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ABSTRACT The efforts of the scientific community to tame the recent pandemic
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seem to
have been diluted by the emergence of new viral strains. Therefore, it is imperative to
understand the effect of mutations on viral evolution. We performed a time series
analysis on 59,541 SARS-CoV-2 genomic sequences from around the world to gain
insights into the kinetics of the mutations arising in the viral genomes. These 59,541
genomes were grouped according to month (January 2020 to March 2021) based on
the collection date. Meta-analysis of these data led us to identify significant mutations
in viral genomes. Pearson correlation of these mutations led us to the identification of
16 comutations. Among these comutations, some of the individual mutations have
been shown to contribute to viral replication and fitness, suggesting a possible role of
other unexplored mutations in viral evolution. We observed that the mutations
241C.T in the 59 untranslated region (UTR), 3037C.T in nsp3, 14408C.T in the RNA-
dependent RNA polymerase (RdRp), and 23403A.G in spike are correlated with each
other and were grouped in a single cluster by hierarchical clustering. These mutations
have replaced the wild-type nucleotides in SARS-CoV-2 sequences. Additionally, we
employed a suite of computational tools to investigate the effects of T85I (1059C.T),
P323L (14408C.T), and Q57H (25563G.T) mutations in nsp2, RdRp, and the ORF3a
protein of SARS-CoV-2, respectively. We observed that the mutations T85I and Q57H
tend to be deleterious and destabilize the respective wild-type protein, whereas P323L
in RdRp tends to be neutral and has a stabilizing effect.

IMPORTANCE We performed a meta-analysis on SARS-CoV-2 genomes categorized
by collection month and identified several significant mutations. Pearson correlation
analysis of these significant mutations identified 16 comutations having absolute
correlation coefficients of .0.4 and a frequency of .30% in the genomes used in
this study. The correlation results were further validated by another statistical tool
called hierarchical clustering, where mutations were grouped in clusters on the basis
of their similarity. We identified several positive and negative correlations among
comutations in SARS-CoV-2 isolates from around the world which might contribute
to viral pathogenesis. The negative correlations among some of the mutations in
SARS-CoV-2 identified in this study warrant further investigations. Further analysis of
mutations such as T85I in nsp2 and Q57H in ORF3a protein revealed that these
mutations tend to destabilize the protein relative to the wild type, whereas P323L in
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RdRp is neutral and has a stabilizing effect. Thus, we have identified several comuta-
tions which can be further characterized to gain insights into SARS-CoV-2 evolution.

KEYWORDS COVID-19, hierarchical clustering, mutations, Pearson correlation, protein
dynamics, SARS-CoV-2

Anovel coronavirus first appeared in Wuhan, China, in December 2019 and became
a public health emergency of international concern. Since its emergence, the virus

has caused catastrophe across the globe. This virus, known as severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has infected nearly 486 million people and killed
more than 6.3 million globally [WHO Coronavirus (COVID-19) Dashboard] as of 13 July
2022. Of the seven known coronaviruses—human coronavirus OC43 (HCoV-OC43),
human coronavirus-229E (HCoV-229E), human coronavirus-HKU1 (HCoV-HKU1), human
coronavirus-NL63 (HCoV-NL63), severe acute respiratory syndrome coronavirus (SARS-
CoV), middle east respiratory syndrome coronavirus (MERS-CoV), and severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2), (1)—SARS-CoV-2 is highly pathogenic to
humans (2). This virus has linear, positive-sense, single-strand RNA (ssRNA) as its genetic
material, which is 29,903 bp long and is encapsulated by the nucleocapsid protein,
which is one of the four structural proteins, the others being spike, envelope, and mem-
brane proteins (3). Once the virus gains entry into the cell, two viral polyproteins, open
reading frame 1a (ORF1a) and ORF1ab proteins, are formed. These polyproteins are then
cleaved by the viral proteases into 16 nonstructural proteins, which initiate the process
of viral replication and transcription. Apart from the viral nonstructural proteins, SARS-
CoV-2 encodes 11 accessory proteins that play a key role in the viral pathogenesis (4).

Among the nonstructural proteins of SARS-CoV, nsp14, along with nsp10 and nsp12,
plays a key role in maintaining the integrity of the viral RNA, resulting in fewer mutations
than in other RNA viruses (5, 6). Despite the fact that SARS-CoV-2 mutates at a slower
pace, this virus has evolved into numerous variants since the onset of the pandemic (7).
The continuous evolution of SARS-CoV-2 has hindered the efforts of the scientific commu-
nity to design vaccines and effective antivirals against it (8). Since mutations are one of the
key factors driving the virus’ evolution, understanding the kinetics of the mutations is im-
perative. Several studies have identified a large number of genetic variations, including
missense mutations, synonymous mutations, insertions, and deletions, in the genomic
sequences of SARS-CoV-2. The most common types of variations along the viral genome
are reported to be missense and synonymous mutations (9). Although synonymous muta-
tions may not have a direct impact on protein function, they have the potential to alter
codon usage and translational frequency, as well as being able to affect the binding
kinetics of microRNAs. Furthermore, it was speculated that the mutations in the 59 untrans-
lated region (UTR) may alter viral transcription, replication, and folding of the genomic
ssRNA sequences (10). Genome analysis of SARS-CoV-2 revealed a substantial mutation
bias toward uracil, which might be caused by improved immunogenicity, selection for
greater expression, and better mRNA stability (11).

Viral transmission rates are rapidly increasing as the virus evolves. For instance, a sin-
gle mutation (D614G) in the spike protein has been shown to increase the infectivity of
SARS-CoV-2 (12). The appearance of multiple mutations in the same haplotype might
lead to possible correlations among these mutations. It has been shown that comuta-
tions Y449S and N501Y in the spike protein can lead to reduced infectivity and play a
major role in disrupting the antibody-mediated virus neutralization (13). This implies that
mutations can have a synergistic effect, resulting in enhanced viral fitness and immune
escape. Therefore, understanding the correlations among the mutations in the viral ge-
nome might lead to a better understanding of viral pathogenesis and evolution.

Several studies on this topic have been published. Zuckerman et al. analyzed 371
Israeli genomic sequences from February 2020 to April 2020 and observed correla-
tions among identified mutations with that of known clade-defining ones (14). Wang
et al. analyzed pairwise comutations in the most frequent 11 missense mutations
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that were prevalent in the United States (15). The authors included 12,754 SARS-CoV-
2 sequences from the United States and identified missense mutations. In another
study, Rahman et al. analyzed 324 complete and nearly complete SARS-CoV-2
genomic sequences which were isolated between 30 March 2020 and 7 September
2020 (16). They identified 3037C.T as the most frequent mutation, as it occurred in
98% of isolates. Though synonymous, this mutation was shown to co-occur with 3
other mutations, including 241C.T, 14408C.T, and 23403A.G. In another study,
Chen et al. (17) analyzed 261,323 sequences of SARS-CoV-2 from across the globe to
study the evolution of the virus. The authors observed that the initial SARS-CoV-2 M
genotype ignited the COVID-19 outbreak. The M genotype harbored two concurrent
mutations and was transformed to WE1 by acquiring four additional concurrent
mutations (17). The WE1 genotype further evolved into WE1.1 by incorporating three
additional concurrent mutations.

Some of the studies mentioned above were performed with SARS-CoV-2 genomic
sequences obtained from a specific region, whereas some focused on the few signifi-
cant missense mutations only. We hypothesized whether a similar trend could be
observed with the genomic sequences of SARS-CoV-2 collected from around the world.
In order to gain a better understanding of the origin of mutations in SARS-CoV-2
sequences, we analyzed viral genomic sequences in a time series-dependent manner.
Meta-analysis of these SARS-CoV-2 genomic sequences led us to the identification of
significant mutations. We performed two widely used statistical tools: Pearson correla-
tion, which identified the comutations in the viral genome, and hierarchical clustering,
which measured similarities between these mutations and grouped them in clusters. In
silico protein dynamics was then used for the characterization of the impact of these
mutations on their respective proteins (Fig. 1).

FIG 1 Methodology used in this study. The SARS-CoV-2 complete genome sequences were obtained from
the ViPR and grouped by month based on the collection date. The meta-analysis was then performed in a
pairwise manner, i.e., comparing January 2020 to each month through March 2021, to identify the highly
significant mutations arising among the genomic sequences of SARS-CoV-2. Once the significant mutations
were identified, we used Pearson correlation- and hierarchical clustering-based approaches to identify
correlations and clusters among the highly significant mutations. The effect of these mutations on the
wild-type protein was then studied using several computational tools, including PredictSNP, ENCoM DDSVib,
DynaMut, ENCoM DDG, mCSM DDG, DUET DDG, and SAAFEC-SEQ.
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RESULTS AND DISCUSSION
SARS-CoV-2 genomes. In order to understand the kinetics of highly prevalent muta-

tions in the SARS-CoV-2 circulating genomes, we sought to analyze these genomic
sequences in a time series manner. There can be a considerable time lapse between sam-
ple collection and sample processing; therefore, we used the sample collection month to
classify the SARS-CoV-2 genomic sequences. We included a total of 59,541 SARS-CoV-2
genomes that were collected from January 2020 until March 2021 and grouped them by
month based on sample collection (see Table S1 in the supplemental material). The num-
ber of SARS-CoV-2 genomic sequences from each country was visualized on a world map
(Fig. 2). The global distribution of the samples revealed that the majority of the samples
were from the United States, followed by Australia, India, and Egypt.

Identification of significant mutations in the SARS-CoV-2 genomes. Once the
SARS-CoV-2 genomic sequences were grouped on the basis of the sample collection
month, we used the META-CATS algorithm to identify significant mutations among the
genomes. This algorithm compares two different data sets to identify significant muta-
tions among them. As the genomic sequences collected at the start of the pandemic
tend to be very similar to the parent sequence, all the SARS-CoV-2 genomic sequences
collected in January 2020 were grouped together to form a control group. The sequen-
ces obtained in subsequent months were then analyzed against the sequences from
the control group to identify significant mutations in SARS-CoV-2 genomes of that par-
ticular month. We obtained significant mutations for each month except December
2020 (Fig. 3A). Since mutations at the nucleotide level might not lead to changes in
amino acids due to the degeneracy of the genetic code, we focused our attention on
the mutations at the amino acid level (Fig. 3B to I). We identified 940 unique mutations
at the amino acid level which were unevenly distributed among the genome of SARS-
CoV-2. Our analysis identified 610, 256, 33, 2, 11, 10, 16, and 2 mutations in the
ORF1ab, spike, ORF3a, membrane, ORF6, ORF8, nucleocapsid, and ORF10 proteins of
SARS-CoV-2, respectively. As the length of SARS-CoV-2 proteins is highly variable, we
calculated the frequency of the mutations at the amino acid level in order to under-
stand their distribution in the viral proteins. We observed that the spike protein had
the highest frequency of mutations (20.10%), followed by ORF6 (18%) and ORF1ab
(8.59%) (Table 1). We observed that the membrane protein of SARS-CoV-2 had the few-
est mutations compared to the other proteins, suggesting that this region might be
highly conserved among SARS-CoV-2 variants. The recently emerged SARS-CoV-2

FIG 2 Geographical distribution of the SARS-CoV-2 genomic sequences used in this study. The color bar represents
the frequency (log10) of sequences. The areas that contributed the maximum number of genomic sequences in
this study are represented by dark red shading, whereas areas that contributed fewer genomic sequences are
represented by light orange.
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mutant Omicron has been shown to have more than 40 mutations in its spike protein,
suggesting that the protein is highly amenable to mutations (18).

Correlation among significant mutations in SARS-CoV-2 genomes. Co-occur-
rence of several mutations has been shown to modulate the function of the proteins
(19). Therefore, we sought to understand whether there was any correlation among
the significant mutations that we identified in this study. For this purpose, we utilized
two well-established statistical approaches: Pearson correlation, which measures the
correlation coefficient (positive or negative) between two mutations, and hierarchical
clustering, which groups similar mutations into clusters.

(i) Pearson correlation coefficient. Analysis of SARS-CoV-2 sequences in a time se-
ries manner led us to the identification of several significant mutations. In order to
identify the correlation among these mutations, Pearson correlation was performed on
a binary matrix, with 1 representing significant mutations and 0 representing no muta-
tions in SARS-CoV-2 genomes. The correlation value ranges from 21.0 to 11.0, with

FIG 3 Mutations in the SARS-CoV-2. (A) Mutations at the nucleotide level across the whole genome of SARS-CoV-2. (B to I) Nonsynonymous mutations at
the amino acid level for the SARS-CoV-2 proteins (B) ORF1ab, (C) spike protein, (D) ORF3a protein, (E) membrane protein, (F) ORF6 protein, (G) ORF8
protein, (H) nucleocapsid protein, and (I) ORF10 protein. Some mutations appeared early in the pandemic and were consistently present throughout the
study.

TABLE 1 Frequency of unique significant mutations in various SARS-CoV-2 proteins

Protein Length (aa) No. of unique mutations Frequencya

Orf1ab 7,096 610 8.59
S 1,273 256 20.10
Orf3a 275 33 12
M 222 2 0.90
Orf6 61 11 18.0
Orf8 121 10 8.2
N 419 16 3.8
Orf10 38 2 5.1
aCalculated by dividing the number of unique mutations by the length of the respective protein and then
multiplying by 100.
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negative values indicating negative correlation and positive values indicating positive
correlation. Additionally, absolute values closer to 1 indicate a very strong correlation.
The results obtained from the Pearson correlation were then filtered to obtain only
comutations where the absolute value of the correlation coefficient was greater than
0.4. Using this criterion, we obtained 2,205 comutations (Fig. 4A). It was observed that
the frequency of the majority of these comutations was very low. For instance, a comu-
tation at positions 21306 and 22995 with an absolute value of the correlation coeffi-
cient of .0.4 but occurrence in less than 5% of the genomes might not be of interest.
Therefore, we considered only comutations that were present in .30% of genomes for

FIG 4 Significant mutations that were correlated and clustered with each other by using statistical approaches (Pearson correlation
and hierarchical clustering). (A) Three-dimensional plot showing the comutations having Pearson correlation coefficients with
absolute values of .0.4. The degree of correlation is reflected by the color. The correlation coefficient ranges from 21 to 11;
absolute values closer to 1 have a higher correlation than those closer to 0. (B) Chord plot representing comutations with absolute
correlation coefficients of .0.4 and occurring in more than 30% of the genomes used in the study. (C) Hierarchical clustering of the
25 most significant mutations obtained from ViPR having a frequency of .10%. The x axis represents the significant mutations. The
colors represent the distances among the mutations. The comutations identified in this study are highlighted in bold. (D) Cartoon
showing the positions of mutations in the viral genome.
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further study. Using this stringent criterion, we identified 16 comutations that had an
absolute value of the correlation coefficient of .0.4, with each mutation of the comu-
tation being present in .30% of the genomes (Fig. 4B and Table 2). It was further
observed that six comutations were present in.89% of the genomes, suggesting their
possible role in viral fitness. Our analysis captured a highly prevalent mutation in the
spike protein (D614G) that has nearly replaced the wild-type sequence and is known
to increase viral infectivity (12). The identification of the D614G mutation further vali-
dated our approach and prompted us to further explore other comutations that were
identified.

(ii) Hierarchical clustering. In order to garner confidence and validate our results
that were obtained using Pearson correlation, we used another statistical tool to group
the significant mutations in clusters. Since hierarchical clustering is a computationally
intensive process, we analyzed only the 25 most significant mutations that were pres-
ent in .10% of the genomes used in this study (Table 3). Similar to the results
obtained from Pearson correlation, hierarchical clustering analysis led to the grouping
of the mutations in clusters that possess similarities. Here, we analyzed only clusters in
which the frequency of each mutation was greater than 30% of genomes (Fig. 4C). The
mutations at positions 241, 14408, 3037, and 23403 in the SARS-CoV-2 genome form a
cluster and are the most common concurrent mutations. Since both the statistical tools
provided similar results, we then focused our attention on these mutations to acquire
an in-depth understanding of them. The positions of the nine mutations in the SARS-
CoV-2 genomes are depicted in Fig. 4D.

Frequency and global distribution of highly correlated and frequent significant
mutations. Once the comutations that have a correlation coefficient with an absolute
value of .0.4 and are present in .30% of genomes were identified, we sought to
investigate the frequency of each mutation in SARS-CoV-2 genomes. There are 9 muta-
tions that constitute the 16 comutations. The nucleotide positions where these muta-
tions occur are 241, 1059, 3037, 14408, 23403, 25563, 28881, 28882, and 28883. Analysis
of each position in the genome revealed that mutations at 241, 3037, 14408, and 23403
almost completely replaced the wild-type sequences (Fig. 5A). Analysis of the genome
revealed that the major nucleotide change that occurred in around 97% of the mutated
population at position 241 in the SARS-CoV-2 genome was 241C.T (Fig. 5B). However,
in the remaining 3% of the mutated SARS-CoV-2 sequences, 241C.A was observed
(Fig. 5 and Table 4). Since the frequency of the major mutations was much higher than
that of the minor mutation at the same nucleotide position, we considered the major
mutation for further study. We investigated the global distribution of all nine mutations

TABLE 2 Correlations among various unique mutations in SARS-CoV-2 genomesa

Position of mutation:
Correlation value
of comutation

% of genomes with:

I II Mutation I Mutation II Both mutations
241 (59 UTR) 3037 (nsp3) 0.760 91.054 89.889 87.16
241 (59 UTR) 23403 (spike) 0.758 91.054 90.082 87.26
241 (59 UTR) 14408 (RdRp) 0.733 91.054 89.385 86.61
1059 (nsp2) 25563 (ORF3a) 0.863 40.022 46.948 39.33
1059 (nsp2) 28882 (nucleocapsid) 20.534 40.022 30.234 0.07
1059 (nsp2) 28881 (nucleocapsid) 20.535 40.022 30.381 0.10
1059 (nsp2) 28883 (nucleocapsid) 20.535 40.022 30.259 0.06
3037 (nsp3) 23403 (spike) 0.976 89.889 90.082 88.52
3037 (nsp3) 14408 (RdRp) 0.943 89.889 89.385 87.87
14408 (RdRp) 23403 (spike) 0.943 89.385 90.082 87.97
25563 (ORF3a) 28882 (nucleocapsid) 20.613 46.948 30.234 0.13
25563 (ORF3a) 28881 (nucleocapsid) 20.614 46.948 30.381 0.17
25563 (ORF3a) 28883 (nucleocapsid) 20.614 46.948 30.234 0.11
28881 (nucleocapsid) 28882 (nucleocapsid) 0.995 30.381 30.234 29.77
28881 (nucleocapsid) 28883 (nucleocapsid) 0.994 30.381 30.259 29.77
28882 (nucleocapsid) 28883 (nucleocapsid) 0.997 30.234 30.259 29.77
aThe comutations shown have a correlation value of,20.4 and.0.4 and are present in.30% of the genomes. Comutations showing positive correlations are present in
the majority of the same genomes. As expected, comutations showing negative correlations are not present in the same genomes.
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among the circulating SARS-CoV 2 genomes and found that the mutation 241T in the 59
UTR completely replaced the wild-type nucleotide, C241, as early as June-July 2020
(Fig. 6A). Similar trends were observed with the mutations 3037C.T, 14408C.T, and
23403A.G in nsp3, RNA-dependent RNA polymerase (RdRp), and spike proteins, respec-
tively (Fig. 6B to D). The prevalence of these mutations in the SARS-CoV 2 circulating

TABLE 3 The 25 most significant mutations and their positions in SARS-CoV-2 genomes

No. Position Gene No. of sequencesa

1 241 59 UTR 50,771
2 23403 Spike 50,229
3 3037 ORF1ab 50,121
4 14408 ORF1ab 49,840
5 25563 ORF3a 26,178
6 1059 ORF1ab 22,316
7 28881 Nucleocapsid 16,940
8 28883 Nucleocapsid 16,872
9 28882 Nucleocapsid 16,858
10 27964 ORF1ab 10,985
11 1163 ORF1ab 9,098
12 10319 ORF1ab 8,882
13 18555 ORF1ab 8,772
14 28869 Nucleocapsid 8,770
15 16647 ORF1ab 8,755
16 23401 Spike 8,746
17 7540 ORF1ab 8,729
18 18424 ORF1ab 8,758
19 28472 Nucleocapsid 8,572
20 21304 ORF1ab 8,320
21 25907 ORF3a 8,236
22 22992 Spike 8,146
23 19 59 UTR 6,637
24 15 59 UTR 5,662
25 13 59 UTR 5,069
aNumber of genomic sequences in which the mutation in present.

FIG 5 Stacked bar chart showing the distribution of genomes with a given mutation. (A) The total length of the bar represents the total number of SARS-
CoV-2 genomic sequences. The length of the blue bar represents the number of genome sequences with wild-type nucleotides at that position; the length
of the orange bar represents the number of genome sequences with a given mutation (mutated nucleotide). (B) Bar length represents the number of
genomic sequences that have a mutation at a particular position. A position with a single bar indicates that the wild-type nucleotide is substituted by a
single nucleotide. A position with multiple bars indicates that the wild-type nucleotide is substituted by more than one nucleotide. The lengths of the
different-color bars represent the degree of substitution.
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genomes suggests their critical role in viral pathogenesis. Other mutations, including
one in nsp2 (1059C.T), one in ORF3a (25563C.T), and three in nucleocapsid protein
(28881G.A, 28882G.A, and 28883G.C) showed a mosaic pattern of global distribution
that increased over time (Fig. 6E to I).

TABLE 4 Frequency of major and minor nucleotide substitutions for a specific mutation

Position of
mutation in the
genome Genomic region

Nucleotide
before mutation
(reference)

Nucleotide(s) after mutation

Amino acid(s) in:

Wild-type protein
(reference)

Mutant protein

Major Minor Major Minor
241 59 UTR C241 241T 241A
1059 nsp2 (ORF1ab) C1059 1059T T265 265I
3037 nsp3 (ORF1ab) C3037 3037T F106 106F
14408 nsp12 (ORF1ab) C14408 14408T 14408A P323 323L 323H
23403 Spike A23403 23403G D614 614G
25563 ORF3a G25563 25563T 25563A/25563C Q57 57H 57Q/57H
28881 Nucleocapsid G28881 28881A 28881T R203 203K 203M
28882 Nucleocapsid G28882 28882A 28882T R203 203R 203S
28883 Nucleocapsid G28883 28883C 28883A G204 204R 204R

FIG 6 Running monthly counts of the sampled sequences exhibiting significant mutations (that have a correlation coefficient with an absolute value of
.0.4 and are present in .30% of the SARS-CoV-2 genomes under study) between 1 February 2020 and 31 March 2021, as follows: (A) 241C.T in the 59
UTR; (B) 3037C.T in nsp3 (ORF1ab protein); (C) 14408C.T in RdRp (ORF1ab protein); (D) 23403A.G in the spike protein; (E) 1059C.T in nsp2 (ORF1ab
protein); (F) 25563G.T in the ORF3a protein; (G) 28881G.A in the nucleocapsid protein; (H) 28882G.A in the nucleocapsid protein; and (I) 28883G.C in
the nucleocapsid protein. Blue represents the SARS-CoV-2 genomic sequences having wild-type nucleotides at a particular position, whereas red represents
the sequences having mutant nucleotides at a particular position.
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Mutation in the 59 UTR. The untranslated region of the viral genome plays a vital
role in viral replication. This region has been shown to form various secondary struc-
tures to allow the binding of cellular and viral proteins, thereby regulating the transla-
tion of viral proteins (20, 21). Therefore, any mutation in these highly conserved
regions has the potential to regulate viral replication. Statistical approaches revealed
that the mutation 241C.T was closely correlated with three different mutations,
3037C.T, 14408C.T, and 23403A.G, in the nsp2, RdRp, and spike genes, respectively,
of SARS-CoV-2. Remarkably, it can be observed that the correlation coefficient of muta-
tion 241C.T with all the other mutations mentioned above was .0.75, pointing to-
ward a very strong correlation. Additionally, these mutations were found in .89% of
the genomes, further suggesting their critical role in viral evolution. These observations
were further supported by hierarchical clustering, in which these mutations were clus-
tered together. Our results are in agreement with published studies that have shown
similar correlations among these mutations (14). However, these studies were con-
ducted on the genomes of viruses from various countries, including Israel, the United
States, and Bangladesh, whereas our analysis was carried out with SARS-CoV-2
genomes obtained globally. The correlation of the 241C.T mutation with frequently
occurring mutations in the SARS-CoV-2 genomes points to its role in viral pathogenesis
and fitness.

Mutation in nsp2. The protein nsp2 of SARS-CoV-2 was recently shown to be asso-
ciated with host proteins involved in vesicle trafficking. It was also proposed that tar-
geting the interactions of viral nucleocapsid proteins nsp2 and nsp8 with the host
translational machinery might have therapeutic effects (22). Therefore, understanding
the dynamics of nsp2 is essential. Our analysis revealed that the mutation 1059C.T in
nsp2 was both positively and negatively correlated with other mutations in SARS-CoV-2.
As described in Table 2, the mutation 1059C.T (T85I) in the nsp2 gene was positively
correlated with 25563G.T (Q57H) in the ORF3a gene with a correlation coefficient of
0.863 and was present in .39% of the genomes, suggesting that the co-occurrence of
these mutations might play a role in viral evolution. These observations are in agreement
with earlier studies where co-occurrence of 1059C.T with 25563G.T was observed in
nearly 70% of COVID-19 cases across the United States (15). Additionally, we observed
that the 1059C.T (T85I) mutation in the nsp2 gene was negatively correlated with three
mutations—28881G.A (R203K), 28882G.A (R203R), and 28883G.C (G204R)—in the
nucleocapsid gene. Though the co-occurrence of these mutations was also established
in another study (14), in this study, we show that these mutations are negatively corre-
lated. The negative correlation among these mutations suggests that in a single haplo-
type, only one of them can occur. The analysis of data revealed the co-occurrence of
1059C.T with 28881G.A, 28882G.A, and 28883G.C in 0.10, 0.07 and 0.06% of the
genomes, respectively. Therefore, it would be interesting to further investigate the nega-
tive relationship among these mutations under experimental conditions.

Since the T85I (1059C.T) mutation was widespread among nsp2 proteins, we
sought to investigate the role of this mutation in the function of this protein. The full-
length 3.2-Å crystal structure of nsp2 (PDB ID 7SMW) was solved by combining cryo-
electron microscopy (cryo-EM) and the recently developed AI tool AlphaFold2 (23). In
the structure, there is a highly conserved zinc binding site, which indicates the role of
nsp2 in RNA binding (Fig. 7A). We also studied the T85I mutation in nsp2, in which a
polar threonine residue is replaced with a hydrophobic isoleucine. The PredictSNP tool
revealed that this mutation is deleterious, with around a 70% confidence score. The
ENCoM-based negative vibrational entropy energy (DDSvib) value suggests that this
mutation confers some degree of flexibility on nsp2. It can be seen that two helices (1:
19 to 28 amino acids [aa] and 2:35 to 45 aa) at the N terminus gain slight flexibility
(Fig. 8A, red). Among the six predictors, four predicted a negative free energy change
(DDG), thereby implying the destabilization of nsp2 (Table 5).

Our results on nsp2 protein stability and flexibility are in accordance with already
published reports (15). In the wild-type and mutant proteins, two identical residues
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(Phe83 and Asn87) interact with the wild-type and mutant residues. In both the struc-
tures, van der Waals clashes were observed between the side chain oxygen of Thr85
and aromatic carbons of Phe83 in the wild type and between the side chain methyl
group carbon atom of Ile85 and aromatic carbons of Phe83 in the mutant. In the wild
type, Thr85 amide group oxygen and nitrogen interact with surrounding amide group
atoms of Phe83 and Asn87 through hydrophobic, van der Waals, and polar interac-
tions. However, in the mutant protein, similar interactions were noted, but a polar-van
der Waals clash was observed between Asn87 and Ile85. This might be the cause of the
predicted instability of the T85I mutation in nsp2. The wild-type and mutant interac-
tions are illustrated in Fig. 8D.

Mutations in nsp3. The nsp3 protein in coronavirus has been shown to antagonize
the innate immune responses (24). The mutations in the nsp3 macrodomain region
lead to enhanced type I interferon (IFN) responses and reduced viral replication (25).
Understanding the dynamics of mutations in nsp3 might provide clues to SARS-CoV-2
evasion of type I IFN signaling. We identified a synonymous mutation, 3037C.T (F106F),
that was positively correlated with 241C.T in the 59 UTR, 23403A.G (D614G) in
the spike, and 14408C.T (P323L) in the RdRp of SARS-CoV-2. Though silent, 3037C.T
(F106F) was shown to disrupt the mir-197-5p target sequence (26). mir-197-5p was

FIG 7 Structure alignments of crystal structure and the modeled proteins. (A) nsp2 crystal and modeled
structures are in cyan and red, respectively. (B) RdRp crystal and modeled structures are in purple and
red, respectively. (C) ORF3a crystal and modeled structures are in orange and blue, respectively. Mutation
positions are circled, and mutant residues are represented in stick form.
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shown to be associated with some other viruses also (27–29), indicating its role in viral
biology. The 14408C.T (P323L) mutation was shown to increase the mutation rate
among SARS-CoV-2 isolates, whereas 23403A.G (D614G) has been shown to contribute
to the infectivity of the virus (16). The co-occurrence of all these mutations in .87% of
the genomes further points to their critical role in driving viral evolution.

Mutation in RdRp. RdRp (nsp12) of SARS-CoV-2 is important for viral replication and
transcription. This protein is also believed to be the most prominent target for potential
antiviral drugs (30). Therefore, understanding the mutations in this protein is critical for
RdRp-based drug designs. The mutation 14408C.T (P323L) in RdRp was present in
.89% of genomes, suggesting that this mutation is now a part of the circulating
genomes. Apart from its widespread presence, this mutation was correlated with some
other mutations, including 241C.T in the 59 UTR, 3037C.T in nsp3, and 23403A.G in
the spike, with high correlation coefficients of 0.73, 0.94, and 0.94, respectively. Interestingly,
14408C.T and 23403A.G mutations were reported in patients with severe COVID-19, in
contrast to those with mild infections, suggesting their possible role in disease severity
(31). Owing to the widespread presence of P323L mutation in RdRp, we sought to study
its effect on the stability of the wild-type protein.

The 2.83-Å crystal structure of RdRp in complex with nsp7, nsp8, nsp9, and helicase
was determined using cryo-electron microscopy (32). The RdRp structure has the RdRp

FIG 8 Visual representation of mutant protein dynamicity and intramolecular interactions of wild-type and mutant
residues with proximal amino acids. Mutations are shown in stick representation and are circled in red. Red and blue
indicate flexibility and rigidity, respectively. The wild type and the mutant residues are shown in cyan. Mutant residues are
in red, while interacting residues are in black. Interactions are illustrated in different colors; for further interpretation of
interactions, see the web version of the Arpeggio web server. (A to C) Visual representation of nsp2, RdRp, and ORF3a,
respectively. (D to F) Intramolecular interactions of wild-type and mutant residues in nsp2, RdRp, and ORF3a, respectively.
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domain (367 to 920 aa) (33) and N terminus (60 to 249 aa), which adopts the nidovirus
RdRp-associated nucleotidyltransferase (NiRAN) structural scaffold (34). Another region
(4 to 118 aa) is composed of two helices and five b-strands that are antiparallel.
Additionally, the short b-strand (215 to 218 aa) was observed in RdRp, which is highly
ordered in SARS-CoV-2 compared to SARS-CoV. This b-strand has contact with other
b-strand residues (96 to 100 aa) and thus increases the conformational stability of
RdRp in SARS-CoV-2 (33).

The P323L mutation is present on RdRp interface domain, especially in the loop
region, which connects the interface domain’s three helices to the same domain’s
three b-strands (Fig. 7B). An earlier study suggested that this mutation enhances the
processivity of RdRp (35). It is predicted to be functionally neutral, with a notable confi-
dence score of 83%. This mutation results in a conformationally rigid proline ring being
replaced by a flexible side chain containing a leucine residue. Though the wild-type and
mutant residues are hydrophobic, their conformational flexibility must be the deciding
factor for protein stability and flexibility. Nonetheless, this mutation significantly rigidifies
RdRp (Fig. 8B), and DDSvib was also observed to be much lower (Table 5). Results show
that this mutation has a strong communication network in RdRp and impacts various
helices and b-sheets. The P323L mutation is located in a loop formed by the b-strand
(328 to 335 aa) and helix (304 to 320 aa); thus, these two secondary structures gain rigid-
ity. However, a helix-proximal mutation gained greater rigidity than other regions of
RdRp. The helices at the N- and C-terminal domains also gained rigidity due to this muta-
tion. All-atom simulation data also suggested that the P323L mutation reduces the flexi-
bility of RdRp, which is in line with our results (36). Three DDG value predictors predicted
stabilization and the remaining three predicted destabilization, but the DDG stabilization
values are considerably higher than the destabilization values. Mohammad et al. per-
formed 200-ns all-atom molecular dynamics simulation by calculating free energy (DG)
of the wild-type and mutant RdRp and confirmed that P323L increases the stability of
RdRp (36). Hence, this mutation stabilizes the RdRp structure. Analysis of the RdRp wild-
type and mutant interaction revealed that there are more interactions in the mutant
than the wild type. The wild-type and mutant residues are surrounded by Phe321,
Ser325, Phe326, Arg349, and Phe396 residues. In the wild type, only a single polar inter-
action between Ser325 and Pro323 residues is observed, while in the mutant, two addi-
tional hydrogen bonds with Ser325 and Phe326 and polar interaction with Phe349 were
observed. Thus, it can be considered that higher stability in the mutant comes from
these interactions. Figure 8E shows the interactions in the wild-type and mutant RdRp.

Mutations in the ORF3a protein. ORF3a is the largest accessory protein of SARS-
CoV-2 and plays a key role in the viral infection cycle. Moreover, this protein is essential
for viral replication, and mutations in this protein are associated with higher mortality
rates (37). The mutation 25563G.T (Q57H) in the SARS-CoV-2 ORF3a gene has been
shown to be associated with decreased death and increased cases of COVID-19 (38).
We further observed that 25563G.T (Q57H) mutation is positively correlated with the
1059C.T mutation in nsp2, whereas it is negatively correlated with 28881G.A,
28882G.A, and 28883G.C mutations in the nucleocapsid gene. Our observations are
in agreement with previous studies which identified similar associations within the
genomes of SARS-CoV-2 isolated in Israel (14). The ORF3a functional domains are vital
for SARS-CoV-2 infectivity, virulence, ion channel synthesis, and the release of the virus

TABLE 5 Predicted results for the effects of mutation on functionality, stability, and flexibility of respective proteins using PredictSNP,
DynaMut, and SAAFEC-SEQ web servers

Protein (mutation)

Confidence score (%)
and nature of
mutation (PredictSNP)

DDSvib (kcal mol21

K21) and flexibility
(ENCoM)

DDG (kcal mol21)a

DynaMut ENCoM mCSM SDM DUET SAAFEC-SEQ
nsp2 (T85I) 72 (deleterious) 0.021 (increase) 20.264 20.017 20.125 0.460 0.151 20.93
RdRp (P323L) 83 (neutral) 20.225 (decrease) 0.732 0.180 20.261 1.570 0.457 20.77
ORF3a (Q57H) 76 (deleterious) 20.117 (decrease) 0.597 0.094 20.843 0.060 20.652 21.03
aA negative value indicates a predicted destabilizing effect, while a positive value indicates a stabilizing one.
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(39). A recent study showed that ORF3a in SARS-CoV-2 has a weaker potential for proa-
poptotic activity than SARS-CoA ORF3a, which might be linked to the infectivity of the
viruses (40). Furthermore, another study confirmed that ORF3a binds to the homotypic
fusion and protein sorting (HOPS) complex and prevents autolysosome formation (41).
ORF3a is also considered a potential vaccine and drug target (42, 43).

The experimental structure of ORF3a protein (PDB ID 6XDC) was determined using
cryo-EM at 2.1-Å resolution. ORF3a protein has three main regions: the N terminus (1 to
39 aa), the cytoplasmic loop (175 to 180 aa), and the C terminus (239 to 275 aa) (44).
Figure 7C shows the structure of ORF3a protein. In the Q57H mutation, a glutamine polar
residue is replaced by a polar and basic histidine residue. This mutation is situated in the
helix region of ORF3a protein and is predicted to be deleterious, having a 76% confi-
dence score (Table 5). Similar observations were reported in earlier studies (39, 45). The
DDSvib value implied that the ORF3a protein gains rigidity and becomes less flexible due
to the appearance of this mutation. Similar to RdRp, the mutant residue in ORF3a protein
also has a wide communication dynamics. This single mutation in the helix increases the
rigidity of the whole ORF3a protein (Fig. 8C). Our findings are in agreement with a previ-
ous study on the impact of the Q57H mutation in the protein (15).

Based upon the DDG values, this mutation was predicted to be destabilizing
(Table 5). The wild-type and the mutant residues are in close proximity to Leu52,
Leu53, Ala54, Val55, Ala59, Ser60, Lys61, Val77, and Cys81. In the wild-type protein,
two hydrogen bonds are observed in Ser60 and Lys61 amide bond amino groups with
the amide carbonyl group of the wild-type residue. These identical hydrogen bonds
are also present in the mutant structure. Other types of interactions, such as polar and
hydrophobic, were observed in the wild-type and the mutant ORF3a protein. However,
there are two new clashes seen in the mutant structure between the histidine ring and
Lys61 and mutant amide group and Leu53 residue. Thus, the overall number of clashes
has increased in the mutant, and this might be the factor responsible for the destabili-
zation of ORF3a protein under the influence of the Q57H mutation. This mutation was
predicted to have significant potential to alter the ORF3a conformation and lead to dis-
ruption of intramolecular hydrogen bonds in ORF3a (38). Our findings that Q57H
causes destabilization of ORF3a are in agreement with the previous study. The wild-
type and the mutant interactions are illustrated in Fig. 8F.

Mutation in the spike protein. Spike protein is a homotrimer protein that studs the
surface of SARS-CoV-2, giving it a crown-like shape. The spike protein of SARS-CoV-2 con-
sists of two subunits that are covalently attached to each other. One of the subunits, S1,
binds to the ACE2 receptor on the target cells, whereas the S2 subunit helps anchor the
spike protein to the cell membrane (46, 47). The D614G mutation in the spike protein
has been shown to increase the infectivity of the virus. In our previous study (48), we
characterized the effect of D614G mutation on protein activity and suggested that the
mutation led to decreased protein stability but enhanced protein movement. In this
study, we observed a correlation of the 23403A.G (D614G) mutation in the spike with
the mutations 241C.T (59 UTR), 3037C.T (nsp3), and 14408C.T (RdRp). The presence
of these mutations in .96% of the genomes suggests their critical role in viral pathoge-
nesis. The above-mentioned mutations had replaced the wild-type sequences by
June-July 2020 (Fig. 6A to D). Therefore, a better understanding of these comutations via
further experimentation is urgently required.

Mutations in the nucleocapsid protein. Nucleocapsid protein is one of the most
conserved proteins among SARS coronaviruses (49). This protein is known to interact
with viral RNA as well as the viral membrane protein to aid virion assembly. This pro-
tein is also shown to play a role in regulating host immune responses (50) and cellular
apoptosis (51). The nucleocapsid protein of SARS-CoV-2 acts as a viral RNA interference
(RNAi) suppressor and has been shown to antagonize cellular RNAi pathways (52).
Thus, understanding the role of mutations in modulating the function of this protein
becomes important. The mutations 28881G.A, 28882G.A, and 28883G.C in the nu-
cleocapsid are positively correlated with each other. Of these, the mutations at 28881
and 28883 are missense mutations, whereas the mutation at 28882 is synonymous.
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Since the mutations in nucleocapsid protein are known to increase the infectivity and
virulence of the virus (53), the correlation of these mutations with other mutations war-
rants further study. Interestingly we observed that these three mutations in the nucleo-
capsid were negatively correlated with two other mutations, 1059C.T in nsp2 and
25563C.T in ORF3a. It was further observed that a very small number of haplotypes
(0.06 to 0.17%) had both mutations in the same genome (Table 2). The absence of
these mutations from the same genome implies their possible negative impact on viral
evolution and pathogenesis. In our recent study (48), we probed the impacts of these
two mutations, 28881 (R203K) and 28883 (G204R), on the nucleocapsid protein struc-
ture, function, and dynamics. Though we performed the analysis of each of these
mutations separately, a recent study investigated the synergistic effect of these comu-
tations in the nucleocapsid protein function (54). It was observed that these comuta-
tions increase the fitness, infectivity, replication, and virulence of SARS-CoV-2. These
comutations were shown to increase the phosphorylation of the viral nucleocapsid
protein and to confer enhanced resistance to glycogen synthase kinase-3 (GSK-3),
thereby leading to efficient viral replication.

Impact of mutations on protein dynamics. The protein structure and functions are
significantly altered by the insertion of single-point mutations (55–57). Investigating the
structural or functional impacts of point mutations in all proteins can be achieved using
a suite of computational tools, including NMA models (58), Gaussian network models
(GNM) (59), anisotropic network models (ANM) (60), elastic network models (ENM) (61),
discrete molecular dynamics (DMD) (62), all-atom molecular dynamics (AAMD) simula-
tion (63), and protein evolutionary data. Therefore, we employed these tools to probe
the effects of mutations on protein structures. The predicted results of the mutations are
given in Table 5.

Linear mutual information analysis of the mutants. The normalized linear mutual
information (nLMI) gives insight into the protein residue network and dynamic correla-
tion. Figure 9 illustrates the nLMI correlation and correlation difference plots of nsp2,
RdRp, and ORF3a proteins along with their mutants. It can be observed that the nsp2
and ORF3a protein residues are strongly correlated (.0.625) compared to RdRp, where
correlation among residues is considerably lower (,0.500) (Fig. 9A to C). However, to
understand the impacts of every single mutation in each protein, we obtained correla-
tion differences between the wild-type and mutant structures of all the three proteins.
In the correlation difference plots, the yellow regions indicate no or a very slight corre-
lation (0.00 to 0.25), whereas cyan regions indicate slightly negative anticorrelation
between the residues (Fig. 9D to F). In RdRp and ORF3a mutant structures, residues
have significantly less correlation. However, the nsp2 mutant structure’s residues are
slightly anticorrelated. Thus, the T85I mutation in nsp2 causes a slight disruption in the
structure that can be considered destabilization of the nsp2 mutant structure.
However, P323L in RdRp and Q57H in ORF3a do not result in notable destabilization of
the mutant structures.

Conclusion. Since the onset of the SARS-CoV-2 pandemic in December 2019, the vi-
rus has significantly mutated. The mutations in the virus have led to the emergence of
mutants that have the capacity to dodge vaccine and antiviral therapies. Therefore,
understanding the dynamics of mutations in the viral genome is of utmost importance.
To this end, we performed a time series analysis of viral sequences to understand the
origin and frequency of significant mutations present in the SARS-CoV-2 circulating
genomes. The meta-analysis approach was used to identify significant mutations in the
SARS-CoV-2 sequences. Pearson correlation and hierarchical clustering were then used
to identify the correlations and the clusters among the significant mutations. We iden-
tified 16 comutations that had an absolute Pearson correlation coefficient of .0.4 and
were present in .30% of the genomes analyzed in this study. We identified a strong
correlation coefficient (.0.73) for the mutations 241C.T in the 59 UTR with 3037C.T
(F106F) in nsp3, 23403A.G (D614G) in spike, and 14408C.T (P323L) in RdRp. The co-
occurrence of these mutations was found in .86% of the genomes that were studied,
suggesting that these comutations were part of the same haplotypes. The area plot
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analysis revealed that these mutations replaced the respective wild-type sequences by
June-July 2020. In this study, we were able to capture negative correlations of the
mutations 28881G.A, 28882G.A, and 28883G .C in the nucleocapsid gene with
mutations, including 1059C.T in nsp2 and 25563G.T in ORF3a, implying that a haplo-
type will not harbor 28881G.A, 28882G.A, and 28883G.C nucleocapsid mutations
along with 1059C.T in nsp2 or 25563G.T in ORF3a. However, the combined effect of
these mutations having negative correlations in the viral replication still needs to be
investigated.

To investigate the impacts of T85I, P323L, and Q57H mutations in nsp2, RdRp, and
ORF3a proteins, respectively, on their structural stability and flexibility, we employed
structure and sequence-based tools. DDG and DDSvib were used to evaluate the stabil-
ity and flexibility of proteins, respectively. From the free energy calculation, T85I and
Q57H mutations in nsp2 and ORF3a proteins, respectively, disrupt the residual network
in the wild-type protein and destabilize the wild-type protein, while P323L in RdRp
brings stability to the wild-type protein by adding new contacts between the residues.
Also, consensus predictors were used to predict the impacts of mutation on protein
functions. It was noted that T85I in nsp2 and Q57H in ORF3a were found to be deleteri-
ous, which implies that they alter the protein functions. However, P323L in RdRp was
predicted to be neutral, which suggests that this mutation does not have any impact
on protein function. The graph theory-based nLMI correlation was also obtained for
the wild-type and mutant structures of three proteins to understand the residue com-
munication in proteins. The nsp2 and ORF3a residues have a greater correlation than
with RdRp. The correlation difference plot suggests that compared to nsp2, a significant
correlation was observed in RdRp and ORF3a under the influence of the mutations. Thus,
it can be observed that the latter two mutations increase the residue correlation in RdRp
and ORF3a proteins, while in the case of nsp2, there was no significant correlation

FIG 9 nLMI correlation plots. (A to C) Wild-type nsp2 (A), RdRp (B), and ORF3a (C). (D to F) Correlation difference plots of wild-type and mutant nsp2 (D),
RdRp (E), and ORF3a (F). The degree of correlation is indicated by the color.
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difference observed, indicating a slight or no impact of mutation on the structure of
nsp2. The fact that some of the mutations have destabilizing effects but have very high
frequency suggests that these might play some role in viral fitness. Further experimenta-
tion is required to study the effect of these comutations on viral transmission and
pathogenesis.

MATERIALS ANDMETHODS
SARS-CoV-2 genomic sequences. Since the onset of the SARS-CoV-2 pandemic in 2019, the virus is

continuously evolving thereby resulting in the emergence of several variants. The availability of SARS-
CoV-2 genomic sequences has been instrumental in understanding viral evolution and pathogenesis. To
gain an in-depth understanding of the mutational landscape of SARS-CoV-2, we sought to analyze SARS-
CoV-2 genomic sequences in a time series manner. All the SARS-CoV-2 genomic sequences were col-
lected in a monthwise manner (based on the sample collection month) from the Virus Pathogen
Resource (ViPR) database (64). The database was accessed on 18 April 2021, and only complete genomic
sequences of SARS-CoV-2 were downloaded for further processing. In order to obtain high-quality
genomic sequences, only complete genomes, which were around 15% of the total sequences, were
used in this study. Additionally, an in-house Python script was written to check for the presence of un-
usual bases in the sequences included in this study. In the current study, SARS-CoV-2 sequences were
collected from January 2020 to March 2021, resulting in 59,541 complete genome sequences.

Meta-analysis of SARS-CoV-2 genomic sequences. Once the SARS-CoV-2 genomic sequences were
obtained and categorized by collection month, we performed a meta-analysis on these sequences to
identify significant mutations among them. The genomes from various months were analyzed with
respect to the genomes collected in the month of January 2020. The genomes obtained during the ini-
tial phase of infections tend to be close to the wild type, with few mutations, compared to the genomes
collected at the later stages of the infection. For the identification of significant mutations, a metadata-
driven comparative analysis tool (META-CATS) was used (65). All the analyses were performed with
default settings, and mutations with P values of .0.05 were considered significant. We obtained a con-
siderable number of significant mutations for each month. Notably, SARS-CoV-2 genomic sequences col-
lected in December 2020 did not yield any significant mutations. Therefore, sequences collected in
December 2020 were not included for further analysis.

Pearson correlation coefficient. In order to identify the correlation among significant mutations in
the SARS-CoV-2 circulating genomes, Pearson correlation was used. Pearson correlation measures the
linear correlation between two variables. An empty matrix of 55,759 by 29,903 was created using the
NumPy module of Python. In this matrix, the number of rows represents the number of SARS-CoV-2
genomic sequences that were analyzed, and the number of columns represents the length of the refer-
ence SARS-CoV-2 genome. In this matrix, the occurrence of mutation at a particular position was repre-
sented by the number 1, whereas nonoccurrence of the mutation at a specific position was represented
by the number 0. All comparisons were made with the SARS-CoV-2 reference genome, GenBank acces-
sion no. NC_045512.2. We used the “corr” method of the pandas library (66) to implement Pearson
correlation.

Hierarchical clustering. To validate the results obtained from the Pearson correlation, the hierarchi-
cal clustering technique was applied; this method groups similar objects together. Since highly frequent
mutations tend to play a critical role in the evolution of the virus (17), the 25 most significant mutations
that were present in more than 10% of the genomes were tested for similarity using the hierarchical
clustering technique. The figure_factory method from the plotly library of Python was used to perform
the hierarchical clustering on the binary matrix of the 25 most significant mutations. The pdist and
squareform methods from the SciPy library of Python (67) were used to create the dendrogram with a
heat map. The dendrogram, together with the heat map, represents the significant mutations that are
clustered. All these analyses were performed in Python version 3.8.5.

Protein structure and model preparation. Once the comutations in SARS-CoV-2 were identified,
several computational tools were used to investigate the effect of the mutations (that constitute the
comutations) on the respective protein structure. Of these mutations, 241C.T in 59 UTR does not get
translated into an amino acid. The mutations 3037C.T (F016F in nsp3) and 28882G.A (R203R in nucleo-
capsid protein) are synonymous and hence were not included for further analysis. A detailed analysis of
three other mutations, including 23403A.G (D614G in spike protein), 28881G.A (R203K in nucleocapsid
protein), and 28883G.C (G204R in nucleocapsid protein) was performed in our recent study (48) and thus
not explored in this study. Therefore, in this study, we targeted three mutations—1059C.T (T85I in nsp2),
14408C.T (P323L in RdRp), and 25563G.T (Q57H in ORF3a protein)—to probe their impact on the pro-
tein structure and function. The crystal structures of these proteins were obtained from the Protein Data
Bank (PDB). Analysis of these protein structures revealed that they had some missing amino acids. Hence,
we employed a deep learning-based protein modeling tool, RoseTTAFold (68), to add missing residues to
these proteins. The nsp2 protein (PDB ID 7MSW) is 638 amino acids long, and in the crystal structure, the
first three residues at the N terminus were missing. RdRp (PDB ID 7CYQ) is 942 amino acids long, and 1 to
3 amino acids at the N terminus and 930 to 942 amino acids at the C terminus are missing in the structure.
The ORF3a protein (PDB ID 6XDC) is only 284 amino acids long, but a large number of residues from both
termini (1 to 39 aa at the N terminus and 239 to 284 aa at the C terminus) and six residues (175 to 180 aa)
are missing in the protein structure. RoseTTAFold modeled all these missing residues in these proteins
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except for the nine histidine residues at the C terminus of RdRp. These three modeled proteins were fur-
ther analyzed for mutation effects.

Functional impact of mutations. To investigate the effect of mutation on protein function, we used
the widely popular PredictSNP web server (69). This web tool is composed of a suite of six different predic-
tors, including predictor of human deleterious single nucleotide polymorphism (PhD-SNP), multivariate
analysis of protein polymorphism (MAPP), screening of nonacceptable polymorphism (SNAP), polymor-
phism phenotyping v1 (PolyPhen-1), polymorphism phenotyping v2 (PolyPhen-2) and sorting intolerant
from tolerant (SIFT) to predict whether a given mutation is deleterious or neutral. PredictSNP gives a con-
sensus prediction score using these six predictors. These six predictors make use of different methods to
predict the nature of the mutation. PhD-SNP, MAPP, SNAP, PolyPhen-1, SIFT, and PolyPhen-2 utilize a sup-
port vector machine, physicochemical characteristics and a protein sequence alignment score, a neural
network approach, an expert set of empirical rules, a protein sequence alignment score, and naive Bayes,
respectively (69), to predict whether a given mutation is deleterious or neutral. To calculate the PredictSNP
score, the following equation is employed:

PredictSNPScore ¼

XN

i¼1

d iSið Þ

XN

i¼1

Si

(1)

where d i is an inclusive prediction (21, neutral;11, deleterious), Si indicates the transformed confidence
scores, and N is the number of predictors. The PredictSNP consensus score is between 21 and 11,
where 21 to 0 corresponds to a neutral and 0 to 11 to a deleterious mutation.

Effect of mutations on protein dynamics. The normal mode analysis (NMA)-based DynaMut (70)
web tool was utilized to probe the effects of a single mutation in each protein on its stability and flexibil-
ity. The folding free energy change (DDG) was calculated to exactly predict the stability of the protein
under the influence of the mutations. In addition to its own DDG prediction, DynaMut also predicts DDG
using NMA-based ENCoM (Elastic network contact model) (71) and other structure-based predictors, like
the mutation cutoff scanning matrix (mCSM) (72), site-directed mutator (SDM) (73), and DUET (74). The
free energy change indicates the stability of the proteins by measuring the energy difference between
the wild-type and mutant proteins. Additionally, DynaMut employs ENCoM to predict vibrational en-
tropy energy (DDSvib). The values of DDSvib are calculated for wild-type and mutant proteins by screening
their all-atom pair interactions. We utilized the protein sequence-based SAAFEC-SEQ (single amino acid
folding free energy changes-sequence) tool (75) to validate the DynaMut predictions for wild-type and
mutant proteins. This tool utilizes different protocols, such as protein sequence properties, evolutionary
details, and physicochemical properties, to calculate the DDG value.

Linear mutual information. To understand the nature of dynamics and fluctuations in the protein
structures, dynamical cross-correlation (DCC)- and LMI-based approaches were employed in this study
(76–79). Since DCC cannot calculate the correlation of atoms moving concurrently in perpendicular
directions (80), we applied normalized LMI (nLMI) to overcome this limitation. To calculate the nLMI of
wild-type and mutant proteins, we employed the Python-based correlation-plus 0.2.1 tool (80), which
uses PDB files as the input. During the calculation, the program uses the anisotropic network model
(ANM) to generate 100 models of wild-type and mutant proteins, and the correlation is thus obtained
using these models. Additionally, we calculated the difference in correlation between wild-type and mu-
tant proteins. To calculate nLMI between residues i and j, the following equation was used;

LMIij 5
1
2
½ln detCið Þ1 ln detCj

� �
2 lnðdetCijÞ� (2)

where Ci ¼ hxTi xii, Cj 5 hxTj xji, and Cij 5 h xi; xjð ÞT xi; xjð Þi; also, xi 5 Ri 2 hRii and xj 5 Rj 2 hRji, where Ri
and Rj are the atom i and j position vectors, det = Determinant of protein residue cross correlation metri-
ces. In the nLMI calculation, the LMI was considered greater than or equal to 0.3 and the distance thresh-
old was less than or equal to 7 Å. The values 0 and 1 indicate no correlation and complete correlation of
residues, respectively.
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