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Repeat sequences are the most abundant ones in the
extragenic region of genomes. Biologists have already
found a large number of regulatory elements in this
region. These elements may profoundly impact the
chromatin structure formation in nucleus and also
contain important clues in genetic evolution and
phylogenic study. This study attempts to mine rules on
how combinations of individual binding sites are
distributed repeat sequences. The association rules
mined would facilitate efforts to identify gene classes
regulated by similar mechanisms and accurately predict
regulatory elements. Herein, the combinations of
transcription factor binding sites in the repeat
sequences are obtained and, then, data mining
techniques are applied to mine the association rules
from the combinations of binding sites. In addition, the
discovered associations are further pruned to remove
those insignificant associations and obtain a set of
discovered associations. Finally, the discovered
association rules are used to partially classify the repeat
sequences in our repeat database. Experiments on
several genomes include C. elegans, human chromosome
22 and yeast.

An increasing number of genomes sequenced has ushered
in the study of sequences. In this area, repetitive sequences
have received considerable interest (Moyzis et al. 1989;
Williams and Robbins, 1992; Alford and Caskey, 1994; A
large amount of the subsequences continuously appears in a
sequence. Repetitive sequences are the most abundant ones
in extragenic region of genome, in which a large number of
regulatory elements are located. These repeats may
significantly affect the chromatin structure formation in
nucleus   and   also   provide  valuable  insight  into  genetic

*Corresponding author

evolution and phylogeny. This study considers the
repetitive sequences whose length extends from twenty to
several thousands in the genomes. A database is also
constructed for repetitive sequences.
(http://dbl2b5.csie.ncu.edu.tw).

Many transcription factor binding sites have been collected
in databases. TRANSFAC (Heinemeyer et al. 1998;
Heinemeyer et al. 1999) is the most complete and well
maintained database for transcription factor binding sites.
Notably, consensus patterns or nucleotide distribution
matrices can be used to describe transcription factor
binding sites. While describing binding sites, Brazma et al.
(Brazma et al. 1997) stated "The matrix representation is
generally considered as the best available means for
representing the consensus, however, at present most
consensus descriptions are unreliable in the sense that they
tend to give many false positives when compared against
the genome sequences of even modest length". Therefore,
this study describes the binding sites using consensus
patterns. Brazma (Brazma et al. 1997) developed a general
software tool to find and analyze combinations of
transcription factor binding sites that occur often in gene
upstream regions in the yeast genome. In addition to
analyze the association rules in the combinations, their
work focused on upstream and random regions, in which
their ratio appears. Their tool can find all the combinations
satisfying the given parameters with respect to the given set
of upstream regions, its counterset, and the chosen set of
sites. However, the tool is only used in yeast genome.

To face a large among of repeat sequences, data mining
plays a prominent role in knowledge extraction. Agrawal
(Agrawal et al. 1993) introduced the problem of mining
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association rules over basket data. An example of an
association rule is given below. The work stated ‘50% of
transactions that contain beer also contain diapers; 5% of all
transactions contain both of these items’. Where 50% is
called the confidence of the rule, and 5% is the support of
the rule. Data mining is crucial for extracting knowledge in
a database. Frequently used data mining approaches,
include association rules, statistical, neural network and
genetic algorithms.

In statistics, Chi-square test statistics (χ 2) is extensively
applied for testing independence and correlation. Chi-
square is based on comparing observed frequencies with the
corresponding expected frequencies. The closer that
observed frequencies are to expected frequencies, implies a
greater weight in favor of independence. Let f0 be an
observed frequency, and f is an expected frequency, Chi-
square is used to test the significance of the deviation from
the expected values. The χ 2 value is defined as follows:

Where χ 2 value of 0 implies the sites that are statistically
independent. If it is higher than a certain threshold value,
e.g., 4.12 at the 97% significance level, we reject the
independent assumption. We say that it is correlated.

Research of partial classification using association rules
introduces two case studies for partial classification (Ali et
al. 1997). The two case studies are medical diagnosis and
telecommunications. Instead of attempting to predict future
values, such research focuses on identifying characteristics
of some of the data classes.

This study initially identifies the combinations of
transcription factor binding sites in repeat sequences. Data
mining techniques are then applied to mine the associations
from the combinations of transcription factor binding sites
that occur in repeat sequences.

 The data mining technique can mine an enormous number
of associations. The enormous number of associations
makes it extremely difficult for a human user to identify
those useful or interesting ones.

Next, the associations are used to remove insignificant ones
and find a set of useful associations. In addition, the
discovered associations are used to partially classify the
repeat sequences in our repeat database. Our experimental
genome sequences include C. elegans, human chromosome
22, yeast and several bacteria.

Figure 1. System flow of our approach.

Background

TRANSFAC database (release 4.0) contains 4965 site
sequences, and 2837 factor entries. Most sites are also
consensus patterns. The data in TRANSFAC has the
following features. A transcription factor binding site
accession number may have different consensus sequences.
Different binding site accession numbers may have a same
consensus sequence.

Wild characters such as ‘M’ or ‘W’ used in TRANSFAC
make the sequences cover other sequences. Small
consensus sequences may appear in larger ones. Our
approach needs a preprocessing feature because complex
characteristics of the transcription factor binding sites are
encountered in TRANSFAC.

(a) Properties of repeat sequences in the repeat database

Repeat sequences in the repeat database can be categorized
as belonging to the following three types:

• Minisatellite repeats: variable number tandem repeat
(VNTR). Each repeat sequence of this type has a length
ranging from ten to sixty base pairs. It repeatedly
appears from five to fifty times in a sequence.

• Microsatellite repeats: each repeat of this type has a
length ranging from one to four base pairs unit repeated
10-20 times.

• Interspersed genome-wide repeats.

o Short Interspersed Nuclear Elements (SINEs). The
length of each repeat is less than 280 base pairs.
Repeats repeatedly appeared in genes.

o Long Interspersed Nuclear Elements (LINEs). The
length of each repeat ranges from 6 to 8k base
pairs. They repeatedly appear from 50,000 to
100,000 times.
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Figure 2. Illustrative example of a mapping between a repeat sequence and its combinations of the transcription
factor binding sites.

• Inverted repeats: Repeat sequences invert each other.
For example, the following two repeat sequences are
inverted.

5’ GATTC---GAATC 3’
3’ CTAAG---CTTAG 5’

The repeat sequences in our experiments include direct and
inverted repeats whose length is equal or larger than twenty
base pairs.

 (b) Properties of the data in TRANSFAC

Genome sequences are a string of A, C, G or T. The
symbols used in addition to A, C, G, or T also include the
following:

W: A or T S: C or G
R: A or G                                         Y: C or T
K: G or T M: A or C
B: C, G, or T D: A, G, or T
H: A, C, or T V: A, C, or G
N: A, C, G, or T

Characteristics of the data in TRANSFAC are introduced as
follows:

Example 1:

MATWAAT  R04327

The illustrative example indicates that AATAAAT,
CATAAAT, AATTAAT, CATTAAT are all matched to a
same site identification.

Example 2:

R00018 TGCCCTAA
R00018 TGCCCTTG
R00018 TGCCTGG
R00018 TGGCAAAC

Example 2 indicates that site R00018 has four different
binding site consensus sequences. In TRANSFAC, 71 site
IDs belong to this type.

Example 3:

R01372  GGGGC
R01241  GGGGC
R01243  GGGGC

Example 3 indicates different binding sites having the same
consensus sequence.

Example 4:

R02248   MAMAG
R08440   AAAG
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The binding site R08440 is covered by the other R02248. In
TRANSFAC, 3906 binding sites belong to this type. Each
site may or may not have transcription factor names. 3006
accession numbers have transcription factor names.

Figure 3. The pruning and structuring techniques.

Example 5 shows another situation. Different binding sites
contain the same set of transcription factor names. For
example, the binding sites R00303, R00304, R00305,
R00306 have the same transcription factor names, i.e., Oct-
1C Oct-1B Oct-4 Oct-1A.

Example 5:

R00001  ISGF-3
R00002  ICSBP
R00003  ISGF-3
R00303  Oct-1C Oct-1B Oct-4 Oct-1A
R00304  Oct-4 Oct-1A Oct-1B Oct-1C
R00305  Oct-4 Oct-1A Oct-1B Oct-1C
R00306  Oct-1B Oct-1C Oct-4 Oct-1A

(c) Significance level

The significant measurement with correlated and
independent is defined herein as follows (Liu et al. 1999):

Definition 1 (correlated): Where ‘s’ is a minimum support,
‘t’ is a significant level, A is a set of items and B is an item.
Assume that the rule A=>B is correlated if it satisfies the
following two conditions:

• The support exceeds ‘s’.

• The significant level exceeds ‘t’.

Definition 2 (independent): Let ‘s’ be a minimum support,
‘t’ be a significance level, A be a set of items, and B be an
item. Assume that the rule A=>B is independent if it
satisfies the following two conditions.

• The support exceeds ‘s’.

• The significant level does not exceed ‘t’.

The proposed approach

Figure 1 illustrates the proposed approach. The first
component is a preprocessing and a mapping between the
transcription factor binding sites in TRANSFAC and the
repeat sequences in the Repeat Database. Next, apriori and
aprioriTid (Agrawal et al. 1994) are applied to mine the
association rules by combining the transcription factor
binding sites in repeat sequences.

Then, Chi-square is used to select certain rules. Finally, the
redundant rules are pruned and structured.

Summarized steps of the proposed approach:

• Determine the number of item sets of the transcription
factor binding sites in TRANSFAC.

• For categorical binding sites, identification of a binding
site is mapped to a set of transcription factor names.

• Find the combinations of transcription factors in repeat
sequences.

• Apply the data mining approach to generate association
rules.

• Determine the interesting rules using Chi-square
significance measure.

• Prune redundant rules (Toivonen et al. 1995;
Klemettinen et al. 1994).

• Classify rules to cover and non-cover sets.
• Partially classify repeat sequences using association

rules mined.

Figure 4. The partial classification rules for the human
chromosome 22.
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Results

(a) Preprocessing and mapping between the data in the
Repeat Database and in TRANSFAC

The transcription factor binding sites in TRANSFAC above
are first prepared due to the complicated situations
described previously. This accounts for why the proposed
approach requires preprocessing. Combinations of the
transcription factor binding sites in the repeat sequences in
our Repeat Database are then found. This work focuses
mainly on the repeat sequences of the genomes C. elegans,
human chromosome 22, yeast and several bacteria. Table 1
summarizes the results of the preprocessing. The
abbreviations of the organisms in Table 1 are given in
Appendix A.

Each row refers to a genome or bacteria that is
experimented with. The column ‘Average Factors’
represents the average transcription factor binding sites
found in a repeat sequence. As mentioned above, we find
the combinations of transcription factors in repeat
sequences. The ‘Average Factors’ is defined to be the sum
of the transcription factor binding sites for all repetitive
sequences over the sum of the repetitive sequences. The last
column ‘Ratio’ denotes the number of repetitive sequences
containing more than one binding site over the total
repetitive sequences in a genome. For example, the ratio
77.17% in C. elegans indicates 77.17% repeat sequences,
i.e., 351,084 ones that will be used to mine associations.

Exactly how to mine associations from the combinations of
the transcription factor binding sites found above is
discussed as follows. Consider a large database with
transactions, where each transaction consists of a set of
items. An association rule is an expression as A=>B, where
A and B are the sets of items. The mining of an association
rule is that a transaction in the database that contains A also
tends to contain B. For example, 90% of the people who
purchase beer also purchase diapers. So, 90% is called the
confidence of the rule. The support of the rule A=>B given
herein is the percentage of transactions that contain both A
and B.

The formal statement of the problem is described below.
Let I={i1, i2, ... ,im} be a set of sites, called ‘item set’. Let D
be a set of repeat sequences, where each repeat sequence S
corresponding to a transaction contains a set of items such
that S ⊆ I. Figure 2 presents an example of a mapping
between the repeat sequences and the transcription factor
binding sites, where TID is a number of a repetitive
sequences and RID is a set of IDs of binding sites. In the
proposed approach, only consider repetitive sequences that
contain more than one binding site.

Example 6 is used to illustrate the mapping between a
repeat sequence and the transcription factor binding sites.

Example 6:

>IDI0000000013

AGTTATTCAAACACGTATAA

TTCAAA R02749

TATAA  R00046 R00705 R00706 R03054

TATA   R00671 R00689 R00938 R01128

R01129 R01191 R04293

In Example 6, ‘AGTTATTCAAACACGTATAA’ is a
repeat sequence in the Repeat Database. We map it to a
transaction whose id is IDI0000000013. The repeat
sequence has three consensus patterns, i.e., ‘TTCAAA’,
‘TATAA’ and ‘TATA’. The consensus pattern ‘TTCAAA’
has an accession number R02749. However, the other two
consensus patterns ‘TATAA’ and ‘TATA’ have many
accession numbers. The situation must be preprocessed.
Example 6 is another case. Similarly, IDI0000000737 is a
transaction ID mapped from a repeat sequence
‘TTGAAATTTTGAAATTTAAA’. The repeat sequence
has four consensus patterns.

Example 7:

>IDI0000000737
TTGAAATTTTGAAATTTAAA
TTGAA               R04347 R04360 R04369
     ATTTNNNNATTT   R02171
      TKNNGNAAK     R02216
             TTTAAA R01598

Example 7 presents the results after the mapping. Each list
shows the factor name, consensus sequences and the
identification of the binding site.

Example 8:

>IDI0000000737

TTGAAATTTTGAAATTTAAA

DE unknown=TTTAAA>R01598

DE unknown=TTGAA>R04347\R04360\R04369

DE HiNF-A=ATTTNNNNATTT>R02171

DE C/EBPbeta\C/EBPdelta=TKNNGNAAK>R02216

In Example 8, the repeat sequence (transaction)
‘TTGAAATTTTGAAATTTAAA’ contains four consensus
patterns (items), i.e. , TTTAAA, TTGAA,
ATTTNNNNATTT, and TKNNGNAAK.

Example 8 contains many interesting observations:

• One site and no factor: they resemble R01598.
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• One site and one factor: they resemble R02171 with
the factor HiNF-A.

• One site with many accession numbers: it is like
R04347, R04360, and R04369 with the same
consensus sequence TTGAA.

• One site and many factors: they resemble R02216 with
factors ‘C/EBPbeta’ and ‘C/EBPdelta’. Different
factors or bindings are separated by the symbol ‘\’.

A transaction and the items it contains are represented in
Example 9.

Example 9:

>IDI0000000737  R04347\R04360\R04369 HiNF-A
C/EBPdelta\C/EBPbeta R01598

In Example 9, the transaction IDI0000000737 contains four
items that are denoted R04347\R04360\R04369, HiNF-A,
C/EBPdelta\C/EBPbeta, and R01598, respectively.

Assume that a repeat sequence ‘S’ contains ‘A’, a set of
items of ‘I’, if A ⊆ S. An association rule  is an implicate of
the form A=>B, where A ⊂ I, B ⊂ I, and A B=0.

The rule A=>B holds in the repetitive sequence set ‘D’ with
confidence conf if c% of transactions in ‘D’ contains ‘A’
and also ‘B’. The rule A=>B has support sup in the
repetitive sequence set ‘D’ if s% of repeat sequences in ‘D’
contained A∪B.

In our experiments, the minimum support is set to 10%. The
association rules are generated if the rule has a higher
support and confidence than user specified. Apriori and
aprioriTid (Agrawal et al. 1994) are then applied to mine
association rules.

An enormous number of association rules are generated.
The enormous number of association rules makes extremely
difficult for human users to identify those interesting and
useful ones. Therefore, Chi-square is applied to prune the
discovered association rules to remove those insignificant
association rules.

(b) Pruning and structuring association results

Herein, rules are generated using Chi-square significance
test. The discovered rules are still large and unreadable
after applying the process of Chi-square significance test.
The redundant rules are pruned and the rules are structured
to cover set and non-cover set.

Figure 3 presents the conceptual flow of the pruning and
structuring, summarized as follows:

• Discovered rules may be not interesting for several
reasons (Klemettinen et al. 1994). Rules can
correspond either to prior biology knowledge or
expectations.

• Rules can refer to uninteresting sites or sites
combinations such as transcription factor binding sites
on protein to C. elegans.

• Rules can be redundant.
Three operations are used to process a large collection
of rules.
o Pruning: the operation may reduce the

insignificant rules.
o Structuring: the operation divides the rules into

cover and  non-cover sets.
o Sorting: rank the rules by the use of confidence.

Chi-square significance is not hindered by simple
redundancy and strict redundancy. For example, the rule
AB=>C is redundant to A=>BC. The rule AB=>C is tested,
while A=>BC is not. The strict rule A=>B is redundant of
A=>BC, and A=>B is tested. The redundancy in our rules
is similar to A=>B and AC=>B. The rule A=>B is kept and
the rule AC=>B is pruned because AC=>B is covered by
the rule A=>B.

For example, consider the rule MAMAG=>AAAG.
Obviously, the binding site on the right-hand side is
covered by that on the left-hand side because ‘M’ may be
‘A’ or ‘C’.

Next, the rule is put into the cover set. Tables 2 and 3
present the association rules mined after applying Chi-
square from Table 1. In Table 3, the significance level is set
to 95%. In Table 2, the ‘MiniSup’ column refers to the
minimum support used.

The ‘Cover Rules’ and ‘Non Cover Rules’ denote the
number of rules in the cover and non-cover sets,
respectively, after they are mined, pruned, and structured.
The ‘Total Rules’ denotes the sum the rules in the cover
and non-cover sets. The ‘Ratio of Partial Classification’
represents the ratio of the repeat sequences and are
classified by the

‘Total Rules’. For example, 47% repeat sequences of C.
elegans are partially classified by the ten rules mined.
Conversely, the situation also indicates that other 53%
repeat sequences can’t be classified by the rules. Therefore,
the ratio can also be used to measure whether the rules
mined are representative. Similarly, Table 3 summarizes the
data for archaea, bacteria and virus. The minimum support
is set to 10% and those with the ‘*’ symbol in the
precedence of the genome name is set to 20%.
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Table 1. Combinations of transcription factor binding sites for C. elegans, human chromosome 22, yeast, archaea,
bacteria, and virus.

Genome Name Total Repeat
Sequences

Match
One No Match More Than One

Match Average Factors Ratio

C. elegans 454927 73881 29962 351084 4.8 77.17%

Human
chromosome 22

1347364 47159 22211 1277994 7.6 94.85%

Yeast 4329 305 338 3686 22.5 85.14%

Bsub 700 73 27 600 11.5 85.71%

Hinf 788 93 55 640 7.3 81.22%

Hpyl 713 98 25 590 8.3 82.75%

Hpyl99 721 88 33 600 6.3 83.22%

Mgen 373 26 16 331 6.7 88.74%

Mtub 4932 784 171 3977 5.1 80.64%

E. coli 1897 188 60 1649 8.8 86.93%

CP 135 14 8 113 7.3 83.70%

MP 1282 107 36 1139 7.5 88.85%

RP 98 8 2 88 5.8 89.80%

TP 102 7 4 91 15.3 89.22%

AP 398 62 7 329 7.4 82.66%

AR 779 48 21 710 7.8 91.42%

PA 277 20 4 253 5.1 91.34%

PH 401 17 4 380 6.5 94.76%

AA 299 20 7 272 6.9 90.97%

CT 27 4 1 22 14.5 81.48%

S 1580 78 34 1468 9.1 92.91%

TM 518 24 14 480 7.0 92.66%

UU 302 31 9 262 6.2 86.75%

Table 2. The association rules mined after applying Chi-square.

Genome
Name MiniSup Cover

Rules
Non Cover

Rules
Total
Rules

Ratio of Partial
Classification

C.elegans 5% 4 6 10 47%

Human
chromosome

22
28% 4 6 10 79%

Yeast 31% 5 5 10 77%
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Figure 5.  The partial classification rules for the C. elegans genome.

Figures 4 and 5 present partial classification rules for the
human chromosome 22 and C. elegans genome,
respectively. These rules can be used to find genes in
complete genomes and cluster repeat sequences once they
are verified. Biologists at National Ynag-Ming University
in Taiwan are verifying these results.

Discussion

To verify the association rules found in repetitive sequences
also appear in their genomes. We experiment on several
archaea and bacteria. This is because their sizes are shorter.
The experimental results are shown in Table 4. The column
‘Occurrences in Repeats’ denotes how many copies of a
repetitive sequence are found in a genome. The column
‘Occurrences in Genome’ represents how many
associations are found in a genome. The ‘Window’ column
indicates the offset of the transcription factors binding site,
e.g., the difference of the transcription factors binding site.
For example, two of the rules YY1=R00231\R00232\R00
335\R00668\R00669\R00761\R01081\R01345\R01445\R0
1446\R02955\R02957 and YY1=> R00388 are found in a
repetitive sequence of the organism Pyrococcus abyssi. For
more details of the two rules, the reader may refer to
Appendix B.

The repetitive copies of the repetitive sequence are 39. We
then go back to its genome scale and find the association
YY1= R00388 also exist 48 different positions when the
window is set 5. The result seems to be reasonable. The
larger of the window is, the more associations are found.
However, a huge amount of associations are found in a
genome scale such as Thermotoga maritima  even the

occurrences of the repetitive sequence is not large. We
can’t conclude from these observations. We will further
study the phenomenon in the future.

Concluding Remarks

This study finds combinations of transcription factor
binding sites in the repeat sequences of the Repeat
Database. Each repeat sequence is mapped to a transaction,
and combinations of transcription factor binding sites are
mapped to items of a transaction. The transcription factor
binding sites in TRANSFAC are first preprocessed due to
their complex characteristics. The apriori and aprioriTid
(Agrawal et al. 1994) approaches are then applied to mine
the associations from the combinations of transcription
factor binding sites in repeat sequences.

An enormous number of association rules are generated.
The enormous number of association rules makes it
extremely difficult for a human user to identify those
interesting and useful ones. In addition, Chi-square
significance level is used to remove those insignificant
rules. Finally, the redundant rules are pruned and then the
remaining rules are classified into cover and non-cover sets.
Moreover, experiments are conducted on many genomes
including C. elegans, human chromosome 22, yeast and
bacteria. Biologists at National Yang-Ming University in
Taiwan have verified and found the rules mined to be
interesting. The rules mined can also be used to find useful
genes in complete genomes as well as partially cluster the
repeat sequences in Repeat Database. Biologists are
experimenting and verifying now.
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Table 3. The association rules for archaea, bacteria and virus are mined after applying Chi-square.

Genome
Name Prune Rules Non Cover

Rules Cover Rules Total Rules

Bsub 63 103 55 158

Hinf 3 3 3 6

Hpyl 0 3 1 4
Hpyl99 18 11 21 32

Mgen 19 17 11 28

Mtub 0 5 1 6
Ecoli 0 1 1 2

CP 0 3 1 4

MP 0 3 5 8
RP 3 10 14 24

*TP 0 8 10 18

AP 31 24 26 50
AR 1004 74 15 89

PA 3 4 2 6

PH 55 8 12 20
AA 0 3 5 8

*CT 0 4 2 6

S 3 22 18 40
TM 55 20 6 26

UU 0 8 8 16
*The minimum support of the genome name is set to 20%.

Appendix A.  Abbreviation of organisms.

Helicobacter pylori J99 HPJ9
Helicobacter pylori 26695 HP25
Mycoplasma genitalium MG
Mycobacterium tuberculosis H37Rv MT
Escherichia coli EC
Hepatitis C virus HCV
Human immunodeficiency virus type 1 HIV1
Japanese encephalitis virus JEV
Aquifex aeolicus AA
Aeropyrum pernix K1 AP
Archaeoglobus fulgidus AR
Chlamydia pneumoniae AR39 CP
Chlamydia trachomatis CT
Mycoplasma pneumoniae M129 MP
Pyrococcus horikoshii OT3 PH
Rickettsia prowazekii strain Madrid E RP
Synechocystis PCC6803 S
Thermotoga maritima TM
Treponema pallidum subsp. pallidum TP
Ureaplasma urealyticum UU
Pyrococcus abyssi PA
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Table 4. The association rules in a small scale (repetitive sequences) and genome scale.

Occurrences in Genome
Organism Association Rules Occurrences in

Repeats Window=1 Window =5 Window =10
Thermotoga
maritima c-Ets-2=>R03553 272 1506 1700 2019

R03553=>R01230 220 0 56 332
c-Ets-2=>R01230 218 0 66 206

Mycoplasma
genitalium

TCF-1alpha\TCF-1\TCF-1F\TCF-1G\TCF-
1E\TCF-1C\TCF-1B\TCF-1ª\TCF-2alpha\LEF-
1=>MNB1a

208 3785 3954 4557

Treponema
pallidum
subsp.
Pallidum

Sp1=>R03047 33 549 719 1219

Sp1=>T-Ag 39 984 1285 1779
Sp1=>GAL4 39 474 1150 1883
GAL4=>R04141 39 0 1641 1853
R01203=>R04398 33 0 602 817
GAL4=>R03047 39 0 161 416
R04398=>R00290\R01241\R01244 43 879 894 940

Ureaplasma
urealyticum YY1=>R01513 62 754 2003 2614

YY1=>Pit-1ª 60 0 893 1859
N-Oct-3=>Pit-1ª 64 179 2610 3230
TCF-1alpha\TCF-1\TCF-1F\TCF-1G\TCF-
1E\TCF-1C\TCF-1B\TCF-1ª\TCF-2alpha\LEF-
1=>MNB1a

72 3202 3295 3650

Pit-1ª=>R01598 50 0 1305 1621
Pit-1ª=>YY1 60 0 893 1859
R01513=>YY1 62 754 2003 2614

Pyrococcus
abyssi

YY1=>R00231\R00232\R00335\R00668\R00
669\R00761\R01081\R01345\R01445\R0144
6\R02955\R02957

39 0 34 105

YY1=>R00388 41 0 48 175
R00388=>R00231\R00232\R00335\R00668\
R00669\R00761\R01081\R01345\R01445\R0
1446\R02955\R02957

37 0 37 64

Synechocystis
PCC6803 NF-1=>R03553 356 6328 9307 12568

TCF-1alpha\TCF-1\TCF-1F\TCF-1G\TCF-
1E\TCF-1C\TCF-1B\TCF-1ª\TCF-2alpha\LEF-
1=>MNB1a

449 12871 13209 14597

NF-1=>R00291 469 696 3506 5305
Rickettsia
prowazekii YY1=>TFIID 16 335 551 975

N-Oct-3=>ETF 14 445 1334 1728
YY1=>SEF4 22 872 1017 1275
YY1=>R01513 24 1024 2265 3051
Pit-1ª=>N-Oct-3 18 111 2571 2991
R00671\R00689\R00938\R01128\R01129\R0
1191\R04293=>TFIID 14 2037 2382 2869

R00671\R00689\R00938\R01128\R01129\R0
1191\R04293=>R00583 16 4769 5071 5716

R00671\R00689\R00938\R01128\R01129\R0
1191\R04293=>R01513 18 0 2519 3374

Pit-1ª=>R01598 18 0 869 1035
ETF=>TFIID 14 2724 2754 2982
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Appendix B. The details of the two rules of the organism
Pyrococcus abyssi.

YY1=>R00231\R00232\R00335\R00668\R00669\R00761\
R01081\R01345\R01445\R01446\R02955\R02957

YY1=>R00388

YY1 TATTT
CCWTNTTNNNW
CATTA
CATTT

R00388 TCAAT
R00231\R00232\R00335\R0
0668\R00669\R00761\R0108
1\R01345\R01445\R01446\R
02955\R02957
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