = opendir(dirname);

}

printf("List of files in directory %s :\n", dirname);
while(direntp = readdir(dirp)) {
printf("%s\n", direntp->d_name);

}

closedir(dirp);
return 0;

}

Program 20.3: Read all entries in the current directory.

if(!stat(dirname, &stbuf) && S_ISDIR(stbuf.st_mode)) {
dirp = opendir(dirname); // open the directory

}
... // manipulating the directory by dirp

closedir(dirp);
...

checks if /home/myname is a directory name before opening it using function opendir().
Note that a successful call to any of the familys of function exec() will close any directory streams that

are open in the calling process.

20.9.2 Reading a Directory

A currently open directory, which is referred to by dirp, can be read by function call direntp= readdir(dirp).
The function readdir() takes an argument of pointer to struct DIR, dirp, which is returned by the function
opendir(). The return value of function readdir(), direntp, is a pointer to the structure dirent which rep-
resents the directory entry at the current position in the directory stream to which dirp refers. The function
positions the directory stream at the next entry. The name of the current directory entry can be expressed
by direntp->d_name. Upon reaching the end of the directory stream, it returns a NULL. For example,
Program 20.3 opens the current directory, reads all entries and prints out their names.

As another example, Program 20.4 searches through directories in the system variable path and prints
a list of the executable files to stdout. Whether a file is executable or not is checked by function call of
access(file, X_OK) described in section 4.16.

Based on Program 20.3, Program 20.5 not only reads the current directory, but also goes into its sub-
directories recursively. The function dirwalk is a recursive function which takes a directory name as the
argument and returns no value. Names and sizes of all entries in the directory, which is specified by the
argument, will be printed out. If an entry is a directory, except for “.” and “..”, the function dirwalk()

397

20.9. DIRECTORY MANIPULATION CHAPTER 20. INPUT AND OUTPUT

#!/bin/ch
/*----------- printexec --------------------
This program searches through _path and
prints all the names of the executable files.
---*/
#include<unistd.h>
#include<sys/stat.h>
#include<dirent.h>
string_t s, filename;
struct stat sbuf;
struct dirent *direntp;
DIR * dirp;

foreach(s; _path) { //or foreach(s; _path; NULL; ";")
dirp = opendir(s);
if(dirp != NULL) {

while(direntp = readdir(dirp)) {
/* or filename = stradd(s, "/", direntp->d_name); */
sprintf(filename, "%s/%s", s, direntp->d_name);
stat(filename, &sbuf);
if(S_ISREG(sbuf.st_mode) && access(filename, X_OK) == 0)

printf("%s\n", filename);
}
closedir(dirp);

}
}

Program 20.4: Print out commands in the search paths.

will call itself and pass the name of the entry as the argument. So, this program can loop through all subdi-
rectories in the current directory. Each directory contains entries for itself, “.”, and its parents, “..”. These
must be skipped, or the program will get into an infinite loop. As it is described in the previous section, the
member st size of struct stat is used to indicate the number of bytes of a file.

The rewinddir() function resets the position of the directory stream so that dirp refers to the beginning
of the directory. It also causes the directory stream to refer to the current state of the corresponding directory,
as a call to opendir() would have done. It does not return a value. For example, Program 20.6 opens the
current directory, reads the first four entries, and prints out their names first. Then, the rewinddir() function
is called to read the directory again from the beginning.

398

20.9. DIRECTORY MANIPULATION CHAPTER 20. INPUT AND OUTPUT

/* File: rec.ch */
#include <dirent.h>
#include <sys/stat.h>

void dirwalk(char *dirname);

int main() {
char *dirname = ".";

dirwalk(dirname);
return 0;

}

/* open, read a directory, and go into its subdirectories recursively */
void dirwalk(char *dirname) {

struct stat stbuf;
DIR *dirp;
struct dirent *direntp;
char filename[1024];

/* open the directory */
if(!stat(dirname, &stbuf) && S_ISDIR(stbuf.st_mode)) {
dirp = opendir(dirname);
if (dirp == NULL) return;

}

/* read the directory and go into its subdirectories recursively */
while(direntp = readdir(dirp)) {
sprintf(filename, "%s/%s", dirname, direntp->d_name);
stat(filename, &stbuf);
printf("size of %s is %d\n", filename, stbuf.st_size);

/* if the file is a directory, except for "." and ".." */
if((strcmp(".", direntp->d_name) != 0) \

&& (strcmp("..", direntp->d_name) != 0) \
&& S_ISDIR(stbuf.st_mode))

{
dirwalk(filename); /* recursive calling this function */

}
}

closedir(dirp);
}

Program 20.5: Go through the directories recursively.

399

20.9. DIRECTORY MANIPULATION CHAPTER 20. INPUT AND OUTPUT

#include <dirent.h>
#include <sys/stat.h>

int main() {
int i;
struct stat stbuf;
DIR *dirp;
struct dirent *direntp;
char *dirname = ".";

if(!stat(dirname, &stbuf) && S_ISDIR(stbuf.st_mode)) {
dirp = opendir(dirname);

}

printf("The first four entries in directory %s are :\n", dirname);
for(i = 0; i < 4; i++) {
direntp = readdir(dirp);
printf("%s\n", direntp->d_name);

}

/* reset the position of the directory stream to which
dirp refers to the beginning of the directory. */

rewinddir(dirp);

printf("\nAfter calling function rewinddir(), files in "
"directory %s are :\n", dirname);

while(direntp = readdir(dirp)) {
printf("%s\n", direntp->d_name);

}

closedir(dirp);
return 0;

}

Program 20.6: Rewind the directory.

400

Chapter 21

Safe Ch

Ch was designed with the ease of use and security in mind. The pointer and memory allocation/deallocation
make C/C++ powerful, but they are not easy to handle for an inexperienced programmer. The inappropriate
handling of the pointer and memory can lead to buffer overflow. We have noticed that a very high percentage
of programs that crash suffer from the mishandling of the string.

Ch recognizes this shortcoming and has a built-in string type with automatic memory management to
resolve this problem. It can work seamlessly with the type char* and char []. Users are encouraged to use this
feature for rapid application development without concerns for memory handling and pointers. Furthermore,
Ch checks array bounds automatically to avoid memory corruption.

21.1 Safe Ch Shell

Safe Ch is introduced to address the security concerns for C-based applets to run across the Internet or as
a restricted shell. Safe Ch disables the use of C pointer and reduces the potential security risk while taking
advantage of pointers in other applications such as real-time control of machinery and data acquisition. Safe
Ch has a sandbox and limits a malicious applet from gaining privilege to take full control of the computer.

21.1.1 Startup in Windows

Once you have downloaded and installed the Ch software, safe Ch can be started by typing command chs
in Unix. In Windows, use the menu sequence Start->Run, then type chs or chs.exe. Safe Ch shell can
be invoked by command with option as ch -S in both Unix and Windows.

21.2 Features Disabled in a Sandbox

Program chs is safe Ch shell. If the -S flag is present when the Ch language environment is invoked as ch
-S , the Ch shell is invoked as a safe shell also. The macro _SCH_ is predefined with value 1 for a safe
shell. The execution environment of a safe shell is more controlled than that of the regular shell. The actions
of ch -S are identical to those of ch, except that the following features are disabled:

• Changing directory by cd and chdir.

• Specifying path or command names containing character ‘/’ in input command, command statement,
and command substitution.

• Specifying path or command names containing character ‘/’ or ‘\’ in a dot command statement.

401

21.2. FEATURES DISABLED IN A SANDBOX CHAPTER 21. SAFE CH

• Specifying path with first character ‘/’ or ‘\’ in file of #include<file>.

• #include ‘‘file" is treated as #include<file>

• Redirecting input and output (<, <<, >, >|, and >>)

• Using system variables path, fpath, lpath, ppath, ipath, user, home,
cwd, cwdn, shell, host as lvalues (The values of these system variables after execution

of .chsrc are kept for internal use. To the safe shell user, these system variables have a NULL value.
To test setup, you may print the values of these system variables inside file .chsrc in Unix and chsrc
in Windows).

• Using shell commands chparse and chrun in interactive mode.

• Specifying path or command names containing ; (will be Ok in future)

• Specifying path or command names containing | (will be Ok in future).

• Declaration of pointer type is permitted. But, an lvalue cannot be of pointer type. For example,

char *p, **p2; // ok
p = malloc(90); // bad
p2 = &p; // bad

But, array type can be used as an lvalue. For example,

int a[2]={1,2};
a[1] =90;

• Casting a non-pointer value to a pointer. For example,

char *p;
p = (char *)16; // bad

• Pointer arithmetic. For example,

char *p;
int a[15];
p = p+128; // bad

*(a+10)=12; // bad

• Generic functions execv(), execvp(), fopen(), fork(), fstat(), lstat(), pipe(), popen(), remove(),
rename(), socket(), socketpair(), stat(), utime(), system(), access(), getenv(). open(), putenv(),

setrlimit(), umask().

• Functions or function files with return type qualified with type qualifier restrict are called restricted
functions. The following restricted functions cannot be called by safe Ch programs:

accept(), chdir(), chown(), chroot(), creat(), execl(), execv(), execle(), execve(), execlp(), execvp(),
fchdir(), fchown(), fchroot(), fdopen(), fopen(), fstat(), gethostname(), kill(), lchown(), link(), lstat(),
mkdir(), pipe(), popen(), remove(), rename(), rmdir(), socket(), socketpair(), stat(), system(), unlink().

402

21.3. RESTRICTED FUNCTIONS CHAPTER 21. SAFE CH

• Macro offsetof().

• No command and file name completion in a command shell.

The restrictions above are enforced after .chsrc in Unix and chsrc in Windows in the home directory
is interpreted. For maximum security, a system administrator may take the ownership of .chsrc in Unix
and chsrc in Windows and change the mode of the file to readable only. The CPU resource in safe shell
for each process can also be restricted by modifying file .chsrc. If Ch is invoked with option -S, option -f
will be ignored. These additional restrictions are relaxed for function files located in a client. Therefore,
an important safety guideline is to not use arguments from a function file as input to restricted functions
directly. Function files can call restricted functions. The memory outside the array boundary is guaranteed
to not be contaminated if an array is used as a pointer to void or pointer to char in the following functions:
fgets(), fread(), gets(), memcpy(), memmove(), memset(), read(), recv(), sprintf() strcat(), strcpy(), strncat(),
strncpy(). The contaminated memory by functions fscanf(), scanf(), and sscanf() are set to null character to
close a possible security hole. If a program tries to write to the memory outside the array boundary, an error
message will be generated. Since variables of pointer type cannot be invoked in safe shell, these functions
will be safe to use.

When a command to be executed is found to be a Ch program, the safe shell invokes ch -S to execute
it. If a Ch program is invoked with shell identification #!/bin/ch without option -S, the safe shell invokes ch
to execute it. Thus, it is possible to provide to the end-user Ch programs that have access to the full power
of the regular shell, while imposing a limited number of commands; this scheme assumes that the end-user
does not have write and execute permissions in a directory containing commands. Therefore, the writer of
the .chsrc has complete control over user actions, by performing guaranteed setup actions and leaving the
user in an appropriate directory (probably not the login directory). A default directory CHHOME/sbin has
been setup for putting binary and Ch commands, that can be safely invoked by the safe Ch shell.

In Winwodw, a safe Ch shell can be started from the Windows Explorer or Start->Run menu. Com-
mands chs and ch -S do not work in Windows NT/2000/XP when they are executed in command prompt
windows or Ch windows.

21.3 Restricted Functions

Functions declared with type modifier restrict for return type are called restricted functions. They
cannot be called by safe Ch programs as shown below.

#!/bin/ch -S
restrict void funct(void) {

printf("This function cannot be called by Safe Ch program.\n");
}
funct(); // Error: call restricted functions

21.4 Safe Ch Programs

Programs in directories CHHOME/sbin and CHHOME/toolkit/sbin are accessible by regular and safe
Ch shells. For example, binary executable program gnuplot for plotting and Ch program license.ch for
license information in CHHOME/sbin are accessible to safe Ch shell and safe Ch scripts.

403

21.5. APPLETS AND NETWORK COMPUTING CHAPTER 21. SAFE CH

21.5 Applets and Network Computing

Cross-platform network computing in Ch is accomplished using a safe shell. A data stream, transferred
through the WWW with a mime type extension .chs, is treated as a Ch applet and executed in safe Ch shell.
To perform network computing, both Web server and Web browser shall be setup to generate and recognize
Ch applets, respectively.

On-line documentation and demonstrations of cross-platform network computing in Ch for applications
in design and manufacturing are available on the WWW at http://www.softintegration.com.

404

Chapter 22

Library, Toolkit, and Package

Section 3.4.5 described how to run a program with multiple files. This chapter will give details on how to
create library and software packages to run in Ch.

22.1 Library

Functions are building blocks for Ch programs. Functions could be either written by users or included
in libraries provided by some software packages. Many commonly used functions such as operations on
characters and strings, input and output operations, mathematical functions, date and time conversions, and
dynamic memory allocation have been included in standard libraries. Users don’t need to rewrite these
functions, what you need to do is to just call these functions from a standard library. To use functions
in a library, the program shall have preprocessing directive #include to include proper header files of
the library. Header files are interfaces between the application programs and libraries. All the function
prototypes, data types and macros defined in header files provide the users with more facilities to construct
their application programs efficiently. For example, including the header file math.h in the C standard
library, a program can use all the mathematical functions such as sin(), and cos() declared in this header file,

C includes a large member of standard libraries that are independent of the host operating system. It sup-
ports operations on the floating-point environment which is defined in float.h, mathematics in math.h,
input and output in stdio.h, string handling in string.h, data and time in time.h, extended multi-
byte and wide-character utilities in wchar.h, etc. In addition to standard libraries in C, IEEE Portable
Operating System Interface (POSIX) Standard also provides a large member of libraries to promote porta-
bility of application programs across Unix system environments, such as operations on file system direc-
tory entries defined in dirent.h, interprocess communication in fcntl.h, semaphore mechanism in
semaphore.h, etc.

Most functions defined in C and POSIX standards are supported in Ch. In addition, Ch supports many
high-level functions such as 2D and 3D plotting functions defined in chplot.h and advanced numerical
analysis functions defined in numeric.h, etc. The summary of the libraries supported by Ch is shown
in Table 22.1. In Windows, the libraries windows.h and windows/winsock.h are also supported by Ch.
All the header files for libraries supported by Ch can be found in the directory CHHOME/include and its
subdirectories.

Ch allows the users to add their own libraries. The components, such as function files, header files,
dynamically loaded library, and commands of a library could be placed anywhere in the file system, so that
it is important to make sure that Ch knows where these components are. As it is mentioned before, Ch
searchs the directories specified in system variables fpath, ipath, lpath, and path for function files,
header files, dynamically loaded library, and commands, respectively. The descriptions and default values of

405

22.1. LIBRARY CHAPTER 22. LIBRARY, TOOLKIT, AND PACKAGE

Table 22.1: Library summary.

Header file Description C POSIX Ch
aio.h Asynchronous input and output X X
arpa/inet.h Internet operations X
array.h Computational arrays X
assert.h Diagnostics X X X
chplot.h 2D and 3D plotting X
chshell.h Ch Shell functions X
complex.h Complex numbers X X
cpio.h Cpio archive values X
crypt.h Encryption functions X
ctype.h Character handling X X X
dirent.h Format of directory entries X X
dlfcn.h Dynamically loaded functions X
errno.h Error numbers X X X
fcntl.h Interprocess communication functions X X
fenv.h Floating-point environment X X
float.h platform-dependent floating-point limits X X X
glob.h Pathname pattern-matching types X
grp.h Group structure X X
inttypes.h Fixed size integral types X X
iostream.h input and output stream in C++ style X
iso646.h Alternative spellings X X
libintl.h Message catalogs for internationalization X
limits.h platform-dependent integral limits X X X
locale.h Locale functions X X X
malloc.h Dynamic memory management functions X
math.h Mathematical functions X X X
mqueue.h Message queues X X
netconfig.h Network configuration database X
netdb.h Network database operations X
netdir.h Name-to-address mapping for transport protocols X
netinet/in.h Internet Protocol family X
new.h Memory allocation error handling in C++ style X
numeric.h Numerical analysis X
poll.h Definitions for the poll() function X
pthread.h Threads X
pwd.h Password structure X X
re comp.h regular-expression-matching functions for re comp() X
readline.h Readline function X
regex.h regular-expression-matching types X
sched.h execution scheduling X X
semaphore.h Semaphore functions X X
setjmp.h Non-local jumps X X X

406

22.1. LIBRARY CHAPTER 22. LIBRARY, TOOLKIT, AND PACKAGE

Table 22.1: Library summary (continued).

Header file Description C POSIX Ch
signal.h Signal handling X X X
stdarg.h Variable argument lists X X X
stdbool.h Boolean numbers X X
stddef.h Miscellaneous functions and macros X X X
stdint.h Integer types X X X
stdio.h Input and output X X X
stdlib.h Utility functions X X X
string.h String functions X X X
stropts.h streams interface X
sys/acct.h Process accounting X
sys/fcntl.h Control file X
sys/file.h Accessing the file struct array X
sys/ioctl.h Control device X
sys/ipc.h Interprocess communication access structure X
sys/lock.h Locking processes X
sys/mman.h Memory management declarations X X
sys/msg.h Message queue structures X
sys/procset.h Set processes X
sys/resource.h XSI resource operations X
sys/sem.h Semaphore facility X
sys/shm.h Shared memory facility X
sys/socket.h Internet Protocol family X
sys/stat.h File structure function X X
sys/time.h Time types X
sys/times.h File access and modification times structure X X
sys/types.h Data types X X
sys/uio.h Vector I/O operations X
sys/un.h Unix-domain sockets X
sys/utsname.h System name structure X X
sys/wait.h Evaluating exit statuses X X
syslog.h System error logging X
tar.h Extended tar definitions X
termios.h Define values for termios X X
tgmath.h Type-generic mathematical functions X X
time.h Time and date functions X X X
tiuser.h Transport layer interface X
unistd.h System and process functions X X
utime.h Access and modification times structure X X
wait.h Wait for child process to stop or terminate X
wchar.h Multibyte I/O and string functions X X
wctype.h Multibyte character class tests X X

Note: the symbol ‘X’ indicates that the library is supported by the standard.

407

22.1. LIBRARY CHAPTER 22. LIBRARY, TOOLKIT, AND PACKAGE

system variables path, ipath, fpath and lpath can be found in section 2.3.1. To check the current values
of these system variables, the user can type variable names in the command mode directly. For example, to
check the current value of ipath, the user can type the command

> _ipath
/usr/ch/include;/usr/ch/toolkit/include;
>

Thus, Ch searchs the directories /usr/ch/include first for a header file, if can’t find it, then searchs the
directory /usr/ch/toolkit/include.

Assume a Ch program pack1.ch, which is in a software package, includes statements below

#include <stdio.h>
#include "pack1.h"
int main() {
/* ... */
myfunc1(10);
/* ... */
return 0;

}

To run this program, Ch needs to know where to find the header files stdio.h, pack1.h, and function file
myfunc1.chf. By default, Ch searches directories specified by system variable ipath for header file
stdio.h; searches the current directory and then directories specified by system variable ipath for header
file pack1.h; searches directories specified in system variable fpath for function file myfunc1.chf.

To ensure that Ch finds the right files in the right directories, the user can either add the directories in
which the relevant files are located into the values of the corresponding system variables, or copy these files
to the directories which are already included in the corresponding system variables. But, in most cases, users
may have no write permission of the directories which are included in the default values of these system vari-
ables. Generic function stradd() can be used to add paths into the value of the corresponding system vari-
able. Assume the function file myfunc1.chf is located in the directory /home/mydir/pack1/lib
and the header file pack1.h in the directory /home/mydir/pack1/include. The commands below
add these two directories to the end of the system variables fpath and ipath, respectively.

> _fpath = stradd(_fpath, "/home/mydir/pack1/lib;")
/usr/ch/lib/libc;/usr/ch/lib/libch;/usr/ch/lib/libopt;
/usr/ch/lib/libch/numeric;/home/mydir/pack1/lib;
> _ipath = stradd(_ipath, "/home/mydir/pack1/include;")
/usr/ch/include;/usr/ch/toolkit/include;/home/mydir/pack1/include;
>

If the user wants these two paths to be automatically added every time when Ch is started, the commands
below

_fpath = stradd(_fpath, "/home/mydir/pack1/lib;");
_ipath = stradd(_ipath, "/home/mydir/pack1/include;");

should be added in the startup file, such as .chrc in user’s home directory in Unix. More information about
how to customize the startup files can be found in section 3.2. After that, when the program pack1.ch is
executed, Ch will search for header file pack1.h in directories /usr/ch/include,
/usr/ch/toolkit/include, and /home/mydir/pack1/include, one after another. Similarly,
after searching the default paths for function files, Ch will search for function file myfunc1.chf in the
directory /home/mydir/pack1/lib.

408

22.2. TOOLKIT CHAPTER 22. LIBRARY, TOOLKIT, AND PACKAGE

22.2 Toolkit

Unlike C and POSIX standard libraries which provide general utilities, some self-contained systems and
software standards, such as Windows, X-Windows, Motif, OpenGL, ODBC, only provide functions for
special purposes or in some special fields. For example, X-Windows provides a low-level programming
interface called Xlib to the X Windows, a network-based graphics window system. Motif provides a high-
level programming interface to the X Windows. OpenGL provides a programming interface for 3D graphics.
ODBC provides a programming interface for database access. These software standards are treated as
toolkits in Ch and located in CHHOME/toolkit.

To organize these toolkits, all the header files are placed in the directory
CHHOME/toolkit/include and its subdirectories, the dynamic loaded files are in the directory
CHHOME/toolkit/dl. By default, these two system directories are already included in the system vari-
ables ipath and lpath. Nevertheless, the directories for Ch function files are too many to be added to
the system variable fpath in advance. The solution in Ch is to add preprocessing directives #pragma
fpath into the corresponding header files. As it is described in Table 5.2, the pragma directive

#pragma _fpath <fpathname>

adds the directory CHHOME/toolkit/lib/fpathname into the system variable fpath of the subshell
in which the Ch program is running. For example, if the header file gtk/gtk.h for the GTK toolkit
contains

#ifndef __GTK_H__
#define __GTK_H__
#pragma _fpath <GTK/gtk>
...

#endif /* __GTK_H__ */

with the directive #pragma fpath <GTK/gtk> in the header file gtk/gtk.h, the Ch program using
GTK will search the directory CHHOME/toolkit/lib/GTK/gtk for function files. The other form of
the pragma directive,

#pragma _fpath /dir1/dir2/fpathname

can add the absolute path name /dir1/dir2/fpathname into the system variable fpath of the sub-
shell. Similarly, directives

#pragma _ipath /dir1/dir2/ipathname
#pragma _lpath /dir1/dir2/lpathname
#pragma _path /dir1/dir2/pathname

add these absolute path names into the system variables ipath, lpath, and path, respectively.
The pragma directive

#pragma exec expr

will evaluate an expression when the expression is parsed. This directive can be used to add a path to the sys-
tem path variables. For example, assume the home directory obtained by the function call getenv("HOME")
is /home/myname, the directive

#pragma exec _fpath=stradd(_fpath, getenv("HOME"), "/chfunc;");

adds the directory /home/myname/chfunc in the system variable fpath for function files at runtime.

409

22.3. PACKAGE CHAPTER 22. LIBRARY, TOOLKIT, AND PACKAGE

22.3 Package

Section 3.4.5 described how to run programs with mulitple files using preprocessing directive pragma
along with import and importf. In this section, handling of packages in Ch will be presented.

Besides libraries and toolkits which come with Ch, the user developed software packages can also be
supported in Ch. Since a software package may consist of many files located in different directories, and
these files may be relevant to other components or files inside or outside the package, such as header files,
function files, dynamically loaded libraries, imported files, and even commands, Ch has to know where these
relevant files can be found in order to execute programs in a software package properly. According to Ch
conventions, header files for a software package are located in the include subdirectory, function files in
the lib subdirectory, dynamically loaded libraries in the dl subdirectory, and command files in the bin
subdirectory.

Assume a Ch program pack1.ch, which is in a software package, includes statements below

#include <stdio.h>
#include "pack1.h"
int main() {
/* ... */
myfunc1(10);
/* ... */
return 0;

}
#pragma importf "module2.ch"
#pragma import <module3.ch>

To run this program, Ch needs to search some paths for header files stdio.h and pack1.h, function file
myfunc1.chf, and imported files module2.ch and module3.ch in the parse phase. By default, Ch
searches directories specified by system variable ipath for header file stdio.h; searches the current directory
and then directories specified by system variable ipath for header file pack1.h; searches directories
specified in system variable fpath for function file myfunc1.chf; searches the current directory and then
directories specified by system variable fpath for the file module2.ch; searches directories specified in
system variable path for the file module3.ch; searches directories specified in system variable lpath for
the dynamic loaded files if they are used in function files. For many software packages, if all the directories
for these software packages are placed into these system variables, the sizes of the values of these system
variables will be too large to be maintained or searched efficiently. Ch introduces the directive #pragma
package to help the users to organize their software packages.

Like the preprocessing directives #pragma fpath described in the previous section, which adds a
single user specified directory to system variable fpath, the preprocessing directive #pragma package
adds multiple user specified directories automatically to corresponding system variables, including fpath,
ipath, lpath, and path. All these system variables are updated in subshells in which Ch programs

are executed. This directive doesn’t affect the system variables in its parent shell. As described in Table 5.2,
the directive #pragma package has three formats. The first one

#pragma package <packagename>

adds the subdirectories bin, lib, include and dl in the specified directory ppath/packagename
into the system variables path, fpath, ipath and lpath, respectively. The description and default val-
ues of the system variable ppath can be found in section 2.3.1. Assume the value of the system vari-
able ppath is /usr/ch/package, the directive #pragma package <pack1> adds path names
/usr/ch/package/pack1/bin, /usr/ch/package/pack1/lib,

410

22.3. PACKAGE CHAPTER 22. LIBRARY, TOOLKIT, AND PACKAGE

/usr/ch/package/pack1/include, and /usr/ch/package/pack1/dl into the correspond-
ing system variables. The other two formats

#pragma package "/home/mydir/packagename"

and

#pragma package </home/mydir/packagename>

add the subdirectories bin, lib, include and dl in the specified directory /home/mydir/packagename
into system variables path, fpath, ipath and lpath, respectively. The absolute path names are used in
these two cases.

An example of a Ch software package below illustrates how the directive #pragma package works.
Assume files of this package is located in the directory /home/mydir/pack1 as follows.

pack1.ch -- /home/mydir/pack1/bin
pack1.h -- /home/mydir/pack1/include
module1.ch -- /home/mydir/pack1/bin
myfunc1.chf -- /home/mydir/pack1/lib

List 1 - File /home/mydir/pack1/bin/pack1.ch.

#!/bin/ch
#pragma package </home/mydir/pack1>
#pragma import <module1.ch>

#include <stdio.h>
#include "pack1.h"

int main() {
printf("Output from the main function\n");
myfunc1(10);
return 0;

}

When this Ch program is executed, the directive #pragma package </home/mydir/pack1> adds
the subdirectories bin, lib, include and dl in directory /home/mydir/pack1 to the end of the
system variables path, fpath, ipath and lpath, respectively, so that Ch can find all relevant components
in the parse phase.

List 2 - File /home/mydir/pack1/include/pack1.h.

#ifndef PACK1_H
#define PACK1_H
int myfunc1(int i);
#endif // PACK1_H

The prototype of the user defined functions myfunc1() is in this header file.

List 3 - The file /home/mydir/pack1/bin/module1.ch includes one statement

411

22.3. PACKAGE CHAPTER 22. LIBRARY, TOOLKIT, AND PACKAGE

printf("Output from module1.ch in the subdirectory bin\n");

List 4 - The file /home/mydir/pack1/lib/myfunc1.chf.

int myfunc1(int i) {
printf("Output from the function file myfunc1.ch in\

subdirectory lib, i = %d\n", i);
return 0;

}

The function myfunc1() is defined in this function file.

List 5 - The result for execution of the Ch program pack1.ch is shown below.

> cd /home/mydir/pack1/bin
> ./pack1.ch
Output from module1.ch in the subdirectory bin
Output from the main function
Output from the function file myfunc1.ch in subdirectory lib, i = 10
>

If the path name /home/mydir has been added to the system variable ppath or the package is
moved to CHHOME/package/pack1 where CHHOME is the Ch home directory, the directive #pragma
package </home/mydir/pack1> can be changed to #pragma package <pack1> in the pro-
gram pack1.ch, and the result of the execution is the same. Also program pack1.ch can be moved to
any directory which is included in search paths for commands.

Sometimes, it is desirable to run C programs in Ch without any modification of the original C code. This
can be achieved by modifying a header file and startup file. For example, if the package pack1 is installed
in CHHOME/package/pack1 and the header file �pack1.h contains the code as shown below.

#ifndef PACK1_H
#define PACK1_H
#pragma package pack1
int myfunc1(int i);
#endif // PACK1_H

A new path for the system variable ipath for header files can be added by the following statement in a
system startup file chrc or individual user’s startup file .chrc in Unix or chrc in Winodws.

_ipath = stradd(_ipath, "<CHHOME>/package/pack1/include;");

where <CHHOME> shall be substituted by the Ch home directory. The program pack1.ch or pack1.c
can then be executed without modification.

A Ch package can be packaged using command crteatepkg.ch in a Ch shell. For example, as-
sume the directory sample contains a package with separate subdirectories for header files, function files,
dynamically loaded library, and demos. The command below

> ch createpkg.ch sample 1.0

will create a package file called sample-1.0.tar.gz, which, after unpacking, can be installed by com-
mand installpkg.ch in Ch.

412

Part II

The Library for Scientific Computing

413

Chapter 23

Two and Three-Dimensional Plotting

Two and three dimensional plottings can be easily accomplished in Ch or in C++ using SoftIntegration
Graphical Library. A program using SoftIntegration Graphical Library can run portably either in Ch in-
tepretively or compiled using a C++ compiler. Plots can be generated from data arrays or files, and can be
displayed on a screen, saved as an image file in different file formats, or output as a stdout stream in png
or gif file format for display in a Web browser through a Web server. This chapter describes how to write
programs to generate plots in two and three dimensional spaces.

Note that for plotting in Mac OS X using Aquaterm available at http://aquaterm.soureforge.net, you need
to add

putenv("GNUTERM=aqua");

in the system startup file CHHOME/config/chrc or the individual user’s startup file .chrc in the user’s
home directory.

23.1 A Class for Plotting

The plotting class CPlot enables high-level creation and manipulation of plots. Member functions of class
CPlot are listed in Table 23.1. Detailed description of each function can be found in the chapter about plot-
ting in The Ch Language Environment — Reference Guide. In the following subsections, features applicable
to both 2D and 3D plotting will be presented.

23.1.1 Data for Plotting

A data set is necessary for creating a plot. The data for a plot can be stored in the memory of the program
or in a file. The simplest form of data used for a two-dimensional plot has two arrays, one for x-axis and
the other for y-axis as shown in Program 23.1. Figure 23.1 displays the plot produced by Program 23.1.
There are two member functions used in Program 23.1. Function CPlot::data2D() adds data for plotting.
At the point where function CPlot::plotting() is called, a plot is generated. If function x sin(x) is plotted,
the statement y = x*sin(x) shall be changed to y = x.*sin(x) with element-wise multiplication
operator for array in Program 23.1.

The first parameter x of member function

int CPlot::data2D(array double x[&], array double &y);

is a one-dimensional array of reference type. The second parameter y in function CPlot::data2D(x, y) is
an array of reference type. It can be a one-dimensional array of size n or a two-dimensional array of size m

414

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

Table 23.1: Member functions of class CPlot.
Function Description
CPlot() Class constructor. Creates and initializes a new instance of the class.
˜CPlot() Class destructor. Frees memory associated with a instance of the class.

arrow() Add an arrow to a plot.
autoScale() Enable or disable autoscaling of plot axes.
axis() Enable or disable drawing of x-y axis on 2D plots.
axisRange() Set the range for a plot axis.
axes() Specify the axes for a data set.
barSize() Set the size of error bars.
border() Enable or disable drawing of a border around the plot.
borderOffsets() Set plot offsets of the plot border.
boxBorder() Enable or disable drawing of a border for a plot of box type.
boxWidth() Set the width for a box.
changeViewAngle() Change the view angles for a 3D plot.
circle() Add a circle to a 2D plot.
colorBox() Enable or disable the drawing of a color box for 3D surface plots.
contourLabel() Enable or disable contour labels for 3D surface plots.
contourLevels() Set contour levels for 3D plot to be displayed at specific locations.
contourMode() Set the contour display mode for 3D surface plots.
coordSystem() Set the coordinate system for a 3D plot.
data() Add 2D, 3D, or multi-dimensional data to an instance of the CPlot class.
data2D() Add one or more 2D data sets to an instance of the CPlot class.
data2DCurve() Add a set of data for 2D curve to an instance of the CPlot class.
data3D() Add one or more 3D data sets to an instance of the CPlot class.
data3DCurve() Add a set of data for 3D curve to an instance of the CPlot class.
data3DSurface() Add a set of data for 3D surface to an instance of the CPlot class.
dataFile() Add a data file to an instance of the CPlot class.
dataSetNum() Obtain the current data set number in an instance of the CPlot class.
deleteData() Remove data from a previously used instance of the CPlot class.
deletePlots() Remove any data from a previously used instance of the CPlot class

and reinitialize option to default values.
dimension() Set plot dimension to 2D or 3D.
displayTime() Display the current time and date on the plot.
enhanceText() Use enhanced text for special symbols.
fillStyle() Fill a box or filled curve with a solid color or pattern.
func2D() Add a set of 2D data using a function to an instance of the CPlot class.
func3D() Add a set of 3D data using a function to an instance of the CPlot class.
funcp2D() Add a set of 2D data using a function with a paramenter to an instance of the CPlot class.
funcp3D() Add a set of 3D data using a function with a parameter to an instance of the CPlot class.
getLabel() Get the label of an axis.
getOutputType() Get the output type of a plot.
getSubplot() Get a pointer to an element of a subplot.
getTitle() Get the title of the plot.
grid() Enable or disable display of a grid.
isUsed() Test if an instance of the CPlot class has been used.
label() Set axis labels.

415

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

Table 23.1: Member functions of class CPlot(continued).
Function Description
legend() Add a legend for a data set.
legendLocation() Specify the plot legend location.
legendOption() Set options for legends of a plot.
line() Add a line to a plot.
lineType() Set the line type, width, and color for lines, impulses, steps, etc.
margins() Set plot margins.
origin() Set the location of the origin for the bounding box of the plot.
outputType() Set the plot output type.
plotType() Set the plot type.
plotting() Produce a plot from an instance of the CPlot class.
point() Add a point to a plot.
pointType() Set the point type, size, and color.
polarPlot() Set a 2D plot to use the polar coordinate system.
polygon() Add a polygon to a plot.
rectangle() Add a rectangle to a 2D plot.
removeHiddenLine() Enable or disable hidden line removal for 3D plots.
scaleType() Set the axis scale type for a plot.
showMesh() Enable or disable display of mesh of a 3D plot.
size() Change the size of a plot.
size3D() Change the size of a 3D plot.
sizeRatio() Change the aspect ratio of a plot.
smooth() Smooth plotting curves by interpolation and approximation of data.
subplot() Create a group of subplots.
text() Add a text string to a plot.
tics() Enable or disable display of axis tics.
ticsDay() Set axis tic-mark labels to days of the week.
ticsDirection() Set the direction in which axis tic-marks are drawn.
ticsFormat() Set the number format for tic labels.
ticsLabel() Set location and text label for arbitrary axis labels.
ticsLevel() Set the z-axis offset for drawing of tics in 3D plots.
ticsLocation() Specify the location of axis tic marks to be on the border or the axis.
ticsMirror() Enable or disable display of axis tics on the opposite axis.
ticsMonth() Set axis tic-mark labels to months.
ticsPosition() Add tic-marks at the specified positions to an axis.
ticsRange() Specify the range for a series of tics on an axis.
title() Set the plot title.

416

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#include <math.h>
#include <chplot.h>

int main() {
int numpoints = 36;
array double x[numpoints], y[numpoints];
class CPlot plot;

lindata(-M_PI, M_PI, x);
y = sin(x);
plot.data2D(x, y);
plot.plotting();

}

Program 23.1: A simple program using CPlot class.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4

y

x

Figure 23.1: A very simple plot.

417

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#include <math.h>
#include <chplot.h>

int main() {
array double x[360], y[360], z[360];
class CPlot plot;

lindata(0, 360, x);
y = sin(x*M_PI/180);
z = cos(x*M_PI/180);
plot.data3D(x, y, z);
plot.plotting();

}

Program 23.2: A plotting program for a 3D curve.

x n, if the size of array x is n. In case y is a matrix of m x n, each of the m rows of y is plotted against x.
Each of the rows of y is a separate data set. The arrays x and y are of real type. Conversion of the data to
double type is performed internally as if function CPlot::data2D(x, y) were polymorphic. For example,
if the declaration for computational arrays x and y in Program 23.1 are changed from double to float data
type as follows,

array float x[numpoints], y[numpoints];

the displayed plot will remain the same. The data for arguments x and y of member function CPlot::data2D()
can also be an expression of computational arrays as shown below.

array double complex z[numpoints];
/* ... */
plot.data2D(real(z), imag(z));

Data points for array y of value NaN are internally removed before plotting occurs. The “holes” in a data
set can be constructed by manually setting elements of y to this value.

The data for plotting of 2D curve can also be added to an instance of CPlot class by the member function

int CPlot::data2DCurve(double x[], double y[], int n);

Both one-dimensional arrays x and y have the same number of elements of size n.
Similarly, data for 3-dimensional plot can be added to an instance of CPlot class by member function

int CPlot::data3D(array double x[&], array double y[&],
array double &z);

For Cartesian data, x is a one-dimensional array of size nx and y is a one-dimensional array of size ny. The
array z can be of two different sizes depending on what type of data is to be plotted. If the data is for a 3D
curve, z is a one-dimensional array of size nz or a two-dimensional array of size m x nz , with nx = ny = nz .
Program 23.2 with corresponding plot in Figure 23.2 illustrates how a spatial curve can be generated. If the
data is for a 3D surface or grid, z is m x nz, with nz = nx · ny. For cylindrical or spherical data x is a one
dimensional array of size nx (representing θ), y is a one dimensional array of size ny (representing z or φ),
and z is m x nz(representing r) where nx = ny = nz. Each of the m rows of z are plotted against x and y,
and correspond to a separate data set. In all cases these data arrays can be of any supported data type for real
numbers. Like function CPlot::data2D(), conversion of the data to type double is performed internally. For

418

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

0 50 100 150 200 250 300 350 400-1
-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

z

x

y

z

Figure 23.2: A plot with a 3D curve.

a 3D grid, the ordering of the z data is important. For calculation of the z values, the x value is held constant
while y is cycled through its range of values. The x value is then incremented and y is cycled again. This is
repeated until all the data is calculated. So, for a 10x20 grid the data shall be ordered as follows:

x1 y1 z1
x1 y2 z2
.
.
.
x1 y19 z19
x1 y20 z20
x2 y1 z21
x2 y2 z22
.
.
.
x2 y19 z29
x2 y20 z30
x3 y1 z31
x3 y2 z32
.
.
.
x10 y18 z198
x10 y19 z199
x10 y20 z200

A 3D-plot in Figure 23.3 is produced by Program 23.3. Unlike Program 23.2, the number of elements (600)
for array z in Program 23.3 is the product of the number of elements (20) for array x and that (30) for array
y. The color box with the gradient of the smooth color between the maximum and minimum values of the
color palette for a 3D plot can be removed by the member function CPlot::colorBox().

419

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#include <chplot.h>
#include <math.h>

#define NUMX 20
#define NUMY 30
int main() {

double x[NUMX], y[NUMY], z[NUMX*NUMY];
double r;
int i, j;
class CPlot plot;

lindata(-10, 10, x);
lindata(-10, 10, y);
for(i=0; i<NUMX; i++) {

for(j=0; j<NUMY; j++) {
r = sqrt(x[i]*x[i]+y[j]*y[j]);
z[30*i+j] = sin(r)/r;

}
}
plot.data3D(x, y, z);
plot.plotting();

}

Program 23.3: A plotting program for a 3D grid.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-10
-5

0
5

10-10

-5

0

5

10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

z

x

y

z

Figure 23.3: A plot with a 3D grid.

420

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#include <stdio.h>
#include <chplot.h>
#include <math.h>

int main() {
string_t filename;
int i;
class CPlot plot;
FILE *out;

filename = tmpnam(NULL); //Create a temporary file.
out=fopen (filename,"w"); //Write data to the file.
for (i=-180;i<=180;i++)

fprintf(out,"%i %f \n",i,sin(i*M_PI/180));
fclose(out);
plot.dataFile(filename);
plot.plotting();
remove(filename);

}

Program 23.4: A plotting program using data from a file.

The data for plotting of 3D curve can also be added to an instance of CPlot class by the member function

int CPlot::data3DCurve(double x[], double y[], double z[], int n);

One-dimensional arrays x, y, and z have the same number of elements of size n. A set of data for 3D
surface plotting can be added to an instance of CPlot class by the member function

int CPlot::data3DSurface(double x[], double y[], double z[],
int n, int m);

If one-dimensional array x has the number of elements of size n, and y has size m, z shall be a one-
dimensional array of size nz = n ·m. In a Cartesian coordinate system, arrays x, y, and z represent values
in X-Y-Z coordinates, respectively. In a cylindrical coordinate system, arrays x, y, and z represent θ, z,
and r coordinates, respectively. In a spherical coordinate system, arrays x, y, and z represent θ), φ, and r
coordinates, respectively.

The data for plotting can also be stored in a file first and then obtained by function

int CPlot::dataFile(string_t filename, ... /* string_t option */);

Each data file corresponds to a single data set. The data file should be formatted with each data point on a
separate line. 2D data is specified by two values per point. An empty line in a 2D data file causes a break of
the curve in the plot. Multiple curves can be plotted in this manner, however the plot style will be the same
for all curves. The symbol # will comment out a subsequent text terminated at the end of a line in a data
file. For example, Program 23.4 will generate a plot shown in Figure 23.1.

3D data is specified by three values per data point. For 3D grid or surface data, each row is separated in
the data file by a blank line. For example, a 3 x 3 grid would be represented as follows:

421

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

Table 23.2: The macros for axes.
PLOT AXIS X Select the x axis only.
PLOT AXIS X2 Select the x2 axis only.
PLOT AXIS Y Select the y axis only.
PLOT AXIS Y2 Select the y2 axis only.
PLOT AXIS Z Select the z axis only.
PLOT AXIS XY Select the x and y axes.
PLOT AXIS XYZ Select the x, y, and z axes.

This is a comment line
x1 y1 z1
x1 y2 z2
x1 y3 z3

x2 y1 z4
x2 y2 z5
x2 y3 z6

x3 y1 z7
x3 y2 z8
x3 y3 z9

Two empty lines in the data file will cause a break in the plot. Multiple curves or surfaces can be plot-
ted in this manner, however, the plot style will be the same for all curves or surfaces. Member function
CPlot::dimension() with the value of 3 as the argument must be called before a 3D data file can be added.

23.1.2 Annotations

A plot can be annotated with a title and labels on axes using corresponding member functions

void CPlot::title(string_t title);

and

void CPlot::label(int axis, string_t label);

respectively. The argument axis of member function CPlot::label() is the axis to be set. The valid macros
for axis are listed in Table 23.2. Figure 23.4 displays the plot produced by Program 23.5 using member
functions CPlot::title() and CPlot::label(). By default, no title is displayed and the coordinate axes are
labeled with symbols x, y, and z.

Program 23.6 demonstrates how arrow, text, axis limits, grid, border, and axis are handled using member
functions of CPlot class. Figure 23.5 displays the plot produced by Program 23.6. In Program 23.6, the axis
limits are set by member function CPlot::axisRange(),

void CPlot::axisRange(int axis, double minimum, double maximum);

The valid macros for axis are listed in Table 23.2. Each of four borders x (bottom), x2 (top), y (left), and
y2 (right) can be used as an independent axis. The minimum and maximum values for an axis are given in
second and third arguments, respectively. The tic marks on an axis can be set by the function

422

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#include <math.h>
#include <chplot.h>

int main() {
int numpoints = 36;
array double x[numpoints], y[numpoints];
class CPlot plot;
string_t title="Sine Wave",

xlabel="degree",
ylabel="amplitude";

lindata(0, 360, x);
y = sin(x*M_PI/180);
plot.data2D(x, y);
plot.title("Sine Wave");
plot.label(PLOT_AXIS_X, xlabel);
plot.label(PLOT_AXIS_Y, ylabel);
plot.plotting();

}

Program 23.5: A plotting program with annotation.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

am
pl

itu
de

degree

Sine Wave

Figure 23.4: A plot with annotation.

423

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

Table 23.3: The macros for border locations.
PLOT BORDER BOTTOM The bottom of the plot.
PLOT BORDER LEFT The left side of the plot.
PLOT BORDER TOP The top of the plot.
PLOT BORDER RIGHT The right side of the plot.
PLOT BORDER ALL All sides of the plot.

void CPlot::ticsRange(int axis, double incr, ...
/* [double start], [double end] */);

The increment between tic marks is given in incr. By default, this value is calculated internally. The start
and end positions for tic marks are optional arguments. For example, function calls

plot.axisRange(PLOT_AXIS_X, 0, 360);
plot.ticsRange(PLOT_AXIS_X, 30, 0, 360);

set the range of the x-axis from 0 to 360 degrees with tic marks at every 30 degrees.
Member function CPlot::axes(),

void CPlot::axes(int num, char *axes);

lets you choose which pair of axes a given set of data specified in num is plotted against. There are four
possible sets of axes available. The argument axes is used to select the axes for which a particular line
should be scaled. The string "x1y1" refers to the axes on the bottom and left; "x2y2" to those on the top
and right; "x1y2" to those on the bottom and right; and "x2y1" to those on the top and left.

Drawing the x and y axes on a 2D plot can be enabled or disabled using member function

void CPlot::axis(int axis, int flag);

The valid macros for axis are the same as those for other member functions. The flag can be set to
PLOT ON to enable the drawing of the specified axis, or PLOT OFF to disable the drawing of the speci-
fied axis. In Program 23.5, the drawing of x and y axes is disabled at the same time by using function call
plot.axis(PLOT AXIS XY, PLOT OFF). Member function

void CPlot::border(int location, int flag);

turns a border display around the plot on or off. By default, the border is drawn on the left and bot-
tom sides for 2D plots, and on all sides on the x-y plane for 3D plots. The valid location for function
CPlot::border() is given in Table 23.3. Figure 23.5 is generated with borders on four sides by function call
CPlot::border(PLOT_BORDER_ALL, PLOT_ON). The display of a grid on the x-y plane can be
enabled or disabled by member function

void CPlot::grid(int flag, ... /* char *option */);

The flag can be set to PLOT ON to enable or PLOT OFF to disable the display of the grid. For a polar
plot, a polar grid will be drawn. Otherwise, the grid is rectangular. By default, the grid is not displayed. A
plot can be annotated with arrows by function

void CPlot::arrow(double x_head, y_head, z_head, x_tail, y_tail,
z_tail, ... /* char *option */);

424

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

Table 23.4: The macros for text locations.
PLOT TEXT LEFT The left side of the text string.
PLOT TEXT RIGHT The right side of the text string.
PLOT TEXT CENTER The center of the text string.

where (x head, y head, z head) and (x tail, y tail, z tail) are the coordinates of the head and tail of an arrow,
respectively. The arrow points from (x tail, y tail, z tail) to (x head, y head, z head). These coordinates are
specified using the same coordinate system as the curves of the plot. An optional argument can be used to
specify other attributes of an arrow. The annotation of text on a plot is achieved by member function

void CPlot::text(string_t string, int just,
double x, double y, double z);

where text string is placed at location (x,y) for 2D plots or (x,y,z) for 3D plots. The location of the text is
measured in the plot coordinate system. The position of the text is adjusted by the argument just. The valid
macros for argument just are given in Table 23.4. In Figure 23.5, the tail of the arrow is the location for the
text testing text left adjusted using functions CPlot::arrow() and CPlot::text().

Additional features such as different tic marks and scales for data can be found in the reference for CPlot
class.

23.1.3 Multiple Data Sets and Legends

A plot with multiple sets of data can be produced as shown in Figure 23.7. Figure 23.7 with legends can
be generated by either Program 23.7 or 23.8. Program 23.7 is semantically the same as Program 23.8. In
Program 23.8, array y is two-dimensional for two sets of data and member function CPlot::data2D() is only
called once for adding the data to the plot. A string of legend can be added to the plot by member function

void CPlot::legend(string_t legend, int num);

The number of data set to which the legend is added is indicated by the second argument num. Number-
ing of the data sets starts with zero. New legends will replace previously specified legends. This mem-
ber function shall be called after plotting data have been added by member functions CPlot::data2D(),
CPlot::data2DCurve(), CPlot::data3D(), CPlot::data3DCurve(), CPlot::data3DSurface(), or
CPlot::dataFile(). The member function

void CPlot::legendLocation(double x, double y, ... /* [double z] */);

specifies the position of the plot legend using plot coordinates (x, y, z). The position specified is the location
of the top right of the box for the markers and labels of the legend as shown in Figure 23.6. By default, the
location of the legend is near the upper-right corner of the plot.

A 3D plot with multiple sets of data can be produced similarly. The 3D plot in Figure 23.8 can be
generated by either Program 23.9 or 23.10. Program 23.9 is semantically the same as Program 23.10. In
Program 23.9, array z is two-dimensional for two sets of data, so that member function CPlot::data3D()
for adding the data to the plot is only called once instead of twice in Program 23.10. Program 23.11
demonstrates how to superimpose a curve on a surface with output shown in Figure 23.9. Because no
hidden lines can be removed from non grid data, the hidden line removal is turned off by member function
CPlot::removeHiddenLine().

425

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#include <math.h>
#include <chplot.h>

int main() {
int numpoints = 36;
array double x[numpoints], y[numpoints];
class CPlot plot;
string_t title="Sine Wave",

xlabel="degree",
ylabel="amplitude";

double x1=180, y1=0.0, z1=0;
double x2=225, y2=0.1, z2=0;

lindata(0, 360, x);
y = sin(x*M_PI/180);
plot.data2D(x, y);
plot.title("Sine Wave");
plot.label(PLOT_AXIS_X, xlabel);
plot.label(PLOT_AXIS_Y, ylabel);
plot.axisRange(PLOT_AXIS_X, 0, 360);
plot.ticsRange(PLOT_AXIS_X, 30, 0, 360);
plot.axisRange(PLOT_AXIS_Y, -1, 1);
plot.ticsRange(PLOT_AXIS_Y, .25, -1, 1);
plot.axis(PLOT_AXIS_XY, PLOT_OFF);
plot.border(PLOT_BORDER_ALL, PLOT_ON);
plot.grid(PLOT_ON);
plot.arrow(x1, y1, z1, x2, y2, z2);
plot.text("inflection point", PLOT_TEXT_LEFT, x2, y2, z2);
plot.plotting();

}

Program 23.6: A plotting program with many features.

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0 30 60 90 120 150 180 210 240 270 300 330 360

am
pl

itu
de

degree

Sine Wave

inflection point

Figure 23.5: A plot with many features.

426

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

Legend Position

y

X

Legend 1

Legend 3
Legend 2

Y

x

Figure 23.6: The position for legend.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

am
pl

itu
de

degree

Sine and Cosine Waves

sin(x)
cos(x)

Figure 23.7: A plot with two sets of data, title, labels, and legends.

427

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#include<math.h>
#include<chplot.h>

int main() {
int numpoints = 36;
array double x1[numpoints], y1[numpoints];
array double x2[numpoints], y2[numpoints];
string_t title="Sine and Cosine Waves",

xlabel="degree",
ylabel="amplitude";

class CPlot plot;

lindata(0, 360, x1);
lindata(0, 360, x2);
y1 = sin(x1*M_PI/180);
y2 = cos(x2*M_PI/180);
plot.data2D(x1, y1);
plot.data2D(x2, y2);
plot.legend("sin(x)", 0);
plot.legend("cos(x)", 1);
plot.legendLocation(350, 0.5);
plot.title(title);
plot.label(PLOT_AXIS_X, xlabel);
plot.label(PLOT_AXIS_Y, ylabel);
plot.plotting();

}

Program 23.7: A program for plotting two functions on the same plot with title, labels, and legends.

#include<math.h>
#include<chplot.h>

int main() {
int i, numdataset = 2, numpoints = 36;
array double x[numpoints], y[numdataset][numpoints];
string_t title="Sine and Cosine Waves",

xlabel="degree",
ylabel="amplitude";

class CPlot plot;

lindata(0, 360, x);
for(i = 0; i < numpoints; i++) {

y[0][i] = sin(x[i]*M_PI/180);
y[1][i] = cos(x[i]*M_PI/180);

}
plot.data2D(x, y);
plot.legend("sin(x)", 0);
plot.legend("cos(x)", 1);
plot.legendLocation(350, 0.5);
plot.title(title);
plot.label(PLOT_AXIS_X, xlabel);
plot.label(PLOT_AXIS_Y, ylabel);
plot.plotting();

}

Program 23.8: Another program for plotting two functions on the same plot with title, labels, and legends.

428

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

peak1
peak2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x -2

-1.5
-1

-0.5
0

0.5
1

1.5
2

y

-0.5

0

0.5

1

1.5

2

2.5

z

Figure 23.8: A 3D plot with two sets of data.

#include <chplot.h>
#include <math.h>

#define NUMX 20
#define NUMY 20
#define NUMCURVE 2
int main() {

array double x[NUMX], y[NUMY], z[NUMCURVE][NUMX*NUMY];
int datasetnum =0, i, j;
class CPlot plot;

lindata(-2, 2, x);
lindata(-2, 2, y);
for (i=0; i<NUMX; i++) {

for(j=0; j<NUMY; j++) {
z[0][i*NUMX+j] = x[i]*exp(-x[i]*x[i]-y[j]*y[j]);
z[1][i*NUMX+j] = z[0][i*NUMX+j] +2;

}
}
plot.data3D(x, y, z);
plot.plotType(PLOT_PLOTTYPE_LINES, datasetnum++);
plot.plotType(PLOT_PLOTTYPE_LINES, datasetnum);
plot.legend("peak1", 0);
plot.legend("peak2", 1);
plot.colorBox(PLOT_OFF);
plot.plotting();

}

Program 23.9: A program for plotting two functions on the same 3D plot.

429

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#include <chplot.h>
#include <math.h>

#define NUMX 20
#define NUMY 20
#define NUMCURVE 2
int main() {

array double x[NUMX], y[NUMY], z1[NUMX*NUMY], z2[NUMX*NUMY];
int datasetnum =0, i, j;
class CPlot plot;

lindata(-2, 2, x);
lindata(-2, 2, y);
for (i=0; i<NUMX; i++) {

for(j=0; j<NUMY; j++) {
z1[i*NUMX+j] = x[i]*exp(-x[i]*x[i]-y[j]*y[j]);
z2[i*NUMX+j] = z1[i*NUMX+j] +2;

}
}
plot.data3D(x, y, z1);
plot.plotType(PLOT_PLOTTYPE_LINES, datasetnum++);
plot.data3D(x, y, z2);
plot.plotType(PLOT_PLOTTYPE_LINES, datasetnum);
plot.legend("peak1", 0);
plot.legend("peak2", 1);
plot.colorBox(PLOT_OFF);
plot.plotting();

}

Program 23.10: Another program for plotting two functions on the same 3D plot.

430

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#include <chplot.h>
#include <math.h>

#define NUMX 20
#define NUMY 20
#define NUMCURVE 2
#define NUM 20
int main() {

array double x[NUMX], y[NUMY], z[NUMCURVE][NUMX*NUMY];
array double x0[NUM], y0[NUM], z0[NUM];
int datasetnum=0, i, j, linetype, linewidth;
class CPlot plot;

lindata(-2, 2, x);
lindata(-2, 2, y);
lindata(-2, 2, x0);
y0 = (array double [NUM])-1;
for (i=0; i<NUMX; i++) {

for(j=0; j<NUMY; j++) {
z[0][i*NUMY+j] = x[i]*exp(-x[i]*x[i]-y[j]*y[j]);
z[1][i*NUMY+j] = z[0][i*NUMY+j] +2;

}
}
for (i=0; i<NUM; i++)

z0[i] = x0[i]*exp(-x0[i]*x0[i]-y0[i]*y0[i]);
plot.data3D(x, y, z);
plot.plotType(PLOT_PLOTTYPE_LINES, datasetnum++);
plot.plotType(PLOT_PLOTTYPE_LINES, datasetnum++);
plot.data3D(x0, y0, z0);
plot.legend("peak1", 0);
plot.legend("peak2", 1);
linetype = 5;
linewidth = 2;
plot.plotType(PLOT_PLOTTYPE_LINES, datasetnum);
plot.lineType(datasetnum, linetype, linewidth);
plot.legend("curve", datasetnum);
plot.removeHiddenLine(PLOT_OFF);
plot.colorBox(PLOT_OFF);
plot.plotting();

}

Program 23.11: A program superimposing a curve on a surface.

431

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5

-1
-0.5

0
0.5

1
1.5

2

-0.5

0

0.5

1

1.5

2

2.5

z

peak1
peak2
curve

x

y

z

Figure 23.9: A 3D plot with a curve superimposed on a surface.

23.1.4 Using Predefined Geometric Primitives

For the user’s convenience, several geometric primitives such as line, circle, rectangle, polygon, are prede-
fined as member functions of the plotting class.

A line can be drawn using function

int CPlot::line(double x1, double y1, double z1, double x2,
double y2, double z2);

For 2D rectangular and 3D cartesian plots, (x1, y1, z1) and (x2, y2, z2) are the coordinates of the endpoints
of the line, specified in units of the x, y, and z axes. However, for 2D plots, z1 and z2 are ignored. For 2D
polar and 3D cylindrical plots, the endpoints are specified in polar coordinates where x is θ, y is r, and z is
unchanged. Again, for 2D plots, z1 and z2 are ignored. For 3D plots with spherical coordinates x is θ, y is φ
and z is r. Function

int CPlot::circle(double x, double y, double r);

adds a circle to a 2D plot. For rectangular plots, x and y are the coordinates of the center of the circle and r
is the radius of the circle, all specified in units of the x and y axes. For polar plots, the location of the center
of the circle is specified in polar coordinates where x is θ and y is r. Function

int CPlot::rectangle(double x, double y,
double width, double height);

adds a rectangle to a 2D plot. For rectangular plots, x and y are the coordinates of the lower-left corner of
the rectangle. For polar plots, the coordinates of the lower-left corner are given in polar coordinates where
x is theta and y is r. In both cases the width and height are the dimensions of the rectangle in rectangular
coordinates. Function

int CPlot::polygon(double x[:], double y[:], double z[:]);

adds a polygon to a plot. For 2D rectangular plots and 3D cartesian plots, x, y, and z contain the polygon
vertices specified in units of the x, y, and z axes. However, for 2D plots, z is ignored. For 2D polar and 3D

432

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

/* expx.ch */
#include <chplot.h>

int main() {
array double x1[100], f1[100];
array double x2[100], f2[100];
CPlot plot;

lindata(0.5, 10, x1);
f1=exp((array double [100])1.0./x1); // f1=exp(1.0./x1);
lindata(x2, -10, -0.5);
f2=exp((array double [100])1 ./x2); // f1=exp(1 ./x1);
plot.label(PLOT_AXIS_X, "x");
plot.label(PLOT_AXIS_Y, "exp(1/x)");
plot.data2D(x1, f1);
plot.data2D(x2, f2);
plot.line(-10, 1, 0, 10, 1, 0);
plot.plotType(PLOT_PLOTTYPE_LINES, 2, 3, 0);
plot.line(0, 0, 0, 0, 8, 0);
plot.plotType(PLOT_PLOTTYPE_LINES, 3, 3, 0);
plot.plotting();
return 0;

}

Program 23.12: Plot function e1/x.

cylindrical plots, the locations of the vertices are specified in polar coordinates where x is θ, y is r, and z is
unchanged. Again, for 2D plots, z is ignored. For 3D plots with spherical coordinates x is θ, y is φ and z is
r. Each of the points is connected to the next in a closed chain.

A geometric primitive added by these member functions is counted as a data set for later calls to
CPlot::legend() and CPlot::plotType(). As an example, the function f(x) = e

1
x described in section 12.2.2

is not continuous at the origin as shown in Figure 12.1 on page 219, which is generated by Program 23.12.
The program draws two curves for function f(x) = e

1
x . The data sets of these two curves are calculated us-

ing type generic mathematical function exp() with input argument of computational array type. Two lines,
one horizontal and one vertical at the point (0, 1) are drawn using geometric primitive member function
CPlot::line(). The line type is specified by member function CPlot::plotType().

23.1.5 Subplots

Multiple plots can be displayed in the same figure and printed on the same piece of paper using function

int CPlot::subplot(int row, int col);

Function CPlot::subplot() breaks the figure into an m-by-n matrix of small subplots. The subplots are
numbered as if there were a 2-dimensional matrix with the numbers of rows and columns specified in its
arguments. Each index starts with 0. A pointer to CPlot class as a handle for subplot at location (i,j) can
be obtained by function

class CPlot* CPlot::getSubplot(int row, int col);

where row and col are the row and column numbers of the desired subplot element, respectively. Numbering
starts with zero. For example, Program 23.13 breaks a plot with four subplots in a 2-by-2 matrix. Each
subplot can be annotated with title, label, etc. as if it were a separate plot. Figure 23.10 displays the plot

433

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

produced by Program 23.13. In Program 23.13, the plotting data for function sin(x)/(x) in subplot located
at (1, 1) is generated without using iterative loops such as for-loop or while-loop. The array operator ./ for
element-wise division of two arrays is applied in the program. To avoid division by zero, a small floating-
point value DBL EPSILON is used.

23.1.6 Export and Zoom Plots

A plot not only can be displayed in a terminal screen, but also be exported in a variety of formats for various
applications. Different output types can be achieved by member function

void CPlot::outputType(int outputtype, ...,
/* [string_t terminal, string_t filename] */);

The argument outputtype can be one of the following macros PLOT OUTPUTTYPE DISPLAY,
PLOT OUTPUTTYPE STREAM, and PLOT OUTPUTTYPE FILE. The output type
PLOT OUTPUTTYPE DISPLAY displays the plot on the screen. The plot is displayed in its own sep-
arate window. A plot window can be closed by pressing the ‘q’ key in Unix. By default, the output type
is PLOT OUTPUTTYPE DISPLAY. For the output type PLOT OUTPUTTYPE STREAM, the output
from the plot engine is a standard output stream. This output type is useful when a Ch program is used as
a CGI script in a Web server to generate a plot dynamically as a standard output stream in a png or gif file
format in Web browser displays. For PLOT OUTPUTTYPE FILE, a plot can be saved in files in a variety
of different formats that can be controlled by two optional arguments terminal and filename. The supported
terminal types are listed in Table 23.5. Some terminals can have additional parameters such as size and color
of a plot as part of the string for the argument terminal. Details for each terminal are given in the chapter
about plotting in The Ch Language Environment — Reference Guide. The last optional argument filename
is a string containing a file name to which the plot is saved. On machines that support pipes, the output can
also be piped to another program by placing the ‘|’ character in front of the command name and using it
as the filename. For example, on Unix systems, setting terminal to “postscript” and filename to “|lp”
could be used to send a plot directly to a postscript printer.

Program 23.14 shows how to export a plot in the formats of encapsulated postscript, latex, pbm, gif,
and png formats. The 2D plotting function plotxy() in Program 23.14 will be explained in detail in section
23.2.3.

In Windows, a plot displayed on screen can be copied to a clipboard through a menu on the upper left
corner of the plot. It then can be pasted in other Windows application programs such as Word, a word
processor from Microsoft. To zoom in a portion of the plot, right click the mouse to select the upper left
corner, drag the mouse to a lower right corner and then right click to select the area to zoom in. Afer zoom
in, press the key ‘p’ to zoom out and ‘u’ to restore the original plot.

23.1.7 Print Plots

Printing Plots in Windows

One of the following two methods can be used to print a plot in Windows.
Method 1
Step 1. Run a Ch program with plotting, click the upper left corner of the window with plot.
Step 2. Select “print” from the options menu, configure, and print accordingly.

Method 2
Step 1. Run a Ch program with plotting, click the upper left corner of the window with plot.

434

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#include <float.h>
#include <math.h>
#include <chplot.h>

#define NUM1 36
#define NUM2 101
#define NUMX 20
#define NUMY 30
int main() {

array double x[NUM1], y[NUM1];
double x3[NUMX], y3[NUMY], z3[NUMX*NUMY], r;
array double x4[NUM2], y4[NUM2];
int i, j;
class CPlot subplot, *plot;

lindata(-M_PI, M_PI, x);
y = sin(x);
subplot.subplot(2, 2);
plot = subplot.getSubplot(0, 0);
plot->data2D(x, y);

plot = subplot.getSubplot(0, 1);
plot->data2D(x, y);
plot->axisRange(PLOT_AXIS_Y, -1, 1);
plot->ticsRange(PLOT_AXIS_Y, 0.25, -1, 1);
plot->grid(PLOT_ON);

lindata(-20, 20, x4);
x4 = x4+(x4==0)*DBL_EPSILON; /* if x4==0, x4 becomes epsilon */
y4 = sin(x4)./(x4);
plot = subplot.getSubplot(1, 0);
plot->data2D(x4, y4);
plot->label(PLOT_AXIS_Y, "sin(x)/x");

lindata(-10, 10, x3);
lindata(-10, 10, y3);
for(i=0; i<NUMX; i++) {

for(j=0; j<NUMY; j++) {
r = sqrt(x3[i]*x3[i]+y3[j]*y3[j]);
z3[NUMY*i+j] = sin(r)/r;

}
}
plot = subplot.getSubplot(1, 1);
plot->data3D(x3, y3, z3);
plot->colorBox(PLOT_OFF);

subplot.plotting();
}

Program 23.13: A plotting program with subplots.

435

23.1. A CLASS FOR PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

Table 23.5: The terminal types of plot output type.
Terminal Description
aifm Adobe Illustrator 3.0.
corel EPS format for CorelDRAW.
dxf AutoCAD DXF.
dxy800a Roland DXY800A plotter.
eepic Extended LATEXpicture.
emtex LATEXpicture with emTeX specials.
epson-180dpi Epson LQ-style 24-pin printer with 180dpi.
epson-60dpi Epson LQ-style 24-pin printers with 60dpi.
epson-lx800 Epson LX-800, Star NL-10 and NX-100.
excl Talaris printers.
fig Xfig 3.1.
gif GIF file format.
gpic gpic/groff package.
hp2648 Hewlett Packard HP2647 an HP2648.
hp500c Hewlett Packard DeskJet 500c.
hpdj Hewlett Packard DeskJet 500.
hpgl HPGL output.
hpljii HP LaserJet II.
hppj HP PaintJet and HP3630 printers.
latex LATEXpicture.
mf MetaFont.
mif Frame Maker MIF 3.00.
nec-cp6 NEC CP6 and Epson LQ-800.
okidata 9-pin OKIDATA 320/321 printers.
pcl5 Hewlett Packard LaserJet III.
pbm Portable BitMap.
png Portable Network Graphics.
postscript Postscript.
pslatex LATEXpicture with postscript specials.
pstricks LATEXpicture with PSTricks macros.
starc Star Color Printer.
tandy-60dpi Tandy DMP-130 series printers.
texdraw LATEXtexdraw format.
tgif TGIF X-Window drawing format.
tpic LATEXpicture with tpic specials.

436

23.2. 2D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

-4 -3 -2 -1 0 1 2 3 4

y

x

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-4 -3 -2 -1 0 1 2 3 4

y

x

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-20 -15 -10 -5 0 5 10 15 20

si
n(

x)
/x

x

-10 -5 0 5 10-10
-5

0
5

10
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

z

x
y

z

Figure 23.10: A plot with subplots.

Step 2. Select “copy to clipboard” from the options menu.
Step 3. Open Painbrush in Start− >Accessories.
Step 4. Paste the plot by clicking “paste” from the edit menu or using the key combination <Ctrl><V>.
Step 5. Save the plot as a bmp file.
Step 6. Print the plot.

Printing Plots in Unix

In Unix, first, one can save a plot in a file according to the terminal type described in the previous sec-
tion. Then, print it out. For example, for a postscript printer, a plot can first be saved as a color encapsu-
lated postscript file named filename.eps by function plot.outputType(PLOT_OUTPUTTYPE_FILE,
"postscript eps color", "filename.eps"). The postscript file filename.eps can then be
printed out by command lp. Alternatively, the plot can be printed out by setting the output type of the plot us-
ing function call plot.outputType(PLOT_OUTPUTTYPE_FILE, "postscript eps color",
"| lp").

23.2 2D Plotting

The features presented in the previous sections can be applied to both 2D and 3D plotting. This section will
describe features specific to 2D plotting only.

23.2.1 Plot Types, Line Styles, and Markers

Different plot types can be selected by function

437

23.2. 2D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#include<math.h>
#include<chplot.h>

int main() {
int numpoints = 36;
array double x[numpoints], y[numpoints];
string_t title="Sine Wave", // Define labels.

xlabel="degree",
ylabel="amplitude";

class CPlot plot;

lindata(0, 360, x);
y = sin(x*M_PI/180);
plotxy(x,y,title,xlabel,ylabel,&plot);

/* create a postscript file */
plot.outputType(PLOT_OUTPUTTYPE_FILE, "postscript eps color", "demo.eps");
plot.plotting();

/* create a latex file */
plot.outputType(PLOT_OUTPUTTYPE_FILE, "latex roman 11", "demo.tex");
plot.plotting();

/* create a pbm file */
plot.outputType(PLOT_OUTPUTTYPE_FILE, "pbm", "demo.pbm");
plot.plotting();

/* create a gif file */
plot.outputType(PLOT_OUTPUTTYPE_FILE, "gif", "demo.gif");
plot.plotting();

/* create a png file */
plot.outputType(PLOT_OUTPUTTYPE_FILE, "png", "demo.png");
plot.plotting();

}

Program 23.14: A program for exporting plot.

438

23.2. 2D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

-1

-0.5

0

0.5

1

-4 -3 -2 -1 0 1 2 3 4

PLOT_PLOTTYPE_LINES

-1

-0.5

0

0.5

1

-4 -3 -2 -1 0 1 2 3 4

PLOT_PLOTTYPE_IMPULSES

-1

-0.5

0

0.5

1

-4 -3 -2 -1 0 1 2 3 4

PLOT_PLOTTYPE_STEPS

-1

-0.5

0

0.5

1

-4 -3 -2 -1 0 1 2 3 4

PLOT_PLOTTYPE_FSTEPS

-1

-0.5

0

0.5

1

-4 -3 -2 -1 0 1 2 3 4

PLOT_PLOTTYPE_POINTS

-1

-0.5

0

0.5

1

-4 -3 -2 -1 0 1 2 3 4

PLOT_PLOTTYPE_LINESPOINTS

-1

-0.5

0

0.5

1

-4 -3 -2 -1 0 1 2 3 4

PLOT_PLOTTYPE_DOTS

-1

-0.5

0

0.5

1

-4 -3 -2 -1 0 1 2 3 4

PLOT_PLOTTYPE_HISTEPS

Figure 23.11: Two-dimensional plot types.

void CPlot::plotType(int plot_type, int num, ...
/* [string_t option]*/);

Function CPlot::plotType() sets the desired plot type for a data set to be plotted. The valid macros for
argument plot type are given in Table 23.6 with some corresponding plots shown in Figure 23.11. By
default, a 2D plot uses plot type PLOT PLOTTYPE LINES. Data sets in the same plot can have different
plot types. The argument num indicates the data set to which the plot type is applied. Numbering of the data
sets starts with zero. New plot types replace previously specified types.

The line type, width, and color for lines, impulses, steps, etc. can be set by function

void lineType(int num, int line_type, int line_width, ...
/* [char *line_color] */);

Function CPlot::lineType() sets the desired line style for a data set to be plotted. The line style and/or
marker type for the plot are selected automatically. The line type specifies an index for the line type used
for drawing the line. The line type varies depending on the terminal type used (see CPlot::outputType).
Typically, changing the line type will change the color of the line when the plot is display, Changing the
line type makes it dashed, dotted, or other shape when the plot is saved as a postscript file. All terminals
support at least six different line types. By default, the line type is 1. The line width specifies the line width.
The line width is line width multiplied by the default width. Typically the default width is one pixel. An
optional fourth argument can specify the color of a line by a color name or RGB value, such as "blue" or
"#0000ff" for color blue.

Program 23.15 illustrates how different line types are used. The plot displayed in Windows is shown in
Figure 23.12. Line type is typically associated with a color. Program 23.16 illustrate how to specify colors
of lines inside a program. Figure 23.13 shows the generated plot in the postscript file format.

439

23.2. 2D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

Table 23.6: The macros for 2D plot types.

PLOT PLOTTYPE BOXERRORBARS It is a combination of the PLOT PLOTTYPE BOXES and
PLOT PLOTTYPE YERRORBARS plot types.

PLOT PLOTTYPE BOXES Draw a box centered about the given x coordinate.
PLOT PLOTTYPE BOXXYERRORBARS A combination of PLOT PLOTTYPE BOXES and

PLOT PLOTTYPE XYERRORBARS plot types.
PLOT PLOTTYPE CANDLESTICKS Display box-and-whisker plots of financial or statistical data.
PLOT PLOTTYPE DOTS Use dots to mark each data point.
PLOT PLOTTYPE FILLEDCURVES Fill an area bounded by a curve with a solid color or pattern.
PLOT PLOTTYPE FINANCEBARS Display financial data.
PLOT PLOTTYPE FSTEPS Adjacent points are connected with two line segments,

one from (x1,y1) to (x1,y2), and a second from (x1,y2)
to (x2,y2).

PLOT PLOTTYPE HISTEPS The point x1 is represented by a horizontal line from
((x0+x1)/2,y1) to ((x1+x2)/2,y1). Adjacent lines are
connected with a vertical line from ((x1+x2)/2,y1) to
((x1+x2)/2,y2).

PLOT PLOTTYPE IMPULSES Display vertical lines from the x-axis (for 2D plots) or
the x-y plane (for 3D plots) to the data points.

PLOT PLOTTYPE LINES Data points are connected with a line.
PLOT PLOTTYPE LINESPOINTS Markers are displayed at each data point and connected

with a line.
PLOT PLOTTYPE POINTS Markers are displayed at each data point.
PLOT PLOTTYPE STEPS Adjacent points are connected with two line segments,

one from (x1,y1) to (x2,y1), and a second from (x2,y1)
to (x2,y2).

PLOT PLOTTYPE VECTORS Display vectors.
PLOT PLOTTYPE XERRORBARS Display dots with horizontal error bars.
PLOT PLOTTYPE XERRORLINES Display linepoints with horizontal error lines.
PLOT PLOTTYPE XYERRORBARS Display dots with horizontal and vertical error bars.
PLOT PLOTTYPE XYERRORLINES Display linepoints with horizontal and vertical error lines.
PLOT PLOTTYPE YERRORBARS Display points with vertical error bars.
PLOT PLOTTYPE YERRORLINES Display linepoints with vertical error lines.

440

23.2. 2D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#include <chplot.h>

int main() {
double x, y, xx[2], yy[2];
string_t text;
int line_type = -1, line_width = 2, datasetnum = 0;
class CPlot plot;

plot.axisRange(PLOT_AXIS_X, 0, 5);
plot.axisRange(PLOT_AXIS_Y, 0, 4);
plot.ticsRange(PLOT_AXIS_Y, 1, 0, 4);
plot.title("Line Types in Ch Plot");
for (y = 3; y >= 1; y--) {

for (x = 1; x <= 4; x++) {
sprintf(text, "%d", line_type);
lindata(x, x+.5, xx);
lindata(y, y, yy);
plot.data2D(xx, yy);
plot.plotType(PLOT_PLOTTYPE_LINES, datasetnum);
plot.lineType(datasetnum, line_type, line_width);
plot.text(text, PLOT_TEXT_RIGHT, x-.125, y, 0);
datasetnum++;
line_type++;

}
}
plot.plotting();

}

Program 23.15: A plotting program for different line types.

Figure 23.12: A plot with different line types displayed in Windows.

441

23.2. 2D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

/* File: color1.ch */
#include <chplot.h>

/* colors of lines for displayed plot */
char *color[] = {

"black",
"white",
"grey",
"grey40",
"grey60",
"red",
"yellow",
"green",
"blue",
"navy",
"cyan",
"magenta",
"orange",
"gold",
"brown",
"purple",

};

int main() {
double x[2], y[2];
int i, line_type= 1, line_width = 1, datasetnum = 0, n;
CPlot plot;

plot.title("Line Colors in Ch Plot");
n = sizeof(color)/sizeof(color[0]);
y[0] = 0; y[1] = 1;
for (i = 0; i < n; i++) {

x[0] = i+1; x[1] = i+1;
plot.data2D(x, y);
plot.plotType(PLOT_PLOTTYPE_LINES, datasetnum);
plot.lineType(datasetnum, line_type, line_width, color[i]);
datasetnum++;

}
/* color of the horizontal line added below is green */
x[0] = 1; x[1] = 15;
y[0] = 0.5; y[1] = .5;
plot.data2D(x, y);
plot.plotType(PLOT_PLOTTYPE_LINES, datasetnum);
plot.lineType(datasetnum, line_type, line_width, "green");
plot.plotting();

}

Program 23.16: Specify colors of curves inside a program.

442

23.2. 2D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

y

x

Line Colors in Ch Plot

Figure 23.13: A plot with colors specified inside a program saved as a postscript file.

Program 23.17 illustrates how to generate multiple plots using the same instance of a class. When
Program 23.17 is executed, a plot with a red curve is first displayed. Next, a plot with blue curve is displayed.
Then, the color of the curve is changed by overlaying another curve with red color. The last color dominates.
The last color can be determined dynamically by a program at execution time. Finally, a new curve with
color of magenta is added to the plot. Four separate plots generated by Program 23.17 are displayed in
Figure 23.14.

The point type, size , and color points can be set by function

void pointType(int num, int point_type, int point_size, ...
/* [char *point_color] */);

Function CPlot::pointType() sets the desired point style for a data set to be plotted. The point type
specifies an index for the point type used for drawing the point. The point type varies depending on the
terminal type used (see CPlot::outputType). The value point type is used to change the appearance (color
and/or marker type) of a point. It is specified with an integer representing the index of the desired point type.
All terminals support at least six different point types. point size is an optional argument used to change the
size of the point. The point size is point size multiplied by the default size. If point type and point size are
set to zero or a negative number, a default value is used. An optional fourth argument can specify the color
of a point by a color name or RGB value, such as "blue" or "#0000ff" for color blue.

Program 23.18 illustrates how different point types are used. The plot displayed in Windows displayed
is shown in Figure 23.15. In Figure 23.16, two sets of data, one in line type and the other in point type, are
displayed in the same plot. The source code generating this figure is listed in Program 23.19.

23.2.2 Polar Plot

A 2D plot in a polar coordinate system can be specified using member function

void CPlot::polarPlot(int angle_unit);

The argument angle unit specifies the unit for measurement of angular positions. It can be one of the
following macros PLOT ANGLE DEG for angles measured in degree and PLOT ANGLE RAD in ra-

443

23.2. 2D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#include <math.h>
#include <chplot.h>

int main() {
array double x[36], y[36];
int line_type = 1, line_width = 1, datasetnum = 0;
CPlot plot;

lindata(-M_PI, M_PI, x);
y = sin(x);

plot.data2D(x, y);
plot.plotType(PLOT_PLOTTYPE_LINES, datasetnum);
plot.lineType(datasetnum, line_type, line_width, "red");
plot.legend("red line", datasetnum);
plot.plotting();

/* change the color of the curve from the same data set to blue */
plot.lineType(datasetnum, line_type, line_width, "blue");
plot.legend("blue line", datasetnum);
plot.plotting();

/* overlaying blue curve with red curve .*/
plot.data2D(x, y);
datasetnum++;
plot.lineType(datasetnum, line_type, line_width, "red");
plot.legend("red line", datasetnum);
plot.plotting();

/* add a new curve with color of magenta to the plot */
y = sin(x)+0.5;
plot.data2D(x, y);
datasetnum++;
plot.lineType(datasetnum, line_type, line_width, "magenta");
plot.legend("magenta line", datasetnum);
plot.plotting();

}

Program 23.17: Change the color of curve by overlaying a new curve with a different color.

444

23.2. 2D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

-4 -3 -2 -1 0 1 2 3 4

y

x

red line

red line

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

-4 -3 -2 -1 0 1 2 3 4

y

x

blue line

blue line

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

-4 -3 -2 -1 0 1 2 3 4

y

x

red line overlay blue line

blue line
red line

-1

-0.5

0

0.5

1

1.5

-4 -3 -2 -1 0 1 2 3 4
y

x

red line and magenta line

blue line
red line

magenta line

Figure 23.14: A plot with the color of curve changed by overlaying a new curve.

#include <chplot.h>

int main() {
double x, y;
string_t text;
int datasetnum=0, point_type = 1, point_size = 5;
class CPlot plot;

plot.axisRange(PLOT_AXIS_X, 0, 7);
plot.axisRange(PLOT_AXIS_Y, 0, 5);
plot.title("Point Types in Ch Plot");
for (y = 4; y >= 1; y--) {

for (x = 1; x <= 6; x++) {
sprintf(text, "%d", point_type);
plot.point(x, y, 0);
plot.plotType(PLOT_PLOTTYPE_POINTS, datasetnum);
plot.pointType(datasetnum, point_type, point_size);
plot.text(text, PLOT_TEXT_RIGHT, x-.25, y, 0);
datasetnum++; point_type++;

}
}
plot.plotting();

}

Program 23.18: A plotting program for different point types.

445

23.2. 2D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

Figure 23.15: A plot with different point types dispayed in Windows.

#include <chplot.h>
#include <math.h>

int main() {
array float x1[75], y1[75];
array float x2[300], y2[300];
class CPlot plot;
int numdataset=0, pointtype =1, pointsize=1,

linetype =3, linesize=1;

lindata(-2*M_PI, 2*M_PI, x);
lindata(-2*M_PI, 2*M_PI, x2);
y1 = x1.*x1+5*sin(10*x1);
y2 = x2.*x2+5*sin(10*x2);
plot.data2D(x1, y1);
plot.data2D(x2, y2);
plot.plotType(PLOT_PLOTTYPE_POINTS, numdataset);
plot.pointType(numdataset, pointtype, pointsize);
numdataset++;
plot.plotType(PLOT_PLOTTYPE_LINES, numdataset);
plot.lineType(numdataset, linetype, linesize);
plot.plotting();

}

Program 23.19: A plotting program with two different plot types.

446

23.2. 2D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

-5

0

5

10

15

20

25

30

35

40

45

-8 -6 -4 -2 0 2 4 6 8

y

x

Figure 23.16: A plot with plot types of point and line.

dian. As shown in Program 23.20, in a polar coordinate system (θ, r), the first and second array argu-
ments in member function call of plot.data2D(theta, r) are the phase angle and magnitude of
points to be plotted, respectively. The polar grid displayed in Figure 23.17 is achieved by a function call of
plot.grid(PLOT_ON). The aspect ratio of a plot can be set by member function

void CPlot::sizeRatio(float ratio);

The meaning of ratio changes depending on its value. A positive ratio is the ratio of the length of the y-axis
to the length of the x-axis. So, if ratio is 2, the y-axis will be twice as long as the x-axis. If ratio is zero, the
default aspect ratio for the terminal type is used. A negative ratio is the ratio of the y-axis units to the x-axis
units. So, if ratio is -2, one unit on the y-axis will be twice as long as one unit on the x-axis. In case of a
polar plot, the aspect ratio should be set to 1 as shown in Program23.20.

23.2.3 2D Plotting Functions

The high-level plotting functions fplotxy(), plotxy(), and plotxyf() are easy to use, and can be conveniently
used for 2D plotting. These functions can be used in conjunction with the CPlot member functions to create
more sophisticated plots.

The plotting function plotxy() is prototyped as,

int plotxy(double x[&], array double &y, ...
/*[int n] [string_t title, xlabel, ylabel], [class CPlot *plot] */);

The arrays x and y are of real type. Conversion of the data to data type double is performed internally. To
be compatible with the SIGL graphical library, the third argument for the number of elments of array x is
optional. The subsequent optional arguments of function plotxy() give the title, label in x-axis, and label in
y-axis. A pointer to a plot CPlot class can also be passed to this function. If argument plot is not NULL,
an instance of class, pointed to by the argument plot, will be initialized with parameters passed to function
plotxy(). The plot can then be displayed using the CPlot::plotting() member function. If a previously
initialized CPlot variable is passed, it will be re-initialized with the function parameters. If no pointer or
a NULL pointer is passed internally, an instance of CPlot class will be used, and a plot will be displayed
without calling the CPlot::plotting() member function. The following code segment

447

23.2. 2D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#include <math.h>
#include <chplot.h>

int main() {
int numpoints = 360;
array double theta[numpoints], r[numpoints];
class CPlot plot;

lindata(0, M_PI, theta);
r = sin(5*theta);
plot.polarPlot(PLOT_ANGLE_RAD);
plot.data2D(theta, r);
plot.sizeRatio(1);
plot.grid(PLOT_ON);
plot.plotting();

}

Program 23.20: A plotting program using a polar coordinate system.

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

y

x

Figure 23.17: A plot in a polar coordinate system.

448

23.2. 2D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

/* plot a sine wave */
#include<math.h>
#include<chplot.h>
int main() {

int numpoints = 36;
array double x[numpoints], y[numpoints];

lindata(0, 360, x);
y = sin(x*M_PI/180);
plotxy(x,y);

}

Program 23.21: A simple program using plotting function plotxy().

class CPlot plot;
plotxy(x, y, title, xlabel, ylabel, &plot);

is equivalent to

class CPlot plot;
plot.data2D(x, y);
plot.title(title);
plot.label(PLOT_AXIS_X, xlabel);
plot.label(PLOT_AXIS_Y, ylabel);

The code segment

class CPlot plot;
plotxy(x, y, n);

is equivalent to

class CPlot plot;
plot.data2DCurve(x, y, n);

In the simplest form, function plotxy() takes two arguments of arrays of scalar types as shown in Pro-
gram 23.21 with plot displayed in Figure 23.1. If the plotting function call plotxy(x, y), in Pro-
gram 23.21, is changed to plotxy(x, y, "Sine Wave", "degree", "amplitude"), the ti-
tle and labels of the plot will be created as shown in Figure 23.4. Function plotxy() can also be used along
with member functions of class CPlot to plot multiple sets of data as shown in Program 23.22. Figure 23.7
with legends can be generated by Program 23.22. In Program 23.14, the same plot instance is used to export
a plot with different file formats.

Instead of using data from arrays, plotting function plotxyf() uses data from a file. The plotting function
plotxyf() is prototyped as,

int plotxyf(string_t filename, ...
/* [string_t title, xlabel, ylabel], [class CPlot *plot] */);

The data format for filename is the same as that for a file used in the argument of member function
CPlot::dataFile().

Function fplotxy() uses data generated from a function as shown in Program 23.23 with output in Fig-
ure 23.18. The plotting function fplotxy() is prototyped as,

449

23.2. 2D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

/* two plots in a same figure */
#include<math.h> // M_PI defined
#include<chplot.h>
int main() {

int numpoints = 36;
array double x1[numpoints], y1[numpoints];
array double x2[numpoints], y2[numpoints];
string_t title="Sine and Cosine Waves",

xlabel="degree",
ylabel="amplitude";

class CPlot plot;

lindata(0, 360, x1);
lindata(0, 360, x2);
y1 = sin(x1*M_PI/180);
y2 = cos(x2*M_PI/180);
plotxy(x1,y1,title,xlabel,ylabel,&plot);
plot.legend("sin(x)", 0); // add legend for 1st plot
plot.data2D(x2, y2); // Add data for 2nd plot
plot.legend("cos(x)", 1); // add legend for 2nd plot
plot.plotting(); // do plotting

}

Program 23.22: A program for plotting two functions on the same plot with title, labels, and legends.

#include <math.h>
#include <chplot.h>
double func(double x) {

double y;
y = sin(x)/(x);
return y;

}
int main() {

double x0 = -20, xf = 20;
fplotxy(func, x0, xf);

}

Program 23.23: A plotting program using function fplotxy().

450

23.3. 3D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-20 -15 -10 -5 0 5 10 15 20

Figure 23.18: A plot generated by function fplotxy().

Table 23.7: The macros for 3D plot types.

PLOT PLOTTYPE LINES Data points are connected with a line.
PLOT PLOTTYPE IMPULSES Display vertical lines from the xy plane to the data points.
PLOT PLOTTYPE POINTS Markers are displayed at each data point.
PLOT PLOTTYPE LINESPOINTS Markers are displayed at each data point and connected by a line.
PLOT PLOTTYPE SURFACES Data points are connected and meshed in a smooth surface.
PLOT PLOTTYPE VECTORS Display vectors.

int fplotxy(double (*func)(double x), double x0, double xf, ...
/* [num, [string_t title, xlabel, ylabel], [class CPlot *plot]] */);

Function fplotxy() plots a function of x in the range x0≤ x≤ xf. The function to be plotted, func, is specified
as a pointer to a function that takes a double as an argument and returns a double. The arguments x0 and xf
are the end-points of the range to be plotted. The optional argument num specifies how many points in the
range are to be plotted. The number of points plotted are evenly spaced in the range. By default, 100 points
are plotted. Like functions plotxy() and plotxyf(), the optional arguments title, xlabel, ylabel, and plot for
the plot can also be specified.

23.3 3D Plotting

This section describes features applicable to 3D plotting only.

23.3.1 Plot Types

Like in 2D, the plot type in 3D can also be specified by member function CPlot::plotType(). The valid
macros for plot type are listed in Table 23.7 with corresponding plot types displayed in Figure 23.19. By
default, the plot type PLOT PLOTTYPE LINES is used in 3D plotting.

451

23.3. 3D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

PLOT_PLOTTYPE_LINES

-10 -5 0 5 10-10
-5

0
5

10
-0.4

0
0.4
0.8
1.2

PLOT_PLOTTYPE_IMPULSES

-10 -5 0 5 10-10
-5

0
5

10
-0.4

0
0.4
0.8
1.2

PLOT_PLOTTYPE_POINTS

-10 -5 0 5 10-10
-5

0
5

10
-0.4

0
0.4
0.8
1.2

PLOT_PLOTTYPE_LINESPOINTS

-10 -5 0 5 10-10
-5

0
5

10
-0.4

0
0.4
0.8
1.2

-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

-10 -5 0 5 10-10
-5

0
5

10
-0.4

0
0.4
0.8
1.2

PLOT_PLOTTYPE_SURFACES

Figure 23.19: Three-dimensional plot types.

23.3.2 Plotting in Different Coordinate Systems

In a two-dimensional case, a data set can be plotted in either a Cartesian or a polar coordinate system. In a
three-dimensional case, a data set can be plotted in either the Cartesian, spherical, or cylindrical coordinate
system. The coordinate system can be specified by member function

void CPlot::coordSystem(int coord_system, .../* int angle_unit */);

The argument coord system for the coordinate system can be set to one of three macros
PLOT COORD CARTESIAN, PLOT COORD SPHERICAL, and PLOT COORD CYLINDRICAL
which stand for Cartesian, spherical, and cylindrical coordinate systems, respectively. By default, a 3D plot
uses the Cartesian coordinate system. A point in each coordinate system consists of three values. They are
(x,y,z), (θ,φ,r), and (θ,z,r) for Cartesian, spherical, and cylindrical coordinate systems, respectively.

Points in a spherical coordinate system are mapped to the Cartesian space by the following formulas:

x = r cos(θ) cos(φ)

y = r sin(θ) cos(φ)

z = r sin(φ)

Program 23.24 generates a plot in a spherical coordinate system shown in Figure 23.20.
For a cylindrical coordinate system, points are mapped to the Cartesian space by formulas:

x = r cos(θ)

y = r sin(θ)

z = z

452

23.3. 3D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#include <chplot.h>
#include <math.h>

#define NUMT 37
#define NUMP 19
int main() {

array double theta[NUMT], phi[NUMP], r[NUMT*NUMP];
class CPlot plot;

lindata(0, 2*M_PI, theta);
lindata(-M_PI/2, M_PI/2, phi);
r = (array double [NUMT*NUMP])1;
plot.data3D(theta, phi, r);
plot.coordSystem(PLOT_COORD_SPHERICAL);
plot.axisRange(PLOT_AXIS_XY, -2.5, 2.5);
plot.plotting();

}

Program 23.24: A plotting program using a spherical coordinate system.

-1
-0.8
-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

-2
-1

0
1

2
-2

-1

0

1

2

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

z

x

y

z

Figure 23.20: A plot in a spherical coordinate system.

453

23.3. 3D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#include <math.h>
#include <chplot.h>

#define NUMT 36
#define NUMZ 20
int main() {

int numpoints = 36;
array double theta[NUMT], z[NUMZ], r[NUMT*NUMZ];
int i, j;
class CPlot plot;

lindata(0, 360, theta);
lindata(0, 2*M_PI, z);
for(i=0; i<NUMT; i++) {

for(j=0; j<NUMZ; j++) {
r[i*20+j] = 2+cos(z[j]);

}
}
plot.data3D(theta, z, r);
plot.coordSystem(PLOT_COORD_CYLINDRICAL, PLOT_ANGLE_DEG);
plot.axisRange(PLOT_AXIS_XY, -4, 4);
plot.plotting();

}

Program 23.25: A plotting program using a cylindrical coordinate system.

 0

 1

 2

 3

 4

 5

 6

 7

-4 -3 -2 -1 0 1 2 3 4 -4
-3

-2
-1

0
1

2
3

4

0

1

2

3

4

5

6

7

z

x

y

z

Figure 23.21: A plot in a cylindrical coordinate system.

454

23.3. 3D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#include <chplot.h>
#include <math.h>

#define NUMX 20
#define NUMY 30
int main() {

double x[NUMX], y[NUMY], z[NUMX*NUMY];
double r;
int i, j;

lindata(-10, 10, x);
lindata(-10, 10, y);
for(i=0; i<NUMX; i++) {

for(j=0; j<NUMY; j++) {
r = sqrt(x[i]*x[i]+y[j]*y[j]);
z[30*i+j] = sin(r)/r;

}
}
plotxyz(x, y, z);

}

Program 23.26: A plotting program using function plotxyz().

Program 23.25 generates a plot in a cylindrical coordinate system shown in Figure 23.21.
An optional argument angle unit in member function CPlot::coordSystem() specifies the unit for mea-

surement of angular positions in spherical and cylindrical coordinate systems. The valid macros for optional
argument angle unit are PLOT ANGLE DEG for measurement of angles in degrees and
PLOT ANGLE RAD in radians. In a spherical or cylindrical coordinate system, by default, the angular
position is measured in radian.

23.3.3 3D Plotting Functions

Like functions fplotxy(), plotxy(), and plotxyf() in 2D plotting, high-level 3-dimensional plotting functions
fplotxyz(), plotxyz(), and plotxyzf() are designed for easy creation of 3D plots. These functions can be
used in conjunction with the CPlot member functions to create more sophisticated plots.

The plotting function plotxyz() is prototyped as,

int plotxyz(double x[&], array double y[&], array double &z, ...
/* [int n] [int nx, int ny] [string_t title, xlabel, ylabel, zlabel],

[class CPlot *plot] */);

The arrays x, y, and z are of real type. Conversion of the data to type double is performed internally. The
title and labels can be specified by optional arguments. A pointer to a plot CPlot class can also be passed to
this function to obtain the values passed to function plotxyz(). The following code segment

class CPlot plot;
plotxyz(x, y, z, title, xlabel, ylabel, zlabel, &plot);

is equivalent to

class CPlot plot;
plot.data3D(x, y, z);
plot.title(title);

455

23.3. 3D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

plot.label(PLOT_AXIS_X, xlabel);
plot.label(PLOT_AXIS_Y, ylabel);
plot.label(PLOT_AXIS_Z, zlabel);

The following code segment for plotting a 3D curve

class CPlot plot;
plotxyz(x, y, z, n);

is equivalent to

class CPlot plot;
plot.data3DCurve(x, y, z, n);

The following code segment for plotting a 3D surface

class CPlot plot;
plotxyz(x, y, z, nx, ny);

is equivalent to

class CPlot plot;
plot.data3DSurface(x, y, z, nx, ny);

In the simplest form, function plotxyz() takes three arguments of arrays of scalar types as shown in Pro-
gram 23.26, with the plot displayed in Figure 23.3.

Instead of using data from arrays, plotting function plotxyzf() uses data from a file. The plotting function
plotxyzf() is prototyped as,

int plotxyzf(string_t filename, ...
/* [string_t title, xlabel, ylabel, zlabel], [class CPlot *plot] */);

The data format for filename is the same as that for a file used in the argument of member function
CPlot::dataFile().

Function fplotxyz() uses data generated from a function as shown in Program 23.23 with output in
Figure 23.22. The plotting function fplotxyz() is prototyped as,

int fplotxyz(double (*func)(double x, double y), double x0,
double xf, double y0, double yf, ..., /* [x_num, y_num,
[string_t title, xlabel, ylabel, zlabel], [class CPlot *plot]] */);

Function fplotxy() plots a function with variables x and y in the range x0 ≤ x ≤ xf and y0 ≤ y ≤ yf. The
function to be plotted, func, is specified as a pointer to a function that takes two arguments for x and y, and
returns a value of double type. The arguments x0 and xf are the end-points for x and arguments y0 and yf
are for y. The optional arguments x num and y num specify how many points in the x and y coordinates
are to be plotted, respectively. The number of points plotted are evenly spaced in the range. By default, 25
points are plotted in both the x and y coordinates. Like functions plotxyz() and plotxyzf(), the arguments
title, xlabel, ylabel, zlabel, xlabel, ylabel, and plot for the plot can also be optionally specified.

456

23.3. 3D PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#include <math.h>
#include <chplot.h>

int main() {
string_t title="fplotxyz()",

xlabel="X-axis",
ylabel="Y-axis",
zlabel="Z-axis";

double x0 = -3, xf = 3, y0 = -4, yf = 4;
int x_num = 20, y_num = 50;

double func(double x, double y) { // function to be plotted

return 3*(1-x)*(1-x)*exp(-(x*x) - (y+1)*(y+1))
- 10*(x/5 - x*x*x - pow(y,5))*exp(-x*x-y*y)
- 1/3*exp(-(x+1)*(x+1) - y*y);

}
fplotxyz(func, x0, xf, y0, yf, x_num, y_num, title, xlabel, ylabel, zlabel);

}

Program 23.27: A plotting program using function fplotxyz().

-8
-6
-4
-2
 0
 2
 4
 6
 8

-3
-2

-1
0

1
2

3 -4
-3

-2
-1

0
1

2
3

4

-8
-6
-4
-2
0
2
4
6
8

Z-axis

fplotxyz()

X-axis

Y-axis

Z-axis

Figure 23.22: A plot generated by function fplotxyz().

457

23.4. DYNAMIC WEB PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

23.4 Dynamic Web Plotting

Plotting through CGI programs is very useful for many Web-based applications. With Ch Professional
Edition and CGI toolkit, plots can be very easily generated dynamically on-line. How to generate a dynamic
plot will be presented in this section. We will also describe how data is encoded and decoded for transferring
among the browser, Web server, and CGI programs.

In a Web-based plotting, the parameters for plotting are submitted from a Web browser, shown in Fig-
ure 23.23, with its corresponding HTML file in Program 23.28 and encoded by the browser. The parameters
as name-value pairs are decoded by member function CRequest::getFormNameValue() in first CGI pro-
gram webplot1.ch shown in Program 23.29. They are then passed as query strings to the second CGI
program webplot2.ch shown in Program 23.30. These parameters are obtained again using member func-
tion CRequest::getFormNameValue(). The plot generated as a PNG file and displayed through a Web
browser is shown in Figure 23.24 .

Figure 23.23: A Web-plotter based on the fill-out form.

458

23.4. DYNAMIC WEB PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

<HTML>
<HEAD>
<TITLE>
CGI-Based Web Plot
</TITLE>
</HEAD>
<BODY bgcolor="#FFFFFF" text="#000000" vlink="#FF0000">
<H1>
CGI-Based Web Plotter
</H1>

<HR>
<H2>2D Plotter</H2>
<PRE>
<FORM method="post" action="/cgi-bin/chcgi/toolkit/demos/sample/webplot1.ch">
Function: y = <INPUT name="expression" value="sin(log10(x*x))" size=35>
X-min: <INPUT name="xMin" value="0.1" size=5> X-max: <INPUT name="xMax"
value="1" size=5> Number of points: <INPUT name="numpoints" value="50" size=5>

<INPUT type="submit" value="Plot"> <INPUT type="reset" value="Reset">
<HR>
</BODY>
</HTML>

Program 23.28: HTML file for submitting plotting parameters.

#!/bin/ch
#include <cgi.h>

int main() {
int i, num;
chstrarray name, value;
class CResponse Response;
class CRequest Request;
class CServer Server;

num = Request.getFormNameValue(name, value);
Response.setContentType("text/html");
Response.begin();
Response.title("Web Plot");
printf("<center>\n");
printf("<img src=\"/cgi-bin/chcgi/toolkit/demos/sample/webplot2.ch");
for (i=0; i<num; i++){

putc(i == 0 ? ’?’ : ’&’, stdout);
fputs(Server.URLEncode(name[i]),stdout);
putc(’=’, stdout);
fputs(Server.URLEncode(value[i]),stdout);

}
printf("\">\n");
printf("</center>\n");
Response.end();

}

Program 23.29: CGI program webplot1.ch

459

23.4. DYNAMIC WEB PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

#!/bin/ch
#include <cgi.h>
#include <chplot.h>

int main() {
double MinX, MaxX, Step, x, y;
int pointsX, pointsY, i;
chstrarray name, value;
class CResponse Response;
class CRequest Request;
class CPlot plot;

Request.getFormNameValue(name, value);
MinX = atof(value[1]);
MaxX = atof(value[2]);
pointsX = atoi(value[3]);
double x1[pointsX], y1[pointsX];

Step = (MaxX - MinX)/(pointsX-1);
for(i=0;i<pointsX;i++) {
x = MinX + (i*Step);
y = streval(value[0]);
x1[i] = x;
y1[i] = y;

}

Response.setContentType("image/png");
Response.begin();
plotxy(x1, y1, value[0], "X", "Y", &plot);
/* output plot in color png file format */
plot.outputType(PLOT_OUTPUTTYPE_STREAM, "png");
plot.plotting();
Response.end();

}

Program 23.30: CGI program webplot2.ch

460

23.4. DYNAMIC WEB PLOTTING CHAPTER 23. TWO AND THREE-DIMENSIONAL PLOTTING

Figure 23.24: Plot generated through the Web plotting.

461

Chapter 24

Numerical Analysis

Numerical analysis in Ch is the simplist possible extension in the spirit of C. Complicated problems in
numerical analysis can often be solved with just one function call in Ch. The advanced features for numerical
analysis in Ch are very useful for applications in engineering and science.

The category of numerical analysis functions in Ch is listed in Table 24.1. Functions for numerical
analysis prototyped in header file numeric.h are listed in Table 24.2. File numeric.h includes the follow-
ing header files math.h, stdarg.h, array.h and dlfcn.h. It should be pointed out that functions maxloc(),
mean(), median(), minloc(), product(), sort(), std(), sum() use array of reference function arguments.
These functions can handle arrays of different dimensions and data types. The optional second argument
shall be array of double type for functions mean(), median(), product(), sort(), std(), and sum(). The
optional second argument shall be array of double complex type for functions cproduct() and csum().
The optional second arguments of vectors for these functions contain the results calculated for each row of
the first arguments of two-dimensional arrays. Similarly, functions minv() and maxv() return the maximum
and minimum values for each row of the input two-dimensional array argument, respectively.

In this chapter, numerical analysis functions for applications in engineering and science will be pre-
sented. The detailed description of each function can be found in the chapter about numerical analysis in
The Ch Language Environment — Reference Guide.

462

24.1. MATHEMATICAL FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

Table 24.1: Category of numerical analysis functions in Ch.
Data Analysis and Statistics
Data Interpolation and Curve Fitting
Minimization or Maximization of Functions
Polynomials
Nonlinear Equations
Ordinary Differential Equations
Derivatives
Integration
Matrix Analysis Functions
Matrix Decomposition
Special Matrices
Linear Equations
Eigenvalues and Eigenvectors
Fast Fourier Transforms
Convolution and Filtering
Cross Correlation
Special Mathematical Functions

24.1 Mathematical Functions

Many elementary mathematical functions are defined in the standard C header file math.h. This section
presents some commonly used mathematical functions not defined in standard C libraries.

24.1.1 Cross Product

Function cross() with the prototype of

array double cross(array double a[&], array double b[&])[3];

calculates the cross product of two vectors with three elements. The function returns the cross product of
vectors a and b of real type.

For example, the following commands can be used to evaluate the cross product of two vectors

> array double a[3] = {1, 2, 3}
> array float b[3] = {2, 3, 4}
> cross(a, a)
0.0000 0.0000 0.0000
> cross(a, b)
-1.0000 2.0000 -1.0000

24.1.2 Dot Product

Function dot() with the prototype of

double dot(array double a[&], array double b[&]);

463

24.1. MATHEMATICAL FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

Table 24.2: Functions for numerical analysis.
Function Description
balance() Balances a general real matrix to improve accuracy of computed

eigenvalues.
ccompanionmatrix() Calculate companion matrix with complex number.
cdeterminant() Calculate the determinant of a complex matrix.
cdiagonal() Get a vector with diagonals of a complex matrix.
cdiagonalmatrix() Create diagonal matrix from a complex vector.
cfevalarray() Complex array function evaluation.
cfunm() Evaluate general complex matrix function.
charpolycoef() Calculate the coefficients of characteristic polynomial of a matrix.
choldecomp() Computes the Cholesky factorization of a symmetric positive definite

matrix A.
cinverse() Calculate the inverse of a complex square matrix.
clinsolve() Solve a system of complex linear equations by LU decomposition.

cmean() Calculate the mean value of all the elements and mean values of each row
of a complex array.

combination() Calculate the number of combination of n things taken k at a time.
companionmatrix() Calculate a companion matrix.
complexsolve() Solve a complex equation.
condnum() Calculate condition number of a matrix.
conv() One-dimensional Discrete Fourier Transform (DFT) based convolution.
conv2() Two-dimensional Discrete Fourier Transform (DFT) based convolution.
corrcoef() Correlation coefficients calculation.
correlation2() Obtain a two-dimensional correlation coefficient.
cpolyeval() Calculate the value of a complex polynomial at a complex point.
cproduct() Calculate product of all elements or products of the elements of a complex

array of any dimension and the products of of each row of a
two-dimensional complex array.

covariance() Covariance matrix.
cross() Calculate vector cross product.
csum() Calculate the sum of all elements of a complex array of any dimension

or sums of elements in each row of a two-dimensional complex array.
ctrace() Calculate the sum of diagonal elements of a complex matrix.
ctriangularmatrix() Get the upper or lower triangular part of a complex matrix.
cumprod() Calculate cumulative product of elements in an array
cumsum() Calculate cumulative sum of elements in an array
curvefit() Fit a set of data points x and y to a linear combination of specified

base functions.
deconv() One-dimensional Discrete Fourier Transform (DFT) based deconvolution.
derivative() Calculate numerical derivative of a function at a given point.
derivatives() Calculate numerical derivatives of a function at multiple points.
determinant() Calculate the determinant of a matrix.
diagonal() Get a vector with diagonals of a matrix.
diagonalmatrix() Create diagonal matrix of a vector.
difference() Calculate differences between adjacent elements of array.
dot() Calculate vector dot product.

464

24.1. MATHEMATICAL FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

Table 24.2: Functions for numerical analysis (continued).
Function Description
eigen() Find eigenvalues and eigenvectors.
expm() Computes a matrix exponential.
factorial() Factorial function.
fevalarray() Array function evaluation.
fft() N-dimensional Fast Fourier Transform (FFT) calculation.
filter() Filters the data.
filter2() Two-dimensional Discrete Fourier Transform based FIR filter.
findvalue() Obtain indices of nonzero elements of an array.
fliplr() Flip matrix in left/right direction.
flipud() Flip matrix in up/down direction.
fminimum() Find the minimum value of a one-dimensional function and

its corresponding position for the minimum value.
fminimums() Find the minimum position and value of an n-dimensional function.
fsolve() Find a zero position of a nonlinear system of equations.
funm() Evaluate general real matrix function.
fzero() Find a zero position of a nonlinear function with one variable.
gcd() Obtain the greatest common divisor of the corresponding value of two

arrays of integral type.
getnum() Get a number with default value from the console.
hessdecomp() Reduces a real general matrix to upper Hessenberg form by an

orthogonal/unitary matrix similarity transformation.
histogram() Calculate and plot histograms.
householdermatrix() Get the Householder matrix.
identitymatrix() Create an identity matrix.
ifft() N-dimensional inverse Fast Fourier Transform (FFT) calculation.
integral1() Numerical integration of a one-dimensional function.
integral2() Numerical integration of a two-dimensional function.
integral3() Numerical integration of a three-dimensional function.
integration2() Numerical integration of a two-dimensional function.
integration3() Numerical integration of a three-dimensional function.
interp1() One-dimensional interpolation.
interp2() Two-dimensional interpolation.
inverse() Calculate the inverse of a square matrix.
lcm() Obtain the least common multiple of the corresponding value of two

arrays of integral type.
lindata() Generate linearly spaced data.
linsolve() Solve a system of linear equations by LU decomposition.
linspace() Generate a linearly spaced array.
llsqcovsolve() Solve linear system of equations based on linear least-squares with

known covariance.
llsqnonnegsolve() Solve linear system of equations with non-negative values based on

linear least-squares method.
llsqsolve() Least squares solution of sets of linear equations.
logm() Computes matrix natural logarithm.
logdata() Generate logarithmically spaced data.
logspace() Generate a logarithmically spaced array.
ludecomp() LU decomposition of general m-by-n matrix.

465

24.1. MATHEMATICAL FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

Table 24.2: Functions for numerical analysis (continued).
Function Description
maxloc() Find the location of maximum value of an array.
maxv() Find the maximum values of the elments of each row of a matrix.
mean() Calculate the mean value of all the elements and mean values of each

row in an array.
median() Find the median value of all the elements and median values of

elements in each row of an array.
minloc() Find the location of the minimum value of an array.
minv() Find the minimum values of each row in a two-dimensional array.
norm() Calculate vector and matrix norms.
nullspace() Calculate null space of a matrix.
oderk() Solve ordinary differential equation using a Runge-Kutta method.
orthonormalbase() Find orthonormal bases of a matrix.
pinverse() Calculate Moore-Penrose pseudoinverse of a matrix.
polyder() Take derivative of a polynomial.
polyder2() Calculate the derivative of product or quotient of two polynomials.
polyeval() Calculate the value of a polynomial and its derivatives.
polyevalarray() Polynomial evaluation for a sequence of points.
polyevalm() Calculate the value of a matrix polynomial.
polyfit() Fit a set of data points to a polynomial function.
product() Calculate product of all elements of an array of any dimension or

products of the elements of each row of a two-dimensional array.
qrdecomp() Compute the orthogonal-triangular QR decomposition of a matrix.
rank() Find the rank of a matrix.
residue() Partial-fraction expansion or residue computation.
rcondnum() Matrix reciprocal condition number estimate.
roots() Find the roots of a polynomial.
rot90() Rotate matrix 90 degrees.
specialmatrix() Generate a special matrix.
schurdecomp() Compute Schur decomposition.
sign() Sign function.
sort() Sorting and ranking elements in ascending order.
sqrtm() Computes the square root of a matrix.
std() Calculate the standard deviation of a data set.
sum() Calculate the sum of all elements or sums of elements in each row

of an array.
svd() Singular value decomposition.
trace() Calculate the sum of diagonal elements.
triangularmatrix() Get the upper or lower triangular part of a matrix.
unwrap() Unwrap radian phase of each element of input array by changing its

absolute jump greater than π to its 2 ∗ π complement.
urand() Uniform random-number generator.
xcorr() Obtain a one-dimensional cross-correlation vector.

466

24.1. MATHEMATICAL FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

calculates the dot product of two vectors. The function returns the dot product of vectors a and b of real
type. The number of elements of these two vectors shall be the same. Otherwise, function dot() returns
NaN.

For example, the following commands can be used to evaluate the dot product of two vectors

> array double a[3] = {1, 2, 3}
> array double b[] = {1, 2, 3, 4, 5}
> dot(a, a)
14.0000
> dot(b, b)
55.0000

24.1.3 Uniform Random Numbers

Standard C functions srand() and rand() in header file stdlib.h can be used to obtain random numbers.
Function urand() with the prototype of

double urand(array double &x);

uses a random-number generator with period 232 to obtain successive pseudo-random numbers in the range
from 0 to 1. If the parameter for array argument x is not NULL, random numbers are stored in argument x
and the function returns the value of the first element of the array. If the argument of function urand() is
NULL, only an uniform random number is returned.

For example,

> urand(NULL)
0.494766
> array double x[2], y[2][3]
> urand(x)
> x
0.513871 0.175726
> urand(y)
> y
0.3086 0.5345 0.9476
0.1717 0.7022 0.2264

24.1.4 Sign Function

Function sign() with the prototype of

int sign(double x);

determines the sign of argument x. The function returns the 1, -1 and 0 for x > 0, x < 0 and x = 0,
respectively.

For example,

> sign(-10)
-1
> sign(10)
1

467

24.1. MATHEMATICAL FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

24.1.5 Greatest Common Divisor

Function gcd() with the prototype of

int gcd(array int &u, array int &v, array double &g, ...
/* [array int c[&], array int d[&]] */);

obtains the greatest common divisor of the corresponding elements of two arrays u and v of integer type.
The arrays u and v shall be the same size and contain non-negative integer data. The output array g is a
positive integer array of the same size as u. The optional output arrays c and d are of the same size as u and
satisfy the equation u. ∗ c+ v. ∗ d = g.
Function gcd() returns 0 on success and -1 on failure.

For example,

> array int u[2][3] = {1, 2, 7,\
15, 3, 4}

> array int v[2][3] = {2, 4, 8,\
3, 8, 3}

> array int g[2][3],c[2][3],d[2][3]
> gcd(u,v,g,c,d)
> g
1 2 1
3 1 1
> u.*c+v.*d
1 2 1
3 1 1

24.1.6 Least Common Multiple

Function lcm() with the prototype of

int lcm(array int &g, array double &u, array double &v);

obtains the least common multiple of the corresponding elements of two arrays of integer type. The arrays u
and v shall be the same size and contain non-negative integral data. The output array g is a positive integral
array of the same size as u. Function lcm() returns 0 on success and -1 on failure.

For example,

> array int u[2][3] = {1,2,7,15,3,4}
> array int v[2][3] = {2,4,8,3,8,3}
> array int g[2][3]
> lcm(g,u,v)
> g
2 4 56
15 24 12

24.1.7 Complex Equation

A complex equation can be expressed in a general polar form of

R1e
iφ1 +R2e

iφ2 = z3 (24.1)

468

24.1. MATHEMATICAL FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

where z3 can be expressed in either Cartesian coordinates x3 + iy3 as complex(x3, y3), or polar
coordinates R3e

iφ3 as polar(R3, phi3). Because it is a complex equation that can be partitioned into
real and imaginary parts, two unknowns out of four parameters R1, φ1, R2, and φ2 can be solved in this
equation. The parameters R1, φ1, R2, and φ2 are in positions 1, 2, 3, and 4, respectively.

Function complexsolve() with the prototype of

int complexsolve(int n1, int n2,
double phi_or_r1, double phi_or_r2, double complex z3,
double &x1, double &x2, double &x3, double &x4);

can solve equation (24.1) for two unknowns. The arguments n1 and n2 are the positions of the first and
second unknowns on the left hand side of equation (24.1), respectively. The valid values for position are
1, 2, 3, or 4. Arguments phi or r1 and phi or r2 are the values of the remaining two known variables on
the left hand side of the equation. Argument z3 is a complex number on the right hand side. Arguments x1
and x2 contain the results for the first and second unknowns, respectively. If there are more than one set of
solutions, arguments x3 and x4 contain the results for the the first and second unknowns for the second set
of solution, respectively. Function complexsolve() returns the number of solutions with values of 0, 1, or 2.

For example, unknowns in equation 3.5ei4.5+R2e
iφ2 = 1+i2 can be solved by the following commands.

> int n1 = 3, n2 = 4
> double phi_or_r1= 3.5, phi_or_r2 = 4.5
> double R2, phi2, x3, x4
> complex z3 = complex(1, 2)
> complexsolve(n1, n2, phi_or_r1, phi_or_r2, z3, R2, phi2, x3, x4)
1
> R2
5.6931
> phi2
1.2606

For example, unknowns φ1 and φ2 in equation 3.5eiφ1 + 4.5eiφ2 = ei + 3ei4 can be solved by the
following commands.

> int n1 = 2, n2 = 4
> double phi_or_r1= 3.5, phi_or_r2 = 4.5
> double phi1, phi2, phi1_2, phi2_2
> complex z3 = polar(1, 1)-polar(3, 4)
> complexsolve(n1, n2, phi_or_r1, phi_or_r2, z3, \

phi1, phi2, phi1_2, phi2_2)
2
> phi1
-0.3890
> phi2
1.7354
> phi1_2
2.1765
> phi2_2
0.0521

469

24.2. DATA ANALYSIS AND STATISTICS
CHAPTER 24. NUMERICAL ANALYSIS

24.2 Data Analysis and Statistics

24.2.1 Get Numbers from Console

Function getnum() with the prototype of

double getnum(string_t msg, double d);

obtains a real number from the console through the standard input stream or a default value in the second
argument. This function returns a default number when the carriage RETURN is entered as input, or new
number from stdin as a double-precision floating-point number. However, if an invalid number is entered, a
different number is requested. The message in string msg will be printed out.

For example,

> double d
> d = getnum("Please enter a number[10.0]: ", 10);
Please enter a number[10.0]:
90
> d
90.0000

24.2.2 Assign Data to Arrays

In addition to initialization and assignment of arrays, values can be assigned to arrays by functions lindata()
and logdata(). Function lindata() with the prototype of

int lindata(double first, double last, ... /*[array] type a[:]...[:]*/);

assigns linearly spaced values starting with first and ending with last for elements of array a passed in the
third argument. The number of points is taken internally from the array a. Function lindata() returns the
number of elements in array a or 0 on failure. Function logdata() is similar to lindata(), except that the
values are logarithmically spaced for elements of the array in the third argument.

For example,

> array double a[6];
> lindata(0, 2, a);
> a
0.0000 0.4000 0.8000 1.2000 1.6000 2.0000

Function linspace() with the prototype of

int linspace(array double &a, double first, double last);

assigns linearly spaced values starting with first and ending with last for elements of array a. The number of
points is taken internally from the ar ray a. Function linspace() returns the number of elements in array a or
0 on failure. Function logspace() is similar to linspace(), except that the values are logarithmically spaced
for elements of the array in the first argument. For example,

> array double a[6];
> linspace(a, 0, 2);
> a
0.0000 0.4000 0.8000 1.2000 1.6000 2.0000

470

24.2. DATA ANALYSIS AND STATISTICS
CHAPTER 24. NUMERICAL ANALYSIS

Functions linspace() and logspace() are obsolete and will be phased out. Users are encouraged to use
functions lindata() and logdata(). Function calls

linspace(a, 0, 2);
logpace(a, 0, 2);

can be replaced by

lindata(0, 2, a);
logdata(0, 2, a);

24.2.3 Minimum and Maximum

The minimum value in a list of expressions of scalar and array types can be obtained using the generic
function min(). If all arguments are integer types, min() returns a value int type. Otherwise, it returns a
value of double type. Function minloc() with the prototype of

int minloc(array double &a);

returns the index for the element with the minimum value in array a. Function minv() with the prototype of

array double minv(array double a[&][&])[:];

returns an array of minimum values of each row in the argument of a two-dimensional array. To calculate an
array of minimum values of each column in the argument of a two-dimensional array, function transpose()
can be used to obtain the transpose of the array first.

Generic function max() is similar to min(). Instead of a minimum value, function max() returns the
maximum value from the list of expressions in its argument. Function maxloc() with the prototype of

int maxloc(array double &a);

returns the index for the element with the maximum value in array x. Function maxv() with the prototype of

array double maxv(array double a[&][&])[:];

returns an array of maximum values of each row in the argument of a two-dimensional array.
For example,

> array double a[3] = {10, 2, 3}
> float f= 2.5;
> min(a, f, 2.4)
2.0000
> minloc(a)
1
> array int i[3][2] = {1, 2, 3, 4, 5, 6}
> minv(i)
1.0000 3.0000 5.0000
> minv(transpose(i))
1.0000 2.0000
> max(4, 5, i, 10)
10

471

24.2. DATA ANALYSIS AND STATISTICS
CHAPTER 24. NUMERICAL ANALYSIS

24.2.4 Sum

Function sum() with the prototype of

double sum(array double &a, ... /* [array double v[:]] */);

calculates the sum of all the elements in an array. If the array is a two-dimensional matrix, the function can
calculate the sum of each row with the result stored in the optional second argument of the one-dimensional
array. For example,

> array double a[3] = {10, 2, 3}
> sum(a)
15.0000
> array double b[3][2] = {1, 2, 3, 4, 5, 6}
> array double v[3]
> sum(b, v)
> v
3.0000 7.0000 11.0000

For an array of complex numbers, function csum() with the prototype of

double complex csum(array double complex &a, ...
/* [array double complex v[:]] */);

shall be used to calculate the sum.
For a vector x = [x1, x2, · · · , xn], cumulative sum y = [y1, y2, · · · , yn] is defined by

yi = x1 + x2 + · · ·+ xi i = 1, 2, · · · , n

Function cumsum() with the prototype of

int cumsum(array double complex &y, array double complex &x);

computes the cumulative sum of the input array x. If the input x is a vector, it calculates the cumulative sum
of the elements of x. If the input x is a two-dimensional matrix, it calculates the cumulative sum over each
row. If the input x is a three-dimensional array, it calculates the cumulative sum over the first dimension. It
is invalid for calculation of cumulative sum for arrays with more than three dimensions.

For example,

> array double x[6]={1,2,3,4,5,6}, y[6]
> cumsum(y, x)
> y
1.0000 3.0000 6.0000 10.0000 15.0000 21.0000
> array double complex zx[3][2]={complex(1,1),2,3,complex(2,2),5,6}
> array double complex zy[3][2]
> cumsum(zy, zx)
complex(1.0000,1.0000) complex(3.0000,1.0000)
complex(3.0000,0.0000) complex(5.0000,2.0000)
complex(5.0000,0.0000) complex(11.0000,0.0000)

472

24.2. DATA ANALYSIS AND STATISTICS
CHAPTER 24. NUMERICAL ANALYSIS

24.2.5 Product

Function product() with the prototype of

double product(array double &a, ... /* [array double v[:]] */);

calculates the product of all the elements in an array. If the array is a two-dimensional matrix, the function
can calculate the product of each row with the result stored in the optional second argument of the one-
dimensional array. For example,

> array double a[3] = {10, 2, 3}
> product(a)
60.0000
> array double b[3][2] = {1, 2, 3, 4, 5, 6}
> array double v[3]
> product(b, v)
> v
2.0000 12.0000 30.0000

For an array of complex numbers, function cproduct() with the prototype of

double complex cproduct(array double complex &a, ...
/* [array double complex v[:]] */);

shall be used to calculate the product.
For a vector x = [x1, x2, · · · , xn], cumulative product y = [y1, y2, · · · , yn] is defined by

yi = x1 ∗ x2 ∗ · · · ∗ xi i = 1, 2, · · · , n

Function cumprod() with the prototype of

int cumprod(array double complex &y, array double complex &x);

computes the cumulative product of the input array x. If the input x is a vector, it calculates the cumulative
product of the elements of x. If the input x is a two-dimensional matrix, it calculates the cumulative product
over each row. If the input x is a three-dimensional array, it calculates the cumulative product over the first
dimension. It is invalid for calculation of cumulative product for arrays with more than three dimensions.

For example,

> array double x[6]={1,2,3,4,5,6}, y[6]
> cumprod(y, x)
> y
1.0000 2.0000 6.0000 24.0000 120.0000 720.0000
> array double complex zx[3][2]={complex(1,1),2,3,complex(2,2),5,6}
> array double complex zy[3][2]
> cumprod(zy, zx)
complex(1.0000,1.0000) complex(2.0000,2.0000)
complex(3.0000,0.0000) complex(6.0000,6.0000)
complex(5.0000,0.0000) complex(30.0000,0.0000)

473

24.2. DATA ANALYSIS AND STATISTICS
CHAPTER 24. NUMERICAL ANALYSIS

24.2.6 Mean

Function mean() with the prototype of

double mean(array double &a, ... /* [array double v[:]] */);

can be used to calculate the mean value of all the elements in an array of any dimension and real type. If
the array is a two-dimensional matrix, the function can calculate mean values of each row. The mean values
of each row are passed out by the second argument v of the one-dimensional array. For complex arrays,
function cmean() with the prototype of

double complex cmean(array double complex &a, ...
/* [array double complex v[:]] */);

shall be used for the calculation of mean values.
For example, the following commands can be used to evaluate the mean values.

> double a[2][3] = {1, 2, 3, 6, 5, 4}
> double m
> m = mean(a)
3.5000
> array double v[2]
> mean(a, v)
> v
2.0000 5.0000

24.2.7 Median

Function median() with the prototype of

double median(array double &a, ... /* [array double v[:]] */);

can be used to calculate the median value of all elements in an array of any dimension and real type. If the
array is a two-dimensional matrix, the function can calculate median values of each row. The median values
of each row are passed out by the second argument v of the one-dimensional array.

For example, the following commands can be used to evaluate a median value.

> double a[2][3] = {1, 2, 3, 6, 5, 4}
> double m
> m = median(a)
3.5000

24.2.8 Standard Deviation

The standard deviation of the data set σi is defined as

σ =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2

where N is the number of observations of data set x, and x is the mean of data set x. Function std() with the
prototype of

474

24.2. DATA ANALYSIS AND STATISTICS
CHAPTER 24. NUMERICAL ANALYSIS

double std(array double &a, ... /* [array double v[:]] */);

can be used to calculate the standard deviation of all elements in an array of any dimension and real type.
If the array is a two-dimensional matrix, the function can calculate standard deviations of each row. The
standard deviations of each row are passed out by the second argument v of the one-dimensional array.

For example, the following commands can be used to evaluate a standard deviation.

> double a[2][3] = {1, 2, 3, 6, 5, 4}
> double m
> m = std(a)
1.8708

24.2.9 Covariance and Correlation Coefficients

For array X of n-by-m dimension, with n variables, which has a total of m observations, the element (i,j) of
the covariance matrix C of array X is defined as

C[i][j] = E[(xi − μi)(xj − μj)] i, j = 1, 2, · · · , N ;

where E is the mathematical expectation and μi = Exi. Define element (i, j) matrix u as

uij = xij − μi; i = 0, 1, · · · , N ; j = 0, 1, · · · ,M
where

μi =
1

M

M∑
j=1

xij; i = 0, 1, · · · , N

Then, the covariance matrix can be calculated by

C =
1

N − 1
u ∗ uT

Function covariance() with the prototype of

int covariance(array double &c, array double &x, ...
/* [array double &y] */);

calculates the covariance of array x. The input array x can be of any supported arithmetic data type of
vector or matrix of any size n × m (if x is a vector, regard the size as 1 × m). Each column of x is an
observation and each row is a variable. Optional input y can only be of double data type and the same
number of columns as x. That is, the size of y is n1 ×m, or 1 ×m if y is a vector. Attaching y to a row of
x as a new expanding matrix [X] is performed internally. Function call covariance(c, x, y) is equivalent to

covariance(c,[X]) where X is defined as X =

(
x
y

)
. The size of [X] is (n+n1)× (m). Conversion of the

data to double is performed internally. The result c is a variance or a covariance matrix depending on x and
y. If x is a vector and no optional input y, the result c is a variance. Otherwise it is a covariance. Diagonal
of c is a vector of variances for each row. The square root of the diagonal of array c is a vector of standard
deviations. In function covariance(), the mean from each column is removed before calculating the result.
Function covariance() returns 0 on success and -1 on failure.

Element (i, j) of the correlation coefficient matrix is defined as

corrcoef(i, j) =
Cij√

Cii ∗ Cjj

where Cij is the element of the covariance matrix. Function corrcoef() with the prototype of

475

24.2. DATA ANALYSIS AND STATISTICS
CHAPTER 24. NUMERICAL ANALYSIS

int corrcoef(array double &c, array double &x, ...
/* [array double &y] */);

calculates the correlation coefficient matrix. The input array x can be of any supported arithmetic data type
of vector or two-dimensional array of any size n×m (if x is a vector, regard the size as 1×m). Each column
of x is an observation and each row is a variable. Optional input y can only be of double data type and the
same number of columns as x. That is, the size of y is n1×m or regard as 1×m if y is a vector. Attachment
of y to a row of x as a new expanding matrix [X] is performed internally. Function call corrcoef(c, x, y)

is equivalent to corrcoef(c,[X]) where X is defined as X =

(
x
y

)
. The size of [X] is (n + n1) × m.

Conversion of the data to double is performed internally. The result c is a matrix of correlation coefficients.
For example, the covariance and correlation coefficients of a matrix can be calculated by the following

commands.

> #define N 3
> #define M 4
> array double x[N][M]={1,2,3,4, \

0,0,0,1, \
2,3,4,5}

> array double c[N][N]
> covariance(c, x)
> c
1.6667 0.5000 1.6667
0.5000 0.2500 0.500000
1.6667 0.5000 1.6667
> corrcoef(c, x)
1.0000 0.7746 1.0000
0.7746 1.0000 0.7746
1.0000 0.7746 1.0000

Function correlation2() with the prototype of

int correlation2(array double x[&][&], array double y[&][&])

calculates the correlation coefficient of two square matrices x and y. The correlation coefficient is defined as

c =

∑n
i=1

∑n
j=1(xxij ∗ yyij)√

(
∑n

i=1

∑n
j=1 xx

2
ij) ∗ (

∑n
i=1

∑n
j=1 yy

2
ij)

where

xxij = xij − μx

yyij = yij − μy

μx and μy are the mean values of the matrices x and y.

μx =
1

n ∗ n
n∑

i=1

n∑
j=1

xij

μy =
1

n ∗ n
n∑

i=1

n∑
j=1

yij

476

24.2. DATA ANALYSIS AND STATISTICS
CHAPTER 24. NUMERICAL ANALYSIS

Table 24.3: Definition of Norms.
Mode Norm Type Algorithm

Norm for Vectors
"1" 1-norm ||a||1 = |a1|+ |a1|+ ...+ |an|
"2" 2-norm ||a||2 = (|a1|2 + |a2|2 + ...+ |an|2)1/2
"p" p-norm ||a||p = (|a1|p + |a2|p + ...+ |an|p)1/p

"p" is a floating-point number.
"i" infinity norm ||a||∞ = maxi |ai|
"-i" negative infinity norm ||a||−∞ = mini |ai|

Norm for m-by-n Matrices
"1" 1-norm ||a||1 = maxj

∑m
i=1 |aij |

"2" 2-norm ||a||2 = maximum singular value of a
"i" infinity norm ||a||∞ = maxi

∑m
j=1 |aij |

"f" Frobenius norm ||a||2F =
∑m

i=1

∑n
j=1 |aij|2

"m" norm ||a|| = max(abs(A[i][j])))

For example,

> array double x[3][3]={1,2,3, 3,4,5, 6,7,8}
> array double y[3][3]={3,2,2, 3,8,5, 6,2,5}
> correlation2(x, y)
0.3266

24.2.10 Norm

The norm of a vector or matrix is a scalar that gives some measure of the magnitude of the elements of the
vector or matrix. Function norm() with the prototype of

double norm(array double complex &a, char *char);

calculates norms of different types for a vector or matrix a according to the argument mode. The mode and
algorithm of various norms for both vectors and matrices are defined in Table 24.3.

For example,

> array double a[6] = {1, 2, 3, 6, 5, 4}
> array double b[2][3] = {1, 2, 3, 6, 5, 4}
> norm(a, "1")
21.0000
> norm(b, "1")
7.0000

24.2.11 Factorial

The factorial is defined as

f = n!

Function factorial() with the prototype of

477

24.2. DATA ANALYSIS AND STATISTICS
CHAPTER 24. NUMERICAL ANALYSIS

unsigned long long factorial(unsigned int n);

can be used to calculate a factorial.
For example, factorial 3! can be evaluated by the following command.

> factorial(3)
6

24.2.12 Combination

Function combination() with the prototype of

unsigned long long combination(unsigned int n, unsigned int k);

can be used to calculate the number of combination of n different things taken k at a time without repetitions.
The number of combination is the number of sets that can be made up from n things, each set containing k
different things and no two sets containing exactly the same k things. It is defined as

Cn
k =

n!

(n − k)!k!

For example, combination C2
5 can be evaluated by the following command.

> combination(5, 2)
10

24.2.13 Sort Data

Section 24.2.3 described how to find the minimum or maximum value, as well as its location, of arrays or
a list of variables. Functions minloc() and maxloc() find locations of the mimimum and maximum values
with offset 0. Data can be sorted by standard C function qsort() defined in header file stdlib.h. In this
section, sorting data stored in arrays will be described.

Function findvalue() with the prototype of

int findvalue(array int y[&], array double complex x[&]);

finds indices of nonzero elements of an array. Vector y is integer data type with the total number of elements
of x. It contains the indices of nonzero elements of array x. The remaining elements of y contains the value
of −1. If x is an array of complex data type, a zero element is defined as a value with zero in both real and
imaginary parts. Function findvalue() returns the number of nonzero elements of array x.

For example,

> array double x[5]={0,43.4,-7,-2.478,7}
> array int y[5]
> findvalue(y,x)
4
> y
1 2 3 4 -1
> findvalue(y,x<0)
2
> y
2 3 -1 -1 -1

478

24.2. DATA ANALYSIS AND STATISTICS
CHAPTER 24. NUMERICAL ANALYSIS

Function sort() with the prototype of

int sort(array double complex &y, array double complex &x, ...
/* [string_t method], [array int &ind] */);

sorts and ranks elements in ascending order. The original data in array x can be of any supported arithmetic
data type and dimension. Array y is the same data type and size as x and it contains sorted data. If x is
a complex data type, it is sorted by the magnitude of each element. If x includes NaN or ComplexNaN
elements, sort() places these at the end. The index in array ind contains the ranking index, starting with
0, corresponding to array x and the optional argument method specifies the sorting method. When x is
a two-dimensional array, this parameter specifies the sorting method defined as follows: “array” - sorted
by total elements; “row” - sorted by row for two-dimensional array; “column” - sorted by column for
two-dimensional array. By default, two-dimensional arrays are sorted by total elements. If x is not a two-
dimensional array, the array is sorted by total elements. Function sort() returns 0 on success and -1 on
failure.

For example,

> array double x[4] = {0.1, NaN, -0.1, 3}, y[4]
> sort(y, x)
> y
-0.1000 0.1000 3.0000 NaN
> array double x2[2][3] = {5.0, NaN, -3.0, -6.0, 4.0, 3.0}, y2[2][3]
> array int ind[2][3];
> sort(y2, x2, "array", ind)
> y2
-6.0000 -3.0000 3.0000
4.0000 5.0000 NaN
> ind
3 2 5
4 0 1
> sort(y2, x2, "row", ind)
> y2
-3.0000 5.0000 NaN
-6.0000 3.0000 4.0000
> ind
2 0 1
0 2 1

24.2.14 Unwrap

Function unwrap() with the prototype of

int unwrap(array double &y, array double &x, ...
/* [double cutoff] */);

unwraps the radian phase of each element of input array x by changing its absolute jump greater than π to its
2π complement. The input array x can be of a vector or a two-dimensional array. If it is a two-dimensional
array, the function unwraps it through every row of the array.
Array argument y is the same dimension and size as x. It contains the unwrapped data. Optional argument

479

24.2. DATA ANALYSIS AND STATISTICS
CHAPTER 24. NUMERICAL ANALYSIS

#include <math.h>
#include <complex.h>
#include <chplot.h>

int main(){
double r[1:4],theta1,theta31;
int n1=2,n2=4, i;
double complex z,p,rb;
double x1,x2,x3,x4;
array double theta2[36],theta4[36],theta41[36];
class CPlot subplot, *plot;

/* four-bar linkage*/
r[1]=5; r[2]=1.5; r[3]=3.5; r[4]=4;
theta1=30*M_PI/180;
linspace(theta2,0,2*M_PI);
for (i=0;i<36;i++) {

z=polar(r[1],theta1)-polar(r[2],theta2[i]);
complexsolve(n1,n2,r[3],-r[4],z,x1,x2,x3,x4);
theta4[i] = x2;

}
unwrap(theta41, theta4);
subplot.subplot(2,1);
plot = subplot.getSubplot(0,0);
plot->data2D(theta2, theta4);
plot->title("Wraped");
plot->label(PLOT_AXIS_X,"Crank input: radians");
plot->label(PLOT_AXIS_Y,"Rocker output: radians");

plot = subplot.getSubplot(1,0);
plot->data2D(theta2, theta41);
plot->title("Unwraped");
plot->label(PLOT_AXIS_X,"Crank input: radians");
plot->label(PLOT_AXIS_Y,"Rocker output: radians");
subplot.plotting();

}

Program 24.1: A program using unwrap().

cutoff specifies the jump value. If the user does not specify this input, cutoff has a value of π by default.
Function unwrap returns 0 on success and -1 on failure.

For example, in motion analysis of a crank-rocker mechanism using Program 24.1, the output range of
the rocker is within 0 ∼ 2π. For this mechanism, the output may be as shown on the top part in Figure 24.1.
There is a jump when θ4 is π, because θ4 = π and θ4 = −π are the same point for the crank-rocker
mechanism. If the unwrap() function is used, a smooth curve for output angle θ4 can be obtained as shown
on the lower part in Figure 24.1.

24.2.15 Functions Applied to Elements of Arrays

Function fevalarray() with the prototype of

int fevalarray(array double &y, double (*func)(double),
array double &x, ... /* [array int &mask, double value] */);

480

24.2. DATA ANALYSIS AND STATISTICS
CHAPTER 24. NUMERICAL ANALYSIS

-4

-3

-2

-1

0

1

2

3

4

0 1 2 3 4 5 6 7

R
oc

ke
r

ou
tp

ut
: r

ad
ia

ns

Crank input: radians

Wraped

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

0 1 2 3 4 5 6 7

R
oc

ke
r

ou
tp

ut
: r

ad
ia

ns

Crank input: radians

Unwraped

Figure 24.1: Comparison of results with and without using unwrap() function.

evaluates a user function applied to each element of array x. The input array can be of any arithmetic data
type and dimension.

Array argument y contains the result of function evaluation. Argument func is a pointer to function
given by the user. If the value of an element of array mask is 1, the function evaluation will be applied to
that element. If the value of an element of array mask is 0, the value from the optional fifth argument value
will be used for that element. Function fevalarray() returns 0 on success and -1 on failure.

For example,

> double func(double x) {return x*x;}
> array double x[4] = {1, 2, 3, 4}, y[4]
> array int mask[4] = {1, 0, 1, 0}
> fevalarray(y, func, x);
> y
1.0000 4.0000 9.0000 16.0000
> fevalarray(y, func, x, mask, 5);
> y
1.0000 5.0000 9.0000 5.0000

For arrays of complex numbers, function cfevalarray() with the prototype of

int cfevalarray(array double complex &y,
double complex (*func)(double complex), array double complex &x,
... /* [array int &mask, double complex value] */);

shall be used.

24.2.16 Histogram

Function histogram() with the prototype of

int histogram(array double &y, array double x[&], ...
/* [array double hist[:]] */);

481

24.3. DATA INTERPOLATION AND CURVE FITTING
CHAPTER 24. NUMERICAL ANALYSIS

5

10

15

20

25

30

35

-1 -0.5 0 0.5 1

Figure 24.2: The histogram for sin(x) in the range of −π <= x <= π.

can be used to calculate the histogram of data set y with the bins defined in array x. The array of data
set y can be of any dimensions and real type. If the function is called without the optional argument hist,
the histogram will be plotted. Otherwise the function only generates the histogram data saved in array hist
without plotting.

For example, the following commands can be typed

> array double yy[300], xx[300], x[21]
> lindata(-1, 1, x)
> lindata(-3.14, 3.14, xx)
> yy = sin(xx)
> histogram(yy, x)

The output from the above commands is displayed in Figure 24.2

24.3 Data Interpolation and Curve Fitting

24.3.1 One-Dimensional Interpolation

Function interp1() with the prototype of

int interp1(double y[&], double x[&], double xa[&], double ya[&],
char *method);

finds the values of the function, which is expressed in terms of two arrays xa and ya, at points expressed in
array x by linear or cubic spline interpolation. The interpolation method can be chosen by input argument
method of a string with "linear" or "spline". The function returns 0 on success and -1 on failure.

For example, the following commands are valid.

> array double x[1]=0.5, y[1], xa[180],ya[180]
> lindata(-3.14, 3.14, xa)
> ya = sin(xa)
> interp1(y, x, xa, ya, "spline")
> y
0.4794

Figure 24.3, generated by Program 24.2, displays the original data and interpolated points using function
interp1().

482

24.3. DATA INTERPOLATION AND CURVE FITTING
CHAPTER 24. NUMERICAL ANALYSIS

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4

y

x

original points
interpolated points

Figure 24.3: The original data and interpolated points using function interp1().

#include <chplot.h>
#include <math.h>

int main() {
array double xa[36], ya[36];
array double x[12], y[12];
class CPlot plot;
int numdataset=0, pointtype=7, pointsize=1;

linspace(xa, -M_PI, M_PI);
linspace(x, -M_PI, M_PI);
ya = sin(xa);
interp1(y, x, xa, ya, "spline");

plot.data2D(xa, ya);
plot.plotType(PLOT_PLOTTYPE_POINTS, numdataset, pointtype, pointsize);
plot.legend("original points", 0);
numdataset=1, pointtype=1, pointsize=2;
plot.data2D(x, y);
plot.plotType(PLOT_PLOTTYPE_POINTS, numdataset, pointtype, pointsize);
plot.legend("interpolated points", 1);
plot.legendLocation(-1, 0.8);
plot.plotting();

}

Program 24.2: A program using function interp1().

483

24.3. DATA INTERPOLATION AND CURVE FITTING
CHAPTER 24. NUMERICAL ANALYSIS

24.3.2 Two-Dimensional Interpolation

Function interp2() with the prototype of

int interp2(double z[&][&], double x[&], double y[&],
double xa[&], double ya[&], double za[&][&], char *method);

finds the values of a two-dimensional function at points indicated by two one-dimensional arrays x and y, by
two-dimensional linear or cubic spline interpolation. The function is expressed in terms of tabulated values,
in two arrays xa of dimension m and ya of dimension n , and a matrix of function value za of dimension
m × n tabulated at the grid points defined by xa and ya. The dimensions for arrays xa, ya, x and y can
be different. The interpolation method is chosen by input argument method of string with "linear" or
"spline". The function returns 0 on success and -1 on failure.

Program 24.3 interpolates a two-dimensional function using cubic splines, z(x, y) = 3(1−x)2e−x2−y2+1−
10(x5 − x3− y5)e−x2−y2 − 1

3e
−(x+1)2−y2 The two-dimensional arrays z and za are cast to one-dimensional

arrays z1 and za1 so that they can be used by plotting member function CPlot::data3D(). The output from
Program 24.3 is displayed in Figure 24.4

24.3.3 General Curve Fitting

The general form of a fitting formula is

y(x) =
M∑
k=1

akfk(x)

where f1(x), ..., fM (x) are arbitrary fixed functions of x, called base functions. fk(x) can be a nonlinear
function of x. The coefficients ak are determined by minimizing chi-square which is defined as

χ2 =
N∑
i=1

(
yi −∑M

k=1 akfk(xi)

σi

)2

where σi is the standard deviation of the ith data point. If the standard deviations are unknown, they can be
set to the constant value σ = 1. By defining a n×m matrix α with element (k, j) as

αkj =
N∑
i=1

fj(xi)fk(xi)

σ2
i

The element (k, j) of the covariance matrix can be expressed as

coverkj = [α]−1
kj

Function curvefit() with the prototype of

int curvefit(double a[&], double x[&], double y[&],
void (*funcs)(double, double []), ...

/* double sig[], int ia[], double covar[:][:], double *chisq] */);

uses χ2 minimization to fit for some or all of the coefficients in array a of a function that depends linearly
on y = ai ∗ funcsi(x), given a set of data points in arrays x and y with the same dimension and individual
standard deviations in array sig. The program can also pass χ2 and covariance matrix covar. If the values

484

24.3. DATA INTERPOLATION AND CURVE FITTING
CHAPTER 24. NUMERICAL ANALYSIS

#include <chplot.h>
#include <math.h>
#include <numeric.h>
#define M 20
#define N 30
#define NUM_X 40
#define NUM_Y 50

int main() {
int datasetnum = 0, i,j;
array double za1[M*N],za[M][N],xa[M],ya[N];
array double z1[NUM_X*NUM_Y],z[NUM_X][NUM_Y],x[NUM_X],y[NUM_Y];
class CPlot plot;

/* Construct data set of the peaks function */
linspace(xa, -3, 3);
linspace(ya, -4, 4);
for(i=0; i<M; i++) {

for(j=0; j<N; j++) {
za[i][j] = 3*(1-xa[i])*(1-xa[i])*

exp(-(xa[i]*xa[i])-(ya[j]+1)*(ya[j]+1))
- 10*(xa[i]/5 - xa[i]*xa[i]*xa[i]-
pow(ya[j],5))*exp(-xa[i]*xa[i]-ya[j]*ya[j])
- 1/3*exp(-(xa[i]+1)*(xa[i]+1)-ya[j]*ya[j]);

}
}
linspace(x, -3, 3);
linspace(y, -4, 4);
interp2(z,x,y,xa,ya,za,"spline");

za1 = (array double[M*N])za;
/* add offset for display */
z1 = (array double[NUM_X*NUM_Y])z + (array double[NUM_X*NUM_Y])50;
plot.data3D(xa, ya, za1);
plot.plotType(PLOT_PLOTTYPE_LINES, datasetnum++);
plot.data3D(x, y, z1);
plot.plotType(PLOT_PLOTTYPE_LINES, datasetnum++);
plot.ticsLevel(0);
plot.text("spline", PLOT_TEXT_RIGHT,4,4.5,55);
plot.text("original", PLOT_TEXT_RIGHT,4,4.5,5);
plot.colorBox(PLOT_OFF);
plot.plotting();

}

Program 24.3: A program using interp2().

485

24.3. DATA INTERPOLATION AND CURVE FITTING
CHAPTER 24. NUMERICAL ANALYSIS

original

spline

-3
-2

-1
0

1
2

3
x -4

-3
-2

-1
0

1
2

3
4

y

-10

0

10

20

30

40

50

60

z

Figure 24.4: The result from two-dimensional interpolation function interp2().

#include <stdio.h>
#include <math.h>
#include <numeric.h>
#define NPT 100
#define SPREAD 0.1
#define NTERM 4

void funcs(double x, double func[]) {
func[0]=cos(x);
func[1]=sin(x);
func[2]=exp(x);
func[3]=1.0;

}
int main(void) {

int i,j;
array double a[NTERM],x[NPT],y[NPT],sig[NPT],u[NPT];

linspace(x, 0, 10);
urand(u);
y = 4*cos(x) + 3*sin(x) +2*exp(x) +(array double [NPT])1.0 + SPREAD*u;
curvefit(a,x,y,funcs);
printf(" %s\n","parameters");
for (i=0;i<NTERM;i++)

printf(" a[%d] = %f\n", i,a[i]);
}

Program 24.4: A program using curvefit().

486

24.4. MINIMIZATION OR MAXIMIZATION OF FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

for array argument ia are constants, the corresponding components of the covariance matrix will be zero.
The user supplies a routine funcs(x,func) that passes the function values evaluated at x by the array func. The
standard deviations in array sig can be set to 1 if they are unknown. The function returns 0 on success and
-1 on failure.

Program 24.4 fits data points generated by f(x) = 4 cos(x)+3 sin(x)+2ex+1 with a uniform random
deviation to the base functions cos(x), sin(x), ex, and 1. The curve fitting function curvefit(a, x, y, funcs)
is called in this example. The output from this program is given as follows:

parameters
a[0] = 3.990255
a[1] = 2.994660
a[2] = 2.000000
a[3] = 1.051525

24.3.4 Curve Fitting Using Polynomial Functions

The algorithm of the function polyfit() is based on that of the function curvefit(). For polynomial fitting,
the base functions for curvefit() are set to the terms of polynomials internally. The general form of a fitting
formula is

y(x) =
M∑
k=1

akx
k

Function polyfit() with the prototype of

int polyfit(double a[&], double x[&], double y[&],
/* double sig[], int ia[], double covar[:][:], double *chisq] */);

uses χ2 minimization to fit for polynomial coefficients in array a, given a set of data points in arrays x and y
with the same dimension and individual standard deviations in array sig. The program can also pass χ2 and
covariance matrix covar. If the values for array argument ia are constants, the corresponding components
of covariance matrix will be zero. The standard deviations in array sig can be set to 1 if they are unknown.
The function returns 0 on success and -1 on failure.

Program 24.5 fits data points generated by the polynomial

8x4 + 5x3 + 3x2 + 6x+ 7

with a uniform random deviation. The polynomial curve fitting function polyfit(a, x, y) is used to obtain the
coefficients in array a of a fourth order polynomial. The output from this program is given below.

Coefficients
a[0] = 8.000048
a[1] = 4.999537
a[2] = 2.998743
a[3] = 6.015915
a[4] = 7.033636
y = 199.057500 at x = 2.000000

24.4 Minimization or Maximization of Functions

In this section, minimization of functions will be described. The maximum value of a function f(x) can be
obtained by finding the minimum value of function −f(x).

487

24.4. MINIMIZATION OR MAXIMIZATION OF FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

#include <stdio.h>
#include <numeric.h>
#define NPT 100 /* Number of data points */
#define NTERM 5 /* Number of terms */

int main() {
int i,j,status;
array double u[NPT],x[NPT],y[NPT],a[NTERM];

/* Create a data set of NTERM order polynomial with uniform random deviation*/
linspace(x,0.1,0.1*NPT);
y = 8*x.*x.*x.*x + 5*x.*x.*x + 3*x.*x + 6*x + (array double[NPT])(7);
urand(u);
y += 0.1*u;

status=polyfit(a,x,y);
if(status) printf("Abnormal fit");
printf(" %s\n","Coefficients");
for (i=0;i<NTERM;i++)

printf(" a[%1d] = %8.6f \n",i,a[i]);
printf(" y = %f at x = %f\n", polyeval(a, 2.0), 2.0);

}

Program 24.5: A program using polyfit().

24.4.1 Minimization of Function with One Variable

Function fminimum() with the prototype of

int fminimum(double *fminval, double *xmin, double (*func)(double),
double x0, double xf, ... /* [double rel_tol], [double abs_tol]*/);

finds the minimum value of a function with one variable and its corresponding position for the minimum
value.

The function determines a point between x0 and xf where the real function func assumes a minimum
value. The function func given by the user has an argument for x value input. The argument fminval passes
the calculated minimum value of the function. The argument xmin contains the position where the minimum
value of the function is found. The tolerance is defined as a function of x: |x|rel tol+abs tol, where rel tol
is the relative precision and abs tol is the absolute precision (which should not be zero). The default value
for rel tol and abs tol is 10−6. Function fminimum() returns 0 on success and -1 on failure.

In the interval where the function has a minimum value, it is assumed that for some point u either (a)
func is strictly monotonically decreasing on [a,u) and strictly monotonically increasing on [u,b] or (b) these
two intervals may be replaced by [a,u] and (u,b], respectively.

For example, the commands below can find the minimum of the function

f(x) = − 1

(x− 0.3)2 + 0.01
− 1

(x− 0.9)2 + 0.04
+ 6 shown in Figure 24.5 at intervals [-1,0], [0,0.8],

[0.4,1] and [0,1] with the default value for tolerance. For interval [0,1] this function can only find the local
minimum at x = 0.892716.

> double xmin, fminval
> double func(double x) { return -1/((x-0.3)*(x-0.3)+0.01) -\
1/((x-0.9)*(x-0.9)+0.04) + 6;}

> fminimum(&fminval, &xmin, func, -1, 0)

488

24.4. MINIMIZATION OR MAXIMIZATION OF FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

-100

-80

-60

-40

-20

0

20

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

f(
x)

x

Figure 24.5: Function f(x) = − 1

(x− 0.3)2 + 0.01
− 1

(x− 0.9)2 + 0.04
+ 6.

> xmin
0.0000
> fminval
-5.1765
> fminimum(&fminval, &xmin, func, 0, 0.8)
> xmin
0.3003
> fminval
-96.5014
> fminimum(&fminval, &xmin, func, 0.4, 1)
> xmin
0.4000
> fminval
-47.448l
> fminimum(&fminval, &xmin, func, 0, 1)
> xmin
0.8927
> fminval
-21.7346

24.4.2 Minimization of Function with Multiple Variables

Function fminimums() with the prototype of

int fminimums(double *fminval, double xmin[&],
double (*func)(double[]), double x0[&], ...
/* [double rel_tol], [double abs_tol], [int numfuneval] */);

finds the minimum value of a function with multiple variables and its corresponding position for the min-
imum value. Given an n-dimensional function and an array which contains an initial estimate by the user
as input, this function calculates the array of the position at which the function has a minimum value. The
number of dimensions is taken from input array x internally. The function func should deliver the value
of the function to be minimized, at the points given by x. The tolerance is defined as a function of x as
|x|rel tol + abs tol, where rel tol is the relative precision and abs tol is the absolute precision (which

489

24.5. POLYNOMIALS
CHAPTER 24. NUMERICAL ANALYSIS

0.9
0.95

1
1.05

1.1
x0 0.9

0.95

1

1.05

1.1

x1

0
1
2
3
4
5
6
7
8
9

10

f(x0, x1)

Figure 24.6: Function f(x0, x1) = 100(x1 − x20)
2 + (1.0 − x0)

2.

should not be zero). The argument numfunceval is the maximum number of function evaluations allowed.
The default values for rel tol, abs tol and numfuneval are 10−6, 10−6, and 250, respectively. Function fmin-
imums() returns 0 on success and a negative value on failure.

For example, function f(x0, x1) = 100(x1 − x20)
2 + (1.0 − x0)

2 shown in Figure 24.6 has a minimum
value of 0 at x = (1, 1). This minimum value and its position can be found by the following commands
using function fminimums() with the initial guess of x0 = (−1.2, 1.0).

> double fminval;
> array double xmin[2], x0[2]= {-1.2, 1.0};
> double func(double x[]) { return 100*(x[1]-x[0]*x[0])* \
(x[1]-x[0]*x[0]) + (1.0-x[0])*(1.0-x[0]);}

> fminimums(&fminval, xmin, func, x0);
> xmin
1.0000 1.0000
> fminval
0.0000

24.5 Polynomials

Functions related to polynomials are described in this section. In Ch, a polynomial is represented by an
array for its coefficients in the order of descending powers. For example, a polynomial of

p0x
n + p1x

n−1 + ...+ pn−1x+ pn

can be represented by an array with (n+1) elements of [p0, p1, ..., pn−1, pn] Fitting a curve using a polyno-
mial by function polyfit() has been presented in section 24.3.4. Evaluation of matrix polynomials of matrix
using polyevalm() is described in section 24.10.4. Section 24.15 will discuss how to use functions conv()
and deconv() for multiplication and division of two polynomials, respectively.

490

24.5. POLYNOMIALS
CHAPTER 24. NUMERICAL ANALYSIS

24.5.1 Evaluation of Polynomials

Function polyeval() with the prototype of

double polyeval(array double p[&], double x, ...
/* array double dp[&] */);

evaluates a polynomial and its derivatives at x . The polynomial is represented by array p using its coef-
ficients. Function polyeval() returns the value of the polynomial at x. If the optional array argument dp
of double type and dimension m is passed, it will contain the values of 1st to mth order derivatives of the
polynomial.

For example, the value of polynomial P (x) = x5 − 5x4 + 10x3 − 10x2 + 5x− 1 at point x = 0.1 and
its first, second and third order derivatives can be obtained by the following commands.

> array double p[6] = {1.0, -5.0, 10.0, -10.0, 5.0, -1.0}
> array double dp[3];
> polyeval(p, 0.1, dp);
-0.5905
> dp
3.2805 -14.5800 48.6000

If the coefficients or variable of a polynomial are complex numbers, function cpolyeval() with the pro-
totype of

double complex cpolyeval(array double complex p[&], double complex x);

shall be used for evaluation of the polynomial.
Function polyevalarray() with the prototype of

int polyevalarray(array double complex &y, array double complex p[&],
array double complex &x);

evaluates a polynomial at a sequence of points. The vector p with the coefficients of a polynomial can be
of any supported arithmetic data type and size. The value of x can be any arithmetic type. Conversion of
the data to double complex is performed internally. Array val, the same dimension and size as x, contains
the values of the polynomial at points represented by array x. If both c and x are real type, val is real type.
Otherwise, it shall be complex type. Function polyevalarray() returns 0 on success and -1 on failure.

For example, the polynomial P (x) = x5−5x4+10x3−10x2+5x−1 at points x = {0, 0.5, 1.0, 1.5, 2.0}
can be obtained by the following commands.

> array double p[6] = {1.0, -5.0, 10.0, -10.0, 5.0, -1.0}
> array double val[5], x[5]= {0, 0.5, 1, 1.5, 2}
> polyevalarray(val, p, x)
> val
-1.0000 -0.0313 0.0000 0.0313 1.0000

If the variable x in a polynomial is a square matrix, the evaluation of such a matrix polynomial can be
performed by function polyevalm(), which will be described in section 24.10.4.

491

24.5. POLYNOMIALS
CHAPTER 24. NUMERICAL ANALYSIS

24.5.2 Derivative of Polynomials

For a polynomial P (t) with coefficients of xi for i = 0, 1, · · · , N as

P (t) = x0t
n + x1t

n−1 + x2t
n−2 + · · ·+ xn−1t+ xn,

the derivative of this polynomial is

P ′(t) = n ∗ x0tn−1 + (n− 1) ∗ x1tn−2 + (n− 2) ∗ x2tn−3 + · · ·+ xn−1

= y0t
n−1 + y1t

n−1 + y2t
n−3 + · · ·+ yn−1

Function polyder() with the prototype of

int polyder(array double complex y[&], array double complex x[&]);

obtains the coefficients of the derivative P ′(x) of polynomial P (x). The vector of the coefficients for
polynomial x can be of any supported arithmetic type and size. Conversion of the data to double complex
type is performed internally. If vector x is real type with size n, the vector y for derivative is real type with
size (n − 1). If vector x is complex type, the vector y for derivative is complex type.

For example, the derivative of polynomial P (x) = x5 − 5x4 + 10x3 − 10x2 + 5x − 1 is P ′(x) =
5x4 − 20x3 + 30x2 − 20x+ 5. The coefficients of P ′(x) can be obtained by the following commands.

> array double x[6] = {1.0, -5.0, 10.0, -10.0, 5.0, -1.0}
> array double y[5]
> polyder(y, x)
> y
5.0000 -20.0000 30.0000 -20.0000 5.0000

Given two polynomials U(x) and V (x)

U(x) = u0x
n + u1x

n−1 + u2x
n−2 + · · ·+ un−1x+ un

V (x) = v0x
m + v1x

m−1 + v2x
m−2 + · · ·+ vm−1x+ vm

The derivative of the product of two polynomials U(x) ∗ V (x) becomes

Q(x) = (U(x)V (x))′ = U ′(x)V (x) + V ′(x)U(x)

The derivative of the quotient of two polynomials U(x)/V (x) becomes

(
U(x)

V (x)

)′
=

Q(x)

R(x)
=

U ′(x)V (x)− V ′(x)U(x)

V 2(x)

where Q(x) and R(x) are the numerator and denominator of the derivative, respectively. The polynomials
for Q(x), applicable to the derivative of either the product or quotient of two polynomials, and R(x) can be
represented as

Q(x) = q0x
n+m−1 + q1x

n+m−2 + · · · + qn+m−2x+ qn+m−1

R(x) = r0x
2m−1 + r1x

2m−2 + · · · + r2m−2x+ r2m−1

Function polyder2() with the prototype of

492

24.5. POLYNOMIALS
CHAPTER 24. NUMERICAL ANALYSIS

int polyder2(array double complex q[&], array double complex r[&],
array double complex u[&], array double complex v[&]);

can be used to calculate the coefficients of Q(x) and R(x) from the derivative of product or quotient of two
polynomials U(x) and V (x). The algorithm inside function polyder2() for derivative of product or quotient
of two polynomials u and v depends on argument r. If NULL is passed to argument r, function polyder2()
calculates the derivative of the product (u ∗ v)′ of two polynomials u and v. Otherwise, it calculates the
derivative of the quotient (u/v)′. The coefficient vector of polynomials u and v can be of any supported
arithmetic data type with sizes n and m, respectively. Conversion of the data to double complex type is
performed internally. If both vectors u and v are real type, vector q with size n + m − 2 and r with size
2 ∗m− 1 are real type. If either vector u or v is complex type, vectors q and r are complex type.

For example, given two polynomials

U(x) = x+ 2

V (x) = x2 + 2x

The coefficients of the derivatives of product and quotient of these two polynomial are

(U(x)V (x))′ = 3x2 + 8x+ 4(
U(x)

V (x)

)′
=

−x2 − 4x− 4

x4 + 4x3 + 4x2

These coefficients of polynomials can be obtained by the following commands.

> int n=2, m = 3
> array double u[2] = {1.0, 2}, v[3] = {1, 2, 0}
> array double q[2+3-2], r[2*3-1]
> polyder2(q, NULL, u, v)
> q
3.0000 8.0000 4.0000
> polyder2(q, r, u, v)
> q
-1.0000 -4.0000 -4.0000
> r
1.0000 4.0000 4.0000 0.0000 -0.0000

24.5.3 Find Roots of Polynomials

Function roots() with the prototype of

int roots(array double complex x[&], array double complex p[&]);

finds the roots of a polynomial p0xn + p1x
n−1 + ... + pn−1x + pn. The function can handle polynomials

with coefficients of real type or complex type. The arguments p and x contain the coefficients and roots of a
polynomial, respectively. The function returns 0 on success and -1 on failure.

For example, the roots of polynomial p = x2−2x+1 can be determined by the following command-line
executions.

> array double x[2]
> array double p[3] = {1, -2, 1} /* p = xˆ2-2x+1 */
> roots(x, p)

493

24.5. POLYNOMIALS
CHAPTER 24. NUMERICAL ANALYSIS

> x
1.0000 1.0000
>

The roots() function can also calculate the complex roots of a polynomial. For example, the polynomial
x4 − 12x3 + 25x+ 116 has two roots of complex numbers and two roots of real numbers. The coefficients
of the polynomial (3 + i4)x4 + (4+ i2)x3 + (5 + i3)x2 + (2+ i4)x+ (1+ i5) are complex numbers. The
roots of these polynomials can be obtained by the following commands.

> array double x1[4], p1[5] = {1, -12, 0, 25, 116}
> array double complex z1[4]
> roots(x1, p1)
> x1
11.7473 2.7028 NaN NaN
> roots(z1, p1)
> z1
complex(11.7473,0.0000) complex(2.7028,0.0000) \
complex(-1.2251,1.4672) complex(-1.2251,-1.4672)
> array double complex z2[4], p2[5] = {complex(3,4), complex(4,2),\
complex(5,3), complex(2,4), complex(1,5)}

> roots(z2, p2)
> z2
complex(0.2263,1.2815) complex(0.4311,-0.7280) \
complex(-0.7541,-0.7078) complex(-0.7034,0.5543)

24.5.4 Find Coefficients of Polynomials

When roots to a polynomial equation are known, the polynomial can be expressed as the products of expres-
sions (x− xi) as follows.

P (x) = (x− x0) ∗ (x− x1) ∗ ... ∗ (x− xn−1)

= p0x
n + ...+ pn−1x+ pn.

When the roots xi’s of a polynomial are given, the coefficients pi of the polynomial P (x) can be obtained
as by function polycoef(). Function polycoef() is prototyped as

int polycoef(array double complex p[&], array double complex x[&]);

Array arguments x are the given roots of a polynomial. Array argument p contains the calculated coefficients
of the polynomial. Function roots() that finds the roots of a polynomial is complementary to function
polycoef().

For example, the coefficients of polynomial

P (x) = (x− 1)(x− 2)(x− 3)(x − 4)

= x4 − 10x3 + 35x2 − 50x+ 24

can be obtained by the following commands.

> array double x[4]= {1, 2, 3, 4}
> array double p[5]

494

24.5. POLYNOMIALS
CHAPTER 24. NUMERICAL ANALYSIS

> polycoef(p, x)
> p
1.0000 -10.0000 35.0000 -50.0000 24.0000
> roots(x, p)
> x
3.0000 4.0000 2.0000 1.0000

24.5.5 Residues for Factorization of Polynomials

Given the ratio of two polynomials

U(s)

V (s)
=

u0s
m + u1s

m−1 + · · ·+ um−1s+ um
sn + v1sn−1 + · · ·+ vn−1s+ vn

If there are no multiple roots, the expansion becomes

U(s)

V (s)
=

r0
s− p0

+
r1

s− p1
+ · · ·+ rn−1

s− pn−1
+K(s)

If pi is a pole of multiplicity l, then the expansion becomes

U(s)

V (s)
=

r0
s− p0

+
r1

s− p1
+ · · ·+ ri

(s− pi)l
+ · · ·+ ri+1

(s− pi)2
+

ri+l

s− pi
+ · · ·+ rn−1

s− pn−1
+K(s)

where K(x) is the direct term. If m > n, K(s) is

K(s) = k0s
m−n + k1s

m−n−1 + · · ·+ km−ns+ km−n+1

Otherwise, K(s) is empty.
Function residue() finds the residues, poles and direct term for a partial fraction expansion of the ratio

of two polynomials V (s) and U(s). Function residue() is prototyped as

int residue(array double u[&], array double v[&],
array double complex r[&], array double complex p[&],
array double k[&]);

Vectors u of size m and v of size n specify the coefficients of the polynomials in descending powers of s.
They can be any real type. Conversion of the data to double type is performed internally. The residues r of
vector size (n− 1) and poles p of vector size (n− 1) are any compatible data type according to the residue
computation. If the argument of real type is passed and the result is complex type, the value of NaN will be
passed out. The direct term k with size of (m−n+1) is always real type. If m ≤ n, then k contains NULL.

For example, the following partial-fraction expansion with single roots of real numbers and without
direct term

10s + 6

2s3 + 12s2 + 22s + 12
=
−1
s+ 1

+
7

s+ 2
+
−6
s+ 3

can be obtained by the commands below.

> int M =2, N =4
> array double u[2] = {10, 6}
> array double v[4] = {2, 12, 22, 12}
> array double r[N-1], p[N-1]

495

24.5. POLYNOMIALS
CHAPTER 24. NUMERICAL ANALYSIS

> residue(u, v, r, p, NULL)
> r
-1.0000 7.0000 -6.0000
> p
-1.0000 -2.0000 -3.0000

For the partial-fraction expansion with single roots of complex numbers and without direct term,

x+ 3

x2 + 2x+ 5
=

0.5 + i0.5

s+ (1 + i2)
+

0.5− i0.5

s+ (1− i2)

the following commands can be used.

> int M =2, N =3
> array double u[2] = {1, 3}
> array double v[3] = {1, 2, 5}
> array double r[N-1], p[N-1]
> array double complex zr[N-1], zp[N-1]
> residue(u, v, r, p, NULL)
> r
NaN NaN
> p
NaN NaN NaN
> residue(u, v, zr, zp, NULL)
> zr
complex(0.5000,0.5000) complex(0.5000,-0.5000)
> zp
complex(-1.0000,-2.0000) complex(-1.0000,2.0000)

A partial-fraction expansion with single roots and has a direct term.

2s3 + 12s2 + 22s + 12

10s + 6
=

0.2688

s+ 0.6
+ 0.2s2 + 1.08s + 1.552

> int M =4, N =2
> array double u[4] = {2, 12, 22, 12}
> array double v[2] = {10, 6}
> array double r[N-1], p[N-1], k[M-N+1]
> residue(u, v, r, p, k)
> r
0.2688
> p
-0.6000
> k
0.2000 1.0800 1.5520

A partial-fraction expansion with multiplicity roots and without direct term.

s2 + 2s + 3

s5 + 5s4 + 9s3 + 7s2 + 2s
=

3

2(s + 2)
− 3

(s+ 1)3
− 2

s+ 1
+

3

2s

Note that the numerator for term (s+ 1)2 is zero.

496

24.5. POLYNOMIALS
CHAPTER 24. NUMERICAL ANALYSIS

> int M =3, N =6
> array double u[3] = {1, 2, 3}
> array double v[6] = {1, 5, 9, 7, 2}
> array double r[N-1], p[N-1]
> residue(u, v, r, p, NULL)
> r
1.5000 -3.0000 0.0000 -2.0000 1.5000
> p
-2.0000 -1.0000 -1.0000 -1.0000 0.0000

24.5.6 Characteristic Polynomials of Matrices

The characteristic polynomial
p0x

n + ...+ pn−1x+ pn

of matrix A is defined as the determinant of matrix (xI−A). The roots of the characteristic polynomial of
matrix A are the eigenvalues of the matrix. Function charpolycoef() with the prototype of

int charpolycoef(array double complex p[&],
array double complex a[&][&]);

calculates the coefficients of the characteristic polynomial of a matrix passed as array a. Array argument p
contains the calculated coefficients of the characteristic polynomial of the matrix. This function returns 0
on success and -1 on failure.

For example, the coefficients of the characteristic polynomial

x3 − 2.1x2 + 1.4x − 0.3

and eigenvalues (1, 0.5, 0.6) for matrix A below

A =

⎡
⎢⎣ 0.8 0.2 0.1

0.1 0.7 0.3
0.1 0.1 0.6

⎤
⎥⎦ ,

can be obtained by the following commands.

> array double a[3][3] = {0.8,0.2,0.1, 0.1,0.7,0.3, 0.1,0.1,0.6}
> array double p[4], x[3]
> charpolycoef(p, a)
> p
1.0000 -2.1000 1.4000 -0.3000
> roots(x, p)
> x
1.0000 0.5000 0.6000
> polycoef(p, x)
> p
1.0000 -2.1000 1.4000 -0.3000

497

24.6. NONLINEAR EQUATIONS
CHAPTER 24. NUMERICAL ANALYSIS

24.6 Nonlinear Equations

24.6.1 Solve a Nonlinear Equation

Function fzero() with the prototype of

int fzero(double *x, double (*func)(double), ...
/* [double x0] | [double x02[2]*/);

finds a zero position of a nonlinear function with one variable. The argument func is a pointer to the function
given by the user. The position where the function is zero is passed by argument x. Argument x0 contains
the initial guess for the zero position. Argument x02 is a vector of length 2 and double type. The function
shall be bracketed in the interval of [x02[0], x02[1]] so that the sign of func(x02[0]) differs from the sign of
func(x02[1]). Otherwise, an error occurs. Function fzero() returns 0 on success and -1 on failure.

For example, the zero position 1.414213 of function

f(x) = x2 − 2

can be obtained with an initial guess x0 = 2.0 by the following commands.

> double x, func(double x) { return x*x-2.0;}
> fzero(&x, func, 2.0);
> x
1.4142
> double x02[2]={-2, 0}
> fzero(&x, func, x02);
> x
-1.4142

24.6.2 Solve System of Nonlinear Equations

A system of nonlinear equations can be found by function fsolve(). Function fsolve() has the prototype of

int fsolve(double x[:], void (*func)(double[], double []),
double x0[:]);

Array arguments x and x0 contain the calculated zero position and its initial guess, respectively. The user
function has two arguments, first one for input and the second one for the values of the functions. The input
argument is an n-dimensional array, and the function values calculated will be delivered by the second array
argument of the same dimension. The number of dimensions is taken from the function given by the user
internally. Function fsolve() returns 0 on success and -1 on failure.

For example, the following nonlinear system of two equations

f0 = −(x20 + x21 − 2.0) = 0

f1 = ex0−1.0 + x31 − 2.0 = 0

has a zero point at (1, 1). It can be solved by function fsolve() with the initial guesses of zero point at
x0 = 2.0, and x1 = 0.5 using the following commands.

> void func(double x[], double f[]){f[0]=-(x[0]*x[0]+x[1]*x[1]-2.0);\
f[1]=exp(x[0]-1.0)+x[1]*x[1]*x[1]-2.0;}

> array double x[2], x0[2] = {2.0, 0.5};
> fsolve(x, func, x0);
> x
1.0000 1.0000

498

24.7. DERIVATIVES AND ORDINARY DIFFERENTIAL EQUATIONS
CHAPTER 24. NUMERICAL ANALYSIS

24.7 Derivatives and Ordinary Differential Equations

24.7.1 Difference

Function difference() with the prototype of

array double difference(array double a[&])[:];

calculates differences between the adjacent elements of an array. The one-dimensional input array is of real
type.

For example,

> array double a[6] = {1, 2, 10, 4, 5, 6}
> difference(a)
1.0000 8.0000 -6.0000 1.0000 1.0000

24.7.2 Derivatives

Function derivative() with the prototype of

double derivative(double (*func)(double), double x, ...
/* [double &err], [double h]*/);

calculates numerically the derivative of a function pointed to by func at a given point x. The returned value
is the derivative of the function at point x. The optional argument err contains the estimate of the error in
the calculation of the derivative. It helps the user to estimate the result. If the optional argument h is given,
calculation of the derivative uses the initial step size h. The value for h does not have to be small, but it
should be an increment in x over which func changes substantially. If the argument for h is not passed, the
value of 0.02 ∗ x or 0.0001 (if x < 0.0001) as the initial step size is used by default.

For example, the derivative of function x sin(x) at point x = 2.5 can be calculated by

> double func(double x) {return x*sin(x);}
> derivative(func, 2.5);
-1.404387

Function derivatives() with the prototype of

array double derivatives(double (*func)(double), double x[&], ...
/* [double &err], [double h]*/)[:];

calculates derivatives of a function numerically at multiple points. This function returns an array of deriva-
tive values of function func at points specified in array a. The values of x can be of any real type. The other
arguments are the same as in function derivative().

For example, the derivatives of function sin(x) at 36 points evenly spaced in the range of −π ≤ x ≤ π
can be calculated by the following commands.

> array double x[36], y[36];
> double func(double x) {return sin(x);}
> lindata(-3.14, 3.14, x);
> y = derivatives(func, x);
> plotxy(x, y);

Note that, unlike in C, the generic functions such as sin() cannot be passed to a pointer to function in Ch.
Therefore, the generic function sin() in the above code is wrapped in function func(). The output from
the above code is displayed in Figure 24.7.

499

24.8. SOLVE ORDINARY DIFFERENTIAL EQUATIONS
CHAPTER 24. NUMERICAL ANALYSIS

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4

Figure 24.7: The derivatives for sin(x) in the range of −π <= x <= π.

24.8 Solve Ordinary Differential Equations

Function oderk() with the prototype of

int oderk(void (*func)(double x, double y[], double dydx[], void *param),
double t0, double tf, double y0[:], void *param,
double t[:], double *y, ... /* double tol */);

numerically solves an ordinary differential equation (ODE)

dy

dt
= func(t, y, p)

or a system of ordinary differential equations.

dy

dt
= func(t,y, p)

using a Runge-Kutta method. The function can be called using one of the following forms. The argument
param is used to pass information from the calling function to the ODE function. The argument func is
specified as a pointer to function for a first-order differential equation. The initial and final values for t are
specified as arguments t0 and tf. The argument y0 of array type contains the initial values of differential
equations. Its dimension equals the number of dependent variables. If successful, this function returns the
number of points calculated in the interval between t0 and tf. Otherwise, it returns -1. Vector t contains the
values between t0 and tf in which the ODE function is solved and the results are stored in the memory pointed
to by the variable y. The user shall pass the address of a one-dimensional array for an ordinary differential
equation or the address of a two-dimensional array for a system of ordinary differential equations to the
argument y of the function oderk(). If the optional argument eps is passed, the algorithm uses the user
specified tolerance to decide the iteration stop. Otherwise, the value of 10−8 is used by default. In general,
the user should guess how many points it would produce and define the size of array t and y accordingly.
Function oderk() will automatically pad the leftover space in t and y with results at tf.

For example, the ordinary differential equation

dy

dt
= sin(t)

with the initial condition t0 = −π and y0 = 0 can be solved with more than 50 points in the interval
t0 = −π to tf = π by the following commands.

500

24.8. SOLVE ORDINARY DIFFERENTIAL EQUATIONS
CHAPTER 24. NUMERICAL ANALYSIS

> double t[50], y[50], y00[1]={0}
> void func(double t, double y[], double dydt[], void *param) {dydt[0]=sin(t);}
> oderk(func, -3.14, 3.14, y00, NULL, t, y)
34
> plotxy(t, y)

As displayed in the above code, although 50 elements have been allocated for arrays t and y, only the
first 34 elements have the values from the ODE solution. The remaining elements are filled with the values
at the end point tf. The output from the above code is the same as the one displayed in Figure 24.7.

Function oderk() can be used to solve the Van der Pol equation

d2u

dt2
− μ(1− u2)

du

dt
+ u = 0

in the range of 1 ≤ t ≤ 30 with μ = 2, and initial condition t0 = 1, u(t0) = 1 and u′(t0) = 0. The Van der
Pol equation can be reformulated as a set of first-order differential equations with two dependent variables
first. Let

y0 = u

y1 =
du

dt

then

dy0
dt

=
du

dt
= y1

dy1
dt

=
d2u

dt2
= μ(1− u2)

du

dt
− u = μ(1− y20)y1 − y0

with the initial condition t0 = 1, y0(t0) = 1 and y1(t0) = 0. Program 24.6 solves the Van der Pol equation
with the above initial condition in the range of 1 ≤ t ≤ 30. The parameter μ is passed from the main()
function to the ODE function through the argument param. The output from Program 24.6 is displayed in
Figure 24.8.

As another example, a dynamical system with two degrees of freedom might be modeled in a system of
differential equations as follows.

(1.5 + q2)q̈1 − q̇1q̇2 − q1 = 0

(1 + q1)q̈2 − q̇1 − q2 = 0

The above equations can be reformulated in the following standard form readily for numerical implementa-
tion using function oderungekutta() with y0 = q1, y1 = q̇1, y2 = q2, y3 = q̇2

dy0
dt

= y1

dy1
dt

=
y0 + y1y3
1.5 + y2

dy2
dt

= y3

dy3
dt

=
y1 + y2
1 + y0

501

24.8. SOLVE ORDINARY DIFFERENTIAL EQUATIONS
CHAPTER 24. NUMERICAL ANALYSIS

#include <chplot.h>
#include <numeric.h>

#define NVAR 2
#define POINTS 256
void func(double t, double y[], double dydt[], void *param) {

double mu;
mu = *(double*)param;
dydt[0] = y[1];
dydt[1]=mu*(1-y[0]*y[0])*y[1] - y[0];

}

int main() {
double t0=1, tf=30, y0[NVAR] = {1, 0};
double t[POINTS], y[NVAR][POINTS];
double mu = 2;

oderk(func, t0, tf, y0, &mu, t, y);
plotxy(t, y, "The solution for the van der Pol equation", "t (seconds)", "y1 and y2");

}

Program 24.6: A program solves the Van der Pol equation.

-4

-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25 30

y1
 a

nd
 y

2

t (seconds)

The solution for the van der Pol equation

y1
y2

Figure 24.8: The result from oderk().

502

24.9. NUMERICAL INTEGRATION
CHAPTER 24. NUMERICAL ANALYSIS

24.9 Numerical Integration

24.9.1 One-Dimensional Integration

Function integral1() with the prototype of

double integral1(double (*func)(double x),
double x1, double x2, ... /* [double tol] */);

performs numerical integration for integral ∫ x2

x1

f(x)dx

The argument func, a pointer to function, is the function to be integrated. Arguments x1 and x2 are the
end-points of the interval. The function returns the value of the integral. If the optional argument tol is
passed, it is used to decide the iteration stop. Otherwise, the default value of 10 ∗ FLT EPSILON is used.

For example, the integral

∫ π
2

0
x2(x2 − 2) sin(x)dx

can be calculated by the following commands.

> double func(double x) { return x*x*(x*x-2.0)*sin(x);}
> integral1(func, 0, 3.1416/2);
-0.4792

24.9.2 Two-Dimensional Integration

For two-dimensional integration

I =

∫ x2

x1

dx

∫ y2

y1
dyf(x, y),

function integral2() with the prototype of

double integral2(double (*func)(double x, double y),
double x1, double x2, double y1, double y2);

can be used. The argument func, a pointer to function, is the function to be integrated. Arguments x1 and
x2 are the end-points in x, and arguments y1 and y2 are the end-points in y, respectively. For example, the
integral

I =

∫ π

0

∫ π

−π
(sin(x) cos(y) + 1)dxdy

can be calculated by the following commands.

> double func(double x,double y) { return sin(x)*cos(y)+1;}
> integral2(func,0, 3.14, -3.14, 3.14)
19.7392

If the lower limit y1(x) and upper limit y2(x) are functions of variable x, function integration2() with
the prototype of

503

24.9. NUMERICAL INTEGRATION
CHAPTER 24. NUMERICAL ANALYSIS

#include <stdio.h>
#include <math.h>
#include <numeric.h>

double func(double x,double y) {
return x*x+y*y;

}
double y1(double x) {

return -sqrt(4-x*x);
}
double y2(double x) {

return sqrt(4-x*x);
}

int main() {
double x1=-2, x2=2;
double s;
s=integration2(func,x1,x2,y1,y2);
printf("integration2() = %.3f\n", s);

}

Program 24.7: A program using integration2().

double integration2(double (*func)(double x, double y), double x1,
double x2, double (*y1)(double x), double (*y2)(double x));

can be used. Unlike in function integral2(), arguments y1 and y2 in function integration2() are pointer to
functions. For example, integration of r2 over a circular area with a radius of r = 2

I =

∫ r

−r

∫ √
r2−x2

−√
r2−x2

(x2 + y2)dxdy

can be performed by Program 24.7. The output of integration2() = 25.156 will be printed out
from execution of Program 24.7.

24.9.3 Three-Dimensional Integration

Similarly, a three-dimensional integration

I =

∫ x2

x1

dx

∫ y2

y1
dy

∫ z2

z1
dzf(x, y, z),

can be performed using function integral3() with the prototype of

double integral3(double (*func)(double x, double y, double y),
double x1, double x2, double y1, double y2, double z1, double z2);

The argument func, a pointer to function, is the function to be integrated. Arguments x1 and x2, y1 and y2,
z1 and z2 are the end-points in x, y, z, respectively. For example, the integral

I =

∫ π

0

∫ π

−π

∫ π

0
(sin(x) cos(y) sin(z) + 1)dxdydz

can be calculated by the following commands.

504

24.10. MATRIX FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

#include <stdio.h>
#include <math.h>
#include <numeric.h>

double func(double x,double y,double z) {
return x*x+y*y+z*z;

}
double y1(double x) {

return -sqrt(4-x*x);
}
double y2(double x) {

return sqrt(4-x*x);
}
double z1(double x,double y) {

return -sqrt(4-x*x-y*y);
}
double z2(double x,double y) {

return sqrt(4-x*x-y*y);
}

int main() {
double x1=-2, x2 =2, s;
s=integration3(func,x1,x2, y1,y2, z1,z2);
printf("integration3() = %.3f\n", s);

}

Program 24.8: A program using integration3().

> double func(double x,double y, double z) \
{ return sin(x)*cos(y)*sin(z)+1;}

> integral3(func,0, 3.14, -3.14, 3.14, 0, 3.14)
62.0126

If the lower limit y1(x) and upper limit y2(x) are functions of variable x, or the lower limit z1(x, y) and
upper limit z2(x, y) are functions of variables x and y, function integration3() with the prototype of

double integration3(double (*func)(double x, double y), double x1,
double x2, double (*y1)(double x), double (*y2)(double x));
double (*z1)(double x, double y), double (*z2)(double x, double z));

can be used. Unlike in function integral3(), arguments y1, y2, z1, and z2 in function integration3() are
of type of pointer to function. For example, integration of r2 over a spherical volume with a radius of r = 2

I =

∫ r

−r

∫ √
r2−x2

−√
r2−x2

∫ √r2−x2−y2

−
√

r2−x2−y2
(x2 + y2 + z2)dxdydz

can be performed by Program 24.8. The output of integration3() = 80.487 will be printed out by
executing of Program 24.8.

24.10 Matrix Functions

Elementary functions applicable to only n-by-n square matrices are described in this section.

505

24.10. MATRIX FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

24.10.1 Characteristics of Matrices

Calculation of the coefficients for the characteristic polynomial of a matrix using function charpolycoef()
has been presented in section 24.5.6. Functions for obtaining other features of matrices are presented in
this section. Some functions in section 24.2 for various properties of multi-dimensional arrays are also
applicable to n-by-n square matrices.

Determinant

Function determinant() with the prototype of

double determinant(array double complex a[&][&]);

returns the determinant of matrix a. If matrix a is not a square matrix, the determinant is NaN. For a matrix
of complex numbers, function cdeterminant() with the prototype of

double complex cdeterminant(array double complex a[&][&]);

shall be used to calculate its determinant.
For example,

> array double a[2][2] = {2, 4, 3, 7}
> determinant(a)
2.0000
> cdeterminant(a)
complex(2.0000,-0.0000)

Condition Number

The condition number of a matrix measures the sensitivity of the solution of a system of linear equations to
errors in the data. It gives an indication of the accuracy of the results from matrix inversion and numerical
solution of the linear system of equations solution. A condition number near 1 indicates a well-conditioned
matrix. If a matrix is ill-conditioned, the condition number approaches infinity. Function condnum() with
the prototype of

double condnum(array double complex a[&][&]);

returns the condition number of matrix a.
Function rcondnum() with the prototype of

double rcondnum(array double complex a[&][&]);

calculates an estimate for the reciprocal of the condition of matrix a in 1-norm. Compared to condnum(),
function rcondnum() is a more efficient, but less reliable, method of estimating the condition of a matrix.

For example,

> array double a[2][2] = {2, 4, 3, 7}
> array double b[2][2] = {2, 4, 2.001, 4.001}
> condnum(a)
38.9743
> condnum(b)
20006.0010
> rcondnum(a)

506

24.10. MATRIX FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

0.0182
> 1/condnum(a)
0.0257
> rcondnum(b)
0.0000
> 1/condnum(b)
0.0001

Trace

The trace is defined as the sum of diagonal elements of a matrix. Function trace() with the prototype of

double trace(array double a[&][&]);

returns the trace of matrix a. For matrices of complex numbers, their trace shall be calculated by function
ctrace() with the prototype of

double complex ctrace(array double complex a[&][&]);

For example,

> array double a[2][2] = {2, 4, 3, 7}
> trace(a)
9.0000
> ctrace(a)
complex(9.0000,0.0000)
> array double b[2][3] = {1, 1, 1, 1, 1, 1}
> trace(b)
2.0000

Diagonal

Function diagonal() with the prototype of

double diagonal(array double a[&][&], ... /* [int k] */)[:];

produces a column vector formed from the elements of the kth diagonal of matrix a. If the optional argument
k is missing, the function returns the diagonal of the matrix. For matrices of complex numbers, their diagonal
shall be calculated by function ctrace() with the prototype of

double complex cdiagonal(array double complex a[&][&],
... /* [int k] */)[:];

For example,

> array double a[4][3] = {1, 2, 3, \
4, 5, 6, \
7, 8, 9, \
4, 4, 4}

> diagonal(a)
1.0000 5.0000 9.0000
> diagonal(a, -1)
4.0000 8.0000 4.0000
> cdiagonal(a, 1)
complex(2.0000,0.0000) complex(6.0000,0.0000)

507

24.10. MATRIX FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

Rank

Rank is defined as the number of linearly independent rows or columns of a matrix. Function rank() with
the prototype of

int rank(array double complex a[&][&]);

returns the rank of matrix a. The algorithm used inside the function is based on the singular value de-
composition. It is the number of non-zero singular values with tolerance tol = max(m,n) × max(S) ×
DBL_EPSILON.

For example,

> array double a[2][2] = {2, 4, 3, 7}
> array double b[2][3] = {1, 2, 3, 2, 4, 6}
> rank(a)
2
> rank(b)
1

24.10.2 Manipulation of Matrices

In addition to generic function transpose() for transpose of a matrix. Functions fliplr(), flipud(), rot90(),
can be used to manipulate matrices.

Flip Matrices in Left/Right Direction

Function fliplr() with the prototype of

int fliplr(array double complex y[&][&], array double complex x[&][&]);

flips matrix x in left/right direction with rows being preserved and columns flipped. Matrix y, with the same
data type and size as x, contains the flipped result of input matrix x.

For example,

> array double y[2][4], x[2][4]={1, 2, 3, 4, \
5, 6, 7, 8}

> fliplr(y, x)
> y
4.0000 3.0000 2.0000 1.0000
8.0000 7.0000 6.0000 5.0000

Flip Matrices in Up/Down Direction

Similar to function fliplr(), function flipud() with the prototype of

int flipud(array double complex y[&][&], array double complex x[&][&]);

flips matrix x in up/down direction with columns being preserved and rows flipped. Matrix y, with the same
data type and size as x, contains the flipped result of input matrix x.

For example,

508

24.10. MATRIX FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

> array double y[4][2], x[4][2]={1, 2, \
3, 4, \
5, 6, \
7, 8}

> flipud(y, x)
> y
7.0000 8.0000
5.0000 6.0000
3.0000 4.0000
1.0000 2.0000

Rotate Matrices

Function rot90() with the prototype of

int rot90(array double complex y[&][&], array double complex x[&][&],
... /* [int k] */);

rotates matrix x k ∗ 90 degrees. For a positive k, the matrix is rotated counter clockwise. For a negative k,
the matrix is rotated in clockwise. Array argument y is a two-dimensional matrix of the same data type and
size of matrix x. Matrix y contains the rotation of input matrix x.

For example,

> array double y[4][2], x[2][4]={1, 2, 3, 4, \
5, 6, 7, 8}

> rot90(y, x)
> y
4.0000 8.0000
3.0000 7.0000
2.0000 6.0000
1.0000 5.0000
> rot90(x, x, 2)
> x
8.0000 7.0000 6.0000 5.0000
4.0000 3.0000 2.0000 1.0000

24.10.3 Special Matrices

Programming with special matrices in Ch are presented in this section.

Identity Matrix

Function identitymatrix() with the prototype of

array double identitymatrix(int n)[:][:];

returns an n× n indentity matrix. For example,

> identitymatrix(3)
1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.0000 0.0000 1.0000

509

24.10. MATRIX FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

Diagonal Matrix

Function diagonalmatrix() with the prototype of

array double diagonalmatrix(array double v[&], ... /*[int k]*/)[:][:];

returns a square matrix of order n + abs(k), with the elements of v on the kth diagonal. k = 0 represents
the main diagonal, k > 0 above the main diagonal, and k < 0 below the main diagonal. By default, k is 0.
Function diagonalmatrix() creates a main diagonal matrix. For a diagonal matrix of complex type, function
cdiagonalmatrix() with the prototype of

array double cdiagonalmatrix(array double complex v[&], ...
/* [int k] */)[:][:];

shall be used.
For example,

> array double v[2] = {1, 2}
> diagonalmatrix(v)
1.0000 0.0000
0.0000 2.0000
> diagonalmatrix(v, 1)
0.0000 1.0000 0.0000
0.0000 0.0000 2.0000
0.0000 0.0000 0.0000
> diagonalmatrix(v, -1)
0.0000 0.0000 0.0000
1.0000 0.0000 0.0000
0.0000 2.0000 0.0000

Triangular Matrix

Function triangularmatrix() with the prototype of

array double triangularmatrix(string_t pos, array double a[&][&],
... /* [int k] */)[:][:];

returns a triangular matrix of matrix a. The dimension of the returned matrix is the same as the input matrix
a. For pos of "upper", the function returns the upper triangular part of matrix a, on and above the kth
diagonal of the matrix. Optional argument k indicates the offset of the triangular matrix to the upper kth
diagonal of the matrix. For pos of "lower" the function returns the lower part of matrix a, on and below
the kth diagonal of the matrix. Optional argument k indicates the offset of the triangular matrix to the lower
kth diagonal of the matrix. By default, k is 0. Function diagonalmatrix() creates a main diagonal matrix.
For a triangular matrix of complex type, function ctriangularmatrix() with the prototype of

array double complex ctriangularmatrix(string_t pos,
array double complex a[&][&], ... /* [int k] */)[:][:];

shall be used.
For example,

510

24.10. MATRIX FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

> array double a[4][3] = {1,2,3, \
4,5,6, \
7,8,9, \
6,3,5}

> triangularmatrix("upper", a)
1.0000 2.0000 3.0000
0.0000 5.0000 6.0000
0.0000 0.0000 9.0000
0.0000 0.0000 0.0000
> triangularmatrix("upper", a, 1)
0.0000 2.0000 3.0000
0.0000 0.0000 6.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
> triangularmatrix("upper", a, -1)
1.0000 2.0000 3.0000
4.0000 5.0000 6.0000
0.0000 8.0000 9.0000
0.0000 0.0000 5.0000
> triangularmatrix("lower", a)
1.0000 0.0000 0.0000
4.0000 5.0000 0.0000
7.0000 8.0000 9.0000
6.0000 3.0000 5.0000
> triangularmatrix("lower", a, 1)
1.0000 2.0000 0.0000
4.0000 5.0000 6.0000
7.0000 8.0000 9.0000
6.0000 3.0000 5.0000
> triangularmatrix("lower", a, -1)
0.0000 0.0000 0.0000
4.0000 0.0000 0.0000
7.0000 8.0000 0.0000
6.0000 3.0000 5.0000

Companion Matrix

Function companionmatrix() with the prototype of

array double companionmatrix(array double v[&])[:][:];

returns the companion matrix from array v of the coefficients of a polynomial. For array v of size n, the
first row of the companion matrix is -v[1:n]/v[0]. The eigenvalues of companion matrix are the roots of the
polynomial. For a triangular matrix of complex type, function ccompanionmatrix() with the prototype of

array double complex ccompanionmatrix(array double complex v[&])[:][:];

shall be used.
For example, the companion matrix of the polynomial 2x3 + 3x2 + 4x + 5 can be obtained by the

following commands.

511

24.10. MATRIX FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

> #define N 4
> array double v[N] = {2,3,4,5}
> array double a[N-1][N-1]
> a = companionmatrix(v)
-1.5000 -2.0000 -2.5000
1.0000 0.0000 0.0000
0.0000 1.0000 0.0000

Householder Matrix

Given a vector x, the Householder matrix H is defined as

H = I− βvvT

where I is an identity matrix and vector v is the same size as vector x. A Householder matrix H satisfies the
equation

Hx = −sign(x[0]) ∗ norm(x) ∗E

where vector E = [1, 0, 0, · · · , 0] is of the same size as vector x. If x is a complex vector, the Householder
matrix H is defined as

H = I− βvvH

and sign(x[0]) is defined as

sign(x[0]) =
x[0]

abs(x[0])

Function householdermatrix() with the prototype of

int householdermatrix(array double complex x[&],
array double complex v[&], ... /* [double *beta] */);

passes a vector x as an input argument and gets the vector v and optional output value beta for a Householder
matrix. For example, a Householdermatrix of a vector of real type can be calculated by the following
commands.

> array double x[5] = {-0.3, 54, 25.3, 25.46, 83.47}
> array double e[5]={1,0,0,0,0}
> array double v[5], h[5][5]
> double beta
> householdermatrix(x,v,&beta)
> h = identitymatrix(5) - beta*v*transpose(v)
> v
-105.9959 54.0000 25.3000 25.4600 83.4700
> beta
0.0001
> h*x+sign(x[0])*norm(x,"2")*e
0.0000 0.0000 0.0000 -0.0000 -0.0000

A Householder matrix from a vector of complex type can be calculated by the following commands.

512

24.10. MATRIX FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

Table 24.4: Special matrices.
Cauchy ChebyshevVandermonde Chow Circul Celement
Dramadah DenavitHartenberg DenavitHartenberg2 Fiedler Frank
Gear Hadamard Hankel Hilbert InverseHilbert
Magic Pascal Rosser Toeplitz Vandermonde
Wilkinson

> array double complex x[3] = {complex(-0.3, 0.5), 54, 25.3}
> array double e[3]={1,0,0}
> array double complex v[3], h[3][3]
> double beta
> householdermatrix(x,v,&beta)
> h = identitymatrix(3) - beta*v*conj(transpose(v))
> printf("%.3f", v)
complex(-30.982,51.637) complex(54.000,0.000) complex(25.300,0.000)
> beta
0.0003
> v = h*x+x[0]/abs(x[0])*norm(x,"2")*e
> printf("%.3f", v)
complex(-30.682,51.137) complex(0.000,0.000) complex(0.000,0.000)

Special Matrix

Function specialmatrix() with the prototype of

array double specialmatrix(string_t name, ...
/* [type1 arg1, type2 arg2, ...] */)[:][:];

returns a special matrix. The argument name can be one of special matrices listed in Table 24.4. Optional
arguments arg1, arg2, etc. may be required for a particular special matrix. The number of arguments and
their data types are different for different special matrices.

As an example, a Hilbert matrix, H, has elements H[i][j] = 1/(i+j+1). It is a famous example of an ill-
conditioned matrix. A Hilbert matrix can be generated by a function call of
specialmatrix("Hilbert", n), where argument n specifies the degree of the matrix. That is,
the size of Hilbert matrix is n× n. A 4-by-4 Hilbert matrix can be created by the following command.

> specialmatrix("Hilbert", 4)
1.0000 0.5000 0.3333 0.2500
0.5000 0.3333 0.2500 0.2000
0.3333 0.2500 0.2000 0.1667
0.2500 0.2000 0.1667 0.1429

Detailed description of each special matrix can be found the chapter about numerical analysis in The Ch
Language Environment — Reference Guide.

24.10.4 Matrix Analysis

Unlike functions fevalarray() and cfevalarraywhich applies a function to each element of an array, Ch
functions in this section can be used to evaluate mathematical functions with variables of matrix type.

513

24.10. MATRIX FUNCTIONS
CHAPTER 24. NUMERICAL ANALYSIS

Function funm() with the prototype of

int funm(array double y[&][&], double (*func)(double),
array double x[&][&]);

evaluates the function in matrix version, specified by argument func. In this function, the input square matrix
x shall be type double and the specified function shall be prototyped as

double func(double);

The output square matrix y with the same size of matrix x can be real or complex type as required. Function
funm() returns 0 on success and -1 on failure. For a matrix of complex type, function cfunm() with the
prototype of

int cfunm(array double complex y[&][&],
double complex (*func)(double complex),
array double complex x[&][&]);

shall be used.
For example, the polynomial of

Y = X3 + 2X2 + 3X+ 4

with matrix X of

X =

[
5 6
7 8

]

can be calculated by the following commands.

> array double p[4] = {1,2,3,4}
> array double x[2][2] = {5,6,7,8}, y[2][2]
> double func(double x) { return polyeval(p, x);}
> funm(y, func, x)
> y
1034.0000 1200.0000
1400.0000 1634.0000

Matrix analysis functions polyevalm(), sqrtm(), expm(), and logm() have been implemented in Ch
to handle polynomial, square root, exponential, and natural logarithmic functions with matrix variables,
respectively. These functions have the prototypes of

int polyevalm(array double complex y[&][&],
array double complex p[&],
array double complex x[&][&]);

int sqrtm(array double complex y[&][&], array double complex x[&][&]);
int expm(array double complex y[&][&], array double complex x[&][&]);
int logm(array double complex y[&][&], array double complex x[&][&]);

For example, the previous polynomial of a matrix can be calculated by the function polyevalm(). Ap-
plications of complementary functions expm() versus logm() and sqrtm() versus X2 are also demonstrated
in the commands below.

514

24.11. MATRIX DECOMPOSITION
CHAPTER 24. NUMERICAL ANALYSIS

> array double p[4] = {1,2,3,4}
> array double x[2][2] = {5,6,7,8}, y[2][2]
> polyevalm(y, p, x)
> y
1034.0000 1200.0000
1400.0000 1634.0000
> expm(y, x)
> y
199464.8244 232291.9543
271007.2800 315610.8016
> logm(y, y)
> y
5.0000 6.0000
7.0000 8.0000
> array double complex z[2][2]
> sqrtm(z, x)
> z
complex(1.4044,0.2389) complex(1.6355,-0.1759)
complex(1.9081,-0.2052) complex(2.2222,0.1510)
> array double p2[3] = {1, 0, 0}
> polyevalm(y, p2, z)
> y
5.0000 6.0000
7.0000 8.0000

24.11 Matrix Decomposition

24.11.1 LU Decomposition

ludecomp() an LU decomposition of a square matrix A is calculated using partial pivoting with row inter-
changes. The factorization has the form

A = PLU,

where P is a permutation matrix, L a lower triangular matrix with unit diagonal elements, and U an upper
triangular matrix.

Function ludecomp() with the prototype of

int ludecomp(array double complex a[&][&],array double complex l[&][&],
array double complex u[&][&], ... /*[array int p[&][&]] */);

decomposes a general n-by-n matrix according to the above LU decomposition formula.
For example,

> array double l[3][3], u[3][3], a[3][3] = {2, 1, -2, \
4, -1, 2, \
2, -1, 2}

> array int p[3][3]
> ludecomp(a, l, u)
> l

515

24.11. MATRIX DECOMPOSITION
CHAPTER 24. NUMERICAL ANALYSIS

0.5000 1.0000 0.0000
1.0000 0.0000 0.0000
0.5000 -0.3333 1.0000
> u
4.0000 -1.0000 2.0000
0.0000 1.5000 -3.0000
0.0000 0.0000 0.0000
> l*u
2.0000 1.0000 -2.0000
4.0000 -1.0000 2.0000
2.0000 -1.0000 2.0000
> ludecomp(a, l, u, p)
> l
1.0000 0.0000 0.0000
0.5000 1.0000 0.0000
0.5000 -0.3333 1.0000
> u
4.0000 -1.0000 2.0000
0.0000 1.5000 -3.0000
0.0000 0.0000 0.0000
> p
0 1 0
1 0 0
0 0 1
> p*l*u
2.0000 1.0000 -2.0000
4.0000 -1.0000 2.0000
2.0000 -1.0000 2.0000

24.11.2 Singular Value Decomposition

The singular value decomposition is formulated as

A = USVT

Where S is an m-by-n matrix with zero for each element except for its diagonal elements of size min(m,n),
U is an m-by-m orthogonal matrix, and V is an n-by-n orthogonal matrix. The diagonal elements of S are
the singular value of matrix A; they are real, non-negative, and are in descending order. The first min(m,n)
column of U and V are the left and right singular vectors of matrix A.

Function svd() with the prototype of

int svd(array double complex a[&][&], array double s[&],
array double complex u[&][&], array double complex vt[&][&]);

computes the singular value of a real or complex m-by-n matrix, and the left and right singular vectors.
For example, singular decomposition of an n-by-n matrix can be performed by the following commands.

> array double a[2][2] = {1, 2, \
3, 4}

516

24.11. MATRIX DECOMPOSITION
CHAPTER 24. NUMERICAL ANALYSIS

> array double s[2], u[2][2], v[2][2]
> svd(a, s, u, v)
> s
5.4650 0.3660
> u
-0.4046 -0.9145
-0.9145 0.4046
> v
-0.5760 0.8174
-0.8174 -0.5760
> u*diagonalmatrix(s)*transpose(v)
1.0000 2.0000
3.0000 4.0000

Singular decomposition of an m-by-n matrix can be performed by the following commands.

> array double a[2][3] = {7, 8, 1, \
3, 6, 4}

> int m=2, n=3, mn=min(m,n), i
> array double s[mn], sm[m][n], u[m][m], v[n][n]
> svd(a, s, u, v)
> for(i=0; i<mn; i++) sm[i][i] = s[i]
> s
12.8515 3.1367
> u
-0.8189 -0.5739
-0.5739 0.8189
> v
-0.5800 -0.4976 0.6450
-0.7777 0.1027 -0.6202
-0.2424 0.8613 0.4465
> u*sm*transpose(v)
7.0000 8.0000 1.0000
3.0000 6.0000 4.0000

24.11.3 Cholesky Decomposition

Cholesky decomposition factors a symmetric, positive, definite matrix into two matrices. For a symmetric
positive finite matrix A of real type, Cholesky decomposition can produce matrix L so that

A = LTL

for upper triangle factorization or
A = LLT

for lower triangle factorization, where LT is the transpose of matrix L. For a symmetric positive finite matrix
A of complex type, Hermitian LH of matrix L shall be used instead of LT .

Function choldecomp() with the prototype of

int choldecomp(array double complex a[&][&],
array double complex l[&][&], ... /* [char mode] */);

517

24.11. MATRIX DECOMPOSITION
CHAPTER 24. NUMERICAL ANALYSIS

performs Cholesky decomposition. Array argument l contains the upper or lower triangle of a symmetric,
positive, definite matrix a. The string t mode specifies the calculation of upper or lower triangle matrix. The
character of ’L’ or ’l’ is for lower triangle factorization, otherwise, the upper triangle matrix is calculated.
By default, the upper triangle matrix is calculated. Function choldecomp() returns 0 on success, negative
value on failure, and positive value i indicates that the leading minor of order i is not positive definite and
the factorization could not be completed.

For example, Cholesky decomposition of a symmetric, positive, definite matrix of real type into an upper
triangle matrix can be calculated by the following commands.

> array double l[2][2], a[2][2] = {1, 1, \
1, 2}

> choldecomp(a, l);
> l
1.0000 1.0000
0.0000 1.0000
> transpose(l)*l
1.0000 1.0000
1.0000 2.0000

Cholesky decomposition of a symmetric positive definite matrix of complex type into the lower triangle
matrix can be calculated by the following commands.

> array double complex l[2][2],
a[2][2] = {complex(2,0), complex(0,-1), \

complex(0,1), complex(2,0)}
> choldecomp(a, l, ’L’);
> l
complex(1.4142,0.0000) complex(0.0000,0.0000)
complex(0.0000,0.7071) complex(1.2247,0.0000)
> l*conj(transpose(l))
complex(2.0000,0.0000) complex(0.0000,-1.0000)
complex(0.0000,1.0000) complex(2.0000,0.0000)

24.11.4 QR Decomposition

QR decomposition factors matrix A into two matrices so that

A = QR,

where Q is an orthogonal matrix of real type or unitary matrix of complex type and R is an upper triangular
matrix. Assume the size of matrix A is m×n. If m ≤ n, there is only one type of matrix Q and R. The size
of matrix Q is m×m and matrix R is m× n. If m > n, there are two types of matrices for Q and R. One
is full size in which matrix Q is m ×m and R is m × n. The other is economy size in which matrix Q is
m× n and R is n× n.

Function qrdecomp() with the prototype of

int qrdecomp(array double complex a[&][&],
array double complex q[&][&], array double complex r[&][&]);

518

24.11. MATRIX DECOMPOSITION
CHAPTER 24. NUMERICAL ANALYSIS

performs QR decomposition. The unitary matrix q and upper triangular matrix a are obtained from matrix
a. For array a of size m× n, if m > n, function qrdecomp() checks the array sizes of arguments q and r,
and automatically selects the corresponding output type.

For example, QR decomposition of a matrix of real type can be calculated by the following commands.

> array double q1[3][3], r1[3][2], q2[3][2], r2[2][2],
> array double a[3][2] = {1, 5, \

-7, 4, \
3, 2}

> qrdecomp(a, q1, r1)
> q1
-0.1302 -0.8351 -0.5345
0.9113 -0.3132 0.2673
-0.3906 -0.4523 0.8018
> r1
-7.6811 2.2132
0.0000 -6.3326
0.0000 0.0000
> transpose(q1)*q1
1.0000 -0.0000 -0.0000
-0.0000 1.0000 -0.0000
-0.0000 -0.0000 1.0000
> q1*r1
1.0000 5.0000
-7.0000 4.0000
3.0000 2.0000
> qrdecomp(a, q2, r2)
> q2
-0.1302 -0.8351
0.9113 -0.3132
-0.3906 -0.4523
> r2
-7.6811 2.2132
0.0000 -6.3326
> transpose(q2)*q2
1.0000 -0.0000
-0.0000 1.0000
> q2*r2
1.0000 5.0000
-7.0000 4.0000
3.0000 2.0000

QR decomposition of matrix of complex type can be calculated by the following commands.

> array double complex q[2][2], r[2][2]
> array double complex a[2][2] = {complex(1,2), 5, \

3, 3}
> qrdecomp(a, q, r)
> q

519

24.11. MATRIX DECOMPOSITION
CHAPTER 24. NUMERICAL ANALYSIS

complex(-0.2673,-0.5345) complex(0.7171,-0.3587)
complex(-0.8018,0.0000) complex(-0.0000,0.5976)
> r
complex(-3.7417,0.0000) complex(-3.7417,2.6726)
complex(0.0000,0.0000) complex(3.5857,0.0000)
> conj(transpose(q))*q
complex(1.0000,0.0000) complex(-0.0000,0.0000)
complex(-0.0000,-0.0000) complex(1.0000,0.0000)
> q*r
complex(1.0000,2.0000) complex(5.0000,0.0000)
complex(3.0000,-0.0000) complex(3.0000,0.0000)

24.11.5 Hessenberg Decomposition

The Hessenberg matrix H for a square matrix A of real type is defined as

H = PTAP

where matrix P is an orthogonal matrix with PTP=I. For matrix A of complex type, the Hessenberg matrix
H is defined as

H = PHAP

where matrix P is unitary with PHP=I. Each element of a Hessenberg matrix below the first subdiagonal is
zero. If the matrix is symmetric or Hermitian, the form is tridiagonal. This matrix has the same eigenvalues
as the original one, but less computation is needed to calculate them.

Function hessdecomp() with the prototype of

int hessdecomp(array double complex a[&][&],
array double complex h[&][&], ...
/* [array double complex p[&][&]] */);

decomposes the matrix a into the Hessenberg matrix h and orthogonal or unitary matrix p. The square ma-
trix a could be any supported arithmetic data type. The output matrix h is the same dimension and data type
as the input a. If the input a is of real type, the optional output p shall only be of type double. If the input a
is complex type, p shall be complex or double complex type.

For example, a Hessenberg matrix can be calculated by the following commands.

> array double a[3][3] = {0.8, 0.2, 0.1,\
0.1, 0.7, 0.3,\
0.1, 0.1, 0.6}

> array double h[3][3], p[3][3]
> hessdecomp(a, h, p)
> h
1.0000 0.0000 0.0000
0.0000 -0.7071 -0.7071
0.0000 -0.7071 0.7071
> p
0.8000 -0.2121 -0.0707
-0.1414 0.8500 -0.0500

520

24.12. LINEAR EQUATIONS
CHAPTER 24. NUMERICAL ANALYSIS

0.0000 0.1500 0.4500
> transpose(p)*a*p
1.0000 0.0000 0.0000
0.0000 -0.7071 -0.7071
0.0000 -0.7071 0.7071

24.11.6 Schur Decomposition

The Schur matrix T for a square matrix A of real type is defined as

A = QTQT

where matrix Q is an orthogonal matrix with QTQ=I. For matrix A of complex type, the Schur matrix T is
defined as

A = QTQH

where matrix Q is unitary with QHQ=I.
Function schurdecomp() with the prototype of

int schurdecomp(array double complex a[&][&],
array double complex q[&][&], array double complex t[&][&])

decomposes the matrix a into the Schur matrix t and orthogonal or unitary matrix q. The square matrix a
could be any supported arithmetic data type. The output matrices t and q shall be the same dimension and
data type as the input a.

For example, a Schur matrix can be calculated by the following commands.

> array double t[2][2], q[2][2], a[2][2] = {8, -3, \
-5, 9}

> schurdecomp(a, q, t)
> t
4.5949 2.0000
0.0000 12.4051
> q
0.6611 -0.7503
0.7503 0.6611
> transpose(q)*q
1.0000 0.0000
0.0000 1.0000
> q*t* transpose(q)
8.0000 -3.0000
-5.0000 9.0000

24.12 Linear Equations

24.12.1 Linear System of Equations

A linear system of equations
Ax = b

521

24.12. LINEAR EQUATIONS
CHAPTER 24. NUMERICAL ANALYSIS

can be solved by various functions in Ch. If matrix A is an n-by-n square matrix of double type, it can
be solved by function linsolve(). Function linsolve() uses LU decomposition with partial pivoting and row
interchanges to factor matrix A as A = PLU, where P is a permulation matrix, L is unit lower triangular,
and U is upper triangular. The factored form of A is then used to solve the system of equations for x.
Function linsolve() with the prototype of

int linsolve(array double x[:], array double a[:][:], array double b[:])

take three arguments x, a and b, corresponding to x, A and b in the linear system of equation Ax = b,
respectively. They shall be arrays of double type. The function linsolve() returns 0 if the equation can be
solved successfully, otherwise it returns -1. Function clinsolve() can be used to solve a system of complex
linear equations.

For example,

> array double a[3][3] = {3, 0, 6,\
0, 2, 1,\
1, 0, 1}

> array double x[3], b[3] = {2, 13, 25}
> linsolve(x, a, b)
> x
49.3333 18.6667 -24.3333
> a*x
2.0000 13.0000 25.0000

24.12.2 Over-Determined or Under-Determined Linear System of Equations

For a linear system of equations
Ax = b,

if A with dimension m-by-n is not a square matrix, it can be solved by the linear least-squares method, which
minimizes the squared error of (A ∗ x− b)T (A ∗ x− b). Function llsqsolve() with the prototype of

int llsqsolve(array double complex x[&],
array double complex a[&][&], array double complex b[&]);

takes three arguments x, a and b, corresponding to x, A and b in the linear system of equation Ax = b,
respectively. They can be arrays of complex numbers. The number of elements for x shall be the same as the
number of columns in matrix a. The number of elements for b shall be the same as the number of rows in
matrix a. The function llsqsolve() returns 0 if the equation can be solved successfully, otherwise it returns
-1.

For example, the solution of a linear system of equations based on the least-squares method can be
calculated by the following commands.

> array double a[2][3] = {3, 5, 6,\
7, 2, 1}

> array double x[3], b[2] = {1, 2}
> llsqsolve(x, a, b)
> x
0.2742 0.0440 -0.0070
> a*x
1.0000 2.0000

522

24.12. LINEAR EQUATIONS
CHAPTER 24. NUMERICAL ANALYSIS

> array double a2[3][2] = {3, 5, \
6, 7, \
2, 1}

> array double x2[2], b2[3] = {1, 2, 3}
> llsqsolve(x2, a2, b2)
> x2
1.4278 -0.8299
> a2*x2
0.1340 2.7577 2.0258

Function llsqnonnegsolve() with the prototype of

int llsqnonnegsolve(array double x[&], array double a[&][&],
array double b[&], ... /* [double tol, array double w[&]] */);

can be used to solved a linear system of equations Ax = b using the least-squares method, subject to the
constraint that the solution vector x has non-negative elements. That is, x[i] ≥ 0 for i = 0, 1, · · · , n − 1.
Function llsqnonnegsolve() takes three arguments x, a and b, corresponding to x, A and b in the linear
system of equation Ax = b, respectively. The optional argument tol specifies the tolerance of the solu-
tion. If the user does not specify this argument or specify zero, tol = 10 ∗max(m,n) ∗ norm(u, ”1”) ∗
FLT EPSILON is used by default. FLT EPSILON is defined in header file float.h. The optional array
argument w with n elements contain a vector where w[i] < 0 when x[i] = 0 and w[i] ∼= 0 when x[i] > 0.

For example, the non-negative solution of a linear system of equations based on the least-squares method
can be calculated by the following commands.

> array double a[2][3] = {3, 5, 6,\
7, 2, 1}

> array double x[3], w[3], b[2] = {1, 2}
> llsqnonnegsolve(x, a, b)
> x
0.2821 0.0000 0.0257
> a*x
1.0000 2.0000
> array double a2[3][2] = {3, 5, \

6, 7, \
2, 1}

> array double x2[2], b2[3] = {1, 2, 3}
> llsqnonnegsolve(x2, a2, b2)
> x2
0.4286 0.0000
> a2*x2
1.2857 2.5714 0.8571

Function llsqcovsolve() with the prototype of

int llsqcovsolve(array double x[&], array double a[&][&],
array double b[&], array double v[&][&], ...
/* [array double p[&]] */);

can be used to solved a linear system of equations Ax = b, with a normally distributed error (with zero
mean) and covariance v using the least-squares method. This is an overdetermined linear least-squares

523

24.12. LINEAR EQUATIONS
CHAPTER 24. NUMERICAL ANALYSIS

problem. So the number of rows m must be larger than the number of columns n. If optional output vector
p is specified, it will pass out the standard errors of x.

For example,

> array double a[3][2] = {3, 5, \
6, 7, \
2, 1}

> array double x[2], b[3] = {1, 2, 3}
> array double v=[3][3] = {1, 1, 3, \

1, 2, 5, \
3, 5, 6}

> llsqcovsolve(x, a, b, v)
> x
0.3402 -0.3521
> a*x
-0.7396 -0.4231 0.3284

24.12.3 Inverse and Pseudo Inverse Matrices

The inverse A−1 of a square matrix A is defined as

A−1A = AA−1 = I.

To obtain its inverse, the matrix A shall not be singular. The inverse matrix A−1 of matrix A of real type can
be calculated by function inverse() with the prototype of

array double inverse(array double a[:][:], ...
/* [int *status] */)[:][:];

The computation of an inverse matrix is based on the LU decomposition of the original matrix. The optional
argument status gives the status of calculation. If the calculation is successful,status is 0, otherwise status is
negative value.

The inverse A−1 of a square matrix A of complex type can be calculated by function cinverse() with the
prototype of

array double complex cinverse(array double complex a[:][:], ...
/* [int *status] */)[:][:];

For example, the inverse of a matrix can be used to solve the linear system of equation using x = A−1b
by the following commands.

> array double a[3][3] = {3, 0, 6,\
0, 2, 1,\
1, 0, 1}

> array double ai[3][3], b[3] = {2, 13, 25}
> ai=inverse(a)
-0.3333 -0.0000 2.0000
-0.1667 0.5000 0.5000
0.3333 0.0000 -1.0000
> ai*b
49.3333 18.6667 -24.3333

524

24.12. LINEAR EQUATIONS
CHAPTER 24. NUMERICAL ANALYSIS

The Moore Penrose pseudo inverse matrix B of matrix A has to meet the following four conditions:

ABA = A,

BAB = B,

AB is Hermitian

BA is Hermitian

where A can be of singular square matrix or even non-square matrix.
Function pinverse() with the prototype of

array double pinverse(array double a[:][:])[:][:];

calculates the Moore Penrose pseudo inverse of matrix a of real type.
For example,

> int M = 2, N = 3
> array double a[2][3] = {7, 8, 1, \

3, 6, 4}
> array double p[3][2]
> p = pinverse(a)
0.1280 -0.1040
0.0308 0.0615
-0.1422 0.2357
> a*p*a
7.0000 8.0000 1.0000
3.0000 6.0000 4.0000
> p*a*p
0.1280 -0.1040
0.0308 0.0615
-0.1422 0.2357

24.12.4 Linear Spaces

Function orthonormalbase() with the prototype of

int orthonormalbase(array double complex orth[&][&],
array double complex a[&][&]);

calculates the the orthonormal bases for matrix a of dimension m-by-n. The columns of orth are orthonor-
mal, and have the same space as the columns of a. The numbers of rows for arrays orth and a are the same.
The number of columns of orth is the rank of a. Function orthonormalbase() returns 0 on success and -1
on failure.

The null space S of matrix A meets the following conditions.

STS = I

AS = 0

Function nullspace() with the prototype of

int nullspace(array double complex null[&][&],
array double complex a[&][&]);

525

24.13. EIGENVALUES AND EIGENVECTORS
CHAPTER 24. NUMERICAL ANALYSIS

calculates the orthonormal bases of the null space of matrix a of dimension m-by-n. The columns of null are
orthonormal. The numbers of rows for arrays null and a are the same. The number of columns of null is the
number of columns for array a minus the value of the rank of a. Function nullspace() returns 0 on success
and -1 on failure.

For example, the orthonormal bases and orthonormal bases of the null space of a singular matrix with
rank 2 can be calculated by the following commands.

> #define M 3
> #define N 3
> array double a[M][N] = {1, 2, 3, \

4, 5, 6, \
7, 8, 9}

> int r
> r = rank(a)
2
> array double orth[M][r]
> orthonormalbase(orth, a)
> orth
-0.2148 0.8872
-0.5206 0.2496
-0.8263 -0.3879
> transpose(orth)*orth
1.0000 -0.0000
-0.0000 1.0000
> array double null[M][N-r]
> nullspace(null, a)
> null
-0.4082
0.8165
-0.4082
> transpose(null)*null
1.0000

24.13 Eigenvalues and Eigenvectors

The eigenvalues λ and eigenvectors V of square matrix A are defined as

AV = λV

If matrix A is not symmetrical or not all elements are of real type, its eigenvalues λ and eigenvectors V
could be complex numbers.

Function eigen() with the prototype of

int eigen(... /* double [complex] a[:][:],
double [complex] evalues[:],
double [complex] evectors[:][:],
[char *mode] */);

calculates the eigenvalues evalues and eigenvectors evectors of matrix a with dimension n-by-n. The
syntaxes for calling this function is as follows.

526

24.13. EIGENVALUES AND EIGENVECTORS
CHAPTER 24. NUMERICAL ANALYSIS

eigen(a, evalues);
eigen(a, evalues, evectors);
eigen(a, evalues, evectors, mode);

The computed eigenvalues and eigenvectors are passed as arguments of evectors and evectors of the
function, respectively. Arrays a evalues, and evectors shall be double or double complex type. The
computed eigenvectors are normalized so that the norm of each eigenvector equals 1. Argument mode is used
to indicate if a preliminary balancing step before the calculation is performed or not. Generally, balancing
improves the condition of the input matrix, enabling more accurate computation of the eigenvalues and
eigenvectors. But, it also may lead to incorrect eigenvectors in some special cases. By default, a preliminary
balancing step is taken.

For example, for the matrices below

A =

⎡
⎢⎣ 0.8 0.2 0.1

0.2 0.7 0.3
0.1 0.3 0.6

⎤
⎥⎦ ,B =

⎡
⎢⎣ 0.8 0.2 0.1

0.1 0.7 0.3
0.1 0.1 0.6

⎤
⎥⎦ ,C =

⎡
⎢⎣ 3 9 23

2 2 1
−7 1 −9

⎤
⎥⎦ ,

matrix A is symmetrical with real eigenvalues, B is non-symmetrical with real eigenvalues, and C is non-
symmetrical with complex eigenvalues. The eigenvalues and eigenvectors of these three matrices can be
calculated by the following commands.

> array double a[3][3] = {0.8,0.2,0.1, 0.2,0.7,0.3, 0.1,0.3,0.6}
> array double b[3][3] = {0.8,0.2,0.1, 0.1,0.7,0.3, 0.1,0.1,0.6}
> array double c[3][3] = {3, 9, 23, 2, 2, 1, -7, 1, -9}
> array double evalues[3], evectors[3][3]
> array double complex zvalues[3], zvectors[3][3]
> eigen(a, evalues)
> evalues
1.1088 0.6526 0.3386
> eigen(b, evalues, evectors)
> evalues
1.0000 0.6000 0.5000
> evectors
-0.7448 -0.7071 0.4082
-0.5793 0.7071 -0.8165
-0.3310 0.0000 0.4082
> eigen(c, evalues)
> evalues
NaN NaN 3.2417
> eigen(c, zvalues, zvectors)
> printf("%.3f", zvalues)
complex(-3.621,10.647) complex(-3.621,-10.647) complex(3.242,0.000)
> printf("%.3f", zvectors)
complex(0.854,0.000) complex(0.854,0.000) complex(0.604,0.000)
complex(-0.024,-0.125) complex(-0.024,0.125) complex(0.744,0.000)
complex(-0.236,0.445) complex(-0.236,-0.445) complex(-0.285,0.000)

527

24.14. FAST FOURIER TRANSFORMS
CHAPTER 24. NUMERICAL ANALYSIS

24.14 Fast Fourier Transforms

A pair of transform and inverse transform are defined below.

Y (k) =
N−1∑
j=0

x(j)ωjk
N , (k = 0, 1, · · · , N − 1);

x(j) =
N−1∑
k=0

Y (k)ω−jk
N , (j = 0, 1, · · · , N − 1);

where ωN = e(−2πi)/N is an nth root of unity. Functions fft() and ifft() with the prototype of

int fft(array double complex &y, array double complex &x, ...
/* [int n [int dim [&]]] */);

int ifft(array double complex &x, array double complex &y, ...
/* [int n [int dim [&]]] */);

evaluate the above transform and inverse transform using the fast Fourier transform (FFT) algorithm. It can
be used for one-, two-, and three-dimensional FFT. The multi-dimensional (maximum dimension is three)
arrays x and y can be of any supported arithmetic data type and size. Conversion of the data to double
complex is performed internally. Array y with the same dimension as array x contains the result of fast
Fourier transform. The optional argument n of int type is used to specify the number of points for FFT of
one-dimensional data. If the length of the array in the second argument as input data is less than n, the
input array is padded with trailing zeros to lengthen n. If the length of the array in the second argument
as input data is greater than n, the data in the input array is truncated. For multi-dimensional data, the
optional array argument dim of int type contains the value for user specified FFT points. The dimensions
of input array in the second argument are contained in array dim. For example, for a three-dimensional
data x[m][n][l], the FFT points of the array are specified by m,n, l. Then the array dim is given values of
dim[0] = m, dim[1] = n and dim[2] = l. Similar to the case of one-dimensional array, if the length of the
array in the second argument as input data is less than that specified in array dim, the input array is padded
with trailing zeros to the length specified by array dim. If the length of the array in the second argument as
input data is greater than that specified in array dim, the data in the input array are truncated. If no optional
argument is passed, the number of FFT points is obtained from the input array in the second argument. There
is no constraint that n, or size of array, needs to be a power of 2 for functions fft() and ifft(). Functions fft()
and ifft() return 0 on success and -1 on failure. Function unwrap() is useful for adjusting the phase angles
of complex numbers obtained from the FFT and inverse FFT by changing its absolute jump greater than π
to its 2 ∗ π complement.

For example, the FFT and inverse FFT of the one-dimensional array x = (0, 0.25, 0.5, 0.75, 1) can be
calculated by the following commands.

> array double x[5]
> array double complex x1[5], yy1[5], x2[3], y2[3]
> lindata(0, 1, x)
> x
0.0000 0.2500 0.5000 0.7500 1.0000
> fft(yy1,x)
> printf("%.3f",yy1)
complex(2.500,0.000) complex(-0.625,-0.860) complex(-0.625,-0.203)\

528

24.14. FAST FOURIER TRANSFORMS
CHAPTER 24. NUMERICAL ANALYSIS

complex(-0.625,0.203) complex(-0.625,0.860)
> ifft(x1,yy1)
> printf("%.3f",x1)
complex(0.000,0.000) complex(0.250,0.000) complex(0.500,0.000) \
complex(0.750,0.000) complex(1.000,0.000)
> fft(y2,x,3)
> printf("%.3f",y2)
complex(0.750,0.000) complex(-0.375,-0.217) complex(-0.375,0.217)
> ifft(x2,y2,3)
> printf("%.3f",x2)
complex(0.000,0.000) complex(0.250,0.000) complex(0.500,0.000)
> fft(yy1,x2,5)
> printf("%.3f",yy1)
complex(0.750,0.000) complex(-0.327,0.532) complex(-0.048,-0.329) \
complex(-0.048,0.329) complex(-0.327,-0.532)
> ifft(x1,yy1)
> printf("%.3f",x1)
complex(0.000,0.000) complex(0.250,0.000) complex(0.500,0.000)
complex(0.000,0.000) complex(0.000,0.000)

The FFT and inverse FFT of two-dimensional array

x =

⎡
⎢⎣ 0 0.2

0.4 0.6
0.8 1

⎤
⎥⎦

can be calculated by the following commands.

> array double x[3][2]
> array double complex yy1[3][2], x1[3][2]
> array double complex y2[2][2], x2[2][2]
> int dim[2] = {2, 2}
> lindata(0, 1, x)
> x
0.000000 0.200000
0.400000 0.600000
0.800000 1.000000
> fft(yy1, x)
> printf("%.3f",yy1)
complex(3.000,0.000) complex(-0.600,0.000)
complex(-1.200,-0.693) complex(0.000,-0.000)
complex(-1.200,0.693) complex(0.000,0.000)
> ifft(x1, yy1)
> printf("%.3f",x1)
complex(0.000,0.000) complex(0.200,0.000)
complex(0.400,0.000) complex(0.600,0.000)
complex(0.800,0.000) complex(1.000,0.000)
> fft(yy1, x, dim)
> printf("%.3f",yy1)

529

24.15. CONVOLUTION AND FILTERING
CHAPTER 24. NUMERICAL ANALYSIS

complex(1.200,0.000) complex(-0.400,0.000)
complex(-0.800,0.000) complex(0.000,0.000)
complex(0.000,0.000) complex(0.000,1.200)
> fft(y2, x, dim)
> printf("%.3f",y2)
complex(1.200,0.000) complex(-0.400,0.000)
complex(-0.800,0.000) complex(0.000,0.000)
> ifft(x2, y2, dim)
> printf("%.3f",x2)
complex(-0.000,0.000) complex(0.200,0.000)
complex(0.400,0.000) complex(0.600,0.000)
> ifft(x2, y2)
> printf("%.3f",x2)
complex(-0.000,0.000) complex(0.200,0.000)
complex(0.400,0.000) complex(0.600,0.000)

24.15 Convolution and Filtering

The convolution of two functions x(t) and y(t), denoted as x ∗ y, is defined by

x ∗ y ≡
∫ ∞

−∞
x(τ)y(t− τ)dτ

in the time domain with x ∗ y = y ∗ x. According to the theorem of convolution, if X(f) and Y (f) are
Fourier transforms of x(t) and y(t), that is,

x(t)⇐⇒ X(f) and y(t)⇐⇒ Y (f)

then

x ∗ y ⇐⇒ X(f)Y (f)

If functions are digitized as two arrays, x of size n and y of size m, the sizes of two convolution arrays x
and y are expanded to m + n − 1 and zero padded internally. The FFT algorithm is used to compute the
discrete Fourier transform of x and y. Multiplying two transforms together component by component, then
using the inverse FFT algorithm to take the inverse discrete Fourier transform of the products, the result is
the convolution of arrays x and y.

Function conv() with the prototype of

int conv(array double complex c[&],
array double complex x[&], array double complex y[&]);

calculates the convolution of two arrays x of size n and y of size m. If both arrays x and y are real type, the
result is a one-dimensional array c of size n+m− 1. If either one of x and y is complex type, the result c is
complex type. If x and y are considered as two vectors of polynomial coefficients, the convolution of x and
y is equivalent to the multiplication of these two polynomials.

Deconvolution is the opposite operation of convolution. Function deconv() with the prototype of

int deconv(array double complex u[&], array double complex v[&],
array double complex q[&], ... /* array double complex r[&]);

530

24.15. CONVOLUTION AND FILTERING
CHAPTER 24. NUMERICAL ANALYSIS

deconvolves vector v out of vector u using long division. If u and v are considered as two vectors of
polynomial coefficients, the deconvolution of u out of v is equivalent to the polynomial division. The
quotient is stored in vector q and remainder in optional argument r so that u = conv(v, q)+r. If both arrays u
of size n and v of size m are real type, the quotient q of size n −m + 1 and remainder r of size n are real
type. If either one of u and v is complex type, the results q and r are complex type.

For example, given two polynomial functions x(t) and y(t) as,

x(t) = t5 + 2 ∗ t4 + 3 ∗ t3 + 4 ∗ t2 + 5 ∗ t+ 6;

y(t) = 6 ∗ t+ 7;

the result of convolution of x(t) ∗ y(t) or multiplication of two polynomials x(t) and y(t) is

c(t) = x(t) ∗ y(t) = 6 ∗ t6 + 19 ∗ t5 + 32 ∗ t4 + 45 ∗ t3 + 58 ∗ t2 + 71 ∗ t+ 42

The deconvolution of y(t) out of c(t) or x(t) out of c(t) is the division of polynomial c(t) by y(t) or c(t) by
x(t). These calculations can be performed by the following commands.

> array double x[6]={1,2,3,4,5,6},y[2]={6,7}, c[6+2-1]
> conv(c,x,y)
> printf("%.2f", c)
6.00 19.00 32.00 45.00 58.00 71.00 42.00
> deconv(c,y,x)
> printf("%.2f", x)
1.00 2.00 3.00 4.00 5.00 6.00
> deconv(c,x,y)
> printf("%.2f", y)
6.00 7.00

Two-dimensional convolution is analogous in form to one-dimensional convolution. Thus for two func-
tions f(x, y) and g(x, y), we define

f(x, y) ∗ g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(α, β)g(x − α, y − β)dαdβ

If F (u, v) and G(u, v) are two-dimensional Fourier transforms of f(x, y) and g(x, y), respectively, accord-
ing to the convolution theorem, the following relation is valid

f(x, y) ∗ g(x, y)⇐⇒ F (u, v)G(u, v)

Function conv2() with the prototype of

int conv2(array double complex c[&][&], array double complex f[&][&],
array double complex g[&][&], ... /* [string_t method] */);

);

calculates the two-dimensional convolution of matrices f and g. In the calculation, if the size of f is na-by-nb

and the size of g is ma-by-mb, both matrices f and g are expanded to (na + ma − 1)-by-(nb + mb − 1)
and zero padded internally. The FFT algorithm is used to compute the discrete Fourier transform of x and
y. Multiplying two transforms together component by component, then using the inverse FFT algorithm
to take the inverse discrete Fourier transform of the products, the answer is the convolution of matrices f
and g. The size of the array c depends on the optional argument method. If the value of optional argument

531

24.15. CONVOLUTION AND FILTERING
CHAPTER 24. NUMERICAL ANALYSIS

#include <math.h>
#include <chplot.h>
#include <numeric.h>

int main() {
int i, j;
array double g[3][3]={{-1,0,1},{-2,0,2},{-1,0,1}};
array double x[16], y[16], z1[256], f[16][16], H[18][18], V[18][18],Z[18][18], Z1[256];

linspace(x,0,16);
linspace(y,0,16);
for(i=3; i<13; i++)

for(j=3; j<13; j++) {
z1[i*16+j]=1;
f[i][j] = 1;

}
plotxyz(x,y,z1); /* original image */
conv2(H,f,g);
conv2(V,f,transpose(g));
Z = H .* H + V .* V; /* magnitude of the pixel value */
for(i = 0; i<16; i++)

for(j=0; j<16; j++)
Z1[i*16+j] = Z[i+1][j+1];

plotxyz(x,y,Z1); /* edge finded image */
}

Program 24.9: A program using conv2().

method is "full", the size of c in each dimension is equal to the sum of the corresponding dimensions of
the input matrices, minus 1. If the value of optional argument method is "same", c contains the central part
of 2D convolution with the same size as matrix f. If the value of optional argument method is "valid", c
contains only those parts of 2-D convolution that are computed without the zero-padded edges. The size of
c is (ma −mb + 1) × (na − nb + 1) where the size of f must be bigger than the size of g. By default, the
method is "full".

For example, in image processing, a Sobel filter is a simple approximation to the concept of edge detec-
tion. Convoluting the original two-dimensional image data with a Sobel filter

gx =

⎡
⎢⎣ −1 0 1
−2 0 2
−1 0 1

⎤
⎥⎦

detects the edges of an image in the x-direction. Similarly, when convoluting a Sobel filter

gy =

⎡
⎢⎣ −1 −2 −1

0 0 0
1 2 1

⎤
⎥⎦

which is the transpose of matrix gx, edges in y-direction can be detected. This edge detection using function
conv2() can be performed by Program 24.9 with output displayed in Figure 24.9

Function filter() with the prototype of

int filter(array double complex v[&], array double complex u[&],
array double complex x[&], array double complex y[&], ...
/* [array double complex zi[&], array double complex zf[&]] */);

532

24.15. CONVOLUTION AND FILTERING
CHAPTER 24. NUMERICAL ANALYSIS

Original image

0 2 4 6 8 10 12 14 16
x

0
2

4
6

8
10

12
14

16

y

0

0.2

0.4

0.6

0.8

1

z

Edge finded

0 2 4 6 8 10 12 14 16
x

0
2

4
6

8
10

12
14

16

y

0
2
4
6
8

10
12
14
16
18

z

Figure 24.9: The result from two-dimensional convolution function conv2().

filters the data in vector x with a filter represented by vectors u and v to create the filtered data y. The filter
is a direct form II transposed implementation of the standard difference equation:

y(n) = v0 ∗ x(n) + v1 ∗ x(n− 1) + ...+ vnb ∗ x(n− nb− 1)

−u1 ∗ y(n− 1)− ...− una ∗ y(n− na− 1)

The input-output description of this filtering operation in the z-transform domain is a rational transfer func-
tion

Y (z) =
v0 + v1z

−1 + · · ·+ vnb−1z
−nb−1

1 + u1z−1 + · · ·+ una−1z−na−1
X(z)

The numerator coefficients with zeros of the system transfer function v, denominator coefficients with poles
of the system transfer function u, and vector x of input data can be of any supported arithmetic data type and
size. Conversion of the data to double complex is performed internally. Vector y, which is the same size as
x, contains the result of the filtered output. The optional arguments zi and zf are used to set the initial values
of delays and get the final delays of the filter. They shall be double complex data type. Assume that the
sizes of vectors u and v are na and nb, respectively. The sizes of vectors zi and zf shall be (max(na, nb)−1)
and max(na, nb), respectively. The leading coefficient of denominator u0 must be non-zero, as the other
coefficients are divided by u0.

Application of function filter() is illustrated in Program 24.10. This example shows how to use a FFT
algorithm to find the spectrum of signals that are buried in noises and use a filter algorithm to filter undesired
signals. Figure 24.10 shows the original and filtered signals in the time domain. The figure on the left hand
side is the original signals with three sinusoidal components at frequencies of 5, 15, 30 Hz, which are
buried in white noises simulated with the uniform random number generator function urand(). The figure
on the right hand side is signals after a sixth order IIR filter with a passband 10 to 20 Hz. The filter with
coefficients u and v given inside Program 24.10 will keep the 15 Hz sinusoidal signals and, get rid of the
5 and 30 Hz sinusoids and other white noises. The signals in the frequency domain are obtained by a fast
Fourier transform using function fft(). Figure 24.11 shows the original and filtered signals in the frequency
domain. The figure on the left hand side shows the original signals with three separate main frequency
spectrum and some noise frequency. After filtering, the signals as shown on the right hand side of the figure
contain mainly 15 Hz frequencies and a few noise components.

Function filter2() with the prototype of

533

24.15. CONVOLUTION AND FILTERING
CHAPTER 24. NUMERICAL ANALYSIS

#include <stdio.h>
#include <math.h>
#include <chplot.h>
#include <numeric.h>

#define N 512

int main() {
array double t[N], x[N], y[N], Pyy[N/2], f[N/2], u[7], v[7];
array double complex Y[N];
int i;
class CPlot plot;

u[0]=1;u[1]=-5.66792131;u[2]=13.48109005;u[3]=-17.22250511;
u[4]=12.46418230;u[5]=-4.84534157;u[6]=0.79051978;
v[0]=0.00598202; v[1]=-0.02219918; v[2]=0.02645738; v[3]=0;
v[4]=-0.02645738;v[5]=0.02219918;v[6]=-0.00598202;

linspace(t,0,N-1);
t = t/N;
for (i=0; i<N; i++) {

x[i] = sin(2*M_PI*5*t[i]) + sin(2*M_PI*15*t[i]) + sin(2*M_PI*t[i]*30);
x[i]=x[i]+3*(urand(NULL)-0.5);

}

filter(v,u,x,y);
plotxy(t,x,"Time domain original signal","Time (second)","Magnitude ");
plotxy(t,y,"Time domain filtered signal","Time (second)","Magnitude ");

fft(Y,x);
for (i=0; i<N/2; i++)

Pyy[i] = abs(Y[i]);
linspace(f,0,N/2);
plotxy(f,Pyy,"Frequency domain original signal","frequency (Hz)","Magnitude (db)");
fft(Y,y);
for (i=0; i<N/2; i++)

Pyy[i] = abs(Y[i]);
linspace(f,0,255);
plotxy(f,Pyy,"Frequency domain filtered signal","frequency (Hz)","Magnitude (db)");

}

Program 24.10: A program using filter().

534

24.15. CONVOLUTION AND FILTERING
CHAPTER 24. NUMERICAL ANALYSIS

-4

-3

-2

-1

0

1

2

3

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ag

ni
tu

de

Time (second)

Time domain original signal

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ag

ni
tu

de

Time (second)

Time domain filtered signal

Figure 24.10: The original and filtered signals in the time domain.

0

50

100

150

200

250

300

0 50 100 150 200 250 300

M
ag

ni
tu

de
 (

dB
)

frequency (Hz)

Frequency domain original signal

0

50

100

150

200

250

0 50 100 150 200 250 300

M
ag

ni
tu

de
 (

dB
)

frequency (Hz)

Frequency domain filtered signal

Figure 24.11: The original and filtered signals in the frequency domain.

535

24.15. CONVOLUTION AND FILTERING
CHAPTER 24. NUMERICAL ANALYSIS

#include <math.h>
#include <chplot.h>
#include <numeric.h>

int main() {
int i, j;
array double u[3][3]={{1,2,1},{2,4,2},{1,2,1}};
array double s[3][3]={{1,2,1},{2,4,2},{1,2,1}};
array double x[16],y[16],z1[256],z[16][16],Z[18][18],Z1[256];

linspace(x,0,16);
linspace(y,0,16);
for(i=3; i<13; i++)

for(j=3; j<13; j++) {
z1[i*16+j]=1;
z[i][j] = 1;

}
plotxyz(x,y,z1);
filter2(Z,u,z,"full");
for(i = 0; i<16; i++)

for(j=0; j<16; j++)
Z1[i*16+j] = Z[i+1][j+1];

plotxyz(x,y,Z1);
}

Program 24.11: A program using filter2().

int filter2(array double complex y[&][&], array double complex u[&],
array double complex x[&], ... /* [string_t method] */);

computes the full two-dimensional convolution of the FIR filter with the input matrix x of size (nx ×mx).
Inside function filter2(), the input filter u is rotated 180 degrees first, function conv2() is then called to
implement the filtering operation. Given the size of the filter matrix u of (nu × mu), the size of array y
for the filtered data depends on the optional argument method. If the value of optional argument method
is "same", y contains the central part of 2D convolution with the same size as matrix x. By default, the
method is "same". If the value of optional argument method is "full", the size of y in each dimension
is equal to the sum of the corresponding dimensions of the input matrices, minus 1. If the value of optional
argument method is "valid", y contains only those parts of 2-D convolution that are computed without
the zero-padded edges. The size of y is (mx−mu +1)× (nx−nu+1), where the size of x must be bigger
than the size of u.

For example, in image processing, a Sobel filter below

gx =

⎡
⎢⎣ 1 2 1

2 4 2
1 2 1

⎤
⎥⎦

can be used to smooth an image. Program 24.11 illustrates how to use the above Sobel mask to convolute
an image. The original image and filtered one using function filter2() are displayed in Figure 24.12

536

24.16. CROSS CORRELATION
CHAPTER 24. NUMERICAL ANALYSIS

Original image

0 2 4 6 8 10 12 14 16
x

0
2

4
6

8
10

12
14

16

y

0

0.2

0.4

0.6

0.8

1

z

Noise filtered

0 2 4 6 8 10 12 14 16
x

0
2

4
6

8
10

12
14

16

y

-2
0
2
4
6
8

10
12
14
16

z

Figure 24.12: The original image and filtered one using function filter2().

24.16 Cross Correlation

Given two functions x(t) and y(t), and their corresponding Fourier transforms X(f) and Y (f), the cross
correlation of these two functions, denoted as xcorr(x, y), is defined by

xcorr(x, y) ≡
∫ ∞

−∞
x(t+ τ)y(t)dτ

xcorr(x, y) ⇐⇒ X(f)Y ∗(f)

The asterisk denotes a complex conjugate. The correlation of a function with itself is called its autocorrela-
tion. In this case

xcorr(x, x)⇐⇒ |X(f)2|
In the numerical implementation, the sizes of two data sequences x of the same size n are expanded to
(2n − 1) and padded with zeroes internally. The FFT algorithm is used to compute the discrete Fourier
transforms of x and y first. Then, multiply the complex conjugate of transform of y with the transform
of x component by component. Finally, take the inverse FFT of the products, and the result is the cross
correlation xcorr(x, y) for arrays x and y.

Function xcorr() with the prototype of

int xcorr(array double complex c[&],
array double complex x[&], array double complex y[&]);

calculates the cross correlation of two arrays x and y of the same size n. If both arrays x and y are real type,
the cross correlation c is a one-dimensional array of size (2n − 1). If either one of x and y is complex type,
the result c is complex type.

537

24.16. CROSS CORRELATION
CHAPTER 24. NUMERICAL ANALYSIS

For example, for two sequences x[n] and y[n], analytically, the cross correlation of x and y can be
calculated by

c[k] =

min {k,m}∑
j=max {1,k−n+1}

y[j]x[n + j − k]; k = 1, 2, · · · , n+m− 1

Given x = {1, 2, 3, 4} and y = {3, 2, 0, 1}, then

c[1] = y[1]x[4] = 12

c[2] = y[1]x[3] + y[2]x[4] = 17

c[3] = y[1]x[2] + y[2]x[3] + y[3]x[4] = 12

c[4] = y[1]x[1] + y[2]x[2] + y[3]x[3] + y[4]x[4] = 11

c[5] = y[2]x[1] + y[3]x[2] + y[4]x[3] = 5

c[6] = y[3]x[1] + y[4]x[2] = 2

c[7] = y[4]x[1] = 1

The above cross correlation can be calculated by the following commands.

> #define N 4
> array double x[1:N] = {1, 2, 3, 4}
> array double y[1:N] = {3, 2, 0, 1}, c[1:2*N-1]
> xcorr(c,x,y)
> printf("%.2f", c)
12.00 17.00 12.00 11.00 5.00 2.00 1.00
> c[1]
12.000000
> c[7]
1.000000

538

Chapter 25

Bibliography

1. ANSI, ANSI Standard X3.9-1978, Programming Language FORTRAN (revision of ANSI X2.9-1966),
American National Standards Institute, Inc., NY, 1978.

2. Cheng, H. H., The Ch Language Environment Homepage,
http://www.softintegration.com/docs/ch/ .

3. Cheng, H. H., CGI Programming in C, C/C++ Users Journal, Vol. 14, No. 11, November, 1996, pp. 17-
21.

4. Cheng, H. H., Scientific Computing in the Ch Programming Language, Scientific Programming, Vol. 2,
No. 3, Fall, 1993, pp. 49-75.

5. Cheng, H. H., Handling of Complex Numbers in the Ch Programming Language, Scientific Program-
ming, Vol. 2, No. 3, Fall, 1993, pp. 76-106.

6. Cheng, H. H., Extending C with Arrays of Variable Length, Computer Standards and Interfaces, Vol.
17, 1995, pp. 375-406.

7. Cheng, H. H., Extending C and FORTRAN for Design Automation, ASME Trans., Journal of Mechan-
ical Design, Vol. 117, No. 3, 1995, pp. 390-395.

8. Cheng, H. H., Programming with Dual Numbers and its Applications in Mechanisms Design, Engi-
neering with Computers, An International Journal for Computer-Aided Mechanical and Structural En-
gineering, Vol. 10, No. 4, 1994, pp. 212-229.

9. Cheng, H. H., Adding References and Nested Functions to C for Modular and Parallel Programming,
The ANSI C Standard Committee X3J11.1 Meeting, NCEG, X3J11.1/93-044, October 22, 1993.

10. Churchill, R. V. and Brown, J. W., Churchill, R. V. and Brown, J. W., Complex Variables and Applica-
tions, Fourth edition, McGraw-Hill Book Co., NY, 1984.

11. IEEE, ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, Institute
of Electrical and Electronic Engineers, Inc., Piscataway, NJ, 1985.

12. ISO, ISO/IEC Standard 9899:1990, Programming Language C, International Standards Organization,
Geneva, 1990.

13. ISO/IEC, Information Technology, Programming Languages - FORTRAN, 1539:1991E, ISO, Geneva,
Switzerland.

539

CHAPTER 25. BIBLIOGRAPHY

14. Joy, W., An Introduction to the C Shell, Department of Electrical Engineering and Computer Science,
University of California at Berkeley, 1980.

15. Kahan, W., Branch Cuts for Complex Elementary Functions, or Much Ado about Nothing’s Sign Bit,
The State of the Art in Numerical Analysis (ed. Iserles & Powell), 1987, Oxford Univ. Press; Proc. of
the Joint IMA/SIAM Conference, April 14-18, 1986.

16. Kernighan, B. W. and Ritchie, D. M., The C Programming Language, Prentice-Hall, Inc., Englewood
Cliffs, NJ, second edition, 1988.

17. Marsden, J. E., Basic Complex Analysis, W. H. Freeman and Company, San Francisco, 1973.

18. The MathWorks, Inc., MATLAB Function Reference, Version 6, 2001.

19. Stroustrup, B., The C++ Programming Language, Addison-Wesley, Publishing Company, Inc., 1987.

540

Appendix A

Known Problems and Platform Specific
Features

A.1 Platform Specific Features

Most functions in Ch are supported across different platforms. Functions which are not supported in specific
platforms are listed in The Ch Language Environment — Reference Guide. Other platform specific features
and problems are described below.

A.1.1 Solaris

1. The system variable _ignoreeof can not be set to true, because EOF is used to terminate a login
shell at the startup session.

A.1.2 Windows NT/2000/XP/Vista/Windows 7

1. Users of the Ch language environment can work in Windows NT/2000/XP/Vista/Windows 7 as if they
were in a Unix environment. A forward slash / is treated as a directory notation. The disk drive can
be specified by prefixing the path with “drive:”, For example, drive C can be used as C:/Ch/bin/ch.
All native DOS commands in Windows command shell are supported in Ch shell.

2. The native MS-DOS commands in Table A.1 under a Ch shell are exactly the same as they are in
Windows. For example, options of a command can be specified using a forward slash (/).

3. The native MS-DOS commands in Table A.2 under a Ch shell in Windows NT/2000/XP/Vista/Windows
7 are exactly the same as they are in Windows NT/2000/XP/Vista/Windows 7. For example, options
of a command can be specified using a forward slash (/).

A.2 Functions Not Supported in Specific Platforms

See “Functions Not Supported in Specific Platforms” in Appendix of The Ch Language Environment —
Reference Guide.

541

A.2. FUNCTIONS NOT SUPPORTED IN SPECIFIC PLATFORMSAPPENDIX A. KNOWN PROBLEMS AND PLATFORM SPECIFIC FEATURES

Table A.1: DOS commands in Ch shell.

Command Description
cls Clear the screen.
copy Copy one or more files to another location.
del Delete one or more files.
dir Display a list of files and subdirectories in a directory.
endlocal
erase Delete one or more files.
ren Rename a file or files.

rd is valid only at command prompt.
time Display or set the system time.
title Set the title for the command prompt window.
type display the content of a file.
ver Display the Windows version number.
verify Tells Windows whether to verify that your files are.

written correctly to a disk.
vol Display a disk volume label and serial number.

Table A.2: DOS commands in Ch shell in Windows NT

Command Description
move Move files or directory (In Windows NT only).
start Start a separate window to run a program or command.

(in Windows NT only).

542

Appendix B

Comparison with C and
Implementation-Defined Behaviors

B.1 New C99 Features Supported in Ch

Ch supports all features in the C89 Standard. Ch also supports the following major new features added in
the ISO C99 Standard.

1. The features of IEEE 754 standard for floating-point arithmetic are transparent to users. Real num-
bers are represented in the entire real line with metanumbers ±0.0, ±Inf, and NaN. Mathematical
functions with real numbers are defined in the entire real domain.

2. Data types of float complex, double complex, and long double complex.

3. Data types of long long and unsigned long long.

4. Variable length arrays (VLAs).

5. Generic functions for polymorphism.

6. Mixed executable code and declaration as shown below:

x = 4;
int n = 2*x;
int a[n];

7. C++ style comment symbol // is added.

8. The identifier __func__ inside a function or member function of a class contains the name of the
function.

9. Variable argument list macros use the ellipsis notation in the arguments and an identifier VA ARGS
in the replacement list. For example,

#define debug(...) printf(__VA_ARGS__)
debug("x = %d\n", x);

results in

543

B.2. SUMMARY OF EXTENSIONS TO C
APPENDIX B. COMPARISON WITH C AND IMPLEMENTATION-DEFINED BEHAVIORS

printf("x = %d\n", x);

10. Support the header file stdbool.h with type bool, and macros true and false.

11. Support the header files complex.h, fenv.h, inttypes.h, iso646.h, stdbool.h, stdin.h, tgmath.h, as
well as wchar.h and wctype.h.

12. The implicit int declaration is removed.

fun(int i) { // ERROR: implicit int type for fun
...

}
int fun2(i) { // ERROR: implicit int type for i

...
}

13. Add va copy() in the header file stdarg.h.

14. Keywords restrict and inline are recognized.

15. The hexadecimal floating-point contants. For example,

> 0X2P3
16.0000
> 0x1.1p0
1.0625
> 0x1.1p1F
2.12

B.2 Summary of Extensions to C

1. C interpreter. Ch is an integrated language environment. C programs can readily run in Ch across
different platforms without lengthy compile/link/execute/debug cycles.

2. Classes in C++.

3. Command interpreter. Ch is similar to C-shell in command mode.

4. Safe Ch can be used for across-platform network computing.

5. All mathematical functions, I/O functions, and other generic functions are polymorphic.

6. Complex operations and complex functions are polymorphic. They are defined in the entire complex
domain with complex metanumbers ComplexInf and ComplexNaN. Different branches of multiple-
valued complex functions can be obtained by mathematical functions with optional arguments. There
is only one complex infinity and one complex-not-a-number.

7. Consistent implicit and explicit data type conversions among char, unsigned char, short, unsigned
short, int, unsigned int, float, double, float complex, double complex, as well as their metanumbers.

8. Built-in operations and functions will guarantee the delivery of correct numerical values or NaN,
ComplexNaN.

544

B.2. SUMMARY OF EXTENSIONS TO C
APPENDIX B. COMPARISON WITH C AND IMPLEMENTATION-DEFINED BEHAVIORS

9. String through the string type string t is a first-class object and can be used for symbolic computing.
New string functions str2ascii(), str2mat(), stradd(), strgetc(), strputc(), and strrep() are added.

10. Functions can be nested and recursively nested. Functions can also be mutually recursive, i.e, recur-
sive functions can call each other.

11. Class/struct/union/enum tags and class/struct/union/enum variables in Ch share the same namespace.

12. Using goto statement to transfer the program execution from a nested function to a higher level outer
function where the label is defined.

13. The index of a switch statement can be a string in addition to integral constants.

14. A computational array is treated as a first-class object like in Fortran 90.

15. Arrays of variable length including deferred-shape arrays, assumed-shape arrays, and pointer to
assumed-shape arrays are supported.

16. Arrays of adjustable range. The range of subscript for an index of array can be adjusted.

17. A member of class/struct/union can be a pointer to assumed-shape arrays.

18. Reference for simple data types char, short, int, float, double, as well as data types qualified by signed,
unsigned, long, complexcan be declared. Functions can be called by reference.

19. Variables of different data type can be passed to arguments of functions by reference through variables
or arrays.

20. Array of reference is supported. Arrays of different shape and data type can be passed to arguments
of functions with array of reference type.

21. Functions and variables can be defined only once at the given scope and lexical level. It is guaranteed
that all function calls to a function are governed by a prototype, that all the prototypes for the same
function are compatible, and that all the prototypes match the function definition even for a program
that is divided into many separate files. The same is true for external variables. Data types in all
declarations and the definition of an external variable must be compatible across different files. For
variables of array, both shape and extent of an external array at different declarations and its definition
must also be compatible.

22. Storage-class specifiers declspec(local) and declspec(global) are added.

23. The C shell style foreach-loop is supported.

24. Variables and memories allocated by memory allocation functions are automatically initialized.

25. Relational exclusive or operator ˆˆ is supported.

26. Functional type cast operations, such as float(3), are supported.

27. If the rvalue of the shifting operation is negative, the shifting direction for lvalue is reversed.

28. The identifier __class__ inside a member function of a class contains the name of the class. The
identifier __class_func__ inside a member function of a class contains the names of both class
and member function.

545

B.3. IMPLEMENTATION NOTES
APPENDIX B. COMPARISON WITH C AND IMPLEMENTATION-DEFINED BEHAVIORS

29. Several system variables such as _path, _fpath.

30. Integral operations do not use the longest data type. Operations in preprocessor commands and regular
commands use the same execution environment. All integral/floating-point operations and generic
functions are available in preprocessing as if they were used in program execution.

31. For safe operation, the array boundary is checked when an element of array is accessed. The string
length is checked when an array of chars is updated as a string.

32. A short-hand parameter list of function such as int func(double a, b, c) is supported. If
a typedefed identifier is used as an identifier for a function parameter list, it shall be preceded with a
type specifier.

33. Many generic functions are built into the language.

34. Toolkits and many function files such as plotxy(), plotxyz(), plotxyf(), plotxyzf()
are available.

35. The pointer freed by the generic function free() is reset to NULL.

36. NULL is a default keyword. It has both status of int data type and pointer to void data type. As int, it
has a value of 0. As pointer to void, it points to nowhere. It can be used in preprocess directives

ifdef NULL is true
ifndef NULL is false
defined(NULL) is true

37. C requires that a variadic function have at least one argument specified. C++/Ch doesn’t require it.

int func(...); // ok in C++/Ch, bad in C.

38. The functions printf() and scanf() can be used without the format control string. The default I/O
format described in section 20.4 will be used. For example,

int i = 90;
printf(i, " ", 2*i, "\n");
printf("Please input a number\n");
scanf(&i);

39. Programs can be written as scripts without the function main().

B.3 Implementation Notes

B.3.1 Unlimited Properties

The following properties are not limited in Ch, but limited by the available memory of a particular computer
system where Ch runs.

1. Dimension of array.

2. Nesting levels of compound statements, iteration structures of for-loop, do-loop, while-loop, and
selection control switch statement.

546

B.3. IMPLEMENTATION NOTES
APPENDIX B. COMPARISON WITH C AND IMPLEMENTATION-DEFINED BEHAVIORS

3. Nesting levels of functions.

4. Depth of class/struct/union and scope nesting.

5. Nesting levels of conditional inclusion.

6. Nesting levels of parenthesized expressions with a full expression.

7. Number of macro identifiers.

8. Number of parameters in a function definition.

9. Number of arguments in a function call.

10. Number of parameters in one marco definition.

11. Arguments in one macro invocation.

12. Size of objects for array/class/struct/union.

13. Number of members in a single class/struct/union.

14. Number of elements in a single enum.

15. Levels of nested class/struct/union definitions in a single struct-declaration-list.

16. Number of function call stack depth.

17. Number of typedef definitions.

18. Number of class/struct/enum/union definitions.

B.3.2 Defined Properties

Many implementation-dependent behaviors in C are well defined in Ch across different platforms for the
maximum portability. These so-called implementation-dependent properties are defined as follows.

1. The data type char is signed with 1 byte.

2. The data type short occupies 2 bytes.

3. The data type int occupies 4 bytes.

4. The data type long is the same as int.

5. The data type long long occupies 64 bits.

6. The data type float occupies 4 bytes.

7. The data type double occupies 8 bytes.

8. The data type complex occupies 8 bytes, 4 bytes for real and imaginary part each.

9. The data type double complex occupies 16 bytes, 8 bytes for real and imaginary part each.

10. Nesting levels for #included files is 32.

547

B.3. IMPLEMENTATION NOTES
APPENDIX B. COMPARISON WITH C AND IMPLEMENTATION-DEFINED BEHAVIORS

11. The maximum number of characters in a character string is 5119.

12. The maximum number of characters in a logical source line is 5119.

13. The maximum number of characters of a file name is 5119.

14. The maximum number of significant initial characters in an internal identifier or a macro name is
5119.

15. The maximum number of significant initial characters in an external identifier is 5119.

16. The maximum number of external identifiers is 32767.

17. The maximum number of identifiers with block scope declared in one block is 32767.

18. The maximum number of case labels for a switch statement is INT MAX-1.

19. The number of case labels for a switch statement is INT MAX-1.

20. The maximum extent for an array dimension is the value of INT MAX.

21. The upper limit of a dimension of array is the value of INT MAX-1.

22. The if-else if-else statements can be nested. Each layer can have a maximum of 127 branches.

23. Up to three indirection pointers can be declared.

B.3.3 Temporarily Features

The following tricks are used to temporarily ease the porting of C code to Ch. They will be C conforming
in the future.

1. The sizeof operator in ISO C is treated as a generic function in Ch. If the operand of sizeof operator
is an expression with multiple operands or the result of sizeof operation is not used as the last operand
in an expression, the operand of sizeof operator shall be enclosed inside a pair of parentheses. For
example,

double a[3];
int l = sizeof a/sizeof a[1]*4-sizeof a;

shall be changed to

double a[3];
int l = sizeof(a)/sizeof(a[1])*4-sizeof a;

2. The preprocessor directives starting with ‘#’ are C conforming except that

(1) macro appearing in their own expansion are reexpanded. That means the following code is invalid:

548

B.3. IMPLEMENTATION NOTES
APPENDIX B. COMPARISON WITH C AND IMPLEMENTATION-DEFINED BEHAVIORS

#define sqrt(x) ((x)<0? sqrt(-x) : sqrt(x)) // Error

enum {
_MACRO1,

#define _MACRO1 _MACRO1 // Error
_MACRO2

#define _MACRO2 _MACRO2 // Error
};

(2) The escape character ’\0’ may not work properly in conversion of tokens to strings as shown in
the following example:

#define print2(a, b) printf(#a "<" #b "=%d\n", (a)<(b))
int main() {
print2(’\0’, 10);
print2(’\\’,10);
print2(’\n’,10);

}

The output from Ch is

’<10=1
’\’<10=0
’\n’<10=0

According to C, the output should be

’\0’<10=1
’\\’<10=0
’\n’<10=0

3. Type qualifiers register and volatile are ignored. The type qualifier restrict in function argument list
is ignored.

4. The following generic functions fscanf(), sscanf(), cannot be used as an rvalue in an assignment
statement and passed as a function argument of pointer to function. For example, the following code
is not valid in Ch.

int (*fp)(char *, char *, ...);
void func(int (*fp)(char *, char *, ...));
fp = fscanf; /* Bad in Ch, ok in C */
func(fscanf); /* Bad in Ch, ok in C */

5. The size of long double is 8 bytes. The type long double is treated the same as double. The size
of long double complex is 16 bytes. The type long double complex is treated the same as double
complex. The size of long double will be 16 bytes and long double complex 32 bytes in the future.

549

B.3. IMPLEMENTATION NOTES
APPENDIX B. COMPARISON WITH C AND IMPLEMENTATION-DEFINED BEHAVIORS

B.3.4 Incompatibility between Ch and C

Ch is designed to be a superset of C. However, the following features of C are not supported in the current
version of Ch. This is not a limitation of the Ch language environment. Rather, it reflects the programming
needs of our current applications. Besides, due to the interpretive nature of the current implementation of
the Ch programming language, some C features which are designed for compilers and linkers will not be
necessary in Ch. The unsupported C features and incompatibilities between Ch and ISO C are summarized
as follows.

1. Function Prototype
The old-style function definition known as the K&R C is supported. But, the function definition,
except for function main(), in Ch must begin with a type identifier even for a function that returns an
int. In C, if the type qualifier is omitted, the return data type of the function is int by default. The
reason is that the type checking in Ch is more rigorous as far as the returned data type of a function
is concerned, which can help users to detect some hidden bugs of the program. Also, because Ch is
a script file, the default int for function declaration cannot be implemented without ambiguity. For
example,

fun(); /* function fun() invoked or declaration of int fun()? */
fun() {

...
}

2. There are more keywords in Ch than in C. The following keywords in C++ have been added in Ch.
class delete new private public this

The following additional keywords have been added in Ch.
ComplexInf ComplexNaN Inf NaN NULL foreach fprintf printf scanf string t

3. Struct tag and variables use different namespaces in C. Like C++, struct tag are typedefed and put in
variable namespace in Ch for object-oriented programming.

struct tag2 {
int i;
/* enum tag1 is local to tag2 in C++/CH, global in C */
enum tag1 {rich, poor, thief} e;
int f();

};

4. Initialization of an array with its dimension of 4 or higher. But, Ch supports arrays with dimension of
4 or higher, just not initialization when arrays are declared.

5. Very complicated (and brain-damaging) declarations (not understandable by average human beings)
may not be valid in Ch.

6. In C, the number of indirection of pointers can be up to 12. In Ch, the multiple indirection of pointer
up to 3 is allowed. In other words, only single, double and triple pointers can be defined, e.g., int
*ptr1, *ptr2, ***ptr3. The rationale behind Ch is that a multiple indirection of pointer
greater than two is not necessary in practical applications. There is always a better way to achieve the
same programming goal for a complicated quadruple pointer indirection or higher.

550

B.4. TIPS FOR PORTING C TO CH
APPENDIX B. COMPARISON WITH C AND IMPLEMENTATION-DEFINED BEHAVIORS

7. Use

char c, s1[] = "ABC";
c = s1[i];

instead of

char c;
c = "ABC"[i];

8. IEEE arithmetics

Function C Ch

hypot(+/-Inf, NaN) Inf NaN
hypot(NaN, +/-Inf) Inf NaN
pow(1, NaN) 1.0 NaN
pow(NaN, +/-0.0) 1.0 NaN

9. In C9x, when a complex number is cast to a real floating-point number implicitly, the real part of
the complex number is used. In Ch, when a complex number is cast to a real floating-point number
implicitly, if the imaginary part is not zero, the resulting real number is NaN. The real part of a
complex number can be obtained by generic function real(). For example, for the following code

#include <complex.h>
int main() {

double d;
complex z;

z = complex(1, 0);
d = z; // d is 1 in both C9x and Ch
z = complex(1, 2);
d = z; // d is 1 in C9x, d is NaN in Ch

}

10. A character constant such as ‘c’ has type int in C. Like C++, a character constant has type char in Ch.

11. The dollar sign character ’$’ cannot be used in an identifier in Ch. But, it can be used in C.

B.4 Tips for Porting C to Ch

Ch is designed as a superset of C. Because of extensions to C, some obsolete features in C should be avoided
so that programs can run in both C and Ch.

1. Non-portable code:

551

B.4. TIPS FOR PORTING C TO CH
APPENDIX B. COMPARISON WITH C AND IMPLEMENTATION-DEFINED BEHAVIORS

funct()
{ ...}

Portable code:

int funct()
{ ...}

2. Non-portable code:

funct(a, b, c)
int a;
int b;
char *c;
{...}

Portable code:

int funct(a, b, c)
int a;
int b;
char *c;
{...}

3. Non-portable code:

funct(int a, int b, char *c)
{...}

Portable code:

int funct(int a, int b, char *c)
{...}

4. For included the header file, add

#ifndef FILENAME_H
#define FILENAME_H
...
#endif

5. Do not use the following functions fscanf(), sscanf() as an rvalue in an assignment statement, or
passed as a function argument of pointer to function. For example, the following code is not valid in
Ch.

int (*fp)(char *, ...);
void func(int (*fp)(char *, ...));
fp = fscanf; /* Bad in Ch, ok in C */
func(fscanf); /* Bad in Ch, ok in C */

552

B.4. TIPS FOR PORTING C TO CH
APPENDIX B. COMPARISON WITH C AND IMPLEMENTATION-DEFINED BEHAVIORS

6. Do not use new keywords ComplexInf, ComplexNaN, Inf, NULL, NaN, array, class, delete, fore-
ach, fprintf, new, printf, private, public, scanf, string t, this in Ch as variables. Use ’which
identifier’ to check if the identifier is a keyword or not. In some cases, you may use the
technique similar to the code below to handle the namespace conflict.

#if defined(__cplusplus) || defined(c_plusplus) || defined(_CH_)
int c_class;

#else
int class;

#endif

7. Do not use pointers with more than triple indirections.

For portability of your code, do not use the following C features for the time being.

1. Do not initialize arrays with more than three dimensions.

2. Do not use the following functions defined in header file wchar.h.

extern int fwprintf(FILE *, const wchar_t *, ...);
extern int fwscanf(FILE *, const wchar_t *, ...);
extern int swprintf(wchar_t *, size_t, const wchar_t *, ...);
extern int swscanf(const wchar_t *, const wchar_t *, ...);
extern int vfwprintf(FILE *, const wchar_t *, __va_list);
extern int vwprintf(const wchar_t *, __va_list);
extern int vswprintf(wchar_t *, size_t, const wchar_t *, __va_list);
extern int wprintf(const wchar_t *, ...);
extern int wscanf(const wchar_t *, ...);

3. Do not use "string"[i].

4. Do not use sizeof expr, instead use sizeof(expr).

553

Appendix C

Comparison with C++

C.0.1 Features in Both C++ and Ch

1. Member function.

2. Mixed code and declaration.

3. The this-> pointer.

4. Reference type and pass-by-reference.

5. Function-style type conversion.

6. Class.

7. Private/public data and functions. Members of a class definition are assumed to be private until a
public declaration is given.

8. Static member of class/struct/union.

9. const member functions.

10. The new and delete operators.

11. The constructor and destructor.

12. Polymorphic functions.

13. The scope resolution operator :: for member function definitions, static members, and global vari-
ables such as ::g for global variable g in a local scope.

14. The I/O cout, cerr, cin with endl and ends.

15. The following using directive for cout, cerr, cin, endl, and ends.

using std::cout;
using std::cin;
using std::cerr;
using std::endl;
using std::ends;

554

APPENDIX C. COMPARISON WITH C++

or

using namespace std;

16. Arguments for variadic functions are optional.

int func(...); // ok in C++/Ch, bad in C.

C.0.2 Extensions to C++ Classes in Ch

1. Classes inside member functions.

2. Nested functions with classes.

3. Pass member function to argument of pointer-to-function type of functions.

C.0.3 C++ Features not Supported in Ch

1. Classes with member function definitions.

class member function definitions should be outside a class declaration. For example, the following
code won’t work.

class tag {
int i;

public:
tag() {

i=0;
}
void f() {

i++;
}

};

It should be changed as

class tag {
int i;

public:
tag();
void f();

};
tag::tag() {

i =0;
}
void tag::f(void) {

i++;
}

2. Virtual functions and pure virtual functions.

555

APPENDIX C. COMPARISON WITH C++

3. Friend function.

4. Inheritance.

5. Multi-inheritance.

6. Protected data and functions.

7. Function overloading.

8. Operator overloading.

9. Template.

10. Exception.

11. File stream I/O.

12. Function return reference type.

13. Function with default argument value.

14. Copy constructor.

15. Conversion function.

16. asm keyword.

17. linkage specifier such as ’extern C’.

18. Operators ::* and ::->.

19. Shorthand initialization.

...
myclass ob1 = myclass(i); // ok in both C++ and Ch
myclass ob2 = myclass(2); // ok in both C++ and Ch
myclass ob3(i); // ok in C++, bad in Ch
myclass ob4(2); // ok in C++, bad in Ch

20. Declaration in expression. For example,

if(char *c = malloc(8)) { // ok in C++, bad in Ch
/* use c here */

}.
for(int i = 0; i<10; i++) { // ok in C++, bad in Ch

/* use i here */
}

21. Namespaces.

22. Run-time type information.

23. New cast notion.

24. New style of including header file without postfix .h. For example,

#include <stdio>

556

APPENDIX C. COMPARISON WITH C++

C.0.4 Differences Between C++ and Ch

1. The constructor of a member of a class type inside another class is not called in Ch automatically
upon instantiation. A function return class can be used to assign the value of the class. For example,

#include <stdio.h>

class tag1 {
public:

tag1();
class tag1 fun();

};
tag1::tag1() {

printf("hello from tag1 constructor\n");
}
class tag1 tag1::fun() {
class tag1 t; /* constructor is called */

return t;
}

class tag2 {
public:

class tag1 document; /* constructor is NOT called */
tag2();

};
tag2::tag2() {

printf("hello from tag2 constructor\n");
}

int main(){
class tag2 window;
window.document = window.document.fun();

}

557

Appendix D

Comparison with C Shell

D.1 Syntax

Both Ch and C shells have their local shell variables besides the environment variables. Table D.1 gives a
brief syntax comparison between Ch and C shell. The semantics of Ch commands listed in Table D.1 are the
same as those of the corresponding commands of C shell. Commands alias, history, remvar and unalias
in Ch are valid in interactive command shells only. Directive #pragma remvar(var) is valid inside Ch
programs only. Table D.2 gives comparison of control flow between C shell and Ch.

558

D.1. SYNTAX APPENDIX D. COMPARISON WITH C SHELL

Table D.1: Selected syntax comparisons between C shell and Ch.

C shell Ch shell
$#argv _argc
$argv[*] strjoin(" ", _argv[1], _argv[2],

..., _argv[_argc])
$argv strjoin(" ", _argv[1], _argv[2],

..., _argv[_argc])
$* strjoin(" ", _argv[1], _argv[2],

..., _argv[_argc])
$argv[1-n] strjoin(" ", _argv[1], _argv[2],

..., _argv[n])
$0 _argv[0]
$argv[n] _argv[n]
$1 $2 ... $9 _argv[1] _argv[2] ... _argv[9]
$argv[$#argv] _argv[_argc]
set prompt = "ch> " _prompt = "ch> "
set path = (/usr/bin /bin) _path = "/usr/bin /bin"
umask 022 umask(022)
setenv PATH "/usr/bin /bin" putenv("PATH=/usr/bin /bin")
echo $PATH printf("%s\n", getenv("PATH"))
echo $PATH echo $(getenv("PATH"))
echo $PATH echo $PATH
echo ${PATH} echo ${PATH}
echo $path printf("%s\n", _path)
echo $path echo $_path
unsetenv PATH remenv("PATH")
printenv PATH getenv("PATH")
unset path remvar _path
unset path #pragma remvar(_path)
unset i remvar i
unset i #pragma remvar(i)
set i =90 int i = 90
set i =91 i = 91
`cmd $var` `cmd $var`
`cmd $ENVVAR` `cmd $ENVVAR`
`cmd $ENVVAR` `cmd $(getenv("ENVVAR"))`
set hostnam = `hostname` string_t hostnam = `hostname`
set host = `hostname` _host = `hostname`

559

D.1. SYNTAX APPENDIX D. COMPARISON WITH C SHELL

Table D.1: Selected syntax comparisons between C shell and Ch (Contd.).

C shell Ch shell
alias rm alias rm
alias alias
alias rm "rm -i" alias("rm", "rm -i")
alias f "find . alias("f", "find .

-name \!:1 -print" -name _argv[1] -print")
alias e "echo \!* \!$ \!#" alias("e", "echo _argv[*] _argv[$] _argv[#]")
alias rm alias("rm")
alias alias()
unalias rm unalias rm
unalias rm alias("rm", NULL)
eval ls streval("‘ls‘")
eval ls system("ls")
eval setenv NAME value streval("putenv(\"NAME=value\")")
./cmd -option ./cmd -option
/usr/bin/ls * /usr/bin/ls *
"/path with space/cmd" option "/path with space/cmd" option
$cmd option $cmd option
status _status
ls ˜ * ls ˜ *
ls > output ls > output
ls | tar -cf tarfile ls | tar -cf tarfile
ls $PATH ls $(getenv("PATH"))
ls $PATH ls $PATH
ls $path ls $_path
history = 100 _histsize = 100
history history
!l !l
!l -agl !l -agl
!3 !3
!-1 !-1
!! !!
!! !
vi `grep -l "str1 str2" *.c` vi `grep -l "str1 str2" *.c`
more .cshrc .login .logout more .chrc .chlogin .chlogout
more .cshrc .login .logout more .chsrc .chlogin .chlogout

560

D.2. CONTROL FLOW APPENDIX D. COMPARISON WITH C SHELL

D.2 Control Flow

Table D.2: Control flow comparisons between C shell and Ch.
Description C shell Ch shell
while-loop while(expr) while(expr) {

commands commands
end }

foreach-loop foreach token(wordList) foreach(token; wordList) {
#use $token // use token

commands commands
end }

if if(expr) if(expr) {
commands commands

endif }
if-else if if(expr1) then if(expr1) {

-else commands1 commands1
else if(expr2) then }

commands2 else if(expr2) {
else commands2

commands3 }
endif else {

commands3
}

goto goto label goto label
label: statements label: statements

switch switch(expr) switch(expr) {
case pattern1: case pattern1:

commands1 commands1
breaksw break;

case pattern2: case pattern2:
commands2 commands2
breaksw break;

default: default:
defaultCommands defaultCommands

endsw break;
}

561

Appendix E

Comparison with MATLAB

Table E.1: Symbols used for comparison of MATLAB and Ch.
Symbol Data Type
x scalar or computational array of real or complex type.
A, Ai, B, Bi computational arrays of real or complex type.
Av, Avi, Bv, Bvi one-dimensional computational arrays of real or complex type.
R, Ri computational arrays of real type.
Rv, Rvi one-dimensional computational arrays of real type.
I, Ii computational arrays of integral type.
Iv, Ivi one-dimensional computational arrays of integral type.
C, Ci arrays of char type.
Z, Zi computational arrays of complex type.
Zv, Zvi one-dimensional computational arrays of complex type.
s scalar of real or complex type.
z scalar complex type.
r scalar real type.
f scalar floating-point type.
i scalar integral type.
p pointer type.
str a string.

562

E.1. OPERATORS APPENDIX E. COMPARISON WITH MATLAB

E.1 Operators

Table E.2: Comparison of operators in MATLAB and Ch.
Operator MATLAB Ch
∼ ∼A !A

∼s !s
+ +A +A

+s +s
− −A −A

−s −s
< A<B A<B

A<s A<r
s<A r<A

∼= A∼=B A! =B
A∼=s A! =s
s∼=A s! =A

| A|B A||B
A|s A||r
s|A r||A

& A& B A&& B
A& s A&& s
s& A s&& A

+ A+B A+B
A+s A+s
s+A s+A
A= A+B A= A+B
A= A+B A+= B

− A−B A−B
A−s A−s
s−A s−A
A= A−B A−= B

∗ A∗B A∗B
A∗s A∗s
s∗A s∗A
A= A∗B A= A∗B
A= A∗B A∗= B

/ A= A1/B1 A=A1∗inverse(B1)
A/s A/s
A= A/s A= A/s
A= A/s A/= s

ˆ i1ˆi2 pow(i1,i2)
s1ˆs2 pow(s1,s2)
Iˆi pow(I,i)
Aˆi pow(A,i)

563

E.1. OPERATORS APPENDIX E. COMPARISON WITH MATLAB

Table E.2: Comparison of operators in MATLAB and Ch (continued).
Operator MATLAB Ch
\ A=A1\B1 A=inverse(A1)∗B1
\ Av=A\Bv’ linsolve(Av,A,Bv)

Av=inverse(A)∗Bv
llsqsolve(Bv, A,Av)

’ A’ transpose(A)
’ Z’ transpose(conj(Z))
.∗ A.∗B A.∗B
./ A./B A./B
./ s./B s./A
.ˆ A.ˆB pow(A, B)
.ˆ A.ˆs pow(A, (array double [n])s)
.ˆ s.ˆA pow((array double [n])s, A)
.\ A.\B (not valid)

564

E.2. FUNCTIONS AND CONSTANTS APPENDIX E. COMPARISON WITH MATLAB

E.2 Functions and Constants
Table E.3: Comparison of functions in MATLAB and Ch.

Function MATLAB Ch
abs r=abs(s) r=abs(s)

A=abs(A) A=abs(A)
Iv=abs(’str’) array int Iv[strlen(”str”)]= {’s’,’t’,’r’}

acos x=acos(x) x=acos(x)
acosh x=acosh(x) x=acosh(x)
addpath addpath(’/new/dir’,/new/dir2’) path=stradd(”/new/dir1;/new/dir2;”, path)
all i=all(A) i=sum(!A=0)==0
angle r=angle(z) r=carg(z)
any i=any(A) i=sum(A! =0)! =0
asin x=asin(x) x=asin(x)
asinh x=asinh(x) x=asinh(x)
atan x=atan(x) x=atan(x)
atan2 r=atan2(r1,r2) r=atan2(r1,r2)
atanh x=atanh(x) x=atanh(x)
balance [A, B] = balance(A1) balance(A1, A, B)
base2dec i=base2dec(’str’,i2) i=strtol(”str”, NULL, i2)
bin2dec() bin2dec(’01010’)
blanks str=blank(n) " "

ceil x=ceil(x) s=ceil(s)
choly A= chol(A1) choldecomp(A1, A)
clear clear name remvar name

clear name #pragma remvar(name)
compan A=compan(Av) R=companionmatrix(Rv)

Z=ccompanionmatrix(Zv)
cond r=cond(A) r=condnum(A)
condest r=condest(A) r=condnum(A)
conj x=conj(x) x=conj(x)
conv Av= conv(Av1, Av2) conv(Av, Av1, Av1)
conv2 A= conv2(A1, A2) conv2(A, A1, A2)
corrcoef R= corrcoef(R1) corrcoef(R, R1)
corr2 r= corr2(R1, R2) r= correlation2(R1, R2)
cos x=cos(x) x=cos(x)
cosh x=cosh(x) x=cosh(x)
cov R= cov(R1) covariance(R, R1)
cross Rv=cross(Rv1,Rv2) Rv=cross(Rv1,Rv2)
cumprod A= cumprod(A1’) cumprod(A, A1)

A= cumprod(A1) cumprod(A, transpose(A1))
Av=cumprod(Av1) cumprod(Av, Av1)

cumsum A= cumsum(A1’) cumsum(A, A1)
A= cumsum(A1) cumsum(A, transpose(A1))
Av= cumsum(Av1) cumsum(Av, Av1)

dec2base()

565

E.2. FUNCTIONS AND CONSTANTS APPENDIX E. COMPARISON WITH MATLAB

Table E.3: Comparison of functions in MATLAB and Ch (continued).
Function MATLAB Ch
dec2bin i=dec2bin(i2) printf(”%b”, i2)

printf(”%10b”, i2)
dec2hex str=dec2hex(x) sprintf(str,”%x”, r)
deconv A=deconv(A1,B1) deconv(A,A1,B1)

[A, B]=deconv(A1,B1) deconv(A,A1,B1,B)
deblank() deblank(’str’) (not valid)
det s=det(A) r=determinant(A)

z=cdeterminant(Z)
diag Av=diag(A) Rv=diagonal(R)

Zv=diagonal(Z)
A=diagb(Av) R=diagonalmatrix(Rv)

Z=cdiagonalmatrix(Zv)
diff A=diff(A) Rv=difference(Rv)

r=derivative(func,r)
R=derivatives(func,R)

disp disp(i) printf(”%d”, i) or printf(i)
disp(f) printf(”%f”, f) or printf(f)
disp(str) printf(”%s”, str) or printf(str)
disp(A) printf(”%d”, A) or printf(A)

display display(i) printf(”%d”, i) or printf(i)
display(f) printf(”%f”, f) or printf(f)
display(str) printf(”%s”, str) or printf(str)
display(A) printf(”%d”, A) or printf(A)

dot x=dot(Av1,Av2) r=dot(Rv1,Rv2)
eig Av=eig(A1) eigensystem(Av, NULL,A1)

[Av, B]=eig(A1) eigensystem(Av, B,A1)
[Av, B]=eig(A1,’nobalance’) eigensystem(Av, B, A1, ”nobalance”)

eps eps #include<float.h>
FLT EPSILON, DBL EPSILON

eval eval(’cmd’) system(”cmd”)
eval(’expr’) streval(”expr”)
eval(try,catch)

eye R=eye(i) R=identitymatrix(i)
exp x=exp(x) x=exp(x)
expm A= expm(A1) expm(A,A1)
fclose fclose see fclose()
feval feval(’fun’) streval(”fun”)
feof feof see feof()
ferror ferror see perror() and other I/O functions
fft Av= fft(Av1) fft(Av, Av1)

Av= fft(Av1, i) A= fft(A1, i)
fft2 A=fft2(A1) fft(A, A1)

A= fft(A1, i1, i2) Iv[0]=i1, Iv[1] =i2, A= fft(A1, Iv)
fftn A=fftn(A1) fft(A, A1) /* 3D only */

A= fftn(A1, i) Iv[0]=Iv[1]=Iv[2]=i, fft(A,A1,Iv) /* 3D only */
fftshift

566

E.2. FUNCTIONS AND CONSTANTS APPENDIX E. COMPARISON WITH MATLAB

Table E.3: Comparison of functions in MATLAB and Ch (continued).
Function MATLAB Ch
fgetl str= fgetl(fid) i=strlen(str)

getline(fid, str, i)
fgets fgets see fgets()
fix i=fix(r) i=r
filter Av= filter(Bv1, Bv2, Av1) filter(Bv1, Bv2, Av1, Av)
filter2 A= filter2(A1, B1) filter2(A, A1, B1)
finite i=finite(s) i=isfinite(s)

I=finite(A) fevalarray(I,isfinite,R);
find() i=find(x)

[r,c]=find(x)
I= find(A) i=findvalue(I, A) /* i is # of values found */

findstr() i=findstr(’str1’, ’str2’) p=strstr(str1, str2)
fliplr A= fliplr(A1) fliplr(A, A1)
flipud A= flipud(A1) flipud(A, A1)
floor floor(x) floor(x)
flops flops (Not valid)
fmin r= fmin(’fun’, r1, r2) fminimum(r3, r, fun, r1, r2)
fmins Rv= fmins(’fun’, Rv1) fminimums(r3, Rv, fun, Rv1)
fplot fplot(’fun’, [r1r2]) fplotxy(fun,r1,r2)

fplotxyz()
CPlot:MemberFunctions()

fprintf fprintf() see fprintf()
fread fread() see fread()
frewind frewind() see frewind()
fscanf fscanf() see fscanf()
fseek fseek() see fseek()
ftell ftell() see ftell()
funm R= funm(R1,’fun’) funm(R, fun, R1)

Z= funm(Z,’fun’) cfunm(Z, /* complex */ cfun, Z1)
fwrite fwrite() see fwrite()
fsolve R= fsolve(’fun’, Ri) fsolve(R, fun, Ri)
fzero r= fzero(’fun’, r1) fzero(r, fun, r1)
gallery A=gallery(name,arg1) A=specialmatrix(Name,arg1)

A=gallery(name,arg1,arg2) A=specialmatrix(Name,arg1,arg2)
A=gallery(name,arg1,arg2,arg3) A=specialmatrix(Name,arg1,arg2,arg3)
A=gallery(’caychy’,Av1) specialmatrix(”Cauchy”,Av1)
A=gallery(’caychy’,Av1,Av2) specialmatrix(”Cauchy”,Av1,Av2)
A=gallery(’chebvand’,Av1) specialmatrix(”ChebyshevVandemonde”,Av1)
A=gallery(’chebvand’,i,Av1) specialmatrix(”ChebyshevVandemonde”,Av1,i)
A=gallery(’chow’,i) specialmatrix(”Chow”,i)
A=gallery(’chow’,i,r1) specialmatrix(”Chow”,i,r1)
A=gallery(’chow’,i,r1,r2) specialmatrix(”Chow”,i,r1,r2)
A=gallery(’circul’,Av1) specialmatrix(”Circul”,Av1)
A=gallery(’clement’,i1,i2) specialmatrix(”Clement”,i1,i2)

specialmatrix(”DenavitHartenberg”,r1,r2,r3,r4)
specialmatrix(”DenavitHartenberg2”,r1,r2,r3,r4)
567

E.2. FUNCTIONS AND CONSTANTS APPENDIX E. COMPARISON WITH MATLAB

Table E.3: Comparison of functions in MATLAB and Ch (continued).
Function MATLAB Ch

A=gallery(’dramadah’,i1) specialmatrix(”Dramadah”,i1)
A=gallery(’dramadah’,i1,i2) specialmatrix(”Dramadah”,i1,i2)
A=gallery(’fiedler’,Av1) specialmatrix(”Fiedler”,Av1)
A=gallery(’frank’,i1) specialmatrix(”Frank”,i1)
A=gallery(’frank’,i1,i2) specialmatrix(”Frank”,i1,i2)
A=gallery(’gearmat’,i1) specialmatrix(”Gear”,i1)
A=gallery(’wilk’,i1) specialmatrix(”Wilkinson”,i1)
AV=gallery(’house’,Av1) householdermatrix(Av1,Av)
[AV,r]=gallery(’house’,Av1) householdermatrix(Av1,Av,r)

gcd() I= gcd(I1, I2) gcd(I1, I2, I)
[I,I3,I4]=gcd(I1,I2) gcd(I1, I2, I, I3, I4)

hadamard A=hadamard(i1) specialmatrix(”Hadamard”,i1)
hankel A=hankel(Av1) specialmatrix(”Hankel”,Av1)

A=hankel(Av1,Av1) specialmatrix(”Hankel”,Av1,Av2)
hex2dec i=hex2dec(’str’) i=strtol(”str”, NULL, 16)
hex2num() r=hex2num(’str’)
hess [B, A] = hess(A1) hessdecomp(A1, A, B)
hilb A=hilb(i1) specialmatrix(”Hilbert”,i1)
hist hist() histogram()
i i #include<complex.h>

I
ifft Av=ifft(Av1) ifft(Av, Av1)

Av=ifft(Av1, i) ifft(A, A1, i)
ifft2 A=ifft2(A1) ifft(A,A1)

A= ifft(A1, i1, i2) Iv[0]=i1, Iv[two] =i2, ifft2(A, A1, Iv)
ifftn A=ifftn(A1) ifft(A, A1) /* 3D only */

A= iftn(A1, i) Iv[0]=Iv[1]=Iv[2]=i, ifft(A, A1,Iv)
imag r=imag(s) r=imag(s)

R=imag(A) R=imag(A)
inf inf Inf
input s=input(str) r=getnum(str,r)
int2str str=int2str(i) sprintf(str,"%d"”, i)
interp1 Ri=interp1(R1, R2, Ri1) interp1(Ri, Ri1, R1, R2, ”linear”)

Ri=interp1(R1, R2, Ri1,’linear’) interp1(Ri, Ri1, R1, R2, ”linear”)
Ri=interp1(R1, R2, Ri1,’spline’) interp1(Ri, Ri1, R1, R2, ”spline”)

interp2 Ri=interp2(R1, R2, R3, Ri1, Ri2) interp2(Ri, Ri1, Ri2, R1, R2, R3, ”linear”)
Ri=interp2(R1, R2, R3, Ri1, Ri2, ’linear’) interp2(Ri, Ri1, Ri2, R1, R2, R3, ”linear”)
Ri= interp2(R1, R2, R3, Ri1, Ri2, ’spline’) interp2(Ri, Ri1, Ri2, R1, R2, R3, ”spline”)

inv A=inv(A) R=inverse(R)
Z=cinverse(Z)

invhilb A=invhilb(i1) specialmatrix(”InverseHilbert”,i1)
isempty i=isempty(A) (not valid)
isglobal i=isglobal(x) #include<chshell.h >

isvar(”x”)==CH SYSTEMVAR

568

E.2. FUNCTIONS AND CONSTANTS APPENDIX E. COMPARISON WITH MATLAB

Table E.3: Comparison of functions in MATLAB and Ch (continued).
Function MATLAB Ch
ishold i=ishold (not valid)
isieee i=isieee (not valid)
isinf i=isinf(s) i=isinf(s)

I=isinf(A) fevalarray(I,isinf,R);
isletter i=isletter(s) i=isalpha(s)

I=isletter(A) fevalarray(I,isalpha,R);
isnan i=isnan(s) i=isnan(s)

I=isnan(A) fevalarray(I,isnan,R);
isreal i=isreal(s) i=elementtype(x) != elementtype(complex) &&

elementtype(x) != elementtype(double complex)
isspace i=isspace(s) i=isspace(s)

I=isspace(A) fevalarray(I,isspace,R);
issparse i=issparse(x)
isstr i=isstr(x) i=elementtype(x) == elementtype(string t)
isstudent i=isstudent i=isstudent()
isunix i=isunix #ifndef WIN32
isvms i=isvms (not valid)
invhilb()
j j #include<complex.h>

I
lasterr lasterr(”) see perror(), strerror()
lcm() I= lcm(I1,I2) lcm(I,I1,I2)
length i=length(A) i=max(shape(A))
linspace x=linspace(first,last,n) lindata(first,last, x)
loglog x=loglog(x,y) plot.loglog(x,y)
loglog x=loglog(x,y) plot.data2D(x,y)

plot.scaleType(PLOT AXIS X, PLOT SCALETYPE LOG)
plot.scaleType(PLOT AXIS Y, PLOT SCALETYPE LOG)

logspace x=logspace(first,last,n) logdata(first,last,x)
log x=log(x) x=log(x)
log10 x=log10(x) x=log10(x)
log2 x=log2(x) x=log(x)/log(2)

r=log2(r) r=log2(r)
logm A=logm(A1) logm(A,A1)
lower str=lower(’str’) see tolower()
lscov R= lscov(A1,R1,A2) llsqcovsolve(R, A1,R1,A2)

[R,R2]=lscov(A1,R1,A2) llsqcovsolve(R, A1,R1,A2,R2)
lu [R1,R2]=lu(A) ludecomp(A,R1,R2)

[R1,R2,I]=lu(A) ludecomp(A,R1,R2,I)
magic() A=magic(i1) specialmatrix(”Magic”,i1)

Zv= mean(Z) cmean(Z, Zv)
max r=max(s1,s2) r=max(r1,r2)

r=max(Av) r=max(R)
Rv=max(A) Rv=maxv(R)

Rv=transpose(maxv(transpose(R))

569

E.2. FUNCTIONS AND CONSTANTS APPENDIX E. COMPARISON WITH MATLAB

Table E.3: Comparison of functions in MATLAB and Ch (continued).
Function MATLAB Ch
min r=min(s1,s2) r=min(r1,r2)

r=min(Av) r=min(R)
Rv=min(A) Rv=minv(R)

Rv=transpose(minv(transpose(R))
mean r=mean(R) r=mean(R)

Rv=mean(R) r=mean(R, Rv)
mean(transpose(R), Rv)

z= mean(Z) z= cmean(Z)
median r=median(R) r=median(R)

Rv=median(R) r=median(R, Rv)
median(transpose(R), Rv)

mod i=mod(i1,i2) i=i1%i2
r=mod(r1,r2) r=fmod(r1,r2)

NaN NaN NaN
nargin nargin (not valid)
nargout nargout (not valid)
nextpow2 i=nextpow2(r) i=ceil(log2(r))

i=nextpow2(z) i=ceil(log2(abs(z)))
i=nextpow2(Av) i=ceil(log2((int)shape(Av)))

nnls() R=nnls(A1,R1) llsqnonnegsolve(R, A1,R1)
R=nnls(A1,R1,r) llsqnonnegsolve(R, A1,R1,R)
[R, R2]=nnls(A1,R1) llsqnonnegsolve(R, A1,R1,0.0, R2)
[R, R2]=nnls(A1,R1,r) llsqnonnegsolve(R, A1,R1,r, R2)

norm norm(A) norm(A,”2”)
norm(A,1) norm(A,”1”)
norm(A,2) norm(A,”2”)
norm(A,inf) norm(A,”i”)
norm(A,’fro’) norm(A,”f”)
norm(Av) norm(Av,”2”)
norm(Av,inf) norm(Av,”i”)
norm(Av,-inf) norm(Av,”-i”)
norm(Av,p) norm(Av,”p”)

numtwostr str=numtwostr(s) sprintf(str,”%”, s)
null A=null(Ai) nullspace(A, Ai)
ones ones(i1) (array int a[i1][i1])1

ones(i1,i2) (array int a[ii1][i2])1
ones(size(A)) array int dim[2]=shape(A);

(array int a[dim[0]][dim[1]])1
ode23 [Rv1,Rv2]= ode23(’fun’,r1,r2,Rv) oderungekutta(Rv1,Rv2, NULL, fun,r1,r2,Rv)
ode45 [Rv1,Rv2]= ode45(’fun’,r1,r2,Rv) oderungekutta(Rv1,Rv2, NULL, fun,r1,r2,Rv)
orth A= orth(Ai) orthonormalbase(A, Ai)
pascal() A=pascal(i1) specialmatrix(”Pascal”,i1)

A=pascal(i1,i2) specialmatrix(”Pascal”,i1,i2)

570

E.2. FUNCTIONS AND CONSTANTS APPENDIX E. COMPARISON WITH MATLAB

Table E.3: Comparison of functions in MATLAB and Ch (continued).
Function MATLAB Ch
pi pi #include<math.h>

M PI
pinv A1=pinv(A) R1=pinverse(R)
poly Av=poly(A) charpolycoef(Av,A)

Bv=poly(Av) polycoef(Bv,Av)
polyder Av= polyder(Bv) polyder(Av, Bv)
polyder2 Av= polyder(Av1, Bv1) polyder2(Av, NULL, Av1, Bv1)

[Av,Bv] = polyder(Av1,Bv1) polyder2(Av,Bv,Av1,Bv1)
polyfit Rv=polyfit(Rv1, Rv2, i) polyfit(Rv, Rv1, Rv2)
polyval r= polyval(Rv1, r1) r= polyeval(Rv1, r1)

r= polyval(Rv1,r1,Rv) r= polyeval(Rv1, r1, Rv)
z= polyval(Av1, s) z= cpolyeval(Av1, s)
z= polyval(Av1, s, Av) z = cpolyeval(Av1, s, Av)
Av= polyval(Bv, Av1) polyevalarray(Av, Bv, Av1)
A=polyval(Av,A1) polyevalm(A,Av,A1)

polyvalm() A=polyvalm(Av,A1) polyevalm(A,Av,A1)
plot plot(Rva,Rvb) plotxy(Rv1,Rv2)

plotxyf(file)
CPlot:MemberFunctions()

plot3 plot3(Rv1,Rv2,Rv3) plotxyz(Rv1,Rv2,Rv3)
plotxyzf(file)
CPlot:MemberFunctions()

prod s=prod(A) r=product(R)
z=cproduct(Z)

Av=prod(A) r=product(R, Rv)
Av=prod(A, 1) r=product(R, Rv)
Av=prod(A, 2) r=product(transpose(R), Rv)

z=cproduct(Z,Zv)
product(transpose(R), Rv)
cproduct(transpose(Z), Zv)

quad r=quad(’fun’,r1,r2) r=integral1(fun,r1,r2)
quadeight r=quadeight(’fun’,r1,r2) r=integral1(fun,r1,r2)
qr [A1, A2] = qr(A) qrdecomp(A, A1, A2)

[A1, A2, A3] = qr(A)
[A1, A2]=qr(A) qrdecomp(A,A1,A2)
[A1,A2]=qr(A,zero) qrdecomp(A,A1,A2)

qrdelete [A1, itBa] = qrdelete(A, B, i2) qrdelete(A1, itBa, A, B, i2)
qrinsert [A1, itBa] = qrdelete(A, B, i2, Av) qrdelete(A1, itBa, A, B, i2, Av)
rank i= rank(A) i= rank(A)

i= rank(A, r) i= rank(A)
real r=real(s) r=real(s)

R=real(A) R=real(A)
realmax realmax #include<float.h>

FLT MAX, DBL MAX
realmin realmin #include<float.h>

FLT MIN, DBL MIN
571

E.2. FUNCTIONS AND CONSTANTS APPENDIX E. COMPARISON WITH MATLAB

Table E.3: Comparison of functions in MATLAB and Ch (continued).

Function MATLAB Ch
rem r=rem(r1,r2) r=fmod(r1,r2)

r=remainder(r1,r2)+r2
residue [Av,Bv,Rv]=residue(Rv1,Rv2) residue(Rv1, Rv2, Av, Bv, Rv)
round i=round(r) i=round(r)
roots Av=roots(Bv) roots(Av,Bv)
rosser A=rosser() specialmatrix(”Rosser”)
rot90(A)

A= rot90(A1) rot90(A,A1)
A= rot90(A1,i) rot90(A,A1,i)

rand r=rand() r=urand()
randn R=rand(i1, i2) urand(R)
rcond r= rcond(A) r= rcondnum(A)
reshape reshape(A, m, n) (array type [m][n])A
rsf2csf [A1, itBa] = rsf2csf(A, B) rsf2csf(A1, itBa, A, B)
schur A1= schur(A) schurdecomp(A, A1, NULL)

[A1, A2] = schur(A) schurdecomp(A, A1, A2)
semilogx x=semilogx(x,y) plot.semilogx(x,y)
semilogx x=semilogx(x,y) plot.data2D(x,y)

plot.scaleType(PLOT AXIS X, PLOT SCALETYPE LOG)
semilogy x=semilogy(x,y) plot.semilogy(x,y)
semilogy x=semilogy(x,y) plot.data2D(x,y)

plot.scaleType(PLOT AXIS Y, PLOT SCALETYPE LOG)
sign i=sign(r) i=sign(r)

z=sign(z) z=z/abs(z)
sqrt x=sqrt(x) x=sqrt(x)
sqrtm A= sqrtm(A1) sqrtm(A,A1)
size Iv=size(A) Iv=shape(A)

[i1,i2]=size(A) Iv=shape(A); i1=Iv[0]; i2=Iv[1]
i=size(A,1) i= (int)shape(A)
i=size(A,2) Iv=shape(A); i=Iv[1]

sort Av=sort(Av1) sort(Av, Av1)
sort(Av, Av1, ”array”)

A=sort(A1) sort(A, A1, ”column”)
A=sortrows(A1) sort(A, A1, ”row”)
[Av, I]=sort(Av1) sort(Av, Av1, ”array”, I)

sort(Av, Av1, NULL, I)
[A, I]=sort(A1) sort(A, A1, ”column”, I)
[A, I]=sortrows(A1) sort(A, A1, ”rows”, I)

spline Ri= spline(R1, R2, Ri1) interp1(Ri, R1i, R2i, ”spline”)
ri= spline(R1, R2, r) CSpline::Interp(r)
Ri= spline(R1, R2, Ri1) CSpline::Interpm(Ri1, Ri)

sprintf sprintf() see sprintf()
sscanf sscanf() see sscanf()
std r=std(R) r=std(R)

Rv=std(R) r=std(R, Rv)
std(transpose(R), Rv)572

E.2. FUNCTIONS AND CONSTANTS APPENDIX E. COMPARISON WITH MATLAB

Table E.3: Comparison of functions in MATLAB and Ch (continued).
Function MATLAB Ch
str2mat C=str2mat(’str1’, ’str2’, ...) str2mat(C, str1, str2)
str2num i=str2num(’str’) i=atol(str), see strtod()
strcmp strcmp(’str1’,’str2’) !strcmp(”str1”,”str2”)
strrep str= strrep(’str1’, ’str2’, ’str3’) str=strrep(str1, str2, str3)
strtok strtok see strtok(), strtok r()
subplot subplot() CPlot::subplot()

CPlot::getSubplot()
sum r=sum(A) r=sum(R)

z=csum(Z)
Av=sum(A) r=sum(R, Rv)

z=csum(Z,Zv)
sum(transpose(R), Rv)
csum(transpose(Z), Zv)

svd R= svd(A) svd(A, R, NULL, NULL)
[A1, R, A2] = svd(A)) svd(A, R, A1, A2)

tan x=tan(x) x=tan(x)
tanh x=tanh(x) x=tanh(x)
toeplititz A=toeplititz(Av1) specialmatrix(”Toeplititz”,Av1)

A=toeplititz(Av1,Av2) specialmatrix(”Toeplititz”,Av1,Av2)
trace s=trace(A) r=trace(R)

z=ctrace(Z)
trapz r=trapz(Rva,Rvb) see integral1()
tril A1=tril(A) A1=triangularmatrix(”lower”,A)

Z1=tril(Z) Z1=ctriangularmatrix(”lower”,Z)
A1=tril(A,i) A1=triangularmatrix(”lower”,A,i)
Z1=tril(Z,i) Z1=ctriangularmatrix(”lower”,Z,i)

triu A1=triu(A) A1=triangularmatrix(”upper”,A)
Z1=triu(Z) Z1=ctriangularmatrix(”upper”,Z)
A1=triu(A,i) A1=triangularmatrix(”upper”,A,i)
Z1=triu(Z,i) Z1=ctriangularmatrix(”upper”,Z,i)

vander R=vander(Rv) R=vandermatrix(Rv)
A=vander(Av) specialmatrix(”Vandermonde”, Av)

unwrap() A=unwrap(A1) unwrap(A,A1)
A=unwrap(A1,r) unwrap(A,A1,r)

upper str=upper(’str’) see toupper()
who who showvar
xcorr Av= xcorr(Av1, Av2) xcorr(Av, Av1, Av2)
xor xor(A,B) Aˆˆ B

xor(A,s) Aˆˆ r
xor(s,A) rˆˆ A

zeros zeros(i1) (array int[i1][i1]) 0
zeros(i1,i2) (array int[i1][i2]) 0
zeros(size(A)) array int dim[2]=shape(A);

(array int [dim[0]][dim[1]]) 0
2D/3D Plotting functions see class CPlot

573

E.3. CONTROL FLOW APPENDIX E. COMPARISON WITH MATLAB

E.3 Control Flow

Table E.4: Control flow comparisons between MATLAB and Ch.
Description MATLAB Ch shell
for-loop for i=n1:n2:n3 for (i=n1; i<=n3; i+=n2) {

commands commands
end }

for i=n1:n3 for(i=n1; i<=n3; i++) {
commands commands

end }
while-loop while expr while(expr) {

commands commands
end }

if if expr if (expr) {
commands commands

end }
if-else if expr1 if (expr1) {

commands1 commands1
}

else else {
commands2 commands2

end }
if-else if-else if expr1 if (expr1) {

commands1 commands1
}

elseif expr2 else if(expr2) {
commands2 commands2

}
else else {

commands3 commands3
end }

574

Appendix F

Comparison with Fortran

Many features in Ch are added to bridge the gap between C and FORTRAN for scientific numerical com-
puting. References, complex numbers, generic functions, and variable length arrays in Ch are similar to
those in FORTRAN. For example, linguistic features of references in Ch are closely related to equivalence
statements, subroutines, and functions in FORTRAN. Users with prior FORTRAN experience can easily
adapt to the Ch programming paradigm. This appendix discusses some issues related to port FORTRAN
code to Ch.

F.1 Reference in Ch versus Equivalence in FORTRAN

The linguistic features of references in Ch are closely related to equivalence statements. The following
equivalence statements in FORTRAN

real f1, f2
equivalence (f1, f2), (i, j, k)

can be achieved in Ch as follows

float f1, &f2 = f1
int i, &j = i, &k = i

where float variables f1 and f2 share the same memory space whereas there int variables i, j, and k
share the same space. The equivalence of two arrays in FORTRAN can be achieved by pointers in Ch. For
example, the FORTRAN code

dimension A(10), B(10), C(20, 20), D(20, 20)
equivalence (A[1], B[1]), (C, D)

can be ported to Ch as follows

float A[10], *B, C[20,20], (*D)[20]
B = A; D = C;

where B is a pointer to float and D is a pointer to array of 20 floats. Porting the equivalence of a single
variable and an element of an array in FORTRAN to Ch is more involving. For example, the FORTRAN
code

575

F.2. CALL-BY-REFERENCE IN CH AND IN FORTRANAPPENDIX F. COMPARISON WITH FORTRAN

int a[2][3], b[4][5];
a[1][2] = 5;
void funct(int (*c)[3], d[:][:])
{
d[2][3] = c[1][2];

}
funct(a,b);
printf("b[2][3] = %d \n", b[2][3]); // output: b[2][3] = 5

Program F.1: Passing arrays to functions by reference in Ch

dimension A(10)
equivalence (A[3], f)
A[3] = 5;

may be ported to Ch as follows

float A[10], *f
f = &A[2]
A[2] = 5 // *f = 5

Although it is allowed to place variables of different data types in an equivalence statement in FORTRAN,
there is no provision for consistent handling of this kind of equivalence in the FORTRAN 77 standard.

F.2 Call-by-Reference in Ch and in FORTRAN

Functions in Ch can be called either by value or by reference. Many restrictions in FORTRAN 77 about
call-by-reference are relaxed in Ch. For example, FORTRAN does not allow a subroutine to call itself or
a function to use itself inside the function. In other words, recursive subroutine calls are not permitted in
FORTRAN, let alone nested and recursively nested subroutine calls. In FORTRAN, the data types of actual
arguments of a function should be the same as those of the formal arguments of the function. In Ch, the data
types of actual arguments of functions can be different from those of the corresponding formal arguments
of references in functions. In FORTRAN, when an argument of a subroutine is used as an lvalue inside
a subroutine, the actual argument in the calling subroutine must be a variable. A reference variable in Ch
can be used as an lvalue inside a function even if the actual argument is not an lvalue, whereas FORTRAN
cannot.

Note that when arrays are passed to a function through its arguments, the memory space for arrays in
the calling function will be used in the called functions. In other words, arrays in Ch are passed by reference
as shown in Program F.1 where the variables c and d, in the arguments of the function funct() are the
pointers to array of 3 elements of int and assumed-shape array, respectively.

Since Ch encapsulates all the programming capabilities of FORTRAN 77, porting subroutines and func-
tions in FORTRAN to functions in Ch is not very difficult. For example, the FORTRAN program given in
Program F.2 can be ported, without changing the functionality of the program, to a Ch program shown in
Program F.3. In Program F.3, the shape 5x6 for the complex array A inside the function FUNCT() is as-
sumed from its actual argument of the complex array ZA. Integral values 5 and 6 are passed to arguments of
references M and N. The complex variable Z is passed to the function by reference. Block-structured nested
do-loops are used inside the function. Like many other mathematical functions, the function sin() in Ch

576

F.2. CALL-BY-REFERENCE IN CH AND IN FORTRANAPPENDIX F. COMPARISON WITH FORTRAN

SUBROUTINE FUNCT(A, M, N, R)
INTEGER M, N
COMPLEX A(M, N), R
INTEGER I, J
DO 10 I = 1, M
DO 10 J = 1, N
A(I,J) = R*R + 3

10 A(I,J) = SIN(A(I,J)/R)
R = 50

END

COMPLEX ZA(5,6), Z
Z = CMPLX(1,2)
CALL FUNCT(ZA, 5, 6, Z)
STOP
END

Program F.2: A FORTRAN program

is a polymorphic function that calculates the result according to the data type of the input argument. In this
example, a complex value will be produced by the function sin().

These new features in Ch are intended to bridge the gap between C and FORTRAN so that users with
prior FORTRAN experience can readily write Ch programs. Experience indicates that users with prior
FORTRAN experience can easily write Ch programs to solve complicated practical engineering problems.
It should be pointed out that many programming features such as array syntax and assumed-shape arrays of
Fortran 90 have been incorporated into Ch. Fortran 90 is significantly more complicated than FORTRAN 77.
Therefore, porting Fortran 90 to Ch is not one of the design goals for Ch.

577

F.2. CALL-BY-REFERENCE IN CH AND IN FORTRANAPPENDIX F. COMPARISON WITH FORTRAN

void funct(complex a[:][:], int &m, &n, complex &r) {
int i, j;
for(i=0; i<m; i++)

for(j=0; j<n; j++) {
a[i][j] = r*r + 3;
a[i][j] = sin(a[i][j]/r);

}
r = 50;

}

complex za[5][6], z;
z = complex(1,2);
funct(za, 5, 6, z);

Program F.3: A Ch program ported from a FORTRAN program

578

Appendix G

Summary of Commonly Used Portable Shell
Commands in Ch

This appendix contains a summary of commonly used commands portable across different platforms in Ch
under both Unix and Windows. The commands are listed below by category. These commands are very
useful for portable shell programming in Ch.

G.1 File Systems

cd change working directory
chgrp change the group of a file or library
chmod change the access permission of a file
chown change the owner of a file or library
cp copy files or directories
dd use to block input/output operations on files and performing conversions on them
df (”disk free”) reports available space and space in use in drives accessible by your system
du report the amount of disk space used by a hierarchy of directories
find search for files or directories that match a certain criterion, i.e. name, modification time etc
ln make a hard link or symbolic link
ls list contents of directory
mkdir create a new directory
mv rename files or move them to other directory
pwd print name of working directory
rm remove files or directories
rmdir remove directories
touch create a new empty file or update the modification time of an existing file
which show the full path of commands, functions, and header files

579

G.2. BINARY FILESAPPENDIX G. SUMMARY OF COMMONLY USED PORTABLE SHELL COMMANDS IN CH

G.2 Binary Files

ar archive maintenance utility; create libraries to be linked to other programs
nm list the symbol in an executable, object file or libary
ranlib generate an index for an ar format archive; enables faster linking
size print the sizes of sections in object files and executable programs
strings print the ASCII text strings embedded in binary file
strip remove debugging symbols and line number information from files to make file smaller

G.3 Text Files
awk scan one or more files and perform an action on all of the lines that match a particular conditon
cat concatenate files together and send the result to the standard output
cksum calculate a CRC checksum for files
csplit context based file splitter
cut cut out selected fields of each line of a file
egrep search a file for a pattern using full regular expressions
expand replace the tabs in a file with a specified number of spaces
fgrep search a file for a fixed-character string
fmt simple text formatters
fold wrap files to fit in a specified number of columns
grep include also grep,egrep and fgrep; search for patterns matching on lines in a file
head print a specified number of lines from the beginning of a file
indent formatter for C source code
join conditionally merge two files together based on matching fields in the files
less a display paginator similar to more and pg in UNIX
make update a file based on a series of dependency rules stored in a special format
md5sum calculate a ”fingerprint” for files using the MD5 algorithm
more copy by the screenful
nl add line number to files
od dump the contents of a file in a number format, including octal,hex and several ASCII format
patch apply changes to files
paste merge multiple files together into one file by concatenating lines from each file to form

one line in the output file
pr print files
sed ”stream editor” based on the line editor ed; useful for editing streams of data
sort sort lines in a file based on fields in the file
split cut files into multiple fixed size pieces
sum calculate a simple checksum for files
tail print a specified number of line from the end of a file
tr character translation
tsort topological sort
troff typeset or format documents
unexpand ”unexpand” sequences of a specified number of spaces into tab characters
uniq remove duplicate lines from a sorted file
vi screen text editor
wc count characters, words and/or lines in a file

580

G.4. COMPARING FILESAPPENDIX G. SUMMARY OF COMMONLY USED PORTABLE SHELL COMMANDS IN CH

G.4 Comparing Files

cmp compare two files and display the line and byte number differences
comm report common lines in two files
diff compare files, showing lines that differ in any of serveral formats
diff3 compare three files
sdiff compare two files side by side and interactively merges them into a third file

G.5 Shell Utilities
basename echo its argument, a file name, minus any directory name
date display date and time of the system
dirname print the directory component of file name
echo print its argument
env used to modify the environment in which a program is run
expr evaluate expressions involving arithmetic, relational, logical and string operators
factor get all prime factors for a postive integer
hostname the name of the local host machine
id display the user and group IDs and names
logname display the user’s login name
pathchk check path names
printenv ouput the environment under which a command will execute
sh the Bourne shell
sleep stop all actions in a shell for a specified period of time
tee copy its standard input to files named on the command line and also to standard output
test check file types and compare values
uname print name of current system
whoami display the login name
xargs construct argument lists and invoke utility

G.6 Archiving Files

cpio file archiving and backup utility
gzip file compression program; does both compressing and uncompressing
gunzip same as gzip
tar create and manipulate tar archives

581

Appendix H

Summary of vi Text Editor

This appendix contains a summary of commonly used features of vi text editor.
Enter Input Mode
i before cursor
a after cursor
I at start of line
A at end of line
o open line above
O open line below

Move Cursor
l one space right
h one space left
j one line down
k one line up
$ end of line
ˆ start of line
0 start of line
w next word
e end of word
nG line n
G end of file
H top of screen
M middle of screen
L bottom of screen

Delete
dw delete words
dd delete line
dG delete all lines following the line
d1G delete all lines before the line
ndd delete n lines
D to end of line
x delete char at cursor
nx delete n chars

582

APPENDIX H. SUMMARY OF VI TEXT EDITOR

Change
cw change word
cc change line
C to end of line
r replace char at cursor
s substitute chars at cursor
S substitute line, same as cc

Screen Control
CTRL-d scroll forward
CTRL-u scroll back
CTRL-f next screen
CTRL-b previous screen

Copy and Paste
Y yank line
yy yank line
nyy yank n lines
p put below
P put above
"xy yank line into buffer x
"xnyy yank n lines into buffer x
"xp put from buffer x below
"xP put from buffer x above
"xd delete into buffer x

Other Functions
J join current and next lines
u undo
/ search forward
? search backward
n next occurrence
N previous occurrence
. repeat last action
ZZ write and quit
ESC cancel command

583

APPENDIX H. SUMMARY OF VI TEXT EDITOR

Last Line Mode
:w write
:q quit
:wq write and quit
:n next file
:r file read file
:e file edit file
:f file name
:! command execute shell command
:n move cursor to line n
:set option change options
:set number show line numbers
:set nonumber no line number
:[address]s/old/new/[g] substitute old by new

address . current line
$ last line
% entire file

g each occurrence in a line

When in Input Mode
BACKSPACE delete char
CTRL-w delete word
ESC command mode

584

Appendix I

Porting Code to the Latest Version

I.1 Porting Code to Ch Version 6.0.0.13581

1. Changed the Boolean type ”bool’ from int to unsigned char in stdbool.h.

2. Change the default complex type from float complex to double complex.

I.2 Porting Code to Ch Version 6.0.0.13581

1. Changed the Boolean type ”bool’ from char to int in stdbool.h.

2. Changed

CPlot::func2D(double (*func)(double x, void *param),
void *param, double x0, double xf, int n);

CPlot::func3D(double (*func)(double x, double y, void *param),
void *param, double x0, double xf, double y0, double yf,
int nx, int ny);

to

CPlot::funcp2D(double x0, double xf, int n,
double (*func)(double x, void *param), void *param);

CPlot::funcp3D(double x0, double xf, double y0, double yf,
int nx, int ny,
double (*func)(double x, double y, void *param),
void *param);

3. Changed

CPlot::origin(double x, double y);

to

CPlot::boundingBoxOrigin(double x, double y);

585

I.2. PORTING CODE TO CH VERSION 6.0.0.13581APPENDIX I. PORTING CODE TO THE LATEST VERSION

4. Changed

CPlot::grid(int flag, .../* int type */);

to

CPlot::grid(int flag, .../* char *option */);

Removed

PLOT_GRID_POLAR
PLOT_GRID_RECTANGULAR

Change

plot.grid(PLOT_ON, PLOT_GRID_POLAR);
plot.polarPlot(PLOT_ANGLE_DEG);

to

plot.grid(PLOT_ON);
or plot.grid(PLOT_ON, "polar");
or lot.grid(PLOT_ON, "polar 30"); // the interval of radials is 30 degrees

plot.polarPlot(PLOT_ANGLE_DEG);

5. Changed

CPlot::arrow(double x_head, double y_head, double z_head,
double x_tail, double y_tail, double z_tail, ...
/* [int linetype, int linewidth] */);

to

CPlot::arrow(double x_head, double y_head, double z_head,
double x_tail, double y_tail, double z_tail, ...
/* [string_t option] */);

Change

plot.arrow(x1, y1, z1, x2, y2, z2, 1, 3);

to

char option[64];
sprintf(option, "linetype 1 linewidth 3");
plot.arrow(x1, y1, z1, x2, y2, z2, option);

6. CPlot::axisRange(int axis, double minx, double max, double incr);

is obsolete. Use

CPlot::axisRange(int axis, double minx, double max);
CPlot::ticsRange(int axis, incr);

586

Index

\" double-quote-character escape sequence, 115
\’ signal-quote-character escape sequence, 115
\?, 115
\\ backslash-character escape sequence, 115
\a alert escape sequence, 115
\b escape sequence, 115
\f form-feed escape sequence, 115
\n (newline escape sequence), 115
\r carriage-return escape sequence, 115
\t horizontal-tab escape sequence, 115
\v escape sequence, 115
|| logical inclusive OR operator, 122, 128, 293
| bitwise inclusive OR, 122, 128
| pipe, 73
|= bitwise inclusive OR assignment operator, 122, 128
(), 122
* indirection operator, 147
* multiplication operator, 122, 123, 226, 227, 289
* pointer indirection operator, 122
* wild characters, 68
*= multiplication assignment operator, 122, 128, 291
+ addition operator, 122, 226, 227
+ sign, 122, 123
+ unary plus, 289
++ increment operator, 122, 134, 292
+= addition assignment operator, 122, 128, 291
, comma operator, 122, 132
- sign, 122, 123, 226, 227
- subtraction operator, 122, 123, 226, 227
- unary minus, 289
-= subtraction assignment operator, 122, 128, 291
. command, 49, 53
. structure member operator, 45, 122, 135, 339
.* array multiplication, 289
.* array multiplication operator, 122
.* array multiplicaton operator, 125
../ parent directory, 68
./ array division, 289
./ array division operator, 122, 125
./ current working directory, 68
.chlogin, 28, 559
.chlogout, 28, 559
.chrc, 28, 33, 36, 407, 413, 559
.chslogin, 28
.chsrc, 28

.cshrc, 559

.login, 559

.logout, 559
/ division operator, 122, 123, 226, 227
/= division assignment operator, 122, 291
:, 275, 278, 298
:: scope resolution operator, 122, 350, 553
= assignment operator, 122, 128, 291
== equal-to operator, 122, 125, 226, 227, 293
? wild character, 68
?: conditional operator, 122, 129, 295
[], 122
21
administrator prompt, 47
preprocessor operator, 87, 91
superuser prompt, 47
#!/bin/ch, 80
#!/bin/csh, 80
#!/bin/ksh, 80
#!/bin/sh, 80
preprocessor operator, 87, 91
#define preprocessor directive, 87–89
#defined preprocessor operator, 87
#elif preprocessor directive, 87, 88
#else preprocessor directive, 87
#endif preprocessor directive, 87
#error preprocessor directive, 87, 93
#if preprocessor directive, 87, 88
#ifdef preprocessor directive, 87
#ifndef preprocessor directive, 87
#include preprocessor directive, 87, 88
#line preprocessor directive, 87, 92
#pragma, 36, 87, 93
#undef preprocessor directive, 87, 88
$ Bourne, Korn, BASH shell prompt, 47
$ command name substitution, 66
$ expression substitution, 65, 386
$ variable substitution, 64, 385, 386
$argv, 558
% C shell prompt, 47
% modulus operator, 122
%= modulus assignment operator, 122
&, 303
& address operator, 122, 133, 147, 200, 295, 327
& bitwise AND, 122, 128

587

INDEX INDEX

& commands in background, 74
&= bitwise AND assignment operator, 122, 128
&& logical AND operator, 122, 128, 293
ˆ quick substitution, 58
AIX , 97
CHDLL , 96
CH , 96
DARWIN , 97
FREEBSD , 97
GLOBALDEF , 96
HPUX , 97
IOFBF, 370
IOLBF, 370
IONBF, 370
LINUXPPC , 97
LINUX , 97
M64 , 96
QNX , 97
SCH , 96
SOLARIS , 97
WIN32 , 97
X86 , 97
BIG ENDIAN , 97
DATE , 96
FILE , 96
LINE , 92, 96
LITTLEENDIAN , 97
STDC VERSION , 96
STDC , 96
TIME , 96
VA ARGS , 90, 542
class , 22, 24, 367
class func , 22, 24, 367
declspec, 170
declspec(global), 45
declspec(local), 45, 111, 170
func , 22, 24, 367, 542
i386 , 97
ppc , 97

argc, 22, 24, 38, 83, 558
argv, 22, 24, 38, 83, 558
chlogin, 28
chlogout, 28
chrc, 28, 33, 36
chslogin, 28
chsrc, 28
cwd, 21, 22, 24, 401
cwdn, 21, 22, 24, 401
environ, 22, 24
errno, 22, 24
execv(), 401
execvp(), 401
fopen(), 401
fork(), 401

formatd, 22, 24, 29
formatf, 22, 24, 29
fpath, 21, 22, 24, 36, 95, 401, 404, 545
fpathext, 22, 24, 34
fstat(), 401
histnum, 22, 24
histsize, 22, 24, 559
home, 21, 22, 24, 401
host, 22, 24, 401
iath, 21
ignoreeof, 22, 24, 30, 540
ignoretrigraph, 22, 24
ipath, 22, 24, 88, 95, 401, 404, 411
lang, 21, 22, 24
lc all, 21, 22, 24
lc collate, 21, 22, 24
lc ctype, 21, 22, 24
lc monetary, 21, 22, 24
lc numeric, 21, 22, 24
lc time, 21, 22, 24
logname, 21, 22, 24
lpath, 21, 22, 24, 95, 401, 404
lstat(), 401
new handler, 22, 24, 347
path, 21, 23, 25, 33, 49, 95, 401, 404, 545
pathext, 23, 25
pipe(), 401
popen(), 401
ppath, 23, 25, 401, 409
prompt, 23, 25, 30, 47
remove(), 401
rename(), 401
setlocale, 23, 25, 338
shell, 21, 23, 25, 401
socket(), 401
socketpair(), 401
stat(), 401
status, 23, 25, 38, 558
stop(), 43
system(), 401
term, 21, 23, 25
tz, 21, 23, 25
user, 21, 23, 25, 401
utime(), 401
warning, 23, 25, 29
! logical negation operator, 122, 128
! logical not operator, 293
!= inequality operator, 122, 125, 226, 227, 293
-- decrement operator, 122, 134, 292
-> structure pointer operator, 45, 122, 135, 339
2>&1 redirect standard output and error stream, 71
< less than operator, 122, 125, 293
< redirect standard input stream, 71
<< left shift, 122, 128

588

INDEX INDEX

<< redirect standard input stream, 71
<< standard output stream operator, 382
<<= left shift assignment operator, 128
<<= right shift assignment operator, 122
<= less or equal operator, 122, 125, 293
> Ch prompt, 47
> greater than operator, 122, 125, 293
> redirect standard output stream, 71
>= greater or equal operator, 122, 125, 293
>> redirect standard output stream, 71
>> right shift, 122, 128
>> stream extraction operator, 382
>>= left shift assignment operator, 122
>>= right shift assignment operator, 128
ˆ bitwise exclusive OR operator, 122, 128
ˆ= bitwise exclusive OR assignment operator, 128
ˆˆ logical exclusive OR operator, 122, 128, 293, 544
˜ bitwise one’s complement, 122, 128
˜ home directory, 68
‘ command substitution operator, 69, 122, 135
0B, 116
0X, 116
0b, 116
0x, 116

abs(), 20, 210, 229, 233, 314
accept(), 401
access(), 20, 82, 401
acos(), 20, 210, 229, 233
acosh(), 20, 210, 229, 233
aggregate floating-point types, 103
aio.h, 404
AIX, 97
alias, 31, 61, 62, 558
alias(), 20, 197
all(), 296
and, 128
any(), 296
Aquaterm, 413
argc, 38, 192
argument substitution, 62
argv, 38, 192, 558
array, 104, 105, 112, 249, 270, 282, 544

assumed-shape array, 104, 105, 259
computational array, 104, 112
declaration of array, 249
deferred-shape array, 104
deferred-shape arrays, 251
incomplete array, 105
lower bounds, 270
members of struct/union, 105
range of subscript for an index, 105
reference, 105
subscript range, 271

upper bounds, 270
array element order, 286
array elements, 284
array of assumed-shape, 264
array of reference, 303, 544
array operations, 289

address operations, 295, 327
arithmetic operations, 289
assignment operations, 291
cast operations, 296
decrement operations, 292
increment operations, 292
logic operations, 293
relational operations, 293

array reference, 284
array.h, 284, 404
arraycopy(), 181
arrow(), 414, see CPlot, see CPlot
asin(), 20, 210, 229, 233, 315
asinh(), 20, 210, 229, 233, 315
assert.h, 404
assumed-shape array, 104, 105, 259, 298, 356, 544
atan(), 20, 210, 229, 233, 315
atan2(), 20, 210, 229, 315
atanh(), 20, 210, 229, 233, 315
atexit(), 20
auto, 19, 45
automatic storage duration, 45, 119, 136
autoScale(), 414, see CPlot
awk, 579
axes(), 414
axis(), 414, see CPlot
axisRange(), 414, see CPlot, see CPlot

background command, 74
balance(), 463
barSizd(), 414
basename, 580
BASH, 47, 80
beginparalleltask, 21
binary, 116
bit-field, 107, 340
bool, 543
border(), 414, see CPlot
borderOffsets(), 414, see CPlot
boundingBoxOrigin(), see CPlot
Bourne shell, 47, 80
boxBorder(), 414
boxWidth(), 414
break, 19, 143
buffered I/O, 369
built-in commands, 53

C arrays, 328

589

INDEX INDEX

C shell, 47, 78, 80, 557, 558
C+, 1
call-by-reference, 156, 575
call-by-value, 156
callback function, 189
calloc(), 149, 239
carg(), 229
case, 19, 139
cat, 579
catch, 21
Cauchy, 512
ccompanionmatrix(), 463, 510
cd, 53, 578
cdeterminant(), 463
cdiagonal(), 463, 506
cdiagonalmatrix(), 463, 509
ceil(), 20, 210, 229, 233, 315
cerr, 382, 553
cfevalarray(), 463, 480
cfum(), 513
cfunm(), 463
Ch, ii, 1
ch, 28, 78
Ch options, 31
Ch shell, 28, 47, 80
CH CARRAYPTRTYPE, 180
CH CARRAYTYPE, 180
CH CARRAYVLA, 180
CH CHARRAYPTRTYPE, 180
CH CHARRAYTYPE, 180
CH CHARRAYVLATYPE, 180
CH UNDEFINETYPE, 180
changeViewAngle(), 414, see CPlot
char, 19, 99, 329
CHAR MAX, 99
CHAR MIN, 99
character constants, 113
character set, 18
characters, 329
charpolycoef(), 463, 496
chdebug, 42, 54
chdir, 53
chdir(), 401
Chebyshev, 512
chgrp, 578
CHHOME, 21, 27
chlogin, 28
chmod, 33, 578
choldecomp(), 463, 517
Cholesky decomposition, 517
Chow, 512
chown, 578
chown(), 401
chparse, 42, 51, 54, 401

chplot.h, 404
chrc, 338, 413
chroot(), 401
chrun, 42, 51, 54, 401
chs, 28, 78, 402
chs.exe, 402
chshell.h, 404
chslogin, 28
cin, 382, 553
cinverse(), 463, 523
circle(), 414, see CPlot
Circul, 512
cksum, 579
class, 19, 51, 106, 269, 343, 543, 549

classes inside member function, 362
constructor, 345
destructor, 345
member function, 343
nested class, 361
polymorphism, 351
private member, 345
public member, 345
scope resolution operator, 350
static member, 347
this, 351

Clement, 512
clinsolve(), 463
clock(), 20, 95
CLOCKS PER SEC, 95
closedir(), 394
closing a directory, 394
cls, 541
cmean(), 463, 473
cmp, 580
colorBox(), 414
combination(), 463, 477
comm, 580
comma operator, 122
command completion, 402
command files, 10, 32
command line options, 31
command mode, 8
command statement, 80
command substitution, 18, 69
command-line arguments, 192
commands in background, 74
comments, 26
communication, 189
companion matrix, 510
companionmatrix(), 463, 510, 511
complex, 19, 103, 220, 221, 542

complex functions, 229
complex variables, 220
constants, 220

590

INDEX INDEX

I/O for complex numbers, 225
operations, 226

complex equation, 468
complex functions, 236
complex metanumbers, 221, 232
complex number, 220
complex numbers, 12, 118, 220
complex operations, 226

complex metanumbers, 227
regular complex numbers, 226

complex(), 229, 233
complex.h, 221, 404, 543
ComplexInf, 19, 233, 543, 549
ComplexNaN, 19, 233, 543, 549
complexsolve(), 463, 468
compound statement, 136
computational array, 13, 104, 112, 282, 286, 328, 544
condition number, 505
conditional inclusion, 87
condnum(), 463
conj(), 20, 229, 233
const, 19, 112
const member functions, 553
constants, 112, 118

complex numbers, 118
pointers, 119

continue, 19, 143
contourLabel(), 414, see CPlot
contourLevels(), 414, see CPlot
contourMode(), 414, see CPlot
conv(), 463, 529
conv2(), 463, 530
converting tokens to strings, 91

preprocessor operator, 91
convolution, 529
coordSystem(), 414, see CPlot
copy, 541
copyright, i
copysign(), 125
corr2(), 463
corrcoef(), 463, 475
correlation coefficients, 475
correlation(), 475
cos(), 20, 210, 229, 233, 315
cosh(), 20, 210, 229, 233, 315
count(), 296
cout, 382, 553
covariance(), 463, 474
cp, 578
cpio, 580
cpio.h, 404
CPlot

˜CPlot, 414
arrow(), 414, 424

autoScale(), 414
axes(), 414
axis(), 414, 423
axisRange(), 414, 421
barSize(), 414
border(), 414, 423
borderOffsets(), 414
boxBorder(), 414
boxWidth(), 414
changeViewAngle(), 414
circle(), 414, 431
colorBox(), 414
contourLabel(), 414
contourLevels(), 414
contourMode(), 414
coordSystem(), 414, 451
CPlot(), 414
data(), 414
data2D(), 413, 414
data2DCurve(), 414, 417, 420
data2DSurface(), 420
data3D(), 414, 417
data3DCurve(), 414
data3DSurface(), 414
dataFile(), 414, 420
dataSetNum(), 414
deleteData(), 414
deletePlots(), 414
dimension(), 414, 421
displayTime(), 414
enhanceText(), 414
fillStyle(), 414
func2D(), 414
func3D(), 414
funcp2D(), 414
funcp3D(), 414
getLabel(), 414
getOutputType(), 414
getSubplot(), 414, 432
getTitle(), 414
grid(), 414
isUsed(), 414
label(), 414, 421
legend(), 415, 424
legendLocation(), 415, 424
legendOption(), 415
line(), 415, 431
lineType(), 415, 438
margins(), 415
origin(), 415
outputType(), 415, 433
plotting(), 413, 415
plotType(), 415, 438
point(), 415

591

INDEX INDEX

pointType(), 415, 442
polarPlot(), 415, 442
polygon(), 415, 431
rectangle(), 415, 431
removeHiddenLine(), 415
scaleType(), 415
showMesh(), 415
size(), 415
size3D(), 415
sizeRatio(), 415, 446
smooth(), 415
subplot(), 415, 432
text(), 415, 424
tics(), 415
ticsDay(), 415
ticsDirection(), 415
ticsFormat(), 415
ticsLabel(), 415
ticsLevel(), 415
ticsLocation(), 415
ticsMirror(), 415
ticsMonth(), 415
ticsPosition(), 415
ticsRange(), 415
title(), 415, 421

cpolyeval(), 463, 490
cproduct(), 461, 463, 472
creat(), 401
createpkg.ch, 411
cross correlation, 536
cross product, 462
cross(), 462, 463
crypt.h, 404
csplit, 579
csum(), 461, 463, 471
ctrace(), 463, 506
ctriangularmatrix(), 463, 509
ctype.h, 404
cumprod(), 463, 472
cumsum(), 463, 471
current shell, 33, 41, 45, 49, 51, 53
curve fitting, 483
curvefit(), 463, 483

DARWIN, 97
data analysis, 469
data conversion rules, 223
data type conversion for arrays, 288
data(), 414
data2D(), 414, see CPlot
data2DCurve(), 414
data3D(), 414, see CPlot
data3DCurve(), 414
data3DSurface(), 414

dataFile(), 414, see CPlot
dataSetNum(), 414
date, 580
DBL MAX, 102
DBL MIN, 102
DBL MINIMUM, 102
dd, 578
debug, 42
deconv(), 463, 530
default, 19, 139
default I/O format, 380
default output format, 29
deferred-shape array, 104, 251, 301, 544

goto statement, 254
members of structures and unions, 256
switch statement, 254

del, 541
delete, 19, 322, 346, 549
deleteData(), 414
deletePlots(), 414, see CPlot
DenavitHartenberg, 512
DenavitHartenberg2, 512
derivative(), 463, 498
derivatives(), 463, 498
determinant(), 463, 505
df, 578
diagonal matrix, 506, 509
diagonal(), 463, 506
diagonalmatrix(), 463, 509
diff, 580
diff3, 580
difference(), 463, 498
dimension(), 414, see CPlot
dir, 541, 578
directory manipulation, 394
dirent.h, 394, 404
dirname, 580
dirs, 78
DISPLAY, 7, 76
displayTime(), 414, see CPlot
dlfcn.h, 404
dlopen(), 20
dlrunfun(), 20, 197
dlsym(), 20
do, 19
do-while, 140
dot command, 45, 53
dot product, 466
dot(), 463, 466
double, 19, 103
double complex, 103, 542
Dramadah, 512
du, 578
dynamic allocation of memory, 149

592

INDEX INDEX

dynamic allocation of mwnory, 267

echo, 580
egrep, 579
eigen(), 464, 525
eigenvalues, 525
eigenvectors, 525
elementtype(), 20, 197, 305, 355
else, 19
else-if, 138
endl, 382, 553
endlocal, 541
endparalleltask, 21
enhanceText(), 414, see CPlot
entire domain, 210
enum, 19, 108
enumeration, 341
env, 77, 580
environ, 38, 195
environment variables, 76

COLUMNS, 7
DISPLAY, 7
export, 78
getenv(), 9, 76
isenv(), 9, 76
LINES, 7
other shells, 78
putenv(), 7, 9, 76
remenv(), 9, 76
setenv, 78

EOF, 30, 390
erase, 541
errno.h, 404
escape characters, 113
eval, 558
evaluation of array elements, 479
event designators, 57
event t, 21
exclusive, 128, 544
exec, 53, 95, 408
execl(), 401
execle(), 401
execlp(), 401
execv(), 401
execve(), 401
execvp(), 401
exit, 54
exp(), 20, 210, 229, 233, 315
expand, 579
expm(), 464, 513
export, 78
export plots, 433
expr, 580
expression evaluation, 75

expression statement, 136
expression substitution, 65, 386
extended complex plane, 221
extended finite complex plane, 221
extent, 104
extern, 19, 45

F OK, 82
fabs(), 210, 229
factor, 580
factorial(), 464, 477
false, 137, 543
fast Fourier transforms, 527
fchdir(), 401
fchown(), 401
fchroot(), 401
fcntl.h, 404
fdopen(), 401
fenv.h, 404, 543
fevalarray(), 464, 479
fflush(), 370, 390
fft(), 464, 527
fgetc(), 391
fgetpos(), 369
fgets(), 20, 391
fgrep, 579
Fiedler, 512
FILE, 96, 389
file manipulation, 389
file name completion, 402
filename substitution, 67
fillStyle(), 414
filter(), 464, 532
filter2(), 464, 535
filtering, 529
find, 578
findvalue(), 464, 477
flip matrix, 507
fliplr(), 464, 507
flipud(), 464, 507
float, 19
float.h, 404
floating-point, 118
floating-point types, 101
floor(), 20, 210, 229, 233, 315
FLT EPSILON, 215
FLT MAX, 102, 215
FLT MIN, 102, 214
FLT MINIMUM, 102, 214
fminimum(), 464, 487
fminimums(), 464, 488
fmod(), 20, 210, 229, 233
fmt, 579
fold, 579

593

INDEX INDEX

fopen(), 389, 401
for, 19, 141
foreach, 19, 142, 336, 544, 549
FORTRAN, 199, 204, 574
Fortran, 574
fplotxy(), 450
fplotxyz(), 455
fpos t, 369
fprintf, 19, 380, 385, 549
fprintf(), 371, 380
fputc(), 392
fputs(), 392
Frank, 512
fread(), 20, 391, 392
free(), 20, 150, 239, 545
FreeBSD, 97
freopen(), 369
frexp(), 20, 210, 229, 233
fscanf, 381
fscanf(), 20, 376, 381, 391
fseek, 390
fseek(), 393
fsetpos, 390
fsetpos(), 369
fsolve(), 464, 497
fstat(), 401
ftell(), 393
fully buffered, 369
fully-specified-shape array, 356
fully-specified-shape arrays, 298
func2D(), 414
func3D(), 414
funcp2D(), 414
funcp3D(), 414
function, 110, 157

communication between functions, 189
function files, 195
function prototypes, 160
functions return computational arrays, 312
generic functions, 197
nested functions, 165
recursive functions, 165

function files, 12, 34
function prototype scope, 266
functions, 312
funm(), 464, 513
fwide(), 369
fwprintf(), 552
fwrite(), 392
fwscanf(), 552
fzero(), 464, 497

gawk, 579
gcd(), 464, 467

Gear, 512
generic array functions, 314
generic functions, 20, 197, 210, 542, 548
getc(), 391
getenv(), 9, 20, 30, 76, 401, 558
gethostname(), 401
getLabel(), 414, see CPlot
getnum(), 464, 469
getOutputType(), 414
gets(), 20, 391
getSubplot(), 414, see CPlot
getTitle(), 414, see CPlot
glob.h, 404
global, 44, 45, 544
GNUTERM, 413
goto, 19, 44, 144, 254
greatest common divisor, 467
grep, 579
grid(), 414, see CPlot, see CPlot
grp.h, 404
gunzip, 580

Hadamard, 512
Hankel, 512
head, 579
help, 9, 78
hessdecomp(), 464, 519
Hessenberg decomposition, 519
hexadecimal, 116
hexadecimal floating-point contants, 118, 543
Hilbert, 512
histogram(), 464, 481
history, 54, 57, 559
history substitution, 56
HOME, 21
hostname, 580
householdermatrix(), 464
HP UX, 97
hypot(), 121, 550

I, 96
I/O Format, 371

aggregate data type, 385
I/O format, 385
id, 580
identifiers, 21, 44

linkages, 44
name spaces, 45
predefined identifiers, 21
scope rules, 44

identity matrix, 508
identitymatrix(), 464, 508
IEEE 754, 542
IEEE 754 standard, 101

594

INDEX INDEX

if, 19, 137
if-else, 138
ifft(), 464, 527
imag(), 20, 224, 229, 233, 316
import, 39, 95
importf, 36, 39, 95
inclusive, 128
incomplete array, 105
indent, 579
inet.h, 404
Inf, 19, 102, 383, 542, 549, 550
initialization, 119, 268, 284
inline, 19, 112, 543
input, 369
installpkg.ch, 411
int, 19, 99, 100
INT MAX, 100
INT MIN, 100
integer constants, 116
integral1(), 464, 502
integral2(), 464, 502
integral3(), 464, 503
integration, 502
integration2(), 464, 503
integration3(), 464, 504
interp1(), 464, 481
interp2(), 464, 483
interpolation, 481, 483
inttypes.h, 404, 543
inverse fast Fourier transforms, 527
inverse Hilbert matrix, 512
inverse matrix, 523
inverse(), 464, 523
ioctl(), 20
iostream.h, 382, 404
isenv(), 9, 76
iskey(), 20
iso646.h, 404, 543
isUsed(), 414, see CPlot
iteration statement, 140

join, 579

K&R C, 549
keywords, 19
kill(), 401
Korn shell, 47, 80

label(), 414, see CPlot
LANG, 21
LC ALL, 21
LC COLLATE, 21
LC CTYPE, 21
LC MONETARY, 21
LC NUMERIC, 21

LC TIME, 21
lchown(), 401
lcm(), 464, 467
ldexp(), 20, 210, 229, 233
least common multiple, 467
left shift, 128
legend(), 415, see CPlot
legendLocation(), 415, see CPlot
legendOption(), 415
less, 579
lexical elements, 18
libintl.h, 404
library, 404
limits.h, 99, 404
lindata(), 464, 469
line buffered, 369
line(), 415, see CPlot
linear spaces, 524
linear system of equations, 520
lineType(), 415, see CPlot
link(), 401
linkages of identifiers, 44
linsolve(), 464, 521
linspace(), 464, 469
Linux, 97
llsqcovsolve(), 464, 522
llsqnonnegsolve(), 464, 522
llsqsolve(), 464, 521
ln, 578
local, 45, 111, 170, 544
locale.h, 338, 404
log(), 20, 210, 229, 233, 315
log10(), 20, 210, 229, 233, 315
logdata(), 464, 469
login, 6
logm(), 464, 513
LOGNAME, 21
logname, 580
logspace(), 464, 469
long, 19, 99, 100
long double, 548
long double complex, 548
long long, 99, 100, 542, 546
longjmp(), 142
loop, 140

do-while loop, 140
for loop , 141
foreach loop, 142
while loop, 140

ls, 578
lstat(), 401
LU decomposition, 514
ludecomp(), 464, 514
lvalue, 233

595

INDEX INDEX

lvalues related to complex numbers, 233

M E, 96
M PI, 96
machine epsilon, 215
macro replacement, 89
Magic, 512
main(), 37, 192
make, 579
malloc(), 149, 239
malloc.h, 404
margins(), 415, see CPlot
math.h, 404
matrix, 282
matrix analysis, 512
max(), 20, 197
maximization of functions, 487
maximum value of function, 470
maxloc(), 461, 470, 477
maxloc(0, 465
maxv(), 465, 470
MB CUR MAX, 113
mbstate t, 369
mbstowcs(), 116
md5sum, 579
mean value, 473
mean(), 461, 465, 473
median value, 473
median(), 461, 465, 473
member function, 553
members of struct/union, 105
memchr(), 331
memcmp(), 331
memcpy(), 20, 330
memmove(), 20, 330
memset(), 20, 333
metanumber, 383
metanumbers, 217
min(), 20, 197
minimization of functions, 487
minimum value of function, 470
minloc(), 461, 465, 470, 477
minv(), 465, 470
mkdir, 48, 578
mkdir(), 401
modf(), 20, 210, 229, 233
more, 579
move, 541
mqueue.h, 404
multi-dimensional arrays of fixed length, 244
multibyte characters, 113
multiple files, 39
mv, 578

name spaces of identifiers, 45

NaN, 19, 102, 383, 542, 549, 550
nested function, 189
nested functions, 165, 554

lexical levels, 167
nested recursive functions, 171
prototypes of nested functions, 170
scopes, 167

netconfig.h, 404
netdb.h, 404
netdir.h, 404
netinet/in.h, 404
new, 19, 149, 322, 346, 549
new.h, 404
nl, 579
nm, 579
nonlinear equation, 497
norm of matrix, 476
norm(), 465, 476
not, 128
NULL, 19, 150, 311, 545, 549
NULL directive, 93
null space, 525
null statement, 136
nullspace(), 465, 525
numeric.h, 404

octal, 116
od, 579
oderk(), 465, 499
offsetof(), 402
one’s complement, 128
one-dimensional arrays, 243
open(), 20, 401
opendir(), 394
opening a directory, 394
operator, 19, 112
operators, 122

address and indirection operators, 133
arithmetic operators, 125
assignment operators, 128
bitwise operators, 128
cast operators, 131
comma operator, 122, 132
conditional operator, 129, 295
functional type cast operators, 131
increment and decrement operators, 134
logical operators, 128
relational operators, 125
ternary conditional operator, 122
unary operator, 122
unary operators, 133

option of program, 84, 193
ordinary differential equations, 499
origin(), 415, see CPlot

596

INDEX INDEX

orthonormal base, 524
orthonormalbase(), 465, 524
output, 369
outputType(), 415, see CPlot
over-determined, 521
overloading, 112, 282, 555

pack(), 95
package, 39, 95, 409
parse, 51
Pascal, 512
pass by reference, 179
passing array, 243

passing multi-dimensional arrays, 243
passing one-dimensional arrays, 243

passing member function, 362
paste, 579
patch, 579
PATH, 21
pathchk, 580
pclose(), 74
pinverse(), 465, 524
pipe(), 401
pipeline, 73
plot, 413
PLOT ANGLE DEG, 442, 454
PLOT ANGLE RAD, 442, 454
PLOT AXIS X, 421
PLOT AXIS X2, 421
PLOT AXIS XY, 421
PLOT AXIS XYZ, 421
PLOT AXIS Y, 421
PLOT AXIS Y2, 421
PLOT AXIS Z, 421
PLOT BORDER ALL, 423
PLOT BORDER BOTTOM, 423
PLOT BORDER LEFT, 423
PLOT BORDER RIGHT, 423
PLOT BORDER TOP, 423
PLOT COORD CARTESIAN, 451
PLOT COORD CYLINDRICAL, 451
PLOT COORD SPHERICAL, 451
PLOT OFF, 423
PLOT ON, 423
PLOT OUTPUTTYPE DISPLAY, 433
PLOT OUTPUTTYPE FILE, 433
PLOT OUTPUTTYPE STREAM, 433
PLOT PLOTTYPE BOXERRORBARS, 439
PLOT PLOTTYPE BOXES, 439
PLOT PLOTTYPE BOXXYERRORBARS, 439
PLOT PLOTTYPE CANDLESTICKS, 439
PLOT PLOTTYPE DOTS, 439
PLOT PLOTTYPE FILLEDCURVES, 439
PLOT PLOTTYPE FINANCEBARS, 439

PLOT PLOTTYPE FSTEPS, 439
PLOT PLOTTYPE HISTEPS, 439
PLOT PLOTTYPE IMPULSES, 439, 450
PLOT PLOTTYPE LINES, 439, 450
PLOT PLOTTYPE LINESPOINTS, 439, 450
PLOT PLOTTYPE POINTS, 439, 450
PLOT PLOTTYPE STEPS, 439
PLOT PLOTTYPE SURFACES, 450
PLOT PLOTTYPE VECTORS, 439, 450
PLOT PLOTTYPE XERRORBARS, 439
PLOT PLOTTYPE XERRORLINES, 439
PLOT PLOTTYPE XYERRORBARS, 439
PLOT PLOTTYPE XYERRORLINES, 439
PLOT PLOTTYPE YERRORBARS, 439
PLOT PLOTTYPE YERRORLINES, 439
PLOT TEXT CENTER, 424
PLOT TEXT LEFT, 424
PLOT TEXT RIGHT, 424
plotting(), 415, see CPlot
plotType(), 415, see CPlot
plotxy(), 446, 545
plotxyf(), 448, 545
plotxyz(), 454, 545
plotxyzf(), 455, 545
point(), 415, see CPlot
pointer, 104, 147

arrays of pointers, 151
pointer to functions, 186
pointers to pointers, 153, 193

pointer arithmetic, 147
pointer to arrays of assumed shape, 326
pointer to assumed-shape array, 544
pointer to computational arrays, 319
pointers, 119, 189
pointType(), 415, see CPlot
polar(), 20, 197, 229, 233
polarPlot(), 415, see CPlot
poll.h, 404
polycoef(), 493
polyder(), 465, 491
polyder2(), 465, 492
polyeval(), 465, 490
polyevalarray(), 465, 490
polyevalm(), 465, 490, 513
polyfit(), 465
polygon(), 415, see CPlot
polymorphic functions, 353
polymorphism, 351

array of reference, 352
generic mathematical functions, 352

polynomials, 489
characteristic polynomial of matrix, 496
curve fitting, 486
derivative, 491

597

INDEX INDEX

evaluation, 490
factorization, 494
find coefficients, 493
find roots, 492

pop, 95
popd, 78
popen(), 74, 401
POSIX, 404
pow(), 20, 210, 229, 233, 316, 550
pr, 579
pragma, 39, 338, 409

fpath, 95
ipath, 95
lpath, 95
path, 95

exec, 95, 408
import, 39, 95, 409
importf, 39, 95, 409
pack(), 95
package, 95, 409
remkey(), 95
remvar(), 95

predefined identifiers, 21
preprocessing directive, 87
printenv, 580
printf, 19, 549
printf(), 371, 380
private, 19, 345, 549, 553
product of array elements, 472
product(), 461, 465, 472
program execution, 36

multiple files, 39
program mode, 10
program startup, 37
program termination, 38
promotion of scalars to arrays in operations, 296
prompt, 47

administrator prompt, 47
superuser prompt, 47
$ Bourne, Korn, BASH shell prompt, 47
% C shell prompt, 47
> Ch prompt, 47

protected, 21
pseudo inverse matrix, 523
pthread.h, 404
public, 19, 345, 549, 553
punctuators, 26
push, 95
pushd, 78
putc(), 392
putenv(), 7, 9, 30, 76, 401, 558
puts(), 392
PWD, 21
pwd, 48, 53, 54, 57, 65, 578

pwd.h, 404

QNX, 97
qr, 563
QR decomposition, 518
qrdecomp(), 465, 518
qrdelete, 563
qrinsert, 563
qsort(), 196
quick substitution, 58

R OK, 82
random numbers, 466
range of subscript for an index, 105
rank, 104
rank of matrix, 507
rank(), 465, 507
ranlib, 579
rcondnum(), 465
re comp.h, 404
read(), 20
readdir(), 394
reading a directory, 396
readline.h, 404
real(), 20, 224, 229, 233, 316
realloc(), 149, 239
rectangle(), 415, see CPlot
recvevent, 21
redirection, 70
reference, 105, 108, 200

passing arguments by references, 202
references in statements, 200

reference type, 199, 553
regex.h, 404
register, 19, 45, 548
remenv(), 9, 76, 558
remkey, 54
remkey(), 95
remove(), 82, 401
removeHiddenLine(), 415, see CPlot
remvar, 54
remvar(), 95
ren, 541
rename(), 401
reserved symbols, 20
residue(), 465, 494
resize, 7
resize(), 7
restrict, 19, 112, 402, 543, 548
return, 19, 144
rewind, 390
rewinddir(), 394
riemann sphere, 221
right shift, 128

598

INDEX INDEX

rlimit, 30
rm, 578
rmdir, 578
rmdir(), 401
roots(), 465, 492
Rosser, 512
rot90(), 465, 508
rotate matrix, 508
rsf2csf, 563

safe Ch, 28, 78, 400
safe Ch shell, 47
scaleType(), 415, see CPlot
scanf, 19, 549
scanf(), 376, 381
sched.h, 404
Schur decomposition, 520
schurdecomp(), 465, 520
scope resolution operator, 553
scope rules, 44
script files, 11, 34
sdiff, 580
search order, 39
sed, 579
SEEK CUR, 393
SEEK END, 393
SEEK SET, 393
selection statement, 137
semaphore.h, 404
sendevent, 21
set, 558
set new handler(), 347
setbuf(), 370
setenv, 78, 558
setjmp(), 142
setjmp.h, 404
setlocale(), 338
setrlimit(), 20, 30, 401
setvbuf(), 370
sh, 580
shape, 104, 309
shape(), 20, 301
SHELL, 21
short, 19, 99
showMesh(), 415, see CPlot
showvar, 49, 54, 56
SHRT MAX, 99
SHRT MIN, 99
sign function, 466
sign(), 465, 466
signal.h, 404
signbit(x), 125
signed, 19
signed char, 99

signed int, 99
signed long, 99
signed long long, 99
signed short, 99
simple statement, 136
sin(), 20, 210, 229, 233, 315
singular value decomposition, 515
sinh(), 20, 210, 229, 233, 315
size, 579
size(), 415, see CPlot
size3D(), 415, see CPlot
size t, 329
sizeof, 19, 257, 262, 269
sizeof(), 229, 233
sizeRatio(), 415, see CPlot
sleep, 580
smooth(), 415
socket(), 401
socketpair(), 401
Solaris, 97
sort, 579
sort data, 477
sort(), 461, 465, 478
special matrix, 512

Cauchy, 512
Chebyshev, 512
Chow, 512
Circul, 512
Clement, 512
DenavitHartenberg, 512
DenavitHartenberg2, 512
Dramadah, 512
Fiedler, 512
Frank, 512
Gear, 512
Hadamard, 512
Hankel, 512
Hilbert, 512
InverseHilbert, 512
Magic, 512
Pascal, 512
Rosser, 512
Toeplitz, 512
Vandermonde, 512
Wilkinson, 512

specialmatrix(), 465, 512
split, 579
sqrt(), 20, 210, 229, 233, 315, 513
sqrtm(), 465
sscanf(), 20, 376, 381
stackvar, 49
standard deviation, 474
start, 541
startup, 6, 27, 400

599

INDEX INDEX

startup in Linux, 6
startup in Mac OS X, 6
startup in windows, 7
stat(), 395, 401
statement, 136

break, 143
case, 139
compound statement, 136
continue, 143
default, 139
else-if, 138
expression, 136
goto, 144
if, 137
if-else, 138
iteration statement, 140
jump statement, 142
labeled statement, 145
loop, 140
null, 136
return, 144
selection statement, 137
simple statement, 136
switch, 138

static, 19, 45
static member, 553
static storage duration, 45, 119, 136, 249
statistics, 469
status, 558
std(), 461, 465, 474
stdarg.h, 180, 353, 404
stdbool.h, 137, 404, 543
stddef.h, 113, 404
stderr, 369
stdin, 369
stdin.h, 543
stdio.h, 389, 404
stdlib.h, 404
stdout, 369
stop, 43
storage duration of objects, 45, 249
str2ascii(), 334, 544
str2mat(), 334, 544
stradd(), 20, 30, 33, 334, 407, 544
strcasecmp(), 333
strcat(), 20, 109, 330
strchr(), 20, 331
strcmp(), 20, 331
strcoll(), 20, 331
strconcat(), 333
strcpy(), 20, 330
strcspn(), 331
stream, 369
strerror(), 20, 333

streval(), 20, 75, 558
strgetc(), 334, 544
string, 109, 545
string literals, 116
string.h, 329, 404
string t, 19, 334, 549
stringcat(), 109
stringcat2(), 110
strings, 329, 579
strip, 579
strjoin(), 333, 558
strlen(), 20, 333
strncasecmp(), 333
strncat(), 20, 330
strncmp(), 331
strncpy(), 20, 330
stropts.h, 404
strparse(), 75
strpbrk(), 331
strputc(), 334, 544
strrchr(), 331
strrep(), 334, 544
strspn(), 331
strstr(), 331
strtod(), 20
strtok(), 20, 331, 336
strtok r(), 336
strtol(), 20
strtoul(), 20
struct, 19, 106
structure, 269, 339
strxfrm(), 20, 331
stty, 31
subplot(), 415, see CPlot
substitution, 64, 66

command name substitution, 66
command substitution, 69, 135
expression substitution, 65, 386
filename substitution, 67
variable substitution, 64, 386

sum, 579
sum of array elements, 471
sum(), 461, 465, 471
svd(), 465, 515
swap(), 179, 202
switch, 19, 138
swprintf(), 552
swscanf(), 552
syslog.h, 404
system(), 33, 73, 401

tail, 579
tan(), 20, 210, 229, 233, 315
tanh, 315

600

INDEX INDEX

tanh(), 20, 210, 229, 233
tar, 580
tar.h, 404
tee, 580
TERM, 21, 30
termios.h, 404
ternary conditional operator, 122
test, 580
text(), 415, see CPlot
tgmath.h, 404, 543
this, 19, 549, 553
tics(), 415, see CPlot
ticsDay(), 415, see CPlot
ticsDirection(), 415, see CPlot
ticsFormat(), 415, see CPlot
ticsLabel(), 415, see CPlot
ticsLevel(), 415, see CPlot
ticsLocation(), 415, see CPlot
ticsMirror(), 415, see CPlot
ticsMonth(), 415, see CPlot
ticsPosition(), 415
ticsRange(), 415
time, 541
time.h, 404
title, 541
title(), 415, see CPlot
tiuser.h, 404
Toeplitz, 512
token merging in macro expansions, 91

preprocessor operator, 91
toolkit, 408
tools for scientific data analysis, 461
tools for scientific data plotting, 413
touch, 578
tr, 579
trace of matrix, 506
trace(), 465, 506
transpose(), 20, 197, 291, 317
triangular matrix, 509
triangularmatrix(), 465, 509
trigraph, 24
trigraphs, 18
troff, 579
true, 137, 543
try, 21
tsort, 579
type, 541
type qualifiers, 112
typedef, 258, 267
typographical conventions, iii
TZ, 21

UCHAR MAX, 99
UINT MAX, 100

umask, 558
umask(), 20, 29, 401
unalias, 63, 558
uname, 580
unary operator, 122
unbuffered I/O, 369
under-determined, 521
unexpand, 579
uniform random numbers, 466
union, 19, 107, 269, 340
uniq, 579
unistd.h, 404
unlink(), 401
unset, 558
unsetenv, 558
unsigned, 19
unsigned char, 99
unsigned int, 99, 100
unsigned long, 99
unsigned long long, 99
unsigned short, 99
unwrap, 478
unwrap(), 465
urand(), 465, 466
USER, 21
USHRT MAX, 99
using, 382, 553
utime.h, 404

va arg(), 180
va arraydim(), 180, 353, 355
va arrayextent(), 180, 353, 355
va arraynum(), 180, 353, 355
va arraytype(), 180, 353, 355
va copy(), 180, 543
va count(), 180, 353
va datatype(), 180, 353, 355
va end(), 180, 353
va list, 180
VA NOARG, 180, 181, 353
va start(), 180
va tagname(), 180
Vandermonde, 512
variable length arrays, 248, 542
variable substitution, 64, 386
variadic function, 545, 554
ver, 541
verbatim output block, 385
verify, 541
vfprintf(), 20, 380
vfwprintf(), 552
vi, 579, 581
vim, 579
virtual, 21, 112

601

INDEX INDEX

VLA, 248
VLAs, 542
void, 19, 108
vol, 541
volatile, 19, 112, 548
vprintf(), 20, 380
vsprintf(), 20, 380
vswprintf(), 552
vwprintf(), 552

W OK, 82
wait.h, 404
wc, 579
wchar.h, 404, 543
wchar t, 329, 337
wcstombs(), 116
wctype.h, 404, 543
Web plotting, 457
which, 78, 84, 193, 578
while, 19, 140
whoami, 580
whole arrays, 284
wide characters, 113, 337
wide strings, 116, 338
Wilkinson, 512
Win32, 97
Windows, 540
Windows 2000, 540
Windows 7, 540
Windows Vista, 540
Windows XP, 540
WinMain(), 38
wprintf(), 552
wscanf(), 552

X OK, 82
xargs, 580
xcorr(), 465, 536
xhost, 7, 76

zoom plots, 433

602

	Preface
	Ch Graphics Gallery
	Introduction
	I The Language Features
	Getting Started
	Startup
	Startup in Unix
	Startup in Windows

	Command Mode
	Program Mode
	Command Files
	Script Files
	Function Files

	Complex Numbers
	Computational Arrays
	Plotting

	Lexical Elements
	Character Set
	Trigraphs

	Keywords
	Keywords
	Reserved Symbols

	Identifiers
	Predefined Identifiers

	Punctuators
	Comments

	Program Structure
	Directories and Files in the Ch Home Directory
	Startup
	Sample Startup Files
	Command Line Options

	Ch Programs
	Command Files
	Script Files
	Function Files

	Program Execution
	Execution of Programming Statements in Command Mode
	Program Startup
	Program Termination
	Search Order
	Running Programs with Multiple Files
	Debug Programs

	Scope Rules
	Scopes of Identifiers
	Linkages of Identifiers
	Name Spaces of Identifiers
	Storage Duration of Objects

	Portable Interactive Command Shell and Shell Programming
	Shell Prompts
	Interactive Execution of Commands
	Current Shell
	Background Job

	Interactive Execution of Programming Statements
	Built-in Commands
	Commands For Interactive Shell Only

	Repeating Commands at Prompt
	History Substitution
	Quick Substitution
	File Completion
	Command Completion

	Aliases
	Variable Substitution
	Expression Substitution
	Command Name Substitution

	Filename Substitution
	Command Substitution
	Input/Output Redirection
	Pipeline
	Running Commands in Background
	Run-Time Expression Evaluation
	Handling Environment Variables
	General-Purpose Ch Programs
	Shell Programming
	Use Shell Commands in Programs
	Passing Values to Shell Commands

	Preprocessing Directives
	Conditional Inclusion
	Source File Inclusion
	Macro Replacement
	Converting Tokens to Strings
	Token Merging in Macro Expansions
	Line Control
	Error Directive
	NULL Directive
	Pragma Directive
	Predefined Macros

	Types and Declarations
	Data Types
	Integral Data Types
	Floating-Point Types
	Aggregate Floating-Point Types
	Pointer Data Types
	Array Types
	Structure Types
	Class Types
	Bit Field
	Union Types
	Enum Types
	Void Type
	Reference Type
	String Type
	Function Types

	Type Qualifiers
	Computational Arrays
	Restricted Function

	Constants
	Character Constants
	String Literals
	Integer Constants
	Floating-Point Constants

	Initialization

	Operators and Expressions
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators
	Conditional Operator
	Cast Operators
	Cast Operators
	Functional Type Cast Operators

	Comma Operator
	Unary Operators
	Address and Indirection Operators
	Increment and Decrement Operators
	Command Substitution Operator

	Member Operators

	Statements and Control Flow
	Simple and Compound Statements
	Expression and Null Statements
	Selection Statements
	If Statements
	If-Else Statements
	Else-If Statements
	Switch Statements

	Iteration Statements
	While Loop
	Do-While Loop
	For Loop
	Foreach Loop

	Jump Statements
	Break Statements
	Continue Statements
	Return Statements
	Goto Statements

	Labeled Statements

	Pointers
	Pointer Arithmetic
	Dynamic Allocation of Memory
	Arrays of Pointers
	Pointers to Pointers

	Functions
	Call-by-Value versus Call-by-Reference
	Function Definitions
	Function Prototypes
	Recursive Functions
	Nested Functions
	Scopes and Lexical Levels of Nested Functions
	Prototypes of Nested Functions
	Nested Recursive Functions

	Using Pointers to Pass Arguments of Function by Reference
	Variable Number Arguments in Functions
	Pointer to Functions
	Communication between Functions
	The main() Function and Command-Line Arguments
	Function Files
	Generic Functions

	Reference Type
	References in Statements
	Passing Arguments of Function by References
	Passing Variables of Different Data Types to the Same Reference

	Scientific Computing Using Generic Mathematical Functions
	Generic Mathematical Functions in the Entire Domain
	Programming Examples
	Computation of Extreme Values of Floating-Point Numbers
	Programming with Metanumbers

	Programming with Complex Numbers
	Complex Numbers
	Complex Constants and Complex Variables

	Complex Planes and Complex Metanumbers
	Data Conversion Rules

	I/O for Complex Numbers
	Complex Operations
	Complex Operations with Regular Complex Numbers
	Complex Operations with Complex Metanumbers

	Complex Functions
	Results of Complex Functions with Regular Complex Numbers
	Results of Complex Functions With Complex Metanumbers

	Lvalues Related to Complex Numbers
	Creation of User's Complex Functions

	Pointers and Arrays
	Accessing Array Elements Through Pointers
	Dynamic Allocation of Arrays
	Dynamic Allocation of One-Dimensional Arrays
	Dynamic Allocation of Two-Dimensional Arrays

	Passing One and Multi-Dimensional Arrays of Fixed Length
	One-Dimensional Arrays
	Multi-Dimensional Arrays of Fixed Length

	Variable Length Arrays
	Storage Duration and Declaration of Arrays
	Storage Duration of Objects
	Declaration of Arrays

	Deferred-Shape Arrays
	Constraints and Semantics
	Deferred-Shape Arrays Related to Switch Statement
	Deferred-Shape Arrays Related to Goto Statement
	Deferred-Shape Arrays as Members of Structures and Unions
	Sizeof
	Typedef
	Other Data Types and Pointer Arithmetic

	Assumed-Shape Arrays
	Constraints and Semantics
	Sizeof
	Other Data Types and Pointer Arithmetic

	Pointers to Array of Assumed-Shape
	Declaration
	Constraints and Semantics
	Function Prototype Scope
	Typedef
	Arrays Allocated by Dynamic Memory Allocation Functions
	Similarities between Pointers to Fixed-Length Array and Pointers to Assumed-Shape Array

	Arrays with Explicit Lower and Upper Bounds
	Arrays of Fixed Subscript Range
	Arrays of Variable Subscript Range

	Passing Arrays with Explicit Lower and Upper Bounds to Functions
	Passing Arrays of Fixed Subscript Range
	Passing Arrays of Variable Subscript Range Using Pointers to Assumed-Shape Array

	Computational Arrays and Matrix Computations
	Declaration and Initialization of Computational Arrays
	Array Reference
	Whole Arrays
	Array Elements

	Formatted Input and Output for Computational Arrays
	Implicit Data Type Conversion for Computational Arrays
	Array Operations
	Arithmetic Operations
	Assignment Operations
	Increment and Decrement Operations
	Relational Operations
	Logic Operations
	Conditional Operation
	Address Operations
	Cast Operations

	Promotion of Scalars to Computational Arrays in Operations
	Passing Computational Arrays to Functions
	Fully-Specified-Shape Arrays
	Assumed-Shape Arrays
	Deferred-Shape Arrays
	Arrays in Variable Number Arguments
	Arrays of Reference

	Computational Arrays with Value NULL
	Functions Return Computational Arrays
	Functions Return Computational Arrays of Fixed Length
	Functions Return Computational Arrays of Variable Length

	Type Generic Array Functions
	Some Commonly Used Array Functions
	Pointer to Computational Arrays
	Pointer to Computational Arrays of Fixed Length
	Pointer to Computational Arrays of Assumed Shape
	Using Pointer to Computational Arrays to Pass Arrays to Functions

	Relationship between Computational Arrays and C Arrays

	Characters and Strings
	Using Functions in string.h Header File
	Copying Functions
	Concatenation Functions
	Comparison Functions
	Search Functions
	Miscellaneous Functions
	String Functions Supported by Ch, but not in C Standard Library

	String Type string_t
	Handling String Tokens Using foreach Loop
	Wide Characters
	Wide Strings

	Structures, Unions, Bit Fields, and Enumerations
	Structures
	Unions
	Bit-fields
	Enumerations

	 Classes and Object-Based Programming
	Class Definition and Objects
	Member Functions of Class
	Public and Private Members of Class
	Constructors and Destructors in Class
	The new and delete Operators
	Static Member of Class
	Scope Resolution Operator ::
	The Implicit this Pointer
	Polymorphism
	Polymorphic Generic Mathematical Functions
	Functions with Parameter Type of Array of Reference
	Polymorphic Functions
	Polymorphic Member Functions of Class

	Nested Classes
	Classes inside Member Function
	Passing Member Functions to Arguments of Functions
	Predefined Identifiers __class__ and __class_func__

	Input and Output
	Streams
	Buffered and Unbuffered I/O
	I/O Formats
	Output Format for fprintf Family of Output Function
	Input Format for fscanf Family of Input Function

	Default I/O Formats
	Default Format for fprintf Family of Output Functions
	Default Format for fscanf Family of Input Functions
	I/O Using cout, cin, cerr, and endl

	I/O for Metanumbers
	I/O Formats for Aggregate Data Types
	Verbatim Output Blocks Using fprintf
	File Manipulation
	Opening and Closing a File
	Reading and Writing a File
	Random Access

	Directory Manipulation
	Opening and Closing a Directory
	Reading a Directory

	Safe Ch
	Safe Ch Shell
	Startup in Windows

	Features Disabled in a Sandbox
	Restricted Functions
	Safe Ch Programs
	Applets and Network Computing

	Library, Toolkit, and Package
	Library
	Toolkit
	Package

	II The Library for Scientific Computing
	Two and Three-Dimensional Plotting
	A Class for Plotting
	Data for Plotting
	Annotations
	Multiple Data Sets and Legends
	Using Predefined Geometric Primitives
	Subplots
	Export and Zoom Plots
	Print Plots

	2D Plotting
	Plot Types, Line Styles, and Markers
	Polar Plot
	2D Plotting Functions

	3D Plotting
	Plot Types
	Plotting in Different Coordinate Systems
	3D Plotting Functions

	Dynamic Web Plotting

	Numerical Analysis
	Mathematical Functions
	Cross Product
	Dot Product
	Uniform Random Numbers
	Sign Function
	Greatest Common Divisor
	Least Common Multiple
	Complex Equation

	Data Analysis and Statistics
	Get Numbers from Console
	Assign Data to Arrays
	Minimum and Maximum
	Sum
	Product
	Mean
	Median
	Standard Deviation
	Covariance and Correlation Coefficients
	Norm
	Factorial
	Combination
	Sort Data
	Unwrap
	Functions Applied to Elements of Arrays
	Histogram

	Data Interpolation and Curve Fitting
	One-Dimensional Interpolation
	Two-Dimensional Interpolation
	General Curve Fitting
	Curve Fitting Using Polynomial Functions

	Minimization or Maximization of Functions
	Minimization of Function with One Variable
	Minimization of Function with Multiple Variables

	Polynomials
	Evaluation of Polynomials
	Derivative of Polynomials
	Find Roots of Polynomials
	Find Coefficients of Polynomials
	Residues for Factorization of Polynomials
	Characteristic Polynomials of Matrices

	Nonlinear Equations
	Solve a Nonlinear Equation
	Solve System of Nonlinear Equations

	Derivatives and Ordinary Differential Equations
	Difference
	Derivatives

	Solve Ordinary Differential Equations
	Numerical Integration
	One-Dimensional Integration
	Two-Dimensional Integration
	Three-Dimensional Integration

	Matrix Functions
	Characteristics of Matrices
	Manipulation of Matrices
	Special Matrices
	Matrix Analysis

	Matrix Decomposition
	LU Decomposition
	Singular Value Decomposition
	Cholesky Decomposition
	QR Decomposition
	Hessenberg Decomposition
	Schur Decomposition

	Linear Equations
	Linear System of Equations
	Over-Determined or Under-Determined Linear System of Equations
	Inverse and Pseudo Inverse Matrices
	Linear Spaces

	Eigenvalues and Eigenvectors
	Fast Fourier Transforms
	Convolution and Filtering
	Cross Correlation

	Bibliography
	Known Problems and Platform Specific Features
	Platform Specific Features
	Solaris
	Windows NT/2000/XP/Vista/Windows 7

	Functions Not Supported in Specific Platforms

	Comparison with C and Implementation-Defined Behaviors
	New C99 Features Supported in Ch
	Summary of Extensions to C
	Implementation Notes
	Unlimited Properties
	Defined Properties
	Temporarily Features
	Incompatibility between Ch and C

	Tips for Porting C to Ch

	Comparison with C++
	Features in Both C++ and Ch
	Extensions to C++ Classes in Ch
	C++ Features not Supported in Ch
	Differences Between C++ and Ch

	Comparison with C Shell
	Syntax
	Control Flow

	Comparison with MATLAB
	Operators
	Functions and Constants
	Control Flow

	Comparison with Fortran
	Reference in Ch versus Equivalence in FORTRAN
	Call-by-Reference in Ch and in FORTRAN

	Summary of Commonly Used Portable Shell Commands in Ch
	File Systems
	Binary Files
	Text Files
	Comparing Files
	Shell Utilities
	Archiving Files

	Summary of vi Text Editor
	Porting Code to the Latest Version
	Porting Code to Ch Version 6.0.0.13581
	Porting Code to Ch Version 6.0.0.13581

	Index

