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Abstract
Brazil is one of the largest soybean producers in the world, however, there are still yield gaps in crops,
mainly linked to weather conditions. Based on it, this paper quanti�es the spatial variability of rainfall
based on two dense networks of rain gauges and analyzes the in�uence on the attainable productivity
(Ya) of the soybean crop. The study was carried out in Piracicaba, SP. For the �rst rain gauge network a
measuring campaign was conducted from 1993 to 1994, with 10 gauges distributed in 1,000.0 ha. The
second rain gauge network measuring campaign was conducted from 2016 to 2018, with 9 gauges
sampling 36.0 ha. To evaluate the in�uence of rainfall spatial variability on soybean yield a multi-model
(FAO, DSSAT, and MONICA) simulation was used. The relative production loss (Ygrel) caused by water
de�ciency was simulated for 3 sowing dates and each rainfall sampling point. The results showed that
the spatial variability of precipitation has a direct in�uence on attainable productivity (Ya). However, the
magnitude of rainfall variability is not directly replicated in yield. The temporal variability, between the
different sowing times, had a major in�uence on soybean yield.

1. Introduction
Brazilian farmers who adopt precision agriculture often map crop yield in their crops, which has revealed
variability in most areas (Amado et al. 2007; Mattioni et al. 2011; Bottega et al. 2017). The spatial
variability of agricultural production results from complex interactions between factors. Despite the
increasing adoption of techniques that allow the study of chemical, physical (Faraco et al. 2008; Mattioni
et al. 2013; Dalchiavon et al. 2017), biological and microbiological distinctions of the soil (Lamb and
Brown 2001; Monquero et al. 2008) of production areas, correctable for productivity variability, the
analysis of meteorological elements, especially precipitation, is still little studied (Mesas-Carrascosa et al.
2015; Keswani et al. 2019).

To determine the temporal and spatial variability of precipitation, meteorological radars are used. Lenzi et
al. (1990), Venäläinen and Heikinheimo (2002), and Gleason et al. (2008) are studies that highlight the
high space-time resolution of the data, with the ability to locate areas of rain in almost real-time, with
emphasis on those caused by small-scale convective systems, which are among the most elusive
phenomena for weather station networks. In Brazil, however, due to the unavailability of data, the
agricultural use of meteorological radar data is still limited.

As an alternative to weather radars, there are satellite products, such as TRMM (Huffman et al. 2007),
CHIRPS (Funk et al. 2015), GPM (Huffman et al. 2019), GSMaP (Mega et al. 2014), PERSIANN (Ashouri et
al. 2015), among others, suitable for analyzing the space-time variability of precipitation, even if the
spatial resolution is greater than 0.05° x 0.05° (Mashingia et al. 2014). Such kind of data can be
combined with other data and models, which make it possible to identify the productive potential of
crops, emerging as an opportunity to overcome the challenges of spatial and temporal dimensioning and,
therefore, improve the understanding of yield gaps of crops (Lobell 2013).
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Despite these meteorological information sources, not always being available or ready to use, the
allocation of pluviometer meshes in agricultural properties in Brazil is not uncommon. This is the method
often used by farmers to quantify precipitation and identify the presence of time-space variability in their
crops. The adoption of this type of meteorological monitoring is increasing, not only in Brazil, due to the
expansion of methods that also provide connectivity to rural areas, and the increase in the supply of
sensors, such as meteorological stations/web platforms/APPs (Pierce and Elliott 2008; Jayaraman et al.
2016).

Regarding the results originating from pluviometric grids carried out in Brazil (Reichardt et al. 1995;
Camargo and Hubbard 1999; Bega et al. 2005, Camargo et al. 2005; Chierice and Landim 2014; Almeida
et al. 2016; Siciliano et al. 2018; Souza and Nascimento, 2020) and several other countries (Stol 1972;
Schilling 1991; Graef and Haigis 2001; Krajewski et al. 2003; Jensen and Pedersen 2005; Pedersen et al.
2010; Gires et al. 2014; Tokay et al. 2014), it highlighted the ability to detect the temporal and spatial
variability of precipitation, which increases with the predominance of convective systems, and that
environmental characteristics such as orography, vegetation, watersheds or the presence of water bodies
contribute to the irregularity.

Rainfall measurements made by precipitation networks, at the farm level improve information for the
analysis of yield gaps in the crop �elds (O'Neal et al. 2002; Lobell 2013; Lobell et al. 2015) if combined
with crop models (Boote et al. 1998, 2003; Robertson and Camberry 1998; Jones et al. 2003; Nendel et al.
2011) can enhance the understanding of production variability, allowing to separate the causes into
meteorological and management factors.

The general objective of the article was to carry out an agrometeorological analysis focusing on
precipitation time-space variability. The speci�c objectives were (i) to characterize the variability of
precipitation measured by two pluviometry grids, with domain areas of 1,000.0 ha and 36.0 ha, and (ii) to
characterize how plant growth models can be used to identify the spatial variability of soybean yield as a
function of the variability of precipitation measured by pluviometry grids.

2. Material And Methods

2.1 Experimental area
To quantify the variability of precipitation, data from two pluviometry grids were used. The �rst rainfall
grid (MP1) was installed by Reichardt et al. (1995) in 1993, to measure daily rainfall variability on a local
scale of 1,000.0 ha. The second pluviometer grid (MP2) was installed in 2016 to quantify the variability
of precipitation in a smaller area of 36.0 hectares (Fig. 1). The pluviometry grids MP1 and MP2 were
located in the municipality of Piracicaba, state of São Paulo, Brazil, in an area belonging to the College of
Agriculture “Luiz de Queiroz”, University of São Paulo (ESALQ/USP).

The climate in the region is classi�ed as Cwa (Köppen classi�cation) humid tropical, with rains
concentrated between October and March and a dry period in autumn-winter (Alvares et al. 2013).
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According to historical data, annual precipitation is 1350 mm year− 1.

For MP1, based on the description of the installation locations of the pluviometers (Reichardt et al. 1995),
their geographic positioning was determined. When installing the MP2 grid rain gauges, the geographic
position of each equipment was marked with GNSS signal receivers (Garmin, model GPSMap 62s). The
same equipment was used to demarcate the MP1 coordinates. All data have geographic coordinates and
UTM-type plane-rectangular coordinates (UTM projection), having the WGS 84 system, zone 23S, as a
spatial reference.

2.2 Precipitation measurement
The nine pluviometers that formed the pluviometry grid MP1 (Reichardt et al. 1995) were randomly
distributed in the ESALQ/USP area. The shortest distance between the measurement points was 640 m,
while the longest was 4406 m apart.

Measurements were taken between November 1993 and October 1994, on a daily scale, adding up to 364
days of rainfall records. The equipment was manual, with a collection area of 300 cm2 and a
measurement accuracy of 0.1 mm. The rain gauges were installed 1.5 m above the ground surface,
leveled, and free of obstacles in a circle of at least 20 m in radius. A tenth collection point was the
pluviometer at the ESALQ/USP weather station (Fig. 1).

In the experimental area of ESALQ/USP, called "Fazenda Areão", the second pluviometry grid (MP2) was
installed. Nine rain gauges were distributed at a distance of approximately 200 m from each other, except
P7 (Fig. 1), in the shape of a square grid (Fig. 1). For this grid, data were collected from November 8,
2016, to January 22, 2018. A tenth rain gauge was also installed at the ESALQ/USP weather station, 2250
m from the center of MP2. The minimum and maximum spacing between pairs of MP2 rain gauges were
157 m and 612 m, respectively.

The MP2 rain gauges were of the “tipping bucket” model (Vaisala), with a collection surface of 380 cm2.
The equipment, previously calibrated, was installed 1.5 m above the surface, leveled, and connected to
data acquisition systems (Log Chart II), storing measurements every minute.

2.3 Precipitation data analysis
The series of precipitation data from MP1 (Reichardt et al. 1995) and MP2 were evaluated to identify
erroneous data and measurement failures. As the grids were composed of nine pluviometers, in addition
to the pluviometers installed at the Weather Station of ESALQ/USP (MP1 and MP2), it was possible to
estimate the uncertainty of the measurements of each instrument from the deviations of the average
obtained from the pluviometers in operation. A validation method was also applied to identify erroneous
data (Estévez et al. 2011). The analysis was based on the consistency test called the “range test” (Eq. 1).

0 ≤ P ≤ PMAX (1)
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where P is the daily precipitation (mm) measured by each rain gauge and PMAX is the maximum daily
precipitation value from historical data for Piracicaba, SP.

2.4 Soybean Yield Models and Simulation
To reduce the uncertainties in the simulations, the set of models’ approaches was used (Asseng et al.
2013; Martre et al. 2015), recently validated for the soybean crop in several regions of Brazil (Battisti et al.
2017). Thus, based on the FAO models – Agroecological Zone (Doorenbos and Kassam 1979), the Model
for nitrogen and carbon in agro-ecosystems v. 2.11 (Nendel et al. 2011) called MONICA and the
CropSystem Model – CROPGRO – Soybean v. 4.6.1 present in the Decision Support System for
Agrotechnology Transfer platform (Boote et al. 1998, 2003; Jones et al. 2003) called DSSAT, previously
calibrated and validated for the region of Piracicaba, SP (Battisti et al. 2017), potential yield (PP, kg ha− 1),
attainable yield (PA, kg ha− 1) and relative yield loss (Yg, in %) were estimated (Eq. 2).

2

The multi-model set was then obtained from the arithmetic mean of the yields simulated by the three
models.

For the pluviometric meshes (MP1 and MP2) the simulations used the three segments of precipitation
data of each pluviometric mesh, with 130, 120 and 110 days counted from the sowing dates: November
15, December 15 and January 15 following the recommendation of the Climatic Risk Zoning for Soybean
Crop (MAPA 2020). Thus, simulations for each of the three sowing dates were processed for each
precipitation sample point in the grids (Fig. 1), incorporating precipitation variability.

All other meteorological elements required as input data by the models used were obtained from the
weather station of ESALQ/USP and considered uniform for all simulation points.

The simulations aimed to evaluate the potential (PP) and attainable (PA) yield of a GMR 6.5 cultivar, like
the cv. BRS 284 that was used to calibrate the models tested by Battisti et al. (2017).

From an undisturbed soil sample, collected at point (P4) of MP2, the soil water retention curve was
obtained (van Genuchten 1980). Assuming soil homogeneity within the areas of MP1 and MP2, to
analyze only the effect of precipitation on productivity, based on moisture at �eld capacity (θcc), of 0.338
cm3 cm− 3 and at wilting point (θpmp) of 0.249 cm3 cm− 3, and the maximum depth of the root system (z)
of 0.85 m, the maximum soil water storage capacity (CAD) (Eq. 3) of 75 mm was obtained.

3

Yg =(1- )  100
PA

PP

CAD = (θcc−θpmp) z
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3. Results And Discussion
From each series of precipitation data and pluviometry grids MP1 and MP2, the three segments of
precipitation data were separated, respectively with 130, 120, and 110 days of measurements, starting on
November 15, 1993 (MP1) or 2016 (MP2), December 15, 1993 (MP1) or 2016 (MP2) and January 15,
1994 (MP1) or 2017 (MP2), to analyze the variability of precipitation in periods recommended for
soybean production in Piracicaba, SP, Brazil (Figs. 2 and 3).

Regarding MP1, in the �rst series of data (11/15/93 to 03/24/1994) 46 rainy days were recorded, 20 days
with at least 10.0 mm day-1 [Figure 2(2a)]. The average volume accumulated over the 130 days was
634.6 mm. Analyzing the precipitation of each of the MP1 rain gauges, during these 130 days, an average
standard deviation for the cycle of 3.77 mm day-1 was obtained, with a maximum value of 13.5 mm day-

1. When analyzing the accumulated precipitation at each point of the sampling grid, and again
quantifying the differences between points, a temporal increase in the standard deviation is observed,
which at the end of the cycle reached 22.3 mm, a value close to 5% of the water demand from soybean
cultivation in the study region (Oliveira 2018).

During the second analyzed series of MP1, from 12/15/1993 to 04/13/1994, 42 days with precipitation
were recorded, 4 days less than the �rst season, considering that in this case, the series had 10 days less
[Figure 2(2a)]. Considering this total, in 18 days the accumulated precipitation was at least 10 mm day-1.
The average accumulated precipitation in this second series was 597.3 mm, 37.3 mm less than in the
�rst series. Over the 120 days evaluated, the mean standard deviation was 3.6 mm day-1. The maximum
standard deviation was 13.5 mm day-1, on February 9, 1994, when the precipitation was 19.3 mm day-1,
considering a minimum of 1.3 mm day-1 (P9) and a maximum of 31.8 mm day-1 (P6). Still regarding the
differences between the measurement points of MP1, at the end of the second series analyzed (120
days) the standard deviation concerning the data from the nine rain gauges was 24.0 mm, very close to
that recorded for the �rst series [Figure 2(1a)].

The third series of MP1 precipitation data, with 110 days measured from January 15, 1994 [Figure 2(3a)],
accounted for 40 rainy days, with 15 days having accumulated precipitation of at least 10 mm day-1. The
average accumulated precipitation in the nine pluviometers of the MP1 grid was 544.8 mm, respectively
14.2% and 8.8% less than in the �rst [Figure 2(1a)] and second [Figure 2(2a)] series, highlighting the
temporal differences between the three series. Regarding the variation between measurement points over
the 110 days, the mean standard deviation for the cycle was 4.0 mm day-1, with a maximum coe�cient
of variation of 13.5 mm day-1. Temporally, the standard deviation of the accumulated at each point, in the
110 days of measurement, was 29.7 mm, con�rming the variability and a possible implication in the
simulated soybean yield for each measurement point.

Regarding the data collected from the pluviometry grid MP2, for each series (Fig. 3) the variability of
precipitation was also characterized for periods coinciding with soybean production in Piracicaba/SP,
pointing to a difference in distribution, with prominence for differences between grades.
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In the �rst series of MP2, of 130 days (11/15/2016 to 03/14/2017), 80 rainy days were recorded, 27 days
with at least 10 mm day-1 [Figure 3(1a)]. The total accumulated volume was 708.7 mm. Evaluating the
precipitation data for the 130 days, it was found that the mean grid standard deviation was 1.1 mm day-1.
Even the maximum standard deviation value was low, 4.3 mm day-1. When analyzing the accumulated
precipitation in each pluviometer and again quantifying the differences between points, a temporal
increase in the standard deviation is observed, which at the end of this series of 130 days was 26.6 mm
[Figure 3(1a)].

As for the second series [Figure 3(2a)], of 120 consecutive days from 12/15/2016, there were 68 rainy
days, 12 days less than during the �rst series of MP2 [Figure 3(1a)], with 25 days of accumulated rain
equal to or greater than 10 mm day-1. The average precipitation accumulated by the grid, during the 120
days, was 669.8 mm, 38.9 mm less than in the �rst series [Figure 3(1a)], this one with 130 days.
Regarding differences between rain gauges, the mean standard deviation for the 120 days was 1.2 mm
day-1. The maximum standard deviation value of this second MP2 data series was 8.1 mm day-1,
recorded on April 6, 2017, when the average precipitation accumulated by the grid was 79.3 mm day-1,
twice as much against the maximum standard deviation recorded for the �rst series [Figure 3(1a)]. At the
end of the 120 days of measurements, the standard deviation for accumulated precipitation reached 31.4
mm, surpassing the temporal difference of the �rst series [Figure 3(1a)], once again indicating the
probability of having spatial variability in the yield motivated by a meteorological element, in the case of
precipitation.

Although the difference between the averages accumulated precipitation between the �rst two analyzed
series of MP2 (Fig. 3(1a) and 3(2a)] was small, 5.5%, the temporal distributions naturally showed to be
different, characterizing how different the meteorological in�uence can be on the production carried out
at different times of the year, even in the same area.

Over the 110 days of the third analyzed series of MP2 [Figure 3(3a)], from January 15 to May 4, 1994, 53
rainy days were recorded, 21 days with at least 10 mm day-1 accumulated. At 110 days, the average
precipitation accumulated by the nine pluviometers of the MP2 grid was 549.4mm, respectively 22.4%
and 18.0% less than in the �rst [Figure 3(1a)] and second [Figure 3(2a)] series. Regarding the differences
in measurement between rain gauges over the 110 days, the mean standard deviation for the cycle was
1.38 mm day-1, with a maximum value of 8.0 mm day-1. Temporally, the standard deviation concerning
the accumulated at each point in the 110 days of measurement was 24.9 mm [Figure 3(3a)].

The reductions in accumulated precipitation from the �rst to the third series (5.9% from the �rst to the
second and 14.1% from the �rst to the third) of grid MP1 (Fig. 2) were lower than the reductions of 7.7%
(130 to 120 days) and 15.4% (130 to 110 days) over time. Similarly, analyzing data from MP2, a
reduction of 5.5% in accumulated precipitation was veri�ed between the �rst (130 days) and second (120
days) series (Fig. 3), once again smaller than the reduction over time. However, for this pluviometry grid,
the reduction in accumulated precipitation, by 22.5% from the �rst to the third (110 days) series, was
proportionally greater than the reduction over time between the referred series.
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Battisti (2016), when presenting results for successive soybean sowing dates for Piracicaba (SP), de�nes
that there is a reduction in yield potential to sowing delay, due to water de�ciency. The results (Figs. 2 and
3), which mostly did not characterize a reduction in accumulated precipitation proportionally to the time
of the analyzed data series, may result in de�ciency since the energetic condition determines differences
in crop evapotranspiration that extrapolate the temporal differences (Figs. 4 and 5). Furthermore, the
differences observed between the measurement points of each of the grids (Figs. 2 and 3), re�ecting
differences in time, would most likely cause productive differences between the points.

In addition to precipitation, air temperature and global solar radiation (Qg) were also evaluated for the
series related to the soybean production period (Figs. 4 and 5). However, unlike precipitation, measured
individually at each of the nine points of MP1 (Fig. 2) and MP2 (Fig. 3), these two meteorological
elements did not have their variability quanti�ed within the grids, having only daily data for each grid
(Figs. 4 and 5).

The average air temperature showed little variation between the three series of data related to theoretical
cycles of soybean production (Figs. 4 and 5). From MP1, in the �rst series, the average temperature was
24.2°C, with a slight tendency to decrease over time (Fig. 4A). For the second series of the same grid a
thermal condition very similar to the �rst (Fig. 4A), with an average temperature of 24.5°C, and a trend of
thermal decrease (Fig. 4B), being on this occasion higher than that registered for the �rst series. In the
third series (Fig. 4C), despite the average temperature of 24.3°C, once again being close to that of the two
previous series (Figs. 4A and 4B), the delay in sowing ends up subjecting the crop to a thermal decrease
more intense (-0.04°C day-1).

Global solar radiation, which plays a key role in plant growth and development, also showed different
cumulative values throughout each series. Regarding the MP1 data, in the �rst series the accumulated
solar radiation was 2,177.3 MJ m-2 (Fig. 4A) in the second 2,058.6 MJ m-2 (Fig. 4B) and in the third
1,952.4 MJ m-2 (Fig. 4C). The difference from one cycle to the other was approximately 5%, and from the
�rst to the third, the radiant energy reduction was 10.33%.

For MP2, the average air temperature in the �rst series was 24.2°C (Fig. 5A), with a positive trend
throughout the cycle, unlike the second (Fig. 5B) and third (Fig. 5C) series, both with a trend of temporal
reduction of the average air temperature, which presented average values of 24.1°C and 23.0°C.

Regarding MP2, the global solar radiation accumulated in the �rst (Fig. 5A) and second (Fig. 5B) series
were similar, reaching 2,573.3 and 2,502.1 MJ m-2, respectively. In the third series (Fig. 5C), despite the
lower precipitation volume [Figure 3(3a)] and, therefore, probably a longer period of clear sky, the
reduction of the photoperiod and consequently the availability of radiant energy (SR) resulted in 2,233.1
MJ m-2 accumulated, an average of 12% less energy radiant compared to the two previous series.

The average temperature values of the three series, the MP1 (Fig. 4) and MP2 (Fig. 5) grids are favorable
to the growth and development of the soybean crop (Farias et al., 2007). Critical temperatures were also
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not observed which, below or above them, could affect the growth and development of soybeans.

The reduction of accumulated global solar radiation due to delayed sowing and the reduction of the
development cycle may result in a reduction in the yield potential of the soybean crop (PP). Zanon et al.
(2016) describe, for Rio Grande do Sul state, Brazil, that the delay in soybean sowing exposes the plants
to reduced air temperature and solar radiation (Figs. 4 and 5), especially during reproductive stages,
which explains the yield loss of 26 kg ha− 1 day− 1 for crops sown from November 4, considering crops
without water limitation.

Based on the set of models, as recommended by Asseng et al. (2013) and Martre et al. (2015), estimated
potential yield (PP, kg ha-1), attainable yield (PA, kg ha-1), and relative yield loss (Yg, %) for areas of
1,000.0 ha (MP1) and 36.0 ha (MP2) were obtained (Tables 1 and 2). The simulations, carried out
individually for each of the nine precipitation measurement points in the MP1 and MP2 grids (Fig. 1),
aimed to isolate the effect of precipitation variability on soybean PA and Yg. Therefore, the soil of the two
areas was considered homogeneous in terms of water storage capacity, a factor that would affect the
simulations, reducing or increasing the deviations between yield data regardless of precipitation.

Regarding MP1, as the simulations did not consider the spatial variability of air temperature and global
solar radiation (Fig. 4), using the same set of daily data for all nine points (Fig. 1), PP was variable only
between sowing dates. The simulation performed for the sowing date of November 15, 1993, resulted in a
PP of 5,654.3 kg ha-1. The results also showed a reduction in PP with the delay in soybean sowing, with
5,320.0 kg ha-1 and 4,594.3 kg ha-1 for the simulations started on December 15, 1993, and January 15,
1994, respectively.

It should be noted that the delay in sowing and consequent reductions in cycle lengths led to a decrease
in the availability of radiant energy (Fig. 4), the main cause of the decrease in PP (Battisti et al. 2013).
The PP values are similar to the PP values described by Battisti (2016) and Silva (2018) for Piracicaba
(SP), for the same sowing period.

For MP1, the PA (Table 1), conditioned to water availability, re�ected the variability of precipitation among
the nine measurement points of MP1 (Fig. 2) in the three series. PA data for simulated sowing on
November 15, 1993 point to an average of 3,951.2 kg ha-1, with a standard deviation of 132.8 kg ha-1.
Similar PA variability was observed for the other two sowing dates, when the average PA was 4,005.9 (± 
160.8) kg ha-1 for December 15, 1993, and 3,261.5 (± 127.6) kg ha-1 for January 15, 1994.
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Table 1
Accumulated precipitation (AC, mm), attainable yield (PA), and relative yield loss (Yg) simulated for
soybean, for each point of the pluviometry grid MP1. Theoretical sowing dates: November 15, 1993,

December 15, 1993, and January 15, 1994. Grouping results of the FAO – Agroecological Zone,
MONICA, and DSSAT models.

  Nov 15, 1993 Dec 15, 1993 Jan 15, 1994

Point AC

(mm)

PA

(Kg ha− 1)

Yg

(%)

AC.

(mm)

PA

(Kg ha− 1)

Yg

(%)

AC

(mm)

PA

(Kg ha− 1)

Yg

(%)

P1 605.2 3752.2 33.6 583.4 3927.0 26.2 534.9 3250.5 29.2

P2 628.1 4101.9 27.5 566.1 4151.5 22.0 495.4 3277.2 28.7

P3 616.1 3951.6 30.1 595.8 3982.9 25.1 564.1 3372.4 26.6

P4 623.9 3908.9 30.9 571.6 3846.3 27.7 525.0 3036.1 33.9

P5 660.3 4000.3 29.3 599.4 3924.3 26.2 532.8 3180.6 30.8

P6 645.6 4067.3 28.1 615.4 4076.1 23.4 571.7 3324.3 27.6

P7 645.8 4006.5 29.1 617.1 4048.6 23.9 554.3 3208.8 30.2

P8 671.0 4043.0 28.5 641.2 4309.6 19.0 595.7 3488.4 24.1

P9 615.3 3728.7 34.1 585.8 3787.2 28.8 529.5 3215.6 30.0

Mean 634.6 3951.2 30.1 597.3 4005.9 24.7 544.8 3261.5 29.0

SD 22.3 132.8 2.3 24.0 160.8 3.0 29.8 127.6 2.8

CV 3.5 3.4 7.8 4.0 4.0 12.2 5.5 3.9 9.6

SD is the standard variation; CV is the coe�cient of variation (%).

The average attainable yield obtained for the December 15, 1993 sowing was higher for earlier sowings,
even with a lower cycle and potential yield (Table 1). It turns out that the water condition, due to the
temporal distribution of precipitation (Fig. 2), coinciding with the stages of reproductive development,
was better in this second series.

In the simulated cycle from November 15, 1993, the average relative yield loss (Yg) was 30.1%, with a
standard deviation of 2.3% to the nine sample points of MP1 (Table 1). In this �rst series, the mean
precipitation was 634.6mm, with a standard deviation of 22.3mm (Table 1). In this case, using the results
of the coe�cient of variation, it is observed that the achievable yield variability, based on the coe�cient
of variation of 3.4%, re�ected the variability of precipitation, which had a CV of 3.5%.

The simulated yield losses (Yg) for the third (latest) production cycle of MP1 were intermediate to the �rst
two, with averages of 29% (Table 1). Despite the standard deviation of precipitation (29.8 mm) and CV
(5.5%) being greater than those observed for the �rst two production cycles (Fig. 2), the coe�cient of
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variation of PA (3.9%), was not the highest (Table 1). This result reiterates that there is no direct
relationship between accumulated precipitation and PA for a production cycle, because even with greater
variability, the effects of a dry period depend on the phenological stage of the crop, with greater or lesser
in�uence depending on the plant susceptibility to water stress.

Table 2
Accumulated precipitation (mm), attainable yield (PA), and relative yield loss (Yg) simulated for

soybean, for each point of the MP2 pluviometry grid. Theoretical sowing dates: November 15, 2016,
December 15, 2016, and January 15, 2017. Grouping results of the FAO – Agroecological Zone,

MONICA, and DSSAT models.

  Nov 15, 2016 Dec 15, 2016 Jan 15, 2017

Point AC

(mm)

PA

(Kg ha− 1)

Yg

(%)

AC.

(mm)

PA

(Kg ha− 1)

Yg

(%)

AC

(mm)

PA

(Kg ha− 1)

Yg

(%)

P1 701.4 4275.3 33.7 655.2 3712.3 37.9 524.3 2449.6 49.9

P2 742.5 4467.8 30.7 707.7 4116.3 31.2 592.1 2765.3 43.7

P3 695.7 4266.7 33.8 646.7 3673.2 38.3 516.2 2424.0 50.5

P4 673.2 4249.3 34.0 621.9 3624.9 39.1 500.9 2327.5 52.3

P5 698.3 4220.4 34.4 645.7 3606.4 39.4 529.9 2386.7 51.4

P6 702.7 4215.5 34.5 643.6 3583.4 39.7 521.5 2321.0 52.7

P7 688.7 4239.3 34.1 637.9 3544.2 40.4 517.2 2291.2 53.3

P8 699.2 4210.8 34.6 645.4 3558.7 40.1 526.8 2328.8 52.5

P9 651.1 4077.8 36.5 598.7 3392.4 42.9 483.8 2234.4 54.2

Mean 694.8 4247.0 34.0 644.8 3645.8 38.8 523.6 2392.0 51.2

SD 24.5 101.0 1.5 29.1 198.3 3.2 29.5 154.9 3.1

CV 3.5 2.4 4.4 4.5 5.4 8.2 5.6 6.5 6.1

SD is the standard variation; CV is the coe�cient of variation (%).

Likewise, simulations based on MP2 data (Table 2) did not include spatial variability in air temperature
and global solar radiation (Fig. 5). The grouping of the models estimated potential yield of 6,366.0 kg ha-

1, 5,964.7 kg ha-1, and 4,942.0 kg ha-1 respectively for the series started on November 15, 2016, December
15, 2016, and January 15, 2017. The PP results for the same sowing dates, as a function of air
temperature and global solar radiation data (Figs. 5), were similar, and again corroborated by the results
described by Battisti (2016) and Silva (2018).

The average attainable yield (PA) of the three models (Table 2) once again revealed how a meteorological
element can be a source of yield variability within production areas (O'Neal et al., 2002). The mean PA for
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the �rst series (sowing on November 15, 2016) was 4,247.0 kg ha-1, with a standard deviation of 101.0 kg
ha-1. For the other two series analyzed, the results showed the same trend, with a PA of 3,645.8 (± 198.3)
kg ha-1 for the second and 2,392.0 (± 154.9) kg ha-1 for the third series (Table 2).

The simulated yield losses (Yg) as a function of water availability for MP2 (Table 2) were higher than
those determined for MP1 (Table 1) for all sowing dates. For the �rst sowing date (November 15) the
MP2 grid loss was 34%, increasing to 38.8% and 51.2% for simulated sowing dates on December 15,
2016, and January 15, 2017, respectively (Table 2). Despite reductions in cycle length with sowing delay,
the reduction in accumulated precipitation, which extrapolated the reductions in cycle length and,
logically, the temporal distribution over the production cycle (Fig. 3), were responsible for the greatest
yield losses registered in the MP2.

Analyzing the attainable yield data from each sampling point of the two grids for all three-production
series analyzed (Tables 1 and 2), it is reiterated that there is no direct relationship between the
accumulated precipitation and the attainable yield of a production cycle of soybean crop (Fig. 6). Based
on the approach proposed by van Ittersun et al. (2013), from a “boundary layer”, elucidate the yield
differences (Ya) due to the temporal distribution of rainfall over oilseed cultivation.

Purcell and Specht (2004) point out that not only the total amount but also the distribution of water
supply during the growing season (Figs. 2 and 3) can explain the differences in soybean yield. This
interpretation is extremely important in the analysis of the relationship between yield and the
management of soybean production areas (Grassini et al. 2015; Zanon et al. 2016), especially in areas
conducted with precision agriculture, where it is important to understand yield variability.

The spatial variability of yield associated with precipitation (Tables 1 and 2, Fig. 6) is jointly analyzed
with management, soil, topography, pests, and diseases (Paz et al. 1998; Kravchenko and Bullock 2002;
Kravchenko et al. 2005; Verhulst et al. 2009) has shown that in well-managed areas, water availability is
the main cause of yield loss.

4. Conclusions
The objective of this article was to analyze the uncertainties regarding the homogeneity of precipitation in
hypothetical soybean production areas, with 1,000.0 ha and 36.0 ha. The motivation for the work was to
analyze how the meteorological factor can be related to yield variability in production areas. Therefore,
data from two experiments were used, both with nine rain gauges within an area of 1,000.0 ha (MP1) and
36.0 ha (MP2). The study determined the variability of precipitation and the possible effect of this
variability on soybean yield, based on simulations, for three sowing dates. The precipitation data
described the variability between the measurement points, as well as the differences between the
different simulated sowing dates. Soybean production was simulated by three models, using the average
of the set. The effect of rainfall variability on attainable yield was determined from standard deviation
and CV. From the MP1 data, a standard deviation of up to 160 kg ha-1 was observed for attainable yield.
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For MP2, the standard deviation to the average attainable yield reached 198.3 kg ha-1, solely due to
precipitation variability. The results also showed the in�uence of the temporal variability of precipitation
on the phenology of the soybean crop, with greater or lesser in�uence depending on the susceptibility of
the crop to water stress.
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Figures

Figure 1

Location of the study area in Piracicaba, state of São Paulo, Brazil, and positioning of the two
pluviometry grids (MP1 and MP2) in the ESALQ/USP area.
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Figure 2

Daily and accumulated precipitation during the three series of the MP1 grid, with 130 [MP1(1a)], 120
[MP1(2a)], and 110 [MP1(3a)] days, respectively measured from 11/15/1993, 12/15/1993 and
01/15/1994, coinciding with the soybean production season in Piracicaba (SP).
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Figure 3

Daily and accumulated precipitation during the three series of the MP2 grid, with 130 [MP2(1a)], 120
[MP2(2a)], and 110 [MP2(3a)] days, respectively measured from 11/15/ 2016, 12/15/2016 and
15/01/2017, coinciding with the soybean production seasons in Piracicaba (SP).
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Figure 4

Average air temperature and global solar radiation accumulated over the series related to soybean
production cycles of MP1, measured from 11/15/1993 (A), 12/15/1993 (B), and 01/15/1994 (C).
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Figure 5

Average air temperature and global solar radiation accumulated over the series related to soybean
production cycles of MP2, measured from 11/15/2016 (A), 12/15/2016 (B), and 01/ 15/2017 (C).
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Figure 6

Correlation between attainable soybean yield (Ya) and accumulated precipitation in the cropping cycle,
referring to the simulations of each sampling point in the MP1 and MP2 grids for the three analyzed
soybean production series. The solid line represents the “boundary layer” for attainable yield (Ya).


