
Document Version 1.3 September 2000
Copyright © COSMIC Software Inc. 1999, 2000

All Trademarks are the property of their respective owners

EVAL12
IDEA, C Cross Compiler with ZAP SIM

Evaluation kit for Motorola’s 6812

1
Quick Start Guide

PC/Windows 95/98/NT

Page - 2

This page intentionally left blank.

Page 3

EVAL12 Quick Start Guide
w Overview

w Installing EVAL12

w IDEA/COMPILER Tutorial

w ZAP 6812 SIM Tutorial

w Running IDEA

w Managing a project

w Building a project

w Debugging a project

QUICK
START
GUIDE

Overview

Page - 4

Overview

Who is Cosmic Software?
Cosmic Software provides highly-optimized target support for
Motorola microcontrollers and microprocessors, including
68HC05, 68HC08, 6809, 68HC11, 68HC12, 68HC16, CPU32/
CPU32+, and M680x0, with others in development.

The product line includes complete ANSI/ISO C language
cross compilers, macro assemblers, linkers, utilities, ZAP C
and assembler source-level cross debuggers, and the IDEA
integrated development environment. These products are
prepackaged and ready-to-run on PC/Windows workstations.

Cosmic Compilers are known worldwide for highly optimized
code generation while still providing all of the benefits of
portable high level code.

The ZAP debugger product line is packaged to work off-the-
shelf with popular debugging hardware configurations, such as
low-cost evaluation boards or In-Circuit Emulators. The
simulator versions of ZAP allow application code to be
debugged entirely on a PC without access to target hardware,
and can therefore simplify the development effort by providing
for a “software debugging” phase before hardware/software
integration.

The IDEA integrated development environment provides a
Windows-based graphical user interface (GUI) for building and
managing projects. IDEA is fully integrated with all Cosmic
tools, including compilers, assemblers, linkers, utilities, and
ZAP debuggers.

What is IDEA?
IDEA is an integrated development environment and editor for
managing cross development projects using Cosmic tools.
IDEA is supplied in a target specific version customized to the
Cosmic tools you are using.

Overview

Page - 5

With IDEA you can create and edit projects; compile, assemble
and link C or assembler code; run an application Make or
Build; and run a ZAP debugger session; all with a few simple
mouse clicks in a user-friendly, graphical Windows interface.

Using IDEA
The IDEA GUI (graphical user interface) provides immediate
access to all the tools you need to manage full projects.

 Figure 1-1: IDEA GUI

Overview

Page - 6

The Project window at the left provides a graphical, tree-struc-
tured view of your project. Using just the Project window, you
can add or remove files from the project, set compiler options,
configure build utilities, and much more.

The File windows at the right allow you to open project files
for editing and compiling. IDEA provides color-coding of
Comments, Preprocessor Keywords, C Keywords, and several
other coding items so that you can easily edit source code files.

All IDEA functionality is available from the nine drop-down
menus under the title bar. The most frequently used options are
also available via a single click on the Tool bar. In addition,
you can assign custom key bindings to any program option.

For detailed information on the IDEA GUI, refer to Chapter 4,
IDEA User Interface , in the IDEA User’s Manual.

Installing EVAL12

Page - 7

Installing EVAL12

Preparing for installation

Installation requirements
In order to run IDEA, your system must meet the following
minimum hardware and software requirements:

• PC with an 80386 or better microprocessor

• Microsoft Windows 95/98 or Windows NT OS

• 3 1/2'', 1.44 Mb diskette drive and/or CD ROM Drive

• Hard disk drive with at least 15 Mb of free space

• 16 Mb of RAM

Eval12 media
Your EVAL software package consists of the IDEA Integrated
Development Environment, CX6812 Cross Compiler and ZAP
6812 Simulation debugger programs, documentation and
installation script files, and is supplied on a CD ROM or
several 3 1/2'', 1.44 Mb floppy diskette. The diskette/CD label
identifies the product and the product version number.

Evaluation Restrictions
Eval12 contains a full featured size restricted version of the
Cosmic IDEA, Compiler/Assembler and ZAP Simulator
debugger products. This evaluation is designed to demonstrate
the options and features of the tools, but limit the size of the
application. The following size restrictions are imposed on the
Evaluation version. The Commercial version imposes no size
restrictions whatsoever.

An IDEA project is limited to 8 source files

Source files are limited to 150 lines and 5 include files

Code size is limited to less than 1K bytes per object/
application

Installing EVAL12

Page - 8

Installation process
In the installation instructions that follow, we assume that your
floppy disk drive is designated by the letter “A”, your CD
ROM drive as “D:” and your hard disk partition by the letter
“C”. If your system uses different letter designations, change
the installation instructions accordingly.

IDEA is installed by an Installshield Setup utility program.
Throughout the installation procedure, there is an assumed
default directory in which IDEA is installed. This directory is
C:\Cosmic\Eval12.

If you install IDEA in a different directory or on a different
hard disk drive, you must substitute your specified location
wherever you see C:\Cosmic\Eval12.

Running the installation program
1. Insert the EVAL CD ROM or Disk1 into the appropriate drive.

2. Open the Windows Explorer and in the left pane double click on
“3 1/2 Floppy (A:)” or “CD ROM (D:) drive.

3. In the right pane, double click on Setup.exe to run the IDEA
installation and setup program.

As an alternative to Steps 2 and 3 you can use the RUN
command from the Windows Start Menu and type
a:\setup to run the installation program.

NOTE

Installing EVAL12

Page - 9

4. The Welcome screen appears.

 Figure 1-2: Welcome screen
Click on Next> when you are ready to proceed.

5. The Software License Agreement screen appears.

 Figure 1-3: Software License Agreement
After you read the Software License Agreement, click on Yes to
proceed.

Installing EVAL12

Page - 10

6. The Choose Destination Folder screen appears.

 Figure 1-4: Choose Destination Folder dialog box
Select the destination folder where you want Eval12 to be
installed. By default, Eval12 will be installed in the C:\Cosmic
\Eval12 folder. You can select the default or click on the Browse
button to specify a different location. The Installation program
will create the following directory structure:

Destination Folder\
\Examples

\paged_example
\Docs
\Lib
\H6812

Click on Next> when you are ready to proceed.

Installing EVAL12

Page - 11

7. The Select Program Folder screen appears.

 Figure 1-5: Select Program Folder screen
Specify a program folder for IDEA and ZAP SIM and click on
Next> to proceed.

8. The next screen that appears depends on whether your host
system is running Windows NT or Windows 95/98.

Windows 95/98 Installation
If you’re running Windows 95 or 98, the following dialog box
will appear. If you “Select” the box, the compiler execution Path
will be added to your Autoexec.bat file. If you choose not to edit
the autoexec.bat file, the compiler will not be in your standard
execution path and therefore the compiler will only work when
accessed from IDEA.

Installing EVAL12

Page - 12

 Figure 1-6: Windows 95/98 Path Setup
If your host computer is running Windows NT, the following
dialog box will appear. If you choose “YES” the compiler
execution Path will be added to the Path Environment variable
under HKEY_CURRENT_USER which will allow you to
execute the compiler from any Command shell. If you choose
“NO”, the compiler path is not registered and the compiler will
only work from IDEA or from a Command shell created by
IDEA. The batch file cx6812_path.bat is created in the desti-
nation folder and contains the appropriate execution path
necessary to uses the compiler from any Command Shell.

 Figure 1-7: Windows NT Registry Setup

Installing EVAL12

Page - 13

9. The Installation program proceeds with the installation of
EVAL12. After the installation is complete, the Setup Complete
screen appears.

 Figure 1-8: Setup Complete screen
If you want to run the compiler from any Command shell you
need to restart Win 95/98 systems for the changes to autoexec.bat
to take effect. Select Yes to have the install program restart your
computer. Note: It is not necessary to reboot Windows NT for the
changes to the Registry Path to take effect.

Select Finish to complete the IDEA installation process.

IDEA/Compiler Tutorial

Page - 14

IDEA/Compiler Tutorial
This evaluation kit is preconfigured with a demo project that will
compile and build for execution with ZAP 6812 SIM. To build the
demo application perform the following steps:

• Open “Idea CPU12 (Eval)” from the Windows Start menu. i.e.
select Programs > Cosmic Tools > Eval12\Idea CPU12 (Eval)

• The demo files are located in the Examples subfolder created
under your chosen installation folder.

• Select demo12.prj from the history list on the Project Menu to
load the demo project.

• Right Click on the Project Name “demo12” at the top of the
Project window and choose Build from the pop-up. This will
build the application executable (demo12.h12), generate S-
records (demo12.s19) and absolute listings (demo.la, sieve.la ..)
The file demo12.h12 is ready to download into ZAP.

• To review the compiler options used, expand the Tools icon and
right click on Compiler.

• Right click on Linker under tools to review or edit the link
command file or linker options.

• Click on the ZAP Debugger icon to open ZAP and automat-
ically load the demo application. See the section “ZAP 6812
SIM” tutorial below for more on ZAP.

68HC12 Paged Examples
The 68HC12 evaluation includes 4 example projects. One project is
non paged and 3 projects are paged. Two of the paged projects are
built for the MCS912DP256 and one is built for the DG128A or any
other HC912 device with 128K of on-chip Flash. To build and debug
the 128K paged demo perform the following steps:

• Open “Idea CPU12 (Eval)” from the Windows Start menu. i.e.
select Programs > Cosmic Tools > Eval12\Idea CPU12 (Eval)

IDEA/Compiler Tutorial

Page - 15

• The non paged demo files are located in the \Examples\
subfolder created under your chosen installation folder.

• Select demo12.prj from the history list on the Project Menu to
load the non paged demo project.

• The 128 K paged demo files are located in the
\Examples\128K_paged_example subfolder created under your
chosen installation folder. Select demo12_paged.prj from the
history list on the Project Menu to load the paged demo project.
To build the application:

1. Choose Build from the Project menu of IDEA. This will
build the application executable (.h12), generate S-records
(.s19) and absolute listings (demo.la, sieve.la ..) The
project file with the .h12 extenstion is ready to download
into ZAP.

2. To review the compiler options used, expand the Tools icon
and right click on Compiler.

3. Right click on Linker under tools to review or edit the link
command file or linker options.

4. Click on the ZAP Debugger icon to open ZAP and
automatically load the demo application. See the section
“ZAP 6812 SIM” tutorial below for more on ZAP.

• To build the DP256 example select
\Examples\DP256_example\test.prj from the project menu and
repeat steps on through 4. This example links each page of the
256K flash explicitly.

• To build the DP256 packed example select
\Examples\DP256_example\packed\test.prj from the project
menu and repeat steps on through 4. This example uses the
linkers automatic bank packing mechanism to fill the 256K flash.
Note the entire application fits into one page (Bank).

For more information on Compiler usage and options, see the
“CX6812 User’s manual” and or IDEA User’s manual.

ZAP 6812 SIM Tutorial

Page - 16

ZAP 6812 SIM Tutorial
Welcome to the COSMIC ZAP debugger tutorial. This tutorial is
designed to give you a small sample of the many features of ZAP
SIM as you go through a typical Windows debugging session.

Starting ZAP and Loading an Application
If you’ve just gone through the IDEA tutorial ZAP should already be
open with the demo project loaded. Skip to the section titled
“Executing the application”.

Non Paged Example
• From the Windows Start menu, select

Programs > Cosmic Tools > Eval12\ZAP 6812 SIM (Eval)
to start ZAP. This example was written for a 912B32 processor,
but is applicable to any non paged 68HC12 application. It is
located in the \Examples folder created under your chosen instal-
lation folder.

• Choose load from the file menu and select the non paged example
file demo12.h12 located in the \Examples\ folder. Skip over the
Paged Examples and Goto the section entitled “Display
Options” to complete the tutorial with the non paged example.

Paged Examples
• From the Windows Start menu, select

Programs > Cosmic Tools > Eval12\ZAP 6812 SIM (Paged
Eval) to start the paged version of ZAP 6812 SIM.

128K Flash Example
• This example was written for a DG128A and is located in the

\Examples\128K_Paged_example created under your chosen
installation folder. The example is also applicable to most 128K
on-chip 68HC912s. Select DG128 from the target menu to setup
the proper paging simulation for a 128K Flash part with fixed

ZAP 6812 SIM Tutorial

Page - 17

pages at 0x4000 and 0xC000.

• Choose load from the file menu and select the 128K paged
example file demo1_paged2.h12 located in the
\Examples\128K_Paged_example\ folder. Goto the section
named “Display Options” to complete the tutorial with the 128K
Example.

DP256 Flash Example
There are two DP256 examples. They are both made up of the same
code modules, but are linked differently. One is linked with an
explicit page for each 16K block of memory and the other uses the
linkers automatic bank allocation mechanism and is refereed to as the
packed example.

• Select DP256 from the target menu of ZAP to setup the proper
paging simulation for a 256K Flash part with fixed pages at
0x4000 and 0xC000.

• Choose load from the file menu and select
\Examples\DP256_Example\test.h12 to load the example with
explicit pages. Goto the section named “Display Options” to
complete the tutorial with the DP256 Example.

• Choose load from the file menu and select
\Examples\DP256_Example\Packed\test.h12 to load the
packed DP256 example. Goto the section named “Display
Options” to complete the tutorial with the DP256 packed
Example. Note: Since the example is very small, all of the code
fits into one page. We recommend that you use the standard
example to see how the paging mechanism works with ZAP.

If any of the load files (.h12) files do not exist go to the section
“IDEA/Compiler Tutorial” and rebuild them. The .h12 files contain
all of the object code, debug symbols and source file reference infor-
mation for full C and/or Assembly source level debugging. When the
file has finished loading you should see the assembly startup routine
(crtsi.s) in the source window.

ZAP 6812 SIM Tutorial

Page - 18

 Figure 1-9: ZAP Debugger with Project loaded

Display Options
Let’s take a look at some of the various display options. During a
typical debugging session you‘ll probably want to monitor a couple
of variables, keep an eye on the stack and watch the CPU registers as
you execute the code. In order to do this we’re going to open a
monitor, stack and register window as follows. Note: The config file
(zaps12.ini) supplied with EVAL12 should open these windows
automatically so you can skip this section and go to the section
“Executing the Application”.

• Choose Monitors from the Show menu to open up a monitor
window.

• Choose Stack from the Show menu to open up the stack window.

Status Bar

Disassembly Window Source Window

 Menu and Button Bar

Command Window

 Monitor Window

 Memory Window

ZAP 6812 SIM Tutorial

Page - 19

• Choose Registers from the Show menu to open up the register
window. Notice the cycle counter at the bottom of the Register
window (simulator only). This provides an accurate MCU cycle
count between execution points.

To make it easier to execute the most commonly used commands let’s
open up the Button Bar.

 Figure 1-10: ZAP Button Bar

Executing the Application
There are several ways to execute your code. Let’s try a couple of
examples.

• Click on StepI in the Button Bar or select Step Inst from the
debug menu to step one assembler instruction.

• Click on Step High Level Instruction (Source) in the Button
Bar to step one Source Instruction.

• Select “Go Till” from the Debug Menu and select the function
main.

Notice you may we get an error message “Can’t open Demo.c would
you like to change the Path” if the search path for the application
sources is not set properly. Answer yes to open the source path editor
or select path editor from the Setup menu. Use the path editor to add
the path to the source files. This can be done by browsing through the
directories and selecting the paths and adding them to the search path.

ZAP 6812 SIM Tutorial

Page - 20

• Choose Destination Folder\Examples and add it to the search
path. Note: Destination Folder is the root folder where Eval12
was installed. The C code should now appear in the source
window.

• Now Click on Step High Level again to execute the first C
instruction.

• We’re now going to step a couple of C lines and for this example
we want to step into the function “clear_ports()” so we’ll choose

High Level Step from the Button Bar. Click on this button
until the Blue Highlight in the Source window returns from the
clear_ports() function.

Note the matching C and assembly code highlights for the current
Program Counter (PC) in the Source and Disassembly Windows. The
yellow highlight in the disassembly code denotes the assembly
instructions that make up the single Blue highlighted line of C code.

• Now click on the Step Over button. This will execute the

ZAP 6812 SIM Tutorial

Page - 21

function “toggle_bits()” silently and return and stop on the next
source line in function “main”.

Monitor and Evaluate Expressions
Now let’s monitor a couple of global variables so we can follow the
application’s output.

• Double click on the variable reset_add and choose monitor to
add it to the Monitor window.

• Double click on the variable memptr and count and choose
monitor to add them to the Monitor window as well.

You can also select an expression to monitor or evaluate. Try the
following:

• Select “Go Till” from the Debug Menu and select the function
“sieve”.

• Left Click and drag to highlight prime_table[count] and select
monitor to add just the one array member to the Monitor window.

If you want to monitor a valid expression that is not available in the
source window you can use the Command window.
e.g. Monitor prime_table[6].

• Click on the Command window and press the enter key then type
monit prime_table[6] at the ZAP prompt.

You can change the display format of any variable by double clicking
on the variable in the Monitor window. Let’s change the display
formats for prime_table[6].

• Double click on prime_table[6] in the Monitor window and
choose format from the pop-up menu

• Select hexadecimal to display the value of prime_table[6] in hex
notation.

• If you want to view all of the variables in the application select
“Variables->In Global List” from the Browser menu.

ZAP also provides a convenient structure/Union browser. Let’s go to

ZAP 6812 SIM Tutorial

Page - 22

the function toggle_bits() which uses a union between a bit field
structure and a char.

• Choose Go Till from the Debug Menu and select toggle_bits.

• Double click on the variable PORTX and select Evaluate to open
the structure editor. Notice this displays both members of the
union.

Breakpoints
To set a breakpoint simply Double click (Left mouse button) on any
active line number in the Source window or Source Browser window.
You can also double click on an address in a Disassembly window.
Let’s reset the application and set some breakpoints.

• Select Reset from the Debug menu

• Select Go Till “main” from the Debug menu.

• Double click on the line number to the left of the C line
“clear_ports(); ” in the function “main”. You’ll notice the line
number is highlighted in red to signify that there is a breakpoint
set.

• Click on Go on the Button Bar to execute to the breakpoint.

• Choose Function List from Browse menu to open a list of all the
source files and functions which make up the demo application.

• Double click on the function name “toggle_bits()” to open up a
source browser window containing the source to the function.

• Let’s set a breakpoint on the line “for (i = 0; i < count; i++)” by
double clicking on its line number.

• Click on Go on the Button Bar to execute the code to the break-
point.

• Delete the breakpoint by double clicking on the line number
again and choosing delete from the pop-up. The red highlight
should be removed. A green highlight means the breakpoint is
suspended.

ZAP 6812 SIM Tutorial

Page - 23

• Let’s delete the other breakpoints. Choose Events from the
Browse menu. Double click on each breakpoint and choose delete
from the pop-up. Alternatively, select the Command window and
type the following to delete all events:
Zap> del /e *

ZAP SIM also supports Data Breakpoints (events). Let’s set a Data
Event on the global variable count such that the program execution
will stop when count is written to.

• Select Reset from the Debug menu

• Select Go Till “main” from the Debug menu.

• Double click on the variable count and select “Write Break” from
the pop-up. Click on Go and you should see ZAP stop after count
is written.

• Choose browse Events and delete the breakpoint by double click-
ing on it.

Browser
ZAP lets you browse all of the source code in the application and
dump any memory locations using several different formats.

• Choose Memory from the Browse menu, enter an address and
choose to view memory as Data or as Code (i.e. disassembly).

• If you choose Code you’ll see a disassembly of the memory in
which you can set a breakpoint on any address.

• If you choose data you can select a display format and you can
click directly on any value and modify it.

Program Analysis
• ZAP SIM keeps track of MCU cycles and records each R/W

cycle, and address execution. This allows ZAP to create several
useful displays and reports including chronology, code coverage,
performance analysis, simulated source trace and variable usage.

ZAP 6812 SIM Tutorial

Page - 24

Let’s look at a couple of reports. First you need to Reset and zero
out the analyzer.

• Select Reset from the Debug menu

• Select Go Till “main” from the Debug menu.

• Select “Performance->Zero” from the Analyzer menu.

• Set a Breakpoint on the first line inside the “for (; ;)” loop.

• Click on Go twice to execute completely through the loop once to
collect some execution data. This may take a minute or two.

Performance Analysis
• Select “Performance->view” from the Analyzer menu to view

the performance analysis graph.

• Double click on a function name in the Performance Analysis
window for execution details.

Code Coverage
• Select “Code Coverage->full” for a report that details what code

has been executed.

• The Source window and Source Browser windows maintain a
colored icon next to each source line which denotes whether an
instruction has been executed or not. A Green icon means the
code has been executed and a red icon means the code has not
been executed.

• Select “Variable Usage->Full” to create a printable report
detailing variable usage.

This concludes the ZAP 6812 SIM tutorial. Please refer to the ZAP
SIM User’s manual for more information.

ZAP 6812 SIM Tutorial

Page - 25

Running IDEA

Page - 26

Running IDEA

Starting IDEA
From the Windows Start menu, select Programs > Cosmic Tools >
Eval12\Idea12

The IDEA main window appears:

 Figure 1-11: IDEA main window
After you open a project and some files within the project, the IDEA
main window appears as in the following Figure.

Running IDEA

Page - 27

 Figure 1-12: IDEA main window with Open Project
The IDEA main window is the principal graphical user interface
(GUI) for the Cosmic Compiler program.

For complete details on the components of the IDEA main window,
refer to Chapter 4, IDEA User Interface in the IDEA User’s Guide.

Starting a new project

To start a new project, click on the New Project tool on the Tool
bar, or select Project > New from the Main menu.

The Project window appears with a new project opened.

Running IDEA

Page - 28

 Figure 1-13: IDEA Project window with new project
The Project window displays the various project components as icons
in a tree-structured format, similar to Windows Explorer. Each icon in
the project tree represents a project component.

Running IDEA

Page - 29

Table 1-1: Project Components

A sign next to a component icon means that sub-components are
hidden below the icon. Click on the sign or double click on the icon
to display the sub-components.

A sign next to a component icon means that the first level of sub-
components below the icon is displayed. Click on the sign or
double click on the icon to hide the sub-components.

For additional details on the Project window, refer to Chapter 4, IDEA
User Interface in the IDEA User’s Guide.

For details on project management, refer to Chapter 7, Managing an
IDEA Project in the IDEA User’s Guide.

Project Name

Project Description

Project Target File Name

Project Source Files

Project Directory

Project Defines

Project Include Paths

Project Tools

Project Documentation

Running IDEA

Page - 30

Exiting IDEA
To exit IDEA, click on Exit in the File menu. Alternatively, type
Alt+F+X .

If you have selected Auto Save before C/asm in the Options drop-
down menu (Alt+O+A), all changed files are saved prior to exiting. If
you have not selected Auto Save before C/asm, a dialog box appears
in turn for each changed file and lets you select whether to save the
file or not.

Managing a Project

Page - 31

Managing a Project

Opening the project
EVAL12 is supplied with an example project called “demo12.prj” ,
You can use this example project to become familiar with the
principles of managing an IDEA project.

If you opened a new project earlier, save it by clicking on the Save

Project tool on the Tool bar. Close the project by selecting
Project > Close from the Main menu.

To open the example project, click on the Open Project tool on
the Tool bar. In the dialog box that appears, select demo12.prj from
the Examples folder. The Project window appears with the
demo12.prj project opened.

 Figure 1-14: Project pane with demo12.prj project

Managing a Project

Page - 32

Naming the project
The Project Name component lets you specify a name for the
project. It also represents the parent component for all project sub-
components.

To specify a name for the project, click on the Project Name

icon . A text cursor appears to the right of the icon. Click on the
text cursor to open a text box and enter a project name.

Managing a Project

Page - 33

Right click on the Project Name icon to view a menu of project
commands. These commands are shown in the following Table.

Table 1-2: Project commands

Add File Adds a source file to the project.

Save Saves the project.

Save As Saves the project with a new name.

Make Checks source file up-to-date status and
dependencies. Then selectively compiles
or assembles any out-of-date files and
runs the Linker. The icons in the Project
Source Files folder are colored yellow.

Build Performs a Make as described above and
then runs any utilities selected in the
Builder Configuration dialog box. To
have the Build rebuild all files regardless
of their up-to-date status, right click on
the project name, select Mark All, and
then run the Builder.

Mark All Marks all project source files for recom-
pile/assemble without changing the file
time/date stamp. The icons in the Project
Source Files folder are colored orange.

Touch All Marks all project source files for recom-
pile/assemble and updates all project
source files with the current system date
and time stamp. The icons in the Project
Source Files folder are colored red.

Documen-
tation

Adds a document file to the project.

Managing a Project

Page - 34

Describing the project
The Project Description component lets you specify a short
description for the project.

To specify a description for the project, click on the

Project Description icon . A text cursor appears to the right of the
icon. Click on the text cursor to open a text box and enter a short
project description.

Naming the project target file
The Project Target File Name component lets you specify a target
file name for the project (for example, demo12.h12). The name
entered here is the actual name of the linked executable which can
also be modified under Tools->Linker ->options->Output to File.

To specify a project target file name, click on the Project Target File

Name icon .

A text cursor appears to the right of the icon. Click on the text cursor
to open a text box and enter a target file name. Be sure to include the
target file name extension; for example, “.h12” for the Cosmic 6812
compiler.

Right click on the Project Target File Name icon to view a menu
containing target file commands. These commands are shown in the
following Table.

Managing a Project

Page - 35

Table 1-3: Target File commands

Inspect
Object

Runs the Object Inspector utility (cobj)
on the target file.

Show Debug Runs the Debug Info Examiner utility
(cprd) and opens the project debug file in
read-only mode.

Produce
Hex Records

Runs the Hex Converter utility (chex),
which translates executable images
produced by the clnk linker to one of
several hexadecimal interchange formats.

Produce
Absolute
Listings

Runs the Absolute Lister utility (clabs) to
generate absolute listings.

Produce
IEEE
Output

Runs the IEEE695 Converter utility
(cv695) to generate IEEE695 debug
format.

Debug File Runs the selected ZAP debugger and
loads the linked executable.

Delete Deletes the project target file. A pop-up
dialog box asks you to confirm the
deletion

Managing a Project

Page - 36

Managing project source files
The Project Source Files component lets you specify the C and
Assembly language source files to be included in the project.

Right click on the Project Source Files icon to view a menu
containing source file management commands. These commands are
shown in the following Table.

Table 1-4: Source file management commands

Add File Adds a source file to the project.

Touch All Updates all project source files with the
current system date and time stamp and
marks them for recompile/assemble when
a Make or Build is executed. The icons in
the Project Source Files folder are
colored red.

Mark All Marks all project source files for
recompile/assemble when Make or Build
is executed. This option does not change
the time-date stamp of the files. The icons
in the Project Source Files folder are
colored orange.

Managing a Project

Page - 37

Adding source files to the project
You can add source files to the project using the Add File
command or the Windows Explorer.

• To add a source file using the Add File command, right
click on the Project Source Files icon, select Add File ,
and select the file(s) to add from the Add File dialog box.

• To add a source file using Windows Explorer, select the

Windows Explorer tool on the Tool bar. Windows
Explorer appears next to the Project window. Select a
file(s) from Windows Explorer and drag it to the Project
window.

Using either method, you can select more than one source file
at a time using standard Windows conventions for selecting
and grouping files.

Working with individual source files
Each source file included in the project is listed next to a

Source File icon . The Source File icon lets you view the
source file and its attributes.

Right click on the Source File icon to view a menu containing
source file commands. These commands are shown in the
following Table.

Table 1-5: Source file commands

Load (read
only)

Opens the source file in read-only mode.

Open Opens the source file for editing.

Remove Removes the source file from the project.

Mark Marks the source file for rebuilding. The
Source File icon is colored orange.

Managing a Project

Page - 38

Each icon in the source file tree represents a source file
component. The source file components are described in the
following Table.

Touch Updates the source file with the current
system date and time stamp and marks it
for rebuilding. The Source File icon is
colored red and the Source File Time
Stamp icon is updated with the new date
and time.

Compile Compiles or assembles the source file.
The source file icon is colored yellow if
the Compile is successful.

Options Opens the Compiler (or Assembler)
Options for Source File dialog box,
where you can specify options for the
specific source file. Options added here
will override the project Compile options.
(See the Tools section for details)

Defines Opens the #defines dialog box, where you
can specify compiler define options for
the source file.

Documen-
tation

Adds a document file for the source file.

Table 1-5: Source file commands

Managing a Project

Page - 39

Table 1-6: Source File Components

Source File Time Stamp

Source File Documentation

Source File Options

Source File Defines

Source File Dependencies

Source File Functions
Appears only if Project Analysis option
is selected in Options sub-menu.

Source File Variables
Appears only if Project Analysis option
is selected in Options sub-menu.

Managing a Project

Page - 40

Source File Time Stamp

The Source File Time Stamp component and icon
shows the day, date, and time that the file was last saved
or “touched”.

Source File Documentation

The Source File Documentation component shows all
documents that are associated with the source file.

Right click on the Documentation icon and select
Add Doc to associate a documentation file with the
source file.

The Document component lets you view, edit, or
remove a document associated with a source file. The

appearance of the Document icon varies, depending
on the type of document.

Right-click on the Document icon to view a menu
containing documentation file commands. The
documentation file commands are described in the
following Table.

Table 1-7: Documentation file commands

Load (read
only)

Opens the document in read-only mode.

Open Opens the document for editing using the
appropriate Windows-registered appli-
cation.

Remove Removes the document from the project.

Managing a Project

Page - 41

Source File Options

The Source File Options component lets you specify
compiler or assembler options for the source file. These
options override the default project compiler or
assembler options.

Right-click on the Source File Options icon to open
the Compiler (or Assembler) Options for Source File
dialog box.

 Figure 1-15: Compiler Options for Source File

Managing a Project

Page - 42

The Compiler (Assembler) Options dialog box has five
tabs:

• General options

• Optimizer options

• Listings options

• Miscellaneous options

• User Flags

Choose a tab and select the desired options. Selected
options are displayed in bold and unselected options are
greyed out. To select an option simply click on the
option description. To deselect an option click on the
option again.

For a detailed explanation of compiler and assembler
options, refer to Chapter 8, IDEA Command Reference
in the IDEA User’s Guide.

The source file compiler or assembler options will
override the project compiler and/or assembler options.

Refer to “Setting default compiler options” on page 1-
52 or “Setting default assembler options” on page 1-53
for details.

Source File Defines

The Source File Defines component lets you specify
compiler #define options for a source file.

Right-click on the Source File Defines icon to open
the #defines dialog box and specify up to twenty user-
defined preprocessor symbols.

Managing a Project

Page - 43

 Figure 1-16: Source File #defines

To add a symbol to the list, enter the symbol in the Item
field and click on Add. To remove a symbol from the
list, select the symbol and click on Remove .

The source file Defines will override the project
Defines.

You can also add the current project #defines to the
source file #define list by clicking on Add Project
Defines.

Refer to “Specifying Project Defines” on page 1-48 for
details.

After you add #defines, they appear as individual sub-
components in the Defines list, each one after a Define

icon . The define symbol is shown to the right of the

Managing a Project

Page - 44

icon. In addition, the day, date, and time that the #defines
were last updated is shown next to the Source File
Defines icon.

Source File Dependencies

The Source File Dependencies component and icon
let you view the files that are included in the source file
#includes.

The File icon shows a file that is named in the source
file #includes. If the file name is enclosed in brackets, it
is a system include file and is not typically modified in
each project.

If the file name is enclosed in quotes, it is a user include
file and can be modified. Right-click on the File icon to
display a menu include file commands. The include file
commands are described in the following Table.

Table 1-8: Include file commands

Open Opens the file with the application in the
Windows extension (File Types) Registry

Edit Opens the file in IDEA for editing

Load (read
only)

Opens the file in read-only mode.

Open Opens the file for editing.

Touch Updates the file with the current system
date and time and marks it for rebuilding.

Delete Removes the file from your system

Managing a Project

Page - 45

Source File Functions

The Source File Functions component and icon let
you view the functions defined in the source file. The

Function icon shows a function in the source file
and lists all of the variables local to that function. Right-
click on the Function icon to open the source file at the
function.

Source File Variables

The Source File Variables component and icon let
you view the variables that are local to the source file.

The Variable icon shows a variable declared with
the source file.

Specifying the project directory
The Project Directory component is used to set the working
directory for the project. This is typically where the source code files
for the project are located.

Right-click on the Project Directory icon to open the Path
Editor dialog box and set the path to the source files.

Functions and Variables appear in the Project
window only if Project Analysis is selected
from the Options menu.

NOTE

Managing a Project

Page - 46

 Figure 1-17: Path Editor dialog box

The Folder icon shows folders in the project directory.

The File icon shows files in the project directory.

Right-click on the File icon to display a menu with file commands.
The file commands are described in the following Table.

Table 1-9: File commands

Open Opens the file with the application in the
Windows extension (File Types) Registry

Edit Opens the file in IDEA for editing

Load (read
only)

Opens the file in read-only mode.

Open Opens the file for editing.

Managing a Project

Page - 47

Touch Updates the file with the current system
date and time and marks it for rebuilding.

Delete Removes the file from your system

Table 1-9: File commands

Managing a Project

Page - 48

Specifying Project Defines
The Project Defines component lets you specify #define options for
the project.

Right-click on the Project Defines icon to open the #defines
dialog box and specify preprocessor symbols.

 Figure 1-18: Project #defines dialog box
To add a symbol to the list, enter the symbol in the Item field and
click on Add. To remove a symbol, select it and click on Remove.

Symbols defined as project #defines can be imported into source file
#defines. Refer to “Source File Defines” on page 1-42 for details.

After you add project #defines, they appear as individual sub-compo-

nents in the Defines list, each one after a Define icon .

The define symbol is shown to the right of the icon. In addition, the
day, date, and time that the project #defines were last updated is
shown next to the Project Defines icon.

Managing a Project

Page - 49

Specifying project include paths
The Project Include Paths component lets you specify include paths
for the compiler (-i > option).

Right-click on the Project Include Paths icon to open the
Include Path Editor dialog box and specify up to twenty include
paths for the project.

 Figure 1-19: Include Path Editor
You can specify paths in any desired order. The paths are searched
from top to bottom by the compiler.

You can use the Drives and Directory fields to specify the include
path. Click on Append to add the path to the bottom of the list in the
Path field.

To position the new path before or after the selected path, select an
include path in the Path field and click on Add Before or Add After.

After you add include paths, they appear in order next to the Project
Include Paths icon and as components in the Project Include Paths
list, each one after a Folder icon.

Managing a Project

Page - 50

Include path folders and files

The Include Path Folder icon shows folders for include

file paths in the project directory. The Folder icon shows
folders in an include file path.

The File icon shows files in an include file path. Right-click
on the File icon to display a menu with the following
commands:

Configure project tools

The Project Tools icon lets you set project default options for:

• Compiler

• Assembler

• Linker

• Builder

• Debugger

The Builder component lets you configure build utilities for the

Table 1-10: Include file commands

Open Opens the file with the application in the
Windows extension (File Types) Registry

Edit Opens the file in IDEA for editing

Load (read only) Opens the file in read-only mode.

Open Opens the file for editing.

Touch Updates the file with the current system
date and time and marks it for rebuilding.

Delete Removes the file from your system

Managing a Project

Page - 51

project, including:

• Object Inspector (cobj)
• Hex Converter (chex)

• Debug Info Examiner (cprd)

• Absolute Lister (clabs)

• IEEE-695 Converter (cv695)

Managing a Project

Page - 52

Setting default compiler options
The Compiler component lets you set the default compiler
options that are used to compile all C code (.c) files in a
project.

Right click on the Compiler icon to open the Compiler
Options dialog box. You can also double-click on the

Compiler icon to display the Compiler Options icon and
then right-click on the Compiler Options icon to open the
Compiler Options dialog box.

 Figure 1-20: Compiler Options dialog box

Managing a Project

Page - 53

The Compiler Options dialog box has five tabs:

• General options

• Optimizer options

• Listings options

• Miscellaneous options

• User Flags

Choose a tab and select the desired options. Selected options
are displayed in bold and unselected options are greyed out. To
select an option, simply click on the option description. To
deselect an option, click on the option again.

For a detailed description of compiler options, refer to
Chapter 8, IDEA Command Reference in the IDEA User’s
Guide.

The default compiler options can be overridden by setting
compiler options for the individual source files. Refer to
“Source File Options” on page 1-41 for details.

Setting default assembler options
The Assembler component lets you set the default assembler
options that are used to assemble all assembly language (.s)
files in a project.

Right click on the Assembler icon to open the Assembler
Options dialog box. You can also double-click on the

Assembler icon to display the Assembler Options icon
and then right-click on the Assembler Options icon to open
the Assembler Options dialog box.

Managing a Project

Page - 54

 Figure 1-21: Assembler Options
dialog box

The Assembler Options dialog box five tabs:

• General options

• Optimizer options

• Listings options

• Miscellaneous options

• User Flags

Choose a tab and select the desired options. Selected options
are displayed in bold and unselected options are greyed out. To
select an option, simply click on the option description. To
deselect an option, click on the option again.

For a description of assembler options, refer to Chapter 8,
IDEA Command Reference in the IDEA User’s Guide.

The default assembler options can be overridden by setting
assembler options for the individual source files. Refer to
“Source File Options” on page 1-41 for details.

Managing a Project

Page - 55

Setting default linker options
The Linker component lets you set the default clnk utility
options that are used to link all files in a project. You can also
specify a linker command file and edit the file.

Right click on the Linker icon to view a menu containing
linker commands. The linker commands are described in the
following Table.

You can also double-click on the Linker icon to display the

Linker Options icon and the Linker Command File

icon .

Setting the linker configuration

Select Options from the Project Linker menu (or right-
click on the Linker Options icon) to open the Link
Configuration dialog box.

The Link Configuration dialog box lets you specify:

• Linker options

• Libraries path option

• Reporting mode option

• Memory banking option

Table 1-11: Linker commands

Options Opens the Link Configuration
dialog box.

Edit Com-
mand File

Opens the project link command file for
editing.

Change
Command
File

Opens the Select Linker Command File
dialog box.

Managing a Project

Page - 56

 Figure 1-22: Link Configuration dialog box

Specifying linker options

The Link Configuration dialog box lets you
specify clnk utility options. These options are
described in the following Table.

Managing a Project

Page - 57

After you select any one of these files, you can
click on the Find button to specify the file name
and path.

Table 1-12: Clnk utility options

Output file (-o option) : writes output to the specified
file. This option is required and corre-
sponds to the Project Target File.“Naming
the project target file” on page 1-34.

Command
file (.lkf)

The linker command file. This option is
required and has no default value.

Map file (-m option): produces a text file with map
information for the program being built.

Error file (-e option): logs errors in the text file
specified instead of displaying the
messages on the screen.

Managing a Project

Page - 58

Specifying the libraries path

Click on the Libs Path button to open the
Libraries Path Editor and set a path to the
compiler library (-l > option).

 Figure 1-23: Libraries Path Editor

You can specify a list of library paths in any order.
The paths are searched from top to bottom. After
you add paths, they appear in order next to the
Libs Path button.

Other linker options you can set are described in
the following Table.

Managing a Project

Page - 59

Editing the linker command file

Before you can edit a linker command file, you must
first check the Command File check box in the Link
Configuration dialog box and then specify a linker
command file name and path.

Select Edit Command File from the Project Linker
menu (or right-click on the Linker Command File icon)
to open the linker command file for editing.

Table 1-13: Other Clnk utility options

Verbose (-v option) : be verbose.

Symbols
Only

(-s option): create an output file contain-
ing only an absolute symbol table, but still
with an object file format.

Memory
Banking

(-bs option): enter the size of the page to
be used. The size is translated to the cor-
rect -bs option for the linker. For example
the default page size for 68HC12 paging
is 0x4000 which translates to a -bs14.
The default value for most processors is 0
(bank switching disabled).

Managing a Project

Page - 60

 Figure 1-24: Linker command file
for demo12.prj

To edit the linker command file, you can make changes
directly in the file using the options in the Edit menu.
Type Alt+E to view the editing options. You can also
right click to view a menu of editing options.

For complete details on linker command file editing
options, refer to Chapter 8, IDEA Command Reference
in the IDEA User’s Guide.

Changing the linker command file
Select Change Command File from the Project Linker
menu to change the linker command file. The Select
Linker Command File dialog box lets you specify a file
name and path for the new linker command file.

After you select a new command file, the Command
File check box is checked in the Link Configuration
dialog box, and the linker command file name and path
are displayed.

Managing a Project

Page - 61

Specifying project builder utilities
The Project Builder component lets you specify utilities for
building the project.

Right click on the Project Builder icon to open the
Builder Configuration dialog box. You can also double-click
on the Project Builder icon to display the Builder Options

icon , and then right-click on the Builder Options icon to
display the Builder Configuration dialog box.

 Figure 1-25: Builder Configuration dialog box

The Builder Configuration dialog box contains check boxes
that let you specify which builder utilities to run. The builder
utilities are described in the following Table.

Managing a Project

Page - 62

Table 1-14: Builder utilities

Run Object
Inspector

Runs the cobj utility to examine object
modules. If you select Run Object
Inspector and then click on the Options
button, the Options dialog box appears.
Refer to “Configuring the Object
Inspector utility” on page 1-63 for details.

Convert to
S-Records

Runs the chex utility to translate object
module format to hexadecimal format. If
you select Convert to S-Records and
then click on the Options button, the
CHEX Configuration dialog box
appears. Refer to “Configuring the Hex
Converter utility” on page 1-65 for
details.

Run Debug
Info
Examiner

Runs the cprd utility to print debugging
information about functions and data
objects. If you select Run Debug Info
Examiner and then click on the Options
button, the CPRD Configuration dialog
box appears. Refer to “Configuring the
Debug Info Examiner utility” on page 1-
67 for details.

Run
Absolute
Lister

Runs the clabs utility to generate absolute
listings. If you select Run Absolute
Lister and then click on the Options
button, the CLABS Configuration dialog
box appears. Refer to “Configuring the
Absolute Lister utility” on page 1-69 for
details

Managing a Project

Page - 63

Configuring the Object Inspector utility
The cobj utility lets you inspect relocatable object files or
executable output by the assembler or linker. The cobj utility
can be used to check the size and configuration of relocatable
object files or to output information from their symbol tables.

Right click on the Object Inspector icon and select
Options to open the Options dialog box. You can also double-
click on the Object Inspector icon to display the Options

icon and then right-click on it to display the Options
dialog box.

Run IEEE
695
Converter

Runs the cv695 utility to generate
IEEE695 format. If you select Run IEEE
695 Converter and then click on the
Options button, the CLABS Configu-
ration dialog box appears. Refer to
“Configuring the IEEE695 Converter
utility” on page 1-71 for details.

Run User
Utility 1

Runs the specified user utility. You can
specify a path and filename for any utility.

Run User
Utility 2

Runs the specified user utility. You can
specify a path and filename for any utility.

Table 1-14: Builder utilities

Managing a Project

Page - 64

 Figure 1-26: cobj utility Options dialog box

Selected options are displayed in bold and unselected options
are greyed out. To select an option simply click on the option
description and it is added to the command line. To deselect an
option click on the option again.

For complete details on the cobj utility options, refer to
Chapter 8, IDEA Command Reference in the IDEA User’s
Guide.

You can also specify a path and file name to receive the Object
Inspector output. This file may be in relocatable format or
executable format.

Managing a Project

Page - 65

Configuring the Hex Converter utility
The chex utility translates executable images produced by the
clnk utility to one of several hexadecimal interchange formats.

Right click on the Hex Converter icon and select Options
to open the CHEX Configuration dialog box. You can also
double-click on the Hex Converter icon to display the

Options icon and then right-click on it to display the
CHEX Configuration dialog box.

 Figure 1-27: CHEX Configuration dialog box
The following Table describes the formats and options that are
available. For details on chex utility options, refer to Chapter 8,
IDEA Command Reference in the IDEA User’s Guide.

Managing a Project

Page - 66

Table 1-15: chex utility options

Motorola S
Records
format

(-fm option) - produces S1 and S2 records
as needed.

Motorola S2
Records
format

(-f2 option) - produces S2 records only.
This is the default.

Intel Hex
format

(-fi option)

Absolute
Start
Address

(-a option) - the output address of the first
byte.

Address
Bias

(-b option) - subtract from any address
before output.

Max Bytes
per line

(-m option) - maximum data bytes per
line. The default is 32 bytes per line.

Do not
Output
Header

(-h option)

Output
Paged
Addresses

(-p option)

Output by
Increasing
Addresses

(-s option)

Output to
File

(-o option) - the default is STDOUT.

Managing a Project

Page - 67

Configuring the Debug Info Examiner utility
The cprd utility extracts and prints information about functions
and data objects from an object module or executable image
that has been compiled with the +debug option.

Right click on the Debug Info Examiner icon and select
Options to open the CPRD Configuration dialog box. You
can also double-click on the Debug Info Examiner icon to

display the Options icon and then right-click on it to
display the CPRD Configuration dialog box.

Insert
Header
Sequence

(+h option)

Output
named
segments
only

(-n option). Up to twenty different named
segments can be specified.

To add a named segment to the Segments
field, enter the named segment in the Item
field and click on the Add button.

To remove a named segment from the
Segments field, select the segment and
click on the Remove button.

Table 1-15: chex utility options

Managing a Project

Page - 68

 Figure 1-28: CPRD Configuration dialog box

The CPRD Configuration dialog box lets you build a list of
files and functions for debugging purposes. Enter a file or
function name in the Item field, and then click on Add to Files
to add the item to the Files list or Add to Funcs to add the item
to the Functions list.

If you check the Show File List check box, the Item field
changes to a File List field, with a drop-down list of the files in
the project directory. Select a file from the list and then click on
the Add to Files button to add it to the Files list.

To remove an item from either list, select the item and then
click on the Remove button.

Managing a Project

Page - 69

Each file in the Files list is processed with the -fl option, which
prints debugging information about the file. By default, the
cprd utility prints debugging information on all C source files.

Each function in the Functions list is processed with the -fc
option, which prints information only about the function. By
default, the cprd utility prints debugging information on all
functions in a file.

You can also specify a path and file name to receive the
debugger output. This is equivalent to the cprd utility -o
option. By default, the cprd utility writes debugging infor-
mation to the terminal screen.

Configuring the Absolute Lister utility
The clabs utility processes relocatable C and Assembly listing
files with the associated executable file to produce absolute
listings with updated code and address values.

Right click on the Absolute Lister icon and select Options
to open the CLABS Configuration dialog box. You can also
double-click on the Absolute Lister icon to display the

Options icon and then right-click on it to display the
CLABS Configuration dialog box.

 Figure 1-29: CLABS Configuration dialog box

Managing a Project

Page - 70

The clabs utility options are described in the following Table.

Table 1-16: clabs utility options

Verbose (-v option) - the name of each module of
the application is output to STDOUT.

Restrict to
Project
Directory

(-l option) - process files in the project
directory only. The default is to process all
files of the application.

Listing
Extension

(-r option) - specify the input file
extension. The default is “ .ls”.

Absolute
Listing
Extension

(-s option) - specify the output file
extension. The default id “.la”

Managing a Project

Page - 71

Configuring the IEEE695 Converter utility
The cv695 utility converts a file produced by the linker into
IEEE695 format.

Right click on the IEEE695 Converter icon and select
Options to open the CV695 Configuration dialog box. You
can also double-click on the IEEE695 Converter icon to

display the Options icon and then right-click on it to
display the CV695 Configuration dialog box.

 Figure 1-30: CV695 Configuration dialog box
The cv695 utility options are described in the following Table.

Managing a Project

Page - 72

Table 1-17: cv695 utility options

Verbose (-v option) - the cv695 utility displays
information about its activity.

Reverse Bit-
Field
Numbering

(-rb option) - reverses bitfield from left to
right.

Paging (+page# option) - this option is currently
meaningful for the MC68HC12 only.

This option specifies the address format
for bank-switched code. If you check the
Paging check box, three options appear to
the right:

Physical (+page1) - the application is
banked and the cv695 utility outputs
physical addresses. This is the default if
Paging is checked.

Logical (+page2) - the application is
banked and the cv695 utility outputs
addresses in paged mode:
<page><offset_in_page> . This is
equivalent to the old +paged flag.

data paging (+dpage) - the application
uses data paging.

Output to
File

(-o option) - you can specify a path and
file name to receive the cv695 utility
output. By default, the cv695 utility
outputs to the file whose name is obtained
from the input file by replacing the
filename extension with “ .695”.

Managing a Project

Page - 73

Specifying a project debugger

Right-click on the Project Debugger icon to open a dialog
box that allows you to specify a debugger for the project.

After you select a debugger, the path and filename appears
after the Project Debugger icon.

Once you have specified a debugger, you can double click on
the Debugger icon to run the ZAP debugger with the project
target file opened. You can also run the debugger by clicking

on the Debugger tool in the Tool bar.

Specifying project documentation
The Project Documentation component shows all documents that
are associated with the project.

Right click on the Documentation icon and select Add Doc to
associate a documentation file with the project.

The Document icon lets you view, edit, or remove a document
associated with the project. The appearance of the icon varies,
depending on the type of document.

Right-click on the Document icon to view a menu containing
documentation file commands. These commands are described in the
following Table.

Table 1-18: Documentation file commands

Load (read
only)

Opens the document in read-only mode.

Open Opens the document for editing.

Remove Removes the document from the project.

Building a Project

Page - 74

Building a Project
After a project is configured, you need to build the application. There
are a three different ways to do this:

1. Right click on the Project Name icon in the Project window
and select Make or Build from the pop-up menu.

2. Choose Compile (single, open file), Make , or Build from the
Project pull-down menu.

3. Click on one of the following tools on the Tool bar:

Table 1-19: Tool bar tools for project building

Compile tool - compiles (.c file) or
assembles (.s file) an open project source
file. Options are specified in the
Compiler or Assembler Options dialog
box.

Link tool - runs the linker (and no other
utilities) using the options specified for
the project in the Link Configuration
dialog box. Project source files are not
checked for up-to-date status.

Make Project tool - checks source file
up-to-date status and dependencies. Selec-
tively compiles or assembles any out-of-
date files and runs the Linker.

Building a Project

Page - 75

For additional details on the project building tools, refer to Chapter 4,
IDEA User interface in the IDEA User’s Guide.

For additional details on building an IDEA project, refer to Chapter 7,
Building an IDEA Project in the IDEA User’s Guide.

Build Project tool - performs a Make and
then runs any utilities selected in the
Builder Configuration dialog box. To
have the Build rebuild all files regardless
of their up-to-date status, right click on
the project name, select Mark All, and
then run the Builder.

Table 1-19: Tool bar tools for project building

Debugging a project

Page - 76

Debugging a project
EVAL includes the Cosmic ZAP Simulator debugger. This allows you
to debug your project on your PC.

You can open the ZAP Debugger by clicking on the Debugger

tool in the Tool bar.

 Figure 1-31: ZAP Debugger with Project loaded

Before you can use the ZAP debugger, you must first specify its

location by right clicking on the Debugger tool in the Tool
Browser (select Tools from the Main menu to open the Tool
Browser). This opens a dialog box that allows you to specify
the debugger for the project.

NOTE

Status Bar

Disassembly Window Source Window

 Menu and Button Bar

Command Window

 Monitor Window

 Memory Window

Debugging a project

Page - 77

When you run the ZAP Debugger from within IDEA, the ZAP
Debugger automatically opens the target file for the currently loaded
project (for example, demo12.h12). For details on using the ZAP
6812 SIM Debugger, see the ZAP tutorial below or refer to the ZAP
6812 SIM User’s Guide.

