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Glutathione: A Samsonian
life-sustaining small molecule
that protects against oxidative
stress, ageing and damaging
inflammation
Carlos A. Labarrere* and Ghassan S. Kassab

California Medical Innovations Institute, San Diego, CA, United States

Many local and systemic diseases especially diseases that are leading causes

of death globally like chronic obstructive pulmonary disease, atherosclerosis

with ischemic heart disease and stroke, cancer and severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 19

(COVID-19), involve both, (1) oxidative stress with excessive production of

reactive oxygen species (ROS) that lower glutathione (GSH) levels, and (2)

inflammation. The GSH tripeptide (γ- L-glutamyl-L-cysteinyl-glycine), the

most abundant water-soluble non-protein thiol in the cell (1–10 mM) is

fundamental for life by (a) sustaining the adequate redox cell signaling needed

to maintain physiologic levels of oxidative stress fundamental to control

life processes, and (b) limiting excessive oxidative stress that causes cell

and tissue damage. GSH activity is facilitated by activation of the Kelch-like

ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2

(Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing

Nrf2 that regulates expression of genes controlling antioxidant, inflammatory

and immune system responses. GSH exists in the thiol-reduced (>98% of

total GSH) and disulfide-oxidized (GSSG) forms, and the concentrations of

GSH and GSSG and their molar ratio are indicators of the functionality of

the cell. GSH depletion may play a central role in inflammatory diseases

and COVID-19 pathophysiology, host immune response and disease severity

and mortality. Therapies enhancing GSH could become a cornerstone to

reduce severity and fatal outcomes of inflammatory diseases and COVID-

19 and increasing GSH levels may prevent and subdue these diseases. The

life value of GSH makes for a paramount research field in biology and

medicine and may be key against systemic inflammation and SARS-CoV-2

infection and COVID-19 disease. In this review, we emphasize on (1) GSH

depletion as a fundamental risk factor for diseases like chronic obstructive

pulmonary disease and atherosclerosis (ischemic heart disease and stroke), (2)

importance of oxidative stress and antioxidants in SARS-CoV-2 infection and

COVID-19 disease, (3) significance of GSH to counteract persistent damaging

inflammation, inflammaging and early (premature) inflammaging associated
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with cell and tissue damage caused by excessive oxidative stress and lack of

adequate antioxidant defenses in younger individuals, and (4) new therapies

that include antioxidant defenses restoration.

KEYWORDS

glutathione, oxidative stress, reactive oxygen species, nuclear factor erythroid
2-related factor 2, inflammaging, chronic obstructive pulmonary disease,
atherosclerosis, COVID-19

Introduction

Glutathione (GSH) is a unique molecule essential for
life that participates in key aspects of cellular homeostasis,
having a paramount role in defense against the oxidative
damage that occurs during all different diseases including
coronavirus disease 19 (COVID-19) disease. GSH has a
central participation in trans-hydrogenation reactions needed
to maintain a reduced state of sulfhydryl groups of other
molecules, proteins and enzymes, as well as formation of
deoxyribonucleotides and vitamin reduction (1–5). GSH has
the function of “master antioxidant” in all tissues and is
involved in antioxidant defense, detoxication of xenobiotics,
intracellular redox homeostasis, cysteine carrier/storage, cell
signaling, protein folding and function, gene expression, cell
differentiation/proliferation, immune response and antiviral
defense, that make it a “Samsonian (mighty) little molecule” (1,
2). The high (millimolar) concentration of the reduced form
highlights its central role in the control of those processes (5–8).
The central role of GSH in oxidative stress and inflammation, in
the pathophysiology of inflammatory diseases and COVID-19,
and in host immune response and disease severity and mortality,
makes GSH a little but powerful player in maintaining health
and avoiding disease. In this review we will focus on (a) GSH
depletion as a fundamental risk factor for diseases like chronic
obstructive pulmonary disease and atherosclerosis (ischemic
heart disease and stroke), (b) importance of oxidative stress and
antioxidants in severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection and COVID-19 disease, (c) significance
of GSH to counteract persistent damaging inflammation,
inflammaging and early (premature) inflammaging associated
with cell and tissue damage caused by excessive oxidative
stress and lack of adequate antioxidant defenses in younger
individuals, and (d) new therapies that include antioxidant
defenses restoration.

Glutathione brief history

Glutathione was discovered in 1888 by de Rey-Pailhade and
initially named “philothion” (from the Greek words meaning

“love” and “sulfur”) because of its reactivity with sulfur to form
hydrogen sulfide (4, 9). Subsequently, Hopkins reported this
substance as a dipeptide containing glutamate and cysteine, and
he named it “glutathione” (10), which is a tripeptide consisting
of glutamate, cysteine, and glycine (11, 12). Harington and Mead
finally described the correct chemical structure of the tripeptide
in 1935 (13). GSH was virtually forgotten for 40 years until in
1969, Kosower and Kosower (14) emphasized the scant GSH
research in those days. GSH research had a great momentum
especially in the 1980s, with studies carried out by Meister
and his collaborators who contributed to understanding the
physiological functions and the metabolism (4).

Glutathione composition and synthesis

The GSH (γ- L-glutamyl-L-cysteinyl-glycine) is a water-
soluble tripeptide formed by the amino-acids glutamic acid,
cysteine and glycine (Figure 1) present in the cytoplasm of
all cells. GSH is found in all mammalian tissues as the most
abundant non-protein thiol that defends against oxidative stress
and possess a distinctive stability provided by a γ-carboxyl
bond within the molecule (Figure 1A). GSH exists in the thiol-
reduced and disulfide-oxidized (GSSG) forms (1, 2); and it’s
free and bound to proteins (Figure 1). The reduced form GSH
is the active form of the molecule, it is the most abundant
and it is found inside the cells in millimolar concentrations
in the range of 1–10 mM (highest concentration in liver) (5–
8), while extracellularly they are found in micromolar (GSH
in plasma: 10–30 µM) levels (5, 15, 16). The active group
of the molecule is represented by the thiol group (-SH) of
the cysteine residue (Figure 1) which provides its reductive
power. The millimolar GSH intracellular concentrations, the
low plasma micromolar concentrations and the low GSH redox
potential (E′0 = −240 mV) make GSH an ideal and perfect
cellular redox buffer (5, 16–18). GSH accounts for >98%
of total GSH (3, 19–23). Eukaryotic cells have three major
reservoirs of GSH. Most (80–85%) of the cellular GSH are
in the cytosol, 10–15% is in the mitochondria and a small
percentage is in the endoplasmic reticulum (Figure 2) (3, 24–
28). GSSG is found mainly extracellularly. The redox state of
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the GSH/GSSG couple can serve as an important indicator of
redox environment (29–31), and changes in this couple correlate
with multiple cellular processes, including cell differentiation
(32–37), cell proliferation (32–37), and cell apoptosis (38–42).
GSH deficiency as evidenced by a decrease in the GSH/GSSG
ratio manifests itself largely through an increased susceptibility
to oxidative stress, and the resulting damage is thought to be
involved in SARS-CoV-2 infection leading to COVID-19 disease
(6, 7, 39, 43–53). In addition, imbalances in GSH levels affect
immune system function, and are thought to play a role in the
aging process and the diseases of aging, one of the principal
risk factors for the development and progression of COVID-19
disease.

Glutathione is synthesized in the cytosol of all cells from
their precursor amino acids: glutamic acid, cysteine and glycine
by consecutive action of two enzymes: γ-glutamyl-cysteine (γ-
GluCys) synthetase (also known as glutamate cysteine ligase,
GCL) that in a first step uses glutamate and cysteine as
a substrate to form the dipeptide γ-glutamyl-cysteine; and
glutathione synthetase that in a second step combines γ-
glutamyl-cysteine with glycine for forming GSH (54, 55)
(Figure 3). ATP (adenosine triphosphate) acts as a co-substrate
for both enzymes (Figures 2, 3). Under normal physiological
conditions, the rate of synthesis of GSH is determined to
a large extent by two factors: (a) the activity of GCL and
(b) the availability of the cysteine substrate. Therefore, the
intracellular levels of GSH are regulated by the negative feedback
of GSH itself on the GCL enzyme (1, 4, 55–57) and by the
availability of the amino acid L-cysteine (1, 4, 58). The GCL
enzyme is a heterodimer formed by two subunits: the heavy
subunit or glutamate cysteine ligase catalytic subunit (GCLC,
73 kDa) and the light subunit or glutamate cysteine ligase
modulating subunit (GCLM, 30 kDa). The heavy subunit has
the active site responsible for the union between the amino
group of the cysteine and the γ-carboxyl group of glutamate.
The GCLM subunit has no enzymatic activity but has an
important regulatory function increasing the efficiency of the
GCLC subunit. This subunit is required for optimal activity
and feedback inhibition by GSH (59). GSH inhibits GCL by
competing with glutamate in the active site of GCLC (1, 57–
60). The enzyme glutathione synthetase (GS) is formed by two
identical subunits (52 kDa/subunit) and is not regulated by
intracellular levels of GSH. The active site of the enzyme that
binds glycine to the dipeptide γ-L-glutamyl-L-cysteine is highly
specific (57). GCL is considered the speed limiting enzyme of
synthesis since overexpression of GS does not increase GSH
levels while overexpression of GCL increases the synthesis
of GSH (61) (Figure 3). ATP is the energy donor for both
enzymes. As mentioned above, GSH cellular concentrations
are regulated by GSH-mediated GCL inhibition (Figures 2, 3).
Thus, the biological control of intracellular GSH homeostasis
through consumption and supply is an intricately balanced
process that prevents oxidative stress. Cellular GSH (cytosol,

mitochondria, endoplasmic reticulum, nucleus; Figures 2, 4)
availability is maintained by de novo synthesis from precursor
amino acids, (glutamate, cysteine, and glycine), reduction
of GSSG by glutathione reductase (GR), and uptake from
exogenous GSH sources across plasma membranes (Figure 4)
(62, 63). The three amino acids are adsorbed by transporters.
Additionally, intestinal epithelial cells can import intact GSH
from the lumen via specific plasma membrane transporters
(7).

Glutathione cellular distribution

Glutathione is found in almost all cellular compartments,
including the nucleus (5, 54, 64–68) (Figures 2, 4). The
GSH transport between the various cell compartments is
vital to buffer reactive oxygen species (ROS) and facilitate
redox signaling in order to control cell growth, development
and defense, as well as regulate cell proliferation. GSH is
predominantly in its thiol-reduced form inside the cells, except
in the lumen of the endoplasmic reticulum where it exists
only in its GSSG form (Figures 2, 4). The GSH content
existing in millimolar concentrations varies among different
organs; liver being among organs with the highest content
(56). GSH content also varies among different areas of the
same tissues; periportal hepatocytes may contain nearly twice
the centrilobular concentration, enterocytes at the villus tip
have a higher content than the crypts, and renal proximal
tubular cells have more GSH than other parts of the nephron
(56). Mitochondria contain 10–15% of the intracellular GSH
reaching a concentration of 10–12 mM (54) while in the
cytosol the concentration is 7 mM (54, 56). This difference
in concentration is associated with the absence of catalase
inside the mitochondria, what leaves GSH in charge of all
inactivation of the hydrogen peroxide generated during the
oxidative processes that occur in the mitochondrial matrix
(57).

The concentration of GSH in the mitochondrial
compartment is more important for cell survival than the
GSH found in the cytosol. Since mitochondria do not
have the enzymes involved in the synthesis of GSH, all
the GSH found in the mitochondrial compartment comes
from the cytosol. A system transport present in the inner
mitochondrial membrane, that involves dicarboxylate and
2-oxoglutarate anion transporters, allows the passage of
negatively charged GSH from the cytosol to the mitochondria.
The first incorporates GSH into the mitochondria by inorganic
phosphate exchange and the second by exchange of 2-
oxoglutarate (27, 28, 64) (Figures 2, 4). While the greater
amount of cellular reduced GSH is found in the cytosol and
mitochondria, the endoplasmic reticulum becomes a reservoir
of small concentrations of the oxidized form of GSH (GSSG).
The ratio of reduced GSH to the disulfide form (GSH/GSSG)
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FIGURE 1

Glutathione (GSH) synthesis, chemical structure and different forms of GSH. (A) GSH is synthesized in the cytosol in two steps. The first step is
the formation of γ-glutamylcysteine from glutamate and cysteine by the enzyme γ-glutamylcysteine synthetase (glutamate cysteine ligase). The
second step in GSH synthesis is regulated by glutathione synthetase. Glutathione cysteine ligase and cysteine (green) are the limiting factors in
GSH synthesis. The γ-carboxyl linkage (gray) and the sulfhydryl group (green) provide stability and reductive power to the molecule, respectively.
(B) Chemical structure of reduced (GSH), oxidized (GSSG) glutathione and GS-protein generated by protein glutathionylation. Glutathione
peroxidase oxidizes GSH and glutathione reductase reduces GSSG, while glutathione-S-transferase participates in protein glutathionylation.

within the endoplasmic reticulum ranges from 1:1 to 4:1,
whereas the overall cellular GSH/GSSG ratio ranges from
30:1 to 100:1 (26) (Figure 2). There is a preferential transport
of GSSG from the cytosol to the endoplasmic reticulum to
maintain an adequate environment for protein disulfide bond
formation and protein folding (69–71). There is little data about
the concentrations of GSH in the nucleus and endoplasmic
reticulum largely because of a lack of adequate techniques to
accurately determine the GSH pool at those locations (15, 69,
72, 73). There are great variations in nuclear GSH concentration
and its regulation mechanisms during the cell cycle since cells
starting the proliferation phase have high levels of nuclear
GSH, while resting cells have similar or lower GSH levels in
the nucleus than in the cytoplasm (68, 72, 73). High nuclear
GSH concentrations are vital since increase in total GSH is
necessary for the cells to progress from the G1- (with low GSH
levels) to the S-phase; addition of GSSG causes the cell cycle to
arrest at G1; and excessive and prolonged oxidation arrest cell
cycle triggering cell death (68, 72, 73). GSH behaves as “redox
sensor” at the DNA synthesis onset by maintaining nuclear
architecture providing the appropriate redox environment
for DNA replication and safeguarding DNA integrity (72)
and is a key regulator of epigenetic events critical in cell
proliferation regulation and cellular resistance to apoptosis
(73).

Glutathione and the γ-glutamyl cycle

The synthesis, transport and catabolism of GSH occur
in a series of enzymatic steps and transports of membrane
that are collectively called γ-glutamyl cycle (Figure 5) (1, 74,
75). The γ-glutamyl cycle was postulated by Meister (76)
and it accounts for the GSH biosynthesis and degradation.
The GSH biosynthesis has been described previously. After its
synthesis, GSH is transported to the intracellular compartments,
mitochondria, endoplasmic reticulum and nucleus, but most of
it is released through transporters toward the extracellular space.
In contrast to the synthesis, that occurs only intracellularly,
the degradation or catabolic part of the GSH cycle, takes
place partially extracellularly and partially inside cells. The
extracellular degradation of GSH occurs on the surface of the
cells that express the enzyme γ-glutamyl transpeptidase and
the dipeptidases found in the external plasma membrane (1)
(Figure 5). After the plasma membrane carrier-mediated GSH
release from the cell, GSH becomes accessible to the active site of
γ-glutamyl transpeptidase, which catalyzes the breakdown of the
GSH γ-glutamyl bond forming two fractions: The γ-glutamyl
fraction and the cysteinyl-glycine by transferring the γ-glutamyl
fraction to an amino acid acceptor, forming γ-glutamyl-amino
acid. Once inside the cell, the γ-glutamyl-amino acid can be
metabolized to release the amino acid and 5-oxoproline, which
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FIGURE 2

Glutathione distribution in subcellular compartments. GSH (γ- L-glutamyl-L-cysteinyl-glycine), a water-soluble tripeptide formed by the
amino-acids glutamic acid, cysteine and glycine, is considered the major non-protein low molecular weight modulator of redox processes and
the most important thiol reducing agent of the cell. (1) ATP-dependent GSH biosynthesis occurs in the cytosol of the cell and cysteine (red) and
glutamate cysteine ligase (gray) are rate-limiting factors for its production. (2) Extracellular GSH is enzymatically degraded on the surface of the
cells by γ-glutamyl transpeptidase generating the γ-glutamyl fraction (taken into the cell as γ-glutamyl-amino acid that can be metabolized to
release the amino acid and 5-oxoproline, which can then be converted into glutamate to be used in the synthesis of GSH) and the
cysteinyl-glycine fraction; and by dipeptidases splitting cysteinyl-glycine generating cysteine and glycine that are taken into the cell. (3) To allow
normal cell function, it is essential to maintain an optimal GSH: GSSG ratio throughout all cell compartments. (4) The inner mitochondrial
membrane system transport, that involves dicarboxylate and 2-oxoglutarate anion transporters, allows the passage of negatively charged GSH
from the cytosol to the mitochondria. (5) GSH is present in both reduced (GSH) and oxidized (GSSG) states, and reduced GSH is maintained by
GSH reductase, a cytosolic NADPH-dependent enzyme. GSSG returns to the reduced state by the NADPH-dependent activity of glutathione
reductase. NADPH is rapidly regenerated from NADP + using electrons derived from catabolism of substrate molecules, such as glucose or
isocitric and malic acid (pentose phosphate pathway). Reduced GSH neutralizes cellular hydroperoxides through GSH peroxidase activity.

can then be converted into glutamate to be used in the synthesis
of GSH. On the other hand, also in the extracellular space,
the cysteinyl-glycine fraction is split by the enzyme dipeptidase
generating cysteine and glycine. The cells incorporate cysteine
and most of the intracellular cysteine is incorporated into the
synthesis of GSH. Depending on the metabolic needs of the
cell, the cysteine can be used for protein synthesis and part
can be degraded to sulfate and taurine. The cycle γ-glutamyl
allows GSH to be used as a continuous source of cysteine. The
γ-glutamyl amino acid is taken up by cells through a specific
transport mechanism. Cysteinyl glycine is also taken up by cells.
Inside the cell, the γ-glutamyl amino acid is hydrolyzed by γ-
glutamyl cyclo-transferase and converted into oxoproline and
a free amino acid. Oxoproline is a cyclic form of glutamate
and is converted into glutamate via oxoprolinase (Figure 5).

The γ-glutamyl cycle was initially postulated by Meister as
a mechanism for amino acid transport (76). However, this
presents major problems. The most important is the energetic
one. The γ-glutamyl cycle requires the use of three ATP
molecules per turn of the cycle. Thus, the uptake of an amino
acid would require the use of three high-energy phosphate
bonds. In favor of the cycle was the fact that addition of γ-
glutamyl transpeptidase inhibitors in vivo caused a decrease
in amino acid transfer into cells. The gamma-glutamyl cycle
should be considered not as a mechanism for amino acid
transport but rather a generator of extracellular signals, gamma-
glutamyl amino acids, that are converted intracellularly to 5-
oxoproline, which activates uptake and/or metabolism of amino
acids (1, 74, 75). The γ-glutamyl amino acids or oxoproline
could be signaling molecules to activate the transport of amino
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FIGURE 3

Glutathione synthesis: A two-step pathway. Homeostasis of cellular glutathione. Synthesis and regulation of the cell concentrations. Glutamate
cysteine ligase (γ-glutamyl cysteine synthetase) constitute the first step in the synthesis of glutathione (GSH) forming γ-L-glutamyl-L-cysteine
using adenosine triphosphate (ATP). Glutathione synthetase constitute the second step forming GSH, also using ATP. Cellular GSH
concentration regulates the function of glutamate cysteine ligase.

acids through membranes. Oxoproline catalytically activates
the uptake of amino acids through the placental barrier, and
the transfer of amino acids through the blood–brain barrier is
activated by oxoproline (2, 75). Thus, the γ-glutamyl cycle, apart
from explaining the synthesis and degradation of glutathione,
may serve as a generator of signals to activate amino acid
transport into cells (2, 75). GSH turnover may be considered
as a multi-organ process. In fact, in liver, an organ in which
glutathione synthesis is most active, the degradation is very slow
due to the very low activity of γ-glutamyl transpeptidase. In the
kidney, however, γ-glutamyl transpeptidase is very high. Thus,
the γ-glutamyl cycle may be considered as a multi-organ cycle
in which the synthetic part occurs in liver and the catabolic part
occurs in kidney amongst other tissues.

Glutathione and damaging
inflammation in lower respiratory
diseases

Glutathione Samsonian (mighty) power is centered in the
thiol (sulfhydryl) group of the cysteine amino acid. GSH
participates in numerous key processes where the thiol reducing
potential is utilized. Several lung disorders are believed to
be characterized by an increase in alveolar oxidant burden,
potentially depleting alveolar and lung GSH. Low GSH has
been linked to abnormalities in the lung surfactant system
and the interaction between GSH and antiproteases in the

epithelial lining fluid of patients. Normal levels of intracellular
GSH may exert a critical negative control on the elaboration
of proinflammatory cytokines. The increase of intracellular
ROS is believed to correlate with the activation of nuclear
factor (NF)-kappa B, a transcription activator linked to the
elaboration of several cytokines (Figure 6). There is now
sufficient data to strongly implicate free radical injury in the
genesis and maintenance of several lung disorders in humans.
This information is substantial and will help the development
of clinical studies examining a variety of inflammatory lung
disorders.

Oxidative stress and inflammation are considered
fundamental mediators of chronic obstructive pulmonary
disease (COPD) pathophysiology (77–91). The lungs are
directly exposed to tobacco smoke and air pollutants that are
main sources of ROS. ROS directly cause lung damage as a
result of DNA, lipid, carbohydrate, and protein alterations,
and activate local inflammatory responses that contribute to
COPD development and progression (79–83). ROS can further
activate epithelial cells and macrophages facilitating neutrophil,
monocyte, and lymphocyte recruitment, and the recruited
activated inflammatory cells subsequently enhance additional
ROS generation, increasing the pro-oxidant burden (80–85).
ROS and RNS production are facilitated by pattern recognition
receptors [C-reactive protein (CRP), toll-like receptors]
capable of recognizing pathogen (bacterial/viral)-associated
molecular patterns and/or damage-associated molecular
patterns in apoptotic or damaged cells (92–100) (Figure 6). The
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FIGURE 4

The “Glutathione Pathway.” Glutathione synthesis, γ-glutamyl pathway, cellular distribution, antioxidant properties, catabolism of xenobiotics,
and glutathione recycling in the cell. The figure shows a schematic representation of the “glutathione pathway.” Glutathione (GSH) is synthesized
from glutamate, cysteine, and glycine by γ-glutamyl-cysteine synthetase (glutamate cysteine ligase) and glutathione synthetase. Glutathione
redox state is regulated, in part, by glutathione peroxidases, forming oxidized glutathione (GSSG), and by a reaction catalyzed by glutathione
reductase. Glutathione is conjugated to substrates both through the action of the glutathione S-transferases and through non-enzymatic
reactions. Glutathione conjugates can be excreted from the cells by members of the ATP-binding cassette (ABC) transporter family.

phosphocholine head group in phospholipids of normal healthy
cell membranes is not accessible but, when cells are damaged
and die, enhanced availability of lysophosphatidylcholine and
disruption of the lipid bilayer expose phosphocholine residues
to which CRP avidly binds (99). These events lead to a state of
persistent inflammation and chronic oxidative stress (82–85),
characterized by increased ROS production, reduced GSH
peroxidase activity, selenium deficiency and reduced GSH levels
(80–91). Asymptomatic smokers and stable COPD patients
showed increased GSH levels in bronchoalveolar lavage, while
patients with severe/very severe exacerbation periods had
significantly decreased levels (101). Patients with decreased
GSH and increased oxidative stress also showed increased
neutrophil influx and IL-8 levels (101). Alveolar macrophages
derived from circulating monocytes recruited into the lungs
by monocyte chemotactic factors produced by lung cells
are increased 20-fold in COPD patients and release ROS as
superoxide anions and hydrogen peroxide (102). Antioxidant
therapies should be effective in preventing COPD disease
progression and exacerbations. Although prolonged treatment
with oral N-acetylcysteine (NAC) prevents acute exacerbations
of chronic bronchitis, it remains controversial for the treatment
of COPD (91, 103–105). A combination of antioxidants

including thiol-based antioxidants, mitochondria-targeted
antioxidants and Nrf2 activators should be more effective in the
treatment of COPD patients (91).

In acute respiratory distress syndrome (ARDS), there
is extensive overproduction of free radicals and reduced
extracellular and intracellular GSH leading to oxidative
cell damage (106). ROS such as hydrogen peroxide and
hypochlorous acid may play a key role in the pathogenesis of the
acute lung injury (107). It has been shown that alveolar epithelial
lining fluid of patients with ARDS is deficient in total GSH
compared to normal subjects (107), and neutrophil-mediated
oxidants release leads to GSH deficiency and lung cell injury
(107). The global antioxidant capacity of the epithelial lining
fluid, despite an increase in single antioxidant compounds,
seems unable to fully counterbalance the increased oxidative
burden (108). NAC benefited ARDS patients as evidenced
by intracellular (inside red blood cells) and extracellular
(plasma) antioxidant defense biomarkers and outcome. NAC
treatment increased extracellular total antioxidant power and
total thiol molecules and enhanced intracellular GSH and
patients’ outcome (106). NAC treatment improved oxygenation
and decreased mortality in ARDS patients; and patients
with glutathione-S-transferase M1 (proinflammatory-cytokine
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FIGURE 5

Cellular glutathione synthesis and recycling: The importance of the γ-glutamyl pathway. The degradation or catabolic part of the GSH cycle,
takes place partially extracellularly and partially inside cells. (1) The extracellular degradation of GSH occurs on the surface of the cells that
express the enzyme γ-glutamyl transpeptidase (GGT) and the dipeptidases found in the external plasma membrane. Following plasma
membrane carrier-mediated GSH release from the cell, GSH becomes accessible to the active site of γ-glutamyl transpeptidase, which
catalyzes GSH breakdown into γ-glutamyl fraction and cysteinyl-glycine by transferring the γ-glutamyl fraction to an amino acid acceptor,
forming γ-glutamyl-amino acid. The cysteinyl-glycine fraction is split by the enzyme dipeptidase generating cysteine and glycine. (2) The
γ-glutamyl-amino acid can be metabolized to release the amino acid and 5-oxoproline, which can then be converted into glutamate to be used
in the synthesis of GSH. (3) The cells incorporate cysteine and most of the intracellular cysteine is used for the synthesis of GSH. Cysteine can be
used for protein synthesis and part can be degraded to sulfate and taurine. The cycle γ-glutamyl allows GSH to be used as a continuous source
of cysteine. The γ-glutamyl amino acid is taken up by cells through a specific transport mechanism. Cysteinyl glycine is also taken up by cells.
Inside the cell, the γ-glutamyl amino acid is hydrolyzed by γ-glutamyl cyclo-transferase and converted into oxoproline, a cyclic form of
glutamate converted into glutamate via oxoprolinase, and a free amino acid.

producer macrophages) null and M1 and T1 (Type 1
helper CD4 + lymphocytes) double null polymorphisms
had increased mortality suggesting that antioxidant therapy
becomes fundamental for those patients (109). A depressed
antioxidant defense and dysfunctional iron regulation in ARDS
might cause greater inflammation and anemia (110).

Glutathione is an important antioxidant in the lungs, but
its concentration is low in the airways of patients with cystic
fibrosis, since GSH is transported into the airways by the
cystic fibrosis transmembrane conductance regulator, which is
mutated in cystic fibrosis patients (111). The concentration
of GSH that is normally about 400 µM in the epithelial
lining fluid, over a 100-fold higher than in plasma, is low
in the airways of patients with cystic fibrosis from an early

age (112–114). Extracellular glutathione S-transferase omega-
1, a cytosolic enzyme that modulates the S-thiolation status
of intracellular factors involved in the inflammatory response,
and its polymorphisms have been associated with an increased
risk to develop COPD and could have a biological and clinical
significance in cystic fibrosis (115). Low GSH, neutrophil
infiltration, myeloperoxidase activity and inflammation increase
oxidative stress overwhelming the antioxidant defense, and
hypochlorous acid mediated GSH oxidation and its attachment
to proteins contribute to further GSH deficiency (114). The
lack of efficacy of inhaled GSH in patients with cystic fibrosis
could be explained by the high concentrations of the GSH-
degrading enzyme γ-glutamyltransferase present in lung fluids
of those patients (116–123), and then, the use of precursors of
GSH synthesis like NAC and cystine could be more effective in
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FIGURE 6

Oxidative stress, reduced glutathione (GSH) and lung diseases. (1) Lung diseases affect alveolar cells increasing reactive oxygen species (ROS)
production, reduce Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element
(ARE) redox regulator pathway and become defective for surfactant production. Damaged/apoptotic cells cause alveolar cell activation of
nuclear factor (NF)-κB and release cytokines like interleukin (IL)-8. Alveolar type I cells augment ROS production via toll-like receptors (TLRs) 1
and 2. Inflammation enhances neutrophil extracellular trap (NET) release and increases ROS production. (2) Inflammation associated to lung
diseases augments macrophage’s ROS production, inhibiting Nrf2 activation and enhancing NF-κB upregulation. ROS are counterbalanced by
enzymes like superoxide dismutase (SOD), catalase (Cat), glutathione S-transferase (GST), and glutathione peroxidase (GPx) to protect cells from
oxidative damage caused by nicotinamide adenine-dinucleotide phosphate (NADPH) oxidase 2 (NOX2), superoxide (O2

−), hydrogen peroxide
(H2O2), and myeloperoxidase (MPO). Capillary neutrophils migrate to and from alveoli by trans-endothelial (TEM) and reverse transmigration
(rTEM), respectively. Inflammation can cause excessive ROS production in capillaries, red blood cell (RBC) dysfunction, thrombosis and alveolar
damage. (3) Activated alveolar macrophages release increased levels of IL-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α.
Inflammation-associated activated macrophages (via TLRs) reduce enzymes like SOD and Cat, among others, and activate NF-κB. NOX2
activation increases ROS production that enhance NF-κB activation. Glutathione (GSH) precursors (Cystine, cysteine, N-acetyl cysteine, NAC),
and selenium (Se) restore GSH and GPx, respectively, to counteract the effects of ROS. (4) Alveolar macrophages engulf microbes and apoptotic
cells via Fc (γ/α/µ) and scavenger receptors and/or pattern recognition protein receptors (PRPRs) leading to increased ROS production and
cytokine release. MPO, nitric oxide (NO), O2

−, and H2O2 through the Fenton and Haber-Weiss reactions that generate hydroxyl radicals,
participate in ROS and RNS generation. Lung disease-associated inflammation and apoptosis [via TLRs and glycosaminoglycans (GAGs)]
enhance alveolar cell ROS production that via p38MAPK, NF- κB, and AP-1 activation, contribute to epithelial injury and further inflammation. (5)
Neutrophils contribute to O2

− production, lipid peroxidation and increased oxidative stress to promote a cytokine storm (249). Administration
of GSH precursors [cystine, cysteine, NAC; see (3), (4), and (5)] facilitate GSH formation to reduce oxidative stress. Abbreviations: PRRs, pattern
recognition receptors; G-GCS, G-glutamyl cysteine synthetase; DAMPs, damage associated molecular patterns; Prxs, peroxiredoxins; NAC,
N-acetyl cysteine; G-GT, G-glutamyl transpeptidase; PAMPs, pathogen associated molecular patterns; LPC, lysophosphatidylcholine.
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the synthesis of GSH (124). Lack of oral GSH supplementation
effects upon growth or changes in serum or fecal inflammatory
markers in children with cystic fibrosis with pancreatic
insufficiency (125) could be probably explained by the inability
of the cells to uptake extracellular GSH to be used inside the
cells. Decreased GSH content in the apical fluid in cystic fibrosis
could be the result of abnormal GSH transport associated with
a defective cystic fibrosis transmembrane conductance regulator
as mentioned previously (126).

An oxidant/antioxidant imbalance characterized by
oxidative stress and low GSH levels is involved in the
pathogenesis of idiopathic pulmonary fibrosis, since data
show marked GSH deficiency in the lower respiratory tract of
those patients (127). Glutathione-S-transferase π (GSTP) that
participates in the conjugation of GSH to reactive cysteines
(S-glutathionylation) seems to play an important role in
idiopathic pulmonary fibrosis lung fibrogenesis, since GSTP
immunoreactivity is increased in the lungs of idiopathic
pulmonary fibrosis patients, notably within type II epithelial
cells (128, 129). GSTP inhibition via the airways may be a
novel therapeutic strategy for the treatment of idiopathic
pulmonary fibrosis (128, 129). The use of GSH precursors
like N-acetyl cysteine, enhancers of nuclear factor erythroid
2-related factor 2 (Nrf2) like sulforaphane, melatonin, and many
more molecules involved in antioxidant defense were proposed
as supplementation of other idiopathic pulmonary fibrosis
therapies (130). Inhaled (nebulized or aerosolized) reduced GSH
to augment the deficient GSH levels of the lower respiratory
tract has been used effectively in numerous pulmonary diseases
and respiratory conditions like HIV seropositive individuals,
cystic fibrosis and idiopathic pulmonary fibrosis, among others
(131–133). GSH has clearly a regulatory role in inflammation
and immunity (134). GSH acts as an inhibitor of extended
inflammation directing components of innate immunity like
polymorphonuclear neutrophils specifically to the site of
infection/damage allowing a proper response to infection. GSH
then directs the migration of inflammatory polymorphonuclear
neutrophils away from the lung, where they cause ARDS, and
toward the site of infection, where they kill microorganisms. As
a result, it develops more immunity and less inflammation, with
the concomitant increased survival; in addition, GSH becomes
not just an inhibitor of inflammation but a regulator of innate
immunity in a direction that benefits the host (134).

Glutathione and atherosclerosis

Cardiovascular diseases are the leading causes of death
in the US compared to any other cause (135). Cardiovascular
complications are thought to result from increased free radical
levels that impair redox homeostasis, that represents the
interaction between oxidative stress and reductive stress.
A prolonged oxidative or reductive stress will alter the

homeostatic redox mechanism to cause cardiovascular
complications. GSH, the most abundant antioxidant in the
heart, plays a fundamental role in normalizing a redox
homeostatic mechanism that was shifted toward oxidative
or reductive stress. This may lead to impairment of cellular
signaling mechanisms and accumulation of misfolded proteins
causing proteotoxicity associated with cardiac dysfunction
(136–143). Oxidative stress is crucial in atherogenesis (144–
151), suggesting that a specific antioxidant/prooxidant
imbalance, characterized by a weak GSH-related enzymatic
antioxidant shield present in human atherosclerotic lesions,
may be involved in atherogenic processes in humans (152).
A higher level of oxidative stress as evidenced by elevated plasma
malondialdehyde levels and low levels of GSH, α-tocotrienol
and GSH peroxidase activity in patients under 45 years old
may play a role in the development of premature coronary
artery disease and be potential biomarkers for premature
coronary artery disease (153). Similarly, coronary artery
disease patients with single, double, or triple-vessel stenosis
and patients with acute coronary syndrome had a significant
increase in malondialdehyde levels and the percentage of
malondialdehyde release, associated with a marked decrease in
GSH concentration, total antioxidant capacity and erythrocyte
GSH peroxidase activity compared with controls (154).
Interestingly, differences in prooxidative parameters were more
profound in acute coronary syndrome patients compared with
coronary artery disease patients indicating that the acute form
of coronary artery disease is more susceptible to oxidative
damage, suggesting that use of antioxidant therapy may be
warranted to reduce oxidative stress in this disorder (154).

Glutathione might inhibit the effects of cerebral infarction
and enhance antiapoptotic signaling after ischemic stroke,
suggesting that GSH may be a potent therapeutic antioxidant
that can attenuate severe pathologies after ischemic stroke, and
stimulating GSH synthesis through administration of GSH
precursors and micronutrients like selenium can optimize
GSH and GSH peroxidase for optimal antioxidant defense
in cerebral ischemia (155, 156). Low total GSH and high
homocysteine levels are considered as novel risk markers
for acute stroke severity, and low total and reduced GSH
levels may be potential risk markers for stroke severity
and insufficient functional independence in large-artery
atherosclerosis (157, 158). Since GSH is the final product of the
homocysteine metabolism in the transsulfuration pathway by
transferring sulfur from homocysteine to cysteine, a deficiency
in transsulfuration pathway leads to excessive homocysteine
production (hyperhomocysteinemia) and reduced GSH
synthesis (159, 160). Homocysteine is a sulfur-containing
amino acid tightly involved in methionine metabolism.
Indeed, if there is a methionine deficit, homocysteine can
be re-methylated to form methionine, and if there is an
adequate amount of methionine, homocysteine is used to
produce cysteine (161). Hyperhomocysteinemia decreases
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GSH peroxidase activity leading to the prevalence of GSSG
on GSH with the GSH/GSSG impaired ratio causing some
common cardiovascular and neurodegenerative disorders
(159). N-acetyl-cysteine administration supplies the cysteine
necessary for GSH synthesis and concomitantly reduces
hyperhomocysteinemia, improving GSH peroxidase activity
and reducing oxidative stress (159). Furthermore, the well
documented efficacy of combined folic acid, B6, and B12-
vitamin supplementation to reduce hyperhomocysteinemia
could enhance GSH activity and reduce oxidative stress (161).
Recently, it was shown that cysteine uptake via excitatory amino
acid carrier 1 suppresses ischemia-induced neuronal death
through promotion of hippocampal GSH synthesis in ischemic
animal models (162). Alterations in the normal function of
excitatory amino acid carrier 1 affect cysteine transport and
GSH synthesis impairing zinc homeostasis (the thiol group
of GSH can function as a principal Zn2+ chelator for the
maintenance of Zn2+ homeostasis in neurons) and oxidative
stress, enhancing susceptibility to ischemia-induced neuronal
cell death in the hippocampus (162–164). Increased GSH
synthesis neutralizes reactive oxygen and nitrogen species and
regulates zinc homeostasis promoting neuroprotection after
ischemia/reperfusion (162).

Atherosclerosis represents a state of intense oxidative stress
characterized by vascular wall lipid and protein oxidation
that contributes to chronic inflammation within the arterial
wall, in which CRP is a major player (Figure 7). The
balance of the different CRP isoforms, monomeric (mCRP)
or native pentameric (nCRP) within the plaque determines
the preponderance of a proinflammatory or anti-inflammatory
effect, respectively (165). CRP is synthesized in smooth muscle
cells of atherosclerotic lesions with active disease, foam cells,
macrophages, lymphocytes, monocytes, and endothelial cells
within the atherosclerotic plaque (166–170). CRP binds and
aggregates oxidized low-density lipoprotein (ox-LDL) and
enhances macrophage oxLDL uptake, promoting mitogen-
activated protein kinase activation (171) required for foam cell
formation (172). OxLDL enhances toll like receptor 4 expression
further facilitating foam cell formation and development and
progression of atherosclerosis (173, 174). CRP binding to oxLDL
and apoptotic cells occurs through phosphorylcholine, and
binding to this ligand starts phagocytosis (100, 170, 175–181).
The different CRP isoforms, nCRP, non-native pentameric CRP
(nnCRP) and mCRP (175–178, 181–184), may explain their
protective and destructive effects, with nCRP being primarily
antiinflammatory inducing Th2/M2 responses, while mCRP
being typically proinflammatory inducing Th1/M1 responses
(170, 185–189). Pentameric nCRP and CRP peptides 77–
82, 174–185, and 201–206 can control the inflammatory
response resolving inflammation by reducing inflammatory
cell endothelial adhesion and tissue migration, and the
described CRP-mediated enhanced monocyte chemotaxis could

be explained by local generation of mCRP (190, 191). Pro-
inflammatory and proatherogenic mCRP, but not nCRP,
induces ROS monocyte/macrophage production and facilitates
macrophage uptake of necrotic cells (170, 192) contributing
to foam cell formation, atherosclerotic plaque formation
and plaque rupture or destabilization (190, 191). Foam cell
formation during atherogenesis could be also explained in
part by uptake of CRP-opsonized native LDL (193). The
dissociation/relaxation of nCRP into nnCRP occurs on necrotic,
apoptotic, and ischemic cells, membranes of activated platelets,
monocytes, and endothelial cells, and on the surface of
microparticles, via phosphorylcholine binding and seems to be,
as mCRP, proinflammatory (194–196). Pentameric nCRP does
not possess intrinsic proinflammatory properties, while nnCRP
and mCRP do (170, 196). The mCRP isoform, unlike nCRP,
has a stimulatory effect on platelets, facilitates thrombus growth
through platelet stimulation, and is the more potent reagent,
both increasing monocyte activation and ROS production,
generated through myeloperoxidase-mediated respiratory burst
and raft-associated reduced nicotinamide adenine dinucleotide
phosphate (NADPH)-oxidase during oxLDL-mediated foam
cell formation (100, 170, 197–204). ROS activity in the vessel
wall contributes to the formation of oxidized LDL, a major
contributor to the pathogenesis of atherosclerosis (205, 206).
Thrombus formation and the subsequent activation of the
coagulation cascade with final generation of fibrin is facilitated
by the mCRP-mediated enhancement of tissue factor on the
endothelial cell surface, platelet aggregation and thrombus
growth (207, 208) (Figure 7). OxLDL components and their
interaction with toll-like receptors (TLRs) 2 and 4, CD36 and
other cellular receptors further mediate thromboinflammation
enhancing tissue and organ damage culminating in organ
failure, i.e., myocardial infarction, stroke, and pulmonary artery
embolism (174, 209–212).

The strong role of severe oxidative stress, reduced
antioxidant defenses like GSH with increased lipid peroxidation
and malondialdehyde generation (213), lipid, protein and
DNA oxidation with increased apoptosis and necrosis in
atherosclerosis as a major cause of cardiovascular diseases and
stroke, supports the use of complementary and alternative
medicines, dietary supplements, and antioxidants with hardly
any adverse effect, able to restore homeostasis reversing
oxidative stress (214). Enhancing GSH synthesis, selenium
levels and redox-active selenoproteins, and activating
Nrf2 and other antioxidant enzymes will strengthen the
cardiovascular antioxidant defense. Phenolic compounds
like phenolic acids, flavonoids, lignans and tannins can limit
LDL oxidation and foam cell formation (215). Selenium is
an essential micronutrient that modulates cardiovascular
functions via its incorporation into selenoproteins as the amino
acid selenocysteine (216, 217). Intravenous reduced GSH
supplementation reverses endothelial dysfunction in patients
with atherosclerosis enhancing NO activity and NO-mediated
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FIGURE 7

Oxidative stress, reduced glutathione (GSH) and atherosclerosis. (1) Risk factors for atherosclerosis. (2) Atherosclerosis risk factors facilitate
oxidative stress and inflammation in the arterial intima. Native C-reactive protein (nCRP), a pattern recognition receptor produced in the liver,
macrophages, lymphocytes, smooth muscle cells (SMC), and other cells, promotes inflammation through monomeric CRP (mCRP) enhancing
intimal oxidative stress. Oxidized (ox) LDL binds macrophage toll-like receptor (TLR) 4 and facilitates nicotinamide adenine dinucleotide
phosphate (NADP)H oxidase 2 (Nox2) activity and superoxide (O2

−) production causing cysteine oxidation, disulfide bridge formation and
S-glutathionylation. Xanthine oxidase (XO) and inhibition of superoxide dismutase (SOD)/catalase further facilitate O2

− cellular activity. OxLDL
bound to TLRs 2 and 4 promotes foam cell formation and activates transcription factors like nuclear factor (NF)-κB facilitating cytokine storm
and hyperinflammation. Excessive mitochondrial reactive oxygen species (ROS) generation further enhances cytokine production. CRP (nCRP,
mCRP) can facilitate macrophage and neutrophil uptake of apoptotic cells through Fcγ and Fcα receptors, respectively (FcRs). Oxidative stress
also activates the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element
(ARE) redox regulator pathway in monocytes [see (3) and macrophages (2)], releasing Nrf2 to regulate the expression of genes that control
antioxidant enzymes like glutathione S-transferase (GST), facilitating glutathione (GSH) activity. Macrophages, T-lymphocytes, neutrophils and
SMCs can generate mCRP increasing inflammation. (3) Monocytes, macrophages, neutrophils, endothelial cells and microparticles can generate
mCRP, increase O2

−and ROS formation and reactive nitrogen species like peroxinitrite (ONOO−), and tissue factor (TF) expression enhancing
oxidation, inflammation and thrombosis. TLR 4-mediated oxLDL-binding to platelets promotes thrombosis; mCRP binding to lipid rafts and
FcγRs enhances inflammation; and endothelial activation allows intimal cell migration. GSH enhancement and Nrf2 activation augment
immunity and reduce atherosclerosis. (4) Foam cells and smooth muscle cells associated with atherosclerotic plaques enhance ROS formation,
cytokine release and tissue factor (TF)-mediated fibrin deposition. Abbreviations: MAPK/ERK, mitogen-activated protein kinases/extracellular
signal-regulated kinases; AT1R, angiotensin II type 1 receptor; PC, phosphorylcholine; LPC, lysophosphatidylcholine; MPO, myeloperoxidase;
nnCRP, non-native CRP; TNF, tumor necrosis factor; IL, interleukin; ACE, angiotensin converting enzyme; MyD88/TRIF, myeloid differentiation
primary response 88/TIR-domain-containing adapter-inducing interferon-β; PI3K/Akt, phosphatidylinositol-3-kinase/protein kinase B; MAPK,
mitogen-activated protein kinase; AP-1, activator protein 1; CD31, cluster of differentiation 31; ICAM-1, intercellular adhesion molecule-1;
Mac-1, macrophage-1 antigen; PSGL-1, P-selectin glycoprotein ligand-1; HLA-DR, human leukocyte antigen–DR isotype.

vasodilation (218). GSH stores and transports cysteine, and
cysteine forms less diffusion-limited NO adducts that may
transport NO to reach sites within vascular smooth muscle
cells and platelets (218, 219). Since GSH is not carried inside
the cell, exogenously administered GSH is most likely to act by
increasing plasma GSH levels reducing luminal oxidative stress
and increasing NO bioavailability in patients with endothelial
dysfunction (220).

Administration of GSH precursors like cysteine/N-
acetylcysteine, glycine and/or glutamic acid will facilitate the
synthesis of GSH within each cell of the body including the

atherosclerotic plaque, reducing ROS and LDL oxidation,
enhancing NO production, and mitigating atherosclerosis
and its complications (221–229). Considering the paramount
importance of oxLDL in the pathogenesis of atherosclerosis,
it is reasonable to evaluate the role of antioxidants in the
treatment of the disease as adjuvant strategies to lipid-lowering
or anti-inflammatory therapies designed to reduce the risk of
cardiovascular disease (230). Since oxidation participates as an
essential messenger of cellular signaling pathways, treatment of
oxidative stress needs to consider maintaining that physiologic
threshold (230, 231). The lack of standardized methods to

Frontiers in Nutrition 12 frontiersin.org

https://doi.org/10.3389/fnut.2022.1007816
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1007816 October 26, 2022 Time: 13:39 # 13

Labarrere and Kassab 10.3389/fnut.2022.1007816

evaluate total antioxidant capacity and the oxidation state
and the use of inadequate antioxidants and/or improper
concentrations of antioxidants lead to failure of numerous
clinical trials directed to prevent or mitigate progression of
atherosclerosis (230–233).

Nuclear factor erythroid 2-related factor 2 plays a
fundamental role in the response to oxidative stress and
xenobiotic metabolism and detoxification, and the Nrf2
signaling pathway is intimately associated with development
of atherosclerosis. During development and progression of
atherosclerosis, Nrf2 signaling modulates many physiological
and pathophysiological processes, like regulation of lipid
homeostasis, CD36 gene expression regulation, foam cell
formation, macrophage polarization, immunity regulation
(Th2 differentiation and inhibition of pro-inflammatory gene
expression through NFκB down-regulation), redox regulation
and inflammation, improvement of endothelial dysfunction, as
well as GSH synthesis and utilization (234–245). Antioxidant
pathways induced by NRF2 include enzymes for the reduced
GSH synthesis, utilization, and regeneration. Glutamate-
cysteine ligase catalytic and modulator subunits as well as
GSH synthetase are the three NRF2 targets involved in the
GSH synthesis (242). The redox cycling enzymes thioredoxin,
thioredoxin reductase, sulfiredoxin, peroxiredoxin, GSH
peroxidase, superoxide dismutase 1, and catalase, and several
GSH S-transferases, which are the enzymes mediating the
elimination of ROS, are all Nrf2 targets (242). Nrf2 displays
both pro- and anti-atherogenic effects in experimental animal
models, and the Nrf2 pathway becomes a promising target for
atherosclerosis prevention (234). Macrophage Nrf2 activates
genes encoding CD36, heme oxygenase-1 and other stress
proteins in response to oxLDLs and other byproducts of lipid
peroxidation (240). Nrf2 depletion in macrophages leads to
increased foam cell formation, increases the M1 inflammatory
phenotype with enhanced expression of pro-inflammatory
monocyte chemoattractant protein-1 and interleukin-6, and
aggravates atherosclerosis (244, 245). Nrf2 improves endothelial
function by resisting oxidative stress and mitochondrial
damage, thereby delaying atherosclerosis (245); and treatment
with sulforaphane, a dietary antioxidant, activates Nrf2 and
suppresses p38–VCAM-1 signaling, and may provide a novel
therapeutic strategy to prevent or reduce atherosclerosis (237).

Glutathione and severe acute
respiratory syndrome coronavirus 2

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection targets primarily the respiratory and
cardiovascular systems causing COVID-19 disease identified
largely by a respiratory tract infection (246, 247); sadly, many
patients develop severe fatal outcomes because of overwhelming
inflammation known as “cytokine storm” (248, 249), that leads

to ROS-mediated cell death and tissue damage typical of RNA
viruses (250). This intense inflammation is associated with
damaging systemic events like oxidative stress, dysregulation of
iron homeostasis, hypercoagulability and thrombus formation,
acute respiratory distress syndrome, uncontrolled inflammation
and organ failure (251–257) (Figure 8). Several viral infections,
and the progression of virus-induced diseases, especially those
associated with COVID-19, are characterized by an alteration
in the intracellular redox balance (6). This imbalance disallows
reactive intermediate detoxification by the cell biological
systems. ROS production and associated inflammation are
closely related to aging and numerous chronic diseases as
diabetes, cardiovascular atherosclerosis-related diseases (144,
145) and respiratory diseases, known risk factors for developing
severe illness and death in patients with SARS-CoV-2 and
COVID-19 disease.

Atherosclerosis, a chronic inflammatory disease, may be an
ideal environment for the high viral replication capabilities of
SARS-CoV-2 in human cells, enhancing hyper-inflammation
secondary to immune system dysregulation (Figure 9) that leads
to adverse outcomes, as shown in patients with cardiovascular
risk factors (258, 259). In a vicious circle, feeding itself, SARS-
CoV-2 may aggravate the evolution of atherosclerosis as a
result of excessive and aberrant plasmatic concentration of
cytokines (258–260). Atherosclerosis progression, as a chronic
inflammatory mechanism, is characterized by immune system
dysregulation associated with increased pro-inflammatory
cytokine production, including interleukin 6 (IL-6), tumor
necrosis factor-α (TNF-α), and IL-1β, as well as pattern
recognition receptor proteins like CRP (170, 261–267). CRP,
an active regulator of host innate immunity, is a biomarker
of chronic inflammatory conditions and severe COVID-19
disease, including lung and atherosclerotic disease progression;
strongly predicts the need for mechanical ventilation; and
may guide intensification of treatment of COVID-19-associated
uncontrolled inflammation (99, 183, 261, 262, 265, 267–
269). Macrophage activation and foam cell formation may
explain the elevated CRP serum levels and contribute to
disease progression (Figure 9). CRP-mediated inflammation in
atherosclerosis during SARS-CoV-2 infection may be related to
the presence of mCRP in the lesions (188, 198, 204, 263, 267–
269). The affinity of SARS-CoV-2 for ACE2 receptors makes
the virus prone to cause vascular infection that could explain
atherosclerosis progression and arterial and venous thrombosis
(270, 271). Endothelial injury generated directly by intracellular
viral replication and by ACE2 downregulation, exposing cells
to angiotensin II in the absence of the modulator effects of
angiotensin 1–7 (270, 271), and vascular chronic inflammation
promoting the development of tissue macrophages overloaded
by cholesterol (foam cells), both increase the possibility of
acquiring a severe COVID-19 infection (170, 209, 258, 259, 272,
273).
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FIGURE 8

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pulmonary infection, oxidative stress and antioxidant defenses. (1) After entry of
SARS-CoV-2 into the alveolus, viruses invade type II alveolar cells through angiotensin-converting enzyme 2 receptors (ACE2) and
glycosaminoglycans (GAGs) [see (4)], and infected cells increase reactive oxygen species (ROS) production, reduce Kelch-like ECH-associated
protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway and become
defective for surfactant production. Infected cells activate nuclear factor (NF)-κB and release cytokines like interleukin (IL)-8. Alveolar type I cells
augment ROS production via toll-like receptors (TLRs) 1 and 2. SARS-CoV-2 enhances neutrophil extracellular trap (NET) release and increases
ROS production (2) SARS-CoV-2 augments macrophage’s ROS production, inhibiting Nrf2 activation and enhancing NF-κB upregulation. ROS
are counterbalanced by enzymes like superoxide dismutase (SOD), catalase (Cat), glutathione S-transferase (GST), and glutathione peroxidase
(GPx) to protect cells from oxidative damage caused by nicotinamide adenine-dinucleotide phosphate (NADPH) oxidase 2 (NOX2), superoxide
(O2
−), hydrogen peroxide (H2O2), and myeloperoxidase (MPO). Capillary neutrophils migrate to and from alveoli by trans-endothelial (TEM) and

reverse transmigration (rTEM), respectively. SARS-CoV-2 infection can cause excessive ROS production in capillaries, red blood cell (RBC)
dysfunction, thrombosis and alveolar damage. (3) Activated alveolar macrophages release increased levels of IL-1β, IL-6, IL-8, and tumor
necrosis factor (TNF)-α. SARS-CoV-2-infected macrophages (via ACE2 and TLRs) reduce enzymes like SOD and Cat, among others, and activate
NF-κB. NOX2 activation increases ROS production that enhance NF-κB activation. Glutathione (GSH) precursors (Cystine, cysteine, N-acetyl
cysteine, NAC), and selenium (Se) restore GSH and GPx, respectively, to counteract the effects of ROS. (4) Alveolar macrophages engulf
SARS-CoV-2-infected apoptotic cells via Fc (γ/α/µ) and scavenger receptors and/or pattern recognition protein receptors (PRPRs) leading to
increased ROS production and cytokine release. (5) Neutrophils contribute to O2

− production, lipid peroxidation and increased oxidative stress
to promote the cytokine storm. Abbreviations: TMPRSS2, Transmembrane protease Serine 2; PRPs, pattern recognition proteins. Reprinted from
Labarrere and Kassab (335).
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FIGURE 9

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enhances oxidative stress and atherosclerosis progression. (1) SARS-CoV-2
structure. (2) SARS-CoV-2 viruses facilitate oxidative stress and inflammation in the arterial intima. Native C-reactive protein (nCRP), a marker of
severe SARS-CoV-2 produced in liver, macrophages, lymphocytes, smooth muscle cells (SMC) and other cells, promotes inflammation through
monomeric CRP (mCRP) enhancing intimal oxidative stress. SARS-CoV-2 binds macrophage toll-like receptor (TLR) 4 and facilitates
nicotinamide adenine dinucleotide phosphate (NADP)H oxidase 2 (Nox2) activity and superoxide (O2

−) production causing cysteine oxidation,
disulfide bridge formation and S-glutathionylation. Xanthine oxidase (XO) and inhibition of superoxide dismutase (SOD)/catalase further facilitate
O2
− cellular activity. SARS-CoV-2 can bind TLRs 2 and 4 and activate transcription factors like nuclear factor (NF)-κB facilitating cytokine storm

and hyperinflammation. Excessive mitochondrial reactive oxygen species (ROS) generation further enhances cytokine production. CRP (nCRP,
mCRP) can facilitate macrophage and neutrophil uptake of SARS-CoV-2-infected apoptotic cells through Fcγ and Fcα receptors, respectively
(FcRs). Oxidative stress also activates the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2
(Nrf2)-antioxidant response element (ARE) redox regulator pathway in monocytes [see (3) and macrophages (2)], releasing Nrf2 to regulate the
expression of genes that control antioxidant enzymes like glutathione S-transferase (GST), facilitating glutathione (GSH) activity. Macrophages,
T-lymphocytes, neutrophils and SMCs can generate mCRP increasing inflammation. (3) Monocytes, macrophages, neutrophils, endothelial cells
and microparticles can generate mCRP, increase superoxide (O2

−) and ROS formation and reactive nitrogen species like peroxinitrite (ONOO–),
and tissue factor (TF) expression enhancing oxidation, inflammation and thrombosis. TLR 4-mediated SARS-CoV-2-binding to platelets
promotes thrombosis, mCRP binding to lipid rafts and FcγRs enhances inflammation and endothelial activation allows intimal cell migration. (4)
Foam cells and smooth muscle cells associated with atherosclerotic plaques enhance ROS formation, cytokine release and tissue factor
(TF)-mediated fibrin deposition. Abbreviations: MAPK/ERK, mitogen-activated protein kinases/extracellular signal-regulated kinases; AT1R,
angiotensin II type 1 receptor; PC, phosphorylcholine; LPC, lysophosphatidylcholine; MPO, myeloperoxidase; nnCRP, non-native CRP; TNF,
tumor necrosis factor; IL, interleukin; ACE, angiotensin converting enzyme; MyD88/TRIF, myeloid differentiation primary response
88/TIR-domain-containing adapter-inducing interferon-β; PI3K/Akt: phosphatidylinositol-3-kinase/protein kinase B; MAPK, mitogen-activated
protein kinase; AP-1, activator protein 1; CD31, cluster of differentiation 31; ICAM-1, intercellular adhesion molecule-1; Mac-1, macrophage-1
antigen; PSGL-1, P-selectin glycoprotein ligand-1; HLA-DR, human leukocyte antigen–DR isotype. Reprinted from Labarrere and Kassab (335).

Summary and conclusions:
Glutathione and early (premature)
inflammaging

Chronic inflammatory diseases especially those
compromising the lower respiratory system (chronic obstructive
pulmonary disease, lower respiratory infections, cystic fibrosis,
idiopathic pulmonary fibrosis, acute respiratory distress
syndrome), diseases compromising the cardiovascular

system (atherosclerosis, ischemic heart disease, stroke,
and others), many other systemic inflammatory diseases
like diabetes (274, 275); and actually SARS-CoV-2 causing
COVID-19, all are characterized by persistent inflammation,
continuous production of reactive oxygen/nitrogen species
and oxidative stress that predominate over the antioxidant
defenses (GSH and free radical scavenger enzymes) resulting
in cell/tissue/organ aging associated with early (premature)
chronic inflammation/”inflammaging.” We propose that,
although inflammaging was introduced for the aging process
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(276–289), it could also apply to early (premature) tissue
and organ aging associated with cell and tissue damage
caused by excessive oxidative stress and lack of adequate
antioxidant defenses, especially low GSH levels, in younger
individuals. Indeed, inflammaging is associated with cell
ROS over-production leading to oxidation/damage of cellular
components, enhanced inflammation, and activation of cell
death pathways; and oxidative stress and reduced antioxidant
defenses contribute to progression of practically all diseases
(290–297). In most diseases, ROS appear to have a direct
connection with inflammaging and cell senescence, and
oxidative stress and inflammaging increase the aging-related
phenotype, and induce and aggravate the inflammatory
response, creating a chronic state of systemic inflammation
(290–297). Then, as proposed above, inflammaging can also be
involved in aged cell/tissue processes in younger individuals.
All chronic diseases, including COVID-19 with the long-
COVID-19-syndrome (271), are characterized by the presence
of persistent chronic inflammation and sustained generation of
reactive oxygen and nitrogen species that when confronted with
inadequate antioxidant defenses (likely leading components of
anti-inflammaging) precipitate excessive oxidative stress. The
demand for detailed analysis of the pathogenesis and clinical
course of chronic diseases and viral diseases like COVID-19,
as well as the use of efficacious therapies with minimal or no
side effects are paramount. Here we present the antioxidant
GSH as a potential unexplored way for further investigation
as intervention to counteract inflammaging, premature
inflammaging, inflammatory diseases and long-COVID-19-
syndrome, since GSH levels are correlated with tissue and organ
damage, disease severity and progression, and disease outcome
(294–296, 298, 299). Enhancing GSH, mainly through NAC,
GSH precursors rich in cysteine (whey protein, whey protein
isolate rich in cysteine) or pro-GSH compound administration,
becomes a potential treatment option for inflammatory
diseases by reducing oxidative stress and cytokine expression
especially in diabetic patients that also are at risk of more severe
COVID-19 disease (299). GSH dysregulation might cause global
immune cell autophagy decline with increased generation of
proinflammatory cytokines in aging, further provoked by
mitochondrial ROS signaling (293). Whey protein concentrate
ameliorates lung damage and inhibits lung furin activity
targeting SARS-CoV-2 S1/S2 site cleavage and SARS CoV-2
spike protein-angiotensin converting enzyme binding and
could be used to protect against COVID-19 inhibiting SARS-
CoV-2 cell entry (300). Glutamine, glycine, N-acetylcysteine,
selenium, whey protein isolates with bonded cysteine, GSH
and pro-GSH supplementation improves GSH deficiency,
oxidative stress, mitochondrial dysfunction, inflammation,
insulin resistance, endothelial dysfunction, genotoxicity, muscle
strength, cognition and surfactant regeneration (301–307).
A combination of vitamin D and L-cysteine administration
significantly augmented GSH levels and lowered oxidative

stress and inflammation (308, 309). Maintaining an adequate
GSH redox status and 25-hydroxy-vitamin D levels will have
the potential to reduce oxidative stress, enhance immunity
and diminish the adverse clinical consequences of COVID-19
especially in African American communities having glucose-
6-phosphate dehydrogenase (G6PD) deficiency, enzyme
necessary to prevent GSH exhaustion and depletion (6, 213,
310). In normal red blood cells, pentose phosphate pathway
and glycolysis are enhanced and G6PD is sufficient to produce
NADPH efficiently for GSSG reduction and maintenance of
GSH pool (311). G6PD-deficient cells are unable to generate
enough NADPH under the condition of severe thiol depletion
and GSH biosynthesis and methionine cycle are upregulated
at the expense of ATP but fail to compensate for GSH
depletion (311).

Severe acute respiratory syndrome coronavirus 2 can
sequester mitochondria and replicate within them aging
those vital organelles weakening immunity; facilitating over-
stimulated or sustained inflammatory responses with interferon
and cytokine release, influencing ROS production, iron
storage, platelet coagulability, cytokine production stimulation,
regulation of fission and fusion, mitochondrial biogenesis,
and interference of apoptosis and mitophagy (312–319). By
affecting all these cellular functions already impaired in aging
individuals it could explain why older, comorbid patients
have the most severe outcomes with COVID-19 (312) and
stimulate the use of GSH and Nrf2 enhancers as well as
develop new therapies to protect mitochondria. We propose
that enhancement of the reduced form of GSH will reduce
the body’s oxidation and inflammation associated with chronic
inflammatory diseases and SARS-CoV-2 infection and COVID-
19 disease (320–324). Maintaining GSH levels using therapies
that do not deplete the body’s GSH (324) would be the best
choice. In a patient that is overloaded with cytokine storm,
the best way to fortify the immune system would be to supply
it with reduced GSH, since reduced GSH is already able to
provide reducing equivalents from its thiol group. This is
particularly relevant when we consider GSH pathways, as well
as their transcriptional regulator Nrf2, for proliferation, survival
and function of T cells, B cells and macrophages (325, 326).
The value of GSH and nutritional strategies like amino acids,
vitamins, minerals, phytochemicals, sulforaphane to enhance
cellular Nrf2, and other supplements used to restore GSH
levels (327–330) as adjunct treatments for all inflammatory
diseases including SARS-CoV-2 infection needs to be further
emphasized. Reducing the levels of proinflammatory molecules
like mCRP and nnCRP (331, 332) will further reduce the
detrimental effects of inflammaging. Reestablishing the cellular
metabolic homeostasis in inflammatory diseases as well as
SARS-CoV-2 infection and COVID-19 disease especially in
the lungs and cardiovascular system, could become paramount
to balance altered innate and adaptive immunity and cell
function and reduce morbimortality (333–335). Treatment of
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chronic inflammatory diseases and now COVID-19 appears
to be complex and may resist finding a single silver bullet
intervention (247) supporting the use of combination therapies
(170); especially in COVID-19 bearing in mind that “no one is
safe until everyone is safe” (336).
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