Name:

An tSraith Shdéisearach do Mhuinteoiri

JuniorCYCLE

for teachers

Control Systems for
Mechatronics in
Junior Cycle Engineering

www.jct.ie

Introduction:

PROCESSES
AND
PRINCIPLES

ENGINEERING

MECHATRONICS

5 Commuynicating

oy, o®
Vation and exp\o*®

elle . LA\
& "0ping and manufac™

"ee”l,@ knowledge S o W(e

Since its introduction in 2018, the Engineering specification has been taught in schools around the country.
The specification introduced a strand titled Mechatronics. This strand’s descriptor and learning outcomes
reference control technology and the use of code and sequences to solve problems.

The following document contains resources that JCt4 have developed to support teachers utilise software in
control systems.

There are many different types of support in this document such as step-by-step instructions how to engage
with micro:bit, micro:bit classroom and makecode.microbit.org.

The first section of this resource contains step-by-step modules that take you through coding, wiring, and
creating micro:bit circuits.

Page 3 and 4 contains a table of YouTube links to activities associated with the modules and also the page
numbers for each resource in this booklet.

There are two methods that allow you to engage with these modules:

1. Following the text instructions
2. Using the step-by-step videos that take you through the process which can be accessed using the QR
codes or the hyperlinked table of contents.

The second section of this resource contains links to webinars and live demonstrations that were carried out
over the past number of years.

https://makecode.microbit.org/

Section 1

Module: Activity: Activity Name:

1 Introduction to Basic Commands

Pg. 10 A Placing text on the micro:bit screen

Pg. 12 B Creating a simple countdown on the screen
Pg. 14 C Using in-built tutorials to help student learning
2 Simulating Motor Control

Pg. 15 A Using the simulation software to program a servo
Pg. 18 B Servo Motor Control

Pg. 21 C Changing servo controls using different pins
Pg. 21 D Controlling a 360° Servo

3 DC Motor Control

Pg. 23 A Program a DC motor to prescribed constraints
4 Adding Inputs and Outputs

Pg. 25 A Adding Inputs and Outputs to the all-in-one board
5 Servo Control Using a Potentiometer

Pg. 27 A Calibration of the Potentiometer

Pg. 28 B Servo Control Using a Potentiometer

6 Sensors

Pg. 29 A Calibrating a Sensor

Pg. 32 B Using a Sensor and a DC Motor

Pg. 34 C Using a Sensor and a Servo Motor

7 Radio Control

Pg. 35 A Radio Send String

Pg. 36 B Radio Controlled DC Motor

Pg. 38 C Remote Control of a DC Motor

https://www.youtube.com/watch?v=22_lFT1yOU0&feature=youtu.be
https://www.youtube.com/watch?v=57RUjgjG3VU&feature=youtu.be
https://www.youtube.com/watch?v=fTibjkEyzSc
https://makecode.microbit.org/
https://www.youtube.com/watch?v=K0RuWNR4pcA
https://www.youtube.com/watch?v=kxHklujresY
https://www.youtube.com/watch?v=tHA3HGjsIWE
https://www.youtube.com/watch?v=0f85f1lf4VU
https://www.youtube.com/watch?v=tPjJrtGBUlM
https://www.youtube.com/watch?v=DZFG7nO2TtA
https://www.youtube.com/watch?v=DuBzrziPJso
https://www.youtube.com/watch?v=TKpPK-RjGus
https://www.youtube.com/watch?v=4nTvfn4RrNw
https://www.youtube.com/watch?v=sisag7fvCcQ
https://www.youtube.com/watch?v=tAbFim3SZqM
https://www.youtube.com/watch?v=YVIOk30kuEw

Module:

Activity:

Activity Name:

Pg.
Pg.

Pg.
Pg.

Pg.
Pg.
Pg.
.59
Pg.

10

Pg.
Pg.
Pg.
.75

11

Pg.
Pg.
Pg.
Pg.
.85

12

Pg.
Pg.
Pg.

13

Pg.

40
43

45
47

50
54
57

61

67
69
71

79
79
81
84

87
90
93

97

Motor Control (Part 2)

A
B

C
D

DC motor control for a specified time

Controlling a continuous servo motor using a potentiometer
(forward and reverse)

Controlling a DC motor using a potentiometer (one direction)
Controlling a DC motor using a potentiometer (forward and

reve rse!

Using an External Screen

A

m QO 0O

Displaying text & internal sensor readings
Plotting a graph of readings

Displaying data from multiple sensors
Displaying readings from an external sensor
Investigating mapped values using the screen

Ultrasonic Sensors

A

B
C
D

Calibrating the ultrasonic sensor

Ultrasonic warning system

Display ultrasonic values on external screen
Stopping a motor with ultrasonic sensor

Addressable LEDs (Neopixels)

m o0 w >

Light it up!

Basic animation

School beacon

Larson scanner (Knight Rider)
Audi dynamic indicators

Wireless Control (Part 2)

A
B
C

Remote Neopixel control
Pitch (tilt) wireless DC motor control
Pitch (tilt) shifting gearbox for a DC motor

Pulse Width Modulation

A

Dimming an LED using pulse width modulation (PWM)

https://youtu.be/auqPNpGnA1k
https://youtu.be/Arm6_5TlLDc
https://youtu.be/Arm6_5TlLDc
https://youtu.be/6XQsDJCFqSg
https://youtu.be/QxQi9CDZA2o
https://youtu.be/QxQi9CDZA2o
https://youtu.be/pdLtcLguT3Q
https://youtu.be/FYftGOmG3Zs
https://youtu.be/sS_j7AsJWws
https://youtu.be/Voaw8QgGJIg
https://youtu.be/S8GcF1VvYy4
https://youtu.be/FcSSiWg0DaQ
https://youtu.be/Q9ZJZ2ZJFWE
https://youtu.be/_pGCxTt7PCM
https://youtu.be/3SbKYSSlT-w
https://youtu.be/A5gK9ofAZXo
https://youtu.be/wiJ0lM2jBgk
https://youtu.be/rUJuZwrvgd0
https://youtu.be/-OKT9PIdi_k
https://youtu.be/_wn4i_dIGWM
https://youtu.be/pLPhTtGOvjE
https://youtu.be/fze6NsBOM5Q
https://youtu.be/orp9GkupjWs
https://youtu.be/Lp-JFQvFNs8

Section 2

Supporting Mechatronics in Engineering OLE 2020/2021

This webinar covered many different topics such as developing and testing circuits using
TinkerCAD, two different areas of coding using micro:bit, using micro:bit classroom as a
resource for further engaging with control technology with students. The coding challenges,
and how to code the challenges are used in the webinar are on page 102. The webinar
recording in full can be found using the following link:
https://www.youtube.com/watch?v=eVJ6hdb9sCE

For particular sections of the Video click on the following links:

For engaging with TinkerCAD and circuits: | https://youtu.be/eVJ6hdb9sCE?t=257
Introduction to Micro:bit: https://youtu.be/eVI6hdb9sCE?t=815
For engaging with Micro:bit: and https://youtu.be/eVI6hdb9sCE?t=1535
Challenges

Micro:bit Classroom https://youtu.be/eVI6hdb9sCE?t=3368

Classroom Practice and Computer Software in Junior Cycle
Engineering Spring OLE 2021/2022

This webinar looked at engaging students with control technology software in an online
learning environment. It considered three different school settings and three different
areas that the teachers developed with their students. At the end of the session, we
engaged with how to program a micro:bit from a phone or tablet. The webinar recording in
full can be found using the following link: https://www.youtube.com/watch?v=IE_IxcVFigg

For particular sections of the Video click on the following links:

For engaging with makecode and a https://youtu.be/IE IxcVFlgg?t=3244
phone/tablet:

https://www.youtube.com/watch?v=eVJ6hdb9sCE
https://youtu.be/eVJ6hdb9sCE?t=257
https://youtu.be/eVJ6hdb9sCE?t=815
https://youtu.be/eVJ6hdb9sCE?t=1535
https://youtu.be/eVJ6hdb9sCE?t=3368
https://www.youtube.com/watch?v=lE_IxcVFlgg
https://youtu.be/lE_IxcVFlgg?t=3244

Mechatronics in Engineering

Micro:bit is used for the purpose of developing teachers’ knowledge, understanding, skills
and values in computer software, however, any brand of microcontroller may be used in
Mechatronics. This was determined through feedback from teachers as being the most
popular choice for a variety of reasons.

Note: Computer Software Technology on its own is not Mechatronics. A Mechatronic system
includes a combination of mechanisms, electronic components and computer software. An
integrated, non-linear approach should be taken to the teaching and learning of
mechatronics.

The following pages are structured into modules which aim to develop understanding and
skills with particular reference to the strand of Mechatronics in Junior Cycle Engineering.

In total there are 7 modules which progress in complexity and aim to incrementally develop
understanding and application in the strand of Mechatronics. Some modules may have more
than one activity. Explanatory videos can be found in each module which outline some of the
key features and will offer guidance to support the activities.

The following components and materials have been made available to all teachers within the
Mechatronics teaching and learning resource packs.

JCt4 Computer Software Component list

o &N .
1.Micro:bit v2 10. Red LED
2. All-in-one robotics board* 11. Green LED
%
'S
3. 180 degree servos \
g 12. 10K ohm potentiometer
4. Continuous 360 degree servos (C}
13. PP3 battery snap
R
” g
5. DC Motors (x 2) = E
14. 9v battery
6. Miniature lever switch ' -~
k‘? 15. 2mm flathead screwdriver -~
=~
7. Push-to-make switch 4 q
A 16. red/black 10m Solid-core wire m

8. Light Dependent Resister

“ 17. Clear plastic container

9. 10K chm resistor
Teachers should also bring a Soldering Iron, Solder and Wire Cutter and/or Wire Stripper to
aid any assembly which has not being completed prior to the workshop.

Instruction: When engaging in a self-directed approach, start by reflecting on the activity in
the learning log, then watch the associated video prior to engaging in the coding activity.

Module Content
e Getting Started
e Module 1 —Introduction to basic commands
e Module 2 — Simulating Motor Control — 180° and Continuous Servo’s
e Module 3 -DC Motors
e Module 4 — Adding Inputs and Outputs
e Module 5 - Control using Potentiometers
e Module 6 — Control using Sensors
e Module 7 — Radio Control

Participating through Self-Direction

Each module is supported through a range of videos and concise instructions in the learning
log. Participants will be able to communicate through the assigned breakout room to offer
collegial support. The advisor will also be available.

Instructions:
1) Choose a module. Read the relevant pages for that module in
the learning log.

2) Watch the video which accompanies the module. The video
will explain the problem-solving approach to coding. It will
explain the various aspects to the code, and how to find and
assemble the blocks for the code.

3) The video can be found by scanning the QR code with the camera on your phone, this
—= Will allow you to watch the video on your
phone. Alternatively, if you open the learning
log on your laptop as a PDF, you will be sent
to the video by clicking directly on the link.

4) Assemble the micro:bit and relevant components, download the code and test the
code that you have assembled.

5) Reuvisit the video to further your understanding on the activity.

Getting Started

This section will show you how to navigate to the MakeCode website which facilitates the programming of
a micro:bit.

1) Use the following link to direct you towards Makecode.
Url Link: https://makecode.microbit.org/#

Alternatively use the following search words in your browser.
Key Search Words: Micro:bit MakeCode

2) Select ‘Lets Code’

BBC micro:bit

Got creatrve with the new

b on g 3) Select * Go to MakeCode editor’

poaker and microphone!

4) Select ‘New Project’

5) Start Coding!

https://makecode.microbit.org/

Basic Commands Introduction to ‘MakeCode’

The home screen is accessed
through this button. From the
home screen you can create a
new project, access tutorials and
any previous projects you may
khave created.

This button allows you to swap
between drag and drop coding
blocks and JavaScript. Students
may need to be familiar with
coding languages to engage in
JavaScript.

\

https://youtu.b

e/22 IFT1yOUO

J J

O micro:bit @ Home «f Share

& Blocks P JavaScript

O]
@

(&
o4

=

&

A

y

Search..

Basic
Input
Music
Led
Radio
Loops
Logic
Variables

Math

Advanced

This is the simulator where
all code can be tested
where you have used the
original coding blocks

This area on screen is
where the code is
populated. This is called
the ‘Editor’.

The coding tabs where all
the coding blocks are
stored.

https://youtu.be/22_lFT1yOU0
https://youtu.be/22_lFT1yOU0
https://youtu.be/22_lFT1yOU0

Module 1: Introduction to Basic Commands

This module will introduce participants to programming using block code on MakeCode. A code is developed
to programme the LED matrix to communicate the letters and numbers. This will be activated by pressing a
button on the micro:bit. The code will be tested on the simulator. Use the video for support through the

supplied link.
Activity A

When button A is pressed, the word ‘HELLO’ will scroll across the LED matrix. It will
pause briefly before an emoji appears on the screen.

When someone shakes the Micro:bit, the word ‘Goodbye’ will scroll across the screen. oagl:D

It will pause briefly and a separate emoji will appear.

on button A+ pressed

" Hello" show string (G0N

show string

pause (ms) (QL:RY pause (ms) (ELERJ

show icon -

- -n
show icon , , ~
Ll LY

® Input
G» Music
© Led
.all Radio
 Loops
)G Logic
= Variables

. e
show icon 3855 «
H

show string BGTHE

B Math

I w Advanced P—

https://voutu.be/
STRUjeiG3VU

This code is intended to fulfil the activity constraints.
The following coding tabs are required in the menu:

- pressing buttons or giving signals to start a
function such as shaking the board.

Basic: simple functions such as scrolling text and icons
on screen.

Lastly the simulator will help us test the code before
uploading to the micro:bit

To start: On the home screen click on the - tab.

The options will appear on screen for you as in this picture.
Drag and drop out the required coding block. In this activity it is
the

Select

Place ‘on button A pressed’ anywhere in the editor.

Next click on the ‘Basic’ tab and the options will appear as we
see them in the picture to the left.

Choose the ‘show string’ option and drag it onto the coding
area.

Place is in the gap that’s present in the _

input from step 1.

10

https://youtu.be/57RUjgjG3VU

e Return to the ‘Basic’ tab.
e Select the ‘pause’ block.

: . e Draganddrop itinto the _ as shown.

how stri Hello!
S RS You can change the time as you so wish. Time is in
e (ms) ml!llseconc.zls sol secor.ld =1000 m|II|se.conds.
e Using ‘Basic’ select an icon of your choice, the drop-down

arrow beside the face allows you to change the icon.

on button A =+ pressed

on button A = pressed 4.
e Using the - tab we now find the .
option

e This time we are replicating some of the
code. Instead of re-finding it we can right
click on one block and duplicate it.

e Click on the text in the ‘show string’ block, in
order to change the text to goodbye.

e Use the drop-down arrow in order to change

Help the icon again to replicate the code.

Add Comment

Delete Blocks

Now we can test the code on the simulator.
Press button A on the micro:bit on screen
and test if your code works as intended.

To simulate, move the mouse vigorously over
the micro:bit. This will simulate the shake in
real-life. Alternatively, press the newly added
shake button on the simulator in order to
test the second part of the code.

Reflection / Notes:

11

Activity B

After a countdown of 5 seconds, the display will indicate to pedestrians to cross a road.
After 2 seconds, the display will change to a stop icon indicate to additional pedestrians
that it is unsafe to cross. Use the video to support you in this activity.

Reflection on Ohservations:

https://voutu.b
e/fTibjkEvzSc

Input

on button A v pressed

e To start: On the home screen click on the

B t:b.

e more

@ Music
© L 0| 2Eee e The options will appear for you on screen as
. Radio in this picture.
C Loops Tl - e Drag and drop out the coding block you
X Logic want. In this activity, it is the _
= Variables -
& e — e Place the ‘on button A’ code anywhere on
[Vo R the area shown in the previous page.

pin P8 v is pressed

Light level

sss more

@® Input
¢» Music

© Led
all Radio
' Loops
G Logic

= Variables

e Next, click on the ‘Basic’ tab and the
options will appear as we see them in the
show scon $EEE picture to the left.
e Choose the ‘show number’ option and drag
it onto the coding area.
e Placeitin the gap that is present in the .
input from step 1.

ﬁ Math show string (@G

I v Advanced JP—

pause (ms) (EL:ES

12

https://youtu.be/fTibjkEyzSc

on button A v pressed e Draganddropitinto the_
as shown.
e o e Return to the ‘Basic’ and continue to add
blocks of ‘show number’. Note: Add numbers

with a reducing value from 5 to 1.

Duplicate as shown in the previous module
which may help speed up the process.

on button A + pressed 4:

¢ In the ‘Basic’ tab use the fshow string’ to add
text as shown in Module 1, enter any text
you wish to indicate to someone to cross the
road.

e Return to the ‘Basic’ tab and choose the
‘pause’ block’ add a pause for 2 seconds as
per the brief.

e

%

Remember: Time is in milliseconds so 1

second = 1000 milliseconds.

on button A = pressed

show number o
show number o 5:

e |n the ‘Basic’ tab use the ‘show icon’ to

show number o add an icon as shown in Module 1, enter
- any icon you wish to indicate to someone

e o not to cross the road.

shiow number ° e Use the simulator as shown on page 8 in

show string order to see if this code works.

pause (ms})

13

Activity C
MakeCode has a range of tutorials and sample codes. Take this opportunity to explore the tutorials, and
consider how they may be used with your students in the context of Engineering.

1) Return to your Home Page.

2) Scroll through the range of tutorials.

3) What Code would you think your students may
be interested in?

Reflection on Observations:

14

Module 2: Simulating Motor Control

This module will introduce participants to programming a servo motor using block
code on MakeCode. A code is developed to programme a servo motor. This will be
activated by pressing a button on the micro:bit. The code will be tested on the
simulator in each of the 4 activities. Use the video to support you in the activity.

Activity A

Open and close a barrier using a 180° servo motor

on bution A+ pressed on button B~ pressed

servo write pin PB+ to @

servo write pin P@+ to

This is one possible solution to the task!
Did you consider an alternative solution?

on button A = pressed u

- €@
from low o
from high @
to low o
= Arrays .

to high o

A Text

A Advanced

unctions

5 Game analog set period pin Po » to (ps) {@elilE]

Images) .
serve write pin P9 v fto @

servo set pulse pin P8 +» to (ps) @kl
"= more

*5> Serial

set audio pin PO =
—

= Control

15

https://voutu.be/k
ORuWNR4pcA

MakeCode simulator

To start: Click on the tab and select
and bring drop it

into the editor.

Duplicate this block by right clicking and
selecting duplicate.

As you can see on the left, it is yellow as it
is not possible to have two commands with
the same button.

Click the drop-down arrow beside ‘A’ and
select ‘B’.

In order to find the tab, you must
click on the ‘Advanced’ drop down menu
at the bottom of the list of tabs.

From this list choose e RV gi=ReI[s N =0R{¢
! and drop it into
BITe]ITer 1=l ‘servo write pin POto
add it to .
Set the degrees to two different values and
use the simulator in order to test if it
works.

’

and

https://youtu.be/K0RuWNR4pcA

on button A + pressed

on button B = pressed

e Set the degrees to 2 different values

for example 90° and 180° and use
the simulator in order to test if it

velue 120 works.

servo write pin P@ v to @

Reflection on Observations:

Finding the All-in-one Robotics Board Extension

The All-in-one Robotics board is useful to facilitate the driving of DC and Servo motors using the micro:bit.
The micro:bit on its own will only supply motors with a maximum of 3V. However, in most instances the
motors used in the engineering workshop will require a higher voltage in order to achieved full speed and
torque. The robotics board will supply the additional required voltage. The programming of the robotics
board requires a Robotics block to be added to the MakeCode menu. The following explains how to this.
The video in the next activity will also explain how to add the extension.

Summary: In coding tabs / menu select, ‘Advanced’, and then ‘Extensions’. In the search bar type ‘All-in-one
robotics board’ and select the option when it appears.

eein | ke «® Robotics

16

Downloading Files from MakeCode

When a code has being developed, it can then be downloaded to the micro:bit. The code is called a ‘Hex
File’. Following the instructions to learn this procedure.

Transferring your HEX file to your micro:bit

- 2 Downloads MU9-s Mansge MICROBIT(E)
v 5 'oOWnIo:
- - Home Share View Drive Tools

Home Share View - * 4 & > MCROBT(E)

A ‘ » ThisPC > Windows (C:) » Users > RonanMcGovemn > Downloads Neme
Quick access
=) DETALS

Date modified
[JCTSupport Senvice ¢ MICROBIT

A Name

s Quick access

< Documents ¢ v T 3) N @ OneDrive -)CT Support Sen
| microbit- 1st-yesr-Applied-Technology.hex 03/10/2019.12.53 I This PC

s)

| microbit-servo-control (1).hex 03/10/2019.15:34
& Pictures 4 = m MICROBIT (E)
y microbit-servo-control.hex 03/10/2019 13:32
Digital Planning Tool b Nebwork
et L in

Copy file from your download folder
Paste file into micro:bit drive.

17

Activity B — Servo Motor Control

Program a 180° servo to prescribed positions. Build the code and
download to the Micro:bit. Use the Video to support you in the

activity. https://www.youtube
.com/watch?v=kxHKk
lujresY &feature=yo

utu.be

The Servo is configured to pin 1. The
orange lead is the signal and must be

on button A * pressed

set Servo 1 v to o degrees - Press A— Rotate servo full speed facing to the insidepf the board.
clockwise
on button B ¥ pressed * Press B—Servo is fully stopped
set servo 1+ to () degrees * Press A+B — Rotate servo anti-
clockwise, at 66% of the full
speed

on button A4B ¥ pressed

set Servo 1+ to @ degrees

4)

Additional Resources from the Mechatronics Elective 2020

The principles behind coding a Video to a possible design challenge to
servo motor apply the above code.

Ey5E

https://drive.google.com/file/d/1bKDBKxJ8U7KUZNX https://www.youtube.com/watch?v=Y1CcKXKZkPI&f
TGPcFltaB6dOrlgel/view eature=youtu.be

- J

on button A * pressed 1:

e To start: Click on the tab. Select
dicate this block
twice, so that there are a total of three
blocks.

on button B = pressed e If you click the drop-down arrow beside

‘A’, you are given more options to select
for buttons to be pressed. This is seen with
the blocks on the left

on button A+B = pressed

18

https://www.youtube.com/watch?v=Y1CcKXKZkPI&feature=youtu.be
https://www.youtube.com/watch?v=Y1CcKXKZkPI&feature=youtu.be
https://www.youtube.com/watch?v=Y1CcKXKZkPI&feature=youtu.be
https://drive.google.com/file/d/1bKDBKxJ8U7KuZNXTGPcFltaB6dOrJqeL/view
https://drive.google.com/file/d/1bKDBKxJ8U7KuZNXTGPcFltaB6dOrJqeL/view
https://drive.google.com/file/d/1bKDBKxJ8U7KuZNXTGPcFltaB6dOrJqeL/view
https://www.youtube.com/watch?v=kxHklujresY&feature=youtu.be
https://www.youtube.com/watch?v=kxHklujresY&feature=youtu.be
https://www.youtube.com/watch?v=kxHklujresY&feature=youtu.be
https://www.youtube.com/watch?v=kxHklujresY&feature=youtu.be
https://www.youtube.com/watch?v=kxHklujresY&feature=youtu.be

Servos

e Using the newly added tab as
® Input set servo 1 v to () degrees shown on page 14, click on
e Usethe

and add one to each of the inputs.

block

Music

(]
O Led
P

Robotics

¢ Reminder: right clicking on the block in the
coding area allows you to duplicate the
blocks over and over again.

w=s Motors

sss Settings

on button 3:
e Change each of the degrees to different

set Servo 1 + to o degrees values

e From here, download the code to your
micro:bit as shown on page 14. Using the
‘All-in-one board’ and a 180-degree servo,
try out the code shown.

on button B =+ pressed

set Servo 1 v to @ degrees

*If you wish to use more than single 180-degree
servo, duplicate the green blocks but change the
number ‘servo 1’ to where you connect the

R degrees second servo to on the All-in-one robotics board

on button A+B - pressed

Reflection on Observations:

- F— y

Edge Connector Pinout

Note: A number of these pins may not
be accessible in all editors

Special function pin

3V

Digital input / output

Analogue input / digital 10

Digital input (shared with a button)
Digital output (shared with LED matrix)

|ov 0V / ground
LoV OV / ground
[20] [soA “Serial data pin connected to the magnetometer & accelerometer
as] (& Serial clock pin connected to the magnetometer & accelerometer
[18 | [3V 3V / positive supply
3V 3V / positive supply
|3V 3V / positive supply
- | DIO General purpose digital 10 (P16 in editors)
[35] [mos Serial connection - Master Output / Slave Input
O&] [wmso Serial connection - Master input / Slave Output
@3 5 “Serial connection - Clock
2 PAD2 General purpose digital / analogue 10 (P2 in editors)
: | DIO General purpose digital 10 (P12 in editors)
(1] [e™ne Button 8 - Normally high, going low on press (Button 8 in editors)
(Qo] [cou Column 3 on the LED matrix
m | COL? Column 7 on the LED matrix
- D10 General purpose digital 10 (P8 in in editors)
1 ‘ PAD1 General purpose dq}y / analogue 10 (P1 in editors)
m COL8 Column 8 on the LE Dlg\atm
(6] [cow Column 9 on the LED matrix
(5] [8TnA Button A - Normally high, going low on press (Button A in editors)
(a] [co2 Column 2 on the LED matrix
0 : PADD General purpose digital / analogue 10 (PO in editors)
E iCéll C”olumr'\;l on'the_i.g_')ﬁg\ggm

20

Activity C

Modify the code shown below from the previous activity by changing the value of the
angles. Plug the servo into a different pin and modify the code to reflect this change.
e Place the servo into any other pin number.

e Modify the code to reflect the new pin position.

e Modify the angles

on button A * pressed

set Servo 1 v to o degrees

e Download and test the new code.

on button B ¥ pressed

set Servo 1+ to @ degrees

on button A+B ¥ pressed

set Servo 1 ¥ to @ degrees

Watch the stimulus video attached to the QR code.
How might you engage your students in this activity in Engineering?

Activity D Video
Control the speed and direction of a 360° servo. Explore the following piece of code E' E
with the supporting video. 2k

-
on button A+ pressed EM

* Press A — Rotate servo full speed clockwise

set Servo 1 ¥ to o degrees ° PI’ESS B — SerVO iS fu”y Stopped httpS://WWgV.VOUtUbe'.
* Press A+B — Rotate servo anticlockwise at com/watch?v=kxHklujr
on button B v pressed 66% Of fu” Speed ESY&feature=VOUtU.be

set Serve 1+ to @ degrees

Download the program and simulate using the All-
e [oo | et in-one-Robotics board.

set Servo 1 v to @ degrees

4 Additional Resources from the 2020 Mechatronics Elective)
The principles behind coding a Video to a design challenge to apply
360° servo motor. the above code.

https://drive.google.com/file/d/1K8YIIDU- https://www.youtube.com/watch?v=hJRMDOg
f28av5g8hgOSR sUziHp1Su0/view KH s&feature=youtu.be

21

https://www.youtube.com/watch?v=hJRMD0gKH_s&feature=youtu.be
https://www.youtube.com/watch?v=hJRMD0gKH_s&feature=youtu.be
https://www.youtube.com/watch?v=hJRMD0gKH_s&feature=youtu.be
https://drive.google.com/file/d/1K8YIIDU-f28av5g8hgOSR_sUziHp1Su0/view
https://drive.google.com/file/d/1K8YIIDU-f28av5g8hgOSR_sUziHp1Su0/view
https://drive.google.com/file/d/1K8YIIDU-f28av5g8hgOSR_sUziHp1Su0/view
https://www.youtube.com/watch?v=kxHklujresY&feature=youtu.be
https://www.youtube.com/watch?v=kxHklujresY&feature=youtu.be
https://www.youtube.com/watch?v=kxHklujresY&feature=youtu.be
https://www.youtube.com/watch?v=kxHklujresY&feature=youtu.be

Watch the stimulus video attached to the QR code above.
How might you engage your students in this activity in Engineering?

Activity E

on button A = pressed

1:
set servo 1+ to () degrees e The coding setup is the same as previously
shown in Activity 3.
on button B w pressed e When looking at the code it looks identical
e The difference is the way in which the
set Servo 1+ to @ degrees servo works.
¢ A continuous servo is not controllable in
B i e terms of degrees. It is controlled in terms
[degrees of speed in a given direction. 90 degrees is

0 in terms of speed.

SPEED: "i’%- . @ P =7

DEGREES: () 90 1

1y

@
e

e The diagram above shows the differences between the degrees.
1. Odegrees is full speed of the servo turning to the left.
2. 180 degrees is full speed turning to the right.
e Asyou approach values towards 90 degrees from 0 or 180 degrees the motor will slow
down.

3: Callibrating the servo.

Sometimes when the 360° is programmed to be at
stationary, its shaft may shudder slightly. Use the following
steps to callibrate a Servo to stop the shudder.

PicA e Program the servo as before using _

e Upload this code to the micro:bit and if the servo is
turning it needs to be calibrated.

e To do this use the screw at the back of the servo. (Pic
A)

e Using a screwdriver, turn the screw until the motor
stops turning, that is it now calibrated to the middle

Pic B of the servo. (Pic B)

e From here create your code to work as you want to

now

22

Module 3: DC Motor Control Video

. - . . . E "'"E
This module will introduce participants to programming DC Motors using block code
on MakeCode. The - block must be added to the MakeCode menu to engage
in this activity. Explore the following piece of code with the supporting video. E

https://www.youtube.c
om/watch?v=tHA3HG;jsl
WE&feature=youtu.be

Activity A
Program a DC motor to prescribed constraints.

turn off all outputs

on button A w pressed

Motor 1 w on direction Forward v speed @2

* Press A — Rotate forward full speed.
R BT e * Press B — Rotate backwards at half speed.
Motor 1 ¥ on direction Reverse v speed @ o Press A+B — Motor StOppEd.

>

7
*

Download the program and simulate using
the All-in-one-Robotics board.

D)

on button A+B v pressed

Motor 1 ¥ on direction Forward v speed o

~

4 Additional Resources from the Mechatronics Elective 2020

Video to a design challenge to apply
the above code.

[=]

https://www.youtube.com/watch?v=ErpWsZ5Ef0Y&fe

Video explaining the principles
behind coding a DC motor

https://drive.google.com/file/d/1pBcswVMnD HfbkP
We8MkzR3azz7Y4CUL/view ature=youtu.be)

Watch the stimulus video attached to the QR code above.
How might you engage your students in this activity in Engineering?

23

https://www.youtube.com/watch?v=ErpWsZ5Ef0Y&feature=youtu.be
https://www.youtube.com/watch?v=ErpWsZ5Ef0Y&feature=youtu.be
https://www.youtube.com/watch?v=ErpWsZ5Ef0Y&feature=youtu.be
https://drive.google.com/file/d/1pBcswVMnD_HfbkPWe8MkzR3azz7Y4CUL/view
https://drive.google.com/file/d/1pBcswVMnD_HfbkPWe8MkzR3azz7Y4CUL/view
https://drive.google.com/file/d/1pBcswVMnD_HfbkPWe8MkzR3azz7Y4CUL/view
https://www.youtube.com/watch?v=tHA3HGjsIWE&feature=youtu.be
https://www.youtube.com/watch?v=tHA3HGjsIWE&feature=youtu.be
https://www.youtube.com/watch?v=tHA3HGjsIWE&feature=youtu.be

Robotics

882 Basic

® Input

turn off all outputs

Music

o
O Led
v

Robotics

== Servos
=== Motors
= Seftings

.all Radio

Motors

Motor 1 =+ on direction Forward + speed o

turn off Motor 1w

Led

Stepper 1 * turn Forward v o degrees
Robotics

= Servos Stepper 1 = turn Forward = o steps
= Settings

.all Radio

C Loops

turn off all outputs

on button A * pressed

Motor 1 » on direction Forward =+ speed @

on button B * pressed

Motor 1 + on direction Forward = speed @

v Fonward

on button A+B = press:

Reverse
Motor 1 + on directi

1:

e

S

24

When creating the code, we will need to
make sure that the motors do not start
turning when we power up the micro:bit
so we use ‘basic’ and the ‘on start’.
Using the

tab, click on
and you will see .

Using the - tab click on -

Here you will see the blocks for DC motors
and Stepper motors.
Using the

As you can see, we can control which
motor is turning, its turning direction and
its speed.

The speed is a percentage from 0-100 of
the total power available to the motor.
i.e.: 6V on the All-in-one robotics board
will spin slower than 9V power to the
board.

In order to change the direction of the
motors, click on the drop-down arrow
beside the direction.

The motors in a project, depending on
which way they are wired, may spin in the
opposite direction. You may need to run
the code first to check this. Then change it
to the appropriate direction in order to
make them spin the same direction.

Module 4: Adding Inputs and Outputs

External LEDs and switches can be easily added to the All-in-one robotics board. Some E\hde:EI
components must be soldered to the robotics board in order to simulate any code :

developed in this activity. Activity: Build the given code with the support of the given ‘%
video link. Reflect on how you might explore this code further with your students. . =]

on pin P2 * pressed

digital write pin P16 =+ to o

pause (ms) (ELLLIEJ

digital write pin P16 * to o

£5 Basic
@ Input
© Music digital write pin PO * to o
© Led
analog read pin P8 v

« Robotics

. analog write pin P@ v to (ELFE]
.l Radio .
C' Loops map o
% Logic erom 100 @)
= variables from high

to low
B Math o
0 nigh @)

A Advanced
f& Functions analog set period pin PO v to (ps) (EET)
[
— rrayes
= A servo write pin PO * to @
T Text
& Game servo set pulse pin PO * to (us) @
[Zal Images

set audio pin PO ¥

*% Serial
= control

© Extensions

https://youtu.be/

0f85f11f4AVU
This code is intended to fulfil the activity constraints.
What is involved in the code?
- Pressing buttons or giving signals to start a function such
as shaking the board.
Basic: Simple functions such as pausing a code.
This controls the signals from the ‘Link Pads’ on the ‘All-
in-one Robotics Board’. This is where the switch and the LED
are joined

1:

e Select _ from the - tab. Drag and

drop it onto the programming editor.

In the menu, click ‘Advanced’ to extend the menu, select

[From the new menu, select BEIR G SNSRI
and drag and drop it into menu block’.

Set PO to P16 and ensure the output is set to 1.

Return to the ‘Basic’ block and select ‘pause (ms)’. Drop this

into the _ menu block’. Set the pause to

3000ms.

Select a second EIAEIRVACRSNZRGEE from the menu

or by duplicating the first block, and drag and drop it into
menu block’ under pause (ms)’. Set PO
to P16 and ensure the output is set to 0.

25

https://youtu.be/0f85f1lf4VU
https://youtu.be/0f85f1lf4VU
https://youtu.be/0f85f1lf4VU

GND - Joins to
negative LED leg and

B TR IL N AN

o
*
°
S
@
L)
s
*
L]
<0
L J*

Activity: Design problem
(Using knowledge built from the previous modules)

Download the code to the Micro:bit and test
the code using the configured components
on the ‘all-in-one Robotics Board.

How could this program be applied
to an Engineering project?

e In a model vehicle it is needed to indicate when the vehicle is slowing down or has come to a

stop

Notes:

26

Develop the code relevant to replicate this in action

Module 5: Servo Control using a Potentiometer

Activity A

Potentiometers are variable resistors. They are often applied in applications in Engineering to
vary the resistance in a circuit and often, control the resistance applied to an output such as a
motor to adjust speed and torque, and control the angle of a servo motor. In this first activity
we will look at how to map a potentiometer to a microbit. This is required in instances where
a potentiometer is required to control the angle of a servo. It is necessary as maximum
resistances vary from one potentiometer to the next.

Explore the following piece of code with the supporting video. The video will explain the
context and application for this code, and it will form the basis for activity two in this module.

. This code is useful to map any potentiometer to the micro:bit. It
https://youtu.be will allow the minimum resistance to be mapped to 0° and the
[tPjIrtGBUIM maximum resistance to be mapped to 180° on the servo. The

blocks required include:
forever Basic: Simple functions such as pausing a code, ‘show number’ and

‘forever’ block.

This controls the signals from the ‘Link Pads’ on the ‘All-in-
pause (ms) one Robotics Board’. This is required to send power to the
potentiometer and to measure the ‘signal’ from the middle leg on
the potentiometer.

show number analog read pin PO v

In the ‘Basic’ menu select ‘show number’ and drag and drop
it into the ‘forever’ block.

In the menu, click ‘Advanced’ to extend the menu, select
. From the new menu, select ’ and
drag to the left of the ‘show number’ block until it is
highlighted yellow. Release the mouse button to drop

EREI-AELNYNX0N into ‘show number’. Change PO to 1.

3:
In the ‘Basic’ menu select ‘pause (ms)’ and drag and
drop it into the ‘forever’ block under ‘show
number’.

Download the code to the microbit and test on the
configured components. The highest resistance for
this resistor should be approximately 1022 for this
10kQ resistor. The lowest resistance should be a
number close to 0.

*

&
<
&
()
]
*
()
[

27

https://youtu.be/tPjJrtGBUlM
https://youtu.be/tPjJrtGBUlM
https://youtu.be/tPjJrtGBUlM

Activity B: Servo control using a Potentiometer

This activity explores code which can be applied in computer software to allow a Servo
Motor to be controlled by a potentiometer. This may be applied to Mechanisms such as
Linear Actuators. An understanding of the code will be required to engage in the additional
code in this activity.

Explore the following piece of code with the supporting video. The video will explain the
context and how the code is designed.

on start

set Servo 1 v to ° degrees

set Pot position v to analog read pin PO w

map Pot position »

from low o

set Servo 1 v to from high degrees

How might Engineering students apply this code in their projects?

Activity: Design problem

* Canals use a series of locks in order for boats to move
through areas of elevation changes

* Create a simulation of the code needed to make the
lock gates open and close

HINT: What angle do the levers need to rotate in order to
fully open the locks?

28

https://youtu.be/

DZFG7nO2TtA

https://youtu.be/DZFG7nO2TtA
https://youtu.be/DZFG7nO2TtA
https://youtu.be/DZFG7nO2TtA

Module 6: Sensors

Sensors such as LDRs and Thermistors can be added to the Robotics board as additional sensors. This
activity explains how to add and code a LDR and apply it to a geared DC motor and a servo motor.

Z

-

PO (Signal) +(3V)

Activity A: Calibrating a sensor:

Why do we calibrate sensors? When using sensors for any reason we should know it’s
maximum and minimum reading in a given situation as if we make it too sensitive it
might not be sensitive enough or the opposite too sensitive. Use the video in the
provided link for support.

https://youtu.b
e/DuBzrziPJso

forever

set reading v to analog read pin PO ¥ Using this code you will see the

values coming from the sensor on
plot bar graph of reading v the micro:bit screen

up to QElrE]

show number reading ¥

How might you engage your students in this activity in Engineering?

29

https://youtu.be/DuBzrziPJso
https://youtu.be/DuBzrziPJso
https://youtu.be/DuBzrziPJso

To calibrate the sensor:

822 Basic
Input
Music

©
@
© Led
o+

Robotics

il Radio
Loops

(&
23 Logic

Variables

B Math

Search...

Basic
Input
Music
Led
Robotics
Radio
Loops
Logic

VEUELIEY

O]
o
©
P
all
C
x
=

forever

Math

Variables

Make a Variable...

Variables
Make a Varisble...

LDR reading =

set LDR reading v to o

change LDR reading = by o

=
set LDR reading » td J]

{)analog read pin PO w

When we are taking a reading, we will
need to create a variable.

Click on the ‘variables’ tab and then the
‘Make a Variable’ button

Just like in the subject maths, a variable
can have any value.

We will dictate where that variable comes
from, in this case, the LDR

Name the variable something that will help
make it identifiable, in this case LDR
reading.

When the variable is named three blocks
appear.

_ allows for the use of variable

to show numbers

_ allows us to create
the link to the analogue value coming from
the LDR

[CHEREEDRESREE -!'0s us to
change the variable which can be useful
for a countdown using a loop

From ‘basic’ we use the ‘forever’ block as
we would like this to run continuously in
the background.

Using the {variables’ tab we use ‘set LDR
readingto '

From the i} tab we use the
and set it to whichever pin the
potential divider is connected to. (check
the instructions given to you with the
‘mechatronics pack’)

By doing this we have said the reading of
the LDR comes from the pin it’s connected
to.

30

£22 Basic

® Input [= o ¥ o 4:

@ Music rosste x @) v @) e From the . tab we can access the -

unplot x o y o . .

“ more e This will put a bar-chart on the LED screen
Robotics roint x () v @) and indicate how much of the resistance is
il Redio Er e left in the LDR

Loops e The bar-chart will show up on screen
Logic

before the reading of the LDR

m s a

Variables

forever

e Using the Variables’ tab we can plot the

set LDR reading *+ to analog read pin PO = ‘LDR reading' as shown

o e et -./E) e We set the reading up to 1023 as any

up to @ '0 analog sensor goes between 0 and 1023 in

terms of values

forever

e Using the ‘Basic’ tab we can use ‘show
number _ ' to put the reading on the

set LDR reading v+ to analog read pin PO w

plot bar graph of LDR reading = screen

e From Variables’ we use to
| * show the value coming from the LDR
show nunber() e Now upload the code to the micro:bit and

take the reading of the LDR in the brightest
light and in dark conditions as this will be
useful in the next activities

Reflection on Observations:

31

Activity B: using a sensor and DC motor

Using the coding blocks seen below, gives a basic way to turn on a DC motor when the
light reading is below a set value. Using the calibration code above, could we improve the
code? The video in the attached link will support you in this activity.

et Q Variables ® Input
i Basic
@ Input Mak 2 Variabie @ Music
@ Music Light v © Led
© Led 7
o st ugnt + to @) ¥ Robotics
obotics
il Radio e gt = by @) il Radio
G Lops C Loops
X Logic
i B Variables
B Math £ variables
B Math
A Advanced
f9 Functions
i= Arrays
T Text

https://youtu.be/T

KpPK-RjGus
forever
set Light * to analog read pin PO ¥

< v @ then

if Light v

motor 1 ¥ on direction forward ¥ speed

else @
turn off motor 1w

®

How might you engage your students in this activity in Engineering?

set LDR reading * to analog read pin PO =

forever
set LDR reading + to analog read pin PO v
if true = then

Motor 1 + on direction Forward v speed o

©

D —
turn off Motor 1 =

32

Using the previous activity and the steps 1-
3, recreate the code on the left

Using the ‘logic’ tab we can create a
scenario to occur

If a reading of a value is present the
component will be actioned, if not then
something else will be actioned

In this case we can create a code when the
value is less than a reading from the LDR
then turn on the motor based on the this

https://youtu.be/TKpPK-RjGus
https://youtu.be/TKpPK-RjGus
https://youtu.be/TKpPK-RjGus

® Input

@ Music Rl —
© Led

«® Robotics ®

il Radio if true w
C' Loops

= Variables
B Math
~

Advanced

Robotics
.l Radio

Loops

= Variables

forever
set LDR reading * to amalog read pin PO +
—
if (] P S then
")LDR reading v

Motor 1 = on direction Forward = speed (@l

else @

turn off Motor 1 =

®

33

In the fif’ part of the logic gate, use the
tab and place in

e Set the values and directions as desired

e Inthe felse’ section add _

*So far, we have said if something is
present then turn the motor on and if it’s
not there, turn it off

Using ‘logic’ we can create a comparison
Add this to the logic gate as you can see in
the bottom picture

forever

set LDR reading * to analog read pin PO =

Motor 1 + on direction Forward v speed (@l
else

turn off Motor 1 w»

®

From bring the
(ELIaF-4 into the first part of the code

Change the value of the < (less than)
part to suit a value within your range of
values taken from the previous activity

forever

set LDR reading + to analog read pin PO - 6:

'if LoR reading + YR @ hen e Once this is done the motor will turn
on when the LDR goes below that value
B G R B B and turn off when above that value
else ® e You can swap this function by changing

to the >’ (greater to)

turn off Motor 1 =

C]

Video

Activity C: using a sensor and a servo motor

Using the previous learning, we can calibrate the servo to move between two values
and its sensitivity depends on the range of values from the LDR and the degrees we
want to use.

~I[m]

https://youtu.be/4
nTvin4RrNw

set LDR Reading ¥ to analog read pin PO v

map LDR Reading v

from low @

from high (ECZE]

w0 1o @)
o wier @)

How might you engage your students in this activity in Engineering?

https://youtu.be/4nTvfn4RrNw
https://youtu.be/4nTvfn4RrNw
https://youtu.be/4nTvfn4RrNw

Module 7: Radio Control

o . . Video
Activity A: Radio Send String

Explore the following piece of code which will allow two Micro:bits to send a ‘String’ E E
from one Micro:bit to the next. Use the supporting video to guide you through this. It ﬁ_‘
K

will help you to develop your understanding on the code.

https://youtu.b
e/sisag7fvCcQ

forever

on button A » pressed on radio received receivedString

radio send string (QPl:PERS show string receivedString

Seare. Q Radio Start with a ‘forever’ block in the program editor.

In the [REGIO] tab select ‘FAGIOISERBIOUP, and set

=22 Basic

© Input the number to 1.

@) Music
' radio send number o
O Led 2:
P Robotics e RPN Drag and drop Re et R R Leiel into the
radio send string (@) program editor.

" more
c LODPS on radio received receivedString 3:
X Logic Select ‘ from the ‘Radio’ tab
= variables and drop it into the “INelijatelsW-ReIg=F I =lo
& Math on radio received name value block. Edit the text in the string to desired

message to be communicated on the

A Advanced

I ior
& Functions on radio received receivediumber

Select from the " tab
and drop it into the Telalel¥iuve]s W W el g Y=lel

block. Edit the text in the string to desired
message to be communicated on the
micro:bit.

on radio received receivedstring Select from
the tab and drop it into editor and drop

‘show string__’ from the ‘basic’ tab into the ’.

FadioNeceived biock.

35

https://youtu.be/sisag7fvCcQ
https://youtu.be/sisag7fvCcQ
https://youtu.be/sisag7fvCcQ

6:

() _ - - \ In the block, click the
on radio received Qrecetvedstring LAY MddTd block and drag and drop it into the

show string : ‘show string’ block.

on radio received receivedstring

\J

Download the code to both micro:bits. Press ‘button

show string A’ on one micro:bit to send the code to the second

j micro:bit.

Activity B: Radio controlled DC motor

Explore the following piece of code. When button A is pressed, it will send a radio signal to
a second Micro:bit. This will control a DC motor and will turn the motor on in the forward
direction for 5 seconds. Use the supporting video to guide through this. It will help you to EI..-.-
develop your understanding of the code. https://youtu.be/

tAbFim3SZgM

on radio received receivedNumber

on button A = pressed

forever Motor 1 * on direction Forward v speed (gl

— radio send number o
radio set group

pause (ms) WELlllIK4

turn off Motor 1 =

NOTE:
This code controls a DC motor. The relevant coding blocks can be found in the ’-' tab. If
starting with a new project you will need to add the ’- tab to the menu. This can be found by
selecting ‘Advanced’ and then ‘Extensions’ in the menu and searching for ‘All-in-one Robotics Board’.
1:
Start with a ‘forever’ block in the program editor. In

the - tab select _ and set the

on radio received receivedNumber number to 1.

From the " tab select gRelViatels WA=l and
drop into the editor. Select ’ from
the radio tab and drop it into ‘[eJaNeIfade]sWANeIY=IIYTo ¢
block.

36

https://youtu.be/tAbFim3SZqM
https://youtu.be/tAbFim3SZqM
https://youtu.be/tAbFim3SZqM

EE Basic

N 3:
o Select ‘GiliadiONECEVEANECEVEANUMBER from the
© Lo turn off Motor 1+ - tab and drop it into editor.
o Robatics stepper 1+ ‘turn Forward = ° degrees
oo Stepper 1+ turn Forward = o steps 4:
In the ’ " tab, select , and from here
C o drap and drop
;' [m"m " into the block
oops
2 Loge as seen below. Change the speed from 0 to 100.
= Variables
B Math

on radio received receivedNumber

A Advanced
J& Functions

= Arravs

Motor 1 - on direction Forward =

, and from here drag and drop ’_

block. Change the speed from 0 to 100.

In the ’ " tab, select
into the

In the ‘Basic’ tab select the ‘Pause (ms) __’ block and drop it under the ’_
Forward speed ¥ block.

‘MOTOR 1

Click the " tab in the menu. Select
f ’. Drag and drop it under

the ‘Pause (ms) __’ block.

Download the code to both micro:bits to
test it on the All in one robotics board.

[
L
Ty
&
9
@
]
)
()

»

o8

How might code such as this deepen a student’s understanding of Mechatronics in their projects ?

37

Activity C: remote control of a DC motor

Using the following code as your base you can control the motor using a combination
of inputs and sending different values to the micro:bits. Creating different situations
using logic gates can allow different control of the motors or any other components.

https://youtu.be/
YVIOk30kuEw

on button A w pressed on radio received receivedNumber

radio send number o if receivedNumber =w o then

Motor 1 + on direction Forward =+ speed

if receivedNumber =w o then

on button B * pressed

radio send number o

turn off Motor 1 =

®

forever 1:

Using your understanding from previous activities, build this
radio set group o block of code and set the ’ 'to ‘1’

on button A =+ pressed

radio send number o Build two input blocks to send a number using a radio signal
as shown opposite. Set the first the first to send the number
‘0’ when button ‘A’ is pressed (This signal will be used to

on button B * pressed rotate the motor forward). Set the second block to send the
number ‘1’ when button ‘B’ is pressed (This signal will be
radio send number used to turn the motor off’.

3:

For the final part of the code start with an ’_
on radio received receivedNumber _ block

38

https://youtu.be/YVIOk30kuEw
https://youtu.be/YVIOk30kuEw
https://youtu.be/YVIOk30kuEw

on radio received receivedNumber

4:
Add the _block from the ‘logic’
tab and duplicate it in the _

block. This will be used to compare the signal that
is sent by button ‘A’ or ‘B’ to decide the output.

on radio received receivednunber

5:

Add an [EAEOMPaRISoN] block to both of the

‘Conditional’ blocks.

6-

radi i (Jrecei on radio received receivedsumber) . . H H
o0 rfio Feceivel cocssieciunba Select EHAEZENEMILEY in the ’- block in this

S L) >) > code and drop it into each of the ‘Conditional’
blocks. This will allow the conditional block to
=~ @ v= compare the number received to ‘0’ or ‘1’. On
this basis we can allow the code to determine the
output.

o8 radio received recelvedmmber e From the ‘Robotics’ tab add _

" to the first ‘Conditional’
block. Set the values to achieve the following
Motor 1+ on direction Forard v speed (D) logic: If the received number ‘=’ 0, then the
motor in pin 1 will rotate forward full speed.
= « From the [ROBGEICS! tab add ‘turn off motor
to the second ‘Conditional’ block. Set the values
to achieve the following: If the number received
® ‘=’ 1, turn the motor in pin 1 off.

e Download and test the code on the configured
components.

turn off Motor 1 »

39

Module 8: Motor Control

Activity A: DC Motor Control for a Specified Time

In this activity we are going to react to an on-going question from teachers around motor control:
When programming a motor, how can | make the motors turn on for a specific amount of time?

In this module we will address this specifically as well as some other areas about motor control.
Click or scan the QR code to view the supporting video.

During the CPD session 2020/2021, we set the challenge to
program the track vehicle in the picture. This was achieved
by most teachers in the CPD. There have been follow-up
emails asking for more engagement with the solution.

- J

on button A + pressed on button B ¥ pressed

Motor 1 * on direction Forward * speed (L] Motor 2 ¥ on direction Forward ¥ speed (QLL]

pause (ms) QLLCERY

turn off Motor 2 =

turn off Motor 1 v

on button A+B ¥ pressed

Motor 1 * on direction Forward + speed (L]

Motor 2 * on direction Forward + speed (L]

pause (ms) QE::RR

turn off all outputs

The code seen above will solve this activity. It uses ‘basic’ and blocks in order to
complete its commands. The a8 extension needs to be added to complete this code.

This code works by pressing the buttons for each command. Later in this activity you will be
shown how to create the program that runs automatically with the press of one button.

40

https://youtu.be/auqPNpGnA1k

on button A ¥ pressed

* Using the [lylsJVl¥ tab, select the
N | pressed’
+ Once the[f{ELLES] extension has been

added, use the
S to turn on the motor and
decide on a speed to select from 0-100

o0 b [© | presset * Using the ‘basic’ tab, use the ‘pause’ block
and choose a certain time to keep the
motor running for

Motor 1 * on direction Forward ¥ speed o

—

*the pause block can allow a command to run
for a certain time and also can be a physical
pause

** a second in this block is in terms of 1000’s.
6000 is 6 seconds and so on

2:
on button A + ressed . 5 .
i e Using the ffelslelilecy tab we add in the block
I | 2 | oo CheEEr | Fred © | e from the motors option to gillgaleiiisaleidels

pause (ms) QELERERS

e Without using this block the motor will
continue to turn and not stop until the
motor is told to, even if you tell another
motor to turn on in the meantime

turn off Motor 1 v

Duplicate

direction Forward + speed (@l

Add Comment

e By right clicking on the block, you can
click ‘duplicate’ and copy the entire set of
blocks

Collapse Block

Delete Blocks

Help

3:

e Using the drop-down-arrow we can change

the Flglelfig command to gelaNe]VjielaN:]
pressed’

on button A w pressed on button B v pressed

Motor 1 ¥ on direction Forwar{ |motor 1 w on direction Forward v speed (E3

pause (ns) pause (mm) e Using the block we can change the
turn off Motor 1+ turn off Motor 1+ motor we want to turn by selecting the
appropriate terminal block 1, 2, 3, or 4 from
the drop-down menu

on button B9 pressed e Once again, we need to tell this motor to
E.Eo;: B) e [o | = stop, otherwise it will continue to turn

indefinitely, so change the number in the
to the same
corresponding motor as the previous bullet
point

pa

tu

41

on button A+B = pressed

e By right clicking on the block you can
click ‘duplicate’ and copy the entire set of
blocks

Motor 1 * on direction Forward v speed (L]
Motor 2 * on direction Forward * speed (k]

pause (ms) (IR

- e Using the drop-down-arrow we can change
the T4 command to felaleltjadela W ta:!
pressed’

e Using the tab we can add the first
motor to turn as shown in step 1

e Using the original ffooeliled tab we can add

Ll IgaNeraiINGIURelli&H to turn off all motors at

the same time.

on button A * pressed

Motor 1 * on direction 5:

e [t has also been asked ‘how could | make the
movement automatic?’- when | press

turn off Motor 1 v button A | want the vehicle to move left and

right, then go straight, by itself

pause (ms) QTLER

Motor 2 ¥ on direction

e By combining all of the code seen in the
previous steps together under the one
input, the vehicle will move automatically

ST | A | SR and stop after 18 seconds using the ‘pauses’

show on the left

turn off Motor

Motor 2 * on direction

poe o

turn off all outputs

e Configure both motors as
shown in the image
Download and test the code

Note: The codes can be
downloaded at the end of each
of the previous 5 steps of
building the code in this
activity. This will build your
understanding of each part of
the code.

BATTERY

42

Activity B: Creating a hydrostatic servo motor control

(One direction only)

This code aims to mimic a hydrostatic power drive.

In module 2 of the 2020/2021 learning log, it showed how to map a 180-degree servo
to the potentiometer. In this module we will show how to use the potentiometer to
set the direction and the speed of a continuous servo.

The diagram below shows how to connect the servo to the all-in-one robotics

board.

Click or scan the QR code to view the supporting video.

.
A IOIONOENESIOROEE

map analog read pin P1 *

from low o

set Potentiometer * to from high (EEEE

to 1w°

to high (EEL

set Serwve 1 * to Potentiometer * degrees

Video — Calibrating the
potentiometer

43

1. GNDis connected to
one leg on the outside
of the potentiometer

2. 3Visconnected to the
other outside leg

3. The middle leg can be
connected to either PO,
P1, or P2 to receive a
signal

**connecting the outside
legs to the board in the
opposite way will only
affect polarity of the
potentiometer, the
middle leg must be
connected to an analog
input

o J

This code is useful to map any
potentiometer to the servo. It will allow
the servo to be controlled, in terms of
speed and direction by the
potentiometer.

Click or scan the QR code opposite to
guide you through the process of
mapping the potentiometer to the Servo.

The blocks required include:

Basic: Simple functions such as ‘show
number’ and ‘forever’ block.

This controls the signals from the
‘Link Pads’ on the ‘All-in-one Robotics
Board’. This is required to send power to
the potentiometer and to measure the
- from the middle leg on the
potentiometer. This allows us to control
motors and servos.

https://www.youtube.com/watch?v=tPjJrtGBUlM&feature=youtu.be
https://youtu.be/Arm6_5TlLDc

* Using the tab, create a variable
that we can use to set the value of the
potentiometer, add it to the “forever’ block

* From here we can create whatever
variable we so wish and get the reading
SEE | FEEIEL SIES)G o from the analog sensor, in this case the

potentiometer

* Using the ol tab we set the
potentiometer to take the reading from
whichever pin you have connected the
potentiometer to

forever

et potentioncter = (B * We use the j[iiE]e} block to create a

o : scenario where it is taking a reading from a
resistance from 0-1023 and it converts it to
degrees from 0-180

* If you wish to make the range of readings
smaller and more accurate you can use the
QR code at the bottom of page 22 to

forever navigate to a video which will provide help

to calibrate the potentiometer

. again we use the
oJ[sNelN to identify what pin the reading is
to come from, once again making sure the
middle leg of the potentiometer is
connected to this pin

set Potentiometer + +to

44

forever * From the [Relells) tab we use the ataaale
e e oG [EFe1sE which will cause the servo to turn
From low o on

From high gl

to 10) * From the WEIEII[ZS8tab we use the
o Mie" (el ololt=lalilelnl=3i=ld block. This will align the angle
set servo 1 vt P tecces of the servo to the reading on the
Potentia-etu- -
potentiometer.

set Potentiometer v +to

**This means that at halfway of the potentiometer’s

resistance will be 90°, and at either end of its rotation
will be 0° or 180°

4.

e Download and test the code

From the previous learning log, we know that with a continuous servo, the following diagram of degrees
mapped to speed and direction will work with the servo:

SPEED: ‘.\E . @ P _g?}_

1]
I 1
DEGREES: 0 Clockwise 90 Anti-clockwise 180
S . . . Video
Activity C: Controlling a DC motor using a Potentiometer

(One direction only)

0|
L-*
]

This code aims to mimic a hydrostatic power drive.
In the previous activity we have created a hydrostatic servo motor.
In this module we will create a hydrostatic DC control system.

[=]
T

4)

The set-up is the
same as before,
instead of using the
servo, connect the
motor to the terminal
block

_ J

Heplnelenlos @

45

https://youtu.be/6XQsDJCFqSg

map analog read pin P1 +

from low o

set Potentiometer + +to

Motor 1 * on direction Forward * speed | Potentiometer «

Looking at the solution on the left we can
see many similarities to the previous
activity.

There are minor changes that we can see
in the code. Firstly, the mapping has

changed: instead of {eR X WACERToN 11=4 W k{04

we now see it has become from

‘to low 0 — to high 100’

This is to acknowledge that the motor
control is from a speed of 0 — 100

Similarly, we use th tab to find
the motor block and add the
potentiometer variable from the
tab

video

Note: As before, if you wish to calibrate the sensor
and make it more sensitive then you can use this
video. Click or scan the QR code to view the support

Activity 3a: Controlling a DC motor using a Potentiometer

on button A * pressed

map analog read pin P1 ¥

from low o

set Potentiometer + to From high (ElrEl

to lowo

to high (§LL]

Motor 1 * on direction Forward * speed Potentiometer +

46

If you wish to have more control over the
motor, you can use the tab and add
it to the already developed code as shown.

This now starts the motor on button A and
then you can control the speed using the
potentiometer

Button A will need to be pressed, each
time the potentiometer is adjusted.

https://www.youtube.com/watch?v=tPjJrtGBUlM&feature=youtu.be
https://youtu.be/tPjJrtGBUlM

Activity D: Controlling a DC motor using a potentiometer (Forward
and Reverse)

forever

set pot *+ to analog read pin P1 v

if pot + <+ @3V then

This code aims to mimic a hydrostatic

= power drive.
from low o
[S G ron igh (@) The code on the left develops on the skills
to 1ov (@) learned so far. Using mapping, motor
to nigh () direction and in the code seen here logic
too.

map pot ¥

Basic: allows us to have the code running
fron 1o (@) forever
| © | o CEEs R | B © | S5 from high QLZD [L6gic: allows us to create a scenario or a
comparison that if one thing present it will
do something and if not another.
JRGBGEIgs: motors can be controlled from
this tab, but the extension needs to be
added.
JfE: allows us to allocate control to a
particular pin, in this case where the
readings are coming from: the
potentiometer.
as we've seen before, this
facilitates the use of the variable resistance
Fp— of the potentiometer

else

turn off all outputs

®

;.

-
set Potentiometer = td JCI
=)analog read pin P1 ¥

* As we have seen before, usin
and the [tab we can set the reading
from the potentiometer by setting the
R T N aialup e pin B reading to come from P0O,1,2 depending on
which pin is connected again to the middle
leg of the potentiometer.

else if then (=) Using the[lEETE tab we can create the
following scenarios. [ii = o= ST
hen __,else .

When you open the tab and use the logic

gate [[# 135 4you can click on the plus

shown to add an extra scenario.

47

https://youtu.be/QxQi9CDZA2o

forever

set Potentiometer v to amalog read pin P1

forever
set Potentiometer + to analog read pin P1 w

if Potentiometer w £ w @ then

Motor 1 * on direction Reverse v speed o

Potentiometer v 2w @ then @

else if

Motor 1 ¥ on direction Forward ¥ speed o

else

turn off all outputs

®

set Potentiometer v to analog read pin P1 v

if Potentiometer v < w @ then

Motor 1 v on direction Reverse v speed X/

o
else if Potentiometer v = > ¥ @ thq

Motor 1 ¥ on direction Forward ¥ speed o
else

turn off all outputs

®

48

Using the section of the
tab we create a comparison that

when the potentiometer reads less than or
equal to a value, then it will turn on the
motor

We use the second block in
so if the potentiometer output is greater
than a reading it will do something else
with the motor

Finally, we use the[Z5 & section to turn off
all outputs if this doesn’t exist

As you can see here the readings have
been set at half of 1023, the maximum
reading from our potentiometer ** Use
the calibration video used in the previous
activity in order to find the middle of the
resistance of the potentiometer

Using the {elsleliled tab we can add the
motor controls, changing the directions
and eventually turning off all the outputs

Using and the [ffiEIblock we have
used before we set up the situation where

the potentiometer gives values of
resistance from O - half way (512) and this
maps to the speed of the motor

When setting the speed of the motor we
need to be conscious of the fact that we
want the lowest reading from the
potentiometer to be the fastest speed so
the low in ‘200’ and the middle resistance
of the potentiometer is ‘0’

[
*
©
o
()
)
e

map Potentiometer v

from].DH'@

1823

49

Using the previous learning, we
create a new map where we move
from 513 to the top range of the
1023

From this now we build up the speed
from the middle of the resistance up
to the top end of the resistance

We map this speed from 0 up to the
maximum speed of the motor

Looking at the code, we have now
said that if the potentiometer is in
the middle position, the motor
should be turned off, as you turn to
the lowest resistance the motor turns
in reverse and begins to speed up
until you are at 0 resistance, as you
turn to the opposite direction from
the middle, the direction changes and
it speeds up until you hit the
maximum resistance

Configure the components the same
way as activity 3 as shown in the
image to the left.

Download and test the code

Module 9: External Screen

In previous modules we have examined how to display a range of text and numerical data on the
micro:bit LED display. We can enhance our ability to display data from a range of both onboard and
external sensors, as well as displaying lines of text using an external screen. JCt4 have provided a
Kitronik 128x64 LED display in the Mechatronics resource which we will use in the following activities.

To engage with this activity, you will need to add in another extension. This one is found in the
extension library under the search of Kitronik Display. You can see in the screen shot above which
extension to choose.

€ Goback ?

Kitronlk atsplay Q

kitronik-128x64Display kitronik-move-motor kitronik-halohd
Mak: axte

&ion far VIEW Custom hiacks for the MOV Custam Blocks for driv
Motor Kitronix | lalo HD fo

the Kitronlk §

Activity A: Display Text and Internal Sensor Values

forever

P " JCT ENGINEERING® RiREli o with alignment: Centre v (2
show join rotation (") pitch = @ @ on line ° with alignment: Centre ¥ @ E

refresh display

The code above is the solution to the activity.
It involves some new blocks that have not been engaged with in any other module.

W25 RN CEVH allows for text, measurements and other images to be shared on the screen
aIIows words, values, and other variables to be shown on the screen

allows the pitch of the micro:bit to be shown on the screen

50

https://youtu.be/pdLtcLguT3Q

Search... Q
22 Basic

Input

Music

®
@
© Led
(]

128x64 Display

*** advanced
.l Radio
C' Loops
20 Logic
= Variables

B Math

A Advanced
fw Functions

128x64 Display

Control

display

show @
show pixel at x o y °

Draw

plot o onto display

draw a horizontal * line with length of @ starting at x o y o
draw a rectangle @ wide 9 high from pesition x ° ¥y o

¢ Using the 128x64 display select the - block from the tab

¢ Asshown, drop the block in the - command therefore the text and numbers will end up
on the screen forever

unline°®®

screen (indicated in red)

in Green)

on line o with alignment: Centre = @

There are 8 lines that you can show code on the

There are 3 alignments on the screen (indicated

51

Using the plus arrow expand out the code
block so it reads

Using the plus arrow again, add in the
alignment of the text or variables

#28 Basic

e Using the ab select the block shown

® Input
O Music B 2 etter word, or e o text * As seen in the image, this block allows for
© Lo a letter, word, or line of text to be shown
e
[12864 Display Join * Addthis block to the screen block as shown

in the image below

.|||| Radio parse to number

o * Add your desired text to this block, as

- ’ split = @ shown below left, ‘JCT ENGINEERING’ was
Logic

added

= variables = .
E Math Find index of
A Advanced
is empty forever
fEx) Functions

substring of (@RI

= Arrays

forever * Using the ERASGENGINNENA tab add the

block again to the forever loop

* Using the text tab
block add it to the HileliRs]leled 4 as shown

* Using the plus button on the block add
space for more text

forever

N " ICT ENGINEERING [RET S o with alignment: Centre » (=)

show join o @ @ on line o with alignment: Centre » e)

* Asshown previously, before using the plus button on the - block, you can select on which
line you would like to display the text and the alignment

* On screen, it will now show the words Micro:bit and pitch, the next step is to add in the
numerical value of the pitch.

52

G» Music
© Led

«® Robotics

forever

forever

Search... Q
5% Basic

® Input

@ Music

© Led

CJ 128x64 Display

sss advanced

more

rotation (°) pitch v

magnetic force (uT) x

running time (ms)

running time (micros)

advanced

refresh display

inverted display

53

* Using the fle)g=H option of the flylalii# tab
VR4 N leld g rotation (°) pitch’

* Add it to thejoin” block as shown below

* This will now allow the reading from the
pitch of the micro:bit to come up on the
screen.

° with alignment: Centre + @

* From the advanced section of the FERA !
ab use the ’refresh eIHelEVA block
in order to constantly refresh the screen
and the readings from the pitch

**|f this step was not added in the screen would
only show the first reading of the pitch and not
show any changes in rotation

Activity B: Plot a Graph of Sensor

Sometimes it is desirable to visually represent a set of values.
In this activity, we will explore how we can use the graph
feature of our Kitronik 128x64 screen to record a range of
values in a live graph. We use values obtained from the
accelerometer sensor on the Micro:bit to plot the graph.

Before we begin this activity, we must first
Line 1 Lirves. one anid twi ar fre for taxt understand how the screen allocates space for
Line 2 the graph to be plotted. From the eight lines
available, it reserves lines 1 and 2 for text/data.

Line Lines 3 to 8 of the screen are Lines 3 — 8 are then used as the area for the
used to plot the graph i K

graph, as shown on the image opposite. Any text

s on lines 3 — 8 will be plotted over by the graph.

128x64 Display

® Input

@ Music

* Open a new Makecode document and add
in the 128x64 extension.
From the ERASGCENBINGENAtab, choose the

Variables
[Math
A Advanced
fw Functions

Arrays

* We cannot type directly into the ’-’
code. We need to use the ‘Text’ code

blocks. These are found in the ‘Text’

w
®
o
a
5
jo

1
.
o
w
2
o

drawer. (You may need to click on the = b e X
advanced Tab at the bottom of the code 9 Jdel join (NS XD © ®
drawers to see this) © Led parse to number @D

e From the drawer, choose them (] 128x64 Display [NEAE-..,, Yo"

block from the top of the drawer and place

it in the “S e " block

as shown here——

Radio includes (@)

Loops find index of (@

Logic is empty

Variables T fron () of 1ength €0)

Q

b

. Type “JCT ENGINEERING” in the text box, B Math conpare QD) = @
and place it on line 1, centre aligned. A Advanced char fron (QEIED) ot @

:

Functions PIRLTAL . o to text

= Arrays

text from char code o

u JCT ENGINEERING ' ERIRETTS °-ith alignment: Centre v (©

54

https://youtu.be/FYftGOmG3Zs

3:

22 Basic
—— . e Add another block from the jRA L]

ength of
o = pJSEY code drawer.

soin I XD © ® S
© Lad o e D e From the [[24¢ drawer, choose the ellaiz=1116)

parse to m r

s 4 H H

[12864 Display QNP SRS \'s1d[5K block and place it into the Hale)% block
.l Radio e @ as shown below.
C Loops find index of @
X Logic . e The FaElEReIR 4 block allows us to insert text

(this Rt
= Variables —— © and variables in the one string. We will use this to

substring of (ELILE from of length K . X
& Math display the text: “Pitch = XX” on the display.

conpare (IR o @
Advanced char from « @

Functions T ° to text

= Arrays

text from char code ()
forever

e |n the “Hello” section of the [leilal 5= leyd 6] e

block, type in the text “Pitch = ” as in the example
below.

e We want to display the pitch, so, from the rotation () pitch =
drawer, click on the tab and select the
it into the second
input of the [[ella sl e 61764 block, also shown
below.

e Place this on line 2 with centre alignment.

more

magnetic force (pT) x v

@ Music
Q© Led

running time (ms)

running time (micros)

® Robotics

forever

"JCT ENGINEERING " LIRS c with alignment: Centre v @

show join rotation (*) pitch * @@ on line ° with alignment: Centre + @

128x64 Display

5:
We will now begin to plot the graph.
o e From the RASEERDBISGIEY, drawer, choose
e the [sJ[e]aNe]aite N6 [s]EW, code block.

This is in the Draw section of the drawer and is
show pixel ﬂtxoyo

shown highlighted in the image on the left.

e Drag this out into the forever block and
place it under the code previously inserted.

Control

128x64 Display

= advanced

Radio

1ot @) onto display

Start plotting a ive graph of the chosen variable JACURSUVICIE o B4 ©]

or input on the screen.
oo < @5 @

Loops

Logic

Variables

Delete

clear line o
clear pixel ot x) y @@

Math

Advanced

fw) Functions

clear display

i= Arrays

55

forever

EUET " JCT ENGINEERING ' EHIRETT owith alignment: Centre v @

show join rotation (*) pitch * @@ on line awith alignment: Centre * @

We now want to tell the screen to plot the graph of the pitch. A convenient method to do this is to
right click on the code we inserted in step 4 of this activity and select duplicate from
the contextual menu that pops up when we right-click.

We place the duplicated code into the code block. The Micro:bit
will now plot the values for the pitch onto the display when the code is flashed to it and the screen
connected. (Alternatively, you can select the code form the Input drawer, as we did

in step 4)

7:

To help limit latency or
lags in plotting the graph,
we add in the
refresh displayjeelsl:
gl s T-N128%64 Displa
drawer.

forever

show EBIQEITALIIIILINY on line onith alignment: Centre v @
show join rotation (*) pitch * @@ on line °with alignment: Centre v @

plot rotation (*) pitch *+ onto display

s

refresh displa

8:

Flash the completed code above to the micro:bit.
Ensure the display is connected or the micro:bit will
give an ERROR —no display warning on its LED matrix.
When the micro:bit reboots, it will display a titled
graph as shown here and the values will update to
visually show the variance in pitch as you move the
micro:bit. The axes will automatically update to show
the extreme values as you tilt the device.

What workshop activities or processes might this activity support in Junior Cycle Engineering?

56

Activity C: Display Values from Multiple Sensors

In activity A, we investigated the layout of our
screen and how we can display text and
numerical data obtained from an onboard
sensor. In this activity, we shall now extend
on activity A and display two sets of data
from the micro:bit’s onboard accelerometer,
the Pitch and Roll.

Refer to the image of the plane as a quick
reminder of the terms Pitch and Roll.

Pitch Axis

Rell Axis

forever

show on line ° with alignment: Centre v @

refresh display

1:
The code used in Activity A is shown above. Set up this code following the instructions in Activity A, or
alternatively, duplicate your Activity A file.

forever
.
2:

sho-on line omth alignment: Centre v @ Add h bI k f h

show join rotation (*) pitch * @@ on line a S OW OC rom t e

WA W2 EEMIEIEN code drawer and
' place it in the [{e]gal7=)f block as

shown opposite.

° with alignment: Centre + @

forever

UGN " JCT ENGINEERING * UIRSTTS e with alignment: Centre v @
show join rotation (*) pitch * @ @ on line ° with alignment: Centre + @

on (e O CTRD O F) ©

refresh display

Create a piece of text by joining together any

number of items.

w

e From the drawer, choose the [ellgt sl AWGIEH block and place it into the
block as shown above.

o Inthe [l == AWK block, insert the text “Microbit “ (be sure to include a space after
the word, or the screen will bunch the words together) into the first input space and insert
the text “Roll = “ into the second input box (again, be sure to include a space after the text)

e Now click on the + symbol, shown above, to add another input box to the block. This will
allow us to add the variable we need in the next step.

57

https://youtu.be/sS_j7AsJWws

forever

Ul ' JCT ENGINEERING * Ut e with alignment: Centre v (=

show join rotation (*) pitch * @ @ on line o with alignment: Centre + @

refresh display

e We now want to tell the Micro:bit to measure the roll values from the accelerometer. This
value is contained in the code.

e As in the previous activity, a convenient method to do this is to right click on the existing
code we inserted and select duplicate from the contextual menu that pops
up when we right click.

e We place the duplicated [(ELIN@NeIidy code into the third input box of the

By clicking on the drop down to the right of the choose to change the
reading that will be displayed on this line.

e Modify this line of the Sae\ code block so it appears on line 6, with centre alignment.

forever

UGN " JCT ENGINEERING * JGUIRETTS 6 with alignment: Centre v @
show join rotation (*) pitch * @ @ on line ° with alignment: Centre + @

show join rotation (*) roll * @@ on line o with alignment: Centre * (&

refresh display

5:

Flash the completed code above to the Micro:bit. Ensure
the display is connected or the Micro:bit will give an P
ERROR — no display warning on its LED matrix. :?:‘:7:."’.
When the Micro:bit reboots, it will display both the Pitch e
and roll values that its accelerometer is sensing. e

Try carefully tilting and twisting the Micro:bit in various
directions to see this in action.

kitronik.co.yk

Can you identify a machine or other piece of engineering that monitors pitch and roll values?
How does the machine use this information?

58

Activity D: Display Readings from an External Sensor
Example — A Potentiometer

We have used the potentiometer in many activities across the
previous modules, 1 -8. In this activity, we will use the screen
to display the range of values obtained from the
potentiometer in real time.
To set up this activity, connect your potentiometer to the
header pins on the Robotics board as follows:
e To set up this activity, connect your potentiometer to
the header pins on the Robotics board, ensuring that
the wiper (centre pin) is connected to pin 0.

1:
e From the [RASGENBINGIEY, drawer, select the
show block.
e As shown opposite, drop the Syl block
into the command.
e Next, we add a basic text box. To do this,
open the drawer and select the [code
from the top of the drawer. Insert this into PP
the input of the block.
soin TS XD © @
forever
TN " JCT ENGINEERING * JUERSTT a with alignment: Centre v (=
2.

In the text input, type in JCT ENGINEERING as shown above. Modify the code to show the text on
Line 1 with centre alignment.
3:

e From the [RASGCENINGIEY, drawer select
the 3ol block.

e Place the Hie)W block into the
Elol=021d command beneath the preViOUS "JCT ENGINEERING * CUIREETY o with alignment: Centre v (@

one. u%tentlometer PO
e Asin step one, add a basic text box. To do
this, open the drawer and select the Line 3

code from the top of the drawer.
Insert this into the input of the

forever

block.

o Type the text Potentiometer PO into the
text input.

e Place the text on line 3, with centre
alignment.

59

https://youtu.be/Voaw8QgGJIg

e Add another HelV block into the
command beneath the
forever previous one.

e We now want to insert text and a

variable so we will use the
block.

e To do this, open the [I24 drawer and
select the 'oin “Hello” “World” [delslS]
from the drawer. Insert this into the
input of the S\ block.

e Type the text “Value =" into the first
input box.

5: e Place the text on line 3, with centre

e Type the text “Value =” into the first input box alignment.

of the [[ellg = 5= el 64 block. (Remember to

add a space after the = sign or the screen will join
the values to the text as it displays)

SR “JCT ENGINEERING * JETIRSTTS ° with alignment: Centre v @
show on line o with alignment: Centre + @

forever

BTN " JCT ENGINEERING * JLIRSTT o with alignment: Centre v @

e Now we will add the values from the
gnt: Centre @

potentiometer. From the [H}§ drawer, add the ~Qoatslog read pin PO v)
/)

ELEIAEE RN block to the second input of [l .
1st=3join “Hello™ “World“Jeleld ¥

e Finally, place the code from step five on
line 4 with centre alignment.

e Add arefresh display command to your
code to help reduce latency in the
memory of your screen.

e The completed code is shown to the
left.

refresh display e Flashing this to your Micro:bit will

make it display the values it is reading

from the potentiometer connected on

Pin 0.

forever

show on line c with alignment: Centre v @
show on line ° with alignment: Centre v @

show join m analog read pin PO~ @@ on line ° with alignment: Centre v @

(. o)

Has this activity helped you understand how the micro:bit “reads” the signals from the potentiometer?
How could this be used to help student understanding of the difference in analog and digital input?

60

Activity E: Investigating Mapped Values using the 128x64 Display.

The “Map” function is something we regularly use with our
Micro:bit, particularly when controlling servo and DC motors.

In many projects, smooth operation of our drive systems is
dependent on mapped values; where our Micro:bit is relating
the speed or direction of the motor to an analog reading. We
have explored this extensively in Module 8.

So what exactly is the Micro:bit doing when it maps a value?
Using the code and potentiometer set up in Activity D. We shall |
look a little closer to find out.

o From the [RESGERBINGIEY, drawer select the el block.

e Place the Je\7 block into the command beneath the previous code from
Activity D.

e Next, add a basic text box. To do this, open the drawer and select the f code from
the top of the drawer. Insert this into the input of the Jafe\ block.

e Type the text “VALUE =" into the text input, remembering to add a space at the end. Place
the text on line 4, with centre alignment.

forever

SN " JCT ENGINEERING * ELIRSGTS owith alignment: Centre v+ (@
UGN “Potentiometer PO " JEUERSTT °uith alignment: Centre @

show join analog read pin PO + @@ on line °with alignment: Centre + @

e Type the text “MAPPED VALUE ” into the text input added above, remembering to add a
space at the end.

e Modify the code to place the text on line 6, again with centre alignment. This is the title text
for our mapped values which we shall display on the next line.

forever

BIe"S IR on line (@) with alignment: Centre v+ @

"Potentiometer PO LIRS e with alignment: Centre v @

show join analog read pin PO * @@ on line onith alignment: Centre * @

show on line o with alignment: Centre v @

ref%sh display

61

https://youtu.be/S8GcF1VvYy4

forever

show (EIQETONIIRNEY on 1ine @@)) with alignment: Centre v © 3:

LTS on tine @) with alignment: Centre » @ For convenience, we can duplicate a
RZONTEE analog read pin PO * @@ on line o-vith alignment: Centre ¥ @ Ilne Of COde here'

oo et clck on the

X Eonani block containing the
“Hello” “World”[IEIS
e Click on Duplicate from the
Help contextual menu that appeared
when you right clicked.

Delete Blocks

e Place this duplicate block of code into
the forever block as indicated to the Ey
rlght. sho-on line o with alignment: Centre » @
e Modify the text in the first input of shom (AR = ire @ with atignment: Centre ~ ©
thiS “ne tO read ”POWER = » show join m analog read pin PO + @@ on line oluth alignment: Centre * @

"MAPPED VALUE * EONEEN °w\th alignment: Centre v @

Remember to add a Space at the end! show Jyin m analog read pin PO + @@ on line onth alignment: Centre v

refresh display
o We delete the ERELCIaNF=ETeMel[IN0)

from the block as well.

e As we will use this line to display the
mapped value that the Micro:bit has show Join (EIEED @ © @ on tine @) with aligment: Centre + ©
calculated.

e Modify this code to place the text on
line 7 with centre alignment.

4:
Search Variables Before we can display a value, we need to create a variable that will
Basic e become the value we want to display.

We have been through this process previously in Module 8.

|npUt mapped *

Music sely mapped ~ to i
e Open the VEIREIIES drawer.

L change napped = by @) e Create a variable called “mapped”

128x64 Dinpley e We now need to tell the Micro:bit how to calculate the
Radio mapped value. To do this, place the § to block
Loops from the variables drawer into the [{e]ga)%=)j block as shown
Lighe below.

Variables

forever
s% mapped * to o
BUGT " JCT ENGINEERING * EUERETT owith alignment: Centre v @
show on line ° with alignment: Centre v @

show join analog read pin PO ¥ @@ on line ° with alignment: Centre v @

show on line o with alignment: Centre @
show join m ‘ @ ® on line o with alignment: Centre v (&

refresh display

Led

128x64 Display

Radio

Loops

Logic

Variables

remainder of o - o

min * of aand o
max v of aand °

Advanced

absolute of a
J& Functions
square root ¥ o
= Arrays
i wound v o
T Text
pick random 0 to @
® Game
constrain c between o and °
() Images
map o from low o high to low o high °
Pins pick random true or false
e -

6:

Now that we have set up our mapped
variable and rounded it off to the
nearest whole number, we must now
tell the micro:bit what input we want
it to measure, as well as the limits we
want it to map to. (e.g., a servo needs
values up to 180, but a DC motor
needs outputs up to 100.)

e From the [HiE drawer, choose
the [uEcode and insert
it into the [ol¥]gle! code
as shown to the right.

e We need to ensure the “to 7
high__ " value is 100, as we
will use a DC motor later.

forever

round + (4

set mapped * to

Led Variables

128x64 Display

Make a Variable...

Radio A‘wpped >

set mapped * to °

change mapped ¥ by °

Loops
Logic

Variables

refresh display

5:

In previous activities, we have used the
mapped value to control motors. Our
reference for the output of the function has
been the speed/direction of the motor.

If we display the mapped value directly on the
screen, we will see a number with as many
decimal places as the screen can fit.

This can be quite confusing and messy to
display, so we shall round off the mapped
value to the nearest whole number.

This way we get a simple, clean display of the
mapped value.

e To round off the mapped value, we
use m code block from
the drawer of code.

e Place this block into the
! code from step four.

e The Micro:bit now has been instructed to map the
values from the potentiometer connected to Pin 0 (0
-1023) to a range suitable for power output to the DC
motor (0-100%).

e To display the result of the Map function, open the
drawer and select the mapped variable.

e Drag the variable out and place it in the

second input of the [[ella F=EIKERWGIE block as

shown below (where eREIEREEL I Mused to be before
we deleted it in step three).

forever

map analog read pin PO ~

from low o

set mapped ¥ to round ¥ from high @UZE]

EUGTE " JCT ENGINEERING * LIRS “uith alignment: Centre v @
show on line ° with alignment: Centre v @

show join analog read pin PO v @ @ on line ° with alignment: Centre v @

show on line G with alignment: Centre ~ @
show join @ @ on line ° with alignment: Centre v+ (@

refresh display

8:

The completed code is shown in the

image above.

When downloaded and flashed to the v i e e

micro:bit, the screen will display the - L :

range of values read from the ¥ 4 g .

Potentiometer (PO) and the mapped m
O M

values which are scaled accordingly.

To check the accuracy, cycle from 0 —
1023 on the potentiometer, this will give
a power output- from 0 — 100%.

If you rotate the potentiometer to a
reading of 512, you should have a
mapped value (power) output of 50%.

9:

The purpose of the mapping function in
this example is to control the power
Motors output to a DC motor, as we did in

b g T S e RO Module 8, Activity C.
To compare the values on screen to the
Input e e [operation of the motor, let’s add our DC
motor on Motor output 1 of the All-In-

One Robotics board.

Music Stepper 1+ turn Forward * adegrees

Led

Stepper 1+ turn Forward v asteps

e Add the All-In-One Robotics
extension to your Makecode

Robotics window.

P e Go to the Veife]& drawer within
the [ie]efeidles drawer.
Motors e Choose the [Y[eie)d]y

direction speed
code block.

128x64 Display

*e= Settings

64

forever

10:

map analog read pin PO *

MET:RlslVIotor _ on direction fron 1on @)
speed code block into the |{e]=l=]] | —— foun Mgk
block. It can be placed anywhere, but for to 1on @)
clarity, let’s place it after the last code we to high)

|nserted. ELET “JCT ENGINEERING * NG °uith alignment: Centre v
show on line ° with alignment: Centre + @

TO inStrUCt the micro:bit What speed to show join analog read pin PO v @@ on line °with alignment: Centre v @
set the motor to, insert the variable shon (CRRED) v tine @ with alignment: Centre + ©

mapped into the Speed inpUt Of the show join mapped v @@ on lineew‘lth alignment: Centre v @
motor on direction speed =

code block. The [EISIIe variable can be LSl O]
obtained from the VEIREIES drawer, or it
can also be duplicated from existing code
in the window.

refresh display

refresh display

When this updated code is downloaded and
flashed to your micro:bit, the % power from
the battery being sent to the motor will be
shown on the screen.

As you increase power by turning the
potentiometer, you will hear and see the
motor changing speed.

Note: The motor will not begin to turn
immediately at 1%, as there is a minimum
voltage it must receive before it can
overcome inertia, load, friction, etc. Using a
6v battery, you will likely be in the mid-teens
before your motor moves.

(Has this activity enhanced your understanding of mapped values? \
How could this activity support student understanding in mechatronics?
What practical activities in the workshop does this activity lend itself towards?

\. J

65

Module 10: Ultrasonic sensors

In the previous learning log from CPD 2020/2021, we engaged with LDRs in module number 6 by adding
them to the Robotics board as additional sensors. This module will explain how to add and code an
ultrasonic sensor and apply it to a geared DC motor and a servo motor.

ﬁossible Configurations \

VCC: 3v

Gnd: Gnd

*Trig: PO,P1 or P2
*Echo: PO,P1 or P2

*Trig and Echo need to be identified in
the code to decide the pin they will join
to on the micro:bit or All-in-one Robotic
board.

Videos supporting the activities in this
module include instructions which
outline how to configure the ultrasonic
sensor to the micro:bit and Robotics
board.

Extensions
To use the ultrasonic sensor, you need to add in the extension for the code to Make:code. Search for
sonar in the ‘extensions’ library and add the one outlined in the diagram below.

4 Goback

sonar

MiniBit

MiniBit

ENERGY

(D Senoniar

S Y M

RobotCar microshield climate-action-kit-energy nexusbot
ficro:Bit extension for Ks0426 Make&Learn MakeCode Library to interact with the InkSmith nexusbot
dio RobotC nicro:shiel Climate Action Kit: Energy

66

Activity A: Calibrating the Ultrasonic

ping trig P1 w

set Distance v to echo Po »

unit cm ¥

Why do we calibrate sensors? When using sensors for
show number Distance v any reason, we should know it’s maximum and
minimum reading for a given situation. Without the
readings, we might make the circuit not sensitive
enough, or the opposite, too sensitive. You can
access the video on how to calibrate a sensor by
clicking or scanning the QR code.

How might you engage your students in this activity in Engineering?

Search.. Q Variables 1.
822 Basic *
® Input Make a Variable... * When we are taking a reading, we will
O Music need to create a variable.
© Lo ¢ Clickon the tab and then the
& Robotics ‘Make a Variable’ button
| Radio * Just like in the subject of Maths, a variable
:.: oone can have any value.
¢ Logi * We will dictate where that variable comes
=g from, in this case, the ultrasonic sensor
f Math
2:
Q =
Variables * Name the variable something that will help
Make a Veriable... make it identifiable, in this case ‘distance’.

Distance w

* When the variable is named, three blocks

set pistance v to () appear.

change pistance + by (@) . allows for the use of variable to
show numbers.

. allows us to create the
link to the analogue value coming from the
LDR

gl Change distance by _'EIICVEIIREC
change the variable which can be useful
for a countdown using a loop.

67

https://youtu.be/FcSSiWg0DaQ

set Distance v td J])
S A

forever

ping trig P1 w
set Distance v to echo Po -

unit m »

=D

show number{ X \:Z
- <4

Reflection on your observations:

* From sESe we use the fielf=l=l# block as we
would like this to run continuously in the
background.

* Using the ‘variables’ tab we use
readingto * |

e Fromthe ’sonar' tab we use the
MORETo TN VML TIATEY and set it to whichever
pins the ping and trig are connected to. Also
choose your unit of measurement i.e., cm or
inches.

* By doing this, we have said which pins the

readings are coming from to measure the
distance.

* Using the[EEES tab we can use[EIEIA
p1lRalslsldd to put the reading on the screen

* From Variables’ we use to show
the value coming from the ultrasonic sensor.

* Now upload the code to the micro:bit and
take the reading of the ultrasonic sensor,
based on how far it is from an object, as this
will be useful in the next activities.

* Download and test the code and configure
the components as shown at the start of
this module on page 45.

* Place an object in front of the sensor and
the reading will appear as a number in cm
on the micro:bit screen.

Note: In some instances, the micro:bit may not be able
to power the ultrasonic sensor. The LEDs may
constantly be reading 0 (zero). If this is the case a
separate power supply may be needed as shown on
the image.

Green = TRIGG to PO
Orange = Echoto P1
Black = GND to GND
Red = VCCto 5 volts +

68

Activity B: Using the Ultrasonic Sensor to Show a Warning using the Video

Micro:bit

This activity explores code which can, using the screen on the micro:bit, send a
signal that you are too close to an object by getting a signal from the ultrasonic
sensor. Click or scan the QR code to access the supporting video for this activity.

ping trig PO =
set Distance v to echo P1 w

unit cm w

Distance = < v ° then

show icon

else

show icon

®

forever

ping trig P1 =
set Distance v to echo P@ w

unit cm w

2 Basic
Input
Music
Led
Robotics
Radio

Loops

Variahles
Math
Sonar

2™ Neopixe

[=].

This code is intended to fulfil the activity
constraints.

What is involved in the code?

. Simple functions such as pausing a code.
Nel:dff Create a logic pattern where, if something is
present it will do something, otherwise it will not.
VEERIE A This is a programmable unknown value
that can be set to any value, in this instance the
reading from the ultrasonic sensor.

Sonar: taking the readings from the sonar using the
pins and values set in the code.

1:

* Using the first 3 steps from ‘Activity 1’ your
coding blocks should be aligned with the
diagram on the left.

2:

* Using the " tab, use the ‘||R{g¥[=Ril=ly

' Block and add it to the code.
* Using the comparison section as shown in the

image, select the ' option.

e Addittothe " part of the logic gate.

*This has now created a comparison stating that ‘if
___<__ _thendo if it’s not there do ’

69

https://youtu.be/Q9ZJZ2ZJFWE

forever 3:
* Using the JERERIER tab, select the
BRI block and add it to the

comparison block as shown.

* From here you can create a distance stated
using the calibration used from ‘Activity 1’

. * Once you have decided on a distance that

you would like to warn people that they

are too close, enter it into the numerical

option of the comparison.

ping trig P1 =

set Distance =+ to echo PO »

unit cm =

4.
forever .
* Forthe option code here, we have used 6¢cm as the
ping trig P1 ¥ distance we want from the ultrasonic sensor for the
set Distance v to echo PO v micro:bit to warn someone they are too close.

B * Using the-tab, select the _ choosing

which icon you want to show on screen, in our case
Distance = <L w ° then an IXI ora 1\/; .

show icon

A So, what is happening in this code?

We are using the sensor to detect the distances in cm.
When the distance is greater than 6 cm from the ultrasonic
sensor it shows a ‘v”’ on screen but when you go closer than
6 cm from the sensor the icon changes to a ‘X’ and you are
warned you are too close.

Download and test the code with the micro:bit. The
Ultrasonic sensor should be configured to the board the
same way as shown in activity 1 of this module on page 45.

If your micro:bit cannot get a reading from the microbit, use
the configuration for the components on page 47.

How could you use this with your students?

70

Activity C: Using the Ultrasonic Sensor to Show a Code
on an External Screen

The code on the left is intended to fulfil the
activity. The following coding tabs are required in
ping trig P1 = the menu:
I .. o - « [EEBIE the forever block keeps the code
unit cm running in the background for the time the
'shm@ micro:bit is powered up.

* VERREI[EAtab allows you to set your
measurement from any source, in this case

the ultrasonic sensor.

+ [PI3TIRthe extension when added will
allow you to put many different things on
the screen.

€ Goback

Kitronlk gispley

kitronik-128x64Display kitronik-move-motor kitronik-halohd kitronik-smart-greenhouse

MakeCode axtengion far VIEW Custom backs for the MOV Custom Blocks for driving the A custom MakeCoge Exten

128x64 Display Moato Kitronix | lalo HD for the SBC the Kitronlk Smart Greerhouse Kit

To engage with this activity, you will need to add in another extension. This one is found in the
extension library under the search of Kitronik Display. You can see in the screen shot above which
extension to choose.

forever 1:

* Using the first 3 steps from ‘Activity 1’.
Your coding blocks should be aligned with
the diagram on the left.

ping trig P1 »

set Distance v to echo PO v

unit cm

71

https://youtu.be/_pGCxTt7PCM

jol

£28 Basic
@® Input
@ Music
© Led

«® Robotics

£ 128x64 Display

s advanced
.all Radio
C' Loops
23 Logic

= Variahloe

128x64 Display

show pixel atx°y°

Draw

plot o onto display

ping trig Pi w

set Distance ¥ to echo PO~

)@
sl .\

[Jnistance =

A number showing the
distance will be seen here.

* Once you have added the extension, you
can now find the blocks under

* There are many different options to
choose from to define what you would like
to show on screen

* Asyou can see in the picture to the left,
there’s many different options for you to
show different pixels on screen

* The option we need to show the reading

from the ultrasonic sensor is

e Using the PETEIIE tab, add in the
CIGEE block into the show block as
shown

* This now tells the screen to display the
distance (in cm) being read by the
ultrasonic sensor.

* The code may be downloaded and tested at this
point before progressing to the next part of the
activity.

* Configure the micro:bit to the screen and
ultrasonic sensor to the screen temporarily using
crocodile clips.

* The distance will be visible in the top left of the
screen as highlighted.

Configuration of the sensor in the image is as follows:
Black: GND to GND

Red: VCCto 3V

Green: TRIGG to P1

Application Challenge: using the code to make a reversing sensor

set Distance ¥ to

-1

1:

ping trig P1 =

echo PO

unit cm *

Once the code has been set up like this, we can add
different commands to do different commands

The code here mimics in a similar way to what can happen
on screen in a vehicle when using parking sensors

In order to make a sensor, we will need different sounds
depending on the distance from the sensor

We also need to allow for different distances to
differentiate between the sounds

72

Search... Q
52 Basic

® Input

@ Music

© Led

true » then

«® Robotics

] 128x64 Display
.l Radio
C' Loops

forever

ping trig P1 =
set distance * to echo P@ v

unit om *

show distance = @

if distance v < ¥ e

ping trig P1 =
set distance v +to echo PO v

unit o ¥
show distance » @
if distance v | <+ @) and~

D

[

distance *+ 3z ¥ o then

forever

ping trig P1 +
set distance ¥ to echo Pa v

unit cm v

show distance * (@)

if distance v < v @ and = distance v | > v o then

distance v+ =z w @ and *

distance *+ 2 = ° then @

else if

[UL (Pl Middle D

sistmnce - |ER DD =S
ring tone (Hz) (LIS

then (=)

else if

aistance = || 2= (@)

73

Using logic gates, we can create a
sequence which will allow different
reactions for when different readings are
taken by the ultrasonic

Using the , we can set up a
few different scenarios

We can use the comparison section to add
in a block that references a distance less
than a given measurement from the sensor

When using the in the place of
numbers we have created the premise that if
the object sensed is within a certain distance
Using the block [EIjlel we can set a
range of distances as shown from 16 to 11
We use a comparison block adding the
variable o the start of it

Making sure that the distances read from <
to > therefore locking it between the 2 values

Using the il tab we can add a tone to
be played

KGR from here you can
choose the tone you want to play. This
example starts at ‘middle ¢’

From here we can duplicate the blocks and
add more using the left click on the mouse
You can change the tone to simulate a
vehicle getting progressively closer to an
object

As you can see here that the progression is
indicated by the numbers decreasing and
the tone is increasing in pitch

The code needs to tell the tone to stop if
it’s been started. We can do that by usin
the greater than comparison and m

sounds’

forever

ping trig P1 =
set distance v to echo P@ +

unit cm v

show distance w @

if distance £ w e ELT distance » > w e then
ring tone (Hz) RGN

else if distance = distance * £ o then @

ring tone (Hz)

else if distance » distance * >w o then @

ring tone (Hz)
else if distance = > w o

stop all sounds

* This code will solve the challenge
* Are there any other alternative options?
* What code would you use?

How could you use this with your students? What way could you integrate this into
project/classroom activities?

74

Activity D: Using the Ultrasonic Sensor to Turn Off a Motor

The DC Motor can be controlled by the ultrasonic sensor using the all-in-one robotics
board. The components can be configured like the image below. Click or scan the QR

code to access the supporting video for this activity.

The configuration of the components is outlined in the image below and as follows:

Black: GND to GND
Red: VCC to 3V
Yellow: TRIGG to P1
Green: ECHO to PO

forever

ping trig P1 w»

set Distance » to echo PO »

Motors

Motor 1 = on direction Forward = speed °

turn off Motor 1w

Stepper 1 » turn Forward odegrees

Led
Robotics

s Servos

Stepper 1 w turn Forward v o steps

== Settings

.l Radio

75

* Using the learning from ‘activity 2’, we can
build the code to the same point as shown
on the left

* This code is the building block for our task,
to stop the motor when we get too close
to an object

* From here, you can again choose a
distance that you would like the motor to
stop from

* Using the RITNGiNGEIIEN from the

robotics tab, we can tell the motor to turn
off inside this distance

*the ‘all-in-one robotics board’ extension
needs to be added to access this tab

We will also be using the

(o [17=Ted (o] 011 BN block to make the
DC motor turn

https://youtu.be/3SbKYSSlT-w

ping trig P1 w» 3

set Distance v to echo PO v

unit om v

if Distance » < w ° then

turn off Motor 1 =

else

ECHO to PO
TRIGG to P1

GND

vCCto +

By adding the[IR we have
now told the motor to turn off when the
ultrasonic sensor is 6cm away from an
object

Adding in the
teIIs the system that it’s to go until
it is 6cm from an object

Download and test the code on the
configured components as shown in the
image on the previous page.

Note: If the all-in-one robotics board is not able to
power the ultrasonic sensor from the pin headers
on the link pads, it is possible to supply additional
power. This can be taken from the middle of the
three auxiliary power pins next to the terminal
block for the battery as indicated in the image
opposite. To do this, disconnect the VCC from the
3V supply and connect it to the middle (labelled +)
beside the terminal block. This will supply the
Ultrasonic sensor with the same voltage being
supplied by the battery, rather than the 3v
available on the 3v header pin.

Warning: Connecting an incorrect wire from the
sensor can damage the sensor!

If connecting to the auxiliary power pin, ensure
the battery voltage does not exceed 6v.

There are 3 pins beside the battery terminal block. There are 3
auxiliary power pins beside the battery terminal block.

Connect the VCC to the middle which is the + .

/Challenge:

_

What are the implications of this code? E.g., the vehicle will stop when it gets within 6cm of an
object, what could we do to change this? What could we do to make it change direction instead?

~

J

76

Module 11: Addressable LEDs (Neopixels)

Adding lots of LEDs into an engineering project can be a complicated process,
often ending up as a spider’s web of switches, wires, resistors, and LEDs.
Addressable LEDs are the latest evolution of LED technology. They can make this
process easier. A brief overview is illustrated below.

1-RED
2-GROUND
|:> 3- GREEN
4-BLUE
A basic LED requires two Adding multiple LEDs, Red, Green, Blue (RGB)
wires and emits one colour, resistors and wires LEDs can display multiple
similar to a traditional bulb. becomes messy and colours and are neater.

frustrating.

RGB LED strips are long Neopixels are unique because each

lengths of LEDs which RGB LED strips are commonly LED contains a controller chip, so

can all display multiple used too for decorative each one can be a different colour

colours. lighting as shown. and they can be animated using
code.

The driver chip in Neopixels allows long lengths of LEDs to be controlled via a single o Driver chip

data signal. This data signal needs a controller such as our Micro:bit. The data [On LED

signal needs only one wire to communicate between the controller and the strip, e

so attaching a long length of LEDs can be as simple as connecting a servo motor. . .

T

— Simple three wire —
connection
%

® Ground (-ve)
% Power (+ve)

R

5 % Data signal

K/

K/

7/

Neopixel strip s t
ervo motor

77

Connecting your Neopixel strip to the Micro:bit

Use the video titled ‘Getting to know your neopixels’ to guide you through
this section. It can be accessed by clicking or scanning the QR code
opposite.

The video will explain the principle of operation of
the LED and the challenges of wiring it to the
micro:bit. The image and instructions are provided
below for your convenience and as a quick
reference.

e The red on the Neopixel joins to 3V.

o The white lead on the Neopixel joins to the
GND on the micro:bit.

e The middle lead (green) on the Neopixel
joins to PO on the micro:bit.

This configuration applies to each of the following
activities A-E in this module.

Ensure there is very good contact between the
crocodile clip and the wires on the LED to ensure a
good connection.

Adding the Neopixel extension to Makecode for micro:bit

For your micro:bit to communicate correctly with your LED
strip, you need to add the Neopixel extension to your
Makecode session. This adds the Neopixel drawer to
Makecode, which contains blocks of code you can use to

neopixel control your LED strip.
l Neopixel
222 Basic From the code drawers on the left, the following
® Input are required in this module and are colour coded
throughout the activities.

@ Music
© Led . The- drawer

.l Radio

' * The - drawer

C' Loops

3% Logic . The-drawer

= Variables . The-drawer

@ Math

2'* Neopixel The - drawer

78

https://www.youtube.com/watch?v=feFzOvwtXE0

Activity A: Light it up!
llluminating your Neopixel

This activity explores code which can be used toilluminate and clear your Neopixel strip.
This is done using basic inputs and Neopixel code. This is worked through in detail in the

accompanying video. Click or scan the QR code to access the video.

on button A * pressed

on button B v pressed
strip v clear

strip

.
o

Activity B: Basic Animation
Using Shift & Rotate commands

This activity introduces code which can be used to animate the Neopixel strip. This
is a follow on from the previous activity and again basic inputs are used to create
effects on the strip. This is worked through in detail in the accompanying video.

strip v show rainbow from a to @

on button A ¥ pressed

strip * shift pixels by °

strip v show

set strip v to NeoPixel at pin Po v with) leds as RGB (GRB format) ~

Lighting up the rainbow

set strip v to NeoPixel at pin PO v with @ leds as RGB (GRB format) «

79

Find the S3#54glsR{eM block at the top of the
Neopixelf [l

Drag this into the S E1R¢ block.

Update the S8 igl*R{e¥ block to contain 10
LEDs. This lets the micro:bit know how
many instructions it should send.

Add the SielAEGsEN block from the
Neopixel drawer to the [e]gleI¥jade]sWANeI=H=le
input. — This turns on the rainbow.

The strip is turned off by adding the Siile
clearElglelstrip showje]leJd <3 ¢eRdslsJoNn button
NS0 block.

Like the last activity, drag the S iglo R el

block onto theblock, updating it to
show 10 LEDs.

Now add the block into the
block as shown — This turns on the
rainbow automatically.

Add a pressed block and put a

strip shift pixelsERIE] block into

it. -This pushes the LEDs from the start to
the end of the strip. It will move forward
one LED each time it is pushed.

https://youtu.be/wiJ0lM2jBgk
https://youtu.be/A5gK9ofAZXo

-4 H-H H-H H-
L e e
8:):8::8:]:8

This shows the effect of shifting the pixels by one each time button A is pressed. The LEDs are pushed
from the start of the line until they are all pushed off. The strip will then be turned off.

Rotating Pixels

LI-elelETalon button B pressedjs)fele@

e Insert the SifjemdeiEii=n sV EISHE block and the

blocks into it. — This tells the micro:bit

strip v show to push the LEDs forward one step, but with this
command the LED pushed off at the end re-joins

on button B ¥ pressed

the back to the queue.

This shows the effect of rotating all the pixels by one each time button B is pressed. The LEDs that
are pushed off the line go back to the end of the line and the cycle repeats continuously.

To automate the rotation:

(I N-lsaF-lslon button A+B pressedilalesls

while true « block.

do strip v rotate pixels by @ e Add the SiflNEIENNEE and the

blocks as in the previous activity.

striv ~ B e Now add the block from the [9y
drawer and modify it to ”" as shown
opposite. This creates a continuous loop
effect for our rotation after button A+B are
pressed.

e Adda M block to slow down the loop
speed, making it easier to see.

on button A+B ¥ pressed

pause (ms) @U[/R4

Download and test the code on the micro:bit.

80

Activity C: School Ahead Warning Beacons

This activity explores a practical example of how to manually create a flashing
beacon on the Neopixel, and how to create an automated sequence also. There is
a follow up creative activity to accompany this coding activity. Click or scan the QR
code to access the video.

sy HROEENNRND
e Feloleleeeleloiole

Planning the solution
The image above is the plan for the school beacon.
It will be used to guide the coding.

on button A ¥ pressed

Coding the solution - step one

o The JE#5d{[sRhteM block has been added to
the block and updated to 10 LEDs,
as in the previous activities.

i e Inthe input, add the

pixel colorat__ to This allows us to set
any individual led to a colour of our choice. —
From the plan above, we have set led no:0
to orange.

e The block is added again and this time we
set led no:1 to orange.

on button A

strip

e Asseen opposite, we repeat this for all 10
on button A ' LEDs, assigning the correct number and

set pixel orange colour to the LED as we had set out in the
plan above. (0,1,2,3,4 are orange. 5,6,7,8,9
are black, i.e. turned off)

set pixel orange

set pixel orange

st pixel orange e The block is added to turn on the
set pixel orange LEDs to the set colour.

set pixel black +

set pixel black +

set pixel black +

e The strip is turned off by adding the

set pixel black clearElilelstrip showjs]leld RteRisl=}on button
set pixel black RS0 block.

https://youtu.be/rUJuZwrvgd0

Coding the solution — step two
To code the second step from the plan above,

strip ~ set pixel color at (@) to black - we can duplicate the [JgloINateyW- W T=35=0| block
strip + set pixel color at (@) to black + and change it to an [Nt MRS =E . These

strip v set pixel color at (@) to save having to re-build all the blocks of code.

on button B ¥ pressed

strip * set pixel color at o to

strip = set pixel color at (@) to e Asseen opposite, we update all 10 LEDs,
strip v set pixel color at (@) to assigning the colour from the plan
strip + Jset pixsl color at (@ o above. This time LED’s 0,1,2,3,4 are

trip - BEPO ORI & black, while 5,6,7,8,9 are now orange.

strip set pixel color at ° to o m
e The block is again needed to
turn on the LEDs to the set colour.

strip v show
e By pushing buttons A or B on the
micro:bit, we can create the alternating

flashing beacon.

Download and test the code on the micro:bit.

on button A+B * pressed

Automating the beacon

While the beacon can be manually operated, it is much
more practical to do this automatically. This can be
easily achieved.

strip * pixel orange ¥
strip * pixel orange ¥
strip v pixel orange ¥
strip v pixel orange v

strip v pixel orange v

Coding the solution

strip v pixel black

SErAR'Y phnal Blgck > o Duplicate the [oJaeIViate s MWVANGI=I3Y=le| block and
sl o pixel Wlack > change it to a new [olaNsIilate s WACTNeIZ=H=Le| block.

strip v [SSEENe, Slack » This block contains the code for the first step of

strip v St pinal black » the beacon flash, from button A.

st e We now copy the code for the second step of the
P beacon flash from the pressed block.

strip * NN Shoek We add this code to our new

strip * [SSE RN, black » pressed block.

stri - S e e We must add a after each step to tell the

striv * i micro:bit how long to leave the LEDs on for.

—hd¥ Shawi= e Finally, we add a loop to automate the flash
striv - S o sequence by choosing the loop and
stris * Sren = adding it as shown opposite.
strip * set pixel orange *

e Pressing A+B will now operate the flashing
beacon.

strip v set pixel orange ¥

strip * set pixel orange ¥

Download and test the code on the micro:bit.

strip v

pouse ca

Design Challenge:
An ambulance supplier intends to upgrade their fleet to
energy saving LED strips. The strips will be located on the front
top part of the body, in the same position as the lights shown
in the image.

o Design, code, and test a beacon display that will be

suitable for the ambulance.
e Apply your code to your Neopixel strip.

Light sequence: P
g Step One P Q O‘, OL Q
0 1 2 3

2@
=lO
~1O
2 (@)
2@

Light sequence:
Step Two

-
-
-
-
P

UUU
L]
P
_.LO
P

Pl
[

Project name:

Light sequence:
Step One

o|lO
©
§©
2 (@)
O
O
§©
1©
g
<O

Light sequence: P
“sewwop (O] [0 [0 [O] [O] (O] O] [O] [O) [O
0 1 2 3 4 5 a] T] 9

Light sequence: P
“semesp O] [O) (O] (O] [O] (O] (O] O] O] [O
0 1 2 3 4 7] 3] T [:] 9

Light sequence:

Step Four ’ J O O O Q_ g
Q 3 4]] 7 g g

oo
B

-0

O

Light sequence:
Step Five

JUau
b
b
b
b
. ©)
b
b
b
b
b

o
—u
i+
[]
o
1]
|
oo
[4e]

Light sequence:
Step Six

JuUud
b
b
b
b
h['D"
b
b
b
b
b

=
—u
[+
[
o
[er)
L
[ae]
[ie)

Light sequence:
Step Seven

Juu
b
b
b
b
h['O"
b
b
b
b
b

=l
—u|
[
[
o
[=r]
e
o)
[e)

Light sequence:
Step Eight

ire)
MLC)
mLC}
mLO
ﬂLC}
mLO
:nLO

o
%]
R R

Activity D: The Larson Scanner (Knight Rider) Video

This activity explores more code which can be used to animate sequences on your E E
Neopixel strip. We will investigate a running sequence of back-and-forth light. This is a
progression from Activity B and C, which contain prerequisite knowledge. Click or scan
the QR code opposite to access the video to guide you through the activity. E .

set strip v to NeoPixel at pin PO v with @ leds as RGB (GRB format) +

strip v set pixel color at o to red v

Coding the solution - step one

e As shown above, the J3851g[JR{M block has been added to the
block and updated to 10 LEDs, as in the previous activities. As

shown above, the J345iflsh{M block has been added to the

block and updated to 10 LEDs, as in the previous activities.

LI e loIs-adsT4set pixel colorat to has been added and modified
to set pixel 0 to red.

e When the Sifleiiel block is added, it will turn the first led on the
strip to red. This is shown opposite. —

Returning to code we used in activity B, we add the Si{g|eialiid bl
block and the strip show block. This pushes the red LED one step up

the line.

We need this step to happen nine times, so we add a loop by adding
strip ~ SuEy the block and modifying it to 9. This makes the step

pause (ms) repeat nine times, bringing the LED to the end of the strip.

Adding a block slows down the steps so we can see the LED

move.

forever

repeat o times

0 strip * shift pixels%y °

forever

repeat o times

e The LED is currently starting at position 0 and shifting to the end
of the strip, where it pushed off and appears to turn off. We
need to now tell it to step backwards from 9. strip v shift pixels by Q

e We do this by duplicating the block and all the code strip v Jshow
inside it. We add it in the loop underneath itself as
shown opposite.

e To tell the LED to shift in reverse, we modify [z aliid s]P I e g o -
repea imes

! code to shift by -1. Now our red LED will travel over and -
back from position 0 to 9 forever.

strip v show

do

pause (ms) @UIR4

Challenge: How could we modify our code to alter the pause (ms) EU/ e
speed of the scanner? Experiment with making it
double, and then half it’s speed.

84

https://youtu.be/-OKT9PIdi_k

Activity E: Dynamic Indicators (Audi Style)

This is an advanced activity. We explore code which can be used to create dynamic
“Audi” indicators. Many of the concepts are established in previous activities. This
activity should be attempted after completing these previous activities. This is worked
through in detail in the accompanying video. Click or scan the QR code to access the
video.

set strip v to NeoPixel at pin PO v with () leds as RGB (GRB format) v

on button A ¥ pressed

set range ¥ to| strip ¥ range from o with e led

e We begin this activity as usual, by adding the

code to the block and by
modifying it to have 10 LEDs.

e Using an block, we now
add the block. This code sets

up a group of LEDs called a range. This is useful
to us as we can then vary the size of the group.

] The default values are to start the group at LED
- 0 and to add 5 LEDs to it.

range - SRS Orange v e We next add the Sl el A) 610s block

on button A ¥ pressed

and modify it using the drop down to read

= A I We can now set the

colour of the group as we decide to. We choose
orange from the drop down.

on button A ¥ pressed

for index from @ to @
do

set range ¥ to strip * range from °with eleds set range ¥ to strip ¥ range from o (U8 @ 5)

range ¥ show color orange ¥

range ¥ show color orange ¥

We have set up a group of LEDs called a range. We have also defined the colour of the group.
The key to making the dynamic indicator light function is to add LEDs to the group to make it
appear to “grow.” We do this using a loop.

e From them drawer, we add the |{J@lale[=V @il RONTe) block. This automatically

creates a variable called . This will be the size of our group. This block counts from
0 to whatever number we decide. We modify it to count from 0 to 10, as we have 10 LEDs
on our strip.

The important step in this process is to now tell the micro:bit that the size of the group
should be whatever number the loop has currently counted to. It will vary
between 0 to 10, so the group will also be between 0 and 10.

To do this, click on the variable in the loop itself as shown above and drag it into
the last variable opening on the block, as shown above on the right.

The block should look like the one shown below, and the simulator should look like the
image shown on the right.

set range * to strip * range from owith index v leds

85

https://youtu.be/_wn4i_dIGWM

on button

do

pause (ms)

All the LEDs on the strip appear currently lit up orange, as the orange range has increased from
0 LEDs to 10 LEDs so fast that we couldn’t see it. To get the effect of the growing indicator, we
need to slow the “range growing” process down.

A v pressed

for index from @ to @

range ¥ show color orange ¥

pause (ms) @UIIRd

500 «

strip v clear

e Now, we have the correct animation for

our Audi style dynamic indicators working
correctly. Let’s choose the number of times
this sequence should happen once we
press the input button A.

To repeat the animation, we add a
loop into the
block, ensuring all the other code
snaps inside the repeat loop as we drag it
in. This should happen easily if you drag the

loop in from outside the left
[Lel-{NelRislsRoN button A pressedjs]leld @

Modify your code to give a suitable number
of flashes. In the code shown on the right,
a repeat of 5 times is shown.

set range ¥ to strip ¥ range from owith index v leds

e Add a [LllHg block into the
loop. Place it under the
block as shown on the left. We
can leave the duration at the default
100ms. This tells the micro:bit to pause for
100ms each time it adds another LED to the
group. We should now be able to see the
group growing.

e To clear the line and start again, we add a
block after the
loop. Choose 500ms for a nice effect.

e After the line has been fully lit for 500ms,
we turn off all the LEDs by adding the
and Giglaye blocks at the end.

on button A v pressed

e for index from @ to @

do . .
set range ¥ to strip ¥ range fronewith index v leds

range ¥ show color orange ¥

pause (ms) @

pause (ms) ELULRJ
strip *+ clear

strip * show

The Neopixel

= = J strip displaying

r q the code in
action.

Further explorations...

Look back at the way we have assembled the code. Try to experiment with different values to
speed up, slow down, or shorten sequences.
If we change the number in the for index from loop to a number below 10 what happens?

86

Module 12: Radio Control 2

Activity A: Remote Neopixel Control

As we’ve seen in the previous module the Neopixels can be controlled and lit up
individually. Using the micro:bit bluetooth feature, we can set up a remote display that
can be controlled from a distance using a second micro:bit. The following activity will
show you how to create the command and control the Neopixels.

Scan or click the QR code to use the Video to support you in the activity.

Note: Before commencing this activity, ensure you have connected the Neopixel strip
to your Micro:bit as described at the beginning of Module 11.

** The code below for this activity can be completed as one program, and downloaded to two separate
micro:bits. Alternatively, the code for the transmitter can be programmed separately from the code for
the receiver and downloaded separately to the appropriate micro:bit. The video programs the code for
the transmitter and receiver separately, and downloads the correct code to the appropriate micro:bit.

Receiver: Listens for the instructions

(5

The following code seen above will solve the activity. The program is developed using the , -
and [gllle), and the extension. Using this code, you will be able to remotely turn the Neopixel
strip on, off, and rotate the lights upon pressing the button on a micro:bit that is part of the same radio
group. We will do this by sending one of three numbers: 0= Off, 1=0n, 2=Rotate pixels.

1:

e Asshown inthe previous module, we set up
the strip of Neopixels using the @ igloRie}
block at the top of the \[Zlelsli¢E]| drawer.

e Drag this into the iS5 &lai block.

e Update the S#5dgl*R{eM¥ block to contain 10
LEDs.

e From the [ELlld drawer, select the

I | Radio {{eli[sMM block and add it as shown. The

! number shown in this block is the channel
we are using. Micro:bits using the same
channel can “talk” to each other.

set strip v to NeoPixel at pin P@ v with @ leds as RGB (GRB format) w

87

https://youtu.be/pLPhTtGOvjE

forever

* In Module 7, in the 2020/2021 CPD session, we showed
if button A v is pressed then how to create a signal, and a number to be sent to the
other Micro:bit.

e e [2 * Inthe block, we add a conditional

D o This can be found in the drawer.
¢ Using the 1] AWI=Ne [e Rg[Nif button A is pressed
® and place it in the conditional as shown.

¢ From the Radio drawer, we add the
and modify it to read 1. For visual feedback, add the Hale\
block from the drawer and modify it to
read the number 1.

forever

e We now create the next branch of the if button A v is pressed _ then
conditional. We add in the [jfls]sade/aWWE

.) - radio send number o
PJf=83=lel and modify it to read [ilINatelsN:RE .
pressed. show number o
e Similar to step two, we now add the [glelfe BRNERY buiton B > in pressed JNREE
Elileishow number

blocks.

e Modify both blocks to read the number 2, show number o
as shown opposite.

e We can delete the last “else” branch of the
code as we won’t need it. Do this by ®_
clicking the minus on the same branch as
the else.

radio send number o

else

e Now that we have set up the commands
to send the on and rotate numbers, we
can now add in the off command. This will
be sent when the micro:bit is shaken.

radio send nunber () e In the [fffi§drawer, select the
block and drag it into the editor window.
(e) e As in step two above, add in the

and the

number blocks. Modify these to the

number 0, which will be the off command.
e This concludes the transmitter part of the

coding. We will now investigate the
receiver part of the coding process.

88

5:

e Now that we have set up the code for the
micro:bit to transmit the numbers 0 for
off, 1 for on, and 2 for rotate, we now tell
the micro:bit what to do when it receives
or “hears” these numbers.

e We begin this process by opening the
Radio drawer and selecting the

received ‘received number’ [sJloJd&]als!

dragging it into the editor window.

e We will use the conditional

from the drawer to code this part.

on radio received receivedNumber

on rai

D-- 0

if

on radio received receivedNumber

if receivedNumber = w o then

strip *+ clear

strip v show

e Similarly, we now add in the extra else if

branches to the code so

that if received number = 1, turn on the
strip by adding the
code underneath.

Adding another else if branch. Edit this
code to read, if received number = 2 then
rotate the pixels by adding the

codes from the

Neopixelsgelc\ IS

Download the code to two micro:bits and
testit.

This code can be used in either the
transmitting or receiving Micro:bit.

l...ll Radio

on radio received

receivedNumber

e When the [[iRRREHE block has been
added, we add the comparison

also from the Logic drawer and place it in
the [[EEES block as shown.

To tell the micro:bit to compare the
received number to something, select the
variable within the

block and drag it into the first part of the
comparison block as shown on

the left.

As we want the number 0 to turn off the
strip, under the comparison that the if
received number =0, add in the
and blocks from the [\[FeJalb =l

drawer.

on radio received receivedNumber

if receivedNumber =w o then

strip *+ clear

strip + show

receivedNumber =w o then @

else if

strip v show rainbow from o to @

else if receivedNumber =w ° then @

strip v rotate pixels by o

89

Activity B: Pitch (Tilt) Wireless Motor Control of a DC Motor

The following code will allow the motor to be controlled by tilting the micro:bit Video
forward and back. The control of the motor will be dependent on the information

sent to it by the rotation as seen on the code below. Scan or click the QR code to

use the video to support you in the activity.

** The following code can be completed in one go and downloaded to two
separate micro:bits as shown below. Alternatively, it can be split in two and
programmed to two separate micro:bits as shown in the video. In that instance, the E

[=]

radio received blocks are programmed into the micro:bit that’s added to the

product.

radio set group o

if rotation (?) pitch =

radio send number o

show arrow South =

else if rotation (?) pitch »

radio send number °

show arrow North +

else

radio send number o

clear screen

®

on radioc received receivedNumber

if receivedNumber =" o

turn off all outputs
else if receivediNumber

Moter 1 * on direction Reverse

else if receivedNumber =w o

Moter 1 * on direction Forward * speed e

®

This code is the solution to the
challenge:

- allows our calculations to run in
the background forever or to create a
set up from the start of the program

aIIow us to map values and
use them at different points in the code

[a]elli&H allows control with the
accelerometer

Lo-ile] allows us to set scenarios in place

sends a signal to the other
micro:bit in the group. The radio tab is
also used to tell the motors what to do
when the signal is received

90

https://youtu.be/fze6NsBOM5Q

on start

forever

radio set group o if true v

else if

forever

if true » then

radio send number o

show arrow South =

else if then @

if true * then

radio set group o

show arrow South *

clear screen

®

then

then @

91

¢ Using the -block set the radio
group to any value you wish. The -
tab has the block needed to do this.

« Using the [fofever block and the tab
we create the blocks shown on the left.
Module 8 Activity 4 shows how to add [EE=1

by clicking the +icon on the

bottom left corner.

* Using the tab, add in the -
as shown on the left. This

indicates the intended direction of the
motor when moving.

* When directing the motor, a signal needs
to be sent to the other micro:bit to tell it
to start the motor.

e Using the el ‘radio send number

@, set the assign a number to this
function.

* Using the same blocks as the previous
step, change the values as seen.

* By doing this, the direction is being
changed on screen to reverse, and a
different signal is being sent to the
micro:bit.

e Using - and the _ block,
the value now being sent to the other
micro:bit turns to 0.

* This indicates that the motor should turn
off, but this will only happen when the
code is interpreted.

**if 2 or more motors wish to be ran at the

same time, then sending many different values

can allow this to happen as shown below.

forever
if true = then

show arrow MNorth =

radio send number o
radio send number e

Search... Q
ass)
222 Basic

® Input rotation (°) pitch v

magnetic force (uT) x »

@ Music running time (ms)
© Led

running time (micros)
«® Robotics

forever

show arrow South w

on radio received receivedumber

on radio received

receivedNumber =W o then

turn off all outputs

else if receivedNumber =w o then @

Metor 1 * on direction Reverse * speed il

else if receivedNumber =w o then @
Motor 1 * on direction Forward * speed Ll

C]

As previously shown, set up a comparison
block in both of the spaces allowed in the
logic gate, use the

’ comparison
Using the eIz option of the {lalsI¥l4 tab,
use the block fgel& e N Neliiel oK
Add the o€l @RIl block to the
comparison block as shown to the left
After this, the degrees are set to the
desired angle of rotation, in this instance
-10° and 10°
According to the code, now there is a
range of 20° from -10° below the micro:bit
being horizontal, to 10° above the
micro:bit being horizontal, where the
motor will be turned off

Using the 'Radio’ tab, use the
received receivedNumber B ERLGEN
can be set for the numbers that are sent to
do something.

Using the block as
shown, add it to the comparisons created
as shown on the left

The comparisons are now ‘=" and the
numbers added correspond to the
numbers being sent from step 3

Using the ‘robotics’ tab, add in the motor
control block. Assign the direction and
speed as desired

Using the ‘if’ blocks and as shown, set the
premise that if the number sent is the
value 1, it will turn reverse, coinciding with
the south arrow

If the value is 2, it will go forwards,
coinciding with the north arrow. If the
value is 0, it will stop the motors
Depending on the angle the micro:bit is
tilted at, a number will be transmitted as
per the code

Download and test the code

Note: If the code for the Transmitter and the Receiver are in separate programs, the code for the
transmitter should be downloaded to the micro:bit that will be the remote control. Download the
receiver code to the micro:bit to be fitted to the All-In-One Robotics board.

This is demonstrated in the video accessible through the QR code.

92

Activity C: Pitch (Tilt) Shifting Gearbox for a DC Motor

In this activity, the code is developed to speed up the motor or slow it down,
dependent on the angle of rotation of the micro:bit. The code builds further on the
learning of the previous module and some of the steps are similar to the content
already engaged with. Scan or click the QR code to use the video to support you in the
activity.

** The following code can be completed in one go and downloaded to two separate micro:bits as shown
below. Alternatively, it can be split in two and programmed to two separate micro:bits as shown in the
video. In that instance, the radio received blocks are programmed into the micro:bit that’s added to the
product.

forever

if rotation (*) pitch = > then

show number o

else if rotation (*) pitch = <. a and * rotation (®) pitch *= > . a

radio send number o
show number o

else if rotation (") pitch v rotation (°) pitch v > e

radie send number o
show number °

else if rotation (") pitch =
radio send number °

show number °
©)

on radioc received receivediumber
This code is the solution to the challenge:
if receivediumber =w o then
turn off all outputs - allows our calculations to run in the
background forever
else if receivedNumber =w o then @

Motor 1 v on direction Forward v speed e [alolVi&H allows control from different sources

else if receivedumber =~ (@F) then © 15)-{l-lallows us to set scenarios in place

Motor 1 * on directiom Forward * speed @

else if receivedNumber =w ° then @

Motor 1 + on direction Forward + speed

®

93

https://youtu.be/orp9GkupjWs

Using the - block from the -,

we now set the micro:bits to talk to each
other using the [ELIEIF-{TIIMN. As
shown at the start of the module, any
micro:bit programmed into this group will
communicate together.

Using the ab, set up the

tati “ itch . . o 0
rotation () prech - JEEINEES comparisons with [liiandfEEa as

shown. These comparisons will set up the

else if premise that sends values based on angles
of rotation.
else if By using the minus, the else of the logic

code can be removed as the solution to
the code on the previous page does not
need it.

else if

As shown in step 4 from the previous
activity, in the section of th
tab, create a comparison with the flef:{lef
tab as shown.

Set the value to . The micro:bit will
now be set to work from -10° upwards.

o rotation (3 mtch v S @ then Using ‘radio’, create the scenario where
radio send number o the ‘radio send number 0’ block, and the
and ‘show number 0’ block set the premise
shou number (J) that the micro:bit will send the number 0
else if then and show the 0 on screen.

94

else if rotation (°) pitch +

else if

e Using the tab, create a comparison with the block. Add it to the section of the
logic block
e Using the block again, and the r from here, an inequality range can
be setup. We can set the pitch between -10° -30°. From this, the rotation of the micro:bit
will make a change from -10° upwards and then from < -10° to >-30°
* Add a number to send and show this number on screen as seen in the previous step

else if rotation (°®) pitch + <w m Duplicate ation (®) pitch = >w a
radio send number o Add Comment

Delete Blocks
show number o
Haln

* By right clicking on the block, duplicate this inequality and add it to the next
* Change the values of the rotation to -30° and -50°

e Using the (IRl NalUlaaloI<IaM and el Aaligleslld ¥ create a new number to send and show

on screen

else if rotation (") pitch » rotation (°) pitch = R a

radio send mumber o
show number o

else if rotation (°) pitch =

radio send mumber °

show number °
®

* The last part of the code is to set the value for the top speed. Using one comparison, and stating
that if the value of rotation is <-50° to send a final number, in this case 3

**to make the motor speed more sensitive, make the range of values smaller; instead of 20° choose
another range. And if you wish to add extra speeds, add more ‘else ifs’ and ‘radio send numbers’

95

on radio received receivediumber

if receivedNumber

turn off all outputs

else if receivediumber = w o then @

Motor 1 * on direction Forward * speed e

else if receivediumber =w o then @

Motor 1 * on direction Forward * speed @

else if receivediumber = w o then @

Motor 1 + on direction Forward + speed

®

* The final step of the code is the same as step 6 in activity 2 in this module. As you can see above,
the code is built on the numbers sent from the previous steps.

* If the numbers match what has been sent you can see how the motor speeds up.

* Download and test the code on the micro:bit.

Note: If the code for the Transmitter and the Receiver are in separate programs, the code for the
transmitter should be downloaded to the micro:bit that will be the remote control. Download the
receiver code to the micro:bit to be fitted to the All-in-one Robotics board.

This is demonstrated in the video accessible through the QR code.

96

Module 13: Dimming an LED using Pulse
Width Modulation

In this Module, we will learn how to create code that will dim an LED. It is done by
creating code with blocks that have not been used before. We create math problems
that allow for the power going to the LED to be controlled and therefore making the LED
shine brighter or dimmer.

The new learning in this module is the development of a math problem and creating a
premise whereby dividing the output reading from the micro:bit can create
steppingstones to map values to. Scan or click the QR code to use the Video to support
you in the activity.

This code is the solution to
the challenge:

on start

st min power = to

e ey I - aI.Iows our
calculations to run in the

set power step » to mEx power v - v min power v = background forever

t brighiness = t .
set brightness » to () WETSELSESH allow us to map

show mmber brightness = values and use them at
different points in the code

[aleI81&F allows control from
different sources

it brightness «

set power » to () oS allows us to set

else scenarios in pIace

~ brightness v x v power_step v Allows for the sending
® of the signal to the LED and
turn it on with a certain
power output

on button A = pressed on button B = pressed
change brightness » by o change brightness = by o
if brightness ~ < = o then f | if brightness + > = e then

set brighiness = tuo set brighiness = to o

® ®

show number brightness - show number brighiness «

analog write pin P@ + to power = analog write pin Pe@ + to power =

97

https://youtu.be/Lp-JFQvFNs8

iearch... Variables

Make a Variable...

® Input

@ Music Max_power ¥
D lad

il | New variable name:

c

I: Brightness

=

ws Aduancard

set min_power + to

set

e
set power step v to N)

S -]

set brightness » +to o

show number brightness «

min_power ¥ tn
max_power v to@

power_step » to max_power v

brightness + to o

show number brightness «

- » min_power v

=T o

ukwN e

98

* Using the [ETIEIA tab and the ‘make a
variable’ option, create five different
variables:

Min_power
Max_power
Power_step
Brightness
Power

e Using the - block and the

BEREN S tab, we set up the blocks seen

W ‘set __to |

* Using the codes seen on the left, set the

‘Min_power’ SRl

* Using the tab, use th. From
the tab we set up the difference
between the max_power and the
min_power

* Using this block, add this block to the
block before the division
sign as shown

* From here, we then put the number 9 into
the fRELL block to signify that there are 9
steps in the brightness of the LED

[Having completed this step, the minimum\
value has been set at the low range of the
output value. The maximum value has
been set at the highest value of the
output. When the micro:bit has been
started, the LED will be turned off. By
using the math function, we have stated

\there are 9 steps in the function. j

* Using the [forever block, the following will
set up the premise that the LED power will
come from the sum of the Min power and
the brightness level required.

* This will create a scenario where the
power is to be connected to the brightness

 The[logi¢ tab is used to set up a scenario
where the power is linked to the
brightness of the LED

elaf-aifalcE M variable, create the diamond
if (O shaped block as shown.
* Add the comparison to the-section
of the logic block so that it reads ‘if

brightness = 0’

rorever * Usingthe from the

variables tab, add it to the logic gate as

if brightness » =w o then
shown. Leave the value set to 0

* Using the from the

previous step again, add it to the ‘else’
section of the logic gate

* Using the block again as shown in
step 3, build it up as shown in the image
on the left

* It should now read ‘set power to
Min_power + (Brightness x Power_step)*

if brightness v = o then

set power v to o

min_power * + ¥ brightness » x w power_step v

*The brackets are used to show that Brightness
and Power_step are connected in a separate
block, just like in step 3.

99

on button A » pressed

change brightness = by o

on button A + pressed

change brightness = by o

on button A v pressed

change brightness v by o
if

set brightness v to o

®

show number brightness

analog write pin P@ + to power w

pressed

Duplicate

Add Comment

Collapse Block

Delete Blocks

Help

—

show number brightness »

analog write pin P@ v+ to power w

Using the fllelli{ tab, select the

Note: if the block is not available in the
variables tab, use the by and click
on the drop down. Find the brightness variable

e Using the tab, create a comparison
as shown before

e Fromthe set the logic gate to
‘if brightness < 0 then’

* Again, from the variables tab, use the

brightness to 0’

By doing this, we have set a limit. If someone
presses the button continuously, it will not make a
difference as the LED will be at brightness 0

10:

* Using the {sEHI¥ tab, use the Hilell]
block using RNEIRELIESY. Add in the
brightness to the FHalel R allale1=1d block. This
will show the value on screen

Using the fslljEgtab, use the ’

tab, add the power

Using the RYELIEL]EH

block as shown

* This has now set the brightness of the LED
to the scale from 0-9

11:

* Rightclick on the block and you will
see the list shown. Click on the word
duplicate

* This will allow for all the code to be copied
and will re-create the blocks needed

* Using the blocks, we change feliNsIfjate]aF2
1{e]‘on button B pressed’]

NPT hange brightness by -1 (8 ‘L |

* Change the il TiEINEE M to
[T and change the
as shown.

Note: Now we have set an upper limit and

increase the brightness as you press button B

100

Light level 2 is currently
shown on the micro:bit

screen.

101

Download the code to the micro:bit to
test it

The positive on the LED joins to PO
The negative of the LED joins to GND
The level of light will incrementally get
brighter as button B is pressed, and
darker as button A is pressed

Supporting Mechatronics in Engineering — OLE 20/21

Coding an Angular Servo to any Degree

Micro:hit activity:

Introduction activity: moving a servo

on button A+ pressed

LI TER T e Tl S e e TR [T TR
FEINENEN W] b] osraen -

All goloyr blocks refer to a specific command in make code
Blue is for Basic & Wout
Bl is for Input oM
BB = ror Music ksl

Mis for Robotics or Motor Driver 2 i _' .

Steps
1. Using the ‘Basic’ tab, select the ‘on start’ block in the coding section, and drop ’_

- in the gap to create a chain

2. Using the “Basic’ tab, place an ‘_ block and choose which input you want, A, B or

A+B pressed

3. Using the ‘Robotics’ tab, place the _ and change the number to 180 or any

other number

4. Using the “Basic’ tab, place ‘the pause {ms} & block and change it to *4000°

5. Using the ‘Robotics’ tab, place the ‘[EIEEREE =d change the number to 0

B. Using the ‘Basic’ tab. place ‘the pause {ms) ¢ block and change it to 200"

102

Coding an External Switch to Function

The “limit switch’ is soldered into two
connection points on the track pad:

COM leg—GND
MO leg - P2

Why?

From page 3 of the learning [og we ﬁ—
can see that P2 is an input but we
could also use PO or PL. If we have
more than one switch, we could
include them on those inputs.
Connecting it to "GMND" completes the
circuits like any simple circuit

L T T T R T T P T TP TP e
w1 e L P -
IFRlboeoRcocanenOenal =B

o ETE e 55 =l

All colour blocks refer to a specific

command in make code
if pin P2 = jis pressed Them

Blue is for Basic

-5 for Input
-5 for Music

M'ls for Robotics or Motor Driver

-s for Logic

Motesr 1 * on difcctios Forward = tprrim

pose (ou)

turm ol Moter 1w

C]

1. Using the ‘Basic’ tab, place “on start’ into the code screen and add _ tothe
middle of it.

2. Using the 'Basic’ tab, ‘forever’ loop button to be brought out, it means that this program will run
always until a new one is put on the micro:bit

3. From the ‘Logic' tab, bring out the ‘- option

4. From the ‘Input’ tab, bring out the _ gption that looks like the diagram and drag it
and place it over the true option on the *[fERUEIENER block

5. Using the drop-down button change PO to P2 where we solderad in the limit switch)

6. From the ‘Robotics’ tab, bring _ you can use the drop
down to change the direction of rotation of the motor and a value of 1-100 for the speed of the
motor 100 being the fastest

7. From the ‘Basic’ tab, bring out the ‘pause {m3) O block, change the seconds to control the length of
time the motor will run

B. Finally, from the ‘Robotics’ tab, bring the r_ to the chain

103

An tSraith Shoéisearach do Mhuinteoiri

JuniorCYCLE

Contact Details

Administrative Office:
Monaghan Ed. Centre,
Armagh Road,
Monaghan.

www.metc.ie

For all queries please contact:

info@jct.ie
Follow us on Twitter: y
@JCforTeachers

@JCt4ed

QR code - Feedback form

for teachers

Director’s Office:
LMETB,

Chapel Street,
Dundalk.

Key websites:

WWW.jct.ie

www.curriculumonline.ie

WWW.Ncca.ie

< - =
&©) s
\o o0 ' R &
$ S
2 oY

-
9 tSraith SHO'S°

http://www.metc.ie/
mailto:info@jct.ie
http://www.jct.ie/
http://www.curriculumonline.ie/
http://www.ncca.ie/

