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We study the behavior of the order{order interface tension of the 3-q 3D Potts model as a
function of the interface area and the coupling constant by means of a Monte Carlo and the
CapillaryWaveModel (CWM).We check the validity of the CWM in the case of the 3D Potts
model by comparing Monte Carlo data for the energy gap E with the CWM predictions. We
verify that the zero-loop contribution to the CWM is an adequate way of describing rough
interfaces only in the case of transversally symmetric lattices. We observe, also, that the 3D
3-q Potts model order{order interface tension varies linearly with the coupling constant.

I. Introduction

The interface tension �, which is the free energy per

unit of area of the interface, is a very important quan-

tity for �eld theoreticians, as it has applications in the

discussion of phase transitions in the early universe as

well as in heavy-ion physics. If the high temperature

phase transition of QCD is of the interface tension be-

tween hadronic matter and quark-gluon plasma is an

important parameter for the formation of quark-gluon

plasma in heavy-ion collisions and for the nucleation of

hadronic matter in the early universe. To obtain an es-

timate of the interface tension of QCD we must neglect

the quarks and concentrate on an pure SU(3) gauge

theory. In this case, the phase transition is of �rst or-

der and, at the critical temperature, the con�ned and

decon�ned phases coexist and the interface tension in

non-zero.

In the last years many di�erent methods have been

introduced to compute numerically the SU(3) lattice

theory interface tension. As the calculations are very

hard and computationally very costly, the lattices in-

volved are not very large. Because all of these problems,

in the last few years particle physicists have begun to

show a great interest in the study of spin models[1�4].

The reason for this interest lies in the fact that an ef-

fective theory for the order parameter of an (N + 1)-

dimensional gauge theory has the same global symme-

try as the N -dimensionalZ(N ) spin model. In this con-

text, Svetitiskv and Ya�e have predicted a �rst-order

phase transition to the SU(3) gauge theory using re-

sults obtained for the Z(3) spin system[5]. In this con-

text, also, the study of three-dimensional Potts models

is very important. This model is computationallymuch

more simple than lattice QCD, and, as a consequence, it
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is particularly suitable for testing the calculation meth-

ods.

The 3D-3q Potts model belongs to the same uni-

versality class of pure gauge QCD[6]. This means that

both models have phase transitions that are character-

ized by spontaneous symmetry breaking of a global Z(3)

symmetry. Thus, in contrast to what happens to full

QCD, in the case of the pure gauge QCD and the 3q-

3D Potts model there are three distinct ordered phases

coexisting at temperatures above the critical one and a

disordered phase below this temperature. At the criti-

cal temperature all four phases coexist with each other.

Besides the order-disorder interfaces, there are also in-

terfaces between the di�erent oriented domains. Unlike

the order-disorder interfaces, these order-order domain

walls exist for all temperatures in the symmetry bro-

ken phase of the Potts model as well as the pure SU(3)

gauge theory.

Interfaces separating coexisting phases at thermal

equilibrium are present not only in the 3D-3q Potts

model, but also in the 3D Ising model, among others.

The behavior of these 3D �nite volume interfaces are

highly dependent of the temperature. At low temper-

atures, between the critical and roughening tempera-

tures, these interfaces are often dominated by long-

wavelength 
uctuations, that is, they behave as 
uid

or rough interfaces[7;25] (all interface is said to be 
uid

when it may freely and continuously translated through

space). These soft modes play an essential role in the

description of �nite-size e�ects in the free energy of the

interfaces[7;27].

While far below the roughening temperature inter-

faces are almost rigid and a theoretical approach can

be taken[8], above it one is forced to assume an e�ec-

tive model describing the collective degrees of freedom

of the rough interfaces.

An e�ective model widely used to describe a rough

interface is the Capillary Wave Model[9] where, in its

simplest formula, the e�ective hamiltonian is propor-

tional to the area of the interface. In a couple of

papers[10;11], it has been shown that a rough inter-

face with a rather general shape (L1 6= L2 � L3) can

be e�ciently described by the one-loop approximation

to the CWM. In the case of the 3D Ising model, the

CWM has successfully described many characteristics

of its interfaces (like logarithmic growth of the interfa-

cial width[28] and FSE[11]), while for the 3DPotts model

the CWM was applied for only one value of the cou-

pling constant[12]. The one-loop approximation to the

CWM (whose expression is also known as the gaussian

form) di�ers from the zero-loop or classical description

only when one deals with lattices that have di�erent

transverse sizes (L1 6= L2). When the transverse lat-

tice sizes are equal (L1 = L2 = L); it is observed that

the expression for the one-loop approximation to the

CWM is coincident with that of the classical descrip-

tion, that is, one obtains the usual expression for the

interface free energy,

F

�T
= �L2 (1)

where F is the interface free energy and � is the reduced

interface tension.

The calculation of higher-order corrections to the

CWM is certainly needed in order to verify the va-

lidity of this model beyond the one-loop correction.

While many di�erent e�ective hamiltonians reduce to

the gaussian form at one-loop level[24] they have di�er-

ent expressions for the two- and higher-loop corrections.

The two-loop correction depends directly on the area of

the interface and, as a consequence, the expression for

the �nite-size behavior of the energy splitting E oc-

curring between two vacua on �nite volumes does not

coincide with the classical functional form,

Eclass(L) � exp(��L2) ; (2)

even when one deals with symmetric transverse lattices.

In this paper we will study the �nite-size behav-

ior of rough order-order interfaces in the 3D-3q Potts

model using Monte Carlo simulations with a Metropo-

lis algorithm and the predictions of the CWM in its

simplest formulation. To compare the predictions of

the CWM with the numerical results obtained from

the Monte Carlo simulations we are going to use 3D

lattices with L1 � L2 � L3 sites, where L3 � L1; L2;

and periodic boundary conditions are imposed in all di-

rections. With these lattice shapes we will practically

eliminate all interfaces that are not orthogonal to the

lattice longest size (L3).

The 3D Potts model, which is known to have a weak

�rst order phase transition[13;3], has been extensively

studied in the last few years, mainly for its relation
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to the �nite-temperature SU(3) Yang{Mills theory. In

most of these studies, the focus of attention lies in the

properties of the order-order and order-disorder inter-

face tensions[14;4;1], which correspond to the interface

tension between a hadronic and a quark-gluon phase in

QCD. In all of these studies the interface tensions were

obtained from the use of symmetric transverse lattices

(in which L1 = L2) and the classical formula eq.2.

We will follow the lines of [2] in order to obtain,

by way of a numerical simulation, the values of the en-

ergy splitting E between two vacua on �nite volumes.

Afterwards, we will use the functional form of the 
uid

interface free energy on �nite volumes, including higher-

order capillary-wave contributions, in order to calculate

the interface tension for a �xed value of the inverse of

the temperature �. Finally, we obtain the behavior of

the order-order interface tension as a function of the

coupling constant �.

This paper is organized in the following way: In Sec-

tion II, we describe the capillary wave model and we

show the expressions for the zero-, one- and two-loop

approximations for the partition function. In Section

III, we de�ne the Hamiltonian for the Potts model and

we show how we can link the Capillary Wave model to

the 3D 3-q Potts model. In Section IV we show the

observables we are going to calculate, discuss how we

are going to use these observables in order to check the

predictions of the CWM and to obtain the behavior of

the order-order interface tension as a function of the

coupling constant. We discuss, also, the particularities

of the Monte Carlo simulations and we present our re-

sults. In the last section we present our conclusions.

II. The capillary wave model

The basic hypothesis of the Capillary Wave Model

(CWM) of rough interfaces is that one cannot neglect

the long wavelength 
uctuations in the position of the

interfaces since they cost very little in energy. In this

model, an e�ective hamiltonian describing the 
uctu-

ations of interfaces separating phases in equilibrium

must be introduced. This hamiltonian is such that any

distortion of an interface of tension � will generate a

change in the free energy that is proportional to the

increment in area of the interface.

As our geometry forces the interface to be orthogo-

nal to the longest lattice size, the interfaces will lie in

a D-1 dimensional plane. The interface con�gurations

are, thus, described by a function y(r; t) where r and

t are transverse coordinates in orthogonal plane and y

is the interface displacement from the equilibrium po-

sition. Making the hypothesis of single-valuedness of

the function y(r; t) and, that, as a consequence we can

neglect overhangs and bubbles from one phase in the

other, we can write the e�ective hamiltonian as,

c

HCW = �

Z R

0

dr

Z T

0

dt

0
@
s
1 +

�
@y

@r

�2

+

�
@y

@t

�2

� 1

1
A = �(A(y) �RT ) (3)

where � is the order-order interface tension, R = L1 and T = L2 are the lattice sizes in the r and l directions and

�A(y) (where A(y) is the area of the interface) coincides with the Nambu-Goto string action in a special frame.

The full hamiltonian is too complicated to be handled in an exact way, and, in order to apply the CWM we must

expand the square root term in the hamiltonian in powers of the adimensional parameter (�A)�1 = (�RT )�1 where

(�A)�1 ! 0.

In the Capillary Wave Model the interface between two domains of di�erent magnetization in the ordered phase

of a 3D system is described by the partition fuction

ZCW =

Z
[Dx] expf��A(y)g = C exp(��RT )Zq (�;R; T ) (4)

where

Zq =

Z
[Dy] expf�HCW(y)g = Z1loop

q

�
R

T

�
Z2loop
q

�
R

T
; �RT

�
::: (5)
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and C is all unknown constant.

Keeping only the leading order term in the expansion of HCW we get the following expression for the e�ective

hamiltonian,

HG =
�

2

Z R

0

dr

Z T

0

dt

 �
@y

@r

�2

+

�
@y

@t

�2
!

(6)

which is the hamiltonian of a Gaussian model[29].

Using eqs. 4 and 5 and the Gaussian hamiltonian eq.6 we obtain the expression for the one-loop approximation

to the partition function,

Z1loop
CW (R; T ) = C exp(��RT )Z1loop

q

�
R

T

�
=

= exp(��RT )C

r
R
q�1=12(1 + q = 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + :::)2 ; (7)

where q = exp(2�i� ) and C is a constant to be determined. It should be noted that the expression for Z1loop
q

coincides with that of the exact partition function of a 2D conformal invariant free boson in a torus of modular

parameter � = iRT [15]. From the above expression, it is evident that Z1loop
CW (R; T ) only depends on the ratio between

R and T as a consequence, in the case of transversally symmetric lattices (R = T ); Z1loop
CW will coincide with the

expression for the zero-loop expansion to the CWM (or the classical formula).

The two-loop approximation for ZCW can be obtained when one uses the �rst correction to the Gaussian

hamiltonian eq.6 (or the next to the leading order term in the expansion of HCW )[16].

Z2loop
CW (R; T ) = C exp(��RT )Z1loop

q

�
R

T

�
Z2loop
q

�
R

T
; �RT

�
; (8)

where

Z2loop
q

�
R

T
; �RT

�
= 1 +

1

2�RT

(�
�

6

R

T
E2

�
i
R

T

��2
�
�

6

R

T
E2

�
i
R

T

�
+

3

4

)
(9)

and

E2(� ) = 1� 24
1X
n=1

nqn

1� qn
(10)

d

is the �rst Eisenstein series and C is a constant that,

again, is to be determined. In contrast to what happens

at the Gaussian level, the two-loop CapillaryWave con-

tributions do not depend only on the ratio z = R
T but

also on �RT: Therefore, in the case of transversally

symmetric lattices (R = T ), Z2loop
CW does not coincide

with the zero-loop expansion (or classical formula).

III. The Potts model and the Capillary Wave

Model

The three-state Potts model is de�ned by the par-

tition function

Z =
X
f3=4g

exp

8<
:��

X
i;n

[1�Re(��i �i+n)]

9=
; (11)

where the variables �i are de�ned on a three-

dimensional cubic lattice and the values

�i = exp

�
2�ini
3

�
(12)

with ni = 0; 1; 2:

One should note that the three-state Potts model

is equivalent to the Z(3) spin model with spins sj =

exp(2�i�j=3): In the thermodynamic limit and in the

region of ferromagnetic coupling, (� > 0 where � =

1=kBT ); the above model is known to undergo a phase
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transition from a Z(3) symnetric phase for � < �c to

a spontaneously broken phase for � > �c at a critical

coupling �c = 0:36708 [17]. For � > �c, three ordered

phases coexist, while at � > �c the disordered phase

coexists with the previous ones. The most precise es-

timate for the roughening temperature is �r � 0:93

[18]. As we are considering �nite lattices that can

have a cylindric geometry, the degeneracy of the ground

state is removed and the energy of the symmetric (Z(3)-

invariant) ground state is separated by an energy split-

ting (or small gap) E from the two degenerate mixed-

symmetry states. This energy splitting is due to the

tunneling between the phases and is directly linked to

the free energy of the interface[19]. In the dilute gas ap-

proximation, in which multi-interfaces are summed over

but interface-interface interactions can be neglected,

the energy splitting is directly proportional to the in-

terface partition function.

E = Z(�;R; T ) (13)

It is at this point that we have a direct link between the

CWM and the 3D3q Potts mode. If we know how to

calculate, direct or indirectly, the energy gap E for the

3D Potts model, we have a way of checking the valid-

ity of the CWM in the description of rough interfaces

as well as a way of obtaining the order-order interface

tension for the 3D Potts model.

Therefore, according to the Capillary Wave Model,

in the rough phase, that is, for �r > � > �c where

�r � 0:93 [18] is the roughening temperature, we as-

sume that[7;9;10], up to the two-loop term in the expan-

sion of the partition function, the energy gap is given

by

c

E(R; T ) = D exp(��RT )Z1loop
q

�
R

T

�
Z2loop
q

�
R

T
; �RT

�
; (14)

where D = �=Z1
q (1), � is a constant to be determined and R � T:.

If we now consider only the one-loop term and take the limit where the transverse lattice is symmetric, that is,

when R = T then, by eq. (7), we observe that

E(R; T ) = Z1loop
q (1)D exp(��R2)D exp(��R2) ; (15)

d

which coincides with the classical formula[19],

Eclass = # exp(��R2) : (16)

On the other hand, since two-loop contributions de-

pend both on the ratio z = R=T as well as on the

interface area, A = RT; then, in the case of symmet-

ric lattices (z = 1; K = T; A = R2), the only way of

obtaining the classical fomula for symmetric lattices is

neglecting the two-loop contribution.

IV. Monte Carlo simulations and observables

The measurements of the energy gap E, for di�erent

choices of lattice sizes will provide a �rst direct check

on the functional form of the interface free energy and

will allow us to estimate the interface tension � in the

case of the 3D Potts model.

In order to measure the energy gap E for the 3D

Potts model we follow the procedure explained in Ref.

[2]. We will consider a cylindrical lattice with L3 �

R; T where L3 is the height of the cylinder, and will

impose periodic boundary conditions over all surfaces.

We then de�ne a time-slice magnetization as

Sk =
1

RT

RX
x1=1

TX
x2=2

�(x1; x2; k); (17)

where x1 x2 and k are coordinates in the R; T and L3

directions, respectively.

Using the transfer-matrix formalismwe can express

the correlation between two local operators as a func-

tion of the transfer matrix, that is, if we compute the

two-point correlation function

G(k) = hS0S
�
ki ; (18)
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where k = 0; 1; :::; L3=2; we can extract the low-energy

levels from the asymptotic dependence of G(k), with k,

G(k) � Z = c0fexp(�kE) + exp(�(L3 � k)E)g+

+c1fexp(�E
�k) + exp�(L3 � k)E�)g+ ::: (19)

Z = 1 + 2 exp(�L3E) + ::: (20)

where Z = Tr exp(�L3H) is the partition function of

the Potts model in the transfer matrix formalism. The

second exponent in each bracket in the above expres-

sion is due to periodic boundary conditions in the L3

direction and E� is the next-to-leading energy.

The procedure we use to check the predictions of

the CWM in the case of the 3D Potts model is the fol-

lowing: For a �xed value of the cylinder height and for

each value of the coupling constant �, we calculate, for

several sets of transverse lattice sizes R and T , the two

point correlation function by means of a Monte Carlo

numerical simulation. We then extract the value of the

energy splitting E by �tting the Monte Carlo data for

the two-point correlation function with eqs. 19 and 20.

The knowledge of the energy splitting E, for a �xed

value of � and several sets of lattice sizes R and T , al-

low us to compute the order order interface tension and

the constant � by �tting the Monte Carlo data for the

energy splitting E with eq. 14.

We have performed our simulations with a Metropo-

lis algorithm for di�erent values of � ranging from

� = 0:3678 to � = 0:3685: The longest lattice size was

kept �xed at L3 = 120 and the other sizes ranged from

9 � T � 14 to 10 � R � 36. The range of values of

� used are deep inside the ordered phase, which means

that the existence of order-disorder interfaces is highly

suppressed. On the other hand, for these values of �

the correlation length is large enough to make lattice

artifacts negligible and to allow us to consider domain

walls as 
uid (or rough) interfaces.

Figure 1. Behavior of the energy gap E as a function of the

interface area RT (R 6= T ) for di�erent values of �. From

up to down the correspond to � = 0:3678, � = 0:3680,

� = 0:3682 and � = 0:3685: In �gure 1c they correspond to

� = 0:3678; � = 0:3680 and � = 0:3682. In Fig. 1a, K = 9,

in Fig. 1b, K = 10 and in Fig. 1c, R = 11.

Data can be a�ected by Monte Carlo time corre-

lations as well as by time-slice correlations. In order
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to have control over these correlations we have made

a careful study of our measurements. We have only

picked observables that are situated far apart in the

Monte Carlo time in order to ensure that the covari-

ance matrix is almost diagonal and that our data is not

correlated. The same kind of care was observed when

we dealt with time-slice correlations.

We have performed approximately from 600,000 to

1,400,000 sweeps in each run and, in each run we have

veri�ed that all the data taken for posterior analysis

was already thermalized. We have also made, for each

set of �xed parameters, a large number of runs modify-

ing only the seed of the random-number generator. We

use these results to evaluate the errors.

In Fig. 1, we show the behavior of the energy gap

E as a function of the interface area RT (R 6= T ) for

di�erent values of �. From up to down they corre-

spond to � = 0:3678; � = 0:3680 [12], � = 0:3682 and

� = 0:3685 [20], except in �gure 1c where they cor-

respond to � = 0:3678, � = 0:3680 and � = 0:3682:

In Fig. 1a, R = 9; in Fig. 1b, R = 10 and in Fig. 1c,

R = 11. From these �gures we observe that the e�ect of

raising the value of � consists loweriug the euergy gapE

for a �xed RT . We observe, also, that the values of the

energy gap E for di�erent values of the coupling con-

stant and same values of R and T ' interpolate smoothly

as � grows.

Figure 2. Behavior of the energy gap E as a function of the

interface area RT (R = T ) for di�erent values of �. From

up to down they correspond to � = 0:3678; � = 0:3680,

� = 0:3682 and � = 0:3685:

In Fig. 2, we show the behavior of the energy gap

E as a function of the interface area RT (R = T ) for

di�erent values of �. From up to down the points cor-

respond to � = 0:3678; (� = 0:3680 [12], � = 0:3682

and � = 0:3685 [20]. Here, again, we observe that as

� is raised, the energy gap E lowers, for �xed RT , and

that E interpolates smoothly as the coupling constant

grows.

In Fig. 3, we present the behavior of the energy gap

E as a function of RT for di�erent lattice sized and for

� �xed at � = 0:3678. The line here represents the

best-�t data to R = T (symmetric) lattices, while �, �,

� and � represent R = 9; R = 10, R = 11 and R = T

respectively.

Figure 3. Behavior of the energy gap E as a function of RT

for di�erent lattice sizes and for � �xed at � = 0:3678: The

line here represents the best-�t data to K = T (symmetric)

lattices, while �, �, � and � represent R = 9; R = 10,

R = 11 and R = T respectively.

Practically all of the existing results for the interface

tension of the 3D three state Potts Model are obtained

using only transversally symmetric (or R = T ) lattices.

Since we want to test the validity of the one- and two-

loop approximation to the CWM in the description of

the interface tension not only for symmetric lattices,

our Monte Carlo data for the energy gap E will be

taken from both R = T and R 6= T lattices. In order

to test the classical formula, which is the one that all

the authors use, we have, �rst of all, �tted the Monte
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Carlo data for the energy gap E taken from symmet-

ric lattices with eq. 16 for each value of �, obtaining

the following values for the interface tension and the

constant � for � = 0:3678:

� = 0:00918 � = 0:1749 (21)

with a �2 per degree of freedom given by

�2 = 0:3082 : (22)

In our next test of the classical formula we �t our

Monte Carlo data for E taken from R = T and R 6= T

lattices to eq. 16 and, in this way, we obtain the fol-

lowing values for the quantities shown in the previous

equation, for the same value of �,

� = 0:002015 � = 0:002698 �2 = 60:5879 : (23)

From these results we observe that while the classi-

cal formula is perfectly adequate to be used with sym-

metric lattices, it is not the most suitable one to be

used when one consider asymmetric lattices (R 6= T ):

In order to test the validity of the CWM as a correct

and powerful way of calculating the interface tension

for the 3D Potts Model we are going to �t our Monte

Carlo data for E, take from both R = T aud R 6= T

lattices with eq. 14. Neglecting, initially, the two-loop

coutributions in equation 14, we obtain the following

results for the same quantities described above and for

the same value of �.

� = 0:009133 � = 0:17449 �2 = 2:3289 (21)

If we, instead, take into account corrections up to

two-loop in equation 14, the quantities above will as-

sume the following values,

� = 0:009079 � = 0:13825 �2 = 2:8659 (25)

One should now compare the above results (for both

one- and two-loop corrections) to those obtained in eq.

23, since in those three cases Monte Carlo data taken

from both R = T and R 6= T lattices were used in the

�ttings while in the case of eq. 21 only the R = T data

were taken into account. Comparing the results given

in eqs. 23, 24 and 25 we readily verify that the one- and

two-loop approximations to the CWM allow us to have

a reliable way of calculating the interface tension in the

case of generic (R = T and R 6= T ) lattices, while the

classical equation, eq. 16, is more adequate to be used

in the case of for symmetric lattices.

As we have stated before, the R = T limit of the

CWM two-loop approximation does not coincide with

the classical formula, in contrast to what happens to

the R = T limit of the one-loop approximation. In this

sense, we can understand the reason why the values of

eq. 24, obtained by �tting R = T and R 6= T data to

the one-loop approximation, seem to be closer to those

of eq. 21.

Table I. Monte Carlo and CWM predicted values for

the energy gap E for some sets of lattice sizes.

The best way of checking the validity and usefulness

of the CWM predictions is comparingMonte Carlo data

for some values of the energy gap E with the predicted

values obtained from the �tting of equations 14 and 15.

In table I we present the values of E obtained from

Monte Carlo data and the predicted values obtained

from the �t of all data to the one- and two-loop ex-

pansions of the CWM for � = 0:3678. As it can be

easily veri�ed from the results of Table I, the CWM

predicted values of the energy gap E are in a very good

agreement with those obtained in the Monte Carlo sim-

ulations but the two-loop expansion predictions are, in
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general, slightly better than those of the one-loop ex-

pansion. The same kind of behavior observed in the

previous tests for � = 0:3678 is also obtained for all

other values of studied.

Figure 4. Behavior of �2loop as a function of � [21].

In Fig. 4, we plot the interface tension �2�loop ob-

tained from the best �t of all data to formula 14 as

a function of � for the range of temperatures studied.

From this �gure we observe that the two-loop interface

tension rises linearly as a function of � for � > �c: Us-

ing the data obtained for �2�loop as a function of � we

can get a straight-line �t for the interface tension in

the ordered region, that is, in the region where � � �c:

From a least-square �t we obtain:

�ord = 0:00347+ 6:9905 � (� � �c) (26)

in the case of the expansion of the CWM up to two

loops. A linear behavior for the interface tension was

also observed in a mean �eld calculation[22] and in a

Monte Carlo simulation[1] using R = T lattices and the

classical formula eq. 2. We should stress here that

all the interface tension values used in the straight line

�t equation 26 were obtained when one uses the CWM

two-loop expansion expression 14 and Monte Carlo data

for the energy gap E taken from both symmetric and

asymmetric lattices.

A linear behavior for the interface tension is very

wellcome since it allows us to extrapolate the inter-

face tension to its value when � �= �c. As it is well

known there is a weak �rst order phase transition at

� = �c and, as a consequence, three ordered phases co-

exist with a disordered phases requires the ful�llment

of the following inequality[23]

�ord � 2�dis (� = �c) (27)

where �dis is the order-disorder interface tension. Frei

and Patkos[22] have suggested that when the equality

in the above equation holds we can speak of complete

wetting, while when the strict inequality holds at co-

existence we have the phenomenon of incomplete wet-

ting. The veri�cation of the hypothesis of complete or

incomplete wetting is of great importance in the study

of �nite temperature QCD and the physics of the early

universe.

V. Conclusions

In this paper we have studied, by means of a canoni-

cal Monte Carlo simulation, the question of the validity

of the one- and two-loop approximations of the Capil-

lary Wave Model in the description of order-order in-

terfaces in the 3D three state Potts Model for all kinds

of lattice sizes and for several values of the coupling

constant �. Up to now all the works in which the inter-

face tension was calculated used the classical formula

eq. 16 independently of the interface symmetries, the

only exception being Ref. [12] where the authors have

studied the interface tension of the 3D Potts Model us-

ing a Swendsen-Wang cluster simulation for only one

value of � and for asymmetric lattice sizes.

We have varied the values of the coupling constant

� and have observed the following results;

i) We have calculated, for each value of � and for

several values of the interface sizes, the energy gap E

and have veri�ed that these values interpolate smoothly

for all values of � as this quantity grows.

ii) We have veri�ed that, for all the values of � stud-

ied, the classical free energy formula is more adequate

to be used in the study of symmetric (or square) inter-

faces than in the study of asymmetric ones.

iii) We have veri�ed that, for all the values of �

studied, the one- and two-loop approximations of the
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Capillary Wave Model are an useful and reliable way of

describing all kinds of interface sizes.

iv) We have compared our Monte Carlo data for the

energy gap (in the case of R = T and R 6= T lattices)

E with the predicted values for E obtained using the

one- and two-loop CWM approximations and we have

veri�ed that the CWM predictions are in very good

agreement with the measured Monte Carlo data and

that the two-loop predictions are slightly better than

the one-loop predictions.

From the above descriptions, it is clear to us that

the CWM in the one- and two-loop approximations pro-

vides an excellent description of order-order interfaces

for the 3D 3q Potts model. This conclusion was also

obtained in Refs. [10] and [11] for the 3D Ising model.

This result is a strong indication of the universality

of this description of interface physics in 3D statisti-

cal models.

Using the expressions for the one- and two-loop ex-

pansions to the Capillary Wave Model and data from

di�erent kinds of lattice sizes we have studied the be-

havior of the order-order interface tension as a function

of the coupling constant �. We have veri�ed that the

one- and two-loop interface tensions rise linearly when

the coupling constant � grows, for � � �c: Using the

two-loop interface tension data as a function of � we

have obtained a straight-line �t for the interface ten-

sion in the ordered region. Since our results come from

the use of both symmetric and asymmetric lattices and

also from the two-loop approximation to the CWM, in-

stead of the classical approximation, we cannot com-

pare directly our results to those of Ref. [1] which are

obtained using only symmetric lattices and the classical

approximation. Anyway, the fact that a straight-line �t

results from both works allows us to infer that the e�ect

of using all kinds of lattice sizes and corrections to the

classical equation do not change qualitatively the be-

havior of the order-order interface tension as a function

of the coupling constant.

It is worth stressing that the CWM corrections to

the �nite-size behavior of the interface free energy do

not introduce any new free parameters with respect to

the \classical" picture.
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