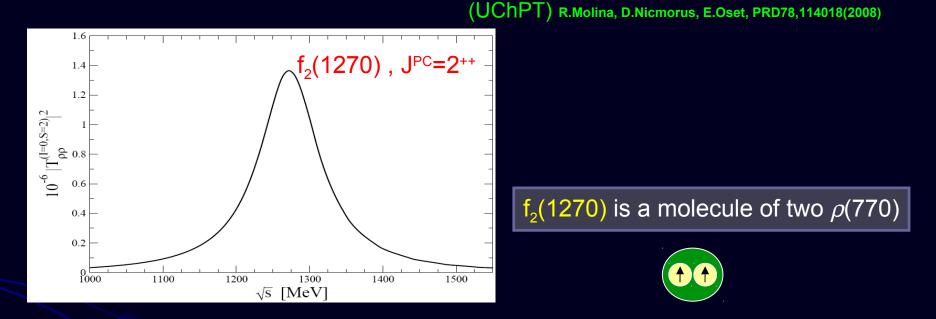


Hadronic particles made of many vector mesons

Luis Roca

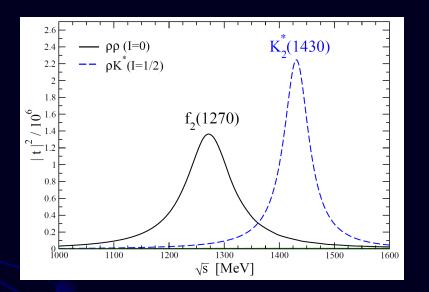
(in collaboration with J.Yamagata-Sekihara and E.Oset)


L.R., E.Oset, Phys.Rev.D82 (2010) 054013

J. Yamagata-Sekihara, L.R., E.Oset, Phys.Rev.D82 (2010) 094017

HADRON'11, Munich, June 17, 2011

 $\rho\rho$ interaction in isospin 0 and spin 2 is very strong

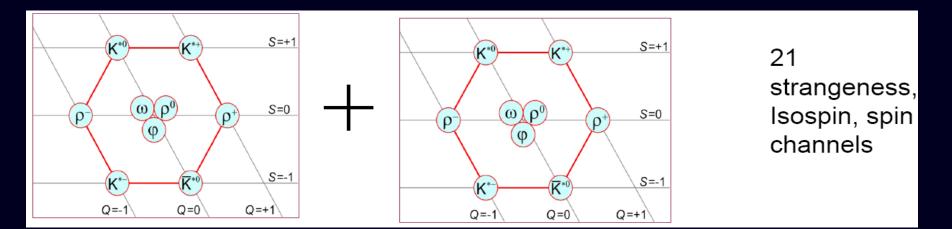

Binding energy very strong ~140 MeV/ $\rho = i 20\%$ of the ρ mass, only with two particles!

Is it possible to obain states with larger number of $\rho(770)$ mesons?

What about other vector mesons? K*(892)

$K^*\rho$ interaction in isospin 0 and spin 2 is also very strong

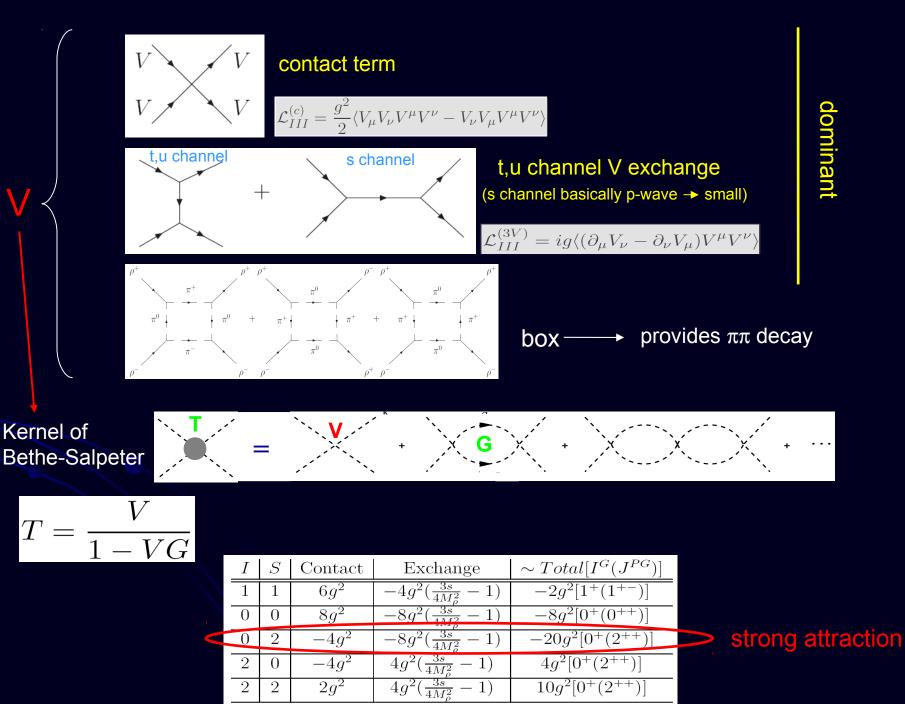
L.Geng, E.Oset, PRD79,074009(2009)



Vector-vector interaction

R.Molina, D.Nicmorus, E.Oset, PRD78,114018(2008)

L.Geng, E.Oset, PRD79,074009(2009)

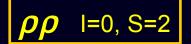

Interaction kernel provided by the hidden gauge symmetry Lagrangians M. Bando et al.'1985,'1988

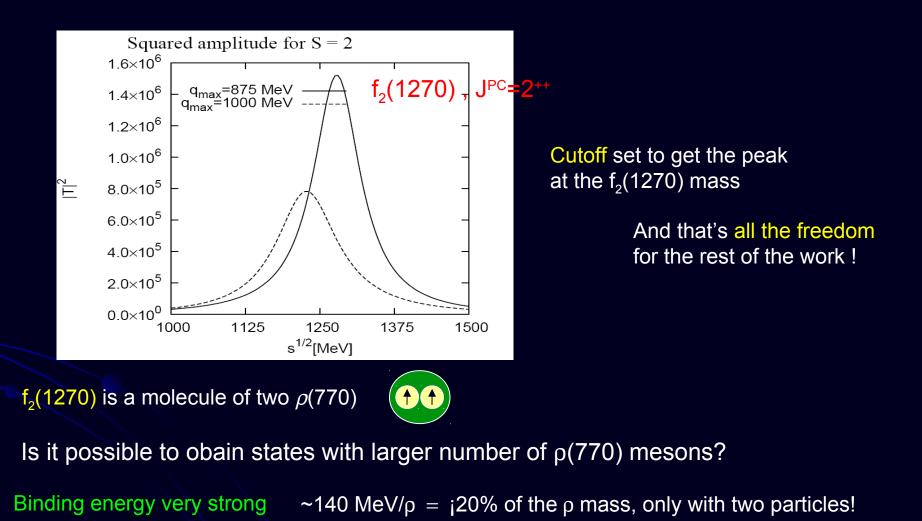
$$\mathcal{L} = -\frac{1}{4} \langle \bar{V}_{\mu\nu} \bar{V}^{\mu\nu} \rangle + \frac{1}{2} M_v^2 \langle [V_\mu - (i/g)\Gamma_\mu]^2 \rangle$$

$$V_{\mu} = \begin{pmatrix} \frac{\omega + \rho^{0}}{\sqrt{2}} & \rho^{+} & K^{*+} \\ \rho^{-} & \frac{\omega - \rho^{0}}{\sqrt{2}} & K^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi \end{pmatrix}_{\mu}$$

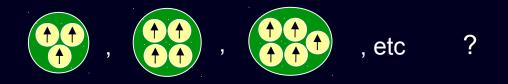
$$\Phi = \begin{pmatrix} \frac{\eta}{\sqrt{6}} + \frac{\pi^0}{\sqrt{2}} & \pi^+ & K^+ \\ \pi^- & \frac{\eta}{\sqrt{6}} - \frac{\pi^0}{\sqrt{2}} & K^0 \\ K^- & \bar{K}^0 & -\sqrt{\frac{2}{3}}\eta \end{pmatrix}$$

$$\begin{split} \bar{V}_{\mu\nu} &= \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu} - ig[V_{\mu}, V_{\nu}] \\ \Gamma_{\mu} &= \frac{1}{2} \left\{ u^{\dagger}[\partial_{\mu} - i(v_{\mu} + a_{\mu})]u + u[\partial_{\mu} - i(v_{\mu} - a_{\mu})]u^{\dagger} \right\} \\ u^{2} &= U = \exp\left(\frac{i\sqrt{2}\Phi}{f}\right) \end{split}$$


Notation: (mass, width) in MeV


$I^G(J^{PC})$		Theory		PDG data		
	pole position	real axis		name	mass	width
		$\Lambda_b = 1.4 \text{ GeV}$	$\Lambda_b = 1.5 \text{ GeV}$			
$0^+(0^{++})$	(1512, 51)	(1523, 257)	(1517, 396)	$f_0(1370)$	$1200 {\sim} 1500$	$200 \sim 500$
$0^+(0^{++})$	(1726, 28)	(1721, 133)	(1717, 151)	$f_0(1710)$	1724 ± 7	137 ± 8
$0^+(1^{++})$	(1802,78)	(180	2,49)	f_1		•
$0^+(2^{++})$	(1275,2)	(1276, 97)	(1275, 111)	$f_2(1270)$	1275.1 ± 1.2	$185.0^{+2.9}_{-2.4}$
$0^+(2^{++})$	$(1525,\!6)$	(1525, 45)	(1525, 51)	$f_2'(1525)$	1525 ± 5	73^{+6}_{-5}
$1^{-}(0^{++})$	(1780, 133)	(1777, 148)	(1777, 172)	a_0		•
$1^+(1^{+-})$	(1679, 235)	(1703	3,188)	b_1		•
$1^{-}(2^{++})$	(1569, 32)	(1567, 47)	(1566, 51)	$a_2(1700)??$		•
$1/2(0^+)$	(1643, 47)	(1639, 139)	(1637, 162)	K		•
$1/2(1^+)$	(1737, 165)	(1743, 126)		$K_1(1650)?$		•
$1/2(2^+)$	(1431,1)	(1431, 56)	(1431, 63)	$K_{2}^{*}(1430)$	1429 ± 1.4	104 ± 4

=


11 dynamically generated states in 9 strangeness-isospin-spin channels
5 states clearly identified and 6 more predicted

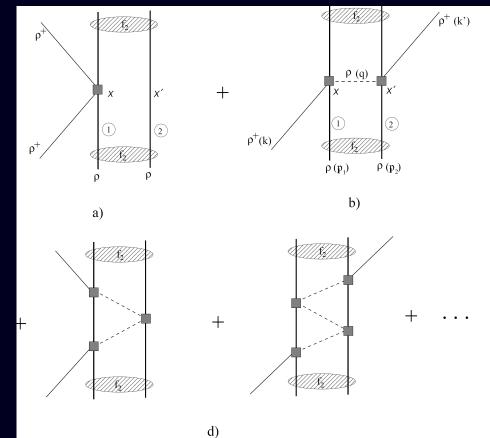
 $f_0(1370), f_0(1710), f_2(1270), f'_2(1525), K^*_2(1430)$

 $\begin{array}{c} \textcircled{} \textcircled{} \textcircled{} \textcircled{} \textcircled{} \textcircled{} \\ (\) \end{array} , \begin{array}{c} \textcircled{} \textcircled{} \textcircled{} \textcircled{} \\ (\) \end{array} , \begin{array}{c} \textcircled{} \textcircled{} \textcircled{} \\ (\) \end{array} , \begin{array}{c} \textcircled{} \textcircled{} \textcircled{} \\ (\) \end{array} , \begin{array}{c} \textcircled{} \textcircled{} \\ (\) \end{array} , \begin{array}{c} \textcircled{} \textcircled{} \\ (\) \end{array} , \begin{array}{c} \textcircled{} \textcircled{} \\ (\) \end{array} , \begin{array}{c} \textcircled{} \\ (\) \end{array} , \begin{array}{c} \textcircled{} \\ (\) \end{array} , \begin{array}{c} \end{array} , \begin{array}{c} \end{array} , \begin{array}{c} \end{array} , \begin{array}{c} \end{array}$

Possible candidates for multi- $\rho(770)$ states in the PDG:

$n^{2s+1}\ell_J$	J^{PC}	$I = 1$ $u\overline{d}, \overline{u}d, \frac{1}{\sqrt{2}}(d\overline{d} - u\overline{u})$	$I = \frac{1}{2}$ $u\overline{s}, d\overline{s}; \overline{d}\overline{s}, -\overline{u}\overline{s}$	I = 0 f'	I = 0 f	$ heta_{ ext{quad}} \ [^{\circ}]$	$ heta_{ ext{lin}}$ [°]
$1 {}^{1}S_{0}$	0-+	π	K	η	$\eta^{\prime}(958)$	-11.5	-24.6
$1 {}^{3}S_{1}$	1	ho(770)	$K^{*}(892)$	$\phi(1020)$	$\omega(782)$	38.7	36.0
$1 \ {}^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}^{\dagger}	$h_1(1380)$	$h_1(1170)$		
$1 {}^{3}P_{0}$	0^{++}	$a_0(1450)$	$K_{0}^{st}(1430)$	$f_0(1710)$	$f_0(1370)$		
$1 {}^{3}P_{1}$	1++	$a_1(1260)$	$oldsymbol{K_{1A}}^\dagger$	$f_1(1420)$	$f_1(1285)$		
$1 {}^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_{2}^{*}(1430)$	$f_2^\prime(1525)$	$f_2(1270)$	29.6	28.0
$1 \ {}^{1}D_{2}$	2^{-+}	$\pi_2(1670)$	$K_2(1770)^\dagger$	$\eta_2(1870)$	$\eta_2(1645)$		
$1 \ {}^{3}D_{1}$	1	ho(1700)	$K^*(1680)$		$\omega(1650)$		
$1 {}^{3}D_{2}$	2		$K_{2}(1820)$				
$1 {}^{3}D_{3}$	3	$\rho_3(1690)$	$K_{3}^{st}(1780)$	$\phi_3(1850)$	$\omega_3(1670)$	32.0	31.0
$1 \ {}^{3}F_{4}$	4++	$a_4(2040)$	$K_4^st(2045)$		$f_4(2050)$		
$1 {}^3G_5$	5	$\rho_5(2350)$					
$1 {}^{3}H_{6}$	6^{++}	$a_6(2450)$			$f_6(2510)$		
$2 {}^{1}S_{0}$	0-+	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$		
$2 {}^{3}S_{1}$	1	ho(1450)	$K^{st}(1410)$	$\phi(1680)$	$\omega(1420)$		

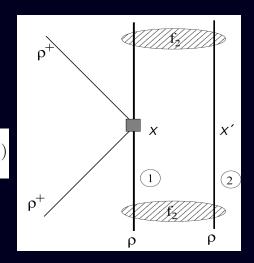
Interaction of several $\rho(770)$


Three <u>*p*</u>'s:

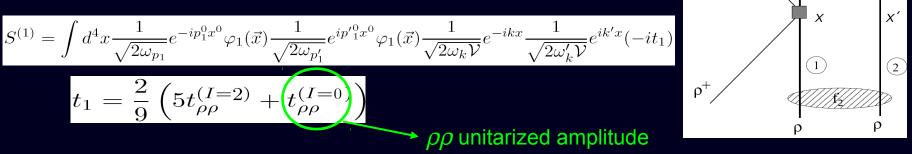
Since two ρ tend to clusterize, we study the interaction of one ρ with the other two ρ clusterized building up a f₂(1270)

Fixed center approximation to Faddeev equations:

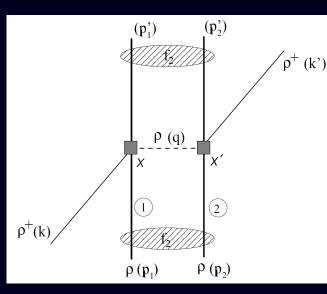
 $T_1 = t_1 + t_1 G_0 T_2$ $T_2 = t_2 + t_2 G_0 T_1$ $T = T_1 + T_2$


(similar to kaon-deuteron, Kamalov, Oset, Ramos '01)

S-matrix:

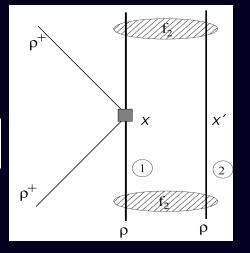

$$S^{(1)} = \int d^4x \frac{1}{\sqrt{2\omega_{p_1}}} e^{-ip_1^0 x^0} \varphi_1(\vec{x}) \frac{1}{\sqrt{2\omega_{p_1'}}} e^{ip_1'^0 x^0} \varphi_1(\vec{x}) \frac{1}{\sqrt{2\omega_k \mathcal{V}}} e^{-ikx} \frac{1}{\sqrt{2\omega_k' \mathcal{V}}} e^{ik'x} (-it_1 x^0) \frac{1}{\sqrt{2\omega_k' \mathcal{V}}} e^{ik'x} (-it_1 x^0) \frac{1}{\sqrt{2\omega_k' \mathcal{V}}} e^{-ikx} \frac{1}{\sqrt{2\omega_k' \mathcal{V}}} e^{ik'x} (-it_1 x^0) \frac{1}{\sqrt{2\omega_k' \mathcal{V}}} e^{ik'x} (-it_1$$

/


• $\rho\rho$ unitarized amplitude

S-matrix:

Double scattering:


1.8/

 ρ^+

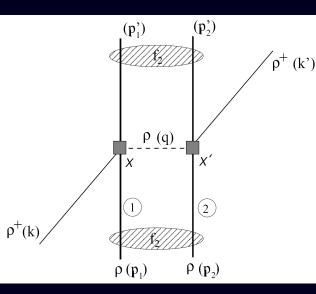
S-matrix:

$$S^{(1)} = \int d^4x \frac{1}{\sqrt{2\omega_{p_1}}} e^{-ip_1^0 x^0} \varphi_1(\vec{x}) \frac{1}{\sqrt{2\omega_{p_1'}}} e^{ip_1'^0 x^0} \varphi_1(\vec{x}) \frac{1}{\sqrt{2\omega_k \mathcal{V}}} e^{-ikx} \frac{1}{\sqrt{2\omega_k' \mathcal{V}}} e^{ik'x} (-it_1)$$

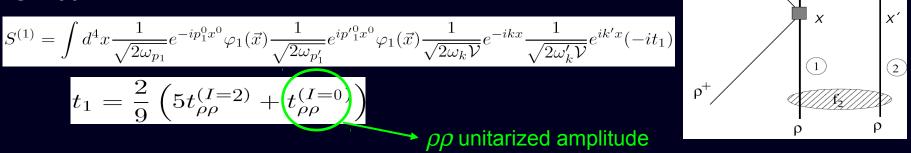
$$t_1 = \frac{2}{9} \left(5t_{\rho\rho}^{(I=2)} + t_{\rho\rho}^{(I=0)} \right)$$

Double scattering:

$$S^{(2)} = -i(2\pi)^{4}\delta(k + K_{f_{2}} - k' - K'_{f_{2}})\frac{1}{\mathcal{V}^{2}}\frac{1}{\sqrt{2\omega_{k}}}\frac{1}{\sqrt{2\omega_{k}}}\frac{1}{\sqrt{2\omega_{p_{1}}}}\frac{1}{\sqrt{2\omega_{p_{1}}}}\frac{1}{\sqrt{2\omega_{p_{2}}}}\frac{1}{\sqrt{2\omega_{p_{2}}}}\times \int \frac{d^{3}q}{(2\pi)!}F_{f_{2}}(q)\frac{1}{q^{0^{2}} - \vec{q}^{2} - m_{\rho}^{2} + i\epsilon}t_{1}t_{1}.$$


$$f_{2}(1270) \text{ form factor} \qquad \varphi_{1}(x)\varphi_{2}(x') = \frac{1}{\sqrt{\mathcal{V}}}e^{i\vec{K}_{f_{2}}\cdot\vec{R}}\Psi_{f_{2}}(q)$$

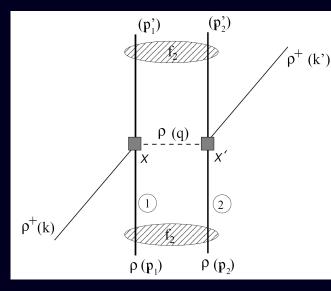
$$F_{f_{2}}\left(\vec{q} - \frac{\vec{k} + \vec{k'}}{2}\right) \equiv \int d^{3}r \ e^{-i(\vec{q} - \frac{\vec{k} + \vec{k'}}{2})\cdot\vec{r}} \ \Psi_{f_{2}}(\vec{r})^{2}$$


$$F_{f_{2}}(q) = \frac{1}{\mathcal{N}}\int_{|\vec{p} - \vec{q}| \leq 1}d^{3}p \ \frac{1}{M_{f_{2}} - 2\omega_{\rho}(\vec{p})} \ \frac{1}{M_{f_{2}} - 2\omega_{\rho}(\vec{p} - \vec{q})}$$

Same cutoff as in the scattering of two particles L.Geng, E.Oset, PRD79,074009(2009)

ho
ho unitarized amplitude

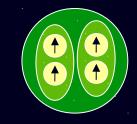
S-matrix:

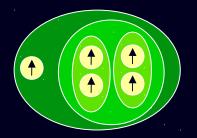


Double scattering:

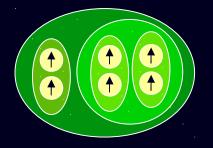
Full scattering amplitude:

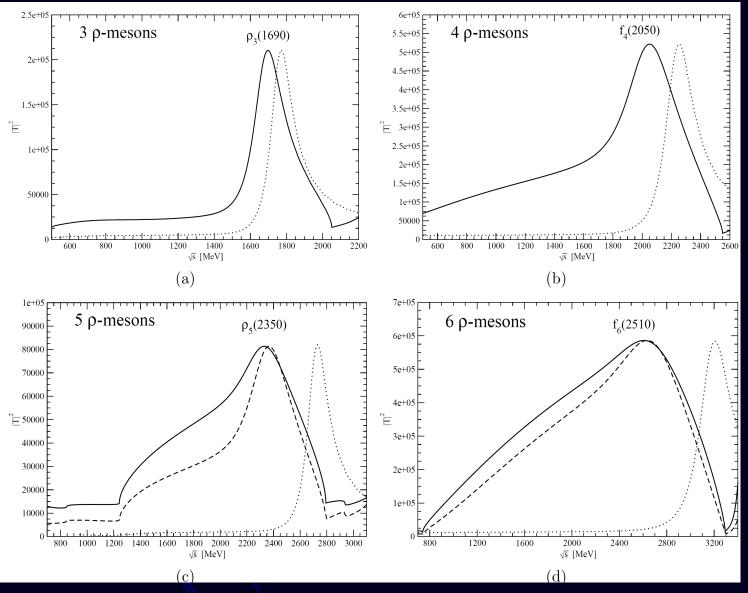
$$T_{\rho f_2} = 4(t_1 + t_1 t_1 G_0)$$


$$G_0 \equiv \frac{1}{M_{f_2}} \int \frac{d^3q}{(2\pi)^3} F_{f_2}(q) \frac{1}{q^{0^2} - \vec{q}^2 - m_{\rho}^2 + i\epsilon}$$

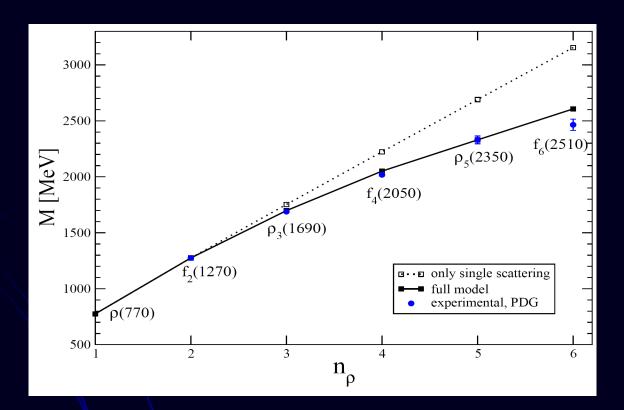

 ρ^+

Larger number of ρ mesons:

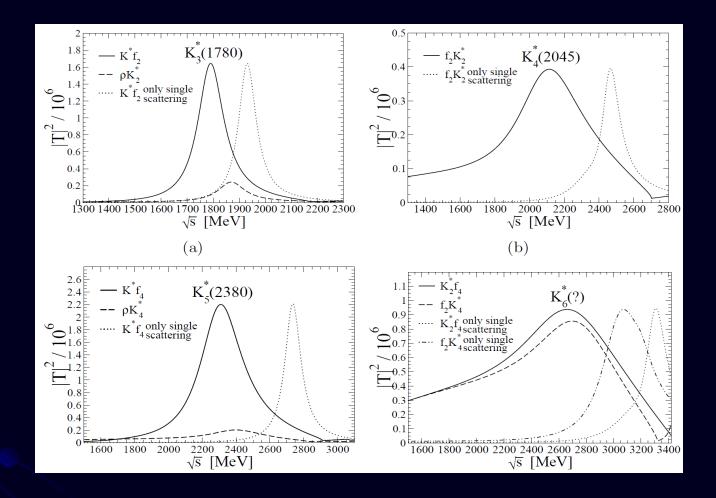

4 ρ 's (f₄): interaction of two f₂


5 ρ 's (ρ_5): interaction of ρ -f₄

6 ρ 's (f₆): interaction of f₂-f₄


Results

(dotted: only single scattering)


(masses: from position of the maximum)

$n_{ ho}$		mass, PDG $[25]$	mass, only single scatt.	mass, full model	$E(n_{\rho})$
2	$f_2(1270)$	1275 ± 1	1275	1285	133
3	$\rho_3(1690)$	1689 ± 2	1753	1698	209
4	$f_4(2050)$	2018 ± 11	2224	2051	263
5	$ \rho_5(2350) $	2330 ± 35	2690	2330-2366	302-309
6	$f_6(2510)$	2465 ± 50	3155	2607-2633	337-341

Possible candidates for K^{*} multi- ρ states in the PDG:

$n^{2s+1}\ell_J$	J^{PC}	I = 1 $u\overline{d}, \overline{u}d, \frac{1}{\sqrt{2}}(d\overline{d} - u\overline{u})$	$I = \frac{1}{2}$ $u\overline{s}, d\overline{s}; \overline{ds}, -\overline{us}$	$\mathbf{I} = 0$ f'	$\mathbf{I} = 0$ f
$1 {}^{1}S_{0}$	0-+	$\pi^{\sqrt{2}}$	K	η	$\eta'(958)$
$1 {}^{3}S_{1}$	1	ho(770)	$K^{*}(892)$	$\phi(1020)$	$\omega(782)$
$1 {}^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}^{\dagger}	$h_1(1380)$	$h_1(1170)$
$1 {}^{3}P_{0}$	0++	$a_0(1450)$	$K_{0}^{*}(1430)$	$f_0(1710)$	$f_0(1370)$
$1 {}^{3}P_{1}$	1++	$a_1(1260)$	$oldsymbol{K_{1A}}^\dagger$	$f_1(1420)$	$f_1(1285)$
$1 {}^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_2^*(1430)$	$f_2^\prime(1525)$	$f_2(1270)$
$1 {}^{1}D_2$	2^{-+}	$\pi_2(1670)$	$K_2(1770)^\dagger$	$\eta_2(1870)$	$\eta_2(1645)$
$1 \ {}^{3}D_{1}$	1	ho(1700)	$K^*(1680)$		$\omega(1650)$
$1 {}^{3}D_{2}$	2		$K_{2}(1820)$		
$1 \ {}^{3}D_{3}$	3	$ ho_3(1690)$	$K_{3}^{*}(1780)$	$\phi_3(1850)$	$\omega_3(1670)$
$1 \ {}^3F_4$	4++	$a_4(2040)$	$K_4^*(2045)$		$f_4(2050)$
$1 {}^3G_5$	5	$ \rho_5(2350) $	K* ₅ (2380)		
$1 \ {}^{3}H_{6}$	6++	$a_6(2450)$	K* ₆ ???		$f_6(2510)$
$2 {}^{1}S_{0}$	0-+	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$
$2 {}^{3}S_{1}$	1	ho(1450)	$K^*(1410)$	$\phi(1680)$	$\omega(1420)$

generated	amplitude	mass, PDG $[21]$	mass	mass	
resonance	ampirtude	mass, 1 DG [21]	only single scatt.	full model	
$K_2^*(1430)$	ρK^*	1429 ± 1.4	—	1430	
$K_3^*(1780)$	K^*f_2	1776 ± 7	1930	1790	
$K_4^*(2045)$	$f_2 K_2^*$	2045 ± 9	2466	2114	
$K_5^*(2380)$	K^*f_4	$2382 \pm 14 \pm 19$	2736	2310	
K_6^*	$K_2^* f_4 - f_2 K_4^*$	_	3073-3310	2661-2698	

(masses: from position of the maximum)

Summary

- $\rho\rho$ and $K^*\rho$ interaction in I=0, S=2 is very strong (kernel: VV interaction from HGS)

 \longrightarrow f₂

 $f_2(1270)$ and $K^*_2(1430)$ dynamically generated (UChPT)

- Many-particle interaction from fixed center Faddeev equations

- Prominent shapes for the multi-body scattering amplitudes

- Maxima in very good agreement with the masses of

 $\rho_3(1690), f_4(2050), \rho_5(2350) \text{ and } f_6(2510)$

 \rightarrow dynamically generated from multiple ρ interaction (3, 4, 5 and 6 ρ 's respectively)

- Inclusion of K*:

 $K^*_{_3}(1430), K^*_{_4}(2045), K^*_{_5}(2380)$ and $K^*_{_6}(2510)$ dynamically generated from K^* -multiple ρ interaction

ChPT very **sucessful** to describe a large amount of phenomenology at low energies

Problems (limitations) of ChPT:

- The number of parameters increases a lot with the order of the expansion

- The energy range of applicability is restricted to low energies

Typically till the energies where the first resonances appear

A resonance implies a <u>pole</u>, which a perturbative expansion can never produce

ChPT cannot be applied to the region of intermediate energies where the hadronic spectrum is very rich

Basic idea of UChPT:

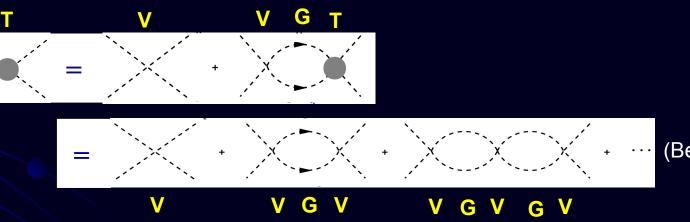
Oller, Oset, Dobado, Pelaez, Meissner, Kaiser, Weise, Ramos, Vicente-Vacas, Nieves, Ruiz-Arriola, Lutz,...

Input:

- lowest order chiral Lagrangian
- + implementation of unitarity in coupled channels
- + exploitation of analytic properties

Extended range of applicability of ChPT to higher energies

Basic idea of UChPT:


Input:

- lowest order chiral Lagrangian
- + implementation of **unitarity** in coupled channels
- + exploitation of analytic properties

Unitarity of the S-matrix implies:

Oller, Oset, Dobado, Pelaez, Meissner, Kaiser, Weise, Ramos, Vicente-Vacas, Nieves, Ruiz-Arriola, Lutz,...

Extended range of applicability of ChPT to higher energies

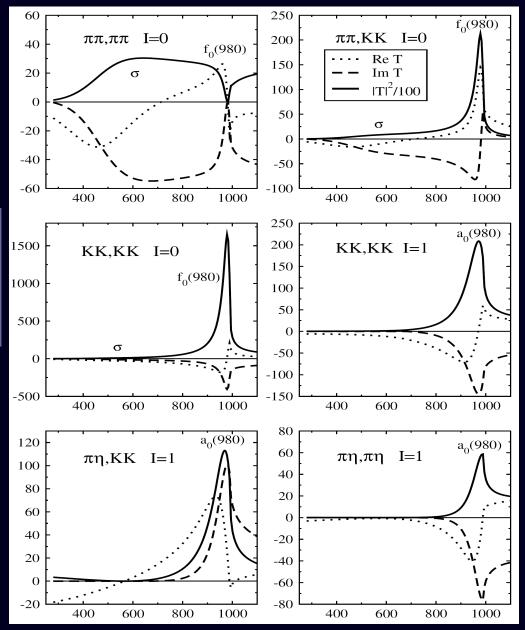
(Bethe-Salpeter eq.)

The kernel of the BS equation, \mathbf{V} , is the lowest order ChPT Lagrangian

Effectively, one is summing this infinite series of diagrams

$$G = \frac{1}{16\pi^2} \left(\omega + \log \frac{m_1^2}{\mu^2} + \frac{m_2^2 - m_1^2 + s}{2s} \log \frac{m_2^2}{m_1^2} + \frac{p_1^2 - m_1^2 + s}{2s} \log \frac{m_2^2}{m_1^2} + \frac{p_1^2 - m_1^2 + 2p\sqrt{s}}{\sqrt{s}} + \log \frac{s + m_2^2 - m_1^2 + 2p\sqrt{s}}{-s - m_2^2 + m_1^2 + 2p\sqrt{s}} \right) G = \int_0^{q_{max}} \frac{q^2 dq}{(2\pi)^2} \frac{\omega_1 + \omega_2}{\omega_1 \omega_2 [(P^0)^2 - (\omega_1 + \omega_2)^2 + i\epsilon]}$$

Example: MM in s-wave


Prominent shapes for the resonances

Many resonances appear without including them explicitly

"dynamically generated" resonances

Important:

UChPT not only gives spectroscopy (masses and widths) but the shape of the scattering amplitude out of the resonance position

