

AquaEdge[®] 19DV High-Efficiency Semi-Hermetic Centrifugal Liquid Chillers with Greenspeed[®] Intelligence, PIC6 Controls, and HFO R-1233zd(E) 350 to 1,150 Nominal Tons (1,231 to 4,044 kW) 50/60 Hz

Installation Instructions

Page

CONTENTS

	1 age
SAFETY CONSIDERATIONS	
	3
General	3
Job Data	3
CHILLER FAMILIARIZATION	3
Chiller Information Nameplate	3
System Components	3
Evaporator	
Condenser	
Compressor	
Economizer	3
VFD	
Purge System	
PIC6 Touch Screen Panel	
Control Panel	
Purge Control Panel	
Lube Assembly	3 /
INSTALLATION	
Step 1 — Receive the Machine	
INSPECT SHIPMENT	4
IDENTIFY MACHINE	
INSTALLATION REQUIREMENTS	
PROVIDE MACHINE PROTECTION	
Step 2 — Rig the Machine	8
RIG MACHINE ASSEMBLY	
Step 3 — Install Machine Supports	23
INSTALL STANDARD ISOLATION	
• INSTALL ACCESSORY ISOLATION (IF REQUIRE	D)
INSTALL SPRING ISOLATION	
INSTALL TOP HAT (FOR 32VSH VFD - AHF OPTI AND (80 AMP DRIVE)	ON
AND 680 AMP DRIVE). Step 4 — Connect Piping	95
INSTALL WATER PIPING TO HEAT EXCHANGE	
 INSTALL WATER PIPING TO HEAT EXCHANGE. INSTALL VENT PIPING TO RELIEF DEVICES 	KS
Step 5 — Install Disconnect Switch Handle	
(DV4 Units without AHF Shown)	. 28
Step 6 — Make Electrical Connections	
CONNECT CONTROL INPUTS	
CONNECT CONTROL OUTPUTS	
CONNECT VFD	
CARRIER COMFORT NETWORK INTERFACE	
Step 7 — Install Field Insulation	40
INSTALLATION START-UP CHECKLIST	CL-1

SAFETY CONSIDERATIONS

Centrifugal liquid chillers are designed to provide safe and reliable service when operated within design specifications. When operating this equipment, use good judgment and safety precautions to avoid damage to equipment and property or injury to personnel.

Be sure you understand and follow the procedures and safety precautions contained in the machine instructions, as well as those listed in this guide.

Failure to follow these procedures will result in severe personal injury or death.

DO NOT VENT refrigerant relief devices within a building. Outlet from rupture disc, relief valve, purge unit, or fusible plugs must be vented outdoors in accordance with the latest edition of ANSI/ASHRAE 15 (American National Standards Institute/American Society of Heating, Refrigerating and Air-Conditioning Engineers) (Safety Code for Mechanical Refrigeration). The accumulation of refrigerant in an enclosed space can displace oxygen and cause asphyxiation.

PROVIDE adequate ventilation in accordance with ANSI/ ASHRAE 15, especially for enclosed and low overhead spaces. Inhalation of high concentrations of vapor is harmful and may cause heart irregularities, unconsciousness, or death. Intentional misuse can be fatal. Vapor is heavier than air and reduces the amount of oxygen available for breathing. Product causes eye and skin irritation. Decomposition products are hazardous.

DO NOT USE OXYGEN to purge lines or to pressurize a machine for any purpose. Oxygen gas reacts violently with oil, grease, and other common substances.

DO NOT USE air to leak test. Use only refrigerant or dry nitrogen.

NEVER EXCEED specified test pressures. VERIFY the allowable test pressure by checking the instruction literature and the design pressures on the equipment nameplate.

DO NOT VALVE OFF any safety device.

BE SURE that all pressure relief devices are properly installed and functioning before operating any machine.

RISK OF INJURY OR DEATH by electrocution. High voltage is present on motor leads even though the motor is not running. Open the power supply disconnect before touching motor leads or terminals and wait for capacitors to fully discharge.

Failure to follow these procedures may result in personal injury or death.

DO NOT USE TORCH to remove any component. System contains refrigerant which can be under pressure.

To remove a component, wear protective gloves and goggles and other necessary safety equipment, and proceed as follows.

- a. Shut off electrical power to unit.
- b. Recover refrigerant from system using both highpressure and low-pressure ports.
- c. Traces of vapor should be displaced with nitrogen and the work area should be well ventilated. Refrigerant in contact with an open flame produces toxic gases.
- d. Cut component connection tubing with tubing cutter and remove component from unit.
- e. Carefully unsweat remaining tubing stubs when necessary.

DO NOT USE eyebolts or eyebolt holes to rig machine sections or the entire assembly.

DO NOT work on high-voltage equipment unless you are a qualified electrician.

DO NOT WORK ON electrical components, including control panels, switches, variable frequency drives (VFDs), or compressors until you are sure ALL POWER IS OFF and no residual voltage can leak from capacitors.

LOCK OPEN AND TAG electrical circuits during servicing. IF WORK IS INTERRUPTED, confirm that all circuits are de-energized before resuming work.

AVOID SPILLING liquid refrigerant on skin or getting it into the eyes. USE SAFETY GOGGLES. Wash any spills from the skin with soap and water. If liquid refrigerant enters the eyes, IMMEDIATELY FLUSH EYES with water and consult a physician.

NEVER APPLY an open flame or live steam to a refrigerant cylinder. Dangerous over pressure can result. When it is necessary to heat refrigerant, use only warm (110°F [43°C]) water.

DO NOT REUSE disposable (nonreturnable) cylinders or attempt to refill them. It is DANGEROUS AND ILLEGAL. When cylinder is emptied, evacuate remaining gas pressure, loosen the collar, and unscrew and discard the valve stem. DO NOT INCINERATE.

CHECK THE REFRIGERANT TYPE before adding refrigerant to the machine. The introduction of the wrong refrigerant can cause machine damage or malfunction.

Operation of this equipment with refrigerants other than those cited herein should comply with ANSI/ASHRAE 15 (latest edition). Contact Carrier for further information on use of this machine with other refrigerants.

BEFORE ADDING INHIBITOR to the unit, be sure to check the type. Using the wrong type could result in damage to the unit. Factory unit comes supplied with inhibitor.

DO NOT ATTEMPT TO REMOVE fittings, covers, etc., with refrigerant in the machine or while machine is running. Be sure pressure is at 0 psig (0 kPa) before breaking any refrigerant connection. Note that at 65°F (18°C) the machine is at near 0 psig (0 kPa) so ensure to properly check for the existence of refrigerant in the machine.

CAREFULLY INSPECT all relief valves, rupture discs, and other safety relief devices AT LEAST ONCE A YEAR. If machine operates in a corrosive atmosphere, inspect the devices at more frequent intervals.

DO NOT ATTEMPT TO REPAIR OR RECONDITION any relief device when corrosion or build-up of foreign material (rust, dirt, scale, etc.) is found within the valve body or mechanism. Replace the valve or device.

DO NOT install relief devices in series or backwards.

USE CARE when working near or in line with a compressed spring. Sudden release of the spring can cause it and objects in its path to act as projectiles.

Prior to installing or servicing this equipment ensure that personal protective equipment (PPE) is worn as required per OSHA or other local regulations.

For servicing or installing components where there is a risk of arc flash the technicians must wear personal protective equipment as identified in NFPA (National Fire Protection Association) 70E or other local country-specific requirements for arc flash protection.

Failure to follow these procedures may result in personal injury or damage to equipment.

DO NOT STEP on refrigerant lines. Broken lines can whip about and release refrigerant, causing personal injury.

DO NOT climb over a machine. Use platform, catwalk, or staging. Follow safe practices when using ladders.

USE MECHANICAL EQUIPMENT (crane, hoist, etc.) to lift or move inspection covers or other heavy components. Even if components are light, use mechanical equipment when there is a risk of slipping or losing your balance.

BE AWARE that certain automatic start arrangements CAN ENGAGE THE VFD, TOWER FAN, OR PUMPS. Open the disconnect *ahead of* the VFD, tower fan, and pumps. Shut off the machine or pump before servicing equipment.

USE only repaired or replacement parts that meet the code requirements of the original equipment.

DO NOT VENT OR DRAIN waterboxes containing industrial brines, liquid, gases, or semisolids without the permission of your process control group.

DO NOT LOOSEN waterbox cover bolts until the waterbox has been completely drained.

DOUBLE-CHECK that coupling nut wrenches, dial indicators, or other items have been removed before rotating any shafts.

DO NOT LOOSEN a packing gland nut before checking that the nut has a positive thread engagement.

PERIODICALLY INSPECT all valves, fittings, and piping for corrosion, rust, leaks, or damage.

PROVIDE A DRAIN connection in the vent line near each pressure relief device to prevent a build-up of condensate or rain water. Ensure to slope piping way from relief device.

DO NOT re-use compressor purge oil or any oil that has been exposed to the atmosphere. Dispose of oil and refrigerant per local codes and regulations.

DO NOT introduce oil to the refrigerant circuit with refrigerant recovery containers, vacuum pump, or other means.

DO NOT leave refrigerant system open to air any longer than the actual time required to service the equipment. Seal circuits being serviced and charge with dry nitrogen to prevent contamination when timely repairs cannot be completed.

INTRODUCTION

General

The 19DV unit is factory assembled, wired, and leak tested. Installation consists primarily of establishing water and electrical services to the machine. The rigging, installation, field wiring, field piping, and insulation of waterbox covers are the responsibility of the contractor and/or customer. Carrier has no installation responsibilities for the equipment. The refrigerant charge will be installed by the Carrier Start-up Technician during the start-up process.

Job Data

Necessary information consists of:

- job contract or specifications
- machine location prints
- rigging information
- piping prints and details
- field wiring drawings
- starter manufacturer's installation details
- · Carrier certified print

CHILLER FAMILIARIZATION

Chiller Information Nameplate

The information nameplate is located on the left side of the chiller control panel. Refer to Fig. 1 for model number identification.

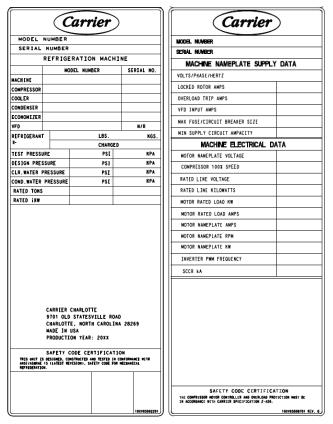


Fig. 1 — 19DV Refrigeration Machine Nameplate

System Components

The main components include the evaporator and condenser heat exchangers in separate vessels, compressor, refrigerant lubrication system, control panel, economizer, VFD, and purge system.

Evaporator

This heat exchanger (also known as the evaporator) is located underneath the compressor. The evaporator is maintained at lower refrigerant temperature/pressure so evaporating refrigerant can remove heat from water flowing through its internal tubes.

Condenser

This heat exchanger operates at a higher refrigerant temperature/ pressure than the evaporator and has water flowing through its internal tubes in order to remove heat from the refrigerant.

Compressor

This component maintains system temperature and pressure differences and moves the heat carrying refrigerant from the evaporator to the condenser. The 19DV unit has a back to back two-stage, direct drive, and economized compressor.

Economizer

This chamber reduces the refrigerant temperature to an intermediate level between the evaporator and condenser vessels. In the economizer, vapor is separated from the liquid, the separated vapor flows to the inlet of the second stage of the compressor, and the liquid flows into the evaporator. The energy removed from the vaporized refrigerant in the economizer allows the liquid refrigerant in the evaporator to absorb more heat when it evaporates and benefits the overall cooling efficiency cycle.

VFD

The VFD provides a pulse width modulated signal that results in variable frequency and voltage to the compressor motor. It is controlled and monitored from the PIC6 control system.

Purge System

The purge system is an independent assembly located under the condenser. The 19DV chiller system components normally operate in a vacuum. The purge assembly will automatically remove air and other non-condensables which may have leaked into the system to maintain chiller performance. It is controlled through the PIC6 control system.

PIC6 Touch Screen Panel

This panel is the user interface for controlling the chiller and has the following functions:

- Chiller operation
- Chiller diagnostic
- Chiller status display
- Chiller parameter configuration
- Open protocol interface to outside building management system (BMS)

Control Panel

This control panel includes the input and output boards (IOB), control transformer, relays, contactors, and circuit breakers. It provides the power distribution and protection to the electrical component installed on chiller, and has the following functions:

- Communication with PIC6 touch screen
- · Communication with purge panel
- Communication with VFD
- Sensor input and outputs
- Actuators control
- Refrigerant pump control

Purge Control Panel

The purge panel includes an input and output boards, control transformers, relays, and contactors. It provides the power distribution and protection to the electrical components which installed in the purge system and has the following functions:

- Communication with PIC6 touch screen
- Sensor input and outputs
- Solenoid valve control

• Control of purge compressor, vacuum pump, heater, and fan control

Lube Assembly

The lube assembly refers to the filter, strainer and pump package with automatic valve actuator control located under the condenser. The objective of the lube assembly is to provides lubricating liquid refrigerant to the compressor bearings.

INSTALLATION

Step 1 — Receive the Machine

INSPECT SHIPMENT

Do not open any valves or loosen any connections. The 19DV machine may be shipped with a nitrogen holding charge. Damage to machine may result.

- 1. Inspect for shipping damage while machine is still on shipping conveyance. If machine appears to be damaged or has been torn loose from its anchorage, have it examined by transportation inspectors before removal. Forward claim papers directly to transportation company. *Manufacturer is not responsible for any damage incurred in transit.*
- 2. Check all items against shipping list. Immediately notify the nearest Carrier representative if any item is missing.
- 3. To prevent loss or damage, leave all parts in original packages until installation. All openings are closed with covers or plugs to prevent dirt and debris from entering machine components during shipping. A full operating inhibitor charge is placed in the unit before shipment from the factory.

IDENTIFY MACHINE

The machine model number, serial number, and heat exchanger sizes are shown on machine identification nameplate (Fig. 1-3). Check this information against shipping papers and job data.

INSTALLATION REQUIREMENTS

Prior to starting chiller electrical installation, certain requirements should be checked. Input power wire sizes, branch circuit protection, and control wiring are all areas that need to be evaluated. See Fig. 3 for typical compressor chiller components and Fig. 4 for typical compressor chiller liquid bypass details.

Determine Wire Size Requirements

Wire size should be determined based on the size of the conduit openings, and applicable local, national, and international codes (e.g., NEC [National Electric Code]/CEC regulations). General recommendations are included in the Carrier field wiring drawings. Consult drawing for termination lug sizes.

Conduit Entry Size

It is important to determine the size of the conduit openings in the enclosure power entry plate so that the wire planned for a specific entry point will fit through the opening. Do NOT punch holes or drill into the top surface of any panels. Knockouts are provided on the enclosure. The VFD entry plate is designed to be removed before any holes are made to prevent particulate from entering the cabinet.

Recommended Control and Signal Wire Sizes

The recommended minimum size wire to connect I/O signals to the control terminal blocks is 18 AWG (American Wire Gauge). Recommended terminal tightening torque is 7 to 9 in.-lb (0.79 to 1.02 N-m).

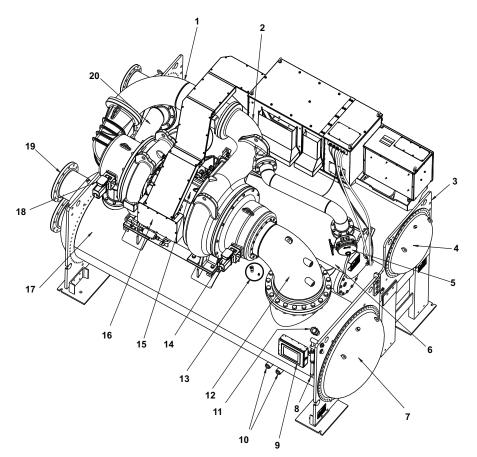
Required Airflow Clearances

Be sure there is adequate clearance for air circulation around the enclosure. A 6-in. (152.4 mm) minimum clearance is required wherever vents are located in an enclosure.

Service Clearances

Verify that service clearances are adequate as identified in Fig. 5.

Match Power Module Input and Supply Power Ratings

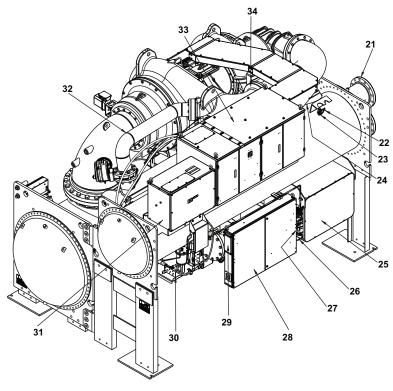

It is important to verify that building power will meet the input power requirements of the Machine Electrical Data nameplate input power rating. Be sure the input power to the chiller corresponds to the chiller's nameplate voltage, current, and frequency and to the design data sheet provided by the equipment salesman. Verify all electrical inputs against design data sheets. The VFD electrical data nameplate is located on the right side of the VFD enclosure.

PROVIDE MACHINE PROTECTION

Store machine and VFD indoors, protected from construction dirt and moisture as identified in the long term storage requirements. Inspect under shipping tarps, bags, or crates to be sure that water has not collected during transit. Keep protective shipping covers in place until machine is ready for installation.

19 D V - G 4 4 G 19 High Efficiency Semi-Hermetic Centrifugal Chiller -	A 4 4 4 5 H 4 - Special Voltage Code - Standard S Special Voltage Code Code Volts-Phase-Hertz 3

Fig. 2 — 19DV Chiller Model Number Identification


FRONT VIEW

- Interconnecting Compressor Piping 1
- 2 — VFD Drain (Field Drain Piping Required)
- 3

4

6

- Condenser
 Condenser Waterbox Return End
 Signature Value (Option
- Economizer Isolation Valve (Option)
 Economizer 5
- 7 - Evaporator Waterbox Return End
- 8 — Vacuum/Charging Valve (Hidden)
- 9 PIC6 HMI Touchscreen Panel
- 10 Evaporator Bundle Sight Glasses
- 11 Rupture Disc 12 Suction Elbow
- 13 Evaporator Charging Valve and
- Evaporator Pressure Transducer
- 14 First Stage Guided Vane Actuator
- 15 Compressor Motor
- 16 Moisture Indicator (Hidden)
 17 Evaporator
- 18 Second Stage Guided Vane Actuator
- 19 Evaporator Waterbox Nozzles
 20 Free Cooling Pipe (Option)

REAR VIEW

- 21 Condenser Waterbox Nozzles
- 22 Condenser Pressure Transducer
- 23 Condenser Charging Valve
- 24 Envelope Stability Control Pipe
- 24 Envelope Stability CC
 25 Purge Assembly
 26 Purge Vent (Hidden)
- 27 Motor VFD Cooling Moisture
- Indicator (Hidden)
- 28 Control Panel
- 29 Chiller Name Plate Label
- 30 Lubrication Assembly
- 31 Pull Box* (replaced by
- Active Harmonic Filter if selected)
- 32 Economizer Pipe 33 — VFD
- 34 Discharge Pipe

* Pull Box available on DV4 only.

Fig. 3 — Typical 19DV Compressor Chiller Components

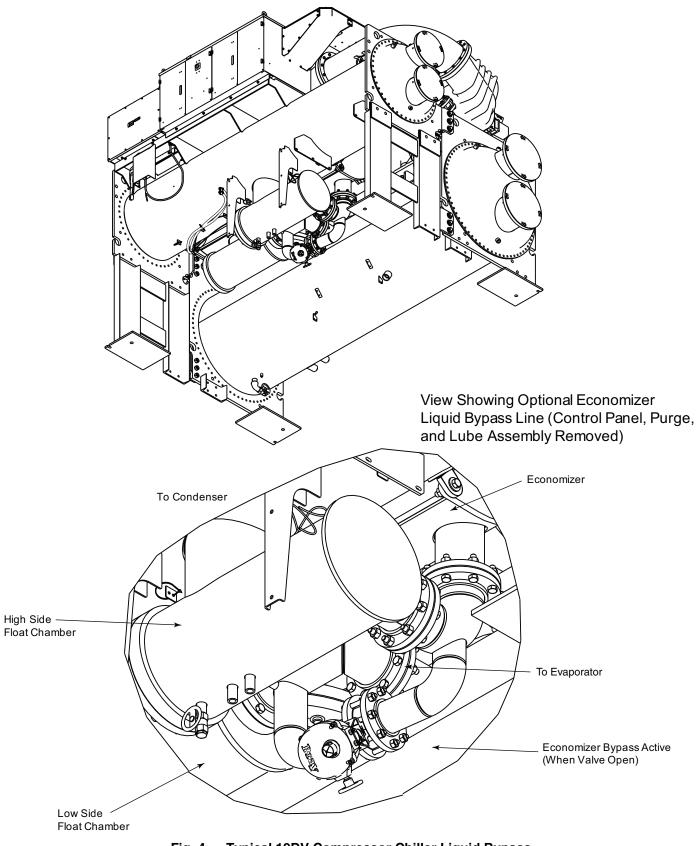
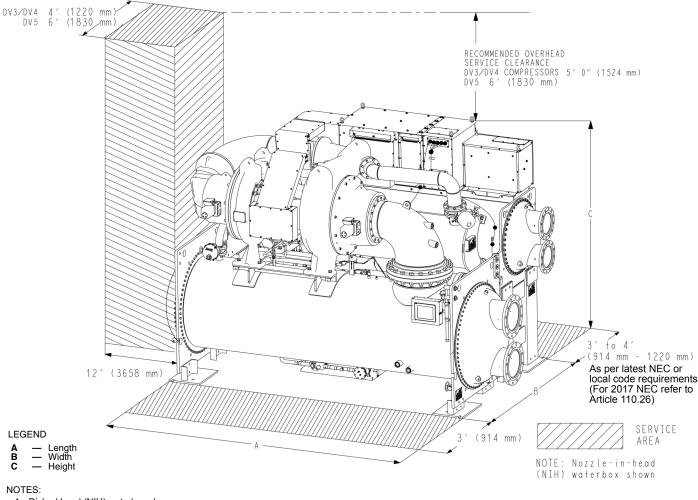



Fig. 4 — Typical 19DV Compressor Chiller Liquid Bypass

Extended overhead service clearance for compressor service and rigging located at either end of unit

- Dished head (NIH) waterbox shown. 2
- Service areas are minimum space required. DV3/DV4: For compressor service either end allow 4 feet (1220 mm) on the evaporator side of the chiller or provide free space above the tube pull area equal to the beight of the chiller plus 5 feet (1524 mm). DV5: For compressor service either end allow 6 feet (1830 mm) on the evaporator side of the chiller or provide free space above the tube pull area equal to the height of the chiller plus 6 feet (1830 mm).
- Tube pull area: Length = length of heat exchanger Width = width of heat exchanger.

3.

Tube pull area can be located at either end of the evaporator or condenser; it extends past the tubesheet the same length as the heat exchanger.

Fig. 5 — 19DV Service Clearances

ACAUTION

Freezing water can damage equipment. If machine can be or possibly has been exposed to freezing temperatures after water circuits have been installed, open waterbox drains and remove all water from evaporator and condenser. Leave drains open until system is ready to be filled.

It is important to properly plan before installing a 19DV unit to ensure that the environmental and operating conditions are satisfactory and the machine is protected. The installation must comply with all requirements in this document and in the certified prints.

Operating Environment

Chiller should be installed in an indoor environment where the ambient temperature is between 40 and 104°F (4 and 40°C) with a relative humidity of 95% or less, non-condensing. To ensure that electrical components operate properly, do not locate the chiller in an area exposed to dust, dirt, corrosive fumes, or excessive heat and humidity.

NOTE: NEMA Type 1 enclosures are constructed for indoor use to provide a degree of protection to personnel against incidental contact with the enclosed equipment and to provide a degree of protection against falling dirt. This type of enclosure does not protect against water, dust, moisture or airborne contaminants.

Step 2 — Rig the Machine

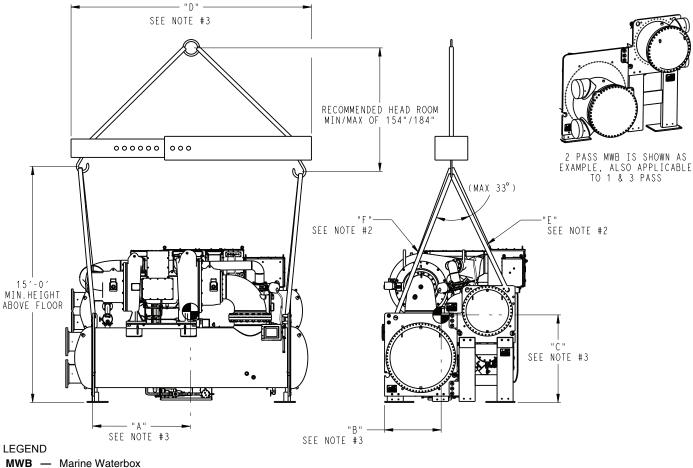
The 19DV machine can be rigged as an entire assembly. It also has connections that allow the compressor, evaporator, and condenser sections to be separated and rigged individually.

RIG MACHINE ASSEMBLY

See rigging instructions on label attached to machine. Refer to rigging guide (Fig. 6), dimensions in Fig. 5, and physical data in Tables 1-12. Lift machine only from the points indicated in rigging guide.

IMPORTANT: Verify with company performing the rigging that they have access to required spreader beam for 4 point lift. Carrier is not responsible for rigging damage.

Each lifting cable or chain must be capable of supporting the entire weight of the machine.


Contractors are not authorized to disassemble any part of the chiller without Carrier's supervision. Any request otherwise must be approved in writing by the Carrier Technical Service Manager. Non-conformance to this requirement may result in loss of product warranty.

NOTE: If transmission of vibrations from mechanical equipment is of concern and is not the responsibility of the manufacturer, Carrier suggests that a structural engineer be consulted.

Lifting chiller or components from points other than those specified may result in serious damage to the machine or personal injury. Rigging equipment and procedures must be adequate for maximum chiller weight. See Fig. 6 for maximum chiller and component weights.

COMPRESSOR	EVAPORATOR	NIH MAX.	MWB MAX.	VESSEL	DIM. "A"	DIM. "B"	DIM. "C"	DIM. "D"	CHAIN LENGTH	
FRAME	CODE	WEIGHT Ib	WEIGHT Ib	LENGTH ft	in.	in.	in.	in.	"E" in.	"F" in.
3	F2A~F2K, F20~F29	29,000	31,500	12	70	44	54	168	106	126
3	F4A~F4K, F40~F49	30,500	33,000	14	80	43	54	188	106	126
	G2A~G2K, G20~G29	35,900	38,000	12	92	35	58	168	106	126
4	G4A~G4K, G40~G49	38,000	40,100	14	100	34	57	188	106	126
4	H2A~H2K, H20~H29	38,700	41,100	12	72	50	66	168	106	126
	H4A~H4K, H40~H49	41,200	43,500	14	75	55	64	188	106	126
5	M4A~M4K, M40~M49	56,170	58,080	14	80	63	75	192	103	117
	M6A~M6K, M60~M69	59,150	61,060	16	89	62	74	216	103	117

NIH - Nozzle in Head

NOTES:

- 1. Each chain must be capable of supporting the entire weight of the machine. See chart for maximum weights. (The maximum weights shown cover weights from steel and copper tubing, insulation, and refrigerant charge, excluding water weight.)
- Chain lengths shown are typical for 15 ft lifting height. Some minor adjustments may be required.
- З.
- Dimensions "A" and "B" define distance from machine center of gravity to tube sheet outermost surfaces. Dimension "C" defines distance from machine center of gravity to floor. Dimension "D" defines distance measured between the chain lifting hooks.
- 4. Marine waterbox values are for 150 PSI rated.

Fig. 6 — Machine Rigging Guide

HEAT EXCHANGER SIZE	PASSES	A (LE	ENGTH)	B (W	/IDTH)	C (HE	EIGHT)
HEAT EXCHANGER SIZE	PASSES	in.	mm	in.	mm	in.	mm
	1 pass	186.0	4724.4				
F2 ⁱ	2 pass	178.5	4534.7	100.4	2549.0	111.1	2821.8
	3 pass	185.6	4714.2				
	1 pass	206.5	5245.1				
F4 ⁱ	2 pass	199.0	5055.4	96.5	2450.1	111.1	2821.
	3 pass	206.1	5234.9				
	1 pass	189.0	4800.6				
G2 ⁱ	2 pass	180.9	4594.9	108.4	2753.4	117.0	2971
	3 pass	185.5	4711.7				
	1 pass	209.5	5321.3	99.9			2971
G4 ⁱ	2 pass	201.4	5115.6		2537.5	117.0	
	3 pass	206.0	5232.4				
	1 pass	190.8	4846.3		2896.6 123.9		
H2 ⁱ	2 pass	183.4	4658.4	114.0 2896.6		123.9	3147.1
	3 pass	187.5	4762.5				
	1 pass	211.3	5367.0				
H4 ⁱ	2 pass	203.9	5179.1	110.3	2801.6	123.9	3147
	3 pass	208.0	5283.2				
	1 pass	—	_				
M4	2 pass	206.1	5234.0	131.6	3343.0	147.4	3745
	3 pass	—	—	1			
	1 pass	—	_				
M6	2 pass	225.9	5736.0	131.6	3343.0	147.4	3745.0
	3 pass	_	_				

Table 1 — 19DV Dimensions (Nozzle-In-Head Waterbox)^{a,b,c,d,e,f,g,h}

NOTE(S):

Service access should be provided per American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) 15, latest edition, National Fire Protection Association (NFPA) 70, local safety code, and Carrier drawings.
Overhead clearance for service rigging compressor should be at minimum 3 ft (914 mm) with 5 ft (1524 mm) recommended for easier overhead access.
Dimensions are approximate. Certified drawings available upon request.
Marine waterboxes typically add to the width of the machine. See certified drawings for details.
'A' length dimensions shown are for standard 150 psig (1034 kPa) design and flanged connections. See certified drawings.
19DV unit heights can vary depending on the configuration. Check 19DV certified drawings for height information.
Table contains heat exchanger dimensions. For arrangements where the compressor motor housing extends past the waterbox, consult the 19DV certified drawings.
Consult factory for configurations not listed in the above table.
Assumes both evaporator and condenser nozzles on same end of chiller; nozzle-in-head waterboxes, 150 psi rated. a.

b.

c. d.

e. f.

g. h.

i.

Table 2 — 19DV Nozzle Size

	NOZZLE SIZE (in.) (Nominal Pipe Size)								
HEAT EXCHANGER FRAME SIZE		Evaporator			Condenser				
	1-Pass	2-Pass	3-Pass	1-Pass	2-Pass	3-Pass			
F	14	12	12	10	10	8			
G	14	14	12	12	10	10			
Н	14	14	12	12	12	10			
Μ	_	16	—	_	14	_			

		•		· ·	•		
HEAT EXCHANGER SIZE	PASSES	A (LE	NGTH)	В (М	/IDTH)	C (HE	EIGHT)
HEAT EXCHANGER SIZE	PASSES	in.	mm	in.	mm	in.	mm
	1 pass	209.7	5326.4				
F2 ⁹	2 pass	188.1	4777.7	100.4	2549.0	111.1	2821.8
	3 pass	204.7	5199.4				
	1 pass	230.2	5847.1	97.9	2487.2		
F4 9	2 pass	208.6	5298.4	96.8 2458.5		111.1	2821.8
	3 pass	225.2	5720.1		2450.1	1	
	1 pass	218.5	5549.9				
G2 ^g	2 pass	192.3	4884.4	108.4 27	2753.4	117.0	2971.8
	3 pass	210.8	5354.3				
	1 pass	239.0	6070.6				
G4 ^g	2 pass	212.8	5405.1	102.2	2595.9	117.0	2971.8
	3 pass	231.3	5875.0				
	1 pass	220.5	5600.7				
H2 ^g	2 pass	194.2	4932.7	114.0	2896.6	123.9	3147.1
	3 pass	212.5	5397.5				
	1 pass	241.0	6121.4				
H4 ^g	2 pass	214.7	5453.4	112.9	2867.7	123.9	3147.1
	3 pass	233.0	5918.2				
	1 pass	_	_				
M4	2 pass	230.1	5845.0	131.6	3343.0	147.4	3745.0
	3 pass	_	_	7			
	1 pass	_	_				
M6	2 pass	245.1	6455.0	131.6	3343.0	147.4	3745.0
	3 pass	_		1			

Table 3 — 19DV Dimensions (Marine Waterbox, 150 psig)^{a,b,c,d,e,f}

NOTE(S):

a.

b.

c. d.

Service access should be provided per American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) 15, latest edition, National Fire Protection Association (NFPA) 70, local safety code, and Carrier drawings. Overhead clearance for service rigging compressor should be at minimum 3 ft (914 mm) with 5 ft (1524 mm) recommended for easier overhead access. Dimensions are approximate. Certified drawings available upon request. Marine waterboxes typically add to the width of the machine. See certified drawings for details. 19DV unit height can vary depending on the configuration. Check 19DV certified drawings for height information. The table does not take into account equipment overhang or nozzle configurations with nozzles on opposite ends of chiller or mix of waterbox types. See certified drawings for final unit dimensions. Assumes both evaporator and condenser nozzles on same end of chiller: marine waterboxes 150 psi rated e. f.

Assumes both evaporator and condenser nozzles on same end of chiller; marine waterboxes, 150 psi rated. g.

		COMPRESSOR						
COMPONENT	DV3 F	rame F	DV4 Fi	rame G	DV4 F	rame H	DV5 Fr	ame M
COMPONENT	lb	kg	lb	kg	lb	kg	lb	kg
SUCTION PIPE ASSEMBLY (includes flanges)	410	186	569	259	584	265	682	309
INTERSTAGE PIPING (section only from flange to flange)	316	144	346	157	335	152	1019	462
DISCHARGE PIPING	5	2	5	2	5	2	197	89
HMI PANEL	72	33	72	33	72	33	80	36
CONTROL PANEL	170	77	170	77	170	77	200	91
HIGH SIDE FLOAT CHAMBER COVER	64	29	82	37	82	37	79	36
LOW SIDE FLOAT CHAMBER COVER	64	29	82	37	82	37	79	36
PURGE ASSEMBLY	263	120	263	120	263	120	270	122
ENVELOP CONTROL VALVE	30	14	97	44	97	44	34	15
ECONOMIZER BYPASS VALVE	85	39	121	55	121	55	62	28
FREE COOLING VALVE	62	28	200	91	200	91	75	34
FREE COOLING PIPE	91	41	276	125	285	130	257	117
ECONOMIZER VENT LINE PIPING	73	33	111	50	118	54	144	65
VFD 32VSS0680	1354	615	_	_	—	_	_	
VFD 32VSS0900	_	_	1321	599	1321	599	1321	599
VFD 32VSS1060	_	_	_	_	—	_	1321	599
VFD 32VSS1200	_	_			—	_	1616	733
VFD PULLBOX	184	84	184	84	184	84	184	84
VFD ACTIVE HARMONIC FILTER	650	295	650	295	650	295	800	363
VFD CABLE	150	68	200	91	200	91	286	130
VFD TRAY	100	45	124	56	124	56	30	14

Table 4 — Component Weights

Table 5 — 19DV Compressor and Motor Weights^a — High-Efficiency Motors

			DV3					
MOTOR		ENGLISH			SI			
CODE	Compressor Weight ^b (lb)	Stator and Housing Weight (Ib)	Rotor and Shaft Weight (lb)	Compressor Weight ^b (kg)	Stator and Housing Weight (kg)	Rotor and Shaft Weight (kg)		
Voltage:	380/460							
в	5605	926	242	2542	420	110		
D	5605	926	242	2542	420	110		
F	5605	1041	281	2542	472	127		
н	5605	1093	302	2542	496	137		
			DV4					
Voltage:	380/460							
В	6195	1090	330	2810	494	150		
D	6195	1150	340	2810	522	154		
F	6195	1230	350	2810	558	159		
н	6195	1316	364	2810	597	165		
			DV5					
Voltage:	380/460							
В	10677	1956	584	4843	887	265		
D	10677	1991	593	4843	903	269		
F	10677	2025	603	4843	919	273		
Н	10677	2094	622	4843	950	282		

NOTE(S):

a. Total compressor weight is the sum of the compressor aerodynamic components (compressor weight column), stator, rotor, and end bell cover weights.
b. Compressor aerodynamic component weight only, motor weight not included. Applicable to standard compressors only.

	DRY RIGGING	WEIGHT (LB)d	REFRIGERANT	WEIGHT (I B)	WATER W	FIGHT (I B)
CODE	Evaporator Only	Condenser Only	Evaporator Onlye	Condenser Only	Evaporator Only	Condenser Only
F20	7272	_		_	1311	_
F21	7376			—	1359	_
F22	7529	6127	_	311	1432	1156
F23	7684	6356		319	1504	1248
F24	7837	6534	-	326	1577	1321
F25	7287	—		—	1290	—
F26	7399	—	-	—	1342	—
F27	7536	5999	—	311	1408	1008
F28	7691	6189	_	319	1480	1085
F29	7845	6398	—	326	1553	1170
F40	7856	—	—	—	1384	—
F41	7975	—	_	_	1440	—
F42	8151	6625	_	386	1522	1259
F43	8330	6888	_	395	1605	1365
F44	8506	7092		403	1688	1447
F45	7865	—		—	1361	—
F46	7993	—	—	—	1420	—
F47	8151	6476	—	386	1495	1103
F48	8329	6695	—	395	1578	1191
F49	8506	6934	—	403	1660	1288
F2A	6972	—	—	—	1346	—
F2B	7072	—	—		1414	
F2C	7169	5666	—	288	1481	1222
F2D	7269	5796	—	292	1548	1300
F2E	7372	5975	—	298	1615	1405
F2F	6972	—	—	—	1306	—
F2G	7062			-	1367	
F2H	7169	5548	—	288	1441	1054 1132
F2J F2K	7261 7379	5678 5866		292 298	1501 1582	1132
F4A	7513				1382	
F4A F4B	7629				1425	
F4D F4C	7741	6099		349	1578	1335
F4D	7857	6249		354	1655	1423
F4E	7975	6455		361	1731	1543
F4F	7505		_		1380	
F4G	7608	_		_	1448	_
F4H	7733	5961	_	349	1532	1156
F4J	7838	6111	_	354	1601	1244
F4K	7975	6328	_	361	1693	1371
G20	8611	_	_	_	1723	_
G21	8772	—	_	—	1799	—
G22	8942	6713	_	360	1879	1332
G23	9111	6956	_	370	1959	1430
G24	9330	7222	_	379	2063	1539
G25	8677	_		—	1695	_
G26	8802	—		—	1754	_
G27	8972	6669	—	360	1834	1245
G28	9147	6884	—	370	1917	1333
G29	9339	7140	—	379	2007	1437
G40	9260	_		_	1808	_
G41	9446	_	-	—	1895	_
G42	9641	7275	_	437	1986	1453
G43	9836	7555	-	448	2076	1566
G44	10,088	7860	—	459	2195	1689
G45	9326	—	—	—	1780	—
G46	9470	_	—	—	1847	_
G47	9665	7220	—	437	1938	1363
G48	9867	7467	_	448	2032	1463
G49	10,087	7760	_	459	2135	1581
G2A	8225	—	—	—	1740	
G2B	8324	—	—	—	1807	—
G2C	8433	6198	—	397	1881	1424
G2D	8540	6402	—	403	1952	1544
G2E	8699	6585	—	411	2059	1653
G2F	8236	—	—	—	1675	—
G2G	8331	—	—		1739	
G2H	8450	6180		397	1819	1340

Table 6 — 19DV Heat Exchanger Weights (English)^{a,b}

DRY RIGGING WEIGHT (LB)d **REFRIGERANT WEIGHT (LB)** WATER WEIGHT (LB) **CODE**° Condenser Only **Condenser Only** Evaporator Only **Condenser Only** Evaporator Only^e Evaporator Only G2J 8580 6359 403 1907 1446 1532 G2K 8710 6504 411 1994 G4A 8818 1827 _ G4B 8933 _ _ _ 1904 _ G4C 9059 6688 462 1988 1558 _ G4D 9182 6922 469 2068 1696 _ G4E 9365 7133 477 2191 1819 G4F 8821 1757 G4G 8931 1830 _ G4H 6663 462 1922 1471 9068 _ G4J 9218 6869 469 2021 1591 G4K 9368 7036 477 1690 2121 H20 9572 — _ 2127 ____ 9755 H21 _ 2213 _ _ _ H22 9936 7933 484 1726 _ 2298 H23 10,177 8253 495 2412 1856 H24 10,420 8601 507 2527 1996 H25 9518 2101 H26 9697 2185 7815 484 1678 H27 9906 2284 H28 10,115 8125 _ 495 2383 1803 H29 10,356 8450 507 2497 1936 H40 10,315 2235 H41 10,526 2334 _ _ _ _ 10,734 H42 8618 484 2430 1882 495 2560 2029 H43 11,011 8985 H44 11,291 9384 507 2690 2189 H45 10,253 2205 H46 10.459 2302 H47 10,700 8482 563 2414 1827 H48 10,940 8837 576 2527 1969 H49 11,218 9211 590 2657 2121 H2A 9025 — _ _ 2111 _ H2B 9149 2195 _ _ _ _ 7294 1852 H2C 9294 431 2293 9453 7532 439 2400 1991 H2D H2E 9623 7791 448 2514 2143 8990 H2F 2088 _ _ _ H2G 9115 2172 _ _ _ _ 7210 H2H 9253 431 2266 1802 H2J 9402 7425 439 2363 1929 H2K 9568 7675 448 2477 2075 _ 9692 2218 H4A — _ — — H4B 9835 2313 H4C 10002 7889 499 2025 2424 H4D 10,185 8163 508 2546 2183 H4E 10,381 8461 518 2676 2356 H4F 9652 2191 _ H4G 9795 2286 H4H 9956 7792 499 2393 1969 H4J 10,126 8040 508 2504 2113 H4K 10,318 8327 518 2634 2279 M40 2395 12 453 M41 12,734 2529 M42 13,053 12,679 551 2679 2538 M43 13,366 13,245 571 2829 2773 M44 13,869 3018 13,767 594 3032 2568 M60 13,520 13,845 M61 2721 M62 14,213 13,889 684 2892 2835 M63 14,576 14,543 708 3064 3105 15,038 3280 3400 M64 15,264 734 M4A 11,155 1828 _ M4B 11,287 1895 M4C 11,446 10,196 543 1977 1578 M4D 11,624 10,475 557 2068 1703 M4E 11.830 10,781 572 2171 1840 M6A 12,032 1919

Table 6 — 19DV Heat Exchanger Weights (English)^{a,b} (cont)

		REFRIGERANT	WEIGHT (LB)	WATER WEIGHT (LB)		
CODE	Evaporator Only	Condenser Only	Evaporator Only ^e	Condenser Only	Evaporator Only	Condenser Only
M6B	12,186	_	_	_	1996	_
M6C	12,373	11,051	—	677	2090	1739
M6D	12,581	11,376	—	693	2194	1882
M6E	12,820	11,735	_	711	2311	2038

Table 6 — 19DV Heat Exchanger Weights (English)^{a,b} (cont)

NOTE(S):

a. b. c. d.

e.

Evaporator weight includes two-pass Victaulic dished heads. Condenser weight includes the high side float chamber, discharge pipe, and two-pass Victaulic dished heads; does not include economizer weight. See Model Number Nomenclature. Rigging weights are for standard Super B5LSL and Super C5 tubes of standard wall thickness (0.025-in. [0.635 mm] wall) and do not include refrigerant weight. Actual evaporator refrigerant charge weight is calculated based on pass and nozzle arrangement as well as selected capacity. Therefore charge weight is not include in this publication. Charge weight for condenser and economizer are for reference only. User must consult unit name plate or the as sold performance sheet or E-Cat selection sheet in order to obtain accurate refrigerant charge information.

F20 3399 995 1 F21 3346 016 F22 3415 2779 141 680 F23 3465 2863 146 682 F24 3055 600 F24 3056 600 F24 3056 146 673 F24 3067 146 673 F44 3057 - 146 F42 3067 3025 - - 673 F44 3058 3217 - 175 676 F46 3686 - - 611 <t< th=""><th>)</th></t<>)
F21 3346 141 650 57 F22 3455 2833 145 662 55 F26 3355 2964 146 675 5 F26 3356 665 F27 3416 2771 146 6071 4 F27 3436 2807 146 6071 4 F28 3983 2802 146 744 363 F44 3837 2877 179 709 70 F46 3878 2877 170 708 75 F46 3858 3745 - 647 367 75 F46 3858 3745 179 716 678 753 55 F46 3858 3145 110	enser Only
F22 9416 279 — 141 660 85 F24 3955 2084 — 146 715 55 F24 3355 — — — — 685 57 F26 3355 — — — — 693 44 F27 5418 2721 — 146 671 44 F28 3365 — — — 464 671 4 F28 3367 2002 — 146 671 4 F28 3877 2005 — — — — 0.05 5 F44 3898 3141 — 179 728 680 . <td>_</td>	_
F23 9465 2863 — 146 062 D55 F26 3305 — — — — 985 50 F26 3305 — — — — 985 50 F27 3418 2721 — 141 609 4 F28 3555 2092 — 1418 671 4 F28 3555 2092 — 148 764 553 — — — 633 … F41 367 3056 — — 178 663 … 633 … … … 178 663 … 633 … … … 178 663 … … … … … 633 … … … … 178 635 … … … … … … … … … … … … … … <td>_</td>	_
F26 3555 2964 Ha 715 555 F26 3356 695 1.4 F27 3416 2771 141 653 4 F27 3416 2771 146 671 44 F28 5585 2902 146 671 44 780 5585 2902 146 671 45 F44 3857 3005 633 F44 3856 3217 163 769 66 F44 3856 3217 163 769 67 F44 3858 3346 179 75 50 F46 3252 2570 131 672 59 F20 3262 2570 131 672 59 F20 3223	524
F26 3305 690 F27 3448 2771 141 639 F28 3489 2007 144 671 F40 3553 2002 148 671 F41 3953 623 F41 3953 663 F42 3967 3005 175 660 F42 3967 2007 176 671 F44 3978 3007 176 674 F44 388 3145 183 733 F44 388 3145 131 611 F20 3202 270 - 131 621 F20 3203	566
F26 3395 141 659 4 F28 3485 2807 143 671 44 F28 3485 2807 143 671 44 F40 3653 653 F41 3867 3005 175 660 55 F43 3977 3124 177 780 6 F44 3663 3217 183 766 6 F44 3664 175 676 6 7 F44 3677 3037 175 676 7 7 F44 3779 3037 173 772 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	599
F27 3416 271 141 6.99 44 F28 3489 2007 145 671 4 F40 3563 2002 148 774 55 F41 3017 633 F42 3057 3105 175 680 5 F43 3773 3124 179 728 0 F44 3563 617 F46 3562 617 F47 3007 2937 175 673 5 F48 3362 3162 179 716 5 F40 3563 3162 131 672 5 F20 3262 270 132 702 5 F21 3203 131 672 5 F22 3262 270 132 702 5 F24 3030 131 671 5 F26	_
F28 3489 2807 — 145 671 44 F40 3953 — — — — 633 5 F40 3957 — — — — 653 5 F42 3977 3005 — 175 660 5 F44 3558 3217 — 183 766 6 F44 3568 — — — — 617 5 F46 3568 — — — — 617 5 F46 3563 3162 — — 175 678 5 F46 3563 3166 — 1133 672 5 5 F26 3509 — — — 1131 672 5 F26 3367 2610 — 132 702 5 F26 3369 2617 — 132 6	_
F20 3558 2902 148 704 55 F41 3617 623 F41 3617 683 F42 3607 3005 175 600 5 F43 3778 3124 179 728 6 F44 3568 2217 163 766 6 F46 3568 2217 175 673 5 F46 3620 644 - F47 3677 2337 179 763 5 F48 3362 641 - F20 3252 2570 131 672 5 F26 302 - - 620 - F26 3232 2517	457
F40 3663 683 F41 3697 3005 175 680 5 F42 3377 3124 179 728 6 F44 3888 3217 163 766 6 F46 3898 3273 817 766 6 F47 3897 2937 179 716 5 7 F48 3898 3446 1133 753 5 F49 3898 3446 1131 672 5 F20 3297 2030 1132 702 5 F20 3297 2030 132 703 6 F21 3233 - - 601 5 F21 3233 - 132 761	492
F41 3617 175 953 . F42 3967 3005 175 950 5 F43 3778 3124 179 728 6 F46 3058 217 183 766 0 F46 3058 041 . F47 3697 2937 175 678 5 F49 3688 3145 179 766 5 F49 3688 3145 179 766 5 F49 3688 3145 179 766 5 F74 3162 611 5 F72 3222 2570 131 62 5 F72 3297 2629 132 702 5 F74 3162 - 641 5 F74 3203 - - - 641 64 F82 3203 - - - 652 7 F84 3420 - -	531
F42 3997 3005 — 175 990 5 F44 3858 3217 — 183 776 6 F44 3858 — — — 179 786 6 F46 3926 — — — 9175 678 5 F47 3907 2037 — 1775 678 5 F48 3978 3037 — 1779 776 5 F49 3988 3145 — 183 753 5 F20 3222 2570 — 131 672 5 F20 3222 2570 — 132 702 5 F26 3142 2710 — 133 64 4 F21 3222 2575 — 131 644 5 F46 3477 2661 — 132 681 5 F46	_
F43 3778 3124 — 179 178 6 F46 3989 3217 — 183 766 0 0 F46 3989 - — — 183 766 0 0 F47 3967 2937 — 175 678 5 F48 3978 3037 — 179 776 5 F49 3989 3145 — 183 773 5 F20 3222 2270 — 131 072 5 F20 3222 2270 — 131 072 5 F21 3162 — — — 132 702 5 F21 3244 2710 — 131 054 4 F22 3233 — — 131 054 4 F21 3244 2717 — 1313 054 4	
F44 3858 3317 — 183 776 6 F46 3026 — — — — 617 5 F47 3097 2037 — 175 676 5 F48 3058 3145 — 173 753 5 F2A 3162 — — — 611 . F2A 3162 — — — 611 . F2C 3269 — 131 672 5 F2C 3269 — 131 672 5 F2G 3203 — — — 661 4 F2J 3222 2517 — 131 654 4 F2J 3224 2557 — 132 681 5 F4A 3400 — — — 661 6 F4A 3400 — — — 661 </th <td>571</td>	571
F46 3568 647 175 677 175 F47 3907 2937 1778 678 5 F48 3078 3037 179 766 5 F49 3888 3145 179 761 5 F2A 3182 611 5 5 F2B 3288 611 5 F2C 3222 2270 131 672 5 F2C 3344 2710 132 702 5 F2Z 3162 620 F2Z 3203 620 F2Z 3203 131 664 4 F2Z 3204 2575 132 661 5	619
F46 3869 644 F47 3869 2937 176 678 5 F48 3778 3037 179 718 5 F49 3858 3145 183 773 5 F28 3209 - 641 - F26 32297 2629 131 672 5 F21 344 2710 620 F21 3224 2617 132 681 5 F23 3224 2617 132 681 5 F44 3447 2661 135 718 5 F44 3440 681 5 7 F44 3440 687 7 7 F44 3440	656
F47 3967 2937 — 176 678 55 F48 3778 3037 — 179 716 5 F49 3888 3145 — 183 753 5 F2A 3162 — — — 641 . F2B 3262 2570 — 131 672 5 F2C 3262 2570 — 132 702 5 F2G 3207 2629 — 131 654 4 F2G 3203 — — — - 650 4 F2F 3144 2710 — 131 654 4 F2G 3203 — — 131 654 4 F2G 3203 — — 131 654 4 F2G 3244 2575 — 132 681 5 F4A 3460 —	_
F46 3778 3037 — 179 716 55 F49 3888 3145 — — — 611 — F28 3208 — — — — 611 — F28 3208 — — — — 611 672 55 F20 3227 2629 — 131 672 55 F21 3162 — — — — 620 … F23 3224 2617 — 132 661 5 F24 3242 2617 — 132 661 5 F24 3447 2661 — 132 681 5 F44 3460 — — — 681 5 F44 3460 — — 161 775 6 F40 3564 2834 — 161 775 5	<u> </u>
F49 3888 3145 — 183 753 55 F2A 3162 — — — — 611 5 F2B 3208 — — — — 611 5 F2C 3252 2570 — 131 672 5 F2C 3252 2570 — 132 702 5 F2E 3344 2710 — 131 664 4 F2F 3162 — — — 592 5 F2K 3233 — — — 131 664 4 F2G 3234 2575 — 1312 681 5 F4A 3460 — — — 661 5 F4A 3460 — — — 681 5 F4A 3460 — — — 665 5 F4A 3461 <td>500</td>	500
F2A 3162 611 F2B 3208 641 F2C 3287 2629 131 672 5 F2C 3287 2629 132 702 5 F2F 3162 132 702 5 F2G 3203 592 F2G 3203 600 F2I 3222 2517 131 654 44 F2J 3224 2575 132 681 5 F4K 3447 2661 135 718 55 F4A 3480 646 646 F4G 3611 2766 158 716 6 F4G 3641 164 785 77 F4F 3641 <td>540 584</td>	540 584
F2B 3208 641 F2C 3252 2570 131 672 5 F2D 3252 2570 132 702 5 F2E 3344 2710 135 733 6 F2F 3162 620 F2G 3203 620 F2H 3244 2575 131 654 4 F2X 3347 2661 132 681 5 F4A 3460 681 F4G 3440 681 681 F4G 3461 687 7 - F4G 3464 626 7 - F4G 3461 627 - -	-
F2C 3252 2670 — 131 672 55 F2D 3394 2710 — 135 733 6 F2F 3162 — — — 135 733 6 F2F 3162 — — — — 562 … F2G 3203 — — — — 6620 … F2I 3252 2517 — 131 664 4 F2J 3254 2575 — 132 661 5 F4A 3400 — — — — 646 … F4G 3617 2661 — 158 716 6 F4G 3617 2283 — 164 785 7 F4G 3644 2834 — 164 785 7 F4G 3647 — — — 676 …	_
F2D 3297 2629 — 132 702 5 F2E 3344 2710 — 135 733 6 F2G 3062 — — — 992 . F2G 3003 — — — — 620 . F2H 3252 2517 — 131 654 . F2X 3347 2661 — 135 718 . F4A 3408 — — — . 681 . F4C 3511 2766 — 158 716 . . F4C 3644 2834 — 161 751 . . F4G 3404 — — — F44 3608 2704 — F44 3555 2772	554
F2E 3344 2710 — 135 733 6 F2G 3162 — — — — 502 . F2G 3203 — — — — 620 . F2J 3252 2517 — 131 654 44 S294 2575 — 132 681 55 F4A 3408 — — — - 681 F4A 3408 — — — 681 . F44 3480 — — 161 716 66 F44 3564 2854 — 161 751 66 F44 3617 2928 — 161 716 65 F44 3555 2772 — 161 726 5 F44 3555 2772 — 161 726 5 F44 3617 2870	590
F2F 3162 - - - - 592 F2G 3203 - - - 620 - F2H 3262 2517 - 131 664 4 F2J 3284 2575 - 132 681 5 F4A 3408 - - - 666 - F4B 3460 - - - 661 - F4G 3564 2854 - 164 751 6 F4G 3404 - - - - 667 - F4G 3404 - - - - 667 - - 667 - - 667 - - 667 - - 667 - - 667 - - 667 - - 667 - - 667 - - 667 - - 667	637
F2G 3203 620 F2H 3252 2517 131 664 4 F2J 3294 2575 132 661 5 F4K 3347 2661 135 718 5 F4K 3440 646 5 F4K 3440 681 5 F4K 3554 2834 1681 751 6 F4F 3617 2228 1644 785 7 F4F 3451 657 5 F44 3506 2774 158 695 5 F44 3617 2870 1681 768 6 620 3906 768 6 6 6 6 6 6 <t< th=""><td>_</td></t<>	_
F2H 3282 2517 131 864 44 F2L 3294 2575 132 681 5 F2K 3347 2661 135 718 5 F4A 3408 681 5 F4B 3460 681 5 F4C 3511 2766 168 7716 6 F4Z 3644 2834 164 785 7 F4E 3617 2928 164 785 7 F4G 3404 626 F4J 3565 2772 161 726 5 F4J 3565 2772 164 786 6 G221 3979 782 - G22 4056 3045 163 852 6 G23 4133 3155 - 16	_
F2J 3204 2575 132 681 5 F2K 3347 2661 135 718 5 F4A 3460 646 - F4B 3460 681 - F4C 3511 2766 158 716 6 F4D 3564 2834 161 751 6 F4F 3617 2928 164 785 7 F4F 3441 626 - - F44 3505 2774 168 605 5 F44 3505 2772 161 726 5 F44 3505 2772 163 852 6 623 3936 786 6 623 3936 167	478
F2K 3347 2661 135 718 55 F4A 3408 646 646 F4B 3460 681 681 F4C 3511 2766 158 716 6 F4E 3617 2928 161 751 6 F4E 3617 2928 164 785 7 F4F 3404 667 667 F44 3508 2704 158 695 5 5 F44 3617 2870 161 726 5 F4K 3617 2870 163 852 6 G21 3979 - - - 782 5 G24 4232 3276 - 1172 936 <td< th=""><td>513</td></td<>	513
F4A 3408 646 F4B 3400 681 F4C 3511 2766 158 716 6 F4D 3564 2834 161 751 6 F4E 3617 2928 164 785 7 F4F 3404 - - 626 - F4I 3505 2704 158 695 5 F4K 3617 2870 161 726 5 F4K 3617 2870 163 852 6 G20 3906 - - 782 - 622 G21 3979 - - 163 852 6 G22 4056 3045 - 1172 936 6 G24 4232 3276	564
F4B 3460 681 F4C 3511 2766 158 716 6 F4D 3564 2834 161 751 6 F4E 3617 2928 164 785 7 F4F 3404 626 F4I 3508 2704 158 6657 F4I 3508 2704 158 695 5 F4K 3617 2870 161 726 5 F4K 3617 2870 163 852 6 G21 3979 816 - G22 4056 3045 163 852 6 G23 4133 3155 163 852 6 G24 4232 3276 - 172 936 6 G25 3993 7	_
F4C 3511 2766 — 158 716 6 F4D 3564 2834 — 161 751 6 F4E 3617 2928 — 164 785 7 F4F 3404 — — — 667 F4G 3451 — — — 657 F4U 3508 2704 — 161 726 5 F4U 3555 2772 — 164 768 6 G20 3906 — — — 768 6 G21 3979 — — — 769 6 G22 4056 3045 — 163 852 6 6 G23 4133 3155 — 167 889 6 6 G24 4232 3276 — 172 936 6 6	_
F4E 3617 2928 — 164 785 7 F4G 3451 — — — — 657 … F4G 3451 — — — — 657 … F4H 3508 2704 — 158 695 55 F4L 3555 2772 — 161 726 55 F4K 3617 2870 — 164 768 66 G20 3906 — — — 163 852 66 G21 3979 — — 163 852 66 G22 4056 3045 — 167 889 6 G23 4133 3155 — 167 889 6 G24 4232 3276 — — 769 … G25 3936 — — — 769 … G25	606
F4F 3404 626 F4G 3451 657 F4H 3508 2704 158 6955 55 F4J 3555 2772 161 726 55 F4K 3617 2870 164 768 66 G20 3906 782 G21 3979 163 852 6 G22 4056 3045 163 852 6 G23 4133 3155 167 889 6 G24 4232 3276 172 936 6 G25 3936 796 - 6 G27 4070 3025 163 832 5 G28 4149 3123 172 <td>645</td>	645
F4G 3451 667 F4H 3508 2704 158 665 5 F4J 3555 2772 161 726 5 F4K 3617 2870 164 768 66 G20 3906 782 G21 3979 - 816 G22 4056 3045 163 852 6 G23 4133 3155 172 936 6 G24 4232 3276 172 936 6 G25 3993 - - - 769 - G27 4070 3025 - 163 832 5 G28 4149 3123 - 167 870 6 G44 4373 3300	700
F4H 3508 2704 — 158 695 55 F4J 3555 2772 — 161 726 55 F4K 3617 2870 — 164 768 66 G20 3906 — — — 163 852 6 G21 3979 — — — 163 852 6 G22 4056 3045 — 163 852 6 G23 4133 3155 — 167 889 6 G24 4232 3276 — 172 936 6 G25 3936 — — — 769 - G27 4070 3025 — 163 832 5 G28 4144 3123 — 167 870 6 G42 4373 3300 — 172 910 6 G44 4200	_
F4J 3555 2772 — 161 726 55 F4K 3617 2870 — 164 768 66 G20 3906 — — 164 768 66 G21 3379 — — 782 G21 3979 — — 163 852 66 G23 4133 3155 — 167 889 6 G24 4232 3276 — 172 936 6 G25 3936 — — 163 832 5 G26 3993 — — 163 832 5 G27 4070 3025 — 163 832 5 G28 4149 3123 — 167 870 6 G29 4236 3239 — 172 910 6 G44 4200 — — — 800 G44 4285 — — — 807 <td>_</td>	_
F4K 3617 2870 — 164 768 66 G20 3906 — — — — 782 … G21 3979 — — — — 816 … G22 4056 3045 — 163 852 66 G23 4133 3155 — 167 889 66 G24 4232 3276 — 172 936 66 G24 4232 3276 — — 779 … G26 3993 — — — 779 … G27 4070 3025 — 163 832 5 G28 4149 3123 — 167 870 6 G29 4236 3239 — 172 910 6 G44 4265 — — — 7 860 201 G44	524
G20 3906 782 G21 3979 816 G22 4056 3045 163 852 66 G23 4133 3155 167 889 66 G24 4232 3276 172 936 66 G25 3936 796 G27 4070 3025 163 832 5 G28 4149 3123 167 870 6 G29 4236 3239 172 910 6 G40 4200 - 860 - G41 4285 - 860 - G44 4373 3300 198 901 6 G43 4462 3427	564
G21 3979 $ -$ <th< th=""><td>622</td></th<>	622
G22 4056 3045 163 852 6 G23 4133 3155 167 889 6 G24 4232 3276 172 936 6 G25 3936 769 G26 3993 796 G27 4070 3025 163 832 5 G28 4149 3123 167 870 6 G29 4236 3239 172 910 6 G40 4200 820 G41 4285 - - 860 G41 4285 - - 880 G43 4462 3427 203 942 7 G44 4576 3565 208	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	—
G24 4232 3276 — 172 936 66 G25 3396 — — — — 769 — G26 3993 — — — — 769 — G27 4070 3025 — 163 832 55 G28 4149 3123 — 167 870 66 G29 4236 3239 — 172 910 66 G40 4200 — — — 820 — G41 4285 — — — 860 — G42 4373 3300 — 198 901 66 G43 4462 3427 — 203 942 7 G44 4576 3565 — 208 996 7 G45 4230 — — — 838 — G44 4576 3565 — 208 996 7 G45 4230 —	604
G25 3936 769 G26 3993 796 G27 4070 3025 163 832 55 G28 4149 3123 167 870 66 G29 4236 3239 172 910 66 G40 4200 820 G41 4285 860 G43 4462 3427 203 942 7 G44 4576 3565 208 996 7 G44 4576 3560<	649
G26 3993 796 G27 4070 3025 163 832 55 G28 4149 3123 167 870 66 G29 4236 3239 172 910 66 G40 4200 820 $-$ G41 4285 860 $-$ G42 4373 3300 198 901 66 G43 4462 3427 203 942 7 G44 4576 3565 208 996 7 G44 4576 3565 208 996 7 G45 4230 - 838 $-$ G45 4230 - - $-$	698
G27 4070 3025 163 832 5 G28 4149 3123 167 870 6 G29 4236 3239 172 910 6 G40 4200 820 G41 4285 860 G42 4373 3300 198 901 6 G43 4462 3427 203 942 7 G44 4576 3565 208 996 7 G44 4576 3565 208 996 7 G44 4576 3565 208 996 7 G44 4576 3587 198 879 6 G47 4384 3275 198 879 6 G48 4476 3387 203 922 6 G2A 3731 <t< th=""><td>—</td></t<>	—
G28 4149 3123 167 870 6 G29 4236 3239 172 910 6 G40 4200 820 G41 4285 860 G41 4285 860 G42 4373 3300 198 901 6 G43 4462 3427 203 942 7 G44 4576 3565 208 996 7 G44 4576 3565 208 996 7 G44 4576 3565 208 996 7 G44 4576 3585 208 996 7 G45 4230 807 6 G45 4230 807 6 G44 4575 3520 198 879<	
G29 4236 3239 172 910 6 G40 4200 820 G41 4285 860 G42 4373 3300 198 901 6 G43 4462 3427 203 942 7 G44 4576 3565 208 996 7 G45 4230 807 G46 4296 807 G46 4296 807 G46 4296 807 G47 4384 3275 198 879 6 G48 4476 3387 203 922 6 G49 4575 3520 208 968 7 G2A 3731 - 789 - -	565
G40 4200 820 G41 4285 860 G42 4373 3300 198 901 66 G43 4462 3427 203 942 7 G44 4576 3565 208 996 7 G44 4576 3565 208 996 7 G45 4230 807 G46 4296 838 G47 4384 3275 198 879 6 G48 4476 3387 203 922 6 G49 4575 3520 208 968 7 G2A 3731 - 789 - G2B 3776	605 652
G41 4285 860 G42 4373 3300 198 901 6 G43 4462 3427 203 942 7 G44 4576 3565 208 996 7 G45 4230 807 G46 4296 838 G47 4384 3275 198 879 6 G48 4476 3387 203 922 6 G49 4575 3520 208 968 7 G2A 3731 789 G2B 3776 820 G2C 3825 2811 180 853 6 G2D 3874 2904 186 934 7 G2F 3736 760 G2F	
G42 4373 3300 198 901 66 G43 4462 3427 203 942 7 G44 4576 3565 208 996 7 G45 4230 208 996 7 G46 4296 807 G47 4384 3275 198 879 6 G48 4476 3387 203 922 6 G49 4575 3520 208 968 7 G2A 3731 789 G2B 3776 820 G2C 3825 2811 180 853 6 G2D 3874 2904 186 934 7 G2F 3736 760 G2G 3779 789 - </th <td></td>	
G43 4462 3427 203 942 7 G44 4576 3565 208 996 7 G45 4230 208 996 7 G46 4296 807 G46 4296 838 G47 4384 3275 198 879 6 G48 4476 3387 203 922 6 G49 4575 3520 208 968 7 G2A 3731 789 G2B 3776 820 G2C 3825 2811 180 853 6 G2D 3874 2904 186 934 7 G2F 3736 760 G2G 3779 789 -	659
G44 4576 3565 208 996 7 G45 4230 807 G46 4296 838 G47 4384 3275 198 879 6 G48 4476 3387 203 922 6 G49 4575 3520 208 968 7 G2A 3731 789 G2B 3776 820 G2C 3825 2811 180 853 6 G2D 3874 2904 186 934 7 G2F 3736 - 760 - G2G 3779 - - 789 -	710
G45 4230 807 G46 4296 838 G47 4384 3275 198 879 66 G48 4476 3387 203 922 66 G49 4575 3520 208 968 77 G2A 3731 208 968 77 G2B 3776 820 G2C 3825 2811 180 853 66 G2D 3874 2904 182 885 77 G2E 3946 2987 186 934 77 G2F 3736 760 G2G 3779 789	766
G46 4296 838 G47 4384 3275 198 879 6 G48 4476 3387 203 922 6 G49 4575 3520 208 968 7 G2A 3731 789 789 G2B 3776 820 820 820 820 820 820 820 820 820	_
G47 4384 3275 198 879 6 G48 4476 3387 203 922 6 G49 4575 3520 208 968 7 G2A 3731 208 968 7 G2B 3776 789 G2C 3825 2811 180 853 6 G2D 3874 2904 182 885 7 G2E 3946 2987 760 G2F 3736 760 G2G 3779 789	_
G48 4476 3387 203 922 66 G49 4575 3520 208 968 77 G2A 3731 208 968 77 G2B 3776 789 G2C 3825 2811 180 853 66 G2D 3874 2904 182 885 77 G2E 3946 2987 186 934 77 G2F 3736 760 G2G 3779 789	618
G49 4575 3520 208 968 7 G2A 3731 789 G2B 3776 820 G2C 3825 2811 180 853 66 G2D 3874 2904 182 885 77 G2E 3946 2987 186 934 77 G2F 3736 760 G2G 3779 789	664
G2A 3731 789 G2B 3776 820 G2C 3825 2811 180 853 66 G2D 3874 2904 182 885 77 G2E 3946 2987 186 934 7 G2F 3736 760 G2G 3779 789	717
G2B 3776 820 G2C 3825 2811 180 853 66 G2D 3874 2904 182 885 77 G2E 3946 2987 186 934 7 G2F 3736 760 G2G 3779 789	_
G2C 3825 2811 180 853 66 G2D 3874 2904 182 885 77 G2E 3946 2987 186 934 77 G2F 3736 760 G2G 3779 789	_
G2E 3946 2987 186 934 7 G2F 3736 760 G2G 3779 789	646
G2E 3946 2987 186 934 7 G2F 3736 760 G2G 3779 789	700
G2F 3736 760 G2G 3779 789	750
	—
	_
G2H 3833 2803 — 180 825 6	608

Table 7 — 19DV Heat Exchanger Weights (SI)^{a,b}

	DRY RIGGING	WEIGHT (ka)d	REFRIGERANT	WEIGHT (ka)	WATER WI	EIGHT (ka)
CODE	Evaporator Only	Condenser Only	Evaporator Only ^e	Condenser Only	Evaporator Only	Condenser Only
G2J	3892	2884		182	865	656
G2K	3951	2950	_	186	904	695
G4A	4000	_	_	_	829	_
G4B	4052	_	_	_	864	—
G4C	4109	3034	_	209	902	707
G4D	4165	3140	-	212	938	769
G4E	4248	3235		216	994	825
G4F	4001	—		—	797	—
G4G	4051	—		—	830	—
G4H	4113	3022	—	209	872	667
G4J	4181	3116	_	212	917	722
G4K	4249	3191	—	216	962	767
H20	4342	—	—	—	965	—
H21	4425	—	—	—	1004	—
H22	4507	3599	—	220	1042	783
H23	4616	3744	_	225	1094	842
H24	4726	3901	—	230	1146	905
H25	4317	—	—	—	953	—
H26	4399	_	—	_	991	—
H27	4493	3545	—	220	1036	761
H28	4588	3685		225	1081	818
H29	4698	3833	—	230	1133	878
H40	4679	—	—	—	1014	—
H41	4774	—		_	1058	_
H42	4869	3909	—	220	1102	853
H43	4995	4075		225	1161	920
H44	5121	4256	_	230	1220	993
H45	4651	_	_	—	1000	_
H46	4744	—	—	_	1044	—
H47	4853	3847	_	255	1095	829
H48	4962	4008	—	261	1146	893
H49	5088	4178	_	268	1205	962
H2A	4094	—	—	—	958	—
H2B	4150	—	—	-	996	—
H2C	4216	3308	_	195	1040	840
H2D	4288	3416	—	199	1089	903
H2E H2F	4365 4078	3534		203	1140 947	972
H2G	4078				985	
H2H	4197	3270		195	1028	818
H2J	4265	3368		199	1072	875
H2K	4340	3481		203	1124	941
H4A	4396				1006	—
H4B	4461	_	_	_	1000	_
H4C	4537	3578	_	226	1100	919
H4D	4620	3703	_	230	1155	990
H4E	4709	3838	_	235	1214	1069
H4F	4378	_	_	_	994	_
H4G	4443	_	_	_	1037	_
H4H	4516	3535	_	226	1086	893
H4J	4593	3647		230	1136	958
H4K	4680	3777	_	235	1195	1034
M40	5648	—		_	1087	-
M41	5776	—		_	1147	—
M42	5921	5751		250	1215	1151
M43	6063	6008	l	259	1283	1258
M44	6244	6291		269	1369	1375
M60	6132	—	_	—	1165	—
M61	6280	—	_	—	1234	—
M62	6447	6300	—	310	1312	1286
M63	6612	6596	_	321	1390	1408
M64	6821	6924	_	333	1488	1542
M4A	5060	—	—	—	829	—
M4B	5120	—	_	—	859	—
M4C	5192	4625	—	246	897	716
M4D	5273	4751	—	253	938	773
M4E	5366	4890		259	985	835
M6A	5458	—	—	—	871	—

Table 7 — 19DV Heat Exchanger Weights (SI)^{a,b} (cont)

CODE	DRY RIGGING	WEIGHT (kg)d	REFRIGERANT	WEIGHT (kg)	WATER WEIGHT (kg)		
CODE	Evaporator Only	Condenser Only	Evaporator Only ^e	Condenser Only	Evaporator Only	Condenser Only	
M6B	5528		—		905		
M6C	5612	5013	—	307	948	789	
M6D	5706	5160	—	314	995	854	
M6E	5815	5323	—	323	1048	925	

NOTE(S):

a. b.

c. d.

Evaporator weight includes two-pass Victaulic dished heads. Condenser weight includes the high side float chamber, discharge pipe, and two-pass Victaulic dished heads; does not include economizer weight. See Model Number Nomenclature. Rigging weights are for standard Super B5LSL and Super C5 tubes of standard wall thickness (0.025-in. [0.635 mm] wall) and do not include refrigerant weight. Actual evaporator refrigerant charge weight is calculated based on pass and nozzle arrangement as well as selected capacity. Therefore charge weight is not included in this publication. Charge weight for condenser and economizer are for reference only. User must consult unit name plate or the as sold performance sheet or E-Cat selection sheet in order to obtain accurate refrigerant charge information. e.

Table 8 — 19DV Economizer Weight

COMPRESSOR SIZE	DRY WEIGHT (lb)ª	REFRIGERANT WEIGHT (lb)	OPERATION WEIGHT (Ib)	DRY WEIGHT (kg)ª	REFRIGERANT WEIGHT (kg)	OPERATION WEIGHT (kg)
DV3	1501	227	1728	681	103	784
DV4	1931	342	2273	876	155	1031
DV5	2785	570	3355	1263	259	1522

NOTE(S):

a. Includes standard economizer weight and all connecting piping to compressor.

Table 9 — Additional Weights for 19DV 150 psig (1034 kPa) Marine Waterboxes^{a,b} — English (lb)

	NUMBER		EVAPORATOR			CONDENSER	
FRAME	OF	Rigging	y Weight	Water Weight	Rigging	g Weight	Water Weight
	PASSES	Victaulic	Flange	water weight	Victaulic	Flange	water weight
	1	352	426	961	255	293	561
F	2	397	509	930	311	381	596
	3	356	411	886	233	259	457
	1	365	441	1142	323	380	779
G	2	450	598	1212	337	413	689
	3	375	432	1056	305	340	661
	1	460	534	1236	397	453	927
н	2	466	614	1317	462	575	981
	3	381	437	1132	382	417	787
М	2	1008	1201	2517	760	910	2009

Table 10 — Additional Weights for 19DV 150 psig (1034 kPa) Marine Waterboxes^{a,b} — SI (kg)

	NUMBER		EVAPORATOR			CONDENSER	
FRAME	OF	Rigging	Weight	Water Weight	Rigging	y Weight	Water Wainht
	PASSES	Victaulic	Flange	Water Weight	Victaulic	Flange	Water Weight
	1	160	193	436	116	133	254
F	2	180	231	422	141	173	270
	3	161	186	402	106	117	207
	1	166	200	518	147	172	353
G	2	204	271	550	153	187	313
	3	170	196	479	138	154	300
	1	209	242	561	180	205	420
н	2	211	279	597	210	261	445
	3	173	198	513	173	189	357
М	2	457	545	1142	345	413	911

NOTE(S):

Add to evaporator and condenser weights for total weights. Evaporator and condenser weights may be found in Table 7. The first digit of the heat exchanger code (first column) is the heat exchanger frame size. Values are for Victaulic nozzles, two-pass dished head design. а.

b.

Table 11 — 19DV Waterbox Cover Weights — English (Ib)^a

		EVAPORATOR							CONDENSER								
WATERBOX	PASSES	Fra	me F	Fra	ne G	Fra	me H	Fra	me M	Fra	me F	Fra	me G	Fra	me H	Fra	me M
		Flange	Victaulic	Flange	Victaulic	Flange	Victaulic	Flange	Victaulic	Flange	Victaulic	Flange	Victaulic	Flange	Victaulic	Flange	Victaulic
NIH	1	406	328	494	417	515	437	—	_	191	154	232	172	249	187	—	_
Dished	2	536	419	682	528	714	560	—	_	294	220	308	235	390	273	717	523
Cover,	2 return	3	15	4	04	4	24	-	_	1	34	1	54	1	68	4	04
150 psig	3	459	401	557	499	588	529	—	—	212	186	247	210	268	232	—	—
MWB	1	426	352	6	68	7	59	-	_	293	255	1	38	1	72	-	_
Flat	2	509	397	0	00	'	39	4	76	381	311	1	72	2	14	4	76
Cover,	2 return	3	15	4	04	4	22	4	36	1	34	1	54	1	68	4	36
150 psig	3	411	356	6	68	7	59	-	_	259	233	1	72	2	15	-	_

NOTE(S):

a. Weights for dished head cover and MWB end cover 150 psig are included in the heat exchanger weights shown in Table 6.

Table 12 — 19DV Waterbox Cover Weights — SI (kg)^a

-		EVAPORATOR							CONDENSER								
WATERBOX	PASSES	Fra	me F	Fra	me G	Fra	me H	Fra	me M	Fra	me F	Fra	me G	Fra	me H	Fra	me M
		Flange	Victaulic	Flange	Victaulic	Flange	Victaulic	Flange	Victaulic	Flange	Victaulic	Flange	Victaulic	Flange	Victaulic	Flange	Victaulic
NIH	1	184	149	224	189	234	198	-	-	87	70	105	78	113	85	_	
Dished	2	243	190	309	239	324	254	_	_	133	100	140	107	177	124	325	237
Cover,	2 return	1	43	1	83	1	92	-	_	(61	-	70	-	76	1	83
150 psig	3	208	182	253	226	267	240	_	_	96	84	112	95	122	105	_	_
MWB	1	193	160	2	03		44	-		133	116	(63		78	-	_
Flat	2	231	180	3	03	3	44	2	16	173	141		78	9	97	2	16
Cover,	2 return	1	43	1	83	1	91	1	98	(61	-	70	-	76	1	98
150 psig	3	186	161	3	03	(1) (1)	44		_	117	106		78	U,	98	-	_

NOTE(S):

a. Weights for dished head cover and MWB end cover 1034 kPa are included in the heat exchanger weights shown in Table 7.

LEGEND

MWB — Marine Waterbox NIH — Nozzle-in-Head Waterbox

RIG MACHINE COMPONENTS

Refer to instructions below, Fig. 7-9, and Carrier Certified Prints for machine component disassembly.

IMPORTANT: Only a qualified service technician should perform this operation.

Do not attempt to disconnect flanges or tubing while the machine is under pressure or contains refrigerant. Failure to relieve pressure can result in personal injury or damage to the unit.

Before rigging the compressor, disconnect all wires connected to the control panel to avoid damage to electrical components.

NOTE: If the evaporator, economizer, and condenser vessels must be separated, the heat exchangers should be kept level by placing a support plate under the tube sheets. The support plate will also help to keep the vessels level and aligned when the vessels are bolted back together.

NOTE: Wiring must also be disconnected. Label each wire before removal (see Carrier Certified Prints). In order to disconnect the VFD from the machine, remove wiring between the VFD and the refrigerant pump, control panel, purge power, and the main motor leads at the starter lugs.

Remove all transducer and sensor wires at the sensor. Clip all wire ties necessary to pull heat exchangers apart.

NOTE: All factory units have inhibitor in the lubrication assembly. Both bearing supply and HS float chamber ball valves are shut at factory to contain the inhibitor (see Fig. 10). Should it be required to remove the lubrication assembly prior to start-up, do not cut any low piping without prior removal of inhibitor to avoid spilling on the floor.

To Separate Evaporator and Condenser:

- 1. Place a support plate under each tube sheet leg to keep each vessel level.
- 2. Cut tubing between high side float chamber and motor/VFD cooling.
- 3. Cut tubing between high side float chamber and lube assembly.
- 4. Disconnect the compressor discharge pipe.
- 5. Disconnect bolted connection between the low side float chamber and the evaporator.
- 6. Disconnect bolted economizer pipe between economizer and second stage compressor inlet.
- 7. Cut tubing between purge and compressor volute.
- 8. Cut tubing between purge regeneration line and motor drain.
- 9. Cover all openings.
- 10. Disconnect all wires and cables that cross from evaporator side of the machine to the condenser side.
- 11. Disconnect the marriage brackets connecting the evaporator and condenser tubesheets (both ends).

To Separate the Compressor from the Evaporator:

- 1. Unbolt motor drain flange.
- 2. Unbolt suction pipe flange.
- 3. Unbolt discharge pipe flange.
- 4. Cut tubing from purge to compressor volute.
- 5. Disconnect O-ring face seal from bearing drain (near motor drain).
- 6. Cut bearing supply tubing from lube assembly.
- 7. Cut motor cooling supply line tubing from high side float chamber.
- 8. Disconnect inhibitor reclaim line running from compressor to near bottom of evaporator.
- 9. Disconnect all power and control wires connected to the compressor.
- 10. Cover all openings.
- 11. Disconnect compressor motor power cables from VFD to motor.
- 12. Unbolt compressor mounting from the evaporator.

Additional Notes

- 1. Use silicone grease on new O-rings when refitting.
- 2. Use gasket sealant on new gaskets when refitting.

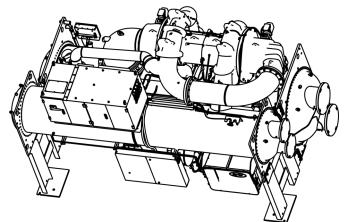


Fig. 7 — 19DV, Side View (DV4 Shown)

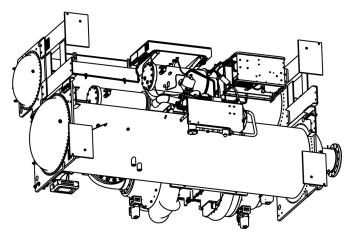
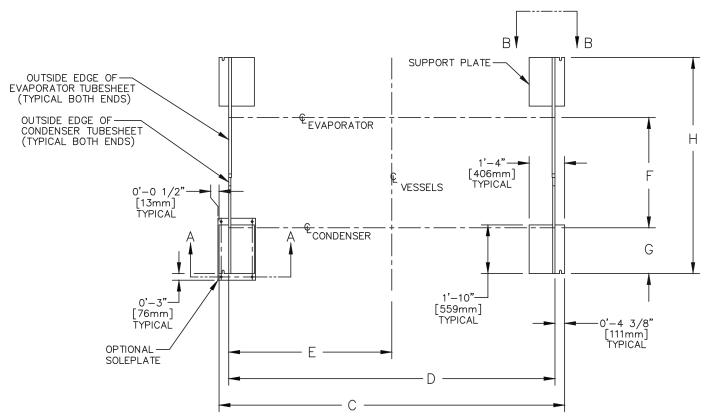



Fig. 8 — 19DV, Bottom View (DV4 Shown)

A-A dimension refers to accessory soleplate. See page 23. B-B dimension refers to standard support plate. See page 23.

	DIMEN	SION C	DIMEN	SION D	DIMEN	SION E	DIMEN	SION F	DIMEN	SION G	DIMEN	SION H
	ft-in.	mm	ft-in.	mm	ft-in.	mm	ft-in.	mm	ft-in.	mm	ft-in.	mm
F2 ^a	13-0-1/4	3969	12-3-1/2	3747	6-1-3/4	1873	3-11-3/4	1211	1-6	457	7-5-7/8	2283
F4 ^a	14-8-3/4	4490	14-0	4267	7-0	2134	3-11-3/4	1211	1-6	457	7-5-7/8	2283
G2 ^a	13-0-1/4	3969	12-3-1/2	3747	6-1-3/4	1873	4-1-7/8	1267	1-8-3/4	530	8-1-3/4	2483
G4 ^a	14-8-3/4	4489	14-0	4267	7-0	2134	4-1-7/8	1267	1-8-3/4	530	8-1-3/4	2483
H2 ^a	13-0-1/4	3969	12-3-1/2	3747	6-1-3/4	1873	4-5-3/4	1365	1-10-1/4	565	8-9-1/4	2673
H4 ^a	14-8-3/4	4489	14-0	4267	7-0	2134	4-5-3/4	1365	1-10-1/4	565	8-9-1/4	2673
M2 ^a	14-6-1/4	4427	14-0	4267	7-0	2134	7-7-1/2	2324	2-5-3/8	746	10-5-7/8	3197
M4 ^a	16-6-1/4	5037	16-0	4877	8-0	2439	7-7-1/2	2324	2-5-3/8	746	10-5-7/8	3197

NOTE(S):

a. Assumes both evaporator and condenser nozzles on same end of chiller; nozzle-in-head waterboxes, 150 psi rated.

Fig. 9 — 19DV Machine Footprint

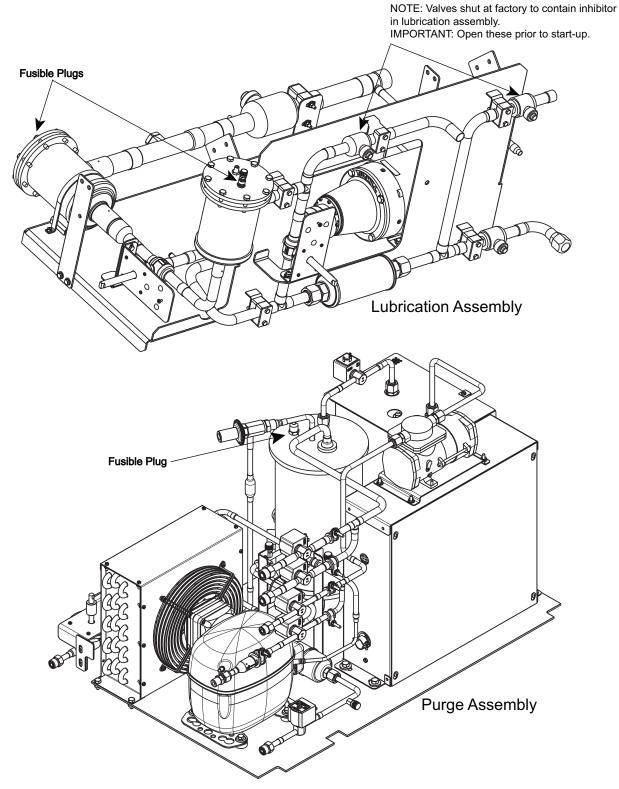


Fig. 10 — Location of Fusible Plugs in Lubrication Assembly and Purge Assembly

Step 3 — Install Machine Supports

INSTALL STANDARD ISOLATION

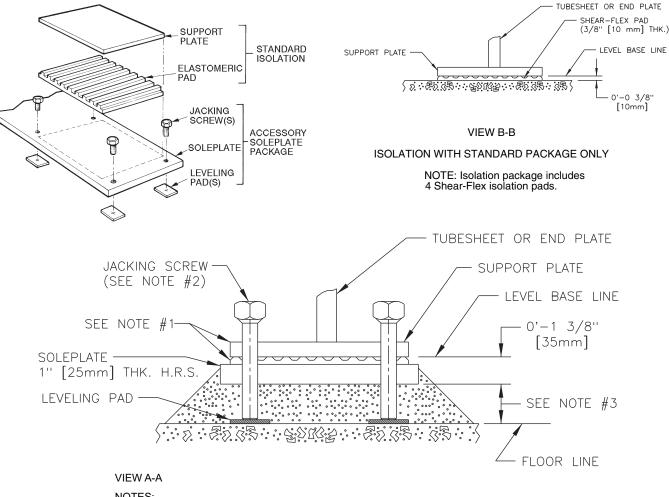
Figure 9 shows the position of support plates and shear flex pads, which together form the standard machine support system.

IMPORTANT: Chiller housekeeping pad, anchor bolts, and attachment points that are designed by others must be in accordance with all applicable national and local codes.

INSTALL ACCESSORY ISOLATION (IF REOUIRED)

Uneven floors or other considerations may dictate the use of accessory soleplates (supplied by Carrier for field installation) and leveling pads. Refer to Fig. 11.

Chiller support plates must be level within 1/4-in. (6 mm) from one end to the other.


TYPICAL ISOLATION

Level machine by using jacking screws in isolation soleplates. Use a level at least 24-in. (600 mm) long.

For adequate and long lasting machine support, proper grout selection and placement is essential. Carrier recommends that only pre-mixed, epoxy type, non-shrinking grout be used for machine installation. Follow manufacturer's instructions in applying grout.

- Check machine location prints for required grout thickness. 1.
- 2. Carefully wax jacking screws for easy removal from grout.
- Grout must extend above the base of the soleplate and there 3. must be no voids in grout beneath the plates.
- Allow grout to set and harden, per manufacturer's instruc-4. tions, before starting machine.
- 5. Remove jacking screws from leveling pads after grout has hardened.

STANDARD ISOLATION

NOTES:

- 1. Optional soleplate package includes 4 soleplates, 16 jacking screws, and 16 leveling pads. Isolation package is also required.
- Jacking screws to be removed after grout has set. Thickness of grout will vary, depending on the amount necessary to level chiller. Use only pre-mixed non-shrinking grout, Ceilcote¹ 748 OR Embeco² 636 Plus, 0'-1-1/2" (38.1 mm) 3. to 0'-2-1/2" (57 mm) thick.

Fig. 11 — Accessory Isolation with Soleplate Package

^{1.} Ceilcote is a registered trademark of Azko Nobel Coatings International.

^{2.} Embeco is a registered trademark of Construction Research and Technology GMBH Corp.

INSTALL SPRING ISOLATION

Spring isolation may be purchased as an accessory from Carrier for field installation. It may also be field supplied and installed. Spring isolators may be placed directly under machine support plates or located under machine soleplates. See Fig. 12. Consult job data for specific arrangement. Low profile spring isolation assemblies can be field supplied to keep the machine at a convenient working height.

Obtain specific details on spring mounting and machine weight distribution from job data. Also, check job data for methods to support and isolate pipes that are attached to spring isolated machines.

NOTE: The springs are designed to support the weight of the chiller only. Connected piping must be supported independently of the chiller.

NOTE: It is recommended that any installation other than the ground floor should have spring isolation for the chiller and piping vibration isolation.

NOTE: These isolators are not intended for seismic duty, but are intended to reduce the vibration and noise levels transmitted from the chiller to the surrounding environment. For installations adjacent to areas that are sensitive to noise and/or vibration, use the services of a qualified consulting engineer or acoustics expert to determine whether these springs will provide adequate noise/vibration suppression.

INSTALL TOP HAT (FOR 32VSH VFD - AHF OPTION AND 680 AMP DRIVE).

For DV5 units, the top hat is factory installed. For DV3/4 units, the top hat is shipped separately (strapped to chiller leg). To install, remove existing cover on top of the AHF and install top hat with removable access cover facing outwards. Cut holes in top cover as appropriate for the selected conduit size and run the individual wires to the appropriate termination points. See Fig. 13.

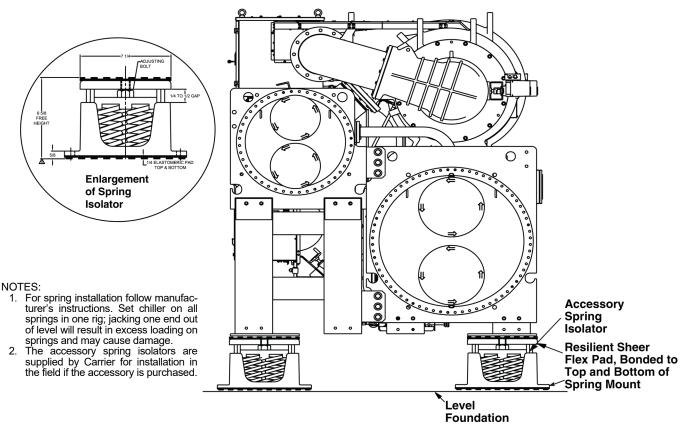
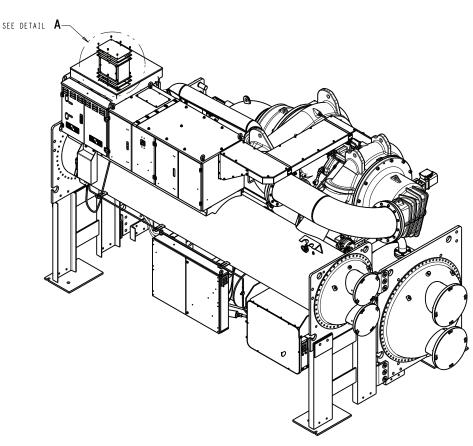
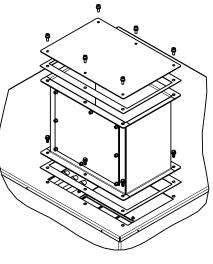




Fig. 12 — 19DV Accessory Spring Isolation (Shown with Accessory Soleplates)

DETAIL **A**

Fig. 13 — Top Hat Installation

Step 4 — Connect Piping

INSTALL WATER PIPING TO HEAT EXCHANGERS

Install piping using job data, piping drawings, and procedures outlined below. A typical piping installation is shown in Fig. 14.

Factory-supplied insulation is not flammable but can be damaged by welding sparks and open flame. Protect insulation with a wet canvas cover.

To prevent damage to sensors, remove evaporator and condenser water temperature sensors before welding connecting piping to water nozzles. Replace sensors after welding is complete.

When flushing the water systems, isolate the chiller from the water circuits to prevent damage to the heat exchanger tubes.

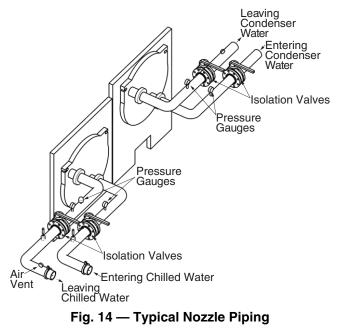
 Offset pipe flanges to permit removal of waterbox cover for maintenance and to provide clearance for pipe cleaning. No flanges are necessary with marine waterbox option; however, water piping should not cross in front of the waterbox or compressor because service access will be blocked.

- 2. Provide openings in water piping for required pressure gauges and thermometers. For thorough mixing and temperature stabilization, wells in the leaving water pipe should extend inside pipe at least 2 in. (50 mm).
- 3. Install air vents at all high points in piping to remove air and prevent water hammer.
- 4. Field-installed piping must be arranged and supported to avoid stress on the equipment and transmission of vibration from the equipment. Piping must be installed to prevent interference with routine access for the reading, adjusting, and servicing of the equipment. Provisions should be made for adjusting the piping in each plane for periodic and major servicing of the equipment.
- 5. Water flow direction must be as specified in Fig. 15 and 16.

NOTE: Entering water is always the lower of the 2 nozzles. Leaving water is always the upper nozzle for evaporator or condenser for two and three pass arrangements.

- 6. Install waterbox vent and drain piping according to individual job data. Consult certified drawings for connection size.
- 7. Isolation valves are recommended on the evaporator and condenser piping to each chiller for service.
- Apply appropriate torque on the retaining bolts in a crisscross pattern for the water box covers before insulating the water box cover. The gasket can relax during transportation and storage and the water box cover requires retightening of the bolts during installation.

INSTALL VENT PIPING TO RELIEF DEVICES


The 19DV chiller is factory equipped with a rupture disc on the evaporator shell. Additionally for fire protection there are fusible plugs on the refrigerant lube assembly and purge assembly; see Fig. 10. Outlet size for these plugs is 1/4-in. SAE Flare (male) for lubrication assembly and 3/8-in. SAE flare on the purge tank. Refer to Table 13 and Fig. 17 for size and location of relief devices. Vent relief devices to the outdoors in accordance with ANSI/ASHRAE 15 (latest edition) Safety Code for Mechanical Refrigeration and all other applicable codes.

Refrigerant discharged into confined spaces can displace oxygen and cause asphyxiation.

- 1. If relief devices are manifolded, the cross-sectional area of the relief pipe must at least equal the sum of the areas required for individual relief pipes.
- 2. Provide a pipe plug near outlet side of each relief device for leak testing. Provide pipe fittings that allow vent piping to be disconnected periodically for inspection of valve mechanism.
- 3. Piping to relief devices must not apply stress to the device. Adequately support piping. A length of flexible tubing or piping near the device is essential on spring-isolated machines.
- 4. Cover the outdoor vent with a rain cap and place a condensation drain at the low point in the vent piping to prevent water build-up on the atmospheric side of the relief device.

- 5. If the vent tubing from the purge unit is connected to the rupture disk vent piping, the piping should be sloped away from the rupture disk to prevent liquid refrigerant from condensing and accumulating on the atmospheric side of the rupture disk causing potential damage to the relief device.
- 6. If modulating valves are installed on the evaporator or condenser, they should be installed on the outlet piping.

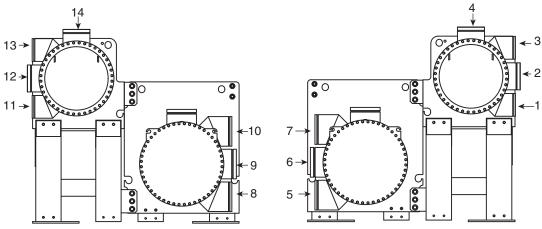
3

Nozzle-in-Head (NIH) Waterboxes

PASS	EVAPORATOR WAT		OR WATERBOXES		CONDEN	SER WATERBOXES
PASS	In	Out	Arrangement Code ^a	In	Out	Arrangement Code ^a
	8	5	A	11	2	Р
1	5	8	В	2	11	Q
•	7	9	С	10	12	R
2	4	6	D	1	3	S
2	7	6	E	10	3	Т
3	4	9	F	1	12	U

NOTE(S):

12


11

10

a. Refer to certified drawings.

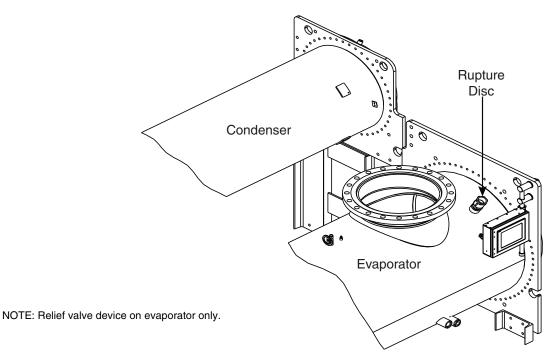
Fig. 15 — Nozzle Arrangement Codes for 19DV Nozzle-in-Head Waterboxes

Marine Waterboxes (MWB)

NOZZLE ARRANGEMENT CODES

	EVAPOR	RATOR MARIN	E WATERBOXES
PASS	In	Out	Arrangement Code ^a
4	9	6	А
1	6	9	В
•	8	10	С
2	5	7	D
2	8	7	E
3	5	10	F

	CONDENS	ER MARINE V	VATERBOXES
PASS	In	Out	Arrangement Code ^a
4	12	2	Р
	2	12	Q
	11	13	R
2	1	3	S
2	11	14	V
	1	4	W
2	11	3	Т
3	1	13	U


NOTE(S):

a. Refer to certified drawings.

Fig. 16 — Nozzle Arrangement Codes for 19DV Marine Waterboxes

Table 13 — Relief Device Locations

LOCATION	FRAME SIZE	PRESSURE RELIEF DEVICE OUTLET SIZE	
EVAPORATOR	F, G, H, M	2-in. NPT Female Connector	
OPTIONAL STORAGE TANK	N/A	1-1/4-in. NPT Female Connector	

Fig. 17 — Relief Device Arrangements

Step 5 — Install Disconnect Switch Handle (DV4 Units without AHF Shown)

The 32VS pullbox requires installation of a handle extension. For shipment, the handle is strapped to the VFD mounting assembly under the pullbox. Install by ensuring clamp is tightly secured to the switch handle, then connect the handle with the associated hardware. See Fig. 18.

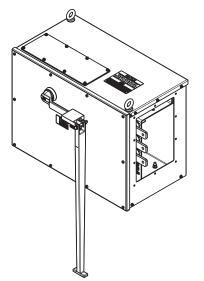


Fig. 18 — Disconnect Switch Handle

Step 6 — Make Electrical Connections

Field wiring must be installed in accordance with job wiring diagrams and all applicable electrical codes.

Do not run any hazardous voltage wiring in the control panel sections associated with extra-low voltage wiring. Damage to machine could occur as a result.

Wiring diagrams in this publication are for reference only and are not intended for use during actual installation; follow job specific wiring diagrams.

Do not attempt to start compressor or any motor (even for a rotation check) or apply test voltage of any kind to the VFD or motor while the chiller is under a dehydration vacuum. Motor insulation breakdown and serious damage may result.

NOTE: The dry contacts for the field inputs should be located as close to the unit as possible. The field wiring should be capable of preventing electrical noise or induced voltage and should not be routed with any wires with voltage over 50 v.

CONNECT CONTROL INPUTS

Wiring may be specified for a spare safety switch, and a remote start/stop contact can be wired to the terminal strip. Additional spare sensors and control modules may be specified as well. Carrier Comfort Network[®] (CCN) communication is wired to the machine HMI panel as indicated in Fig. 19 and 20.

CONNECT CONTROL OUTPUTS

Connect auxiliary equipment, chilled and condenser water pumps, and spare alarms as required and indicated on job wiring drawings. Terminal block 5TB is factory wired for low voltage field connections. With fourth IOB configured, the hydraulic control function will be available; with this function, the tower fan can be controlled through the Carrier controller. It also will support three types of water flow measurement: water flow switch, water flow meter, and water pressure differential sensor. See Fig. 21-27. Control board contact output can control loads rated 1 amp AC RMS steady state and 4 amps surge. Coil voltage of output relay is 24 vac. Be sure to use pilot relays to avoid damage to the IOBs for outputs to devices such as evaporator pump, condenser pump, tower fan low, tower fan high, and other outputs with large starters. Suggested rating of pilot relay is 10 amps; for example, 19XV05005503.

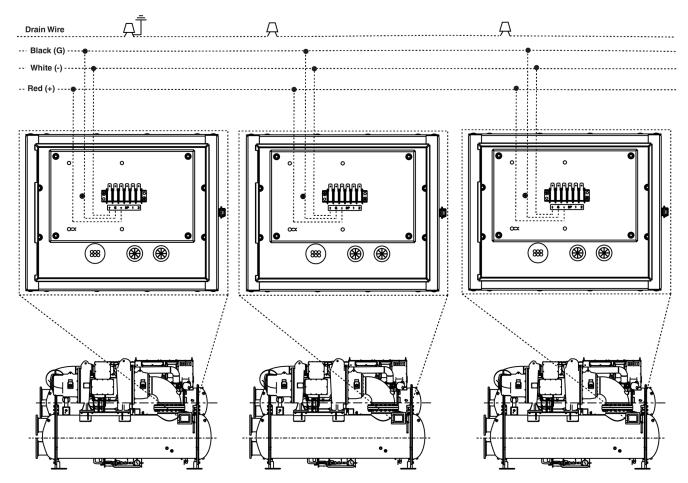
Provision for Carrier to start water pumps and establish flows must be provided to assure machine protection. If primary pump and flow are controlled by other means, also provide parallel means for control by Carrier. Failure to do so could result in machine freeze-up or overpressure and loss of warranty.

CONNECT VFD

The 19DV chiller has a unit-mounted, factory-installed VFD starter. Attach power leads by connecting them from inside the VFD cabinet to the line side terminals (Fig. 28). See the notes for "19DV with 32VS VFD" on page 38, VFD Conductor Usage Table, for specifics.

NOTE: For 32VSH (AHF option) a top hat is required to be installed to the top of the AHF for adequate wire installation space (Fig. 13).

IMPORTANT: Be sure to ground the power circuit in accordance with the National Electrical Code (NEC), applicable local codes, and job wiring diagrams. Also, make sure correct phasing is observed for proper rotation. The only acceptable power supply to this chiller is a transformer with a wye secondary with solidly grounded neutral configuration. If there is a different type of power supply, the chiller may require an isolation transformer to be installed to prevent damage to the VFD.


Use the knockouts provided in the control panels for wiring connections. Do not punch holes or drill into the top surface of any control enclosure. Damage to machine could result and could require component replacement.

Do not punch holes or drill into the top surface of power panel. Damage to machine could result. Use knockouts provided in the bottom of the power panels for wiring connections.

For a control transformer built to Carrier specifications, do not connect an outside source of control power. An outside power source will produce dangerous voltage at the line side of the starter, because supplying voltage at the transformer secondary terminals produces input level voltage at the transformer primary terminals. Severe injury could result.

NOTE : Field-supplied terminal strip must be located in control panel.

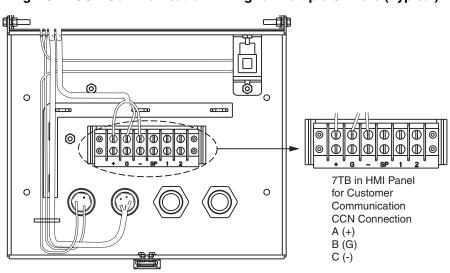


Fig. 20 — HMI Panel

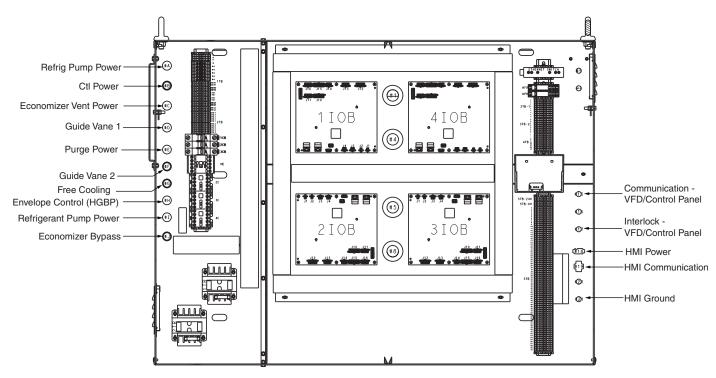


Fig. 21 — Control Panel, IOB Layer

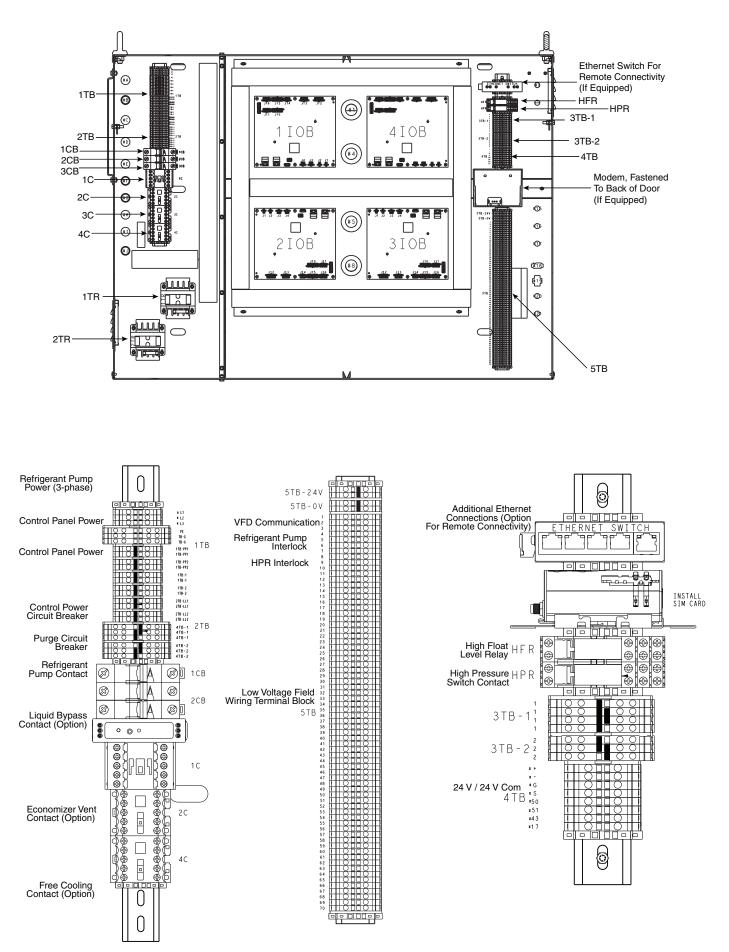


Fig. 22 — Control Panel Layout

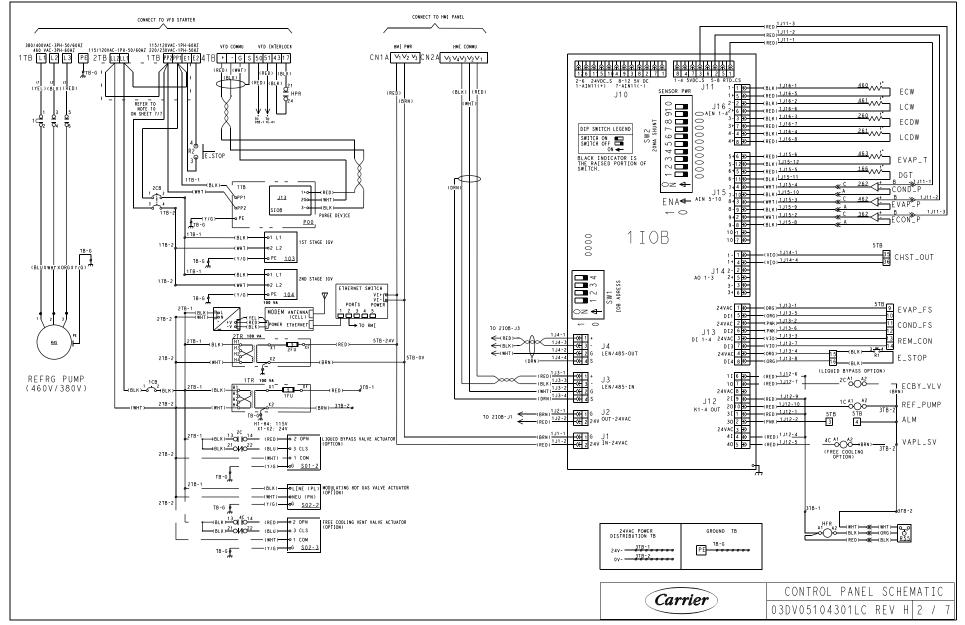


Fig. 23 — IOB1

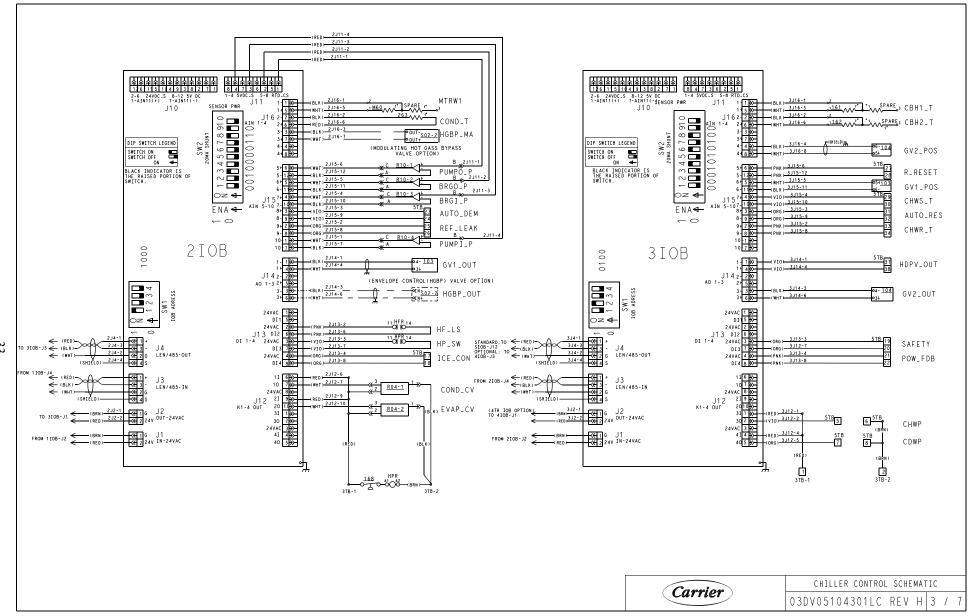


Fig. 24 — IOB2 and IOB3

33

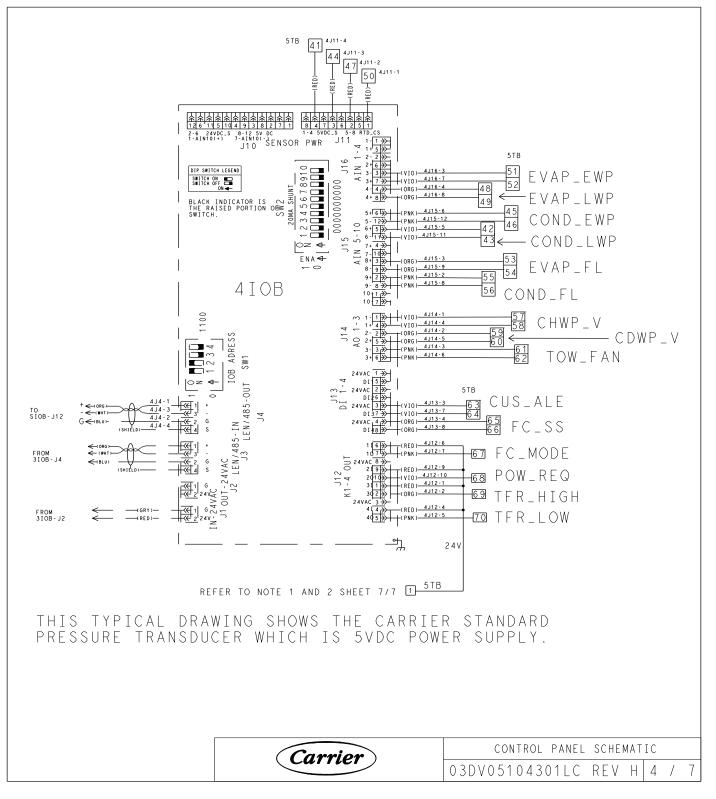


Fig. 25 — IOB 4

LEGEND FOR Fig. 21-25

Control Abbreviations

Instrument Code (Within Control Panel)

	Com of 1100. Criminolia		
ALM	Chiller Alarm	1C	 Refrigerant Pump Contactor
AUTO DEM	 Demand Limit Input 	2C	 Liquid Bypass Valve Relay
AUTO_RES		3C	
	 Auto Water Temp Reset 		
BRGI_P	 Bearing Inlet Pressure 	4C	 Free Cooling Vent Valve Relay
BRGI_T	 Bearing Ref Supply Temp 	1-3CB	 Micro Circuit Breaker
BRGO_P	 Bearing Outlet Pressure 	1FU	 Fuse, 5A, Time-Delay, 13/32" x 1-1/2"
CBH1_T	 — 1st Stage Bearing Temp 	2FU	 Fuse, 5A, Time-Delay, 13/32" x 1-1/2"
		1-4 IOB	
CBH2_T	 2st Stage Bearing Temp 		 1-4 Input Output Board 1-4
CDWP	 Condenser Water Pump 	1TB	 Terminal Block for Power Connection
CDWP_V	 Condenser Water Pump (Variable Speed) 	2TB	 Internal 115/120-v Terminal Block
CHST_OUT	 Chiller Running (On/Off/Ready) 	3TB	 Internal 24-v Terminal Block
CHWP		4TB	 Terminal Block for VFD Connection
	Chilled Water Pump		
CHWP_V	 Chilled Water Pump (Variable Speed) 	5TB	 Terminal Block for Customer Optional Connection
COND_CV	 Condenser Control Valve 	7TB	 — 230/115-v Terminal Block (Purge Panel)
COND_DCV	 Condenser Drain Valve 	1TR	 Transformer 1 230/115-24-v 100 va
COND_EWP	 Entering Condenser Water Pressure 	2TR	 Transformer 2 230/115-24-v 100 va
COND_FL	0	CN1A/B	
	 Condenser Water Flow Measurement 		Connector for HMI Power
COND_FS	 Condenser Water Flow Switch 	CN2A/B	 Connector for HMI Communication
COND_LWP	 Leaving Condenser Water Pressure 	HFR	 High Float Level Switch
	 Condenser Pressure 	HPR	 High Pressure Switch Relay
CUS_ALE	 Customer Alert 	HMI	 HMI Touch Screen and Main Board SAIA
DGT	 Compressor Discharge Temperature 	SIOB	 Standard Input Output Board (Purge Panel)
ECBY_VLV	 Economizer Bypass Valve 	TB-G	 Copper Terminal Block for Ground
ECDW	 Entering Condenser Water Temperature 		
ECON IV	 Economizer Vent Valve Actuator 		Symbols
			Symeous
ECW	 Entering Chilled Water Temperature 		
EVAP_CV	 Evaporator Control Valve 	0	Component Terminal
EVAP EWP	 Entering Evaporator Water Pressure 	0	• - · · · · · · · · · · · · · · · · · ·
EVAPFL	 Evaporator Water Flow Measurement 		
-			
EVAP_FS	Evaporator Water Flow Switch	$\rightarrow \succ$	Conductor Male/Female Connector
EVAP_LWP	 Leaving Evaporator Water Pressure 	//	
EVAP_P	 Evaporator Pressure 		
EVAP T	 Evaporator Refrigerant Temperature 		
FC_MODE	 Free Cooling Mode 		Field Wiring
			Ŭ
FC_SS	 Free Cooling Start Switch 		
FS_LOCK	 Fire Alarm Interlock 		
GV1/2_OUT	 IGV 1/2 Output 		Optional Wiring
GV1/2 POS	 IGV 1/2 Actual Position 		- 1 J
HDPV_OUT			
	Head Pressure Output		
HGBP_MA	 Modulating Hot Gas Valve Feedback 	<u> </u>	Component/Panel Enclosure
HGBP_OUT	 Modulating Hot Gas Valve Output mA 		•
HF_LS	 High Float Liquid Level Switch 		
HP_SW	 High Pressure Switch 		
			Shield Wire
ICE_CON	 Ice Build Contact 	4	
IGV	 Integrated Guide Vane 		
LCDW	 Leaving Condenser Water Temperature 		
LCW	 Leaving Chilled Water Temperature 	\rightarrow	Twisted Wire
MTRW1		_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	Motor Winding Temperature 1		
PUMPI_P	 Pump Inlet Pressure 		
PUMPO_P	 Pump Outlet Pressure 		Terminal Block Connection
REF_LEAK	Refrigerant Leak Sensor		
REF_PUMP	 Refrigerant Pump 		
REM_CON	 Remote Contact Input 		Wire Splice or Junction
TFR_HIGH	— Tower Fan High	-	
TFR_LOW	— Tower Fan Low		
TOW FAN	 Tower Fan (Variable Speed) 		
VAPL_SV		Ø	Internal Terminal Block/Terminal
VAPL_SV	 Vapor Venting Line SV 	\mathcal{D}	
		ВИИ	Diask
		BLK	Black
		BLU	Blue
		BRN	Brown
		GRN	Green
		GRY	
			Gray
		RED	Red
		ORG	Orange
		WHT	White
		YEL	Yellow
		G/Y	
		G/T	Green/yellow

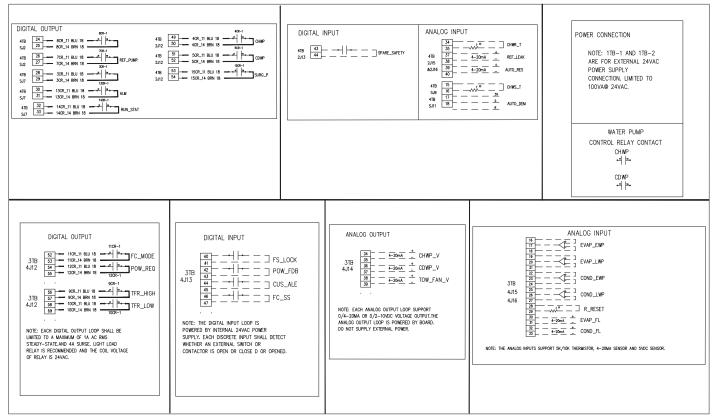


Fig. 26 — Optional Field Wiring

Branch Disconnect

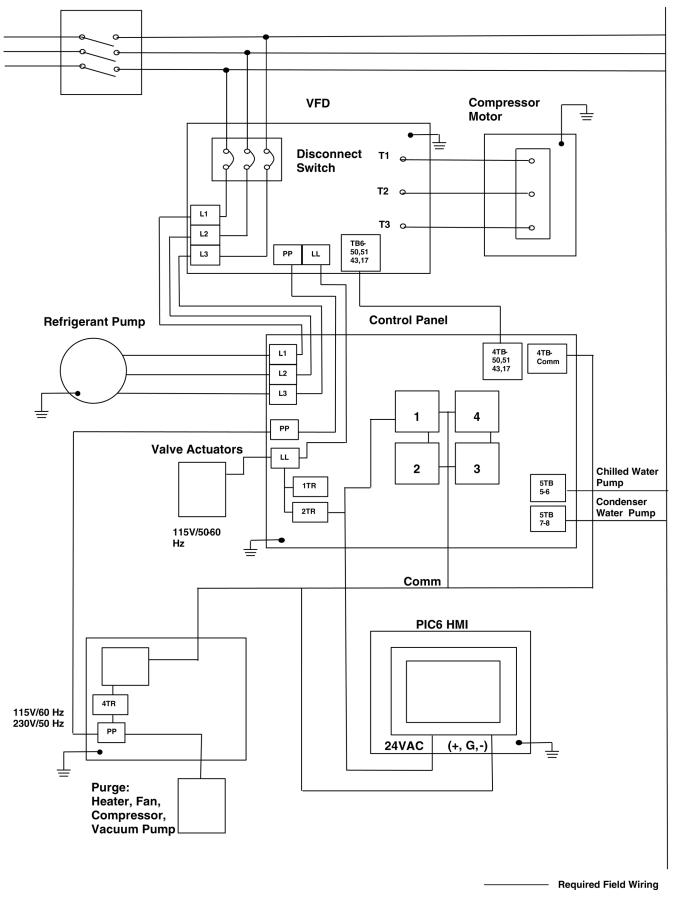


Fig. 27 — Typical 19DV VFD — Factory Unit Mounted

NOTES FOR FIG. 23-27 **19DV WITH 32VS VFD**

I. General

- Variable Frequency Drive (VFD) shall be designed and manufac-1.0 All field-supplied conductors and devices must be compliant,
- 1.1 and be installed in compliance with all applicable codes and job specifications.
- 1.2 The routing of field-installed conduit and conductors and the location of field-installed devices must not interfere with equipment
- access or the reading, adjusting or servicing of any component. 1.3 Equipment installation and all starting and control devices must comply with details in equipment submittal drawings and literature. 1.4
- Contacts and switches are shown in the position they would assume with the circuit deenergized and the chiller shutdown.
- 1.5
- Warning Do not use aluminum conductors. Warning Remove panel above VFD bus bar before drilling. Do not drill into any other VFD cabinet panels. 1.6

II. Power Wiring To VFD

- 2.0 Provide a means of disconnecting branch feeder power to VFD. Provide short circuit protection and interrupt capacity for branch feeder in compliance with all applicable codes.
- Metal conduit must be used for the power wires, from VFD to 2.1 branch feeder.
- 2.2 Line side power conductor rating must meet VFD nameplate voltage and chiller full load amps (minimum circuit ampacity). Lug adapters may be required if installation conditions dictate
- 2.3 that conductors be sized beyond the minimum ampacity required. Lugs will accommodate the quantity (#) and size cables (per phase) as follows. If larger lugs are required, they may be purchased from the manufacturer of the circuit breaker. See VFD Conductor Usage table for lug sizes.
- Compressor motor and controls must be grounded by using equipment grounding lug provided inside unit-mounted VFD 24 enclosure.

III. Control Wiring

- 3.0 Field-supplied control conductors to be at least 18 AWG (American Wire Gauge) or larger. Ice build start/terminate device contacts, remote start/stop device
- contacts and spare safety device contacts (devices not supplied by Carrier) must have 24 vac rating. Max current is 60 mA, nomi-nal current is 10 mA. Switches with gold-plated bifurcated contacts are recommended.
- 32 Each integrated contact output can control loads (VA) for evaporator pump, condenser pump, tower fan low, tower fan high, and alarm annunciator devices rated 1 amp AC RMS steady-state and 4 amps surge. Coil voltage of relay is 24 vac. Be sure to use pilot relays to avoid damage to the IOBs. Suggested rating of pilot relay is 10 amps; for example, 19XV05005503.

WARNING


Control wiring required for Carrier to start pumps and tower fan motors, and established flows must be provided to assure machine protection. If primary pump, tower fan and flow control is by other means, also provide a parallel means for control by Carrier. Failure to do so could result in machine freeze-up or overpressure.

- Do not use control transformers in the VFD enclosure or control 3.3 panel as the power source for external or field-supplied contactor
- coils, actuator motors or any other loads. Do not route control wiring carrying 30 v or less within a conduit which has wires carrying 50 v or higher or along side wires carry-3.4 ing 50 v or higher.
- 3.5 Head pressure 4 to 20 mA output signal is designed for controllers with a non-grounded 4 to 20 mA input signal and a maximum input impedance of 500 ohms.

VFD CONDUCTOR USAGE				
VFD MAX INPUT AMPS	STANDARD 100 KAIC LUG CAPACITY (PER PHASE)			
	NO. OF CONDUCTORS	CONDUCTOR RANGE	GROUND CONNECTOR	
Carrier 32VSS0680	2	4/0 to 500 kcmil	2/0ª	
Carrier 32VSH0680	4	4/0 to 500 kcmil	2/0ª	
Carrier 32VSS0850	4	4/0 to 500 kcmil	2/0ª	
Carrier 32VSH0850	4	4/0 to 500 kcmil	2/0ª	
Carrier 32VSS0900	4	4/0 to 500 kcmil	2/0ª	
Carrier 32VSH0900	4	4/0 to 500 kcmil	2/0ª	
Carrier 32VSS1060	4	4/0 to 500 kcmil	2/0ª	
Carrier 32VSH1060	4	4/0 to 500 kcmil	2/0ª	
Carrier 32VSS1200	4	#2 to 600 kcmil	3/0	

NOTE(S):

a. Two ground lugs each capable of 2x #2-600 kcmil per lug.

LEGEND

- 1 Disconnect
- 2 Chilled Water Pump Starter
- 3 Condenser Water Pump Starter
- 4 _ Cooling Tower Fan Starter
- (Low Fan, High Fan)
- Vents 5
- HMI (hidden) 6
- Unit-Mounted VFD 7
- Control Panel 8
- Strainers 9
- Chilled Water Pump 10
- Condenser Water Pump 11
- 12 Pressure Gauges
- 13 Local Disconnect
- Piping $\overline{}$
- Control Wiring

Power Wiring

NOTES:

- Wiring and piping shown are for general point-of-connection only and are not intended to show details for a specific installation. Certified field wiring and dimensional diagrams are available on request.
- All wiring must comply with applicable codes.
 Wiring not shown for optional devices such as:

 - Remote Start/Stop
 - Remote Alarms
 Optional Safety Device

 - 4 to 20 mA Resets
 - Optional Remote Sensors
- 4. IMPORTANT: Carrier suggests that a structural engineer be consulted if transmission of vibrations from mechanical equipment is of concern.
- 5. Isolation valves are recommended on the evaporator and condenser water piping to each chiller for service.
- 6. Operating environment Chiller should be installed in an indoor environment where the ambient temperature is 40 to $104^{\circ}F$ (4 to $40^{\circ}C$) with a relative humidity (non-condensing) of 95% or less. To ensure that electrical components operate properly, do not locate the chiller in an area exposed to dust, dirt, corrosive fumes, or excessive heat and humidity.
- 7. Be sure to pipe 3/8-in. VFD condensate pipe to drain.

Fig. 28 — 19DV Chiller with VFD

CARRIER COMFORT NETWORK INTERFACE

The Carrier Comfort Network[®] (CCN) communication bus wiring is supplied and installed by the electrical contractor. It consists of shielded, 3-conductor cable with drain wire.

The system elements are connected to the communication bus in a daisy chain arrangement. The positive pin of each system element communication connector must be wired to the positive pins of the system element on either side of it. The negative pins must be wired to the negative pins. The signal ground pins must be wired to the signal ground pins. See Fig. 19 for location of the CCN network connections on the terminal strip labeled CCN.

NOTE: Conductors and drain wire must be 20 AWG (American Wire Gauge) minimum stranded, tinned copper. Individual conductors must be insulated with PVC, PVC/nylon, vinyl, Teflon¹, or polyethylene. An aluminum/polyester 100% foil shield and an outer jacket of PVC, PVC/nylon, chrome vinyl, or Teflon with a minimum operating temperature range of -4° F to 140°F (-20° C to 60°C) is required. See table below for cables that meet the requirements.

MANUFACTURER	CABLE NO.
Alpha	2413 or 5463
American	A22503
Belden	8772
Columbia	02525

When connecting the CCN communication bus to a system element, a color code system for the entire network is recommended to simplify installation and checkout. The following color code is recommended:

SIGNAL TYPE	CCN BUS CONDUCTOR INSULATION COLOR	CCN NETWORK INTERFACE (Control Panel)
+	Red	+
Ground	White	G
-	Black	-

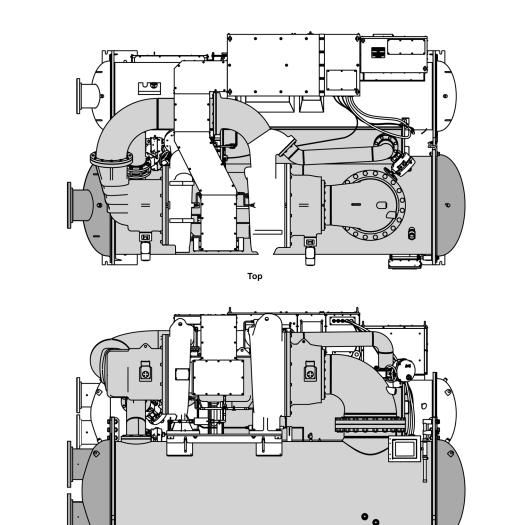
If a cable with a different color scheme is selected, a similar color code should be adopted for the entire network.

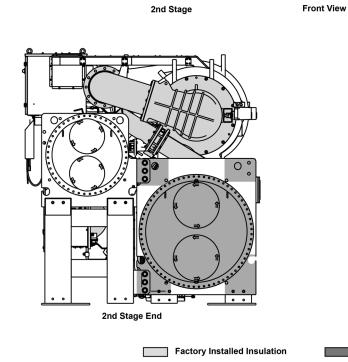
At each system element, the shields of its communication bus cables must be tied together. If the communication bus is entirely within one building, the resulting continuous shield must be connected to ground at only one single point. If the communication bus cable exits from one building and enters another, the shields must be connected to ground at the lightning suppressor in each building where the cable enters or exits the building (one point only).

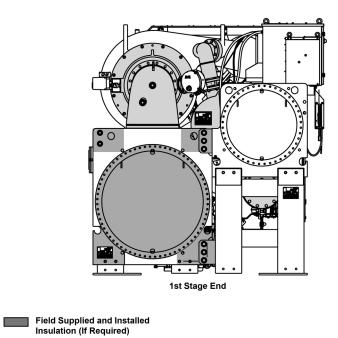
To connect the 19DV chiller to the network, proceed as follows (see Fig. 19 and 20):

- 1. Route wire through knockout in back of control panel.
- 2. Strip back leads.
- 3. Crimp one no. 8 size spring spade terminal on each conductor.
- 4. Attach red to "+" terminal and white to "G" terminal and black to "-" terminal of CCN Network interface located in the control panel.

Step 7 — Install Field Insulation

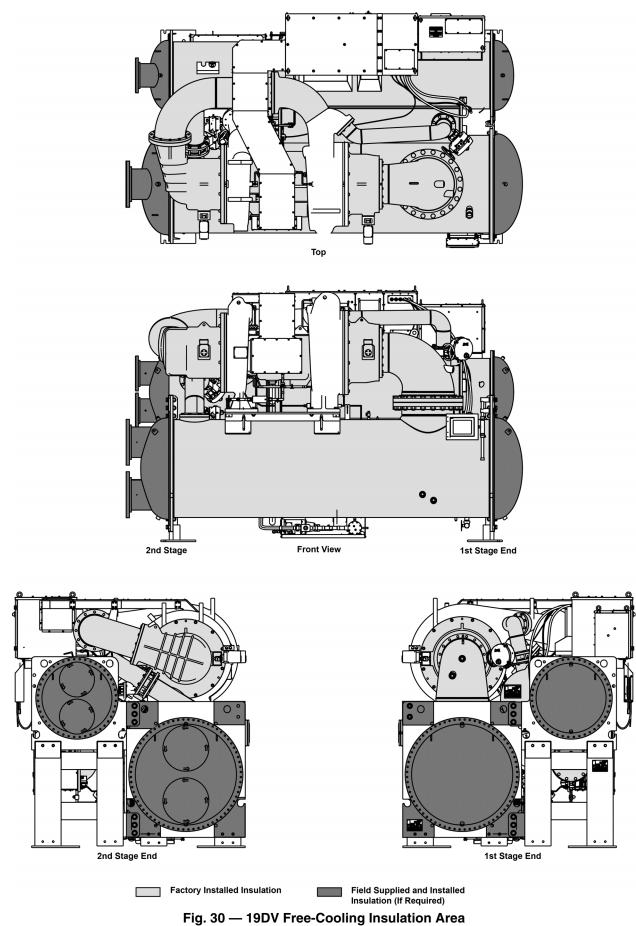

Protect insulation from weld heat damage and weld splatter. Cover with wet canvas cover during water piping installation.


When installing insulation at the jobsite, insulate the following components:


- compressor motor
- economizer
- evaporator shell
- evaporator tube sheets
- suction piping
- motor cooling drain
- inhibitor reclaim piping
- purge tank and connecting tubing
- low side of purge system independent refrigerant circuit
- refrigerant liquid line to evaporator

NOTE: Insulation of the waterbox covers is applied only at the jobsite by the contractor. When insulating the covers, make sure there is access for removal of waterbox covers for servicing. See Fig. 29 and 30.

^{1.} Teflon is a registered trademark of DuPont.



풕

1st Stage End

Fig. 29 — 19DV Standard Insulation Area

© 2022 Carrier

NOTE: To avoid injury to personnel and damage to equipment or property when completing the procedures listed in this start-up checklist, use good judgment, follow safe practices, and adhere to the safety considerations/ information as outlined in the preceding sections of this Controls, Start-Up, Operation and Troubleshooting document.

Machine Model Number:			
19DV Serial Number:			
То:	Date:		
	Project Name:		
Attn:	riojectivame.		
	Carrier Sales Order Number		
The following information provides the status of the chiller			
		YES/NO (N/A)	DATE TO BE COMPLETED
The machine is level.			
The machine components are installed and connected in instructions.	accordance with the installation .		
The isolation package and grouting (if necessary) are insta	alled.		
The relief devices are piped to the atmosphere.			
All piping is installed and supported. Direction of flow is in installation instructions and job prints.			
Chilled water piping	-		
Condenser water piping	-		<u></u>
Waterbox drain piping	-		
Pumpout unit piping (if installed) VFD drain piping	-		
Other	-		
Gauges are installed as called for on the job prints require	d to establish design flow for the		<u> </u>
evaporator and condenser.			
Water pressure gauges IN and OUT	<u> </u>		
Water temperature gauges IN and OUT	-		. <u> </u>
The machine's wiring is complete. The wiring is installed p certified prints.			
Power wiring to VFD line side completed. (If chiller was motor leads must not be taped until the Carrier technici	disassembled during installation, <u>-</u> an meager-tests the motor)		
Carrier controls can independently energize water pum			
The transformer feeding the VFD is confirmed to have grounded Neutral. Immediately contact Carrier Service	a Wye secondary with a solidly		
Line side voltage is within ±10% of chiller nameplate vo	Itage		
Other	-		<u> </u>
Was the chiller disassembled/reassembled during the inst			·
Was this work supervised by a Carrier Service Representation	ative?		
Comments:			

TESTING

	YES/NO	DATE TO BE	
The cooling tower fan has been checked for blade pitch and proper operation.		COMPLETED	ł
The chilled water and condenser water lines have been:			!
Filled			-
Tested			ł
Flushed		<u> </u>	÷
Vented			÷
Strainers cleaned		<u> </u>	ł
Chemically treated			÷
The chilled water and condenser water pumps have been checked for proper rotation and <u>-</u> flow.			
The following cooling load will be available for start-up:			÷
25%			
50%			
100%		<u> </u>	÷ш
The refrigerant charge identified and will be available near machine for commissioning. Rig- <u></u> ging is available to lift refrigerant drums.			CUT ALONG DOTTED LINE
Services such as electrical power and control air will be available at start-up, up over evapo- <u>-</u> rator for gravity feed.			ΞĔ
The building automation system is operational.			ΪĞ
The electrical, building automation and mechanical representatives will be available to assist			Z
in commissioning the machine. Note that while BACnet/Modbus is included with PIC6 the in-			- AL
tegration with building automation system (BAS) is not included in the standard startup time.			:5
Please coordinate with the local Carrier Service Office that will be performing the equipment			1
startup, for control technician pricing associated with the BAS integration.			1
The customer's operators will be available to receive instructions		<u> </u>	1
for proper operation of the chiller after start up.			1
Concerns about the installation/request for additional assistance:			
I am aware that the start-up time for a Carrier chiller can take between 2 and 6 days depe machine and the options and accessories used with it.	U U		CUT ALONG DOTTED LINE
Your contact at the jobsite will be			L ALC
Phone number			- OO
Pager/Cell number			
Fax number			
In accordance with our contract, we hereby request the services of your technician to rend contract terms for this job on (Date). I understand that the technician's time services due to correcting items in this checklist that are incomplete.			
Signature of Purchaser			
Signature of Jobsite Supervisor			
© 2022 Carrier			1

.....