
1 

 

 Name: _________________________ 

 

 

 

 

 

 

 

Specification 

Control Systems for 
Mechatronics in 

Junior Cycle Engineering 



2 

 

Introduction: 
 

 

 
 
 
 

Since its introduction in 2018, the Engineering specification has been taught in schools around the country. 
The specification introduced a strand titled Mechatronics. This strand’s descriptor and learning outcomes 
reference control technology and the use of code and sequences to solve problems.  
The following document contains resources that JCt4 have developed to support teachers utilise software in 
control systems.  
 
There are many different types of support in this document such as step-by-step instructions how to engage 
with micro:bit, micro:bit classroom and makecode.microbit.org.   
 
The first section of this resource contains step-by-step modules that take you through coding, wiring, and 
creating micro:bit circuits.  
 
Page 3 and 4 contains a table of YouTube links to activities associated with the modules and also the page 
numbers for each resource in this booklet.  
 
There are two methods that allow you to engage with these modules:  

1. Following the text instructions  
2. Using the step-by-step videos that take you through the process which can be accessed using the QR 

codes or the hyperlinked table of contents. 

 
The second section of this resource contains links to webinars and live demonstrations that were carried out 
over the past number of years.  

https://makecode.microbit.org/


3 

 

Section 1 
 

 
 
 
 
 

Module: Activity: Activity Name: 
1 Introduction to Basic Commands 

Pg. 10 A Placing text on the micro:bit screen 
Pg. 12 B Creating a simple countdown on the screen 

Pg. 14 C Using in-built tutorials to help student learning 

   
2 Simulating Motor Control 

Pg. 15 A Using the simulation software to program a servo 
Pg. 18 B Servo Motor Control 

Pg. 21 C Changing servo controls using different pins 
Pg. 21 D Controlling a 360⁰ Servo 

   

3 DC Motor Control 
Pg. 23 A Program a DC motor to prescribed constraints 

   
4 Adding Inputs and Outputs 

Pg. 25 A Adding Inputs and Outputs to the all-in-one board  
   

5 Servo Control Using a Potentiometer 

Pg. 27 A Calibration of the Potentiometer 
Pg. 28 B Servo Control Using a Potentiometer 

   
6 Sensors 

Pg. 29 A Calibrating a Sensor 

Pg. 32 B Using a Sensor and a DC Motor 
Pg. 34 C Using a Sensor and a Servo Motor 

   
7 Radio Control 

Pg. 35 A Radio Send String 
Pg. 36 B Radio Controlled DC Motor 

Pg. 38 C Remote Control of a DC Motor 

   

https://www.youtube.com/watch?v=22_lFT1yOU0&feature=youtu.be
https://www.youtube.com/watch?v=57RUjgjG3VU&feature=youtu.be
https://www.youtube.com/watch?v=fTibjkEyzSc
https://makecode.microbit.org/
https://www.youtube.com/watch?v=K0RuWNR4pcA
https://www.youtube.com/watch?v=kxHklujresY
https://www.youtube.com/watch?v=tHA3HGjsIWE
https://www.youtube.com/watch?v=0f85f1lf4VU
https://www.youtube.com/watch?v=tPjJrtGBUlM
https://www.youtube.com/watch?v=DZFG7nO2TtA
https://www.youtube.com/watch?v=DuBzrziPJso
https://www.youtube.com/watch?v=TKpPK-RjGus
https://www.youtube.com/watch?v=4nTvfn4RrNw
https://www.youtube.com/watch?v=sisag7fvCcQ
https://www.youtube.com/watch?v=tAbFim3SZqM
https://www.youtube.com/watch?v=YVIOk30kuEw


4 

 

 
 

 
 

Module: Activity: Activity Name: 
8 Motor Control (Part 2) 

Pg. 40 A DC motor control for a specified time 

Pg. 43 B Controlling a continuous servo motor using a potentiometer 
(forward and reverse) 

Pg. 45 C Controlling a DC motor using a potentiometer (one direction) 
Pg. 47 D Controlling a DC motor using a potentiometer (forward and 

reverse) 
   

9 Using an External Screen 
Pg. 50 A Displaying text & internal sensor readings 

Pg. 54 B Plotting a graph of readings 
Pg. 57 C Displaying data from multiple sensors 

Pg. 59 D Displaying readings from an external sensor 

Pg. 61 E Investigating mapped values using the screen 
   

10 Ultrasonic Sensors 
Pg. 67 A Calibrating the ultrasonic sensor 

Pg. 69 B Ultrasonic warning system 

Pg. 71 C Display ultrasonic values on external screen  
Pg. 75 D Stopping a motor with ultrasonic sensor 

   
11 Addressable LEDs (Neopixels) 

Pg. 79 A Light it up! 
Pg. 79 B Basic animation 

Pg. 81 C School beacon 

Pg. 84 D Larson scanner (Knight Rider) 
Pg. 85 E Audi dynamic indicators 

   
12 Wireless Control (Part 2) 

Pg. 87 A Remote Neopixel control 

Pg. 90 B Pitch (tilt) wireless DC motor control 
Pg. 93 C Pitch (tilt) shifting gearbox for a DC motor 

   
13 Pulse Width Modulation 

Pg. 97 A Dimming an LED using pulse width modulation (PWM) 
   

https://youtu.be/auqPNpGnA1k
https://youtu.be/Arm6_5TlLDc
https://youtu.be/Arm6_5TlLDc
https://youtu.be/6XQsDJCFqSg
https://youtu.be/QxQi9CDZA2o
https://youtu.be/QxQi9CDZA2o
https://youtu.be/pdLtcLguT3Q
https://youtu.be/FYftGOmG3Zs
https://youtu.be/sS_j7AsJWws
https://youtu.be/Voaw8QgGJIg
https://youtu.be/S8GcF1VvYy4
https://youtu.be/FcSSiWg0DaQ
https://youtu.be/Q9ZJZ2ZJFWE
https://youtu.be/_pGCxTt7PCM
https://youtu.be/3SbKYSSlT-w
https://youtu.be/A5gK9ofAZXo
https://youtu.be/wiJ0lM2jBgk
https://youtu.be/rUJuZwrvgd0
https://youtu.be/-OKT9PIdi_k
https://youtu.be/_wn4i_dIGWM
https://youtu.be/pLPhTtGOvjE
https://youtu.be/fze6NsBOM5Q
https://youtu.be/orp9GkupjWs
https://youtu.be/Lp-JFQvFNs8


5 

 

 
Section 2 
 
Supporting Mechatronics in Engineering OLE 2020/2021 
 
This webinar covered many different topics such as developing and testing circuits using 
TinkerCAD, two different areas of coding using micro:bit, using micro:bit classroom as a 
resource for further engaging with control technology with students. The coding challenges, 
and how to code the challenges are used in the webinar are on page 102. The webinar 
recording in full can be found using the following link:  
https://www.youtube.com/watch?v=eVJ6hdb9sCE 
 
 

For particular sections of the Video click on the following links: 
 
For engaging with TinkerCAD and circuits: https://youtu.be/eVJ6hdb9sCE?t=257  

Introduction to Micro:bit: https://youtu.be/eVJ6hdb9sCE?t=815  
For engaging with Micro:bit: and 
Challenges 

https://youtu.be/eVJ6hdb9sCE?t=1535  

Micro:bit Classroom https://youtu.be/eVJ6hdb9sCE?t=3368  

 

 
Classroom Practice and Computer Software in Junior Cycle 
Engineering Spring OLE 2021/2022 
 
This webinar looked at engaging students with control technology software in an online 
learning environment. It considered three different school settings and three different 
areas that the teachers developed with their students. At the end of the session, we 
engaged with how to program a micro:bit from a phone or tablet. The webinar recording in 
full can be found using the following link: https://www.youtube.com/watch?v=lE_IxcVFlgg  
 
 
For particular sections of the Video click on the following links: 

 
For engaging with makecode and a 
phone/tablet: 

https://youtu.be/lE_IxcVFlgg?t=3244  

 

https://www.youtube.com/watch?v=eVJ6hdb9sCE
https://youtu.be/eVJ6hdb9sCE?t=257
https://youtu.be/eVJ6hdb9sCE?t=815
https://youtu.be/eVJ6hdb9sCE?t=1535
https://youtu.be/eVJ6hdb9sCE?t=3368
https://www.youtube.com/watch?v=lE_IxcVFlgg
https://youtu.be/lE_IxcVFlgg?t=3244


6 

 

Mechatronics in Engineering 
 
Micro:bit is used for the purpose of developing teachers’ knowledge, understanding, skills 
and values in computer software, however, any brand of microcontroller may be used in 
Mechatronics. This was determined through feedback from teachers as being the most 
popular choice for a variety of reasons. 
 
Note: Computer Software Technology on its own is not Mechatronics. A Mechatronic system 
includes a combination of mechanisms, electronic components and computer software. An 
integrated, non-linear approach should be taken to the teaching and learning of 
mechatronics.  
 
The following pages are structured into modules which aim to develop understanding and 
skills with particular reference to the strand of Mechatronics in Junior Cycle Engineering.  
 
In total there are 7 modules which progress in complexity and aim to incrementally develop 
understanding and application in the strand of Mechatronics. Some modules may have more 
than one activity. Explanatory videos can be found in each module which outline some of the 
key features and will offer guidance to support the activities. 
 
The following components and materials have been made available to all teachers within the 
Mechatronics teaching and learning resource packs. 
 

JCt4 Computer Software Component list 

 
Teachers should also bring a Soldering Iron, Solder and Wire Cutter and/or Wire Stripper to 
aid any assembly which has not being completed prior to the workshop. 
 
Instruction: When engaging in a self-directed approach, start by reflecting on the activity in 
the learning log, then watch the associated video prior to engaging in the coding activity. 
  
 



7 

 

Module Content 

• Getting Started 

• Module 1 – Introduction to basic commands 

• Module 2 – Simulating Motor Control – 180⁰ and Continuous Servo’s 

• Module 3 – DC Motors 

• Module 4 – Adding Inputs and Outputs 

• Module 5 – Control using Potentiometers 

• Module 6 – Control using Sensors 

• Module 7 – Radio Control 
 

Participating through Self-Direction 
 

Each module is supported through a range of videos and concise instructions in the learning 
log. Participants will be able to communicate through the assigned breakout room to offer 
collegial support. The advisor will also be available. 
 
Instructions: 

1) Choose a module. Read the relevant pages for that module in 
the learning log. 

 
 
 
 
 

2) Watch the video which accompanies the module. The video 
will explain the problem-solving approach to coding. It will 
explain the various aspects to the code, and how to find and 
assemble the blocks for the code. 
 
 

3) The video can be found by scanning the QR code with the camera on your phone, this 
will allow you to watch the video on your 
phone. Alternatively, if you open the learning 
log on your laptop as a PDF, you will be sent 
to the video by clicking  directly on the link. 
 

 
4) Assemble the micro:bit and relevant components, download the code and test the 

code that you have assembled. 
 

5) Revisit the video to further your understanding on the activity. 
 



8 

 

Getting Started 
 

This section will show you how to navigate  to the MakeCode website which facilitates the programming of 

a micro:bit. 

1) Use the following link to direct you towards Makecode.  

Url Link: https://makecode.microbit.org/# 

Alternatively use the following search words in your browser. 
Key Search Words: Micro:bit MakeCode 

 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

https://makecode.microbit.org/


9 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Video 

https://youtu.b
e/22_lFT1yOU0 

 

This area on screen is 
where the code is 
populated. This is called 
the ‘Editor’. 

The coding tabs where all 
the coding blocks are 
stored.  

This is the simulator where 
all code can be tested 
where you have used the 
original coding blocks 

This button allows you to swap 
between drag and drop coding 
blocks and JavaScript. Students 
may need to be familiar with  
coding languages to engage in 
JavaScript. 

The home screen is accessed 
through this button. From the 
home screen you can create a 
new project, access tutorials and 
any previous projects you may 
have created. 

Basic Commands Introduction to ‘MakeCode’  

https://youtu.be/22_lFT1yOU0
https://youtu.be/22_lFT1yOU0
https://youtu.be/22_lFT1yOU0


10 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2: 
• Next click on the ‘Basic’ tab and the options will appear as we 

see them in the picture to the left. 

• Choose the ‘show string’ option and drag it onto the coding 
area. 

• Place is in the gap that’s present in the ‘on button A pressed’ 
input from step 1. 

1: 
• To start: On the home screen click on the ‘input’ tab. 

• The options will appear on screen for you as in this picture. 

• Drag and drop out the required coding block. In this activity it is 
the ‘on button A pressed’. 

• Select  

• Place ‘on button A pressed’ anywhere in the editor.   

This code is intended to fulfil the activity constraints.  
The following coding tabs are required in the menu: 
 
Inputs: pressing buttons or giving signals to start a 
function such as shaking the board. 
Basic: simple functions such as scrolling text and icons 
on screen. 
Lastly the simulator will help us test the code before 
uploading to the micro:bit 
 
 

When button A is pressed, the word ‘HELLO’ will scroll across the LED matrix. It will 
pause  briefly before an emoji appears on the screen. 
When someone shakes the Micro:bit, the word ‘Goodbye’ will scroll across the screen. 
It will pause briefly and a separate emoji will appear. 
 

Activity A 

This module will introduce participants to programming using block code on MakeCode. A code is developed 
to programme the LED matrix to communicate the letters and numbers. This will be activated by pressing a 
button on the micro:bit. The code will be tested on the simulator. Use the video for support through the 
supplied link.  

Module 1: Introduction to Basic Commands 

https://youtu.be/57RUjgjG3VU


11 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

5: 
• Now we can test the code on the simulator. 

• Press button A on the micro:bit on screen 
and test if your code works as intended. 

• To simulate, move the mouse vigorously over 
the micro:bit. This will simulate the shake in 
real-life. Alternatively, press the newly added 
shake button on the simulator in order to 
test the second part of the code. 

4: 
• Using the ‘Input’ tab we now find the ‘on 

shake’ option 

• This time we are replicating some of the 
code. Instead of re-finding it we can right 
click on one block and duplicate it. 

• Click on the text in the ‘show string’ block, in 
order to change the text to goodbye. 

• Use the drop-down arrow in order to change 
the icon again to replicate the code. 

3: 
• Return to the ‘Basic’ tab. 

• Select the ‘pause’  block. 

• Drag and drop it into the ‘on button A pressed’ as shown. 
You can change the time as you so wish. Time is in 
milliseconds so 1 second = 1000 milliseconds. 

• Using ‘Basic’ select an icon of your choice, the drop-down 
arrow beside the face allows you to change the icon. 



12 

 

Activity B 
After a countdown of 5 seconds, the display will indicate to pedestrians to cross a road.   
After 2 seconds, the display will change to a stop icon indicate to additional pedestrians 
that it is unsafe to cross. Use the video to support you in this activity.  
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2: 
• Next, click on the ‘Basic’ tab and the 

options will appear as we see them in the 
picture to the left. 

• Choose the ‘show number’ option and drag 
it onto the coding area. 

• Place it in the gap that is present in the ‘on 
button A pressed’ input from step 1. 

1: 
• To start: On the home screen click on the 

‘input’ tab. 

• The options will appear for you on screen as 
in this picture. 

• Drag and drop out the coding block you 
want. In this activity, it is the ‘on button A 
pressed’. 

• Place the ‘on button A’ code anywhere on 
the area shown in the previous page. 

 

 

 

https://youtu.be/fTibjkEyzSc


13 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5: 
• In the ‘Basic’ tab use the ‘show icon’ to 

add an icon as shown in Module 1, enter 
any icon you wish to indicate to someone 
not to cross the road.  

 

• Use the simulator as shown on page 8 in 
order to see if this code works. 

 
 

4: 
• In the ‘Basic’ tab use the ‘show string’ to add 

text as shown in Module 1, enter any text 
you wish to indicate to someone to cross the 
road.  

• Return to the ‘Basic’ tab and choose the 
‘pause’ block’ add a pause for 2 seconds as 
per the brief. 

 
❖ Remember: Time is in milliseconds so 1 

second = 1000 milliseconds. 

3: 
• Drag and drop it into the ‘on button A 

pressed’ as shown.  

• Return to the ‘Basic’ and continue to add 
blocks of ‘show number’. Note: Add numbers 
with a reducing value from 5 to 1. 

 
Duplicate as shown in the previous module 
which may help speed up the process. 



14 

 

Activity C 
MakeCode has a range of tutorials and sample codes. Take this opportunity to explore the tutorials, and 
consider how they may be used with your students in the context of Engineering.  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 

1) Return to your Home Page. 

2) Scroll through the range of tutorials. 

3) What Code would you think your students may 

be interested in? 



15 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

2: 
• In order to find the ‘pins’ tab, you must 

click on the ‘Advanced’ drop down menu 
at the bottom of the list of tabs. 

• From this list choose ‘servo write pin P0 to 
__’ and drop  it into ‘on button A pressed’ 

• Duplicate, ‘servo write pin P0 to __’ and 
add it to ‘on button B pressed’.  

• Set the degrees to two different values and 
use the simulator in order to test if it 
works. 

1: 
• To start: Click on the ‘input’ tab and select 

‘on button A pressed’ and bring drop it 
into the editor.  

• Duplicate this block by right clicking and 
selecting duplicate.  

• As you can see on the left, it is yellow as it 
is not possible to have two commands with 
the same button. 

• Click the drop-down arrow beside ‘A’ and 
select ‘B’. 

This is one possible solution to the task! 
Did you consider an alternative solution? 

Activity A 
Open and close a barrier using a 180⁰ servo motor 

This module will introduce participants to programming a servo motor using block 
code on MakeCode. A code is developed to programme a servo motor. This will be 
activated by pressing a button on the micro:bit. The code will be tested on the 
simulator in each of the 4 activities.  Use the video to support you in the activity. 

Module 2: Simulating Motor Control 

https://youtu.be/K0RuWNR4pcA


16 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Summary: In coding tabs / menu select, ‘Advanced’, and then ‘Extensions’. In the search bar type ‘All-in-one 
robotics board’ and select the option when it appears.  

The All-in-one Robotics board is useful to facilitate the driving of DC and Servo motors using the micro:bit. 
The micro:bit on its own will only supply motors with a maximum of 3V. However, in most instances the 
motors used in the engineering workshop will require a higher voltage in order to achieved full speed and 
torque.   The robotics board will supply the additional required voltage. The programming of the robotics 
board requires a Robotics block to be added to the MakeCode menu. The following explains how to this. 
The video in the next activity will also explain how to add the extension. 
 

Finding the All-in-one Robotics Board Extension  

Reflection on Observations:  

3: 
• Set the degrees to 2 different values 

for example 90⁰ and 180⁰ and use 
the simulator in order to test if it 
works. 
 



17 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When a code has being developed, it can then be downloaded to the micro:bit. The code is called a ‘Hex 
File’. Following the instructions to learn this procedure.    

Downloading Files from MakeCode  



18 

 

 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

1: 
• To start: Click on the ‘input’ tab. Select   

‘on button A pressed’. Duplicate this block 
twice, so that there are a total of three 
blocks.  

• If you click the drop-down arrow beside 
‘A’, you are given more options to select 
for buttons to be pressed. This is seen with 
the blocks on the left 

https://www.youtube.com/watch?v=Y1CcKXKZkPI&f
eature=youtu.be 

 

Video to a possible design challenge to 
apply the above code.  

https://drive.google.com/file/d/1bKDBKxJ8U7KuZNX
TGPcFltaB6dOrJqeL/view 

 

The principles behind coding a  
servo motor 

Additional Resources from the Mechatronics Elective 2020 

The Servo is configured to pin 1. The 
orange lead is the signal and must be 

facing to the inside of the board.  
• Press A – Rotate servo full speed 

clockwise 

• Press B – Servo is fully stopped 

• Press A+B – Rotate servo anti-
clockwise, at 66% of the full 
speed 

 

Program a 180⁰ servo to prescribed positions. Build the code and 
download to the Micro:bit. Use the Video to support you in the 
activity. 

 

Activity B – Servo Motor Control  

Video 

https://www.youtube

.com/watch?v=kxHk

lujresY&feature=yo

utu.be 

https://www.youtube.com/watch?v=Y1CcKXKZkPI&feature=youtu.be
https://www.youtube.com/watch?v=Y1CcKXKZkPI&feature=youtu.be
https://www.youtube.com/watch?v=Y1CcKXKZkPI&feature=youtu.be
https://drive.google.com/file/d/1bKDBKxJ8U7KuZNXTGPcFltaB6dOrJqeL/view
https://drive.google.com/file/d/1bKDBKxJ8U7KuZNXTGPcFltaB6dOrJqeL/view
https://drive.google.com/file/d/1bKDBKxJ8U7KuZNXTGPcFltaB6dOrJqeL/view
https://www.youtube.com/watch?v=kxHklujresY&feature=youtu.be
https://www.youtube.com/watch?v=kxHklujresY&feature=youtu.be
https://www.youtube.com/watch?v=kxHklujresY&feature=youtu.be
https://www.youtube.com/watch?v=kxHklujresY&feature=youtu.be
https://www.youtube.com/watch?v=kxHklujresY&feature=youtu.be


19 

 

 

 
 
 

 
3: 

• Change each of the degrees to different 
values  

• From here, download the code to your 
micro:bit as shown on page 14. Using the 
‘All-in-one board’ and a 180-degree servo, 
try out the code shown. 
 

*If you wish to use more than single 180-degree 
servo, duplicate the green blocks but change the 
number ‘servo 1’ to where you connect the 
second servo to on the All-in-one robotics board  

 

2: 
• Using the newly added ‘robotics’ tab as 

shown on page 14, click on ‘servos’  

• Use the ‘set servo 1 to __ degrees’ block 
and add one to each of the inputs. 

 
❖ Reminder: right clicking on the block in the 

coding area allows you to duplicate the 
blocks over and over again. 



20 

 

 
 
 
 
 
 
 
 
 
 
 



21 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.youtube.com/watch?v=hJRMD0g
KH_s&feature=youtu.be 

 

Video to a design challenge to apply 
the above code.  

https://drive.google.com/file/d/1K8YIIDU-
f28av5g8hgOSR_sUziHp1Su0/view 
 

The principles behind coding a 
360° servo motor. 

Additional Resources from the 2020 Mechatronics Elective  

Video 

https://www.youtube.
com/watch?v=kxHklujr
esY&feature=youtu.be 

• Press A – Rotate servo full speed clockwise 
• Press B – Servo is fully stopped 
• Press A+B – Rotate servo anticlockwise at 

66% of full speed 
 
Download the program and simulate using the All-
in-one-Robotics board.  

Activity D  
Control the speed and direction of a 360⁰ servo. Explore the following piece of code                                      
with the supporting video.  
 

Watch the stimulus video attached to the QR code.  
How might you engage your students in this activity in Engineering?  

• Place the servo into any other pin number.  

• Modify the code to reflect the new pin position. 

• Modify the angles 

• Download and test the new code.  

Modify the code shown below from the previous activity by changing the value of the 
angles. Plug the servo into a different pin and modify the code to reflect this change.    

Activity C  

 

https://www.youtube.com/watch?v=hJRMD0gKH_s&feature=youtu.be
https://www.youtube.com/watch?v=hJRMD0gKH_s&feature=youtu.be
https://www.youtube.com/watch?v=hJRMD0gKH_s&feature=youtu.be
https://drive.google.com/file/d/1K8YIIDU-f28av5g8hgOSR_sUziHp1Su0/view
https://drive.google.com/file/d/1K8YIIDU-f28av5g8hgOSR_sUziHp1Su0/view
https://drive.google.com/file/d/1K8YIIDU-f28av5g8hgOSR_sUziHp1Su0/view
https://www.youtube.com/watch?v=kxHklujresY&feature=youtu.be
https://www.youtube.com/watch?v=kxHklujresY&feature=youtu.be
https://www.youtube.com/watch?v=kxHklujresY&feature=youtu.be
https://www.youtube.com/watch?v=kxHklujresY&feature=youtu.be


22 

 

 
 
 
 
 
 
Activity E 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pic A 

Pic B 

3: Callibrating the servo. 

Sometimes when the 360⁰ is programmed to be at 
stationary, its shaft may shudder slightly. Use the following 
steps to callibrate a Servo to stop the shudder. 

• Program the servo as before using ‘set servo _ to 90 
degrees’. 

• Upload this code to the micro:bit and if the servo is 
turning it needs to be calibrated. 

• To do this use the screw at the back of the servo. (Pic 
A) 

• Using a screwdriver, turn the screw until the motor 
stops turning, that is it now calibrated to the middle 
of the servo. (Pic B) 

• From here create your code to work as you want to 
now 

2: 
• The diagram above shows the differences between the degrees. 

1. 0 degrees is full speed of the servo turning to the left. 
2. 180 degrees is full speed turning to the right. 

• As you approach values towards 90 degrees from 0 or 180 degrees the motor will slow 
down. 

 

1: 
• The coding setup is the same as previously 

shown in Activity 3. 

• When looking at the code it looks identical 

• The difference is the way in which the 
servo works. 

 
❖ A continuous servo is not controllable in 

terms of degrees. It is controlled in terms 
of speed in a given direction. 90 degrees is 
0 in terms of speed. 

 
 

Watch the stimulus video attached to the QR code above.  
How might you engage your students in this activity in Engineering?  



23 

 

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Watch the stimulus video attached to the QR code above.  
How might you engage your students in this activity in Engineering?  

https://www.youtube.com/watch?v=ErpWsZ5Ef0Y&fe
ature=youtu.be 

 

Video to a design challenge to apply 
the above code.  

https://drive.google.com/file/d/1pBcswVMnD_HfbkP
We8MkzR3azz7Y4CUL/view 

 

Video explaining the principles 
behind coding a DC motor 

Additional Resources from the Mechatronics Elective 2020 

• Press A – Rotate forward full speed. 
• Press B – Rotate backwards at half speed. 
• Press A+B – Motor stopped. 

 
❖ Download the program and simulate using 

the All-in-one-Robotics board.  

Activity A  
Program a DC motor to prescribed constraints. 

 

Video 

https://www.youtube.c
om/watch?v=tHA3HGjsI
WE&feature=youtu.be 

 

This module will introduce participants to programming DC Motors using block code 
on MakeCode. The ‘Robotics’ block must be added to the MakeCode menu to engage 
in this activity. Explore the following piece of code with the supporting video.  
 

Module 3: DC Motor Control 

https://www.youtube.com/watch?v=ErpWsZ5Ef0Y&feature=youtu.be
https://www.youtube.com/watch?v=ErpWsZ5Ef0Y&feature=youtu.be
https://www.youtube.com/watch?v=ErpWsZ5Ef0Y&feature=youtu.be
https://drive.google.com/file/d/1pBcswVMnD_HfbkPWe8MkzR3azz7Y4CUL/view
https://drive.google.com/file/d/1pBcswVMnD_HfbkPWe8MkzR3azz7Y4CUL/view
https://drive.google.com/file/d/1pBcswVMnD_HfbkPWe8MkzR3azz7Y4CUL/view
https://www.youtube.com/watch?v=tHA3HGjsIWE&feature=youtu.be
https://www.youtube.com/watch?v=tHA3HGjsIWE&feature=youtu.be
https://www.youtube.com/watch?v=tHA3HGjsIWE&feature=youtu.be


24 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

3: 
• In order to change the direction of the 

motors, click on the drop-down arrow 
beside the direction. 

 
❖ The motors in a project, depending on 

which way they are wired, may spin in the 
opposite direction. You may need to run 
the code first to check this. Then change it 
to the appropriate direction in order to 
make them spin the same direction. 

 

2: 
• Using the ‘robotics’ tab click on ‘motors’. 

• Here you will see the blocks for DC motors 
and Stepper motors. 

• Using the ‘motor __ on direction ___ speed 
__’. 

• As you can see, we can control which 
motor is turning, its turning direction and 
its speed. 

• The speed is a percentage from 0-100 of 
the total power available to the motor. 
i.e.: 6V on the All-in-one robotics board 
will spin slower than 9V power to the 
board. 

 

1: 
• When creating the code, we will need to 

make sure that the motors do not start 
turning when we power up the micro:bit 
so we use ‘basic’ and the ‘on start’. 

• Using the ‘robotics’ tab, click on ‘robotics’ 
and you will see ‘turn of all outputs’. 



25 

 

 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

4: 
Select a second  ‘digital write Pin P0 to 0’  from the menu , 
or by duplicating the first block, and drag and drop it into 
‘on pin P0 pressed’ menu block’ under pause (ms)’. Set P0 
to P16 and ensure the output is set to 0.  

3: 
Return to the ‘Basic’ block and select ‘pause (ms)’. Drop this 
into the ‘on pin P0 pressed’ menu block’. Set the pause to 
3000ms. 

2: 
In the menu, click ‘Advanced’ to extend the menu, select 
‘Pins’. From the new menu, select ‘digital write Pin P0 to 0’ 
and drag and drop it into ‘on pin P0 pressed’ menu block’. 
Set P0 to P16 and ensure the output is set to 1.  

1: 
• Select ‘on pin pressed’ from the Input tab. Drag and 

drop it onto the programming editor.   
 

This code is intended to fulfil the activity constraints.  
What is involved in the code? 
Input: Pressing buttons or giving signals to start a function such 
as shaking the board. 
Basic: Simple functions such as pausing a code. 
Pins: This controls the signals from the ‘Link Pads’ on the ‘All-
in-one Robotics Board’. This is where the switch and the LED 
are joined 

Video 

https://youtu.be/

0f85f1lf4VU 

External LEDs and switches can be easily added to the All-in-one robotics board. Some 
components must be soldered to the robotics board in order to simulate any code 
developed in this activity.  Activity: Build the given code with the support of the given 
video link.  Reflect on how you might explore this code further with your students.  
  

Module 4: Adding Inputs and Outputs 

https://youtu.be/0f85f1lf4VU
https://youtu.be/0f85f1lf4VU
https://youtu.be/0f85f1lf4VU


26 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
   
 
 

 
 
 
 
 
 
 
 

Notes:  
 

Activity: Design problem 
(Using knowledge built from the previous modules) 

 
• In a model vehicle it is needed to indicate when the vehicle is slowing down or has come to a 

stop 

• Develop the code relevant to replicate this in action 
 

 

How could this program be applied 
to an Engineering project?  

P16 

GND – Joins to 
negative LED leg and 
the switch 

P2 

5: 
Download the code to the Micro:bit and test 
the code using the configured  components 
on the ‘all-in-one Robotics Board.   



27 

 

 
 
Activity A 
Potentiometers are variable resistors. They are often applied in applications in Engineering to 
vary the resistance in a circuit and often, control the resistance applied to an output such as a 
motor to adjust speed and torque, and control the angle of a servo motor.  In this first activity 
we will look at how to map a potentiometer to a microbit. This is required in instances where 
a potentiometer is required to control the angle of a servo. It is necessary as maximum 
resistances vary from one potentiometer to the next.  

 
Explore the following piece of code with the supporting video. The video will explain the 

context and application for this code, and it will form the basis for activity two in this module.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4: 
Download the code to the microbit and test on the 
configured components. The highest resistance for 
this resistor should be approximately  1022 for this 
10kΩ resistor. The lowest resistance should be a 
number close to 0.   

3: 
In the ‘Basic’ menu select ‘pause (ms)’ and drag and 
drop it into the ‘forever’ block under ‘show 
number’.  

2: 
In the menu, click ‘Advanced’ to extend the menu, select 
‘Pins’. From the new menu, select ‘analog read Pin P0 ’ and 
drag to the left of the ‘show number’ block until it is 
highlighted yellow. Release the mouse button to drop 
‘analog read Pin P0 ’  into ‘show number’.  Change P0 to 1. 

1: 
In the ‘Basic’ menu select ‘show number’ and drag and drop 
it into the ‘forever’ block.  

This code is useful to map any potentiometer to the micro:bit. It 
will allow the minimum resistance to be mapped to 0⁰ and the 
maximum resistance to be mapped to 180⁰ on the servo. The 
blocks required include: 
Basic: Simple functions such as pausing a code, ‘show number’ and 
‘forever’ block. 
Pins: This controls the signals from the ‘Link Pads’ on the ‘All-in-
one Robotics Board’. This is required to send power to the 
potentiometer and to measure the ‘signal’ from the middle leg on 
the potentiometer. 

Video 

https://youtu.be

/tPjJrtGBUlM 

Module 5: Servo Control using a Potentiometer 

https://youtu.be/tPjJrtGBUlM
https://youtu.be/tPjJrtGBUlM
https://youtu.be/tPjJrtGBUlM


28 

 

Activity B: Servo control using a Potentiometer 
This activity explores code which can be applied in computer software to allow a Servo 
Motor to be controlled by a potentiometer. This may be applied to Mechanisms such as 
Linear Actuators. An understanding of the code will be required to engage in the additional 
code in this activity.  
Explore the following piece of code with the supporting video. The video will explain the 
context and how the code is designed.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

HINT: What angle do the levers need to rotate in order to  
fully open the locks? 

Activity: Design problem 
 

• Canals use a series of locks in order for boats to move 
through areas of elevation changes 

• Create a simulation of the code needed to make the 
lock gates open and close  

How might Engineering students apply this code in their projects?   

Video 

https://youtu.be/

DZFG7nO2TtA 

https://youtu.be/DZFG7nO2TtA
https://youtu.be/DZFG7nO2TtA
https://youtu.be/DZFG7nO2TtA


29 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Why do we calibrate sensors? When using sensors for any reason we should know it’s 
maximum and minimum reading in a given situation as if we make it too sensitive it 
might not be sensitive enough or the opposite too sensitive. Use the video in the 
provided link for support.  

Using this code you will see the 
values coming from the sensor on 
the micro:bit screen 

How might you engage your students in this activity in Engineering?  

Video 

https://youtu.b

e/DuBzrziPJso 

Activity A: Calibrating a sensor: 

Sensors such as LDRs and Thermistors can be added to the Robotics board as additional sensors. This 
activity explains how to add and code a LDR and apply it to a geared DC motor and a servo motor.  

Module 6: Sensors 

https://youtu.be/DuBzrziPJso
https://youtu.be/DuBzrziPJso
https://youtu.be/DuBzrziPJso


30 

 

To calibrate the sensor:  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

3: 
• From ‘basic’ we use the ‘forever’ block as 

we would like this to run continuously in 
the background. 

• Using the ‘variables’ tab we use ‘set LDR 
reading to __’  

• From the ‘pins’ tab we use the ‘analog read 
pin __’ and set it to whichever pin the 
potential divider is connected to. (check 
the instructions given to you with the 
‘mechatronics pack’)  

• By doing this we have said the reading of 
the LDR comes from the pin it’s connected 
to.  

2: 
• Name the variable something that will help 

make it identifiable, in this case LDR 
reading. 

• When the variable is named three blocks 
appear. 

• ‘LDR reading’ allows for the use of variable 
to show numbers  

• ‘set LDR reading to __’ allows us to create 
the link to the analogue value coming from 
the LDR  

• ‘Change LDR reading by __’ allows us to 
change the variable which can be useful 
for a countdown using a loop  

1: 
• When we are taking a reading, we will 

need to create a variable. 

• Click on the ‘variables’ tab and then the 
‘Make a Variable’ button 

• Just like in the subject maths, a variable 
can have any value. 

• We will dictate where that variable comes 
from, in this case, the LDR 

 



31 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reflection on Observations:  

6: 
• Using the ‘Basic’ tab we can use ‘show 

number __’ to put the reading on the 
screen 

• From ‘Variables’ we use ‘LDR reading’ to 
show the value coming from the LDR 

• Now upload the code to the micro:bit and 
take the reading of the LDR in the brightest 
light and in dark conditions  as this will be 
useful in the next activities 

5: 
• Using the ‘Variables’ tab we can plot the 

‘LDR reading’ as shown 

• We set the reading up to 1023 as any 
analog sensor goes between 0 and 1023 in 
terms of values  

4: 
• From the ’Led’ tab we can access the ‘Plot 

bar graph of __ up to __’  

• This will put a bar-chart on the LED screen 
and indicate how much of the resistance is 
left in the LDR 

• The bar-chart will show up on screen 
before the reading of the LDR 



32 

 

 
Using the coding blocks seen below, gives a basic way to turn on a DC motor when the 
light reading is below a set value. Using the calibration code above, could we improve the 
code? The video in the attached link will support you in this activity. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

2: 
• Using the ‘logic’ tab we can create a 

scenario to occur 

• If a reading of a value is present the 
component will be actioned, if not then 
something else will be actioned  

• In this case we can create a code when the 
value is less than a reading from the LDR 
then turn on the motor based on the this 

1: 
• Using the previous activity and the steps 1-

3, recreate the code on the left 

How might you engage your students in this activity in Engineering?  

Video 

 
Activity B: using a sensor and DC motor 

https://youtu.be/T

KpPK-RjGus 

https://youtu.be/TKpPK-RjGus
https://youtu.be/TKpPK-RjGus
https://youtu.be/TKpPK-RjGus


33 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

5: 
• From ‘Variables’ bring the ‘LDR 

reading’ into the first part of the code 

• Change the value of the < (less than) 
part to suit a value within your range of 
values taken from the previous activity 

 

4: 
• Using ‘logic’ we can create a comparison  

• Add this to the logic gate as you can see in 
the bottom picture 
 

3: 
• In the ‘if’ part of the logic gate, use the 

‘robotics’ tab and place in ‘motor __ on 
direction __ speed __’ 

• Set the values and directions as desired   

• In the ‘else’ section add ‘turn off motor __’ 
 
*So far, we have said if something is 
present then turn the motor on and if it’s 
not there, turn it off 



34 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
Using the previous learning, we can calibrate the servo to move between two values 
and its sensitivity depends on the range of values from the LDR and the degrees we 
want to use. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6: 
• Once this is done the motor will turn 

on when the LDR goes below that value 
and turn off when above that value 

• You can swap this function by changing 
to the ‘>’ (greater to)  

 

Activity C: using a sensor and a servo motor 

How might you engage your students in this activity in Engineering?  

Video 

https://youtu.be/4

nTvfn4RrNw 

https://youtu.be/4nTvfn4RrNw
https://youtu.be/4nTvfn4RrNw
https://youtu.be/4nTvfn4RrNw


35 

 

 
 
 
Activity A: Radio Send String 
Explore the following piece of code which will allow two Micro:bits to send a ‘String’ 
from one Micro:bit to the next. Use the supporting video to  guide you through this. It 
will help you to develop your understanding on the code.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5: 
Select ‘on radio received receivedString’  from 
the ‘Radio’ tab and drop it into editor and drop 
‘show string__’ from the ‘basic’ tab into the ‘on 
radio received’ block.   

4: 
Select ‘radio send string’  from the ‘Radio’ tab 
and drop it into the ‘on button A pressed’ 
block. Edit the text in the string to desired 
message to be communicated on the 
micro:bit.  

3: 
Select ‘radio send string’  from the ‘Radio’ tab 
and drop it into the ‘on button A pressed’ 
block. Edit the text in the string to desired 
message to be communicated on the 
microbit.  

2: 
Drag and drop ‘on button A pressed’ into the 
program editor.   

1: 
Start with a ‘forever’ block in the program editor. 
In the ‘Radio’  tab select ‘radio set group’ and set 
the number to 1.   

Video 

https://youtu.b

e/sisag7fvCcQ 

Module 7: Radio Control 

https://youtu.be/sisag7fvCcQ
https://youtu.be/sisag7fvCcQ
https://youtu.be/sisag7fvCcQ


36 

 

 
 
 
 
 
 
 
 
 
 
 
Activity B: Radio controlled DC motor 
Explore the following piece of code. When button A is pressed, it will send a radio signal to 
a second Micro:bit. This will control a DC motor and will turn the motor on in the forward 
direction for 5 seconds.  Use the supporting video to guide through this. It will help you to 
develop your understanding of the code.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

2: 
From the ‘Input’ tab select ‘on button A pressed’ and 
drop into the editor.  Select ‘radio send number’ from 
the radio tab and drop it into ‘on button A pressed’ 
block. 

1: 
Start with a ‘forever’ block in the program editor. In 
the ‘Radio’ tab select ‘radio set group’ and set the 
number to 1.   

NOTE: 
This code  controls a DC motor. The relevant coding blocks can be found in the ‘Robotics’ tab. If 
starting with a new project you will need to add the ‘Robotics’ tab to the menu. This can be found by 
selecting  ‘Advanced’ and then ‘Extensions’ in the menu and searching for ‘All-in-one Robotics Board’.  

Video 

https://youtu.be/

tAbFim3SZqM 

7: 
Download the code to both  micro:bits. Press ‘button 
A’ on one  micro:bit to send the code to the second 
micro:bit.    

6: 
In the ‘on radio received’ block, click  the 
‘recievedString’ block and drag and drop it into the 
‘show string’ block.   

 

https://youtu.be/tAbFim3SZqM
https://youtu.be/tAbFim3SZqM
https://youtu.be/tAbFim3SZqM


37 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

How might code such as this deepen a student’s understanding of Mechatronics in their projects ? 

‘MOTOR 1’ 9V 

8: 
Download the code to both micro:bits to 
test it on the All in one robotics board.  

7: 
Click the ‘Robotics’ tab in the menu. Select 
‘turn off all outputs’. Drag and drop it under 
the ‘Pause (ms) __’ block.  

6: 
In the ‘Basic’ tab select the ‘Pause (ms) __’ block and drop it under  the ‘Motor __ on direction 
Forward speed __’ block. 

5: 
In the ‘Robotics’ tab, select ‘Motors’, and from here drag and drop ‘Motor __ on direction Forward 
speed __’ into the on radio received receivedNumber’  block. Change the speed from 0 to 100.  

4: 
In the ‘Robotics’ tab, select ‘Motors’, and from here 
drap and drop ‘Motor __ on direction Forward speed 
__’ into the on radio received receivedNumber’  block 
as seen below. Change the speed from 0 to 100.  

3: 
Select ‘on radio received receivedNumber’  from the 
‘Radio’ tab and drop it into editor.   



38 

 

Activity C: remote control of a DC motor 
Using the following code as your base you can control the motor using a combination 
of inputs and sending different values to the micro:bits. Creating different situations 
using logic gates can allow different control of the motors or any other components. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

3: 
For the final part of the code start with an ‘on radio received 
recievedNumber’ block.   

2: 
Build two input blocks to send a number using a radio signal 
as shown opposite. Set the first the  first to send the number 
‘0’ when button ‘A’ is pressed (This signal will be used to 
rotate the motor forward). Set the second block to send the 
number ‘1’ when button ‘B’ is pressed (This  signal will be 
used to turn the motor off’.   

1: 
Using your understanding from previous activities, build this 
block of code and set the ‘radio set group __’ to ‘1’   

https://youtu.be/

YVIOk30kuEw 

Video 

https://youtu.be/YVIOk30kuEw
https://youtu.be/YVIOk30kuEw
https://youtu.be/YVIOk30kuEw


39 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7: 
• From the ‘Robotics’ tab add ‘motor __ on 

direction __ speed __’ to the first ‘Conditional’ 
block. Set the values to achieve the following 
logic:  If the received number ‘=’ 0, then the 
motor in pin 1 will rotate forward full speed.  

• From the ‘Robotics’ tab add ‘turn off motor __’ 
to the second ‘Conditional’ block. Set the values 
to achieve the following: If the number received 
‘=’ 1, turn the motor in pin 1 off. 

• Download and test the code on the configured 
components. 

6: 
Select ‘recieveNumber’ in the ‘Radio’ block in this 
code and drop it into each of the ‘Conditional’ 
blocks. This will allow the conditional block to 
compare the number received to ‘0’ or ‘1’. On 
this basis we can allow the code to determine the 
output.  

 5: 
Add an ‘=’   ‘comparison’ block to both of the 
‘Conditional’ blocks.   

 4: 
Add the ‘if +’ conditional block from the ‘logic’ 
tab and duplicate it in the ‘on radio received’ 
block. This will be used to compare the signal that 
is sent by button ‘A’ or ‘B’ to decide the output. 



40 

 

Module 8: Motor Control 
  

Activity A: DC Motor Control for a Specified Time 

In this activity we are going to react to an on-going question from teachers around motor control:  
When programming a motor, how can I make the motors turn on for a specific amount of time? 
 
In this module we will address this specifically as well as some other areas about motor control. 
Click or scan the QR code to view the supporting video. 
 
 

During the CPD session 2020/2021, we set the challenge to 
program the track vehicle in the picture. This was achieved 
by most teachers in the CPD. There have been follow-up 
emails asking for more engagement with the solution.  

Video 

The code seen above will solve this activity. It uses ‘input’ ‘basic’ and ‘robotics’ blocks in order to 
complete its commands. The ‘robotics’ extension needs to be added to complete this code.  
This code works by pressing the buttons for each command. Later in this activity you will be 
shown how to create the program that runs automatically with the press of one button.  

https://youtu.be/auqPNpGnA1k


41 

 

  

3: 
• Using the drop-down-arrow we can change 

the ‘input’ command to ‘on button B 
pressed’ 

 

• Using the ‘motor’ block we can change the 
motor we want to turn by selecting the 
appropriate terminal block 1, 2, 3, or 4 from 
the drop-down menu 
 

• Once again, we need to tell this motor to 
stop, otherwise it will continue to turn 
indefinitely, so change the number in the 
‘turn off motor __’ to the same 
corresponding motor as the previous bullet 
point 

1: 
• Using the ‘input’ tab, select the ‘on button 

__ pressed’ 
 

• Once the ‘Robotics’ extension has been 
added, use the ‘motor __ on direction ___ 
speed ___’ to turn on the motor and 
decide on a speed to select from 0-100 

 

• Using the ‘basic’ tab, use the ‘pause’ block 
and choose a certain time to keep the 
motor running for 
 

*the pause block can allow a command to run 
for a certain time and also can be a physical 
pause 
** a second in this block is in terms of 1000’s. 
6000 is 6 seconds and so on 

2: 
• Using the ‘robotics’ tab we add in the block 

from the motors option to ‘turn off motor 
__’ 

 

• Without using this block the motor will 
continue to turn and not stop until the 
motor is told to, even if you tell another 
motor to turn on in the meantime 

 

• By right clicking on the ‘input’ block, you can 
click ‘duplicate’ and copy the entire set of 
blocks 



42 

 

 
  

5: 
• It has also been asked ‘how could I make the 

movement automatic?’-  when I press 
button A I want the vehicle to move left and 
right, then go straight, by itself 

 

• By combining all of the code seen in the 
previous steps together under the one 
input, the vehicle will move automatically 
and stop after 18 seconds using the ‘pauses’ 
show on the left 
 
 

6: 
• Configure both motors as 

shown in the image  

• Download and test the code 
 
Note: The codes can be 
downloaded at the end of each 
of the previous 5 steps of 
building the code in this 
activity. This will build your 
understanding of each part of 
the code.  

 
 

4: 
• By right clicking on the ‘input’ block you can 

click ‘duplicate’ and copy the entire set of 
blocks 
 

• Using the drop-down-arrow we can change 
the ‘input’ command to ‘on button A+B 
pressed’ 

 

• Using the ‘robotics’ tab we can add the first 
motor to turn as shown in step 1  
 

• Using the original ‘robotics’ tab we can add 
‘turn off all outputs’ to turn off all motors at 
the same time. 

MOTOR BLOCK 1 

MOTOR BLOCK 2 

BATTERY 



43 

 

  Activity B: Creating a hydrostatic servo motor control 
(One direction only) 
 
This code aims to mimic a hydrostatic power drive. 
In module 2 of the 2020/2021 learning log, it showed how to map a 180-degree servo 
to the potentiometer. In this module we will show how to use the potentiometer to 
set the direction and the speed of a continuous servo. 
The diagram below shows how to connect the servo to the all-in-one robotics 
board. 
Click or scan the QR code to view the supporting video. 
 

 

1. GND is connected to 
one leg on the outside 
of the potentiometer 

2. 3V is connected to the 
other outside leg 

3. The middle leg can be 
connected to either P0, 
P1, or P2 to receive a 
signal 

**connecting the outside 
legs to the board in the 
opposite way will only 
affect polarity of the 
potentiometer, the 
middle leg must be 
connected to an analog 
input 

This code is useful to map any 
potentiometer to the servo. It will allow 
the servo to be controlled, in terms of 
speed and direction by the 
potentiometer. 
 
Click or scan the QR code opposite to 
guide you through the process of 
mapping the potentiometer to the Servo. 
 
The blocks required include:  
Basic: Simple functions such as ‘show 
number’ and ‘forever’ block.  
Pins: This controls the signals from the 
‘Link Pads’ on the ‘All-in-one Robotics 
Board’. This is required to send power to 
the potentiometer and to measure the 
‘signal’ from the middle leg on the 
potentiometer. This allows us to control 
motors and servos. 

Video – Calibrating the 
potentiometer 

Video 

https://www.youtube.com/watch?v=tPjJrtGBUlM&feature=youtu.be
https://youtu.be/Arm6_5TlLDc


44 

 

 
  

2: 
• Using the ‘pins’ tab we set the 

potentiometer to take the reading from 
whichever pin you have connected the 
potentiometer to 
 

• We use the ‘map’ block to create a 
scenario where it is taking a reading from a 
resistance from 0-1023 and it converts it to 
degrees from 0-180 

 
• If you wish to make the range of readings 

smaller and more accurate you can use the 
QR code at the bottom of page 22 to 
navigate to a video which will provide help 
to calibrate the potentiometer 
 

• Using ‘pins’ again we use the ‘analog read 
pin p__’ to identify what pin the reading is 
to come from, once again making sure the 
middle leg of the potentiometer is 
connected to this pin 
 
 

 

1: 
 

• Using the ‘variables’ tab, create a variable 
that we can use to set the value of the 
potentiometer, add it to the ‘forever’ block 

 
• From here we can create whatever 

variable we so wish and get the reading 
from the analog sensor, in this case the 
potentiometer 

 



45 

 

 
  

From the previous learning log, we know that with a continuous servo, the following diagram of degrees 
mapped to speed and direction will work with the servo: 
 

Activity C: Controlling a DC motor using a Potentiometer 
(One direction only) 

The set-up is the 
same as before, 
instead of using the 
servo, connect the 
motor to the terminal 
block 

This code aims to mimic a hydrostatic power drive. 
In the previous activity we have created a hydrostatic servo motor. 
In this module we will create a hydrostatic DC control system. 
 

3: 
• From the ‘robotics’ tab we use the ‘set servo __ 

to __ degrees’ which will cause the servo to turn 
on 
 

• From the ‘Variables’ tab we use the 
‘potentiometer’ block. This will align the angle 
of the servo to the reading on the 
potentiometer.  

 
**This means that at halfway of the potentiometer’s 
resistance will be 90°, and at either end of its rotation 
will be 0° or 180° 

 
4:  

• Download and test the code 
 

Clockwise Anti-clockwise 

Video 

https://youtu.be/6XQsDJCFqSg


46 

 

 
  

Note: As before, if you wish to calibrate the sensor 
and make it more sensitive then you can use this 
video. Click or scan the QR code to view the support 
video 

Activity 3a: Controlling a DC motor using a Potentiometer 

1: 
• If you wish to have more control over the 

motor, you can use the ‘input’ tab and add 
it to the already developed code as shown. 
 

• This now starts the motor on button A and 
then you can control the speed using the 
potentiometer 
 

• Button A will need to be pressed, each 
time the potentiometer is adjusted.  

1: 
• Looking at the solution on the left we can 

see many similarities to the previous 
activity. 

 
• There are minor changes that we can see 

in the code. Firstly, the mapping has 
changed: instead of ‘to low 0 - to high 180’ 
we now see it has become from            
‘to low 0 – to high 100’  

 
• This is to acknowledge that the motor 

control is from a speed of 0 – 100 
 

• Similarly, we use the ‘robotics’ tab to find 
the motor block and add the 
potentiometer variable from the ‘variables’ 
tab 

 

Video 

https://www.youtube.com/watch?v=tPjJrtGBUlM&feature=youtu.be
https://youtu.be/tPjJrtGBUlM


47 

 

  Activity D: Controlling a DC motor using a potentiometer (Forward 
and Reverse) 

1: 
• As we have seen before, using ‘variables’ 

and the ‘pins’ tab we can set the reading 
from the potentiometer by setting the 
reading to come from P0,1,2 depending on 
which pin is connected again to the middle 
leg of the potentiometer. 
 

• Using the ‘logic’ tab we can create the 
following scenarios. ‘If __ then __, else if __ 
then __, else __’. 

 
• When you open the tab and use the logic 

gate ‘If __ then __’ you can click on the plus 
shown to add an extra scenario. 

 
 

 

This code aims to mimic a hydrostatic 
power drive. 
 
The code on the left develops on the skills 
learned so far. Using mapping, motor 
direction and in the code seen here logic 
too. 
 
Basic: allows us to have the code running 
forever  
Logic: allows us to create a scenario or a 
comparison that if one thing present it will 
do something and if not another. 
Robotics: motors can be controlled from 
this tab, but the extension needs to be 
added. 
Pins: allows us to allocate control to a 
particular pin, in this case where the 
readings are coming from: the 
potentiometer. 

  Variable: as we’ve seen before, this 
facilitates the use of the variable resistance 
of the potentiometer 

Video 

https://youtu.be/QxQi9CDZA2o


48 

 

  2: 
• Using the ‘Comparison’ section of the 

‘logic’ tab we create a comparison that 
when the potentiometer reads less than or 
equal to a value, then it will turn on the 
motor  

• We use the second block in ‘else if __ then’ 
so if the potentiometer output is greater 
than a reading it will do something else 
with the motor 

• Finally, we use the ‘else’ section to turn off 
all outputs if this doesn’t exist 

 
 

4: 
• Using ‘pins’ and the ‘map’ block we have 

used before we set up the situation where 
the potentiometer gives values of 
resistance from 0 - half way (512) and this 
maps to the speed of the motor 
 

• When setting the speed of the motor we 
need to be conscious of the fact that we 
want the lowest reading from the 
potentiometer to be the fastest speed so 
the low in ‘100’ and the middle resistance 
of the potentiometer is ‘0’ 

 

3: 
• As you can see here the readings have 

been set at half of 1023, the maximum 
reading from our potentiometer ** Use 
the calibration video used in the previous 
activity in order to find the middle of the 
resistance of the potentiometer 
 

• Using the ‘robotics’ tab we can add the 
motor controls, changing the directions 
and eventually turning off all the outputs 

 



49 

 

 
  

5: 
• Using the previous learning, we 

create a new map where we move 
from 513 to the top range of the 
1023 
 

• From this now we build up the speed 
from the middle of the resistance up 
to the top end of the resistance 

 
• We map this speed from 0 up to the 

maximum speed of the motor  
 

• Looking at the code, we have now 
said that if the potentiometer is in 
the middle position, the motor 
should be turned off, as you turn to 
the lowest resistance the motor turns 
in reverse and begins to speed up 
until you are at 0 resistance, as you 
turn to the opposite direction from 
the middle, the direction changes and 
it speeds up until you hit the 
maximum resistance 
 

6:  
• Configure the components the same 

way as activity 3 as shown in the 
image to the left. 

• Download and test the code 



50 

 

Module 9: External Screen 

 
 
 
 
 
 
 
 
 
 
 
  

In previous modules we have examined how to display a range of text and numerical data on the 
micro:bit LED display. We can enhance our ability to display data from a range of both onboard and 
external sensors, as well as displaying lines of text using an external screen. JCt4 have provided a 
Kitronik 128x64 LED display in the Mechatronics resource which we will use in the following activities. 

Activity A: Display Text and Internal Sensor Values  
 

 
 

To engage with this activity, you will need to add in another extension. This one is found in the 
extension library under the search of Kitronik Display. You can see in the screen shot above which 
extension to choose. 

Video 

The code above is the solution to the activity. 
It involves some new blocks that have not been engaged with in any other module. 
 
128x64 Display: allows for text, measurements and other images to be shared on the screen 
 
Text: allows words, values, and other variables to be shown on the screen 
 
Input: allows the pitch of the micro:bit to be shown on the screen 
 

https://youtu.be/pdLtcLguT3Q


51 

 

 
 
  

 
• There are 8 lines that you can show code on the 

screen (indicated in red) 
• There are 3 alignments on the screen (indicated 

in Green) 

1: 
• Using the 128x64 display select the ‘show’ block from the tab 

 

• As shown, drop the block in the ‘forever’ command therefore the text and numbers will end up 
on the screen forever 

2: 
• Using the plus arrow expand out the code 

block so it reads ‘on line __’ 
 

• Using the plus arrow again, add in the 
alignment of the text or variables 



52 

 

  3: 
• Using the ‘text’ tab select the block shown 

 

• As seen in the image, this block allows for 
a letter, word, or line of text to be shown 

 

• Add this block to the screen block as shown 
in the image below 

 

• Add your desired text to this block, as 
shown below left, ‘JCT ENGINEERING’ was 
added 

4: 
• Using the ‘128x64 display’ tab add the 

‘show __’ block again to the forever loop  
 

• Using the text tab select the ‘join __ __’ 
block add it to the ‘show block’ as shown 

 

• Using the plus button on the block add 
space for more text 

5: 
• As shown previously, before using the plus button on the ‘show’ block, you can select on which 

line you would like to display the text and the alignment 
 

• On screen, it will now show the words Micro:bit and pitch, the next step is to add in the 
numerical value of the pitch. 



53 

 

 
  

6: 
• Using the ‘more’ option of the ‘input’ tab 

use the block ‘rotation (°) pitch’  
 

• Add it to the ’join’ block as shown below 
 

• This will now allow the reading from the 
pitch of the micro:bit to come up on the 
screen. 

 

7: 
• From the advanced section of the ‘128x64 

Display’ tab use the ‘refresh display’ block 
in order to constantly refresh the screen 
and the readings from the pitch 
 

**If this step was not added in the screen would 
only show the first reading of the pitch and not 
show any changes in rotation 



54 

 

 

  Activity B: Plot a Graph of Sensor 
Readings  
 

 
 

Sometimes it is desirable to visually represent a set of values. 
In this activity, we will explore how we can use the graph 
feature of our Kitronik 128x64 screen to record a range of 
values in a live graph. We use values obtained from the 
accelerometer sensor on the Micro:bit to plot the graph. 

Before we begin this activity, we must first 
understand how the screen allocates space for 
the graph to be plotted. From the eight lines 
available, it reserves lines 1 and 2 for text/data. 
Lines 3 – 8 are then used as the area for the 
graph, as shown on the image opposite. Any text 
on lines 3 – 8 will be plotted over by the graph. 

1: 
• Open a new Makecode document and add 

in the 128x64 extension. 
• From the ‘128x64 Display’ tab, choose the 

“show _____” block and place it in the 
“forever” block as shown. 

 

2: 
• We cannot type directly into the ‘show___’ 

code. We need to use the ‘Text’ code 
blocks. These are found in the ‘Text’ 
drawer. (You may need to click on the 
advanced Tab at the bottom of the code 
drawers to see this) 

• From the ‘Text’ drawer, choose the “_” 
block from the top of the drawer and place 
it in the “show _____” block 
as shown here. 
 
 

• Type “JCT ENGINEERING” in the text box, 
and place it on line 1, centre aligned. 

 

Video 

https://youtu.be/FYftGOmG3Zs


55 

 

 
 
  

 

3: 
• Add another show____ block from the 128x64 

Display code drawer. 

• From the Text  drawer, choose the Join “Hello” 
“World” block and place it into the show_____ block 
as shown below. 

 

• The “Hello” “World” block allows us to insert text 
and variables in the one string. We will use this to 
display the text: “Pitch = XX” on the display. 
 

 

4: 
• In the “Hello” section of the join “Hello” “World” 

block, type in the text “Pitch = ” as in the example 
below. 

• We want to display the pitch, so, from the Input 
drawer, click on the … more tab and select the 
rotation (°) pitch block and drag it into the second 
input of the join “Hello” “World” block, also shown 
below. 

• Place this on line 2 with centre alignment. 

5: 
We will now begin to plot the graph. 

• From the 128x64 Display drawer, choose 
the plot__ onto display code block.  

This is in the Draw section of the drawer and is 
shown highlighted in the image on the left. 

• Drag this out into the forever block and 
place it under the code previously inserted. 



56 

 

 
 
  

6: 
We now want to tell the screen to plot the graph of the pitch. A convenient method to do this is to 
right click on the rotation (°) pitch code we inserted in step 4 of this activity and select duplicate from 
the contextual menu that pops up when we right-click. 
We place the duplicated rotation (°) pitch code into the plot__ onto display code block. The Micro:bit 
will now plot the values for the pitch onto the display when the code is flashed to it and the screen 
connected. (Alternatively, you can select the rotation (°) pitch code form the Input drawer, as we did 
in step 4) 

8: 
Flash the completed code above to the micro:bit. 
Ensure the display is connected or the micro:bit will 
give an ERROR – no display warning on its LED matrix. 
When the micro:bit reboots, it will display a titled 
graph as shown here and the values will update to 
visually show the variance in pitch as you move the 
micro:bit. The axes will automatically update to show 
the extreme values as you tilt the device.  

7: 
To help limit latency or 
lags in plotting the graph, 
we add in the 
refresh display code 
from the 128x64 Display 
drawer.  
 

What workshop activities or processes might this activity support in Junior Cycle Engineering?  



57 

 

 
  

Activity C: Display Values from Multiple Sensors 

 
 
In activity A, we investigated the layout of our 
screen and how we can display text and 
numerical data obtained from an onboard 
sensor. In this activity, we shall now extend 
on activity A and display two sets of data 
from the micro:bit’s onboard accelerometer, 
the Pitch and Roll.  
Refer to the image of the plane as a quick 
reminder of the terms Pitch and Roll. 

1: 
The code used in Activity A is shown above. Set up this code following the instructions in Activity A, or 
alternatively, duplicate your Activity A file. 

3: 
• From the Text  drawer, choose the Join “Hello” “World” block and place it into the 

show_____ block as shown above. 
 

• In the “join “Hello” “World” block, insert the text “Microbit “ (be sure to include a space after 
the word, or the screen will bunch the words together) into the first input space and insert 
the text “Roll = “ into the second input box (again, be sure to include a space after the text)  

• Now click on the + symbol, shown above, to add another input box to the block. This will 
allow us to add the variable we need in the next step. 

2: 
Add a show____ block from the 
128x64 Display code drawer and 
place it in the forever block as 
shown opposite. 
 

 
 

Video 

https://youtu.be/sS_j7AsJWws


58 

 

 
  

4: 
• We now want to tell the Micro:bit to measure the roll values from the accelerometer. This 

value is contained in the rotation (°) pitch code.  

• As in the previous activity, a convenient method to do this is to right click on the existing 
rotation (°) pitch code we inserted and select duplicate from the contextual menu that pops 
up when we right click. 

• We place the duplicated rotation (°) pitch code into the third input box of the Join “Hello” 
“World”. By clicking on the drop down to the right of the pitch, choose roll to change the 
reading that will be displayed on this line. 

• Modify this line of the  show____ code block so it appears on line 6, with centre alignment. 
 

5: 
Flash the completed code above to the Micro:bit. Ensure 
the display is connected or the Micro:bit will give an 
ERROR – no display warning on its LED matrix. 
When the Micro:bit reboots, it will display both the Pitch 
and roll values that its accelerometer is sensing. 
Try carefully tilting and twisting the Micro:bit in  various 
directions to see this in action. 

Can you identify a machine or other piece of engineering that monitors pitch and roll values?  
How does the machine use this information? 



59 

 

 
 
 
 
 
 
 
 
 
 
  

Activity D: Display Readings from an External Sensor 
Example – A Potentiometer 

 
 

We have used the potentiometer in many activities across the 
previous modules, 1 -8. In this activity, we will use the screen 
to display the range of values obtained from the 
potentiometer in real time.  
To set up this activity, connect your potentiometer to the 
header pins on the Robotics board as follows:  

• To set up this activity, connect your potentiometer to 
the header pins on the Robotics board, ensuring that 
the wiper (centre pin) is connected to pin 0.  

1: 
• From the 128x64 Display drawer, select the 

show____ block. 
 

• As shown opposite, drop the show____ block 
into the ‘forever’ command. 

• Next, we add a basic text box. To do this, 
open the Text drawer and select the “_” code 
from the top of the drawer. Insert this into 
the input of the show____ block. 

2: 
In the “_” text input, type in JCT ENGINEERING as shown above. Modify the code to show the text on 
Line 1 with centre alignment. 

3: 
• From the 128x64 Display drawer select 

the show____ block. 
 

• Place the show____ block into the 
‘forever’ command beneath the previous 
one. 

• As in step one, add a basic text box. To do 
this, open the Text drawer and select the 
“_” code from the top of the drawer. 
Insert this into the input of the show____ 
block. 

• Type the text Potentiometer P0 into the 
text input.  

• Place the text on line 3, with centre 
alignment. 

 
 

Video 

https://youtu.be/Voaw8QgGJIg


60 

 

  4: 
 

• Add another show____ block into the 
‘forever’ command beneath the 
previous one. 

• We now want to insert text and a 
variable so we will use the join “Hello” 
“World” block.  

• To do this, open the Text drawer and 
select the join “Hello” “World” code 
from the drawer. Insert this into the 
input of the show____ block. 

• Type the text “Value =” into the first 
input box. 

• Place the text on line 3, with centre 
alignment. 

 5: 
 

• Type the text “Value = ”  into the first input box 
of the join “Hello” “World” block. (Remember to 
add a space after the = sign or the screen will join 
the values to the text as it displays) 

 

• Now we will add the values from the 
potentiometer. From the Pins drawer, add the 
analog read pin P0 block to the second input of 
the join “Hello” “World” block. 

6: 
 

• Finally, place the code from step five on 
line 4 with centre alignment. 

• Add a refresh display command to your 
code to help reduce latency in the 
memory of your screen. 

• The completed code is shown to the 
left. 

• Flashing this to your Micro:bit will 
make it display the values it is reading 
from the potentiometer connected on 
Pin 0. 

Has this activity helped you understand how the micro:bit “reads” the signals from the potentiometer? 
How could this be used to help student understanding of the difference in analog and digital input? 



61 

 

1: 
• From the 128x64 Display drawer select the show____ block. 

 

• Place the show____ block into the ‘forever’ command beneath the previous code from 
Activity D. 

• Next, add a basic text box. To do this, open the Text drawer and select the “_” code from 
the top of the drawer. Insert this into the input of the show____ block. 

• Type the text “VALUE = ” into the text input, remembering to add a space at the end. Place 
the text on line 4, with centre alignment. 

 
 

 
  

Activity E: Investigating Mapped Values using the 128x64 Display. 
 The “Map” function is something we regularly use with our 
Micro:bit, particularly when controlling servo and DC motors.  
In many projects, smooth operation of our drive systems is 
dependent on mapped values; where our Micro:bit is relating 
the speed or direction of the motor to an analog reading. We 
have explored this extensively in Module 8. 
So what exactly is the Micro:bit doing when it maps a value? 
Using the code and potentiometer set up in Activity D. We shall 
look a little closer to find out. 

2: 
 

• Type the text “MAPPED VALUE ” into the text input added above, remembering to add a 
space at the end. 

 

• Modify the code to place the text on line 6, again with centre alignment. This is the title text 
for our mapped values which we shall display on the next line. 

 
 

Video 

https://youtu.be/S8GcF1VvYy4


62 

 

 
  3: 

For convenience, we can duplicate a 
line of code here. 

• Right click on the show____ 
block containing the join 
“Hello” “World” block. 

• Click on Duplicate from the 
contextual menu that appeared 
when you right clicked. 

• Place this duplicate block of code into 
the forever block as indicated to the 
right.  

• Modify the text in the first input of 
this line to read “POWER = ” 

 
Remember to add a space at the end! 
 

• We delete the analog read pin P0 
from the block as well. 

• As we will use this line to display the 
mapped value that the Micro:bit has 
calculated.  

• Modify this code to place the text on 
line 7 with centre alignment. 

 4: 
Before we can display a value, we need to create a variable that will 
become the value we want to display. 
We have been through this process previously in Module 8. 
 

• Open the Variables drawer. 

• Create a variable called “mapped” 

• We now need to tell the Micro:bit how to calculate the 
mapped value. To do this, place the set ____ to _____ block 
from the variables drawer into the forever block as shown 
below. 



63 

 

 
  

5: 
In previous activities, we have used the 
mapped value to control motors. Our 
reference for the output of the function has 
been the speed/direction of the motor. 
If we display the mapped value directly on the 
screen, we will see a number with as many 
decimal places as the screen can fit. 
 
This can be quite confusing and messy to 
display, so we shall round off the mapped 
value to the nearest whole number. 
This way we get a simple, clean display of the 
mapped value. 
 

• To round off the mapped value, we 
use the round____ code block from 
the Math drawer of code.  

• Place this block into the set ____ to 
____ code from step four. 

 
 

6: 
Now that we have set up our mapped 
variable and rounded it off to the 
nearest whole number, we must now 
tell the micro:bit what input we want 
it to measure, as well as the limits we 
want it to map to. (e.g., a servo needs 
values up to 180, but a DC motor 
needs outputs up to 100.) 

• From the Pins drawer, choose 
the map____ code and insert 
it into the round_____ code 
as shown to the right. 

• We need to ensure the “to 
high____” value is 100, as we 
will use a DC motor later. 

7: 
• The Micro:bit now has been instructed to map the 

values from the potentiometer connected to Pin 0  (0 
-1023) to a range suitable for power output to the DC 
motor (0-100%). 

• To display the result of the Map function, open the 
Variables drawer and select the mapped variable. 

• Drag the mapped variable out and place it in the 
second input of the join “Hello” “World” block as 
shown below (where analog read pin P0 used to be before 
we deleted it in step three). 



64 

 

 
  

8: 
The completed code is shown in the 
image above. 
When downloaded and flashed to the 
micro:bit, the screen will display the 
range of values read from the 
Potentiometer (P0) and the mapped 
values which are scaled accordingly. 
To check the accuracy, cycle from 0 – 
1023 on the potentiometer, this will give 
a power output- from 0 – 100%. 
If you rotate the potentiometer to a 
reading of 512, you should have a 
mapped value (power) output of 50%. 

9: 
The purpose of the mapping function in 
this example is to control the power 
output to a DC motor, as we did in 
Module 8, Activity C. 
To compare the values on screen to the 
operation of the motor, let’s add our DC 
motor on Motor output 1 of the All-In-
One Robotics board. 
 

• Add the All-In-One Robotics 
extension to your Makecode 
window. 

• Go to the Motors drawer within 
the Robotics drawer. 

• Choose the Motor ___ on 
direction _____ speed _____ 
code block. 



65 

 

 
  
10: 
Place the Motor ___ on direction _____ 
speed _____ code block into the forever 
block. It can be placed anywhere, but for 
clarity, let’s place it after the last code we 
inserted. 
 
To instruct the micro:bit what speed to 
set the motor to, insert the variable 
mapped into the speed input of the 
motor____on direction____speed____ 
code block. The mapped variable can be 
obtained from the Variables drawer, or it 
can also be duplicated from existing code 
in the window. 

When this updated code is downloaded and 
flashed to your micro:bit, the % power from 
the battery being sent to the motor will be 
shown on the screen. 
 
As you increase power by turning the 
potentiometer, you will hear and see the 
motor changing speed. 
 
Note: The motor will not begin to turn 
immediately at 1%, as there is a minimum 
voltage it must receive before it can 
overcome inertia, load, friction, etc. Using a 
6v battery, you will likely be in the mid-teens 
before your motor moves. 

Has this activity enhanced your understanding of mapped values? 
How could this activity support student understanding in mechatronics? 
What practical activities in the workshop does this activity lend itself towards?  



66 

 

Module 10: Ultrasonic sensors 
 
 
 
 
 
 
 
 
  

In the previous learning log from CPD 2020/2021, we engaged with LDRs in module number 6 by adding 
them to the Robotics board as additional sensors. This module will explain how to add and code an 
ultrasonic sensor and apply it to a geared DC motor and a servo motor.  

Possible Configurations 
VCC: 3v 
Gnd: Gnd 
*Trig: P0,P1 or P2 
*Echo: P0,P1 or P2 
 
*Trig and Echo need to be identified in 
the code to decide the pin they will join 
to on the micro:bit or All-in-one Robotic 
board. 
 
Videos supporting the activities in this 
module include instructions which 
outline how to configure the ultrasonic 
sensor to the micro:bit and Robotics 
board. 
 

Extensions 
To use the ultrasonic sensor, you need to add in the extension for the code to Make:code. Search for 
sonar in the ‘extensions’ library and add the one outlined in the diagram below.   



67 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Activity A: Calibrating the Ultrasonic 
Sensor 

Why do we calibrate sensors? When using sensors for 
any reason, we should know it’s maximum and 
minimum reading for a given situation. Without the 
readings, we might make the circuit not sensitive 
enough, or the opposite, too sensitive. You can 
access the video on how to calibrate a sensor by 
clicking or scanning the QR code. 

1: 
• When we are taking a reading, we will 

need to create a variable. 
• Click on the variables tab and then the 

‘Make a Variable’ button 
• Just like in the subject of Maths, a variable 

can have any value. 
• We will dictate where that variable comes 

from, in this case, the ultrasonic sensor 
 

2: 
• Name the variable something that will help 

make it identifiable, in this case ‘distance’. 
 

• When the variable is named, three blocks 
appear. 

• ‘Distance’ allows for the use of variable to 
show numbers. 

• ‘set distance to __’ allows us to create the 
link to the analogue value coming from the 
LDR  

• ‘Change distance by __’ allows us to 
change the variable which can be useful 
for a countdown using a loop.  

Video 

How might you engage your students in this activity in Engineering?  

https://youtu.be/FcSSiWg0DaQ


68 

 

 
 
 

 
 
 
 
 
 

 
 
  

Note: In some instances, the micro:bit may not be able 
to power the ultrasonic sensor. The LEDs may 
constantly be reading 0 (zero). If this is the case a 
separate power supply may be needed as shown on 
the image. 
 
Green = TRIGG to P0 
Orange = Echo to P1 
Black = GND to GND 
Red = VCC to 5 volts +  

  

 

 

3: 
• From ‘basic’ we use the ‘forever’ block as we 

would like this to run continuously in the 
background. 

• Using the ‘variables’ tab we use ‘set distance 
reading to __’      .      

• From the ‘sonar’ tab we use the ‘ping trig 
P0, echo p0, unit µs’ and set it to whichever 
pins the ping and trig are connected to. Also 
choose your unit of measurement i.e., cm or 
inches. 

• By doing this, we have said which pins the 
readings are coming from to measure the 
distance. 

  

 

4: 
• Using the ‘Basic’ tab we can use ‘show 

number __’ to put the reading on the screen 
• From ‘Variables’ we use ‘distance’ to show 

the value coming from the ultrasonic sensor. 
• Now upload the code to the micro:bit and 

take the reading of the ultrasonic sensor, 
based on how far it is from an object, as this 
will be useful in the next activities. 

• Download and test the code and configure 
the components as shown at the start of 
this module on page 45. 

• Place an object in front of the sensor and 
the reading will appear as a number in cm 
on the micro:bit screen. 

5 VOLTS 

Reflection on your observations:  



69 

 

  Activity B: Using the Ultrasonic Sensor to Show a Warning using the 
Micro:bit 

This activity explores code which can, using the screen on the micro:bit, send a 
signal that you are too close to an object by getting a signal from the ultrasonic 
sensor. Click or scan the QR code to access the supporting video for this activity. 

1: 
• Using the first 3 steps from ‘Activity 1’ your 

coding blocks should be aligned with the 
diagram on the left. 

 

2: 
• Using the ‘logic’ tab, use the ‘If true then __ 

else __’ Block and add it to the code. 
• Using the comparison section as shown in the 

image, select the ‘___ < ___’ option.  
• Add it to the ‘true’ part of the logic gate. 

 
 
*This has now created a comparison stating that ‘if 
___ < ___ then do _____ if it’s not there do ____’ 

Video 

 

This code is intended to fulfil the activity 
constraints.  
What is involved in the code? 
Basic: Simple functions such as pausing a code. 
Logic: Create a logic pattern where, if something is 
present it will do something, otherwise it will not.  
Variables: This is a programmable unknown value 
that can be set to any value, in this instance the 
reading from the ultrasonic sensor. 
Sonar: taking the readings from the sonar using the 
pins and values set in the code. 

https://youtu.be/Q9ZJZ2ZJFWE


70 

 

  

4: 
• For the option code here, we have used 6cm as the 

distance we want from the ultrasonic sensor for the 
micro:bit to warn someone they are too close. 

• Using the ‘basic’ tab, select the ‘show icon’ choosing 
which icon you want to show on screen, in our case 
an ‘X’ or a ‘✓’ . 

 
 
So, what is happening in this code?  
We are using the sensor to detect the distances in cm. 
When the distance is greater than 6 cm from the ultrasonic 
sensor it shows a ‘✓’ on screen but when you go closer than 
6 cm from the sensor the icon changes to a ‘X’ and you are 
warned you are too close. 
 
Download and test the code with the micro:bit. The 
Ultrasonic sensor should be configured to the board the 
same way as shown in activity 1 of this module on page 45. 
  
If your micro:bit cannot get a reading from the microbit, use 
the configuration for the components on page 47.  
  

How could you use this with your students?  

 
 

3: 
• Using the ‘variables’ tab, select the 

‘distance’ block and add it to the 
comparison block as shown. 

• From here you can create a distance stated 
using the calibration used from ‘Activity 1’ 

• Once you have decided on a distance that 
you would like to warn people that they 
are too close, enter it into the numerical 
option of the comparison. 

  



71 

 

 
 

 
 
 
 
 

 
 
 
  

Activity C: Using the Ultrasonic Sensor to Show a Code 
on an External Screen 
 

To engage with this activity, you will need to add in another extension. This one is found in the 
extension library under the search of Kitronik Display. You can see in the screen shot above which 
extension to choose. 

1: 
• Using the first 3 steps from ‘Activity 1’. 

Your coding blocks should be aligned with 
the diagram on the left. 

 

Video 

The code on the left is intended to fulfil the 
activity. The following coding tabs are required in 
the menu: 
• Basic: the forever block keeps the code 

running in the background for the time the 
micro:bit is powered up. 

• Variables: tab allows you to set your 
measurement from any source, in this case 
the ultrasonic sensor. 

• 128x64: the extension when added will 
allow you to put many different things on 
the screen. 

 

https://youtu.be/_pGCxTt7PCM


72 

 

 
 
 
 
 
 
 
 
 
  

Application Challenge: using the code to make a reversing sensor 
 

1: 
• Once the code has been set up like this, we can add 

different commands to do different commands  
• The code here mimics in a similar way to what can happen 

on screen in a vehicle when using parking sensors 
• In order to make a sensor, we will need different sounds 

depending on the distance from the sensor 
• We also need to allow for different distances to 

differentiate between the sounds 
__’ 

4:  
• The code may be downloaded and tested at this 

point before progressing to the next part of the 
activity. 

• Configure the micro:bit to the screen and 
ultrasonic sensor to the screen temporarily using 
crocodile clips.   

• The distance will be visible in the top left of the 
screen as highlighted. 

 
Configuration of the sensor in the image is as follows: 
Black: GND to GND 
Red: VCC to 3V 
Green: TRIGG to P1 
Yellow: Echo to P0 
 

2: 
• Once you have added the extension, you 

can now find the blocks under ‘128x64 
Display’  

• There are many different options to 
choose from to define what you would like 
to show on screen 

• As you can see in the picture to the left, 
there’s many different options for you to 
show different pixels on screen 

• The option we need to show the reading 
from the ultrasonic sensor is ‘show___’ 

3: 
• Using the ‘variables’ tab, add in the 

‘distance’ block into the show block as 
shown 

• This now tells the screen to display the 
distance (in cm) being read by the 
ultrasonic sensor.  

__’ 

A number showing the 
distance will be seen here. 



73 

 

  2: 
• Using logic gates, we can create a 

sequence which will allow different 
reactions for when different readings are 
taken by the ultrasonic  

• Using the ‘if true then’, we can set up a 
few different scenarios 

• We can use the comparison section to add 
in a block that references a distance less 
than a given measurement from the sensor 

 

3: 
• When using the ‘variable’ in the place of 

numbers we have created the premise that if 
the object sensed is within a certain distance 

• Using the ‘Boolean’ block ‘and’ we can set a 
range of distances as shown from 16 to 11  

• We use a comparison block adding the 
variable ‘distance’ to the start of it  

• Making sure that the distances read from ≤ 
to ≥ therefore locking it between the 2 values 

  

4: 
• Using the ‘music’ tab we can add a tone to 

be played 
• ‘ring tone (Hz) ____’ from here you can 

choose the tone you want to play. This 
example starts at ‘middle c’ 

• From here we can duplicate the blocks and 
add more using the left click on the mouse 

• You can change the tone to simulate a 
vehicle getting progressively closer to an 
object   

5: 
• As you can see here that the progression is 

indicated by the numbers decreasing and 
the tone is increasing in pitch  

 
• The code needs to tell the tone to stop if 

it’s been started. We can do that by using 
the greater than comparison and ‘stop all 
sounds’ 

  



74 

 

  

6: 
• This code will solve the challenge 
• Are there any other alternative options? 
• What code would you use? 

  

How could you use this with your students? What way could you integrate this into 
project/classroom activities?  



75 

 

 
  

Activity D: Using the Ultrasonic Sensor to Turn Off a Motor 
 

1: 
• Using the learning from ‘activity 2’, we can 

build the code to the same point as shown 
on the left  

• This code is the building block for our task, 
to stop the motor when we get too close 
to an object 

• From here, you can again choose a 
distance that you would like the motor to 
stop from  

  

The DC Motor can be controlled by the ultrasonic sensor using the all-in-one robotics 
board. The components can be configured like the image below. Click or scan the QR 
code to access the supporting video for this activity.  
The configuration of the components is outlined in the image below and as follows: 
  
Black: GND to GND 
Red: VCC to 3V 
Yellow: TRIGG to P1 
Green: ECHO to P0 
 
 

Video 

2: 
• Using the ‘turn off motor __’ from the 

robotics tab, we can tell the motor to turn 
off inside this distance 

 
*the ‘all-in-one robotics board’ extension 
needs to be added to access this tab  

 
• We will also be using the ‘motor __ on 

direction ___ speed ___’ block to make the 
DC motor turn 

  

https://youtu.be/3SbKYSSlT-w


76 

 

  

Challenge: 
 
What are the implications of this code? E.g., the vehicle will stop when it gets within 6cm of an 
object, what could we do to change this? What could we do to make it change direction instead? 

Note: If the all-in-one robotics board is not able to 
power the ultrasonic sensor from the pin headers 
on the link pads, it is possible to supply additional 
power. This can be taken from the middle of the 
three auxiliary power pins next to the terminal 
block for the battery as indicated in the image 
opposite. To do this, disconnect the VCC from the 
3V supply and connect it to the middle (labelled +) 
beside the terminal block. This will supply the 
Ultrasonic sensor with the same voltage being 
supplied by the battery, rather than the 3v 
available on the 3v header pin.  
Warning: Connecting an incorrect wire from the 
sensor can damage the sensor!  
If connecting to the auxiliary power pin, ensure 
the battery voltage does not exceed 6v.  
 
 

ECHO to P0 

TRIGG to P1 

GND 

There are 3 pins beside the battery terminal block. There are 3 
auxiliary power pins beside the battery terminal block. 

Connect the VCC to the middle which is the  + . 

VCC to + 

3: 
• By adding the ‘turn off motor__’ we have 

now told the motor to turn off when the 
ultrasonic sensor is 6cm away from an 
object 

• Adding in the ‘Motor __ on Direction__ 
speed__’ tells the system that it’s to go until 
it is 6cm from an object 

• Download and test the code on the 
configured components as shown in the 
image on the previous page. 

  



77 

 

Module 11: Addressable LEDs (Neopixels) 
 

Adding lots of LEDs into an engineering project can be a complicated process, 
often ending up as a spider’s web of switches, wires, resistors, and LEDs. 
Addressable LEDs are the latest evolution of LED technology. They can make this 
process easier. A brief overview is illustrated below. 
  

A basic LED requires two 
wires and emits one colour, 
similar to a traditional bulb. 

Adding multiple LEDs, 
resistors and wires 
becomes messy and 
frustrating. 

Red, Green, Blue (RGB) 
LEDs can display multiple 
colours and are neater. 

RGB LED strips are long 
lengths of LEDs which 
can all display multiple 
colours. 

RGB LED strips are commonly 
used too for decorative 
lighting as shown. 

Neopixels are unique because each 
LED contains a controller chip, so 
each one can be a different colour 
and they can be animated using 
code.  

Neopixel strip 
Servo motor 

Simple three wire 
connection 

❖ Ground (-ve) 
❖ Power (+ve) 
❖ Data signal 

The driver chip in Neopixels allows long lengths of LEDs to be controlled via a single 
data signal. This data signal needs a controller such as our Micro:bit. The data 
signal needs only one wire to communicate between the controller and the strip, 
so attaching a long length of LEDs can be as simple as connecting a servo motor. 
 

Driver chip 
on LED 



78 

 

 

  

Adding the Neopixel extension to Makecode for micro:bit 

Connecting your Neopixel strip to the Micro:bit 
Use the video titled ‘Getting to know your neopixels’ to guide you through 
this section. It can be accessed by clicking or scanning the QR code 
opposite. 

 

For your micro:bit to communicate correctly with your LED 
strip, you need to add the Neopixel extension to your 
Makecode session. This adds the Neopixel drawer to 
Makecode, which contains blocks of code you can use to 
control your LED strip. 
 

From the code drawers on the left, the following 
are required in this module and are colour coded 
throughout the activities. 
 
• The Basic drawer  

 
• The Input drawer 
 
• The Loops drawer 
 
• The Variables drawer 
 
• The Neopixel drawer 

 

 Video 

The video will explain the principle of operation of 
the LED and the challenges of wiring it to the 
micro:bit. The image and instructions are provided 
below for your convenience and as a quick 
reference. 
 

• The red on the Neopixel joins to 3V. 

• The white lead on the Neopixel joins to the 
GND on the micro:bit. 

• The middle lead (green) on the Neopixel 
joins to P0 on the micro:bit.  

 
This configuration applies to each of the following 
activities A-E in this module. 
 
Ensure there is very good contact between the 
crocodile clip and the wires on the LED to ensure a 
good connection. 
 

https://www.youtube.com/watch?v=feFzOvwtXE0


79 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Activity A: Light it up! 
Illuminating your Neopixel 
 
 
 

Activity B: Basic Animation 
Using Shift & Rotate commands 
 

 

This activity explores code which can be used to illuminate and clear your Neopixel strip. 
This is done using basic inputs and Neopixel code. This is worked through in detail in the 
accompanying video. Click or scan the QR code to access the video. 

This activity introduces code which can be used to animate the Neopixel strip. This 
is a follow on from the previous activity and again basic inputs are used to create 
effects on the strip. This is worked through in detail in the accompanying video. 

Lighting up the rainbow 

• Find the set strip to… block at the top of the 
Neopixel drawer. 

• Drag this into the on start block. 

• Update the set strip to... block to contain 10 
LEDs. This lets the micro:bit know how 
many instructions it should send. 

• Add the show rainbow block from the 
Neopixel drawer to the on button A pressed 
input. – This turns on the rainbow. 

 

 

 

• The strip is turned off by adding the strip 
clear and strip show blocks to the on button 
B pressed block. 

 

• Like the last activity, drag the set strip to… 

block onto the on start block, updating it to 

show 10 LEDs.  

• Now add the show rainbow block into the 

on start block as shown – This turns on the 

rainbow automatically. 

• Add a on button A pressed block and put a 

strip shift pixels and a strip show block into 

it. -This pushes the LEDs from the start to 

the end of the strip. It will move forward 

one LED each time it is pushed. 

 

 

❖ The strip is turned off by adding the strip clear 

 Video 

 Video 

https://youtu.be/wiJ0lM2jBgk
https://youtu.be/A5gK9ofAZXo


80 

 

 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Rotating Pixels 

• Add an on button B pressed block. 

• Insert the strip rotate pixels by block and the 

strip show blocks into it. – This tells the micro:bit 

to push the LEDs forward one step, but with this 

command the LED pushed off at the end re-joins 

the back to the queue.  

This shows the effect of shifting the pixels by one each time button A is pressed. The LEDs are pushed 
from the start of the line until they are all pushed off. The strip will then be turned off. 

To automate the rotation: 

• Insert an on button A+B pressed input 

block. 

• Add the strip rotate pixels and the strip 

show blocks as in the previous activity. 

• Now add the while block from the loop 

drawer and modify it to “true” as shown 

opposite. This creates a continuous loop 

effect for our rotation after button A+B are 

pressed. 

• Add a pause block to slow down the loop 

speed, making it easier to see. 

Download and test the code on the micro:bit. 

 

This shows the effect of rotating all the pixels by one each time button B is pressed. The LEDs that 
are pushed off the line go back to the end of the line and the cycle repeats continuously. 



81 

 

 
 
 
 
 

 
 
 
  

Activity C: School Ahead Warning Beacons 
 

This activity explores a practical example of how to manually create a flashing 
beacon on the Neopixel, and how to create an automated sequence also. There is 
a follow up creative activity to accompany this coding activity. Click or scan the QR 
code to access the video. 
 
 

Planning the solution 
The image above is the plan for the school beacon. 
It will be used to guide the coding.  
 
Coding the solution - step one 
 

• The set strip to… block has been added to 

the on start block and updated to 10 LEDs, 

as in the previous activities. 

• In the on button A pressed input, add the set 

pixel color at___to ___ This allows us to set 

any individual led to a colour of our choice. – 

From the plan above, we have set led no:0 

to orange. 

• The block is added again and this time we 

set led no:1 to orange. 

 

• As seen opposite, we repeat this for all 10 

LEDs, assigning the correct number and 

colour to the LED as we had set out in the 

plan above. (0,1,2,3,4 are orange. 5,6,7,8,9 

are black, i.e. turned off) 

 

• The strip show block is added to turn on the 

LEDs to the set colour. 

 

 

• The strip is turned off by adding the strip 

clear and strip show blocks to the on button 

B pressed block. 

 

 Video 

https://youtu.be/rUJuZwrvgd0


82 

 

  
Coding the solution – step two 
To code the second step from the plan above, 
we can duplicate the on button A pressed block 
and change it to an on button B pressed. These 
save having to re-build all the blocks of code. 

 

• As seen opposite, we update all 10 LEDs, 

assigning the colour from the plan 

above. This time LED’s 0,1,2,3,4 are 

black, while 5,6,7,8,9 are now orange.  

 

• The strip show block is again needed to 

turn on the LEDs to the set colour. 

• By pushing buttons A or B on the 

micro:bit, we can create the alternating 

flashing beacon. 

Download and test the code on the micro:bit. 

Automating the beacon 
While the beacon can be manually operated, it is much 
more practical to do this automatically. This can be 
easily achieved. 
 
Coding the solution 
 

• Duplicate the on button A pressed block and 

change it to a new on button A+B pressed block. 

This block contains the code for the first step of 

the beacon flash, from button A. 

• We now copy the code for the second step of the 

beacon flash from the on button B pressed block. 

We add this code to our new on button A+B 

pressed block. 

• We must add a pause after each step to tell the 

micro:bit how long to leave the LEDs on for. 

• Finally, we add a loop to automate the flash 

sequence by choosing the while true loop and 

adding it as shown opposite. 

• Pressing A+B will now operate the flashing 

beacon. 

Download and test the code on the micro:bit. 

 



83 

 

 
  

Design Challenge: 
An ambulance supplier intends to upgrade their fleet to 
energy saving LED strips. The strips will be located on the front 
top part of the body, in the same position as the lights shown 
in the image. 

• Design, code, and test a beacon display that will be 
suitable for the ambulance. 

• Apply your code to your Neopixel strip. 



84 

 

 
 

 

 
  

Coding the solution - step one 
 

• As shown above, the set strip to… block has been added to the on 

start block and updated to 10 LEDs, as in the previous activities. As 

shown above, the set strip to… block has been added to the on start 

block and updated to 10 LEDs, as in the previous activities. 

• Adding the set pixel color at___to ___ has been added and modified 

to set pixel 0 to red. 

• When the strip show block is added, it will turn the first led on the 

strip to red. This is shown opposite. 

• Returning to code we used in activity B, we add the strip shift pixels 

block and the strip show block. This pushes the red LED one step up 

the line. 

• We need this step to happen nine times, so we add a loop by adding 

the repeat __ times block and modifying it to 9. This makes the step 

repeat nine times, bringing the LED to the end of the strip. 

• Adding a pause block slows down the steps so we can see the LED 

move. 

• The LED is currently starting at position 0 and shifting to the end 

of the strip, where it pushed off and appears to turn off. We 

need to now tell it to step backwards from 9. 

• We do this by duplicating the repeat block and all the code 

inside it. We add it in the forever loop underneath itself as 

shown opposite. 

• To tell the LED to shift in reverse, we modify the shift pixels by 

___ code to shift by -1. Now our red LED will travel over and 

back from position 0 to 9 forever. 

Challenge: How could we modify our code to alter the 
speed of the scanner? Experiment with making it 
double, and then half it’s speed. 

Activity D: The Larson Scanner (Knight Rider) 
 
 

 
 

This activity explores more code which can be used to animate sequences on your 
Neopixel strip. We will investigate a running sequence of back-and-forth light. This is a 
progression from Activity B and C, which contain prerequisite knowledge. Click or scan 
the QR code opposite to access the video to guide you through the activity.  

 Video 

https://youtu.be/-OKT9PIdi_k


85 

 

 
 

  

• We begin this activity as usual, by adding the 

set strip to code to the on start block and by 

modifying it to have 10 LEDs. 

• Using an on button A pressed block, we now 

add the set range to___ block. This code sets 

up a group of LEDs called a range. This is useful 

to us as we can then vary the size of the group. 

The default values are to start the group at LED 

0 and to add 5 LEDs to it. 

• We next add the strip show colour____ block 

and modify it using the drop down to read 

range show colour___. We can now set the 

colour of the group as we decide to. We choose 

orange from the drop down. 

We have set up a group of LEDs called a range. We have also defined the colour of the group. 

The key to making the dynamic indicator light function is to add LEDs to the group to make it 

appear to “grow.” We do this using a loop. 

• From the loop drawer, we add the for index from 0 to ___ block. This automatically 

creates a variable called index. This will be the size of our group. This block counts from 

0 to whatever number we decide. We modify it to count from 0 to 10, as we have 10 LEDs 

on our strip. 

• The important step in this process is to now tell the micro:bit that the size of the group 

should be whatever number the for index from loop has currently counted to. It will vary 

between 0 to 10, so the group will also be between 0 and 10. 

• To do this, click on the index variable in the loop itself as shown above and drag it into 

the last variable opening on the set range to___ block, as shown above on the right. 

• The block should look like the one shown below, and the simulator should look like the 

image shown on the right.  

 

 

Activity E: Dynamic Indicators (Audi Style) 
 

 
This is an advanced activity. We explore code which can be used to create dynamic 
“Audi” indicators. Many of the concepts are established in previous activities. This 
activity should be attempted after completing these previous activities. This is worked 
through in detail in the accompanying video. Click or scan the QR code to access the 
video.  

 Video 

https://youtu.be/_wn4i_dIGWM


86 

 

 

  

All the LEDs on the strip appear currently lit up orange, as the orange range has increased from 
0 LEDs to 10 LEDs so fast that we couldn’t see it. To get the effect of the growing indicator, we 
need to slow the “range growing” process down. 

• Add a pause block into the for index 

from___ loop. Place it under the range 

show colour block as shown on the left. We 

can leave the duration at the default 

100ms. This tells the micro:bit to pause for 

100ms each time it adds another LED to the 

group. We should now be able to see the 

group growing. 

• To clear the line and start again, we add a 

pause block after the for index from___ 

loop. Choose 500ms for a nice effect.  

• After the line has been fully lit for 500ms, 

we turn off all the LEDs by adding the strip 

clear and strip show blocks at the end. 

• Now,  we have the correct animation for 

our Audi style dynamic indicators working 

correctly. Let’s choose the number of times 

this sequence should happen once we 

press the input button A. 

• To repeat the animation, we add a 

repeat___ times loop into the on button A 

pressed block, ensuring all the other code 

snaps inside the repeat loop as we drag it 

in. This should happen easily if you drag the 

repeat ___times loop in from outside the left 

edge of the on button A pressed block. 

• Modify your code to give a suitable number 

of flashes. In the code shown on the right, 

a repeat of 5 times is shown. 

Further explorations…  
Look back at the way we have assembled the code. Try to experiment with different values to 
speed up, slow down, or shorten sequences.  
If we change the number in the for index from loop to a number below 10 what happens? 

The Neopixel 
strip displaying 
the code in 
action. 



87 

 

Module 12: Radio Control 2 
 

 
 
 
 

 
 
 
 
  

1: 
• As shown in the previous module, we set up 

the strip of Neopixels using the set strip to… 
block at the top of the Neopixel drawer. 

• Drag this into the on start block. 

• Update the set strip to... block to contain 10 
LEDs. 

• From the Radio drawer, select the radio set 
group__ block and add it as shown. The 
number shown in this block is the channel 
we are using. Micro:bits using the same 
channel can “talk” to each other. 

The following code seen above will solve the activity. The program is developed using the ‘input’, ‘basic’ 
and ‘radio’, and the Neopixels extension. Using this code, you will be able to remotely turn the Neopixel 
strip on, off, and rotate the lights upon pressing the button on a micro:bit that is part of the same radio 
group. We will do this by sending one of three numbers: 0= Off, 1=On, 2=Rotate pixels. 
 

Transmitter: Sends the instructions 

Activity A: Remote Neopixel Control 

As we’ve seen in the previous module the Neopixels can be controlled and lit up 
individually. Using the micro:bit bluetooth feature, we can set up a remote display that 
can be controlled from a distance using a second micro:bit. The following activity will 
show you how to create the command and control the Neopixels.  
Scan or click the QR code to use the Video to support you in the activity. 
Note: Before commencing this activity, ensure you have connected the Neopixel strip 
to your Micro:bit as described at the beginning of Module 11. 
 
 

 Video 

** The code below for this activity can be completed as one program, and downloaded to two separate 
micro:bits. Alternatively, the code for the transmitter can be programmed separately from the code for 
the receiver and downloaded separately to the appropriate micro:bit. The video programs the code for 
the transmitter and receiver separately, and downloads the correct code to the appropriate micro:bit.  

Receiver: Listens for the instructions 

https://youtu.be/pLPhTtGOvjE


88 

 

 
 
 
 
 
 
 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
  

2: 
• In Module 7, in the 2020/2021 CPD session, we showed 

how to create a signal, and a number to be sent to the 
other Micro:bit. 

• In the forever block, we add a conditional if ___ then ___. 
This can be found in the Logic drawer. 

• Using the ‘Input’ tab we choose the if button A is pressed 
and place it in the conditional as shown.  

• From the Radio drawer, we add the radio send number__ 
and modify it to read 1. For visual feedback, add the show 
number___ block from the Basic drawer and modify it to 
read the number 1.  
 

 

3: 
• We now create the next branch of the 

conditional. We add in the if button A is 
pressed and modify it to read if button B is 
pressed. 

• Similar to step two, we now add the radio 
send number___ and show number ___ 
blocks. 

• Modify both blocks to read the number 2, 
as shown opposite.  

• We can delete the last “else” branch of the 
code as we won’t need it. Do this by 
clicking the minus on the same branch as 
the else. 

4: 
• Now that we have set up the commands 

to send the on and rotate numbers, we 
can now add in the off command. This will 
be sent when the micro:bit is shaken. 

• In the Input drawer, select the on shake 
block and drag it into the editor window. 

• As in step two above, add in the radio 
send number___ and the show 
number___ blocks. Modify these to the 
number 0, which will be the off command.  

• This concludes the transmitter part of the 
coding. We will now investigate the 
receiver part of the coding process. 



89 

 

 5: 
• Now that we have set up the code for the 

micro:bit to transmit the numbers 0 for 
off, 1 for on, and 2 for rotate, we now tell 
the micro:bit what to do when it receives 
or “hears” these numbers.  

• We begin this process by opening the 
Radio drawer and selecting the on radio 
received ‘received number’ block and 
dragging it into the editor window. 

• We will use the if ___ else___ conditional 
from the Logic drawer to code this part. 

6:  
• When the if ___ else___ block has been 

added, we add the comparison ___=___ 
also from the Logic drawer and place it in 
the if___else____ block as shown. 

• To tell the micro:bit to compare the 
received number to something, select the  
‘received number’  variable within the 
block and drag it into the first part of the 
___=___ comparison block as shown on 
the left. 

• As we want the number 0 to turn off the 
strip, under the comparison that the if 
received number = 0, add in the strip clear 
and strip show blocks from the Neopixel 
drawer.  

7: 
• Similarly, we now add in the extra else if 

branches to the if___ else____ code so 
that if received number = 1, turn on the 
strip by adding the strip  show rainbow 
code underneath.  

• Adding another else if branch. Edit this 
code to read, if received number = 2 then 
rotate the pixels by adding the strip rotate 
pixels and strip show codes from the 
Neopixels drawer.  

• Download the code to two micro:bits and 
test it. 

• This code can be used in either the 
transmitting or receiving Micro:bit. 



90 

 

  

Activity B: Pitch (Tilt) Wireless Motor Control of a DC Motor 
 The following code will allow the motor to be controlled by tilting the micro:bit 

forward and back. The control of the motor will be dependent on the information 
sent to it by the rotation as seen on the code below. Scan or click the QR code to 
use the video to support you in the activity. 
 
** The following code can be completed in one go and downloaded to two 
separate micro:bits as shown below. Alternatively, it can be split in two and 
programmed to two separate micro:bits as shown in the video. In that instance, the 
radio received blocks are programmed into the micro:bit that’s added to the 
product. 

This code is the solution to the 
challenge: 
 
Basic: allows our calculations to run in 
the background forever or to create a 
set up from the start of the program  
 
Variables: allow us to map values and 
use them at different points in the code 
 
Inputs: allows control with the 
accelerometer  
 
 
Logic: allows us to set scenarios in place 
 
Radio: sends a signal to the other 
micro:bit in the group. The radio tab is 
also used to tell the motors what to do 
when the signal is received 
 
 

 

 Video 

https://youtu.be/fze6NsBOM5Q


91 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2: 
• Using the ‘basic’ tab, add in the ‘show 

arrow South’ as shown on the left. This 
indicates the intended direction of the 
motor when moving. 

• When directing the motor, a signal needs 
to be sent to the other micro:bit to tell it 
to start the motor. 

• Using the ‘radio’ tab ‘radio send number 
__’ , set the assign a number to this 
function.  

3: 
• Using the same blocks as the previous 

step, change the values as seen. 
• By doing this, the direction is being 

changed on screen to reverse, and a 
different signal is being sent to the 
micro:bit. 

• Using ‘basic’ and the ‘clear screen’ block, 
the value now being sent to the other 
micro:bit turns to 0. 

• This indicates that the motor should turn 
off, but this will only happen when the 
code is interpreted. 

**if 2 or more motors wish to be ran at the 
same time, then sending many different values 
can allow this to happen as shown below. 

1: 
• Using the ‘on-start’ block set the radio 

group to any value you wish. The ‘radio’ 
tab has the block needed to do this. 

• Using the ‘forever’ block and the ‘logic’ tab 
we create the blocks shown on the left. 
Module 8 Activity 4 shows how to add ‘else 
if__ then else’ by clicking the + icon on the 
bottom left corner. 



92 

 

  
4: 

• As previously shown, set up a comparison 
block in both of the spaces allowed in the 
logic gate, use the ‘less than’ and ‘greater 
than’ comparison 

• Using the ‘more’ option of the ‘input’ tab, 
use the block ‘rotation (°) pitch’  

• Add the ‘rotation (°) pitch’ block to the 
comparison block as shown to the left 

• After this, the degrees are set to the 
desired angle of rotation, in this instance    
-10° and 10° 

• According to the code, now there is a 
range of 20° from -10° below the micro:bit 
being horizontal, to 10° above the 
micro:bit being horizontal, where the 
motor will be turned off 

 

5: 
• Using the ‘Radio’ tab, use the ‘on radio 

received receivedNumber’. The scenarios 
can be set for the numbers that are sent to 
do something. 

Note: If the code for the Transmitter and the Receiver are in separate programs, the code for the 
transmitter should be downloaded to the micro:bit that will be the remote control. Download the 
receiver code to the micro:bit to be fitted to the All-In-One Robotics board. 
This is demonstrated in the video accessible through the QR code. 
 

6: 
• Using the ‘receivedNumber’ block as 

shown, add it to the comparisons created 
as shown on the left 

• The comparisons are now ‘=’ and the 
numbers added correspond to the 
numbers being sent from step 3  

• Using the ‘robotics’ tab, add in the motor 
control block. Assign the direction and 
speed as desired  

• Using the ‘if’ blocks and as shown, set the 
premise that if the number sent is the 
value 1, it will turn reverse, coinciding with 
the south arrow 

• If the value is 2, it will go forwards, 
coinciding with the north arrow. If the 
value is 0, it will stop the motors 

• Depending on the angle the micro:bit is 
tilted at, a number will be transmitted as 
per the code 

• Download and test the code 



93 

 

 
 
  

Activity C: Pitch (Tilt) Shifting Gearbox for a DC Motor 
 

 Video 

** The following code can be completed in one go and downloaded to two separate micro:bits as shown 
below. Alternatively, it can be split in two and programmed to two separate micro:bits as shown in the 
video. In that instance, the radio received blocks are programmed into the micro:bit that’s added to the 
product. 
 

In this activity, the code is developed to speed up the motor or slow it down, 
dependent on the angle of rotation of the micro:bit. The code builds further on the 
learning of the previous module and some of the steps are similar to the content 
already engaged with. Scan or click the QR code to use the video to support you in the 
activity. 
  
 

This code is the solution to the challenge: 
 
Basic: allows our calculations to run in the 
background forever  
 
Inputs: allows control from different sources 
 
Logic: allows us to set scenarios in place 
 

 

https://youtu.be/orp9GkupjWs


94 

 

 
  

2: 
• Using ‘radio’, create the scenario where 

the ‘radio send number 0’ block, and the 
and ‘show number 0’ block set the premise 
that the micro:bit will send the number 0 
and show the 0 on screen. 
 

1: 
• Using the ‘on start’ block from the ‘basic’, 

we now set the micro:bits to talk to each 
other using the ‘radio set group __. As 
shown at the start of the module, any 
micro:bit programmed into this group will 
communicate together. 
 

 

• Using the ‘logic’ tab, set up the 
comparisons with ‘ if ’ and ‘ else if ’  as 
shown. These comparisons will set up the 
premise that sends values based on angles 
of rotation. 
 

• By using the minus, the else of the logic 
code can be removed as the solution to 
the code on the previous page does not 
need it. 
 

• As shown in step 4 from the previous 
activity, in the ‘more’ section of the ‘input’ 
tab, create a comparison with the ‘logic’ 
tab as shown. 
 

• Set the value to ‘> -10’. The micro:bit will 
now be set to work from -10° upwards. 



95 

 

 
  

4: 
• By right clicking on the ‘comparison’ block, duplicate this inequality and add it to the next ‘else if’ 
• Change the values of the rotation to -30° and -50° 
• Using the ‘radio send number __’ and ‘show number__’, create a new number to send and show 

on screen 

5: 
• The last part of the code is to set the value for the top speed. Using one comparison, and stating 

that if the value of rotation is <-50° to send a final number, in this case 3 
 

**to make the motor speed more sensitive, make the range of values smaller; instead of 20° choose 
another range. And if you wish to add extra speeds, add more ‘else ifs’ and ‘radio send numbers’ 

3: 
• Using the ‘logic’ tab, create a comparison with the ‘and’ block. Add it to the ‘else if’ section of the 

logic block 
• Using the ‘comparison’ block again, and the ‘rotation (°) pitch’ from here, an inequality range can 

be setup. We can set the pitch between -10° ‘and’ -30°. From this, the rotation of the micro:bit 
will make a change from -10° upwards and then from < -10° to >-30° 

• Add a number to send and show this number on screen as seen in the previous step 



96 

 

   

6: 
• The final step of the code is the same as step 6 in activity 2 in this module. As you can see above, 

the code is built on the numbers sent from the previous steps. 
• If the numbers match what has been sent you can see how the motor speeds up. 
• Download and test the code on the micro:bit. 

Note: If the code for the Transmitter and the Receiver are in separate programs, the code for the 
transmitter should be downloaded to the micro:bit that will be the remote control. Download the 
receiver code to the micro:bit to be fitted to the All-in-one Robotics board. 
This is demonstrated in the video accessible through the QR code. 
 



97 

 

 
  

In this Module, we will learn how to create code that will dim an LED. It is done by 
creating code with blocks that have not been used before. We create math problems 
that allow for the power going to the LED to be controlled and therefore making the LED 
shine brighter or dimmer. 
 
The new learning in this module is the development of a math problem and creating a 
premise whereby dividing the output reading from the micro:bit can create 
steppingstones to map values to.  Scan or click the QR code to use the Video to support 
you in the activity. 
 

 
 

 Video Module 13: Dimming an LED using Pulse 
Width Modulation 

This code is the solution to 
the challenge: 
 
Basic: allows our 
calculations to run in the 
background forever  
 
Variables: allow us to map 
values and use them at 
different points in the code 
 
Inputs: allows control from 
different sources  
 
Logic: allows us to set 
scenarios in place 
 
Pins: Allows for the sending 
of the signal to the LED and 
turn it on with a certain 
power output 

 

https://youtu.be/Lp-JFQvFNs8


98 

 

 
  

Having completed this step, the minimum 
value has been set at the low range of the 
output value. The maximum value has 
been set at the highest value of the 
output. When the micro:bit has been 
started, the LED will be turned off. By 
using the math function, we have stated 
there are 9 steps in the function. 

2: 
• Using the ‘on start’ block and the 

‘variables’ tab, we set up the blocks seen 
using ‘set __ to __’  

• Using the codes seen on the left, set the 
‘Min_power’ to 100  

• ‘Max_power’ to 1023 
• ‘Set Brightness’ to 0 
• ‘Set Power_step’ to, using the ‘Math’ tab 

add in the ‘__ ÷ __’ block  

1: 
• Using the ‘variables’ tab and the ‘make a 

variable’ option, create five different 
variables: 

1. Min_power 
2. Max_power 
3. Power_step 
4. Brightness 
5. Power 

 

3: 
• Using the ‘math’ tab, use the ‘__ -__’. From   

the ‘variables’ tab we set up the difference 
between the max_power and the 
min_power 

• Using this block, add this block to the ‘set 
power_step to’ block before the division 
sign as shown 

• From here, we then put the number 9 into 
the ‘math’ block to signify that there are 9 
steps in the brightness of the LED 



99 

 

 
  

7: 
• Using the ‘set power to __’ from the 

previous step again, add it to the ‘else’ 
section of the logic gate 

• Using the ‘math’ block again as shown in 
step 3, build it up as shown in the image 
on the left 

• It should now read ‘set power to 
Min_power + (Brightness x Power_step)* 
 

*The brackets are used to show that Brightness 
and Power_step are connected in a separate 
‘math’ block, just like in step 3. 

 

4: 
• Using the ‘forever’ block, the following will 

set up the premise that the LED power will 
come from the sum of the Min power and 
the brightness level required. 

• This will create a scenario where the 
power is to be connected to the brightness  

• The ‘logic’ tab is used to set up a scenario 
where the power is linked to the 
brightness of the LED 

5: 
• Using the ‘comparison’ and the 

‘brightness’ variable, create the diamond 
shaped block as shown. 

• Add the comparison to the ‘if true’ section 
of the logic block so that it reads ‘if 
brightness = 0’ 

6: 
• Using the ‘set power to __’ from the 

variables tab, add it to the logic gate as 
shown. Leave the value set to 0 
 



100 

 

 
  

10: 
• Using the ‘basic’ tab, use the ‘show 

number’ block using ‘variables’. Add in the 
brightness to the ‘show number’ block. This 
will show the value on screen 

• Using the ‘pins’ tab, use the ‘analog write 
pin P0 to __’ 

• Using the ‘Variables’ tab, add the power 
block as shown 

• This has now set the brightness of the LED 
to the scale from 0-9 

9: 
• Using the ‘logic’ tab, create a comparison 

as shown before 
• From the ‘variables’ set the logic gate to   

‘if brightness < 0 then’  
• Again, from the variables tab, use the ‘set 

brightness to 0’ 
 
By doing this, we have set a limit. If someone 
presses the button continuously, it will not make a 
difference as the LED will be at brightness 0 

 

8: 
• Using the ‘input’ tab, select the ‘on button 

A pressed’  
• Using the ‘variables’ tab, use the ‘change 

brightness by __’ block 
 

Note: if the block is not available in the 
variables tab, use the change __ by and click 
on the drop down. Find the brightness variable  

11: 
• Right click on the ‘input’ block and you will 

see the list shown. Click on the word 
duplicate 

• This will allow for all the code to be copied 
and will re-create the blocks needed 

• Using the blocks, we change ‘on button A 
pressed’ to ‘on button B pressed’ 

• Change the ‘change brightness by -1’ to ‘1’ 
• Change the ‘if brightness < 0’ to ‘if 

brightness >9’ and change the ‘set 
brightness to 9’ as shown.  

Note: Now we have set an upper limit and 
increase the brightness as you press button B 



101 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

• Download the code to the micro:bit to 
test it 

• The positive on the LED joins to P0 

• The negative of the LED joins to GND 

• The level of light will incrementally get 
brighter as button B is pressed, and 
darker as button A is pressed 

 

Light level 2 is currently 
shown on the micro:bit 

screen. 



102 

 

Supporting Mechatronics in Engineering – OLE 20/21 
 
Coding an Angular Servo to any Degree 

 



103 

 

Coding an External Switch to Function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



104 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

 

Contact Details 

Administrative Office:  

Monaghan Ed. Centre, 

Armagh Road,  

Monaghan. 

www.metc.ie 

 

For all queries please contact: 

info@jct.ie 

 

Follow us on Twitter: 

@JCforTeachers 

@JCt4ed 

  

QR code - Feedback form  

 

 

 

 

Director’s Office:  

LMETB,  

Chapel Street,  

Dundalk. 

 

 
Key websites: 

www.jct.ie 

www.curriculumonline.ie 

www.ncca.ie 

 

http://www.metc.ie/
mailto:info@jct.ie
http://www.jct.ie/
http://www.curriculumonline.ie/
http://www.ncca.ie/

