Hadronic particles made of many vector mesons

Luis Roca

(in collaboration with J.Yamagata-Sekihara and E.Oset)
L.R., E.Oset, Phys.Rev.D82 (2010) 054013
J. Yamagata-Sekihara, L.R., E.Oset, Phys.Rev.D82 (2010) 094017

Introduction

$\rho \rho$ interaction in isospin 0 and spin 2 is very strong
(UChPT) R.Molina, D.Nicmorus, E.Oset, PRD78,114018(2008)

Binding energy very strong $\sim 140 \mathrm{MeV} / \rho=; 20 \%$ of the ρ mass, only with two particles!

Is it possible to obain states with larger number of $\rho(770)$ mesons?

What about other vector mesons? K*(892)

$K^{*} \rho$ interaction in isospin 0 and spin 2 is also very strong

$\mathrm{K}_{2}^{*}(1430)$ is a molecule of $K^{*} \rho$

L.Geng, E.Oset, PRD79,074009(2009)

etc
?

Vector-vector interaction

Interaction kernel provided by the hidden gauge symmetry Lagrangians

$$
\mathcal{L}=-\frac{1}{4}\left\langle\bar{V}_{\mu \nu} \bar{V}^{\mu \nu}\right\rangle+\frac{1}{2} M_{v}^{2}\left\langle\left[V_{\mu}-(i / g) \Gamma_{\mu}\right]^{2}\right\rangle
$$

$$
V_{\mu}=\left(\begin{array}{ccc}
\frac{\omega+\rho^{0}}{\sqrt{2}} & \rho^{+} & K^{*+} \\
\rho^{-} & \frac{\omega-\rho^{0}}{\sqrt{2}} & K^{* 0} \\
K^{*-} & \bar{K}^{* 0} & \phi
\end{array}\right)_{\mu}
$$

$$
\Phi=\left(\begin{array}{ccc}
\frac{n}{\sqrt{6}}+\frac{\pi^{0}}{\sqrt{2}} & \pi^{+} & K^{+} \\
\pi^{-} & \frac{n}{\sqrt{6}}-\frac{\pi^{0}}{\sqrt{2}} & K^{0} \\
K^{-} & \bar{K}^{0} & -\sqrt{\frac{2}{3} \eta} \eta
\end{array}\right)
$$

$$
\bar{V}_{\mu \nu}=\partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu}-i g\left[V_{\mu}, V_{\nu}\right]
$$

$$
\Gamma_{\mu}=\frac{1}{2}\left\{u^{\dagger}\left[\partial_{\mu}-i\left(v_{\mu}+a_{\mu}\right)\right] u+u\left[\partial_{\mu}-i\left(v_{\mu}-a_{\mu}\right)\right] u^{\dagger}\right\}
$$

$$
u^{2}=U=\exp \left(\frac{i \sqrt{2} \Phi}{f}\right)
$$

Notation: (mass, width) in MeV

$I^{G}\left(J^{P C}\right)$	Theory			PDG data		
	pole position	real axis		name	mass	width
		$\Lambda_{b}=1.4 \mathrm{GeV}$	$\Lambda_{b}=1.5 \mathrm{GeV}$			
$0^{+}\left(0^{++}\right)$	$(1512,51)$	$(1523,257)$	$(1517,396)$	$f_{0}(1370)$	1200~1500	200~500
$0^{+}\left(0^{++}\right)$	$(1726,28)$	$(1721,133)$	$(1717,151)$	$f_{0}(1710)$	1724 ± 7	137 ± 8
$0^{+}\left(1^{++}\right)$	$(1802,78)$	$(1802,49)$		f_{1}		
$0^{+}\left(2^{++}\right)$	$(1275,2)$	$(1276,97)$	$(1275,111)$	$f_{2}(1270)$	1275.1 ± 1.2	$185.0_{-2.4}^{+2.9}$
$0^{+}\left(2^{++}\right)$	$(1525,6)$	$(1525,45)$	$(1525,51)$	$f_{2}^{\prime}(1525)$	1525 ± 5	73_{-5}^{+6}
$1^{-}\left(0^{++}\right)$	$(1780,133)$	$(1777,148)$	$(1777,172)$	a_{0}		
$1^{+}\left(1^{+-}\right)$	$(1679,235)$		188)	b_{1}		
$1^{-}\left(2^{++}\right)$	$(1569,32)$	$(1567,47)$	$(1566,51)$	$a_{2}(1700) ?$?		
$1 / 2\left(0^{+}\right)$	$(1643,47)$	$(1639,139)$	$(1637,162)$	K		
$1 / 2\left(1^{+}\right)$	$(1737,165)$			$K_{1}(1650) ?$		
$1 / 2\left(2^{+}\right)$	$(1431,1)$	$(1431,56)$	$(1431,63)$	$K_{2}^{*}(1430)$	1429 ± 1.4	104 ± 4

-11 dynamically generated states in 9 strangeness-isospin-spin channels - 5 states clearly identified and 6 more predicted

$$
f_{0}(1370), f_{0}(1710), f_{2}(1270), f_{2}^{\prime}(1525), K_{2}^{*}(1430)
$$

$$
\rho \rho \quad \mathrm{I}=0, \mathrm{~S}=2
$$

Cutoff set to get the peak at the $f_{2}(1270)$ mass

And that's all the freedom for the rest of the work!
$\mathrm{f}_{2}(1270)$ is a molecule of two $\rho(770)$
Is it possible to obain states with larger number of $\rho(770)$ mesons?
Binding energy very strong $\sim 140 \mathrm{MeV} / \rho=¡ 20 \%$ of the ρ mass, only with two particles!

Possible candidates for multi- $\rho(770)$ states in the PDG:

$n^{2 s+1} \ell_{J}$	$J^{P C}$	$\begin{gathered} \mathrm{I}=1 \\ u \bar{d}, \bar{u} d, \frac{1}{\sqrt{2}}(d \bar{d}-u \bar{u}) \end{gathered}$	$\begin{gathered} \mathrm{I}=\frac{1}{2} \\ u \bar{s}, d \bar{s} ; \bar{d} s,-\bar{u} s \end{gathered}$	$\begin{gathered} \mathrm{I}=0 \\ f^{\prime} \end{gathered}$	$\begin{gathered} \mathrm{I}=0 \\ f \end{gathered}$	$\begin{gathered} \theta_{\text {quad }} \\ {\left[{ }^{\circ}\right]} \end{gathered}$	$\begin{gathered} \theta_{\text {lin }} \\ {\left[{ }^{\circ}\right]} \end{gathered}$
$1{ }^{1} S_{0}$	0^{-+}	π	K	η	$\eta^{\prime}(958)$	-11.5	-24.6
$1{ }^{3} S_{1}$	1^{--}	$\rho(770)$	$K^{*}(892)$	$\phi(1020)$	$\omega(782)$	38.7	36.0
$1{ }^{1} P_{1}$	1^{+-}	$b_{1}(1235)$	$K_{1 B}{ }^{\dagger}$	$h_{1}(1380)$	$h_{1}(1170)$		
$1{ }^{3} P_{0}$	0^{++}	$a_{0}(1450)$	$K_{0}^{*}(1430)$	$f_{0}(1710)$	$f_{0}(1370)$		
$1{ }^{3} P_{1}$	1^{++}	$a_{1}(1260)$	$K_{1 A^{\prime}}{ }^{\dagger}$	$f_{1}(1420)$	$f_{1}(1285)$		
$1{ }^{3} P_{2}$	2^{++}	$a_{2}(1320)$	$K_{2}^{*}(1430)$	$f_{2}^{\prime}(1525)$	$f_{2}(1270)$	29.6	28.0
$1{ }^{1} D_{2}$	2^{-+}	$\pi_{2}(1670)$	$K_{2}(1770)^{\dagger}$	$\eta_{2}(1870)$	$\eta_{2}(1645)$		
$1{ }^{3} D_{1}$	1^{--}	$\rho(1700)$	$K^{*}(1680)$		$\omega(1650)$		
$1{ }^{3} D_{2}$	2^{--}		$K_{2}(1820)$				
$1{ }^{3} D_{3}$	3^{--}	$\rho_{3}(1690)$	$K_{3}^{*}(1780)$	$\phi_{3}(1850)$	$\omega_{3}(1670)$	32.0	31.0
$1^{3} F_{4}$	4^{++}	$a_{4}(2040)$	$K_{4}^{*}(2045)$		$f_{4}(2050)$		
$1{ }^{3} G_{5}$	5^{--}	$\rho_{5}(2350)$					
$1^{3} H_{6}$	6^{++}	$a_{6}(2450)$			$f_{6}(2510)$		
$2{ }^{1} S_{0}$	0^{-+}	$\pi(1300)$	$K(1460)$	$\eta(1475)$	$\eta(1295)$		
$2{ }^{3} S_{1}$	1^{--}	$\rho(1450)$	$K^{*}(1410)$	$\phi(1680)$	$\omega(1420)$		

Interaction of several $\rho(770)$

Three $\boldsymbol{\rho}$'s:

Since two ρ tend to clusterize, we study the interaction of one ρ with the other two ρ clusterized building up a $\mathrm{f}_{2}(1270)$

Fixed center approximation to Faddeev equations:

$$
\begin{aligned}
T_{1} & =t_{1}+t_{1} G_{0} T_{2} \\
T_{2} & =t_{2}+t_{2} G_{0} T_{1} \\
T & =T_{1}+T_{2}
\end{aligned}
$$

a)

b)

d)

Single scattering:

S-matrix:

$S^{(1)}=\int d^{4} x \frac{1}{\sqrt{2 \omega_{p_{1}}}} e^{-i p_{1}^{0} x^{0}} \varphi_{1}(\vec{x}) \frac{1}{\sqrt{2 \omega_{p_{1}^{\prime}}}} e^{i{p^{\prime}}_{1}^{0} x^{0}} \varphi_{1}(\vec{x}) \frac{1}{\sqrt{2 \omega_{k} \mathcal{V}}} e^{-i k x} \frac{1}{\sqrt{2 \omega_{k}^{\prime} \mathcal{V}}} e^{i k^{\prime} x}\left(-i t_{1}\right)$
$t_{1}=\frac{2}{9}\left(5 t_{\rho \rho}^{(I=2)}+\left(t_{\rho \rho}^{(I=0)}\right)\right)$

Single scattering:

S-matrix:

$S^{(1)}=\int d^{4} x \frac{1}{\sqrt{2 \omega_{p_{1}}}} e^{-i p_{1}^{0} x^{0}} \varphi_{1}(\vec{x}) \frac{1}{\sqrt{2 \omega_{p_{1}^{\prime}}}} e^{i p^{\prime}{ }_{1} x^{0}} \varphi_{1}(\vec{x}) \frac{1}{\sqrt{2 \omega_{k} \mathcal{V}}} e^{-i k x} \frac{1}{\sqrt{2 \omega_{k}^{\prime} \mathcal{V}}} e^{i k^{\prime} x}\left(-i t_{1}\right)$

$$
\left.t_{1}=\frac{2}{9}\left(5 t_{\rho \rho}^{(I=2)}+\left(t_{\rho \rho}^{(I=0}\right)\right)\right) ~ \rho \rho \text { unitarized amplitude }
$$

Double scattering:

Single scattering:

S-matrix:

$S^{(1)}=\int d^{4} x \frac{1}{\sqrt{2 \omega_{p_{1}}}} e^{-i p_{1}^{0} x^{0}} \varphi_{1}(\vec{x}) \frac{1}{\sqrt{2 \omega_{p_{1}^{\prime}}}} e^{i p^{\prime}{ }_{1}^{0} x^{0}} \varphi_{1}(\vec{x}) \frac{1}{\sqrt{2 \omega_{k} \mathcal{V}}} e^{-i k x} \frac{1}{\sqrt{2 \omega_{k}^{\prime} \mathcal{V}}} e^{i k^{\prime} x}\left(-i t_{1}\right)$

$$
\left.t_{1}=\frac{2}{9}\left(5 t_{\rho \rho}^{(I=2)}+t_{\rho \rho}^{(I=0)}\right)\right)
$$

Double scattering:

$$
\begin{aligned}
S^{(2)}= & -i(2 \pi)^{4} \delta\left(k+K_{f_{2}}-k^{\prime}-K_{f_{2}}^{\prime}\right) \frac{1}{\mathcal{V}^{2}} \frac{1}{\sqrt{2 \omega_{k}}} \frac{1}{\sqrt{2 \omega_{k}^{\prime}}} \frac{1}{\sqrt{2 \omega_{p_{1}}}} \frac{1}{\sqrt{2 \omega_{p_{1}^{\prime}}}} \frac{1}{\sqrt{2 \omega_{p_{2}}}} \frac{1}{\sqrt{2 \omega_{p_{2}^{\prime}}}} \\
& \times \int \frac{d^{3} q}{(2 \pi)^{2}} F_{f_{2}(q)}^{q^{0^{2}-\vec{q}^{2}-m_{\rho}^{2}+i \epsilon} t_{1} t_{1} .}
\end{aligned}
$$

$\mathrm{f}_{2}(1270)$ form factor

$$
\varphi_{1}(x) \varphi_{2}\left(x^{\prime}\right)=\frac{1}{\sqrt{\mathcal{V}}} e^{i \vec{K}_{f_{2}} \cdot \vec{R}} \Psi_{f_{2}}(\vec{r})
$$

$$
F_{f_{2}}\left(\vec{q}-\frac{\vec{k}+\vec{k}^{\prime}}{2}\right) \equiv \int d^{3} r e^{-i\left(\vec{q}-\frac{\vec{k}+\vec{k}^{\prime}}{2}\right) \cdot \vec{r}} \Psi_{f_{2}}(\vec{r})^{2}
$$

$$
F_{f_{2}}(q)=\frac{1}{\mathcal{N}} \int_{\mid \vec{p}=\bar{d} \leq \uparrow} d^{3} p \frac{1}{M_{f_{2}}-2 \omega_{\rho}(\vec{p})} \frac{1}{M_{f_{2}}-2 \omega_{\rho}(\vec{p}-\vec{q})}
$$

Single scattering:

S-matrix:

$S^{(1)}=\int d^{4} x \frac{1}{\sqrt{2 \omega_{p_{1}}}} e^{-i p_{1}^{0} x^{0}} \varphi_{1}(\vec{x}) \frac{1}{\sqrt{2 \omega_{p_{1}^{\prime}}}} e^{i p_{1}^{\prime} x^{0}} \varphi_{1}(\vec{x}) \frac{1}{\sqrt{2 \omega_{k} \mathcal{V}}} e^{-i k x} \frac{1}{\sqrt{2 \omega_{k}^{\prime} \mathcal{V}}} e^{i k^{\prime} x}\left(-i t_{1}\right)$
$t_{1}=\frac{2}{9}\left(5 t_{\rho \rho}^{(I=2)}+\left(t_{\rho \rho}^{(I=0)}\right)\right)$

Double scattering:
Full scattering amplitude:

$$
\begin{aligned}
& T_{\rho f_{2}}=4\left(t_{1}+t_{1} t_{1} G_{0}\right) \\
& G_{0} \equiv \frac{1}{M_{f_{2}}} \int \frac{d^{3} q}{(2 \pi)^{3}} F_{f_{2}}(q) \frac{1}{q^{0^{2}}-\vec{q}^{2}-m_{\rho}^{2}+i \epsilon}
\end{aligned}
$$

Larger number of ρ mesons:

Results

(a)

(b)

(masses: from position of the maximum)

n_{ρ}		mass, PDG [25]	mass, only single scatt.	mass, full model	$E\left(n_{\rho}\right)$
2	$f_{2}(1270)$	1275 ± 1	1275	1285	133
3	$\rho_{3}(1690)$	1689 ± 2	1753	1698	209
4	$f_{4}(2050)$	2018 ± 11	2224	2051	263
5	$\rho_{5}(2350)$	2330 ± 35	2690	$2330-2366$	$302-309$
6	$f_{6}(2510)$	2465 ± 50	3155	$2607-2633$	$337-341$

Possible candidates for K^{*} multi- ρ states in the PDG:

$n^{2 s+1} \ell_{J}$	$J^{P C}$	$\begin{gathered} \mathrm{I}=1 \\ u \bar{d}, \bar{u} d, \frac{1}{\sqrt{2}}(d \bar{d}-u \bar{u}) \end{gathered}$	$\begin{gathered} \mathrm{I}=\frac{1}{2} \\ u \bar{s}, d \bar{s} ; \bar{d} s,-\bar{u} s \end{gathered}$	$\begin{gathered} \mathrm{I}=0 \\ f^{\prime} \end{gathered}$	$\begin{gathered} \mathrm{I}=0 \\ f \end{gathered}$
$1{ }^{1} S_{0}$	0^{-+}	π	K	η	$\eta^{\prime}(958)$
$1^{3} S_{1}$	1^{--}	$\rho(770)$	$K^{*}(892)$	$\phi(1020)$	$\omega(782)$
$1{ }^{1} P_{1}$	1^{+-}	$b_{1}(1235)$	$K_{1 B}{ }^{\dagger}$	$h_{1}(1380)$	$h_{1}(1170)$
$1{ }^{3} P_{0}$	0^{++}	$a_{0}(1450)$	$K_{0}^{*}(1430)$	$f_{0}(1710)$	$f_{0}(1370)$
$1{ }^{3} P_{1}$	1^{++}	$a_{1}(1260)$	$K_{1 A}{ }^{\dagger}$	$f_{1}(1420)$	$f_{1}(1285)$
$1{ }^{3} P_{2}$	2^{++}	$a_{2}(1320)$	$K_{2}^{*}(1430)$	$f_{2}^{\prime}(1525)$	$f_{2}(1270)$
$1^{1} D_{2}$	2^{-+}	$\pi_{2}(1670)$	$K_{2}(1770)^{\dagger}$	$\eta_{2}(1870)$	$\eta_{2}(1645)$
$1^{3} D_{1}$	1^{--}	$\rho(1700)$	$K^{*}(1680)$		ω (1650)
$1{ }^{3} D_{2}$	2^{--}		$K_{2}(1820)$		
$1^{3} D_{3}$	3^{--}	$\rho_{3}(1690)$	$K_{3}^{*}(1780)$	$\phi_{3}(1850)$	$\omega_{3}(1670)$
$1{ }^{3} F_{4}$	4^{++}	$a_{4}(2040)$	$K_{4}^{*}(2045)$		$f_{4}(2050)$
$1^{3} G_{5}$	5^{--}	$\rho_{5}(2350)$	$K_{5}^{*}(2380)$		
$1^{3} H_{6}$	6^{++}	$a_{6}(2450)$	$K_{6}^{*} ? ? ?$		$f_{6}(2510)$
$2{ }^{1} S_{0}$	0^{-+}	$\pi(1300)$	$K(1460)$	$\eta(1475)$	$\eta(1295)$
$2^{3} S_{1}$	1^{--}	$\rho(1450)$	$K^{*}(1410)$	$\phi(1680)$	$\omega(1420)$

generated resonance	amplitude	mass, PDG [21]	mass only single scatt.	mass full model
$K_{2}^{*}(1430)$	ρK^{*}	1429 ± 1.4	-	1430
$K_{3}^{*}(1780)$	$K^{*} f_{2}$	1776 ± 7	1930	1790
$K_{4}^{*}(2045)$	$f_{2} K_{2}^{*}$	2045 ± 9	2466	2114
$K_{5}^{*}(2380)$	$K^{*} f_{4}$	$2382 \pm 14 \pm 19$	2736	2310
K_{6}^{*}	$K_{2}^{*} f_{4}-f_{2} K_{4}^{*}$	-	$3073-3310$	$2661-2698$

(masses: from position of the maximum)

Summary

- $\rho \rho$ and $K^{*} \rho$ interaction in $\mathrm{I}=0, \mathrm{~S}=2$ is very strong (kernel: VV interaction from HGS)
$\longrightarrow \mathrm{f}_{2}(1270)$ and $K_{2}^{*}(1430)$ dynamically generated (UChPT)
- Many-particle interaction from fixed center Faddeev equations
- Prominent shapes for the multi-body scattering amplitudes
- Maxima in very good agreement with the masses of
$\rho_{3}(1690), f_{4}(2050), \rho_{5}(2350)$ and $f_{6}(2510)$
\longrightarrow dynamically generated from multiple ρ interaction (3, 4, 5 and 6ρ 's respectively)
- Inclusion of K^{*} :
$K_{3}^{*}(1430), K_{4}^{*}(2045), K_{5}^{*}(2380)$ and $K_{6}^{*}(2510)$
dynamically generated from K^{*}-multiple ρ interaction

EXTRA

UChPT (unitary extensions of chiral perturbation theory)

ChPT very sucessful to describe a large amount of phenomenology at low energies

Problems (limitations) of ChPT:

- The number of parameters increases a lot with the order of the expansion
- The energy range of applicability is restricted to low energies

Typically till the energies where the first resonances appear
A resonance implies a pole, which a perturbative expansion can never produce

ChPT cannot be applied to the region of intermediate energies where the hadronic spectrum is very rich

Basic idea of UChPT:

Input:
lowest order chiral Lagrangian

+ implementation of unitarity in coupled channels
+ exploitation of analytic properties

Oller, Oset, Dobado, Pelaez, Meissner, Kaiser, Weise, Ramos, Vicente-Vacas, Nieves, Ruiz-Arriola, Lutz,...

Extended range of applicability of ChPT to higher energies

Basic idea of UChPT:

Input:
lowest order chiral Lagrangian

+ implementation of unitarity in coupled channels
+ exploitation of analytic properties

Extended range of applicability of ChPT to higher energies

Unitarity of the S-matrix implies:

The kernel of the BS equation, \mathbf{V}, is the lowest order ChPT Lagrangian
Effectively, one is summing this infinite series of diagrams

Example: MM in s-wave

Prominent shapes for the resonances

Many resonances appear without including them explicitly "dynamically generated" resonances

Important:

UChPT not only gives spectroscopy (masses and widths) but the shape of the scattering amplitude out of the resonance position

