
Redpaper

Front cover

Integration of IBM Aspera Sync with
IBM Spectrum Scale
Protecting and Sharing Files Globally

Nils Haustein

Jose M Gomez

Benjamin C Forsyth

IBM Redbooks

Integration of IBM Aspera Sync with IBM Spectrum
Scale

March 2019

REDP-5527-00

© Copyright International Business Machines Corporation 2019. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (March 2019)

This edition applies to Version 5 of IBM Spectrum Scale (product number 5641-DA1, DA3, or DA5) and
Version 3, Release 9 of IBM Aspera (product number 5737-F70).

This document was created or updated on March 29, 2019.

Note: Before using this information and the product it supports, read the information in “Notices” on page v.

Contents

Notices .v
Trademarks . vi

Preface . vii
Authors. vii
Now you can become a published author, too! . viii
Comments welcome. viii
Stay connected to IBM Redbooks . ix

Chapter 1. IBM Aspera Sync and IBM Spectrum Scale overview 1
1.1 IBM Aspera Sync . 2
1.2 IBM Spectrum Scale . 2

1.2.1 Extended attributes . 3
1.3 Differentiation with IBM Spectrum Scale Active File Management 3
1.4 Performance measurements. 6

Chapter 2. Setting up IBM Aspera Sync with IBM Spectrum Scale 9
2.1 Overview . 10
2.2 Preparation . 10
2.3 How async works . 11

2.3.1 Async example . 11
2.3.2 Sync Database . 12
2.3.3 Sessions . 13
2.3.4 Replication modes . 14
2.3.5 Control overwrites . 14
2.3.6 Control deletion on target . 14
2.3.7 Using file lists . 15
2.3.8 Cluster awareness . 16

2.4 How ascp works . 17
2.4.1 Ascp example . 18
2.4.2 Transfer modes. 19
2.4.3 Control overwrites . 19
2.4.4 Control deletes on target. 20
2.4.5 Different path names on source and target. 20
2.4.6 Using file lists and file pair lists . 21
2.4.7 Cluster awareness . 25

2.5 IBM Spectrum Scale configuration . 25

Chapter 3. Using IBM Aspera Sync with IBM Spectrum Scale 27
3.1 IBM Spectrum Scale policy engine considerations with IBM Aspera 28
3.2 Async without policy engine . 29
3.3 Ascp without policy engine . 30
3.4 Integration with the IBM Spectrum Scale policy engine . 30

3.4.1 IBM Spectrum Scale policy engine . 31
3.4.2 Integration with async . 37
3.4.3 Integration with ascp . 41

3.5 Integration with Hierarchical Storage Management . 45
3.5.1 Async with HSM on source . 46
3.5.2 Async with HSM on target. 49
© Copyright IBM Corp. 2019. All rights reserved. iii

3.6 Integration with immutable files . 51
3.7 Integration with IBM Spectrum Scale Snapshots . 54

3.7.1 Considerations with ascp and snapshots . 56
3.7.2 Using the policy engine with snapshots . 57

Chapter 4. Summary . 59
4.1 Async or ascp standalone . 60
4.2 Async or ascp integrated with the policy engine . 60
4.3 Stand-alone LIST policies or external policy script . 60
4.4 Use of snapshots . 61
4.5 Use cases . 61

4.5.1 File sharing . 61
4.5.2 File migration . 61
4.5.3 Disaster recovery . 62

Related publications . 63
IBM Redbooks . 63
Online resources . 63
Help from IBM . 64
iv Integration of IBM Aspera Sync with IBM Spectrum Scale

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2019. All rights reserved. v

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

Redbooks (logo) ®
Aspera®
FASP®
GPFS™

IBM®
IBM Spectrum™
IBM Spectrum Archive™
IBM Spectrum Protect™

IBM Spectrum Scale™
Linear Tape File System™
Redbooks®
Redpaper™

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
vi Integration of IBM Aspera Sync with IBM Spectrum Scale

http://www.ibm.com/legal/copytrade.shtml

Preface

Economic globalization requires data to be available globally. With most data stored in file
systems, solutions to make this data globally available become more important.

Files that are in file systems can be protected or shared by replicating these files to another
file system that is in a remote location. The remote location might be just around the corner or
in a different country. Therefore, the techniques that are used to protect and share files must
account for long distances and slow and unreliable wide area network (WAN) connections.

IBM® Spectrum Scale is a scalable clustered file system that can be used to store all kinds of
unstructured data. It provides open data access by way of Network File System (NFS); Server
Message Block (SMB); POSIX Object Storage APIs, such as S3 and OpenStack Swift; and
the Hadoop Distributed File System (HDFS) for accessing and sharing data.

The IBM Aspera® file transfer solution (IBM Aspera Sync) provides predictable and reliable
data transfer across large distance for small and large files. The combination of both can be
used for global sharing and protection of data.

This IBM Redpaper™ publication describes how IBM Aspera Sync can be used to protect and
share data that is stored in IBM Spectrum™ Scale file systems across large distances of
several hundred to thousands of miles. We also explain the integration of IBM Aspera Sync
with IBM Spectrum Scale™ and differentiate it from solutions that are built into IBM Spectrum
Scale for protection and sharing. We also describe different use cases for IBM Aspera Sync
with IBM Spectrum Scale.

Authors

This paper was produced by a team of specialists from around the world working with the IBM
Redbooks, Poughkeepsie Center.

Nils Haustein is a Senior Technical Staff Member at IBM Systems group and is responsible
for designing and implementing backup, archiving, file, and Object Storage solutions in
EMEA. He co-authored the book Storage Networks Explained. As a leading IBM Master
Inventor, he has created more than 160 patents for IBM and is a respected mentor for the
technical community worldwide.

Jose M Gomez is a Senior Software Engineer at IBM Aspera, part of the IBM Hybrid Cloud
group. He has 15 years of experience working in different systems management and
networking products.

Benjamin C Forsyth is a Director of Core Engineering at IBM Aspera in Emeryville, CA, US.
He has 23 years of experience in network applications development. He has worked at IBM
for 5 years. His areas of expertise include software development and systems management,
specializing in high-speed network data transfer.
© Copyright IBM Corp. 2019. All rights reserved. vii

Thanks to the following people for their contributions to this project:

Larry Coyne
IBM Redbooks® - IBM Systems Worldwide Client Experience Centers, Poughkeepsie Center

Abhishek Dave
Sandeep R Patil
Venkat Puvvada
Wayne Sawdon
Carl Zetie
IBM Systems

Sudhir Saripalli
Eric Schorger
IBM Hybrid Cloud

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an IBM Redbooks residency project and help write a book
in your area of expertise, while honing your experience using leading-edge technologies. Your
efforts will help to increase product acceptance and customer satisfaction, as you expand
your network of technical contacts and relationships. Residencies run from two to six weeks
in length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
viii Integration of IBM Aspera Sync with IBM Spectrum Scale

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface ix

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

x Integration of IBM Aspera Sync with IBM Spectrum Scale

Chapter 1. IBM Aspera Sync and IBM
Spectrum Scale overview

This chapter gives an overview of IBM Aspera Sync and IBM Spectrum Scale. It describes
how the products complement each other and what differentiates them (IBM Aspera Sync and
IBM Spectrum Scale Active File Management Disaster Recovery). Some in-house
performance measurements also are available that show the benefits of the use of IBM
Aspera Sync for long-distance file transfers.

This chapter includes the following topics:

� 1.1, “IBM Aspera Sync” on page 2
� 1.2, “IBM Spectrum Scale” on page 2
� 1.3, “Differentiation with IBM Spectrum Scale Active File Management” on page 3
� 1.4, “Performance measurements” on page 6

1

© Copyright IBM Corp. 2019. All rights reserved. 1

1.1 IBM Aspera Sync

For all the amazing technological progress that was made in
analytics and cloud, the fundamental challenges of reliably
transferring and distributing large files and volumes of big data at
high speed to locations around the world still persist. In fact, this
big data movement problem is more pervasive and daunting

across industries with the exponential growth of data that is generated globally.

IBM Aspera solutions are designed to help you globally import, distribute, and synchronize
large files and folders directly to and from any major cloud or on-premises storage, without
compromising performance or security. Built on IBM Aspera’s patented FASP® transfer
protocol (which consistently ranks first in every WAN transfer throughput benchmark), IBM
Aspera solutions offer secure, scalable capabilities that can grow with your business.

IBM Aspera invested in the integration with IBM Spectrum Scale to perform file transfers
between file systems that are in different IBM Spectrum Scale clusters in different locations.
The use of IBM Aspera with IBM Spectrum Scale includes the following key benefits:

� Fast and secure file transfer

� Predictable and reliable file transfer times

� Full support for IBM Spectrum Scale extended attributes, including immutability attributes
and Access Control Lists (ACL)

1.2 IBM Spectrum Scale

IBM Spectrum Scale is a software-defined scalable parallel file system that
provides a comprehensive set of storage services. For more information,
see IBM Knowledge Center. It facilitates independent scalability in
performance, capacity, and reliability.

The IBM Spectrum Scale file systems is provided by a set of nodes
(servers) with internal or external storage that is accessed by way of
storage area networks (SAN). Files that are stored in an IBM Spectrum
Scale file system can be accessed concurrently from different nodes.

An IBM Spectrum Scale cluster can provide up to 256 file systems, and these file systems
can be partitioned into file sets. From a user perspective, a file set is a directory in the file
system. From an administrative perspective, a file set can be configured with more functions,
such as snapshots, quota, active file management (AFM), and immutability. Therefore,
instead of creating a snapshot for an entire file system, the administrator can create a
snapshot for a partition of the file system (a file set), which is a directory within the file system.

IBM Spectrum Scale has many features beyond open data access through Network File
System (NFS); Server Message Block (SMB); POSIX; Object Storage APIs, such as S3 and
OpenStack Swift; and the Hadoop Distributed File System (HDFS). These features include
policy-based storage tiering, file encryption and compression, file and command audit
logging, and synchronous and asynchronous replication. Based on its modular design, IBM
Spectrum Scale file systems scale independently in I/O performance and storage capacity.
2 Integration of IBM Aspera Sync with IBM Spectrum Scale

https://www.ibm.com/support/knowledgecenter/en/STXKQY_5.0.1/com.ibm.spectrum.scale.v5r01.doc/bl1ins_intro.htm
https://www.ibm.com/support/knowledgecenter/en/STXKQY_5.0.1/com.ibm.spectrum.scale.v5r01.doc/bl1ins_intro.htm

An IBM Spectrum Scale cluster consists of a set of nodes that provide access to the
underlying storage. This set of nodes can be configured for high availability, which tolerates
outages of a minority of nodes.

Although IBM Spectrum Scale provides integrated ways for protecting and sharing files,
scenarios exists in which these methods cannot be used. In these cases, IBM Aspera Sync
can be integrated with IBM Spectrum Scale to perform the large distance file transfer at the
best achievable speed (for more information, see 1.3, “Differentiation with IBM Spectrum
Scale Active File Management”).

IBM Spectrum Scale provides extended attributes to store other file system metadata. For
example, with NFS version 4 and SMB version 3, IBM Spectrum Scale stores access control
lists (ACL) in extended attributes. IBM Aspera Sync version 3.9 and higher fully supports IBM
Spectrum Scale extended attributes, which are preserved at the target file system.

1.2.1 Extended attributes

IBM Spectrum Scale at its core provides POSIX-compatible file systems. In addition, it
provides extended attributes that include NFSv4 ACLs, immutability flags, retention setting,
user-defined attributes, and system-specific attributes. These attributes are not surfaced
through the POSIX interface; instead, IBM Spectrum Scale provides an API to access and
manages these attributes. For more information, see IBM Knowledge Center.

When a file is copied from a source to a target directory by using standard POSIX commands,
these extended attributes of the file are not preserved on the target. Therefore, a special
integration is required to preserve the files’ extended attributes at the target.

IBM Aspera Sync at version 3.9 and higher incorporates support for IBM Spectrum Scale
extended attributes. In particular, IBM Aspera Sync reads the extended attributes of the file in
the source directory by using the IBM GPFS™ API call gpfs_fgetattr(). It then copies these
attributes as a blob to the target system and applies these attributes to the file storage in the
target directory by using the GPFS API call gpfs_fputattr(). IBM Aspera Sync also
preserves immutability attributes of files that are stored in an immutable file set.

1.3 Differentiation with IBM Spectrum Scale Active File
Management

IBM Spectrum Scale provides the Active File Management function (AFM) that can be used to
protect and share files globally. One of the AFM versions is AFM for Disaster Recovery (AFM
DR), which can be used to replicate files from a source directory to a target directory. For
more information, see IBM Knowledge Center.

AFM DR is closely integrated with IBM Spectrum Scale and can be managed and monitored
through the IBM Spectrum Scale command-line interface (CLI), graphical user interface
(GUI), and the IBM Spectrum Scale management API.

IBM Spectrum Scale AFM DR and IBM Aspera Sync are complementary tools that are used
to replicate files between the file systems of two clusters. IBM Spectrum Scale AFM DR is the
preferred option for a dual site asynchronous replication solution with IBM Spectrum Scale
because it is closely integrated with IBM Spectrum Scale.
Chapter 1. IBM Aspera Sync and IBM Spectrum Scale overview 3

https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.1/com.ibm.spectrum.scale.v5r01.doc/bl1adm_intrfce.htm
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.1/com.ibm.spectrum.scale.v5r01.doc/bl1ins_activefilemanagement.htm

Some conditions exist where AFM DR cannot be used, but IBM Aspera Sync can be
implemented. IBM Aspera Sync can be preferred over AFM DR in the following use cases:

� The source directory includes immutable files and their immutability attributes must be
preserved in the target directory. Consider the following points:

– IBM Aspera Sync preserves immutability attributes of files in the target.
– AFM DR does not yet support immutable file sets.

� A hierarchical storage management function (HSM) to tier data to other storage media
(such as IBM Spectrum Archive™, IBM Spectrum Protect™ for Space Management or
IBM Spectrum Scale Transparent Cloud Tiering [TCT]) is configured on the source or the
target IBM Spectrum Scale file system or both.

With IBM Aspera Sync IBM Spectrum Scale, policies can be used to exclude migrated files
from being replicated to avoid unintended recalls.

AFM DR includes limited support for file systems that are managed by HSM. For more
information, see the IBM Community Wikis.

� The distance between the source and the target system is large and the network
connection includes limited bandwidth or noticeable latency.

IBM Aspera Sync is optimized for data transfer across long distances over weak network
connections.

AFM DR is not optimized for file transfer across long distances over weak networks.

� The workload that is running in the source directory can cause overloads for AFM DR.

IBM Aspera Sync does not track changes to files and blocks in the source directory in real
time and cannot become overloaded by too many changes. However, IBM Aspera Sync
transfers entire files. Therefore, even if a small portion of a large file changed, the next
transfer copies the entire large file.

AFM DR tracks all of the changes to files and blocks in the source directory in real time
and transfers only blocks of a file that changed since the last transfer. This feature helps to
save bandwidth, but might cause AFM DR to become overloaded if the changes to files
and blocks are frequent.

� The client is looking for a supported tool to copy files from one IBM Spectrum Scale file
system to another. These file systems can be within the same cluster or they can be on
different clusters.

IBM Aspera Sync is an officially supported tool for copying files, including their attributes
and ACLs from a source directory to a target directory within or across IBM Spectrum
Scale clusters.

Although AFM can also be used to transfer files, including their attributes and ACLs from a
source directory to a target directory within or across IBM Spectrum Scale clusters, it
includes dependencies between the file on the source and on the target. These
dependencies can cause limitations for file operations the target. With IBM Aspera Sync,
files on source and target are independent.

Consider the following points regarding the characteristics of AFM DR:

� AFM DR is an integrated component of IBM Spectrum Scale and is included in the Data
Management Edition license. When AFM DR is configured, operation and monitoring is
included in IBM Spectrum Scale.

� AFM DR includes integrated processes and tools to facilitate failover and failback.

� AFM DR transfers changed blocks and not necessarily the entire file again. For example, if
a 1 MB block changes for a 1 GB file that was transferred, only 1 MB is transferred on the
next cycle.
4 Integration of IBM Aspera Sync with IBM Spectrum Scale

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Tivoli%20Storage%20Manager/page/Configuring%20IBM%20Spectrum%20Scale%20Active%20File%20Management

� AFM DR supports the transfer of extended attributes, but does not support the transfer of
immutability attributes.

� AFM DR automatically creates a snapshot that is generated on the source and the target
directory, which provides a consistent recovery point.

� AFM DR supports secure data transfer through Kerberos.

� AFM DR supports IBM Spectrum Scale compression.

� AFM DR can be configured for high availability by configuring two or more AFM gateways.

� AFM DR tolerates network outages and automatically resumes the replication operation if
the network is available.

� AFM DR always runs in the background and tracks changes in the source directory. For
I/O intensive workload, this feature might cause contentions in the source file system.

� AFM DR is not supported on file set where IBM Spectrum Archive, IBM Spectrum Protect
for Space Management, or IBM Spectrum Scale Transparent Cloud Tiering perform space
management.

� AFM DR requires file set as source and target directories. A file set is partition of the file
system that allows more functions, such as AFM DR. From a user perspective, a file set is
a directory; from an administrator perspective, the file set can be configured with more
properties.

Consider the following points regarding the characteristics of IBM Aspera Sync:

� IBM Aspera Sync supports the transfer of extended attributes, including immutability
attributes.

� IBM Aspera guarantees performance, regardless of transfer distance, file size or volume,
and network conditions.

� IBM Aspera uses checksum to assure file integrity.

� IBM Aspera uses encryption for secure data transfer.

� IBM Aspera Sync supports directories or file sets where IBM Spectrum Archive or IBM
Spectrum Protect for Space Management or IBM Spectrum Scale Transparent Cloud
Tiering perform space management. However, this function requires the integration with
the IBM Spectrum Scale policy engine to identify files that are not migrated.

� IBM Aspera Sync does not require file sets on the source and the target directory.

� IBM Aspera Sync shows the progress of file transfers in the CLI and by way of the optional
IBM Aspera Console.

� IBM Aspera Sync does not create snapshots on the source and the target automatically. It
also does not provide consistent recovery points. However, IBM Aspera Sync can use a
snapshot as the source for the data transfer, which must be created manually.

� When used in standard mode, IBM Aspera Sync searches the source directory to identify
new and modified files that are subject for transfer from the source to the target directory.
IBM Aspera Sync can also be integrated with the IBM Spectrum Scale policy engine,
which prevents searching the source directory.

� IBM Aspera Sync that is integrated with IBM Spectrum Scale can run only on one node for
a single transfer session because it is not cluster-aware. It does not provide high
availability because the session and transfer fail if the node running.

� IBM Aspera Sync sessions must be scheduled and monitored by the administrator
independent of the IBM Spectrum Scale cluster monitoring.
Chapter 1. IBM Aspera Sync and IBM Spectrum Scale overview 5

� Files that are compressed in the source directory are uncompressed before being
transferred and then stored uncompressed in the target directory, unless compression is
specified by using the IBM Aspera Sync command.

The following IBM Aspera Sync use cases are key (for more information, see Chapter 4,
“Summary” on page 59):

� For protecting and sharing files over long distances at predictable and reliable transfer
times

� For copying files, including their immutability attributes from one IBM Spectrum Scale file
system to another

� For migrating files from one file system to another by using the checksum and incremental
synchronization capabilities of IBM Aspera Sync

1.4 Performance measurements

For demonstration purposes, we conducted performance measurements in which we
transferred files from a source IBM Spectrum Scale cluster to a target IBM Spectrum Scale
cluster across a long distance. The distance between these clusters was almost 10,000 km
(5,700 miles).

During these measurements, we compared the performance and standard deviation of
multiple replication sessions between IBM Aspera Sync and the open source tool rsync. For
more information about the standard rsync utility, see this website. For more information
about the rsync patch that works with GPFS extended attributes, see this website.

The source and target clusters were configured on single nodes that are running on a virtual
machine. No performance optimization in IBM Spectrum Scale was done. Each cluster
featured one file system. The cluster in San Francisco, California hosted the source file
system and the cluster in Frankfurt, Germany hosted the target file system. The network
connection between both clusters was based on the IBM internal infrastructure that uses the
internet. This network included multiple firewalls.

An overview of the test setup is shown in Figure 1-1.

Figure 1-1 Test setup

Different test cases were run several times by using IBM Aspera’s async tool and the open
source rsync tool. Each test case transferred several files with a constant file size per test
case.

Storage

Network

A
IBM Aspera sync replication

/gpfs/gpfs_src

A IBM Aspera sync

Storage

Network

A

/ibm/userfs

Single node IBM Spectrum Scale
cluster in San Francisco

Single node IBM Spectrum Scale
cluster in Frankfurt
6 Integration of IBM Aspera Sync with IBM Spectrum Scale

https://rsync.samba.org
https://github.com/gpfsug/gpfsug-tools/tree/master/bin/rsync

As listed in Table 1-1, the first test case transferred several of files with a size of 256 MB. By
using async, this transfer took 48 seconds on average; by using rsync, the transfer took 248
seconds. Therefore, async was five times faster. In addition, the standard deviation of
different test runs was only 2 seconds with async and 142 seconds with rsync.

Table 1-1 Test results of Internal measurements of file transfers between California and Germany

A plot of the performance measurements that correlate the file size and the transfer duration
is shown in Figure 1-2.

Figure 1-2 Async versus rsync standard deviation of transfer size and time

In summary, the transfer speed of async improves almost linearly with increasing file sizes
while rsync can differ significantly. The transfer times that were measured with async are
consistent with a low standard deviation, unlike rsync.

In addition, IBM Aspera Sync supports the transfer of immutable files and their immutability
attributes; rsync does not.

Test case Async duration Rsync duration Speedup

256 MB files 48s (std dev 2 s) 4m 8s (std dev 142 s) 5x

512 MB files 1m 16s (std dev 4 s) 9m 41s (std dev 224 s) 7x

1024 MB files 2m 7s (std dev 6 s) 27m 10s (std dev 192 s) 12x

2048 MB files 3m 55s (std dev 11 s) 56m 57s (std dev 497 s) 14x

0

100

200

300

400

500

600

0

2

4

6

8

10

12

14

16

64M 128M 256M 512M 1024M 2048M
S

ec
on

ds

M
ul

tip
lie

r

Improvement Async Std. dev Rsync Std. dev.

Rsync transfer times can
differ significantly

Async transfer times
remain consistent

Speed improvements increase
with transfer size
Chapter 1. IBM Aspera Sync and IBM Spectrum Scale overview 7

8 Integration of IBM Aspera Sync with IBM Spectrum Scale

Chapter 2. Setting up IBM Aspera Sync with
IBM Spectrum Scale

In this chapter, we describe how the IBM Aspera tools can be integrated with IBM Spectrum
Scale. Also described is the integration with the IBM Spectrum Scale policy engine.

This chapter includes the following topics:

� 2.1, “Overview” on page 10
� 2.2, “Preparation” on page 10
� 2.3, “How async works” on page 11
� 2.4, “How ascp works” on page 17
� 2.5, “IBM Spectrum Scale configuration” on page 25

2

© Copyright IBM Corp. 2019. All rights reserved. 9

2.1 Overview

IBM Aspera Sync version 3.9 and higher supports IBM Spectrum Scale extended attributes
and ACL. With support, IBM Aspera Sync transfers NFSv4 ACLs, user-defined attributes, and
immutability attributes for files and directories from the source file system and applies these
attributes to the files and directories in the target file system. The source and target systems
must be IBM Spectrum Scale clusters that are running the same level of IBM Spectrum Scale
and IBM Aspera Sync.

IBM Aspera Sync includes two tools that are described in this paper: async and ascp. Async
is the comprehensive file synchronization solution (see 2.3, “How async works” on page 11).
It tracks the files and directories it replicated in a pair of Sync databases that is stored in the
source and the target file system. This information is used during the async session to
determine which files must be transferred. It also contains checksum information for files that
were transferred. The underlying transfer of files is done by the ascp tool (see 2.4, “How ascp
works” on page 17).

Ascp transfers files from the source to the target directory by using IBM Aspera’s innovative
file transfer techniques. Async uses ascp’s management API to send and receive files. Ascp
does not identify any files to be transferred; instead, it receives the file names that are to be
transferred as input parameter through its management API interface.

2.2 Preparation

To use IBM Aspera Sync with IBM Spectrum Scale, the IBM Aspera Sync software packages
must be installed and configured on one or more IBM Spectrum Scale cluster nodes of the
source and the target cluster. In addition, the user’s SSH-keys that are used for the file
transfer must be exchanged between the source and the target nodes that are involved in the
file transfer.

IBM Aspera Sync can be installed on one or more nodes of the source and the target cluster.
One IBM Aspera Sync session that replicates files from a source directory to a target
directory is normally established between a pair of IBM Spectrum Scale nodes, including one
node from the source cluster and one node from the target cluster. If multiple IBM Aspera
Sync sessions are run at the same time, multiple pairs of nodes can participate in this transfer
whereby each node pair runs the transfer for one pair of source and target directories.

IBM Aspera Sync can also be used to transfer files within one cluster. In this case, the source
and target directories can be within the same IBM Spectrum Scale file system or in different
file systems. However, source and target directories must be distinct and cannot be
embedded in each other.

Note: The async tool is the central part of IBM Aspera Sync and provides the capability to
asynchronously replicate the data between a source and target directory. It includes all of
the intelligence to identify the files that were created, changed, renamed, or deleted and
orchestrate the transfer by using ascp in the backend.

Note: A single IBM Aspera Sync session can run only on one cluster node of the source
cluster to one cluster node of the target cluster.
10 Integration of IBM Aspera Sync with IBM Spectrum Scale

2.3 How async works

IBM Aspera Sync is started by using the async command that is shown in Example 2-1. Each
run of the async command is an async session. Each async session is denoted by a session
name. For each session name, async creates and maintains a Sync database in the source
and target system that contains information about the file attributes, time stamps, and
checksums. This database is used by async to determine whether a file must be transferred
completely, partially, or not at all (see 2.3.2, “Sync Database” on page 12).

After it is started, async examines the specified source directory (local directory) and
identifies all files and directories that were created, deleted, renamed, and modified since the
last async run for this session by evaluating the time stamps of the files and matching this
information to the Sync Database.

Files are transferred entirely; async does not perform changed blocks tracking to transfer only
changed blocks. For the file transfer, async uses ascp in the backend. For files or directories
where only the metadata changed, such as ACL, permissions or extended attributes, Async
does not transfer the entire file but only the changed metadata.

If during a transfer session the network that is connecting the source and target system fails,
async can also fail. However, the next session picks up where the previous session failed
because the status of the file transfers is tracked in the Sync Database.

2.3.1 Async example

In this section, we consider an async command line example where files from the directory
/fs1 of the source cluster are replicated to the directory /target/fs1 of the target cluster. The
host name of the remote cluster node in the target cluster is remotehost in this example and
the data is transferred by using the privileges and SSH-key of the user-named user. The IBM
Spectrum Scale extended attributes, time stamps user, and group ID are preserved in the
target directory during this transfer session (see Example 2-1).

Example 2-1 async command example where files from source cluster are replicated to target cluster

async -N sync_fs1 -d /fs1 -r user@remotehost:/target/fs1
--preserve-xattrs=native -i ~/.ssh/id_rsa --preserve-uid --preserve-gid
--preserve-access-time [--preserve-time --create-dir]

Consider the following important options:

-N session-name Session name (must be the same for a specific replication pair)

--preserve-xattrs=native Transfers extended attributes (required for IBM Spectrum Scale)

--preserve-uid Preserve user ID

--preserve-gid Preserve group ID

--preserve-access-time Preserve last access time stamp (important for immutable files)

--preserve-time Preserve time stamps for mtime

Note: Async transfers entire files only. If small changes are made on large files on the
source, the entire large file is transferred again. This process can cause extended transfer
times and increased load on the network. In such scenario where large files are changed
more frequently on the source, it is recommended to consider the use of IBM Spectrum
Scale AFM because it transfers changed blocks only.
Chapter 2. Setting up IBM Aspera Sync with IBM Spectrum Scale 11

--create-dir Create the destination directory if it does not exist

The async command includes the session name sync_fs1 and transfers files from the source
directory /fs1 to the target directory /target/fs1. The source directory is specified with
parameter -d and can be an IBM Spectrum Scale file system, a file set, or a normal directory
and the target directory with parameter -r. When file sets are used as the source and must be
preserved as file sets on the target, the file sets on the target must be manually created
before the replication session is started.

An IBM Spectrum Scale file set is partition of the file system that allows more functions, such
as immutability. From a user perspective, a file set is a directory. From an administrator
perspective, the file set can be configured with more properties.

Unlike a normal directory, a file set is created and configured by using a set of IBM Spectrum
Scale commands. For example, use the following command to create a file set that is named
fsetname in file system that is named fsname:

mmcrfileset fsname fsetname

Use the following command to link this file set to a directory in the file system:

mmlinkfileset fsname fsetname -J directory

Use the following command to make the file set immutable:

mmchfileset fsname fsetname --iam-mode compliant

The user ID, group ID, time stamps, and IBM Spectrum Scale extended attributes are
preserved on the target.

The target directory is specified by using parameter -r and includes the user and host name
of the target cluster. The user and host names can also be given by using the following
parameters:

--user username

--host hostname

In the next sections, we discuss other parameters that can be used to control the replication
sessions and provide best practices guidance in the context of IBM Spectrum Scale.

2.3.2 Sync Database

Each async session includes a name that is denoted by the async command line parameter
-N (for more information, see 2.3.1, “Async example” on page 11). For each session name,
async creates a Sync Database (snap.db) that is stored on the source and the target file
system.

The database records the state of the file system at the end of the last async session. The
next time the session is run with the same name, the file system is compared to the database
to identify changes.

The Sync database is created in private directories at the root level of the synchronized
directory. Async stores file state and checksum information and in-progress transfers (a
transfer cache for pending files) in the Sync Database.

Important: Async does not preserve file sets on the target. These file sets must be
manually created on the target.
12 Integration of IBM Aspera Sync with IBM Spectrum Scale

The default location of the Sync Database in within the source and target directories. In our
example, the database is stored in /fs1/.private-asp on the source directory and in
/target/fs1/.private-asp on the target. Therefore, it is stored within the shared IBM
Spectrum Scale file system, which is accessible by all cluster nodes.

The location of the Sync Database in the source and the target can also be changed by using
the following parameters:

--local-db-dir=ldbdir

--remote-db-dir=rdbdir

Async creates and maintains a Sync database for each session name. The location of the
Sync Database that is controlled by the parameters --local-db-dir and
--remote-db-dir=rdbdir for a specific session name and pair of source and target directory
name must be the same. Also, the Sync Database must be stored in a shared IBM Spectrum
Scale file system that is accessible by all nodes that run the async command.

One async session is run on only one IBM Spectrum Scale cluster node. The next transfer
session can be run on a different node, which requires the Sync Database to be available on
a shared file system.

2.3.3 Sessions

Each async session must include a name that is specified with the -N parameter of the async
command (see 2.3.1, “Async example” on page 11). Async creates and maintains a Sync
Database for each session name in the source and target file system.

The session name describes a replication relation between a source and target directory that
might be maintained over long periods. The content of this database is queried and updated
during an async session. Therefore, subsequent async sessions with the same session name
use the same pair of databases (source and target) and existing file states and checksums.

The session name can be understood as an identifier for a replication relation. A replication
relation exists between a source and a target directory.

The session name for a replication relation always is the same. If the session name for a
replication relation is changed, async recalculates the checksum information for all files in the
source and target directory again to create a pair of databases.

If files on the source or target are migrated by IBM Spectrum Archive EE, IBM Spectrum
Protect for Space Management, or IBM Spectrum Scale Transparent Cloud Tiering, all files
are recalled.

Note: If the session name for a specific pair of source and target directories to be
synchronized remains the same, the same instance of the Sync database is used.

Note: Do not change the name of the session for a replication relation because changing
the session name creates a Sync database and it does not use the information of the old
Sync database.
Chapter 2. Setting up IBM Aspera Sync with IBM Spectrum Scale 13

2.3.4 Replication modes

Async has three modes of synchronization: push, pull, and bidi. The mode can be specified
by using the following parameter:

-K push|pull|bidi

With push mode, the contents of source directory are synchronized to the target directory
whereby contents of the target directory are overwritten with the contents of the source
directory (which is default behavior; overwrites can also be controlled). Therefore, the source
directory content is pushed to the target directory while target directory contents that did not
exist on the source are preserved on the target. This mode is the default mode.

With pull mode, the contents of the target directory are synchronized to the source directory
whereby contents of the source directory are overwritten with the contents of the target
directory (which is the default behavior; overwrites can also be controlled). Therefore, the
target directory content is pulled to the source directory while preserving any source files that
might not exist in the target directory.

With bidi (bidirectional) mode the contents of source and target directories are
synchronized, with newer versions of files and directories overwriting older versions in the
source or target directory (which is the default behavior; overwrites can also be controlled).
Because the source and target must be writable, the replication cannot be done from
snapshots. When immutable file sets are used on the source and target, conflicts can occur
when file names on the source and target are the same.

In most cases, the push mode (default) is used when async is used to transfer files from an
IBM Spectrum Scale file system.

2.3.5 Control overwrites

The behavior of overwriting files in the target directory can be controlled by using overwrite
policies, as shown in the following example:

--overwrite=always|older|conflict

The value of always means that a file on the target is overwritten if it was modified on the
source. This value is default value.

The value of older means that the file on the target is overwritten if it is older than on source.
When the--overwrite=older option is used, the command option -t (--preserve-time)
must be used with the async command.

The value of conflict is applicable for bidirectional replication mode only.

In most cases, the default value of always is sufficient.

2.3.6 Control deletion on target

By default, async deletes files in the target directory that were deleted in the source directory
during the async session. Alternatively, async can also be configured to not delete any files in
the target directory, even though files were deleted in the source directory by using the
following parameter:

--ignore-delete
14 Integration of IBM Aspera Sync with IBM Spectrum Scale

Alternatively, the --delete-delay parameter can be used to postpone deleting files or
directories until the end of the async session.

In most cases, deleting files in the target directory during the replication session is sufficient.
Some rare cases exist where files on the target must not be deleted (use parameter
--ignore-delete). However, this use causes that the target directory to use more storage
capacity than the corresponding source directory.

2.3.7 Using file lists

Async allows transferring files with their names that are specified in file list. This feature is
useful when IBM Aspera Sync is integrated with the IBM Spectrum Scale policy engine (see
Chapter 3, “Using IBM Aspera Sync with IBM Spectrum Scale” on page 27). Include and
exclude statements can be used to specify the file names to be included or excluded in the file
transfer performed by async.

For more information about include and exclude filtering rules, see this website.

When include and exclude lists are provided, async examines the source directory and
identifies files that match include and exclude patterns. Then, it checks whether the files were
modified since the last async run.

Use the following parameter to include files with their names that are provided in a file list:

--include-from=filelist

Use the following parameter to include individual file names:

--include filename

Individual file names or file names that are provided in a file list also can be excluded by using
the following parameters:

--exclude-from=filelist

--exclude filename

File lists, including file and directory names to be included, must be strictly sorted and include
separate directory and file names that are relative to the source directory. Creating a file list
for the files and directories that are stored in the source directory named /fs1 is shown in
Example 2-2.

Example 2-2 File list including file and directory names to be included

/fs1/file1
/fs1/dir1/file1
/fs1/dir1/file2
/fs1/dir2/file3
/fs1/dir2/dir3/file4

The resulting file list that is expected by async shown in Example 2-3. The directory and file
names are separated and relative to the source directory /fs1.

Example 2-3 Resulting file list expected by async

file1
dir1/
dir1/file1
Chapter 2. Setting up IBM Aspera Sync with IBM Spectrum Scale 15

https://download.asperasoft.com/download/docs/entsrv/3.9.0/cs_admin_linux/webhelp/index.html#dita-sync/filtering_rules.html

dir1/file2
dir2/
dir2/file3
dir2/dir3
dir2/dir3/file4

Include and exclude rules are applied in the order that they are encountered. The first
matching rule (whether including or excluding) takes precedence.

Many more include and exclude samples that use pattern matching can be found in the async
man page and the IBM Aspera High-Speed Transfer Server Admin Guide 3.9.1.

Example 2-4 shows an async command that includes files with their names that are stored in
a file list (filelist) and excludes everything else. The file list must have the include file and
directory names, as shown in Example 2-3 on page 15.

Example 2-4 Async command that includes files with their names stored in a file list (filelist)

async -N sync_fs1 -d /fs1-r user@remotehost:/target/fs1 -l 1G -K push -i
~/.ssh/id_rsa --preserve-xattrs=native -u -j -t --preserve-access-time
--include-from=filelist --exclude "*"

If the order of the parameters --include-from=filelist --exclude “*” are switched, every
file is excluded.

Transferring files with their names that are given in a file list is useful when integrating the
async command with the IBM Spectrum Scale policy engine (see 3.4, “Integration with the
IBM Spectrum Scale policy engine” on page 30).

2.3.8 Cluster awareness

In this section, we describe cluster awareness. A cluster is a set of nodes. In typical IBM
Spectrum Scale configurations, multiple nodes exist that provide access to the global file
systems. Programs, such as async, can be installed and run simultaneously on one or more
nodes of the cluster.

Cluster awareness means whether it is feasible to run multiple instances of async under the
same session name simultaneously on multiple IBM Spectrum Scale nodes. The answer to
this question is no.

Async uses the local and remote database to track the status of files and select files for
transfer that is based on the checksums. Therefore, each async process must have access to
this database.

If async runs simultaneously on multiple nodes and replicates data for the same session,
these async processes access the same database from different nodes. Concurrent access
to the Sync DB from different nodes is untested and not recommended. It is recommended to
run async for a specific async session on one node.

Note: The order of the include and exclude parameters in the command that is shown in
Example 2-4 is important for the matching of the file names.
16 Integration of IBM Aspera Sync with IBM Spectrum Scale

https://download.asperasoft.com/download/docs/entsrv/3.9.1/es_admin_linux/webhelp/index.html#dita-sync/filtering_rules.html

To accelerate the transfer time, multiple transfer threads can be used on a single node.
Running a later replication session with the same name on another nodes is also possible, if
the database is stored in a shared file system. The concurrent access to the Sync DB from
different nodes cab result in an error being generated by async because it sees that the
process on the other node includes a file lock that is taken out on the database.

Async cannot run on ESS I/O nodes. Async can be run on dedicated nodes or on protocol
node, which provides NFS, SMB, Object, or HDFS access.

2.4 How ascp works

Ascp is the backend of async and performs the file transfer from the source to the target by
using IBM Aspera’s leading file transfer techniques. For more information, see this website.
Ascp does not identify files that are subject for transfer; instead, it takes the file names as the
input parameter and transfers these files to the specified target directory. Ascp transfers files
entirely.

Ascp can be started independent of async. It does not require the Sync Database. When
async is used after ascp is used for the same pair of source and target directories, async
does not know about the metadata of the files that were transferred by ascp. Therefore, async
must inventory all of the files that were copied by ascp and determine their checksum and
state in the source and target directory.

When ascp is used without async, the default mode of ascp is to transfer files and file
extended attributes regardless of what changed on the file. If only the extended attributes of a
file were changed by the file owner, ascp applies these attributes only if the file is forced to
transfer by specifying the -overwrite=always option.

If during an ascp transfer job the network that is connecting the source and target system
fails, ascp also might fail. Because ascp does not track the status of the file transfer in the
Sync database, the next ascp transfer job copies all of the files again that are specified in the
file list.

Important: It is not recommended to run parallel async processes on more than one node
for the same async session name.

Note: The combination of the use of ascp with async and async must be carefully planned
because ascp transfers files without providing information about these files to async. Use
cases might exist where ascp is run periodically, such as multiple times a day to copy files
from the source to the target. Async can be run less frequently (such as once per week on
the weekend) to assure consistency in case ascp was not successful copying files during
the daily runs.

Note: If only extended attributes changed on a file in the source directory and the file is
transferred by using ascp, it transfers the entire file and applies changes of extended
attributes to the file on the target directory.
Chapter 2. Setting up IBM Aspera Sync with IBM Spectrum Scale 17

https://download.asperasoft.com/download/docs/entsrv/3.9.0/cs_admin_linux/webhelp/index.html#dita/ascp_2.html

2.4.1 Ascp example

In the ascp example that is shown in Example 2-5, the contents of the source directory /fs1 is
copied to the target directory /target/fs1 of the remote cluster. For more information, see
this website.

Example 2-5 Copying contents of source directory to target directory of remote cluster

ascp -l 1G -d -p --preserve-xattrs=native --preserve-file-owner-gid
--preserve-file-owner-uid -i ~/.ssh/id_rsa /fs1/ user@remotehost:/target/fs1/

The host name of the remote cluster node is remotehost in Example 2-5 and the data is
transferred by using the privileges and SSH-key of the user named user. The IBM Spectrum
Scale extended attributes, time stamps user, and group ID are preserved.

The following options are available:

� --preserve-file-owner-uid: Preserve user ID

� --preserve-file-owner-gid: Preserve group ID

� --preserve-xattrs=native: Preserve extended attributes (required for IBM Spectrum
Scale)

� -p: Preserve time stamps (important for immutable files)

� -d: Create destination directory if this does not exist

The source directory (/fs1) can be an IBM Spectrum Scale file system, a file set, or a normal
directory, and the target directory. When file sets are used as the source and must be retained
on the target, the file sets on the target must be manually created before the replication
session is started.

The user ID, group ID, time stamps, and IBM Spectrum Scale extended attributes are
preserved on the target. Ascp also allows copying single files from the source directory.

An IBM Spectrum Scale file set is partition of the file system that allows more functions, such
as immutability. From a user perspective, a file set is a directory. From an administrator
perspective, the file set can be configured with more properties.

Unlike a normal directory, a file set is created and configured by using a set of IBM Spectrum
Scale commands. For example, use the following command to create a file set that is named
fsname in file system that is named fsname:

mmcrfileset fsname fsetname

Use the following command to link this file set to a directory in the file system:

mmlinkfileset fsname fsetname -J directory

Use the following command to make the file set immutable:

mmchfileset fsname fsetname --iam-mode compliant

In our example, the target directory notation includes the user and host names of the target
cluster. The user and host names can also be given by using the following parameters:

--user username
--host hostname

Note: Ascp does not preserve file sets on the target. These file sets must be manually
created on the target.
18 Integration of IBM Aspera Sync with IBM Spectrum Scale

https://download.asperasoft.com/download/docs/entsrv/3.9.0/cs_admin_linux/webhelp/index.html#dita/ascp_2.html

Next, we discuss other parameters that can be used to control the ascp.

2.4.2 Transfer modes

Ascp can be configured in the following transfer modes:

--mode=send|recv

With send, ascp sends the files from the source to the target directory. This action is the
default. With recv, ascp receives files from the target into the source directory. When --mode
is used, the --host parameter must be specified. In most cases, the mode send is used.

2.4.3 Control overwrites

Overwriting files that are on the source and target can be controlled by using the following
parameter:

--overwrite={never|always|diff|diff+older|older}

The value of never specifies that files on the target are not overwritten. However, if the parent
folder on the target is not empty, its time stamps (access, modify, and change times) can still
be updated.

The value of always specifies that files on the target are always overwritten.

The value of diff means that the file on the target is overwritten if it is different from the
source. If a complete file at the target is the same as a file on the source, it is not overwritten.
Partial files are overwritten or resumed depending on the resume policy. This value is the
default.

The value of diff+older means that the file on the target is overwritten if it is older and
different than the source file. For example, if the file on the target is the same as the source,
but with a different time stamp, it is not overwritten. Also, the file on the target is not
overwritten if it is different than the source but newer.

The value of older specifies that the file on the target is overwritten if its time stamp is older
than the source time stamp (mtime).

The overwrite methods diff or diff+older can be further controlled with the resume policy
(parameter -k). Consider the following points:

� If -k 0 or no -k is specified, the source and target files are always considered different and
the target file is always overwritten.

� If -k 1, the source and target files are compared based on file attributes (currently file
size).

� If -k 2, the source and target files are compared based on sparse checksums.

� If -k 3, the source and target files are compared based on full checksums.

In general, the use of the overwrite method diff or diff+older assures that only files are
transferred that changed in the source directory. This method can help to save network
resources. When the resume policy is used, calculating the checksums takes more time.
Chapter 2. Setting up IBM Aspera Sync with IBM Spectrum Scale 19

2.4.4 Control deletes on target

By default, ascp does not delete files in the target directory that were deleted in the source
directory. To delete files in the target that were deleted on source, use the following
parameter:

--delete-before-transfer

By using this parameter, ascp identifies and deletes files on the target that do not exist on the
source before transferring files from the source to the target directory. This condition applies
only to file names that are provided to ascp. The asdelete tool provides the same capability.

The asdelete tool compares the source directory with the target directory and deletes
extraneous files from the target directory. The high-level syntax is shown in Example 2-6.

Example 2-6 Asdelete tool high-level syntax

asdelete --host remotehost--auth-name username --auth-pass password
/source_directory /target_directory

Notice that asdelete follows symbolic links, which can result in files being deleted that are not
within the target directory.

2.4.5 Different path names on source and target

When ascp is used, the content of the source path is copied to the specified path on the
target, including the trailing path name of the source directory. For example, the source path
/fs1/Documents can be copied to the target path /target/fs1 by using the command that is
shown in Example 2-7.

Example 2-7 Copy source content to target path

ascp -l 1G -d -i id-file --overwrite=diff -k 2 --mode=send -p
--preserve-xattrs=native --preserve-file-owner-gid --preserve-file-owner-uid
/fs1/Documents/ user@remotehost:/target/fs1

The resulting directory structure on the target includes the trailing path name of the source,
as listed in Table 2-1.

Table 2-1 Resulting target path names

It is also possible to strip specified path prefixes from the source path of each transferred file
or directory.

Consider the following scenario: The source path to be copied is /fs1/Documents/. The
content (subdirectories and files) of the source path must be copied to the target path
/target/fs1. The path name of the files that are copied to the target must be relative to the
/fs1/Documents source path.

On Source On Target without --src-base=/fs1/Documents

/fs1/Documents/file1 /target/fs1/Documents/file1

/fs1/Documents/dir1/file2 /target/fs1/Documents/dir1/file2

/fs1/Documents/dir2/file3 /target/fs1/Documents/dir2/file3
20 Integration of IBM Aspera Sync with IBM Spectrum Scale

Therefore, the directory Documents must not appear in the target folder. To achieve this
configuration, the following ascp command line option can be used:

--src-base=source-path-prefix

The use of this command strips the specified source-path prefix from the source path of each
transferred file or folder. The remaining portion of the path remains intact at the target.

For example, to transfer the directories and files that are stored in the source directory
/fs1/Documents by eliminating the directory name /Documents in the target directory, set the
--src-base=/fs1/Documents by using the ascp command that is shown in Example 2-8.

Example 2-8 Command without /Documents in the target directory

ascp -l 1G -d -i id-file --overwrite=diff -k 2 --mode=send -p
--preserve-xattrs=native --preserve-file-owner-gid --preserve-file-owner-uid
--src-base=/fs1/Documents /fs1/Documents user@remotehost:/target/fs1

As a result, the source directories and files appear as listed in Table 2-2.

Table 2-2 Results of source directories and files

Stripping off path name prefixes can also be used with file list or file pair lists. For more
information, see “File lists” on page 22.

Stripping the path prefixes of files that are provided in a file list is useful when integrating the
ascp command with the IBM Spectrum Scale policy engine. For more information, see 3.4,
“Integration with the IBM Spectrum Scale policy engine” on page 30.

2.4.6 Using file lists and file pair lists

Ascp can also transfer files with their names that are provided in file lists. Two options are
available to use file lists with ascp: file list, including the source path and file names (for more
information, see , “File lists” on page 22), and file lists that include pairs of source and target
path and file names (for more information, see “File pair lists” on page 23).

It also is possible to strip off a specified prefix of the source path when files are stored in the
target directory. For more information, see 2.4.5, “Different path names on source and target”
on page 20).

On Source On Target with
--src-base=/fs1/Documents

On Target without
--src-base=/fs1/Documents

/fs1/Documents/file1 /target/fs1/file1 /target/fs1/Documents/file1

/fs1/Documents/dir1/file2 /target/fs1/dir1/file2 /target/fs1/Documents/dir1/file2

/fs1/Documents/dir2/file3 /target/fs1/dir2/file3 /target/fs1/Documents/dir2/file3

Note: Sources that are outside of the source base are not transferred. Although no errors
or warnings are issued, the skipped files are logged. For example, if /fs1/file4 was
included in our example sources, it is not transferred because it is outside of the specified
source base (/fs1/Documents/).
Chapter 2. Setting up IBM Aspera Sync with IBM Spectrum Scale 21

File lists
To use ordinary file lists, including the fully qualified path and file names of the files to be
transferred from the source directory, the following parameter can be used:

--file-list=filelist

The filelist file is a text file that includes the fully qualified path and file names of the files to
be transferred from the source to the target. Each source file is specified on a separate line.
UTF-8 file format is supported. Only the files and directories are transferred (path information
is not preserved at the destination).

To read a file list from standard input, use “-” in place of file, as shown in Example 2-9 in which
filelist contains the list of source files and directories.

Example 2-9 List of source files and directories

/tmp/code/compute.php
doc_dir/
images/iris.png
images/rose.png

Then, the command that is shown in Example 2-10 is run.

Example 2-10 Run the ascp command

ascp -l 1G -d -i id-file --overwrite=diff -k 2 --mode=send -p
--preserve-xattrs=native --preserve-file-owner-gid --preserve-file-owner-uid
--file-list=list.txt --user=user --host=remotehost /

The target, which is the transfer user’s docroot (that is, a configuration option that specifies
the area of the file system to which the user can access), contains the output that is shown in
Example 2-11.

Example 2-11 Command results

compute.php
doc_dir/ (and its contents)
iris.png
rose.png

All directory prefixes of the path and file names on the source are removed on the target. To
keep path names on the target, use the --src-base parameter. For example, to keep the
directory structure of the files in the file list on the target, use the command that is shown in
Example 2-12.

Example 2-12 Run ascp command

ascp -l 1G -d -i id-file --overwrite=diff -k 2 --mode=send -p
--preserve-xattrs=native --preserve-file-owner-gid --preserve-file-owner-uid
--src-base=/ --file-list=list.txt --user=user --host=remotehost /

On the target, the directory structure is identical to the source, as shown in Example 2-13.

Example 2-13 Target directory structure is identical to the source

/tmp/code/compute.php
doc_dir/
22 Integration of IBM Aspera Sync with IBM Spectrum Scale

images/iris.png
images/rose.png

If the source and target directory and file names are identical, the --src-base parameter and
the target directory must be set to “/” while the file list includes the fully qualified path names
that are shown in Example 2-14.

Example 2-14 Parameters to use when source and target directory and file names are identical

ascp -l 1G --file-list=filelist --overwrite=diff -k 2 --mode=send
--user=user --host=remotehost -i id_file -p --preserve-xattrs=native
--preserve-file-owner-gid --preserve-file-owner-uid
--src-base=/ /

Consider the following restrictions when file lists are used with ascp:

� The command line cannot use the user@host:source syntax. Instead, specify this
information by using the --mode, --host, and --user options.

� Paths that are specified in the file list cannot use the user@host:source syntax.

� Because multiple sources are transferred, the destination must be a directory.

� Only one --file-list or --file-pair-list option is allowed per ascp session. If multiple
lists are specified, only the last one is used.

� Only files and directories that are specified in the file list are transferred; any sources that
are specified on the command line are ignored.

� If the source paths are URLs, the size of the file list cannot exceed 24 KB.

File pair lists
Ascp can also transfer files with the file and path names in the source and target directory that
are provided as file pair in a file pair list. To provide a file pair list to ascp, use the following
parameter:

--file-pair-list=filepairlist

The file filepairlist is a text file that includes the file and directory names of the files to be
transferred from the source followed by the file and directory name on the target. Each source
and target file name is specified on a separate line. The UTF-8 file format is supported.

For example, the filepairlist contains the list of sources (odd line numbers) and
destinations (even line numbers) that are shown in Example 2-15.

Note: The files and directories in the filelist must be within the --src-base value of
/fs1/Documents on the source. Files that do not match the --src-base path prefix are not
copied.

Note: The target file name is relative to the transfer user’s docroot. Docroot (or absolute
path) is a configuration option and specifies the area of the file system that is accessible to
an IBM Aspera transfer user. The default empty value allows access to the entire file
system. Even if a target name is specified as an absolute path, the resulting path at the
target is still relative to the docroot. Target paths that are specified in the list are created
automatically if they do not exist.
Chapter 2. Setting up IBM Aspera Sync with IBM Spectrum Scale 23

Example 2-15 Directory and file names for filepairlist

1. Dir1
2. Dir2
3. my_images/iris.png
4. project_images/iris.png
5. /tmp/code/compute.php
6. /tmp/code/compute.php
7. /tmp/tests/testfile
8. testfile2

Then, the command that is shown in Example 2-16 is run.

Example 2-16 Run the ascp command

ascp -l 1G -d -i id-file --overwrite=diff -k 2 --mode=send -p
--preserve-xattrs=native --preserve-file-owner-gid --preserve-file-owner-uid
--file-pair-list=filepairlist --mode=send --user=user --host=remotehost /

The destination (in this case, the transfer user’s docroot) now contains the output that is
shown in Example 2-17.

Example 2-17 Destination of the transfer of user’s docroot

Dir2 (and its contents)
project_images/iris.png
tmp/code/compute.php
testfile2

Directory Dir2 on the target contains the content of the directory Dir1 of the source. Likewise,
the source file my_images/iris.png is named project_images/iris.png on the target.

Consider the following restrictions when file pair lists are used:

� The command line cannot use the user@host:source syntax. Instead, specify this
information by using the --mode, --host, and --user options.

� The user@host:source syntax cannot be used with paths specified in the file list.

� Because multiple sources are being transferred, the destination that is specified on the
command line must be a directory.

� If the file pair list contains the absolute path of the target files and directories, the
destination directory should be set to /.

� Only one --file-pair-list or --file-list option is allowed per ascp session. If multiple
lists are specified, only the last one is used.

� Only files from the file pair list are transferred; any other source files that are specified on
the command line are ignored.

� If the source paths are URLs, the file list cannot exceed 24 KB.

The use of file lists that describe the file names to be transferred is useful when integrating
the ascp command with the IBM Spectrum Scale policy engine. For more information, see
3.4, “Integration with the IBM Spectrum Scale policy engine” on page 30.

Note: The line numbers that are shown in Example 2-15 are given to denote odd and even
lines and must be omitted for the transfer.
24 Integration of IBM Aspera Sync with IBM Spectrum Scale

2.4.7 Cluster awareness

An IBM Spectrum Scale cluster consists of multiple cluster nodes. Cluster awareness means
whether it is feasible to run multiple instances of ascp simultaneously on multiple IBM
Spectrum Scale nodes.

Running ascp for the same source directory in parallel on multiple nodes does not include the
limitation for async that is described in 2.3.8, “Cluster awareness” on page 16). This limitation
does not exist because ascp does not use the Sync Database; therefore, it does not need to
access a database simultaneously from multiple nodes.

When running ascp simultaneously on multiple nodes, it must be assured that the ascp
instances do not transfer the same files. Transferring the same files can result in file access
conflicts. Running ascp on multiple nodes for the same source directory and different subsets
of files can be automated through the integration of the IBM Spectrum Scale policy engine.
For more information, see 3.4.3, “Integration with ascp” on page 41.

Similar to async, running ascp on ESS I/O nodes is not supported. It is recommended to run
ascp on dedicated nodes or on protocol nodes.

2.5 IBM Spectrum Scale configuration

IBM Spectrum Scale provides the source and the target file systems and directories. The IBM
Aspera Sync file transfer reads the files on the source and writes the files to the target.

The IBM Spectrum Scale storage configuration is designed to support the required
throughput. In addition, other jobs (user I/O, backup, tiering, and so on) that run at the same
time as the replication must be taken into account for the disk sizing because these jobs
might cause more I/O.

When async is used without the IBM Spectrum Scale policy engine, high metadata I/O results
on the source file system because it gathers the file stat information. Consider the use of fast
disk storage (SSD or Flash) for the file system metadata.

The following IBM Spectrum Scale configuration parameters can be adjusted (for more
information, see IBM Knowledge Center):

� maxFilesToCache: Controls the number of files that are cached simultaneously. Because
IBM Aspera Sync opens many files on the source for transfer, the value of this parameter
must be large enough and aligned with the async option --pending-max=N, which defines
the maximum number of files that are pending. This async option acts as a buffer to
ensure that the number of transferred files does not exceed the maximum (default is
2000).

� maxStatCache: Controls the number of file attributes to cache in addition to what is cached
in pagepool. When possible, set this parameter to the number of files that are stored in the
source directory. If this amount cannot be determined, set it at least to the number of files
that are added between replication cycles.

Note: For IBM Spectrum Scale on Linux, this option must be set to 0 when IBM
Spectrum Scale version 5.0.1 or earlier is run.
Chapter 2. Setting up IBM Aspera Sync with IBM Spectrum Scale 25

https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.2/com.ibm.spectrum.scale.v5r02.doc/bl1adm_tuningguide.htm

� Pagepool: Amount of memory that is used to cache file data and metadata. Because the
copy process is sequential, the source and target system can benefit from large
pagepools.

� WorkerThreads: Controls the number of read and write threads. The number of worker
threads must be increased, especially when multiple async or ascp threads are used or
processes at the same time. The transfer threads with async can be controlled by using
the --transfer-threads option.

To replicate the file set structure that is used within the source directory to the target, the file
sets must be created manually in the target file system. IBM Aspera Sync has no awareness
for file sets; instead, it considers these directories.

If a directory on the target is a manually created file set, IBM Aspera Sync copies the files into
this file set.
26 Integration of IBM Aspera Sync with IBM Spectrum Scale

Chapter 3. Using IBM Aspera Sync with IBM
Spectrum Scale

In this chapter, we describe how to use async and ascp without and with the IBM Spectrum
Scale policy engine.

This chapter includes the following topics:

� 3.1, “IBM Spectrum Scale policy engine considerations with IBM Aspera” on page 28
� 3.2, “Async without policy engine” on page 29
� 3.3, “Ascp without policy engine” on page 30
� 3.4, “Integration with the IBM Spectrum Scale policy engine” on page 30
� 3.5, “Integration with Hierarchical Storage Management” on page 45
� 3.6, “Integration with immutable files” on page 51
� 3.7, “Integration with IBM Spectrum Scale Snapshots” on page 54

3

Note: The programs (scripts) and policies that are presented are intended for educational
purposes and might not work in real-world deployments. For more information about a set
of exemplary scripts and policies, see this GitHub web page.
© Copyright IBM Corp. 2019. All rights reserved. 27

https://github.com/IBMRedbooks/Integration-of-IBM-Aspera-Sync-with-IBM-Spectrum-Scale

3.1 IBM Spectrum Scale policy engine considerations with IBM
Aspera

IBM Aspera Sync can be used with or without the IBM Spectrum Scale policy engine. For
more information, see 3.4, “Integration with the IBM Spectrum Scale policy engine” on
page 30.

The IBM Spectrum Scale policy engine provides a fast way to identify files according to
certain criteria; for example, files that were created or modified within a certain period.

The policy engine can be programmed with rules that express the criteria for file identification.
The file (and directory) names that are identified according to the criteria are provided in file
lists, which can be further processed by IBM Aspera Sync. The identification of files to be
transferred is performed by the IBM Spectrum Scale policy engine while IBM Aspera Sync
transfers the files according to overwrite and deletion policies. For more information, see
3.4.1, “IBM Spectrum Scale policy engine” on page 31.

The IBM Spectrum Scale policy engine as a method for fast file identification is used when
many files are stored in the source directory. With many files in the source directory, the
identification of files subject for transfer can take a long time when the standard async
process is used because async crawls through the source directory to identify files based on
their attributes (stat information).

Crawling through a large file system increases the workload on the metadata disks of the IBM
Spectrum Scale file system and can take longer periods. This issue can cause negative side
effects in the IBM Spectrum Scale cluster. The async session also can take a long time, which
causes subsequent async sessions to overlap with previous sessions. This issue can be
prevented by integrating async with the IBM Spectrum Scale policy engine. For more
information, see 3.4.2, “Integration with async” on page 37.

Ascp does not identify files; instead, it gets file and directory names and patterns as input
parameters. The file and directory names to be transferred by ascp can be identified by the
IBM Spectrum Scale policy engine.

Because the policy engine creates lists of file names that match the selection criteria, these
lists of file names can be passed into the ascp tool. Therefore, integrating ascp with the IBM
Spectrum Scale policy engine makes sense because the policy engine can efficiently identify
new and modified files and pass these file names in lists to the ascp program. For more
information, see 3.4.3, “Integration with ascp” on page 41).

IBM Aspera Sync also can use snapshots as the source for the transfer (see 3.7, “Integration
with IBM Spectrum Scale Snapshots” on page 54). No native integration with hierarchical
storage management tools (HSM) is available in IBM Spectrum Scale. However, if IBM
Aspera Sync is integrated with the IBM Spectrum Scale policy engine, files that are migrated
can be excluded from the file transfer (see 3.5, “Integration with Hierarchical Storage
Management” on page 45). IBM Aspera Sync can transfer immutability attributes of files,
which is described in 3.6, “Integration with immutable files” on page 51).
28 Integration of IBM Aspera Sync with IBM Spectrum Scale

3.2 Async without policy engine

Async can identify new, modified, and deleted files on the source and transfer these files to
the target. This integration of async with IBM Spectrum Scale assures that the extended
attributes, such as ACL, owner, user attributes, and immutability attributes, are preserved at
the target.

To use async to replicate a source directory to a target directory, the async command can be
scheduled through an operating system scheduler or an external scheduler. As described in
2.3, “How async works” on page 11, we provided several examples that address different
requirements. An async summary example is shown in Example 3-1.

Example 3-1 Async summary example

async -N sync_fs1 -d /fs1 -r user@remotehost:/target/fs1
--preserve-xattrs=native -i ~/.ssh/id_rsa --preserve-uid --preserve-gid
--preserve-time [-K push --overwrite=always --delete-delay]

When async is used for a specific pair of source and target directories, it is important to
always use the same session name (parameter -N) because this parameter uses the existing
Sync database (see 2.3.2, “Sync Database” on page 12).

When a different session name is used, a new Sync database is created and all files in the
source and in the target directory must be inventoried in the new Sync database. Depending
on the number of files in the source and target directory, this inventory process can take much
time.

In addition, it is important to run an async session on one node of the source cluster.
Distributing the workload of one async session to multiple nodes is not supported because
only one node can obtain the lock for the Sync Database.

Example 3-1 uses the push mode (which is the default) where files are pushed from source to
the target. The overwrite policy is set to always (which is the default) where files that were
identified by the async process to be transferred overwrite the file instance on the target.

Files that were deleted on the source are also deleted on the target at the end of the async
session, which is controlled by the --delete-delay parameter. By default, files that are
deleted on the source are deleted on the target during the async session.

When async is not integrated with the IBM Spectrum Scale policy engine, it identifies the files
that were created or modified in the traditional way. Therefore, it determines the status of
each file and directory in the source directory to identify files that were created or modified
since the last async session. Stating files and directories in large file system with millions of
files can take a considerable amount of time. It also creates many small I/O for the metadata
disks in the source IBM Spectrum Scale file system. If these two aspects affect the replication
duration, it is recommended to explore the integration of async with the IBM Spectrum Scale
policy engine.

Note: For large source directories with many files, it is recommended to integrate async
with the IBM Spectrum Scale policy engine.
Chapter 3. Using IBM Aspera Sync with IBM Spectrum Scale 29

3.3 Ascp without policy engine

Ascp cannot identify files in the source directory that must be transferred. This identification
normally is performed by async. Ascp is the file transfer tool that is used by async that is
responsible to transfer files from the source to the target directory. The file and directory
names to be transferred are provided by async.

Async features all of the optimizations to identify files that must be transferred and start ascp.
However, ascp can be integrated with the IBM Spectrum Scale policy engine, whereby IBM
Spectrum Scale identifies the files to be transferred and ascp transfers those files. For more
information, see 3.4.3, “Integration with ascp” on page 41.

In some cases, it might be useful to use ascp independent of async or the IBM Spectrum
Scale policy engine’ for example, in cases where large files must be transferred in a
non-automated environment. When this transfer is performed, ascp does not update the Sync
database that is managed by async. Therefore, certain information about files that were
transferred bypasses the async controls. The use of ascp is shown in Example 3-2.

Example 3-2 Example of ascp command

ascp -l 1G --preserve-xattrs=native -d -p --preserve-xattrs=native
--preserve-file-owner-gid --preserve-file-owner-uid -i ~/.ssh/id_rsa /fs1/*
user@remotehost:/target/fs1/ [--overwite=diff -k 1 --delete-before-transfer]

As shown in Example 3-2, files from the source directory /fs1 are copied to the target
directory /target/fs1. The IBM Spectrum Scale extended attributes, user-ID, and group-ID
also are preserved. Files that are on the target are transferred and overwritten only if they
have a different file size than on source (such as parameters --overwite=diff -k 1, see
2.3.5, “Control overwrites” on page 14). The parameter --delete-before-transfer takes
care to delete files in the target directory that were deleted in the source directory (see 2.4.4,
“Control deletes on target” on page 20).

Ascp does not update the Sync Database with the file it copied. Therefore, a subsequent
async run for the same files and directories must inventory all files that are copied by ascp
and determine their checksum and state in the source and target directory. It might be useful
to run ascp periodically (such as multiple times a day) to copy files from the source to the
target. Async can be run less frequently (such as once a week on the weekend) to assure
consistency in case ascp was not successful in copying files during the daily runs.

3.4 Integration with the IBM Spectrum Scale policy engine

The IBM Spectrum Scale policy engine provides a fast way to identify files according to
certain criteria; for example, files that were created or modified within a certain period. The
policy engine can be programmed with rules that express the criteria for file identification (see
3.4.1, “IBM Spectrum Scale policy engine” on page 31).

The file (and directory) names that are identified according to the criteria are provided in file
lists that can be further processed by IBM Aspera Sync. Therefore, the IBM Spectrum Scale
policy engine identifies the files that are to be transferred while IBM Aspera Sync transfers the
files according to overwrite and deletion policies.

IBM Aspera Sync tools async and ascp can be integrated with the IBM Spectrum Scale policy
engine. The difference between these tools is that async tracks the status of files and
directories in the source and target directory that it transfers, ascp does not.
30 Integration of IBM Aspera Sync with IBM Spectrum Scale

This difference comes with a price: async includes more overhead. However, async does not
crawl through the file system to identify files subject for transfer; instead, it picks the file
names that are provided by the policy engine in one or more file lists.

Two methods are available to integrate IBM Aspera Sync with the policy engine: the use of a
stand-alone LIST policy and the use of a LIST policy with an external script. The policy rules
for file identification are identical for both methods.

When a stand-alone LIST policy is used, two steps are required. In the first step, the IBM
Spectrum Scale policy engine is started with a LIST policy to create lists of files names that
match certain criteria of the policy.

In the second step, IBM Aspera Sync is started to transfer the file having their names included
in the file lists. The advantage of this method is that the administrator has more control over
the file lists and the execution of IBM Aspera Sync. For example, the administrator can adjust
the file lists that are generated by the policy engine. They also can start the IBM Aspera Sync
sessions with different parameters. The disadvantage of this method is that it requires two
steps that must be orchestrated.

When LIST policy is used with an external script, only one step is required whereby the policy
engine is started with a LIST policy to create lists of files names according to the criteria and
start an external script. The external script obtains the list of files that are identified by the
policy engine as input parameter and starts IBM Aspera Sync. The advantage of this method
is that it requires one step. The disadvantage is that the administrator has less control over
the file lists and the parameters that are used for the IBM Aspera Sync sessions.

Before we further explain the integration of IBM Aspera Sync with the IBM Spectrum Scale
policy engine by using these two methods, provide an overview about the IBM Spectrum
Scale policy engine.

3.4.1 IBM Spectrum Scale policy engine

The IBM Spectrum Scale policy engine allows the fast identification of files based on their
attributes. The policy engine is represented by the mmapplypolicy command. For more
information, see IBM Knowledge Center.

This command takes a policy file as input and identifies the files based on the rules that are
included in these policies. The policy file is a plain text file that is written in the IBM Spectrum
Scale policy syntax. For more information, see IBM Knowledge Center.

The rules define the selection criteria for the files based on file attribute and actions to be
performed with the selected files. The actions that are performed by the policy engine in the
context of the integration with IBM Aspera Sync are to provide a file list including the names of
the selected files or to start IBM Aspera Sync with these file lists directly through an external
script.

The policy engine is run on the source system. The basic syntax of the mmapplypolicy
command is shown in Example 3-3.

Example 3-3 mmapplypolicy basic syntax

mmapplypolicy /fs1 -P policyfile -N asperanode -m 1 -B 1000 --single-instance
-s localdir -g globaldir -I test|defer|yes [-f fileprefix]
Chapter 3. Using IBM Aspera Sync with IBM Spectrum Scale 31

https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.1/com.ibm.spectrum.scale.v5r01.doc/bl1adm_mmapplypolicy.htm
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.1/com.ibm.spectrum.scale.v5r01.doc/bl1adv_policies.htm

The command features the following parameters:

/fs1 The source directory where files must be identified.

-P policyfile The file that includes the rules for this policy.

-N asperanode Specifies a single IBM Spectrum Scale node name where the IBM
Aspera Sync tools are installed and running.

--single-instance Specifies that only one instance of the policy engine can run. If
another instance is running, this command stops.

-m 1 Indicates that only one thread began to process the selected files. In
many cases, the use of one thread is sufficient on a single node.

-B 1000 Specifies the number of file names in one file list. In this case, it is
1,000 files per file list.

-s localdir Specifies a local directory that is used to store temporary files that are
created by the policy engine. Sufficient space must be available in this
directory. The default directory is /tmp.

-g globaldir Specifies a directory that is accessible to all cluster nodes. It can be in
the file system that is processed by the policy engine or in a different
file system. The default is specified by the IBM Spectrum Scale
configuration parameter sharedTmpDir.

-I test|defer|yes Specifies the mode for the policy run. Test means that the policy is
tested for syntax. Defer indicates that the policy performs the file
selection but does not start the action. Yes indicates that the policy
performs the file selection and runs the action.

-f fileprefix Specifies a prefix for an output file that is generated with a list policy
when it is run in deferred mode.

The policyfile file is the policy that includes the rules for the file selection. The rule that is
shown in Example 3-4 identifies and selects files that were created or modified (including file
metadata modifications only) since the time stamp 2018-06-06 12:37:00.

Example 3-4 Rule identifies and selects files that were created or modified

RULE 'asperaRule' LIST 'files' WHERE
(MODIFICATION_TIME >= TIMESTAMP("2018-06-06 12:37:00") OR
 CHANGE_TIME >= TIMESTAMP("2018-06-06 12:37:00"))

The policy engine identifies the file names that match the rules and creates file lists with these
file names included. This file list includes files names and other metadata for each file in the
following format:

48900 1741777473 0 -- /fs1/file1

48901 7383947666 0 -- /fs1/file2

The file list that is shown in Example 3-4 includes two records with one per line. Each record
includes five columns that are separated with blanks. The first three columns are IBM
Spectrum Scale internal numbers that describe the file (inodenumber, inodegeneration, and
snapid). The file name is the fifth field in the file list. Each record starts in a new line.

Depending on the policy rules, the policy engine creates the file lists or starts an external
script and passes the file name of the file lists to this program.
32 Integration of IBM Aspera Sync with IBM Spectrum Scale

With this basic knowledge about IBM Spectrum Scale policies, we explain the concept of
stand-alone LIST policies and LIST policies with an external script next. Then, we explain the
integration of IBM Aspera Sync by using these two methods. For more information and
guidance for using the policy engine, see the white paper IBM Spectrum Scale Archiving
Policies: An introduction to GPFS policies for file archiving with Spectrum Archive Enterprise
Edition.

Stand-alone LIST policies
With stand-alone LIST policies, the IBM Spectrum Scale policy engine is used to create a file
list that includes file names that were identified according to the criteria of the policy. It stores
this file list in a specified directory.

Example 3-5 shows a policy with three rules. The first rule in this example defines a macro
that specifies directory and file names that are excluded from the identification process. The
second rule defines that the policy engine creates a list of files. The third rule specifies the
selection criteria of the files that were created or modified after a certain time stamp; in this
example, TIMESTAMP(“2018-06-06 12:37:00):

Example 3-5 Policy with three rules

/* 1. Rule: macro to define the files and directories to be excluded */
define(
 exclude_list,
 (PATH_NAME LIKE '%/.SpaceMan/%'
 OR PATH_NAME LIKE '%/.ctdb/%'
 OR PATH_NAME LIKE '%/.private-asp/%'
 OR PATH_NAME LIKE '%/.mmSharedTmpDir/%'
 OR PATH_NAME LIKE '%/.snapshots/%'
 OR NAME LIKE 'user.quota%'
 OR NAME LIKE 'fileset.quota%'
 OR NAME LIKE 'group.quota%')
)

/* 2. Rule: external list rule with no interface script */
RULE EXTERNAL LIST 'modfiles' EXEC ''

/* 3. Rule: file selection rule */
RULE 'asperaRule' LIST 'modfiles' WHERE
(MODIFICATION_TIME >= TIMESTAMP("2018-06-06 12:37:00") OR
 CHANGE_TIME >= TIMESTAMP("2018-06-06 12:37:00")) AND
 NOT (exclude_list)

The time stamp in the third rule (TIMESTAMP(“2018-06-06 12:37:00) is the date and time of
the previous replication session. All files that were created or modified (including file attribute
modification) are selected with this rule.

To run this policy, use the mmapplypolicy command in deferred mode, as shown in
Example 3-6. For more information about the parameter that is used with this command, see
3.4.1, “IBM Spectrum Scale policy engine” on page 31.

Example 3-6 mmapplypolicy command in deferred mode

mmapplypolicy /fs1 -P policyfile -N asperanode -f policy --single-instance -I
defer [-s localdir -g globaldir]
Chapter 3. Using IBM Aspera Sync with IBM Spectrum Scale 33

http://w3-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102642
http://w3.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102642
http://w3-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102642
http://w3.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102642
http://w3.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102642
http://w3.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102642

For more information about the parameters that are used with the mmapplypolicy command,
see 3.4.1, “IBM Spectrum Scale policy engine” on page 31. Parameters -B and -m are not
required with stand-alone LIST policies.

The mmapplypolicy command that is shown in Example 3-6 creates a file list that is named
policy.list.modfiles whereby the first part of the file name comes from the -f option, the
second part is fixed, and the third part of this name comes from the EXTERNAL LIST name of
rule 2. This file list includes files that were identified according to the criteria that is specified
in rule 3. This file list features the following format:

48900 1741777473 0 -- /fs1/file1

One line is sued for each file that was identified by the policy engine. The format of the line
that describes the one file contains five fields. The first three fields are IBM Spectrum Scale
internal numbers (inodenumber, inodegeneration, and snapid). The file name is the fifth field
in the file list.

This file list can be adjusted and split into multiple file lists and fed into the IBM Aspera Sync
tools. For more information, see 3.4.2, “Integration with async” on page 37, and 3.4.3,
“Integration with ascp” on page 41.

LIST policies with external script
A LIST policy can also be programmed in a way that it directly starts an external script that
processes the file lists that are generated by the policy engine. During the processing in the
external script, the file lists are adjusted and passed to the IBM Aspera Sync tools.

A policy with three rules is shown in Example 3-7. The first and the third rules are identical to
the stand-alone LIST policy. The second rule includes the name of the external script
(/usr/local/bin/myscript.sh) that must be programmed to process the file lists. The third
rule specifies the selection criteria for files that were created or modified after a specific time
stamp: (TIMESTAMP(“2018-06-06 12:37:00).

Example 3-7 Policy with three rules

/* 1. Rule: macro to define the files and directories to be excluded */
define(
 exclude_list,
 (PATH_NAME LIKE '%/.SpaceMan/%'
 OR PATH_NAME LIKE '%/.ctdb/%'
 OR PATH_NAME LIKE '%/.private-asp/%'
 OR PATH_NAME LIKE '%/.mmSharedTmpDir/%'
 OR PATH_NAME LIKE '%/.snapshots/%'
 OR NAME LIKE 'user.quota%'
 OR NAME LIKE 'fileset.quota%'
 OR NAME LIKE 'group.quota%')
)

/* 2. Rule: external list rule with no interface script */
RULE EXTERNAL LIST 'modfiles' EXEC '/usr/local/bin/myscript.sh'

/* 3. Rule: file selection rule */
RULE 'asperaRule' LIST 'modfiles' WHERE
(MODIFICATION_TIME >= TIMESTAMP("2018-06-06 12:37:00") OR
 CHANGE_TIME >= TIMESTAMP("2018-06-06 12:37:00")) AND
 NOT (exclude_list)
34 Integration of IBM Aspera Sync with IBM Spectrum Scale

The time stamp in the third rule (TIMESTAMP(“2018-06-06 12:37:00) is the date and time of
the previous replication session. All files that were created or modified (including file attribute
modification) are selected with this rule.

To run this policy, use the command that is shown in Example 3-8. For more information
about the parameter that is used with this command, see 3.4.1, “IBM Spectrum Scale policy
engine” on page 31.

Example 3-8 Run the mmapplypolicy command

mmapplypolicy /fs1 -P policyfile -N asperanode -m 1 -B 1000 --single-instance
[-s localdir -g globaldir]

The use of the mmapplypolicy command starts the policy engine, identifies the file according
to the third rule, stores the selected file names in file lists with up to 1000 entries (as specified
by using the -m 1000 parameter in the mmapplypolicy command), and starts the external
script (as specified in rule 2, /usr/local/bin/myscript.sh).

The policy engine starts one instance of the external script (as specified by using the -m 1
parameter in the mmapplypolicy command) and passes one file list to this instance. If this
instance of the external script finished processing and more file lists with up to 1000 entries
exist, another instance is started with another file list. The external script is started on the
node that is specified by parameter -N of the mmapplypolicy command).

The number of entries per file list (parameter -B 1000 in the mmapplypolicy command) can be
adjusted, depending on the size of the files named in the file list. For larger files, the value for
parameter -B can be smaller than 1000; for small files, it can be greater.

The number of instances of the external script that is started in parallel by the policy engine
(by using the -m 1 parameter in the mmapplypolicy command) can also be adjusted. When
async is used in the external script, the recommended value for this parameter is 1 because
async can start multiple transfer threads. When ascp is used, the value of this parameter can
be greater than 1.

The node name that is specified by using the -N parameter of the mmapplypolicy command
must be a name of node (IBM Spectrum Scale node name) that includes the IBM Aspera
Sync tools that are installed and configured and a network connection to the target cluster.

When async is used, it is recommended to specify one node name for each async session
name. It is not recommended to run async for a specific session name in parallel on multiple
nodes. When ascp is used, multiple node names can be specified to allow ascp in parallel on
multiple nodes. In this case, it is recommended to configure multiple target nodes as well,
whereby each source node transfers file to a distinct target node.

The external script (named /usr/local/bin/myscript.sh in rule 2) now must process the file
list. Before we describe how to process these file lists by using IBM Aspera Sync, we briefly
explain how the external script works in general.

The external script receives two or more of the following parameters from the policy engine:

� Parameter 1: String that describes the operation, which is TEST and LIST in this example.
The external script is first started by using TEST as the first parameter and secondly with
LIST as the first parameter. The invocation with the first parameter set to TEST allows the
script to perform some checks; for example, assure IBM Aspera Sync is installed.
Chapter 3. Using IBM Aspera Sync with IBM Spectrum Scale 35

� Parameter 2: Depends on parameter 1. If the first parameter is LIST, the second
parameter is the name of the file list, including the identified file names. If the first
parameter is TEST, the second parameter is the name of the file system.

� Parameter 3 (optional): Specified by using the OPTS clause in the second rule.

After the external script is started with the first parameter set to LIST, it obtains the name of
the file list as second parameter. The file list includes the file names that were identified by the
policy engine. The format of the file list is shown in the following example:

48900 1741777473 0 -- /fs1/file1

The three first numbers are IBM Spectrum Scale internal numbers (inodenumber,
inodegeneration, and snapid). The file name is the fifth field in the file list.

By using this file list, the external script can extract and process the file names. Example 3-9
shows some pseudocode in korn shell script semantic for the implementation of the external
script. Based on the string that describes the operation in the first parameter, the second
parameter might be the name of the file system (TEST) or the name of the policy result file
(LIST).

Example 3-9 External script that can extract and process the file names

#!/bin/ksh

pseudocode example for the script /usr/local/bin/myscript.sh

function to process the file list provide by the policy engine
function process
{
 #this function is invoked with one argument that is the name of the filelist
 listFile=$1

 #now processes the file list referenced by variable $fileList
}

MAIN

assign parameters received from the policy engine
opCode="$1"
fName="$2"
opts="$3"

check parameters
...

based on op code perform action
rc=0
case $opCode in
 TEST)
 #$1 is the policy operation ($opCode)
 #$2 is the file system name ($fName)
 #$3 option given with the second rule ($opts)

 # check if the file system exists, return nonzero if the checks failed
 echo "TEST option received for directory $fName."
 if [[! -z "fName"]] then
 if [[-d "fName"]] then
36 Integration of IBM Aspera Sync with IBM Spectrum Scale

 echo "TEST directory $fName exists."
 else

 echo "WARNING: TEST directory $fName does not exists."
 rc=1
fi

 fi;;

 LIST)
 #$1 is the policy operation ($oCode)
 #$2 is the policy file name ($fName)
 #$3 option given with the second rule ($opts) - does not apply here
 #check if the file list exists
 echo "LIST option received, starting receiver task"
 if [[! -z "fName"]] then
 if [[-a "fName"]] then

 echo "LIST file name $fName exists."
 else

 echo "WARNING: LIST file name $fName does not exists."
 exit 1
fi

 fi

 #process the file list with a generic function process()
 echo "Processing file $filename"
 process $fName
 rc=$?;;

 *)
 echo "Unknow argument $1 received"
 rc=1;;
esac

exit the script with the $rc assigned above
exit $rc

The function process() that is shown in the pseudocode in Example 3-9 on page 36 must be
implemented according to the needs. For more information about how to implement this
function process() for async, see “Async with external script” on page 39; for ascp, “Ascp with
external script” on page 43.

3.4.2 Integration with async

Async can transfer files from a file list, including the file names that are subject for transfer
from source to target, as described in 2.3.7, “Using file lists” on page 15. Async can be
started manually with a file list that is generated by the policy engine with the stand-alone
LIST policy or automatically by the policy engine with an external script.

Important: When async is used with file lists that are provided by the policy engine, files
that are deleted in the source directory are not deleted in the target directory. Also, files
that were renamed in the source directory are transferred as new files to the target
directory and the old file persists in the target directory. More measures must be taken to
promote deletions and renames to the target, as described next.
Chapter 3. Using IBM Aspera Sync with IBM Spectrum Scale 37

Async with stand-alone LIST policies
To use async in association with stand-alone LIST policies, the policy engine must be started
by using an appropriate policy to create a file list that includes the file names of the identified
files. An example of the policy file and the invocation of the policy engine is described in
“Stand-alone LIST policies” on page 33. As a result of this policy run, the policy engine
produced a file list (policy.list.modfiles) that includes the path and file names of files that
matched the criteria of the policy.

This file list that is provided by the policy engine must be adjusted before it can be passed to
async by using the --include-from=filelist parameter. The file list must be adjusted
because the format of the file list that is created by the policy engine does not match the
format that is expected by async.

Async requires the path and file name relative to the source directory. The policy engine
provides the complete path and file name that are relative to the file system root as the fifth
column. Therefore, the file and path name must be extracted from the file list that is provided
by the policy engine and adjusted to be relative to the source directory.

To adjust the file list that is created by the policy engine to match the format that is expected
by async, the command that is shown in Example 3-10 can be used. The source directory is
/fs1, the file list that is provided by the policy engine is named policy.list.modfiles and the
file includes the names of the files to be transferred is named async.transfer.list.

Example 3-10 Adjust the file list created by the policy engine to match the format expected by async

awk -v source_dir="/fs1" '{ path = "";for(i = 5; i<=NF;i++) { path = path
(i>5?" ":"") $i };sub(source_dir"/", "", path); n=split(path, elems, /\//); for(i
= 1; i<=n -1;i++) { partial = elems[1] "/"; for (j=2; j<=i; j++) { partial =
partial elems[j] "/"} print partial } print path }' policy.list.modfiles | sort |
uniq > async.transfer.list

After the file list that is produced by the policy is adjusted to match the async format (file name
async.transfer.list as shown in Example 3-10), it can be passed to async by using the
parameter that is shown in the following example:

--include-from=async.transfer.list

The async command that uses the adjusted file list is shown in Example 3-11.

Example 3-11 async command that uses the adjusted file list

async -N sync_fs1 -d /fs1 -r user@remotehost:/target/fs1 -l 1G -K push
-i ~/.ssh/id_rsa --preserve-xattrs=native --preserve-uid --preserve-gid -t
--preserve-access-time --include-from=async.transfer.list --exclude "*"
--create-dir

Note: The adjustment of the file list that is provided by the policy engine that is shown
Example 3-10 tolerates files with blanks in their name. However, it does not tolerate file
names with multiple consecutive blanks in their name.

Note: Consider splitting the file list if the number of file names that are contained in this list
is too high to be processed by a single async process. This split requires starting multiple
async processes sequentially. Alternatively, consider increasing the number of threads that
is started by async according to the number of files.
38 Integration of IBM Aspera Sync with IBM Spectrum Scale

Async now processes each file that is provided in the file list (async.transfer.list)
according to its logic by determining the file state on source and target, comparing the
checksum by using the Sync database, and eventually transferring the file.

To promote deleted and renamed files to the target, async must be run without the policy
engine. This process can be done periodically (for example, once a week) in times where the
workload in the source directory is low. To run async without the policy engine, the command
that is shown in Example 3-12 can be used.

Example 3-12 Run async without the policy engine

async -N sync_fs1 -d /fs1 -r user@remotehost:/target/fs1
--preserve-xattrs=native -i ~/.ssh/id_rsa --preserve-uid --preserve-gid --preserve-time

The session name (sync_fs1 in this example) must match the session name that is used for
the transfer of files from a file list to use the existing Sync database.

Async with external script
Async can also be started through the policy engine by using a LIST policy with an external
script. A pseudo code example of the external script (/usr/local/bin/myscript.sh) is shown
in Example 3-9 on page 36. Async is started within the function process() of this example.

The function process() first adjusts the file list that is provided by the policy engine. Then, it
starts async with the appropriate command line options. Example 3-13 shows the pseudo
code for the adjustment of the file list and the invocation of async.

Example 3-13 Pseudocode for the function process() that can be integrated within the external script

#!/bin/ksh

pseudo code example for function process that invokes async with the file list
(belongs to script /usr/local/bin/myscript.sh)

#some global variables
sourceDir="/fs1"
sessionName="sync_fs1"
sshUser="user"
sshKeyPath="~/.ssh/id_rsa"
sshHost="remotehost"
remoteDir="/target/fs1"
transferRate="1G"

function to transfer the files in the file list
function process
{
 #first argument of this function is the name of the file list
 listFile=$1

 #extract file names from $listFile and store it in $listFileAsp
 listFileAsp=$1".aspera"
 awk -v source_dir=$sourceDir '{ path = "";for(i = 5; i<=NF;i++) { path = path
(i>5?" ":"") $i };sub(source_dir"/", "", path); n=split(path, elems, /\//); for(i
= 1; i<=n -1;i++) { partial = elems[1] "/"; for (j=2; j<=i; j++) { partial =
partial elems[j] "/"} print partial } print path }' $listFile | sort | uniq >
$listFileAsp
Chapter 3. Using IBM Aspera Sync with IBM Spectrum Scale 39

 #invoke ascync with the file list
 async -N $sessionName -d $sourceDir -r $sshUser@$sshHost:$remoteDir
-l $transferRate -K push -i $sshKeyPath --preserve-xattrs=native -u -j -t
--preserve-access-time --include-from=$listFileAsp --exclude "*" --create-dir

 #determine return code and exit
 rc=$?
 rm -f $listFileAsp
 return $rc
}

The function process() that is shown in Example 3-13 on page 39 can be integrated into the
sample external script /usr/local/bin/myscript.sh as described in “LIST policies with
external script” on page 34.

To run async that is started by an external script, a policy must be provided. This policy is run
By using the mmapplypolicy command, as shown in Example 3-14.

Example 3-14 mmapplypolicy command running policy

mmapplypolicy /fs1 -P policyfile -N asperanode -m 1 -B 1000 --single-instance
[-s localdir -g globaldir]

The use of the mmapplypolicy command starts the IBM Spectrum Scale policy engine. The
policy engine identifies files based on their modification time, stores the file names in file lists,
and starts the external script with one file list at a time.

The external script that implemented the function process() that is shown in Example 3-13
adjusts the file list and provides it to async. Async performs further checks on the files that are
provided in the list and transfers the files when required.

After the external script processes the file list, it ends. If more file lists are generated by the
policy engine, the external script is started again with a new file list and processes this until all
file lists are processed.

With this implementation, files are identified by the IBM Spectrum Scale policy and not by
async. If many files are stored in the source directory, the policy engine is faster than async.

Async processes these files that are identified by the policy engine by determining the file
attributes, calculating the checksum, and comparing the file attributes and the checksum with
the file that is stored on the target before transferring the file. It also creates and maintains a
Sync database on the source and the target where it keeps track of the file attributes,
checksum, and replication states. Therefore, it is important to keep the name of the session
identical for a replication relation.

To promote deleted and renamed files to the target, async must be run without the policy
engine. This task can be done periodically (for example, once a week) in times where the
workload in the source directory is low. To run async without the policy engine, run the
command that is shown in Example 3-15 on page 41.

Note: The extraction of the file names that is provided by the policy engine tolerates files
with blanks in their name. However, it does not tolerate file names with multiple consecutive
blanks in their name.

Note: The -N parameter must specify only one node; the -m parameter must be set to 1.
40 Integration of IBM Aspera Sync with IBM Spectrum Scale

Example 3-15 Run async without the policy engine

async -N sync_fs1 -d /fs1 -r user@remotehost:/target/fs1
--preserve-xattrs=native -i ~/.ssh/id_rsa --preserve-uid --preserve-gid --preserve-time

The session name (sync_fs1 in this example) must match the session name that is used in
the function process() that starts the async command with the parameter -N $sessionName
denoting the session name.

3.4.3 Integration with ascp

Alternatively, the files that are identified by the IBM Spectrum Scale policy engine can be
transferred by using ascp. As explained in 2.4, “How ascp works” on page 17, ascp is the
backend of async and transfers the file from the source directory to the target directory that is
under consideration for overwrite and delete policies.

It does not create and maintain a Sync database. For this purpose, ascp can transfer files
from a file list, including the file names to transfer from source to target, as explained in 2.4.6,
“Using file lists and file pair lists” on page 21.

The tool ascp can be started manually by using a file list that is generated by the policy
engine with the stand-alone LIST policy (see , “Ascp with stand-alone LIST policies” on
page 41) or automatically by the policy engine with an external script (see , “Ascp with
external script” on page 43).

Ascp with stand-alone LIST policies
To use ascp in association with stand-alone LIST policies, the policy engine must be started
by using an appropriate policy to create a file list, including the file names of the identified
files. An example of the policy file and the invocation of the policy engine is described in
“Stand-alone LIST policies” on page 33. As a result of this process, the policy engine
produces a file list (policy.list.modfiles) that includes the path and file names of files that
matched the criteria.

This file list must be adjusted before it can be passed to ascp by using the
--file-list=filelist parameter. The file list must by adjusted because the format of the file
list that is created by the policy engine does not match the format expected by ascp (by using
file lists and file pair lists).

Ascp requires the fully qualified path and file name that is the fifth field within the file list that is
provided by the policy engine. Therefore, the file and path name must be extracted from the
file list that is provided by the policy engine.

To adjust the file list that was created by the policy engine to match the format that is expected
by ascp, the command that is shown Example 3-16 on page 42 can be used. The use of this
command extracts the full path and file names from the file list that is provided by the policy
engine (policy.list.modfiles) and stores the resulting path and file names in file
ascp.transfer.list.

Important: When ascp is used with file lists that are provided by the policy engine, files
that were deleted in the source directory are not deleted in the target directory. Also, files
that were renamed in the source directory are transferred as new files to the target
directory and the old file persists in the target directory. More measures must be taken to
promote deletions and renames for files on the source to the target. Some of these
measures are described next.
Chapter 3. Using IBM Aspera Sync with IBM Spectrum Scale 41

Example 3-16 Extracts the full path and file names from the file list provided by the policy engine

awk -F '[]' '{ for(i=7; i<=NF; i++) printf "%s",$i (i==NF?ORS:OFS) }'
policy.list.modfiles > ascp.transfer.list

After the file list that is produced by the policy is adjusted to match the ascp format (file name
ascp.transfer.list as shown in Example 3-16), it can be passed to ascp by using the
--file-list=ascp.transfer.list parameter, as shown in Example 3-17. In this example,
files are transferred from the source directory that is named /fs1 to the target directory that is
named /target/fs1.

Example 3-17 Example of files transferred from the source directory to target directory

ascp -l 1G -d --file-list=ascp.transfer.list --overwrite=diff -k 2 --mode=send
--user=user --host=remotehost -i ~/.ssh/id_rsa -p
--preserve-xattrs=native --preserve-file-owner-gid --preserve-file-owner-gid
--src-base=/fs1 /target/fs1

Ascp copies each file that is provided in the file list (ascp.transfer.list) from the source
directory (/fs1) to the target directory (/target/fs1) that is considering the overwrite policies.
It does not create and maintain a Sync database.

When files are deleted in the source directory, these files are not automatically deleted in the
target directory. Likewise, when a file is renamed on the source, two copies are on the target:
the file with old name and the file with the new name. The file with the old name on the target
is redundant and can be deleted.

To promote the deletion of files to the target directory, ascp must be started without any file list
and by using the ascp parameter --delete-before-transfer. The scope of the file transfer
must include the entire source directory. This process causes all files on the source to be
subject for transfer to the target.

To control whether files that are identical on source and target are transferred, use the ascp
parameter --overwrite (for more information, see 2.4.3, “Control overwrites” on page 19).
You can run ascp this way periodically (for example, once a week) and in times where the
workload in the source directory is low. To run ascp for managing deleted and renamed files,
the command that is shown in Example 3-18 can be used.

Example 3-18 Run ascp for managing deleted and renamed files

ascp -l 1G -d -p --delete-before-transfer --overwrite=never
--preserve-xattrs=native --preserve-file-owner-gid --preserve-file-owner-uid -i
~/.ssh/id_rsa /fs1 user@remotehost:/target/fs1

Note: The adjustment of the file list as shown in Example 3-16 is based on the standard
output of the policy engine and tolerates blanks within the path and file names. However, it
might no longer work if the output of the policy engine includes more fields; for example,
when the SHOW statement is used within the policy rules.

Note: Consider splitting the file list if the number of file names that is in this list is too high
to be processed by a single ascp process. This task requires starting multiple ascp
processes sequentially.
42 Integration of IBM Aspera Sync with IBM Spectrum Scale

The use of this command deletes files on the target that were deleted or renamed on the
source. Because the parameter --overwrite=never is used in Example 3-18 on page 42, files
that are on the source and target are not copied. Files that are on the source and not on
target are copied. Different overwrite policies can be used to control the processing in the
target directory. For more information, see 2.4.3, “Control overwrites” on page 19.

Ascp with external script
Ascp can also be started by using the policy engine that uses a LIST policy with an external
script. The name of the file list that is generated by the policy engine is passed to the external
script (in this example, the external script is named /usr/local/bin/myscript.sh). This
external script starts ascp with an adjusted file list. The invocation of ascp can be
implemented in the function process() as shown in Example 3-18. For more information, see
the adjustments that were done for async in “Async with external script” on page 39.

Before ascp can be started, the file list must be adjusted because the format of the file list that
is provided by the policy engine does not match the format that is expected by ascp. For more
information about this format adjustment, see “Ascp with stand-alone LIST policies” on
page 41.

The adjusted file list is provided to ascp with the parameter --file-list=filelist (see 2.4.6,
“Using file lists and file pair lists” on page 21). The pseudo code example that is shown in
Example 3-19 shows how to start ascp with a file list that is produced by the policy engine.

Example 3-19 Starting ascp with a file list produced by the policy engine

#!/bin/ksh

pseudo code example for function process that invokes ascp with the file list
(belongs to script /usr/local/bin/myscript.sh)

#some global variables
sourceDir="/fs1"
sessionName="sync_fs1"
sshUser="user"
sshKeyPath="~/.ssh/id_rsa"
sshHost="remotehost"
remoteDir="/target/fs1"
transferRate="1G"

function to transfer the files in the file list
function process
{
 #first argument of this function is the name of the file list
 listFile=$1

 #extract file names from $listFile and store it in $listFileAsp
 listFileAsp=$1".aspera"
 awk -F '[]' '{ for(i=7; i<=NF; i++) printf "%s",$i (i==NF?ORS:OFS) }'
$listFile > $listFileAsp

 #invoke ascp with the file list
 ascp -l $transferRate --file-list=$listFileAsp -d --overwrite=diff -k 2
--mode=send --user=$sshUser --host=$sshHost -i $sshKeyPath -p
--preserve-xattrs=native --preserve-file-owner-gid
--preserve-file-owner-uid --src-base=$sourceDir $remoteDir
Chapter 3. Using IBM Aspera Sync with IBM Spectrum Scale 43

 #determine return code and exit
 rc=$?
 rm -f $listFileAsp
 return $rc
}

The function process() that is shown in Example 3-19 on page 43 can be with the sample
external script /usr/local/bin/myscript.sh, as described in “LIST policies with external
script” on page 34.

To run ascp that is started by an external script, a policy must be provided (for more
information, see “LIST policies with external script” on page 34). This policy is run by using
the mmapplypolicy command, as shown in Example 3-20.

Example 3-20 RUNNING the policy with the mmapplypolicy command

mmapplypolicy /fs1 -P policyfile -N node1[,node2 ..] -m 2 -B 1000
--single-instance [-s localdir -g globaldir]

With ascp transferring files, the -N parameter can include more than one IBM Spectrum Scale
node name where IBM Aspera Sync is installed. If multiple node names are specified, an
instance of the external script is started with a separate file list.

The parameter -m can have a value of 1 or greater. With this parameter set to 2 as shown in
Example 3-20, two instances of the external script are started on each node that is specified
by using the -N parameter in parallel. Each instance of the external script processes one file
list.

The use of the mmapplypolicy command starts the IBM Spectrum Scale policy engine. The
policy engine identifies files based on their modification time, stores the file names in file lists,
and starts the external script with one file list at a time.

The external script that implemented the function process() that is shown in Example 3-19 on
page 43 adjusts the file list and provides it to ascp. Ascp transfers the files that are named in
the file list. If one instance of the external script that is processing one file list finished, another
instance of the external script is started with a new file list until all of the file lists are
processed.

The integration of ascp with the IBM Spectrum Scale policy engine through an external script
is an alternative to the use of async. With this integration, async is not required because the
policy engine identifies the files to be transferred.

The use of the policy engine to identify files is fast. The use of ascp without async reduces the
overhead because no further checking and metadata tracking (file attributes and checksums)
is done for the files that are transferred.

To promote deleted and renamed files to the target, ascp must be run without the policy
engine and by using the --delete-before-transfer parameter (see 2.4.4, “Control deletes
on target” on page 20). This process can be done periodically (for example, once a week) in
times where the workload in the source directory is low.

Note: The extractions of the file names from the file list that is provided by the policy
engine tolerates files with blanks in their name. However, it relies on the standard output
format of the policy engine. If more fields are in the file list, this extraction must be
adjusted.
44 Integration of IBM Aspera Sync with IBM Spectrum Scale

To run ascp without the policy engine to manage deleted and renamed files, the command
that is shown in Example 3-21 can be used.

Example 3-21 Running ascp without the policy engine to manage deleted and renamed files

ascp -l 1G -d -p --delete-before-transfer --overwrite=never
--preserve-xattrs=native --preserve-file-owner-gid --preserve-file-owner-uid -i
~/.ssh/id_rsa /fs1 user@remotehost:/target/fs1

The use of this command deletes files on the target that were deleted or renamed on the
source. Because the parameter --overwrite=never is used in the Example 3-21, files that are
on the source and the target are not copied. Files that are on the source and not the target
are copied. Different overwrite policies can be used to control the processing in the target
directory (see 2.4.3, “Control overwrites” on page 19).

In summary, the use of ascp with the policy engine is simpler and more scalable than async
because it can run across multiple nodes. However, renamed and deleted files must be
handled by extra runs of ascp by using the parameters --delete-before-transfer and
--overwrite=never, as shown in Example 3-21.

It also is recommended to periodically check the inventory of the source and the target to
ensure that no files were missed during the replication process. The IBM Spectrum Scale
policy engine can be used to generate lists of files for the inventory check of the source and
the target file system.

3.5 Integration with Hierarchical Storage Management

IBM Spectrum Scale provides the capabilities to migrate files that are stored in a file system
from one storage tier to another. A storage tier is a storage device with a certain
characteristic, such as solid-state disk (SSD), Flash, disk, cloud storage, and tape.

To migrate files from disk to tape, more software components are required. These
components can be IBM Spectrum Archive Enterprise Edition that migrates files from disk to
tape that is formatted in the IBM Linear Tape File System™ format (LTFS). It also can be IBM
Spectrum Protect for Space Management that migrates files from disk to an IBM Spectrum
Protect server that can store the data on tape.

This migration capability from disk to tape is also called hierarchical storage management
(HSM), which provides cost savings by moving data that must be retained and is no longer
accessed to a cheaper storage tier, such as tape.

The basic concept of HSM is to migrate files from disk to tape while keeping migrated files
transparently accessible in the file system. To identify files that must be migrated, IBM
Spectrum Scale MIGRATE policies can be used with the policy engine. For more information,
see IBM Knowledge Center.

During the migration process, the HSM component copies the file to the destination tape by
way of IBM Spectrum Archive or IBM Spectrum Protect and then, creates a stub of the
migrated file. The stub is the inode of the file that makes the file visible in the file system.
However, the content of the file is on tape at the destination.

When a migrated file is opened, the HSM component is started by IBM Spectrum Scale, the
destination of the file is identified, and the file is copied back to disk. This process is called
recall. After the file content is recalled, access is granted to the process that opened the file.
Chapter 3. Using IBM Aspera Sync with IBM Spectrum Scale 45

https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.1/com.ibm.spectrum.scale.v5r01.doc/bl1adv_policies.htm

The recall from tape takes some time because the tape must be mounted and spooled.
Therefore, it is not recommended to recall many files at once.

When async identifies files to be transferred, it first checks if the file was modified based on
the file modification time stamp. If the file was modified, async opens and reads the file to
determine the checksum and compares it with the modification time stamp and checksum on
the target.

If the file is migrated, this operation (open and read) causes the file to be recalled. If this issue
occurs with many files during an async session, many recalls are run at the same time, which
can affect the file system performance and the transfer performance of the async session.

Many concurrent transparent recalls are also called recall storms and can cause hangs in the
file system and excessively long async sessions. It can even result in a condition where a
subsequent async session starts although the previous session is not finished. Recall storms
must be prevented because of their adverse effects.

In the context of the integration of IBM Aspera Sync with IBM Spectrum Scale, HSM that can
be represented by the IBM Spectrum Archive Enterprise Edition or IBM Spectrum Protect for
Space Management software can be installed and configured on the source and on the target
directory.

Next, we describe both configurations and provide some best practices for the use of async.
Although we focus on async, we also provide guidance for ascp.

3.5.1 Async with HSM on source

In this section, we focus on async with HSM on the source. We also provide some guidance
for ascp as described in “Considerations for ascp” on page 49.

When async is used to transfer files from a source directory that is managed by HSM, it must
be ensured that the files that are transferred were not migrated to tape before this process.
Otherwise, the async opens and reads migrated files on the source directory to determine the
checksum, which results in a recall. If this issue occurs with multiple files at the same time,
recall storms are inevitable. For this reason, it must be ensured that files are replicated by
async before they are migrated by HSM.

To prevent file migration before replication by using async, files on the source directory can be
migrated with a time delay of some days after they are created or modified. During this time
delay, async can ensure that the file is replicated. A migration policy that migrates files 10
days after modification is shown in Example 3-22 on page 47. For more information, see IBM
Spectrum Scale Information Lifecycle Management Policies - Practical guide, WP102642.

Important: In an environment with HSM and IBM Aspera Sync, it is recommended to
prevent changes of the files after they are transferred by IBM Aspera Sync. That is, only
files are stored in the source directory that are not changed again. Otherwise, lengthy tape
operations are inevitable that can have negative effect on the cluster and IBM Aspera Sync
performance. Also, it must be ensured that IBM Aspera Sync transfers files from the source
to the target before files are migrated on the source.

Important: Ensure that files are transferred by async before migrating files in the source
directory.
46 Integration of IBM Aspera Sync with IBM Spectrum Scale

http://w3-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102642
http://w3.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102642
http://w3-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102642
http://w3.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102642

Example 3-22 Migration policy that migrates files 10 days after modification

/* define exclude rule*/
RULE 'exclude' EXCLUDE WHERE (PATH_NAME LIKE '%/.SpaceMan/%' OR PATH_NAME LIKE
'%/.snapshots/%' OR PATH_NAME LIKE '%/.ltfsee/%' OR PATH_NAME LIKE
'%/.private-asp/%' OR PATH_NAME LIKE '%/.mmSharedTmpDir/%')

/* define macro for modification time */
define(mod_age,(DAYS(CURRENT_TIMESTAMP) - DAYS(MODIFICATION_TIME)))
define(change_age,(DAYS(CURRENT_TIMESTAMP) - DAYS(CHANGE_TIME)))

/* define file migration state */
define(is_migrated, (MISC_ATTRIBUTES LIKE '%V'))

/* define external pool on ltfs */
RULE EXTERNAL POOL 'ltfs' EXEC '/opt/ibm/ltfsee/bin/ltfsee' OPTS '-p pool1@lib1'

/* migrate files that have been modified 10 day ago or longer */
RULE 'MigLtfs' MIGRATE FROM POOL 'system' TO POOL 'ltfs' WHERE
((mod_age > 10) OR (change_age > 10)) AND NOT (is_migrated)

A better way to prevent recall storms that are caused by async is to integrate async with the
policy engine (for more information, see 3.4.2, “Integration with async” on page 37). This
integration allows you to exclude files that are migrated from being identified as candidates for
the async session. Hence, migrated files do not become candidates for replication by async.
An example of this policy is shown in Example 3-23.

Example 3-23 Exclude files that are migrated from being identified as candidates for the async session

/* define a macro for migrated files */
define(is_migrated, (MISC_ATTRIBUTES LIKE '%V'))

/* identify files that have been modified since the given time stamp and that are
not migrated */
RULE 'asperaRule' LIST 'files' WHERE
(MODIFICATION_TIME >= TIMESTAMP("2018-06-06 12:37:00") OR
 CHANGE_TIME >= TIMESTAMP("2018-06-06 12:37:00")) AND
NOT (is_migrated)

As shown in Example 3-23, a macro is defined that specifies the state for migrated files. In the
subsequent rule, files are not selected if they are migrated. This rule can be integrated into
the policies for async as described in 3.4.2, “Integration with async” on page 37.

The condition that async skips migrated files that must be transferred must be resolved to
have a consistent state between source and target. For this purpose, a stand-alone LIST
policy can be implemented that identifies files that are migrated after the specified
modification time stamp.

The modification time stamp matches the last async session. For more information about
stand-alone LIST policies, see , “Stand-alone LIST policies” on page 33. Example 3-24
shows a policy that selects files that were migrated after a specified modification time.

Example 3-24 Policy that selects files that were migrated after a specified modification time

/* define macro to define the files and directories to be excluded */
define(
 exclude_list,
Chapter 3. Using IBM Aspera Sync with IBM Spectrum Scale 47

 (PATH_NAME LIKE '%/.SpaceMan/%'
 OR PATH_NAME LIKE '%/.ctdb/%'
 OR PATH_NAME LIKE '%/.private-asp/%'
 OR PATH_NAME LIKE '%/.mmSharedTmpDir/%'
 OR PATH_NAME LIKE '%/.snapshots/%'

 OR PATH_NAME LIKE '%/.ltfsee/%'
 OR NAME LIKE 'user.quota%'
 OR NAME LIKE 'fileset.quota%'
 OR NAME LIKE 'group.quota%')
)

/* define a macro for migrated files */
define(is_migrated, (MISC_ATTRIBUTES LIKE '%V'))

/* define external list rule with no interface script */
RULE EXTERNAL LIST 'modfiles' EXEC ''

/* identify files that have been modified since the given time stamp and that are
not migrated */
RULE 'asyncRule' LIST 'files' WHERE
(MODIFICATION_TIME >= TIMESTAMP("2018-06-06 12:37:00") OR
 CHANGE_TIME >= TIMESTAMP("2018-06-06 12:37:00")) AND (is_migrated)

This policy can be run by using the mmapplypolicy command to create a list of files that match
the criteria, as shown in Example 3-25.

Example 3-25 Using mmapplypolicy command to create a list of files matching the criteria

mmapplypolicy /fs1 -P policyfile -N asperanode -f migrated --single-instance -I
defer [-s localdir -g globaldir]

The migrated.list.modfiles file list includes the file names of migrated files that are not yet
transferred. This file list can be used to run bulk recalls by using the HSM component. Bulk
recalls are optimized in a way that they sort the files by their location on tape and recall the
files in this sequence. Therefore, the number of tape mounts is drastically reduced and the
transfer speed is increased because all files that are stored on a specific tape are recalled in
one operation. An example to start a bulk recall with IBM Spectrum Archive is shown in the
following example:

ltfsee recall migrated.list.modfiles

When IBM Spectrum Protect for Space Management is used, the file list that is created by the
policy engine must be adjusted to extract the path and file names. The command that is
shown in Example 3-26 can be used.

Example 3-26 Adjust policy engine to extract the path and file names.

awk -F '[]' '{ for(i=7; i<=NF; i++) printf "%s",$i (i==NF?ORS:OFS) }'
migrated.list.modfiles > recall.list

The recall can be run with IBM Spectrum Protect for Space Management. Specifying the file
system path of the source directory perform a tape optimized recall, as shown in the following
example:

dsmrecall -filelist=recall.list [/fs1]
48 Integration of IBM Aspera Sync with IBM Spectrum Scale

After these files are recalled, async can be run again through the policy engine to transfer
these files to the target directory. After this process completes, the files that were recalled can
be migrated again by using the migration command of IBM Spectrum Archive (ltfsee
migrate -s filelist) or IBM Spectrum Protect for Space Management (dsmmigrate
-filelist=filelist).

In summary, when the source directory is managed with HSM, it is important to ensure that
files are replicated by async before they are migrated. This replication can be achieved by
delaying the migration of files based on the modification time stamp.

Also, it can be ensured that files that are stored in the source directory are not changed again
to prevent recalls and subsequent replication and migration. This process can be
implemented by setting files to immutable on the source immediately after the files are stored.
Immutable files cannot be changed. When integrating async with the IBM Spectrum Scale
policy engine, it can be ensured that files that are migrated are not selected to be transferred
by async.

Considerations for ascp
Ascp does not identify files that were created and modified in the source directory. Instead,
ascp is given a file name or a file list that includes file names to be transferred from the source
to the target. If a file that is migrated on source is processed by ascp, the file is recalled. If this
issue happens to many files at the same time, recall storms are inevitable.

To prevent recalls storms, file names that are passed to ascp should not be migrated on
source. The best way to achieve this condition is to integrate ascp with the IBM Spectrum
Scale policy engine (see 3.4.3, “Integration with ascp” on page 41).

When ascp uses the IBM Spectrum Scale policy engine, the policy rules that are used to
identify files that are subject for transfer can exclude files that are migrated on the source
directory. A policy to exclude file that are migrated on source is described in 3.5.1, “Async
with HSM on source” on page 46.

Another way to prevent recall storms from using ascp is to prevent overwrites by using the
--overwrite=never parameter. However, this parameter causes inconsistencies between
source and target directories because files that are modified on source are not transferred to
the target.

Yet another approach is to set file to immutable on the source after the file is created. This
process prevents modifications of the file on the source so it can be migrated at any time after
it was set to immutable.

In summary, the best way to transfer files with ascp from a source directory that is managed
by HSM is to integrate ascp with the policy engine and exclude files that were migrated from
being identified by the policy engine.

3.5.2 Async with HSM on target

In this section, we focus on async with HSM on the target and provide some guidance for
ascp, as described in “Considerations for ascp” on page 51.

With HSM on the target directory, files that were transferred by async to the target directory
are eventually migrated by HSM. If a file is not modified on the source directory, this issue is
not a problem.
Chapter 3. Using IBM Aspera Sync with IBM Spectrum Scale 49

However, if a file that was migrated on the target is modified in the source directory, it
becomes a candidate for replication with the next async session. During the async session,
the file on the source is compared to the file on the target and transferred because it was
modified in the source directory. This transfer causes the file to be recalled in the target
directory. If this issue happens with many files within an async session, it can cause recall
storms on the target.

This situation cannot be prevented because the target migration policy is unaware of file
modifications on source. Therefore, the best recommendation is to migrate files on the target
only if they do not change on the source.

If many files that are migrated on target are changed on the source, administrative measures
can be implemented to start bulk recalls for these files on the target before the next async
session. Bulk recalls are more efficient because they are tape optimized by sorting the files to
be recalled by the tape ID and the location on tape.

The challenge is to detect the situation that files that are migrated on the target were modified
on source. However, if this detection is possible, the files that are modified on the source must
be identified regarding the path and file name on source. Then, the source path must be
mapped to the corresponding target path. With the resulting file list, bulk recalls can be run on
the target, as described in 3.5.1, “Async with HSM on source” on page 46.

One way to prevent modification for files in the source directory the IBM Spectrum Scale
immutability feature can be used. For more information, see IBM Spectrum Scale Immutability
Introduction, Configuration Guidance, and Use Cases, REDP-5507.

With this feature, files on the source can be set to immutable. An immutable file cannot be
modified, renamed, or deleted. Async can transfer immutable files from the source and retain
the immutability setting on the target. The HSM component on the target can be configured to
migrate only files that were set to immutable. This configuration assures that file do not
change on the source, which prevents recalls on the target.

Example 3-27 shows an HSM MIGRATE policy on the target that migrates only files that are
immutable and that were modified 10 days ago or longer.

Example 3-27 HSM MIGRATE policy

/* define exclude rule*/
RULE 'exclude' EXCLUDE WHERE (PATH_NAME LIKE '%/.SpaceMan/%' OR PATH_NAME LIKE
'%/.snapshots/%' OR PATH_NAME LIKE '%/.ltfsee/%' OR PATH_NAME LIKE
'%/.private-asp/%' OR PATH_NAME LIKE '%/.mmSharedTmpDir/%')

/* define macro for modification time */
define(mod_age,(DAYS(CURRENT_TIMESTAMP) - DAYS(MODIFICATION_TIME)))
define(change_age,(DAYS(CURRENT_TIMESTAMP) - DAYS(CHANGE_TIME)))

/* define macro for immutability */
define(is_immutable,(MISC_ATTRIBUTES LIKE '%X%'))

/* define file migration state */
define(is_migrated, (MISC_ATTRIBUTES LIKE '%V'))

/* define external pool on ltfs */

Note: Use only HSM that is configured for the target directory with async if files are not
changed in the source directory.
50 Integration of IBM Aspera Sync with IBM Spectrum Scale

http://www.redbooks.ibm.com/abstracts/redp5507.html
http://www.redbooks.ibm.com/abstracts/redp5507.html

RULE EXTERNAL POOL 'ltfs' EXEC '/opt/ibm/ltfsee/bin/ltfsee' OPTS '-p pool1@lib1'

/* migrate files that have been modified 10 day ago or longer and that are
immutable*/
RULE 'MigLtfs' MIGRATE FROM POOL 'system' TO POOL 'ltfs' WHERE
((mod_age > 10) OR (change_age > 10)) AND
(is_immutable) AND NOT (is_migrated)

In summary, the best way to prevent negative effects that are caused by async with HSM
configured on the target directory is to ensure that files are not modified in the source
directory again after they are transferred to the target. Otherwise, modifying files on the
source cause recalls (storms) on the target.

One practical approach is to set the file to immutable on the source, allow async to transfer
only files that are set to immutable on the source, and migrate files that are immutable on the
target. For more information about the use of IBM Aspera Sync with immutable files, see 3.6,
“Integration with immutable files” on page 51.

Considerations for ascp
When ascp and migrating files are used on the target by using HSM, the same challenges as
described for async (see 3.5.1, “Async with HSM on source” on page 46) exist. That is, if a file
is modified on source, it is identified by the policy engine and transferred to the target. If the
file on the target is migrated, it is recalled. If many files that are migrated on the target are
sent from the source, recall storms occur.

One way to avoid recall storms by using ascp is to prevent overwrites on the target by using
the --overwrite=never parameter.

However, this parameter causes inconsistencies between source and target directories
because files that are modified on source are not transferred to the target.

Another approach is to set the immutable flag on the source after the file is created. This
setting prevents modifications of the file on the source, so it can be migrated at any time after
it is set to immutable.

In summary, when ascp is used with HSM configured on the target directory, files that were
stored on the source are not changed again. This rule can be enforced by setting files to
immutable. For more information, see IBM Spectrum Scale Immutability Introduction,
Configuration Guidance, and Use Cases, REDP-5507.

Another way is to not overwrite files on the target. However, this process can cause
inconsistencies between the source and target directory contents.

3.6 Integration with immutable files

IBM Aspera Sync and ascp include the capabilities to preserve the extended attributes of files
that are transferred from the source to the target. This feature also includes immutability
attributes that are provided by IBM Spectrum Scale.

For more information, see IBM Spectrum Scale Immutability Introduction, Configuration
Guidance, and Use Cases, REDP-5507.
Chapter 3. Using IBM Aspera Sync with IBM Spectrum Scale 51

http://www.redbooks.ibm.com/abstracts/redp5507.html
http://www.redbooks.ibm.com/abstracts/redp5507.html
http://www.redbooks.ibm.com/abstracts/redp5507.html
http://www.redbooks.ibm.com/abstracts/redp5507.html

Example 3-28 shows some extended attributes of an immutable file including the immutability
attributes (immutable, appendOnly, indefiniteRetention, and expiration Time).

Example 3-28 Shows some extended attributes of an immutable file

mmlsattr -L file1
file name: file1
metadata replication: 2 max 2
data replication: 2 max 2
immutable: yes
appendOnly: no
indefiniteRetention: no
expiration Time: Wed Nov 9 10:00:00 2035
flags:
storage pool name: system
fileset name: worm
snapshot name:
creation time: Tue Nov 8 21:52:07 2016
Misc attributes: ARCHIVE READONLY
Encrypted: no

The immutable, appendOnly, indefiniteRetention, and expiration time attributes that are
shown in Example 3-28 on page 52 can be set on a per file basis within an immutable fileset.
For more information, see IBM Spectrum Scale Immutability Introduction, Configuration
Guidance, and Use Cases, REDP-5507.

IBM Aspera Sync preserves immutability attributes for files that are transferred to the target
directory. However, this process requires that the target directory features the same fileset
structure as the source directory. In particular, the immutable filesets that were created on the
source must be manually created on the target.

Certain immutability attributes can be changed by the owner of the immutable file on the
source. For example, the expiration time can be increased (but not decreased for fileset
configured in compliant mode), the indefiniteRetention flag can be set to yes or unset to no,
and the appendOnly and immutable flags can be set from no to yes.

IBM Aspera Sync identifies and selects files for transfers, even if only file attributes changed
(for more information, see 2.3, “How async works” on page 11). In this case, only the changed
attributes are transferred and applied on the target file.

Ascp copies any file entirely that matches the file and directory pattern that is provided with
the ascp command, including the updated file attributes. The following limitations apply with
IBM Aspera Sync version 3.9 regarding the transfer of immutability attributes:

� If an immutable file was transferred to the target and later an extended attribute, such as
expiration time or the indefiniteRetention flag for the file on the source are changed,
async applies the changed attributes to the file on the target and present an error
message. This error message can be prevented by setting the default file creation mask
for async to 000. For more information about setting the default file creation mask, see
“File creation mask”.

� If an immutable file was transferred to the target, any subsequent transfer by using ascp
always presents an error message. This issue occurs because ascp attempts to transfer
the file entirely. The error message occurs because it is immutable on the target. If only the
expiration time or the indefiniteRetention flag for the file on the source is changed, ascp
applies this change to the target file; however, the error message persists.
52 Integration of IBM Aspera Sync with IBM Spectrum Scale

http://www.redbooks.ibm.com/abstracts/redp5507.html
http://www.redbooks.ibm.com/abstracts/redp5507.html
http://www.redbooks.ibm.com/abstracts/redp5507.html
http://www.redbooks.ibm.com/abstracts/redp5507.html

� If a file with the indefiniteRetention flag set to yes was transferred to the target and later
the indefiniteRetention flag is unset for the file on the source. Then, this change is not
applied to the file on the target during subsequent transfers. At the time of this writing, this
issue is under investigation.

� If a file with the appendOnly flag was transferred to the target and later this file is changed
on the source, the next transfer of the changed file to the target fails. This issue occurs is
because async and ascp do not support append-only mode.

� Immutable filesets that are configured in compliant mode do not allow to unset the
immutable flag for a file. However, normal filesets might allow this unset. IBM Aspera Sync
(async and ascp) cannot unset the immutability flag on the target; therefore, the transfer
fails.

File creation mask
When a file is created on the target, IBM Aspera Sync uses a default file creation mask. The
default file creation mask is set to 644. Because immutable files on the source are read-only,
the default mask on the target causes error messages when updating file attributes on the
target, such as the expiration time or the indefiniteRetention flag.

To prevent this error message, the default file creation mask that is used by IBM Aspera Sync
can be set to 000. By using this setting, the permissions of the file from the source file are
applied on the target. To change the default file creation mask, the following command can be
used on the target:

asconfigurator -x "set_node_data;file_create_grant_mask,000"

Attribute changes based on time stamp
Changes of file attributes are reflected in change time of a file. The rule that is shown in
Example 3-29 identifies files that were created, modified, or experienced changes to
extended attribute after a specific time stamp.

Example 3-29 Rule identifies files with changes of attributes based on specific time stamp

RULE 'newfiles' LIST 'modfiles' WHERE
MODIFICATION_TIME >= TIMESTAMP("2018-06-06 12:37:00") OR
CHANGE_TIME >= TIMESTAMP("2018-06-06 12:37:00

The time stamp in this rule (TIMESTAMP(“2018-06-06 12:37:00) is the date and time of the
previous run of the policy engine with ascp integration.

It is recommended to transfer files from the source to the target directory after the files are set
to immutable and the expiration time and indefiniteRetention flag were set. In this way, it is
ensured that the files are transferred once and do not change again.

Important: IBM Aspera Sync (async and ascp) does not support the transfer of changes of
files where the appendOnly flag is set on the source. Also, Async does not unset the
indefiniteRetention flag for files on the target when it was transferred from the source
file.

When the expiration time or the indefiniteRetention flag of a file changes on the source
that was transferred to the target, the new expiration time or indefiniteRetention flag is
applied upon the next run, but it causes an error message.

Note: Running async in bidirectional transfer mode might cause an error if the file names
on the source and the target collide.
Chapter 3. Using IBM Aspera Sync with IBM Spectrum Scale 53

3.7 Integration with IBM Spectrum Scale Snapshots

IBM Aspera Sync (async and ascp) can also replicate files from a snapshot that was created
in the source file system or fileset that includes the source directory. The main advantage of
the use of a snapshot as source for the replication is that files that are accessed or locked in
the source directory can be replicated without access conflicts. Therefore, accessed or locked
files do not affect the replication session.

In addition, the application can create an application consistent snapshot for applications that
require a consistent recovery point, such as databases. This snapshot can be used as source
for the replication and the data that was replicated to the target is also consistent from an
application perspective.

Async does not create snapshots. The snapshot must be created manually by using the
following IBM Spectrum Scale command:

mmcrsnapshot fsname snapshot-name [-j fsetname]

The first parameter (fsname) is the name of the file system that is hosting the source directory.
The second parameter (snapshot-name) is the name of the snapshot. The third parameter (-j
fsetname) is optional and specifies the name of an independent fileset. When this parameter
is used, the snapshot is created for the fileset only and is within this fileset.

The snapshot is created in a directory that us named .snapshot/snapshot-name that is
relative to the file system root. For example, if the file system root is in directory /fs1 and the
snapshot’s name is sync_fs1_snap, the snapshot directory is named
/fs1/.snapshots/sync_fs1_snap. If a snapshot is created for an independent fileset, the
.snapshot directory is relative to the fileset path.

When snapshots are used, the source directory for the async session is the associated
snapshot directory. The source directory name must always be the same for a specific
replication relation and async session name.

The name of the snapshot is part of the snapshot directory and is part of the source directory
to be replicated to the target directory. Therefore, the name of the snapshot must always be
the same for a specific replication relation. This configuration can be achieved by creating the
snapshot, running async, and upon completion of the async session, deleting the snapshot.

An alternative method allows creating snapshots with different names for subsequent async
sessions with the same session name and the use of symbolic links to link the snapshot
directory with a different name to a snapshot directory with a stable name. However, this
method is not preferred.

The directory structure within the snapshot directory is preserved relative to the file system
root. For example, assume the file system root /fs1 contains the following files and
directories:

/fs1/file1
/fs1/dir1/file2
/fs1/dir1/dir2/file3
/fs1/dir3/file4

Important: The name of the snapshot for a replication relation between a source and
target directory must always be the same.
54 Integration of IBM Aspera Sync with IBM Spectrum Scale

After a snapshot of the file system /fs1 with the name sync_fs1_snap is created, the
snapshot directory /fs/.snapshots/sync_fs1_snap contains the following files and
directories:

file1
dir1/file2
dir1/dir2/file3
dir3/file4

Snapshot directories are read-only. By default, async creates the Sync database within the
source directory (for more information, see 2.3.2, “Sync Database” on page 12). Because the
source directory is the snapshot directory that is read-only, the path for the local Sync
database must be set to a path within the source directory. The following async parameter
can be used for this purpose:

--local-db-dir=ldbdir

The target cannot be a snapshot directory. To create snapshots on the target after
successfully completing the async session, the snapshot must be created manually by using
the IBM Spectrum Scale mmcrsnapshot command.

To run async by using a snapshot of the source directory, the snapshot must be created first.
Assume that the file system name is fs1 and the path of the file system root is /fs1, as shown
in the following example:

mmcrsnapshot fs1 sync_fs1_snap

The snapshot directory name that must be used as source directory name is
/fs1/.snapshots/sync_fs1_snap.

To run async from the snapshot of the source directory, use the command that is shown in
Example 3-30.

Example 3-30 Running async from the snapshot of the source directory

async -N sync_fs1 --local-db-dir=/fs1 -i ~/.ssh/id_rsa -d
/fs1/.snapshots/sync_fs1_snap -r user@remotehost:/target/fs1
--preserve-xattrs=native -u -j -t -l 1G --preserve-access-time [--create-dir]

The session name that is provided with parameter -N and the source directory name that is
on the snapshot and provided with the parameter -d and must remain the same for all
subsequent async sessions. Therefore, after the transfer session is complete, the snapshot
must be deleted. Before the next transfer session, a new snapshot must be created with the
same name.

If files were renamed and deleted in the source directory, the next async session from a new
snapshot propagates these changes to the target directory.

After the async session completes, delete the snapshot so it can be re-created immediately
before the next async session starts, as shown in the following example:

mmdelsnapshot fs1 sync_fs1_snap

Important: The path name for the Sync database must be explicitly given with the async
command.

Note: The target directory cannot be a snapshot directory.
Chapter 3. Using IBM Aspera Sync with IBM Spectrum Scale 55

In summary, async can be integrated with IBM Spectrum Scale snapshots by using snapshot
directories as the source directory for a transfer session. The snapshot must be created
manually (or within a script) on the source before the transfer session and deleted after the
transfer session. For subsequent transfer sessions with the same session name (same
transfer relation), a snapshot with the same name must be created. Snapshots can also be
manually created on the target after the async session completes.

3.7.1 Considerations with ascp and snapshots

Ascp can also be integrated with IBM Spectrum Scale snapshots by using the snapshot
directory as the source directory for the transfer. It works like with async, but the name of the
snapshot is not important because ascp does not keep track of directory and file names in a
Sync database.

To transfer files from a snapshot of the source directory by using ascp, the snapshot must be
created first by using the following command:

mmcrsnapshot fs1 ascp_snap

If the source directory is /fs1, the files that are in the source directory can be found in the
/fs1/.snapshots/ascp_snap snapshot directory.

The command that is shown in Example 3-31 can be used to transfer files from a snapshot
directory on the source to the target directory.

Example 3-31 Transferring files from a snapshot directory on the source to the target directory

ascp -l 1G -d -p --delete-before-transfer --preserve-xattrs=native
--preserve-file-owner-gid --preserve-file-owner-uid -i ~/.ssh/id_rsa
/fs1/.snapshots/ascp_snap/ user@remotehost:/target/fs1/

The parameter assures that files that were renamed or deleted in the source directory since
the last snapshot are renamed and deleted in the target directory.

After the file transfer by using the ascp command that is shown in Example 3-31 successfully
completes, the snapshot can be deleted by using the following command:

mmdelsnapshot fs1 ascp_snap

When keeping the snapshot of the source directory, the new snapshot must have a new name
the next time an ascp transfer from a snapshot is performed. Alternatively, the existing
snapshot can be deleted and a new snapshot with the same name can be created.

After the successful file transfer with ascp, a snapshot can also be created on the target
directory; however, this process must done manually by using the following command:

mmcrsnapshot target ascp_target_snap

Note: when using snapshot async cannot be run in bidirectional transfer mode.

Note: The snapshot can also be kept as a recovery point for the source directory.
56 Integration of IBM Aspera Sync with IBM Spectrum Scale

3.7.2 Using the policy engine with snapshots

The IBM Spectrum Scale policy engine can be used to identify new and modified files in a
snapshot. For more information about the use of async and ascp with the IBM Spectrum
Scale, see 3.4, “Integration with the IBM Spectrum Scale policy engine” on page 30.

To identify files in a snapshot, the policy file must be adjusted to remove the .snapshot
directory from the exclude list (see Example 3-32).

Example 3-32 Rules to adjust policy file to remove snapshot directory from exclude list

/* 1. Rule: macro to define the files and directories to be excluded */
define(
 exclude_list,
 (PATH_NAME LIKE '%/.SpaceMan/%'
 OR PATH_NAME LIKE '%/.ctdb/%'
 OR PATH_NAME LIKE '%/.private-asp/%'
 OR PATH_NAME LIKE '%/.mmSharedTmpDir/%'

 OR PATH_NAME LIKE '%/.private-asp/%'
 OR NAME LIKE 'user.quota%'
 OR NAME LIKE 'fileset.quota%'
 OR NAME LIKE 'group.quota%')
)

/* 2. Rule: external list rule with no interface script */
RULE EXTERNAL LIST 'modfiles' EXEC ''

/* 3. Rule: file selection rule */
RULE 'asperaRule' LIST 'modfiles' WHERE
(MODIFICATION_TIME >= TIMESTAMP("2018-06-06 12:37:00") OR
 CHANGE_TIME >= TIMESTAMP("2018-06-06 12:37:00"))

The first rule defines the file and directory names to be excluded. The snapshot directory
(.snapshots) was removed from the exclude list. The second rule defines the external list
without an external script. The third rule defines the identification criteria for files that is based
on the modification time.

The mmapplypolicy command is used to run the policy. To scan the snapshot, the snapshot
path (including the source directory) must be given to this command, as shown in
Example 3-33.

Example 3-33 Use the mmapplypolicy command

mmapplypolicy /fs1/.snapshots/ -P policyfile -N asperanode -f policy
--single-instance -I defer [-s localdir -g globaldir]

The use of this command runs the policy engine and creates a file list, including the file
names that match the third rule of the policy. This file list must be adjusted and can be
processed by async (see 3.4.2, “Integration with async” on page 37) or ascp (see 3.4.3,
“Integration with ascp” on page 41). When ascp is used, the --src-base parameter must
reflect the snapshot directory (in this example, /fs1/.snapshots).
Chapter 3. Using IBM Aspera Sync with IBM Spectrum Scale 57

58 Integration of IBM Aspera Sync with IBM Spectrum Scale

Chapter 4. Summary

In this publication, we presented different options to run and integrate IBM Aspera async by
using IBM Spectrum Scale.

In this chapter, we provide some quick guidance for the use of these options and highlight
some use cases.

This chapter includes the following topics:

� 4.1, “Async or ascp standalone” on page 60
� 4.2, “Async or ascp integrated with the policy engine” on page 60
� 4.3, “Stand-alone LIST policies or external policy script” on page 60
� 4.4, “Use of snapshots” on page 61
� 4.5, “Use cases” on page 61

4

© Copyright IBM Corp. 2019. All rights reserved. 59

4.1 Async or ascp standalone

When IBM Aspera Sync is used without the integration with the IBM Spectrum Scale policy
engine, it is highly recommended to use async. Ascp can be used for testing purposes or to
transfer specific files as needed, but note the caveats that were discussed in 3.3, “Ascp
without policy engine” on page 30.

If the duration to identify the files to be transferred becomes too long by using async, it is
recommended to integrate IBM Aspera Sync with the IBM Spectrum Scale policy engine.

4.2 Async or ascp integrated with the policy engine

When IBM Aspera Sync is integrated in the IBM Spectrum Scale policy engine, async or ascp
can be used in the backend to transfer the files that are identified by the policy engine. We
recommend the use of async.

The advantage of the use of async is that it tracks transferred files. This ability is the
foundation to run full synchronizations without copying files that were transferred previously.

Running full synchronizations of the source and target directory assures that all files are
transferred as a precaution against files were being transferred. This issue can occur if the
network connection failed during a transfer or if the policy rules were ineffective. Another
advantage is that async provides more control for file transfer sessions and threads.

The use of ascp independent of async integrated with the IBM Spectrum Scale policy engine
has less overhead because it does not maintain the Sync Database. This issue is also a
disadvantage because ascp copies a file, even if the source and the target directory hold the
same version of the file. Running full synchronizations by using async copies all files again
because no Sync Database is available for files that are copied with ascp.

4.3 Stand-alone LIST policies or external policy script

As described in 3.4.1, “IBM Spectrum Scale policy engine” on page 31, the following options
are available when async or ascp is integrated with the IBM Spectrum Scale policy engine:

� Use of stand-alone LIST policies
� Use of external scripts

We recommend the use of the integration with external scripts. This option is simpler from an
operational perspective because it requires only one step. However, the external script must
be implemented, tested, and maintained.

The use of stand-alone LIST policies requires two steps and gives the administrator more
control of the file identification and transfer process. The administrator can inspect the file list
that is generated by the LIST policy and use customized transfer options in accordance with
the file list.
60 Integration of IBM Aspera Sync with IBM Spectrum Scale

4.4 Use of snapshots

The use of snapshots as source for the data transfer is useful because it prevents file access
conflicts between the user and the IBM Aspera Sync processes. In addition, the snapshot can
be used to restore files and directories locally.

Unlike with IBM Spectrum Scale Active File Management Disaster (AFM DR) recovery (see
1.3, “Differentiation with IBM Spectrum Scale Active File Management” on page 3), snapshots
are not created automatically by IBM Aspera Sync. Therefore, more operational processes
are required to coordinate the snapshot creation and deletion and the file transfer.

IBM Aspera Sync does not automatically create snapshots on the target, unlike AFM DR. This
process can be done manually or semi-automated in a script. Having matching snapshots on
the source and on the target provides defined recovery points.

4.5 Use cases

The integration of IBM Aspera Sync with IBM Spectrum Scale facilitates different use cases,
such as file sharing, file migration, and disaster recovery. It is not our objective to explain all
the use cases in more detail here; instead, we provide some overall ideas and guidance.

4.5.1 File sharing

IBM Aspera Sync can be used to share specific subset of files between IBM Spectrum Scale
clusters that are separated across large distances by efficiently using the WAN bandwidth
and preserving file attributes and ACL.

For this use case, async can be used standalone by providing file lists. If the file to be shared
can be identified by the policy engine, async or ascp can be integrated with the policy engine.

4.5.2 File migration

IBM Aspera Sync can be used to efficiently copy files from one IBM Spectrum Scale file
system to another for migration purposes. The IBM Spectrum Scale file system can also be
within the same cluster. This process facilitates the migration of files across different IBM
Spectrum Scale file system levels.

The use of async standalone assures that the source and the target file system are
synchronized in an asynchronous way. In addition, async copies in incremental forever
fashion and manages deleted and renamed files on the source.

For large file systems on the source, it might be beneficial to integrate async with the IBM
Spectrum Scale policy engine to accelerate the file identification process. This process also
prevents the crawling of async through the file system structure, which can cause excessive
metadata I/O.
Chapter 4. Summary 61

4.5.3 Disaster recovery

IBM Aspera Sync can be used for disaster recovery by synchronizing the content of the
source file system with the target file system in an asynchronous manner, especially if the
distance between the source and the target file systems is large. The goal of disaster
recovery is to have the identical content on the source and the target file system at a certain
time.

For the disaster recovery use case, async can be used standalone, which ensures that all
files are replicated and deleted and renamed files are managed.

If the duration of the file identification process become too long, it is recommended to
integrated async with the IBM Spectrum Scale policy engine. The most efficient way is to
implement an external script that is directly started by the policy engine.

To ensure that the content on source and target is identical, it is recommended to perform
periodic full synchronizations by running async standalone periodically. This process
manages files that were missed for transfer because of network or policy issues. For example,
if the policy to transfer files is run every 4 hours, it might be appropriate to run a full
synchronization by using async standalone once a day or once a week. During the full
synchronization runs, async standalone crawl the file system; therefore, the process can take
some time.

One of the key operational aspects for disaster recovery are the failover and failback
processes. These processes must be designed, documented, and implemented according to
the infrastructure and operational environment.
62 Integration of IBM Aspera Sync with IBM Spectrum Scale

Related publications

The publications that are listed in this section are considered particularly suitable for a more
detailed discussion of the topics that are covered in this paper.

IBM Redbooks

The IBM Redbooks publication IBM Spectrum Scale Immutability Introduction, Configuration
Guidance, and Use Cases, REDP-5507, provides more information about the topics that are
in this document. Note that this publication might be available in softcopy only.

You can search for, view, download, or this document and other Redbooks, Redpapers, Web
Docs, draft, and other materials, at the following website:

ibm.com/redbooks

Online resources

The following websites are also relevant as further information sources:

� IBM Spectrum Scale overview:

https://www.ibm.com/support/knowledgecenter/en/STXKQY_5.0.1/com.ibm.spectrum.sc
ale.v5r01.doc/bl1ins_intro.htm

� IBM Spectrum Scale Application Programming Interface documentation:

https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.1/com.ibm.spectrum.scale
.v5r01.doc/bl1adm_intrfce.htm

� Spectrum Scale Active File Management for Disaster Recovery:

https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.1/com.ibm.spectrum.scale
.v5r01.doc/bl1ins_activefilemanagement.htm

� Configuring IBM Spectrum Protect for Space Management with IBM Spectrum Scale
AFM:

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Tivoli%2
0Storage%20Manager/page/Configuring%20IBM%20Spectrum%20Scale%20Active%20File%20
Management

� Reference for the open source tool rsync:

https://rsync.samba.org

� Implementation of rsync for IBM Spectrum Scale:

https://github.com/gpfsug/gpfsug-tools/tree/master/bin/rsync

� IBM Aspera Sync command reference version 3.9 (Linux):

https://download.asperasoft.com/download/docs/entsrv/3.9.1/cs_admin_linux/webhe
lp/index.html#dita/sync.html
© Copyright IBM Corp. 2019. All rights reserved. 63

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://download.asperasoft.com/download/docs/entsrv/3.9.1/cs_admin_linux/webhelp/index.html#dita/sync.html
https://download.asperasoft.com/download/docs/entsrv/3.9.1/cs_admin_linux/webhelp/index.html#dita/sync.html
https://rsync.samba.org
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.1/com.ibm.spectrum.scale.v5r01.doc/bl1ins_activefilemanagement.htm
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.1/com.ibm.spectrum.scale.v5r01.doc/bl1ins_activefilemanagement.htm
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Tivoli%20Storage%20Manager/page/Configuring%20IBM%20Spectrum%20Scale%20Active%20File%20Management
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Tivoli%20Storage%20Manager/page/Configuring%20IBM%20Spectrum%20Scale%20Active%20File%20Management
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Tivoli%20Storage%20Manager/page/Configuring%20IBM%20Spectrum%20Scale%20Active%20File%20Management
https://github.com/gpfsug/gpfsug-tools/tree/master/bin/rsync
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.1/com.ibm.spectrum.scale.v5r01.doc/bl1adm_intrfce.htm
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.1/com.ibm.spectrum.scale.v5r01.doc/bl1adm_intrfce.htm
https://www.ibm.com/support/knowledgecenter/en/STXKQY_5.0.1/com.ibm.spectrum.scale.v5r01.doc/bl1ins_intro.htm
https://www.ibm.com/support/knowledgecenter/en/STXKQY_5.0.1/com.ibm.spectrum.scale.v5r01.doc/bl1ins_intro.htm

� Include and Exclude rules with async:

https://download.asperasoft.com/download/docs/entsrv/3.9.1/cs_admin_linux/webhe
lp/index.html#dita-sync/filtering_rules.html

� Aspera ascp command reference version 3.9 (Linux):

https://download.asperasoft.com/download/docs/entsrv/3.9.1/cs_admin_linux/webhe
lp/index.html#dita/ascp_2.html

� IBM Spectrum Scale configuration parameter for performance tuning and optimization:

https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.2/com.ibm.spectrum.scale
.v5r02.doc/bl1adm_tuningguide.htm

� The mmapplypolicy command:

https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.1/com.ibm.spectrum.scale
.v5r01.doc/bl1adm_mmapplypolicy.htm

� IBM Spectrum Scale policies:

https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.1/com.ibm.spectrum.scale
.v5r01.doc/bl1adv_policies.htm

� Practical guide for using IBM Spectrum Scale policies:

http://w3.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102642

� IBM Spectrum Scale immutability Redpaper:

http://www.redbooks.ibm.com/abstracts/redp5507.html

� Github: A set of scripts to use the IBM Spectrum Scale policy engine to select files and
transfer them using Aspera tools:

https://github.com/IBMRedbooks/Integration-of-IBM-Aspera-Sync-with-IBM-Spectrum
-Scale

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
64 Integration of IBM Aspera Sync with IBM Spectrum Scale

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://download.asperasoft.com/download/docs/entsrv/3.9.0/cs_admin_linux/webhelp/index.html#dita/ascp_2.html
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.1/com.ibm.spectrum.scale.v5r01.doc/bl1adm_mmapplypolicy.htm
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.1/com.ibm.spectrum.scale.v5r01.doc/bl1adm_mmapplypolicy.htm
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.1/com.ibm.spectrum.scale.v5r01.doc/bl1adv_policies.htm
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.1/com.ibm.spectrum.scale.v5r01.doc/bl1adv_policies.htm
http://w3-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102642
http://www.redbooks.ibm.com/abstracts/redp5507.html
https://download.asperasoft.com/download/docs/entsrv/3.9.0/cs_admin_linux/webhelp/index.html#dita-sync/filtering_rules.html
https://download.asperasoft.com/download/docs/entsrv/3.9.0/cs_admin_linux/webhelp/index.html#dita/ascp_2.html
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.2/com.ibm.spectrum.scale.v5r02.doc/bl1adm_tuningguide.htm
https://download.asperasoft.com/download/docs/entsrv/3.9.1/cs_admin_linux/webhelp/index.html#dita-sync/filtering_rules.html
https://download.asperasoft.com/download/docs/entsrv/3.9.1/cs_admin_linux/webhelp/index.html#dita-sync/filtering_rules.html
http://w3.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102642
https://download.asperasoft.com/download/docs/entsrv/3.9.1/cs_admin_linux/webhelp/index.html#dita/ascp_2.html
https://download.asperasoft.com/download/docs/entsrv/3.9.1/cs_admin_linux/webhelp/index.html#dita/ascp_2.html
https://github.com/IBMRedbooks/Integration-of-IBM-Aspera-Sync-with-IBM-Spectrum-Scale

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738457493

REDP-5527-00

®

https://www.facebook.com/IBMRedbooks
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. IBM Aspera Sync and IBM Spectrum Scale overview
	1.1 IBM Aspera Sync
	1.2 IBM Spectrum Scale
	1.2.1 Extended attributes

	1.3 Differentiation with IBM Spectrum Scale Active File Management
	1.4 Performance measurements

	Chapter 2. Setting up IBM Aspera Sync with IBM Spectrum Scale
	2.1 Overview
	2.2 Preparation
	2.3 How async works
	2.3.1 Async example
	2.3.2 Sync Database
	2.3.3 Sessions
	2.3.4 Replication modes
	2.3.5 Control overwrites
	2.3.6 Control deletion on target
	2.3.7 Using file lists
	2.3.8 Cluster awareness

	2.4 How ascp works
	2.4.1 Ascp example
	2.4.2 Transfer modes
	2.4.3 Control overwrites
	2.4.4 Control deletes on target
	2.4.5 Different path names on source and target
	2.4.6 Using file lists and file pair lists
	2.4.7 Cluster awareness

	2.5 IBM Spectrum Scale configuration

	Chapter 3. Using IBM Aspera Sync with IBM Spectrum Scale
	3.1 IBM Spectrum Scale policy engine considerations with IBM Aspera
	3.2 Async without policy engine
	3.3 Ascp without policy engine
	3.4 Integration with the IBM Spectrum Scale policy engine
	3.4.1 IBM Spectrum Scale policy engine
	3.4.2 Integration with async
	3.4.3 Integration with ascp

	3.5 Integration with Hierarchical Storage Management
	3.5.1 Async with HSM on source
	3.5.2 Async with HSM on target

	3.6 Integration with immutable files
	3.7 Integration with IBM Spectrum Scale Snapshots
	3.7.1 Considerations with ascp and snapshots
	3.7.2 Using the policy engine with snapshots

	Chapter 4. Summary
	4.1 Async or ascp standalone
	4.2 Async or ascp integrated with the policy engine
	4.3 Stand-alone LIST policies or external policy script
	4.4 Use of snapshots
	4.5 Use cases
	4.5.1 File sharing
	4.5.2 File migration
	4.5.3 Disaster recovery

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

