

Transforming PCIe-SSDs and HDDs with Infiniband into Scalable Enterprise Storage

Dieter Kasper Fujitsu

Agenda

Introduction

- Hardware / Software layout
- Tools how to monitor
- Transformation test cases
- Conclusion

Challenges of a Storage Subsystem

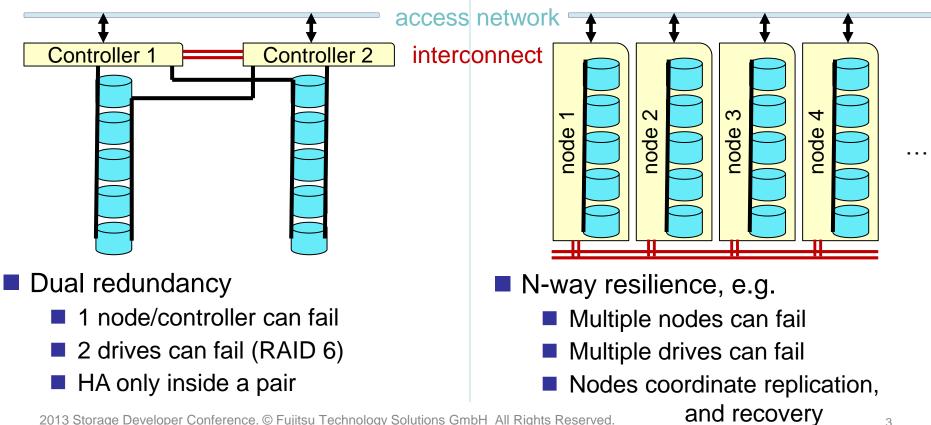
Transparency

User has the impression of a single global File System / Storage Space

Scalable Performance, Elasticity

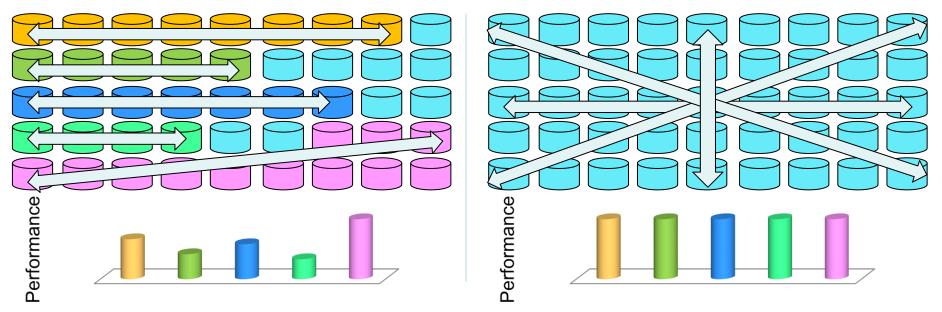
- No degradation of performance as the number of users or volume of data increases
- Intelligent rebalancing on capacity enhancements
- Offer same high performance for all volumes

Availability, Reliability and Consistency


- User can access the same file system / Block Storage from different locations at the same time
- User can access the file system at any time
- Highest MTTDL (mean time to data loss)

Fault tolerance

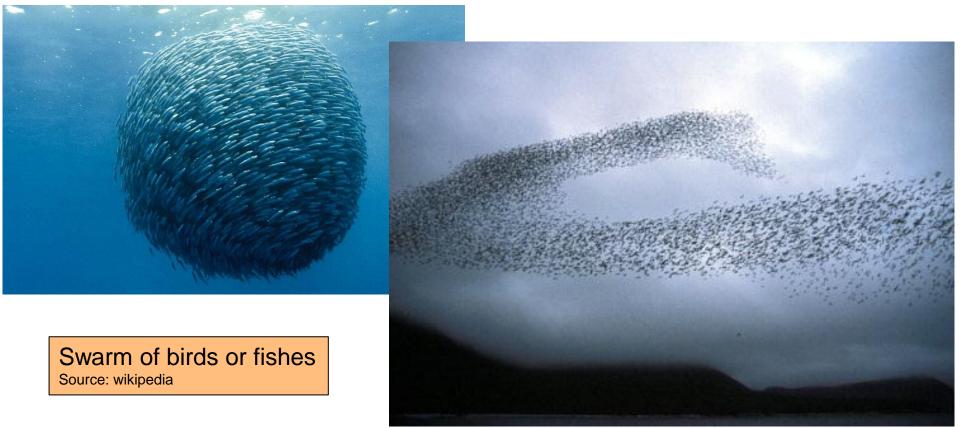
- System can identify and recover from failure
- Lowest Degradation during rebuild time
- Shortest Rebuild times


Manageability & ease of use

Conventional vs. distributed model

0 YEARS

Conventional vs. distributed model


While traditional storage systems distribute Volumes across sub-sets of Spindles Scale-Out systems use algorithms to distribute Volumes across all/many Spindles and provide maximum utilization of all system resources

> Offer same high performance for all volumes and shortest rebuild times

2013 Storage Developer Conference. © Fujitsu Technology Solutions GmbH All Rights Reserved.

0 YEARS

A model for dynamic "clouds" in nature

2013 Storage Developer Conference. © Fujitsu Technology Solutions GmbH All Rights Reserved.

IO YEARS

SD

STORAGE DEVELOPER CONFERENCE

Distributed intelligence

Swarm intelligence

 (SI) is the collective behavior of decentralized, self-organized systems, natural or artificial.

Swarm behavior

- Swarm behavior, or swarming, is a collective behavior exhibited by animals of similar size (...) moving en masse or migrating in some direction.
- From a more abstract point of view, swarm behavior is the collective motion of a large number of self-propelled entities.
- From the perspective of the mathematical modeler, it is an (...)
 behavior arising from simple rules that are followed by individuals and does not involve any central coordination.

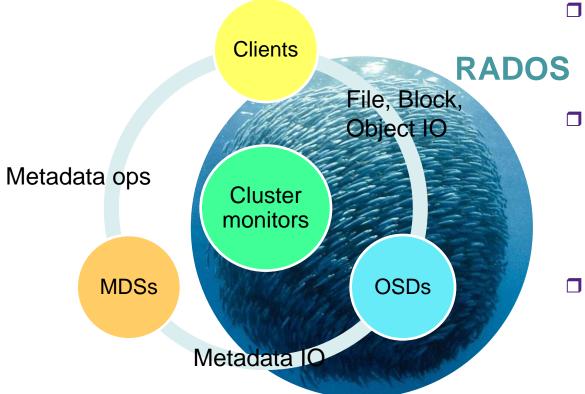
[Wikipedia]

[Wikipedia]

Node failures are the norm, rather than an exception Changes in the storage cluster size (up to 10k nodes) cause at

- Changes in the storage cluster size (up to 10k nodes) cause automatic and fast failure recovery and rebalancing of data with no interruption
- □ The characters of workloads are constantly shifting over time
 - The Hierarchy is dynamically redistributed over 10s of MDSs (Meta Data Services) by Dynamic Subtree Partitioning with near-linear scalability
- □ The system is inevitably built incrementally
 - **FS** can be seamlessly expanded by simply adding storage nodes (OSDs)
 - Proactively migrates data to new devices -> balanced distribution of data
 - Utilizes all available disk bandwidth and avoids data hot spots

Ceph Key Design Goals


- **The system is inherently dynamic:**
 - Decouples data and metadata
 - Eliminates object list for naming and lookup by a hash-like distribution function <u>CRUSH</u> (Controlled Replication Under Scalable Hashing)
 - Delegates responsibility of data migration, replication, failure detection and recovery to the OSD (Object Storage Daemon) cluster

cebh

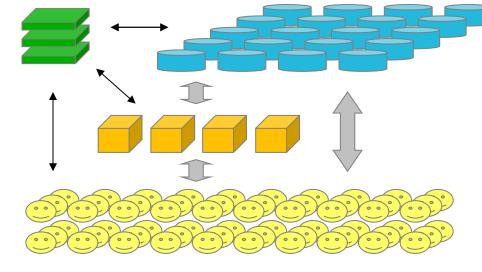
Architecture: Ceph + RADOS (1)

Clients

- Standard Interface to use the data (POSIX, Device, S3)
- Transparent for Applications
- Metadata Server Cluster (MDSs)
 - Namespace Management
 - Metadata operations (open, stat, rename, ...)
 - Ensure Security
- Object Storage Cluster (OSDs)
 - Stores all data and metadata
 - Organizes data into flexiblesized containers, called objects

Architecture: Ceph + RADOS (2)

MONs(monitors)

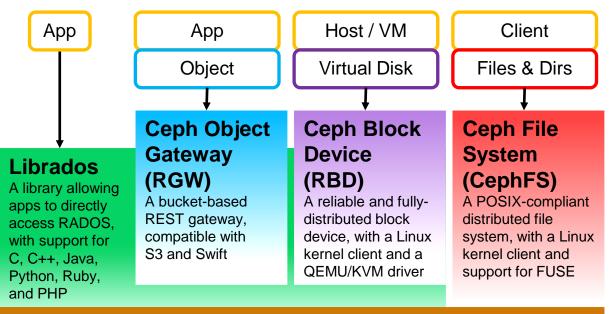


1s-10s, paxos

1s-10,000s

- lightweight process
- authentication, cluster membership, critical cluster state
- OSDs

- Ceph Clients
 - Zillions
 - Smart, coordinate with peers
 - authenticate with monitors, talk directly to ceph-osds
- MDSs
 - **1**s-10s
 - Build POSIX file system on top of objects

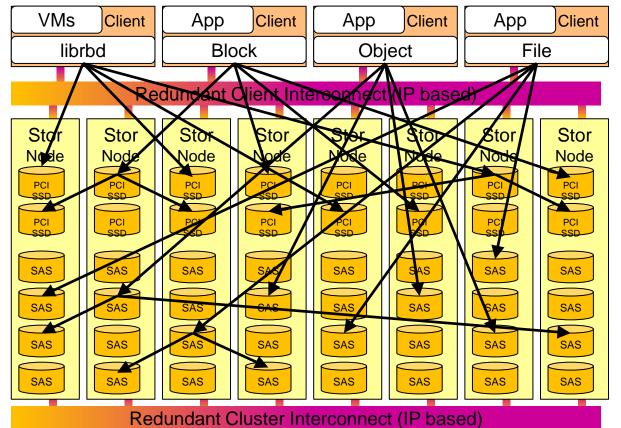

Data placement with CRUSH

- Files/bdevs striped over objects File / Block 4 MB objects by default Objects mapped to Objects placement groups (PGs) pgid = hash(object) & mask PGs mapped to sets of OSDs crush(cluster, rule, pgid) = [osd2, osd3]PGs Pseudo-random, statistically uniform distribution ~100 PGs per node OSDs O(log n) calculation, no lookups Fast: (grouped by failure domain) **Reliable:** replicas span failure domains adding/removing OSDs moves few PGs Stable:
 - A deterministic pseudo-random hash like function that distributes data uniformly among OSDs
 - Relies on compact cluster description for new storage target w/o consulting a central allocator

Unified Storage for Cloud based on Ceph – Architecture and Principles

Ceph's CRUSH algorithm liberates storage clusters ceph from the scalability and performance limitations imposed by centralized data table mapping. It replicates and rebalance data within the cluster dynamically - elminating this tedious task for administrators. while delivering high-performance and infinite scalability.

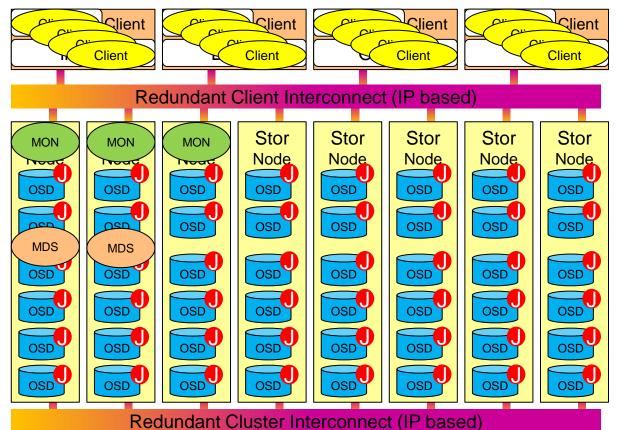
The Ceph difference


Ceph Storage Cluster (RADOS)

A reliable, autonomous, distributed object store comprised of self-healing, self-managing, intelligent storage nodes http://ceph.com/ceph-storage
http://www.inktank.com

Ceph is the most comprehensive implementation of Unified Storage

Ceph principles


2013 Storage Developer Conference. © Fujitsu Technology Solutions GmbH All Rights Reserved.

Distributed Redundant Storage

- Intelligent data <u>Distribution</u> across all nodes and spindles = wide striping (64KB – 16MB)
- Redundancy with replica=2, 3 ... 8
- Thin provisioning
- Fast distributed rebuild
- Availability, Fault tolerance
 - Disk, Node, Interconnect
 - Automatic rebuild
 - Distributed HotSpare Space
- Transparent Block, File access
- Reliability and Consistency
- Scalable Performance
- Pure PCIe-SSD for extreme Transaction processing

Ceph processes

2013 Storage Developer Conference. © Fujitsu Technology Solutions GmbH All Rights Reserved.

Distributed Redundant Storage

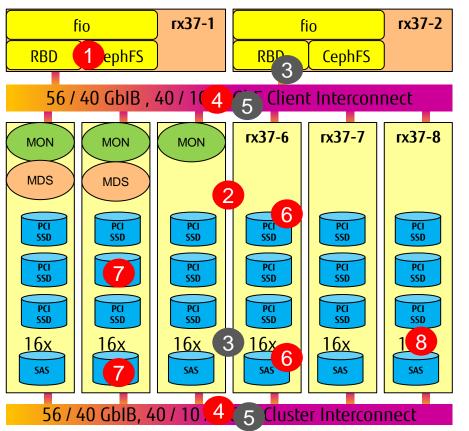
- Intelligent data <u>Distribution</u> across all nodes and spindles = wide striping (64KB – 16MB)
- Redundancy with replica=2, 3 ... 8
- Thin provisioning
- Fast distributed rebuild
- Availability, Fault tolerance
 - Disk, Node, Interconnect
 - Automatic rebuild
 - Distributed HotSpare Space
- Transparent Block, File access
- Reliability and Consistency
- Scalable Performance
- Pure PCIe-SSD for extreme Transaction processing



Agenda

- Introduction
- Hardware / Software layout
- Tools how to monitor
- Transformation test cases
- Conclusion

Hardware test configuration



rx37-[3-8]: Fujitsu 2U Server RX300

- 2x Intel(R) Xeon(R) E5-2630 @ 2.30GHz
- 128GB RAM
- 2x 1GbE onboard
- 2x 10GbE Intel 82599EB
- 1x 40GbIB Intel TrueScale IBA7322 QDR InfiniBand HCA
- 2x 56GbIB Mellanox MT27500 Family (configurable as 40GbE, too)
- 3x Intel PCIe-SSD 910 Series 800GB
- □ 16x SAS 6G 300GB HDD through
- LSI MegaRAID SAS 2108 [Liberator]
- **r**x37-[12]: same as above, but
 - 1x Intel(R) Xeon(R) E5-2630 @ 2.30GHz
 - **64GB RAM**
 - No SSDs, 2x SAS drives

Which parameter to change, tune

- (1) Frontend interface: ceph.ko, rbd.ko, ceph-fuse, rbd-wrapper in user land
- (2) OSD object size of data: 64k, 4m
- (3) Block Device options for /dev/rbdX, /dev/sdY: scheduler, rq_affinity, rotational, read_ahead_kb
- (4) Interconnect: 1 / 10 / 40 GbE, 40 / 56 GbIB CM/DG
- (5) Network parameter
- (6) Journal: RAM-Disk, SSD
- (7) OSD File System: xfs, btrfs
- (8) OSD disk type: SAS, SSD

Software test configuration

CentOS 6.4

- With vanilla Kernel 3.8.13
- **fio-2.0.13**
- □ ceph version 0.61.7 cuttlefish

1GbE: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 1GbE: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 10GbE: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 10GbE: eth3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 40Gb: ib0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 65520 56Gb: ib1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 65520 56Gb: ib2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 65520 40GbE: eth4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 65520 40GbE: eth4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9216 40GbE: eth5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9216

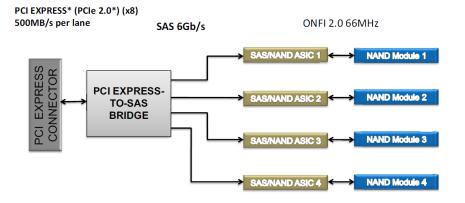
fdisk -1 /dev/sdq

Device	Boot Start	End	Blocks	Id	System
/dev/sdq1	1	22754	182767616	83	Linux
/dev/sdq2	22754	24322	12591320	f	Ext'd
/dev/sdq5	22755	23277	4194304	83	Linux
/dev/sdq6	23277	23799	4194304	83	Linux
/dev/sdq7	23799	24322	4194304	83	Linux

#--- 3x Journals on each SSD

# lsscsi							
[0:2:0:0]	disk	LSI	RAID	5/6	SAS 6G	2.12	/dev/sda
[0:2:1:0]	disk	LSI	RAID	5/6	SAS 6G	2.12	/dev/sdb
[0:2:2:0]	disk	LSI	RAID	5/6	SAS 6G	2.12	/dev/sdc
[0:2:3:0]	disk	LSI	RAID	5/6	SAS 6G	2.12	/dev/sdd
[0:2:4:0]	disk	LSI	RAID	5/6	SAS 6G	2.12	/dev/sde
[0:2:5:0]	disk	LSI	RAID	5/6	SAS 6G	2.12	/dev/sdf
[0:2:6:0]	disk	LSI	RAID	5/6	SAS 6G	2.12	/dev/sdg
[0:2:7:0]	disk	LSI	RAID	5/6	SAS 6G	2.12	/dev/sdh
[0:2:8:0]	disk	LSI	RAID	5/6	SAS 6G	2.12	/dev/sdi
[0:2:9:0]	disk	LSI	RAID	5/6	SAS 6G	2.12	/dev/sdj
[0:2:10:0]	disk	LSI	RAID	5/6	SAS 6G	2.12	/dev/sdk
[0:2:11:0]	disk	LSI	RAID	5/6	SAS 6G	2.12	/dev/sdl
[0:2:12:0]	disk	LSI	RAID	5/6	SAS 6G	2.12	/dev/sdm
[0:2:13:0]	disk	LSI	RAID	5/6	SAS 6G	2.12	/dev/sdn
[0:2:14:0]	disk	LSI	RAID	5/6	SAS 6G	2.12	/dev/sdo
[0:2:15:0]	disk	LSI	RAID	5/6	SAS 6G	2.12	/dev/sdp
[1:0:0:0]	disk	INTEL(R)	SSD	910	200GB	a411	/dev/sdq
[1:0:1:0]	disk	INTEL(R)	SSD	910	200GB	a411	/dev/sdr
[1:0:2:0]	disk	INTEL(R)	SSD	910	200GB	a411	/dev/sds
[1:0:3:0]	disk	INTEL(R)	SSD	910	200GB	a411	/dev/sdt
[2:0:0:0]	disk	INTEL(R)	SSD	910	200GB	a411	/dev/sdu
[2:0:1:0]	disk	INTEL(R)	SSD	910	200GB	a411	/dev/sdv
[2:0:2:0]	disk	INTEL(R)	SSD	910	200GB	a411	/dev/sdw
[2:0:3:0]	disk	INTEL(R)	SSD	910	200GB	a411	/dev/sdx
[3:0:0:0]	disk	INTEL(R)	SSD	910	200GB	a40D	/dev/sdy
[3:0:1:0]	disk	INTEL(R)	SSD	910	200GB	a40D	/dev/sdz
[3:0:2:0]	disk	INTEL(R)	SSD	910	200GB	a40D	/dev/sdaa
[3:0:3:0]	disk	INTEL(R)	SSD	910	200GB	a40D	/dev/sdab

Agenda


- Introduction
- Hardware / Software layout
- Tools how to monitor
- Transformation test cases
- Conclusion

2013 Storage Developer Conference. © Fujitsu Technology Solutions Guiper An August Reserved

Intel PCIe-SSD 910 data sheet

- □ IOPS random rd/wr 4k: 180k/75k (queue depth 32 per NAND module)
- Bandwidth rd/wr 128k: 2/1 GB/s (queue depth 32 per NAND module)
- \Box Latency rd 512 / wr 4k seq: <65µs (queue depth 1 per NAND module)

- Recommended Settings in Linux:
- rq_affinity
- scheduler noop
- rotational
- read ahead kb 0

Intel © SSD Data Center Tool

https://downloadcenter	.intel.com/Detail	Desc.aspx?DwnldID=21099

Ι	Supported Page List	Ι	0	(0x00)	
i	Write Error Counter	i		(0x02)	i
i	Read Error Counter	i		(0x03)	i
i	Verify Error Counter	i		(0x05)	i
i	Non-medium Error Counter	i		(0x06)	i
i	Temperature	i		(0x0D)	i
i	Manufacturing Date Information	i		(0x0E)	i
i	Application Client Log	i		(0x0F)	i
i	Self Test Results	i		(0x10)	i
i	Solid State Media	i		(0x11)	i
i	Background Scan Medium Operation	i		(0x15)	i
i	Protocol Specific Log Parameter	i		(0x18)	i
i	Link Status	i	26		i
i	SMART Status and Temperature Reading	i		(0x2F)	i
i	Vendor Specific	i	48	(0x30)	i
i	Misc Data Counters	i	55		i
		1		(1

```
# isdct -device 1 -drive 3 -log 0x11 | grep end
| Percentage used endurance indicator | 1 (0x01) |
# isdct -device 1 -drive 3 -log 0xD | grep Cel
| Temperature (Degress Celsius) | 28 (0x1C)
| Reference Temperature (Degress Celsius) | 85 (0x55)
```

Infiniband

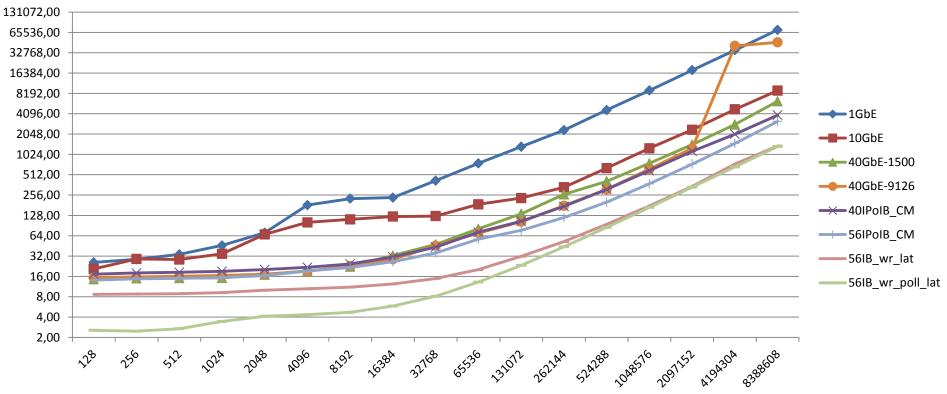
# # ibstatus egrep 'Infi sta	atlrate' grep -v link	# ibhosts -C gib0 -P 1
Infiniband device 'mlx4_0' por		Ca : 0x00117500005a6aea ports 1 "rx37-8 qib0"
•	ACTIVE	Ca : 0x0011750000783984 ports 1 "rx37-7 qib0"
	LinkUp	Ca : 0x001175000078405e ports 1 "rx37-1 gib0"
	6 Gb/sec (4X FDR)	Ca : 0x00117500005a6ad2 ports 1 "rx37-3 gib0"
Infiniband device 'mlx4_0' por		Ca : 0x001175000077f6ec ports 1 "rx37-4 qib0"
	ACTIVE	Ca : 0x001175000077740e ports 1 "rx37-4 q1b0"
	-	
	LinkUp	Ca : 0x0011750000789c9e ports 1 "rx37-6 qib0"
	Gb/sec (4X FDR)	Ca : 0x00117500005a6a32 ports 1 "rx37-2 qib0"
Infiniband device 'qib0' port		
	ACTIVE	# ibv_devinfo
1 2	LinkUp	# iblinkinfo -R
rate: 40) Gb/sec (4X QDR)	# perfquery -C qib0 -P 1
		# ibdiagnet -p 1
# iblinkinfo		
CA: rx37-8 mlx4_0:		
0x0002c90300218c81 14	1[] ==(4X 14.0625 Gbps Active	
0x0002c90300218c82 15	2[] ==(4X 14.0625 Gbps Active	e/ LinkUp)==> 3 33[] "MF0;switch-b79e58:SX6036/U1" ()
CA: localhost mlx4_0:		
0x0002c90300218b91 12	1[] == (4X 14.0625 Gbps Active	
0x0002c90300218b92 13	2[] ==(4X 14.0625 Gbps Active	e/ LinkUp)==> 3 31[] "MF0;switch-b79e58:SX6036/U1" ()
CA: rx37-6 mlx4_0: 0x0002c90300218dc1 17	1[] (1) 14 0625 Chan Activ	(1)
0x0002c90300218dc1 17	1[] ==(4X 14.0625 Gbps Active 2[] ==(4X 14.0625 Gbps Active	
Switch: 0x0002c903008e8f00 MF0;sw		27 Linkop = 27 J HP0, Switch-D79636.5A0030701 ()
3 1[] ==(4X	14.0625 Gbps Active/ LinkUp)==>	1 1[] " HCA-1" ()
3 2[] ==(Down/ Polling)==> [] "" ()
3 3[] ==(4X)	14.0625 Gbps Active/ LinkUp)==>	2 2[] " HCA-1" ()
3 4[] ==(Down/ Polling)==> [
3 5[1] == (4X)	14.0625 Gbps Active/ LinkUp)==>	4 1[´] "rx37-1 mlx4_0" ()

Agenda

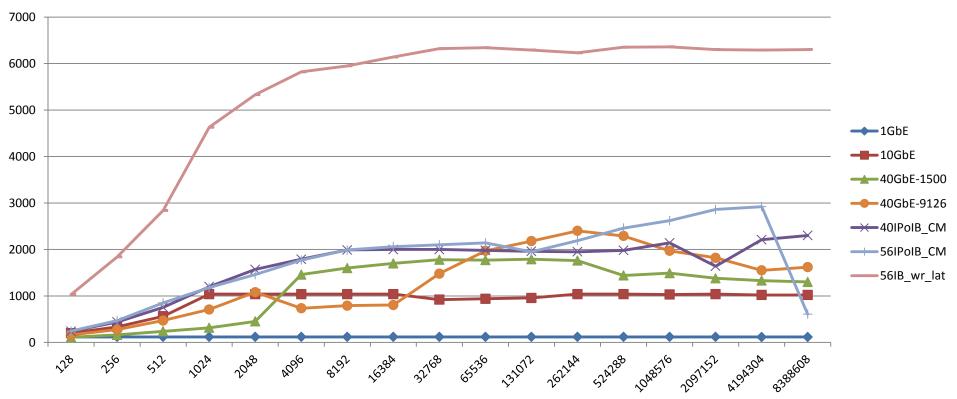
- Introduction
- Hardware / Software layout
- Tools how to monitor
- Transformation test cases
- Conclusion

Performance test tools

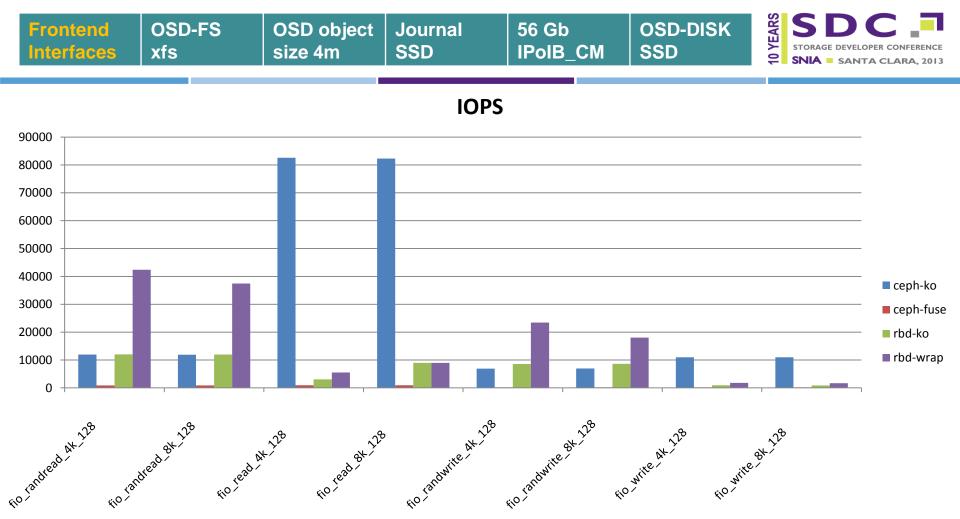
qperf \$IP_ADDR -t 10 -oo msg_size:1:8M:*2 -v
tcp_lat | tcp_bw | rc_rdma_write_lat |
rc_rdma_write_bw | rc_rdma_write_poll_lat

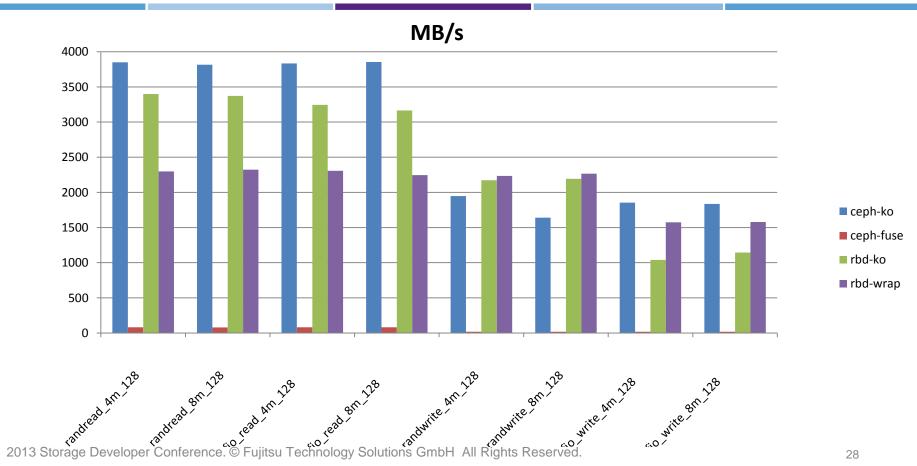

fio --filename=\$RBD|--directory=\$MDIR --direct=1
 --rw=\$io --bs=\$bs --size=10G --numjobs=\$threads

- --runtime=60 --group_reporting --name=file1
- --output=fio_\${io}_\${bs}_\${threads}
- RBD=/dev/rbdX, MDIR=/cephfs/fio-test-dir
- io=write,randwrite,read,randread
- □ bs=4k,8k,4m,8m
- threads=1,64,128

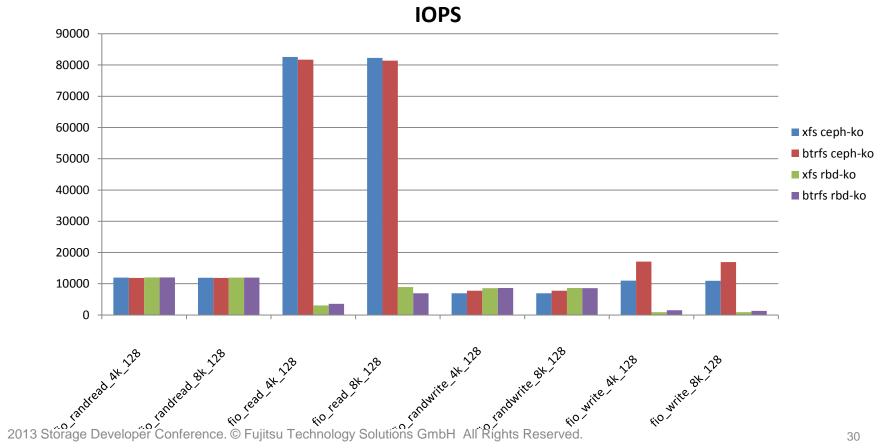

tcp_lat (µs : IO_bytes)

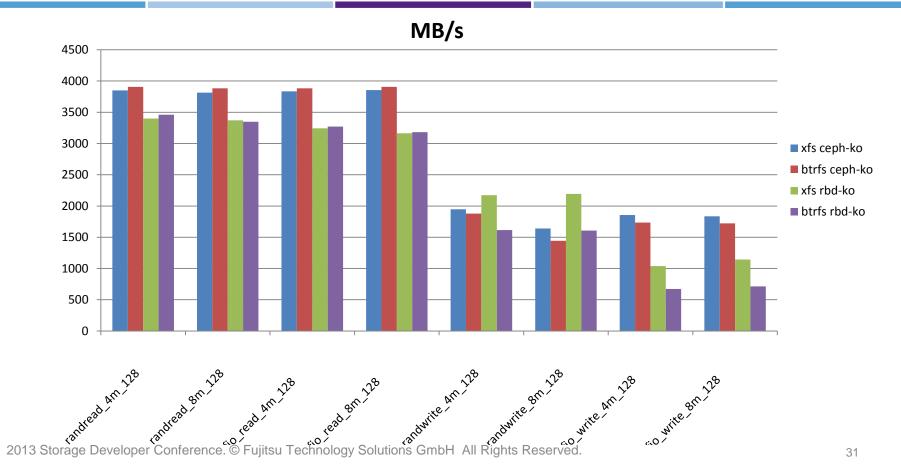
qperf - bandwidth


tcp_bw (MB/s : IO_bytes)


qperf - explanation

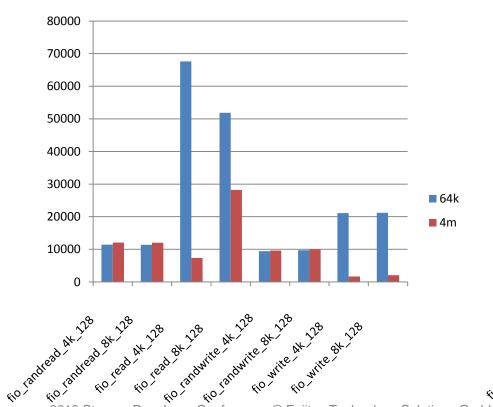
- ☐ tcp_lat almost the same for blocks <= 128 bytes</p>
- tcp_lat very similar between 40GbE, 40Gb IPoIB and 56Gb IPoIB
- □ Significant difference between 1 / 10GbE only for blocks >= 4k
- Better latency on IB can only be achieved with rdma_write / rdma_write_poll
- Bandwidth on 1 / 10GbE very stable on possible maximum
- **40GbE** implementation (MLX) with unexpected fluctuation
- Under IB only with RDMA the maximum transfer rate can be achieved
- > Use Socket over RDMA
- > Options without big code changes are: SDP, rsocket, SMC-R

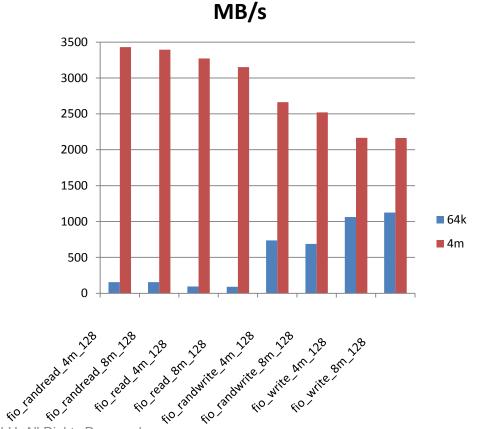



Fronte	end	OSD-FS	OSD object	Journal	56 Gb	OSD-DISK	EARS	SDC .
Interfa	ices	xfs	size 4m	SSD	IPoIB_CM	SSD		STORAGE DEVELOPER CONFERENCE

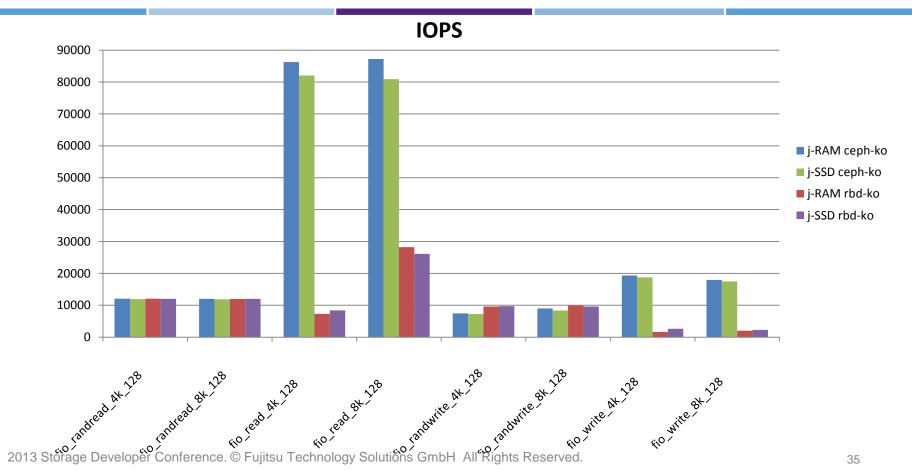
- Ceph-fuse seems not to support multiple I/Os in parallel with O_DIRECT which drops the performance significantly
- RBD-wrap (= rbd in user land) shows some advantages on IOPS, but not sufficient enough to replace rbd.ko
- Ceph.ko is excellent on sequential IOPS reads, presumable because of the read (ahead) of complete 4m blocks
- Stay with the official interfaces ceph.ko / rbd.ko to give fio the needed access to File and Block
- rbd.ko has some room for performance improvement for IOPS

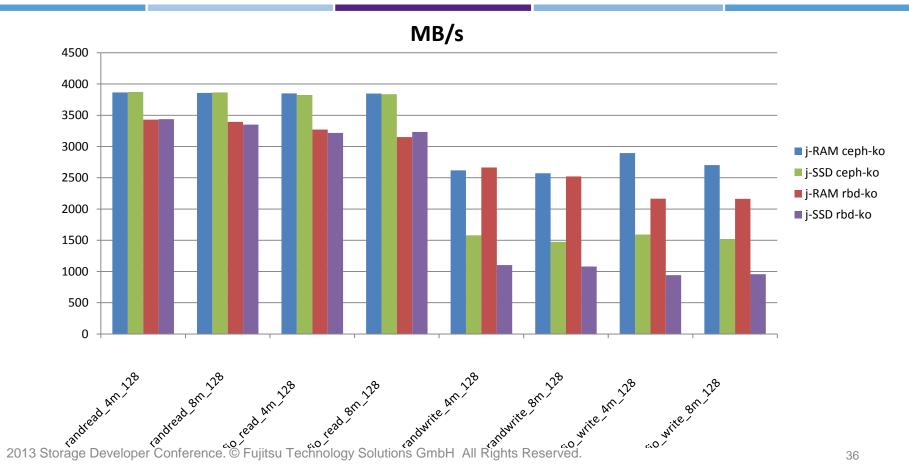
ceph-ko	OSD-FS	OSD object	Journal	56 Gb	OSD-DISK	EARS	SDC -
rbd-ko	xfs / btrfs	size 4m	SSD	IPoIB_CM	SSD	-	STORAGE DEVELOPER CONFERENCE



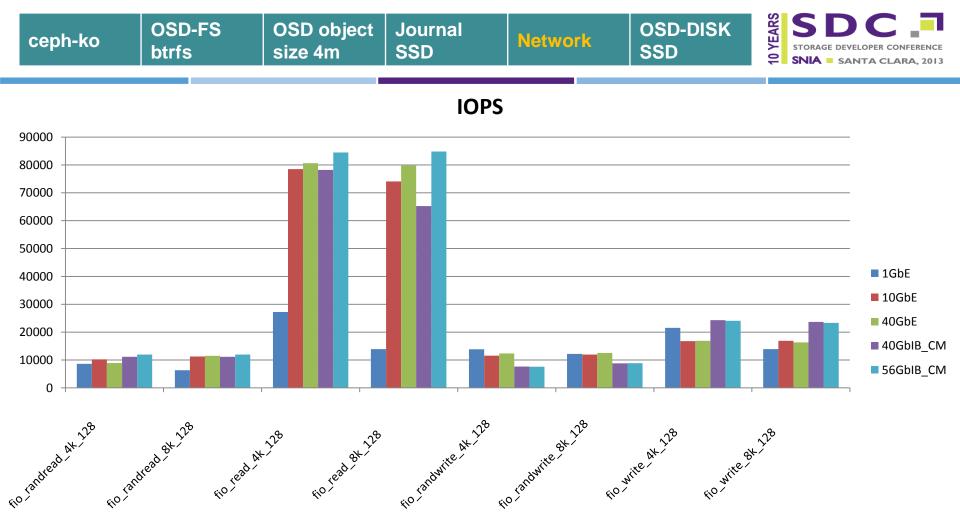


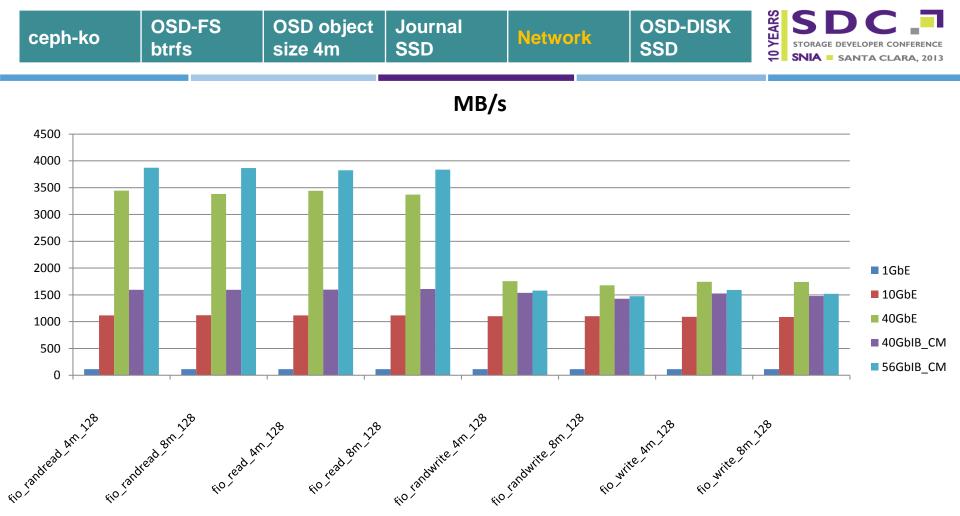
- 6 months ago with kernel 3.0.x btrfs reveal some weaknesses in writes
 With kernel 3.6 some essential enhancements were made to the btrfs code, so almost no differences could be identified in our kernel 3.8.13
- Use btrfs in the next test cases, because btrfs has the more promising storage features: compression, data deduplication



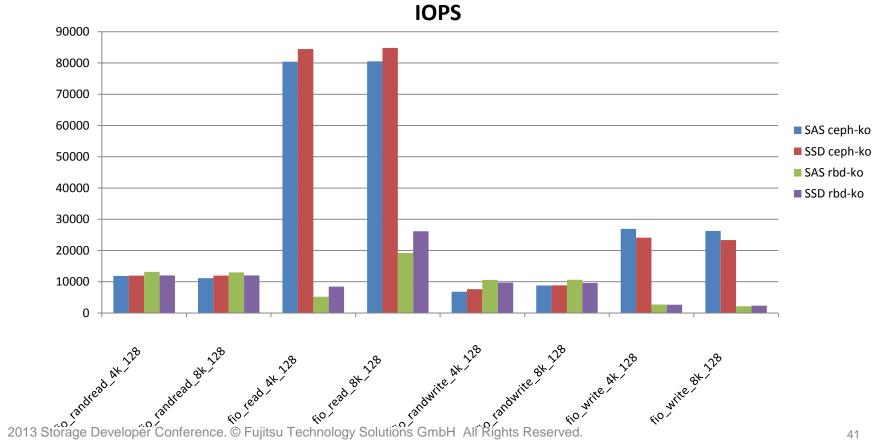


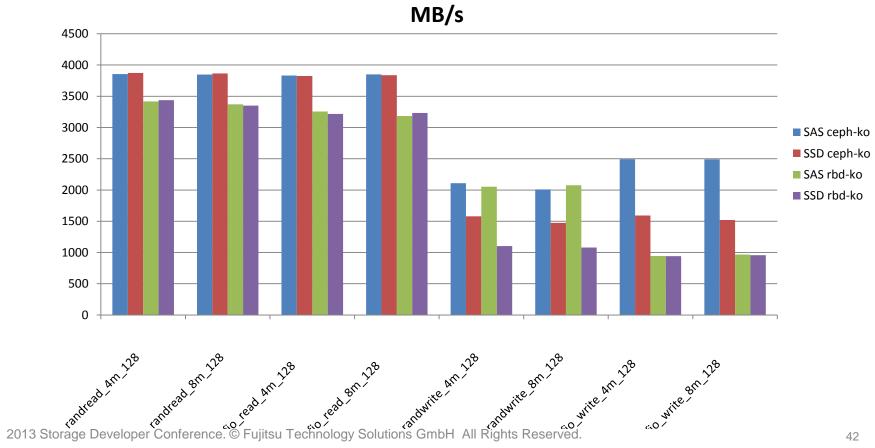
- Small chunks of 64k can especially increase 4k/8k sequential IOPS for reads as well as for writes
- For random IO 4m chunks are as good as 64k chunks
- But, the usage of 64k chunks will result in very low bandwidth for 4m/8m blocks
- Create each volume with the appropriate OSD object size: ~64k if small sequential IOPS are used, otherwise stay with ~4m



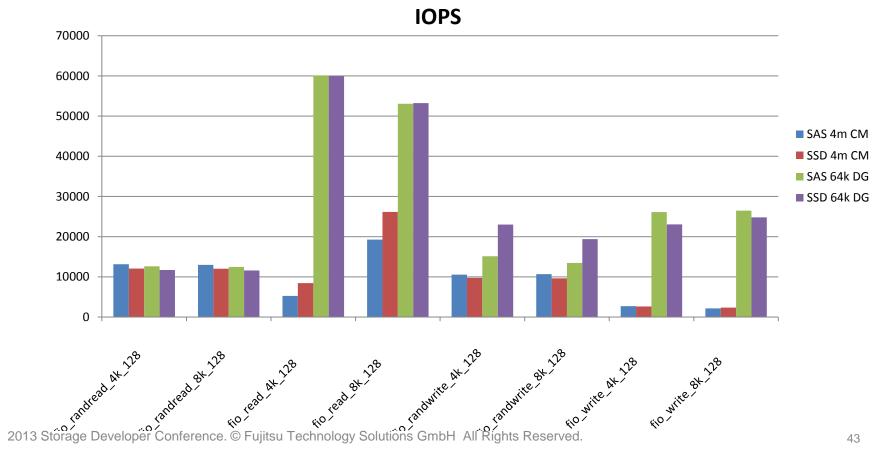


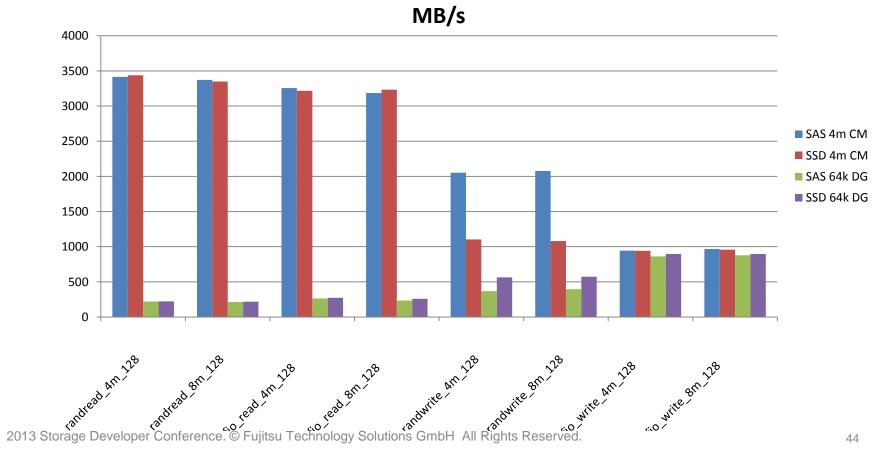
- Only on heavy write bandwidth requests RAM can show its predominance used as a journal.
- The SSD has to accomplish twice the load when the journal and the data is written to it.




ceph-ko		OSD object	Journal SSD	Network	OSD-DISK SSD	YEARS	SDC STORAGE DEVELOPER CONFERENCE
	DUIS	size 4m	330		330	9	SNIA SANTA CLARA, 2013

- □ In case of write IOPS 1GbE is doing extremely well
- On sequential read IOPS there is nearly no difference between 10GbE and 56Gb IPoIB
- On the bandwidth side with reads the measured performance is close in sync with the possible speed of the network. Only the TrueScale IB has some weaknesses, because it was designed for HPC and not for Storage/Streaming.
- > If you only look or IOPS 10GbE is a good choice
- > If throughput is relevant for your use case you should go for 56GbIB


ceph-ko	OSD-FS	OSD object	Journal	56 Gb	OSD-DISK	EARS	SDC .
rbd-ko	btrfs	size 4m	SSD	IPoIB CM	SAS / SSD		STORAGE DEVELOPER CONFERENCE
			000			9	SNIA SANTA CLARA, 2013


ceph-ko	OSD-FS	OSD object	Journal	56 Gb	OSD-DISK	EARS	SDC .
rbd-ko	btrfs	size 4m	SSD	IPoIB_CM	SAS / SSD		STORAGE DEVELOPER CONFERENCE

rbd-ko	OSD-FS	OSD object		56 GblPolB	OSD-DISK SAS / SSD	SDC STORAGE DEVELOPER CONFERENCE
	btrfs	64k / 4m	SSD	CM / DG	5A5/55U	SNIA = SANTA CLARA, 2013

ceph-ko	OSD-FS	OSD object	Journal	56 GbIPoIB	OSD-DISK	
rbd-ko	btrfs	64k / 4m	SSD	CM/DG	SAS / SSD	STORAGE DEVELOPER CONFERENCE
IDU-KU	Duis	04K/411	330		5A5755D	SNIA = SANTA CLARA, 2013

- SAS drives are doing much better than expected. Only on small random writes they are significantly slower than SSD
- In this comparison is has to be taken into account, that the SSD is getting twice as much writes (journal + data)
- 2.5" 10k 6G SAS drives seems to be an attractive alternative in combination with SSD for the journal

Analysis of the TAT of a single 4k IO

Time = avg latency of one IO (queue-depth=1) with 5x ACK

0 YEARS

	rbd		Network		Intel 910		ACK	Ceph code	
µsec	fio write		qperf lat		fio_randwrite		msg		
	4k	8k	4k	8k	4k	8k	128	4k	8k
1 GbE	2565	2709	182	227	54	64	26	2017	2061
10 GbE	2555	2584	109	122	54	64	21	2178	2171
40 GbE	2191	2142	19	22	54	64	15	2024	1959
40 Gb IPolB	2392	2357	29	24	54	64	18	2190	2155
56 Gb IPolB	1848	1821	19	37	54	64	14	1686	1613

approximately 1600 µs on a single 4k/8k IO is spend in the Ceph code
The Ceph code has a lot of room for improvement

The Ceph code has a lot of room for improvement

Agenda

- Introduction
- Hardware / Software layout
- Tools how to monitor
- Transformation test cases
- Conclusion

Summary and conclusion

- Ceph is the most comprehensive implementation of Unified Storage. Ceph simulates "distributed swarm intelligence" which arise from simple rules that are followed by individual processes and does not involve any central coordination.
- The Crush algorithm acts as an enabler for a controlled, scalable, decentralized placement of replica data.
- The usage of TCP/IP will slow down the latency capabilities of InfiniBand, but the better bandwidth mostly remains. DG has some advantage in small blocks, but overall CM is the better compromise.
- Only an optimal setting of block device parameter in Linux will ensure to get the maximum performance out of the SSD.
- 2.5" 10k 6G SAS drives for data are an attractive alternative for high performance in combination with SSDs for the journal.

- Only with Socket over RDMA a better bandwidth and lower latency of Infiniband can be utilized: Options are: SDP, rsocket, SMC-R
- The Ceph code has a lot of room for improvement to achieve lower latency.

FUJITSU

Fujitsu Technology Solutions

FTS CTO, Principal Architect Dieter.Kasper@ts.fujitsu.com

v8