

Innovating Energy Technology

Confidential

Basics of Understanding Datasheet

June, 2016 Device Application Technology Dept. Semiconductors Div, Sales Group Fuji Electric. Co., Ltd.

Get Datasheets from the WEB

Datasheets can be downloaded from Fuji Electric Semiconductor web site.

www.fujielectric.com/products/semiconductor/

Confidential

■ Absolute Maximum Ratings (at T_c= 25°C unless otherwise specified)

Confidential

■ Absolute Maximum Ratings (at T_c= 25°C unless otherwise specified)

 \rightarrow See also "Short circuit capability" and "RBSOA"

Maximum Power Dissipation

■ Absolute Maximum Ratings (at T_c= 25°C unless otherwise specified)

	Items	Symbols	Cond	litions	Maximum Ratings	Units	
Collector	-Emitter voltage	V _{CES}			1200	V	
Gate-Em	itter voltage	V _{GES}			±20	V	
		L	Continuous	T _c =25°C	750		
		"C	Continuous	T _c =100°C	600		
Collector	current	l _c pulse	1ms		1200	A	
		-I _C			600		
	-	-I _C pulse	1ms	1200			
Collector	power dissipation	Pc	1 device		3750	W	
Junction	temperature	Tj			175		
Operating	g junction temperature	т	D = T	_ 25	$(0 \cap) / D$		
(under sv	vitching conditions)	" jop	「c-(」 _{j(r}	nax) — 🔼	, C	:h(j-c)	
Case terr	perature	Tc	117		1001	275	
Storage t	emperature	T _{stg}	= (1/	5 – 25)	/ 0.04 =	375	
Isolation	between terminal and copper base (*1)	V	AC: 1min		2500	VAC	
voltage	between thermistor and others (*2)	⊻ iso	AC: Imin.		2000	VAC	
Screw	Mounting (*3)	-			3.5	Nm	
Torque	Terminale (*4)				4.5		

(*1) All terminals should be connected together during the test.

(*2) Two thermistor terminals should be connected together, other terminals should be connected together and shorted to base plate during the test.

(*3) Recommendable Value : 2.5-3.5 Nm (M5)

(*4) Recommendable Value : 3.5-4.5 Nm (M6)

Absolute Maximum Ratings (at T_c= 25°C unless otherwise specified)

(*4) Recommendable Value : 3.5-4.5 Nm (M6)

T_{stg} : Temperature range for storage or transportation, when there is no electrical load on the terminals

Below table shows example of the allowed temperature ranges to operate in.

Never exceed $T_{j(max)}$.

		Т _{јор}	^T j(max)
Maximum t	emperature	150°C	175°C
	Static	\checkmark	\checkmark
	Switching	\checkmark	\checkmark
Guaranteeu	RBSOA	\checkmark	-
	SCSOA	\checkmark	-
Operating	condition	Continuous regular load	Non-cyclic overload

Example: Overload condition

Regular operation \rightarrow Overload \rightarrow Regular operation

Screw Torque

Absolute Maximum Ratings (at T_c= 25°C unless otherwise specified)

(*4) Recommendable Value 2 5 4 5 Nm (Me)

Please refer to mounting instructions

www.fujielectric.com/products/semiconductor/model/igbt/mounting/

Soldering Condition

Recommended soldering conditions for Fuji IGBT module products

1. Products range

All of Fuji IGBT products

2. Applicable part

Tab or pin type Control (sub) terminals of standard product All terminals of SIL, PIM-C product All pin terminals of Econo-series product

3. Recommended soldering condition at the terminal

260 +- 5C / 10 +-1 sec. (by Solder bath)

350 +- 10C / 3 +- 0.5 sec. (by Soldering iron)

Ref.No.: MT5F15147

Current Characteristics

Electrical characteristics (at T_j= 25°C unless otherwise specified)

ltama	Sumbala	Conditions		Characteristics			Linita
items	Symbols	Conditio	ons	min.	typ.	max.	Units
Zero gate voltage Collector current	I _{CES}	V _{GE} =0V, V _{CE} =12	200V	-	-	3.0	mA
Gate-Emitter leakage current	I _{GES}	V _{EE} =0V, V _{GE} =±20V		-	-	600	nA
Gate-Emitter threshold voltage	$V_{GE(th)}$	V _{CE} =20V, I _C =60	0mA	6.0	6.5	7.0	V
	V		T _j =25°C	-	2.65	3.10	
	(terminal)		T=125°C	ollocto		opt wi	th 70
Collector-Emitter		V _{GE} = 15V	CES	Unecic			ui ze
saturation voltage	V _{CE(sat)}	I _C = 600A	when a	specif	fic coll	ector-	emit
	(cnip)		T _j =150°C	-	2.25	-	-
Internal gate resistance	R _{G(int)}	-		-	1.25	-	Ω
Input capacitance	Cies	V_{CE} =10V, V_{GE} =0	V, f=1MHz	-	48	-	nF
	t _{on}			-	550	-	
Turn-on time	t _r	V_{cc} = 600V		ate to	emitte	er curr	rent
	t _{r(i)}	V_{GE} = ±15V	GES		Chine		nsec
Turn-off time	t _{off}	L _s = 80nH	when a	specif	fic gate	e-emit	ter v
	t _ŕ			-	110		
	V-		T _j =25°C	-	2.50	3.00	_
	(terminal)		T _j =125°C	-	2.65	-	
Forward on voltage	(terrinical)	$V_{GE} = 0V$	T _j =150°C	-	2.60	-	V
n orward on voltage		I _F =600A	Tj=25°C	-	1.70	2.15	V
	V _F		Tj=125°C	-	1.85	-	
	(cnip)		T _i =150°C	-	1.80	-	
Reverse recovery time	trr	I _F =600A	1 /	-	200	-	nsec
Thermister Desistence	P	T=25°C		-	5000	-	0
Thermistor Resistance	K	T=100°C		465	495	520	
Thermistor B value	В	T=25/50°C		3305	3375	3450	K

Voltage Characteristics

Electrical characteristics (at T_j= 25°C unless otherwise specified)

VCE(th) : Th	reshold	gate-emi	tter volta	age at	which	ics	Units	If gate-voltage exceeds $V_{GE(th)}$ by			
				0	typ .	ma		malfunction of circuit etc, IGBT			
Collector cu	rrent sta	rt to flow	1200V		-	3.0	mA	will be erroneous ON.			
Gate-Emitter leakage current	I _{GES}	V _{CE} =0V, V _{GE} =	±20V	-	-	600	nA				
Gate-Emitter threshold voltage	V _{GE(th)}	V _{CE} =20V, I _C =	600mA	6.0	6.5	7.0	V				
			T _j =25°C	-	2.65	3.10					
	V _{CE(sat)}		Tj=125°C	-	3.00	-	1				
Collector-Emitter	(terminal)	V _{GE} = 15V	T _j =150°C	-	3.05	-	1 .				
saturation voltage		I _c = 600A	Tj=25°C	-	1.85	2.30	1 ^v				
	V _{CE(sat)} (chip)		T _j =125°C	-	2.20	-	1				
		Ν	T _j =150°C	-	2.25	-	1				
Internal gate resistance	R _{G(int)}	-		-	1.25	-	Ω				
Input capacitance	Cies	V _{CE} =10V, V _{GE}	=0V, f=1MHz		48		nF				
	t _{on}		E(sat)	/ 🛛 : Sa	turatio	n valu	e of	Gate-emitter voltage of IGBT or			
Turn-on time	$t_{\rm cc}$ $V_{\rm cc}$ for word voltage of $\Gamma M/D$ at a specific condition										
	t _{r(i)}	V _{GE} 7 ±10	rwaru vo	ntage	OFVVL	Jalas	spec				
Turn-off time	L _{off}	U _s = 80nH		-	1050	-	-				
	Lf		T-25°C		2.50	2.00					
	VF		$T_{j}=25^{\circ}C$	-	2.50	3.00	-				
	(terminal)		$T_{j} = 125 \text{ C}$	-	2.00	-	-	Use these values for power			
Forward on voltage	└───┥	$V_{GE} = 0V$	T_25°C	-	2.00	-	- v	loss calculation			
	V _F (chip)	I _F = 600A	$T_{j}=25$ C	-	1.70	2.15	-				
			T_125 C	-	1.00	-	-				
Reverse recovery time	Ť	1-=6004	1 _j =150 C	-	200	-	nsoc	2			
The verse recovery tille	4rr	T=25°C		_	5000	_	11360				
Thermistor Resistance	R	T=100°C		465	495	520	Ω				
Thermistor B value	В	T=25/50°C		3305	3375	3450	K				

IGBT Output Characteristics

IGBT Output Characteristics

Fuji IGBT has positive temperature coefficient. High $T_i \rightarrow$ High $V_{CE(sat)}$

This feature is good for paralleling of IGBT modules.

FWD Output Characteristics

Output Characteristics MOSFET vs IGBT Fuji Electric

Electrical Characteristics

■ Electrical characteristics (at T_j= 25°C unless otherwise specified)

ltems	Symbols	Condi	tions	Cl	naracterist	ics	Units		
Zero gate voltage Collector current Gate-Emitter leakage current Gate-Emitter threshold voltage	C _{ies} : Gat the gate a collector Use the C	e-emitter and emitt and emit Q _G charact	capacita er as we ter short teristics f	ance, II as b ed in for dr	when a betweer AC. ive circ	n speci n the c uit des	fied colle sign,	voltage is applie ctor and emitter because input o	ed between r, with the capacitance
Collector-Emitter	(terminal)	$V_{GE} = 1$	T _j =150°C	lor-E	3.05	voitage	e.		
saturation voltage	V _{CE(sat)}	I _C =600A	T _j =25°C T _i =125°C	-	1.85 2.20	2.30			
Internal gate resistar	(chip)		T _j =150°C	-	2.25	-	0		
Input capacitance	Cies	V _{CE} =10V, V _{GE}	=0V, f=1MHz	-	48	-	nF		
Turn-on time	t _{on}	V _{cc} = 600V	I _c = 600A	- - C	550 180 120	-	nsec		
Turn-off time	Gat	e ply	CG	c –	050	C.	=	$C_{cr} + C_{cr}$	
Forward on voltage	(t Gate dr	Ninimize this a			С _{се} 2.50 2.65 2.60 1.70 1.85 1.80	C_r	es res =	C _{GC}	
Reverse recovery tin	ne	- Ontional	 □+	Ε	200	C	=	$C_{\alpha \alpha} + C_{\alpha \alpha}$	
Thermistor Resistant	ce	negative gat	e]	000 495	_ ~ (bes	$\sim_{\rm CE}$ · $\sim_{\rm GC}$	
Thermistor B value			ge	0000	J375	3450	K		

Gate Charge(Q_G) Characteristics

Definition of Switching Time

Electrical characteristics (at T_i= 25°C unless otherwise specified) ON Conditio 90% OFF Symbols Items trr V_{CE}=0V, V_{GE}=±20V Irp 90% 90% 10% I_C 10% 10% $V_{GE} =$ tr(i) tf tr toff ton t_{on} 550 --Turn-on time t, V_{CC}= 600V I_C= 600A 180 -- V_{GE} = ±15V $R_{G} = 0.62\Omega$ 120 t_{r(i)} -nsec L_s= 80nH t_{off} 1050 --Turn-off time tr 110 --T;=25 C 2.50 The value indicated on a catalog is a standard gate resistance value. This is not manufacturer's recommended value. 200 Reverse recovery time trr I_F=600A nsec --K

Switching Losses

Switching Loss vs Gate Resistance

Necessary data for loss calculation, cooling design (thermal rating). Switching loss vs. Gate resistance (typ.) /cc=600V, Ic=600A, VGE=±15V, Tj=125°C, 150°(400 , E_{off}, E_{rr} [mJ/pulse] Tj=125°C Tj=150°C Switching loss: Eon, B E_{off} 0 10 100 0 Gate resistance: $R_G [\Omega]$

Turn-on & Turn-off Measurement

For Fuji Electric

Lower arm turn-on and turn-off measurement

Turn-on Waveform (IGBT)

Confidential

Turn-off Waveform (IGBT)

Definition of Switching Loss

Reverse Recovery Measurement

Reverse Recovery Waveform (FWD)

Confidential

Definition of Switching Loss

5. Thermal resistance characteristics

Itoms	Symbole	Conditions	Ch	Unite		
items	Symbols	Conditions	min.	typ.	max.	Units
Thermal resistance	P	IGBT	-	-	0.04	
(1device)	th(j-c)	FWD	-	-	0.06	°C/W
Contact thermal resistance (1device) (*1)	R _{th(c-f)}	with thermal compound	-	0.0167	-	0/00

(*1) This is the value which is defined mounting on the additional cooling fin with thermal compound.

R_{th(j-c)}: Thermal resistance between the junction (chip) and the case (bottom of base plate)

R_{th(c-f)} : Thermal resistance between the case and the surface of heatsink when the IGBT is mounted on a heat sink with a thermal grease

ightarrow See also "Definition of Thermal Model"

Thermal Resistance Junction to Case

For Fuji Electric

Necessary data for cooling design (thermal rating).

Junction to case thermal resistance value is almost saturated within one second.

 $R_{\mathrm{th(j-c)}}(\infty)$

Thermal resistance at steady-state

Thermal resistance value is inversely proportional to die size.

FWD thermal resistance is larger than IGBT.

 → Be careful in case of rectifier usage (PWM-converter etc.) that require the high duty to the diode.

Transient Thermal Impedance

Thermal resistance curve $R_{th(j-c)}(t)$ is represented by Foster Equivalent Network Model.

Foster parameters (r_n , τ_n) are provided in datasheet.

Definition of Thermal Model

Case temperature T_c : Surface of Cu base plate under the chip Heat sink temperature T_f : Surface of the heatsink under the chip

NTC - Thermistor

Electrical characteristics (at T_j= 25°C unless otherwise specified)

NTC - Thermistor

For Fuji Electric

RBSOA, SCSOA

Fuji defined V_{CE} value at the module terminal by using Sense C1 and Sense C2E1 for upper arm and Sense C2E1 and Sense E2 for Lower arm.

Switching characteristics of V_{CE} also is defined between Sense C1 and Sense C2E1 for Upper arm and Sense C2E1 and Sense E2 for Lower arm.

The maximum voltage is reduced at the higher current region because the chip voltage is higher than the terminal voltage due to the internal stray inductance L and the switching current di/dt (V = L*di/dt).

Reverse Bias Safe Operating Area (RBSOA)

Necessary data for designing **RBSOA** the drive condition and the snubber main circuit. Reverse bias safe operating area (max.) +VGE=15V, -VGE=15V, Rg=0.62Ω, Tj=150°C 1400 1200 Current-Voltage switching locus during turn off operation (reverse bias is applied). 1000 The locus may not exceed the RBSOA. Collector current. I_c [A] Shut down current 800 w/ snubber (2) (1) 600 w/o snubber **IC** 400 (3)VCE 200 (4) 0 500 1000 1500 Collector-Emilter voltage: V_{CE} [V] DC bus voltage (3)(1) (2)(4) Turn-off spike voltage

Confidential

w/o snubber

FWD SOA: P_{max}

These figures show Fuji's definition of FWD SOA (Safe Operating Area) and P_{max} . Guaranteed FWD SOA is shown in datasheet or spec sheet. Locus of V_{CF} and I_F during reverse recovery may not exceed the the FWD SOA.

Confidential

Short Circuit Capability (V-series)

Vge: higher \rightarrow SC current: larger \rightarrow SC capability: shorter

IGBT Test Procedures

- Short C and E terminal
- Measure leakage current or resistance between G and E terminal.

If the device is normal, the leakage current should be within a few hundred nano-Amps. (or several tens MW)

- Short G and E terminal
- Measure leakage current or resistance between C and E terminal.

If the device is normal, the leakage current should be within the maximum ICES in the datasheet. (or several tens MW)

Confidential

For Fuji Electric Innovating Energy Technology

www.fujielectric.com/products/semiconductor/

- Semiconductors Product Catalog: www.fujielectric.com/products/semiconductor/catalog/
- Application Manuals

www.fujielectric.com/products/semiconductor/model/igbt/application/

Design Support

www.fujielectric.com/products/semiconductor/technical/

IGBT Loss Simulation Software

www.fujielectric.com/products/semiconductor/model/igbt/simulation/