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Fluctuations in food availability and the resultant changes in the 
population density of consumers are thought to be important ecological 
agents of natural selection in many animal populations (1, 2). Temporal 
variation in natural selection characterized by recurrent pulses in food or 
density can favor the evolution of adaptive phenotypic plasticity when 
there are reliable cues that predict the direction or magnitude of these 
agents of selection (3, 4). Phenotypic plasticity is beneficial in such 
changing environments because it enables individuals to track fluctuat-
ing fitness optima (5, 6). Similarly, if the parental environment or pheno-
type provides reliable cues of the conditions that offspring will 
experience, parents may induce adaptive changes in offspring that in-
crease both parental and offspring fitness (“adaptive parental effects”: 7, 
8). 

The role of parental effects in the adaptation of offspring to changing 
environments is intriguing, but little is known about their importance in 
free-living animals. Not only do the agents of natural selection on off-
spring phenotype need to be identified, but the cues parents use to pre-
dict changes in the agent of selection, and the mechanism that mediates 
the parental effect, also need to be known. This is further complicated 
when considering population density as a cue because it is often con-
founded with food-availability, which might also relieve resource con-
straints and cause resource-mediated or permissive parental effects (7). 
Identification and experimental manipulation of the mechanisms that 
mediate parental effects requires a combination of field physiology, 
experimental ecology, and longitudinal studies of natural selection that 
have not been achieved to date. Here, we identify and experimentally 
manipulate the social density cues and stress hormones responsible for 

an adaptive maternal effect in a natural 
population of North American red 
squirrels (Tamiasciurus hudsonicus). 

Individual male and female red 
squirrels defend exclusive territories 
around a central midden (9, 10) con-
taining cached white spruce cones 
(Picea glauca, 11, 12) and juveniles 
that fail to acquire a territory before 
their first winter do not survive (13). 
Red squirrels experience recurrent fluc-
tuations in population density due to 
pronounced episodic fluctuations in the 
availability of white spruce seed (Fig. 
1A: 11, 12). Increased autumn spruce 
cone production is associated with in-
creased squirrel density in the following 
spring (Fig. 1B, 14). In our 23-year 
study in the Yukon, Canada, we found 
that these changes in density have nota-
ble effects on red squirrels as we docu-
mented density-dependent selection on 
offspring postnatal growth rates. In 
years when spring density was high, 
females that produced faster growing 
offspring had more offspring survive 
their first winter and recruit into the 
adult population, whereas when density 
was low there was no benefit to produc-
ing faster growing offspring (n = 463 
females, offspring growth x density, t726 
= 2.15, P = 0.016, table S1). 

In such variable environments, the 
evolution of adaptive maternal effects 
may be favored but this requires the 
presence of reliable cues that enable an 
accurate prediction of natural selection 

on offspring (3, 4). Cues of population density in red squirrels might, 
therefore, induce adaptive increases in offspring growth when density is 
high. Red squirrels emit territorial vocalizations called “rattles” to de-
fend their territories, and the frequency with which they hear rattles in 
their neighborhood accurately predicts density (10). We hypothesized 
that territorial vocalizations provide a cue of density that allows females 
to adaptively adjust offspring growth in anticipation of the density-
dependent selection that they will experience. We tested this hypothesis 
by simulating high-density conditions using audio playbacks of red 
squirrel rattles (9, 10). This corresponded to a perceived density of 4.92 
squirrels/ha, which was six-fold higher than the perceived density of 
females exposed to a control stimulus (bird vocalizations: 0.81 squir-
rels/ha) and similar to the maximum historical density (Fig. 1A; 10). 
Such a high-density environment would typically be associated with a 
strong positive relationship between offspring growth and fitness (table 
S1), whereas offspring growth does not affect fitness in the low-density 
control environment. 

As predicted, offspring produced by females experiencing experi-
mentally heightened perceived density grew significantly faster than 
those produced by control females (Fig. 2). Consistent with life history 
theory (15), the growth rates of offspring produced by control females 
declined significantly as litter size increased (Fig. 2), but this effect was 
attenuated by 67% in females exposed to playbacks of territorial vocali-
zations (playback x litter size, t186 = 1.98, P = 0.024, table S2, Fig. 2). In 
fact, the trade-off between litter size and growth rate in females exposed 
to playbacks of territorial vocalizations was greatly reduced (r = -0.12, 
t66 = -1.57, P = 0.06) compared with control females (r = -0.37, t64 = -
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4.43, P < 0.0001). Female red squirrels, therefore, increase offspring 
growth in response to conspecific density because of the fitness benefits 
of doing so in high-density years. These growth enhancing maternal 
effects in high-density years are adaptive for mothers and offspring by 
increasing the probability that their offspring will survive their first win-
ter (16), which is a major component of their lifetime fitness (17). How-
ever, faster offspring growth rates are not favored under low-density 
conditions (≤1 squirrel/ha: table S1) and in some years there is signifi-
cant negative selection on offspring growth (16). Increased reproductive 
effort does not appear to incur a survival cost to mothers (18, 19). Off-
spring born in high-density years, however, have a reduced adult 
lifespan (20) suggesting that faster offspring growth, which enhances 
recruitment when density is high, might incur a cost to offspring later in 
life. Such conditions will promote the evolution of plasticity in maternal 
effects whereby increased offspring growth coincides with the high-
density conditions under which it enhances fitness. 

These adaptive maternal effects on offspring were mediated by the 
physiological stress responses of females experiencing heightened popu-
lation density. Across six years (2006-2011), we found a positive rela-
tionship between local density and concentrations of fecal cortisol 
metabolites (FCM, t155 = 3.63, P = 0.0002, table S4, Fig. 3A). Females 
from a study area with experimentally increased density resulting from 
food-supplementation (75% higher density than control study areas: Fig. 
1) had concentrations of FCM that were 49% higher (t162 = 3.82, P < 
0.0001, table S4, Fig. 3B) than females on control study areas. Females 
experiencing increased perceived density through the playback experi-
ment had concentrations of FCM that were 30% higher than control 
females (t48 = 2.24, P = 0.015, table S4, Fig. 3C). These results confirm 
that increases in concentrations of FCM were driven by perceived densi-
ty rather than food abundance (21). 

In mammalian species, increases in maternal glucocorticoid levels 
can cause profound changes in offspring phenotype (22) and may pro-
vide offspring with reliable hormonal cues about their future environ-
ment. Three lines of evidence indicate that increases in maternal 
glucocorticoid levels are responsible for the adaptive increase in off-
spring growth under high-density conditions. First, females exposed to 
heightened perceived density had increased concentrations of FCM dur-
ing pregnancy (Fig. 3C) and also produced faster growing offspring than 
controls (Fig. 2). Secondly, increased maternal FCM concentrations 
were positively associated with offspring growth in females measured 
over a six-year period (t98 = 1.94, P = 0.028, table S5). Finally, offspring 
born to females with experimentally increased glucocorticoid levels 
during pregnancy (fed cortisol: fig. S1) grew 41% faster than those pro-
duced by control females (t26 = 4.98, P < 0.0001, table S6, Fig. 4). 

Our results suggest that elevated maternal glucocorticoid levels in 
response to heightened population density induced an adaptive hormone-
mediated maternal effect on offspring growth. In contrast to the wide-
spread assumption that heightened maternal glucocorticoid levels are 
detrimental to offspring (22), our results emphasize that in free-living 
animals they can instead lead to adaptive adjustments in offspring (23, 
24). Under high-density conditions, squirrels spend less time feeding and 
in the nest (10), suggesting that increased offspring growth is not a sim-
ple outcome of increased maternal care or milk provisioning. Alterna-
tively, elevated exposure to glucocorticoids early in life (22, 25) could 
increase offspring growth by directly influencing offspring physiology 
or behavior (22, 26) and subsequent changes in growth hormone secre-
tion in offspring (27). 

For nearly 100 years, food availability has been considered to be a 
universal variable affecting population dynamics and life history traits 
(28). Increased food availability also increases the population density of 
consumers, which has made it difficult to distinguish whether the plastic-
ity in life history traits following periods of high food availability is due 
to relaxation of food limitation or to adaptive reproductive adjustments 

to changes in density-mediated selection. Our results provide clear evi-
dence that female red squirrels can produce faster growing offspring in 
the absence of additional resources, but only do so when the fitness pro-
spects warrant this increased investment. In fact, offspring produced by 
females exposed to high density cues but with no access to additional 
food grew as fast as those produced by food-supplemented females that 
were also experiencing increased density (1.79 ± 0.09 squirrels/ha; Fig. 
2, table S2). Some of the plasticity in female life history traits is, there-
fore, due to the expected fitness benefits of producing faster growing 
offspring under high-density conditions rather than only reflecting a 
relaxation of food limitation. 

Experimental increases in food resources that result in increased re-
productive output are typically interpreted as evidence for resource limi-
tations on reproduction (29). However, if animals use food abundance as 
a cue of upcoming density-mediated selection, then reproductive re-
sponses to food supplementation might reflect not only relaxation of 
food limitation but also an adaptive adjustment to an anticipated change 
in natural selection resulting from an impending increase in density. 
Cues of population density may be a general signal that animals use to 
make adaptive reproductive adjustments in anticipation of density-
dependent natural selection on offspring phenotypes. 
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Fig. 1. A) Yukon red squirrels experience recurrent fluctuations in population density 
(squirrels/hectare) due to inter-annual variation in white spruce cone abundance (11, 
12). B) Spruce cone production in the previous autumn is associated with increased 
spring population density on two control study areas (b = 0.24 ± 0.05, t53 = 4.3, P < 
0.0001) and one study area (Food-add) where squirrels have been provided with 
supplemental food since autumn 2004 (b = 0.20 ± 0.19, t53 = -0.22, P > 0.5). Autumn 
spruce cone production is an index on a ln scale (11). Regression lines from a linear 
mixed-effects model. C) Red squirrel extracting seeds from a white spruce cone. 
Photo by R. W. Taylor. 
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Fig. 2. Female red squirrels experiencing experimentally 
increased perceived population density (rattle playbacks, n = 
19 females, 67 pups) produced offspring that grew 
significantly faster than those produced by controls (n = 19 
females, 65 pups) but similar to those produced by food-
supplemented females (n = 16 females, 55 pups) 
experiencing increased actual density. Values on the y-axis 
represent residuals from a linear mixed-effects model (table 
S2). 
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Fig. 4. Offspring produced by female red squirrels 
provisioned with cortisol grew significantly faster than those 
from controls. Raw offspring growth rates (mean ± SE) are 
shown on y-axis. Sample sizes denote number of pups. Fed 
GCs corresponds to provisioning with three different cortisol 
concentrations (fig. S2). Significant difference is noted by 
“***” (P < 0.0001; table S6).  

Fig. 3. A) Female red squirrels living under high-density conditions had higher concentrations of fecal cortisol 
metabolites (FCM). Squirrels experiencing experimentally increased B) actual density resulting from long-term 
food-supplementation or C) perceived density (rattle playbacks) had significantly higher concentrations of FCM 
than controls. Values on the y-axis represent either (A) residuals from a linear mixed-effects model (table S4) or 
(B, C) raw FCM (ln ng/g dry feces). Sample sizes refer to the number of fecal samples analyzed. Significant 
differences noted by “**” (P < 0.01) and “*” (P < 0.05; table S4). 
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